OREILLY"

?‘ \

Learning

PHP. MySQL,

JavasScript,

Robin Nixon

Learning PHP, MySQL,
JavaScript, CSS & HTML5

Robin Nixon

DEDICATION

For Julie

Preface

The combination of PHP and MySQL is the most convenient approach to
dynamic, database-driven web design, holding its own in the face of challenges
from integrated frameworks—such as Ruby on Rails—that are harder to learn.
Due to its open source roots (unlike the competing Microsoft .NET Framework),
it is free to implement and is therefore an extremely popular option for web
development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform
will need to master these technologies. And, combined with the partner
technologies of JavaScript, CSS, and HTMLS5, you will be able to create
websites of the caliber of industry standards like Facebook, Twitter, and Gmail.

Audience

This book is for people who wish to learn how to create effective and dynamic
websites. This may include webmasters or graphic designers who are already

creating static websites but wish to take their skills to the next level, as well as
high school and college students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind the Web 2.0 technology
known as Ajax will obtain a thorough grounding in all of these core
technologies: PHP, MySQL, JavaScript, CSS, and HTMLS5.

Assumptions This Book Makes

This book assumes that you have a basic understanding of HTML and can at
least put together a simple, static website, but does not assume that you have any
prior knowledge of PHP, MySQL, JavaScript, CSS, or HTML5—although if you
do, your progress through the book will be even quicker.

Organization of This Book

The chapters in this book are written in a specific order, first introducing all of
the core technologies it covers and then walking you through their installation on
a web development server so that you will be ready to work through the
examples.

In the first section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented
programming.

Then, with PHP under your belt, you will move on to an introduction to the
MySQL database system, where you will learn everything from how MySQL
databases are structured to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start
creating your own dynamic web pages by integrating forms and other HTML
features. Following that, you will get down to the nitty-gritty practical aspects of
PHP and MySQL development by learning a variety of useful functions and how
to manage cookies and sessions, as well as how to maintain a high level of
security.

In the next few chapters, you will gain a thorough grounding in JavaScript, from
simple functions and event handling to accessing the Document Object Model
and in-browser validation and error handling.

With an understanding of all three of these core technologies, you will then learn
how to make behind-the-scenes Ajax calls and turn your websites into highly
dynamic environments.

Next, you’ll spend two chapters learning all about using CSS to style and lay out

your web pages, before moving on to the final section on the new features built
into HTML5, including geolocation, audio, video, and the canvas. After this,
you’ll put together everything you’ve learned in a complete set of programs that
together constitute a fully functional social networking website.

Along the way, you’ll also find plenty of pointers and advice on good
programming practices and tips that could help you find and solve hard-to-detect
programming errors. There are also plenty of links to websites containing further
details on the topics covered.

Supporting Books

Once you have learned to develop using PHP, MySQL, JavaScript, CSS, and
HTMLY5, you will be ready to take your skills to the next level using the
following O’Reilly reference books. To learn more about any of these titles,
simply search the O’Reilly website or any good online book seller’s website:

m Dynamic HTML: The Definitive Reference by Danny Goodman
m PHP in a Nutshell by Paul Hudson

m MySQL in a Nutshell by Russell J.T. Dyer

m JavaScript: The Definitive Guide by David Flanagan

m (CSS: The Definitive Guide by Eric A. Meyer

m HTMLS5: The Missing Manual by Matthew MacDonald

Conventions Used in This Book

The following typographical conventions are used in this book:
Plain text

Indicates menu titles, options, and buttons.

Italic

http://oreilly.com
http://oreil.ly/dynamic_html
http://oreil.ly/PHP_nutshell
http://oreil.ly/MySQL_nutshell
http://oreil.ly/javascript-tdg-6e
http://oreil.ly/css-tdg-3e
http://oreil.ly/html5-tmm-2e

Indicates new terms, URLSs, email addresses, filenames, file extensions,
pathnames, directories, and Unix utilities.

Constant width

Indicates command-line options, variables and other code elements, HTML
tags, macros, and the contents of files.

Constant width bold

Shows program output or highlighted sections of code that are being
discussed in the text.

Constant width italic

Shows text that should be replaced with user-supplied values.

NOTE

This element signifies a tip, suggestion, or general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available at
http://Ipmj.net.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of
code from this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not require

http://lpmj.net

permission. Incorporating a significant amount of example code from this book
into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning PHP, MySQL,
JavaScript, CSS & HTMLS5, Third Edition, by Robin Nixon. Copyright 2014
Robin Nixon, 978-1-4919-4946-7.”

If you feel your use of code examples falls outside fair use or the permission
given here, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You

Every example in this book has been tested on various platforms, but
occasionally you may encounter problems—for example, if you have a
nonstandard installation or a different version of PHP. The information in this
book has also been verified at each step of the production process. However,
mistakes and oversights can occur and we will gratefully receive details of any
you find, as well as any suggestions you would like to make for future editions.
You can contact the author and editors at:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any
additional information. You can access this page at http://bit.ly/lpmjch_3e.

There is also a companion website to this book at http://lpmj.net, where you can
download all the examples from this book in a single zip file.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our
website at http://www.oreilly.com.

mailto:permissions@oreilly.com
http://bit.ly/lpmjch_3e
http://lpmj.net
mailto:bookquestions@oreilly.com
http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online

Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the world’s
leading authors in technology and business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for
research, problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access to
thousands of books, training videos, and prepublication manuscripts in one fully
searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning,
New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and dozens
more. For more information about Safari Books Online, please visit us online.

Acknowledgments

I would like to once again thank my editor, Andy Oram, and everyone who
worked so hard on this book, including Albert Wiersch for his comprehensive
technical review, Kristen Brown for overseeing production, Rachel Monaghan
for her copyediting, Jasmine Kwityn for proofreading, Robert Romano for his
original illustrations, Rebecca Demarest for her new illustrations, David Futato
for interior design, Lucie Haskins for creating the index, Karen Montgomery for
the original sugar glider front cover design, Randy Comer for the latest book
cover, and everyone else too numerous to name who submitted errata and
offered suggestions for this new edition.

http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

Chapter 1. Introduction to
Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled
far beyond its conception in the early 1990s, when it was created to solve a
specific problem. State-of-the-art experiments at CERN (the European
Laboratory for Particle Physics—now best known as the operator of the Large
Hadron Collider) were producing incredible amounts of data—so much that the
data was proving unwieldy to distribute to the participating scientists who were
spread out across the world.

At this time, the Internet was already in place, with several hundred thousand
computers connected to it, so Tim Berners-Lee (a CERN fellow) devised a
method of navigating between them using a hyperlinking framework, which
came to be known as Hypertext Transfer Protocol, or HTTP. He also created a
markup language called HTML, or Hypertext Markup Language. To bring these
together, he wrote the first web browser and web server, tools that we now take
for granted.

But back then, the concept was revolutionary. The most connectivity so far
experienced by at-home modem users was dialing up and connecting to a
bulletin board that was hosted by a single computer, where you could
communicate and swap data only with other users of that service. Consequently,
you needed to be a member of many bulletin board systems in order to
effectively communicate electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s, there
were three major graphical web browsers competing for the attention of five
million users. It soon became obvious, though, that something was missing. Yes,
pages of text and graphics with hyperlinks to take you to other pages was a
brilliant concept, but the results didn’t reflect the instantaneous potential of
computers and the Internet to meet the particular needs of each user with
dynamically changing content. Using the Web was a very dry and plain

experience, even if we did now have scrolling text and animated GIFs!

Shopping carts, search engines, and social networks have clearly altered how we
use the Web. In this chapter, we’ll take a brief look at the various components
that make up the Web, and the software that helps make it a rich and dynamic
experience.

NOTE

It is necessary to start using some acronyms more or less right away. I have tried to clearly
explain them before proceeding. But don’t worry too much about what they stand for or what
these names mean, because the details will all become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics

HTTP is a communication standard governing the requests and responses that
take place between the browser running on the end user’s computer and the web
server. The server’s job is to accept a request from the client and attempt to reply
to it in a meaningful way, usually by serving up a requested web page—that’s
why the term server is used. The natural counterpart to a server is a client, so
that term is applied both to the web browser and the computer on which it’s
running.

Between the client and the server there can be several other devices, such as
routers, proxies, gateways, and so on. They serve different roles in ensuring that
the requests and responses are correctly transferred between the client and
server. Typically, they use the Internet to send this information.

A web server can usually handle multiple simultaneous connections and—when
not communicating with a client—spends its time listening for an incoming
connection. When one arrives, the server sends back a response to confirm its
receipt.

The Request/Response Procedure

At its most basic level, the request/response process consists of a web browser
asking the web server to send it a web page and the server sending back the

page. The browser then takes care of displaying the page (see Figure 1-1).

Web The Web server Disk drive
browser Internet at server.com at server.com
1 Userenters: |
http.//server.com
Look up IP

2 R address nf

: server.com

Request
3 e
page using IP
Receive
4 re uest for
index page :
Fetch
5 presransnnnnnanas index.html!
] from hard disk
6 e s——— Return the
index page
7 Receive and
display page

Figure 1-1. The basic client/server request/response sequence

Each step in the request and response sequence is as follows:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request for the home page at server.com.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, looks for the web page on its
hard disk.

6. The web page is retrieved by the server and returned to the browser.
7. Your browser displays the web page.

For an average web page, this process takes place once for each object within the
page: a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looked up the IP address of server.com. Every
machine attached to the Internet has an IP address—your computer included. But
we generally access web servers by name, such as google.com. As you probably
know, the browser consults an additional Internet service called the Domain
Name Service (DNS) to find its associated IP address and then uses it to
communicate with the computer.

For dynamic web pages, the procedure is a little more involved, because it may
bring both PHP and MySQL into the mix (see Figure 1-2).

http://google.com

10

11

Web The Web PHP Disk MySQL

browser Internet server processor drive database
L
URL i
................. Look up
the IP
- —— "
main page
Receive .
request
.. Fetch
page
Contains ~ |..oeeeeecrnn
PHP
Process | oo,
PHP
................................... Execute
SQL
PR— Receive
data
-------------------------------------- REIurn
page
Display
page

Figure 1-2. A dynamic client/server request/response sequence

Here are the steps for a dynamic client/server request/response sequence:

1.

2.

You enter http://server.com into your browser’s address bar.
Your browser looks up the IP address for server.com.

Your browser issues a request to that address for the web server’s home
page.

10.

11.

The request crosses the Internet and arrives at the server.com web server.

The web server, having received the request, fetches the home page from
its hard disk.

With the home page now in memory, the web server notices that it is a file
incorporating PHP scripting and passes the page to the PHP interpreter.

The PHP interpreter executes the PHP code.

Some of the PHP contains MySQL statements, which the PHP interpreter
now passes to the MySQL database engine.

The MySQL database returns the results of the statements back to the PHP
interpreter.

The PHP interpreter returns the results of the executed PHP code, along
with the results from the MySQL database, to the web server.

The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three
elements work together, in practice you don’t really need to concern yourself
with these details, because they all happen automatically.

HTML pages returned to the browser in each example may well contain
JavaScript, which will be interpreted locally by the client, and which could
initiate another request—the same way embedded objects such as images would.

The Benefits of PHP, MySQL, JavaScript, CSS,
and HTML5

At the start of this chapter, I introduced the world of Web 1.0, but it wasn’t long
before the rush was on to create Web 1.1, with the development of such browser
enhancements as Java, JavaScript, JScript (Microsoft’s slight variant of
JavaScript), and ActiveX. On the server side, progress was being made on the
Common Gateway Interface (CGI) using scripting languages such as Perl (an

alternative to the PHP language) and server-side scripting—inserting the
contents of one file (or the output of a system call) into another one dynamically.

Once the dust had settled, three main technologies stood head and shoulders
above the others. Although Perl was still a popular scripting language with a
strong following, PHP’s simplicity and built-in links to the MySQL database
program had earned it more than double the number of users. And JavaScript,
which had become an essential part of the equation for dynamically
manipulating CSS (Cascading Style Sheets) and HTML, now took on the even
more muscular task of handling the client side of the Ajax process. Under Ajax,
web pages perform data handling and send requests to web servers in the
background—without the web user being aware that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both
forward, but what attracted developers to them in the first place? The simple
answer has to be the ease with which you can use them to quickly create
dynamic elements on websites. MySQL is a fast and powerful, yet easy-to-use,
database system that offers just about anything a website would need in order to
find and serve up data to browsers. When PHP allies with MySQL to store and
retrieve this data, you have the fundamental parts required for the development
of social networking sites and the beginnings of Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for
building highly dynamic and interactive websites.

Using PHP

With PHP, it’s a simple matter to embed dynamic activity in web pages. When
you give pages the .php extension, they have instant access to the scripting
language. From a developer’s point of view, all you have to do is write code such
as the following:

<?php
echo " Today is " . date("1") . ". ";

?>

Here's the latest news.

The opening <?php tells the web server to allow the PHP program to interpret all

the following code up to the ?> tag. Outside of this construct, everything is sent
to the client as direct HTML. So the text Here's the latest news. is simply

output to the browser; within the PHP tags, the built-in date function displays
the current day of the week according to the server’s system time.

The final output of the two parts looks like this:
Today is Wednesday. Here's the latest news.

PHP is a flexible language, and some people prefer to place the PHP construct
directly next to PHP code, like this:

Today is <?php echo date("1"); ?>. Here's the latest news.

