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Préface

Ce livre contient des éléments fondamentaux de mathématiques et est destiné
aux étudiants de premiére année en sciences économiques, gestion, finance et
sciences soclales. Son contenu est de ce fait conforme aux besoins mathéma-
tiques des matiéres enseignées dans ces branches. Ce livre est également un
lien entre les cours élémentaires d’économie, de statistique et de recherche
opérationnelle.

Il est essayé dans ce livre d’enseigner les éléments de base des mathéma-
tiques avec des exemples, chaque fois que cela est possible. Ce texte est écrit
pour ceux qui ont peu de connaissances en mathématiques. Il contient néan-
moins les éléments nécessaires et suffisants pour aborder la deuxiéme année
du degré universitaire. De courtes démonstrations sont données tout au long
du livre. Toutefois, les références citées a la fin du livre sont suffisantes pour
qu'un lecteur intéressé puisse approfondir les sujets traités.

Ce livre est composé de treize chapitres regroupés en trois parties et
présentés avec de nombreux exemples. Dans la partie analyse, le chapitre 1
présente quelques éléments essentiels de la théorie des ensembles, des vari-
ables et des relations entre les variables. Ces concepts de base sont indis-
pensables pour la suite du cours. Le chapitre 2 considére la représentation
graphique des équations algébriques permettant une visualisation des rela-
tions entre les variables. Le chapitre 3 aborde le domaine du calcul différen-



tiel. Les notions de suites, limites et premiére dérivée y sont expliquées. Le
chapitre 4 traite des applications des dérivées, c’est-a-dire de ce qu’on peut
étudier a I'aide des dérivées. Le chapitre 5 considére I'opération inverse de la
dérivée a savoir I'intégration. L'intégration est utile notamment pour calculer
Paire qui se situe sous une courbe. Le chapitre 6 aborde les séries mathéma-
tiques. Les fonctions vues jusqu’au chapitre 6 sont toutes des fonctions d'une
seule variable. Le chapitre 7 donne quelques éléments concernant les fonc-
tions de deux ou plusieurs variables et leurs applications, notamment dans
le domaine économique. Le chapitre 8 introduit la partie d’algebre linéaire
et fournit les éléments de base du calcul matriciel en présentant différents
types de matrices et quelques opérations usuelles sur celles-ci. Une appli-
cation du calcul matriciel est la résolution de systémes d’équations linéaires
et fait I'objet du chapitre 9. Le chapitre 10 traite des vecteurs et espaces
vectoriels alors que le chapitre 11 aborde le calcul différentiel sous forme ma-
tricielle (matrice hessienne). La 3° partie est constituée d’un chapitre sur

un logiciel mathématique puissant : Mathematica™~ qui permet de résoudre
tous les problémes exposés dans ce livre. Finalement, une page historique
est présentée dans le chapitre 13.

Je tiens a remercier vivement Sylvie Gonano pour son étroite collabora-
tion & la rédaction du manuscrit qui est & l'origine de la premiére édition
(1987). Depuis, ce livre a été édité par “Presses Académiques Neuchdtel” en
1989 et en 1996. Ce manuscrit a servi de support au cours de mathématiques
dispensé aux étudiants en sciences économiques et sociales de I'Université de
Neuchatel. Le livre actuel résulte de modifications et d’ajouts appportés au
manuscrit original. Pour ce travail essentiel, j'exprime ma gratitude a mes
collaborateurs : Arash Dodge, Gérard Geiser, Francois Lefebvre, Tatiana
Mantuano, Alexandra Fragniére, et particulierement a Gérard Antille qui a
accompli un trés grand travail de correction et de vérification du texte et des
commentaires. Enfin, les parties historiques du chapitre 13 sont le fruit de
discussions avec Farhad Mehran.

Yadolah Dodge
Université de Neuchétel
30 Mars 2002



Partie 1

Analyse



Chapitre 1

Prologue
Moi : De quel coté est le chemin ?
Le Sage: De quelque cété que tu ailles, si tu es un

vrai pélerin, tu accompliras le voyage.

SOHRAVARDI: (1155-1191) Philosophe persan.

1.1 Introduction

L’objectif de cet ouvrage est d’aider le lecteur & comprendre, apprécier et
appliquer I'analyse mathématique. Les mathématiques permettent a I'écono-
miste d’étre précis dans la définition des variables, de poser clairement les
hypothéses, d’étre logique dans le développement de ’analyse et de prendre
en considération un nombre plus important de variables.

Dans ce chapitre, nous allons revoir quelques notions fondamentales de la
théorie des ensembles, des variables et des relations entre ces variables. Ces
concepts de base, bien qu’'évidents, sont trés importants. Nous insisterons
notamment sur les fonctions, outils fondamentaux nécessaires a la théorie
économique.
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1.2 Les ensembles

Georg Ferdinand Cantor, né en 1845 a Saint-Petersbourg en Russie, fonda
la théorie des ensembles et introduisit le concept des nombres infinis avec sa
découverte des nombres cardinaux. Il développa aussi 1’étude concernant les
séries trigonométriques et fut le premier & prouver que les nombres réels sont
indénombrables.

Un ensemble est une collection d’objets bien déterminés. On appelle ces
objets les éléments de I'ensemble.

Un ensemble est défini soit par une liste de ses éléments, soit par une
régle qui définit les éléments de I'ensemble. On utilisera les majuscules pour
représenter un ensemble, et il est d'usage de noter les éléments a 'intérieur
d’accolades.

Exemple 1.1 A = {1,2,3} signifie que l'ensemble A contient les éléments
1,2 et 3. B = {x : = est un nombre impair} signifie que l’ensemble B contient
tous les nombres entiers impairs, ¢ sevoir =1, £3, £5, 7, etc.

L’appartenance 4 un ensemble se note par le signe €, la non-apparte-
nance se note par ¢. Un ensemble ne contenant aucun élément se note par ()
et se lit ensemble vide, par exemple, S = { z: z est un nombre impair se
terminant par 4 } = (. Si chaque élément de A se trouve aussi dans B, A est
un sous-ensemble de B; on note A C B. S’il existe dans B au moins un
élément qui n’appartient pas a4 A, on dit que A est sous-ensemble propre
de B et on le note A C B. La notation A ¢ B signifie que A n’est pas un
sous-ensemble de B. Par définition, deux ensembles sont égaux si A C B et
Big.A.

Sauf mention contraire, tous les ensembles considérés sont des sous-ensem-
bles d’un certain ensemble qu’'on appelle ensemble universel et qui sera
noté par §2.

Exemple 1.2 Si A= {1,2,3} et B= {1,2,3,4}, A est un sous-ensemble
propre de B: A C B.

Si A= {z : = est un multiple de 3} et B = {z: = est un multiple de 6}, alors
B est un sous-ensemble propre de A: B C A.

Si A={0.1,0.4,0.6,0.8} et B= {z : z est un nombre entier}, A n’est pas un
sous-ensemble de B: A ¢ B.
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Par la suite, les ensembles numériques fondamentaux seront notés par :

N = {0,1, 2 3,...}, I'ensemble des entiers naturels.
Z = {..,-2,-1,0, 1, 2,...}, 'ensemble des entiers relatifs.
Q = {% : m,n €Zn # 0}, 'ensemble des nombres rationnels.

IR pour I'ensemble des nombres réels.
Notons que: NCZc QcC R.

Exemple 1.3 Les intervalles de IR sont trés souvent ulilisés en mathéma-
tique. Soit a € IR et b € IR tels que a < b; ces intervalles sont notés ainsi:

la;b| = {zeR:a<z<b}: intervalle ouvert.

la;0) = {zx€R:a<z<b}: intervalle fermé.

Ja;b] = {zx€R:a<z <b}: intervalle semi-ouvert (& gauche).
[a;0] = {z€R:a<z<b}: intervalle semi-ouvert (a droite).

1.3 Opérations sur les ensembles

Définition 1.1 La réunion de deux ensembles A et B est le nouvel ensemble
consistant en la réunion des éléments de A et des éléments de B. La réunion
de A et B, notée A U B, qui se lit “A union B” est définie comme suit :
AUB={z:z€ Aouz € B}.

Le terme “ou” est employé ici dans le sens de et/ou.

Exemple 1.4 Si A = {1,3,5} et B={2,3,4}, alors AU B={1,2,3,4,5}.
On notera que l'élément 3 qui se trouve dans A et dans B n’est pas répété
dans A U B.

Définition 1.2 L’intersection de deur ensembles A et B est le nouvel en-
semble formé des éléments communs & A et B. L’intersection de A et B,
notée A N B est définie par: AN B={z: z € Aetz € B}.

Exemple 1.5 Si A = {z: z est un multiple de 4} et B = {z: z est un
multiple de 6}, alors AN B = {z: z est un multiple de 12}.

Définition 1.3 La différence entre deux ensembles A et B est le nouvel en-
semble formé des éléments qui appartiennent & B mais pas a A. La différence
entre B et A, notée B — A, est définie par:

B—-A={z: xeBetz¢ A }.
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Exemple 1.6 Si A = {1,2,3} et B ={1,2,3,4,5}, B—-A = {4,5}.

Définition 1.4 Le complémentaire d’un ensemble A est le nouvel en-
semble formé des éléments qui n'appartiennent pas & A. Le complémentaire
de A, noté A , est définipar: A={z: c€Qetx g A }.

A titre d’exemple, démontrons que Dintersection est distributive par
rapport & la réunion, propriété que 'on peut énoncer sous la forme d’'un
théoréme.

Théoréme 1.1 Quels que soient les ensembles A,B et C, alors:
AN(BUC)=(ANB)U(ANC).

Démonstration

Il s’agit de démontrer que tout élément de 'ensemble AN(BUC) appartient a
I'ensemble (ANB)U(ANC), puis que tout élément de (ANB)U(ANC) appar-
tient & AN(BUC); ainsi, par définition, les deux ensembles seront égaux.

Soit z un élément de AN(BUC). Cet élément appartient & A d’une part
et d’autre part & I'un au moins des ensembles B et C. Par conséquent, ou
bien z appartient & A et & B, donc & ANB ou bien = appartient a A et a C,
donc & (ANC); z appartient donc & I'ensemble (ANB)U(ANC).

Soit & un élément de (ANB)U(ANC). Si z n’appartient pas a (ANB), il
appartient forcément & (ANC), donc & A et & C. Si z n’appartient pas a
(ANC), il appartient nécessairement & (ANB), donc & A et a B. Dans les
deux cas, z appartient & A d’une part et d’autre part au moins 4 B ou a C.
Donc z appartient & AN(BUC). Ce qu'il fallait démontrer (c.q.f.d).

Démontrons le méme théoréme, mais cette fois sous forme plus concise:

z € A
etz € BUC

.”L‘EAH(BUC)‘:‘?’{
z € A
i et (x € Bouze C)

(€A et z€B)
ou(zeA et z€(C)

< x € (ANB)U(ANC)
c.q.f.d.
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On peut représenter les ensembles et les opérations sur ces ensembles &
I'aide de diagrammes qu’on appelle diagrammes de Venn. La surface grisée
représente 'ensemble indiqué en-dessous de chaque diagramme.

AUB ANB

A

A

AUuB=A ANB=B

S
oij °

AU(BNnC)=(AUB)N(AuC) AUB=ANB

1.4 Produit cartésien et cardinalité

René du Perron Descartes (1596-1650), né en France dans la province de Tou-
raine, fut philosophe, mathématicien et scientifique. Son idée selon laquelle
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I’algébre pouvait étre utilisée comme méthode générale pour la géométrie le
fit passer pour le fondateur de la géométrie analytique. Dans le domaine de
la notation, il introduisit le systéme des exposants (z?,z%,...) et commenca
a utiliser les premiéres lettres de 'alphabet pour se référer a des quantités
connues et les derniéres lettres pour représenter les inconnues.

On appelle produit cartésien de deux ensembles E et F, I'ensemble des
couples ordonnés (z;y) ou z € E et y € F. On le note EXF et on lit “E
croix F”. Les éléments (z; y) sont des couples ordonnés et non des ensembles.
L’ordre dans lequel on écrit « et y est fondamental. Le premier élément z du
couple appartient au premier ensemble et le deuxiéme élément au deuxiéme
ensemble.

Définition 1.5 Un ensemble est dit fini s’il contient un nombre fini d’élé-
ments. Le nombre d’éléments d’un ensemble s’appelle cardinal de l’ensemble.
On le note Card(E). Un ensemble qui n’est pas fini est dit infini.

Exemple 1.7 Si A=1{0,1,2,3,4} et B={1,3,5}, alors i y aura
5-3 =15 éléments dans AxB: (0;1),(0;3),(0;5),(1;1),...,(4;3),(4;5). De
facon plus générale, st A et B sont des ensembles finis, alors:
Card(AxB) = Card(A) Card(B).

Définition 1.6 Soit un ensemble E. Tous les sous-ensembles de E peuvent
étre considérés comme les éléments d'un nouvel ensemble que l'on appelle
ensemble des parties de ’ensemble E, noté P(E).

Exemple 1.8 Soit E = {a,b,c}. Les sous-ensembles de E sont: 0,{a}, {b},
{¢}, {ab}, {a,c}, {b,c}, {ab,c}.

Ainsi: P(E)={0,{a},{b},{c}.{a,b}, {a,c},{b,c} {ab,c}}

On notera que Card(P(E)) =23 = 8.

Plus généralement, si E contient n éléments, P(E) contiendra 2™ éléments.

Théoréme 1.2 Soient A et B deux parties d’un ensemble fini E, alors:
Card(AUB) + Card(ANB) = Card(A) + Card(B).

Démonstration
Le nombre d’éléments de “A union B” est égal au nombre d’éléments de A
plus le nombre d’éléments de B auquel on retranche le nombre d’éléments en
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commun & A et B, car ils ont été comptés deux fois, d’ou:
Card(AUB) = Card(A) + Card(B) — Card(ANB). c.q.f.d.
Si ANB = 0, alors on obtient la formule:

Card(AU B) = Card(A) + Card(B).

1.5 Les variables

Il s’agit de distinguer deux sortes de quantités: les constantes et les varia-
bles. Une constante est une quantité prenant une valeur fixe. Les constantes
numériques gardent la méme valeur dans tous les problémes. Les constantes
arbitraires ou parameétres gardent la méme valeur tout au long d’un pro-
bléme particulier.

La valeur absolue d’une constante, notée | ¢ |, représente la grandeur
de cette constante sans tenir compte de son signe. Nous avons donc:

| ¢ |=| —¢ |= ¢ si ¢ est non négatif.

| ¢ |=| —¢ |= —c si c est négatif.

Voici quelques propriétés de la valeur absolue:
Soient ¢; et ¢y, deux nombres réels.

Llat+ea|l <|al|l+|c]

. |ace| =leal |e]
[ IC}|
. |—| = co # 0
P #
1 1

iv. Si| e |<| e |, alors a1 #0,c#0.

| e | lea |’

Une variable est une quantité qui peut prendre différentes valeurs tout
au long d'un méme probléme. Une variable peut étre continue ou discréte.
Une variable continue est une variable qui peut prendre n'importe quelle
valeur réelle a I'intérieur d’un intervalle. Les valeurs successives d’'une variable
continue différent d'une quantité infinitésimale. Une variable discréte est une
variable qui prend uniquement certaines valeurs dans un intervalle.

Il est d'usage de noter les constantes par les premiéres lettres de I'alpha-
bet et les variables par les derniéres lettres. Toutefois, dans I'application des
mathématiques, par exemple en économie, une variable est souvent désignée
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par la premiére lettre de son nom: p pour prix, g pour quantité, ¢ pour coiit,
etc.

Exemple 1.9 Dans l'expression de l'aire du disque A = 7r?, w est une
constante numérique, r le rayon et A sont des variables.

Les variables et les constantes appartiennent & ’ensemble des nombres
réels IR. -
Le quotient de deux nombres a et b est égal & un nombre z: — = z.

On en tire: a = bz. En rapport avec cette définition, la division par
0 n’est pas admissible. En effet, si b = 0, @ = 0- z qui n’est vrai que si
a = 0; mais dans ce cas, on peut donner & z n’importe quelle valeur. Donc
le quotient %, lorsque b = 0 et a = 0 peut prendre n’importe quelle valeur.

L’expression % est appelée indéfinie si a # 0 et 'expression g est appelée
indéterminée.

Notons que — = 0 pour b # 0 puisque 9 est la valeur de z pour laquelle
bz = 0 et que cette valeur doit étre nulle quand b # 0.

1.6 Relations et fonctions

Dans la vie courante, nous rencontrons a chaque instant des variables qui
dépendent d’autres variables. Par exemple, le temps de freinage d’une voiture
dépend de la vitesse de la voiture, ou encore le nombre de marches d'un
escalier dépend de la hauteur de 'escalier, etc.

Définition 1.7 Un ensemble de paires ordonnées de nombres réels est
appelé une relation binaire.

L’ensemble des premiers nombres d’une relation binaire est I’ensem-
ble de départ, ou domaine de la relation. Le deuxiéme ensemble est
I’ensemble d’arrivée de la relation. L’ensemble de départ contient les va-
leurs que prend la variable z appelée variable indépendante. L’ensemble
d’arrivée contient les valeurs que prend la variable y appelée variable
dépendante.

On attribue a la variable indépendante des valeurs arbitraires qui vont
déterminer les valeurs de la variable dépendante.
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En général, on note par z la variable indépendante, et par y la variable
dépendante.

Exemple 1.10 A= {(z,y): z,y € N, z <y} est une relation binaire dont
quelques couples sont: (1;1), (1;2), (5;20), etc. Notons que (3;2), (8;6),
(25;21) par exzemple, n'appartiennent pas ¢ A.

B = {(z;y): y =2z — 1,2 € R} est une relation binaire ot l’ensemble
de départ est R et l'ensemble d’arrivée est aussi R. Quelques exemples de
couples: (0; —1), (0.5; 0), (1.41; 1.82), etc.

Définition 1.8 Si une relation est telle qu’a chaque élément de l'ensemble
de départ est associé un et un seul élément de l'ensemble d’arrivée, on dit
que c’est une fonction.

Toutes les fonctions sont des relations, mais toutes les relations
ne sont pas des fonctions. Selon la définition, dans 'exemple 1.10, B est
une fonction mais A n’est pas une fonction.

On représente traditionnellement une fonction par une lettre minuscule:
f (ou g, ou h, etc.). Si la fonction f associe a I’élément x de l’ensemble de
départ E, I'élément y de 'ensemble d’arrivée F, on écrit :

f: E—TF

z—y = f(z)
On dit que y est I'image de = par la fonction f. Au cours d’'un méme
probléme particulier, le méme symbole fonctionnel indique toujours la méme
loi de dépendance de la fonction.

Exemple 1.11 Si f(z) = 2%+ z — 2, alors:

fla) = a®*+a—2
f(1) 1+1-2=0
f(=2) = 4-2-2=0
flz+2) (z42)2+(z+2)-2=2?+5z+4
flz+h)—f() = (@+h)>*+(@+h)—2— (2> +2-2)
2 +2sh+h*+2+h—-2—-2>—-2+42
2zh + h? + h.

On définit la somme, la différence, le produit et le quotient de deux fonc-
tions f(z) et g(z) de la maniére suivante:
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Somme de deux fonctions: (f + g)(z) = f(z) + g(=).

Différence de deux fonctions: (f — g)(z) = f(z) — g(z).

e Produit de deux fonctions: (f-g)(z) = f(z)-g(z).
e Quotient de deux fonctions: (5) (m)e= !5;3} g(z) #0.

On peut finalement définir la composition de deux fonctions

y = f(x) et z = g(y) par: (go f)(z) = g(f(2)).

Cette nouvelle fonction est notée h = g o f qui se lit “ g rond f 7.
On trouve h(z) en substituant la premiere fonction dans la deuxiéme:
h(z) = g(f(z)). On peut résumer la composition des fonctions par le
schéma suivant :

I q
T Yr—z
h=gof
T 2z

Note En général, f(g(x)) # g(f(x)).
Exemple 1.12 Si f(z) =z +z+ 1 et g(z) =x+ 1, alors:

g(f(z)) II—LQ:2+$+1:y+i>z:y+l

e®h = @PHz+)+1=2"+z+2

%2 = @+12+(@+1)+1=2"+3z+3
Dans cet ezemple, g(f(z)) est bien différent de f(g(z)).

Définition 1.9 On appelle surjection ou fonction surjective une fonc-
tion telle que tout élément y de l'ensemble d’arrivée F soit l'image d’au
moins un élément x de l'ensemble de départ E.Vy € F,3z € E : y = f(x).

Exemple 1.13 Soient les ensembles E ={z € R: —2<z<2} et
F={yeR: 0<y</}, dlorsla fonction f: E — F définie par f(z) = z*
est surjective.
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En effet, si y € F, y est un nombre positif ou nul, inférieur ou égal a 4
et \/y est un nombre réel positif ou nul, inférieur ou égal &4 2: /y € E et
F(V) = (Vy)? = y. Ainsi, z = /g vérifie z € E et f(z) =y. Il est a relever
que 'on a aussi: —/y € Eet f(—,/7) =y.

Exemple 1.14 Soit la fonction f : Z — Z définie comme suit: x> 2x.
L’ensemble d’arrivée est alors 'ensemble des nombres pairs. Cette fonction
n’ est pas surjective puisque 5 n’est l'image d’aucun élément x € 7 , ainsi
que tous les nombres impairs.

Définition 1.10 Une application f est dite injective si et seulement si deux
éléments quelconques distincts de U'ensemble de départ ont deux images par
f distinctes: x, # xa = f(z1) # f(x2) ou encore f(z,) = f(x3) = z1 = ».

Une injection (ou fonction injective) est en fait une fonction telle que
chaque élément y de I'ensemble d’arrivée soit I'image d’au plus un élément z
de ’ensemble de départ.

Exemple 1.15 Soit la fonction f(z) = 3z + 2.
Elle est injective car:

f(z1) = f(z2)
321 +2=3z0+ 2
= 3z; = 314

= Z] = Zs.

Définition 1.11 On appelle bijection ou fonction bijective une fonction
qui est & la fois surjective et injective. Si f(z) est une bijection, chaque
élément y de l'ensemble d’arrivée est l'image d’un unique élément x de l'en-
semble de départ.

Exemple 1.16 Soit la fonction f: Z —Z

z+— f(z) =z —2.
Cette fonction est bijective car tout élémenty € Z est l'image du seul élément
z=1y+2 deZ . On peut calculer quelques couples :

gl... =2 -1 0 1 2
y|... -4 =3 -2 -1 0

3
1



14 Prologue

Nous allons, pour terminer ce paragraphe, schématiser les différentes no-
tions que nous venons d’aborder.

L’ensemble de départ est noté par E et 'ensemble d’arrivée par F; les
croix représentent les éléments de E et les ronds les éléments de F. Les fleches
lient un élément de E a un élément de F pour former un couple (z;y).

Fonction: Tout élément x de E a une image unique y dans F.

E F

Surjection: Tout élément de F est image.

(3

Injection: z; # zy = f(z1) # f(@s).
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Bijection: Injection et surjection.

1.7 Fonction inverse

Si f(z) est une bijection telle que z — y, il existe une et une seule bijection
telle que y — z. On dit que cette fonction est la fonction inverse de f et
on la désigne par f~!(z). On trouve f~!(z) en résolvant I'équation y = f(z)
par rapport a la variable z, ce qui donne z = g(y), c’est-a-dire que y est la
variable indépendante et x la variable dépendante.

Exemple 1.17 Soit f(z) = 2z + 4. La fonction inverse f~*(z) se trouve de
la fagon suivante :

y=2z+4
S y—4=2z
et ¢
==,
Nous avons donc © = g(y) = y% Par conséquent, la fonction inverse est

—4
fHx) = = 5 puisqu’il est d’usage d’employer la lettre = pour la variable
indépendante et la lettre y pour la variable dépendante.

1.8 Fonctions explicites et implicites

Jusqu’ ici, nousavons toujoursvu lesfonctions sous la forme : y = f(z).
La variable dépendante est y et elle est en quelque sorte explicitée par x,
d’ou le nom de fonction explicite quand y est écrit en fonction de z. En
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revanche, une fonction implicite est une fonction ou les deux variables
apparaissent du méme co6té de I’équation.

1
est une fonction explicite, tandis que x> —5y = 6

Qr —
Exemple 1.18 y = ;

est une fonction implicite.

Il est parfois possible de résoudre 'équation d’une fonction implicite par
rapport & I'une ou 'autre des variables pour obtenir ainsi une fonction expli-
cite. Dans I'exemple 1.18, on peut écrire z° — 5y = 6 sous la forme explicite

26
y=Jflz): 3:2—5y=6=>1=x :

=

J
Mais la forme explicite z = f(y) n’est pas une fonction. En effet,
22 —5y=6=>z==%/5y+6

par exemple y = 38 a deux images: = = —14 et x = 14.

Quand, a partir d'une fonction implicite, on parvient a écrire deux fonc-
tions explicites, ces deux fonctions explicites sont alors réciproques I'une de
Pautre.

Exemple 1.19 Soit la fonction implicite 3z — y = 0. Les deux fonctions

;- ; 1
explicites et réciprogues l'une de l'autre sont: y =3z , etz = Ey.
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Exercices

L

Soient les ensembles :

A={z € N : z est un multiple de 2}.

B={zx € N : z est un multiple de 3}.

C ={z € N : z est un multiple de 6}.

D ={z €N : z est un multiple de 8}.

Déterminer: i) ANB; ii) ANC; iii) AUC; iv) BUC; v)CND.

. Soient A et B des sous-ensembles de €. Illustrer a I'aide de diagrammes

de Venn les deux régles de Morgan :
(ANB)=AUBet (AUB)=ANB.

. En utilisant les quantificateurs, montrer que la réunion est distributive

par rapport a U'intersection, c’est-a-dire, quels que soient les ensembles
A, B et C, démontrer que:

AU(BNC)=(AUB)N(AUQC).

. Soit A = {a,b}, B ={1,3} et C = {4,5}. Déterminer:

(a) Ax (BUC).
(b) (Ax B)U(AxC).
(c) Ax (BNC).
(d) (Ax B)N(AxC).

. Soit E, un ensemble tel que Card(E) = 30. Si A et B sont deux sous-

ensembles de E non disjoints (AN B # 0) tels que Card(A) = 20,
Card(B) = 15 et Card(A N B) = 6, trouver Card(A U B).

. Les résultats d’une entreprise ont montré que sur 50 employés, 30 sont

obéses, 25 souffrent d’hypertension artérielle tandis que 20 ont un taux
de cholestérol trop élevé. Parmi les 25 qui souffrent d’hypertension, 12
ont un taux de cholestérol trop élevé; 15 obeéses souffrent d’hyperten-
sion et 10 obeéses souffrent d’un taux de cholestérol trop élevé:; finale-
ment, 5 employés souffrent de ces trois maux a la fois.

Déterminer le nombre d’employés bien portant a ’aide d’'un diagramme

de Venn.
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7.

10.

11,

12.

Prologue

Sur 100 étudiants, on considére les ensembles S de ceux qui étudient
la sociologie, E de ccux qui étudient 1'économie et G de ceux qui étu-
dient la gestion. Sur ces 100 étudiants, 55 étudient la sociologie, 9 la
sociologie et la gestion, 7 la sociologie et I’économie, 8 1'économie et la
gestion, 6 la sociologie et la gestion mais pas I'économie, 80 la sociologie
ou la gestion et 12 I’économie seulement.

(a) Combien d’étudiants suivent les trois matiéres?
(b) Combien sont-ils a étudier la gestion?
(c) Combien sont-ils & étudier I’économie?

)

(d) Combien n’étudient aucune de ces trois matiéres?

Lesquels parmi ces ensembles représentent une fonction?
S1=1{(1;2),(2;8),(2;3)}.

Sy={(z;y):z€eR ,z<y}.
Ss={(z;y):y=2*2€R }
Si={(z;9):y=2"si0<2<2,y=3-zsi2 <z <3

ety=3siz =3}

Soit la fonction f: R— R
z+— f(z) =22+ 2z +4.

fle+h) - fz)
. ;
Montrer que la fonction f: R— {0} — R— {0}
1

e S
z

est bijective, ¢’est-a-dire injective et surjective.

Calculer:

Montrer que la fonction f: R— R
zr— f(z) =2 +1—2
n’est pas injective.

(a) Trouver une fonction f: IR — IR qui soit injective mais non
surjective.
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(b) Trouver une fonction g: IR — IR qui soit surjective mais non
injective.

(c) Trouver une fonction h : [0;1] — [0; 1] qui ne soit ni injective ni
surjective, ou [0; 1] désigne: {z € R : 0 <z <1}.

13. On consideére les fonctions: f(z) =z + 2 et g(z) = 2z + 5.

(a) Calculer h(z) =(9°f)( ) =g(f(z))
et m(z) = (f o g)(z) = f(g(z)).

(b) Calculer f~*(z) et g7 '(z).

(c) Calculer h=Y(z) = (go f)~!(z) et m~(z) = (f o g) ().

(d) Calculer f~'(g7'(z)) et g™ (f~*(x)).

(e) Comparer les résultats obtenus sous (c) et (d). Que constate-t-on?

14. Déterminer les deux fonctions explicites déduites de la fonction impli-
cite:

z4+2y—8=0

Que peut-on dire de ces deux fonctions?
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EUCLIDE (env. 300 avant J.-C.)

On connait peu de choses sur la vie d'Euclide a 1'exception du fait qu’il ait
enseigné a Alexandrie.

Euclide est certainement le mathématicien le plus prolifique de 1’Anti-
quité. On lui doit I'un des plus célébres textes de I'histoire des mathéma-
tiques: Les Eléments. Il s’agit d’un traité regroupant toutes les connaissances
géométriques de I'époque. Composé de treize livres, il couvre la géométrie
plane, la théorie des nombres, la théorie des nombres irrationnels, la géomé-
trie solide, et s’acheve sur une discussion & propos des propriétés des 5 po-
lyhedres. Ce traité devint I'ouvrage de référence dans I’enseignement mathé-
matique durant deux mille ans. Plus de mille éditions furent tirées depuis la
premiére en 1482.

Euclide écrivit également des textes sur ’astronomie, 1'optique et la mu-
sique.

(Euvres majeures retrouvées: On Divisions, Optics and Phaenomena;
perdues: Surface Loci, Porisms, Conics, Book of Fallacies, Elements of Mu-
SiC.



Chapitre 2

Représentation graphique des
fonctions

2.1 Introduction

Dans ce chapitre, nous allons voir comment représenter des équations algébri-
ques d'une fagon géomeétrique. Cette analyse graphique permet une visuali-
sation des relations entre les variables. Nous avons besoin, pour localiser
des points particuliers dans le plan ou dans 'espace, d'un systéme de coor-
données. Le systeme le plus utilisé est le systeme de coordonnées cartésiennes.
C’est dans ce dernier que 'on représentera les principales fonctions élémen-
taires en y associant autant que possible des applications économiques.

2.2 Coordonnées cartésiennes

Les couples (z;y = f (z)) d'une fonction peuvent étre représentés graphique-
ment a 'aide d’un systéme de coordonnées qui est constitué généralement
de deux axes gradués et perpendiculaires (horizontal et vertical). L’intersec-
tion de ces deux axes représente le point (0;0), il est appelé origine et est
noté O. Les quatre régions ainsi créées sont appelées les quadrants et sont
numeérotées comme dans la figure 2.1.

Pour localiser un point dans ce repére, il suffit de reporter les coor-
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données (z;y) du point comme suit: on reporte horizontalement la distance
z (appelé aussi Pabscisse) et verticalement la distance y (appelé aussi I'or-
donnée).

Quadrant 11 Quadrant 1

Quadrant I11 o Quadrant [V

Figure 2.1: Systéme de coordonnées cartésiennes

2.3 Les droites

Une équation du type y = azx + b, o a et b sont des paramétres dont I'un
au moins n’est pas nul, est dite équation cartésienne d’une droite. Un point
appartient a la droite si et seulement si ses coordonnées satisfont 'équation
ci-dessus. Pour chaque droite dans le plan, pour autant qu’elle ne soit pas
paralléle a I’axe des y, on peut trouver I’équation cartésienne correspondante.
Il y a deux problémes a envisager :

1. Connaissant l'équation cartésienne, représenter la droite graphique-
ment.

2. Connaissant deux points d’une droite, trouver 1’équation cartésienne
correspondante.

On peut résoudre le premier probléme en calculant les intersections de
la droite avec les axes. L'intersection avec l'axe des = se calcule en posant
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y = 0 dans I’équation de la droite. L'intersection avec I'axe des y se calcule
en posant z = 0 dans I'équation.

Le deuxieme probléme se résout en prenant l'équation générale d’une
droite y = az + b et en remplacant = et y par les coordonnées de deux points
quelconques pour obtenir deux équations dont les inconnues sont alors a et

b.

Exemple 2.1 Soit I’équation de la droite y = 4z — 2. Il suffit de calculer les
coordonnées de deux points pour représenter cette droite graphiquement.

y1

o /(/2;0 x

/' (0;-2)

Figure 2.2: Graphe de y =4z — 2

Intersection avec l'aze des x :
y=0=>0=4z -2
=z = :
=5
. 1
Le point est donc (5; 0).
Intersection avec l'aze des y :
r=0=>y=4-0-2
S y=-2.
Le point est donc (0; —2).
1
La droite qui passe par les points (5;0) et (0; —2) est représentée dans la
figure 2.2.
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Exemple 2.2 Sachant que la droite y = ax + b passe par les deux points
(1;2) et (3;4), trouvons a et b.

Pour cela, remplacons successivement dans y = ax + b, x et y par les coor-
données des deux points (1;2) et (3;4) :

2=a+b (2.1)
4=3a+b (2.2)

De léquation (2.1), nous déduisons: b= 2 — a.
En remplacant dans U'équation (2.2), on a:

4=3a+(2—-a)=2=2a
=a=1L

Comme b = 2 — a, nous trouvons b = 1. Nous avons donc ’équation :
y=z+1.
Dans I'équation générale d'une droite, y = az + b, il peut y avoir a = 0

oub = 0. Sib =0, cela signifie que la droite passe par l'origine, & savoir le
point (0; 0). Si a = 0, la droite est horizontale et passe en y = b (Figure 2.3).

¥y ¥

b y=b y=ax

0 X 0 x
a=10 b=10

Figure 2.3: Représentation graphique de droites

Deux droites dans le plan sont soit paralléles soit sécantes. Elles sont
paralléles si a (appelé pente de la droite) est le méme pour les deux droites et
b (appelé aussi I'ordonnée a ’origine) est différent pour les deux droites.
Elles se confondent si a et b sont les mémes pour les deux droites. Dans tout
autre cas, les deux droites se coupent en un point (z;y) qui doit satisfaire les
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deux équations simultanément. Par conséquent, on trouve les coordonnées
du point d’intersection en résolvant le systéme d’équations linéaires formé
par les équations des deux droites. Si les deux droites sont paralléles, il n’y
a pas de solution au systéme (les deux droites ne se coupent pas), et si les
deux droites sont confondues, il y a une infinité de solutions (chaque point de
la droite est solution). En général, on peut résoudre un systéme d’équations
linéaires par élimination ou par substitution.

Exemple 2.3 On va trouver le point d’intersection de deuz droites par éli-
mination. Supposons que l'équation de la premiére droite est y = 3z + 7 et
léquation de la deuziéme droite est y =z — 3.

Nous avons donc le systéme de deuz équations suivant :

y = 3a+7 (2.3)
Yy = z—3 (2-4)

Nous multiplions la deuziéme équation par 3 et la soustrayons de la premiére
équation pour éliminer x :

y = 3x+T7
- 3y = 3z-9
-2y = 16
De la, nous obtenons y = —8 et nous substituons cette valeur dans (?7) ou
(2.4):
—8=3z+7
d’ouxz = —5. Le point d’intersection est donc (—5; —8). Graphiquement, nous

obtenons la figure 2.4.

Exemple 2.4 Reprenons les deux mémes droites et cherchons le point d’in-
tersection par substitution. Le systéme est le suivant :

y = 3z+7 (2.5)
y = z—3. (2.6)
Nous substituons la valeur de y de la deuxiéme équation dans la premiére

équation :
r—3=3z+T7.
Nous obtenons ainsi 2z = —10, d’ou x = —5, et substituons cette valeur dans

(2.5) ou dans (2.6), ce qui nous donne y = —8. Le point d’intersection est
évidemment le méme : (—5;—8).
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P ]/y =3x+7

y=x3
(-7/3;0) (3,0)

7

(O-I ‘3)

Figure 2.4: Intersection de deux droites

Exemple 2.5 Soient les deux droites suivantes: y=2z+1ety=2z+2.a
est identique dans les deux droites, et b est différent. Elles sont donc paralléles
et n’ont pas d’intersection (Figure 2.5).

y-/ y=2x+1

y=2x+2

Figure 2.5: Deux droites paralléles

2.4 Applications économiques des droites

Dans ce paragraphe, nous nous intéressons aux fonctions de demande, d’offre
et de consommation. En économie élémentaire, la fonction de demande
est une droite de pente négative, c’est-a-dire que lorsque les prix augmentent,
la quantité demandée diminue, et lorsque les prix diminuent, la quantité de-
mandée augmente. Représentons dans la figure 2.6 une fonction de demande.
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¥

N

prix

0 quantité demandée \x

Figure 2.6: Fonction de demande

Par convention, le prix sera indiqué sur I'axe des y et la quantité de-
mandée sur 'axe des z. La variable x représente la quantité et la variable
y le prix. Nous noterons que seul le quadrant I nous intéresse. En effet, il
est le seul pertinent en économie (du moins dans ce probléme), des prix et
des quantités négatifs n’ayant pas de sens. Il est nécessaire également de
signaler que dans la réalité une fonction de demande est rarement trouvée
sous la forme d’une droite (ou méme d’une portion de parabole); cependant,
dans le cadre de cet ouvrage, nous nous permettrons de la simplifier pour ne
travailler qu’avec des droites.

Exemple 2.6 La demande de montres est de 10 unités si le prix est égal &
160 francs et elle est de 20 unités si le prix est égal & 120 francs. Nous allons
calculer léquation de la demande. Nous avons deux points (10; 160) et (20;
120). Nous substituons les coordonnées de ces points dans l'équation générale
d’une droite pour obtenirun systéme de deux équationsa deux inconnues

(aeth):

160 = 10a+b (2.7)
120 = 20a+b. (2.8)

Nous résolvons par élimination :

320 = 20a+2b
— 120 = 20a+b
200 = b
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y
N\J(0;200)

0 10 quantité demandée \ x

Figure 2.7: Graphe de la fonction de demande y = —4z + 200

Nous substituons b = 200 dans (2.8): 120 = 20a + 200, d’ot a = —4. Nous
avons donc Uéquation de demande y = —4x + 200. (Figure 2.7).

En général, la fonction d’offre est une droite de pente positive, c’est-
a-dire que lorsque les prix augmentent, la quantité offerte augmente aussi,
et lorsque les prix diminuent, la quantité offerte diminue aussi. Comme pour
la fonction de demande, x représente la quantité, et y le prix. A nouveau,
seules les valeurs positives de z et de y nous intéressent. Représentons dans
la figure 2.8 une fonction d’offre.

y
prix

0 quantité offerte ¥

Figure 2.8: Fonction d’offre

Exemple 2.7 Quand le priz est de 100 francs, le nombre d’appareils photos
d’une certaine marque offerts sur le marché est 50 et quand le priz est de
150 francs, le nombre d’appareils photos offerts est 100. Nous allons calculer
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¥y
prix

(100;150)

(50;100)

50

50 quantité offerte ¥

Figure 2.9: Graphe de la fonction d’offre y = z + 50

l’équation de loffre.

Nous avons les deuz points (50;100) et (100;150). Nous substituons les co-
ordonnées de ces points dans l'équation générale y = ax + b et obtenons le
systéme suivant :

100 = 50a+b (2.9)
150 = 100a + b (2.10)
que nous résolvons par élimination :
200 = 100a+ 2b
— 150 = 100a+b
50 = b

Nous substituons b = 50 dans (2.10): 150 = 100a + 50, d’ow a = 1. Nous
avons donc U'équation d’offre y = x + 50 (Figure 2.9).

Nous venons d’introduire les fonctions de demande et d’offre. Par consé-
quent, nous pouvons maintenant parler de ’équilibre du marché. On parle
d’équilibre du marché quand les fonctions de demande et d’offre se coupent
dans le quadrant I. En ce point, la quantité demandée est égale a la quantité
offerte. Donc la quantité a I’équilibre et le prix d’équilibre sont donnés par
les coordonnées du point d’intersection des deux droites (demande et offre).

Exemple 2.8 Cherchons [’équilibre du marché pour les fonctions d’offre et
de demande suivantes:

1
offre : y=§x+1

demande : y=-2z+6
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Le point d’intersection est trouvé par élimination :

4y = 2z+4
+ y = —2z+46
S5y = W0=y=2

On remplace y = 2 dans (2.12): 2= -2z +6, doux = 2.
L’équilibre du marché se produit quand la quantité est égale a 2 et le priz égal
a 2 (Figure 2.10).

prix
™~ offre
équilibre
7 demande
quantité

Figure 2.10: Représentation graphique de I’équilibre du marché

Nous allons terminer ce paragraphe en parlant de la fonction de consom-
mation. Cette fonction est caractérisée de la fagon suivante:

1. La consommation est fonction du revenu disponible, c’est-a-dire que

C = f(Ya).

2. Quand le revenu est nul, la consommation n’est pas nulle car il y a
toujours la consommation qui correspond au minimum vital. La droite
ne passe donc pas par 'origine, mais au-dessus de l'origine.

3. Quand le revenu augmente, la consommation augmente aussi mais
d’une quantité inférieure. C’est donc une droite de pente positive, infé-
rieure a 1.

Exemple 2.9 Sile minimum vital est égal a 10, et si la consommation repré-
sente 60% du revenu disponible, la fonction de consommation est
C = 0.6Y;+ 10, ou C est la consommation et Yy le revenu disponible. Nous
pouvons tracer le graphe de cette fonction de consommation (Figure 2.11).
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C

|

0 1 2 3 4 Y,

Figure 2.11: Graphe de la fonction de consommation C' = 0.6Y; + 10

2.5 Différents types de fonctions

e Polyndémes

On appelle polynéme de degré n la fonction donnée par :
Y= nI" + Q12" P+ -+ a1z + ag

ou a, # 0,n € IN et ag,ay,...,a, € IR sont les coefficients du po-
lynéme.

Pour n = 1, en posant a; = a et ap = b nous obtenons le polynéme de
degré 1: y = az + b dont on sait que sa représentation graphique est
une droite.

Exemple 2.10 Regardons le polynéme de degré 2 donné par: y = az® +
bz +c dont la représentation graphique est une parabole. Dans la figure 2.12,
nous observons deux paraboles différentes suivant le signe de a.

¥ YT
2 =
¥ =x+x-2
\:/ 2 x ] 2 x
y=-x'+2x1
a>0 a<0

Figure 2.12: Représentation graphique de paraboles
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Exemple 2.11 Représentation graphique d’un polynoéme de degré 5 (Figure
2.13).

Figure 2.13: Graphe de y = z° — 52° + 4z

e Fonctions rationnelles

p(z)

Une fonction rationnelle est une fonction de la forme —(-—)-, ou p(z)
gl

et g(z) sont des polynomes, ¢’est-a-dire:

_ p@" 4 Gy 2" 4 a1z +ag
b @™ + by 1™ oo+ by + by

avec a, # 0 et by, # 0.

Les fonctions rationnelles les plus simple (mis a part les polynomes) sont

celles que I'on peut exprimer sous la forme y = —, avec n=1,2,....
T

: ; y 1
On peut aussi les écrire z7" au lieu de —.

Exempln?1 2.12 Tragons les graphes de l’hyperbole caractérisée par l'équa-
tion y = —.

T
Selon la valeur de a, on obtient deux hyperboles différentes (Figure 2.14).
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¥ y
af \ y=ik 2
0 2 x 0 2 x
y=-2%
a>0 a<(

Figure 2.14: Graphes d’hyperboles

Exemple 2.13 Tragons encore le graphe de la fonction rationnelle y = i;l’f

dont le domaine de définition est R — {—1,0,1} (Figure 2.15).

y

|

2+

0 1 X

z—1/2

Figure 2.15: Graphe de y = 3
-z

e Fonctions puissances

On appelle fonction puissance la fonction y = 2%, ol « est une
constante arbitraire.

Lorsque « est rationnel (o € ®), il peut toujours s’écrire sous la forme
o = L ou p et g sont des entiers et g # 0. Dans ce cas, £® = zP/9 = /P

(on lit “racine géme de x puissance p”).
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Le domaine de définition de la fonction y = z® dépend de la nature du
nombre «; par exemple, si a est un entier négatif ou nul, c’est-a-dire
a <0, alors le domaine de définition sera R — {0}.

Si o = 1/q, ou ¢ est un entier strictement positif, alors le domaine de
définition sera IR lorsque ¢ est impair et Ry = {z € R : z > 0} lorsque
g est pair.

Exemple 2.14 La figure 2.16 représente les graphes de la fonction y = z
avec différentes valeurs de o.

» }"|
2 e 2
y=x
0 1 x o x
a=4 a=-2
¥y ¥
y=\x y=vx
2 2/
0 2 x [ 2 x
1
-1 =1
Q=3 @=73
¥ yr
El
y=Ax
2 G 2 e
[ 2 x [+] 2 x
—2 — 3
w="3 =3

Figure 2.16: Graphes de fonctions puissances
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e Fonctions exponentielles et logarithmiques

On appelle fonction exponentielle la fonction y = a*, ona > O et a # 1.
La fonction réciproque de y = a” est appelée fonction logarithmique
et se note y =log,z, ot a>0,a# letz>0.

Puisque !’ ensemble des valeurs de la fonction exponentielle est
0 < y < 400, la fonction logarithmique ne peut étre définie que pour
les valeurs positives de l'argument et admet ainsi pour domaine de
définition 0 < z < oo, c’est-a-dire Ry — {0}.

L’indice a dans log, indique que le logarithme est pris en base a. En
pratique, les bases usitées sont la base 10 et la base e (logarithme népé-
rien ou logarithme naturel, e = 2.7182). C’est pourquoi le logarithme
en base 10 s’écrit simplement log z et le logarithme naturel se note In z.

Exemple 2.15 Les figures 2.17 et 2.18 représentent les fonctions exponen-
tielles et logarithmiques pour différentes bases.

\2 y=(12y 2/‘“:3x

o 2 o 2

OD<a<l1 a>1
Figure 2.17: Graphes de fonctions exponentielles

y y
2 y =log,x 2 y=lnx
D<a<l a>1

Figure 2.18: Graphes de fonctions logarithmiques
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Rappelons ici quelques régles de manipulation des logarithmes:

1) d%*=gz  6) log,(z-y)=log,z+log,y
2) logy(a®) =z 7) log,(z/y) =log,z—log,y  poury+#0
3) log,a=1 8) log,(z") =rlog, z
4) log,1=0 9) log,(v/z)=1/rlog,z pour 7 # 0
lnz
5) log,z= e 10) log,z = log,a-log, x

e Fonctions trigonométriques

Le sinus et le cosinus d'un angle = sont définis dans le cercle trigo-
nométrique de rayon 1 (Figure 2.19) de la maniére suivante:

sinz = 08 = CP et cosz = OC = SP, car OP = 1.

1

Figure 2.19: Cercle trigonométrique

Les fonctions trigonométriques simples sont les suivantes:

l. y=sinz.
2. y=cosz.
sinw

3. y=tanz = ;
cos T
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cosx
4. y=cotx = —.
sSinT
1
d. y=-secx = .
COosT
1
6. y=cscx=—.
sin x
Y] ¥

WA LA RRPA T AT
VARV, I VALRRVALVA AVARY

(3) y=tanz (4) y =cotz
(5) y =secx (6) y =cscz

Figure 2.20: Fonctions trigonométriques

37
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Note La variable indépendante x est exprimée en radians.

La principale propriété des fonctions trigonométriques est leur périodi-
cité: on dit que la fonction y = f(z) est périodique s’il existe un nombre ¢
tel que f(z + ¢) = f(z). Le plus petit de ces nombres est appelé période de
la fonction. I1 découle de cette définition que les fonctions y = sinz et y =
cosz sont des fonctions périodiques de période 27. La période des fonctions
y = tanz et y = cot z est égale & 7. Notons l'identité suivante:

cos®(z) + sin®(z) = 1

Les fonctions y = sinz et y = cosx sont définies pour toutes les valeurs de
x.

Les fonctions y = tanz et y = secz sont définies partout, sauf aux points
z=2k+1) 7/2, k€.

Les fonctions y = cotz et y = cscx sont définies partout, sauf aux points
z=k-mkel.

Les graphes des fonctions trigonométriques sont représentés sur la figure 2.20.

e Fonctions hyperboliques

Soient les quatre fonctions hyperboliques ainsi définies :

ef —e "

2
ef+e®
—5

z _ =%

1. Sinus hyperbolique: y = sinhz =
2. Cosinus hyperbolique: y = coshz =

3. Tangente hyperbolique: y =tanhz = ——.
e*+e*

et +e "

4. Cotangente hyperbolique: y = cothz = :
et — e—T

On peut facilement en déduire les identités suivantes:

sinh z

tanhz = .
(8) tanhy cosh
cosh z

cothz = .

(b cothz sinh z

(c) cosh®z —sinh®z = 1.
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L’analogie entre ces relations et celles liant les fonctions frigonomé-
triques justifie I'usage des termes sinus hyperbolique, cosinus hyperbo-
lique, etc. Voyons encore les graphes de ces quatre fonctions (Figure
2.21).

2 x 1 x
(1) y =sinhz (2) y = coshz
y ’7 \
1 x 0 1 x
(3) y = tanhzx (4) y = cothz

Figure 2.21: Fonctions hyperboliques

2.6 Applications économiques des fonctions

Nous avons déja vu l'application économique concernant les droites (para-
graphe 2.4), dans laquelle les fonctions d’offre et de demande étaient repré-
sentées par des droites. Mais il se peut aussi que ces fonctions soient des
paraboles. Ici, ¢’est uniquement le quadrant I qui est de nouveau pertinent.
La fonction de demande est aussi souvent représentée par la branche supé-
rieure d'une hyperbole.
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Exemple 2.16 Soient les courbes d’offre et de demande suivantes :

offre poy=a’+5z+2
demande : y=—2z?+3

(]

y=x"+5x+2

(0.18:2.93)
y=-2¢'+3

Figure 2.22: Intersection de y = 2% + 5z + 2 et y = —22% + 3

Nous allons chercher ’éguilibre du marché. Pour cela, nous résolvons ce
systéme de deux équations en posant l’égalité entre l’équation d’offre et celle
de demande :

—2z2+3=22+5z+2
= 322 —52+1=0.

Nous employons la formule de Viéte pour trouver z, et x5 :

—b 4+ /b? — dac
Iy, Ty = %

ot a est le coefficient de z°, b le coefficient de x et ¢ la constante. Dans notre
exemple, nous avons:

-1.85
0.18

11

I, Iy =
1342 Zy

5:+:\/25+12:>{ x1
—6

On remplace ensuite x, et x5 dans la 1™ ou la 2° équation pour trouver 1y, et
Y2 !
% = —2z7 +3 = —3.82
Yo = —2z5+3222.93
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Les solutions sont (—1.85; —3.82) et (0.18; 2.93). Le point d’équilibre est
(0.18; 2.93) puisque seul le quadrant I nous intéresse. Nous pouvons vérifier
le résultat graphiquement (Figure 2.22).

Exemple 2.17 Cherchons le point d’équilibre des deux fonctions d’offre et
de demande suivantes :

offre
demande
y=xt5
. . 10
Figure 2.23: Intersectiondey =z +5ety= ———1
r+1
Substituons y = x + 5 dans la deuxiéme équation :
1
z+d = 0 —1
z+1
(z+5):-(z+1) = 10—(x+1)
22+62+5+2—-10+1 = 0
?+Tr—4 = 0
d’ot:
R —Tj:\/49+16=> 1 = 0.53
b 2 zg = —7.53

et on remplace dans y =« + 5 :

Y= 5ib3
Y2 = —2.53 solution a écarter

Le point d’équilibre est donc (0.53; 5.53), qui est représenté sur la figure 2.23.
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Venons-en maintenant a la fonction exponentielle. Une application écono-
mique type de cette fonction est le probléme de l'intérét composé.
Si le taux d’intérét annuel est de ¢ % et que I'on nous verse les intéréts k fois
par année, un capital de « francs va nous donner aprés n années la somme y
suivante :

y=x(1+i/k)™.
Dans cette équation, z, ¢ et k sont supposés connus; la somme y est donc
fonction du nombre d’années n.

Exemple 2.18 On dépose 10000 francs a un taux annuel de 4 %. On va
calculer la somme que l'on recoit si les intéréts sont payables une fois par
année et s'ils sont payables 4 fois par année.
Quand ils sont payables une fois par année, x = 10000 francs, i = 4 %, et
k = 1. Nous avons donc ’équation suivante :

y = 10000(1 + 0.04)"

Pour tracer le graphe de cette fonction représentée dans la figure 2.24, calcu-
lons quelques points :

aprés 0 anmée @y =10000(1.04)° = 10000 francs
aprés 1 année  : y =10000(1.04)) = 10400 francs
aprés 2 années  : =10000(1.04)> = 10816 francs
aprés 5 années =10000(1.04)°> = 12166.53 francs
apres 8 années  : y =10000(1.04)® = 13685.69 francs
aprés 10 années : = 10000(1.04)1° = 14802.44 francs

Quand les intéréts sont payables 4 fois par année, k = 4, ce qui donne 1’é-
quation suivante :

y = 10000(1 + 0.04/4)*".

Calculons a nouveau quelques points pour en faire le graphe (Figure 2.25).

aprés 0 année  : y= 1[]000(1.01)“"1 = 10000 francs

aprés 1 année  : y=10000(1.01)** = 10406.04 francs
aprés 2 années :  y=10000(1.01)** = 10828.57 francs
aprés 5 années : y=10000(1.01)°* = 12201.90 francs
aprés 8 années : y = 10000(1.01)%* = 13749.41 francs
aprés 10 années : y=10000(1.01)* = 1/888.6/ francs
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¥
somme /
100007

2000 r

Figure 2.24: Graphe de y = 10000(1.04)™

y
somime /
10000

2000

Figure 2.25: Graphe de y = 10000(1.01)**

Exercices

1. Si le prix d’une montre est de 80 francs, aucune n’est vendue. Si la
montre est gratuite, la demande est de 40 montres.
Quelle est 'équation de la demande?
Représenter graphiquement cette demande.

2. Trouver le point d’équilibre du marché pour les équations de demande
et d’offre suivantes:

demande : y= —5z+11
offre : y=2zx+4

3. Le point d’équilibre du marché se trouve au point (4 ;6). La droite
représentant la fonction d’offre a une pente de 2 et celle représentant
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la fonction de demande passe par le point (0 ; 10).
Déterminer dans ce cas les équations de demande et d’offre.

4. Trouver le point d’équilibre du marché pour les équations de demande
et d’offre suivantes:
Y +y+z—20=0
2 —z—3y—4=0
Représenter le tout graphiquement.
5. On sait que ’équilibre du marché se situe au point (2 ;yo).
La fonction d’offre est donnée par: y = z% + 2.

La fonction de demande est donnée par: y = az® + 2z + 6.
Trouver a et yp.

6. Factoriser et esquisser les graphes des polynémes suivants:

(a) Po(z) =

(b) Pi(z) =

(c) Py(z) = —2*+3x+4
(z)
(z)

0$

P (z —x — 2

(d) Ps(z) = 22° +102* + 12z

(e) Py(z) =2a*—1022+9

7. Esquisser le graphe des fonctions suivantes :

& _z+2
YT

(b) y=2—z+2
(c) y=0.2°
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8.

10.

1l

12.

13.

Soit la fonction: y = z*.
Indiquer le domaine de définition et esquisser le graphe dans le premier
quadrant pour: 3

1 4
(a)az—i (b) a=0 (C)QZZ (d) a=z (e) a=1.
Aprés combien d’années un capital de 10 000 francs placé a 5 % (intéréts

annuels) double-t-il?

Calculer le capital qui, placé & 3 % pendant 5 ans, a acquis une valeur
de 6 000 francs.

Une société dispose de 80 000 francs a placer et elle veut récupérer son
dépét aprés 20 ans. Deux options s’offrent A elle: 5 % d’intérét payable
2 fois par année ou 4.5 % d’intérét payable 6 fois par année.

