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Preface 

Ce livre contient des elements fondamentaux de mathematiques et est destine 
aux etudiants de premiere annee en sciences economiques, gestion, finance et 
sciences sociales. Son contenu est de ce fait conforme aux besoins mathema­
tiques des matieres enseignees dans ces branches. Ce hvre est egalement un 
hen entre les cours elementaires d'economie, de statistique et de recherche 
operationneUe. 

II est essaye dans ce hvre d'enseigner les elements de base des mathema­
tiques avec des exemples, chaque fois que cela est possible. Ce texte est ecrit 
pour ceux qui ont pen de connaissances en mathematiques. II contient nean-
moins les elements necessaires et sufRsants pour aborder la deuxieme annee 
du degre universitaire. De courtes demonstrations sont donnees tout au long 
du livre. Toutefois, les references citees a la fin du livre sont suffisantes pour 
qu'un lecteur interesse puisse approfondir les sujets traites. 

Ce livre est compose de treize chapitres regroupes en trois parties et 
presentes avec de nombreux exemples. Dans la partie analyse, le chapitre 1 
presente quelques elements essentiels de la theorie des ensembles, des vari­
ables et des relations entre les variables. Ces concepts de base sont indis-
pensables pour la suite du cours. Le chapitre 2 considere la representation 
graphique des equations algebriques permettant une visualisation des rela­
tions entre les variables. Le chapitre 3 aborde le domaine du calcul diff'eren-



tiel. Les notions de suites, limites et premiere derivee y sont expliquees. Le 
chapitre 4 traite des applications des derivees, c'est-a-dire de ce qu'on pent 
etudier a Taide des derivees. Le chapitre 5 considere Toperation inverse de la 
derivee a savoir Tintegration. L'integration est utile notamment pour calculer 
Taire qui se situe sous une courbe. Le chapitre 6 aborde les series mathema-
tiques. Les fonctions vues jusqu'au chapitre 6 sont toutes des fonctions d'une 
seule variable. Le chapitre 7 donne quelques elements concernant les fonc­
tions de deux ou plusieurs variables et leurs applications, notamment dans 
le domaine economique. Le chapitre 8 introduit la partie d'algebre lineaire 
et fournit les elements de base du calcul matriciel en presentant differents 
types de matrices et quelques operations usuelles sur celles-ci. Une appli­
cation du calcul matriciel est la resolution de systemes d'equations lineaires 
et fait Tobjet du chapitre 9. Le chapitre 10 traite des vecteurs et espaces 
vectoriels alors que le chapitre 11 aborde le calcul differentiel sous forme ma-
tricielle (matrice hessienne). La 3^ partie est constituee d'un chapitre sur 
un logiciel mathematique puissant : Mathematica qui permet de resoudre 
tons les problemes exposes dans ce livre. Finalement, une page historique 
est presentee dans le chapitre 13. 

Je tiens a remercier vivement Sylvie Gonano pour son etroite collabora­
tion a la redaction du manuscrit qui est a I'origine de la premiere edition 
(1987). Depuis, ce livre a ete edite par '^Presses Academiques Neuchdter en 
1989 et en 1996. Ce manuscrit a servi de support au cours de mathematiques 
dispense aux etudiants en sciences economiques et sociales de PUniversite de 
Neuchatel. Le livre actuel resulte de modifications et d'ajouts appportes au 
manuscrit original. Pour ce travail essentiel, j'exprime ma gratitude a mes 
coUaborateurs : Arash Dodge, Gerard Geiser, Frangois Lefebvre, Tatiana 
Mantuano, Alexandra Fragniere, et particulierement a Gerard Antille qui a 
accompli un tres grand travail de correction et de verification du texte et des 
commentaires. Enfin, les parties historiques du chapitre 13 sont le fruit de 
discussions avec Farhad Mehran. 

Yadolah Dodge 
Universite de Neuchatel 
30 Mars 2002 



Partie I 

Analyse 



Chapitre 1 

Prologue 

Moi: De quel cote est le chemin ? 

Le Sage: De quelque cote que tu allies, si tu es un 
vrai pelerin, tu accompliras le voyage. 

SOHRAVARDI: (1155-1191) Philosophe persan. 

1.1 Introduction 
L'objectif de cet ouvrage est d'aider le lecteur a comprendre, apprecier et 
appliquer Fanalyse mathematique. Les mathematiques permettent a Tecono-
miste d'etre precis dans la definition des variables, de poser clairement les 
hypotheses, d'etre logique dans le developpement de I'analyse et de prendre 
en consideration un nombre plus important de variables. 

Dans ce chapitre, nous allons revoir quelques notions fondamentales de la 
theorie des ensembles, des variables et des relations entre ces variables. Ces 
concepts de base, bien qu'evidents, sont tres importants. Nous insisterons 
notamment sur les fonctions, outils fondamentaux necessaires a la theorie 
economique. 
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1.2 Les ensembles 

Georg Ferdinand Cantor, ne en 1845 a Saint-Petersbourg en Russie, fonda 
la theorie des ensembles et introduisit le concept des nombres infinis avec sa 
decouverte des nombres cardinaux. II developpa aussi I'etude concernant les 
series trigonometriques et fut le premier a prouver que les nombres reels sont 
indenombrables. 

Un ensemble est une collection d'objets bien determines. On appelle ces 
objets les e lements de Fensemble. 

Un ensemble est defini soit par une liste de ses elements, soit par une 
regie qui definit les elements de Tensemble. On utilisera les majuscules pour 
representer un ensemble, et il est d'usage de noter les elements a Tinterieur 
d'accolades. 

Exemple 1.1 A = {1,2,3} signifie que Vensemble A contient les elements 
1,2 etS. B = {x : X est un nombre impair} signifie que yensemble B contient 
tous les nombres entiers impairs, a savoir ± 1 , dz3; ± 5 , ± 7 , etc. 

L'appartenance a un ensemble se note par le signe G, la non-apparte-
nance se note par ^ . Un ensemble ne contenant aucun element se note par 0 
et se lit ensemble vide, par exemple, S = { x: x est un nombre impair se 
terminant par 4 } = 0. Si chaque element de A se trouve aussi dans B, A est 
un sous-ensemble de B] on note A C B. S'il existe dans B au moins un 
element qui n'appartient pas a A, on dit que A est sous-ensemble propre 
de B et on le note A C B. La, notation A <^ B signifie que A n'est pas un 
sous-ensemble de B. Par definition, deux ensembles sont egaux si A C 5 et 
S C A 

Sauf mention contraire, tous les ensembles consideres sont des sous-ensem­
bles d'un certain ensemble qu'on appelle ensemble universel et qui sera 
note par Vi. 

Exemple 1.2 Si A— {1,2,3} et B— {1 ,2 ,3 ,4} , A est un sous-ensemble 
propre de B: A C B. 
Si A= {x : X est un multiple de 3} et B = {x: x est un multiple de 6}, alors 
B est un sous-ensemble propre de A : B C A, 
Si A— {0.1,0.4,0.6,0.8} et B— {x : x est un nombre entier}, A n^est pas un 
sous-ensemble de B: A <^ B. 
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Par la suite, les ensembles numeriques fondamentaux seront notes par : 
IN = {0, 1, 2, 3 , . . . } , Tensemble des entiers naturels. 
Z = {..., -2, - 1 , 0, 1, 2 , . . . } , Tensemble des entiers relatifs. 

TTl 

Q = {— : m^n 6^n ^ 0}, Fensemble des nombres rationnels. 
n 

IR pour Tensemble des nombres reels. 
Notons que: IN C Z C Q C K. 

Exemple 1.3 Les intervalles de M sont tres souvent utilises en mathema-
tique. Soit a E: M et b ^ M tels que a < b; ces intervalles sont notes ainsi : 

]a;b[ = {x G IR : a < X < 6} .' intervalle ouvert, 

[a; 6] = {x G IR : a < X < 6} .* intervalle ferme. 

]a; 6] = {x G IR : a < X < 6} .' intervalle semi-ouvert (a gauche). 

[a;b[ = {x G IR : a < X < 6} .• intervalle semi-ouvert (a droite). 

1.3 Operations sur les ensembles 

Definit ion 1.1 La reunion de deux ensembles A et B est le nouvel ensemble 
consistant en la reunion des elements de A et des elements de B. La reunion 
de A et B, notee A\J B , qui se lit ^A union B^^ est definie comme suit: 
AU B= {x : X e A oux e B}. 

Le terme '^ou^^ est employe ici dans le sens de et/ou. 

Exemple 1.4 SiA^ {1,3, b} et B ^ {2 ,3 ,4}, alors .4 U 5 - {1,2,3,4, 5}. 
On notera que Velement 3 qui se trouve dans A et dans B n^est pas repete 
dans A[J B. 

Definit ion 1.2 L ^intersection de deux ensembles A et B est le nouvel en­
semble forme des elements communs a A et B. L ^intersection de A et B, 
notee A f] B est definie par: A D B = {x: x e A et x E B). 

Exemple l.b Si A = {x: x est un multiple de 4} et B = {x: x est un 
multiple de 6}^ alors A H B = {x: x est un multiple de 12}. 

Definit ion 1.3 La difference entre deux ensembles A et B est le nouvel en­
semble forme des elements qui appartiennent a B mais pas a A. La difference 
entre B et A, notee B — A, est definie par: 

B - A = {x: X e B et x ^ A } . 
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Exemple 1.6 Si A - {1 ,2 ,3} et B -r {1,2,3,4,5}, B-A - { 4 , 5 } . 

Definition 1.4 Le complementaire d^un ensemble A est le nouvel en­
semble forme des elements qui n^appartiennent pas a A. Le complementaire 
de A, note A , est defini par: A = {x: x^Vtetx^Aj. 

A titre d'exemple, demontrons que rintersection est distributive par 
rapport a la reunion, propriete que Ton pent enoncer sous la forme d'un 
theoreme. 

Theoreme 1.1 Quels que soient les ensembles A,B et C, alors: 

A n (B u C) = (A n B) u (A n C). 

Demonstration 
II s'agit de demontrer que tout element de Tensemble An(BuC) appartient a 
Tensemble (AnB)U(AnC), puis que tout element de (AnB)U(AnC) appar­
tient a An(BUC); ainsi, par definition, les deux ensembles seront egaux. 

Soit X un element de An(BUC). Get element appartient a A d'une part 
et d'autre part a Fun au moins des ensembles B et C. Par consequent, ou 
bien x appartient a A et a B, done a AnB ou bien x appartient a A et a C, 
done a (AflC); x appartient done a I'ensemble (AnB)U(AnC). 

Soit X un element de (AnB)U(AnC). Si x n'appartient pas a (AnB), il 
appartient forcement a (AflC), done a A et a C. Si x n'appartient pas a 
(AnC), il appartient necessairement a (AnB), done a A et a B. Dans les 
deux cas, x appartient a A d'une part et d'autre part au moins a B ou a C. 
Done X appartient a An(BuC). Ce qu'il fallait demontrer (c.q.f.d). 

Demontrons le meme theoreme, mais cette fois sous forme plus concise: 

. e A n ( B u C ) « { ^ ^ ^ I ^^^ 

X e A 
et (x G B ou X G C) 

(x G A et X G B) 
^ ou (x G A et X G C) 

^ X G (AnB)u(AnC) 

c.q.f.d. 



1.4. Produit cartesien et cardinalite 

On peut representer les ensembles et les operations sur ces ensembles a 
I'aide de diagrammes qu'on appelle diagrammes de Venn. La surface grisee 
represente I'ensemble indique en-dessous de chaque diagramme. 

A U B A n B 

A U B = A A n B = B 

Au(BnC)=(AuB)n(AuC) AuB=AnB 

1.4 P r o d u i t car tes ien et cardinal i te 

Rene du Perron Descartes (1596-1650), ne en Prance dans la province de Tou-
raine, fut philosophe, mathematicien et scientifique. Son idee selon laquelle 
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Talgebre pouvait etre utilisee comme methode generale pour la geometrie le 
fit passer pour le fondateur de la geometrie analytique. Dans le domaine de 
la notation, il introduisit le systeme des exposants (x^,x^,...) et commenga 
a utiliser les premieres lettres de Palphabet pour se referer a des quantites 
connues et les dernieres lettres pour representer les inconnues. 

On appelle produit cartesien de deux ensembles E et F, Tensemble des 
couples ordonnes {x]y) ou x G E et ?/ G F. On le note E x F et on lit "E 
croix F" . Les elements (x; y) sont des couples ordonnes et non des ensembles. 
L'ordre dans lequel on ecrit x et y est fondamental. Le premier element x du 
couple appartient au premier ensemble et le deuxieme element au deuxieme 
ensemble. 

Definit ion 1.5 Un ensemble est dit fini s^il contient un nombre fini d^ele-
ments. Le nombre d^elements d^un ensemble s^appelle cardinal de Vensemble. 
On le note CaTd(E). Un ensemble qui n^est pas fini est dit infini. 

Exemple 1.7 Si A = {0,1 ,2 ,3 ,4} et B = {1,3 ,5}; alors il y aura 
5 - 3 - 1 5 elements dans AxB: (0; 1), (0; 3), (0; 5), (1; 1 ) , . . . , (4; 3), (4; 5). De 
fagon plus generale, si A et B sont des ensembles finis, alors: 
Card(AxB) = Card(A)'Card(B). 

Definition 1.6 Soit un ensemble E. Tous les sous-ensembles de E peuvent 
etre consideres comme les elements d^un nouvel ensemble que Von appelle 
ensemble des parties de Vensemble E, note V(E). 

Exemple 1.8 Soit E — {a,b,c}. Les sous-ensembles de E sont: ^,{a}, (bj, 
{cj, {a,b}, {a,c}, {b,c}, {a,b,c}. 
Amsi: V(E)={{b,{a},{b},{c},{a,b}, {a,c},{b,c},{a,b,c}}. 
On notera que Card(V(E)) = 2^ = 8. 

Plus generalement, si E contient n elements, V{E) contiendra 2"̂  elements. 

Theoreme 1.2 Soient A et B deux parties d^un ensemble fini E, alors: 
Card(AuB) + Card(AnB) = Card(A) + Card(B). 

Demonstrat ion 
Le nombre d'elements de "A union B" est egal au nombre d'elements de A 
plus le nombre d'elements de B auquel on retranche le nombre d'elements en 
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commun a A et B, car ils ont ete comptes deux fois, d'ou: 
Card(AuB) = Card(A) + Card(B) - Card(AnB). c.q.f.d. 

Si AnB = 0, alors on obtient la formule: 

Card{A U S) = Card{A) + Card{B). 

1.5 Les variables 

II s'agit de distinguer deux sortes de quantites: les constantes et les varia­
bles. Une constante est une quantite prenant une valeur fixe. Les constantes 
numeriques gardent la meme valeur dans tous les problemes. Les constantes 
arbitraires ou parametres gardent la meme valeur tout au long d'un pro-
bleme particulier. 

La valeur absolue d'une constante, notee | c |, represente la grandeur 
de cette constante sans tenir compte de son signe. Nous avons done: 

I c 1 = 1 —c 1= c si c est non negatif. 

I c 1 = 1 —c 1= —c si c est negatif. 

Voici quelques proprietes de la valeur absolue: 
Soient ci et C2, deux nombres reels. 

n. 

iii. 

i. I Ci + C2 I < I Ci I + I C2 

Cl • C2 I = I Ci I • I C2 I 

Cl 

C2 
C2 7^0 

iv. Si I Cl | < | C2 L alors > :, Ci 7̂  0, C2 7̂  0. 
I Cl I I C2 I 

Une variable est une quantite qui pent prendre differentes valeurs tout 
au long d'un meme probleme. Une variable pent etre continue ou discrete. 
Une variable continue est une variable qui pent prendre n'importe quelle 
valeur reelle a Tinterieur d'un intervalle. Les valeurs successives d'une variable 
continue different d'une quantite infinitesimale. Une variable discrete est une 
variable qui prend uniquement certaines valeurs dans un intervalle. 

II est d'usage de noter les constantes par les premieres lettres de 1'alpha­
bet et les variables par les dernieres lettres. Toutefois, dans I'application des 
mathematiques, par exemple en economic, une variable est souvent designee 
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par la premiere lettre de son nom: p pour prix, q pour quantite, c pour cotit, 
etc. 

Exemple 1.9 Dans rexpression de Vaire du disque A = nr'^, TT est une 
constante numerique^ r le rayon et A sont des variables. 

Les variables et les constantes appartiennent a Fensemble des nombres 
reels H. 

a 
Le quotient de deux nombres a et 6 est egal a un nombre x: -— x. 
On en t i re: a — hx. En rapport avec cette definition, la division par 

0 n'est pas admissible. En efi"et, si 6 — 0, a = 0 • x qui n'est vrai que si 
a = 0; mais dans ce cas, on pent donner a x n'importe quelle valeur. Done 

le quotient - , lorsque 6 = 0 et a = 0 pent prendre n'importe quelle valeur. 

0 

L'expression - est appelee indefinie si a 7̂  0 et I'expression - est appelee 

indeterminee. 
Notons que 7 = 0 pour 6 7̂  0 puisque - est la valeur de x pour laquelle 

h b 
bx = 0 et que cette valeur doit etre nuUe quand 6 7̂  0. 

1.6 Relations et fonctions 

Dans la vie courante, nous rencontrons a chaque instant des variables qui 
dependent d'autres variables. Par exemple, le temps de freinage d'une voiture 
depend de la vitesse de la voiture, ou encore le nombre de marches d'un 
escalier depend de la hauteur de Tescalier, etc. 

Definition 1.7 Un ensemble de paires ordonnees de nombres reels est 
appele une relation binaire. 

L'ensemble des premiers nombres d'une relation binaire est Fensem­
ble de depart, ou domaine de la relation. Le deuxieme ensemble est 
Fensemble d'arrivee de la relation. L'ensemble de depart contient les va-
leurs que prend la variable x appelee variable independante . L'ensemble 
d'arrivee contient les valeurs que prend la variable y appelee variable 
dependante . 

On attribue a la variable independante des valeurs arbitraires qui vont 
determiner les valeurs de la variable dependante. 
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En general, on note par x la variable independante, et par y la variable 
dependante. 

Exemple 1.10 A= {{x^y) : x^y E I>i, x < yj est une relation binaire dont 
quelques couples sont: (1;1); (1;2); (5; 20); etc. Notons que (3;2); (8; 6), 
(25; 21) par exemple, n^appartiennent pas a A. 
B — {{x;y): y = 2x — l^x G IRj est une relation binaire ou Vensemble 
de depart est H et Vensemble d^arrivee est aussi ]R. Quelques exemples de 
couples: (0; -1), (0.5; 0), (I.4I; 1-82), etc. 

Definition 1.8 Si une relation est telle qu'a chaque element de Vensemble 
de depart est associe un et un seul element de Vensemble d^arrivee, on dit 
que c ^est une fonction. 

Toutes les fonctions sont des relations, mais toutes les relations 
ne sont pas des fonctions. Selon la definition, dans Texemple 1.10, B est 
une fonction mais A n'est pas une fonction. 

On represente traditionnellement une fonction par une lettre minuscule: 
/ (ou g^ ou /z, etc.). Si la fonction / associe a Felement x de Tensemble de 
depart E, Felement y de Tensemble d'arrivee F, on ecrit: 

/ : E - ^ F 

^ '̂—'y = f{f) 
On dit que y est Timage de x par la fonction / . Au cours d'un meme 

probleme particulier, le meme symbole fonctionnel indique toujours la meme 
loi de dependance de la fonction. 

Exemple 1.11 Si f{x) = x^ + x — 2, alors : 

f[a) = a^ + a-2 

/ ( I ) = 1 + 1 - 2 3=0 

/ ( - 2 ) = 4 - 2 - 2 = 0 

/ ( x + 2) = {x + 2f+ {x + 2)-2 = x^ + 5x + 4. 

f{x + h)-f{x) = {x + hf + {x + h)-2-{x^ + x-2) 

= x^ + 2xh + h'^ + x + h-2-x'^-x + 2 

= 2xh + h^ + h. 

On definit la somme, la difference, le produit et le quotient de deux fonc­
tions f{x) et g{x) de la maniere suivante: 
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• S o m m e de deux fonctions : ( / + g){x) = f{x) + g{x). 

• Difference de deux fonctions : ( / — g){x) = f{x) — g{x). 

• Produi t de deux fonctions : ( / • g){x) = f{x) • g{x). 

ff\ fix) 
• Quotient de deux fonct ions: { — \{x)— , g{x) ^ 0. 

• On pent finalement definir la composi t ion de deux fonctions 
y = f{x) et z = g{y) par : {g o f){x) = g{f{x)). 

Cette nouvelle fonction est notee h = g o f qui se lit " g rond / ". 
On trouve h{x) en substituant la premiere fonction dans la deuxieme: 
h{x) = g{f{x)). On peut resumer la composition des fonctions par le 
schema suivant: 

/ 9 
X I — > y I — > z 

h=gof 
X I > Z 

N o t e En general, f(g(x)) j^ g(f(x)) . 

Exemple 1.12 Si f{x) = x'^ + x + 1 et g{x) — x + 1 , alors: 

g{f{x)) : XI—>x'^ + x + l = y^^z = y+l 

x ^ z = {x^ + x+ !) + ! = x^ + x+ 2 

f{g{x)) : x^^x + l = yMz = y^ + y+l 

x ^ z = {x + lf+ {x+l) + l = x^+ 3x + 3 

Dans cet exemple, g{f{x)) est bien different de f{g{x)). 

Definition 1.9 On appelle surjection ou fonction surjective une fonc­
tion telle que tout element y de Vensemble d^arrivee F soit Vimage d^au 
moins un element x de Vensemble de depart E.\/y e F,3x ^ E : y = f{x). 

Exemple 1.13 Soient les ensembles E = {x G H ; —2 < x < 2} et 
F = {y G H ; 0 < y < 4}, dors la fonction f: E —> F definie par f{x) — x^ 
est surjective. 
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En effet, si y G F, ?/ est un nombre positif ou nul, inferieur ou egal a 4 
et y ^ est un nombre reel positif ou nul, inferieur ou egal a 2 : ^ G E et 
fi^/y) — iVy^ — y- Alnsl, x = -s/y verlfie x G E et f{x) — y. II est a relever 
que Ton a aussi: —-y/y G E et f{—y/y) — y-

Exemple 1.14 Soit la fonction f : Z —> Z definie comme suit: x f-> 2x. 
L^ensemble d^arrivee est alors Vensemhle des nombres pairs. Cette fonction 
n' est pas surjective puisque 5 n^est Vimage d^aucun element x G Z , ainsi 
que tous les nombres impairs. 

Definit ion 1.10 Une application f est dite injective si et seulement si deux 
elements quelconques distincts de Vensemble de depart ont deux images par 
f distinctes: x\^ X2-=^ / ( ^ i ) 7̂  / (^2) ou encore f{xi) = f{x2) ^ Xi— X2. 

Une injection (ou fonction injective) est en fait une fonction telle que 
chaque element y de I'ensemble d'arrivee soit Timage d'au plus un element x 
de I'ensemble de depart. 

Exemple 1.15 Soit la fonction f{x) == 3x + 2. 
Elle est injective car: 

/ ( ^ l ) = / ( ^ 2 ) 

3xi + 2 = 3x2 + 2 

=> 3xi = 3x2 

=> Xi = X2-

Definit ion 1.11 On appelle bijection ou fonction bijective une fonction 
qui est a la fois surjective et injective. Si f{x) est une bijection, chaque 
element y de Vensemble d^arrivee est Vimage d^un unique element x de ren­
semble de depart. 

Exemple 1.16 Soit la fonction f : Z —>Z 
X I—> fix) = X — 2. 

Cette fonction est bijective car tout element y G Z est Vimage du seul element 
X — y + 2 deZ . On peut calculer quelques couples: 

X 

y 
... - 2 
. . . - 4 

- 1 
- 3 

0 
- 2 

1 
- 1 

2 
0 

3 . . . 
1 . . . 
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Nous allons, pour terminer ce paragraphe, schematiser les differentes no­
tions que nous venons d'aborder. 

L'ensemble de depart est note par E et Fensemble d'arrivee par F ; les 
croix representent les elements de E et les ronds les elements de F. Les fleches 
lient un element de E a un element de F pour former un couple {x;y). 

Fonction: Tout element x de E a une image unique y dans F. 

Surjection: Tout element de F est image. 

E - - F 

Injection: xi ^ X2 =̂  / (xi) 7̂  /(X2). 
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Biject ion : Injection et surjection. 

1.7 Fonction inverse 

Si f{x) est une bijection telle que x i—> y, il existe une et une seule bijection 
telle que y \—> x. On dit que cette fonction est la fonction inverse de / et 
on la designe par f~^{x). On trouve f~^{x) en resolvant Tequation y = f{x) 
par rapport a la variable x, ce qui donne x = g{y)^ c'est-a-dire que y est la 
variable independante et x la variable dependante. 

Exemple 1.17 Soit f{x) = 2x + 4. La fonction inverse f~^{x) se trouve de 
la fagon suivante: 

7/ = 2x + 4 

^ ^ - 4 = 2x 
7 7 - 4 

^x = ^—. 

Nous avons done x = g{y) = 
y-4. 

Par consequent^ la fonction inverse est 

r\^) = puisqu^il est d^usage d^employer la lettre x pour la variable 

independante et la lettre y pour la variable dependante. 

1.8 Fonctions explicites et implicites 

J u s q u ' i c i , nous avons touj ours vu les fonctions sous la forme : y = f{x). 
La variable dependante est y et elle est en quelque sorte explicitee par x, 
d'oii le nom de fonction explicite quand y est ecrit en fonction de x. En 
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revanche, une fonction implicite est une fonction ou les deux variables 
apparaissent du meme cote de I'equation. 

2x — 1 
Exemple 1.18 y — est une fonction explicite, tandis que x'^ — 5y — 6 

X + 3 
est une fonction implicite. 

II est parfois possible de resoudre Tequation d'une fonction implicite par 
rapport a Tune ou Tautre des variables pour obtenir ainsi une fonction expli-
cite. Dans Texemple 1.18, on pent ecrire x'^ — 5y — 6 sous la forme explicite 

y - / ( x ) : x^ -5y-=6-=^y = — - — . 

Mais la forme explicite x = f{y) n'est pas une fonction. En effet. 

x^ — 5j/ = 6 ^ X == ±\ /5y + 6 

par exemple y = 38 a deux images: x = —14 et x = 14. 
Quand, a partir d'une fonction implicite, on parvient a ecrire deux fonc-

tions explicites, ces deux fonctions explicites sont alors reciproques Tune de 
Fautre. 

Exemple 1.19 Soit la fonction implicite 3x — y — 0. Les deux fonctions 

explicites et reciproques Vune de Vautre sont: y = 3x , et x = -y. 
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Exercices 
1. Soient les ensembles : 

A = {x G IN : X est un multiple de 2}. 

5 = {x G IN : X est un multiple de 3}. 

C = {x G IN : X est un multiple de 6}. 

D = {x G IN : X est un multiple de 8}. 

Determiner: i)AnB] i i )An(7 ; i i i )ylUC; i v ) 5 U C ; v ) ( 7 n D . 

2. Soient AetB des sous-ensembles de fi. lUustrer a Taide de diagrammes 
de Venn les deux regies de Morgan: 

(A n B) = A U B et (A U B) = A n B. 

3. En utilisant les quantificateurs, montrer que la reunion est distributive 
par rapport a Tintersection, c'est-a-dire, quels que soient les ensembles 
A, J5 et C, demontrer que: 

A u (B n C) = (A u B) n (A u C). 

4. Soit A - {a, 6}, S = {1, 3} et C - {4, 5}. Determiner: 

(a) Ax {BUG). 

(b) {AxB)u{AxC). 

(c) Ax {BnC). 

(d) {AxB)n{AxC). 

5. Soit E, un ensemble tel que Card{E) = 30. Si A et B sont deux sous-
ensembles de E non disjoints {An B ^ (/}) tels que Card{A) = 20, 
Card{B) = 15 et Card{A n B) = 6, trouver Card{A U B). 

6. Les resultats d'une entreprise ont montre que sur 50 employes, 30 sont 
obeses, 25 souffrent d'hypertension arterielle tandis que 20 ont un taux 
de cholesterol trop eleve. Parmi les 25 qui souffrent d'hypertension, 12 
ont un taux de cholesterol trop eleve; 15 obeses souffrent d'hyperten-
sion et 10 obeses souffrent d'un taux de cholesterol trop eleve; finale-
ment, 5 employes souffrent de ces trois maux a la fois. 

Determiner le nombre d'employes bien portant a Taide d'un diagramme 
de Venn. 
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7. Sur 100 etudiants, on considere les ensembles S de ceux qui etudient 
la sociologie, E de ceux qui etudient Teconomie et G de ceux qui etu­
dient la gestion. Sur ces 100 etudiants, 55 etudient la sociologie, 9 la 
sociologie et la gestion, 7 la sociologie et Teconomie, 8 Teconomie et la 
gestion, 6 la sociologie et la gestion mais pas Teconomie, 80 la sociologie 
ou la gestion et 12 Teconomie seulement. 

(a) Combien d'etudiants suivent les trois matieres? 

(b) Combien sont-ils a etudier la gestion ? 

(c) Combien sont-ils a etudier Teconomie? 

(d) Combien n'etudient aucune de ces trois matieres? 

8. Lesquels parmi ces ensembles representent une fonction? 

5i = {(l;2),(2;8),(2;3)}. 
S2 = {{x'^y) 

SA = {{x]y) 

X G IR , X < y}. 

7/ = X^,X G IR } . 

? / = = x ^ s i 0 < x < 2 , y = = 3 - x s i 2 < x < 3 

et y = 3 si X = 3}. 

9. Soit la fonction / : R—> IR 
X I—y f{x) = x^ + 2x + 4. 

Calculer: — ^-^-^, 
h 

10. Montrer que la fonction / : H - {0} —> K - {0} 
1 
X 

est bijective, c'est-a-dire injective et surjective. 

11. Montrer que la fonction / : IR—> H 
X I—> / ( x ) = x^ + X — 2 

n'est pas injective. 

12. (a) Trouver une fonction / : IR —> IR qui soit injective mais non 
surjective. 
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(b) Trouver une fonction g : IR —> IR qui soit surjective mais non 
injective. 

(c) Trouver une fonction h : [0; 1] —> [0; 1] qui ne soit ni injective ni 
surjective, ou [0; 1] designe: {x G IR : 0 < x < 1}. 

13. On considere les fonctions : f{x) = x + 2 et g{x) — 2x + 5. 

(a) Calculer h{x) = {g o f){x) = g{f{x)) 

etm{x) = {fog){x) = f{g{x)). 

(b) C a l c u l e r / - ^ x ) et ^"^(x). 

(c) Calculer h~^{x) = {g o /)~^(x) et m~^{x) = {f o g)~'^(x). 

(d) Calculer f-\g-'{x)) et g-'{f-\x)). 

(e) Comparer les resultats obtenus sous (c) et (d). Que constate-t-on? 

14. Determiner les deux fonctions explicites deduites de la fonction impli-
cite: 

x + 2y-8 = 0 

Que peut-on dire de ces deux fonctions? 
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EUCLIDE (env. 300 avant J.-C.) 
On connait pen de choses sur la vie d'Euclide a rexception du fait qu'il ait 
enseigne a Alexandria. 

Euclide est certainement le mathematicien le plus prolifique de FAnti-
quite. On lui doit Tun des plus celebres textes de Fhistoire des mathema-
tiques: Les Elements. II s'agit d'un traite regroupant toutes les connaissances 
geometriques de Fepoque. Compose de treize livres, il couvre la geometrie 
plane, la theorie des nombres, la theorie des nombres irrationnels, la geome­
trie solide, et s'acheve sur une discussion a propos des proprietes des 5 po-
lyhedres. Ce traite devint Fouvrage de reference dans Fenseignement mathe-
matique durant deux mille ans. Plus de mille editions furent tirees depuis la 
premiere en 1482. 

Euclide ecrivit egalement des textes sur Fastronomie, Foptique et la mu-
sique. 

(Euvres majeures retrouvees: On Divisions, Optics and Phaenomena ; 
perdues: Surface Loci, Porisms, Conies, Book of Fallacies, Elements of Mu­

sic. 



Chapitre 2 

Representation graphique des 
fonctions 

2.1 Introduction 

Dans ce chapitre, nous allons voir comment representer des equations algebri-
ques d'une fagon geometrique. Cette analyse graphique permet une visuah-
sation des relations entre les variables. Nous avons besoin, pour localiser 
des points particuliers dans le plan ou dans Tespace, d'un systeme de coor-
donnees. Le systeme le plus utilise est le systeme de coordonnees cartesiennes. 
C'est dans ce dernier que Ton representera les principales fonctions elemen-
taires en y associant autant que possible des applications economiques. 

2.2 Coordonnees cartesiennes 

Les couples {x;y = f (x)) d'une fonction peuvent etre representes graphique-
ment a Taide d'un systeme de coordonnees qui est constitue generalement 
de deux axes gradues et perpendiculaires (horizontal et vertical). L'intersec-
tion de ces deux axes represente le point (0; 0), il est appele origine et est 
note O. Les quatre regions ainsi creees sont appelees les quadrants et sont 
numerotees comme dans la figure 2.L 

Pour localiser un point dans ce repere, il suffit de reporter les coor-
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d o n n e e s (x; y) du point comme suit: on reporte horizontalement la distance 
X (appele aussi Tabscisse) et verticalement la distance y (appele aussi Tor-
d o n n e e ) . 

Quadrant II 

(-i;2)' 

1 1 1 
1 [ 1 1 

(-2;-2) " 

Quadra ntlll 

y: 

1-

Quadrant I 

i 1 |__w 
1 1 t — • 
1 : * 

(2;-i) 

Quadrant IV 

Figure 2.1: Systeme de coordonnees cartesiennes 

2.3 Les droites 

Une equation du type y — ax -\- h, oil a ei h sont des parametres dont Tun 
au moins n'est pas nul, est dite equation cartesienne d'une droite. Un point 
appartient a la droite si et seulement si ses coordonnees satisfont I'equation 
ci-dessus. Pour chaque droite dans le plan, pour autant qu'elle ne soit pas 
parallele a Taxe des y, on pent trouver Tequation cartesienne correspondante. 
II y a deux problemes a envisager: 

1. Connaissant Fequation cartesienne, representer la droite graphique-
ment. 

2. Connaissant deux points d'une droite, trouver Tequation cartesienne 
correspondante. 

On pent resoudre le premier probleme en calculant les intersections de 
la droite avec les axes. L'intersection avec Taxe des x se calcule en posant 
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y = 0 dans requation de la droite. L'intersection avec Taxe des y se calcule 
en posant x = 0 dans I'equation. 

Le deuxieme probleme se resout en prenant I'equation generale d'une 
droite y = ax + b et en remplagant x et y par les coordonnees de deux points 
quelconques pour obtenir deux equations dont les inconnues sont alors a et 
b. 

Exemple 2.1 Soit requation de la droite y = 4:X — 2. II suffit de calculer les 
coordonnees de deux points pour representer cette droite graphiquement. 

Figure 2.2: Graphe de y = Ax — 2 

Intersection avec Vaxe des x : 

1 

i . p o » < « . . o n e ( i ; o ) . 

Intersection avec Vaxe des y : 

x = {)^y = 4.'{)-2 

^y = -2. 

Le point est done (0; —2). 

La droite qui passe par les points ( - ; 0 j et (0; —2) est representee dans la 

figure 2.2. 
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Exemple 2.2 Sachant que la droite y ^ ax -\-h passe par les deux points 
(1; 2) et (3; 4), trouvons a et b. 
Pour cela, remplagons successivement dans y — ax + h, x et y par les coor-
donnees des deux points (1; 2) et (3; 4) ; 

2 = a + b (2.1) 

4 = 3 a + 6 (2.2) 

De requation (2.1), nous deduisons: b — 2 — a. 
En remplagant dans Vequation (2.2), on a: 

4 = 3a + (2 - a) =^ 2 = 2a 

=> a = 1. 

Comme b — 2 — a, nous trouvons 6 = 1 . Nous avons done Vequation: 

y = x + l. 

Dans Tequation generale d'une droite, y = ax + b, il pent y avoir a = 0 
ou 6 = 0. Si 6 = 0, cela signifie que la droite passe par Torigine, a savoir le 
point (0; 0). Si a == 0, la droite est horizontale et passe eny = b (Figure 2.3). 

y 

b 

0 

y = b 

X 

a=0 6 = 0 
Figure 2.3: Representation graphique de droites 

Deux droites dans le plan sont soit paralleles soit secantes. EUes sont 
paralleles si a (appele pente de la droite) est le meme pour les deux droites et 
6 (appele aussi Tordonnee a I'origine) est different pour les deux droites. 
EUes se confondent si a et 6 sont les memes pour les deux droites. Dans tout 
autre cas, les deux droites se coupent en un point (x; y) qui doit satisfaire les 
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deux equations simultanement. Par consequent, on trouve les coordonnees 
du point d'intersection en resolvant le systeme d'equations lineaires forme 
par les equations des deux droites. Si les deux droites sont paralleles, il n'y 
a pas de solution au systeme (les deux droites ne se coupent pas), et si les 
deux droites sont confondues, il y a une infinite de solutions (chaque point de 
la droite est solution). En general, on pent resoudre un systeme d'equations 
lineaires par e l imination ou par subst i tut ion. 

Exemple 2.3 On va trouver le point d^intersection de deux droites par eli­
mination. Supposons que Vequation de la premiere droite est y = 3x + 7 et 
Vequation de la deuxieme droite est y — x — ?>. 
Nous avons done le systeme de deux equations suivant : 

y - 3x + 7 (2.3) 

y ^ x-3 (2.4) 

Nous multiplions la deuxieme equation par 3 et la soustrayons de la premiere 
equation pour eliminer x : 

y = 3x + 7 
— 3y == 3x — 9 

-2y = 16 

De la, nous obtenons y = —S et nous substituons cette valeur dans (11) ou 

(24): 
- 8 = 3x + 7 

d^oux — —5. Le point d^intersection est done (—5; —8). Graphiquement, nous 
obtenons la figure 2.4-

Exemple 2.4 Reprenons les deux memes droites et cherchons le point d^in-
tersection par substitution. Le systeme est le suivant : 

y = 3x + 7 (2.5) 

y = x-3. (2.6) 

Nous substituons la valeur de y de la deuxieme equation dans la premiere 
equation : 

X — 3 == 3x + 7. 

Nous obtenons ainsi 2x — —10; d^oit x = —5^ et substituons cette valeur dans 
(2.5) ou dans (2.6), ce qui nous donne y — —8. Le point d^intersection est 
evidemment le meme : (—5; —8). 
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Figure 2.4: Intersection de deux droites 

Exemple 2.5 Soient les deux droites suivantes: y — 2x + l ety — 2x+ 2. a 
est identique dans les deux droites, et b est different. Elles sont done paralleles 
et n^ont pas d ̂ intersection (Figure 2.5). 

y = 2x+l 

Figure 2.5: Deux droites paralleles 

2.4 Applications economiques des droites 

Dans ce paragraphe, nous nous interessons aux fonctions de demande, d'offre 
et de consommation. En economic elementaire, la fonction de demande 
est une droite de pente negative, c'est-a-dire que lorsque les prix augmentent, 
la quantite demandee diminue, et lorsque les prix diminuent, la quantite de-
mandee augmente. Representons dans la figure 2.6 une fonction de demande. 
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y\ 

27 

Figure 2.6: Fonction de demande 

P a r convent ion , le prix sera indique sur Taxe des y et la quantite de-
mandee sur Taxe des x. La variable x represente la quantite et la variable 
y le prix. Nous noterons que seul le quadrant I nous interesse. En effet, il 
est le seul pertinent en economie (du moins dans ce probleme), des prix et 
des quantites negatifs n'ayant pas de sens. II est necessaire egalement de 
signaler que dans la realite une fonction de demande est rarement trouvee 
sous la forme d'une droite (ou meme d'une portion de parabole); cependant, 
dans le cadre de cet ouvrage, nous nous permettrons de la simplifier pour ne 
travailler qu'avec des droites. 

Exemple 2.6 La demande de montres est de 10 unites si le prix est egal a 
160 francs et elle est de 20 unites si le prix est egal a 120 francs. Nous allons 
calculer Inequation de la demande. Nous avons deux points (10; 160) et (20; 
120). Nous substituons les coordonnees de ces points dans Vequation generale 
d^une droitepou r obtenirunsysteme de deux equations a deux inconnues 
(a et b) : 

160 = 1 0 a + 6 

120 = 2 0 a + 6. 

(2.7) 

(2.8) 

Nous resolvons par elimination: 

320 
120 

20a + 26 
20a+ 6 

200 = h 
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y 

prix 

40 

cT 

(0;200) 

X^10;160) 

\ J 2 0 ; 1 2 0 ) 

, ^ v ( 5 0 ; 0 ) ^ 

10 quantite demandee ^ \ ^ 

Figure 2.7: Graphe de la fonction de demande y — —4x + 200 

Nous suhstituons b = 200 dans (2.8) : 120 = 20a + 200, d'oii a = - 4 . Nous 
avons done ^equation de demande y = —4x + 200. (Figure 2.7). 

En general, la fonction d'offre est une droite de pente positive, c'est-
a-dire que lorsque les prix augmentent, la quantite offerte augmente aussi, 
et lorsque les prix diminuent, la quantite offerte diminue aussi. Comme pour 
la fonction de demande, x represente la quantite, et y le prix. A nouveau, 
seules les valeurs positives de x et de y nous interessent. Representons dans 
la figure 2.8 une fonction d'offre. 

quantite offerte 

Figure 2.8: Fonction d'offre 

Exemple 2.7 Quand le prix est de 100 francs, le nombre d'appareils photos 
d^une certaine marque offerts sur le marche est 50 et quand le prix est de 
150 francs, le nombre d^appareils photos offerts est 100. Nous allons calculer 
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50 quantite odferte ^ 

Figure 2.9: Graphe de la fonction d'offre y = x + 50 

Vequation de Voffre. 
Nous avons les deux points (50; 100) et (100; 150). Nous substituons les co-
ordonnees de ces points dans Vequation generale y = ax + b et obtenons le 
systeme suivant: 

100 = 5 0 a + 6 

150 = 100a+ 6 

que nous resolvons par elimination: 

200 - 100a + 26 

(2.9) 

(2.10) 

150 100a + b 
50 = b 

Nous substituons 6 = 50 dans (2.10): 150 = 100a + 50, d^oii a 
avons done Vequation d^offre y = x + 50 (Figure 2.9), 

1. Nous 

Nous venous d'introduire les fonctions de demande et d'offre. Par conse­
quent, nous pouvons maintenant parler de Tequi l ibre d u m a r c h e . On parle 
d'equilibre du marche quand les fonctions de demande et d'offre se coupent 
dans le quadrant I. En ce point, la quantite demandee est egale a la quantite 
offerte. Done la quantite a Tequilibre et le prix d'equilibre sont donnes par 
les coordonnees du point d'intersection des deux droites (demande et offre). 

Exemple 2.8 Cherchons Vequilibre du marche pour les fonctions d^offre et 
de demande suivantes : 

offre 

demande 

y = -x + l 

y = -2x + 6 
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Le point d'intersection est trouve par elimination: 

Ay = 2a; + 4 
y = -2x + 6 + 
5y = 10 =^ y = 2 

On remplace y = 2 dans (2.12) : 2 = —2x + 6, d'oii x = 2. 
L 'equilibre du marche se produit quand la quantite est egale a 2 etle prix egal 
a 2 (Figure 2.10). 

prix 

quantite 

Figure 2.10: Representation graphique de Tequilibre du marche 

Nous aUons terminer ce paragraphe en parlant de la fonction de consom-
mation. Cette fonction est caracterisee de la fagon suivante: 

1. La consommation est fonction du revenu disponible, c'est-a-dire que 

2. Quand le revenu est nul, la consommation n'est pas nuUe car il y a 
toujours la consommation qui correspond au minimum vital. La droite 
ne passe done pas par Torigine, mais au-dessus de Torigine. 

3. Quand le revenu augmente, la consommation augmente aussi mais 
d'une quantite inferieure. C'est done une droite de pente positive, infe-
rieure a 1. 

Exemple 2.9 Sile minimum vital est egal a 10, et si la consom^mation repre-
sente 60% du revenu disponible, la fonction de consommation est 
C = Q.GYd + 10; oil C est la consommation et Yd le revenu disponible. Nous 
pouvons tracer le graphe de cette fonction de consommation (Figure 2.11). 
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Figure 2.11: Graphe de la fonction de consommation C ^ Q.QYd + 10 

2.5 Differents types de fonctions 

• Po lynomes 

On appelle po lynome de degre n la fonction donnee par : 

y = anX^ + an-ix'^~^ H h aix + a^ 

ou a^ 7̂  0,n G IN et a o , a i , . . . ,a^ G H sont les coefficients du po­
lynome. 

Pour n = 1, en posant ai — a et a^ = h nous obtenons le polynome de 
degre 1: y ^ ax + b dont on sait que sa representation graphique est 
une droite. 

Exemple 2.10 Regardons le polynome de degre 2 donne par: y — ax'^ + 
bx + c dont la representation graphique est une parabola. Dans la figure 2.12, 
nous observons deux paraboles differentes suivant le signe de a. 

y = -x^2x-l 

a > 0 a < 0 
Figure 2.12: Representation graphique de paraboles 
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Exemple 2.11 Representation graphique d^un polynome de degre 5 (Figure 
2.13). 

Figure 2.13: Graphe de y = x^ — 5x^ + 4x 

Fonctions rationnelles 

p{x) 
Une fonction rationnelle est une fonction de la forme , ou pix) 

q{x) 
et q{x) sont des polynomes, c'est-a-dire: 

a^x"^ + an-ix"^ H h aix + ao 

brnX"^ + bm-lX"^-^ + • " + hx + BQ 

avec an y>^ 0 et bm ̂  0. 

Les fonctions rationnelles les plus simple (mis a part les polynomes) sont 

celles que Ton pent exprimer sous la forme y — — , avec n = 1, 2 , . . . . 

On pent aussi les ecrire x~^ au lieu de — . 
x^ 

Exemple 2.12 Tragons les graphes de I hyperbole caracterisee par I equa-
a 

tion y = —. 
X 

Selon la valeur de a, on obtient deux hyperboles differentes (Figure 2.14)-
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y = l/x 

\y 

y ^ 

0 2 

/ y = -2/x 

X 

a > 0 a < 0 

Figure 2.14: Graphes d'hyperboles 

Exemple 2.13 Tragons encore le graphe de lafonction rationnelle y 
dont le domaine de definition e^tlR— {—1,0,1} (Figure 2.15). 

_ x-\l2 

X — 1/2 
Figure 2.15: Graphe de y ~ —-—— 

X^ — X 

• Fonctions puissances 

On appelle fonction puissance la fonction y = x^, on a est une 
constante arbitraire. 

Lorsque a est rationnel (a G Q), il peut toujours s'ecrire sous la forme 
T) 

a = - ou p et g sont des entiers et g 7̂  0. Dans ce cas, x^ — x^l^ — ^[^ 

(on lit "racine ĝ eme de x puissance p") . 
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Le domaine de definition de la fonction y — x^ depend de la nature du 
nombre a; par exemple, si a est un entier negatif ou nul, c'est-a-dire 
a < 0, alors le domaine de definition sera IR — {0}. 

Si Of = 1/q, ou g est un entier strictement posit if, alors le domaine de 
definition sera IR lorsque q est impair et IR+ = {x G IR : x > 0} lorsque 
q est pair. 

Exemple 2.14 La figure 2.16 represente les graphes de la fonction y — x^ 
avec differentes valeurs de a. 

a == 4: 

= Vi 

a = 

Figure 2.16: Graphes de fonctions puissances 
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• Fonctions exponen t i e l l e s et l o g a r i t h m i q u e s 

On appelle fonction exponentielle la fonction y = a^ ̂  on a > 0 et a ^ 1. 
La fonction reciproque dey = a^ est appelee fonction logarithmique 
et se note y — log^ x, ou a > 0, a 7̂  1 et x > 0. 

Puisque V ensemble des valeurs de la fonction exponentielle est 
0 < y < +00, la fonction logarithmique ne pent etre definie que pour 
les valeurs pos i t ives de Targument et admet ainsi pour domaine de 
definition 0 < x < 00, c'est-a-dire IR^ — {0}. 

L'indice a dans log^ indique que le logarithme est pris en base a. En 
pratique, les bases usitees sont la base 10 et la base e (logarithme nepe-
rien ou logarithme naturel, e = 2.7182). C'est pourquoi le logarithme 
en base 10 s'ecrit simplement logx et le logarithme naturel se note Inx. 

Exemple 2.15 Les figures 2.17 et 2.18 representent les fonctions exponen­
tielles et logarithmiques pour differentes bases. 

0 < a < l a> 1 

Figure 2.17: Graphes de fonctions exponentielles 

y = logypc y - Inx 

0 < a < l a> 1 

Figure 2.18: Graphes de fonctions logarithmiques 
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Rappelons ici quelques regies de manipulation des logarithmes: 

1) a log^x _ 6) log„ {x-y)= log„ X + log„ y 

2) log„(o^) =x 7) log„(x/y) = log„ X - log„ y pour y ^̂  0 

3) log„a = l 8) log„(x'') = r l o g „ a ; 

4) log„ 1 = 0 9) log„(v^) = l / r l o g „ x pour r^Q 

ITIX 

5) log^ ^^J^ ^°) ^^S^ ^ ^ ^^S^ ^ * ^^S« ^ 

• Fonc t ions t r i g o n o m e t r i q u e s 

Le sinus et le cosinus d'un angle x sont definis dans le cercle trigo-
nometrique de rayon 1 (Figure 2.19) de la maniere suivante: 

sinx - OS = C P et cosx = OC = ^ , car O P = 1. 

1 

0 
Xx 

( 

P 

: )i 

Figure 2.19: Cercle trigonometrique 

Les fonctions trigonometriques simples sont les suivantes: 

1. y = sinx. 

2. y — cosx. 

3. y = t a n x smx 

cosx 
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cosx 
4. ?/ — cot X = . 

sinx 

, 1 
b. y = secx — . 

cosx 
1 6. y = cscx = - r 

smx 

(3) y = t a n x (4) y = cot X 

(5) y = secx (6) y = cscx 

Figure 2.20: Fonctions trigonometriques 
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N o t e La variable independante x est exprimee en radians. 

La principale propriete des fonctions trigonometriques est leur periodi-
c i t e : on dit que la fonction y = f{x) est periodique s'il existe un nombre c 
tel que f{x + c) = f{x). Le plus petit de ces nombres est appele periode de 
la fonction. II decoule de cette definition que les fonctions y — sinx et y = 
cosx sont des fonctions periodiques de periode 27r. La periode des fonctions 
y = t a n x et ?/ = cotx est egale a TT. Notons Tidentite suivante: 

cos^(x) + sin^(x) = 1 

Les fonctions y = sinx et y = cosx sont definies pour toutes les valeurs de 
X, 

Les fonctions y = t a n x et y = secx sont definies partout, sauf aux points 
X - (2/c + l) -77/2, A: G Z . 
Les fonctions y = cotx et y = cscx sont definies partout, sauf aux points 
X = A; • TT, A; G Z . 
Les graphes des fonctions trigonometriques sont representes sur la figure 2.20. 

• Fonctions hyperboliques 

Solent les quatre fonctions hyperboliques ainsi definies: 

L Sinus hyperbolique: y = sinlix = 

2. Cosinus hyperbolique: y = coshx = 

2 
e^ + e~ 

3. Tangente hyperbolique: y = ta.nhx = 

4. Cotangente hyperbolique: y = coth x 

2 

e^ — e~ 

On pent facilement en deduire les identites suivantes: 

sinhx 
(a) t anhx = 

coshx 
., . ^ coshx 
(bj cothx = — - — . 

sinhx 
(c) cosh^ X — sinh^ x = L 
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L'analogie entre ces relations et celles liant les fonctions trigonome-
triques justifie Pusage des termes sinus hyperbolique, cosinus hyperbo-
lique, etc. Voyons encore les graphes de ces quatre fonctions (Figure 
2.21). 

(1) y = sinhx (2) y = coshx 

(3) y = tanh x (4) y = coth X 

Figure 2.21: Fonctions tiyperboliques 

2.6 Applications economiques des fonctions 

Nous avons deja vu I'application economique concernant les droites (para-
graphe 2.4), dans laquelle les fonctions d'offre et de demande etaient repre­
sentees par des droites. Mais il se pent aussi que ces fonctions soient des 
paraboles. Ici, c'est uniquement le quadrant I qui est de nouveau pertinent. 
La fonction de demande est aussi souvent representee par la branche supe-
rieure d'une hyperbole. 
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Exemple 2.16 Soient les courbes d^offre et de demande suivantes : 

offre 
demande 

y = x'^ + 5x + 2 
y = -2x^ + 3 

/ -^z 

/ ' / 0 

/y =x^+5x+2 

V(0.18;2.93) 

\ ;/ = -2x+3 

1 \ ' 

Figure 2.22: Intersection de y = a;̂  + 5x + 2 et y = —2x̂  + 3 

Nous allons chercher I'equilibre du marche. Pour cela, nous resolvons ce 
systeme de deux equations en posant I'egalite entre Vequation d'offre et celle 
de demande: 

-2x^ + 3 = x^ + 5a; + 2 

=^ -3a;^ - Sx + 1 = 0. 

Nous employons la formule de Viete pour trouver xi et X2 : 

a:i,a;2 = 
-h ± Vfĉ  - 4ac 

2a 

oil a est le coefficient de x"^, b le coefficient de x et c la constante. Dans notre 
exemple, nous avons : 

Xi ,X2 
5 ± V25 + 12 

^6 
xi ^ -1.85 
X2 = 0.18 

On remplace ensuite xi et X2 dans la r*^ ou la ^ equation pour trouver yi et 
2 / 2 -

yi = -2x\ + 3 ^ -3.82 

y2 -2x^ + 3 ^ 2.93 
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Les solutions sont (—1.85;—3.82) et (0.18; 2.93). Le point d'equilihre est 
(0.18; 2.93) puisque seul le quadrant I nous interesse.Nous pouvons verifier 
le resultat graphiquement (Figure 2. i 

Exemple 2.17 Cherchons le point d'equilihre des deux fonctions d'offre et 
de demande suivantes: 

offre : y = x -\-h 

demande : y = 
x + l) 

Figure 2.23: Intersection de y = x + 5 et y 
10 

x + 1 

Suhstituons y = x -\-b dans la deuxieme equation: 

a; + 5 
10 

1 
x + l 

(a; + 5) • (a; + 1) = 10 - (a; + 1) 

x2 + 6a; + 5 + x - 1 0 + l = 0 

a;2 + 7x - 4 0 

d'ou: 

XuX2 
-7 ± V49 + 16 r 2)1^0.53 

X2 ^ - 7 .53 

et on remplace dans y = x + 5 

yi ^ 5.53 
7/2 ^ —2.53 solution a ecarter 

Le point d^equilibre est done (0,53; 5.53), qui est represente sur la figure 2.23. 
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Venons-en maintenant a la fonction exponentielle. U n e application econo-
mique t y p e de cet te fonction est le probleme de I'interet compose. 
Si le taux d'interet annuel est de i % et que Ton nous verse les interets k fois 
par annee, un capital de x francs va nous donner apres n annees la somme y 
suivante: 

y^x{l + i/k)^^. 

Dans cette equation, x^ i et k sont supposes connus; la somme y est done 
fonction du nombre d'annees n. 

Exemple 2.18 On depose 10000 francs a un taux annuel de 4 %- On va 
calculer la somme que Von regoit si les interets sont payables une fois par 
annee et s\ls sont payables 4 fois par annee. 
Quand ils sont payables une fois par annee, x = 10000 francs, i = A %, et 
k — 1. Nous avons done I ̂ equation suivante : 

y - 1 0 0 0 0 ( 1 + 0.04)^ 

Pour tracer le graphe de cette fonction representee dans la figure 2.24, calcu-
lons quelques points: 

y = 10000(1.04)^ 
y = 10000(1.04)1 
y = 10000(1.04)2 
y = 10000(1.04)^ 
y = 10000(1.04)^ 
y = 10000(1.04)1^ 

apres 0 annee 
apres 1 annee 
apres 2 annees 
apres 5 annees 
apres 8 annees 
apres 10 annees 

10000 francs 
10400 francs 
10816 francs 
12166.53 francs 
13685.69 francs 
I48O2.44 francs 

Quand les interets sont payables 4 fois par annee, k = 4:, ce qui donne Ine­
quation suivante : 

y = 10000(1 + 0.04/4)^^. 

Calculons a nouveau quelques points pour en faire le graphe (Figure 2.25). 

y = 10000(1.01)^-^ 
y = 10000(1.01)1-^ 
y = 10000(1.01)2-^ 
y = 10000(1.01)^-^ 
y = 10000(1.01)^-^ 
y = 10000(1.01)1^-^ 

apres 0 annee 
apres 1 annee 
apres 2 annees 
apres 5 annees 
apres 8 annees 
apres 10 annees 

= 10000 francs 
= 10406.04 francs 
= 10828.57 francs 
= 12201.90 francs 
= 13749.41 francs 
= 14888.64 francs 
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annees n 

Figure 2.24: Graphe de y = 10000(1.04)^ 

annees n 

Figure 2.25: Graphe de y = 10000(1.01) 4n 

Exercices 
1. Si le prix d'une montre est de 80 francs, aucune n'est vendue. Si la 

montre est gratuite, la demande est de 40 montres. 
Quelle est I'equation de la demande? 
Representer graphiquement cette demande. 

2. Trouver le point d'equilibre du marche pour les equations de demande 
et d'offre suivantes: 

demande : y = — 5x + 11 
offre : ^ == 2x + 4 

3. Le point d'equilibre du marche se trouve au point (4 ;6). La droite 
representant la fonction d'offre a une pente de 2 et celle representant 
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la fonction de demande passe par le point (0 ; 10). 
Determiner dans ce cas les equations de demande et d'offre. 

4. Trouver le point d'equilibre du marche pour les equations de demande 
et d'offre suivantes: 

y2 + 7/ + x - 2 0 = 0 

2?/2 - X - 3?/ - 4 - 0 

Representer le tout graphiquement. 

5. On salt que Tequilibre du marche se situe au point (2 ; yo). 
La fonction d'offre est donnee par: y ^ x'^ + 2. 
La fonction de demande est donnee par : y = ax^ + 2x + 6. 
Trouver a et yo-

6. Factoriser et esquisser les graphes des polynomes suivants: 

(a) Po{x) 

(b) Pi(x) 

(c) P2{x) 

(d) P^{^) 

(e) P^{x) 

= 2 

= -x-2 

= -x'^ + 3a: + 4 

= 2x^ + 10x2 ̂  

= x̂  - 10x2 + 9 

7. Esquisser le graphe des fonctions suivantes: 

x + 2 

(b) y = x'^-x-\-2. 

(c) y = 0.2^ 

(d) y = logo.25 a;. 

(e) y = log^x. 

(f) Comparer d) et e). Remarques? 

(g) Que se passe-t-il avec y = log;̂  x ? 
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8. Soit la fonction: y = x^. 
Indiquer le domaine de definition et esquisser le graphe dans le premier 
quadrant pour: 

1 3 4 
(a) a = — (h) a = 0 (c) a ^ - (d) a = - (e) a = 1. 

