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Avant-propos

Cet ouvrage est destiné aux étudiants en licences de Sciences de la Vie et de la Terre, ou en
classes préparatoires. Il se base sur nos cours donnés en premiere année de Licence a I'UPMC
(université Pierre-et-Marie-Curie).

Face aux demandes croissantes de nos étudiants, qui recherchaient un ouvrage de référence
complet mais abordable, ainsi que des exercices d’application corrigés, nous nous sommes lan-

cés dans la conception de ce livre qui, nous 1’espérons, sera un outil utile pour les générations
d’étudiants a venir.

Cet ouvrage est donc le fruit d’un compromis : dans un volume condensé, nous avons essayé de
donner suffisamment d’éléments recouvrant I’ensemble des mathématiques des premiéres années
d’études supérieures. Il correspond aussi a I’arrivée des nouveaux programmes universitaires et
des classes préparatoires. Pour mieux assurer la jonction avec les mathématiques enseignées au
lycée, nous avons opté, pour la premiere partie d’analyse, relative a I’étude des fonctions, a une
présentation de type « Calculus », inspirée de I’esprit des « textbooks » anglo-saxons, qui permet
d’aborder plus facilement le reste du programme, plus « classique », sur les suites et le calcul
intégral. Pour I’algebre, la présentation reprend celle de I'ouvrage Calcul Vectoriel (Collection
Sciences Sup), en allant un peu plus loin : R", réduction, espaces vectoriels. En ce qui concerne
les probabilités, nous allons jusqu’aux probabilités continues, indispensables aux filieres SVT,
mais qui peuvent aussi intéresser les autres publics.

Malgré tout le soin apporté a la rédaction, nous demandons I'indulgence du lecteur pour les
éventuelles imperfections qui pourraient subsister ; qu’il n’hésite pas a nous les signaler.
Claire David et Sami Mustapha
Claire.David @upmc.fr
Sami.Mustapha@imj-prg.fr
Remerciements

Nous remercions vivement toutes les personnes dont la relecture et les remarques ont contribué
a améliorer la version initiale du manuscrit :
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Comment utiliser cet ouvrage ?

140 fiches de cours

Un découpage

en trois grandes parties :

Calculus, Algebre, Probabilités

Elles présentent les notions essentielles du cours

fiche

P

Les ensembles de nombres

Un ensemble £ est une collection d’objets, qui constituent les « éiéments = de 'en-
semble, Le nombwe d'éléments de 1ensemble peut e fini, ou infini.

1. Notation

Pour décrire 'ensemble, an uilise des secoludes, 3 lintérieur desguelles on éerit les
elémens de Pensemble.

Suivant les eas, on peut, simplement, placer, & ¥ intérieur des accolades, L liste des élé-
ments de I"ensemble ; ainsi, dans le cas d'un ensembic £ avec un pombre fini d'éléments

10 neviy, 00 St UN nOMbrE entier positi, on erit
E=ley, .. e
o bien, dans le cas d'un ensemble d'éléments vérifiant une propricté donnée . on écrit
E= {_vfw.v)‘r ouencore {x, P
ceq i I'ensemble des €1 il que Ta proprété 2 soit vérifié %
Exemples

1. £1,2, 3, 3} estun ensemble. Ses eltmenss sont Tes sombres 1, 2, 3 e1 4.

2 (3, 4.5.6,. Jestunensemble Elé le: by Hicurs ou Cgan
a3

s fremanas, Mw,\unwir}= 35

> Les entiers naturels
L'ensemble des entiers naturels, ¢'est-ii-dire des entiens positifs ou nuls, est noté ¥ -
H=@ L2345

> Les nombres pairs
L'ensemble des entiers naturels pairs est noté 24 ¢
AN =024, 6.0 =200 e 1]

> kN ke N

Frant donné un entier naturel non nul & k¥ désigne [‘ensemble des entiers naturels
mtiples de k :

KM= fen, e W)

> Les entiers relatifs
1'ensembic des entiers relarifs, ¢*est-a-dire des enticrs qui sont soit positifs ou nuls, soit
négatifs ou wils, et ot 7

Z=

L0 L2345

»oZaeR

Etant donné un réel non nul o, o 2 désigne 1"ensemble des réels de I forme a k. of) & est
un entier :

wZ = ok k€ F)

Exemple

nZ= {2k k €2
> Les nombres rationnels
Lensemble des nombres rationnels, vest-i-dire de la forme 5. ot p et ¢ sont deux
entiers relatifs, avee ¢ # 0, est noté Q.
> Les nombres réels
L'ensemble des nombres récls est ot B,
>
Lrensemble BU|-cs, +c0] est noté B (¢'est ce que Fon appelle T « droite réelle achevée n,
ou encore, adhérence de Ty

» Lanotation« " »

Lorsque 1'on éerit |'un des ensembles precédents avee I exposant « *
Vo exclut 0 ainsi, 1* désigne 'ensemble des enticrs namrels non nuls : Z° désigne
I'ensemble des entiers relatifs non nuls : et

. cela signifie que

> Lanotation «* »
Laorsque on éerit 'un des ensembles précédents avee exposant « ' », cela signitie que
V'on ne considére que les nombres positifs de cet ensemble : ainsi, Z* (qui est aussi égal

71, désigne I'ensemble des entiers positifs au nuls : B désigne 'cnsemble des réels
positits ot muls : erc.

aN

> Lanotation « »
Larsque Pon éerit I'un des ensennbles préeddents avee I'exposant =~ », cela signiie que
Vom e considere que les nombres négatifs de cet ensembie - ainst, - (qui est atssi gal
4 21, ddsigne ensemble des entiers négatifs ou nuls ; B désigne I'ensembie des récls
posiifs ou nuls: etc.

> La notation « »
Lorsque I'on éerit I'un des ensembles précédents avee 'exposant « § », ecla signific que
I'on e considire que les nombres srictement asitifs de cet ensembie : ainsi, 24 (qui
est aussi égal 3 1), désigne Iensemble des entiers strictement positifs - B¥ désigne
Iensemble des récls strictement positifs ; efe.

> Lanotation = * »

Lorsque I'on Gerit 'un des ensembles précddents avee | exposant « ¥ », cela signifie que
T'on ne considre que les nombres strictement positifs de cer ensembrle ; ainsi, Z¢ (qui
est aussi égal & ~7), désigne 'ensemble des enticrs strictement négatifs ; B désigne
Iensemble des récls strictement négatifs : cte.

Propriété

Ona WcEcQceR

Nombres réels

Calculus

Un repérage
facile

Les fiches
sont
regroupées
par théme
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ments limités, et aux equatlons dlﬁérentlelles Enfin, nous introduisons brlevement les
fonctions de deux et trois variables.

Dans ce cours, certains résultats, dont la démonstration n’est pas considérée comme
indispensable a I'apprentissage des technigques de base, sont admis.
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Les ensembles de nhombres

Un ensemble E est une collection d’objets, qui constituent les « éléments » de I’en-
semble. Le nombre d’éléments de 1’ensemble peut étre fini, ou infini.

1. Notation

Pour décrire I’ensemble, on utilise des accolades, a I'intérieur desquelles on écrit les
éléments de I'ensemble.

Suivant les cas, on peut, simplement, placer, a I’intérieur des accolades, la liste des élé-
ments de I’ensemble ; ainsi, dans le cas d’un ensemble £ avec un nombre fini d’éléments
€1, ..., €y, OU 1 est un nombre entier positif, on écrit :

E={e,... el
ou bien, dans le cas d’un ensemble d’éléments vérifiant une propriété donnée ¥, on écrit

E= {x P(x)} ouencore {x, P(x)} ouencore {x;P(x)}

ce qui désigne ainsi I’ensemble des éléments x tels que la propriété P soit vérifiée pour x.

Exemples

1. {1, 2, 3, 4} est un ensemble. Ses éléments sont les nombres 1, 2, 3 et 4.

2. {3, 4, 5, 6,,...}estun ensemble. Ses éléments sont les nombres entiers supérieurs ou égaux
a3.

A. {x € {1, 2,3,4,5, 6}

xest impair} ={l, 3, 5}.

» Les entiers naturels

[’ensemble des entiers naturels, ¢’est-a-dire des entiers positifs ou nuls, est noté N :
N=10,1, 2,3, 4,5}

» Les nombres pairs

L’ensemble des entiers naturels pairs est noté 2N :
2N={0,2,4,6,..}={2n,n € N}

» kN, k e N

Etant donné un entier naturel k, kI désigne 1’ensemble des entiers naturels mutiples de
kit
kN =1lkn, n € N}

» Les entiers relatifs

L’ensemble des entiers relatifs, c’est-a-dire des entiers qui sont soit positifs ou nuls, ou
négatifs ou nuls, est noté Z :

Z={..,-5-4,-3,-2,-1,0,1,2,3,4,5,...}
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» aZ,a € R

Etant donné un réel a, @ Z désigne I’ensemble des réels de la forme ak, ou k est un

entier :
aZ ={ak k € 7}

Exemple
2nZ ={2km k € Z}.

» Les nombres rationnels

L’ensemble des nombres rationnels, ¢’est-a-dire de la forme E, ou p et g sont deux
entiers relatifs, avec g # 0, est noté Q. 1

» Les nombres réels

L’ensemble des nombres réels est noté R.

> R

L’ensemble RU{—co, +0o} est noté R (c’est ce que I’on appelle la « droite réelle achevée »,
ou encore, 1’adhérence de R)

> La notation « * »

Lorsque ’on écrit I’'un des ensembles précédents avec 1’exposant « * », cela signifie que
I’on exclut 0; ainsi, N* désigne ’ensemble des entiers naturels non nuls ; Z* désigne
I’ensemble des entiers relatifs non nuls ; etc.

» La notation «* »

Lorsque I’on écrit I’'un des ensembles précédents avec 1’exposant « © », cela signifie que
I’on ne considére que les nombres positifs de cet ensemble ; ainsi, Z* (qui est aussi égal
a ), désigne I’ensemble des entiers positifs ou nuls ; R* désigne ’ensemble des réels
positifs ou nuls ; etc.

» La notation « ~ »

Lorsque 1’on écrit I’'un des ensembles précédents avec I'exposant « ~ », cela signifie que
I’on ne considére que les nombres négatifs de cet ensemble ; ainsi, Z~ (qui est aussi égal
a —IN), désigne I’ensemble des entiers négatifs ou nuls ; R~ désigne I’ensemble des réels
positifs ou nuls ; etc.

» La notation «} »

Lorsque I’on écrit I'un des ensembles précédents avec I’exposant « § », cela signifie que
I’on ne considere que les nombres strictement positifs de cet ensemble ; ainsi, Z (qui
est aussi égal a N*), désigne ’ensemble des entiers strictement positifs ; RY désigne
I’ensemble des réels strictement positifs ; etc.

» La notation « * »

Lorsque I’on écrit 1'un des ensembles précédents avec 1’exposant « * », cela signifie que
I’on ne considére que les nombres strictement positifs de cet ensemble ; ainsi, Z* (qui
est aussi égal a —N™*), désigne I’ensemble des entiers strictement négatifs ; R* désigne
I’ensemble des réels strictement négatifs ; etc.

Propriété
Ona: NcZcQcR

ou le symbole C signifie « inclus dans ».
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2. Les ensembles
» Ensemble vide

Un ensemble ne contenant aucun élément est appelé ensemble vide, et noté 0.

Exemple

{n € 3N, npair} ne contient aucun nombre : ¢’est I’ensemble vide.

» Intersection d'ensembles

Etant donnés deux ensembles E; et E», leur intersection, notée £, N E-, est I’ensemble
des €éléments qui appartiennent a lafoisa Eyeta E; :

ExnE,={x,x € E| et xe E}

» Union d’ensembles

Etant donnés deux ensembles E; et E>, leur union, notée E; U E,, est ’ensemble des
éléments qui appartiennent a £, ou a E> :
E\UE, ={x, x € E| ou x € E»}

» Différence de deux ensembles

Etant donnés deux ensembles E; et Es, leur différence, notée E| \ E», est ’'ensemble E|
privé de E» :
E\\Ex={x,x € E| et x¢ E,}

Exemples

1. R\ {1, 2} est I'ensemble des réels différents de 1 et de 2.

2. R\ nZ est 'ensemble des réels qui ne sont pas multiples de .

» Complémentaire d’'un ensemble

Etant donnés deux ensembles E; et E; tels que E; soit inclus dans E; (que I’on écrit
E, C Ey), 'ensemble E; \ E; est le complémentaire de E, dans E, noté CEi Es:

Cr E2=E|\E»

Exemple
Cr {0} =R*

» Produit cartésien de deux ensembles

Etant donnés deux ensembles E | et E,, leur produit cartésien, noté E| X E,, est I’en-
semble des couples d’éléments de la forme (x|, x2), ol le premier élément x| appartient
aEy,etlesecond, x7,a E> :

E; X Ey = {(x1,x2), x1 € E; et x € Ey)

Exemples

1. B2 ={(x1.x2), x; € R et x> € R} est I’ensemble des couples de réels.

2. N2 = {(ny,n2), n; € N et n € N} est ’ensemble des couples d’entiers naturels.
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» Produit cartésien de trois ensembles

Etant donnés trois ensembles E;, E; et E3, leur produit cartésien, noté E| X E, X E3,
est ’ensemble des triplets d’éléments de la forme (x1, x3, x3), ol le premier élément x;
appartient a £, le second, x3, a E,, et le troisicme, x3,a E3 :

E; X E3 X E5 = {(x1,X2,%3), X1 € E1, x3 € Es et x3 € Ej3)

» Produit cartésien de n ensembles, n s N, n > 2

Etant donnés un entier naturel n > 2, et n ensembles Ey, ..., E,, leur produit cartésien,
noté E; X ... X E,, est I’ensemble des n—uplets d’éléments de la forme (xq,..., x,), ou
x1 € Ei,....x, € E;:

Ei% . oo X Ba= (05 05 Xa)s Xi € Bis s oz Xn € Byl

» Application

Etant donnés deux ensembles E et F, une application ¢ de E dans F associe, a chaque

élément de E, un et un seul élément de F. E est ’ensemble de départ, F, celui d’arrivée.
Pour tout élément x de E, I'unique élément de F ainsi mis en relation avec x par

I’application ¢ est noté ¢(x), et appelé image de x. x est un antécédent de ¢(x). On écrit :

w:E—> F
x = (x)
Exemples
1.
¢ N- N
X = X

est une application de N dans N, appelée application identité de IN.

2.
¥:Q—- Q

X = 2x

est une application de Q dans Q.

» Fonction

Etant donnés deux ensembles de nombres E et F, une fonction f de E dans F associe,
a chaque élément x de E, au plus un élément de F appelé alors image de x par f (ce
qui signifie donc que tous les éléments de £ n’ont pas nécessairement une image par f).
E est I’ensemble de départ, F, celui d’arrivée. L’ensemble des éléments de E possédant
une image par f est appelé domaine de définition de f, et not¢ Dy. Elle permet de définir
une application de Dy dans F.

Exemple f:R> R
1
1—x
est une fonction de R dans R, dont le domaine de définition est R \ {1}. Elle permet de définir
une application de R \ {1} dans .
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Intervalles, voisinages, bornes

L’ensemble des nombres réels est habituellement représenté sous la forme d’une droite
graduée, appelée droite des réels, ou il faut pouvoir se repérer. A cet effet, on introduit
les notions d’intervalle et de voisinage d’un point.

\

Figure 2.1- La droite des réels.
1. Intervalles
» Intervalle fermé et borné (ou segment)
On appelle intervalle fermé et borné (ou segment) tout ensemble de la forme
[a,h]={x e R,a<x<h} , (ah)eR’ax<h
» Intervalle ouvert
On appelle intervalle ouvert tout ensemble de la forme

la,bl={x e R,a<x<b} , (a,b)ERz,a<b
ou ]—oco,b[={xe R, x<b} , belR
ou encore la,+c[={x e R,a<x} , aeR

otl R? = R x R est I’ensemble des couples de réels.

» Intervalle ouvert et borné

On appelle intervalle ouvert et borné tout ensemble de la forme
la,b[={x e R,a<x<b} , (ab)eR*a<b

» Intervalle semi-ouvert et borné

On appelle intervalle semi-ouvert et borné tout ensemble de la forme
[a,b[={x e R,a<x<b}) , (ab)eR*’a<b

ou Jabl={xeRa<x<bl , (ab)ecR>’a<bh

» Intervalle fermé

Par convention, tout ensemble de la forme

[a,+0[={x e R, x2a} , ae€R

ou ]=o0,bl={xe R, x<b} , beR

est considéré comme étant un intervalle fermé.

» Ensemble vide

L’ensemble, noté @, qui ne contient aucun nombre réel, est aussi un intervalle, appelé
ensemble vide.

» Singleton

On appelle singleton un ensemble ne contenant qu’un seul élément, et qui est donc de la
forme {a}, ol a est un nombre réel.

6
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» Intervalle
On appelle intervalle de R ’'un des ensembles définis ci-dessus, ou bien R tout entier.

Un singleton est un intervalle fermé (le singleton {a} est donc assimilé a I’intervalle fermé

[a, al).

» Adhérence d’un intervalle

Soit 7 un intervalle de R. Son adhérence I est I’ensemble tel que :

e si/ est un segment, alors [ = I ;

e si I est de la forme ]a, b[ ou la, b] ou [a, b[, (a,b) € R?, alors I = [a,b] ;

e si/ est de la forme Ja, +oo[ ou [a, +oo[, a € R, alors I = [a, +oo[U {+00} ;

e si/estdelaforme]—oo0,af ou]—c0,a]l,a € R,alors I =] — 00, a] U {—oo};

e si ] I’ensemble vide 0, alors 7 = 0.

2. Voisinage

» Voisinage d'un point

On appelle voisinage d’un point a de R un sous-ensemble de R contenant un intervalle
ouvert de la forme Ja — 17, a + n[, ol iy est un réel strictement positif et tel que 7 < a.

On peut étendre la notion de voisinage & +oco ou —oco ; ainsi, un voisinage de +co est une partie
de R contenant un intervalle ouvert de la forme ]xg, +oo[, ol xy est un nombre réel quelconque.
De méme, un voisinage de —co est une partie de R contenant un intervalle ouvert de la forme
] = o0, xp[, ol1 x est un nombre réel quelconque.

3. Les intervalles de B

Dans ce qui suit, a, b, xp sont des réels tels que a < b. Le tableau suivant reprend les
différents types d’intervalles de R.

Segment
Intervalle ouvert et borné
Intervalle semi-ouvert et borné (ouvert a gauche, fermé a droite)
Intervalle semi-ouvert et borné (fermé & gauche, ouvert & droite)
Ensemble vide
Singleton

Voisinage de +oo

Voisinage de —co

R tout entier
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Limite d’une fonction en un point

1. Limite finie d'une fonction en un point

Soient f une fonction définie sur un intervalle / de R, a valeurs dans R, @ un point de /,
et £ un réel.

On dit que f admet pour limite (finie) £ en a si, lorsque x devient treés proche de a,
f(x) devient lui aussi tres proche de £, ce qui se traduit mathématiquement par le fait que
pour tout réel £ strictement positif, il existe un réel 7 strictement positif tel que :

YxeLO<|x—al<n=|f(x)-{l<e
Onécrit : lim f(x) =¢ ou limf =~¢.

Exemple
On considere la fonction qui, 4 tout x de | — 1, 1[, associe V1 — x2. Alors :

lin} Vi-x2=0

» Notation 0*

Soient f une fonction définie sur un intervalle I de R, a valeurs dans R, et a un point
de 1.

On dit que f tend vers 0 en a si, lorsque x devient trés proche de a, f(x) tend vers
z€ro, mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout
réel ¢ strictement positif, il existe un réel ;7 strictement positif tel que :

Vxel,L0<|x-al<n=0< f(x)<e
On écrit : lim f(x) =07 oulim f = 07
X—a a
Lorsque +co est une borne de I, on dit que f tend vers 0" en +co si, lorsque x devient
tres grand, f(x) tend vers zéro, mais en restant positif, ce qui se traduit mathématique-
ment par le fait que pour tout réel £ strictement positif, il existe un réel A strictement
positif tel que :
YxelLx>A=0< fixy<e
On éerit: lim f(x) =07 oulim f =07,
X—4o00 +oo
Lorsque —co est une borne de 7, on dit que f tend vers 0" en —co si, lorsque x devient
trés grand en valeur absolue, mais en restant a valeurs négatives, f(x) tend vers zéro,

mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout réel
€ strictement positif, il existe un réel A strictement positif tel que :

Vxel, x<-A=0<f(x)<e¢

Onécrit: lim f(x) =0" ou limf=0".
X——00 e
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Exemple
limx* = 0*
x—0

On utilisera aussi la notation 0" pour indiquer que 1’on tend vers zéro par valeurs supérieures.

» Notation 0~

Soient f une fonction définie sur un intervalle 7 de R, a valeurs dans R, et a un point
de I.

On dit que f tend vers 0~ en a si, lorsque x devient trés proche de a, f(x) tend vers
z€ro, mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour
tout réel & strictement positif, il existe un réel i strictement positif tel que :

VYVxe LO<|x-al<np=-£< f(x) <0

On écrit : JlVi_,rr}If(x) =0" ou lignf =0".

Lorsque +co est une borne de 7, on dit que f tend vers 0~ en +oco si, lorsque x devient
trés grand, f(x) tend vers zéro, mais en restant négatif, ce qui se traduit mathématique-
ment par le fait que pour tout réel & strictement positif, il existe un réel A strictement
positif tel que :

YVxel,Lx>A=-e< f(x)<0
Onécrit: lim f(x)=0" ou Ilimf=0".
x—+eo +oo

Lorsque —co est une borne de 7, on dit que f tend vers 0~ en —co si, lorsque x devient

trées grand en valeur absolue, mais en restant a valeurs négatives, f(x) tend vers zéro,

mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel
e strictement positif, il existe un réel A strictement positif tel que :

Yyxel,Lx<-A=-e<f(x)<0
Onécrit: lim f(x)=0" ou limf=0".
X——00 —00
Exemple

lim—x* =0~
x—0

On utilisera aussi la notation 0~ pour indiquer que I’on tend vers zéro par valeurs inférieures.

Exemple

lim x* =0~

x—=0-

» Notationa*,a ¢ R

a étant un réel, la notation a* signifie que I’on tend vers a par valeurs supérieures.

» Notationa,a € R

a étant un réel, la notation a~ signifie que 1’on tend vers a par valeurs inférieures.
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2. Limite infinie d'une fonction en un point

Soient f une fonction définie sur un intervalle 7 de R, a valeurs dans R, et a un point
de 1.

On dit que f admet pour limite « plus I’infini (on note +c0) » en a si, lorsque x
devient trés proche de a, f(x) devient trés grand, ce qui se traduit mathématiquement par
le fait que pour tout réel A strictement positif, il existe un réel 5 strictement positif tel
que :

Vxe LO<|x—-al<np= f(x)>A
On écrit alors : lim f(x) = +o0 ou lim f(x) = +co.

On dit que fx;damet pour limite « niloins I’infini (on note —c0) » en « si, lorsque

x devient tres proche de a, f(x) devient trés grand en valeur absolue, mais en étant a

valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel A
strictement positif, il existe un réel i strictement positif tel que :

VxelLO<|lx—al<n= f(x) <-A
On écrit : lim f(x) = —oco ou lim f = —oo.
X—a a
Exemple

Ilm ——— = +oo
x>+ L2

3. Limite finie a droite (ou par valeurs supérieures)

Soient f une fonction définie sur un intervalle 7 de R, a valeurs dans R, a un point de 7,
et £ un réel.

On dit que f admet pour limite (finie) £ 4 droite en a (ou encore, par valeurs supé-
rieures) si, lorsque x devient tres proche de a, en restant plus grand que a, f(x) devient
lui aussi trés proche de £, ce qui se traduit mathématiquement par le fait que pour tout
réel & strictement positif, il existe un réel 7 strictement positif tel que :

Vxel,0<x—a<n=|fx)—{<e

On écrit : lim f(x)={¢ ou lir+nf = £.

x—at

Exemple

lim (2+ \/x—l)=2

x—1*

4. Limite finie a gauche (ou par valeurs inférieures)

Soient f une fonction définie sur un intervalle / de R, a valeurs dans R, a un point de /,
et £ un réel.

On dit que f admet pour limite (finie) £ a gauche en a (ou encore, par valeurs infé-
rieures) si, lorsque x devient trés proche de a, en restant plus petit que a, f(x) devient lui
aussi tres proche de £, ce qui se traduit mathématiquement par le fait que pour tout réel
e strictement positif, il existe un réel 7 strictement positif tel que :

Vxel, -n<x—-a<0=|f(x)-{l<e

Onécrit: lim f(x)=¢ ou limf="~_
X—a- a”

10



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

5. Limite infinie a droite (ou par valeurs supérieures)

Soient f une fonction définie sur un intervalle 7 de R, a valeurs dans R, et a un point
decl,

On dit que f admet pour limite +co a droite en a (ou encore, par valeurs supérieures)
si, lorsque x devient tres proche de a, en restant plus grand que a, f(x) devient tres grand,
ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il
existe un réel g strictement positif tel que :

Vxel,0<x—a<n= f(x)>A

On écrit : lim f(x) = +o0 ou lim f = +co.
x—at at

On dit que f admet pour limite —co a droite en a (ou encore, par valeurs supérieures)
si, lorsque x devient trés proche de a, en restant plus grand que a, f(x) devient trés grand
en valeur absolue, mais en étant a valeurs négatives, ce qui se traduit mathématiquement
par le fait que pour tout réel A strictement positif, il existe un réel 5 strictement positif
tel que :

Vxel,0<x—a<n= f(x)<-A

Onécrit : lim f(x) = —c0 ou lim f = —oo.
x—aat at

6. Limite infinie a gauche (ou par valeurs inférieures)

Soient f une fonction définie sur un intervalle I de R, a valeurs dans R, et a un point
de 1.

On dit que f admet pour limite +co 4 gauche en a (ou encore, par valeurs inférieures)
si, lorsque x devient tres proche de a, en restant plus grand que a, f(x) devient treés grand,
ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il
existe un réel 7 strictement positif tel que :

Vxel, -n<x-a<0=f(x)>A

Onécrit: lim f(x) = 400 ou lim f = +oo,
X—a~ a

On dit que f admet pour limite —co a gauche en a (ou encore, par valeurs inférieures)
si, lorsque x devient trés proche de a, en restant plus grand que a, f(x) devient tres grand
en valeur absolue, mais en étant a valeurs négatives, ce qui se traduit mathématiquement
par le fait que pour tout réel A strictement positif, il existe un réel 7 strictement positif
tel que :

Yxeln<x—-a<0= f(x) <-A

On écrit : lim f(x) = +oo ou lim f = +oco.
A—d a

1
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Limite d’une fonction en +~ ou —«

1. Limite finie d’une fonction en l'infini

Soient f une fonction définie sur un intervalle de la forme [a, +oo[ de R, a € R, et £ un
réel.

On dit que f admet pour limite (finie) £ en « plus I’infini (on note +c0) » si, lorsque
x devient tres grand, f(x) devient tres proche de £, ce qui se traduit mathématiquement
par le fait que pour tout réel £ strictement positif, il existe un réel « seuil », A, strictement
positif tel que :

Vx € [a,+o, x> A= |f(x)-{|l <&
On écrit alors : lim f(x)=¢ ou limf =~{.
X—+o00 +co

Si f est définie sur un intervalle de la forme |—co,a]de R, a € R, et si £ désigne encore
un réel, on dit que f admet pour limite (finie) £ en « moins I’infini (on note —oo0) »
si, lorsque x devient trés grand en valeur absolue, mais en étant a valeurs négatives, f(x)

devient tres proche de £, ce qui se traduit mathématiquement par le fait que pour tout
réel & strictement positif, il existe un réel A, strictement positif tel que :

Vx €]l-m,al, x<-A=|f(x)—{l<e&
Onécritalors : lim f(x)=¢ ou limf=~,.
X——o00 =00

Exemple

1
li ]—-——| =
X‘]‘T""( Vx2 — l) :

2. Limite infinie d'une fonction en plus lI'infini

Soit f une fonction définie sur un intervalle de la forme [a, +co[ de R, a € R.

On dit que f admet pour limite +co en « plus infini » si, lorsque x devient trés
grand, f(x) devient lui aussi trés grand, ce qui se traduit mathématiquement par le fait
que pour tout réel B strictement positif, il existe un réel « seuil », A, strictement positif
tel que :

Yx € la,+o[, x>A= f(x)>B
On écrit alors : lim f(x) = +c0 ou lim f = +oo0.
X—+00 +oo

On dit que f admet pour limite —co en « plus ’infini » si, lorsque x devient treés
grand, f(x) devient trés grand en valeur absolue, mais en étant a valeurs négatives, ce
qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il
existe un réel « seuil », A, strictement positif tel que :

Vx e la+oo, x>A= f(x) <-B

On écrit alors : lim f(x) = —c0 ou lim f = —oo.
X—r+00 +o0

12
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3. Limite infinie d’une fonction en moins l'infini

Soit f une fonction définie sur un intervalle de la forme ] — c0,a] de R, a € R.

On dit que f admet pour limite +oco en « moins I’infini » si, lorsque x devient tres
grand en valeur absolue, mais en étant a valeurs négatives, f(x) devient lui aussi trés
grand, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement
positif, il existe un réel réel A, strictement positif tel que :

Vx €]l-o,a]l, x<-A= f(x)>B

On écrit alors : lim f(x) = +00 ou limf = +oo0.
X——00 —0a
On dit que f admet pour limite —co en « moins ’infini » si, lorsque x devient trés
grand en valeur absolue, en étant négatif, f(x) devient aussi tres grand en valeur absolue,
en étant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel B
strictement positif, il existe un réel A, strictement positif tel que :

Vx €]—o0,a], x<-A= f(x)<-B

Onécritalors : lim f(x) = —co ou lim f = —co.

A——00
4. Forme indéterminée

On appelle forme indéterminée une limite que 1’on ne sait pas déterminer ; cela cor-
respond donc a des quantités ne 1’on peut pas quantifier de facon exacte, comme, par
exemple, le quotient de +oco avec +oo.

13
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Propriétés des limites
Opérations sur les limites

1. Propriétés des limites

» Unicité de la limite

Soient f une fonction définie sur un intervalle I de R, & valeurs dans R, et @ dans /. Si f
possede une limite en a, celle-ci est unique.

e Soient f une fonction définie sur un intervalle 7 de R, a valeurs dans R, a un point de
I, et £ dans R.

Alors, si f est définie dans un voisinage a gauche de a, et dans un voisinage a droite
dea:
lim f(x) =€ & lim f(x)= lim f(x)={¢
x—a x—at x—=a”
e Soient f une fonction définie sur un intervalle / de R, a valeurs dans R, et a dans I;m
et M sont deux réels. Alors :

— si lim f(x) < M, il existe un voisinage de a tel que, pour tout x de ce voisinage :
x—a

flx)y<M
— si lim f(x) > m, il existe un voisinage de a tel que, pour tout x de ce voisinage :
X—d
f(x)>m

» Limites et comparaison

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a dans
I; m et M sont deux réels. Alors, si f et g ont des limites finies en a, et s’il existe un
voisinage V de a tel que, pour tout x de ce voisinage,

f(x) < g(x)
ona: lim f(x) < lim g(x)
X—a X—dd
» Limites et minoration

Soient f et g deux fonctions définies sur un intervalle / de R, a valeurs dans R, et a
dans /. S’il existe un voisinage de a tel que, pour tout x de ce voisinage,

f(x) < g(x)
et si, de plus, lim g(x) = —c0
alors :  lim fi (;)Hi —00
x—a
» Limites et majoration

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a dans
I. S’il existe un voisinage de a tel que, pour tout x de ce voisinage, f(x) > g(x), et si
lim g(x) = +o0, alors :

X—d

lim f(x) = +o0
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» Théoréme des gendarmes

Soient f et g et h trois fonction définies sur un intervalle 7 de R, a valeurs dans R, et a
dans 7T £ est un réel. S’il existe un voisinage de a tel que, pour tout x de ce voisinage,

f(x) € h(x) < g(x), et si, de plus, lim f(x) = lim g(x) = £, alors : lim h(x) = €
X—a X—a X—a

2. Opérations sur les limites
» Limite d’une somme de fonctions

Soient f et g deux fonctions définies sur un intervalle / de R, a valeurs dans R, et a

dans I'; £ et £ sont deux réels finis. Alors :

» Limite d'un produit de fonctions

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a

dans I'; £ et ' sont deux réels. Alors :

» Limite d'un quotient de fonctions

Soient f et g deux fonctions définies sur un intervalle / de R, a valeurs dans R, et a

dans I'; £ et £’ sont deux réels. Alors :

15
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6 Notations de Landau

1. Négligeabilité

Définition

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a
dans 1.

On suppose que g ne s’annule pas dans un voisinage de a. On dit que f est négligeable
devant g au voisinage de a si

. ()
lim —— =0
x—a g(x)
On note alors

J(x) = o(g(x)) ou f=o(g)

X

On dit que f est un « petit 0 » de g au voisinage de a.

La notation « petit 0 » , de méme que la notation « grand O » , qui sera vue plus loin, est appelée

notation de Landau, en hommage au mathématicien Edmund Landau'. Leur paternité est

visiblement assez controversée, et reviendrait, a priori, 4 Paul Bachmann?.

Exemple

On considere les fonctions f et g définies, pour tout réel x, par
f=x , gx=yx

1
Alors, comme lim @ = lim — =0, onendéduit: f = o(g).
X—+00 g(x N—rtoo x2 +00

Pour traduire le fait qu’une fonction f posséde une limite nulle en @, @ € R, ou, éventuelle-
ment, @ = +00 ou @ = —o0, on €crit aussi :

f@x) = o(1)

—

2. Domination

Définition

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a
dans I. On suppose que g ne s’annule pas dans un voisinage de a, sans, pour autant,
que g(a) soit non nul.

l. Edmund Georg Hermann Landau (1877-1938), mathématicien allemand, spécialiste de théorie des
nombres.
2. Paul Bachmann (1837-1920), mathématicien allemand lui aussi, et également spécialiste de théorie des
nombres.

16
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On dit que f est dominée par g au voisinage de a si il existe une constante positive C
telle que, pour tout réel x dans un voisinage de a

|f(0l < C lg(x)l

On note alors :
f(x) = Og(x)) ou f=0(g)

-

On dit que f est un « grand O » de g au voisinage de a.

Exemple

On considere les fonctions [ et g définies, pour tout réel strictement positif x, par :

2-1 3
f@=52 L gw=5
Alors, comme, pour tout réel x > 1 :
2-1 3
= L|l—|L£|—]| =
@l = | < [55] < 55| = low

on a bien : f(x) = O(g(x)).

+00

3. Equivalence
Définition

Soient f et g deux fonctions définies sur un intervalle 7 de R, a valeurs dans R, et a
dans 1. On suppose que g ne s’annule pas dans un voisinage de a, sans, pour autant,
que g(a) soit non nul.

On dit que f est équivalente a g au voisinage de a si :

f(x) —g(x) = o(g(x))

X—a

On note alors :
J() ~ gx) ou f~g

Exemple
On considere les fonctions f et g définies, pour tout réel x, par

f(x) = &+ ., glx) = i+t

S

Alors, comme lim ——= = 1, on en déduit : f ~ 4.

X—=+00 g(x)

Attention aux manipulations successives et hasardeuses d’équivalents !

Pour cette raison, on ne donnera pas, dans ce cours, de résultats généraux ni de « recettes »
pour la manipulation d’équivalents, la meilleure méthode, la plus fiable et la plus siire, étant de
manipuler des « 0 » ou des « O », suivant les cas et ce qui est le mieux adapté. Mais attention,
on ne peut pas utiliser ceux-ci dans des inégalités !
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£ Domaine de définition
/A d’'une fonction, graphe

1. Domaine de définition d'une fonction

On s’intéresse ici aux fonctions d’une variable réelle, a valeurs réelles, c’est-a-dire ap-
partenant a R. Dans ce cadre, une « fonction » est un « procédé » permettant d’associer a
un nombre réel x un autre nombre réel, noté f(x).

Comme nous 1’avons vu au début de cet ouvrage, il n’est pas nécessaire que ce « pro-
cédé » donne un résultat pour tous les nombres réels, mais seulement pour certains
d’entre eux. L’ensemble D des nombres réels pour lesquels ce « procédé » donne effec-
tivement un résultat est appelé domaine de définition de la fonction f.

Ceci peut étre résumé en disant que la fonction f est une application de Dy dans R.

Notation
On écrit : fiD;> R
x B f(x)

La premicre fleche, « — », signifie « dans » : f va de D dans R. D est ’ensemble de
départ de f, R, ’ensemble d’arrivée de f.
La seconde fleche, « — », signifie « a pour image » : x a pour image f(x).

Il est essentiel, quand on étudie une fonction, de bien préciser son domaine de définition.

2. Graphe d’une fonction

Le graphe, ou courbe représentative, C, d’une fonction f : D, — R est I’ensemble
des points (x,y) du plan R? tels que x appartienne 2 Dyrety = f(x):

Cr= {0 f): x € Dyl

Exemple

Le graphe de la fonction définie sur R par x — x° est :

¥

Figure 7.1- Le graphe de la fonction définie sur | par x — x3.
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1. Le graphe permet d’associer un aspect géométrique a 1’étude d’une fonction.

2. 1l convient dés maintenant de bien distinguer les objets suivants : la fonction f (qui est
donc une application), le nombre réel f(x), qui désigne la valeur de f en x, et le graphe Cy
(qui est une partie du plan R?).

» Droite asymptote a une courbe

Soient f une fonction définie sur un intervalle I de R, & valeurs dans R, et a dans /.
Etant donnés deux réels m et p, la droite D, d’équation y = mx + p, (m, p) € R2, est
dite asymptote a la courbe représentative Cr de f lorsque x tend vers a si :

lim (f(x) -mx—p)=0

La droite D, d’équation x = a, est dite asymptote verticale a la courbe représentative
Cy de f lorsque x tend vers a si :

lim f(x) =400 ou Iim f(x) = 400

X—d, x<da X—a x>a
ou
lim f(x)=-c0 ou lim f(x) = —o0
X—da, x<a X—a x>a
Exemple

La droite d’équation y = 2 x + 1 est asymptote a la courbe représentative de la fonction définie

surRparxm— 2x+1-—

=7 lorsque x tend vers +co et x tend vers —oo :
X

asymptote

Figure 7.2- La droite d'équation y = 2 x + 1 et la courbe représentative de la fonction

définiesurRparx — 2x+1- ——.
p x2+1

» Branche parabolique d’axe vertical

Soit f une fonction définie sur un intervalle / de R contenant un voisinage de —co ou
+o00, & valeurs dans R.

On dit que la courbe représentative C; de f possede une branche parabolique d’axe
vertical lorsque x tend vers +co si :

lim f(x)=+c0 et lim @ = 400
X—r+o00 X—+c0 X

ou
fin Phey—go st fim L0 e —
X—+00 X—+oo X
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On dit que la courbe représentative Cy de f possede une branche parabolique d’axe
vertical lorsque x tend vers —oo si :

f(x)

lim f(x)=+c0 et lim — =-c0
X——00 X——00 X
ou
lim f(x)=—-co et lim M = +oo
X——00 Xx——=00 X
Exemple

La fonction définie sur R par x +— x* posséde une branche parabolique d’axe vertical en +co
eten —oo:

- X

=1t

Figure 7.3 - La courbe représentative de la fonction x — x*.

» Branche parabolique d'axe horizontal

Soit f une fonction définie sur un intervalle I de R contenant un voisinage de —oco ou
+00, a valeurs dans R.
On dit que la courbe représentative C de f possede une branche parabolique d’axe

horizontal lorsque x tend vers +oo si : l1m |f(x)| =400 et lim @ =0
X—+0o0
On dit que la courbe représentative C r de f possede une branche parabollque d’axe
horizontal lorsque x tend vers —co si: lim [f(x)]=c0 et lim & =0
X——00 X——00 X

» Branche parabolique d’axe d’équationy =mx, m € R

Soit f une fonction définie sur un intervalle 7 de R contenant un voisinage de —oco ou
400, a valeurs dans R.

On dit que la courbe représentative Cy de f possede une branche parabolique d’axe
y=mx,m € R, lorsque x tend vers +co si ,‘(HTOO |f(x)| = +ooetsi:

lim @:

et  lim (f(x)=mx)=+4c0 ou Ilim (f(x)-mx)=-
xX—400 X x—+co X—r+00

On dit que la courbe représentative Cy de f possede une branche parabolique d’axe
y=mx,m € R, lorsque x tend vers —co si lim |[f(x)| = +coetsi:
X——00

XETOO @ =m et xﬂr_noo (f(x) —mx)=+c0 ou XEr_nm (flx)—mx) = —o0
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La construction de I'ensemble des réels :

les coupures de Dedekind

On parle souvent, dans la littérature mathématique, de la « construction de I’en-
semble des réels ». Qu’en est-il ?

A P’origine, seuls les nombres entiers et rationnels étaient connus des mathémati-
ciens, méme si des irrationnels comme V2, longueur de la diagonale d’un carré de
coté 1, sont vite apparus comme des nombres « a part », difficilement quantifiables.