There are also other ways of formatting and outputting information, which I’ll
explain in the chapters on PHP. The point is that with PHP, web developers have
a scripting language that, although not as fast as compiling your code in C or a
similar language, is incredibly speedy and also integrates seamlessly with
HTML markup.

NOTE

If you intend to enter the PHP examples in this book to work along with me, you must
remember to add <?php in front and ?> after them to ensure that the PHP interpreter processes
them. To facilitate this, you may wish to prepare a file called example.php with those tags in
place.

Using PHP, you have unlimited control over your web server. Whether you need
to modify HTML on the fly, process a credit card, add user details to a database,
or fetch information from a third-party website, you can do it all from within the
same PHP files in which the HTML itself resides.

Using MySQL

Of course, there’s not much point to being able to change HTML output
dynamically unless you also have a means to track the changes that users make
as they use your website. In the early days of the Web, many sites used “flat”

text files to store data such as usernames and passwords. But this approach could
cause problems if the file wasn’t correctly locked against corruption from
multiple simultaneous accesses. Also, a flat file can get only so big before it
becomes unwieldy to manage—not to mention the difficulty of trying to merge
files and perform complex searches in any kind of reasonable time.

That’s where relational databases with structured querying become essential.
And MySQL, being free to use and installed on vast numbers of Internet web
servers, rises superbly to the occasion. It is a robust and exceptionally fast
database management system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have
one or more tables that contain your data. For example, let’s suppose you are

working on a table called users, within which you have created columns for

surname, firstname, and email, and you now wish to add another user. One
command that you might use to do this is:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Of course, as mentioned earlier, you will have issued other commands to create

the database and table and to set up all the correct fields, but the INSERT
command here shows how simple it can be to add new data to a database. The
INSERT command is an example of SQL (Structured Query Language), a
language designed in the early 1970s and reminiscent of one of the oldest
programming languages, COBOL. It is well suited, however, to database queries,
which is why it is still in use after all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for
a user and need to look up that person’s name. To do this, you could issue a
MySQL query such as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be
associated with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just
simple INSERT and SELECT commands. For example, you can join multiple

tables according to various criteria, ask for results in a variety of orders, make
partial matches when you know only part of the string that you are searching for,
return only the nth result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to
run the MySQL program yourself or use its command-line interface. This means
you can save the results in arrays for processing and perform multiple lookups,
each dependent on the results returned from earlier ones, to drill right down to
the item of data you need.

For even more power, as you’ll see later, there are additional functions built right
into MySQL that you can call up for common operations and extra speed.

Using JavaScript

The oldest of the three core technologies in this book, JavaScript, was created to
enable scripting access to all the elements of an HTML document. In other
words, it provides a means for dynamic user interaction such as checking email
address validity in input forms, displaying prompts such as “Did you really mean
that?”, and so on (note, however, that it cannot be relied upon for security, which
should always be performed on the web server).

Combined with CSS (see the following section), JavaScript is the power behind
dynamic web pages that change in front of your eyes rather than when a new
page is returned by the server.

However, JavaScript can also be tricky to use, due to some major differences in
the ways different browser designers have chosen to implement it. This mainly
came about when some manufacturers tried to put additional functionality into
their browsers at the expense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have
realized the need for full compatibility with one another, so they don’t have to
write multi-exception code. But there remain millions of legacy browsers that
will be in use for a good many years to come. Luckily, there are solutions for the
incompatibility problems, and later in this book we’ll look at libraries and
techniques that enable you to safely ignore these differences.

For now, let’s take a quick look at how you can use basic JavaScript, accepted by
all browsers:

<script type="text/javascript"s
document.write("Today is " + Date());
</script>

This code snippet tells the web browser to interpret everything within the
script tags as JavaScript, which the browser then does by writing the text
Today 1is to the current document, along with the date, by using the JavaScript
function Date. The result will look something like this:

Today is Sun Jan 01 2017 01:23:45

NOTE

Unless you need to specify an exact version of JavaScript, you can normally omit the
type="text/javascript" and just use <script> to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic
control over the various elements within an HTML document, and that is still its
main use. But more and more, JavaScript is being used for Ajax. This is a term
for the process of accessing the web server in the background. (It originally
meant “Asynchronous JavaScript and XML,” but that phrase is already a bit
outdated.)

Ajax is the main process behind what is now known as Web 2.0 (a term
popularized by Tim O’Reilly, the founder and CEO of this book’s publishing
company), in which web pages have started to resemble standalone programs,
because they don’t have to be reloaded in their entirety. Instead, a quick Ajax
call can pull in and update a single element on a web page, such as changing
your photograph on a social networking site or replacing a button that you click
with the answer to a question. This subject is fully covered in Chapter 18.

Using CSS

With the emergence of the CSS3 standard in recent years, CSS now offers a level
of dynamic interactivity previously supported only by JavaScript. For example,
not only can you style any HTML element to change its dimensions, colors,
borders, spacing, and so on, but now you can also add animated transitions and

transformations to your web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style> and
</style> tags in the head of a web page, like this:

<style>

p{
text-align:justify;
font-family:Helvetica;

}
</style>

These rules will change the default text alignment of the <p> tag so that
paragraphs contained in it will be fully justified and will use the Helvetica font.

As you’ll learn in Chapter 19, there are many different ways you can lay out
CSS rules, and you can also include them directly within tags or save a set of
rules to an external file to be loaded in separately. This flexibility not only lets
you style your HTML precisely, but it can also, for example, provide built-in
hover functionality to animate objects as the mouse passes over them. You will
also learn how to access all of an element’s CSS properties from JavaScript as
well as HTML.

And Then There’s HTML5

As useful as all these additions to the web standards became, they were not
enough for ever more ambitious developers. For example, there was still no
simple way to manipulate graphics in a web browser without resorting to plug-
ins such as Flash. And the same went for inserting audio and video into web
pages. Plus, several annoying inconsistencies had crept into HTML during its
evolution.

So, to clear all this up and take the Internet beyond Web 2.0 and into its next
iteration, a new standard for HTML was created to address all these
shortcomings. It was called HTMLS5 and it began development as long ago as
2004, when the first draft was drawn up by the Mozilla Foundation and Opera
Software (developers of two popular web browsers). But it wasn’t until the start
of 2013 that the final draft was submitted to the World Wide Web Consortium
(W3C), the international governing body for web standards.

With nine years for it to develop, you might think that would be the end of the
specification, but that’s not how things work on the Internet. Although websites
come and go at great speed, the underlying software is developed slowly and
carefully, and so the stable recommendation for HTMLS5 is not expected until
after this edition of the book has been published—in late 2014. And then guess
what? Work will move on to versions 5.1 and higher, beginning in 2015. It’s a
never-ending cycle of development.

However, while HTML5.1 is planned to bring some handy improvements
(mainly to the canvas), basic HTMLS5 is the new standard web developers now
need to work to, and it will remain in place for many years to come. So learning
everything you can about it now will stand you in very good stead.

There’s actually a great deal of new stuff in HTML (and quite a few things that
have been changed or removed), but in summary, here’s what you get:

Markup

Including new elements such as <nav> and <footer>, and deprecated
elements like and <center>.

New APIs

For example, the <canvas> element for writing and drawing on a graphics
canvas, <audio> and <video> elements, offline web apps, microdata, and
local storage.

Applications

Including two new rendering technologies: MathML (Math Markup
Language) for displaying mathematical formulae) and SVG (Scalable Vector
Graphics) for creating graphical elements outside of the new <canvas>
element. However, MathML and SVG are somewhat specialist, and are so
feature-packed they would need a book of their own, so I don’t cover them
here.

All these things (and more) are covered in detail starting in Chapter 22.

NOTE

One of the little things I like about the HTMLS5 specification is that XHTML syntax is no
longer required for self-closing elements. In the past you could display a line break using the

 element. Then, to ensure future compatibility with XHTML (the planned replacement for
HTML that never happened), this was changed to
, in which a closing / character was
added (because all elements were expected to include a closing tag featuring this character).
But now things have gone full circle, and you can use either version of these element types.
So, for the sake of brevity and fewer keystrokes, in this book I have reverted to the former
style of
, <hr>, and so on.

The Apache Web Server

In addition to PHP, MySQL, JavaScript, CSS, and HTML)5, there’s actually a
sixth hero in the dynamic Web: the web server. In the case of this book, that
means the Apache web server. We’ve discussed a little of what a web server does
during the HTTP server/client exchange, but it actually does much more behind
the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range
of files from images and Flash files to MP3 audio files, RSS (Really Simple
Syndication) feeds, and so on. To do this, each element a web client encounters
in an HTML page is also requested from the server, which then serves it up.

But these objects don’t have to be static files such as GIF images. They can all
be generated by programs such as PHP scripts. That’s right: PHP can even create
images and other files for you, either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into Apache or PHP
or called up at runtime. One such module is the GD (Graphics Draw) library,
which PHP uses to create and handle graphics.

Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the
modules that handle security. Other examples are the Rewrite module, which
enables the web server to handle a varying range of URL types and rewrite them
to its own internal requirements, and the Proxy module, which you can use to
serve up often-requested pages from a cache to ease the load on the server.

Later in the book, you’ll see how to actually use some of these modules to

enhance the features provided by the three core technologies.

About Open Source

Whether the open source quality of these technologies is the reason they are so
popular has often been debated, but PHP, MySQL, and Apache are the three
most commonly used tools in their categories.

What can be said definitively, though, is that their being open source means that
they have been developed in the community by teams of programmers writing
the features they themselves want and need, with the original code available for
all to see and change. Bugs can be found and security breaches can be prevented
before they happen.

There’s another benefit: all these programs are free to use. There’s no worrying
about having to purchase additional licenses if you have to scale up your website
and add more servers. And you don’t need to check the budget before deciding
whether to upgrade to the latest versions of these products.

Bringing It All Together

The real beauty of PHP, MySQL, JavaScript, CSS, and HTMLS5 is the wonderful
way in which they all work together to produce dynamic web content: PHP
handles all the main work on the web server, MySQL manages all the data, and
the combination of CSS and JavaScript looks after web page presentation.
JavaScript can also talk with your PHP code on the web server whenever it needs
to update something (either on the server or on the web page). And with the
powerful new features in HTMLJ5, such as the canvas, audio and video, and
geolocation, you can make your web pages highly dynamic, interactive, and
multimedia packed.

Without using program code, let’s summarize the contents of this chapter by
looking at the process of combining some of these technologies into an everyday
Ajax feature that many websites use: checking whether a desired username
already exists on the site when a user is signing up for a new account. A good
example of this can be seen with Gmail (see Figure 1-3).

24 https:;//accounts.go... O ~ @ & X

s, -
|-lGngleAcmurﬂs ‘ | i 8 597 |

Eile Edit View Favorites Tools Help

Your Google Account is
more than just Gmail. Name
Samuel Smith

m

Choose your username

samsrmith

Someone already has that username. Try another?
Available: smithsamuel169 ss1676073

Create a password

4 LI

H100% -

Figure 1-3. Gmail uses Ajax to check the availability of usernames

The steps involved in this Ajax process would be similar to the following:

1.

The server outputs the HTML to create the web form, which asks for the
necessary details, such as username, first name, last name, and email
address.

At the same time, the server attaches some JavaScript to the HTML to
monitor the username input box and check for two things: (a) whether
some text has been typed into it, and (b) whether the input has been
deselected because the user has clicked on another input box.

Once the text has been entered and the field deselected, in the background
the JavaScript code passes the username that was entered back to a PHP
script on the web server and awaits a response.

The web server looks up the username and replies back to the JavaScript
regarding whether that name has already been taken.

The JavaScript then places an indication next to the username input box to
show whether the name is one available to the user—perhaps a green
checkmark or a red cross graphic, along with some text.

6. If the username is not available and the user still submits the form, the
JavaScript interrupts the submission and reemphasizes (perhaps with a
larger graphic and/or an alert box) that the user needs to choose another
username.

7. Optionally, an improved version of this process could even look at the
username requested by the user and suggest an alternative that is currently
available.

All of this takes place quietly in the background and makes for a comfortable
and seamless user experience. Without Ajax, the entire form would have to be
submitted to the server, which would then send back HTML, highlighting any
mistakes. It would be a workable solution, but nowhere near as tidy or
pleasurable as on-the-fly form field processing.

Ajax can be used for a lot more than simple input verification and processing,
though; we’ll explore many additional things that you can do with it in the Ajax
chapters later in this book.

In this chapter, you have read a good introduction to the core technologies of
PHP, MySQL, JavaScript, CSS, and HTMLS5 (as well as Apache), and have
learned how they work together. In Chapter 2, we’ll look at how you can install
your own web development server on which to practice everything that you will
be learning.

Questions

1. What four components (at the minimum) are needed to create a fully
dynamic web page?

2. What does HTML stand for?
3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages that generate
dynamic results for web pages. What is their main difference, and why
would you use both of them?

5. What does CSS stand for?
6. List three major new elements introduced in HTMLS5.

7. If you encounter a bug (which is rare) in one of the open source tools, how
do you think you could get it fixed?

See Chapter 1 Answers in Appendix A for the answers to these questions.

Chapter 2. Setting Up a
Development Server

If you wish to develop Internet applications but don’t have your own
development server, you will have to upload every modification you make to a
server somewhere else on the Web before you can test it.

Even on a fast broadband connection, this can still represent a significant
slowdown in development time. On a local computer, however, testing can be as
easy as saving an update (usually just a matter of clicking once on an icon) and
then hitting the Refresh button in your browser.