Quelle option a-t-elle intérét & choisir?

La méme société a, cette fois, un capital Cy & déposer. Une premiére
banque lui offre 5 % d’intérét payable 2 fois par année.

Quel doit étre le taux d’intérét de la seconde banque, si les intéréts
sont payables 4 fois par année, pour offrir les mémes prestations que la
premiére banque?

Un capital de 10 000 francs a été placé pendant 30 ans dans une banque
dont les intéréts sont payables 6 fois par année. Ce capital s’éleve au-
jourd’hui & 28 490 francs. A quel taux d’intérét a-t-il été placée?
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AL-KHWARIZMI Abu (VIII*™ siecle )

Al-Khwarizmi est né au 8°siécle en Perse. Entre 813 et 833, il a rédigé son pre-
mier livre d’algébre dans lequel le vocable algébre apparait pour la premiére
fois en tant que tel pour désigner une discipline. Al-Khwarizmi a introduit
la notion méme d’équation du premier et du second degrés. Il est également
a l'origine des notions de bindme et trinéme associés a l'équation, au sujet
desquels il a examiné 'application des différentes lois de 'arithmétique. C’est
également a lui que I'on doit le concept de la solution algorithmique. Le mot
algorithme est la prononciation latine du nom d’Al-Khwarizmi, inventeur de
I'algébre.



Chapitre 3

Suites, limites et premiére
dérivée

3.1 Introduction

Le calcul différentiel concerne I'analyse mathématique du changement ou du
mouvement. Du fait que tout bouge dans le monde, le calcul différentiel a des
applications dans presque tous les domaines scientifiques. Au début, le calcul
différentiel a été développé en physique par Isaac Newton et en géométrie
par Gottfried Leibniz.

Les opérations de base du calcul différentiel sont la différentiation et
I'intégration ; ces opérations sont inverses 'une de I'autre. La différentiation
consiste a déterminer le taux de variation d'une fonction donnée. L'intégra-
tion consiste, elle, & trouver une fonction dont le taux de variation est connu.
Puisque I'analyse économique est particulierement sujette au changement,
le calcul différentiel est un outil trés utilisé pour ces problémes. L’analyse
marginale est peut-étre 1'application la plus directe du calcul différentiel en
économie; le taux marginal de variation est donné par la premiére dérivée
de la fonction. Le calcul différentiel permet aussi la recherche des minima et
des maxima. Par conséquent, des problémes de maximisation de profit ou de
minimisation de colt peuvent étre résolus a l'aide du calcul différentiel.

Dans ce chapitre, nous allons parler des suites, ce qui va nous amener a
la notion de limites. Le concept mathématique d’'une limite est fondamental
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dans la compréhension du calcul différentiel. Nous allons donner les propriétés
des limites utiles pour les prochains paragraphes. Nous aborderons aussi la
notion de continuité d’une fonction et finalement nous parlerons de la pre-
miére dérivée et des dérivées d’ordre supérieur. Le chapitre se termine par
un mot sur les différentielles. Les applications diverses des dérivées seront
traitées dans le chapitre 4.

3.2 Suites

Une suite est une succession de termes formés d’aprés une loi donnée. Par
exemple 1, 4, 9, 16 est une suite. Une suite finie a un nombre fini de termes.
On peut généraliser une suite finie en la représentant de la fagon suivante:
Uy, Uy, U3, Ug, Us,y - - - 5 Up.

Une suite infinie a un nombre illimité de termes. On note par des points
de suspension une suite infinie. Par exemple, si 'on continue indéfiniment a
écrire les termes de la suite ci-dessus, on obtient la suite infinie 1, 4, 9, 16,. ..
Avec la représentation généralisée, on a: wuq, uo, Uz, Uy, . . .

Le terme général ou n® terme a une expression qui indique comment
former les différents termes. Dans I'exemple ci-dessus, le terme général est
u, = n?. Le premier terme s’obtient en posant n = 1, le deuxiéme en posant
n =2, etc.

e Suites alternées

Une suite alternée est une suite o deux termes voisins sont de signes
OpposEs.

Exemple 3.1 La suite de terme général u, = (—1)""' - n est une suite
alternée: pourn =1,2,3,4,..., nous avons: 1,—2,3,—4,...

e Suites monotones

Une suite peut étre monotone croissante, c’est-i-dire que chacun de
ses termes est plus grand que son prédécesseur :

Uppl = Up, VN 2> 1,
ou monotone décroissante, c’est-a-dire:

Upyl < Uy, Vn =L
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Note Si 4,41 > u,, ¥Yn > 1, on dira simplement que la suite est

croissante et si u, 1 < u,, Vn > 1, on dira qu’elle est décroissante.

| | 1
Exemple 3.2 La suite des fractions: 1, o g i s est monotone dé-
T
croissante. 1 1 ]
En effet: upyq —up = —=———<0, Vn>1.

n+l n n-(n+1)
Par conséquent : upq < u,, ¥n > 1.

e Suites bornées

Une suite est dite bornée s’il existe deux nombres & et K tels que
k< u, < K, VYn > 1, c’est-a-dire si aucun de ses termes n’est plus
petit que la valeur k et si aucun de ses termes n’est plus grand que K.
Un tel k& est appelé minorant et K est appelé majorant de la suite.
Le plus grand des minorants est appelé borne inférieure et le plus
petit des majorants borne supérieure.

=1 11
Exemple 3.3 La suite 5 0, i

; ; : =] ; 1
suite bornée car aucun de ses termes n’est inférieur a > ni Supérieur a 3

; ; n—2
.. qui est définie par u, = 5 est une
T

-1 1
Nous avons T <u, < §,Vn =1

e Suites arithmétiques

Dans une suite arithmétique, la différence entre deux termes consécutifs
est constante et non nulle: wu,. —u, =d, Vn > 1.

d est appelé la raison de la suite. Si d est positif, la suite est mono-
tone croissante, s'il est négatif, elle est monotone décroissante. On peut
représenter une suite arithmétique de la fagon suivante:

Uq = U
u = u3+d
uz = Up+d=u;+d+d

ug = ust+d=uy+d+d+d

Uy = Upy1+d=wu+(n-—1)-d
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Exemple 3.4 La suite arithmétique 33,41,49,... a pour raison d = 8 et
comme premier terme w; = 33. Si l'on veut connaitre son 100° terme, on
remplace n par 100 dans u, =u, + (n— 1) - d et l'on obtient:

Ujgo = 33 + 99 - 8 = 825.

Une suite arithmétique infinie est toujours non-bornée.

e Suites géométriques

Dans une suite géométrique, le rapport entre deux termes consécutifs
est constant et différent de 1:

un—i— 1

= g, ou q est appelé la raison

de la suite. Si g est positif, tous les termes ont le méme signe que uq; si
q est négatif, la suite est alternée. Les suites géométriques sont bornées
si | ¢ |[< 1 et non bornées si | ¢ |> 1. On peut représenter une suite
géomeétrique de la fagon suivante:

(75 = U
Uz = U1-q
Uz = Urqg=U1"G-g
Uy = U3-q=U-9-q-q
Up = Upy-q=1uy ¢""
; o 11 . 1
Exemple 3.5 La suite géométrique 2,1, Srgvee a PouT TAISON q = 3 et comme

premier terme uy = 2. Si l'on veut connaitre son 10° terme, on remplace n

par 10 dans w, = u;y - q

n—1

et l'on obtient :

u10=2-(

1

2

y

_ )
256

1
La suite est bornée car q = = < 1. La suite u,, est donc comprise entre 2 et
0: 0<u, <2, Vn>1.
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3.3 Convergence et divergence des suites

Nous allons étudier ici le comportement de la suite (u,) lorsque “n tend
vers 'infini”, ¢’est-a-dire lorsqu’on considére des valeurs de n arbitrairement
grandes.

Dire que u, tend vers une limite ! lorsque n tend vers 'infini revient a
dire que la différence entre u, et I, | u, — [ |, devient aussi petite que I'on
veut, pourvu que 7 soit assez grand.

Par conséquent, si on se donne un nombre réel € > 0 arbitrairement petit,
on doit pouvoir trouver un nombre N(¢) (qui dépend de ) tel que | u,—!l |[< &
si n est plus grand que N(e). Ce qui nous améne a la définition suivante:

Définition 3.1 Une suite (u,,) est dite convergente vers la limite I si a
tout nombre € positif arbitrairement petit correspond un nombre N(e) tel
que Uinégalité | u, — l |< € soit satisfaite par tous les termes u, de la suite
avec n. > N(g).

Si la suite (u,) converge vers la limite [, on écrit :

lim u, =1

n—00
et on lit “la limite de u, quand n tend vers 'infini est .
Des suites qui ne convergent pas sont dites divergentes.
Exemple 3.6 Si nous reprenons la suite de l'exemple 3.3 définie par
n—2

Uy, =
" 2n,
mente.

, nous voyons que ses termes s’approchent de 3 quand n aug-

; . 1
Nous pouvons donc obtenir un nombre aussi proche de 5 que nous le voulons

&

1
en allant suffisamment loin dans la suite. Si, par exemple, l'écart avec 5 doit
étre plus petit que € = 0.01, alors on doit avoir:

n—2-—n
2n

W m 2

2

1‘_

n—2 1|_

-2 1
= }E‘ = < 0.01

il en résulte que tous les termes u, avec n > 100 ont la propriété demandée.
Pour cet exemple, on a de facon générale
1

a-dire ici N(e) = —.
€

Y 1 ?
< e dés quen > —, c’est-
3

1
Up — =
2
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Exemple 3.7 Reprenons la suite 1,4,9,16, ete., ot l'on constate que les
nombres croissent sans limite quand n augmente. En effet, en choisissant
un nombre quelconque aussi grand que nous le voulons, nous pouvons tou-
jours trouver dans la suite un nombre qui le dépasse. On dit que les nombres
d’une telle suite tendent vers l'infini et l'on écrit :

2

lim u, = lim n* = oco.
T—+0Q T—+00

Dans ce cas, la suite diverge.

Dans les deux exemples précédents, les suites étaient des suites monotones
croissantes, mais il est possible d’avoir des suites convergentes ou divergentes
lorsque ces suites sont monotones décroissantes.

Exemple 3.8 Soit la suite de terme général u, = dont les premiers

5374
termes sont: 3,2, 35
Montrons que cette suite est monotone décroissante : pour cela, il faut mon-
trer que Upiy < Up, Yn>1. Ona:

_n+3 n+2_n2+3n—n2—3n—2_ —2 <0
T n+1 n n-(n+1) T n-(n+1) ’

Vn > 1.

Up41 — Un

Les nombres de la suite tendent vers une valeur limite (en décroissant vers
elle) lorsque n augmente. Montrons que cette limite est égale a 1.

Par définition, il faut trouver N(g) tel que: st l'on prend n > N(g) alors
n+2

— 1| < g, et cela quel que soit € > 0.

n-+ 2
T

dire n > g 1l suffit donc de prendre N(g) = g

n+2—n
n

2 . ; 5 &
Comme =y linégalité s’écrit: — < e, c’est-a-
T

_1I:

2 2
En effet, dans ce cas: n > N(g)zgzt- —<e=>
n

1.

. o n+2
Nous avons donec: lim =
n—oc Tl
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Exemple 3.9 Considérons la suite (u,) définie par u, = —2n, représentée
par ses premiers termes: —2,—4,—6,-8, ...
Celte suite est monotone décroissante puisque :

Uni1 —tn = —2(n+1)—(~2n)
—2n—24+2n
-2<0, Yn>1.

Les nombres décroissent sans limite quand n augmente. On dit que la suite
tend vers moins Uinfini et on écrit: lim (—2n) = —occ.
n—oo
Finalement, nous avons des suites qui ne sont ni croissantes ni décroissan-
tes et qui peuvent soit converger soit diverger.

=y | n+1
Exemple 3.10 La suite u,, = % est une suite alternée (donc ni crois-
n
sante ni décroissante) qui est convergente. Sa limite vaut 0:
1 —1)nH!
En effet, montrons que sin > N(g) = —=, alors (=1) -0l <e:
Ve
n > N()= L
' Ve
1
= & B
n
1
;3—2 <e
(-1 1
= T -0 = ﬁ—2 < E:

Exemple 3.11 La suite u, = (—1)" est aussi alternée, mais elle est diver-
gente. En effet, les nombres de la suite valent alternativement —1 ou 1 selon
que n est pair ou tmpair; ils oscillent de —1 & 1 sans tendre vers une limite.
La suite est alors oscillante et on dit qu’elle diverge.

Pour résumer, une suite peut avoir les comportements suivants :
Elle peut: 1) tendre vers I'infini
2) tendre vers moins 'infini
3) osciller sans tendre vers une limite
4) tendre vers une limite finie.
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Dans les trois premiers cas, la suite est divergente et dans le quatriéme cas,
elle est convergente. On notera qu'une suite convergente a une limite
unique.

e Critéres de convergence pour les suites

Il est possible de déterminer, a partir de la définition de la convergence,
si un nombre [ est la limite d’'une suite (u,). En revanche, si I'on ne
connait pas [, on se sert de critéres de convergence qui permettent
de déterminer si une suite converge ou diverge:

Premier critére: une suite croissante respectivement décroissante et
bornée est toujours convergente.

Ce critére ne s’applique qu’aux suites croissantes ou décroissantes. En
revanche, le second critére de convergence (di a Cauchy) est valable
pour toutes les suites.

Second critére: une suite (u,) est convergente si et seulement si pour
tout nombre positif ¢, il existe un nombre N(¢) tel que | u, — up, |[< €

pour tous les indices m et n plus grand que N(g). On parle alors de
suite de Cauchy.

1
i 5 In
Comme(0< — <=, VYn>1,o0na: 3 <u, <1, Vn=1; par conséquent,

Exemple 3.12 Soit la suite donnée par: u, =1 —

T
la suite est bornée. En outre,

1 1
T e St T3
N .
~ 3n 3(n+1)
3
= ol Ui ST,
3n(3n + 3) -

Il s’agit donc d’une suite monotone croissante et bornée. Par le premier
critére de convergence, cette suite converge.

=]y
Exemple 3.13 Soit la suite définie paru, = (3—) Comme cette suite n'est

pas monotone, la premier critére n’est pas applicable. En revanche, on peut
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utiliser le deuxiéme critére :

[Un — um| =
=
2
desquen>——etm>§.
En effet,
>2 t
n>— e
3e
1 3¢
= —< = et
n 2
= 1<€ t
—L = g
3n 2

|(—1)"_(-1)”‘1
3n 3m
’(—1)“ (—1)”“
3n 3m
1 1
éz—i-% <E
2
m>£
1_s
m 2
1 E
3m "3
1 1 E &
—+3— §+§—~€.
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2
Il existe donc bien un nombre N(g) = — tel que | uy, — wm |< € dés que

n> N(e) et m > N(g), et cela quel que soit € > 0. Par conséquent, la suite

converge.

e Reégles de calculs

Si les suites (uy) et (v,) ont les limites /; respectivement Iy, alors:

1. lim (u, +v,) =1 + Lo,

T—00

2. lim (up—wvp) =14 — o
T— 00

3. lim (uy - vy) =14 - lo.
n—0oo

b

4. lim _:I_’Si ly #0,v, #0.
2

5. lim ¢-u, =c- lim u, = c-1; ou ¢ est une constante.

n—oo n—00
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e Limites de quelques suites convergentes importantes

Comme il n’existe pas de méthode générale pour déterminer la limite
d’'une suite, il est utile d’indiquer la limite de quelques suites conver-
gentes (Tableau 3.1):

U, lim wu, Up, lim u,
Un | 0 7 n=
—a>0 0 (1+%)“ e=271828. ..
/G,q>0 | 1 OB b biBE 0
" lgl<1 0 1152—?—",5>0,b7é1,a>0 0

Tableau 3.1: Quelques limites de suites

3.4 Limite d’une fonction

Nous pouvons maintenant étendre le concept de limite aux fonctions. Nous
allons étudier les différents cas de limite de fonction en considérant un certain
nombre d’exemples.

e Limite d’une fonction a ’infini

1
Exemple 3.14 Les valeurs de la fonction y = f(z) =2 — b rapprochent

arbitrairement du nombre 2 quand x est choisi suffisamment grand comme le
montre le tableau suivant :

z|1 2 3 ... 20
y |1 3/2 5/3 ... 39/20

Par exemple, la différence entre 2 et les valeurs de la fonction est plus petite
que 0.05 pour tout x plus grand que 20. Plus généralement, | f(z) —2 |< e

pour tout © > —.

€
Représentons graphiquement la situation (Figure 3.1).
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)

r 3

Figure 3.1: Graphe de y =2 — .:;

Cet exemple montre que la notion de limite peut étre étendue au cas des
abscisses croissant vers 'infini (ou décroissant vers moins l'infini).

Définition 3.2 f(z) admet la limite L lorsque = tend vers plus Uinfini si
pour tout nombre € > 0, il existe v(e) > 0 tel que | f(z) — L |< € dés que
x > v(e). On écrit dans ce cas:

lim f{x)=L.

De méme: lim f(z) = L si pour tout nombre € > 0, il existe v(g) > 0 tel

que | f(z) — L |< e dés que x < —v(g).0On écrit dans ce cas:
lim f(z)=L.

1
Dans I'exemple 3.14, f(z) =2 — —. Dans ce cas, on a:
&

. 1 1 1 1
| flz)=2]|= ’2———2‘ = ;—I <eLT>- ou T< ——.
z € £
1 : ;
Dans cet exemple, v(e) = —etona: lim f(z) =2et lim,_ f(z) =2.
£ T—00

On écrit en abrégé: »lirf flz) =2

Définition 3.3 On dit que f(z) tend vers l'infini lorsque = tend vers linfin:
si pour tout nombre N > 0, il existe v(N) > 0 tel que f(z) > N pour tout
z > v(N). On écrit:

lim f(x) = oo.

T—00
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De méme: lim f(z) = —oo si pour tout nombre N > 0, il existe v(N) > 0

tel que f(z) < —N pour tout z > v(N).
D’autre part, on définit: lim f(z) = oo si pour tout nombre N > 0, il

existe v(N) > 0 tel que f(z) > N pour tout x < —v(N).
De fagon analogue: lim f(z) = —oo si pour tout nombre N > 0, il existe

v(N) > 0 tel que f(z) < —N pour tout x < —v(N).

Exemple 3.15 lim 22 =00 ; en effet, pour tout z > V/N, 2% > N et cela

IT—00

quel que soit N > 0.
D’autre part, lim z° = oo ; en effet, pour tout x < —/N, 22 > N et cela

quel que soit N > 0 (ici v(N) = v/N).
Ainsi: lim 2? = oo.

z—rtoo

Il peut arriver que la fonction y = f(z) ne tende ni vers une limite finie
ni vers l'infini lorsque z tend vers I'infini.

Exemple 3.16 La fonction f(x) = cos z est définie dans Uintervalle |—oo; 00|,

mais ne tend pas vers une limite finie ou vers Uinfini lorsque x tend vers l'in-

fini (Figure 3.2).

N DN
VRVAVARN

Figure 3.2: Graphe de y = cosz

e Limite en un point

Etudions a présent le cas o la variable indépendante tend vers une
limite a. Si la valeur f(z) se rapproche de plus en plus du nombre L
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lorsque @ se rapproche de la valeur a, on dit que la fonction f(z) tend
vers la limite L lorsque = tend vers a et on écrit: lim f(z) = L.

Autrement dit, la différence | f(z) — L | peut étre rendue aussi petite
que 'on veut pourvu que z soit suffisamment proche de a, ce qui est
formalisé dans la définition suivante.

Définition 3.4 La fonction f(z) admet la limite L lorsque x tend vers a, si
pour tout e > 0, il existe §(c) > 0 tel que | f(z)—L |<e si0 <| z—a |< 6(g).

Exemple 3.17 Montrons que: lirré(?a: +6) =12.
Soite >0; ona:

; 3
| f(z) —12 |=| 22 + 6 — 12 |=]2:r—6]=2|x—3|<€5£0<|$—3|<§.

Il existe donc bien un nombre 6(¢) = % tel que si 0 <| z — 3 |< é(2), alors
| (22 +6) — 12 |< £ et cela quel que soit € > 0.

e Limites infinies
1
Exemple 3.18 Considérons la fonction f(z) = —. Quand x tend vers 0,
T
1
les valeurs de la fonction f(z) = ) deviennent de plus en plus grandes. On
1
éerit : lirré — = 00 et l’on dit que la fonction a pour limite plus l'infini quand
z—0 T

1
x tend vers 0. Le graphe de f(z) = — est représenté dans la figure 3.3.
&

¥

Figure 3.3: Graphe de y = %
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Définition 3.5 On dit que f(z) tend vers plus Uinfini lorsque = tend vers a,

si pour tout N > 0 il existe §(N) > 0 tel que f(z) > N si0 <| z—a |< 8(N) et

on écrit: lim f(z)= oo . De fagon analogue, on définit: lim f(z)= —oc ,
T—ra T—il

si pour tout N > 0, il existe 6(N) > 0 tel que f(z) < —N si0<|z—a|<
§(N).

. 1
Montrons que selon la définition 3.5, on a: lim — =00,

z—0 xTr

Soit un nombre N > 0; il s’agit de trouver un nombre §(N) > 0 tel que

—1;l>Nsi[]<|:c[-<§(N).Si|$[< alorsa;4<letdonc—g>N.
T x

1
d.,.l'N’ N
1 1
,onabien: — > Nsi0<|z|< = et cela
z

VN

1
Ainsi, en prenant §( N) = —
VN

quel que soit NV > (.

e Limite & droite et limite a gauche

Il peut étre important, lorsqu’on calcule la limite en un point a, de
savoir si  approche la valeur a en croissant, c’est-a-dire a gauche, ou
en décroissant, c¢’est-a-dire a droite.

1
Exemple 3.19 Considérons la fonction y = f(z) = 7 (Figure 3.4).

1
Figure 3.4: Graphe de y = =

Lorsque x s’approche de 0 par valeur positive, les waleurs de la fonction

: I
fz)= " deviennent de plus en plus grandes. On écrit : 111{r}1+ — = 00. Lorsque
T x
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x s’approche de 0 par valeur négative, les valeurs de f(x) deviennent plus pe-

tites que n’importe quel nombre. On écrit : Iir{rjl — = —o0. Le tableau suivant
z—0~ T
permet de tracer le graphe de cette fonction :

z|...—1/2 -1/10 -1/50 0 1/50 1/10 1/2...
y| ...—2 =10 —50 5 10 2.
Exemple 3.20 Considérons la fonction f(z) = % Elle nest pas définie
en z =0, mais lim m =1 et lim m = —1, puisque
z—0t T =0~ &
; 1siz>0.
f(“:)_{ -1siz<0.

Ainsi, la bimite @ gauche qui vaut —1 et la limite a droite qui vaut 1 sont
différentes (Figure 3.5).

Figure 3.5: Graphe de y = %

Définition 3.6 On dit que f(x) admet la limite & droite L™ lorsque = tend
vers a par la droite, si pour tout € > 0, il existe 6(¢) tel que | f(z) — L |<¢
si|lzr—al|< b etz >a. Onnote LT = lim f(z).

T—a

On définit de la méme maniere la limite o gauche L™ lorsque x tend vers
a par la gauche (cette fois avec x < a) et on écrit L~ = lim f(z).
T—a=
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Remarque La limite d’une fonction lorsque z tend vers a existe si et seu-
lement si la limite & droite et la limite & gauche existent et sont identiques.
Dans ce cas:
lim f(z) = lim f(z) =lim f (z).

T—a—

I—a r—a

3.5 Propriétés de la limite d’une fonction

Comme pour les limites de suites, on a les propriétés suivantes pour les limites
d’une fonction :

Si lim f (z) = Ly, lim g(z) = L, et si ¢ est une constante, alors:

T—+a

1. ime=c¢

r—a

2. lime- f(z)=c- Iy

r—a

3. lim (f(z) £ g(z)) =lim f(z)+ lim g(z) = Ly &+ L,

T+l r—a T+

4. lim (f(2) - g(z)) =lim f(2)- lim g(z) = Ly - Ly

I—a

f@) mf@)

si Ly # 0

5. lim = = ==
z—a g(z) lim g(z) Lo

T—ra

I1 faut noter que ces propriétés ne sont pas nécessairement valables quand
la limite de I'une ou 'autre des fonctions f(z) ou g(z) est infinie. Nous verrons
comment traiter ces différents cas dans le chapitre suivant. En revanche, ces
propriétés sont valables dans le cas ou les limites sont définies uniquement
soit & droite soit a gauche de a, ou lorsque = tend vers 'infini. Finalement,
les propriétés 3 et 4 peuvent étre généralisées 4 un nombre fini de fonctions.
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#2243 lirr% z?+3
Exemple 3.21 lim === (propriété 5)
z—-2 I lim =

—

S+ B -
= Tz (propriété 3)
el ms
= E_ng (propriété 4)

_B.EL3

(propriétés 1 et 2)

En appliquant la propriété 5 concernant la limite d’un quotient, il peut
arriver que le quotient des limites donne comme résultat %. Cette forme g est
appelée forme indéterminée. On ne peut a priori rien dire de la division de
zéro par zéro. Il est cependant possible de déterminer si une telle expression

posséde une limite, comme le montrent les exemples suivants.

2
Exemple 3.22 Calculons HIT(I]E“, Il s’agit d'une forme indéterminée 3
r— o

putsque la limite du dénominateur et du numérateur sont toutes deux nulles.
Cependant, si x # 0, numérateur et dénominateur peuvent étre divisés par
. Dans ce cas: 3‘;: xz, Yz #0.
Dans la définition de la limite d’une fonction lorsque z tend vers a, on sup-
pose que x devient a’rba‘tmz"r‘emegt proche de a, mais n’est pas égal a a. C’est
pourquot, on peut écrire: lim e limz = 0.

z—0 T x—0

Ainsi, bien que f(z) = T e soit pas définie en x = 0, cette fonction admet
Hi
pour limite zéro lorsque x tend vers zéro.

_ z?— _ 2 o
Exemple 3.23 Si f(z) = 42 , alors xlln_l‘l oy est une forme indé-
0 — 16 4)(z — 4
terminée . Siz # —4, ona;: = )| ) Y

z+4 z+4
D’aprés la définition de la limite, on peut écrire:

2-1 4)(z—4
im 2 6=]im~(E+—)E———-)-=lim(m—4)=—8.
z——4 T4+ 4 T—+—4 r+4 T——4
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On peut rencontrer un autre type de forme indéterminée en utilisant la
oo

propriété 5. Il s’agit de la forme indéterminée 2. Dans ce cas aussi, il est
possible de déterminer si une telle expression admet une limite.

22% + 522+ 6 22 + 522 4+ 6

Exemple 3.24 §i f(I) = 23 —32+9 5 alors :ch—’r{olo m est une

forme indéterminée 2. Dans ce cas, on peut diviser numérateur et dénomi-
nateur par le terme de plus grande puissance du dénominateur, c’est-a-dire

5 6
2+—+—3
z3. Si z # 0, nous obtenons f(z) = ——5‘5-—% Nous pouvons, dés lors,
bz i
déterminer cette limite : 5 6
o 2845246 Sk
m ———————— = lim ——=—
T oz g
x T
. " o1
lim 245 lim — + 6 lim o
- I—00 r—oo I T—o0 N
: ! . i
liml—3lim —+9lim —
T—00 T—00 T2 z—00 T3
_24+5-04+6-0
" 1-3-04+9-0
=2

3.6 Quelques limites importantes

Pour déterminer la limite d'une fonction, il n’existe pas de méthode générale.
Par conséquent, nous indiquons ici quelques limites importantes.
sinz

1. im— =1
xr—0 T
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5. }in:{t)(l +z)/F=e

6. lim(1+—) =e
€T

T

7 o (1+%)I=ea

T—00

k
8. limg:—:[), a>0

z—oo QT

T

9. lim = =0, a>0

x—oo I

In xk)

10. lim

z—oo M

=0, m>0

3.7 Continuité des fonctions

Intuitivement, la notion de continuité d'une fonction sur un intervalle se
congoit comme une courbe qui n’est interrompue nulle part. Cependant, cette
notion intuitive est trop imprécise pour pouvoir étre utilisée pratiquement;
il s’agit donc de définir avec précision cette notion et cela peut se faire en se
basant sur la notion de limite définie précédemment.

Définition 3.7 Une fonction f(x) est dite continue au point z = a, si les
trois conditions suivantes sont satisfaites simultanément :

1. f(a) est défini.

2. lim f(z) existe.

r—a

3. lim f(z) = f(a).
I—a
En tenant compte de la définition 3.4, la définition ci-dessus peut se
mettre sous la forme: une fonction f(z) est dite continue en z = a si pour
tout € > 0, il existe un nombre §(¢) tel que | f(z)—f(a) |[<esi| z—a |< é(g).
On dit qu'une fonction f(z) est discontinue en @ = a, si elle n’est pas
continue en = = a.
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Comme pour les limites, on définit la continuité a gauche en un point :
f(z) est continue & gauche en z = a si hm f(z) = f(a). De la méme maniére,

on définit la continuité a droite en un point: f(z) est continue & droite
enz=a,si lim f(z)= f(a).
T

Exemple 3.25 La fonction f(z) = +\/z a pour domaine de définition :
{z € Ry noté [0;00[. On a f(0) = 0 = 0. Mais liné\/i n’existe pas
car lim /z n'existe pas; en effet, pour z < 0,4/ n'est pas défini dans

T—ro™
l’ensemble des nombres réels. En revanche, 111’11+ V& = 0. Par conséquent, la
z—0

fonction f(z) = \/z est continue a droite en x = 0.

Définition 3.8 On dit d’une fonction qu’elle est continue sur un intervalle
I C IR si elle est continue en chaque point de cet intervalle. Si une fonction
est continue sur tout son domaine de définition, on dit simplement qu’elle
est continue.

Remarque Si le domaine de définition d'une fonction f(z) est un in-
tervalle fermé [q;b], alors lim f(z) et lin}’ f(z) n’existent pas, puisque
T—+ad T—+

lim f(z) et li1}71+ f(z) n’existent pas. Une telle fonction est dite continue
e 1 I—

sur I = [a; 1] si elle est continue sur I'intervalle ouvert |a;b| et si elle est
continue a droite en a et a gauche en b.

Exemple 3.26 Considérons la fonction f(z) = /1 —z?%. Son domaine de
définition est lintervalle fermé [—1;1]. Si a est un nombre quelconque de
Uintervalle ouvert | — 1; 1] alors lim V1 — 22 existe et vaut /1 — a?.

T—a

En outre, lim v1—22=0 et lim V1 —22=0. Ainsi, par définition,

e r—1-

f(z) = V1 — a? est continue sur Uintervalle [—1;1].

3.8 Types de discontinuité

Selon qu'une ou plusieurs des trois conditions de continuité ne sont pas res-
pectées, il en résulte différents types de discontinuité. On observe trois types
de discontinuité.
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1. Discontinuité infinie: asymptote verticale
Une fonction f(z) a une discontinuité infinie en z = a si

lim f(z) = %o0.

r—a

On parle de discontinuité infinie & gauche si

lim f(z) = %o0.

E—T"

et de discontinuité infinie a droite si

lim f(z)= +oo.

r—at

1
Exemple 3.27 La fonction f(z) = @_2¢ n’est pas définie au point x = 2.
:I’: —
s o ; ; 1
Cette fonction a une discontinuité infinie en x = 2 car hn% (—-§F = 00
z—2 (1 —
(Figure 3.6).
y
1
T
2
o x

Figure 3.6: Discontinuité infinie en z = 2

1. Discontinuité finie: saut
Une fonction f(z) a une discontinuité finie en z — a si

lim f(z)=c; et ].i.m+ Fla) =6s, 0. 8f £ b

T—a’ T—a



68 Suites, limites et premiére dérivée

Figure 3.7: Discontinuité finie en z =0

Exemple 3.28 La fonction f(x) n’est pas définie au point x = 0.

B 2
T 143V

2
Cette fonction a une discontinuité finie en x = 0, car lim ——— =
f ﬁ z—0- 1 - 3]"(I

. 2 .
et xliI})lJr 1236 = 0 (Figure 3.7).

1. Discontinuité réparable: trou
Une fonction f(z) a une discontinuité réparable en z = a si f(a) n’est
pas défini, mais lim f(z) existe. On parle de discontinuité réparable res-
pectivement & gauche et a droite si f(a) n’est pas défini, mais lim f(z)

et lim+ f(z) existent respectivement.
T—a

2?2 —1
Exemple 3.29 La fonction f(z) = T n’est pas définie au point x = 1.

Cette fonction a une discontinuité réparable en © =1 car
2
lim L2 - = lim(2 + 1) = 2 (Figure 3.8).

r—l1l T — I—

Cependant, si l'on définit la fonction

f(m)_{f(a:) six# 1

12 six=1

aiors_f(:n) est continue au point x = 1. En effet, f(z) est définie enxz =1 et
lin% f(z) = f(1) =2. On dit que f est le prolongement continu de f.
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Figure 3.8: Discontinuité réparable en z = 1

Exemple 3.30 La fonction f(z) = e}* n'est pas définie au point = = 0.
Cette fonction a une discontinuité réparable a gauche et une disconti-
nuité infinie & droite en x = 0. En effet, lim e"/* =0 et lim e'/* = 0o

z—0— z—0+t
(Figure 3.9).

Figure 3.9: Discontinuité réparable a4 gauche et discontinuité infinie & droite
enz =0

3.9 Propriétés des fonctions continues

Les propriétés des limites nous conduisent directement aux propriétés des
fonctions continues, & savoir:

1. la somme ou la différence de deux fonctions continues est continue;
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2. le produit de deux fonctions continues est continu;

3. le quotient de deux fonctions continues est continu, si le dénominateur
ne s’annule pas;

4. la composition de deux fonctions continues est continue, pour autant
qu’elle soit définie.

Ces propriétés étant valables aussi bien pour la continuité en un point
que pour la continuité sur un intervalle.

Dans ce qui suit, nous allons exposer certaines propriétés des fonctions
continues sur un intervalle fermé [a; b]. Ces propriétés seront énoncées sous
forme de théorémes sans démonstration.

Théoréme 3.1 Si f(z) est une fonction continue sur un intervalle fermé
[a; b], alors f(z) a une valeur mazimale M et une valeur minimale m sur
[a; b], et f(z) prend sur [a;b] toute valeur comprise entre son minimum m et
son mazimum M.

Théoréme 3.2 (Théoréme de Bolzano) Si f(x) est une fonction conti-
nue sur un intervalle fermé [a;b] et si f(a) et f(b) sont de signes opposés,
alors il existe un point xo de l'intervalle tel que f(zq) = 0.

Remarque Le théoréme 3.1 est important car il nous assure l'existence des
extrema d’une fonction continue sur un intervalle fermé. L’hypothése que

intervalle est fermé est essentielle. Soit, en effet, la fonction — qui n’a pas

de maximum sur I'intervalle semi-ouvert ]0; 1], ou elle est pourtant continue.

Le théoréme 3.2 nous permet de constater notamment que tout polynéme
p(z) de degré impair posséde au moins une racine réelle. En effet, pour ¢
suffisamment grand, p(c) et p(—c) sont de signes opposés.

3.10 Définition de la premiére dérivée

Nous allons étudier la variation d’une fonction y = f(z) lorsque la variable
indépendante z varie.

Si la valeur d’une variable z passe de zy & z1, on dit qu’il y a accrois-
sement de la variable z et 'on note cet accroissement par Az. Az peut
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étre positif ou négatif suivant que z croit ou décroit. De méme, on note Ay
"accroissement de y, A f(z) I'accroissement de f(z), etc.

Si, dans une fonction y = f(z), la variable indépendante z varie de Az,
y varie de Ay, ou Ay dépend de la valeur de y qui correspond & la valeur
initiale de = ainsi que de Az.

Exemple 3.31 Soit y = f(z) = z*. En prenant comme valeur initiale xo =
2, on obtient la valeur correspondante yo = x3 = 8 comme valeur initiale
de y. Si nous choisissons un Az égal a 1, la valeur de x s’accroit de xg =
2ax = 3. Avec z, = 3,y1 = :-':? = 27. L’accroissement de y est donc
Ay =1y —yo = 27 — 8 = 19. 5% nous choisissons un Az = —1, = décroit de
z9=2 ax; = 1. Pour z; = 1,y; = 2} = 1. L’accroissement de y est donc
Ay=y—y=1-8=-T.

Dans les deuzx cas, Az et Ay sont de méme signe. Toutefois il se peut que
lorsque Az est positif, Ay soit négatif, ou inversement.

Nous venons de voir que
y+ Ay = (z + Az)3
que nous pouvons généraliser comme suit :
y+ Ay = f(z + Az).

En soustrayant y = f(z) membre & membre dans 1'équation ci-dessus, on
obtient :
Ay = f(z+Aa) - f(z).

Si I'on divise de chaque c¢oté par Az, on trouve:
Ay _ f(z+Az) - f(z)
Az Az ’

La limite de ce rapport quand Az tend vers zéro est par définition la
premiére dérivée de la fonction y = f(z). On la note dy/dz. Donc:

dy . Ay . fle+Az) - f(z)
il Nt S

est la premieére dérivée de y par rapport 4 z. On peut aussi la noter f'(z) ou
simplement 7/’
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Définition 3.9 Si la fonction y = f(z) a une dérivée au point x = xy, c’est-

a-dire si la limite &li_mu A—Z = &limo f(zo+ A2) — f(20) existe, on dit que la

T
fonction est dérivable au point x = zy et on la note f'(zy).
On dit que f est dérivable a droite au point xg

f(@o + Az) — f(=o)

st lim existe

Ax—0+ Az

et [ est dérivable a gauche au point z
st lim f(wo + Az) — f(z0) existe.

Az—0- Ax

D’apres la définition, une fonction est dérivable en z = z; si et seulement
si les limites & droite et a gauche existent et sont égales.
Remarque Si une fonction y = f (z) est dérivable au point z = .
alors elle est aussi continue en ce point. La réciproque est fausse: si
une fonction est continue en z = w, elle n’est pas forcément dérivable en ce
point (exercices).

Définition 3.10 On dit d’une fonction qu’elle est dérivable sur un in-
tervalle I € R, si elle est dérivable en chaque point de cet intervalle. Si 1
est un intervalle fermé [a;b], alors on dit que f est dérivable sur [a;b], st elle
est dérivable sur Ja; b[ et si elle est dérivable a droite en a et a gauche en b.

3.11 Regle générale de dérivation

D’aprés la définition de la dérivée, on voit que dans le processus de dérivation
d’une fonction y = f(z), il faut effectuer les opérations suivantes :
1¢ opération Remplacer z par (z + Az) dans y = f(z)
pour obtenir y + Ay.
2° opération Retrancher y = f(z) pour obtenir Ay.
3¢ opération Diviser a gauche et a droite par Az.

4° opération Calculer la limite du quotient A—g quand Az

tend vers zéro. Cette limite est la dérivée cherchée.

Exemple 3.32 Calculons la premiére dérivée de y = 4z + 3 a l’aide de ces
quatre opérations :
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1™ opération y+ Ay=  4(z+ Az)? + 3 = 42? + 8zAz + 4(Az)? + 3.
2¢ opération Ay = 4z% + 8zAz + 4(Azx)? + 3 — (422 + 3)
8zAz + 4(Az)%.
A Az + 4(Az)?
3¢ opération A—g = L EI( 2) ]
& o s . Ay 8zAz + 4(Az)?
4 opertiontim & = tm SEE L

= lim (8z + 4Az) = 8z.
Az—0

La premiére dérivée de y = 4z + 3 vaut donc 8z, c’est-a-dire f'(z) = 8z.

3.12 Interprétation géométrique de la
premiére dérivée

On définit la pente d’une droite comme étant égale a la tangente de 'angle
qu’elle forme avec 'axe des z ou d'une maniére équivalente comme étant

A
égale au rapport A—z (Figure 3.10).

YT

y (xiy1)
1
) ())45
n!
X
y=ax+b 1
o

T 0 o x X

Figure 3.10: Pente d’une droite

ég _ %Y
I I — Iy
La pente d'une droite donnée est une constante. Cela signifie que, o que

Nous avons donc: pente = tana =

. . A .
I'on soit sur la droite, le rapport A—y est toujours le méme. Ce n’est pas le
x
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cas pour les autres courbes. Nous allons maintenant généraliser la notion de
pente pour toutes les fonctions.
Prenons deux points quelconques sur la courbe y = f(z):

M = (zo;90) et N = (z150).
La droite qui relie M a N, appelée une sécante, a une pente égale a

Ay _ y1—%
Az 231‘—1‘50‘

On va maintenant faire bouger le point NV le long de la courbe en direction
de M. Par cette opération, la pente de la sécante (qui relie M a N') va changer.
Or, plus N se rapproche de M, moins le changement de la pente de la sécante
est grand. En fait, la pente tend vers une limite finie. Cette limite est appelée
la pente de la tangente a la courbe au point M = (zg, yo) ou plus simplement
la dérivée au point M (Figure 3.11).

y y =)

N

Ay

Figure 3.11: dérivée au point M

. A
Nous avons donc: pente de f(z) = &hmo A—y Or, comme nous 'avons
T— T

déja vu, cette limite est égale a la premiére dérivée de f(z). D’on le résultat
suivant :
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La valeur de la dérivée en un point quelconque d’'une courbe est égale &
la pente de la tangente en ce point. En clair:

f'(zg) = pente de f(z) au point (zg,yo)

— lim 2Y
B Axr—0 AI
i f(zo + Az) — f(zo)
= li .
Az—0 Az
Exemple 3.33 Calculons les pentes de la courbe y = —2? aux points z = 0
et x = —1/2. Par la définition de la dérivée, nous avons :
1 opération y+Ay = —(z+ Az)? = —2%—2zAz — (Az).
2¢ opération Ay =—z%-2zAz — (Az)? +2? = —2zAz — (Az)2.
A
3¢ opération xa QT TS S
Az
e opérati bt DU s g R 2
£opoation. 4 o = O ¥ = e
f'(z) = —2z représente la dérivée f(x) = —z* en un point quelconque. Pour

trouver la pente au point zg = 0, on remplace x par zy dans —2z, ce qui donne
f'(xzo) = 0. La tangente au point o = 0 a donc une pente nulle, c’est-a-dire

que c’est une droite horizontale. Pour trouver la pente au point x = —1/2,
1
on procéde de la méme maniére et l'on obtient f'(zq) = —2 =5 Je= 1. La

pente est donc égale a 1, c’est-a-dire qu’elle fait un angle de 45° avec l'aze
des z (Figure 3.12).

Figure 3.12: dérivéede y = —z enz = —J et 2 =0
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3.13 Dérivées des fonctions algébriques

La recherche de la dérivée en utilisant sa définition est un travail long et
pénible. C’est pourquoi il est préférable de dériver une fonction a I'aide des
régles spéciales déduites de la régle générale pour dériver certaines formes
classiques des fonctions algébriques.

e Dérivée d’une somme

Soit f(z) = u(z) + v(z), ou u(z) et v(z) sont des fonctions dérivables
de z. Dans ce cas,

f(z + Az) — f(z)

f=) = .egr—r}n Az
. u(z + Az) +v(z + Az) — [u(z) + v(z)]
= lim
Az—0 Az
— lim u(z + Az) — u(z) + lim v(z + Az) — v(z)
Az—0 Az Az—0 Az

= u'(z) +v'(z).

AT T T v du dv
Ainsi: (u+wv) =4 + v/, c’est-a-dire: E(u +v) = P e
Cette régle se généralise & un nombre fini de termes: La dérivée d’une
somme d’un nombre fini de fonctions est égale a la somme des
dérivées de ces fonctions. Il en est de méme pour la différence d’un

nombre fini de fonctions.

e Dérivée d’un produit
Soit f(z) = u(z)-v(z), ot u(z) et v(z) sont des fonctions dérivables de
z. Dans ce cas,

o f@+ A7) — f()

Pla) = Jim £0+22)
= lim u(z + Az) -v(z + Az) — u(z) - v(z)
Az—0 Az
= lim [U(l + Au"?) - U(ﬁ?)]v(ﬂ’.‘ + A:E) - [1_:(;5 i I Al) e ‘U(:i':)]u{z)
Ax—0 Az
= '(z) v(z) +'(z) - u(z).
Ainsi: (u-v) =u-v 4+ - v, cest-a-dire: i(u,.v) T i P

dz dx dx
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On notera que pour trois facteurs, on a:

(w-vw) =v-v-wtu-v-wtu-v-w.

Cette régle peut aussi se généraliser au cas du produit d’un nombre fini
de fonctions:

! ! !
(wp-ug. .. Up) = U Ug .o UpFUpUp-Uge. . Up+o U Us-. .. U,

e Dérivée d’un quotient

Soit y=Ff(r)= T—L—E-a%, ou u(z) et v(z) sont dérivables et v(z) # 0. La
v(x
dérivée de cette fonction se déduit de la dérivée du produit. On a:
Y= 2 = v -y = u. Par dérivation: v-y + v -y =1'. Donc:
v

7 ! !
Ainsi: (E) e m, c’est-a-dire: % (E) - (vd—? - u@)

v v v
e Dérivée d’une composition de fonctions

Si y=f(u) et u=g(z), cest-a-dire si y= f(g(z)), alors
Ay Ay Auw . Ay dy du_ .
Az Au E,dou. :_‘\}achP»OA:r_du':fa_:’ e

, dy dy du < g g m i
i = e e 'egt- — . .
Y= =g g Cestadirey f'(9(z)) - g'(z)

Exemple 3.34 La fonction y = (52° + 2)* est de la forme y = f(u) = u*,
avec u = g(z) = 5z + 2. D’aprés la régle précédente :

dy dy du 3 2 3 3 2 2 3 3
! B —_ . = 4 & = . . e .
=i 4.y’ -15z° =4- (5z° + 2)° - 15z° = 60z* - (5z° + 2)°.
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e Dérivée logarithmique

Il est parfois plus avantageux de dériver le logarithme naturel de la
fonction que la fonction elle-méme. Soit y = f(z) la fonction donnée;

7 o

dans ce cas, on peut montrer que: — ln flz)= )
f(z) = f(z) - =n f()
z) = f(z) - —In f(z).

d 1
On notera que: d—(ln 5) = = résultat obtenu lui aussi grace a la regle
I

précédente.

Exemple 3.35 Soit la fonction y= f(z)=2". Pour x>0, on a
ni{e®) =2-1n%:

D’apres la régle ci-dessus, on a: f'(z) =z*. (—)%(:': -Inz).
La régle du produit donne :

d
—x[a:-lnx)=1-lnx+£=lnx+l(m>0).

Ainsi, f'(z) =2 (Inz + 1).

Le tableau suivant fournit une liste des dérivées des fonctions les plus
courantes, que 'on pourra démontrer a titre d’exercice.

f(z) f'(z)
c 0
a0 € R az® !
a*,a>0,a#1 a*-lna

1
log, z,a > 0,a # 1 E-logae

CcOS T —sinz
sinx Ccos &
cosh z sinh z

sinh z cosh x
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le processus de dérivation. La dérivée de la premieére dérivée est la seconde
dérivée ; sa dérivée est la troisiéme dérivée, etc., jusqu’a la n® dérivée. La aussi,
il existe plusieurs notations possibles pour indiquer les dérivées successives.
Ainsi,

fllz) =9y =dyfdz o premiére dérivée,
f'(z) =vy" =d*)/dz? : deuxiéme dérivée,

f(n) (1) aus y(n) = d“y/d;r" . ne dérivée.
2

Exemple 3.36 Siy = 32* — 22, alors

y = 122% — 2z,

y' = 362° — 2,
y® = 722z,
y@ = 72,

y® = 0,

y™ = 0,vn>5.

3.14 Les différentielles

Dans les paragraphes précédents, dy/dz n’est pas considéré comme un quo-
tient, mais comme le symbole représentant la limite de Ay/Az quand Az
tend vers zéro. Il existe toutefois des problémes ou dy et dz prennent des
significations séparées. Dans ce cas, on appelle dy la différentielle de y et dz
la différentielle de z. La notion de différentielle est utilisée en calcul intégral
(chapitre 5) et dans 'approximation des valeurs d’une fonction. La définition
de la différentielle de y, notée dy ou df (z) est la suivante:

si f'(z) est la premiére dérivée de f(z) et Az un accroissement arbitraire
de z,

dy = df () = f'() - Aa.

Notons que si f(z) = z, nous avons f'(z) =1 et, de ce fait:

df (z) = dz = Az.
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Notons que si f(z) = z, nous avons f'(z) = 1 et, de ce fait:
df (z) = dz = Axz.

Par suite, si y = f(z), c’est-a-dire si  est la variable indépendante, on peut
généralement écrire:
dy = df (z) = f'(z)da.
Nous allons maintenant considérer le probléme graphiquement. Soit
= f(z) la courbe de la figure 3.13 et f’(z) la dérivée de f(z) au point P.

y

Figure 3.13: Différentielle dy
Si 'on prend dz = P(Q, on obtient alors:
dy = f'(z) - PQ
et comme f'(z) = tana, on a

dy = tana - PQ.
QT
Par définition , tana = ——, ce qui donne
PQ’
QT
PQ
Par conséquent, dy est 'accroissement (égal & QT') de 'ordonnée de la
tangente correspondant & dz.

dy =2 .PQ = QT
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Notons que la différentielle dy et 'accroissement Ay correspondant au
méme dz ne sont en général pas égaux. Sur la figure 3.13, dy = QT tandis que
Ay = QR. Nous allons maintenant observer I'application des différentielles
dans 'approximation des valeurs d'une fonction. Nous avons noté que dy
était en général différent de Ay. Toutefois quand Az = dx devient trés petit,
dy est presque égal a Ay. Nous pouvons donc utiliser la différentielle dy pour
calculer la valeur d’une fonction en un point z 4+ Az, avec Az petit. L’erreur
que nous commettons est d’autant plus petite que Az est petit.

Exemple 3.37 Soit la fonction y = 4z% — 23 + 8z — 6. On va calculer la
valeur de y pour x = 2.003. Nous constatons que le calcul avec x = 2.003
n’est pas chose aisée. En revanche, nous pouvons facilement trouver y avec
B2,

y = 4-24—2248.2-6
= 64—8+16—6
66.

Nous posons maintenant : 2.003 est égal a 2+ 0.003, ¢’est-a-dire z + Az avec
z =2 et Az = 0.003. Nous connaissons la définition de dy :

dy = f'(z)Az
donc il faut que nous cherchions la dérivée de f(x) :
f'(z) = 162° — 322 + 8.
Nous remplagons = par 2 dans f'(z), ce qui donne:
F(2) =128 — 12+ 8 = 124.
Nous avons donc, en remplagant Az par 0.003 :
dy =124 - 0.003 = 0.372.

Puisque y = 66 quand = vaut 2 et que y varie de 0.372 quand z varie de
0.003, nous avons:

y + dy = 66 + 0.372 = 66.372.
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Par conséquent, y vaut approrimativement 66.372 quand x vaut 2.003.
Nous pouvons maintenant nous intéresser a l'erreur commise dans cette ap-
prozimation. Pour cela, nous calculons Ay — dy.

Ay = f(z+Az) - f(z)

= 4(z+Az)*— (z+ Azx)3+8(z + Az) — 6
—(4z* — 2% + 8z — 6)

= 4z* +1623Az + 242%(Az)? + 162(Az)?
+4(Az)* — 2 — 322Az — 3z(Az)? — (Az)? + 8z
+8Az —6—4zt+2* —82+6

= 1623Az + 242?%(Az)? + 16z(Az)3
+4(Az)? — 322 Az — 3z(Az)?
—(Az)3 + 8Az

dy, quant a lui, est égal a:

dy = f'(z)Az
= (16z® — 3z% + 8)Az
1623 Az — 3z2Az + 8Az.

Alors
Ay — dy = 24z%(Az)? + 16z(Az)® + 4(Az)* — 32(Az)? — (Az)?
qui vaut avec x = 2 et Az = 0.003 :

Ay —dy

Il

(96 — 6) - (0.003)? + (32 — 1) - (0.003)* + 4 - (0.003)*
= 0.000810837324.
Par conséquent, [approzimation y = 66.372 comporte une erreur de

0.000810837324, ce qui signifie que la vraie valeur de y est égale a
66.372810837324.
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Exercices
1. Ecrire les cinq premiers termes des suites:
1
(a) up=1- e
— (_1)n+1
B %= 1~
3n
) =gy

2. Ecrire les termes généraux de chacune des suites:

2 22 B @
149 16" 25

1 1 1 1
(b) _"]?., 5, _E, Z,....
OER-RN -
c 24 6’ 8"

1 5 9 13 17
D35 -3 1w 325"

3. Déterminer si les suites ci-dessous sont bornées ou non-bornées, crois-
santes ou décroissantes, convergentes ou divergentes. Si elles sont conver-
gentes, trouver leur limite:

(-1)"(n+2)
(a) wn = g

11 11 1
(b) _‘_?"1 5! _Z: 3’ _6:'

1 9 8 25
(C) _§: _11 _g) _3! _?:'

4. Déterminer quel est le cinquantieéme terme des suites suivantes:

(a) 5,7,9,11,13,.....



84 Suites, limites et premiére dérivée

(b) —4,-1,4,11,20,31,44, ....

(€) gi—3:8i—8 %
(d) 1,1,8,1,1,8,1,1,8,1, ...

5. Pour les suites données par les termes généraux suivants, dire si elles
sont :

e monotones ou non monotones
e croissantes, décroissantes, alternées ou autre
e bornées ou non bornées

e convergentes ou divergentes

(a) up =2.

(b) u, =n(—1)"

{¢) tty= —;25.

(d) u,, = n(mod6).

() u, =n(mod6) — n.
() s = 10",

(g) un =sin((2n —1)7).

_ ] sasin#6
() un {moosm_ﬁ'

6. Deviner les limites [ des deux suites convergentes données par les termes
généraux suivants:

(a) up=3—2.
(b) un = 24,

Dans chaque cas, déterminer les N(e) correspondants, telles que
|u, — I| < &, pour tout n > N(&) avec:

e 5y =0.1
e ¢, =0.01
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® £ = 0.001

7. Trouver la limite des fonctions suivantes:

., 2x+35
(a) mh—l»go 2 -3
3 2
a¥—4r 48
b) lim ———.
© I az® 4+ bz + ¢
; L
a—oo ka? +lz +m
8. Indiquer si les fonctions suivantes sont continues ou non. Dans le cas

ou elles ne sont pas continues, indiquer et expliquer de quel type de
discontinuité il s’agit :

(&) &)= __ aupointz=2

a T _3_($f+5)1f2 au point z = 2.
14 2Y= _

(b) f(l")—m au point z = 0.

. _2x_2—:c . _p

€ fl=)=5 Tk au point z = 0.
x- -

(d) f(z)—xz_1 au point = = 2.

9. A l'aide de la définition de la dérivée, calculer les dérivées des fonc-
tions suivantes:

(a) f(z)=(2z+1)Y2
(b) f(z) ="
(© fl)=—=.

&

sinx

10. Montrer que lim

T—

xT
Montrer ensuite que la dérivée de f(z) = sinz est f'(z) = cosz.

11. Trouver 'expression générale de la dérivée d’ordre n des fonctions sui-
vantes:

(a) f(z)=e*.
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(b) f(z) = cosz.

(d) fx)=lnm
12. Trouver la dérivée des fonctions suivantes:

(a) y =sin ((1 — 4z)"/?).
(b) y=1In((3z +4)'/%).

() y=e.

23 -2
(d) y=In (m2+1).
(e) y =sinhz.
(f) y =cotz.

13. En utilisant les différentielles, trouver une valeur approchée pour cha-
cun des nombres suivants:

(@) VB () loggl0l () 5o



Chapitre 4

Applications des dérivées

4.1 Introduction

Dans ce chapitre, nous allons donner deux sortes d’applications des dérivées.
La premiére application concerne I'étude d’une fonction quelconque. A 1'aide
des dérivées, on peut étudier la croissance d’une fonction, ses points minimum
et maximum, ses points d’'inflexion, sa concavité. Nous donnons également
une procédure générale pour trouver la limite des formes indéterminées. Cette
procédure est fondée sur la régle de I'Hospital. Ceci est résumé dans un
paragraphe intitulé étude d'une fonction. La deuxiéme forme d’applications
concerne 'utilisation des dérivées en économie, comme par exemple le cott
et revenu marginal, ainsi qu'un profit en régime de monopole.