4 4 u 

9. Apres combien d'annees un capital de 10 000 fi-ancs place a 5 % (interets 
annuels) double-t-il? 

10. Calculer le capital qui, place a 3 % pendant 5 ans, a acquis une valeur 
de 6 000 francs. 

11. Une societe dispose de 80 000 francs a placer et elle veut recuperer son 
depot apres 20 ans. Deux options s'offrent a elle: 5 % d'interet payable 
2 fois par annee ou 4.5 % d'interet payable 6 fois par annee. 
Quelle option a-t-elle interet a choisir? 

12. La meme societe a, cette fois, un capital Co a deposer. Une premiere 
banque lui offre 5 % d'interet payable 2 fois par annee. 
Quel doit etre le taux d'interet de la seconde banque, si les interets 
sont payables 4 fois par annee, pour off'rir les memes prestations que la 
premiere banque? 

13. Un capital de 10 000 francs a ete place pendant 30 ans dans une banque 
dont les interets sont payables 6 fois par annee. Ce capital s'eleve au-
jourd'hui a 28 490 francs. A quel taux d'interet a-t-il ete place? 
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AL-KHWARIZMI Abu (VIIP-^ siecle ) 
Al-Khwarizmi est ne au S^siecle en Perse. Entre 813 et 833, il a redige son pre­
mier livre d'algebre dans lequel le vocable algebre apparait pour la premiere 
fois en tant que tel pour designer une discipline. Al-Khwarizmi a introduit 
la notion meme d'equation du premier et du second degres. II est egalement 
a Torigine des notions de binome et trinome associes a Fequation, au sujet 
desquels il a examine Tapplication des differentes lois de Farithmetique. C'est 
egalement a lui que Ton doit le concept de la solution algorithmique. Le mot 
algorithme est la prononciation latine du nom d'Al-Khwarizmi, inventeur de 
Talgebre. 



Chapitre 3 

Suites, limites et premiere 
derivee 

3,1 Introduction 
Le calcul difFerentiel concerne F analyse mathematique du changement ou du 
mouvement. Du fait que tout bouge dans le monde, le calcul differentiel a des 
applications dans presque tons les domaines scientifiques. Au debut, le calcul 
differentiel a ete developpe en physique par Isaac Newton et en geometrie 
par Gottfried Leibniz. 

Les operations de base du calcul differentiel sont la differentiation et 
rintegration; ces operations sont inverses Tune de Tautre. La differentiation 
consiste a determiner le taux de variation d'une fonction donnee. L'integra-
tion consiste, elle, a trouver une fonction dont le taux de variation est connu. 
Puisque I'analyse economique est particulierement sujette au changement, 
le calcul differentiel est un outil tres utilise pour ces problemes. L'analyse 
marginale est peut-etre 1'application la plus directe du calcul differentiel en 
economic; le taux marginal de variation est donne par la premiere derivee 
de la fonction. Le calcul differentiel permet aussi la recherche des minima et 
des maxima. Par consequent, des problemes de maximisation de profit ou de 
minimisation de cout peuvent etre resolus a I'aide du calcul differentiel. 

Dans ce chapitre, nous allons parler des suites, ce qui va nous amener a 
la notion de limites. Le concept mathematique d'une limite est fondamental 
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dans la comprehension du calcul differentiel. Nous allons donner les proprietes 
des limites utiles pour les prochains paragraphes. Nous aborderons aussi la 
notion de continuite d'une fonction et finalement nous parlerons de la pre­
miere derivee et des derivees d'ordre superieur. Le chapitre se termine par 
un mot sur les differentielles. Les applications diverses des derivees seront 
traitees dans le chapitre 4. 

3.2 Suites 

Une suite est une succession de termes formes d'apres une loi donnee. Par 
exemple 1, 4, 9, 16 est une suite. Une suite finie a un nombre fini de termes. 
On pent generaliser une suite finie en la representant de la fagon suivante: 

Une suite infinie a un nombre illimite de termes. On note par des points 
de suspension une suite infinie. Par exemple, si Ton continue indefiniment a 
ecrire les termes de la suite ci-dessus, on obtient la suite infinie 1, 4, 9, 16, . . . 
Avec la representation generalisee, on a: ui^U2^us^U4^^... 

Le t erme general ou n^ terme a une expression qui indique comment 
former les difi"erents termes. Dans Texemple ci-dessus, le terme general est 
Un = n^- Le premier terme s'obtient en posant n = 1, le deuxieme en posant 
n = 2, etc. 

• Suites alternees 

Une suite alter nee est une suite ou deux termes voisins sont de signes 
opposes. 

Exemple 3.1 La suite de terme general u^ — (—1)"'"̂ '̂  • n est une suite 
alternee: pour n — 1, 2, 3 ,4 , . . . , nous avons: 1, —2, 3, —4, . . . 

• Suites monotones 

Une suite pent etre monotone croissante, c'est-a-dire que chacun de 
ses termes est plus grand que son predecesseur: 

Un+l > Un, Vn > 1, 

OU monotone decroissante, c'est-a-dire: 

Un+l < Un, Vn > 1. 
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N o t e Si Un-^i > Un^ Vn > 1, on dira simplement que la suite est 
croissante et si i^n+i ^ '^n, Vn > 1, on dira qu'elle est decroissante. 

Exemple 3.2 La suite des fractions: 1, - , - , - , . . . , — , . . . est monotone de­

croissante. 

En effet: Un+i - Un = ——r = 1——T < 0, Vn > 1. 
n + 1 n n • (n + Ij 

Par consequent: Un-\-i < Un, Vn > 1. 

• Suites bornees 

Une suite est dite b or nee s'il existe deux nombres k et K tels que 
k < Un < K, Vn > 1, c'est-a-dire si aucun de ses termes n'est plus 
petit que la valeur k et si aucun de ses termes n'est plus grand que K. 
Un tel k est appele minorant et K est appele majorant de la suite. 
Le plus grand des minorants est appele borne inferieure et le plus 
petit des majorants borne superieure. 

Exemple 3.3 La suite - ;r- ,0, - , - , . . . qui est definieparun — est une 

- 1 1 
suite bornee car aucun de ses termes n'est inferieur a -— ni superieur a -. 

Nous avons — < i/,̂  < - , Vn > 1. 
2 ~ 2 ~ 

• Suites ari thmetiques 

Dans une suite arithmetique, la difference entre deux termes consecutifs 
est const ante et non nulle : i^n+i — u^ — d^\fn> 1. 

d est appele la raison de la suite. Si d est positif, la suite est mono­
tone croissante, s'il est negatif, elle est monotone decroissante. On pent 
representer une suite arithmetique de la fagon suivante: 

Ui = Ui 

U2 = Ui+ d 
'̂ 3 = U2 + d = Ui + d + d 
'̂ 4 = u^ + d — Ui + d + d + d 

Un = Un-i + d = Ui-\- {n-l) ' d 
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Exemple 3.4 La suite arithmetique 33 ,41 ,49 , . . . a pour raison d — 8 et 
comme premier terme ui = 33. Si Von veut connaitre son 100^ terme, on 
remplace n par 100 dans Un = Ui-\- (n — 1) - d et Von obtient: 

uiQo = 33 + 99 • 8 = 825. 

Une suite arithmetique infinie est toujours non-bornee. 

• Suites geometriques 

Dans une suite geometrique, le rapport entre deux termes consecutifs 

est constant et different de 1 : —— = q, on q est appele la raison 

de la suite. Si q est positif, tous les termes ont le meme signe que ui] si 
q est negatif, la suite est alternee. Les suites geometriques sent bornees 
si \ q \< 1 et non bornees si | g |> 1. On pent representer une suite 
geometrique de la fagon suivante: 

Ui = Ui 

U2 = Ui ' q 

Us = U2' q = Ui' q- q 

UA = us'q = ui-q'q'q 

Un = Un-l ' q = Ui' q"" ^ 

1 1 1 
Exemple 3.5 La suite geometrique 2 , 1 , - , - , . . . a pour raison q — - et comme 
premier terme ui = 2. Si Von veut connaitre son 10^ terme, on remplace n 
par 10 dans Un = Ui - q^~^ et Von obtient: 

iV 1 
"^° = 2 - ' 2 / 256-

La suite est bomee car q = - < 1. La suite Un est done comprise entre 2 et 

0: 0<Un<2, V n > 1. 
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3.3 Convergence et divergence des suites 

Nous allons etudier ici le comportement de la suite (un) lorsque "n tend 
vers Finfini", c'est-a-dire lorsqu'on considere des valeurs de n arbitrairement 
grandes. 

Dire que Un tend vers une limite / lorsque n tend vers Tinfini revient a 
dire que la difference entre n^ et /, | t̂ ^ — / |, devient aussi petite que Ton 
veut, pourvu que n soit assez grand. 

Par consequent, si on se donne un nombre reel e > 0 arbitrairement petit, 
on doit pouvoir trouver un nombre A^(^) (qui depend de e) tel que \ Un — l \< e 
si n est plus grand que A^(^). Ce qui nous amene a la definition suivante: 

Definit ion 3.1 Une suite (un) est dite convergente vers la limite I si a 
tout nombre e positif arbitrairement petit correspond un nombre N{e) tel 
que Vinegalite | t̂ ^ — / |< ^ soit satisfaite par tous les termes Un de la suite 
avec n > N{£). 

Si la suite (un) converge vers la limite /, on ecrit: 

lim Un = I 
n—>oo 

et on lit "la limite de Un quand n tend vers Tinfini est /". 

Des suites qui ne convergent pas sont dites divergentes. 

Exemple 3.6 Si nous reprenons la suite de Vexemple 3.3 definie par 

Un — —z—; nous voyons que ses termes s approchent de - quand n aug-

mente. 

Nous pouvons done obtenir un nombre aussi proche de - que nous le voulons 

en allant sufftsamment loin dans la suite. Si, par exemple, Vecart avec - doit 

etre plus petit que e — 0.01; alors on doit avoir: 

1 n-2 

2n 

n-2 n 
2n 2n 

= - < 0.01 
n 

il en resulte que tous les termes Un avec n > 100 ont la propriete demandee. 

Pour cet exemple, on a de fagon generale \un — -\ < s des que n > -, c^est-
I 21 e 

d-dire ici N{e) = -. 
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Exemple 3.7 Reprenons la suite 1,4,9,16, etc.; ou Von constate que les 
nombres croissent sans limite quand n augmente. En effet, en choisissant 
un nombre quelconque aussi grand que nous le voulons, nous pouvons tou-
jours trouver dans la suite un nombre qui le depasse. On dit que les nombres 
d^une telle suite tendent vers Vinfini et Von ecrit: 

lim Un — lim n^ = oc. 
n—^oo n—^oo 

Dans ce cas, la suite diverge. 

Dans les deux exemples precedents, les suites etaient des suites monotones 
croissantes, mais il est possible d'avoir des suites convergentes ou divergentes 
lorsque ces suites sont monotones decroissantes. 

Exemple 3.8 Soit la suite de terme general Ur, n + 2 
n 

dont les premiers 

0 ^ 5 3 7 4 
termes sont: 3 , 2 , - , - , - , - , . . . 

Montrons que cette suite est monotone decroissante: pour cela, il faut mon-
trer que Un+i < Un^ Vn > 1. On a: 

n + 3 n + 2 n^ + ?>n - n^ - Zn-2 
' ^n+l ~" "^n 

n + 1 n n- ( n + 1) n • (n + 1) 
V n > 1. 

Les nombres de la suite tendent vers une valeur limite (en decroissant vers 
elle) lorsque n augmente. Montrons que cette limite est egale a 1. 
Par definition, il faut trouver N[e) tel que: si Von prend n > N{e) alors 
'n + 2 I 

< e, et cela quel que soit <s > 0. 
n 

Comme 

- 1 

n + 2 
- 1 

n 

n + 2 — n 

n 

2 2 
= —, Vinegalite s^ecrit: — < e, c^est-d-

n n 
2 2 

dire n > -. II suffit done de prendre N{e) = -. 

En effet, dans ce cas: n > N{E) = 

n + 2 
Nous avons done: lim == 1. 

72-^00 Ti 

< 6 ^ 
n 

n + 2 

n 
< e. 
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Exemple 3.9 Considerons la suite {u^) definie par Un = —2n, representee 
par ses premiers termes: —2, ~4 , —6, — 8 , . . . 
Cette suite est monotone decroissante puisque: 

Un-\-i -Un "= - 2 ( n + 1) - ( -2n ) 

= - 2 n - 2 + 2n 

= - 2 < 0, Vn > 1. 

Les nombres decroissent sans limite quand n augmente. On dit que la suite 
tend vers moins Vinfini et on ecrit: lim (—2n) = —oo. 

Finalement, nous avons des suites qui ne sont ni croissantes ni decroissan-
tes et qui peuvent soit converger soit diverger. 

Exemple 3.10 La suite u^ = (-1) n + l 

n^ 
est une suite alternee (done ni crois-

sante ni decroissante) qui est convergente. Sa limite vaut 0: 

En effet, montrons que si n > N{e) = —=, alors 
(_l)n+l 

- 0 
n^ 

< e : 

n > . 

=4> 

^ 

=> 

N{s) ^ -

- < v^ 
n 1 
n^ 
(-1)^+1 

n^ 

Ve 

0 = — < 5 . 

Exemple 3.11 La suite Un = (—1)^ est aussi alternee, mais elle est diver-
gente. En effet, les nombres de la suite valent alternativement —loul selon 
que n est pair ou impair; ils oscillent de —1 d 1 sans tendre vers une limite. 
La suite est alors oscillante et on dit qu^elle diverge. 

Pour resumer, une suite pent avoir les comportements suivants: 
Elle pent : 1) tendre vers Finfini 

2) tendre vers moins Tinfini 
3) osciller sans tendre vers une limite 
4) tendre vers une limite finie. 
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Dans les trois premiers cas, la suite est divergente et dans le quatrieme cas, 
elle est convergente. On notera qu'une suite convergente a une limite 
unique. 

• Criteres de convergence pour les suites 

II est possible de determiner, a partir de la definition de la convergence, 
si un nombre / est la limite d'une suite (un)- En revanche, si Ton ne 
connait pas /, on se sert de criteres de convergence qui permettent 
de determiner si une suite converge ou diverge: 

Premier critere : une suite croissante respectivement decroissante et 
bornee est toujours convergente. 

Ce critere ne s'applique qu'aux suites croissantes ou decroissantes. En 
revanche, le second critere de convergence (du a Cauchy) est valable 
pour toutes les suites. 

Second critere : une suite (un) est convergente si et seulement si pour 
tout nombre positif s, il existe un nombre N{s) tel que \ Un — Um \< s 
pour tons les indices m et n plus grand que N{e). On parle alors de 
suite de Cauchy. 

Exemple 3.12 Soit la suite donnee par: u^ = 1 . 
3n 

1 1 2 
Comme 0 < — < - , \/n > 1^ on a: - < Un < l^ Vn > 1 ; par consequent, 

3n 3 3 
la suite est bornee. En outre, 

Un+l -Un = 1 - - (1 - — ) 
3(n + 1) 3n 

1 1 
3n 3(n + l) 

3 

3n(3n + 3) 
> 0, Vn > 1. 

// Skagit done d^une suite monotone croissante et bornee. Par le premier 
critere de convergence, cette suite converge. 

(-1)^ 
Exemple 3.13 Soit la suite definieparun = . Comme cette suite n^est 

3n 
pas monotone, la premier critere n^est pas applicable. En revanche, on peut 
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utiliser le deuxieme critere: 

'^n '^m 

2 2 
des que n > — et m> —. 
En effet, 

3e 

i-iy -ly 

< 

3n 

i-iy 
3n + 

3m 

3m 
1 1 

3n 3m 

3s 

n > — et m > — 
36: 3e 

1 35 1 35 
- < TT ^t — < ^ 
n 2 m 2 

^ £ J_ ^ 
3n 2 3m 2 

, 1 1 5 5 
' ' - 3n 3m 2 2 

5. 

// existe done bien un nombre N{e) = — tel que \ Ur, 
oS 

Um \< s des que 

n > N{e) et m. > N{e), et cela quel que soit e > 0. Par consequent, la suite 
converge. 

• Regies de calculs 

Si les suites (un) et (vn) ont les limites /i respectivement /2, alors: 

1. lim (un + Vn) = h + h' 
n—^oo 

2. lim {Un - Vn) =ll-l2' 

3. lim (un • Vn) = h ' k' 

4. lim — = —, si I2 7̂  0,'Un 7̂  0. 
n->oo Vn h 

5. lim C' Un = C' lim Un — c-li ou c est une const ante. 
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• Limites de quelques suites convergentes importantes 

Comme il n'existe pas de methode generale pour determiner la limite 
d'une suite, il est utile d'indiquer la limite de quelques suites conver­
gentes (Tableau 3.1): 

Un 

1/n 

— ,a > 0 

lim Un 
n—>oo 

0 

0 

1 

0 

Un 

1 ^ 

lim Un 
n—•oo 

1 

6 = 2.71828... 

0 

0 

Tableau 3.1: Quelques limites de suites 

3.4 Limite d'une fonction 

Nous pouvons maintenant etendre le concept de l imite aux fonctions. Nous 
allons etudier les differents cas de limite de fonction en considerant un certain 
nombre d'exemples. 

Limite d'une fonction a I'infini 

1 
Exemple 3.14 Les valeurs de la fonction y =^ fix) — 2 se rapprochent 

X 

arbitrairement du nombre 2 quand x est choisi sufftsamment grand comme le 
montre le tableau suivant: 

X 

y 
1 2 3 . 
1 3/2 5/3 . 

20 
. 39/20 . . . 

Par exemple^ la difference entre 2 et les valeurs de la fonction est plus petite 
que 0.05 pour tout x plus grand que 20. Plus generalement, \ f{x) — 2 \< e 

1 
pour tout X > -. 

e 
Representons graphiquement la situation (Figure 3.1). 
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Figure 3.1: Graphe de y = 2 
X 

Get exemple montre que la notion de limite pent etre etendue au cas des 
abscisses croissant vers Tinfini (ou decroissant vers moins Tinfini). 

Definition 3.2 f(x) admet la limite L lorsque x tend vers plus Vinfini si 
pour tout nombre e > 0, il existe iy{£) > 0 tel que \ f{x) — L \< e des que 
X > iy{s). On ecrit dans ce cas: 

lim / ( x ) — L. 

De meme: lim / ( x ) = L si pour tout nombre e > 0, il existe u{e) > 0 tel 
a:—>—CO 

que I f{x) — L \< e des que x < —v{e).On ecrit dans ce cas: 

lim f{x) = L. 
X—> —OO 

Dans Texemple 3.14, fix) = 2 . Dans ce cas, on a: 
X 

/ (^) - 2 2 -
1 

X 
-2 — 

1 

X 

1 1 
< e ^ X > - ou X < — . 

e e 

1 
Dans cet exemple, u{e) = - et on a: lim f{x) = 2 et lima;_^_oo f{x) = 2. 

S a:—»oo 

On ecrit en abrege: lim f{x) = 2. 
x—>±oo 

Definit ion 3.3 On dit que f{x) tend vers Vinfini lorsque x tend vers Vinfini 
si pour tout nombre N > 0, il existe i^{N) > 0 tel que f{x)>N pour tout 
X > ^{N). On ecrit: 

lim f{x) = oc. 
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De meme: lim f{x) = —oc si pour tout nombre N > 0^ il existe iy{N) > 0 

tel que f{x) < —N pour tout x > v{N). 
D^autre part, on definit: lim / ( x ) = oo si pour tout nombre N > 0, il 

existe iy{N) > 0 tel que f{x) > N pour tout x < —v{N). 
De fagon analogue: lim f{x) = —oo si pour tout nombre N > 0, il existe 

u{N) > 0 tel que f{x) < -N pour tout x < -v{N). 

Exemple 3.15 lim x^ == o o ; en effet, pour tout x > A/]V, X'^ > N et cela 

quel que soit N > 0. 
D^autre part, lim x = oo ; en effet, pour tout x < —yN, x > N et cela 

X ^ —CXD 

quel que soit N > 0 (ici i^{N) = yN). 
Ainsi: lim x^ = oo. 

II peut arriver que la fonction y = f{x) ne tende ni vers une limite finie 
ni vers Pinfini lorsque x tend vers Tinfini. 

Exemple 3.16 La fonction f{x) — cosx est definie dans rintervalle ]—oo; oo[, 
mais ne tend pas vers une limite finie ou vers Vinfini lorsque x tend vers Vin-
fini (Figure 3.2). 

Figure 3.2: Graphe de y = cosx 

• Limite en un point 

Etudions a present le cas ou la variable independante tend vers une 
limite a. Si la valeur f[x) se rapproche de plus en plus du nombre L 
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lorsque x se rapproche de la valeur a, on dit que la fonction f{x) tend 
vers la limite L lorsque x tend vers a et on ecrit: lim f{x) = L. 

x—^a 

Autrement dit, la difference | f{x) — L \ pent etre rendue aussi petite 
que Ton veut pourvu que x soit suffisamment proche de a, ce qui est 
formalise dans la definition suivante. 

Definition 3.4 La fonction f{x) admet la limite L lorsque x tend vers a, si 
pour tout s > 0, il existe 6{s) > 0 tel que \ f{x) — L \< e siO <\ x — a \< 6(e). 

Exemple 3.17 Montrons que: lim(2x + 6) == 12. 

Soit e > 0 ; on a: 

I f{x) - 12 1 = 1 2x + 6 - 12 1=1 2x - 6 1= 2 I X - 3 |< e 5z 0 < | X - 3 |< - . 

II existe done bien un nomhre 6{e) — - tel que si 0 <\ x — 3 \< S{e)^ alors 

I {2x + Q) — 12 \< 8 et cela quel que soit e > 0. 

• Limites infinies 

Exemple 3.18 Considerons la fonction f(x) = —. Quand x tend vers 0, 

les valeurs de la fonction f{x) = -— deviennent de plus en plus grandes. On 

ecrit: lim -- = oo et Von dit que la fonction a pour limite plus Vinfini quand 

X tend vers 0. Le graphe de fix) — —- est represente dans la figure 3.3. 
x^ 

Figure 3.3: Graphe de y = 
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Definit ion 3.5 On dit que f{x) tend vers plus Vinfini lorsque x tend vers a, 
si pour tout N > 0 il existe6{N) > 0 telque f{x) > N siQ <\ x—a \< 6{N) et 
on ecrit: lim f{x)= oo . De fagon analogue^ on definit: lim f{x)^ —oo , 

si pour tout N > 0, il existe 6{N) > 0 tel que f{x) < —N si 0 <\ x — a \< 
6{N). 

Montrons que selon la definition 3.5, on a: lim —- = oo. 

Soit un nombre Â  > 0; il s'agit de trouver un nombre S{N) > 0 tel que 

—r > Â  si 0 < | X |< 6(N). Si I X |< -—=, alors x^ < — et done —r > N. 
x 4 I I V y I I ^ ' jy ^ 4 

1 1 1 
Ainsi, en prenant 6{N) = -77=, on a bien: — 7 > A ^ s i O < | x | < -77= et cela 
quel que soit Â  > 0. 

Â̂  

• Limite a droite et l imite a gauche 

II pent etre important, lorsqu'on calcule la limite en un point a, de 
savoir si x approche la valeur a en croissant, c'est-a-dire a gauche, ou 
en decroissant, c'est-a-dire a droite. 

Exemple 3.19 Considerons la fonction y — f(x) = — (Figure 3.4)-
X 

Figure 3.4: Graphe de y = — 
X 

Lorsque x s^approche de 0 par valeur positive^ les valeurs de la fonction 
1 1 

f(x) = — deviennent deplus enplusgrandes. On ecrit: lim — = 00. Lorsque 
X x-^0+ X 
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X s^approche de 0 par valeur negative, les valeurs de f{x) deviennent plus pe-

tites que nhmporte quel nombre. On ecrit: lim — 
a;-^0- X 

permet de tracer le graphe de cette fonction : 

-oo. Le tableau suivant 

X 

y 

...-1/2 
...-2 

-1/10 
-10 

-1/50 0 1/50 
-50 50 

1/10 
10 

1/2... 
2... 

Exemple 3.20 Considerons la fonction f{x) = 
X 

\ X \ \ X \ 
en X = 0, mais lim = 1 et lim = — 1, puisque 

•. Elle n^est pas definie 

^0+ X x->o- X 

f{^) = 
1 si X > 0. 

-1 si X < 0. 

Ainsi, la limite a gauche qui vaut —1 et la limite a droite qui vaut 1 sont 
differentes (Figure 3.5). 

Figure 3.5: Graphe de y — 

Definition 3.6 On dit que f{x) admet la limite a droite L'^ lorsque x tend 
vers a par la droite, si pour tout s > 0, il existe 6(s) tel que \ f{x) — L^ \< e 
si \ X — a \< 6 et X > a. On note L^ = lim f{x). 

On definit de la meme maniere la limite a gauche L~ lorsque x tend vers 
a par la gauche (cette fois avec x < a) et on ecrit L~ = lim f{x). 
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Remarque La limite d'une fonction lorsque x tend vers a existe si et seu-
lement si la limite a droite et la limite a gauche existent et sont identiques. 
Dans ce cas: 

lim f{x) — lim f{x) — lim / (x) . 

3.5 Proprietes de la limite d'une fonction 

Comme pour les limites de suites, on a les proprietes suivantes pour les limites 
d'une fonction: 

Si lim / (x) = Li, lim g{x) — L2 et si c est une constante, alors: 

1. lim c = c 

2. lim c • f{x) = c ' Li 
x-^a 

3. lim ( /(x) ± g{x)) ==lim / ( x ) ± lim g{x) = Li ± L2 
x—^a x—^a x-^a 

4. lim {f{x) • g{x)) =l im f{x)- lim g{x) = Li • L2 
X—>a x-^a 

fix) ^̂ "̂  / ( ^ ) Li 
5. hm ^ — = - — = — , s i L 2 7^0 

x-^a g[x) lim g[x) L2 

II faut noter que ces proprietes ne sont pas necessairement valables quand 
la limite de Tune ou Tautre des fonctions f{x) ou g{x) est infinie. Nous verrons 
comment traiter ces differents cas dans le chapitre suivant. En revanche, ces 
proprietes sont valables dans le cas ou les limites sont definies uniquement 
soit a droite soit a gauche de a, ou lorsque x tend vers Tinfini. Finalement, 
les proprietes 3 et 4 pen vent etre generalisees a un nombre fini de fonctions. 
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^ 2 ^ 3 limx2 + 3 
Exemple 3.21 lim 

2 X 

X—>Z 

limx 
x^2 

lim x^ + lim 3 
x-^2 x-^2 

limx 
x-^2 

lim X ' lim x + lim 3 
x^2 x-^2 x-^2 

limx 
x-^2 

2 2 + 3 
o 

(propriete 5) 

(propriete 3) 

(propriete 4) 

(proprietes 1 et 2) 

_ 7 
~ 2' 

En appliquant la propriete 5 concernant la limite d'un quotient, il pent 
arriver que le quotient des limites donne comme resultat ^. Cette forme ^ est 
appelee forme indeterminee. On ne pent a priori rien dire de la division de 
zero par zero. II est cependant possible de determiner si une telle expression 
possede une limite, comme le montrent les exemples suivants. 

Exemple 3.22 Calculous lim—. // s^agit d^une forme indeterminee ^ 
x-^O X ^ 

puisque la limite du denominateur et du numerateur sont toutes deux nulles. 
Cependant, si x ^ 0, numerateur et denominateur peuvent etre divises par 

2 

X. Dans ce cas: ^= x, Vx ^ 0. 
Dans la definition de la limite d^une fonction lorsque x tend vers a, on sup­
pose que X devient arbitrairement proche de a, mais n^est pas egal a a. C^est 

x^ 
pourquoi, on peut ecrire: lim — = lim x = 0. 

x^^O X x—^0 
X^ 

Ainsi, bien que fix) = — ne soit pas definie en x = 0, cette fonction admet 
X 

pour limite zero lorsque x tend vers zero. 
x^ — 16 x^ — 16 

Exemple 3.23 Si fix) = , alors lim est une forme inde-

0 ^. , , x^-16 (x + 4 ) ( x - 4 ) 
termmee - . bi x ^ —4, on a: = = x — 4. 

0 ^ x + 4 x + 4 
D ̂ apres la definition de la limite, on peut ecrire: 

,. x 2 - 1 6 ,. (x + 4 ) ( x - 4 ) ,. , ,̂  
lim lim ^ ^̂  ^ = lim x - 4) = - 8 . 

x-^-A X + 4 x->-4 X + 4 a:->-4' 



64 Suites, limites et premiere derivee 

On peut rencontrer un autre type de forme indeterminee en utilisant la 
propriete 5. II s'agit de la forme indeterminee —. Dans ce cas aussi, il est 
possible de determiner si une telle expression admet une limite. 

^ , , , 2x^ + 5x^ + 6 , ,. 2x^ + 5x^ + 6 
Exemple 3.24 Si fix) = — —-, alors lim — ;— est une 

forme indeterminee —. Dans ce cas, on peut diviser numerateur et denomi-
nateur par le terme de plus grande puissance du denominateur, c^est-d-dire 

o 5 6 
2 + - + — 

x^. Si X ^ 0, nous obtenons /(x) — f ^ . Nous pouvons, des lors, 
X ^ X'^ 

determiner cette limite : 
5 _6̂  

,. 2x^ + 5x^ + 6 ,. ^ + ~ + : 3 
lim — — = lim ^ ^ 

x-^(X) X"̂  — 3 X + 9 x ^ o o "̂  _i ^ 

x^ x^ 

lim 2 + 5 lim —f- 6 lim — 
x - ^ o o cc-^oo X a:;-^oo X 1 1 
lim 1 — 3 lim -7: + 9 lim —r-x— ĉxD a;—>-oo X a;—>oo X' 3 

_ 2 + 5-0 + 6-0 
~ 1 - 3 . 0 + 9-0 
= 2. 

3.6 Quelques limites importantes 

Pour determiner la limite d'une fonction, il n'existe pas de methode generale. 
Par consequent, nous indiquons ici quelques limites importantes. 

sinx 
1. lim = 1 

^ ,. tanx 
2. lim = 1 

x-^O X 

ê  - 1 
3. lim = 1 

x-^O X 

A r ln(l + x) ^ 
4. hm —̂  = 1 

x->0 X 
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5. l im(l + x)^/^ = e 

6. lim (1 + - ) ^ = e 
X—>oo X 

( (r\ X 
1 + - ) = e " 

x/ 

8. lim — = 0, a > 0 

9. lim — = 0, a > 0 

In (a;'=) 
10. lim — ^ ^ = 0, m > 0 

3.7 Continuite des fonctions 

Intuitivement, la notion de continuite d'une fonction sur un intervalle se 
congoit comme une courbe qui n'est interrompue nulle part. Cependant, cette 
notion intuitive est trop imprecise pour pouvoir etre utilisee pratiquement; 
il s'agit done de definir avec precision cette notion et cela peut se faire en se 
basant sur la notion de limite definie precedemment. 

Definit ion 3.7 Une fonction f{x) est dite continue au point x — a^ si les 
trois conditions suivantes sont satisfaites simultanement : 

1. f(a) est defini. 

2. lim f{x) existe. 

3. lim fix) = f(a). 
x—^a 

En tenant compte de la definition 3.4, la definition ci-dessus peut se 
mettre sous la forme: une fonction f{x) est dite continue en x = a si pour 
tout ^ > 0, il existe un nombre 6{£) tel que | f{x) — f[a) |< 6: si | a; —a |< 8{e). 

On dit qu'une fonction f{x) est discontinue en cc =: a, si elle n'est pas 
continue en x = a. 
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Comme pour les limites, on definit la continuite a gauche en un point: 
f{x) est continue a gauche en x = a si lim f{x) = / ( a ) . De la meme maniere, 

on definit la continuite a droite en un point: f{x) est continue a droite 
en X = a, si lim f{x) = f{a). 

Exemple 3.25 La fonction f{x) = ^/x a pour domaine de definition: 
{x G ]R+ note [0;oo[. On a /(O) = \ /0 = 0. Mais lim y ^ n^existe pas 

car lim \fx n^existe pas; en effet, pour x < 0, y ^ n^est pas defini dans 

Vensemble des nombres reels. En revanche, lim s/x = 0. Par consequent, la 

fonction f{x) = ^Jx est continue a droite en x = 0. 

Definition 3.8 On dit d^une fonction qu^elle est continue sur un intervalle 
I ClR si elle est continue en chaque point de cet intervalle. Si une fonction 
est continue sur tout son domaine de definition, on dit simplement qu^elle 
est continue. 

Remarque Si le domaine de definition d'une fonction f(x) est un in­
tervalle ferme [a; 6], alors lim f{x) et l i m / ( x ) n'existent pas, puisque 

x—^a x—^b 

lim f{x) et lim f{x) n'existent pas. Une telle fonction est dite continue 
x^^a~ x—^b'^ 

sur / = [a; 6] si elle est continue sur Tintervalle ouvert ]a;6[ et si elle est 
continue a droite en a et a gauche en b. 

Exemple 3.26 Considerons la fonction f{x) — -x/l — x'^. Son domaine de 
definition est I ̂ intervalle ferme [—1;!]. Si a est un nombre quelconque de 
Vintervalle ouvert ] — 1; 1[ alors lim -\/l — x^ existe et vaut \ / l — d^. 

x-^a 

En outre, lim V l — x^ = 0 et lim V l — x'^ = 0. Ainsi, par definition, 

f{x) = V l — x'^ est continue sur Vintervalle [—1; 1]. 

3.8 Types de discontinuite 

Selon qu'une ou plusieurs des trois conditions de continuite ne sont pas res-
pectees, il en resulte differents types de discontinuite. On observe trois types 
de discontinuite. 
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1. Discont inuite infinie : a symptote verticale 
Une fonction f{x) a une discontinuite infinie en x = a si 

lim f{x) = dzoo. 

On parle de discontinuite infinie a gauche si 

lim f{x) = ±oo. 
x—^a' 

et de discontinuite infinie a droite si 

lim f{x) = ±oc . 

Exemple 3.27 La fonction f (x) = 
{x-2) 

2 n^est pas definie au point x = 2. 

Cette fonction a une discontinuite infinie en x = 2 car lim — = oo 

(Figure 3.6). 

y 

2-

0 

1 

l^^M? 

V 
X 

Figure 3.6: Discontinuite infinie en x = 2 

1. Discont inuite finie : saut 
Une fonction f{x) a une discontinuite finie en x — a si 

lim f[x) — c\ et lim f[x) = C2, ou Ci 7̂  C2. 
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y 

J. 

1 1 ( 

0 

2 2 
y - j+f^ 

2 " X 

Figure 3.7: Discontinuite finie en x = 0 

Exemple 3.28 La fonction f {x) = 
1 + 3V^ 

n^est pas definie au point x — 0. 

Cette fonchon a une discontinuite finie en x = 0, car lim —r-
x-^o- 1 + 3^/^ 

2 
et lim -—- = 0 (Figure 3.7). 

x^o+ 1 + 3V^ ^ ^ ^ 

= 2 

1. Discont inuite reparable : trou 
Une fonction f{x) a une discontinuite reparable en x = a si / ( a ) n'est 
pas defini, mais lim f{x) existe. On parle de discontinuite reparable res-

x-^a 

pectivement a gauche et a droite si / ( a ) n'est pas defini, mais lim f{x) 
x—>a~ 

et lim f{x) existent respectivement. 

Exemple 3.29 La fonction f{x) = 
x^-1 

n^est pas definie au point x — \. 
x - l 

Cette fonction a une discontinuite reparable en x = 1 car 
x^ - \ 

lim = lim(x + 1) == 2 (Figure 3.8). 

Cependant, si Von definit la fonction 

m _ J f{x) sixy^l 
si X = 1 

alors f{x) est continue au point x = 1. En effet, f{x) est definie en x = I et 
lim f{x) = / ( I ) = 2. On dit que f est le prolongement continu de f. 
. T — > 1 
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Figure 3.8: Discontinuite reparable en x = 1 

Exemple 3.30 La fonction f{x) — e^l^ n^est pas definie au point x = Q. 
Cette fonction a une discontinuite reparable a gauche et une disconti­
nuite infinie a droite en x = 0. En effet, lim e^'^ = 0 et lim e^^^ = oc 

(Figure 3.9). 
cc^O- a:^0+ 

y = e 

Figure 3.9: Discontinuite reparable a gauche et discontinuite infinie a droite 
en X = 0 

3.9 Proprietes des fonctions continues 

Les proprietes des limites nous conduisent directement aux proprietes des 
fonctions continues, a savoir: 

1. la somme ou la difference de deux fonctions continues est continue: 
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2. le produit de deux fonctions continues est continu; 

3. le quotient de deux fonctions continues est continu, si le denominateur 
ne s'annule pas; 

4. la composition de deux fonctions continues est continue, pour autant 
qu'elle soit definie. 

Ces proprietes etant valables aussi bien pour la continuite en un point 
que pour la continuite sur un intervalle. 

Dans ce qui suit, nous allons exposer certaines proprietes des fonctions 
continues sur un intervalle ferme [a;b]. Ces proprietes seront enoncees sous 
forme de theoremes sans demonstration. 

Theoreme 3.1 Si f{x) est une fonction continue sur un intervalle ferme 
[a; 6]̂  alors f{x) a une valeur maximale M et une valeur minimale m sur 
[a; 6], et f{x) prend sur [a; b] toute valeur comprise entre son minimum m et 
son maximum M. 

Theoreme 3.2 (Theorerne de Bolzano) Si f{x) est une fonction conti­
nue sur un intervalle ferme [a; 6] et si f{a) et f{b) sont de signes opposes, 
alors il existe un point XQ de Vintervalle tel que f{xo) = 0. 

Remarque Le theoreme 3.1 est important car il nous assure Texistence des 
extrema d'une fonction continue sur un intervalle ferme. L'hypothese que 

Fintervalle est ferme est essentielle. Soit, en effet, la fonction — qui n'a pas 
X 

de maximum sur Fintervalle semi-ouvert ]0; 1], ou elle est pourtant continue. 
Le theoreme 3.2 nous permet de constater notamment que tout polynome 

p{x) de degre impair possede au moins une racine reelle. En effet, pour c 
sufhsamment grand, p{c) et p{—c) sont de signes opposes. 

3,10 Definition de la premiere derivee 

Nous allons etudier la variation d'une fonction y = f{x) lorsque la variable 
independante x varie. 

Si la valeur d'une variable x passe de XQ a xi, on dit qu'il y a accrois-
sement de la variable x et Ton note cet accroissement par Ax. Ax pent 
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etre positif ou negatif suivant que x croit ou decroit. De meme, on note Ay 
Taccroissement de y, A / ( x ) Taccroissement de / ( x ) , etc. 

Si, dans une fonction y = / ( x ) , la variable independante x varie de Ax, 
y varie de Ay, ou Ay depend de la valeur de y qui correspond a la valeur 
initiale de x ainsi que de Ax. 

Exemple 3.31 Soit y = f{x) = x^. En prenant comme valeur initiale XQ = 
2, on obtient la valeur correspondante ?/o = ^o ~ § comme valeur initiale 
de y. Si nous choisissons un Ax egal a 1, la valeur de x s^accroit de XQ = 
2 d xi =: 3. Avec xi — 'i.yi ~ x\ — 27. L^accroissement de y est done 
Ay = 2/1 — yo = 27 — 8 = 19. Si nous choisissons un Ax = —1^ x decroit de 
XQ — 2 a xi — 1. Pour xi — l^yi — x\ =^ 1. L^accroissement de y est done 
Ay =- yi - yo = 1 - 8 = - 7 . 
Dans les deux cas, Ax et Ay sont de meme signe. Toutefois il se pent que 
lorsque Ax est positif, Ay soit negatif, ou inversement. 

Nous venons de voir que 

y + Ay = (x + Ax)^ 

que nous pouvons generaliser comme suit : 

y + A y - / ( x + Ax). 

En soustrayant y = / ( x ) membre a membre dans ^equation ci-dessus, on 
obtient: 

Ay = /(a; + A x ) - / ( x ) . 

Si Ton divise de chaque cote par Ax, on trouve: 

Ay f{x + ^x)-j{x) 
Ax Aa; 

La limite de ce rapport quand Aa; tend vers zero est par definition la 
premiere derivee de la fonction y = f{x). On la note dy/dx. Done: 

? = lim ^ = hm /(^ + ^ ; ) - / W 
dx Ax-̂ o Ax Ax-̂ o Ax 

est la premiere derivee de y par rapport a x. On pent aussi la noter f\x) ou 
simplement y^ 
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Definition 3.9 Si la fonction y = / ( x ) a une derivee au point x = XQ; c^est-

a-dire si la limite lim -— = lim existe, on dit que la 
Acc^O A x Ax->0 A x 

fonction est derivable au point x = XQ et on la note / ' ( X Q ) . 

On dit que f est derivable a droite au point XQ 

. ,. f{xo + Ax)-f{xo) 
SI lim existe 

Aa;->0+ A x 

et f est derivable a gauche au point XQ 

. urn /(^. + Ax)-/(^») , „ , , 
Ax-^0- A x 

D'apres la definition, une fonction est derivable en x = XQ si et seulement 
si les limites a droite et a gauche existent et sont egales. 
Remarque Si une fonction y — f (x) est derivable au point x = XQ, 
alors elle est aussi continue en ce point. La reciproque est fausse: si 
une fonction est continue en x = XQ, elle n'est pas forcement derivable en ce 
point (exercices). 

Definition 3.10 On dit d'une fonction qu^elle est derivable sur un in-
tervalle I e IR, si elle est derivable en chaque point de cet intervalle. Si I 
est un intervalle ferme [a; b], alors on dit que f est derivable sur [a; 6], si elle 
est derivable sur ]a; b[ et si elle est derivable a droite en a et a gauche en b. 

3.11 Regie generale de derivation 

D'apres la definition de la derivee, on voit que dans le processus de derivation 
d'une fonction y — f{x),i\ faut efi"ectuer les operations suivantes: 

1̂ ^ operat ion Remplacer x par (x + Ax) dans y ~ f{x) 
pour obtenir y + Ay. 

2^ operat ion Retrancher y = / ( x ) pour obtenir Ay. 
3^ operat ion Diviser a gauche et a droite par Ax. 

Ay 
4^ operat ion Calculer la limite du quotient -— quand Ax 

Ax 
tend vers zero. Cette limite est la derivee cherchee. 

Exemple 3.32 Calculons la premiere derivee de y = 4x^ + 3 a Vaide de ces 
quatre operations: 
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r^ operation y + Ay = 4(:r + Axf + 3 == 4x^ + 8xAx + 4(Ax)^ + 3. 

2^ operation Ay = 4x^ + 8xAx + 4(Ax)2 + 3 - (4x^ + 3) 
8xAx + 4(Ax)^ 

Ay 
3^ operation -— = 

Ax 
SxAx + 4(Ax) 

Ay 

Ax 

8xAx + 4(Ax)2 
4^ operation lim -— = lim 

Ax-^O A x Ax^O A x 

= lim (8x + 4Ax) = 8x. 
Ax->0 

La premiere derivee de y = 4x^ + 3 vaut done 8x, c^est-a-dire f\x) — 8x. 

3.12 Interpretat ion geometrique de la 
premiere derivee 

On definit la pente d'une droite comme etant egale a la tangente de Tangle 
qu'elle forme avec Faxe des x on d'une maniere equivalente comme etant 

Ay 
egale au rapport —— (Figure 3.10). 

Figure 3.10: Pente d'une droite 

AT A ^ ^ ^y yi-yo 

Nous avons done: pente — tana = —— = . 
Ax xi — xo 

La pente d'une droite donnee est une constante. Cela signifie que, ou que 
Ay 

Ton soit sur la droite, le rapport -— est toujours le meme. Ce n'est pas le 
Ax 
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cas pour les autres courbes. Nous allons maintenant generaliser la notion de 
pente pour toutes les fonctions. 

Prenons deux points quelconques sur la courbe y = f{oo): 

M={xo]yo) et N-= {xi;yi). 

La droite qui relie M a. N^ appelee une secante, a une pente egale a 

Ay ^ yi -yo 

Ax xi — XQ 

On va maintenant faire bouger le point Â  le long de la courbe en direction 
de M. Par cette operation, la pente de la secante (qui relie M a A/') va changer. 
Or, plus N se rapproche de M, moins le changement de la pente de la secante 
est grand. En fait, la pente tend vers une limite finie. Cette limite est appelee 
la pente de la tangente a la courbe au point M = (XQ, yo) ou plus simplement 
la derivee au point M (Figure 3.11). 

y 

0 

\ ^ yu 

y =f(x)l 

N-

A-x: 

^y 

X 

Figure 3.11: derivee au point M 

Ay 
Nous avons done: pente de fix) — lim -—. Or, comme nous I'avons 

deja vu, cette limite est egale a la premiere derivee de f{x). D'ou le resultat 
suivant: 
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La valeur de la derivee en un point quelconque d'une courbe est egale a 
la pente de la tangente en ce point. En clair: 

f\xo) = pente de f{x) an point (xo,yo) 

^ ^.^ f{xo + Ax)-f{xo) 

Ax->0 A x 
Exemple 3.33 Calculous les pentes de la courbe y = —x'^ aux points x = 0 
et X — —1/2. Par la definition de la derivee, nous avons : 

r^ operation y + Ay = —{x + Ax)^ = —x^ — 2xAx — (Ax)^. 

Ay = - x ^ - 2xAx - (Ax)^ + x^ - - 2 x A x - (Ax)^ 2^ operation 

3^ operation -^ = - 2 x - A x . 
Ax 

Ay 
JL^ operation lim -—^ — lim (—2x — Ax) = —2x. 

Ax->0 A x Ax-^0 
j'{x) = —2x represente la derivee / ( x ) — —x^ en un point quelconque. Pour 
trouver la pente au point XQ = 0; on remplace x parxo dans —2x, ce qui donne 
f'{xo) = 0. La tangente au point XQ = 0 a done une pente nulle, c^est-a-dire 
que c^est une droite horizontale. Pour trouver la pente au point x — —1/2, 

on procede de la meme maniere et Von obtient f{xo) = —2 ( — J = 1 . La 

pente est done egale a 1, c^est-a-dire qu^elle fait un angle de 45^ avec Vaxe 
des X (Figure 3.12). 

Figure 3.12: derivee de y = —x^ e n x = — ^ e t x = 0 
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3,13 Derivees des fonctions algebriques 

La recherche de la derivee en utihsant sa definition est un travail long et 
penible. C'est pourquoi il est preferable de deriver une fonction a Faide des 
regies speciales deduites de la regie generale pour deriver certaines formes 
classiques des fonctions algebriques. 

• Derivee d'une somme 

Soit f{x) ~ u{x) + v{x)^ ou u{x) et v{x) sont des fonctions derivables 
de X. Dans ce cas, 

•̂  ^ ^ Ax-^0 A x 
u{x + Ax) + v{x + Ax) — [u{x) + v{x)] 

Ax->0 A x 
uix-\-/\x)—u{x) ^ vix-^ Ax) — vix) 

~ lim : h hm 
Aa:->0 A x Ax-^0 A x 

= u\x) +v'{x). 

A • • / \/ / f -> T ^ / . du dv 
Amsi: iu + vY ~ u + V ^ c est-a-dire: ^ - ( ' ^ + '̂ ĵ == -^—^ -T--

dx dx dx 
Cette regie se generalise a un nombre fini de termes : La derivee d'une 
somme d'un nombre fini de fonctions est egale a la somme des 
derivees de ces fonctions. II en est de meme pour la difference d'un 
nombre fini de fonctions. 

• Derivee d'un produit 

Soit / ( x ) = u{x) 'v{x), ou u{x) et '^(x) sont des fonctions derivables de 
X. Dans ce cas, 

•̂  ^ ^ Ax-^0 A x 

u{x + Ax) • v{x + Ax) — u{x) • v{x) 
— lim 

Aa:-̂ 0 A x 
[u{x + Ax) — u{x)]v{x + Ax) + [v{x + Ax) — v{x)]u{x) 

Acc->0 Ax 

= u\x) • v(x) + v'[x) ' u[x). 

X' ' / \f , , , 1 • d . . dv du 

Amsi: [u- vy = U'V +u 'V, c est-a-dire: -—[U'v) = —-'U+—-'V. 
dx dx dx 
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On notera que pour trois facteurs, on a: 

Cette regie pent aussi se generaliser au cas du produit d'un nombre fini 
de fonctions: 

{ui'U2-. . .'UnY = u['U2- . . .'Un + Ui'U2'Us'. . .'Un-\ \-Ui - U2'. . . ' U^^-

Derivee d'un quotient 

u(x) 
Soit y = f{x) = , ou u{x) et v{x) sont derivables et v(x) ^ 0. La 

derivee de cette fonction se deduit de la derivee du produit. On a: 
XL 

y — — ̂ =^V'y — u. Par derivation: v - y' -\- v' - y — u'. Done : 

, u' — v'y , 1 , , , u. , 1 , , „ 
y = z=^ y' = - ' [u -V ' -) => y = — ' [vu - uv). 

. . . 'u\^ vu' + uv' , .̂ d fu\ 1 f du dv 
Amsi: - = 7, , c est-a-dire: T - — = -IT V— u 

V 
2 - , c est-a-dire: —r\~]^~~^\^ 

dx \vJ v^ \ dx dx J 

Derivee d'une composi t ion de fonctions 

Si y = f{u) et u = g{x), c'est-a-dire si y — f[g{x))^ alors 
Ay Ay /\u Ay dy du . . 
—— = —— • —— ,d ou: lim -— = -7- * "7~ ; amsi: 
Ax Au Ax Ax-̂ o Ax du dx 

. dy dy du , .̂ , n,^ ^ ^^ ,/ x 
y = -r- = -r- ' -r-^ c est-a dire y = f (qix)) • q (x). ^ dx du dx ^ J \^\ )) ^ \ J 

Exemple 3.34 La fonction y = (5x^ + 2)^ est de la forme y = f{u) = u^, 
avec u — g{x) = 5x^ + 2. D^apres la regie precedente : 

y^ = -l = J-.-^ = 4^.u^. 15:̂ 2 _ 4 . /5^3 ^ 2f . 15x^ = 60x^ • (bx^ + 2)\ 
dx du dx 
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• Derivee logarithmique 

II est parfois plus avantageux de deriver le logarithme naturel de la 
fonction que la fonction elle-meme. Soit y = f{x) la fonction donnee; 

d fix) 
dans ce cas, on pent montrer que: — l n / ( x ) = , d'oii: 

ax JK-^) 

f\x)=f{x).fjnf{x). 

On notera que: -—(In x) = —, resultat obtenu lui aussi grace a la regie 
ax X 

precedente. 

Exemple 3.35 Soit la fonction y = f{x) — x^. Pour x > 0, on a 
In (x^) = X • Inx. 

D^apres la regie ci-dessus, on a: f'{x) = x^ • — ( ^ • Inx) . 

La regie du produit donne : 
dx 

—-(x • Inx) = 1 • Inx H— = Inx + l (x > 0). 
dx X 

Ainsi, f{x) := x^ • (Inx + 1). 

Le tableau suivant fournit une liste des derivees des fonctions les plus 
courantes, que Ton pourra demontrer a titre d'exercice. 

1 m 
c 

x'^.aeR 
a^,a > 0,a 7̂  1 

log^x,a > 0,a7^ 1 

cosx 
sinx 

cosh X 
sinh X 

fix) 
0 

a^ • In a 

— sinx 
cosx 

sinhx 
coshx 
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le processus de derivation. La derivee de la premiere derivee est la seconde 
derivee; sa derivee est la troisieme derivee, etc., jusqu'a la rf derivee. La aussi, 
il existe plusieurs notations possibles pour indiquer les derivees successives. 
Ainsi, 

f'{x) = y' = dy/dx : premiere derivee, 
f^\x) — y" = d^y/dx'^ : deuxieme derivee, 

/(^)(x) = y^"^^ = d^y/dx"^ : ne derivee. 

Exemple 3.36 Si y — 3x^ — x'^, alors 

y' = 12x^ - 2x, 

/ 
, ( 3 ) 

^(4) 

^(5) 

yin) 

r= 

= 
^ 

— 

^ 

36x2 _ 2, 

72a;, 

72, 

0, 

0 , V n > 5. 

3.14 Les difFerentielles 

Dans les paragraphes precedents, dy/dx n'est pas considere comme un quo­
tient, mais comme le symbole representant la limite de Ay/Ax quand Ax 
tend vers zero. II existe toutefois des problemes ou dy et dx prennent des 
significations separees. Dans ce cas, on appelle dy la differentielle de y et dx 
la differentielle de x. La notion de differentielle est utilisee en calcul integral 
(chapitre 5) et dans Tapproximation des valeurs d'une fonction. La definition 
de la differentielle de y, notee dy ou df{x) est la suivante: 

si f\x) est la premiere derivee de f{x) et Ax un accroissement arbitraire 
de X, 

dy = df{x) ^ f{x) . Ax. 

Notons que si /(x) = x, nous avons f\x) = 1 et, de ce fait: 

df{x) — dx = Ax. 
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Notons que si f{x) = x, nous avons f\x) = 1 et, de ce fait: 

df{x) — dx = Ax. 

Par suite, si y = / (^ ) , c'est-a-dire si x est la variable independante, on pent 
generalement ecrire: 

dy = df{x) = f{x)dx. 

Nous allons maintenant considerer le probleme graphiquement. Soit 
y = /(x) la courbe de la figure 3.13 et f'{x) la derivee de f{x) au point P. 

y 

0" 

R. 

IT 

\ p X Q 
^^^-y^ t\X = dx 

1 1 

dy 

/ ^ 

^y 

X 

Figure 3.13: Differentielle dy 

Si Ton prend dx = PQ, on obtient alors: 

dy = fix) . PQ 

et comme f\x) = tana, on a 

dy == tana • PQ. 

Par definition , tan a == ——, ce qui donne 

dy=^-PQ = QT. 

Par consequent, dy est Taccroissement (egal a QT) de Tordonnee de la 
tangente correspondant a dx. 
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Notons que la differentielle dy et raccroissement Ay correspondant au 
meme dx ne sont en general pas egaux. Sur la figure 3.13, dy — QT tandis que 
Ay — QR. Nous allons maintenant observer Tapplication des differentielles 
dans rapproximation des valeurs d'une fonction. Nous avons note que dy 
etait en general different de Ay. Toutefois quand Ax == dx devient tres petit, 
dy est presque egal a Ay. Nous pouvons done utiliser la differentielle dy pour 
calculer la valeur d'une fonction en un point x + Ax, avec Ax petit. L'erreur 
que nous commettons est d'autant plus petite que Ax est petit. 

Exemple 3.37 Soit la fonction y = 4x'̂  — x^ + 8x — 6. On va calculer la 
valeur de y pour x = 2.003. Nous constatons que le calcul avec x = 2.003 
n^est pas chose aisee. En revanche, nous pouvons facilement trouver y avec 
x = 2. 

y = 4 - 2 ^ - 2 ^ + 8 - 2 - 6 

- 6 4 - 8 + 1 6 - 6 

= 66. 

Nous posons maintenant: 2.003 est egal a 2 + 0.003; c^est-a-dire x + A x avec 
X — 2 et Ax = 0.003. Nous connaissons la definition de dy : 

dy = f'{x)Ax 

done il faut que nous cherchions la derivee de / ( x ) : 

f{x) = 1 6 x ^ - 3 x ^ + 8. 

Nous remplagons x par 2 dans f'{x), ce qui donne: 

f{2) = 1 2 8 - 1 2 + 8 - 124. 

Nous avons done, en remplagant Ax par 0.003: 

dy = 124 . 0.003 = 0.372. 

Puisque y = 66 quand x vaut 2 et que y varie de 0.372 quand x varie de 
0.003; nous avons: 

y^dy = 66 + 0.372 = 66.372. 
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Par consequent^ y vaut approximativement 66.372 quand x vaut 2.003. 
Nous pouvons maintenant nous interesser a Verreur commise dans cette ap­
proximation. Pour cela, nous calculons Ay — dy. 

Ay = f{x + Ax)-f{x) 
= 4(x + Ax)^ -{x + Axf + 8{x + Ax) - 6 

-{Ax^-x^ + Sx-Q) 
= 4rr̂  + Wx^Ax + 24:X^{Ax)^ + 16a;(Ax)2 

+4(Aa;)4 - x^ - 3x^Ax - 32;(Ax)2 - {Axf + 8x 
+8Aa; - 6 - 4a;̂  + x^ - 8a; + 6 

= 16x2Aa; + 242;2(Ax)2 + 16a;(Aa;)^ 
+4:{AxY - 3^2Aa; - 3x(Ax)2 
-(Aa;)3 + 8Aa; 

dy, quant a lui, est egal a: 

dy = f{x)Ax 

= (16a;̂  - 3x^ + 8)Ax 

= 16a:̂ Ax - 3a;^Ax + 8Ax. 

Alors 

Ay-dy = 24a;2(Aa:)2 + 16a;(Ax)^ + 4(Aa;)^ - 3a;(A:c)^ - {Axf 

qui vaut avec x = 2 et Ax = 0.003 ; 

Ay-dy = (96 - 6) • (0.003)2 ^ ^32 _ 1) . (0.003)^ + 4 • (0.003)^ 

= 0.000810837324. 

Par consequent, I'approximation y = 66.372 comporte une erreur de 
0.000810837324, ce qui signifie que la vraie valeur de y est egale a 
66.372810837324. 
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Exercices 
1. Ecrire les cinq premiers termes des suites: 

3n 

2 + n^ 
(d) x̂„ = 2(( - i r + 2). 

2. Ecrire les termes generaux de chacune des suites: 

M - - - — — 
^̂ ^ 1' 4 ' 9' 16' 2 5 ' " " 

(K\ _i i _1 i 
^ ' 1' 2 ' 3 ' A'"" 

1 8 27 64 

"̂"̂  2 ' 4 ' 6 ' 8 '•••• 

1 _ 5 _9_ _ 1 3 17 

^ ^ 2 ' ~ 8 ' 18' ^ 3 2 ' 5 0 ' ' " " 
3. Determiner si les suites ci-dessous sont bornees ou non-bornees, crois-

santes ou decroissantes, convergentes ou divergentes. Si elles sont conver-
gentes, trouver leur limite; 

(K\ _1 1 _1 i _1 
^ ^ 2 ' 3 ' 4 ' 5 ' 6 ' " " 

1 _ _ 9 _ 8 _ 2 5 
(c) - 3 , - 1 , - - , - - , - y , . . . . 

( d ) - , l , - , 2, - , . . . . 

4. Determiner quel est le cinquantieme terme des suites suivantes: 

(a) 5,7,9,11,13, . . . . 
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(b) - 4 , - 1 , 4 , 1 1 , 2 0 , 3 1 , 4 4 , . . . . 

(r) i _ i 3 _ 2 5 
V*"/ 3 ' 2 ' 5 ' 3 ' 7 ' •••• 

(d) 1 ,1 ,8 ,1 ,1 ,8 ,1 ,1 ,8 ,1 , . . . . 

5. Pour les suites donnees par les termes generaux suivants, dire si elles 
sont: 

• monotones ou non monotones 

• croissantes, decroissantes, alternees ou autre 

• bornees ou non bornees 

• convergentes ou divergentes 

(a) Un = 2. 

(b) Un = n{-1)^. 

(C) Un = - ^ . 

(d) Un = n(mod6). 

(e) Un = n(mod6) — n. 

(f) Un = 10-. 