La coupure par un rationnel

La démonstration formelle de I’existence — ou construction — d’un ensemble de
nombres contenant a la fois les entiers, les rationnels, et les non-rationnels, fut mise
en ceuvre pour la premiere fois au XI1X® siecle par le mathématicien allemand Richard
Dedekind (1831-1916).

Elle est basée sur ’axiome de la borne supérieure, selon lequel toute partie non
vide et majorée de 1’ensemble R des réels possede une borne supérieure.

Richard Dedekind est, tout simplement, parti du fait que tout nombre rationnel
g, (p,q) € Z x Z*, découpe Q, ensemble des nombres rationnels, en deux parties,

constituées respectivement par les rationnels strictement plus petits que E-, et par les
q

rationnels supérieurs ou €gaux a 2

La coupure par un irrationnel

En étendant ce principe a un découpage par un « irrationnel » comme V2, on dé-
coupe, de fagon analogue, I’ensemble des rationnels en deux parties, constituées res-
pectivement par les rationnels négatifs, ou dont le carré est strictement plus petit que
2, et par les rationnels positifs dont le carré est supérieur ou égal a 2.

Figure 7.4- Une « coupure ».

Ainsi, V2 apparait comme la « coupure » entre ces deux ensembles, c’est-a-dire
le nombre « non rationnel » qui se trouve « entre les deux ».

Une autre construction assez populaire de 1’ensemble des nombres réels peut étre
obtenue par I’intermédiaire de suites de Cauchy.
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Comment définir une fonction?

Des que 1’on connait quelques fonctions, on peut en construire de (nombreuses) autres
en utilisant les procédés suivants :

1. Les opérations algébriques
Si f et g sont deux fonctions définies sur le méme intervalle /7,

e la fonction somme [ + g est définie, pour tout réel x de I'intervalle I, par :
(f +9)(x0) = f(x) + g(x)
e la fonction produit f g est définie, pour tout réel x de I’intervalle 7, par :

(f 9)(x) = f(x)g(x)

e Lorsque la fonction g ne s’annule pas sur I'intervalle I, la fonction quotient ! est
g
définie, pour tout réel x de I'intervalle /, par :
f f(x)
(— (9 ==
g g(x)

2. La composition

Soit f une fonction définie sur un intervalle 7 de R, et g une fonction définie un intervalle
J c R contenant f(J). La fonction « composée » des fonctions f et g est la fonction, que
I’on écrit g o f, définie, pour tout réel x de I’intervalle /, par :

(go f)(x)=g(f(x)

Exemple

La fonction obtenue en composant la fonction f qui,  tout réel x, associe x* avec la fonction ¢

qui, & tout réel x, associe x + 1 est définie, pour tout réel x, par: (g o f)(x) = x* + 1.

3. La restriction

Soit f une fonction définie sur I'intervalle 7 de R, et [y C R un intervalle contenu dans 1.
On appelle restriction de f a Iy, que 1’on note f];,, la fonction définie sur [, par :

Yx € ly: fli(x) = f(x)

Cela signifie que les fonctions f et f|;, prennent la méme valeur en chaque point de
I’intervalle J, mais la fonction f|;, n’est définie que sur cet intervalle alors que la fonction
f est aussi définie aux points de 7 qui ne sont pas dans /.

22



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

restriction
h Y

1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
)
\

A}
\hl

Figure 8.1- Le graphe d’une fonction et de sa restriction a [-2, 2].

4. Le recollement : les fonctions définies par morceaux

Considérons un intervalle I de R, divisé en sous-intervalles disjoints Iy, I, ..., I, ou

n est un entier naturel, et envisageons le cas d’une fonction f ayant, sur chacun de ces
sous-intervalles, une expression différente :

fl]]zfl ’ f|1“2=f2 ] 3 fl[,,_zﬁl

La fonction ainsi obtenue par « recollement », est une fonction « définie par morceaux ».

Exemple

La fonction f définie par :

Z~x SI_E‘(‘X“%

2
f(x)=<(x~1—;:) si x>%

(c+5) s
X+=] s1 x<—=

2)

est une fonction définie « par morceaux ».
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9 Majorations et minorations

Définition

Soit f une fonction définie sur un intervalle /. Etant donné un réel M, la fonction f
est dite majorée par M sur [ si, pour tout réel x € [ :

f)<M

Définition

Soit f une fonction définie sur un intervalle /. Etant donné un réel m, la fonction f
est dite minorée par m sur / si, pour tout réel x € [ :

f(x) =z m
Définition

Soit f une fonction définie sur un intervalle /. La fonction f est dite bornée sur 7 si
elle y est a la fois majorée et minorée.

Cette condition est vérifiée si et seulement s’il existe un nombre réel M tel que |f(x)| < M
pour tout nombre réel x de /.

Exemples
2
1. La fonction qui, a tout réel x, associe —1 + — " est bornée sur R, car majorée par 1 et
X
minorée par —1.
y

; X , : 2 x?
Figure 9.1- La courbe représentative de la fonction x e & > -1+ ST

x2 +
2. La fonction x - x° est minorée par 0 mais non majorée sur K.

. . 1 R .
3. Lafonction x — — + x n’est ni majorée ni minorée sur |0, col.
X

24
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Définition
Soient f et g deux fonctions définies sur un méme intervalle / de R. On dit que f

majore g, si, pour tout x de [ :

f(x) = g(x)

On écrit alors f = g.

Exemple
252

Sur I'intervalle [0, +oo[ la fonction x — —1 + e
X

1 est majorée par la fonction x - x.

=1 2 x2
y=-1+
x?+1
: . . - 2t
Figure 9.2 - La courbe représentative de la fonction x — -1+ ey

majorée sur R* par la fonction x — x.

Définition

Soient f et g deux fonctions définies sur un méme intervalle / de R. On dit que f
minore g, si, pour tout x de [/ :

f®) < g(x)
On écrit alors f < g.
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Fonctions monotones

1. Définitions
» Croissance

Soit f une fonction définie sur un intervalle / C R. Elle est dite croissante sur / si :
VYxi e L ¥Yxm el x1<x= f(x1)<f(x)

» Décroissance

Soit f une fonction définie sur un intervalle / C R. Elle est dite décroissante sur / si :
Vxi e l,¥x el : X1 < x = f(x1) = f(x2)

» Croissance (au sens strict)

Soit f une fonction définie sur un intervalle I C R. Elle est dite strictement croissante
sur [ si:

Vxi e LVYx el : xi<x= f(x1) < f(x)
» Décroissance (au sens strict)

Soit f une fonction définie sur un intervalle / C R. Elle est dite strictement décroissante
sur [ si :

Vxi e LVx el i x;p<x= f(x1)> f(x)
» Monotonie

Soit f une fonction définie sur un intervalle / C R. Elle est dite monotone sur / sielle y
est croissante ou décroissante.

» Monotonie (au sens strict)
Soit f une fonction définie sur un intervalle / C R. Elle est dite strictement monotone

sur [ si elle y est strictement croissante ou strictement décroissante.

Etudier les variations d’une fonction consiste donc a partager son ensemble de définition en
intervalles tels que, sur chacun d’eux, la fonction soit monotone.

Exemples

1. Lafonction x — x + 1 est croissante sur R.

2. La fonction x — x> est croissante sur [0, +co[.

3. Les fonctions puissances, de la forme x € R — x", n € N*, sont :

e croissantes sur R si n est impair;

e décroissantes sur ] — oo, ()] et croissantes sur [0, +co[ si n est pair.
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=

Figure 10.1 - Les courbes représentatives des fonctions x — x3 et x — x*.

2. Tableau de variations

Pour rassembler les informations concernant les variations d’une fonction, le plus simple
est d’utiliser un tableau de variations ; la croissance est représentée par une fleche vers
le haut, la décroissance, par une fleche vers le bas. On y indique aussi les valeurs aux
bornes (du domaine de définition), qui peuvent n’étre que des limites.

Exemple

Le tableau de variations de la fonction définie sur R par x xZ est :

+oo +00
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11 Parite, imparite

1. Parité d'une fonction
Définition

Soit f une fonction définie sur un domaine Dy de R tel que D soit symétrique, i.e.,
pour tout x de Dy :

xe€Dr=>-x€ Dy

La fonction f est dite paire si, pour tout réel x de son domaine de définition Dy :
f(=x) = f(x)

Si la fonction [ est paire, sa courbe représentative est symétrique par rapport a ’axe des
ordonnées (Oy).

Figure 11.1- Le graphe d’une fonction paire.
2. Imparité d’une fonction
Définition

Soit f une fonction définie sur un domaine D de R tel que Dy soit symétrique, ¢’est-
a-dire, pour tout x de Dy :

x€Dr=-x€ Dy

la fonction f est dite impaire si, pour tout réel x de son domaine de définition Dy :

f(=x) =—f(x)
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1. Toute fonction f impaire s’annule en 0 : f(0) = 0.

2. Si la fonction f est impaire, sa courbe représentative est symétrique par rapport a 1’ori-
gine O.

Exemple

La fonction définie sur R par x > x° est impaire.

y

Calculus

Figure 11.2 - Le graphe d’une fonction impaire.

Les propriétés de parité permettent donc de réduire 1'étude de la fonction a I'intervalle D, N
[0, co[ ; on trace alors la partie du graphe correspondante, puis on compléte par la symétrie
convenable.
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Symétries

1. Centre de symétrie de la courbe représentative d'une fonction

Soient f une fonction définie sur un domaine Dy de R, et a et b deux réels tels que, pour
tout x de Dy :

a+x €Dy et a-x €Dy
La courbe représentative Cr de f admet le point de coordonnées (a, b) comme centre de
symétrie si et seulement si, pour tout réel x de Dy :

fla+x)+ fla—x)=2b

Démonstration : Considérons un point M d’abscisse a + x appartenant a la courbe re-
présentative Cr de f'; son ordonnée est donc f(a + x).
Le point £, de coordonnées (a, b), est centre de symétrie de Cy si et seulement si le

A — —_— N .
point M’ tel que M’ = MC est aussi sur la courbe. Les coordonnées (x', y’) sont telles
que :

X—a=a-(x+a)=-x , y-b=b-y=b- fla+x)

Le point M” appartient a la courbe Cy si et seulement si iy’ = f(x).
La condition précédente devient : f(a — x) + f(a+ x) = 2b. [ |

Le cas a = 0 est celui ol la fonction est impaire.

Exemple

La courbe représentative de la fonction définie sur R par x > 2 + (x — 2)° admet le point de
coordonnées (2, 2) comme centre de symétrie :

y
A

2014 Dunod.

Figure 12.1- La courbe représentative de la fonction x — 2 + (x — 2).
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2. Axe de symétrie vertical de la courbe représentative
d’une fonction

Soient f une fonction définie sur un domaine Dy de R, et a un réel.
La courbe représentative Cr de f admet la droite d’équation x = a pour axe de symétrie
de symétrie si et seulement si, pour tout réel x :

fla+x)= fla-x)

Démonstration : Considérons un point M d’abscisse a + x appartenant a la courbe re-
présentative C de f ; son ordonnée est donc f(a+ x). Le point M’, symétrique de M par
rapport a la droite d’équation x = a, a pour coordonnées (a — x, f(a + x)). Il appartient a
la courbe C si et seulement si : f(a + x) = f(a — x). [ |

Exemple

La courbe représentative de la fonction définie sur R par x — 2 + (x — 3)* admet la droite
d’équation x = 3 comme axe de symétrie :

Figure 12.2 - La courbe représentative de la fonction x — 2 + (x - 3)%.
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Fonctions périodiques

1. Période

Soit f une fonction définie sur un domaine Oy de R, et T un nombre réel non nul tel

que, pour tout réel x de Dy :
2+ T € Dy

La fonction f est dite T-périodique si, pour tout réel x de son domaine de définition Dy :
Jfx+T) = f(x)

T est une période de f.

Figure 13.1- Le graphe d’une fonction périodique.

Si f est une fonction périodique et si 7 et 7’ sont des périodes de f telles que

T+T #0

alors =T et T + 7" sont aussi des périodes de f.

2. Période fondamentale

Soit f une fonction périodique. Si I’ensemble des périodes strictement positives de f a
un plus petit élément Ty, celui-ci est appelé période fondamentale de f (la notion de
plus petit élément n’ayant pas été¢ définie, on peut supposer que c’est une période qui
est plus petite que toutes les autres; mais il reste 2 montrer qu’elle existe). Toutes les
périodes de f sont alors de la forme n Ty, n € Z.

Pour étudier une fonction périodique de période 7, il suffit de se placer sur un intervalle I
de longueur (ou d’amplitude) 7. La courbe représentative de la fonction est alors obtenue en
« recopiant le motif » obtenu sur /7 !
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Fonctions puissances entiéres

1. Puissances entieres

1. Etant donnés un entier naturel non nul n et un réel a, a" est égal au produit de n
facteurs égaux a a :
ad'=axaxax...xa (nfois)
2. Etant donnés un entier relatif strictement négatif k € Z*, et un réel non nul a, ak
est égal a I'inverse de a™* :

3. Pourtout réel nonnul a : a® = 1.

Propriéte
Soient a, b des réels et n, p des entiers. On suppose a, b non nuls chaque fois que
I’exposant est négatif ou nul. Alors :

n_pP n+p mp _ np pn __ It an_an
da’ =d" (@Y =d? . d =@ =7

Démonstration : Les propriétés du produit dans R permettent de justifier simplement
les formules précédentes. ]

2. Fonction puissance

Etant donné un entier relatif k non nul, la fonction qui, a tout réel x non nul, associe x",
est une fonction puissance.

» Parité des fonctions puissances

Soit 7 un entier naturel non nul n. La fonction qui, & tout réel x, associe x", a la méme
parité que I’entier n.
La fonction qui, a tout réel x non nul, associe x™", a la méme parité que I’entier n.
Exemples

1. La fonction qui, & tout réel x associe x°, est impaire.

2. La fonction qui, i tout réel x associe x*, est paire.

» Sens de variation des fonctions puissances
Soit n un entier naturel non nul. Alors :

i. Lafonction qui, a tout réel x, associe X" est décroissante sur |—oo, 0] et croissante
sur [0, +ool.

ii. La fonction qui, & tout réel x, associe x**!, est croissante sur R =] — oo, +00].
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iii. La fonction qui, a tout réel x non nul, associe x~

décroissante sur |0, +col.

iv. La fonction qui, a tout réel x non nul, associe x

et sur 0, +oo[.

2

—2n—1

', est croissante sur | — oo, ([ et

, est décroissante sur | — oo, O

y
A
K4
y =x2" T
‘ X
-1 0O 1
—1t
y y
A A
=L
),/‘—in
1t 1
I . —_ X L - >
-1 o 1 -1 o 1 P X
/
=1t =1t Iﬂf
_ 1
ST YE e

Figure 14.2 - Comparaison des fonctions puissances.



Fonctions polynémes
et fonction valeur absolue

fiche 15

1. Fonction polynémes

» Fonction polynomiale
Etant donné un entier naturel non nul n, toute fonction de la forme

n
xl—aag+.ﬁ11x+agxz+...+anx”=z:aixI
i=0

ol ag, 4y, .. ., d,, sont des réels, est une fonction polynomiale.

Calculus

Exemple

]
La fonction définie sur R par x — 20 x} + 2 x* — 2 x est une fonction polynomiale.

=1 1

Figure 15.1- Le graphe de la fonction x — g x*+2x2-2x.

Copyright © 2014 Dunod.

E%
=
g » Limites d'une fonction polynomiale en + ou —co
3 ) A g o 3
2 11 suffit de factoriser par le « mondme de plus haut degré », ¢’est-a-dire par le terme de A
=]
2 plus haut degré, pour obtenir facilement le résultat ; étant donné un entier naturel non 2

. . < Q
s nul n, et une fonction polynomiale de la forme x — ag+ a;x+ a> X+ .. +a, X", ol ay, =]
Z . @
g ai, ..., da,, sont des réels : S
E £
3 o
2 . ’ ap aj] az =
E lim (a0+a|x+a2x2+...+anx"): lim a, x" + + +...+1 ko]
= T~ X—r 400 X ay X1 ay X2 c
: e
= .
= = lim a,x"

x—+00
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et, de méme :

- i a a as
lim (a0+a| X+a X +. .. +a, x”)z lim a,,x”( 2 4 + ¥ ou¥ l)

X——o0 X——00 a, x" ay xn-l Ay 2
= lim. @, 5®
X——00
Exemple
1 4 2
. BB T Al 2_ =+, £
thm(_3x +x +4x—2)—xl_1>1’1100 -3x (1 p 3x+3x2)
= lim -3
x—+00
= —00

2. Valeur absolue d’un réel
Etant donné un réel x, on appelle valeur absolue de x, que 1’on note |x|, le réel positif :

] = \/;_{x six=0

—-xsix <0

» Interprétation géométrique de la valeur absolue

Etant donnés deux réels x et i, |x — y| représente la distance entre les nombres x et y sur
la droite réelle.

Figure 15.2 - Interprétation géométrique de la valeur absolue.

Propriéte
Pour tout couple de réels (x,y) : [xy| = |x||y].

» Inégalité triangulaire

Propriéteé
Pour tout couple de réels (x, y) :

X+ y| < |x] + |yl

Corollaire
Pour tout couple de réels (x,y) :

[lx] — Iyl < |x + yl
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Propriétés

1. Pour tout couple de réels (x,y), avecy > 0 :
X<y -—y<x<y
2. Pour tout couple de réels (x,y), avec y = 0 :
Xlzye(x>2y ou x<-y)

» Fonction valeur absolue

On appelle fonction valeur absolue la fonction définie sur R par x — |x]|.

Propriéteé

La fonction valeur absolue est paire. Elle est croissante sur R*, et décroissante sur R™.

Figure 15.3 - Le graphe de la fonction valeur absolue.

37

Calculus

(Probahilités [ Algébre

wv
i)
)
S
wvi
=
v
&
0
d
L=
c
(o]
L.



Copyright © 2014 Dunod.

John Napier et les tables logarithmiques

Les premiéres tables de calcul

A partir du XIV® siécle, I’astronomie et la navigation deviennent de plus en plus pré-
cises. Elles requierent, de ce fait, des calculs (multiplications, divisions, extraction de
racines, ...), qui se révelent de plus en plus longs et compliqués. Il devient nécessaire
de mettre en place des outils permettant de les simplifier. Peu a peu, 1’idée de tables
permettant de faire, rapidement, multiplications et divisions, émerge.

En 1614, le mathématicien anglais John Napier, ou Neper (1550-1617)", se basant
sur le lien entre les progressions arithmétiques (des suites arithmétiques) et géomé-
triques (des suites géométriques), publie les premieres tables logarithmiques (des lo-
garithmes de sinus, dans Mirifici logarithmorum canonis descriptio), qui permettent
de transformer des produits en sommes. Ainsi, pour calculer le produit du nombre a
par le nombre b, il suffit de chercher sur la table le logarithme de a et celui de b, de
faire leur somme, et de retrouver ensuite, par simple lecture sur la table, le nombre
dont cette somme est le logarithme !

Apres les tables de Neper, Henry Briggs (1556-1630), mathématicien, géometre et
géographe, perfectionna les calculs de John Neper et publia des tables de logarithme
de base 10 (aussi dit logarithme décimal), ou le logarithme de 1 vaut 0, et celui de
10, 1. Ainsi, le logarithme décimal de 100000000000000 = 10" vaut 14.

Des tables a la fonction logarithme

Ces tables de valeur préfiguraient la fonction en elle-méme. On I’a appelée « loga-
rithme népérien » en hommage a John Neper. Le logarithme népérien, ou de base e,
noté In, est celui prenant la valeur 1 en e >~ 2,71828. C’est grice a ces tables de va-
leurs que I’on a pu « construire » cette fonction. Le lecteur intéressé pourra trouver
plus de précisions sur I’ historique des logarithmes dans [1]. Les tables de logarithmes
ont été utilisées tres longtemps. Avant 1’apparition des calculatrices, la regle a calcul
était un outil efficace et puissant pour la détermination des logarithmes !

La lecture d'une table de logarithmes.

Nombre Logarithme
a Ina
b Inb
ab Ina+Inb

1. 11 était aussi astronome, physicien, et théologien.
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La fonction logarithme népérien

On admet I’existence de la fonction logarithme népérien comme étant I’unique fonction
vérifiant les propriétés suivantes.

1. Propriétés
Les propriétés suivantes sont admises :

» Logarithme népérien du nombre e

Le nombre e tel que :
Ine=1

est appelé base du logarithme népérien (¢ ~ 2,71828).
» Logarithme népérien d'un produit
Pour tout couple (a, b) de réels strictement positifs :

In(ab) =Ina+1Inb
» Logarithme népérien d’'un quotient

e Pour tout couple (a, b) de réels strictement positifs :
ln(g) —lna-Inb

e Pour tout réel strictement positif a, et tout entier naturel non nul n :

In@)=nlna , In(a™”)=-nlna
1
e lim =2=0 , limInx=—o
x—=+00 X x—0t

2. Fonction logarithme népérien

On appelle fonction logarithme népérien la fonction, notée In, qui, a tout réel x de
10, +o0[, associe son logarithme népérien In x.

» Tableau de variations de la fonction logarithme népérien

X 0 +co

+00
Inx o

—oa

e Comme lim Inx = —oco, I'axe (Oy) est asymptote verticale a la courbe représentative

x—0"

de la fonction logarithme népérien.

. Inx ., . . . .
e Comme lim — = 0, la courbe représentative de la fonction logarithme népérien
x—=+o0 X

possede une branche parabolique horizontale lorsque x tend vers +co.
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Figure 16.1- Le graphe de la fonction logarithme népérien.

» Une inégalité utile
Pour tout réel strictement positif x : Inx < x— 1.
» Logarithme de base a, a € R}

Soit @ un réel strictement positif. Pour tout réel strictement positif x, on définit son
logarithme de base a, noté log, x, par :

o Inx
xX=—
Ea Ina
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La fonction exponentielle

On admet I’existence de la fonction exponentielle comme étant 1’unique fonction véri-
fiant les propriétés ci-dessous.

1. Propriétés

Les propriétés suivantes sont admises :

1. Pour tout couple de réels (a, b) :

B e
€a+b=ea€b , eab:_b
i ; e
2. Pour tout réel a, et tout entier naturel » ;
1
axih _ na ax—hn __
@) =e ()" = o

3. Pour tout réel strictement positif a : "¢ = a.
4. Pourtoutréel a : Ine” = a.

2. Fonction exponentielle

On appelle fonction exponentielle 1a fonction, notée e, ou exp, qui, a tout réel x, associe
e* (que I’on peut aussi écrire exp (x)).

» Tableau de variations de la fonction exponentielle
[ e

y
1/

Figure 17.1- La courbe représentative de la fonction exponentielle.
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3. Puissance (quelconque) d'un réel strictement positif

Etant donnés un réel a strictement positif, et un réel b, on définit le réel « a puissance

b », noté a’, par :

ab - eb Ina

Cette définition est cohérente avec la définition de la puissance entiere, puisque, pour tout réel
strictement positif a, et tout entier relatif & :

na _ Jn(d) _ &

Etant donnés un réel strictement positif a, et un réel b :

Etant donnés un réel strictement positif a, et deux réels b et by :

by
ab; +b> = ab| Clb2 . ab[ bs - (ab|)

Etant donnés deux réels strictement positif a; et a», ainsi qu’un réel b
(a1a2) = df d

4. Racine n'®™¢ d'un réel strictement positif, n € N*

Etant donnés un réel x strictement positif, et un entier naturel non nul n, on appelle racine
n"“™¢ de x, notée {/x, le réel :
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Fonctions puissances « non entiéres »

1. Sens de variation des fonctions puissances non entiéres

Soit @ un réel non entier. La fonction x — x“ est définie sur R}. De plus :
e Sia > 0, la fonction x — x® est croissante sur R}.

e Sia <0, la fonction x — x“ est décroissante sur R7.

2. Comparaison des fonctions puissances non entieres

Soient a et 8 deux réels non entiers tels que @ < g. Alors :
e pour tout réel xde 10, 1] : x* > »7;
e pour tout réel x > 1 : x¥ < &7,

Exemple

Pour toutréel xde ]0,1]: 0<x* <x*<x’

N

=

N

N

N
==

y
R
td
a>1 y=x ,°
5 A\ ':
Ry hg
4
4
+
&
4
’l
¢ -
a<0 |- 4 e
- !
11 '
5 O<a <1
I' x
(o] 1

Figure 18.1- Les graphes des fonctions puissances non entiéres.

3. Limites usuelles des fonctions puissances non entiéres
Soit @ un réel strictement positif, non entier. Alors :

limy_or X* = 0*

i ¢ =0

lim x™% =+
X0+

Jim % =0"
X—r+00

4, Croissances comparées

Soit @ un réel strictement positif, et 5 un réel quelconque. Alors :

er . e* . o
m — =400 Iim = 400 lim =
x=+eo (In x)

i , +o0 , lim x* (Inx’ =0
x—+o0 x¥ Xx—+4oo XX x—0*
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Leibniz et la fonction exponentielle

Historiquement, la « naissance » de la fonction exponentielle vient de la nécessité
de trouver un moyen de définir les « puissances non entiéres » d’un réel strictement
positif donné. En effet, autant des expressions de la forme a”, a**!, ..., oll a est un
réel strictement positif, et n un entier naturel, ont toujours été « naturelles », autant
il n’en a pas toujours été le cas pour des expressions de la forme a”, ol r est, cette
fois-ci, un réel (par exemple : a3, quelque part entre a' = aeta®...)

En 1676, Isaac Newton et Gottfried Leibniz sont les premiers a écrire, successive-
ment, un nombre fractionnaire, puis un irrationnel, en exposant. Mais il faut attendre
la fin du XVII® siecle pour que de tels exposants commencent a étre pergus comme
des logarithmes. G. Leibniz donne la relation explicite en 1679, sous la forme :

1 1
In il — = +U=bI
1-v 1-v

ou il désigne par b une « grandeur constante dont le logarithme vaut 1 ». Ultérieure-
ment, le mathématicien suisse Leonhard Euler, introduira, a cet effet, la notation « e ».
Jean Bernoulli finalisera 1’étude de la fonction « exponentielle » ainsi obtenue, qui
apparait donc, naturellement, comme fonction réciproque du logarithme népérien.

e Isaac Newton (1643-1727) était non seulement mathématicien, mais, aussi, philo-
sophe, physicien, alchimiste, astronome et théologien. C’est lui qui est a I’origine
du calcul infinitésimal, c’est-a-dire le calcul différentiel et intégral. I1 est, égale-
ment, I’'un des contributeurs majeurs en mécanique classique, avec la théorie de la
gravitation universelle (la fameuse « pomme » de Newton, qui tomba d’un arbre
sur sa téte).

e Gottfried Leibniz (1646-1716) fut aussi philosophe, diplomate, juriste, et philo-
logue. C’est lui qui, le premier, employa le terme de « fonction », et introduisit le
symbole f utilisé pour désigner une intégrale.

e Leonhard Euler (1707-1783) contribua lui aussi au calcul infinitésimal, introduisit
une grande partie des notations mathématiques modernes. Il est aussi I’auteur de
nombreux travaux en mécanique, en dynamique des fluides, astronomie, ...

e Jean Bernoulli (1667-1748), frére cadet du mathématicien suisse Jacques Bernoulli
(1654-1705), oncle de Daniel (1700-1782) et Nicolas Bernoulli (1695-1726). 1l
trouva 1’équation de la courbe dite « chainette », correspondant a la fonction co-
sinus hyperboligue, et A la forme prise par un cible suspendu a ses extrémités et
soumis a son poids. De facon amusante, il est I’ancétre des prix Nobel de physique
Pierre Curie et Pierre-Gilles de Gennes.
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Fonctions circulaires

1. Fonction sinus

On appelle fonction sinus la fonction, notée sin, qui, a tout réel x, associe son sinus,
sin x.

» Tableau de variations de la fonction sinus sur [0, 7]

La fonction sinus étant impaire et périodique de période 2 r, il suffit de I’étudier sur une
demi-période, par exemple, [0, 7r].

1
sinx a By
0F 0F

2. Fonction cosinus

On appelle fonction cosinus la fonction, notée cos, qui, a tout réel x associe son cosinus,
COS X.

» Tableau de variations de la fonction cosinus sur [0, 7]

La fonction cosinus étant paire et périodique de période 2 m, il suffit de I’étudier sur une
demi-période, par exemple, [0, 7r].

N
€OSX 0
%
=
y +
A S~
y=x '/ y
W P A
gl
l"
'l
i
X
22n - (1 n 2r /TN / N . =K
- -
, S -z N yf/ 2r NC
L y =sin x ]
R y = CoSs X
e"
'l
'I

Figure 19.1- Les courbes représentatives des fonctions sinus et cosinus.
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3. Fonction tangente

On appelle fonction tangente la fonction, notée tan, qui, a tout x de R\ {% +km k € Z},
associe sa tangente, tan x.

» Tableau de variations de la fonction tangente sur [0, 7]

La fonction tangente est définie sur R \ |’§r +km, k€ Z] par :
sin x

tan x =
COS x

Elle est impaire et périodique de période . 1 suffit donc de I’étudier sur [O, %[

+o0
-
tanx 1
e
07

. . .. . s N .
Comme lim tanx = +oo, la droite d’équation x = 3 est asymptote a la courbe repré-
x—*%f
; ; T b g i
sentative de la fonction tangente lorsque x tend vers 3 par valeurs inférieures. Il en est

de méme, par périodicité, de toute droite d’équation x = % +kmk € Z.

. 4 .
1 [ i
i i
[ i
[ i
1 1
[ 1
[ 1
[ 1
1 [
i "
L Y ol
i O :
|£ T
-:2¢ _'| T
e :
A i
[ [l
[ '
1 1
[ 1
[ 1
! !

Figure 19.2 - La courbe représentative de la fonction tangente.

4. Valeurs remarquables des fonctions sinus, cosinus et tangente

B e T n
° 6 7 3 2
0 1 A V3 ]
2 2 2
1 V3 i i 0
] N 3
n 1 . . »
0 — 1 V3 non définie
V3
Pour tout réel x :
cos’x+sin‘x=1
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Fonctions hyperboliques

1. Sinus hyperbolique
Définition
Etant donné un réel x, on appelle sinus hyperbolique de x le réel, noté sh x, tel que :

X =k

e —e
2

La fonction sinus hyperbolique, notée sh, est la fonction qui, a tout réel x, associe

son sinus hyperbolique sh x.

shix =

» Tableau de variations de la fonction sinus hyperbolique

La fonction sinus hyperbolique est définie sur R, et impaire. Il suffit de I’étudier sur R.

y=shx| ¥

=X

Figure 20.1- La courbe représentative
de la fonction sinus hyperbolique.

2. Cosinus hyperbolique
Définition

Etant donné un réel x, on appelle cosinus hyperbolique de x le réel, noté ch x, tel
que : ~
e +e*

2
La fonction cosinus hyperbolique, notée ch, est la fonction qui, a tout réel x, associe
son cosinus hyperbolique ch x.

chiiv=

» Tableau de variations de la fonction cosinus hyperbolique

La fonction cosinus hyperbolique est définie sur R, et paire. Il suffit de I’étudier sur R.,.
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Figure 20.2 - La courbe représentative
de la fonction cosinus hyperbolique.

3. Tangente hyperbolique
Définition

Etant donné un réel x, on appelle tangente hyperbolique de x le réel, noté th x, tel

ue : =
q shx e —e*
thiy — =

chx e +e~
La fonction tangente hyperbolique, notée th, est la fonction qui, a tout réel x, associe
sa tangente hyperbolique th x.

» Tableau de variations de la fonction tangente hyperboligue

La fonction rangente hyperbolique est définie sur R, et impaire. 11 suffit de I’étudier
sur R,.

b'a 0 +00
1
thx 7
O+
Propriétés
1. Comme : lim thx=1 , lim thx=-1
X—+o0 X——00
les droites d’équations respectives y = 1 et y = —1 sont asymptotes a la courbe
représentative de la fonction tangente hyperbolique lorsque x tend vers +oo et —oco
respectivement.
y
.......... |
e
- 1 x
.._-.‘_,,] nnnnnnnnnnn

Figure 20.3 - La courbe représentative de la fonction tangente hyperbolique.

2. Pour tout réel x : ch?x—sh?x=1
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L'origine de la trigonométrie

Les précurseurs grecs

La chronologie exacte de I'apparition de la trigonométrie, et des fonctions circu-
laires, demeure incertaine. De tout temps, les astronomes ont eu besoin de tables
permettant le passage de la mesure des angles a celle des arcs et des cordes sous-
tendues associées (dont la longueur est égale a deux fois le sinus de I'angle moiti€).
Il semblerait qu’il faille attendre le mathématicien et géometre Hipparque de Nicée
(180 av.J.-C./125 av.J.-C.), qui divise le cercle en 360°, pour qu’apparaissent ces
premieres tables (dans son ouvrage De [’étude des droites dans le cercle), pour les-
quelles il passa beaucoup de temps a observer les astres et leur mouvement. C’est lui
qui inventa 1’« astrolabe » , qui permet d’établir la hauteur d’un astre par rapport a
I’horizon. Il introduisit aussi la notion de paralleles et de méridiens pour repérer la
position d’un point sur la terre. Ultérieurement c’est Ptolémée (environ 90-168, as-
tronome et astrologue grec, qui vécut a Alexandrie.) dans [’Almageste, qui expliqua
comment calculer la longueur d’une corde, en donnant les tables correspondantes.

co:;de
4

/
/

. .8
- sin 3

Un angle, et la corde sous-tendue.
(le rayon du cercle vaut 1)

Des Indiens aux arabes : les débuts de I'algebre

La premiere définition véritable du sinus, de méme que celle du cosinus, est due au
mathématicien et astronome indien Aryabhata (476-550, travailla aussi sur I’approxi-
mation du nombre 7.) Il eut 1'idée d’utiliser non pas la corde sous-tendue a un arc,
mais la demi-corde, qui correspond donc exactement a la valeur du sinus de 1’angle
moitié. Le nom de sinus en lui-méme, qui vient, bien sir, du latin, semble devoir son
origine a une erreur de traduction depuis le sanskrit. Aryabhata établit lui aussi des
tables de valeurs, avec quatre décimales, ce qui était, pour 1’époque, extrémement
précis.

La formule bien connue qui donne, pour un angle 6, cos? @ + sin> @ = 1, fut établie
par le mathématicien et astronome indien Varahamihira (505-587).
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Des calculs plus poussés furent ensuite donnés par le mathématicien perse
Al-Khwarizmi, qui est aussi a I’origine de I’introduction de 1’algebre et des chiffres
arabes en Europe.

Peu a peu, d’autres mathématiciens apporterent de nouvelles contributions, et dé-
montrérent de nouvelles formules. L’Egyptien Habash al-Hasib inventa la tangente,
qui permet de mesurer des hauteurs. Abu Al-Wafa compléta les tables de valeurs
déja existantes, et introduisit les notions de « sécante » (I’inverse du cosinus) et « co-
sécante » (I’inverse du sinus). Il démontra les formules d’addition pour la fonction
SInus.

Nasir Al-Din Al-Tusi perfectionna les tables de valeurs déja existantes. Il fut suivi
au, X1v°® siecle, par Al-Kashi, qui est aussi a I’origine du fameux théoreme qui porte
son nom (ce théoreme est aussi appel€ loi des cosinus).

Les notations modernes

En ce qui concerne la notation « sin », elle fut introduite en 1583 par le mathémati-
cien et physicien danois Thomas Fincke (1561-1656) dans son ouvrage « Geometria
rotundi » ; la notation « cos » semble pouvoir étre attribuée, conjointement, au mathé-
maticien et théologien anglais William Oughtred (1574-1660), et au francais Albert
Girard. Albert Girard introduisit, aussi, la notation « tan ».

e Abu Abdallah Muhammad ibn Musa al-Khwarizmi (780-850), mathématicien,
géographe et astronome perse, sous I’empire de la dynastie des Abbasides. Ce sont
ses travaux, ol il établit un classement systématique des équations et des méthodes
de résolution associées, qui ont permis I’introduction de 1’algebre et des chiffres
arabes en Europe. Le mot « algorithme » vient de la latinisation de son nom. Le
mot « algebre » provient, quant a lui, du mot arabe « al-jabr », utilisé pour désigner
I'une des deux opérations qu’il utilisait pour résoudre une équation quadratique
(c’est-a-dire de degré deux).

e Habash al-Hasib ( ? -869), €tait aussi, bien sir, astronome, et géographe.

e Muhammad ibn Muhammad ibn Yahya ibn Ismail ibn al-Abbas al-Buzjani (940-

998), mathématicien et astronome perse, qui apporta aussi de nombreuses contri-
butions a I’arithmétique, il fut le premier a introduire les nombres négatifs.

e Abi( Jafar Muhammad ben Muhammad ben al-Hasan Nasir ad-Din at-Tas1 (1201-
1274), philosophe, mathématicien, astronome, théologien et médecin perse. Le
petit-fils de Genghis Khan, Houlagou Khan, fit construire, a son intention, 1’ob-
servatoire de Maragha, qui lui permit d’établir des tables treés précises permettant
de calculer les positions des planetes.

e Ghiyath al-Din Jamshid Masud al-Kashi, 1380-1429, mathématicien et astronome
perse.

e Albert Girard (1595-1632), apporta aussi des contributions en arithmétique, ou il
montra que tout nombre premier congru a | modulo 4 est égal a 1a somme de deux
carrés, résultat qui sera ultérieurement démontré par Pierre de Fermat (1601-1665).
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Continuité d’'une fonction
en un point

1. Continuité en un point (Caractérisation de Weierstrass)
Définition
Soit f une fonction définie sur un intervalle / de R, non vide, non réduit a un point,
et a un point de /. La fonction f est dite continue en a si, pour tout réel strictement

positif &, il existe un réel strictement positif 77 tel que, pour tout réel x de 7 vérifiant
|x — al <n, on ait |f(x) — f(a)| < &, soit, en langage formalisé' :

Ye>0,dn>0, Yxel: |[x—dadsn=|f(x)—fla)<e

; - = X
=1 1 : \
—1L

Figure 21.1- Le graphe d’une fonction discontinue en un point a.

Dire qu’une fonction est continue signifie, tout simplement, que sa courbe représentative ne
présente pas de « sauts ». Une fonction continue en un point @ admet une limite en a.

» Continuité a gauche
Définition

Soit f une fonction définie sur un intervalle / de R, non vide, non réduit a un point, et
aun point de . La fonction f est dite continue a gauche en a si :

lim /() = f(a)

1. Cette caractérisation a été donnée par le mathématicien allemand Karl Weierstrass (1815-1897).
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Figure 21.2- Le graphe d’une fonction continue en un point a.

» Continuité a droite

Définition

Soit f une fonction définie sur un intervalle 7 de R, non vide, non réduit & un point, et
a un point de /. La fonction f est dite continue a droite en a si :

lim f() = f(@

Lorsque I'on veut explicitement indiquer sur un graphe qu’une fonction est continue & gauche
et non & droite au point a, on place un « point » sur la valeur « a gauche », et un crochet « ] »
sur la valeur « & droite ».

De méme, lorsque I’on veut explicitement indiquer sur un graphe qu’une fonction est continue

a droite et non 4 gauche au point a, on place un « point» sur la valeur « a droite », et un crochet
« [ » sur la valeur « &4 gauche ».

Exemple

Voici un exemple de fonction continue a droite en chaque entier, et discontinue a gauche en
chaque entier : la fonction « partie entiére ».

La fonction « partie entiére » d'un réel donné x est le plus grand entier n, inférieur ou égal a x.
Ainsi, la partie entiere du nombre 2,3 est 2, celle du nombre 4,7 est 4, etc. :

Yx>0: Ex<x<Ex)+1

Par définition, la fonction « partie entiére », notée E, est la fonction qui, a tout réel positif x,
associe sa partie entiére.
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a— -4+

Figure 21.3 - La courbe représentative de la fonction « partie entiére ».

» Prolongement par continuité en un point

Théoréme

Soient f une fonction définie sur un domaine Dy de R, a valeurs dans R, et a un réel
donné n’appartenant pas a Dy.

On suppose que f admet une limite finie £ en a. Alors, la fonction f définie pour tout x
de Dy U {a} par :

. | fx)si x#a
f(x)—{ £ 5t x=a

est continue en a, el constitue le prolongement par continuité de [ en a.

Exemple

. . . . 1 . _r
On considére la fonction qui, a tout réel x non nul, associe x cos (—) Cette fonction est définie
x
sur ¥, mais peut étre prolongée par continuité sur R par la fonction :
1y .
xcos|—|si x#0
X

si =0

» Caractérisation séquentielle de la continuité

Théoréme

Soient f une fonction définie sur un intervalle I de R, a valeurs dans R, et a un réel
donné dans 1. Il y a équivalence entre les propriétés suivantes :

e f est continue en a;

o Pour toute suite (uy),c1, a valeurs dans 1, de limite a, la suite (f(ity)), ey converge

vers f(a).
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» Opérations algébriques sur les fonctions continues

Théoréme

Soient f et g des fonctions définies sur un méme intervalle I de R, et a un point de I.
Alors :

e Si f et g sont continues en a, les fonctions [ + g et fg sont définies sur I et continues
en a.