Another advantage of a development server is that you don’t have to worry about
embarrassing errors or security problems while you’re writing and testing,
whereas you need to be aware of what people may see or do with your
application when it’s on a public website. It’s best to iron everything out while
you’re still on a home or small office system, presumably protected by firewalls
and other safeguards.

Once you have your own development server, you’ll wonder how you ever
managed without one, and it’s easy to set one up. Just follow the steps in the
following sections, using the appropriate instructions for a PC, a Mac, or a Linux
system.

In this chapter, we cover just the server side of the web experience, as described
in Chapter 1. But to test the results of your work—particularly when we start
using JavaScript, CSS, and HTMLS5 later in this book—you should also have an
instance of every major web browser running on some system convenient to you.
Whenever possible, the list of browsers should include at least Internet Explorer,
Mozilla Firefox, Opera, Safari, and Google Chrome.

If you plan to ensure your sites look good on mobile devices too, then you
should also try to arrange access to a wide range of Apple iOS and Google
Android phones and tablets.

What Is a WAMP, MAMP, or LAMP?

WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL,
and PHP,” “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL,
and PHP.” These abbreviations describe a fully functioning setup used for
developing dynamic Internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of a package that binds the
bundled programs together so that you don’t have to install and set them up
separately. This means you can simply download and install a single program,
and follow a few easy prompts, to get your web development server up and
running in the quickest time with a minimum hassle.

During installation, several default settings are created for you. The security
configurations of such an installation will not be as tight as on a production web
server, because it is optimized for local use. For these reasons, you should never
install such a setup as a production server.

But for developing and testing websites and applications, one of these
installations should be entirely sufficient.

WARNING

If you choose not to go the WAMP/MAMP/LAMP route for building your own development
system, you should know that downloading and integrating the various parts yourself can be
very time-consuming and may require a lot of research in order to configure everything fully.
But if you already have all the components installed and integrated with one another, they
should work with the examples in this book.

Installing a WAMP on Windows

There are several available WAMP servers, each offering slightly different
configurations, but the best is probably Zend Server Free Edition, because it’s
free and is from the developers of PHP itself. You can download it at
http://tinyurl.com/zendfree, as shown in Figure 2-1.

NOTE
Throughout this book, whenever there’s a long URL to type, I use the TinyURL web address

http://tinyurl.com/zendfree

shortening service to save you time and reduce typos. For example, the URLs
http://tinyurl.com/zendfree and http://tinyurl.com/zenddocs are much shorter than the URLs
that they lead to:

= http://www.zend.com/en/products/server/free-edition

= http://files.zend.com/help/ZendServer-6/zend-server.htm

[-To
;. 2 Zend Server Free Edition - \
%~ C A [www.zend.com/en/products/server/free-edition =
BEB#YE | = Stors | Forums | My Account | Signin | ™ §§ IJ
" The PHP Company
zend 4. Downloads Bl Newsletter) Support EZdContact
Products Solutions Services Training Downloads Resources Store Company Suppert
Se rver Mobile and Web Application Platform & Eros Dowriliad
What's New Webinars Get Started Free Edition Features Editions IBM i Requirements FAQ » Chat with Zend
» Contact Sales
Start Your Project off Right with the Best Free
er User Guide
ver Deployment
Page Cache
d Server Job Queue
Zend Server Free Edition gives your app the edge iy
¥ : FORUMS
— the fastest PHP server around, ready to go with DOWNLOAD Vink Zad Server Forum mores
all the extensions and drivers you need, along with zendserver
advanced debugging tools. B whHITE PAPER
Leadership Today -
- DevOps: Agie Delivery for
Competitive Edge mores

Figure 2-1. You can download the Free Edition from the Zend website

I recommend that you always download the latest stable release (in this instance,
it’s 6.3.0/PHP 5.5 for Windows). It will probably be listed first in the Download
section of the web page, which should display the correct installer for your
computer out of Linux, Windows OS X, and IBM i.

NOTE

During the lifetime of this edition, some of the screens and options shown in the following
walkthrough may change. If so, just use your common sense to proceed in as similar a manner
as possible to the sequence of actions described.

http://tinyurl.com/zendfree
http://tinyurl.com/zenddocs
http://www.zend.com/en/products/server/free-edition
http://files.zend.com/help/Zend-Server-6/zend-server.htm

Once you’ve downloaded the installer, run it to bring up the window shown in
Figure 2-2.

Zend Server Installer -|

server

Welcome to the Zend Server 6.3 Installer

The Installation wizard will install Zend Server on pour computer,
To continue, click Mest.

IretallShizid < Back Cancel

Figure 2-2. The main installation window of the installer

Click Next and accept the license agreement that follows to move on to the
Setup Type screen (see Figure 2-3), then select the Custom option so that the
MySQL server can also be installed.

Zend Server Installer [x]

server

Setup Type
Select an installation method.

Click the type of zetup pou prefer, then chck Wext.

£ Tupical Program will be installed with the most comman options.
Recommended for most uzers.

All program features will be installed.
Fiequires an Intermet connection in order to download third-party
components,

rou may select the options you want toinstall. Becommended for
advanced uzers.

Requires an Intermet connection in order to download third-party
components.

IretallShizid < Back et > Cancel

Figure 2-3. Choose the Custom install option

When the Custom Setup window appears, scroll down the list of options to the
bottom and ensure that MySQL Server is checked, as shown in Figure 2-4, then
click Next.

Zend Server Installer -|

server

Custom Setup
Select components o install.

Only components with a marked checkbox will be installed. After installation run the Installer again
to add components not selected this ime.

: —Description—————————
B Zend Page Cache il s

Zend b onitar Ingtalle the MuSCL

E zzential D atabaze Server
ZendJob UQueus [version 5.5.23)

i Zend Session Clustering
@ Zend Code Tracing
-[JZend Java Bridge
- @ Zend Deplapment
] Infarmix
-] Oracle OCI Diriver
-[_]IBM DBZ RTCL [zeparate download)
W MySOL Server [separate download)
- [1M5 SOL Mative Client (zeparate download)

296.57 MB of space required an the C dive
17123954, 74 MB of zpace available on the C dive

IretallShizid < Back et > Cancel

Figure 2-4. Check MySQL Server before continuing

On the following screen (see Figure 2-5), even if you already have an IIS web
server installed, I recommend that you choose to install the Apache web server,
because the examples in this book are for Apache. Then click Next.

Zend Server Installer

server

Web Server
Select the twpe of Web Server to uze and define where ta install Zend Server.

Select aweb Server
* iinstall an Apache 2.2 25 Web Served

{7 Configure existing 115 Web Server
Mote: Microzoft [15 iz currently not installed.
IF pou want to uze 15, pleaze ingtall it and restart the Zend Server inztallation

Defite whers ta Install Zend Server.
Click Mest to approve or Browse to change the location,

—Destination Folder
% C:WProgram Files [#86]"Eendh, Browse. ..

IretallShizid Cancel

Figure 2-5. Install the Apache web server

Now accept the default values of 80 for the Web Server Port, and 10081 for the
Zend Server Interface Port (see Figure 2-6) and click Next.

NOTE

If either of the ports offered states that it is occupied (generally this will be because you have
another web server running) and doesn’t allow you to use the defaults, then try a value of 8080
(or 8000) for the Web Server Port, and 10082 for the Zend Server Interface Port. You’ll need to
remember these values for later when you’re accessing either web pages or the Zend server.
For example, instead of visiting localhost/index.htm in your web browser, you would use
localhost:8080/index.htm.

Zend Server Installer [x]

server

Apache Port Humber

Click Mest to uzse the default zettings or change the port walues that your webserver will listen
to and that the Administration Interface uzes respectively.

Wwieh Server Part;

Zend Server Interface Port: [hogst ak.

IretallShizid < Back et > Cancel

Figure 2-6. Accept the default values offered for the ports

Once the ports have been assigned, you will reach the screen in Figure 2-7,
where you should click Install to start the installation.

Zend Server Installer

server

Installation Settings
Review your zettings before instaling Zend Server.

Click Install to begin inzstaling Zend Server with the following components:

-PHP 5.4.21

-- Common E stensions
- ddditional E stenzions
- Zend Optimizer+

-- Zend Debugger
--Zend D ata Cache

-- Zend Page Cache

-- Zend Monitor

- Zend Job Queus

- Zend Seszion Clustering
--Zend Code Tracing
-- Zend Deployment

- Oracle OCI Drver

- MySOL Server

£

InstallShizld f £ Back f Inztall [Cancel

Figure 2-7. Now you are ready to click Install to proceed

During installation some extra files may be downloaded, so it may take a few
minutes for the programs to get set up. During installation you might also see a
pop-up dialog box from Windows Firewall. If so, accept the request to give it
access. When the files have been installed, you will be notified and prompted to
start using the software by clicking Finish. When you do so, your default
browser will be opened with the page shown in Figure 2-8, where, to continue,
you must check the box to agree with the terms.

} [localhost: 10081/ ZendSery X -\1\

&= C N [localhost10081/ZendServer/ ol =

Launch Zend Server

Launch Type Zend Technologies Ltd.End-User License RgreementThis
End-User Licenae Agreement (this "Agreement™) is a
legal contract between you, &3 either an individual
or & single business entity, and Zend Technologies
Ltd. and its affiliates ("Zend™).

User Passwords

. BEAD THE TEEMS AND CONDITIONS OF THIS AGREEMENT
Library Packages CAREFULLY BEFORE DOWNLOADING, INSTALLING OR TUSING
ZEND' 5 FROPRIETARY SOFIWARE (THE "SOFIWARE™). THE
Summary SOFTWARE IS FURTHER LDEFINED IN RN ORDER DOCUMENT (AN
“ORDER"), ENTERED INTC BETWEEN YQU AND ZEND COR ¥OQU
AND A ZEWD BESELLER, WHICH SETS FORTH COMMERCIAL
TERMS APFLICABLE TO YOUR PURCHASE OF THE SOFTWARE.

THE SOFIWRRE IS5 COPYRIGHTED AND IT IS5 LICENSED TO YOU
UNDEE THIS AGREEMENT AND IS5 NOT 30LD TOQ YOU. BY
DOWNLOADING, INSTALLING OR USING THE SOFIWARE OR
OBTAINING & LICENSE EEY TO THE 30FTWRRE, OR BY
ENTERING INICQ AN ORDEER WHICH REFERENCES ILND FROVIDES

#| | have read and agree to the license agreement

Figure 2-8. You must agree to the terms in order to use the server

Next, you are asked how you will be using the server. I recommend that you
select the Development option for the purposes of working through the exercises
in this book (see Figure 2-9).

} [localhost: 10081/ ZendSery X -\1\

&= C N [localhost10081/ZendServer/ ol =

Launch Zend Server

License Agreement

Select a working environment to launch Zend Server with optimized
system configuration settings.

* Development
Launch Zend Server with server and PHP =ettings optimized for a development

WOT ;
User Passwords et

Library Packages Production (Single Server)
Launch Zend Server with server and PHP settings optimized for a production
Summary environment.

Production (Create or Join a Cluster)
Launch Zend Server with server and PHP settings optimized for a clustered

production environment.

Previous MHext

Figure 2-9. Select the Development option

Now you are ready to set a password for the user admin (see Figure 2-10). You
do not need to enter a password for the user developer. Make sure you choose a
password you will remember and click Next. After the library packages show as
deployed, click Next again to proceed to the screen shown in Figure 2-11, where
you can now click Launch to finish installation. Note that the Cluster
Configuration option may not appear on the OS X version of the installer.

/| localhost: 10081/ZendSer. % -\1

¢« C A [localhost10081/ZendServer/ o7

Launch Zend Server
License Agreement

Launch Type .
Enter password for user "admin';

Library Packages

Enter password for user 'developer (Optional):

Summary

Previous Hext

Figure 2-10. Choose your password and enter it twice

/| localhost: 10081/ZendSer. % -\1

&= C A [} localhost10081/ZendServer/ N =

Launch Zend Server
License Agreement

Launch Type

You have chosen to launch Zend Server with server and PHP settings

aptimized for a development enviranment.
Uszer Passwords

Library Packages

Admin password was set

Developer password was not set and user was disabled

To update your Zend Server license, visitthe Zend Online Store, and
enter the new license details on the License page under the
Administration tab.

Previous Launch

Figure 2-11. Click Submit to complete setup

After a short wait, your browser will show the Dashboard screen in Figure 2-12,
which is where you can administer the server.

) [Zend Server x %
<« C A [} localhost:10081/ZendServer/Index/Index v =
Overview Applications Configurations Administration administrator 13:12
Dashboard | Events | Code Tracing | Job Queue | Sepver Info. | Logs
Overview System Health System Utilization Usage Statistics Mobile Usage Maobile Statistics

+ Deploy an application to your site or + Define a caching rule - Speed-up —— e o

integrate your existing functioning recurring executions of PHP scripts ;
applications with the Zend Server in your application » = -
TR e s e > » Join Cluster - Associate your server = s

« Configure monitoring thresholds » with an existing clustered

JE g environment »
« Schedule a Recurring job - periodically '

execute a PHP script to improve your A
site response time » and caching rules, eve

Figure 2-12. The Zend Server administration screen

You can return to this screen at any time by entering http://localhost: 10081 into
your browser. Or, if you entered a value other than 10081 for the Zend Server
Interface Port (or 10088 on a Mac), then you can get to this screen by using that
value after the colon instead.

