
Software Quality Management VI

Springer
London
Berlin
Heidelberg
New York
Barcelona
Budapest
Hong Kong
Milan
Paris
Santa Clara
Singapore
Tokyo

c. Hawkins, M. Ross and G. Staples (Eds)

Software Quality
Management VI
Quality Improvement Issues

Proceedings sponsored by

oriGin

i Springer

Organised by •
The British Computer Society

Conference endorsed by

*** * * * CEPIS *
* *

Chris Hawkins
BCS Quality SIG Chairman and Perspective Technica, Reading, UK

Margaret Ross
Southampton Institute and BCS Quality SIG, UK

Geoff Staples
BCS (Hampshire) and BCS Quality SIG, UK

The front cover design is taken from Bootstrap 3.0 - Software Process Assessment
Methodology by A. Bicego, M. Khurana andP. Kuvaja, pp 31.

ISBN-13:978-1-85233-021-7

British Library Cataloguing in Publication Data
Software quality management

6: Quality improvement iJsues
1.Computer software - Quality control- Congresses
Z.Software engineering - Management - Congresses
LHawkins, Chris, 1951- ILRoss, Margaret III.Staples,
Geoff
005.3'0685
ISBN-13:978-1-85233-021-7 e-ISBN-13:978-1-4471-1303-4
DOl: 10.10071978-1-4471-1303-4

Library of Congress Cata1oging-in-Publication Data
A catalog record for this book is available from the Library of Congre ..

Apart from any fair dealing for the purposes of research or private study, or criticiJm or review, as
permitted under the Copyright, Designs and Patents Ad: 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permiJsion in writing of
the publilhers, or in the case of reprographic reproduction in accordance with the terms of licences
iJsued by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

C Springer-Verlag London Limited 1998

The use of regiJtered names, trademarks etc. in this publication does not imply, even in the absence of
a specific statement, that sud!. names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Typesetting: Camera ready by contributors

34/3830-543210 Printed on acid-free paper

SIXTH INTERNATIONAL CONFERENCE ON
SOFTWARE QUALITY MANAGEMENT

CONFERENCE CHAIRMAN
C.Hawkins

CONFERENCE DIRECTORS
M. Ross

G. Staples

INTERNATIONAL ADVISORY COMMITTEE

H. Basson
J. Brinkworth
M. Curtis
K. Daily
T. Daughtrey
J. Dolado Cosin
A. Dorling
D. Edgar-Nevill
B. Garner
E. Georgiadou
A. Grady
E. Gray
R Green
T. Hall
S. Hill
B. Hirsh
R. Hunter
G. King

D. Kitson
P. Kuvaja
H.Leung
P. Linecar
C. Mackie
D. Maisey
M. Mullerburg
B. Myers
M. Pivka
T.P. Rout
V. Sivess
A. Symons
A. Torn
H. Wickberg
D. Wilson
H. Younessi
S. Zahran

PREFACE

The Quality Special Interest Group of the British Computer Society
presents the edited proceedings of their sixth International Conference on
Software Quality Management (SQM'98) held in April 1998 in
Amsterdam.

The objective of this series of annual conferences is to promote
international co-operation among those concerned with software quality
and process improvement, by creating a greater understanding of
software quality issues and by sharing current research and industrial
experience.

The papers cover a broad spectrum of practical experience and research.
The topic areas include process improvement, maintaining a quality
management system, quality metrics, human factors, project
management issues, software tools and approaches to systems
development.

The organisers would like to thank Origin for their sponsorship of the
proceedings. The editors are indebted to the members of the
International Advisory Committee for their support and for refereeing
the abstracts and the final papers, as well as to the authors who have
contributed to the success of this conference.

The Editors.

CONTENTS

Section 1: Process Improvement

ASTERIX Introduction of a Process Improvement using Tools to Support
System Testing
John Brinkworth and John Llewhellyn, (Anite Systems, UK) 3

Practical Process Improvement Meets DSP Software Development
T Kaikkonen, (Nokia Mobile Phones, Finland), M Oivo, (VTT Electronics,
Finland), J Puputti, (Nokia Mobile Phones, Finland), and M Vierimaa,
(VTT Electronics,Finland) ... 15

Bootstrap 3.0 - Software Process Assessment Methodology
A Bicego (Etnoteam, Italy), M Khurana (Southampton Institute, UK), and
P Kuvaja (University ofOulu, Finland) .. 26

A Qualitative Approach to Organisational Goal Setting for Information
Systems Development
Peter DC Bennetts, Stella Mills (Cheltenham and Gloucester College of
Higher Education, UK) and Trevor Wood-Harper (University of
Salford, UK) ... 38

Section 2: Quality in Software Development

Experience with Software Quality I Usability Metrics
Judy Lau (Shanable Pty Ltd, Australia) and David N Wilson (University of
Technology, Sydney, Australia) .. 53

Improving Information Systems Development by Managing Project Risk
Peter Smart, (Price Waterhouse, UK) .. 70

Information Quality Supported By Meta Model
Tatjana Welzer and Ivan Rozman, (University of Maribor, Slovenia) 81

Quality and RAD: A Contradiction In Terms?
Paul Allen, (SELECT Software Tools PIc, UK) ... 89

Transient Quality Performance within the 'SPAN' of new Software
Development Process and Technology Establishment
Nikos Lykouropoulos and Andreas Maniatis, (IMF Ltd, Greece) 106

x

Providing Support for the Integration of Structured Methods and Quality
Management Systems
J Barrie Thompson, Helen M Edwards and Colin J Hardy, (University of
Sunderland, UK) ... 108

Section 3: Object Oriented Issues

Can You Have It All?": Managing the Time and Budget Against Quality
Issue in a Dynamic Business Object Architecture Development
KSY Hung, A/H Simons (University of Sheffield, UK) and A Rose (CAD
Consultants, UK) .. 121

Object-Oriented Software Development with Reuse
M Milankovic-Atkinson and E Georgiadou, (University of North London,
UK) ... 135

Integration of Strategic, Tactical and Technical 00 Measurement
Marjan Hericko, Ivan Rozman, Matjaz B Juric and Romana Vajde Horvat,
(University ofMaribor, Slovenia) ... 147

Section 4: Software Tools

A Lotus Notes Implementation of a Workflow Automation Tool for ISO
9001 Certification
Yan Ching Ying and Keith CC Chan, (The Hong Kong Polytechnic
University, Hong Kong) .. 161

Automatic Software Evaluation Based on Domain Knowledge and Formal
Evaluation Specification
Boris I Cogan and Tamara 0 Matveeva, (Far Eastern Branch of the
Russian Academy of Sciences, Russia) .. 173

Section 5: Quality Issues

Australian Software Developers Embrace QA Certification
Aileen P Cater-Steel and Edmond P Fitzgerald, (University of Southern
Queensland, Australia) .. 187

Management Systems: The End of the Beginning?
Roderick H Macmillan, (British Telecom Labs, UK) ... 199

Can Quality Survive Amidst Adversity?
W Pat Burgess, (Burgess Consulting Inc, USA) .. 204

XI

An Analysis of Obsolesence Risk in IT Systems
M Bradley (Rolls-Royce and Associates Ltd, UK), RJ Dawson
(Loughborough University, UK) .. 209

Constructing Standards for Cross-Platform Operation
MA Heather (University ofNorthumbria at Newcastle, UK), BN Rossiter
(Newcastle University, UK) ... 218

The Practical Use and Abuse of Software Metrics
Kawai Banga, (KSB Associates Ltd, UK) .. 230

A Quality Software Process for Rapid Application Development
Gerry Coleman (Centre for Software Engineering, Dublin, Ireland),
Renaat Verbruggen (Dublin City University, Ireland) 241

An Integrated Model for Impact Analysis of Software Change
Henri Basson, (Laboratoire du Littoral, France) .. 260

Metrics for Estimation
T.R. Judge and N.S. Mistry (Parallax Solutions Ltd, UK) 270

Author Index ... 285

Section 1
Processlnnprovennent

ASTERIX
Introduction of a Process Improvement
using Tools to Support System Testing

John Brinkworth, John Llewhellyn
Anite Systems Quality Unit

Slough, UK
Acknowledgement: Paul Starkey

Abstract

Anite Systems Space and Defence Division is a mature organisation, certified to
ISO 900 I standards and possesses considerable experience in the application of the
European Space Agency (ESA) Software Engineering Standards to major software
systems development. We have been selected by the European Commission to
perform a Process Improvement Experiment (PIE) under its European Systems and
Software Initiative (ESSI). The project is entitled ASTERlX - Automated Software
Testing for Enhanced Reliability In Execution.

The project's objective is to determine how greater attention to system-level
testing can improve software product quality whilst reducing overall costs as
measured across the full software development lifecycle (including extended
warranty periods). The project is scheduled to run from early 1997 to late 1998.

This paper is the project's "Interim Dissemination" deliverable providing details
on project progress to-date. It highlights the benefits the project's results will bring
to the Software Quality, Process Improvement, and Space Software communities.

Introduction
This paper discusses a project currently being performed by Anite Systems Space
and Defence division. ASTERlX's objective is to determine how greater attention
to system-level testing can improve software product quality whilst reducing
overall costs as measured across the full development lifecycle (including extended
warranty periods).

Anite Systems Space and Defence Division is a mature organisation, certified to
ISO 9001 standards and possesses considerable experience in the application of
European Space Agency (ESA) Software Engineering Standards to major software
systems development. We have identified testing as the aspect of our software
development process which can most significantly benefit from the application of
new methods and tools. We believe that any process improvements which can be
made in this area will be of direct benefit to a wide variety of organisations,
whether currently applying the ESA Software Engineering Standards or otherwise.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

4

The resources, measured both in terms of cost and elapsed time, which have to be
allocated under normal circumstances to system-level testing mean that although
we believe we do a good job of testing there is potential to do even better.

We believe that this situation can be improved significantly only if a high level of
automation can be brought to such testing. ASTERIX provides the resources
needed to establish whether such an approach, in conjunction with strong higher
management support, does lead to real benefits on a major representative project.

The baseline project chosen for this experiment is commercially confidential but
we can say that it is being performed to tight budget and schedule constraints, and
is capable of benefiting directly from the application of the proposed techniques.

ASTERIX is also analysing comparable projects previously performed by us using
our current development standards. This allows us to derive objective figures for
the benefits of adopting a thorough approach to automated system-level testing.

We see the results of ASTERIX as having a wide potential application, and we
welcome the opportunity to contribute to an overall improvement in the approach
ofthe European software industry in this area. We are therefore taking care to see
that the ASTERIX results reach the widest possible audience - hence this paper for
the SQM98 conference. This paper forms the "Interim Dissemination" deliverable
of the project (part of our contract with the European Commission) and provides
details on project progress to-date.

Anite Systems' Motivation for the PIE
Anite Systems Space & Defence Division produces bespoke systems and software
systems for a wide range of major clients including the European Space Agency
(ESA), the UK Ministry of Defence (MoD), the German Space Agency (DLR), the
British National Space Centre (BNSC), Hitachi, and many others.

We have particular strengths in spacecraft control and mission planning systems,
real-time spacecraft simulators, ground station control facilities, Earth Observation
data processing, avionics and robotics applications.

We have identified testing as a process in our software development approach that
needs to be made more efficient, and we wish to establish whether this can be
overcome with the help of the use of tools for automated software testing. If the
ASTERIX PIE demonstrates that our proposed approach is practical, we will use
the experience as a basis for updating our Quality Management System so that all
future divisional project work benefits accordingly.

Current Situation
Anite Systems Space & Defence Division is a mature software engineering
organisation, which has been certified to AQAP 1/13 and then ISO 9001 standards
for many years for Defence projects and, since the beginning of 1996, to ISO 9001
standards for all work performed at our Bristol (UK) offices.

5

The divisional Quality Management System is closely based upon the ESA
Software Engineering Standards, also known as PSS-05, which has been used for
Space-related project work since the introduction of the standards in the early
1980s. The standards are also extensively used in the wider software development
community by organisations such as the UK Defence Evaluation Research Agency
(DERA), CERN and GEe. The experience of the division in working to these
standards has been fed back into the evolution of the standards during this time.

We know from our own experience and that of many other European software
development organisations which operate in our market areas, that testing is
always the weakest link in the practical application of the ESA Software
Engineering Standards. It is often the case that a significant amount of
development work has been performed before sufficient attention is given to the
manner in which the software will be tested.

When the Project Manager is put under budget and schedule pressure it is normal
that the effort allocated to testing is the easiest to reduce without immediate visible
consequences. In the past our clients have often accepted this approach as there is
usually sufficient time following delivery of the software system to solve most of
the remaining problems before the system is required to support major mission
events such as spacecraft operations. In return for accepting this reduced level of
testing, our clients have been able to benefit by having an unusual amount of
flexibility in changing their requirements for the software, often at quite a late
stage in the development of the system.

These arrangements are, we believe, now becoming impossible to maintain in our
market area. This is due to the increasing budgetary pressure and the rapid trend
away from Fixed Unit Price (Time and Materials) work performed at client sites
with significant client involvement, to Firm Fixed Price developments mostly
performed remotely from the client.

To correct this situation we have started a process of education, both of our own
staff (in particular our Project Managers) and of our clients, in the importance of
allocating sufficient resources to testing. We are also looking to technological
solutions which will allow us to make much more efficient use of the resources
allocated to testing. We have identified the use of automated software test tools as
the most promising technological approach; this has led us to establish th.e
ASTERIX Process Improvement Experiment project.

Definition of the Experiment
The Baseline Project for the ASTERIX Process Improvement Experiment (PIE) is
a major commercially confidential development. However we have not been able
to apply as many resources as we might have liked to automate the testing on the
project.

The ASTERIX PIE is therefore scoped to allocate sufficient resources to an
automated testing approach that will allow us to determine the optimum level of

6

testing required for major projects, and to establish the correct proportion of the
budget to allocate to testing in future projects.

We believe that the automated testing approach will, for most of our future
projects, be beneficial in providing our clients with improved quality systems and
in reducing the overall development costs once the costs of repairing faults under
warranty have been taken into account. The main aim of ASTERIX will be to
establish whether this is the case.

ASTERIX runs for a period of 18 months, spanning the implementation and testing
phases of the baseline project and the most crucial part of the subsequent warranty
period.

The emphasis within ASTERIX is on providing comprehensive system and
acceptance testing facilities, using a combination of the following techniques and
categories of tools:
• Creation of the tests using an appropriate tool with extensive scripting

facilities.
• Performance of the tests, including regression testing where required because

of code changes as a result of failed tests. Regression testing will also be
performed post-delivery when changes are made as a result of errors detected
under warranty. Regression testing becomes feasible on a system of this nature
(including complex interactive tasks) only when the tests can be repeated
automatically.

• Test management supported by appropriate database tools. These typically
provide standard test reporting and handling mechanisms (such as the
Software Problem Report), and allow essential statistics on the progress of the
tests to be made available.

This approach will be supported by a measurement programme, as discussed
below.

Organisational and "people" issues are important in the success of ASTERIX. One
of our wider objectives is to convince our staff that testing is as noble an art as
design or coding. Whilst we are happy to have staff who have a specialist interest
in testing, we prefer most of our staff to be able (and happy) to perform either an
analysis/design/coding role or a testing role on any project. In common with most
organisations, our developers currently prefer the former role. ASTERIX should
help to rectify this situation by removing the drudgery from the testing process and
to make clear the crucial role it can play in the success of a project.

Measurement of Results
ASTERIX allows us to perform many more system and acceptance tests than is
normally possible. The benefits of adopting such an approach have to be
quantifiable in terms of clear improvements in the quality of the product as
delivered to the clients, and preferably in reducing the overall costs as measured
across both the development and the warranty phases.

7

The measurement programme involves a significant level of investment in order to
ensure that the data, which will be derived from a variety of sources, is statistically
valid. The success of the ASTERIX PIE depends upon being able to make a clear
statement on the quality and cost benefits of the approach adopted.

Measurable Targets
Integral to the PIE is the definition of measurable goals or targets. If the targets are
met, then we will be able to recommend the adoption of the relevant techniques,
but even if the targets are not met then we will have valuable information which
will be of interest in the context of software process improvement.

We have identified the following specific targets for the ASTERIX PIE, related to
the baseline project:
• The total number of Software Problem Reports (SPRs) received during the

period covered by the PIE should be at least 50% less than the corresponding
number on previous similar projects.

• The total cost savings (compared with previous similar projects) due to the
lower number of SPRs handled should exceed the cost increase due to the
additional system and acceptance testing performed.

These targets reflect the overall goal to demonstrate that the approach proposed
will result in real gains both for the customer (through receiving a better quality
product, allowing him to reduce operational costs) and for Anite (through reducing
the overall life cycle costs).

Comparison Projects
In addition to collecting data from the baseline project we need good quality data
from recent projects in order to allow us to determine whether the ASTERIX
experiment has allowed us to achieve our targets.

To allow meaningful comparisons we are considering major developments, with
extended maintenance periods that are typically greater than one year in duration.
Anite Systems Space & Defence Division has recently performed several such
projects of similar scope to the baseline project. For all these projects we have
access to project data. This will provide the basic raw material to allow us to
evaluate the effects of the ASTERIX approach.

CostlBenefit Analysis
In order to determine whether the approach to system testing embodied in the
ASTERIX experiment should be adopted on future Anite Systems projects, we
have to perform a cost/benefit analysis, where:
• The costs are the additional expenditure required on a new project to support

the automated system testing approach as implemented on ASTERIX.
• The benefits are:

• anticipated reduced costs during the warranty period;
• higher quality in the delivered product.

8

The costs should in principle be easy to measure from the ASTERIX project,
although we have to establish the recurrent costs, i.e. those costs that would be
incurred by a successor project building upon the ASTERIX approach.

Measuring Improved Product Quality
In order to quantify the quality of a software product, we have established a
framework (a Quality Model) that allows different characteristics of the software
to be measured and combined into an overall quality figure. A suitable starting
point for such a model is the ISO/IEC Standard 9126: Information technology -
Software product evaluation - Quality characteristics and guidelines for their use
(ISO/IEC 9126: 1991 (E)).

The ISOIIEC Quality Model is based upon the defmition of software quality
characteristics and subcharacteristics, as shown below in Figure 1.

H 511_/.., I -l M.fIIrl", I rl u _m., I H r_ -.- I H " .. " .. mll", I rl "."...u.., I
H ,,_ I -l F_It,._ I -l u.-mu., I L-J· _ .. -I ~ CJrapooIoU.., I H , /,..1/.., I

H l.......""..u.., I -l 11«0"-'.., I -l 0,......1/.., I H 5 ... 01., J H. c~ J

Figure 1

Note that the ISOIIEC Quality Model mandates the six basic quality characteristics
to be considered in any specific quality model defmition:
• functionality
• reliability
• usability
• efficiency
• maintainability
• portability
however the subcharacteristics shown in the figure above are purely indicative.
The essence of the quality model is that it is possible to assess the software in
terms of measurable quality (sub)characteristics, so that defmition at least to the
subcharacteristic level is required, even if a different set of subcharacteristics is
identified.

Defmition of a complete Quality Model, covering all the characteristics and sub
characteristics above, is beyond the scope of the ASTERIX experiment; many of
the characteristics and sub-characteristics cannot be affected by the ASTERIX
approach, and others (such as fault tolerance) are often not relevant for the types of
software products we develop.

9

We have therefore concentrated on the following aspects of the Quality Model, as
we perceive them to be directly relevant to the subject matter of the ASTERIX
experiment:
• reliability (maturity only);
• maintainability (all sub-characteristics).

The act of defming each subcharacteristic within the Quality Model involves:
• providing a defmition for the subcharacteristic itself (the defmitions used

within ISO/lEe 9126 are used);
• defming the specific attributes of the software which collectively constitute the

subcharacteristic;
• defining a metric (i.e. a measurable characteristic) for each attribute;
• defming a means of converting from the measured value of each metric (which

has a specific meaning for each metric) to a rating level which can have a
common meaning across all metrics;

• defming the weightings which allow the individual metric rating levels to be
combined into overall rating levels of:

• the quality factors (which are the quantification of the quality
characteristics);

• the quality criteria (which are the quantification of the quality
subcharacteristics).

Using these defmitions, it is then possible to provide quantitative figures for the
reliability and maintainability of the software, according to the following formulas:

F, = I1a
j
(~aj *Cj)

j

C - 10 (" p * M) j-3*Ip,t f k k

,t

where:

F; are the quality factors (normalised to lie within the range 0-10);

C j are the quality criteria (normalised to lie within the range 0-10);

a j are the weightings applied to the quality criteria when calculating the

quality factors;

M,t are the assigned values of the rating levels of the metrics (in the range 0-3);

P k are the weightings applied to the metric ratings when calculating the

quality criteria.

Note that because F; and C j are normalised in these equations, only the relative

values of the weightings within a given calculation are important, not their

10

absolute values. For example, for a given quality factor, the following weighting
schemes are identical in effect:

a =2' a =1' a =3anda =6' a =3' a =9
I ' 2 ' 3 I' 2 ' 3

The relationships between the metric ratings and the measured values of the
metrics are specified individually for each metric. These relationships can be non
linear.

Following ISO/lEe 9126, we are using the following scheme for rating level
definition:
• For any metric, it must be possible to map any possible value of the metric to

one of four rating levels.

• The rating levels (i.e. possible values of M k) are:
• Excellent (assigned value 3);
• Good (assigned value 2)
• Fair (assigned value 1);
• Poor (assigned value 0).

Any quality factors and criteria that are not relevant for ASTERIX purposes, or
which will not be considered in ASTERIX, are assigned a weighting of zero.

As an illustration of the practical implementation of this approach, we provide
below a simple example with the following features:
• only maturity is considered;
• the maturity is derived from only two metrics:

• the number of new SPRs raised in each month;
• the number of SPRs still open each month.

The mappings between the metric values and the rating levels is as follows:

NewSPRs
Weighting: 4

Rating From To
3 0 9
2 10 24

25 49
0 50

OpenSPRs
Weighting: 7

Rating From To
3 0 24
2 25 49
1 50 74
0 75

The simulated raw metric information (new SPRs and SPRs still open per month
over a period of 12 months) is as follows in Figure 2:

SPR Statistics

90~ ____ ~~ ______ ~~~ ______ ~ __ ~~~~ __ ~

80

10

60

50

~ 40

30

20

10

o ~~~~~~~~ __ ~~~~+-__ ~~
2 3 4 5 6 7 8 9 10 II 12

Month

1_ New SPRs ___ Open SPRs I

Figure 2

The calculated ratings, Mb are as follows in Figure 3:

Maturity Ratings

2 3 4 5 6 7 8 9 10 II 12

Month

I-+-New SPRs ___ Open SPRs I

Figure 3

11

12

The resultant values, Ci, of the maturity are as follows in Figure 4:

Maturity

1 0 ~~~~~~~~~~--~~~~--~--~~-t
9
8

7

6
5

4
3
2

2 3 4 5 6 7 8 9 10 II 12

Mootb

Figure 4

In practice the Quality Model produced by ASTERIX is more extensive than in
this simple example, but the basic steps are the same. It is important to ensure that
the mappings between the metric values and the rating levels are carefully thought
out and are consistent across the developments under consideration (ie both the
baseline and the comparison projects).

In this example the mapping would in general have to be based upon a measure of
the size and/or complexity of the software (less than 10 new SPRs per month may
be excellent for a large system, but poor for a much simpler system). We are
considering a number of possible approaches to measuring the size of the systems
and thus "normalising" the data. Potential candidate techniques include: number of
lines of source code, number of specification pages, Function Points, cyclomatic
complexity.

The following is the set of metrics that is being used for the subcharacteristics to
be included in the Quality Model.
• Reliability

• Maturity:
• number of valid external SPRs accepted in the reporting period

(assumed to be one month);
• Percentage of all valid external SPRs that are still open;

• Maintainability
• Analysability:

• average effort to analyse and agree a solution to a problem
reported by internal SPR;

13

• average effort to analyse and agree a solution to a problem
reported by external SPR;

• Changeability:
• average effort to implement a solution to a problem reported by

internal SPR;
• average effort to implement a solution to a problem reported by

external SPR;
• Testability:

• average effort to test a solution to a problem reported by internal
SPR;

• average effort to test a solution to a problem reported by external
SPR.

We do not intend needlessly to generate large numbers of metrics, rather the
emphasis is on defining the minimum set of independent measures that fully
capture the scope of the subcharacteristic.

Results so Far
Our results so far are limited since the project is not yet far enough advanced to
provide conclusive figures on the experiment. Nonetheless the insights that have so
far been uncovered are worth noting.

We have assembled the following "characteristic" data about the comparison
projects.

Project Hardware Operating Languages Size Effort in Total
System in effort- number of

KLOC months SPRs

A VAX VMS C,Ada 22.8 122 694
ALPHA

B SUN SUNOS FORTRAN, TBO 120 TBO
SPARC UNIX C++

C VAX VMS FORTRAN, 269 308 638
PASCAL

0 VAX VMS FORTRAN, 888 334 857
C, UIL,
PASCAL

Table I

It should be emphasised that at present this data is tentative and will be subject to
further validation.

The experiment is being performed in a commercial organisation. This introduces
particular constraints and issues. Due to uncertainties in the baseline project we

14

have had to in the ftrst instance delay the testing activity, and subsequently transfer
the experiment to another similar baseline project.

We have assembled a detailed scoring mechanism to assist with selecting the most
appropriate tool to support the automated testing activity. We are now at the stage
where the tool has been procured and is shortly to be applied to the next planned
delivery for the baseline project.

The data gathering from previous projects has proved more troublesome than
expected. We have developed all the systems using the same lifecycle
methodology from the ESA standards however the search for data has exercised
our ftling, archiving and archive retrieval procedures more fully than is normally
the case. We have assembled a fair amount of data but are aware of gaps. We
expect to commence detailed analysis in the next few months.

There are organisational issues associated with introducing tools into a project
whereby the fact that the tools are being introduced by a separate project from the
baseline project can give rise to feelings of lack of ownership for the improvement
process on the part of the development team. To attempt to address this issue a
Service Level Agreement has been established between the PIE and the baseline
project. This enables both partners in the experiment to understand their inter
relationship and obligations in terms of time commitments, tasks and deliverables.

We expect that our "ftnal dissemination" paper will be able to provide a quantifted
assessment, using the techniques and models discussed above, of whether the
process change was a process improvement.

Transferability of Experience and Potential for
Replication
If we take the ESA Software Engineering Standards as a fair representation of
"best practice" in the European software industry, then it is clear that the lessons
learnt from ASTERIX can lead to direct improvements in these standards. We are
in a particularly good position to influence these standards through our Quality
Assurance Manager, Jon Fairclough, who is a co-author of these standards and a
consultant to ESA for their development.

The ASTERIX PIE allows us to determine how best to use the testing resources at
our disposal. It will demonstrate whether the injection of additional system and
acceptance testing effort (made feasible by the use of automation techniques), can
actually reduce the overall development costs as well as providing our clients with
a better product.

The wider European software development community can beneftt directly from
the results of the ASTERIX work, in that the problem domain (system and
acceptance testing) is common to all software developments. When completed
ASTERIX should provide this community with ftgures showing the quantiftable
benefits of adopting such an automated approach to testing.

Practical Process Improvement Meets DSP
Software Development

T. Kaikkonena , M. Oivob, 1. Puputtt, M. Vierimaab

a Nokia Mobile Phones, PO Box 50, FIN-90571 Oulu, Finland
b vrr Electronics, PO Box 1100, FIN-90571 Oulu, Finland

Abstract

The importance and effort invested in development of digital signal
processing (DSP) software is increasing dramatically especially in
telecommunication applications. Design of optimised mathematical
algorithms has been dominating in research and product
development, but as the size of software has grown, need for
improved software development practices has emerged. Despite
increasing importance, it's hard to find any reports on practical
results of improving DSP software development processes. In this
paper we report the experiences of DSP-ACTION - a joint-project of
Nokia and VIT Electronics - which is carried out at the Mobile
Phones division of Nokia corporation. Objective of the experiment is
to demonstrate improvement of DSP software development process
to support reuse of not only source code but every level of design
documentation. The improvement programme is based on prior
assessment, which was done by using Primer (Practical Process
Improvement for embedded real-time software) framework.
Measurements by using GoallQuestion/Metrics (GQM)-approach
are used to follow-up the improvement actions.

Keywords: process improvement, DSP, digital signal processing,
GQM measurement

1 Introduction

The importance and effort invested in development of digital signal processing
(DSP) software is increasing dramatically especially in telecommunication
applications. Development of latest generation of mobile phones has increased the
size of DSP software three to four times larger than the previous generation. DSP
software operates in hard real-time environment with very tight time and
performance requirements. Design of optimised mathematical algorithms has
been dominating in research and product development, but as the size of software

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

16

has grown, need for improved software development practices has emerged.
Despite increasing importance, it's hard to find any reportS on practical results of
improving DSP software development processes.

In this paper we report the experiences of DSP-ACflON - a joint-project of Nokia
and VTI ElectroniCs - which is carried out at the Mobile Phones division of
Nokia corporation. Objective of the experiment is to demonstrate improvement of
DSP software development process to support reuse of not only source code but
every level of design documentation. The improvement programme is based on
prior assessment, which was done by using ~imer (Practical Process
Improvement for embedded real-time software) framework [1]. Measurements by
using GoaJ/Question/Metrics (GQM)-approach [2] are used to follow-up the
improvement actions.

The experiment was piloted in a real product development project aiming at
solving practical problems in everyday design and development work in industry.
Effective review practice was introduced by defining elements of DSP software
quality after analysing the customer needs of both forthcoming and current
projects. Set of documentation methods and tools were evaluated and selected so
that they were compatible with current revision management system. It was
hierarchically restructured to intuitively reflect every domain of pilot project's
DSP software. By creating and collecting process documents into a single
location, a base for continuous process improvement was founded. Expected
impact of the experiment is faster cycles of high-quality product development with
the use of collective base of design level experience. Quantitative measurements
are used to guide current and future process development activities.

2 DSP software development

Digital signal processing (DSP) is the application of mathematical operations to
discrete-time signals. Signals are represented digitally as sequences of samples
which are obtained from the physical analog signals. DSP is central to the
operation of modem telecommunication systems, such as modems or digital
cellular telephones.

Currently dominant approach for DSP system design follows steps [3]:
1. System requirements definition (customer needs driven)
2. Signal analysis (data rates, parameters, noise sources, inputs and outputs)
3. Signal processing design (arithmetic analysis, graphs, architecture approach)
4. Resource analysis (hardware and software, memory utilisation)
5. Configuration analysis (partitioning according to step 4 and modes of

operation)
6. Hardware and software design

A novel approach of DSP system development is hardware-software co-design.
Similar design stages exists for both software and hardware development:
requirements analysis, architecture design, specification, implementation, and

17

testing. Every design stage produces documents which should be synchronised to
certain versions of corresponding hardware and software design.

DSP software development process has become more and more important as the
size of the software has grown. There are several elementary needs for
improvement which may also exist in many areas where software development
work has originally been hardware oriented but nowadays has become more and
more software oriented.

2.1 Needs for nsp software development

DSP software operates in hard real-time environment with very tight timing,
memory and performance requirements. Due to these requirements, DSP software
requires highly optimised code which is mostly implemented using assembler
language. Assembler language environment sets a challenge for the quality as
assembler is a lower level language. For example, there are less tools and
supportive software available for it than for example to C-Ianguage based
environment. It is also more difficult for a novice designer to understand
assembler. Good and clear commenting of the code during the implementation is
important.

DSP algorithms are usually developed by researchers or system designers with
quite high level mathematical models. DSP software designers seldom consider
other solutions than simple line-by-line conversion from one assembly language to
another. DSP designers have usually engineering background which emphasises
hardware knowledge and mathematical algorithms. Therefore, DSP designers
may have only little or no software engineering knowledge and even more,
software processes and software methods are not widely known. This creates
situation where "middle level" software architecture design is usually non-existent
in DSP software design. In conclusion, training of software engineering skills is
one of the important aspects when we want to raise quality of DSP software
development.

DSP software development has evolutionary characteristics, software is rarely
developed from scratch. Usually projects use code and documents from the earlier
project and only a minor part of the code is completely new. Often all source code
modules must be rewritten to a new assembly language variant for the new DSP
processor. These kind of changes are dictated by hardware changes or
performance requirements, and they do not add any new functionality to the
existing code modules. Even though a lot of code is taken from old projects, code
is not designed to be reusable, it is taken because it is known to work. Upper level
documents, such as specification and design documents may be non-existent or
they are not up-to-date. If reusability can be improved, it will lead to considerable
savings in software development and shorten development time.

Usage of higher level languages, such as C or C++, are just emerging. They are
traditionally been used for non-volume products, which run in workstations or a
PC. However, as performance of DSP processors is increasing, price of memory is

18

going down, and amount of software requirements exploding, the implementation
language will be other than simple assembly also in volume products. For tight
inner loops, assembly will remain as the only solution. This hybrid
implementation approach sets new demands to software architecture design,
implementation, and testing.

2.2 Needs for DSP software documentation

Development of DSP software as any other software is a process which produces
documents. In order to support reusability, new projects must obtain all the
necessary documents from the previous projects and these documents should be
easily available and up-to-date.

In order to create necessary documents, documentation tools must be carefully
selected and supported. There are a number of tools available for DSP
development, and each of them has its own strengths and weaknesses. It is equally
important that there are not too many tools for the same purpose. This may lead to
problems because tools require support, document transfer from one tool to
another can be difficult, and people must be trained to use tools.

Project documentation is often scattered and there is no explicit information
available how to make certain documents. Also, there may not be many templates
for documents. Clear work instructions, process descriptions and example
documents make project documentation easier task.

Because of large number of documents and constant updates to documents,
version control system is a necessity. It supports two needs for documents; first,
documents can be easily located, and second, latest version of documents are
found. This does not yet guarantee that documents are up-to-date, this can be
achieved by quality guidelines and their implementation during the process.

3 Process improvement

This section describes the methods used in the DSP process improvement projects
ACTION! and its follow-up project DSP-ACTION carried out at the Mobile
Phones division of Nokia corporation. The purpose is to give an overview of the
methods used.

3.1 Pr2imer-method

Primer represents a practical and systematic approach to improving the quality of
the software development process. It fully integrates software process analysis,
modelling, improvement and measurement techniques in order to meet the critical
quality requirements for the development of embedded systems. Primer addresses
software process quality improvement by supporting the following tasks (figure I):
[1]

19

1. Quantitative and/or qualitative analysis of current software development
practices

2. Definition of measurable goals for improving those practices
3. Planning of successive and practical process improvement steps
4. Piloting and trial use of the improved practices in product development

projects.

4 PILOT
OPERATION
AND

COMMISSIONING

3 PLAN FOR
DEVELOPMENT
MEASURES

1 CURRENT
STATE
ANALYSIS

2 DEFINITION
OF
TARGET
STATE

Figure 1. PJlimer method [1]

First phase of the PJlimer method is current state analysis. It was carried out by
interviewing several key persons of the DSP software development and using a
questionnaire sent to DSP designers to every NMP's R&D sites which have DSP
designers. Coverage of the interviews was 75% of projects (26% of designers)
from the R&D site responsible for piloting improvement actions, but also
engineering managers and other senior designers from 50% of R&D sites were
interviewed. Approximately 40% of DSP designers answered to the questionnaire.
As a result, analysis of the strengths and weaknesses of current process were
known.

Definition of the target state is the second phase of the PJlimer method. In this
phase, process improvement goals were set. The goals defined in this phase are
measured using the GoalIQuestion/Metrics (GQM) software quality improvement
paradigm [2].

In the third phase, software process improvement actions are taken step by step,
concentrating on the areas for improvement identified during the analysis of the
current software development process.

Pilot operation and commissioning is the fourth phase of the PJlimer method.
Improved practices are piloted in real projects. If piloting indicates improvement,
the revised practices can be institutionalised within the organisation.

20

In the ACTION!-project, improvement goals were identified according to the
I¥imer method. One of the goals was to improve software documentation. Also,
quality issues such as reusability were addressed when the goals were set.

Due to amount of work required, a separate project DSP-ACTION was launched.
This project refined the original goals set during the ACTION! -project. Main goal
of the DSP-ACTION project is to improve software documentation to promote
reuse. Results of the DSP-ACTION project are measured using GQM approach.

3.2 GQM approach

Measurable goals of the DSP-ACTION project were defined in the beginning of
the project. These were to "Analyse the documentation process in order to
improve it with respect to reusability" and to "Analyse the review process in
order to improve it with respect to review effectiveness and quality". After the
goals were defined, we used GQM approach to refine selected goals into questions
and metrics. Previous DSP software development projects did not use any kind of
metrics to follow effectiveness of their processes.

GQM-approach uses structured interviews to capture the definitions, assumptions
and implicit models related to the goal. The main purpose of the interviews is to
make implicit knowledge of interviewed people explicit. Figure 2 shows the basic
elements of the GQM approach.

Definition GOAL

Ml M2 M3 M4 MS M6 M7 interpretation

Figure 2 GQM approach

In interviews arranged during the DSP-ACTION project, we interviewed a total
number of five people, both pilot project members and people who were
responsible of the process improvement. Both GQM goals were addressed during
the interviews, by asking the interviewed people their definitions and
assumptions. A specific abstraction sheet was used to this purpose [6].

After the interviews, a GQM-plan was created which contained goals, questions
and metrics. We created measurement plan that describes who will do the
measurements, when they are done and how they are done. After the

21

measurements are defined and pilot project has been selected, measurement
program is started.

Feedback sessions are an essential part of the GQM approach, they are organised
meetings involving pilot project members and GQM experts. Main objective is to
discuss results from the measurements and obtain interpretation of measurements
from the pilot project. Feedback sessions should be fully prepared and arranged
regularly, at least once or twice between each major milestone on the project.

4 Results

Piloting baseline project is currently in its early stage. Therefore experiences can
be estimated based on preliminary results of the measures obtained so far, but the
final successes or failures of the overall project are yet to be seen. Significant
amount of work has however been already done in the project. This work has
provided significant improvement as described in the following paragraphs.

For average DSP designer, the process improvement experiment meant mainly
three practical changes to the way work was done:
1. Every version of all kind of design documents were stored into PCMSI
2. Inspection was formally defined to consists of introduction and defined focus

areas
3. GQM is used for measuring the status and turnout of the pilot project

Several tools that were considered suitable for DSP software development were
evaluated by assessing their strengths and weaknesses from our point of view.
Special attention was paid to the compatibility with version control system. Issues
that were addressed included usability with PC/Windows and UNIX, support for
large documents, support for algorithms and, current knowledge of tool. The
evaluation of the tools was done in true working environment.

In order to define structures to the project documentation, all the documents
(templates, work instructions, process descriptions) were collected from earlier
projects and from document databases. Documents that did not have a template
were taken as example documents for templates to be made in the future.
Originally, we expected to concentrate largely to example documents and
templates, but it was soon discovered that it was more useful to concentrate only
to documents and templates that were really needed. If there were missing
example documents or templates they are generated during the product
development project work. Experience has proven that a good example really
shows what should have been in the template in the first place. Also those who are
experts on specific areas in DSP software development should also make the
guidelines and templates how to create the documentation. Separate quality
management team can not do this work for them, but can assist with the tools and
general requirements.

1 Process Configuration Management System by SQL Software

22

Quality and documentation plan was made to the pilot project. This document
defined elements of quality, explained DSP software development process and
supporting activities (for the process) such as reviews and inspections and, defined
project documents and their exact locations.

Figure 3 shows how configuration management of DSP software development was
done before and during the process improvement experiment (PIE). Previous
projects had usually many problems in locating files, especially higher level
design documents. In the new method, entire software was divided to logical
algorithms, and their corresponding non-optimised implementation was placed
near the same level with other documents. CMS2 is configuration management
location for early generation DSP software implementation. PCMS is currently
used as a configuration management system. UNIX project directories were
previously heavily used for storing (without version control) all kinds of design
documents and specifications. COSSAP3 is (non-version controlled) algorithm
simulation environment, which C-model primitives were also stored in UNIX
project directories. Test environment for unit testing was usually not version
controlled, but stored in worst cases to personal home directories or even on PC.
Now with the new PCMS hierarchy, all these can be version controlled and well
managed. By generating hierarchical structure as defined in figure 3, we assume
that it is easier to locate and manage project documents.

In previous projects

Common files ...
Algorithm B ...

Algorithm A
Bit-exact & Optimised implementation
Specification & Documentation
Simulation model & Test env.

Figure 3: Hierarchical, revision controlled DSP software with documentation

Figure 4 shows how previous projects did their inspections merely ad hoc based
on experience of each individual designer. This led to over-emphasis of hardware
resource optimisations (memory, speed, power) based on reading assembly source

2 Configuration Management System by Digital Equipment Corporation

3 COSSAP DSP algorithm development environment by Synopsys

23

code line-by-line. Certain quality elements, such as testability or maintainability
were often neglected. General methods [5] were studied to improve current
inspection practices. The new inspection method consists of following stages:
1. Introduction to the topic (20-30 minutes), delivery of material and focus areas
2. Individual preparation to the inspection by reading from allocated viewpoints
3. Formal inspection (max. 2 hours) to collect all defects found from the

reviewers

Previously no introduction was made and no focus areas defined. In pilot project,
it is also required that for each algorith~ at least following documents are
prepared before the inspection:
1. Algorithm description
2. Source code modules for the actual implementation
3. Unit test environment with various test cases and expected results

For new algorithms, or those ones fundamentally improved, also specifications,
simulation modes, and bit-exact non-optimised implementation area required to
be inspected.

In previous .projects In PIE pilot project

Figure 4: Quality focus oriented inspection practice

We defined quality of DSP software by the following key elements (figure 5),
which were also used as focus areas for the inspection. All aspects of the quality
must be considered while developing DSP software. In order to assure that no
aspect has been overlooked. Specific checklists were defined to aid individual
inspections to have consistent acceptance criteria.

24

"Soft" Quality Factors
Indirect, Difficult to measure
Improves the quality in long-term

"Hard" Quality Factors, Direct, Measurable,
Improve quality in short-term

Figure 5: Taxonomy of DSP software quality elements

Project group uses special Action Database (ADB) to store project reports,
meeting minutes and information about projects defects and errors. Specific
macros have already been created to obtain data directly from the database. These
macros support automatic translation of data to Excel graphics. We modified this
tool to support collection of all the required metrics thus making it possible to
collect significant amount of metrics directly from the database, without any extra
work from pilot project. This decreases effort for the metrics collection.

In order to make our improvements reality, training was needed. We trained the
pilot project members, by explaining new solutions, methods and tools. Also,
measurements that are collected to estimate project success were explained to pilot
project. Pilot project was shown what information is required from them in order
to collect the measurements.

We expect to measure quantitative results from reviews and reusability of the
documents. Reusability measurements concentrate largely on existence of
documents, whether a task produces all the necessary documents, whether those
documents are up-ta-date and so on. In form of measurements we expect to
measure results, for example, from design such as percentage of design documents
up-ta-date, percentage of design documents done, percentage of design document
reused from the old ones and so on.

From the inspections and reviews we measure how many defects were detected
during the inspections, how many errors were not noticed during the inspections
at certain stage, how long time it takes to correct a defect and so on.

25

There are not enough measurement data available yet from the pilot project so that
conclusIve numerical improvements could already be shown, but we will have
more data as the pilot project matures. We expect to have some comparison data
from the earlier projects, but as projects are always somewhat different,
measurements are also compared to previous estimates of measured values.

5 Conclusions

In this paper we reported the experiences of nSP-ACTION - a joint-project of
Nokia and VIT Electronics - which is carried out at the Mobile Phones division
of Nokia corporation. Objective of the experiment was to demonstrate
improvement of nsp software development process to support reuse of not only
source code but every level of design documentation.

The work we have described has shown how the nsp software process can be
improved using systematic approach and taking into consideration practical needs
of the target project

Acknowledgement

The work described in this paper was carried out with the support of the European
Union under the ESSI process improvement experiment, project 23696, nsp
ACTION. In addition to the authors, individuals from VIT Electronics and
Mobile Phones division of Nokia corporation have contributed to work reported
here.

References

1. Karjalainen l, MIDdirliinen M., Komi-Sirviij S., Seppanen V. Practical process
improvement for embedded real-time software, Quality Engineering, 1996,
Vol. 8, no 4, pp. 565-573

2. Basili V., Caldiera G., Rombach n. Goal Question Metric Paradigm. In John
J. Marciniak, editor, Encyclopedia of Software Engineering, volume 1, pp.
528-532. John Wiley & Sons, 1994

3. DeFatta DJ., Lucas lG., Hodgkiss W.S. Digital Signal Processing: A System
Design Approach, John Wiley & Sons, 1988, pp. 7

4. DSP Design Tools & Methodologies, The Buyer's Guide, Volume I, Berkeley
Design Technologies Inc, 1995, pp. 61

5. Gilb T., Graham D. Software Inspection, Addison-Wesley Publishing Co,
Reading, MA, 1993

6. Latum F., Solingen R, Oivo M., Hoisl B., Rombach D., Ruhe G. How to
Adopt GQM-Based Measurement in an Industrial Environment, to appear in
IEEE Software, January 1998

BOOTSTRAP 3.0 - SOFTWARE PROCESS
ASSESSMENT METHODOLOGY

A Bicego
Etnoteam S.p.A., Milan, Italy

MKhurana
Systems Engineering Research Centre, Southampton Institute

Southampton, UK
P Kuvaja

Department of Information Processing Science, University of Oulu
Oulu, Finland

(in alphabetical order)

Abstract

BOOTSTRAP methodology was initially developed in an ESPRIT project together
with European industry. After February 1993, the methodology has been managed
and further developed by a European Economic Interest Group, called
BOOTSTRAP Institute. BOOTSTRAP 3.0 was released in September 1997. It is
compliant with the PDTR version of ISO 15504, the emerging standard on
software engineering. The methodology contains a process model and an
assessment method. The process model is based on the ISO 15504 reference
model. In addition to the Process and Capability dimensions, it contains a
Technology dimension. The Process dimension contains 33 different Processes
organised in six clusters : Organisation, Life Cycle Dependent, Management,
Support, Customer-Supplier, and Process Related. The Capability dimension
consists of six levels, each level consisting of one of more Process Attributes,
adopted from ISO 15504. An assessment is conducted at SPU and project levels.
The BOOTSTRAP Institute organises and co-ordinates assessor training and
registration scheme. BOOTSTRAP methodology is being used in two European
projects, PROFES and SPAM.

1. Introduction
This paper introduces the latest version of the BOOTSTRAP software process
assessment and improvement methodology. It describes the evolution of the
BOOTSTRAP methodology as part of an ESPRIT project and the formation of the
BOOTSTRAP Institute. Sections 4 and 5 describe the objectives and the main
features of the methodology respectively. Finally, a brief description of the use of
the methodology in European projects, PROFES and SPAM, is provided.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

27

2. Background

A European consortium partially funded by the European Commission within the
ESPRIT program initially developed the BOOTSTRAP methodology. This project
lasted from 1990 to 1992. The initial goal of the project was to fertilise the ground
for good software engineering practices in Europe and to analyse the awareness of
the European software industry in this area. The American experiences inspired the
project to develop a kernel of a process assessment methodology based on the
Capability Maturity Model (CMM) developed by the Software Engineering
Institute (SEI) at Carnegie Mellon University. As at the time of the project, in
Europe ISO 9000 standards were becoming the main reference also for the
software industry; these standards were taken as major starting point to be
integrated with the CMM approach. The newly developed approach was piloted
during the initial development project, at Bosch GmbH Laboratories in Germany
and it soon proved to be very helpful in establishing the basis for effective process
improvement. Furthermore, the goal to provide a preliminary evaluation of the
European awareness in software engineering provided the starting point for a
database of assessment data. A more detailed explanation about the background
and the previous versions of the BOOTSTRAP methodology are explained in [1].

After the completion of the ESPRIT project, some of the participating partners,
decided to exploit its results by establishing an international organisation to
professionally carry on the development and use of the methodology. This
organisation is the BOOTSTRAP Institute.

3. BOOTSTRAP Institute

The BOOTSTRAP Institute was founded in March 1994 as a European Economic
Interest Group (EEIG), a non-profit organisation legally established under the
European law.
The objectives of the BOOTSTRAP Institute are to:

• Continuously improve the BOOTSTRAP methodology for the
assessment and improvement of software process quality (also
taking into account the relevant ISO standards and other
international initiatives in the field including the proper packaging
of the methodology and related training material);

• Promote the BOOTSTRAP methodology;
• License the BOOTSTRAP methodology to third Parties;
• Administer the database containing results of the assessments

carried out by BOOTSTRAP licensees;
• Run courses for training and accreditation of BOOTSTRAP

assessors;
• Certify the assessed organisations.

28

Within its objective of continuously enhancing the BOOTSTRAP methodology,
the BOOTSTRAP Institute has developed a new release of the BOOTSTRAP
methodology (Release 3.0). This is to ensure full conformance to the emerging
ISO standard for software process assessment and improvement, better known as
SPICE I (ISO 15504), and to align to ISO 12207 "Information Technology -
Software Life Cycle Processes".

4. Objectives

The objectives of the BOOTSTRAP methodology are to:
• provide support to the evaluation of process capability against a

set of recognised software engineering best practices;
• include internationally recognised software engineering standards

as sources for identification of best practices;
• support the evaluation of how the reference standards have been

implemented in the assessed organisation;
• assure the evaluation is reliable and repeatable;
• identify strengths and weaknesses in the organisation's processes;
• provide results that form a suitable and reliable basis for

improvement planning;
• plan improvement actions that support achievement of the

organisation' s goals;
• help increasing process effectiveness while implementing

standard requirements in the organisation.

5. Overview of the BOOTSTRAP Methodology

The main features of the BOOTSTRAP methodology include:
• the assessment method;
• the underlined process model;
• scoring. rating and result presentation mechanisms;
• process improvement guidelines.

5.1 The BOOTSTRAP Assessment Method

The BOOTSTRAP assessment is performed in three main phases:
• The Preparation Phase, where context information are collected

and the forthcoming steps are planned. This phase starts focusing
on the organisation specific needs and objectives, which drive
both the assessment as well as the improvement phase.
Organisation needs and goals drive defmition of the assessment
scope, including processes where the assessment might need to be

I SPICE = Software Process Improvement and Capability D~termination

29

focused, organisational units involved, documentation to be used,
and key people to be interviewed. This phase includes an initial
briefmg to the organisation staff, with the purpose of increasing
management commitment and creating awareness of issues
related to the assessment and improvement.

• The Execution Phase, where information about the organisation's
processes are collected by performing interviews of key personnel
and evaluating available documents as planned in the Preparation
phase. The information is collected at organisation level as well as
at project level. Qualified assessors conduct interviews.
Interviewees are always requested to support their statements with
evidence. A preliminary presentation of assessment results
completes the Execution phase. This is a review session aimed at
correcting any misunderstanding that may have taken place while
collecting information.

• The Improyement Planninl: Phase, where assessment results are
used to identify suggested improvement areas and priorities. The
consolidated assessment results and improvement
recommendations are presented to the assessed organisation to get
agreement and raise commitment for the subsequent improvement
activities. The final output is an assessment report.

The three stages along with all the sub-stages of the assessment process are shown
in Figure I.

THE ASSESSMENT PROCESS
PREPARATION

14/02197 18

Figure 1 BOOTSTRAP assessment process

30

5.2 The BOOTSTRAP Process Model

During a BOOTSTRAP assessment, the processes of the target organisation are
evaluated to determine each process capability. Process capability is the ability of
each process to achieve its goals in the context of the assessed organisation.
Process capability evaluation is performed based on the BOOTSTRAP process
model, which includes description of the processes and capability levels. The
BOOTSTRAP process model is fully compatible with the requirements of the
emerging international standard for software process assessment known ISO 15504
(PDTR version), being developed as part of the SPICE project.

The processes in the BOOTSTRAP process model form a tree structure (see Figure
2). Technology support is also addressed in the BOOTSTRAP evaluation.
Technology assessment aims at evaluating the extent to which the process
capability is strengthened with adoption of suitable tools for each process.

Figure 2 BOOTSTRAP Process tree

Process capability is measured based on the following capability levels (aligned
with ISO 15504 requirements):

• Level 0: Incomplete Process - the process fails to achieve its
purpose as it is incompletely implemented;

• Levell: Performed Process - a set of practices is performed that
allow the process to achieve its purpose;

31

• Level 2: Mana!:ed Process - the process delivers work products of
acceptable quality within defmed time-scale and resources;

• Level 3: Established Process - the process is performed based on a
recognised organisational process defmition;

• Level 4: Predictable Process - the established process is
performed using defmed quantitative control limits;

• Level 5: - Optimisin!: Process - changes to the defmition,
management and performance of the process are identified and
performed in a controlled way to continuously improve process
performance.

The above capability levels apply to each process, resulting in a potential
improvement path from Level 0 to Level 5, as shown in Figure 3.

ROAD MAP FOR PROCESS IMPROVEMENT

o Performed

Incomplete Procel.

14102197

Process

Each process can be inproved from level 0 to level 5. Each organization identifies
Improvement targets and priorities driven by Its own needs and goals.

Figure 3 Improvement road map

23

The BOOTSTRAP process model integrates requirements from several
internationally recognised standards like ISO 9001, ISO 9000-3, ISO 122207, ISO
15504, ESA PSS-05-0 and the CMM, as shown in Figure 4. The BOOTSTRAP
process model contains cross references to the requirements of these standards,
thus allowing evaluation of the assessed organisation against the selected reference
standard, while evaluating process capability. Within the above mentioned
standards the following ones playa particular role:

32

• ISO 9001 provides the organisational focus, particularly with
regards to the quality system and organisation wide procedures;

• ISO 12207 provides a recognised framework for software
processes;

• ISO 15504 provides the framework for process and capability
defmition;

• CMM has been one of the main references for the initial version
of the BOOTSTRAP methodology and is intended to be used as a
reference for further evolution of the methodology

,-

THE PROCESS MODEL

ISOIIEC 15504
(SPICE)

ES, ~ ISO 12207

ISO 9001.
ISO 9000-3

;t

BOOTSTRAP

" CMM 1.0.
1.1. (2.0)

Figure 4. Integration of requirements of the international standards

5.3 Scoring, Rating and Result Presentation

Assessment results are the basis for process improvement planning. Effective
process improvement can take place only if assessment data are reliable and
provide a fair representation of the assessed organisation's capability. Reliability
and repeatability are obtained by:

• ensuring that assessors have the required software engineering
background and use the same approach (this is guaranteed by the
BOOTSTRAP assessor accreditation scheme), and

• applying precise scoring and rating rules.
Each practice is evaluated based on a four-point scale. The capability level is then
counted in two ways:

33

• by applying the BOOTSTRAP algorithm showing quartiles within
each level;

• by applying the SPICE rules for deriving the capability level
rating (where the overall results depend largely on the assessor's
evaluation).

Final assessment results are presented as capability profiles of each process
assessed (see Figure 5). These output profiles are specific to the BOOTSTRAP
methodology.

Process Capability profile

3,5 ,....,..._~-::-_--::-_~ __ ---;:'--:;:-, __ ---;:'--:;:-,-,

3

2,5
"; ..
.! 2
,~
:i 1 5 .. ,

110

" U

0,5

o ...
" c " ";::
" " .~ .S
'" .,. CD c ...

Process

c
.g
" -~ IE ;,.,.
~:!:
o
o

Quartllea mak. It posslbl. to compar. different nunment reaults Inside
the .. me capability level

Figure 5. Capability profile of each process assessed

The capability profile is produced at two levels:
• the SPU2 level, and
• the project level.

The SPU level profile shows the capability of organisational processes and reflects
the management's point of view. The project level profile shows the process
capability of the individual projects. At least two projects must be assessed to
perform a complete BOOTSTRAP assessment. It is also possible to focus the
assessment on a subset of processes, particularly to validate the results of
improvement efforts. SPU results are not a mere integration of project profiles but

2 SPU = Software Producing Unit

34

show a distinct set of fmdings. Comparison between SPU and project profiles
provides invaluable infonnation to support improvement planning.

In addition to capability profiles, the BOOTSTRAP assessors collect infonnation
about the current practices, problems and needs as perceived both by practitioners
and managers. This infonnation is used in improvement planning.

5.4 Process Improvement Guidelines

A common issue when implementing software-engineering standards in an
organisation is how to tailor the standard's requirements to the organisation's
needs and goals. Sometimes standard requirements seem to negatively affect
achievement of the organisation's goals, in that they mandate rules that might
reduce flexibility and timely answers to external stimuli. It is difficult to fmd a
unique way to implement software engineering standards and to identify a
common improvement path suitable to all kinds of organisations. The
BOOTSTRAP methodology considers organisation needs and goals, capability
profile of it's processes, and industry benchmarks as the main drivers for process
improvement as shown in Figure 6. The BOOTSTRAP process model, aligned to
ISO 15504, provides an improvement path for each process, but does not provide
any suggestions on how to prioritise process improvement. Defming priorities is
up to each organisation. The BOOTSTRAP methodology provides guidelines to
identify which processes highly affect achievement of the organisation goals; then
improvement priorities are assigned to each process. Processes with low capability
but high impact on the organisation's goals are prioritised the highest.

1 M02197

BOOTSTRAP IMPROVEMENT PRINCIPLES

Capability
Profile

Organization 's Needs
& Bus iness Goals

1

BOOTSTRAP

Improvement
Plan

Process
Model Industry Benchmark

Figure 6 BOOTSTRAP improvement principles

25

35

As part ofthe improvement plan mitigation actions are identified to account for the
risks, should the identified improvement actions fail to achieve their purpose.
Typical risks include insufficient management commitment, insufficient resources,
and barriers to accept change.

6. BOOTSTRAP methodology in use in other
projects

The BOOTSTRAP methodology is currently being used in two projects in Europe,
namely PROFES and SPAM.

6.1 PROFES
An ESPRIT project called "PROFES" (PROduct Focused improvement of
Embedded Software processes) started in January 1997 with the aim of developing
a customer oriented product driven improvement approach for embedded systems.
The intention is to link the product characteristics directly to the process
characteristics and enable a continuous product improvement. This is being done
by integrating SPICE conformant (in this case BOOTSTRAP) approach with the
most recent Goal Question Metric (GQM) methodology and process modelling.
One of the deliverables of the project will be an enhanced version of
BOOTSTRAP methodology validated in three industrial application experiments.

The project is in its first phase. Already, experiments carried in three industrial
partners show that product viewpoint needs more visibility is software process
assessments. The viewpoint is only indirectly addressed in while assessing
relationship of customer with it's supplier. The enhanced version of the
BOOTSTRAP methodology will be verified in the second phase of the project
beginning in April 98.

6.2 SPAM
The primary objective of SPAM (Software Portability Assessment Methodology)
is to develop a methodology for assessing software portability.

SPAM's underlying philosophy is that adequate solutions to software portability
cannot be obtained unless both process and software aspects are considered (as
with many other aspects of software quality). Therefore the objective of the SPAM
methodology is to provide a comprehensive and repeatable approach for assessing
how portable a software product is and how geared towards portability is the
development process that produced it. This is achieved by taking into account four
main aspects: the development process, the usage of the programming language,

36

Application Programming Interfaces conformance and actual platform
dependencies.

The process model for portability assessment is based on Bootstrap 3.0 and
includes the process model itself, the process indicators for portability, and
guidelines to conduct process assessment for portability.