; 1
e Sigla) # 0, et si g est continue en a, la fonction — est définie sur un intervalle de la
g

Jorme la—n,a+n[NI, 0 <n <a, et est continue en a.

» Continuité des fonctions composées

Théoréeme

Soient f une fonction définie sur un intervalle I de R, et g une fonction définie sur un
intervalle J C R contenant f(I) : f(I) C J.

Si f est continue en un point a de I et si g est continue au point f(a) € I, la fonction
composée g o f est définie sur Uintervalle I et continue en a.

» Continuité des fonctions usuelles

Théoreme

Les fonctions usuelles, ¢’est-a-dire :

e la fonction identité x — x;

e [a fonction logarithme népérien x > 0 +— Inx;

e [a fonction exponentielle,

e les fonctions sinus et cosinus,

o les fonctions sinus hyperbolique et cosinus hyperbolique,

sont continues en tout point de leur domaine de définition.
Corollaire

Les fonctions construites a partir des fonctions usuelles par opérations algébriques et
composition sont continues en tout point ou elles sont définies.

Quelques conséquences simples :

e Les fonctions polyndmes, de la forme x e R = a, X" + a1 X' +...+ap, n € N*,
(ao, ....a,) € R"! sontcontinues en tout point de R.

. L . P R
e Les fonctions « fractions rationnelles » x +— % (ot P et Q sont des polynémes et Q
%

n’est pas identiquement nul) sont continues en tout point ol le polynéme Q ne s’annule
pas.

e Les fonctions de la forme x = x%, a € R, sontcontinues en tout point oll elles sont définies.
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Fonctions continues sur un intervalle

1. Continuité sur un intervalle
On étend, ici, la notion de continuité en un point a un intervalle.
Définition
Soit f une fonction définie sur un intervalle 7 de R. On dit que la fonction f est

continue sur / si f est continue en tout point de 7, soit, de fagon formelle :

Yxg € L¥Ye>0,An>0,Vx el : |x—x|<n=|f(x)—fi)l<e

2. Théoremes de continuité globale

Les théoremes de continuité en un point se traduisent immédiatement en des théoremes
de continuité globale :

» Continuité et opérations algébriques

Théoréme
Soient f et g des fonctions définies et continues sur un intervalle I de R. Les fonctions
[+ g et fg sont définies et continues sur I.

. : o] . .
De plus, si la fonction g ne s’annule pas sur 1, la fonction — est définie et continue sur I.
)

» Continuité des fonctions composées

Théoréme

Soient [ une fonction définie et continue sur un intervalle Ide R, et g une fonction définie
et continue sur un intervalle J C R contenant f(I).

La fonction composée g o f est définie et continue sur 'intervalle I.

» Continuité des fonctions usuelles
Théoréme

Les fonctions polynémes sont continues sur R.

La fonction logarithme népérien est continue sur 10, +oo.
La fonction exponentielle est continue sur R.

Les fonctions sinus et cosinus sont continues sur R.

e o o o

Corollaire
Les fonctions construites a partir des fonctions usuelles par opérations algébriques et
composition sont continues sur tout intervalle ou elles sont définies :

P(x)

Q(x)

sont continues sur tout

e Les fonctions « fractions rationnelles », de la forme x —

intervalle ou le polynéme Q ne s’annule pas.
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e La fonction tangente est continue sur tout intervalle de la forme
]—g +k:r,§+k:r, Lk e Z

e Les fonctions x = x% a € R, sont continues sur )0, +ool.

Ces théoréemes permettent souvent de conclure & la continuité d’une fonction sur son ensemble
de définition, & I’exception éventuelle de quelques points pour lesquels on doit faire une étude
directe locale. C’est systématiquement le cas des points de raccordement lorsque la fonction
est définie par morceaux, ou quand la fonction a été obtenue en prolongeant par continuité une
autre fonction a priori non définie en un point. Ainsi, la fonction :

1
xsin(—) si x#0

X X
0 si x=0

est continue sur R.

3. Théoréme des valeurs intermédiaires

Théoréme

Soient [ une fonction définie et continue sur un intervalle I de R, et a et b deux réels
de 1. Alors, tout réel compris entre f(a) et f(b) possede au moins un antécédent par la
fonction f.

1

I

|

I

I

|

!

|

— =X
[l a * b

\
\
|

réel
\

entre f(a) et f(b) antécédent

Figure 22.1 - lllustration graphique du théoréme des valeurs intermédiaires.

On peut aussi énoncer ce théoréme sous la forme suivante : I’image d’un intervalle par une
fonction continue est un intervalle.

4. Théoreme de Weierstrass, ou des bornes atteintes

Théoréme
Soient f une fonction définie et continue sur un segment I de R, et a et b deux réels de I.
Alors, [y est bornée et atteint ses bornes, ce qui signifie qu’il existe deux réels m et M
tels que, pour tout réel x de I :

m< f(x) < M
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et qu'il existe deux réels x,, et xpy de I tels que :

fw)=m , flu)=M

Figure 22.2 - Illustration graphique du théoréme de Weierstrass.

Il résulte du théoreme précédent que I'image d’un intervalle fermé et borné (c’est-a-dire un
segment) par une fonction continue est un intervalle fermé et borné.
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Dérivabilité en un point

1. Conditions de dérivabilité
Définition

Soient f une fonction définie sur un intervalle 7 de R, non vide, non réduit a un point,
et a un point de /. La fonction f est dite dérivable en a si la fonction 7, définie, pour

tout x de '\ {a}, par :
08 = J(x) - fla)
X =d
admet une limite en a. Dans ces conditions, la limite de la fonction 7 en a s’appelle
dérivée de la fonction f en a, et se note f'(a).

» Interprétation graphique
J(x2) = f(x)

Etant donnés deux réels distincts x1 et xp de /, le quotient ——————— est, tout simple-
X =X
ment, le coefficient directeur de la corde joignant les points M| et M, de coordonnées

respectives (xy, f(x1)) et (x2, f(x2)), si on se place dans un repere orthonormé direct. Etu-
dier ce qui se passe lorsque x; = a et x; tend vers x| revient donc a étudier la position
limite de la sécante a la courbe en a :

_Ssécante
s
LN tangente
1 I\ \’A’ s
O a X2 \\\ ‘\_\‘

Figure 23.1- La sécante, la position limite de la sécante, et la tangente.

La tangente a la courbe représentative de f en a ayant pour équation y = (x—a) f'(a)+
f(a), 1a fonction affine définie sur R par x — (x—a) f’(a)+ f(a) permet donc d’approcher
f par une fonction affine au voisinage de a.

On peut, de fagon équivalente, donner pour la dérivabilité la définition suivante :
Définition

Soient f une fonction définie sur un intervalle 7 de R, non vide, non réduit a un point,
et a un point de /.
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La fonction f est dite dérivable en a s’il existe deux réels A et B tels que :
flxy=A+B(x—a)+ (x—aq)elx—a)

ol £ est une fonction de limite nulle en 0. Onaalors: A= f(a) , B=f'(a)

La deuxieme définition présente I’avantage de pouvoir étre généralisée aux fonctions de plu-
sieurs variables. Elle a aussi la conséquence immédiate suivante :

Propriéteé
Toute fonction f dérivable en un point a y est continue.

La réciproque de cette proposition est FAUSSE !
Ainsi, la fonction x + |x| est continue en (), mais n’est pas dérivable en ce point.

Exemple : Une fonction continue partout, mais nulle part dérivable

3
Soienta €]0,1[,et hunréeltelquea b > 1 + ; La fonction de Weierstrass

+00
xeERP Za” cos (b mx)
n=0

est continue partout, mais nulle part dérivable, ce qui signifie qu’elle n’admet, nulle part, de
tangente.

Figure 23.2 - La courbe représentative de la fonction de Weierstrass, pour a = % etb =10.

Les sismogrammes constituent, par exemple, des exemples de courbes continues, mais n’ad-
mettant nulle part de tangente.

2. Opérations algébriques et composition

» Dérivabilité en un point et opérations algébriques

Théoréeme

Soient f et g des fonctions définies sur un méme intervalle I de R, et a un point de I.
Alors :

e Si f et g sont dérivables en a, les fonctions f + g et fg sont dérivables en a, et :
(f+9)(@=fla)+g@ . (fg)(a)=f(a)gla)+ fla)g(a)
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e Sig(a) # 0, et si g est dérivable en a, la fonction — est définie sur un intervalle de la
forme la—n,a+n[N1, 0 <, et est dérivable en a. De plus :

1 o d@
(9) @)= gla)?

» Dérivabilité des fonctions composées

Théoréme

Soient [ une fonction définie sur un intervalle I de R, et g une fonction définie sur un
intervalle J contenant f(I).

Si f est dérivable en un point a de I, et si g est dérivable au point f(a), alors la fonction
composée gof est dérivable enaet: (go f) (a) = f'(a)g’ (f(a))

Démonstration : Posons b = f(a). La dérivabilité de la fonction f en a s’écrit :
f(x) = fla) + (x—a)f' (@) + (x —a) e1(x - a)

ol g est une fonction de limite nulle en 0.
La dérivabilité de la fonction g en b s’écrit :

g(x) = g(b) + (x = b) g'(b) + (x — b) £2(x — b)

ol & est une fonction de limite nulle en 0.
En remplacant x par f(x) dans la deuxieme formule, on obtient :

g(f(x)) = g(b) + (x —a) f'(a) + (x —a) 1 (x — a))g'(b) + (x — a) f'(a)
+(x—a)ei(x—a))exf(x)-b)

On remarque alors que, f €tant continue en a, on peut écrire :
f(x)=b=fx) - fla) = e3(x - a)

oll &3 est une fonction de limite nulle en 0.
Par suite :

& (f(x) —b) = &(x — a)

ou, pour alléger les écritures, et, de fagcon générique, on décide de désigner par &(.) :
x = g(x) n’importe quelle fonction de limite nulle en 0.

Finalement, en regroupant les termes qui contiennent a la fois un facteur (x — a) et un
facteur &(x — a), on obtient :

(go f)(x)=g(f(x) =gb) +(x—a) f@g (b) +(x—a)elx - a)
ce qui montre que la fonction g o f est dérivable en a et que :

(go ) (@) = f@g (f(@) "
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Dérivabilité sur un intervalle

1. Conditions de dérivabilité sur un intervalle

Définition
Soit f une fonction définie sur un intervalle 7 de R. On dit que la fonction f est
dérivable sur / si f est dérivable en tout point de /. On appelle fonction dérivée de f
la fonction f” définie sur / et qui, a chaque point a de I’intervalle /, associe f’(a).

» Dérivabilité et opérations algébriques

Théoréeme

Soient f et g des fonctions définies sur un méme intervalle I de R. Alors :

e Si f et g sont dérivables sur I, les fonctions f + g et fg sont dérivables sur I, et, pour
tout xde I :

f+g) ) =f+dx , (fg)x)=f(x)gx)+ f(x) g (x)

|
o Si g ne s’annule pas sur I, et si g est dérivable sur I, la fonction — est dérivable sur 1.

. d®
(9) = o

De plus, pour tout x de I :

» Dérivabilité des fonctions composées

Théoréme

Soient f une fonction définie sur un intervalle I de R, et g une fonction définie sur un
intervalle J contenant f(I).

Si f est dérivable sur I, et si g est dérivable sur J, alors la fonction composée gof est
dérivable sur I et, pour tout x de I :

(go ) (x) = f' (g (f(x)

Exemple

On considere la fonction [ qui, a tout réel x, associe cos(x?). [ est dérivable sur R, et, pour
tout réel x :
(%) = =2 x sin(x?)

Le théoréme de dérivabilité des fonctions composées peut étre considéré comme I'un des plus
importants du calcul des dérivées. Une application est de I'utiliser pour obtenir la dérivée
d’un quotient de fonctions, ou, encore, pour obtenir celle d’un produit; a cet effet, il suffit de
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considérer deux fonctions f et g définies sur un méme intervalle I de R. Alors, compte tenu
de I'identité :
F+or = +2fg+g"
on obtient, a I’aide de la formule donnant la dérivée d’une fonction composée :
2+ (f+d)=2ff +Ffg+fd +294
ce qui conduit donc a :

fa) =fag+fd

Théoreme

Toute fonction dérivable sur un intervalle I de R y est continue.
» Primitive
Définition

Soit f une fonction définie sur un intervalle / de R, continue sur /. On dit que F est
une primitive de f sur / si F est dérivable sur [ et si, pour tout réel xde / :

/4
Fi(x) = f(x)
Une fonction continue sur un intervalle / y admet une infinité de primitives !

Exemple

La fonction qui, a tout réel x, associe x, est une primitive sur R de la fonction qui, a tout réel x,
associe 2 x. Mais la fonction qui, a tout réel x, associe x> + 1, est aussi une primitive sur R de
la fonction qui, a tout réel x, associe 2 x.

2. Dérivabilité des fonctions définies par morceaux

Pour pouvoir étudier la dérivabilité en un point de raccordement des fonctions définies
par morceaux, il est nécessaire d’introduire les notions de dérivée a droite et a gauche.

» Dérivée a droite d'une fonction

Soit f une fonction définie sur un intervalle ouvert / de R, et a un point de /. La fonction
f est dite dérivable a droite en a si la fonction 7, définie, pour tout x de / \ {a}, par :

oy = TR~ 1@

xX—a
a une limite a droite en a, c’est-a-dire lorsque x tend vers a par valeurs supérieures.
Cette limite est appelée dérivée a droite de la fonction f en a, et notée f7(a).

» Demi-tangente a droite

Soit f une fonction définie sur un intervalle ouvert 7 de R, et a un point de /. On suppose
que la fonction f est dérivable a droite en a. La demi-droite d’équation :

y= fla)+(x—a)fi(a) pourx>a

est la demi-tangente a droite en a de la courbe représentative de f.
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» Dérivée a gauche d’une fonction

Soit f une fonction définie sur un intervalle ouvert 7 de R, et @ un point de 7. La fonction
f est dite dérivable a gauche en « si la fonction 7, définie pour tout x de I \ {a}, par :

f(x) - fl@)

X—a

T(x) =

a une limite a gauche en a, ¢’est-a-dire lorsque x tend vers a par valeurs inférieures.
Cette limite est appelée dérivée a gauche de la fonction f en a, et notée f;(a).

» Demi-tangente a gauche

Soient f une fonction définie sur un intervalle ouvert I de R, et a un point de /. On
suppose que la fonction f est dérivable a gauche en a. La demi-droite d’équation

y=fla)+(x—a)f(a) pourx<a
est la demi-tangente a gauche en a de la courbe représentative de f.
Propriéte
Soient f une fonction définie sur un intervalle ouvert / de R, et a un point de /.

La fonction f est dérivable en a si et seulement si elle est dérivable a gauche et a droite
en a, et si ses dérivées a gauche et a droite en a sont égales.

\”‘

Figure 24.1 - Le graphe d‘une fonction non dérivable en a : les deux dérivées a gauche et a droite
ne sont pas égales. Il y a une demi-tangente a gauche, et une demi-tangente a droite. La courbe
posséde un point anguleux.

Exemple

La fonction valeur absolue, qui, a tout réel x, associe sa valeur absolue |x|, n est pas dérivable
en zéro, mais posséde des dérivées a droite et a gauche en zéro.

3. Dérivabilité et variations
» Caractérisation des fonctions constantes dérivables

Théoréeme

Soient I un intervalle de R, et f une fonction dérivable sur 1. Alors, f est constante sur
1 si et seulement si sa dérivée [’ est identiquement nulle sur I :

Yxel: ff(x)=0
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» Caractérisation des fonctions croissantes dérivables

Théoréme

Soient I un intervalle de R, et f une fonction dérivable sur I. Alors, [ est croissante sur
[ si et seulement si sa dérivée [ est positive ou nulle sur I :

Yxel: f[(x)=20

» Caractérisation des fonctions décroissantes dérivables

Théoreme
Soient I un intervalle de R, et f une fonction dérivable sur 1. Alors, f est décroissante
sur I si et seulement si sa dérivée [’ est négative ou nulle sur I :

Yxel: f[(x)<0

» Caractérisation des fonctions strictement croissantes dérivables

Théoréme

Soient I un intervalle de R, et f une fonction dérivable sur I. Alors, [ est strictement
croissante sur I si et seulement si sa dérivée [’ est positive ou nulle sur I, et ne s’annule
sur aucun intervalle de I non réduit a un point.

» Caractérisation des fonctions strictement décroissantes dérivables

Théoréme

Soient I un intervalle de R, et f une fonction dérivable sur I. Alors, [ est strictement
décroissante sur 1 si et seulement si sa dérivée [’ est négative ou nulle sur I, et ne
s’annule sur aucun intervalle de I non réduit a un point.
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Dérivées successives

1. Dérivée n'*™¢
Etant donné un entier naturel non nul n, on définit, sous réserve d’existence bien sir
(c’est-a-dire lorsque cela est possible), la dérivée n'“™ de f, notée f' ) par récurrence :

£ = ( f(n—l))’

avec la convention :

f=g

» Fonction n fois dérivable, n e W

Si f admet une dérivée n*™, n € N, on dit que f est n fois dérivable sur /.

» Fonction indéfiniment dérivable

Si, pour tout entier naturel 7, f admet une dérivée n*™ on dit que f est indéfiniment
dérivable sur /.

Exemples

1. Les fonctions polyndmes, les fonctions trigomométriques sinus et cosinus, la fonction ex-
ponentielle x — e*, sont indéfiniment dérivables sur R.

2. Les fractions rationnelles sont indéfiniment dérivables sur tout intervalle qui ne contient
pas de racine du dénominateur.

3. La fonction logarithme népérien x + In x et la fonction racine carrée x > +/x sont indéfi-
niment dérivables sur ]0, cof.

2. Classes de fonction

» Fonction de classe C", n e N

Soient n un entier naturel non nul, et f une fonction définie sur un intervalle 7 de R.

On dit que f est de classe C” sur I si f est n fois dérivable sur 7, et si sa dérivée n'*™,
£ est continue sur 1.
» Fonction de classe C*

Soit f une fonction définie sur un intervalle / de R.
On dit que f est de classe C™ sur [ si, pour tout entier naturel n, f est de classe C"
sur /.

3. Théoremes
» Dérivée n'®™e d’'une combinaison linéaire de fonctions, n € ¥

Théoréme

Soient f et g des fonctions définies sur un méme intervalle I de R, et n un entier naturel.
On suppose que [ et g sont n fois dérivables sur I. Alors, toute combinaison linéaire de
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f et g est n fois dérivable sur I; pour tout couple (o, ) de réels, « f + g est n fois
dérivable sur I et : (a f+Bg)™ =a f" +Bg™

» Formule de Leibniz'

Théoréme
Soient f et g des fonctions définies sur un méme intervalle I de R, et n un entier naturel.
On suppose que f et g sont n fois dérivables sur I. Alors, la fonction produit f g est n

n
fois dérivable sur 1, et : (f g)" = Z Cf: & gn-h
k=0
]
o, pour tout entier k de {0, ..., n}, Cﬁ désigne le coefficient binomial : (z ) = ﬁ
l(n—k)!

Par convention, ce coefficient est nul si k > n.

Démonstration : On ne donne, ici, que des éléments de preuve. Ce résultat se démontre
par récurrence, a I’aide de la formule donnée par le triangle de Pascal ; étant donné un
entier naturel non nul n, alors, pour tout entier naturel k <n —1:

Ck+cll =kl ot : (2)*(1:1):(2111) 5

> Dérivée n'®™e d’un quotient de fonctions, n € N

Théoréme
Soient f et g des fonctions définies sur un méme intervalle I de R, et n un entier naturel.
On suppose que f et g sont n fois dérivables sur 1, et que g ne s annule pas sur 1. Alors,

le quotient — est n fois dérivable sur I.
g

» Dérivée n®™e de la composée de deux fonctions, n € IV

Théoréme

Soit f une fonction définie sur un intervalle I de R, et g une fonction définie sur un
intervalle J contenant f(I).

Si f est n fois dérivable sur I, et g est n fois dérivable sur J, alors la fonction composée
gof est n fois dérivable sur I.

1l existe une formule permettant de calculer la dérivée n'®™ d’une fonction composée. Cette
formule est due & Faa di Bruno? :

(go ™ =n! Z g¥ o f ]_[ )

k! n;!
I<k<n ny+.tnp=n.n;z1 7

Le lecteur intéressé pourra trouver plus de précisions dans [4], page 165.

1. Gottfried Wilhelm Leibniz (1646-1716), philosophe, mathématicien, juriste et philologue allemand. Il
apporta des contributions fondamentales en calcul différentiel et intégral. 11 fut, également, I'inventeur d’une
des premiéres machines a calculer. Ses ceuvres philosophiques sont, elles aussi, de premiére importance.
2. Francesco Faa di Bruno (1825-1888), prétre et religieux italien, en méme temps que mathématicien
renommé, et musicien de talent. Il fut I’éleve d’ Augustin Cauchy a la Sorbonne. 11 a été béatifié en 1988.
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Théoreme des accroissements finis
et théoreme de Rolle

Une fonction dérivable, présentant un extremum en un point de son domaine de dé-
finition, posséde, en ce point, une dérivée nulle. En pratique, cette remarque per-
met de trouver I'image d’un intervalle fermé borné par une fonction dérivable. Plus
fondamentalement, elle est le point clef de la démonstration du théoreme de Rolle
et de ses conséquences : le théoreme des accroissements finis et la formule de
Taylor-Lagrange.'

1. Extremum sur un intervalle

» Maximum d’une fonction sur un intervalle

Soient f une fonction définie sur un intervalle 7 de R, et ¢ un point de /. La fonction f
admet un maximum en ¢ si, pour tout x de / :

f(x) < flo)
» Minimum d’une fonction sur un intervalle

Soient f une fonction définie sur un intervalle I de R, et ¢ un point de /. La fonction f
admet un minimum en ¢ si, pour tout x de / :

Jf(x) = f(eo)
» Extremum d’une fonction sur un intervalle
Soient f une fonction définie sur un intervalle 7 de R, et ¢ un point de /. La fonction f
admet un extremum en c si elle admet en ¢ un maximum ou un minimum.
2. Extremum local
» Maximum local d’une fonction

Soient f une fonction définie sur un intervalle / de R, et ¢ un point de /. La fonction f
admet un maximum local en c¢ s’il existe un intervalle ouvert de la forme |c—n, c+7[C I,
0 <n < ¢, tel que la restriction de f a cet intervalle admette un maximum en ¢ :

Yx €le—n,c+nl: f(x) < flc)
» Minimum local d’'une fonction

Soient f une fonction définie sur un intervalle / de R, et ¢ un point de /. La fonction f
admet un minimum local en ¢ s’il existe un intervalle ouvert de la forme |c—n, c+n[C 1,
0 <n < ¢, tel que la restriction de f a cet intervalle admette un minimum en ¢ :

Yx €le—mc+nl: f(x) = f(c)

1. Brook Taylor (1685-1731), mathématicien, historien des sciences, musicien et peintre anglais. C’est lui
qui découvrit I'intégration par parties, et est, bien s@ir, & 'origine des « développements de Taylor ».

2. Joseph Louis, comte de Lagrange (1736-1813), mathématicien, mécanicien et astronome italien. Il fut
Iinitiateur du calcul variationnel. En parallele, il apporta de nombreuses contributions en algébre, & la
théorie des nombres, au calcul infinitésimal, aux probabilités, mais aussi & la mécanique.
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» Extremum local d'une fonction

Soient f une fonction définie sur un intervalle 7 de R, et ¢ un point de I. La fonction f
admet un extremum local en ¢ si elle admet en ¢ un minimum local, ou un maximum
local.

» Dérivée et extremum local

Soient f une fonction définie sur un intervalle 7 de R, et ¢ un point intérieur a I (c’est-a-
dire qui ne soit pas une borne de /). Si f est dérivable en ¢ et admet en ¢ un extremum
local, alors :

f©=0
» Interprétation graphique

Une fonction admettant des extremums locaux en certains points intérieurs aura donc,
en ces points, des tangentes horizontales.

y
/

maximum local
»

maximum local

\
minimum local ---- »

Figure 26.1- Le graphe d'une fonction avec des extremums locaux.

Démonstration : Le fait que f posséde une dérivée nulle au point ¢ est une propriété
locale (elle ne dépend que des valeurs de f au voisinage du point ¢).

Quitte a considérer la restriction de f a un sous-intervalle ouvert de I, de la forme
le —n,¢c+nl, 0 <5 < ¢, on peut supposer que f possede un extremum en c.

Supposons, dans un premier temps, que f possede un maximum en c¢. Alors, pour tout
xdeltel que x < c: f(x) < f(c¢). ll en résulte :

JR-He)
b Bl
et donc :
£ = tim 1270 5 4
x—=c” X—c

De méme, pour tout x de [ tel que x > ¢ : f(x) < f(c). Il en résulte :

fo) =@ _

xX—c
et donc :
f'(c) = lim f&) - flo <0
x—ct X— e

D’ou, nécessairement : f’(¢) = 0.
Le cas ou f possede un minimum en ¢ se traite de facon analogue (il suffit de changer

fen—f). n
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. On voit bien dans cette démonstration I'importance de supposer que ¢ soit intérieur a [ ; ainsi,
le point ¢ n’est pas une extrémité de I'intervalle [ et les limites & gauche et a droite utilisées
dans la démonstration ont un sens.

Si on considere la restriction de I'application identité a I'intervalle [0, 1], cette restriction
présente un extremum en 1, alors que la dérivée de la fonction ne s’annule pas en 1.

2. Laréciproque de la proposition précédente est fausse : une fonction dérivable sur un intervalle
peut avoir une dérivée nulle en un point qui n’est pas un extremum local. C’est le cas, par
exemple, de la fonction définie sur R par x — x°, au point 0.

» Une application pratique

Soit f une fonction définie et continue sur un intervalle fermé et borné [a, b]. Si cette
fonction est dérivable sur I’intervalle ouvert ]a, b| alors son maximum M et son mini-
mum m sont a rechercher parmi les valeurs de la fonction f en a, ou en b, ou aux points ¢
ou sa dérivée [’ s’annule.

3. Le théoréme de Rolle3

Théoréme

Soient a et b deux réels tels que a < b, et [ une fonction définie et continue sur I'inter-
valle |a, b, dérivable sur intervalle la, b[. Alors, si f(a) = f(b), il existe un nombre c
de Uintervalle a, b| tel que :

flle)=0
» Interprétation graphique du théoréeme de Rolle

y
A

Figure 26.2 - lllustration graphique du théoréme de Rolle.

Démonstration : Il faut montrer que la fonction f admet un extremum en un point de
Iintervalle ]a, b[.

Comme f est continue sur I’intervalle fermé borné [a, b], I'image f([a, b]) de [a, b],
est un intervalle fermé bomé, de la forme [m, M], (m, M) € R, m < M.

On distingue deux cas :

e si la fonction f est constante sur Iintervalle [a, b], alors sa dérivée f” est identique-
ment nulle sur cet intervalle. N'importe quel point ¢ de I'intervalle Ja, b[ convient,
puisqu’il vérifie f'(c) = 0.

3. Ce théoreme doit son nom au mathématicien frangais Michel Rolle (1652-1719), qui fut le premier a
établir ce résultat, dans le cas de fonctions polynomiales. Ses contributions portent et sur 1’algébre, et sur
1’analyse. Il est & I’ origine de la notation 4/x, pour désigner la racine n™ d’un réel positif x.
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e Si la fonction f n’est pas constante, 1’intervalle [m, M] n’est pas réduit & un point.
Donc I'une, au moins, des deux inégalités strictes : M > f(a) = f(b), oum < f(a) =
f(b) est vérifiée.

On supposera, dans ce qui suit : M > f(a) (le cas m < f(a) se traite de maniere
analogue).

Comme M est un point de [m, M], il existe un point ¢ de I'intervalle [a, b] tel que
f(c) = M. Comme M > f(a) et M > f(b), c appartient en fait a 'intervalle ]a, b[. La
fonction f admet en ¢ un maximum, étant dérivable sur ]a, b[, donc en c, elle vérifie
donc : f'(c) = 0. n

4. Le théoreme des accroissements finis

Théoréme

Soient a et b deux réels tels que a < b, et [ une fonction définie et continue sur [’'inter-
valle [a, b, dérivable sur 'intervalle la, b|. Alors, il existe un nombre ¢ de 'intervalle
la, b tel que :

f(b) = fla)=(b-a)f(c)

» Interprétation graphique du théoréme des accroissements finis

Le théoreme des accroissements finis traduit, tout simplement, le fait que la courbe re-
présentative de f possede, en ¢, une tangente parallele a la corde joignant les points

(a, f(a)) et (b, f(D)) :

tangente

= X

1
o
-1

-1

Figure 26.3 - Une illustration graphique du théoréme des accroissements finis.

Démonstration : On considere la fonction ¢ définie sur I'intervalle [a, b] par :

(b) - fla )
o0 = ) - flay - LI
Elle est, comme la fonction f, continue sur |a, b] et dérivable sur ]a, b[. Par ailleurs elle
vérifie : p(a) = @(b). Elle satisfait donc aux hypotheses du théoreme de Rolle. Ainsi, il
existe ¢ dans I'intervalle ]a, b[ tel que :

- a)

b
0= = fo- L2212

ce qui acheve la démonstration. ]

Le théoreme des accroissements permet de relier les variations d’une fonction au signe de sa
dérivée.
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Formule de Taylor-Lagrange

On présente, dans ce qui suit, la formule de Taylor-Lagrange, qui généralise la formule
des accroissements finis pour les fonctions plusieurs fois dérivables.

Théoréme

Soient a et b deux réels tels que a < b, et f une fonction définie sur l'intervalle [a, b).
On suppose que :

e la fonction f est n fois dérivable sur intervalle [a, b] ;

o la dérivée i de f, ™, est continue sur Uintervalle fermé [a,b) et dérivable sur
Uintervalle ouvert la, b|.

Alors, il existe un réel ¢, appartenant a l'intervalle ouvert la, b|, tel que :

’r (n) a n+1) c
16 = f@+ f@b-a+ 52 =@ +.. f()w—)+f+$3wﬂw“
Démonstration : Soit A le réel défini par :
"(a) "(a)
(b—ay™*" = f(b) - fla)— (b~ a)f()—f (b—a)’ - A (b-a)
(n+1)! n!
Il s’agit de montrer qu’il existe un réel ¢, appartenant a I’intervalle ouvert ]a, b, tel que :
A= f(n+1}(c)
On introduit, a cet effet, la fonction ¢ définie, pour tout x de [a, b], par :
" (1) X A
o) = FO)= 0= (=215 2 (p= ...~ LD 2y L (-
Il est évident que :
@(b) =0
Le choix du nombre A conduit a :
la)=0

Par ailleurs, la fonction ¢ est, comme la fonction f et chacune de ses n premieres déri-
vées, continue sur I'intervalle fermé [a, b], et dérivable sur I'intervalle ouvert Ja, b|[.

La fonction g satisfait donc les hypotheses du théoreme de Rolle.

I1 existe donc un nombre ¢, appartenant a I'intervalle ouvert Ja, b[, tel que :

¢'(c)=0
Un calcul facile montre que :

A- ")

¢ (x) = —= (b - x)"
{5
Comme le nombre ¢ est différent de b, on peut en déduire que :
A= 2
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Fonctions réciproques

On s’intéresse, dans ce qui suit, aux conditions d’existence d’une fonction réciproque
pour une fonction définie et continue sur un intervalle, et, sous réserve d’existence, a ses
propriétés : continuité, dérivabilité, représentation graphique.

1. Définitions

» Injectivité

Etant données deux parties P; et P, de R, une application f : P; — P, est dite
injective si, pour tout couple (x, x’) € P X Py :

f@=fx)y=x=x
» Surjectivité

Etant données deux parties P et P, de R, une application f : P — P, est dite
surjective si tout élément y de P, admet au moins un antécédent par f :

YyePr,dx e P, : y= f(x)
> Bijectivité
Etant données deux parties #; et P, de R, une application f : P, — P, est dite

bijective si elle est injective et surjective, c’est-a-dire si tout élément y de $> admet un
unique antécédent par f :

Yye P, Alx € Py : y=1Ff(xn)

» Application identité

Etant donnée une partie # de R, I’application
idgo 1 PP

X=X

est appelée application identité de 7.

» Fonction réciproque

Soient P et P, deux parties de R, et f : P; — P une application bijective. Pour
chaque élément y de P>, ’unique élément x de P, tel que f(x) = y est noté f~!(y).

L’application f~' : 5 — P, ainsi définie est appelée application réciproque de f.

Soient P; et P> deux parties de R, et f : P} — P> une application bijective. Alors,
pour tout réel x de P :

(£ o f) @) = (f) = idp,(x) = x
et, pour tout réel iy de P :

(forNw=r(f"w)=idp,) =y
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1l s’agit, ensuite, d’appliquer ces définitions générales au cas particulier des fonctions
définies sur un intervalle I, non vide et non réduit a un point.

. Une fonction f définie sur un intervalle 7 est, par définition, une surjection de 7 sur f(J). Par
suite, la fonction f admet une application réciproque, définie sur f(7), si et seulement si elle
est bijective de 7 sur f(I), et donc si et seulement si elle est injective sur /.

fiche 28

2. Pour s’assurer que la fonction réciproque d’une fonction donnée f est définie sur un intervalle
J, il suffit de supposer que la fonction f est continue sur I'intervalle / car, alors, d’apres le
théoréme des valeurs intermédiaires, on sait que J = f(/) est un intervalle.

2. Injectivité et monotonie

Soit f une fonction définie sur un intervalle / de R, non vide, et non réduit & un point.
Alors :

e Si f est strictement monotone sur /, alors elle est injective sur /.

e Si f est continue et injective sur /, alors elle est strictement monotone sur /.

Calculus

Démonstration : Ce théoréme est admis. ]

On sait déja que I'image d’un intervalle / par une fonction continue f est un intervalle ; cepen- (
dant lorsque, de plus, la fonction f est strictement monotone, on peut préciser I'intervalle f([I). o

» Image d'un intervalle par une fonction continue strictement monotone <

Soit f une fonction continue et strictement monotone sur un intervalle /, de bornes a N
et b. Alors, I'intervalle f(I) a pour bornes lim f(x) et 1irr!19 f(x) (ces limites pouvant étre
X—a X—

L
elles-mé&mes finies ou infinies) et les intervalles I et (/) sont de méme nature : fermés, ko
ouverts, ou semi-ouverts. C

3. Théoreme des fonctions réciproques

Théoréme

Soit f une fonction continue strictement monotone sur un intervalle 1. Alors :

o L’ensemble J = f(I) est un intervalle (de méme nature que 1), et dont les extrémités
sont les limites de f aux bornes de I.

e La fonction [ admet une fonction réciprogue =" définie sur J.

e La fonction réciproque f~' est continue et strictement monotone sur J, de méme sens

de monotonie que f. §
e Si la fonction f est dérivable en un point a de I et si f'(a) # 0, la fonction [~ est g
dérivable au point b = f(a) et : §
L

=) ’ 1 @

(b) = =

() =55 :

De facon équivalente : _g
’ 1 —

1y _ c

(f_ ) B f’ o f'—l I.Io.
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Démonstration : les deux premiers points ont été vus dans les propositions précédentes.
Le troisieme point, c¢’est-a-dire la continuité de f —1 est admis. On ne démontrera ici que
la dérivabilité de la fonction réciproque.

A cet effet, on suppose que la fonction f est dérivable en un point a de I’intervalle I, et
que f"(a) # 0.

Montrer que la fonction f~! est dérivable au point b = f(a) revient 2 montrer que
[ - )

y—>b

le rapport a une limite lorsque y tend vers b, en restant bien siir dans

I’intervalle J.
Pour tout y de J = f(I), le nombre x = f~'(y) de I vérifie la condition y = f(x). Il en
résulte :
Floy-f'b)  x-a
y—>b J(x) = fla)

Comme la fonction f~! est continue en b, le nombre x = f~!(y) tend vers a = f~1(b)

lorsque y tend vers b. Le rapport a donc une limite, puisque la fonction f

X—d
| 1) - fla) |
est dérivable en a et que sa dérivée f”(a) est non nulle. On obtient :

, 1
—1 b) =
=75
4. Représentation graphique

Soit f une fonction continue et strictement monotone sur un intervalle 7 C R.
On note J = f([). Par suite :

(xel et fW=y & (yel e f@=x

Ainsi, le graphe de la fonction réciproque f~!, c’est-a-dire I’ensemble des couples
(y, f"(y)) lorsque y parcourt I'intervalle J, est donc aussi ’ensemble des couples
(f(x), x) lorsque x parcourt I'intervalle /. Or, dans un repere orthonormé, le point de
coordonnées (a, b), (a,b) € R?, est le symétrique par rapport a la premiére bissectrice
du point de coordonnées (b, a).

» Graphe d’une fonction réciproque

Soit f une fonction continue, réalisant une bijection d’un intervalle / de R sur un in-
tervalle J de R. Alors, le graphe de f~' est symétrique de celui de f par rapport a la

premiere bissectrice (qui est aussi la droite d’équation y = x).

4
premiére

graphe de la | piscsectrice

récj

graphe de la fonction
X

Figure 28.1- Le graphe d’une fonction bijective, et celui de sa réciproque.
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Les fonctions trigonométriques
inverses

1. La fonction arcsinus

La restriction sin|[_% 1] de la fonction sinus a I’intervalle [—%, 7 | est continue et stricte-
ment croissante. D’apres le théoréme des fonctions réciproques :

insa35) -l 5 -u

Cette restriction établit une bijection de [—g, g] sur [—1, 1].
La fonction réciproque de cette restriction est appelée fonction arcsinus, et notée
arcsin. C’est une bijection de [—1, 1] sur Iintervalle [—%, %] Pour tout réel x de [—1, 1],

arcsin x est donc I'unique élément de I’intervalle [—’—zr, %] qui a pour sinus le réel x :
sin(arcsin x) = x

De méme, pour tout réel x de [—%, g] :
arcsin(sin x) = x

Par définition :
in(0) = 0 i) T . (1 m
arcsin(0) = , arcsin(l)=—= , arcsin|=|=—
2 2 6
Les propriétés de la fonction arcsinus sont les suivantes :

e La fonction arcsinus est continue et strictement croissante sur [—1, 1]. C’est une
conséquence directe du théoreme des fonctions réciproques.

e La fonction arcsinus est impaire. Dans le plan rapporté a un repere orthonormé direct,
la courbe représentative de la fonction arcsinus est la courbe symétrique par rapport a
la premiere bissectrice de la courbe représentative de la restriction de la fonction sinus
a I’intervalle [-3, 1.

e La restriction Sini[—%/—z’] est dérivable sur [—% %], de dérivée

x> cosx= 4f1 - sinz(x).

Cette dérivée ne s’annulant pas sur ]—%, %[, la fonction arcsinus est donc dérivable
sur | — 1, 1[, sa dérivée étant définie, pour tout x de ] — 1, 1[, par :

1 o
\/ | — sin®(arcsin x) Vi- a2

(arcsin)’ (x) =
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A y=x R
2. d
Lt R
2 e
4
4
4
,}
1r g
. Cd
y = arcsin x Y A
1 L O L L > x
g -1 1 i
2 2
y = sin x
v 7
Y_~7
g -1r
Cd
4
Cd
U d
r'd
/’ -z
r L
/ 2
4
rd
L

Figure 29.1- La courbe représentative de la fonction arcsinus.

2. La fonction arccosinus

La restriction cosjjg de la fonction cosinus a I'intervalle [0, ] est continue et stric-
tement décroissante. D’apres le théoreme des fonctions réciproques, elle établit une
bijection de [0, x] sur [—1, 1]. La fonction réciproque de cette restriction est appelée
arccosinus, et notée « arccos ». C’est une bijection de [—1, 1] sur Iintervalle [0, z].

Pour tout réel x de [—1, 1], arccos x est donc 'unique élément de I'intervalle [0, ] qui
a pour cosinus le réel x :

cos(arccos x) = x

De méme, pour tout réel x de [0, 7] :

arccos(cos x) = x

Par définition :
T
arccos(0) = 3 arccos(1) =0 , arccos(—-1)=nm

Les propriétés de la fonction arccosinus sont les suivantes :
e [.a fonction arccosinus est continue et strictement décroissante sur [—1, 1].

e La restriction cosjp - est dérivable sur [0, 7], de dérivée x — —sinx = — V1 — cos? x,
qui ne s’annule pas sur ]0, 7[. La fonction arccosinus est donc dérivable sur ] — 1, 1],
sa dérivée étant définie, pour tout x de | — 1, I[, par :

(arccos) (x) = — l et

V1 —cos2(arccosx) VI — 2
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Figure 29.2 - La courbe représentative de la fonction arccosinus.