4.2 Croissance et décroissance des fonctions

La premiére dérivée d'une fonction nous permet de déterminer si cette fonc-
tion est croissante ou décroissante.

Définition 4.1 On dit qu’une fonction f(z) est croissante au point © = x;
si pour h > 0 (suffisamment petit), on a:

f(fL‘u - h.) < f(xg) < f(lo i h,)
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On dit qu’une fonction est décroissante au pointx = xq, sipourh >0, on a:
f(zo—h) > f(zo) > f(zo + h).

On peut montrer que si f'(xz¢) > 0, alors f(z) est une fonction croissante
au point x = x9. Comme f'(zo) est la pente de la tangente au point x = xy,
nous pouvons illustrer ce résultat sur la figure 4.1(a).

Si f'(zo) < 0, alors f(z) est une fonction décroissante au point z = xg
(Figure 4.1(b)).

y ¥

y=fx

pente positive pente négative

(a) (0)
Figure 4.1: Croissance et décroissance d’une fonction au point z = zq

4

Figure 4.2: Croissance et décroissance de y = z? — 3z + 4
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Exemple 4.1 Soit f(z) = 2®—3z+4; ona f'(z) = 22—3. Comme f'(z) <0

3
pour T < 5 et f'(xz) > 0 pour z > 37 f(z) est une fonction décroissante pour

T < :-;— et croissante pour x > g (Figure 4.2).

4.3 Minima et maxima des fonctions

La premiére dérivée peut aussi étre utilisée pour déterminer les minima et
maxima d’une fonction.

Définition 4.2 Soit une fonction y = f(z) définie sur un intervalle conte-
nant xg. On dit que la fonction y = f(z) posséde un minimum relatif au
point ¢ =z si f(zo) < f(x) pour tout z appartenant & un certain intervalle
contenant xo. De méme, f(x) posséde un mazimum relatif au point © = zg
si f(zo) > f(z) pour tout z appartenant & un certain intervalle contenant
zo. On parle de minimum absolu si f(zo) < f(z) pour tout x apparte-
nant au domaine de définition de la fonction et de maximum absolu si
f(zo) > f(z) pour tout x appartenant au domaine de définition de la fonc-
tion. Ces différents types de minima et mazima sont illustrés dans la figure
4.3 pour z € [a; b)].

maximum absolu

maximum relatif

. N

a 0 b=

minimum relatif

minimum absolu

Figure 4.3: Minima et maxima d’une fonction

Considérons a présent une fonction f(z), et supposons que f(z) et f'(z)
solent continues en un point © = zy. Il est géométriquement évident que
si f(z) a un maximum relatif en z = zg, la fonction est croissante pour les
valeurs juste inférieures a zp et décroissante pour les valeurs juste supérieures.
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Ainsi, f'(z) passe du signe positif au signe négatif quand = passe en croissant
par zo. Comme f’(z) est supposée continue, elle doit s’annuler en z = zy :
F'(20) = 0.

De méme, quand f(z) a un minimum relatif en z = z, la fonction est dé-
croissante pour les valeurs juste inférieures a xq et croissante pour les valeurs
juste supérieures. Dans ce cas, f'(z) passe du signe négatif au signe positif
lorsque « passe en croissant par zo; f'(z) doit, par conséquent, s’annuler en
=24 f(za) = 0.

Remarques

1. Un minimum ou un maximum relatif en z = z implique:
f'(zo) = 0 seulement si f(z) et f'(z) sont continues au point z = o
(exemple 4.2).

2. f'(zo) = 0 n’implique pas un minimum ou un maximum relatif en
x = zp, méme si f(z) et f'(z) sont continues en z = z (exemple 4.3).

2 2

53:_1/3 = m et f'(z) a une

discontinuité (infinie) en x = 0. Ainsi, bien que la fonction ait un minimum

(absolu) en xz =0, f'(0) # 0 (Figure 4.4).

Y

Exemple 4.2 Si f(z) = 2z?/3, alors f'(z) =

Figure 4.4: Graphe de y = f(z) = 2%/3

Exemple 4.3 Si f(z) = 25 alors f'(z) = 5z et f'(z) = 0 pour z = 0.
Cependant, la fonction f(z) = z° n'a pas de minimum ou de mazimum

relatif en x = 0 (Figure 4.5).
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YT

Figure 4.5: Graphe de y = f(z) = 2°

L’exemple 4.2 nous montre qu’il peut exister des minima et maxima pour
des valeurs de z en lesquelles la dérivée est discontinue. Si la fonction f(z)
est continue au point z = zy mais que sa premiere dérivée est discontinue
en z = xg, alors f(z) peut avoir un minimum ou un maximum en = I,
méme si f'(zp) # 0. Ici encore, un changement de signe de la premiere dé-
rivée lorsque z passe en croissant par zp est nécessaire pour l'existence d’un
minimum ou maximum relatif en z = .

Remarque Les différents résultats concernant les extrema relatifs restent
valables pour les extrema absolus non situés aux extrémités de l'intervalle de
définition.

La marche a suivre pour déterminer les minima et maxima d’une fonction
y = f(x) a l'aide de la premiére dérivée est la suivante.

1. Calculer la premiére dérivée f'(x) de la fonction.
2. (a) chercher les valeurs de z pour lesquelles la dérivée s’annule, ¢’est-
a-dire résoudre 'équation f'(z) = 0.
(b) chercher les valeurs de z pour lesquelles la dérivée f'(z) a des

discontinuités.

3. Pour chaque valeur z, trouvée sous 2a et 2b, déterminer si f'(z) change
de signe lorsque = passe en croissant par zg:
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f'(z) passe du signe — au signe +: minimum relatif en z = .

f'(x) passe du signe + au signe —: maximum relatif en z = zy.

f'(x) passe du signe + au signe +: ni minimum ni maximum relatif
en r = Iy.

f'(z) passe du signe — au signe —: ni minimum ni maximum relatif
en r = .

. Calculer la valeur de la fonction f(z) pour chaque valeur de zy en

laquelle on a soit un minimum soit un maximum relatif. On obtient
ainsi les coordonnées des minima et des maxima relatifs.

Exemple 4.4 Soit la fonction y = f(z) = (1 +z)%/* - (2 — 2)/3. Cherchons
les minima et mazima de cette fonction :

1. Calculons la premiére dérivée f'(z) de la fonction :

f@) = (a5 @—a) s (-1)

+§(1 +2)" % (2 —x)/B
_ %(1 +o) . (2 2) B [~ (1 + 1) +2- (2—1)]
= 0+ 2- ) B (1)

11—z
(14z)/3-(2—x)2/3

0 —
21/3,12/3 —
(b) f'(z) est discontinue en z = —1 et en x = 2 car le dénominateur

s’annule pour chacune de ces deux valeurs. En fait, il s’agit de

discontinuités infinies puisque d’une part :

(a) f'(x) =0 lorsque x =1; en effet f'(1) = 0.

lim f'(z)=-00 et lim f'(z)=0o0
T——1— z——1%

et d’autre part :

. '} e . Lo = __
xl&gl_f(:t:)— oo et Jiréhf("") 00.
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2. Déterminons le changement de signe de f'(z) aux pointsz = —1, z =1
etx=2
; i o
4 w= L f(z) < = minimum relatif en ©x = —1.
a —l<g=l, Moy

# =lawwly flo)= = mazximum relatif en x =1
8t 1.<m <2, Flz)ye o
5 laxw <2, fl2) < ni manimum ni mazimum

8 3>2, Flz) < relatif en z = 2

3 f(=1) =1 -1 2 (=1)* =0
f(1)=(14+1)%3.(2—-1)/2 =228 .18 = /4.

Ainsi, les coordonnées du minimum relatif sont: (—1;0) et les coor-
données du mazimum relatif sont: (1;3/4) (Figure 4.6).

2 (1;¥3)

Figure 4.6: Graphe de y = f(z) = (1 + z)%3 . (2 — 2)'/3

4.4 Courbure des fonctions

La deuxiéme dérivée d’une fonction peut étre utilisée pour étudier la conca-
vité de cette fonction.
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Définition 4.3 Une fonction est dite concave, si la tangente se situe au-
dessus de la courbe (Figure 4.7(a)).

Elle est dite convexe (ou concave vers le haut), si la tangente se situe
au-dessous de la courbe (Figure 4.7(b)).

Y Y

fonction
concave

vers le haut

fonction
concave

vers le bas

(a) (b)

Figure 4.7: Concavité et convexité d'une fonction

On peut montrer que si f”(x) > 0 alors la fonction f(z) est convexe (elle
a une courbure positive). De la méme facon, si f”(z) < 0 alors la fonction
f(z) est concave (elle a une courbure négative).

Cela s’explique géométriquement par le fait que si f”(z) > 0, alors f'(z)
est une fonction croissante. Or f'(z) est la pente de la tangente au point z
et il est clair que si la pente de la tangente croit lorsque z croit, la fonction
est convexe (Figure 4.7(b)).

Si f"(z) < 0, alors f'(z) est une fonction décroissante; ainsi la pente de
la tangente décroit lorsque z croit et la fonction est donc concave (Figure
4.7(a)).

Considérons une fonction f(z) et supposons que f(z) et f'(z) sont conti-
nues au point z = x. Il est géométriquement évident que si f'(zg) = 0 et
f(z) est concave en x = xp, alors f(z) a un maximum relatif en z = ay
(Figure 4.7(a)). De méme, si f'(zo) = 0 et f(z) est convexe en z = o, alors
f(z) a un minimum relatif en « = z¢ (Figure 4.7(b)).

Il en découle un nouveau critére pour déterminer s’il s’agit d’'un minimum
ou d'un maximum :
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supposons f'(z) et f”(z) continues au point x = zo. Alors:
o f(z) =0et f'(x) > 0= minimum relatif en z = .
o f'(z) =0et f"(z) < 0 = maximum relatif en z = z,.

Exemple 4.5 Etudions la courbure et cherchons les minima et mazima de

la fonction f(z) =2* —2z* + z + 1.
/ (1D

Figure 4.8: Graphe de y = f(z) =23 — 22 + 2 + 1

32?2 — 4z + 1.
f(z) = 6z—4.

%
g
|

2 ;
Comme f"(x) < 0 pourxz < -, la fonction est concave pour —co < z < —.

3
f(z) > 0 pour z > 37 par conséquent, la fonction est convexe pour
2
g <z <o
Cherchons a présent les extrema :
fllz) = 0=>322—42+1=0
1

= =1 et z=-—.
3

Remplagons z =1 dans f"(z) :
1)=6-1-4=230.
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Le point (1;1) est donc un minimum relatif et la fonction est conveze en ce

1
point. Remplagons x = 3 dans f"(z) :

f”(%):ﬁ-%—4=—2<0.

1 31 . ]
Le point (§,~2—7) est donc un mazimum et la fonction est concave en ce
point (Figure 4.8).

Le critére utilisant la dérivée seconde pour déterminer s’il s’agit d’un mini-
mum ou d'un maximum relatif ne s’applique pas lorsque f”(zg) = 0. Il existe
cependant un critére fondé sur les dérivées d’ordre supérieur permettant de
conclure quant a I'existence d'un extremum dans les cas suivants:

Si /(@) = f(@0) = f"(@0) = ... = F*D(zg) = 0 et F™(zg) # 0,
alors:
1° Pour n pair: f™(z) > 0 = minimum relatif en z = .

f™(z4) < 0 = maximum relatif en z = z.

2° Pour n impair: ni minimum ni maximum relatif en z = xg.

Exemple 4.6 Soit la fonction f(z) = 3z* — 223 + 1. Cherchons les minima
et mazima de cette fonction :
fl(z) = 122° —62° = 62%(2z — 1)
fliz) = 0622z -1)=0=2=0 oua:zé.
() = 362°—12z
1 (1 = 3> 0= minimum (absolu) en © = %
(0) = 0: on ne peut pas conclure. Calculons
f"(z) = T2z —12
) = —12#£0.

D’aprés le critére ci-dessus, comme n = 3 est impair, on peut en conclure
qu'en x = 0, il n'y a ni mingmum ni mazimum relatif (Figure 4.9).
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P

Figure 4.9: Graphe de y = f(z) = 32% — 22° + 1

4.5 Points d’inflexion des fonctions

Un point d’inflexion est un point ou la courbure de la fonction change de
sens. Il est évident qu’en un point d’inflexion la tangente traverse la courbe,
puisque d'un coté de ce point la courbe est disposée au-dessus de la tangente
et de 'autre coté au-dessous. Puisque le signe de la dérivée seconde nous in-
dique le sens de courbure de la fonction, un changement de signe de la dérivée
seconde implique un changement de courbure, et donc un point d’inflexion.

Si une fonction f(z) a un point d’inflexion en z = zy en lequel la dérivée
seconde est continue, alors f”(zg) = 0. Cependant, il se peut que la fonction
soit continue en z = xg et que f"(z) soit discontinue en ce point. Ici encore,
un changement de signe de la dérivée seconde lorsque z passe par z, est
nécessaire pour 'existence d’un point d’inflexion en z = z.

La marche & suivre pour déterminer les points d’inflexion d'une fonction
y = f(z) est la suivante:

1. Calculer f"(z)
2. (a) chercher les valeurs de 2 pour lesquelles la dérivée seconde s’an-
nule, ¢’est-a-dire résoudre 'équation: f”(z) = 0.

(b) chercher les valeurs de x pour lesquelles la dérivée seconde f”(z)
a des discontinuités.
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3. Pour chaque valeur z; trouvée sous 2a et 2b, déterminer si f”(z) change
de signe lorsque = passe en croissant par zg:

f"(z) change de signe en z = zy = point d’inflexion en z = z.

f"(z) ne change pas de signe en = zy = aucun point d’inflexion en
T = Xyg-

. Calculer la valeur de la fonction f(z) pour chaque valeur zg en laquelle
on a un point d’inflexion. On obtient ainsi les coordonnées des points
d’inflexion.

Note Si f"(z) et f”(z) sont continues en z = zg, on peut utiliser le critére
suivant: f”(z¢) = 0et f"(z) # 0 = point d'inflexion en = zy. De maniére
plus générale, la fonction y = f(x) admet un point d’inflexion en = = z; si
f"(z) = 0 et si la premiére dérivée non nulle £ (z;) est d’ordre impair

(n impair > 2).

Exemple 4.7 Soit la fonction y = f(z) = .

5

Figure 4.10: Graphe de y = f(z) = z°

Cherchons ses points d’inflexion :

filey=br* f(z)=20a"

f"(z) =0 = 20z° =0 =58 =)

() =802% F70) =0 = on ne peut pas conclure
[(z)=1202 f*(0)=0

fU(z) =120  f(0) = 120 0.
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Ainsi, f"(0) =0 et la premiére dérivée non nulle est d’ordre 5, donc impair.
Par conséquent, le point (0; 0) est un point d’inflexion (Figure 4.10).

Exemple 4.8 Cherchons les points d’inflexion de la fonctiony = f(z) = Yz

@) = 327

3
2 ) 2 1
" p Bl . S o2 A
f(z) 57 = \E/E%O,VQ:E]R

Comme f"(x) ne s’annule jamais et qu’elle est discontinue en z = 0, il suffit
d’ezaminer le signe de la dérivée seconde autour de x =0 :

Siz<0, f'(z)>0

HE>0, F(z) 20 } = point dinflexion en x =0 (Figure 4.11).

o

Figure 4.11: Graphe de y = f(z) = ¥/x.

4.6 Formes indéterminées

Dans le chapitre 3, nous avons vu comment il était possible de trouver la

- ; y 0 (%)
limite d’une forme indéterminée — et —.
00

0
A Taide de la notion de dérivée, nous pouvons maintenant étudier une

procédure plus générale pour déterminer la limite des formes indéterminées.
Cette procédure est fondée sur la régle de I’Hospital.
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0
e Forme indéterminée 0

Regle de 'Hospital: si ¢ est un nombre réel, si f(z) et g(z) sont déri-
vables et ¢'(z) # 0 pour tout z tel que 0 <| z — ¢ |< §, si lim f(z) =0
T—C

!
et lim g(z) = 0, alors quand lim ; Ei)

i L) _ 1)

g@) ~ame g'(z)

existe ou est infinie,

T

!
5 1@
g'(z) _
appliquer la régle de I'Hospital :
f=) . f'(z)

lim = lim ;
ze g'(z)  =—e g"(z)

. ; 0
est encore une forme indéterminée > on peut de nouveau

I1 se peut donc que I'on obtienne toujours une forme indéterminée ou que
la limite du rapport des dérivées n’existe pas. Dans ce cas, on doit chercher
la limite par d’autres méthodes.

Remarque La conclusion de la régle de I'Hospital reste inchangée pour
d’autres types de limites, notamment lorsque @ — ¢ est remplacé par:
z—ct,x— e,z — 00,z — —00.

Exemple 4.9 Calculons les différentes limites :

sinx .
. Lorsque z — 0, numérateur et dénominateur tendent vers (.

1. lim
z—0 T

En utilisant la régle de ’'Hospital,

5 sin.x COos T
lim = lim =,
z—0 I z—0 1]
2. 1i s Healugiie. Bsies formi Srdbtarsinte o
. lim .Ml s’agit d’une forme indéterminée —.
2—0 3e* — 23 — 3z — 3 4 0
Par la régle de l'Hospital :
62* 12z

lim =lim—-———.
2036 — 23 -3z —3 1-503e? —322-3
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0
Comme la fonction obtenue est encore de type 3 o peut @ nouveau
utiliser la régle de [’Hospital :

12z . 12 12

lim——— =lim—— = — =4
03¢ — 322 —3 2-03¢* —6z 3
. z+4+8—3 . o ,
3 11m+ T La limite lorsque © — 1 n’existe pas car /& — 1 n’est
z—1 T —

définie que pour x > 1. Cependant, la limite a droite lorsque  — 17

est de la forme 0 et peut étre trouvée a 'aide de la régle de I’Hospital :

lim —_“‘T+8_3= hmw= lim w=g
z—1+ r—1 1+ %(I — 1)—12'2 o1+ (:g + 8)1;’2 ;
x/ - o
4. o -—(xx _22)2 2. La limite est de la forme g La limite de %, lorsque

x tend vers 2, est infinie, car:

Ve+2-—-2

%(.’L‘ +2)~1/2

i = I BT T o
o S el o >
et
o VEFR-2 Mt
sgr @22 et 2z—2) OO

oo
e Forme indéterminée —
o0
La régle, pour une forme indéterminée —, est exactement la méme que
o0
0
pour une forme 0’ excepté que 0 est remplacé par co: silim f(z) = oo

i T—C
et lim g(z) = oo, alors quand lim =)
T—+C T—C g (_'L‘)

existe ou est infinie,

lim fig) = lim f’(m)
a—c g(z)  z—eg'(z)

Ici encore, la régle de I’'Hospital pour une forme indéterminée — est
oo

valable lorsque: = — ¢tz — ¢*, 2 — +o00,2 — —00.
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1
Exemple 4.10 Calculons la limite lim =5, it s’agit d’une forme indéter-

T—00 T

minée —. Appliquons la régle de I’Hospital :
00

lim hﬂ = lim I/—J:
z—00 HT z—00 D

= ().

Pour les autres formes indéterminées, on peut aussi utiliser la régle de

. i 0 00
I’'Hospital, mais il faut avant tout les réduire & une expression — ou —

0

e Forme indéterminée co — o0

Si im[f(z) — g(z)] est de la forme co — oo , c’est-a-dire lim f(z) = oo
T—C

et an“ég(z) = 00, alors: o
S
lzl_r?:[f(a:) —g(z)] = ll_l}}: M est de la forme 9,
9(z) f(z)

forme indéterminée que ’on résoudra par la régle de I'Hospital.

e —1

2 2
Exemple 4.11 Calculons la limite liné (- — )
2
Cette limite est du type oo—o0. Avec f(z) = = et g(z) =
z

7 on obtient :

. e*—1 =z
9(z) flz) _ . 2 2 _ . €-z—1
By 1 e T 20 iz(e* — 1)
g(z) f(z) 2 2

. . .0 .
qui est une forme indéterminée o Par la régle de I’Hospital :

. ef—x—1 . e*—1
@0 sz(e* — 1) 2—0 3(ze* + e* — 1)
eI
= lin{l]1 = = = T
T— §(I8 + e +E’,‘) 34
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e Forme indéterminée 0 - oo
Si lim(f(z) - g(z)] = 0- 00 , c’est-a-dire lim f(z) = 0 et lim g(z) = oo,
T—c T—C T—C
alors lim /() est de la forme g
e 1/g(a) 0

Alternativement, lim y(z) est de la forme E.

2e 1/f(2) %

Exemple 4.12 Calculons la limite lim (2 - Inz).

z—0t

1l s’agit d’une forme indéterminée 0 - co.
Avec f(z) = 2? et g(z) =Inz, on obtient :
Inz

lim 22 -Inz = lim 3
z—0+ s+ 1 /22

qui est une forme indéterminée g Par la régle de I’'Hospital :

Inz 1/z —g3 z?
]_i — = 1i —_— ]_ —_— = ] emaaa—a 1
DT T e~ e TR 0

e Formes indéterminées 0%, 1°°, oo?

Si lim[f ()] est I'une de ces formes, alors on pose:
T

y = [f(@)}@.
Si limlny = b, alors limy = e*. En particulier si b = —o00 ou 0o, on
I—C T—C
obtient respectivement limy = 0 ou limy = oo.

Exemple 4.13 Calculons les limites suivantes :

1. lirg+(m - 2)I2_4. Il s’agit d’une forme indéterminée 0°. Calculons par
r—

conséquent :

lim In((z — 2)*°%) = lim [( [ 22 — 4) - In(z — 2)]

z—2+ z—2
. In(z —2)
= lim f
z—2+ p 3
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(%)
Il s’agit d'une forme ~ et nous pouvons appliquer la régle de I’Hospi-
tal :

5 =5 2 _ 4)2
gy BESE) o MESE g =4
P ~ r—2+ @472 z—2+F —22.‘(3".. =+ 2)

4z(z*—4) 0
o dgad Ao

Par conséquent : ]jm+(a: - 2)"‘2_4 =el=1.
z—2

lim (14 2%)Y*. Il s’agit d’une forme indéterminée oc®. Calculons :

z—vFoo

lim In(1+2%)Y" = lim 1111(1—|—;1:2)
z—too r—too I
2
— lim In(1 + z¢)
r—too xT
2z

:c—le:Elm 1 2
2 ) 1

— _— = —:0

z—too 2 z—too T

et donc, lim (1+2%)"=¢"=1.

z—+oo

4.7 Etude compléte d’une fonction

Voici les points que nous devons étudier dans une fonction :

il

Domaine de définition et continuité

. Parité d’une fonction

. Intersection avec les axes

Asymptotes verticales

. Asymptotes horizontales ou obliques

. Premiére dérivée
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7. Deuxiéme dérivée

8. Minima et maxima
9. Points d’inflexion
10. Tableau de variation

11. Graphe

Nous allons reprendre en détail certains de ces points. Les autres ont déja
été étudiés dans les paragraphes précédents. Finalement, nous aborderons un
exemple complet d’étude de fonction.

e Domaine de définition et continuité

Le domaine de définition comprend les x pour lesquels on peut trouver
une image y. Sont exclus de cet ensemble, les = pour lesquels la fonction
présente une discontinuité. On note par D 'ensemble de définition.

Exemple 4.14 Si la fonction est f(z) = 2? — 3z + 4, tous les = réels ont
une image par la fonction f(z). Le domaine de définition est, par conséquent,
l'ensemble des nombres réels R.

2
Exemple 4.15 La fonction f(z) = &

xT
nie) en x = 2. Nous devons, par conséquent, exclure z = 2 de l’ensemble
de définition et nous écrivons D = R — {2} qui signifie que le domaine de
définition D est égal au complémentaire de 2 par rapport @ R, ou encore D
est tout R sauf 2.

1
5 présente une discontinuité (infi-

e Parité de la fonction

Définition 4.4 Une fonction est dite paire si f(z) = f(—z) pour tout
z du domaine de définition. Elle est dite tmpaire si f(—z) = —f(x)
pour tout x du domaine de définition. Dans les autres cas, elle n’est ni
paire ni impaire.

Le graphe d’une fonction paire est symétrique par rapport a ’axe des y.
Le graphe d’'une fonction impaire est symétrique par rapport a l'origine.
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Exemple 4.16 Soit la fonction f(z) = a®. Son domaine de définition est
D =R — {2}. Cette fonction est impaire puisque :
f(=2) = (=) = —2® = - f(z),Vz € R.

2
1
Exemple 4.17 Soit la fonction f(z) = ﬁ;jz . Son domaine de définition

est D = R — {2}. Montrons que cette fonction n'est ni paire ni impaire :
pour cela, il suffit de trouver une valeur zo € D telle que f(zo) # f(—xo) et
f(=z0) # —f(20). 9

Soitao=1; f(1)= 2 =2 et f(-1) = 25 = —3.
Ainsi, f(1) # f(—1) = la fonction n’est pas paire.

D’autre part, f(—1) # —f(1) = la fonction n'est pas impaire.

e Asymptotes

Définition 4.5 Une droite d est dite asymptote a une courbe si la
distance 6 du point courant P de la courbe a cette droite tend vers zéro,
lorsque le point P s’éloigne & Uinfini (c’est-a-dire le point P(z;y) a
l'une au moins de ses coordonnées qui tend vers l'infini).

Les trois cas qui peuvent se présenter sont illustrés par la figure 4.12.

y y y
5\p \ p \ P d
8
~— \SL\ d
0 x 0 x 20 x
d
(a) (b) (e)

Figure 4.12: Asymptotes (a) verticale, (b) horizontale, (c) oblique
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e Asymptotes verticales

Définition 4.6 Une asymptote & la courbe y = f(z) est dite asym-
ptote verticale si l'équation de celle-ci est de la forme 2 = a, ou
a € R. Dans ce cas, l'une des égalités suivantes a lieu:

lim f(z) = +oo, Iim_r Jla) =%e0, bIm flz)=~>2o0

IT—a~ I—a

Définition 4.7 Inversement, on déduit de la définition d’une asym-
ptote que si 'une au moins des égalités ci-dessus a lieu, alors la droite
T = a est une asymptote verticale.

2241
Exemple 4.18 Reprenons la fonction f(z) = +2 dont le domaine de dé-
finition est R — {2}.

2
Comme lim e
r—2- ..-"32— 21
courbe f(z) = s :
z—2

. |
De méme, lim
r—2+ I —

(Figure 4.13).

= —00, la droite © = 2 est asymptote verticale a la

= 00, on retrouve x = 2 comme asymptote verticale

Figure 4.13: Asymptote verticale en z = 2
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e Asymptotes horizontales

Définition 4.8 Une asymptote a la courbey = f(x) est dite asympto-
te horizontale si [’équation de celle-ci est de la formey = b, ou b € IR.
Dans ce cas, l'une au moins des égalités suivantes a lieu:

lim f(z) =5
ou Il_l'rfm Ilz) = b

Inversement, si l'une au moins des égalités ci-dessus a lieu, alors la
droite y = b est une asymptote horizontale.

1 .
Exemple 4.19 Soit la fonction f(z) = $+ 1 Etudions les limites de cette

fonction quand x tend vers plus ou moins linfini :

1
T+ _1

lim

T—+oo L —

Figure 4.14: Asymptote horizontale en y = 1



4.7. Etude compléte d’une fonction 109

e Asymptotes obliques

Définition 4.9 Une asymptote a la courbe y = f(z) est dite asympto-
te oblique si l’équation de celle-ci est de la forme y = axz+b, otta # 0
aveca € R et b € R.

Dans ce cas, on trouve les coefficients a et b a laide des formules (4.1)

et (4.2):

= lim @ (4.1)
= T (f() — aa) (4.2)

Inversement, si les limites (4.1) et (4.2) existent avec a # 0, alors la
droite y = ax + b est une asymptote oblique. Le méme principe reste
valable lorsque © — —o0.

2241

Exemple 4.20 Soit la fonction de 'exemple 4.17: f(z) = . Il n'existe
x —
pas d’asymptote horizontale puisque par la régle de I’Hospital :
. x4+l . 2z . w4l . 28
lim = lim —=-0c0 et lim = lim — = o0.
T——00 I — - | T—oo L — z—oo ]

En revanche, cette fonction admet une asymptote oblique y = ax+b que nous
allons chercher :

241

— ]_. _]_.

2 G0 %

L x4 1—224+22
= lim

z—00 T —2

. 2z +1
= lim =

z—0o T — 2
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On trouwve exactement les mémes résultats lorsque © — —oco. Ainsi, cette
fonction admet une asymptote oblique d’équation :

y =2+ 2 (voir Figure 4.15).

e Tableau de variation

Nous pouvons résumer dans un tableau tout ce qui est intéressant, a
savoir les extrema, les points d’inflexion, la concavité et la croissance
de la fonction. Voici un exemple fictif d’un tableau de variation de la
fonction y = f(z):

Tz | —00 I T9 T3 Ty rs +oo
Y - 0 + 0 - -
y' | - 0 + 0 - 0 +
y [N N\ mn S max N\, O\
n » U p N pt U
infl. infl. infl.

Remarque Pour les premiére et seconde dérivées, seul le signe
(+ ou —) nous intéresse.

Les fleches \, indiquent. que la fonction décroit, tandis que les fleches /
indiquent que la fonction croit. Min et max indiquent respectivement
un minimum et un maximum. Le signe () représente la concavité vers
le bas, tandis que le signe | J représente la concavité vers le haut. Les
points d’inflexion sont abrégés “pt infl”.

e Graphe

Nous représentons tout ce que nous avons trouvé sur le graphe: la fonc-
tion elle-méme, les intersections avec les axes, les minima, les maxima,
les points d’inflexion et les asymptotes.

Nous allons maintenant donner un exemple complet d’étude de fonction.

; %+ 1
Exemple 4.21 FEtude compléte de f(z) = —"

1. Domaine de définition et continuité: D =R — {2} (exzemple 4.15).
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Parité de la fonction : ni paire, ni impaire (exemple 4.17).

Intersections avec les axes:

g e —UZ"H—_E
TVTYVE 2 T2
. 1
Nous avons donc le point (0 ;—-2-)
z?+1
¢ x—2
= z?+1=0.

Il 0’y a pas d’intersection avec l'axe des x car z24+1>1, vz € R.

. Asymptote verticale : asymptote verticale en x = 2 (exemple 4.18).

Asymptote horizontale : il n'en existe pas (exemple 4.20).

111

Asymptote oblique : asymptote oblique d’équation y = = + 2 (exemple

4.20).
Premuére dérivée :
, vu' — uwv'’
fl(z) = 0
_ 2z(z—2)— (2 +1)
- (z —2)?
e
T T@-2¢
Deuziéme dérivée :
» vu' — uv'’
@) = —0—
_ (2z-4)(z—-2)2-2(z — 4z — 1)(z — 2)
B @—2°
_ (2z—-4)(z—-2)—2(z® -4z — 1)
B (z-2)
10

@-2¢
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8. Minima et mazima:

10.

11.

fi(xz)=0
2?2 -4z -1
CET

44+ +/16+4 T, = 424
T/ =—(F—— = o~
2 Ty = —0.24
On remplace =1 dans f(x) pour obtenir y, :
2
i+ 1
=—— =847,
n= e 8.47
On remplace x5 dans f(x) pour obtenir ys :
2
5+ 1
= = —-0.47.
% Ty — 2 ¢

Pour voir si (4.24;8.47) et (—0.24; —0.47) sont des mazima ou des mi-
nima, on remplace z; et o dans f"(z) :

f"(4.24) = ﬁ > 0 : minimum.
£"(—0.24) = (_0_2;40_2)5 <0 wamnh
Points d’inflexion :
(@) =0= =gz =0

Il n’y a pas de solution ; par conséquent, aucun point d’inflexion.

Tableau de variation :

t | —co —0,24 0 2 424 +oo

y | + 0 - 0 +

v | - = s + o+

y |/ max N || min

nin N N e U U
Graphe :

Le graphe de cette fonction est illustré par la figure 4.15.
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P

101
//y:’x,;lZ
o ""'#fx=2
s PR

Figure 4.15: Graphe de y = f(z) = Z-t!

r—2

4.8 Applications économiques des dérivées

Les applications des dérivées en économie sont nombreuses. Dans ce para-
graphe, nous nous limiterons aux notions de cofit et de revenu marginaux
ainsi qu’au profit en régime de monopole.

e Colt marginal
Si 'on suppose que le cott total de production y est fonction unique-

ment du nombre d’unités produites z, on peut représenter la fonction
du cotit total comme suit :

y = f(z).

En général, la fonction du cont total a les propriétés suivantes:

1. Lorsqu’on ne produit rien, le coiit total est positif ou nul, ¢’est-a-
dire: f(0) > 0. Si f(0) > 0, la quantité f(0) représente les cotits
fixes de production.

2. Le coit total croit quand la production croit, c’est-a-dire que f'(z)
n’est jamais négative.

Si le cott total est CT' = y = f(z), le coit moyen ou le coit par
unité est égal a:

cm =1

T
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et le cotit marginal est la premiére dérivée par rapport a = du

cofit total:
CMa=y = f(z) = &
dz’
Exemple 4.22 Si le coit total est CT = z° — 3z* + 3z + 1, le coit moyen
1
est égal o CM = % =g2? -3z + 3+ o et le cott marginal est égal @
dCT

CMCL:‘T:3I2—6I+3.

xI
On remarque que la courbe du codt marginal coupe celle du codt moyen au
minimum du codt moyen, comme le montre la figure 4.16.

CMa

CM CMa
H
3 CM
2
1
= X
0 1 2 3 quantité

Figure 4.16: CMa =32> -6z +3 et CM =2% -3z +3 + L
x

e Revenu marginal

Pour toute fonction de demande y = f(z) ou y représente le prix par
unité demandée et = le nombre d'unités demandées, le revenu total RT
est égal au produit de z par y.

RT=z-y=z- f(z).

Le revenu marginal est égal a la premiére dérivée par rapport a z du
revenu total:

dRT

L

RMa =
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Exemple 4.23 Soit la fonction de demande y = —2x + 3. Le revenu total
est égal a:
RT=z.-y=g-(-2z+3) = —22°+ 3z.

Le revenu marginal est donc la premiére dérivée par rapport a x du revenu

total : ART
RMa=——=—-4z+3
dz
Le revenu total et le revenu marginal sont représentés par la figure 4.17.
RT RMa
3
1 2
1
X
0 1 quantité ¥ 0 !
(a) (b)

Figure 4.17: Revenu total (a) et revenu marginal (b)

e Profit en régime de monopole

En général, le monopoleur va controler 'offre z et le prix y (déterminé
par la fonction de demande) afin de maximiser son profit. La fonction
du profit total résulte de la difference entre le revenu total et le coit
total :

PT = RT — CT.

Le profit total est maximum si:

dPT
1) == = 0et
) I 0e
depr
2) < 0

dz?
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, dPT . dRT dCT
En d’autres termes, oy est égal & B dn
Or,iR—T=RMa et é—c-—T———CMa.

dx dz

) dPT o . . .
Par conséquent, T 0 (premiére condition) revient au méme que

RMa = C Ma, ce qui signifie que le profit est maximum quand le revenu
marginal est égal au cott marginal.

Exemple 4.24 La fonction de demande d’un certain bien est:
y =18 — 5z
et le cott total pour le monopoleur est :
CT =% —32° + 3z + 1.

On va chercher le profit mazimum que le monopoleur peut obtenir. Le revenu
total est égal a:

RT = z-y
z(18 — 5z)
= 18z — 522

Le profit total est donc:

PT = RT-CT
= 18z — 522 — (2® —32? + 3z +1)
= —z°—222 4+ 152 — 1.

La premiére condition pour avoir un profit mazimum est :

dPT .
T = 0, c’est-a-dire —3z* — 4z + 15 = 0.

T
Nous obtenons deux solutions :

5
= _3 t __-
T el T

La premiére est irrecevable car une quantité négative n’a aucun sens en écono-
mie, du moins dans ce contexte. Nous vérifions donc la deuxiéme condition,
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a Wy <0 la solution x = -
dgs;;m?” o2 , avec la SO;: ;PT—n 3 5
FrRe —6z — 4, el avec x = 3 < 0. Il y a bien mazimum en x = 3"

Pour avoir le profit mazimum, on remplace x = g dans le PT':

3 2
Pmazx = — (g) -2 (g) + 15 (g) —1=13.81.

Si nous prenons l'autre méthode et égalisons RMa et CMa, nous obtenons
le méme résultat :

RMa = CMa
18—10z = 322 —6x+3
—3z°—4z+15 = 0.

Nous pouvons représenter graphiquement cette deuxiéme méthode (Figure
4.18). Si l'on représente les courbes de demande et de codt moyen (qui est

1
CM = 2 -3z +3+—) sur le méme graphe, le profit mazimum est représenté
par la surface hachurée :

ABEF = ABCD - EFCD

profit mazimum = revenu total-coit total

Le profit maximum peut étre calculé par BF - CD ou CD représente la
solution x pour laquelle RMa = CMa, B est la valeur de la demande quand
on remplace la solution dans l'équation et F' est la valeur du codt moyen pour
la méme quantité x.
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E
G 1 D2 3 quantité
Figure 4.18: Surface hachurée: profit maximum
Exercices

1. La somme de deux nombres positifs est 100.

Trouver le couple de nombres:
(a) dont le produit est maximal.
(b) dont la somme des carrés est minimale.

. On construit une boite de base rectangulaire, sans couvercle, ayant

2 faces carrées, de 10 m® de volume, pour un prix de 100 francs/m?
pour la base et de 60 francs/m? pour les cotés.

Faire une esquisse de la situation.

Chercher les dimensions de la boite qui permettent de minimiser le prix.

: 2 2 . T
. Montrer que les points d’inflexion de la fonction y = 1522 sont sur

2
T

une droite, dont il faut trouver I’équation.

Représenter le tout graphiquement.

. Quelles doivent étre les dimensions d'un cylindre de volume V pour que

sa surface totale S soit minimale?

Note Un cylindre est entiérement déterminé par son rayon de base r
et sa hauteur h.

. Faire le graphe de la fonction y = 2sinz + cos 2z, puis déterminer les

maxima et minima de cette fonction sur intervalle [0 ; 27].
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6. Montrer que parmi tous les rectangles inscrits dans un cercle donné, le
carré a une surface maximale.
Montrer aussi que le périmétre est maximal pour le carré.

7. Faire une étude compléte de la fonction: y = —z® + z* + 2z.
8. Faire le graphe et étudier les asymptotes de la fonction:
= 2 +2z—1
x
9. Faire le graphe et trouver les extrema de la fonction :
y = (222 — 2%)13,
Etudier ensuite soigneusement ’asymptote de cette fonction.

10. Faire une étude complete de la fonction suivante:

(In z)?

A

11. Calculer la limite des fonctions suivantes par la régle de I'Hospital :

. z2—922 -3 . sinz . sinazx
G ImS—mp W Jm @ lm
@ z" — b @ 1 e’ + 322 ) lim 3zlnz
;l—ra% z—b o der + 212 z—1 32 — 1
. x? . Inz . . €%+ 3a?
(@) Mm = (B I 0 I oo

12. Montrer que si la fonction y = az® + bz? + cz + d admet deux extrema,
alors 'un est un maximum et I'autre est un minimum.
En déduire que, dans ce cas, le point d’inflexion se situe entre ces deux
extrema.

e—l/r

13. Etudier la fonction: y =
z

14. Une entreprise de machines de précision a une fonction de cofit total
représentée par équation CT' = 22° — 32> — 12z , ou CT indique le
colit et = la quantité.



120

15.

16.

Applications des dérivées

(a) Quelle est I'équation de la fonction du cotit marginal?

(b) Quelle est 'équation de la fonction du cotiit moyen?
A quel point le cofit moyen est-il & son minimum ?

(c) Est-ce que l'on peut s’attendre & trouver de telles équations dans
la pratique?

La demande d'un certain bien est y = 12 — z, ou y est le prix et z la
quantité. Déterminer le prix et la quantité pour lesquels le revenu est
maximal. Représenter graphiquement la demande, le revenu total et le
revenu marginal.

Un fabricant de postes de radio produit ¢ postes par semaine & un
2

cott total de = + 3q + 100 francs. Il est en régime de monopole et la

demande de son marché est ¢ = 75 — 3p, ol p est le prix d'un poste.
Trouver le nombre de postes que ce fabricant doit produire par semaine
pour maximiser son bénéfice.

Quel est le bénéfice maximum? Quel est le prix de monopole?



Chapitre 5

Intégrales

5.1 Introduction

Dans le chapitre 3, nous avons étudié le probléme suivant : étant donné une
fonction, trouver sa dérivée. Dans ce chapitre, nous considérerons le probléme
inverse : étant donné une fonction f(z), trouver une fonction F(z) telle que
sa dérivée soit égale a f(z), c'est-a-dire F'(z) = f(z).

En économie, I'intégration peut notamment étre utilisée pour trouver la
fonction de cott total lorsque la fonction de cout marginal est donnée ou
encore pour trouver la fonction de revenu total lorsque la fonction de revenu
marginal est donnée.

D’autre part, I'intégration joue un réle important dans le calcul de 'aire
comprise entre plusieurs courbes. Par exemple, le revenu total peut étre
considéré comme l'aire comprise entre la courbe du revenu marginal et les
axes, le surplus du consommateur comme ’aire comprise entre la courbe de
demande et les axes, et ainsi de suite.

5.2 Intégrale indéfinie

Reprenons le probléme inverse de la dérivation: étant donné une fonction
f(z), trouver une fonction F(z) telle que F'(z) = f(z).
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Définition 5.1 On dit que F(z)+c est l'intégrale indéfinie de la fonction
f(z) si et seulement si F'(z) = f(z) et l'on note alors:

f(z)dz = F(z) +¢, ot c € R est appelée constante d’intégration.

En outre, F'(z) est dite une primitive de f(x). La différentielle dx indique
que z est la variable d’intégration.

Nous avons toute une famille de fonctions F'(z) 4+ ¢ qui sont des intégrales
de f(z). En effet, la dérivée d’'une constante étant nulle, ¢ peut prendre
n’'importe quelle valeur.

On peut trouver la valeur de ¢ quand on connait la valeur de I'intégrale
pour une certaine valeur de la variable z. Cette spécification s’appelle condi-
tion initiale.

Exemple 5.1 Supposons qu’unefonction f(x) a une intégrale indéfinie
F(z) + ¢ = 22°% + 3z + c. Cette famille de courbes est représentée sur la figure

N
\S%

Figure 5.1: Famille de courbes d’équation y = 22% + 3z + ¢

A chaque courbe correspond un c différent. Supposons comme condition ini-
tiale que Uintégrale vaut 5 quand x vaut zéro. Nous avons alors :

2(0024+3(0)+c=5

d’ot ¢ =5 et l'intégrale avec la condition initiale est alors:
/f(a:)da: =222+ 3z + 5.

Cette intégrale fait partie de la famille de courbes données par: 2z*+ 3z +c
(Figure 5.1).
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5.3 Table d’intégrales

Avant de donner des méthodes d’intégration, nous donnerons une liste d’inté-
grales indéfinies que l'on peut obtenir directement a partir de la définition
5.1, c’est-a-dire que 'on peut vérifier que la dérivée du second membre est
égale a la fonction a intégrer.

./l-d,'-::/dx::r:-!-a

xa+1
2 /x“dx=a+1 + ¢, avec o # —1.

./@:lnizﬂ—i—c.
z

4. /ardmz o + e,
Ina

1 /emdm=ex+c.

6. /sin:cda: = —cosz +c.

=

(%]

(4]

W /cosxdx =sinz + c.

co

. /Sinh xdx = coshz + c.

©w

: / cosh zdx = sinh z + ¢.

Donnons encore deux propriétés importantes de l'intégrale indéfi-
nie (dans ce qui suit, on suppose que les intégrales indéfinies considérées
existent):

1® propriété L’intégrale indéfinie de la somme d’un nombre fini de
fonction est égale a la somme de leurs intégrales:
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/[f'1($)+f2(3)+-‘-+f,1(m)]d:.-:: / fl(x)dx+/fg(x)dx+...+/fn($)dx

2¢ propriété On peut sortir un facteur constant “du signe [, c’est-
a-dire si a est une constante, alors:

/af(;c)d:c =a/f(:c)a‘x.
Exemple 5.2 Soit [ (7z*+2)dz. A laide des deux propriétés ci-dessus et

de la table des intégrales indéfinies, nous calculons :

.
/(7x2+2)d$=/7m2dm+f2d$:7/m2d$+2/d:*:=7-%+2m+c.

Exemple 5.3 2? = %ﬂi =2In|z | +e.

Exemple 5.4 /Sezd:r == 3/eid$ =3e" +ec.

Exemple 5.5 /'(2I —sinz)dx = f?do: - /sin zdz = 1?12 +cosx + c.

Remarque Rappelons que la dérivée d’une fonction composée y = f(g(z))
est donnée par y' = f'(g(z)) - ¢'(z), ou ¢g'(z) est parfois appelée dérivée
intérieure. Il ne faut pas oublier d’en tenir compte lorsqu’on veut intégrer
une telle fonction composée.

1
Exemple 5.6 / e*dr = Zeu + ¢, puisque la dérivée intérieure de e'* est
égale a 4.

Exemple 5.7 /cos(3m —5)dr = %Sin(&r —8) +c.
De maniére plus générale, on a la régle suivante: Si / f(z)dz = F(z) + ¢,

alors : i
/f(a::: + b)dx = EF(ax +b) 4+ ¢z, ou a#0.
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5.4 Intégration par changement de variable

L’intégrale j f(z)dz peut devenir plus simple & calculer si la variable z

est remplacée par une nouvelle variable t telle que z = ¢(t). Dans ce cas,
dz = ¢'(t)dt et 'égalité suivante est satisfaite:

[ 1@z = [ sow)- o'trar

Il est parfois préférable de choisir le changement de variable ¢ = 9(z) au
lieu de z = ().

Exemple 5.8 /sin;r-cos:v dz. Effectuons le changement de wvariable

t=sinz; ainsi, dt = cosz dx et par conséquent :

# 1
/sin:.':-cosa: dx=/tdt=—2-+c=§sin2$+c.

Dans cet exemple, l'intégrale & calculer est de la forme: /1‘0(3:) A (z)dz.
En posant t = 1(z), on a: dt = '(z)dz. Dot :

/zf)(x d:-:-ftdt E;‘FC——T,D(:C)

De facon analogue, on obtient la formule générale:

/ ) - (@) = —

e Y"1 (z) +¢, avec n # —1.

Exemple 5.9 /(:1: +3)°dz. Posons: t =z +3; dt =dz. D’ou:
6 6 1.y 1 7
(z +3)°dz = tdt:?t +c=?(:r+3) +c

%2+ 5

2z dt 0
/$2+5d$—f~t—=ln|t|+c:ln(m +5)+c¢

2
Exemple 5.10 /—md&:. Posons: t =2%+5; dt =2xdx. Ainsi:
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Y'(x)
¥(z)

Lorsque 'intégrale a calculer est de la forme / dz, on pose t = ¥(z)

et on obtient la formule:

Y), [t _ _ :
/w(m)dz—/?vlnlt|+c—ln|1p(:z,)|+c.

dt
Y Posons: t = 3x+2; dt = 3dx = dr = —. Ainsi:
3z+2 3

Exemple 5.11 ]

da gt 1 [dt 1 1
— _—= - — =1 t = —1r 2 .
/3x+2 g =g | g g s e gl Sl e

Exemple 5.12 /323 V1 + 22dz. Posons: t =1+2z°; dt = 2zdz. Comme

1
t=1422 ona: 2°>=1t—1. Ainsi, 23dz = 2 - adz = (t — l)gdt. D’ot :

St —1) - Vidt
t-\/f—éx/f)dt

Il
S

/333\/ 1+ z2%dz

&
2

/-"'_""‘-\[\J[H

= %ftwdt—%/tl/zdt
= grg i ogrglt e
1 1
= 452 _ 243/2 4
5 3 +c
1 .o
= Et3/2-(3t—5)+c
- 115(1 +2?)¥2. (327 —2) +c.

5.5 Intégration par parties

Lorsqu'une expression a intégrer est formée d'un produit de deux fonctions
dont I'une est facile & intégrer, nous pouvons utiliser ce qu’on appelle I'inté-
gration par parties. Cette formule se déduit directement de la dérivée d'un
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produit :
i(u-v) = u-EZE-i-U-Ed—E
dz - dzx dz
i QE = —dé(u v) —v @
dz _ dz Vi

L’intégration des deux membres de 1’égalité nous donne:

dv . [du-v) du
/u-ada:—-] o d:r—-/v-a-d;r.

D’on la formule d’intégration par parties:

/udv:u-v—fvdu.

Il n’y a malheureusement pas de régles pour séparer une expression en
deux parties u et dv. D’autre part, il se peut que I'intégration par parties ne
fournisse pas une expression plus simple a intégrer; dans ce cas, une autre
méthode doit étre utilisée.

On notera finalement que, dans certains cas, la formule d’intégration par
parties doit étre utilisée plusieurs fois consécutivement.

Exemple 5.13 Pour calculer 'intégrale fx -sinzx dz, on pose: u =z et

dv = sinz dz, de telle sorte que du = dx et v = fsina: dr = —cosz.

Par la régle dintégration par parties, nous avons:

/msin:cd:c — —xcos;r—]—cos;c dz

= —xcosm+/cosx dx

= —ICcosT-+sinx+c.
Exemple 5.14 /$2 -e*dz. Posons: u = z* et dv = e®dz. Nous avons
alors: du=2xdx etv = [ e"dz = €”.

Ainsi, /xge”dx =z°. " — /2$exd$.
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A nowveau, nous avons un produit & intégrer. Posons u = 2z et dv = e*dx ;
du =2dx etv=¢". D'oti:

/:rzezdx = z%® — [2ze" — ]Qexdwl
= z2e® —2ze” + Z/ezd:c

z%e® — 2ze® + 2e° + ¢
e (z® -2z +2) +c.

5.6 Applications économiques des intégrales
indéfinies

Nous avons vu précédemment que la variation marginale peut étre obtenue
en dérivant une fonction. Par conséquent, cette fonction est l'intégrale de la
variation marginale. Nous allons voir cette application de l'intégration pour
le cofit et pour le revenu.

e Le coiit

Si le cott total de production y pour produire z unités est fourni par
la fonction y = f(z), alors le coiit moyen par unité est:

y _ fl=)
x i
et le colt marginal est:
,_dy
y = Fre f'(z).

C’est-a-dire que le cofit marginal est la dérivée par rapport a z de la
fonction du cotit total y = f(z). Donc le cont total est I'intégrale par
rapport & z de la fonction du coiit marginal f'(z):

/f’(:c)dm = f(z) +c.

Pour obtenir une fonction du coit total unique en intégrant la fonction
du cofit marginal correspondante, il faut remplir une condition initiale.
Fréquemment, il s’agit du cofit fixe, ¢’est-a-dire le cotit quand z = 0.
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Exemple 5.15 Le cotit marginaly’ est donné pary’ = 1.64—0.05z. Trouvons
les fonctions du cott total et du coiit moyen quand le cott fize est égal a 10.3.

y= /(1.64 — 0.05z)dz = 1.64z — 0.0252° + c.

Siz=0,y=164-0-0.025-0%+c=10.3. Par conséquent, c = 10.3 et la
fonction du cott total est:

y = 10.3 + 1.64z — 0.025z°.

Celle du cotit moyen est égale au cott total divisé par la quantité z :

y_ 103 64— 00250
T T

e Le revenu

Pour n’importe quelle fonction de demande y = f(z) ou y est le prix
par unité et z le nombre d’unités, le revenu total R est le produit de z
par y, c’est-a-dire :

R=z-y=u- f{z).

Le revenu marginal par rapport a la demande est la dérivée par rapport

a z du revenu total: iR
— =R/(z).
dz (2)
Par conséquent, la fonction du revenu total est I'intégrale par rapport

a x de la fonction du revenu marginal, et puisque:

/ R(z)dz = R(z) + ¢,

il faut donner une condition initiale pour obtenir une fonction du re-
venu total unique en intégrant la fonction du revenu marginal corres-
pondante. La condition initiale stipulant que le revenu est nul quand
la demande est nulle peut étre utilisée pour évaluer la constante d’inté-
gration.

Notons que le revenu moyen ou revenu par unité est le prix par unité y
et de ce fait la courbe du revenu moyen et la courbe de demande sont
identiques.
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Exemple 5.16 La fonction du revenu marginal est R'(z) = 4 — 4z + 622
Déterminons les fonctions du revenu total et de demande :

R(z) = /(4 — 4z + 62%)dz = 4z — 22° + 22° + ¢,

Siz=0,R0)=4-0-2-0°42-0°+¢c=0, dot c =0. Le revenu total
est donc:

R(z) = 4z — 22% + 22° et la demande: y = % =4 — 2z + 222,

5.7 Intégrale définie

Nous allons voir maintenant comment calculer 'aire A de la surface comprise
entre la courbe y = f(z), 'axe des z et les droites x = a et = b (pour autant
que f soit définie sur [a;b] ) (Figure 5.2).

y=/®

[l

Figure 5.2: Aire sous une courbe y = f(z)

Pour cela, nous ferons les hypothéses suivantes :
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1° Soit y = f(z) une fonction continue sur I'intervalle [a; b).
20 Soit f(z) >0, Yz € [a;b)].

3° Effectuons une subdivision de l'intervalle [a;b] en n parties

en choisissant (n + 1) points z1, Za,..., Tpy1 tels que:
a=%1 STy <o i < T < Tijg1 < vov < Ty = b (Figure 5.3).
4°  Soit A$1:$¢+1—Ii,i:1,2,...,ﬂ,.

5°  Soit Az la valeur maximale des Az; pour 1 <1 < n.
Les (n+1) points choisis divisent I'intervalle [a ; b] en n parties de longueur
Az;; nous pouvons ainsi former des rectangles dont la base est la largeur
Az; et la hauteur est la valeur f(z;) (Figure 5.3).

y y=fx

-
Gte) |

X

Ola=x, x,x, X, Xy X, X,y =0

Figure 5.3: Subdivision de l'intervalle [a; b]

L’aire de ces rectangles est respectivement égale a:

ATy~ fl@y); Dy F{@e);ees Dy - zy)
et leur somme est:

> Az f(a).
i=1

Ainsi, 'aire cherchée est approximée par:

A% Zmi - flzs).
g=1
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En augmentant le nombre de rectangles, I’aire se trouvant entre la courbe et
les rectangles va diminuer. Si 'on veut calculer I'aire exacte, il faut calculer
la limite de cette somme lorsque n tend vers I'infini et Az tend vers zéro.

L’aire A limitée par la courbe y = f(z), 'axe des x et les deux droites
z = a et x = b est définie comme étant cette limite:

= lim Z Az; - f(z;)

n—oo,Az—0

b
que l'on note ] f(z)dz (lire “intégrale de a a b de f(z)dz”) et que 'on
appelle intégrafe définie; a et b sont appelés les bornes d’intégration.
Nous énongons a présent 1'un des théorémes les plus importants du calcul
intégral.

Théoréme 5.1 (Théoréme fondamental du calcul intégral) Si f(z)
est continue sur l'intervalle fermé [a; b] et si F(z) est une primitive de f(z),

alors :
b b
/ f(z)dz = F(x)

Expliquons ce résultat géométriquement en considérant 1’aire limitée par
la courbe y = f(z), 'axe des z, une abscisse fixée en z = a et une abscisse
mobile en x = b. Notons cette aire abgh par A (Figure 5.4).

Quand z = b s’accroit de Az, A s’accroit de AA = aire beeg. Nous voyons
que:

= F(b) - F(a).

aire bedg < aire beeg < aire beef
bg - Az < AA <ce-Az
bg < AA/Az < ce.

Lorsque nous faisons tendre Az vers zéro, ce va tendre vers bg qui reste fixe

et nous avons:
AA  dA

s Az . da =bg=y= f(z)
Nous pouvons écrire cette limite comme suit :
dA = f(z)dz
Notons par F(z) + c l'intégrale de f(z)dz; d’ou par intégration:
A = F(z) +c.
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y=1fx

b
Figure 5.4: A = aire abgh = / f(z)dz = F(b) — F(a)

On trouve la constante d’intégration ¢ en remarquant que pour z = a, A = 0.
Nous avons alors :

A = Fla)+c=0
=c¢ = —F(a).

Par conséquent, on obtient :
A = F(z) — F(a).