7. Conclusions

BOOTSTRAP methodology was developed as part of an ESPRIT project
especially by taking the European industry requirements into account. This
brought ISO 9001 conformance into BOOTSTRAP. Another clear advantage was
to show the capabilities of single processes as capability profiles and with quartile
precision. It is being further developed by the BOOTSTRAP Institute by
enhancing especially the risk management features and assesment process into the
methodology. BOOTSTRAP Assesor training and acreditation has produced about
300 trained BOOTSTRAP Asessors mainly into Europe. To date there are also
about 50 registered BOOTSTRAP Lead Assesors.

The methodology includes a process model, an assessment process, a mechanism
to score the process and present the results, and guidelines on process
improvement. The current version of the BOOTSTRAP Methodology is
conform ant with the emerging ISO 15504 standard of software engineering.

The BOOTSTRAP methodology is being used in two European projects - PROFES
and SPAM. In PROFES, the methodology is being integrated with the GQM
approach to produce an improvement methodology for embedded systems. In
SPAM, the process model for portability assessment is based on the Bootstrap
methodology.

Acknowledgement

This paper was written in an ongoing Esprit project PROFES, and is regarded as a
PROFES related paper.

References

[1] Kuvaja, P., and Bicego, A., BOOTSTRAP: Europe's assessment
method, IEEE Software, 1993, Vol. 10, Nr. 3, pp. 93-95
[2] Kuvaja, P., Simill1, 1., Krzanik, L., Bicego, A., Koch, G., and
Saukkonen, S., Software Process Assessment and Improvement. The
BOOTSTRAP Approach, Blackwell Business, Oxford, UK, and
Cambridge, MA 1994.
[3] Humphrey, W. S., Managing the software process. Addison-
Wesley Publishing Company Inc., Reading, Mass., 1989.
[4] Paulk, M., et al. Capability Maturity Model for Software,
Version 1.1, CMU/SEI-93-TR-24, Feb. 1993.
[5] Paulk, M., et al. Key Practices of the Capability Maturity Model,
Version 1.1, CMU/SEI-93-TR-25, Feb. 1993.
[6] ISO 9001. Quality Systems. Model for Quality Assurance in
DesigniDevelopment, Production, Installation and Servicing.
International Organisation for Standardisation, Geneva, 1989.
[7] ISO 9000-3. Quality management and quality assurance
standards. International Standard. Part 3: Guidelines for the Application
of ISO 9001 to the Development, Supply and Maintenance of
Software,ISO, 1991.
[8] ISO 9004-4. Quality management and quality system elements.
International Standard. Part 4: Guidelines for quality improvement, ISO,
1993.
[9] Paulk, M.C., and Konrad, M.D., An overview of ISO's SPICE
project. American Programmer, February 1994.
[10] SPICE - Software process capability determination standard
product specification for a software process capability determination
standard. Document WGlOINOI6. ISOIIES JTClISC7/WGlO, 1993.
[11] ESA Software Engineering Standards ESA PSS-05-0. Issue 2.
ESA Board for Software Standardisation and Control, European Space
Agency, Paris, February 1991.

37

[12] Bicego, F. et aI., Profes : Announcing The Marriage Between Process
Assessment And Measurement, International Conference of Software Engineering
ICSE'97, Boston, 1997

Sedion2
Quality in Software Development

A Qualitative Approach to Organisational
Goal Setting for Information Systems

Development

Peter D.C. Bennetts, Stella Mills
Department of Information Technology

Cheltenham and Gloucester College of Higher Education

and
Trevor Wood-Harper

Department of Mathematics and Computer Science
University of Salford

Abstract

The rational approach to information systems development has been
recommended by many. However, this approach ignores problems
associated with individuals and the organisational context, as it sees
them as irrelevant and this can cause problems with the users' perception
of the relevance of the system. The systems approach is seen as an
appropriate way to address these issues. Furthermore, the rational
approach assumes that the organisation will set clear and appropriate
goals with which to monitor the quality of the software produced.
Organisations appear to find this quite difficult to perform. One
response to address this has been Basili's Goal / Question / Metric
approach. This is defined in a way which requires quantitative
measurements to be taken through appropriate metrics. If a systems
approach is used, the concerns addressed are likely to be qualitative or
interpretative in nature. This paper shows that by adapting the definition
of a good (quantitative) metric appropriately by loosening the criteria
slightly, qualitative metrics can be approved. Subsequently, Basili's Goal
/ Question / Metric approach can be adapted by using this revised
approach to metrics, to support information systems development within
a systems approach. A theoretical example is developed in the context of
a case study based on a large organisation in the financial sector.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

39

1 Introduction

Information systems development usually has to satisfy three groups of people -
the managers, the developers and the users. Historically, developers have usually
made every effort to resolve technical problems implied by a specification.
Unfortunately, it appears that implemented software often fails to satisfy users
because non-technical issues, such as user views, politics or organisational context
have not been taken sufficient note of. Consequently, although advances have
been made using a purely rational approach, systems still fail. Other issues which
may cause problems for information systems include goal setting and the
measurement of goal achievement. In order to address these issues an
interpretative approach is required. There are, of course, classes of situations
where the traditional, rational approach is usually successful. For example, if
clear and unambiguous goals can be set for a project and these goals conform to
the organisation's goals. This approach advocates quantitative measurement and
for software quality this is achieved through the use of metrics. This paper will
give an overview of what makes a good metric. Unfortunately, goals are not
always easy to define. One approach to address this has been developed by Basili
[1] - the Goal / Question / Metric (GQM) approach. However, both the concept of
a good metric and Basili's GQM approach need to be adapted to be usable in an
interpretative context. These changes are identified and a theoretical case study
developed within an existing organisation.

2 Background

It is clear, from the literature, that there can be problems of various kinds when
developing software and that these have been recognised for many years. For
example, Sauer [2] and Smith and Wood [3] show that adequate control is not
always being realised. Further, Pressman [4] and Scach [5] consider that the
delivered code often fails to achieve its objectives. These are two problem areas
which give rise to the perception of a crisis of confidence that suggests that it is
very difficult to provide the required software features on time and to budget.
This crisis of confidence has been given the title 'The Software Crisis'. Current
thinking sees this problem as endemic and although improvements have occurred,
the crisis is not likely to be eliminated [5,6].

In 1968, a Study Group on Computer Science, established by the NATO Science
Committee, responding to the perception of a software crisis (which was causing
concern even then), recommended the holding of a working conference on
Software Engineering [7]. The term 'software engineering' was coined to be
deliberately provocative, implying, as it does, the need for software development
to be based on the principles and practices seen in engineering [7]. For Boehm
[8], 'Software engineering is the application of science and mathematics by which
the capabilities of computer equipment are made useful to man via computer
programs, procedures and associated documentation.'

40

The NATO Study Group's belief that the use of applied science would be an
appropriate solution to the software crisis was echoed by Hoare [9] when he said
that 'professional practice ... [should be] ... based on a sound understanding of the
underlying mathematical theories and ... should follow closely the traditions of
engineers in better established disciplines'. Gibbs [10] still supports this view
when he concludes that a disaster 'will become an increasingly common and
disruptive part of software development unless programming takes on more of the
characteristics of an engineering discipline rooted firmly in science and
mathematics.' This is the same recipe as reported by [7] nearly twenty years
earlier. From the above description we can characterise the software engineering
perspective as deterministic and one that assumes that there is some definable,
true and real set of requirements that can be elicited and formally specified. It
concentrates on the production of a piece of software that conforms to a
specification as efficiently as possible [11].

However, Lucas [12] asserts, based on his empirical studies, that 'technical quality
is a necessary, but not sufficient condition for successful systems. Technical
quality can not be defined solely by the criteria of the computer scientist, but
rather the functions of the system as seen by the user determine technical quality'.

Having characterised the software engineering approach and recognised that it is
not itself sufficient for success, it is worth identifying the perceived reasons for
failure in order to identify issues which are not addressed by the rational
approach. Lyytinen [13] examines the failures found in development and in use
separately. He claims that the top three problems in development involve goals,
process features and self-image; while in use, the three most common issues were
complexity, concept and people's reactions. Similar problems are identified by
Ashley [14]. The traditional approach assumes that goals are clear, unambiguous
and non-conflicting. However, the reality of most organisations is that change is
not as rational as theory would demand. Further, organisational goals do not
necessarily agree with informal objectives. Also, many stakeholders do not
identify themselves with these goals. The rational approach 'neglects' the
techniques of politics required to attain consensus. For example, one particular
technique to achieve consensus is to make the goal sufficiently ambiguous.

Newman [15] puts it quite strongly when he suggests that it is a myth that
organisational issues are not the concern of its information systems professionals.
Miles [16] supports this when he argues that analysts tend to ignore the political
or social dimension. Further, Lucas [17] argues that most information systems
problems relate to 'organizational behavior problems' with these systems. Lucas
[17] and Symons [18] recognise how political the development of an information
system can be. For example, a perceived benefit for one group is not necessarily a
benefit for another group as increased access to information in one place may
imply an eroded power base elsewhere [18]. Markus [19] makes it quite explicit
when she says 'information systems do not exist in isolation: they have the
potential for creating major changes in power relationships and stimulating

41

conflict.' Similarly, 'no one knows how many computer-based applications ... are
abandoned or expensively overhauled because they were unenthusiastically
received by their intended users' [19]. We argue, therefore, that organisational
politics is a key issue. Indeed, Lyytinen [20] reports on research by Vitalari which
concluded that there was a positive correlation between the interests analysts took
in the organisational politics related to a system and the rating the analysts
received from the users. However, Symons [18] considers that despite often
playing a key part in ISO, politics '". are generally ignored by researchers'.

While a common response to the software crisis has been to try to improve 'best
practice', pr~titioners and managers do not always do what they know they
should. For example, Gibbs [20] reports Larry E. Druffel, Director of Carnegie
Mellon University's Software Engineering Institute as saying that unfortunately,
'the industry does not uniformly apply that which is well-known best practice'.
Even if 'best practice' is enshrined in a methodology, this does not guarantee
success. For example, a discussant (Eddie Moores) at the 1995 Information
Systems Methodologies Conference, referring to some currently unpublished
research of his, said that the most used methodology was 'ID!' (Just Do It). It was
also made clear in subsequent discussion, that even when managers said a
methodology was being used, this was no guarantee that this was so. This is also
confirmed by a case study described by Playford [21].

A focus on formality and automation, as recommended by software engineers, will
only make things better if the people problems have been addressed beforehand.
As Pirsig [22] notes, a quality product will only be produced if people care about
qUality. Formality and technology will not, in themselves, improve the situation.
The politics and expertise has to be right first. This is confirmed by Playford [21],
when reporting a case study that he had undertaken. This addressed the problem
as to why the Structured Systems Analysis and Design Method (SSADM) was
considered a failure in a particular organisation. The main factors were seen to
be:-
• Poor and very limited training at an operational level;
• Limited training for team, sectional and departmental management;
• Isolation of pilot projects during installation and initial running;
• Isolated instances of associated skills training;
• Limited and short-sighted departmental training programme;
• Inappropriate applications for initial projects;
• Over-dependency on the mechanistic aspects of the methodology.
Hence, we deduce that although SSADM may well give good results in a
supportive environment, the environment will not be affected by following the
processes of SSADM alone and that in that non-supportive environment projects
are likely to be unsuccessful.

Recently, it has been pointed out, by Hirschheim and Klein [23], that it is
important to recognise the way analysts are seen by the organisation and how they
see themselves. This can be identified by the use of metaphor. The politically
unaware analyst or software engineer will be seen as a technocrat who tries to

42

deliver what is thought of as the user's requirements, but with minimal reference
to the user. The non-technical reasons for failure are more likely to be addressed
when the analyst acts as a facilitator. This change of emphasis is actually quite
radical, as it reflects a major change in the background philosophy of the analyst.
For the facilitator, the approach is interpretative and contextual in outlook, it
views models as a means of talking about reality rather than models of reality.
This new philosophy cannot be supported entirely from within the current
scientific framework. There are, therefore, certain limitations to the science
paradigm when considering individual members of staff and managers. These are
addressed by a related paradigm - the systems approach or systems theory ([24,
25,26]; for example). Briefly, a systems approach will reflect a concern to look at
potential systems as a whole (holistically). This is in contrast to the scientific or
engineering approach which tends to solve problems by breaking them down into
smaller, more manageable fragments (reductionism). Thus the holistic approach
will include subjective issues, whereas the scientific or engineering approach
attempts to be purely objective. Hence, it has been argued that approaches to ISO
should not be purely scientific, as there are important issues for ISO which would
otherwise be ignored. Software quality assurance (SQA) can be considered to be a
monitoring and control process over ISO. The change of viewpoint identified
above will affect what is meant by software quality and the way that it is
measured.

3 Software Quality

Software quality is very difficult to define. Indeed work by Bennetts and Wood
Harper [27] indicates that different people have different implicit
characterisations of it. Pirsig [22] shows that, at the very least, software quality
contains subjective elements and consequently works against a purely objective
approach to ISD. This conclusion is supported by Dromey [28] when he
comments that 'notions - like 'quality', 'goodness' and 'fitness-for-purpose' - are
experiential' (original emphasis). This is important as, if one of the goals for an
ISD project were 'Develop a high quality product', the identification of
achievement is necessarily SUbjective.

The rationale for the measurement of software quality is often characterised by
quotations such as:

'to measure is to know' le. Maxwell (1831 - 1879)
'When you can measure what you are speaking about and express
it in numbers, you know something about it, but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind' Lord Kelvin
(1824 - 1907)

Both these quotations reflect the confidence of physical science as it was towards
the end of the last century, when Newtonian physics seemed to show the way of
solving all recognised problems. Indeed, Lord Kelvin is also well known for a
quotation from a talk he gave to a group of erstwhile physics students, when he

43

suggested that they should change their area of interest, as very soon all the
problems of physics were expected to be solved. The thrust towards formality and
measurement as a response to the software crisis echoes that confidence.
However, this paper has been at pains to emphasise that the problems of ISD in an
organisation are not just one of physics, logic and technology.

Despite earlier comments, there are good reasons for attempting to measure a
project team's achievements. Basili [1] points out that the processes of software
development need feedback and evaluation in order for the process to be both
controlled and better understood. A similar point is made by Wallmiiller [29],
when he claims that measuring supports objective evaluation of performance,
emphasises problems to management and clarifies objectives to engineers. Fenton
[30] makes similar comments.

The measures that are used in software quality are known as metrics. Given the
difficulties raised above, it is worth summarising the main reasons for using
metrics:
• Target setting - In order to be able to track targets and goals, they must be set

in a measurable way [30].
• Project planning and prediction - The prediction and estimation of required

resources, costs and time scales can be enhanced by comparing the new
project with similar, earlier projects [31, 32]. Progress statements can be
quantified.

• Project management - The project manager needs metrics data to monitor and
control the project [30, 31].

• Quality improvement - process and product - Metrics can be used to measure
processes as well as the product. Miller [33] recognises that the overall
quality of a product can only be improved by improving the development
process as well.

• Productivity improvements - Similarly, improvements to productivity may be
achieved through metrics [31].

• Customer confidence - The use of a programme of improvement to enhance
software quality should impress the potential user [31].

For Watts [34] and Gillies [35] the criteria for a good metric are:-
• Objective - measurement not influenced by the measurer.
• Reliable - results should be precise and repeatable.
• Valid - the metric must measure the correct characteristic.
• Standardised - the metric is unambiguous and allows comparisons.
• Comparable - the metric must be comparable with other measures of the same

criteria.
• Economic - the simpler (and hence cheaper) a measure the better.
• Useful - the measure must address a need not just measure a property for its

own sake.
Wallmiiller [29] gives a similar set of criteria.

44

However, it was argued earlier that successful ISD uses a systems paradigm which
will incorporate interpretative issues and values. It is therefore useful to extend
the concept of metric in a corresponding manner, by relaxing the criteria on
objectivity and reliability. Hence a metric is said to be 'pseudo-objective' if the
metric measurement is either independent of the measurer or reflects a consensus
among all stakeholders. Similarly, a metric is said to be 'pseudo-reliable' if, at
each invocation the stakeholders arrive at an unambiguous value for each
instance. No further amendments seem to be necessary. The metric, even though
qualitative and evaluated through consensus, still needs to be valid, standardised,
comparable, economic and useful. In order to reflect this change, two new terms
are coined. Metrics defined according to the original criteria should now be
known as 'hard' metrics. Metrics defined as suggested, to include subjective or
interpretative values, should be known as 'soft' metrics. The word 'metric', with
no associated adjective, will refer to both hard and soft metrics.

4 Defining Measurable Goals

It is recognised that measurement is needed in order to monitor and control
software quality. Many metrics programmes have failed because the objectives of
the exercise were not fully identified [36]. Basili and colleagues have developed a
'rigorous' approach to remedy this called the Goal / Question / Metric (GQM)
approach. Basili and colleagues offer a template which requires managers to
resolve problems of purpose, perspective and environment in order to define a
goal [1]. Each goal generates questions which are quantifiable and which are
themselves answerable through the evaluation of identified metrics. The metrics
may be scalar or a distribution. Further, the same questions may refer to more
than one goal [1]. Within the template, Basili recognises a need to 'define the
object or objects of study, what we are going to do and why we are doing it' [1];
this is the 'purpose' of the goal. It is also recognised that a particular viewpoint
(or more than one viewpoint), of whoever is to receive information concerning the
goal, needs to be defined so that relevant information is formulated. This would
seem to recognise an interpretative approach. The environment has to be
identified in order to clarify the 'context of the study' [1]. This identification will
need the relevant factors to be identified. The idea is that these factors should be
consistent across several goals within the project.

Basili tackles product-related objects and process-related objects slightly
differently. Products and processes are characterised by defining the product or
process itself; defining the quality viewpoints of interest and generating relevant
feedback. These activities differ only in the way the product or process is defined.
A product is defined by its logical and physical attributes, its cost, changes and
defects and its context. All these items are expected to be quantitative. On the
other hand, a process is defined by its process conformance ('a quantitative
characterisation of the process and an assessment of how well it is performed')
and domain understanding ('a quantitative characterisation of the object to which
the process is applied and an analysis if the process performer's knowledge

45

concerning this object and its domain') [1]. By addressing these issues simple
models of products and processes are developed. It is noted, however, that Basili
[1] offers an example operational mode; whose characteristics are qUalitative (i.e.
ordinal) rather than quantitative. Again, an example questionnaire supplied in an
appendix to Basili [1] has many questions which are qualitative or interpretative.
However, recently there has been a significant move from the scientific /
engineering domain to the interpretative, as rehearsed earlier. This point is
important because Basili's description of his approach refers to quantitative results
throughout, notwithstanding the use of qualitative questions, as above.

The assumption here is that goals will be defined and then evaluated through their
characterising questions and identifying metrics. Given the emphasis on
quantifiable values, it is further assumed that, ideally at least, these metrics satisfy
the criteria given earlier for a good (hard) metric. The first two criteria for a good
metric were that the measurement was not influenced by the measurer - it was
Objective; and that the results should be precise and repeatable - i.e. Reliable [35].
These criteria are unlikely to be satisfied by the results of a subjective enquiry.
Basili's starting point is the rationalist paradigm, which earlier argument showed
was not entirely adequate. The subsequent argument showed that this paradigm
should be extended to and replaced by a systems paradigm. This would enable
interpretative issues to be included. It is recognised that Basili needs to
incorporate these issues, but his epistemological and ontological assumptions
should exclude them. Consequently, Basili's metrics are recognised as being
'hard' in the sense introduced earlier. However, GQM should be extended to
include 'soft' metrics, as what is being attempted by Basili should appropriately
include these. In addition, using 'soft' metrics will support the advocated
processes.

When discussing how his approach may be operationalised, Basili [1] himself
talks about' ... providing a set of ordinal values associated with the various steps of
the process .. .'. However, this does not reflect the assumptions identified earlier.
On the other hand, this does imply not only that Basili's operationalisation of the
approach does not need to be changed but also that subjective measurements have
already been used with this approach in practice. Hence, Basili's Quality
Improvement Paradigm (ie the Project Organisation (which performs the project
characterisation, goal setting, process choosing and execution steps) and the
Experience Factory (which performs a post mortem analysis on the data and
information gathered and hence suggests appropriate amendments to processes
and models)) will be essentially unchanged by introducing the concept of soft
metrics. However, there still remain the apparent inconsistencies of Basili's work
mentioned above. A small case study is offered to confrrm these ideas.

46

5 The Case Study

This case study concerns a large company in the financial services sector with
branches across the UK. They have a leading edge culture in terms of client
server technology. Their software has to operate on a wide range of platforms,
including mainframes. They use, or expect to use soon, Information Engineering
with CASE and configuration management tools among other elements of
software support.

Quality as seen by the customer, is recognised by post-implementation faults,
which are examined and backtracked to design. A customer satisfaction survey
system exists, but is not yet used by senior management. For this organisation,
Fagan inspections are achieved using walkthroughs, but the cleanroom regime is
thought too bureaucratic. The software development process is controlled via
quality manuals and reflecting customised systems life-cycles. Risk management
is seen as a relative weakness within the organisation as it is not yet felt to be
good enough. The risks for each project are defined by the project leader and
embedded into each project's quality plan. Users are consulted throughout
development. The organisation is looking for facilitators able to use a
development tool set, recognise group dynamics and ensure that even reticent or
inexperienced users have every opportunity to contribute to the specification and
design process.

Several organisational goals have been identified which relate to the production of
software. However, for the purposes of this paper, one particular goal will be used
as an example - 'Focus on the customer and give them what they require'. The
GQM approach [1] requires that appropriate questions are generated to
characterise the identified goals. One such question is taken from Basili's
Appendix 2 - 'What is the importance of testing each requirement?'. This
question will also be used as a soft metric whose range of values is identified by
the following scale:-
o -not important, could be left out
1 - not too important, may affect some users
2 - mildly important, will affect some users
3 - important, should affect most users
4 - extremely important, part of the essence of the system
5 - critical, without this the system is useless
x - do not know.
For a particular project, each requirement can be evaluated for importance by a
representative committee of stakeholders to develop a corporate view.

The characterisation of a good soft metric suggests the following analysis for this
metric. The values given to the metric reflect a consensus of the stakeholders, by
assumption, and so the metric can be said to be 'pseudo-objective'. Similarly, the
stakeholder committee may not come to the same decisions if they repeat the
exercise, as the political environment will have changed; so the metric is 'pseudo-

47

reliable'. The metric gives a scale of the requirements' perceived importance and
so measures the correct characteristic. It is unambiguous, provided a consensus is
arrived at and will allow comparisons to be made. It may not be very economic,
given the investment of effort required. There is certainly no question of any
qualitative metric being completely open to automatic evaluation in the way
McCabe's complexity metric is [29]. However, the soft metric described above, is
useful as it allows rational decisions to be made about project management and
scheduling. It is therefore argued that this metric can be classified as a good soft
metric. Further, it is concluded that the identification of soft metrics can be useful
as it regularises qualitative measurements.

6 Conclusions

This paper has shown that qualitative goals need to be identified for ISD. In order
to achieve this, Basili's GQM approach has been adapted, principally by extending
the notion of a good metric. In order to maintain the current concept of a good
quantitative metric, the term 'hard metric' has been introduced. This is
distinguished from a good qualitative metric (or 'soft metric') by relaxing the two
principal characteristics of a metric (objectivity and reliability). The revised
characterisations were identified. A glimpse of how soft metrics might work in
practice was provided by the case study. Hence, this revised characterisation of
metrics will allow qualitative issues to be evaluated. Consequently, Basili's
description of his approach can be adapted so that 'quantitative' can be replaced by
'quantitative or qualitative' and hence qualitative goals identified.

References

I. Basili, Victor R. Applying the Goal/Question / Metric Paradigm in the
Experience Factory, In Fenton, Nonnan, Whitty, Robin, and Iizuka, Yoshinori
(eds.); Software Ouality Assurance and Measurement A Worldwide
Perspective; 1995 (International Thomson Computer Press, London) Chapter
2, p.23-44.

2. Sauer, Chris Why lnfounation Systems Fail: A Case Study Approach 1993
(Alfred Waller Limited, Henley-on-Thames).

3. Smith, David 1. and Wood, Kenneth B. En~ineerin~ Ouality Software (2nd
edition) 1989 (Elsevier Applied Science, Barking, Essex).

4. Pressman, Roger S. Software En~ineerin~ - A Practitioner's Approach (2nd
edition) 1987 (McGraw-Hill).

5. Scach, Stephen R. Classical and Object-Oriented Software En~ineerin~ (3rd
edition) 1996 (Irwin, Chicago).

6. Sommerville, Ian Software En~ineerin~ (4th edition) 1997 (Addison-Wesley
Publishing Company).

48

7. Naur, Peter, Randell, Brian and Buxton, IN. (eds.) Software En~ineerin~ -
Concepts and TechniQues 1976 (Petrocelli / Charter, New York).

8. Boehm, Barry W. Software En~ineerin~ Economics 1981 (prentice-Hall Inc.,
Englewood Cliffs, NJ).

9. Hoare, CAR. ProlWllJlIllin~ is an En~neerin~ Profession Technical
Monograph PRG-27 May 1982 (Oxford University Computing Laboratory,
Programming Research Group).

10. Gibbs, W. Wayt, Software's Chronic Crisis, Scientific American; September
1994, p. 72-81.

11. Vidgen, Richard, Wood-Harper, Trevor and Wood, Robert (J.R.G.), A Soft
Systems Approach to Information Systems Quality, Scandinavian Journal of
Information Systems 1993 Vol. 5, p. 97-112.

12. Lucas, Henry C.Jr. Implementation The Key to Successful Infoonation
~ 1981 (Columbia University Press, New York).

13. Lyytinen, K., Different Perspectives on Information Systems: Problems and
Solutions ACM Computin~ Surve,ys 1987; Vol. 19., No. I, p. 5-46.

14. Ashley, Nicholas, Measurement as a Management Tool, In Kelly, Mike (ed.);
Mana~ement and Measurement of Software Ouality 1993 (A vebury
Technical, Cambridge) Chapter 4, p. 31-49.

15. Newman, M., Some Fallacies in Information Systems Development, Int 1. of
Information Mana~ement 1989 Vol. 9, p. 127-143.

16. Miles, R.K., Computer Systems Analysis: The Constraint of the Hard Systems
Paradigm J. of Appl Sys, Anal. 1985 Vol. 12, p. 55-65.

17. Lucas, Henry C.Jr., Why Information Systems Fail. 1975 (Columbia
University Press, New York).

18. Symons, Veronica, Evaluation of information systems: IS development in the
Processing Company, 1. of Information Technolo~ 1990 Vol. 5, p. 194-204.

19. Markus, M. Lynne, Power, Politics and MIS Implementation;
Communications of the ACM 1983 Vol. 26, No.6, p. 430-444.

20. Lyytinen, Kalle, Stakeholders, Information System Failures and Soft Systems
Methodology: An Assessment 1. of Appl. Sys. Anal, 1988 Vol. 15, p. 61-81.

21. Playford, Michael Andrew, Failure to Thriye: A Study of the Implementation
of Methodolo~ies in Bureaucratic Data Processin~ Enyironments 1997 M.Phil
Thesis, Anglia Polytechnic University.

22. Pirsig, Robert M., Zen and the art of Motorcycle Maintenance, 1974,
(William Morrow & Co., New York).

49

23. Hirschheim, Rudy and Klein, Heinz K., Four Paradigms of Information
Systems Development, Communications of the ACM. 1989, Vol. 32, No.
lO(Oct), p. 1199-1216.

24. Checkland, P.B., Systems Thinkin~. Systems Practice, 1981, (John Wiley &
Sons, Chichester).

25. Lyytinen, Kalle and Hirschheim, Rudy, Information systems failures - a
survey and classification of the empirical literature, Oxford Surveys in
Information IechnoJo~, 1987, Vol. 4, p. 257-309.

26. Weinberg, Gerald M., Rethinkin~ Systems Analysis and Desi~n, 1988,
(Dorset House Publishing, New York).

27. Bennetts P.D.C. and Wood-Harper, A.T., Multiple Viewpoints and Software

Quality Goals, .In Samson, B., Marshall, I.M., Edgar-Nevill, D.G.(eds.),

Proceedin~s of 5th Software Ouality Conference, 1996, p. 66 - 75.

28. Dromey, R. Geoff, Cornering the Chimera, IEEE Software, 1996, Vol. 13,
Part 1 (January), p. 33-43.

29. Wallmiiller, Ernest, Software OUality Assurance - A practical iWProach, 1994
(Prentice-Hall International, Hemel Hempstead).

30. Fenton, Norman E., Software Metrics - A ri~orous approach, 1991 (Chapman
& Hall, London).

31. Moller, Karl-Heinrich and Paulish, Daniel J., An Empirical Investigation of
Software Fault Distribution, .In Fenton, Norman, Whitty, Robin, and Iizuka,
Yoshinori (eds.), Software Ouality Assurance and Measurement A Worldwide
Perspective, 1995, (International Thomson Computer Press, London), Chapter
21, p.242-253.

32. Shepperd, M., Products, processes and metrics, Information and Software
Technolo~y, 1992, Vol. 34, No. 10, p.674-680.

33. Miller, C., The Quantum study,.In Ross, M., Brebbia, C.A., Staples, G. and
Stapleton, J. (eds.), Proceedin~s of the 1st International Conference on
Software Ouality Mana~ement. 1993, p. 475-488.

34. Watts, R., Measurin~ Software Ouality, 1987, NCC Publns.

35. Gillies, Alan C., Software OUality - Theory and mana~ernent, 1992,
(Chapman & Hall, London).

36. Fenton, Norman and Whitty, Robin, Introduction,.In Fenton, Norman, Whitty,
Robin, and Iizuka, Yoshinori (eds.); Software Ouality Assurance and
Measurement A Worldwide Pe[§pective; 1995 (International Thomson
Computer Press, London) Chapter I, p.l-18.

Experience with Software Quality /
Usability Metrics

Judy Lau and David N. Wilson

Judy Lau is a consultant with Shanable Pty. Ltd., 27 Duff Street,
Turramurra, NSW 2074, Australia.

Tel: +61-2-9402-8628 Fax: +61-2-9144-3630
e-mail: jslau@ozemail.com.au

David Wilson is a Senior Lecturer in the School of Computing Sciences,
University of Technology, Sydney, PO Box 123, Broadway, NSW 2007,

Australia.
Tel: +61-2-9514-1832 Fax: +61-2-9514-1807

e-mail: davidw@socs.uts.edu.au

Abstract

Several usability inspection methods and usability metrics to evaluate
Graphic User Interface (GUI) systems have been developed. This paper
describes an investigation to define an effective approach to usability
evaluation - effective both in terms of being easy and cheap to implement
and in terms of identifying usability improvements.

The approaches investigated were the heuristic evaluation method and the
layout uniformity and essential efficiency metrics. These approaches were
applied during the enhancement of an existing GUI system and were
shown to work together effectively to identify usability problems am
suggest usability enhancements.

1. Introduction

Graphic User Interface (GUI) systems for Personal Computers have been
increasingly popular over text-based systems since the introduction of the
Macintosh Desktop, followed by Microsoft Windows and ffiM OS/2. Applications
are now built with pictures, text, buttons and other graphical components. User
operations can be performed with a mouse, pen, scanner, laser pointer, etc.; as well
as a keyboard. All these features make the GUI systems more attractive am
interesting to use. However, a system with attractive screens does not mean that it

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

54

is usable. Too many components on a screen will make it complex, thus difficult
to read. Too many steps to complete a function or task will be difficult to
remember and use. Putting irrelevant information on the screen will distract am
confuse the users.

Usability is defined as the measure of how effectively and efficiently a
(software) product can be used by specified audiences with certain tools for certain
tasks in particular environments [I]. A usable system has the following
characteristics [2]:
• Easy to learn and use - The system is intuitive to use and easy to learn so

that little or no training is required for new users.
• Efficient to use - Users can complete their tasks quickly and accurately

without requiring to go through some awkward and obscure sequences.
• Easy to remember - The system should be easy to remember so that casual

and occasional users can use the system without requiring learning it allover
again even after having not use it for a while.

• Flexible - The system supports various task completion strategies for
different types (experienced, normal, novice) of users and can be customised to
different levels.

• Minimum errors - The system protects users from making costly errors am
provides users opportunities and assistance to correct errors.

• Pleasant to use - Users enjoy using the system.

Usability is part of the total quality of a product (quality of use). It directly
benefits the users and their organisations. Systems that are neither easy nor
efficient to use will be costly to the organisation. This is because they can cause
user frustration, errors and reduce their productivity and performance. They can also
represent failed investments for the developer and impose undue stress on the work
force [3]. Moreover, these systems will be difficult and expensive to support am
maintain. Usability evaluation and testing can help to identify the usability defects
of the system, improve the design and provide developers and designers a better
understanding of how to design usable systems.

This paper describes an investigation to defme an effective approach to usability
evaluation - effective both in terms of being easy and cheap to implement and in
terms of identifying usability improvements. The approaches investigated were the
heuristic evaluation method and the layout uniformity and essential efficiency
metrics. These approaches were applied during the enhancement of an existing GUI
system and were shown to work together effectively to identify usability problems
and suggest usability enhancements.

2. Usability Methodologies and Approaches

2.1 Usability Evaluation

There are four basic ways of evaluating user interfaces [4]:
• Empirical methods - The most commonly used methods where usability is

assessed by testing the interface with real users. Empirical data is collected by
observing the users' interactions with the system under evaluation. Very often,
this is done with the use of video taping either at the users' environment or at a
usability laboratory. Though empirical methods are commonly used, they are

55

costly and time consuming. This is because users can be difficult and expensive
to recruit to perform testing on every aspect of all versions of a user interface.

• Automatic methods - Compute usability measures using evaluation
software. Usability testing is a recent research area. There have been some
experiments using evaluation software [5 - 7] but no evaluation software is
currently commercially available.

• Formal methods - Calculate usability measures with the use of exact models
and formula. Formal methods can be difficult to apply because they do not scale
up well for complex, highly interactive user interfaces [4]. Usability metrics
belong to this category.

• Informal methods - Evaluate usability based on rules of thumbs and the
evaluators' skill, knowledge and experience. Usability inspection methods
belong to this category.

This investigation focused on usability inspection methods (informal methods)
which are more accessible to system developers, specifically the heuristic
evaluation method, and usability metrics (formal methods) which can provide
quantitative measures of usability, specifically the layout uniformity and essential
efficiency metrics.

2.2 Usability Inspection Methods

Usability inspection is the generic term for a set of methods having evaluators
inspect or examine the usability-related aspects of a user interface [4]. Usability
inspections can be performed on a paper interface, a minimal prototype or full
functioning prototype. The development of new inspection techniques has been
growing rapidly since the first two methods: Heuristic Evaluation [8] ani
Cognitive Walkthroughs [9] were formally presented at ACM CHI'90 (Computer
Human Interaction) conference in Seattle. The main objective of these inspection
methods is to identify the usability problems in an existing user interface design,
then suggest solutions based on the inspection results to fix the problems ani
improve the usability of the design. Over the last few years, a number of usability
inspection methods have been established : pluralistic walkthrough [10],
consistency inspection [11], standard inspection [4], formal usability inspection
[12], feature inspection [4], and guideline reviews [4].

Heuristic evaluation is a basic usability engineering method that is very easy
and simple to use. It requires a small set of evaluators to examine the interface ani
judge its compliance with a list of established usability principles, the
"heuristics" [13]. The original list of usability heuristics, shown in Table 1, was
developed by Molich & Nielsen [8]. The last heuristic, help and documentation,
was added to the list in 1991.

The evaluation process consists of four phases: a pre-evaluation training
session, the actual evaluation, a debriefmg session to discuss the outcome of the
evaluation, and a severity rating session during which the evaluators assess the
severity of the usability problems found. The severity of a usability problem is
rated based on the following [13]:
• the frequency with which the problem occurs;
• the impact of the problem when it occurs; and
• the persistence of the problem.

56

1. Simple and Natural Dialog

2. Speak the users' language

3. Minimise the users' memory load

4. Consistency

5. Feedback

6. Clearly marked exits

7. Shortcuts

8. Precise and constructive error messages

9. Prevent errors

10. Help and documentation

Table 1: Original List of Usability Heuristics [l3]

The list was revised in 1994 [14], derived from a factor analysis of 249
usability problems [13]. The revised heuristics and their relationship to the
original heuristics are shown in Table 2.

Nielsen [2] recommends having three to five evaluators. This is because one
person will never be able to fmd all the usability problems in an interface am
using a large number of evaluators would not gain much additional information.
Figure 1 shows a curve of proportion of usability problems found against the
number of evaluators used based on the average of six case studies of heuristic
evaluation. It also indicates why three to five evaluators are recommended.

Revised list of heuristics Corresponding heuristic in the
original list

1. Visibility of system status Feedback
2. Match between system and the Speak the users' language

real world
3. User control and freedom Clearly marked exits

4. Consistency and standards Consistency

5. Error prevention Prevent errors

6. Recognition rather than recall Minimise the users' memory load

7. Flexibility and efficiency of use Shortcuts

8. Aesthetic and minimalist desi~n Simple and natural dialo~e

9. Help users recognise, diagnose Precise and constructive error
and recover from errors mes~es

10. Help and documentation Help and documentation

Table 2: Revised List of Heuristics [13]

100
Percentage
of Problems 75
Found

50

25

o
o

------/ r
5 10 15

Number of Evaluators

Figure 1: Usability problems versus number of evaluators [2]

57

Heuristic evaluation requires the individual evaluator to inspect the interface
alone and record the problems and the severity ratings together with references to
the violated usability principles. The evaluator goes through the interface several
times but at least twice. The first pass is to have a feel for the flow and general
scope of the system. The second pass is to focus on its individual dialogue
element. The evaluators will meet to discuss and aggregate their findings only
when all the interfaces are evaluated. This is to ensure the evaluations are
independent and unbiased. The severity ratings collected will help to prioritise the
list of usability problems to be fixed.

Heuristic evaluation does not provide a systematic way of fixing the problems
or assessing the redesign of the system [2]. However the explanation given to each
identified problem can usually provide insights to redesign and improve the
system.

2.3 Usability Metrics

Usability metrics allow system designers and developers to evaluate the usability
of user interface designs quantitatively. These metrics can be used to evaluate new
designs and revisions; to compare alternative approaches or to assess the progress
in successive refmements [15]. They can also help to make better user interface
design decisions and solve usability problems [16].

The Essential Usability Metrics Suite is a collection of usability metrics
developed from the Interactive Metric Project by Lockwood and Constantine [16].
The idea behind this research project is to develop a practical suite of metrics that
are simple to use, conceptually sound, with a clear and transparent rationale
connecting them to established principles of good design. The suite includes three
task-sensitive metrics (essential efficiency, task concordance and task visibility), a
structural metric (layout uniformity) and a content-sensitive metric (visual
coherence) [15].

Essential efficiency is derived from essential use case modeling [17]. A well
designed user interface would require only as many steps as expressed in the

58

essential use case. Essential efficiency is the ratio of the number of steps in the
essential use case to those that are required to perform the task with a given user
interface (see formula below). It measures how close a given design is to the
essential use case model, in terms of the number of steps involved to perform a
task or collection of tasks. It can be computed for a given task or as a weighted
average based on a mix of tasks [15].

Essential Efficiency = Essential Length / Operational Length

where Essential Length represents the essential minimum number of steps from
users' perspective.

Essential efficiency computed for a given user interface design with a value of 1
or close to 1 indicates that the design is efficient in performing the given task(s).

Layout uniformity is a structural metric that measures the uniformity or
orderliness of the user interface layout. It is based on the rationale that usability is
hindered by highly chaotic arrangements. Layout uniformity focuses on the spatial
arrangement of the interface components. A user interface with the score of 0.6 to
0.9 is considered to be a good interface.

1 (Nsize+ N,op+Meft) - A
Layout Uniformity = - ---------

3*C-A
where C is the number of components on the screen

Nsize, Ntop and Nleft are the number of different sizes, top
edge alignments and left edge alignments of components
respectively

A = f2.JCl+ 1 is an adjustment for the minimum number of

possible alignments and sizes

3. The Study

3.1 Background Information

The sample system is a computerised resource planning, booking and scheduling
system. The system is a GUI client/server system which runs in a Windows
environment - the GUI front end was developed using Visual Basic. The
development team derived a screen design guideline based on the Visual Design
Guide that comes with Visual Basic and the Windows 3.1 interface standards. The

59

system provides online help that links each screen to the corresponding help
information and related topics. The members of the development team were on
roster to support the calls from users during business hours. The project was
initiated in 1993 : Phase 1 was implemented in August 1994; Phase 2 was
implemented in February 1995; and Phase 3 was implemented in July 1995.

After Phase 3, a system performance review was conducted and as a result a
usability evaluation was initiated. The objectives of the usability enhancements
were to:
• minimise the number of screens and keystrokes used;
• provide feedback for long processes;
• provide new useful features;
• ensure the same look-and-feel throughout the system; and
• improve the usability and quality of the system cost effectively.

3.2 Usability Evaluation

The following steps were taken to identify the usability problems:

1. Inspect the system using heuristic evaluation to see if the system violated any
of the usability principles.

2. Review and analyse the support logs and compile a list of problems reported,
suggested solutions and users' feedback.

3. Collect usability problems found by other team members based on their
individual knowledge and experience with the system.

4. Arrange meetings with the representative users to discuss any usability
problems that they had found or were aware of.

The fIrst three steps involved only the development team and were carried out
before involving the users. The heuristic evaluation was performed with a focus
more on tasks than on a single interface - the task scenarios that had been prepared
for system testing were reused.

The evaluation process went smoothly. Usability problems were found in
fIfteen tasks using heuristic evaluation and six usability problems were identifIed
from the support logs. Another evaluator found eight functions that required
usability enhancements including three new functions that would be useful to the
users. The support logs provided very useful information such as the most
frequently reported errors and the steps taken to cause the errors.

The output from the heuristic evaluation was a list of usability problems,
annotated with references to the usability principles that were violated (some
violated more than 5 of the 10 principles). A preliminary usability problem report
was prepared, listing the usability problems, the severity ratings (based on the
frequency of the problem, the impact of the problem when it occurs, and the
persistence of the problem) and the suggested solutions (based on the guidelines
provided by the principles that were violated).

The users then presented their list of problems and suggestions without
reference to the preliminary problem report. The users identifIed thirteen problems.

60

Comparison with the preliminary problem report showed that five problems
identified by heuristic evaluation and support logs were also identified by the users.
In total, twenty-eight problems were identified as shown in Tables 3a and 3b (new
features are marked by '*').

Usability Problems Step Step Step Step
1 2 3 4

System Logon - too many steps and x x x
dialogs
Open Another Job Sheet - too many x x
steps and dialogs
Open Jobs for same Project - require to x x
scroll down the list and may lose track
of which iob was previously opened.
Edit Clashes - change facility * x x

Changing Confirmed Jobs and Book- x
ings - warning messages prompted for
each change
Schedule Information Display - Job x
name is not shown
Copy Job - too many steps x

Copy Bookings - too many steps x

Select Current/Future Jobs - cannot x
select multiple jobs
Usage Log Load - cannot stop the x
process until the loading is finished
Booking Number, Job Group - x x x x
obsolete information
Select Jobs for Usage - should not x
allow users to select future jobs
Cancel Job, Cancel Jobs - inconsistent x

Preview Jobs, Preview Potential Jobs x
- inconsistent
Reports Identifier - System identifier x x
and report number are not shown
Startup Message - to be maintainable * x
by Federal Administrator

Table 3a: Usability Problem Identified

61

Usability Problems Step Step Step Step
1 2 3 4

Move Bookings to Different Project * x
and Job - can only be done by cancel-
ing the bookings and then re-entering
the bookings to the desired project and
job
Schedule Load - cannot stop the x
process until the loadinj!; is fInished
Provide Toolbar, Shortcut keys to x x x
speed up the interaction
List Box Selection - automatically x x
highlight the entry if there is only one
entry
Major Facility Report - aligned the * x
bookings by shift hours to improve
readability
Project Booking Schedule - new report * x

Administration System - New * x
functions
Include release notes for the last fIve * x
releases in the Online help
Review error messages to provide x x x
more meaningful information when
errors occur
Use different colour for different Job x
Status
Allow users to enter digits only for x
date fIelds and time fIelds
Cancel Booking I Cancel Bookings - x
inconsistent

Table 3b: Usability Problem IdentifIed

3.3 Usability Enhancements

The usability problems were classifIed as follows: task inefficiencies, system
inconsistencies, failure to provide system feedback for long processes, and new
features required. These classifIcations were then used to determine the usability
evaluation method(s) that should apply for testing the revised designs:

1. For task inefficiency problems, apply essential use case modeling and retest the
interfaces using the essential efficiency metric.

62

2. Redesign the interfaces (or design new interfaces for new features) from the
usage point of view, using the usability heuristics as a guideline.

3. Test the layout structure using the layout uniformity metric to ensure the
screen components are neatly arranged.

3.4 Example User Interface

The System Logon function (task inefficiency problem identified) is used as an
example to illustrate Heuristic Evaluation, Essential Efficiency and Layout
Uniformity for usability evaluation.

3.4.1 System Logon - Overview

System users have to be registered before they can use the system - depending on
the their role, some users may have access to only one application and one
database while power users may have access to multiple applications and one or
more databases per application. All users must identify themselves by entering
their 'usemame' and 'password' correctly in order to access the system.

With the system under evaluation, the users had to go through three screens
before getting to the Main Menu:

1. Logon Screen: user enters 'usemame' and 'password' to provide his or her
identity to logon to the system.

2. Application Selection Screen: user selects an application (most of the users
will have only one selection).

3. Branch Database Selection Screen - user selects a database for the system (some
users will have only one selection).

3.4.2 Usability Problems

The main problem with the logon process is inefficiency - users are required to go
through too many steps and screens to access the system. Firstly, each selection
screen requires a selection (highlighting the entry) and confIrmation (clicking the
OK button) for the user to proceed. For users who have only one application to
launch and work on only one database, it is inefficient and unnecessary to make a
single selection. Secondly, each screen must connect to the database in order to
display the selection list and disconnect from the database when finished. Each
database connection and disconnection takes at least a few seconds, depending on
the network traffic. As a result, the database connection and disconnection has
Cl'l'Bted an overllead for starting or quitting an application. Thirdly, power users
who have access to mUltiple applications and multiple databases can see the list of
available databases only after accepting an application selection. If they want to
browse through the available databases for each application, or a wrong selection is
made, they have to go back to the application selection screen and try another

63

application. The logon process has violated heuristic principles 5, 6, 7 and 8 (see
Section 2.2).

3.4.3 Essential Use Case and Essential Efficiency

Essential Efficiency is a task-sensitive usability metric which measures how close
a given design is to the essential use case model, in terms of the number of steps
involved to perform a task or collection of tasks [15]. It is the ratio of the number
of steps in the essential use case to the number of steps that are required to perform
the task in a given user interface. The computation is therefore very simple once
the essential use case is defined by applying Essential Use Case Modeling. It is the
perfect metric for evaluating interfaces in order to ensure task efficiency.

For the logon process, the number of steps used in the essential use case
(Essential Length) is 3 and the number of steps required in the system interface
(Operational Length) is 6 - as shown in Table 4. The Essential Efficiency for the
logon process is, therefore, 0.5 (3 I 6). A good design should have an Essential
Efficiency close to 1; 0.5 indicates that the interfaces use achieves only half the
efficiency of the essential process.

3.4.4 Redesigning the Interface

With the problems identified and the essential use case defined. the next step was
to redesign the interface in order to improve the usability. Two user roles (normal
users and power users) were involved and the redesign had to take the following
scenarios into consideration:
• User has access to only one application and one database.
• User has access to one application but multiple databases.
• User has access to multiple applications and one or more databases per

application.

The interface was redesigned with the aim of using only as many steps as used
by the essential use case and by applying the Heuristic Principles 3, 5, 6, 7 and 8.
The following enhancements were recommended:

1. After users have logged on successfully, allow them to select an application and
database on the same screen. This is to combine the application and database
selection screens so that only one database connection and disconnection is
required. This can also simplify the procedures involved and give users a clearer
picture of which application and database they are selecting. Rather than
confirming the selection one at a time, the users can confirm the selections in
one step (Heuristic Principles 3, 7 and 8).

2. For users with permission to access only one application and one database, the
application and the database will be highlighted automatically. This can save
users two steps to select the only possible options (Heuristic Principle 7).

64

Essential Use System
Case Interface

User Action System User Action System
Response Response

Request Request

Show Logon Show Logon
dialog dialog

Identify self Identify self
Verify identity Verify identity
Offer choices Offer Application

Confmn selection choices

Start application Select Applic-
Display Main ation Start application
Menu Offer Database

choices

Confinn selection
Display Main
Menu

Select Database
Confmn selection

Essential =3 Operation =6
Length Length

Essential = 0.5 (3 I 6)
Efficiency

Table 4: Essential Efficiency

3. For users with pennission to access more than one application, the available
database(s) are displayed once they select an application. Once again, if there is
only one database for the application, the database will be selected
automatically. This provides users with the flexibility to browse through the
available applications and databases without requiring to go back and forth
between two screens. Also, the users are not be penalised for the time taken to
connect and disconnect the database (Heuristic Principles 3, 5, 6 and 7).

4. The system provides the option to save the default application and database
selections. This allows users to save their default application and database so
that the system can select the saved selection next time the user logson to the
system. This feature is especially useful to power users. They can simply
confmn the default selection or change the selection if necessary (Heuristic
Principles 3 and 7).

65

5. When both an application and a database are selected, the Start Application
Button is enabled and set as the default button (that is, if user presses ENTER,
the Start Application Button will be selected). This gives users the flexibility
to press ENTER or click the Start Application Button to start the application.
This also means that users can logon to the system using the keyboard without
requiring to switch to a mouse (Heuristic Principle 7).

6. A startup screen with System Logo, Version Number, Copyright notice and a
system message will then be displayed for a specific time interval. This is to
provide feedback to the users showing which application they have started
(Heuristic Principle 1). The Main Menu will be displayed when the application
has started.

7. The system message and the time interval for displaying the startup screen can
be maintained by System Administrator through the Administration System
(Heuristic Principle 3).

In order to ensure the revised interfaces are usable, Layout Uniformity am
Essential Efficiency were applied to check the layout structure and task efficiency
respectively. The calculation of Layout Uniformity for the revised application am
database selection screen is shown in Table 5. This revised interface has a score of
0.6 which indicates the screen components are neatly arranged.

Components Value
Number of components 9
(C)
Number of different sizes 5
(Nsize)
Number of different top edge alignments of components 5
(Ntop)
Number of different left edge alignments of components 5
(Nleft)
Adjustment for the minimum number of possible alignments am 7
sizes

IA=f2$}tJ
Layout Uniformity 0.6
1 - [(Nsize + Ntop + Nleft - A) I (3 * C -A)1

Table 5: Layout Uniformity

The Essential Efficiency scores for different scenarios are shown in Table 6.
The scores vary from 0.6 to 1, with a worst case score of 0.6. However, this is
still better than the original interface where the score is 0.5; moreover, with the
save default option, the efficiency can be improved to 1 if the users have saved
their default selections.

66

Scenario Operation Essential
Length Efficiency

1. Users can access only one application aIXl 3 1
one database

2. Users have access to one application aIXl 4 0.75
multiple databases (no default selection)

3. Users have access to mUltiple applications 4 0.75
and one database for the selected application
(no default selection)

4. Users have access to multiple applications 5 0.6
and multiple databases for the selected
application (no default selections)

5. Users have access to one or multiple 3 1
applications and one or multiple databases
for the selected application (default selec-
tions are saved)

Table 6: Essential Efficiency (for each scenario for the redesigned interface)

3.5 Enhancement Implementation

The twenty-eight enhancements were implemented in two phases. Phase 1 included
redesigns to address the first sixteen problems in the list, while Phase 2
implemented the remainder. Before the implementation of Phase 1, the users were
consulted - the redesigned system was demonstrated to local users and the usability
enhancements document was sent to interstate users. In this document, the
problems found and the corresponding recommended enhancements were described
and the interfaces for both the existing and redesigned interfaces were included for
easy references. The users agreed with and approved the enhancements.

Phase 1 was implemented in July 1996. Excellent user feedback was received.
They were very pleased with the improvements which helped them to do their
work with increased ease and efficiency : the number of steps to perform several
tasks had been minimised; lengthy processes would display progress and allow
users to stop the process if necessary; new and useful features were implemented;
and inconsistency problems were fixed. As a result, the usability and quality of the
system was improved. Users started to enjoy using the system. The number of
support calls was reduced by 65% to 70% (calculated from the support calls
received over a period of 56 weeks before and after the implementation). Most
importantly, the productivity of both the users and the developers had increased by
approximately 30%.

67

4 Conclusion

The fact that the usability evaluation methods (Heuristic Evaluation, Layout
Uniformity and Essential Efficiency) were applied to an existing system provided
an opportunity to study the effectiveness of these methods. The nearly two years of
operational experience with the systems had provided: empirical data such as user
feedback and problem logs; a fully interactive system for evaluation (the evaluation
was not limited to paper prototypes); and users with a reasonable idea of how
usable the existing system actually was. Taking the total of twenty-eight usability
problems identified as the total number of problems, Table 7 illustrates the
effectiveness of the different usability evaluation methods applied.

Heuristic Evaluation uncovered more than half of the total usability problems
found (53.6%). However, the evaluation was perfonned on the system test task
scenarios and did not identify any of the new functions - new functions would
usually be found by domain experts and users, but not by any usability evaluation
methods. Adjusting for the seven new functions identified in the total problems,
Heuristic Evaluation identified 71.4% of the total problems found. Heuristic
Evaluation is then an effective inspection method which is simple and inexpensive
to use. Developers can inspect the design individually or in groups to uncover
most of the usability errors before presenting the design to the users. Experience
suggests that experienced evaluators are more effective than inexperienced ones;
however, a small inspection team of three to five inexperienced people can
uncover more usability problems than one experienced inspector. Whilst not yet a
substitute for user testing, evaluations appear to be quite effective for detecting
problems and generating insights into the usability of a developing interface [4].

Usability metrics allow system designers and developers to evaluate the
usability of user interface designs quantitatively. The design metrics can be used
together with usability evaluations where the evaluations identify the problems and
the metrics evaluate and compare the redesigns.

Step Method Number % of IAdditional
of total problems

problems problems found
found found

1 Heuristic Evaluation 15 53.6 N/A

2 Support Logs 6 21.4 2

3 Individual's knowledge and 8 24.6 4
experience

4 User interview 13 46.4 7

Table 7: Summary of Usability Evaluation Results

68

These methods are inexpensive to use and can produce very useful results. In
addition, these methods have the following characteristics [15]:
• easy and simple to use;
• applicable to paper prototypes and design models;
• direct guidance for design;
• effective prediction of actual usability in practice;
• direct indication of relative qUality.

Usability metrics allow system designers and developers to evaluate the
usability of user interface designs quantitatively. The design metrics can be used
together with usability evaluations where the evaluations identify the problems and
the metrics evaluate and compare the redesigns.

In summary, Heuristic Evaluation, Layout Uniformity and Essential Efficiency
are considered as a set of cost effective usability evaluation methods which can be
used when enhancing existing interfaces or designing new systems. Without the
right design, systems can be difficult to use. Enhancing the usability of a system
can improve the productivity and reduce the support and maintenance costs.
Developers should not simply focus on developing functional systems but usable
systems as well. In order to improve the usability of interactive systems, design
must start with the end users and usability engineering should be included in the
software development life cycle.

References

1. Lingaard. Usability Testing and System Evaluation. Chapman & Hall,
London, 1994.

2. Nielsen, J. Usability Engineering. Academic Press, Inc., 1993.

3. Melchior, Bosser, Meder, Koch & Schnitzler. Usability Study: Handbook
for practical usability engineering in IE projects. ECSC-EC-EAEC,
Luxembourg, 1996.

4. Nielsen, J. & Mack. Executive Summary. In: Nielsen, 1. (Ed). Usability
Inspection Methods. John Wiley & Sons, Inc., 1994.

5. Comber & Maltby. Screen Complexity and User Design Preference in
Windows Application. In: Proceedings of OZCHI'94, Canberra, 1994.

6. Comber & Maltby. Evaluating Usability of Screen Designs with Layout
Complexity. In: Proceedings of OZCHI'95, Canberra, 1995.

7. Sears, A. Layout Appropriateness: A Metric for Evaluating User Interface
Widget Layout. IEEE Transactions on Software Engineering, July 1993; 19
(7): 707-710.

8. Molich, R. and Nielen, 1. Improving a human-computer dialogue.
Communications of the ACM, March 1990; 33 (3): 333-348.

69

9. Lewis, Polson, Wharton & Rieman. Testing a walkthrough methodology
for theory-based design of walk-up-and-use interfaces. In: Proceedings of
ACM CHI'90 Conference, Seattle, WA, 1-5 April 1990: 235-242.

10. Bias, R. The Pluralistic Usability Walkthrough. In: Nielsen, J. (Ed).
Usability Inspection Methods. John Wiley & Sons, Inc., 1994.

11. Wixon, Jones, Tse & Casaday. Inspections and Design Reviews:
Framework, History, and Reflection. In: Nielsen, J. (Ed). Usability
Inspection Methods. John Wiley & Sons, Inc., 1994.

12. Kahn & Prail. Formal Usability Inspections. In: Nielsen, 1. (Ed). Usability
Inspection Methods. John Wiley & Sons, Inc., 1994.

13. Nielsen, 1. Heuristic Evaluation. In: Nielsen, J. (Ed). Usability Inspection
Methods. John Wiley & Sons, Inc., 1994.

14. Nielsen, J. Enhancing the explanatory power of usability heuristics. In:
Proceedings of ACM CHI'94 Conference, Boston, MA, 24-28 April 1994.

15. Constantine, L. Measuring the QUality of User Interface Designs. In:
Proceedings of Software Development '96, 28 March 1996.

16. Constantine, L. Usage-Centered Software Engineering: New Models,
Methods and Metrics. In: Purvis, M. (Ed.). Software Engineering:
Education & Practice. IEEE Computer Society Press, Los Almitos, CA,
1996.

17. Constantine, L. Essential Modeling - Use Cases for User Interfaces.
Interactions, April 1995.

Improving Information Systems
Development by Managing Project Risk

Peter Smart
Price WaterboUJe, Information Systems Risk Management,
London, UK. E-maD: Peter _Smart@europe.notes.pw.eom

Abstraet

The effective management of business projects is increasingly
seen as being a key aspect of strategic planning and
implementation, especially where major integrated business
change and Information Systems (IS) development are involved.
The ability to deliver expected benefits will improve business
performance and ultimately enhance shareholder value. A variety
of project management approaches and assessment techniques
have been employed in recent years which, directly or indirectly,
contribute to the management of risks on such projects.
However, used in isolation, these may not prevent the adverse
impact of risks being felt on a project, programme or
organisation as there may be no formal structure to assess and
prioritise the potential impact, determine mitigating actions and
implement process improvements. A Project Management
framework is described which has proved to offer considerable
benefit. The framework relies on the periodic assessment of risks
and an appropriate organisational structure for supporting the
framework. A Project Office provides centralised functions for
effective implementation of the framework.