3. La fonction arctangente

La restriction tan;_z 2 de la fonction tangente a I'intervalle ]—% %‘[ est continue et

strictement croissante sur ]—%, %[
D’apres le théoreme « des fonctions réciproques » :

tan|]_£ 2 (]—%, g[) =] lim tanx, lim tan x| =R

2 x_)f_zr— x_>7_£+
En outre, cette restriction établit une bijection de ]—%, %[ sur R. La fonction réciproque
de la restriction de la fonction fangente a I'intervalle ]—%, g[ est appelée fonction arc-
non

tangenie, et notée « arctan ». C’est une bijection de R sur I'intervalle (-5, 5 [

Pour tout réel x, arctan x est donc I'unique élément de I'intervalle |-7, %[ qui a pour
tangente le réel x :

tan (arctan x) = x
P T
Par définition : arctan(1) = T

Attention ! Il y a une infinité de réels dont la tangente est égale & 1. Mais parmi ces réels, seul
ﬂ- & ~ 5.
"t appartient a I'intervalle ]—%, g[

Les propriétés de la fonction arctangente sont les suivantes :

e La fonction arctangente est continue et strictement croissante sur R. C’est une consé-
quence directe du théoreme des fonctions réciproques. De plus :

) b4 . T
lim arctanx = —— Iim arctan x = —
X——00 £x X—+00 2
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e La fonction arctangente est impaire. Dans le plan rapporté a un repere orthonormé
direct, la courbe représentative de la fonction arctangente est la courbe obtenue par
symétrie par rapport a la premiere bissectrice de la courbe représentative de la restric-
tion de la fonction tangente a I’intervalle ]—g, %[

e On rappelle que la fonction tangente est dérivable sur ]—g%[, de dérivée

x > | + tan® x. Cette dérivée n’est jamais nulle. Par suite, la fonction arctangente
est donc dérivable sur R, sa dérivée étant donnée par :

1 1
(arctan x)’ = = ,,
1 +tan(arctan x) 1+ x2

e Pour tout réel strictement positif x :

1
arctan x + arctan (—) =

%) 2

et, pour tout réel strictement négatif x :

1 T
arctan x + arctan |- | = —=
X 2

y = arctan x

Nl]::‘

. ----4- y=tanx

Figure 29.3- La courbe représentative de la fonction arctangente.
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Les fonctions hyperboliques inverses

1. La fonction argument sinus hyperbolique

La fonction sinus hyperbolique est bijective de R sur R. Sa fonction réciproque est ap-
pelée argument sinus hyperbolique, notée Argsh, et vérifie, pour tout réel x :

Argshx = ln(x+ Va2 + 1)

Les propriétés de la fonction argument sinus hyperbolique sont les suivantes :

e La fonction argument sinus hyperbolique est continue, dérivable et strictement crois-
sante sur R. Sa dérivée est définie, pour tout réel x, par :

1
Argsh’(x) = ——
Va2 + 1
o La fonction argument sinus hyperbolique est impaire.
y ’
\ yex .
v
’/
,/
’/
I,
,/
||~
1
L ! ,‘ = X
-1 1 |
’ =TI I
# y = Argsh x
/’,
,I
,/
,I
//
"/ ————— -~ y=shx

Figure 30.1- La courbe représentative de la fonction argument sinus hyperbolique.

2. La fonction argument cosinus hyperbolique

La fonction cosinus hyperbolique est bijective de R* sur [1, +oo[. Sa fonction réciproque
est appelée argument cosinus hyperbolique, notée Argch, et telle que, pour tout x de

[1,+co :
Argchx = In (x+ VaZ — 1)

La fonction argument cosinus hyperbolique est continue sur [1,+oo[, dérivable sur
]1, +oo[, et strictement croissante sur |1, +oco[. Sa dérivée est définie, pour tout x de
]1, +ool, par :

5 1
Argch’(x) = \/?1
x —
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Figure 30.2 - La courbe représentative de la fonction argument cosinus hyperbolique.

3. La fonction argument tangente hyperbolique

La fonction tangente hyperbolique est bijective de R sur | — 1, I[. Sa fonction réciproque
est appelée argument tangente hyperbolique, notée Argth, et telle que, pour tout x de

1—=114]:
1 1 +x
Argthx = = 1
rgth x 3 n(]_x)

Les propriétés de la fonction argument tangente hyperbolique sont les suivantes :

e La fonction argument tangente hyperbolique est continue, dérivable et strictement
croissante sur | — 1, 1[. Sa dérivée est définie, pour tout x de | — 1, I[, par :

Argth’(x) = T

o La fonction argument tangente hyperbolique est impaire.

y
A /,/
Yy —\X P
v
A\ ’f
b g
U4
4
L4
rd
’
//
y = th x 1 L
'l : o = X
-1 1
-1
’
s/
o
Cd
L4
L
4
s
'
7
4
Vo - y=Argth x
’l’
’
L4
s

Figure 30.3 - La courbe représentative de la fonction argument tangente hyperbolique.
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Développements limités

On introduit ici un nouvel outil permettant I’étude locale des fonctions : les dévelop-
pements limités, qui permettent notamment de déterminer la limite en un point d’une
fonction donnée sous une forme indéterminée (par exemple, le quotient de deux fonc-
tions ayant toutes les deux une limite nulle). Les développements limités sont aussi d’une
grande utilité pour montrer qu’une fonction est dérivable en un point, trouver I’équation
de la tangente a son graphe en ce point, et préciser la position relative du graphe et de sa
tangente.

1. Développement limité au voisinage d’un point
Définition

Soient f une fonction définie sur un intervalle / de R, @ un point de /, et n un entier
naturel non nul. On dit que f admet un développement limité d’ordre n au voisinage
de a, s’il existe des nombres réels ¢y, ¢y, - .., ¢, et une fonction & de limite nulle en 0
tels que, pour tout réel x de [ :

fX)=cp+ci(x—a)+...+c,(x—a)' + (x—a)" e(x—a)
ce qui s’€crit aussi, avec la notation « petit 0 »

f=co+cix—a)+...+c(x—a)' +o((x—a)")

Un développement limité d’une fonction au voisinage d’un point consiste donc a approcher
cette fonction par un polyndéme.

Exemple
Au voisinage de zéro, la fonction sinus peut ainsi étre approchée par les fonctions polyno-
il ; ¥ X
miales x > X, x> x— —,etx > x— — + —
' 3r 3L S5
y
A /
y =X “d‘
\ '
\ ¥,
\ Fd
1 — \ 4
\ y = sin x e
1 i’
1 i ¢
\\ i 1 e
“ ".‘ 4, -\\ e
\ i Y -
i Ay
\_ / O \
o '\\ i X
- \ A
= X //f\\
! — t 1+ Pl 1
A e * 3 \\‘
P L& Yo Kiimmm \
Y=X"3:* & 3 \
-~
#
’l
U
b4

Figure 31.1- Le graphe de la fonction sinus et de trois de ses approximations polynomiales au

voisinage de 0.
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Partie principale d'ordre n € N d'un développement limité

Définition

Soit f une fonction définie sur un intervalle 7 de R, admettant un développement limité
d’ordre n au voisinage de a € I, de la forme :

f(X)=co+ecix—a)+...+cpx—a)" + (x—a)" e(x—a)

On appelle partie principale d’ordre n du développement limité de f le polynome :

3.

co+tci(x—a)+...+c,(x—a)

. Cette définition respecte la convention introduite dans le paragraphe précédent, olt I'on a

choisi, de facon générique, de désigner par £ toute fonction de limite nulle en 0.

Quand x s’approche de a, c’est-a-dire lorsque x — @ devient trés petit, chacun des termes du
développement limité devient négligeable devant le terme qui le précede. Plus précisément,
le terme ¢ (x — @) devient petit devant ¢, qui est une constante ; de méme, ¢, (x —a)” devient
lui aussi tres petit, et négligeable devant (x — a), ..., ¢,(x — @) devient trés trés, trés petit,
¢’est-a-dire négligeable devant (x — a)""', et, finalement, (x — a)" &(x — a) devient encore plus
petit, ¢’est-a-dire négligeable devant (x — a)".

Méme si le développement limité donne apparemment la valeur de la fonction en tout point
de I’intervalle /, il ne faut pas oublier que I’on ne connait aucune propriété de la fonction £ en
dehors de sa limite en (. Autrement dit, a partir du développement limité, on ne peut espérer
obtenir aucune information sur le comportement de la fonction f ailleurs qu’au point a. C’est
uniquement lorsque 1’on recherche la limite en a d’une expression faisant intervenir la fonc-
tion f qu’il peut étre avantageux de remplacer la fonction f par son développement limité
en a.

La partie principale d’ordre n, P(x) = ¢ + c1(x — a) + ... + ¢,(x — @), du développement
limité est un polyndme de degré n, écrit de maniere tout a fait adaptée pour étudier ce qui
se passe lorsque x tend vers a. Il serait particulierement maladroit de le développer suivant
les puissances de x car on perdrait ainsi toute I’information contenue dans les coefficients ¢;,
i =0, ..., n Par exemple, le coefficient ¢y donne la valeur du polynéme P au point a, le
coefficient ¢; donne la dérivée de P en a, etc.

Le reste (x —a)" e(x — a) du développement limité est indispensable : en ’oubliant, on affirme
que la fonction f est un polynome de degré au plus n ce qui n’est pas vrai en général. Il
faut le considérer comme un indicateur de 1’ordre du développement limité, ¢’est-a-dire de la
précision avec laquelle on veut connaitre la fonction f au voisinage du point a. De plus, quand
on effectue des opérations sur les développements limités, ¢’est en suivant les transformations
successives de ce terme que 1’on connait I'ordre du développement limité obtenu a la fin. Cet
ordre peut étre en effet difficile a prévoir avant de faire les calculs explicites.

Unicité du développement limité

Théoréeme

Soient f une fonction définie sur un intervalle I, et a un point de 1. Si f admet un
développement limité d’ordre n € N* au voisinage de a, alors ce développement est
unique.

82



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Démonstration : Ce théoréme est admis. m

Le théoréme précédent signifie que, si on trouve, par exemple par deux calculs différents,
deux développements limités pour la m&€me fonction, ceux-ci sont égaux. Nous pourrons done
parler « du» développement limité a I’ordre n de la fonction f au voisinage de a.

Exemple

: 1 ; ;
La fonction x +— — est définie sur I"intervalle JO, co[. Nous voulons en trouver le développe-
x
ment limité en un point @ > 0. La premiere étape consiste a établir un développement limité

de la fonction x — en 0,

x
On remarque que, pour tout réel x # 1 :

1 N RE R ST TR N
1 —x 1—x

grice a la formule classique donnant la somme des n + 1 premiers termes d’une suite géomé-
trique de premier terme 1, et de raison x # 1 :
1:— xn+1

l+x+x2+...+x" =
1 —x

x : y T 55
En posant &(x) = i , on obtient alors le développement limité a I’ordre n, au voisinage de
=ik

0, de la fonction x — T

Passons a la deuxieme étz)acpe. Une méthode générale pour obtenir le développement limité
d’une fonction au voisinage d’un point a est de se ramener a un développement limité au
voisinage de 0 en posant

r=a4+h

ou & tend vers 0 (en pratique, les développements limités « classiques » sont tous des déve-
loppements limités au voisinage de 0).
Grice au développement limité obtenu plus haut, on obtient :

1__1
x a+h
1
=]
a
(2 G G G AR)
= | L l— Jl— ] 4 b —] ] —) 8]{—
a a a a a a
= ———z(x—a)+i3(x—a)2+...+(—l)" nl+l (x—a)"+(x-a)' e(x—a)
a d a a
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Formule de Taylor-Young

Quoique faisant intervenir une notion globale (fonction dérivable sur un intervalle) dans
son énoncé et un résultat qui nécessite 1’étude globale des fonctions (théoréme des ac-
croissements finis) dans sa démonstration, le résultat suivant est essentiel dans I'étude
locale des fonctions.

1. Intégration des développements limités

Propriéte
Soient f une fonction définie sur un intervalle / de R, et a un point de /.

Si f est dérivable sur 7, et si sa dérivée f’ admet un développement limité d’ordre
n € N* au voisinage de a, de la forme :

ff(xX)=co+ci(x—a)+...+c(x—a)* + (x—a)" e(x - a)
= cotci(x—a)+...+cy(x—a)"+o((x—a)")
alors f admet un développement limité d’ordre n + 1 au voisinage de a, dont la partie

principale d’ordre n+ | est obtenue en primitivant terme a terme celle du développement
limité de f”, de la fagon suivante :

FO = f@+cox=-a)+ 2L (x—a)P +...+ —— (x—a)"! +(x— )" s(x - a)
2 n+1

Cl Cn n+ n+
:f(a)+co(x—a)+E(x—a)2+...+m(x—a) '+0((x—a) ')

Démonstration : Ce résultat est admis. ]

» Développement limité de la fonction logarithme népérien
au voisinage de 1

On integre le développement limité :
1

| —x

=l4+x+2+... .+ +x" e

Une primitive de la fonction x — est la fonction x — —In(l — x), fonction qui

-X
s’annule pour x = 0. Il en résulte :
2 +1

X
—ln(l—x)=x+?+...+

+ X" e(x)

n+ 1
Cette formule est vraie pour tout ordre n. On préfere écrire un développement limité
d’ordre n :

. v )
In(l-x)=-x———...— — ! =— —
n(l = x) X= > p + X" e(x) ; 7 + X" e(x)
En changeant x en —x, on obtient :
no_ 1y
ln(l+x)=x—£+...+(—1)”+1ﬂ+x"£(x):z()—+x”£(x)
2 n = k
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» Développement limité de la fonction exponentielle au voisinage de zéro

La fonction exponentielle est dérivable. Sa dérivée est la fonction exponentielle, qui vaut
1 en 0. On en déduit :
e =1+x+xelx)

En intégrant le développement limité :
ef=e"=1+x+xex)

on trouve : 2

¥
e"=eo+x+?+x28(x):1+x+x2+x28(x)

qui est aussi un développement limité de la fonction dérivée x +— ¢*. En continuant
a intégrer les développements de la fonction dérivée x +— ¢* ainsi obtenus, on trouve
finalement :
n
¥ x x*

X = = i — =
ef=1+x+ > +3! +...+n! + X" e(x) k:()k! + X" &(x)

A partir de 13, on obtient facilement le développement limité de la fonction exponentielle
a l’ordre n en un point a :

ea-i-hzeaeh
2 3 "
= ¢ (1+h+3+§+...+ﬂ+h e(h)
(x—a)? " (x—a)’ (x —a)"
2 3! n!

e"(1+(x—a)+ -!—(x—a)”s(x—a))

\ graphe|de la

\‘foncﬁon polynomiale
~ o
A Y o 71

= I -x

Figure 32.1- Le graphe d’une approximation polynomiale de la fonction exponentielle au
voisinage de a.

» Développement limité des fonctions sinus et cosinus au voisinage de zéro

1. La fonction sinus vaut O en 0, elle est dérivable sur R, sa dérivée est la fonction cosinus.
La fonction cosinus vaut 1 en 0, elle est dérivable, sa dérivée est la fonction —sinus.
On en déduit :

cosx=14+0Xx+xex)=1+e&x)

En intégrant le développement limité :

cosx =1+ xe&(x)
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on obtient :
sin x = sin(0) + x + x? g(x)=x+ X% &(x)

En intégrant le développement limité :
—sinx = —x+ x* &(x)

on obtient : .

cos x = cos(0) — g +x3.9(x) =1 —%+x3s(x)

En continuant a intégrer successivement les développements des dérivées repectives des
fonctions sinus et cosinus, on trouve finalement :

2 4 6 2n

g s o X X Zn+l (_])k % 2n+1
cosx—l—2—!+4—!—6— (=D — (2)' g(x) = Z 20! + X &(x)
.X3 ‘xs X7 n x2ﬂ+1 2f1+2 ( )k i 2n+2
slnx_x—?+;—ﬁ+ A(=1) (2 +1)’ a(x)—Z T +Xx £(x)
[
graphe de

l'approximation polynomiale

/ y=1cgs x %

Figure 32.2 - Le graphe d’une approximation polynomiale de la fonction cosinus au voisinage de 0.

A partir de 13, on trouve facilement le développement limité de la fonction sinus, par
exemple, a I’ordre 2 n en un point a :

sinx = sin{a + h)
= sina cosh + cosa sinh

= (1—3—2!+4—i— RV (:2;, W gy
% j2n=1
+cos(a) (h gyt =" ] + b S(h))
= sina+ (x—a) cos(a) - x;—'a)z sin(a) + ...+ (=1)y"! —(ZC;S_(CI)) - (x - a)?!
Sln(a)

( )"+ (x—a) e(x —a)

+(-1 )”

cos(f)

cos (9

3m . 5 .3 : :
pose 6 = T h, ou h tend vers zéro par valeurs positives (ce qui est logique et assez

) . 3m ) )
2. Déterminons la limite, lorsque € tend vers R par valeurs inférieures, de ;on
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3 o o 37
naturel, car & tend vers 7 par valeurs inférieures, c’est-a-dire juste avant 7) ;

cos(f) < i COS(%7T —h)

lim
iz~ g h—0 T _ ’l)
—= 005(3) COS(2 3

. sin(h)
= lim —
=-3

2. Formule de Taylor-Young'

Théoréme

Soit [ une fonction définie sur un intervalle I et soit a un point de 1. Si [ est n fois

dérivable en a, alors [ admet un développement limité d’ordre n en a donné par :

(@) "( ) f (”)( )
n!

f(x) = fla)+ (x—a) f'(a) + ——(x—a)* +...

x—-a)"+(x—a)"e(x—-a)
ou, pour tout entier i de {1,...,n}, 1 désigne la dérivée jeme o 7.

Démonstration : On démontre ce résultat par récurrence sur I’entier n.

e La propriété est bien vraie au rang 1 : par hypothese, la fonction f est (une fois)
dérivable en a. Elle satisfait donc la propriété caractéristique des fonctions dérivables :

f@=fl@+x-a f@+(x-aex-a)

Ainsi, elle admet un développement limité d’ordre 1 en a, qui est bien de la forme
annoncee.

e Supposons la propriété vraie jusqu’a un rang n > 0; si la fonction f est n + 1 fois
dérivable en a, sa dérivée [’ est donc n fois dérivable en a. L’hypothese de récurrence
permet d’en déduire qu’elle admet donc un développement limité donné par :

f(3)( ) [ D(a)

x—a)P+...+——(x—a)" +o((x—a)")

() = f@)+(x=a) (@) + oY

(la i®™e dérivée de f est la (i + 1)'®™ dérivée de f).
1l suffit d’intégrer ce développement limité pour obtenir celui de f et la formule cher-
chée. ]

Une fonction peut admettre un développement limité & un ordre n > 2 au voisinage d’un point,
sans étre n fois dérivable en ce point. C’est le cas, par exemple, de la fonction f qui, & tout

. .1
réel x non nul, associe x° sin (— ;
x

L. William Henry Young (1863-1942), mathématicien anglais, spécialiste de calcul différentiel, théorie de
la mesure, analyse spectrale, analyse complexe.
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Au voisinage de zéro, [ admet le développement limité a I’ordre 2 suivant :
e (1
P sm(—) =0+ x% x sin (—)
X X

1
lim x sin(—) =0
a—0 B)

La dérivée de f peut étre prolongée par continuité en zéro, puisque :

1
X sin (—) -0

i X
lim ————

x—0 x—O

avec

=0

mais ce n’est pas le cas de sa dérivée seconde, puisque :

e 1
x“sin|—|—xcos|—|—
3x2 0
X % 1 1
=3 xsin|—|—cos|—
x—=0 X X

n’a pas de limite lorque x tend vers zéro.
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Développements limités usuels

Dans ce qui suit, n désigne un entier naturel.

» Développement limité au voisinage de 0 de la fonction x — T

-X
Théoréme
Pour tout réel x tendant vers 0 :
|
1 =1+x+22 +...+37 +2"e(x)
-X
= l+x+x2+...+xX"+0(x")
n
- Z + +0(xX")
k=0
» Développement limité au voisinage de 0 de la fonction x — %

Théoréme

Pour tout réel x tendant vers 0 :

|
1 +x

= 1= B B BT 552 5000
= l—x+xX2+...+=D)" 2 +o(x)

Zn:(—l)" K +o0(x")
k=0

I

» Développement limité au voisinage de 0 de la fonction x — In(1 + x)

Théoréme

Pour tout réel x tendant vers 0 :

In(1 +x)=x—§+...+(—1)"+1§+x"8(x)
= x—£+...+(—1)”+1£+0(x”)
2 n

1yt
- Z¥+O(xn)
=1

» Développement limité au voisinage de 0 de la fonction x  In(1 - x)

Théoréme
Pour tout réel x tendant vers 0 :
x2 i
Inl—x)=-x———...— — +x"&x)
22 n
= —x—%—...——+o(x")
5y xk
- ->, — o
k=1
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» Développement limité au voisinage de 0 de la fonction exponentielle

Théoréme

Pour tout réel x tendant vers 0 :

7 .3
X"
e*’:1+x+x—+x—+...+—+x”s(x)
2 3! n!
x2 x3
= l+x+7+§+ ..+—!+0(x")
als
= F+o(x")
k=0 "

» Développement limité au voisinage de 0 des fonctions trigonométriques

Théoréeme

Pour tour réel x tendant vers 0 :

cosx=1—%+%—x—!+.. +(—1)"(2)!+x2”+'8(x)
2 & a n 2” 2n+1
= 1_5+ﬂ_@+ +{—1) (2)1+0(x )
= ; (—])kxzk (2f1+l)
L2k
)63 xﬁ x'." ; x2n+l i
smx—x——;+§—;+ +(=1) (2n+1)'+x &(x)
ﬁ XS )C7 . x?,n +1 Sigadl
:x—;+—‘——!+..+(—)(2n+])’ ( )
(_ 1 )k x2k+l e
B 2 Qk+1)! (")
k=0 d
tan x = +£+£+17x7+ 8 £(x)
PEATE TS Ts YA
= x+x—3+£+ ]7x7+o(x3)
- 3 15 315

On ne donnera pas, ici, de développement limité a 1’ordre n, au voisinage de zéro de la fonction
tangente ; il faut savoir que ce développement existe, mais fait intervenir des quantités qu’il
serait trop compliqué de définir ici (les nombres de Bernoulli en I’occurence).

3 xS -1y 2n+1
arctan x = x — e + 5 +...+ % + X2 g(x)
}63 x5 (_ 1 )n xZIHl 5
S i i Py B s
TTET o)

920
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» Développement limité au voisinage de 0 des fonctions trigonométriques hyper-
boliques en 0

Théoreme
Pour tout réel x tendant vers O :

ch(x) = 1+%+%+6—'~+. +(;n)' F o2 g
=1+x—2’+x—‘:+x—i+ (2x2n;‘+o(x2””)
- k:g (;;c' +0(X2n+1)
sh(x) = x+ ; + g—s' + ;—7' - (zxZTi) ek 22 g(x)
e TRL L
- Basmeete)
th(x)=x-— ? + 21—? - I;? + 1% e(x)
x5 e Re - o el

De méme que pour la fonction tangente, on ne donne pas, ici, de développement limité a
’ordre n, au voisinage de zéro de la fonction tangente hyperbolique, qui fait aussi intervenir
les nombres de Bernoulli.

3 )CS x2n+ 1

_ .l +2
argthx = x + 3 + 5 +'”+2n+1 + 1272 g(x)
43 48 el »
= X+ —+—=+... B
X+ T +2n+1+0(x2 )

» Développement limité au voisinage de 0 de la fonction x — (1 +x)%, @ € R*

Théoreme
(1+x*=1 +ax+#x2+...+Q(a_l)';'{a_ni-l)x’wx"e(x)
= Togpe o, +a(a~1)"'(a’_n+l)x"+o(x”)

2 o n!
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Opérations algébriques et composition
des développements limités

Lorsque I’on veut calculer le développement limité d’une fonction, on commence par
se ramener a un développement limité au voisinage de O (si cela est nécessaire, on pose
donc x = a + h, avec h tendant vers 0). Nous nous contenterons donc, dans ce qui suit,
de parler des développements limités au voisinage de 0.

1. Premier principe

Dans un développement limité, il est inutile de conserver des termes plus petits que le
reste.

Ainsi, pour un développement limité a un ordre n donné (n € IN™), si p est un entier
strictement plus grand que » :

X +xte(x)=x"elx) , xe(x)+x"elx)=x"elx)

ou encore, avec la notation « petit o »

Fro(@=0(") , o(x)+o()=0(")

(ceci vient du fait que x” = x"xP7" = X" g(x)).

On prendra bien garde au fait que ces égalités se lisent de la gauche vers la droite, et non
I'inverse !

A partir de ce principe, il est facile de calculer la somme ou le produit de deux déve-
loppements limités.

Exemple

Au voisinage de 0 :

x4:0(x3) . o(x5)+0(x7)=0(x4) X xzo(xs):o(XS)

2. Second principe

~ ey 2t 1 b
opyrignt (

Pour éviter des calculs trop lourds et pénibles, on n’explicite les « factorielles » qu’a la

fin!
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Exemples

1. Calcul a éviter
Pour déterminer un développement limité a I’ordre 4 en zéro de la fonction x - ¢* sin x, il
est peu judicieux de procéder ainsi :

e’ sinx = (1+x+£+§—i+i—i+o(xﬂ) (x~£+o(x4))

Il

x(]+x+£+—+x—4+o(x3))

2 6 24
3 2 3 4
—%(l+x+%+%+%+o(x4)
+o(x*) 1+x+x2+x3+x4+0(x4)
2! 6 24
3 4 .5
B . A 4
= X+ X +?+g+ﬂ+o(x)
¥ ot o a A &
5 % nt% mo

+ ...+ horribles fractions

2. Calcul modéle

Pour déterminer un développement limité a I’ordre 4 en zéro de la fonction x - e sin x, il
est préférable de procéder ainsi :

e’ sinx = (I+x+;+§+x—4+o(x4)) (xgﬁ+o(x4))

= x+x2+£~+;—i+o(x4)—-3—q!~—;c—‘:+o(x4)
T £ A

= x+ 22+ % +o0 (x4)
3. Troisiéme principe

Pour déterminer le développement limité au voisinage de zéro, & un ordre n € N*, de
la composée de deux fonctions f et g, ol g tend vers zéro : on commence par poser
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g(x) = X, et on effectue le développement limité de f en zéro & un ordre suffisamment
élevé p afin que le développement de la fonction composée soit bien d’ordre n par rapport
ax:

(fogd)(¥)=fX)=ap+a1 X+ X+ ...+ an X" + o(XP)
Il reste ensuite & développer a I’ordre n par rapport a x les termes X = g(x), X> = (g(x))z,
..., XP = (g(x))?, en ne gardant que les termes en x".

Exemple

Au voisinage de 0, a 'ordre 4 :

sinx  sin*x

cos (sinx) = 1- > 71 +0(sin4 x)
| % 4 g a0 o 4 ¥ i
= l—z(x—i+o(x)) +4—!(x—§+0(x)) +0(x)

2 3! !
x2 5):4 4
= ]—E-{-H-FO(JC)

4. Quatriéme principe

Pour déterminer le développement limité, au voisinage de zéro, a un ordre n € N*, de la
composée de deux fonctions f et g, il faut faire trés attention dans les cas ot la fonction g
ne tend pas vers zéro en zéro !

Exemple

Au voisinage de 0, a I'ordre 2 :

2 2
CO8 X 5 +o(x’)

e = e'-

2 5
ee” = +o(x?)

2
e (l - % + o(xz))
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Développements asymptotiques

fiche 35

A la fin du X1X° siécle, le mathématicien Henri Poincaré! s’intéresse au probléme « des

trois corps » , qui est un cas particulier du probléme dit « des N corps » , out on cherche
a décrire le systeme formé par N corps célestes (étoiles, planetes), dont les mouvements
sont régis par les lois de I’attraction universelle, et a étudier leur stabilité€. Dans le cas
«des trois corps », qui sont en fait le Soleil, la Terre, la Lune, de masses respectives

my « " mi

—= est trés petit 1 ———
. ) , v e Msoleil i Myoleil R
bleme, Poincaré eut I'idée d’effectuer un développement limité par rapport a cette der-

niére quantité. C’est ainsi qu’est apparue la notion de « développement asymptotique »,
la grandeur m, . étant « trés grande ».

De facon générale, un développement asymptotique est obtenu lorsqu’une des quan-
tités en jeu tend vers une limite infinie. L’inverse de cette quantité tendant vers zéro, il
est alors possible de se ramener a un développement limité au voisinage de zéro.

Msoleils Mierres Miynes le rapport < 1. Pour résoudre ce pro-

Calculus

Exemples

1. Lorsque n tend vers +co :

(1 s l)" = (1) = rlh=sireshreel ) = it streo(d)
n

|
(On a effectué un développement asymptotique a I’ordre 2 en —.)
"

Ainsi ; 1w
lim (1 - —) =e i
n—+oo n :_:7:

2. Lorsque n tend vers +co :

sin (7 Vn? + ) = sin[frn 1+ 1] = sin(mr {1 P S +g(i)}) If;Ifi

n 2n  8n? n?
sinfnr+ - 2 + 2
2 8n ¢ n
e+ )
cos|lnm— — +o|-
8n n
(-1 cos(—1 + a(l))
8n n
(—1)" cos(i +0 1)
8:“; n
I n 1
_1 n 1__ I
( ){ 264n2+0(n2)}

; n’ 1
1) {1 T 1282 +”(F)}

(On a effectué un développement asymptotique a I’ordre 2 en %.)

1l

I

Il

Ainsi, sin (:r Vn? + n) n’a pas de limite lorsque # tend vers I'infini.

Développements

%)
[<}]
=
=)
)
(@]
)
o
E
>
(72}
(1]

1. 1854-1912. Outre ses apports aux mathématiques (il est considéré comme un des fondateurs de Ia topo-
logie). il apporta aussi de nombreuses contributions a la physique théorique, en optique et en relativité.
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Convexiteé

La notion de convexité correspond a une réalité physique ; ainsi, en optique, une len-

tille dite « convexe » est un verre « bombé vers I’extérieur ». Lorsqu’on la pose sur une

table, sa forme « bombée » fait que, quelle que soit sa position, la table reste toujours jo,
tangente au verre. De fagon équivalente, en mathématiques, la premiére caractérisation ~Fiche 84
de la convexité, qui s’applique a des courbes, est liée au fait que le barycentre d’un sys-

teme de points situés sur la courbe doit se trouver au-dessus de celle-ci (les fameuses

« inégalités de convexité »), ou encore, que la courbe est située au-dessous de toutes ses

cordes.

1. Définitions
» Fonction convexe

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, est dite convexe si,
pour tout couple (a, b) d’éléments de 12, et tout réel ¢ de Iintervalle [0, 1] :

fla+(1-nb)<tfla)+ (1 -1 f(b)

Cette définition traduit, tout simplement, le fait que tout point situé sur une corde joignant
deux points de la courbe, de coordonnées respectives (a, f(a)) et (b, f(b)), (a,b) € 1%, est
au-dessus de la courbe. Ce point étant sur la corde, son abscisse est de la formeta + (1 —1) b,
t € [0, 1], et son ordonnée de la forme 7 f(a) + (1 — 1) f(b), qui est donc plus grande que celle
du point de la courbe d’abscisse ta + (1 — 1) b, c’est-a-dire [ (ta + (1 — 1) b).

point de la corde

Figure 36.1- Le graphe d‘une fonction convexe.

» Fonction concave

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, est dite concave si,
pour tout couple (a, b) d’éléments de 77, et tout réel ¢ de I’intervalle [0, 1] :

fa+ (1 =0b) >t fla)+ (1 -1) f(b)

Dire qu’une fonction f est concave revient donc a dire que son opposée — f est convexe.
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> x

Figure 36.2- Le graphe d’une fonction concave.

2. Théoremes

» Position de la courbe représentative d'une fonction convexe par rapport
a ses cordes

Une fonction f, définie sur un intervalle 7 de R, a valeurs dans R, est convexe si et
seulement si sa courbe représentative est située en-dessous de toutes les cordes joignant
deux points de cette courbe.

cordes |
'I_
-1 L 1

Figure 36.3 - lllustration graphique de la position de la courbe représentative d'une fonction
convexe par rapport a ses cordes.

» Inégalité de convexité (ou inégalité de Jensen')

Théoreme

Soient f une fonction définie sur un intervalle I de R, a valeurs dans R, convexe, et
i

1, ... ly, n réels positifs dont la somme vaut 1 : t{y + ...+ 1, = Z t; = 1. Alors, pour
i=1

tout n—uplet (xy,...,x,) de I" :
n n
f[z % xi] < Zfif(xi)
i=1 i=1

Cette définition traduit, tout simplement, le fait que tout barycentre d’un ensemble de points
situés sur la courbe, de coordonnées respectives (xi, f(x1)), . .. (s f(X2))s (X1, ..., X,) € 7,

1. Mathématicien danois, 1859-1925.
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n
est au-dessus de la courbe. L’abscisse de ce point est donc de la forme Z By O b5 v B

i=1
n

sont i réels positifs dont la somme vaut |, et son ordonnée de la forme Z t; f(x;), quiest donc

i=1

n n
plus grande que celle du point de la courbe d’abscisse Z t; x;, c’est-a-dire f [Z tf (xi)].

i=1 i=1

» Régularité d'une fonction convexe

Théoreme

Une fonction f, définie sur un intervalle ouvert I de R, a valeurs dans R, convexe, est
continue, et admet, en tout point de I, une dérivée a droite et une dérivée a gauche.

L’hypothese selon laquelle 1'intervalle  doit Etre ouvert est essentielle !

» Inégalité des pentes croissantes

Théoréme

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, dérivable sur I, est
convexe si et seulement si, pour tout réel a de I, la fonction qui, a tout x de I, distinct

f(x) - fla)

x—a
tout triplet de réels (a,b,c) de I tel que a < b < c :

f(b) - f(a) _ fle) = fla) & fle)— f(b)

b—a h c—a b—-c

de a, associe le rapport est croissante, ce qui est équivalent a dire que, pour

Ce théoréeme traduit, tout simplement, le fait que la pente, ou coefficient directeur, de la droite
joignant les points de coordonnées (a, f(a)) et (b, f(b)), est plus petite que la pente de la droite
joignant les points de coordonnées (a, f(a)) et (¢, f(c)), qui est elle-méme plus petite que la
pente de la droite joignant les points de coordonnées (b, f(b)) et (c, f(c)), comme illustré sur
le dessin suivant :

Figure 36.4- lllustration graphique de I'inégalité des pentes croissantes.
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» Position de la courbe représentative d'une fonction convexe par rapport
a ses tangentes

Théoréme

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, dérivable sur I, est
convexe si et seulement si sa courbe représentative est située au-dessus de loutes ses
rangentes.

Figure 36.5- lllustration graphique de la position de la courbe représentative d’une fonction
convexe par rapport a ses tangentes.

» Convexité et dérivabilité

Théoreme

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, dérivable sur I, est
convexe si et seulement si sa dérivée [’ est croissante.

» Cas des fonctions deux fois dérivables

Corollaire

Une fonction f, définie sur un intervalle I de R, a valeurs dans R, deux fois dérivable
sur I, est convexe si et seulement si sa dérivée seconde f" est a valeurs positives, ¢’est-
a-dire si et seulement si, pour fout réel x de I :

[ =0
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Equations différentielles linéaires
du 1¢" ordre homogeénes

Une équation différentielle est un type d’équation un peu particulier, dans la mesure ou
I’inconnue est une fonction, en général désignée par la notation « i ». On parle d’« équa-
tion différentielle », dans la mesure ot les dérivées de la fonction inconnue figurent aussi
dans I’équation. Par exemple, si I est un intervalle de R,

y(x)=2yx) Vxel
Yy () +x=1 Yxel
(y'(x))2 +yx)+x=0 Vxel

sont des équations différentielles.

Dans ce qui suit, on ne s’intéressera qu’au cas des équations différentielles linéaires
du premier ordre, ¢’est-a-dire linéaires par rapport a la fonction inconnue y, et ne faisant
intervenir que la dérivée premiere y’ de la fonction cherchée.

Définition
Soit ¢ une fonction définie sur un intervalle I de R, a valeurs dans R, continue.
On appelle équation différentielle linéaire du premier ordre homogene une équa-

tion de la forme :
y () =axylx) Yxel

ou y est une fonction dérivable sur 1. On peut aussi écrire, pour alléger les notations :

y =ax)y

1. Méthode pratique de résolution

Soit @ une fonction définie sur un intervalle [ de R, a valeurs dans R, continue.
On s’intéresse a I’équation différentielle linéaire du premier ordre homogene, que I’on
désignera, dans ce qui suit, par (&) :

y =alx)y

La fonction identiquement nulle sur I'intervalle I est solution de (&Ep).

Considérons une solution y de (&p), définie sur un intervalle J C /, non identiquement
nulle. On suppose que y ne s’annule pas sur J. Quitte a changer y en —y, on supposera
que y est a valeurs strictement positives.

On peut alors écrire :

y'(x)
y(x)
!

4 5 2 .o yx Ep v §
La fonction qui, a tout x de J, associe &, est la dérivée de la fonction qui, a tout x

y(x)

= a(x)

de J, associe In |y(x)| = In (y(x)).
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Ainsi, si on arrive a trouver une fonction ¥, dont a soit la dérivée sur J (¢’est-a-dire
¥/ = a), on aura, 4 une constante réelle C prés :

Inly(x)] = Fo(x)+C VYxelJ

(la dérivée de la fonction constante qui, a tout x de J, associe C, est la fonction identi-
quement nulle).
On en déduit alors, pour tout x de J :

Falx)+C C Falx)

yx)=e =e¢ e

On vérifie que, réciproquement, toute fonction de la forme x € J + € 7™ est solu-

tion de (&p).
On peut écrire que I’ensemble des solutions de I’équation différentielle initiale est :

{x e J LW € € R]

» Solutions d'une équation différentielle linéaire du premier ordre homogéne

Théoreme
Soit a une fonction définie sur un intervalle I de R, a valeurs dans R, continue.

Les solutions de I'équation différentielle linéaire du premier ordre homogéne :
y () =axyx) Yxel

sont les fonctions de la forme :

x € I K@

ou K est une constante réelle, et ¥, une fonction telle que, pour tout x de I :
Fa(x) = a(x)

De fagon équivalente, on peut écrire que I'ensemble des solutions de I'équation diffé-
rentielle initiale est :
{x el KW K e R]

Exemple

Considérons I’équation différentielle :
y'(x) =2xy(x)
On recherche les solutions y qui ne s’annulent pas sur . On a alors, pour tout réel x :

LS

=2
y(x) :

La fonction qui, a tout réel x, associe 2 x, est la dérivée de la fonction qui, a tout réel x,
associe x°.
On en déduit, pour tout réel x :

Inly(x)| = %"+ C
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ot C est une constante réelle ; puis :

2 2
y(x) - ex +C 2 €C e~

que I’on peut encore écire sous la forme :
ylx) = Ke*

ol K est une constante réelle positive (cela revient juste 4 appeler autrement ¢, qui est aussi
une constante).
On vérifie que, réciproquement, toute fonction de la forme x € R — K e”, K € R, est
solution de y'(x) = 2 xy(x).
De facon équivalente, on peut écrire que 1’ensemble des solutions de 1’équation différentielle
initiale est :

[reRm Ke" K € R

2. Condition initiale (pour une équation différentielle linéaire
du premier ordre homogéne)

Définition
Soient a une fonction définie sur un intervalle 7 de R, 4 valeurs dans R, continue, xg

un réel de 7, et yy un réel.

On appelle équation différentielle linéaire du premier ordre homogene, avec la
condition initiale y(xy) = xo, la donnée de 1’équation différentielle :

y(x)=alx)y(x) Yxel

avec la condition :
y(xo) = yo

» Solutions d'une équation différentielle linéaire du premier ordre homogéne
avec une condition initiale
Théoreme

Soient a une fonction définie sur un intervalle I de R, a valeurs dans R, continue, xy un
réel de I, et yo un réel.

L’équation différentielle linéaire du premier ordre homogene :
y(x)=ax)y(x) Yxel

avec la condition initiale :
y(x0) = Yo
admet pour unigue solution la fonction :
x €Iy e~ Talxo) pFalx)
ou F, est une fonction telle que, pour tout x de I :

Fa(x) = a(x)

(on admet [’existence d’une telle fonction).

102



Copyright © 2014 Dunod.

=
©
=
=
=
z
w
o
]
Z
g2
2
E
=
£
=]
2
=
£
=}
E
=
z
z
E
=
=
-]
=
=
a

Equations différentielles linéaires
du 1¢" ordre avec second membre

1. Définitions et théorémes
» Equation différentielle linéaire du premier ordre avec second membre
Soient a et b deux fonctions définies sur un intervalle [ de R, a valeurs dans R, continues.

On appelle équation différentielle linéaire du premier ordre avec second membre
une équation de la forme :

y(xy=a(x)y(x) +b(x) Yxel
que 1’on peut aussi €crire, pour alléger les notations :
Yy =a(x)y +b(x)
» Equation homogéne associée a une équation différentielle linéaire
du premier ordre avec second membre

Soient a et b deux fonctions définies sur un intervalle [ de R, a valeurs dans R, continues.
On appelle équation homogene associée a 1’équation différentielle linéaire du premier
ordre avec second membre y = a(x)y + b(x) I’équation :

yx)=ax)y(x) Yxel
» Principe de superposition

Théoreme

Soient a, by et by trois fonctions définies sur un intervalle I de R, a valeurs dans R,
continues.