L’aire abgh de la figure 5.4, ou = = b, est donc égale a:
A =F(b) — F(a)

et on la note: ,
/ f(z)dz = F(b) — F(a).

La constante d’intégration disparait et I'intégrale a une valeur finie. C'est
pourquoi 'on parle d’intégrale définie.

Exemple 5.17 Calculons 'intégrale définie _['93 z?dz. Tout d’abord, il faut
trouver F(z) :
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Ensuite, nous remplagons dans A = F(b) — F(a) avecb=3 eta=10:

Cela signifie que l'aire comprise entre y = 2%, l'aze des x, z = 0 et z = 3 est
égale & 9 (Figure 5.5).

3
Figure 5.5: / z2de =9
0

e Interprétation d’une aire négative

Dans la définition d'une aire par A = ff f(z)dz, on a supposé que f(x)
est une fonction positive continue entre a et b. Si f(z) est négative entre
a et b, c’est-a-dire si la courbe y = f(z) se situe au-dessous de 'axe des
a entre a et b, alors la valeur de l'intégrale

b
A= / flz)dz
[}
est négative. De telles aires sont appelées des aires négatives. Lorsque

I'on calcule A = / f(z)dz sans tenir compte du fait que la courbe

y = f(z) se situefz au-dessus ou au-dessous de 'axe des z, on parle
d’aire orientée. Il se peut que cette aire soit nulle comme le montre
I’exemple suivant.
4
Exemple 5.18 sinzdz = — coszly’ = — cos4m — (— cos0) = 0.

0 3 yal
Dans ce cas, la somme des aires positives compense eractement la somme
des aires négatives (Figure 5.6).
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4m
Figure 5.6: / sinzdz = 0 en tant qu’aire orientée
0

En revanche, si 'on veut calculer 'aire totale absolue entre une courbe
et I'axe de @ pour un intervalle [a; b], on utilisera la formule:

Aire totale = ) (aires positives) - > (aires négatives).

b c d e I
Figure 5.7: Aire totale = / - j + / — / £ j
a b ¢ d e

Par conséquent, si l'aire que 'on doit calculer se situe a la fois au-dessous
et au-dessus de 'axe des z, il faut décomposer l'intégrale en utilisant la
propriété 5 et la définition de l'aire totale donnée ci-dessus (Figure 5.7).

Exemple 5.19 L ’aire se situant entre f(z) = 2% — 4a, l'aze des z, z = 0 et
z = 2 est donnée par:

/:(:.:2 —4z)dz = (%3 - 2:.52)

2

0
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2 03

= ——-2.22_ =00
g el | i)
8 16
B

Comme laire se situe au-dessous de l'aze des x (Figure 5.8), Uaire totale
s’obtient en changeant de signe:

16
Aire totale = — aire négative = 3

: 16
Figure 5.8: ] (z? — 4z)dz = -3
0
Exemple 5.20 L’aire qui se situe entre f(z) = —z® + 2 + 5z, l’aze des =,

z=—1 etz =1 est représentée dans la figure 5.9.

1
Pour trouver Uaire totale, il faut donc décomposer l'intégrale / f(z)dz de
-

_/_Ol f(:r)d:r+/01f(m)d:c

ol —/_D f(z)dz = —/0(—$3+m2+5x)dx

1 -1

_ (2, 2 52
N 4 " 3 2

la maniere swivante :

0

=}
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et ]0 1 f(z)dz

L’aire totale vaut donc:

0
Figure 5.9: —f

-1

137

O (e it 2
4 3 2

(—-3-4+30) 23
12 12

1
/ (—2® + 2 + 5z)dz
0

2% 5x?)\ |
GZ*E*?J

0

_l+l+§_(_(—0)4+0_3+5.0_2)
4 3 2 4 3 2
(-3+4+30) 31
12 i)
31 54 9
RTRTY

¥

1
(=2 + 2° + 5z)dz + / (-2 + 2? + 5z)dz = g
0

e Propriétés des intégrales définies

Soit deux fonctions f(z) et g(z) continues sur 'intervalle [a;b]. Nous
avons les propriétés suivantes:
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1. /bf(a:)da: = _/a f(z)dz

2. [ foyo

3. / cf(z)dz —cj f(z)dz, on ¢ est une constante.
a

4 /b( (@ )ig(m)dw-/f(wdx:t/g( )dz.

/f d:c—/f dzc—}—ff z)dz, avec a < b < c.

Exemple 5.21 Appliquons la propriété 1 fz] (2z + 5)dz :

4
/ (2z + 5)dz
1k

/41(2:8 + 5)dz

1
Exemple 5.22 Appliquons la propriété 2 d/ (62° + 1)dx :

1
/ (62° + 1)dz
1

1

($2 + B:c) [?

424+5.4—(1245-1)
36 — 6
30.

(m2 + 5.7;) ‘i

1°+5-1— (4> +5-4)
6 — 36
—30.

1

(2:1:3—}-3:)\1
2-13+1-(2-13+1)
3-3

0.

Intégrales
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3

Exemple 5.23 Appliquons la propriété 5 d/ ddx :
1

3 2 3
f ddr = / 4dx + / 4dx
1 1 2

3
]4@’:{: = 4:.r;|?
1

4-3—(4-1)
12— 4
8.

2 3
/4d;-:+/ ddr = 4z} + 4z}
1 2
= 4-2—(4-1)+4-3—(4-2)
= 8—-4+12-8
= 8.

e Aire entre deux courbes

Si l'aire totale que I'on doit calculer ne se situe pas entre une courbe
f(z) et 'axe des z, mais entre une courbe f(z) et une autre courbe
g(x) (toujours entre z = a et x = b), on obtient cette aire de la fagon
suivante, en supposant f(z) < g(z):

b
A= / [9(z) — f(z)]dz avec a <z < b.
Remarque Comme, par hypothese, f(z) < g(z), il n’est plus néces-

saire de tenir compte des aires négatives.

Exemple 5.24 Trouvons laire qui se situe entre f(z) = z* et g(z) = x
(Figure 5.10).
Nous cherchons tout d’abord les points d’intersection :

° = z

2’ —z = 0

(2 —1) = 0
z-(x+1)(x—1) 0.
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0

1
Figure 5.10: ] (23 — z)dz + / (z — 2%)dz =
0

-1

Les solutions de cette équation sont:
z = —1
z = 0
2
Nous remarquons qu’entre —1 et 0, ¢’est g(x) qui est inférieure & f(z) tandis

qu’'entre 0 et 1, c’est f(z) qui est inférieure a g(z). Par conséquent, nous
devons décomposer intégrale en deuz intégrales :

/_ 1/() - glollde o / lo(z) — f(z)dz.

Nous avons alors :
0

[ - (5-5)]

/01(3: —2d)dr =

B =N
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i
=

| =
e

L’aire totale est égale a:

5.8 Intégrales impropres

b
L’objectif de ce paragraphe est de calculer / f(z)dz, on f est une fonction

continue sur intervalle [a; b] (c’est-a-dire queaf n’est pas définie en b) ou sur
Iintervalle ]a; b] (c’est-a-dire que f n’est pas définie en a).

(s =]
1
Exemple 5.25 / izda: ot f (z) = — est continue sur [1; .
g i >

1
Exemple 5.26 / In(z)dz ou f (z) =In(z) est continue sur]0;1].
0

Si f () est continue sur [a; b[, alors f est continue sur [a; zo] pour zo < b.
b

Dés lors, l'intégrale ] f(z)dz se calcule en deux étapes:

1. Calculer / f(z D (z0).

b
2. Prendre la limite lorsque zq tend vers b: hm P (zy) = ] f(z)dz

ZZU—»

Nous avons donc, si la limite existe: hm f z)dz / flz)dz -
zg—h
De meme si f(z) est continue sur ]a; b}, nous avons, si la limite existe:
lim f z)dx / flz)dz .
Tg—a

1
Exemple 5.27 C’a!culons/ —dm f (z) = — est continue sur [1;00].
) T

e 1 1
i 0 o

Il
—
|
1

2. lim ®(zg9) = lim (1—--1—):1— lim (i)zl—o-:l.

Tg—00 Tp—00 Iy To—0o0
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& 1
Ainsi,/ —dr = 1.
{ @

Exemple 5.28 Caécufons/ In (z) =In(z) est continue sur ]0;1]
Une primitive de In (z) est F () ) —x (voir exercice 2 (a) du méme
chapitre).

1. ®(zg) = / In(z)de = (zln(z) — 3:)[;0 = —1— (zoln(zp) — zo)

= —:.cnoln (o) + 2o — 1.

2. lim ® (z0) = hm (—zoIn (z0) + 2o — 1)

rg—0
= ~1 — lim (zgln(zq)) + lim 2o = —-1-0+0=—1.
Io—»o 9:0—:0

1
Az’nsz‘,f In(z)dz = —-1.
1]

5.9 Applications économiques des intégrales
définies

L'intégrale définie a de nombreuses applications en économie. Les concepts
d’excédent du consommateur et d’excédent du producteur en sont deux
exemples. Nous allons en discuter dans ce paragraphe, puis nous traiterons
du profit total.

e Excédent du consommateur

Une fonction de demande représente les quantités d’un produit qui
pourraient étre achetées a différents prix. Si le prix du marché est y,
et la demande du marché correspondante est zg, les consommateurs
qui seraient d’accord de payer plus que le prix du marché y gagnent
du fait que le prix est seulement 3, (Figure 5.11). Sous certaines hy-
pothéses économiques, le gain total du consommateur est représenté
par l'aire qui se situe sous la courbe de demande et au-dessus de la
droite y = yy. Cette aire est désignée par Marshall comme “I’excédent
du consommateur” et est évaluée comme suit :
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I
— excédent du consommateur = / flz)dz — zq - yo
0
ou la fonction de demande est y = f(z), ou d’une maniére ana-

logue

g
— excédent du consommateur = / g(y)dy

Yo
ou la fonction de demande est = g(y) et mg est la valeur de y
quand z = 0, c’est-a-dire que my est I'intersection de la fonction
de demande avec ’axe des y. Par conséquent :

Ty o
excédent du consommateur = f(@)dz — - yo = f g(y)dy.
0 Yo

y=fx) & x=g0)

Yo

0l X, quantité *

Figure 5.11: Excédent du consommateur

Exemple 5.29 Si la fonction de demande est y = 24 — 2z — 2%, nous allons
trouver l'excédent du consommateur:

(a) sixg=3 (Figure 5.12(a))
Ainsi: y=24-2-3-32=09.

Ty
excédent du consommateur = / flz)de — o - Yo
0

3
= /(24—2$—:r2)d$—3-9
0
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3
- 27

3
= (24z;—m2—m—)
3 /1o

= (712-9-9)—0-27
27.

(b) siyo =21 (Figure 5.12(b))
Ainsi, zq est trowvé par 21 = 24 — 2z — z2. De la, nous avons
2?2 4+2c-3=0,dovz=(-2+/4+12)/2=(-2+4)/2=1c¢t
—3. Comme une quantité ne peut pas étre négative, xo = 1.

Zo
excédent du consommateur = / flz)dz — xo - yo
0

1
= /(24—2:6—m2)d2:—1-21
0

33
Uz — 2% — —

¥

1
—21

Figure 5.12: Excédent du consommateur (a) si 2o = 3 (b) si yo = 21

e Excédent du producteur

Une fonction d’offre représente les quantités respectives d’un produit
qui pourraient étre offertes a différents prix. Si le prix du marché est y,
et offre du marché correspondante est zg, les producteurs qui seraient
d’accord d’offrir le produit au-dessous du prix du marché y gagnent du
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fait que le prix est yy. Sous certaines hypothéses économiques, le gain
total pour le producteur est représenté par l'aire qui se situe au-dessus
de la courbe d’offre et au-dessous de la droite y = y et il est connu sous
le nom d’excédent du producteur (Figure 5.13). Cette aire est évaluée
par:

— excédent du producteur = zg - yg — / f(z)dz.
0

ou la fonction d’offre est y = f(z)

ou encore par:

Yo
— excédent du producteur = g(y)dy

Mg
ou la fonction d’offre est = = g(y) et My est la valeur de y quand
z = 0, c’est-a-dire que Mj est 'intersection de la fonction d’offre
avec 'axe des y.

Nous avons donc:

]
excédent du producteur = zq - yg — / f(z)dz = / 9(y)dy.
0

PIX| y=f) & x=gB)

Yo oy

(0:My)

X
0l X, quantité

Figure 5.13: Excédent du producteur

Exemple 5.30 Si loffre est y = (z + 2)* et le priz est yo = 25, nous al-
lons trouver l'excédent du producteur en utilisant deur méthodes différentes
(Figure 5.14).
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(3;25)

Figure 5.14: Excédent du producteur si yy = 25

Remarque zq se trouve comme suit: 25 = (z + 2)2, ce qui nous donne
z? + 4z — 21 = 0.
De la, nous avons x = (—44+/16 +84)/2 = (-4 +10)/2 = —7 et 3. Comme
une quantité ne peut pas étre négative, xop = 3. Ainsi:

x0
a) excédent du producteur = zg- Yy — f(z)dz
0
3

= 3-25—/ (z +2)%dx
0

2)3|?

N Cdt )

3 0

125 8

= = SN ©

’ (3 3)
= 36.

Remarque On trouve g(y) en inversant y = (x +2)* : /y = x + 2 et
VY —2=x. Quant a My, on le trouve en posant x = 0 dans y = (z+2)?, ce
qui donne My = 4. Ainsi:

Yo
b) excédent du producteur = / g(y)dy
My

25
= f4 (y"/? - 2)dy

2y3[}2 25
-2
( g Y

4
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- (5-9)-()

= 36.

e Profit total

L’intégrale peut étre utilisée pour déterminer le profit total ou le béné-
fice net total dans différents contextes. En général, le profit est maxi-
mum (en concurrence parfaite) quand le revenu marginal est égal
au cofit marginal. Le profit total est l'intégrale du revenu marginal
moins le coit marginal de la quantité zéro & la quantité pour laquelle
le profit est maximum.

Exemple 5.31 Nous allons trouver la quantité qui mazimise le profit et le
profit total en ce point, si les fonctions de revenu marginal et de coit marginal
sont données par:

RMa = 25 — 5z — 222,

CMa =15 — 2z — 2.
Ces fonctions sont représentées sur la figure 5.15. Si RMa = CMa, on a:

25 — 5z — 22 = 15— 2z — 22
25 — 52 —222 - 154+ 2z +22 = 0

10-3z—2% = 0

5+z)2—-2) = 0

avec comme solutions :
1= —5 et xo = 2.

Seul zo a un sens économiquement parlant.

La premiére dérivée de (RMa — CMa) est la seconde dérivée du profit total
(PT') et son signe nous indique st le profit est un mazimum ou un minimum
pour une valeur particuliére de x.

2
;—x(RMa, — CMa) = dd‘:j =-3-2z
d*PT

et avecr =2, — = —
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le profit est bien un mazximum pour T = 2.
2
profit total = / (RMa — CMa)dz
0

2
= / (10 — 3z — 2*)dz
0
32 z®
(”’I B ?)

8
= (20—6—5)—0

34
3

2

Il

0

L’aire hachurée sur la figure 5.15 représente le profit total calculé ci-dessus.

2
Figure 5.15: Profit total = / (RMa — CMa)dz = 1_4
0
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FExercices

1. Calculer les intégrales indéfinies suivantes :
(a) /sin 2z dz.
(b) /sin:r -cosz d.

() /(:r2 4m—b)e de:
@ / 3+Ine

s
(e) ].’L - e"dz.
dx

®) /33:;1-1'

2. Calculer, par parties, les intégrales indéfinies suivantes :

(a) /lnz dx.
(b) /m-lnm dz.
(c) /:.-:2 -sinz dz.

(d) /sian dz.
3. Connaissant le cotit marginal d’une unité produite z :
CMa = —42* + 50z + 3.

Trouver le coiit total et le cotit moyen si les coiits fixes sont de 60.

4. Si le revenu marginal est RMa = z? — 6z + 10, déterminer le revenu
total et la fonction de demande.
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5.

10.

11.

Intégrales

En tout point d’une certaine courbe, on a y” = x + 5.
Trouver 'équation de cette courbe sachant qu’elle passe par le point
(1;2) et, qu’en ce point, elle est tangente & la droite z +y = 3.

. Calculer les intégrales définies suivantes :

1 2
dz.
(a)/ﬁ 1+a2
/4
(b)/ tanz dz.
0
dz.
(C)fo z+2
ck2
—dz.
@ [ s

1
1
(e)f —dz. (constatation! ).
-1

Quelle doit étre la valeur de a pour que 'aire comprise entre la parabole
y = 22 et la droite y = az soit égale 4 2?7 Faire une esquisse de la
situation.

Note Choisir a > 0.

Si la fonction de demande est y = 8 — z et zg = 4, trouver l'excédent
du consommateur en utilisant deux méthodes différentes.

La quantité et le prix correspondants, en concurrence parfaite, sont
déterminés par les fonctions de demande et d’offre y = 14 — 22 et

y = 2 + x respectivement. Déterminer I'excédent du producteur cor-
respondant.

Déterminer l'aire comprise entre la parabole y = 2% + 2 et la droite
y=2z+5.

Calculer les intégrales indéfinies suivantes, par changement de variables :

(a) f 3zv/1 — 22%dz.
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z+4+3
(22 + 61z) 2+ 625"
/2
/ )e*dx.

/ e””—i—l

Wﬁdm

12. Calculer les intégrales suivantes :

151



152 Intégrales

NEWTON Isaac Sir (1643-1727)

Apres des études & Cambridge, Newton est élu, en 1669, professeur de mathé-
matiques et devient membre de la Royal Society en 1672. Ses recherches por-
tent, essenticllement, d’abord sur le domaine de 'optique. En 1787, il publie
son fameux Principes, dans lequel il formule les trois lois du mouvement,
dérivées de sa loi de gravitation universelle, et présente un systéme de mé-
canique capable de préciser et d’évaluer les mouvements de tous les corps
célestes ou terrestres. Cet ouvrage est considéré comme le plus grand livre
scientifique jamais écrit. En 1693, Newton se retire de la recherche et oc-
cupe un poste au Gouvernement. En 1703, il est élu président de la Royal
Society, charge qu’il conserve jusqu’a sa mort en 1727. Sir Isaac Newton
a changé le cours de I'histoire scientifique. Ses découvertes et ses théories
sont les fondements de tous les progrés scientifiques qui suivirent. Sa théo-
rie du calcul différentiel et intégral, la résolution des mystéres de la lumiére,
la découverte du théoréme binomial sont d’autres de ses contributions im-
portantes. Qeuvres majeures: Principes Mathématiques de la Philosophie
Naturelle (1687), Optique (1704).



Chapitre 6

Les séries

6.1 Introduction

Dans le chapitre 3, nous avons étudié la notion de suite. Nous allons main-
tenant nous intéresser & la somme des termes d’'une suite, qui porte le
nom de série. Nous aborderons la notion de convergence et de divergence
d’une série infinie en donnant des régles et des critéres permettant d’établir
la convergence ou la divergence pour différents types de séries. Nous étudie-
rons finalement la représentation d’une fonction par une série de Maclaurin
et par une série de Taylor. L’utilisation des séries en économie permet notam-
ment de trouver le taux de rendement interne d’'un investissement ou encore
la valeur capitalisée d’une annuité.

6.2 Deéfinitions

Nous avons vu au chapitre 3 qu'une suite finie avait un nombre fini de
termes: wup,us, Us, ..., U,.

Définition 6.1 On appelle série finie la somme finie up +us+uz+- -+ Uy,

mn

notée E u;, o les u; sont les termes d’une suite (uy).

i=1
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Il est & remarquer que Iindice de sommation peut tout aussi bien étre
noté par k, [, m etc. A1ns1 pour desagner la SOmme Uy + Uy + - - -+ Uy, on peut

indifféeremment écrire : Zu,-, Zuk, Zum etc.

i=1
On parle de suite infinie lorsqu’ elle comportc un nombre illimité de termes

et on la note: uy, us,uz, ..., Un,. ..

Définition 6.2 On appelle série infinie (ou simplement série) la somme

wy + Up + Uz + -+ Uy + -+ -, Notée E ui, o les u; sont les termes d’une
. i=1
sutte (up) infinie.

I1 est parfois pratique de prendre 0 comme indice du premier terme ; dans
oo
ce cas, la série s’écrit E ;.

i=0
Comme dans le cas des suites, le terme général ou n¢ terme d’une série
a une expression indiquant comment former les différents termes de la série.

Exemple 6.1 La série finie 1 + 8 + 27 + 64 + 125 peut s’écrire sous forme
5

abrégée E n3. La somme de cette série vaut :

n=1
5
Zn3= 1% 423 4 3% 448 4+ 5% =295,

n=1

1 1
Exemple 6.2 La série infinie 1 + 3 + 1 + 3 + - -+ a pour terme général
1

Un = on—1

lorsque l'indice du premier terme vaut 1, ¢’est-a-dire le premier terme s’ob-
tient en posant n = 1, le deuxiéme en posant n = 2, etc. Cette série s’écrit :
o0
Yo
n—1"
n=1 2
Dans 'exemple 6.2, la somme n’est plus la somme d’un nombre fini de
termes comme dans 'exemple 6.1, mais la somme d'un nombre illimité de
termes. Pour savoir si cette somme est un nombre fini, il faut introduire la
notion de convergence et de divergence d'une série infinie.
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6.3 Démonstration par récurrence (induction)

e Pour démontrer qu’'une formule P(n) dépendant d’un nombre naturel
variable n est vraie quel que soit n, on procéde en deux étapes:

1. On vérifie que P est vraie pour n = 1 (ancrage).

2. On démontre que si la proposition est vraie pour un entier k quel-
conque, elle est aussi vraie pour l'entier k + 1.

Ici 'hypothése est donc P(k) et on 'appelle hypothése de récur-
rence, la conclusion doit étre P(k + 1).

Exemple 6.3 Démontrons par récurrence que:

T

> i=1+24+3+-+n=

Posons: S, =1+2+3+---+n.

n-(n+1)
—g

1-(1+1
1. Ancrage: S, = —(QLJ =,
. 1
la proposition S, = T—l% est done vraie pour n = 1.
k-(k+1
2. Hypothése de récurrence: Sy = %

1l s’agit a présent de montrer que:

(k+1)- (k+2)

Skg1 = 9
Ona:
Sky1 = Sp+(k+1)
k-(k+1
= %+(k+l)

= (k+1)-(§+1)

(k+1) - (k+2)
- .

L (n+1
Par conséquent, S, = uTH'—)

fallait démontrer (c.q.f.d.).

quel que soit Uentier n positif, ce qu’il
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Cette méthode peut servir, comme 'on vient de le voir, & démontrer la
formule générale du ne terme d’une série. Cette démonstration se passe en
deux temps: 1) étant donné une série, deviner la formule générale;
2) démontrer la formule par induction. La premiére partie est généralement la
plus ardue, étant donné qu'’il n’existe pas de méthode générale ni d’algorithme
pour trouver la formule. Seul le flair et un peu de chance entrent en jeu!

6.4 Convergence et divergence d’une série

Il est clair que la somme d’un nombre fini de termes est un nombre fini. Pour
savoir si la somme d’une série infinie est un nombre fini, il faut introduire la
notion de sommes partielles: pour cela, on forme & partir des termes u; de
la série la suite (S,,) des sommes partielles, ou S,, représente la somme des n
premiers termes; ainsi la suite des sommes partielles sera donnée par :

81 = 1
Sy = w+up
Sg = Uy + Uz + Us

Sq = u1+U2+H3+U,4

n
So = wittstugtustotu, = u
i=1

Nous pouvons deés lors définir la convergence et la divergence des séries
infinies :

oo

Définition 6.3 On dit qu’une série Zu,- est convergente si et seulement
i=1

st la suite des sommes partielles converge :

m
lim § = lim Y u = L.
TE— OO T TL—+ OO i—1

1=

Dans ce cas, L est appelée somme de la série et l'on écrit: L = Z u;. Sila

i=1

oo
suite des sommes partielles diverge, on dit que la série Z u; est divergente.
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Exemple 6.4 Reprenons l'exemple 6.2 pour étudier la convergence de la sé-

rie Z Tt Pour cela, calculons la suite des sommes partielles :
n=1
5 =1
1 3
S. = ]_ = B =
. T35 3
1 1 7
S3 = 14=4=-=-
3 tatiTa
1 1 1 15
— el Sl 55
Sy + 5 + 1 + 3 3
1 1 1 an—1 1
Sn == 1+'2—+Z+"'+§;:1'=F-=2”2n_1
1 1
i 5, = tim ZF— im (2- ) -2
oo
n=1
et sa somme vaut 2. Ainsi,
14 = . + - —l— +
2 2“

o0

Remarque Une condition nécessaire pour qu’une série E u,, converge

n=1
est que le terme général u,, de la série tende vers 0 lorsque n tend vers l'infini :
lim u, = 0. Cette condition n’est cependant pas suffisante, comme nous le

n—00

verrons plus loin, au paragraphe 6.6.
En revanche, on peut affirmer :

si lim w, # 0, alors la serlez u,, diverge.

e n=1
, L. .2 8 4 v
Emmmb&SSmMmﬁm§+§+Z+g+~-=Z;;%imemeF
verge puisque
lim u, = lim =260,

n—oo n—oco 1, 4+ 1



158 Les séries

6.5 Séries géométriques

On appelle série géométrique une série dans laquelle les termes u; sont les
termes d’une suite géométrique:

o0
witugtu @ ru @ T =Y u gt
n=1

Calculons la suite des sommes partielles :

S =
S = ui+u-q
Sg = u1+u1-q+ul-q2

Sy = wHu-g+u-g+u-g®

Sy = wrtur-qtur-¢+tu gt

Ainsi, q-Sp=u - q+w - +u -+ +u - ¢

Dot
Sa=q5n = (mtw-gtwm-¢+uw-¢+--+u-g")
—(wg+u P Fuw P+ Fu - Hu - q?)
= w-u-q
= Sp(l-¢)=wu-(1—¢")
u - (1—q")
= Sy=— 27 g#1.
1-g

Comme lim ¢" =0,si|g|<1let lim ¢" =o00,si|¢|>1,0ona:

up - (1 — q") Uy

lim S, = lim = , 8l |gl<let
n—00 n—00 1—gq 1—gq
(1 — g®
lim S, = lim - ( Q):oosi|q|>1.
n—o0 n—oco l—g
On notera que si ¢ = —1, lim (—1)" n’existe pas (suite dite oscillante) ; ainsi

pour g = —1, la série géométrique diverge.
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Si ¢ = 1, la série géométrique s’écrit uy; + uy +uy + -+ et S, = n - yy.
Comme lim n - u; = oo, la série géométrique diverge lorsque g = 1.
n—oo

On obtient ainsi le résultat suivant :

La série géométrique u; +uy - ¢+ uy - @2 +ug - > + -+ = Zul gt
n=1

Uy

e converge et vaut ; si|ql<1.

e divergesi | ¢ [> 1.
Exemple 6.6 Soit la série géométrique :
1 1 1 LI
) N e N LA PO g, =
1
1 2
Comme q = 3 < 1, celte série converge et l'on a:

otu; =1 elqg=

) T L P,
Z+\3 T 1-1/37 2/3° 2

Exemple 6.7 Soit la série:

1
1l s’agit d’une série géométrigue de raison ¢ = — dans laquelle les trois pre-

miers termes ont été omis. On peut écrire la série ci-dessus de la maniére
sutvante :
i 1 s _l_._l_ + ]_+,1.+l +l+i+...

2 5 52 5 52 53 K

n=1

Il
/"'T"“\
—
|
= B
|
@~
P
+

(]
| -

on obtient :

g ot o1 8 1 315 1
5 25 1—1/5 25 4/5 25 4 100
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Remarque La convergence ou la divergence d’une série n’est pas
modifiée si I'on omet ou ’on rajoute un nombre fini de termes. En
revanche, la somme de la série est modifiée (exemple 6.7).

L’étude de la convergence d'une série s’avére nettement plus difficile si
I’on ne connait pas une expression pour le terme général S, de la suite des
sommes partielles. C’est pourquoi nous allons examiner plusieurs méthodes
permettant de reconnaitre la nature d'une série donnée (autrement dit, de
reconnaitre si elle est convergente ou divergente).

6.6 Séries a termes positifs

Comme son nom !'indique, une série 4 termes positifs est une série:

o0
Y w, ot w;>0, Vi>1.

i=1

Puisque tous les termes sont positifs, la suite des sommes partielles est
une suite monotone croissante. Or, le premier critére de convergence d'une
suite nous assure qu'une suite croissante et bornée est convergente. On peut
donc énoncer le critére de convergence d’une série a termes positifs.

e Critére de convergence
o0
La série Z u; 4 termes positifs est convergente si et seulement
=1
si la suite des sommes partielles est bornée.

On remarquera que ce critére de convergence est encore valable pour
les séries & termes positifs ou nuls, puisque, dans ce cas, la suite des sommes
partielles est une suite croissante et que dans le premier critére de convergence
d’une suite, il n’est pas nécessaire que la suite soit monotone croissante.

e Tests de comparaison

On appelle série majorante une série dont les termes sont plus grands
(ou égaux) que les termes correspondants d’une série a termes positifs
donnée.
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1. Reégle de convergence: Si une série a termes positifs est ma-
jorée par une série convergente, alors elle est convergente.

En effet, si la série majorante converge, le critére de convergence nous
assure que la suite de ses sommes partielles est bornée. Comme cette
série majore la série donnée, la suite des sommes partielles de la série
donnée est bornée et, par conséquent, elle converge.

De fagon analogue, on peut établir la regle suivante:

2. Regle de divergence: Si une série a termes positifs majore
une série divergente, alors elle est divergente.

Pour pouvoir appliquer ces régles de comparaison, il faut connaitre un
certain nombre de séries convergentes et divergentes. Il est, ainsi souvent fort
commode de comparer une série a celle de Riemann:

S =1
Ik % gt de +—+ Z—

dont on peut montrer qu’elle converge si p >1 et diverge si p <1.
Lorsque p = 1, on obtient la série harmonique:

1 11 1 |
g Ol [ N TR ] IO 2=
Tt T Pl >,

qui diverge.
En effet, comparons la série harmonique dont les termes ont été groupés
comme indiqué:

1+1+ 1-l-1 + 1—!~£-i-l+1 + 1+ —i—i +
2 3 4 5 6 7 8 9 16
avec la série:
2 2 4 4 8 8 8 8 16 16

qui diverge puisque la somme des termes contenus dans les différentes paren-

theses vaut toujours 3 et que, par conséquent, la suite des sommes partielles
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(Syn) croit sans limite lorsque n croit indéfiniment. Ainsi, puisque la série
harmonique majore cette série divergente, elle est divergente.

L’exemple de la série harmonique nous montre que la condition
lim u, = 0 est une condition nécessaire, mais pas suffisante pour que la
—+DQ oo
série Z U, Cconverge.

n=1

=1
En effet, dans le cas de la série harmonique Z——, on a
n

n=1
1
lim u, = lim —- 0, bien que la série diverge.
nN—00 TL—+D0 1
Exemple 6.8 Soit la série:
1.3, 31 7 1 = 1
—t ottt = .
4 7+12 19 'n.2—|-3+ ;ng-l—:‘}
) 1 1 1
Le terme général de cette série est u, = ————. Comme < —,¥n2>1,
n2+3 nZ+3 n?

chaque terme de cette série est inférieur au terme correspondant de la série
de Riemann avec p = 2:

L ST P
49 16 n?

dont on sait qu’elle est convergente (p > 1). La série donnée est donc majorée
par une série convergente. Par la régle de convergence, la série donnée est
donc convergente.

Exemple 6.9 Soit la série:

2+5+10+17’+ +n2+1+ _inz-kl
8 27 64 n3 N = nd
5 5 2 n?4+1 1 1
Le terme général de cette série est u, = =—+4+ —. Comme
nd n nd

1 1 1
—+ — > —,Vn > 1, chaque terme de cette série est supérieur au terme cor-
n

n T
respondant de la série harmonique :

| e ol
2 3 4 n
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qui diverge. La série majore la série harmonique qui diverge. Par conséquent,
la régle de divergence nous assure que la série donnée diverge.

Note La convergence ou la divergence d’une série n’étant pas modifiée lors-
qu’on omet un nombre fini de termes, les deux tests de comparaison ci-dessus
peuvent étre appliqués aux termes intervenant & partir d'un certain rang
Uk, Uks1, Upta, - - - plutot qu’a tous les termes wuy, us, us, - . .

Autrement dit, la régle de convergence et la régle de divergence sont
encore valables lorsque les inégalités entre les termes correspondants ne sont
satisfaites qu’a partir d’un certain rang.

e Reégle de d’Alembert

o0
Soit une série & termes positifs Z u;. Considérons le rapport de deux

=1

Un+1

T

termes généraux consécutifs appelé rapport de d’Alembert.

Désignons par 3 la limite de ce rapport lorsque n devient infiniment
grand :

o
B = lim =,

n—oo Uy

Nous avons la régle suivante:

1. si B < 1, la série est convergente.
2. si B > 1, la série est divergente.

3. si # =1, on ne peut pas conclure.

Exemple 6.10 Rappelons que le produit 1-2-3-4-...-(n—1)-n=mn! se
lit “n factorielle” ; par convention, 0! = 1. Soit la série:
5 2 9 2 =~ 2
sEgtg gt (n-1)1+“'_;(n-1)1'

Nous avons:

Uy = et Upy1 = —
mn

(n—1)!
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Le rapport de d’Alembert est donc :

Upt+1 _2__ (n - 1)!
U,  nl 2
_ (n=2)

1-2-3 n—2)-(n—1)-n
=~ &
N n
1
B = lim = = Jim - =0,
=00 ‘u.n =0 T
Ainsi 8 =0 < 1= la série esl convergente.
Exemple 6.11 Soit la série:
o2 n! 2. nl
‘Z‘J’_E—F_'—E—i_—n:lﬁ
n! n+1)!
Uy _ (n+1)! 4" n+1
u,  4rtl nl 4
B = lim Dokl fim s P 00
n—oo Uy n—oo 4
Comme 3 > 1, la série est divergente.
Exemple 6.12 Soit la série:
2 2 2 2 = 2
12 3.4 567 "t @m-D @0 +"'_;(2n—1)-(2n)
Unyr 2 (2n—1)-(2n) _ 4n*—2n
U, (2n+1)-(2n+2) 2 T 4n2 +6n+ 2
4n?% —2n

. Upt1 .
=1 =1 —  =1.
B nl»n;) U, nl—»r{é 4n? +6n 4+ 2
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La régle de d’Alembert ne nous permet pas de conclure. Cependant, il est
possible d’utiliser, dans ce cas, le test de comparaison avec une série conver-
gente: en effet, comparons la série donnée a la série de Riemann oup =2 :

1 1 1 2 T
1+§+?+'”+§+"'=ZE'
n=1

Les termes de la série Z m

n=1

étant inférieurs aux termes corres-

o0
; : I :
pondants de la série de Riemann E — qui est convergente, la série donnée
n
n=1

est convergente.

Remarque Une série & termes négatifs peut étre étudiée comme l'opposé
d’une série & termes positifs.

Exemple 6.13 La série:

1 1 1 1
=lomrs s S = e
est 'opposé de la série harmonique
1 1 1 =1
] R WA N W= JO— =
Fe b bt ; =

o0 oQ o0
1 1 1
Dans ce cas, —— = —. Comme — diverge, il en est de méme
35151 oo 3 ey

n=1 n=1
[+ 0]
5 i 1
pour la série E ——.
n
n=1

6.7 Séries alternées

On appelle série alternée une série dont les termes sont alternativement
positifs et négatifs:
o=}

D = — g —ug

n=1

ot chaque terme u; est positif.
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e Critére de Leibniz

(=<}
Une série alternée E (—=1)*! . u, converge si les deux conditions sui-

n=1
vantes sont satisfaites simultanément :

j R TAeS IS I |
2. lim u, = 0.

n— oo

En effet, pour n pair, la suite des sommes partielles S, = u; — ug +
Uz — Ug + - -+ — Uy, peut s’écrire:

Sp= (uy —ug) + (ug —ug) + -+ + (Up_1 — Up)-

Ainsi, cette suite est croissante puisque (u, — Up1) > 0, Vn > 1 (1™
condition). D’autre part,

Sn =1U — (UZ T HS) = (U4 T US) T T (uﬁ.—2 = un—l) = Uy.

Ainsi, S, < uy puisqu’on ne soustrait a u; que des expressions positives.
Par conséquent, la suite des sommes partielles est croissante et bornée,
donc convergente d’apres le critére de convergence, c’est-a-dire S, tend
vers une limite: lim S, = L, pour n pair.

nN—0o0
Considérons maintenant la somme partielle S, = Sy, + 4,1 et mont-
rons qu’elle tend vers la méme limite L :
lim Sy = lim S, + lim w,; = L+ 0= L (26me condition).
n—00 n—oo n—oo

D’otu, pour n quelconque, lim S5, = L et la série converge.

n—oo

Exemple 6.14 Soit la série harmonique alternée :

1 1 1 = 1
e i e B e =p=ta
+ * nzzl( ) =

2 3 4
1 ot 1
Up = — Uy, ==ite———m
n T el
Voyons si les deux conditions du critére de Leibniz sont vérifiées. On a:
1
P ey WL % ’
n mn 4 n—1
1 = la série -1 - — converge.
» Lo 2 (AN convery
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Nous pouvons, dés lors, résumer les différents types de séries et I'étude
de leur convergence:

o0
1. Soit une série E u, & termes de signe quelconque.

n=1
Si lim wu, # 0, alors la série diverge.

n—oo

2. Soit une série alternée Z:(—l)""‘1 - Uy,,. On utilise le critére de Leibniz.
n=1

Si 4y, > Upyy, Yn > 1 et lim u, = 0, alors la série converge.

n—oo

3. Soit une série Z u,, A termes positifs. On utilise la régle de d’Alembert

n=1
Up41

en calculant § = lim
n—oo u‘ﬂ.

Si B < 1, la série converge.
Si 8 > 1, la série diverge.
Si 8 =1, on ne peut pas conclure.

4. Soit une série Z u, & termes positifs. Lorsque la régle de d’Alembert

n=1

échoue, c’est-a-dire lorsque § = 1, on utilise les tests de comparaison
avec une autre série que nous savons étre convergente ou divergente
(série géométrique, série de Riemann).

Si cette nouvelle série majore la série donnée et qu’elle converge, alors
la série donnée converge.

Si la série donnée majore cette nouvelle série et que celle-ci diverge,
alors la série donnée est divergente.

6.8 Convergence absolue

(= =]
Considérons une série E u, a termes de signe quelconque.

n=1
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Une telle série est dite absolument convergente si la série des valeurs
absolues :

o0
S Jun b=l un |+ [z |+ g |+ | | 4
n=1
converge.
I1 est clair que toute série & termes positifs qui converge est absolument
convergente. D’autre part, on peut montrer le résultat important suivant :
toute série absolument convergente est convergente.

La réciproque est fausse. Par exemple, la série harmonique alternée
I 11

1= 5 4 3”1 -+---  converge tandis que la série harmonique
L=t : o+ 2 + L + - - - diverge
s T3ty iverge.

oo

De maniére générale, lorsque la série a termes de signe quelconque Z U,

n=1

oo =]
converge, mais que E | u, | diverge, on dit que la série E u, est semi-
n=1 n=1

convergente.

Exemple 6.15 Soit la série:

1 1 1 B
iegbgmg =) 5] -

Cette série est absolument convergente puisque la série des valeurs abso-

1 1
l 1 — 4+ — - est érie géomélri d ison —. La séri
ues +7+49+343+ est une série géométrique de raison . La série

1 ,
alternée donnée (série géométrique de raison — ) est donc convergente puis-
qu’elle est absolument convergente.

On remarquera qu’une série géométrique convergente est absolument conver-
gente.

Exemple 6.16 Soit la série:

1 11 -
1— =+ 5= — nt.

3\
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Cette série est convergente. En effet, par le critére de Leibniz:

1 >
&n Jn+1

, Yn>1 et lim
n—»m\/_,

Les deux conditions pour qu'une série alternée converge étant vérifiées, la

1
série Z(—l)”"1 T e,

La série des valeurs absolues :

1 o0 o0
Z =2 75
\‘/— \/_ \/_ n=1 V ﬂ n=1 L /
diverge, puisqu’l s’agit de la série de Riemann avec p = 3 < 1. La série
donnée est donc semi-convergente.

Pour déterminer si une série converge absolument, la régle de d’Alembert
est encore valable.

e Régle de d’Alembert pour la convergence absolue
(s =]
Soit une série Z u, & termes de signe quelconque.

n=1

1. Si lim

< 1, alors la série converge absolument.
T—00 'un

2. Si lim
n—oo un

> 1, alors la série diverge.

3. Si lim [Zn

n—o0 | Uy

= 1, on ne peut pas conclure.

Exemple 6.17 Soil la série

i_§i+g_£+...:§:(_l)n—1'3271—1.

ST TR T 2 @n)!
’ — (_1) 32n.— (__ )n s 32n+1
e ot U T )
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Ungy _ (—1)"- 32 (2n)! 3 -9
U,  (2n4+2)!  (=1)*1.37-1 7 (2p4+1)-(2n+2)
U 9
lim [ = lim ———— = .
nE{-lo Uy, nl—'rgo 4dn? + 6n + 2 <1

Par conséquent, la série donnée est absolument convergente.

6.9 Séries de puissances

e Séries de puissances en «

Une série infinie de la forme:

o0

E anz™ = ag + 1T + agx + - + a2 + - -

=0

ou les coefficients a; sont des réels indépendants de x, est appelée série
de puissances en z.

oo
Notons que la série de puissances Z anZ™ = ag + a1z + apz® + - -
n=0
converge (absolument) pour z = 0, puisque:
|ao| + |a1 - O] + |ag - O] + - - - = |ao] -

La regle de d’Alembert pour la convergence absolue nous permet de déter-
miner 'intervalle de convergence :

1
" Un+1 . Ap41 $n+
lim = lim
n—0o0 | Uy, n—0o Ay + L™
; 1
= lim |2
n—od | Oy
: Gnt1
= |z |- lim
n—oo Ay,
Par la régle de d’Alembert, nous savons que cette série converge abso-lument
X Qi1 i i23
lorsque | z | - lim |——| < 1, c’est-a-dire pour:
n—oo | Ay
1
|z |< )
. Qp+1
lim | =&
TE=—+00 an
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Trois cas se présentent :

P Ant1
1. Si lim |—
n—oo | ay,

| 2 |< o0, c’est-a-dire pour toute valeur de z.

= 0, la série est absolument convergente pour

9. §i lim |%H

=00 a'n

= L, L étant un nombre fini non nul, la série est absolu-

1 N e
ment convergente pour | z [< I c’est-a-dire si z satisfait

1 e 1
—— e P —,
L L
ok 1
La série diverge pour | z |[> I
1 1
Pour 2 = —— et x = —, la série peut converger ou diverger; il faut

donc étudier les bornes de l'intervalle séparément.

An41

Qnp,
diverge pour toutes les autres valeurs de z.

3. Si lim

T—0o0

= o0, la série ne converge absolument que pour z = 0 et

Exemple 6.18 Soit la série de puissances :

2 g8 = .
].—E—I—a-—g—}—---zzu(—l} 'n_!.
- (_1)n Lt ‘ B (_l)n - (_l)n-i—l
Un =0 =T e = O
Caleulons :
b =0 | n+1 ! =
lim i o (8 lim (1) sy = —— | = lim =
n—oo | Ay n—oo ('n, - 1)' (—1)7‘ n—oo 7+ 1 n—oom + 1

Par conséquent, la série converge absolument pour toute valeur de z, c¢’est-
a-dire pour —oo < z < oo.Cette série a donc pour intervalle de convergence :
| — o0; 00].

Exemple 6.19 Déterminons l'intervalle de convergence de chacune des sé-
ries de puissances:
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(a)

(b)

(c)

Les séries

(s s}
1+22+42® +82° + - - =ZZ“:E".
ay=2" el aniq =27
Ani1 n+1
Ainsi, lim = lim =Tm |2 |=2
’ n—oo | TN—+00 2“‘ N—00

La série converge absolument pour =g < b < 3
Reste a examiner les bornes :

Siz=—=,lasérieest: 1—14+1—1+--- qui diverge puisque le
terme général ne tend pas vers 0.

Six= %, la sérieest: 14+14+141+--- qui diverge pour la méme

TAISOMN.

1 -1
Cette série a donc pour intervalle de convergence | — 23 [-
1 =z a? = z"
st3tTt =l
1 : 1
p = ——= €t Gp41 = —.
" n42 G n+3
2 L +2
Ainsi, lim s Btee| mﬁ—i_ =1
n—oo | @y n—oo N+ 3 n—oo 1 + 3
La série converge absolument pour —1 < @ < 1.
1 1 1 1
Pour x = —1, la série est: — — -4 — — =+ --- qui converge

puisque les deux conditions du critére de Leibniz sont satisfaites.

1 1 1
Pourz =1, la série est 3 + 3 + 1 + - -+ qui diverge puisqu’il s’agit

de la série harmonique dont on a omis le premier terme.
T

T
La série entiére Z
~n + 2

a donc pour intervalle de convergence

[-1;1].
72 3 74 e
x+—+§+ﬁ+ _,,Z:;}ﬁ
1
ap = — et Gpyq

~m i
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Ainsi, li ol li : li n 1
s, 1Im =1m -—=m ———-—T=
* n—0o0 | @y n—oo ('n, + 1)2 n—oo N2 +2n+1
La série converge absolument pour —1 < x < 1.
1 1
Pour x = —1, la série est -1+ - — =+ — — -+ qui conver
179 6 ¢ e

puisque la série des valeurs absolues :

1 1 1
1+ =+ -+t

4 9 16
converge (série de Riemann avec p = 2).
. 1 1 .
Pour x =1, la série est 1 + 1 + 9 + 16 + -+ qui converge.
, . o " ,
La série de puissances Z — a donc pour intervalle de conver-
n
n=1

gence [—1;1].

Exemple 6.20 Soit la série de puissances :

x 222 6a® 24zt 2. nlz®
l1+—-4+—+—F+—+:-- = )
* 3 * 9 c 27 5 81 ; 3»
n! n+1 |
an = 3n et Gni1 ( 3n+1)
1 3 1
O T b LR L P
T— 00 an n—o0 3n+1 ‘n,l TT— 00

Par conséquent, la série ne converge que pour x = 0 et diverge pour toutes
les autres valeurs de x.
e Séries de puissances en € — a
Une série infinie de la forme
Z bi(x—a)' = bp+by-(x—a)+bz-(x—a)?+- - -+b,(x—a)*+---
i=0

ol a est donné et les coefficients b; sont indépendants de @, est appelée
série de puissances en ¢ — a.
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Notons qu’une série de puissances en (z — a) converge (absolument) pour
T = a, puisque:

[bo |+ [bi(a—a) |+ |baa—a)* |+ =|bo].

Utilisons la régle de d’Alembert pour la convergence absolue afin de dé-
terminer 'intervalle de convergence d'une telle série:

+1

z un,+1 2 bﬂ,+1 T —a 7

lim |——| = lim ( )

n—oo ‘U_’,n =00 bn H (.'L' = a)n

by
: +1
= lim - (z — a)
n—00 n
L
= |z—al- lim |[ =X,
n— o0 a
b
- . +1
La série converge absolument lorsque | z —a | - lim z < 1;
=00
1 = 2 n
c’est-a-dire lorsque:
1
|z —a|< T
Z n+1
lim
nN—00 n

A nouveau, trois cas se présentent :

bn :
1. Si lim |[22| =0, la série est absolument convergente pour toute va-
N—00 n
leur de .
br " :
2. Si lim bH = M, M étant un nombre réel positif, la série est abso-
n—oo n

lument convergente pour | z — a |< W c’est-a-dire si x satisfait

a L <r<a+ L
M M’

Les bornes de l’'intervalle devront étre étudiées séparément.

b ;
3. Si lim |22 = 00, la série ne converge absolument que pour z = a et

— 00 n

diverge pour toutes les autres valeurs de z.
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Exemple 6.21 Soit la série de puissances en (z — 3) :

~ n
—_1)n1 _1)»
bnz( ?3 et bnﬂ—( +)1
Ainsi, lim bt1| _ lim el .. = T,
n—oo | by, nooo n41 (=171 n—oon + 1
La série converge absolument pour 3 — 1 <z <3+ -},
c’est-a-dire pour 2 < x < 4.
1l s’agit a présent d’examiner les bornes 2 et 4 :
Sixz = 2, la série est: —1— = — = qui est l'opposé de la série
harmonique. Par conséquent, elle diverge.
Siz =4, la série est: 1 — =+ = — 1 + - dont on sait qu’elle converge

2 3 4
= Vi

(exemple 6.14).

o0
La série de puissances Z - (z — 3)" a donc pour intervalle de conver-

n=1

gence ]2;4].

6.10 Série de Maclaurin

On peut représenter une fonction au moyen d'une série de puissances.

Une série de puissances convergente, de la variable z, est fort commode
pour le calcul des valeurs de la fonction qu’elle représente, pour des valeurs
de z voisines de zéro.

e Formule de Maclaurin

La série:
1 (n—1)
.I_{_‘f(o).mz_l_..._'_f__ﬂ

n—1
1! 2l o R

converge et représente la fonction f(z) pour les valeurs de z pour les-
quelles toutes les dérivées de f(z) existent et pour lesquelles lim R, = 0.

— 00
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Dans ce cas, on dit que cette série est le développement de f(z) en série
de Maclaurin au voisinage de = = 0.

R,, est appelé le reste aprés n termes et on peut montrer que:

FE)

Rn=-—1—---a:“ avec 0<¢<uz.

n!

Remarque Il existe des fonctions pour lesquelles la série de Maclaurin
converge pour des valeurs de z, sans que le reste tende vers 0 lorsque n
tend vers 'infini. Pour de telles valeurs de z, la série de Maclaurin ne repré-
sente pas la fonction. Cependant, le plus souvent, l'intervalle de convergence

de la série coincide avec 'intervalle sur lequel lim R, = 0, ce qui est le cas
T—00

dans les exemples considérés dans ce paragraphe.

Sans donner une preuve rigoureuse de la formule de Maclaurin, nous pou-
vons cependant rendre ce résultat plausible de la maniére suivante. Supposons
qu’une fonction f(z) et toutes ses dérivées existent pour z = 0 et que cette
fonction puisse étre développée en une série de puissances en :

f(x):'30+al$+02$2+a39:3—|—--.+an$“+... (6.1)

Supposons maintenant que 1'on puisse dériver n fois cette série par rapport
ac:

fr(x) = al+2@2$+3&3I2+-”+nan$n_1 R

f(z) 202 +2-3a3z+ -+ (n—1) - na,z™ 2+

fm("r) = 2‘30'3+“'+(n—2)-('n.—1)-n,anm“_3+...

f(“)(a:) = :g.g.m.(-n,_g).(n,—l)-nan-f-....

Ainsi:
F™(0) = n! - a,.
Par conséquent : :
(n
Gy = ! (O), Vn > 0.
n!

En remplagant ces coefficients dans (6.1), on obtient la série de Mac-
laurin :

f'(0)

L4100
1!

T
. AR o

‘x+

)
BT
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Dans tous les calculs pratiques, on cherche des résultats exacts jusqu’a un
certain nombre de décimales. Comme l'opération en question remplace une
fonction qui peut étre difficile & calculer, par un polynome ordinaire, elle est
trés utile pour simplifier de tels calculs.

Naturellement, on doit utiliser suffisamment de termes pour obtenir le de-
gré d’exactitude désiré. Le reste aprés n termes fournit une bonne indication
sur erreur commise en utilisant seulement les n premiers termes de la série.

Exemple 6.22 Développons la fonction y = f(z) = e* en série de Maclau-
rin afin de déterminer une approzimation de e'/*.

f@) = e = f0) =1,
) = = fO)=1
ey = e@=20)=1

ff(z) = e = fM(0)=1.
% 7
doti: € =14+T4+ —F—F o Foue,
2t 3! n!
Voyons quel est lintervalle de convergence de cette série:

T 0
n—oo | (n + 1)! _REEG?’-'.+1 -
Celte série converge pour toute valeur de x.
Pour x = 7 Nnous avons:
1/4)* (1/4 1/4)"
eft=1+- +(/ 4! /4 +---+u)—+
3! n!
en prenant cing te*r‘mes NouUs aQUONS :
1/4 1/4)3 1/4)*
RV S VL) V2 VL)

4 2! 3! 4l
= 1+40.25+ 0.03125 + 0.00260417 + 0.00016276 + Rs

= 1.28401693 + Rs.
()

n!

e [1)\°
Rﬁ:%’)-!'(i) , avec 0 < €<

-z, avec 0 < € < z,

Le reste aprés n termes étant donné par: R, =
nous avons:

e
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e/t /1\°
Lo _l2aY o
s 5! (4)

En admettant raisonnablement que e/* < 2, on a:

Par conséquent :

Bt 15—000001628
T 7 '

Ainsi, e¥/* = 1.2840 est correct avec 4 décimales.

6.11 Série de Taylor

On peut former une série en (z — a) de la méme maniére que la série de
Maclaurin. Cette série se préte bien au calcul des valeurs de la fonction
qu’elle représente pour des valeurs de = proches de a.

e Formule de Taylor

f(a) n—1
f@)=f@)+ 5 E-a)+ @ - Ry
ou R, =

Cette série porte le nom de série de Taylor. On dit qu’elle est le
développement de f(z) au voisinage de z = a.

(x—a)", avec a <€ < z.

i 3)

! .

Les hypotheses selon lesquelles cette série représente f(z) sont les mémes
que pour une série de Maclaurin. La justification de cette formule ainsi
que la remarque faite au paragraphe précédent s’appliquent également
icl.

Exemple 6.23 Développons en série de Taylor la fonction donnée par
f(z) = Inz au voisinage de 1 (on notera que cette fonction ne peut pas étre
développée en série de Maclaurin).

Les dérivées successives sont :

flz) = Inz= f(1)=0.
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, 1
fe) = - =pm)=1
1
fz) = - = (1) =-1
2
@) = = =2
; 2-3
o) = -2 = f(1) = -6
—1yn+1 , = |
f(z) = (=1 xn(” 1)-,\#?}'21‘
La série de Taylor est donc:
o (z=1) (z—-1)?  2xz-1)® (z—1)*
bz = "5 +t— g ¥ g
B (z—-1)? (z-1)2* (z—1)*
= le-1) 5 T 3 z
Déterminons lintervalle de convergence de cette série:
(=1)+! (1)
by = ——— by =
k) n et n+1 ?’l,—l-l
(—1)n+2 n n

=1.

i E =1
noo| n+l (L) |  asen+ 1

1 1
Par conséquent, la série converge absolument pour 1 — 1 LT A T’ c’est-

a-dire pour 0 < z < 2.

1 1 1 1
Pour;r=0,Iasé'mieest—*1~§———a—...———...quidz’verge.
n
, 1 1 1 (=1)nt? .
Pom‘sz,Iasémeestl—§+§—i+...+ + ... qui converge.

Atnsi, Uintervalle de convergence de cette série est ]0;2].
Calculons par exemple une approzimation de In(1.2) en prenant trois

termes :

1.2—-1)2 (1.2-1)3

(1_2_1)_( . Vo : )

2 3
0.2 — —(0'22) + —(0'32) 4Ry

0.2 — 0.02 + 0.002666 + R4
= 0.182666 + Ry.

In(1.2)

+ Ry
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_ g N '
Comme R, = = (z—a)", aveca< &<z, ona:
(=1)>-3! =6
s £ . 4 _ €& A
Ry = 4! (0.2)% = 24 (0.2)%, avec 1<€£<12
Par conséquent : )
6-(0.2)
< ———— = 0.0004.
| R |< =554 = 0.000

Ainsi, In(1.2) = 0.182666 est correct avec aw moins trois décimales.

En fait, pour une série alternée, on peut montrer que 'erreur commise est,

en valeur absolue, plus petite que le premier terme négligé. Dans 'exemple
0.2)4

6.23, le premier terme négligé est: (—Zl—

reur commise en calculant In(1.2) = 0.182666 avec trois termes n’excéde pas
0.0004, et donc le résultat obtenu est correct avec trois décimales.