1 Introduction

The effective management of business projects is increasingly seen as
being a key aspect of strategic planning and implementation, especially
where ~or integrated business change and Information Systems (IS)
development are involved. The ability to deliver expected benefits will
improve business performance and ultimately enhance shareholder value.

For every project undertaken, there are associated business and project
risks and often the failure to adequately manage these risks can have
serious implications. Organisations can and do suffer major tangible (e.g.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

71

financial) or non-tangible losses (e.g. reputation). Senior management
need assurance that all projects, especially large system implementations,
are well controlled and that the associated risks are minimised.

When organisations undertake larger or more strategically critical
programmes the associated greater size, complexity and risk must be
effectively managed to ensure reaping the higher business rewards. The
challenges associated with such programmes may include:

• a number of interdependent IS, business and infrastructure projects
running in parallel;

• greater management structure and division of management
responsibilities;

• integration and cohesion of management processes across the
programme;

• information volume and timeliness: decision making, escalation,
reporting;

• greater scope and complexity of business changes and benefits.

During recent years the approach to addressing these challenges on large
projects has been to formalise the development process using project
management methodologies, software development lifecycle models, and
certification or assessment schemes. Often these will be applied in
combination and, whilst there may be a provision for improving the
quality of the processes employed, the benefits of doing so may not be
readily appreciated on a particular project or there may be an acceptance
that there is not time to do so.

This paper introduces the concept of a project management framework
and goes on to describe how this may be applied to address and control
the risks introduced by the challenges described above.

The project management framework provides a generic model of IS
development. The framework is characterised by a number of capabilities,
some of which may be met by existing methodologies and techniques
within an organisation, while others may need to be implemented. A key
element of this approach is the identification and prioritisation of risks,
particularly those affecting the management processes. By first addressing
those risks which may potentially have the greatest impact on an
organisation - by establishing appropriate mitigation actions, capabilities
and controls - the framework is established to progressively improve the
management processes and quality of deliverables.

72

In order to maxmuse the benefits of implementing the Project
Management framework, experience has shown that the organisational
structure to support it may need to be reviewed. In order to maximise the
synergy within a project and across an organisation the support for the
management processes are best provided centrally. The establishment of a
Project Office, or the use of an existing similar entity provides a solution
to this requirement.

1 Project Management Risks

High profile failures of major business system and IS development
projects highlight the need for effective business project management.
Publicised examples are the London Ambulance Service's command and
control system, the London Stock Exchange's Taurus project and the UK
National Insurance System. These have reinforced the belief, supported by
many industry surveys, that most projects do not satisfactorily deliver the
intended benefits within the planned timescale and cost. Figures quoted in
[1] show that only 1.77% of software was used as delivered and 47.27%
of software delivered was not successfully used. The remainder was either
not delivered (28.8%), extensively reworked (19.2%) or used after
changes (2.95%). With business programmes often involving major
change and investments of strategic importance, it is critical that an
effective project management framework is in place.

Many projects under-perform due to inadequate management processes,
which may arise from weaknesses, omissions or poor implementation in
the management controls, procedures and methodologies. Typical
examples are:

• inadequate management of risks,
• inadequate overall project management structure with appropriate

business and project accountability and responsibilities, and
• failure of project management to understand and address

interdependencies between the various parts of the business and
project processes.

This paper describes an approach that has been used to establish a project
management framework and supporting infrastructure which enables an
organisation to . proactively manage project risks and improve the
management processes.

73

3 Managing Risk and Improving Quality

Formalising a development methodology through the use of a documented
quality management system is employed by many organisations to control
the risks inherent in large-scale IS development [2]. By promoting a
consistent approach throughout an organisation, verifying compliance and
making changes where necessary, risk will be reduced and the processes
will gradually improve. The IS09001 standard, by means of the TickIT
scheme [3] for IS projects, defines a model for a developing IS systems.
Even without the constraints of a certification process the benefits of
quality planning have been described [4]. Process improvement is
supported through the use of these approaches although it is not directly
facilitated.

The Capability Maturity Model (CMM) [5], SPICE [6] and similar
schemes encourage process improvement by assessing an organisations
capabilities against criteria which allows the level of maturity to be
established and provides guidance for moving to the next higher level.

The improvement cycle may be too long to impact the current project or
the organisational structure may be such that the synergy between projects
can not be realised in a timely manner. Also many organisations who may
formalise their methodology are not required to submit themselves for
certification or assessment against these models and hence one of the key
benefits of following this route, namely the independent identification of
risks and improvement of the management processes, may not be realised.

In order to maximise the benefits of using these models the concept of a
Project Management Framework has been defined.

4 Project Management Framework

4.10bjeetives

The key objectives of a project management framework are to ensure that:

• benefits and functionality expected by the business sponsors are
delivered by the project;

• project risks are properly managed; and
• a comprehensive set of project controls is in place.

74

These objectives will only be met if several major project management
critical success factors are addressed:

• delivery of the benefits with the requisite level of quality on schedule
and within budget;

• maintaining tight control over projects through comprehensive
planning driven by clear business case requirements;

• identification and communication of major issues and risks with
sufficient lead time to react;

• co-ordination of cross·project and cross·function activities to
minimise gaps and conflicts;

• support and buy·in of senior management;
• effective business communications, both internal to a project and

between the project and its stakeholders.

4.2 Strudure

There are a number of project management methodologies and techniques
employed in projects and programmes, but regardless of how these are
structured, project tasks can generally be grouped into three distinct
process categories:

• Management,
• Delivery, and
• Support.

An effective project management framework should support and enhance
the key Management processes. The Delivery processes relate to the
actual creation of a product or service. The Support processes are those
necessary to provide the project infrastructure in which the first two
categories are conducted, for example configuration management, training
and tool management. Communications occur between processes and
consist primarily of statements of requirements, status reports and other
project deliverables.

Project Process Model

M.n.g~entP~
(typic8Hy oonc:tIrTen\)

Oetlvery Proc
(lyplclilly conMCUltve)

Support Proc
(lypiclily DOIICUIY8nt)

Fig 1. Project Process Model

4.2.1 Management Processes

75

The Management processes comprise a number of project management
activities, typically performed concurrently throughout the duration of the
project. An organisation wishing to observe good practice will ensure that
the management processes encompass the following:

Project Management and Administration and document
Administration management,

Project definition
Contract and supplier management
Project reporting
Communications

Planning and Scheduling Planning and estimating
Status monitoring
Budgeting
Resourcing

Risk Management Risk identification and assessment
Risk mitigation

Quality Assurance Quality management
Acceptance management

Issue & Change Management Tracking and escalation
Impact assessment
Change approval

76

4.2.2 Support Processes

The Support processes comprise a number of activities, typically
performed concurrently throughout the duration of the project. Good
practice covers:

Configuration Management Management of project deliverables
Version control

Secure environment
Problem Management Problem capture and impact

assessment

Progress chasing

Integration with issue and change
management

Operations Infrastructure Construction of development, test
and live operating environments
Implementation

Toolset Management Maintenance and management of
support tools

Information Gathering Timesheet tracking

Project finances
Tracking deliverables against plans

Human Resource Staff and skills mix
Management Administration of contractors

Resource profile

4.3 Assessing and Reporting Risks

The project management processes undertaken by an organisation need to
be assessed to measure their effectiveness and comprehensiveness. This
can take the form of a brief bealthcheck or a full review, with the
objective of identifying risks and highlighting areas for improvement.

A project management review is used to assess project management
processes, organisation and operation. To maximise the benefits, these
reviews should be conducted at the start of the project and on an ongoing

77

basis throughout the project lifecycle. The risks identified during the
review may be used as a basis for implementing or enhancing a project
management framework.

The key objectives of reporting on project management risks are to
highlight to project managers the risks impacting their projects and to
provide senior management with an indication of the effectiveness of the
project management framework. Risks must be prioritised, presented
clearly to management and mitigation actions and responsibility must be
agreed to maximise the benefit.

4.4 The Improvement Cycle

The Project Management Improvement cycle provides an approach for
establishing or improving an organisation's project management
processes. It is unusual for an organisation to address all the actions
required to mitigate all identified risks at one time - either because
insufficient resources are available or the level of change would be too
great. In practice, an iterative route may be chosen to expedite
improvements and minimise disruption tot he organisation.

Fig 2. Project Management Improvement Cycle

78

The key stages in the improvement cycle are as follows:

• Review t proeeues. The improvement cycle starts with a
review of existing Management processes using our proven Project
Management Audit approach.

• Eatablillt Dew proeeues. Working with pilot projects in the
organisation, areas for improvement are identified, prioritised and
agreed. New working practices are implemented and proved in a pilot
environment and any fine tuning applied.

• RoD oat Dew procedures. Having gained sufficient acceptance the
practices are embodied into the framework standards and procedures
and then rolled out to other areas of the business using appropriate
commUDicatioDS and training forums.

• Nat .tepa. Having addressed the highest priority needs, the review
can be extended to other areas as required

A timetable for operating the cycle must be agreed and followed by
ID8IUIgeJnent. The development of a project management framework
should be viewed as an iteJative approach which can be targeted and
tailored towards the most urgent needs. A cyclic improvement process
also permits an evolutionary development of the framework which
facilitates less frantic management of change and aids acceptance by
project maoagers and teams.

4.5 Implementation

Experience bas shown that centralisina the support for management
processes within a Project Office, or similar organisational entity,
provides an optimal approach to delivering these capabilities.

The Project Office sits between the project teams and the senior
management team, and will typically provide project management support
services to a large programme or to a number of related projects. It will
have a l'8IJ8C' of responsibilities, including monitoring and reporting of
status, tracking of risks, issues and changes, and the development and
implementation of project standanIs.

79

Project Office

Team) ~~~

Fig 3. Project Office Organisational Relationships

4 Conclusions

Experience has shown that by establishing a project management
framework, focusing on the risks which arise from Information Systems
development offers a pragmatic solution to improving the software
development process. People to introduce new processes, or to improve
existing processes, are always scarce on any project as effort is focused on
delivery. However, by identifying and then analysing risks, followed a
managed cycle will allow an improvement action plan to be established.
As projects progress, with new risks possibly material ising, regular
reassessment of risks is necessary to ensure the resources available for
improvement continue to be applied in the most effective area.

By targeting the challenges through the use of a project management
framework to address · the critical success factors for the project, the
following benefits can be realised:

• better delivery of integrated business and IS changes and benefits;
• consistent and co-ordinated approach to best practice project execution

and managing complexity;
• synergy across projects especially managing risks, prioritisation and

allocating scarce resources;

80

• centre of excellence for the application of project management
techniques and tools;

• communication of requirements for evolving management methods to
IS and business project managers and to senior management.

Aeknowledgements

The author would like to take this opportunity to thank his colleagues in
the Information Systems Risk Management practice of Price Waterhouse
for their assistance in the preparation of this paper. In particular thanks to
Jeff Thompson and James Cbrispin for their guidance and permission to
publish this work.

Referenees

1. Charette, Robert N. Software Engineering Risk Analysis and
Management. McGraw-Hill, New York, 1989.

2. Smart, Peter J. Implementing a Quality Management System: A Case
Study. Proceedings of the First International Conference on Software
Quality Management, Southampton, 1993.

3. TicldT: A Guide to Software Quality Management System
Construction and Certification Using EN29001. Department of Trade
Industry, UK, 1992.

4. QuId, Martin A. Strategies for Software Engineering: The
Management of Risk and Quality. Wiley, Chichester, 1990.

5. Paulk, M.C., Curtis, B., Cbrissis, M.B. and Weber, C.V. Capability
Maturity Model for Software Version 1.1. Technical Report
CMU/SEI-93-TR-24, Software Engineering Institute, Pittsburgh,
Pennsylvania, USA, 1993.

6. Dorling, A. SPICE: Software Process Improvement and Capability
dEtermination. Software Quality Journal 1993; Volume 2 Number 4;
209-224.

Information Quality Supported by Meta Model

Tatjana Welzer, Ivan Rozman
Faculty of Electrical Engineering and Computer Science, University of Maribor

Smetanova 17, 2000 Maribor, Slovenia
e-mail: welzer@uni-mb.si.Lrozman@uni-mb.si

Abstract

In the last years the information technology has been spectacularly successful in
automating many operations and making data available to more people. For this
reason we are today faced with an increasing demand for more and more complex
databases applications. The rapid growth has stimulated the need for a high level
concepts, tools and techniques for a database design, development and retrieval
with a final goal: better information quality.

One of the new possibilities is using a meta data model repository which enables
more expedient and efficient design of the good quality data models. As a
consequence, data quality as well as information quality of any information system
improve.

1 Introduction

Over the years many of approaches to improve information quality have been
developed and employed in various situations. It is important to recognize that most
of these approaches are only vaguely aware that the prerequistive for the
information quality is data quality, despite the fact that in the information
technology aggressive steps to improve just the data quality are being taken.

In the last years the information technology has been spectacularly successful in
automating many operations and making data available to more people. The
advances of information technology also have the impact on poor data quality [1].
But unfortunately just as it is natural to assume that computerized data are correct,
so too it is natural to blame the information technology when data are incorrect.
These problems can grow especially in the data warehouses environments as well
as on the Internet.

Further, data (information) users usually use data in their applications without
giving the conceptual view much thought. But in opposite, a high quality
conceptual view is of great importance for avoiding before mentioned problems
and improving the data as well as the information quality.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

82

Conceptual or data modeling as a process of producing the conceptual view is a
complex and a hard job that results in a data model (conceptual model) of an
enterprise. In principle, each of the models designed by one of numerous
approaches is used only once, i.e. within a single project. This seems to be very
time consuming and not very practical, because a model or parts of a model derived
for one enterprise could be used also in future projects [2]. This argument results in
the meta data model repository which enables the use of models or submodels of
previous projects in the actual design. Nowadays such models are quite often called
patterns. Martin Fowler [3] defines a pattern, as an idea (the term idea is used to
stress the fact that a pattern can be anything) which has been useful in one practical
context and will probably be useful in others. Similar philosophy is behind the
already mentioned meta data model named MetaBase repository [4], considering
reusable database models.

The MetaBase project was stimulated by the assumption that the enterprises are
similar or at least that they have similar components. By considering these
similarities a data model of a high quality (the model was already used and for that
reason also already tested in at least one project) could be used as a starting point
and can then be adjusted for the original enterprise. This approach enables more
expedient and efficient design of the good quality data models, consequence in a
good data quality as well as information quality of any information system.

A brief overview of reuse on which the meta data model is based, is presented in
chapter 2; the MetaBase concept is the main goal of the third chapter, while chapter
4 gives a concept of the search for similarities considering quality dimensions of
reusable components. We finally conclude with a summary of the proposed
concepts.

2 Reuse

In the field of reuse there is no single accepted defmition for the most of the terms
connected with this field. Therefore we have accepted for terms "software reuse"
and "reusable software components" defmitions from C. Brown [5]:

Software reuse means the use of an existing software component in a new context,
either elsewhere in the same system or in an another system.

Reusable software component is a software entity intended for reuse; may be
design, code or other product of the software development process. Reusable
software components are sometimes called "software assets".

Subsequently, according to the above definitions we will try to give detailed
explanation about terms "database reuse" and "reusable database" components [2]:

83

Database reuse is a process of using existing database conceptual models or parts
of them rather than building them from scratch. Typically, reuse involves
abstraction, selection, specialisation and integration of reusable parts, although
different techniques (when defined) may emphasizes or de-emphasizes some of
them.

The primary motivation to reuse database components (conceptual models or parts
of them) is to reduce the time and effort required when building a conceptual
model, actually a database. So as the quality of software systems is enhanced by
reusing quality software artifacts (which also reduces the time and effort required to
maintain software) similarly reusable database components influence further
database design and (not at last) also the database maintenance. Enhancement of
the database quality is expected.

Further, considering above definitions we should try to answer to the following
question: Is the software reuse easy and the database reuse difficult? Actually,
every reuse in the field of computer science is difficult. Useful abstractions for
large complex reusable software components or reusable database models will
typically be complex [2]. For this reasons an appropriate way to present reusable
concepts, either software, artifacts or conceptual models or parts of them must be
found.

3 MetaBase

Our approach to apply reuse concepts also to the database design is based on an
object oriented meta data model. We have decided for object oriented paradigm in
order to take advantages of this concept (reuse, inheritance, methods) to represent
our meta data model.

The MetaBase (Figure J) model is introduced as a three level model, which
distinguishes object level, enterprise level and function level. The enterprise level
is central in the MetaBase model. It contains the conceptual models and external
models that describe the particular enterprise. Upon this central block of the
MetaBase a function level is built into which business and functional domains are
integrated. An application domain links the function and the enterprise level. On
the other hand the enterprise level is also related with a subordinated object level
across objects. The object level contains the representation of semantic objects,
which constitute the conceptual and external models.

3.1 Enterprise level

It presents a connection to the functional level across the application domain and
the enterprise. The application domain is a very important part of our structure
because reuse of conceptual models (database components) is more promising if
their application domains are the same or similar [6] while a domain model co~d

84

be a terminological framework for discussing commonalties and differences
between conceptual models of an enterprise within the application domain,
considering the above presented outputs.

FUNCTION

ENTERPRISE
conceptUII model externll model

object

method property

OBJECT

Figure 1: Concept of the MetaBase

External models are used for a number of varying purposes [7]. They represent the
view of an application systems and user groups to the database, i.e. to the
conceptual model. Like conceptual models they include a set of related objects. An
external model is a submodel of one or more conceptual models. So we do not look
on the derivation of an external model from a conceptual one, but rather on the
result of the derivation. Therefore, an external model can be derived (by different
transformations) from different conceptual models. Conceptual models as well as
external models are connected with a respective application domain as well as the
enterprise.

3.2 Functional level

Each application domain is characterised by classification in two dimensions: the
business domain and the functional domain. In our meta data model both business

85

domain and functional domains are organised in a generalisation hierarchy, the
functional domain, furthermore, in an aggregation (part-of) hierarchy.

3.3 Object level

The structure we are discussing here (Figure J) is designed according to the object
oriented data model. The key reason for this decision was to include operations
(methods) to make the structure more active and to open possibilities to integrate
reuse of software and reuse of database design [8].

The meta data model reflects the associations usually found in object oriented data
models, i.e. generalisation and aggregation. The "is-a" relationship between objects
represents the generalisation (inheritance) lattice of an object oriented data model.
The aggregation hierarchy is modeled through properties relationship, i.e. the
components of a composite object are its properties. In our structure an object is
characterized by several properties. Some of them are values but some of the
properties are objects themselves. Further, the object behavior is presented by
associating methods to objects. The introduction of methods enables us to go
beyond solely static structures.

4 Search for similarities

The objectives of constructing the MetaBase structure is to assist database
administrators during database design and software engineers during software
design. In a reuse centered approach the designer has to search for components
suitable to assist in the solution of the problem at hand in the components
repository. The MetaBase assists the designer as it guides the search and provides
powerful search and browsing capabilities. Thus it narrows the components space
the designer has to search through. In our approach the final decision which
components are suitable has always to be made by designer. The system helps to
identify candidate components. In the following, we sketch the search process and
the most important tuning parameters.

At first the designer narrows the search space by choosing business domain and
functional domain and by identifying an application domain. All other search
processes will be conducted within this application domain. Already here the
designer has the possibility to narrow the search space by choosing an application
domain from the bottom of the is-a hierarchy or broaden it by selecting more
generic application domains through generic business and functional domains.

Within the set of objects of an application domain, the user can choose among
alternatives [4]:

The user can browse through all the objects.

86

In particular, if this set is too large, he can browse through generic objects.
Typically, the number of objects decreases from the lower levels of the hierarchy to
upper levels. So the user can climb up the hierarchy to a level which is suitable for
manual browsing. In this level the user can select and deselect generic objects,
which are considered relevant for the problem. Climbing down the hierarchy, the
system presents the subordinate objects of the selected generic objects to the user.
The user selects appropriate objects at each level until the leaf objects are reached.

Starting from a single object (or a group of objects) the system can determine
similar objects. The user directs this search by specifying the length of the path to a
common ancestor to be considered.

The system can search for objects with similar properties as a given object.

The user can choose a set of conceptual models or external models and restrict the
search to objects contained in the selected models.

The user can browse through the whole MetaBase: searching for all the properties
of an object; which objects are contained in an external or conceptual model: in
which models an object is contained, in which objects a certain property is
referenced, and so on.

According to described sketch of the search strategies, the techniques for searching
in the MetaBase is more formally introduced in [2].

4.1 Quality Dimensions of the MetaBase

It is obvious already from the presentation of the MetaBase repository (meta data
model) that components saved in the repository are of at least basic quality. The
intention is to reach an "ideal" conceptual model. For this purpose 15
characteristics should be fulfilled: relevance, obtainability, clarity of definition,
essentialness, attribute granularity, domain precision, naturalness, occurrence
identifiability, homogeneity, minimum redundancy, semantic consistency, structural
consistency, robustness, flexibility [1] and according to the user needs some
characteristics of his or her own could be added.

The before mentioned basic quality of the MetaBase components fulfill according
to the list the following characteristics:

Relevance - objects needed by the applications are included in conceptual models.

Clarity of defmition - all the terms used in the conceptual model are clearly
defmed.

Comprehensiveness - each needed attribute should be included.

87

Occurrence identifiability - identification of the individual objects is made easy.

Homogeneity, structural consistency - object level enables the minimisation of
unnecessary attributes.

Minimum redundancy

Semantic consistency - models are clear and organised according to the application
domains.

Robustness, flexibility - through reuse both characteristics are fulfilled.

Conclusion

Conceptual models of different databases are neither right or wrong. According to
the pattern technology they are more or less useful. The useful part is called pattern
and presents a starting point for a new design [3]. Similar reusable database
components from the MetaBase repository present a starting point for conceptual
database design supported by database reuse and of course according to the
MetaBase view they are more or less reusable.

Even just as important as reusability or may be even more is the quality dimension
of reusable components. According to the 15 quality characteristics the basic
quality of the MetaBase components fulfill already 10. But the fmal goal on the
way to the information quality are not the 15 characteristics, but Deming's fourteen
points focused on data and information [1]. In further research on the meta data
models repository, they should be considered in a way to assure better quality of
conceptual models and reusable components.

References
[1] T.C. Redman: Data Quality for the Information Age, Artech House, 1996.
[2] T. Welzer: Model of the database system with explicit built in expert

knowledge, Doctor of Science Thesis, University of Maribor, 1995.
[3] M. Fowler: Analysis Patterns: Reusable Object Models, Addison Wesley,

1997.
[4] T. Welzer, J. Eder: Meta Data Model for Database Design, In V. Marik, J.

Lazansky, R. Wagner (Ed.) Database and Expert Systems Applications,
Proceedings 4th International Conference, DEXA'93, Prague Czech Republic,
1993, pp.677-680.

[5] C.L.Brown, Reuse: In J.J. Marciniak (Ed.) Encyclopedia of Software
Engineering, John Wiley & Sons, 1994, pp. 1055-1069.

[6] P. Freeman: Reusable Software Engineering Concepts and Research
Directions, In P. Freeman (Ed.) IEEE Tutorial Software Reusability, 1987,
pp.l0-25.

88

[7] M.Dobrovnik, J.Eder: A concept of Type Derivation for Object-Oriented
Databases, In L.oOn et al (Eds.) Proceedings of the eight International
Symposium on Computer and Information Science (lSCIS VIII), Istanbul
1993, pp. 132-148

[8] J. Eder, W.Rossak: An Archive of Semantic Data Models as Basis for
Software Re-use, In Proc. 8th International Symposium on Applied
Informatics, Innsbruck, Austria, February 1990, pp. 284-287.

Quality and RAD: A Contradiction in Terms?

by Paul Allen,
VPMethods

SELECT Software Tools Pic
Cheltenham, England

April 1998

Rapid Application Development (RAD) is commonly applied to delivery of point
software solutions in isolation from enterprise-wide requirements. This is
problematic in the context of large organisations seeking practical business
oriented software re-use, especially in a way which capitalises on legacy
software. This article examines the role of architecture, and describes a
component-based approach that facilitates re-use of services. The need for high
quality and generality of components that are trusted by multiple consumers is
increased by an order of magnitude and is set in vivid contrast to the need for fast
solutions to pressing business needs.

The article highlights three particularly critical factors that have emerged in my
practical project work: a clear and up to date software process based on the needs
of component builders and solution assemblers; a service-based architecture for
component-based development; an approach to assess risks against quality
features in order to determine the level of rigor appropriate for a particular
development relative to the perceived value of the software to be produced.

1. Introduction

1.1 Good News

RAD was originally coined as a response to the well documented problems of
top-heavy waterfall based methods. As conceived by James Martin [1] and others
RAD bought with it many useful techniques such as Joint Application
Development (lAD), prototyping and timeboxing. Other good features of RAD
include its removal of documentation overload and a "re-use before you buy/buy
before you re-use" philosophy.

More recently, I have contributed to the work of the Dynamic Systems
Development Method consortium (DSDM), which has forged good practical
guidance on the responsible use of RAD stressing nine principles all of which are
important if a quality system is to be supplied in the timescales required by the
business [2). The nine principles ofDSDM are as follows:

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

90

1. Active user involvement is imperative.
2. DSDM teams must be empowered to make decisions.
3. The focus is on frequent delivery of products.
4. Fitness for business purpose is the essential criterion for acceptance of

deliverables.
5. Iterative and incremental development is necessary to converge on an

accurate business solution.
6. All changes during development are reversible.
7. Requirements are base lined at a high level.
8. Testing is integrated throughout the lifecyc1e.
9. A collaborative and co-operative approach between all stakeholders is

essential.

"All of these principles have been found to be necessary, if a quality system is to
be supplied in the timescales required by the business" [3].

1.2 Bad News

However, in my visits to many organisations I fmd quality is all too often
sacrificed in the rush to meet umealistic deadlines under the banner of "RAD".
This is the irresponsible side of RAD: "no modelling" or uncontrolled RAD
based on hacking away in a GUI builder to produce fast results. Unfortunately
those results tend to be unpredictable and difficult to maintain. Such an approach
is short-term and in large enterprises can be dangerous, ultimately resulting in
inconsistent interfaces, redundancy of information and a growing maintenance
backlog.

1.3 The Attraction of Components

Component-based development, in which software solutions can be assembled in
analogous fashion to hardware, is increasingly presented as the answer to these
problems. However "there's no free lunch": the increasing complexity and scale
of today's mainstream software development projects make pure RAD a highly
risky option for component development. Coupled with the power of the
component marketplace, uncontrolled RAD could in fact get very ugly, leading to
a kind of software anarchy.

91

2 The Software Process

2.1 The Process Spectrum

Let's go back to basics for a moment. If you're approached in the street and
asked to fill in a marketing questionnaire you may refuse or else fill it in as
quickly as possible. On the other hand if you're completing your tax return
you'll probably take great care and then copy it for reference next year so you
can re-use much of the hard toiled information. In everyday situations the means
must justify the end.

Software development is no different. All software processes can be considered
to be somewhere on a spectrum of rigor as shown in figure 1. An ultra-RAD
approach will result in software which will have so many bugs as to render it
unusable. The long term consequences of ultra-RAD approaches are in fact self
defeating. Because solutions are always geared to immediate needs software
never gets reused. This means that in the long term applications become
increasingly inconsistent. The same code has to be replicated in an increasing
number of places. Changes to that code are an increasing maintenance drain on
valuable resources. Conversely, the ultra conservative approach will never
actually deliver anything as management "pulls the plug" in frustration at
development inertia or "analysis paralysis". Attempts at software re-use will be
"theoretical" .

. ,
• <"

, ';,'-

~;~!f ~
\\':","

t .. t ~ t Mainstream Development t
Just Code it!

Solutions Components

Figure 1: The Software Process Spectrum of Rigor

t
Fonnal

Methods

92

2.2 Solutions and Components

Most mainstream development falls somewhere in the middle band of this
spectrum. The means must justify the end. The bottom-line is to trade off risks
and quality features in determining the rigor of process. Very roughly, to give the
reader a broad idea, solutions can be distinguished from components as shown in
table 1.

There is a wide target user community.

Sowing of re-use of legacy assets such
as legacy systems, databases and
software

Table 1: Solution Projects Versus Component Projects.

2.3 The Delivery Process

Responsible RAD is essentially a delivery process that can take various forms,
for example figure 1 illustrates a process which works well for object-oriented
projects using established modelling techniques such as use cases [4]. Feasibility
is essentially a scoping exercise which is expected to be completed once for a set
of requirements. This may result in several "sub projects" for sets of use cases
depending on the scale and complexity of the proposed solution. Analysis and
prototyping are pursued iteratively to bring requirements into sharper focus. This

93

results in identification of a number of use cases for which increments are to be
designed in terms of user services. Each increment undergoes a design,
acceptance and roll-out loop, with feedback iterating back to the planning of the
next increment and to adjustment of analysis where necessary. Prototypes
produced in analysis may be used to help drive the design, and may be evolved
into the working increment. The delivery loop is repeated in iterative fashion so
as to evolve the system in line with actual use.

~

Gi (
~~
~

Figure 2: The SELECT Perspective Delivery Process

2.4 Component Challenges

Although it is recognised that costs will be higher and pay-back periods longer a
component project should also be divisible into small increments that provide
regular tangible results in response to business needs. It is the level of rigor and
detail that is much greater with components, reflected in the techniques used, not
the delivery mechanism. The iterative incremental approach also works best for
component-based delivery. In fact most software delivery works naturally this
way. A "big picture" provides a context. Chunks of the picture are then honed
into sharper focus by working iteratively (a little analysis, a little design, a little
implementation and round again). However, components include four further
challenges:

94

• software re-use across different parts of the business
• potentially high risk factors
• demanding quality criteria
• the need to leverage legacy software.

These challenges call for more than a simple use case driven approach to
modelling and a software process which provides control and co-ordination of
projects.

2.5 The Waterfall Revisited

A common response to these challenges is another type of project that I see
regularly in my work as a consultant. This type of project is often faced with
integrating multiple legacy systems in with the new component technology. In
contrast to the "no modelling" projects, these projects often get bogged down in
the tar-pit of unnecessary modelling detail. It is argued that the only way to reach
the standards of rigor demanded for reusable components is to model in detail
producing separate logical and physical models across the enterprise.

It was no surprise to me to read the following survey result from Cutter
Information: "Only 7% of IT organisations have completely abandoned the
waterfall lifecycle approach to systems development, and 44% say they use it
most or all of the time on their projects! By contrast only 29% say they use a
RAD approach." [5] Too often elaborate theoretical models are produced which
do not result in useful software applications. Traceability between separate
logical and physical models becomes an administrative nightmare. Often, models
are "thrown away" in the rush to meet deadlines in the face of management
frustration at the modelling inertia associated with such approaches. This
situation is exacerbated by the fact that most methods virtually ignore the need to
leverage legacy systems and databases and package software. The major problem
here is not only lack of the right architecture, it's often that there's no
architecture at all.

3 The Role of Architecture

3.1 Service-Based Architecture

I use an architecture that helps to take a service-based view of software [6].
Services are accessed through a consistent interface that encapsulates the
implementation. Each service has a published specification of interface and
behavior. Components provide the interfaces. Services provide for a much more
effective molecular level of reuse based upon software structures that transcend
the individual atomic object. In contrast objects are usually too fme-grained to be

95

useful by themselves, seldom standing alone in enterprise systems. In fact,
providing its interfaces conform to standard, the component doesn't have to be
written in objects at all.

3.2 Service Categories

A user service delivers business capability through the software interface to a
business process. At a high level a user service is identified and developed using
use case modeling. At a lower level a user service may be split using probes or
operations into a set of smaller (more reusable) user services. A user service can
call on business and data services via operation calls.

Business and data services are usually shared by different user services. A use
case breaks down into a set of business service requests. Business services apply
business rules in order to convert data information. Data services interact with
physical data storage mechanisms and supply business services and user services
with data they need in a technically neutral manner. Business and data services
may be split using probes or operations into sets of smaller (more reusable)
business and data services.

The service architecture works on the classic basis of gathering content (data),
structuring and translating the content into form (information) and interpreting
information (business capability) (see figure 3).

Business Processes

fIJ' User Services

fit/! . Business Services

f/1I' Data Services

Figure 3: From Data to Business Capability

Business
Capability

Information

Data

96

3.3 Design Philosophy

The service-based architecture provides a design philosophy for re-use of models
at the high-end of the process, before any code is attempted, with
correspondingly greater opportunities to re-use business logic and to increase
software quality. Concepts from the standard Unified Modelling Language [7]
are applied in a pragmatic fashion; [8] provides more detail.
This architecture also helps capitalise existing services into new offerings or
products. Instead of starting each project every time with a "clean slate" sets of
service features are examined to see which can be reused to solve a business
problem. Software that is already proven to meet existing functional
requirements, but often fails to meet non-functional requirements is re
engineered to meet those non-functional requirements using the new component
technology.

For example, a recent project involved a dealing system in which various user
services provided visible functionality in the form of sets of window-based GUI
forms. User services included placing deals, authorising deals, setting up
schemes, removing schemes and so on. A set of reusable business services
supported the user services in their function. Business services provided by an
existing COBOL system included checking ability to proceed with a deal and
verifying security types. Other business services involved new functionality to
provide sophisticated fund switching. These business services used a set of
reusable data services to access the necessary fund data from a legacy database
transparent to the user. A solution project targeted development of a new GUI
system to provide the user services. Component projects focused on renovation of
the COBOL security systems and legacy fund database plus a new set of fund
switching business services in C++.

This way of looking at the process, illustrated in figure 4, also reflects the
stabilisation of distributed object standards and the emergent component
technologies which move us beyond the world of client-server into a world where
the network is a living system which evolves in harmony with business needs.
The Intemet applies this concept globally: it is based on a world network that is
more and more taking on the appearance of one gigantic computer. In
combination these technologies open up the possibility of a component
marketplace based on the consumer-supplier concept first defmed by Brad Cox
[9], who likened software development to the electronics industry where new
solutions are assembled from integrated circuits.

97

SOLUTION PROCESS

Solutions

Legacy Systems Traditiona l Models Legacy Databases Software Packages

Figure 4: Solution and Component Processes

4 The Impact on Quality

4.1 Balancing Risk and Value.

Risks must be assessed against quality features. How exactly though do we
"position" a process along the spectrum discussed earlier? The level of rigor
appropriate for a particular development is dependent on perceived value of the
software to be produced. For instance, if the main value driver is speed of
delivery of a simple data capture or inquiry system with a short lifespan then a
development process with little rigor may be appropriate. If, however, the
software is for a safety critical flight management system then maximum
reliability, accuracy and maintainability is required from the development
process.

Positioning of a suitable process along the spectrum of rigor is of course much
more complicated than described in the above simplistic scenario. For example,
perceived value is a function of many different software and process quality
features, which are traded off against acceptable risk. Software features include
quality attributes such as performance, security and usability [10]. Process quality
features include speed of delivery and effort involved [11]. Risks include user

98

computer literacy and system volatility. A full discussion of trading off risks and
quality features is outside our scope; the reader is referred to [12].

The salient point is that the appropriate degree of rigor in the development
process should balance the risk accounted value drivers. For example, acceptable
degree of rigor will be a function both of the speed with which early results are
required and the level of reliability and maintainability required for those results.
Often we find that processes are applied blindly without sufficient thought
concerning perceived value. For example, much umeliable and unmaintainable
software has resulted from first generation client/server developments working
exclusively to speed of development and look and feel of user interface as their
only criteria. Conversely other systems are over-engineered to the dictates of
elaborate standards, resulting in systems which are never actually delivered
because of very justified user frustration.

4.2 Component Team Roles

Team roles are an important part of the process. Solution team roles are already
well-covered in the literature [2], so excluded here for reasons of scope. The
component team roles include:

Re-use Manager: The re-use manager plans and controls the activities of the
component team, makes policy decisions concerning re-use and has a watching
brieffor overseeing component projects.

Re-use Librarian: The re-use librarian has a combination of administration and
technical skills. The role controls the generic models and repository and also
publicises capabilities of the generic models and repository. It is responsible for
checking in and checking out model items or components.

Re-use Assessor: The re-use assessor has good working knowledge of existing
systems, packages, databases, generic models and available components. This
knowledge is used to assess re-use opportunities (for example legacy systems and
local models) and to evaluate re-use requirements. The role identifies areas for re
use improvement and pollinates re-use across solution projects.

Re-use Architect: The re-use architect has overall vision, carries out architectural
scoping, identifies and acquires reusable components and carries out architectural
modelling. The role promotes the value of reuse, acting as a "reuse promoter".

Component Developer: This role codes and tests components and calls for highly
developed program design skills.

99

4.3 The Control Cycle

The major differentiator of the component process is that it includes a control
cycle as illustrated in figure 5. Let's look at the stages of this control cycle, which
are essentially proactive and ongoing:

Architectural Scoping: Sets of generic business requirements are analysed in
terms of business services and/or data services and generic models. Non
functional requirements are analysed in terms of an overall quality plan. Proposed
plans for services (emerging from the Plan Services stage) are gauged against the
models, which are adjusted where necessary. This activity is typically performed
by the re-use architect role.

Assessment: Assessment is a co-ordination activity which aims to pollinate re-use
across solution projects. It involves identifying and weighing up requirements for
services against the generic models. Potentially reusable services, may arise from
analysing legacy assets or as a result of analysing feedback from either solution
projects or roll out of components. Assessment also determines whether separate
feasibility and analysis stages are required. This activity is typically performed by
the re-use assessor role.

Plan Services: This includes identifying the type of project, and assessing risks
against quality criteria. The plan should provide an overall indication of the order
of delivery, the contents of each service and the estimated timescales and costs
and a detailed plan for development of the next set of services. This activity is
typically performed by the re-use manager role.

100

Delivery Cycles

Figure 5: Control and Delivery Cycles

4.4 Component Management

The interplay between solution and component processes requires effective
component management as illustrated in figure 6. Service-based component
management tools provide the ability to browse, install and register the
components in a repository. A good component management tool enables
organisations to make their components available to a wide audience via the
Internet. The tool provides facilities to make the use of the component
marketplace easier, by allowing users to register interest in particular catalogs of
components. The repository includes defmitions of component interfaces and the
services supplied through those interfaces. The repository should also enable
identification of models that are associated with the components and that we
compose, extend and adapt, through the modelling process. Also, in practice re
use is not a binary concept: a good component management tool should provide
facilities for controlling and administering levels of re-use as described in [13].
This activity is typically performed by the re-use librarian role.

101

SOLUTION PROCESS

HARVEST

I REPOSITORY I

~n~s #l:au
COMPONENT P.ROCESS SOW

Figure 6: A Service-Based Process

5 An Example

The following simplified example gives a small taste of how modelling
techniques, based on the Unified Modelling Language [7], are used in the control
process.

5.1 Architectural Scoping

Techniques such as domain analysis are used to plan our software architecture in
terms of packages . A package is "a general purpose mechanism for organising
elements into groups" [7]. Such elements can range from model items (classes,
use cases and so on) to legacy assets (for example, compiled code, transaction, or
database libraries).

A package diagram is used below to scope architectural dependencies (shown as
dashed arrows). Service categories are used to organise the packages (hence the
term "service package"). Typically, service packages are allocated to different
teams. Project management is facilitated by architecting service packages in early
phases of development. This also has the advantage that incremental design can
focus on specific implementation detail without being overloaded with wider
architectural concerns. Services are released in incremental fashion through a set
of evolving components.

102

I ~~ .1---------------1 ~~, 1 , , ,... ; ... , " ; "
; ... , ...

B*' ~~ EJ:UR~mG
CONSULTANTS L::J

, ,

Figure 7: Example Package Diagram

, ,

I'~ 1

SALES
PROMOTION

Class modelling is applied at enterprise level to understand the business domain.
High level business classes are allocated to packages as illustrated in figure 8.
The diagram is simply intended at this stage to provide a conceptual road-map.

, , , , ,
* LOCATIONS I

, , , ,

,

COURSE PLANNING I
COURSE TYPE REQUIRES.

COURSE MATERIAL

~mt I

~~Fn IF

I

CLASSIFIES·

*
I COURSE I

, , ,

• g~~ERIPTION

, , , ,
PURCHASINGI·

REQUISITION

~~L"BER
RAISE

Figure 8: Example High Level Class Diagram with Packages

103

5.2 Assessment

In assessment candidate legacy systems are evaluated for capability to provide
services. In our example Locations and Purchasing are infrastructure processes.
Locations business services are to be provided by a legacy system, Purchasing is
to use an existing database to provide data services, Course Planning is a business
process for which a new solution is to be developed to provide user services.

One of the use cases within Course Planning is Add Scheduled Course. A
solution project analyses this use case in terms of service requests as shown in
table 2. A component management tool is used to help search for the candidate
services.

Use Case Step

Find required course type from list of available
course titles
For each required run date List available
Enter start date venues
Find venue from list of available venue names
Request course to be scheduled, for chosen date Schedule Course
and venue, including requisition of course
materials

Table 2: Add Scheduled Course Use Case

Assessment assists the solution team in exploring how objects identified in
domain analysis might work together to provide services to support use cases.
UML collaboration diagrams are very useful for this, as shown in figure 9 for the
use case Add Scheduled Course. Note the UML path name notation to show
parent packages. Collaboration diagrams are also useful in detailed analysis and
design. Here their use is essentially exploratory. This technique is akin to CRC
cards [14] and can be applied that way using a white board.

104

~ IL -~~r----'I-~_~~~ - 3.1('reak:
3 Schedule
~ :COURSE PLANNING ~ :COURSE PLANNING

::COURSE TYPE ~
SERVICES
MANAGER

:LOCATIONS

~

:COURSE PLANNING
::COURSE MATERIAL

,PURCHASING
::REQUISmON

Figure 9: Example Collaboration Diagram for Add Scheduled Course Use Case (Normal
Scenario)

Obviously, I have only touched on many of the issues by way of illustration. As
development unfolds so further UML diagrams are bought into play. Use cases
are amongst the best documented of these techniques and are particularly useful
in solution development. The layering features of sequence diagrams are less well
generally understood but form an important vehicle for modelling the interplay
between different service types. Full details of our approach are described in [8).

6 Conclusion

Much current literature covers only the application of RAD to delivery of
solutions in isolation. Long term this is not conducive to producing good quality
software, which is a key requirement of components. To address the potential
conflict between RAD and quality I use a service-based architecture together with
separate control and delivery processes in which acceptable risks are balanced
against quality requirements. The value of modelling as a means of capturing
functional requirements is well covered in the literature. Less well understood is
the role of modelling at an architectural level. This helps expose quality issues
early in the process and brings solutions and components together in integrated
fashion.

105

References

1. Martin,1., Rapid Application Development, Macmillan, New York, 1991

2. DSDM Consortium, DSDM Version 3, Tesseract Publishing., 1997.

3. Stapleton, 1., DSDM - The Method in Practice, Addison Wesley Longman,
1997

4. Jacobson, I., Christerson,M., Jonsson, P., Overgaard, G., Object Oriented
Software Engineering: A Use Case Driven Approach, Addison-Wesley, 1992

5. Yourdon, E.N, The Yourdon Report, May, 1997

6. Mowbray, TJ., and Malveau, R.C., CORBA Design Patterns, Wiley, 1997

7. OMG, Unified Modelling Language Version 1.0, OMG, Framlington,
Mass., 1997

8. Allen,P. and Frost,S., Component-Based Development for Enterprise
Systems, Cambridge University Press- SIGS, 1998

9. Cox, B., Object-Oriented Programming: An Evolutionary Approach,
Addison Wesley, 1986

10. Gilb,T., Principles of Software Engineering Management, Addison-Wesley,
1988

11. Fenton, N.E., Software Metrics, Chapman and Hall, 1991

12. Folkes,S., and Stubenvoll,S., Accelerated Systems Development, Prentice
Hall,1992

13. Allen,P. and Frost,S., Component Manager, Select Software Tools White
Paper, 1996

14. Wilkinson, N.M, Using CRC Cards: An Informal Approach to Object
Oriented Development, SIGS Books, 1995

Transient Quality performance within the
'SPAN' of new Software Development Process

and Technology establishment

Nikos Lykouropoulos, Pb.D., Andreas Maniatis, M.Sc
I.M.F. Ltd., Atbens, Greece

1 Introduction
As the necessity for formal process and quality assessment standards is becoming
more and more accepted, the market position of a software producing organisation
tends to be determined by its quality performance. Driven by this impetus,
considerable effort has been assigned by a major percentage of the software
producing organisations within the framework of process improvement initiatives.

The establishment of new process elements resulted into important
organisational and labour changes. The introduction of these new process
elements may last from a few months to several years, depending on the current
status and the objectives of the organisations. During this period, the performance
of the organisations is affected both in efficiency and in quality. Although the
economical parameters of this disturbance can only be evaluated within the
context of each specific organisation, they are always interpreted into an increase
of cost.

The size of the necessary investment for process improvement can be
approximated referring to published case studies and available research results
from the government and the private sector. However, the risk, the performance
degradation, and the extra cost due to the adjustment period cannot be safely
estimated. The reasons for that are lack of appropriate data and significant
variance in the evolution of the phenomenon between apparently similar cases.

2 Process improvement within SPAN
During the last twelve months, IMF Ltd. has put on a great effort in order to
improve its process, methodology and technology. After an internal assessment
(an informal one) the company has been placed at the Initial Level of CMM. For
this reason it was decided to initiate a Process Improvement Effort along with the
simultaneous migration to new technologies and methodologies. This effort is
funded by an ESPRIT-ESSI PIE (SPAN-23896).

The company developed - and has already assimilated - a new iterative life
cycle model. This model is based on Boehm's Spiral Model [II and embeds
multiple, priority-driven, iteration levels. The main concept is the dynamic
definition of incremental deliveries based on the evaluation of quality parameters.
From the methodologies-technologies point of view, the' notions of Use Cases,
Object Oriented Analysis and Design (OOAD), and DCOM-CORBA component

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

107

technologies have been introduced. This new framework is being evaluated
through its application on two case studies comprising of nonnal company
business.

3 An Extended Quality Model
Quality estimation is based on quality models that decompose quality perception
into quality factors (which - in the general case - are external attributes of the
product). Nearly all available quality models deal only with the end product of
software development; that is the delivered system. However, software production
is also a service and a complete quality model must embody the service aspects as
well. Total cost and time of delivery are the most obvious parameters of
customer's concern. The scheduled time for first operation is very critical to many
applications. Apart from the development cost, delays in delivery are often
evaluated by the customer as cost increments as well.

IMF has developed a quality model that corresponds to the Service aspects of
its software development process. The overall quality model is based on McCall's
software quality model [2]. The primarily identified service-related quality factors
are On Time, In Budget, Observability, Controllability and Credit.

4 Results and Lesson Learned
The process improvement experiment is divided into two phases. The first phase
is dedicated to the preparation and infrastructure establishment, as well as to the
training of the employees into the new process and OOAD principles. The second
phase is dedicated to the development of two products using the new process. The
first project is a 'system service' exploiting distributed components and the other
is a typical 'data intensive' application developed using RAD technology. Metrics
defined into the new process are also applied on a third IMF's typical application,
developed using the previous company process.

The results can be reflected on the following conclusions: 1) The use of small
iterations (around to ten development days) result into less acceptance test defects
- an improvement of around 50%. 2) With the use of the new process there are
more, but with better overall effect, schedule revisions. 3) The use of Object
Orientation can degrade estimation accuracy in non compatible software (e.g.
system software) 4) There is a decline in company's productivity performance
during the period of extensive training and the introduction of the new process
and technology. If the introduction of new technology is - for some reason -
urgent, then better performance can be achieved by postponing the process
improvement till the completed and thorough assimilation of the new technology.

5 References
l. Boehm, B.W., A Spiral Model for Software Development and Enhancement, IEEE

Computer, May 1989, pp. 61-72
2. McCall, lA, Richards, P.K., and Walters, G.F., Factors in Software Quality, RADC

TR-77-369, 1977. Vols I, n, m, US Rome Air Development Center Reports.

Sedion3
Object Oriented Issues

Providing Support for the Integration of
Structured Methods and Quality Management

Systems

J Barrie Thompson, Helen M Edwards and Colin J Hardy
Software Engineering Group,

School of Computing and Information Systems, University of Sunderland, UK

Abstract

An appraisal of the state of the software industry with regard
to methods and quality is presented which highlights the fact
that methods are commonly modified in an attempt to fit
specific situations. The possible dangers in approaching this
in an informal manner are detailed and areas of concern which
the industry needs to address are proposed. The actions that
should be taken to ensure that quality is achieved are detailed
and a method, MEWSIC (Method Engineering With
Stakeholder Input and Collaboration), is outlined whose aim is
to formalise the development of situational methods so that
links to quality assurance processes can be retained. A high
level overview of MEWSIC is given and then detail of the two
stages in the method is given, bringing out the collaborative
nature of the approach. Finally an appraisal of the MEWSIC
method and its sphere of application is presented.

1. Introduction

The software industry, when considering quality, has tended to concentrate on
two aspects: the product itself (the software) and the processes involved in
producing that product. Assessing quality is fraught with difficulties since not
only is the fmal product - the executing code- intangible, but as many authors
have pointed out (e.g. [1]) quality itself is hard to defme and almost impossible
to measure directly. Thus the industry has tended to concentrate on the
production process and use the argument that:

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

109

"a quality process should lead to the production of a quality product" [2].

If this argument is accepted, the importance of a quality management system
(QMS) for the production of software and the accreditation of the QMS with
regard to a quality management standard becomes very clear. It is also obvious
that any QMS for software production must depend on well defmed production
processes. These will be best provided by well defined and rigorous
approach(es) such as structured method(s). The above argument can be rewritten
as:

"We can have confidence in the software (the product) if we employ a well
defined structured method whose use is quality assured within an accredited
quality management system." [2]

It is thus very clear that the ways in which methods are actually used in practice
can greatly affect the quality of the software.

In section two of this paper we present an appraisal of the software industry with
regard to methods and quality which highlights the fact that methods are
commonly modified in an attempt to fit specific situations. The possible dangers
in approaching this in an informal manner are detailed and areas of concern
which the industry needs to address are also proposed. In section three the
actions that should be taken to ensure that quality is achieved are detailed and a
method, MEWSIC (Method Engineering With Stakeholder Input and
Collaboration), is outlined whose aim is to formalise the development of
situational methods so that links to quality assurance processes can be retained.
A high level overview of MEWSIC is given in section four and then details of
the two stages in the method are given in sections five and six. These bring out
the collaborative nature of the approach. Finally, in section seven, an appraisal
of the MEWSIC method and its sphere of application is presented.

2 The State of the Software Industry

The public perception of IT as frequently promoted in advertisements on
television and in the press is that it is an industry of excellence where all is
possible now, or in just a few years time. In fact, the real state of the UK
industry is very different. The actual performance of IT was been summarised at
the start of 1996 as [3]:

"80 - 90% of IT investments do not meet their performance objectives; the
reasons for this are rarely purely technical in origin.

Around 80% of new systems are delivered late and over budget.

110

Most organisations are not good at evaluating the performance and impact
of their investments in IT"

These statements represented a quantitative summary of the views of 45 major
researchers and consultants in the UK drawing on results from around 14,000
organisations. A slightly brighter picture of an industry which continues to
improve, if somewhat slowly, can be obtained from the results of a number of
surveys undertaken by researchers within the Software Engineering Group at the
University of Sunderland which were reported at SQM 96 [2]. What these
surveys show is that (over the last ten years) there has been a continuing increase
in the use of methods and development tools and that software quality is on the
agenda within many companies. Nevertheless, this survey and related work has
also shown that often where organisations have invested in methods these have
proved less than ideal [,4,5], these results are in agreement with those of others,
for instance [6,7]. However, in many cases organisations have built up
development infrastructures around these methods and have invested significant
resources in trying to make them work.

One trend that has become clear is the use of what can be classed as "in-house"
methods rather than rigorous adherence to named methods, such as SSADM, [8].
Coupled with this is a desire by organisations to customise their methods so that
they will match particular situations. However, once developers decide that
complete adherence to a specific method is not necessary then the advantages
that practitioners and project managers see in methods are in danger of being
eroded. For instance, it is common for organisations with formal quality
assurance procedures and certification to have the use of a particular method
written into its QA system. Once the link with the "approved" method is broken
then the claim that work is carried out to approved standards is more difficult to
sustain.

There are, therefore, a number of questions which the industry must address if it
wishes to employ situational methods but retain the two arguments relating to
quality, highlighted in section 1. These questions, as we highlighted in 1996 [2],
are:
• How well specified are current methods as applied in practice?
• How appropriate are their frameworks for supporting a QMS?
• Where organisations adapt methods for particular projects, is this process

engineered?

How is the engineering of a method formally incorporated into a QMS
system?

111

3. A Solution

A solution to the questions proposed above is that each individual organisation
needs to have a formal mechanism for method adaptation which can be
rigorously examined within their QMS. In the academic environment method
adaptation is normally classified as an area of method engineering (see for
example [9,10,11]). This area of software engineering typically concentrates on
the technical issues involved rather than on the practitioner aspects such as
management and quality. To make the research developments in the field of
method engineering accessible to practitioners in the field we believe there is a
need to provide a methodological approach that can be explicitly followed and
can itself be quality assured. This process can then be used with confidence to
develop situationally specific methods. To ensure that the method developed is
appropriate we also believe that such a process must identify the stakeholders in
the project whose concerns will impact upon the type of method required for
development.

The method which we are proposing, MEWSIC (Method Engineering With
Stakeholder Input and Collaboration) encapsulates the two key features that
need to be considered by anyone concerned with formalising the development of
situational methods: these are the stakeholder input and the method engineering
process. Situational methods satisfy a real world desire to move from
"cookbook" approaches to appropriate methods. However, there is often a link
in organisations between their prescribed development methods and their quality
assurance processes and it is important that this link is not lost or weakened.
Uncontrolled method tailoring runs the risk of allowing this to happen, but a
formalised approach to the development of situational methods allows this link
to quality processes to be retained.

The second key feature to be addressed in answering the need for situational
methods is in adequately accounting for the number of stakeholders who have a
legitimate interest in the success of the project. Since these stakeholders have
different interests, concerns and skills it is necessary to distinguish between
those who provide input that informs the method engineering process and those
who carry out this process.

4. Overview of the MEWSIC Process

The purpose of MEWSIC is to provide software developers with a practical
approach which will ensure that decisions taken in the method engineering
process are recognised, justified and are capable of being audited. The approach
has two main stages:
I. Derive Situationally Relevant Factors and
2. Define the Method for Use.

112

Within these stages activities and deliverables are specified that provide a
mechanism by which the required development method can be defmed and
justified. This approach is adopted to facilitate quality assurance, since the
formalised manner which is adopted is amenable to auditing and objective
analysis. Such an approach also enhances the ability of an organisation to
replicate activities,· be aware thet a specific strategy has been developed and
identify those decisions that have led to high or poor quality results. In both
stages of MEWSIC collaborative work is undertaken: in the first stage the
collaboration is with all stakeholders who are affected by, or who affect, the
planned systems development project. In the second stage the collaboration is at
a different level since it is concerned with the engineering of the required
method. Therefore it relies on the technical skills and expertise of those who are
involved in the development and planning of software projects (typically, project
managers, team leaders and software engineers).

The first stage is iterative in nature and uses the techniques and concepts
associated with soft systems approaches and participative work groups (as used
for instance by Checkland [12] and Mumford [13]). This first stage involves
work by two teams of people: a technical team whom we term "Method Design
Team (MDT)" and a larger group representing all stakeholders the
"Collaborative Stakeholder Group (CSG)". The identification of stakeholders
can assist in the derivation of areas of concern, or conversely acknowledgement
of areas of concern can lead to the detection of previously omitted stakeholders.
The output from this stage is an defmition of stakeholders for the specific project
(and their relative importance) and a mapping of the prioritised concerns to these
stakeholders. This frrst stage is discussed in more detail in section 5.

Once this primary stage has been completed the second stage can begin. It is in
this stage that the systems development method is engineered by the MDT and is
based on the concerns that have been identified by the stakeholders. For many
organisations this stage will begin with an examination of their existing methods
to determine if any of these is suitable and whether changes need to be made.
However, this stage is flexible enough to allow the method design team to
construct a method from individual components - if they have the competencies
so to do. (It is worth noting that this is an example of an "area of concern" which
should have been addressed in the frrst stage of the MEWSIC process). Again,
during this second (method engineering) stage the decisions which are made and
the reasoning supporting them would be explicitly recorded. This second stage is
discussed in more detail in section 6.

113

5. MEWSIC Stage 1: Derive Situationally Relevant
Factors

This stage has five main tasks within it:
1-1. Identify Initial Stakeholders.
1-2. Identify Initial Scope of the Project
1-3. Identify the Areas of Concern and Additional Stakeholders
1-4. Prioritise Areas of Concern and Stakeholder Importance
1-5. Map the Areas of Concerns to Stakeholders
These are shown diagrammatically in Figure 1.

In Step 1-1 "Identify Initial Stakeholders" the Method Design Team (MDT) use
the project initiation document (or project scoping document) and any existing
template of stakeholder defmitions to define those stakeholders (not individuals)
who are expected to be affected by or affect the project: and thus the influence
the design approach used. Typical stakeholders are, for instance: the project
sponsor, the project manager, the team leader for the development team, the end
user, the operations manager. Once these stakeholders have been identified a
representative is nominated to contribute to the "Collaborative Stakeholder
Group" (CSG), who are involved in steps 1-3 to 1-5. This group includes the
method design team as they are also stakeholders in the process. Step 1-2 is
carried out in parallel with Step 1-1, in this step the document that initiates a
project (such as a project initiation document or project scoping report) is
examined to identify the general feature that are of relevance to the project and
its development approach. Such features would include, for instance, project
size, complexity and importance to the business.

Once these initial two steps have been carried out the remainder of the stage is
undertaken by those who make up the Collaborative Stakeholder Group.
Although the activities are broken into steps and the basic sequential flow is
shown in Figure 1 it would be expected that these would be carried out
iteratively. In Step 1-3 the areas of concern within the project are identified
using approaches such as participative work groups to identify the areas of
concern that exist for each set of stakeholders and any additional stakeholders
that are revealed as a result of this process. The outcome of the step is a list of
areas of concern for specific stakeholders: these areas of concern are analysed to
ensure that equivalent concerns from different groups are matched up. In Step 1-
4 the CSG then move on to prioritise the areas of concern, order the stakeholders
in terms of importance for the project and produce a mapping of areas of
concern to stakeholders whose topology reveals the range of areas and level of
concern. It is this mapping that is used as input into the second stage of the
method.

114

"Stakeholders"
Project Project

Initiation Initiation
Template Document Document

1-1: IDENTIFY INITIAL r 1-2: IDENTIFY INITIAL
STAKEHOLDERS SCOPE OF THE PROJECT

(MDT)
\..

(MDT)

CSG Project Project QA
Initiation Scope Procedures
Document

,
1-3: IDENTIFY AREAS OF CONCERN AND"

ADDITIONAL STAKEHOLDERS
(CSG)

"- ./

Additional Areas of Concern
Stakeholders Relevant Stakeholders

"Areas of
Concern"

, 1-4: PRIORITISE AREAS OF CONCERN "I Template

AND STAKEHOLDER IMPORTANCE
(CSG)

Identified Areas of Concern
Identified Stakeholder (Importance)

'1-5: MAP THE AREAS OF CONCERNS
TO STAKEHOLDERS

\..
(CSG)

Concerns Map

Figure 1: The Steps of Stage 1: Derive Situationally Relevant Factors

115

6. MEWSIC Stage 2: Define the Method

In this stage the participants involved are limited to the method design team
(MDT). This team is typically composed of:

• the project manager: this stakeholder has responsibility for the budget, the
allocation of resources, ensuring confonnance to QA standards, and the fmal
deliverable (the live system).