(g) Un = sm{{2n-1)^). 

n \ f ^ ^ si n 7̂  6 
[ 1000 SI n == 6 

6. Deviner les limites / des deux suites convergentes donnees par les termes 
generaux suivants: 

a) Un = 3- I. 

n + 4 ' (b) n̂ = S i 

Dans chaque cas, determiner les N{e) correspondants, telles que 
\un — ̂  < £, pour tout n > N{e) avec: 

• £1 = 0 . 1 

• £2 = 0.01 



Exercices 85 

7. 

• ^3 = 0.001 

Trouver la limite des fonctions suivantes: 

(a) 

(b) 

lim 
X—>oo 

lim 

lim 

2x + 5 

x^ -4x^ + 8 

ax^ + bx + c 
a:->oo kx'^ + Ix + m 

8. Indiquer si les fonctions suivantes sont continues ou non. Dans le cas 
ou elles ne sont pas continues, indiquer et expliquer de quel type de 
discontinuite il s'agit: 

4 - x 2 
(^) / ( ^ ) = 3 _ (^2 + 5)1/2 a u p o i n t x - 2 . 

(b) f{x) = ^ ^ ^^^^ au point x = 0. 

(̂ ) /(^) ^ 2^ + 2-^ ^̂  ^̂ ^̂ ^ ^ ^ °* 
X — 1 

(d) f{x) = — au point x — 2. 

9. A I'aide de la def ini t ion d e la der ivee , calculer les derivees des fonc­
tions suivantes: 

(a) f{x) = {2x + iy/^ 

(b) f{x) = xV3. 

1 
(c) fix) 

X 

smx 
10. Montrer que lim = 1; 

x->0 X 
Montrer ensuite que la derivee de / (x ) = sinx est f\x) = cosx. 

11. Trouver Fexpression generale de la derivee d'ordre n des fonctions sui­
vantes : 

(a) / ( x ) = e - . 
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(b) f{x) = cosx. 

(c) fix) = l 

(d) fix)=lnx. 

12. Trouver la derivee des fonctions suivantes: 

(a) y = s in(( l -4x)^/2j . 
(b) y = In ((3a;+ 4)1/3). 

(c) y = e^ .̂ 

W.-ln(^-

(e) y = sinhx. 
(f) y = cotx. 

13. En utilisant les differentielles, trouver une valeur approchee pour cha-
cun des nombres suivants: 

(a) ^M (b) logiolOl (c) ^ . 



Chapitre 4 

Applications des derivees 

4.1 Introduction 

Dans ce chapitre, nous aliens donner deux sortes d'applications des derivees. 
La premiere application concerne Tetude d'une fonction quelconque. A I'aide 
des derivees, on pent etudier la croissance d'une fonction, ses points minimum 
et maximum, ses points d'infiexion, sa concavite. Nous donnons egalement 
une procedure generale pour trouver la limite des formes indeterminees. Cette 
procedure est fondee sur la regie de THospital. Ceci est resume dans un 
paragraphe intitule etude d'une fonction. La deuxieme forme d'applications 
concerne Tutilisation des derivees en economic, comme par exemple le cout 
et revenu marginal, ainsi qu'un profit en regime de monopole. 

4.2 Croissance et decroissance des fonctions 

La premiere derivee d'une fonction nous permet de determiner si cette fonc­
tion est croissante on decroissante. 

Definition 4.1 On dit qu^une fonction f{x) est croissante au point x ~ XQ 
si pour h > 0 (suffisamment petit), on a : 

f{xo-h) < /(xo) </(xo + /i). 
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On dit qu^une fonction est decroissante au point x = XQ, si pour h > 0, on a : 

f{xo-h) > f{xo) > f{xo + h). 

On pent montrer que si f\xo) > 0, dors f{x) est une fonction croissante 
au point x = XQ. Comme f'{x^) est la pente de la tangente au point x = XQ, 
nous pouvons illustrer ce resultat sur la figure Ji..l(a). 
Si f\xo) < 0; alors f{x) est une fonction decroissante au point x — XQ 
(Figure 11(b)). 

(a) (6) 
Figure 4.1: Croissance et decroissance d'une fonction au point x = XQ 

0 1 

Figure 4.2: Croissance et decroissance de y = x^ — 3x + 4: 
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Exemple 4.1 Soit f{x) = x^—3x+4; on a f'{x) = 2x—3. Comme f {x) < 0 
3 3 

pour X < - et f'{x) > Q pour x > -, f{x) est une fonction decroissante pour 
3 3 

X < - et croissante pour ^ > - (Figure 4-2). 

4.3 Minima et maxima des fonctions 

La premiere derivee pent aussi etre utilisee pour determiner les minima et 
maxima d'une fonction. 

Definition 4.2 Soit une fonction y = f{x) definie sur un intervalle conte-
nant XQ. On dit que la fonction y = f{x) possede un minimum relatif au 
point X = XQ si f{xo) < f{x) pour tout x appartenant a un certain intervalle 
contenant XQ. De meme, f{x) possede un maximum relatif au point x — x^ 
si f{xo) > f{x) pour tout x appartenant a un certain intervalle contenant 
XQ. On parle de minimum absolu si / (XQ) < f{x) pour tout x apparte­
nant au domaine de definition de la fonction et de maximum absolu si 
/ (^o) ^ / ( ^ ) pour tout X appartenant au domaine de definition de la fonc­
tion. Ces differents types de minima et maxima sont illustres dans la figure 
4.3 pour X G [a; h] . 

y 
maximum absolu 

minimum relatif 

minimum absolu 

Figure 4.3: Minima et maxima d'une fonction 

Considerons a present une fonction / ( x ) , et supposons que f{x) et f'{x) 
soient continues en un point x == XQ. II est geometriquement evident que 
si / ( x ) a un maximum relatif en x = XQ, la fonction est croissante pour les 
valeurs juste inferieures a XQ et decroissante pour les valeurs juste superieures. 
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Ainsi, f\x) passe du signe positif au signe negatif quand x passe en croissant 
par XQ. Comme f\x) est supposee continue, elle doit s'annuler en x = XQ : 
f{xo) = 0. 

De meme, quand / (x ) a un minimum relatif en x = XQ, la fonction est de-
croissante pour les valeurs juste inferieures a XQ et croissante pour les valeurs 
juste superieures. Dans ce cas, f\x) passe du signe negatif au signe positif 
lorsque x passe en croissant par XQ ; f\x) doit, par consequent, s'annuler en 
X = xo : f{xo) = 0. 
Remarques 

1. Un minimum ou un maximum relatif en x = XQ implique: 
/ '(xo) = 0 seulement si / ( x ) et f'{x) sont continues au point x = XQ 
(exemple 4.2). 

2. / ' ( X Q ) = 0 n'iraplique pas un minimum ou un maximum relatif en 
X = XQ, meme si / ( x ) et f\x) sont continues en x = XQ (exemple 4.3). 

Exemple 4.2 Si / ( x ) - x^/^ dors f{x) - -x"^/^ = — ^ et f\x) a une 

discontinuite (infinie) en x — 0. Ainsi, bien que la fonction ait un minimum 
(ahsolu) enx = 0, f (0) ^ 0 (Figure 44). 

Figure 4.4: Graphe de y = f{x) = x^/^ 

Exemple 4.3 Si / ( x ) = x^, alors f\x) = 5x^ et f\x) = 0 pour x = 0. 
Cependant, la fonction / ( x ) = x^ n^a pas de minimum ou de maximum 
relatif en x = 0 (Figure 4-5)-
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-IX 0 

Figure 4.5: Graphe de y = f{x) = x^ 

L'exemple 4.2 nous montre qu'il pent exister des minima et maxima pour 
des valeurs de x en lesquelles la derivee est discontinue. Si la fonction f{x) 
est continue au point x = XQ, mais que sa premiere derivee est discontinue 
en X = xo, alors f{x) pent avoir un minimum ou un maximum en x = XQ^ 
meme si f'{xo) ^ 0. Ici encore, un changement de signe de la premiere de­
rivee lorsque x passe en croissant par XQ est necessa i re pour Texistence d'un 
minimum ou maximum relatif en x = XQ. 

Remarque Les differents resultats concernant les extrema relatifs restent 
valables pour les extrema absolus non situes aux extremites de Tintervalle de 
definition. 

La marche a suivre pour determiner les minima et maxima d'une fonction 
y = f{x) a I'aide de la premiere derivee est la suivante. 

1. Calculer la premiere derivee f\x) de la fonction. 

2. (a) chercher les valeurs de x pour lesquelles la derivee s'annule, c'est-
a-dire resoudre Tequation / ^ x ) — 0. 

(b) chercher les valeurs de x pour lesquelles la derivee f'{x) a des 
discontinuites. 

3. Pour chaque valeur XQ trouvee sous 2a et 2b, determiner si f\x) change 
de signe lorsque x passe en croissant par XQ : 
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f^{x) passe du signe — au signe + : minimum relatif en x = XQ. 

f\x) passe du signe + au signe — : maximum relatif en x = XQ. 

f'{x) passe du signe + au signe + : ni minimum ni maximum relatif 
en X = XQ. 

f'{x) passe du signe — au signe — : ni minimum ni maximum relatif 
en X = XQ. 

4. Calculer la valeur de la fonction / ( x ) pour chaque valeur de XQ en 
laquelle on a soit un minimum soit un maximum relatif. On obtient 
ainsi les coordonnees des minima et des maxima relatifs. 

E x e m p l e 4.4 Soit la fonction y = / ( x ) = (1 + x)^/^ • (2 — x)^/^. Cherchons 
les minima et maxima de cette fonction: 

1. Calculons la 'premiere derivee f'{x) de la fonction: 

fix) = ( l + : . ) 2 / 3 . 1 . ( 2 - : r ) - ^ / = ^ . ( - l ) 

+ ? ( l + ^ ) - i / 3 . ( 2 _ ^ ) i / 3 

= ^(1 + x)-'/^ • (2 - x)-2/3 . [_(i + ^) + 2 • (2 - x)] 

= ^ ( H - x ) - V 3 . ( 2 - x ) - ^ / 3 . [ 3 . ( l _ x ) ] 

1 - x 
(l + x ) V 3 . ( 2 - x ) 2 / 3 -

(a) f'{x) = 0 lorsque x = l; en effet f{l) = ^^^3 ^ ^^^3 = 0. 

(b) f'{x) est discontinue en x = —1 et en x = 2 car le denominateur 
s^annule pour chacune de ces deux valeurs. En fait, il s^agit de 
discontinuites infinies puisque d^une part: 

lim / ' (x ) = — 00 et lim / ' (x ) — -DO 
x-^ — l~ cc—> — 1 + 

et d ̂ autre part: 

lim f\x) = —CO et lim f\x) = —cx). 
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2. Determinons le changement de signe de f'{x) aux points x = — 1̂  x = 1 

SI X < - 1 , f'{x) < 0 
si - 1 < X < 1, f{x) > 0 

si - 1 < X < 1, f'{x) > 0 
SI K x <2, fix) < 0 

SI K x <2, f{x) < 0 
SI x>2, fix) < 0 

minimum relatif en x — —\. 

> maximum relatif en x = 1. 

ni minimum ni maximum 
relatif en x = 2 

3. / ( - I ) =. (1 - 1)2/3 . (2 _ (-1))V3 = 0 
/ ( I ) - (1 + 1)2/3 . (2 - 1)V3 = 22/3 . lV3 ^ ^ . 

Ainsi, les coordonnees du minimum relatif sont: (—1;0) et les coor-
donnees du maximum relatif sont: (1; v ^ ) (Figure 4-6)-

Figure 4.6: Graphe de y = f{x) = (1 + x)2/3 . (2 - x)^ /3 

4.4 Courbure des fonctions 

La deuxieme derivee d'une fonction peut etre utilisee pour etudier la conca-
vite de cette fonction. 
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Definition 4.3 Une fonction est dite concave, si la tangente se situe au-
dessus de la courbe (Figure ^''^(a)). 

Elle est dite convexe (ou concave vers le haut), si la tangente se situe 
au-dessous de la courbe (Figure 4-7(b)). 

(a) (b) 

Figure 4.7: Concavite et convexite d'une fonction 

On pent montrer que si / ' ' (x) > 0 alors la fonction f{x) est convexe (elle 
a une courbure positive). De la meme fagon, si f^'{x) < 0 alors la fonction 
f{x) est concave (elle a une courbure negative). 

Cela s'explique geometriquement par le fait que si f'\x) > 0, alors / ' (x ) 
est une fonction croissante. Or f\x) est la pente de la tangente au point x 
et il est clair que si la pente de la tangente croit lorsque x croit, la fonction 
est convexe (Figure 4.7(b)). 

Si / ' ' (x) < 0, alors f'{x) est une fonction decroissante; ainsi la pente de 
la tangente decroit lorsque x croit et la fonction est done concave (Figure 
4.7(a)). 

Considerons une fonction f{x) et supposons que f{x) et f\x) sont conti­
nues au point x = XQ. II est geometriquement evident que si f'{xo) — 0 et 
/ ( x ) est concave en x = XQ, alors / (x ) a un maximum relatif en x == XQ 
(Figure 4.7(a)). De meme, si /^(XQ) = 0 et / ( x ) est convexe en x = XQ, alors 
/ ( x ) a un minimum relatif en x = XQ (Figure 4.7(b)). 

II en decoule un nouveau critere pour determiner s'il s'agit d'un minimum 
ou d'un maximum: 
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supposons f\x) et f^'{x) continues au point x — XQ. Alors: 

• f'{x) == 0 et f"{x) > 0 ^ minimum relatif en x = XQ. 

• f'{x) = 0 et f''{x) < 0 =4> maximum relatif en x = XQ. 

Exemple 4.5 Etudions la courbure et cherchons les minima et maxima de 
la fonction /(x) = x'̂  — 2x^ + x + 1. 

Figure 4.8: Graphe de y = /(x) = x^ — 2x^ + x + 1 

f{x) = 3x2 -4x + l. 

f{x) = 6 x - 4 . 

2 2 
Comme f"{x) < 0 pourx < -, la fonction est concave pour —oo < x < - . 

2 
f"{x) > 0 pour X > - ; par consequent, la fonction est convexe pour 
2 
- < X < oo. 
o 
Cherchons a present les extrema: 

f[x) = 0 =^ 3a;2 - 4a: + 1 = 0 

=^ X = 1 et X — - . 
3 

Remplagons x = 1 dans f"{x) : 

/"(I) = 6 - l - 4 = 2 > 0 . 



96 Applications des derivees 

Le point (1; 1) est done un minimum relatif et la fonetion est eonvexe en ce 
1 

point. Remplagons x = - dans f"{x) : 

r ( l ) ^ 6 . i - 4 ^ - 2 < 0 . 

/ I 3 1 \ 
Le point ( - ; — ) est done un maximum et la fonetion est eoneave en ee 

point (Figure 4-8)-

Le critere utilisant la derivee seconde pour determiner s'il s'agit d'un mini­
mum ou d'un maximum relatif ne s'applique pas lorsque f'ix^) ~ 0. II existe 
cependant un critere fonde sur les derivees d'ordre superieur permettant de 
conclure quant a Texistence d'un extremum dans les cas suivants: 

Si r{xo) = f'ixo) = r{xo) = . . . = f^-~'Kxo) = 0 et f^^xo) ^ 0, 
alors: 

P Pour n pa ir : f^^\^o) > 0 =^ minimum relatif en x = XQ. 

/(^)(xo) < 0 =4> maximum relatif en x = XQ. 

2^ Pour n impair : ni minimum ni maximum relatif en x = XQ. 

Exemple 4.6 Soit la fonetion f{x) — 3x^ — 2x^ + 1. Cherehons les minima 
et maxima de cette fonetion: 

f'{x) = Vlx^ - Gx̂  = 6x^(2x - 1) 

f{x) = 0-:^Qx'^{2x-l) = 0=^ x = 0 ou x =-. 

f'\x) - 36x^ - 12a; 

f" [-] = 3 > 0 =4> minimum (absolu) en x — -. 

/''(O) = 0 : on ne peut pas eonelure. Caleulons 

f"{x) - 7 2 X - 1 2 

f"{{)) = - 1 2 7^0. 

D'apres le critere ci-dessus, comme n = 3 est impair, on peut en eonelure 
qu^en x — 0, il n^y a ni minimum ni maximum relatif (Figure 4.9). 
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Figure 4.9: Graphe de y = f{x) = 3x^ — 2x^ + 1 

4.5 Points d'inflexion des fonctions 

Un point d'inflexion est un point ou la courbure de la fonction change de 
sens. II est evident qu'en un point d'infiexion la tangente traverse la courbe, 
puisque d'un cote de ce point la courbe est disposee au-dessus de la tangente 
et de rau t re cote au-dessous. Puisque le signe de la derivee seconde nous in-
dique le sens de courbure de la fonction, un changement de signe de la derivee 
seconde implique un changement de courbure, et done un point d'infiexion. 

Si une fonction / ( x ) a un point d'infiexion en x = XQ en lequel la derivee 
seconde est continue, alors / ' ' (XQ) = 0. Cependant, il se pent que la fonction 
soit continue en x == XQ et que f^\x) soit discontinue en ce point. Ici encore, 
un changement de signe de la derivee seconde lorsque x passe par XQ est 
necessaire pour I'existence d'un point d'infiexion en x = XQ. 

La marche a suivre pour determiner les points d'infiexion d'une fonction 
y ^ f{x) est la suivante: 

1. Calculer f\x) 

2. (a) chercher les valeurs de x pour lesquelles la derivee seconde s'an-
nule, c'est-a-dire resoudre I'equation: / ' ' (x) = 0. 

(b) chercher les valeurs de x pour lesquelles la derivee seconde / ' ^ x ) 
a des discontinuites. 
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3. Pour chaque valeur XQ trouvee sous 2a et 2b, determiner si f''{x) change 
de signe lorsque x passe en croissant par XQ : 

/ ' ' (x) change de signe en x = XQ =^ point d'inflexion en x = XQ. 

f^'{x) ne change pas de signe en x = XQ =^ aucun point d'inflexion en 
X — X Q . 

4. Calculer la valeur de la fonction / ( x ) pour chaque valeur XQ en laquelle 
on a un point d'inflexion. On obtient ainsi les coordonnees des points 
d'inflexion. 

N o t e Si f'^{x) et f"'{x) sont continues en x = XQ, on pent utiliser le critere 
suivant: f"{xo) = 0 et / ' ' ' (XQ) 7̂  0 => point d'inflexion en x — XQ. De maniere 
plus generale, la fonction y = / ( x ) admet un point d'inflexion en x = XQ si 
f"{x) == 0 et si la premiere derivee non nulle /^^^(XQ) est d'ordre impair 
(n impair > 2). 

Exemple 4.7 Soit la fonction y — f{x) — x^. 

Figure 4.10: Graphe de y = f{x) — x^ 

Cherchons ses points d^inflexion: 

fix) = 5x^ fix) = 20x3 
f"{x) = 0 ^ 20a;3 = 0 
/" ' (x) = 60x2 /" '(0) = 0 
f^'lx) = 120x f^lo) = 0 
fix) = 120 r ( 0 ) = 120 y^ 0. 

x = 0 
on ne pent pas condure 
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Ainsi, f"{Q) = 0 et la premiere derivee non nulle est d^ordre 5, done impair. 
Par consequent, le point (0; 0) est un point d^inflexion (Figure 4-^0). 

Exemple 4.8 Cherchons les points dHnflexion de lafonctiony — f{x) ~ ^ 

fix) = -X -2/3 

r(^) .2^-5/3 _ _ 2 ^ 
vx^ 

y^oyx e R. 
9 9 

Comme f"{x) ne s^annule jamais et qu^elle est discontinue en x = 0, il suffit 
d^examiner le signe de la derivee seconde autour de x = 0 : 

Six<0, f\x) > 0 
six>0, fix) < 0 point dinflexion en x ~ 0 (Figure 4-ii)-

Figure 4.11: Graphe de y = f{x) — A^X. 

4.6 Formes indeterminees 

Dans le chapitre 3, nous avons vu comment il etait possible de trouver la 

limite d'une forme indeterminee - et —. 
0 oo 

A I'aide de la notion de derivee, nous pouvons maintenant etudier une 
procedure plus generale pour determiner la limite des formes indeterminees. 
Cette procedure est fondee sur la regie de PHospital . 
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• Forme indeterminee -

Regie de THospital: si c est un nombre reel, si f{x) et g{x) sont deri-
vables et g'{x) ^ 0 pour tout x tel que 0 < | x — c |< (5, si lim j{x) — 0 

j'ix) 
et \\mg{x) — 0, alors quand lim —-— existe ou est infinie, 

x-^c x-^c g'[x) 

g{x) x-^c g'{x)' 

fix) 0 
Si — 7 ^ est encore une forme indeterminee - , on pent de nouveau 

g\x) 0 
appliquer la regie de THospital: 

x-^c g'[x) x-^c g"[x) 

II se pent done que Ton obtienne toujours une forme indeterminee ou que 
la limite du rapport des derivees n'existe pas. Dans ce cas, on doit chercher 
la limite par d'autres methodes. 
Remarque La conclusion de la regie de PHospital reste inchangee pour 
d'autres types de limites, notamment lorsque x ^ c est remplace par: 
X —> C^, X -^ C ~ , X —> OO, X ^ —OC. 

Exemple 4.9 Calculous les differentes limites : 

sinx 
1. lim . Lorsque x -^ 0; numerateur et denominateur tendent vers 0. 

x-^O X 
En utilisant la regie de VHospital, 

.̂ s inx ^ cosx 
lim — lim = 1. 
x->0 X x-^Q 1 

6x^ 0 
2. lim . // s^aqit d^une forme indeterminee -. 

x-^o 3e^ - x3 - 3x - 3 0 

Par la regie de VHospital: 

6x2 -̂ 2x 
lim = lim 0̂ 3e^ — x^ — 3x — 3 x-^o 3e^ — 3x2 _ 3 
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Comme la fonction obtenue est encore de type -, on pent a nouveau 

utiliser la regie de VHospital: 

12x ,. 12 12 ^ 
lim —^ = lim —- = —- = 4. 
^_o 3e^ - 3x2 - 3 ^_o 3e^ - 6x 3 

V^ + 8 - 3 
3. lim , —. La limite lorsque x -^ 1 n^existe pas car \Jx — 1 n^est 

cc^l+ V X - 1 

defmie que pour x > 1. Cependant, la limite a droite lorsque x --> 1"̂  

est de la forme - et peut etre trouvee a Vaide de la regie de VHospital: 

^x + 2 — 2 0 / ' ( ^ ) 
>̂ . lim —; TTT-- La limite est de la forme -. La limite de —-—, lorsque 

x^2 ( x - 2 ) 2 -̂  0 g'{x)' ^ 
X tend vers 2^ est infinie^ car: 

lim —-. —-r— = iim —̂— —— = —oo. 
x-^2- {X - 2)2 x^2- 2(x - 2) 

,. V ^ T 2 - 2 ,. |(a; + 2)-V2 
l im —; -7̂ — = lim ; ^ = OO. 

X-.2+ ( x - 2 ) 2 x-^2+ 2 ( x - 2 ) 
OO 

• Forme indeterminee — 
OO 

OO 
La regie, pour une forme indeterminee —, est exactement la meme que 

OO 

pour une forme - , excepte que 0 est remplace par oo : si lim / ( x ) = oo 

ffx) 
et lim5'(x) = oo, alors quand lim ——— existe ou est infinie, 

X—>c X—>c g'\x) 

x-^c g{x) x-^cg'[x) 

OO 

Ici encore, la regie de FHospital pour une forme indeterminee — est 
oo 

valable lorsque: x —̂  c"̂ , x —> c^, x —> +oo, x —> —oo. 
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In X 
Exemple 4.10 Calculous la limite lim —— . // s^agit d^uneformeindeter-

x-^oo ox 
(X) 

minee — . Appliquons la regie de VHospital: 
oo 

lim = lim = 0. 

Pour les autres formes indeterminees, on pent aussi utiliser la regie de 
0 oo 

THospital, mais il taut avant tout les reduire a une expression - ou —. 
0 oo 

• Forme indeterminee oo — oo 

Si lim[/(x) — g{x)] est de la forme oo — oo , c'est-a-dire lim f{x) = oo 
x—^c x—>c 

et \iuig{x) = oo, alors: 

lim[/(x) — g{x)] = l i m \ ^-^ est de la forme - , 

forme indeterminee que Ton resoudra par la regie de THospital. 

/ 2 2 
Exemple 4.11 Calculous la limite lim 

x-^o yx e^ — 1 
2 2 

Cette limite est du type oo —oo. Avec f{x) = — et gix) = , on obtient: 
X e^ — 1 

_i L_ ê  - 1 X 

l i m ^ - i M . = l i m T " r ' = l i m f " " " ^ , 

gm e5i uue forme iudeterminee -. Par la regie de I ^Hospital: 

e^ — X — 1 ^ e^ — 1 
lim 1—: = lim x-^o lx(e^ - 1) ^^0 i(xe^ + e^ - 1) 

= l im -T- = -. = 1. 
^^0 i(xe^ + e^ + e^) i . 2 

/ 2 2 
Aiusij lim — 1-
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• Forme indeterminee 0 • oc 

Si l im[/(x) • g{x)] = 0 • oc , c'est-a-dire l im / (x ) = 0 et liBig{x) -— oo, 
x-^c x-^c x—^c 

f(x) 0 
alors lim —r-r^ ^^t de la forme - . 

x->c 1/ g(x) 0 
Alternativement, lim . ,. . est de la lorme —. 

x-^c 1/ J[x) OO 

Exemple 4.12 Calculous la limite lim (x^ -lux). 
x^0+ 

II Skagit d^une forme indeterminee 0 • oo. 
Avec f{x) = x^ et g{x) = lux, on obtient: 

lim x^ -lux — lim 
x-^0+ a:^0+ 1/x^ 

OO 
qui est une forme indeterminee —. Par la regie de I ^Hospital: 

oo 

Inx ^ l/x ^ —x^ ^ x^ 
lim ——77 — lim -j—z — lim — — lim — = 0 . 

a:-^0+ 1/x^ rr->0+ -2jx^ :r-^0+ 2x x-^0+ 2 

• F o r m e s indeterminees 0^, 1^, oo^ 

Si lim[/(x)]^(^) est T une de ces formes, alors on pose: 

X) y = [f{x)r^ 

Si l imlny — 6, alors l imy = e^. En particulier si fe = — oo ou oo, on 

obtient respectivement limy == 0 ou limy = oo. 

Exemple 4.13 Calculous les limites suivautes : 

1. l i m ( x - 2 ) ^ - ^ // s'agit d ̂ une forme indeterminee 0^. Calculous par 

consequent: 

lim ln((x - 2)"'-^) = lim [(x^ - 4) • ln(x - 2)] 
x-^2+ X—>-2+ 

,. l n ( x - 2 ) 
= lim —^-j -. 

x^—4 
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oo 
// Skagit d^une forme — et nous pouvons appliquer la regie de VHospi-

oo 
tal: 

^-"2+ ^ ^-2+ ^^5zf)2 ^-2+ -2a;(x - 2) 

4a;(x2 - 4 0 
= lim -^^ / = -— = 0. 

x^2+ -Ax + 4 - 4 

Par consequent: lim (2; — 2Y ^^ = e° = 1. 

£ lim {l + x^/''. Ils'agitd ^une forme indeterminee oo^. Calculous: 

lim ln(l + x2)i/^ = lim i l n ( l + x2) 
a: -^±00 a:—>-iboo X 

,. In(l + x2) 
= lim 

X—»=too X 

2x 
— lim 

x->±oo 1 + X^ 
V 2 ,. 1 ^ 

= l im — = l im — — 0. 
X—>±co 2 x x-^dboo X 

et (^onc, lim (1 + x^/^ = e° = 1. 

4.7 Etude complete d'une fonction 

Voici les points que nous devons etudier dans une fonction: 

1. Domaine de definition et continuite 

2. Parite d'une fonction 

3. Intersection avec les axes 

4. Asymptotes verticales 

5. Asymptotes horizontales ou obliques 

6. Premiere derivee 
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7. Deuxieme derivee 

8. Minima et maxima 

9. Points d'inflexion 

10. Tableau de variation 

11. Graphe 

Nous allons reprendre en detail certains de ces points. Les autres ont deja 
ete etudies dans les paragraphes precedents. Finalement, nous aborderons un 
exemple complet d'etude de fonction. 

• D o m a i n e de definition et continuite 

Le domaine de definition comprend les x pour lesquels on pent trouver 
une image y. Sont exclus de cet ensemble, les x pour lesquels la fonction 
presente une discontinuite. On note par D Fensemble de definition. 

Exemple 4.14 Si la fonction est f{x) = x^ — 3x + 4:, tous les x reels ont 
une image par la fonction f{x). Le domaine de definition est, par consequent, 
yensemble des nombres reels IR. 

x^ + 1 
Exemple 4.15 La fonction f{x) = — presente une discontinuite (infi-

nie) en X — 2. Nous devons, par consequent, exclure x = 2 de Vensemble 
de definition et nous ecrivons D = IR — {2} qui signifie que le domaine de 
definition D est egal au complementaire de 2 par rapport a IR, ou encore D 
est tout IR sauf2. 

• Parite de la fonction 

Definition 4.4 Une fonction est dite pairs si f{x) = f{—x) pour tout 
X du domaine de definition. Elle est dite impaire si f{—x) — —f{x) 
pour tout X du domaine de definition. Dans les autres cas, elle n^est ni 
paire ni impaire. 

Le graphe d'une fonction paire est symetrique par rapport a Taxe des y. 
Le graphe d'une fonction impaire est symetrique par rapport a Torigine. 
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Exemple 4.16 Soit la fonction f{x) = x^. Son domaine de definition est 
D = ]R — {2}. Cette fonction est impaire puisque : 

/ ( _ x ) = {-xf - -x^ = -f{x),\fx e R 

Exemple 4.17 Soit la fonction f{x) = 
x' + l 

x-2 
Son domaine de definition 

est D ^ IR — {2}. Montrons que cette fonction n^est ni paire ni impaire: 

pour cela, il suffit de trouver une valeur XQ e D telle que / ( X Q ) 7̂  /(—XQ) et 

f{-xo) ^ - / ( x o ) . 

Soit x^ = \; /(I) = A = _2 et / ( - I ) = A = _ | 
Ainsi, f{l)^f{—l)=^la fonction n'est pas paire. 
D'autre part, / (—I) 7̂  —fiX) ^ ^^ fonction n^est pas impaire. 

• A s y m p t o t e s 

Definition 4.5 Une droite d est dite asym^ptote a une courbe si la 
distance 6 du point courant P de la courbe a cette droite tend vers zero, 
lorsque le point P s^eloigne a Vinfini (c^est-a-dire le point P{x]y) a 
Vune au moins de ses coordonnees qui tend vers Vinfini). 
Les trois cas qui peuvent se presenter sont illustres par la figure 4-12. 

\ ^ 

0 

5P -—̂  
d 

X 

(a) (b) (c) 

Figure 4.12: Asymptotes (a) verticale, (b) horizontale, (c) oblique 
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A s y m p t o t e s verticales 

Definition 4.6 Une asymptote a la courbe y = f{x) est dite asym­
ptote verticale si Vequation de celle-ci est de la forme x = a, OIL 
a ETR. Dans ce cas, Vune des egalites suivantes a lieu: 

lim f{x) = ±oc , lim f{x) — ±oo, l i m / ( x ) = dzoo. 

Definition 4.7 Inversement, on deduit de la definition d^une asym­
ptote que si Vune au moins des egalites ci-dessus a lieu, alors la droite 
X = a est une asymptote verticale. 

Exemple 4.18 Reprenons la fonction f{x) — 

finition est H — {2}. 
x^ + 1 

x' + l 
x-2 

dont le domaine de de-

Comme lim 
x-^2- X — 2 

courbe f{x) = 

— —(X); la droite x = 2 est asymptote verticale a la 

De meme, lim 

(Figure 4.13). 

x-2 
x^ + 1 

^2+ X-2 
= oo, on retrouve x — 2 comme asymptote verticale 

y^ 

lot 

Figure 4.13: Asymptote verticale en x = 2 
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Asymptotes horizontales 

Definition 4.8 Une asymptote a la courbe y — f{x) est dite asympto­
te horizontale si Vequation de celle-ci est de la forme y -— b, oub ^ R. 
Dans ce cas, Vune au moins des egalites suivantes a lieu: 

lim /(x) — b 

ou lim f{x) = b. 

Inversem^ent, si Vune au moins des egalites ci-dessus a lieu, alors la 
droite y = b est une asymptote horizontale. 

x+ 1 
X - 4" 

Exemple 4.19 Soit la fonction f{x) 

fonction quand x tend vers plus ou moins Vinfini: 

lim = 1 

Etudions les limites de cette 

et 

x^+oo X — 4 

lim = 1. 
cc->-oo X — 4 

Ainsi, nous avons une asymptote horizontale en y — 1 (Figure i-H)-

y 

Figure 4.14: Asymptote horizontale en y = 1 
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• A s y m p t o t e s obliques 

Definit ion 4.9 Une asymptote a la courbe y = f{x) est dite asympto­
te oblique si Vequation de celle-ci est de la forme y ̂  ax + b, oil a ^Q 
avec a G K et 6 G IR. 
Dans ce cas, on trouve les coefficients a etb a Vaide des formules (4-1) 
et (4.2): 

a = lim ^ (4.1) 

b = lim{f{x)-ax) (4.2) 

Inversement, si les limites (4-1) et (4-2) existent avec a ̂  Q, alors la 
droite y — ax + b est une asymptote oblique. Le meme principe reste 
valable lorsque x ̂  — oo. 

x^ + 1 
Exemple 4.20 Soit la fonction deVexemple 4-17: f{x) — . Iln^existe 

pas d^asymptote horizontale puisque par la regie de VHospital: 

x^ + 1 , 2x ^ x^ + 1 ^ 2x 
lim — = lim -— = —oo et lim — — lim — — oo. 

x-^—cxD X — 2 03—>—oo 1 x^oo X — 2 X—>oo 1 

En revanche, cette fonction admet une asymptote oblique y = ax + b que nous 
allons chercher: 

a = limM 
a:—»oo X 

X^ + 1 
— lim 

a:-^oo X[X — 2) 

— }i]21 ~ 1. 
a^^oo 2 x — 2 

b = lim (/(x) — ax) 

r ^ ' + 1 1 
cc— '̂Oo X — 2 

x̂  + 1 - x̂  + 2x == lim 
x-^oo X — 2 

a:-^oo X — 2 
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On trouve exactement les memes resultats lorsque x —> — oo. Ainsi, cette 
fonction admet une asymptote oblique d^equation : 

y = X + 2 (voir Figure 4..15). 

• Tableau de variation 

Nous pouvons resumer dans un tableau tout ce qui est interessant, a 
savoir les extrema, les points d'inflexion, la concavite et la croissance 
de la fonction. Voici un exemple fictif d'un tableau de variation de la 
fonction y = f{x): 

X 

y' 
y" 
y 

—00 

-
-
\ 
n 

xi 
— 
0 
\ 
pt 

infl. 

X2 

0 

+ 
min 

u 

X-i 

+ 
0 
/ 
pt 

infl. 

Xi 

0 
-

max 

n 

3̂ 5 

-
0 
\ 
pt 

infl. 

+ 0 0 

-
+ 
\ 
u 

Remarque Pour les premiere et seconde derivees, seul le signe 
(+ ou —) nous interesse. 

Les fleches \ indiquent que la fonction decroit, tandis que les fleches /" 
indiquent que la fonction croit. Min et max indiquent respectivement 
un minimum et un maximum. Le signe p | represente la concavite vers 
le bas, tandis que le signe | J represente la concavite vers le haut. Les 
points d'inflexion sont abreges "pt infl". 

• Graphe 

Nous representons tout ce que nous avons trouve sur le graphe: la fonc­
tion elle-meme, les intersections avec les axes, les minima, les maxima, 
les points d'inflexion et les asymptotes. 

Nous allons maintenant donner un exemple complet d'etude de fonction. 

x^ + l 
Exemple 4.21 Etude complete de f{x) = . 

1. Domaine de definition et continuite: D = ]R— {2} (exemple 4-15). 
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2. Parite de la fonction: ni paire, ni impaire (exemple ^ . ^ 7 / 

3. Intersections avec les axes: 

0^ + 1 1 
X =^Q ^ y — 

0 - 2 

X — 2 

^ x^ + l - O . 

// n^y a pas d ̂ intersection avec Vaxe des x car x^ + 1 > 1̂  Vx G K. 

4- Asymptote verticale: asymptote verticale en x — 2 (exemple 4-18). 

5. Asymptote horizontale: il n'en existe pas (exemple 4-20). 
Asymptote oblique: asymptote oblique d^equation y = x + 2 (exemple 
4.20). 

6. Premiere derivee: 

„,, , vu' — uv' 

7. Deuxieme derivee: 

n^) = 

2x{x - 2) - {x^ + 1) 
(x - 2)2 

x^ - 4a; - 1 

( x - 2 ) 2 • 

vu' — uv' 
y2 

{2x - 4){x - 2)2 - 2(a;2 - 4x - l){x -

¥^' 
{2x - 4:){x - 2) - 2(a;2 - 4x - 1) 

(x - 2)3 
10 

l 2 ) 

{x-2f 
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8. Minima et maxima: 

fix) = 0 
x'^ - Ax - 1 

{x - 2y 
= 0 

x^ - 4x - 1 = 0 

4 ± y i 6 + 4 r xi ̂  4.24 
2 [ a;2 = -0.24 

On remplace xi dans f{x) pour obtenir yi: 

VI = ^ = 8.47. 
xi — 2 

On remplace X2 dans f{x) pour obtenir 7/2 •* 

Z/2 = ̂  = -0.47. 

Pour voir si (4.24; 8.47) et (—0.24; —0.47) sont des maxima ou des mi­
nima, on remplace xi et X2 dans f"{x) : 

f (4.24) = > 0 : minimum. 
•' ^ ' (4.24-2)3 

/ " ( - 0 . 2 4 ) = /_Q 24 _ 2)3 "̂  ̂  • "^'^^"^^"^• 

9. Points d'inflexion: 

^"M-"-!^-"-
// n^y a pas de solution; par consequent, aucun point d^inflexion. 

10. Tableau de variation: 

X 

y' 
y" 
y 
n 

— (X) 

+ 
-
/ 
n 

-0,24 
0 
-

max 

n 

0 
-
-
\ 
n 

2 

II 
a.v. 

4.24 
0 
+ 

min 

u 

+ 0 0 

+ 
+ 
/ 
u 

11. Graphe: 
Le graphe de cette fonction est illustre par la figure 4-15. 
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Figure 4.15: Graphe de y = f{x) = ^ ^ y 

4.8 Applications economiques des derivees 

Les applications des derivees en economie sont nombreuses. Dans ce para-
graphe, nous nous limiterons aux notions de cout et de revenu marginaux 
ainsi qu'au profit en regime de monopole. 

• Cout marginal 

Si Ton suppose que le cout total de production y est fonction unique-
ment du nombre d'unites produites x, on pent representer la fonction 
du cout total comme suit: 

En general, la fonction du cout total a les proprietes suivantes: 

1. Lorsqu'on ne produit rien, le cout total est positif ou nul, c'est-a-
dire: /(O) > 0. Si /(O) > 0, la quantite /(O) represente les couts 
fixes de production. 

2. Le cout total croit quand la production croit, c'est-a-dire que f^x) 
n'est jamais negative. 

Si le cout total est CT = y = / ( ^ ) , le cout moyen ou le cout par 
unite est egal a: 

CM = ^^^-^ 
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et le cout marginal est la premiere derivee par rapport a x dii 
cout total : 

CMa = y' = f{x) = ^ . 

Exemple 4.22 Si le cout total est CT =^ x^ — 3x^ + 3x + 1; le cout moyen 
CT 1 

est egal a CM — = x^ — 3x + 3 H— , et le cout marginal est egal a 
X X 

dCT 
C M a = — - = 3 x 2 - 6 x + 3. 

ax 
On remarque que la courbe du cout marginal coupe celle du cout moyen au 
minimum du cout moyen, comme le montre la figure 4-16. 

CMa 
CM 

3 quantite 

Figure 4.16: CMa = 3^2 - 6x + 3 et CM = x^ - 3x + 3 + 
1 

• Revenu marginal 

Pour toute fonction de demande y = f{x) on y represente le prix par 
unite demandee et x le nombre d'unites demandees, le revenu total RT 
est egal au produit de x par y. 

RT = X • y = X ' f{x). 

Le revenu marginal est egal a la premiere derivee par rapport a x du 
revenu total : 

RMa= ——. 
dx 
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Exemple 4.23 Soit la fonction de demande y — —2x + 3. Le revenu total 
est egal a : 

RT = X'y = X' {-2x + 3) = -2x^ + 3x. 

Le revenu marginal est done la premiere derivee par rapport a x du revenu 
total: 

d Rl^ 
RMa = -—- = -4x + 3 

dx 
Le revenu total et le revenu marginal sont representes par la figure 4-17. 

RT I RMa 

quantite X 0 

(a) (b) 

Figure 4.17: Revenu total (a) et revenu marginal (b) 

• Profit en regime de monopole 

En general, le monopoleur va controler Toffre x et le prix y (determine 
par la fonction de demande) afin de maximiser son profit. La fonction 
du profit total resulte de la difference entre le revenu total et le cout 
total : 

PT = RT- CT. 

Le profit total est maximum si: 

1) —— = 0 et 
dx 

ON d^PT 

2 ' i s r < «• 
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^ ,, dPT ^ dRT dCT 
b n d autres termes, —-— est egal a ;—. 

dx dx dx 

O r , ^ = RMa et ^ = CMa. 
dx dx 

dPT , . ,. . , . 
Par consequent, —-— = 0 (premiere condition) revient an meme que 
RMa = CMa, ce qui signifie que le profit est maximum quand le revenu 
marginal est egal au cout marginal. 

Exemple 4.24 La fonction de demande d^un certain bien est: 

y = 18 — 5x 

et le cout total pour le monopoleur est: 

CT = x^ -3x^ + 3x + l. 

On va chercher le profit maximum que le monopoleur peut obtenir. Le revenu 
total est egal a : 

RT - x-y 

= x (18-5x) 

- 1 8 x - 5 x l 

Le profit total est done : 

PT = RT-CT 

= 18x - bx^ - (x^ - 3x^ + 3x + 1) 

= -x^ - 2x^ + 15x - 1. 

La premiere condition pour avoir un profit maximum est : 
dPT 
—;— = 0; c^est-d-dire —3x^ — 4x + 15 = 0. 

dx 
Nous obtenons deux solutions: 

X = —6 et X — -. 
3 

La premiere est irrecevable car une quantite negative n^a aucun sens en econo­
mic, du moins dans ce contexte. Nous verifions done la deuxierne condition, 
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dPPT , . . 5 
a savoir ——z- < \), avec la solution x — -. 

dx"^ 3 
(fPT , 5 (fPT ^ ,, , . . 5 
——— = —6x — 4, et avec x = -, ——r- < 0. II y a bien maximum enx = -. 

dx^ 3 dx^ 3 
5 

Pour avoir le profit maximum, on remplace x = - dans le PT: 

5 \ ^ . / 5 \ ^ _ / 5 
P ™ . = - ^ - J -2^5j +15 (^-j-1 = 13.81. 

Si nous prenons V autre methode et egalisons RMa et CM a, nous obtenons 
le meme resultat: 

RMa = CMa 

18 - lOx - 3x^ - 6x + 3 
.2 - 3 x ^ - 4 x + 15 = 0. 

Nous pouvons representer graphiquement cette deuxieme methode (Figure 
4^18). Si Von represente les courbes de demande et de cout moyen (qui est 

CM = x^ — 3x + 3 + —) sur le meme graphe, le profit maximum est represente 
X 

par la surface hachuree : 

ABEF = ABCD-EFCD 

profit maximum = revenu total-cout total 

Le profit maximum peut etre calcule par BF • CD oil CD represente la 
solution X pour laquelle RMa = CMa, B est la valeur de la demande quand 
on remplace la solution dans Inequation et F est la valeur du cout moyen pour 
la meme quantite x. 
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RMa 
CMa 

CM 

3 quantite 

Figure 4.18: Surface hachuree: profit maximum 

Exercices 
1. La somme de deux nombres positifs est 100. 

Trouver le couple de nombres: 
(a) dont le produit est maximal. 
(b) dont la somme des carres est minimale. 

2. On construit une boite de base rectangulaire, sans couvercle, ayant 
2 faces carrees, de 10 m^ de volume, pour un prix de 100 francs/m^ 
pour la base et de 60 francs/m^ pour les cotes. 
Faire une esquisse de la situation. 
Chercher les dimensions de la boite qui permettent de minimiser le prix. 

l-x 
1 + X 2 

sont sur 3. Montrer que les points d'inflexion de la fonction y 

une droite, dont il faut trouver Tequation. 

Representer le tout graphiquement. 

4. Quelles doivent etre les dimensions d'un cylindre de volume V pour que 
sa surface totale S soit minimale? 

N o t e Un cylindre est entierement determine par son rayon de base r 
et sa hauteur h. 

5. Faire le graphe de la fonction y = 2s inx + cos2x, puis determiner les 
maxima et minima de cette fonction sur Tintervalle [0 ; 27r]. 
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6. Montrer que parmi tous les rectangles inscrits dans un cercle donne, le 
carre a une surface maximale. 
Montrer aussi que le perimetre est maximal pour le carre. 

7. Faire une etude complete de la fonction: y = —x^ + x^ + 2x. 

8. Faire le graphe et etudier les asymptotes de la fonction: 

x^ + 2x - 1 
y = • 

X 

9. Faire le graphe et trouver les extrema de la fonction: 

y = {2x' - x^Yl\ 

Etudier ensuite soigneusement I'asymptote de cette fonction. 

10. Faire une etude complete de la fonction suivante: 

{\nxf 
y = • 

X 

11. Calculer la limite des fonctions suivantes par la regie de FHospital: 
. . ^ x^ — 2x — 3 ... _. sinx . . .̂ sin ax 
a) lim— TT^ (b) iim (c) lim 

^ ^ 0:^3 (x - 3)2 ^ ^ x^O X ^ ^ x^O X 

/̂ x V ^" -^ ' ^ r^ v e^' + Sx^ 3xlnx 
(d) lim — (e) l im- —^ (i) l im-r 

x-^b X - b x-^o 4e^ + 2x^ x-^i x^ - x 

(g) lim — (h) lim —- (i) lim 
x—>oo C x-^oo X a:—̂oo 46 + ZX 

12. Montrer que si la fonction y = ax^ + fex^ + ex + d admet deux extrema, 
alors Tun est un maximum et Fautre est un minimum. 
En deduire que, dans ce cas, le point d'inflexion se situe entre ces deux 
extrema. 

g - l / x 

13. Etudier la fonction: y = . 
X 

14. Une entreprise de machines de precision a une fonction de coiit total 
representee par Tequation CT = 2x^ — Sx'^ — 12x , ou CT indique le 
cout et X la quantite. 
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(a) Quelle est requation de la fonction du cout marginal? 

(b) Quelle est Tequation de la fonction du cout moyen? 
A quel point le cout moyen est-il a son minimum? 

(c) Est-ce que Ton pent s'attendre a trouver de telles equations dans 
la pratique? 

15. La demande d'un certain bien est y = 12 — x, ou y ^st le prix et x la 
quantite. Determiner le prix et la quantite pour lesquels le revenu est 
maximal. Representer graphiquement la demande, le revenu total et le 
revenu marginal. 

16. Un fabricant de postes de radio produit q postes par semaine a un 
q^ 

cout total de \- 3q + 100 francs. II est en regime de monopole et la 
Zo 

demande de son marche est q = 75 — 3p, ou p est le prix d'un poste. 
Trouver le nombre de postes que ce fabricant doit produire par semaine 
pour maximiser son benefice. 
Quel est le benefice maximum? Quel est le prix de monopole? 



Chapitre 5 

Integrales 

5.1 Introduction 

Dans le chapitre 3, nous avons etudie le probleme suivant: etant donne une 
fonction, trouver sa derivee. Dans ce chapitre, nous considererons le probleme 
inverse: etant donne une fonction /(x), trouver une fonction F(x) telle que 
sa derivee soit egale a /(x), c'est-a-dire F^x) = f{x). 

En economic, Tintegration pent notamment etre utilisee pour trouver la 
fonction de cotit total lorsque la fonction de cout marginal est donnee ou 
encore pour trouver la fonction de revenu total lorsque la fonction de revenu 
marginal est donnee. 

D'autre part, I'integration joue un role important dans le calcul de Taire 
comprise entre plusieurs courbes. Par exemple, le revenu total pent etre 
considere comme I'aire comprise entre la courbe du revenu marginal et les 
axes, le surplus du consommateur comme Paire comprise entre la courbe de 
demande et les axes, et ainsi de suite. 

5.2 Integrate indefinie 

Reprenons le probleme inverse de la derivation: etant donne une fonction 
/(x), trouver une fonction F{x) telle que F'{x) == f{x). 
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Definition 5.1 On dit que F(x)+c est Vintegrale indefinie de lafonction 
f{x) si et seulement si F'{x) — f{x) et Von note alors: 

j f{x)dx — F{x) + c, oil c ^ ^ est appelee constante dHntegration. 

En outre, F{x) est dite une primitive de f{x). La differentielle dx indique 
que X est la variable d^integration. 

Nous avons toute une famille de fonctions F{x)-\-c qui sont des integrales 
de f{x). En effet, la derivee d'une constante etant nuUe, c pent prendre 
n'importe quelle valeur. 

On pent trouver la valeur de c quand on connait la valeur de Tintegrale 
pour une certaine valeur de la variable x. Cette specification s'appelle condi­
t ion initiale. 

Exemple 5.1 Supposons qu^unefonction f{x) a une integrale indefinie 
F{x) + c — 2x^ + 3x + c. Cette famille de courbes est representee sur la figure 
5.1. 

Figure 5.1: Famille de courbes d'equation y = 2x^ + 3x + c 

A chaque courbe correspond un c different. Supposons comme condition ini­
tiale que Vintegrale vaut 5 quand x vaut zero. Nous avons alors: 

2(0)2 + 3 ( 0 ) + c - 5 

d^ou c = 5 et Vintegrale avec la condition initiale est alors: 

I f{x)dx==2x^ + 3x + 5. 

Cette integrale fait partie de la famille de courbes donnees par: 2x'^ + 3x + c 
(Figure 5.1). 
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5.3 Table d'integrales 

Avant de donner des methodes d'integration, nous donnerons une liste d'inte-
grales indefinies que Ton peut obtenir directement a partir de la definition 
5.1, c'est-a-dire que Ton peut verifier que la derivee du second membre est 
egale a la fonction a integrer. 

1. 1 ' dx = dx = X + c. 

^a+ l 
2. / x^dx = h c, avec a ^ —1. 

' a + 1 ^ 

. dx ^ . , 
3. / — = In X +c. 

X 

4. / a'^dx = h c. 
m a 

5. / e^dx = e^ + c. 

6. / sin xdx = — cos x -\- c. 

7. / cos xdx — sin x + c. 

8. / sinhxdx — coshx + c. 

9. / cosh xdx — sinhx + c. 

Donnons encore deux proprietes importantes de Tintegrale indefi-
nie (dans ce qui suit, on suppose que les integrales indefinies considerees 
existent): 

1̂ ^ propriete L'integrale indefinie de la somme d'un nombre fini de 
fonction est egale a la somme de leurs integrales : 
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f[fl{x) + f2{x) + ''' + fn{x)]dx = J h{x)dx + J f2{x)dx + '-^ 

2^ propriete On peut sortir un facteur constant "du signe J " , c'est-
a-dire si a est une constante, alors: 

/ af{x)dx = a f{x)dx. 

Exemple 5.2 Soit / (7x^ + 2)dx. A Vaide des deux proprietes ci-dessus et 

de la table des integrales indefinies, nous calculons: 

/ {7x^ + 2)dx = I 7x^dx + 2dx = 7 x'^dx + 2 dx=-7 ' ^ + 2x + c. 

Exemple 5.3 / = 2 / — = 21n x +c. 
J X J X 

Exemple 5.4 / Se^dx =^3 e'^dx = 3e^ + c. 

Exemple 5.5 / (2^ — sinx)(ix = / 2^dx — / sinxdx = h cosx + c. 

R e m a r q u e Rappelons que la derivee d'une fonction composee y == f{g{x)) 
est donnee par y^ — f\g{x)) • g\x), on g'{x) est parfois appelee derivee 
interieure. II ne faut pas oublier d'en tenir compte lorsqu'on veut integrer 
une telle fonction composee. 

Exemple 5.6 / e '̂̂ dx = -e^^ + c, puisque la derivee interieure de e"^^ est 

eg ale a 4-

Exemple 5.7 / cos(3x — 5)dx = - sin(3x — 5) + c. 

De maniere plus generale, on a la regie suivante: Si / f{x)dx = F{x) + Ci, 

alors: 

/ f{ax + b)dx — -F{ax + 6) + C2, ou a 7̂  0. 
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5.4 Integration par changement de variable 

L'integrale / f{x)dx pent devenir plus simple a calculer si la variable x 

est remplacee par une nouvelle variable t telle que x = ^{t)- Dans ce cas, 
dx = Lp'{t)dt et I'egalite suivante est satisfaite: 

f{x)dx= j f{^{t))-^\t)dt. 

II est parfois preferable de choisir le changement de variable t = ip{x) au 
lieu de X = ip{t). 

Exemple 5.8 Ismx-cosxdx. Effectuons le changement de variable 

t = sin X ; ainsi, dt — cos x dx et par consequent : 

sm X ' cos X dx — I tdt = \- c= - sm x + c. 

Dans cet exemple, Vintegrale a calculer est de la forme: I %l){x) • %jj'{x)dx. 

En posant t = i^{x), on a: dt — ip\x)dx. D^ou: 

/ '^(x) • il)\x)dx — \ tdt — V c= - '0^(x) + c. 

De fagon analogue, on obtient la formule generale: 

/ i)^{x) • ^'{x)dx = • ?/;''+^(x) + c, avec n ^ - 1 . 
J Tl "T i 

Exemple 5.9 {x + 3)^dx. Posons: t = x + 3; dt = dx. D^ou : 

{x + 3fdx= t^dt = -t^ + c= -{x + 3y + c. 

/

2x 
-^ dx. Posons: t = x'^ + 5; dt — 2xdx. Ainsi : 
x^ + 5 

/ — -dx = / — =: In i +c =: Infx"^ + 5) + c. 
y x̂  + 5 J t 
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Lorsque Fintegrale a calculer est de la forme / ———-dx, on pose t ~ i/j(x) 
J ^ ( ^ ) 

et on obtient la formule: 

f^\x) , f dt ^ , , , , . , X , 

J V^(^) J t 

/

dx 1 1 1 d^ A 
. Posons: t — 3x+2; dt = 3dx ^ dx — —-. Ainsi: 

OX I Z o 

dx f dt 1 f dt 1, , , 1, , . 
= = / _ = _ In U -fc = - In 3a; + 2 +c. 3a;+ 2 J 3t 31 t 3 ' ' 3 

Exemple 5.12 / . 3 . y r r ^ , . . P„ .„^ . . t = l + x^. * = 2.dx, Con,m. 

t = 1 + x^, on a: x"^ = t — 1. Ainsi, x^dx = x^ • xdx = {t — l)-dt. D'ou: 

/ a ;Vl + x'^dx = / - • (i - 1) • Vtdt 

= l ^ « ' " - ( 3 f - 5 ) + c 

= l ( l + a ;Y / ' - ( 3x2 -2 ) + c. 

5.5 Integration par parties 

Lorsqu'une expression a integrer est formee d'un produit de deux fonctions 
dont Tune est facile a integrer, nous pouvons utiliser ce qu'on appelle Tinte-
gration par parties. Cette formule se deduit directement de la derivee d'un 



5.5. Integration par parties 127 

produit: 

d dv du 
—-iU'V) = U- —- +V ' -— 
ax ax ax 

dv d du 

dx dx dx 

L'integration des deux membres de Tegalite nous donne: 

dv ^ f d(u' v) ^ f du ^ 
u ' —-dx — / ; dx — V ' -— ' dx. 

dx J dx J dx 

D'ou la formule d'integration par parties: 

udv — u ' V — / vdu. 

II n'y a malheureusement pas de regies pour separer une expression en 
deux parties u et dv. D'autre part, il se pent que Tintegration par parties ne 
fournisse pas une expression plus simple a integrer; dans ce cas, une autre 
methode doit etre utilisee. 

On notera finalement que, dans certains cas, la formule d'integration par 
parties doit etre utilisee plusieurs fois consecutivement. 

Exemple 5.13 Pour calculer Vintegrale i x • s inx dx, on pose: u = x et 

dv = s inx dx, de telle sorte que du = dx et v = / sinx dx =^ — cosx. 

Par la regie d ̂ integration par parties, nous avons : 

xsinxdx = —xcosx— / —cosxdx 

= —XCOSX+ / cosx dx 

= —X cos X + sin X + c. 

Exemple 5.14 / x^ -e^dx. Posons: u — x'^ et dv — e^dx. Nous avons 

alors: du = 2xdx et v = e^dx — e^. 

Ainsi, \ x^e^dx = x^ • e^ - / 2xe^dx. 
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A nouveau, nous avons un produit a integrer. Posons u = 2x et dv — e^dx; 
du — 2dx et V — e^. D^ou: 

fx^e^dx = x V - [ 2 x e ^ - /2e^rfx] 

= x^e^ - 2xe^ + 2 [ e'dx 

= x^e^ - 2xe^ + 2e' + c 

= e ^ ( x ^ - 2 x + 2) + c. 

5.6 Applications economiques des integrales 
indefinies 

Nous avons vu precedemment que la variation marginale pent etre obtenue 
en derivant une fonction. Par consequent, cette fonction est Tintegrale de la 
variation marginale. Nous allons voir cette application de Tintegration pour 
le cotit et pour le revenu. 

• Le cotit 

Si le cout total de production y pour produire x unites est fourni par 
la fonction y = f{x)^ alors le cout moyen par unite est: 

X X 

et le cout marginal est: 

C'est-a-dire que le cout marginal est la derivee par rapport a x de la 
fonction du cout total y — j{x). Done le cout total est Tintegrale par 
rapport a x de la fonction du cotit marginal j'[x): 

Jf'{x)dx = f{x) + c. 

Pour obtenir une fonction du cotit total unique en integrant la fonction 
du cotit marginal correspondante, il faut remplir une condition initiale. 
Frequemment, il s'agit du cotit fixe, c'est-a-dire le cotit quand x = 0. 
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Exemple 5.15 Le cout marginal y' est donne par y' — 1.64—0.05x. Trouvons 
les fonctions du cout total et du cout moyen quand le cout fixe est egal a 10.3. 

y = / (1.64 - Omx)dx = IMx - 0.025x^ + c. 

Six = 0, y== 1.64 • 0 - 0.025 • 0̂  + c - 10.3. Par consequent, c - 10.3 et la 
fonction du cout total est: 

y = 10.3+ 1.64X-0.025x1 

Celle du cout moyen est egale au cout total divise par la quantite x : 

y 10.3 
+ 1.64-0.025X. 

• Le revenu 

Pour n'importe quelle fonction de demande y = f{x) on y est le prix 
par unite et x le nombre d'unites, le revenu total R est le produit de x 
par y, c'est-a-dire: 

R = X'y = x- f{x). 