= 0.0004. Par conséquent, l'er-
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Exercices

1. Trouver une formule pour: S,, = 204214-224...4-2" puis la démontrer
par récurrence.

2. Démontrer que:

P R ST _n
1-2 " 2.8 " 3.4 n-(n+1) n+1

1
n-(n+1)
Calculer S, pourn=1,2, 3, ..., n.
Montrer que cette série converge en montrant que sa somme vaut 1.

3. Soit la série de terme général u,, =

4. Trouver la somme des deux séries suivantes:

(a) LRI TR B
5 256 125
1

1 1 1 1
b) 1+2 =de i Sl as e
(b) 1+ +3+2+4+8+16+32+

5. Trouver la somme des séries suivantes:

TR TRTCNE 00 U WS UL S
4 16 64 256 1024

b)l+l+i+i+i+"-

( 3 9 27 81 243

6. Indiquer si les séries suivantes convergent ou divergent.
Justifier a chaque fois la réponse:

€

—
a o
s o
el Rl Ll ol S B U
]
=]
e

—_
&



182 Les séries

N—0oo

1 n
Indication lim (1 - 7_1) =g,

7. Etudier la convergence des séries suivantes:

(a)3+4+5+6+---

1-2 2.22° 3.23  4.2¢
241 3+1 4241

(b)1+23+1+33+1+43+1

( 1 1+i+l+i+i+

© 3+t 3wt 27 o8

1 3 5 7 9

(d)I

179 6T

8. Pour quelles valeurs de z les séries suivantes convergent-elles?

z z¢ 28
(a)1+§+-§+z‘+"'
(b) z+ 222 + 32® + 42 + - -
(©) (@—2)+2(z -2 +3l(z —2)° + 4z — 2)* +
t—5 (z-5)2 (z-5)° (z-5)*
W T3+ 733 T35 1

9. Développer en série de Maclaurin les fonctions suivantes, en indiquant
chaque fois sur quel intervalle ces séries convergent :
() f@)=e () fl)=sinc (0 f(z)=Inl+2)
Déduire du point ¢) la valeur de la somme de la série harmonique

L. 3 1
Iternée: 1 — =4 - — -
altern 5 + 371 =+
10. Développer en puissance de (z — 4) la fonction f(z) = e*/4.

11. Le développement en série de puissances de la fonction
f(z) = cosz est donné par:

Faire trois graphes ot 'on représentera successivement :
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2

(a) f(z)=cosz et gi(z)= 1—%.
(b) f(z)=cosz et go(z)= 1—%2—%%.

2 4 6
(¢) f(z)=cosz et 5*3(:*:):1—$2 —i—-;z ;70

Commentaire!
Note Représenter ces trois graphes sur intervalle [—m; 7 |.
w
12. Trouver une valeur approchée de cos (E) (avec quatre décimales exactes)
a 'aide de la série de Maclaurin de f(z) = cos .

13. Trouver une valeur approchée de v/1.21 (avec trois décimales exactes)
a l'aide de la série de Taylor de f(z) = y/z au voisinage de 1.
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LEIBNIZ Gottfried Willhelm (1646-1716)

Philosophe et mathématicien allemand, Leibniz est né & Leipzig, en 1646. En
1666, il soumet sa thése de Doctorat en droit. En 1667, il devient conseiller
a la Cour supréme de 'Electorat de Mayence. En 1673, en Angleterre, il dé-
couvre en méme temps, et indépendamment de Newton, le calcul différentiel.
Onze ans plus tard, il publie les résultats de sa découverte dans son Nowva
methodus pro mazimis et minimis. En 1676, il obtient un poste de libraire a
Hanovre, qu’il occupera jusqu’a sa mort. Ne se déplacant que trés rarement,
il entretient une correspondance accrue avec des savants de toute I'Europe.
De ce fait, il devint le centre d'un important réseau d’échanges. Il meurt a
Hanovre en 1716. On peut définir Leibniz aussi bien comme mathématicien
et philosophe que comme linguiste, juriste, historien, géographe, diplomate
ou théologien. Scientifiquement parlant, il est & la fois un inventeur pour ses
contributions scientifiques et mathématiques (invention du calcul différen-
tiel, développement du calcul intégral), et un encyclopédiste pour son projet
d’inventorier toutes les connaissances acquises et sa tentative de mettre en
place un langage universel. (Euvres majeures: On the Art of Combination
(1666), New Physical Hypothesis (1671), Discourse of Metaphysics (1685), the
New System (1695), New Essays on Human Understanding (1705), Theodicy
(1710), the Monadology (1713).



Chapitre 7

Fonctions de plusieurs variables

7.1 Introduction

Jusqu’a présent, dans les chapitres précédents, nous avons traité des fonctions
d’une seule variable, c’est-a-dire des fonctions sous la forme explicite y = f(z)
ou sous la forme implicite f(z,y) = 0. De telles fonctions expriment une
relation entre deux variables, z et y, et cela implique que le phénomeéne étudié
peut étre représenté d'une fagon correcte uniquement par deux variables.
Bien que ce type de représentation nous donne une image raisonnable de la
réalité, dans différents cas, une telle représentation est tellement inadéquate
quelle en devient inutile. Souvent, il est nécessaire d’exprimer une variable
comme une fonction de plusieurs autres variables. Par exemple, en économie,
la demande d’un bien ne dépend pas seulement de son prix, mais aussi du
revenu du consommateur, du prix des autres biens et d’autres facteurs encore.

Dans ce chapitre, nous allons présenter les dérivées partielles et leurs
applications économiques, les minima et maxima d’une fonction de deux va-
riables, les multiplicateurs de Lagrange qui permettent de trouver des ex-
trema sous contraintes et enfin des applications économiques des multiplica-
teurs de Lagrange.
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7.2 Définitions

Nous allons considérer des fonctions de deux ou plusieurs variables indépen-
dantes dont nous pouvons citer quelques exemples tirés de formules mathé-

matiques élémentaires ; ainsi, I'aire S d’un triangle quelconque: S = 5" b-h

est une fonction de deux variables indépendantes: b (base du triangle) et h
(hauteur du triangle).
Le volume V' d'un parallélipipéde rectangle est donné par:

V=ab-c

ol a, b et ¢ sont les longueurs respectives des arétes. Ici, V est une fonction
de trois variables a, b et c.

Définition 7.1 On dit que z = f(z1,22,...,%,) est une fonction de n
variables indépendantes si a tout systéme de valeurs des variables indépen-
dantes x1,xs,...,x, correspond une valeur bien déterminée de la variable
dépendante z.

Dans ce chapitre, nous nous intéresserons plus particuliérement au cas
des fonctions de deux variables.

Définition 7.2 Si, a chaque couple (z;y) de valeurs de deux variables indé-
pendantes x ety correspond une valeur bien déterminée de la variable dépen-
dante z, on dit que z est une fonction de deur variables indépendantes
et y. Une fonction de deux variables est notée z = f(z,y).

Définition 7.3 On appelle domaine de définition de la fonction
z = f(x,y) Uensemble des couples (x;y) pour lesquels cette fonction est défi-
nie. On note par D le domaine de définition.

Le domaine de définition peut étre représenté géométriquement par l'en-
semble des points de coordonnées (z;y) dans le plan Oy,.

Exemple 7.1 Soit la fonction de deuzx variables z = \/x? — y?. Pour que
z soit définie dans Uensemble des nombres réels, il faut que: z* —y* > 0,
c’est-a-dire: x% > y*, ou encore: |z| > |y| On a représenté ce domaine de
définition sur la figure 7.1.
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y

Figure 7.1: Domaine de définition de z = /22 — y?

Comme pour les fonctions d’une variable, on peut définir la continuité
des fonctions de deux ou de plusieurs variables.

Définition 7.4 Une fonction de deux variables f(z,vy) est dite continue au
point x = a, y = b st les trois conditions suivantes sont satisfaites simultané-
ment :

1. f(a,b) est définie.

2. lim f(z,y) existe.

z—a,y—b

3. lim , f(z,y) = f(a,b) quelle que soit la fagon dont z et y tendent
—, Y —+

T
vers leurs limites respectives a et b.

7.3 Représentations graphiques des fonctions
de deux variables

Soit une fonction de deux variables z = f(z,y). On peut représenter une telle
fonction dans un systéme de coordonnées cartésiennes dans 'espace, noté
Ogyz @ a chaque point (zo;y0) du plan Oz, en lequel la fonction est
bien définie, on associe la valeur f(zo,yo) en élevant une perpendiculaire au
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plan O, de longueur égale a la valeur de f(zg, o) (Figure 7.2). On obtient
ainsi un point P dont les coordonnées sont: (zo; ¥o; 20) = (@o; Yo; f (o, %0))-
L’ensemble de tous les points P dont les coordonnées satisfont 1'équation
z = f(z,y) est appelé graphe de la fonction de deux variables f(z,y). Ainsi,
I'équation z = f(z,y) définit une surface dans I'espace.

4
POy oiflxoys)
0 Yo -
X /

Figure 7.2: Systéme de coordonnées cartésiennes dans ’espace

Exemple 7.2 Représentons graphiquement la fonction de deuz variables
z = z? +y? dont le graphe porte le nom de paraboloide de révolution (Figure
7.8).

On peut dresser un tableau des valeurs que prend la fonction pour chaque
couple (z;y) :

Al - [t [ 0] 1]
—2| 8| 5[4]5][8
—1| 5| 2|1]2][5
0| 4] 1|0]1[4
1| 5] 2[1[2]5
2| 8] 5[4]5(8
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Figure 7.3: Paraboloide de révolution: z = z? + 3?

7.4 Dérivées partielles

Considérons la fonction de deux variables z = f(z,y).

Si 'on considére y comme une constante, z n’est plus qu'une fonction
de x et 'on peut calculer la dérivée de z par rapport a z, si elle existe. La
dérivée obtenue dans ce cas est la dérivée partielle de z par rapport & z que
I’on peut écrire de plusieurs facons:

0: of o
oz’ 0z’ Oz
La dérivée partielle de z par rapport a z est définie ainsi:

0z = fim f($+Am:y)—f($sy)

dr  Az—0 Az
lorsque la limite existe et qu’elle est finie.

De maniére analogue, si 'on considére z comme une constante, z n’est
plus qu'une fonction de y et 'on peut calculer la dérivée de z par rapport a
7y, si elle existe. La dérivée obtenue dans ce cas est la dérivée partielle de
z par rapport a y que I'on peut écrire:

0: of o
Ay’ Oy’ Oy

(z,y), fo(z,¥), fzou z,.

f{z:y)s f;‘)(:ﬁay)a fy ou 2y
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Définition 7.5 La dérivée partielle de z par rapport a y est définie ainsi:

@ = it f(x:y+Ay) - f(xry)
Oy  Ay—0 Ay

lorsque la limite existe et est finie.

Notons qu’en général une fonction de n variables posseéde n dérivées par-
tielles, chacune étant prise par rapport a une variable.

Exemple 7.3 Soit la fonction de deux variables z = 3z* + zy — 2y? (Figure
7.4); on peut calculer la dérivée partielle de z par rapport & = et la dérivée
partielle de z par rapport & y :

d :
-(-93 =6z +y, y étant considérée comme une constante,
xr -
la dérivée de —2y* est nulle.
0 .
5—z =z — 4y, w étant considérée comme une constante,
Y

la dérivée de 3z° est nulle.

e
T
17

Figure 7.4: Graphe de z = f(z,y) = 32% + zy — 2y°

Exemple 7.4 Calculons les deux dérivées partielles de z = 5z In(1 + 2y)
représentée dans la figure 7.5.

Py Oz 10z
Bz~ mllta) et 5 =g
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Figure 7.5: Graphe de z = f(z,y) = 5z In(1 + 2y)

Puisqu’en général, les dérivées partielles d’une fonction z = f(z,y) sont
aussi des fonctions de z et y, on peut les dériver partiellement une seconde
fois par rapport & x et par rapport & y. On appelle ces dérivées les secondes
dérivées partielles de z et on les note:

or.

522 = Zgz = fm:

o*f

Zepy = fzy

ozdy
o*f
ay?

o’f

=Zyy = fyy

oydz v Jue

— signifie qu’on a dérivé deux fois par rapport a x.

— signifie qu’'on a dérivé deux fois par rapport a y.

Ox?
8%z
dzdy
0%z
ay?
0%z
Oydx
62
0x?
o°f
dy?
52
Ozdy

fois par rapport a x.

signifie qu’on a dérivé une premiere fois par rapport a y une seconde
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62

Bots signifie qu’on a dérivé une premiére fois par rapport 4 = une seconde
fois p%r rapport & y.

De ces quatre dérivées, seules trois sont distinctes puisque, si elles sont
continues:
62 f 32 f
Oyox  Ozdy’

Exemple 7.5 Nous allons calculer les dérivées partielles de premier et se-
cond ordre de la fonction :

z==2z% + 3zy® — .

La premiére dérivée partielle de z par rapport o x est:

oz

— = —dz + 3y°.
97 T + oy
Si l'on dérive — encore une fois par rapport a xz, on obtient la seconde
z
; . 9?
dérivée partielle e
0x?
0z B
dz?
, . . 0z . ,
Si l'on dérive Uexpression 3 par rapport a y, on obtient:
T
0%z
= 0y.
Oydx ¥
La premiére dérivée partielle de z par rapport ¢ y est:
0z
— = 6xy — 3>
By Y=oy
. : . 0z
Si lon dérive une nouvelle fois B_y par rapport @y, et par rapport a x, on
obtient :
8%z
é-'y—'i = Gm—ﬁy.
32
g = 6y.

0zdy
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Figure 7.6: Graphe de z = f(z,y) = —22° + 3zy* — ¢*

2 2

Notons que est bien identique G 62 . Cette fonction est représentée
Y

Yoz
dans la figure 7.6.

7.5 Applications économiques des dérivées
partielles

Dans ce paragraphe, nous allons voir deux applications économiques des dé-
rivées partielles: le coiit marginal et la productivité marginale.

e Colit marginal

La fonction de cofit conjointe:

est définie comme étant le coit de production des quantités z et y
de deux biens. Nous pouvons calculer les dérivées partielles de €' par
rapport & x et par rapport i y:

oC

B cott marginal par rapport & .
i

ocC n i .
6_y :  coit marginal par rapport a .
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Exemple 7.6 Si la fonction de coit conjointe pour produire des quantités
et y de deux biens est:

C=10+2*+zy+3y* (Figure 7.7)

calculons le codt marginal par rapport a x :

o =2r+y
Oz

et le coldt marginal par rapport a y :
oc

Figure 7.7: Graphe de C = 10 4 22 + zy + 33

e Productivité marginale

Pour produire la plupart des biens, on a besoin d’au moins deux facteurs
de production tels que le travail, le capital, la terre, les matériaux ou
les machines. Une fonction de production z = f(z,y) signifie qu'une
quantité z d'un bien est fabriquée 4 I'aide des quantités = et y de deux
facteurs de production. On peut alors calculer la dérivée partielle de z
par rapport a z qui nous donne la productivité marginale de z et la
dérivée partielle de z par rapport 4 y qui nous donne la productivité
marginale de y.
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Exemple 7.7 Si la fonction de production d’un bien est donnée par:
z=2zy —32° +y* (Figure 7.8)

la productivité marginale de x est égale a:

0z
— = 2y — 63
Oz 4 ‘

et la productivité marginale de y est égale a:

Figure 7.8: Graphe de z = f(z,y) = 2zy — 322 + ¢*

7.6 Minima et maxima d’une fonction de deux
variables

Une fonction de deux variables z = f(z,y) présente un maximum au point
P(a;b; f(a,b)) si f(a,b) a une valeur supérieure a toutes celles que prend
f(z,y) au voisinage de z = a et y = b (Figure 7.9(a)). De méme, f(z,y) pré-
sente un minimum au point P(a;b; f(a,b)) si f(a,b) a une valeur inférieure a
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toutes celles que prend f(z,y) au voisinage de z = a et y = b (Figure 7.9(b)).
Il en résulte qu’il existe un plan tangent horizontal au point (a;b; f(a,b)).
Ce plan tangent est engendré par les deux tangentes déterminées par:

of of
& et a—y'

Ainsi, pour que f(a,b) soit un maximum ou un minimum, il faut que les deux
équations suivantes solent satisfaites simultanément :

1° ——(a,b) =0.

T
2 ay(a,b)— .

Figure 7.9: (a) maximum, (b) minimum

Cette condition est nécessaire, mais 'exemple du point-selle montre
qu’elle n’est pas suffisante. Bien que les deux tangentes soient horizontales,
quel que soit le voisinage du point-selle considéré, on peut toujours trouver
un point qui soit au-dessus du point-selle et un autre point qui soit au-dessous
du point- selle. Notons qu’a un point-selle, une fonction présente un minimum
pour une des variables et un maximum pour 'autre variable (Figure 7.10).

Il faut donc une condition suffisante qui est la suivante:

. 0%f 8f [0 \?
“—@'éy—z‘(axay) 4




7.6. Minima et maxima d'une fonction de deux variables 197

Figure 7.10: Point-selle

Nous admettrons sans démonstration le résultat suivant :

Soit P(a; b) le point en lequel gi =0et g = 0.
Ox dy
Si a* > 0
P 82_f < B = minimum au point P.
Ox?
Si a* > 0
0*f = maximum au point P.
et —= 0
Oz?

Si @ =0 = on ne peut pas conclure.
Si o <0 = niminimum ni maximum

au point P (point-selle).

Exemple 7.8 Soit z = 322 + 2y*. Cherchons les extrema de cette fonction.
Ona:

0z 0z
— =6z et — =4y.
Jz v Ay ¥
Annulons ces deux dérivées partielles :
0z

9z = =0 = =10
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— = 4y=0 = y=0.

dy
1l y a done une valeur critique au point t =y = z = 0 et cette valeur est un
minimum puisque toutes les autres valeurs de z sont positives (Figure 7.11).
En effet, comme :

2 2 2
f o BL P
Oz? oy? Ozdy
on a bien:
a*=6-4—-0°=24>0
et
0*f

D’aprés le résultat vu précédemment, il s’agit bien d’un minimum.

Figure 7.11: Graphe de z = f(z,y) = 322 4 23°

Exemple 7.9 Soit z = 4z — zy + y? — 23 (Figure 7.12). On a:

% = 8z —y—32°
e = —z+4+2y

dy
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02z
5;5 = 8—6zx
8%z
Oxdy
8%z
dy?

Les valeurs critiques s’obtiennent en résolvant le systéme d’équations :
8z —y—322=0

et
—i=E 2y =0,

On trouve deux valeurs critiques :

z=0 pour z=y=20

Figure 7.12: Graphe de z = f(z,y) = 42° — zy + y* — 23

La premiére est une valeur minimale de z puisque quand x = y = 0, nous
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avons :
2z 0% 82z \? )
*=,____ :8-2— —]_ :15>D
dz? 0y? (82:5‘3,1) (=1)
et aj =8>0.
5 5
Lorsque © = 2 et y= 7 nOUSs QUONS :
0%z 8%z 82z
—=-7, =—=2 et = —
Ox? oy? Ozdy

Par conséquent :
o =-7-2—(-1)%=-15<0.

1l s’agit donc d’un point-selle.

7.7 Multiplicateurs de Lagrange

Dans de nombreuses applications pratiques de maximisation ou de mini-
misation, le probléme est de maximiser ou minimiser une fonction donnée
assujettie a certaines conditions ou contraintes sur les variables impliquées.

La méthode étudiée ci-aprés est applicable a n’importe quel nombre de va-
riables et de contraintes. La méthode des multiplicateurs de Lagrange
est employée pour obtenir un maximum ou un minimum d’une fonction sou-
mise 4 des contraintes d’égalité.

Supposons que f(z,y), appelée fonction objectif, doit étre maximisée ou
minimisée sous la contrainte g(z,y) = 0. Formons une fonction auxiliaire
appelée un lagrangien:

F(z,y,\) = f(z,y) + Ag(z,y)

ou A (multiplicateur de Lagrange) est une inconnue. Pour que cette fonc-
tion passe par un extremum, il faut que les trois équations suivantes soient
satisfaites simultanément :

aF af 99

E = a+/\-8$—0.
oF _ df . dg
oy ~ oy Moy °

oF
T g(z,y) = 0.
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Notons que la troisiéme équation n’est autre que la contrainte! Ainsi,
F(z,y,\) ne doit étre dérivée partiellement que par rapport & z et a y.
La solution du systéme de trois équations a trois inconnues (z, y et A) ci-
dessus fournit les points critiques de la fonction sous contrainte. Ces points
critiques satisfont la contrainte, mais il reste encore a déterminer s’il s’agit
effectivement d’'un extremum. Pour cela, on utilisera le résultat suivant:

0°F &’F

Onaun maximmenz=a,y=bsia* >0, — <0et — <0.
Ox? oy?
2 2 0*F 0*F

On aun minimumenz =a ,y=bsia* >0, — >0 >0

et —
Ox? dy?

avec o =

OF OF [ &F\°
0r2  Oy? dz0y ) -
Si a* < 0, le test échoue; 1l faut examiner la fonction au voisinage de z, y.

Exemple 7.10 Soient a déterminer les minima et mazima de la fonction
objectif f(x,y) = 5z* + 6y*> — zy sous la contrainte x + 2y = 24. Pour cela,
construtsons la fonction de Lagrange :

F(z,y,\) = 52 + 6y* — 2y + Mz + 2y — 24)

annulons les premiéres dérivées partielles :

OF
= - A=
B 10z —y + 0
OF
— = 12y- 2 =
3y y—+ 0
or
— = —z—-2y—24=0
B ol
éliminons \ des deux premiéres équations:
200 — 2 + 22 =0
- —x + 12y + 22 = 0
2lz — 14y = 0
3z — 2y = 0

et en résolvant avec la troisiéme équation :
z + 2y = 24

+ 3z - 2y = 0
4z = 24
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on obtient x = 6.
En remplagant dans x +2y = 24, on trouve y = 9. Le point critique est donc
(6; 9). On calcule les dérivées partielles de 2° ordre pour vérifier s’il s’agit
d’un extremum :

0°F
= = i
0z? .
0’F
— = 12
Ay?
&FF 3
oxdy
ot = 10-12—(-1)? =119.
2 2
Comme a* = 119 > 0, i 10 > 0, et 7 =12 > 0, i s’agit d’un mini-

mum. x = 6 et y =9 est donc la solution qui minimise la fonction objectif
tout en respectant la contrainte.

On notera que, dans ce cas, la valeur de X ne présente pas d’intérét et n’est
donc pas cherchée.

7.8 Applications économiques des multiplica-
teurs de Lagrange

1l y a beaucoup d’applications économiques des minima et maxima sous cont-
raintes. Par exemple, si un producteur fabrique deux biens, il peut vouloir
minimiser le cofit total tout en devant fabriquer une quantité totale minimale
spécifiée ; une compagnie peut désirer maximiser ses ventes résultant de deux
publicités effectuées, tout en observant la contrainte du budget de publicité;
un consommateur peut vouloir maximiser sa fonction d’utilité provenant de
la consommation de certains biens, tout en étant restreint par son budget.

Exemple 7.11 Un consommateur dépense son revenu de 48 francs pour
l'achat de deux biens: x et y. Les priz de = et de y sont respectivement
2 franes et 3 francs. La fonction d’utilité du consommateur est donnée par
la formule :

U = —2? — 2% + 2zy.
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Combien d’unités du bien x et du bien y doit-il consommer pour mazimiser
son utilité ?

La fonction objectif & mazimiser est U = —z* — 2y° + 2zy.

La contrainte est 2z 4+ 3y = 48, ou 2z 4 3y — 48 = 0.

Formons la fonction auziliaire :

F = —2* — 2y* 4 22y + \(2z + 3y — 48).

On cherche ensuite les dérivées partielles par rapport @ z, y et A:

oF

— = —2 2 2\
92 z + 2y +
OF

— = —4dy+2 A
ay y+2r+3
% = -2z -3y -—48.

Pour trouver un extremum, on annule ces 3 dérivées partielles :

—2z4+2y-2) =0
—4y+2x—-3)2 = 0
-2z —-3y+48 = 0

et en résolvant pour z et y, on trouve :

336 . 240

29 YT g

Il s’agit & présent de calculer les dérivées partielles de deuxiéme ordre afin
de détermaner la nature de ce point critique:

x

0*F

2 = 2

2

FF _ 4

dy?

2

O°F =

0zdy

ot = —-2.-4-(2)%=4.

2 2F ) ) )
Commea‘:4>0,w:—2<0, etaﬁ—:—4<0,zlsag¢tdunmm—

mum.
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Exemple 7.12 Une firme produit des appareils dans deux usines différentes.
Les cofits totaux de production pour les deux usines sont respectivement :

CT, = 200+ 6g; + 0.03¢>
CT, = 150 + 10g, + 0.02¢2

ou q, et gy représentent le nombre d’appareils produits dans chaque usine. La
firme s’est engagée a livrer 100 appareils & une entreprise. Les frais de trans-
port par appareil sont de 4 francs pour les livraisons a partir de la premiére
usine et de 2 francs pour les livraisons & partir de la seconde usine. Les frais
de transport sont supportés par la firme productive.

Calculons le nombre d’appareils que doit produire la firme dans chaque usine
afin de minimiser le cott total de production y compris le codt de transport.
Le cott total est égal a:

CT = (CTi+4q)+ (CTy+ 2¢)
= 200 4 6¢; + 0.03¢ 4 4¢; + 150 + 10g; + 0.02¢% + 2¢»
= 0.03¢7 + 0.02¢% + 10q; + 12¢2 + 350.

1l s’agit donc de minimiser cette fonction, et cela sous la contrainte de livrer
100 appareils au total, ¢’est-a-dire ¢, + g = 100.
La fonction auziliaire devient par conséquent :

F(q1,q2,\) = 0.03¢7 + 0.02¢2 + 10q; + 12g5 + 350 — X\(q1 + g2 — 100).

Comme précédemment, on cherche les dérivées partielles de premier ordre :

F

OF et i
gy

aF

— = 0.04¢o+ 12— A
94z a2

oFr

E = 100—(}1—(}2.

Pour trouver le point critique, on les annule :

0.06g, +10—X = 0
0.04¢> + 12 — A
qi+g—100 = 0
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et en résolvant pour q, et qa, on trouve: q = 60 et go = 40
Il faut encore vérifier que, pour ces valeurs, il s’agit bien d’un minimum :

O*F
5{? = (.06
0*F
— = 0.04
dq3
2F
i =0
5‘11392
a = 0.06-0.04 —0 = 0.0024.

2F &y
Comme o, o et i sont positifs, il s’agit bien d’un minimum.
1 2
Par conséquent, quand la firme livre 60 appareils de sa premiére usine el
40 de sa deuzxiéme usine, le cott total est minimal sous la contrainte d’une
livraison de 100 appareils.

7.9 Intégrales doubles et multiples

b
Dans le chapitre 5, nous avons défini f(z)dz d’une fonction y = f(z)

continue sur l'intervalle fini ¢ < z < b. De fagon analogue, on peut définir
I'intégrale double, notée / /f(:.c, y)dzdy d’une fonction continue f(z,y)

sur une région finie de G du Gpla.n Ogy-

Nous avons vu que l'intégrale définie de f(z) pouvait s’interpréter en
termes d’aires. La double intégrale définie peut, quant a elle, étre in-
terprétée en termes de volumes. Quand z = f(z,y) est positif ou nul sur

une région G, I'intégrale double / f(z,y)dzdy est le volume situé sous la

surface z = f(z,y) et au-dessus dg la région G dans le plan Oy,.

L’évaluation des intégrales doubles se fait par intégrations partielles suc-
cessives, qui est 'inverse de la dérivation partielle. Ainsi, pour calculer l'inté-
grale double d'une fonction de deux variables indépendantes, on intégre tout
d’abord par rapport & l'une des variables tandis que l'autre variable est
considérée comme constante; le résultat de cette intégration partielle est
ensuite intégré par rapport a 'autre variable.
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Une intégrale double se calcule en faisant deux intégrations successives :

| [ e wasty = | __b [ / T()) f(w,y)dy} dz

ot a et b sont des constantes. Cette expression représente deux intégrales
simples définies et évaluées dans un ordre bien déterminé: f(z,y) est d’abord
intégrée partiellement par rapport & y (en prenant z constant), entre les
bornes y;(z) et ya(z), les limites inférieures, respectivement supérieure de
la région G; le résultat est une fonction de z qui est ensuite intégrée par
rapport & x entre les bornes * = a et * = b, les points a 'extréme gauche
respectivement a I'extréme droite de G' (Figure 7.13(a)).

Remarque Si l'ordre d’intégration est inversé, de nouvelles bornes d’intégra-
tion doivent étre déterminées:

y=d [ pza(y)
Lff(&:,y)dmdyzézc [le(y) f(x,y)d:zz] dy (Figure 7.13(b).

y y
V(%) d
x,(y)
x,(y)
i)

c

0 a b x 0 X

(@) (b)

Figure 7.13: Découpages du domaine G d’intégration

Ici, f(z,y) est d’abord intégré partiellement par rapport & z, puis par
rapport & y. On peut montrer que les deux maniéres d’intégrer conduisent
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au méme résultat :

T=b v2(z)
j / flz,y)dady = f / f(z,y)dy| dz
G z=a [Jy(2)
y=d z2(y)
P e
y=c z1(y)
Exemple 7.13 Soit & calculer U'intégrale double / /(5:1? + y)dzdy, ou G

G
est la région limitée par les droites x = 1, y = 2 et 2z + 3y = 14 (Figure
T.14):

Figure 7.14: Domaine G: région limitée par les droites = = 1, y = 2 et
22+ 3y=14

Pour un x fizé, Uintégration en y s’effectue a partir de la borne y; = 2
14 — 2z

jusqu’a la borne y, = . L’intégration suivant z se fait a partir de la

borne x = 1 jusqu’a la borne x = 4. Ainsi:

L/(Sx—l—y)dzdy

14—2zx

rs
[

(5 + y)dyj\ dz

14—2x
3

dx

2



208

gration deviennent :

Fonctions de plusieurs variables

4 . 14-2z\2
/ Sz 1ot +( 3 ) — 10z — 2| dx
1 3 2

4
= /; (7—:537—%D$2+%—%m+§$2—109:—2)dz

= /4 -§:c2+gg:c+@ dz
I 9 9 9

B0 P02 '
27 18 9

1792 1472 320 28 92 80

27 18 9 27 18 9

_
54
= 38.
Si l'on intégre d’abord par rapport & x, puis par rapport ¢y, les bornes d’inté-
=1, ".,a?g:%,y:Q et y=4.

L/(Sx + y)dzdy

- /: [/11_4;—3&(5:8—%3;)(11] dy

14—3y

dy

1

2
14-3y\*® [14-3y 5
— % Ve gl
(452) + (#5%) v-5 1]
245 105 45 . 3, 5 )
5 Y9

4
_ i T . T
—/2 ) 2J+Sy+7*y 5Y
3

Y - %y + 120) dy

4

Il
h
e

oo| 83

Il
|
!
I
I
=
L]
_|_
—
b2
=]
=

2
2112 1488 264

= W—T+480-—E+93-—240

912
24
= 38.
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Le résultat est donc le méme si I'on intégre d’abord par rapport a y
puis par rapport & z, ou si I'on intégre d’abord par rapport a z, puis par
rapport a y. Dans chacun des cas, il faut déterminer soigneusement les bornes
d’intégration respectives.

Pour les fonctions de plus de deux variables indépendantes, cette mé-
thode se généralise aisément. On parle alors d’intégrales multiples. Comme
dans le cas des intégrales doubles, les intégrales multiples se calculent de
Pintérieur vers 'extérieur; c¢’est pourquoi, 'ordre dans lequel interviennent
les différentes expressions doit étre scrupuleusement respecté.

Exemple 7.14 Calculons l'intégrale triple suivante :

2 pz-1 l—z 2 px-1 22 1-z
/f / z-y-zdzdyde = /] Ty — dydz
Jo Jo 0 Jo Jo 2o
2 -1 1
= / / =z -y(1 —z)’dydz
0o Jo 2

2 2 |z—1
1 y
- S (l—g)? L dz
ﬂ(z zo)

x-(1—2) - (z—1)%dz

Il
ﬁ
L

e
= Z/(m°—4$4+6$3—~4:c2+a:)dx
0
_ L[ et s g
416 5 4 3 " 2]k
1
= =

Remarque Les intégrales multiples trouvent par exemple leurs applications
en probabilités et statistiques (espérance mathématique, variance, covariance
de plusieurs variables aléatoires), mais ces notions dépassent le cadre de cet
ouvrage.
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Exercices

1. Donner les dérivées partielles du premier et du second ordres pour les
fonctions de deux variables suivantes:

(4) flay) =2 + =~ 5.
(b) f(z,y) = In(z + J)

(c) f(z,y) = sin(z) cos(y).
(d) ( ) esin(z+y)

2. Si la fonction de cofit conjointe pour produire des quantités z et y de
deux biens est:
C =2zIn(3 + 2y).

Calculer le cofit marginal par rapport a z et le coiit marginal par rap-
port a .

3. Trouver la productivité marginale de x et la productivité marginale de
y pour les fonctions de production suivantes:

(a) z = 2z'/43/8,
(b) z = zy+ 423y® — 6z + 3.
(¢) z = (ay)*®.

4. On appelle courbe de niveau: f(z,y) = ¢, dans le plan 0. Dessiner
les courbes de niveau pour ¢ = 0,1, 2, 3,4 des fonctions suivantes:

(a) f(z,y) =2+~
(b) f(z,y) = =zy.

5. Etudier les minima et maxima des fonctions suivantes :

(a) f(z,y) =2 +y° - 3zy.
(b) flz,y) =2 —ay+y*+3z—2y+ 1

6. Trouver les extrema de la fonction objectif f(z,y) = @y sous la cont-
rainte x +y = 1.
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7. La fonction f(z,y) = = + y ne posséde pas d’extremum.
En revanche, cette méme fonction sous la contrainte z?+y? = 9 posséde
un minimum et un maximum qu’il s’agit de trouver.
Expliquer géométriquement cette situation.

8. Une entreprise fabrique deux types de machines z et y. La fonction de
cofit conjointe est: f(z,y) = 2% + 2y? — zy. Combien de machines de
chaque type I'entreprise doit-elle fabriquer pour minimiser son cott s’il
lui faut un total de 8 machines?

9. Un consommateur dépense son revenu de 90 francs pour ’achat de deux
biens x et y. Le prix de z et y est respectivement de 5 francs et de 10
francs. La fonction d’'utilité du consommateur est donnée par:

U=—2?-2y*+zy.

Combien d’unités du bien z et du bien y doit-il consommer pour ma-
ximiser son utilité?

10. Soit la fonction:

= ZR:E? = i(yi - a— bz;)®
i=1 i=1

Trouver les deux paramétres a et b tels que cette fonction soit minimale.
Notons ces deux valeurs estimées par a et b.

11. A T'aide de Dexercice 10, trouver les valeurs estimées des deux pa-
rametres a et b, pour les six points ci-dessous :

(zi;31) = (50;5)

(z2;92) = (53;7)
(zs;y3) = (56;10)
(za594) = (57;12)
(z5;y5) = (55;8)
(65 Ys) (59; 10)

12. Pour les valeurs de a et b de exercice 11, dessiner la droite § = a + bz
ainsi que les 6 points sur le méme systéme d’axes. Calculer la valeur de

S.



212 Fonctions de plusieurs variables

&
-

A

SCHWIELERISTHE NARONALBANK

g€sL08lio28 0

EULER Leonhard (1707-1783)

Né en avril 1707, & Bale en Suisse, Leonhard Euler conclut ses études de
philosophie en 1723. Il étudie la théologie, le grec et I’hébreux. Grace a son
mentor Johann Bernoulli, il réussit & convaincre son pére de le laisser pour-
suivre ses études en mathématiques, il les termine en 1726. En 1730, il est
nommé professeur de physique a 1’Académie des Sciences de St Petersbourg.
Aprés le départ de D. Bernoulli en 1733, Euler reprend la responsabilité de la
chaire des mathématiques de I’Académie. Les domaines d’application de ses
projets sont vastes: de la cartographie a la science de ’éducation, des pompes
incendie & I’étude des moteurs etc. Cependant, le noyau de ses recherches est
déja deéfinitivement déterminé: la théorie des nombres. En 1741, Euler quitte
St-Petersbourg pour rejoindre I’ Académie des Sciences de Berlin. Durant les
25 ans qu'il a passés a Berlin, Euler a écrit 350 articles, des livres sur le calcul
des variations, le calcul des orbites planétaires, sur I'artillerie et la balistique,
traitant de la construction des bateaux, sur le mouvement de la lune.

En 1766, Euler décide de retourner a St-Petersbourg, c’est & ce moment-la
qu'il perd complétement 'usage de la vue. Ce qui est formidable, c’est qu’il
produit plus de la moitié de ses travaux durant cette période, en dépit de sa
cécité totale.
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Algébre linéaire



Chapitre 8

Calcul matriciel

8.1 Introduction

Dans de nombreuses analyses économiques, les différentes variables sont re-
liées entre elles par des équations linéaires. L’algébre linéaire fournit une no-
tation claire et précise pour formuler et résoudre de tels probléemes. Dans
ce chapitre, nous allons tout d’abord définir la notion de matrice. Nous
nous intéresserons ensuite aux différents types de matrices et aux opérations
usuelles telles que 'arithmétique, le calcul du déterminant ou de l'inverse.

8.2 Matrices

Une matrice est un tableau rectangulaire de nombres réels que I'on peut
représenter de la maniére suivante:

ayy g Qin

a1 Qa2 Aan
A = (a;;) = :

Am1 Qm2 ... GQmp

Les termes représentés dans le tableau constituent les éléments de la ma-
trice. Dans ce livre, un élément sera toujours un nombre réel. Un élément
est caractérisé par sa valeur et par sa position. Nous désignons les éléments de
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la matrice A par la lettre minuscule a, munie de deux indices. Donc, a;; est un
élément de la matrice A dont ¢ indique le numéro de la ligne et j le numéro de
la colonne. Une matrice de m lignes et de n colonnes est dite d’ordre (m x n).
Si le nombre de lignes est égal au nombre de colonnes, la matrice est dite
carrée. On a alors m = n et on dira simplement que la matrice est d’ordre
n. Une matrice d’ordre (m x 1) est appelée vecteur-colonne et une matrice
d’ordre (1 x n) est appelée vecteur-ligne.

Exemple 8.1 La matrice A suivante est carrée et d’ordre 3:

-1 4 2
A= 01 -3
41 5

Exemple 8.2 Les matrices A d’ordre (4 X 1) et B d’ordre (1 X 2) sont
respectivement appelées vecteur colonne et vecteur ligne :

B=[2 -6

[ B C W I

8.3 Addition de matrices

Si A= (a;;) et B= (b;;) sont deux matrices d’ordre (m x n), leur somme
A + B est définie par la matrice:

C = (¢;j) = A+ B = (a5 + biy).

C= (c;;) est d’ordre (m x n); chaque élément est la somme des éléments
correspondants de A et B.

Exemple 8.3 Soient les matrices A et B suivantes:

342 619
A:[135} B={203]

on obtient :

9 5 11
c-a+5=|3 5 ]
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La somme de deux matrices d’ordre différent n’est pas définie. Si A, B

et C sont des matrices de méme ordre, alors nous avons:
A+B=B+ A (commutativité)
A+ (B+C)=(A+B)+C (associativité).

Exemple 8.4 Soient les matrices A et B suivantes :

a=[35] =[5 7]
avm=[3 7 ]+[8 3] 15 ]

sea-[f 3]+ [5 3]-[ ]

donc A+ B =B + A.

alors :

et

Exemple 8.5 Soient les matrices A, B, C suivantes:

A+ (B+C)=(A+B)+C:

1 -1 6 —5
A=[3 0}’ B=[2 1}’ c
on obtient :
6 —5 0 2 6 —3
B+C‘{2 1}+[2 4]2[4 5]

A+(B+C):[1 ‘1]+[6 —3]=[7 —4]

Il
| —
o
SN
—

et

3 0 4 5 7 5

on obtient aussi:

avm=[} 4]+ [8 3]-[5 1]

womso-[3 3]+ [32]-[1 1]

et

5 1 2 4 7 5
par conséquent, on voit que: A+ (B+C) = (A+ B) +C.
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8.4 Multiplication des matrices
Soient A et B deux matrices, le produit AB est défini si et seulement si le
nombre de colonnes de A est égal au nombre de lignes de B. Si A

est d’ordre (m x n) et B d’ordre (n x q) alors le produit AB est défini par
la matrice C' d’ordre (m x q) dont les éléments sont obtenus par:

n
ngzzagkbkj i=1,...,m etjxl,...,q.
k=1

Cela signifie que I'on multiplie les éléments de la i° ligne de A par les éléments
correspondants de la j¢ colonne de B puis que I'on additionne les résultats.

Exemple 8.6 Soient les deuz matrices A et B suivantes:

12 0
A:{_iﬁg} B=|0o 2 3
0 -1 -2

A est d’ordre (2 x 3) et B est d’ordre (3 X 3). Le produit AB est donc défini
puisque A a 3 colonnes et B a 3 lignes. Le produit AB que nous appellerons
C est une matrice d’ordre (2 x 3).

L’élément cy; s’obtient en multipliant les éléments de la premiére ligne de
A par les éléments de la premiére colonne de B puis en additionnant les
résultats: ¢;1=1-14+3-0+0-0=1.

L’élément c1o s’obtient en multipliant les éléments de la premiére ligne de
A par les éléments de la deuziéme colonne de B puis en additionnant les
résultats: cjpo=1-2+3-2+0-(-1)=8.

On répete la méme opération pour tous les éléments c;;. On obtient la matrice

C suivante:
1 8 9
e [ —1 —g ~1 ] '

Si A, B et C sont trois matrices dont le produit et la somme sont définis,
nous avons :

(AB)-C = A.(BC) (associativité)
A-(B+C)=AB+ AC (distributivité).
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Exemple 8.7 Soient A, B, C trois maltrices carrées d’ordre 2, nous allons
vérifier que (AB)-C = A - (BC):

a-[3 ] m-[373] e-[31]

as - |3 o5 3]s Se
@myc - |3 ][5 3]-[5% 2t

so - |3 3][0 8]0 3
amo) - |5 5|75 3= 3]

Exemple 8.8 Avec les mémes matrices A, B et C' de l'exemple 8.7, nous
vérifions que A- (B +C) = AB + AC :

6 —3 ]
B+C = 4 5
1 -1][6 -3 2 -8
A-B+C) = |3 o4 5}"{18 _9}
[ 4 —6 ;
AB = 18 —15 (voir exemple 8.7)
1 -17[0 2 -2 =2
AC__3 0__24]=[0 6]
[ 4 -6][-2 -2 2 -8
AR+ = | 18 —15“ 0 6}_[18 —~9]

La multiplication de matrices n'est pas commutative,c’est-a-dire qu’en
général AB # BA.

Prenons le cas général avec A d’ordre (m x p) et B d’ordre (p x n). Le
produit AB est défini; c’est une matrice d’ordre (m x n). Qu'en est-il du
produit BA? 1l faut distinguer 3 cas:

1. m # n; le produit BA n’est pas défini. A ce moment-1a, AB ne peut
pas étre égal & BA.
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2. m = n mais p # n; les deux produits AB et BA sont définis, mais
AB est d’ordre (n x n) et BA est d’ordre (p x p). Les deux produits
ne peuvent donc pas étre égaux.

3. m=mn=p; A et B sont deux matrices carrées d’ordre n. AB et BA
sont aussi carrées d’ordre n. Mais, 1a encore, en général AB # BA.

Exemple 8.9 Reprenons les matrices A et B de l'exemple 8.4 et regardons
st AB est égal ¢ BA :

am =[]0 )-8 52
sa =[5 [3 )-8 3]

AB est différent de BA.

8.5 Multiplication d’une matrice par un
scalaire

Si a est un scalaire (un scalaire est un nombre réel) et A une matrice, le
produit @A est la matrice de méme ordre que A, obtenue en multipliant
chaque élément (a;;) de A par a:

aA = Aa = (aa;j).

Exemple 8.10 Reprenons la matrice A de 'exemple 8.3 et multiplions-la
par o = 0.7 :

QA:AQZO_7[3 4 2]:{2.1 2.8 1.4}_

1 35 0.7 2.1 3.5

Si A et B sont deux matrices de méme ordre et v un scalaire, nous avons:

a(A+ B) =aA+aB (distributivité).
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Exemple 8.11 Avec A et B de l'ezemple 8.4 et o« = 0.7, nous allons vérifier
que a(A+ B) =aA+aB:

«ta+5) = 07| 77| =[35 7]
wa = 07)5 T |=[21 %]
«8 =075 7]=]1% 07
«a+eB = |37 0]+ |10 7= o7l

8.6 Transposée d’une matrice

La matrice d’ordre (n x m) obtenue en échangeant les lignes et les colonnes
d’une matrice A d’ordre (m x n) est appelée matrice transposée de A et
est notée A’ (ou parfois A?).

Exemple 8.12 La matrice A d’ordre (2 x 3), et sa transposée A’ d’ordre
(3 x 2) sont données ci-dessous :

10
A=[é?_?] A=]3 1
2 -1

Si A et B sont deux matrices dont la somme et le produit sont définis, il
est facile de montrer les relations suivantes:

(A+B) = A'+B.
(AB) = B'A'
(4)' = A.

Il

Exemple 8.13 Reprenons les matrices A et B de lexemple 8.4 et vérifions
que (A + B)'= A'+B’ et que (AB)'=B'A’.

7 —6
avm = [10]

(a+8y = | 7]
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: 1
A= :13 _[IJ_ :[—1 3}
v - [14]-[ 2]

S EHEEHE B
<5 = :13 —_12}

apy - [ 48]

oa = [$1][23]-[4 5]

8.7 Différents types de matrices

e Matrice nulle

La matrice dont tous les éléments sont nuls est appelée matrice nulle.
Elle sera notée O. Lorsque les opérations sont définies, nous avons:

A+O0 = A=0+A
A-A = O
AO = 0O0=0A

Notons que AB = O n’entraine pas nécessairement A = O ou
B = 0.

Exemple 8.14 Soient les matrices A el B non nulles suivantes :
1 4 4 0
e[l e-[43]

Le produit AB est nul malgré tout :

00
as-[00]
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e Matrice identité

Pour toute matrice carrée, les éléments qui ont le méme indice pour
la ligne et pour la colonne (c’est-a-dire les éléments en position (z,7))
forment la diagonale principale.

Une matrice identité est une matrice carrée qui a des “1” sur la
diagonale principale et des “0” partout ailleurs. On la désigne par la
lettre I.

Exemple 8.15 La matrice identité d’ordre 3 est la suivante :

1 00
I={0120
001

e Sinous désignons les éléments de la matrice identité par u;; pour ne pas
répéter la lettre minuscule 7, nous pouvons définir la matrice identité
de la sorte:

I=(u;) avec wu;=1 si i=j
Uiy =0 si E#}
Si A et I sont deux matrices de méme ordre, alors on a:

IA = AI=A
I¥F = 1I k=12,...,n

Exemple 8.16

1 -1
3 0

as[3 2] [ 3] [3 )
(33138113 3]

e Matrice symétrique

Soit A = [ :l et I d’ordre 2,

Une matrice carrée A telle que A'= A est dite matrice symétrique.
Ainsi, une matrice carrée A = (a;;) est symétrique si a;; = a;; pour
tout ¢ et tout j, c’est-a-dire ses coefficients sont symétriques par rapport
a la diagonale principale.
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Matrice anti-symétrique

Une matrice carrée A telle que —A’= A est dite matrice anti-symétrique,
c’est-a-dire si a;; = —a;; pour tout ¢ et j; il s’ensuit que les éléments
de la diagonale principale sont nuls.

Matrice scalaire

Une matrice carrée A est dite matrice scalaire si:

a; =0 pour i=j
a;; =0 pour i#j
ou (3 est un scalaire.
Matrice diagonale
Une matrice carrée A est dite matrice diagonale si:
a;j = dgj pour 1 2_}'
a;; =0 pour i#j
ou les d;; sont des nombres quelconques.
Matrice triangulaire

Une matrice carrée A est dite triangulaire (supérieure) si:
a;; = 0 pour 7 > j.

Exemple 8.17 Voici un exemple pour chacun des types de matrice carrée
vus ci-dessus :

-1 2 4
. matrice symétrique: A = 21 @
4 0 -2
: . : 0 2
matrice anti-symétriqgue: A = [ 2 0 ] :
6 00
matrice scalatre: A= | 0 6 0 | =6I
006
300
. matrice diagonale: A= | 0 1 0
0 05
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SRRV

5. matrice triangulaire: A =

o o o -
o O N W

8.8 Trace d’une matrice carrée

La trace d’une matrice carrée est la somme des éléments de la diagonale
principale. Si A est une matrice carrée d’ordre n, on définit la trace de A
comme suit :

Exemple 8.18 La trace de la matrice A d’ordre 3 suivante:

1 3 2
A=|(0 1 -1
2 -1 0

est
tr(A)=a11+a;>2+a33=1+1+U=2‘

Si A et B sont deux matrices carrées, alors nous avons:
tr(A’) = tr(A)
tr(A+ B) = tr(A)+tr(B).
Si A est d’ordre (m x n) et B d’ordre (n x m), alors nous avons:
tr(AB) = tr(BA)

Exemple 8.19 Avec la méme matrice A que dans l'exemple 8.18, nous
avons .

1 0 2
A=|3 1 -1

z -1 @
tr(A’)) = 1+1+0=2.

tr(A) = 2
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Exemple 8.20 Avec les matrices A et B de l'exemple 8.4, nous allons vé-
rifier que tr(A + B)=tr(A)+tr(B):

7 —6 ]
A4+ B = 5 1
trf(A+B) = 7T+1=8
T

A = 3 0] tr(A)=1+0=1
P ]

B = 2 1| tr(B)=6+1=7

tr(A) +tr(B) = 1+7=8.

Exemple 8.21 Soient la matrice A d’ordre (2 x 3) et la matrice B d’ordre
(3 x 2) suivantes :

0 -1
a-[210] m=[i
1 1

Nous allons vérifier que tr(AB)= tr(BA):

0 -3
AB = E _1]
tr(AB) = 0—-1=-1.
[ -1 =2 0
BA = 2 1 <1
| 3 3 -1
tr(BA) = —-1+1—-1=-1.

8.9 Partition des matrices

Si l'on trace entre certaines lignes et/ou certaines colonnes d’une matrice
A des traits sur toute la longueur de ces lignes ou de ces colonnes, on fait
apparaitre de nouvelles matrices dont les dimensions sont inférieures a la
dimension de A. Elles sont appelées sous-matrices de A ou blocs.
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Exemple 8.22 Si nous prenons une matrice A d’ordre (3x4), nous pouvons
la partager par exemple en 4 blocs comme suit :

ajy G ’ a3 Q4
A= Gz Q92 | (23 (A4
a3y Gg2 | Gzz (g4

Si on désigne les blocs par:

B=[(I11 Ulg] C=|:a'13 (.114]

(1] (1} a (4}
o 21 Q22 B 23 (24
asy asz a3z 0434

on peut représenter la matrice A ainsi:

B C
= [ D E } '

Une telle matrice est appelée matrice partagée (partitionnée). Il est évi-
dent que la division d’une matrice en blocs n’est pas unique. Dans 'exemple
8.22, nous avons 4 blocs ou “deux lignes de blocs” et “deux colonnes de blocs”.
Ces lignes et ces colonnes sont appelées respectivement grandes lignes et
grandes colonnes de la matrice A.

En général, si A est une matrice d’ordre (m x n) divisée en p grandes
lignes et g grandes colonnes, nous désignons le bloc de la ¢ grande ligne et
de la j° grande colonne par A;;. Nous avons alors la représentation suivante
de A:

A Az ... Ayg
Agl Azz Azq

A, Ay L. A
e Addition de matrices partagées

Si A et B sont deux matrices du méme ordre et partagées de la méme
facon en p grandes lignes et ¢ grandes colonnes, la somme de A et B
se fait en sommant les blocs correspondants :
A+ B = [Ay] + [By] = [A; + By] pour i=1,2,.. ,P
=1

e AR
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Exemple 8.23 Soient les deux matrices d’ordre (3 x 3) A et B suivantes :

on obtient :

—2 1| 2
A= 0 =1|-3
g 1| 4
-2 1 0
][

A+B=

-1

1

B=

l||

2
-3

= 0
1 1
2|—2

J+[1]

[ 3 1]+[2 2}h 4]+[-2]

-2 0
0
3

—2

2

e Multiplication de matrices partagées

Pour que deux matrices partagées A et B puissent étre multipliées, il
faut que les deux conditions suivantes soient vérifiées:

1. le nombre de grandes colonnes de A est égal au nombre de grandes

lignes de B';

2. le nombre de colonnes du ¢¢ bloc d'une grande ligne quelconque
de A est égal au nombre de lignes du ¢° bloc d’une grande colonne

quelconque de B.

Si A est partagée en (p x q) blocs et B en
si A=[A;] pour i=12,...,p
i=12,...,q
et B=[B;] pour i=12,...,q
j - 1= 21 . » S
alors le produit AB est défini par:
q
AB:[EZAWB% pour i=1,2,...,p
t=1
j=1,2,...,s.

(g x s) blocs, c’est-a-dire

Le résultat AB est une matrice partagée en (p x s) blocs.
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Exemple 8.24 Reprenons les matrices A et B de l'ezemple 8.23 et calcu-
lons le produit AB :

-2 1] 2 0 -1| 0
A=| § -t|-—8 B=| ¥ |1
3 1| 4 2 2|-2

La premiére condition est remplie car le nombre de grandes colonnes de A est
égal au nombre de grandes lignes de B. Pour vérifier la deuxiéme condition,
notons les blocs de A et de B par leurs indices respectifs :

w-[31] e[

Az = | :? 1] Ap=[ 4]
m-[ 2] man[d]
Bny=[ 2 2] By =[-2].

Nous devons multiplier Ayy par By1 et par Byz. Il faut donc que le nombre
de colonnes de Aq1 soit égal au nombre de lignes de By, et de B1s. Cest le
cas puisqu’on a2 =2 = 2.

Nous devons multiplier Ays par Bay et par Bag. Il faut donc que le nombre
de colonnes de Aq2 soit égal au nombre de lignes de Bay et de Bag. Cest le
cas putsqu’on a1l =1 = 1.

Nous devons multiplier Ag; par By el par Bia. Nous pouvons le faire
puisque Az, a 2 colonnes et Byy et Byg ont 2 lignes.

Et finalement nous devons multiplier Aay par Bay et par Bas. Nous pouvons
le faire car Ags a I colonne et Bay et Bas ont 1 ligne. Le produit AB est
donc possible et le résultat est le suivant :

AB =

[ A11Bi11 + A12B21 | A11B12 + A12Ba
| A21Bi11 + A2 B2y | A1 Bz + A2 Ba

[ 2]l | )]

[ 1 -2]+[ 8 8] ’[ 1]+[-8]
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5 7]-3
= | -7 -7| 5
9 6|7

e Transposée d’une matrice partagée

La transposée d’une matrice partagée A = [Ajy] est égale a la trans-
posée de ses blocs dans 'ordre transposé:

A = [(Az)]

Exemple 8.25 Si l'on reprend la matrice de l'exzemple 8.22 :

B C
4-|5 2]
sa transposée est égale a:
Bf D-‘
A-’ = [ C.’ El’ } .

8.10 Déterminant d’une matrice

A chaque matrice carrée, on peut associer un nombre qui s’appelle son
déterminant. On le désigne par I'expression Det(A) ou par | A |. Nous allons
commencer par deux cas particuliers: le déterminant d’une matrice (2 x 2)
et le déterminant d'une matrice (3 x 3).

Le déterminant d’une matrice d’ordre 2 est égal a la différence du produit
croisé de ses éléments :
a;p 12

| A=

= ap) - Qgz — Q12 * A3y.
agzy aa2

Exemple 8.26 Le déterminant de la matrice :

EE
A__3 0}

est:

=1.0—-(-1)-3=3.

1 -1
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Pour calculer le déterminant d'une matrice d’ordre 3, on répéte les deux
premiéres colonnes a coté de la matrice. On effectue la somme des produits
des éléments de chaque diagonale tournée dans le méme sens que la diagonale
principale et on enléve les produits des éléments de chaque diagonale de sens
contraire. Cela donne:

aj; 12 diz | 11 Q12
a1 Qg2 Qg3 | Ag1  (A22
g3y dagz a3z | dz1 432

| Al = @y Qg Q33+ Q12 - Ag3* A31 + Q13 - Ag1 - A3
—(a13 - ags - agy + ayy - a3 - aga + @12 - ag) - azs).