• the project team leader: this stakeholder has responsibility for the specific
project, the management of the development process, the organisation of the
team, the operational issues affecting the team, and confonnance to QA
standards.

• the software engineer: this stakeholder has responsibility for the development
of elements of the specific project, possesses expertise in certain
development approaches, is responsible for achieving hislher set task
deliverables.

The stage consists of two steps:
2-1. Design the situational method
2-2. Validate and Verify the Situational Method.

The main activity is carried out within the Step 2-1. The method design team
have as inputs to this step:
• The prioritised areas of concern and list of stakeholders for this project
• The "Concerns" map for this project
• The defmitions of the methods, techniques and development tools available

to the development team.
• Historical "Concerns" map for previous projects and the associated

situational method.

With these inputs the team can begin the method engineering process. This
process is particularly dependent upon the relationships between these
stakeholders and the method aspects. The method engineering activity can be
complex and is based upon the approach discussed in [11]. More details,
including examples can be found in [14].

The second step in the stage is needed to ensure that the proposed situational
method actually matches the "concerns" map from Stage 1. If this is acceptable
then the process is complete and the system development activity can begin in
earnest. If, however, there is a mismatch then the MDT needs to provide an
analysis of the mismatch and identify to which part of the MEWSIC process
they need to return.

116

7. Appraisal

The main features of MEW SIC are that it fonnalises the development of
situational methods and explicitly focuses on the method engineering process
and stakeholder input and collaboration. Since these stakeholders have different
interests, concerns and skills MEWSIC distinguishes between those who
provide input that infonns the method engineering process and those who carry
out this process. A primary feature for those concerned with QA is that the
fonnalised approach ensures that the link between development methods and
quality assurance processes is retained. However, it also offers the following
additional benefits.

7.1 An Explicit Audit Trail

The use of a fonnalised method with specified tasks and identified deliverables
ensures that an audit trail exists. This trail reveals: the decisions that have been
taken (with the supporting justification), the concerns that have been articulated
and defended. It thus reveals how the method used for a project was derived and
judged to fit the required system and its development. The verification and
validation step in the method provides confidence in the fit of the method to the
project and its areas of concern. Therefore, this mechanism also increases the
likelihood that such decisions could be justified and repeated for another similar
exercise.

7.2 Knowledge Sharing

In these days of impennanence and change in working patterns, knowledge
sharing and technologically assisted methods of collaborative working are
essential for the corporate being, if not the individual. However, there are
advantages for the individual also in that novices can be trained more effectively
and that knowledge can be transferred even among experienced staff (since it is
rare for one person to hold all the skills required within an organisation's
software department). The articulation and justification of decisions that has to
be made during the MEWSIC process enables software development teams and
their stakeholders to share knowledge. In the technical area this is particularly
important as it facilitates the learning and acquisition of skills from experienced
personnel (such as project team leaders) to more junior systems developers. This
addresses the problem that has been reported to us, in our empirical data, by
software developers whose ability to customise methods is gained through
personal experience. The MEWSIC approach of explicitly acknowledging the
issues that are used to design a method helps to unearth the tacit knowledge that
is often held by experienced software engineers.

117

7.3 Ownership

The two stage approach of MEWSIC encourages all stakeholders to "buy into"
the system design process and feel ownership for the project. Therefore, the
progress and success of the project is a common concern. This reflects the
advantages of any participative approach, many of which are used in systems
development, but it broadens the participation and ownership from a focus on
the product to include the development of that product.

The future work on the MEWSIC method will concentrate on the further
definition of the detailed tasks within the method and the testing of the method
at case study sites. Some work has already been undertaken to develop the
repository that is needed to support the method and this will continue,
particularly focusing on the information retrieval and presentation issues.

Finally, for those organisations concerned with progress along the CMM levels,
the MEWSIC approach offers one tool to help in continually improving their
development processes by providing synergy between an individual
development and the method supporting it.

References

[1] Kitchenharn, B. Towards a Constructive Quality Model (COQUAMO) Pt. I
and II, lEE Software Engineering Journal, 1987, Vol 2. No 4.

[2] Thompson, lB, Hardy,C.J and Edwards,H.M. Structured Methods:
Helping Software Quality or Raising Problems. International Conference
on Software Quality Management, SQM96.Cambridge .ApriI.1996.pp449-
459.

[3] Clegg,C et al. The Performance ofInformation Technology and the Role of
Human and Organisational Factors. Report to the Economic and Social
Research Council, Swindon, UK., January 1996.

[4] Hardy, C.J., Thompson, lB., Edwards, H.M. The Use, Limitations and
Customisation of Structured Systems Development Methods in the United
Kingdom, Information and Software Technology, Vol 37, No.9, p.467,
1995.

[5] Hardy, Colin J., Thompson, Barrie J., Edwards, Helen M. Problems
associated with the customisation of structured methods in the UK, BCS
Conference on Information Systems Methodologies, Wrexharn. Also
presented at The Nineteenth Annual International Computer Software and
Application Conference, COMPSAC '95, Dallas, 1995

[6] Dekleva, S.M. The Influence of the Information Systems Development
Approach on Maintenance,MIS Quarterly, September, pp355-372, 1992.

118

[7] Palvia, P. Nosek, J.T. A Field Examination of System Life Cycle
Techniques and Methodologies, Information and Management, 25, 73-84,
1993.

[8] Fitzgerald, B. The Use of Systems Development Methodologies in
Practice: A Field Study. Information Systems Journal, July 1997, Vol 7 No
3, pp201-212.

[9] Harmsen, F, Brinkkemper, S, Oei, H. "Situational Method Engineering for
Information System Projects", In: Olle, T.W., A.A. Verijn-Stuart (Eds.)
Proceedings of the IFIP WG8.1 Working Conference CRIS'94 Maastricht,
1994,pp.169-194

[10] Punter, T and Lemmen, K. "The MEMA-model: towards a new approach
for Method". Engineering, Information and Software Technology, 38,295-
305, 1996.

[II] Hardy, C.J, Edwards, H.M and Thompson, J.B. "The Unification of
Method Engineering Approaches", 4th Conference, BCS Information
Systems Methodologies Group, pp. 439-450, 1996.

[12] Checkland, P., Scholes, J. Soft Systems Methodology in action, Wiley,
1990.

[13] Mumford, E. Effective Requirements Analysis and Systems Design: The
ETHICS Method, MacMillan, Basingstoke. 1995

[14] Edwards, H.M, Thompson, J.B and Hardy, C.J. Developing Situationally
Specific Methods through Stakeholder Collaboration. Submitted to IEEE
compsac98.Vienna, August1998.

"Can You Have It All?": Managing The Time
And Budget Against Quality Issue in A Dynamic

Business Object Architecture Development

KSY HUNG1 , AJH SIMONS2 and A ROSE3

1,2 Department of Computer Science, The University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, SI 4DP, UK
e-mail: 1k.hung@dcs.shef.ac.uk;2a.simons@dcs.shef.ac.uk

3 CAD Consultants Ltd.
797 London Road, Thornton Heath, Surrey, CR7 6XA, UK

e-mail: 3tony.rose@btrinc.com

ABSTRACT

It has been widely observed in the information technology (IT) communities that IT
developers are coming increasingly under more pressure than ever in juggling
between software quality and timely delivery in a tight budget. Developers are tom
between the dilemma of either delivering quality software at a price of longer
development time and higher cost or delivering software in a timely fashion
neglecting quality. Many attempts have been made to tackle the challenge of: "Can
We-Have-It-All?". This paper recommends an approach to manage time and budget
against quality and aims at achieving this tripartite objective. The paper covers the
development of a Dynamic Business Object Architecture (DBOA) and its
implementation through an insurance project case study. The structure and approach
of the DBOA are explained through the development process and the case study is
presented to demonstrate the initial result of this approach. Some insights resulting
from applying the above techniques are also discussed.

1. Introduction
In the competitive business environment, software technology now plays a crucial
role in providing increased lead time (shorter time to market). Electronic
Information Systems (EIS) have become an integral part in most organisations [18].
It is a common goal amongst business organisations .to improve the quality of, and
gain added value from, their information processing application for a minimum
investment in time and cost. In respect to the software quality issue, Object
Orientation (00) is currently regarded as a better alternative for developing quality
software than conventional structured methods [5]. 00 promises, with its focus on
encapsulated components, better maintainability, extensibility, scalability,
portability and reusability. Furthermore, Business object technology has been
developed to capture and defme a model of the user's business and its information
processing requirements [9,12]. A Business object is a coarse-grained object
abstraction that encapsulates a typical, generic business task, adapted for a particular

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

122

business domain [6,1]. Business objects are incorporated in a Business Object
ArchItecture (BOA) [2], which is a re-configurable framework for handling the
communications amongst business objects within a business domain. However,
those techniques only swing the pendulum towards improving software quality
regardless of the cost and time.

In regards to time and budget, Rapid Application Development (RAD) [11] is
increasingly being adopted as the best way to deliver systems quickly and at low
cost in many situations. The downside of RAD is that the pendulum swings towards
shorter development time and reduced costs, at the expense of quality. As a result,
software may be bug-ridden, or poorly structured which makes it difficult to
maintain. The Dynamic Systems Development Method (DSDM) [3,15] has been
adopted to impose a software life cycle on RAD and improve project management.
However, this does not fully address the core issue of software quality, which is
more affected by the development techniques used to capture and model business
information.

This paper presents an approach that combines BOA and DSDM to provide a
"Dynamic Business Object Architecture (DBOA)" [7] to develop quality software
applications within practical time scales and for minimum costs. Projects using
BOA techniques are implemented within the DSDM life-cycle environment. A
credit insurance project case study was carried out using the DBOA approach to
look at areas involving time and budget against quality. The structure of the rest of
the paper is organised as follows. Section 2 outlines how Business Objects provide
a mechanism to assist IT developers to understand the business domain better.
Section 3 describes the adoption of a Business Object Architecture (BOA) to
manage complexity encountered when reusing business-related software
components. Section 4 describes the development of a Business Object Repository /
Reuse Library to enhance the reusability of Business Objects. Section 5 addresses
the necessity to involve business end-users to ensure the effectiveness and
usefulness of the BOA to the business. Section 6 presents a DBOA framework
applying the BOA coupled with DSDM life-cycle implemented through an
insurance project case study. Section 7 evaluates the outcome from the case study.
Section 8 justifies the balance between time and budget against quality by using a
'S.M.A.R.T.' evaluation criteria framework to evaluate the DBOA in terms of its
'Scalability', 'Measurability', 'Achitevability', 'Reusability' and 'Time-manageability'.
And fmally, section 9 concludes this paper and outlines further research work.

2. Business Objects And Business Object
Architecture

2.1 What is a Business Object?
Object Management Group (OMG)'s defmition of Business Objects as: " ... a
representation of a thing active in the business domain, including at least its
business name and definition, attributes, behaviours, relationships, rules, policies,
and constraints. A business object may represent, for example, a person, place,
event, business process, or concept. Typical examples of business objects are:
employee, product, invoice and payment ... " [16]. Business objects can be viewed
as Modelling Objects, used in the design process and as objects in the information

system as illustrated in Figure 1. IT developers extract that 'modelling object' from
the business and transform it into software components structured in Object
Oriented (00) style, so that the modelled information can directly reflect the shape
of the business model.

A typical example or
bUllae •• proc such
as take order,
rill order rorm • nd

deliver eood.

Aa uampleor
Object-oriented dOlleD
c1 ... aad object d._lrlm

2.2 Development of a Business Object

DaUbale
ManOlemeat
System.

Standards are currently being developed by the OMG Business Object Domain Task
Force through a request for proposals (RFP) from the software developers and
academic researchers. The RFP is still under review pending for agreed common
standard. At the moment there is no standard approach or method for creating
business objects. To meet this need, we have combined Jacobson's Use Case
Engineering (UCE) [9,10] and Ramackers' Domain Business Object modelling
approach [13], as shown in Figure 2.

State
Transition

Business Use
Cases & Business
Objects

Figure 2 : Development of a Business Object

123

124

We use the sequence diagram, which gives an overview of the business
processes; and the state transition diagram to describe the business processes step
by-step. The use cases and actors bring out the names of the tasks and how they are
perfonned. These use case and object diagrams convert data into 'entity objects',
processes into 'control objects' and actors into 'interface objects', these three different
kinds of objects playing different roles. Since UCE does not provide any further
techniques after the business use cases have been converted to business objects, we
have adopted Ramackers' Domain Business Object to visualise all the components
and relationships within a business object. Then we move on to object and class
diagrams for implementation.

3. Business Object Architecture
3.1 Problems of Business Objects
We djscovered the need for a different approach to modelling business objects after
experience with using the VCE approach alone. We found that Jacobson's method
did not produce business objects that were flexible enough for reuse in different
contexts: the use-case driven approach tended to fix the interfaces of business
objects; and the objects tended to be too coarse-grained, encapsulating business data
and business processes in ways that were hard to break apart. In reality, businesses
always face a situation in which different business operations might share common
processes, tasks and data. If we develop coarse-grained business objects one after
the other and put them together within a business domain, we will end up with
object redundancy I object overlapping. For example, when we want to perform
some business transactions such as invoicing and insurance claims, we need to
involve customers. Does it mean that we need to include the customer object in both
the invoicing business object and insurance claims business object? If so, we are
overlapping the customer object. If not, how do we share the same business
processes and objects? Moreover, we also need workflow direction to describe the
sequencing of different business transactions, and the way in which these sequences
may be broken apart, adapted and reused.

3.2 What is an Architecture?
The problems of Business Objects have prompted the adoption of a business Object
Architecture (BOA). An architecture is a set of rules to defme the structure of a
system and the interrelationships between its parts. The components within an
architecture are the basic building blocks and tools. An architecture also contains
patterns, which advise on how to combine basic components using the tools. The
functions of a BOA are to represent the components that are used to 'model' the
business problems and build the system [2].

3.3 BOA Framework
As with Business Object, there is no standard way to develop a BOA. Our approach
is to adopt both top down and bottom up directions as shown in Figure 3. After
defming the business process from a high level, we then identify all the necessary
entity objects from the bottom up. Finally, we develop the business objects in the

125

middle layer by collecting the appropriate business processes, functionalities,
attributes and operations together. Those business objects do not hold the business
processes or the entity objects. Instead, they point to them when they want to use
them. Different business objects thus share a single business process or entity
object. The benefit of it is that when we change any business processes or entity
objects, the updated versions will point to the relevant business objects. Another
benefit of the BOA is that not only can we reuse the business processes and the
entity objects but also we can reuse the business objects as a package. The reuse of
business object will substantially improve software quality as developers can reuse
the pre-defined and pre-tested object components.

BUSiNESS
PROCESSES

BUSINESS
OBJECTS

4. Business Object Repository / Reuse Library
4.1 Business Object Repository
The BOA framework emphasises the reuse of business processes and object
components, the aim of the business object repository is to materialise it. Figure 4
shows the infrastructure of a business object repository in which the entity objects
are at the central layer representing the common database in an organisation. The
business processes, which normally form the common functionality in the business
domain, are situated in the second layer. The outside layer contains different
business objects. Both the entity objects and business processes are shared by the
business objects.

126

4.2 Reuse Library
Ideally a reuse library is to be run in a CASE tool environment. As illustrated in
Figure 5, the business process and entity object directories are the sub-directories of
the business object directory. For example, if we click open the credit limit
application (CLA) business object folder, the sub-folders of business process and
entity object will prompt out on the screen. If we click open these sub-folders, all
the relevant business processes and entity objects files will display on the screen. In
this business object directory, those business processes and entity objects are "read
only" files. If we want to edit any of these files, we need to go to the business
processes and entity objects main directories to do the changes. The updated
versions of the business processes and entity objects will point back to the sub
directories of business processes and entity objects in business object main
directory. The benefit of which is that we only have to change once no matter how
many times the business processes and entity objects are reused by different
business objects.

Figure 5: Reuse Library

5. Dynamic Systems Development Method
The Dynamic Systems Development Method (DSDM) is a formalisation of Rapid
Application Development. Other than rapid development, DSDM also forms a
vehicle to drive the IT developers and the business end-users together through its
holistic approach such as emphasis on substantial end-user involvement, joint
application development and joint requirement planning, function points, time
boxing, clean room technique, project estimation, usability testing, configuration
management, change control, quality assurance and software procurement.

Traditionally, developers tend to put a subjective view on their work presuming
that is what the real world needs. DSDM's fundamental assumption is that nothing
is built perfectly first time. As a result all steps can be revisited as part of its
iterative prototyping life-cycle. Therefore the current step needs be completed only
enough to move to the next step. DSDM not only provides a life-cycle but also the
necessary controls to ensure its success.

127

6. Dynamic Business Object Architecture
6.1 The Framework
The DBOA framework showing in Figure 6 is aimed at throwing one stone at two
birds namely the 'quality' bird and the 'time & budget' bird. It is an integration
between the BOA and DSDM. Amongst each life-cycle there is an incremental
prototyping approach through these phases moving anti-clockwise from the top with
feasibility studies, functional prototype, design prototype and implementation. The
black arrows show the transfer points from one phase to the next and the grey
arrows show where the development can easily return to an earlier phase. The white
arrows indicate that the BOA model can always be re-architectured at different
stages of the project phases.

Figure 6 : Dynamic Business Object Architecture

6.2 Case Study Implementation : A Major Debtor Profile
System for a Credit Insurance Agent

6.2.1 Background of the Project
The case study was carried out at a credit insurance agent, CAD Consultants
Ltd.(CAD). When there is a transaction between seller and buyer, the buyer is given
a certain length of credit period after the receipt of goods. The seller then insures
the value of the products. Credit insurance is to protect the sellers (i.e. the insurance
policy holders) from insolvency if their buyers fail to pay after the credit period. It
is a commercial coverage by a contract binding a party to indemnify another against
specified trading loss in return for premiums paid. CAD not only manages
insurance policies on behalf of its customers but also has to detennine the 'Credit
Risk'· of each buyer as well as the global risk exposure (political, economic,
geographical) of the buyers' countries. This case study is to develop a Major Debtor
Profile System to monitor the debt exposure. Under the credit insurance terms and
conditions, any buyers who have credit are referred as debtors. The purpose of this
project is to provide decision support to the business end-users on the
approvaVrejection of any future credit insurance applications.

128

6.2.2 Joint Requirements Planning (JRP) and Joint Application
Development (JAD)

A 'Project Development Team' was formed consisting of three IT developers and
four business end-users. After the initial JRP meeting of feasibility and business
studies, JAD meetings took place at the end of each of the time-boxes. These took
the form of a review of that time-box phase, and identifications of requirements for
the next phase. During these 'End-of-project-phase' meetings, end-users were
invited to test the prototype on-screen. The IT department staff would collect the
end-users' comments and feedback to modify the prototype.

6.2.3 Project estimation by using function points
The project started with an estimation of the project size by using function points
which are a method of estimating the "amount of functionality" required from an
application and is also used to estimate project completion time and resources
(human and fmance) required. The basic idea involves counting screen inputs and
other features of a description of functionality [8]. Figure 7 shows the essentials of
this estimation.

The estimation works by identifying each function as easy, medium or difficult
in terms of expected development 'complexity'. Function points were set after the
Joint Requirements Planning (JRP) meeting with the end-users where requirements
were obtained from them. As function points are the units used to measure the
project, should there be changes in the user requirements during the project phases,
the function points table will need to be re-scheduled accordingly. It is important to
note that within a fixed timescale, it would be impossible to accommodate extra
functionality without changes to the function point estimation. Therefore there are
significant implications for the cost and/or duration of the project if such changes
are required.

Functions Poiall Eldmated
Allocated developer-boun
(1-,.; (euy-6 boon;
l-medlum; medtum-l1boun;
J"IIlmcult) dlmcult-llbaun)

Declarod Month I Year (user entry) 1 6
CUltomer No. (user CDtry) 1 6
CUltomer N (lIII0 diJplay) I 6
Policy No. (auto display) I 6
Pohcy N (auto diJplay) I 6
Chait Rc em>cc No (Iller entry) I 6
CAD Buyer No. (lIII0 diJplay) I 6
Buyer N (auto display) I 6
Country Code (auto display) I 6
Amount (user cotry) I 6
Curm>cy Code (auto diJplay) I 6
GBP BquivaJ ... t (auto display) I 6
laaurod Limit (auto diSplay) I 6
ToW amount or ""1.I,n GBP equivalent) for a partlcular debtor should be added up and shown at dre l 18
bottom of the scrm> (auto display)
The ... try 0 Major Debtor Profilerocord is done monthly. TfIIII erp iDUlll1Ollth to history 2 12
The new screen for entry of =t month's !<COrd will be cloned !tOm previous month and the end- I 6
uscn overwrite it
Repon by Debtors I 6
Repon by Curmtcies I 6
Repon by Countries I 6
Repon by Customm I 6
Repon by Period (i.e. monthly !<COrd) I 6
Repon by Amount (rn GBP) I 6
Repon by!eams I 6
UpdateMlln Menu I 6
TOlal: 27pomll 162 hourS

Flgure 7 : FunctIon Pomt for Major Debtor Profile System

129

6.2.4 Time-Boxing

Figure 8 : Time-boxing for Major Debtor Profile System

As suggested by the DSDM manual, "Requirements can change, time can never
slip" so heavy emphasis is placed on the importance of time-boxing technique as
shown in Figure 8 to ensure project will be delivered on time thus within budget.
DSDM defmes time-boxing as 'setting a deadline by which a business objective
must be met', and suggests that the boxes are set for the clearly defmed delivery
objects. This project consists of five time boxes namely:-
• Time-box 1 : Feasibility / Business Studies : To get to know the user

requirements. The project provided quite clear-cut requirements, in the
technical context of a general need to provide information on all the current
debtors for a particular customer. The Major Debtor Profile Interface is in fact
a consolidation of different database files such as Customer, buyer, Credit
Insurance Policy, Country, Currency and Exchange Rates. The Major Debtor
Profile system correlates relevant data fields from different database files to the
Major Debtor Profile Interface. When the users enter the customer reference
number, this customer reference number data field will trigger other correlative
data fields to display all the existing debtors' details for that customer as well as
the insured limit where CAD's customer is allocated to each buyer. Over and
above these features, the end-users can also view a profile by currencies,
countries and period etc. This Major Debtor Profile system is to assist the end
users in making decision whether to approve or reject any future credit
insurance application on a particular buyer.

• Time-box 2 : lSI Phase Functional Model Iteration : To produce a version of
the working system, from analysis and design model, notation to
implementation, that could demonstrate to the user the essential features
required to enable a user view the Major Debtor Profile and to test the
prototype.

• Time-box 3 : 2nd Phase Functional Model Iteration: To provide essential
functionality to the model. The first phase had been mainly concerned with
user interface design, with little in the way of 'business functionality'. An
important issue of this early work in Phase 2 was to revisit the BOA framework

130

and its break-down to find out whether the conceptual model was the right
shape to drive through to deliver systems / applications to the business.

• Time-box 4 : Design and Build Iteration: To design and actually build the
system. Hence by the end of this phase the system must contain absolutely all
functionality, in a form which is suitable for testing.

• Time-box 5 : Implementation : To test the system with the end-users which
was purely to test the reliability and to debug the system. No extra
requirements from the users were accepted within this Time-box. If the user
had wanted to make further changes, we would have had to reschedule the
project development life-cycle. During this project, end-users' approval was
obtains and User Guidelines were prepared. Staff training programmes were
conducted before system configuration, data take-on and system went live.

6.2.5 Prototyping Strategy
As time-boxing controls the pace of design and development that is so

essential to the project, computer based techniques make this feasible. It would
indeed be quite impossible to entertain the idea of tight schedule time-boxes without
a means of maintaining both design documentation and implementation in a flexible
and responsive way. The implication for the quality of the delivered product is quite
clear. Therefore, the criteria of both the Business Object design model and interface
prototype must clearly reflect the business, be flexible to change, quick to build /
assemble and support reuse. In this project, a prototype strategy was to produce a
version of the working system. During the feasibility and business study phase, a
major debtor profile business object was created as shown in Figure 9.

Figure 9 is the breakdown of Figure 3 (Business Object Architecture) specifying
one single aspect of the Major Debtor Profile. On the left hand side of Figure 9, a
business process model starts with an Event diagram followed by an Interaction
diagram, Use Cases and Actors, Use Cases and Objects, Complete Use Cases Model
and Business Use Cases and a Business Object diagram. On the right hand side of
Figure 9, relevant Entity Objects and their other components are identified to be
used for the Major Debtor Profile Business Object.

The Unified Modelling Language (UML) notation [17,4] was chosen as the
design notation for this project, as shown in Figure 10.

~~
I !f~~:::

I ~~- ,
'~,_, __ .-"--.----:" '
I ::::~. I
I E:::'::: __ ~. I

I :;;:J~ I
I .- I

I ________ 1

Figure 10 : UML notation

131

The interface was constructed using System Builder Plus [4] 4GL GUI tools to
develop the interfaces that could be demonstrated to the users the essential features
required to enable the application to be developed as shown in Figure 11.
~ --:'I~"r ---""<;---r- nO --

- -'~:"~1.~",,~1{~_"'~ """"'. - • "

Deel.,..d Month : 0'1 Cueto •• ,. No : 683' BTR INC LTD SERCIt AYIATION DIV
v..... : 1'91 Polic" BlRI BTR Int n.tton.l Polic"

Out.t.nd i ng Debt.
CU.nt R.f CAD No BullJ.." H... Ct\l A.ount Cur laP Eqv Cl lent l.t
BIROOS ____ 009307 LORI"ARK INC A US lIZ. eeo GBP 112 . 0eO nt.oee
AYlee, 88'+685 AYIRLL 'SERYICE US "9 . He Gap 11t ,ee. 13. , •••
CATee, ea,,,.,, CATtiAV PACIF'IC HK t:lt. e •• GoBP 1 3' , eee 288 . e.e
CER002 00'''2'+ CENEAAL [lECTR US 21" . '" G.aP 2"."e 3SD .eee
,"VLeet 0103') 1;0llT OF INDIA IN U, . He Go8P 12',808 218 , 800
NE.. 00'+5." KOREAN AIRLINE KS t26 . H. GBP 12' ,.8e zee .e.e
PARG01 818182 UNITED TECH CO us ,7'.001 c.aP 57' ,088 758 .•• 0
ROL001 0002)) ROLLS-ROYCE PL GB "1 . 000 GBP 111.0ee ,ee . eee
SNEe01 8 18 1 o't SNECMA SA/STE FR ''''2 . ••• GoP' '''12 , e.e '58 . eee

2,2"'2.888 2 . 2"2 , 888 GaP

7. Project Evaluation
The 'Major Debtor Profile System' project had been delivered on time and was in
operation. The BOA model was considered to be satisfactory as a vehicle to
communicate with the end-users and interpret the business requirements for the new
system and how it linked with other business objects. At the end of the project, the
user community was satisfied, and had clearly felt very much involved in the whole
process. The [mal success of the project was felt by the complete 'team'; not only
the developers, but also the equally essential end-users who had been so actively
involved in the JRP and lAD sessions and the user acceptance testing. The result of
this case study has highlighted a few areas in which we feel that the DBOA showed

132

particular strength. These areas have also painted a picture of a successful
interpretation of the method for a DBOA development in that:
• The reuse of existing business processes and entity objects within the BOA has

reduced the development time and effort.
• The gap between the conceptual model and software implementation had

obviously been narrowed. Had it not been the DSDM approach, we would not
be able to check whether our conceptual BOA model is the right model for the
business. The definition of good quality is largely the suitability to the business.

• Communication between developers and end-users was much better. The users
were very much involved, to the point where 'the team' was quite defmitely a
description applicable to the mix of people, developer and user, involved in the
project. There was an integration of the two roles; a change of relationship from
supplier/consumer to partnership. The fmal system was our system, not their
system. Equally significantly, if not more so, the users enjoyed the experience of
taking responsibility for their own system. It is also worth mentioning that the
experience was (most of the time!) enjoyable for the developers.

• The holistic approach, as a result of this partnership, has enabled the developers
to obtain a better understanding of the business and its requirements. The
intensity and effectiveness of the JRP and JAD sessions was beyond any doubt.
The concept of getting the right people to concentrate exclusively on the
problem, and of empowering them to make the right decisions, paid off. And
because of the heavy involvement of the business end-users, an IT project has
become more of a business project. This is consistent with the prototyping that
the function of IT support is to solve business problems.

• The iterative approach to design worked. It enabled us to revisit the BOA
conceptual model and modify it in response to the changes in circumstances.
The first functional prototype was very much imperfect. But at least it was
something for the user to work with. The process of refinement which went on
through Time-boxes 2, 3 and 4 resulted in numerous opportunities to fix the
imperfections.

• We met, with comparative ease, what would have been an impossible deadline
using the conventional life-cycle.
The whole rationale of this paper is "To achieve the objective of delivering

quality software on time and within budget". With this two-way echo between the
developers and the end-users, we consider we have successfully brought these
acronyms (BOA and DSDM) together through our experience obtained from the
above case study. Such synergy quickly and effectively reacts to the business
changes.

8. "S.M.A.R.T." Evaluation Criteria
An evaluation criteria framework called "S.M.A.R.T.", based on the characteristics
of both the BOA and DSDM technique, has been developed to evaluate the DBOA
schema in terms of:

133

'S'ealable: As each business object component is individual, we can always
increase the number of the business object without affecting the integrity of the
existing one.
'Measurable: Function Points were used to measure the size and complexity of the
system. User Acceptance Testing was al~o used to measure the satisfactory level of
the end-users on the system.
'A'ehiveable: The holistic approach of DSDM life-cycle environment has increased
the interactions between the end-users and the developers. Communication between
them has thus been improved to enable the IT developers to deliver a software more
achievable to the business requirements.
'R'eusable: The sharing of entity objects and process objects amongst business
objects is the classic way of object reuse. Business objects themselves can also be
reused as a package as well.
'T'ime-manageable: The time-boxing technique has provided a good control of
time management to run project in order to deliver the system on time and within
budget.

9 Conclusion And Further Research
9.1 Conclusion
In this paper, we present a DBOA to recommend a strategy for managing the time
and budget against quality issue. An implementation of this is also presented
through an insurance project case study. The DBOA techniques used in this paper
should also be applicable to projects in any other business sectors. Although the
result of the above case study is considered to be successful, DSDM is still not a
mature technology. There are several 'challenging' areas where we would have to
warn the developers when using the DBOA approach:-
• Friction between developers and end-users : there is always a situation where

the developers and the end-users do not get along well.

• How to select the "right" people and to empower them to make "right"
decisions?: this is more to do with business issues and it can only be improved
through experience.

• Time-boxing Syndrome: everything is set inside a time-scale agreed with the
business end-users. If planning is insufficient, developers would juggle between
time-boxes. They will be forced to omit some unfInished tasks if they overrun
the time-boxes or get panic to catch up at later time-boxes or they might have to
abandon project if under pressure.

• Work Pattern / Paradigm shift for developers : the boundary between IT and
business world is taken away. Developers have to cross the border to
communicate with the business end-users and to experience business
environment rather than developing the system in their own environment.

9.2 Further Research
Currently, we are investigating how to tackle the problems arisen from the conflict
between developers and the end-users as well as the time-boxing syndrome. In the
meantime, a business object repository is under construction using the Rational Rose

134

Version 4.0 UML CASE tools. Furthennore, a multiple projects case study will be
carried out using the nBOA model to deal with complexity management.

10 References
Casanave C, Standardised Business Objects, Conference of Building & Using Financial
Business Objects, London, UK, 22-23 October 1997 (http://www.omg.org).

2 Casanave, C, Business Object Architectures And Standards, Proceedings of Object
Oriented Programming, Systems, Languages & Applications (00PSLA)'95 Conference
Business Object Design And Implementation Workshop, Austin, Texas, USA, October
1995 (Eds. Sutherland et al) (Springer-Verlag, London) pp 7-28.

3 DSDM CONSORTIUM, Dynamic Systems Development Method Manual Version 3.0,
1997 (Tesseract Publishing, Surrey, UK).

4 Fowler M, UML Distilled - Applying The Standard Object Modelling Language, 1997
(Addison-Wesley Longman, Massachusetts).

5 Graham I, Migration to Object Technology, 1994 (Addison-Wesley, N.Y).
6 Hartha W et aI, An Architecture Framework: From Business Strategies To

Implementation, Proceedings of Object-Oriented Programming, Systems, Languages &
Applications (00PSLA),95 Conference Business Object Design And Implementation
Workshop, Austin, Texas, USA, October 1995 (eds. Sutherland et al) (Springer-Verlag,
London) pp 47-60.

7 Hung K et al, A Dynamic Business Object Architecture For An Insurance Industry,
Proceedings of Object-Oriented Information Systems (001S)'97 Conference, Brisbane,
Queensland, Australia, 10-12 November 1997 (Eds. Orlowska et al) (Springer-Verlag,
London) pp 145-156.

8 IFPUG, International Function Point Users Group, Ohio, USA
(http://cuiwww.unige.chlOSGIFAQ/SE/se-faq-S-2.htrnl.#S-2).

9 Jacobson I et ai, The Object Advantages: Business Process Reengineering With Object
Technology, 1994 (Addison-Wesley, New York).

10 Jacobson I, Use Case Engineering Tutorial, Object-Oriented Programming, Systems,
Languages & Applications (00PSLA)'96 Conference, San Jose, California, USA,
October 1996.

11 Martin J, Rapid Application Development, 1991 (Macmillan, New York).
12 OMG, Object Management Group - Object Management Architecture Guide, 1995 (John

Wiley & Sons, Inc., New York).
J3 Ramackers G et ai, Object Business Modelling Request & Approach, Proceedings of

Object-Oriented Programming, Systems, Languages & Applications (00PSLA)'95
Conference, Austin, Texas, USA, October 1995 (Eds. Sutherland et al) (Springer-Verlag,
London) pp 77-86.

14 SB+, System Builder Plus Version 2.3 Developer and Administrator Guide, 1995 (System
Builder Technology UK Ltd., Prestbury, UK).

15 Stapleton J, DSDM: The Method In Practice, 1997 (Addison-Wesley, Essex, UK).
16 Sutherland J, The Object Technology Architecture: Business Objects For Corporate

Information Systems, The 1995 Symposium for VMARK Users, Albuquerque, USA,
1995 (http://www.tiac.netlusersljsuth/).

17 UML97, Unified Modelling Language Version 1.0, January 1997
(http://www.rational.com).

18 Young J et ai, Time For IS Professional To Come Out Of The Closet And Join The Party
Using A Strategic Change Framework To Understand The Influences on IS, 7th Annual
Business Information Technology (BIT)'97 Conference, Manchester, UK, 5-6 November
1997 (Manchester Metropolitan University CD-ROM).

OBJECT -ORIENTED SOFTWARE
DEVELOPMENT WITH REUSE

Milankovic-Atkinson M. & Georgiadou E.
University of North London

School ofInformatics and Multimedia Technology
2-16 Eden Grove, London N7 8EA

tel: +44 (0) 171 7535127, +44 (0) 171 6072789 fax: +44 (0) 171 7537009
email: m.atkinson@unl.ac.uk.e.georgiadou@unl.ac. uk

ABSTRACT

Improved productivity in Object-Oriented technology results from the reuse of
software. development with reuse in mind brings design and implementation
closer. This requires a software tool to support both top-down development, from
the specification of classes as icons in the graphical representation of the Object
Model [1] to code generation, and bottom -up development, from components in
the source code to their class representations as icons of the Object Model. To
make this possible the tools needs to be fully integrated into the development
environment.
This paper discusses facilities offered by -a number of currently available tools and
our experience of using the CASE tool Together/C++ [2] and animator Look![3]
as well as the Borland C++ 4.5 for Windows development environment [4].
Initially we provide a brief discussion of different approaches for software reuse
such as MOOSE [5], development through formal specification (YDM) [6], and
Eiffel [7]. We report of lessons learned through the reuse of existing software
components in C++ from generally available proprietary public domain or
shareware.
We discuss issues of understandability and complexity particular to object
oriented systems and the usefulness of animators such as Look!. Static analysis of
object-oriented code cannot deal with ambiguities caused by polymorphic routine
calls e.g. tracing remote functional dependencies [8]. Animators can facilitate
understanding of the additional complexities.
With the improved understanding of object-oriented metrics [9,10,11], and their
usefulness in predicting effort and cost of software reuse [12] we propose that a
selection of design and performance metrics could be collected and maintained as
part of the software components [13, 14] as an integral part of the development
process towards continuous quality improvement through reuse.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

136

INTRODUCTION
Software development based on the reuse of standard components is not a new
idea. In 1968 Doug Mclllroy at the first NATO Software Engineering Conference
[15] stated that the software industry lacks a software component subsidiary which
would enable mass production of software. As in all mass production industries
both quality and productivity would improve because software would be
constructed using reliable components, and new applications using these
components could be developed more rapidly.

Object-oriented languages made it technically possible to produce and package
software in component form and enable reuse on this scale. The unit of reuse at
the lowest level of granularity is a class, an implementation of an ADT offering
better encapsulation as well as facilities for extending and customising. If used as
a 'black box' component, its services are exploited through official interfaces while
the implementation can remain hidden. If used to be modified through
inheritance, a new version of the class can be derived using the existing class as a
base, the additional attributes and lor services may be added, while those provided
by the base class reused or modified. Multiple inheritance allows cruv-acteristics of
several different classes to be combined to produce a new class.

Software development with reuse starts with the high level design by specifying
the system architecture. These specifications are then used to try and find suitable
reusable components. In some cases the existing reusable components form the
basis around which the new system will be developed. This makes the
development process reuse driven. The design is based on the available reusable
components. Even the requirements may be modified to accommodate the use of
these components. Software development with reuse, therefore, differs from the
'one off development because it brings design closer to implementation and vice
versa.

DIFFERENT APPROACHES
In order to facilitate reuse it is necessary to have a means for enabling the
selection and evaluation of the components being considered for reuse, and an
environment that will support the integration of the selected components into the
new system by providing facilities for both 'top down' and 'bottom up'
development.

One approach for managing this type of development combine the software
development for reuse with the software development with reuse [16] by means of
a dedicated development environment - CASE tool/Method repositoryl language,
in which the reusable components are designed and implemented and new
applications generated. The reusable software is therefore designed and

137

implemented using the built in standards specific to the development
environment.

MOOSE (Method for Object-Oriented Software Engineering) developed at the
University of Sunderland [5] covers the entire lifecyc1e in which reuse represents a
specific stage. All the deliverables of the development process from specification
analysis/design diagrams to source code are stored in a persistent CASE tool
repository all of which can be reused. The software components developed using
the MOOSE tools are specified using formal specification techniques which
provide precise descriptions of the reusable components. The Distributed
Environment for Engineering Reuse (DEER) enables the repository components
created using the MOOSE method and tools, the deliverables of the software
development for reuse, to be viewed and manipulated e.g. loaded into the MOOSE
tools for the software development with reuse. DEER provides a 'browsable
hypertext/hyperCASE view' of the repository and is accessible through the www
using an extended version of HTML for selecting the components which will be
displayed in MOOSE notation offering a variety of views. The idea is attractive,
the restriction is that in order to be able to reuse components and access them
through DEER the components must previously have been produced using
MOOSE, which means investment in the development of a component library,
and development of new software using the MooSEIDEER software tools.

The VDM based software Component Retrieval VCR [6] has a more formal
approach. The programmer should be able to locate software components that will
exactly match their needs, to overcome possible errors being introduced when
reusing software components, making them less reliable. The software
components are developed and implemented so as to carry exact semantic
information about themselves which will be then used for deduction-based
component retrieval. Each component is characterised by its YOM specification in
the form of pre and post conditions and type signature. The type signature can be
computed using type inference techniques. The pre-conditions specify the
conditions necessary for a function to be called, the post-conditions express the
guaranteed conditions after the the function has been executed. This information
is used for component retrieval. The search keys also consist of the type signature,
pre- and post- condition triple. A component will match if it has a provable
compatible signature and specification. The specification matching is performed
as a sequence of successive filtering steps A component specification will be
compatible with the search key if it simultaneously has a weaker pre-condition and
stronger post-condition. The emphasis is on high precision retrieval.

Eiffel is a language and environment designed so as to maximise the benefits
offered by the object -oriented technology and to enable the 7]. The class
definitions contain assertions that define the most important semantic properties
of the class and its services. These are formally defined for each service (class
member function), pre-conditions are introduced with a keyword require, and
post-conditions with the keyword return. The class invariants must be satisfied at

138

all times, whenever objects of a class change state. An assertion violation can
throw an exception. The preconditions, postconditions and invariants implement
programming by contract. The rights and duties for every component are thus
precisely indicated making their reuse easier. The graphical Eiffel browser GOOD
makes it possible to retrieve classes from the class libraries [17].

This approach is neat, elegant and safe, but reduces the amount of potentially
available software that could be considered for reuse, and requires the investment
in the development of a library of software components as well as the software
development environment. It would be desirable to find a way of reusing the
generally available software.

Our approach was to concentrate on the reuse of generally available and
proprietary software choosing a suitable design method supported by a software
tool for analysis/design/implementation that would not require unwarranted
commitments and would be compatible with our existing software development
environment. Additional important requirements were seamless transition from
design to implementation and support for maintaining the design documentation
up to date with the code at all times in machine processable form, so that changes
in the development would not require additional documentation effort. We have
used the latest version of the Coad method [1], Together/C++ version 1.2 (2) were
used with Borland C++ 4.5, Windows 3.1(4) running on a Novel Netware 3.12
with 100+ PC 386 and 486 workstations on three file servers.

THE COAD METHOD AND SOFTWARE
DEVELOPMENT WITH REUSE
The Coad method uses the same Object Model, shown on Figure 1 below, from

1-------------1
I I

PD 81

'-----' I
I
I
I

L _____ ~--' ______ J

Data ases

Fil

Figure 1 -Components of the Object Model

Other

systems

139

initial analysis to implementation, continuously refining it until fully
implemented. The Object Model representing the new object-oriented application
consists of distinct component types. The Problem Domain component (PD) will
model the objects/classes most closely related to the problem at hand. The Human
Interaction component (HI) will deal with the system interactions: the requests for
handling the events, and the responses and would normally include the Graphical
User Interface objects, reports, etc. The Data Management component (OM) will
handle the data management complexities. This will include the data structure
objects used during program execution, and objects for handling persistent data
that will provide file handling services for interacting with physical files and
databases acting as an 'object server'. The System Interface component (SI) will
handle the interactions which the currently developed system with other systems
or devices.

This component partition encourages the development of applications where the
Data Management component and Human Interaction component will be largely
created reusing available classes from the template class libraries of the
development environment.

The Borland C++ Development environment [4] organises these classes into
container classes called Borland International Data Structures (BIDS) that provide
data structure objects such as linked lists and dynamic arrays and include features
to support archiving objects in files, and Object Windows Library classes (OWL)
for building Microsoft Windows applications, including classes that simplify the
use of the Graphics Device Interface (GDI).

REUSING THE BORLAND INTERNATIONAL
DATA STRUCTURES LIBRARY CLASSES
BIDS is a library of class templates organised into two categories namely:
Fundamental Data Structures (FDS), and Abstract Data Types (ADT). BIDS
implements the data structures according to their standard behaviour. The 4.5
version defines three FDS container types: Vectors, Singly and Doubly-linked lists
(Table I). The ADT comprises eight container types: Array, Sorted array, Stack,
Queue, Deque, Bag, Set and Dictionary. ADTs are implemented using one of the
FDS containers. For each type of FDS, or ADT data structure there are many
differenct containters. The name of each container class has coded prefixes, after
the letter T for template, indicating the nature of the class. M indicates that
memory allocation is not standard but separately specified. C means counted, S
sorted , I indirect, CI counted indirect, SI sorted indirect etc. Sorted containers
require sortable objects, therefore the relevant relational operators need to be
overloaded for the class. Objects of any type can be stored and manipulated by a
container: predefined scalars, or objects of previously defined classes. These
objects can be stored: directly or indirectly Direct storage means that the object is

140

copied into the storage allocated to it, producing a physically independent copy, of
the original . Therefore if direct storage is used objects must have a copy operator
defined. As a consequence direct storage containers can only handle homogeneous
objects. With indirect storage, a pointer to an item is stored in the container, so
objd of any type including heterogeneous objects can be held as long as they are
derived from a common ancestor.

Table 1 BIDS template classes for doubly linked lists:

Class Template Name Meaning

TMDoubleListlmp Double-linked list with managed
memory allocation

TDoubleListlmp Double-linked list using standard
memory allocation

TMSDoubleListlmp Sorted double-linked list with
managed memory allocation

TSDoubleListlmp Sorted double-linked list using
standard memory allocation

TMInternationalIDoubleListImp Double-linked list of pointers with
managed memory allocation
implemented though
TMDoubleListImp

TMIDoubleListlmp Double-linked list of pointers with
managed memory allocation
implemented through
TMInternaionalIDoubleListI
mp

TIDoubleListlmp Double-linked list of pointers using
standard memory allocation

TMISDoubleListlmp Sorted double-linked list of pointers
with managed memory allocation

In order to create and use a container it is only necessary to define the required
class using the template, by specifying the type of object it will hold, and
familarise oneself with the interface (service names, parameters and return types)
See Table 2. For example the following is a declaration of a double-linked list
called DataList of objects of class TheData using the TDoubleListImp
template:

T.DoubleListlmp <TheData> DataList;

//class TheData should have a default constructor and

//meaningful copy semantics.

141

The FDS and ADT containers also provide iterator classes to help access the
content of a container. The subscript operator [] is to be adequate for vectors and
arrays since they have the notion of an index while other container types such as
lists, stacks, bags etc. do not, and the iterators simplify access to the objects they
handle. The double-linked list has the following iterators:

TSDoubleListlteratorlmp

TMSDoubleListlteratorlmp

TMISDoubleListlteratorlmp

TMIDoubleListlteratorlmp

TIDoubleListlteratorlmp

TISDoubleListlteratorlmp

Table 2 Services offered by the double linked-list containers

Service Description

int Add(const T& t} inserts an object at the head of the list.
t is the reference to the inserted
object

int AddAtHead(const & t} inserts an object at the head of the list.
t is the reference to the inserted
object

int AddAtTail(const T & t} inserts an object at the tail of the list.
t is the reference to the inserted
object

const T & PeekHead(} const returns the reference to the head list
element

const T & PeekTail(} const returns the reference to the tail list
element

int Detach(const T& t,int del=O} removes the first occurrence of a
specified object from the list. t
specifies the object to be removed.
The parameter del specifies whether
to destroy the object after removing it
from the list

int IsEmpty(} const returns 1 if the list object is empty,
and 0 if it is not.

int GetItemsInContainer(} const Returns the count of number of objects
in the container

void Flush(int deleteMode = O} deletes all list elements without
removing the list structure

142

Reusing code by defining specific classes from the available templates reduces
development time and risk, increases reliability, introduces and encourages
standardisation, but an even greater benefit comes from the flexl.bility that it
provides. Examples of this are performance tuning of a completed application
caused by changes in the requirements. For example the application may need to
handle a larger number of insertions and deletions than previously expected, the
number of objects manipulated may increase greatly, or faster response times may
be necessary etc. Substituting the underlying data structure or the particular
implementation of the chosen data structure can often help successfully alleviate
the problem To change the container class would require very few adjustments to
the code. This modification may take place at any stage during development or
maintenance. It would also be possible to empirically test the performance of the
application by trying out different container class templates using the profiler in
order to select the most suitable one.

TOGETHER/C++

Figure 2 represents the Together/C++ development environment shown inside the
dotted line. A solution to a problem in object-oriented development with reuse is

Figure 2 The Development Environment

derived by determining the object classes, their respollSloilities and structure from
the requirements specification which is 'top down'. The object model editor can be

143

used for creating the object model diagram with icons representing the classes of
the system (i.e. the object layer), the class attributes (attribute layer), the class
services,(service layer) the relationship among classes (the structure layer), and
the system can be partitioned into subjects (the subject layer). A subject represents
a collection of classes. While creating the object model diagram using the object
model editor - the code in the form of class skeletons representing the icons,
service prototypes representing the service names, and attribute definitions is
generated concurrently. The text editor can be used to add more detail i.e. write
the code for the services etc. and these changes, if correct, will simultaneously
update the object model diagram.

Including the available reusable components in the new system is 'bottom up'
development. The implemented component being reused is imported into the
design. It is, therefore, necessary to be able to work in a software development
environment which will support such development in other words, be capable not
only of carrying the design through to the implementation but also to extract from
the source code the design information and add it to the design of the system that
is being developed. When C++ classes are added to the object model from source
code, the relevant icons representing them in the object model diagram will be
generated. This will include the inheritance relationships, as these are supported
and directly implemented in the language, while the client/server relationship
connections need to be added to the model, as there is no single direct mapping of
these in the code. These logical relationships can be implemented in C++ in a
number of different ways.

The source code generated using the object model editor and text editor will be in
the form of header and .cpp files and can be used as production code for testing .
The entire system is C++ sensitive, and is parsed before any part of the model is
placed in the application repository, and adopted as part of the object model. If
errors are detected, error messages will be flagged and only when corrected the
changes will be accepted, and the object model updated.

The documentation can be generated automatically. In order to include the
diagrams the generated documentation can be loaded into e.g. Word, to add a
contents page, and possibly customise before it is printed.

The versatile view management is a very useful feature. It can be organised for
any of the 'layers' in several ways, the most powerful one is by setting filters.

It is difficult to keep the design documentation in line with the code that is
continuously changing without CASE tool support. Continuously updating the
design so that it reflects all changes to the software, throughout the life of the
system is almost impossible to enforce if it requires extra effort. Together/C++
alleviates this problem.

144

COMPLEXITY ISSUES

Reusing the BIDS classes is relatively straightforward. This is because data
structures represent a narrow domain that is well understood. Objects were created
from classes from generic containers implemented using templates. The classes
were reused through a form of instantiation, more or less as a 'black box'. They
were generally not re-engineered.

The OWL classes were reused mainly through inheritance which meant that
classes were derived by adding new attributes, services or by overriding existing
services as white box frameworks and therefore code reuse that was not trivial. It
was necessary to understand the code produced by someone else to be able to
customise it [8]. The use of the debugger, and code animator Look! [3] were very
helpful for understanding and testing the code because it had many facilities for
dynamic analysis, with graphical animation of the creation of the objects, and the
sending of messages which could be executed a step at a time. This was especially
useful for tracing the execution of dynamic polymorphic calls.

Reusable code is the result of finding a solution to a specific problem, and then
recognising that it may be applied to other problems. Reusable abstractions are
developed 'bottom up'. Having successfully developed a system, the design could
then be improved for future maintenance and reuse. Development with reuse is
followed by development for reuse. The complexity of the software could be
reduced by restructuring the design. For example overridden methods may
indicate that the inheritance hierarchy may be better changed, or an abstract class
introduced. Lack of cohesion among services of a class , may indicate that the
class should be better to split etc.[9] As object-oriented software metrics for
determining the complexity of classes and object-oriented systems are becoming
better established [10] they could be applied for quality control of the software.

CONCLUSION AND FUTURE WORK
Object -oriented software with reuse requires a different approach to development.
The classical structured methods separated analysis/design from implementation
while here the design and implementation need to be closely integrated. We need
to promote both 'top down' and 'bottom up' development. With multimedia,
communications and database facilities becoming an integral part of applications
it is increasingly important to be able to design new software in terms. of reusable
existing components. In other words, follow a reuse driven design process. It is
also essential, as the resulting systems are becoming increasingly complex, to be
able to control the management of the design process and be able to design the
Problem Domain Component, Data Management Component and Human
Interaction Component so as to produce high quality applications that can be

145

properly tested and maintained. The design tool must be integrated with the
development environment to support such development. The Coad method and
Together/C++ have been found helpful in this respect. The code animator and
debugger, and profiler are useful tools for understanding the complexity of
reusable software, and improving software performance. The described
development environment makes it possible to further improve fully implemented
applications enhancing quality and reusability. The software can be re engineered,
generalised, and developed into frameworks for similar applications.

Object-oriented technology enables production of reusable software components
that can be used as part of new software products in a similar way to electronic
components. It would be extremely useful to make them as reliable as electronic
components This could be achieved by designing and implementing in a way in
which software components could be tested, using automation similar to electronic
components. Designing for testability [14] requires the specification of all the tests
that are needed as part of the software component. Metrics would provide a means
for calculating the number of tests, as well as for specifying the tests. One way of
providing for the automation is to keep the metrics information as part of the
software component [13]. These metrics would be calculated from the classes
themselves and stored as part of the class information.

Different types of metrics both static and dynamic could be collected [12]. The
dynamic metrics for a component would be collected and accumulated from
information gathered during its use: e.g. number of exceptions thrown. If a
component is derived by means of inheritance, the metrics could be inherited as
well. The complexity metrics for a whole application could be calculated using the
metrics of the comprising components [11].

We are currently organising a project for the development of software that will
enable the automation of the collection of the software metrics, to be stored as part
of the class. The collected information would be useful both in the developing of
new software as well as assessing the suitability of software considered for reuse.
The expected deliverables include the enabling software for automatic collection
and recording of metrics, an improved understanding of the meaning of the
metrics, and the significance of the different metrics in the development of object
oriented software and the possibility of introducing automated testing of object
oriented software.

146

REFERENCES

[1] Coad, P., North D., Mayfield M., Object Models Strategies, Patterns &
Applications. Yourdon Press 1995

[2] Object International Ltd. , Together/C++ Manual 1994

[3] Object UK Ltd, Look! manual 1993

[4] Borland C++ 4.5 for Windows

[5] Ferguson R I., Parrington N. F., Dunne P., MOOSE: A Method Designed for
Ease of Maintenance, IFIP 1995, Chapman and Hall pp 37-44.

[6] Fischer B., Kievernagel M. and Stmckmann W., High Precision Retrieval for
High Quality Software, 4th Software Quality Conference, Dundee 1995,
Proceedings Volume 1 pp. 80-88.

[7] Meyer B. Object-oriented Software Construction, Prentice-Ha11 1988

[8] Cant S. N., Henderson-Sellers, B., Jeffry D.R, Application of Cognitive
Complexity Metrics to Object-oriented Programs, Journal of Object-oriented
programming July/August 1994 pp 52-63.

[9] Chidamber S.R, Kemerer C.F., A Metrics Suite for Object-oriented Design
IEEE Transactions on Software Engineering, Vol. 20, No 6, June 1994, pp
476-491

[lO]Lewis, J.A. Quantified Object-oriented Development: Contlict and Resolution,
4th Software Quality Conference, Dundee 1995, Proceedings Volume 1 pp
220-229.

[l1J Kolewe, R Metrics in Object-oriented Design and Programming, Software
Development, October 1993, pp 53-62.

[12] Li, W., Henry S. Object-oriented Metrics that Predict Maintainability, J.
Systems Software 1993; 23:111-22.

[13] Barnes, G. M., B:radley, R S. Inheriting Software metrics, Journal of Object
oriented Programming, NovemberlDecember 1993, pp. 27-34.

[14] Binder R V., Design for Testability in Object-oriented Systems,
Communications of the ACM, September 1994Nol. 37. No.9, pp 87-101.

[15] Mcllroy, M.D. Mass Produced Software Components, Software Engineering
Concepts and Techniques, Eds Buxton J.M., Naur P., Randell B. Van
Nostrand Reinhold, 1976, pp. 88-98

[16] Sommerville I., Software Engineering, Addison-Wesley, fourth edition, 1992,
pp.312-320.

[17J Meyer B. lessons from the design of the Eiffel Libraries, Comms of the ACM,
September 1990No133, No 9 pp. 69-88.

Sedion4
Software Tools

Integration of strategic, tactical and technical
00 measurement

Marjan Heri~ko, Ivan Rozman, Matjaf B. Juri~, Romana Vajde Horvat

University of Maribor

Faculty of Electrical Engineering and Computer Science

Smetanova 17,2000 Maribor, Slovenia

e-mail: marjan.hericko@uni-mb.si

URL: http://lisa.uni-mb.sil

Abstract

For measurement to become cost effective and efficient it should be directed by
business goals. Since our goal when introducing object technology is to build
better software it is necessary to perform technical 00 measurement and relate it
not only to tactical but also to strategic goals. In the paper we present some
concepts of an environment that might help us to integrate and provide compliance
between different aspects of 00 measurement.

1. Introduction

According to [1] software measurement can be modeled using a three tired
approach. Strategic measurement is concerned with long term organization's goals,
tactical measurement is concerned with individual project's goals whereas
technical measurement is concerned with details about particular product or
process. Obviously, measures lower at the framework are more technology
depended and specific. The focus of this paper is on 00 metrics and its integration
with project-level and organization-level measurement.

During our assistance in SPI (Software Process Improvement) efforts of Slovenian
software companies (and departments) it has turned out that it is not easy to
provide compliance between management and technical goals regarding software
and software process quality issues. Therefore it is useful to provide an
environment that integrates various aspects of quality assurance activities. In the
paper we propose an environment that integrates ideas and results of our work on
development of the PROCESSUS Methodology (methodology for assessment and
improvement of software process) [2], methodology and tool for software product
evaluation [3], and activities of our Object Technology Center [4]. We will
concentrate on 00 metrics that are really significant and important because they
have huge impact on long-term software quality attributes such as reusability,

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

148

interoperability, maintainability, testability etc. Technical 00 measures that
indicate if abstraction hierarchies (inheritance trees) are build, if encapsulation is
violated and if attention is paid on providing weak coupling and strong cohesion of
object systems, are given in the third section. We also present some empirical data
that shows problems that might appear when tactical (project) goals dominate in
favor of previously mentioned technical considerations. In fourth section we
present some basic concepts of an environment that might help us to integrate
different aspects of measurements and to align different levels of goals and
measurement.

2. Importance of measurement

Business as well as software project decisions should be based on factual,
quantitative information - knowledge that can be obtained only by observing and
measuring the products, processes and resources involved. The problem is that
there are so many things to measure that is difficult to choose really significant,
meaningful and cost effective measurement - for that it is necessary to select those
that support business goals of the organization. Although many things can be
measured, software development organization rarely use measurements in a
systematic way. This can also be concluded from the profiles that summarizes
results of different process assessments (ISO, BootStrap, ESI). Usually metrics and
measurements scores are low (SPIRE 17,5%, PROCESSUS 5% etc.).

Many companies have established SEPG (Software Engineering Process Group)
that coordinates SPI (Software Process Improvement) activities. But before setting
up and starting any activity that is aimed to improve software process and products
some fundamental questions should be answered, such as: Where are we? Where
do we want to go? How do we get there? How do we know ifwe have got to where
we wanted to go? How do we compare against competition?

Measures are necessary to identify weakness of the software development process.
They also direct corrective activities and enable monitoring the obtained results
and effects. In that manner a close loop feedback mechanism is established within
which incremental improvements to the software development process can be
made over time. Obviously, metrics are a crucial part of SPI activities. Without
adequate knowledge and appropriate information we can not assess our stage and
defme improvement goals. On the other hand, we also need measures and
empirical data to investigate if defined goals have been reached.