Le revenu marginal par rapport a la demande est la derivee par rapport 
a X du revenu total : 

Par consequent, la fonction du revenu total est Fintegrale par rapport 
a X de la fonction du revenu marginal, et puisque: 

/R'Wdx^RW + c, 

il faut donner une condition initiale pour obtenir une fonction du re­
venu total unique en integrant la fonction du revenu marginal corres-
pondante. La condition initiale stipulant que le revenu est nul quand 
la demande est nuUe pent etre utilisee pour evaluer la constante d'inte-
gration. 

Notons que le revenu moyen ou revenu par unite est le prix par unite y 
et de ce fait la courbe du revenu moyen et la courbe de demande sont 
identiques. 
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Exemple 5.16 La fonction du revenu marginal est R!{x) = 4 — 4x + 6x^. 
Determinons les fonctions du revenu total et de demande : 

R{x) - {4:-4:X + 6x'^)dx = 4x - 2x^ + 2x^ + c. 

Six = 0, R{0) = 4 - 0 - 2 - 0 ^ + 2-0^ + c = 0 , d'ou c = 0. Le revenu total 
est done : 

R(x) = Ax - 2x^ + 2x^ et la demande: y = — =:4:-2x + 2x^. 
X 

5.7 Integrale definie 

Nous allons voir maintenant comment calculer Taire A de la surface comprise 
entre lacourbey = /(x), Faxe des x et les droites x = aet x = b (pour autant 
que / soit definie sur [a; b] ) (Figure 5.2). 

y =m 

Ol X = a x = b ^ 

Figure 5.2: Aire sous une courbe y — f{x) 

Pour cela, nous ferons les hypotheses suivantes: 
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F Soit y — f{x) une fonction continue sur rintervalle [a; b]. 

2^ Soit/(x) > 0 , VxG [a; 6]. 

S"" Effectuons une subdivision de Pintervalle [a; 6] en n parties 
en choisissant (n + 1) points Xi, X2,..., x^+i tels que: 
a — xi < X2 < •. • < Xi < Xi^i < . . . < Xn^i = b (Figure 5.3). 

4^ Soit Axi = Xi^i — x ,̂ z = 1,2,..., n. 

5"" Soit Ax la valeur maximale des Axi pour 1 < i < n. 
Les (n+1) points choisis divisent Tintervalle [a ; 6] en n parties de longueur 

Axi] nous pouvons ainsi former des rectangles dont la base est la largeur 
Ax, et la hauteur est la valeur /(x,) (Figure 5.3). 

y=f(x) 

\J I Ci JiJ J^2'^3 -^i "^i+I ^n ^n+1 ^ 

Figure 5.3: Subdivision de Tintervalle [a; 6] 

L'aire de ces rectangles est respectivement egale a: 

Ax i - / (x i ) , Ax2- / (xs ) , . . . , Ax^-/(x^) 

et leur somme est: 
n 

^Axi' f{xi). 
1=1 

Ainsi, Taire cherchee est approximee par: 

n 
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En augment ant le nombre de rectangles, Taire se trouvant entre la courbe et 
les rectangles va diminuer. Si Ton vent calculer Faire exacte, il faut calculer 
la limite de cette somme lorsque n tend vers Tinfini et Ax tend vers zero. 

L'aire A limitee par la courbe y = f{x), Taxe des x et les deux droites 
X = a et X == 6 est definie comme etant cette limite: 

n 

A = lim y Axi • f{xi) 
2 = 1 

que Ton note / f{x)dx (lire "integrale de a a 6 de f{x)dx'') et que Ton 
J a 

appelle in t eg ra l e def inie; a et 6 sont appeles les bornes d'integration. 
Nous enongons a present Tun des theoremes les plus importants du calcul 

integral. 

Theoreme 5.1 (Theoreme fondamental du calcul integral) Si f{x) 
est continue sur Vintervalle ferme [a; b] et si F{x) est une primitive de f{x), 
alors: 

f f{x)dx = F{x) 
J a 

h 

= F{b) - F{a). 

Expliquons ce resultat geometriquement en considerant Taire limitee par 
la courbe y = f{x), Taxe des x, une abscisse fixee en a; = a et une abscisse 
mobile en x — b. Notons cette aire abgh par A (Figure 5.4). 
Quand x = b s'accroit de Ax, A s'accroit de A A = aire bceg. Nous voyons 
que: 

aire bcdg < aire bceg < aire beef 
bg ' Ax < AA < ce • Ax 

bg < A A / A x < ce. 

Lorsque nous faisons tendre Ax vers zero, ce va tendre vers bg qui reste fixe 
et nous avons: 

lim —— = —— = bq = y = r(x). Aa:-.o Ax dx ^ ^ «̂  V y 

Nous pouvons ecrire cette limite comme suit: 

dA = f{x)dx. 

Notons par F{x) + c Tintegrale de f{x)dx; d'ou par integration: 

A = F(x) + c. 
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y-f(x) 

Figure 5.4: A = aire ahgh = / f{x)dx = F{b) - F{a) 
J a 

On troiive la constante d'integration c en remarquant que pour x — a^ A = 0. 
Nous avons alors: 

A = F(a) + c = 0 

^c = -F{a). 

Par consequent, on obtient: 

k = F{x)-F{a). 

L'aire ahgh de la figure 5.4, ou x = 6, est done egale a: 

A - F{h) - F{a) 

et on la note: 

/ fix)dx = F{b)-F{a). 
J a 

La constante d'integration disparait et Tintegrale a une valeur finie. C'est 
pourquoi Ton parle d'integrale definie. 

Exemple 5.17 Calculous Vintegrale definie J^ x^dx. Tout d^ahord, il faut 
trouver F{x) : 

x^ 
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Ensuite, nous remplagons dans A = F{b) — F{a) avec 6 = 3 et a = 0 : 

3 3 

Cela signifie que Vaire comprise entre y = x^, Vaxe des x, x ~ 0 et x = 3 est 
eg ale a 9 (Figure 5.5). 

\ ^' 

\ ^ 

\ ^ 

\ ^' 
\ 2 

/ ; 

^ ^ " ' 1 t '•• 

/ 

3 ^ 

Figure 5.5: / x dx — 9 

• Interpretation d'une aire negative 

Dans la definition d'une aire par A == J f{x)dx^ on a suppose que f{x) 
est une fonction positive continue entre a et b. Si f{x) est negative entre 
a et 6, c'est-a-dire si la courbe y — f{x) se situe au-dessous de I'axe des 
x entre a et 6, alors la valeur de Tintegrale 

A= f{x)dx 
J a 

est negative. De telles aires sont appelees des aires negatives. Lorsque 

Ton calcule A— I f{x)dx sans tenir compte du fait que la courbe 
J a 

y — f{x) se situe au-dessus ou au-dessous de Taxe des x, on parle 
d'aire orientee. II se pent que cette aire soit nuUe comme le montre 
Texemple suivant. 

/'47r 

Exemple 5.18 / sinxdx = — COSX|Q^ == — cos47r — (—cosO) == 0. 

Dans ce cas, la somme des aires positives compense exactement la somme 
des aires negatives (Figure 5.6). 
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1 / 1 "-

Y \ 
7 l \ 

27ly 

1 '"X 

STCN^ 

4n/ 

\4~ / 

ATV 

Figure 5.6: / sinxdx = 0 en tant qu'aire orientee 
'o 

En revanche, si Ton veut calculer Taire totale absolue entre une courbe 
et Taxe de x pour un intervalle [a; 6], on utilisera la formule: 

Aire totale = ^ (aires positives) - ^ (aires negatives). 

Figure 5.7: Aire totale = + + 

Par consequent, si Taire que Ton doit calculer se situe a la fois au-dessous 
et au-dessus de Taxe des x, il faut decomposer Fintegrale en utilisant la 
propriete 5 et la definition de Paire totale donnee ci-dessus (Figure 5.7). 

Exemple 5.19 L'aire se situant entre f{x) — x^ — 4x, Vaxe des x^ x = 0 et 
X = 2 est donnee par: 

I (x^-4x)dx - ( ^ -2xA 
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= — - 2 - 2 2 - — - 2 - 0 ^ 
3 V3 
8 16 

= 3 " ^ = ~ y 
Comme Vaire se situe au-dessous de Vaxe des x (Figure 5.8), Vaire totale 
s^obtient en changeant de signe: 

Aire totale — —aire negative = —. 

Figure 5.8: / (x^ - ^x)dx = -
Jo 

16 

Exemple 5.20 L^aire qui se situe entre f{x) — —x^ + x^ + 5x, Vaxe des x, 
X = —1 et x = 1 est representee dans la figure 5.9. 

Pour trouver Vaire totale, il faut done decomposer Vintegrale / f{x)dx de 

la maniere suivante: 

- J f{x)dx + J f{x)dx 

ou / f{x)dx = 
0 

- / {-x^ + x^ + bx)dx 

x^ x^ 5x^^ ' 

T + T + T 
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et j f{x)dx 
Jo 

= 

= 

= 

= 

= 

/ 0̂  03 ^ 0 ?) 
H - ^ - ^ -
- (4 -h0 
( - 3 - 4 + 30) _ 23 

12 ~ 12 

/ {-x^ + x^ + 5x)dx 
Jo 
{ x^ x' 5x^\ 1 

0 

1 1 5 / (-0)^ 
4 3 2 V 4 

( -3 + 4 + 30) _ 31 
12 ~ 12" 

•H!)) 

0=' 0̂  

L ̂ aire totale vaut done. 
23 31 _ 54 _ 9 
12 ^ 1 2 ~ 12 ~ 2' 

PO P1 g 

Figure 5.9: - / {-x^ + x^ + 5x)dx + / {-x^ + x^ + 5x)dx = -
J-i Jo 2 

Proprietes des integrales definies 

Soit deux fonctions f{x) et g{x) continues sur Tintervalle [a; 6]. Nous 
avons les proprietes suivantes: 
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1. / f{x)dx=- r f{x)dx. 
J a J b 

2. f f{x)dx^O. 
J a 

nh nh 

3. / cf{x)dx = c f{x)dx^ ou c est une constante. 
J a J a 

4. f {f{x)±g{x))dx= I f{x)dx± I g{x)dx. 
J a Ja J a 

nc rb pc 

5. / f{x)dx = / f{x)dx + / f{x)dx^ avec a < b < c. 
Ja Ja Jb 

Exemple 5.21 Appliquons la propriete Id {2x + 5)dx : 

/ {2x + 5)dx = (x^ + 5x)|^ 

= 42 + 5. 4 _ (12 + 5.1) 

= 3 6 - 6 
= 30. 

/ {2x + b)dx = (a;2 + 5a;) |̂  
4 

= 1̂  + 5 • 1 - (42 + 5 • 4) 

= 6 - 3 6 

= -30. 

Exemple 5.22 Appliquons la propriety 2d (6x^ + l)dx : 

I {6x'^ + l)dx = {2x^ + x)\\ 

= 2 • 1̂  + 1 - (2 • 1̂  + 1) 

= 3 - 3 

= 0. 
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Exemple 5.23 Appliquons la propriete 5 a Adx : 

3 r2 r3 

Adx = / 4:dx+ / Mx 
1 7i J2 

3 

/ 4dx = 4x \l 

= 4 - 3 - ( 4 - 1 ) 

- 1 2 - 4 

/ 4:dx+ 4:dx = 4.x\l + 4x I2 

= 4 . 2 - (4 • 1) + 4 • 3 - (4 • 2) 

= 8 - 4 + 1 2 - 8 

• Aire entre deux courbes 

Si Taire totale que Ton doit calculer ne se situe pas entre une courbe 
f{x) et Faxe des x, mais entre une courbe f{x) et une autre courbe 
g{x) (toujours entre x = a et x = b)^ on obtient cette aire de la fagon 
suivante, en supposant f{x) < g{x): 

A = / [g{x) — f{x)]dx avec a < x < b. 
J a 

Remarque Comme, par hypothese, f{x) < g(x), il n'est plus neces-
saire de tenir compte des aires negatives. 

Exemple 5.24 Trouvons Vaire qui se situe entre f{x) = x^ et g{x) — x 
(Figure 5.10). 
Nous cherchons tout d ̂ abord les points d ^intersection: 

x^ ^ X 

x^ -X - 0 

x(x^ - 1) := 0 

x - ( x + l ) ( x - l ) - 0. 
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Figure 5.10: / {x^ — x)dx + / {x — x^)dx =-
J-i Jo 2 

Les solutions de cette equation sont : 

X = ~1 

X = 0 

X = 1. 

Nous remarquons qu^entre —1 etO, c^est g{x) qui est inferieure a f{x) tandis 
qu^entre 0 et 1, c^est f{x) qui est inferieure a g{x). Par consequent, nous 
devons decomposer I Hntegrale en deux integrales: 

f [f{x)-g{x)]dx et [ [gix)-f{x)]dx. 
-1 Jo 

Nous avons alors: 

[x^ — x)dx 
A 2 

X^ X 

4 2 

1 1 

4 ~ 2 

x^ x^ 

- 1 

(x — X )dx = I — 

_ 1 _ 1 

~ 2 ~ 4 
1 
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L^aire totale est eqale a: — \— = - . 
^ 4 4 2 

5.8 Integrales impropres 

L'objectif de ce paragraphe est de calculer / f{x)dx, ou / est une fonction 
J a 

continue sur Tintervalle [a; b[ (c'est-a-dire que / n'est pas definie en b) ou sur 
rintervalle ]a; b] (c'est-a-dire que / n'est pas definie en a). 

Exemple 5.25 / —dxouf{x) = — est continue sur [1; oo[. 
J I X X 

Exemple 5.26 / In (x) dx ou f (x) = In (x) est continue sur ]0; 1]. 
J 0 

Si / (x) est continue sur [a; 6[, alors / est continue sur [a; XQ] pour XQ < b. 

Des lors, Tintegrale / f{x)dx se calcule en deux etapes: 
J a 

/

XQ 

f{x)dx = $ (xo) . 
a 

2. Prendre la limite lorsque XQ tend vers b: lim $ (XQ) = / f{x)dx • 

/

XQ ph 

f{x)dx = / f{x)dx . 
a J a^ 

De meme, si / ( x ) est continue sur ]a;6], nous avons, si la limite existe: 

/

b f*b 

f{x)dx = / f{x)dx . 
xo J a 

5.27 Calculons I —dx, f (x) = — est continue sur [1; oo[. 
J I x^ x^ 

Exemple 

XQ 

1. ^{xo)= I -,dx^ ( - - ) 
XQ 

2. lim $ (xo) = lim ( 1 - — ) = 1 - lim ( — ) :- 1 - 0 = 1. 
a^o-^oo a;o-^oo V XQ J CCQ-̂ OO y X o / 
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Ainsi, I -^dx = 1. 
x^ 

1 • ' 

Exemple 5.28 Calculous / lii{x)dx, f{x) =^ln(x) est continue sur]{)\l] 
J 0 

Une primitive de In (x) est F (x) — x In (x) — x (voir exercice 2 (a) du meme 
chapitre). 

1. $ ( x o ) = / ln(x)G?x = ( x l n ( x ) - x ) | ^ ^ = - 1 - (xoln(xo) - xo) 

= -xo ln(xo) + Xo - 1. 

2. lim $ (xo) = lim (—XQ In (XQ) + XQ — 1) 

= — 1 — lim (xoln (XQ)) + lim xo = —1 — 0 + 0 = —1. 

Ainsi, / In (x) dx = — 1. 
J 0 

5.9 Applications economiques des integrales 
definies 

L'integrale definie a de nombreuses applications en economie. Les concepts 
d'excedent du consommateur et d'excedent du producteur en sont deux 
exemples. Nous allons en discuter dans ce paragraphe, puis nous traiterons 
du profit total. 

• Excedent du consommateur 

Une fonction de demande represente les quantites d'un produit qui 
pourraient etre achetees a differents prix. Si le prix du marche est yo 
et la demande du marche correspondante est XQ, les consommateurs 
qui seraient d'accord de payer plus que le prix du marche y gagnent 
du fait que le prix est seulement yo (Figure 5.11). Sous certaines hy­
potheses economiques, le gain total du consommateur est represente 
par Taire qui se situe sous la courbe de demande et au-dessus de la 
droite y — yo- Cette aire est designee par Marshall comme "Pexcedent 
du consommateur" et est evaluee comme suit: 
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PXo 

excedent du consommateur = / f{x)dx — XQ - y^ 
Jo 

ou la fonction de demande est ^ — / ( x ) , ou d'une maniere ana­
logue 

- excedent du consommateur 9{y)dy 

ou la fonction de demande est x — g{y) et mo est la valeur de y 
quand a; = 0, c'est-a-dire que mo est Tintersection de la fonction 
de demande avec I'axe des y. Par consequent: 

rXQ nrriQ 

excedent du consommateur — / f{x)dx — XQ - yo — / g{y)dy. 
Jo Jyo 

y 
prix 

yo' 

•Q 

(0;mj 

• ^^!"'\ N. 

yr '' 

y =f(x) ^ x=g(y) 

; 

(xo;yo) 

^0 quantite ^ 

Figure 5.11: Excedent du consommateur 

Exemple 5.29 Si la fonction de demande est y = 24. — 2x — x'^, nous allons 
trouver Vexcedent du consommateur: 

(a) si XQ — Z (Figure 5.12(a)) 
Amsi: 7/0 = 2 4 - 2 - 3 - 3 2 = 9. 

excedent du consommateur = f{x)dx -xo-yo 

- / {24.-2x-x^)dx-3'9 
Jo 
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= I 24.x-x' - 2 7 

= ( 7 2 - 9 - 9 ) - 0 - 2 7 

= 27. 

(b) SI yo = 21 (Figure 5.12(h)) 
Ainsi, XQ est trouve par 21 = 24 — 2x — x^. De Id, nous avons 
x^ + 2^; - 3 = 0, d'ou x = {-2± V 4 + 1 2 ) / 2 - ( - 2 ± 4)/2 = 1 et 
—3. Comme une quantite ne peut pas etre negative, XQ = 1. 

excedent du consommateur = / f(x)dx — XQ - yo 
Jo 

- / (24 - 2x - x^)dx - 1 - 2 1 
Jo 

= [24.x- x^ 
X 

21 

Figure 5.12: Excedent du consommateur (a) si XQ = 3 (b) si yo = 21 

Excedent du producteur 

Une fonction d'offre represente les quantites respectives d'un produit 
qui pourraient etre offertes a differents prix. Si le prix du marche est yo 
et Foffre du marche correspondante est XQ, les producteurs qui seraient 
d'accord d'offrir le produit au-dessous du prix du marche y gagnent du 
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fait que le prix est yo- Sous certaines hypotheses economiques, le gain 
total pour le producteur est represente par Paire qui se situe au-dessus 
de la courbe d'offre et au-dessous de la droite y — yo et il est connu sous 
le nom d'excedent du producteur (Figure 5.13). Cette aire est evaluee 
par: 

— excedent du producteur = XQ - yo — / f{x)dx. 
Jo 

ou la fonction d'offre est y = f{x) 

ou encore par : 

yo 
— excedent du producteur = / g(y)dy 

JMO 
ou la fonction d'offre est x = g{y) et MQ est la valeur de y quand 
X = 0, c'est-a-dire que MQ est Tintersection de la fonction d'offre 
avec Faxe des y. 

Nous avons done: 

excedent du producteur — XQ - yo 
yo 

f{x)dx^ / g{y)dy. 
MO 

y 
prix 

yo 

I'MJ 

0" 

y=f(x) o x=g(y) / 

\7ZTZ7 -7-TT77T—7^ 

X 

{^o>y(j 

X 

0 quantite 

Figure 5.13: Excedent du producteur 

Exemple 5.30 Si Voffre est y — [x + 2)^ et le prix est yo = 25^ nous al-
lons trouver Vexcedent du producteur en utilisant deux methodes differentes 
(Figure 5.14)-
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{0;25) 

y = (x^2f (0;4) 

(3;25) 

Figure 5.14: Excedent du producteur si y^ = 25 

Remarque XQ se trouve comme suit: 25 — (x + 2)^, ce qui nous donne 
x^ + 4x-21 = 0. 
De Id, nous avons x ^ ( - 4 ± ^ / l 6 + 84)/2 = ( -4±10) /2 = - 7 et3. Comme 
une quantite ne peut pas etre negative, XQ = 3. Ainsi: 

rxo 

a) excedent du producteur = XQ • yo — f{x)dx 
Jo 

= 3 • 25 - / (x + 2fdx 
Jo 

7 5 -

7 5 -

{x + 2)2 

3 
125 8 
T"" 3 

= 36. 

Remarque On trouve g{y) en inversant y = {x + 2)^ : y ^ = x + 2 et 
y/y — 2 = x. Quant a MQ, on le trouve en posant x = 0 dans y = {x + 2)"^, ce 
qui donne MQ = 4. Ainsi : 

b) excedent du producteur = 9{y)dy 
Mo 

25 

iy'/'-2)dy 
4 

/2y^ 
- 2 y 

25 
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= (f-)-(f-
- 36. 

• Profit total 

L'integrale pent etre utilisee pour determiner le profit total ou le bene­
fice net total dans difi*erents contextes. En general, le profit est maxi­
mum (en concurrence parfaite) quand le revenu marginal est egal 
au cout marginal. Le profit total est Tintegrale du revenu marginal 
moins le cout marginal de la quantite zero a la quantite pour laquelle 
le profit est maximum. 

Exemple 5.31 Nous allons trouver la quantite qui maximise le profit et le 
profit total en ce pointy si les fonctions de revenu marginal et de cout marginal 
sont donnees par : 

RMa = 25-5x- 2x1 

CMa = 15 - 2x - x^. 

Ces fonctions sont representees sur la figure 5.15. Si RMa — CMa, on a: 

25-5x-2x^ = 15-2x-x'^ 

25 - 5x - 2x^ -15 + 2x + x^ = 0 

l O - S x - x ^ = 0 

(5 + x){2-x) = 0 

avec comme solutions: 

xi = —5 et X2 — 2. 

Seul X2 a un sens economiquement parlant. 
La premiere derivee de {RMa — CMa) est la seconde derivee du profit total 
(PT) et son signe nous indique si le profit est un maximum ou un minimum 
pour une valeur particuliere de x. 

d d'^PT 
— (RMa - CMa) = -—- - - 3 - 2x 
dx ax^ 

et avec x — 2, ——— = —7 
dx^ 
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le profit est bien un maximum pour x — 2. 

profit total = I {RMa - CMa)dx 
Jo 

(10 - 3a; - x'^)dx 

= 10a; -
dx"^ x' 

20 - 6 - - ) - 0 

34 

L'aire hachur6e sur la figure 5.15 repr6sente le profit total calcule ci-dessus. 

30T RA^, CMa 

f^ 34 
Figure 5.15: Profit total = / (RMa - CMa)dx = — 

Jo 3 



Exercices 149 

Exercices 
1. Calculer les integrales indefinies suivantes: 

(a) / sin2x dx. 

(b)/sin..cosxdx. 

(c) hx'^ + x- 5)e''dx. 

(d) f^-±^dx. 
X 

dx 

2. Calculer, par parties, les integrales indefinies suivantes: 

(f) 

(a) lux dx. 

( b ) / . . l n . d x . 

(c) / x^ • sinx dx. 

( d ) / s i n ^ x d x . 

3. Connaissant le cout marginal d'une unite produite x: 

CMa = -4x^ + 50x + 3. 

Trouver le cotit total et le cout moyen si les couts fixes sont de 60. 

4. Si le revenu marginal est RMa = x^ — 6x + 10, determiner le revenu 
total et la fonction de demande. 
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5. En tout point d'une certaine courbe, on a, y^' — x + 5. 
Trouver Tequation de cette courbe sachant qu'elle passe par le point 
(1; 2) et, qu'en ce point, elle est tangente a la droite x + y = 3. 

6. Calculer les integrales definies suivantes: 

^ 2x 

(b) / tanx dx. 
Jo 

(d) / —dx. 
Ji X 

(e) / —dx. (constatation! ). 
- 1 x^ 

7. Quelle doit etre la valeur de a pour que Faire comprise entre la parabole 
y — x'^ ei la droite y — ax soit egale a 2? Faire une esquisse de la 
situation. 

Note Choisir a > 0. 

8. Si la fonction de demande est y = 8 — x et XQ = 4, trouver Fexcedent 
du consommateur en utilisant deux methodes differentes. 

9. La quant it e et le prix correspondants, en concurrence parfaite, sont 
determines par les fonctions de demande et d'offre 7/ = 14 — x^ et 
y = 2 -\- X respectivement. Determiner Fexcedent du producteur cor-
respondant. 

10. Determiner Faire comprise entre la parabole ?/ == x^ + 2 et la droite 
y = 2x + b. 

11. Calculer les integrales indefinies suivantes, par changement de variables : 

(a) I 3xVl-2x^dx. 
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(d) / (e^ + l)e^dx. 

-dx. 
1 + e-^ 

^ ^ ' ê  + 1 

x^ 

12. Calculer les integrales suivantes : 

0 

(a) / e^dx. 

—oo 

oo 

(b) / i d . . 
1 

oo 

(c) I-^dx. 



152 Integrales 

N E W T O N Isaac Sir (1643-1727) 
Apres des etudes a Cambridge, Newton est elu, en 1669, professeur de mathe-
matiques et devient membre de la Royal Society en 1672. Ses recherches por­
tent, essentiellement, d'abord sur le domaine de Foptique. En 1787, il publie 
son fameux Principes^ dans lequel il formule les trois lois du mouvement, 
derivees de sa loi de gravitation universelle, et presente un systeme de me-
canique capable de preciser et d'evaluer les mouvements de tons les corps 
celestes ou terrestres. Get ouvrage est considere comme le plus grand livre 
scientifique jamais ecrit. En 1693, Newton se retire de la recherche et oc-
cupe un poste au Gouvernement. En 1703, il est elu president de la Royal 
Society, charge qu'il conserve jusqu'a sa mort en 1727. Sir Isaac Newton 
a change le cours de I'histoire scientifique. Ses decouvertes et ses theories 
sont les fondements de tons les progres scientifiques qui suivirent. Sa theo-
rie du calcul difi"erentiel et integral, la resolution des mysteres de la lumiere, 
la decouverte du theoreme binomial sont d'autres de ses contributions im-
portantes. Oeuvres majeures: Principes Mathematiques de la Philosophie 
Naturelle (1687), OpUque (1704). 



Chapitre 6 

Les series 

6.1 Introduction 

Dans le chapitre 3, nous avons etudie la notion de suite. Nous allons main-
tenant nous interesser a la s omme des termes d'une suite, qui porte le 
nom de serie. Nous aborderons la notion de convergence et de divergence 
d'une serie infinie en donnant des regies et des criteres permettant d'etablir 
la convergence ou la divergence pour differents types de series. Nous etudie-
rons finalement la representation d'une fonction par une serie de Maclaurin 
et par une serie de Taylor. L'utilisation des series en economic permet notam-
ment de trouver le taux de rendement interne d'un investissement ou encore 
la valeur capitalisee d'une annuite. 

6.2 Definitions 

Nous avons vu au chapitre 3 qu'une suite finie avait un nombre fini de 
termes : ui^U2^u^^ •.. ,Un-

Definit ion 6.1 On appelle serie finie la somme finie Ui+U2+us + ' • • + Un^ 
n 

notee /_]'^i, ou les Ui sont les termes d^une suite {un). 
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II est a remarquer que rindice de sommation peut tout aussi bien etre 
note par fc, /, m etc. Ainsi, pour designer la somme ui + U2 + - - - + Um on peut 

n n n 

indifferemment ecrire: V^'^i, V^'^/c, /_^ '^^ ^^^• 

On parle de suite infinie lorsqu'elle comporte un nombre illimite de termes 
et on la note: Ui,U2,1^3,..., u^,... 

Definition 6.2 On appelle serie infinie (ou simplement serie) la somme 
00 

ui + U2 + Us + ''' + Un + •'', notee Vj'^z; ou les Ui sont les termes d^une 
i=i 

suite (un) infinie. 

II est parfois pratique de prendre 0 comme indice du premier terme; dans 
00 

ce cas, la serie s'ecrit /^^Uj. 

Comme dans le cas des suites, le t erme general ou n^ terme d'une serie 
a une expression indiquant comment former les differents termes de la serie. 

Exemple 6.1 La serie finie 1 + 8 + 27 + 64 + 125 peut s^ecrire sous forme 
5 

abregee 2_^ ^^ • La somme de cette serie vaut: 
n = l 

J ^ n ^ = 1̂  + 2^ + 3^ + 4^ + 5^ - 225. 
n=l 

Exemple 6.2 La serie infinie 1 + - + - + - + --- a pour terme general 

1 
Un = 

2n-l 

lorsque Vindice du premier terme vaut 1, c^est-d-dire le premier terme s^ob-
tient en posant n = 1, le deuxieme en posant n — 2, etc. Cette serie s^ecrit: 

/ J 2^"-'-
r i = l 

Dans Texemple 6.2, la somme n'est plus la somme d'un nombre fini de 
termes comme dans Texemple 6.1, mais la somme d'un nombre illimite de 
termes. Pour savoir si cette somme est un nombre fini, il faut introduire la 
notion de convergence et de divergence d'une serie infinie. 
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6.3 Demonstration par recurrence (induction) 

• Pour demontrer qu'une formule P{n) dependant d'un nombre naturel 
variable n est vraie quel que soit n, on procede en deux etapes: 

1. On verifie que P est vraie pour n = 1 (ancrage). 

2. On demontre que si la proposition est vraie pour un entier k quel-

conque, elle est aussi vraie pour Fentier A; + 1. 

Ici rhypothese est done P{k) et on Tappelle hypothese de recur­
rence, la conclusion doit etre P{k + 1). 

Exemple 6.3 Demontrons par recurrence que: 

n - ( n + l ) 
y ^ i = 1 + 2 + 3H Vn = 
i=l 

Posons: /Sn == 1 + 2 + 3 + • • • + n. 

1. Ancrage : Si = — ^ - = 1 ; 

n ' (n -\- 1) 
la proposition Sn = est done vraie pour n = 1. 

k ' (k + 1) 
2. Hypothese de recurrence: Sk — . 

// s ̂ agit a present de montrer que: 

(A; + 1) . (A: + 2) 

On a. 

Sk+i — 

Sk+i - Sk + {k + l) 
k'{k + l 

+ {k + l) 

= (/c+l)-0 + l 

(fc + l)-(fc + 2) 
2 

Par consequent, Sn = quel que soit Ventiern positif, ce quHl 

fallait demontrer (c.q.f.d.). 
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Cette methode pent servir, comme Ton vient de le voir, a demontrer la 
formule generale du n^ terme d'une serie. Cette demonstration se passe en 
deux temps: 1) etant donne une serie, deviner la formule generale; 
2) demontrer la formule par induction. La premiere partie est generalement la 
plus ardue, etant donne qu'il n'existe pas de methode generale ni d'algorithme 
pour trouver la formule. Seul le flair et un peu de chance entrent en jeu! 

6.4 Convergence et divergence d'une serie 

II est clair que la somme d'un nombre fini de termes est un nombre fini. Pour 
savoir si la somme d'une serie infinie est un nombre fini, il faut introduire la 
notion de sommes partiel les : pour cela, on forme a partir des termes Ui de 
la serie la suite {Sn) des sommes partielles, ou Sn represente la somme des n 
premiers termes; ainsi la suite des sommes partielles sera donnee par: 

Si -=- ui 

52 = Ui+ U2 

53 = U1+U2 + Us 

SA = U1 + U2 + US + U4 

n 

Sn = Ui+U2 + Us+U4^-\ \-Un = ^ Ui. 
i=l 

Nous pouvons des lors definir la convergence et la divergence des series 
infinies: 

00 

Definition 6.3 On dit qu^une serie 2.^^ ^^^ convergente si et seulement 
i=i 

si la suite des sommes partielles converge : 

n 

lim S = lim }^Ui — L. 

i=.\ 

Dans ce cas, L est appelee somme de la serie et Von ecrit; L = \ Ui, Si la 

0 0 

suite des sommes partielles diverge^ on dit que la serie \ ui est divergente. 
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Exemple 6.4 Reprenons Vexemple 6.2 pour etudier la convergence de la se-

rie 2 . ,.^_i' Pour cela, calculons la suite des sommes partielles : 
2^ 

n=l 
S, = 1 

'^ = ^ + 2 + 4 = 4 

, 1 1 1 15 

_ 1 1 1 _ 2" - 1 _ ^ l_ 

2" — 1 / 1 \ 
lim Sn = lim ^ _, = lim 2 - - ^ r = 2. 

oo ^ 

Comme la suite des sommes partielles converge, la serie \] converge 

et sa somme vaut 2. Ainsi, 

1 1 1 

2' 
n=l 

2 ' 4 ' 8 ' ^^2' 

oo -. 

Remarque Une condit ion necessaire pour qu'une serie 2_.^n converge 
n=l 

est que le terme general u^ de la serie tende vers 0 lorsque n tend vers I'infini: 
lim Un = 0. Cette condition n'est cependant pas suffisante, comme nous le 

verrons plus loin, au paragraphe 6.6. 
En revanche, on pent afRrmer: 

oo 

si lim Un 7̂  0, alors la serieY^i/^rz diverge. 
n—^oo ^—^ 

1 O Q /I ^^ 

Exemple 6.5 Soit la serie —\ 1 \ h - - - = >^ . Cette serie di-
2 3 4 5 ^ n+1 

n=l 
verge puisque 

n 
lim Un = lim = 1 7̂  0. 

n^oo n—>oo n -\- 1 
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6.5 Series geometriques 

On appelle serie geometrique une serie dans laquelle les termes Ui sont les 
termes d'une suite geometrique: 

Ui+Ui' q + ui' q^ + Ui' q^ -{ \-Ui - q"^ ^ H = T^^-i .n-l ai ' q 
n=l 

Calculous la suite des sommes partielles: 

Si = ui 

52 = Ui+Ui ' q 

53 = Ui + Ui' q + Ui' q'^ 

SA = Ui+Ui ' q + Ui' q'^ + ui ' q^ 

Sn = Ui+Ui • q + Ui' q'^ -\ \-Ui ' q""'^ 

Ainsi, q ' Sn ^ ui ' q + ui ' q^ + ui ' q^ ^ h Ui • g"". 
D'ou: 

Sn- q- Sn == {ui+Ui' q + ui' q^ + ui' q^ ^ h t^i • q"^"^) 

-{ui -q + ui-q^ ^Ui-q^ ^-•"+ui' g^~^ + Ui • g^) 

= Ui— Ui ' q^ 

=> 5„(1 - «) = ui • (1 - «») 

l - q 

Comme lim g^ == 0, si | g |< 1 et lim g^ = oc, si | g |> 1, on a: 
n—»oo n—>oo 

lim bn = lim — , SI I g |< 1 et 
n^^oo n-^00 1 — q 1 — q 

lim bn = lim = 00 SI \ q \> 1. 
n—>oo n-^00 1 — q 

On notera que si g = — 1, lim (—1)'̂  n'existe pas (suite dite oscillante); ainsi 

pour g = — 1, la serie geometrique diverge. 
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Si g' == 1, la serie geometrique s'ecrit ui + ui + ui + - - - et Sn = n - ui. 
Comme lim n • t^i = oc, la serie geometrique diverge lorsque q — I. 

n—^oo 

On obtient ainsi le resultat suivant: 
oo 

La serie geometrique ui+ui - q +ui - q^ + ui - q^ + -- - = 2_\ ^i ' Q^~^ 
n=l 

• converge et vaut si g < 1. 

l - q 

• diverge si | g |> 1. 

Exemple 6.6 Soit la serie geometrique: 

1 1 1 , 2 , / r " - ' 
l + 3 + 9 + 2 7 + - = 5 : ( 3 

n=l ^ 
1 

oiiui — 1 et q — -. 
Comme g == - < 1, cette serie converge et Von a: 

t{\ n - l 

x 3 / 1 - 1 / 3 2/3 2 ' 

Exemple 6.7 Soit la serie: 

1 1 1 - V — 
53 + 54 + 55 + Z^5n+2-

n=l 

II Skagit d^une serie geometrique de raison q = - dans laquelle les trois pre-
5 

miers termes ont ete omis. On peut ecrire la serie ci-dessus de la maniere 
suivante : 

Z^5n+2 ~ I ^ 5 52 J ^ V ^ 5 ' ^ 5 2 J "^53 ^ 5 4 ^ ' " 
n=l ^ ^ ^ ^ 

i _ l _ l ] v l 
5 527 ^ 5 ^ 

' n=l 
on obtient: 

_1 1 1 1 _ 31 1 _ 31 5 _ 1 
~ 5 " 25 ^ 1 - 1/5 ~ ~ 2 5 ^ 4/5 " ~ 2 5 ^ 4 ~ 100' 
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Remarque La convergence ou la divergence d'une serie n'est pas 
modifiee si Ton omet ou I'on rajoute un nombre fini de termes. En 
revanche, la somme de la serie est modifiee (exemple 6.7). 

L'etude de la convergence d'une serie s'avere nettement plus difficile si 
Ton ne connait pas une expression pour le terme general Sn de la suite des 
sommes partielles. C'est pourquoi nous allons examiner plusieurs methodes 
permettant de reconnaitre la nature d'une serie donnee (autrement dit, de 
reconnaitre si elle est convergente ou divergente). 

6.6 Series a termes positifs 

Comme son nom Tindique, une serie a termes positifs est une serie: 

/]ui, ou Ui > 0, Vi > 1. 

Puisque tons les termes sont positifs, la suite des sommes partielles est 
une suite monotone croissante. Or, le premier critere de convergence d'une 
suite nous assure qu'une suite croissante et bornee est convergente. On pent 
done enoncer le critere de convergence d'une serie a termes positifs. 

• Critere de convergence 
CXD 

La serie y . ^i ^ termes positifs est convergente si et seulement 
2 = 1 

si la suite des sommes partielles est bornee. 

On remarquera que ce critere de convergence est encore valable pour 
les series a termes positifs ou nuls, puisque, dans ce cas, la suite des sommes 
partielles est une suite croissante et que dans le premier critere de convergence 
d'une suite, il n'est pas necessaire que la suite soit monotone croissante. 

• Tests de comparaison 

On appelle serie majorante une serie dont les termes sont plus grands 
(ou egaux) que les termes correspondants d'une serie a termes positifs 
donnee. 
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1. Regie de convergence: Si une serie a termes positifs est ma-
joree par une serie convergente, alors elle est convergente. 

En effet, si la serie majorante converge, le critere de convergence nous 
assure que la suite de ses sommes partielles est bornee. Comme cette 
serie majore la serie donnee, la suite des sommes partielles de la serie 
donnee est bornee et, par consequent, elle converge. 

De fagon analogue, on pent etablir la regie suivante: 

2. Regie de divergence: Si une serie a termes positifs majore 
une serie divergente, alors elle est divergente. 

Pour pouvoir appliquer ces regies de comparaison, il faut connaitre un 
certain nombre de series convergentes et divergentes. II est, ainsi souvent fort 
commode de comparer une serie a celle de R i e m a n n : 

1 1 1 1 1 -vl 
n=l 

dont on pent montrer qu'elle converge si p >1 et diverge si p <1. 
Lorsque p = 1, on obtient la serie harmonique: 

1 1 1 1 ^ 1 
1+ + + +. . . + _ + . . . ^ \ _ 

2 3 4 n ^-^ n 

qui diverge. 
En effet, comparons la serie harmonique dont les termes ont ete groupes 

comme indique: 

avec la s6rie: 

1 1 / I 1 \ / I 1 1 1 \ / 1 1 \ 

qui diverge puisque la somme des termes contenus dans les differentes paren­

theses vaut toujours - et que, par consequent, la suite des sommes partielles 
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(Sn) croit sans limite lorsque n croit indefiniment. Ainsi, puisque la serie 
harmonique majore cette serie divergente, elle est divergente. 

L'exeraple de la serie harmonique nous montre que la condition 
lim Un = 0 est une condition necessaire, mais pas sufRsante pour que la 

n—>oo 
oo 

serie Y ^ Un converge. 
n=l 

oo ^ 

En effet, dans le cas de la serie harmonique Y^—, on 

lim Un = lim — = 0, bien que la serie diverge. 
n—^oo n^oo Ti 

Exemple 6.8 Soit la serie: 

n 

oo 
1 1 1 1 1 _ ^ i 

Le terme general de cette serie estUn = —^ . Comme -̂ r < —;T, Vn > 1, 
n^ + 6 n^ + 3 n^ 

chaque terme de cette serie est inferieur au terme correspondant de la serie 
de Riem^ann avec p = 2 : 

. I l l 1 
4 9 16 n^ 

dont on sait qu^elle est convergente {p > 1). La serie donnee est done majoree 
par une serie convergente. Par la regie de convergence, la serie donnee est 
done convergente. 

Exemple 6.9 Soit la serie: 

^ 5 10 17 n^ + 1 ^ n ^ + l 
2 + - + — + — + ••• + ^ + "- = > ^ . 

n=l 

n^ + 1 1 1 
Le terme general de cette serie est u^ = o— = — \ — o - Comme 

w^ n n"̂  

— \ — - > —,Vn> 1, chaque terme de cette serie est superieur au terme cor-
n n"^ n 
respondant de la serie harmonique: 

, 1 1 1 1 

2 3 4 n 
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qui diverge. La serie majore la serie harmonique qui diverge. Par consequent, 
la regie de divergence nous assure que la serie donnee diverge. 

Note La convergence ou la divergence d'une serie n'etant pas modifiee lors-
qu'on omet un nombre fini de termes, les deux tests de comparaison ci-dessus 
peuvent etre appliques aux termes intervenant a partir d'un certain rang 
Uk^ x̂/c+i, '̂ /c+2, • • • plutot qu'a tous les termes t^i, 1/2, '^3, • • • 

Autrement dit, la regie de convergence et la regie de divergence sont 
encore valables lorsque les inegalites entre les termes correspondants ne sont 
satisfaites qu'a partir d'un certain rang. 

• Regie de d'Alembert 
00 

Soit une serie a termes positifs 2_^Ui. Considerons le rapport de deux 

termes generaux consecutifs —— appele rapport de d'Alembert. 

Designons par jS la limite de ce rapport lorsque n devient infiniment 
grand: 

n-^oo Un 

Nous avons la regie suivante: 

1. si /5 < 1, la serie est convergente. 

2. si /5 > 1, la serie est divergente. 

3. si /3 — 1, on ne pent pas conclure. 

Exemple 6.10 Rappelons que le produit 1 • 2 • 3 • 4 • . . . • (n — 1) • n = n! se 
lit 'Vi factorielle''; par convention, 0! == 1. Soit la serie: 

2 2 2 2 A 2 
2 + T7 + 7̂  + :;7 + • • • + 1 ) ! " ^ ' " Z-^(n-Di­li 2! 3! ( n - 1 ) ! ^^ (n - 1)1 

Nous avons: 
_ 2 _ 2 

[n — 1)! n! 
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Le rapport de d'Alembert est done: 

Un+i 2 ( n - 1 ) ! 

n\ 2 
( n - 1 ) ! 

n! 
1 - 2 - 3 - . . . • (n -- 2) • (n --1) 

1 • 2 • 3 • . . . • (n - 2) • (n - 1) • n 
1 

n 

P = lim ^ ^ ^ = lim i = 0. 

Ainsi [3 = 0 < 1 ^ la serie est convergente. 

Exemple 6.11 Soit la serie: 

1! 2[ n! _ Y - ! ^ 

n=l 

n! ^ (n + 1)! 
«n = - et u ,+i = - ^ ^ ^ 

Un+i _ (n + 1)! 4" _ n + 1 

w„ ~ 4"+i ' n! ~ 4 

p = lim = lim —-— = 00. 
n^oo Un n^QO 4 

Comme P > I, la serie est divergente. 

Exemple 6.12 Soit la serie: 

2 ^ ^ 2 _ ^ 

1-2 3 - 4 5 - 6 (2n - 1) • (2n) ^ (2n - 1) • (2' 

u„+i _ 2 (2n - 1) • (2n) _ An^ - 2n 

Un " (2n + 1) • (2n + 2) ~ 2 ~ 4n2 + 6n + 2 

/ 3 = l i m ^ = l i m Y ' ' " ' ' - 1 -
n-̂ oo 1̂ ^ n->oo 4n^ + 6n + 2 

n 
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La regie de d^Alemhert ne nous permet pas de conclure. Cependant, il est 
possible d^utiliser, dans ce cas, le test de comparaison avec une serie conver-
gente: en effet, comparons la serie donnee a la serie de Riemann oup = 2 : 

11 1 _vl 

2 
Les termes de la serie y^ ;—;—- eiant inferieurs aux termes corres-

^ (2n - 1) • (2n^ 

pondants de la serie de Riemann y^ —r qui est convergente, la serie donnee 
n=l 

est convergente. 

Remarque Une serie a termes negatifs pent etre etudiee comme Toppose 
d'une serie a termes positifs. 

Exemple 6.13 La serie: 

2 3 n ' ~ ^ n 
n=l 

est Voppose de la serie harmonique 

^ 1 1 1 ^ 1 
9. .̂  n ^—^ r) 2 3 n ^-^ n 

Dans ce cas, y ^ —\ —. Comme > — diverge, il en est de 
Z—J 'Yi L—^ ri L—J r) 

OO ^ 

pour la serie V ^ . 

meme 
n ^-—^ n ^—^ n 

n=l n=l n=l 
OO 

n 
n=l 

6.7 Series alternees 

On appelle serie alternee une serie dont les termes sont alternativement 
positifs et negatifs: 

OO 

on chaque terme Ui est posit if. 
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• Critere de Leibniz 
oo 

Une serie alternee V^(—1)^~^ • Un converge si les deux conditions sui-
n=l 

vantes sont satisfaites simultanement: 

1. Un > t^n+1, Vn > 1. 

2. l im Un = 0. 

En effet, pour n pair, la suite des sommes partielles Sn = ui — U2 + 
Us — U4 + ''' — Un^ pent s'ecrire: 

Sn = {Ul - U2) + (̂ t3 - 1̂ 4) H h {Un-l - Un)• 

Ainsi, cette suite est croissante puisque {u^ — '^n+i) > 0, Vn > 1 (T^ 
condition). D'autre part, 

Sn^'Ui- {U2 - Us) - {U4^-Us) - . . . - {Un-2 " Un-l) - Un. 

Ainsi, Sn < ui puisqu'on ne soustrait a ui que des expressions positives. 
Par consequent, la suite des sommes partielles est croissante et bornee, 
done convergente d'apres le critere de convergence, c'est-a-dire Sn tend 
vers une limite: lim Sn = L, pour n pair. 

n—>oo 

Considerons maintenant la somme partielle Sn+i =^ Sn + '^n+i et mont-
rons qu'elle tend vers la meme limite L: 

lim Sn+i = lim Sn + lim Un+i = L + 0 = L (2eme condition). 

D'oii, pour n quelconque, lim 5^ — L et la serie converge. 
n—4 00 

Exemple 6.14 Soit la serie harmonique alternee: 

2 3 4 ^ ^ ^ n 

1 1 
Un = - et Un+l = , . -

n n + 1 
Voyons si les deux conditions du critere de Leibniz sont verifiees. On a : 

r - > , Vn > 1 1 00 . 
^ n + 1 I . 7 - • V ^ / -t\n-l ^ 

1 } ^ La sene > ( — 1) • — converqe. 

2° lim - = 0 I fit "' 
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Nous pouvons, des lors, resumer les differents types de series et Tetude 
de leur convergence: 

1. Soit une serie 2,^n ^ termes de signe quelconque. 
n=l 

Si lim Un j^ 0, alors la serie diverge. 

oo 

2. Soit une serie alternee Y (̂—l)"^""^ • u^. On utilise le critere de Leibniz. 
n=l 

Si Un > Un-^i^ Vn > 1 et lim Un = 0, alors la serie converge. 

3. Soit une serie V^ Un a termes positifs. On utilise la regie de d'Alembert 
n=l 

en calculant /? = lim ——. 
n->oo Un 

Si /3 < 1, la serie converge. 
Si ^ > 1, la serie diverge. 
Si /3 = 1, on ne pent pas conclure. 

4. Soit une serie V^ Un a termes positifs. Lorsque la regie de d'Alembert 

echoue, c'est-a-dire lorsque ^ = 1, on utilise les tests de comparaison 
avec une autre serie que nous savons etre convergente ou divergente 
(serie geometrique, serie de Riemann). 

Si cette nouvelle serie majore la serie donnee et qu'elle converge, alors 
la serie donnee converge. 

Si la serie donnee majore cette nouvelle serie et que celle-ci diverge, 
alors la serie donnee est divergente. 

6.8 Convergence absolue 
CXD 

Considerons une serie V^ Un a termes de signe quelconque. 
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Une telle serie est dite absolument convergente si la serie des valeurs 
absolues: 

oo 

^Y^\Un\ = \Ui\ + \U2\ + \Us\ -] \- \Un\ -\ 
n=l 

converge. 
II est clair que toute serie a termes positifs qui converge est absolument 

convergente. D'autre part, on pent montrer le resultat important suivant: 
toute serie absolument convergente est convergente. 

La reciproque est fausse. Par exemple, la serie harmonique alternee 
1 1 1 .• , . , . 

1 \ h--- converge tandis que la serie harmonique 
2 3 4 

. I l l 
1 + 2 + 3 + 4 + • • • diverge. 

oo 

De maniere generate, lorsque la serie a termes de signe quelconque N , ^n 
n=l 

converge, mais que Y ^ | Un \ diverge, on dit que la serie 2 , ^n est semi­
nal 

convergente. 

Exemple 6.15 Soit la serie: 

72=1 n=l 

convergente. 

1 1 ' ^ / . x n - l 

7 49 343 ^ V 7 

Cette serie est absolument convergente puisque la serie des valeurs abso-
1 1 1 1 

lues 1 + ;; + 77; + ^r^ + • • • est une serie geometrique de raison -. La serie 

alternee donnee (serie geometrique de raison —-) est done convergente puis-

qu'elle est absolument convergente. 

On remarquera qu'une serie geometrique convergente est absolument conver­
gente. 

Exemple 6.16 Soit la serie: 

i - -L + i L + ...^ Ti-ir-' • — 
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Cette serie est convergente. En effet, par le critere de Leibniz: 

1 1 1 

\/n v n + 1 ri-^^ ^n 

Les deux conditions pour qu^une serie alternee converge etant verifiees, la 
oo ^ 

serie \^(—l)" '" '^ • —7= converge. 

La serie des valeurs absolues: 

^ j _ j _ _v_L^v — 
^ 3/?̂  "̂  3/5 "̂  3/T + • • • - 2 ^ 3/7: - z ^ ^1 / ^ . ^ ^ n = l ^ n = l 

diverge, puisquhl s^agit de la serie de Riemann avec p= - <l. La serie 

donnee est done semi-convergente. 

Pour determiner si une serie converge absolument, la regie de d'Alembert 
est encore valable. 

• Regie de d'Alembert pour la convergence absolue 
00 

Soit une serie \ ^ Un a termes de signe quelconque. 
n=l 

< 1, alors la serie converge absolument. 

> 1, alors la serie diverge. 

1. 

2. 

3. 

Si 

Si 

Si 

lim 
71—>CXD 

lim 
n—^00 

lim 
n^oo 

'̂ ^n-hl 

Un 1 

Un-{-l 

Un 

Un-hll 

Un 
= 1, on ne pent pas conclure. 

Exemple 6.17 Soit la serie 

n=l 

.-1 3 2 n - l 

2! 4! 6! 8! 

(_ l )n - l . 32n-l 

(2n)! 

(2n)! • 

/ 1 \n ^ o2?2+l 

(2n + 2)! 
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M„+i ( - 1 ) " • 32"+i (2n)! 

Ur^ (2n + 2)! ( -1)^-^ • 32^-1 (2n + 1) • (2n + 2) 

lim 
1/--71+1 

Ur. 
== lim 

9 

n-^00 4n2 + 6n + 2 
- 0 < 1. 

P a r consequent, la serie donnee est absolument convergente. 

6.9 Series de puissances 

• Series d e pu i s sances en x 

Une serie infinie de la forme: 

y ^ anx"^ = ao + aix + a2X^ H h a^x"" + 
n=0 

ou les coefficients â  sont des reels independants de x, est appelee serie 
d e pu i s sances en x. 

Notons que la serie de puissances N , cinX^ — GQ + aix + a2X^ + . . . 

converge (absolument) pour x — 0, puisque: 

|<̂ o| + |ai • 0| + |a2 • 0| H = |ao| . 

La regie de d'Alembert pour la convergence absolue nous permet de deter­
miner rintervalle de convergence : 

lim 
Un+l 

= 

lim 
n - ^ 0 0 

lim 

1 X 1 • 

<^n+l 

an 

<^n+l 

dn 

lim 
n—^00 

. ^ n + l 

• X ^ 

• X 

<^n+l 

a n 1 

Par la regie de d'Alembert, nous savons que cette serie converge abso-lument 
^71+1 

lorsque | x | • lim < 1, c'est-a-dire pour: 

. . 1 
X < 

lim 
n—^00 

<^n+l 
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Trois cas se p r e s e n t e n t 

1. Si lim 
n—>oo 

= 0, la serie est absolument convergente pour 

X |< oo, c'est-a-dire pour toute valeur de x. 

2. Si lim 
n-^oo 

— L, L etant un nombre fini non nul, la serie est absolu­

ment convergente pour | x |< —, c'est-a-dire si x satisfait 
Ju 

1 1 

La serie diverge pour \ x \> —. 

Pour X — —— et X = —, la serie pent converger ou diverger; il faut 
IJ Ju 

done etudier les b o r n e s de Pin terva l le s e p a r e m e n t . 

3. Si lim 
n—>oc 

<^n+l 
= oo, la serie ne converge absolument que pour x = 0 et 

diverge pour toutes les autres valeurs de x. 

Exemple 6.18 Soit la serie de puissances: 

x^ x^ 
i - + ^ - ^ + — B-i)"-^-

71=0 

X' 

n! 

_ ( -1 )^ • x^ ^ _ ( -1 )^ _ (-1)^+1 
CX77 — \ , Cir). — ; ez UJYI-\-\ — 

n\ n\ ( n + 1 ) ! 

Calculous: 

lim 
ar, 

lim (-1) 
71-hl 

n\ 
(n + 1)! (-1)^ 

— lim 
n—>oo n + 1 

= lim 
n^oo n + 1 

= 0. 

Par consequent, la serie converge absolument pour toute valeur de x, c^est-
d-dire pour —oc < x < 00. Cette serie a done pour intervalle de convergence : 
] — 00; oc[. 

Exemple 6.19 Determinons Vintervalle de convergence de chacune des se­
ries de puissances: 
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(a) 1 + 2x + 4x2 + 8x^ + . • • = y 2^ 
n=0 

X" 

Ainsi, lim 
n—^oo 

<^n+l 

a^ — 2 et cin-\-i 

271+1 

o r i + l 

= lim - -— = lim I 2 |= 2. 
n—>oo 2^^ n—>oo 

La serie converge absolument pour — < x < -. 

Reste a examiner les homes : 

Si X — —-, la serie est: 1 — 1 + 1 — 1 + 

terme general ne tend pas vers 0. 

Si X — -, la serie est: 1 + 1 + 1 + 1 + • • • 

raison. 

qui diverge puisque le 

Cette serie a done pour intervalle de convergence 

2 

qui diverge pour la meme 

1 1 . 
2'2 

/ , J. X X = E 
n=0 

n + 2' 

1 

Ainsi, lim 
<^n+l 

= lim 

n + 2 

n + 2 

et a^-n = 
n + 3 

n + 3 
lim = 1. 

n—̂ 00 n + 3 
La serie converge absolument pour — 1 < x < 1. 

Pour X = —1, la serie est: 1 [- • • • qui converqe 
2 3 4 5 

puisque les deux conditions du critere de Leibniz sont satisfaites. 

Pourx ~ 1, la serie est - + - + - + •• • qui diverge puisqu^il s^agit 

de la serie harmonique dont on a omis le premier terme. 

La serie entiere 2_^ 

[-l ; lf . 
n = 0 

n + 2 
a done pour intervalle de convergence 

_ ^ X" 

7 1 = 1 

du. — ^ et an-\-i — 7 r~7T -̂
^ (n + 1)^ n 
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Ainsi, lim (^n+l n^ n^ = 1. 
•>oo n^ + 2n + 1 

La 5ene converge absolument pour — 1 < x < 1. 

Pour X — —1, la serie est —I -{- \ • • • qui converge 

puisque la serie des valeurs absolues : 

. 1 1 1 
1 + 4 + 9 + 1 6 + " -

converge (serie de Riemann avec p = 2). 

Pour X ~ 1, la serie est l-\ \ \ h 
4 9 16 

qui converge. 

La serie de puissances 7 —77 a done pour intervalle de conver-

gence [—1; 1]. 
n=l 

Exemple 6.20 Soit la serie de puissances. 

X 2x^ 6x^ 24x^ 
CXD , ^ 

n=0 

_n\ _ (n + 1)! 
On. — Tr~ et Cin-{-l — 

3 n 3r.-M 

Ainsi, lim 
<^n+l .̂ ( n + 1 ) ! 3^ .̂ n + 1 

— [lYD. — • -— = l i m == 0 0 . 
3n+l n! 

Par consequent, la serie ne converge que pour x = 0 et diverge pour toutes 
les autres valeurs de x. 

• Series de puissances en x — a 

Une serie infinie de la forme 

J2bi{^-^y = 6 o + & l • ( ^ - a ) + 6 2 • ( ^ - a ) H • • • + 6 r ^ ( a ^ - a ) " + . 
2 = 0 

ou a est donne et les coefficients bi sont independants de x, est appelee 
serie de puissances en cc — a. 
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Notons qu'une serie de puissances en {x — a) converge (absolument) pour 
X = a, puisque: 

I 0̂ I + I bi{ci - a) I + I b2{a - a)^ | H = | ô | • 

Utilisons la regie de d'Alembert pour la convergence absolue afin de de­
terminer Tintervalle de convergence d'une telle serie: 

lim 
n—»oo 

' ^ n + 1 

Ur: 
— lim 

= lim 
n—^QO 

^n+1 • 

hn' [x- ay 

- — • (x - a) 

^n+l — \x — a\ ' lim 

La serie converge absolument lorsque \x — a\ - lim 

c'est-a-dire lorsque: 

\x — a\< 

^n+l 

K 
< l , 

lim M^-l 

A nouveau, trois cas se presentent: 

bn+l 
1. Si lim 

n-^oo 
leur de x. 

bn+l 
2. Si lim 

n—>oo 

= 0, la serie est absolument convergente pour toute va-

= M, M etant un nombre reel positif, la serie est abso-

1 
lument convergente pour I x — a |< -—, c'est-a-dire si x satisfait 

1 1 

M M 

Les bornes de Pintervalle devront etre etudiees separement. 

3. Si lim 
ri—^oo 

M+1 = oc, la serie ne converge absolument que pour x = a et 

diverge pour toutes les autres valeurs de x. 
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Exemple 6.21 Soit la serie de puissances en {x — 3) .* 

3 "^-^ n 

( - 1 ) " " ' , ( - 1 ) ' 
n n + 1 

^n+l = lim 
( -1 )^ n 

1 ^ = lim = 1. 
n->oo n + 1 

Ainsi, lim , , , ..... , / x -, 
' '- ' ' n + 1 (-l)^-V 

La 5ene converge absolument pour 3 — - < x < 3 + - ; 

c^est-a-dire pour 2 < x < 4. 
// 5^a^it d present d^examiner les homes 2 et 4 '• 

Si X — 2, la serie est: —1 — - — - — - — •* * qui est Voppose de la serie 

harmonique. Par consequent, elle diverge. 