Exemple 8.27 Le déterminant de la matrice

1 2 0
A=|0 2 3
0o -1 -2
est:
|A| = 1-2-(—2)+2-3-D+{)-U-(—1)

i« 20 =13 (=1} =25« (=F) =1,

Pour calculer le déterminant d’une matrice d’ordre n, il faut introduire
quelques notions sur les permutations.

On dit que les entiers 1,...,n sont dans un ordre naturel lorsqu’ils
apparaissent dans 'ordre 1,2, 3,...,n. Deux entiers ne sont pas dans l'ordre
naturel dans un ensemble de n entiers si le plus grand préceéde le plus petit.
Par exemple, 'ordre naturel des 5 premiers entiers, commencant par 1, est
(1,2,3,4,5). Si 'on inverse la position des entiers 2 et 4, nous obtenons
(1,4,3,2,5) et 'ensemble n’est plus un ordre naturel, parce que 4 préceéde 3
et 2, 3 précéde 2.

On appelle permutation de n entiers tout arrangement de ces n entiers.
Le nombre d’inversions dans une permutation de n entiers est le nombre
de paires d’éléments (non nécessairement adjacents) dans lesquelles le grand
entier précéde le petit. Dans I'exemple donné précédemment, nous avons 3
inversions: (4,3), (4,2) et (3,2). Notons que le nombre d’inversions dans
toute permutation est unique et peut étre compté directement et systémati-
quement. Une permutation est dite paire si le nombre d’inversions de cette
permutaion est pair. Elle est dite impaire si le nombre d’inversions est im-
pair.
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e Définition du déterminant

Le déterminant d’une matrice A d’ordre n, noté | A |, est le nombre
calculé & partir de la somme suivante :

| A | = Z(i)auﬂzj -

La somme est prise sur toutes les permutations du second indice. On
assigne a un terme le signe plus si (i, 7, ...,7) est une permutation paire
de (1,...,n) et le signe moins si c’est une permutation impaire.

Exemple 8.28 Pour une matrice d’ordre 3, nous avons les caractéristiques
sutvantes :

Permutations Nombre d’inversions Parité

1,2,3 0 paire
2.8.1 2 paire
3,1,2 2 paire
1,3,2 1 impaire
2,1,3 1 impaire
38,1 3 impaire
Le déterminant est alors :
| Al = aiq) - ax) - ase) + @) - az@) - as0) + a1) - a20) - d3(2)

—  Qi(1) " Q2(3) * A3(2) — A1(2) - A2(1) * A3(3) — A1(3) * A2(2) * A3(1)-

Exemple 8.29 Soit la matrice A suivante :

son déterminant est:

Al = (2:6:2)+(3-4-(-1))+((-1)-0-2)
~(2+4:2)=(3:0-2) = ((=1)-6- (~1))
= 24-12-16 - 6 = —10.
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e L’expansion du déterminant par les cofacteurs

Nous reprenons le déterminant de la matrice A ci-dessus:

a1 - Ggp - A3z + Q12 - Qg3 - A31 + Q13 - Qg1 - @32

—(a11 - ag3 - aza + iz - @21 - azz + ays - aze - az1).
Considérons maintenant les deux termes qui contiennent 1'élément :

@y : @y)- Qg -Qz3 — A1) - Gog - Gz2  QUE NOUS pouvons écrire
ap - (Gez t a3z — a3 - 0132)-

Les termes entre parenthéses représentent le cofacteur de I'élément
ay1. On notera qu'il ne contient aucun élément de la premiére ligne et
aucun élément de la premiere colonne. Nous représentons le cofacteur
de ay; par Aj;.

Considérons maintenant les deux termes du déterminant contenant le
2°m¢ glément de la premiére ligne de A :

Iy - Qg3 - A3; — Q12 * g1 * Q33 = 312(623 s Qg — agy - 033)
= ayp- Ap.

De méme, pour le troisiéme élément de la premiére ligne de A:

@13 - Q21 - Qg2 — A13 - (o2 - 431 = 013(021 tQzy — @32 - a31)
= a3 As.

Notons que tous les termes du déterminant ont été utilisés, nous pou-
vons done écrire :
3
| A |=anAn +apAn + a3l = Z a;;Aij.
j=1
Le méme raisonnement peut étre répété pour toutes les lignes ainsi que
toutes les colonnes de A.

Exemple 8.30 Calculons le déterminant de la matrice A suivante :
2 3 -1
A= 06 4
-1 2 2
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par la premiére ligne :

|A|] = an-An+az-Ai+as- A
= 2.(12-8)—3-(0—(—4))—1-(0—(—6)) = —10

par la premiére colonne:

| A| = an-An+ag- Ay +az - Ay
= 2-(12-8)+0+(-1)- (12~ (=6)) = ~10.

Le cofacteur A;; de I'élément a;; est égal au déterminant de la sous-matrice
obtenue de la matrice originale lorsqu’on a éliminé la ¢° ligne et la j¢ colonne,
multiplié par (—1)"*7.

Exemple 8.31 Reprenons la matrice A de ['ezemple 8.30 et calculons le
déterminant par la 2éme colonne a l'aide de la définition des cofacteurs:

i A| = ap-Ap+axn-Axn+az- Az
= (=)0 3. (0 — (—4)) + (~1)®*2) - 6(4 - 1)
+(-1)8+2).2(8 — 0)
= —-3-(4)+6-(3)—2-(8)=-10.

Nous allons voir maintenant quelques propriétés des déterminants qui
vont nous permettre de les calculer beaucoup plus facilement.

8.11 Propriétés du déterminant

Propriété 1

Det (A) = Det (A").

Pour vérifier cette propriété, il suffit de noter que I'expansion du dé-
terminant par une des lignes de A’ est égale i I'expansion par la colonne
correspondante de A. L'importance de ce résultat est que toutes les propriétés
que nous verrons par la suite & propos des lignes seront valables aussi pour
les colonnes.

Propriété 2

Si l'on échange deux lignes de la matrice A, le déterminant change de

signe.
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Propriété 3

Si la matrice posseéde deux lignes identiques, le déterminant est égal a
Z€ro.
Propriété 4

Si’on multiplie une ligne de la matrice A par le scalaire 3, le déterminant
est lui aussi multiplié par S.
Propriété 5

Si tous les éléments d’une ligne d’une matrice A sont nuls, le déterminant
est égal a zéro.
Propriété 6

Si, aux éléments d’une ligne de la matrice A, on ajoute un multiple quel-
conque des éléments correspondants d’une autre ligne de A, le déterminant
reste inchangé.
Propriété 7

Le déterminant d’une matrice triangulaire est égal au produit des élé-
ments de la diagonale principale.
Propriété 8

Le déterminant d’une matrice diagonale est égal au produit des éléments
de la diagonale principale. A partir de cette propriété, on peut en déduire
que le déterminant d’'une matrice identité (quel que soit son ordre) est égal
al.
Propriété 9

Soient A et B deux matrices carrées d’ordre n, le déterminant du produit
des deux matrices est égal au produit des déterminants des deux matrices:

Det (AB)= Det(A)- Det(B).

8.12 Inverse d’une matrice

Si A et B sont deux matrices carrées telles que AB = BA = I alors B
est dite matrice inverse de A et I'on note B par A,

e Calcul de ’inverse

Soit A une matrice carrée d’ordre n. A chaque élément a;; correspond
un cofacteur A;;. On forme la matrice A® ou chaque élément a;; est
remplacé par son cofacteur: c’est la matrice des cofacteurs. On trans-
pose cette matrice pour obtenir une nouvelle matrice, appelée matrice
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adjointe, que I'on note A*. L’inverse de la matrice A est défini par:

]' a

Al = A"
| A]

On notera que 'inverse d'une matrice existe si et seulement si son dé-
terminant est différent de zéro.

Une matrice carrée A est dite singuliéresi | A |=0; elle est dite non
singuliére (ou réguliére) si | A |# 0. On peut donc dire que I'inverse
d’une matrice existe uniquement si la matrice est non singuliére.

Exemple 8.32 Soit A une matrice d’ordre 2, nous allons calculer son in-

verse :
3 1
a=[30]

Nous commengons par calculer son déterminant :
|A|=(3-0)—(2-1) =-2.
Puis nous cherchons la matrice des cofacteurs :
L 0 -2
Ac= { -2 } .
Nous transposons la matrice des cofacteurs pour obtenir la matrice adjointe :
0 -1
e __
e[47]
Puis, finalement, nous trouvons linverse :

Al— L 4a _1[ 0—1}:[0 1/2]_

“TATT T 2| -2 3 1 -3/2

Exemple 8.33 Prenons cette fois une matrice A d’ordre 3 et calculons son
inverse:

A=

LW O o
— = D

1
1
2
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Nous commengons par calculer | A | :

Al = (—1)‘*‘-(—%“ é‘“‘”“'”’ﬁ H
= —-2-3=-3.

Nous cherchons ensuite les cofacteurs :

11 01
Ay = (_I)IH 1 2 ' =1 A = (—1)1+2 -3 2 =il
0 1 2 1
A13 — (_1)1+3 2 g ‘ =3 A21 — (_1)2-!-1 L 2 =
-2 1 -2 2
(L 1\2+2 o . R
Ay =(-1) _3 2} 1 Ay =(-1) 31 4
21 -2 1
— (_1)3+1 _ — (_1)3+2 _
Az = (-1) 11 ’ 1 Az = (-1) 0 2 2
-2 2
— (_1)3+3 =
Ass =(-1) 0 1 ‘ 2.
D’ot la matrice des cofacteurs :
1 -3 3
A= | -3 -1 —4
1 2 =2
Nous la transposons pour obtenir la matrice adjointe :
1 -3 1
A= | -3 -1 2
3 —4 -2
Finalement, Uinverse est le suivant :
; 1 -8 -1/5 3/5 —1/5
A A_Aﬂ: ~g -3 -1 2| = 3/6 1/5 =2/5|.
|4l 3 4 —2 _3/5 4/5 2/5
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Quelques propriétés de 'inverse

1
1. Si A= (all): aiy % 0 alors A_] = 'a——
11

2. Si A est inversible, alors I'inverse A de A est unique.

3. Si A et B sont deux matrices carrées et inversibles alors:
(AB)™! = BA7

4 (AHYV=A.
5. (A) =AY,
6. Si A est une matrice non singuliére, alors AB = O = B = O.

_ 1
"~ Det(A)’

7. Det(A™)

8.13 Inverse d’une matrice partagée

Soit la matrice partagée :

| A Ag
A‘{Azl AzzJ (81)

ou Ay; et Ags sont deux matrices carrées et non singuliéres. On peut
vérifier que l'inverse de la matrice A est égal a:

A—l — [ Bll Bl2 ]

By, Bas
ol
By = An'+A1;'A5B A AT
By = —A; 'A;B!
By = —B 'Ay A5
By = B!
ou

B = Ay—A A A,
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Il est souvent souhaitable de pouvoir calculer le déterminant d’une matrice
partagée. Si Aj; dans (8.1) est non singuliére, le déterminant de A est égal
a:

| A|=| Ayy || Aza — Agy - Ay - Ao |

et si Agy est non singuliere, le déterminant de A est égal a:

| A|=| Agp || Auy — Agz- Ay - Ay |
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Exercices

1. Soient les matrices:

-3 2 1 2
A= 0 4 et B=|0 1
1 ~1 11

(a) Trouver une matrice C telle que A—2 B — C = O.
(b) Trouver une matrice D telle que A + B+ C—4 D = O.

2. Effectuer les multiplications suivantes :

o [333]]3 3

3. On donne:
2 -3 -5 -1 3 5
A=| -1 4 5 et B= 1 -3 -5
1 -3 —4
Montrer que 'on a:
(a) AB=BA=0

(b) A2 — B2 = (A — B)(A + B)
(c) (A+ B)?2 = A% + B2

4. En général, (A+ B)? # A%2+2AB+ B2. Sous quelle condition a-t-on
I'égalité?

. Soient les matrices:

2 -2 -4 2 -3 =5
A=|-1 3 4 et B=|-1 4 5

o

1 -2 —3 1 =3 —4
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10.
11.

Note On dit qu’une matrice A est idempotente si A% = A.
Montrer que:

(a) AB=A

(b) BA=B

(c) A et B sont idempotentes.
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De fagon générale, montrer que si AB = A et BA = B alors A et

B sont idempotentes.

On donne:
2 -3 =5 -1 3 5
A=| -1 4 a et B= 1 -3 -5
1 -3 —4 -1 3 5

Montrer que A et B sont idempotentes, mais que AB # A.
Ainsi, la réciproque du théoréme de I'exercice 6 est fausse!

Soit A une matrice composée de nombres réels.
Peut-on avoir AA'= O sans que A= O7?

Si oui, donner un exemple.

Si non, expliquer soigneusement pourquoi.

Note On dit que deux matrices A et B commutent si
AB = BA.

Trouver toutes les matrices qui commutent avec A :
1 00
A=10 30
0 0 5

Trouver une matrice A # I et telle que A% = I.

On donne:

1 3
1 3 _[2 0o 1 _
A_[U ~1}’B_{2 -1 ~4J’C_ j _g

Trouver A - B - C. Calculer (A - B - C )’ de deux fagons différentes.

Quelle est la trace de A« B-C7?7 Etcellede (A-B-C)'?
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12. Pour quelle valeur de z la trace de la matrice A est minimale?
Et pour quelle valeur de z est-elle maximale?

2¢3 4 1
A= 0 3z 2
) 6 —12z

13. Calculer a, b, ¢ et d dans la relation suivante:

13 |a b _ I— 10

2 8 cd| " |01/
14. Calculer le nombre d’inversions dans les suites:

(a) 5,2, 6,1, 4, 3.
(b) 10, 4, 5,6,1,2,7,3,9, 8.
(c) 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1.

15. Calculer le déterminant des matrices:

1 21 4 2 -
A= |3 3 6 B=|79 1
7 2 4 30 8
. R
6 9 1 -1 11
1 -1 =11

16. Soit:

A= @11 (12 et B= biy b2 )
a1 Qg bor by

Montrer que l'on a:

ajp bip by, agp

|A+B|=|A|+]|B|+| " |
az  0U22

by ag

17. Pour quelles valeurs de z le déterminant de la matrice A :

z z?
a=|3 %]
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18.

19.

20.

Inverse d'une matrice partagée

(a) s’annule-t-il?
(b) est-il maximal?

(c) est-il minimal 7

Calculer, en utilisant la partition des matrices, le produit AB

13000 00022
33000 00022
A=|100500 B=|[00400
00050 04000
000035 4 0000

Calculer ensuite | A |, | B |et | A- B |.
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Soit A une matrice non singuliére symétrique. Montrer que son inverse

Al est aussi symétrique.

Calculer, si possible, 'inverse des matrices suivantes :

Lo s ‘o s 100
A=|01 -6 B=|01 -6 C=121
30 4 20 4 13 3

-0 0o o
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D’ALEMBERT Jean Le Rond (1717-1783)

Jean d’Alembert est né a Paris, en novembre 1717. Il finit ses études d’avocat
en 1738, mais décide de ne pas continuer dans cette voie. Il s’investit dans
les mathématiques, et est admis en 1741 a I’Académie des Sciences de Paris.
D’Alembert publie son Traité de Dynamique en 1743, et son Traité de I’Equi-
libre et du Mouvement des Fluides en 1744. Puis, il s’implique pendant plu-
sieurs années dans la rédaction de L’Encyclopédie avec Diderot. D’Alembert
est 'auteur de la plupart des articles mathématiques des 28 volumes de 'ou-
vrage. Parallélement, il continue son travail mathématique. Il est notement
un des pionniers de I'étude des équations différentielles partielles et dans leurs
utilisations en physique (Réflexions sur la Cause Générale des Vents (1746)).
Entre 1761 et 1780, il publie conjointement avec Euler: Opuscules Mathé-
matique, en 8 volumes. Son article Différentiel, paru dans le volume 4 de
L’Encyclopédie, est une autre contribution importante aux mathématiques.
I1 y suggere les bases de la théorie des limites. Dans la derniére partie de sa
vie, D’Alembert se tourne vers la littérature et la philosophie (Mélanges de
Littérature et de Philosophie 1753-1767). D’Alembert est élu en 1772 secré-
taire perpétuel de I’Académie francaise dont il devient un des membres les
plus influents. Il meurt en 1783.



Chapitre 9

Systémes d’équations linéaires

9.1 Introduction

On est souvent confronté a la résolution de systémes d’équations linéaires.
Dans ce chapitre, nous allons voir que le calcul matriciel est un outil puissant
et bien adapté a ce genre de problémes. Il permet en effet d’accroitre la vitesse
de résolution de tels systémes et d’en simplifier considérablement le calcul.
Dans un premier temps, nous allons aborder la notion de rang d'une matrice,
qui est indispensable pour déterminer les solutions d’un systéme d’équations
linéaires.

9.2 Rang d’une matrice

Soit A une matrice d’ordre (m x n). On appelle sous-matrice une matrice
qui est obtenue 4 partir de la matrice A lorsqu’on élimine une ou plusieurs
lignes (ou colonnes). Si une sous-matrice est carrée, on peut calculer son
déterminant. Par conséquent, une sous-matrice sera singuliére si son déter-
minant est nul et non singuliére si son déterminant est différent de zéro.

A Paide de cette notion, on peut définir le rang d’une matrice.

Soit r un nombre entier, inférieur ou égal au plus petit des deux entiers
m et n, ¢’est-a-dire r < min(m,n), le rang d’une matrice A d’ordre (m x n)
est égal a r s’il existe au moins une sous-matrice carrée d’ordre r qui est
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non singuliére et si toutes les sous-matrices carrées d’ordre supérieur a r sont
singuliéres.

Le rang d’une matrice est donc égal a l'ordre de la plus grande sous-
matrice carrée non singuliére. Une matrice carrée d’ordre n non singuliére a
un rang égal a n (r = n). Si tous les éléments d’une matrice sont nuls, on dit
que le rang est zéro. Si une matrice A d’ordre (m x n) a un rang maximal
(égal au plus petit de m et n), on dit que la matrice a un rang complet.

Exemple 9.1 Si A est la matrice suivante d’ordre (2 x 3), cherchons son

rang :
1 3 2
A_{l 3 1]'

Le rang de A est égal a 2 et on écrit T(A) = 2. En effet, la sous-matrice
carrée d’ordre 2, composée de la premiére et de la deuxiéme colonne est sin-
guliére. Mais la sous-maltrice carrée d’ordre 2, composée de la deuxiéme et de
la troisiéme colonne est non singuliére (déterminant = —3). Il existe donc au
moins une sous-matrice d’ordre 2 dont le déterminant est différent de zéro.

Exemple 9.2 Considérons la matrice d’ordre 3 suivante et cherchons son
rang :

10 1
A= 0 2 -1
-1 0 -1

Nous calculons d’abord le déterminant de A :
(L 1\2+2 I 1|
| Al=(-1) 2‘_1 1 = 0.

Nous savons déja que r(A) sera inférieur a 3 puisque |A| = 0. Calculons
maintenant le déterminant d’une sous-matrice carrée d’ordre 2, disons:

10
|52 |=2

Nous constatons quil y a au moins une sous-matrice d’ordre 2 qui est non
singuliére, d’our(A) = 2.
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9.3 Transformations élémentaires

Il est évident que le calcul du rang d’une matrice peut étre une opération trés
longue. Prenons le cas d'une matrice carrée d’ordre n. Nous devons d’abord
calculer le déterminant de la matrice elle-méme. Si le déterminant est différent
de zéro, le rang est n mais s’il est égal & zéro, il faudra calculer le déterminant
des sous-matrices d’ordre (n—1). Or, il y en a n?. Si toutes ces sous-matrices
ont un déterminant nul, il faut passer aux sous-matrices d’ordre (n — 2) et
ainsi de suite. C’est pour cette raison que nous allons voir une méthode qui
facilite la détermination du rang d’une matrice. Cette méthode se base sur
les transformations élémentaires.

Il y a trois sortes de transformations élémentaires :
1. Echange de deux lignes (ou deux colonnes) de la matrice.

2. Multiplication de tous les éléments d’une ligne (ou colonne) de la mat-
rice par la méme constante (différente de zéro).

3. Addition aux éléments d'une ligne de la matrice d’'un multiple quel-
conque des éléments correspondants d’une autre ligne (idem pour les
colonnes).

Ces transformations élémentaires ne changent pas le rang de la matrice.
Ainsi, nous allons utiliser ces transformations pour réduire une matrice A a
sa forme normale. Si A est une matrice d’ordre (m x n), sa forme normale
est la suivante:

10 ... 0[0 ... 0]
0 1 s B0 s ©
" 00 .. 1/0 ... 0| [IoO
“loo
00 00 0
m—r 1 B :
L0 0 ... 0[O0 ... 0]

Le rang de cette matrice est r, car la plus grande sous-matrice non singuliére
est d’ordre r.
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Exemple 9.3 La forme normale d’une matrice carrée non singuliére d’ordre
3 est la matrice identité d’ordre 3:

= O O

10
01
00
Cestlecasoum=n=r = 3.

Exemple 9.4 La forme normale d’une matrice d’ordre (3 x 2) de rang 2
est:

OO -
o= O

C’est le cas o m >n etr =n.

On peut obtenir la forme normale d’une matrice et, par conséquent, le
rang de cette matrice en procédant d’une maniére systématique:

1. On utilise des transformations élémentaires du type 1 si ’élément en
position (1, 1) est nul.

2. On divise tous les ¢léments de la premiére ligne par 1'élément de la
position (1, 1) pour obtenir un “1” en position (1,1).

3. On enléve des multiples appropriés a la premiére ligne de toutes les
autres lignes afin d’obtenir des zéros partout ailleurs dans la premiére
colonne.

4. On enléve des multiples appropriés de la (nouvelle) premiére colonne
de toutes les autres colonnes, afin d’obtenir des zéros partout ailleurs
dans la premiére ligne.

5. On répete les points 1 & 4 pour I'élément de la position (2, 2).

6. On poursuit le méme procédé en descendant le long de la diagonale
principale. Le procédé s’achéve lorsque I’on arrive a la fin de la diagonale
ou que tous les éléments non nuls ont été utilisés.
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Exemple 9.5 Prenons une matrice d’ordre (3 x 4) et cherchons son rang
Uaide des transformations élémentaires :

021 2
A=|3 3 6 9
1 335

1. Nous échangeons la 1" et la 2° lignes pour obtenir un élément non nul
en position (1,1), ce qui nous donne :

3
0
1

[V S W
Lo =
5 B e

2. Nous divisons tous les éléments de la 1™ ligne par 3 pour obtenir 1 en
position (1,1) :

1123
02 1 2
1 335
3. Nous enlevons une fois la 1™ ligne de la 3¢ ligne pour obtenir un zéro

en position (3,1) :

— = b
b BO O

1
2
2

o O =

La deuzxiéme ligne posséde déja un zéro en position (2,1).

4. Nous enlevons une fois la 1™ colonne de la 2¢ colonne pour obtenir un
zéro en position (1,2) :

— = B

10 3
0 2 2
0 2 2

Nous enlevons deux fois la 1" colonne de la 3¢ colonne pour obtenir un
zéro en position (1,3) :

o O =
B O
=
[NV (VRN
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Nous enlevons trois fois la 1™ colonne de la 4¢ colonne pour obtenir un
zéro en position (1,4) :

o O =
B B O

0
1
1

(S R

Nous reprenons les points 1 & 4 pour U'élément (2,2) :
1. Le point 1 n'est pas nécessaire car l'élément (2,2) est non nul.

2. Nous divisons la 2¢ ligne par 2 pour obtenir un 1 en position (2,2) :

10 0 0
01 1/2 1
02 1 2

3. Nous enlevons deux fois la 2° ligne de la 3¢ ligne pour obtenir un zéro
en position (3,2) :

1
0
0

o= O

0
1/2
0

o = o

4. Nous enlevons 1/2 fois la 2¢ colonne de la 3¢ colonne pour obtenir un
zéro en position (2,3) :

Lo I B ]
o= o
oo o
[ i BN s |

Nous enlevons une fois la 2° colonne de la 4¢ colonne pour obtenir un
zéro en position (2,4) :

1 0(0 0
0 1(0 0
0 0(0 0

5. Nous avons ainsi épuisé tous les éléments non nuls. La forme normale
obtenue a un rang égal @ deux, par conséquent :

r(A) = 2.
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e Rang d’un produit de deux matrices

Le rang d’un produit de deux matrices A et B est égal ou inférieur au
plus petit des rangs des deux matrices, c’est-a-dire:

r(AB) < min[r(A), r(B)].

9.4 Systémes d’équations linéaires

Soit un systéme de m équations linéaires a n variables représenté par sa forme
générale :

anz1 + e+ ... Fapt, = b
ao1® + 0T + ... + @pTp, = by
Am1T] + Qo + ...+ Gy = bm

On peut écrire ce systéme sous forme matricielle :
Ax = b

ot A est une matrice d’ordre (m x n) appelée matrice des coefficients, x
est un vecteur-colonne 4 n composantes appelé vecteur des inconnues et
b est un vecteur-colonne a m composantes appelé vecteur des constantes.

Exemple 9.6 Ecrivons le systéme d’équations linéaires suivant sous forme
matricielle :

33:] == 23:2 ‘+‘ ﬂ"_,a — 1
-1 + X = -2
2.y — Ty — X3 = 4

Nous avons 3 équations (m = 3) et 3 variables (n = 3). La matrice des
coefficients A est donc une matrice d’ordre (3 x 3) :

3 =2 1
A= -1 1 0
2 -1 -1

Le vecteur des inconnues x est un vecteur a 3 composantes :
I
xr = Iz
T3
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Le vecteur des constantes b est un vecteur a 3 composantes :

Nous avons finalement le systéme suivant :

3 -2 1 T 1
—1 I 0 T = —
2 -1 -1 x3 4
Ax = b.

Si on ajoute le vecteur-colonne des constantes b a la matrice des coefficients
A, on obtient ce qu’on appelle la matrice augmentée que l'on note par
[A ] b].

Exemple 9.7 Si l'on prend le systéme de l'exemple 9.6, la matrice aug-
mentée [A | b] est la suivante :

3 2 1| 1
I

[Alb)=]|-1 1 0| -2
I

g =1 <1 | 4

On va voir maintenant comment résoudre un systéme d’équations liné-
aires, c’est-a-dire trouver la solution de ce systéme. Par solution du systeme,
on entend un ensemble de valeurs z;,xs,...,z, qui satisfait simultanément
toutes les m équations du systéme. Une solution n’est pas nécessairement
unique. Il peut y avoir une infinité de solutions ou pas de solution du tout.
Dans ce dernier cas, on dit que le systéme est incompatible (ou impossible).

Voici la condition pour qu'il y ait au moins une solution: un systéme de
m équations 4 n variables (ou inconnues) est compatible si et seulement si
la matrice des coefficients A et la matrice augmentée [A | b] ont le méme
rang.

Nous allons donc devoir chercher le rang de la matrice augmentée et voir
s'il est égal au rang de la matrice des coefficients. Pour ce faire, on va appli-
quer aux lignes de la matrice augmentée des opérations élémentaires. 11 est
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évident qu'une opération élémentaire sur une ligne de la matrice augmentée
ne change pas les solutions d’un systéme.
Nous avons plusieurs cas & étudier:

— systéme & n équations & n inconnues;
— systéme & m équations & n inconnues, m > n;

— systéme & m équations & n inconnues, m < n.

e Systéme de n équations & n inconnues

Si le systéme a n équations et n variables, la matrice des coefficients
A est une matrice carrée d’ordre n. Si le rang de la matrice A est n,
¢’est-a-dire si la matrice A est non singuliére, alors la solution est
unique. Dans ce cas, A posséde un inverse. On peut, par conséquent,
trouver la solution a l'aide de I'inverse de la matrice A. Le systéme

étant :
Az =b
on obtient la solution en pré-multipliant de chaque coté de I'équation
par A!:
A'Az = A
Iz = A'b
x = A'b

Exemple 9.8 Soit le systéme de 3 équations et 3 variables suivant, on va
en trouver la solution :

I - 2.'1.‘2 e 3.’1.'3 = 14
Ty — 3z — Tzy = -—26
—6’.45'1 + 41}2 - 25':3 = —4.
Calculons Uinverse de A: A = T—;—IA‘{
Commencons par le déterminant :
: 2 3
|A] = | 1 =3 —7
-6 4 -2

1 {64-98) El=1)s =4 =18) + (~8)-(=14+8)
34 + 16 + 30 = 80.
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Cherchons ensuite la matrice des cofacteurs :

34 44 -14
A°=| 16 16 —16
-5 10 =5

que nous transposons pour obtenir la matrice adjointe :

34 16 -5
A= 44 16 10
—-14 —-16 -5
L inverse est donc le suivant :
1 1 34 16 -5 17/40 1/5 —-1/16
Al= —A-A“ == 4 16 10 | =] 11/20 1/5 1/8
| A —-14 -16 -5 -7/40 -1/5 -1/16

Nous devons encore post-multiplier par le vecteur b pour trouver x :

x = A'b
[ 17/40 1/5 -1/16 14
= 11/20  1/5 1/8 | - | —26
| -7/40 -1/5 —1/16 —4
[ 41
= 13
| 3

Nous pouvons également rechercher la solulion par une méthode de résolution
appelée algorithme de Gauss. Ainsi, nous commencgons par chercher le
rang de la matrice augmentée, qui se présente ainsi:

1 2 3| 14

|
[A|b]=| 1 -3 -7 | —26
6 A 9| ~4
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L’application des opérations élémentaires sur les lignes de la matrice nous
conduit successiement a:

1 2 3| 14 1T 2 @] 14
| |
0 -5 —10 | —40| = |0 -5 —10 | —40
| |
| -6 4 -2 | —4 |0 16 16 | 80
[1 2 3| 14 [1 0 —1 | -2
| |
= 01 2| 8 = 0o 1 2| 8
| l
| 0 16 16 | 80 | 0 16 16 | 80
10 -1]| -2 10 -1 1] -2
J |
= |01 % | 8 = |01 2| 8
I l
[0 0 —16 | —48 00 1| 3
1001
|
= 010 2
l
0013

La derniére matrice augmentée a un rang de 3. La matrice des coefficients a
ausst un rang de 3. La solution existe donc et elle est unique. Pour trouver
cette solution, nous prenons la derniére matrice. La premiére colonne repré-
sente les coefficients de la variable z1, la deuziéme colonne les coefficients
de la variable x4 et la troisiéme colonne les coefficients de la variable 3.
Quant a la derniére colonne, elle représente les constantes. Nous pouvons
donc déduire de la premiére ligne :

lzy + 0z, +0z3 =1, dottz, = 1.
De la deuxiéme ligne, nous avons :

0zy + lzg + O0z3 = 2, d'ott zo = 2.
Et de la troisiéme ligne, nous avons :

0zy + 0zs + 1z = 3, d'oti x3 = 3.
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La solution compléte est par conséquent :
1 =1,20=2,23=3.

Etudions maintenant ce qui se passe si le rang de la matrice A est inférieur
a n. Deux cas se présentent :

— si le rang de [A | b] est égal au rang de A, il y a des solutions
multiples;

— si le rang de [A | b] est différent de celui de A, il n’y a pas de
solution.

Exemple 9.9 Soit le systéme de 3 équations et 3 variables suivant, nous
allons en chercher la solution :

T + 2’..62 + 3563 = 14
Iy ol 3$2 == 72,‘3 = —26
3y — 23y — Tzg = =22
A la suite d’opérations élémentaires, on obtient :
1 2 3 14 1 2 3 14

8§ 8 -7 | —92 0 -8 —16 | —64
1 2 3| 14 10 =1 | =2
| |
= o 1 2] 8| = 01 2| 8
| |
0 -8 —16 | —64 00 0] 0

Dans cette derniére matrice, le rang de [A|b] est égal & 2 comme le rang de
A. Le systéme est donc compatible. Quand le rang est r, avec v < n, on
peut donner @ (n — r) variables du systéme des valeurs arbitraires et ensuite
résoudre le systéme par rapport aux autres variables. On a alors la solution
compléte du systéme.

Ici, r = 2 et n = 3, on peut donc fizer arbitrairement (n —r) = (3 —-2) =1
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variable. Choisissons de fizer v3 = s. Nous pouvons alors résoudre le systéme
d’aprés la derniére matrice. De la premiére ligne, on déduit:

1+ 0z — 23 = -2, dot 1 —13=-2
et de la deuziéme ligne, on tlire:

0z + z9+ 223 =8, dou xzo+ 2z3 =8.

Avec x5 = s, la solution compléte est:

2, = —2+s
Io = 8 — 2s
g3 = &.

Par exemple, en posant s = 1, nous avons une des solutions possibles :
= —1}332 s 6,$3 =1

Exemple 9.10 Soit le systéme de 3 équations et 3 variables suivant, nous
allons en chercher la solution :

T + 23.-"2 + 33’13 = 14
Ty — 3y — Txg = —26
3.’.1?1 = 2$2 e 7$3 = =20

A la suite d’opérations élémentaires, on obtient :

1 2 3 14 1 2 3

3 <9 =7 | <20 0 -8 —16 | —62
1 2 3| 14 10 -1 | -2
| |
= (o 1 2| 8| = 01 2] 8
| |
0 -8 —16 | —62 00 0] 2

Dans la derniére matrice, le rang de (A|b) est égal & 3 tandis que le rang
de A est égal & 2. Le systéme est donc incompatible (0zy + Oz + Ozz = 2),
c’est-a-dire qu’il n’y a pas de solution.
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e Systéme de m équations a n inconnues, m > n.

Nous considérons ici les systémes dans lesquels le nombre d’équations
est supérieur au nombre de variables. Les trois exemples suivants mont-
rent que trois cas peuvent se présenter :

— soit il y a solution unique;
— soit il y a infinité de solutions ;

— soit il n'y a pas de solution.

Exemple 9.11 Soit le systéme de 3 équations et 2 variables suivant, nous
allons en chercher la solution :

2151 + 42’22 = 4
25.’}1 — 355'2 = 18
r, - 45’}2 = 14

Les opérations élémentaires donnent les étapes suivantes :

[2 4| 4 1 2| 2
2—3}18 = 2—3{18
_1—4}14_ 1—4}14
(1 2] %] 1 2| 2
= U—7=14 = 01}—2
| 0 —GIIU_ Ouﬁ{ 12
1 0] 6
= 01:—2
00}0_

Dans la derniére matrice, le rang de [A|b] est égal a 2 comme le rang de A.
Le systéme est compatible et la solution est unique vu que n = r = 2. Celte

solution est :
I = 6,562 = -2
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Exemple 9.12 Soit le systéme de 4 équations et 3 variables suivant :

2z, — 2x0 + 213 = 6
—z; 4+ 2z9 + 3z3 = 0
—Ta — 42?3 = -3

—2z7 + 3xy 4+ 223 = -3

Par les opérations élémentaires, on trouve successivement :

[ 2 -2 2|6" [ 1 -1 1| 3]
| I
-1 2 3| o0 -1 2 3| 0
| = |
0 -1 —4 | -3 0 -1 —4 | -3
I I
| -2 3 2| -3 | -2 3 2| -3
(1 -1 1| 3] [1 0 5 | 6]
I |
0 1 4| 3 014 ]| 3
= I = |
0 -1 -4 | -3 0001/ 0
I I
0 1 4| 3] (000 | O]

Dans la derniére matrice, le rang de (A|b) est égal a 2, comme le rang de A.
Le systéme est donc compatible. Il y a une infinité de solutions car n = 3 et
r = 2. On peut fizer arbitrairement (n — r) = (3 —2) = 1 variable. Posons
que T3 = S.

Nous pouvons alors résoudre le systéme avec la derniére matrice :

$1+5-’E3 = 6
2?2-]—41\‘33 = 3

Avec z3 = s, la solution compléte est:

I, = 6 — bs
Ty = 3—4s
r3 = B&.
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Exemple 9.13 Si dans le systéme de l’ezemple 9.12, on donne a la constante
de la 53¢ équation la valeur de —4 a la place de —3, on obtient la matrice

suivante :

[ 2 -2 2 6
—123||0
0—1—4{—4
~—232|I—3_

Les transformations élémentaires nous donnent :

1 -1 1] 3 [1 -1 1] 3
| |
-1 2 3] 0 0 1 4| 3
I = |
0 -1 —4 | —4 0 -1 —4 | —4
l |
% & 23] -3 (0 1 4| 3
[1 05 | 6]
|
014 ] 3
= |
000 ]| -1
|
000 | O]

Dans la derniére matrice, le rang de [A|b] est égal a 3, tandis que le rang de
A est égal a 2. Le systéme est donc incompatible.

e Systéme de m équations 4 n inconnues, m < n

Si la matrice des coefficients est d’ordre (m x n) avec m < n, le rang de
A est au maximum m. Le rang est donc inférieur a n. Il s’ensuit qu’il
n'y a que deux cas possibles:

— si le rang de [A|b] est égal au rang de A, il y aura une infinité de
solutions et on pourra fixer (n — r) variables arbitrairement (avec
r=r(A)=r([A]|b]);
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— si le rang de [A|b] est différent de celui de A, le systéme est in-
compatible.

Lorsqu'il y a plus de variables que d’équations, la solution n’est donc
jamais unique.

Exemple 9.14 Soit le systéme de 2 équations et 3 variables suivant, nous
allons en chercher la solution :

2.’!:1 — Iy + 23:3 =
==y -+ 23?2 - 211',‘3 = 2.

Les transformations élémentaires sont les suivantes :

2 -1 2 | 2 1 -2 -2 | -2
[ = |
-1 22| 2 12 -1 2| 2
1 -2 -2 | -2 [1 -2 -2 | =27
= [ = |
0 3 6| 6 [0 1 2| 2]
102 2
= I
012 2

Dans la derniére matrice, le rang de [A|b] est égal a 2, comme le Tang de
A. Le systéme est compatible et on peut fizer (n —r) = (3 — 2) = 1 variable
arbitrairement. On peut résoudre le systéme a l'aide de la derniére matrice :

I +2$3 =
To+2z3 =

Avec x3 = s, la solution compléte est:

r = 2_'23
Ty = 2—2s

g3 = 8.
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Exemple 9.15 Soit le systéme de 2 équations et 3 variables suivant, nous
allons en chercher la solution :

20y —x9 + 13 =
4271“—22?2-%2.1‘3 = 4,

Les transformations élémentaires nous donnent les étapes suivantes:

11
#=1 414 15 513 15313
I e g S
4 -2 2[4 4 -2 2| 4 0 0 0| 2

Dans la derniére matrice, le rang de [A|b] est égal a 2, tandis que le rang de
A est égal a 1. Le systéme est donc incompatible.

e Systéme homogéne

Si dans un systéme d’équations linéaires, toutes les constantes sont
nulles, c’est-d-dire si b = 0, on dit que le systéme est homogeéne.
Sous forme matricielle, on I’écrit :

Az = 0.

Il est évident que dans un systéme homogeéne, le rang de la matrice
augmentée est toujours égal au rang de la matrice des coefficients. Par
conséquent, un systéme homogéne a toujours au moins une solution.
En effet, le vecteur & = 0, clest-d-dire: z, =23 =23 = ... = 3, =
0, est toujours une solution. C’est la solution triviale d'un systéme
homogeéne. Il existe des solutions autres que la solution triviale si le rang
r de la matrice des coefficients est inférieur & n. Dans ce cas, on peut
donner & (n—r) variables des valeurs arbitraires. Il y a, par conséquent,
une infinité de solutions.

Nous avons alors deux possibilités:

— soit un systéme homogéne n’a que la solution triviale;

— soit un systéme homogeéne posséde la solution triviale et une infi-
nité d’autres solutions.
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La solution triviale représente en quelque sorte la solution unique dun
systéme homogene. Il n’y a donc que la solution triviale si le rang
de A est égal au nombre de variables.

Pour qu'un systéme homogeéne ait des solutions non triviales, il est
nécessaire et suffisant que le rang de A soit inférieur au nombre
de variables, ou alors |A| = 0.

Exemple 9.16 Soit le systéme homogéne de 3 équations a 2 variables sui-
vant, nous allons voir s’il existe des solutions autres que la solution triviale.

2¢1 + 4z, = 0
22?1 = 31132 = 0
r, — 41172 = 0

Il nous faut chercher le rang de A par les transformations élémentaires :

2 4 1 2 1 2 1 2 10
2 3|=12 3|=10 -T7T=[01|=/[01
1 —4 1 —4 0 —6 01 00

Le rang de A est égal a 2. Le nombre de variables est aussi égal a 2. Il n'’y a
donc que la solution triviale :

z1=0 etz =0.

Exemple 9.17 Soit le systéme homogéne de 3 équations a 3 variables sui-
vant, nous allons voir s’il existe des solutions autres que la solution triviale.

T + 35‘32 - 2z3 = 0
4.’]31 == 2332 == 21133 = i)
Ty — 4&."2 ¥ Ty = 0

Cherchons le rang de A a l'aide des transformations élémentaires :

1 3 =2 [ 1 3 =f 1 3 -2
4 -2 -2 = |0 —-14 6 = |0 1 3/7
, ST D | |0 -7 3 0 =7 3

[1 0 —5/7

= |0 1 =3/7

100 0
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Le rang de A est égal a 2. Le nombre de variables est égal a 3. On peut done
fizer (n—r) = (3—2) = 1 variable arbitrairement. De la derniére matrice, &
laquelle on ajoute le vecteur b = 0, on tire:

:131—2183 = 0
I2—$$3 = 0.

Avec x5 = s, la solution compléte est :

X = §S
T o7
iy -3-3
4 7
Iy S.
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Exercices

1. Voici une autre fagon d’obtenir I'inverse d’une matrice A:

(a) Construire la matrice B = [A I

265

(b) Par des transformations élémentaires sur les lignes de B, obtenir

I ala place de A.

On trouve ainsi A 4 la place de I .

Par cette méthode, calculer 'inverse des matrices de l'exercice 20 du

chapitre 8.
Que se passe-t-il avec la matrice B?

2. Trouver le rang des matrices suivantes en les réduisant a leur forme

normale :
2 :Q 1 1 21
A=|[3 1 -6 B=|3 6 3 C =
T 0 4 2 4 2

3. Résoudre les systémes d’équations suivants:

(a) T; +2z9 —I3 = 2
I —2.’82 —355‘3 = —6
Iy +4$2 +4$3 = 3

(b) —z1+ 22+ 323 = 12
2r1 —z9 + 223 = =8
dx, +x9 —4z3 = 15

4. Soit le systéme:

1+ o — 223 +424 =6
-3z — 39+ 63 — 12224 =0

(a) Pour quelle valeur de b le systéme est-il possible?

Ll A R e B

Lo o B W]

B s = W

= 00 b O

(b) Donner & b la valeur trouvée sous (a) et calculer la solution com-

pléte du systéme.
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5. Soit le systéme d’équations:

23’.‘1 —I9 —3.7',3 = 0
—I +291.'3 = 0
2y —3xz9 —z3 = 0

(a) Ce systeme est-il compatible? Pourquoi?

(b) Posseéde-t-il une solution unique? Pourquoi?

6. Trouver toutes les solutions des deux systémes d’équations linéaires
homogeénes suivants :

(EL) ‘—‘3:1?1 9 +2$d = 0
—2z +2z3 = 0
—11lzy +6x9 +5z3 = 0
(b) I +Zo +3$3 “+I4 = 0
I —|—3m2 +2.’£3 +4.T4 = D
21, +z3 —xz4 = 0

7. Soit le systéme d’équations linéaires suivant :

z+y—z =1
2c+3y+ [z =3.
z+PBy+3z =2

Déterminer les valeurs de 3 de telle sorte que ce systéme d’équations
posséde

(a) aucune solution;
(b) une solution unique;

(¢c) une infinité de solutions.



Chapitre 10

Vecteurs et espaces vectoriels

10.1 Introduction

Ce chapitre aborde un aspect plus géométrique de I'algebre linéaire. Pour
résoudre un probléme, il est souvent utile de se situer dans un systéme &
deux ou & trois dimensions pour pouvoir le visualiser. C’est pourquoi nous
introduisons les notions de vecteur et d’espace vectoriel.

10.2 Les vecteurs

Par vecteur, nous entendons toujours vecteur-colonne. Chaque colonne d’une
matrice peut étre considérée comme un vecteur. Les vecteurs-ligne sont les
transposés des vecteurs-colonne. Chaque ligne d’une matrice peut étre considérée
comme la transposée d’un vecteur. Les éléments d’'un vecteur sont appelés
composantes du vecteur (toujours des nombres réels). Un vecteur peut donc
avoir 1 ou 2 ou ... ou m composantes.

e Vecteur unité

Un vecteur dont la ¢ composante est 1 et dont tous les autres éléments
sont zéro est appelé vecteur unité et est noté wu;.
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Exemple 10.1 Pour des vecteurs a 4 composantes, il y a 4 vecteurs unités :

0

o

Ug = ug = Uy =

oo = O

0
1
0

o O o=
-0 O

e Vecteur nul

Un vecteur dont toutes les composantes sont nulles est appelé vecteur
nul et est noté 0.

10.3 Interprétation géométrique des vecteurs

Nous savons qu’'un point dans 'espace a deux dimensions est représenté par
une paire de nombres. Nous pouvons alors dire qu’un vecteur a deux compo-
santes définit un point dans l'espace a deux dimensions. Cette constatation
nous permet de représenter un vecteur graphiquement. Sur la figure 10.1, le
point A est défini par le vecteur @' =[z; z3]. Le segment orienté OA
(joignant 'origine au point A) représente le vecteur .

0 X

Figure 10.1: Représentation graphique d’un vecteur a deux composantes

La multiplication d’un vecteur par un scalaire revient & multiplier chaque
composante par ce scalaire. Considérons la multiplication du vecteur  par
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le scalaire 2. Nous avons donc:

wfz)-[2]
Io 2".45‘2

Sur la figure 10.2, nous constatons que le vecteur 2x correspond au segment
orienté OB qui est égal a deux fois le segment OA.

2X; "
A 2x
X;
X
0 X, 2x 7

Figure 10.2: Multiplication d'un vecteur par un scalaire

Exemple 10.2 Soit le vecteur ' = [ —1 3 ]. Multiplions-le par 3 et repré-
sentons les deux vecteurs graphiquement dans la figure 10.35.

s DT

La somme de deux vecteurs est un troisiéme vecteur dont les composantes
sont égales 4 la somme des composantes correspondantes des deux premiers
vecteurs. Si @' = [z1 zo)et ¥ =y o, € +Y = [z1 +y1 T2+ y2). Sur
la figure 10.4, le segment OA correspond au vecteur & tandis que le segment
OB correspond au vecteur y. Pour faire la somme des deux segments, nous
tragons une paralélle au segment OA a partir du point B et une paralélle au
segment OB a partir du point A. L’intersection de ces deux droites donne le
point C. Le segment OC est donc la somme de OA et de OB. Il représente
le vecteur x + y.
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9
3x
3
3 110
Figure 10.3: Représentation de ' = [—1 3] et de 32’ = [-3 9]

Exemple 10.3 Soient les deuz vecteurs ' = [2 0] et y' = [—4 4]. Repré-
sentons dans la figure 10.5 les vecteurs ©, y et  + y.

o +y =2 0]+[-4 4=[-2 4.

Lorsqu’un vecteur a 3 composantes, il faut un espace & 3 dimensions pour
pouvoir le représenter graphiquement. En général, on associe & tout vecteur
4 n composantes un segment dans I’espace & n dimensions.

10.4 Longueur d’un vecteur
Du point de vue géométrique, la longueur ou norme d’'un vecteur est la
longueur du segment qui le représente. Elle est définie par la racine carrée

de la somme des carrés de ses composantes. Pour un vecteur & a n
composantes, sa longueur, notée par || || est définie par ’expression :

n 1{'2
o l= [zxf} |
=1
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Xty C
Y, B xﬂ
‘f"
y
X
0 Vi X x, Ty

Figure 10.4: Addition de deux vecteurs

Exemple 10.4 Calculons la longueur du vecteur a 3 composantes suivant :

—4
&= 0
3

|z [|= ((—4)* + (0)® + (3)*)* = (16 + 0 + 9)'/? = 25'/2 = 5.

10.5 Produit scalaire de deux vecteurs

Soient x et y deux vecteurs de méme forme, leur produit scalaire est défini
par la somme des produits des éléments correspondants. Si @ et y sont des
vecteurs & n composantes, le produit intérieur s’exprime par:

n T
4 !
Y=Y = E TilYi = § Yi%i.
i=1

Les vecteurs @ et y pouvant étre considérés comme des matrices, nous re-
marquons que le produit intérieur correspond a la multiplication de matrices.
C’est pour que le produit soit possible que 'on écrit: ='-y ou y'-x. En effet,
le nombre de composantes de x et y étant (n x 1), il faut donc transposer
I'un ou 'autre des vecteurs pour pouvoir effectuer la multiplication.
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K%

4 2 0l x 2

Figure 10.5: Représentation de =, y et & + y

Exemple 10.5 Soient les wvecteurs & 2 composantes = =[3 1] et
y' = [—4 5], alors:

2
w'-y-—-z:riyiz&[—tl)—l—l'f):—? ou
i=1

2
vz =Y yizi=(-4)-3+5-1=-T.
=1

10.6 Vecteurs orthogonaux

Si le produit scalaire de deux vecteurs est nul, on dit que les deux vecteurs
sont orthogonaux. Du point de vue géométrique, deux vecteurs orthogo-
naux sont perpendiculaires. Si plus de deux vecteurs orthogonaux ont une
longueur égale a 1, on dit qu'ils sont orthonormaux.

Exemple 10.6 Soient les deux vecteurs & deux composantes suivants, cal-
culons le produit scalaire et représentons-les sur la figure 10.6':

=[3 -2, vy=[4 6]



10.7. Dépendance linéaire 273

Le produit scalaire est égal a:
- y=12-12=0.

Les deux vecteurs sont donc orthogonauz.

Figure 10.6: Vecteurs orthogonaux
Six et y sont deux vecteurs a n composantes, alors on a les deux inégalités
suivantes :
Inégalité de Cauchy-Schwarz |-y | < |z|-|ly]

ou | ' - y | représente la valeur absolue du produit scalaire, || 2 || la norme
de z et || y || la norme de y.

Inégalité de Minkowsky let+yll <|zll+yll-

Cela signifie que la longueur de la somme de deux vecteurs ne peut pas
excéder la somme de leur longueur.

10.7 Dépendance linéaire

Solent les m vecteurs & n composantes 1, @z ,...,T,. On dit qu'ils sont
linéairement dépendants si et seulement s’il existe des constantes ¢y, ca, . .., cm
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dont une au moins est différente de zéro, telles que:
axy+ e+ ...+ cny, =0.
Dans le cas contraire, les vecteurs sont linéairement indépendants.

Exemple 10.7 Soit :

-1 0 -1
Ty = | =2 To = 2 T3z = 0
-3 -1 —4

L’équation cix,+coxe+csers= 0 nous donne:

= 0 -1 0
Cy- —2 +Co - 2 +c3 - 0 = 0
-3 -1 —4 0

En développant, nous avons:

=¢ + 002 - C3 = 0
—2¢; + 2¢3 + 0Oz = 0
—3(,'1 e €y — 463 = 0

ce qui représente un systéme homogeéne de 3 équations linéaires. Nous devons
résoudre ce systéme et voir s’il existe un ¢; différent de zéro (i = 1,2,3). Nous
savons comment résoudre un systéme homogéne sous forme matricielle. Nous
cherchons le rang de la matrice des coefficients et nous nous souvenons qu’il
suffit que le rang de A soit inférieur au nombre de variables pour qu’il y ait
des solutions non-triviales. Or, s’il existe un ¢; différent de zéro, cela signifie
Jqustement qu’il y a des solutions non triviales. Nous arrivons donc d une
deuziéme définition.

Les m vecteurs x; sont dépendants si le systéme homogéne Ae = 0
admet des solutions non triviales, avec A la matrice d’ordre (n x m) ayant
pour colonnes les m vecteurs xq,...,2, et ¢ le vecteur des m constantes

Clyis =y Cins
Dans 'exemple 10.7, nous avons:

-1 0 -1 ]
A=1| -2 2 0 et e=| e
-3 -1 —4 3
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Nous cherchons le rang de A par les transformations élémentaires :

I 0 1 1. 0 1

-2 2 0 = o 2 2

-3 =1 -4 0 -1 -1
1 0 1 1 01
= 0 1 1 = 011
0 -1 -1 000

Le rang de A est égal a 2. Il existe donc des solutions non triviales puisque
r =2 < n = 3. Les vecteurs sont linéairement dépendants.

10.8 Combinaison linéaire

On dit que le vecteur y est une combinaison linéaire des vecteurs
Ty, X, ..., L,y 81l existe des constantes Aj, A, ..., Ay, telles que:

y=MNT1+ 2+ ...+ A Tm.

Exemple 10.8 Reprenons les 3 vecteurs de 'exemple 10.7 el regardons st
a3 est une combinaison linéaire de x4, et x2. Nous avons:

—1 -1 0
Ol=M| -2 [+X 2 ce qui donne :
—4 -3 -1
=g = =i
=2\ +2) = 0
=3\ — Ay = —4.

Nous pouvons résoudre ce systéeme: de la 1" équation, nous tirons A\ = 1
que nous remplagons dans la 2° ou la 3 équation :

—2:142); = 0
2)\2 — 2
Ay = 1

x3 est une combinaison linéaire de &, et o car 3 = x; + x4.
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10.9 Propriétés des vecteurs

Propriété 1

Si les m vecteurs @y, @3, ..., Ty, sont linéairement dépendants, au moins
I'un d’entre eux est une combinaison linéaire des autres.
Propriété 2

Sim > n, m vecteurs & n composantes sont forcément linéairement dépen-
dants.
Propriété 3

Les vecteurs correspondant aux colonnes d’une matrice non singuliére
sont linéairement indépendants (il en est de méme pour les lignes).
Propriété 4

Les vecteurs correspondant aux colonnes d’une matrice singuliére sont
dépendants (il en est de méme pour les lignes).
Propriété 5

Si une matrice est d’ordre (m xn) avec n > m, les vecteurs correspondant
aux colonnes sont linéairement dépendants.
Propriété 6

Le rang d'une matrice ne peut pas étre supérieur au nombre de vecteurs
linéairement indépendants.
Propriété 7

Si le rang d’une matrice d’ordre (m x n) est égal a r, il y a exactement r
colonnes et r lignes linéairement indépendantes.

10.10 Espaces vectoriels

Un espace vectoriel 4 n dimensions peut étre défini comme étant 'en-
semble de tous les vecteurs & n composantes. Soient x, et x;, deux vecteurs
appartenant i cet ensemble. On vérifie facilement que:

— le vecteur (x,+xyp) est un vecteur du méme ensemble ;

— le vecteur Az,, ot A est un scalaire, c¢’est & nouveau un vecteur
du méme ensemble.

On dit alors qu'un espace vectoriel est un ensemble de vecteurs fermé par
rapport a 'addition et & la multiplication scalaire.
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Exemple 10.9 Considérons l’ensemble de tous les vecteurs a 2 composantes.

. 1 4
Soient maz[_g} el Ty = [D}

nous vérifions que x, + xp appartient a l'ensemble et que A\x,, avec A = 2,
appartient aussi & l'ensemble :

o[ 2]+[3)-[ 2]

] est bien un vecteur a 2 composantes.

e 4] 2]

J est bien un vecteur a 2 composantes.

[ §

Le vecteur [

Le vecteur [
—4

Nous remarquons qu’il y a une infinité de vecteurs dans un espace vec-
toriel. Toutefois, grace a I'addition et a la multiplication scalaires, on peut
engendrer tout ’espace vectoriel & ’aide d’un ou plusieurs vecteurs. Ceci
nous ameéne a la définition de la dimension d’un espace vectoriel.

Par dimension d’un espace vectoriel, on entend le nombre maximal
de vecteurs linéairement indépendants dans l'espace considéré, ou, ce qui
revient au méme, le nombre minimal de vecteurs indépendants nécessaires a
engendrer tout I'espace considéré.

Nous désignerons, par conséquent, un espace vectoriel par:

Kj

ot I'indice ¢ représente le nombre de composantes des vecteurs et 'indice
j la dimension de l'espace. Par la propriété 2, nous savons que j < i. La
dimension maximale d’un espace vectoriel est donc égale a la dimension de
ses vecteurs.