Testing the Installation

The first thing to do at this point is verify that everything is working correctly.
To do this, you are going to try to display the default web page, which will have
been saved in the server’s document root folder (see Figure 2-13). Enter either of
the following two URLSs into the address bar of your browser:

localhost
127.0.0.1

.Zend Server Test Page x @ \
« - C f 'D localhost

" The PHP Company
zend

Zend Server Test Page

Zend Server is now up and running on this server. Once content is added this message will

no longer be displayed.

If you are this server's administrator:

You can now add content to your Web servers document root. You can configure and control

your Zend Server installation through the Zend Server Administration Interface. Please refer

to the documentation or to your installation's README file for mare infarmation.
If you need help getting started with Zend Server, please visitthe on-line resources page.

Far more information about Zend Server you are welcome to visit us at www zend.com.

© 2013 Zend Technologies Ltd. All rights reserved.

Figure 2-13. How the home page should look by default

The word localhost is used in URLs to specify the local computer, which will
also respond to the IP address of 127.0.0.1, so you can use either method of
calling up the document root of your web server.

NOTE

If you chose a server port other than 80 during installation (e.g., 8080), then you must place a
colon followed by that value after either of the preceding URLs (e.g., localhost:8080). You
will have to do the same for all example files in this book. For example, instead of the URL
localhost/example.php, you should enter localhost:8080/example.php (or whatever value you
chose).

The document root is the directory that contains the main web documents for a
domain. This is the one that is entered when a basic URL without a path is typed
into a browser, such as http://yahoo.com or, for your local server,
http://localhost.

By default, Zend Server uses one of the following locations for this directory
(the former for 32-bit computers, and the latter for 64-bit):

C:/Program Files/Zend/Apache2/htdocs
C:/Program Files (x86)/Zend/Apache2/htdocs

NOTE

If you are not sure whether your computer is 32-bit or 64-bit, try to navigate to the first
directory and, if it exists, you have a 32-bit machine. If not, open up the second directory
because you have a 64-bit computer. When they include spaces, older versions of Windows
may require you to place path and filenames in quotation marks, like this:

cd "C:/Program Files/Zend/Apache2/htdocs"

To ensure that you have everything correctly configured, you should now create
the obligatory “Hello World” file. So create a small HTML file along the
following lines using Windows Notepad or any other program or text editor, but
not a rich word processor such as Microsoft Word (unless you save as plain
text):

<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this, save the file into the document root directory
previously discussed, using the filename test.htm. If you are using Notepad,
make sure that the “Save as type” box is changed from “Text Documents (*.txt)
to “All Files (*.*)”. Or, if you prefer, you can save the file using the .html file

»

http://yahoo.com

extension; either is acceptable.

You can now call this page up in your browser by entering one of the following
URLSs (according to the extension you used) in its address bar (see Figure 2-14):

http://localhost/test.htm
http://localhost/test.html

You should now have had a trouble-free installation, resulting in a fully working
WAMP. But if you encountered any difficulties, check out the comprehensive
documentation at http://tinyurl.com/zenddocs, which should sort out your
problem.

-Aquickztest x \
K3 C' & [localhost/testhtm w2l = |
Hello World!

Figure 2-14. Your first web page

Alternative WAMPs

When software is updated, it sometimes works differently than you’d expected,
and bugs can even be introduced. So if you encounter difficulties that you cannot
resolve, you may prefer to choose one of the various other solutions available on
the Web instead.

You will still be able to make use of all the examples in this book, but you’ll
have to follow the instructions supplied with each WAMP, which may not be as
easy to follow as the preceding guide.

Here’s a selection of the best in my opinion:
= EasyPHP

= XAMPP

http://tinyurl.com/zenddocs
http://www.easyphp.org/
http://apachefriends.org/en/xampp.html

m WAMPServer

® Glossword WAMP

Installing a MAMP on Mac OS X

Zend Server Free Edition is also available on OS X, and you can download it
from http://tinyurl.com/zendfree, as shown in Figure 2-15.

I recommend that you always download the latest stable release (in this instance,
it’s 6.3.0/PHP 5.5 for OS X). It will usually be listed first in the Download
section of the web page, which should display the correct installer for your
computer out of Linux, Windows, OS X, and IBM i. You may be asked to log in
before you download, but you can also click a link to get the file without logging
in or registering, although you’ll miss out on product update emails and other
news.

806 Zend Server Free Trial - Zend.com w
ale (|| 4 e | &) |22 & www.zend.com/en v W ! ¢
B E ! = swoe Foums My Account | Signin | == §§ L W
" The PHP Company
zend . Downloads Newsletter ¢} Support B4 Contact
Products Solutions Training Downloads Community Resources Company Store Support
Zend Server -
S Downloads
Wihat's New d g
Webinars Zen e rve r Looking for PHP 5.2 LTS? Download older versions »
ebinars
(et Started
O Linux A windows | g Mac0S X | @ 1BM
Free Edifion
Features q
Note: Zend Server for the Mac OS X platform is meant for development use only, not production use
Edilions
IEM i Product Version Format/Size Notes MD5 Checksum
Reguirements
FAQ Zend Server (PHP 5.5) 630 (DMG) 287 11 MB Release Notes 1753261813246a2cd2df216abbf06891
Zend Server in the Cloud
Zend Unlimited » Zend Server (PHP5.4) 6.3.0 (DMG) 285,97 MB Release Notes cd9¢72093e0fdeaf25819e8f01d8517
Zend Studio
Zend Developer Solution
Zend Server (PHP 5.3) 6.3.0 (DMG) 28317 MB Release Motes 56a0908a13611b8d6ab0328e1ac542a7

Zend Developer Cloud
Zend Guard

Figure 2-15. You can download the server from the Zend website

http://wampserver.com/en/
http://glossword.biz/glosswordwamp/
http://tinyurl.com/zendfree

Once the installer is downloaded, double-click the .dmg file and wait for the
download to verify, and then you should see the window shown in Figure 2-16.

800 - Zend Server

zendaserver

Double click to install Zend Server

\F

Figure 2-16. Double-click Zend Server to install it

Here you can double-click the README file for instructions, or double-click
Zend Server to open up the installation window shown in Figure 2-17.

800 ® |nstall Zend Server]

Welcome to the Zend Server Installer !ﬂ

The Installation Wizard will install Zend Server on your computer.
& Introduction To start installing, click Continue.

® Read Me
@ Destination Select

@ Installation Type

Zeﬁd server Go Back | Continue

Figure 2-17. The Zend Server installer

Now click Continue, read the instructions that are displayed, and then click
Continue again to reach the screen shown in Figure 2-18, where you can decide
where to put the installed software (the default being Macintosh HD). Click
Install when you are ready, and enter your password if prompted for it.

During installation, you may be asked whether you wish to install additional
software. If so, I recommend accepting everything offered to you by clicking the
Install button. Upon completion of the installation, you can click Close to close
the installer.

Once the software is installed, locate the ZendServer program in your
Applications folder and double-click it to proceed with completing the setup.
This will bring up a page in your default web browser similar to that shown in
Figure 2-8. Now follow the prompts you are given (shown in Figure 2-8 through
Figure 2-11), in which you must accept the license agreement and choose a
password before being taken to the main dashboard, as shown earlier in

Figure 2-12.

800 ® |nstall Zend Server]
Standard Install on “Macintosh HD" "

& Introduction

& Read Me This will take 882.9 MB of space on your

computer.
& Destination Select

Click Install to perform a standard installation of

@ Installation Type
YP this software on the disk "Macintosh HD".

Change Install Location...

zendserver | Customize | | GoBack | | |Install |

Figure 2-18. Choosing the destination for installation

Configuring MySQL

Unfortunately, the installer doesn’t set up the commands needed to be able to
start, stop, and restart the MySQL server, so you’re going to have to do this
manually by opening the Terminal and entering the following command:

sudo nano usrlocal/zend/bin/zendctl.sh

After entering your password you will now be in the Nano text editor, so move
the cursor down a few lines using the down cursor key, and where you see the

line that reads MySQL_EN="false", change the word false to true.

Now scroll down some more until you find these two lines:

case $1 1in
"start")

Below that, you’ll see an indented line that reads:
$0 start-apache %

Just after this line, insert a new one that reads as follows:
$0 start-MySQL %

This will allow MySQL to start, but now you need to scroll down a little more
until you get to the section that starts with:

"stop")

Then below it, you’ll see an indented line that reads:
$0 stop-apache %

Just after this line, insert a new one that reads as follows:
$0 stop-MySQL %

This will allow MySQL to be stopped. Now you can press Ctrl-X to exit from
edit mode, press the Y key when prompted to save the changes, and then press
Return to save the edited file.

Ensuring MySQL Starts on Booting

Unfortunately, there’s another edit you have to make so that MySQL will start
when your Mac does, and that’s to issue the following commands from the
Terminal (supplying your password in the relevant place if prompted for it):

cd LibraryStartupItems/ZendServer_init/
sudo rm zendctl.sh
sudo 1ln -s usrlocal/zend/bin/zendctl.sh ./

Your Mac is now configured, but MySQL has not yet been started, so now you
must issue the following command (along with password if prompted) after
which you should be all set to go:

sudo LibraryStartupItems/ZendServer_init/zendctl.sh restart

Testing the Installation

You can now test the installation by entering either of the following URLSs into
your web browser to call up the screen shown in Figure 2-13:

localhost:10088
127.0.0.1:10088

The word localhost specifies the local computer (which will also respond to the
IP address of 127.0.0.1). And the reason for having to enter : 10088 is because
many Mac computers will already have a web server running, so this avoids any
clash.

You must therefore remember to place : 10088 after every localhost for all
examples in this book. So, for example, if the filename test.php is being
accessed, you would call it up from the browser using the URL

localhost: 10088/test.php.

NOTE

If you are sure that there isn’t another web server running on your Mac, you can edit the
configuration file at the following URL (ensuring you have permission to do so), changing the
command (at around line 40) that reads Listen 10088 to Listen 80:

usrlocal/zend/apache2/conf/httpd.conf
You will then need to restart the server by opening the Terminal utility and issuing the

following command (along with your password if prompted), and you will then no longer need
to add the :10088 to local URLs:

sudo usrlocal/zend/bin/zendctl.sh restart

The page that gets displayed in the browser when you go to http://localhost or

http://localhost: 10088 is the file index.html in the server’s document root (the
directory that contains the main web documents for a domain). This is the
directory that is entered when a basic URL without a path is typed into a
browser, such as http://yahoo.com, or in the case of your local web server,
http://localhost, and so on.

By default, Zend Server on OS X uses the following as its document root folder:
usrlocal/zend/apache2/htdocs

To ensure that you have everything correctly configured, you should now load a
test file. So create a small HTML file along the following lines using Windows
TextEdit or any other program or text editor (such as the popular TextWrangler),
but not a rich word processor like Microsoft Word (unless you save as plain
text):

<html>
<head>
<title>A quick test</title>
</head>
<body>
Hello World!
</body>
</html>

Once you have typed this, save the file into the document root directory using
the filename test.htm. Or, if you prefer, use the .html file extension. You can now
call this page up in your browser by entering one of the following URLs
(according to the extension you saved with) in its address bar (see Figure 2-14):

http://localhost:10088/test.htm
http://localhost:10088/test.html

You should now have had a trouble-free installation, resulting in a fully working
MAMP. But if you encountered any difficulties, check out the comprehensive
documentation at http://tinyurl.com/zenddocs, which should sort out your
problem.

http://yahoo.com
http://tinyurl.com/zenddocs

Installing a LAMP on Linux

This book is aimed mostly at PC and Mac users, but its contents will work
equally well on a Linux computer. However, there are dozens of popular flavors
of Linux, and each of them may require installing a LAMP in a slightly different
way, so I can’t cover them all in this book.

Nonetheless, many Linux versions come preinstalled with a web server and
MySQL, and the chances are that you may already be all set to go. To find out,
try entering the following into a browser and see whether you get a default
document root web page:

http://localhost

If this works, you probably have the Apache server installed and may well also
have MySQL up and running too; check with your system administrator to be
sure, though.

If you don’t yet have a web server installed, however, there’s a version of Zend
Server Free Edition available that you can download at
http://tinyurl.com/zendfree.

All the instructions and help you need are detailed on the Download page.
Follow them closely or use the provided scripts, and you should be able to work
through all the examples in this book.

Working Remotely

If you have access to a web server already configured with PHP and MySQL,
you can always use that for your web development. But unless you have a high-
speed connection, it is not always your best option. Developing locally allows
you to test modifications with little or no upload delay.

Accessing MySQL remotely may not be easy either. You may have to Telnet or
SSH into your server to manually create databases and set permissions from the
command line. Your web hosting company will advise you on how best to do
this and provide you with any password it has set for your MySQL access (as
well as, of course, for getting into the server in the first place).

http://tinyurl.com/zendfree

Logging In

I recommend that, at minimum, Windows users should install a program such as
PuTTY for Telnet and SSH access (remember that SSH is much more secure
than Telnet).

On a Mac, you already have SSH available. Just select the Applications folder,
followed by Utilities, and then launch Terminal. In the terminal window, log into
a server using SSH as follows:

ssh mylogin@server.com

where server. comis the name of the server you wish to log into and mylogin is
the username you will log in under. You will then be prompted for the correct
password for that username and, if you enter it correctly, you will be logged in.

Using FTP

To transfer files to and from your web server, you will need an FTP program. If
you go searching the Web for a good one, you’ll find so many that it could take
you quite a while to come across one with all the right features for you.