Si X — 4, la serie est: 1 1 \- - - - dont on sait qu^elle converge 

(exemple 6.14)-

La serie de puissances Y^ ^ '- (2; - 3)" a done pour intervalle de conver­

gence ]2; 4]. 
n 

n=l 

6.10 Serie de Maclaurin 

On pent representer une fonction au moyen d'une serie de puissances. 
Une serie de puissances convergente, de la variable x, est fort commode 

pour le calcul des valeurs de la fonction qu'elle represente, pour des valeurs 
de X voisines de zero. 

• Formule de Maclaurin 

La serie: 

converge et represente la fonction f{x) pour les valeurs de x pour les-
quelles toutes les derivees de f{x) existent et pour lesquelles lim Rn — 0. 
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Dans ce cas, on dit que cette serie est le developpement de f{x) en serie 
de Maclaurin au voisinage de x = 0. 

Rn est appele le reste apres n termes et on pent montrer que: 

Rn - -—r^ • x^ avec 0 < ^ < x. 
n! 

Remarque II existe des fonctions pour lesquelles la serie de Maclaurin 
converge pour des valeurs de x, sans que le reste tende vers 0 lorsque n 
tend vers Tinfini. Pour de telles valeurs de x, la serie de Maclaurin ne repre-
sente pas la fonction. Cependant, le plus souvent, Fintervalle de convergence 
de la serie coincide avec Tintervalle sur lequel lim Rn = 0, ce qui est le cas 

dans les exemples consideres dans ce paragraphe. 
Sans donner une preuve rigoureuse de la formule de Maclaurin, nous pou-

vons cependant rendre ce resultat plausible de la maniere suivante. Supposons 
qu'une fonction / ( x ) et toutes ses derivees existent pour x = 0 et que cette 
fonction puisse etre developpee en une serie de puissances en x : 

/ ( x ) = ao + aix + a2X^ + a-^x^ + • • • + a^x^ + • • • (6.1) 

Supposons maintenant que Ton puisse deriver n fois cette serie par rapport 

a X: 

f {x) = ai + 2a2X + 3a^x^ + • • • + na^x'^ "'̂  + • • • 

f{x) = 2a2 + 2 • Sasx H h (n - 1) • nanx'"''^ + • • 

f\x) = 2-3a3 + --- + ( n - 2 ) • ( n - 1 ) •na^x^-^ + 

Ainsi: 

Par consequent: 

/(^) (x) - 2 . 3 • . . . • (n - 2) • (n - 1) . na^ + . . . 

/ W ( 0 ) 
an = - ^ , V n > 0. 

n! 
En remplagant ces coefficients dans (6.1), on obtient la serie de Mac­

laurin : 

;(.).;(0).m...m..^.....q5)..".... 
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Dans tons les calculs pratiques, on cherche des resultats exacts jusqu'a un 
certain nombre de decimales. Comme Foperation en question remplace une 
fonction qui pent etre difficile a calculer, par un polynome ordinaire, elle est 
tres utile pour simplifier de tels calculs. 

Naturellement, on doit utiliser suffisamment de termes pour obtenir le de-
gre d'exactitude desire. Le reste apres n termes fournit une bonne indication 
sur Terreur commise en utilisant seulement les n premiers termes de la serie. 

Exeraple 6.22 Developpons la fonction y — f{x) — e^ en serie de Maclau­
rin afin de determiner une approximation de e^^^. 

fix) = e - ^ / ( 0 ) = l. 

fix) = e - ^ / ' ( 0 ) = l. 

fix) = e ^ ^ / " ( 0 ) = l. 

/ H ( x ) = e^ =^/(")(0) = 1. 

d'ou: e^ = l + x + — + — + ••• + — + ••.. 
2! 3! n! 

Voyons quel est Vintervalle de convergence de cette serie: 

lim 
72^00 

nl 

(n + 1)! 
= lim = 0. 

n-^oo n + 1 

Cette serie converge pour toute valeur de x. 

Pour X = -, nous avons: 

eV4_i , 1 (izil!, ( V I ) ! , . , ( i z i r , . . . 
^ ^ 4 ^ 2! ^ 3! ^ ^ n\. 

en prenant cinq termes, nous avons: 

1/4 _ 1 , 1 (1/4)^ , ( l / 4 ) \ ( l / 4 r , ^ 

= 1 + 0.25 + 0.03125 + 0.00260417 + 0.00016276 + R^, 

= 1.28401693 + i?5-

Le reste apres n termes etant donne par: Rn = ;— • a;", avec Q < i < x, 
n\ 

nous avons: 
e^ /iV 1 
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Par consequent: 

En admettant raisonnablement que e^^^ < 2, on a: 

2 / r ̂  
i?5 < - . ( - 1 = 0.00001628. 

Ainsi, e^l'^ = 1.2840 est correct avec 4 decimales. 

6.11 Serie de Taylor 

On pent former une serie en (x — a) de la meme maniere que la serie de 
Maclaurin. Cette serie se prete bien au calcul des valeurs de la fonction 
qu'elle represente pour des valeurs de x proches de a. 

• Formule de Taylor 

ou Rn — ;— • ix — a)^, avec a < ^ < x. 
n\ 

Cette serie porte le nom de serie de Taylor. On dit qu'elle est le 
developpement de f{x) au voisinage de x = a. 

Les hypotheses selon lesquelles cette serie represente f{x) sont les memes 
que pour une serie de Maclaurin. La justification de cette formule ainsi 
que la remarque faite au paragraphe precedent s'appliquent egalement 
ici. 

Exeraple 6.23 Developpons en serie de Taylor la fonction donnee par 
f{x) = Inx au voisinage de 1 (on notera que cette fonction ne peut pas etre 
developpee en serie de Maclaurin). 
Les derivees successives sont: 

fix) = lnx^f{l) = 0. 
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fix) 

r{x) 2-3 
r (1) = -6. 

/H(.) = ( - i r - - ( - - i ) ' , v , > i . 

La serie de Taylor est done: 

2! 3! 
1)^ I ( ^ - 1 ) ^ ( ^ - 1 ) ^ I 

1! 

= ( ^ - 1 ' - 2 3 4 
Determinons Vintervalle de eonvergence de cette serie: 

b.. = ^ ^ et hn+i = ^ ^ 
n + 1 

n 

4! 

n 

lim -1) 
n+2 

n 

n + 1 • 1 ) n + l 
lim 

•>oo n + 1 
1. 

Par consequent, la serie converge absolument pour 1 < x < l H — ^ c^est-

d-dire pour 0 < x < 2. 

Pour X = 0, la serie est —1 : — ••• .•• Qui diverge. 
2 3 4 n ^ ^ 

1 1 1 (-1)^+^ 
Pour X = 2, la serie est! 1 - + . . .H [-... qui converqe. 

2 3 4 n ^ 
Ainsi, Vintervalle de convergence de cette serie est]{)]2]. 

Calculons par exemple une approximation de lii(1.2) en prenant trois 
termes: 

. o.2-(5f)! + (5|)! + H. 
= 0.2 - 0.02 + 0.002666 + i?4 

= 0.182666+ i?4. 
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fH(£) 
Comme Rn — ;— • {x — aY , dvec a < ^ < x, on a: 

nl 
(-l)'-3! - 6 

R, = - ^ . (0.2)^ = ^ . (0.2)^ avec 1 < ^ < 1-2 

Par consequent : 

6 • (0.2)^ 

24-14 

Ainsi, ln(1.2) = 0.182666 est correct avec au moins trois decimales. 

RA \< ^ \: =0.0004. 

En fait, pour une serie alternee, on pent montrer que I'erreur commise est, 
en valeur absolue, plus petite que le premier terme neglige. Dans Texemple 

(0.2)4 
6.23, le premier terme neglige est: —-— = 0.0004. Par consequent, Ter-

reur commise en calculant ln(1.2) = 0.182666 avec trois termes n'excede pas 
0.0004, et done le result at obtenu est correct avec trois decimales. 
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Exercices 
1. Trouver une formule pour: S'n = 2°+2-^+2^H 1-2'*, puis lademontrer 

par recurrence. 

2. Demontrer que: 

1 1 1 I n 
+ 7^^ + X-^ + • • • + 1-2 2-3 3-4 n-{n + l) n + 1' 

1 
3. Soit la serie de terme general Un = • 

n • (n + 1) 
Calculer Sn pour n = 1, 2, 3, ..., n. 
Montrer que cette serie converge en montrant que sa somme vaut 1. 

4. Trouver la somme des deux series suivantes: 

^ ^ ) ^ + 5 + 25 + 125 + - -

(b) 1 + 2 + 3 + 1 + 1 + 1 + 1 + 1 + ... 

5. Trouver la somme des series suivantes: 

(^)^ + ̂  + ̂ + i + l ^ + ^ + 2 k + l ^ + ---

(^) 3 + 9 + 27 + 81 + 243 + ---

6. Indiquer si les series suivantes convergent ou divergent. 
Justifier a chaque fois la reponse: 

1 2 3 4 
^") 3 + 3^ + 3^ + 3J + ---
, , , 2 22 2^ 2^ 
^̂ ^ l + 2 r + 3 ! + 4!+---

VW 2 4 ' 8 16 ~ 32 

, „ 1 2! 3! 4! 
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Indication lim I 1 H— ) = e. 
n—>oo y n 

7. Etudier la convergence des series suivantes: 

3 4 5 6 
"̂"̂  r 2 ^ 2 • 22 "̂  3 • 23 + 4 • 24 + • • • 

,^, ^ 22 + 1 32 + 1 42 + 1 

( ^ ) ^ + 2 ^ + 3 ^ + 4 H ^ + ---
1 1 1 1 1 1 

^^^ 3 ^ 1 0 ^ 2 9 ^ 6 6 ^ 1 2 7 ^ 2 1 8 ^ ' " 
, , , 1 3 5 7 9 
(̂ ^ 1 - 4 + 9 - I 6 + 2 5 - - - -

8. Pour quelles valeurs de x les series suivantes convergent-elles ? 

9 '^ 
X rp'-' rp'-' 

tXj Jii 

(b) X + 2:c2 + 3:r3 + 4a;4 + • • • 

(c) (a; - 2) + 2!(x - 2)^ + 3!(x - 2)^ + 4!(a; -2f^---

, „ x - 5 ( x - 5 ) 2 ( x - 5 ) 3 ( x - 5 ) 4 

^ ' 1-3 2-32 ^ 3-33 4-34 

9. Developper en serie de Maclaurin les fonctions suivantes, en indiquant 
chaque fois sur quel intervalle ces series convergent: 
(a) f{x) = e- (b) / ( x ) = sina; (c) /(a:) - ln(l + x) 
Deduire du point c) la valeur de la somme de la serie harmonique 

1 1 1 
alternee: 1~"Q + Q ~ T ^ 

Zi d ^ 

10. Developper en puissance de (x — 4) la fonction /(x) = e^/^. 

11. Le developpement en serie de puissances de la fonction 
/(x) — cosx est donne par: 

x^ x^ x^ x^ 

Faire trois graphes oii Ton representera successivement: 
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x2 
(a) f{x) = cosx et gi{x) = 1 - —-. 

2 4-
X^ X^ 

(b) f{x) = cosx et ^2(^) ^ ^ ~ y + 24' 

/^2 ^ 4 ^ 6 

(c) f(x) — cosx et osfx) = 1 —— H — ——. 
\ ) j \ ) tj6\ J 2 24 720 

Commentaire! 

N o t e Representer ces trois graphes sur rintervalle [—TT^TT ]. 

12. Trouver une valeur approchee de cos ( — ) (avec quatre decimales exactes) 

a Taide de la serie de Maclaurin de f{x) = cosx. 

13. Trouver une valeur approchee de \ / l .21 (avec trois decimales exactes) 
a Taide de la serie de Taylor de f{x) — ^Jx au voisinage de 1. 
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LEIBNIZ Gottfried Willhelm (1646-1716) 
Philosophe et mathematicien allemand, Leibniz est ne a Leipzig, en 1646. En 
1666, il soumet sa these de Doctorat en droit. En 1667, il devient conseiller 
a la Cour supreme de TElectorat de Mayence. En 1673, en Angleterre, il de-
couvre en meme temps, et independamment de Newton, le calcul differentiel. 
Onze ans plus tard, il publie les resultats de sa decouverte dans son Nova 
methodus pro maximis et minimis. En 1676, il obtient un poste de libraire a 
Hanovre, qu'il occupera jusqu'a sa mort. Ne se deplagant que tres rarement, 
il entretient une correspondance accrue avec des savants de toute I'Europe. 
De ce fait, il devint le centre d'un important reseau d'echanges. II meurt a 
Hanovre en 1716. On pent definir Leibniz aussi bien comme mathematicien 
et philosophe que comme linguiste, juriste, historien, geographe, diplomate 
ou theologien. Scientifiquement parlant, il est a la fois un inventeur pour ses 
contributions scientifiques et mathematiques (invention du calcul differen­
tiel, developpement du calcul integral), et un encyclopediste pour son projet 
d'inventorier toutes les connaissances acquises et sa tentative de mettre en 
place un langage universel. CEuvres majeures: On the Art of Combination 
(1666), New Physical Hypothesis (1671), Discourse of Metaphysics (1685), the 
New System (1695), New Essays on Human Understanding (1705), Theodicy 
(1710), the Monadology (1713). 



Chapitre 7 

Fonctions de plusieurs variables 

7.1 Introduction 

Jusqu'a present, dans les chapitres precedents, nous avons traite des fonctions 
d'une seule variable, c'est-a-dire des fonctions sous la forme explicite y — f{x) 
ou sous la forme implicite f{x^y) — 0. De telles fonctions expriment une 
relation entre deux variables, x et ?/, et cela implique que le phenomene etudie 
pent etre represents d'une fagon correcte uniquement par deux variables. 
Bien que ce type de representation nous donne une image raisonnable de la 
realite, dans differents cas, une telle representation est tellement inadequate 
qu'elle en devient inutile. Souvent, il est necessaire d'exprimer une variable 
comme une fonction de plusieurs autres variables. Par exemple, en economie, 
la demande d'un bien ne depend pas seulement de son prix, mais aussi du 
revenu du consommateur, du prix des autres biens et d'autres facteurs encore. 

Dans ce chapitre, nous allons presenter les derivees partielles et leurs 
applications economiques, les minima et maxima d'une fonction de deux va­
riables, les multiplicateurs de Lagrange qui permettent de trouver des ex-
trema sous contraintes et enfin des applications economiques des multiplica­
teurs de Lagrange. 
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7-2 Definitions 

Nous allons considerer des fonctions de deux ou plusieurs variables indepen-
dantes dont nous pouvons citer quelques exemples tires de formules mathe-

matiques elementaires; ainsi, Faire S d'un triangle quelconque: S = - - b • h 

est une fonction de deux variables independantes: h (base du triangle) et h 
(hauteur du triangle). 

Le volume V d'un parallelipipede rectangle est donne par : 

V = a-h ' c, 

ou a, 6 et c sont les longueurs respectives des aretes. Ici, V est une fonction 
de trois variables a, 6 et c. 

Definition 7.1 On dit que z = / (x i ,a :25. . . ,a;^) est une fonction de n 
variables independantes si a tout systeme de valeurs des variables indepen­
dantes Xi ,X2, . . . ,x^ correspond une valeur bien determinee de la variable 
dependante z. 

Dans ce chapitre, nous nous interesserons plus particulierement au cas 
des fonctions de deux variables. 

Definition 7.2 Si, a chaque couple {x;y) de valeurs de deux variables inde­
pendantes X ety correspond une valeur bien determinee de la variable depen­
dante z, on dit que z est une fonction de deux variables independantes x 
et y. Une fonction de deux variables est notee z = f{x^y). 

Definition 7.3 On appelle domaine de definition de la fonction 
z = f{x^y) Vensemble des couples (x;y) pour lesquels cette fonction est defi-
nie. On note par D le domaine de definition. 

Le domaine de definition pent etre represents geometriquement par Ten-
semble des points de coordonnees {x]y) dans le plan Oxy 

Exemple 7.1 Soit la fonction de deux variables z = -\/x^ — y^. Pour que 
z soit definie dans Vensemble des nombres reels, il faut que: x^ — y^ > 0, 
c^est-d-dire: x^ > y^, ou encore: \x\ > \y\ On a represente ce domaine de 
definition sur la figure 7.1. 
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Figure 7.1: Domaine de definition de z = \Jx^ — y^ 

Comme pour les fonctions d'une variable, on pent definir la continuite 
des fonctions de deux ou de plusieurs variables. 

Definition 7.4 Une fonction de deux variables f{x^y) est dite continue au 
point X = a, y = b si les trois conditions suivantes sont satisfaites simultane-
ment : 

1. /(a, b) est definie. 

2. lim f{x,y) existe. 

3. lim f{x,y) — f{a^b) quelle que soit la fagon dont x et y tendent 

vers leurs limites respectives a et b. 

7.3 Representations graphiques des fonctions 
de deux variables 

Soit une fonction de deirx variables z = f{x^y). On pent representer une telle 
fonction dans un systeme de coordonnees cartesiennes dans Tespace, note 
Oxyz • ^ chaque point {xo;yo) du plan O^y en lequel la fonction est 
bien definie, on associe la valeur /(xo,2/o) en elevant une perpendiculaire au 
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plan Oxy de longueur egale a la valeur de f{xo,yo) (Figure 7.2). On obtient 
ainsi un point P dont les coordonnees sont: (xo;?/o;^o) = (^o; ?/o;/(^o^yo))-
L'ensemble de tons les points P dont les coordonnees satisfont Fequation 
z == / (x, y) est appele graphe de la fonction de deux variables f{x, y). Ainsi, 
Tequation z = f{x,y) definit une surface dans Tespace. 

H^oiya'A^o^yo)) 

yo 

y 

Figure 7.2: Systeme de coordonnees cartesiennes dans Fespace 

Exemple 7.2 Representons graphiquement la fonction de deux variables 
z = x'^ + y^ dont le graphe porte le nom de paraholoide de revolution (Figure 
7,3). 
On peut dresser un tableau des valeurs que prend la fonction pour chaque 
couple (x; y) : 

y \ 

- 2 
- 1 

0 
1 
2 

- 2 
8 
5 
4 
5 
8 

- 1 
5 
2 
1 
2 
5 

0 
4 
1 
0 
1 
4 

1 
5 
2 
1 
2 
5 

2 
8 
5 
4 
5 
8 



7.4. Derivees partielles 189 

Figure 7.3: Paraboloide de revolution: z = x^ + y 

7.4 Derivees partielles 

Considerons la fonction de deux variables z = /(x, y). 
Si Ton considere y comme une constante, z n'est plus qu'une fonction 

de X et Ton pent calculer la derivee de z par rapport a x, si elle existe. La 
derivee obtenue dans ce cas est la derivee partielle de z par rapport a x que 
Ton pent ecrire de plusieurs fagons: 

La derivee partielle de z par rapport a x est definie ainsi: 

d^ ^ ^.^ f{x + Ax,y) - f{x,y) 
dx Ax-̂ o Ax 

lorsque la limite existe et qu'elle est finie. 
De maniere analogue, si Ton considere x comme une constante, z n'est 

plus qu'une fonction de y et Ton pent calculer la derivee de z par rapport a 
y, si elle existe. La derivee obtenue dans ce cas est la derivee partielle de 
z par rapport a y que Ton pent ecrire: 
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Definition 7.5 La derivee partielle de z par rapport a y est definie ainsi: 

dz f{x,y + Ay) - f{x,y) 
TT = l im 7 
dy Ay-̂ o Ay 

lorsque la limite existe et est finie. 

Notons qu'en general une fonction de n variables possede n derivees par-
tielles, chacune etant prise par rapport a une variable. 

Exemple 7.3 Soit la fonction de deux variables z — 3x^ -\- xy — 2y^ (Figure 
7.4); on peut calculer la derivee partielle de z par rapport a x et la derivee 
partielle de z par rapport a y : 

— Qx + y^ y etant consideree comme une constante, 

la derivee de — 2y^ est nulle. 

= X — Ay^ X etant consideree comme une constante, 

la derivee de 3x^ est nulle. 

dz 
dx 

dz 
dy 

Figure 7.4: Graphe de z = /(x, y) = 3x^ + xy — 2y^ 

Example 7.4 Calculons les deux derivees partielles de z ~ 5xln(l + 2y) 
representee dans la figure 7.5. 

dz 
dx 

dz 
51n(l + 2y) et — = 

IQx 
dy (l + 2y)-
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Figure 7.5: Graphe de z = f{^,y) = 5xln( l + 2y) 

Puisqu'en general, les derivees partielles d'une fonction z — f{x^y) sont 
aussi des fonctions de x et y, on pent les deriver partiellement une seconde 
fois par rapport a x et par rapport a y. On appelle ces derivees les secondes 
derivees partielles de z et on les note: 

dxdy dxdy 

dy 

^xy J: xy 

2 ~ ^yy ~ Jyy 

dydx dydx 
^yx Ji yx 

—-^ signifie qu'on a derive deux fois par rapport a x. 
ox^ 
d^f 
—-IT signifie qu'on a derive deux fois par rapport a y. 
dy^ 

_ - signifie qu'on a derive une premiere fois par rapport a y une seconde 
dxdy 

fois par rapport a x. 
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signifie qu'on a derive une premiere fois par rapport a x une seconde 
oyox 

fois par rapport a y. 
De ces quatre derivees, seules trois sont distinctes puisque, si elles sont 

continues: 

dydx dxdy 

Exemple 7.5 Nous allons calculer les derivees partielles de premier et se­
cond ordre de la fonction: 

z = -2x^ + 3x?/̂  - y^ 

La premiere derivee partielle de z par rapport a x est: 

dz 
Si Von derive — encore une fois par rapport a x^ on obtient la seconde 

%^z 
derivee partielle 7—77 .* 

dx'^ 
dz 

Si Von derive Vexpression 7— par rapport a y, on obtient: 
ox 

oyox 

La premiere derivee partielle de z par rapport a y est : 

dz ^ o 2 
— = 6xy-3y . 
dy 

dz 
Si Von derive une nouvelle fois 7— par rappori a y, et par rappori a x, on 

dy 
obtient: 

2 = 6a; - Qy. 
dy 

— = 6 
dxdy 
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Figure 7.6: Graphe de z = f{x,y) = —2x^ + 3xy^ — y 2 .,3 

d z d z 
Notons que est bien identique a . Cette fonction est representee 

oyox oxoy 
dans la figure 7.6. 

7.5 Applications economiques des derivees 
partielles 

Dans ce paragraphe, nous allons voir deux applications economiques des de­
rivees partielles: le cotit marginal et la productivite marginale. 

• Cout marginal 

La fonction de cout conjointe: 

est definie comme etant le cout de production des quantites x et y 
de deux biens. Nous pouvons calculer les derivees partielles de C par 
rapport a x et par rapport a y: 

dC . , 
-;— : cout margmal par rapport a x. 
ox 

dC . , 
-;;— : cout margmal par rapport a y. 
dy 
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Exemple 7.6 Si la fonction de cout conjointe pour produire des quantites x 
et y de deux hiens est: 

C = 10 + a;2 + xy + 3^^ (Figure 7.7) 

calculons le cout marginal par rapport a x : 

dC „ 
^x=^^^y 

et le cout marginal par rapport a y : 

dy 
X + 6y. 

Figure 7.7: Graphe de C = 10 + x'^ + xy + 3y' 

• Product iv i te marginale 

Pour produire la plupart des biens, on a besoin d'au moins deux facteurs 
de production tels que le travail, le capital, la terre, les materiaux ou 
les machines. Une fonction de production z = f{x,y) signifie qu'une 
quantite z d'un bien est fabriquee a I'aide des quantites x et y de deux 
facteurs de production. On pent alors calculer la derivee partielle de z 
par rapport a x qui nous donne la product iv i te marginale de x et la 
derivee partielle de z par rapport a y qui nous donne la product ivi te 
marginale de y. 
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Exemple 7.7 Si la fonction de production d^un bien est donnee par: 

z = 2xy- 3x^ + y^ (Figure 7.8) 

la productivity marginale de x est egale a: 

dz 

dx 
2y — 6x 

et la productivity marginale de y est egale a: 

dz 

dy 
- 2x + 2y. 

Figure 7.8: Graphe de z = f{x^y) = 2xy — 3x^ + y^ 

7.6 Minima et maxima d'une fonction de deux 
variables 

Une fonction de deux variables z = f{x^y) presente un maximum au point 
P{a]b] f{a,b)) si f{a^b) a une valeur superieure a toutes celles que prend 
/ ( x , y) au voisinage de x = a et y = b (Figure 7.9(a)). De meme, f{x, y) pre­
sente un minimum au point P(a ; 6; / ( a , b)) si / ( a , b) a une valeur inferieure a 
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toutes celles que prend f{x,y) au voisinage de x = a et y = b (Figure 7.9(b)). 
II en resulte qu'il existe un plan tangent horizontal au point (a; b; f{a^ b)). 
Ce plan tangent est engendre par les deux tangentes determinees par: 

dx dy 

Ainsi, pour que / ( a , b) soit un maximum ou un minimum, il faut que les deux 
equations suivantes soient satisfaites simultanement: 

r g(a,6) = 0. 

2̂  
dy 

a,b)=0. 

Figure 7.9: (a) maximum, (b) minimum 

Cette condit ion est necessaire, mais I'exemple du point-selle montre 
qu'elle n'est pas sufRsante. Bien que les deux tangentes soient horizontals, 
quel que soit le voisinage du point-selle considere, on pent toujours trouver 
un point qui soit au-dessus du point-selle et un autre point qui soit au-dessous 
du point- selle. Notons qu'a un point-selle, une fonction presente un minimum 
pour une des variables et un maximum pour Tautre variable (Figure 7.10). 

II faut done une condit ion sufRsante qui est la suivante: 

a dx'^ dy'^ \dxdy J 
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Figure 7.10: Point-selle 

Nous admettrons sans demonstration le resultat suivant: 
df df 

Soit P(a; b) le point en lequel 7— == 0 et -7— = 0. 
ox ay 

Si a* > 0 
minimum au point P. 

Si a* > 0 
maximum au point P. 

Si a* == 0 ^ on ne pent pas conclure. 

Si a* < 0 ^ ni minimum ni maximum 

au point P (point-selle). 

Exemple 7.8 Soit z — 3x^ + 2y^. Cherchons les extrema de cette fonction. 
On a: 

dz ^ dz ^ 
—- = 6x et -— = 4.y. 
ox ay 

Annulons ces deux derivees partielles : 

— = Qx = {) 
ox 

x - 0 
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dz 
dy 

Ay = 0 =^ y = 0-

II y a done une valeur critique au point x = y = z = 0 et eette valeur est un 
minimum puisque toutes les autres valeurs de z sont positives (Figure 7.11). 
En effet, comme : 

d^f _ 5V _ ay _ 
dx'^ ' dy'^ dxdy 

on a bien: 

et 

a* = 6 • 4 - 0̂  = 24 > 0 

9x^ 
- 6 > 0 . 

D ̂ apres le resultat vu precedemment, il s ̂ agit bien d ̂ un minimum. 

Figure 7.11: Graphe de z = f{^,y) — 3x^ + 2y 2 I Oo,2 

Exemple 7.9 Soit z = 4x^ - xy + y^ - x^ (Figure 7.12). On a 

dz ^ ^ 2 
— ^ 8x - 2/ - 3x 
dz 
— = -x + 2y 
dy 
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dxdy 

= 8 - 6 x 

= - 1 

= 2. 

Les valeurs critiques s'obtiennent enresolvant le systeme d'Equations: 

8x - 7/ - Sx^ = 0 

et 
-x + 2y = 0. 

On trouve deux valeurs critiques: 

z = 0 pour X = y = 0 

125 5 5 
er z = pour x = - et y = -. 

16 2 ^ 4 

Figure 7.12: Graphe de z = f{x, y) = ix^ — xy + y'^ — x^ 

La premiere est une valeur minimale de z puisque quand x = y = 0, nous 



200 Fonctions de plusieurs variables 

avons. 
d^z d^z 2 

dx^ dy^ \dxdy J 

Lorsque ^ — -;: ^t V — ~:^ nous avons: 

d^z _ d^z _ d^z _ 
dx^ ' dy^ dxdy 

Par consequent: 
a * - - 7 - 2 - ( - 1 ) 2 - - 1 5 < 0 . 

// Skagit done d^un point-selle. 

7.7 Multiplicateurs de Lagrange 

Dans de nombreuses applications pratiques de maximisation ou de mini­
misation, le probleme est de maximiser ou minimiser une fonction donnee 
assujettie a certaines conditions ou contraintes sur les variables impliquees. 

La methode etudiee ci-apres est applicable a n'importe quel nombre de va­
riables et de contraintes. La methode des multiplicateurs de Lagrange 
est employee pour obtenir un maximum ou un minimum d'une fonction sou-
mise a des contraintes d'egalite. 

Supposons que f{x,y), appelee fonction objectif, doit etre maximisee ou 
minimisee sous la contrainte g{x,y) — 0. Formons une fonction auxiliaire 
appelee un lagrangien: 

F{x,y,X) = f{x,y) + Xg{x,y) 

ou A (multiplicateur de Lagrange) est une inconnue. Pour que cette fonc­
tion passe par un extremum, il faut que les trois equations suivantes soient 
satisfaites simultanement: 

dF 

dx 
dF 

dy 
dF 
5A 

^ 
dx 
dl 
dy 

= 9{x 

+ x 

+ A 

,y)-

dg_ 

dx 
dg_ _ 

dy 

= 0. 

= 0. 

= 0. 
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Notons que la troisieme equation n'est autre que la contrainte! Ainsi, 
F{x,y,X) ne doit etre derivee partiellement que par rapport a x et a ?/. 
La solution du systeme de trois equations a trois inconnues (x, y et A) ci-
dessus fournit les points critiques de la fonction sous contrainte. Ces points 
critiques satisfont la contrainte, mais il reste encore a determiner s'il s'agit 
effectivement d'un extremum. Pour cela, on utilisera le resultat suivant: 

On a un maximum en x = a ,y = b si a* > 0, -^—z- < 0 et —-^ < 0. 

d^F d^F 
On a un minimum en x = a ,y = 6 si a* > 0, ^—^r > 0 et —-r- > 0 

dx^ dy'^ \dxdyj 
Si a* < 0, le test echoue; il faut examiner la fonction au voisinage de x, y. 

Exemple 7.10 Soient a determiner les minima et maxima de la fonction 
objectif f{x,y) = 5x^ + 6?/̂  — xy sous la contrainte x + 2y = 24. Pour cela, 
construisons la fonction de Lagrange : 

F(x, y, A) = 5x^ + Qy^ - xy + A(x + 2y- 24) 

annulons les premieres derivees partielles: 

dF 
—- = 10x-y + X = 0 
ox 
OF 
—- = l2y-x + 2X = 0 
oy 
dF 

eliminons A des deux premieres equations: 

20x - 2y + 
- -X + 12y + 

2\x - Uy 
3x — 2y 

-24 = 0 

2A = 0 
2A = 0 

= 0 
= 0 

et en resolvant avec la troisieme equation: 

X + 2y = 2A 
+ 3a; - 2y = 0 

Ax = 24 
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on obtient x — Q. 
En remplagant dans x + 2y = 24, on trouve y = 9. Le point critique est done 
(6; 9). On calcule les derivees partielles de 2^ ordre pour verifier s^il s^agit 
d^un extremum: 

dx'^ 

d^F 

= 10 

= 12 

= -1 
dxdy 

a* = 1 0 - 1 2 - ( - 1 ) ^ = 119. 

d^F d^F 
Comme a* == 119 > 0, -7—̂7- = 10 > 0, et -—^ = 12 > 0, il s^agit d'un mini-

ox^ oy^ 
mum. X = 6 et y = 9 est done la solution qui minimise la fonction objectif 
tout en respectant la contrainte. 
On notera que, dans ce cas, la valeur de A ne presente pas d^interet et n^est 
done pas cherchee. 

7.8 Applications economiques des multiplica-
teurs de Lagrange 

II y a beaucoup d'applications economiques des minima et maxima sous cont-
raintes. Par exemple, si un producteur fabrique deux biens, il pent vouloir 
minimiser le cout total tout en devant fabriquer une quantite totale minimale 
specifiee; une compagnie pent desirer maximiser ses ventes resultant de deux 
publicites effectuees, tout en observant la contrainte du budget de publicite; 
un consommateur pent vouloir maximiser sa fonction d'utilite provenant de 
la consommation de certains biens, tout en etant restreint par son budget. 

Exemple 7.11 Un consommateur depense son revenu de 48 francs pour 
rachat de deux biens: x et y. Les prix de x et de y sont respectivement 
2 francs et 3 francs. La fonction d^utilite du consommateur est donnee par 
la formule: 

U ^ -x^ - 2y^ + 2xy. 
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Combien d ̂ unites du bien x et du bien y doit-il consommer pour maximiser 
son utilite ? 
La fonction objectif a maximiser est U = —x'^ — 2y^ + 2xy. 
La contrainte est 2x + 3y = 48; ou2x + 3y — ^8 = 0. 
Form^ons la fonction auxiliaire: 

F = -x^ - 2y^ + 2xy + X{2x + 3y - 48). 

On cherche ensuite les derivees partielles par rapport ax, y et X : 

dF 
—- - -2x + 2y + 2X 
ax 
dF 
-— - -Ay + 2x + 3X 
dy 
dF 

Pour trouver un extremum, on annule ces 3 derivees partielles: 

-2x + 2y-2X = 0 

-4:y +2x-3\ = 0 

- 2 x - 3 y + 48 = 0 

et en resolvant pour x et y, on trouve: 

336 240 
^ = T ; ^ et y = ——. 

29 ^ 29 

// s'agit a present de calculer les derivees partielles de deuxieme ordre afin 
de determiner la nature de ce point critique : 

dx^ 
d^F 

dy'^ 
d^F 

dxdy 
a* 

d^F _ 

= - 2 

= - 4 

= 2 

= - 2 -

- 9 <- n f 

- 4 - ( 

d^F 

{2f = 4. 

Comme a* = 4 > 0, •̂ —̂V = —2 < 0; et ^̂—V == —4 < 0̂  il s'agit d'un maxi-
ox^ oy^ 

mum. 
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Exemple 7.12 Une firme produit des appareils dans deux usines differentes. 
Les couts totaux de production pour les deux usines sont respectivement : 

CTi - 200 + 6gi + 0.03g^ 

CT2 = 150 + 10^2 + 0.02g| I 
oil <7i et 52 representent le nombre d'appareils produits dans chaque usine. La 
firme s'est engagee a livrer 100 appareils a une entreprise. Les frais de trans­
port par appareil sont de 4 francs pour les livraisons a partir de la premiere 
usine et de 2 francs pour les livraisons a partir de la seconde usine. Les frais 
de transport sont supportes par la firme productive. 
Calculons le nombre d'appareils que doit produire la firme dans chaque usine 
afin de minimiser le cout total de production y compris le cout de transport. 
Le cout total est egal a: 

CT = (CTi + 4gi) + (Cr2 + 2g2) 

= 200 + 6gi + 0.03g^ + 4gi + 150 + 10^2 + 0.02g^ + 2^2 

= 0.03^1^ + 0.02g^ + lOgi + 12g2 + 350. 

// s 'agit done de m,inimiser cette fonction, et cela sous la contrainte de livrer 
100 appareils au total, c'est-d-dire qi + q2 = 100. 
La fonction auxiliaire devient par consequent : 

F{qi,q2, A) = 0.03^1^ + 0.02ql + lOqi + 12g2 + 350 - \{qi + q^ - 100). 

Comme precedemment, on cherche les derivees partielles de premier ordre: 

dF 
TT- = 0.06gi + 1 0 - A 
dqi 
dF 
^— = 0.04^2 + 1 2 - A 
dq2 
OF 
— = 100-q,-q2. 

Pour trouver le point critique, on les annule: 

0.06gi + 1 0 - A = 0 

0.04g2 + 1 2 - A = 0 

gi + g 2 - 1 0 0 - 0 
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et en resolvant pour qi et q2, on trouve: qi = 60 et q2 = 40 
// faut encore verifier que, pour ces valeurs, il s ̂ agit bien d ̂ un minimum: 

dql 

dql 
d^F 

- 0.06 

= 0.04 

= 0 
dqidq2 

a* - 0 . 0 6 - 0 . 0 4 - 0 = 0.0024. 

d'^F d^F 
Comme a*. - - ^ et -^-rr sont positifs, il s^aqit bien d^un minimum, 

dql dql 
Par consequent, quand la firme livre 60 appareils de sa premiere usine et 
4-0 de sa deuxieme usine, le cout total est minimal sous la contrainte d^une 
livraison de 100 appareils. 

7.9 Integrales doubles et multiples 

Dans le chapitre 5, nous avons defini / f{x)dx d'une fonction y = f{x) 
J a 

continue sur Tintervalle fini a < x < b. De fagon analogue, on pent definir 

Fintegrale double, notee / / f{x^y)dxdy d'une fonction continue f{x^y) 

sur une region finie de G du plan 0^^ .̂ 
Nous avons vu que Fintegrale definie de f{x) pouvait s'interpreter en 

termes d'aires. La double integrale definie pent, quant a elle, etre in-
terpretee en termes de volumes. Quand z = f{x,y) est positif ou nul sur 
une region G, Fintegrale double / / / ( x , y)dxdy est le volume situe sous la 

surface z = f{x,y) et au-dessus de la region G dans le plan 0^^ .̂ 
L'evaluation des integrales doubles se fait par integrations partielles suc-

cessives, qui est Finverse de la derivation partielle. Ainsi, pour calculer Finte­
grale double d'une fonction de deux variables independantes, on integre tout 
d'abord par rapport a Fune des variables tandis que Fautre variable est 
consideree comme constante; le resultat de cette integration partielle est 
ensuite integre par rapport a Fautre variable. 
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Une integrale double se calcule en faisant deux integrations successives: 

f{x,y)dxdy = 
x=b y2{x) 

f{x.y)dy 
yi{x) 

dx 

on a et b sont des const antes. Cette expression represente deux integrales 
simples definies et evaluees dans un ordre bien determine: / (x, y) est d'abord 
integree partiellement par rapport a y (en prenant x constant), entre les 
bornes yi{x) et y2{x)j les limites inferieures, respectivement superieure de 
la region G; le resultat est une fonction de x qui est ensuite integree par 
rapport a x entre les bornes x = a et x = b, les points a Textreme gauche 
respectivement a Fextreme droite de G (Figure 7.13(a)). 
Remarque Si Fordre d'integration est inverse, de nouvelles bornes d'integra-
tion doivent etre determinees: 

ry=d 

f{x,y)dxdy-= 
IGJ Jy=c 

X2{y) 

f{x,y)dx 
xi{y) 

dy (Figure 7.13(b). 

0 ' a b X 0 

(b) 

Figure 7.13: Decoupages du domaine G d'integration 

Ici, f{x,y) est d'abord integre partiellement par rapport a x, puis par 
rapport a y. On pent montrer que les deux manieres d'integrer conduisent 
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au meme resultat: 

f{x,y)dxdy 
'X=b 

=a 

*y=d 

—c 

ry2{x) 

Jyi{x) 

rx2{y) 

Jxi{y) 

f{x,y)dy 

f{x,y)dx 

dx 

dy. 

Exemple 7.13 Soit a calculer I'integrale double / / {5x + y)dxdy, oil G 

est la region limitee par les droites x = 1, y = 2 et 2x + 3y = 14 (Figure 

y x = l 

y = 2 

14'2x 

0 1 

Figure 7.14: Domaine G: region limitee par les droites x = 1, y = 2 et 
2x + 3y = 14 

Pour un X fixe, Vintegration en y s^effectue a partir de la borne yi — 2 
14 — 2x 

jusqu^a la home y2 = . L^integration suivant x se fait a partir de la 

home X — 1 jusqu^a la home x = 4. Ainsi: 

(5x + y)dxdy = 
'GJ JI 

14-2CC 
3 

(5x + y)dy dx 

5xy + dx 
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5.1 ll^Uffla:^,0.-2 dx 

70 10 98 28 
X x^ H X + -x^ — lOx — 2\dx 

3 3 9 9 9 
28 2 92 80 \ , 

——X -\ X H \ dx 
9 9 9 

28 92 80 

27 18 9 
1792 1472 320 28 _ 92 _ 80 
2 ^ ^ ' T 8 ~ ^ " 9 ~ ^ 27 ~ 18 ~ 9 

2052 

= 38. 

Si Von integre d'ahord par rapport a x, puis par rapport a y, les homes d'inte-
U-3y 

gration deviennent: xi = 1, a;2 = , y = 2 et y = 4. 

(5x + y)dxdy = 
'G 

1 4 - 3 ; ; 
2 

(5a; + y)dx dy 

5^2 
^ + xy 

14-3ty 
2 

dy 

IC^).r-^ • y - ^ - y dy 

245 105 45 

2 \ 2 

^ ^33 
^^-^y+l20\dy 

HH2_ 1^8+480-^1+93-240 
24 4 24 

912 

= 38. 
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Le resultat est done le meme si Ton integre d'abord par rapport a y 
puis par rapport a x, ou si Ton integre d'abord par rapport a x, puis par 
rapport a y. Dans chacun des cas, il faut determiner soigneusement les bornes 
d'integration respectives. 

Pour les fonctions de plus de deux variables independantes, cette me-
thode se generalise aisement. On parle alors d'integrales multiples. Comme 
dans le cas des integrales doubles, les integrales multiples se calculent de 
rinterieur vers I'exterieur; c'est pourquoi, Tordre dans lequel interviennent 
les differentes expressions doit etre scrupuleusement respecte. 

Exemple 7.14 Calculous Vintegrale triple suivante: 

2 rx-l rl-x 

0 ^0 Jo 
X ' y • zdzdydx = 

^ 2 

l-x^ 

dydx 

X ' y{l — x)^dydx 

1 /I \2 y 
- . x - ( l - x ) . — 

x-1^ 

dx 

(1 - x)^ • {x - \fdx 

1 r̂  
= - / (x^ - 4x^ + 6x^ - 4x2 ^ ^Y^ 

1 

4 

1 

10 

x^ 4x^ 6x^ 4x^ x '̂ 

Remarque Les integrales multiples trouvent par exemple leurs applications 
en probabilites et statistiques (esperance mathematique, variance, covariance 
de plusieurs variables aleatoires), mais ces notions depassent le cadre de cet 
ouvrage. 
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Exercices 
1. Donner les derivees partielles du premier et du second ordres pour les 

fonctions de deux variables suivantes: 

(a) /(x,2/)=^2xV + ^ - 5 . 

(b) f{x,y) =ln(x + y). 

(c) f{x,y) =sm{x)cos{y). 

(d) f{x,y) = e«î (̂ +2/). 

2. Si la fonction de cout conjoint e pour produire des quant it es x et y de 
deux biens est: 

C - 2 x l n ( 3 + 2y). 

Calculer le cout marginal par rapport a x et le cout marginal par rap­
port a y. 

3. Trouver la productivity marginale de x et la productivite marginale de 
y pour les fonctions de production suivantes: 

(a) z - 2x^/Y^\ 

(b) z = xy + 4x^y^ — 6x + 3. 

(c) z = (xy)V3. 

4. On appelle courbe de niveau: f{x^y) = c, dans le plan Oxy Dessiner 
les courbes de niveau pour c == 0,1,2,3,4 des fonctions suivantes : 

(a) f{x,y) ^x^ + y^, 

(b) fix.y) =xy. 

5. Etudier les minima et maxima des fonctions suivantes: 

(a) f{x,y) =x^ + y^ -3xy. 
(b) f{x,y)=x^-xy + y^ + 3x-2y + l. 

6. Trouver les extrema de la fonction objectif f{x,y) = xy sous la cont-
rainte x + y — I. 
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7. La fonction f{x^y) — x -\- y ne possede pas d'extremum. 
En revanche, cette meme fonction sous la contrainte x^+?/^ = 9 possede 
un minimum et un maximum qu'il s'agit de trouver. 
Expliquer geometriquement cette situation. 

8. Une entreprise fabrique deux types de machines x et y. La fonction de 
cout conjointe est: / (x, y) — x^ -{- 2y^ — xy. Combien de machines de 
chaque type Fentreprise doit-elle fabriquer pour minimiser son cout s'il 
hii faut un total de 8 machines? 

9. Un consommateur depense son revenu de 90 francs pour Tachat de deux 
biens x et y. Le prix de x et y est respectivement de 5 francs et de 10 
francs. La fonction d'utilite du consommateur est donnee par: 

U = -x^ - 2y^ + xy. 

Combien d'unites du bien x et du bien y doit-il consommer pour ma-
ximiser son utilite? 

10. Soit la fonction: 
n n 

s{(^^ b) = Y1 ^^i ^ "^^y^ ~^~ ^̂ )̂̂ -
i=l i=l 

Trouver les deux parametres a et 6 tels que cette fonction soit minimale. 
Notons ces deux valeurs estimees par a et b. 

11. A Taide de Texercice 10, trouver les valeurs estimees des deux pa­
rametres a et 6, pour les six points ci-dessous: 

{x,;yi) = (50; 5) 

(2:2; 2/2) = (53; 7) 

(^3; 2/3) = (56; 10) 

{x4;yA) = (57; 12) 

{X5; Vb) = (55; 8) 

(X6;y6) = (59; 10). 

12. Pour les valeurs de a et 6 de I'exercice 11, dessiner la droite y = a + hx 
ainsi que les 6 points sur le meme systeme d'axes. Calculer la valeur de 
S. 
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^.-r^iti 

^^K 

EULER Leonhard (1707-1783) 

Ne en avril 1707, a Bale en Suisse, Leonhard Euler conclut ses etudes de 
philosophie en 1723. II etudie la theologie, le grec et Thebreux. Grace a son 
mentor Johann Bernoulli, il reussit a convaincre son pere de le laisser pour-
suivre ses etudes en mathematiques, il les termine en 1726. En 1730, il est 
nomme professeur de physique a FAcademie des Sciences de St Petersbourg. 
Apres le depart de D. Bernoulli en 1733, Euler reprend la responsabilite de la 
chaire des mathematiques de TAcademie. Les domaines d'application de ses 
projets sont vastes: de la cartographic a la science de Teducation, des pompes 
incendie a Petude des moteurs etc. Cependant, le noyau de ses recherches est 
deja definitivement determine: la theorie des nombres. En 1741, Euler quitte 
St-Petersbourg pour rejoindre TAcademie des Sciences de Berlin. Durant les 
25 ans qu'il a passes a Berlin, Euler a ecrit 350 articles, des livres sur le calcul 
des variations, le calcul des orbites planetaires, sur Tartillerie et la balistique, 
traitant de la construction des bateaux, sur le mouvement de la lune. 

En 1766, Euler decide de retourner a St-Petersbourg, c'est a ce moment-la 
qu'il perd completement Tusage de la vue. Ce qui est formidable, c'est qu'il 
produit plus de la moitie de ses travaux durant cette periode, en depit de sa 
cecite totale. 



Partie II 

Algebre lineaire 



Chapitre 8 

Calcul matriciel 

8.1 Introduction 
Dans de nombreuses analyses economiques, les differentes variables sont re-
liees entre elles par des equations lineaires. L'algebre lineaire fournit une no­
tation claire et precise pour formuler et resoudre de tels problemes. Dans 
ce chapitre, nous allons tout d'abord definir la notion de matrice. Nous 
nous interesserons ensuite aux differents types de matrices et aux operations 
usuelles telles que Farithmetique, le calcul du determinant ou de Finverse. 

8.2 Matrices 
Une matrice est un tableau rectangulaire de nombres reels que Fon pent 
representer de la maniere suivante: 

A = {a,j) = 

ail <^12 • • • Ciln 

a2i a22 . . . CL2n 

^ml ^m2 • • • ^mn 

Les termes representes dans le tableau constituent les e lements de la ma­
trice. Dans ce livre, un element sera toujours un nombre reel. Un element 
est caracterise par sa valeur et par sa position. Nous designons les elements de 
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la matrice A par la lettre minuscule a, munie de deux indices. Done, aij est un 
element de la matrice A dont % indique le numero de la ligne et j le numero de 
la colonne. Une matrice de m lignes et de n colonnes est dite d'ordre {mxn). 
Si le nombre de lignes est egal au nombre de colonnes, la matrice est dite 
caxree. On a alors m = n et on dira simplement que la matrice est d'ordre 
n. Une matrice d'ordre (m x 1) est appelee vecteur-colonne et une matrice 
d'ordre (1 x n) est appelee vecteur-ligne. 

Exemple 8.1 La matrice A suivante est carree et d'ordre 3: 

4 2 
1 - 3 
1 5 

Exemple 8.2 Les matrices A d'ordre ( 4 x 1 ) et B d'ordre ( 1 x 2 ) sont 
respectivement appelees vecteur colonne et vecteur ligne : 

A = B = [2 - 6 ] . 

8.3 Addition de matrices 

Si A= (aij) et B= (bij) sont deux matrices d'ordre (m x n), leur somme 
A -\- B est definie par la matrice: 

C = {cij) = A + B = {aij + bij). 

C= (cij) est d'ordre {mxn); chaque element est la somme des elements 
correspondants de A et S . 

Exemple 8.3 Soient les matrices A et B suivantes: 

A = 

on obtient: 

3 4 2 
1 3 5 

A + B = 

B = 

9 5 11 
3 3 8 

6 1 9 
2 0 3 
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La somme de deux matrices d'ordre different n'est pas definie. Si A, B 
et C sont des matrices de meme ordre, alors nous avons: 

A-\- B = B + A (commutativite) 

A + {B + C) = {A + B) + C (associativite). 

Exemple 8.4 Soient les matrices A et B suivantes: 

A = B = 

alors : 

et 

A-\-B = 

B + A = 

= B + A. 

' 1 
3 

" 6 
2 

- 1 • 

0 

- 5 • 

1 

+ 

+ 

" 6 
2 

' 1 
3 

- 5 ' 
1 

- 1 " 
0 

= 

= 

• 7 

5 

" 7 
5 

- 6 1 
1 J 

- 6 1 
1 J 

done A + -S 

Exemple 8.5 Soient les matrices A^ B, C suivantes: 

B = C = 
0 2 
2 4 

on obtient: 

B + C = 
[ 2 

et 

A + (B + C)=\ 

- 5 
1 

+ 

1 - 1 1 
3 0 J 

1 ° [ 2 

+ 

2 1 
4 J = 

6 - 3 " 
4 5 

6 
4 

= 

- 3 1 

5 J 

r 7 - 4 • 
[ 7 5 _ 

on obtient aussi: 

A + B = 

et 

{A + B) + C 

1 - 1 1 
3 0 J 

* r 7 
[ 5 

+ 

-6 " 
1 

• 6 - 5 
2 1 

+ 
r 0 
[ 2 

= 

2 1 
4 J 

r 7 - 6 

L 5 1 

= 
7 -
7 

-4 1 
5 J 

par consequent, on voit que: A + (B + C) = (A + B) + C 
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8.4 Multiplication des matrices 

Solent A et B deux matrices, le produit AB est defini si et seulement si le 
nombre de colonnes de A est egal au nombre de lignes de B. Si A 
est d'ordre (m x n) et B d'ordre (n x q) alors le produit AB est defini par 
la matrice C d'ordre (m x q) dont les elements sont obtenus par: 

n 

Cij = ^ aikhkj i = l,...,m et j ==^ I,... ,q. 

k=l 

Cela signifie que I'on multiplie les elements de la i^ ligne de A par les elements 
correspondants de la j ' ^ colonne de B puis que Ton additionne les resultats. 

Exemple 8.6 Solent les deux matrices A et B suivantes: 

A = 
1 

- 1 
B = 

1 
0 
0 

2 
2 

- 1 

0 1 
3 

- 2 J 
A est d^ordre (2 x 3) et B est d'ordre (3x3) . Le produit AB est done defini 
puisque A a 3 colonnes et B a 3 lignes. Le produit AB que nous appellerons 
C est une matrice d'ordre ( 2 x 3 ) . 
L'element Cn s'obtient en multipliant les elements de la premiere ligne de 
A par les elements de la premiere colonne de B puis en additionnant les 
resultats: cn = 1 • 1 + 3 • 0 + 0 • 0 = 1. 
L'element Ci2 s'obtient en multipliant les elements de la premiere ligne de 
A par les elements de la deuxieme colonne de B puis en additionnant les 
resultats: Ci2 = 1 • 2 + 3 • 2 + 0 • (-1) = 8. 
On repete la meme operation pour tous les elements Cij. On obtient la matrice 
C suivante: 

^ 1 8 9 
- 1 - 2 - 1 

Si A, S et C sont trois matrices dont le produit et la somme sont definis, 
nous avons: 

(AB) C = A (BC) (associativite) 
A'{B + C) = AB + AC (distributivite). 
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Exemple 8.7 Solent A, B, C trois matrices carrees d'ordre 2, nous allons 
verifier que (AB) C = A (BC) : 

A = 
1 - 1 
3 0 

B = 
6 - 5 
2 1 

C -
0 2 
2 4 

1 - 1 
3 0 

4 - 6 
18 -15 

6 - 5 
2 1 

0 2 
2 4 

4 - 6 
18 -15 

-12 -16 
-30 -24 

AB = 

(AB)-C = 

BC = 

A (BC) = 

Exemple 8.8 Avec les memes matrices A, B et C de I'exemple 8.7, nous 
verifions que A- (B -\- C) = AB + AC: 

' 6 
2 

" 1 
3 

- 5 " 
1 

- 1 " 
0 

" 0 2 " 
2 4 

" -10 
2 

- 8 " 
8 _ 

" -10 - 8 " 
2 8 

" -12 
. -30 

-16 • 
-24 

" 6 
4 

' 1 
3 

- 3 " 
5 

- 1 " 
0 

• 6 

4 
- 3 • 

5 
2 - 8 

18 - 9 

B + C = 

A-(B + C) -

AB = 

AC = 

AB + AC = 

La multiplication de matrices n'est pas commutative,c'est-a-dire qu'en 
general AB ^ BA. 

Prenons le cas general avec A d'ordre (m x ]?) et B d'ordre (p x n). Le 
produit AB est defini; c'est une matrice d'ordre [my.n). Qu'en est-il du 
produit BAl. II faut distinguer 3 cas: 

1. m 7̂  n; le produit BA n'est pas defini. A ce moment-la, AB ne pent 
pas etre egal k BA. 

\ 4 

. IS 
" 1 • 

3 

4 
. 18 

- 6 " 
-15 

- 1 ' 
0 

- 6 " 
- L 

(voir exemple 8.7) 

0 2 " 
2 4 

" - 2 - 2 " 
0 6 

" - 2 - 2 " 
0 6 

" 2 - 8 1 
. 18 - 9 J 
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2. m = n mais p ^ n; \es deux produits AB et BA sont definis, mais 
AB est d'ordre (n x n) et BA est d'ordre {p x p). Les deux produits 
ne peuvent done pas etre egaux. 

3. m = n—p]AeiB sont deux matrices carrees d'ordre n. AB et BA 
sont aussi carrees d'ordre n. Mais, la encore, en general AB ^ BA, 

Exemple 8.9 Reprenons les matrices A et B de Vexemple 8.4 et regardons 
si AB est egal a BA: 

AB = 

BA 

' 1 

[ 3 
" 6 

2 

- 1 " 
0 

- 5 " 
1 

' 6 
2 

" 1 
3 

- 5 " 
1 

- 1 " 
0 

4 - 6 
18 -15 

- 9 - 6 
5 - 2 

AB est different de BA. 

8.5 Multiplication d'une matrice par un 
scalaire 

Si a est un scalaire (un scalaire est un nombre reel) et A une matrice, le 
produit aA est la matrice de meme ordre que A, obtenue en multipliant 
chaque element {aij) de A par a: 

a A = Aa = (aaij). 

Exemple 8.10 Reprenons la matrice A de Vexemple 8.3 et multiplions-la 
par a = 0.7 : 

aA = Aa^ 0.7 3 4 2 
1 3 5 

2.1 2.8 1.4 
0.7 2.1 3.5 

Si A et B sont deux matrices de meme ordre et a un scalaire, nous avons: 

a(A + B) = a A + aB (distributivite). 
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Exemple 8.11 Avec A etB de Vexemple 8.4 eta = 0.7, nous allons verifier 
que a(A -\- B) = aA + aB : 

a{A + B) 

aA 

aB 

a A + aB 

0.7 

0.7 

' 7 
5 

• 1 

3 

- 6 • 

1 

- 1 " 
0 

= 

= 

0.7 
" 6 

2 

r 0.7 -

[ 2- 1 

- 5 " 
1 

-0.7" 
0 

= 

+ 

4.9 
3.5 

0.7 
2.1 

4.2 
1.4 

4.2 
1.4 

-4.2 
0.7 

-0.7 
0 

-3.5 
0.7 

-3.5 
0.7 

4.9 
3.5 

-4.2 
0.7 

8.6 Transposee d'une matrice 

La matrice d'ordre (n x m) obtenue en echangeant les lignes et les colonnes 
d'une matrice A d'ordre (m x n) est appelee matrice transposee de A et 
est notee A' (ou parfois A*). 

Exemple 8.12 La matrice A d'ordre (2 x 3), et sa transposee A' d'ordre 
(3 X 2) sont donn6.es ci-dessous : 

A = 
1 3 2 
0 1 - 1 

A' = 

Si A et S sont deux matrices dont la somme et le produit sont definis, il 
est facile de montrer les relations suivantes; 

{A + By = A'+B'. 
(AB)' = B'A'. 

{A)' = A. 

Exemple 8.13 Reprenons les matrices A et B de I'exemple 8.4 et verifions 
que (A + B)'= A'+B' et que (AB) '= B'A'. 

A + B = 

(A + B)' = 

7 - 6 
5 1 

7 5 
- 6 1 



222 Calcul matriciel 

A' = 

B' = 

A' + B' = 

AB = 

(AB)' = 

B'A' = 

r 1 
[ 3 
r 6 
L 2 

- 1 " 
0 

- 5 " 
1 

1 

1 

" 1 3 " 
- 1 0 

" 6 2 " 
- 5 1 

r 1 3" 
[ - 1 0 
r 4 - ( 

+ 

L 18 -15 _ 

" 6 2 " 
- 5 1 = 

" 7 5 " 
- 6 1 

r 4 18 
[ -6 -15 
[ 6 2 " 
[ - 5 1 

r 1 3 " 
- 1 0 

4 18 
-6 -15 

8.7 Differents types de matrices 

• Matrice nulle 

La matrice dont tous les elements sont nuls est appelee matrice nulle. 
EUe sera notee O. Lorsque les operations sont definies, nous avons: 

A+O = A = 0+A 

A-A = O 

AO = 0 = 0A 

Notons que AB = O n'entraine pas necessairement A = O ou 
B = 0. 

Exemple 8.14 Soient les matrices A et B non nulles suivantes: 

A = 
1 4 
0 0 

Le produit AB est nul malgri tout: 

AB = 

B 

0 0 
0 0 

4 0 
- 1 0 
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• Matrice identite 

Pour toute matrice carree, les elements qui ont le meme indice pour 
la ligne et pour la colonne (c'est-a-dire les elements en position {i,i)) 
forment la diagonale principale. 

Une matrice identite est une matrice carree qui a des " 1 " sur la 
diagonale principale et des "0" partout ailleurs. On la designe par la 
lettre J. 