Exemple 10.10 Considérons l'ensemble de tous les vecteurs x; @ 3 dimen-
stons qui sont de la forme :

z;=[s 3s 93]
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ot s est un nombre réel quelconque. Il y a une infinité de vecteurs de ce type,
mazis, grace a la multiplication scalaire, on peut engendrer tout [’espace vec-
toriel en partant par exemple du vecteur ' = [1 3 9]. En d’autres termes,
un seul vecteur suffit a engendrer tous les autres vecteurs. La dimension de
cet espace vectoriel est donc égale a 1 et on écrit V3.

Dans I’'exemple 10.9, nous pouvons engendrer tous les vecteurs y a 2
composantes & 'aide d'une combinaison linéaire des deux vecteurs unité w,
et ug. En effet,

Y =Hhur + Yaluls.

uq et ug sont indépendants. Par conséquent, la dimension de 'espace vecto-
riel est égale a4 2. Dans ce cas, au lieu d’écrire V2, étant donné que les deux
indices se confondent, on écrit simplement V5 et on parle alors d’un espace
vectoriel & 2 dimensions complet. Nous pouvons généraliser cette notion
et noter par V;, un espace vectoriel a n dimensions complet.

10.11 Bases

Une base de I'espace vectoriel V,] est un ensemble de r vecteurs linéairement
indépendants appartenant a cet espace vectoriel et qui engendre V,!.

Dans I'exemple 10.10, le vecteur ' = [1 3 9] est une base pour V3. Dans
'exemple 10.9, les deux vecteurs unité u} = [1 0] et u}, = [0 1] forment une
base pour V5. Les deux vecteurs [1 2] et [2 5] sont aussi une base pour V3. En
revanche, les deux vecteurs [2 —2] et [4 — 4] ne forment pas une base pour
V, car ils sont linéairement dépendants. Il y a donc plusieurs bases possibles
pour un espace vectoriel. Chaque base d’un espace vectoriel contient le méme
nombre de vecteurs linéairement indépendants.

Tout vecteur dans ’espace V', peut étre représenté par une com-
binaison linéaire unique des r vecteurs de base.

Nous pouvons distinguer plusieurs types de bases:

- base canonique :  formée de vecteurs unité u; ;

- base orthonormale : formée de vecteurs orthogonaux et
de longueur égale 4 1;

- base orthogonale : formée de vecteurs orthogonaux;

- base quelconque :  formée de vecteurs linéairements
indépendants.

Nous allons illustrer ces notions par ’exemple 10.11.
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Exemple 10.11 Considérons l’espace vectoriel V. Pour former une base, il
faut deux vecteurs linéairement indépendants. Prenons plusieurs bases diffé-
rentes :

o base canonique représentée par les vecteurs w) = [0 1] et uh = [0 1]
e base orthogonale représentée par les vecteurs @} = [1 —2] etxy = [2 1]

e base quelconque représentée par les vecteurs xly = [1 2] et xj = [3 2.

Nous allons représenter graphiquement le vecteur y' = [3 4] en fonction
des trois bases ci-dessus.

Pour la base canonique, les deux vecteurs unilé se trouvent respectivement
en abscisse et en ordonnée (Figure 10.7). Tout vecteur & deux composantes
définit un point dans le plan, point qui peut étre représenté par une paire de
valeurs correspondant & l'abscisse et a Uordonnée. Or, un point en abscisse
est un multiple de uy et un point en ordonnée est un multiple de wo. Tout
vecteur est donc une combinaison linéaire unique de wy et wo. Le vecteur y
s’exprime alors par la combinaison linéaire unique :

y = 3uq + 4dus.

Nous représentons y sur la figure 10.7. La représentation d’un vecteur en
termes de la base canonique équivaut donc a la représentation de ce vecteur
en termes de coordonnées ordinaires. Considérons maintenant la base ortho-
gonale composée desvecteurs ) = [1 — 2] et @), = [2 1]. Nous représentons
cette base sur la figure 10.8. Les droites ol se trouvent &, et o forment les
nouveauz azes perpendiculaires. Une base orthogonale correspond donc @ une
rotation des axes définis par la base canonique. Tout vecteur peut maintenant
étre représenté en fonction de ces nouvelles coordonnées, c¢’est-a-dire par une
combinaison linéaire unique de x, et x2. Le méme vecteur y' = [3 4] est
done égal a:
Y = T1X1 + Too.

Nous devons trouver la nouvelle abscisse x1 et la nouvelle ordonnée x4 pour
pouvoir représenter le vecteur y en fonction de la base @1, xo. Pour ce faire,
nous remplagons y, xy et @2 par leurs valeurs et obtenons :

HEIE
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4du,

ol U U,

Figure 10.7: Représentation graphique de la base canonique et du vecteur y
en fonction de cette base

En développant, cela donne 2 équations a 2 inconnues x; et o :

A 2$2 =
—'2331 -+ Ia = 4

Nous résolvons ce systéme en soustrayant deuz fois la deuzieme équation de
la premiére, ce qui donne:

S2;=-5 = =z=-1
et nous remplacons 1 = —1 dans la premiére équation pour obtenir:
—142z2:=3 = 213=4 = x9=2.
Nous avons donc trouvé les nouvelles coordonnées de y qui peut §’écrire :
Yy = —x1 + 2x4.

Nous pouvons alors le représenter sur la figure 10.8.

Prenons enfin la troisiéme base. Nous avons une base quelconque formée des
deux vecteurs ®, = [1 2] et ) =[3 2.

Nous représentons cette nouvelle base sur la figure 10.9. Les droites ot se
trouvent xz et x4 forment les nouveaux axes qui, cette fois, ne sont pas
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Figure 10.8: Représentation graphique de la base orthogonale et du vecteur
y en fonction de cette base

perpendiculaires. Cependant, il est toujours vrai que tout vecteur peut étre
représenté par une combinaison linéaire unique des vecteurs xs et x4. Le
vecteur y est donc égal a:

Y = T3T3 + T4T4.

A nouveau, nous devons trowver les nouvelles coordonnées x3 et x4 pour pou-
voir représenter le vecteur y en fonction de la base x3, ®4. Nous procédons
de la méme maniére et obtenons:

[e]==la]+=[a];

Le systéme est le suivant :

(=~

I3 =+ 3334 =
22!3 + 2&,“4 = 4

et les solutions sont x5 = § et T4 = %
Le vecteur y peut done s’écrire :
3 1
Y=5%s + 7 T4
Nous le représentons sur la figure 10.9.
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Figure 10.9: Représentation graphique de la base quelconque et du vecteur
y en fonction de cette base

10.12 Valeurs et vecteurs propres

Le probléme des valeurs et vecteurs propres se pose en ces termes: soit une
matrice carrée A d’ordre n, existe-t-il un vecteur & non nul et un scalaire A
tels que:

Az = \x

soit vrai?

En d’autres termes, on cherche §’il existe un vecteur & qui en le multipliant
par A nous donne un multiple de lui-méme. Les valeurs de A qui satisfont
cette relation s’appellent les valeurs propres de la matrice A et les vecteurs
x s'appellent vecteurs propres de la matrice A.

Nous pouvons récrire cette relation de la maniére suivante:

Az = Iz
Azxz—-)xz = 0
(A=MI)-z = 0.

Nous voyons que cette forme d’écriture correspond a un systéme d’équa-
tions homogene. Il est évident que le vecteur @ = 0 est solution, mais existe-
t-il d’autres solutions? Nous savons déja que, pour qu'il y ait des solutions
non triviales, il est nécessaire et suffisant que le déterminant de (A—\I) soit
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égal & zéro. Pour résoudre notre probléme, nous devons donc trouver des
valeurs pour A qui annulent |A—\I|. Puis nous calculons pour chaque valeur
de A le vecteur @ qui lui est associé.

Le déterminant | A—\I| pour toute matrice A d’ordre n est une fonction
de A et plus exactement un polynome de degré n en A. Nous savons que tout
polynome de degré n posséde au plus n racines. Par conséquent, nous aurons
au plus n solutions (pas nécessairement toutes distinctes).

Si la matrice A posséde n valeurs propres distinctes, alors les n vecteurs
propres associés sont linéairement indépendants et forment une base de 'es-
pace (de dimension 7).

Exemple 10.12 Soit la matrice A d’ordre 3 suivante :
4 3 2
A= 010
-2 20
Nous allons voir s’il existe des valeurs de A\ et des vecteurs x tels que

Az= \x. Nous formons tout d’abord la matrice (A—XI ) :

A-M

I

4 3 2 00
01 0f-=-A 10
220 0 1

1
0
0
B N
0 1—-/\ 0

—2

I

Nous calculons le déterminant de (A —A\I) en développant les cofacteurs de
la deuxiéme ligne:

|A=M| = (1-X)[4-2(-2)-(2)(-2)]

(1 = X)(=4X + X% +4).
Si nous développons cette expression, nous trouvons un polynéme en A\ du
troisiéme degré :

A=A = —4AA+224+44+4072 - )3 —4)
~2 4 5)% — 8X 44,
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Cependant, pour trouver les solutions de |A—\ I|= 0, il est préférable de
prendre l'expression (1 — X)(—4X 4+ A% + 4) = 0. Nous avons une premiére
solution qui est:

(1-X) =
M o= L

Les deuz autres solutions se trouvent en posant :
A —4r+4=0
que nous pouvons factoriser en :
A=2)(A=2)=0.
Nous avons donc As = 2 et A3 = 2. On woit que la racine A = 2 intervient

deuz fois. Il reste & trouver les vecteurs associés a A = 1 et a A = 2. En
remplagant A par 1 dans (A — M)z = 0, nous obtenons :

4-1 5 2 T 0
0 1-1 0 zo | =10

Nous cherchons ©y, xq, x3:

3 3 2 1 1 2/3 11 2/3
00 0 = 0 0 0 = 0 0 0
-2 2 -1 -2 2 -1 0 4 1/3
11 2/3 1 1 2/3 1 0 7/12
= |04 /31 = |0 1 1/12 | == |0 1 1/12
0 0 0 00 0 00 0
ce qui donne :
7
E1+1—2—$3—0
$2+i~$3=0.

12
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et avec 3 = s, s # 0, nous avons la solution suivante :

rn = —18
12
_ 1
Ig = —ES
I3 = 8.
Le vecteur @' = —%s —%s s] est donc un vecteur propre associé a

A = 1.0n vérifie aisément que Az = .
Pour A\ = 2, nous avons le systéme suivant :

4-2 3 2 T 0
0 1-2 0 zg | =10
-2 2 -2 Ty 0

Nous cherchons x1, xs, x3:

2 3 2 -2 2 =2 1 -1 1
0 -1 0 = 0 —1 0 = 0 -1 0
-2 2 —2 3 2_ 2 3 2
I ~F 3] 1 -1 1] 1 01
= 0 -1 0 0 1 0 010
0 50_ 0 U_ 050
1 0 1]
= 1 0
000~
ce qui donne :
$1+$3 = O‘
Ty = 0

et avec 1 =t,t # 0, nous avons la solution :

Ty =t
Ty = 0
Iyq = —t.

Le vecteur ' = [ t 0 —t ] est done un vecteur caractéristique associé a la
valeur A = 2. On vérifie aisément que Az =2x.
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10.13 Diagonalisation de matrices carrées

Une application courante des valeurs et des vecteurs propres est la diago-
nalisation des matrices carrées. Une matrice carrée (n x n) A est diago-
nalisable s’il existe une matrice carrée (n x n) D diagonale et une matrice
carrée (n x n) S inversible, telles que A=SDS™".

Exemple 10.13 Posons:Az( L 1),5:( . 4),1):( 1 0)_

0 2 01 0 2
Alors .5'_1:( [1] 1_4) et

(3-8 (3 )-eo

e Meéthode de diagonalisation

1. Calculer les valeurs propres de A.

2. Chercher les vecteurs propres associés a ces valeurs propres.

3. Si la matrice posséde n vecteurs propres linéairement indépen-
dants (c’est-a-dire si les n vecteurs propres forment une base de
I'espace a n dimensions), alors A est diagonalisable et 'on peut
passer a I'étape 4. Sinon, A n’est pas diagonalisable et 'on s’arréte
la.

4. La matrice S se construit alors a partir des n vecteurs propres x;
mis en colonne:

S=| =z =z .. =z,
| I

Notons A; la valeur propre associée au 1° vecteur propre v;. Les
valeurs propres sont les coefficients de la matrice diagonale D :

g BF wwe
oo 0
“lo ;.0

0 0 &

T

Ainsi, A=SDS™'.



10.13. Diagonalisation de matrices carrées 287

Exemple 10.14 Soit la matrice A :

([ 10 -1
A=z <8 & -3
-1 0 1

1. Ses wvaleurs propres sont:

/\1:0, /\zzlefx\axé.

2. Les vecteurs propres correspondants sont :

1 0 1
xr) = 1 y Ly = 1 et x3 = 0
1 0 -1

3. Les vecteurs propres sont linéairement indépendants. On peut donc dia-
gonaliser la matrice A.

4. On forme la matrice S en alignant les vecteurs propres en colonne :
10 1

S = 11 0

1 0 -1

et en placant les valeurs propres correspondantes sur la diagonale de la
matrice la matrice D :

|

o O O
[ B
= O O

On calcule finalement la matrice inverse :

([ 1 01
S*lz§ -1 2 =1 ],
1 0 -1
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et on vérifie que la relation A=SDS™!

SDS™!

e Propriétés

o =
~
[ S ) S Sy W T Y

[ R
-

b | =

OO OO

Vecteurs et espaces vectoriels

est bien établie :

1 000 1 0 1
0 010 ~F B -]
= 00 3 1 0 =1
1 0 0 0
0 -1 2 -1
SVAR I

1. Le déterminant est invariant par diagonalisation et est égal au
produit des valeurs propres, c’est-a-dire:

En effet,

Det (A) =

Det (A)

et (D) Det (S~ )

S5 N

2. La trace est aussi invariante par diagonalisation et est égale a la
somme des valeurs propres, ¢’est-a-dire:

tr (A)

tr(D)=M+X+...

+ An.
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En effet,
tr(A) = tr(SDS™') = tr((SD)S™)
= tr (S (S.D)) = ifr S_ISD)
= tr(D) = M+Ade+...+ A

3. Le calcul des puissances est simplifié grace a la diagonalisation :

A" = SD"§!
X0 s 0
0 A ... 0
OﬁDm - . i o i
0 0 ovoAm

En effet,

A™ = (Sps™)™
= (SDS™')(SDS™)...(SDS™)
= SDS'SDS™'...SDS™!
= SD"§%
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Exercices
1. Déterminer si les vecteurs suivants sont linéairement dépendants :
1 2 1
™ = Vo = 1 Vg =
1 0 3

2. Ecrire la matrice D comme combinaison linéaire des matrices A, B et

a[12] m-[2 9 e-[22]. b-[2 3]

3. Trouver a, b et c tels que les trois vecteurs suivants forment une base
orthogonale de 'espace a trois dimensions :

—-14 -1
v = —1 Vg = b V3 = 2
3 2 c
4. Soit la matrice A suivante:
1 1 0
A=1|1z2 0
1 4 =z

Pour quelles valeurs de x la matrice A est-elle inversible?
(a) Pour z = 0, calculer les valeurs propres de A.

5. Calculer les valeurs propres et les vecteurs propres pour les matrices

suivantes :
1 0 0 0 2
A=10 1 =2 B=1|0 -1 0
0 -2 1 2 0 -2

4 0 O
C=]0 -1 2 o |15
0 1 -1
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6. Pour quelles valeurs de a la matrice suivante n’a-t-elle pas de valeur
propre réelle?

a 1
i [ ol ]
Montrer que B posséde deux vecteurs propres linéairement indépen-
dants:
1 2
s-[11]

Montrer qu'une matrice symétrique 2 x 2 posséde toujours deux valeurs
propres (pas forcément distinctes).
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LAGRANGE Joseph Louis (1736-1813)

Mathématicien franco-italien né a Turin en 1736, Lagrange se fait connaitre
en 1788 griace a son ouvrage Mécanique analytigue dans lequel il résume,
sous une forme rigoureuse, toutes les connaissances acquises en matiére de
mécanique depuis Newton. Il enseigne la géométrie & Turin ainsi qu’a Ber-
lin ou il remplace Euler 4 1’Académie des sciences en tant que directeur de
mathématiques (1766).

En 1770 et 1771, il publie deux importants mémoires sur la théorie des
équations dans lesquels apparait, pour la premiére fois, le résultat connu sous
le terme de théoréme de Lagrange.

On reléve encore sa contribution dans le développement de la théorie des
nombres, des équations différentielles et de I'analyse ainsi qu’en astronomie.

Lagrange est connu également pour son réle actif dans l'introduction du
systéme métrique durant la période de la Révolution en France.



Chapitre 11

Approche matricielle du calcul
différentiel

11.1 Introduction

Le calcul différentiel a été abordé dans la premiere partie de ce livre et le cal-
cul matriciel dans le chapitre 8. Nous allons maintenant voir qu'il est possible
de combiner les deux approches dans le but de résoudre des problémes qui
paraissent plus complexes au premier abord, ou qui sont tout au moins d'une
plus grande ampleur. Nous verrons également ’optimisation de fonctions de
plusieurs variables (avec ou sans contrainte) a I'aide de la matrice hessienne,
puis les bases de la régression simple.

11.2 Calcul différentiel sous forme matricielle
Soit & un vecteur composé de n variables:

2= (2; 22...22),
et k un vecteur composé de n constantes:

k; — (k’l kgkn),
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nous formons la fonction linéaire y suivante:

y = kKx
Iy
I3
= (k1 k... kn)
Ty

Il
oy
8

Nous pouvons calculer la dérivée partielle de y par rapport & chacune des
n variables :

w_,
85‘31

O 5
31‘2 T
ay ‘

= =k,
0z,

Nous regroupons ces n dérivées partielles dans un vecteur a n dimensions:
W _ g
dx

Considérons maintenant un ensemble de m fonctions linéaires du méme
type que y:

n = kj-=x
yo = k-
ym = k:.n B 1

Sous forme matricielle, nous avons:
y= Az

ou y est le vecteur & m dimensions des y;, A la matrice m x n des constantes
ott chaque ligne représente un vecteur k' et x le vecteur a n dimensions des
variables z;.
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Les n dérivées partielles de w1, ya, ..., ¥m sont:

8y1

sl =

Ox *

dya

ox 2

OYm
—— = kn.

oz w0

Par conséquent, sous forme matricielle, la dérivée de y = Ax est:

@) Ax

dy_ oAz _ 4
Ox oz

Soit A une matrice symétrique d’ordre n composée de constantes et  un

vecteur composé de n variables, nous pouvons construire la forme quadratique

générale :

q=z'Az.
En développant, on obtient :
q= (11_1:13% + 2(].12231.’1?2 = I T 2@1§$1.’L‘1‘ e el Qam:cl:cn
+  2a973 + .. 4+ 2a0mem; + ... +  2a9,T2T,
+ aﬁfcf + ... 4+ 2ax1,
+  apnzl.
La dérivée partielle de ¢ par rapport & la variable z;, i = 1,2,...,n, est
obtenue en sommant les dérivées des termes contenant z; :
dq
o = 2a1;;71 + 2a9;x0 + ... + 2057 + . .. + 20T
1

Comme A est une matrice symétrique, on peut aussi écrire:

oy

= 2&1g$1 -+ 2023'&?2 +...4+ 2{1,;“2?.,1
0"1:1:

= QAiiL',
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ou A; est la i° ligne de la matrice A. Par conséquent, la dérivée de la forme
quadratique ¢ = @’ Ax peut s’écrire sous forme matricielle :

9q ]
8331
AI:B
dq Oq Asx
: Ayx
9q
| Oz, |

Soit A une matrice d’ordre m x n, ou tous les éléments a;; sont une
fonction de la variable x:

A = [a;(@)].
La dérivée de la matrice A par rapport a = est égale a la matrice ayant
pour éléments la dérivée (par rapport a z) des éléments respectifs de A :

dA _ [da()
de | de |’
Exemple 11.1 Soient les 3 fonctions linéaires suivantes :

o= T — 2@
Yo = 421+ T2
ys = 2z,
Sous forme matricielle, on a:
y = Ax
ou
Y1 1 -2
w |=14 1 ( ? ) .
Y3 0 2 4
. oY ; -
La dérivée est égale a:
Oz
dy Az

oz _rf?-:;:__A
1 -2

= 4 1 ].
2

0
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Exemple 11.2 Soit la forme quadratique suivante :
q = =3 + 42125 + 67173 — 22023 + 273,

On peut l’écrire sous forme matricielle :

q = Az
1 2 3 I
= (xl g .'LT3) 2 0 -1 Io
3 -1 2 T3
La dérivée de q est égale a:
dq ox' Az
— = =2A
ox dx %
1 2 3 T
— 2|2 o0 -1 2
3 —1 2 I3
2z + 4z9 + 63
= 4.';,“1 e 2:1?3

6z — 2x9 + day

Exemple 11.3 Soit la matrice A :
2t —zx €°
A=| 0 -2 1l/z

z lnz 22

Sa dérivée est égale a:

2 -1 e”
%‘i: 0 0 —1/z?
* 1 1)z 2

11.3 Matrice hessienne

Otto Hesse, né en 1811 a Konigsberg en Allemagne (actuellement Kalinin-
grad en Russie), a essentiellement contribué au développement de la théorie
des fonctions algébriques. Il a introduit la matrice hessienne dans un article
datant de 1842 traitant de la recherche sur les courbes quadratiques.
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Au point 7.6, nous avons vu comment rechercher les minima et maxima
d’une fonction de deux variables. Afin d’élargir ce concept au résultat général
sur les fonctions de plusieurs variables, introduisons la matrice des secondes
dérivées partielles qui joue un réle clé dans la détermination des extrema
d’'une fonction de plusieurs variables. Cette matrice est appelée matrice
hessienne et se présente sous la forme:

fa2 fom o faiz.
fzgzl fz% s fngn
H = 5 3 % '
fmu—lxl -f:!:ﬂ—].m? bk f:':n—l:r'ﬂ
fzﬂxl fznmz Hiw fx%

0% f 0 f 0% f
1 = A 91 Joixza — 3oty t 2 = 5 5
Ol foy = Gga» Jorme = gr o v S fah = 5

On appelle mineurs principaux de la matrice H, notés A\, les détermi-
nants des sous-matrices de H obtenues en lui retirant ses n — i derniéres
lignes et colonnes (i = 1,...,n).

Nous présentons ci-dessous trois méthodes de recherche des extrema d’une
fonction de plusieurs variables :

of of af

Soit P €R™ un point vérifiant e (P) = ors (P e . (P) =0,

alors on a trois méthode pour déterminer si P est un extremum ou n’en est
pas un:

1" méthode: Mineurs principaux

e Si les mineurs principaux de la matrice hessienne au point P sont tous
strictement positifs, la fonction atteint un minimum au point P.

e Si les mineurs principaux de la matrice hessienne au point P sont de
signes alternés, le premier étant strictement négatif, la fonction atteint
un maximum au point P.

e Si ces mineurs principaux ne vérifient pas 'une des conditions ci-dessus
prises au sens large (c’est-a-dire “positif ou nul” et “négatif ou nul” res-
pectivement ), alors la fonction n’atteint ni un minimum ni un maximum
au point P.
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Dans le cas des fonctions de deux variables, on retrouve le résultat vu au
point 7.6 puisque dans ce cas, comme f,, = fy,, on a:

A1 = fzx
DNy = fxmfyy_(f:cy)2'

Ainsi,

Ay >0 et Ay > 0 = minimum,
Ay <0 et Ay >0 = maximum,
£\ quelconque et Ay < 0 = on ne peut pas conclure.

2¢ méthode: Valeurs propres

De maniére équivalente, 'étude des valeurs propres de la matrice hes-
sienne en ce méme point P permet de déterminer la nature de ce point.

e Si les valeurs propres de la matrice hessienne H au point P sont toutes
strictement positives, alors la fonction atteint un minimum au point P.

e Siles valeurs propres de la matrice hessienne H au point P sont toutes
strictement négatives, alors la fonction atteint un maximum au point
P.

e Si la matrice hessienne H en P a au moins deux valeurs propres de
signes opposés, alors le point P est un point-selle de la fonction.

e Si les valeurs propres de la matrice hessienne H en P sont toutes de
méme signe et si au moins une de ces valeurs propres est égale & zéro,
alors on ne peut pas conclure.

3° méthode: Forme quadratique

L’étude de la forme quadratique issue de la fonction f considérée est une
troisiéme méthode de détermination des extrema de ladite fonction.

Soient f : IR™ —IR qui & @ fait correspondre f (x), une fonction de n
variables dérivable. Supposons également que les dérivées partielles du second
ordre soient continues au voisinage du point P. Notons H (P) la matrice

hessienne de f, évaluée au point P, et F' (P) = ( ng of?Tf ;Tf )
1 2 n

le vecteur-colonne des dérivées partielles de premier ordre.
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Le développement de Taylor a l'ordre 2 de la fonction f au voisinage du
point P est donné par:

f(@)=f(P)+(x~P)-F(P)+(x—P) - (H(P)+R(z~P) (z-P)

ou R est une matrice (n x n) telle que (mh'g} D(R (®—P))=0.

On peut alors démontrer, & partir du développement de Taylor ci-dessus,
qu’étudier les extrema de la fonction f revient a étudier le signe de la forme
quadratique suivante: Q(z)= (x — P)'-H (P)-(x — P).

e Sila forme quadratique @ (x) est définie positive (c’est-a-dire @ () > 0
pour tout & # P), alors f atteint un minimum au point P.

e Silaforme quadratique @ () est définie négative (c’est-a-dire Q (z) < 0
pour tout & # P), alors f atteint un maximum au point P.

e Si la forme quadratique @ (x) est indéfinie (c’est-a-dire s’il existe au
moins deux points distincts @, et z; tels que Q (z1) < 0 et Q (22) > 0),
alors le point P est un point-selle de la fonction f.

e Sila forme quadratique @ (x) est semi-définie (c’est-a-dire si @ (z) > 0
pour tout  # P ou si Q (&) < 0 pour tout & # P et s’il existe x, tel
que Q (xp) = 0), alors on ne peut pas conclure.

Exemple 11.4 Soit la fonction z = f(z,y) = z* + y*. Nous allons étudier
les extrema de cette fonction selon les trois méthodes décrites ci-dessus.
Les candidats aur extrema s’obtiennent en résolvant le systéme d’équations

O _oall

Ba:_oetfiy—o'
g = 2z=0=2=0
dz
of

Il y a donc un point candidat en P = (0;0) (Figure 11.1). En cherchant les
secondes dérivées partielles de f(z,y), on trouve:

2 2 2
Sy Tley AL
O0x? oy? Oxzdy
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La matrice hessienne est donc donnée par:
20
H = ( 20 ) |

Donc,H(P):(ﬁ g)

e 1" méthode : Mineurs principaux
On calcule alors les mineurs principaur de H (P). On obtient: [\ =2
et Ny = 4. A\ et [\, sont tous deux strictement positifs, par conséquent,
le point P est un minimum de f .

Figure 11.1: Graphe de z = f(z,y) = 2% + y*

o 2méthode : Valeurs propres
Les valeurs propres A de H (P) vérifient ’équation |H (P) — M| = 0.
En  résolvant  cette  équation  on  obtient les  waleurs
propres Ay = Ao = 2. Ces valeurs propres sont toutes deux strictement
positives, donc la fonction atteint un minimum au point P.

e 3° méthode : Forme quadratique
Calculons la forme quadratique Q (z) = (x — P)' - H (P) - (x — P) :

oen = ((5)-(0)) (52)(()-(5))
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- (32)()
()

= 2x% 4242
Pour tout @ = ( ; ) # P, Q (x) est strictement positif. Donc f atteint
un minimum au point P.
Exemple 11.5 Soit la fonction :
fz,y,2) = 2 — 1722 + 2y% + 22 — 22y — 2yz + 81.

Annulons les premiéres dérivées partielles :

of . 3 __
P 42° — 34z -2y =0 (11.1)
of B
- 4y —2x—-2z=0 (11.2)
of _
3, = 2z — 2y =0. (11.3)
De (11.3) on déduit :
y=z. (11.4)

Substituons (11.4) dans (11.2):

dy—2x -2y = 0
2y—2z = 0
T = y. (11.5)

En introduisant (11.4) et (11.5) dans (11.1), on trouve :

473 - 34z -2z = 0
423 -362 = 0
4z - (2> -9) = 0.

Cette derniére équation a trois solutions :

=0, ©9 = -3, z3=23.
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Les valeurs correspondantes de y et de z sont:

n = 0: y‘2=—3‘ 1/3:3
z17 = 0, z0=-3, z3=3.

Nous avons donc trois points candidats: P;(0;0;0;81), Py(—3; —3; —3;0)et
P;3(3;3;3;0).

Calculons la matrice hessienne :

Les deuziémes dérivées partielles sont:

0*f 0*f *f

oz 16—~ 0x0y =2 9z0z 0
Ff _ Ff _4 s
Ayoz 0y? Oy0z

o*f — 0% f &g ('V_f _
0z0z 0z0y 022

Done la matrice hessienne est:

1222-34 -2 0
=9 4 =2
0 -2 2

Pour le point 1 =y, = z; = 0, la matrice hessienne est donnée par:

-34 -2 0
H(P1)= —2 4 —2
0 -2 2

Al = —-34

/_\.2 — —140

Ag = —144.

D’aprés le résultat général précédent, ces trois mineurs principaux ne vérifient
ni la condition 1 ni la condition 2, prises au sens large, la fonction n’atteint
done ni un mintmum ne un maxrimum au point P.

Calculons maintenant les valeurs propres de H(Py) en résolvant l’équation
|H (P;) — M| = 0. On obtient les valeurs propres \;; = —34.1, A\jp = 5.3 et
A3 = 0.8. Nous avons donc au moins deux valeurs propres de signes opposés,
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donc le point Pyest un point selle.
Pour les points 9 = yo = 29 = —3 et 3 = y3 = z3 = 3, la matrice hessienne
est la méme :

4 -2 0
H=[| -2 4 -2
0 -2 2
On a
AI = T4
Ag — 292
Az = 288.

Ainsi, pour chacun de ces deux points, la fonction présente un minimum.

Exemple 11.6 Une firme aéronautique fabrigue des avions qu’elle vend sur
deux marchés étrangers. Soit ¢, le nombre d’avions vendus sur le premier
marché et qs le nombre d’avions vendus sur le deuziéme marché. Les fonctions
de demande dans les deux marchés respectifs sont :

o = 60-—2q
pa = 80—4gq

ot py et py sont les deux priz de vente. La fonction de cott total de la firme
est:

C = 50 + 40q
ot q est le nombre total d’avions produits. Le but est de trouver le nombre
d’avions que la firme doit vendre sur chaque marché pour mazimiser son
bénéfice.
Comme q¢ = q1 + @2, la fonction de cott devient :
C = 50+ 40q
= 50+ 40(q; + QQ)

Le revenu total R s’obtient en faisant le produit du priz par la quantité sur
chaque marché :

R = pigy+p2q2
(60 — 2q1)q1 + (80 — 4q2)q2
= 60q1 — 2q; + 80gs — 4;.
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On obtient le bénéfice B en calculant la différence entre le revenu et le cotit :

B = R-C
= 60q — 2q7 + 80qy — 4q5 — (50 + 40q; + 40q5)
= 20¢; — 2¢ + 40¢; — 4¢3 — 50.

Annulons les premiéres dérivées partielles :

aB

B4, G +20=0 q1

B

9B B A= =5
0qs

Il reste & vérifier que le point candidat (q; ;q2) = (5 ;5) est un mazimum ;
pour cela, calculons les deuwiémes dérivées partielles :

B 0*B g B

Oqt g3 0q:10q2

La matrice hessienne est donc:

Par conséquent :
AN 1 = —4 < 0
Dy = 32 > 0.

Comme Ay < 0 et Ny > 0, il s’agit d’un maximum. Le bénéfice maximum
réalisé est égal a:

20(5) — 2(5)% + 40(5) — 4(5)* — 50 = 100.
Quant auzx priz, ils valent respectivement :

50
60.

Il

pr = 60—2(5)
p2 = 80—4(5)
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11.4 Matrice hessienne bordée

La méthode des multiplicateurs de Lagrange utilisée pour obtenir les
extrema d'une fonction soumise a des contraintes d’égalité (voir point 7.7)
peut également se présenter sous forme matricielle. Ainsi, dans le cas simple
ou la fonction & optimiser (fonction objectif) est une fonction de deux va-
riables f(z,y) soumise & une seule contrainte de la forme g(z,y) = 0, nous
avons le Lagrangien :

F(z,y,)) = f(z,y) + M\g(z,y).

Introduisons la matrice hessienne bordée:

0°F  *F 0°F dg 9y

r 0 = =

9> A\dz 9Ny dz Oy

g | OF @F @F | _| 9 &F 0°F
~ | 0z9\ 0922 Ozdy | | Oz 0z2 Ozdy
0*°F  *F 0*F dg 0°F O°F

OoyoN Oydr  Oy? Oy Oydx  Oy?

dont le déterminant sera noté | H |.

La condition suffisante pour I'existence d’un extremum est fournie par le
résultat suivant :

Soit P(zo; yo; f(2o,y0)) le point on [0F/0z = dF/0y = dF/0X = 0.
Alors, si en ce point:

| H |< 0 = minimum au point P
| H |> 0 = maximum au point P.

La méthode des multiplicateurs de Lagrange peut se généraliser a I'opti-
misation d’une fonction de n variables f(z1,...,z,) soumise & k contraintes
gilZis0520) =0; = ko 1 £ 8 < n.

Dans ce cas, le Lagrangien s’écrit :

K
F(Ilyxh'”:xn:/\la"'1’\.‘:) =f($15---gxn)'i“z)\jgj(mla---,mn)
j=1
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et 'annulation des premiéres dérivées partielles fournit un systéme de n + k
équations a n + k inconnues:

oF _ of 2 g2 g _
aml—3$1+A13$1+A23$1+'”+Ak3€£1_0
OF _of 991 , 99 09 _
63‘32_3.1'2+)\16$2+A28$2+.”+Ak63‘“2"_U
oF _ df . dg ., Ogs dge
amn—8$H+)\18—%+)\28—xn+...+)\kaxn—0
oF

6—)\1291(131,---:%):0

or

6/\k—gk($1,...,mn)—0.

Les conditions du deuxiéme ordre pour déterminer s’il s’agit d’'un ma-
ximum ou d’un minimum reposent sur le calcul des mineurs de la matrice
hessienne bordée suivante:

991 g
[0 ... o0 gy - gxn\
992 92
0 ... 0 B 9%,
" : . ;
o .. of % = 9%
aﬂ:_]_ ‘amn
H=1"09  "on| OF ald
Oz, =~ Oz, oz 7 0z,0z,
99 oge | _O&°F O°'F
6232 o 832 3$28’£1 o 8$26$n
o0 O | OF i
\ 0z, = Oz, | Oz,0r; oz )
2
Notons le mineur principal qui contient Bz comme dernier élément de
1

la diagonale principale par | H; |. | H | correspond au mineur principal qui
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2
contient 3z comme dernier élément de la diagonale principale et ainsi de
suite. La con%iition suffisante pour 'existence d 'un minimum ou d’un maximum
dépend des signes des mineurs principaux |Hpgy|, |[Hgyol,...,| Hy| = |H]|.

Mentionnons qu’il y a au moins une contrainte (k > 1) et donc | H, |
n'intervient jamais dans les calculs. La condition suffisante pour 'existence
d'un extremum est donnée dans le résultat suivant :

La fonction f(zy,...,z,) soumise aux k contraintes
gj(zls-“axu) =O, j'= 1,”.,k
admet :

e un maximum au point candidat, si les mineurs principaux | Heyy |,
| Hiyo |, ..., | H, | sont de signe alterné, le signe de | Hyy, | étant
celui de (—1)F1,

e un minimum, si les mineurs principaux | Heyy |, | Hiso |,- .| Hy |
sont de méme signe, celui de (—1)*.

Exemple 11.7 Trouver les extrema de la fonction objectif :
f(z,y) = 52° + 6y° — 2y

sous la contrainte :
T+ 2y =24.

La contrainte s’écrit g(z,y) = z+2y—24 = 0. Le Lagrangien est donné par:
F(z,y,\) = 522 + 6y% — 2y + A(z + 2y — 24).

L’annulation des premiéres dérivées partielles fournit un systéme de trois
équations a trois inconnues qu’il s’agit de résoudre :

OF
= = 10z —y+A=0 (11.6)
OF
& 12y —z+20=0 (11.7)
LA T +2y—24=0. (11.8)

)
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En éliminant X des équations (11.6) et (11.7), on obtient 2y = 3z que l'on
substitue dans (11.8):
z+32—-24=0
dr =24
on obtient g = 6. Comme x + 2y = 24, on trouve yo = 9.

Pour déterminer si le point candidat ©o = 6 et yo = 9 est un extremum, il
faut calculer les dérivées partielles du deuxiéme ordre :

2 2 2 2
E_, BF_, BF_OF_
dz? oy? 0z0y  OyOx
Les dérivées partielles de la contrainte g(z,y) = x + 2y — 24 sont :
99 _ dg
B 1 et ay =2,
La matrice hessienne bordée est donc:
0 1 2
H = 1 10 -1
2 -1 12

Puisqu’il s’agit d’une fonction de deuz variables soumise a une contrainte, on
utilise le déterminant de la matrice H. Comme | H |= —56 < 0, la fonction
objectif sous la contrainte © + 2y = 24 posséde un minimum en xy = 6 et
Yo = 9.

Nous avons donc trouvé la solution qui minimise la fonction objectif tout en
respectant la contrainte. Remarquons que cette méme fonction, st elle n’est
pas soumise a la contrainte x + 2y = 24, ne posséde pas un minimum au
méme point! Le lecteur peut vérifier que sans la contrainte, cette fonction
posséde un minimum en g = yo = 0.

Exemple 11.8 Une entreprise fabrique trois types de machines x,, x5 et 3.
La fonction de cott conjointe C(xy,z2,x3) est:

C(zy,29,23) = 42:';’ + 23:"2" + x§ — 22129 + Toxz — 3022 — 30z

Combien de machines de chaque type Uentreprise doit-elle fabriquer pour
manimiser son cott s'il luz faut un total de 100 machines ?
1l s’agit ici de minimiser la fonction de cotit conjointe sous la contrainte :

1 + x9 + xz3 = 100.
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Ainsi, g(zq, T, x3) = T1+22+23—100. La fonction de Lagrange F(z1, x4, 3, A)
est donnée par:

F(xy,29,23,)) = C(z1,22,23) + Ag(21, 22, 73)
) 4mf + 2x§ + x§ — 22125 + Tox3 — 3025 — 30x5
+/\(LL1 + o+ X3 — 100)
Annulons les premiéres dérivées partielles :

oF

o 8z —2z9+ A =0 (11.9)
a—F = 4$2—2$1+$3—30+/\=0 (1110)
3:1:2
oF = 223+2,—304+A=0 (11.11)
63’,‘3

F
E;_,\ = z1+ 29+ 23— 100=0. (11.12)

Twrons A de la premiére équation: X\ = 2z — 8x,. En substituant A dans les
équations (11.10) et (11.11), on obtient avec l’équation (11.12) un systéme
de trois équations a trois inconnues :

—10z; + 623+ 23 = 30 (11.13)
—'8.'1}1 -+ 355'2 -4 25‘33 = 30 (1114)
1+ x9+2x3 = 100. (11.15)

De (11.15), on tire z; = 100 — zo — x5 que l'on remplace dans (11.13) et
(11.14) pour obtenir :

1622 + 11zs = 1030 (11.16)
11z, + 1023 = 830. (11.17)
830 — 11z
De (11.17), on tire 3 = —IU—Q que l’on substitue dans (11.16) :

11
1627 + 75(830 — 11z;) = 1030

160z — 121z, = 1170
39z, = 1170
Iy = 30.
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De (11.17), on a:
330+ 10z =830
10z3 = 500
Iy = 50.

Finalement, de (11.15) ©; = 100 — 30 — 50 = 20. Ainsi, le point candidat
est x1 = 20,25 = 30 et 3 = 50. Vérifions a présent qu’il s’agisse bien d’un
manimum. Pour cela, calculons :

9 _, % _, % _,
oy Oz Oz
2 2 2
-(?—F :8 , -a—g =4 F .6_};.: =2
oz O3 dz?
0*F — 9 0°F —0 0*F i
0z,0zy " Ox0ry  Oze0xz
La matrice hessienne bordée est, par conséquent, donnée par:
0 1 11
1 8 -2 0
H=11, 2 41
1 0 1 2
Ona:
o1 EEY
|Hy|=|1 8 -2 |=-16¢et |H;3|= 1 —92 41 = —309.
b= 4 1 0 12

Comme dans cet ezemple il n'y a qu’une contrainte, (k = 1), on a donc:

| Hiyr | =| Ha |=—16
| Hiyz | = Hy |=| H3 |= -39
(-1 =(-1)'=-L

Selon le critére présenté & la page 308, les mineurs | H | et | Hj | étant du
méme signe que (—1)¥, le point x; = 20, 2z = 30 et z3 = 50 est un minimum.
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Remarque La méthode des multiplicateurs de Lagrange ne peut pas étre
utilisée dans tous les cas. En particulier, lorsque le probléme d’optimisation
a des contraintes de non-négativité ou lorsque la fonction n’est pas dérivable,
cette méthode n’est pas adaptée. Or, ces contraintes sont trés importantes
en économie. Par conséquent, il faut utiliser des méthodes qui fournissent
des solutions lorsque les contraintes se présentent sous forme d’égalité ou
d’inégalité. Cependant, ces notions dépassent quelque peu le cadre de cet
ouvrage, c’est pourquoi nous ne les aborderons pas.

Exemple 11.9 Régression linéaire simple
Soit le modéle linéaire suivant sous forme matricielle suivant :

y=XB+e (11.18)

oty est le vecteur des observations de dimension n x 1, X est une matrice
nx 2 des coefficients, 3 est un vecteur de paramétres a estimer de dimension
2 x 1 et € est un vecteur d’erreurs de dimension n x 1.
Bo

K
. . l b . -
dance des y sur les x, c’est-a-dire qui minimise le terme d’erreur €.
La méthode la plus utilisée (dite des moindres carrés) minimise en fait

Le but est d’estimer le vecteur 3 = ui “approche le mieuz” la dépen-

€2 =e'e. Sous la forme matricielle, la méthode des moindres carrés re-

i

vient a manimaser, car:

Du modéle linéaire, nous sortons € :
e=y—Xp.

Par conséquent :

ee = (y—XB)'(y — XP)
= Yy-BXy-yXB+pX'XpB
= yy-28X'y+p/X'Xp.
(La derniére équation provient du fait que B'X'y est un scalaire et que sa
transposée y' X B a la méme valeur).
Pour minimiser €'e=y'y—26'X'y+6' X' X B, il faut dériver par rapport & B
et poser la dérivée égale a zéro :
Oo'e O(yy—2B8X'y+pB'X'XP)
E o8
= —2X'y+2X'X8.
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De la, nous trouvens l'estimateur des moindres carrés b de 3 en posant :
2(—X'y+ X'Xb)=0
ou encore (en substituant B par b lorsqu’on pose l’équation égale & zéro)
X'Xb=X'y

qu’on appelle l’équation normale.
Pour obtenir b, on multiplie les deux cotés de cette équation par (X'X)"',
c¢’est-a-dire :

b=(X'X)'X'y.

Note Il peut arriver que la matrice (X'X) n’ait pas d’inverse. Dans ce cas,
on utilise ce qu’on appelle linverse généralisé (g-inverse), notée (X'X)~.
Cet inverse doit satisfaire parmi d’autres, la condition suivante :

(X'X)(X'X)"(X'X) = (X'X).
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Exercices

1. Une fabrique utilise deux facteurs de production z et y pour produire
un certain nombre d’unités d’un bien z.
Le prix d’une unité du facteur z est 3 francs et celui d'une unité du
facteur y est 2 francs. La fonction de cofit de production est donc:

c=3z+2y

Si cette fabrique doit produire 300 unités du bien z et que la fonction
de production est donnée par z = 15v/22%4y'/ (contrainte), combien
devra-t-elle acheter d’'unités de z et y pour minimiser le coit de pro-
duction?

2. Un investisseur décide d’acheter trois types d’actions pour un montant
total de 400 francs. Soit X, X3, X3 le montant consacré a chaque type
d’action, ainsi X; + X3+ X3 = 400. Le taux de rendement pour chaque
action est une variable aléatoire dont Pespérance mathématique et la
variance sont données par le tableau suivant :

type d’action rendement moyen variance

1 0.20 1/5
2 0.15 1/10
3 0.10 1/25

On appelle rendement moyen espéré du placement 1'expression :

R =0.20X, 4+ 0.15X5 + 0.10X3.

On appelle risque du placement l'expression suivante (c’est-a-dire la

variance) :
polupulasy Lo
5 10 25

(a) Trouver X;, X, et X3 qui minimisent le risque. A quel rendement
moyen espéré correspond cette répartition des achats?

(b) Trouver Xi, X3, X3 qui minimisent le risque sous la contrainte
additionnelle que le rendement moyen espéré R = 60. Par rapport
a la situation sous a), le risque est-il plus grand ou plus faible?
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3. Une firme produit un certain bien qu’elle vend sur le marché au prix
unitaire de 8 francs. La quantité produite (et vendue) est donnée par:

Q — 8K3f8L1f8

ou K représente les unités de facteur capital employées et L les unités
de facteur travail employées. Le revenu de la firme s’éléve donc a
8Q = 64K°3/8LY8 Le cont de production de cette firme est donné par
C =12K +4L.

(a) Trouver les quantités de K et L que la firme doit employer afin
de maximiser le bénéfice.

(b) La firme constate que la politique de maximisation du bénéfice
ne lui assure pas une part de marché suffisante. Elle décide en
conséquence d’adopter la politique de maximisation de la quantité
vendue sous réserve d'un bénéfice minimal égal a 48 francs.

i. Formuler explicitement le probléme de maximisation sous cont-
rainte.
ii. Montrer que dans la solution optimale la combinaison op-

timale des facteurs (c’est-a-dire leurs proportions) reste la
meéme que dans le probléme de maximisation du bénéfice.

iii. Donner la solution compléte pour K, L et Q.

4. La fonction de production d’une firme est donnée par:
Q =4 KI /4 LS/ 4

ou K et L sont les deux facteurs de production et @ la quantité pro-
duite. La firme achéte les deux facteurs sur le marché, le prix unitaire
de L est de 3 francs et, en raison d’'une pénurie, le prix unitaire de K
est une fonction croissante de K suivant la formule:

pe=2+0.1K.

Sachant que la somme consacrée i ’achat des deux facteurs de produc-
tion est 150 francs, trouver les valeurs de K et L qui maximisent la
production. Quel est le prix unitaire de K7

5. Maximiser z = —zInz — ylny sous la contrainte x + y = 1.
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6. Une firme monopolistique produit un certain bien. Le cofit total de

production de la firme est représenté par la fonction :
C = 2I% 4+ 5¢® — 20q + 400

ou ¢ représente les unités produites et I représente un indice de qualité
du produit (par exemple le degré de raffinage du produit).
Le prix que la firme peut commander sur le marché est fonction de
I'indice de qualité:

p =100 — 3¢ + 41.

Calculer la recette totale de la firme.

(a) Trouver ¢ et I qui maximisent le bénéfice de la firme.

(b) Veérifier les conditions de deuxiéme ordre.

Vous partez en vol charter pour un voyage aux Etats-Unis. Dans votre
valise, vous &tes autorisé a emporter 24 kg. Vos affaires de toilette
pésent 4 kg et vous voulez utiliser les 20 kg qui restent de facon op-
timale. Vous aimeriez emporter trois sortes de biens: blue-jeans notés
X, T-shirts notés Y et pullovers notés Z. Les poids unitaires respectifs
sont (en kg):

px =2 py = 0.5 pz = 1.

L’utilité que ces vétements vous procurent pendant votre voyage est
mesurée par la fonction:
U=X%*Y_Z.

(a) Choisissez X,Y et Z de fagon & maximiser 1'utilité.

(b) Ayant choisi votre assortiment optimal, vous vous rendez compte
que vous ne pouvez pas fermer la valise. Le volume total disponible
dans la valise (aprés y avoir rangé les affaires de toilette) est de
40 dm?®. Le volume unitaire respectif des trois vétements (en dm?*)
est:

Vx =4 Vy =2/3 Vz = 3.

Trouver la combinaison optimale sous la double contrainte du
poids et du volume. Vérifier alors la condition de 2° ordre.
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8. Trouver l'extremum de:

10.

11.

12.

e,y 2) = x? — 2zy + y? + 522

sous la contrainte:
x+y+ 2z =10.

. Une entreprise a la fonction de production suivante:

Q = 8K1/2L1f4

on ( est la production, K est le capital, L le travail. Le prix du capital
est px = 4, le taux de salaire p;, = 2 et I'entreprise désire produire
(Q = 64. Trouver la combinaison des facteurs K et L donnant au
moindre cofit la production requise.

Déterminer les extrema de la fonction f(z,y) =In|z | +In|y |, z et
y étant liés par la contrainte 22 +y*> =9 .

Une entreprise fabrique deux types de machines z et y. La fonction de
colit conjointe est donnée par:

f(z,y) = 2% + y* — 10z — 12y + 51.

Trouver le nombre de machines de chaque type que 'entreprise doit
fabriquer pour minimiser son coft.

A Taide des conditions du second ordre, montrer qu’il ’agit bien d’un
minimum.

Un consommateur dépense 24 francs pour I'achat de deux biens, z et
y. Les prix de z et de y sont respectivement 1 francs et 2 francs. La
fonction d’utilité du consommateur est donnée par U = 5z + 6y — zy.
Combien d’unités de chaque bien doit-il consommer pour maximiser
son utilité?
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HESSE Ludwig Otto (1811-1874)

Mathématicien allemand né & Konigsberg en 1811, Hesse est 1'étudiant de
Jacobi a l'université de sa ville natale o1 il obtient son doctorat en 1840. Il
enseigne alors la chimie et la physique dans cet établissement jusqu’en 1856,
année ou il est nommé a 'université de Heidelberg. Il y restera douze ans
avant d’obtenir un poste & Munich, ou il décédera en 1874.

Du point de vue scientifique, on lui doit notamment le développement
de la théorie des fonctions algébriques ainsi que de celle des invariants. Il
introduit le déterminant hessien tiré de la matrice hessienne dans un article
paru en 1942 traitant des courbes cubiques et quadratiques.
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Mathematica



Chapitre 12

Introduction a Mathematica

12.1 Introduction

De nos jours, les innombrables calculs mathématiques peuvent s’avérer fasti-
dieux et compliqués, voire impossibles a résoudre avec une machine conven-
tionnelle du fait du temps considérable que nécessite leur traitement. C’est
pourquoi des logiciels puissants et de plus en plus faciles a utiliser nous per-
mettent de gagner du temps et nous rendent la tache moins ardue. Un logi-
ciel est un ensemble de programmes, procédés et régles, et éventuellement de
la documentation, relatifs au fonctionnement d'un ensemble de traitements
de I'information.

Sur le marché actuel, il existe une multitude de logiciels mathématiques
plus ou moins conviviaux, a utilité variable. On trouve par exemple Scienti-
fic Workplace, qui sert de traitement de texte et de calculatrice graphique et
analytique a la fois. On peut donc écrire un texte, y insérer des graphes et
résoudre des équations avec un seul et méme logiciel. On trouve également
Mathematica, avec lequel on peut programmer, résoudre des équations, trai-
ter des données et faire des représentations graphiques. Le choix d'un logiciel
est non seulement déterminé par la fonction qu’il doit remplir, mais aussi par
sa facilité d’utilisation. Certains d’entre eux ont recourt plutodt & la souris et
d’autres au clavier, certains sont faciles a utiliser alors que d’autres ont be-
soin de longues lignes de commandes pour fonctionner, certains éxecutent
plus rapidement les commandes graphiques que les commandes numériques,
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le choix dépend bien évidemment des besoins de l'utilisateur. Une commande
est un signal regu et décodé par un systéme et qui déclenche de la part de
celui-ci la réalisation d’une fonction déterminée.

Dans le cadre de ce chapitre, nous allons traiter un logiciel facile a utiliser
et souvent employé dans le domaine scientifique: Mathematica. Nous allons
nous efforcer de parcourir les bases de ce logiciel qui permettent déja de
faire les opérations les plus fréquemment utilisées en mathématiques. Une
petite bibliographie contenant des ouvrages spécifiques se trouve a la fin de
ce chapitre.

12.2 Le logiciel

Mathematica est un systéme de logiciels utilisé pour des applications mathé-
matiques graphiques, analytiques et numériques. Ce sont les trois ma-
niéres différentes d’approcher un probléme mathématique. Il existe des ver-
sions de Mathematica pour beaucoup de configurations informatiques: Mi-
crosoft Windows, Apple Macintosh, OS/2, MS-DOS, Sun, DEC Alpha, DEC
OpenVAX /VMS, IBM RISC System,/6000, pour n’en citer que quelques-unes.
Mathematica pour Windows (3.1, NT ou 95) nécessite un PC (Personal Com-
puter) avec un microprocesseur 386 ou supérieur avec 4 Mb voire 6 Mb (un
mégabyte correspond & un million de caractéres) de mémoire vive (RAM), et
Pespace requis sur le disque dur est de 13 Mb. La version de Mathematica
pour Macintosh ou Power Mac (System 7 ou supérieur) nécessite au moins un
microprocesseur 68020, 6 Mb voire 10 Mb de mémoire vive et 7 Mb d’espace
libre sur le disque dur. Il existe également une version de Mathematica pour
étudiants.
Mathematica peut étre utilisé comme:

e un systéme de visualisation de fonctions par des graphes en deux
ou en trois dimensions ;

e une calculatrice analytique ou numérique pour résoudre une équa-
tion, une intégrale ou un simple calcul numérique;

e un langage de programmation (c’est-a-dire un ensemble de ca-
racteéres, de symboles et de régles permettant de communiquer avec
un ordinateur en vue de lui faire exécuter un certain nombre d’instruc-
tions) ;
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e un environnement software (c’est-a-dire un cadre comportant des
outils, des facilités, avec une certaine puissance de calcul) pour 'analyse
de données. Remarquons que I'environnement pris dans son sens infor-
matique plus général englobe toutes les notions de hardware (matériel),
software (logiciel) et réseau qui entourent 'utilisateur.

Nous allons traiter uniquement les deux premiers points de cette liste non
exhaustive.

L’utilisation de Mathematica se fait par I'intermédiaire d’une ou de plu-
sieurs lignes de commande. Pratiquement, on procéde de la fagon suivante:

1. Ecrirela(oules) ligne(s) de commande correspondant a I’activité voulue ;
2. Sélectionner celles que l'on veut exécuter ;

3. Exécuter la commande sélectionnée en pressant Shift et Return (ou
bien avec la souris en cliquant sur Evaluate Selection dans le menu
Action). La touche Insert exécute la commande sans sélection préala-
ble. Signalons que le respect de la syntaxe est trés important, de méme
que la différenciation des majuscules et des minuscules.

L’affichage & ’écran est trés clair et convivial puisque le logiciel place

In[1]: = pour montrer qu’il s’agit d’'une commande (en 'occurence la pre-
miére) que l'on a insérée, et Out[l]: = pour débuter le résultat de ladite
commande.

12.3 Visualisation de fonctions

Au chapitre 2, nous avons vu comment représenter graphiquement une fonc-
tion. Avec Mathematica, pour visualiser une fonction en deux dimensions, on
utilise la commande Plot. Une fonction f(z) est représentée graphiquement
de la fagon suivante:

Plot[f(x), {x, borne inférieure, borne supérieure}]

Exemple 12.1 La représentation de f(z) = sin(z), avec 0 < z < 2r (Figure
12.1) est réalisée au moyen de la commande :

Plot[Sin(x], {x, 0, 2Pi}].
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Figure 12.1: Représentation de la fonction sin(z)

On peut visualiser plusieurs fonctions sur le méme graphe par la méme
commande en les écrivant les unes aprés les autres, séparées par une virgule.

Exemple 12.2 La représentation des fonctions sin(z), z* et % sur le méme
graphe avec —27 < z < 27 (Figure 12.2) se fait & I'aide de la commande :

Plot[{Sin[x], x"2, 1/x}, {x, —2Pi, 2Pi}].