Si yy est une solution sur I de I'équation différentielle linéaire y' = a(x)y + b1(x), et ya
une solution sur I de ’équation différentielle linéaire y' = a(x) y+ ba(x), alors, pour tout
couple de réels (11, 12), A1 y; + Az y» est une solution sur I de I’équation différentielle
linéaire y' = a(x)y + A1 by(x) + 13 ba(x).

Corollaire

Soient a et b deux fonctions définies sur un intervalle I de R, a valeurs dans R, continues.
Si y, et y> sont deux solutions sur I de I’équation différentielle linéaire avec second

membre y' = a(x)y + b(x), alors la fonction différence y, — y; est une solution sur I de

I’équation différentielle homogéne associée y' = a(x)y.

Démonstration : Sachant que y; et y» sont solutions sur / de 1’équation différentielle
y' = a(x)y + b(x), on obtient :

y2 = y1 = a0y + b(x) = (alx) ¢} + b(x)) = alo) (2 = 1)

D’ou le résultat. u
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Exemple

On considere 1’équation différentielle :
Yy =y+2x+sinx

La fonction qui, a tout réel x, associe —2 x — 2 est solution sur R de I’équation différentielle :

Yy =y+2x
. . . . sSinx+cosx . .. . L
La fonction qui, a tout réel x, associe B E— est solution sur R de I’équation différen-
tielle :
y =y+sinx
. . . . sin X + Cos x .
La fonction qui, a tout réel x, associe =2 x — 2 — ————— est donc solution sur R de

2
I’équation différentielle :
y =y+2x+sinx

» Solution générale d’une équation différentielle linéaire du premier ordre
avec second membre

Théoréme
Soient a et b deux fonctions définies sur un intervalle I de R, a valeurs dans R, continues.

La solution générale sur I de I’équation différentielle linéaire du premier ordre avec
second membre y' = a(x)y + b(x) s’obtient comme somme de la solution générale sur
I de I’équation différentielle homogéne associée, et d’une solution particuliére sur I de
I’équation différentielle avec second membre.

Pour mémoriser ce résultat, on peut le retenir sous la forme :

Solution générale de I’équation avec second membre

Solution générale de I’équation sans second membre
+
Solution particuliére de I’équation avec second membre

ou, sous forme « abrégée » :

Solution générale E.A.S.M.

Solution générale E.S.S.M.
+
Solution particuliere E.A.S.M.

Démonstration : Ce résultat vient du corollaire précédent ; en effet, si on connait une
solution y; de I’équation différentielle avec second membre, définie sur un intervalle J,
n’importe quelle solution sera de la forme y,; + z, ou z est une solution sur J de 1’équation
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homogene associée. Ainsi, toute solution sur J de 1’équation avec second membre est
telle que, pour tout réel x de J :

y(x) =y (x) + A&7«

ou A est une constante réelle arbitraire, et 7, une fonction telle que, pour tout x de J :
F,(x) = a(x) |

» Extension aux fonctions a valeurs complexes

On admet que I’ensemble des résultats précédents est généralisable aux fonctions a va-

leurs complexes, ¢’est-*a-dire dans C.

2. Recherche de solutions particulieres de I’équation avec second
membre, dans le cas ou la fonction a est constante

» Cas d'un second membre de type « exponentielle x polynéme »
Soit :
Y (x) = ay(x) + P(x)e™
ou P est une fonction polynomiale, et r et a deux réels.
e Premiercas:r = a.
On cherche une solution particuliere, définie sur R, de la forme :

x Qx)e™”
ol Q est une fonction polynomiale de degré inférieur ou égal a degré de P + 1.

Exemples

1. Pour I’équation diftérentielle :
y =3y-e

le second membre est de type « exponentielle X polyndéme » , la fonction polynomiale étant
de degré 0.

On cherche donc une solution particuliere, définie sur R, de la forme :
x y(x) = Ax+p) &F
ol A et u sont deux réels, ce qui conduit, pour tout réel x, a :
Y (x) = +3Ax+3u) "
En injectant dans I’équation différentielle, on en déduit, pour tout réel x :
A+3Ax+3w) =3 Ax+p) &=

soit :

/163)( — _631

et donc :
A=-1

Une solution particuliére de 1’équation avec second membre est donc :

x> y(x) = —&3*

(Comme il n’y a pas de condition sur g, le cas g = 0 convient.)
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2.

Pour I'équation différentielle :
Y =2y+(x+1)e?”

le second membre est de type « exponenticlle X polynéme » , la fonction polynomiale étant
de degré 1.
On cherche donc une solution particuliére, définie sur R, de la forme :

x> ylx) = (/lx2 +,ux+v) e
ol A, u et v sont des réels, ce qui conduit, pour tout réel x, a :
Y =(2Ax+p+2257 +2ux+2v) e
En injectant dans 1’équation différentielle, on en déduit, pour tout réel x :
y'(x) = (2/1x+,u +2A°% +2ux+ 2V) k=) (/lxz Ut px+ v) 2 + (x+ 1) 2*

soit :
v (x) = QAx+put) e = (x+1)e**

etdonc:2A=1,u=1.
Une solution particuliére de 1I’équation avec second membre est donc :

xl
x - y(x) = (E +x) e*

e Deuxieme cas : r # a.

On cherche une solution particuliere, définie sur R, de la forme :

x> Q(x)e*

ou Q est une fonction polynomiale de degré inférieur ou égal au degré de P.
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Exemples
1.

Pour I’équation différentielle :
yf =y+ e3,r

le second membre est de type « exponentielle X polyndéme », la fonction polynomiale étant
de degré 0.
On cherche donc une solution particuliere, définie sur R, de la forme :

x> y(x) = 1e’?
olt A est un réel, ce qui conduit, pour tout réel x, a :
y(x) =316
En injectant dans 1'équation différentielle, on en déduit, pour tout réel x :
3re* =26 + 3

soit :
" )
213 =37
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et donc :

1
A==
2
Une solution particuliere de 1’équation avec second membre est donc :
1 3x
xbyx)=<e
Yy = 5
Pour I’équation différentielle :
y =2y+x°+1

le second membre est de type « exponentielle X polyndme », la fonction polynomiale étant
de degré 2.
On cherche donc une solution particuliére, définie sur R, de la forme :

x> y(x) = (/lxz +ux+ v) F = A +ux+v
o A, et v sont des réels, ce qui conduit, pour tout réel x, a :
y(x)=2Adx+u
En injectant dans I’équation différentielle, on en déduit, pour tout réel x :
2Ax+p =22 +2ux+2v+xt+1

soit :
2k —g) A+ —2v= 04 + D+ 1

et donc :
A=p , pu-2v=1 , 21+1=0

Il en résulte :

1 pu—1 3
/1 —1 — e — 3 = —_— = ——
H=73 » "7 4
Une solution particuliére de I’équation avec second membre est donc :
2
X 3
= = e I g
FOYR= =37
Pour I’équation différentielle :
Yy =2y+xe

le second membre est de type « exponentielle X polyndme », la fonction polynomiale étant
de degré 1.
On cherche donc une solution particuliére, définie sur R, de la forme :

x> yx) = (dx+p) e’
ol A et u sont des réels, ce qui conduit, pour tout réel x, a:
y(xX)=Ax+A+p) e’
En injectant dans 1’équation différentielle, on en déduit, pour tout réel x :
YD) =Ux+Ad+p) e =2 Ax+pu) e"+xe'

soit :
(—Ax+Ad—p) e =xe*

et donc :
A=-1 , A-u=0

Une solution particuliére de I’équation avec second membre est donc :

xyx)=—(x+1) e
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» Cas d’un second membre de type « polynéme x cosinus »

Soit :
Y (x) = ay(x) + P(x) cos(r x)

ou P est une fonction polynomiale, et r un réel, on se ramene au cas précédent en recher-
chant une solution particuliere sur C de I’équation différentielle :

() =ay) + Pe"”
11 suffit ensuite de prendre la partie réelle de la solution obtenue.

Exemple

Pour I’équation différentielle :
y =y +cosx

on se ramene a I’équation différentielle :
y =y+e”
On cherche donc une solution particuliére, définie sur R, de la forme :
x y(x) =e*
olt A est un nombre complexe, ce qui conduit, pour tout réel x, a :
y(x)=ide™"
En injectant dans I’ équation diftérenticlle, on en déduit, pour tout réel x :
Y (x)=ide'* = 1 + ¥

ce qui conduit a :
1 1+i

i—1 2
Une solution particuliere de 1’équation avec second membre initiale est donc :

x = Re (—(1 -2'- f) e”) Re (— (%) (cosx+1i Sinx))

—COSX—I8INX—1iCOSX+sinx
2
—COS X+ sinx
2

A=

=Re(

» Cas d'un second membre de type « polynéme x sinus »

Soit :
y' (x) = a y(x) + P(x) sin(r x)

ol P est une fonction polynomiale, et r un réel, on se ramene au cas « exponentielle x
polyndme » en recherchant une solution particuliére sur C de I’équation différentielle :

Y (x) = ay(x) + P(x)e'"™
11 suffit ensuite de prendre la partie imaginaire de la solution obtenue.
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Exemple

Pour I"équation différentielle :
y =y +sinx

on se ramene 4 I’équation différentielle :
y =y+e”

On cherche donc une solution particuliere de la forme :

- y(x) =Ae”
olt A est un nombre complexe, ce qui conduit, pour tout réel x, & :

y(x)=ile”
En injectant dans 1équation différentielle, on en déduit, pour tout réel x :
y(x)=ide' =1 + ¢

ce qui conduit a :
1 1+

i-1 2
Une solution particuliere de 1’équation avec second membre initiale est donc :

X S’Qe(— (%) e“‘) = Im (— (%) (cosx +1i sinx))

—COSX—I8INX—iCosx+sinx
=TIm

2
—Ccosx —sinx

2

3. Une méthode générale pour trouver une solution particuliere
de I'équation avec second membre : la méthode de variation
de la constante

Soient a et b deux fonctions définies sur un intervalle / de R, a valeurs dans R, continues.
Cherchons une solution particuliere de 1’équation différentielle linéaire du premier
ordre avec second membre :

y' =alx)y +bx)

La solution générale de I’équation homogene associ€e étant donnée par :
x o y(x) = e’
ol A est une constante réelle arbitraire, et ¥, une fonction telle que, pour tout x de / :
Fa(x) = a(x)
on peut se demander s’il n’existerait pas des fonctions de la forme :
x - y(x) = Ax) e’ ™
qui soient solutions de I’équation avec second membre.
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En injectant cette expression dans 1’équation avec second membre, on obtient, pour

tout x de [ :

(a(x) Ax) + V(x) e’ = a(x) A(x) "™ + b(x)

ce qui conduit a :

A (x) = b(x) e Fa

Il suffit donc de prendre, pour A, une fonction dont x — b(x) e T4 goit 1a dérivée sur 1.

Exemple

Résolvons, sur ]0, co[, I’équation différentielle :

y=2+1 @
X
L’équation homogene associée est :
Y
X

qui admet pour solutions, sur ]0, +co[, les fonctions de la forme x — A x, out A est une constante
réelle.

A T'aide de la méthode de variation de la constante, on recherche une solution particuliére de
I’équation différentielle avec second membre (&), sous la forme :

x - y(x) = A(x) x
On a alors, pour tout réel x strictement positif :
y'(x) = A (x) x + Ax)

En injectant dans (&), on en déduit, pour tout réel x strictement positif :
; 1
A)x+Ax)==-A)x+1=Ax)+1
X

et donc : 1
A(x)=—
%

Par suite, pour tout réel x strictement positif :
Ax)=Inx+C

ol C est une constante réelle.
L’ensemble des solutions de (£) est donc 1’ensemble des fonctions définies sur R} par :

x> xInx+Cx

ou C est une constante réelle.
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des suites et opérations sur les suites

Figure 39.1- Le pavage des dominos.

Soit n un entier naturel non nul. Considérons le nombre f,, de facons de recouvrir un
échiquier ayant une hauteur de 2 carreaux, et une longueur de n carreaux (il comporte
donc 2 n carreaux), par des dominos bicolores. Chaque domino doit recouvrir deux car-
reaux, et les extrémités de deux dominos adjacents doivent étre de couleurs différentes.
Seule compte la position du domino (verticale ou horizontale), et non son sens (cela ne
change rien que la face portant le numéro | soit en haut ou en bas). Il est clair que f; = 1
(un domino vertical), f» = 2 (deux dominos verticaux, ou deux dominos horizontaux),
f3 = 3 (trois dominos verticaux, ou un domino vertical et deux dominos horizontaux
(deux choix possibles)) ; on s’apercoit ensuite que, pour tout entier naturel n > 2 :

fn+l = fn—l + ﬁl (ﬂ)

Lorsque n parcourt N, I’ensemble des f, constitue donc une suite de nombres réels,
appelée suite réelle, vérifiant la relation de récurrence (R).

Les suites sont un outil mathématique fondamental. Elles ont de nombreuses applica-
tions en physique, chimie, biologie.

Elles peuvent servir, notamment, a étudier des systemes dynamiques, des systemes de
particules (en physique quantique, par exemple, en théorie des orbitales moléculaires,
pour un systeme de N noyaux et n €lectrons...), ou encore a résoudre numériquement
une équation, ou une €quation différentielle.

Définition

On appelle suite, & valeurs dans un ensemble E, une famille d’éléments de E indexée
par les entiers naturels.
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Une suite numérique, qui est donc une liste de nombres, peut donc étre considérée comme
une application d’une partie de N (qui peut étre égale 4 N), dans R ou C. On notera, dans ce
qui suit, K pour désigner R ou C. La plupart des résultats qui suivent sont présentés dans le
cas des suites réelles.

On désigne, habituellement, par (i), 12 suite numérique qui, & un entier naturel n,
associe le nombre u,,.

Soit ny un entier naturel. On désigne, habituellement, par (i), 1a suite numérique
qui, a un entier naturel n > ny, associe le nombre u,,.

1. Somme de suites

Soient (1), et (V) deux suites a valeurs dans le corps K.
Alors, la suite somme (w,),cx; = (i, + Vy)yere €st définie par :

YnelN:w,=u,+v,

2. Multiplication d’une suite par un scalaire

Soit (i), Une suite a valeurs dans le corps K, et 4 € K.
Alors, la suite (wy,),en = A (4,) e €5t définie par :

YneN:w,=Au,
3. L'espace vectoriel des suites

Théoréme

L’ensemble, noté KX des suites & valeurs dans K est un K-espace vectoriel, c’est-a-dire
un ensemble non vide', muni de 'addition et de la multiplication par un scalaire, tel
que :

1. étant données deux suites (uy),cr et (Uy),er, @ valeurs dans K, la somme de ces
suites est aussi une suite a valeurs dans K :

N
(e, + Un)neN = (un)neN + (Un)neN e K

2. étant données deux suites (u,),eny €t (Uy)enn, €t un scalaive A, (Au, + v,),en est
aussi une suite a valeurs dans KK :

(Atty + VyYpey = A ()pey + A Wn)pery € KN

3. étant domnée une suite (Uy,),ep, ef deux scalaives A et p dans K, (4 + ) (1), est
aussi une suite a valeurs dans K :

N
(A+ ) (updpery = A Uy + 1t (Updpery € K
4. étant donnée une suite (U, ), e, d valeurs dans K, et deux scalaires A et y dans K :

(Ap) (n)pers = A () pere € KM

1. 1l est clair que la suite nulle (1, = 0 pour tout entier naturel n) appartient a cet ensemble.
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5. étant donnée une suite (), d valeurs dans K, le réel 1 est I'élément neutre de
la multiplication par un scalaire :

1% () yeny = Wndpeny € KV

Ainsi, KY est stable par combinaisons linéaires : toute combinaison linéaire de suites
a valeurs dans K est une suite a valeurs dans K.

Définition
Un sous-ensemble & de I’espace K des suites est un sous-espace vectoriel s’il

contient la suite nulle et s’il est stable par combinaisons linéaires, ¢’est-a-dire, étant
données deux suites (uy),eny €t (Uy),er de &, ainsi qu’un scalaire 4 € K :

(up)penw + A (Ve € &
Définition
Un sous-espace & de I'espace KM est dit de dimension finie N € N* si il existe une

1 2 N N s : :
base ((u_n)neN , (un)neN e (un )%N) de K*, permettant d’exprimer, de facon unique,
toute suite (i), de &, sous la forme :

N

Wduer = ) Sox () o v (shooons) e KV

k=1

4. Produit de suites

Soient (i) ,en et (V) e deux suites a valeurs dans K.
Alors, la suite produit (wy,),cxv = (i Uy )per st définie par :

YneN:w,=u,u,
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Les différents types de suites

1. Suites définies explicitement
Définition
Une suite (i), €St définie explicitement si, pour tout n € N, I'expression de u, en

fonction de I’entier n est connue, ce qui est le cas pour des expressions de la forme
u, = f(n), ou f est une fonction donnée.

Exemple

C’est le cas de la suite (i), telle que, pour tout n de N :

1
=1 4=
u' 2”

2. Suites définies par une relation de récurrence d’ordre 1
Définition
Une suite (1), €st définie par une relation de récurrence d’ordre 1 si son premier

terme 1y est donné et si, pour tout entier n, i, s’exprime en fonction de u,, ce qui est
le cas pour des expressions de la forme u,.; = f(u,), ou f est une fonction donnée.

Exemple

C’est le cas de la suite (i), telle que, pour tout n de N :
up=1 , Vn e N : uy = 1+u,

» Suite arithmétique
Définition
Une suite (i), est dite arithmétique de raison » € K si, pour tout entier naturel n :

Upy)] = Uy + T

» Somme des termes d'une suite arithmétique

nombre de termes X (premier terme + dernier terme)

o
Mathématiquement, cela se traduit de la facon suivante : pour une suite arithmétique de

premier terme u,, p € N, on obtient, pour tout entier naturel n > p :

n

(n—p+1) X (up+uy)
Z”": )

k=p

(de up a uy, 1l y a exactement n — p + 1 termes).
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» Suite géométrique
Définition
Une suite (), est dite géométrique de raison ¢ € K si, pour tout entier naturel n :
Upy) = q Uy

» Somme des termes d'une suite géométrique de raison # 1

1 = raisonm)mbre de termes

premier terme X :
1 — raison

Mathématiquement, cela se traduit de la facon suivante : pour une suite géométrique de
raison g # 1, de premier terme u,, p € N, on obtient, pour tout entier naturel n > p,

n

Lo n—p+1
T e s

k=p 1—q

(de up a uy, il y a exactement n — p + 1 termes).

» Suite arithmético-géométrique
Définition

Soient a et b dans K tels que @ # 1. Une suite (#,),en telle que, pour tout entier
naturel n :
Uy = aliy + b

est dite arithmético-géométrique.

» Etude d’une suite arithmético-géométrique

On commence par déterminer s’il existe un nombre r € K tel que la suite (vy,),,cp; définie,
pour tout entier naturel n, par :
Up = Uy + 7

soit géométrique de raison a. Si un tel scalaire r existe, alors, pour tout entier naturel n :
Upel = Uppy +F=au,+b+r=av,=au, +ar

ce qui conduit donc a :
b

a-1
Réciproquement, on vérifie que la suite (v,),cn définie, pour tout entier naturel n, par :

b
a—1

=

Uy = Uy +

est géométrique de raison a.
On peut alors en déduire, pour tout entier naturel » :

v, =d"vg=da" |uy+
a—1
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ce qui conduit, pour tout entier naturel n, a :

b n
un=vn——l=a up +

=a" uy +

a—1 a—1 a—1

b )_ b b -1)

3. Suites définies par une relation de récurrence d’ordre 2

Définition
Une suite (1), est définie par une relation de récurrence d’ordre 2 si ses deux
premiers termes, up et u;, sont donnés, et si, pour tout entier n > 1, u,, s'ex-

prime en fonction de u, et u,_;, ce qui est le cas pour des expressions de la forme
Upr1 = g(Uy,, U,_1), ol g est une fonction donnée.

Exemple

C’est le cas de la suite (1), telle que :

o]
w=1 , wm=1, VYne Ny =u+u,_,

Définition

Une suite (u,),en, a valeurs dans K, est définie par une relation de récurrence linéaire
d’ordre 2 si ses deux premiers termes, ug et u;, sont donnés, et si, pour tout entier
n = 1, u,,; s’exprime linéairement en fonction de u, et u,_|, ¢’est-a-dire s’il existe
trois scalaires a, b et ¢ dans K, (a,c) € K* x K*, tels que :

VYneN*: augey +bu, +cupg =0

Théoréeme

a, b et ¢, étant trois scalaires tels que (a,c) € K* x K*, I'ensemble &, des suites
(tty ) pery vérifiant la relation de récurrence linéaire d’ordre 2

VYneN*: aupr +bu, +cup1 =0

est un K-espace vectoriel de dimension 2.

Démonstration :

e Pour montrer que &4 est un K-espace vectoriel de dimension 2, il suffit de montrer
que ¢’est un sous-espace vectoriel de I’espace K'' des suites réelles.

I1 est non vide, car la suite identiquement nulle appartient & &, p .-

I1 ne reste donc plus qu’a montrer la stabilité de &,., . par combinaisons linéaires ; a
cet effet, on considere deux suites (1), €t (V) ,err de Eyq.p.0, ainsi qu’un scalaire A.
On a, clairement, pour tout entier naturel non nul # :

a(“n+l it /-{Un-t-l) + b(un + dvy) + C(uu—l + /IUI’H-I) =aAlpy) +buy + cupy
+Ad (avyp +bv,+cvy_1)=0

Ainsi, la suite (14,37 + A (Un),e1y appartient bien a Epp e
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e Pour montrer que &4 - est de dimension 2, on va montrer que I’application linéaire,
qui, a toute suite de &,., 5., associe ses deux premiers termes, est bijective (c’est un
isomorphisme, c’est-a-dire une application linéaire injective et surjective) ; les deux
espaces seront donc isomorphes, ce qui garantit I’égalité de leurs dimensions respec-
tives.

Soit donc I"application : ¢: Epape = K2

(n)ners > (g, 1)
11 est clair que 1’application y est linéaire.
Le noyau de I’application ¢, c’est-a-dire ’ensemble des suites (1, ), dont les deux
premiers termes sont nuls, est réduit & la suite nulle : ¢ est donc injective.
L’application ¢ est surjective, car, si on se donne deux réels u et iy, on peut définir
une suite de &4 5 dont les deux premiers termes soient u et u;.
L’application ¢ est donc bien un isomorphisme : K* étant de dimension 2, il en est
donc de méme de &, p.c- (]

Afin de pouvoir exprimer, le plus facilement possible, les termes d’une suite vérifiant
une relation de récurrence linéaire d’ordre 2 de la forme (40.1), 1l peut étre intéressant
de déterminer une base de I'espace &, - A cet effet, on commence par rechercher les
suites géométriques (distinctes de la suite identiquement nulle) qui satisfont ce type de
relations ; on cherche donc a déterminer les scalaires r, supposés non nuls, tels que :

Yne N* :art' 4+ b+ =0

r étant non nul, il en résulte : ar* + br + ¢ = 0. Par suite :

e sile discriminant A = b>—4 ac est non nul, le trindme a % + b r+¢ admet deux racines
distinctes 7 et r» dans C.

Les suites géométriques (r”) et (r" ) vérifient bien la relation de récurrence li-
1/ nen 2/ neny

néaire d’ordre 2 donnée, et sont linéairement indépendantes. Elles forment donc une
base de &y b
Ainsi, toute suite (u,),ey vérifiant cette relation de récurrence est telle que :

VneN:u,=Ari+ury, , (4p) g ®

Si la suite est réelle, et si les deux racines sont complexes, de la forme r| = p e et
ry = pe~t? toute suite (1), vérifiant cette relation de récurrence est aussi telle que :

Vn e N :u =ap" cos(nd) +Bp" sin(nd) , (a,p) € R?
e si le discriminant A = b% — 4ac est nul, le trindme a > + br + ¢ admet une racine

double ry € K.

Les suites (rg) - et (n rg) - vérifient bien la relation de récurrence linéaire d’ordre
nel A n . .
2 donnée, et sont linéairement indépendantes. Elles forment donc une base de &, p .

Ainsi, toute suite (u,),cy vérifiant cette relation de récurrence est telle que :

VneN:u=Q+un)r} , Ap €K

Dans tous les cas, pour ce type de suite, il y a donc deux constantes a priori inconnues, A et p.
La connaissance de deux termes de la suite peut permettre de lever 1'indétermination. Lorsque
ce sont les deux premiers termes de la suite qui sont connus, on parle de conditions initiales.
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» Equation caractéristique
Définition

Etant donnée une suite (u,),y, a valeurs dans K, vérifiant la relation de récurrence
linéaire d’ordre 2 :

YneN*:at +tbu,+cu1=0 , (@o)eK'xK* , bek

I’équation a r> + b r + ¢ = 0 est appelée équation caractéristique.

Exemples
1. Considérons la suite (i), définie par :
=1 , wm=2 , VYneN:us =2u,+3u,

L’équation caractéristique est: r* —=2r—3=0
—1 et 3 sont racines évidentes.
Ainsi, 1l existe deux réels Aetptelsque: Ynrn € N @ u, =A(-1)"+pu3"

Les conditions sur up et i) conduisentalorsa: wy=A+pu=1 , wuyy=-A+3u=2
puis: A= jI . M= %

A 1\ n+1
Parsuite: VYn e N : u, = %

2. Considérons la suite (v,,),o définie par :

=1, n=-1, ¥YnelN:vg+vy+v,=0

din
3

L’équation caractéristique est : 72 +7r+1 = 0, de racines complexes j = e et j> =5 = J.

Comme |j| = || = 1, il existe deux réels A et u tels que :
7 2
YneN:p =41 cos(%)hu sin(%)

Les conditions sur vy et vy conduisent alors a :

2 2 1 3
vpp=4=1 , U]=Acos(;)+,usin(?ﬂ):—/l§+,u7\/_=—l
e | Hooy 3 . 2am) _ 1 - 2nx
puis : g = E.Parsmte.\ln € N : vn—cos(T) ﬁsm(—3—)

4. Suites définies par une relation de récurrence d’'ordre p, p € N*
Définition

Une suite (uy,),en est définie par une relation de récurrence d’ordre p, p € N*, si ses
p premiers termes, ug, Uy, ..., Uy, sont donnés, et si, pour tout entier n > p, Uy
s’exprime en fonction de uy, u,_1, ..., Uy_ps1, €€ qui est le cas pour des expressions
de la forme w1 = h(uy, 1, ..., Uy—p+1), OU h est une fonction donnée.
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Suites arithmético-géomeétriques et finance

Une « start-up » emprunte un capital C, C € RJ}.
On désigne par u, le capital dd a la fin de ’année n (n € N*), par i le taux annuel
(i € [0,1]), et par M le montant d’une mensualité (M € RX).

L’amortissement de I’emprunt est supposé constant.

On a alors :
VneN:ug=0+Du,-12M

En reprenant la technique d’étude explicitée précédemment, on obtient, pour tout
entier naturel n :

Uy = (L+i'C —

12M (1 +0"=1))
i

Soit N le nombre d’années nécessaires pour rembourser I'emprunt (N € N*).

Au bout des N années (on est donc a I’année N + 1), le capital di est donc nul :
uns1 =0
soit .
B 12M ((1 +0)" = 1)) -0
i =

On obtient alors le montant d’une mensualité :
_id+)"c i
TR+ -1 12(0-(1 +D)™)

(1+H'C

Cette derniere formule est bien connue des financiers, qui ['utilisent trés
fréquemment.
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Etude d’une suite

Pour étudier une suite, il est important de pouvoir étudier — et démontrer — ses propriétés,
mais aussi de pouvoir comparer ses termes les uns avec les autres, et en particulier savoir
s’ils augmentent ou diminuent...

1. Récurrence simple

Considérons une suite (u,),cn. Si jamais on souhaite démontrer qu’elle vérifie une pro-
priété, que nous noterons P, démontrer celle-ci par récurrence peut s’avérer extrémement
intéressant.

En quoi consiste cette méthode ? Tout simplement, on va commencer par regarder si
la propriété P est vérifiée a un rang initial nyp € N donné (ng peut, bien siir, étre égal a
7€ro) ; si ¢’est le cas, on suppose ensuite qu’elle est vraie a un rang n > ngy quelconque,
et on cherche a déterminer si elle est encore vraie au rang n + 1 : le fait qu’elle soit vraie
au rang ny permettra d’en déduire qu’elle est vérifiée pour tout entier n > ny.

Exemple

Considérons la suite (v,),,e; définie par :

i
VI’!ENZUn:ZkZ
k=0
On remarque que :
=0 , vy=0+1=1 , v=0+1+4=5 , v1y=04+14+4+9=14

Démontrons alors, par récurrence, que :

VneN : Zkzz nn+1)2n+1)
k=0 6

e La propriété est bien vraie au rang 0.

e Supposons la propriété vraie a un rang n > 0; on a alors :

D+ 1)?
k=0

nn+1N2n+1)
6

C(n+ ) (nQ2a+ D+ 6(n+ 1)
B 6

m+Dn+2)2n+3)

n+1
k2
k=0

Il

+(n+1)7°

(n+1)(n +62) RQmn+1+1)
6

(On factorise par n + 2, car —2 est racine évidente.)
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La propriété est donc vraie aurang n + 1.
Comme elle est vraie au rang 0, elle est donc vraie pour tout entier naturel n.

Le raisonnement par récurrence permet de démontrer une propriété vérifiée, suivant les cas,
pour tous les entiers naturels, dans d’autres, pour une infinité d’entiers naturels, a partir d’un
certain rang.

2. Récurrence forte

Considérons une suite (i,),ev. On cherche toujours & démontrer une propriété P pour
une suite (uy,),ep-

Comme pour la récurrence simple, on commence par regarder si la propriété P est
vérifiée a un rang initial ny € N donné (ny peut, bien sir, étre égal a zéro) ; si c’est le
cas, on suppose ensuite qu’elle est vraie jusqu’a un rang n > ny quelconque, et on
cherche a déterminer si elle est encore vraie au rang n+ 1 : si oui, le fait qu’elle soit vraie
au rang ny permettra d’en déduire qu’elle est vérifiée pour tout entier n > ny.

Cette récurrence qui semble, en apparence, plus forte que la récurrence simple, lui est
en fait équivalente, dans la mesure ou elle revient a démontrer par récurrence simple la
propriété a tout rang k < n.

3. Récurrence double

Il s’agit, cette fois-ci, d’un autre type de démonstration par récurrence : on cherche
toujours a démontrer une propriété ¥ pour une suite (u,),e, MAais, pour commencer, au
lieu de regarder si ¥ est vérifiée a un rang initial ny € N donné, on regarde si elle est
vraie aux rangs ng et ng + 1 (np peut toujours étre égal a zéro) ; si ¢’est le cas, on suppose
ensuite que P est vraie aux rangs n = ng et n + 1, pour n quelconque, et on cherche a
déterminer si elle est encore vraie aux rangs n+ 1 et n+2 : si oui, le fait qu’elle soit vraie
aux rangs ng et ng + | permettra d’en déduire qu’elle est vérifiée pour tout entier n > ny.

Exemple

Soit # un réel.
Démontrons par récurrence que, pour tout entier naturel non nul n, cos(n #) est un polynéme,
noté 7, de degré n en cos @, de coefficient dominant Si=T,

e La propriété est vraie aurang 1 :
cos @ est bien un polyndme de degré 1 en cos 6, de coefficient dominant 2!~ = 1.

o La propriété est vraie aurang 2 :

cos(26) = 2 cos” @ — 1 est bien un polyndéme de degré 2 en cos 6, de coefficient dominant
Il =g

e Supposons la vraie jusqu’a un rang n > 1.
Les formules d’addition permettent alors d’écrire :

cos((n+ 1)8) = cos(nf) cos@ — sin(nd) sind

et:

cos((n—1)8) = cos(nd) cos O + sin(nf) sind
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Par suite, en additionnant membre & membre ces deux relations, on en déduit :
cos((n+ @)+ cos((n—1)8) =2 cos(nb) cosd
puis :
cos((n+1)6) =2 cos(nd) cos—cos((n—1)0) (*)

Par hypotheése de récurrence, cos (n 6) est un polyndome de degré n en cosf. cos (n#é) cosf
est donc un polynéome de degré n + 1 en cos§. Comme cos ((n — 1) #) est un polynéme de
degré n — 1 en cos#, cos ((n + 1) 8) est bien un polynéme de degré n + 1 en cos 6.

Le coeflicient du terme de plus haut degré est :
2 % 2n—l =" = 2n+l—l

La propriété est donc vraie au rang n + 1.
e Comme elle est vraie au rang 1, elle est donc vraie pour tout entier naturel n > 1.

T, est le n®™ polyndme de Tchebychev'. Tl est & noter que ce polyndme ne dépend pas de 6.
L’unicité de ce polynéme est admise.
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Majorants, minorants d’une suite
réelle - Croissance et décroissance

1. Majorant et minorant d’une partie non vide de R
» Majorant

Soit P une partie non vide de R. Un réel Mp est un majorant de % si, pour tout x de
P:x< Mp.
Exemple

- 1 .
Considérons I’ensemble {2 +—,n € N*} : 3 est un majorant de cet ensemble.
n

» Minorant
Soit  une partie non vide de R. Un réel mp est un minorant de % si, pour tout x de

P x2>mp.

Exemple

1
2 est un minorant de I’ensemble {2 +—,n€ N*}.
n

» Deux propriétés fondamentales de I'ensemble des réels

Toute partie 5 non vide et majorée de R admet une borne supérieure finie. Cette borne
supérieure est le plus petit des majorants de P 4.

De méme, toute partie #,, non vide et minorée de R admet une borne inférieure finie.
Cette borne inférieure est le plus grand des minorants de #,,,.

Exemple

2n 20
rieure, qui est atteinte, et 2 sa borne inférieure, qui n’est pas atteinte.

| 1
Considérons I’ensemble {2 +—.n¢€ N}. Il est bien non vide. 2 + — = 3 est sa borne supé-

2. Le cas des suites

» Suite majorée

Une suite réelle (u, ),y est dite majorée s’il existe un réel M tel que :
YneN:u,<s<M

» Suite minorée

Une suite réelle (i est dite minorée s’il existe un réel m tel que :
n/nel q

YVneN: :uy2m
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Le majorant positif d’une suite réelle n’est jamais unique : si la suite (u,),; €St majorée par
le réel positif M, elle Iest aussi par le réel 2 M, ou encore par le réel 3 M, ou encore, par
M+1, M+2, ..

YnelN:usM<2M<3IM<...

De méme, le minorant positif d'une suite n’est pas unique ! si la suite (u,,),o: €st minorée par

le réel positif m, elle I’est aussi par le réel 5, ou encore par le rée %

m m
==

VneN:uﬂzmzi/ﬁ

e e

» Suite bornée

Une suite réelle (u,),cy est dite bornée si et seulement si elle est a la fois majorée et
minorée, ¢’est-a-dire s’il existe deux réels m et M tels que :

YneN: m<u,<M
ou, de facon équivalente, s’il existe une constante positive C telle que :
YnelN:|ul<C

Une suite complexe (u,),c est dite bornée si et seulement si les suites (Re(uy)),er et
(Fm(uy)),ep; sONt bornées.

> Suite positive
Une suite réelle (i), est dite positive si:¥Yn € N @ u, > 0.

» Suite négative

Une suite réelle (u,),y est dite négative si : ¥Vn € N : u, <0.

3. Croissance et décroissance
Une suite réelle (), est dite :
e croissante a partirdurang ng € Nsi:Vn > ng @ uy < tyy.
e décroissante a partirdurangny € Nsi:Vn = ng @ uy > tysq.
e stationnaire a partirdurangng € Nsi:Vn > ng @ uy = tyy.
Une suite réelle (u,),cx est dite :
e strictement croissante a partir du rang ng € N si:
Yn =z ng @ty <ty
e strictement décroissante a partir du rang ny € N si :
Yn = ng: up >ty
Une suite réelle ou complexe (u, ), est dite constante si :

VYrneN : u, =u,

Une suite réelle (i), est dite monotone a partir du rang ny € N si elle est crois-
sante ou décroissante 4 partir du rang ng.

Une suite réelle (u,),c; est dite strictement monotone a partir du rang ny € N si
elle est strictement croissante ou strictement décroissante a partir du rang .
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Techniques d'étude des suites réelles

1. Etude de la différence up,.q — u,

Exemple

On considere la suite (i), définie par :

Vnel\l':w,y,:1+i

2}’!

Alors, pour tout entier naturel » :

1 1 1 {1 1
lln+|un=]+ﬁlizg(—?l)= <0

La suite (u,),; est donc strictement décroissante.

Upq

2. Etude du quotient dans le cas d’une suite a termes stricte-

uUnp
ment positifs

Exemple

On consideére la suite (u,), o définie par :

1
VYnelN:u = >
Alors, pour tout entier naturel n :
Upt) 1
=—-x<1
Uy 2

La suite (11,,),,c¢ est donc strictement décroissante.

3. Etude de suites réelles définies par une relation de récurrence
de la forme u,,q = f(u,)

La connaissance des variations de la fonction x — f(x) — x peut étre trés utile pour
I’étude de la suite (uy),c-

Exemple

On considere la suite (u,),e définie par :
up=1 , VYneN:uy = u,+1
Alors, pour tout entier naturel n :
Un) = Uy = f(Uy) — Uty

Par récurrence immédiate, on constate donc que la suite (i1,),,c7 €St & termes positifs.

Etudions alors la fonctiong : R* > R, x—» Vx+1—x.

125

fiche 43

Calculus




2014 Dunod.

©)

4

Copyright

La fonction ¢ est définie, continue et dérivable sur R* :

| [ 1=2va+d

svx+1  24x+1

Comme, pour tout réel positif x : Vx+ 1 = 1, ¢’(x) ne s’annule jamais sur R*, ot elle prend
des valeurs négatives.

La fonction g est donc strictement décroissante sur R*. Soit ¢ la racine positive de 1’équation
g(x) = x.
Si0 < uy < @, la suite (uy),,cpp Croit vers @ ; si uy > @, la suite (i), décroit vers .

YxeR":g'(x)=

4. Un cas particulier : les suites homographiques
Définition
Etant donnés quatre scalaires a, b, c et d tels que :
ad—bec+0 , %0

on appelle suite homographique une suite (1), vérifiant une relation de récurrence
de la forme :
au, +b

VYn €N g =
cu, +d

Le nom vient du fait qu’une application de la forme :

a’} ax+b
—

EY ==
re \{ c cx+d

avec
ad—-bec#0 , c¢c#0

est une homographie, ¢’est-a-dire une application du plan complexe dans lui-méme, qui laisse
invariant I’ensemble des droites et des cercles de celui-ci (on parle de transformation projec-
tive bijective). Une homographie s’obtient comme la composée de translations, de rotations,
d’homothéties et éventuellement d une inversion. La condition précédente assure, tout sim-
plement, que la fonction n’est pas constante. En effet, dans le cas ot ad — b ¢ = 0, on obtient,
pour tout x de K \ {—f»f,} :

ax+b acxt+bc acx+ad a(cx+d) a
cx+d clex+d) clex+d) clex+d) ¢

Proposition
On considere quatre scalaires a, b, ¢ et d tels que :

ad—-bc#0 , c¢c#0

La suite homographique (i), telle que :

est définie si et seulement si :
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Convergence

1. Définitions
» Suite convergente

Une suite réelle (u,),cy converge vers une limite finie £ € R si, pour tout réel £ > 0, il
existe un rang ny tel que :
VYnzmng:|lu,— €| <e

La suite (u,),,¢ est dite convergente (ou converge), de limite

{= lim u,

n—+oo

1. Le fait d’écrire « pour tout & > 0 » signifie que la quantité &, qui est positive, peut étre choisie

aussi petite que I’on veut, et permet donc de comprendre de fagon « intuitive » la notion de
limite.
2. Le choix de la quantité & conditionne celle de 1'entier ng : une fois & fixé, ng I’est aussi.

Une suite complexe (i), converge vers une limite finie £ € C si et seulement si les
suites (Re (i), eir et (Im (uy)),err convergent respectivement vers Re (€) et Tm (£).

» Suite divergente

Une suite réelle (i), diverge vers +oo si, pour tout réel strictement positif A, il existe
un rang ng tel que :
VYunzny:u =2A

On écrit alors :
lim u, =+

H—+00
Une suite réelle (u,),oq diverge vers —oo si, pour tout réel strictement positif A, il existe
un rang ny tel que :

On écrit alors :
lim u, = -0

n—+oo

Une suite (u#,),e qui n’a pas de limite finie est dite divergente.

Une suite réelle qui a pour limite +oo est ainsi une suite divergente. Mais ce n’est pas parce
qu’une suite diverge qu’elle tend vers + ou —oo !

Exemple

La suite (v,),a; définie par :
Yne N :p,=1+(-1)"

diverge, mais ne tend pas vers +co ou —co ; elle est en effet bornée

Ve N :|u,|<2
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2. Propriétés fondamentales

Propriéteé
Si la limite d’une suite existe, alors elle est unique.