E x e m p l e 8.15 La matrice identite d^ordre 3 est la suivante: 

I = 

• Si nous designons les elements de la matrice identite par Uij pour ne pas 
repeter la lettre minuscule i, nous pouvons definir la matrice identite 
de la sorte: 

/ = {uij) avec Uij = 1 si i = j 

Uij = 0 si i ^ j . 

Si A et / sont deux matrices de meme ordre, alors on a: 

lA = AI^A 

1 
0 
0 

0 
1 
0 

0 1 
0 

1 J 

Exemple 8.16 

Soit A 
1 - 1 
3 0 

et I d'ordre 2, 

IA = 

AI = 

1 0 
0 1 

• 1 - 1 
3 C 1 J 

1 - 1 
3 0 

' 1 0 " 
0 1 

— 

= A. 

= A. 

• Matrice symetrique 

Une matrice carree A telle que A^= A est dite matrice symetrique. 
Qji pour ij Ainsi, une matrice carree A = {aij) est symetrique si a. 

tout i et tout j , c'est-a-dire ses coefficients sont symetriques par rapport 
a la diagonale principale. 
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• Matrice anti-symetrique 

Une matrice carree A telle que —A'= A est dite matrice anti-symetrique, 
c'est-a-dire si â ^ — —dji pour tout i et j ] il s'ensuit que les elements 
de la diagonale principale sont nuls. 

• Matrice scalaire 

Une matrice carree A est dite matrice scalaire si: 

= P pour J 
Qij — 0 pou r i 7^ J 

ou j3 est un scalaire. 

• Matrice diagonale 

Une matrice carree A est dite matrice diagonale si: 

lin = 0 

pour I = J 
pour i ^ j 

ou les dij sont des nombres quelconques. 

• Matrice triangulaire 

Une matrice carree A est dite triangulaire (superieure) si: 
aij — 0 pour I > j . 

Exemple 8.17 Void un exemple pour chacun des types de matrice carree 
vus ci-dessus: 

L matrice symetrique: A = 
- 1 2 

2 1 
4 0 

4 
0 

- 2 

2. matrice anti-symetrique: A — 

3. matrice scalaire: A — 

4- matrice diagonale: A — 

6 
0 
0 

0 
6 
0 

0 1 
0 

6 J 

0 2 
-2 0 

= 6J. 

3 0 0 
0 1 0 
0 0 5 
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5. matrice triangulaire: A — 

1 
0 
0 
0 

- 3 
2 
0 
0 

- 1 
1 
4 
0 

1 
3 

- 2 
1 

1 
0 
2 

3 
1 

- 1 

2 
- 1 

0 

8.8 Trace d^une matrice carree 

La trace d'une matrice carree est la somme des elements de la diagonale 
principale. Si A est une matrice carree d'ordre n, on definit la trace de A 
comme suit: 

n 

tr{A) = y^an-

Exemple 8.18 La trace de la matrice A d'ordre 3 suivante: 

A = 

est 

tr{A) = an + 022 + a33 = 1 + 1 + 0 = 2. 

Si A et S sont deux matrices caxrees, alors nous avons: 

tr{A) = tr{A) 

tr{A + B) = tr{A) + tr{B). 

Si A est d'ordre (m x n) et B d'ordre {n x m), alors nous avons: 

tr{AB) = tr(BA) 

Exemple 8.19 Avec la meme matrice A que dans I'exemple 8.18, nous 
avons : 

r 1 0 2 
A ' = 3 1 - 1 

[ 2 - 1 0 

tr(A') = 1 + 1 + 0 = 2. 
tr(A) = 2. 
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Exemple 8.20 Avec les matrices A et B de Vexemple 8.4, nous allons ve­
rifier que tr(A + B)=tr(A)+tr(B): 

A + B = 

B) = 

A = 

B = 

7 - 6 
5 1 

tr{A + B) = 7 + 1 = 8 
1 - 1 
3 0 

6 - 5 
2 1 

tr{A)+tr{B) = 1 + 7 = S 

tr{A) = 1 + 0 = 1 

tr{B) = 6 + 1 = 7 

Exemple 8.21 Soient la matrice A d'ordre (2 x 3) et la matrice B d'ordre 
(3x2) suivantes : 

A = 
2 1 - 1 
1 2 0 

B = 
\ ° 

1 
[ 1 

- 1 1 
0 
1 J 

Nous allons verifier que tr(AB)— tr(BA): 

AB = 

tr{AB) = 

BA = 

0 - 3 
2 - 1 

0 - l = - l . 

- 1 - 2 0 
2 1 - 1 
3 3 - 1 

tr{BA) = - 1 + 1 - 1 = - 1 . 

8.9 Partition des matrices 
Si I'on trace entre certaines lignes et/ou certaines colonnes d'une matrice 
A des traits sur toute la longueur de ces lignes ou de ces colonnes, on fait 
apparaitre de nouvelles matrices dont les dimensions sont inferieures a la 
dimension de A. EUes sont appelees sous-matrices de A ou blocs. 
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Exemple 8.22 Si nous prenons une matrice A d^ordre (3x4) , nous pouvons 
la partager par exemple en 4 blocs comme suit : 

A = 
a n ai2 

<^22 

<^32 

ai3 au 
<^23 <^24 

<3'33 <^34 

Si on designe les blocs par : 

B = [ an au] C = [ ai3 au ] 

D ^ 2 1 a22 

<^31 <^32 
E^ Ci2S <^24 

<^33 <^34 

on peut representer la matrice A ainsi : 

B C 
D E 

Une telle matrice est appelee matrice partagee (partitionnee). II est evi­
dent que la division d'une matrice en blocs n'est pas unique. Dans Texemple 
8.22, nous avons 4 blocs ou "deux lignes de blocs" et "deux colonnes de blocs". 
Ces lignes et ces colonnes sont appelees respectivement grandes lignes et 
grandes colonnes de la matrice A. 

En gem^ral, si A est une matrice d'ordre (m x n) divisee en p grandes 
lignes et q grandes colonnes, nous designons le bloc de la i^ grande ligne et 
de la j ^ grande colonne par Ayy Nous avons alors la representation suivante 
de A : 

A = 

Axx Ai2 
A21 A22 

Lpi Lp2 

^2q 

»-pq 

Addit ion de matrices partagees 

Si A et S sont deux matrices du meme ordre et partagees de la meme 
fagon en p grandes lignes et q grandes colonnes, la somme de A et J3 
se fait en sommant les blocs correspondants: 

A + B^ [Ay] + [Sij] = [Ay, + Sij] pour i = 1 , 2 , . . . , p 
i = l , 2 , . . . , g . 
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Exemple 8.23 Soient les deux matrices d'ordre {3 x 3) A et B suivantes : 

A = 
' - 2 

0 
3 

1 
- 1 

1 

2 ' 
- 3 

4 
B 

\ ^ 
1 

[ 2 

- 1 
1 
2 

0 1 
1 

- 2 J 

on obtient. 

A + B 

• - 2 1 ' 
0 - 1 

[ 3 1 ] 

+ 

+ [ 

" 0 - 1 • 
1 1 

2 2 ] 

2 " 
- 3 

[ 4 ] 

+ 

+ [ 

0 " 
1 

- 2 ] J 
r - 2 0 

1 0 
[ 5 3 

2 1 
- 2 

2 \ 

• Multiplication de matrices partagees 

Pour que deux matrices partagees A ei B puissent etre multipliees, 11 
faut que les deux conditions suivantes soient verifiees: 

1. le nombre de grandes colonnes de A est egal au nombre de grandes 
lignes de B; 

2. le nombre de colonnes du t^ bloc d'une grande ligne quelconque 
de A est egal au nombre de lignes du t^ bloc d'une grande colonne 
quelconque de B. 

Si A est partagee en {p x q) blocs et J5 en (g x s) blocs, c'est-a-dire 
si A = [Aij] pour z = 1,2,... ,p 

et B = [J3ij] pour i = 1,2,..., g 
j - l , 2 , . . . , 5 

alors le produit AB est defini par: 

AB=^ E ^ i t S t j 
t=i 

pour i = 1, 2 , . . . ,p 

i = l , 2 , . . . , s . 
Le resultat AB est une matrice partagee en {p x s) blocs. 
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E x e m p l e 8.24 Reprenons les matrices A et B de Vexemple 8.23 et calcu­
lous le produit AB : 

B = 
• - 2 

0 
3 

1 
- 1 

1 

2 ' 
- 3 

4 

\ ^ 
1 

L ^ 

- 1 
1 
2 

0 1 
1 

-2 J 

La premiere condition est remplie car le nombre de grandes colonnes de A est 
egal au nombre de grandes lignes de B. Pour verifier la deuxieme condition, 
notons les blocs de A et de B par leurs indices respectifs: 

A21 = 

-B21 = 

-2 
0 
3 
0 
1 
2 

1 
- 1 

1 ] 
- 1 

1 

2 ] 

A12 = 

A22 = 

JB12 = 

-B22 = 

2 • 

- 3 

4] 
0 
1 

-2 ] 

nombre 
C'est le 

Nous devons multiplier An par Bn et par J3i2- II faut done que le 
de colonnes de An soit egal au nombre de lignes de Bn et de Bx2 
cas puisqu^on a2 — 2 — 2. 
Nous devons multiplier A12 par B21 et par B22' H faut done que le 
de colonnes de A12 soit egal au nombre de lignes de B21 et de B22 • 
cas puisqu ^on a 1 = 1 = 1. 
Nous devons multiplier A21 par Bn et par B12. Nous pouvons le faire 
puisque A21 a 2 colonnes et Bn et B12 ont 2 lignes. 
Et finalement nous devons multiplier A22 par B21 et par B22 Nous 
le faire car A22 d 1 colonne et B21 et B22 ont 1 ligne. Le produit 
done possible et le resultat est le suivant : 

nombre 
C'est le 

pouvons 
AB est 

AB = ^ 1 1 ^ 1 1 + A12B21 AnBi2 + A12B 
^ 2 1 ^ 1 1 + ^22^3 21 

>22 

A21B12 + ^ 2 2 ^ 22 

' 1 3 • 
- 1 - 1 

[ 1 - 2 

+ 

1 + 

• 4 4 " 
- 6 - 6 

[ 8 8 ] 

1 ' 
- 1 

[ 1 ] 

+ 

+ 1 

' - 4 " 
6 

: - 8 ] 
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5 
- 7 

9 

7 
- 7 

6 

- 3 • 

5 
- 7 

B 
D 

B' 
C 

C 
E 

D' 
E' 

• Transposee d'une matrice partagee 

La transposee d'une matrice partagee A = [Ay] est egale a la trans­
posee de ses blocs dans Tordre transpose: 

^ = [(Aji)']-

Exemple 8.25 Si Von reprend la matrice de Vexemple 8.22: 

A = 

sa transposee est egale a: 

A! = 

8.10 Determinant d'une matrice 

A chaque matrice carree, on pent associer un nombre qui s'appelle son 
determinant. On le designe par Texpression Det{A) ou par \ A\. Nous allons 
commencer par deux cas particuliers: le determinant d'une matrice (2 x 2) 
et le determinant d'une matrice (3x3) . 

Le determinant d'une matrice d'ordre 2 est egal a la difference du produit 
croise de ses elements: 

a i l <3̂ i2 

^ 2 1 <^22 
— a i l • ^22 — Cil2 ' <^21-

Exemple 8.26 Le determinant de la matrice: 

A = 1 - 1 
3 0 

est: 

- l - 0 - ( - l ) - 3 
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Pour calculer le determinant d'une matrice d'ordre 3, on repete les deux 
premieres colonnes a cote de la matrice. On effectue la somme des produits 
des elements de chaque diagonale tournee dans le meme sens que la diagonale 
principale et on enleve les produits des elements de chaque diagonale de sens 
contraire. Cela donne: 

an 
<^21 

<^31 

<^12 

<3̂ 22 

<^32 

a i 3 

<^23 

<^33 

an 
<^21 

<^31 

<^12 

<3̂ 22 

^32 

A\ = a n • a22 • dsS + <^12 • <^23 * ^ 3 1 + <^13 • <^21 • <^32 

-(ai3 • a22 • aai + an • a23 • 3̂2 + ai2 • a2i • a33). 

Exemple 8.27 Le determinant de la matrice 

A = 
1 2 0 
0 2 3 
0 - 1 - 2 

est: 
\ A\ = 1 • 2 . (-2) + 2 . 3 • 0 + 0 • 0 • (-1) 

- 0 • 2 • 0 - 1 • 3 • (-1) - 2 . 0 - (-2) - - 1 . 

Pour calculer le determinant d'une matrice d'ordre n, il faut introduire 
quelques notions sur les permutations. 

On dit que les entiers l , . . . , n sont dans un ordre naturel lorsqu'ils 
apparaissent dans Fordre 1,2,3,. . . , n. Deux entiers ne sont pas dans Fordre 
naturel dans un ensemble de n entiers si le plus grand precede le plus petit. 
Par exemple, Fordre naturel des 5 premiers entiers, commengant par 1, est 
(1,2,3,4,5). Si Fon inverse la position des entiers 2 et 4, nous obtenons 
(1,4, 3, 2, 5) et Fensemble n'est plus un ordre naturel, parce que 4 precede 3 
et 2, 3 precede 2. 

On appelle permutation de n entiers tout arrangement de ces n entiers. 
Le nombre d'inversions dans une permutation de n entiers est le nombre 
de paires d'elements (non necessairement adjacents) dans lesquelles le grand 
entier precede le petit. Dans Fexemple donne precedemment, nous avons 3 
inversions: (4,3), (4,2) et (3,2). Notons que le nombre d'inversions dans 
toute permutation est unique et pent etre compte directement et systemati-
quement. Une permutation est dite paire si le nombre d'inversions de cette 
permutaion est pair. EUe est dite impaire si le nombre d'inversions est im­
pair. 
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• Definition du determinant 

Le determinant d'une matrice A d'ordre n, note | A |, est le nombre 
calcule a partir de la somme suivante: 

I A I = Y^{±)aiia2j ...anr 

La somme est prise sur toutes les permutations du second indice. On 
assigne a un terme le signe plus si (z, j , . . . , r) est une permutation paire 
de (1, ...,n) et le signe moins si c'est une permutation impaire. 

Exemple 8.28 Pour une matrice d^ordre 3, nous avons les caracteristiques 
suivantes: 

Permutations 
1,2,3 
2,3,1 
3,1,2 
1,3,2 
2,1,3 
3,2,1 

Nombre dHnversions 
0 
2 
2 
1 
1 
3 

Parite 
paire 
paire 
paire 

impaire 
impaire 
impaire 

Le determinant est alors: 

\ A\ = ^l(l) • <̂ 2(2) • %(3) + <̂ 1(2) • ̂ 2(3) • <̂ 3(1) + <̂ 1(3) ' <̂ 2(1) * <̂ 3(2) 

- ai(i) • a2(3) • ̂ 3(2) - ai(2) • a2(i) • a3(3) - ai(3) • a2(2) • <^3(i)-

Exemple 8.29 Soit la matrice A suivante: 
2 3 
0 6 

- 1 2 

- 1 • 

4 
2 

son determinant est. 

( 2 . 6 . 2 ) + ( 3 . 4 . ( - l ) ) + ( ( - l ) - 0 - 2 ) 
- ( 2 . 4 . 2 ) - ( 3 . 0 - 2 ) - ( ( - l ) . 6 - ( - l ) ) 
24 - 12 - 16 - 6 = - 1 0 . 
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• L'expansion du determinant par les cofacteurs 

Nous reprenons le determinant de la matrice A ci-dessus: 

ail ' <̂22 • <̂33 + <̂12 • <̂23 * <̂31 + <̂13 * <̂21 * <̂32 

- ( a n • a23 • ^32 + a^ • a2i • asa + ais • a22 -^31). 

Considerons maintenant les deux termes qui contiennent Felement: 

ail • <̂ ii • <̂22 ' 0.33 — ciii ' a23 • a32 que nous pouvons ecrire 
<̂ ll • (<3'22 • ^33 — <̂23 • <̂ 32)-

Les termes entre parentheses representent le cofacteur de Felement 
a n . On notera qu'il ne contient aucun element de la premiere ligne et 
aucun element de la premiere colonne. Nous representons le cofacteur 
de ail par An. 

Considerons maintenant les deux termes du determinant contenant le 
2eme ("̂ î ĵ gĵ t de la premiere ligne de A: 

ai2 • a23 • a3i — ai2 • a2i • a33 = CLi2{a2s • aai — a2i • a33) 

= ai2 • A12. 

De meme, pour le troisieme element de la premiere ligne de A: 

a i 3 • a2 i • a32 — a i 3 • a22 • CLSI = <^13(<^21 * <̂ 32 — Ci22 ' a^l) 

= a i 3 - A i 3 . 

Notons que tons les termes du determinant ont ete utilises, nous pou­
vons done ecrire: 

3 

I A \= aiiAii + auAu + ai^Ais = ^ aijAij. 
3=1 

Le meme raisonnement pent etre repete pour toutes les lignes ainsi que 
toutes les colonnes de A. 

Exemple 8.30 Calculous le determinant de la matrice A suivante: 

2 3 - 1 
A = 1 0 6 4 

- 1 2 2 
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par la premiere ligne : 

\ A\ = ail' All + ttl2 • ^12 + ^13 • ̂ 13 
- 2 • (12 - 8) - 3 • (0 - ( -4) ) - 1 • (0 - ( -6) ) - - 1 0 

par la premiere colonne: 

I A I = ail' All + ^21 • ^21 + ^31 • ^31 
= 2 . (12 - 8) + 0 + ( -1) • (12 - ( -6) ) - - 1 0 . 

Le cofacteur Aij de relement a ĵ est egal au determinant de la sous-matrice 
obtenue de la matrice originale lorsqu'on a elimine la ẑ  ligne et la j ^ colonne, 
multiplie par (—1)'+- .̂ 

Exemple 8.31 Reprenons la matrice A de Vexemple 8.30 et calculous le 
determinant par la 2eme colonne a Vaide de la definition des cofacteurs: 

\ A\ = ai2' Ai2 + a22 • A22 + ^32 • ^32 
- (-l)(i+2) . 3 . (0 - ( -4) ) + (-l)(2+2) . 6(4 - 1) 

+ (_l)(3+2). 2 ( 8 - 0 ) 
= - 3 - ( 4 ) + 6 - ( 3 ) - 2 - ( 8 ) = - 1 0 . 

Nous allons voir maintenant quelques proprietes des determinants qui 
vont nous permettre de les calculer beaucoup plus facilement. 

8,11 Proprietes du determinant 

Propriete 1 
Det{A) =:Det{A'). 
Pour verifier cette propriete, il suffit de noter que Fexpansion du de­

terminant par une des lignes de A^ est egale a Fexpansion par la colonne 
correspondante de A. L'importance de ce resultat est que toutes les proprietes 
que nous verrons par la suite a propos des lignes seront valables aussi pour 
les colonnes. 
Propriete 2 

Si Ton echange deux lignes de la matrice A, le determinant change de 
signe. 
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P r o p r i e t e 3 
Si la matrice possede deux lignes identiques, le determinant est egal a 

zero. 
P r o p r i e t e 4 

Si Ton multiplie une ligne de la matrice A par le scalaire /3, le determinant 
est lui aussi multiplie par /5. 
P r o p r i e t e 5 

Si tous les elements d'une ligne d'une matrice A sent nuls, le determinant 
est egal a zero. 
P r o p r i e t e 6 

Si, aux elements d'une ligne de la matrice A , on ajoute un multiple quel-
conque des elements correspondants d'une autre ligne de A, le determinant 
reste inchange. 
P r o p r i e t e 7 

Le determinant d'une matrice triangulaire est egal au produit des ele­
ments de la diagonale principale. 
P r o p r i e t e 8 

Le determinant d'une matrice diagonale est egal au produit des elements 
de la diagonale principale. A partir de cette propriete, on pent en deduire 
que le determinant d'une matrice identite (quel que soit son ordre) est egal 
a l . 
P r o p r i e t e 9 

Soient AetB deux matrices carrees d'ordre n, le determinant du produit 
des deux matrices est egal au produit des determinants des deux matrices: 

Det{AB)= Det{A)' Det{B). 

8.12 Inverse d'une matrice 

Si A et B sont deux matrices carrees telles que AB = BA = I alors B 
est dite matrice inverse de A et Ton note B par A~^. 

• Calcul de I'inverse 

Soit A une matrice carree d'ordre n. A chaque element aij correspond 
un cofacteur Aij. On forme la matrice A^ ou chaque element aij est 
remplace par son cofacteur: c'est la matrice des cofacteurs. On trans­
pose cette matrice pour obtenir une nouvelle matrice, appelee m a t r i c e 
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adjointe, que Ton note A^. L'inverse de la matrice A est defini par: 

A-' = 

On notera que Finverse d'une matrice existe si et seulement si son de­
terminant est different de zero. 

Une matrice carree A est dite singuliere si | A | = 0 ; elle est dite non 
singuliere (ou reguliere) si | A IT^ 0. On pent done dire que Finverse 
d'une matrice existe uniquement si la matrice est non singuliere. 

Exemple 8.32 Soit A une matrice d^ordre 2, nous allons calculer son in­
verse : 

" 3 1 
2 0 

A^ 

Nous commengons par calculer son determinant : 

I A I - ( 3 - 0 ) - ( 2 - 1 ) = -2. 

Puis nous cherchons la matrice des cofacteurs : 

A " -

Nous transposons la matrice des cofacteurs pour obtenir la matrice adjointe. 

j^a 0 - 1 
-2 3 

Puis^ finalement, nous trouvons I ^inverse: 

A 2 
0 - 1 

-2 3 
0 1/2 
1 - 3 / 2 

Exemple 8.33 Prenons cette fois une matrice A d'ordre 3 et calculous son 
inverse: 

" - 2 2 1 
0 1 1 

- 3 1 2 
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Nous commengons par calculer \ A \ : 

= ( - l ) ^ + ^ - ( - 2 ) 

= - 2 - 3 = - 5 . 

1 1 
1 2 + (-ir^-(-3) 

2 1 
1 1 

Nous cherchons ensuite les cofacteurs: 

.1)1+1 

.1)1+3 

.1)2+2 

r_i)3+l 

.1)3+3 

A n = (-1)1+1 I ^ ;̂  I ^ 1 

Ai3 = (-1)1+^1 : : 1 = 3 

A33 = ( 

D 'oil la matrice des cofacteurs: 

1 1 

1 2 I 
0 1 

- 3 2 

- 2 1 
- 3 2 

2 1 

1 1 

- 2 2 
0 1 

Ai2 = (-1)^+^ 

A21 - (-1)^+^ 

= - 1 A23 = ( - i r ^ 

= 1 A32 = (-1)^+2 

= - 2 . 

0 1 
- 3 2 

2 1 
1 2 

- 2 2 
- 3 1 

- 2 1 
0 2 

= - 3 

= - 3 

= - 4 

= 2 

A^ = 
1 - 3 3 

-3 - 1 - 4 
1 2 - 2 

Nous la transposons pour obtenir la matrice adjointe : 

A " = 
1 - 3 1 

-3 - 1 2 
3 - 4 - 2 

Finalement, I'inverse est le suivant: 

A' = rA" = 
1 - 3 
3 - 1 
3 - 4 

1 
2 

- 2 
= 

- 1 / 5 3/5 
3/5 1/5 

- 3 / 5 4/5 

-1/5 
-2/5 
2/5 
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Quelques proprietes de I'inverse 

1. Si A = (an), an ^ 0 alors A^ = 
1 

a n ' 

2. Si A est inversible, alors I'inverse A"̂  de A est unique. 

3. Si A et S sont deux matrices carrees et inversibles alors: 

(AS) - i = B^A^. 

4. (A-^)-i = A. 

5. (A' ) - ' = (A-^)'. 

6. Si A est una matrice non singuliere, alors AB — O =^ B = O. 

7. Det(A^) = :—^TT-
^ ' Det(A) 

8.13 Inverse d'une matrice partagee 

Soit la matrice partagee: 

A l l A i 2 

A21 A22 
(8.1) 

ou All et A22 sont deux matrices carrees et non singulieres. On pent 
verifier que Tinverse de la matrice A est egal a: 

A^^ 
Bii B12 

B21 B22 

ou 

Bn = Air^+AiriAi2J5-^A2iAir^ 
B12 = — A l l " Ai2B~ 

B21 = —B~ A 2 i A i i ~ 

B22 = B 

ou 
JB = A 2 2 - A 2 1 A 1 1 ^ A L12 
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II est souvent souhaitable de pouvoir calculer le determinant d'une matrice 
partagee. Si A n dans (8.1) est non singuliere, le determinant de A est egal 
a: 

I A 1 = 1 All I . I A22 - A21 • Aii"^ • A12 I 

et si A22 est non singuliere, le determinant de A est egal a: 

I A 1=1 A22 I • I Al l — A12 • A22''̂  • A21 I . 
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Exercices 
1. Soient les matrices : 

-3 2 
0 4 
1 - 1 

et 
r 1 

0 
[ 1 

2 " 
1 
1 

(a) Trouver une matrice C telle que A—2B — C = 0. 

(b) Trouver une matrice D telle que A-\- B + C-A D = O. 

2. Effectuer les multiplications suivantes : 

(a) 3 1 5 
2 7 0 

2 
3 
0 

1 
0 

- 5 

- 1 0 ' 
1 8 
3 4 \ 

(b) [ - 3 0 5 ] . 

3. On donne: 

A = 
-3 - 5 
4 5 

-3 - 4 
et 

1 
1 
1 

3 
- 3 

3 

5 " 
- 5 

5 

Montrer que Ton a: 

(a) AB = BA = O 

(b) A^ -B^ ^{A- B)(A + B) 

(c) {A + BY = A'^ + B^ 

4. En general, (A + S ) ^ 7̂  A^+2AB + B^. Sous quelle condition a-t-on 
I'egalite? 

5. Soient les matrices: 

2 
A = I - 1 

1 

-2 - 4 
3 4 

-2 - 3 
et B = 

2 
- 1 

1 

- 3 
4 

- 3 

- 5 • 

5 
- 4 
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Note On dit qu'une matrice A est idempotente si A^ — A. 

Montrer que: 

(a) AB = A 

(b) BA = B 

(c) A et B sont idempotentes. 

6. De fagon generale, montrer que si AB = A et BA 
B sont idempotentes. 

B alors A et 

7. On donne: 

A = 
2 - 3 - 5 

- 1 4 5 
1 - 3 - 4 

et B = 
- 1 

1 
- 1 

3 
- 3 

3 

5 ' 
- 5 

5 J 
Montrer que A et B sont idempotentes, mais que AB ^ A. 
Ainsi, la reciproque du theoreme de Texercice 6 est fausse! 

8. Soit A une matrice composee de nombres reels. 
Peut-on avoir AA— O sans que A— O? 
Si oui, donner un exemple. 
Si non, expliquer soigneusement pourquoi. 

9. Note On dit que deux matrices A et J3 commutent si 

AB = BA. 

Trouver toutes les matrices qui commutent avec A: 

A = 

10. Trouver une matrice A ^ I et telle que A^ — I. 

11. On donne: 

1 
0 
0 

0 
3 
0 

0 1 
0 
5 

A = 
r 1 
[ 0 

3 • 

- 1 
, B = 
7 

2 0 1 
2 - 1 - 4 C = 

1 3 
2 - 5 

-1 6 

Trouver A • B • C. Calculer {A • B • C )' de deux fagons differentes. 
Quelle est la trace de A- B -C? Et celle de ( A • J3 • C)'? 
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12. Pour quelle valeur de x la trace de la matrice A est minimale? 
Et pour quelle valeur de x est-elle maximale? 

A -

13. Calculer a, b, c et d dans la relation suivante: 

2x^ 
0 
5 

4 
3^2 

6 

1 
2 

-12a; 

" 1 3 ' 
2 8 

a b 
c d = I = 

" 1 0 ' 
_ 0 1 _ 

14. Calculer le nombre d'inversions dans les suites: 

(a) 5, 2, 6, 1, 4, 3. 

(b) 10, 4, 5, 6, 1, 2, 7, 3, 9, 8. 

(c) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1. 

15. Calculer le determinant des matrices: 

A -
1 2 1 
3 3 6 
7 2 4 

B = 
4 2 
7 9 
3 0 

C = 
3 7 0 
1 2 0 
5 6 9 

D = 

1 1 1 1 
1 1 - 1 1 
1 - 1 1 1 
1 - 1 - 1 1 

16. Soit: 
an ai2 
^ 2 1 fll22 

A = 

Montrer que Ton a: 

\A + B\ = \A\ + \B\ + 

et B = ^ 1 1 &12 

^ 2 1 ^ 2 2 

G^ll ^ 1 2 

<3̂ 21 ^ 2 2 + 
fell <^12 
^ 2 1 <3̂ 22 

17. Pour quelles valeurs de x le determinant de la matrice A: 
2 

X X^ 

4 x^ 
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(a) s'annule-t-il? 

(b) est-il maximal? 

(c) est-il minimal? 

18. Calculer, en utilisant la partition des matrices, le produit AB : 

1 3 0 0 0 ' 
3 3 0 0 0 
0 0 5 0 0 
0 0 0 5 0 
0 0 0 0 5 

B = A = 

Calculer ensuite | A |, | J3 | et | A • S |. 

0 0 0 2 2 
0 0 0 2 2 
0 0 4 0 0 
0 4 0 0 0 
4 0 0 0 0 

19. Soit A une matrice non singuliere symetrique. Montrer que son inverse 
A'^ est aussi symetrique. 

20. Calculer, si possible, I'inverse des matrices suivantes: 

A = 
4 0 
0 1 
3 0 

5 
- 6 

4 
B = 

4 0 
0 1 
2 0 

8 
- 6 

4 
c = 

0 
1 
2 
3 

0 
0 
1 
3 

0 1 
0 
0 

1 J 
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D'ALEMBERT Jean Le Rond (1717-1783) 

Jean d'Alembert est ne a Paris, en novembre 1717. II finit ses etudes d'avocat 
en 1738, mais decide de ne pas continuer dans cette voie. II s'investit dans 
les mathematiques, et est admis en 1741 a TAcademie des Sciences de Paris. 
D'Alembert publie son Traite de Dynamique en 1743, et son Traite de VEqui-
libre et du Mouvement des Fluides en 1744. Puis, il s'implique pendant plu-
sieurs annees dans la redaction de L'Encyclopedie avec Diderot. D'Alembert 
est I'auteur de la plupart des articles mathematiques des 28 volumes de I'ou-
vrage. Parallelement, il continue son travail mathematique. II est notement 
un des pionniers de I'etude des equations differentielles partielles et dans leurs 
utilisations en physique {Reflexions sur la Cause Generale des Vents (1746)). 
Entre 1761 et 1780, il publie conjointement avec Euler: Opuscules Mathe­
matique, en 8 volumes. Son article Differentiel, paru dans le volume 4 de 
L'Encyclopedie, est une autre contribution importante aux mathematiques. 
II y suggere les bases de la theorie des limites. Dans la derniere partie de sa 
vie, D'Alembert se tourne vers la htterature et la philosophic {Melanges de 
Litterature et de Philosophie 1753-1767). D'Alembert est elu en 1772 secre­
taire perpetuel de 1'Academic frangaise dont il devient un des membres les 
plus influents. II meurt en 1783. 



Chapitre 9 

Systemes d'equations lineaires 

9.1 Introduction 
On est souvent confronte a la resolution de systemes d'equations lineaires. 
Dans ce chapitre, nous allons voir que le calcul matriciel est un outil puissant 
et bien adapte a ce genre de problemes. II permet en effet d'accroitre la vitesse 
de resolution de tels systemes et d'en simplifier considerablement le calcul. 
Dans un premier temps, nous allons aborder la notion de rang d'une matrice, 
qui est indispensable pour determiner les solutions d'un systeme d'equations 
lineaires. 

9.2 Rang d'une matrice 

Soit A une matrice d'ordre {m x n). On appelle sous-matrice une matrice 
qui est obtenue a partir de la matrice A lorsqu'on elimine une ou plusieurs 
lignes (ou colonnes). Si une sous-matrice est carree, on pent calculer son 
determinant. Par consequent, une sous-matrice sera singuliere si son deter­
minant est nul et non singuliere si son determinant est different de zero. 

A Paide de cette notion, on pent definir le rang d'une matrice. 
Soit r un nombre entier, inferieur ou egal au plus petit des deux entiers 

m et n, c'est-a-dire r < min(m,n), le rang d'une matrice A d'ordre (m x n) 
est egal a r s'il existe au moins une sous-matrice carree d'ordre r qui est 
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non singuliere et si toutes les sous-matrices carrees d'ordre superieur a r sont 
singulieres. 

Le rang d'une matrice est done egal a Tordre de la plus grande sous-
matrice carree non singuliere. Une matrice carree d'ordre n non singuliere a 
un rang egal a n (r = n). Si tons les elements d'une matrice sont nuls, on dit 
que le rang est zero. Si une matrice A d'ordre (m x n) a un rang maximal 
(egal au plus petit de m et n), on dit que la matrice a un rang complet . 

Exemple 9.1 Si A est la matrice suivante d^ordre ( 2 x 3 ) ; cherchons son 
rang: 

^ 1 3 2 
1 3 1 

A = 

Le rang de A est egal a 2 et on ecrit r{A) = 2. En effet, la sous-matrice 
carree d^ordre 2, composee de la premiere et de la deuxieme colonne est sin­
guliere. Mais la sous-matrice carree d^ordre 2, composee de la deuxieme et de 
la troisieme colonne est non singuliere (determinant = —3). II existe done au 
moins une sous-matrice d^ordre 2 dont le determinant est different de zero. 

Exemple 9.2 Considerons la matrice d^ordre 3 suivante et cherchons son 
rang: 

' 1 0 1 
A=\ 0 2 - 1 

- 1 0 - 1 

Nous calculons d^abord le determinant de A: 

I A 1= (-1)2+2-2 
1 1 
1 - 1 

= 0. 

Nous Savons dejd que r(A) sera inferieur a 3 puisque \A\ = 0. Calculons 
maintenant le determinant d'une sous-matrice carr6e d'ordre 2, disons: 

1 0 
0 2 

= 2. 

Nous constatons qu'il y a au moins une sous-matrice d'ordre 2 qui est non 
singuliere, d'ou r{A) = 2. 
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9.3 Transformations elementaires 

II est evident que le calcul du rang d'une matrice pent etre une operation tres 
longue. Prenons le cas d'une matrice carree d'ordre n. Nous devons d'abord 
calculer le determinant de la matrice elle-meme. Si le determinant est different 
de zero, le rang est n mais s'il est egal a zero, il faudra calculer le determinant 
des sous-matrices d'ordre (n — 1). Or, il y en a n^. Si toutes ces sous-matrices 
ont un determinant nul, il faut passer aux sous-matrices d'ordre (n — 2) et 
ainsi de suite. C'est pour cette raison que nous allons voir une methode qui 
facilite la determination du rang d'une matrice. Cette methode se base sur 
les transformations elementaires. 

II y a trois sortes de transformations elementaires: 

1. Echange de deux lignes (ou deux colonnes) de la matrice. 

2. Multiplication de tons les elements d'une ligne (ou colonne) de la mat­
rice par la meme constante (differente de zero). 

3. Addition aux elements d'une ligne de la matrice d'un multiple quel-
conque des elements correspondants d'une autre ligne (idem pour les 
colonnes). 

Ces transformations elementaires ne changent pas le rang de la matrice. 
Ainsi, nous allons utiliser ces transformations pour reduire une matrice A a 
sa forme normale. Si A est une matrice d'ordre {mx n)^ sa forme normale 
est la suivante: 

m — r 

' 1 0 . . 
0 1 .. 

0 0 . . 

0 0 . . 

. 0 0 . . 

. 0 

. 0 

. 1 

~. 0~ 

. 0 

0 .. 
0 .. 

0 .. 

0 .. 

0 .. 

. 0 • 

. 0 

. 0 

~. 0~ 

• 0 . 

I 0 
0 0 

Le rang de cette matrice est r, car la plus grande sous-matrice non singuliere 
est d'ordre r. 
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Exemple 9.3 La forme normale d^une matrice carree non singuliere d^ordre 
3 est la matrice identite d^ordre 3: 

1 
0 
0 

0 
1 
0 

0 1 
0 

1 J 

C^est le cas ou m = n = r = 3. 

Exemple 9.4 La forme normale d^une matrice d^ordre (3 x 2) de rang 2 
est: 

r 1 
0 
0 

0 1 
1 

0 J 
C^est le cas oum> n et r = n. 

On peut obtenir la forme normale d'une matrice et, par consequent, le 
rang de cette matrice en procedant d'une maniere systematique: 

1. On utilise des transformations elementaires du type 1 si Telement en 
position (1,1) est nul. 

2. On divise tons les elements de la premiere ligne par Telement de la 
position (1,1) pour obtenir un "1" en position (1,1). 

3. On enleve des multiples appropries a la premiere ligne de toutes les 
autres lignes afin d'obtenir des zeros partout ailleurs dans la premiere 
colonne. 

4. On enleve des multiples appropries de la (nouvelle) premiere colonne 
de toutes les autres colonnes, afin d'obtenir des zeros partout ailleurs 
dans la premiere ligne. 

5. On repete les points 1 a 4 pour Felement de la position (2,2). 

6. On poursuit le meme procede en descendant le long de la diagonale 
principale. Le procede s'acheve lorsque Ton arrive a la fin de la diagonale 
on que tons les elements non nuls ont ete utilises. 
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Exemple 9.5 Prenons une matrice d'ordre (3 x 4) et cherchons son rang a 
I'aide des transformations elementaires: 

0 2 1 2 
3 3 6 9 
1 3 3 5 

1. Nous echangeons la f'^ et la ^ lignes pour obtenir un element non nul 
en position (1,1), ce qui nous donne: 

3 3 6 9 
0 2 1 2 
1 3 3 5 

2. Nous divisons tous les elements de la r^ ligne par 3 pour obtenir 1 en 
position (1,1) .' 

" 1 1 2 3 
0 2 1 2 
1 3 3 5 

3. Nous enlevons une fois la 1"^^ ligne de la 3^ ligne pour obtenir un zero 
en position (3,1) .• 

" 1 1 2 3 ^ 
0 2 1 2 
0 2 1 2 

La deuxieme ligne possede dijd un zero en position (2,1). 

4- Nous enlevons une fois la i™ colonne de la 2^ colonne pour obtenir un 
zero en position (1,2) .• 

1 
0 
0 

0 
2 
2 

2 
1 
1 

3 1 
2 

2 J 
Nous enlevons deux fois la F^ colonne de la 3^ colonne pour obtenir un 
z6ro en position (1,3) : 

1 0 0 3 
0 2 1 2 
0 2 1 2 
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Nous enlevons trois fois la r^ colonne de la 4^ colonne pour obtenir un 
zero en position (1,4) ; 

1 
0 
0 

0 
2 
2 

0 
1 
1 

0 1 
2 

2 J 

Nous reprenons les points 1 a 4 pour I'element (2, 2) ; 

1. Le point 1 n'est pas necessaire car Velement (2, 2) est non nul. 

2. Nous divisons la ^ ligne par 2 pour obtenir un 1 en position (2,2) ; 

1 0 0 0 
0 1 1 / 2 1 
0 2 1 2 

3. Nous enlevons deux fois la 2^ ligne de la 3^ ligne pour obtenir un zero 
en position (3,2) : 

" 1 0 0 0 
0 1 1 / 2 1 
0 0 0 0 

4- Nous enlevons 1/2 fois la 2^ colonne de la 3^ colonne pour obtenir un 
zero en position (2,3) ; 

" 1 0 0 0 
0 1 0 1 
0 0 0 0 

Nous enlevons une fois la 2^ colonne de la 4^ colonne pour obtenir un 
zero en position (2,4); 

r 1 0 
0 1 

[ 0 0 

0 0 1 
0 0 

0 0 J 

5. Nous avons ainsi epuise tous les elements non nuls. La forme normale 
obtenue a un rang egal a deux, par consequent : 

r{A) - 2. 
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• Rang d'un produit de deux matrices 

Le rang d'un produit de deux matrices A et B est egal ou inferieur au 
plus petit des rangs des deux matrices, c'est-a-dire: 

r{AB) < mm[r{A),r{B)]. 

9.4 Systemes d'equations lineaires 

Soit un systeme de m equations lineaires a n variables represente par sa forme 
generale: 

aiiXi + ai2X2 + . . . + ainXn = bi 

a2lXi + a22X2 + . . . + a2nXn = ^2 

n l.Xnr, - 6. 

On pent ecrire ce systeme sous forme matricielle: 

Ax = b 

ou A est une matrice d'ordre (m x n) appelee matrice des coefficients, x 
est un vecteur-colonne a n composantes appele vecteur des inconnues et 
b est un vecteur-colonne a m composantes appele vecteur des const antes. 

Exemple 9.6 Ecrivons le systeme (inequations lineaires suivant sous forme 
matricielle: 

3xi — 2x2 + 0 : 3 = 1 

-Xi -\- X2 = - 2 

2Xi - X2 - X3 = 4 

Nous avons 3 equations (m == 3) et 5 variables in •= Z). La matrice des 
coefficients A est done une matrice d^ordre (3 x 3) : 

[ 3 - 2 1 
A = - 1 1 0 

I 2 - 1 - 1 

Le vecteur des inconnues x est un vecteur a 3 composantes: 

X = 

Xi 

X2 

X3 
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Le vecteur des constantes b est un vecteur a 3 composantes : 

b = 
1 

- 2 
4 

Nous avons finalement le systeme suivant: 

3 - 2 
-1 1 
2 - 1 

" Xi ' 

X2 

. ^ 3 . 

= 
1 1 

- 2 
4 J 

Ax = b. 

Si on ajoute le vecteur-colonne des constantes b a la matrice des coefficients 
A, on obtient ce qu^on appelle la matrice augmentee que Von note par 
[A\b]. 

Exemple 9.7 Si Von prend le systeme de Vexemple 9.6, la matrice aug­
mentee [A I b] est la suivante: 

[A I b] = 

1 

2 - 1 - 1 

1 

On va voir maintenant comment resoudre un systeme d'equations line­
aires, c'est-a-dire trouver la solution de ce systeme. Par solution du systeme, 
on entend un ensemble de valeurs xi, X2 , . . . , x^ qui satisfait simultanement 
toutes les m equations du systeme. Une solution n'est pas necessairement 
unique. II pent y avoir une infinite de solutions ou pas de solution du tout. 
Dans ce dernier cas, on dit que le systeme est incompatible (ou impossible). 

Void la condition pour qu'il y ait au moins une solution: un systeme de 
m equations a n variables (ou inconnues) est compatible si et seulement si 
la matrice des coefficients A et la matrice augmentee [A \ b] ont le meme 
rang. 

Nous allons done devoir chercher le rang de la matrice augmentee et voir 
s'il est egal au rang de la matrice des coefficients. Pour ce faire, on va appli-
quer aux lignes de la matrice augmentee des operations elementaires. II est 
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evident qu'une operation elementaire sur une ligne de la matrice augmentee 
ne change pas les solutions d'un systeme. 

Nous avons plusieurs cas a etudier: 

— systeme a n equations a n inconnues; 

— systeme a m equations a n inconnues, m > n; 

— systeme a m equations a n inconnues, m < n. 

• Sys teme de n equations a n inconnues 

Si le systeme a n equations et n variables, la matrice des coefficients 
A est une matrice carree d'ordre n. Si le rang de la matrice A est n, 
c'est-a-dire si la matrice A est non singuliere, alors la solution est 
unique. Dans ce cas, A possede un inverse. On pent, par consequent, 
trouver la solution a Taide de Tinverse de la matrice A. Le systeme 
etant : 

Ax = b 

on obtient la solution en pre-multipliant de chaque cote de Tequation 
par A~^: 

A-^Ax = A-^b 

Ix = A^b 

X = A^b. 

Exemple 9.8 Soit le systeme de 3 equations et 3 variables suivant, on va 
en trouver la solution: 

Xi 

-6xi 

+ 

+ 

A-' = 

2X2 

3X2 

4X2 

+ 3X3 

7X3 

2X3 

14 
- 2 6 
- 4 . 

Calculons Vinverse de A: 

Commengons par le determinant: 

r A ^ 

lAI = 
1 2 3 
1 - 3 - 7 

- 6 4 - 2 

l . ( 6 + 28) + ( - l ) . ( - 4 

34 + 16 + 30 - 80. 

1 2 ) + ( - 6 ) . ( -14 + 9) 
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Cherchons ensuite la matrice des cofacteurs: 

34 44 
16 16 
-5 10 

-14 ] 
-16 

- 5 

que nous transposons pour obtenir la matrice adjointe : 

A" = 
34 
44 
14 

16 
16 

-16 

- 5 • 

10 
- 5 

L ̂ inverse est done le suivant: 

A 80 

34 
44 
14 

16 
16 

-16 

- 5 • 

10 
- 5 

= 

17/40 1/5 -1/16 
11/20 1/5 1/8 

-7 /40 - 1 / 5 -1/16 

Nous devons encore post-multiplier par le vecteur b pour trouver x : 

X = A^b 

= 

= 

17/40 
11/20 

_ -7/40 
" 1 '1 

i 
2 

_ 3 _ 

1/5 
1/5 

- 1 / 5 

-1/16 • 
1/8 

-1/16 _ 

14 
-26 
- 4 

Nous pouvons egalement rechercher la solution par une methode de resolution 
appelee algorithme de Gauss. Ainsi, nous commengons par chercher le 
rang de la matrice augmentie, qui se presente ainsi: 

14 

\A\b] = 1 - 3 -26 

- 4 
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L'application des operations elementaires sur les lignes de la matrice nous 
conduit successivement a: 

0 - 5 -

- 6 4 

1 2 3 

0 1 2 

0 16 16 

1 0 - 1 

0 1 2 

0 0 -16 

-10 

14 

-40 

14 

80 

- 2 

-48 

1 

0 -10 

0 16 16 

1 0 - 1 

0 1 2 

0 16 16 

1 0 - 1 

0 1 2 

0 0 1 

14 

-40 

80 

- 2 

80 

- 2 • 

1 0 0 I 1 

0 1 0 

0 0 1 I 3 

La derniere matrice augmentee a un rang de 3. La matrice des coefficients a 
aussi un rang de 3. La solution existe done et elle est unique. Pour trouver 
cette solution, nous prenons la derniere matrice. La premiere colonne repre-
sente les coefficients de la variable Xi, la deuxieme colonne les coefficients 
de la variable X2 et la troisieme colonne les coefficients de la variable x^. 
Quant a la derniere colonne, elle represente les constantes. Nous pouvons 
done deduire de la premiere ligne : 

Ixi 4- 0x2 •+• 0x3 = 1, d'oH xi = 1. 

De la deuxieme ligne, nous avons: 

Oxi + 1x2 + 0x3 = 2, d'oii X2 = 2. 

Et de la troisieme ligne, nous avons: 

Oxi + 0x2 + Ixa = 3, d'oii xa = 3. 
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La solution complete est par consequent : 

xi = l,a;2 = 2,xs = 3. 

Etudions maintenant ce qui se passe si le rang de la matrice A est inferieur 
a n. Deiix cas se presentent: 

— si le rang de [A \ b] est egal au rang de A, il y a des solutions 

mult ip les ; 

— si le rang de [A \ b] est different de celui de A, il n'y a pas de 

solution. 

Exemple 9.9 Soit le systeme de 3 equations et 3 variables suivant, nous 
allons en chercher la solution: 

xi + 2x2 + 3a;3 = 14 
xi — 3x2 — 7x3 = ~26 

3xi — 2x2 — 7x3 = ~22 

A la suite cooperations elementaires, on obtient: 

1 -7 

3 - 2 - 7 
1 2 3 

0 

0 - 8 -16 

14 

-26 

- 2 2 
14 

-64 

0 - 8 
1 0 

0 1 

-10 

-16 
-1 

0 0 0 

14 

-40 

-64 
- 2 

0 

Dans cette demiere matrice, le rang de [A\b] est egal a 2 comme le rang de 
A. Le systeme est done compatible. Quand le rang est r, avec r < n, on 
pent donner a {n — r) variables du systeme des valeurs arbitraires et ensuite 
resoudre le systeme par rapport aux autres variables. On a alors la solution 
coraplete du systeme. 
Id, r — 2 et n = 3, on peut done fixer arbitrairement (n — r) = (3 — 2) = 1 
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variable. Choisissons de fixer xz = s. Nous pouvons alors resoudre le systeme 
d'apres la demiere matrice. De la premiere ligne, on deduit: 

Xi + 0x2 — X3 = —2, d'ou xi — xs = —2 

et de la deuxieme ligne, on tire: 

Oxi + X2 + 2x3 = 8, d'ou 3:2 + 2x3 = 8. 

Avec x^ = s, la solution complete est: 

Xi — —2 + s 

X2 = 8 - 2 5 

Xz = S. 

Par exemple, en posant s = 1, nous avons une des solutions possibles : 

xi = - l , a ; 2 = 6,X3 = 1. 

Exemple 9.10 Soit le systeme de 3 equations et 3 variables suivant, nous 
allons en chercher la solution: 

xi + 2x2 + 3x3 = 14 
Xi — 3x2 — 7x3 = —26 

3xi — 2x2 — 7x3 = ~20 

A la suite d'operations elementaires, on obtient: 

1 

-3 - 7 

3 - 2 - 7 
1 2 3 

14 

-26 

0 

0 

1 

-8 -16 

-20 
14 

-62 

1 

0 - 5 -10 

0 - 8 -16 
1 0 - 1 

0 1 

0 0 0 

14 

-40 

-62 
- 2 

Dans la derniere matrice, le rang de {A\b) est egal a 3 tandis que le rang 
de A est egal a 2. Le systeme est done incompatible (Oxi + 0x2 -f OX3 = 2), 
c'est-d-dire qu'il n'y a pas de solution. 
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• Sys teme de m equations a n inconnues, m > n. 

Nous considerons ici les systemes dans lesquels le nombre d'equations 
est superieur au nombre de variables. Les trois exemples suivants mont-
rent que trois cas peuvent se presenter: 

— soit il y a solution unique; 

— soit il y a infinite de solutions; 

— soit il n'y a pas de solution. 

Exemple 9.11 Soit le systeme de 3 equations et 2 variables suivant, nous 
allons en chercher la solution: 

2x1 

2x1 

Xi 

+ 4X2 = 

- 3X2 = 

- 4X2 = 

4 

18 

14 

Les operations elementaires donnent les etapes suivantes: 

18 

14 

2 

14 

10 

r 2 

2 

[ 1 
r 1 

0 

V 0 

4 1 

-3 1 

-4 

2 1 

-7 1 

-6 1 
r 1 0 

0 1 

[ 0 0 

6 

-2 

0 

r 1 

2 

[ 1 

2 

-3 

-4 

2 ] 

18 

14 J 

12 

Dans la derniere matrice, le rang de [A\h] est egal a 2 comme le rang de A. 
Le systeme est compatible et la solution est unique vu que n — r = 2. Cette 
solution est: 

xi = 6,X2 = —2 
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Exemple 9.12 Soit le systeme de 4 equations et 3 variables suivant: 

2xi — 2a;2 + '2,xz = 6 
—xi + 2x2 + 3x3 = 0 

-X2 - 4x3 = - 3 
—2xi + 3x2 + 2x3 — ~ 3 

Par les operations elementaires, on trouve successivement: 

2 - 2 

0 - 1 - 4 

- 2 3 2 
1 - 1 1 

0 1 4 

0 - 1 - 4 

0 1 4 

- 3 
3 • 

- 1 

0 

2 3 2 
" 1 0 5 

0 1 4 

0 0 0 

0 0 0 

- 3 

0 

Dans la derniere matrice, le rang de {A\b) est egal a 2, comme le rang de A. 
Le systeme est done compatible. II y a une infinite de solutions car n = 3 et 
r = 2. On peut fixer arbitrairement (n — r) = (3 — 2) = 1 variable. Posons 
que X3 = s. 
Nous pouvons alors resoudre le systeme avec la derniere matrice : 

xi + 5x3 = 6 

X2 + 4X3 = 3. 

Avec X3 = s, la solution complete est: 

Xi = 6 — 5s 

X2 = 3 — 4s 

X3 = S. 
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Exemple 9.13 Si dans le systeme de I'exemple 9.12, on donne a la constante 
de la 3^ equation la valeur de —4 d la place de —3, on obtient la matrice 
suivante: 

" 2 - 2 2 

0 1 

- 2 3 2 I - 3 

Les transformations elementaires nous donnent: 

1 - 1 1 

0 - 1 

-2 3 2 I - 3 
1 0 5 1 6 " 

0 1 4 

0 0 0 

1 - 1 

0 - 1 - 4 

0 1 

0 0 0 0 

Dans la demiere matrice, le rang de [A\h] est egal a 3, tandis que le rang de 
A est egal a 2. Le systeme est done incompatible. 

• Systeme de m equations a n inconnues, m < n 

Si la matrice des coefficients est d'ordre (m x n) avec m < n, le rang de 
A est au maximum m. Le rang est done inferieur a n. II s'ensuit qu'il 
n'y a que deux cas possibles: 

— si le rang de [A\b] est egal au rang de A, il y aura une infinite de 
solutions et on pourra fixer (n — r) variables arbitrairement (avec 
r = r{A) = r{[A \ b]); 
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— si le rang de [A\b] est different de celui de A, le systeme est in­
compatible. 

Lorsqu'il y a plus de variables que d'equations, la solution n'est done 
jamais unique. 

Exemple 9.14 Soit le systeme de 2 equations et 3 variables suivant, nous 
allons en chercher la solution : 

2xi — X2 + 2xs — 2 

—x\ + 2x2 + 2x3 — 2. 

Les transformations elementaires sont les suivantes: 

r 2 - 1 2 1 2 1 

|_ - 1 2 2 2 J 
r 1 - 2 - 2 1 - 2 " 

_ 0 3 6 6 _ 
r 1 0 2 1 2 " 

[ 0 1 2 2 

=̂  

=> 

' 1 

2 
" 1 

_ 0 

-2 

-1 
-2 

1 

- 2 

2 
- 2 

2 

- 2 

2 
-2 

2 

Dans la derniere matrice, le rang de [A\b] est egal a 2, comme le rang de 
A. Le systeme est compatible et on peut fixer (n — r) — (3 — 2) = 1 variable 
arbitrairement. On peut resoudre le systeme a Vaide de la derniere matrice: 

Xi + 2X3 

X2 + 2X3 

Avec X3 — s, la solution complete est: 

xi = 2 - 2 5 

X2 - 2 - 2 5 

X3 = S. 
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Exemple 9.15 Soit le systeme de 2 equations et 3 variables suivant, nous 
allons en chercher la solution : 

2Xi - X2 + XS = 1 

4x1 - 2x2 + 2x3 = 4. 

Les transformations elementaires nous donnent les etapes suivantes: 

-1 1 

-2 2 4 - 2 2 

1 1 
2 2 

0 0 

Dans la derniere matrice, le rang de [A\b] est egal a 2, tandis que le rang de 
A est egal a 1. Le systeme est done incompatible. 

• Systeme homogene 

Si dans un systeme d'equations lineaires, toutes les constantes sont 
nuUes, c'est-a-dire si 6 = 0, on dit que le systeme est homogene. 
Sous forme matricielle, on I'ecrit: 

Ax = 0. 

II est evident que dans un systeme homogene, le rang de la mat rice 
augmentee est toujours egal au rang de la matrice des coefficients. Par 
consequent, un systeme homogene a toujours au moins une solution. 
En effet, le vecteur cc = 0, c'est-a-dire: xi = X2 = X3 = . . . = x^ = 
0, est toujours une solution. C'est la solution triviale d'un systeme 
homogene. II existe des solutions autres que la solution triviale si le rang 
r de la matrice des coefficients est inferieur a n. Dans ce cas, on pent 
donner a (n —r) variables des valeurs arbitraires. II y a, par consequent, 
une infinite de solutions. 

Nous avons alors deux possibilites: 

— soit un systeme homogene n'a que la solution triviale; 

— soit un systeme homogene possede la solution triviale et une infi­
nite d'autres solutions. 
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La solution triviale represente en quelque sorte la solution unique d'un 
systeme homogene. II n'y a done que la solution triviale si le rang 
de A est egal au nombre de variables. 

Pour qu'un systeme homogene ait des solutions non triviales, il est 
necessaire et suffisant que le rang de A soit inferieur au nombre 
de variables, ou alors lAI — 0. 

Exemple 9.16 Soit le systeme homogene de 3 equations a 2 variables sui-
vant, nous allons voir s^il existe des solutions autres que la solution triviale. 

2xi + 4x2 = 0 
2xi — 3x2 =" 0 

xi — 4x2 = 0 

// nous faut chercher le rang de A par les transformations elementaires: 

r ̂  
2 
1 

4 • 

- 3 
- 4 

=> 
' 1 

2 
1 

2 " 
- 3 
- 4 

=^ 
' 1 

0 
0 

2 " 
- 7 
- 6 

=̂  
' 1 2 " 

0 1 
0 1 

=̂  
" 1 0 1 

0 1 
0 0 J 

Le rang de A est egal a 2. Le nombre de variables est aussi egal a 2. II n^y a 
done que la solution triviale: 

x i = 0 et X2 = 0. 

Exemple 9.17 Soit le systeme homogene de 3 equations a 3 variables sui-
vant, nous allons voir s^il existe des solutions autres que la solution triviale. 

Xi + 3X2 — 2X3 = 0 
4xi - 2x2 - 2x3 = 0 

Xi - 4X2 + X3 = 0 

Cherchons le rang de A a I ̂ aide des transformations elementaires: 

1 3 - 2 
0 - 1 4 6 
0 - 7 3 

1 0 - 5 / 7 
0 1 - 3 / 7 
0 0 0 

1 
4 
1 

3 
- 2 
- 4 

- 2 
- 2 

1 

1 
0 
0 

3 - 2 
1 3/7 

- 7 3 
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Le rang de A est egal a 2. Le nombre de variables est egal a 3. On pent done 
fixer (n — r) = (3 — 2) = 1 variable arbitrairement. De la demiere matrice, d 
laquelle on ajoute le vecteur b = 0, on tire: 

5 
xi - -xz = 0 

3 
X2 - ^Xz = 0. 

Avec X3 = s, la solution complete est: 

5 
xi = -s 

3 
7 

Xz = S. 

X2 = IjS 
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Exercices 
1. Void une autre fagon d'obtenir Tinverse d'une matrice A: 

(a) Construire la matrice B = [A I] 

(b) Par des transformations elementaires sur les lignes de B, obtenir 
J a la place de A. 

On trouve ainsi A~^ a la place de I . 
Par cette methode, calculer Tinverse des matrices de Texercice 20 du 
chapitre 8. 
Que se passe-t-il avec la matrice B7 

2. Trouver le rang des matrices suivantes en les reduisant a leur forme 
normale: 

A = 
2 0 
3 1 
7 0 

1 
- 6 

4 
B = 

1 2 1 
3 6 3 
2 4 2 

1 
0 
2 
1 

2 
1 
2 
1 

3 
1 
4 
2 

6 ' 
2 
8 
4 

3. Resoudre les systemes d'equations suivants : 
(a) xi +2x2 - ^ 3 = 2 

xi —2x2 —3x3 = —6 
xi +4x2 +4x3 = 3 

(b) - x i + X2 + 3x3 = 12 
2xi — X2 + 2x3 = —8 . 
4xi + X2 — 4x3 = 15 

4. Soit le systeme: 

Xi + X2 — 2X3 + 4X4 =" 6 
-3xi — 3x2 + 6x3 — 12x4 = b 

(a) Pour quelle valeur de b le systeme est-il possible? 