Lorsqu’on utilise la commande Plot telle qu'on I'a vue dans les deux
exemples précédents, Mathematica doit choisir certains paramétres comme
I’échelle des axes, le nombre de points qu’il faut évaluer pour le graphe, etc.
Le logiciel fait automatiquement des choix par défaut mais 'utilisateur est
libre de visualiser le graphe comme il le veut grice aux options que 1'on peut
insérer dans les commandes. La syntaxe a utiliser est la suivante:

Plot[f(x), {x, borne inférieure, borne supérieure},
option->valeur de 1’option]

Exemple 12.3 Le graphe de sin(z?), pour 0 < z < 3, avec les noms donnés
aux axes x et y (Figure 12.3) est réalisé avec la commande :

Plot[Sin[x"2|, {x, 0, 3}, AxesLabel— > {"x”, "sin(x"2)”}].
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1
Figure 12.2: Représentation simultanée des fonctions sin(z), z? et —
z

La représentation graphique de fonctions de plusieurs variables en trois
dimensions se fait a 'aide de la commande Plot3D. Une fonction f(z,y) est
représentée de la maniére suivante :

Plot3D[f(x,y), {x, borne inférieure, borne supérieure},

{y, borne inférieure, borne supérieurel}]

Exemple 12.4 La fonction 2% +y? avec —1 <z < 1 et —2 < y < 3 (Figure
12.4) est obtenue au moyen de la commande :

Plot3D[x"2+y"2, {x, —1, 1}, {y, —2, 3}].

Exemple 12.5 La fonction |6 —z |+ |5—z |+ |1—y |+ |7 -y, avec
0<z<8et0<y<8, (Figure 12.5) est dessinée a l'aide de la commande :

Plot3D[Abs[6 — x| + Abs[5 — x] + Abs[1 — y] + Abs[7 — y], {x,0,8}, {y,0,8}].
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Figure 12.3: Représentation de sin(z?) avec noms des axes

12.4 Calculatrice numérique

Mathematica peut étre utilisé comme une calculatrice scientifique ; pour cela,
il suffit d’entrer 'opération que 'on veut effectuer et d’exécuter la commande.
Voici une liste de quelques fonctions couramment utilisées :

Fonction utilisée Fonction écrite pour Mathematica
addition, soustraction + -

multiplication, division * /

puissance -

VT Sqrt [x]

e* Exp[x]

In(z) Log[x]

log, () Log[b, x]

sin(z), cos(z), tan(z) Sin[x], Cos[x], Tan[x]
arcsin(z), arccos(z), arctan(z) | ArcSin[x], ArcCos[x], ArcTan[x]
valeur absolue de x Abs [x]

Mathematica affiche généralement la valeur exacte d’un résultat numé-
rique. On peut déterminer le nombre de décimales voulues par la commande
N:

Exemple 12.6 Les 40 premi¢res décimales de 7 s’obtiennent de la maniére
suivante :
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Figure 12.4: Représentation de z% + y?

In[1]: =N[Pi, 40]
Out[1]: =3.141592653589793238/626433832795028841972.

12.5 Calculatrice analytique

Pour faire du calcul différentiel, on utilise la commande D, qui permet de

dériver la fonction souhaitée. L’expression générale de cette commande pour

df (x))
dz

calculer la dérivée d'une fonction f(z) par rapport & z (c'est a dire
est:
D[£[x], x].

Il en est de méme pour calculer la seconde dérivée f”(x):
D[f[x],x, x].

Pour la dérivation des fonctions de plusieurs variables, il suffit d’indiquer
la fonction et les variables par rapport auxquelles on veut la dériver.

Exemple 12.7 La premiére dérivée partielle de la fonction cos(z) sin(y) par
rapport a la variable z se calcule au moyen de la commande:

In[2]: =D[Cos|x] * Sin[y], x].

Out(2]: =—(Sin[x] Sin[y]).

La deuxiéme dérivée partielle par rapport & x s’obtient de la méme facon par
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Figure 12.5: Représentationde |6 —z |+ [6—z |+ |1 —y |+ |T—y|

la commande :
In[3]: =D[Cos|[x] * Sin[y], x, x]
Out[3]: ==(Cos [x] Sinly]).

Pour intégrer une fonction, on a recourt a la commande Integrate, qui
utilise la syntaxe suivante :

Integrate[f|x|, {x,borne inférieure, borne supérieure}].

Exemple 12.8 Le calcul de l'intégrale de la fonction cos? z par rapport a la
variable z s’obtient par la commande:
In[4]: =Integrate(Cos[x| 2, x]
2z+Sin[2
Out[4]: 2R T[ m}‘

Si I'on veut trouver le résultat numérique d’une intégrale définie, il suffit
de préciser les bornes d’intégration (voir exemple 12.12, point 4).

On peut aussi résoudre des équations grace i la commande Solve. La
commande & utiliser pour résoudre une équation du type f(z) = 0 est la
suivante :

Solve[f(x) == 0, x].

Exemple 12.9 La solution de I’équation du deuxiéme degré 2% +2z —7 =0

est trouvée par la commande:

In[5]: =Solve [z "2+2*x-T7==0, z]
-2-48qrt[2 -2+45qrt [2

Out[5]: ={{$_>L{] T {m_>__4_M

r TF
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Pour obtenir des réponses numériques, la commande NSolve s’utilise de
la méme maniére que la commande Solve.
La commande Solve permet également de résoudre un systéme d’équa-

tions. Pour cela, il suffit d’aligner les n équations fi(z1,2,...,2,) = 0,
o122, cis@n) =0, oy Ful®1, %05 .525) = 0 dans la commande.
Solve[{fi(x,, X5 X)) ==0; £a(X;i X5 0:%,) == 0, wiu 4

fn(xp Koy ey xn) == 0}, {przu s5r3 Xn}:]

Exemple 12.10 Le systéme d’équations :

ar+y =20
2c+(l—a)y—1=0

peut étre résolu par rapport aux variables x et y par la commande :
In[6]: =Solve[{a*xx+y==0, 2*xx+(1—a)*xy—1==0}, {x,yH

a
Outl6]: ={{z->-( ), y=> -2+(1-a) a}}'

-2+(1-a)a

Mathematica est évidemment tout A fait adapté pour le calcul matri-
ciel. Pour pouvoir travailler plus simplement, on attribue une matrice ou un
vecteur & une variable.

aipr @2 - Qi
o r ; . Gy Qg2 - Qgp N .
Ainsi, pour attribuer la matrice ; - ] a une variable
Am1 Qm2 - Omn
M . on écrit :
M= {{au! Qipy ey ain}s {azv 322, reag aZn}? e {a\np a*m27 bt anm}}
a
b . .
De méme, avec un vecteur | . [ pour l'attribuer a la variable v:

vi={a, by 6y b
De cette maniére, le calcul matriciel s’en trouve considérablement facilité.
Les commandes les plus utiles sont résumées dans le tableau suivant :



330 Introduction & Mathematica

Commande Utilité
. multiplication matricielle ou vectorielle
Det [M] déterminant de la matrice M
Transpose [M] transposée de la matrice M
Inverse [M] inverse de la matrice M
Eigenvalues [M] valeurs propres de la matrice M
Eigenvectors [M] vecteurs propres de la matrice M
Eigenvalues[N[M]] | valeurs propres numériques
Eigenvectors[N[M]] | vecteurs propres numériques
LinearSolve[M,b] trouve un vecteur x solution de Max = b

La derniére commande est utile pour trouver les solutions d’un systéme
d’équations linéaires, puisqu’il s’agit de I'algorithme de Gauss étudié au cha-
pitre 8.

Exemple 12.11 M = {{1,2},{1,3}} attribue la matrice ( } ?, ) @ la va-

riable M. v = {1,2} attribue le vecteur ( :

9 ) a la variable v. Pour trou-

ver le vecteur € = ( il ); solution de Uéquation Mz = v, c’est-a-dire du
2
systeme
I -+ 2.’1?2 = 1
1+ 3z, = 2

il faut utiliser la commande :
In[7]: =LinearSolve[M,v]
Qutl7]: ={-1,1%.

12.6 Définition d’une fonction

Jusqu’ici, nous avons vu quelques exemples de commandes de Mathematica
qui permettent déja de résoudre un grand nombre de problémes. Nous allons
maintenant voir comment on peut définir ses propres fonctions. La définition
d’une fonction quadratique sous sa forme explicite y = f(z) = az®+ bz +c se
réalise par la commande suivante (attention de ne pas oublier le “ " apres
les variables de la fonction):

flx]:=a*x"2+bxx+c.
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L’affichage des fonctions définies se fait au moyen de la commande ?£, et
leur suppression par Clear[f].

Exemple 12.12 Nous pouvons utiliser les fonctions ainsi définies avec diffé-
rents arguments. Soit la fonction f(z) = 2%+ x — 6. Pour trouver son extre-
mum, il suffit d’utiliser les commandes suivantes :

1. Définissons la fonction f(z) :
Inf8]: =f[x.] :=x"24+x—6

2. Recherchons le point candidat :
In[9]: =Solve[D[f[x],x] == 0, %]

Outf9): ={a=>-(;)3}

1
Nous avons trouvé le point candidat xo = ~5 Calculons encore g,

l'tmage de xzq :
In[10]: =f[—1/2]
Out[10]: =- (%)-

3. Recherchons la seconde dérivée pour savoir de quel extremum il s’agit
(minimum ou mazximum,) :
In[11]: =D[f[x], x, %]
Out[11]: =2
Comme f"(z) =2 > 0, la fonction f(z) admet un minimum au point

25
(‘5;—-;1*)-

Exemple 12.13 Reprenons l'ezemple 5.27, et résolvons-le & l'aide de Ma-
thematica. Rappelons qu’il s’agit de trouver la quantité qui maximise le profit
et le profit total en ce point, connaissant les fonctions de revenu marginal et
de codt marginal.

1. Définissons les deux fonctions :
In[12]: =RMa[x_] := 25 — 5% x —2xx"2
CMalx.] ;=156 —2xx —x"2

2. Recherchons le point ow les fonctions se coupent (c’est-a-dire la borne
droite d’intégration) :
In[14]: =Solve[RMa[x] — CMa[x] == 0, %]
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Exercices

1. Calculer les nombres suivants avec une précision de 15, 20, et 25 déci-
males :
V25T
(a) 12-9/333°
(b) =%,
- ar
(c) sin (3F).

2. L'opérateur “?” suivi d'une commande (ou d’un symbole) permet (aussi)
d’obtenir des informations sur les commandes incluses dans Mathema-
tica.

A quoi sert la commande Table?

Créer une liste de dix 0.

Créer la liste des dix premiers entiers positifs.

Créer la liste des dix premiers cubes de nombres naturels.

3. Résoudre symboliquement, puis numériquement, ’équation z? +x — 1.
Résoudre symboliquement, puis numériquement, le systéme d’équations

suivant :
?+y? =4
-y =2°
4. Trouver les racines du polynoéme p(z) = z? — 4z + 3, ainsi que son
minimum. De méme pour ¢(z) = z? — i;r - g.

5. Tracer dans le méme systéme d’axes, pour z allant de -7 & 7 les fonctions
suivantes:
2 2 4
coslm)s =55 I—=T4i s
6. Visualiser la fonction sin (tan (z)) — tan (sin (z)) sur U'intervalle [—4; 4]
et nommer les axes z et y.

Note Le “;” ala fin de la ligne supprime 'affichage de Out [1= Graphics.

7. Faire le graphe de f (z,y) = 2zy — 32? + y* pour -2 < z,y < 2.
Résoudre 'équation f (x,y) = 0 sous contrainte o = 1.

8. Résoudre les exercices: 1, 2, 3, 5, 7, 15, 16, 18, 20 du chapitre 8 ainsi
que les exercices de la partie analyse.
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RAMANUJAN Srinivasa Aiyangar (1887-1920)

Srivasa Ramanujan est né en décembre 1887 prés de Madras, en Inde. Ne
bénéficiant d’aucune éducation particuliére, il sait déja résoudre des équa-
tions de 3eme degré a l'age de 15 ans. Malgré le fait qu’il se fait renvoyer
du collége parce qu’il néglige les autres matiéres, il poursuit sa formation en
mathématiques en travaillant sur des séries hypergéométriques et en trouvant
des relations entre les intégrales et les séries. Toujours en autodidacte, ayant
comme seul livre de référence 'ouvrage de G.S Carr Synopsis of elemen-
tary results on pure mathematics (publié bien avant, en 1856), il s’intéresse
aux fractions continues et aux séries divergentes jusqu'en 1908. C’est seule-
ment en 1911 qu’il gagne la confiance et la reconnaissance de ses confréres
mathématiciens, lorsqu’il publie un brillant article traitant des nombres de
Bernoulli dans la revue Journal of the Indian Mathematical Society.

En 1914 le mathématicien G. H. Hardy I'emmeéne au Trinity College de
Cambridge et c’est alors que commence une fructueuse collaboration entre
les deux mathématiciens. Malgré sa santé fragile, il continue ses travaux de
recherche dans les domaines des séries de Riemann, des intégrales elliptiques,
des séries hypergéométriques et des équations fonctionnels de la fonction
zeta. A sa mort en 1920, Ramanujan laisse un nombre immense de notes
non-publiés sur lesquelles les mathématiciens ont continué de travailler.



Chapitre 13

Epilogue

Le premier venu qui se met @ danser, ne rencontre
pas pour autant Uextase. C’est la danse qui résulte
de 'état intérieur de U'ame; ce n'est pas l'état
intérieur de l’dme qui est le produit de la danse

SOHRAVARDI: L’Archange empourpré

Ce que nous venons de voir dans les douze chapitres de ce livre peut sans
doute étre considéré comme une goutte d’eau, comparé a 'océan des résultats
qui existent actuellement dans la science des mathématiques.

Les mathématiques forment aujourd’hui une science exceptionnelle ; elles
fournissent les éléments essentiels de presque toute autre science. Il est difficile
de trouver un phénomene naturel ou artificiel qui ne soit pas étudié ou qui ne
soit pas étudiable en fonction des connaissances mathématiques. Le lecteur
est mis au défi d’en trouver un'!

La relation entre phénomeénes et mathématiques, dans le sens inverse, est
tout autant fascinante: c¢’est la recherche de champs d’applications pour les
nouvelles découvertes mathématiques. Si ’on n’en trouve pas un aujourd’hui,
on en trouvera presque certainement demain. La théorie mathématique des
graphes, par exemple, n’était un jour qu'un édifice abstrait et élégant, mais
sans utilité immeédiate ; aujourd’hui, on I'utilise pour analyser les circuits et
réseaux de tous genres, allant des réseaux de chemins de fer aux circuits
¢lectriques et méme aux réseaux de connaissances qui se développent entre
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individus.

Aujourd’hui, nous avons le privilége, avec une simple calculatrice, de faire
les quatre opérations, c’est-a-dire additionner, soustraire, mutiplier et diviser
et méme parfois faire d’autres calculs plus compliqués en pressant une simple
touche. Bien que nous vivions dans un monde de chiffres et de graphes, rien
ne nous étonne. Sans réfléchir, on peut faire beaucoup en une fraction de se-
conde. Mais comment en sommes-nous arrivés 147 Une petite page d’histoire
est nécessaire.

L’homme a probablement toujours compté, mais c’est plus tard qu’il s’est
organisé pour en faire une méthode. On dit que les petites pierres (“calculi” en
latin) données au berger, autant de pierres que de moutons afin de s’assurer
qu’aucune béte n’a été perdue au retour du troupeau, sont a 'origine du mot
“calcul”.

Pour parcourir le chemin entre deux points, I'homme a probablement
toujours essayé d’emprunter une ligne droite, mais c’est plus tard, beaucoup
plus tard, a I’ére de Pythagore (6° siécle avant notre ére) qu’il en a fait une
science. Pour aller de A a B en passant par C, il faut deux pas, mais pour aller
de A a B tout droit, il n’en faut que la racine carrée de deux pas. Le calcul
de cette valeur ( \/5) n'a pas été trivial, il a mis en cause le rapport entre la
géométrie et 'arithmétique. C’est ainsi que se développera notre géométrie
d’Euclide (3° siécle avant notre ére).

L’homme a probablement toujours juxtaposé le bien et le mal, le jour
et la nuit, la pluie et la sécheresse, mais il a fallu de nombreux siécles pour
en déduire I'analognue numérique. On dit que le Chinois, ouvert a l'idée que
tout ce qui existe dans I’Univers est constamment animé par des couples de
forces opposées, n’a pas eu de difficulté & admettre 'existence de nombres
négatifs a I'opposé des nombres positifs. C’était le premier siécle de notre ére.
Il est intéressant de noter qu’en Europe, méme du temps de Diderot et de
d’Alembert, on débattait de I'aspect fictif et absurde des nombres négatifs et
Pimpossibilité de leur existence!

La Terre, le soleil, la lune, les étoiles ont toujours fasciné I'Homme, mais
beaucoup de préalables étaient nécessaires pour les étudier. Les grandes
distances demandent de grands chiffres, et les grands chiffres demandent
beaucoup de symboles pour les décrire. C’est donc le besoin de parcimo-
nie qui a fait naitre le principe de position, c¢’est-a-dire l'idée d’utiliser le
méme chiffre pour décrire différentes valeurs décimales d’aprés la position du
chiffre. Avec cela, on n’a pas tardé a inventer le zéro pour ne pas confondre
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la position unitaire de celle de la dixiéme, la dixiéme de la centiéme, etc. Et
ainsi, nous devons aux astronomes et mathématiciens de I'Inde du 6° siécle
ce systéme numérique net et ingénieux que nous avons appris a 1’école et que
nous apprenons a nos enfants.

Le passage régulier des jours, des saisons et des années a toujours été
remarqué par 'homme, il y a inscrit d’ailleurs I'organisation de sa vie. Mais
comment a-t-il imaginé un calendrier pour y donner de 'ordre? Le nombre
de jours dans une année n’est pas entier. Les restes, les fractions, les décimales
sont a découvrir. Les Chinois, les Indiens 'ont fait au 8° siécle; en Europe on
I'a découvert au 16°. Pendant longtemps, la circonférence du cercle unitaire
(7) se décrivait par la ratio de deux entiers, sans parvenir a la représentation
décimale: 3 (Babylone); % (Archimeéde); 3 (Ptolémée); 333 (Chine 5°
siécle, Nilakantha 15° siécle et Adrien Métius 16° siécle). Nous connaissons
aujourd’hui 7 a4 quelques kilomeétres de pages de décimales preés. Voici les
premiéres décimales :

m = 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510
58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651
32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193
85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823
37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726
02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436
78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036
57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735
18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494
63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846
76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611
21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837
29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825
33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717
76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778
18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720
10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362
25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311
68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900
98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744
94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702



338 Epilogue

89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024
74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992
45863 15030 28618 29745 55706 74983 85054 94588 58692 69956 90927 21079
75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356
63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 81647 06001
61452 49192 17321 72147 72350 14144 19735 68548 16136 11573 52552 13347
57418 49468 43852 33239 07394 14333 45477 62416 86251 89835 69485 56209
92192 22184 27255 02542 56887 67179 04946 01653 46680 49886 27232 79178
60857 84383 82796 79766 81454 10095 38837 86360 95068 00642 25125 20511
73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 06744 27862
20391 94945 04712 37137 86960 95636 43719 17287 46776 46575 73962 41389
08658 32645 99581 33904 78027 59009 94657 64078 95126 94683 98352 ...!

Un mouton, un pas, une force, une étoile, une saison! Il a fallu abst-
raire I'objet pour faire avancer la pensée. C’est ainsi que al-Khwarizmi (racine
du mot “algorithme”) est parvenu au 9° siecle a développer ce qu’il a appelé
al-jabr (nécessité) et que nous appellerons en Occident 'algébre. La notion
de base, c’est la notion d’équation, qui peut couvrir une classe infinie de
problémes, géométriques ou arithmétiques: 1'unité n'est plus I'objet, mais
Popération méme. Pour z inconnu représentant n’importe quel objet, on veut
résoudre les équations z +a = b ; 22 + a = bz; z° + ax = b. C’est Khayyam,
poete et mathématicien persan du 11° siécle qui donne une classification de
I'ensemble des équations de degré < 3 et qui obtient leurs solutions. Il marie
I'algébre et la géométrie, et utilise I'intersection de deux coniques pour ré-
soudre les équations, c’est la technique qui sera redécouverte en Europe six
siecles plus tard.

Les douze sieécles de notre ére et toute la période antérieure nous ont
amenés & la solution de I'équation z* + az = b, ce que nous avons aujour-
d’hui & la portée de la main. En outre, personne a I’époque n’aurait pu
prédire quelles seraient les applications du systéme d’équations, développe-
ment mathémati-que sans lequel de nombreuses sciences appliquées n’au-
raient pu progresser. Nous sommes & mi-chemin dans 'histoire des mathéma-
tiques, mais cela suffit a expliquer comment nous en somines arrivés la, grace
aux sacrifices de bon nombre de mathématiciens (www-history.mcs.st-
andrews.ac.uk/history)! De méme que la finalité du travail du mathé-
maticien d’hier, inconnue et absurde & son époque, est indispensable au-
jourd’hui, de méme le cumul des travaux des mathématiciens d’aujourd’hui
devient entiérement indispensable aux problémes de demain.



Chapitre 14

Quelques corrigés d’exercices

Remarque Le symbole “ /7 assigné a certains exercices laisse au lecteur
le soin de vérifier lui-méme ses résultats.

Chapitre 1

1. i) AN B = {multiples de 6}

i) ANC=C
i) AUC = A
ivy BUC=B

v) C N D = {multiples de 24}
2. Figures diagrammes de Venn
3. Démonstration

4. (a) Ax(BUC) ={(a,1);(a,3);(a,4);(a,5);(b,1);(b,3);(b,4);(b,5)}
(b) (A x B)JU(A x C) = {(a,1);(a,3);(a,4);(a,5);(
(c)et (d) Ax (BNC)= = (Ax B)n (A xC)

S
o
—
=
(V]
:"‘-.
o
1=
S
:-\
o
[y
e
——

5. Card(AU B) =29

6. Les employés bien portants sont au nombre de 15.
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7. (a) 3
(b) 34
(c) 26
(d) 8

8. Sz et Sy
9. LEth-J@) _ 4 95 +2
10. /

1. f(-2)=f(1)=0

12. (a) flz

13.

Quelques corrigés d’exercices

14. y= 8%“ et = 8—2y: ces deux fonctions sont inverses 'une de 'autre.

Chapitre 2
1. y=—-2z+80
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. (1,6)
. Offre: y =2z —2 et demande: y=—z+ 10

. (6.71;3.18)

(¢) Po(z) == (z+1)(z—4)
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Quelques corrigés d’exercices

(d) Py (2) = 22 (2 +2) (= + 3)

-6l
-4 /A3 -2~ -1 1
-5t
_10}
-15;
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b)y=z—z-2

0 m wn

[ap] N

n « wn
— o

(c) y=0.2"




344 Quelques corrigés d’exercices

(d) logg o5(z)

() log,(z)

8. (a)R%

y = 202

(b)R*
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Quelques corrigés d’exercices

y=z
4
3
2 L
l_
1 2 3
9. 15 ans
10. 5330.92
11. La premiére option est la plus avantageuse
12. 0.05
13. 3.5 %
Chapitre 3
L (d)ul_g} ’U-2_§§ Uszg, u4~i§, Hs—%
b)up=1; wy=3; upg=—%; ug=1y; Ua=—1s
(©uo=0; m=1 up=1; ug=s%; ug=—5%
(A u=6; up=2; up=6; ug=2; ug==56
2. (a) up = 2%
(b) un = _,i -
€) iy = ;‘—Z %2
—1yn-1 —
d) up = (=1) %E@ 3)

a) u, est alternée, converge vers 0, bornée
b) u, est alternée, converge vers 0, bornée
¢) uy, est décroissante, diverge, non bornée

d) u, est croissante, diverge, non bornée
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(a) up = 2n+ 3 = usp = 103
(b) Up = nZ—5= Usp = 2495
25

(C) Up = (_1)?1 n+2 = Usp = 5

=>’LL50‘—_—1

(@) &, = 8 sin est divisible par 3
=11 sinon

a) constante, bornée, convergente
b) alternée, non bornée, divergente
) croissante, bornée, convergente, monotone

d) bornée, divergente

(
(
(c
(
(e) décroissante, non-bornée, divergente
(f) monotone croissante, non bornée, divergente
(g) alternée, bornée, divergente

(

h) divergente

(a) N (e) = 2= N (0.1) = 20; N (0.01) =200; N (0.001) = 2000
(b) N () = =% = N (0.1) = 26; N (0.01) =296; N (0.001) = 2996
(a) 0; (b)+oo; (c)}

(a) discontinuité réparable: trou

(b) discontinuité finie: saut

(c) continue

(d) continue
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11. (a) f™ (z) = c"e

ol L . . .
b) £ () = d (—1) * sin(z) sin est impair " 1)
S { (=1)2 cos(z) sin est pair ¢) f*(z) = Zem

(d) f® (2) = LA

"

a) 3[ 1—4x

V1-dz

12

o

3.r+4
c) 2e*

) 2(22% +3z+4)
2342

e) cosh (z)

f) sm?(zj

jo ¥

(
(
(
(
(
(

13. /

Chapitre 4

1. (a) x =y =50
(b) z =y =50

2. coté de la face carré: 1!% et autre coté: ?:.

3. Les points d’inflexion sont (—1;1), (0.268;0.683) et (3.732; —0.183). IIs
appartiennent a la droite y = —%x - %

-0.25}
-0.5¢
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. Si V =nr?h, il faut que: r = {/ L et h= %

.y = 2sin (z) + cos (2z)
maxima: (§;3) et (%:3)
T
2

minimum relatif : (%;1) et minimum (%; —3)

N

6. Pour un cercle de rayon r, le co6té du rectangle qui maximise 'aire est

rv/2 et correspond a un carré d’aire 272

7. y=—-23+2°+ 2z

— 224221 1

on a une asymptote oblique: y = z+2 et une asymptote verticale z = 0
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6
4
2
5 2 -1 , 1
-4
-6
-8
9. y= (222 — :173)%
1 2
10. y = (o)’
5
4.
34
2_
1»
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(a) oo b)1 (c)a
(d)n-t*1 () (f)3
(g) 0 (h) 0 (i)

11. o = 3az?42bz+c = 0 a deux solutions z; et z5 avec y” (z1)-y" (x2) < 0.
Ainsi, on a un minimum et un maxirmuim.

24
12:.9=#

T

a) Cofit marginal = 622 — 6z — 12
(a) g

(b) Cotit moyen = 2z — 3z — 12
Le cofit moyen est minimal pour z = %

(c) Non

13. z2=y=6

-10]
-20;



14. ¢ =230

PT = 224.1

p = 15.18 francs

Chapitre 5

1.

. CT

(a) —
(b) 5 si

(c) (z2—z—4)e® +c
(d) 1In®|z| +3In |z + ¢
© (o &) e+
(f) 3In[3z+ 1|+ ¢

(a) z(In(z) —1)+c¢
(b) 322 (In(z) — 3) +¢
(¢) —z?cos (z) + 2z sin (z) + 2cos (z) + ¢
( -

)
d) 3z — ;sin (2z)

—32° + 2527 + 3z + 60

. RT = 123 — 322 + 10z + 0

demande: ; z2 -3z + 10

.y= 22? - 1—;.1: + %"’
(a.)l (17) = 2.8332
(b) —In (@) = 0.34657
(c) 0.6
(d) k?
(e) &% n’est pas définie en z =0

.a=v6=1.817T1

. L'excédent du consommateur est de 8 et

Quelques corrigés d’exercices

les deux méthodes sont :

JoB—a)dz—4(8-4)= [ (8—y)dy=8
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12,
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Excédent du producteur = 13.5

(@) -1 —23:2)% +c

(e) En(1+a‘x)+c

(f) =3In(e*+1)+e*+1+¢
%(l-l-x?)i-\/l-}-—x?—f-c
1

Chapitre 6

1.,

-

Démonstration par récurrence de S, = 2! — 1

1 2 3 4
8125132:§|S3=:{334='5'53n= 3

-1 — 1 lorsque n — oo

(a) Série géométrique de raison 1 qui converge donc vers ‘ltll‘ =3
5

(b) Seérie géomeétrique de ra.ison 5 a laquelle on a ajouté 2 et 3 qui
=

(2) % —10.333
(b) Zr-1=3
(a) 3 3—73, converge par D’Alembert
(b) 3" £ converge par D’Alembert

¢l ¥, (_—112 converge par Leibniz
d) > Z converge par D’Alembert
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Quelques corrigés d’exercices

7. (a) converge par D’Alembert

(b) diverge par comparaison avec la série harmonique
(c) converge par comparaison avec la série de Riemann pour p = 3

(d) converge

8. (a) converge pour = € [—1;1]

(b) converge pour z € |-1; 1|
(c) converge pour z = 2

(d) converge pour z € [2;8]

9. (a) e”=1+w+?‘£+§—?+%+-§-T—+‘“pourx€]—oo;oo[

(b)sin(m)zm—%#—%?—%—k...pour:cE]#oo;oo[

3

(c)lm(l4+2)=2— +%—%+1;-—...p0mwe]——l;l]

T
Ainsi, 1 -3 +3—1+...=In(1+1)=In(2) =0.69315

10. ei=e+§(z-4)+5 @ -4’ +F @ -4’ +5 @ -4 +...




12. cos(z) =1— L +2 — 2 4+ ainsi cos (%) ~ 0.8660
3. Vz=1+3@-1)-H@-1) +33(a-1)°" - L35 (z-1)" +...
ainsi v/ 1.21 ~ 1.100

Chapitre 7
1 (a) L =622t — % U =8a%? ﬂ

. ay =12zy* + 3 ;fy% = 24732 gé% = 2473
O) 5=z §=s &=y W= mr e ww
C)—‘f“‘(Ob(G’I)COS a—i:—sm( z)sin (y) %:—sm(x)cos(y]
# —sin (z) cos (y) Ea'% = —cos (z) sin (y)
(d) &L = cos (z + y) ety i = cos (z + y) esn(=+y)
gi = [~sin (z + y) + cos? ( r+y]]esm(2+y} %';{; = %}f— gg—y = %i—'g
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(b) Z=y+122%° -6 Z=z+82%

1. (a) point-selle en (0;0;0) et minimum en (1;1;—1)

(b) minimum en (—%; %; —%)
2. On a un candidat (%, %) mais le test échoue.
3. minimum sous contrainte : (—\3@, %;2\/3)

maximum sous contrainte : (—%; — 32; —2\/3)
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4. F (z;y) = 2° 4+ 2y* — 2y — A (z + y — 8) avec pour minimum (5; 3)

27. 45
5. (1: %)
6 —~ 3 ilfiyi—"r'y_x Z‘R: _ n i
. G=7—Tetb=5S——ouT=) Bety=) %
Y Zl 22 nz? = T = n
7.T=55ety=2a=—10=-20833etb=%=0.7
8.
12— -
| ; [
0 —
9 —
|- —
T
5 —]
5 —
T T I T I T I T T T
1] 51 52 3 St 5 6 a7 5 59
Chapitre 8
-5 -2
l. (a)C=| 0 2
=4 -3
71
13
b _— 0 -
&) 1 ts
4 4

9 —22 13 28
2'(“)(252 5 56)

(b) (=21)
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10.

11.

12.
13.
14.
15.
16.
Ti7:

. (a) AB=BA= (

o 3 &

Quelques corrigés d’exercices

oo o
o oo
o O o
o, TSP

(b)v/
(c)v
Il faut que AB=BA

v
v
J

Non, les éléments diagonaux sont des sommes de carrés qui doivent étre
nuls, donc tous les éléments de A doivent étre nuls.

Ce sont les matrices diagonales

(0" L) (Vo)

13 =27 , {13 —4 _
A-B-Cz(_4 13 ) et (A-B-C)—(_27 13) avec

Tr(A-B-C) =Tr(A-B-C) =26

—14
2

minimum en r = 5 et maximum en T = _lﬁﬁ

a=4,b=—%,c=—1,d=%
(a)9, (b)19, (c)105
det A= 45, det B= 209, detC'= —387, det D=0

Vv

det A= z* — 42? = z? (2% — 4)

(a) detA= 0 pour z = —2, 0 ou 2
(b) maximum local en z =0

(¢) minimum en z = /8
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0 0 0 8 8
0 0 0 12 12
8. AB=| 0 0 200 0
0 200 0 0
200 0 0 0
|A| = -750, |B| =0, |AB = 0|
19. /
4 0 -5 11? 8
20, A" = —18 1 24 |,B 'n'existepas,C~' = { 3
-5 0 i d <48
Chapitre 9
L f
2.7(A4) = 3, r(B)=1,r(C)=2
3 (‘3")11:_%:532:%9:13__%

(b) Ty = —2o+ 223 —4x4+6

(a) compatible

g_ﬂ

(b) non, une infinité de solutions

6. (a) une infinité de solutions avec z; = x5 = x3

(b) une infinité de solutions avec z; = 3s, zp = s, 23 =0, 24 = s
7. (a) B=—3

(b) B# —3 et B #2
(c) B=2

9

= o O O
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Chapitre 10

1
1. Les vecteurs sont linéairement dépendants car =3 | 2 | + | 1 | +
1
1 0
5 =10
3 0

2. D=3A-2B-C
3. a:1,b=—8}c=1

4. (a) x doit étre différent de -1, 0, 1.
(b) Al = 1+2\/g:\ )‘2 L 1_2\/5

A =1 Ay =3 As = -1
1 0 0
9. POlll A- v = 0 Vg = 1 U3 = 1
0 1 L
Ay =-—1 Az =2 Ag=—3
0 2 1
Pour B: w=| 1 ve=1_0 Vg = 0
0 1 %
/\1 =0 /\2 =—2 )\3 24

) 0 0 1
Pour C: v= 1|1 Vg = 1 Uy = 0
1 -1 9

6. (a) pas de valeurs propres pour a € |—2;2[
(b) valeurs propres de B: A, = 1, Ay = 2 avec pour vecteurs propres

1 2 : N .
v = ( 1 ) et vy = ( 1 ) qui sont linéairement indépendants

7.
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Chapitre 11

1.

2.

10.

11.

12

z =20, y =10, f(20,10) = 80 est un minimum

(a) 2, = 50, zo = 100, 3 = 250, R = 50

(b) Ty = 125, Ty = 150, T3 = 125,

V (125, 150,125) = 6000 > V (50, 100, 250) = 4000

(a) maximum en K = L =4, B = 64

(b) maximiser Q = 8K 3 L# sous contrainte 64K s L3 —12K —4L—48 = 0

F(K,L,A) = (148)\)Q — A(12K + 4L + 48) réalise son maximum
lorsque K = L

Bénéfice maximum: 48 avec K =L =9et Q=3
K=10,L =40, Q =113.14, pr = 3
x=y=%etz=0‘693

(a) R =pq = —3q¢>+ 100q + 41q
(b) ¢ = I = 10 pour un bénéfice de 200

(a) z =5,y =10,z = 5,u = 1250
(b) z =5,y =12,z =4,u = 1200

. Candidat 2 =y =5, 2z =0, f(5;5;0) = 0 ¢’est un minimum

K = L = 16 cott de production: 96 ¢’est un minimum
== % réalise un maximum et z =y = —% un minimum

z=2>5,y=6, f(z;y) = —10, c’est un minimum

z=0,y=12 et U = 864 c’est un maximum



362 Quelques corrigés d’exercices

Chapitre 12: Exercices sur Mathematica

1. Inf1]: = N[Sqrt [7*2°5]/(12%*333~(1/3)),15]
Out[1]: = 0.179940125323312
Inf2]: = N[Sqrt [7%2°5]/(12%3337(1/3)),20]
Out[2]: = 0.17994012532331177076
In[3]: = N[Sqrt [7*2°5] /(12%333"(1/3)) ,25]
Out[3]: = 0.1799401253233117707584789
Inf4]: = N[E~ (Pi*Sqrt[2]/35),15]
Out[4]: = 1.13534834134303
In[5]: = N[E~ (PixSqrt [2]/35),20]
Out[5]: = 1.1353483413430344339
Inf6]: = N[E~ (Pi*Sqrt[2]/35),25]
Out[6]: = 1.135348341343034433875871
In[7]: = N[Sin[3Pi/26],15]
Out(7]: = 0.368124552684678
In[8]: = N[Sin[3Pi/25],20]
Out[8]: = 0.3681245526846779592
In[9]: = N[Sin[3Pi/25],25]
Out[9]: = 0.368124552684677959156947

2. Inf1]: = 7 Table

Out[1]: =Table[expr,{imax}] generates a list of imax

copies of expr.

Table[expr,{i,imax}] generates a list of the values of expr
when i runs from 1 to imax.

Table[expr,{i,imin,imax}] starts with i=imin.
Table[expr,{i,imin,imax,di}] uses steps di.
Table[expr,{i,imin,imax},{j, jmin, jmax},...] gives a nested
list. The list associated with i is outermost.

In[2]: = Table[0,{10}]
Outf2]: = {0,0,0,0,0,0,0,0,0,0}
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In[3]: = Table[n,{n,10}]

Out[3]: = {1,2,3,4,5,6,7,8,9,10}

In[4]: = Table[n~3,{n,10}]

Outf4]: = {1,8,27,64,125,216,343,512,729,1000}

3. In[1]: = Solve[x~2+x-1==0,x]
Out[1]: = {{x->1 (-1 = 5) }, {x->1 (-1 +V5) }}
In[2]: = NSolve[x~2+x-1==0,x]
Out[2]: = {{x->—1.61803}, {x->0.618034} }
In[3]: = Solve[{x"2+y~2==4,x~2-y==2} ,{x,y}]

Outf3]: =Hy->-2,x-20r,Ay->=2,5->0},
{y->1,x->-v/3},{y->1,x->V/3}}

In[4]: = NSolve [{x~2+y~2==4,x"2-y==2},{x,y}]
OQutll =Ady->-2x>0: ) {y->-2.;x->0.1;
{y->1.,x->-1.73205}, {y->1,x->1.73205}}
4. Inf1]: = plx_]: =x"2-4x+3;
Inf2]: = Solve[p[x]==0,x]
In[3]: = Solve[D[p[x],x]1==0,x]
Out[2]: = {{x->1},{x->3}}
Out[3]: = {x->2}
In[4]: = qlx_]: =x"2-x/4-3/8;
In[5]: = Solvelq[x]==0,x]
Inf6]: = Solve[DI[q[x],x]==0,x]
Outf5]: = {{x->-3},{x->2}}
Outf6]: = {x->3}

5. Infl]: = Plot[{Coslx] ,1-x"2/2,1-x"2/2+x~4/24} ,{x,-7,7}1;
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Quelques corrigés d’exercices

L
\4\/\@ .
1\

-4 \

6. In[1]: = Plot[Sin[Tan[x]]-Tan[Sin[x]],{x,-4,4},
AxesLabel->{x,y}];

7. Infl]: = £lx_,y_]: =2%xky-3*x~2+y~2;

!n[Q]: = Plot3D {f [X,Y] s{xs—2)2}){}rs“2s2}s
ViewPoint->{-2.673,-2.070,0.110};

1. In[3]: = Solve[f[1,y]==0,y]
Out(3]: = {{y->-3},{y->1}}



Bibliographie

[1] Abell, M. L. et Braselton, J. P. (1994). Mathematica by example, revised
edition. Academic Press Professional, Cambridge.

[2] Allen, R.G.D. (1965). Mathematical Economics. Macmillan, London, 2¢
édition.

[3] Archinard, G. (1992). Principes mathématiques pour économistes. Eco-
nomica, Paris.

[4] Archinard, G. et Guerrien, B. (1988). Analyse mathématique pour éco-
nomistes. Economica, Paris, 3° édition.

[5] Ayres, F.Jr. (1972). Théorie et applications du calcul différentiel et inté-
gral. Série de Schaum, McGraw-Hill Inc, New York.

[6] Ayres, F.Jr. (1973). Matrices. Série de Schaum, McGraw-Hill Inc, New
York.

[7] Bahder, T. B. (1995). Mathematica for Scientists and Engineers.
Addison-Wesley.

[8] Bhatia, R.(1997). Matrix analysis. Springer, New-York.

[9] Balestra, P. (1972). Calcul matriciel pour économistes. Editions Castella,
Albeuve.

[10] Bismans, F. (1999). Mathématiques pour 1'économie. De Boeck Univer-
sité, Paris.

[11] Blachman, N. (1992). Mathematica: a practical approach. Prentice Hall,
Englewood Cliffs.



366 BIBLIOGRAPHIE

[12] Bouzitat, C. (1991). Algebre linéaire. Cujas, Paris.

[13] Boucher, C. et Sagnet, J.P. (1985). Calcul différentiel et intégral I. Gaé-
ten Morin, Québec.

[14] Cahen, G. (1964). Eléments de calcul matriciel. Dunod, Paris.

[15] Calame, A. (1967). Mathématiques modernes III. Editions du Griffon,
Neuchatel.

[16] Chiang, A.C. (1984). Fundamental methods of mathematical economics.
McGraw-Hill, Singapore.

[17] Crandall, E. R. (1991). Mathematica for the Sciences, Addison-Wesley.

(18] Culioli, J.-C. (1991). Introduction & Mathematica. Edition Marketing,
Paris.

[19] Deschamps, P. (1988). Cours de mathématiques pour économistes. Du-
nod, Paris.

[20] Dodge, Y. (1999). Analyse de régression appliquée. Dunod, Paris.

[21] Dodge, Y. (1999). Premiers pas en statistique. Springer-Verlag France,
Paris.

[22] Dodge, Y. (1987). Programmation linéaire. EDES, Neuchétel.

[23] Don, E. (2000). Mathematica. Schaum’s outline of Mathematica. Mc-
Graw-Hill, New York.

[24] Dumoulin, D. (1993). Mathématiques de gestion: cours et applications.
Economica, Paris, 4° édition.

[25] Encyclopaedia Universalis (1997). Dictionnaire des mathématiques:
algebre, analyse, géométrie. Encyclopaedia Universalis et Albin Michel,
Paris.

[26] Esch, L. (1992). Mathématique pour économistes et gestionnaires. De
Boeck Univ., Bruxelles.

[27] Glaisler, S. (1972). Mathematical methods for economists. New Edition,
Oxford.



BIBLIOGRAPHIE 367

[28] Golestan, S. (1988). Le vin de Nishapour: Promenades photographiques
dans les Rubaiyat du poéte Omar Khayyam. Souffles, Paris.

[29] Granville, W.A., Smith P.F. et Longley W.R. (1970). Eléments de calcul
différentiel et intégral. Vuibert, Paris.

[30] Graybill, F.A. (1969). Introduction to matrices with applications in sta-
tistics. Wadworth, Belmont (California).

[31] Grun-Réhomme, M. (1987). Mathématiques appliquées a la gestion.
Masson, Paris.

[32] Guerrien, B. (1991). Algeébre linéaire pour économistes. Economica, Pa-
ris, 3¢ édition.

[33] Guerrien, B. (1991). Initiation aux mathématiques: sciences éco-
nomiques et sociales:  algébre, analyse, statistique. Economica,
Paris, 2¢ édition.

[34] Guerrien, B. et Nezeys, B. (1982). Microéconomie et calcul économique.
Economica, Paris.

[35] Hadley, G. (1961). Linear algebra. Addison-Wesley, Reading.

[36] Kasir, D.S. (1972). The Algebra of Omar Khayyam. AMS Press, New
York.

[37] Keisler, H.J. (1976). Elementary calculus. Prindle Weber & Schmidt,
Massachusetts.

[38] Kinchin, A. (1960).A course of mathematical analysis. Hindustan, Dehli.

[39] Lahaderne, J.-J. et Fourcade G. (1985). Des mathématiques a
I’économie. . .. Edition Marketing, Paris.

[40] Lions, J.L., Aubin J.P., Glowinski R. et al. (1980). Petite encyclopédie
des mathématiques. Editions K. Pagoulatos, Paris-Londres-Athénes.

[41] Lipschutz, S. (1994). Algebre linéaire: cours et problémes. McGraw-Hill,
New York.

[42] Maeder, R. (1991). Programming in Mathematica, second edition.
Addison-Wesley.



368 BIBLIOGRAPHIE

[43] Mett, C.L. et Smith J.C. (1986). Introduction au calcul différentiel et
intégral. McGraw-Hill, Québec.

[44] Michel, P. (1989). Cours de mathématiques pour économistes. Econo-
mica, Paris, 2° édition.

[45] Morrison, D.F. (1976) Multivariate statistical methods. McGraw-Hill,
Tokyo.

[46] Noél, E. (1985). Le matin des mathématiciens. Belin-Radio France, Pa-
Tis.

[47] Nougier, J.P. (1983). Méthode de calcul numérique. Masson, Paris.

[48] Piskounov, N. (1993). Calcul différentiel et intégral. Edition Marketing
- Ellipses, Paris, 12¢ édition.

[49] Poulalion, G. (1999). Les mathématiques de ’économiste: cours, appli-
cations, exercices corrigés. Vuibert, Paris.

[50] Pupion, G. et Poulalion, G. (1984). Mathématiques générales appliquées
a I’économie et la gestion. Colin, Paris.

[51] Rao, C.R. and Mitra, S.K. (1971). Generalized inverse of matrices and
applications. John Wiley, New York.

[52] Roure, F. et Butery, A. (1987). Mathématiques pour les sciences écono-
miques et sociales. Presses Universitaires de France, Paris, 3° édition.

[63] Sohravardi, S.Y. (1976). L’ Archange empourpré: Quinze traités et récits
mystiques, présentés et annotés par Henry Corbin. Fayard, Paris.

[54] Suter, H. (1965). Mathématiques modernes I. Editions du Griffon, Neu-
chatel.

[55] Suter, H. (1966). Mathématiques modernes I1. Editions du Griffon, Neu-
chatel.

[56] Tricot, C. et Picard, J.-M. (1969). Ensembles et statistique. McGraw-
Hill, Montréal.

[67] Varian, H. R. (1993). Economic and Financial Modeling with Mathema-
tica. TELOS, Springer-Verlag, New-York.



BIBLIOGRAPHIE 369
[58] Weber, J.P. (1976). Mathematical Analysis: Business and Economic
Applications. Harper & Row, New York.

[59] Wolfram, S. (1991). Mathematica, a system for doing mathematics by
computer. Addison-Wesley.

[60] Wolfram, S. (1999). The Mathematica Book. Cambridge University
Press.



370 BIBLIOGRAPHIE

SITES INTERNET INTERESSANTS

Mathématiques:

http: //web.math.fsu.edu/Science/math.html

http: //archives.math.utk.edu/

http: //mathworld.wolfram.com/

http: //www.ams.org/mathweb

http: //www2.ac-lyon.fr/enseigne/math /panorama/panorama.html

Mathematica:

http: //www.wolfram.com/



Index

Abscisse, 22
Accroissement, 70, 79
Aire,
calcul d'une, 130
entre deux courbes, 130, 139
négative, 134
orientée, 134
totale, 135
Alembert,
Jean Le Rond d’, 244
régle de d’, 163, 169
Archimede, 337
Asymptote,
définition, 106
horizontale, 108
oblique, 109
verticale, 67, 107

Base,
canonique, 278
définition, 278
orthogonale, 278
orthonormale, 278
Bijection, 13

Calcul,
différentiel, 47
inverse d’une matrice, 235
matriciel, 215
Calculatrice,
analytique, 322

numérique, 322
Cardinalité d’un ensemble, 8
Cauchy,

critére de, 54

suite de, 54
Cauchy-Schwarz

inégalité de, 273
Changement de variables, 125
Cofit,

marginal, 113, 128, 147, 193

moyen, 113
Cofacteur, 233, 234
Combinaison linéaire, 275
Commande, 323
Concavité, 94
Constante,

arbitraire, 9

d’intégration, 122

numérique, 9
Continuité,

a droite, 66

a gauche, 66

d’une fonction de deux variables,

187

définition, 65
Contrainte, 200
Convergence,

d’'une série, 156

d’une suite, 51

d’une suite,
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critére de, 54
Convexité, 94
Coordonnée, 21
Cosinus, 36
Croissance,

d'une fonction, 87
d’une suite, 48

Décroissance,
d’une fonction, 88
d’'une suite, 48
Dérivée,
applications, 87
applications économiques, 113
d’ordre supérieur, 79
d’'un produit, 76
d'un quotient, 77
d’une composition de fonctions,
77
d’une somme, 76
définition, 71
interprétation géométrique, 73
logarithmique, 78
partielle, 189, 294

application économique de, 193

Dérivabilité,
d’une fonction, 72
a droite, 72
a gauche, 72
Dérivation,
régle générale de, 72
Déterminant,

d’une matrice, 230, 232

propriétés du, 234
Diagonalisation, 286

propriétés, 288
Diagramme de Venn, 7
Différentielle,

INDEX

définition, 79
Dimension d’un espace vectoriel, 276
Discontinuité,

finie, 67

infinie, 67

réparable, 68
Divergence,

d’'une série, 156

d’une suite, 52
Domaine de définition, 104, 105, 186
Droite,

équation, 22

application économique, 39

définition, 22

intersection, 25

parallele, 24

pente d’une, 24

sécante, 24

Elément,
d’un ensemble, 4
d’une matrice, 215
Ensemble,
complémentaire, 6
d’arrivée, 10
définition, 4
de départ, 10
de parties, 8
différence, 5
fini, 8
intersection, 5
réunion, 5
sous-, 4
propre, 4
universel, 4
vide, 4
Equation,
d’une droite, 22
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normale, 313
Equilibre du marché, 29
Espace vectoriel, 276
Estimateur des moindres carrés, 313
Euclide, 20
Euler,
Leonhard, 212
Excédent,
du consommateur, 142
du producteur, 144

Fonction(s),
étude complete d’'une, 104
bijective, 13, 15
composition de deux, 12
concave, 94
continue, 65
convexe, 94
croissante, 88
d’offre, 28
décroissante, 88
définition, 11
dérivable, 72
de coiit, 113, 193
de demande, 28
de deux variables, 186
de plusieurs variables, 186
différence de deux, 12
explicite, 15
exponentielle, 35
graphe d’une, 110
hyperbole, 32
hyperbolique, 38
impaire, 105
implicite, 16
injective, 13, 14
inverse, 15
limite d’une, 57
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logarithmique, 35

périodique, 38

paire, 105

parabole, 31

polynomiale, 31

produit de deux, 12

puissance, 33

quotient de deux, 12

réciproque, 15

rationnelle, 32

schéma, 14

somme de deux, 12

surjective, 12, 14

trigonométrique, 36

visualisation de, 323
Forme,

indéfinie, 10

indéterminée, 10, 63, 99

normale d'une matrice, 247

Graphe,
d’une fonction, 110
d’une fonction de deux variables,
188

Hesse,

Ludwig Otto, 318
Hessienne,

matrice, 298
Hospital,

régle de I, 100

Image, 11
Indéterminée (forme),, 99
Injection, 13
Intégrale(s),
définie, 132
applications, 142
propriétés, 137
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théoréme fondamental, 132

double, 205

impropre, 141

indéfinie, 122
applications, 128
propriétés, 123

table d’, 123

Intégration,
constante d’, 122

par changement de variable, 125

par parties, 126
Intérét composé, 42
Intervalle,

ferm , 5

ouvert, 5

semi-ouvert, 5
Inverse,

d’une fonction, 15

d’une matrice, 235

propriétés, 238
d’une matrice partagée, 238

Khayyam, 338
Khwarizmi, 46, 338

Lagrange,
Joseph Louis, 292
multiplicateurs de, 200, 306
Leibniz,
critére de, 166
Gottfried Willhelm, 184
Limite,
d’une fonction,
a droite, 60
a gauche, 60
a I'infini, 56
en un point, 58
infinie, 59

INDEX

propriétés de la, 62
d’une suite, 51
Linéaire,
combinaison, 275
dépendance, 273
modele, 312
Logarithme, 35
Logarithmique (fonction), 35
Logiciel, 322
Longueur d'un vecteur, 270

Maclaurin,
série de, 176
Mathematica (logiciel), 321
Matrice(s),
éléments d’'une, 215
adjointe, 235
anti-symétrique, 224
augmentée, 252
carrée, 216
définition, 215
déterminant d’'une, 230
définition, 232
par les cofacteurs, 233
propriétés, 234
de coefficients, 251
diagonale, 224
diagonale d'une, 223
diagonalisable, 286
diagonalisation d’une, 286
hessienne, 298
bordée, 306
idempotente, 241
identité, 223
inverse d’'une, 235
propriétés, 238
non singuliére, 236
nulle, 222
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ordre d’une, 216 Isaac Sir, 152

partagée, 227 Norme d’un vecteur, 270
addition de, 227
inverse d'une, 238
multiplication de, 228

Opération sur les matrices,
addition, 216

transposée de, 230 multiplication, 218
produit de, 218 par un scalaire, 220
réguliere, 236 transformations élmentaires, 247
rang d’une, 245 Ordonnée, 22

Ordre d’une matrice, 246

scalaire, 224 o
Origine, 21

singuliére, 236
somme de, 216 Paires ordonnées, 10
RO, ?26‘ 245 Parabole, 31

symétrique, 223 Paramétre, 9, 22, 324
trace d’u.’ne, ?25 Parité d'une fonction, 105
transposée d’une, 221 Partition des matrices, 226

triangulaire, 224 Pente d'une droite, 24, 73

valeur propre d’une, 282 Permutation, 231

vecteur propre d'une, 282 Plan tangent, 196
Maximum et minimum Point d’inflexion, 97

d’une fonction de Point-selle, 196, 197

deux variables, 195 Polynome, 283

. plusieurs variables, 298 Productivité marginale, 194
Maximum, Produit,

absolu, 89

cartésien, 8

. relatif,‘ 89: scalaire, 271
Mineur principal, 298, 307 Profit
Minimum, en régime de monopole, 115
absolu, 89 total, 147
_ relatif, 89 Ptolémée, 337
Mm‘kowsk.y, Pythagore, 336
inégalité de, 273
Moindres carrés, Quadrant, 21
méthode des, 312
Multiplicateurs de Lagrange, 200, Récurrence,
306 démonstration par, 155

hypothése de, 155
Newton, Régression linéaire simple, 312
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Raison d'une suite, 49
Ramanujan,
Srinivasa Aiyangar, 334
Rang,
complet, 246
d'un produit de matrices, 251
d’'une matrice, 245
augmentée, 252
Relation,
binaire, 10
domaine de la, 10
Revenu marginal, 114, 129, 147

Série,
a termes positifs, 160
alternée, 165
convergente, 156
absolument, 168
critére de convergence, 160
définition, 153
de Maclaurin, 176
de puissances, 170, 173
de Taylor, 178
divergente, 156
finie, 153
géométrique, 158
harmonique, 161, 166
infinie, 154
semi-convergente, 168
somme de la, 156
terme général d'une, 154
Scalaire,
matrice, 224
produit, 271
Segment orienté, 268
Sinus, 36
Solution,
infinité, 258

INDEX

infinité de, 260
multiple, 256
non triviale, 263
pas de, 256, 258, 261
triviale, 262, 263
unique, 253, 258
Suite,
alternée, 48
atihmétique, 49
bornée, 49
convergente, 51
définition, 48
divergente, 51
finie, 48
géométrique, 50
infinie, 48
monotone, 48
croissante, 48
décroissante, 48
oscillante, 53
raison d'une, 49, 50
terme général d’une, 48
Surface, 188
Surjection, 12
Systeéme,
compatible, 252
d’équations linéaires, 251
de coordonnées, 21, 187
homogene, 262
incompatible, 252

Tableau de variation, 105, 110
Taylor,
série de, 178
Terme général,
d’une série, 154
d’une suite, 48
Test de comparaison, 165



INDEX

Trace d’une matrice, 225
Transformations élémentaires, 247

Valeur,
absolue, 9
propre, 282, 286
Variable,
continue, 9
définition, 9
dépendante, 10, 15
discrete, 9
indépendante, 10, 15
Vecteur(s),
addition de deux, 269
combinaison linéaire de, 275
définition, 267
dépendants, 274
de base, 278

interprétation géométrique des,

268
longueur d'un, 270
nul, 268
orthogonaux, 272
orthonormaux, 272
produit scalaire de deux, 271
propre, 282
propriétés, 276
unité, 267
Vecteur,
colonne, 216
des constantes, 251
des inconnues, 251
ligne, 216
Vectoriel,
espace, 276
dimension d’un, 276, 277
Venn,
diagramme de, 7
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