Démonstration : On démontre ce résultat par I’absurde, dans le cas d’une suite réelle

convergente (u,),c-

On suppose qu’il existe deux réels £ et £> tels que la suite (u,),r converge vers £

et £ avec €1 # 6.
Soit £ > 0. Il existe alors deux entiers n; et ny tels que :

VYrnzn @ lu, -6 <

NN GE S !

VYnzn :lu, — {2 <

On a alors, pour tout n = max(n,na) :

161 = Cal = 161 =t + 1ty = Ea] <y = wal 4ty = 2l <22 = 6
) . [€1 — €|
£ étant quelconque, on obtient, pour £ = —H
161 — &
16y = 6] < T
Si ) # {3, c’est impossible. Il en résulte :
{1 =0

Propriéte
Une suite convergente est bornée.

Démonstration : On démontre ce résultat dans le cas d’une suite réelle.
Soit ainsi (i), une suite réelle convergente, de limite £ € R.
Soit £ > 0. 1l existe un entier ng tel que :

VYnzng:|lu,— €| <e

Par suite, pour tout entier n > ny :

g =ty — €+ €] < lu, — €] + |€] < £+ |{]
Ainsi, en considérant

M = max{|ugl, luil, ..., [upy-1l, &+ |£1}
on en déduit, pour tout entier naturel n :

gl < M

qui est le résultat cherché !
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La réciproque est fausse ! Une suite bornée n’est pas nécessairement convergente. C’est le cas,
par exemple, de la suite (u,),q, définie par :

YneWN:u=1+D"
La suite (u,),a7 est bien bornée, puisque, pour tout entier naturel # :
loen| < 2

Elle ne converge pas, car (—1)" n’est pas le terme d’une suite convergente (les valeurs prises
étant, alternativement, —1 et 1).

3. De l'utilité des suites pour I'étude des fonctions : caractérisation
séquentielle de la limite

Théoréeme
Soient [ une fonction définie sur un intervalle I de R, et xo un réel donné dans 1. Il y a
équivalence entre les propriétés suivantes :

. lim f(x)=1¢

X=X

o Pour toute suite réelle (uy),ery, a valeurs dans I, de limite xp, la suite (f(u,)), e
converge vers L.

Ce résultat est extrémement puissant, dans la mesure ol, pour une application continue f :
I c R — R, et une suite (u,),, 2 valeurs dans I, convergeant vers une limite £, € I, on peut
en déduire le résultat suivant :

lim ) = f( lim ) = 7€)
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Convergence des suites monotones

Propriéte
Une suite réelle croissante et majorée converge.

Démonstration : Soit (i,),c; une suite réelle croissante et majorée. Désignons par B,
la borne supérieure (finie) de I’ensemble {u,, n € N}.

Comme B; est le plus petit des majorants de cet ensemble, alors, pour tout & > 0,
B, — &, qui est plus petit que B, n’est pas un majorant. Ainsi, il existe un entier ny tel
que :

B —e < upyy, < By

Or, la suite (1), étant croissante, on aura donc, pour tout entier n > ny :
By — &< Upy S Up < B

On retrouve ainsi la définition de la limite d’une suite : (1, ),y converge donc vers B;.

|
Propriéteé

Une suite réelle décroissante et minorée converge.

Démonstration : Exercice. ]

1. Convergence des suites réelles définies par une relation de récur-
rence de la forme u,,1 = f(u,)

Théoréme

Soit (u,),er; une suite réelle définie par une relation de récurrence de la forme
1 = f(uy,), ou f est une fonction donnée.

Si ()0 converge vers une limite €, et si la fonction [ est continue en €, alors :
t=f(0)

Démonstration : On suppose donc que la suite (1), converge vers le réel £; ainsi,
pour tout £ > 0, il existe un rang ny tel que :

VYrn=ng :|ue =€ <

NS Ny

SOIt ; .
VYn 2z ng :|f(u,) — £ < 3

Comme la suite (f(u,)),e;r converge vers f(£), il existe un rang n; a partir duquel :

Yz n o |f(u,) = f(O <

[Nl O]
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soit :
Y 2z n e — O] <

o M

On a alors, pour tout entier n tel que n = max(ng, n;) :
e
1€ = O = 1€ = tni1 + ttni1 = fOI S = tgir| + iy = (O <2 5 =
Le réel £ ayant été choisi aussi petit que 1’on veut, on a donc, nécessairement :

£=f(b) =

2. Théoreme du point fixe (de Banach)

Théoréme
Soit f une fonction définie sur un intervalle I de R, a valeurs dans I, contractante’.

Alors, la suite (i), o définie par :
Vi € N tuper = f(uy)

converge vers l'unique point fixe € de [ appartenant a l'intervalle 1.

De plus, pour tout entier naturel n :
[ty — €] < K" |ug — £

Démonstration : On admettra 1’existence et 1'unicité du point fixe £ de f (cela est dii
au fait que f est contractante).
Pour tout entier naturel » :

lit = €1 = | f (1) = FOI < kit = €0 S Ktz = €1 < ... <K g — €]

CommeO < k<1:
Iim k" =0

n—+co
D’ou le résultat !
I1 est a noter que ce théoreme peut aussi se démontrer a 1’aide de suites de Cauchy,
comme cela sera fait plus loin. ]

1. ¢’est-a-dire lispchitzienne de rapport k < 1 ; pour tout couple de réels (x,y) € I*

[f(x) = f(y)] < klx -y
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46 Opérations sur les limites de suites

1. Somme de suites

Propriéteé
Soient (1), et (v,) e deux suites, a valeurs dans R ou C, convergentes, de limites
respectives £, et £,,.

Alors, la suite (i, + v,),en €st elle aussi convergente, de limite £, + £,.

Propriéte
Soient (uy, ) e et (v,) e deux suites réelles, de limites respectives £, et +oo.
Alors, la suite (u,, + v,,),en est divergente, de limite +oo.

Propriété
Soient (u,),enr et (v,),er deux suites réelles, de limites respectives £, et —co.
Alors, la suite (i, + v,),en €st divergente, de limite —oo.

Dans le cas de deux suites réelles divergentes (u,),cr et (U),e0, de limites respectives —co et
+00, il n’est pas possible de savoir, sans une étude supplémentaire, quelle est la limite (et si
elle existe), de la suite (i, + Uy),.en-

2. Produit de suites

Propriéteé
Soient (1), et (v,),ere deux suites, a valeurs dans R ou C, convergentes, de limites
respectives £, et £,,.

Alors, la suite (i, v,),c est elle aussi convergente, de limite £, £,,.

Propriéteé
Soient (uy,),crr €t (V) deux suites réelles, de limites respectives £, > 0 et +oo.
Alors, la suite (u, v,),en est divergente, de limite +co.

Dans le cas out £, = 0, il n’est pas possible de conclure sans une étude plus poussée (qui

2014 Dunod.

1L

n’aboutira pas nécessairement).
Propriété
Soient (u, )1y et (V) deux suites réelles, de limites respectives €, > 0 et —co.
' Alors, la suite (1, v,),ey est divergente, de limite —oo.
\ 1. Dans le cas on £, = 0, il n’est pas possible de conclure sans une étude plus poussée (qui

Copyrig

n’aboutira pas nécessairement).

2. On dispose bien siir de propriétés analogues pour le cas ou £, < 0.
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Propriéteé
Soient (i), €t (Uy),err deux suites réelles divergentes, de limites respectives —co
et —oo.

Alors, la suite (i, v,),en €st divergente, de limite +oco.,

Propriété
Soient (uy),eny €t (Un)yene deux suites réelles divergentes, de limites respectives —co
et +oo.

Alors, la suite (1, v,), est divergente, de limite —oo.

Propriété
Soient (i), et (Vn),ery deux suites réelles divergentes, de limites respectives +co et
+00.

Alors, la suite (i, v,),ep st divergente, de limite +oo.

3. Inverse d'une suite

Propriéteé
Soit (uy),cy Une suite, complexe ou réelle, a termes non nuls, convergente, de limite
£ 0,

Alors, la suite (u%,) est elle aussi convergente, de limite z,l—

neld u
Propriété
Soit (i), Une suite réelle, a termes non nuls, divergente, de limite +oo.
; 1 bk
Alors, la suite (—) est convergente, de limite nulle.
Un [ner
Propriéte
Soit (u,),err une suite réelle, a termes non nuls et strictement positifs a partir d’un rang
ny € N, convergente, de limite nulle.

. 1 . ..
Alors, la suite (—) est divergente, de limite +co.
#n nzng

Propriété
Soit (u,),cp; une suite réelle, a termes non nuls et strictement négatifs a partir d’un rang
ny € N, convergente, de limite nulle.

’ 1 . -
Alors, 1a suite (—) est divergente, de limite —oo.
Un 21y

4. Multiplication d’une suite par un scalaire

Propriété
Soient (u,),cv une suite réelle, a valeurs dans K, convergente, de limite £, et A dans K.
Alors, la suite (A uy ), est elle aussi convergente, de limite A £,,.

Propriéte
Soient (uy ),y Une suite réelle, divergente, de limite +co, et A un réel.

Si le réel A est strictement positif, la suite (Adu,),c est elle aussi divergente, de li-
mite +oco.

Si le réel A est strictement négatif, la suite (1u,),c0 est elle aussi divergente, de li-
mite —oo.
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Propriéteé
Soient (u, ),y Une suite réelle, divergente, de limite —co, et A un réel.

Si le réel A est strictement positif, la suite (Adu,),ov est elle aussi divergente, de li-
mite —co.

Si le réel A est strictement négatif, la suite (1u,),cq est elle aussi divergente, de li-
mite +co,

Dans le cas de deux suites divergentes (i1,),cn €t (v,),er0. de limites respectives —co et +co,

il n’est pas possible de savoir, sans une €tude supplémentaire, quelle est la limite (et si elle
existe), de la suite (1, + vy,) e

5. Complément : le théoréme de Cesaro’

Théoréeme

Soit (ty)neri= une suite réelle, de limite finie £ € R.

i
. Uy +iur+...+u 1 .
La suite (vy)pen+, telle que : ¥n € N* : p, = == - Z U, a meme
n n
k=1

limite £ que la suite (u,) 10+

Démonstration :
e Par définition de la limite, pour tout £ > 0, il existe un rang n tel que, pour tout entier

naturel n > ng :
lity, — €] <

| o

e Pour tout entier naturel n > ny :

np—1

l n 1 n
on =l =~ > =0 =~ | > =0+ > (=0
n k=1 o k=1

k=ng

rp—1 np—1
1
E (uy — £)| étant une quantité finie : lim - E (up —O)| = 0.
n—+co
k=1 k=1

11 existe donc un rang n; tel que, pour tout entier naturel n > n; :

np—1

|
- Z(uk - )| <
L k=1

Par suite, pour tout entier naturel n > max {ng,n;} :

SRR

ng—1 n

1 1 E n
lon — €1 < ~ Z(uk—{’)+; Z(uk—t’) <SzH——3<

k=1 k=ny

Posons alors ny = max {rng, n;}. On a alors, pour tout entier naturel n > ny :
vy — €] € €

La suite (v,),er= @ donc méme limite que la suite (1) ep- [ |

1. Ernesto Cesaro (1859-1906), mathématicien italien, qui apporta de nombreuses contributions a 1’étude
des séries numériques. C’était aussi un spécialiste de géométrie différentielle.
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Convergence des suites
homographiques réelles

Proposition
On considere quatre réels a, b, ¢ et d tels que :

ad—-bc#0 , c¢+#0

et la suite homographique réelle (i), Vérifiant une relation de récurrence de la

forme :
au, +b

cu, +d

Pour que la suite soit définie pour tout entier naturel », il faut que, pour tout entier
naturel n :

VHENZM,H_]:

cu, +d #0
Si la suite (i, ), converge, sa limite £ est solution de 1’équation :

at+b

T cl+d

soit:cf?+(d—-a)t—b=0.

- at+b
On supposera, dans ce qui suit : uy #
i of )
e Si(d-a) +4bc < 0, I'équation précédente n’a pas de solution réelle, et la suite
diverge.

. Alors :

; ; 5 oo ; a y
e Si(d- .at)2 +4 b c = 0, I’équation précédente admet une racine double, . La suite

C

converge vers

e Si(d—-a)* +4bc > 0,1'équation précédente admet deux racines réelles distinctes £,
et fh,avec ) <tn:

|ctr+d , -
— si|—= ‘ < 1, la suite (u,),ey  pour limite €; lorsque n tend vers +co.
ct)+d
el +d . .
- Si|—=2 > 1, la suite (u,),c @ pour limite £ lorsque 7 tend vers +oo.
ct 1+ d
clr+d
- Si = —1, la suite (u diverge.
¢ 51 +d ( n)neN g
Démonstration : Si la suite converge, sa limite est un point fixe de la fonction :
d ax+Db
x € R\{——=¢
\ { c } cx+d
Un tel point fixe x est donc solution de :
_ax+b
Ccx+d
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ce qui conduit a :
cxX+d-a)x-b=0

Le discriminant est :
A=(d-a)’ +4bc

I1 faut donc envisager les cas suivants :

1. Si(d-—a’ +4bc=0:
a—d
= 2¢

Considérons alors la suite (v,),cv définie, pour tout entier naturel n, par :

1
uy, —

Uy =

On obtient : l

Ups) — €

Untl =

|
au,,+b_a5+b
cu,+d cl+d

(ct+d)(cu, +d)
(ad—bc)(u, — 1)

(ct+d)(c(u,—0)+cl+d)
(ad-bc)(u, —€)

_cl+d (cl+d)?

est alors racine double du trindme ¢ x> + (d —a)x — b = 0.

= +
“ad—be  (ad—-bc)(u, -0

a+d

ct+d=
et, compte tenu de (d — a’ +4bc=0:

_d-a)
4

—-bc

ce qui entraine :

..
C. 4a) +ad

4ad+ (d - a)

ad—bc

4
dad+d* +a*-2ad

4
2ad+d? +a?

4
(a + d)?
4
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Ainsi :
(ct+d? (a+d)? 4

(ad-bc) 4  (a+d? !
Il en résulte :
cl+d 1 ct+d
U] :Cad—bc+ u, — € =Cad—bc *on
g . o ) ct+d
La suite (vy),cn est donc une suite arithmétique, de raison ¢ T e
Par suite, pour tout entier naturel » :
Uy =Up+cCh ﬂ
ad—bc

. . ) a
La suite (v,),cx diverge. La convergence de la suite (i), vers

Si(d—a)*+4bc>0:

—d ;
en résulte.

Le discriminant A est strictement positif, I’équation « aux points fixes » admet

deux solutions distinctes £ et £ :

a—d- VA
51='T s 2

a-d+ VA
- 2¢
Ainsi :
1611 < |62
Considérons alors la suite (w, ), définie, pour tout entier naturel n, par :

un'—'gl

w =
! ty —

On obtient :
upe1 — £
Whpt+1 = P—
)

au, +b

e S
cu, +d

au, +b

-
cu, +d 4

au, +b  af; +b
cun+d_ cty+d
au,+b alfr+b
cun+d— clr +d

_chh+d(ad—=bc)(u, — 1))
Tl +d (ad-be)u, — 1)

ct+du,—{
Cf] +d un—fz

Il

Cfg+dw
cty+d "
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puisque £ et {> vérifient respectivement :

_a€1+b _at’2+b

L= cti+d ° T cth+d

sz+d

La suite (w,,),e est donc une suite géométrique, de raison g
ciy) +

Par suite, pour tout entier naturel n :

(Ci’fz + d)n
wy = W

cl 1+ d
Ainsi :
. |leta+d . .
e si i < 1, la suite (w,),er @ pour limite O lorsque n tend vers +oo;
cty
i Uy — f] 5

comme, pour tout entier naturel n, w, = , la suite (u, ),y @ donc pour

Uy —

limite £; lorsque n tend vers +oco.

c 52 +d . ; :
° ——| > 1, la suite (w,), diverge vers +oo; comme, pour tout entier
ct il d
u, — € 1 ; O,
naturel n, |w,| = |— , la suite (ut,,),c;; @ donc pour limite > lorsque » tend
Up — L2
Vers +oo.
.cbhh+d . " ;
e Si 7 1d = —1, la suite (w;),ay diverge ; comme, pour tout entier naturel n,
cty
u, — . . .
Wy = , la suite (u,),c;y diverge également.
iy — 12

Si(d—a)P’ +4bc<0:

Le discriminant A est strictement négatif, I’équation « aux points fixes » admet
deux solutions distinctes complexes £ et £ :

{):a—d—ié ,
2¢

a—d+io

sl
Il

ol é € RT est solution de :

8 =-A

Considérons alors la suite (z,),er définie, pour tout entier naturel n, par :

u, —
in = p
u, — €
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On obtient :

Unpr) — €

Zntl = ——

Upy) — €

au, +b

cu, +d
aun+b_z

cu, +d
aun+b_a£+b
cu,+d cl;+d
au, + b at+h
cup+d  cf+d

cl+d (ad—-bc)(u, — )
cl+d (ad-bc)(u, — L)

B cl+d u,—¢
a ct+dy 7
3 cl+d

- cb+rd™

puisque £ et £ vérifient respectivement

g_a€+b E_af+b
Cctxd Ccl+d

cl+d
ct+d

La suite (z,),ey est donc une suite géométrique, de raison
Par suite, pour tout entier naturel # :

B ct+dY
W= ct+d

Or:

# 1

cl+d cl+d
=1 et

ct+d ct+d
La suite (z,),e n’a pas de limite lorsque n tend vers +co. Il en est de méme de la
suite (uy,) e

Il est a noter que la divergence de la suite peut s’obtenir directement, dans la
mesure ol I’équation aux points fixes n’admet pas de racine réelle ! La suite étant
a valeurs réelles, sa limite est en effet nécessairement réelle. "]

. al+b . .
On exclut le cas ol le premier terme vaut Tid puisque I’on a alors, pour tout entier natu-
c

rel n :
_af+b

M= ot
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48 Suites extraites

Définition
Soit (i, ),ex Une suite, a valeurs réelles ou complexes.

On appelle suite extraite de la suite (i), (Ou sous-suite) une suite obtenue en
sélectionnant, dans 1’ordre, un sous-ensemble infini de termes de (1, ),,cpy-

Comme les termes sont retenus « dans I’ordre » , il existe ainsi une application stric-
tement croissante ¢ : N — N permettant d’indexer les termes de la suite extraite, sous

la forme (”“’("))neN‘

Exemple

Etant donnée une suite réelle (Uy)ners 12 suite (u7,),e, Obtenue en ne retenant que les termes
d’indices pairs, est une suite extraite de (i),

L’application ¢ : N — N permettant d’indexer les termes de la suite extraite est donc ici :
n 2n.

Lemme
Toute application ¢ : N — N, strictement croissante, n’est pas majorée.

Démonstration : Dans un premier temps, on démontre par récurrence que, pour tout
entier naturel » :

wn)=n

e Cette propriété est bien vraie au rang 0, ¢ étant a valeurs dans N :
@(0) >0

e Supposons la propriété vraie aunrang n > 0 : ¢(n) > n.

L application ¢ étant strictement croissante, il en résulte :
pn+1)>pn) =n

Ainsi, @ étant a valeurs dans N :

2014 Dunod.

pn+1)>n

©)

ce qui conduit a :
pn+1)zn+1

La propriété est donc vraie au rang n + 1.

e Comme elle est vraie au rang 0, elle est donc vraie pour tout entier naturel n.
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Comme lim n = +oo, il en résulte :

n—+oo
lim @(n) = +oo
n—+oo
L application ¢ n’est donc pas majorée. ]
Théoréme

Toute sous-suite d’une suite convergente converge vers la méme limite.

Démonstration : On démontre le résultat dans le cas d’une suite réelle.
Soit ainsi (u¢(n})ne , une suite extraite d’une suite convergente (i, ),cn-
On note ¢ la limite de (u,,),,c-
Alors, pour tout £ > (, il existe un rang n tel que, pour tout entier n > ny :

lu, — €| < &

L’application ¢ étant strictement croissante de N dans N, et non majorée, il existe donc
un rang n; tel que, pour tout entier n > n; :

w(n) = ny

Ainsi, pour tout entier n > n; :
qu,(nj —{ | <€

D’ou le résultat. |

» Théoréme de Bolzano-Weierstrass

Théoréme

De toute suite réelle (u,),ey bornée, on peut extraire une sous-suite convergente.

Démonstration : Ce théoréme est admis. ]
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Suites de Cauchy

Pour étudier le comportement d’une suite a I’infini, il n’est pas toujours nécessaire de
connaitre sa limite. Intuitivement, on comprend bien que, si une suite converge, ses
termes seront, a partir d’un certain rang, assez proches les uns des autres.

Définition

La suite (u,),en est une suite de Cauchy si, pour tout réel strictement positif &, il
existe un entier n tel que :

Ypzmny,Yg=zmng:lu,—uyl<e

ce qui signifie que, & partir d’un certain rang, 1’écart entre deux termes de la suite est
toujours, en valeur absolue, aussi petit que 1’on veut.

» Critére de Cauchy
Propriéteé
Une suite réelle converge si et seulement si ¢’est une suite de Cauchy'.

Démonstration : Soit (1), une suite convergente, de limite finie £ € R. Alors, pour
tout & > 0, il existe un rang ny tel que :

E
Yz ng: lu, — €] < 5

Par suite, pour tout couple d’entiers (p, g) tels que p > ny et g = ny :

lup —ugl =lup =€+ € —uy| <lup = +u;— €l <2-=¢

o &

La suite (u4,),en est done une suite de Cauchy.
Réciproquement, considérons une suite réelle (u,),oy telle que, pour tout réel stric-
tement positif £, il existe un rang ng tel que, pour tout couple d’entiers (p, g) tels que

p=znypetg=ng:

£
|u,, = Ltq| < 5
Il en résulte, en particulier, pour tout entier n > ny :

£
|at), — ur.'ol < 5
puis, par inégalité triangulaire :
£
|un| = |Mn — Uy, T ungl < 5 + |Mng|
La suite (1), est donc bornée par max {ug, - % + |u,,0|].

1. R est un espace complet, ¢’est-a-dire un espace ol toute suite de Cauchy converge.
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D’apres le théoreme de Bolzano-Weierstrass, on peut donc en extraire une sous-suite

convergente (uq,(,,))neN, dont on notera €, la limite.

Il existe donc un rang n; tel que, pour tout entier n > nj :

E
Iutp(ﬂ) - fugo(n)l s 5
Par suite, pour tout entier 7 > max(rng, n;), comme @(n) > n :
&
it = Loy = Vit =ty + Ui = Cugey] <25 = &
La suite (i, ),y converge donc aussi vers £y, . ]

143

Calculus

(’ Probabilités {* Algébre



4 Dunod.

5 201

Copyright €

o

50 Comparaison des suites réelles

1. Négligeabilité
Définition
Soient (1,),e1; €t (y) e deux suites réelles, non identiquement nulles.
La suite (i), est dite négligeable devant la suite (v,,),,cpy 8’1l existe une suite (£, ),e1»
de limite nulle, et un rang ng a partir duquel :
Uy = Eqly
On note alors :

u, = o(vy)

a—+oe

On dit que u, est un « petit o » de vy,

La notation « petit o » , de méme que la notation « grand O » , qui sera vue plus loin, est appelée

notation de Landau, en hommage au mathématicien Edmund Landau'. Leur paternité est

visiblement assez controversée, et reviendrait, a priori, & Paul Bachmann?.

Exemple
On considere les suites (i) ,,cr+ €t (Un),e07« définies par :
1 1
\zr’neN’“:an—4 y Un ==
n "
Alors, comme : ” 1
= n %
lim — = lim — =0
n—+o0 Uy, n—+co 11
on a bien :
Uy o o(vy)

2. Domination
Définition
Soient (1), et (U;),en deux suites réelles.

La suite (u,),c; est dite dominée par la suite (vy,),o7 8’1l existe un réel positif M et un
rang np a partir duquel :

litn| < M |v,|
On note alors :
iy njw O(Un)
On dit que u, est un « grand O » de v,.
l. Edmund Georg Hermann Landau (1877-1938), mathématicien allemand, spécialiste de théorie des
nombres.
2. Paul Bachmann (1837-1920), mathématicien allemand lui aussi, et également spécialiste de théorie des
nombres.
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Exemple
On considére les suites (14,) e+ €t (Uy),c+ définies par : =
B ek 3 LN
¥YneN :u,= 2n” W=y @
=
Alors, comme, pour tout entier naturel non nul » : :__"
5+ 16
|1y = 2nn < '2—" :2|Un|
on a bien :
iy njm O(v,,)

3. Equivalence

Définition
. - . - m
Soient (1, ),en et (Uy)en deux suites réelles, non identiquement nulles. =
s : e i ; ; =
Les suites (i), €t (v,),en sont dites équivalentes s’il existe une suite (@), de 9o
limite égale a 1, et un rang ny a partir duquel : 8
Uy = Qy Uy
On note alors :
Uy ~ U
n n—+c0 it {,j
=
T,
Exemple o
On considere les suites (u4,),ep+ €t (Uy),ep+ définies par : <
. 1 I \
YnelN :un:]+—4 s Un:]+—3

n n W
‘@
Alors, comme : =
I o v
i 1+ - e
lim = = lim —% = e
n—+00 1)y, n—+eo 1 "E
n* A

I F
L

les suites (i), et (v,),er sont bien équivalentes lorsque n tend vers +co.

Attention aux manipulations successives et hasardeuses d’équivalents !

Pour cette raison, on ne donnera pas, dans ce cours, de résultats généraux ni de « recettes »
pour la manipulation d’équivalents, la meilleure méthode, la plus fiable et la plus sire, étant
de manipuler, suivant les cas et ce qui est le mieux adapté, des «0» ou des «O».

Théoréme
Soient (uy),eny et (Vy)nery deux suites réelles, équivalentes lorsque n tend vers +coo.

Alors :

Uy = Uy +o0(vy)

n—+

Réciproquement, si (u,),en €t (Uy)uen sont deux suites réelles telles que, lorsque n tend
vers +co
U, = vy + o(v,)

elles sont aussi équivalentes lorsque n tend vers +co.
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Pouvoir déterminer, pour des suites, des relations de négligeablilité, équivalence, domination,
est donc extrémement utile pour étudier leur convergence !

(=

4. Développement asymptotique
Définition

On appelle développement asymptotique d’une suite réelle (), une décomposi-
tion de la forme :
Uy = Up ) T U2 +...+ Un.p i o(un,p)

|4, p| est tres petit devant [uy, |
[, p—1 est trés petit devant i, 2|

|14, 2] est tres petit devant |uy, 1|

Les développements asymptotiques peuvent étre extrémement utiles pour déterminer des li-
mites.
On parle de développement asymptotigue, car on étudie ce qui se passe lorsque n tend vers +oo,

Exemple

On considere la suite (i), définie par :
1 il
¥Yn e N*: un:(l——)
n
Lorsque n tend vers +oo :
(1 - l)” _ (-8 _ a-bro(d)) _ -t

n

(On a effectué un développement asymptotique a ’ordre 1 en %.)
Ainsi : 1¥ 1
lim (1——) =l =~

n—+oo n (4

5. Des propriétés intéressantes : suites adjacentes, théoreme
des gendarmes

» Suites adjacentes
Définition
Deux suites réelles (i), €t (vy) e sont dites adjacentes si :

e [’une des suites est croissante ;

e [’autre suite est décroissante :

lim (u, — v,) = 0.

n—+00

Théoréme

Deux suites adjacentes convergent et ont méme limite.
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» Théoréme des gendarmes

Théoréme
Soient (uy),ery €t (Un)nery deux suites réelles convergeant vers une méme limite £.
Alors, pour toute suite réelle (w,),cn telle que, pour tout entier naturel n :

Uy, S W, < Uy,

la suite (wy,),ci est elle aussi convergente, de limite L.

Démonstration : Comme les suites (,),en et (v,),en convergent vers ¢, il existe un
rang ny tel que, pour tout entier n = ny :

f—e<u, <l+¢
ek

-y, <f{+e

ce qui conduit a :

Calculus

{—e<u, <w, sv,<{+¢

puis :
lw, — €] < & [

(’ Probabilités {* Algébre
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Suites et systéemes dynamiques

L'attracteur de Hénon

En physique, ou en mécanique, un systeme dynamique est un systeme évoluant, au
cours du temps :

e de fagon causale, c¢’est-a-dire dont I’avenir est directement conditionné soit par son
passé, soit par son état actuel ;

e de facon déterministe, c’est-a-dire que la donnée d’une condition initiale corres-
pond a une unique évolution.

Historiquement, 1’'un des premiers exemples de systeme dynamique est le systeme

solaire, auquel s’intéressa le mathématicien Joseph-Louis Lagrange'. De nos jours, la

théorie des systemes dynamiques a de nombreuses applications, notamment, lorsqu’il

s’agit d’étudier la stabilité d’un systéeme, ou d’un ensemble de particules.

Modéliser le chaos

Un exemple intéressant est I’attracteur (c’est-a-dire 1’ensemble des limites des solu-
tions du systeme) de Hénon. Il est construit par la donnée initiale d’un couple de réels
(x0. o), et de deux réels a et b, a partir desquels on génere la suite de points du plan

de coordonnées (x,, y,) tels que, pour tout entier naturel » :

{xn+1 =Yy + 1 _axg

Ynt1 = bxn

Lorsque a = 1,4 et b = 0,3, Iattracteur est chao-
tique, ce qui signifie qu’il devient fortement instable ;
son comportement a long terme n’est pas prédictible. Le
fait que le systeme dynamique associé soit déterministe
permet donc de contrdler, dans certains cas, le chaos.

L'attracteur de Hénon pour
a=0,0941etb =0,99681.

L attracteur de Hénon peut apparaitre comme une sim-
plification de I’attracteur de Lorenz, qui a de nom-
breuses applications en météorologie, plus précisément,
pour modéliser le comportement du fluide turbulent
qu’est I’atmosphere.

L'attracteur de Lorenz.

1. Joseph Louis, comte de Lagrange (1736-1813), mathématicien, mécanicien et astronome italien. Il
fut I’initiateur du calcul variationnel. En parallgle, il apporta de nombreuses contributions en algébre, a
la théorie des nombres, au calcul infinitésimal, aux probabilités, mais aussi a la mécanique.
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Séries

1. Des sommes partielles aux séries

» Sommes partielles

Soit (iy),ex; une suite réelle. On appelle suite des sommes partielles de (1), 1a suite
(S8 1),em telle que, pour tout entier naturel » :

n

Sn:u0+u1+...+un:Zuk
k=0

» Série

Soit (u,),y une suite réelle. On appelle série de terme général i, la suite des sommes
n

partielles (Z ukJ , notée Z Uy,
neN

k=0

2. Convergence et divergence

» Convergence d'une série numérique

Soit Z u, une série réelle. On dit que Z u, converge si la suite des sommes partielles

n
[Z uk] converge (i.e. admet une limite finie).
k=0 nely

» Divergence d'une série numérique
Soit Z u, une série réelle. On dit que 2 i, diverge si la suite des sommes partielles

n
[Z uk] diverge (i.e. n’admet pas de limite finie).
k=0 nely

» Somme d’une série convergente

Soit Z u, une série réelle convergente. On appelle somme de la série Z u, la quantité

+o0 n

Z i, = lim Uy,
n—+co

n=0 k=0

n
qui est donc la limite de la suite des sommes partielles [Z uk] :
k=0 nelN
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» Reste d’ordre n, n € N, d'une série convergente
Soit Z u, une série réelle convergente. n étant un entier naturel non nul, on appelle

Reste d’ordre n de la série Z u, la quantité

+o0

R, = Zuk

k=n+1
» Série absolument convergente

Soit z u, une série réelle. La série Z u, est dite absolument convergente si la série
Z 178

Théoréme

converge.

Soit E u, une série absolument convergente. Alors, la série E u, converge.

» Série semi-convergente

Soit Z u, une série réelle. On dit que Z u, est semi-convergente si elle est conver-
gente, mais non absolument convergente.

» Condition nécessaire de convergence d'une série

Théoréme

Soit E u, une série réelle. Une condition nécessaire de convergence de E U, est:

Iim u, =0

n—+oo

Attention! C’est une condition nécessaire, et non suffisante ! Ainsi, ce n’est pas parce que

son terme général tend vers zéro qu’une série converge. Ainsi, la série de terme général —
n

diverge.

» Somme de deux séries convergentes

Théoréme

Soient Z u, et Z v, deux séries convergentes. Alors, la série Z (u, + v,) converge, et
a pour somme :

+oo +o0 400
PCESSEDIEDIL
)1:0 n:O ?l:()
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52 Quelques séries remarquables

1. Les séries géométriques
Définition
On appelle série géométrique toute série de la forme Z "', ou r est un réel.

Le réel r est la raison de la série géométrique Z e

Attention ! Toutes les séries géométriques ne sont pas convergentes !

» Condition nécessaire et suffisante de convergence d’une série géométrique

Théoréme

La série géométrique Z " converge si et seulement si |r| < 1. Dans ce cas, sa somme
vaut :

« 1

2,7

= L =@

Démonstration : Pour tout entier naturel » :

e Sir # 1, on peut utiliser la formule donnant la somme des n+ 1 premiers termes d’une
suite géométrique :

Lorsque n tend vers I'infini, cette derniére quantité n’admet de limite que si |r| < 1.

ir]‘:ilzn+l
k=0 k=0

Lorsque n tend vers I’infini, cette derniere quantité tend vers I’infini.

e Sir=1:

Si|rl <1, onaalors :

+00 1
T 1
> = lim > /= lim =
oy n—+oo e —+00 1 —-F 1 —-r

puisque lim ! =0. n
n—+00
Exemple
+0oa
1 1
Z F= T 9
n=0 'z

© Dunod. Toute reproduction non autorisée est un délit.
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Proposition

+00

La fonction qui, a tout réel x de | — 1, 1[, associe Z X" est dérivable, et a pour dérivée
n=0
la fonction qui, a tout réel x de ] — 1, 1[, associe :

+00 +00 +oo ’
-1 _ -1 _ _ 1 _ 1
anZ_;)nx” —an’ —HZ_O(n+l)x"—(l_x =00

n=1

Gréce a ce résultat, on peut dériver terme a terme.
Ce résultat est admis. Z X" est ce que 1’on appelle une série entiére. L’intervalle | — I, I[ est

nz0
son domaine de convergence, et 1, son rayon de convergence. Pour tout réel x de ce domaine,

la série converge, et on peut dériver ou intégrer terme i terme.

2. Les séries de Riemann
Définition

On appelle série de Riemann toute série de la forme Z —, Ol @ est un réel.
n

nzl

» Condition nécessaire et suffisante de convergence d’une série de Riemann

Théoréme

1
La série de Riemann Z — converge si et seulement si @ > 1.
n

nzl

Exemple

1. La série de Riemann Z —, aussi appelée série harmonique, est une série divergente.
nzl L
i ; 1 £
2. La série de Riemann Z — estune série convergente, dont la somme vaut :
n
nzl

(Ce dernier résultat est admis. On peut le retrouver, notamment, a I’aide de séries un
peu particuliéres : les séries de Fourier.)
; ; 1 ;
3. La série de Riemann Z — est une série convergente, dont la somme vaut :

nt
nzl

(Ce dernier résultat est admis.)
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Critéres de convergence
pour les séries a termes positifs

fiche 53

1. Outils d'étude

» Comparaison avec une série convergente

Théoréme

Soient Z u, et Z v, deux séries a termes positifs, telles que, pour tout entier naturel
n Uy Uy

Alors, si la série E v, converge, il en est de méme de la série E ;71

0
=
Exemple 3
e o g . . L]
Pour étudier la convergence de la série Z —» 1l suffit de remarquer que, pour tout entier 9
nzl n
e 1
naturel nonnuln : — < —.
noon

1 . . . .
Comme Z — est une série de Riemann convergente, on en déduit la convergence de la série
n

n=l

>
n

nzl

» Comparaison avec une série divergente

Théoréeme

Soient Z u, et Z v, deux séries a termes positifs, telles que, pour tout entier naturel
n -. urz é Un u‘

| §

Alors, si la série E u, diverge, il en est de méme de la série E Ui

Yo

» Equivalence

Théoréeme

Soient Z uy, et Z v, deux séries a termes positifs, telles que, pour tout entier naturel
n:uy ~ Uy

Alors, si la série Z v, converge, il en est de méme de la série Z Uy

Si la série 2 v, diverge, il en est de méme de la série Z 7

Exemple
) sin (:;)
Pour étudier la convergence de la série Z - il suffit de remarquer que, lorsque n tend
nzl n
vers I'infini :
sin (1) 1 sin (l) 1
o~ L soit: e —
n* n*’ n* n’
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1 . . . .
Comme Z — est une série de Riemann convergente, on en déduit la convergence de la scrie
n

nzl

o]

nzl

2. Critere de d'Alembert

Théoréme
Soit Z u, une série a termes positifs, non nuls a partir d’un certain rang. Alors :

Upt1

e s lim
n—+oo i,

P Upt1 .
o si lim —/— >1: Zun diverge ;

n—+eo i,

i § Z u, converge ;

Upe

e si lim = 1 : on ne peut pas conclure sur la convergence de Z s
n—+oo i,

Exemple
-2n

. z ~ L e
On s’intéresse a la convergence de la série Z - Comme :
n

nzl

Lo
e 2(n+1)

. -2 =)
. ) e 2(n+l) n4 ) n4€ 2 5
lim — = —— = Iim ———=¢ “ <1
n—too " H—+00 (n + ])4 g—4n n—+00 (n =5 1)4
n
€—2n

on peut en déduire que la série Z — converge.
n

nzl
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Qu’est-ce qu'une intégrale?

Définition
Considérons une fonction f : [a,b] € R — R, continue sur [a, b].
On appelle intégrale de a a b de f 1a valeur de I’aire comprise entre la courbe repré-

sentative de f sur [a, b] et I’axe des abscisses.

y
/

1
B

Figure 54.1- Laire sous la courbe représentative de f entre a et b.

Le cas présenté ci-dessus ne refiete, hélas, pas la réalité des fonctions que I’on ren-
contre dans la vie de tous les jours du physicien, du chimiste, du biologiste, ...

En effet, la plupart des fonctions ne possedent pas toutes des propriétés de régularité,
en particulier, elles ne sont pas nécessairement continues (ce qui est le cas, par exemple,
d’un effort appliqué localement sur une poutre).

Afin de pouvoir calculer I’intégrale d’une fonction qui n’est pas toujours continue, les
mathématiciens ont commencé par construire 1'intégrale de fonctions « échelonnées »,
ou « en escaliers », qui correspondent a des réalités physiques, comme, par exemple,
une répartition de chaleur sur un barreau métallique de longueur infinie, en fonction de
I’abscisse x : 1 sur[-1,1]

Ty = {0 ailleurs

y
A

=1 1

1t
Figure 54.2 - Une fonction « créneau ».
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Si on cherche a représenter, par exemple, I’évolution du prix du blé en fonction du
temps, en considérant qu’il garde une valeur constante chaque semaine, tout en pouvant
augmenter ou diminuer la semaine suivante, on obtient aussi une fonction en escaliers :

semaine 2

" n
semaine 1} i semaine 3

1 ]
1 semaine 4

Figure 54.3 - Un exemple de fonction en escalier : I'évolution du prix du blé en fonction du temps.

Ainsi, Bernhard Riemann' choisit, pour calculer I'intégrale d’une fonction quel-
conque, d’approcher celle-ci par des fonctions « en escaliers ».

Il est ensuite tres facile d’étendre les résultats obtenus pour ces fonctions « basiques »
a des fonctions beaucoup plus régulieres !

1. Georg Friedrich Bernhard Riemann (1826-1866), mathématicien allemand. Outre ses travaux sur 1'inté-
gration, il a créé la théorie des fonctions algébriques, et développé les travaux de Cauchy sur les fonctions
de variables complexes ; en géométrie différentielle, il introduisit le concept de variété, qui conduira, ulté-
rieurement, a la géométrie riemannienne.
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Intégrale d'une fonction en escaliers

1. Définitions
» Subdivision d’un intervalle

Etant donnés un intervalle [a, b] de R, et n un entier naturel non nul, on appelle subdivi-
sion de [a, b] tout ensemble o de réels {xg, x1, ..., x,} tel que :

X=a<x<Xn<...<X-1<x,=b

Xo=4a X7 Xz Xp= b
Figure 55.1- Une subdivision de I'intervalle [a, b].
Le pas de la subdivision est :
ol = Sup{x; —xi—1, 1 <i<n}

» Subdivision réguliére

Une subdivision o est dite réguliére si elle est de pas constant.

Xo= 4 X; Xz Xp=b

Figure 55.2 - Une subdivision réguliére de I'intervalle [a, b].

» Finesse

Etant donnés deux entiers naturels non nuls n et p, et deux subdivisions
oy = {x0, X1,..., X} et oy = Hyo,yl, " ,yp} d’un intervalle [a,#] C R, la subdivision
o est dite plus fine que o, si :

s is <5 Ynd Q{xg,x;,...,xp]

» Fonction en escalier

Une fonction f, définie sur un intervalle [a,b] de R, est dite en escaliers sur [a, b]
s’il existe une subdivision o = {xp,x,...,x,} de [a,b] telle que, pour tout i de
{0,1,2,...,n— 1}, f soit constante sur ]x;, x;;1[-

» Subdivision adaptée a une fonction en escaliers

Etant donnée une fonction [ en escaliers sur un intervalle [a, b] de R, une subdivision
o = {xp, X1, ..., X} de [a, b] est dite adaptée a f si, pour tout i de {0,1,2,...,n—1}, f
est constante sur |x;, xi1].
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Figure 55.3 - Le graphe d’une fonction en escaliers sur l'intervalle [a, b].