(b) Donner a fe la valeur trouvee sous (a) et calculer la solution com­
plete du systeme. 
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5. Soit le systeme d'equations : 

2xi —X2 —3x3 = 0 
—xi +2x3 = 0 
2xi —3x2 —X3 ^ 0 

(a) Ce systeme est-il compatible? Pourquoi? 

(b) Possede-t-il une solution unique? Pourquoi? 

6. Trouver toutes les solutions des deux systemes d'equations lineaires 
homogenes suivants: 

(a) —3xi +X2 +2x3 = 0 
- 2 x i +2x3 = 0 
— l l x i +6x2 +5x3 — 0 

(b) xi +X2 +3x3 +X4 == 0 
xi +3x2 +2x3 +4x4 = 0 . 
2xi +X3 —X4 = 0 

7. Soit le systeme d'equations lineaires suivant: 

X -\- y — z = 1 

2x + 3y + /?z = 3 . 
x + (5y-\-?>z = 2 

Determiner les valeurs de [3 de telle sorte que ce systeme d'equations 
possede: 

(a) aucune solution; 

(b) une solution unique; 

(c) une infinite de solutions. 



Chapitre 10 

Vecteurs et espaces vectoriels 

10.1 Introduction 

Ce chapitre aborde un aspect plus geometrique de Talgebre lineaire. Pour 
resoudre un probleme, il est sou vent utile de se situer dans un systeme a 
deux ou a trois dimensions pour pouvoir le visualiser. C'est pourquoi nous 
introduisons les notions de vecteur et d'espace vectoriel. 

10.2 Les vecteurs 

Par vecteur, nous entendons toujours vecteur-colonne. Chaque colonne d'une 
matrice pent etre consideree comme un vecteur. Les vecteurs-ligne sont les 
transposes des vecteurs-colonne. Chaque ligne d'une matrice pent etre consideree 
comme la transposee d'un vecteur. Les elements d'un vecteur sont appeles 
composantes du vecteur (toujours des nombres reels). Un vecteur pent done 
avoir 1 ou 2 ou . . . ou m composantes. 

• Vecteur unite 

Un vecteur dont la i^ composante est 1 et dont tons les autres elements 
sont zero est appele vecteur unite et est note Ui. 
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Exemple 10.1 Pour des vecteurs a 4 composantes, il y a 4 vecteurs unites : 

Ui 

• Vecteur nul 

r 1 • 
0 
0 

L 0 

U2 = 

' 0 " 
1 
0 
0 

W3 = 

• 0 • 

0 
1 
0 

1*4 = 

• 0 " 

0 
0 
1 

Un vecteur dont toutes les composantes sont nuUes est appele vecteur 
nul et est note 0. 

10.3 Interpretation geometrique des vecteurs 

Nous savons qu'un point dans Tespace a deux dimensions est represents par 
une paire de nombres. Nous pouvons alors dire qu'un vecteur a deux compo­
santes definit un point dans Tespace a deux dimensions. Cette constatation 
nous permet de representer un vecteur graphiquement. Sur la figure 10.1, le 
point A est defini par le vecteur x' =[xi X2]. Le segment oriente OA 
(joignant Torigine au point A) represente le vecteur x. 

T. 
-'^J 

0 

X X 

X 

A 

1 

Figure 10.1: Representation graphique d'un vecteur a deux composantes 

La multiplication d'un vecteur par un scalaire revient a multiplier chaque 
composante par ce scalaire. Considerons la multiplication du vecteur x par 
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le scalaire 2. Nous avons done: 

2a;'= 2 
X2 

2xx 
2X2 

Sur la figure 10.2, nous constatons que le vecteur 2x correspond au segment 
oriente OB qui est egal a deux fois le segment OA. 

?Y 

A>2 

0 

A 

X X 

y 

Xlx 

h 

B 

2x, 

Figure 10.2: Multiplication d'un vecteur par un scalaire 

Exemple 10.2 Soit le vecteur x' = [ — 1 3 ]. Multiplions-le par 3 et repre-
sentons les deux vecteurs graphiquement dans la figure 10.3. 

3cc == 3 
-1 

9 

La somme de deux vecteurs est un troisieme vecteur dont les composantes 
sont egales a la somme des composantes correspondantes des deux premiers 
vecteurs. Si x' = [xi X2] et y' = [yi 7/2], x' + y' = [xi + yi X2 + 2/2]- Sur 
la figure 10.4, le segment OA correspond au vecteur x tandis que le segment 
OB correspond au vecteur y. Pour faire la somme des deux segments, nous 
tragons une paralelle au segment OA a partir du point B et une paralelle au 
segment OB a partir du point A. L'intersection de ces deux droites donne le 
point C. Le segment OC est done la somme de OA et de OB. II represente 
le vecteur x + y. 
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Figure 10.3: Representation de cc' = [—1 3] et de 3x^ = [—3 9] 

Exemple 10.3 Soient les deux vecteurs x' = [2 0] et y' — [—4 4]. Repre-
sentons dans la figure 10.5 les vecteurs x, y et x + y. 

x' + y' = [2 0] + [-4 4] = [-2 4]. 

Lorsqu'un vecteur a 3 composantes, il faut un espace a 3 dimensions pour 
pouvoir le representer graphiquement. En general, on associe a tout vecteur 
a n composantes un segment dans Fespace a n dimensions. 

10,4 Longueur d 'un vecteur 

Du point de vue geometrique, la longueur ou norme d'un vecteur est la 
longueur du segment qui le represente. Elle est definie par la racine carree 
de la somme des carres de ses composantes. Pour un vecteur x a n 
composantes, sa longueur, notee par || cc || est definie par I'expression: 

1/2 

X W — 
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x2+y2 

y2 

X•^ 
•^2 

"ol 

B 

V 

1 y 

[ xV 

- ' X 

; X 

A 

1 X, 

C 

-^y, 

Figure 10.4: Addition de deux vecteurs 

Exemple 10.4 Calculous la longueur du vecteur a 3 composantes suivant: 

X — 

- 4 
0 
3 

II X Ih ((-4)2 + (0)2 + (3)2)V2 :^ (16 + 0 + 9) /̂2 _ 25 /̂2 ^ 5̂  

10.5 Produi t scalaire de deux vecteurs 

Soient x et y deux vecteurs de meme forme, leur produit scalaire est defini 
par la somme des produits des elements correspondants. Si cc et y sont des 
vecteurs a n composantes, le produit interieur s'exprime par: 

n n 

x'-y = y'x = ^^x,yi = J^y^x,. 
i=l i=l 

Les vecteurs x et y pouvant etre consideres comme des matrices, nous re-
mar quons que le produit interieur correspond a la multiplication de matrices. 
C'est pour que le produit soit possible que Ton ecrit: x'^y ou y''X. En effet, 
le nombre de composantes de x et y etant (n x 1), il faut done transposer 
Tun ou Fautre des vecteurs pour pouvoir effectuer la multiplication. 
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-2 01 JC 2 

Figure 10.5: Representation de x, y et x -\- y 

Exemple 10.5 Soient les vecteurs a 2 composantes x' — [3 1] et 
y' — [—4 5], alors : 

2 

x'-y = 2_] ^iUi ~ 3 • (—4) + 1 • 5 = —7 o?i 

2 

y'x - ^ViX, = (-4) . 3 + 5 • 1 = - 7 . 
2 = 1 

10,6 Vecteurs orthogonaux 

Si le produit scalaire de deux vecteurs est nul, on dit que les deux vecteurs 
sont orthogonaux. Du point de vue geometrique, deux vecteurs orthogo­
naux sont perpendiculaires. Si plus de deux vecteurs orthogonaux ont une 
longueur egale a 1, on dit qu'ils sont orthonormaux. 

Exemple 10.6 Soient les deux vecteurs a deux composantes suivants, cal-
culons le produit scalaire et representons-les sur la figure 10.6: 

x' = [?, - 2 ] , y' = [A 6]. 
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Le produit scalaire est egal a: 

x' • J/ = 12 - 12 - 0. 

Les deux vecteurs sont done orthogonaux. 

Figure 10.6: Vecteurs orthogonaux 

Si cc et 2/ sont deux vecteurs a n composantes, alors on a les deux inegalites 
suivantes: 

Inegalite de Cauchy-Schwarz x' 'y\ < \\x y 

on \ x^ ' y \ represente la valeur absolue du produit scalaire, || cc || la norme 
de X et \\ y \\ la norme de y. 

Inegalite de Minkowsky x + y \\ < \\x\\ + \\y 

Cela signifie que la longueur de la somme de deux vecteurs ne pent pas 
exceder la somme de leur longueur. 

10.7 Dependance lineaire 

Solent les m vecteurs a n composantes cci, X2 ,.. -.Xm- On dit qu'ils sont 
lineairement dependants si et seulement s'il existe des constantes ci, C2,..., ĉ^ 
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dont une au moins est differente de zero, telles que: 

CiXi + C2X2 + . . . + CmXm = 0. 

Dans le cas contraire, les vecteurs sont l ineairement independants . 

Exemple 10.7 Soit: 

Xi 

L^equation ciXi+C2X2+CsXs= 0 nous donne: 

r - 1 " 
- 2 

L - 3 
X2 = 

0 • 

2 
- 1 

Xs = 

• - 1 • 

0 
- 4 

Cl 

- 1 
- 2 
- 3 

+ C2 

r 0 " 
2 + C3-

• - 1 • 

0 
- 4 

— 

' 0 • 

0 
0 

En developpant, nous avons : 

- C l + 0C2 - Cs = 0 

- 2 c i + 2c2 + 0c3 = 0 
- 3 C i - C2 - 4C3 = 0 

ce gm represente un systeme homogene de 3 equations lineaires. Nous devons 
resoudre ce systeme et voir sHl existe un Ci different de zero [i = 1, 2,3). Nous 
Savons comment resoudre un systeme homogene sous forme matricielle. Nous 
cherchons le rang de la matrice des coefficients et nous nous souvenons qu^il 
suffit que le rang de A soit inferieur au nombre de variables pour qu^il y ait 
des solutions non-triviales. Or, sHl existe un Ci different de zero, cela signifie 
justement quHl y a des solutions non triviales. Nous arrivons done a une 
deuxieme definition. 

Les m vecteurs x\ sont dependants si le systeme homogene Ac = 0 
admet des solutions non triviales, avec A la matrice d'ordre (n x m) ayant 
pour colonnes les m vecteurs Xi^...^x^ et c le vecteur des m constantes 

Dans Texemple 10.7, nous avons: 

A = 
1 
2 
3 

0 
2 

- 1 

- 1 
0 

- 4 
et c = 

Cl 

C2 

C3 
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Nous cherchons le rang de A par les transformations elementaires: 

1 
-2 
-3 

1 
0 
0 

0 
2 

- 1 

0 
1 

- 1 

1 
0 

- 4 

1 1 
1 

- 1 

=> 

=> 

1 0 1 
0 2 2 
0 - 1 - 1 

[ 1 0 1 ] 
O i l 
0 0 0 

Le rang de A est egal a 2. II existe done des solutions non triviales puisque 
r = 2 < n = 3. Les vecteurs sont lineairement dependants. 

10,8 Combinaison lineaire 

On dit que le vecteur y est une combina i son l inea i re des vecteurs 
cci, CC25 • • • 9 ^m s'il existe des constantes Ai, A2 , . . . , A^ telles que: 

y = AiCCi + A2CC2 + . . . + XruXm-

E x e m p l e 10.8 Reprenons les 3 vecteurs de Vexemple 10.7 et regardons si 
CC3 est une combinaison lineaire de Xi et x^- Nous avons: 

ce qui donne. 
' - 1 ' 

0 
- 4 

= Ai 

" - 1 • 

- 2 
- 3 

+ A2 
0 1 
2 

- 1 J 

- A i = - 1 

-2A1 + 2A2 = 0 

_3Ai - A2 = - 4 . 

Nous pouvons resoudre ce systeme: de la 1''' equation, nous tirons \i 
que nous remplagons dans la 2^ ou la 3^ equation: 

- 2 • 1 + 2A2 = 0 
2A2 = 2 

A2 = 1 

xs est une combinaison lineaire de Xi et X2 car X3 = Xi -\- X2-
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10.9 Proprietes des vecteurs 

Propriete 1 
Si les m vecteurs Xi, X2^ . • -^ x^ sont lineairement dependants, au moins 

Tun d'entre eux est une combinaison lineaire des autres. 
Propriete 2 

Si m > n, m vecteurs a n composantes sont forcement lineairement depen­
dants. 
Propriete 3 

Les vecteurs correspondant aux colonnes d'une matrice non singuliere 
sont lineairement independants (il en est de meme pour les lignes). 
Propriete 4 

Les vecteurs correspondant aux colonnes d'une matrice singuliere sont 
dependants (il en est de meme pour les lignes). 
Propriete 5 

Si une matrice est d'ordre (m x n) avec n > m^ les vecteurs correspondant 
aux colonnes sont lineairement dependants. 
Propriete 6 

Le rang d'une matrice ne pent pas etre superieur au nombre de vecteurs 
lineairement independants. 
Propriete 7 

Si le rang d'une matrice d'ordre (m x n) est egal a r, il y a exactement r 
colonnes et r lignes lineairement independantes. 

10.10 Espaces vectoriels 

Un espace vectoriel a n dimensions pent etre defini comme etant Fen-
semble de tons les vecteurs a n composantes. Soient Xa et x\y deux vecteurs 
appartenant a cet ensemble. On verifie facilement que: 

- le vecteur (xa+ccb) est un vecteur du meme ensemble; 

— le vecteur Acca, ou A est un scalaire, c'est a nouveau un vecteur 
du meme ensemble. 

On dit alors qu'un espace vectoriel est un ensemble de vecteurs ferme par 
rapport a I'addition et a la multiplication scalaire. 
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Exemple 10.9 Considerons Vensemble de tous les vecteurs a 2 composantes. 

Soient Xn = et Xh — 

nous verifions que Xa + x^ appartient a I ̂ ensemble et que \Xa, avec X = 2^ 
appartient aussi a Vensemble: 

*^a\*^b — 
1 • 

- 2 + 
' 4 ' 

0 = 
5 " 

- 2 

Le vecteur est bien un vecteur a 2 composantes. 

XXa — 2 

Le vecteur est bien un vecteur a 2 composantes. 

Nous remarquons qu'il y a une infinite de vecteurs dans un espace vec-
toriel. Toutefois, grace a Taddition et a la multiplication scalaires, on pent 
engendrer tout Tespace vectoriel a Taide d'un ou plusieurs vecteurs. Ceci 
nous amene a la definition de la dimension d'un espace vectoriel. 

Par dimension d'un espace vectoriel, on entend le nombre maximal 
de vecteurs lineairement independants dans Fespace considere, ou, ce qui 
revient au meme, le nombre minimal de vecteurs independants necessaires a 
engendrer tout Fespace considere. 

Nous designerons, par consequent, un espace vectoriel par: 

ou Tindice i represente le nombre de composantes des vecteurs et Findice 
j la dimension de Fespace. Par la propriete 2, nous savons que j < i. La 
dimension maximale d'un espace vectoriel est done egale a la dimension de 
ses vecteurs. 

Exemple 10.10 Considerons Vensemble de tous les vecteurs Xi a 3 dimen­
sions qui sont de la forme : 

x\ = \s 35 95] 
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ou s est un nombre reel quelconque. II y a une infinite de vecteurs de ce type, 
mais, grace a la multiplication scalaire, on peut engendrer tout Vespace vec-
toriel en partant par exemple du vecteur x' ~ [1 3 9]. En d^autres termes, 
un seul vecteur suffit a engendrer tous les autres vecteurs. La dimension de 
cet espace vectoriel est done egale a 1 et on ecrit V^. 

Dans Texemple 10.9, nous pouvons engendrer tous les vecteurs y a 2 
composantes a Taide d'une combinaison lineaire des deux vecteurs unite Ui 
et U2. En effet, 

y = yiUi + y2U2. 

Ui et U2 sont independants. Par consequent, la dimension de Tespace vecto­
riel est egale a 2. Dans ce cas, au lieu d'ecrire ¥2^ etant donne que les deux 
indices se confondent, on ecrit simplement V2 et on parle alors d'un espace 
vectoriel a 2 dimensions complet . Nous pouvons generaliser cette notion 
et noter par Vn un espace vectoriel a n dimensions complet. 

10.11 Bases 

Une base de Tespace vectoriel l/[ est un ensemble de r vecteurs lineairement 
independants appartenant a cet espace vectoriel et qui engendre V^. 

Dans Texemple 10.10, le vecteur x' = [1 3 9] est une base pour V^. Dans 
Texemple 10.9, les deux vecteurs unite u[ = [1 0] et 1x2 — [0 1] forment une 
base pour V2. Les deux vecteurs [1 2] et [2 5] sont aussi une base pour V2. En 
revanche, les deux vecteurs [2 — 2] et [4 — 4] ne forment pas une base pour 
V2 car ils sont lineairement dependants. II y a done plusieurs bases possibles 
pour un espace vectoriel. Chaque base d'un espace vectoriel contient le meme 
nombre de vecteurs lineairement independants. 

Tout vecteur dans Pespace V^ peut etre represente par une com­
binaison lineaire unique des r vecteurs de base. 

Nous pouvons distinguer plusieurs types de bases: 
- base canonique : formee de vecteurs unite u^; 
- base ort honor male : formee de vecteurs orthogonaux et 

de longueur egale a 1; 
- base orthogonale : formee de vecteurs orthogonaux; 
- base quelconque : formee de vecteurs lineairements 

independants. 
Nous allons illustrer ces notions par Texemple 10.11. 
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E x e m p l e 10.11 Considerons Vespace vectoriel V2. Pour former une base, il 
faut deux vecteurs lineairement independants. Prenons plusieurs bases diffe-
rentes : 

• base canonique representee par les vecteurs u[ = [0 1] et u'2 — [0 1] 

• base orthogonale representee par les vecteurs x[ = [1 —2] et x'^ — [2 1] 

• base quelconque representee par les vecteurs x'^ — [1 2] et x\ == [3 2]. 

l^ous allons representer graphiquement le vecteur y' — [3 4] en fonction 
des trois bases ci-dessus. 

Pour la base canonique, les deux vecteurs unite se trouvent respectivement 
en abscisse et en ordonnee (Figure 10.7). Tout vecteur a deux composantes 
definit un point dans le plan, point qui peut etre represente par une paire de 
valeurs correspondant a I ̂ abscisse et a Vordonnee. Or, un point en abscisse 
est un multiple de u^ et un point en ordonnee est un multiple de U2. Tout 
vecteur est done une combinaison lineaire unique de Ui et U2. Le vecteur y 
s 'exprime alors par la combinaison lineaire unique: 

y = 3ixi +4tX2-

Nous representons y sur la figure 10.7. La representation d^un vecteur en 
termes de la base canonique equivaut done a la representation de ce vecteur 
en termes de coordonnees ordinaires. Considerons maintenant la base ortho­
gonale composee des vecteurs x\ = [1 — 2] et x'2 == [2 1]. Nous representons 
cette base sur la figure 10.8. Les droites oil se trouvent Xi et X2 forment les 
nouveaux axes perpendiculaires. Une base orthogonale correspond done a une 
rotation des axes definis par la base canonique. Tout vecteur peut maintenant 
etre represente en fonction de ces nouvelles coordonnees, c^est-a-dire par une 
combinaison lineaire unique de Xi et X2. Le meme vecteur y' = [3 4] est 
done egal a: 

y = xix-i +X2X2. 

Nous devons trouver la nouvelle abscisse Xi et la nouvelle ordonnee X2 pour 
pouvoir representer le vecteur y en fonction de la base x^^X2- Pour ce faire, 
nous remplagons y, Xi et X2 par leurs valeurs et obtenons: 

' 3 • 

4 
= Xi 

1 " 
- 2 + X2 

' 2 • 

1 
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Figure 10.7: Representation graphique de la base canonique et du vecteur y 
en fonction de cette base 

En developpant, cela donne 2 equations a 2 inconnues Xi et X2 : 

xi + 2x2 = 3 
- 2 x i + X2 = 4: 

Nous resolvons ce systeme en soustrayant deux fois la deuxieme equation de 
la premiere, ce qui donne : 

5xi == —5 => xi = —1 

et nous remplagons xi = — 1 dans la premiere equation pour obtenir: 

- 1 + 2x2 = 3 => 2x2 = 4 ^ X2 = 2. 

Nous avons done trouve les nouvelles coordonnees de y qui peut s ̂ ecrire : 

y = -x-i + 2cc2-

Nous pouvons alors le representer sur la figure 10.8. 
Prenons enfin la troisieme base. Nous avons une base quelconque formee des 
deux vecteurs Xg = [1 2] et x'^ = [3 2]. 
Nous representons cette nouvelle base sur la figure 10.9. Les droites ou se 
trouvent Xs et x^ forment les nouveaux axes qui, cette fois, ne sont pas 
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Figure 10.8: Representation graphique de la base orthogonale et du vecteur 
y en fonction de cette base 

perpendiculaires. Cependant, il est toujours vrai que tout vecteur peut etre 
represente par une combinaison lineaire unique des vecteurs xs et X4. Le 
vecteur y est done egal a : 

y = X3CC3 + X4X4. 

A nouveau, nous devons trouver les nouvelles coordonnees X3 et x^ pour pou-
voir representer le vecteur y en fonction de la base CC3, CC4. Nous procedons 
de la meme maniere et obtenons: 

Le systeme est le suivant: 

[ 4 
= Xz 

' 1 • 

2 
+ 3:4 

" 3 " 
2 

X3 + 3x4 — 3 
2x3 + 2x4 = 4 

3 1 
et les solutions sont X3 — - et X4 = - . 

Zi Zi 

Le vecteur y peut done s ^ecrire: 

y = ^xs + - X 4 . 

Nous le representons sur la figure 10.9. 
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Figure 10.9: Representation graphique de la base quelconque et du vecteur 
y en fonction de cette base 

10.12 Valeurs et vecteurs propres 

Le probleme des valeurs et vecteurs propres se pose en ces termes: soit une 
matrice carree A d'ordre n, existe-t-il un vecteur x non nul et un scalaire A 
tels que: 

Ax — Xx 

soit vrai? 
En d'autres termes, on cherche s'il existe un vecteur x qui en le multipliant 

par A nous donne un multiple de lui-meme. Les valeurs de A qui satisfont 
cette relation s'appellent les valeurs propres de la matrice A et les vecteurs 
X s'appellent vecteurs propres de la matrice A. 

Nous pouvons recrire cette relation de la maniere suivante: 

Ax — Xx 
Ax—Xx ~ 0 

(A-AJ) . X - 0. 

Nous voyons que cette forme d'ecriture correspond a un systeme d'equa-
tions homogene. II est evident que le vecteur x = 0 est solution, mais existe-
t-il d'autres solutions? Nous savons deja que, pour qu'il y ait des solutions 
non triviales, il est necessaire et suffisant que le determinant de {A—XI) soit 



10.12. Valeurs et vecteurs propres 283 

egal a zero. Pour resoudre notre probleme, nous devons done trouver des 
valeurs pour A qui annulent |A—AJ|. Puis nous calculous pour chaque valeur 
de A le vecteur x qui lui est associe. 

Le determinant |A—AJ| pour toute matrice A d'ordre n est une fonction 
de A et plus exactement un polynome de degre n en A. Nous savons que tout 
polynome de degre n possede au plus n racines. Par consequent, nous aurons 
au plus n solutions (pas necessairement toutes distinctes). 

Si la matrice A possede n valeurs propres distinctes, alors les n vecteurs 
propres associes sont lineairement independants et forment une base de Tes-
pace (de dimension n). 

Exemple 10.12 Soit la matrice A d^ordre 3 suivante: 

A = 

Nous allons voir s \l existe des valeurs de A et des vecteurs x tels que 
Ax— Xx. Nous formons tout d^abord la matrice (A—XI) : 

4 3 
0 1 

- 2 2 

2 
0 
0 

A-\I = 
4 3 2 ' 
0 1 0 
2 2 0 

- A 
1 
0 
0 

0 
1 
0 

0 • 

0 
1 

4 - A 3 2 
0 1 - A 0 

- 2 2 - A 

Nous calculons le determinant de (A —\I) en developpant les cofacteurs de 
la deuxieme ligne: 

\A-XI\ = ( l - A ) [ ( 4 - A ) ( - A ) - ( 2 ) ( - 2 ) ] 

= ( 1 - A ) ( - 4 A + A2 + 4 ) . 

Si nous diveloppons cette expression, nous trouvons un polynome en A du 
troisieme degre: 

\A-XI\ = - 4 A + A^ + 4 + 4 A ^ - A ^ - 4 A 

= -A^ + 5A^ - 8A + 4. 
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Cependant^ pour trouver les solutions de \A—X I\— 0, il est preferable de 
prendre ^expression (1 — A)(—4A + Â  + 4) = 0 . Nous avons une premiere 
solution qui est: 

( l - A ) = 0 

Ai = 1. 

Les deux autres solutions se trouvent en posant: 

Â  - 4A + 4 = 0 

que nous pouvons factoriser en: 

( A - 2 ) ( A 2) - 0 . 

Nous avons done X2 = 2 et Xs = 2. On voit que la racine X = 2 intervient 
deux fois. II reste a trouver les vecteurs associes aX = letdX = 2. En 
remplagant X par 1 dans [A — XI)x — 0, nous obtenons: 

4 - 1 3 
0 1 - 1 

- 2 2 

Xi 

X2 

. ^ 3 . 

= 
" 0 1 

0 

0 J 
Nous cherchons xi, X2, X3 ; 

3 3 
0 0 

- 2 2 

2 " 
0 

- 1 
=^ 

1 1 2/3 
0 0 0 

- 2 2 - 1 

1 1 2/3 
0 0 0 
0 4 1/3 

1 1 2/3 • 
0 4 1/3 
0 0 0 

=^ 

ce qui donne: 

1 1 2/3 
0 1 1/12 
0 0 0 

xi + —xs = 0 

1 
0 
0 

0 
1 
0 

7/12 1 
1/12 

0 J 

X2 + —X?, = 0. 
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et avec X3 = 5̂  5 7̂  0; nous avons la solution suivante: 

Xi 

X2 

X3 

= 

= 

- 1 2 ^ 
1 

s 
12 

s. 

7 1 
Le vecteur x' = \ s s s] est done un vecteur propre associe a 

^ 12 12 ^ ^ ^ 
A = l.On verifie aisement que Ax = x. 
Pour X = 2, nous avons le systeme suivant: 

4 - 2 3 2 
0 1 - 2 0 

- 2 2 - 2 

Xi 

X2 

. ^ 3 . 

= 
• 0 • 

0 
0 

Nous cherchons Xi, X2, x^ : 

2 3 2 
0 - 1 0 

- 2 2 - 2 

1 - 1 1 
0 - 1 0 
0 5 0 

-2 2 - 2 
0 - 1 0 
2 3 2 

-1 1 
1 0 
5 0 

1 
0 
2 

" 1 
0 
0 

- 1 
- 1 

3 

0 
1 
5 

1 
0 
2 

1 
0 
0 

ce qui donne: 
a;i + X3 = 0 

X2 = 0 

et avec Xi = t, t ^ 0, nous avons la solution : 

Xi — t 

X2 = 0 

X3 = - t . 

Le vecteur x^ = [ t 0 —t ] est done un vecteur caracteristique associe a la 
valeur X = 2. On verifie aisement que Ax =2x. 
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10.13 Diagonalisation de matrices carrees 

Une application courante des valeurs et des vecteurs propres est la diago­
nalisation des matrices carrees. Une matrice carree {n x n) A est diago-
nalisable s'il existe une matrice carree {n x n) D diagonale et une matrice 
carree {n x n) S inversible, telles que A=^SDS~ y-l 

E^emple 10.13 Posons: A=( I I) ^ ̂  = ( l i ) ^ ̂  = { I I 

Alors S~^ = i I 7^ 1 et 
0 1 

0 2 J \ ^ o i y \ ^ 0 2 y v o i 

Methode de diagonalisation 

1. Calculer les valeurs propres de A. 

2. Chercher les vecteurs propres associes a ces valeurs propres. 

3. Si la matrice possede n vecteurs propres lineairement indepen-
dants (c'est-a-dire si les n vecteurs propres forment une base de 
Fespace a n dimensions), alors A est diagonalisable et Ton pent 
passer a Tetape 4. Sinon, A n'est pas diagonalisable et Ton s'arrete 
la. 

4. La matrice S se construit alors a partir des n vecteurs propres Xi 
mis en colonne: 

S == Xi X2 ... Xr 

Notons Â  la valeur propre associee au î  vecteur propre Vi. Les 
valeurs propres sont les coefficients de la matrice diagonale D: 

/ Ai 0 ••• 0 \ 
0 A2 ••• 0 

0 : ••• 0 
\ 0 0 • • • A, 

D = 

Ainsi, A=SDS - 1 
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Exemple 10.14 Soit la matrice A: 

if ' 0 - 1 
A = - \ -2 4 -2 

n - 1 0 1 

1. Ses valeurs propres sont: 

A i - 0 , A 2 - I et\^ = -. 

2. Les vecteurs propres correspondants sont: 

xi = \ I \ ,X2 ^ \ I \ et X2, ^ \ 0 

l y V o y v - i 
5". Les vecteurs propres sont lineairement independants. On pent done dia-

gonaliser la matrice A. 

4- On forme la matrice S en alignant les vecteurs propres en colonne: 

1 0 1 
1 1 0 
1 0 - 1 

et en placant les valeurs propres correspondantes sur la diagonale de la 
matrice la matrice D : 

/ 0 0 0 
D= 0 1 0 

\0 0 I 

On calcule finalement la matrice inverse: 

/ 1 0 1 
5 - = i - 1 2 - 1 

^ \ 1 0 - 1 



288 Vecteurs et espaces vectoriels 

et on verifie que la relation A=SDS~^ est bien etablie : 

SDS-^ = -

= A. 

Proprietes 

1. Le determinant est invariant par diagonalisation et est egal au 
produit des valeurs propres, c'est-a-dire : 

Det (A) = Det (D) = A1A2 • . . . • A .̂ 

En effet, 

Det {A) = Det{SDS-^) 

= Det {S) Det (D) Det {S-^) 

= Det{D) 

— A1A2 • . . . • Xn-

2. La trace est aussi invariante par diagonalisation et est egale a la 
somme des valeurs propres, c'est-a-dire: 

tr (A) =tr{D) = Xi + X2 + ... + A .̂ 
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En effet, 

tr{A) = tr(SDS-^) = tr({SD)S-^) 

= tr{D) = Ai + A2 + . . . + A„. 

3. Le calcul des puissances est simplifie grace a la diagonalisation: 

oiiD™ = 

( X^ Q 
0 XV, 

0 0 

0 \ 
0 

K ) 
En effet, 

= SDS-^SDS-\..SDS-^ 

= SD"'S-\ 
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Exercices 
1. Determiner si les vecteurs suivants sont lineairement dependants: 

Vl = 

2. Ecrire la matrice D comme combinaison lineaire des matrices A, B et 
C. 

1 
2 
1 

V2 = 

2 
1 
0 

^3 = 

1 
5 
3 

1 1 
1 0 B = 

" 0 0 " 
1 1 .c = 7 ^ ^ 

" 0 2 " 

0 0 
D 

3 1 
1 - 2 

3. Trouver a, 6 et c tels que les trois vecteurs suivants forment une base 
orthogonale de I'espace a trois dimensions: 

r a 
- 1 

L 3 
V2 = 

' -14 " 
b 
2 

1̂ 3 = 

• - 1 • 

2 
c 

1 
1 
1 

1 
x^ 
4 

0 ' 
0 
X 

4. Soit la matrice A suivante: 

A 

Pour quelles valeurs de x la matrice A est-elle inversible? 

(a) Pour X = 0, calculer les valeurs propres de A. 

5. Calculer les valeurs propres et les vecteurs propres pour les matrices 
suivantes: 

A = 
1 
0 
0 

0 
1 

- 2 

0 • 

- 2 
1 

B = 
1 
0 
2 

0 
- 1 

0 

2 " 
0 

- 2 

c = 
0 0 

-1 1 
1 - 1 
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6. Pour quelles valeurs de a la matrice suivante n'a-t-elle pas de valeur 
propre reelle? 

a 1 
-1 0 

A = 

Montrer que B possede deux vecteurs propres lineairement indepen-
dants: 

^ 1 2 
0 2 

B = 

Montrer qu'une matrice symetrique 2 x 2 possede toujours deux valeurs 
propres (pas forcement distinctes). 
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L A G R A N G E Joseph Louis (1736-1813) 

Mathematicien franco-italien ne a Turin en 1736, Lagrange se fait connaitre 
en 1788 grace a son ouvrage Mecanique analytique dans lequel il resume, 
sous une forme rigoureuse, toutes les connaissances acquises en matiere de 
mecanique depuis Newton. II enseigne la geometrie a Turin ainsi qu'a Ber­
lin ou il remplace Euler a FAcademie des sciences en tant que directeur de 
mathematiques (1766). 

En 1770 et 1771, il public deux importants memoires sur la theorie des 
equations dans lesquels apparait, pour la premiere fois, le result at connu sous 
le terme de theoreme de Lagrange. 

On releve encore sa contribution dans le developpement de la theorie des 
nombres, des equations differentielles et de I'analyse ainsi qu'en astronomic. 

Lagrange est connu egalement pour son role actif dans Tintroduction du 
systeme metrique durant la periode de la Revolution en France. 



Chapitre 11 

Approche matricielle du calcul 
different iel 

11.1 Introduction 

Le calcul differentiel a ete aborde dans la premiere partie de ce livre et le cal­
cul matriciel dans le chapitre 8. Nous allons maintenant voir qu'il est possible 
de combiner les deux approches dans le but de resoudre des problemes qui 
paraissent plus complexes au premier abord, ou qui sont tout au moins d'une 
plus grande ampleur. Nous verrons egalement Toptimisation de fonctions de 
plusieurs variables (avec ou sans contrainte) a Taide de la matrice hessienne, 
puis les bases de la regression simple. 

11.2 Calcul differentiel sous forme matricielle 

Soit X un vecteur compose de n variables: 

X' = {Xi X2. -.Xn), 

et k un vecteur compose de n constantes: 
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nous formons la fonction lineaire y suivante: 

y = k''X 

= {kik2... kn) • 
X2 

\Xn J 

E*- Jbi. 

i=l 

Nous pouvons calculer la derivee partielle de y par rapport a chacune des 
n variables: 

— = k 
dxi 

0x2 

dy 
dXr,, 

/ t o o . 

Nous regroupons ces n derivees partielles dans un vecteur a n dimensions: 

dy 

dx 
= k\ 

Considerons maintenant un ensemble de m fonctions lineaires du meme 
type que y: 

yi = K'X 

2/2 = k^'X 

ym — fem * ^• 

Sous forme matricielle, nous avons: 

y = Ax 

ou y est le vecteur a m dimensions des y ,̂ A la matrice mxn des constantes 
ou chaque ligne represente un vecteur fc' et cc le vecteur a n dimensions des 
variables x^. 
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Les n derivees partielles de yi, y2, • • •, y-m sont: 

dyi 
dx 
dy2 

- = k 
dx 

ox 

9ym _ u 
dx 

Par consequent, sous forme matricielle, la derivee de ?/ = Ax est: 

dy dAx 

dx dx = A. 

Soit A une matrice symetrique d'ordre n composee de constantes et x un 
vecteur compose de n variables, nous pouvons construire la forme quadratique 
generale: 

q = x^ Ax. 

En developpant, on obtient: 

+ 2a22xl + . . . + 2a2iX2Xi + . . . + 2a2nX2Xn 

I CiiiX^ ~r . . . I ZiOjifiXiXji 

La derivee partielle de q par rapport a la variable x^, i — 1 ,2 , . . . , n, est 
obtenue en sommant les derivees des termes contenant Xi: 

dq 
— - = 2aiiXi + 2a2iX2 + . . . + 2aiiXi + . . . + 2ainXn. 
OXi 

Comme A est une matrice symetrique, on pent aussi ecrire: 

dq 
—- = 2aiiXi + 2a2iX2 + . . . + 2a^^x^ 
ox^ 

- 2AiX, 



296 Approche matricielle du calcul differentiel 

ou Ai est la î  ligne de la mat rice A. Par consequent, la derivee de la forme 
quadratique q = x'Ax pent s'ecrire sous forme matricielle: 

dq 
dx 

\ dq 

dxi 

dq 

9x2 

dq 

L 9xn 

= 2 

Aix 
A2X 

J±Xi^ 

2Ax. 

Soit A une matrice d'ordre m x n, ou tons les elements aij sont une 
fonction de la variable x : 

A = [a,j{x)]. 

La derivee de la matrice A par rapport a x est egale a la matrice ayant 
pour elements la derivee (par rapport a x) des elements respectifs de A: 

dA 

dx 

daij{x 

dx 
01 

Exemple 11.1 Soient les 3 fonctions Uneaires suivantes : 

yi 

y2 

y3 

Sous forme matricielle, on a: 

ou 

(5)= 
dy 

La derivee —— est egale a: 
ox 

dy 

dx 

= Xi — 2X2 

= 4Xi + X2 

= 2X2. 

y = Ax 

" 1 - 2 ' 
4 1 

_ 0 2 _ ( : ; ) • 

dAx 

dx 
r 1 - 2 • 

4 1 
0 2 
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Exemple 11.2 Soit la forme quadratique suivante: 

q — x\-\- 4x1^2 + 6x1X3 — 2x2X3 + 2X3. 

On pent Vecrire sous forme matricielle: 

q = x^Ax 

= ( x i X2 X3) 

3 • 

1 
2 

X i 

X2 

. ^ 3 J 

La derivee de q est egale a: 

dq dx'Ax 
= 2Ax 

dx dx 
\ I 2 3 

= 2 2 0 - 1 
[ 3 - 1 2 

2xi + 4x2 + 6x3 
4xi — 2x3 
6x1 — 2x2 + 4x3 

Exemple 11.3 Soit la matrice A : 

A = 

Sa derivee est egale a: 

2x 
0 
X Inx 

X e 
2 1/x 

x2 

dA 

dx 

2 - 1 e^ 
0 0 - l / x ^ 
1 1/x 2x 

Xi 

X3 

11.3 Matrice hessienne 

Otto Hesse, ne en 1811 a Konigsberg en Allemagne (actuellement Kalinin­
grad en Russia), a essentiellement contribue au developpement de la theorie 
des fonctions algebriques. II a introduit la matrice hessienne dans un article 
datant de 1842 traitant de la recherche sur les courbes quadratiques. 
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Au point 7.6, nous avons vu comment rechercher les minima et maxima 
d'une fonction de deux variables. Afin d'elargir ce concept au resultat general 
sur les fonctions de plusieurs variables, introduisons la mat rice des secondes 
derivees partielles qui joue un role cle dans la determination des extrema 
d'une fonction de plusieurs variables. Cette matrice est appelee matrice 
hessienne et se presente sous la forme: 

H 

( f^l 
JX2Xi 

JXn-lXi 

\ JXnXl 

'~d 
ay 

JXIX2 

J X2 

Jxn-lX2 

JXnX2 

, et /^2 = 

J X\Xf^, 

JX2Xn 

f 
J X^ 

dxl' 

\ 

) 

oii /x? = 

On appelle mineurs principaux de la matrice i ? , notes A^, les determi­
nants des sous-matrices de H obtenues en lui retirant ses n — i dernieres 
lignes et colonnes (z = 1 , . . . , n). 

Nous presentons ci-dessous trois methodes de recherche des extrema d'une 
fonction de plusieurs variables: 

df df Of 
Soit P eW un point verifiant - ^ (P) = - ^ (P) = . . . = - ^ (P) = 0, 

dXi 0X2 OXn 
alors on a trois methode pour determiner si P est un extremum ou n'en est 
pas un : 

1̂ ^ m e t h o d e : Mineurs principaux 

• Si les mineurs principaux de la matrice hessienne au point P sont tons 
strictement positifs, la fonction atteint un minimum au point P . 

• Si les mineurs principaux de la matrice hessienne au point P sont de 
signes alternes, le premier etant strictement negatif, la fonction atteint 
un maximum au point P . 

• Si ces mineurs principaux ne verifient pas Tune des conditions ci-dessus 
prises au sens large (c'est-a-dire "positif ou nul" et "negatif ou nul" res-
pectivement), alors la fonction n'atteint ni un minimum ni un maximum 
au point P . 
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Dans le cas des fonctions de deux variables, on retrouve le result at vu au 
point 7.6 puisque dans ce cas, comme fxy = fyx^ on a: 

Ai — fxx 

^ 2 — Jxxjyy ~ [JxyJ • 

Ainsi, 

Ai > 0 et A2 > 0 => minimum, 
Ai < 0 et A2 > 0 =4> maximum, 
Ai quelconque et A2 < 0 ==> on ne pent pas conclure. 

2^ methode: Valeurs propres 

De maniere equivalente, Tetude des valeurs propres de la matrice hes­
sienne en ce meme point P permet de determiner la nature de ce point. 

• Si les valeurs propres de la matrice hessienne H au point P sont toutes 
strictement positives, alors la fonction atteint un minimum au point P. 

• Si les valeurs propres de la matrice hessienne H au point P sont toutes 
strictement negatives, alors la fonction atteint un maximum au point 
P. 

• Si la matrice hessienne i ? en P a au moins deux valeurs propres de 
signes opposes, alors le point P est un point-selle de la fonction. 

• Si les valeurs propres de la matrice hessienne H en P sont toutes de 
meme signe et si au moins une de ces valeurs propres est egale a zero, 
alors on ne pent pas conclure. 

3^ methode: Forme quadratique 

L'etude de la forme quadratique issue de la fonction / consideree est une 
troisieme methode de determination des extrema de ladite fonction. 

Soient / : R^ —>IR qui a x fait correspondre f{x), une fonction de n 
variables derivable. Supposons egalement que les derivees partielles du second 
ordre soient continues au voisinage du point P. Notons H (P) la matrice 

( f^ -P f^ -P f^ -P \ ^ 

—— —— . . . —— I 
dXi 0X2 OXn J 

le vecteur-colonne des derivees partielles de premier ordre. 
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Le developpement de Taylor a Fordre 2 de la fonction / au voisinage du 
point P est donne par: 

f{x) = f{P) + {x-P)-F'{P) + {x-P)'-{H{P) + R{x-P))-{x-P) 

ou R est une matrice in x n) telle que lim (R ix — P)) — Q. 
(X-P)-^O 

On pent alors demontrer, a partir du developpement de Taylor ci-dessus, 
qu'etudier les extrema de la fonction / revient a etudier le signe de la forme 
quadratique suivante: Q (cc) = {x — P)' • H (P) - {x — P). 

• Si la forme quadratique Q {x) est definie positive (c'est-a-dire Q {x) > 0 
pour tout X ^ P\ alors / atteint un minimum au point P. 

• Si la forme quadratique Q [x) est definie negative (c'est-a-dire Q [x) < 0 
pour tout X ^ P\ alors / atteint un maximum au point P. 

• Si la forme quadratique Q [x) est indefinie (c'est-a-dire s'il existe au 
moins deux points distincts Xx et X2 tels que Q {x\) < 0 et Q {x2) > 0), 
alors le point P est un point-selle de la fonction / . 

• Si la forme quadratique Q (x) est semi-definie (c'est-a-dire si Q (x) > 0 
pour tout X y^ P on si Q {x) < 0 pour tout cc 7̂  P et s'il existe XQ tel 
que Q (CCQ) == 0), alors on ne pent pas conclure. 

Exemple 11.4 Soit la fonction z — f{x,y) = x'^ + y'^. Nous allons etudier 
les extrema de cette fonction selon les trois methodes decrites ci-dessus. 
Les candidats aux extrema s^obtiennent en resolvant le systeme d^equations 
df df 
/ = 0 et / = 0. 
ax oy 

^ = 2 x - 0 = ^ x = 0 
ox 
df 

II y a done un point candidat en P = (0; 0) (Figure 11.1). En cherchant les 
secondes derivees partielles de f{x^y), on trouve: 

i- = 2 — = 2 — = 0. 
dx'^ dy'^ dxdy 
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La matrice hessienne est done donnee par: 

H ^ 
2 0 
0 2 

Done, H (P) -
2 0 
0 2 

• r^ methode: Mineurs principaux 
On calcule alors les mineurs principaux de H (P) . On obtient: A i = 2 
et A2 = 4. A i et A2 sont tous deux strictement positifs^ par consequent, 
le point P est un minimum de f . 

Figure 11.1: Graphe de z = f{x, y) — x^ + y^ 

• 2^methode: Valeurs propres 
Les valeurs propres X de H (P) verifient Vequation \H (P) — \I\ — 0. 
En resolvant cette equation on obtient les valeurs 
propres Ai = A2 = 2. Ces valeurs propres sont toutes deux strictement 
positives, done la fonction atteint un minimum au point P. 

• 3^ methode: Forme quadratique 
Calculons la forme quadratique Q {x) = {x — P)' • H (P) - {x — P) \ 

Qi^.y) 
2 0 
0 2 
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Pour tout X = I \ y^ P, Q (x) est strictement positif. Done f atteint 

un minimum au point P. 

Exemple 11.5 Soit lafonetion: 

f{x, y, z) = x^ - YIx^ + 2y^ + ẑ  - 2xy - 2yz + 81. 

Annulons les premieres derivees partielles: 

- ^ = Ax^-Ux-2y^Q (11.1) 

df 
- ^ = Ay-2x-2z = Q (11.2 
dy ^ ^ ^ 

^ = 2z-2y = 0. (11.3) 

De (11-3) on deduit: 
y = z. (11.4) 

Substituons (11.4) dans (11.2): 

4y-2x-2y = 0 

2y-2x = 0 

x = y. (11.5) 

En introduisant (11.4) ^t (^^-5) dans (11.1), on trouve: 

4:X^-34:X-2X = 0 

4x^-36a; = 0 

4x • (x^ - 9) = 0. 

Cette demiere equation a trois solutions: 

xi = 0, X2 = —3, x^ = 3. 
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Les valeurs correspondantes de y et de z sont: 

yi = 0, y2 = - 3 , ?/3 = 3 

zi = 0, Z2 = - 3 , zs = 3. 

Nous avons done trois points candidats: Pi(0; 0; 0; 81), P2(—3; —3; —3; 0)ei 
^3(3; 3; 3; 0). 
Calculons la matrice hessienne: 
Les deuxiemes derivees partielles sont: 

ax^ axoy oxoz 

^ = -2 ^ = 4 - ^ = -2 
dydx dy"^ dydz 

= 0 T - ^ = -2 ^ = 2. 
dzdx dzdy dz^ 

Done la matrice hessienne est: 

12x2 _ 34 _ 2 

- 2 

0 

Pour le point Xi — yi = Zi = 0, la matrice hessienne est donnee par: 

Ai - - 3 4 

A2 = - 140 

A3 = -144 . 

D^apres le resultat general precedent, ces trois mineurs principaux ne verifient 
ni la condition 1 ni la condition 2, prises au sens large, la fonction n^atteint 
done ni un minimum ni un maximum au point Pi. 
Calculons maintenant les valeurs propres de H[Pi) en resolvant Vequation 
\H (Pi) — A/| — 0. On obtient les valeurs propres An = —34.1, A12 = 5.3 et 
Ai3 = 0.8. Nous avons done au moins deux valeurs propres de signes opposes, 
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done le point Pi est un point selle. 
Pour les points X2 = 2/2 = ^2 — — 3 ei X3 = ^3 = 2:3 == 3; la matriee hessienne 
est la meme : 

j 74. -2 0 
H =\ -2 4 - 2 

\ 0 - 2 2 
On a: 

Ai - 74 

A2 = 292 

A3 = 288. 

Ainsi, pour ehaeun de ees deux points, la fonction presente un minimum. 

Exemple 11.6 Une firme aeronautique fabrique des avions qu^elle vend sur 
deux marches etrangers. Soit qi le nombre d^avions vendus sur le premier 
marche et q2 le nombre d^avions vendus sur le deuxieme marche. Les fonctions 
de demande dans les deux marches respectifs sont: 

Pi - 6 0 - 2 g i 

P2 = 80 - 4(?2 

oil pi et p2 sont les deux prix de vente. La fonction de cout total de la firme 
est: 

C = 50 + 40g 

oil q est le nombre total d^avions produits. Le but est de trouver le nombre 
d^avions que la firme doit vendre sur chaque marche pour maximiser son 
benefice. 
Comme q = qi + q2) l(^ fonction de cout devient : 

C = 50 + 40g 

- 50 + 40(^1 + ^2) 

- 50 + 40^1 + 40^2. 

Le revenu total R s^obtient en faisant le produit du prix par la quantite sur 
chaque marche : 

R ^ Piqi+P2q2 

= (60 - 2qi)qi + (80 - 4^2)52 

= QOqi - 2ql + 80q2 - 4.ql 
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On obtient le benefice B en calculant la difference entre le revenu et le cout: 

B = R-C 

- 60gi - 2ql + 80^2 - 4g^ - (50 + 40gi + 40^2) 

= 20^1 - 2ql + 40^2 - 4g^ - 50. 

Annulons les premieres derivees partielles: 

dB 
— = -4gi + 20 = 0 ^ g i = 5 
dqi 
dB 
-TT- = -8^2 + 40 = 0 ^ 5 2 = 5. 
oq2 

II reste a verifier que le point candidal (gi ;g2) = (5 ; 5) est un maximum; 
pour cela, calculons les deuxiemes derivees partielles: 

d^B _ d'^B _ d^B 

dql dql dqidq2 

La matrice hessienne est done: 

' - 4 0 

Par consequent: 

A i = - 4 < 0 
A2 = 32 > 0. 

Comrae Ai < 0 et A2 > 0, il s'agit d'un maximum. Le benefice maximum 
realise est egal a: 

20(5) - 2(5)^ + 40(5) - 4(5)^ - 50 = 100. 

Quant aux prix, ils valent respectivement: 

Pi = 60 - 2(5) = 50 

P2 = 80 - 4(5) = 60. 
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11.4 Mat rice hessienne bordee 

La m e t h o d e des multiplicateurs de Lagrange utilisee pour obtenir les 
extrema d'une fonction soumise a des contraintes d'egalite (voir point 7.7) 
pent egalement se presenter sous forme matricielle. Ainsi, dans le cas simple 
ou la fonction a optimiser (fonction object if) est une fonction de deux va­
riables f{x,y) soumise a une seule contrainte de la forme g{x,y) = 0, nous 
avons le Lagrangien : 

F{x, y, A) = / ( x , y) + \g{x, y). 

Introduisons la matrice hessienne bordee : 

i J -

/ a^F d^F d^F \ 

dXdy 

dxdX 
d^F 

dXdx 
d^F 

d^F 
dxdy 
d'F 

\ dydX dydx dy^ J 

( 0 

dg_ 

dx 
dg 

V ^ 

dy 
d'F 

dx 
d^F 

dx'^ 
d^F 

dydx dy"^ J 

dxdy 
d'F 

dont le determinant sera note \ H \. 

La condition sufRsante pour Texistence d'un extremum est fournie par le 
result at suivant: 

Soit P{xo]yo'J{xo,yo)) le point ou [dF/dx = dF/dy - dF/dX = 0]. 
Alors, si en ce point: 

\ H \< 0 => minimum au point P 

I JH" |> 0 => maximum au point P. 

La methode des multiplicateurs de Lagrange pent se generaliser a I'opti-
misation d'une fonction de n variables / ( x i , . . . , Xn) soumise a k contraintes 
gj{xi,... ,x^) — 0, j = 1 , . . . , A: ou 1 < fc < n. 

Dans ce cas, le Lagrangien s'ecrit: 

F (x i , X2 , . . . , x^, A i , . . . , Afc) = / ( x i , . . . , x^) + J ^ A^-5^(xi, 
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et Fannulation des premieres derivees partielles fournit un systeme de n + fc 
equations h n + k inconnues: 

| £ : = | / + A , i ? a + A . ^ + ... + A . ^ = 0 
dxi dxi 

dgi 

dxi 

dgi 

dg2 
' dxi 

dg2 dF _ df . „ , , . 
7̂  — 7̂  1- Ai-r h A27; 
0X2 0X2 0X2 0X2 

dgk 
' dxi 

dgk 
0x2 

dF df , dgi , dg2 , dgk 
^ — = ^ + ^iTT^ + ^ 2 ^ + • • • + A f c ^ = 0 

dF 
= gi{xi,...,Xn) = 0 

dF 

dXk 
= gk{xi, = 0. 

Les conditions du deuxieme ordre pour determiner s'il s'agit d'un ma­
ximum ou d'un minimum reposent sur le calcul des mineurs de la matrice 
hessienne bordee suivante: 

H = 

Notons le mineur principal qui contient 
dxl 

comme dernier element de 

la diagonale principale par | Hi |. | H2 \ correspond au mineur principal qui 
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contient -7—-77 comme dernier element de la diagonale principale et ainsi de 

suite. La condition sufRsante pour Texistence d'un minimum ou d'un maximum 
depend des signes des mineurs principaux \Hk+i\ ,\Hk+2\^"-^\Hn\ = \H\. 

Mentionnons qu'il y a au moins une contrainte {k > 1) et done | Hi \ 
n'intervient jamais dans les calculs. La condition suffisante pour Texistence 
d'un extremum est donnee dans le result at suivant: 

La fonction / ( x i , ...,x^) soumise aux k contraintes 

gj{xi,...,Xn) =0, j ^ l , . . . ,fc 

admet: 

• un maximum au point candidat, si les mineurs principaux | i?/c+i |, 
I Hk+2 15 • • -5 I Hn I sont de signe alterne, le signe de | i?/c+i | etant 
celui de ( - l ) ^ + \ 

• un minimum, si les mineurs principaux | iif/c+i |, | ^/c+2 L • • • J Hn \ 
sont de meme signe, celui de (—1)^. 

E x e m p l e 11.7 Trouver les extrema de la fonction objectif: 

f{x,y) = 5x^ + 6y^ - xy 

sous la contrainte : 

x + 2y = 24. 

La contrainte s^ecritg{x^y) = x + 2y — 24: = 0. Le Lagrangien est donne par: 

F{x, y, A) - 5x^ + Qy^ - xy + X{x + 2y- 24). 

L^annulation des premieres derivees partielles fournit un systeme de trois 
equations a trois inconnues qu^il s^agit de resoudre: 

OF 
7— = 10x-y + X = 0 ( n . 6 ) 
ox 
OF 
- - = 12y-x + 2X = 0 ( n .7 ) 
dy 
OF 
— = x + 2y-2i = 0. ( n .8 ) 
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En eliminant A des equations (11.6) et (11-7), on obtient 2y = 3x que Von 
substitue dans (11.8): 

X + 3x - 24 - 0 
4 x - 2 4 

on obtient XQ = 6. Comme x + 2y = 24^ on trouve yo = 9. 
Pour determiner si le point candidat XQ =^ 6 et yo — 9 est un extremum, il 
faut calculer les derivees partielles du deuxieme ordre: 

d^F d^F d^F d^F 
— 10 = 12 = = —1. 

dx^ ' dy'^ ' dxdy dydx 
Les derivees partielles de la contrainte g{x^y) = x + 2y — 24 sont: 

OX ay 

La matrice hessienne bordee est done : 

H = 

Puisqu^il Skagit d^une fonction de deux variables soumise a une contrainte, on 
utilise le determinant de la matrice H. Comme \ H \— —56 < 0; la fonction 
objectif sous la contrainte x + 2y = 24: possede un minimum en XQ = Q et 
yo = 9. 
Nous avons done trouve la solution qui minimise la fonction objectif tout en 
respectant la contrainte. Remarquons que cette meme fonction, si elle n^est 
pas soumise a la contrainte x + 2y = 24^ ne possede pas un minimum au 
meme point! Le lecteur peut verifier que sans la contrainte, cette fonction 
possede un minimum en XQ = yo = 0. 

Exemple 11.8 Une entreprise fabrique trois types de machines xi,X2 et X3. 
La fonction de cout conjointe C{xi^X2^xs) est: 

C(xi , X2, X3) == 4x1 + 2^2 + X3 — 2xiX2 + X2X3 — 30x2 — 30x3 

Combien de machines de chaque type Ventreprise doit-elle fabriquer pour 
minimiser son cout sHl lui faut un total de 100 machines ? 
II s ̂ agit id de minimiser la fonction de cout conjointe sous la contrainte: 

Xi + X2 + X3 = 100. 
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Ainsi, g{xi,X2,xs) = 2;i+a;2+a;3 —100. Lafonction de Lagrange F{xi,X2,xs, A) 
est donnee par: 

F(xi,X2,a;3,A) = C{xi,X2,X'i)-^ \g{xi,X2,x^) 

= Ax\ + 2x\ -\- x\ — 2x1X2 + X2X3 — 30x2 — 30x3 

+A(xi+X2 + X 3 - 1 0 0 ) . 

Annulons les premieres derivees partielles: 

dF 
- - = 8 x i - 2 x 2 + A = 0 (11.9) 
axi 
dF 
-—- = 4 x 2 - 2 x i + X 3 - 3 0 + A = 0 (11.10) 
5X2 

dF 
— - = 2x3 + X 2 - 3 0 + A = 0 (11.11) 
5X3 

dF 
- - = X1 + X2 + X 3 - 1 0 0 = 0. (11.12) 

Tirons A de la premiere equation: A = 2x2 — 8x1. En substituant A dans les 
equations (11.10) et (11.11), on obtient avec I'equation (11.12) un systeme 
de trois equations a trois inconnues : 

-IOX1 + 6X2 + X3 = 30 (11.13) 

-8x1 + 3x2 + 2x3 = 30 (11-14) 

X1 + X2 + X3 = 100. (11.15) 

De (11.15), on tire xi = 100 — X2 — X3 que I'on remplace dans (11.13) et 
(11.14) pour obtenir: 

16x2 + 11x3 = 1030 (11.16) 

11x2 + 10x3 = 830. (11-17) 

De (11.17), on tire X3 = — que I'on substitue dans (11.16): 

16x2 + 1^(830-11x2) =1030 

160x2 - 121x2 = 1170 
39x2 = 1170 
X2 = 30. 
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De (11.17), on a: 
330 + 10x3 = 830 

10x3 = 500 
xs = 50. 

Finalement, de (11.15) xi = 100 — 30 — 50 = 20. Ainsi, le point candidal 
est xi = 20,2)2 = 30 et xs = 50. Verifions a present qu'il s'agisse hien d'un 
minimum. Pour cela, calculons: 

dg^ 

dxi 

d^F 
dx\ 

d^F 

= 1 , 
5 

= 8 , 

- -9. 

dg_ 

dx2 

d^F 
dxl 

d^F 

= 1 , 

= 4 , 

= n 

dg 

dxs 

d^F 
dxl 

d^F 

9X15^2 dxidxs dx2dx2, 

= 1 

= 2 

= 1 

La matrice hessienne bordee est, par consequent, donnee par: 

H = 

/o 
1 
1 

1 i \ 
-2 0 
4 1 
1 27 

On a: 

H, 
0 
1 
1 

1 
8 

- 2 

i 
- 2 

4 
= -16 et \Hz\= 

0 
1 
1 
1 

1 
8 

- 2 
0 

1 1 
- 2 0 

4 1 
1 2 

= - 3 9 . 