Introduction of object technology should be considered as SPI activity, since it has
been recognized as an enabling factor and it is largely introduced into MIS
departments. Introduction of any new technology, methods and/or techniques has
always been initiated by desire to increase software quality, provide easier
maintenance and achieve higher productivity - regarding object approach this is

149

due to the seamless development, use of same concepts across all phases and
higher level of reuse (not only code, but also knowledge, strategies, patterns, test
suites). However, the benefits related to object technology can not be achieved and
realized without appropriate technical criteria and metrics that direct decisions
during software development. Due to some unique principles and concepts that
characterize object approach (like inheritance, polymorphism, classes, interfaces)
traditional software metrics and evaluation criteria are not very useful and are
unsuitable for 00 systems, particularly in the existing form. Therefore they should
be redefined and there is also a need for completely new set of metrics. The most
important metrics suitable for 00 systems are presented in the next section.

3. Measures of 00 Software

3.100 Metrics

Studies that address metrics suitable for 00 development are usually based on and
introduce a superset of the metrics proposed by [5] and refined in [6]. They are
presented in Table 1. However, some deficiencies of these metrics have been
identified [7], especially of LCOM (Lack of Cohesion in Methods).

number of disjoint sets produced from the intersection of the sets of attributes
that are used by the methods reduced by the number of method pairs acting on
at least one shared attribute

Table I: Chidamber and Kemerer's metrics.

150

MOOD metric suite introduced by [8] could also be useful to evaluate usage of
object concepts such as encapsulation (MHF and AHF), inheritance (MIF and
AIF), polymorphism (POF) or message passing and association (COF). MOOD
metrics are described in Table II.

actual number of couplings not imputable to inheritance / maximum possible
number of couplings

Table II: Set of MOOD metrics.

Both structured and 00 approach rely on encapsulation - the technique by which a
set of software components is aggregated into a structure considered as a basic unit
from an external point of view. For structured approach, coupling and cohesion are
already proven to be useful criteria for evaluating the quality of encapsulation.
Since basic units of 00 system - objects encapsulate not only a set of methods but
also data that represent object's state, coupling and cohesion levels established for
structured paradigm are quite useless and they should be redefmed. The most
systematic and precise taxonomy of coupling and cohesion of 00 systems was
given by [9].

The volume and growth of research in metrics for 00 development indicate
metrics have not just become popular but also are important and inevitable to
continue efforts in making software engineering an industrial process. Many new
metrics have been introduced and some traditional modified (e.g. Function Point
Metric to Task Point Metric). Although many metric groups have been established
and handbooks developed little empirical data has been published so far (see also
[10] and www.sbu.ac.uki-csse/publications/OOMetrics.html). Some important
results and suggestions based on collected empirical data can be found in [11].

151

Comsoft as a meta-Object Technology Center has developed handbooks on 00
metrics for developers and managers [12]. Many useful guidelines how to establish
successful reuse program and appropriate reuse metrics are available in [13].

3.2 Empirical data and identified problems

We have developed some metrics data collection tools that enable us to gather
metrics data on C++, Smalltalk and Delphi projects (the component for Java is
under development). The following commercial projects (products) have been
analyzed:

• 10 C++ projects: four business applications (60-80 developed classes), others
solve technical problems (30 to 70 classes)

• 3 Delphi project: one for textile industry (50 classes) and two software quality
assurance tools (39 and 46 classes)

• Smalltalk projects: modeling tool, object database and complete IS (1454
classes).

Although small, established data collection indicates some assumptions compliant
with findings of other researchers, e.g. [11, 12]. However, we do not have enough
empirical data to make statistically valid assertions. For that reason only some
qualitative interpretation of obtained results will be given and potential problems
identified.

Without doubt size metrics such as LOC and no. of classes are not very useful and
obviously have no relation with quality attributes. Therefore they should be used
very carefully. We should also be careful about no. of methods per class although
it might give helpful information when we categorize classes in domains e.g. user
interface, business or technical domain and examine distribution of methods by
ranges (less than 10, 10-20,20-30, more than 40).

The average inheritance level of the newly developed classes indicates that Delphi
developers and some C++ developers involved in the research do not practice good
design strategies that would lead to reusable components. On the contrary,
Smalltalk developers and some C++ developers have average depth of inheritance
tree from 2,19 to 3,67 (Figure 1). However, it seems that DIT (Depth of
Inheritance Tree) is strongly related not only to the developer's experiences in
object technology but also to familiarity with particular problem domain. This
confirms that reuse does not just happen.

It is quite usual that in small projects 00 approach is used for user interfaces
design, whereas other parts of the system are built using procedural thinking. For
C++ this is also confirmed by a great number of the so called nonmember
functions (functions not belonging to any class). Obviously, hybrid 00
programming languages, and C++ is one of them, do not enforce 00 thinking

152

although they provide mechanisms that support and encourage encapsulation,
classes, inheritance and interfaces.

Major violations of encapsulation have been identified for c++ as well as for
Delphi developers. Almost half of developers whose projects were analyzed do not
respect basic principles of 00 approach, e.g. information hiding (Abreau's metrics
MHF and AHF). Violation of good design practice, where implementation is
hidden from the user of an object, is strongly correlated to the use of 00
development methods. One of the findings is that a good 00 style of development
and a true 00 thinking is strongly related with adequate training and developer's
comprehension of 00 design principles and heuristics.

4r------------+-----------,
~5

31 ______ ~~-----• .__=~--~

45
2 1 _____ _

1,51--------
1

Q5 H.~II];~,I---
o L..J",;Ju.&:.:"-----__ +

C++

Smalltalk classes by IlIT

Figure 1. Depth of Inheritance Tree.

Some observations on "software cancer" [14] have also been confirmed. It has
been found out that in systems we can quite often find 10% of the classes that
embody about 40% of functions and code. And these classes are potentially a
major source of problems and majority of the development and maintenance effort
is spent on them. Obviously, object technology is not a magic solution by itself. It
does not guarantee that the software developed with 00 techniques will be better
and that the developers use available facilities in the best possible way.

Although many reasons for good object style of development have origins in
developers experiences it has to be stressed that many projects (especially those
that use Delphi and C++) had been focused primarily on the short-time project
goals and were according to Booch classification of projects calendar -driven
projects (other types are: requirement driven, quality driven and architecture
driven). From the set of analyzed projects, only Smalltalk projects can be
characterized as "healthy" - architecture driven projects, since all the time their
primary goal was to develop reusable classes organized in component architecture.
In addition to the use of patterns and 00 development methods appropriate
development model (evolutionary) was established. Therefore transition to object
technology should be accompanied by SPI efforts aimed to improve process as
well as people maturity.

153

4. Metrics data gathering tools and environments

4.1 Problems with existing tools

As we show in previous section technical measures could be very useful in
identifying weakness of our software process and point at rude violations of basic
development principles. But for measurement to be efficiently applied during
software development an automated support is inevitable. Regarding 00 metrics
there are some metrics data collecting tools available on the market such as
McCabe Visual Quality Toolset (McCabe & Associates), PR:QA C++
(Programming Research), OOMetrics (Hatteras Sofware) but also some tools used
only internally such as CPPST A TS and STST A TS (used by IBM for collecting
metrics on C++ and Smalltalk). Primarily they are code analysis tools, thus there is
still a lack of facilities that might help to collect metrics data also on earlier phases.
For that purpose Metrics One (Number Six Soft.) can be used.

OOMetrics focused on IBM's Lorenz&Kidd
(Hatteras Software, Inc.) development env. e.g . Visual

(Smalltalk, C++ , Java)

iSight++ C++ Chidamber&Kemerer
(IntegriSoft, Inc.)

McCabe Visual Quality C++ Chidamber&Kemerer
Toolset™ Complexity Metrics

(McCabe and Associates)

Metrics One (NUMBER only for Rational Rose CASE Chidamber&Kemerer,
SIX Software, Inc.) tool Lorenz&Kidd

MOODKIT C++, Eiffel MOOD
(ISEG/INESC)

ObjectMetrics Smalltalk only Visual Smalltalk Chidamber&Kemerer
(ObjectS pace, Inc.) and VisualWorks some env. specific

Logiscope C++ Chidamber&Kemerer
(VERILOG SA) complexity metrics

Table III: 00 metrics data collection tools.

Tools (Table III) are usually bound to particular language and/or environment and
have single tier architecture what means that metrics are calculated by parser,
analyzer. Another problem is that these tools do not enable to collect data on
corresponding processes in which measured product has been produced. Regarding
development environments and tools it has to be stressed that there is no support
and assistance for coupling and cohesion investigation. Despite the fact that
determination of all coupling levels can not be automated it is possible to provide
some warnings and guidelines, something similar we have at the moment
regarding warnings about unused parameters and uninitialized variables. We also

154

believe further integration of modeling and programming tools and introduction of
common development repositories will results in wider support and use not only of
00 methods but also of 00 metrics.

In any case the area of 00 metrics evolves much to slow as regard needs of
software industry. One of the major problem is that tools do not enable collection
of data on corresponding processes in which measured products have been
produced. On the other hand there are other sets of tools for inspections, project
management, process assessment. ..

4.2 Integrated environment

Obviously it is necessary to establish an environment that would integrate different
measurement tools and help an organization to determine, identify and validate
different types of metrics that are suitable and significant for its 00 projects. In
addition to source code metrics it is necessary to collect all the information on and
within software process including static aspects of quality assurance as well as
dynamic aspects that are related to particular (individual) project. Calculation of
technical metrics should be as much as possible language and phase independent -
for that muititiered, repository based environment is required. Environment should
act as a meta-gathering environment since it should enable and support addition of
new object types, its properties and metrics that should be collected and
maintained for that type of objects in the Central Metrics Repository (CMR). Then
CMR can enable integration of technical, tactical and strategic goals and offer
information that provides better understanding of processes and products.

It is necessary to integrate different kinds of information since people often use
data to confirm wrong expectations. Therefore it is inevitable to provide a
collection of empirical data and other information related to metrics that might
help us to avoid misuse of obtained data and provide relevant information for
decision making process. In addition, understanding of and knowledge on applied
technology is required. Thus, it is necessary for environment to provide extended
context within which adequate measurement can be designed and metrics data
utilized to direct software activities toward business goals. Components of such
environment should be:

• Metrics Data Collection Component

provides tools and utilities for metrics information collection and extraction:
from source code and from development repositories, for product as well as
process metrics.

• Central Metrics Data Repository Management Component
aimed to maintain and manage metrics definitions and empirical metrics data.

155

• Quality System Documentation Component

manages Quality System Documentation (see Figure 2) that also specifies
organization long-term business goals as well as policy and procedures how to
achieve them.

QMSstatic Quality System

documentation Documentation

'91
i I· •

Quality Standard I Regulations II Guidelines I Standardized
Manual Procedures document

.~~ 191 template

I I

I Responsibilities I I MetrIcs I
dynamic, \ ~ Project

project specific I Project I Project 1
Specific

Metrics Guides Documents
documentation

Figure 2. Quality system documentation and some project specific items using
UML notation.

• Process Modeling Component
assists in analyzing metrics data, adjusting business goals and providing
appropriate development models

• Project Component
assists in setting and meeting achievable commitments regarding cost,
schedule, quality and function delivered - compliant with organization business
goals including technical aspects and project guides. It should also assist in
adjustment when conflict goals emerge.

• Educational Component
enables dissemination of knowledge and information on all aspects of software
development; in the case of object technology: tutorials on OOA&D (UML,
Objectory, OMT), 00 metrics, 00 project management, distributed
computing, CORBA; COM+, 00 testing, object databases etc.)

• Reuse Management Component
provides facilities for managing and searching the reuse repository that should
contain not only source code, class libraries, frameworks, test suites, but also
other reusable assets, including ideas in the form of patterns for analysis,
design etc. .

156

Characteristics and demands of an environment that integrates these components
(that clearly interact and utilize services of each other) are therefore:

• repository based integral gathering of metrics information,

• integration of strategic, tactical and technical measurements,

• adjustment of business and technical goals,
• language and phase independent metrics collection,
• collection of source code as well as 00 model metrics - "early metrics"
• efficient mechanisms for knowledge and information dissemination
• goal-oriented work (project management, inspections, development)

• reuse-based decisions.

ExtemaI metrlcll data

OOMetDaGA

Figure 3. Relations in OOMetDaGa Environment.

4.3 OOMetDaGa environment

Concurrently with the process of defming integrated environment we have
developed prototypes of some parts. In the beginning our main goal was to provide
an environment that would help to determine, identify and validate metrics that are
suitable and significant for 00 development. However, afterwards we also decided
to collect all information on and within software process, including static aspects
of quality assurance as well as dynamic aspects related to particular project. An
important feature required is to cross reference concepts, quality system
documentation, metric data and project oriented documentation and thus establish

157

integration of static quality system documentation (e.g. quality manual, standard
procedures) and dynamic quality issues (specific project documentation). In
addition to mechanisms for knowledge dissemination - hypertextual systems with
documentation and tutorials and applications for patterns management,
OOMetDaGa environment also integrates:

• PROCESSUS Too! - supports software process maturity auditing based on the
applied methodology (PROCESSUS) for assessment and improvement of
software process quality. A detailed explanation of the methodology that is a
combination ofISO 9001 and SEI CMM can be found in [2].

• PRO+ - provides support to the software product auditing during acceptance
phase according ISO 9126, ISO 9127 in ISO 12119. [3]

Until know we have developed additional tools and components that enable us to
collect data from C++, Smalltalk an Delphi projects (Figure 3). A tool for Java is
under development. Majority of MOOSE and MOOD metrics are supported.
Besides from source code, metrics information can also be obtained from the
CASE tool. Scripts have been written (developed) that enable metrics data
extraction from Paradigm Plus repository. In that way data on earlier phases and
products can also be collected. There are also some utility programs aimed to
provide information that is not available in the repository (e.g. cyclomatic
complexity and so on). At the moment, this environment is still under
development, for the first version of integration we used PowerBuilder and
relational database for repository. From the technical point of view we would like
to establish a multitired component architecture, to introduce object database and
to provide adequate WEB components. We also investigate how intelligent objects
might help in realization of the environment. Further extensions with integration
with QMS documentation should enable better integration of different goals and
measurement and extension with component for Process Modeling will enable to
form the necessary support for SEI maturity level 4. Currently, our work is focused
on providing support that will enable alignment of the project and business goals
both stated in the quantifiable terms. A component under development will support
nested GQM (goal-question-metric) technique and a concept of metric independent
of any of its multiple implementations [15]. Since goal trees could have subgoals
and nested trees that specialize general measures thus providing relation to low
level technical measures. Since the same metric could be used in different trees it is
necessary to adjust acceptable values and intervals.

5. Conclusion

There is no doubt that it is our common goal to make the software development
process an engineering activity. For that we need the ability to assess the quality of
development process and resulting products. We need product as well as process
metrics since successful control requires some means of measurement.

158

Characteristics of software products as well as processes should be quantified and
analyzed so that perfonnance of activities that produce software items can be
predicted, controlled and guided to achieve business and technical goals.

If our goal is to build better software, it is necessary to perfonn technical 00
measurement and relate it not only to tactical but also to strategic goals. We
present an environment that might help us to integrate and provide compliance
between different aspects of measurement. The environment is helpful in
detennining, identifying and validating significant metrics for 00 development
and has the ability to collect infonnation about software process, including static
aspects of quality assurance and dynamic aspects related to particular project. It
integrates mechanisms for knowledge dissemination, software process maturity
and software process auditing. Although software measurement by itself can not
solve the problems, it can clarify and focus our understanding of them.

References
1. Whitmire A.S., Object-Oriented Measurement of Software, Software Encyklopedia,

Vol. 2, John Wiley & Sons, 1994, pp. 737-739.
2. Rozman I., Vajde Horvat R., Gyorkos J., Heri~ko M., PROCESSUS - Integration of SEI

CMM and ISO Quality Models, Software Quality Journal, Vol. 6, No. I, March 1997,
pp.37-63.

3. Gyorkos J., Computer Aided Assessment of Software Processes and Products, 1996.
4. Heri~ko M., Rozman I., Zivkovic A., Knowledge Dissemination as a Basis for Quality

Improvement, Knowledge dissemination as a basis for quality improvement. OTS'97
conference proceedings. [s.l.]: Comsoft, 1997, pp. 169-176.

5. Chidamber S. R., Kemerer C. F., Towards a Metrics Suite for Object-Oriented Design,
00PSLA'91 Conf. Proceed., SIGPLAN Notices, Vol. 26, November 1991, pp. 197-211.

6. Chidamber S.R., Kemerer C.F., A Metrics Suite for Object-Oriented Design, IEEE
Transactions on Software Engineering, Vol. 20, No.6, June 1994, pp. 476-493.

7. Hitz M., Montazeri B., Chidamber and Kemerer's Metrics Suite: A Measurement
Theory Perspective, IEEE Transactions on Software Engineering, Vol. 22, No.4, April
1996, pp. 267-271.

8. Abreu B.F., Carapuca R., Object-Oriented Software Engineering: Measuring and
Controlling the Development Process, Proceedings of the 4th International Conference
on Software Quality, ASQC, McLean, VA, USA, October 1994.

9. Eder J., Kappel G., Schrefl M., Coupling and Cohesion in Object Oriented Systems,
University of Klagenfurt, Department of Informatics, Technical Report, 1995.

10. Whitty R., Object-oriented metrics: A status Report, Object Expert, Vol. I, No.2,
JanlFeb 1996, pp. 35-40.

11. Lorenz M., Kidd J., Object-Oriented Software Metrics, Prentice Hall, 1994.

12. ComSoft, Object Oriented Metrics: a Developer's Handbook. Object Oriented Metrics:
a Manager's Handbook, 1994.

13. Karlsson EA, Software Reuse - A Holistic Approach, John Wiley & Sons, 1995.
14. Haynes P., Detection and Prevention of Software Cancer in 00 Systems, Position paper

for 00PSLA'96 - Workshop: 00 Product Metrics.
15. McGregor 1., Managing Metrics in an Iterative Environment, Object Magazine, Vol 5,

No.6, October \995, pp. 65-71.

A Lotus Notes Implementation of A Workflow
Automation Tool for ISO 9001 Certification

Yan Ching Ying, Keith c.c. Chan
Department of Computing

The Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

Email: cscyyan@comp.polyu.edu.hk.cskcchan@comp.polyu.edu.hk

ABSTRACT

Software quality management involves defining quality goals for software
products, establishing plans to achieve these goals, monitoring and adjusting the
plans and activities to ensure the software meet the needs of customers. In software
development, we believe that it is important to focus on processes and products. As
software development involves complex and dynamic interactions of software
processes, the lack of a well defined process has thus a direct impact on products'
quality. Recently, implementing a quality management system to facilitate the ISO
9001 certification is becoming popular. The essence of the ISO standard is to 'say
what you do and do what you say '. We consider software process as a sequence of
tasks that depend on the cooperation between collaborating individuals. In this
paper, we describe a system to assist companies to build a QMS and facilitate the
ISO 900 I certification. The system has two components : workflow capturing
(WC) and workflow enactment (WE). The we component captures workflow
elements and lets users say what they do. It adopts three models: i) an actor model,
ii) an information model, and iii) a process model. Transformation between
process and actor models is supported to provide different views to understand
processes and actors. Workflow will then translated into specification. Based on it,
the WE component, which is implemented with Lotus Notes 4.6, helps users to do
what they say and implement workflow by automating task sequences and bringing
responsible actors into the process.

1. INTRODUCTION

Software development consists of activities that requires people and resources to be
allocated at the right time. This involves complex interactions and dependencies
among activities and people. To avoid problems such as project delay and failure
to meet requirements, much emphasis has been put on international quality
standards, such as the ISO 9001, and software quality management (SQM). To
comply with the ISO 9001, organizations should conform to requirements by
saying what they do and doing what they said [1]. As software is subjected to
frequent changes, it is difficult to document what and how processes and staff do.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

162

Therefore, to fulfill ISO requirements and build a SQM, a comprehensive process
model is required so that people can easily describe and understand what to do.

Our system helps in capturing and enacting processes, and provides quality
templates for documentation. The WC component provides graphical interfaces for
users to describe workflow. It supports i) an actor model that captures
organizational structure, ii) an information model that records presentation details,
iii) a process model which supports workflow automation. Also, transformation
between process and actor models is allowed to provide multi-perspectives when
capturing and understanding processes and the interaction between actors. This can
fulfill 'say what to do' in the ISO philosophy. Workflow details is translated into
specification with reference to the WIDE workflow specification. Based on these,
the WE component ensures consistent process implementation across the
organization by implementing procedures through groupware. It takes advantage
of useful groupware features to streamline communication and interactions in
processes. Also, it provides status tracking of processes and tasks. This helps
companies to 'do what they say '. Our system has been tested successfully by
stimulated cases. And currently, it is used to implement a process used in a large
bank to handle its new service request.

2. RELATED WORKS

In the past decade, there are many software products for QMS and ISO 9000
certification. We have studied twenty-two of them. Their features are grouped into
five categories: i) those that assists QMS documentation, such as the provision of
templates for quality manuals and procedures; ii) those for document control, such
as the provision of forms and report generation; iii) those to assess ISO readiness,
such as the provision of checklists; iv) those that facilitate system audit, such as the
maintenance of audit schedule; and v) others such as network-enablement and on
line help. Although these features are useful for ISO certification, none of the tools
surveyed contain all of them. Also, only three of them are developed for the
software industry but unfortunately not all clauses are included. Therefore, there is
currently a lack of comprehensive ISO tools in the market for the software industry.

The major products in the workflow market are Lotus Notes, IBM FlowMark,
InConcert by Xerox and ActionWorkflow by Action Technologies. Lotus Notes is
document and database oriented and workflow involves document routing and
electronic mails. FlowMark is an object-oriented client-server system which is not
a stand-alone product and access to database is not modeled. A backend database is
required. InConcert is data-oriented and it does not address actor relationship and
quality management. Lastly, ActionWorkflow is based on speed act that focus on
communication patterns between actors. It is not developed for task completion
and is too complex to model software processes. Therefore, Lotus Notes is better
because it has rich build-in database capabilities and electronic messaging
functions.

163

3. WORKFLOW CAPTURING

Our workflow model is derived from the WIDE model from the Workflow
Management Coalition (WtMC). With some enhancements, our system captures
workflow by the information model, the actor model and the process model.
Transformation between process and actor model is allowed. Our model is unique
as it has more focus on task relationships and the relationships between people.

3.1 Information Model

This model identifies information objects (useful data) involved in workflow. The
objects are defined as forms which are characterized by : form name, description
and procedures involved. Owing to the interactive nature of workflow, it involves
document routing and much information is presented by forms. Workflow
definition and control data are stored to facilitate process flow, such as the process
definition, organization data, and work-to-do list. In our system, forms are the
templates to create documents in the QMS and to record the actual level of quality
performance. After defining forms, they can be linked to tasks, where the
information is used by the workflow participants (actors).

3.2 Actor Model

For each actor, we specify his department, subordinates, superordinates and role.
Our system allows three types of actor relationship to be defined : information
sharing, task cooperation and task dependency. Information sharing is document
referencing among actors. It is the time for actors to retrieve information to
accomplish certain tasks. For example, a system specification is shared among
system analysts and programmers. So, referencing the same document implies
actors are doing the same or related tasks. When several actors work in the same
task, for example, both project manager and system analyst participate in project
planning and scheduling, we consider they have task cooperation relationship. If
an actor cooperates with many actors, it may imply an uneven workload or
insufficient human resources. Since a task can start only after the completion of its
preceding task(s), when actor(s) in the coming task(s) can start working depends on
when the actor(s) in the preceding task(s) finished their works. We consider the
actor(s) in the coming task depend on actor(s) in the preceding task(s). For
example, the programmer can start coding if the system analyst has finalized the
design. Task dependency has different scope from task cooperation. Task
cooperation focuses on actors in a task while task dependency addresses the
sequence among consecutive tasks.

164

3.3 Process Model

Process is modeled as a combination of tasks with defined sequences. Task is the
building block in this model. Apart from basic attributes such as task name and
description, runtime task attributes include type (manual, automatic), maximum
time allowed, time unit (day, hour, minute), form created, modified and referenced,
actors responsible for the task as well as actors that will be notified and method to
handle exceptions (ignore, stop immediately, send error message, start recovery
task). Runtime evaluation of attributes allows tasks to be dispatched dynamically.
Manual tasks must have actor(s) to perform the task and automatic tasks rely on an
agent, an automatic design element, to perform the task. Our system navigates a
process by evaluating task relationships. It allows three types of task relationship to
be defined: i) sequential, ii) parallel and iii) conditional.

Sequential relationship involves consecutive task execution. A series of sequential
relationship forms a path in a process. It represents the order of tasks and indicate
the flow of work. For tasks A and B connected sequentially, task B can start only if
task A completes. And, parallel relationship involves simultaneous task execution
that several tasks wiII be in active. Executing one task does not depend on the
others and will not affect their executions. If task A is connected to task Band C in
parallel and task D follows, both task Band C will start after task A accomplishes.
And, task D can be initiated after both task Band C have been completed. On the
other hand, conditional relationship selects execution path based on conditions.
Although there are multiple execution paths, only one of them can be in active
based on the evaluation of conditions.

3.4 Transformation of Process and Actor Models

In a process model, adding actors in tasks creates task cooperation relationship and
defining form referenced builds information sharing relationship. If there are
several actors in a task, they have task cooperation relationship. When several
actors reference the same form, they have information sharing relationship. In task
cooperation, connector links actors having task name as attribute. And, in
information sharing, connector attributes are the referenced form name and the task
names that the actors reference the form. These relationships are non-directional
but task dependency is directional. That is, actors in the succeeding and preceding
tasks must be specified. Task dependency is unconditional in sequential and
parallel task relationships. In conditional task relationship, based on the conditions,
different tasks wiII be followed. Then, task sequence wiII be changed, and
connector attributes are thus varied. Condition can be specified by agent (Notes
design element) and form value. Using agent, agent name and name of next task
are needed. After running the agent, it returns a true/false value to determine
whether the next task can start. For example, if the agent 'CheckResource' returns
a true value, task 'NotifyActors' will start. Alternatively, using form value, form

165

name, field name, operator (includes, =, <>, >, <, >=, <=), field value and name of
next task are required. These parameters are used to check if a field in a form
satisfies a value so that the next task can be followed. For example: if field
'severity'inform 'problem report' equals (=) to high, then task 'report to project
manager' starts. Different conditions can be specified to control the execution
path. In the unconditional case, connector specifies which actor depends on which
actor and the names of preceding and succeeding tasks. In the conditional case,
additional attributes such as condition for that dependency is required. An actor
model can be built from a process model as summarized in Table 1 below.

Task creation
Assigning actors => Task cooperation

Taskl,
Actor I Task2-Actor 2

Defining form referenced => Information sharing
Actor 1 form I Actor 2
Task I - - form 2-Task 2, Task 4

Task connection
Unconditional task relationships => Task dependency
Actor 1
Task I

Actor 2
~-~ask3

Conditional task relationships => Task dependency
Actor 1 conditon Actor 3
Task I statement~ask 4

Table 1 Transformation logic from task to actor model.

In the actor view, defining task cooperation and information sharing relationships
captures task properties. Actors are determined from task cooperation and form
referenced is defined by information sharing relationship. When actors have task
cooperation relationship, they are responsible for some common task. If they have
information sharing relationship, they reference the same form in the same or
different task. Our system uses task dependency relationships to determine task
sequences and conditional branches. Unconditional task dependencies ensure
restricted task sequence. And, conditional task dependency provides possible task
dependency. In different instances of the same process, different condition may be
satisfied which leads to different task. Task sequences are then varied. Fig. 2 is the
process model deduced from Fig 1. Actor 2 depend on Actor 1 as there is a
sequential task relationship between Task 1 and 2. Based on different conditions,
either Task 3 or 4 may follow Task 2. If condition 1 is true, Actor 3 will depend on
Actor 2. If condition 2 is true, Actor 4 will depend on Actor 2. Connector
attributes in actor model are similar to the process model. Having all the task
properties, sequence and possible branching, our system can transform an actor
model to a process model. Table 2 summarizes this transformation algorithm.

Fig. 1 An illustrative example of actor model.

~,

~8sk4
Fig. 2 An illustrative process model.

166

Information sharing

Form 1
Actor L Form 2-Actor 2

Task 1 Task I,
Task 4

Actor 1 is an actor in Task 1
and Actor 2 is an actor in Task
2 and 4. Form 1 and 2 are the
referenced forms of Task 1, 2
and 4.

Task cooperation

Task I,
Actor 1 Task 2 Actor 2

Actor 1 and 2 are one of the
actors in Task 1 and Task 2.

Table 2 Transformation logic from actor to process model.

Task dependency

Actor l ___ -j.~Actor 2

Task 1 Task 3

Actor 1 is an actor in Task 1 and Actor 2
is an actor in Task 3. Task 1 can starts
only after Task 3.

A I condition Actor 2
dor __ ~

statement T k 3
Task I as

Actor 1 is an actors in Task 1 and Actor 2
is an actors in Task 3. Task 1 starts after
Task 3 if the condition is satisfied.

4. WORKFLOW SPECIFICATION

4.1 The Actor Specification

Our specification uses ACTOR definition to capture: i) name, a Notes user name;
ii) role, position of the actor; iii) department, department which the actor works for;
iv) subordinates, actor names of the subordinates; and v) superordinates, actor
names of the superordinates. Attributes are assigned to a data type and actors are
assigned to a role, captured by the ROLE defmition. Each role has a name and
description. The actor model can be populated using the REGISTER ACTOR
statements. Table 3 is an example of the actor specification.

ACTOR_MODEL DEVELOPMENT
ACTOR HAS

name: STRING;
role: STRING;
department: STRING;
subordinates: LIST OF STRING;
superordinates : LIST OF STRING;

END~CTOR;

ROlE Project Director
desc : Manage and Control Projects;

END_ROLE;

ROlE Test Manager
desc : Unit and System Test

END_ROLE;
END_MODEL

REGISTER ACTOR OF DEVELOPMENT
(name, role, department subordinates, superordinates)
((YingJPOl YU, Test Manager, ITS, D , [Keith ChanIPOLYUI) ,
-(Keith ChanIPOl YU, Project Director, Computing,lXingJPOLYUj, DJ I;

Table 3 Actor Specification.

167

4.2 The Information Specification

The FORM definition is used to capture : i) name, fonn name; ii) description,
description of it; and iii) procedures, procedure names that will use this fonn. In
Notes, fonn design is hidden from other applications. It is so far impossible to
obtain the layout of a Notes fonn and export to the other applications. So, our
infonnation specification is different from the WIDE infonnation specification.
Our infonnation model can also be populated using the REGISTER statements.
Table 4 shows the fonn specification used in the design process.

INFORMATION_MODEL Design
FORM HAS

name: STRING;
description: STRING;
procedures: LIST OF STRING;

END_FORM;
END_MODEL

4.3 The Process Specification

For each process, our specification capture : name, description and name of
database used in the process. Respective actor and infonnation models have to be
imported into this specification using the USES statement. The START statement
is used to specify the first task in the process. Task is specified by TASK
definition, our specification captures GENERAL infonnation such as : name,
description, type, maximum execution time allowed, and time unit used. Other
infonnation will also be captured, such as : i) ACTOR,actor names for the task; ii)
NOTIFY, actor names to be infonned; iii) FORM_CREATE, fonn names that will
be created; iv) FORM_MODIFY, fonn names that will be modified; v)
FORM_REF, fonn names that will be referenced; vi) EXCEPTION, method to
handle exception and respective argument; and vii) COMPLETE, how to proceed
upon task completion. Since they are four ways to proceed upon task completion
(End Process, Start Single Task, Start Single Task Based on Condition and Start
Multiple Tasks), the number of arguments of COMPLETE is varied. No argument
is required for End Process (Entry I in Table 5). For Start Single Task and Start
Multiple Task, task name(s) is required (Entry 2 and 3 in Table 5). The number of
arguments in Start Multiple Task depends on the number of tasks that run in
parallel. For Start Single Task Based on Condition, the number of conditions and
the condition statements are required. Conditions are specified by agent or fonn
value. They are included in a pair of bracket (Entry 4 in Table 5). An example of
workflow specification is shown in Table 6.

168

Statements
1. COMPLETE (method. argument)fEnd Process,}
2. COMPLETE (method. argumenQ{Start Single Task, Approve change requesq
3. COMPLETE (method. argument) (Start MulUple Task, Schedule change request, Schedule UA T]
4. COMPLETE (method. argumenQ {Start Single Task 8ased on Condition, 2,

(8y Fonn, Change Request Fonn, status, ~ disapproved, Archive change requesQ,
(By Fonn, Change Request Fonn, status, ~ approved, Impact analysis)]

Table S Complete Statements under different conditions.

WORKFLOW_MODEL Software Change Request (name, description, database)
[Software Change Request, Standard procedures to handle change request, wfldemo]
USES ACTOR_MODEL ReqActor;
USES INFORMATION_MODEL ReqForm;
START Initiate change request;

TASK Initiate change request
GENERAL (description, type, precede, time, unit) [test, , 1, 30, Minute]
ACTOR (actor list) [User]
NOTIFY (actor list) 0
FORM_CREATE (form list) [Change Request]
FORM_MODIFY (form list) 0
FORM_REF (form list) 0
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Approve change request]

END TASK;

TASK Approve change request
GENERAL (description, type, precede, time, unit) [test, , 1, 2, Day]
ACTOR (actor list) [Project Manager]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Change Request]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task Based on Condition, 2, (By Form, Change Request,
status, =, not ok, Archive change request), (By Form, Change Request, status, =, ok, Impact analysis)]

END TASK;

TASK Archive change request
GENERAL (description, type, precede, time, unit) [test. , 1, 2, Day]
ACTOR (actor list) [Support]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) 0
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [End Process,]

END TASK;

TASK Impact analysis
GENERAL (description, type, precede, time, unit) [test, , 1,4, Day]
ACTOR (actor list) [Support]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Change Request]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Multiple Task, Schedule change request, Schedule UAT]

END TASK;
Table 6 Process Specification.

TASK Schedule change request
GENERAL (description, type, precede, time, unit) [test, 1, 1, Day]
ACTOR (actor list) [Project Manager]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Staff schedule, Project schedule)
EXCEPTION (method, argument) [Ignore,)
COMPLETE (method, argument) [Start Single Task, Do the changes)

END TASK;

TASK Schedule UAT
GENERAL (description, type, precede, time, unit) [test, 1, 1, Day]
ACTOR (actor list) [project Manager]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Staff schedule)
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Do the changes)

END TASK;

TASK Do the changes
GENERAL (description, type, precede, time, unit) [test, , 2, 10, Day]
ACTOR (actor list) [programmer, Support]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Change Request, Source code)
EXCEPTION (method, argument) [Ignore,)
COMPLETE (method, argument) [Start Single Task, Test the changes]

END TASK;

TASK Test the changes
GENERAL (description, type, precede, time, unit) [test, , 1, 8, Day]
ACTOR (actor list) [programmer, Tester]
NOTIFY (actor list) 0
FORM_CREATE (form list) D
FORM_MODIFY (form list) D
FORM_REF (form list) [Source code, User requirements]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [Start Single Task, Perform UAT]

END TASK;

TASK Perform UAT
GENERAL (description, type, precede, time, unit) [test, 1, 5, Day]
ACTOR (actor list) [User]
NOTIFY (actor list) 0
FORM_CREATE (form list) 0
FORM_MODIFY (form list) 0
FORM_REF (form list) [Change Request]
EXCEPTION (method, argument) [Ignore,]
COMPLETE (method, argument) [End Process,]

END TASK;

Table 6 (Cont'd) Process Specification.

169

170

5. SYSTEM IMPLEMENTATION

5.1 The Workflow Capturing (WC) Component

This component is implemented by Visual c++. A graphical workflow editor is
used to define workflow and its elements. For a new process, a name, description
and database name, which contains the workflow logic and form designs, are
required. Based on the actor and form specifications generated in the WE
component, actors and forms are imported to define workflow. Fig. 3 shows a
previously defined process. The left hand panel shows workflow elements and the
right hand panel is the task view of the process.

• &" _ »00 1MI

ror!f~~,tm "

~". ."...... "'. ''', .. ",

~*-- I-I ~ liT.,>.

"111--• .. . _n .'-" '~a...Q."
."'J.~TO'

.-~ n .-....... " .s-....~ft

fl - ~""""4'Ot.'IV U,~YU N

.1 - Jj
Fig. 3 A defined change request process. Fig. 4 An example of actor view.

A new task has attributes : (i) "General" (task name, description, task type and
maximum duration); (ii) "Forms Created" (forms to create); (iii) "Forms Modified"
(forms to modify); iv) "Forms Referenced" (forms to reference); v) "Actors"
(responsible actors); and vi) "Exception Handling" (how task proceeds when
exception is raised). Once entered, a new task icon will be added in the right panel.
Unconditional and conditional task relationship are used to specifY flow of work.
No property is required in unconditional relationship. In conditional relationship,
the conditions which the next task should be executed is needed. For example, a
condition can be evaluated by a form 'OCR' and if the field 'continue' equals (=) to
'adopt', the specified next task will start. Users can swap between the task and
actor views. The actor view has icons corresponding to the actors on the left hand
panel (Fig. 4). Actor properties includes : i) "General" (actor name, title,
department and task involved); ii) "Subordinates" (actors that is the subordinate of
the current actor); and iii) "Superordinates" (actors that is the superordinate of the
current actor). Actor icons are connected if they are defined in the task view to i)
be responsible for the same task; ii) depend on the other; or iii) reference the same
form(s). Users can check if actors have any relationship between them and if so,
how they are related. Actor relationships will be changed accordingly when the
properties or sequence of tasks changes in the task view. After the workflow is
defined, the respective process specification can be generated and used in the
workflow enactment component.

171

5.2 The Workflow Enactment (WE) Component

The WE is implemented on top of Lotus Notes 4.6. It consists of six databases
(Fig. 5) : quality manual, quality procedures, organizational structure, workflow
specification, application database and user's mailbox. The quality manual
database includes quality manual and the QMS procedures database has procedures
in the organization. The organizational structure database includes actors in the
organization and actor specifications can be generated from it. Workflow defined
in the we component is imported in the workflow specification database (Fig. 6).
Only process administrator (a special role defined in the database) can do this.

-
Fig. 5 Databases in the WE Component in Notes. Fig.6 Workflow Specification Database.

Process can be initiated by process owner (another role of the database). A process
tracking document (a Notes document) that contains all the necessary information
to start the process will be generated (Fig. 7). Each responsible staff will receive a
task notification message which includes links for users to go directly to the
process, task definitions, and the process tracking document. Through the process
tracking document, actors can mark task to be completed, view previous comments,
and raise exception. Also, actors can create, modify and reference forms.
However, only current actors that have not finish their tasks are authorized to
perform these functions. The system waits until all the responsible actors have
completed their works. In order to start next task(s), all the forms required to create
in the current task must be created. The WE component keeps track of the status of
all processes that has been initiated in the organization, sorted and categorized by
the current responsible actors, process name or request date (Fig. 8).

-~ .-
hI!! i M

, --' ... ~u.

a ~'W\l" _ I~W ••)l1IiIIII
~_'..., .. """"O''f\I_ l1nt1tt '"

Fig. 7 Sample process tracking document.

~.!'" ... "'" -~,~,,~ .
... ~, ~ ___ I"

q,1 ~
~~ .COn'lrul

q, 2. "*-' 1 , t OCP
... q, 1..--.' i t Oft'&HJ'" q, .. o..~

,,1 .. --
.. Pt6WItftI l»g

.""'" "" q. " 0_
• q. .. 1 "-- . ""'" -.... 9 _ , 10. _ "' S~~~eo-u4

,.".... --
I
. ...,.. ---' --

Fig. 8 The process tracking view.

~
.J.:,,>'_ .;!~..;. -- _':'-

.... J - u.toflQ.'I'U
\IIU - u.1AOl.W

=~:=::,~,
....... - Oto«.I F.o..t\I
--.... -~lAarIQo- -~.().
==:~

172

6. CONCLUSION

The major purpose of installing a SQM system in an organization is to improve the
quality of the software processes. And, the basis for a SQM system will best be
based on some international quality standards as this will give the confidence of its
successful implementation and limit risk. In this paper, a workflow approach is
used to manage processes. We have developed a system that is able to make
process visible through well defined workflow elements, structure and
representation to support group work. It helps actors to cooperate and
communicate, and assists companies to install SQM system and facilitates the
certification process of the ISO 9001.

The system has components which are responsible for different functions. With
modification to the WIDE workflow model, our system provides a rich conceptual
model to capture processes and support features that are required. In the
implementation, we employ object oriented technology to model tasks, actors and
processes for workflow capturing. In workflow enactment, groupware technology
is used to support communication, enhance collaboration and facilitate cooperation
of software development team members. In conclusion, in order to build a SQM
system and improve software quality, we particularly focus on improving processes
by automating and managing workflows with the help of groupware.

7. References

I. Gianluigi Caldiera, Impact of ISO 9000 on Software Maintenance, In : Proceedings of
Conference on Software Maintenance, CSM-93, 1993, pp. 228 - 230.

2. Berthold Reinwald, C. Mohan, Structured Workflow Management with Lotus Notes
Release 4, In Digest of Papers. COMPCON '96. Technologies for the Information
Superhighway. Forty-First IEEE Computer Society International Conference, 1996,
pp. 451 - 457.

3. Christoph Bupler, Stefan Jablonski, An Approach to Integrate Workflow Modeling
and Organization Modeling in Enterprise, In Proceedings. Third Workshop on
Enabling Technologies: Infrastructure for Collaborative Enterprises, 1994, pp. 81 -
95.

4. The Workflow Reference Model. In Technical Report TCOO-1003, Workflow
Management Coalition, Nov 1994.

5. F. Casati, P. Grefen, B. Pernici, G. Pozzi, G. Sanchez, WIDE Workflow model and
architecture, Workflow Management Coalition, April 96.

6. Jim Welsh, Jun Han, Software Documents: Concepts and Tools, Software: Concepts
and Tools, Vol. 15, 1994, pp. 12-25.

SedionS
Quality Issues

Automatic Software Evaluation
Based on Domain Knowledge and
Formal Evaluation Specification

Boris I. Cogan, Tamara O. Matveeva
Institute for Automation & Control Processes

Far Eastern Branch of the Russian Academy of Sciences
5 Radio Str., Vladivostok, 690041, Russia

cogan@iapu2.marine.su

Abstract

The paper presents the language-oriented approach to software evalu
ation. The approach implies: (1) creation of a software system having
general knowledge of the domain 'software evaluation'; (2) development
of a formal evaluation specification for any specific software in terms of
the knowledge represented in a special-purpose problem-oriented lan
guage; (3) generation of an ad hoc knowledge-based evaluation work
bench basing on the system and the specification.

1 Introduction

Nowadays practice of software evaluation has problems that are due to lack
of well-defined definitions of some notions used to describe software evalua
tion process. Many definitions of software quality (SQ) models and metrics,
software product (SP) models and methods to build them, and assessment
methods are informal [1]. So, it is not always possible to obtain repeatable
and reproducible evaluation results when different tools are used [2].

On the other hand, any workbench used in evaluation practice has strict
definitions of all notions, but, usually, the definitions are not available for
evaluators.

The paper presents the language-oriented approach (LOA) to SQ eval
uation, which is intended for creation of formal, readable and 'executable'
evaluation specifications. The step-by-step execution of such a specifica
tion produces the software evaluation result. Main principles to create the
specification are considered.

The approach has been developed at the Institute for Automation and
Control Processes for about ten years. In English, it is presented in the
papers [3-8]. Now this work is supported in part by The Royal Society (The
joint British-Russian project "Language-oriented approaches to software as
sessment", 1996-1998).

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

174

2 The Starting Point

The idea to use knowledge-based techniques in SQ evaluation is not new.
The most known work based on the idea is the project SCOPE - Software
CertificatiOn Programme in Europe, 1989-1993. One of its most important
result is 'The formal model of software evaluation and certification' as well as
the automated evaluation technology based on the model [2, 9]. H.-L.Hausen
and D.Welsel made the main contribution to the model and refined it later.

However, 'the formal model' and the technology have some shortcomings.
1. Insufficient understandability of the model. The main components of the

model are: (a) SP characteristics and metrics, (b) SP and software process
information, (c) evaluation methods and tools, and (d) their interrelations.
All the components are specified by using a first order predicate calculus
language (Prolog was used in the implemented version of the model). Such a
specification is not high understandable and maintainable. Practice of devel
opment of knowledge-based systems (KBSs) has showed that the application
of rule-based representation has some limitations when a lot of objects and
many types of their relations are defined [10].

2. Vague semantics of some notions used. A specific evaluation process is
defined in terms of metrics, measurement and assessment methods, etc. A
program module, 'brick' or 'evaluation module', corresponds to an evaluation
technique including metrics, pass-fail criteris, etc. Semantics of some bricks
is rather vague because basic notions of attributes, models, etc., encapsulated
in the bricks are treated in different ways in the literature. A user of the
technology cannot know, which of the treatment has been used to implement
a brick. So, he/she uses vague notions to define his/her evaluation process.
To help the user, the intelligent advisor was developed. However, a trial of
the advisor showed that its advice is too general and subjective [2].

The approach of this paper permits avoiding the shortcomings.

3 Language-Oriented Approach

The main aim of LOA is production of rigorous, semantically valid definitions
of notions of the domain, a proper combination of the notions in the system,
and application of the system to evaluate specific software. The system
would support relevant international standards and is in agreement with the
well-known and often-quoted papers and books.

LOA consists in use of three levels of concordant formal languages, which
are intended for definition of (Fig.l):

(1) the basic attribute set of symbols and constructions of any SP writing
language. The set is built according to semantics and syntax of this strictly
defined language (in particular, a programming language).

Here, the measuring language model (MLM) and the measuring language
processor (MLP) are developed for any language used. MLP is a version of

175

Relationships among SQ model, Activities for SQ evaluation when
MLMs, SP representation the language-oriented approach
languages, and MMs of the SPs is used

MLMs D D D ... D

Level O. Occurring once activities
done by developers of software
development and assessment tools.

1. Developing SP writing languages and
their MMs.

2. Developing MLP for any language used.
A generalized representation of MMs
of SP written in different languages.

3. Developing a language to define
SP metrics and defects.

4. Developing a processor of the language.
5. Formal defining the metrics and defects.
6. Developing a language to declare

SQ requirement specifications and
software measurement and assessment
(i.e., a metrics framework declaration
language).

7. Developing a processor of the
language.

Levell.
SPs D D D D 1. Developing specific SPs.

2. Measuring all SPs in terms of MLMs

SP measuring models used;
The single measuring tool, MLP,

~ ~ ~ ~ r ~ 1 ~ ~1~ ~ 1 ~ 1- ~ r ~ 1 ~ ~Le~'; ;o! ~e~~hSP ,:,~ting~ l~g~u~~e: ~ ~ ~ -
1. Measuring all SPs in terms of SP

Metrics and defects metrics and defects basing on SP MM.
The single measuring tool for

Su;; ~ ~~ ~~ ~~~ ~ ~~ ~ ~~~e; ~~ ~~ ~met~~ and d~~~'~ ~ ~ ~ ~ ~ _

factors V V 1. Formal declaring quality requirement
Factors D D specification for a specific software.

~ 2. Executing assessment.
Quality The single knowledge-based

task-oriented assessment tool.

Figure 1. Relationships among the set of formal languages
and their processors.

176

the commonly used language processor, which additionally generates the SP
measurement result, so called SP measuring models (MMs), in accordance
with the MLM [5, 6, 8]. MM of a specific SP includes values of all static
(and dynamic) attributes of all SP symbols and constructions (in context of
the number of executions of the SP being a program);

(2) SP metrics in terms of the MLMs. Under this definition, any metric
has rigorous definition in terms of semantics of the languages;

(3) knowledge of the domain 'software quality' and the quality require
ments specification for specific SPs in terms of formally defined SP metrics
and defects as well as measurement theory.

Here, all 'high-level', external (in relation to the SPs) notions of the
domain are uniquely defined in terms of 'low-level', internal notions.

Then the metrics framework used in a specific evaluation process may
be defined formally in term of (uniquely defined) SP metrics according to
the universally recognized measurement theory. SP quality requirements
specification may be expressed in terms of notions defined in the metrics
framework. After these, a knowledge representation language processor may
draw a decision on the acceptance or rejection of any evaluated SP using the
following information:

- the quality requirements specification, as an executed program,
- a set of metrics values obtained under SP measurement, as its data.
Thus, application of the LOA is a sequential, 'level-by-Ievel' usage of the

set of formal languages that provide obtaining unambiguous intermediate
and final results of all activities done (Fig.I). The levels are: (1) specifying
quality requirements to a specific software, (2) measuring SPs of the software,
and (3) evaluating this software or its part.

The examples of use of the languages are presented in the rest of the paper.

4 Principles of Knowledge Representation

Here, the following principles of knowledge representation are used.
1. Declarative knowledge is separated from procedural one. The declarative

knowledge is definitions of internal and external SP attributes (SQ factors
and subfactors, SP metrics) and their interrelations, i.e., sets of notions.
There is a set of attributes connected with any notion (their interrelations
are considered as attributes as well). So any notion is written as a relation,
i.e., as a named ordered list of attributes O(Al,A2 , •.. ,An). A scale is defined
for any attribute as: (1) the type of the scale, (2) the values range, and (3)
strict rules to get the values. The rules may be defined by one of two ways.

(a) By functions (formulas) over attributes of different notions defined
before. It is the usual way to define indirect measures [1].

(b) By logical rules like the following: "The attribute Ai of the notion 0
has the value P when the values of the attributes of {Am} of the notions
{OJ} are ... ". It is the way to specify rating rules (in particular, essential
judgment ones) basing on measured attributes of specified notions.

Procedural knowledge is an evaluation procedure and measurement, rating,
and assessment procedures. The evaluation procedure corresponds to ISO
9126 and is built in evaluation tools [11]; it defines the sequence of evaluation
steps. The measurement and assessment methods are implemented and used
as functions, of which descriptions written in the specification language are
available to the users of the system.

2. Geneml knowledge is sepamted from the description of a specific metrics
fmmework. It is represented by four classes of 'standardized' definitions of:
(1) MLMs, (2) SP metrics and defects expressed in terms of MLMs, (3)
methods to summarize measures, and (4) commonly used SQ models;

Specifying a metrics framework is combining standardized notions and,
maybe, additional definitions of: (1) quality factors and subfactors, (2) rele
vant SP metrics, and (3) their scales, and (4) interrelations among them.

The acceptance criteria are expressed in terms of selected and defined
notions of the metrics framework.

3. A specific evaluation specification has opemtional semantics. Such a
specification is transformed in a set of programs representing steps of an
evaluation procedure. Here, measurement is: (1) obtaining MMs of SPs and
then (2) getting values ofrelevant SP metrics (and defect information). Rat
ing is computing rating levels for measured values. Assessment is the final
step of the evaluation procedure; here, acceptance criteria are applied to the
measurement and rating result. All measured and rated values are combined
in tuples and stored in a global relational database (ROB). Besides, the RBO
keeps the history of the evaluation process. This allows not only to form an
evaluation report, but also to support SQ management during the develop
ment process.

5 Representation of Evaluation Specification

Here, the main components of an evaluation specification are:
(1) a metrics framework as a hierarchical breakdown offactors, subfactors,

and metrics for a software [12], and
(2) an acceptance criteria definition for making decision about SQ.
In accordance with the methodology [12], both some 'classic' SQ models,

like Boehm's or McCall's, and different corporate standard models may be
used as the basis to select a set of SQ factors and subfactors.

The descriptions of the standardized models are elements of domain knowl
edge and may be written as follows.

SQM ISO-9126 :
main Software--quality : {Functionality,

Reliability,
Usability,
Efficiency,
Maintainability,
Portability} .

178

Specifying an evaluation process is selecting already existed terms of do
main knowledge or/and defining new ones in the specific context. It means
that a measurement scale and rules have to be declared for any selected or
defined factors and subfactors. These rules may be written in a functional
or/and logical manner in terms of metrics, indirect measurement functions
and other subfactors. In addition, a rating mapping may be declared for
each metric. The example below is based on the example of the polarity
profiling from [13], pp.48-50.

Note. It is supposed that the specification offunctions 'Average', 'Nearest
integer' and 'Value-of' is obvious from the context of their use. The function
'Rating' produces a rating level value for a specific metric value according
to the mapping specified. The notion of rating level is defined in [11]. Here,
the attribute 'Measured-value' corresponds to the metric output.

metrics framework Our-Framework: SQ-model {
main Software-quality: {Usability,

Security,
Efficiency,
Correctness,
Reliability} ,

scale interval (-3, 3, by 1),
functional definition:

Nearest-integer (Average (< Value-of ('Usability'),
Value-of (,Security'),
Value-of ('Efficiency'),
Value-of (,Correctness'),
Value-of ('Reliability') >));

factor Reliability : {Accuracy,
Error-tolerance,
Consistency,
Simplicity} ,

scale interval (-3, 3, by 1),
functional definition:

Nearest-integer (Average (< Value-of ('Accuracy'),
Value-of ('Error-tolerance'),
Value-of (,Consistency'),
Value-of ('Simplicity') >));

subfactor Simplicity: {McCabe-number,
Ncloc,
module-count} ,

scale interval (-3, 3, by 1),
logical definition :

3 : if for-all value

2 : •••

for cyc-compl (_ , value)
Rating ('cyc-compl', value) = 'excellent'

and for Ncloc(_ , compilation-unit-size)
module-count(_, mod-count)
compilation-unit-size/mod-count ~ 30 ,

metric McCabe-number :
scale absolute, {* a linear-independent path count *}
relation cyc-comp (Program-unit-name : string,

Measured-value) ,
rating level :

'excellent' : [1, 10 [,
'good' : [10, 11],
'fair': 1 11,14 [,
'poor': otherwise;

... }. (* End of the metrics framework definition *)

179

SQ requirements demand that subfactor values have to be compared with
the critical value '0' before to be summarized. In addition, there are target
values (shown in the table on p. 50 [13)) for the factors.

acceptance-criteria: Our-Framework
acceptance : {

'required-degree' : if Value-of ('Usability') ~ 2
Value-of ('Security') = 3
Value-of (,Efficiency') ~ 2
Value-of (,Correctness') ~ 2
Value-of ('Reliability') ~ 2,

'marginal-degree' : if (Value-of (' Accuracy') ~ 0
Value-of ('Error-tolerance') ~ 0
Value-of (,Consistency') ~ 0
Value-of (,Simplicity') ~ 0)

rejection : {
'fail' :

Value-of ('Software-quality') ~ 2

otherwise }.

and
and
and
and

and
and
and
and

}

Here, if an actual value of any factor does not reach its marginal value,
or if an actual value of any subfactor does not reach the required one, then
there will be the decision on rejection in despite of the decision on acceptance
or rejection, which is based on the summarized value of 'Software-quality'.

6 Representation of Metrics, Defects and
Functions of Indirect Measurement

In accordence with [1, 11, 12), a metric may be represented as a scale and
a method to determine a value of an attribute of a specific SP, i.e., as

180

the following set: (1) name of the metric/mapping; (2) declaration of the
admissible input, (3) description of the measurement scale, (4) specification
of the mapping (the measurement method).

A SP defect may be considered as a special case of metrics [1]. Then the
mapping describes the condition(-s) of presence of the defect in a SP, and,
in general, it defines a bijective mapping onto the nominal scale {yes, no}.

According to the representation technique used, there is a relation for any
metrics, and after measurement to be done, there is a set of metric values
for a specific SP in the RDB (the set may be considered as the table). The
specification of the metrics is written in a special-purpose specification lan
guage having some features of relational/logical, functional and algorithmic
languages. The simple examples of specifications of two metrics are shown
below. The MMs refered in the input descriptions are specified in Section 7.

defect U nstructered-use-of-goto (U ug):
input Construction-Simple-statement (C-Ss),
scale nominal {'yes', 'no'},
relation D-Uug (Program-unit-name : string,

'backward-jump-by-goto',
Measured-value),

logical definition:
'yes' : if there-exist C-Ss (Program-unit-name,

Stat-no-l,
- ,
'GOTO',
- ,
Stat-no-2,
...) ;

and Stat-no-2 < Stat-no-I,
'no' : otherwise.

metric Ncloc:
input Symbol-End-of-line (S-Eol);
scale absolute,
relation Ncloc (Compilation-unit-name: string,

Measured-value) ,
functional definition:

Number-of-p-elements (Compilation-unit-name, 'S-Eol', 2, <_, 0,_»

Note. Here, the function 'Number-of-p-elements', The Number of Proper
Elements in the List, (Compilation-unit-name, Tuple-name, No-of-the
element-which-is-the-list, < Pattern » gets a value of how many times
the pattern 'Pattern' occurs in the list, which is the 'No-of-the-element ... 'th
element of the tuple 'Tuple-name' built when the program/compilation-unit
'Compilation-unit-name' has been analyzed.

181

We should note that metric values may be defined not only basing on
MLMs, but on other models of SPs as well, e.g., on control flow graphs.
These models, in turn, are represented by relations in the same manner.

Together with the SP metrics and defects, the LOA implies representation
of knowledge of the general-purpose measurement functions like 'Weighted
average' or 'Correlation'. They may be used to express indirect functional
dependences among measurement scales. Specifications of the functions look
like ones of metrics with the exception of defining application conditions
in their scales (meaningfulness condition). It is necessary to provide the
automatic check if the result is valid. A part of the specification of the
function 'Weighted-average' is shown below.

function W -average :
parameters (list-of-pairs-of-expressions-and-weights):

< exp : real, weight : real >),
scale

interval if all exps have got values of the same interval scale,
ratio if all exps have got values of the same ratio scale,

functional definition:

7 Language and Product Measuring Models

Method of the measuring language models is the basis of LOA [6, 8].
The measuring model M (or Mmea) of a language L is the quadruple:

Mmea _ (Tmea Nmea pmea smea) - , , , ,

rmea is the set of MMs of language symbols. Any model includes a set of
symbol attributes and a measurement scale for each attribute. For example
(for ISO Standard Pascal [14]):

Symbol-End-of-line (S-Eol):
(1) program name [or a reference to the name] : string,
(2) tuple-list: < integer, integer, integer >:

(2-a) position in the line,
(2-b) the number of non-blank non-comment characters in the line,
(2-c) the number of comment characters in the line.

N mea is the set of MMs of basic language constructions, i.e., those con
structions from that all other constructions could be built. Each construction
MM includes a set of construction attributes and a measurement scale for
each attribute. For example (for the same language):

Construction-Simple-statement (C-Ss):
(1) compound name ofthe program unit in which the statement is defined

[or a list of references to the names] : string,
(2) number of the simple statement : integer,
[(3) address of the statement text beginning: integer,]

182

(4) type: string,
(5) reference to the label declaration [or the label value]

(if the statement is labelled) : integer,
(6) list of references to next executable simple statements: <integer>,
(7) list of references to operands of the simple statement : < integer>,
[(8) computer resources use].

pmea is the set of rules how to form symbol and construction MMs and
measure values of their attributes;

smea is 'the highest level language construction' covering semantics of all
different constructions.