Nowadays I always recommend FireFTP, because of these advantages:

m [t is an add-on for the Firefox web browser, and will therefore work on any
platform on which Firefox runs.

= Calling it up can be as simple as selecting a bookmark.
m [t is one of the fastest and easiest-to-use FTP programs that I have

encountered.

NOTE

You may say, “But I use only Microsoft Internet Explorer, and FireFTP is not available for it,”
but I would counter that if you are going to develop web pages, you need a copy of each of the
main browsers installed on your PC anyway, as suggested at the start of this chapter.

To install FireFTP, visit http://fireftp.mozdev.org using Firefox and click on the

http://putty.org
http://fireftp.mozdev.org

Download FireFTP link. It’s about half a megabyte in size and installs very
quickly. Once it’s installed, restart Firefox; you can then access FireFTP from the
Tools menu (see Figure 2-19).

Another excellent FTP program is the open source FileZilla, available for
Windows, Linux, and Mac OS X 10.5 or newer.

Of course, if you already have an FTP program, all the better—stick with what
you know.

@ robinnixon.com - FireFTP - Moxzilla Firefox =B i:h
File Edit View History Bookmarks Tools Help
L':%‘ ﬁ [+ LE) -& chrome://fireftp/content/fireftp.xul "l' Google P
lrobinnixon.com VI Disconnect Edit Abort Tools Help
[c" Iw:\lpmj.net - | Browse [} @‘1 'L:,J Swwwlpmij.net v Change
4/ —lpmj.net *| | Name - Size Date (e&] 4l—slpmj.net “ | | Name - Size .. Date .
b10 [1.php 2KB ... Marl92011 - 510 [11.php 2KB .. Mar192011
ron [10.php 4KB .. Marl92011 ron [110.php 4KB .. Mar192011
=l [11.php 2KB ... Marl92011 roi2 [111.php 2KB .. Mar192011
b13 | 12.php 2KB .. Marl92011 13 [112.php 2KB .. Mar192011
P14 [13.php 2KB ... Marl92011 P14 [113.php 2KB .. Mar192011
P15 [14.php 2KB .. Marl92011 . s r1s [J14.php 2KB .. Mar192011
P16 E 4 [)15.php 3KB .. Mar192011 » 16 =[4 | J15.6hp 3KB .. Marl92011
=l | 16.php 3KB .. Marl9 2011 @ von | 116.php 3K .. Mar192011
p18 | 117.php 2KB .. Marl9 2011 ro18 [117.php 2KB .. Marl92011
5o [18.php 2KB .. Marl92011 roi18 [118.php 2KB .. Mar192011
P20 1 19.php 2KB .. Marl92011 =l rEa [119.php 2KB .. Marl92011 |=
= [2.php 2KB ... Mar192011 * g =" [l2.php 2KB .. Mar192011
P4 * [20,php 3KB ... Marl92011 = |] 20.php 3KB .. Mar192011
= [2.php 3KB ... Marl92011 ras [12.php 3KB .. Mar192011
=L [4.php 4KB ... Marl92011 =L [l4.php 4KB .. Mar192011
= | 5.php 1KB .. Marl92011 =0 [15.php 4KB .. Mar192011
=L | 6.php IKB ... Marl92011 =L | 16.php 3IKB .. Mar192011
= | 7.php 4KB .. Dec32010 ra9 [17.php 4KB .. Mar192011
e T 8.php 4KB .. Mar192011 __POe "1 J8.php 4KB .. Mar192011
4 U/ s [+ W ., 2 VD Adoc10 2011 - s 1 = 1 ' O b 2 VD Ado. 10011 i
| 220 robinixon.com FTP server (version 6.00LS) ready.
e
Log|Queue|
Local Listing: 62 ebject(s), 5.21 MB, Disk Space Available: 8.1 GB Binary
@v x

Figure 2-19. FireFTP offers full FTP access from within Firefox

Using a Program Editor

Although a plain-text editor works for editing HTML, PHP, and JavaScript, there
have been some tremendous improvements in dedicated program editors, which
now incorporate very handy features such as colored syntax highlighting.
Today’s program editors are smart and can show you where you have syntax
errors before you even run a program. Once you’ve used a modern editor, you’ll

http://filezilla-project.org

wonder how you ever managed without one.

There are a number of good programs available, but I have settled on Editra,
because it’s free and available on Mac, Windows, and Linux/Unix. You can
download a copy by visiting http://editra.org and selecting the Download link
toward the top left of the page, where you can also find the documentation for it.

As you can see from Figure 2-20, Editra highlights the syntax appropriately
using colors to help clarify what’s going on. What’s more, you can place the
cursor next to brackets or braces and Editra will highlight the matching pair so
that you can check whether you have too many or too few. In fact, Editra offers a
wealth of additional features, which you will discover and enjoy as you use it.

4 “exarnples.php - file://C\Users\Robin\Desktoptexamples.php - Editra v0.6.99 =macy X
| Eile Edit View Format Settings Teols Help
LE®EEe de 0O &
@,*mmples.php b4 ¥
1753 Scontents = @file_get_contents ({Spage) ; -
1754 if (!5contents) retorn FALSE;
1755
1756 Schecksum = md5 (Scontents) ;
1757
1758 if (file_ exiscs(§fdatafile))
1753 B {
1760 Srawfile = file get contents($datafile);
1761 Sdata = explode ("\n", rtrim{Srawfile)):
1762 Sleft = array map("PU _F1", Sdata):
1763 Sright = array map("PU _F2", $data):
1764 Jexists = =iz
1765
1766 for (53 = 0 ; §j < count ($left) ; ++53)
1767 B {
1768 if (§left[$3] = Spage)
1763 B {
1770 Sexists = §J;
T 7T if (Sright[5]] =— Schecksum) retorn 0;
1772
1773 35
4 i F

PHP ¢pl252 CRLF Line: 1569 Column: 33

Figure 2-20. Program editors are superior to plain-text editors

Again, if you have a different preferred program editor, use that; it’s always a
good idea to use programs you’re already familiar with.

http://editra.org

Using an IDE

As good as dedicated program editors can be for your programming productivity,
their utility pales into insignificance when compared to integrated development
environments (IDEs), which offer many additional features such as in-editor
debugging and program testing, as well as function descriptions and much more.

Figure 2-21 shows the popular phpDesigner IDE with a PHP program loaded
into the main frame, and the righthand Code Explorer listing the various classes,
functions, and variables that it uses.

When developing with an IDE, you can set breakpoints and then run all (or
portions) of your code, which will then stop at the breakpoints and provide you
with information about the program’s current state.

As an aid to learning programming, the examples in this book can be entered
into an IDE and run there and then, without the need to call up your web
browser.

& phpDesigner 8 - [AMAIN'Documents\Documents\Websites\webdevelopmentcookbook.comWDC. php] =hae=y X
{ & File Edit Find Goto Insert Format CSS JavaScript PHP Debug Project Tools Swn Git Highlighters View Window Help Trial expires in 21 days -8 X
g 1 - H g H - H g] H »
:J'j' £ E ,Q-—éﬁ b »_: 5 »:\I’J'hﬂ'\l’e\&‘: ”I:@' ”:Q': Bm% |
; - - o BB 7R -a oS A=) *ieom @iE bR BE-B- W
[%] wDC.php
Debug + Run + (59 locshost + [PHP + XHTML + €SS + Javascript = x CodeExplorer 1 x
2847 o
2848 if g =k |©Zr tunctons {(104)
| zg4s = nts=8tcolor, §t=ize"; 2} b_1 AddUserToDB{$table, $nmax, $hmax, $salt1, $sa
2850 if 1=51abels"; [} ;,_] AnagramFinder{$word, &filename)
Za51 if (%1 wdl=5legend="; [jﬂ AutoBackLinks(Sflename)
2852 J:.f (Sc c_:s]] ’.chSculors",j 2! ‘-’_1 BECode(Sstring)
2853 if (Sbgfill) $tail .= "&chf=bg, =, SBGEILTL"; &) & BlockUserByCookie($action, thandle, Sexpire)
2854 B
& BypassCaptcha
2855 Surl = "http://chart.apis.google.com/chart ?GEaal" ; ?—1 b i 0
e [9_1 CapsControl($text, Stype)
2856
2857 & & ChedkCaptcha($captcha, $token, $saltl, $saltZ)
2858] 2;_1 Chedklinks($page, $timeout, Sruntime)
2859 [} ;,_] CloseSession{)
2860 fimage = imagecreatefrompng(Surl):) QL] ConvertCurrency($amount, $from, Sto)
288l [;ﬂ CornerGif{§corner, $horder, Shground)
2aes o :.Lmagesx (f'_rr.ac_rej r [",_1 CountTail{Snumber)
2o 1mage?y {zlmage) - [;,_1 CreateCaptcha(Ssize, Slength, $font, Sfolder, Ss:
zo64 ge2 = imagecreatetruecolor($w + fborder * 2, f _
LT i e & 9_1 CreateGoogleChart{stitle, Stcolor, Stsize, Stype,
2865 + Sborder * 2); = E
ZE6E Sclr = imagecolorallocate ($image, B 0_1 Createlist{Sitems, Sstart, Stype, Sbullet)
2887 hexdec (substr ($beolor, 0, 2)), & & CreateSession(éhandle, $pass, Sname, $email)
2868 hexdec (substr($bcolor, 2, 2)), [} 3;_1 CreateShortURL(Surl, Sredirect, Slen, Sfile)
22E9 hexdec (substr ($bcolor, 4, 2))): [a,_] CurlGetContents{Surl, $agent)
2870 imagefilledrectangle ($image2, 0, 0 + $border * 2 2! ;ﬂ DirectoryList{gpath)
£EaL i sh Eb‘f: sr f 2[§eclr) "_ B ",_1 DigplayBingMap(&lat, Slong, Szoom, Sstyle, Swidth
i .lmagecopy (s1mage: . =image,; =border,, sborde 0210) 2} “,_1 EmbedYouTubevideo($id, $width, Sheight, Shigh,
2873 imagedestroy ($image) ; E :
Sh & . & 9_1 EvaluateExpression(Sexpr)
2874 return $image2;
@ @] FT_FNL(SE, &, $s, $e)
] 2;_1 FetchFlickrStream{$account)
function CurlGetContents (Surl, S$agent) y [2;_1 FetchWikiPage{Sentry)
g n - s Izc| Bc) &F Be @F A1 ac
Windows | Ansi Ln 2861:Col 1 No project loaded \WMAN\Documents \Documents Wwebsites Wwebdey

Figure 2-21. When you’re using an IDE such as phpDesigner, PHP development becomes much quicker

and easier

There are several IDEs available for different platforms, most of which are
commercial, but there are some free ones too. Table 2-1 lists some of the most
popular PHP IDEs, along with their download URLs.

Choosing an IDE can be a very personal thing, so if you intend to use one, I
advise you to download a couple or more to try them out first; they all either
have trial versions or are free to use, so it won’t cost you anything.

Table 2-1. A selection of PHP IDEs

IDE Download URL Cost Win Mac Lin

Eclipse PDT http://eclipse.org/pdt/downloads/ Free

Komodo IDE http://activestate.com/Products/komodo_ide $245

NetBeans http://www.netbeans.org Free
phpDesigner http://mpsoftware.dk $39 O O
PHPEclipse http://phpeclipse.de Free
PhpED http://nusphere.com $119 0
PHPEdit http://www.phpedit.com $119 O O
Zend Studio http://zend.com/en/downloads $189

You should take the time to install a program editor or IDE you are comfortable
with and you’ll then be ready to try out the examples in the coming chapters.

Armed with these tools, you are now ready to move on to Chapter 3, where we’ll

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk
http://phpeclipse.de
http://nusphere.com
http://www.phpedit.com
http://zend.com/en/downloads

start exploring PHP in further depth and find out how to get HTML and PHP to
work together, as well as how the PHP language itself is structured. But before
moving on, I suggest you test your new knowledge with the following questions.

Questions
1. What is the difference between a WAMP, a MAMP, and a LAMP?

2. What do the IP address 127.0.0.1 and the URL http://localhost have in
common?

3. What is the purpose of an FTP program?
4. Name the main disadvantage of working on a remote web server.
5. Why is it better to use a program editor instead of a plain-text editor?

See Chapter 2 Answers in Appendix A for the answers to these questions.

Chapter 3. Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the
server generate dynamic output—output that is potentially different each time a
browser requests a page. In this chapter, you’ll start learning this simple but
powerful language; it will be the topic of the following chapters up through
Chapter 7.

I encourage you to develop your PHP code in one of the IDEs listed in
Chapter 2. It will help you catch typos and speed up learning tremendously in
comparison to less feature-rich editors.

Many of these development environments let you run the PHP code and see the
output discussed in this chapter. I’ll also show you how to embed the PHP in an
HTML file so that you can see what the output looks like in a web page (the way
your users will ultimately see it). But that step, as thrilling as it may be at first,
isn’t really important at this stage.

In production, your web pages will be a combination of PHP, HTML, and
JavaScript, and some MySQL statements laid out using CSS, and possibly
utilizing various HTML5 elements. Furthermore, each page can lead to other
pages to provide users with ways to click through links and fill out forms. We
can avoid all that complexity while learning each language, though. Focus for
now on just writing PHP code and making sure that you get the output you
expect—or at least that you understand the output you actually get!

Incorporating PHP Within HTML

By default, PHP documents end with the extension .php. When a web server
encounters this extension in a requested file, it automatically passes it to the PHP
processor. Of course, web servers are highly configurable, and some web
developers choose to force files ending with .htm or .html to also get parsed by
the PHP processor, usually because they want to hide the fact that they are using

PHP.