Propriéteé

Etant donnés deux fonctions f et g en escaliers sur un intervalle [a, b] de R, et un réel A,
la fonction f + A g est aussi en escaliers sur [a, b] (I’existence d’une subdivision adaptée
a [ et g est admise).

» Intégrale d’une fonction en escaliers

Soient f une fonction en escaliers sur un intervalle [a, ] de R, n un entier naturel non nul,
et o = {xg, X1,..., X,} une subdivision de [a, b]. Pour tout entier { de {0,1,2,...,n— 1},
on désigne par y; la valeur de f sur I'intervalle ]x;, x;41[.

On appelle intégrale (de Riemann) de f sur [a, b] le réel

b n—1
f f@yde = (31 = x)y;
a i=0

Etant donnée une fonction en escaliers [ sur un intervalle [a, b] de R, la valeur de I’inté-
grale de f sur [a, b] ne dépend pas de la subdivision (adaptée a f) choisie.
Si f est une fonction en escaliers sur un intervalle [a, b] de R, alors :

b
ff(r)dt =— | flde
b a

2. Propriétés
» Linéarité
Etant donnés deux fonctions f et g en escaliers sur un intervalle [a, b] de R, et un réel A :

b b b
f(f(r)+/lg(t)) dtsz(t)delfg(t)dt

» Positivite

Etant donnée une fonction f en escaliers sur un intervalle [a, ] de R, a valeurs posi-

tives : .
f f)dt =0
a
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1l

Figure 55.4- L'intégrale d'une fonction en escaliers sur un intervalle [a, b, a valeurs positives.

» Croissance

Etant données deux fonctions f et ¢ en escaliers sur un intervalle [a, b] de R telles que :

¥Vt e lab] : f(1) <g(r)

b
f (0 dt < ﬁ gt dt

alors :

Figure 55.5- lllustration graphique de la croissance pour une intégrale, dans le cas de fonctions en
escaliers (les deux subdivisions ne sont pas nécessairement égales).

» Valeur absolue d‘une intégrale

Etant donnée une fonction f en escaliers sur un intervalle [a, b] de R :

b b
f fo)di| < f |f(D)l dt
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Figure 55.6- Comparaison entre la valeur absolue d‘une intégrale et I'intégrale
de la valeur absolue, dans le cas de fonctions en escalier.

» Relation de Chasles

Soit f une fonction f en escaliers sur un intervalle [a, b] de R. Alors, pour tout ¢ de

[a,b] : ; :
ff(r)dt:ff(r)dmff(t)dt

» Fonctions « égales presque partout »

Etant données deux fonctions f et g en escaliers sur un intervalle [a, b] de R, égales sauf

en un nombre fini de points' :
b
NS f g0y ds
d a

1. Des fonctions égales, sauf en des points isolés, sont dites « égales presque partout ». L'ensemble de ces
points peut étre infini. On a ici un cas particulier de « égales presque partout » sur [a, b], puisqu’elles ne
différent qu’en un nombre fini de points.
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=y R

Figure 55.7 - lllustration graphique de la relation de Chasles pour une fonction
en escaliers sur un intervalle [a, b].

ik

Figure 55.8- Intégrale de deux fonctions en escaliers sur un intervalle [a, b], égales sauf en a et c.
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Intégrale d’une fonction continue
par morceaux

1. Définitions
» Fonction continue par morceaux

Une fonction f, définie sur un intervalle [a, b] de R, est dite continue par morceaux
sur [a, b] s’1l existe une subdivision o = {xg, x1,..., X} de [a, b] telle que, pour tout
ide{0,1,2,...,n— 1}, la restriction fj, ., & I'intervalle ]x;, x;. [ soit continue sur
xi, xi-1[, et prolongeable par continuité en x; et x;.|.

y
A

-1 4
=

Figure 56.1- Le graphe d’une fonction continue par morceaux.

» Subdivision adaptée a une fonction continue par morceaux

Etant donnée une fonction f continue par morceaux sur un intervalle [a,b] de R,
une subdivision o = {xy, x1,...,x,} de [a,b] est dite adaptée a f si, pour tout i de
{0,1,2,...,n— 1}, larestriction fjjy, v, al'intervalle |x;, x;; [ est continue sur |x;, x4 [,
et prolongeable par continuité en x; et x4 1.

2. Approximation d'une fonction continue par morceaux
par des fonctions en escaliers

Théoréme

Soit f une fonction continue par morceaux sur un intervalle [a, b] de R. Alors, il existe
deux suites, respectivement croissante et décroissante, de fonctions en escaliers (¢p), e
et (Y,),err, €t un entier naturel ny tels que, pour tout entier naturel n > ny, et pour tout t

de |a,b] :
1
%ﬂ(f) < f(t) < 'an(t) et 0 < ﬁpn(t) - %(I) < ;
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)

La croissance de la suite (@,), et la décroissance de la suite (U)o Se traduisent par
le fait que, pour tout entier naturel n, et tout t de [a,b] :

On(D) < @1 (t) W1 (1) < Y(0)

On dit alors que [ est limite uniforme des suites (¢y,),cir €t (Un),ci-

4
A

Figure 56.2 - Approximation d‘une fonction par une fonction en escaliers.

L’intérét du théoreme précédent est d’étendre la notion d’intégrale vue pour les fonctions en
escaliers aux fonctions continues par morceaux.

» Un cas particulier intéressant de limite uniforme : le théoréme de Weierstrass

Théoréme

Toute fonction continue sur un segment est limite uniforme, sur ce segment, d’'une suite
de polyndémes.

3. Intégrale d'une fonction continue par morceaux

Soit f une fonction continue par morceaux sur un intervalle [a, ] de R. Alors, pour
toute suite de fonctions en escaliers (¢,),oy dont f est limite uniforme, la suite

( fb @n(1) dt) est convergente, et ne dépend pas du choix de la suite (¢, ),,¢;- La limite
a neN

b
de la suite ( f @a(t) dt) est appelée intégrale de a a b de f, et notée f f(r)dtr.
a nel a

Soit f une fonction continue par morceaux sur un intervalle [a, b] de R. Alors :

b
fwf(t)dt=—f fndt
b a

Cela vient simplement du fait que 1'intégrale _f: f(6)dt correspond a une aire comptée négati-
vement.
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» Sommes de Riemann, dans le cas d'une subdivision uniforme

Théoréme

Soit f une fonction continue sur un intervalle [a, b] de R.

Alors :
b—a < = 4
lim -2 Zf(a+k—a)=f f() d
n—r+00 n o n o

Figure 56.3 - lllustration graphique de la limite d’'une somme de Riemann.

1. Ce résultat, que 1’on ne démontrera pas dans ce cours, se comprend assez facilement de fagon

_— . b—a < b-a ) _

intuitive, dans la mesure ol la somme Z Sla+k représente tout simplement
n n

k=1

b—a

la somme des aires des rectangles de longueur , et de hauteur f (a +k b;—“)

2. On a présenté, dans ce qui précede, le cas d’une subdivision uniforme de I'intervalle [a, b].
Les sommes de Riemann ne se limitent pas a ce seul cas, et restent encore valables pour des
subdivisions non uniformes, sous la condition bien siir que le pas de celles-ci tende vers zéro
lorsque n tend vers +co.

4. Propriétés
» Linéarite

Etant donnés deux fonctions [ et g continues par morceaux sur un intervalle [a, b] de R,

etunréel A : ; ;
f (f(t)y+ Ag(t)) dt = f f(oydt+ A fbg(t) dt

Etant donnée une fonction f continue par morceaux sur un intervalle [a, b] de R, a va-
leurs positives :

» Positivite

b
f f(Hdt =0
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» Stricte positivité

Etant donnée une fonction f continue par morceaux sur un intervalle [a, b] de R, a va-

leurs strictement positives :
fb f(t)dr >0
a

Etant données deux fonctions f et g continues par morceaux sur un intervalle [a, b] de R
telles que :

» Croissance

Yt e [ab] : f(t) < g(t)

b
ff(t)dtéfbg(r)dt

alors :

Figure 56.4 - lllustration graphique de la croissance pour une intégrale, dans le cas de fonctions
continues par morceaux.

» Valeur absolue d'une intégrale

Etant donnée une fonction S continue par morceaux sur un intervalle [a, b] de R :
b b
f fdi < f |f()ldr

Soit f une fonction f continue par morceaux sur un intervalle [a, b] de R. Alors, pour

tout ¢ de [a, b] : . ,
ff(t)dt:ff(r)dmff(r)dt

» Fonctions « égales presque partout »

» Relation de Chasles

Etant données deux fonctions f et g continues par morceaux sur un intervalle [a, b] de
R, égales sauf en un nombre fini de points :

b
f fayde = f g(t)dt

Soit f une fonction continue sur un intervalle [a, b] de R, a valeurs positives ou nulles.

Théoréme
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Figure 56.5- lllustration graphique de la relation de Chasles pour I'intégrale d‘une fonction

continue par morceaux.

b
Alors, si f f(t)ydt =0, la fonction [ est nulle sur [a, b] :
a
¥t e lab]: f(H)=0

» Inégalité de la moyenne

Théoréme
Soit f une fonction continue sur un intervalle [a, b] de R.

On note :
m=inff(t) , M=supf(r)

rela.b] refa.b]

Alors :
m(b—a) < ﬁf(t)dt <M(b-a)

.~

Figure 56.6- lllustration graphique de I'inégalité de la moyenne pour I'intégrale d’une fonction

continue sur un intervalle [a, b].

Démonstration : La démonstration ne fait que formaliser les explications de la figure

ci-dessus.
Par hypothese, pour tout 7 de [a, b] :

m< f(ys M

La croissance de I'intégrale permet d’en déduire :

b
fmdtsff(t)dtsfMdr
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soit :
m(b—a)\{fbf(t)dtﬁM(b—a) ]

» Formule de la moyenne

Théoreme

Soient f et g deux fonctions continues sur un intervalle [a, b] de R. On suppose que la

Jonction g est a valeurs positives :

Yt elabl: gi1=0

Alors, il existe un réel c dans [’intervalle [a, b) tel que :
b b
f F gty di = £(0) f g(0) dt
a a

Démonstration : f étant continue sur [a, b], il existe deux réels m et M tels que, pour
tout ¢ de [a, b] :
m< f(ysM

la fonction g étant a valeurs positives, il en résulte, pour tout ¢ de [a, b] :

mg(t) < f(t) g(t) < M g(1)

Par croissance de I'intégrale, il en résulte :

b b
f mg(t)dt < f f(H)g(H)dt < fb M g(t)dt

b b b
m f g(r)dt < f fHgndr <M f (1) dt

soit :

b
Si f g(t)dt = 0, n’importe quel ¢ de [a, b] convient.
a

b
Si f g(t)dt # 0, on peut diviser membre & membre par jj g(t)dt :
a

Le théoreme des valeurs intermédiaires permet alors d’en déduire 1’existence d’un réel ¢
de [a, b] tel que :

b
f f)g(n)de
fle)=4—
fb g(t) dt
a
ce qui conduit au résultat cherché. ]
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57 Calcul intégral

1. Primitives
Définition

Soit f une fonction continue sur un intervalle I de R. Une fonction F', dérivable sur 7,
est une primitive de f sur / si et seulement si :

F' = fsurl
Propriéteé
Soit f une fonction continue sur un intervalle / de R. Alors, les primitives de f sur /

different toutes d’une constante.

Démonstration : Soient F et F; deux primitives de f sur [ :

Fi=F,
ce qui conduit a :
F|-F} =
soit :
(F1—=F2) =0

Il en résulte :
F| - F> = Fonction a valeur constante sur /

qui est le résultat cherché. ]

Ainsi, si F est une primitive sur I de la fonction f, alors, pour tout réel K, la fonction ¢ €
I'— F(t) + K est aussi une primitive de f sur /, ce qui est assez logique, dans la mesure ot la
dérivée d’une fonction constante est nulle !

2. Le théoreme fondamental de I’'analyse

Théoréeme

Soit f une fonction continue sur un intervalle I de R, et a un réel appartenant a 1.

X
L’application de I dans R, qui, au réel x de I, associe f f(t)dt, est une primitive de f
a

surl.

X
Démonstration : Désignons par F la fonction qui, a tout x de 7, associe f f(t)dt.

Il s’agit donc de montrer que, pour xy donné dans I, F est dérivable enaxo, avec
F'(x0) = f(x0).
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Soit € > 0. f étant continue en xp, il existe un réel 7, tel que, pour tout x vérifiant
|x = xol < 7x

1f(x) = f(xo)l < &

Par suite, pour un tel x vérifiant x > xg :

X )
f f(t)dt_f i (x—XO)f(XO)

F(x) - F(x
(x) = F(xo) _f(x0)| _
X=X = —
[ fwars f fwde fxo) f d
f foydr f flxo)dr
B X — Xg
f fyde  fxo) f dr
- X — X
X
f (f(@) = f(x0)) dt
— al
B X —Xn
X
f Lf () = f(xo)l dr
< X0
lx = xol
f edt
< = = g
lx = xol
De méme, pour un tel x vérifiant x < x : M - f(xo)l <&
— Xp
Le réel £ étant quelconque, il peut étre choisi aussi petit que possible. Il en résulte :
F(x)-F
lim F(x) — F(xo) = f(xp)
X=X X — XQ
soit F'(xp) = f(xp), qui est le résultat cherché. [

Théoréme
Soit [ une fonction continue sur un intervalle I de R, et a un réel appartenant a I.

Pour tout réel C, il existe une unique primitive de f prenant en a la valeur C. C’est
Uapplication :

I - R
xl—>C+f f(t)dt
a
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Théoréme

Soit f une fonction continue sur un intervalle [a, b] de R, et F une primitive de . Alors :

b
\ffmm=ﬂm—ﬂm

On notera : [F(1)]2 = F(b) - F(a).

3. Propriétés

» Intégration par parties

Théoréme
Soient f et g deux fonctions de classe C' sur un intervalle |a, b] de R.
Alors :

b b
‘ffmdmm=ummm$:ffwmmm

Démonstration : Les fonctions f et g étant de classe C !sur [a, b], il en est de méme de
leur produit f g. De plus, pour tout réel ¢ de [a, b] :

(f(Dg(n) = f()g' (1) + f (1) g(t)
f et g étant de classe C! sur [a, b], les fonctions f g’ et f’ g sont continues sur [a, b], et
donc intégrables :

b b
fﬂmwmrm=ffmdmm+ff%wmm

Soit :
b b
Umwmafﬂwmmﬁffmwm

D’ou le résultat. ]

Exemple

Soit x un réel strictement positif. Alors :

f " In() de = f " In() 1dr
1 1
* 1
[ln(:)t]f—f — tdt
1 I
% 1
[In(r) 1] f ~tdt
x In(x) — f dt

xIn(x)—(x—1)
xIn(x)—x+1
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» Changement de variable

Théoréme

Soit f une fonction continue sur un intervalle I de R, et ¢ une fonction de classe C' sur
un intervalle J de R telle que :

ol)yclI

Alors, pour tout couple de réels (o, ) € J? :

o (5)
fﬂ Fle) ¢'@)dr = f L, fo
a ola

Démonstration : f étant continue sur 7, elle posséde au moins une primitive F sur /.
Par dérivation composée :

(Foyp) = fopy

f o . est continue sur J, comme produit de fonctions continues sur J. En intégrant de
a a B, on en déduit :

el
f (Fog) (Ddr= f@ (fe@) @' (ndt
soit :
[(Fop) ()] = fﬁ (fep) ()¢ (1) dt
ou encore :

F(eB) - F (pla)) = f@ (f o) ()¢ (1) dt
qui s’écrit aussi :

pla)

el
(F1“® = f (f 0 ) ()¢ (1) di

mais également :

(B) il
f: i = f (f 0 0) (.0 () d
@l @

D’ou le résultat ! ]

Exemple

1
Considérons 'intégrale I = f e' Ve' + 2dt. 11 est judicieux d’effectuer le changement de
0

variable ¢’ = u. L’ application ¢ > ¢' est de classe C'.
On peut donc appliquer le théoreme du changement de variable :

]:f\/u+2du=f(u+2)% du:%[(u+2)§]‘1’:2(e+2)2—2\/ﬁZZ(e;Z)a_2\6
| 1
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» Intégrale et parité

Propriéte

Soit a un réel positif, et f une fonction continue et paire sur 'intervalle [—a, +a].

Alors :
ff(t)dt=2fwf(t)dt
—-a 0

Figure 57.1- L'intégrale d'une fonction paire.

Démonstration : On décompose tout simplement I’intégrale a 1’aide de la relation de
Chasles, puis on effectue un changement de variable :

a 0
f f(tydr = f f(oydt + f f(n)dt
i —a 0
= ﬁ S(=0) (=dr) + j: fdr

= f f(t)dr + f ’ F()dt (f étant paire : f(—1) = f(D))
a 0

- f " poydt + f Foydr
(0] 0
=2ff([)dt [
0

» Intégrale et imparité

Propriéteé

Soit a un réel positif, et f une fonction continue et impaire sur I’intervalle [—a, +a].

Alors :
fa f(Hydt =0
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Figure 57.2 - L'intégrale d’'une fonction impaire.

Démonstration : On décompose a nouveau |’intégrale a I’aide de la relation de Chasles,
puis on effectue un changement de variable :

fw f(t)dt = fo f(t)ydr + fa f(n)dt
ff( —0 (= dt)+faf(t)df
=~f -f(t)df-!-faf(t)df (f étant impaire : f(~1) = —f(7))
ff(t)dt+faf(t)dt
Z;ff(t)dt+£f(t)dt

» Intégrale et périodicité

Propriéte
Soit T un réel non nul, et f une fonction continue sur R, de période 7.

Alors, pour tout réel a :
+T T
f f@)dt =f S0 di
a 0

-2T -T T 2T

Figure 57.3- L'intégrale d'une fonction continue de période T.
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Primitives de fractions rationnelles

1. Détermination d’une primitive

Connaitre la décomposition en éléments simples d’une fonction (réelle) « rationnelle »
permet d’en déterminer facilement une primitive :

e lorsque la fonction est de la forme x € R\ {xp} ,a € R, xp € R, une
X — X

primitive est :
x € R\ {xp} = aln|x— xp|

5 a _
e lorsque la fonction est de la forme x > xp — (—)5 =a(x—-xy) %, € R, xg € R,
X — Xp)
s € R, s # 1, une primitive est :

I=g a
x> Xy X =X ==
0 1—S( = (1 =i —ag)* !
, ax+pf 4
e lorsque la fonction est de la forme x € R - - (a,B8,4,u) € RY,
x*+Ax+u

A% — 4 <0, il est intéressant de remarquer que :

Txd i - 2x4d_ B- 4z

« a
224 Ax+pu XPH+Ax+pu 2 xX2+Ax+pu 2

(.)C+§)2+‘U—E

A
B4
12
_a 2x+4 H=7
2 xX2+4Ax+ 1)
H (x+§)
2 + 1
n-g
T ax+
Une primitive de x € R — Z—Best alors de la forme :
x>+ Ax+pu
Aa - A
@ B=5 | A x+5
xeR|—>—11'1;\¢:2+/1x+,u|+—22 ,u——arctan—z
2 [J_d_ 4 /12
4 =7
c’est-a-dire
Aa A
a - &2 x+5
xeRn—ealnx2+/1x+,u|+—2arctan 2
A2 A2
H= H="F
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2. Forme canonique

Définition
Ay 22
La factorisation de x> + A x+u en (x+ 5) + ,u—I est appelée « forme canonique ».
Exemple
-1
Déterminons une primitive de la fonction x € R — s
2+x+1
Ona:
x—1 1 2x+1 3 1
e L ¥ Th 2
x*+x+1 B 223Jcc++1x+13 2w +Ix+l
2 x2+x+1 2(x+%)2—%+1
_ 1 2x+1 3 1
2 24+x+1 2(x+%)2+%
1 2x+1 34 1
T 5B e A 2
2 x4 +x+1 23%(1:-{-%) 2
1 2x+1 1
2x+x+1 %(x+%)2+1
- . x=1
Ainsi, une primitive de x € R > ————— est:
x4 x+1
1 3 2 1
Jc:n—>—ln(xz—i-x+l)—2£ arctan| — |x+ =
2 2 V3 2
c’est-a-dire :

x % In(x2 +x+1)— Vgarctan(% (x+%))
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Calcul approché d’intégrales

1. La méthode des rectangles

» Le calcul approché en lui-méme

La méthode des rectangles, qui consiste a approcher la valeur d’une intégrale par la
somme des aires de rectangles situés sous la courbe, utilise tout simplement les sommes
de Riemann vues précédemment ; pour I’intégrale d’une fonction f continue par mor-

ceaux sur un intervalle [a,b] de R, on commence donc par diviser [a,b] en n sous-

; b-—a
intervalles, de longueur

n
On choisit ensuite de considérer :

e soit les rectangles de hauteur f (a +k ”l;if’), k=0,1,...,n— 1, et de largeur

L’intégrale f f(t)dr est alors approchée par :
By n—1 B
Wi (a +k “)
n £ n

e soit les rectangles de hauteur f (a +k f%), k=1,...,n, de largeur

—d

. L'intégrale
b
f J(t) dr est alors approchée par :
a

b—a rzrf(a-kkb_a)
n n

b

» Etude de I’'erreur commise

Au-dela du calcul approché, il peut étre intéressant de quantifier I’erreur ainsi commise,
en valeur absolue. Pour la premiere configuration, elle est donnée par :

b n—1
b - b -
ff(t)dr——aZf(a+k a)
a n n
=0
n—1 +(k+1) =2 bh— n—1 %
Zf Ft)dr - “Zf(mk “)
jmo Yatk e o ”

n-—1 k1) =2 -

Zf (f(r)—f(a+k—a)) dt

k=0 Vark &

n—1 +(k+1) =4 _

Zf ‘f(r)—f(mk—b a)
a+k£;£ n

k=0

N

dt
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Considérons le cas d’une fonction de classe C' ; d’aprés ’inégalité des accroissements

a+kb_a,a+(k+1)b_a]:
n n

finis, pour tout k de {0, 1,...,n — 1}, et tout ¢ de

£(0) —f(a+kg) < (r—a—kb_a) max | f'|
n n i€]a,b]

on a alors :

b n—1 n—1 + (k1) L4
b - b- n b-
ff(t)dr—_a f(a-i-k a) Igf (t—auk a)dt
a S n elabl Ty Jark B "

at+(k+1) =4
i 0)2“ n

N
=
)
I
%

Il
23
=5

=
= =
HM1
f—
b | =
—

~

|

Q

|

&

0 a+kb%“
n—1 7
; 1(b-a)
= maZ( Vil 3 5
tela.b) =0
1 (h-aP S
= max | f'| = 3 1
tela,b]
k=0
7 (b - a)’
B max
rela,b] 2n
B
(Pour simplifier le calcul, on a choisi de primitiver ¢t —  —a — k - par

2
ena+k 1%‘3, et de simplifier le calcul ena + (k + 1) bn;“ )

1 b-a\’ 1 b-
P> = (r—a—k—a) au lieu de r — Etz—at—k—at, afin d’obtenir la valeur 0
n n

L’erreur commise est donc un O (%)

Il est également possible d”obtenir cette majoration en appliquant, tout simplement, la formule
de la moyenne.

Exemple

n'n!

(2n)z)i

Déterminons la limite, lorsque » tend vers +co, de (

Ona: 1
((2n)!)E exp(l In (2n)!)
n"n!

n n*n!

Il

ex 11n1><2x...><(2n)
pn W1IX2X...Xn

(1 (n+1)><(n+2)x...><(2n))
exp ;]n

Il
[¢]
)
o
I
=3
.
f—
+
==
S ——
X
—
—_
+
=
S
X
X
—
—_—
+
=
et
T ——

Il

l¢]

>

=
—_—
= | =
=
g
—_—

=

———
ot

+

=
S
—
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On reconnait alors ;

n—1 -1
lim lZIn(1+E):j ln(l+t)dt:[(r+l)ln(l+t)—t](]]:21n2—1
n

0

Par continuité de la fonction exponentielle, il en résulte :

lim
n—+co

nn!

1
((Zn)!)" = 221 4
€

2. La méthode des trapézes

Une alternative a la méthode des rectangles consiste a approcher la valeur d’une intégrale
par la somme d’aires de trapezes, qui, graphiquement déja, sont plus proches de la courbe
que les rectangles précédents.

On rappelle la formule donnant I’aire d’un trapeze :

(grande base+petite base) X hauteur
L

Ainsi, en considérant la suite des trapezes de bases respectives f (a +kbn;") et

f(a +(k+1) b;n“) de hauteur r=4

ykm= 1o 2, v yt—-1
n

b—a)

fla+(k+ 1)

n

a+(k+h% b

Figure 59.1- La méthode des trapézes.

b
L’intégrale f f(t)dt est alors approchée par :
a
-l (a+kb%")+f(a+(k+ 1))
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qui s’ écrit aussi :
n—1

n—1
(b—a)L f(a+kb~a)+ f(a+(k+l)b~a)

2n = n £ n

n—1 n
(b—a)— éf(a+kb;a)+ f(a+kb;a)

2n £

b—a

1 n—1
(b~a) 5~ | f@)+2 Zf(a+k
k=1

b-a|fl@+ fb) = ( b—a)
+ ) fla+idk——

n 2

(On a effectué un changement d’indices dans la deuxieéme somme, puis regroupé les
termes communs aux deux sommes, ¢’est-a-dire entre 1 et n — 1).

Graphiquement, on voit bien qu’approcher la fonction par les trapezes ci-dessus per-
met une meilleure approximation. L’erreur commise (que nous n’étudierons pas ici) est

1
alors un O (;), ce qui est donc plus précis que pour la méthode des rectangles.

Il existe beaucoup de nombreuses méthodes permettant le calcul approché d’une in-
tégrale. Aprés la méthode des trapézes, on trouve, en général, la méthode de Simpson',
qui consiste a approcher la fonction sur I’intervalle d’intégration par un polyndme qua-
dratique, c’est-a-dire de degré 2, prenant les mémes valeurs que celle-ci aux bornes de
I'intervalle. Par rapport a la méthode des trapezes, 1’erreur commise est plus faible, dans
la mesure ou, graphiquement, on approche la fonction par une courbe et non une droite.
En outre, il est clair qu’une expression polynomiale s’integre facilement.

3. Une application de la méthode des trapézes : une variante
de la formule de Stirling

Considérons la fonction logarithme népérien : celle-ci étant concave, sa courbe repré-
sentative est située au-dessus des cordes. Ainsi, pour tout entier naturel k, I’aire sous la
courbe entre k et k+ 1 est plus grande que I’aire du trapéze ayant pour sommets les points
de coordonnées respectives (k,0), (k+ 1,0), (k+ 1, f(k + 1)), (k, f(k)) :

In(k+1)

Ink

Figure 59.2- La fonction logarithme népérien, et son intégrale entre k et k + 1.

k+1
Ink+In(k+1
f 1 el S AAGE A+ 1)
X 2

I. Thomas Simpson (1710-1761), mathématicien anglais, essenticllement connu pour ses travaux sur le
calcul infinitésimal (la méthode de Simpson, qui permet un calcul approché de I’aire sous une courbe), mais
qui fut aussi ’auteur d’un important traité de trigonométrie, et & qui ’on doit les formules permettant de
transformer un produit de cosinus ou sinus en somme, et vice versa.
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On en déduit, en additionnant membre 2 membre les inégalités ainsi obtenues pour tout
entierkde{l,...,n—1}:

n—1 f+1 n—1
Ink+In(k+ 1)
Intdt > —_——
>, 2

k=1 =1

soit, grice a la relation de Chasles, et en effectuant un changement d’indices dans

k=1
n—1 n
f Intdt > Zlnk+ - Zhlk
I k=1 k=2
n—1
c’est-a-dire [t Int — 1]} > Zl k + ——, ou encore :
k=2

1
nlnn—-n+12 Z:lnk—ﬂ

n

1
On reconnait alors : ln[ kJ = In(n!) — %. Il en résulte :
2

k=

1
nlnn—n+1>ln(n!)—¥

. i 1
puis : (n + 5) Inn—n+12=In(n!).
Par croissance de la fonction exponentielle, on en déduit alors :

1
exp(( 2)lnn—n+l) n!

en" Vne™

La concavité de la fonction logarithme népérien fait aussi que sa courbe représentative
est située en-dessous de ses tangentes : ainsi, pour tout entier naturel k, la courbe est
située en-dessous de la tangente en k, ce qui se traduit par :

soit :

—%
f(t)slnk+IT

o . . I
On integre alors cette derniere relation entre k et k + 5"

et 3 Ink 1
Intdt < — + —
j,( " 2 Tk

(Afin de simplifier les calculs, on primitive t +— t — k par t % (t — k)%, qui présente

1
k+§

1 2
E(I-k)]

k

4 3 1
I’avantage de s’annuler en ¢ = £, et se calcule aisémentent = k + 5.)
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11 en résulte :

+}
f lntdté_M-fni
k 2 8k

De méme, la courbe est située au-dessus de sa tangente en k + 1, pour tout entier k de
{1,....,n—1}L

|
Ainsi, pour tout ¢ de |k + 7 k+1]:

r—k—-1

Int<Inlk+ 1) + ———
. n ) k+1

o 5 2 1
On integre alors cette derniere relation entre k + 3 etk+1:

+1 k+1
In(k + 1) 1 |1 5
Intdt < + —(t—k-1
j,:. i 2 K+ 1 [2( )] ;

3 k+§

1
(Afin de simplifier les calculs, on primitive f — t —k — 1 par t 3 fe—k— 19, qui

présente 1’avantage de s’annuler en t = k + 1, et se calcule aisément en ¢ = k + %.) Il en

résulte :
+1
In(k + 1) 1
Infdr < -
J;:l nid 4 8(k+1)

2

Il ne reste plus qu’a sommer les inégalités précédentes pourk =1,...,n—1:

é In(1 1 &1
ﬁlntdté%+ln2+ln3+ +ln(n—2)+ln(n—1)+—+ E(E—m)
soit :

[tlnt—t]”<£+ln2+ln3+ .+ 1In(n —2) + In( —1)+]n—n+l§ o
L=g a 2 2 8 &\k k+1

! In(n) 1 i 1
it : 1 —n+1 & Ink+ + — S —
soit i nInn —n :El n 3 3 k_g[ (k 2 1)

=

n—1

1 1 .
Z (— - ) est une somme téléscopique :
k

= k k+1
1 1
]k k+1

—

n—

1 1 1 ) 1
===t ==+ -—
2 2 3 3 n—-1 n

= P

>
i
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On peut aussi retrouver ce résultat en séparant les sommes, et en effectuant un change-

ment d’indices :

Sfi-rm)- $i-Sieh

=
|

=

1

(%]

= -
|

[+

| —
|

S| -

1]
—
|
Elr—‘ﬁ'

n—1
1 |
Ainsi:nlnn—-n+1< Z:]nk+M —(]——),ouencore:
= n

1

nlnn—n+1< Zlk—lnTn %(1_1)
n

k=1
soit : | | |
nlnn—n+l~<ln(n!)—'n(n)+—(l——)
2 8 7
puis :
+ll + 1 : 1 1<]( h
=|Inn- —=|l1=-=|<In(n!
n+z|lnn-n g - n
soit :

+1 1 +7 ! < In(n!)
—- nn-—tr - — — < In !
n > 1—n 3 8n n

Par croissance de la fonction exponentielle, on en déduit alors :

| 7 |
exp(( 2)]nn—n+§—g)<n!

s0it :

- S
n" Vne et e 8 <nl

On a donc obtenu I’encadrement suivant de n ! :

i Zi . L _i
n" Vne et e <nl <en Vne™
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Pour une fonction donnée f définie et continue sur un intervalle [a, b] de R, I"inté-
grale, dite de Riemann, de a a b de f, correspond a la valeur de I’aire comprise entre
la courbe représentative de f sur [a, b] et I’axe des abscisses.

Cette aire est calculée par I'intermédiaire d’un découpage, de plus en plus fin, de
I’axe des abscisses, c¢’est-a-dire un découpage vertical de la forme suivante :

Intégrale de Riemann et intégrale de Lebesgue.

Du découpage vertical au découpage horizontal

Toutefois, un tel découpage n’est pas toujours adapté aux fonctions qui interviennent
dans la vie de tous les jours du physicien, du mécanicien, du biologiste : dans ce
cas, un découpage « horizontal », a partir donc de I'intervalle des valeurs prises par
la fonction, est plus judicieux : c’est ’idée qu’eut le mathématicien Henri-Léon Le-
besgue'.

Bien sir, toute fonction intégrable au sens de Riemann I’est au sens de Lebesgue.
C’est la réciproque qui n’est pas vraie !

L’intégrale de Lebesgue apparait alors comme un moyen de « mesurer » une fonc-
tion.

1. Henri-Léon Lebesgue (1875-1941), mathématicien frangais, dont la contribution i la théorie de 1'in-
tégration fut essentielle.
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Etant donnée une partie bornée # de R, la fonction caractéristique L de P est

définie par :
fo i lsixe P
- 0 sinon

Lorsque P est un intervalle [a, b] de R, sa mesure de Lebesgue i ([a, b]) est égale a
sa longueur b — a. Intégrales de Lebesgue et de Riemann coincident alors ; si f est
une fonction intégrable au sens de Riemann :

b
ff(f)dt=f fdu
a [a,b]

ou u est la mesure de Lebesgue.

Lorsque % est un ensemble dénombrable, fini ou infini, il est considéré comme
étant « nul presque partout », et donc de mesure de Lebesgue nulle.

Grice a I'intégrale de Lebesgue, il est donc possible d’intégrer des fonctions pré-
sentant des discontinuités comme, par exemple, la fonction de Dirichlet, qui est la
fonction caractéristique de 1’ensemble des rationnels 1 g :

. { 1 si x rationnel
JQ X .
0 sinon

L’ensemble des rationnels étant donc dénombrable, méme s’il est infini, il est de
mesure de Lebesgue nulle.

Le lecteur intéressé trouvera plus de précisions sur I’intégrale de Lebesgue dans [5],
et sur la théorie de la mesure dans la bibliographie.
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Intégrales généralisées

1. Intégrales impropres

» Intégrale impropre sur un intervalle de longueur infinie
Définition

Etant donnés un réel a, et une fonction [, définie sur I'intervalle [a, +oo[, continue par
morceaux sur [a, +oo[, la quantité :

+00 X
f ﬂt)dt:xﬁT f f()dt

est une intégrale dite « impropre ».

X
En effet, la quantité f f(t)dt n’a pas toujours une limite finie lorsque X tend vers +co.
a

+00
e Si cette limite existe et est finie, on dit que I’intégrale f f(r)dt est convergente.
a

+00
e Dans le cas contraire, on dit que I'intégrale f f(t)dt est divergente.
a

Exemples

+00
1. L'intégrale f e~" dt est convergente. En effet :
0

+oo X
f e'dt = lim e~ dt
0

X—+co 0

Jim [~
Xl—i»l-%l:loo [1 a 67X]

= 1

—+00

- z
2. L’intégrale f — est convergente. En effet :
2

1
gt _ &
= lim =5
1 I X—+oo J1 1

Il

Il
5

1l
¥
gB

|

e R
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+oo dl
3. L'intégrale f ¥ est divergente. En effet :
I

f*‘” dt _ X dr
— lim —
1 t X—=+e0 )y t

3 1 X
Xl—l}}-]oe[ n []l

lim InX

X—+oo
—+00

Ce n’est pas parce qu une fonction est de limite nulle en I’infini que son intégrale va converger,
comme on peut le voir avec I’exemple précédent.

» Intégrale impropre sur un intervalle de longueur finie
Définition

Etant donnés deux réels a et b, et une fonction f, définie sur I’intervalle [a, b[, continue
par morceaux sur [a, b[, la quantité :

b . K
Lﬂt)dt:}g},l; f(o)de

est une intégrale dite « impropre ».
X
En effet, la quantité f f(#)dt n’a pas toujours une limite finie lorsque X tend vers b.
a
b
e Si cette limite existe et est finie, on dit que I'intégrale f [f(1)dt est convergente.
a

b

e Dans le cas contraire, on dit que I'intégrale f f(1) dt est divergente.
a

Exemples

I
1. L'intégrale f In ¢ dt est convergente. En effet :
0

1 |
f Intdt lim In t dt
0

X=0* Jy

= lim [tInt-1].
Jig e~

lim [X InX - X]
X-0*
- 0

1
dt
2. L’intégrale f " est divergente. En effet :
0

1 1
. dt
f Inrdrt lim —

: 1
i, n

lim InX
X—-0*

= —0o0
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2. Des intégrales généralisées remarquables : les intégrales
de Riemann

» Intégrale de Riemann (sur un intervalle de longueur infinie)
Définition

Soit @ un réel. On appelle intégrale de Riemann toute intégrale de la forme :

f“’" dt ) fX dt
— = lim =
o 1Y Xowes ) 12

ou a est un réel.

» Intégrale de Riemann (sur un intervalle de longueur finie)
Définition
Soit b un réel. On appelle intégrale de Riemann toute intégrale de la forme :

dt b dt

m o
o X0 ol

ou « est un réel.

» Condition nécessaire et suffisante de convergence d'une intégrale de Riemann
(sur un intervalle de longueur infinie)

Soit @ un réel. L’intégrale de Riemann :

L X dt
— = lim =
i 1 X—+eo i

a

converge si et seulement si @ > 1.

Démonstration : 1l suffit de calculer, pour tout réel X > a :
X X
dt
f — = f % dr
a ta’ a
tl—af X
[ - QL
a]—a Xl—af
l-a l-w
1 1 1
l—a [aT  Xo-l

Lorsque X tend vers +co, cette derniere expression n’admet de limite finie que si @ > 1.
]

11
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Exemples

00
1. j = est une intégrale de Riemann convergente :
; z

Xd[ X

lim | == lim [ dr
X—+co ] I- X—>+00 |
f1-3 X
- x]_'ﬂoll =3
gl
= fim |-
- X—4c0 2 1
. [1 X-l}
= lim |=—=—
X—o+oo| 2 2
- 2

Il
T
¥
3
fr———
H—.
|

= 4 +oo
= lim = |t
X—>+oa43 . 1
- XliIPDo g [XZ a 1]
= +00

» Condition nécessaire et suffisante de convergence d‘une intégrale de Riemann

(sur un intervalle de longueur finie)

Soit b un réel. L’intégrale de Riemann :

f” dr . fb dt
— = lim —
o 1% x-0t Jy @

converge si et seulement si @ < 1.

Démonstration : 11 suffit de calculer, pour tout réel positif X < b :

h d X
f 8 = f Y dt
X “ a

1]
—
= ~
1 [
2 =)
[ —

=

| 1
1 —a ,X(z_l bcz—lr

Lorsque X tend vers 0, cette derniére expression n’admet de limite finie que si @ < 1.
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Exemples

|
1. f 7 est une intégrale de Riemann convergente :
0 Vi

. U dr )
s | 7= w2 v,
lim [2 = \/}_(]
X—=0t

= 2

I
dt G . :
2. f s est une intégrale de Riemann divergente :
0

1 I
. dt ) A
lim = = lim 2 g
X—=0* Jy I X=0" Jy

1-3 7!
)
1),

o1l
= TL
1 X2 1
x| T2 T2
= +o0

3. Propriétés

Les propriétés usuelles des intégrales (linéarité, positivité, croissance, relation de
Chasles, changement de variable) sont encore vraies pour des intégrales impropres.