Comme dans cet exemple il n^y a qu^une contrainte, [k — 1), on a done: 

I i3"fc+2 I =1 Hn 1=1 H^ 1= —39 

Selon le eritere presente a la page 308, les mineurs \ H2 \ et \ H^ \ etant du 
meme signe que (—1)^; le point xi = 20; X2 = 30 et X3 = 50 est un minimum. 
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Remarque La methode des multiplicateurs de Lagrange ne pent pas etre 
utilisee dans tons les cas. En particulier, lorsque le probleme d'optimisation 
a des contraintes de non-negativite ou lorsque la fonction n'est pas derivable, 
cette methode n'est pas adaptee. Or, ces contraintes sont tres importantes 
en economie. Par consequent, il faut utiliser des methodes qui fournissent 
des solutions lorsque les contraintes se presentent sous forme d'egalite ou 
d'inegalite. Cependant, ces notions depassent quelque pen le cadre de cet 
ouvrage, c'est pourquoi nous ne les aborderons pas. 

E x e m p l e 11.9 Regression lineaire simple 
Soit le modele lineaire suivant sous forme matricielle suivant : 

y = Xf3 + e (1L18) 

OIL y est le vecteur des observations de dimension n x 1, X est une matrice 
n X 2 des coefficients, /3 est un vecteur de parametres a estimer de dimension 
2 X 1 et e est un vecteur d^erreurs de dimension n x 1. 

Jl_ 
dance des y sur les x, c^est-a-dire qui minimise le terme d^erreur e. 
La methode la plus utilisee (dite des moindres carres) minimise en fait 

y ^el =e'£. Sous la forme matricielle, la methode des moindres carres re-
i 

vient a minimiser, car: 

Du modele lineaire, nous sortons e : 

e = y-Xf3. 

Par consequent: 

e'e = {y-Xf3y(y-X(3) 

= y'y-^'X'y-y'X(3 + (3'X'Xl3 

= y'y-2f3'X'y + (3'X'Xl3. 

(La demiere equation provient du fait que (3'X'y est un scalaire et que sa 
transposee y'XfS a la meme valeur). 
Pour minimiser s's=y'y—2/3'X'y+/3'X'X(3, il faut deriver par rapport a (3 
et poser la derivee egale a zero : 

de'e ^ djy'y - 2/3'X'y + l3'X'Xf3) 

d(3 ~ dl3 

= -2X'y + 2X'Xl3. 
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De la, nous trouvons Vestimateur des moindres carres h de (3 en posant: 

2 {-X'y + X'Xb) = 0 

ou encore (en substituant (3 par h lorsqu^on pose Vequation egale a zero) 

X'Xb = X'y 

qu^on appelle Vequation normale. 

Pour obtenir b, on multiplie les deux cotes de cette equation par {X'X)'^, 
c^ est-a-dire: 

b =(x'xy'x'y. 

Note II peut arriver que la matrice {X X) n'ait pas dHnverse. Dans ce cas, 
on utilise ce qu^on appelle Vinverse generalise (g-inverse), notee {X'X)~. 
Cet inverse doit satisfaire parmi d^autres, la condition suivante: 

{x'x){x'xy{x'x) = (x'x). 



314 Approche matricielle du calcul differentiel 

Exercices 
1. Une fabrique utilise deux facteurs de production x et y pour produire 

un certain nombre d'unites d'un bien z. 
Le prix d'une unite du facteur x est 3 francs et celui d'une unite du 
facteur y est 2 francs. La fonction de cout de production est done: 

c = 3x + 2y 

Si cette fabrique doit produire 300 unites du bien z et que la fonction 
de production est donnee par z — IS^x^/^y^/'^ (contrainte), combien 
devra-t-elle acheter d'unites de x et y pour minimiser le cout de pro­
duction ? 

2. Un investisseur decide d'acheter trois types d'actions pour un montant 
total de 400 francs. Soit Xi, X2, X3 le montant consacre a chaque type 
d'action, ainsi Xi + X2 + X3 = 400. Le taux de rendement pour chaque 
action est une variable aleatoire dont Fesperance mathematique et la 
variance sont donnees par le tableau suivant: 
type d'action rendement moyen variance 

i 020 175 
2 0.15 1/10 
3 0.10 1/25 

On appelle rendement moyen espere du placement Texpression: 

'R = 0.20X1 + 0.15X2 + 0.10X3. 

On appelle risque du placement Fexpression suivante (c'est-a-dire la 
variance): 

(a) Trouver Xi, X2 et X3 qui minimisent le risque. A quel rendement 
moyen espere correspond cette repartition des achats ? 

(b) Trouver Xi,X2,X3 qui minimisent le risque sous la contrainte 
additionnelle que le rendement moyen espere i? = 60. Par rapport 
a la situation sous a), le risque est-il plus grand ou plus faible? 
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3. Une firme produit un certain bien qu'elle vend sur le marche au prix 
unitaire de 8 francs. La quantite produite (et vendue) est donnee par: 

Q = 8i^3/8^1/8 

ou K represente les unites de facteur capital employees et L les unites 
de facteur travail employees. Le revenu de la firme s'eleve done a 
8Q = 64K^/^L-^/^. Le cout de production de cette firme est donne par 
C - UK + 4L. 

(a) Trouver les quantites de K et L que la firme doit employer afin 
de maximiser le benefice. 

(b) La firme constate que la politique de maximisation du benefice 
ne lui assure pas une part de marche sufRsante. EUe decide en 
consequence d'adopter la politique de maximisation de la quantite 
vendue sous reserve d'un benefice minimal egal a 48 francs. 

i. Formuler explicitement le probleme de maximisation sous cont-
rainte. 

ii. Montrer que dans la solution optimale la combinaison op-
timale des facteurs (c'est-a-dire leurs proportions) reste la 
meme que dans le probleme de maximisation du benefice. 

iii. Donner la solution complete pour K^L et Q. 

4. La fonction de production d'une firme est donnee par : 

Q = AK'/'L'/^ 

on K et L sont les deux facteurs de production et Q la quantite pro­
duite. La firme achete les deux facteurs sur le marche, le prix unitaire 
de L est de 3 francs et, en raison d'une penurie, le prix unitaire de K 
est une fonction croissante de K suivant la formule: 

Pk = 2 + 0.1K. 

Sachant que la somme consacree a Tachat des deux facteurs de produc­
tion est 150 francs, trouver les valeurs de X et L qui maximisent la 
production. Quel est le prix unitaire de X ? 

5. Maximiser z = —x\nx — ylny sous la contrainte x + y = 1. 
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6. Une firme monopolistique produit un certain bien. Le cout total de 
production de la firme est represente par la fonction: 

C = 2I^ + 5q^ - 20q + 400 

oil q represente les unites produites et / represente un indice de qualite 
du produit (par exemple le degre de raffinage du produit). 
Le prix que la firme pent commander sur le marche est fonction de 
rindice de qualite: 

p=100-3q + 4.1. 

Calculer la recette totale de la firme. 

(a) Trouver q et I qui maximisent le benefice de la firme. 

(b) Verifier les conditions de deuxieme ordre. 

7. Vous partez en vol charter pour un voyage aux Etats-Unis. Dans votre 
valise, vous etes autorise a emporter 24 kg. Vos affaires de toilette 
pesent 4 kg et vous voulez utiliser les 20 kg qui restent de fagon op-
timale. Vous aimeriez emporter trois sortes de biens: blue-jeans notes 
X , T-shirts notes Y et pullovers notes Z. Les poids unit aires respectifs 
sont (en kg): 

Px = 2 PY = 0.5 pz -= 1. 

L'utilite que ces vetements vous procurent pendant votre voyage est 
mesuree par la fonction: 

U = X^YZ. 

(a) Choisissez X,Y et Z de fagon a maximiser Tutilite. 

(b) Ayant choisi votre assortiment optimal, vous vous rendez compte 
que vous ne pouvez pas fermer la valise. Le volume total disponible 
dans la valise (apres y avoir range les affaires de toilette) est de 
40 dm^. Le volume unitaire respectif des trois vetements (en dm^) 
est: 

Vx=^ VY = 2/3 Vz = 3. 

Trouver la combinaison optimale sous la double contrainte du 
poids et du volume. Verifier alors la condition de 2^ ordre. 
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8. Trouver rextremum de: 

/ ( x , y, z) =x^ - 2xy + y^ + 5z^ 

sous la contrainte: 
x + y + 2z = 10. 

9. Une entreprise a la fonction de production suivante: 

ou Q est la production, K est le capital, L le travail. Le prix du capital 
est px = 4, le taux de salaire PL = 2 et Fentreprise desire produire 
Q = 64. Trouver la combinaison des facteurs K et L donnant au 
moindre cout la production requise. 

10. Determiner les extrema de la fonction f{x^y) — In | x | + l n | ?/ |, x et 
y etant lies par la contrainte x^ + y^ — 9 . 

11. Une entreprise fabrique deux types de machines x et y. La fonction de 
cout conjointe est donnee par: 

/ ( x , y)=x^ + y^ - lOx - 12y + 51. 

Trouver le nombre de machines de chaque type que Fentreprise doit 
fabriquer pour minimiser son cout. 
A I'aide des conditions du second ordre, montrer qu'il s'agit bien d'un 
minimum. 

12. Un consommateur depense 24 francs pour Tachat de deux biens, x et 
y. Les prix de x et de y sont respectivement 1 francs et 2 francs. La 
fonction d'utilite du consommateur est donnee par U = 5x^ + 6y^ — xy. 
Combien d'unites de chaque bien doit-il consommer pour maximiser 
son utilite? 
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HESSE Ludwig Ot to (1811-1874) 
Mathematicien allemand ne a Konigsberg en 1811, Hesse est Tetudiant de 
Jacobi a runiversite de sa ville natale ou il obtient son doctorat en 1840. II 
enseigne alors la chimie et la physique dans cet etablissement jusqu'en 1856, 
annee ou il est nomme a Funiversite de Heidelberg. II y restera douze ans 
avant d'obtenir un poste a Munich, ou il decedera en 1874. 

Du point de vue scientifique, on lui doit notamment le developpement 
de la theorie des fonctions algebriques ainsi que de celle des invariants. II 
introduit le determinant hessien tire de la matrice hessienne dans un article 
paru en 1942 traitant des courbes cubiques et quadratiques. 



Partie III 

Mathematica 



Chapitre 12 

Introduction a Mathematica 

12.1 Introduction 

De nos jours, les innombrables calculs mathematiques peuvent s'averer fasti-
dieux et compliques, voire impossibles a resoudre avec une machine conven-
tionnelle du fait du temps considerable que necessite leur traitement. C'est 
pourquoi des logiciels puissants et de plus en plus faciles a utiliser nous per-
mettent de gagner du temps et nous rendent la tache moins ardue. Un logi-
ciel est un ensemble de programmes, procedes et regies, et eventuellement de 
la documentation, relatifs au fonctionnement d'un ensemble de traitements 
de rinformation. 

Sur le marche actuel, il existe une multitude de logiciels mathematiques 
plus ou moins conviviaux, a utilite variable. On trouve par exemple Scienti­
fic Workplace, qui sert de traitement de texte et de calculatrice graphique et 
analytique a la fois. On pent done ecrire un texte, y inserer des graphes et 
resoudre des equations avec un seul et meme logiciel. On trouve egalement 
Mathematica, avec lequel on pent programmer, resoudre des equations, trai-
ter des donnees et faire des representations graphiques. Le choix d'un logiciel 
est non seulement determine par la fonction qu'il doit remplir, mais aussi par 
sa facilite d'utilisation. Certains d'entre eux ont recourt plutot a la souris et 
d'autres au clavier, certains sont faciles a utiliser alors que d'autres ont be-
soin de longues lignes de commandes pour fonctionner, certains executent 
plus rapidement les commandes graphiques que les commandes numeriques. 
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le choix depend bien evidemment des besoins de Tutilisateur. Une commande 
est un signal regu et decode par un systeme et qui declenche de la part de 
celui-ci la realisation d'une fonction determinee. 

Dans le cadre de ce chapitre, nous allons traiter un logiciel facile a utiliser 
et souvent employe dans le domaine scientifique: Mathematica. Nous allons 
nous efforcer de parcourir les bases de ce logiciel qui permettent deja de 
faire les operations les plus frequemment utilisees en mathematiques. Une 
petite bibliographic contenant des ouvrages specifiques se trouve a la fin de 
ce chapitre. 

12.2 Le logiciel 

Mathematica est un systeme de logiciels utilise pour des applications mathe­
matiques graphiques, analytiques et numeriques. Ce sont les trois ma-
nieres differentes d'approcher un probleme mathematique. II existe des ver­
sions de Mathematica pour beaucoup de configurations informatiques: Mi­
crosoft Windows, Apple Macintosh, OS/2, MS-DOS, Sun, DEC Alpha, DEC 
Open VAX/VMS, IBM RISC System/6000, pour n'en citer que quelques-unes. 
Mathematica pour Windows (3.1, NT ou 95) necessite un PC (Personal Com­
puter) avec un microprocesseur 386 ou superieur avec 4 Mb voire 6 Mb (un 
megabyte correspond a un million de caracteres) de memoire vive (RAM), et 
Tespace requis sur le disque dur est de 13 Mb. La version de Mathematica 
pour Macintosh ou Power Mac (System 7 ou superieur) necessite au moins un 
microprocesseur 68020, 6 Mb voire 10 Mb de memoire vive et 7 Mb d'espace 
libre sur le disque dur. II existe egalement une version de Mathematica pour 
etudiants. 

Mathematica pent etre utilise comme: 

• un sys teme de visualisation de fonctions par des graphes en deux 
ou en trois dimensions ; 

• une calculatrice analytique ou numerique pour resoudre une equa­
tion, une integrate ou un simple calcul numerique; 

• un langage de programmation (c'est-a-dire un ensemble de ca­
racteres, de symboles et de regies permettant de communiquer avec 
un ordinateur en vue de lui faire executer un certain nombre d'instruc-
tions); 
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• un environnement software (c'est-a-dire un cadre comportant des 
outils, des facilites, avec une certaine puissance de calcul) pour Tanalyse 
de donnees. Remarquons que I'environnement pris dans son sens infor-
matique plus general englobe toutes les notions de hardware (materiel), 
software (logiciel) et reseau qui entourent Tutilisateur. 

Nous allons traiter uniquement les deux premiers points de cette liste non 
exhaustive. 

L'utilisation de Mathematica se fait par Tintermediaire d'une ou de plu-
sieurs lignes de commande. Pratiquement, on procede de la fagon suivante: 

1. Ecrire la(ou les) ligne(s) de commande correspondant a Tactivite voulue; 

2. Selectionner celles que Ton veut executer; 

3. Executer la commande selectionnee en pressant Shift et Return (ou 
bien avec la souris en cliquant sur Evaluate Selection dans le menu 
Action). La touche Insert execute la commande sans selection preala-
ble. Signalons que le respect de la syntaxe est tres important, de meme 
que la differenciation des majuscules et des minuscules. 

L'afRchage a Fecran est tres clair et convivial puisque le logiciel place 
ln[l]: = pour montrer qu'il s'agit d'une commande (en Toccurence la pre­
miere) que Ton a inseree, et Out[l]: = pour debuter le resultat de ladite 
commande. 

12.3 Visualisation de fonctions 

Au chapitre 2, nous avons vu comment representer graphiquement une fonc-
tion. Avec Mathematica, pour visualiser une fonction en deux dimensions, on 
utilise la commande Plot. Une fonction f{x) est representee graphiquement 
de la fagon suivante: 

Plot[f(x), {x, borne inferieure, borne superieure}] 

Exemple 12.1 La representation de f{x) = sin(x), avec 0 < x <27T (Figure 
12.1) est realisee au moyen de la commande ; 

Plot[Sin[x], {x, 0, 2Pi}]. 
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Figure 12.1: Representation de la fonction sin(x) 

On pent visualiser plusieurs fonctions sur le meme graphe par la meme 
commande en les ecrivant les unes apres les autres, separees par une virgule. 

Exemple 12.2 La representation des fonctions sin(x)^ x^ et — sur le meme 
X 

graphe avec —2TT<X<27I (Figure 12.2) se fait a Taide de la commande: 

Plot[{Sin[x], x^2, 1/x}, {x, - 2 P i , 2Pi}]. 

Lorsqu'on utilise la commande P lot telle qu'on Fa vue dans les deux 
exemples precedents, Mathematica doit choisir certains parametres comme 
Fechelle des axes, le nombre de points qu'il faut evaluer pour le graphe, etc. 
Le logiciel fait automatiquement des choix par defaut mais Tutilisateur est 
libre de visualiser le graphe comme il le veut grace aux options que Ton pent 
inserer dans les commandes. La syntaxe a utiliser est la suivante: 

P l o t [ f ( x ) , {x , borne i n f e r i e u r e , borne super ieure} , 
opt ion->va leur de 1^ option] 

Exemple 12.3 Le graphe de 5in(x^), pour 0 < x < 3, avec les noms donnes 
aux axes x et y (Figure 12.3) est realise avec la commande: 

Plot[Sin[x^2], {x, 0, 3}, A x e s L a b e l - > {"x", "sin(x^2)"}]. 
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Figure 12.2: Representation simultanee des fonctions sin(x),x^ et — 
X 

La representation graphique de fonctions de plusieurs variables en trois 
dimensions se fait a Faide de la commande P lo tSD. Une fonction / ( x , y) est 
representee de la maniere suivante: 

Plot3D[f (x ,y) , {x , borne i n f e r i e u r e , borne super ieure} , 
{y , borne i n f e r i e u r e , borne superieure}] 

Exemple 12,4 La fonction x^ + y^ avec — l < x < l e t — 2 < ? / < 3 (Figure 
12.4) est obtenue au moyen de la commande ; 

Plot3D[x^2 + y^2, {x, - 1 , l } , {y, - 2 , 3}]. 

Exemple 12,5 La fonction | 6 — x | + | 5 — x | + | l — 7/| + | 7 — y | , avec 
0 < a ; < 8 e t 0 < i / < 8 , (Figure 12.5) est dessinee a I'aide de la commande ; 

Plot3D[Abs[6 - x] + Abs[5 - x] + Abs[l - y] + Abs[7 - y], {x, 0, 8} , {y, 0, 8}]. 
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0.5| 

-0.5f 

Figure 12.3: Representation de sin(x^) avec noms des axes 

12.4 Calculatrice numerique 

Mathematica pent etre utilise comme une calculatrice scientifique; pour cela, 
il suffit d'entrer Toperation que Ton veut effectuer et d'executer la commande. 
Voici une liste de quelques fonctions couramment utilisees: 

Fonction 
addition, 

utilisee 
soustraction 

multiplication, division 
puissance 

v^ 
e^ 
ln(x) 
^ogtix) 
sin(x), cos(x), tan(a;) 
arcsin(x) arccos(x), arctan(x) 
valeur absolue de x 

Fonction ecrite pour Math^^matica 
+ -
* / 
'^ 
Sqr t [x ] 
Exp[x] 
Log [x] 
Log[b, x] 
S in[x] , Cos[x3, Tan[x] 
ArcSin[x] , ArcCos[x] , ArcTan[x] 
Abs [x] 

Mathematica afRche generalement la valeur exacte d'un resultat nume­
rique. On pent determiner le nombre de decimales voulues par la commande 
N: 

Exemple 12.6 Les 40 premieres decimales de TT s'obtiennent de la maniere 
suivante: 
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Figure 12.4: Representation de x^ + y 2 I . . 2 

ln[l]: =N[Pi, 40] 
Out[l]: =3.1415926535897932384626433832795028841972, 

12.5 Calculatrice analytique 

Pour faire du calcul differentiel, on utilise la commande D, qui permet de 
deriver la fonction souhaitee. L'expression generale de cette commande pour 

df(x) 
calculer la derivee d'une fonction f{x) par rapport a x (c'est a dire —-—) 
est: 

D[f[x],x]. 

II en est de meme pour calculer la seconde derivee / " (x): 

D[f[x],x,x]. 

Pour la derivation des fonctions de plusieurs variables, il sufRt d'indiquer 
la fonction et les variables par rapport auxquelles on veut la deriver. 

Exemple 12.7 La premiere derivee partielle de la fonction cos(x) sin(^) par 
rapport a la variable x se calcule au moyen de la commande: 
ln[2]: =D[Cos[x] * Sin[y], x]. 
Out[2]: =-{Sin[x] 5^n[y]). 
La deuxieme derivee partielle par rapport a x s ̂ obtient de la meme fagon par 
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Figure 12.5: Representation d e | 6 — x | + | 5 — x | + | l — ?/| + | 7 — y | 

la commande: 
In[3]: :=rD[Cos[x] * Sin[y],x,x] 
Out[3]: =-(Cos[x] Sin[y]). 

Pour integrer une fonction, on a recourt a la commande Integrate, qui 
utilise la syntaxe suivante: 

In tegra te [ f [x] , {x,borne i n f e r i e u r e , borne super ieure}] . 

E x e m p l e 12.8 Le calcul de Fintegrale de la fonction cos^ x par rapport a la 
variable x s'obtient par la commande: 
ln[4]: =Integrate[Cos[x]^2, x] 
^ ,^, 2x-hSin[2x] 
Out[4]:= . 

Si Ton veut trouver le resultat numerique d'une integrale definie, il suffit 
de preciser les bornes d'integration (voir exemple 12.12, point 4). 

On pent aussi resoudre des equations grace a la commande Solve. La 
commande a utiliser pour resoudre une equation du type f{x) = 0 est la 
suivante: 

Solve[f(x) = = 0, x]. 

E x e m p l e 12.9 La solution de Tequation du deuxieme degre x^ + 2x — 7 = 0 
est trouvee par la commande: 
In[5]: =Solve[x'^2+2*X"7==0, x] 
r^ .r^i rr -2-4Sqrt [2] ^ ^ -2+4Sqrt [2] ^ ^ 
Out[5]: ={{x-'> - ^ >,-fcc-> - ^ }}. 
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Pour obtenir des reponses numeriques, la commande NSo lve s'utilise de 
la meme maniere que la commande Solve. 

La commande Solve permet egalement de resoudre un systeme d'equa-
tions. Pour cela, il sufRt d'aligner les n equations / i(xi ,X2, ...,x^) = 0, 
/2(xi, X2,..., ^n) = 0, ... , /n(^i5 ^2, •••, ̂ n) = 0 daus la commaude. 

Solve[{fi(x^,X2,... ,x^) == 0, f2(x^,X2,...,x^) = - 0 , 
fn(x^,X2,...,xJ = 0 } , {X^,X2,...,XJ] 

Exemple 12.10 Le systeme d^equations: 

ax + y = 0 
2x + {l-a)y-l = 0 

pent etre resolu par rapport aux variables x et y par la commande: 
ln[6]: =Solve[{dL * x + y == 0, 2 * x + ( l - a ) * y - l == 0}, -fx, y}] 

Out[6]: ={{x->-( ^ /^ ^ ),y-> ^ ^^ ^ }}. 
'• ^ -2-h(l-a)a '-2+(l-'a)a 

Mathematica est evidemment tout a fait adapte pour le calcul matri-
ciel. Pour pouvoir travailler plus simplement, on attribue une matrice ou un 
vecteur a une variable. 

/ CLii ai2 ' " ain \ 

a2l a22 ' ' ' Ci2n 
Ainsi, pour attribuer la matrice a une variable 

\ ^ml ^m2 ' ' ' ^mn j 

M, on ecrit: 

^ ^ l l ^ l l ' ^12^ •••? ^ I n l ^ 1 ^ 2 1 ' ̂ 225 •••' ^2n}5 ••^ l ^ m l ' ^ 2 ^ --'^^Tm}} 

b 
De meme, avec un vecteur 

c 
pour r attribuer a la variable v : 

v = {a ,b ,c , . . .} 

De cette maniere, le calcul matriciel s'en trouve considerablement facilite. 
Les commandes les plus utiles sont resumees dans le tableau suivant: 
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Commande 

Det[M] 
Transpose[M] 
Inverse[M] 
Eigenvalues[M] 
Eigenvectors[M] 
Eigenvalues[N[M] ] 
Eigenvectors[N[M] ] 
LinearSolve[M,b] 

Utilite 
multiplication matricielle ou vectorielle 
determinant de la matrice M 
transposee de la matrice M 
inverse de la matrice M 
valeurs propres de la matrice M 
vecteurs propres de la matrice M 
valeurs propres numeriques 
vecteurs propres numeriques 
trouve un vecteur x solution de Mx = b 

La derniere commande est utile pour trouver les solutions d'un systeme 
d'equations lineaires, puisqu'il s'agit de Talgorithme de Gauss etudie an cha-
pitre 8. 

E x e m p l e 12.11 M =̂  {{1, 2}, {1,3}} attribue la matrice 
1 2 

a la va­

riable M. V == {1,2} attribue le vecteur 

1 3 

a la variable v. Pour trou­

ver le vecteur x — 

systeme 

Xi 

X2 
, solution de Vequation Mx = v, c^est-d-dire du 

Xi +2X2 = 1 
xi + 3x2 — 2 

il faut utiliser la commande : 

In [7]: =LinearSolve[M,v] 

Out[7]: ={-1,1}. 

12.6 Definition d'une fonction 

Jusqu'ici, nous avons vu quelques exemples de commandes de Mathematica 
qui permettent deja de resoudre un grand nombre de problemes. Nous allons 
maintenant voir comment on pent definir ses propres fonctions. La definition 
d'une fonction quadratique sous sa forme explicite y = f{x) = ax'^ + bx-hc se 
realise par la commande suivante (attention de ne pas oublier le ^'_" apres 
les variables de la fonction): 

fx_ a* x"2 + b * X + c. 
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L'affichage des fonctions definies se fait au moyen de la commande ?f, et 
leur suppression par Clear [ / ] . 

Exemple 12.12 Nous pouvons utiliser les fonctions ainsi definies avec diffe-
rents arguments. Soit la fonction f{x) = x'^ + x — 6. Pour trouver son extre-
mum, il suffit d^utiliser les commandes suivantes : 

1. Definissons la fonction f{x) : 
ln[8]: =f[x_] : = x ^ 2 + x - 6 

2. Recherchons le point candidat : 
ln[9]: :^Solve[D[f [x],x] - = 0,x] 

Out[9]: ={{x->-(^)}} 

Nous avons trouve le point candidat XQ — —-, Calculons encore yo, 
Li 

Vimage de XQ / 
\n[10]: =f [-1/2] 

Out[10]:^-(-). 

3. Recherchons la seconde derivee pour savoir de quel extremum il s^agit 
(minimum ou maximum): 
/n/iiy;=D[f[x],x,x] 
Out[ll]: =2 
Comme f"{x) = 2 > 0, la fonction f(x) admet un minimum au point 

^ 2' 4 ^ ' 

Exemple 12.13 Reprenons I'exemple 5.27, et resolvons-le a I'aide de Ma-
thematica. Rappelons qu 'il s 'agit de trouver la quantite qui maximise le profit 
et le profit total en ce point, connaissant les fonctions de revenu marginal et 
de cout marginal. 

1. Definissons les deux fonctions: 
In[12]: =RMa[x_] : = 2 5 - 5 * x - 2 * x ^ 2 
CMa[x_] := 15 - 2 * X - x^2 

2. Recherchons le point oil les fonctions se coupent (c'est-d-dire la borne 
droite d'integration) : 
ln[14]: =Solve[RMa[x] - CMa[x] = = 0,x] 
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Exercices 
1. Calculer les nombres suivants avec une precision de 15, 20, et 25 deci-

males: 

(a) fWl 

7r-V2 
35 

12- V333 

(b) e-

(c) sin ( i ) . 

2. L'operateur "?" suivi d'une commande (ou d'un symbole) permet (aussi) 
d'obtenir des informations sur les commandes incluses dans Mathema-
tica. 
A quoi sert la commande Table? 
Creer une liste de dix 0. 
Creer la liste des dix premiers entiers positifs. 
Creer la liste des dix premiers cubes de nombres naturels. 

3. Resoudre symboliquement, puis numeriquement, I'equation x^ + x — 1. 
Resoudre symboliquement, puis numeriquement, le systeme d'equations 
suivant: 

x^ -y =2' 

4. Trouver les racines du polynome p{x) — x^ — 4x + 3, ainsi que son 
minimum. De meme pour q[x) = x^ — | x — | . 

5. Tracer dans le meme systeme d'axes, pour x allant de -7 a 7 les fonctions 

suivantes: 

cos(x); 1 - Y ; 1 - f + ! i • 

6. Visualiser la fonction sin (tan (x)) — tan (sin (x)) sur Tintervalle [—4; 4] 
et nommer les axes x et y. 

N o t e Le ";'' ^ l̂ i fin de la ligne supprime FafRchage de Out [] = Graphics . 

7. Faire le graphe de / (x, y) = 2xy — 3x^ + y^ pour —2 < x, y < 2. 
Resoudre Tequation f {x^y) — 0 sous contrainte x = 1. 

8. Resoudre les exercices: 1, 2, 3, 5, 7, 15, 16, 18, 20 du chapitre 8 ainsi 
que les exercices de la partie analyse. 
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R A M A N U J A N Srinivasa Aiyangar (1887-1920) 

Srivasa Ramanujan est ne en decembre 1887 pres de Madras, en Inde. Ne 
beneficiant d'aucune education particuliere, il sait deja resoudre des equa­
tions de 3eme degre a Page de 15 ans. Malgre le fait qu'il se fait renvoyer 
du college parce qu'il neglige les autres matieres, il poursuit sa formation en 
mathematiques en travaillant sur des series hypergeometriques et en trouvant 
des relations entre les integrales et les series. Toujours en autodidacte, ayant 
comme seul livre de reference Fouvrage de G.S Carr Synopsis of elemen­
tary results on pure mathematics (publie bien avant, en 1856), il s'interesse 
aux fractions continues et aux series divergentes jusqu'en 1908. C'est seule-
ment en 1911 qu'il gagne la confiance et la reconnaissance de ses confreres 
mathematiciens, lorsqu'il publie un brillant article trait ant des nombres de 
Bernoulli dans la revue Journal of the Indian Mathematical Society. 

En 1914 le mathematicien G. H. Hardy remmene au Trinity College de 
Cambridge et c'est alors que commence une fructueuse collaboration entre 
les deux mathematiciens. Malgre sa sante fragile, il continue ses travaux de 
recherche dans les domaines des series de Riemann, des integrales elliptiques, 
des series hypergeometriques et des equations fonctionnels de la fonction 
zeta. A sa mort en 1920, Ramanujan laisse un nombre immense de notes 
non-publies sur lesquelles les mathematiciens ont continue de travailler. 



Chapitre 13 

Epilogue 

Le premier venu qui se met a danser, ne rencontre 
pas pour autant Vextase. C^est la danse qui resulte 
de Vetat interieur de Vdme; ce n'est pas Vetat 
interieur de Vdme qui est le produit de la danse 

SOHRAVARDI: L'Archange empourpre 

Ce que nous venons de voir dans les douze chapitres de ce livre pent sans 
doute etre considere comme une goutte d'eau, compare a Tocean des resiiltats 
qui existent actuellement dans la science des mathematiques. 

Les mathematiques forment aujourd'hui une science exceptionnelle; elles 
fournissent les elements essentiels de presque toute autre science. II est difficile 
de trouver un phenomene naturel ou artificiel qui ne soit pas etudie ou qui ne 
soit pas etudiable en fonction des connaissances mathematiques. Le lecteur 
est mis au defi d'en trouver un! 

La relation entre phenomenes et mathematiques, dans le sens inverse, est 
tout autant fascinante: c'est la recherche de champs d'applications pour les 
nouvelles decouvertes mathematiques. Si Ton n'en trouve pas un aujourd'hui, 
on en trouvera presque certainement demain. La theorie mathematique des 
graphes, par exemple, n'etait un jour qu'un edifice abstrait et elegant, mais 
sans utilite immediate; aujourd'hui, on Tutilise pour analyser les circuits et 
reseaux de tons genres, allant des reseaux de chemins de fer aux circuits 
electriques et meme aux reseaux de connaissances qui se developpent entre 
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individus. 

Aujourd'hui, nous avons le privilege, avec une simple calculatrice, de faire 
les quatre operations, c'est-a-dire additionner, soustraire, mutiplier et diviser 
et meme parfois faire d'autres calculs plus compliques en pressant une simple 
touche. Bien que nous vivions dans un monde de chiffres et de graphes, rien 
ne nous etonne. Sans reflechir, on pent faire beaucoup en une fraction de se-
conde. Mais comment en sommes-nous arrives la? Une petite page d'histoire 
est necessaire. 

L'homme a probablement toujours compte, mais c'est plus tard qu'il s'est 
organise pour en faire une methode. On dit que les petites pierres ("calculi" en 
latin) donnees au berger, autant de pierres que de moutons afin de s'assurer 
qu'aucune bete n'a ete perdue au retour du troupeau, sont a Torigine du mot 
"calcul". 

Pour parcourir le chemin entre deux points, Thomme a probablement 
toujours essaye d'emprunter une ligne droite, mais c'est plus tard, beaucoup 
plus tard, a Fere de Pythagore (6^ siecle avant notre ere) qu'il en a fait une 
science. Pour aller de A a B en passant par C, il faut deux pas, mais pour aller 
de A a B tout droit, il n'en faut que la racine carree de deux pas. Le calcul 
de cette valeur (v^) n'a pas ete trivial, il a mis en cause le rapport entre la 
geometric et Farithmetique. C'est ainsi que se developpera notre geometric 
d'Euclide (3"̂  siecle avant notre ere). 

L'homme a probablement toujours juxtapose le bien et le mal, le jour 
et la nuit, la pluie et la secheresse, mais il a fallu de nombreux siecles pour 
en deduire I'analogue numerique. On dit que le Chinois, ouvert a I'idee que 
tout ce qui existe dans I'Univers est constamment anime par des couples de 
forces opposees, n'a pas eu de difficulte a admettre I'existence de nombres 
negatifs a I'oppose des nombres positifs. C'etait le premier siecle de notre ere. 
II est interessant de noter qu'en Europe, meme du temps de Diderot et de 
d'Alembert, on debattait de I'aspect fictif et absurde des nombres negatifs et 
I'impossibilite de leur existence! 

La Terre, le soleil, la lune, les etoiles ont toujours fascine I'Homme, mais 
beaucoup de prealables etaient necessaires pour les etudier. Les grandes 
distances demandent de grands chiffres, et les grands chiffres demandent 
beaucoup de symboles pour les decrire. C'est done le besoin de parcimo-
nie qui a fait naitre le principe de position, c'est-a-dire I'idee d'utiliser le 
meme chiffre pour decrire differentes valeurs decimales d'apres la position du 
chiffre. Avec cela, on n'a pas tarde a inventer le zero pour ne pas confondre 
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la position unitaire de celle de la dixieme, la dixieme de la centieme, etc. Et 
ainsi, nous devons aux astronomes et mathematiciens de I'lnde du 6̂  siecle 
ce systeme numerique net et ingenieux que nous avons appris a I'ecole et que 
nous apprenons a nos enfants. 

Le passage regulier des jours, des saisons et des annees a toujours ete 
remarque par rhomme, il y a inscrit d'ailleurs I'organisation de sa vie. Mais 
comment a-t-il imagine un calendrier pour y donner de I'ordre? Le nombre 
de jours dans une annee n'est pas entier. Les restes, les fractions, les decimales 
sont a decouvrir. Les Chinois, les Indiens I'ont fait au 8*̂  siecle; en Europe on 
I'a decouvert au 16''. Pendant longtemps, la circonference du cercle unitaire 
(TT) se decrivait par la ratio de deux entiers, sans parvenir a la representation 
decimale: f (Babylone); y (Archimede); ^ (Ptolemee); ff| (Chine 5*' 
siecle, Nilakantha 15*̂  siecle et Adrien Metius 16'' siecle). Nous connaissons 
aujourd'hui n a quelques kilometres de pages de decimales pres. Voici les 
premieres decimales: 

71 = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 
32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 
85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 
37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 
02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 
78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 
57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 
18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 
63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 
76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 
21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 
29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 
33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 
76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 
18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 
10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 
25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311 
68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 
98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744 
94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702 
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89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024 
74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992 
45863 15030 28618 29745 55706 74983 85054 94588 58692 69956 90927 21079 
75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356 
63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 81647 06001 
61452 49192 17321 72147 72350 14144 19735 68548 16136 11573 52552 13347 
57418 49468 43852 33239 07394 14333 45477 62416 86251 89835 69485 56209 
92192 22184 27255 02542 56887 67179 04946 01653 46680 49886 27232 79178 
60857 84383 82796 79766 81454 10095 38837 86360 95068 00642 25125 20511 
73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 06744 27862 
20391 94945 04712 37137 86960 95636 43719 17287 46776 46575 73962 41389 
08658 32645 99581 33904 78027 59009 94657 64078 95126 94683 98352 ...! 

Un mouton, un pas, une force, une etoile, une saison! II a fallu abst-
raire Tobjet pour faire avancer la pensee. C'est ainsi que al-Khwarizmi (racine 
du mot "algorithme") est parvenu au 9̂  siecle a developper ce qu'il a appele 
al~jabr (necessite) et que nous appellerons en Occident Falgebre. La notion 
de base, c'est la notion d'equation, qui pent couvrir une classe infinie de 
problemes, geometriques ou arithmetiques: Tunite n'est plus Fobjet, mais 
I'operation meme. Pour x inconnu representant n'importe quel objet, on veut 
resoudre les equations x + a = b ; x'^ + a = bx; x^ + ax = b. C'est Khayyam, 
poete et mathematicien persan du I P siecle qui donne une classification de 
Tensemble des equations de degre < 3 et qui obtient leurs solutions. II marie 
Falgebre et la geometric, et utilise Fintersection de deux coniques pour re­
soudre les equations, c'est la technique qui sera redecouverte en Europe six 
siecles plus tard. 

Les douze siecles de notre ere et toute la periode anterieure nous ont 
amenes a la solution de Fequation x^ + ax = 6, ce que nous avons aujour-
d'hui a la portee de la main. En outre, personne a I'epoque n'aurait pu 
predire quelles seraient les applications du systeme d'equations, developpe-
ment mathemati-que sans lequel de nombreuses sciences appliquees n'au-
raient pu progresser. Nous sommes a mi-chemin dans Fhistoire des mathema-
tiques, mais cela sufRt a expliquer comment nous en sommes arrives la, grace 
aux sacrifices de bon nombre de mathematiciens (www-history.mcs.st-
andrews.ac.uk/history)! De meme que la finalite du travail du mathe­
maticien d'hier, inconnue et absurde a son epoque, est indispensable au-
jourd'hui, de meme le cumul des travaux des mathematiciens d'aujourd'hui 
devient entierement indispensable aux problemes de demain. 



Chapitre 14 

Quelques corriges d'exercices 

Remarque Le symbole " ^J " assigne a certains exercices laisse au lecteur 
le soin de verifier lui-meme ses resultats. 

Chapitre 1 

1. '\) A^B = {multiples de 6} 

ii) ^ n C = C 

iii) AyjC = A 

iv) BUC = B 

v) Cr]D = {multiples de 24} 

2. Figures diagrammes de Venn 

3. Demonstration 

4. (a) Ax{B U C) = {(a, 1); (a,3); (a, 4); (a, 5); {b, 1); (6,3); (6,4); (6,5)} 

(b) {A X B)UiA xC) = {(a, 1); (a, 3); (a, 4); (a, 5); (6,1); (6,3); (6,4); (6, 5)} 

(c) et (d) Ax{Br\C)= ={AxB)n{Ax C) 

5. Card{A U B) = 29 

6. Les employes bien portants sont au nombre de 15. 
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7. (a) 3 

(b)34 

(c) 26 

(d)8 

8. ^3 et ^4 

10. V 

11. / ( - 2 ) = / ( l ) = 0 

12. (a) f{x) = e-

(b) g{x) = x^ — X 

(c) h{x) = x'^ — X + I 

13. (a) h{x) = 2x + 9 et m{x) = 2a; + 7 

( b ) r H ^ ) = 3 ; -2e t5- i (a ; ) = ^ 

(c) h-^{x) = ^ et m-^(a;) = ^ 

(d) /-HrH^)) = ^ et ̂ -H/-H )̂) = ¥ 
(e) (/ o g)-' = g-' o f-' et {g o f)-' = /"^ o g-^ 

14. y = ^Y^ et X = 8 — 2y: ces deux fonctions sont inverses Tune de Pautre. 

Chapitre 2 

I. y = -2x + 80 
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2. (1;6) 

3. Offre: y = 2x — 2 et demande: y = —x + 10 

4. (6.71; 3.18) 

5. a = —1 et yo = 6 

6. (a) Po {x) = 2 

4 

3 

2 

1 

- 4 -?. 

(b) Pi (x) = - (x + 2) 

(c) P2 (x) - - (x + 1) (x - 4) 
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6 /-^^—^--^ 

/ 2\ \ 

/ -2 \ 

/ ~^\ \ 

(d) Pa (x) = 2x (x + 2) (x + 3) 

(e) P4 (^) = (x - 1) (x + 1) (x + 2) (x + 3) 

-4 
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7- i^)y = i 
x+2 

'+1 

-^A— -"^^ 

2, 

l.k 

/ ^ 

/ o . 5 

2 4 

(b) y = x^ - X - 2 

3 . 5 

3 

2 . 5 

/ -^-^ 
/ -̂  

/ 0 . 5 

(c) y = 0.2-

-1 - O . S 0 . S 1 1 . S 2 
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(d) logo.25(a:) 

(e) log4(x) 

(a)lR: 
,0.25 

ITF—^ -^ 

^ 1 2 3 4 5 

-4 

-6 

(b)]R* 

1 2 



y = X 

. 5 

) . 5 

345 

y = x 0.75 

(d)lR 

y = x 0.8 

(e)]R 
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y = x^ 

1 7 -̂  

9. 15 ans 

10. 5330.92 

11. La premiere option est la plus avantageuse 

12. 0.05 

13. 3.5 % 

14 

Chapitre 3 

1. (a)'Ui = | ; U2 = l] ^3 = | ; ^4 = i | ; ^ 5 - 1 5 

(b) txo = 1; '̂ 1 = | ; '̂ 2̂ = - 7 ; ^3 = n ; ^̂ 4 = -

(c) 1̂0 = 0; ui = 1; U2 = 1; tta = ^ ; t̂4 = - 3 ^ 

(d) 1̂0 — 6; ui — 2; U2 = 6; u^ = 2; 1̂,4 = 6 

z. (aj 16̂  = -^^ 

(b) u„ = ( ^ 

^/ '^^ ~ 2^ ~ T 

(d) «„ = t i £ 3 s - 2 

3. (a) Un est alternee, converge vers 0, bornee 

(b) Un est alternee, converge vers 0, bornee 

(c) Un est decroissante, diverge, non bornee 

(d) Un est croissante, diverge, non bornee 
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a) M„ = 2n + 3 => U^Q = 103 

b) -Un = n^ - 5 = > U50 = 2495 

,. f 8 si n est divisible par 3 
^ [ 1 smon 

a) constante, bornee, convergente 

b) alternee, non bornee, divergente 

c) croissante, bornee, convergente, monotone 

d) bornee, divergente 

e) decroissante, non-bornee, divergente 

f) monotone croissante, non bornee, divergente 

g) alternee, bornee, divergente 

h) divergente 

a) iV(^) :z= I = :^ A^(O.l) = 2 0 ; TV (0.01) - 200; iV (0.001) - 2000 

b) iV(^) = ^ = ^ A^(O.l) = 26; iV (0.01) = 296; Â  (0.001) = 2996 

a ) 0 ; (b)+oo; (c)f 

a) discontinuite reparable: trou 

b) discontinuite finie: saut 

c) continue 

d) continue 

a ) / ' ( x ) = (2x + l ) - ^ 

h)f'{x) = lx-l 

c)f'{x) = ^ 

10. y 
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11. (a) 

(b) 

(d) 

12. (a) 

(b) 

(c) 

(d) 

(e) 

(f) 

13. V 

(
n+1 

(—1) 2 sin(x) si n est impair 
(—1) 2 cos (x) si n est pair 

fin, (x)=^-^^":>-^) ' 

c) /(-) (x) = i-S^ 

-2cos yi—4a: 

1 
3x+4 

2e2-

x3+2 

cosh (x) 
1 

sin2(a:) 

Chapitre 4 

1. (a) X = y = 50 

(h) x = y = 50 

2. cote de la face carre: ^ / y et autre cote: ^ 

3. Les points d'inflexion sont ( - 1 ; 1), (0.268; 0.683) et (3.732; -0.183). lis 
. 1 . 
4" 

appartiennent a la droite y = ~jx + ^ 
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4. Si y = Tcr^h, il faut que: r = ^ et /i - ^ 

5. 2/ = 2 sin (x) + cos (2x) 

maxima: ( | ; | ) et ( ^ ; | ) 

minimum relatif: (f; l ) et minimum (^5 ~"2) 

6. Pour un cercle de rayon r, le cote du rectangle qui maximise Taire est 
r^/2 et correspond a un carre d'aire 2r^ 

7. ?/ = —x^ + x^ + 2x 

y = ^1+2^^ =x + 2 

on a une asymptote oblique: y — x + 2 et une asymptote verticale x — 0 
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9. y= (2x2 _ ^ 2 _ ^3^ 

10. y _ (Hx)f 
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(a) CO (b) 1 (c) a 
( d ) n . 6 - i ( e ) i ( f )3 
(g )0 ( h ) 0 ( i ) i 

11. y' z=z 3ax'^+2bx+c = 0 a deux solutions xi et X2 avec y'^ {xi)'y" (X2) < 0. 
Ainsi, on a un minimum et un maximum. 

12. y - ^ ^ 

(a) Gout marginal = 6x^ — 6x — 12 

(b) Gout moyen = 2x^ — 3x — 12 
Le cout moyen est minimal pour x = \ 

(c) Non 

13. X = y — Q 
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14. g - 30 

P T = 224.1 

p = 15.18 francs 

Chapitre 5 

1. (a) —\ cos (2a;) + c 

(b) \ sin^ {x) + c 

(c) (a;̂  - X - 4) ê  + c 

(d) ^In^l^l + 31n|a;| + c 

(f) i ln |3x + l| + c 

2. (a) X (In (x) - 1) + c 

(b) | x 2 ( l n ( x ) - i ) + c 

(c) —x̂  cos {%) + 2x sin (x) + 2 cos (x) + c 

(d) ix - I sin (2x) 

3. CT = - | x 3 + 25x2 + 3x + 60 

4. i?T = \x^ - 3x2 ^ lox + 0 

demande: \x^ — 3x + 10 

6. (a) In (17) = 2. 8332 

(b) - In {^\ = 0. 34657 

(c) 0.689 

(d) A;2 

(e) ^ n'est pas definie en x = 0 

7. a = ^ = 1.8171 

8. L'excedent du consommateur est de 8 et les deux methodes sent: 
J ^ 4 ( 8 - x ) d x - 4 ( 8 - 4 ) = / , ' ( 8 - y ) d y = 8 
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9. Excedent du producteur = 13.5 

10. f 

11. (a) - i ( l - 2 a ; 2 ) i + c 

(b) f (x2 + 6x)^+c 
(c) | l n | 2 a ; - 4 | + c 

(d) I (e" + 1)^ + c 

(e) - / n ( l + e-^) + c 

(f) -31n(e^ + l) + ê  + l + c 

(g) I {1 + x^)^ - VT+^ + c 

12. (a) 1 

(b) n'existe pas 

( c ) l 

Chapitre 6 

1. Demonstration par recurrence de Sn = 2^'^^ — 1 

2. Si = l,S2 = lS^ = lS^ = l,Sn = ^ , - ^ l lorsque n OO 

3. V 

4. (a) Serie geometrique de raison | qui converge done vers YTT = | 
5 

(b) Serie geometrique de raison | a laquelle on a ajoute 2 et 3 qui 
converge done vers 2 + 3 + - ^ == 7 

5. (a) f = 10. 333 

(b) 1 ^ - 1 = 1 

6- (a) 2̂ 1 3^ converge par D'Alembert 

(b) ^ ^ converge par D'Alembert 
/ -| Nn —1 

(c) XI ^ — converge par Leibniz 
(d) ^ ^ converge par D'Alembert 
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7. (a) converge par D'Alembert 

(b) diverge par comparaison avec la serie harmonique 

(c) converge par comparaison avec la serie de Riemann pour p = 3 

(d) converge 

8. (a) converge pour x G [—1; 1[ 

(b) converge pour x G ] —1; 1[ 

(c) converge pour x = 2 

(d) converge pour x G [2; 8[ 

9. (a)e'^ = l + x + |^ + ^ + |^ + ^ + . . . pour x G ] -oo; oo[ 
2! ' 3! 

^3 

4! ' 5! 

^7 
(b) sin (x) = X — | j - + Ij- — Ij- + . . . pour x G ]—oc; oo[ 

(c) In (1 + x) - X - ^ + f - ^ + f - . . . pour x G ] - l ; 1] 

Ainsi, 1 - I + I - I + . . . = In (1 + 1) - In (2) - 0. 69315 

10. ef = e + f (x - 4) + ^ (x - 4) V ^ (x - 4 ) ' + ^ (x - 4) V . . . 

11. (a) 

(b) 
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(c) 

12. cos{x) = l - ^ + ^ - ^ + ... ainsi cos (f) ~ 0.8660 

13. ^=.l + l{x~l)-^Ax-lf + ii-Ax-lf- '•'•' 
ainsi VL2T ~ 1.100 

2-4-6-8 ir+ 

Chapitre 7 

dx 

df _ 

1. (a) if = 6xY - ^ a. ^ ^ « . 3 . , 3 ^ = i2.,4 + ^ 9 = 2 4 x 3 . / ^ 

av _ 1 av _ 
8̂  r ^ 

.2.,3 
(9a;57/ " 

{x+vY 

sin (x) cos (y) 

(b) as 

(c) If = ^°s (a;) cos (y) fj = - sin (x) sin (y) ^^ 

0 = - sin (x) cos (y) ^ = - cos [x) sin (y) 

(d) If = cos (x + y) ê '"(̂ +2') g = cos (x + j/) ê '"(̂ +2') 

S = [-sm(x + y)+cosMx + y)]e-(-^) 0 = 0 g ; = S 
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2. 
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f =21n(2, + 3) f = 511; 

dz_ 
dy 

q 1 _ 5 

3- (a) i = Ix-^y-^ ,^ - ,. 
(b) g = 2 / + 1 2 x V - 6 | = x + 82;3y 

4. 

1. (a) point-selle en (0; 0; 0) et minimum en (1; 1; —1) 

(b) minimum en (—|; | ; ~ | ) 

2. On a un candidat (|; | ) mais le test echoue. 

3. minimum sous contrainte: [~%] ~%] 2\/3 j 

maximum sous contrainte: {~~%'-)~~%'-> —2\/3 
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4. F (x; y) = x^ + 2j/^ — xy — X{x + y — 8) avec pour minimum (5; 3) 

5- (f;f) 
n 
J2 XiVi-nyx 

6. a ==: y — 6x et 6 = ^ 
i = l 

m. 

7. x = 55ety = fa = - ^ = -29. 833 et 6 - f - 0. 7 

Chapitre 8 

(b) £>= 0 

2. (a) 9 -22 13 28 
25 2 5 56 

(b) (-21) 
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/ 0 0 
3. (a) AB=BA= 0 0 

\ 0 0 

(b)v/ 

(c)V' 

4. 11 faut que AB=BA 

5. ^ 

6. v/ 

7. V' 

0 
0 
0 

8. Non, les elements diagonaux sont des sommes de carres qui doivent etre 
nuls, done tons les elements de A doivent etre nuls. 

9. Ce sont les matrices diagonales 

11. ABC= ( ^^^ ~^^ ) et {A.B.Cy=( ^^^7 ^3^ ' ^^^^ 

Tr{A-B-C)' = Tr{A-B-C)^ 26 

12. minimum en x = ^^2^ ^^ maximum en a; = ~-̂ ~̂ ^ 

13. a = 4,b = - | , c= -l,d=l 

14. (a)9, (b)19, (c)105 

15. detA= 45, detB= 209, detC= -387, detD= 0 

16. y/ 

17. detA= x^ - 4^2 = x^ {x^ - 4) 

(a) detA= 0 pour x = —2, 0 ou 2 

(b) maximum local en rr = 0 

(c) minimum en x = ± \ /8 
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/ 0 0 0 8 8 \ 
0 0 0 12 12 
0 0 20 0 0 
0 20 0 0 0 

\ 20 0 0 0 0 / 

750, 1̂ 1 = 0, \AB = 0 

18. AB = 

19. v" 

20. A-^ = 

Chapitre 9 

2. r{A) = 3,r(B) = l,r{C) = 2 

n'existe pas, C ^ = 

( \ 0 0 0 \ 
- 1 1 0 0 
1 - 2 1 0 

\ - 1 3 - 3 1 / 

3. 

4. 

5. 

6. 

7. 

\ 7 19 3 
aj Xi — — 2, ^2 — -g-, X3 — — ̂  
K\ ^ — 43 ^ _ 47 ^ _ 17 
D; Xi — 22) ^2 — -4-' ^3 — 32 

a) 6 - - 1 8 

b) x\ — —X2 + 2x3 — 4x4 + 6 

a) compatible 

b) non, une infinite de solutions 

a) une infinite de solutions avec xi = X2 = X3 

b) une infinite de solutions avec Xi = ^5, X2 — \s, X3 == 0, X4 = s 

a) ^ - - 3 

b) /5 7̂  - 3 et ;5 7̂  2 

c)/3 = 2 
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Chapitre 10 

1. Les vecteurs sont lineairement dependants car —3 

2. D = 3A-2B -C 

3. a — l^b — —8, c—\ 

4. (a) X doit etre different de -1, 0, 1. 

(b) A, = ^ , Â  = i = ^ 

5. Pour A: 

Pour B : 

Pour C: 

6. (a) pas de valeurs propres pour a G ]—2; 2[ 

(b) valeurs propres de B: Ai — 1, A2 = 2 avec pour vecteurs propres 

'̂l = ( I et t;2 = ( ) qui sont lineairement independants 

7. ^ 
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Chapitre 11 

1. X - 20, y = 10, / (20,10) - 80 est un minimum 

2. (a) xi = 50, X2 = 100, x^ = 250, ^ = 50 

(b) xi = 125, X2 - 150, X3 - 125, 
V (125,150,125) = 6000 > V (50,100,250) - 4000 

3. (a) maximum en Â  == L = 4, S = 64 

(b) maximiser Q ~ SK^L^ sous contrainte 64^8^8— 12JK'—4L—48 = 0 

F {K, L, A) =: (1 + 8A) (5 - A (12ir + 4L + 48) realise son maximum 
lorsque K = L 

Benefice maximum: 48 avec K = L = 9etQ = 3 

4. K = 10, L = 40, Q = 113.14, p^ = 3 

5. x = y = ^etz = 0.693 

6. (a) R^pq = -3q^ + lOOq + Uq 

(b) g = / = 10 pour un benefice de 200 

7. (a) X = 5, ?/ - 10, z = 5, i/ = 1250 

(b) X = 5,2/ = 12, z = 4, ^ = 1200 

8. Candidat x = y = 5, z = 0, / (5; 5; 0) = 0 c'est un minimum 

9. K — L — IQ cout de production: 96 c'est un minimum 

10. X — y — A= realise un maximum et x — y — —A^MH minimum 

11. X — b, y — Q, f (x; y) — —10, c'est un minimum 

12. X = 0, y = 12 et f7 == 864 c'est un maximum 
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Chapi t re 12 : Exercices sur Mathematica 

1. In[l]: = NESqrt [7*2-5]/(12*333" (1/3)) ,15] 

Out[l]: = 0.179940125323312 

Inl2]: := NCSqrt [7*2-5] 7(12*333" (1/3)) ,20] 

Outl2]: = 0.17994012532331177076 

\n[3]: = N[Sqrt [7*2-5] 7(12*333" (1 /3 ) ) , 25] 

Out[3]: = 0.1799401253233117707584789 

Inl4]: = N [E" (Pi*Sqrt [2] 735), 15] 

Out[4]: = 1.13534834134303 

Inl5]: = N [E" (Pi*Sqrt [2] /35) ,20] 

OutlSj: = 1.1353483413430344339 

Inl6]: =^ N [E" (Pi*Sqrt [2] /35) ,25] 

Outle]: = 1.135348341343034433875871 

ln[7]: = N[Siii[3Pi/25] ,15] 

Out[7]: = 0.368124552684678 

ln[8]: = N[Sin[3Pi/25] ,20] 

Out[8]: = 0.3681245526846779592 

ln[9]: = N[Sin[3Pi/25] ,25] 

Out[9]: = 0.368124552684677959156947 

2. In[l]: = ? Table 

Out/iy.'=Table [expr,-[imax}] generates a list of imax 
copies of expr. 
Table[expr,{i,imax}] generates a list of the values of expr 
when i runs from 1 to imax. 
Table[expr,{i,imin,imax}] starts with i=imin. 
Table[expr,{i,imin,imax,di}] uses steps di. 
Table[expr,{i,imin,imax},{j,jmin,jmax},...] gives a nested 
list. The list associated with i is outermost. 

In[2]: = Table [0,{ 10}] 

Out[2]: = { 0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 } 
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ln[3]: = Table [n, {n, 10}] 

Out[3]: = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,10} 

ln[4]: = Table [n"3,{n, 10}] 

Out[4]: = {1,8,27,64,125,216,343,512,729,1000} 

3. In[l]: = Solve[x-2+x-l==0,x] 

Out[l]: = {{x->i ( -1 - v/5) }, {x->i ( -1 + ^ ) }} 

ln[2]: = NSolve[x'-2+x-l==0,x] 

Out[2]: = {{x->-l.61803}, {x->0.618034}} 

ln[3]: = Solve [{x"2+y~2==4,x-2-y==2},{x,y}] 

Out[3]: = {{y->-2 ,x->0} ,{y->-2 ,x->0} , 
{ y - > l , x - > - v ^ } , { y - > l , x - > V 3 } } 

ln[4]: = NSolve[{x-2+y-2==4,x"2-y==2},{x,y}] 

Out[4]: = {{y->-2. , x - > 0 . } , {y->-2. , x - > 0 . } , 
{ y - > l . ,x->-l.73205}, {y->l,x->l.73205}} 

4. In[l]: = p [x_] : =x~2-4x+3; 

ln[2]: = Solve [p [x] ==0, x] 

Inl3]: = Solve[D[pCx] ,x]==0,x] 

Out[2]: = {{x->l},{x->3}} 

Out[3]: = {x->2} 

ln[4]: = qCx_] : =x"2-x/4-3/8; 

In[5]: = Solve [q [x] ==0, x] 

ln[6]: = Solve [D [q [x] , x] ==0, x] 

Out[5]: = {{x->- i} ,{x->f}} 

Out[6]: = { x - > | } 

5. In[l]: = Plot[{Cos[x],l-x~2/2,l-x~2/2+x"4/24},{x,-7,7}] ; 
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6. In[l]: = P l o t [ S i n [ T a n [ x ] 3 - T a n [ S i i i [ x ] ] , { x , - 4 , 4 } , 
AxesLabel->{x,y}] ; 

7. / n / i / - = f [x_,y_] : =2*x*y-3*x"2+y~2; 

ln[2]: = PlotSD [f [x, y] , {x, - 2 , 2 } , {y, - 2 , 2 } , 
V iewPo in t ->{ -2 .673 , - 2 . 0 7 0 , 0 . 1 1 0 } ; 

2 1 0 -1 --̂  

1. In[3]: = Solve Cf [ 1, y] ==0, y] 

Out[3]: = { { y - > - 3 } , { y - > l } } 
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