Your PHP program is responsible for passing back a clean file suitable for
display in a web browser. At its very simplest, a PHP document will output only
HTML. To prove this, you can take any normal HTML document such as an
index.html file and save it as index.php, and it will display identically to the
original.

To trigger the PHP commands, you need to learn a new tag. The first part is:
<?php

The first thing you may notice is that the tag has not been closed. This is because
entire sections of PHP can be placed inside this tag, and they finish only when
the closing part is encountered, which looks like this:

?>

A small PHP “Hello World” program might look like Example 3-1.
Example 3-1. Invoking PHP

<?php
echo "Hello world";
?>

The way you use this tag is quite flexible. Some programmers open the tag at the
start of a document and close it right at the end, outputting any HTML directly
from PHP commands.

Others, however, choose to insert only the smallest possible fragments of PHP
within these tags wherever dynamic scripting is required, leaving the rest of the
document in standard HTML.

The latter type of programmer generally argues that their style of coding results
in faster code, while the former says that the speed increase is so minimal that it
doesn’t justify the additional complexity of dropping in and out of PHP many
times in a single document.

As you learn more, you will surely discover your preferred style of PHP
development, but for the sake of making the examples in this book easier to
follow, I have adopted the approach of keeping the number of transfers between

PHP and HTML to a minimum—generally only once or twice in a document.

By the way, there is a slight variation to the PHP syntax. If you browse the
Internet for PHP examples, you may also encounter code where the opening and
closing syntax looks like this:

<?
echo "Hello world";
?>

Although it’s not as obvious that the PHP parser is being called, this is a valid,
alternative syntax that also usually works, but should be discouraged, as it is
incompatible with XML and its use is now deprecated (meaning that it is no
longer recommended and could be removed in future versions).

NOTE

If you have only PHP code in a file, you may omit the closing ?>. This can be a good practice,
as it will ensure that you have no excess whitespace leaking from your PHP files (especially
important when you’re writing object-oriented code).

This Book’s Examples

To save you the time it would take to type them all in, all the examples from this
book have been archived onto the companion website, which you can download
to your computer by clicking the Download Examples link in the heading section
(see Figure 3-1).

http://lpmj.net

/ N Leaming PHP, MySQL & J x \ |

«=2>CH “DIpmj.net;.’Brdeditio-1;’

O REILLY®

i
m

Learning PHP, MySQL, JavaScript, CSS & HTML5

3rd Edition By Robin Nixon (o'Reilly 2014, ISEN 978-1491949467)

About | Buy Paperback / Kindle | Download Examples | Errata | (1st Ed / 2nd Ed)

communication with a web server.

Find out for yourself why Learning PHP, MySQL, JavaScript, C§5 & HTML5 is the number-one best-selling
blockbuster that has been at the top of the charts for over five years worldwide, is the first result returned on
PHP by Amazon US, UK and Canada, the first foreign language title on PHP returned on European Amazon
websites, and in the top 10 foreign books on PHP on Amazon Japan and China!

Learning PHP, MySQL, JavaScript, CSS & HTML5 will teach you how to create responsive, data-driven
websites with the central technologies of PHP, MySQL, JavaScript, C5S, & HTMLS - whether or not you know
how to program. This simple, streamlined guide explains how the powerful combination of PHP and MySQL
provides a painless way to build modern websites with dynamic data and user interaction. You'll also learn how
to add JavaScript to create rich Internet websites and applications, and how to use Ajax to handle background

Contents

. Introduction to Dynamic Web Content

. Setting Up a Development Server

. Introduction to PHP

. Expressions and Control Flow in PHP

. PHP Functions and Objects

. PHF Arrays

. Practical PHP

. Introduction to MySQL

. Mastering MySQL

. Accessing MySQL Using PHP

. Using the MySQLi Extension

. Form Handling

. Cookies, Sessions and Authentication

. Exploring JavaScript

. Expressions and Control Flow in JavaScript
. JawvaScript Functions, Objects and Arrays
7. JavaScript and PHP Validation and Error Handling
. Using AJAX

. Introduction to CSS

Figure 3-1. Viewing examples from this book at http://I[pmj.net

In addition to having all the examples saved by chapter and example number
(such as example3-1.php), the archive also contains an extra folder called

named_examples, in which you’ll find all the examples I suggest you save using

a specific filename (such as the upcoming Example 3-4, which should be saved

as testl.php).

The Structure of PHP

We’re going to cover quite a lot of ground in this section. It’s not too difficult,
but I recommend that you work your way through it carefully, as it sets the
foundation for everything else in this book. As always, there are some useful
questions at the end of the chapter that you can use to test how much you’ve

learned.

http://lpmj.net

Using Comments

There are two ways in which you can add comments to your PHP code. The first
turns a single line into a comment by preceding it with a pair of forward slashes,
like this:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line
of code from a program that is giving you errors. For example, you could use
such a comment to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its
action, like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment,
which looks like Example 3-2.

Example 3-2. A multiline comment

<?php

/* This is a section
of multiline comments
which will not be
interpreted */

?>

You can use the /* and */ pairs of characters to open and close comments
almost anywhere you like inside your code. Most, if not all, programmers use
this construct to temporarily comment out entire sections of code that do not
work or that, for one reason or another, they do not wish to be interpreted.

A common error is to use /* and */ to comment out a large section of code that already
contains a commented-out section that uses those characters. You can’t nest comments this
way; the PHP interpreter won’t know where a comment ends and will display an error

message. However, if you use a program editor or IDE with syntax highlighting, this type of
error is easier to spot.

Basic Syntax

PHP is quite a simple language with roots in C and Perl, yet it looks more like
Java. It is also very flexible, but there are a few rules that you need to learn
about its syntax and structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended
with a semicolon, like this:

Sx += 10;

Probably the most common cause of errors you will encounter with PHP is
forgetting this semicolon. This causes PHP to treat multiple statements like one

statement, which it is unable to understand, prompting it to produce a Parse
error message.

The $ symbol

The $ symbol has come to be used in many different ways by different
programming languages. For example, if you have ever written in the BASIC
language, you will have used the $ to terminate variable names to denote them as
strings.

In PHP, however, you must place a $ in front of all variables. This is required to
make the PHP parser faster, as it instantly knows whenever it comes across a
variable. Whether your variables are numbers, strings, or arrays, they should all
look something like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php
$mycounter = 1;
$mystring = "Hello";

$myarray = array("One", "Two", "Three");

?>

And really that’s pretty much all the syntax that you have to remember. Unlike
languages that are very strict about how you indent and lay out your code (e.g.,
Python), PHP leaves you completely free to use (or not use) all the indenting and
spacing you like. In fact, sensible use of whitespace is generally encouraged
(along with comprehensive commenting) to help you understand your code when
you come back to it. It also helps other programmers when they have to maintain
your code.

Variables

There’s a simple metaphor that will help you understand what PHP variables are
all about. Just think of them as little (or big) matchboxes! That’s right—
matchboxes that you’ve painted over and written names on.

String variables

Imagine you have a matchbox on which you have written the word username.
You then write Fred Smith on a piece of paper and place it into the box (see
Figure 3-2). Well, that’s the same process as assigning a string value to a
variable, like this:

Susername = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You
must enclose each string in either quotation marks or apostrophes (single
quotes), although there is a subtle difference between the two types of quote,
which is explained later. When you want to see what’s in the box, you open it,
take the piece of paper out, and read it. In PHP, doing so looks like this:

echo Susername;

Or you can assign it to another variable (photocopy the paper and place the copy
in another matchbox), like this:

Scurrent_user = $Susername;

If you are keen to start trying out PHP for yourself, you could try entering the

examples in this chapter into an IDE (as recommended at the end of Chapter 2)
to see instant results, or you could enter the code in Example 3-4 into a program
editor and save it to your server’s document root directory (also discussed in
Chapter 2) as test1.php.

Example 3-4. Your first PHP program

<?php // testl.php
$username = "Fred Smith";
echo Susername;
echo "
";
Scurrent_user = $username;
echo Scurrent_user;

?>

Now you can call it up by entering the following into your browser’s address
bar:

http://localhost/testl.php

NOTE

If during installation of your web server (as detailed in Chapter 2) you changed the port
assigned to the server to anything other than 80, then you must place that port number within
the URL in this and all other examples in this book. So, for example, if you changed the port to
8080, the preceding URL becomes:

http://localhost:8080/testl.php

I won’t mention this again, so just remember to use the port number if required when trying
out any examples or writing your own code.

The result of running this code should be two occurrences of the name “Fred
Smith,” the first of which is the result of the echo $username command, and the
second of the echo $current_user command.

Numeric variables

Variables don’t contain just strings—they can contain numbers, too. If we return
to the matchbox analogy, to store the number 17 in the variable $count, the
equivalent would be placing, say, 17 beads in a matchbox on which you have
written the word count:

Scount = 17;

You could also use a floating-point number (containing a decimal point); the
syntax is the same:

$count = 17.5;

To read the contents of the matchbox, you would simply open it and count the

beads. In PHP, you would assign the value of $count to another variable or
perhaps just echo it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued
together. For example, let’s say we want to store the player names for a five-
person soccer team in an array called $team. To do this, we could glue five
matchboxes side by side and write down the names of all the players on separate
pieces of paper, placing one in each matchbox.

Across the whole top of the matchbox assembly we would write the word team
(see Figure 3-3). The equivalent of this in PHP would be:

$team = array('Bill', 'Mary', 'Mike', 'Chris', 'Anne');

Figure 3-3. An array is like several matchboxes glued together

This syntax is more complicated than the ones I’ve explained so far. The array-
building code consists of the following construct:

array();

with five strings inside. Each string is enclosed in apostrophes.

If we then wanted to know who player 4 is, we could use this command:
echo $team[3]; // Displays the name Chris

The reason the previous statement has the number 3, not 4, is because the first
element of a PHP array is actually the zeroth element, so the player numbers will
therefore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-

dimensional lines of matchboxes, they can be two-dimensional matrixes or can
even have three or more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a
game of tic-tac-toe, which requires a data structure of nine cells arranged in a
3%3 square. To represent this with matchboxes, imagine nine of them glued to
each other in a matrix of three rows by three columns (see Figure 3-4).

Figure 3-4. A multidimensional array simulated with matchboxes

({3

You can now place a piece of paper with either an “x” or an “0” in the correct
matchbox for each move played. To do this in PHP code, you have to set up an

array containing three more arrays, as in Example 3-5, in which the array is set
up with a game already in progress.

Example 3-5. Defining a two-dimensional array

<?php
$oxo = array(array('x', "', 'o'),
array('o', 'o', 'x"),
array('x', ‘o', ' '));
7>

Once again, we’ve moved up a step in complexity, but it’s easy to understand if
you have a grasp of the basic array syntax. There are three array() constructs
nested inside the outer array() construct.

To then return the third element in the second row of this array, you would use
the following PHP command, which will display an x:

echo $Soxo[1][2];

NOTE

Remember that array indexes (pointers at elements within an array) start from zero, not one, so
the [1] in the previous command refers to the second of the three arrays, and the [2]
references the third position within that array. It will return the contents of the matchbox three
along and two down.

As mentioned, we can support arrays with even more dimensions by simply
creating more arrays within arrays. However, we will not be covering arrays of
more than two dimensions in this book.

And don’t worry if you’re still having difficulty coming to grips with using
arrays, as the subject is explained in detail in Chapter 6.

Variable naming rules

When creating PHP variables, you must follow these four rules:

m Variable names must start with a letter of the alphabet or the _ (underscore)
character.

m Variable names can contain only the characters a-z, A-Z, 0-9, and _

(underscore).

m Variable names may not contain spaces. If a variable must comprise more
than one word, it should be separated with the _ (underscore) character (e.g.,

Suser_name).

m Variable names are case-sensitive. The variable $High_Score is not the same
as the variable Shigh_score.

NOTE

To allow extended ASCII characters that include accents, PHP also supports the bytes from
127 through 255 in variable names. But unless your code will be maintained only by
programmers who are familiar with those characters, it’s probably best to avoid them, because
programmers using English keyboards will have difficulty accessing them.

Operators

Operators are the mathematical, string, comparison, and logical commands such
as plus, minus, multiply, and divide. PHP looks a lot like plain arithmetic; for
instance, the following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn
about the various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform
mathematics. You can use them for the main four operations (plus, minus,
multiply, and divide) as well as to find a modulus (the remainder after a division)
and to increment or decrement a value (see Table 3-1).

Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $i+1

- Subtraction $ji-6

* Multiplication $j*11
/ Division $il4
% Modulus (division remainder) $3j %9
++ Increment ++5]
— Decrement --$]

Assignment operators

These operators are used to assign values to variables. They start with the very
simple = and move on to +=, —=, and so on (see Table 3-2). The operator += adds
the value on the right side to the variable on the left, instead of totally replacing
the value on the left. Thus, if Scount starts with the value 5, the statement:

$count += 1;
sets $count to 6, just like the more familiar assignment statement:
$Scount = Scount + 1;

Strings have their own operator, the period (.), detailed in the section String
concatenation.

Table 3-2. Assignment operators

Operator Example Equivalent to

= $5=15 $j = 15

+= $j+=5 $j =6j+5
-= $j-=3 $j =85 -3
= $j=8 $j =85 *8
/= $i/=16 $j =853/ 16
o= $j.=%k $j =57 . %k

%= $j%=4 $] =% %4

Comparison operators

Comparison operators are generally used inside a construct such as an if
statement in which you need to compare two items. For example, you may wish
to know whether a variable you have been incrementing has reached a specific
value, or whether another variable is less than a set value, and so on (see

Table 3-3).