As a matter of fact, the MLM is a rigorous definition of a measurement
tool for the language L, i.e., a definition of measurement functions of MLP
and the format of the measurement result generated by MLP. In other words,
MLM might be considered to be the generative grammar Mmea defining the
language Lmea to represent the measurement results & for SPs written in
the language L; Lmea = Lmea(Mmea).

The static measurement result for a program may be considered as a set of
constant atomic propositions (CAP) of a relational (logical) language. Each
argument of any CAP is a value of an attribute of a symbol or construction
found in the program. It is the static MM of the SP.

The complete measurement result for a program is a join of its static MM
and the measurement result for its dynamic attributes during Z its execu
tions. The second component is the dynamic MM of the program obtained
on the base of a specific number of its executions. It is a set of CAPs as well.

8 Application of the Approach
to Automatic Evaluation

In addition to development of formal specifications in the context of the
methodology [12] and the ISO Standard [11], the approach allows building
software systems for automatic SP evaluation. Figure 2 shows the scheme of
activities to develop such a system for a specific evaluation process.

Here, MLPs are used to obtain MMs of SPs. If a SP writing language
has no operational semantics, its MLP builds the static MM only. For a
language with the operational semantics, the virtual machine of its MLP
generates MMs for each program execution. All together, the models of
individual executions form the dynamic MM of the program. The tools like
LEX and YACC may be used to develop MLPs. MLPs are built once for
each SP writing language. They are general-purpose measurement tools.

Metric and defect definitions written in the specification language are
compiled into a set of executable modules once too. Calls of the modules
do second level measurement in terms of the relevant SP metrics in the
context of a specific measurement procedure. The procedure is generated
automatically by each metrics framework description.

~

The literature
(standards,
text-books,

language
specifications,

etc.)

183

General knowledge description

Measuring
language
models

MLMLI

.u.
Developing
MLP for
each Lj

\MLPll

Metric/ Quality
defect model

descriptions descriptions

McCall's .u.
Ml

Boehm's Software
requirements,

MK ISO-9126's
quality

requirements

.u. .u. .u. .u.
Compiling Selecting Specifying

.u.

Measurement
module library

I Ml-procedure; I

I MK-procedure; I

.u. .u.
Metrics framework

description &
acceptance criteria

definition

.u.
Compiling

.u.
KBS

Generating I Rule base
.u.

Measurement
procedure

Ml-procedure;

Mj-procedure;

Mrprocedure;

Explanation
facility

Logical
inference

engine

Figure 2. The scheme of activities to develop the KBS.

RDB ¢::::} Measurement

Metrics procedure Knowledge-

values based
<: : system

Evaluation
history

B
Quality
report

Visualization --
~ ~ --

subsystem ---

Figure 3. The scheme of knowledge-based automatic evaluation tools.

184

The description and the criteria definition are automatically transform into
a rule base, which together with the logical language processor and built-in
explanation facility constitute a KBS, the user workbench.

Figure 3 shows the structure of the system and the scheme of its use at
SP evaluation. A test driver (TD) is used as the 'manager' at the first level
of software measurement. A relational DBMS is used to manage the RDB,
which keeps the measurement results and some intermediate evaluation infor
mation. To draw evaluation reports, the system has an imaging subsystem,
which can display and print usual forms of reports.

References

1. Fenton N, Pfleeger S. Software metrics: A rigorous & practical approach. Second
ed. International Tompson Computer Press, 1996

2. SCOPE Consortium, Hausen H-L, Welzel D. SCOPE Technology Work Report
SC.93/009/GMD.hlh.dw/T2.1/DT/03, GMD Sankt Augustin, Germany, 1993

3. Cogan B. Engineering expert systems for software quality assessment. In: Lum
E (ed) Proc. 2d Int. Compo Science Conf. on Data and Knowledge Engineering:
Theory and Applications, Hong Kong, 1992, pp.349-357

4. Cogan B. Intelligent automatic software engineering tools for software study
ing and assessment. In: Ross M (ed) Proc. 3d Int. Conf on Software Qual
ity Management, Seville, Spain, 1995, Computational Mechanics Publication,
Southampton, 1995

5. Cogan B, Hunter R. Language-oriented approach to software measurement. In:
Bray M, Ross M, Staples G (eds) Proc. Software Metrics Symposium, Berlin,
Germany, IEEE Compo Society Press, 1996, pp.3-8

6. Cogan B, Matveeva T. A relational approach to software measurement and qual
ity assessment. In: Cowderoy A (ed) Proc. 7th European Software Control'and
Metrics Conference, Wilmslow, UK, 1996, pp.280-291

7. Cogan B, Hunter R. Definition and collection of metrics for comprehensive soft
ware measurement. Software Quality Journal 1996; 5; 211-220

8. Cogan B, Ostrouchova S. Building a measuring model of a programming lan
guage. Research Report RR/96/200. Glasgow: University of Strathclyde, De
partment of Computer Science, 1996

9. SCOPE Consortium, Hausen H-L, Welzel D. Specification of software evaluation
and certification - Formal model. SCOPE Report SC.93/019/GMD.hlh.dw/
T21/RP /02, GMD Sankt Augustin, Germany, 1993

10. Buchanan B, Bobrow D, Davis R, et al. Knowledge-based systems. Annu. Rev.
Comput.Sci., 1989-1990, 4, pp. 395-416, Palo Alto, Calif., 1990

11. ISO/IEC 9126, Software product evaluation - Quality characteristics and guide
lines for their use, 1991

12. IEEE standard for a software quality metrics methodology: ANSI/IEEE Std
1061-1992, 1995

13. Watts R. Measuring software quality. NCC Publications, The National Com
puting Centre Limited, Manchester, England, 1987

14. Jensen K, Wirth N. Pascal User Manual and Report. Springer-Verlag, 1985

Australian Software Developers Embrace QA
Certification

Aileen P Cater-Steel and Edmond P Fitzgerald
Department of Information Systems, Faculty of Business

The University of Southern Queensland
Toowoomba, Australia

Abstract
This paper details a research project undertaken to assess the extent of adoption of
quality assurance (QA) certification by Australian software developers. A brief
history of government QA policy, the catalyst in the sudden interest in
certification, is included. Primary data for the study were gathered from a survey
of 1,000 Australian software developers, and were used to determine the extent of
adoption of QA certification by Australian developers, their organisational
characteristics, capability maturity and perceptions regarding the value of QA
certification. Secondary data from the JAS-ANZ register of certified organisations
enabled validation of survey responses and extrapolation of QA certification
adoption.

Major findings of the study revealed that II percent of respondents are certified to
ISO 9001 or AS 3563, seven percent are in progress and 21 percent plan to adopt
QA certification. It also revealed that specialist developers are adopting QA
certification at twice the rate of in-house developers. Other factors found to be
associated with adoption of QA certification are large development groups,
developers with government or overseas clients, organisations with whole- or part
foreign ownership, and organisations undertaking corporate TQM initiatives.
From the fmdings, detailed implications are drawn for managers and policy
analysts.

1 Introduction

With the increasing functionality and decreasing cost of computer hardware, there
is a significant trend for organisations to implement new computer systems, and to
redevelop legacy systems [1]. As well as being critical to the operation of their
business, more software is becoming embedded in products and services [2].
Despite the growing importance of software, most software projects are completed
over schedule and over budget [3]. For example, a survey conducted by the United
Kingdom's Department of Trade and Industries found that 66 percent of all
software projects were completed later than planned; 55 percent of projects ran
over budget; and 58 percent had major problems [4]. That the Australian software
industry is not exempt from similar problems is evidenced firstly by some projects
being cancelled, often after a significant investment, for example the
Commonwealth Bank's $100 million Mainstream project [5]; and secondly by the
delivered product sometimes being infested with bugs, or falling short of the

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

188

expectation of the client, for example Telstra has spent $300 million on its Flexcab
core billing system and ' ... all the code will now have to be re-examined, changed
where necessary and retested from scratch for year 2000 compliance' [6].

These continuing problems constitute what has been referred to as the 'software
crisis' [7). Thus for large, complex software projects, it is important that the
purchasers be able to assess the capability of would-be developers. However, as
professional qualifications are not required to practise as a software developer, a
potential client has no formal way of judging the competence of would-be
developers. The use of third party certification may help to alleviate this problem.
As well as describing changes in government QA policy this paper provides details
related to the extent of current and future adoption of QA certification by
Australian developers.

2 Australian Government Policy on QA Standards

Standards are profoundly important to industry and form a critical element in the
future success of Australian industry, domestically and internationally [8].
Government QA purchasing policy is cited in the press as a key motivator for
many organisations deciding to adopt QA certification [9, 10].

In 1987, during the HawkelKeating government, Senator John Button
commissioned a committee under the chairmanship of Dr Kevin Foley to prepare
'The Standards, Accreditation, Quality Control and Assurance Report'. This report
formed the basis of the Federal Government's Quality Assurance Policy which was
announced in May 1992. Departments and agencies were entitled to ask suppliers
for quality assurance for the supply of goods and services from 1 July 1993 for
manufactured goods and related services, and from 1 January 1994 for the
provision of 'unrelated' services [11]. Some state governments had already
adopted ISO 9000 as a mandatory requirement for all suppliers of goods and
services: Queensland (January 1990), South Australia (January 1991), and Western
Australia (August 1991) [12]. Although the federal government did not formally
adopt a policy of QA certification for goods and services, many government
purchasers stipulated on tenders that parts or all of ISO 9000 was required. The
effect was sensational:

... soon Australia was proudly leading the world in the take-up of ISO
9000. By the start of January 1993, Australia and New Zealand had
nearly 7% of all the certificates issued worldwide (the US had 4.3%). By
December 1995, this had grown to 8.3%, with almost 9000 certificates
issued [13].

But despite the rush to certification, many small businesses were appalled at the
overhead in terms of cost and bureaucratic procedures, and they lobbied for
relaxation in relation to government purchasing requirements. In response to this
backlash, John Sprouster, CEO of the Australian Quality Council, announced in
1994 that ISO 9000 was inappropriate and ,too costly for small business. Prime
Minister Paul Keating commissioned Bruce Kean to lead the Committee of Inquiry

189

into Australia's Standards and Confonnance Infrastructure, releasing the 'Linking
Industry Globally' [8] report. This committee found that ISO 9000 should only be
compulsory in the international marketplace [14]. However, before Keating could
act on this report, his party lost power to the Howard-led coalition in the March
1996 Federal election. Geoff Prosser, Small Business Minister in the newly
elected Howard government, announced in July 1996 that the Government was
turning its back on ISO 9000 [15, 16] .

Many of the state governments are also reviewing their policies:
• Queensland had a mandatory policy in place for ISO 9000 from 1992 to

October 1996, but now QA is mandatory only for high risk projects;
• Victoria is introducing a three-tier system;
• Western Australia is reviewing its mandatory policy;
• New South Wales and South Australia are not carrying out any reviews (both

have a system whereby different government agencies require varying degrees
ofISO 9000, depending on risk and value) [15, 16].

3 Standards Applicable to Australian Developers

Due to its generic nature, ISO 9001 is difficult to interpret in the context of
software development, so guidelines have been produced to help software
developers and auditors apply it to the software industry.

In the United Kingdom, a guide was produced by the British Computer Society:
'TickIT: Guide to Software Quality Management System Construction'. Based on
ISO 9001, it melds the guidance of ISO 9000-3 (Guidelines for the application of
ISO 9001 to the development, supply and maintenance of software) with the
requirements of ISO 9001 and contains five sections: introduction, the application
ofISO 9001 to software, a purchaser's guide, a supplier's guide, and an auditor's
guide [18,19].

Australia has also developed and promoted its own standard, AS 3563 'Software
Quality Management System' through the efforts of the QRl3 Committee of
Standards Australia. This certificatable standard extends ISO 9001 into project
planning, requirements specification, and the development of programming and
documents. The AS 3653 standard is highly regarded in international circles and
was adopted as standard 1298 by the International Electrical and Electronic
Engineers (IEEE) in 1992 [20, 21].

At the time of the data collection for this study (May 1995), Australian software
developers seeking quality system certification had a confusing situation with three
different options for certification: AS 3563.1, ISO 9001 (as applied via AS/NZS
9000.3), or joint certification to AS 3563 and AS/NZS 9001. In customising AS
3563 for software development, a new clause 'Control of development
environment' has been included which explicitly covers sub-contractor assessment,
programming standards, maintenance and configuration management.

190

The standards are continually reviewed and updated as a result of work conducted
by standards committees and technical working groups. For example, committee
QRl3 (responsible for AS 3563 and now including representatives from New
Zealand) has developed a new 1996 guideline, AS/NZS 3905.8: 'Quality systems
guidelines Part 8: guide to AS/NZS ISO 9001: 1994 for the software industry'. AS
3563 has now been declared 'obsolete' by Standards Australia. This means that
software developers will be seeking certification only to AS/NZS 900 I in the
future, using th~ AS 3905.8 guidelines [22]. One of the major enhancements
included in AS 3905.8 is the inclusion of examples of statements, documents and
plans specific to software development, which practitioners should find very
helpful.

4 Research Design

A survey of QA adoption by Australian software developers was conducted by Gori
in 1992. His sample was drawn from a list of the largest organisations in Australia;
it included large and small in-house developers but only large specialist developers.
However, 97 percent of the businesses which make up the computer service industry
employ less than 20 people [23]. Hence most specialist developers, being small
businesses, were not included in Gori's sample.

4.1 Research Questions

The purpose of the study was to investigate the extent of adoption of QA
certification, organisational characteristics of adopters, the capability maturity of
Australian software developers, and their perceptions regarding certification costs
and benefits.

Organisational Characteristics Developers'
Perceptions
towards QA

Specialist Developers

Government Clients
Overseas Clients

QA Capability
t---~ Certification 1----+1 Maturity

....-------1 Adoption

Recently Founded

Figure I Research Model

191

As depicted in figure 1, the study addressed the following four research questions,:
(i) What is the extent of adoption of third-party certified QA standards by the

Australian software development industry?
(ii) Do QA certified developers exhibit common organisational characteristics

(external clients (specialist developers), government clients, overseas
clients, organisational size, foreign ownership, corporate TQM, recently
founded)?

(iii) Is higher capability maturity associated with adoption ofQA certification?
(iv) How do developers perceive the value and effects of QA certification in

relation to its costs and benefits?

As it is not possible to provide a full report on the fmdings within the limitations of
this paper, the focus will be on reporting the extent of adoption, summarising
organisational characteristics associated with QA certification adoption, and
interpreting the findings in terms of implications for managers and policy analysts.

4.2 Survey Design

A questionnaire was designed and then pilot tested in two stages with suggested
modifications from the first stage incorporated for the second stage of testing. The
questionnaire included 12 demographic questions, 5 questions relating to QA
certification progress, 13 statements probing developers perceptions regarding the
value of QA certification and government QA policy and 33 questions (based on
the SEI maturity questionnaire) to determine software engineering practices.

4.3 Sample Selection

The unit of analysis was Australian organisations undertaking software
development. The target population was all organisations in Australia which
develop software for sale (specialist developers) or for their own use (in-house
developers). Two sampling frames were used, as a single list containing both types
of developers was not available. Firstly, all specialist Australian software
developers were extracted from the 'Oz on Disc' Yellow Pages Database. From
the total population of approximately 4,000 software developers, a random sample
of 500 was selected. To ensure in-house developers were adequately represented
in the study, a random sample was drawn from the MIS 3001 database which
contains details of the 3,500 largest users of IT in Australia and New Zealand. To
maximise the probability that the selected organisations undertake software
development, organisations which had not indicated usage of CASE or 4GL tools
were eliminated. From the remaining 1,690 records, 500 Australian organisations
were then selected at random.

192

5 Extent of Adoption of QA Certification

5.1 Current Status

The primary data from the survey, shown in table I revealed that II percent of
respondents are certified to ISO 9001 or AS 3563, seven percent are in progress
and 21 percent plan to adopt QA certification. It also revealed that specialist
developers are adopting QA certification at twice the rate of in-house developers.

STATUS DEVELOPER TYPE
ISO 9001 or AS 3563 In-house Specialist Total

(n=165) (n=123) (n=288)
Freq % Freq % Freq %

No Plans 121 73.3 57 46.3 178 61.8
Planned 25 15.2 34 27.6 59 20.5
In Progress 8 4.8 12 9.8 20 6.9

Certified II 6.7 20 16.3 31 10.8

Table I Comparison of certification status between in-house and specialist developers

Analysis of information provided from the JAS-ANZ register [24] shows that the
number of organisations holding certification for software development has
increased each year from 1991 to 1996. The number of certified organisations rose
78 percent during 1994 and 44 percent during 1995. At the time of the survey
(May 1996), accredited registrants had already advised JAS-ANZ of a further 21
certificates for ISO 9001 or AS 3563 for 1996, bringing the number of
organisations certified for software to 120.

1989 1990 1991 1992 1993 1994 1995 1996

Figure 2 Logistic growth curve - cumulative certifications 1st qtr 1989 to 1st qtr 1996

193

The growth logistic curve [25] is often used to show how something grows or
increases with time. When SPSS is applied to fit the logistic model to the
secondary data with an estimated upper bound of 500 certifications, the estimated
equation is Y=I/(1I500+2.1403*.8115**t). As can be seen from figure 2, this
model closely fits the data and is confirmed by a coefficient of determination
(.965) which indicates that 96.5 percent of the variation is accounted for by the
time variable (Beta=.374409, p<.OOI, adjusted R2=.96383, n=28).

Figure 3 shows that Queensland (Australia's third most populous state) has the
highest proportion of certified respondents with 17 percent of respondents certified
to ISO 9001 or AS 3563. This may be explained by the fact that Queensland was
the first state in Australia to adopt minimum quality standards in its purchasing
policy. Figure 3 also illustrates that the states of South Australia, Tasmania and the
Northern Territory do not have significant QA certification activity, however, the
low number of responses from Tasmania and the Northern Territory make it
difficult to generalise.

..c ~ ...
<OS .. 40 . e c .:: 30
tl ..
c- 20 . .. !!
"Cr,n
c
c 10 Q,

'" .. a:: 0 ...
c 3: u "0

'$. V) :> 0-
Z

..:: ..:: ~ r,n 3: !-

Australian States

!- !-
U Z ..::

i 0 %of~ Qo\ Cl:rtifiation
! Plamed

I'. %Of~WlhQA.
Qrtificaion 'In ~ I. %of~ Qo\Cl:rtified

I
I

Figure 3 Certification progress shown for proportions of respondents by state

5.2 Projected Adoption

The information derived from the JAS-ANZ register can be extended by including
the proportions of this study's respondents who reported that they are planning to
achieve certification, or are already in the process of adopting certification. Based
on the 'typical' timeframe for certification [18], it can be predicted that all the
organisations currently with QA certification in progress will achieve their
certification goal within 12 months, and those that are in the planning stage will
have completed the process within two years. The survey responses indicate that
the ratio of certified: in progress: planned is 10.8 : 6.9 : 20.5. Applying these
proportions and extrapolating adoption, based on the May 1996 figures of the JAS
ANZ register, in 12 months there would be an additional 70 organisations certified,
and in a further 12 months (i.e. May 1998), an additional 209, giving a total of389
organisations certified for software development.

194

°Observed

°Logiillc

1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999

Figure 4 Current! predicted adoption of QA certification by developers, 1989 to 1999

The logistic growth curve proposed above fits the predicted certification activity
(refer to figure 4). However it would appear that the predicted upper bound of 500
certificates of the proposed model is too conservative.

It is difficult to compare the extent of adoption with previous Australian results as
the only similar large scale survey, that conducted by Gori in 1994, sampled only
large organisations, sourced from the MIS 3000 database. Gori [20] found that 14
percent of his respondents had no plans for a quality management system (QMS),
and that many organisations who were planning or preparing their QMS did not
intend to seek third party certification. These results are consistent with the
findings in table 5.21, which shows that 73 percent of in-house developers
(sampled from the MIS 3000 database), have no plans to achieve QA certification.

503 International Comparisons

The Hong Kong survey [26] sampled only specialist developers. Our survey data
indicated that the QA activity of specialist developers in Australia is similar to that
found in Hong Kong, where around half of the Independent Software Vendors
(ISVs) there intend to, or are already implementing ISO 9000 [26]. The overall
proportion of certified organisations in Australia (almost 11 percent) appears to be
much less than in the United Kingdom. Davis, Thompson, Smith and Gillies [27]
found that 22 percent of their 151 respondents were third party assessed, and that
almost half of these certificates had been recently issued.

195

5.4 Effect of Organisational Characteristics

In order to understand how organisations are influenced towards adoption of QA
certification, data on organisational characteristics were collected and analysed.
Support was found for the following hypotheses:
• specialist developers are more likely than in-house developers to adopt QA

certification;
• developers with government-funded clients are more likely than developers

without government-funded clients to adopt QA certification;
• developers with overseas clients are more likely than develo.pers without

overseas clients to adopt QA certification;
• large specialist organisations are more likely than small specialist

organisations to adopt QA certification;
• organisations funded by overseas capital are more likely than wholly

Australian-owned organisations to adopt QA certification;
• organisations involved in corporate TQM are more likely than non-TQM

organisations to adopt QA certification.

6 Implications for Practice and Policy

In this section, the implications of our study's findings for private sector managers,
government policy analysts and public sector managers are examined.

6.1 Private Sector Managers

The extent of adoption of QA standards uncovered by this study, has important
implications for managers of specialist and in-house software development groups.
There are also implications for managers in organisations which are clients of
software developers, referred to here as 'client managers'. Considering the actual
and forecasted number of adoptions, the following recommendations are based on
the literature and the findings of this study.

6.2 Software Development Managers

• The extent of adoption by specialist developers revealed by this study
indicates that those without QA certification may soon need it as a competitive
necessity. This implies that the early adopters will need to continuously
improve as the competitive advantage they currently enjoy is unlikely to be
sustainable. To protect their market, it is recommended that specialist
developers determine if their clients (current and potential) are planning to
adopt QA supplier certification.

• It is further recommended that small newly founded software developers
consider implementing QA standards to overcome barriers identified by Ritter
[28] such as lack of reputation and lack of attractiveness as business partners.

196

• With the recent trend towards outsourcing IS services, in-house developers
may find that QA certification provides a defence against outsourcing, and
may protect them against an outsource (certified) bid. Therefore, it is
recommended that in-house groups determine if QA certification is being
adopted by their parent organisation's customers or competitors, and actively
participate in any corporate QA activity.

• To ensure that QA certification can be adopted and maintained in-house,
minimising expensive external consultants, it is recommended that
organisations consider QA training for existing staff, and specify QA skills in
recruitment criteria.

• Finally, to facilitate adoption of QA certification, it is recommended that
software development groups evaluate the use of more advanced CASE tools,
groupware and document management systems.

6.3 'Client Managers'

By providing information about the number and organisational characteristics of
certified software developers, this research has produced a profile of software
developers in different stages ofQA certification which 'client managers' may find
very informative in deciding whether to insist on QA certification of their
developers. In the past, insistence on QA certified developers for software
contracts has limited the pool of potential suppliers. This research shows that the
pool is growing at a significant rate, thus facilitating use of certified developers.

Although 'client managers' in Australia have not been surveyed regarding their
QA policy or perceptions regarding the value of QA certification, a number of
recommendations are made based on the findings from this study. The
recommendations may assist these managers in deciding whether to require QA
certification or not.

Therefore, it is recommended that:
• as higher capability maturity is associated with QA certification [29], and as the

number of QA certified developers is increasing, clients should consider QA
certification as a pre-requisite in evaluating potential developers;

• in view of the concerns highlighted in this study regarding the value of QA
certification as a reliable indicator, client managers consider other indicators as
well as certification in assessing potential developers;

• client managers consider the risks and value associated with a project before
insisting on QA certification; for low-risk, low-value projects the added cost of
QA certification may not be justified.

197

6.4 Public Sector Policy Analysts and Managers

Although this study did not seek to determine cause and effect relationships
(associations only), it appears that government policy has a major influence on the
adoption of QA certification by software developers. It was found that 23 of the 31
certified organisations have government-funded clients. Also, as shown in figure
3, Queensland - the first state to adopt mandatory QA standards - provided the
highest proportion of certified responses (17 percent of Queensland respondents
are certified).

Although government policy has been successful in terms of increasing the
adoption of QA certification by suppliers, it appears to have failed in its objective
to boost the competitiveness of local industry. The findings from this study
support the view presented in the media [10] and by other research [30, 9, 31, 16]
that government policy has benefited large foreign owned organisations at the
expense of small local developers.

Even the architect of the Federal Government's QA policy, Dr Kevin Foley, now
admits that' ... in retrospect the quality movement did not take into account the cost
to business and the importance of the risk and value of the contract' [13]. Another
problem highlighted in the media [15] involves the implementation of the policy:
'Government purchasers publicly claimed that there had never been a policy of
mandatory ISO, and they would retrain staff to stop insisting on it'. Roger Dewar,
Principal Project Officer with Queensland Purchasing (Department of Public
Works and Housing) explained that government purchasing officers are generally
risk averse, and tend to over-specify QA in contracts [17]. He went on to explain
that training purchasing officers about changes to government QA policy is
effective, but changing the habits of other 'officers who purchase' is difficult. As
well as complaining about QA compliance being over-specified, practitioners also
complain that on occasions, the stated QA policy was ignored, with contracts being
awarded to non-QA certified organisations who submitted the lowest quote [32].
In relation to government regulatory bodies setting standards, these problems
confirm David and Greenstein's [33] comment that 'designing efficacious actions
and appropriate guiding principles for every situation opens a large research
agenda'.

7 Conclusion

With half the specialist respondents involved in QA certification and the dramatic
rise in certificates issued to specialist and in-house developers, the adoption of QA
represents the most pervasive effort to date by Australian software developers to
improve their software processes. However, changes to government policy,
although well-intentioned, may result in a competitive imbalance biased against
local developers.

198

References
1. Fried, L. 1995, Managing Information Technology in Turbulent Times, Wiley-QED, NY.
2. Senn, lA 1995, Information Technology in Business: Principles, Practices, and

Opportunities, Prentice Hall, Nl
3. Ashton, S. 1996, The Value of User Evaluation, ComputerWorld, 27 Sep, pp. 44-5.
4. Russell, J.F. 1993, ISO 9000 Tackles Software Development, Electronic Business Buyer,

Oct, pp. 122-3.
5. Maiden, M. 1996, Revealed: How CBA Fell into Techno-Trap, The Sydney Morning

Herald, 3 May, pp. 21-2.
6. Birmingham, A I 996,Telstra Time Bomb Ticks to SlOOm, ComputerWorld, 21 Jun, p. 1.
7. Tan, M. & Yap, C.Y. 1994, A Study of TQM Practice on Software Development in

Singapore, TCSAUS IFIP I S International Working Conference, May, pp. 575-84.
8. Committee of Inquiry into Australia's Standards and Conformance Infrastructure. 1995,

Linking industry globally: Overview, Standards and Conformance Infrastructure Inquiry,
Australian Government Publishing Service, Canberra.

9. Gome, A 1995, ISO 9000 Inappropriate for Small Business, Business Review Weekly,
13 Mar, p. 52.

10. Financial Review 15 Jul. 1996, editorial.
I 1. AlIA 1993, Quality Management Issues: An IT Perspective, AlIA, Deakin, ACT.
12. Wilson, D. N. 1993, Software Quality Assurance in Australia, SQM, Eds M.Ross et aI.,

Compo Mechanics Pub., Southampton Boston, pp 911-24.
13. Gome, 1996, Total Quality Madness, Business Review Weekly, 30 Sep, pp. 38-44.
14. Hudson, T. 1995, The Quality Question, Ausindustry, July/August, pp. 14-5.
15. Gome, A. 1995, Canberra May Become Less Gung-ho on ISO, Business Review

Weekly, 4 Sept, p.68.
16. Dwyer, M. 1996, Canberra Takes Action on Standards, Aust Financial Review, 15 Jul,

pp. 1,4,16.
17. Dewar, R. 1997, pers. comm., 11 March.
18. Kantner, R. 1994, The ISO 9000 Answer Book, Wiley, New York.
19. Smith, DJ. 1995, Achieving Quality Software (3rd edition), Chapman & Hall, London.
20. Gori, G. 1994, The State of Quality Assurance in the Software Industry in Australia,

MPM Graduate Project Report, UTS, Sydney.
21. Jenner, M.G. 1995, Software Quality Management and ISO 900 I, Wiley & Sons, N.Y.
22. Johnstone, G. 1996, pers. comm., 29 October.
23. Madden, R. 1995, Computing Services Industry Australia 1992-93, ABS ACT.
24. JAS-ANZ 1996, pers. comm., 19 August.
25. Montgomery, D.C. & Peck, E.A. 1992, Intro to Linear Regression Analysis, Wiley NY.
26. HKPC & IDC 1995, Vo12: Phase I Study - Industry Analysis, in Consultancy Study on

Hong Kong's Software Industry 1994-95.
27. Davis, C.J., Thompson, J.B., Smith, P., & Gillies, A 1992, A Survey of Approaches to

Software Quality within the United Kingdom, Occasional Paper, University of
Sunderland, vol. 92, no. 5, pp. 1-74.

28. Ritter, T. 1997, Network Competence: A Framework for Effectiveness in Technological
Networks, in Doctorial Consortium on Interfirm Relations and Networks.

29. Cater-Steel, AP. & Fitzgerald, E.P. 1997, Quality Assurance Certification: Adoption by
Australian Software Developers and its Association with Capability Maturity, Proc
APSEC & ICSC, Hong Kong pp. 11-23.

30. Zampetakis, H. 1994, Investment in Quality Accreditation Queried, Aust Financial
Review, 31 Jan, p. 28.

31. Kennedy, A 1995, Counting the cost ofISO accreditation, Business Review Weekly, 7
July, pp. 48-9.

32. Dore P., 1997 pers. comm. II March.
33. David, P.A. & Greenstein, S. 1990, The Economics of Compatibility Standards: An

Introduction to Recent Research, Economics ofInnovation & New Technology, pp.3-41.

Management Systems:
the End of the Beginning?

Roderick H Macmillan MISTC
British Telecom Labs, Martlesham Heath

Ipswich, UK

Abstract

For many years quality managers have been striving to merge the
requirements of management systems into "business as usual".
Traditional paper-based formats have made this very difficult to
achieve. However, the advance of technology and the transfer of
information to the electronic medium have provided new
opportunities. In the new medium the EFQM Business Excellence
Model may be used as a navigational tool to fmally solve this
problem.

Introduction

Management systems have come a long way over the years, and are now changing
at an accelerating rate. Advances in technology are providing the means to solve
several of the fundamental problems with which quality managers have grappled
for years. It is now possible to correct the mistaken perception that a quality
management system is a bolt-on addition to "real work". The end of the beginning
may have arrived.

Techniques for delivering up-to-date information in an accessible form to
everyone in an organisation are now established, although many organisations
have yet to make the change. However, it is not only the speed and medium of
delivery that the new technology has changed. Fundamental changes in the way
information is structured and used are now demanded.

At BT Laboratories Network Engineering Centres, part of the national research
and development centre of British Telecommunications pIc, in Suffolk, a paper
based management system filled several A4 ring-binders for a number of years.
The documents were not particularly easy to use or maintain, and were eventually
converted into electronic hypertext form [1] [2] using Microsoft Multimedia
Viewer. This improved accessibility and hence adherence to requirements. The
subsequent introduction of an intranet brought about further significant changes.
Accessibility was again a key consideration, and numerous navigational
techniques were used. An alphabetic index proved most popular, although a

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

200

dedicated search engine was also well used. Other navigational tools such as
business processes, ISO 900 I and topic groups found a lower level of application.
Although accessibility had been improved immeasurably, and problems such as
issue and change control had been solved, one basic problem remained. The
management system was still regarded as a separate entity - a self-contained
electronic book addressing particular processes. Everyday work was, in the eyes
of a significant number of users, something quite different.

History

The way in which an organisation perceives its management system is very
important. A system that is seen as a set of dusty volumes to which reference is
only made prior to visits by third-party auditors, or in desperation, has failed. It is
the task of an organisation's senior managers, and of a quality manager, to get the
requirements of a management system accepted as the normal way of doing
business.

One of the tools that may be used to influence the perception of users is the
presentation of the management system itself. Users typically make reference to a
management system when specific questions arise. Easily found, concise yet
complete answers inevitably improve perception of the management system. But
how can this be achieved?

Management systems are normally home grown, and early versions may be over
prescriptive, unreadable volumes that soon fall from favour. Authors love to see
their words in print, and the effort involved in changing or rewriting a
management system may delay for years the inevitable fresh start. It is still the
case that most management systems are paper-based, and updated by a laborious
reissue of volumes, documents or pages. Basic systems are patched and amended
so many times by so many authors and editors that few people know the whole
story.

Such a system has several major defects - anyone of which may prove fatal. The
information may be inaccessible and difficult to read, may be out of date, and may
drift away from being relevant to an organisation's everyday activities. The
obvious consequence is that it falls from regular use. But there is a more serious
problem - in paper form a management system is unlikely to be fully integrated
into the everyday work of an organisation. It will remain something separate from
the main stream. In electronic form the situation might seem to be the same, but
the new medium is more flexible and offers new possibilities.

Technology and World-wide Web

The last five years have seen considerable movement toward electronic
information systems. Management systems have been put on line in a variety of
ways, from word-processor files dumped onto local networks, to hyper-linked
help-files and company intranets. However, it is the introduction of the intranet

201

that has really transformed the situation. For the fIrst time, given the correct
structure, users are able to fmd the information they require. A good system will
answer users' questions within three clicks of a mouse - and the answer will
consist of no more than a few relevant sentences.

The arrival of the world-wide web, and the introduction of company intranets, has
opened the fmal door. A single source of information can now be made available
to everyone, updating the information is comparatively easy, and costs have fallen.
However, the potential of a company intranet extends far beyond the management
system. Managers will see applications in all sorts of areas - internal telephone
directories, planning, purchasing, fmancial etc. Once an intranet is up and running,
a myriad of additional unforeseen applications will be transferred to it. Indeed, in
the space of a few short years an organisation may be totally dependent on an
intranet.

The beauty of this situation is that all the information an organisation makes
available to its people is brought together in one medium, possibly in a single
format. Hypertext links can be used not only to link parts of a management
system, but also to bring together other information. The boundaries between
management system and "real work" then begin to blur. Given the careful
management that this new environment demands, the potential in enormous.

The Business Excellence Model

Navigation through the maze of information that is a mature company intranet is a
subject in its own right, and a great deal of effort continues to be invested in
addressing the problems. Accessibility remains a key requirement, and this is most
effectively achieved by using a variety of parallel techniques.

Three navigation tools have emerged as front-runners. The search engine, various
alphabetic approaches, and the European Foundation for Quality Management
(EFQM) Business Excellence Model (BEM) - figure 1. The BEM [3] offers major
advantages because it has the potential to merge previously discrete systems with
other business information.

The BEM may be used to describe any organisation. The nine top-level criteria of
the model are easy to understand and applicable at any level within an
organisation. Thus, the adoption of this widely accepted model as a top-level
intranet page allows business information of all types to be drawn together in a
convenient way. The leadership criterion, for example, points to a number of
lower-level topics such as values and expectations, role models, training, priorities
and communication. Management system intranet pages on these subjects are now
listed under these headings alongside other related information. Management
system pages are identified only by the name of an author responsible for their
maintenance. From the point of view ofa user, the boundaries have vanished.

202

Top Level

AreaJ

Areal

Area 3

Area 4
A.rea 5

Leadership

Resources

II

Processes

Impact on
Soclet

S!h wu:'s NW l'-E_na_b_le_rs _________ ... 11 Results

Figure 1: EFQM Business Excellence Model

Lower-level Areas

II

Business
Results

I

The BEM shown in figure I is used in a similar manner for both the top level and
lower-level subdivisions of the organisation. The area in which the model is to be
used may be selected by clicking on one of the areas listed to the left of the BEM.
The selected area turns red. No other visible change is made to the model as areas
are changed, but the map file lying behind the BEM is replaced, providing the user
with links at the appropriate level.

Users in a particular subdivision of an organisation are likely to need access to
top-level information supported by more detailed local material relevant to their
own area. To avoid the need to change repeatedly between levels, users selecting
one of the lower-level areas are presented with intranet pages divided into at least
two frames. One provides hyper-links to relevant information at top level, and the
other lists links to related local material. This serves as a reminder to users who
are focussed on local requirements to also consider top-level material.

Search Engines

All the realisations of the BEM, at top level and local level, are supported by
appropriate specifically-scoped search engines. A user who selects the BEM at top
level will therefore be presented with a search engine that will search top-level
information only. Local search engines are used to support the relevant lower
level realisation of the BEM. Experience will show whether it is necessary to
make the top-level search engine available at all local levels.

203

What's New?

Changes made to information linked to the various levels of BEM are notified to
users via level-by-Ievel "What's new" sites. These are organised alphabetically,
presenting users with all the changes made to topics listed under a single letter of
the alphabet on a single page. A browse facility allows users to scan the entire
alphabet in a couple of minutes. Summaries of significant changes made to
management system requirements are also e-mailed to all users.

Other Navigation Tools

Navigation around a complicated site is best achieved by using several parallel
techniques. The BEM was not designed with web-site navigation as its primary
purpose, but has now shown itself to be a flexible and very useful tool. However,
it is important that it is supported by other navigational techniques, such as search
engines, alphabetic indexes and business processes. When used together, these
techniques allow complete integration of management systems into normal
business.

References

[1] Macmillan R H, E.Quality@BT ... , Quality Yearbook 1997/1998, Prentice Hall,
Englewood Cliffs, New Jersey, pp 4.12-4.14

[2] Macmillan R H, Aardvark to Zulu, Proceedings of the Fifth Conference on
Software Quality Management, British Computer Society, 1997, pp285-290

[3] Self-Assessment Gudelines for Companies, European Foundation for Quality
Management, Brussels Representative Office, Avenue des Pleiades 15, 1200
Brussels Belgium, 1997

Can Quality Survive Amidst Adversity?

W. Pat Burgess
Burgess Consulting, Inc.

St. Louis, MO USA

Abstract

Executive management of a nation wide warehousing and
distribution organisation made a strategic decision to
migrate from a mainframe environment onto a newer,
server based platform. The underlying premise for this
decision was that this platform would enable them to
function more cost effectively and enable them to better
react to market forces. The decision supported previous
decisions to embark on a quality program and to empower
employees. This program differed from previous
programs in that the push was away from the Information
Systems (IS) department rather than toward the IS
department.

Immediately following this directional
announcement, the IS staff became panicked. Within
eight months of the initial announcement by management,
the IS department shrank from forty-two technicians and
support staff to a total of six. At fIrst glance, this
organisation which was heavily supported by technology,
seemed to have been delivered a devastating blow. In
reality, quite the opposite was true. This paper is a
discussion of the progress of this ongoing process and the
role Software Quality Management has played in
rebuilding the IS department.

1 Background

In door to door distributions there are two methods of distribution: blanket
and segmented. In a blanket distribution, every location within a
geographical area receives the same item(s). In a segmented distribution,
specific locations within a geographical area receive different item(s) based
on demographic information. In addition to delivery locations, there may
also be delivery instructions as to how an item is to be delivered or the
placement of an item at a specific location.

Our client (referred to as D2D) is a warehousing and distribution
organisation that warehouses and delivers various products door to door. It
receives delivery requirements from its customer and creates subsets of
delivery addresses, or locations, optimised based on like items, the number

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

205

of locations to be delivered, the size of the items being delivered and the quantity
being delivered to each location. Delivery optimisation and the printing of delivery
instructions had previously been done on a mainframe computer. Over the
previous twenty-five years, as processes were automated, the IS department had
evolved into the largest department within the organisation.

Although recognised as the quality leader in their industry, OlD was
loosing more and more contracts to the lower bids. This continuous market
pressure to reduce costs caused them to review their most basic business processes.
This evaluation gave rise to their quality initiative. After the initial training and a
few team-building meetings, the program lost momentum and stalled. However,
continuous market pressures to reduce costs once again caused executive
management to re-evaluate their direction. Based on a third party feasibility study,
management once again decided to attempt to reduce operating costs through
automation: specifically to migrate from their mainframe computer environment
onto a more economical server based platform. It was their belief that more
powerful PC based tools would provide the ability to respond more quickly to the
changing market and the growing popularity of segmented deliveries. It had been
determined that with a few modifications, systems developed for maintaining
delivery information in the field could perform many of their critical processes on a
server based platform.

2 Migration

There is a management theory of thirds that states: for any corporate decision, one
third of those affected will disagree with the decision; one third will agree; and one
third will be indifferent towards it. The uncommitted third is the crucial group to
win over. This concept became very apparent immediately following the
directional announcement by management. Within three months, the depamnent
director had resigned, and within eight months of the announcement, the IS
department shrank from forty-two technicians and support staff to a total of six
employees. Two supervisors, two programmers, one computer operator and one
clerk were all that remained. At first glance, this organisation which was heavily
supported by technology, seemed to have been delivered a devastating blow. In
reality quite the opposite was true.

As the migration progressed, it became evident that the new platform
would indeed carry the load. It became a rallying point to the remaining staff that
they were accomplishing approximately the same amount of work with one seventh
of the staff. However, as time went on, the reductions in cost were not what had
been originally expected. In addition, when the mainframe and the mainframe staff
were gone, so too were the procedures to insure quality. Without the experience of
senior staff members, there was no one on hand to recognise the importance of
software development controls. Consequently those processes began to deteriorate.
End-users were now responsible for their data and didn't know what to do with it.
As issues arose, they approached the technical staff directly and requested
assistance. Inexperienced programmers, eager to please, developed routines to fix
symptoms, and in some cases modified production programs. The lines between

206

testing, production and development were becoming blurred. The software
development process was becoming chaotic.

Operational tasks, previously performed by IS and now the responsibility
of end-users, were not being performed at all. Tasks such as scheduling when data
should be received from customers and recognising when the data was late were
falling through the cracks. Immediate steps needed to be taken to improve the
quality of internal processes before they began to adversely effect delivery
services.

3 An Approach to Quality

Implementation of a quality program is a slow methodical process and this
organisation wanted to act quickly before a breakdown in procedures turned into a
breakdown of quality. To accomplish this, a plan was developed to re-implement
software quality controls and at the same time develop new procedures for those
functions that moved out of IS to the end-users. Once these procedures are in
place, they will be evaluated and action will be taken to improve them. This
evaluation process will be ongoing.

The following outlines the plan for procedure and quality controls.

3.1 Software Quality Controls

Software Configuration Management

Establish controls over the software development process.
• Version Management
• Problem Tracking
• Build & Release Management

Software Baseline

Establish a baseline for the software that is currently in production. This involves
identifying all modifications that have been made to production objects, programs,
and libraries as a result of the previously described process.

Software Review Board

Establish a software review board to ensure that the functionality of the compiled
programs has not been modified during the migration process. Once the baseline
has been established, this group will also approve and prioritise any new change
requests or newly proposed functionality.

Software Quality Assurance

Establish a formal quality review for all software prior to being placed into
production.

207

3.2 Procedure Quality Controls

This effort was primarily concerned with reviewing operational procedures that had
previously been perfonned by IS, detennining if they were still applicable, and if
they should remain within IS or if they should be the responsibility of an end-user
group.

3.3 Quality Teams

In addition to the quality teams developed in the previous quality initiative, new
teams were created to reflect the new technical environment for delivery
instructions, made up of members from the technical and user groups.

Define Customer

This process had two groups of customers: Internal users of the software, and
external customers that used the service supported by the software.

Define Scope

The newly named Distribution Support Services (DSS) includes all activities
necessary to develop the detailed delivery instructions for door to door delivery.

Define Quality Goals

Develop delivery instructions that will reach 98% of the targeted market and to
reduce record production costs by 25%.

Define Metrics

Measure delivery data accuracy against postal data.
Measure market saturation by third party surveys.

4 Current Status

The program has been in place now for a few months and is beginning to show
results. The Software Configuration Management tools have been purchased,
installed, and some training on how to use them has been completed. The process
of identifying the most recent versions of production code is progressing faster than
anticipated. End-users are grumbling a little about submitting written change and
enhancement requests, but everyone involved is readily accepting the software
control measures.

5 Conclusion

It is difficult for quality to exist in extremely adverse conditions if the quality
process has not been institutionalised. Even then, I am not certain that the outcome

208

of this case would have been any different. The loss of experienced staff
contributed greatly to the breakdown of control processes. However, even though
their quality initiative had not progressed very far, it had gone far enough to help
identify problem areas and provide a structure around which a rebuilding process
could begin.

Beside procedural breakdowns, there were management breakdowns as
well. Three crucial events took place, that if handled differently, may have averted
some of the confusion that followed the migration. There was a point at which the
technical staff was unsure of how they fit into the new technical environment. If
appropriate measures had been taken to assure the staff that training would be
available and that there would be a place in the new environment for them, possibly
not so many would have left. When the department head resigned, regardless of
the reason, it invalidated the new direction in the eyes of many of the staff.
Measures should have been taken to counter that effect. When the experience of
the staff reached such low levels, steps should have been taken to ensure that
quality controls continued to be used.

In the end, had it not been for SQM techniques, I believe that a few
months of chaos could have evolved into something significantly wors~.

AN ANALYSIS OF OBSOLESCENCE RISK
IN IT SYSTEMS

M. Bradley
Rolls-Royce and Associates Limited

Derby, England

R.J.Dawson
Department of Computer Studies

Loughborollgh University
LOllghborough, England

Abstract

This paper is concerned with technological and functional obsolescence in the
context of common computing applications and from a user perspective. Both forms
of obsolescence are dermed and the effccts on software and hardware are discussed,
together with the consequence for cost of ownership of IT systems. Supporting data
is provided froot a number of industrial swveys of commercial off the shelf software.

1. Introduction

There are two principle fonns of obsolescence, technological and functional, and
these affect the provider and user of products and services in different ways.

Technological obsolescence is a problem that affiicts every delivered product to a
degree. The greatest degree of alIect is felt in rapidly changing technologies, the
least degree in those that change only slowly. Examples of specific products drawn
from a slowly changing tcclmology that are affected to only a small degree by
obsolescence are bridges and roads. Recent examples of products that are affected
to a greater degree by obsolescence are the media used by audio industry. Here,
technological advance has inflicted eOective obsolescence on various standards of
records and tapes over several decades. The effect of technological change and
obsolescence is to force new purchase on to the user, whilst providing opportunity
to the owners of the incoming technology but disaster to the owners of outgoing
technologies.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

210

Functional obsolescence is a secondary problem, generally caused by technological
advance elsewhere, and is exemplified by the disuse of sections of Roman roads. Whilst
roads in general are not yet obsolete, some roads will become functionally obsolescent
as the destination is no lOnger in tL'le. Functional obsolescence leaves society with a piece
of tec1mology that has gone out of use, leaves the owner of the outgoing technology with
reduced opportunity, and may provide another technology'S owner with a new
opportunity.

The crucial difference between the two forms of obsolescence is that the Technological
form is caused by a technology owner whilst Functional obsolescence is caused either
by the user, or by a different technology entirely - a new technology owner with a step
change.

In addition to the typing of obsolescence, there is also an issue on the standpoint from
which obsolescence is viewed. There are a great number of articles in the literature
written from the position of a manufacturer, [1,2,3,4 & 5], providing advice on the
strategies to retain or gain market leadership. There is also advice available from the
literature for organisations in the middle of the supply chain [5], where it is clearly
important to monitor component obsolescence to avoid both lost sales and obsolete
stock ..

This paper is concerned with both forms of obsolescence described above in the context
of common computing applications, the hardware required and the consequent
implications for cost of mvnership of IT systems. The context is that of the end user. To
provide a common understanding of the subject the following dictionary definitions are
provided, taken from Chambers I (J I:

Obsolete:' adj. - gone out of use: antiquated: no longer functional or fully developed'

Obsolescent: ' adj. - going out of usc: in course of disappearance; tending to become
obsolete'

Obsolescence: 'n. - < the process of>' going out of use'

2. The root causes of obsolescence.

Obsolescence impacts on a PC in a business environment in a number of ways, these are
typically caused by:

• software being subject to an upgrade by the software supplier creating
technological obsolescence of the earlier software version, and a possible
consequential obsolescence of the computing hardware.

• the demands made on a PC are increased within the capability of the software,
but beyond the capability of the hardware, creating functional obsolescence of
the existing PC ..

211

• the PC is no longer supported because some component is now no longer in
production or is no longer in demand by the market place, an example of
technological obsolescence.

• the business changes and the software changes in line with the new business,
causing functional obsolescence of the solhvare (version), again with a possible
consequential obsolescence of the hardware ..

An understanding of the likely OCCUlTence of obsolescence is important in understanding
the cost of ownership of a PC in the organisation. The first three of these categories are
dealt with below, the fourth category is not, as this category is business specific and is
best dealt with by carrying out a risk analysis of the business future.

3. The Software Upgrade problem

This form of obsolescence occurs where the solhvare being used is subject to an upgrade
by the software supplier and where the upgrade requires an increased specification PC,
or where the software is no longer supported at all - withdrawal.

An indication of the volatility of software can be gained from the time between full
releases of packaged business software. Clearly, not all releases cause an improved
specification to be purchased, but usually the pressure is increased on the business to
upgrade. A review of releases for some popular windows based software canied out in
May 1997 revealed:

Software vendors generally pnlYide support for software for the cUtTent and previous
releases only. Some may provide infonnal support for earlier releases, but may not
formally enter into support agreements based on old software versions. This implies that
the time between alternate releases is signilicant. It has also been quite normal for three
contiguous PC software releases to move the soilware from DOS, through Windows™
3X to Windows 95™, with signiJicant changes to hardware specification at each change.
Based on a total of eight popular software packages with a total of twenty five releases
the time between alternate sollware releases is estimated to follow a Lognormal
probability distribution, with a Ilazard plot as shown in Figure I. The Hazard function
provides an indicator of the change in instantaneous renewal (or obsolescence) rate with
respect to time t over the lite of a component. The hazard function is normally used to
present the 'Bathtub' curve used hy many texts to show the normally expected failure
characteristics of engineering components.
Figure I provides the indication that the instantaneous risk of a second re-release of a
single PC software package increases sharply with time, and that the expected time to re
release of anyone piece of sollware is 1160 calendar days. This effectively means that
if an organisation was fortunate enough to buy a software licence for a business
application on the first day that the version was available the chances are that it would
be considered obsolete around 1160 days latee or approximately three years.
Unfortunately the situation is not nOlmally as clear cut. Most organisations operate a
small number of key PC sollware packages, but also a larger number of lesser used

212

software packages. At thc timc of "riling Rolls-Royce and Associates Limited (RRA) are
making widespread usc of the Windows™ operating system software and two such
packages, WordPerfect and Groupwise . These are the word processing and intcrnal
communications packages, accounting for around two thirds of PC use as detctmined by
Green [7]. In total however around twentv commercial olT the shelf (COTS) packages are
in use, with an approximately random spread of release dates. If two COTS application
packages are considered to he running on one PC both of the packages are likely to
become obsolete, and if we assume that one of the licences is purchased mid version, the
time to obsolescence drops to R70 davs. As the number of key software packages
increases the expected timc to a second re release decreases to around half the expected
time for two releases, (5XO days or 21 months) What happens in practice is that the
dominant packages in an organisation arc the ones that decide if the organisation
upgrades its hardware. Where specific machines are used with specialist packages eg
CAD or statistics, then these smaller number of machines are upgraded in isolation. For
the majotity of machines the sofhare technological obso\cscence causes expenditure on
both software and hardware bcl\\'een 5RO and X70 days from the joint purchase of
hardware and software, despite the fact that the hardware in isolation has a low
probability of failure as descrihed hv Bradley & Dawson I R j. The minimum cost of
ownership solution for a small organisation. given that most businesses are committed
to COTS application soilware. would thercl'ore appear to be the adoption of a policy of
software purchase at the release dale of the major application(s) used by the organisation,
coupled with a hardware upgrade to the most teclmologically advanced hardware within
the organisations budget.

~
l!

I

Software Releases - Based on elapsed time for two releases
lOgnonMl Dlslrlbltlon

C_oring IndIClior In C_ 2

,---------- -... _-------- - ,,-------------~

50-

40-

30-

20-

10 -
r O

-

I I r----r- ----- I I

700 800 900 1000 1100 1200

Days to second software release

Figure 1 Software Relea~e~ - Ba~ed on Elapsed Time for Two Releases

213

This particular fOlro of sollwan: ohsolesccnce also has an impact on the software
development fratemity: as compilcrs and their versions change so to must the developer.
Developer skill obsolescence is therefore exactly paralleled by the obsolescence
characteristics of the solhvare thatthc dcvelopcrs usc. Specifically, this means that there
is a likelihood that at two to three year intervals soilware or so1\ware version will change
with a corresponding risk to hardware and training.

4. When demand outstrilJS IJerformance

Obsolescence can occur where the demands made on a PC are increased within the
capability of the so1\ware but where the PC is not capable of meeting the demand. This
can occur where the original PC was not fully capahle of handling all aspects of the
software; this has happened at RRA even when the PC was the latest specification
machine and purchased to 'match' the solhvare, rellecting the software drive for ever
better I faster machines. An example of the phenomenon is an initial use of a word
processing package to produce simple letters and documents, followed by ever more
sophisticated and larger documents as users grow in confidence and awareness of the
software.

Typing Pool 1994 -1997
300 ..,-----

t.gInd

20D -+------

18D+-- ----

1m +----.,..,..

o -t---~..._:-=~::-..::--= .::; --- _. , - -----,,----,----..::;

1 234 5 II 7
II MonHt PwtodI

Fi~ute 2 RRA Document Statistics

Data from RRA can demonstrate this. The company implemented a networked
WordPerfect word processor system in early 1994. Training was restricted to the typing

214

pool and a proportion of the rest of the Company - around thirty per cent of the total
organisation receiving training in the ne\," word processor. The first machines on the
network were 80486, 33Mhz machines "ith 8 Mbytes of RAM. Training was largely to
a basic level as it was expected that the corporate helpdesk would handle more complex
problems. Figure 2 pnlYides a vie\\ of the changing workload experienced by the typing
pool in the tln·ec and a half years liom 11)1)4. That workload was of course dependent on
the level of business, although that was relatively constant, with year on year tumover
varying by less than ten per cent m'Cl' the period ..

Figure 2 shows that the mean document size being produced by the pool increased
steadily over the three and a hal hears to 25() khytes. Additionally it can be seen that
production of small documents (of 20 kb\·tes or less) had initially peaked and then almost
disappeared entirely atler the third \,ear.

This data appears to show the gro\\ing confidence of the RRA popUlation of (non-typing
pool) WordPerfect users, \\ho. O\'CI the period. have gradually undertaken the production
of all but the very largest of doculllents . To 1I100'e Ihllll novice to a very capable and
confident user of this comrrehensi\'C \Hlrd processor has taken, we believe, around two
years, during which time the PC being used "ill have been stretched in terms of
processor speed and memory, This is demonstrated by Green l7] who recommended in
1997 that ten Pentium 90 machines less than 2 ~'ears old should be replaced with large
memory Pentium 2(X)'s on the grounds of inadequate perfOlmance. As Green pointed out
RRA is an organisation whose PC use is dominated by the use of WordPerfect, with 50%
of PC use restricted to the wonl processor. The Green recommendation does, however,
lead to an organisation with a continuing prohlem of replacement and where the
technology, rather than the organisation appears to he in control.

The impact ofthis problem is f()cused on the hardware: with the organisation efTectively
pressured into the purchase of lat'est tecilllology that will run the older software more
effectively. If the experience "ith Won.lPerlCct al RRA is typical then the need to
upgrade hardware might he expected to oecur at around two years after a major word
processor version change.

5. A break in the spares SUIJllly chain

Effective obsolescence occurs \\here the PC is no longer supported because some
component is no longer in production. or has heen overtaken by new technology. In either
situation spares to support in-sen'ice machines may hecome unavailable.
The clearest example ofthis prohlem. and the one which to date has probably determined
PC obsolescence more than an\' other is the processor installed in the PC. Data from
Intel [9] shows that ohsolescencc of the chip accelerates with each successive design
improvement. Figure 3 sho\\s the da\'s hetween signillcant design improvements of the
80x86 chip irom the original X()X() to the Pentium!!. Strictly, Figure 3 shows virtual
obsolescence, as the chips can still genera II\' he purchased from the manufacturer.
However the supply chain tends to support the current production, and/or the hardware

215

that is covered by wammt\'. In the e\'(~nt of a motherboard failure that requires a
replacement chip this eJli:x:ti\'ely (luts an average limit on the spares availability, and
hence machine obsolescence of alOund three Years. Chip improvements, though, have
been occurring more frequcntlv recently and this avcrage has fallen to less than two years
for the most recent PC sales.

Obsolescence of Processor
Y. IImI _. tt,eGIIIC''l

o -....,-_ -, _____ ._ .

2 S

~ ... o. ..

- ' 1'

.e

Successive DesllJl
• 7

Figure 3 Da~'s hetween Si~niticant Intel Chip Impronmenh

6. The problem of the business moving on

The [mal cause ofobsolcseenee is liHllld where the husiness moves on. and the soflware
in use has to change This will (lnen he to meet the demands of a (new) prime customer,
or because palt oflhe core business has changed. It is an issue that needs careful attention
from both the IS / IT management and the main board of an organisation. I\s it will be
different for difterent organisations it is only possihle to generalise on policy for handling
the risks as methods for handling these arc Iikelv to be the same for all organisations,

7. The need to identify and manage risk

Organisations investing in IT have a need to understand the various risks that can afTeet
the cost of the investment. RRA ha\'e had a well de\'cloped risk management method
since 1994, and largely similar to the principles described by Pressman II 0 J, This
involves identification and assessment of the risks to a project, mapping of the probability
and impact of each lisk, and putting risk reduction measures in place at the project start.

216

Risk management is not incxpcnsirc though, amI at RRA is therc10re usually uscd only
on projects with a value grcatcr than L I OM

The impoltance of risk managcment and cont illUOllS risk review is illustrated hy Sillitoe
[11], 10 this case the compal1\' "as rcqucsted 'inlilllnally' to move from WordPerfect to
Word by the main ctl';tumcr. Thc change if carried out wuuld havc involved a muve not
only to a new word processor. hut also to a new opcrating systcm, Win 95, which at the
time would not run on 70%, of the l:Ompany's PCs. The cost of a change of the full PC
population (around 700 wcre im'ol\'cd) would he in excess of £I M for hardware alone.
The risk that might havc heen anticipatcd in this casc was the obsolescence of the
operating software for thc cxtant PC population. Continuous review of the risk would
have identified thc nced for an earlier and gradual migration to a ncw opcrating systcm.
At RRA only one examplc of limllal solh,are risk managcment exists. This was for the
implementation of thc nctworked PC / WonlPerlect. For this project no account was
taken of the impact of ohsolesccncc. as the project was for the implementation of the
system, rather than the long tClm opcration of thc ncw network. Risk management needs
to be performed more widely for IT systcms. Specilically risk management for IT needs
to include obsolesccnce of soli ware and hardware.

8. Conclusions

Obsolescence is a significant root cause of high wholc Iifc costs, and yet is not often
considered at the planning and implementation stages of software hased projects.

Different fonns of ohsolcscence need to be considered and each of these fOlms an impact
on hardware and software.

Both hardware and sollware can suller from ohsolescence, and this can have an impact
on skill obsolescence.