Note the difference between = and ==. The first is an assignment operator, and
the second is a comparison operator. Even more advanced programmers can
sometimes transpose the two when coding hurriedly, so be careful.

Table 3-3. Comparison operators

Operator Description Example
== Is equal to $j==4
1= Is not equal to $j1=21
> Is greater than $i>3

< Is less than $j <100
>= Is greater than or equal to $j >=15
<= Is less than or equal to $j<=8

Logical operators

If you haven’t used them before, logical operators may at first seem a little
daunting. But just think of them the way you would use logic in English. For
example, you might say to yourself, “If the time is later than 12 p.m. and earlier
than 2 p.m., then have lunch.” In PHP, the code for this might look something
like the following (using military time):

if (Shour > 12 && Shour < 14) dolunch();

Here we have moved the set of instructions for actually going to lunch into a

function that we will have to create later called dolunch. The then of the
statement is left out, because it is implied and therefore unnecessary.

As the previous example shows, you generally use a logical operator to combine
the results of two of the comparison operators shown in the previous section. A
logical operator can also be input to another logical operator (“If the time is later
than 12 p.m. and earlier than 2 p.m., or if the smell of a roast is permeating the

hallway and there are plates on the table”). As a rule, if something has a TRUE or

FALSE value, it can be input to a logical operator. A logical operator takes two
true-or-false inputs and produces a true-or-false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 38&& %k == 2
and Low-precedence and $j == 3 and $k == 2
|l Or $i<511%j>10
or Low-precedence or $j < 5or$j > 10

! Not ! ($j==%k)

xor Exclusive or $j xor Sk

Note that && is usually interchangeable with and; the same is true for | | and or.

But and and or have a lower precedence, so in some cases, you may need extra
parentheses to force the required precedence. On the other hand, there are times

when only and or or is acceptable, as in the following statement, which uses an
or operator (to be explained in Chapter 10):

mysql_select_db($database) or die("Unable to select database");

The most unusual of these operators is xor, which stands for exclusive or and
returns a TRUE value if either value is TRUE, but a FALSE value if both inputs are

TRUE or both inputs are FALSE. To understand this, imagine that you want to
concoct your own cleaner for household items. Ammonia makes a good cleaner,
and so does bleach, so you want your cleaner to have one of these. But the
cleaner must not have both, because the combination is hazardous. In PHP, you
could represent this as:

$ingredient = $ammonia xor $bleach;

In the example snippet, if either $ammonia or $bleach is TRUE, $ingredient
will also be set to TRUE. But if both are TRUE or both are FALSE, $ingredient
will be set to FALSE.

Variable Assighment

The syntax to assign a value to a variable is always variable = value. Or, to
reassign the value to another variable, it is other variable = variable.

There are also a couple of other assignment operators that you will find useful.
For example, we’ve already seen:

Sx += 10;

which tells the PHP parser to add the value on the right (in this instance, the
value 10) to the variable $x. Likewise, we could subtract as follows:

Sy -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special
operators for it. You can use one of the following in place of the += and -=
operators:

In conjunction with a test (an if statement), you could use the following code:

if (++$x == 10) echo $x;

This tells PHP to first increment the value of $x and then test whether it has the
value 10; if it does, output its value. But you can also require PHP to increment

(or, in the following example, decrement) a variable after it has tested the value,
like this:

if (Sy—- == 0) echo $y;

which gives a subtly different result. Suppose Sy starts out as 0 before the
statement is executed. The comparison will return a TRUE result, but $y will be
set to -1 after the comparison is made. So what will the echo statement display:

0 or -1? Try to guess, and then try out the statement in a PHP processor to
confirm. Because this combination of statements is confusing, it should be taken
as just an educational example and not as a guide to good programming style.

In short, whether a variable is incremented or decremented before or after testing
depends on whether the increment or decrement operator is placed before or
after the variable.

By the way, the correct answer to the previous question is that the echo
statement will display the result -1, because $y was decremented right after it
was accessed in the i1f statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) to append one string of characters to
another. The simplest way to do this is as follows:

echo "You have " . Smsgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line
of code will be:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can
append one string to another using .= like this:

S$bulletin .= $newsflash;

In this case, if Sbulletin contains a news bulletin and $newsflash has a news
flash, the command appends the news flash to the news bulletin so that

$bulletin now comprises both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark
that you use. If you wish to assign a literal string, preserving the exact contents,
you should use the single quotation mark (apostrophe) like this:

$info = 'Preface variables with a $ like this: Svariable';

In this case, every character within the single-quoted string is assigned to $info.
If you had used double quotes, PHP would have attempted to evaluate
Svariable as a variable.

On the other hand, when you want to include the value of a variable inside a
string, you do so by using double-quoted strings:

echo "This week $count people have viewed your profile";

As you will realize, this syntax also offers a simpler form of concatenation in
which you don’t need to use a period, or close and reopen quotes, to append one
string to another. This is called variable substitution, and you will notice some
applications using it extensively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might
be interpreted incorrectly. For example, the following line of code will not work,
because the second quotation mark encountered in the word spelling’s will tell
the PHP parser that the string end has been reached. Consequently, the rest of the
line will be rejected as an error:

Stext = 'My spelling's atroshus'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation

mark to tell PHP to treat the character literally and not to interpret it:
Stext = 'My spelling\'s still atroshus';

And you can perform this trick in almost all situations in which PHP would
otherwise return an error by trying to interpret a character. For example, the
following double-quoted string will be correctly assigned:

Stext = "She wrote upon it, \"Return to sender\".";

Additionally, you can use escape characters to insert various special characters
into strings such as tabs, newlines, and carriage returns. These are represented,
as you might guess, by \t, \n, and \r. Here is an example using tabs to lay out a
heading; it is included here merely to illustrate escapes, because in web pages
there are always better ways to do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings.
In single-quoted strings, the preceding string would be displayed with the ugly
\t sequences instead of tabs. Within single-quoted strings, only the escaped

apostrophe (\ ') and escaped backslash itself (\\) are recognized as escaped
characters.

Multiple-Line Commands

There are times when you need to output quite a lot of text from PHP, and using
several echo (or print) statements would be time-consuming and messy. To
overcome this, PHP offers two conveniences. The first is just to put multiple
lines between quotes, as in Example 3-6. Variables can also be assigned, as in
Example 3-7.

Example 3-6. A multiline string echo statement

<?php
$author = "Steve Ballmer";

echo "Developers, Developers, developers, developers, developers,
developers, developers, developers, developers!

- Sauthor.";
?>

Example 3-7. A multiline string assignment

<?php
$author = "Bill Gates";

$text = "Measuring programming progress by lines of code is like
measuring aircraft building progress by weight.

- Sauthor.";
?>

PHP also offers a multiline sequence using the <<< operator—commonly
referred to as a here-document or heredoc—as a way of specifying a string
literal, preserving the line breaks and other whitespace (including indentation) in
the text. Its use can be seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
$author = "Brian W. Kernighan";

echo <<<_END

Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are,
by definition, not smart enough to debug it.

- Sauthor.
_END;

?>

This code tells PHP to output everything between the two _END tags as if it were
a double-quoted string (except that quotes in a heredoc do not need to be
escaped). This means it’s possible, for example, for a developer to write entire
sections of HTML directly into PHP code and then just replace specific dynamic
parts with PHP variables.

It is important to remember that the closing _END; tag must appear right at the
start of a new line and it must be the only thing on that line—not even a
comment is allowed to be added after it (nor even a single space). Once you have
closed a multiline block, you are free to use the same tag name again.

NOTE

Remember: using the <<<_END ... _END; heredoc construct, you don’t have to add \n
linefeed characters to send a linefeed—just press Return and start a new line. Also, unlike
either a double-quote- or single-quote-delimited string, you are free to use all the single and
double quotes you like within a heredoc, without escaping them by preceding them with a
slash (\).

Example 3-9 shows how to use the same syntax to assign multiples lines to a
variable.

Example 3-9. A multiline string variable assignment

<?php
$author = "Scott Adams";

$Sout = <<<_END

Normal people believe that if it ain't broke, don't fix it.
Engineers believe that if it ain't broke, it doesn't have enough
features yet.

- Sauthor.
_END;

?>

The variable $Sout will then be populated with the contents between the two tags.
If you were appending, rather than assigning, you could also have used .= in

place of = to append the string to $Sout.

Be careful not to place a semicolon directly after the first occurrence of _END,
because that would terminate the multiline block before it had even started and
cause a Parse error message. The only place for the semicolon is after the
terminating _END tag, although it is safe to use semicolons within the block as
normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is
unlikely to be used anywhere else in PHP code and is therefore unique. But you
can use any tag you like, such as _SECTION1 or _OUTPUT and so on. Also, to help
differentiate tags such as this from variables or functions, the general practice is
to preface them with an underscore, but you don’t have to use one if you choose
not to.

NOTE

Laying out text over multiple lines is usually just a convenience to make your PHP code easier
to read, because once it is displayed in a web page, HTML formatting rules take over and
whitespace is suppressed (but $author is still replaced with the variable’s value).

So, for example, if you load these multiline output examples into a browser they will not
display over several lines, because all browsers treat newlines just like spaces. However, if you
use the browser’s view source feature, you will find that the newlines are correctly placed, and
the output does appear over several lines.

Variable Typing

PHP is a very loosely typed language. This means that variables do not have to
be declared before they are used, and that PHP always converts variables to the
type required by their context when they are accessed.

For example, you can create a multiple-digit number and extract the nth digit
from it simply by assuming it to be a string. In the following snippet of code, the
numbers 12345 and 67890 are multiplied together, returning a result of
838102050, which is then placed in the variable $number, as shown in

Example 3-10.

Example 3-10. Automatic conversion from a number to a string

<?php
Snumber = 12345 * 67890;
echo substr($number, 3, 1);
?>

At the point of the assignment, $number is a numeric variable. But on the second
line, a call is placed to the PHP function substr, which asks for one character to
be returned from $number, starting at the fourth position (remembering that PHP
offsets start from zero). To do this, PHP turns $number into a nine-character

string, so that substr can access it and return the character, which in this case is
1.

The same goes for turning a string into a number, and so on. In Example 3-11,
the variable $pi is set to a string value, which is then automatically turned into a
floating-point number in the third line by the equation for calculating a circle’s
area, which outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php

$pi = "3.1415927";

$radius = 5;

echo $pi * (Sradius * Sradius);
?>

In practice, what this all means is that you don’t have to worry too much about
your variable types. Just assign them values that make sense to you and PHP will

convert them if necessary. Then, when you want to retrieve values, just ask for
them (e.g., with an echo statement).

Constants

Constants are similar to variables, holding information to be accessed later,
except that they are what they sound like—constant. In other words, once you
have defined one, its value is set for the remainder of the program and cannot be
altered.

One example of a use for a constant might be to hold the location of your server
root (the folder with the main files of your website). You would define such a
constant like this:

define("ROOT_LOCATION", "usrlocal/www/");

Then, to read the contents of the variable, you just refer to it like a regular
variable (but it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a
different folder configuration, you have only a single line of code to change.

NOTE

The main two things you have to remember about constants are that they must not be prefaced
with a $ (as with regular variables), and that you can define them only using the define
function.

It is generally considered a good practice to use only uppercase for constant
variable names, especially if other people will also read your code.

Predefined Constants

PHP comes ready-made with dozens of predefined constants that you generally
will be unlikely to use as a beginner to PHP. However, there are a few—known
as the magic constants—that you will find useful. The names of the magic
constants always have two underscores at the beginning and two at the end, so
that you won’t accidentally try to name one of your own constants with a name
that is already taken. They are detailed in Table 3-5. The concepts referred to in
the table will be introduced in future chapters.

Table 3-5. PHP’s magic constants

Magic

constant Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of
the included file is returned. In PHP 4.0.2, __ FILE__ always contains an
absolute path with symbolic links resolved, whereas in older versions it might
contain a relative path under some circumstances.

__DIR__ The directory of the file. If used inside an include, the directory of the

included file is returned. This is equivalent to dirname(__FILE__). This
directory name does not have a trailing slash unless it is the root directory.
(Added in PHP 5.3.0.)

__FUNCTION__ The function name. (Added in PHP 4.3.0.) As of PHP 5, returns the function
name as it was declared (case-sensitive). In PHP 4, its value is always
lowercase.

__CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as
it was declared (case-sensitive). In PHP 4, its value is always lowercase.

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned
as it was declared (case-sensitive).

__NAMESPACE__ The name of the current namespace (case-sensitive). This constant is defined
at compile time. (Added in PHP 5.3.0.)

One handy use of these variables is for debugging purposes, when you need to
insert a line of code to see whether the program flow reaches it:

echo "This is 1line " . __LINE__ . " of file " . __FILE__;

This causes the current program line in the current file (including the path) being
executed to be output to the web browser.

The Difference Between the echo and print Commands

So far, you have seen the echo command used in a number of different ways to
output text from the server to your browser. In some cases, a string literal has
been output. In others, strings have first been concatenated or variables have
been evaluated. I’ve also shown output spread over multiple lines.

But there is also an alternative to echo that you can use: print. The two
commands are quite similar, but print is a function-like construct that takes a
single parameter and has a return value (which is always 1), whereas echo is
purely a PHP language construct. Because both commands are constructs,
neither requires the use of parentheses.