It is possible to gauge the probahility and impact of ohsolescence of both sollware and
hardware elements of an IT systcm in the l:Ontext of both risk assessment and cost of
ownership.

9. Reference List

Gutgcld.Y., BeterD .. Arc you going out of fashion?, The McKinsey Quarterly
1995 No 3.

2 NauIt.B.R, Vandenbosch.M.ILEating your own lunch: Protection through
preemption, Organisation Science. Vol 7, No 3, May - June 1996.

3 Ne.lfM.C., Shanklin.W.L.Creath'c Dcstmction as a Market Strategy, Research
Teclmology Management. Vol 40, No 3, May - June 1997,

217

4 Coredero. R, Managing fix Speed to a\'oid Product Obsolescence: A Survey
of Techniques, Journal or Product Inml\'ation, Dec 1991, Vol 8, No 4.

5 Handfield. RB., Pannesi. itT., Managing Component Life Cycles in Dynamic
Technological Environments, International Journal of Purchasing and
Materials Managemenl. Spring 1994. Vol 30, No 2.

6 Chambers Twentieth Century Dictionary, 1961, W & R Chambers Ltd,
Edinburgh.

7 Using Total Cost of Ownership Techniques to Determine Hardware and
Software Replacement Strategies at Rolls-Royce and Associates Limited, MSc
Dissertation Green.D. September 1997.

8 Reducing the Cost of IT Ownership using feedback from the IT Helpdesk,
Bradley,M., DawStm,R . .1. in Proceedings of the Software Quality Management
Conference Bath, March 1997.

9 Intel web page htlp:llwww.intel.com/pressroomlquickref.hlm

10 Pressman RS. ,Sollware Engineering, A Practitioners Approach, McGraw
Hill, London, 1994.

II Sillitoe J.E., 'WordPerlect Yersus Word', Internal RRA memo .lES/CTO, 23rd
January 1997.

Constructing Standards for Cross-Platform
Operation

M.A. Heather! and B.N. Rossiter2

1 Sutherland Building
University of Northumbria at Newcastle NEl 8ST, UK

2 Computing Science
Newcastle University NEl 7RU
B.N .Rossiter@newcastle.ac.uk

Abstract. A universal representation is developed, based on the ISO
standards for Information Resource Dictionary System (IRDS), with the
aim of providing a complete definition of an information system from the
physical data values held to the concepts employed for data and function
description and real-world abstractions. It is discussed how such a multi
level model can provide quality software for the evolution of information
systems by creating an environment where heterogeneous systems can be
compared. Current trends towards more structured programming tech
niques and more disciplined software engineering environments lead to
the potential for considerable benefits from using an IRDS approach.
This potential, however, will only be realized if a formal underpinning
of the IRDS standard is achieved and then only reliably if the formal is
constructive and the underpinning is enabling not just supporting.

1 INTRODUCTION

Cross-platform operation is not simple, linear or Boolean. It is multi-level, dis
tributed and usually made up of heterogeneous embedded micro-kernels. For
consistency, security and safety, highly-reliable local subsystems may be inade
quate. For overall quality assurance there must also be reliable cross-platform
connections at the global level.

There is both a theoretical and a very practical dimension. If a company's
information system fails, the company fails. Liquidation of the whole enter
prise often quickly follows. Robustness is therefore critical particularly in high
consequent computing. The cross-platform software must be able to cope with
demands that may not be specifiable in advance. The functionality may be sup
porting or it may be enabling. If it is supporting it is self-organizing and naturally
reacts to the unforeseen. If merely enabling it can only respond as pre-specified.
For reliance across levels in the real-world the linking software needs to provide
either a natural closure or full information of all limiting constraints.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

219

2 RATIONALE

There is a problem in dealing with layers or levels and transitions between levels
in developing reference models. Cross-platform operation needs reference models
rather than just standards. This does not mean that standards are superseded
but rather subsumed. For example the ISO family of OSI standards[12] are widely
accepted and successfully used as a convention for cooperative work but their
value is limited to the syntactical level. For while there is internal consistency
in the standard there is no guarantee that the application of the standard will
result in a self-consistent system. This need not cause too much concern for
implementers in a local system where everything is under their own control. A
programming language or a LAN protocol is a close enough approximation to
a closed system where little difficulty may be experienced in practice. However,
as soon as any kind of openness or independent autonomicity is introduced,
another level appears requiring closure at an even higher level. In terms of logic,
higher-order is needed: first-order logic will just not do to connect between levels.
The result is a need for a meta-meta level. Otherwise a cross-platform system is
inadequate.

What is needed is a reference level in its most abstract form which can
give this provable ultimate closure. Mathematics gives us this third-level closure
through constructive methods for defining the reference model for applications
like client/server systems. This need has been recognized to a limited extent
by standards bodies who have produced reference models which relate local
standards across a number of levels. However, true reference models are still few
and far between.

It is important to bear in mind what is meant by a reference model[2, 16]. If
we consider the client/server context as an example, the reference model for OSI
is not itself the set of protocols for a communications system. It is a framework
for the identification and design of protocols for existing or for future commu
nications systems. It enables engineers to identify and relate together different
areas of standardization. OSI does not imply any particular technology or meth
ods of implementing systems. Put simply, the reference model helps engineers to
design protocols for computing communications systems.

This multi-level context of the reference model also raises problems in the
development of the theory which is always needed to give underlying confidence
in matters of consistency and reliability, etc. Formal methods where limited to
set-based approaches with axiomatic sets and first-order logic may well be satis
factory in theory for localized systems. However, in practice first-order predicate
logic involves considerable mental effort, is difficult to learn and is viewed as an
academic language whose application is to some extent an art[6, 8]. Relational
and functional theories are much more suited to representation of real-world
activities and relationships[13] but have been rather neglected.

In this paper we seek to show that the IRDS has a constructive formal basis
and can be relied on for this reason. It is therefore a valid method for formal
izing a cross-platform perspective of the construction and implementation of
information systems.

220

3 LEVELS in the UNIVERSAL REFERENCE MODEL

As indicated above, it is always necessary to go one level up to address the
physical level from a logical standpoint. A minimum requirement is to know
names, constraints, typing, etc. In modern client/server systems for example, this
is the function of the system catalogue which for a relational database system, for
example, includes descriptions of the relation names, attribute names, attribute
domains or types, key i.e. identifying attributes, other constraints, views, storage
structures and indexes. In a network database, information held in the catalogue
includes descriptions of record types, set types and physical organization. In a
COBOL program, the data division is held in a catalogue giving information on
record types, field types and their pictures. In C++ or Java, classes define data
structures, methods and their abstractions.

For client/server systems, the specification includes:

- the overall layout of the system including mainframe-centric or network-
centric organization;

- hardware components;
- the segmentation and allocation of functions between client and server;
- distributed database design;
- participating client/server operating systems (Unix, Windows 95, Windows

5.x, Windows NT, XWindows, AIX, OS/390, OS/2, etc);
- selection of middleware (CORBA, ODBC, COSE, GUI builders, FTAM,

CDE, etc);
- declaration of network technology (SNA, ISDN, LAN, internet, ETN, TCP /IP.

EDIFACT, etc);
- client and server program structure (e.g. documentation of Scripts).

For instance nearly all system catalogues today are active in the sense that
they are a dynamic automatic source of naming and typing information for pro
grams accessing the system (rather than a passive static reference). This makes
the catalogue the cornerstone of the information system, often being subjected
to a very high rate of searching activity. Clearly a major advantage of active
catalogues is that system type changes are made once in the catalogue rather
than replicated through many source programs.

However, a logical level is incomplete without an associated formal reference
level to describe how it represents real-world entities, properties, relationships,
typing, etc. This reference level deals with meta-meta data. Another way of
looking at this level is to view it as dealing with the policy of the model: why
is a particular construction in the model available and what semantic capability
does it handle?

This comparison of logic and principles is performed against a reference or
neutral layer which contains a superset of the facilities for a particular platform
or application model. The reference layer contains as data the principles for
data and activity representation and for each application the concepts which
capture these principles. There is therefore a mapping from principles to schema
intension for each application model in turn.

221

In relational systems with all data held in tables, the meta-meta level is im
plicitly part of the model. The freeness of the object-oriented paradigm, on the
other hand, means that the meta-meta level needs to be constructed explicitly to
control the representation of classes, objects, properties, inheritance, composi
tion, methods, etc. In a COBOL system, wrapper constructions are increasingly
used to provide encapsulation of programs with pre-determined interfaces to
emulate object constructions. Other examples are the class of shell scripts and
functions like Korn shells and similar patches for unix or motif widgets in XWin
dows. However, these shells and wrappers are at the meta level: the meta-meta
level would describe the purpose of wrappers and the facilities used for their con
struction. This also seems to be the crux of the problem with Java mentioned
above. Applets are at the meta level and it is the metameta level which gives
the overall reliability.

These are particular examples of the message level which provides a top layer
of awareness which has to be developed further to deal with the widest possible
type of information systems. It was for this kind of purpose that the ANSI
Standard Reference Model (X3.138) was developed in the 1980s[4], emerging in
1993[10] as an associated part of the standard for a framework for Information
Resource Dictionary System (IRDS) developed in 1990 and 1993[9]. Among early
language bindings in IRDS were specifications for Pascal, COBOL, C and SQL.
Language bindings can in principle be defined for any language. However little
use seems to have been made of the IRDS but this may be because only recently
has there been much need to cross levels in systems work.

In the meantime attention has been concentrated on the OSI seven-layer
model for open systems because it provides a potential means for commercial
suppliers to provide compatible components for different systems. However, while
these may be compatible, there is no guarantee that they are consistent. This
is because the OSI set of standards together provide a reference model but
not a universal reference model. The IRDs on the other hand has the internal
characteristics of a universal reference model.

The four levels of the IRDS can be shown to capture the universal nature
of the reference model because it can be demonstrated that these can be con
structed formally. Before we attempt to show this we should examine closer the
four levels and their inter-relations to see how they bear out the discussion so
far.

4 The INFORMATION RESOURCE DICTIONARY
SYSTEM IRDS

Before embarking on a full formal description of the IRDS, some understanding
and informal insight into its interpretation would be useful. The IRDS is con
structed on four levels. Each level taken with its adjacent level acts as a level
pair so that there are three level pairs across the four levels. This means that
each point at each level is directly related to a point at the other level in the
level pair.

222

The top level is the Information Resource Dictionary Definition Schema
(IRDDS), in which concepts relating to policy and philosophy are defined. For
example, object-oriented abstractions are to be declared at this level. In princi
ple, only one instance of an IRDDS need be defined for a platform. In a coherent
system there can be only one collection of such concepts. With the open-ended
nature of object-oriented structures, however some extensibility may be required.

level instances interpretation example
(rela
tional
model)

1. meta- usual abstrac- mission (natural real-
meta tions (ag- concepts) world
I policy gregation, com- abstrac-
level position, inher- tions

itance, assoCIa
tion, etc)

2. metal abstractions at organizational available
opera- policy level (high-level oper- con-
tional a- structs
level tionall analytical

tools)

3. inten- network fea- formal declara- data
sion level tures and func- tion, schema names

tions and labels

4. exten- data values sat- the information data val-
sion level isfying the in- itself ues

tension

Fig. 1. Interpretation of Levels in the IRDS

The second level is the Information Resource Dictionary Definition (IRDD)
in which schema facilities are defined. The context of each platform will have its
own IRDD definition. For example a COBOL IRDD would declare that record
types were an aggregation of single- or multi-valued data field-types while one
for SQL would declare that table-types were an aggregation of single-valued data
fields.

The third level is the Information Resource Dictionary (IRD) which defines
the intension for an application, giving names and constraints. There will clearly
be many intensions defined in an organization, one for each application. Names,
types and other constraints will be given to data objects, network connections,

223

protocol names and signatures, server and client functions, etc.
The fourth level is the Information Resource Data (APP) which gives the

extension, the data values. There will be one extension for each intension, the
values being consistent with the names and constraints of the intension. Data
values may be simple objects as in SQL or complex objects as in computer-aided
design and multimedia systems.

level IRDS standard top- example of
down level-pair
map-
pmg

1 concepts aggregation

! Policy !
2 constructs table

! Org !
3 intension name of table

! Data !
4 extension data value

Fig. 2. Mappings between Levels in the IRDS

One instance of the Information Resource Dictionary System represents one
platform, paradigm or model. Take as an example the relational model. Level 1
would be real-world abstractions; level 2 would be the constructs available; level
3 would be the data names; and level 4 would be the data values. The four levels
with their terms, instances, interpretation and the corresponding components of
the relational model can be summarized in the table of Figure 2.

Between each level the mapping, between the level pair enables data at one
level to be related to data at a lower level. For the same example of the relational
data model, the level pair between levels 1 and 2 would be the association of
an abstraction (say aggregation), with a constructive facility in the model (say
table in this case); the level pair between 2 and 3 would be the association of
a construction in the model (say table, with the name of a table) and the level
pair between 3 and 4 would be the association of a data name with a data value.
Figure 2 shows schematically the mappings between the various levels.

Between each level the mappings are strictly defined by their starting and
terminating points in the respective levels. These may not be immediately obvi
ous in the original standard but they are brought out in the informal diagram of
Figure 3 together with more explicit interpretations of the levels. In particular it
should be noticed that the interpretations of the mappings can only be appreci
ated by considering both directions for each respective mapping. The bottom-up
mappings are described in the formal model. The top-down mappings in Figure
3 are as follows:

224

- Between levels 1 and 2 (IRDDS and IRDD) , there is the mapping Policy
acting as a level pair. This level pair exists only in IRDS-type systems in
which constructive facilities in a system are related to real-world abstrac
tions. For example, Policy would indicate how a network-centric capability
is made available in a particular approach.

concepts
Dictionary Definition

Schema (IRDDS)

MetaMeta

on tr ets

ys

nte s n

extension

esource

Dictionary Definition

(IRDD)

Dictionary

(IRD)

Data

(APP)

mission

management

enterprise

information

Fig.3. Interpretation of IRDS in Schematic Form

- Between levels 2 and 3 (IRDD and IRD), there is the mapping Org acting
as a level pair. This level pair provides a standard data dictionary function
of, for instance, saying which tables are available in a relational system or
which servers are available on a network.
Between levels 3 and 4 (IRD and APP), there is the mapping Data acting
as a level pair. This level pair can be thought of as the state of the art of an
information system: to link values to names so that data can be addressed
by name rather than by physical location.

225

Between levels 1 and 4 (IRDDS and APP), there is the mapping Platform
acting as a level pair. This level pair short-circuits the navigation through
four levels by giving a direct mapping from real-world abstractions to data
values. The use of this mapping is described later.

The IRDS standard is the basis for relating heterogeneous systems across
platforms, that is systems based on different paradigms. While there is only
one instance of the top level (the IRDDS), this level is extensible and new
concepts and abstractions can be added as desired. From the point of view of
client/servers, the IRDS provides the ability to run an organization with many
different paradigms all integrated through the type of structure shown in Figure
3. The critical mapping is Platform, that is the arrow from IRDDS to APP,
relating concepts to values. By determining this mapping for all types of system,
the problems arising in re-engineering are avoided to some extent as all types of
approach to information systems can be accomodated and run in an integrated
fashion. The way that federated database systems are managed [3] is an example
of this approach.

The next task is to formalize the diagram in Figure 3 so that a sound scientific
basis can be developed for the IRDS model to handle heterogeneous systems.

5 FORMALIZING the IRDS

Constructive mathematics attempts to develop logically what works in practice
and can provide the necessary universality for interoperability of heterogeneous
data systems with consistency and quality assurance in the real-world. Category
theory[1, 14] is particularly appropriate for modelling multi-level relationships
for it is essentially concerned with links between objects. It has been shown, for
instance, to cover adequately dynamic aspects in hypermedia[7].

Category theory provides a universal construction for formalizing informa
tion systems. It is this uniqueness that provides the universalness that provides
the basis of a general consistent system. An example is now given for a proto
type information system focusing on the aspect of a cross-platform system as
a heterogeneous distributed database relying on the categorical product con
struct as a data model. In this approach, each class definition can be identified
as a collection of arrows (functions) forming a category IRD and each family
of object values conforming to a particular class definition as a category APP.
The mapping from the intension (class definition) to extension (object values)
is made by a functor Data which enforces the various constraints specified in
IRD. Category IRD is the intension corresponding to the third level in IRDS
and APP is the extension corresponding to the fourth level.

In reality the intension category IRD is a family of categories, represent
ing definitions of classes, associations (relationships) and coproduct structures
indicating inheritance hierarchies. The arrows within it may be methods as in
object-based systems, network connections between clients and servers, logical
connections as in network databases, or functional dependencies as in relational

226

database schemas. It should be emphasised that categorical approaches natu
rally include procedures and functions through the underlying arrow concept
ensuring that both structure and activity can be modelled in a multi-level man
ner. The category APP is also a family of categories, representing object values
and association instances. The functor Data mapping from the intension to
the extension not only connects a name to its corresponding set of values but
also ensures that constraints specified in the schema, such as functionalities of
relationships, membership classes and functional dependencies, all hold in the
extension.

IRDDS

Sys

APP

MetaMeta
~/------------IRDD

Policy /

lat/orm Org Meta

'/ Data
IRD

Name /
Fig.4. IRDS Levels in Functorial Terms

It is relatively straight-forward in category theory to extend the intension and
extension two-level structures in a universal manner to handle the four levels of
IRDS. In categorial terms each of the four levels of IRDS is defined as a category.
Between each level there is a higher-order function, a functor, which ensures that
certain consistency requirements are met in the mapping between the source
and target categories. The abstractions level (top) is a category IRDDS which
defines the various abstractions available for modelling real-world data. The next
level is a category IRDD defining the various construction facilities available for
representing abstractions and data in a particular system. There is therefore, for
one instance of IRDDS, many instances of IRDD, one for each type of model
(relational, network, COBOL, etc).

The data functor (level pair) Policy maps target objects and arrows in the
category IRDDS to image objects in the category IRDD for each type of sys
tem. This mapping provides at the meta-meta level the data for each kind of
system, that is to say how each abstraction is to be represented. We also la
bel the functor pair Org relating for each system the constructions in IRDD
with the names in a particular application in IRD. Combining these new con
structions with the product ones above gives the following direct and universal
representation of IRDS as shown in Figure 4

227

In category theory, the above is a composition of functors with Platform as
the overall functor from IRDDS --+ APP, such that for each type of inform a
tion system the following composition holds:

Platform = Data 0 Org 0 Policy

as does its dual:

Sys = MetaMeta 0 Meta 0 Name

In order to relate concepts across platforms, we need to compare the functors
Platform : IRDDS --+ APP for each of our COBOL, network, relational,
object-oriented systems, etc. This comparison is a natural transformation.

6 IMPLEMENTATION

For experimental testing purposes, an example prototype information system
was developed called the Categorical Product Data Model (CPDM) which can
formalize, for instance, the object-relational model[15]. The purpose of this pro
totype was to test the theoretical representation given in section 5 and to ex
amine the ease with which such a representation could be implemented on the
computer.

A prototype[ll] of CPDM was realized using the platform of P /FDM[5],
an implementation of the functional database model developed at Aberdeen
University. Categories and functors were coded so that the two categories IRD
and APP could be defined together with the mapping Data between them.
In the actual work described in [11] the categories IRD and APP are called
INT (for intension) and EXT (for extension) respectively. The universal nature
of category theory means that it is a simple matter to extend the product data
model CPDM, defined as a two-level structure, to handle the four levels oflRDS.
Further work is planned to explore further the details of the management of the
four-level architecture for assisting in the control of cross-platform operations.

7 DISCUSSION

A formal universal description, based on the ISO standards for Information Re
source Dictionary System (IRDS), can therefore be developed and implemented
to provide a complete definition of an information system from the physical
data values held to the concepts employed for data and function representa
tion and real-world abstractions. Such a multi-level formalism model can be
used to control the evolution of information systems by creating an environment
where heterogeneous systems can be compared for cross-platform performance.
Current trends towards more structured programming techniques and more dis
ciplined software engineering environments can very usefully exploit the IRDS

228

approach. This potential which the IRDS possesses, however, will only be re
alized for consistent cross-platform operation if a formal underpinning of the
standard is achieved.

The constructions of the IRDS in systems offer a certain path for improving
our ability to deal with heterogeneity. The universal basis provides a predictable
and provable behaviour which is such an important aspect if heterogeneous in
formation systems are to be reliable and productive. Essentially the formal basis
for IRDS assists in developing a reference model to relate policy statements in
different models and environments with consistency and integrity. This is the
crux of interoperability.

A categorial IRDS achieves greater power than that envisaged in the origi
nal standards. For instance Spurr[17] comments on the difficulties of using the
IRDS standard dictionary with CASE tools because of the lack in IRDS of a
natural way of modelling object structures. Our work shows the natural corre
spondence between categorical databases and object structures making possible
a complete and faithful representation of the object-oriented paradigm across
the four levels[ll].

A possible difficulty is that this approach may require a complete knowledge
of all features of every type of system available. The top level IRDDS is always
available but an IRDD may not be available for all paradigms, particularly if
usage of the paradigm tends to be idiosyncratic. Even with a clearly-defined
IRDD paradigm, there may still be difficulties if, in the original system, there
are problems with incomplete or conflicting schema information or code has
been written bypassing the conceptual tools of a system. Nevertheless there is
no difficulty that cannot be solved (at least in principle) by going to higher levels
because of the infinite closure property of the four level approach.

We therefore see these techniques being more useful in coping with well
defined systems, even if they are using outdated methods, than poorly-engineered
historical software where the case for a complete rewrite is obviously stronger.
The improvements in languages, for instance Microfocus COBOL and Visual
BASIC, and the greater emphasis on formal schema design in current software
engineering both indicate that future problems will be more amenable to the
four-level approach.

It is for this reason suggested that current trends towards more structured
programming techniques and more disciplined software engineering environments
should be leading to greater use of this four-level IRDS standard with its formal
underpinning. Our conclusion is that theory shows that for situations where there
are heterogeneous systems as in cross-platform operation, client/servers, legacy
software, etc which have to be coherently designed and implemented, there is no
other way forward than by this four level closure path or with some equivalent
framework as this categorical approach. For such systems presuppose universal
techniques to ensure consistency and integrity across time and distribution.

229

References

1. Barr, M, & Wells, C, Category Theory for Computing Science, Prentice-Hall (1990).
2. Clements, Alan, Standardization for Information Technology, BSI Catalogue no:

PP 7315, at page 26 (1987).
3. Fiddian, N J, Gray, W A, Ramfos, A, & Cooke, A, Database Meta-Translation

Technology: Integration, Status and Application, Database Technology 4, 259-263
(1992).

4. Gradwell, D, Developments in Data Dictionary Standard, Computer Bulletin,
September 1987.

5. Gray, P M D, Kulkarni, K G, & Paton, N W, Object-Oriented Databases: A Se
mantic Data Model Approach, Prentice Hall (1992).

6. Gries, D, The Need for Education in Useful Formal Logic, IEEE Computer 29(4)
29-30 (1996).

7. Heather, M A, & Rossiter, B N, Content Self-awareness in Distributed Multimedia
Publishing: the Need for a Unifying Theoty, in: Third International Workshop
on Principles of Document Processing (PODP'96), ed. Nicholas, C, & Wood, D,
Lecture Notes in Computer Science 1293 Springer-Verlag 59-86 (1997).

8. Holloway, C M, & Butler, R W, Impediments to Industrial Use of Formal Methods,
IEEE Computer 29(4) 25-26 (1996).

9. Information technology - Information Resource Dictionary System (IRDS) frame
work, Standard ISO /IEC 10027 (1990); 10728 (1993).

10. Information technology - Reference Model of Data Management, Standard
ISO /IEC 10032 (1993).

11. Nelson, D A, & Rossiter, B N, Prototyping a Categorical Database in P/FDM. Pro
ceedings of the Second International Workshop on Advances in Databases and In
formation Systems (ADBIS'95), Moscow, 27-30 June 1995, Springer-Verlag Work
shops in Computing, edd. J. Eder and L.A. Kalinichenko, ISBN 3-540-76014-8,
432-456 (1996).

12. Standards dealing with OSI (Open Systems Interconnection) include BS ISO/IEC
TR 9571 to 9596 and BS ISO/IEC TR 10162 to 10183.

13. Parnas, D L, Mathematical Methods: What we Need and Don't Need, IEEE Com
puter 29(4) 28-29 (1996).

14. Poigne, Axel, Basic Category Theory, in: Abramsky, S, Gabbay, Dov M, &
Maibaum, T S E, (edd), Handbook of Logic and Computer Science, I Background:
Mathematical Structures, Clarendon Press, Oxford pp.416-640 (1992).

15. Rossiter, B N, Nelson, D A, & Heather, M A, The Categorical Product Data Model
as a Formalism for Object-Relational Databases, Technical Report, Computing
Science, Newcastle University, no.505, 41pp (1995).

16. Rossiter, B N, & Heather, M A, Data Modellingfor Migrating Information Systems,
chapter 1, in: Legacy to Client/Server - Have You Chosen Wisely?, ed. Booth, A,
Unicorn, London 1-12 (1996).

17. Spurr, K, CASE Tools, Does the ISO Standard IRDS provide Sufficient Support?
in: Fourth Generation Systems, ed. S.Holloway, Chapman and Hall, Unicorn 36-47
(1990).

This article was processed using the Il'EX macro package with LLNCS style

The Practical Use and Abuse of Software
Metrics

Author

Kawai Banga

Abstract:

"You can't control what you can't measure" is a particularly pertinent comment
when directed at software development organisations. Most software organisations
have at some time or other implemented a metrics programme. Some of these
organisations have managed to make significant improvements in software
development. However, experience shows that most metrics programmes either
fail completely or at most achieve limited success. One of the major contributing
factors for this lack of success is that managers, particularly senior managers and
directors, do not really understand how to gather, interpret and use metrics.

1.0 Introduction

In 1990 Rubin [1] reported that out of 300 major US IT companies that had
implemented measurement programmes, only sixty were successful. In 1995,
Rubin [2] conducted research that revealed that most IT measurement programmes
fail within 8-15 months of initiation. Every metrics guru will have his or her own
list of reasons why so many metrics programmes fail i.e. a list of do's and don'ts.
The author's experiences lead him to believe that one of the major contributing
factors for this lack of success is that senior managers and directors, do not really
understand how to gather, interpret and use metrics. This paper will give real live
examples of the use and abuse of software metrics.

2.0 Quality of Data

There is a school of thought that states that if there exists a metrics database, then it
must be useful. However, this is far from the truth.

2.1 Omissions from Effort Data

Jones [3] lists the following as the commonest omissions from historical data,
along with the corresponding magnitude of the error:

• Unpaid overtime by exempt staff (up to 25% of reported effort)

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

231

• Charging time to the wrong project (up to 20% reported effort)
• User effort on projects (up to 20% reported effort)
• Management effort on projects (up to 15% reported effort)
• Specialist effort on projects (up to 15% reported effort)
• Effort spent prior to "turning on" the project tracking system for the project (up

to 10% reported effort)
• Inclusion of non-project tasks (up to 5% reported effort)

This gives an overall error magnitude of 110%.

The author is aware of one organisation within which it is routine for projects that
have exceeded, or will soon exceed, their authorised budgets, to record effort
against projects that are on track to under-spend their budgets. One particular
project had already had 3 false starts and had spent £1.5 M even before there was a
fourth attempt.

Another common theme appears to be the deliberate omission of low productivity
projects and/or projects that are cancelled, despite having utilised a large
proportion of the IT departments overall resources.

2.2 The Elusive Staff-month

The author interviewed 19 project managers within the same organisation and
received the following defmitions of a staff month: 20, 18, 18.5 and 17 days.
Furthermore, the defmition of a staff day was 8, 7, 7.5, 7.4, 5 or 4.75 hours. In this
same organisation the author discovered that some staff were recording gross
hours, and others net hours on the effort tracking system.

In another organisation, the senior managers tried to compare the productivity of
two projects, without realising that one team consisted wholly of contractors who
worked 8 hour days and the other team consisted mainly of permanent staff who
worked 7 hour days. This particular exercise was aimed at demonstrating that
contractors were more productive than permanent staff and permanent staff should
be replaced. Not only was the exercise flawed, it was very divisive and resulted in
a lot of staff dissatisfaction and uncertainty.

2.3 Misrepresentation of Data

The author has come across several incidences of organisations deliberately
misrepresenting data. This of course further erodes the quality of such data.

In one organisation managers deliberately excluded overtime effort (an average of
15%) so that the productivity figures were higher. Furthermore, staff were willing
to work the extra hours unpaid for fear of becoming the next batch of individuals

232

targeted for down-sizing within the organisation. This meant that future estimates
based on this data were automatically flawed i.e. under-estimates of 15%.

This same organisation decided not to move from version 3.2 to 3.4 of the IFPUG
counting rules as this would substantially lower their productivity rates. They
stopped quoting the IFPUG version number whenever quoting the figures in the
public domain. Yet another organisation applied the IFPUG supplied 3.4 to 4.0
conversion formula to their entire portfolio of applications, despite the fact that
their were many applications that were purely batch, which would have the same
FPs whether counted under the 3.4 rules or the 4.0 rules.

2.4 The Accuracy and Use ofFP Counts

Research, and experience, show that FP counts are only accurate to within plus or
minus 10% [4]. Therefore an organisation developing 10,000 FPs in a year, at say
a cost of £500 per FP, could be up to £0.5M out. Thus budgets, outsourcing
costs/deals and estimates would be severely impacted.

Another subtle difference is between FPs developed and FPs delivered i.e. the level
of re-use. For example, an off the shelf package may be 10,000 FPs but only cost
ten staff months of effort to customise and install. This gives a productivity of
1,000 FPs per staff month (FPs/SM), which of course is ludicrous. A more
realistic example might be where a project re-uses the functionality of an existing
application. Similarly, new development, enhancement and bug fix (maintenance)
projects all have different profiles.

A particular organisation appeared to show an upwards trend over many years with
regards to productivity. However, it suffered from many of the problems listed
above. Also, in the latter years, a lot of package implementations and small
projects have helped to artificially boost the productivity rates.

2.5 Flawed Defect Trends

Many, if not most, organisations tend to show defect trends without too much
thought. Many of these use such charts for political reasons, to demonstrate to
internal management or perhaps external customers how wonderful they are at
developing quality software. However, what the customer may be interested in is
the severity 1 (system unusable) and severity 2 (some functions unusable) defects
rather than a consolidated defects chart. The author has seen such a trend chart in
two organisations where the actual trends in severity 1 and 2 defects were getting
worse, but the overall downward trend was due to severity 3 and 4 defects getting
less frequent. Furthermore, there is no attempt to normalise the data i.e. defects
per FP. It may be that they are getting smaller numbers of defects simply because
they are writing less or smaller volumes of code.

A similar naive use of such data is found when a metrics programme reports the
number of requirements changes. Typically, the aim is to reduce the number of

233

requirements changes during the project life-cycle. Again, this can be potentially
meaningless, if not misleading, unless normalised data is used. For example,
which is better, a project with 10 requirements changes or one with 20? How
about a 1,000 FP project with 10 changes and a 1,000 FP project with 20 changes?
Even this is not sufficient information. What is important is not the numbers of
change requests, but requested changes measured as a proportion of the original
project size. For example a 1,000 FP project with 10 additional requirements
totalling 150 FPs gives 15% requirements creep. Another 1,000 FP project with 20
changes that total 100 FPs gives only 10% requirements creep. This is fine for
setting targets for project requirements creep e.g. 10% or less. However, if we are
interested in determining the total costs of requirements creep for a particular
project, then the absolute number of FPs attributable to the scope creep is the
required measurement. Thus the specific context in which the data is to be used
will determine the way the data is presented and used.

2.6 Beware of Benchmark Data

The typical cost of an external benchmarking exercise through organisations such
as esc Index or Gartner Group is around £30K. However, organisations that
make use of such benchmarks should be aware of all of the issues discussed
regarding the quality of data. The author is aware of one organisation that put
forward its best projects. It was of course no surprise that they came top in their
industry sector. However, this backfired on the IT organisation. A director of one
of the business units that was supplied by the IT organisation queried why they
claimed average productivity's of 25 FPs/SM, but were using a value of 5 FPs/SM
when estimating a new project.

Another common scenario is as follows. A benchmark shows an IT department in
good light. They introduce new tools, techniques or methods and discover that
productivity has fallen dramatically. This is of course as one would expect, as the
introduction of new methods of working requires training and familiarization
before staff fully realise the benefits. The IT department either can't explain the
figures to the board/senior management, or think that they won't be keen on learn
that the £500,000 spent on new tools has not delivered the promised 25%
productivity increase. So, they try to bury the results of the latest benchmark.

One organisation was told repeatedly by its benchmarking company what it must
do to further improve its performance. The same messages came out at the end of
each subsequent benchmark exercise. However, the senior management team did
not follow through on these actions. They were only concerned with using the
data to show the main board how wonderful they were at delivering IT solutions.

When the benchmarking company does not have sufficient data for the specific
industry sector, they simply use data from across different industry sectors. This
again is. flawed as different industries tend to have different productivity and
quality profiles.

234

Another problem area is the source of the FP data itself. Not all companies use
FPs, so they either estimate the FP counts or derive them from lines of code using
backfiring. Backfiring is only accurate to plus or minus 25%, and in some extreme
cases can vary by more than 50% [3]. Some organisations only sample an
application and scale the count up accordingly. Such approaches are prone to high
error margins. Even if the source of the data is FPs, which version? IFPUG 3.2,
3.4 or 4.0 or is it Mark II? In one organisation both IFPUG and Mark II versions
are used, depending upon who does the count. Unfortunately the significance of
the difference is lost on many of the managers and project managers who do not
have the necessary metrics backgrounds.

Even though Lines of Code (LOC) has been discredited as an appropriate measure
of size, many organisations, academics and authors insist on using it. For example,
Ashley [5] quotes that the "Space shuttle achieved 0.1 defects per KLOC during
first 3 years of operational use". What does this mean? How can this be used as a
comparative measure without knowing the particular language(s) used? A system
with 0.1 defects per KLOC of assembler would generate at least a magnitude more
errors than a system with 0.1 defects per KLOC of a 4GL, both systems delivering
the same amount (measured in FPs) of functionality.

The typical metrics database from a medium to large size organisation will consist
of a variety of projects - small to large in size, varying productivity rates, data from
many different years, a mixture of new developments and enhancements projects
and a variety of different languages - 2GL, 3GL, and 4GL with some a mixture of
these. Without this detailed understanding, the data is almost useless.
Unfortunately, many organisations use averages derived from such databases and
thus are not comparing apples with apples. For example, Jones [6] demonstrates
clearly the need to distinguish between new development, enhancement and
maintenance projects in figure 1. The productivity profiles are quite different.

Another common problem is the omission of effort relating to projects that get
cancelled. An organisation may have a high productivity rate for those projects it
does deliver, but may have a high incidence of cancelled projects. In order to
make a true comparison between organisations, the organisational productivity i.e.
Total FPs delivered divided by total effort of all projects should be calculated.

20

18
.....
C 16 0
E
:t: 14
.l!l
UI 12 Q)
a.
UI c.. 10 u..
.!:
~ 8
.s;
t5 6 ::J

~ 4 c..

2

0
0 0 o

M
o
CD

o
N

~New

_ Enhancement

--.-Maintenance

"""*-Combined

o
N
(j)

o
~
M

Size in FPs (Logarithmic scale)

o co
CD r--

235

Figure 1: Productivity Profiles for New, Enhancement and Maintenance development
(Source Jones [6], reproduced with permission)

3.0 Practical Uses of Metrics

Now that some of the problems associated with metrics have been discussed, it is
time to look at some of the practical uses of metrics and particular approaches in
using metrics.

3.1 Documentation

Boehm and Jones [7] have both noted that for software development over half the
effort expended is in producing documentation. However, few if any organisations
have data on the amount of documentation produced by their software projects,
and therefore how much time needs to be planned for reviewing the documentation
produced during the software life-cycle. The author has gathered some metrics
shown below which have been used for this purpose.

Documents have been classified into Low (L), Medium (M) or High (H)
complexity as described in figure 2.

236

!Type Examples
L Memos, status reports, checklists, simple process documents application user guides
M ProjectJProgramme Plans, Quality Plans, ProjectlProgramme Definition Reports, End of

Phase reports, Post Implementation Review reports
H Technical reports, technical standards, technical tool user guides eg CASE tools and

documents that include: complicated tables, diagrams and formulae, complicated
statistical analysis, cross-references to other documents and multiple appendices

Figure 2: Documentation Classification

Figure 3 shows the range of times to review L, M and H complexity documents in
minutes per A4 page (excluding front page, revision information and table of
contents). The range is shown to indicate the potential variation. However, only
the average values should be used for estimating purposes.

Ranle L M H
Minimum 0.25 0.75 3
Averall;e 0.5 1 5
Maximum 0.75 3 15

Figure 3: Range of times taken to review documents in minutes per A4 page

3.2 The Business Scorecard

The Business Scorecard is a good tool for implementing a metrics programme. A
typical approach is described below. All scorecards have many indices, such as
shown in figure 4. This ensures that a consolidated view of performance is
considered, as opposed to attempting to assess performance from just one measure.
For example, it is quite possible to improve productivity dramatically, but at the
cost of lower quality and lower customer satisfaction. This scenario is avoided by
the use of the scorecard approach.

Index Description
Financial Index "Managing finances, unit costs and cost flexibility."
Quality Index "Delivering products and services to agreed

specification."
Productivity Index "Improving value for money and capability."
People Index "Managing the skill base and staff satisfaction."
Client Satisfaction Index "Managing client satisfaction"
Process Index "Improving the way we do business"

Figure 4: Scorecard Indices and their descriptions

Process Index (5%)

Financial Index (20%)

Productivity Index (20%)
120%

1

People Index (10%)

Quality Index (20%)

Client Satisfaction Index (25%)

Figure 5: Score-card Indices, target versus actual on a polar chart

237

Each of the indices will be formed from one or more measures. The Financial
index, which forms 25% of the overall score, is shown below as an example.

Financial Index 25% Weightings 1997 1998 lQ 1998
Measure S% Index% Baseline Tarxet Current
Budgeted v actual costs for 5% 20% +25% +15% -5%
services
Budgeted v actual costs for 5% 20% +20% +10% +4%
development and enhancement
projects
HelJ)desk cost per user 2.5% 10% £100 £75 £90
Cost per MIP per user 1.25% 5% £200 £120 £250
Cost per FP developed 1.25% 5% £650 £450 £500
Desktop support - average cost 2.5% J(l"l10 £50 £45 £50
peruser
Total Cost ofISQer user 7.5% 20% £1,900 £1,500 £1,700
% of costs that are variable 2.5% 10% 20% 40% 22%

Figure 6: Components ofthe Financial Index

The Index% figure represents each particular components contribution towards the
fmancial index score, and the S% figure the contribution towards the overall score
card score. The beauty of the score-card approach is that it enables staff in the
organisation to clearly understand what their contribution to the business is, and
what the targets for improvements are.

However, there can be some negative aspects to the scorecard approach. For
example a senior manager stated to the author that "We cannot afford to spend
months carrying out FPA on our systems as Productivity measures only contribute
2% towards the fmal score-card score". In one organisation, directors set an
improvement target of 20 FPs/SM for development projects. This might be fme
for those departments achieving less than 20 FPs/SM, but what about those already
achieving in excess of 20 FPs/SM?

238

3.3 Benchmarking

The author initiated a pilot metrics programme and measured two applications, x
and y. It transpired that application x had a relatively low productivity of 7.8
FPs/SM compared with application y's productivity of 56.2 FPs/SM. It transpired
that application x had been the subject of a very hostile third party audit which
revealed a rather lax approach to testing. As a consequence management had
initiated improvements in the approach to testing future releases of application x.
Unfortunately this knee jerk reaction resulted in an extremely over-bureaucratic
approach to testing. Analysis of the effort data revealed that more than 53% of the
effort was accounted for by the various phases of testing. There were also two
other pertinent factors. Firstly, the project team spent a substantial amount of
effort through-out the life-cycle clarifying the requirements. Secondly, the project
was substantially de-scoped after requirements, analysis and design had been
completed. Therefore some functionality was not delivered, but effort for the
requirements, analysis and design of this functionality was still included in the
overall effort figure.

3.4 Supplier Management

The author was asked to help verify if the IT organisation was getting good value
for money from various external Software Houses who had previously delivered
projects for the organisation and were bidding for more work. The cost per FP was
used as a comparative measure.

3.5 Cost of Re-write versus Maintenance Costs

Management of a business unit were requesting increased annual resources to
maintain and enhance an application, which the directors considered to be
excessive and they could see no justification for this. The directors assumed that
the application should best be replaced. The author was requested by a third party
to carry out a FP analysis to determine the size of the application. It transpired that
the application was so large that the author had to spend approximately twenty
staff days of effort just to estimate the FP size which was in excess of 40,000 FPs.
This prevented the directors from making a serious error, as it would have been
expensive and risky to try to write such a large application. As the author had
estimated the size business function by business function, the organisation used the
analysis to re-engineer the system function by function.

3.6 Risk Management and Schedule Estimate

Senior management requested the author to conduct a reality check on the estimate
of 9 elapsed calendar months for the delivery of a business critical application.
The author estimated the size of the development (2,600 FPs), and from the

239

resource profile (14 full time equivalent (FTE) staff) and a productivity of 10
FPs/SM obtained a figure of 20 calendar months for the elapsed time. The FP
based estimate was ignored by the project manager. The core functionality was
delivered after 19 calendar months and the remaining functionality after an
additional 3 calendar months. The estimating approach adopted by the author was
as follows:

1. A significant amount of requirements gathering, analysis and design work had
already been carried out in a previous project that had failed. This provided
sufficiently accurate information to estimate the FP size as 2,600 FPs.

2. Systems developed of this size tend to have relatively low productivity rates
with an average of around 5 FPS/SM. However, with the knowledge and
deliverables gained from the previous failed attempt, and the fact that some of
the team have worked together before, this figure was doubled to 10 FPs/SM.

3. This gives a figure of 260 staff months of effort, adjusted to 325 staff months
assuming 80% utilisation of staff.

4. 325 staff months of effort with 14 FTE project staff gives 23 calendar months
for the schedule.

5. Reducing this by 15% to take into consideration that a lot of the up front
requirements and design work has been done in the previous failed attempt
gives 20 calendar months for the schedule.

Further evidence to support the fact that the project manager's schedule was too
aggressive was obtained from data supplied by the SPR database [8]. The average
elapsed time for a project of this size is about 34 calendar months. The SPR
database provides the following information for projects around the 1,000 and
10,000 FPs size. The figures for the 3,000 FP size have been obtained by linear
extrapolation from the 1,000 and 10,000 FP data.

Size Minimum Averal[e Maximum
IFP 0.06 0.16 0.40
10FPS 0.35 1.07 2.35
100 FPs 3.60 10.00 19.00
I,OOOFPs 12.24 27.20 43.52
3,000 FPS 15.10 32.22 52.66
10,000FPS 24.90 49.80 84.66
l00,OOOFPs 44.28 73.80 132.84
Average 14.24 27.01 47.13

Figure 7: Schedule in calendar months (Source Jones [8], reproduced with permission)

Size Early On-time Delayed Cancelled
IFP 14.68% 83.16% 1.92% 0.25%
10 FPs 11.08% 81.25% 5.67% 2.00%
l00FPs 6.06% 74.77% 11.83% 7.33%
I,OOOFPs 1.24% 60.76% 17.67% 20.33%
10,000 FPs 0.14% 28.03% 23.83% 48.00%
100,000 FPs 0.00% 13.67% 21.33% 65.00%
Average 5.53% 56.94% 13.71% 23.82%

Figure 8: Probability of selected schedule outcomes (Source Jones [8], reproduced with
permission)

240

4.0 Conclusion

My own research based on the Times top 1000 companies in the UK [9] into this
area has revealed that senior managers and directors, as well as other staff lack
sufficient training to make effective and informed decisions based upon the
fmdings of their metrics programmes.

Senior managers and Directors of IT organisations must be trained in the science
of measurement. They must also understand that introducing measurements will
have an impact upon behaviour and attitude. Some behaviours will be positive,
others negative. They will need to assess the potential impacts of the measurement
programme and be ready to manage any negative behaviours. For example, only
providing data for 'good' projects, effort being under-stated for projects and
refusing to provide data due to 'pressure of work or commitments'. The greatest
risk to any measurement programme is the senior manager or IT director who is
not trained to understand how to gather, interpret and use metrics properly.

References

1. Fenton N, Pfleeger S, Software Metrics A Rigorous & Practical Approach,
International Thomson Computer Press, London, Second Edition, 1996 ,p511

2. Rubin H, Developing the New IT Scorecard conference, The Copthorne Tara
Hotel, London, 6-7 February 1996

3. Jones Capers, Applied Software Measurement, 2nd edition, McGraw Hill, 1996
4. Kemerer Chris F, Reliability of Function Point Measurement: A Field

Experiment, MIT Sloan School Working paper 3192-90-MSA, January 1991
5. Ashley N, "Measurement as a Powerful Software Management Tool",

McGraw-Hill, 1995
6. Jones Capers; Applied Software Measurement, 1st edition, McGraw Hill, 1991
7. Boehm and Jones in Corbi Thomas, Understanding and Improving Software

Development Productivity, mM Research, order number ZZ28-7068
8. Jones Capers, Patterns of Software Systems Failure and Success, International

Thomson Computer Press, London, 1996
9. Banga KS, Tamber HS, An Investigation into the Training and Use of

Measurement in Software Engineering, unpublished survey of Times Top 1000
companies and UK Universities, 1997

A Quality Software Process for
Rapid Application Development

Gerry Coleman, Centre for Software Engineering

And

Renaat Verbruggen, Dublin City University.

Abstract

Software organisations can significantly improve the quality of their output if they
have a defined and documented software process, together with the appropriate
techniques and tools to measure its effectiveness. Without a defined process it is
impossible to measure success or focus on how development capability can be
enhanced. To date, a number of software process improvement frameworks have
been developed and implemented. However, most of these models have been
targeted at large-scale producers. Furthermore, they have applied to companies who
use traditional development techniques. Smaller companies and those operating in
development areas where speed of delivery is paramount have not, as yet, had
process improvement paradigms available for adoption.

This study examined the software process in a small company and emerged with the
recommendation of the use of the Dynamic Systems Development Method (DSDM)
and the Personal Software Process (PSP) for achieving software process
improvement.

1. Introduction

In order to improve its software capability each organisation must have a defined
and documented software process. Defining and documenting the software process
allows companies to measure current performance, identify areas of weakness and
initiate improvement actions. In 1988 the Software Engineering Institute (SEI)
developed a Maturity Framework to appraise the maturity of software processes
within companies [1]. This model indicates that the more mature the development
process of the organisation, the more capable it is of developing high-quality
software. The Maturity Framework included process assessment methods, software
capability evaluation, and a maturity questionnaire. After extensive work in this area
the SEI evolved the Maturity Framework into the Capability Maturity Model (CMM)
[2]. The CMM is based on the knowledge acquired from studies using the Maturity
Framework and specifies recommended practices in the particular areas that have
been shown to enhance software development and maintenance capability.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

242

The CMM, however, is primarily targeted at large organisations. Small companies
also face difficulties in software development and defining appropriate process
models. This study examined the problems facing small software companies and
proposes using both the Dynamic Systems Development Method (DSDM) [3] and
the Personal Software Process (PSP) [4] as a means to process improvement within
small companies.

2. Rapid Application Development (RAD) and the
Dynamic Systems Development Method (DSDM)

2.1 Rapid Application Development (RAD)
The term Rapid Application Development or RAD is taken to relate to projects based
around tight timescales, which use prototyping and combine high-level development
tools and techniques [5].

Proponents of RAD claim that it increases productivity, reduces delivery time and
gains high usage because of the extent of user involvement in the development [6, 7,
8, 9]. However RAD projects can fail because the following are not properly
addressed:

.:. Picking the Right Team

.:. Management and Customer Support of the project

.:. the Methodologies used [10].

Analysis of the material published on RAD reveals the advantages and disadvantages
listed in Table 2.1.

TABLE 2.1 Advantaf!es and Disadvantages ofRAD

Advantages

Ease of Implementation

Disadvantages

Speed of development may result in a poorly
designed product

Improved User Satisfaction Need more experienced development staff

Shorter time-to market Strong project management and control required

To capitalise on the benefits listed above and to address the potential problems in
using RAD, the Dynamic Systems Development Method (DSDM) Consortium was
established.

243

2.2 Dynamic Systems Development Method - A RAD Standard
The Dynamic Systems Development Method (DSDM) was created in February
1995. The objective was to create a quality-centred method within which RAD
techniques could be used. DSDM uses prototyping techniques to ensure the frequent
delivery of software products during development. These products are delivered
within fixed timescales known as 'timeboxes'. The principles on which the method
is based are listed in Table 2.2.

TABLE 2.2 - Principles of DSDM

DSDl\'1 Principles

l. Active user involvement, throughout system development, is imperative

2. DSDM teams must have the power to make decisions regarding the system

3. DSDM is focused on the frequent delivery of products

4. The primary system acceptance criterion is 'fitness for purpose'

5. Testing is integrated throughout the life-cycle

2.3 The DSDM Life-Cycle
The development life-cycle is divided into five phases:

• Feasibility Study

• Business Study

• Functional Model Iteration

• Design and Build Iteration

• Implementation.
An overview of the life-cycle appears in Figure 2.1.

The first phase, the Feasibility Study, determines the feasibility of the project and its
suitability for development using DSDM. The Business Study defines the high-level
functionality and the affected business areas.

These are then baselined as the high-level requirements together with the primary
non-functional requirements. The main part of the development is contained within
the two iterative prototyping cycles.

The objective of the Functional Model Iteration is on eliciting requirements while
the emphasis in the Design and Build Iteration is on ensuring that the prototypes
meet pre-defined quality criteria. The final phase, the implementation phase, is the
handover to users, which will normally be accompanied by a project review.

244

The RAD Process in DSDM

Figure 2.1 - DSDM Life-Cycle

2.4 DSDM - A Way Forward for RAD
Given that there are still fears that RAD produces poor quality, unmaintainable code,
there is a definite need for a methodology which will allow quality to be
incorporated into RAD projects. DSDM suggests ensuring quality products through:

• Inspections, Reviews and Walkthroughs

• Demonstrations to user groups and

• Testing.
While there is a comprehensive account, in the DSDM documentation, of how
testing should be conducted at every stage of the development process very little
space is devoted to the use of alternative measures of assuring the quality of the
developed product. Though the consortium admit that, 'testing can never prove that
a system works', limited detail is provided in the documentation as to how
alternative quality mechanisms, such as, inspections and reviews, can be used.

A large body of work exists [including 11, 12, 13, 14, 15] which illustrates how
inspections and reviews are superior to testing at discovering errors.

The benefits inspections have had in one large company are shown in Table 2.3.

245

TABLE 2.3 - Summary ofInspection Data 1990 to 1992 (from Weller [13])

Data Category 1990 1991 1992

Code-Inspection Meetings 1,500 2,431 2,823

Document-Inspection Meetings 54 257 348

Design-document pages inspected 1,194 5,419 6,870

Defects removed 2,205 3,703 5,649

Backed up by this evidence, it is essential that inspections and reviews fonn an
integral part of DSDM.

Though the consortium state that a fonnal quality inspection is necessary on the
Business Area Defmition and the Prioritised Functions, if inspections are carried out
only on these areas then testing is being used as the sole mechanism to find defects
in the subsequent coding phases. The Functional Prototypes and the Design
Prototypes should also be subject to code inspections to ensure maximum defect
detection and confonnance to requirements.

While the quality approaches in DSDM mirror the best practices in traditional
software development there is a greater emphasis on the use of software tools to
support the quality process and ensure development momentum. Tools such as those
that provide 'capture/playback' testing facilities are imperative as regression testing
will occur as new system increments are released.

Finally, the DSDM authors state that every DSDM project should have an
accompanying Quality Plan that states how quality and standards are to be enforced.

3. Process Improvement using the Personal Software
Process (PSP)

3.1 Personal Software Process (PSP)
The Personal Software Process (PSP) is an attempt to scale down current software
quality and assessment practices, for the iinprovement of individual software
developers [4]. It is essentially a bottom-up approach where individuals manage and
assess their own work and, as such, is of particular interest to small software houses
where tailoring large-scale practices can cause difficulties.

The PSP is essentially a framework of fonns, guidelines and procedures, which in
effect produce a defmed process. Using the PSP data gathering mechanisms provides
historical data which helps you measure your perfonnance, your work patterns and
practices. By examining these factors Humphrey believes the developer can:

• Make better plans and more accurate estimates

• Improve productivity

• Improve product quality.

246

3.2 PSP Improvement Phases
The Evolution ofthe various PSP phases is illustrated in Figure 3.1.

Cyclic

Personal

Process

Personal /
PSP3

Cyclic Development

PS 21
PSP2

P.
Design Templates

Quality

Management /

Personal

Planning

Code Reviews
Design Reviews

PSPI
PSPl.l

P=~,/
Baseline

Personal

Process

S ize Estimating
TestRe ort p

PSPO
Time Recording

Defect Recording
Defect Type Standard

Task Planning
Schedule Planning

PSPO.l
Coding Standard

Size Measurements
PIP Proposal

Figure 3.1 - The PSP Evolution

3.3 PSPO (The Baseline Personal Process)
The principal objective of PSPO is to provide a framework for gathering your own
initial process data.

PSPO.l extends PSPO by the inclusion of additional planning and size measurement
details. Size can be measured by counting Lines of Code (LOC), Function Points
(FPs), Objects or some other suitable unit.

3.4 PSPI (Planning, Scheduling and Estimation)
In order to assist with size estimation, Humphrey proposes the use of the PROBE
(PROxy-Based Estimating) method. A proxy is a substitute or stand-in and in this
instance the proxy is used to relate product size to the functions the estimator can
visualise and describe. Examples of proxies include objects, screens, files, scripts or
function points. PSP 1.1 also assists with task and schedule planning.

3.S PSP2 (Software Quality Management)
PSP2 and 2.1 uses reviews and verification methods as techniques to ensure process
and product quality.

247

3.6 PSP3 (Cyclic Development)
PSP3 proposes decomposing large systems to allow PSP techniques to be used
effectively.

3.7 Personal Software Process - An Analysis
Some of the disciplines advocated in the PSP have already been implemented within
many companies. Inspections, code coverage, and testing have been used to uncover
errors. The cost of fixing a defect when softWare is in use compared to fixing it if
found during coding ($1000 vs. $1) can be exorbitant [16]. Therefore, using code
reviews, both for original code and, importantly, for subsequently amended code can
result in large cost savings.

The quality of the software product is an issue facing the majority of companies.
Most have tackled it by concentrating on the quality of the software process
believing that a good product consistently emerging from an ad-hoc process is a
remote possibility. This study has already shown how software inspections and
reviews have helped a number of companies to fmd and fix errors earlier in the
development life-cycle, when it is cheaper to do so. It has also been shown how,
through using inspections, some companies have witnessed productivity increases
with software being released earlier and significantly less rework.

Also software metrics are being increasingly used as a way of measuring and
controlling the software process. Organisations have found that in the absence of
metrics they are unaware of the state of their own process. Collecting even basic
defect metrics has, at least, allowed them a preliminary evaluation of their own
software capability.

From the point of view of a small software development company the PSP is
particularly attractive. As with DSDM it provides a defmed and documented
software process. Also, small companies will inevitably have small development
teams and this will assist greatly with the implementation of PSP. Even one person
in a small team using PSP can have a noticeably greater impact on the resultant
product quality than one person in a large team. There is also the potential for such a
person to act as a 'process champion' with other team members adopting the
approaches.

4. Assessment of the Software Process within a Small
Company

Without real data on how small companies operate, it is difficult to determine which
process models are appropriate and how they should be implemented. The purpose
of this section is to examine how software is developed in a small software company.

248

This was not intended as a software capability assessment but as a first step to gather
information about how the company's software process functioned. The company
examination is divided into two sections. Firstly, a questionnaire was used to obtain
general information on the company's processes. Secondly, having processed the
questionnaire responses, a detailed evaluation of the company was then undertaken.
This is covered in section 5.

4.1 Questionnaire Findings
The company was assessed under twelve headings.

The figures involved represent the percentage achievement of target.

Target is the carrying out of all the activities, represented under each heading,
at all times.

Target is 100%.

The questionnaire results are represented in Figure 4.1.

The results show some fundamental process weaknesses, so to get a more detailed
picture of how the company develops software a detailed evaluation was then
conducted.

5. Evaluation of the Software Process within a Small
Software Company

5.1 Evaluation Findings
The evaluation of the organisation's development process highlighted some evident
strengths. These included the fact that users were heavily involved in systems
development, up-to-date tools were being used very effectively and developers were
highly-skilled.

249

100
00

'a
00

!'l 70
.! 00
.c ro
CJ 40 c(

~
3)

0 20
10
0

Figure 4.1 Company Process Maturity Chart

However, more fundamental weaknesses were also apparent. Apart from the absence
of a defined software development process the company lacks formality and
standards in the areas outlined in Table 5.1:

TABLE 5.1 Company Process Weaknesses in Standardisation and Procedures

Fundamental De,'elopment Process Weaknesses

l. No standard User Requirements Document

2. No standard Design Document

3. No programming standards exist

4. Programmers are not required to produce Unit Test Plans

5. No formal independent testing of modules

6. No formal documentation of errors found during acceptance testing

7. No recording of live fault reports and change requests from users

250

6. A Software Process for RAD

The purpose of this section is to propose how a combination of DSDM and PSP
disciplines can be used as a solution to the software process problems highlighted in
sections 4 and 5. Throughout this section, the phrase 'the company' refers to the
company assessed and evaluated in sections 4 and 5.

6.1 Using DSDM within the Company
There are two questions which need to be answered:

• Is the company suited to the introduction of DSDM?

• Are the projects to be developed suitable for use with DSDM?

The points which favour the use of DSDM within the company are documented in
Table 6.1.

TABLE 6.1- Factors which favour DSDM usage within company

Factors Favourable to\~ards DS))i\1 Lsage

1. Highly-skilled Development Staff

2. Company application area (Multimedia) already includes major User
Involvement in Development

3. Prototyping techniques are currently employed

4. Expertise in latest RAD and software tools

5. Senior Management are committed to improving quality

6. Desire to get products onto the market more quickly

6.2 Using PSP within the Company
The factors which favour the introduction ofPSP are outlined in Table 6.2.

Table 6.2 - Factors which favour PSP usage within company

: ,, ~~~c!f~~'U" !;!:~ , 1\;,. . '. ,;~

1. Commitment to quality

2. Desire for documented process and standardisation

3. Desire to commence metrics gathering

4. Skilled, enthusiastic developers

5. Small development staff complement

251

6.3 A Quality Software Process for RAD
While DSDM offers a ready-made life-cycle for RAD it is weak on the application
of quality measurement techniques and metrics collection. PSP, conversely, offers
process improvement at an individual level but is not RAD-oriented. Taken together
DSDM provides the life-cycle and framework which can be used by RAD teams and
PSP offers the necessary quality control mechanisms.

6.3.1 Combining DSDM and PSP3
PSP3 offers the closest match with the objectives and framework of DSDM.

The Requirements arid Planning stage, of PSP3, carries out similar functions to
DSDM's Business Study and the Cyclic Development section closely matches the
Design and Build Iteration in DSDM. Where DSDM scores over the PSP, for the
type of applications used by the company in this study, is the increased emphasis on
iteration particularly in the Functional Model stage.