By and large, the echo command will be a tad faster than print in general text
output, because it doesn’t set a return value. On the other hand, because it isn’t

implemented like a function, echo cannot be used as part of a more complex
expression, whereas print can. Here’s an example to output whether the value
of a variable is TRUE or FALSE using print, something you could not perform in
the same manner with echo, because it would display a Parse error message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE
or FALSE. Whichever command is on the left of the following colon is executed
if $b is TRUE, whereas the command to the right is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that
you do so as well until you reach such a point in your PHP development that you

discover the need for using print.

Functions

Functions are used to separate out sections of code that perform a particular task.
For example, maybe you often need to look up a date and return it in a certain
format. That would be a good example to turn into a function. The code doing it
might be only three lines long, but if you have to paste it into your program a
dozen times, you’re making your program unnecessarily large and complex,
unless you use a function. And if you decide to change the data format later,
putting it in a function means having to change it in only one place.

Placing it into a function not only shortens your source code and makes it more
readable, it also adds extra functionality (pun intended), because functions can
be passed parameters to make them perform differently. They can also return
values to the calling code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate(S$timestamp)
{
return date("l F jS Y", Stimestamp);
}

?>

This function takes a Unix timestamp (an integer number representing a date and
time based on the number of seconds since 00:00 a.m. on January 1, 1970) as its

input and then calls the PHP date function with the correct format string to
return a date in the format Tuesday May 2nd 2017. Any number of parameters
can be passed between the initial parentheses; we have chosen to accept just one.
The curly braces enclose all the code that is executed when you later call the
function.

To output today’s date using this function, place the following call in your code:
echo longdate(time());

This call uses the built-in PHP time function to fetch the current Unix timestamp
and passes it to the new longdate function, which then returns the appropriate
string to the echo command for display. If you need to print out the date 17 days

ago, you now just have to issue the following call:
echo longdate(time() - 17 * 24 60 60);

which passes to Longdate the current Unix timestamp less the number of
seconds since 17 days ago (17 days x 24 hours x 60 minutes % 60 seconds).

Functions can also accept multiple parameters and return multiple results, using
techniques that I’ll develop over the following chapters.

Variable Scope

If you have a very long program, it’s quite possible that you could start to run
out of good variable names, but with PHP you can decide the scope of a variable.
In other words, you can, for example, tell it that you want the variable $temp to
be used only inside a particular function and to forget it was ever used when the
function returns. In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus
can be accessed by every other part of your program.

Local variables

Local variables are variables that are created within, and can only be accessed
by, a function. They are generally temporary variables that are used to store
partially processed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous

section, we defined a function that accepted a parameter named $timestamp.
This is meaningful only in the body of the function; you can’t get or set its value
outside the function.

For another example of a local variable, take another look at the Longdate
function, which is modified slightly in Example 3-13.

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)
{
Stemp = date("l F jS Y", Stimestamp);
return "The date is $temp";

}
7>
Here we have assigned the value returned by the date function to the temporary
variable $temp, which is then inserted into the string returned by the function.
As soon as the function returns, the value of $temp is cleared, as if it had never
been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in
Example 3-14. Here $temp has been created before we call the longdate
function.

Example 3-14. This attempt to access $temp in function longdate will fail

<?php
Stemp = "The date is ";
echo longdate(time());

function longdate(S$timestamp)

{
return Stemp . date("l F jS Y", Stimestamp);

}
?>
However, because $temp was neither created within the Llongdate function nor

passed to it as a parameter, Llongdate cannot access it. Therefore, this code
snippet outputs only the date, not the preceding text. In fact, it will first display

the error message Notice: Undefined variable: temp.

The reason for this is that, by default, variables created within a function are
local to that function, and variables created outside of any functions can be
accessed only by non-function code.

Some ways to repair Example 3-14 appear in Examples 3-15 and 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the
problem

<?php
Stemp = "The date is ";
echo $temp . longdate(time());

function longdate(S$timestamp)

{
return date("l F jS Y", Stimestamp);

}

?>

Example 3-15 moves the reference to $temp out of the function. The reference
appears in the same scope where the variable was defined.

The solution in Example 3-16 passes $temp to the Longdate function as an extra
argument. Llongdate reads it into a temporary variable that it creates called
Stext and outputs the desired result.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
Stemp = "The date is ";
echo longdate(S$temp, time());

function longdate(S$Stext, Stimestamp)

{
return Stext . date("l F jS Y", Stimestamp);

}

?>

NOTE

Forgetting the scope of a variable is a common programming error, so remembering how
variable scope works will help you debug some quite obscure problems. Suffice it to say that
unless you have declared a variable otherwise, its scope is limited to being local: either to the
current function, or to the code outside of any functions, depending on whether it was first
created or accessed inside or outside a function.

Global variables

There are cases when you need a variable to have global scope, because you
want all your code to be able to access it. Also, some data may be large and
complex, and you don’t want to keep passing it as arguments to functions.

To declare a variable as having global scope, use the keyword global. Let’s
assume that you have a way of logging your users into your website and want all
your code to know whether it is interacting with a logged-in user or a guest. One

way to do this is to create a global variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon a successful
login attempt, or O upon its failure. Because the scope of the variable is global,
every line of code in your program can access it.

You should use global variables with caution, though. I recommend that you
create them only when you absolutely cannot find another way of achieving the
result you desire. In general, programs that are broken into small parts and
segregated data are less buggy and easier to maintain. If you have a thousand-
line program (and some day you will) in which you discover that a global
variable has the wrong value at some point, how long will it take you to find the
code that set it incorrectly?

Also, if you have too many global variables, you run the risk of using one of
those names again locally, or at least thinking you have used it locally, when in
fact it has already been declared as global. All manner of strange bugs can arise
from such situations.

NOTE

Sometimes I adopt the convention of making all global variable names uppercase (just as it’s
recommended that constants should be uppercase) so that I can see at a glance the scope of a
variable.

Static variables

In the section Local variables, I mentioned that the value of the variable is wiped
out when the function ends. If a function runs many times, it starts with a fresh
copy of the variable and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function
that you don’t want any other parts of your code to have access to, but you
would also like to keep its value for the next time the function is called? Why?
Perhaps because you want a counter to track how many times a function is
called. The solution is to declare a static variable, as shown in Example 3-17.

Example 3-17. A function using a static variable

<?php
function test()

{

static Scount = 0;
echo $count;
Scount++;

}
7>
Here the very first line of function test creates a static variable called $count

and initializes it to a value of 0. The next line outputs the variable’s value; the
final one increments it.

The next time the function is called, because $count has already been declared,
the first line of the function is skipped. Then the previously incremented value of

Scount is displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the
result of an expression in their definitions. They can be initialized only with
predetermined values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php
static $int = 0; // Allowed
static $int = 1+2; // Disallowed (will produce a Parse error)

static $int = sqrt(144); // Disallowed

?>

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are
known as superglobal variables, which means that they are provided by the PHP
environment but are global within the program, accessible absolutely
everywhere.

These superglobals contain lots of useful information about the currently running
program and its environment (see Table 3-6). They are structured as associative
arrays, a topic discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal
name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The
variable names are the keys of the array.

$_SERVER Information such as headers, paths, and script locations. The entries in this array
are created by the web server, and there is no guarantee that every web server
will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.
$_POST Variables passed to the current script via the HTTP POST method.
$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.
$_SESSION Session variables available to the current script.

$_REQUEST Contents of information passed from the browser; by default, $_GET, $_POST,
and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

All of the superglobals (except for SGLOBALS) are named with a single initial
underscore and only capital letters; therefore, you should avoid naming your
own variables in this manner to avoid potential confusion.

To illustrate how you use them, let’s look at a bit of information that many sites
employ. Among the many nuggets of information supplied by superglobal
variables is the URL of the page that referred the user to the current web page.
This referring page information can be accessed like this:

$came_from = $_SERVER['HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by
typing its URL directly into a browser, $came_from will be set to an empty
string.

Superglobals and security

A word of caution is in order before you start using superglobal variables,
because they are often used by hackers trying to find exploits to break into your
website. What they do is load up $_POST, $_GET, or other superglobals with
malicious code, such as Unix or MySQL commands that can damage or display
sensitive data if you naively access them.

Therefore, you should always sanitize superglobals before using them. One way

to do this is via the PHP htmlentities function. It converts all characters into
HTML entities. For example, less-than and greater-than characters (< and >) are

transformed into the strings &Lt ; and > so that they are rendered harmless, as
are all quotes and backslashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);

Using the htmlentities function for sanitization is an important practice in any circumstance
where user or other third-party data is being processed for output, not just with superglobals.

This chapter has provided you with a solid background in using PHP. In
Chapter 4, we’ll start using what you’ve learned to build expressions and control
program flow—in other words, do some actual programming.

But before moving on, I recommend that you test yourself with some (if not all)
of the following questions to ensure that you have fully digested the contents of
this chapter.

Questions

1. What tag is used to cause PHP to start interpreting program code? And
what is the short form of the tag?

2. What are the two types of comment tags?
3. Which character must be placed at the end of every PHP statement?
4. Which symbol is used to preface all PHP variables?

5. What can a variable store?

6. What is the difference between Svariable = 1 and $variable == 1?

7. Why do you suppose an underscore is allowed in variable names (e.g.,
Scurrent_user) whereas hyphens are not (e.g., Scurrent-user)?

8. Are variable names case-sensitive?
9. Can you use spaces in variable names?

10. How do you convert one variable type to another (say, a string to a
number)?

11. What is the difference between ++$j and $j++?

12. Are the operators && and and interchangeable?

13. How can you create a multiline echo or assignment?

14. Can you redefine a constant?

15. How do you escape a quotation mark?

16. What is the difference between the echo and print commands?

17. What is the purpose of functions?

18. How can you make a variable accessible to all parts of a PHP program?

19. If you generate data within a function, what are a couple of ways to convey
the data to the rest of the program?

20. What is the result of combining a string with a number?

See Chapter 3 Answers in Appendix A for the answers to these questions.

Chapter 4. Expressions and
Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers
more fully, such as making choices (branching) and creating complex
expressions. In the previous chapter, I wanted to focus on the most basic syntax
and operations in PHP, but I couldn’t avoid touching on more advanced topics.
Now I can fill in the background that you need to use these powerful PHP
features properly.

In this chapter, you will get a thorough grounding in how PHP programming
works in practice and in how to control the flow of the program.

Expressions

Let’s start with the most fundamental part of any programming language:
expressions.

An expression is a combination of values, variables, operators, and functions that
results in a value. It’s familiar to anyone who has taken high-school algebra:

y = 3(abs(2x) + 4)
which in PHP would be:
Sy = 3 (abs(2 $x) + 4);

The value returned (y, or $y in this case) can be a number, a string, or a Boolean
value (named after George Boole, a nineteenth-century English mathematician
and philosopher). By now, you should be familiar with the first two value types,
but I’ll explain the third.

TRUE or FALSE?

A basic Boolean value can be either TRUE or FALSE. For example, the expression
“20 > 9” (20 is greater than 9) is TRUE, and the expression “5 == 6” (5 is equal to
6) is FALSE. (You can combine Boolean operations using operators such as AND,
OR, and XOR, which are covered later in this chapter.)

NOTE

Note that I am using uppercase letters for the names TRUE and FALSE. This is because they are
predefined constants in PHP. You can also use the lowercase versions, if you prefer, as they are
also predefined. In fact, the lowercase versions are more stable, because PHP does not allow
you to redefine them; the uppercase ones may be redefined—something you should bear in
mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a
couple more. For each line, it prints out a letter between a and d, followed by a

colon and the result of the expressions. The
 tag is there to create a line
break and thus separate the output into four lines in HTML.

NOTE

Now that we are fully into the age of HTML5, and XHTML is no longer being planned to
supersede HTML, you do not need to use the self-closing
 form of the
 tag, or any
void elements (ones without closing tags), because the / is now optional. Therefore, I have
chosen to use the simpler style in this book. If you ever made HTML non-void tags self-
closing (such as <div />), they will not work in HTMLS5 because the / will be ignored, and
you will need to replace them with, for example, <div> ... </div>. However, you must still
use the
 form of HTML syntax when using XHTML.

Example 4-1. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]
";
echo "b: [" . (5 ==6) . "]
";
echo "c: [" . (1 == 0) . "]
";
echo "d: [" . (1 ==1) . "]
";
?>

The output from this code is as follows:

[1]
[]
[]
: [1]

an oo

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1.
But b: and c:, which evaluate to FALSE, do not show any value, because in PHP

the constant FALSE is defined as NULL, or nothing. To verify this for yourself, you
could enter the code in Example 4-2.

Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE . "]
";
echo "b: [" . FALSE . "]
";

?>

which outputs the following:

a: [1]
b: []

By the way, in some languages FALSE may be defined as 0 or even -1, so it’s
worth checking on its definition in each language.

Literals and Variables

The simplest form of an expression is a literal, which simply means something
that evaluates to itself, such as the number 73 or the string "Hello". An
expression could also simply be a variable, which evaluates to the value that has
been assigned to it. They are both types of expressions, because they return a
value.

Example 4-3 shows three literals and two variables, all of which return values,
albeit of different types.

Example 4-3. Literals and variables

<?php
S$myname = "Brian";
$myage = 37;

echo "a: " . 73 . "
"; // Numeric literal

echo "b: " . "Hello" . "
"; // String literal

e