However, PSP3 includes unit and integration test within each of its development
cycles. This is particularly important as each increment is adding extra functionality
to the previous increment. If there are residual defects in the initial increment then
these may cause a 'ripple' effect in subsequent increments. Furthermore, subsequent
increments must also find these defects. PSP3 insists on the use of reviews to prevent
this. Using reviews at each of the DSDM prototyping phases will ensure that 'clean'
versions of software are used as input to subsequent system increments.

6.3.2 Using Proxies
The DSDM consortium contend it is easier to calculate how much can be done by a
certain time than to calculate how long it takes to do something; thereby promoting
the use of timeboxes within which given portions of functionality can be delivered.
The PSP suggests using Proxies as a size estimating technique. If the proposed data
collection and recording mechanisms are used, you will soon have historical data
from which you can determine how many LOC or Function Points (FPs) can be
developed within the timebox. In the absence of historical data and size
measurements, the company is at risk of overestimating development time and
therefore losing potential customers or substantially underestimating development
time with the consequent failure to meet deadlines, reduced quality end products
and/or substantial overtime requirements or extra staff complement. The use of
proxies will help this company refine its estimates.

252

6.3.3 Testing
In the section of the DSDM documentation devoted to testing, the consortium state
that, though testing is burdened by time and resource constraints, no amount of
testing would locate all errors.

The consortium also state that during testing 'confidence is derived from finding
errors which are then fixed'. Users who have spent many excessive hours in
acceptance testing would balk at this statement. Continually finding errors in
products at this stage substantially reduces their confidence in the system, as they
have no way of knowing how many errors they are not finding!

Without proper reviews and inspections, prior to product handover to the user, there
is potential for the user to receive error-laden code. This could certainly reduce the
user's confidence in the system and generate substantial rework. In such an
environment, development schedules would not be met and development time would
be lengthened thus invalidating the use ofRAD.

An improved procedure would be for each individual developer to conduct a design
and code review with testing then executed by a technical peer. This will ensure that
the product the user receives will be more error-free. This would increase user
confidence in the product and allow them to concentrate their testing efforts on the
major areas of system functionality.

Any moves towards improved testing procedures within the company should be
accompanied by a commensurate effort to improve inspection and review
techniques. The DSDM Consortium recommend the use of static code analysers
since they do 'a degree of code inspection almost for free'. However, until the
company is wholly satisfied with the specific code analysis tools, available for use
with its development environment, it should concentrate on a manual
inspection/review approach for code.

6.3.4 A Quality Plan
It is stated that every DSDM project should have a quality plan that outlines how
quality will be controlled and standards applied. The proposed quality software
process for RAD will have a quality plan and could include much of the
documentation provided by the PSP.

For example, the PSP process scripts for each level of the PSP should be included in
a Quality Plan.

Having a process script which outlines the Entry and Exit criteria for aphase with a
detailed outline of the steps to be undertaken during that phase is a very useful
quality control technique. The process scripts are accompanied by planning,
development and postmortem scripts for each phase and these again ensure quality
coverage of the process. Including these documents in a quality plan introduces the
standards and control elements demanded by DSDM.

253

Another quality control mechanism, which could be adapted from the PSP for use in
the new environment, is the checklist. Design and code review checklists, which
could be established for each language used by the organisation, and any
documentation used with software inspections should form part of the Plan. The
PROBE estimating script, introduced in PSPl, could also be included in the Plan.

Another PSP document which would be part of the quality plan is the Process
Improvement Proposal (PIP), which is part of PSPO.l. The PIP provides a means of
documenting process shortcomings and suggested solutions. PIP copies should be
retained in the quality plan.

One way of assessing the effectiveness of the quality plan is to measure the process
itself. The PSP provides quality measures for use in PSP projects. However, some
new measures are appropriate for use in the quality software process for RAD.

6.3.5 Metrics
At present, the DSDM consortium is not recommending any specific approach
towards collecting metrics. Also, what is stated, in the DSDM Manual, is that
'during system testing, a count of detected errors should be kept with the aim of
improving this as time goes on'. If a process is to be successful, and continually
improve, it is too late to start collecting error metrics at the system testing stage.

There are several reasons for this. Firstly, it may be very difficult to determine the
exact cause of the error, as the defect, which gives rise to the error, may have been
introduced during any previous timebox or prototyping phase. Secondly, no record
will be available of the time it has taken to fix errors (which have been removed
prior to system testing) and during which activity they were removed. Thirdly, there
will be no picture available of how effective the interim testing is i.e. testing of
timebox elements, prototypes etc. Also, DSDM proposes the analysis of errors and
their causes. Again, without collecting error data as the project progresses,
identifying error causes will be a complex and imprecise activity.

A list of the metrics proposed for use within the company appears in Table 6.3.

TABLE 6.3 - Metrics which could be introduced effectively into the company

Metric Type (Example)

I. Defect Metrics (Total Defects per KLOC, Test Defects per Prototype etc.)

2. Productivity Metrics (LOClHouf, Function PointJDay etc.)

3. Size Metrics (Total New & Changed LOC, Size Estimation Error etc.)

4. Time/Schedule Metrics «Time Estimation Error, Delivery Ratio etc.)

5. Extended Metrics (Phase Yields, Defect Removal Leverage etc.)

6. Maintenance Metrics (LivelDevelopment Defect Ratio, Defect Fix Time Ratio
etc.),

254

It is not recommended that all of these metrics should be introduced immediately
into a project. It is only through using and collecting metrics that companies or
individuals can decide which are the most appropriate and cost-effective to collect.

6.3.5.1 Size and Defect Metrics

Size can be counted at all stages of development and can be based on Lines of Code
(LOC) or Function Points (FP) delivered. These figures can be used to determine the
estimation errors in code size, i.e. % difference between estimated size and actual
size, and can be calculated as follows:

Error% = 100 * (Actual Size - Estimated Size)
Estimated Size

Size estimation errors, by prototype and by timebox, should also be measured.

Defects will be measured relative to code size. Measuring defects by timebox and by
prototype produces the following examples:

Total Defects/Size (Timebox) = Total defects per Timebox
Size per Timebox

for assessing the effectiveness of the testing process:

Test Defects/Size (Prototype) = Test defects per Prototype
Size per Prototype

A defect database should be maintained containing information about the defects
injected and removed during development phases. The database should contain
fields for Defect Number, Defect Type, Inject Phase, Remove Phase and Fix Time.
A Prototype Identifier could also be recorded. Additionally, new fields, such as
Timebox Number and ObjectlFunctionlMethod Number and Type (e.g. 110,
Interface etc.) could be included. This extra data will assist in future defect analysis.

6.3.5.2 Productivity Metrics
The standard productivity measures relate to code amendments and additions.
If we treat Additions as either new and changed lines of code (NLOC) or new and
changed function points (NFP) and Time Units of hours in relation to NLOC and
days in relation to NFP then Productivity can be measured as:

Productivity = Total Additions
Development Time Unit

255

It is also recommended to measure productivity by timebox and by prototype.
However, it should be noted that using RAD tools where a lot of screen design is
completed without the requirement to write code, productivity figures, if based on
lines of code, can look low.

Similarly, if there is significant code reuse then again productivity figures may be
underestimated. The above two elements should be factored into any productivity
estimates and calculations.

6.3.5.3 Time/Schedule Metrics

For future estimates of development time or deliverable capability per timebox it is
necessary to collect time measures. These time measures can be used to determine
how much time was spent in each of the particular development phases and should
be counted in the most appropriate units e.g. hours, days, weeks etc.. If the
productivity measures are to be accurate, then time must also be recorded per
prototype and per timebox. Time estimation error, i.e. % difference between
estimated time and actual time, can be calculated as follows:

ErrotJlo = 100 * (Actual Time - Estimated Time)

Estimated Time

However, using a formula similar to the one for error estimation can assist in
measuring the closeness between predicted timebox deliverables and actual timebox
deliverables. As the prime objective in DSDM is 'building the right system' this
metric will serve as both a quality and productivity measure for the development.

Assuming this measure is termed the Delivery Ratio (DR) it can be calculated thus:

DR (Total 100 * Delivered Functionality

Development) Planned Functionality

This should also be calculated by prototype and timebox. Also, the measure could be
used at the end of any iterative phase or timebox to determine the ratio of delivered
functionality to date:

DR (Milestone A) = 100 * (Delivered Functionality to Milestone A)

(planned Functionality to Milestone A)

6.3.5.4 Extended Measures

With the basic metrics in place, some derived measures can also be generated.

The Yield of a phase is the percentage of defects removed in a phase over the total
number of defects removed and remaining in the product.

256

For example, a prototype yield could be:

Yield (Prototype) = 100 * (Defects found in Prototype)

(Defects Found in Prototype + Escaping from the Prototype)

This measure will be useful in determining the quality of the defect detection
mechanisms used.

The Defect Removal Leverage (DRL) provides a measure of the effectiveness of
different defect removal methods. The DRL is the ratio of the defects removed per
hour in any two phases and is particularly useful in comparing say a review phase
with a test phase. These approaches could again be profitably employed in DSDM
by measuring defect 'removal rates in prototypes and timeboxes.

For example, the measures could be calculated for a prototype as:

DRL (Code Review) = DefectslHour (Code Review for Prototype A)

for Prototype A) DefectslHour (Unit Test for Prototype A)

High review yields are preferable to high test yields as they show that defects are
being found earlier in the process and are thus cheaper to correct.

6.3.6 Maintenance

Projects developed in RAD environments have, in the past, been criticised for being
unmaintainable. The quality software process for RAD proposed in this study will
improve the maintainability of software through improving quality. To measure
maintenance effort post-delivery defects should be collected. This measure, the Live
to Development Defect Ratio (LDDR), could be used to determine the ratio of
defects found in the live environment to those found in development:

LDDR = 100 * Defects found in live environment

Defects found during development

Another complementary maintainability measure would be the time spent fixing
defects after development, calculated as the average defect fix time post-delivery
versus the average fix time prior to delivery. The average defect fix time during
development could be calculated thus:

Avg. Defect Fix Time = Total defect fix time during development

(during development) Total number of defects during development

The average defect fix time post development would be:

Avg. Defect Fix Time = Total defect fix time post development

(post development) Total number of defects post development

Therefore, the Defect Fix Time Ratio (DFTR) for two phases would be:

DFTR (Phase A /Phase B) = Average Defect Fix Time (Phase A)

Average Defect Fix Time (Phase B)

For Post-Delivery versus Pre-Delivery this would be:

DFTR (Post-delivery / Average Defect Fix Time (Post-Delivery)

Pre-delivery) Average Defect Fix Time (Pre-Delivery)

257

These metrics are very significant in that they show clearly the time and cost
implications of not catching defects early when they are cheaper to fix.

6.3.7 Software Reuse
Both DSDM and PSP state that reusing existing software components will result in
productivity and quality improvements. There is no doubt that there are significant
productivity benefits to reusing software. There are, however, significant costs
associated with reuse. Apart from the extra time it takes to design and develop
reusable parts, there is the question of managing and maintaining the reuse library. A
DSDM project which possesses tight delivery deadlines may not have the time to
develop reusable parts. They may have to be re-engineered later. There is always the
possibility though that this re-engineering may then necessitate and trigger other re
engineering requirements within the same project. It is up to the company,
implementing the PSP and DSDM to decide what its own policy is on reuse and
where the costs are to be borne. Ultimately, from a corporate perspective, there is no
benefit to developing reusable components if the procedures and personnel are not in
place to manage and control software reuse component libraries.

7 - Conclusions

7.1 Detailed Analysis
The study revealed that implementation of DSDM would provide a road map for
development within the company and a means of achieving Capability Maturity
Model (CMM) level 2.

DSDM offers the potential for faster delivery of software. To ensure that the
software is of sufficient quality requires the quality control and assurance
mechanisms, such as checklists, reviews and inspections, associated with PSP to be
used. Further benefits of using the PSP with DSDM include:

• PSP3 supports unit and integration testing during each iterative cycle.

• Proxy-based estimating will help with defining timebox elements in DSDM.

• PSP supplies appropriate metric-collection techniques that can be used in

DSDM projects.

• The documents and scripts associated with PSP can be used in a Quality Plan.

258

7.2 Recommendations

7.2.1 Data Recording Assistance
There is no doubt that the detailed form filling required to gather all of the necessary
data for process measurement within the PSP will hinder the speed of development
in the initial phases. In order to prevent this, organisations using PSP measures
within a RAD framework could either simplify the recording approaches or
investigate the use of software tools to collect some of the basic data. One approach
would be for developers to maintain detailed logs of their time on randomly selected
days only [17]. With respect to using software tools to reduce the data collection
overhead, there are a number of tools available to count lines of code (LOC). In
areas where the user interface is crucial, LOC counting may not be as effective as
function point counting. Tools which can count function points after development
would be of tremendous benefit in such an environment.

Similarly, tools which assist in defect and time recording would be advantageous.

7.2.2 InspectioniReview Assistance
DSDM recommends the use of automated support for code reviewing and
inspection. Particular benefit will be gained if these tools can be adapted for use with
the PSP. Ideally then, they could not only highlight code errors but by reference to,
perhaps, the PSP defect standard, they could record the category of defect. These
tools, however, should only be considered when the manual review and inspection
process is fully understood.

8. References

[1] Humphrey, Watts S. Characterising the Software Process: A Maturity
Framework. IEEE Software; March 1988; 73-79.

[2] Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth & Weber, Charles
Capability Maturity Model, Version 1.1. IEEE Software; July 1993; 18-27.

[3] DSDM Consortium, Dynamic Systems Development Method, Version 2.0.
November 1995.

[4] Humphrey, Watts S. A Discipline for Software Engineering. Addison Wesley,
1995.

[5] Martin, James Rapid Application Development. Macmillan, 1991.

[6] Gordon, V. Scott & Bieman, James M. Rapid Prototyping: Lessons Learned.
IEEE Software; January 1995; 85-94.

[7] Kerr, James & Hunter, Richard Inside RAD - How to build fully functional
computer systems in 90 days or less. McGraw Hill, 1994.

259

[8] Luqi & Royce, Winston Status Report: Computer-Aided Prototyping. IEEE
Software; November 1991; 77-81.

[9] Reilly, John P. Does RAD Live Up to the Hype? IEEE Software; September
1995; 24-26.

[10] Carmel, Erran Does RAD Live Up to the Hype? IEEE Software; September
1995; 25-26.

[11] Fagan, M.E. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal; 1976; Vol. 15; No.3; 182-211.

[12] Fagan, M.E. Advances in Software Inspections. IEEE Transactions on
Software Engineering; July 1986; Vol. SE-12; No.7; 744-751.

[13] Weller, Edward F. Lessons from Three Years of Inspection Data. IEEE
Software; September 1993; 38-45.

[14] Davis, Alan M. Fifteen Principles of Software Engineering. IEEE Software;
November 1994; 94-101.

[15] Ackerman, A. Frank, Buchwald, Lynne S.& Lewski, Frank H. Software
Inspections: An Effective Verification Process. IEEE Software; May 1989;
31-36.

[16] Joch, Alan & Sharp, Oliver How Software Doesn't Work: Nine Ways to
Make Your Code More Reliable. Byte; December 1995; 49-60.

[17] Shostak, Barry Adapting the Personal Software Process to Industry. Software
Engineering Technical Council Newsletter; Winter 1996; Vol. 14; No.2; 10-
12.

An integrated Model for Impact Analysis of
Software Change

Henri Basson

Laboratoire Informatique du Littoral
3, rue Louis David, P.B. 719,
62228, Calais cedex France.
E-mail: {basson@loria.fr }

Abstract. This paper presents an integrated model intended to be used
for an a priori analysis impact of the change of software components is
sued from different phases of the software life cycle.
The model takes into account different types of links between compo
nents, as well as several properties permitting to distinguish between
different occurrences of a same relationship type between components.
The model permit also to observe components dependencies, and to iden
tify software components concerned by an intended software change.

1 Introduction

The impact analysis of software change is largely admitted as a vital activity
to control and manage software evolution as well as to ensure coherence be
tween different representations of software components throughout the software
life cycle. The proposed models to describe and handle software components are
seemingly not exhaustive[2, 3, 4, 6] such as to take into account various types of
links between software components.
The assuranec of coherent description between different representations of com
ponents through different phases of the software life cycle, is recognized to be
an essential characteristic for software maintainability. It has created the need
for integrated representation permitting an a priori impact analysis of software
change and an exhaustive description of relationship types between software
components. In this paper, we propose an integrated representation of compo
nents allowing an easier observation of components interdependencies, and better
control of software change.

2 Model presentation

To outline the profile of the intended software components representation, we
start from a set of requirements we expect to be met by the future model. The re
quirements specification here is pragmatic based on background in dealing with
the needs of information of software change throughout the software life cycle.
As we aim at providing a model allowing an exhaustive impact analysis of soft
ware change, according to some background in the area of software evolution,
we mention below the main model requirements:

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

261

- A complete integrated representation of the software life cycle components.
- A precise identification the structural "coordinates" of each software compo-
nent within the life cycle phases.
- Representation of different relationship types which may occur between soft
ware components, that includes: (i) the representation of different relationship
types between a component of a given phase and other concerned components of
the other lifecycle phases. (ii) The representation of different relationship types
between one component and other components of the same phase.

- The representation of components properties
- The represent.ation of different properties of relationship types occurrences

between components.

3 Model dimensions

Successively, we attempt below to meet the roughly mentioned requirements. For
structural coordinates the model represents first phase to which the concerned
component belongs. Components of the same phase are generally of different
"granularity" , "category" or "class" , then according to some components classi
fication, the model represents the category or granular level to which a compo
nent belongs. Each component may, in turn, be composed of other components
of the same or lower level of classification.
As example, in the coding phase of a project implemented in Ada , the model
takes into account four granular levels:
- Modular level in which each PACKAGE, PROCEDURE, FUNCTION or TASK
constitutes a modular component.
- Bloc level, which is identified in a component as well-defined set of successive
statements, where the execution control flow passes unconditionally from a cur
rent statement to the physically succeeding one.
- Statement level where elements are simple or compound statements.
- Symbol level.

A granular level includes generally different sub-categories or sub-levels. The
specification of sub-levels is realized using a set of criteria relevant to the software
change analysis. For instance in the level Bloc we identify four different sub-levels
(declarative bloc, conditional bloc, functional bloc, comment bloc). A change in
a declarative bloc has an impact generally different from a change of a comment
bloc, etc.

To represent relational point of view under which components can be con
sidered, we have taken into account:
- Different types of relationship which may occur between components issued
from different phases of the life cycle.
- Different Relationship types between components which belong to the same
granular level (horizontal relationship types).
- Different relationship types between components of distinct granular levels
(vertical relationship types).

262

The qualitative point of view is represented through attributes permitting
to describe precisely different characteristics, pertinent for software change of
components of phases, levels, sub-levels, as well as inter-phases, horizontal, and
vertical relationships.

4 Model components

We consider in the model the phases which are present in various models of
projects execution (Waterfall, V, incremental, spiral, etc.). These phases are
such as: requirements specification, functional specification, preliminary design,
etc.
The life cycle phases constitute the higher level set of the model components, it
is denoted by P S (Phases Set), where:
PS= {4>J, f = l ... nf} = {RSOS, FSOS, PDOS, DDOS, COS, ITOS, lOS, GTOS}
denotes the phases set including all components issued from the adopted model
execution of development process, we denote by:

- RSOS the requirements specification component set;
- F SOS the functional specification component set;
- P DOS the preliminary design component set;
- DDOS the detailed design component set;
- GaS the coding component set;
- ITOS the individual testing component set;
- lOS the integration components set;
- eTaS the global testing component set.

The history of components change is described through two sets:
- GROR, the set of change reasons and corresponding managerial and/or tech
nical decisions, and,
- GER, the component set of change carrying out.

Between each phase and (CROR,CER) a set of relationship types are oc
curred, indicating changed components or components candidate to be changed
, why a component was or is to be changed, the corresponding change decision,
and description of carried out changes.

Between each couple of successive phases, a set of inter-phases relationships
is defined to cover different types of links which may occur between components
issued from these phases [fig. 1] As examples of inter-phases relationship types:
represents, specifies, is_the_design_of , implements, tests, etc.

4.1 Phase components classification

Since the software change, in a given phase, may concern component of a small
or large size, local or global component, etc. the components modeling has had
to take into account components specific characteristics. However, components
can be distinguished from various standpoints depending on action to be under
taken on components, thus, the model building requires to select a set of specific

263

criteria with which some classification components can be done. Each selected
criterion is supposed to be tightly related to the needs of information of soft
ware change execution and management. Subsequently, there is no systematic
way with which criteria can be selected, the designation is further pragmatic
based on experience in software change activities. The components classification
will be followed by the definition of intra-relationship types between elements
of each distinct subset of components of the same phase (horizontal relation
ship types), as well as inter-relationship types between elements which belong
to distinguished subsets of this phase (these generally correspond to vertical re
lationship types). The first criterion is component gmnularity, with which we
identify distinct granular levels. Inside each one we apply another classification
pertinent for software change analysis.
The model formal notations for the coding phase, are given as annex in the end
of the paper.

Inter·phases Relationships

Fig. 1. Direct inter et intra-phases relationships

5 Relationship types example

To illustrate the types of relationship, which may occur between objects, as well
as the description of'properties permitting to specify precisely their context, we

264

give below two examples, first is various possible types of horizontal relationships
between Ada modular components, the second is about vertical relationships
between modular component and the sub-level operand included in symbol level.

As example, let us consider the basic horizontal relationship types between
modular components of the first level of coding, it may include:

r(~f, 1, 1) : Calling;
r(~f, 1,2) : Reference of common data;
r(~f, 1,2) : Reference of common modular components;
r(~f, 1,3) : Definition of values of common data;
r(~f, 1,4) : Exportation of data;
r(~f' 1, 5) : Exportation of data types;
r(~f, 1, 6) : Exportation of modular components;
r(~f, 1, 7) : Importation of modular components;
r(~f, 1,8) : Importation of data;
r(~f' 1, 9) : Importation of data types;
r(~f' 1, 10) : Protection;
r(~f' 1, 11) : Inclusion;
r(~f, 1, 12) : Communication;
r(~f' 1, 13) : Synchronization;
r(~f, 1, 14) : Instantiation;
r(~f' 1, 15) : Overloading;
r(~f, 1, 16) : Renaming;

. ,

r(~f, 1,n) : }

As already mentioned, a set of attributes for will be chosen to insure a large
coverage of data requirements of change which may be carried out on modular
components.

6 Relationship type and Change Conductivity

Relationship type occurring between components of any couple, may imply, some
kind of dependency, reciprocal or not, between components [fig. 2].

A dependency aspect between the components of any given couple, concerns
the change of one them or both. When one component of a couple is modified
the other could, in somehow, be concerned.
As example, let us consider a couple of software components: Ct: and Cy (two
procedures of Ada or C application), related by the calling relationship type:
Ct: calls Cy • Subsequently, in the most of cases, when Cy is changed then Ct: is
concerned. The extent to which Ct: is concerned depends on the type of change
implemented on Cy .

On the other hand, a change taking place on one of the components, generates
an impact of several dimensions, which reflect the impact effect, considered from
different points of view. The impact dimensions includes functional, qualitative,

265

behovioml points of view, under which the impact can be considered, in order to
understand the consequences of impact change .

.. ~~ .• mmmS:~_?m_m.j .. ~!.,,~
Impacted
Component

Change Impact Flow
changed
Component

Change lex 1-----<- Calls ::;J-----ttJ C y I
........... (No Impact) 1_

changed
Component

Fig. 2. Conductivity of call relationship type for change impact

7 Attributes identification

For the attributes identification corresponding to properties qualifying objects
and occurring relationships. for this objective, we start from a representative set
of software processes categories, for each one, and by top-down refinement, we
proceed to identify necessary operands values permitting to evaluate expressions
frequently requested by concerned software process.
In order to provide operands values, a set of attributes will be integrated in
the model elements. So the process of attributes identification detailed in is
pragmatic based on a background in software evolution needs and data design
11.
The identified necessary attributes will be appended on concerned:

- sofware life cycle phases;
- granular levels of a given phase;
- component types of a given level;
- sub-levels of a given level;
- component types of a given sub-level;

266

- types of inter-phases relationships;
- horizontal types of relationship;
- vertical types of relationship.

8 Example of associated qualification of the calling
relationship

Each calling between two modular components can be characterized by a set of
attributes permitting to qualify it precisely. So the kth calling between two com
ponents Ci and Cj is characterized by the values of the chosen attributes such as:

- callinglocation(k) which designates the kth location at which Ci may call
Cj

- calling_condition(k) designates the condition of calling at the kth location.
- probablLnumber...of _calling(k) That designates the total number of calling

at the kth location.
- nestingleveLof _calling(k)
- etc.

9 Example of modular vertical relationships

As example of vertical relationship types between components which belong to
two different granular levels, we consider relationships between modular level
components LV(<Pj, 1) and those of operand sub-level SLV(<Pj,4, 1).
The set V(<Pj, 1,4) = {v(<Pj, 1,4,k),k = 1 .. . In(<Pj, 1,4)}, may be instantiated
as follows:

v(1,4,1)(C(1,i),C(4,j)) +---+ operandC(4,j) is declared in C(l,i)

v(l, 4, 2)(C(1, i), C(4,j)) +---+ operand C(4, j) is initialized in C(l, i)

v(1,4,3)(C(1,i),C(4,j)) +---+ operand C(4,j) is read in C(l,i)

v(l, 4, 4)(C(1, i), C(4,j» +--+ the current value of C(4, j) is modified in C(l, i)

v(l, 4, 5)(C(1, i), C(4,j)) +---+ operand C(4, j) is used in C(l, i)

v(l, 4, 6)(C(1, i), C(4,j)) +---+ operand C(4, j) is protected in C(l, i)

v(l, 4, 7)(C(1, i), C(4,j)) +---+ operand C(4, j) is exported from C(l, i)

v(l, 4, 8)(C(1, i), C(4,j)) +---+ operand C(4, j) is imported by C(1, i)

v(l, 4, 9)(C(1, i), C(4,j)) +---+ operandC(4,j) is visible by C(l, i)

v(l, 4, lO)(C(l, i), C(4,j)) f------t operand C(4, j) is displayed by C(1, i)

v(1,4,lO)(C(1,i),C(4,j)) f------t operand C(4,j) is stored by C(1,i)

267

v(1,4, ll)(C(l, i), C(4,j)) ~ operand C(4,j) is actual parameter in a calling of C(l, i)

As horizontal relationship type, can be used individually or with other types to
identify impact flow of software change [fig. 3].

~--------~:~
Impacted ••••••• "\

Component Change Impact How ,
\ , ,

changed
Component

,

changed
Component

Cz .:iChange

\ ,

Cy .:i Change

Fig. 3. Flow impact change through modification and use relationship type

10 Impact Flow Graph

Considering the impact flow sense corresponding to each individual relationship
type, we can deduce for the instantiated model of the current application the
change Impact Flow. The procedure is described in detail in [5]. It is based on
the exam of the "conductivity" of each relationship type for the impact change
propagation. This conductivity, which can be conditional depending on cases,
conducts a full or partial impact.

268

11 Concluding remarks

The proposed model covers all type of relationships which may occur between
software components. For impact analysis of software change, we associate to
the application multi-graph, a multi-graph of Change impact flow, which allows,
when a component is modified, to identify the other concerned components,
throughout the different phases of the software life cycle.

As result of the number of considered types of relationship, the elaborated
model is comparatively a large one. In fact, that reflects the number of impact
flow paths across them, effects of change, can propagate. Generally, it remains a
very difficult task to the maintenance team to identify completely impact flow of
software change without assisting tool. We have implemented a tool validating
the model for the two phases of preliminary Design and Coding, presented in
[1] .

Annex: Model elements and notations for coding phase

We give below the representation of one macro-component of the phases set
PS, the COS or the coding object set for which we define its structure and
elements relationships. The process can be similarly applied to the other devel
opment phases. for COS elements partition. of coding objects Let COS = ~J =
{LV(~J' i), i = 1 .. . In} be the set of In(~J, i) levels To each level LV(~J' i)
corresponds the couple (SC(~J,i),R(~J,i)), where:
SC(~J,i) = {C(~J,i,j), i = 1 ... In(~J,i), j = 1 ... cn(~J,i} is the set
of components of the ith granular level, C(~J' i,j) is the jth component and
cn(~ J, i) denotes the number of components at this level.

R(~J,i) = {r(~J,i,j), i = l ... ln(~J,i), j = l ... rn(~/,i) is the set ofba
sic relationship types between components of the ith granular level.
r(~J,i,j) designates the jth relationship type at the ith level, rni being the
number of relationship types at this level.

For all couple oflevels (LV(4>J, i), LV(4)J, j), , i = 1 .. . In(4>J' i) , j = 1 .. . In(4>J, i)-
1, avec j > i corresponds :

V(4)J,i,j) = {v(4)J,i,j,k), i = 1 ... In(4>J , i), j = 1 .. . In(4>J,i), k = 1 .. . nv(4)J,i,j)}
the set of types of basic relationships between components of the ith granular
level and those of the jth one.
nVij designating the number of relationships types between the ith and the jth
level, v(i,j,k) is the kth type ofrelationship between the ith level and the jth
granular level.

To each level LV (~J , i) corresponds:
AN(~J' i) = {Atn(~J' i,j), i = 1 ... In(~I' i),j = 1 ... lan(~J' in the set of
attributes which will be appended on considered granular level, where,
Atn(~J,i,j) is the jth attribute of the ith level, and

269

lan(4)J, i) is the number of attributes of the ith level.

To each r(4> J, i, j) E R(4> J , i) corresponds:
AR(IPJ,i,j) = {Atr(IPJ,i,j,k), i = 1. .. ln, j = 1 ... rn(lPj,i), k = 1 ... nar(IPJ,i,j)}
the set ofattributes of the jth type ofrelationship at the ith level, and an(4)J, i, j)
is the number of these attributes.

To each v(4)J,i,j,k) E V(4)J,i,j) corresponds:
AV;pc = {Atv(i,j,k,I), i = 1 .. . In(lPj,if, j = 1 .. . In(IPJ,i), k = 1 .. . vn(IPJ,i,j),1 =
1 ... van(4)J, i, j, kn the set of attributes of the kth type of relationship be
tween the ith and the jth granular level, Atv(4)f,i,j,k,l) is the lth attribute,
van(4)J,i,j,k) being the attributes number.

To each SC(4)J,i) E LV(4)J,i) corresponds LT(4)f,i) = {TC(4)J,i,j),j =
1 ... tn(4)J, in, where TC(4)f, i, j) is the jth component type of the ith granular
level, and tn(4> J , i) is the number of these distinct component types at the ith
level where,
(V C(4)J,i,j) E SC(4)J,i)(3 Type(C(4>J,i,j)) = TC(4)J,i,k) E LT(4)f,i).

To each TC(i, j) corresponds the set of attributes
ATC(4)J, i,j) = {Atc(4)J, i,j, k), i = 1 .. . In, j = 1 .. . tnj, k = 1 .. . an(4)J, i,jn,
where Atc(4)J, i, j, k) is kth attribute of the component having the jth type of
the ith level.

References

1. S. Ajila, H.Basson, and J.C. Derniame. A logic-based approach to impact analysis of
objects change. In Proceedings the Third International Conference on the Practical
Application of Prolog, pages 1-15, April 1995.

2. R. Al-Zoubi and A. Prakash. Program view generation and change analysis using
attributed dependency graphs. Journal of Software Maintenance: Research and
Practice, 4(7):239-262, July 1995.

3. Guillermo Arango and Ruben Prieto Daz. Domain Analysis and Software Systems
Modelling. IEEE Computer, (1996), 1991.

4. D. Ash, J. Alderete, P.W. Oman, and B. Lowther. Using software maintainability
models to track code health. In Hausi A. Miiller and editors Mari Georges, editors,
Proceedings of the International Conference on Software Maintenance (ICSM '94)
Victoria, B. C. USA, pages 154-160, September 1994.

5. H. Basson. Controle de l'Evolution des Logiciels: Approche de Modelisation pour
l'Analyse d'Impacts des Modifications. In HDR Document, pages 85-107, December
1997.

6. H. Gomaa and L. Kershberg. Domain modeling for software reuse and evolution.
In IEEE Computer Society Press, editor, CASE '95: Proceedings of the Seventh
International Workshop on Computer-Aided Software Engineering, pages 162-171,
July 1995.

Metrics for Estimation
T. R. Judge, N. S. Mistry

Parallax Solutions Ltd, Coventry, UK.
hup://www.parallax.co.uk/

Abstract

The Metrics in Object Oriented Developments (MOOD) project 21443 is
focused on the introduction of metrics to aid Estimation on Object
Oriented (00) projects at Parallax. This is in line with meeting Parallax
Solutions' requirement to improve its estimating processes and the
requirements of a Process Improvement Experiment (PIE) as defined by
the European Systems and Software Initiative (ESSI), under whose
auspices the project is being run. For more information on this initiative
see http://www.esi.esIESSII.

Improvement is to be achieved by:

• The sound application of project metrics to 4 baseline projects.

• Improvement of the whole metric gathering lifecycle.

• Development of metrics that aid the estimation process.

This will lead, at a minimum, to the business benefit of greater confidence
in delivering 00 developments on time to the satisfaction of the customer.

The project will initially involve a period of study, primarily to review
information and material relating to estimation and metrics.

The PIE will then enter a cycle of metric development and constant
process improvement. This process improvement will be applied on 4
selected 00 projects within Parallax.

All projects undertaken by Parallax are developed in accordance with the
Parallax Delivery Management System (OMS). The Estimation process
defined in the OMS will be updated to include the recommendations of
the project.

The PIE will be an iterative experiment constantly applying and reviewing
the process and applying changes. Conclusions will then be drawn and
reports quantifying the improvements will be completed and presented.

This paper presents the findings of the project so far in terms of metrics
identified for estimation.

C. Hawkins et al. (eds.), Software Quality Management VI
© Springer-Verlag London Limited 1998

271

1 Introduction
This paper concerns metrics for estimation on 00 projects. As well as providing a
description of the metrics that have been identified, the paper also presents a case
study based on the MOOD project and an analysis and justification describing how
and why these particular metrics have been selected.

The intention in capturing such metrics is to improve the estimating process on 00
projects within Parallax Solutions Ltd.

The project has adopted the Goals, Questions, Metrics (GQM) paradigm defined by
Basili and Weiss[1]. This paradigm provides a framework for the definition of an
appropriate set of metrics based on project goals. However, it has been necessary to
be somewhat pragmatic in terms of the metrics defined as it has been necessary to
consider factors such as the project overhead involved in metric collection, and the
capabilities of the metric software tools available.

This document draws on data gathered during the project activities listed below:

• Metric Audit - an audit of all Parallax projects has been conducted to
determine the quality of metrics that are already available.

• Period of Study - The project has involved a period of study, to review
information and material relating to estimation and metrics.

• Software Evaluation - The software evaluation has looked at a number of
packages to evaluate their capabilities both in terms of metrics capture and
storage and in terms of generating estimates based on metrics. Process
Engineer (from LBMS http://www.lbms.com/) and KnowledgePlan (from
Software Productivity Research http://www.spr.com/) have emerged as
extremely powerful tools in this regard.

The MOOD project objectives are:

• The sound application of project metrics to 4 baseline projects including
the introduction of a metric improvement process in place on those
projects.

• Improvement of the whole metric gathering lifecycle including ongoing
improvement of quality metrics.

• Development of metrics that aid the estimation process leading to a sound
and accurate process of estimation.

It is expected that the project will have a direct impact on the quality and accuracy
of Parallax's estimation process in two main ways:

• The application of quality metrics and measures on 00 developments will
enable progress to be monitored more accurately allowing us to build a

272

historical profile of projects we have successfully completed, the actions
that made them work and those that did not.

• Applying further metrics and this historical information during the
estimation process will allow estimates to be arrived at with more
confidence and accuracy.

From these rather high level statements it has been necessary to develop a set of
project Goals from which to derive the metrics that are required. These goals have
been reviewed with the MOOD Business Champion (BC) to confirm that they are
in line with the requirements of the Parallax business. The BC, in this case, is the
Parallax Delivery Manager.

2 Goals, Estimating Techniques and Metrics for
Estimation
The goals for the project in a GQM sense have been defined such that they are
either directly related to the estimating process or affect the capture and accuracy of
estimates. From these goals, questions have been raised. The answers to these
questions suggest the metrics that should be captured.

For the process of determining the goals, an investigation has been conducted into
the groups that are affected by estimates. Parallax mainly does work for outside
clients who, when sending a tender for work, have a rough idea of the time-scales
they would need the work completed by, this may be determined by other
developments within their Company. Once the requirements are known, even at a
high level, Parallax needs to give an idea of the estimated schedule, effort and size
of the project. After detailed analysis Developers would be consulted on the
estimated effort for the break-down of tasks. Once all the tasks have been
estimated, it is the responsibility of the Project Manager to collate these estimates
and form a project schedule highlighting major milestones and making sure the
final end date is realistically achievable. After the Developers and Project Manager
are happy with the plan, the final stage is to get agreement from the Customer that
the schedule meets their expectations.

Five groups that are the beneficiaries of the estimation process have been identified
as a result of the investigation. These groups are identified and discussed below,
together with goals that would support these groups needs from the estimation
process.

2.1 Beneficiaries of the Estimation Process and their Goals

1. Parallax - In general Parallax needs to analyse and improve its estimation
process, this would better determine the success of projects and in turn
improve profitability. In the long term Parallax can build on their reputation of

273

delivering projects on time and within budget so that Customers are more
likely to come back with repeat business.

Goal Rationale
bnprove 00 Software • bnprove the Parallax OMS process specifically for object-
Estimation Process oriented projects

• bnprove accuracy of task estimation for object-oriented
technology

• bnprove marketability of Parallax
Minimise Schedule • Minimise non-development tasks

• Plan company resource requirements
• More time to develop new products and keep-up with

latest technolol!V

2. Project Team - If an accurate project estimate is available at the outset of a
project then the project will run much more smoothly. The Project Manager
will be free to spend his/her time on project problems that could not be
predicted. The Customer will be happy to see that the project is progressing as
planned and is therefore under control.

Goal Rationale
bnprove project estimation, • Accurate 00 project proposals
schedule, effort and size • Ensure profitability

• Maximise requirements stability

• Minimise risks
Keep projects on track • Avoid cost overruns

• Avoid schedule overruns
• Predict need for corrective action
• Ensure conformance to standards
• Give an accurate indicator of project Pro2fCss

3. Developers - Realistic schedules mean the developers can spend time producing
quality code, which is well designed, efficient and has been thoroughly tested.
Once tasks are accurately recorded the next time a similar project is being
estimated the historical task information can be used to more accurately predict
the work that will be necessary.

Goal Rationale
bnprove individual • Feed into project estimates and tracking
estimating ability • True view of project progress

• Earlv indicator of scheduled effort errorl unscheduled tasks
bnprove skill levels to • Highlight training need
reduce developer time • Indicator skill shortage
spent on tasks • bnorove Comoanv skill set

4. Project Manager - It is usually the task of the Project Manager to create and
finalise the project plan. But there are many more responsibilities that
sometimes get forgotten because all their time is spent with the plan. Selecting

274

the correct resources with the correct skills is very important to the project, the
right skills can help meet tight timescales. A good start to a project is always
very important, it is usually at the beginning that the important decisions are
made, the software to be used, the methodology required, the level of
Customer time needed, indeed more importantly a good rapport with the
Customer at the beginning pays dividends in the end. It is important that the
Project Manager is responsive to events as they occur and not pre-occupied
with other tasks.

Goal Rationale
Optimise resource usage • Match resource skills, team structure to project requirements

so time not wasted training

• Get the right skill for the right tasks at the right time, keep
within estimated cost

Minimise disruption by • Get the right team environment with a shared elevated
providing the ideal vision or goal
working environment • Project rotation to keep Developer motivation high

• A void disruption so estimates are not impacted

5. Customer - One way the Customer has an idea of how well the project is going
is to compare progress against the schedule. If the scheduled effort has been
inaccurate from the beginning the Customer's perception of the progress is
going to be wrong. An accurate schedule would avoid this as well as gaining
confidence. By making risks known early to the Customer, there will be 100%
committed to the project ensuring all necessary resources and information is
made available to the project team.

Goal Rationale
Get 100% agreement of • Justify estimates from past project experience
project schedule • Better to be realistic at the beginning even if not meeting

Customer's time-scale rather than delivering late

· Improve Customer relationship
Minimise project risks • Decision made by right people at the right time so there is no
by getting total delay in progress
commitment from
necessary people and
information

The goals identified above will remain valid throughout the project even if new
processes or metrics are introduced. Following the MOOD project and depending
on the success of it, more goals can be added for other areas of the business and the
cycle of estimating process improvement spread to all Parallax projects.

These goals cover a broad range of goals for estimating, for the purpose of the final
metrics to capture it is necessary to concentrate on those that are of direct interest to
MOOD. Another reason for being specific about the goals is to produce metrics
that can be effectively analysed, without being overloaded with too much
information. The following statement taken from [2] justifies this,

NASA's Software Engineering Laboratory (SEL) has had an
active measurement program for almost 20 years. One of the
lessons SEL has learned is to spend more effort on analysis and
less on data collection. In the early years of the program SEL
spent about twice as much on data collection as on analysis.
Since then, data collection effort has dropped by half, and SEL
now spends about three times as much on analysis and packaging
as on collection.

275

Therefore the fewer metrics that are collected the more time can be spent on the
analysis and feedback of the findings. A recommendation by Edward Berard[3] is,

A single software engineering metric in isolation is seldom
useful. However, for a particular process, product, or person, 3-5
well-chosen metrics seem to be a practical upper limit.

If a goal is seen as a particular process, product or person then for each goal a limit
of 5 metrics is adequate. He also highlights the fact that the most useful metrics
may not be known ahead of time, therefore,

When we first begin to study some aspects of software
engineering, or a specific software project, we will probably have
to use a large (e.g. 20 to 30, or more) number of different
metrics. Later, analysis should point out the most useful metrics.

The second cycle of metrics capture, should highlight the most useful metrics. The
goals however should still be valid for both cycles of metric capture, as the metrics
for each goal are improved, in theory only the most useful metrics will continue to
be captured. Therefore more goals can be added which will not off balance the time
spent on data collection compared to analysis and feedback.

276

2.2 Selected Goals

Following is a list of selected project goals from those identified for each group
above. In order to formalise the process a structure suggested by the CEMP project,
ESSI project 10358 run by Helmut Woda has been used.

The template for GQM goals is:

Purpose of Study
Analyse some (objects: processes, products, etc.)
For the purpose of (why: understanding, managing, motivating, engineering,
controlling, certifying, etc)
Perspective of study:
With respect to (quality focus: cost, correctness, defects, changes, reliability, user
friendliness, etc.)
From the viewpoint of (who: user, customer, manager, developer, corporation, etc.)
Context of study
In the following context (environment: problem, people, resources, processes, etc.)

This formal approach was necessary to provide a clear and consistent description of
the goals selected.
Six goals have been chosen, these are presented below:

1. Improve 00 2. Improve Project Estimation, 3. Keep Projects on
Software Estimation Schedule, Effort and Size Track
Process

Analyse the 00 Analyse the Project Schedule Analyse the
Software Estimation For the purpose of accurately Project
Process specifying For the purpose of
For the purpose of With respect to the tasks and keeping on track
improving it sub-tasks With respect to re-
With respect to the From the viewpoint(s) of Project estimating
estimating techniques Manager, Developer From the
From the In the following context: current viewpoint(s) of
viewpoint(s) of the project Project Manager,
Project Manager, In the following
Delivery Manager context: Parallax
In the following
context: Parallax

277

4. Improve Individual 5. Minimise Disruption by 6. Get 100%
Estimating Ability Providing the Ideal Working Agreement of

Environment Project Schedule

Analyse the tasks Analyse the Project Management Analyse the
For the purpose of For the purpose of better Customer
accurately estimating managing For the purpose of
With respect to their With respect to the project needs getting support
effort From the viewpoint(s) of the With respect to
From the Project Manager, Delivery the project
viewpoint(s) of the Manager estimates
Developer In the following context: current From the
In the following project viewpoint(s) of the
context: current Project Manager,
project Delivery Manager

In the following
context: current
project

Unfortunately there is not space here to go into detail about the mapping of all of
these goals into questions and metrics. However, the goals above have been used to
define a set of questions that must be answered to meet the involved parties' goals.
In turn these questions have been used to select metrics which address the goals.
Section 2.4 presents the metrics which have been identified.

2.3 Estimation Techniques
The first goal shown above is to analyse the 00 software estimation process for the
purpose of improving it with respect to the estimating techniques. In order to
specify the metrics required for estimation it is clearly first necessary to understand
what data is necessary to drive the available estimating techniques.

A report by the Software Productivity Research Centre entitled 'The Impact of
Software Cost Estimating on Projects that fail or succeed' states that one of 'the
attributes most strongly associated with successful software projects included the
usage of automated software cost estimating tools'. The MOOD project has
investigated two automated estimation tools and the data required to drive them.
These are Process Engineer (from LBMS http://www.lbms.com/) and
KnowledgePlan (from Software Productivity Research http://www.spr.com/). Both
are very powerful tools, whose scope is too broad to go into here. However, it is
necessary to understand something of the estimating techniques that have been
considered. These are explored below with respect to LBMS. KnowledgePlan relies

278

on a different approach. It characterises the project that you wish to produce an
estimate for and compares it with its database of approximately 6,700 (and
growing) projects to obtain an estimate.

It appears from the literature that there are, in fact, very few estimating techniques
targetted at 00 developments. It should be understood that the MOOD project is
not a research project. It is a Process Improvement Experiment (PIE). This is
important to understand as the project is not attempting to define a new 00 project
estimating technique. It is, however, attempting to apply industry best practice and
improve the estimating process on 00 projects. Once the project has completed
there may be some scope for correlating the 00 metrics captured with project
duration, but this is not the primary aim of the project.

The following methods are supported by LBMS Process Engineer and have been
considered in the definition of the project metrics. There is an Object Based
estimating technique, but this is not particularly sophisticated.

2.3.1 RiskContingency

In order to build an effective strategy for a development project, it is necessary to
identify and understand all the factors which have the potential to influence the
successful completion of each of the stages. This method is a structured attempt to
identify and grade areas of uncertainty throughout the life of a development project.
If potential threats can be anticipated, attention can be given to finding a remedy at
the right time.

The purpose of the RiskContingency method is to identify and quantify areas of
uncertainty within a project. This allows the project manager to recognise the extent
to which the project is at risk and to take appropriate action to limit its exposure to
these risks. It is important to view the numbers obtained from using this method as
relative to one another. This will indicate whether the risk factor is low, moderate,
high or extreme.

The RiskContingency method should be applied as early as possible in the project.
If this is done in the early stages, the results will, of course, be more accurate and
useful to the project manager. Likely actions will result such as increasing
estimates, adding activities, planning risk areas in more detail, extending the time
frame and assigning more experienced resources to certain areas. The project
manager can then feel confident that the project can be completed within its
allocated time scales and can demonstrate how he has arrived at his conclusions. He
will have documented proof which means that he is fully accountable.

279

2.3.2 QuickEst

This is a top down effort estimating method for an entire project. Typical scenarios
are described to help the project manager decide on the size of the project. By
considering whether the project is considered to be either small, medium or large
and historic data the QuickEst metric provides a value in effort days for the project.
These values can be modified depending on what the organisation considers to be a
small, medium or large project. This metric provides a ball park figure only and is
useful in so far as it gives a general idea of how much effort may be involved in a
certain project. It enables project managers to see if a project is viable from the
start, thus saving him valuable time.

Further estimation should always be carried out following the QuickEst so that task
levels can be validated and tasks apportioned. LBMS recommend that this is done
using a more accurate bottom-up procedure.

2.3.3 Weighted Average (WAVE)

This method provides the user with an entry level procedure that can be used to
predict project characteristics, such as work effort. The result gives a weighting of
four times the most likely scenario whilst taking into account a measure of
deviation representing possible extremes.

w AVE can be used at the beginning of a project and at any time during the
project's life in order to make necessary modifications. It can be used either to
calculate high level activities and then apportion values down to lower level
activities or to calculate lower level activities and then aggregate higher level tasks.

Again, by using this method, the project manager is demonstrating his
accountability in the planning process. W AVE gives an easy introduction to
formalised estimating and therefore can be used within an organisation who are not
accustomed to working within a quality environment. It requires minimum learning
time and can be adapted to suit any project.

2.3.4 Effort plus Risk

To make further accurate assessments, contingency needs to be built into the
estimating process. This will then show the additional amount of effort which needs
to be added to allow for any expected inaccuracy of the estimate as a whole. The
contingency level needs to be matched to the magnitude of risk in the estimate as a
whole. Process Engineer provides a default percentage that calculates a

280

contingency percentage. This can be adapted by users to provide a more customised
view depending on the organisation.

Contingency is an important part of the overall process as, during estimating,
allowances need to be made for every scenario. It contributes positively to the
overall success of the project by enabling the project manager to show that he has
thought of and allowed for any anticipated problems that may arise.

2.3.5 Function Points,' IFPUG & Function Points,' MKll

Using counting processes that were developed by Alan Allbrecht of IBM in the late
1970s and Charles R. Symons top-down estimating models can be used depending
on the complexity and size of the system to be built. Calculations are made from the
functional and technical characteristics of the system and the development
environment. For this, an organisation needs to have some historical data to input
plus the services of an experienced Function Points practitioner. The resulting
figures which are obtained from these methods are more accurate due to their Top
Down nature.

2.3.6 Object Based Estimating

This method provides estimates of effort for low level activities. These values can
then be aggregated for higher levels. It can be viewed as a useful cross-check
against top-down estimation. Due to the level of detail required, this kind of
estimation is recommended for tasks within a single stage of the project, as opposed
to the project as a whole.

As estimation is to be carried out at the object level, Process Engineer provides an
Estimating Variable List which consists of typical objects that are required for
application development - data entities, data elements, data flows, transactions,
programs, test paths and team members etc. Each of these variables can be
estimated separately and the results added to the overall estimation picture gained
from the other methods.

2.4 ~etrics

Table 1. lists a superset of the metrics that will be applied in the course of the
MOOD project. This is a long list, and as mentioned earlier NASA have observed
that it is better to capture a small set of metrics and spend time analysing the data
carefully than to capture vast amounts of information with little analysis. This is
understood, but MOOD is a Process Improvement Experiment.

Over the course of the project this list will be refined to provide the information
that Project Managers really need when estimates need to be produced. Due to
space the table only gives a description of the metric and an indication of where it
would be useful, either when a particular estimating technique is to be applied or at

281

a particular stage in the project, or as parameter input to a tool such as
KnowledgePlan. Developers also maintain their own spreadsheet of tasks that they
have been asked to estimate, so that they can keep track of their own estimates and
actuals to improve their estimating skills, this is referred to as the Personal
Spreadsheet in the table.

Metric Description Where Applicable
Effort (person hours) per project size QuickEst
Effort (person hours) per function point - the Productivity rate Function Points
Initial estimate versus actual effort (person hours) for each DMS Consensus
Component
Initial estimate versus actual project schedule for each task, object, Consensus
OMS component
Initial estimate versus actual size of the software (new and reused) KnowledgePlan, Function

Points
Initial estimate of staff required versus actual staff levels (for each Resource Assignment
jproject, DMS component)
Total overtime hours QuickEst
Software schedule equation factor QuickEst
Maximum compressed schedule effort QuickEst
Person hours spent on rework Risk
Testing tools used by Developer Expertise

ModifierlKnowledgePlan
User experience of software development lifecycle ExpertiseJKnowledgePlan
User experience of business area ExpertiseJKnowledgePlan
Level of User involvement during Requirements process ExpertiseJKnowledgePlan
Number of Users in acceptance testing ExpertiseJKnowledgePlan
Use of debugging tool KnowledgePlan
Time taken to acquire tool ready for use RisklKnowledgePlan
Familairity of Tool by Project members ExpertiselKnowledgePlan
Number of platforms (Client/Server) KnowJedgePJan
Development module type requiring rework Revise EstimateslRisk
Complexity of coordination between platforms KnowledgePlan
Level of security requirements KnowledgePlan
Number of performance targets KnowledgePlan
Number of levels of Management hiearchy KnowledgePlan
Level of team morale RisklKnowledgePlan
Type of office environment LBMS - Non effective human

factor!
KnowledgePlan

Noise and Interruption level in Office LBMS - Non-effective human
factor!
KnowledgePlan

Number of development locations KnowledgePlan
Level of detail of QA process KnowledgePlan
Actual effort for each non-development task LBMS - Non-effective human

factor
Time taken to review test plans QuickEst, KnowledgePian
Number of Test plans KnowledgePlan

282

Level of experience of documentors KnowledgePlan
Type of documentation e.g Comments, Application manual KnowledgePlan
Actual hours on project related work vs non-productive work per person LBMS - Non-effective human

factor
Percentage of identified risk vs actual risk Revise EstimateslRisk
Percentage of "Total cost" to "Cost of construction" Effort Weighting for high level

tasks
Percentage of construction costs for each of the other development costs Effort Weighting for high level

tasks
Defects by classification, severity, subsystem, phase of testing Defects data
Number of resource by project size Resource Assignment
Software product complexity, project type category KnowledgePlan
Actual vs estimated project schedule per project type Consensus
Actual effort (person hours) for each object Object -based Estimating
Person hours spent on investigation, background reading, training LBMS - effort weighting
Effort (person hours) required to investigate re-use components Effort Weighting per Task
Level of testing on components identified for reuse Testing data
Level of complexity of components identified for reuse Function Points
Level of expertise of developers that wrote reuse components identified Risk
for reuse
Person hours spent on tasks related to particular technology Consensus/KnowledgePlan
Range of task list totals LBMS - QuickEst
Initial task list totals vs actual task list totals LBMS - QuickEst
Size of task (days effort) with most accurate estimates Object-based Estimating
Average error in the function point cost Function Points
Average error in the testing point cost Function Points
Level of coupling between object classes or dependency of functions KnowledgePlan
Time taken to test object classes and related functions Testing data
Number of change requests for each task, object and DMS component Revise Estimates
Number of lines of code per month Revise Estimates
Number of functions or objects per month Revise Estimates
Number of tasks per DMS component QuickEst
Number of tasks per resource QuickEst
Number of reuse components vs new components KnowledgePlan
Number of hours per page of documentation KnowledgePlan
Percentage of tasks complete Revise Estimates
Earned value for each task, DMS component Financial data
Percentage of budget spent to date Financial data
Number of risks per DMS component Risk
Time period of each risk Risk
Contingency vs actual impact of risk Risk
Actual schedule vs initial estimate per developer task Personal S preadsheet/Revise

Estimates
Number of open defects vs total defects Defects data
Person hours per defect, severity, subsystem Defects data
Reason for re-scheduling Revise Estimates
Number of man-months to complete QuickEst
Number of months in schedule QuickEst
Initial effort estimate vs actual effort per task Personal Spreadsheet/Revise

Estimates

283

Estimated object interfaces vs actual object interfaces KnowledgePlan
Number of change requests per developer Personal Spreadsheet/Revise

Estimates
Number of code reviews Personal Spreadsheet/Revise

Estimates
Accuracy of estimates vs role description Risk
Accuracy of Developers task estimates per DMS component Revise Estimates
Estimated tasks vs actual tasks per Developer Bottom-Up
Initial bug fix estimates vs actual effort (person hours) per developer Defects data
Number of days slipped per resource change Staffing data
Number of days specialist skills used per project type, per project size Resource Assignment
Percentage of project complete vs DMS phase resource left project Staffing data
Skill level of developers per DMS phase LBMS - Resource Assignment

Expertise Modifier
Date of last developer skill level update Expertise Modifier
Developer skill level per area of rework Risk
Number of key hygeine factors satisfied per DMS component Risk
Number of motivational factors achieved per DMS component Risk
N umber of key team cohesion factors per DMS component Risk
Number of days spent on familiarisation Effort Weighting per Task
Customer Business Area KnowledgePlan
Time taken by customer in accepting the estimates Risk/Consensus
Increase/decrease in schedule by Customer Risk/Consensus
Increase/decrease in function points to meet Customer's deadline Function Points
Level of customer satisfaction vs rate of project progress Revise Estimates
Project Nature KnowledgePlan

Project Scope KnowledgePlan
Project Topology KnowledgePlan
Project Type KnowledgePlan
Algorithmic complexity of problem KnowledgePlan

Code Efficiency Function Points,
KnowledgePlan

Data Structures Function Points,
KnowledgePlan

Sizing Methods KnowledgePlan
Project Size QuickEst, KnowledgePlan
Project Manager Name KnowledgePlan

PM level of use of Estimating tools KnowledgePlan
Formal Method used by Analyst KnowledgePlan

Programming Language used by Developer Expertise
Modifier/KnowledgePlan

Development or target platform used by Developers Expertise
Modifier/KnowledgePlan

ToolslMethods used by Developers Expertise
Modifier/KnowledgePlan

Developer experience of doing code reviews KnowledgePlan

Table 1. Metrics for Estimation

284

3 Conclusion
This paper has presented some of the findings of the MOOD project to date. The
paper has covered:

• A set of goals defined to meet the needs of Parallax and those within the
organisation who have a stake in accurate estimation.

• Estimating techniques and automated tool support.

• The metrics required to drive the improvement of the estimating process and
support the available techniques of estimation and risk analysis.

4 References
1. Basili VR, Weiss DM, A Methodology for Collecting Valid Software

Engineering Data, IEEE TRANSACTIONS ON SOFrW ARE
ENGINEERING, 1984, VoLlO, No.6, pp.728-738.

2. McConnell S, Rapid Development, ISBN 1-55615-900-5.

3. Berard E, Essays on Object-Oriented Software Engineering, Volume {I},
Prentice Hall, 1993, ISBN 0-13-288895-5.

AUTHOR INDEX

Allen P. 89 Kuvaja P. 26
Banga K.S. 230 Lau J. 53
Basson H........................ 260 Llewhellyn J. 3
Bennetts P.D.C. 38 Lykouropoulos N. 106
Bicego A. 26 Macmillan R.H. 199
Bradley M. 209 Maniatis A. 106
Brinkworth J. 3 Matveeva T.O. 173
Burgess W.P. 204 Milankovic-Atkinson M. 135
Cater-Steel A.P. 187 Mills S. 38
Chan K.C.C. 161 Mistry N.S. 270
Cogan B.1. 173 Oivo M. 15
Coleman G. 241 Puputti J. 15
Dawson R.J. 209 RoseA. 121
Edwards H.M. 108 Rossiter B.N. 218
Fitzgerald E.P. 187 Rozman I. 81,147
Georgiadou E. 135 Simons A.J.H. 121
Hardy C.J. 108 SmartP. 70
Heather M.A. 218 Thompson J.B. 108
Hericko M. 147 Verbruggen R 241
Horvat RV. 147 Vierimaa M. 15
Hung K.S.Y. 121 WelzerT. 81
Judge T.R 270 Wilson D.N. 53
Juric M.B. 147 Wood-Harper T. 38
Kaikkonen T. 15 Yan C.Y. ;......................... 161
Khurana M. 26