En ce qui concerne I'intégration par parties, le résultat peut étre obtenu en se ramenant
a un segment. Toutefois, pour alléger les écritures, et, bien évidemment, sous réserve de
convergence des quantités en jeu, on pourra utiliser des notations de la forme :

f f(t)g'(f)dt=[f(f)g(t)]ﬁm—f ' g)de

4. Critéeres de convergence pour des intégrales positives

» Comparaison avec une intégrale convergente (sur un intervalle de longueur
infinie)

Soient a un réel, f et g deux fonctions définies sur [a, +oo[, positives, continues par
morceaux, et telles que, pour tout réel ¢ de [a, +oof :

J(@0) < g()

+o0 o0
Alors, si f g(t) dt converge, il en est de méme de f f(n)dr.
a a

Ce résultat n’est vrai que si les fonctions sont a valeurs positives. En effet, si ce n’est pas le
+00
cas, rien ne dit que f(2) dt ne vaut pas —co, et —co sera toujours plus petit que n’importe

a
quelle quantité négative...
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» Comparaison avec une intégrale divergente (sur un intervalle de longueur
infinie)

Soient a un réel, f et g deux fonctions définies sur [a, +oo[, positives, continues par

morceaux, et telles que, pour tout réel ¢ de [a, +oo] :

() < g(0)

+00 +00
Alors, si f f(¢)dt diverge, il en est de méme de f g(t) dt.
a a

Corollaire
Soient a un réel, [ et g deux fonctions définies sur |a,+oo|, positives, continues par
morceaux, et telles que, lorsque t tend vers +ool :

J(@) ~ g(t)

+00 +00
Alors, si f g(t) dt converge, il en est de méme de f g(t)dt.
a a

+00 o0
De méme, si f g(t) dt diverge, il en est de méme de f g(r)dt.
a a

+00
Ce n’est pas parce que, au voisinage de 'infini, vers f(¢) ~ g(), que les intégrales f f(Odt
a

et f g(t) dt ont des valeurs équivalentes !
a

Exemple
- ; S L
On s’intéresse a la convergence de I’intégrale s
o (+ D
1
Lorsque ¢ tend vers +co ; —_— ~ =
(t+1)2 2

+o0 dr
f est une intégrale de Riemann convergente. On peut donc en déduire la conver-
1

(t+1)2
f+oa dt
gence de e
L D) oy X di
On peut alors calculer : f —— = lim f —_
| (t+1)? X—tee )| (14 1)2
1
X—=+0 I+ ] .
= lim 1
T X2 X +1
_ 1
- 2
sachant que : f o dr . S
= = lim =
| I X—+o0 | bi

= lim |1- :
X—4co X+1

#
B =
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» Comparaison avec une intégrale convergente (sur un intervalle de longueur
finie)

Soient a et b deux réels, f et g deux fonctions définies sur [a, b[, positives, continues par

morceaux, et telles que, pour tout réel ¢ de [a, b| :

S < g(1)

fiche 60

b b
Alors, si f g(t) dt converge, il en est de méme de f(t)dt.
a a

Comme précédemment, ce résultat n’est vrai que si les fonctions sont 4 valeurs positives. En
. 5 s 2 +oo .

. effet, si ce n’est pas le cas, rien ne dit que fa [(t)dt ne vaut pas —oo, et —co sera toujours

" plus petit que n’importe quelle quantité négative...

» Comparaison avec une intégrale divergente (sur un intervalle de longueur finie)

Soient a et b deux réels, f et g deux fonctions définies sur [a, b, positives, continues par
morceaux, et telles que, pour tout réel ¢ de [a, b| :

f() < g(n)

bre Calculus

b b
Alors, si f f(1)dt diverge, il en est de méme de f g(tydt.
a a

{f,

Corollaire
Soient a et b deux réels, f et g deux fonctions définies sur [a, b, positives, continues par
morceaiix, et telles que, lorsque t tend vers b : \

J() ~ g(t)

Alg

£

Alors, si f g(1) dt converge, il en est de méme de fb g(1)dt.
a a

b
De méme, si fb g(t)dr diverge, il en est de méme de f g(t)dt.

Exemples

1. On s’intéresse a la convergence de I’intégrale

5
<"

Lorsque ¢ tend vers 07 :

e 1
Vi Vi

f converge. Il en est donc de méme de f \/_

On aurdu: également pu utiliser le fait que, pour tout réel strictement positif ¢ : o

o

e’ 1 o)
£ d.= o
Vi S Vi £

&/ ®

et conclure, grice a la convergence de f
0
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. N . sin ¢
2. On s’intéresse a la convergence de I'intégrale f -
0

Lorsque 7 tend vers 0" :

sint t
7 e
soit )
sin t 1
2 t

5. Comparaison série-intégrale

Théoréme

Soit ny un entier naturel, et f une fonction définie sur [ng, +oo[, positive et décroissante.

Alors, la série de terme général f(n) converge si et seulement si f est intégrable sur
[ng, +col. On a alors :

Swdi< ) fen< | fwr
o+ k=rng+1 10
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Intégrales doubles sur un pavé
du plan R?

1. Définitions
» Pavé (du plan E?)

On appelle pavé (du plan R?) tout domaine rectangulaire P de la forme :
P = la,b] x [c,d]

oua,b,c,dsontdesréelstelsque a < betc <d.

Figure 61.1- Un pavé du plan E2.

» Intégrale double sur un pavé (du plan R?)

Etant donnés quatre réels a, b, ¢, d tels que a < b et ¢ < d, et une fonction f continue sur
le pavé P = [a, b] X [c, d], a valeurs réelles, on appelle intégrale double sur de f sur le
pavé P le nombre :

b
fff(x,y)dxdy=f {ff(x,y)dy} dx=f{fbf(x,y)dy} dy
P a c & a

2. Propriétés

» Linéarité de l'intégrale double sur un pavé (du plan R?)

Théoreme

Soient a, b, ¢, d quatre réels tels que a < b et ¢ < d, et f et g deux fonctions continues
sur le pavé P = |a, b] X [c,d], a valeurs réelles. Alors, pour tout réel A :

fL{f(x,yHﬂg(x,y)} dxdy:fo(x,y)dxde]Lg(xsy)dxdy
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> Positivité de I'intégrale double sur un pavé (du plan R?)

Théoréme

Soient a, b, c, d quatre réels tels que a < b et ¢ < d, et f une fonction continue et positive
sur le pavé P = |a, b] X [c, d], a valeurs positives. Alors :

fff(x,y)dxdy>0 61.1)
GD

» Intégrale double sur un pavé (du plan R?) et valeur absolue

Théoréme

Soient a, b, ¢, d quatre réels tels que a < b et ¢ < d, et f une fonction continue sur le
pavé P = |a,b] X |c,d], a valeurs réelles. Alors :

‘f f(x,y)dxdy ~<~f |f(x, y)| dxdy (61.2)
P P

» Théoréme de Fubini

Théoréme

Soient a, b, ¢, d quatre réels tels que a < b et ¢ < d, et f une fonction continue sur le
pavé P = [a, b] X [c,d], a valeurs réelles. Alors :

b b
f Hnafiimdyi= f { f f(x,y)dy} dr = f { f(x,y)dy} dy (613
P a c c a

» Additivité de I'intégrale double (sur un pavé du plan k?) par rapport au domaine
d’intégration

Théoreme

Soient a, a, b, ¢, y, d six réels tels que a < @ < bet ¢ <7y < d, et [ une fonction continue
sur le pavé P = |a, b] X [c, d], a valeurs réelles. Alors :

ff flayidvdy= ff Fla y)dxdj+jf foopdedy  (61.4)
[a,]x[c.d] [a.b]x[c.d]

et, de méme :

ff fl,y)dxdy = ff flx,y)dxdy + ff f(x,y)dx dy (61.5)
P [a.b]x[e,y] [a,b]x[y.d]
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Exercices
d’entrainement

www 5 3 . . sy -
. Les corrigés sont disponibles en téléchargement sur le site dunod.com
' a partir de la page de présentation de I'ouvrage.

Continuité

n On considére la fonction f définie
par : -
e xsix>#0

0 si x<0

flx) = {
Etudier la continuité de f.

On considére la fonction g définie
par :
1

g(x) = In|x|
0 six=loux=-loux=0

six ¢ {0,—1,1}

Etudier la continuité de ¢.

On considére la fonction h définie
par :

1 .
h(x)= xz—_ SleR\{*],]}
0 six=loux=-1

Etudier la continuité de h.

n On considére la fonction ¢ définie

par :
X sin l six#0
w(x) = b

0 5 3=10

Etudier la continuité de .

On considére la fonction i définie
par : 2
Y(x) = E(x) + [x — E(x)]

Etudier la continuité de .

n Soient 4 €]0,1[, et f une fonction

continue sur l’intervalle [A,+oo[, telle que
f) =0et lim f(x)=0.
X—3+co

Soit F la fonction définie sur ]0, 1] — R par :

F(x) :f(%+/1— 1)

6.a) Montrer que F est bien définie sur
10, 1].

6.b) Etudier la continuité de F sur 10, 1].

6.c) Montrer que F est prolongeable par
continuité sur [0, 1].

Une équation fonctionnelle

Déterminer les fonctions f, définies sur R, &
valeurs dans R, continues en 0 et en 1 telles
que, pour tout réel x :

f68) = fx)

Dérivabilite

“ Donner la dérivée de la fonction ¢ :
x€R > In(2+ cos x).

BER On considere 1a fonction A définie,
pour tout réel x, par : h(x) = e,

Montrer que A, est de classe C% sur R, et dé-
terminer, pour tout entier naturel non nul n,
I’expression de sa dérivée n'*™°.

On consideére la fonction A, définie,
pour tout x de R \ {1}, par :

1
ha(x) = T
- x

Montrer que h> est dérivable sur R \ {1}, et
déterminer, pour tout entier naturel non nul
n, I’expression de sa dérivée n'"*"™.

BEEN On considére 1a fonction f définie,
pour tout réel x, par :

f(x):{l—e‘r-'-f six#0

1 six=0

Etudier la continuité et la dérivabilité de f.
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m On considere la fonction ¢ définie,
pour tout réel x, par :

1
Pl sin(—) six#0
X

0 six=0

w(x) =

Etudier 1a dérivabilité de .

On considére la fonction ¢ définie,
pour tout réel x, par :

1 six=1

w(x)_{l—e_m sixz#1

Etudier la continuité et la dérivabilité de .

m Des dérivées remarquables

On considere les fonctions ¢/, et > définies

par :
Yri(x) =1In (tan(g)) ;

Yr>(x) = In (tan (g + i—:))

Quel est le domaine de définition de ces deux
fonctions ? Etudier la dérivabilité de Y et
2, puis donner I’expression de leurs dérivées
respectives.

Des inégalités classiques

15.a) Montrer que, pour tout réel x :
e* = 1+x.

15.b) Montrer que, pour tout réel positif x :
sinx < Xx.

15.c) Montrer que, pour tout réel x > —1:
In(1 + x) < x.

m Des limites remarquables

16.a) Soit f; une fonction dérivable en zéro.

Déterminer :
lim fi2x) - fi(0)
x—0 2x
s T fi2x) - filx)
x—0  if

16.b) Soit f> une fonction définie sur R, dé-
rivable sur R. Déterminer, pour tout
réel a :

i X2(0) — a /o)

A—=d X—d

Régle de ’Hopital®

Soient f et g deux fonctions définies sur un
intervalle [a, b] de R, a valeurs dans R, conti-
nues sur [a, b], dérivables sur ]a, b[. On sup-
pose que g’ ne s’annule pas sur ]a, b[. Mon-
trer qu’il existe un réel ¢ dans |a, b tel que :

[B) - f@ _ ['©
gb) - g@) ~ g0

m Une étude de fonction

Soit rn un entier naturel supérieur ou égal a 2.
On considere la fonction

fo 'Ry 2R

(1 —f) _e*six € [0,n]
X > n
0 sinon

18.a) Montrer que f, est dérivable sur [0, n[.

18.b) Calculer, pour tout x de [0,n[, f,(x),
et montrer qu’on peut I’écrire sous la
forme

fixy =€ [1 - ]
ol h, est une fonction définie sur [0, n[,

dont on donnera I’expression.

18.¢) Etudier les variations de h, sur [0, n],
ainsi que son signe. On montrera qu’il
existe un réel @, € |1, n[ tel que :

ho(a,) =0

18.d) Etudier les variations de f, sur [0, n[, et
montrer que, pour tout réel x de [0, n[ :

a, e

| /()] <

18.e) Etudier les variations de la fonction ¢
qui, a tout réel x de R,, associe xe ™,
et en déduire que, pour tout réel x de
[0, n :

|
(0 € —
ne

Que peut-on en conclure ?

1. Guillaume Francois Antoine, marquis de L'Hopital (1661-1704), mathématicien francais, éleve de Jean
Bernoulli, spécialiste de calcul différentiel. Il est connu pour son ouvrage Analyse des Infiniment Petits pour
UIntelligence des Lignes Courbes, publié en 1696. 11 travailla également sur les coniques.
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Fonctions réciproques

19 Donner le domicline de définition de la
fonction¢p: x —» ———.
¢ arcsin(4 x)

Donner la dérivée de la fonction ¢ :
1 :

x € R* > arctan x + arctan (—) et en déduire
X

que, pour tout réel strictement positif x :

1 by
arctan x + arctan| — | = —
X 2

On considére la fonction f définie,
pour tout x de I'intervalle [0, g] par:

fO =1 f)=——

tan x

T m
i0 = =]=0.
si <_:c<2 ; f(z)

21.a) Montrer que, pour tout réel x > 0 :
sin x < x.

21.b) Montrer que f est strictement décrois-
sante sur ]0, %[

21.¢c) Déterminer I'image J = f([) de I'in-
tervalle / par f, et montrer que f admet

une application réciproque g définie sur
J.

21.d) Montrer que ¢ (%) = ;_r

21.e) Montrer que la fonction g est dérivable
s n
A

en4 et calculer g 7

On considére la fonction f définie,
sinx _ e sin x
2

22.a) Montrer que f est dérivable sur R, et
calculer, pour tout réel x, f’(x).

22.b) Déterminer I'image J = f (]-%.%|) de

=g, %[ par f, et montrer que f admet

pour tout réel x, par : f(x) =

une application réciproque f~' définie
sur J.

22.¢c) Montrer que la fonction f~! est déri-
vable en 0, et calculer la valeur de sa
dérivée en ce point.

Développements limités

Déterminer le développement limité
al’ordre 5, au voisinage de 0, de la fonction :

x> @i (x) = e

Déterminer le développement limité
a I’ordre 6, au voisinage de 0, de la fonction :

X = 2(x) = In(cos x)

Déterminer le développement limité
a ’ordre 6, au voisinage de 0, de la fonction :

x = @3(x) = (cos x)¥"F

Déterminer le développement limité
al’ordre 3, au voisinage de 3 de la fonction :

X @u(x) =cosx — x sinx

Déterminer le développement limité
a l’ordre 4 au voisinage de 0 de la fonction :

xERB @ps(x)=e"

Déterminer le développement limité
a I’ordre 3 au voisinage de 0 de la fonction :

1
% € R\{E}H%(X): 52

Pour p € I*, donner le développe-
1

.8

ment limité de la fonction x — 2
4
I’ordre 2p en 0, et en déduire celui de la fonc-

tion x — arctanx & I'ordre 2p + 1 en 0.

Déterminer le développement limité
al'ordre 4, au voisinage de 0, de chacune des

fonctions suivantes :

30.a) x— filx) = cl:o_sajcc — e,

30.b) x> fo(x) = tan (In(1 + x)).
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Déterminer le développement limité
a 1’ordre 4, au voisinage de (), de chacune des
fonctions suivantes :

3l.a) x> g1(x) = + arcsin(x).

1
V1 — x2
3Lb) x> g2(x) =1In (0032 x —sin® x) .
Déterminer, lorsqu’elles existent, les

limites suivantes :

l+sinx+e2-2

32.a) leo 3
eVHsinx
32.b) lim

x—0 tan x

=€

x'—x
32.¢) lim ——.
&) xl—l»]} l—-x+Inx

o X
32.d) lim (] + —) , ol ¢ est un réel.
X

X—4o0

Equations différentielles
linéaires du premier ordre

Résoudre, sur R, I’équation diftéren-
tielle (&) :
y +y=2shx

KUY Résoudre, sur R, I’équation différen-
tielle (&) :
y +2xy=2x

Résoudre, sur R}, 1’équation diffé-
rentielle (&3) :
xy -3y =32"

Résoudre, sur I'intervalle I =]0, +oo|,
I"équation diftérentielle (&y4)
F_ 2y

y=—+x
X

37 Soit A un réel. Résoudre, sur R,
I"équation différentielle (&s) :
C+ Dy +y=2

Déterminer les solutions polyno-
miales de I’équation différentielle (&g) :

Xy —xy=x +x

Suites

Etude de suites

Etudier la suite (U),eny définie par :
=1 , wu =2 et

Y e N* tuy =21, +3u,

m Etudier la suite (u,),y définie par :

=1 , vi=-1 et

VYneN:vuom+v,g+0,=0

Démonstrations par récurrence

m Somme des n premiers entiers na-
turels,n € N

Pour tout entier naturel non nul n, on pose :

n
g = ;k.

41.a) Enremarquant que :

$i = 1 + 2 + 3
+... +(m=-2)+m-1)+n
S,.= n + -1+ m-2)
e ¢ + 3 + 2 +1
en déduireque : 285, = n(n+ 1), puis :
§; = Hetl)

2

41.b) Redémontrer ce résultat par récur-
rence.

Somme des n premiers carrés,
n €N

42.a) Montrer que, pour tout entier naturel
n+1 n

non nul 7 ; 218 = Z(k+ 1%+ 1.
k=1 k=1
42.b) En déduire que, pour tout entier natu-
3 DRn+1)
reln:Zk2=n(”+ :
=0

6

42.c) Redémontrer ce résultat par récur-
rence.

Somme des nr premiers cubes,
n €N

Considérons la suite suivante de carrés, em-
boités les uns dans les autres ;

2. On rencontre, notamment, ce type de fonctions dans des équations aux dérivées partielles présentant une

invariance d’échelle.
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10
9_
8_
7,
6
5,
4 L
3
2,
'™
1 2 3 456 7 8 9 10

Le premier carré a un c6té de longueur 1,
le second, de longueur 1 + 2, le troisiéme,
1 + 2+ 3, etc. Le dernier (qui est le n'*™)
— et plus grand des carrés — a donc pour coté

2
n*(n+1)>

n
+1
l+2+...+n:Zk:M.Sonaire
k=1

A est donc égale a A = . Il est

également possible de calculer cette aire en
additionnant celle du carré de longueur 1 et
des surfaces en forme d’« équerre »

1+2+..+k-1
e = = - -
A i
k
: i
424+ k-1
1
i
1
L
k

La k'™ équerre, composée d’un carré de coté
k et de deux rectangles de cotés respectifs &

k=1
etl+2+...+k—1:Zj,apouraire:
J=1
B +2k(1+2+...+k-1)
k—1)k
:k2+2k%

=K +k(k-Dk=4k

43.a) Démontrer par récurrence que, pour
tout entier naturel non nul n :

n
Zk3:13+23+“‘+"’3
k=1

w2
=(1+2+...+n)2=[2k]

k=1
43.b) Pour tout entier naturel non nul n, on
pose :

n—1
>i@k+)
k=0
e En remarquant que, pour tout entier
naturel 7 :
Zo=1+2+3+4+5+...

+2n-1)+2n-2+4

2n n
+...+2n)=Zk—ZZk
k=1 k=1

en déduire : X, = n’.

2n = 14345+, 42n-1) =

Calculus

e Redémontrer ce résultat par récur-
rence.

Suites : limites, convergence, applica- :
tions g

m Des limites remarquables

44.a) Soit r un réel positif, strictement plus
petit que 1. Déterminer

n
lim § * L
n—+o0 —
k=0

44.b) Soit p un réel positif, strictement plus
petit que 1. Déterminer -

44.¢) Que vaut

k=1
Le nombre d’or

Etudier la suite (@), définie par :
up € R
et, pour tout entier naturel n :

Lyl = Vl + @n
m La suite de Fibonacci

Le mathématicien italien Leonardo Pisano,
dit Fibonaci, s’intéressa au probléme suivant :
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« Un homme met un couple de lapins dans un
lieu isolé de tous les cotés par un mur. Com-
bien de couples obtient-on en un an si chaque
couple engendre tous les mois un nouveau
couple & compter du troisiéme mois de son
existence 7 »

sous les hypotheses suivantes :

e au début du premier mois, il y a juste un
couple de bébés lapins ;

e au bout d’un mois, ceux-ci sont devenus
adultes, mais ils ne commenceront 4 avoir
eux-mémes des bébés lapins qu’a partir du
début du troisieéme mois ;

e 2 chaque début de mois, tout couple de la-
pins adultes susceptibles de procréer en-
gendre effectivement un nouveau couple
de bébés lapins ;

e les lapins ne meurent jamais.

¥e
Génération 1 ; au total, un couple de lapins.

&

™ ~

e
N

¥e ¥e

Pour résoudre celui-ci, on considére la suite
(Fp)pere. OU, pour tout entier naturel n, F, re-
présente le nombre de couples de lapins au
début du n'“™ mois.

11 est naturel de poser 7 = 0, puisque, avant
que I’on ne dépose les lapins au pied du mur,
il n’y en avant aucun.

Comme il n’y a pas nouvelle naissance avant
le début du troisieme mois, on a ainsi F; =
> = 1. La naissance d’un nouveau couple de
lapins au début de ce méme troisieme mois se
traduit par : F3 = 2.

Considérons désormais un mois n quel-
conque, avec 1 = 2. Aumois n+ 2, le nombre
total de couples de lapins est obtenu en ajou-
tant le nombre de ceux présents au mois n a
celui qu’il y avait au moisn + 1 :

?;HZ = T:Prl + 7_-”

La suite (7)), vérifie donc une relation de

récurrence linéaire d’ordre 2.
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Génération 2 ; au total, 1+1=2 couples de lapins.

Génération 3 ; au total, 2+2=4 couples de lapins.

46.a) Exprimer, pour tout entier naturel n,
F, en fonction de n.

46.b) Quelle est la limite de la suite
(ﬂ )neN ?

Une somme télescopique

On considere la suite (S ,,),er+ définie pour
- 1

toutnde N* par: S, = _

out n de N* par kz_;k(k+l)

47.a) Vérifier que, pour tout entier naturel

non nul k :
1 1 1

k(k+1) k k+1
47.b) Quelle est la limite de la suite
(SH)HEN*?

m La constante d’Euler

On considere la suite (H),),en+ définie par :

1 1 1
YneN" 'H,=1l+=-+—-+...+—-—Inn
2 3 n

n
1
= ——Inn
27

48.a) Montrer que les suites (H,),en+ et
1 .
(Hn = —) sont adjacentes, et en
nepN*

déduire qu’elles convergent vers une
méme limite, que I'on notera y (On
pourra utiliser I’étude des variations
des fonctions f : RY — R,

t+1

1
tl—)i—ln(l+?)etg:Ri—>R,

1 1
:H_—m0+—%
f t
48.b) Montrerque: 0 <y < 1.

m Fractions continues et suites homo-
graphiques
Soit a un réel différent de —1. Quel sens peut-

on donner a :
a

a
a
a

1+...
(C’est ce que 'on appelle une « fraction
continue »)

1+
1+
1+

On pourra considérer la suite (a,),; définie,

pour tout entier naturel n, par :
a

1 +a,

dgp=a , dpy1 =




) 2014 Dunod.

J

©

(

Copyright

© Dunod. Toute reproduction non autorisée est un délit.

Le théoréme de Cesaro

Soit (i, )nen+ une suite réelle, de limite finie
{ e R.

On considere la suite (v, ) e+ telle que :
Uy +ir+...+1u
¥Yne N :p, = i

n
I n

Z Z iy

g =

50.a) Montrer que, pour tout & > 0, il existe

un rang ny tel que, pour tout entier na-
turel n = ng :

£
|zn — €] < 3
50.b) Vérifier que, pour tout entier naturel
nzn:
on === |> =)
k=1

ng—| n
Dl -0+ > -0
k=1 k=ny

50.c) Montrer qu’il existe un rang n; tel que,
pour tout entier naturel n > n :

Z_(Mk—f)
k=1

50.d) En déduire qu’il existe un rang n; tel
que, pour tout entier naturel n = ny :

|Un. - ‘ﬂ \*’:: £

Que peut-on en conclure ?

£
&=
2

&
n

Ktude de suites doubles

On consideére les suites (a,)nen et (by)en dé-
finies par 0 < ag < by, et, pour tout 7 de N,
e b= bi?

a,+b, n+l_an+bn'

51.a) Calculer, pour tout entier naturel n, la
diftérence a,.| — b+, puis 'exprimer
en fonction de ag et by. On notera, dans
ce qui suit: d = ay — by.

par: day4) =

51.b) Calculer, pour tout entier naturel n, le

pil
rapport :

n+1

[20] "
En posant r = b—, montrer que Ion a
0

alors :
a,,+1 il
—=r

bn+l N

51.c) Al’aide des questions précédentes, ex-
primer, pour tout entier naturel n, a, et

b,, en fonction de n.

51.d) On considere la suite de terme général

P=[](1+).

k=0
Déterminer la limite de la suite (P,)nen
lorsque n tend vers +oo.

Développement asymptotique

Pour tout entier naturel non nul n, on

l 7
pose:u,,:(]Jr—) ;

n

Déterminer, a 1'aide d'un développement
asymptotique, la limite de la suite (u,,),,cp0+ -

Pour tout entier naturel n, on pose :
U, = sin (ﬂ Vn? + l).

La suite (v,),civ est-elle convergente ?

Développement asymptotique et
solution approchée d’une équation

Soit # un entier naturel non nul. Déterminer
les trois premiers termes du développement
généralisé de la n'*™ racine strictement posi-
tive de 1’équation

tanx = x

Intégration
Quelques calculs simples

55.a) Calculer : f sinf costdt.
-4

2

55.b) Calculer: f cos® rdt.

-2

|
55.¢) Calculer : f te'dt.
0
2
55.d) Calculer :f ]nTtdt.
1

Calculs de primitives

Déterminer une primitive des fonctions sui-
vantes :

56.a) fi :RY - R, t—Inr.

56b) f»:R* SRt I"T‘

56.c) f3:R —> R, t—fcost
56.d) fi:R >Rt e

56.¢) fs:R\{Z+km k € Z) >R,
= tant.
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56) fi R\ (-1} >R 11> ——.

t+1

56.8) fi:R\{=2.0.2) 5 R. 10> 5—.

Changement de variables

Calculer, a I'aide d’un changement de va-
riable, les intégrales suivantes :

57.a) I fﬁ ! d
a) 1= ——dx.
0 VI—x2

Lt
57b) I, = dt.
) I j; el +1

I
2

57.¢) L = f (sin2 x — cos? x)dx.
0

58.a) Rappeler les formules d’addition pour
le cosinus.

58.b) Soient m et n deux entiers naturels.
Calculer :

2
f cos(mt) cos(nit)dt
0

(on pensera adistinguerlecasm = n =
0, et, lorsque m et n sont strictement
positifs : m = netm # n)

59.a) Déterminer deux réels a et b tels que,

1
pour tout réel ¢ tel que t # 5 ett #
1
5
1 a b
= +
42 -1 2¢t—1 2t+1

59.b) Calculer:
f P oodr
| 412 -1

BN Intégrales de Wallis®
Pour tout entier naturel #, on pose :

T Fid
3 3
I, = f sin"xdx , J,= f cos" xdx
0 0

60.a) Calculer Iy, Iy, I, et Jy, J1, J>.

60.b) Montrer que, pour tout entiern = 2 :

-1
I, = 2 Iy
n

60.c) Pour tout entier naturel p, donner I’ex-
pression de >, et I, en fonction
de p.

60.d) Montrer que, pour tout entier stricte-
ment positif p, et tout x de [0, A

0 < sin®?*! x < sin®? x < sin??7!

X
et en déduire une inégalité portant sur
byt hhpetlhpg.

60.e) En déduire que, pour tout entier stric-
tement positif p :

I
1< 2p < 2p+ 1
12p+l 2]9
. IZp
60.f) Que vaut lim ?
pteo Iy

60.g) En déduire que :
1 2% (p1y*
m= lim — L)z
p=tee p (2P D)

m Pour tout entier naturel n, on pose :

Inzf(lnx)” dx
I

61.a) Calculer 7get 1.

61.b) Exprimer, pour tout entier naturel n,
1 ,.1 en fonction de 7,,.

61.c) Montrer que, pour tout entier natu-
rel n:
e

0<7,<
n+1

61.d) Déterminer la limite, lorsque I’entier n
tend vers +oo, de 1.

Intégrales et convexité

Soit f une fonction de classe C' sur R, a va-
leurs positives, convexe.

On rappelle que le graphe d’une fonction
convexe est situé au-dessous de ses cordes,
mais au-dessus de ses tangentes.

62.a) Montrer que, pour tout entiern > 2 :

¥+f(2)+...+f(n—l)

+M—fnf(t)dr20
2 1

3. John Wallis (1616-1703), mathématicien anglais, spécialiste de calcul différentiel et intégral. C’est lui
qui introduisit la notation « eo ». A c6té de son ceuvre mathématique, il s’intéressa aussi a la phonétique, et
est considéré comme un des précurseurs de ’orthophonie.
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62.b) Montrer que, pour tout entier k de Limite d’une intégrale

(,....n—1}:
G o1
rwars B2 g rw

et
k+ 1
f@de> f(k;]) —%f’(ml)
k+3
62.c) En déduire :
%+f(2)+...+f(n—l)+%n)

" f'(n)— f'(1)
Hjl ftydr < ==

Sommes de Riemann

n—+co

n
n
63.a) Déterminer : lim ———
; kK +3n

63.b) Déterminer : lim (l + E)n
=1

H—y+ca n

63.c) Déterminer :

sin k—ﬂ cos k_rr
I < 3n 3n
Jim D = :

k=1

1
64.a) Déterminer : f te " dt.
0

X
64.b) Déterminer : lim re” dr.

X—+oo )i

64.c) Que peut-on en déduire ?

Une comparaison suite-intégrale

Soit f une fonction définie sur R*, continue
sur R*, décroissante sur R*.

On considére la suite (1), définie par :
VYne N :u,=f(n

65.a) Montrer que, pour tout entier naturel
nonnul £ :

+1 ;
fHde < fk) < f fHdt
k-1

65.b) En déduire que, pour tout entier natu-
rel non nul n :

+1 n
fydi< Y fiky
0 k=0

< f " fyde + £0)
4]

puis :

+1 n 71
dr < £ di+f(0
f Foydr ;)uk ﬁ FdefO)
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Introduction

La présentation est similaire a celle adoptée pour « Calcul Vectoriel » :
apres les nombres complexes, on présente les matrices; les vecteurs ar-
rivent ensuite tres naturellement, le fait de disposer de la notion de
déterminant simplifie les calculs pour la détermination d'équations de
droites ou de plans dans I'espace a trois dimensions. Il est ensuite lo-
gique de passer a I'étude des transformations linéaires du plan et de
I'espace, qui préfigurent celles en dimension quelconque n > 2. On
passe ainsi facilement a la dimension n > 2, et aux espaces vectoriels.
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Le corps des nombres complexes

. ” ‘ & 3 s 2 7
Identifions R% A un plan muni d’un repere orthonormé direct (0; i f) . ¢’est assez naturel,
dans la mesure ou un point du plan est repéré par deux grandeurs, ses deux coordonnées,
abscisse et ordonnée : on est ainsi en dimension 2.

1. Le plan comme ensemble de nombres complexes

Une interprétation trés intéressante et trés naturelle pour introduire les nombres com-
plexes est celle de Jean-Robert Argand ! [8], et dont Jos Leys, Etienne Ghys et Aurélien
Alvarez [10] donnent une interprétation extrémement claire.

Représentons (voir figure 62.1) I’axe des réels par une droite graduée Dy, d’origine O ;
la multiplication de 1 par —1 envoie 1 sur —1, qui est I’image de 1 par la symétrie de
centre O, que 1’on peut aussi considérer comme étant la rotation de centre O, d’angle 7.

De méme, la multiplication de —1 par —1 envoie —1 sur 1.

i
7N

.
3 9 -‘1\ o 4 2 3

N

Figure 62.1- La droite réelle

Notons i le point image de 1 par la rotation de centre O et d’angle 7 : ce point n’est
plus sur la droite initiale, mais sur la perpendiculaire a celle-ci passant par I’origine.

Si on va un peu plus loin, et que 1’on assimile la multiplication par i a 1’opération
résultant de la rotation de centre O et d’angle 7, cela signifie que, si on applique cette
méme rotation au point i, ¢’est-a-dire qu’on le multiplie par lui-méme, c¢’est-a-dire i, on
obtient le point situé en —1 sur la droite Dy !

Considérer les points du plan comme des quantités sur lesquelles on peut définir
une opération comme la multiplication permet donc de définir une racine carrée au
nombre —1, puisque 1’on a alors :

ixi=-1
Comme le point i a pour coordonnées (0, 1), il est donc naturel de poser :

i=(0,1)

1. Jean-Robert Argand (1768-1822), mathématicien suisse, céleébre pour son interprétation géométrique des
nombres complexes comme points du plan. Il a également démontré le théoréeme de d” Alembert-Gauss, qui
sera vu ultérieurement dans les pages qui suivent.
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Ainsi, a chaque point du plan R2, de coordonnées (x,y) = xx(1,0) + y x (0, 1), on peut
associer le nombre complexe, ou nombre imaginaire :
I=Xx+1iy

appelé affixe du point M.

Il est clair qu’il est plus facile de manipuler la grandeur z = x + iy plutdt que x X
(1,0) + y x (0, 1) : on choisit donc, pour la suite, la notation la plus simple, c¢’est-a-dire
la premiere !

2. Définitions et propriétés fondamentales
» Ensemble C

On appelle ensemble des nombres complexes, que I’on note C, I’ensemble :
€= {z: x+iy,(xy) € RZ}
(qui est aussi ’ensemble des couples de réels de la forme (x, y), si on identifie R? et C).

» Ecriture cartésienne

On appelle écriture cartésienne d’un nombre complexe z sa décomposition sous la
forme :

Z=x+1y
ol x et y sont des réels.
» Racine
i est une racine carrée complexe de -1, car il vérifie? :
iF=-1

(«Une» racine, car —i est aussi une racine carrée complexe de —1 : (—i)* = —1.)

Théoréeme

Tout élément 7 de C s’écrit, de maniére unique 7 = x + i y, ou x et y sont des réels.

» Partie réelle

On appelle partie réelle du nombre complexe z = x + iy, (x,y) € R?, le nombre réel
noté Re(z), et défini par :
Re(z) = x

» Partie imaginaire

On appelle Partie imaginaire du nombre complexe z = x + iy, (x,y) € R?, le nombre
réel noté Im(z), et défini par :
Im(z) =y

Tout nombre complexe dont la partie réelle est nulle, c’est-a-dire de la forme z = iy,
y € R, est appelé imaginaire pur.
L’ensemble des nombres imaginaires purs est noté i R.

2. Les régles de calcul dans C seront développées au paragraphe suivant.
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3. Régles de calcul dans C

Théoréme

L’ensemble C peut étre muni de deux lois, notées + et X, qui prolongent les lois + et X
de R.

On aura donc, pour tous nombres complexes z = x+iyetz =x" +iy deC:

!

2z

(x+iy) (X' +iy)
x(X+iy)+iy(x +iy)
xx' +ixy +iyx — yy
=xx'—-yy +ilxy’ +yx’)

Il

4. Conjugueé

On appelle conjugué du nombre complexe z = x+iy, (x,y) € R?, le nombre complexe :
Z=x—-iy

Propriéteé
Pour tout nombre complexe z :

Re(z) = Re(2)
Propriétés

1. Pour tout nombre complexe z :

Il
)
N
3
~
&
S

2. Pour tout nombre complexe 7 :

3. Pour tout nombre complexe z :
7€ IR & 7=-7

4. Pour tout couple (z,z") de nombres complexes :

—_——
™~y

i

&

L

I

(2]

; +

™ &
L

Il résulte de la propriété précédente que, pour tout nombre complexe z :

—z=-Z

et tout entier naturel n ;

|
I
& 1]
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Une paternité controversée

Un peu d’histoire... C’est la fameuse Controverse de Cardan, au sujet de la résolu-
tion des équations du troisieme degré, de la forme x> + px = g¢; Jérome Cardan
(1501-1576) publia, dans Ars magna en 1545, les formules donnant la solution de

ces équations :
3 2,407 3 2.4 4P
4= N9 * 27 4+ g+ 55
x= +

2 2

La controverse vint du fait que ces formules furent également trouvées par Nico-
las Tartaglia (1499-1557), qui en revendiqua la paternité. Il semblerait, d’apres ce
qu’écrit Cardan, que ces formules furent découvertes, en premier, par Scipione dal
Ferro (1465-1526), qui, malheureusement, ne publia jamais ces résultats, et ne les
confia qu’a un cercle restreint d’éleves.

A 1a fin du XVI®™¢ sidcle, le mathématicien italien Rafael Bombelli (1526-1572)
applique, dans son ouvrage I’Algebra, cette formule A I’équation x* — 15x = 4, et
obtient :

x=ifz—11\/-_1+\3/2+11\/~_1

ot I’écriture « V—1» désigne un nombre, a priori inconnu, dont le carré vaut —1.

Une racine évidente entiere de I’équation précédente est, bien sQr, 4. Mais si on
recherche les autres racines, la formule obtenue par R. Bombelli prend un tout autre
sens ; bien que la fonction x — v ne soit définie que sur R*, on constate, en utilisant
les identités remarquables :

a-bP=a-b-3ab+3ab*> , (a+b’ =’ +b +3a*b+3ab?

que :

Ny =P v -3xd vl el w2t =211 v
el

2+ V=12 =22 V1 +3x4 V=143 x2(~-1)=2+ 11 V=1
Ainsi :

{/2—11\/—_1+\3/2+11w/-_1=4e]1@.

qui a un sens, et est bien solution de I’équation de départ :
4 —15x4-4=0

Le fait que —1 puisse étre le carré d’un nombre, méme « imaginaire », a ainsi com-
mencé a faire son chemin.
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Des nombres imaginaires bien pratiques

Leonhard Euler (1707-1783), s’intéressa également aux nombres complexes. On lui
doit, notamment, la formule portant son nom. Jean le Rond D’ Alembert (1717-1783)
mit en évidence la propriété de cloture algébrique du corps des nombres complexes.

En 1799, Caspar Wessel (1745-1818), mathématicien danois et norvégien, publie
un mémoire ou il utilise les nombres complexes pour représenter des lignes géomé-
triques, caractérisées par leur longueur et leur direction.

Les interprétations géométriques, et les applications qui en résultent, se déve-
loppent, essentiellement, a partir du XIX'®™ siecle, avec, tout d’abord, le chanoine
Buée, puis Jean-Robert Argand (1768-1822), Carl Friedrich Gauss (1777-1855) et
Augustin Cauchy (1789-1857). Depuis, la recherche sur les nombres complexes
connait un essor considérable : les nombres complexes sont au cceur de la géométrie
algébrique et analytique moderne (avec, notamment, les travaux de Jean-Pierre Serre,
Alexandre Grothendieck, et Hans Grauert), puis ceux d’ Adrien Douady (1935-2006),
professeur a I’Université d’Orsay, qui s’intéressa a I’application aux systemes dyna-
miques des nombres complexes, les ensembles de Julia, les fractales et ensembles de
Mandelbrot ...

Et c’est ainsi que sont nés les nombres complexes. Il faut les considérer comme
des outils, extrémement pratiques pour résoudre des probléemes qui, sinon, n’auraient
pas de solution.

e Adrien-Quentin Buée, chanoine honoraire de Notre-Dame, est mort en 1825 a 80
ans ; versé dans les sciences, il publia des écrits mathématiques ; il est souvent
qualifié « d’abbé » par confusion avec son frere I’Abbé Buée, chanoine titulaire
de Notre-Dame [7].

e Jean-Pierre Serre (1926-) fut lauréat de la médaille Fields en 1954.

e Alexandre Grothendieck (1928-) fut lauréat de la médaille Fields en 1966, il appa-
rait comme un refondateur de la géométrie algébrique.

e Hans Grauert est un mathématicien allemand (1930-2011), il travailla beaucoup sur
les variétés complexes. Ses travaux se placent dans la lignée de ceux d’Hermann
Weyl, David Hilbert, Bernhard Riemann.

e Gaston Maurice Julia (1893-1978) est un mathématicien francais.

e Benoit Mandelbrot (1924-2010) est un mathématicien franco-américain.
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Représentation géométrique
des nombres complexes

On se place, dans ce qui suit, dans le plan R? rapporté i un repére orthonormé direct
(O; Z f) A tout nombre complexe z = x+iy, on associe le point M de coordonnées (x, )
dans le plan.

> Image

On appelle image du nombre complexe z = x + iy, (x,y) € R?, le point M de coordon-
nées (x, y).

» Affixe

On appelle affixe du point M de coordonnées (x,y) € RZ?, le nombre complexe
aff(M)=zy =x+iy.
— —
On appelle affixe du vecteur i/ = AB le nombre complexe af f(AB) = zp — z4.

L’ affixe du point M de coordonnées (x, ) est aussi celle du vecteur W

Propriétés

1. Pour tout couple de vecteurs (i, ) du plan :
af f(ii + 0) = af f(il) + af f(D)
2. Pour tout vecteur i du plan, et tout réel A :

af f(di) = Aaf fG)

» Module

On appelle module du nombre complexe z = x + iy, (x,y) € R2, et on note |z, le réel
positif |z] = W (c’est aussi la distance du point d’affixe z a I’origine).

» Argument

On appelle argument du nombre complexe non nul z = x+iy, (x,y) € R2, toute mesure,
en radians, de 1’angle orienté (zﬁ), ou M est le point d’affixe z. On notera arg(z) une

telle mesure.
L’unique argument de z appartenant a I’intervalle | — 7, 7] s’appelle I’argument prin-
cipal.

1. Le nombre complexe nul 0 ne posséde pas d’argument.

2. Un nombre complexe non nul posseéde une infinité d’arguments! Si # est un argument du
nombre complexe z € C*, les autres arguments de z sont exactement les réels de la forme
O+2km k € Z.
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Figure 63.1- Représentation géométrique d’un nombre complexe non nul.

Pour tout nombre réel 4, on pose :

¥ =cosO+ising

Propriétés
1. Tout nombre complexe z de module 1 peut s’écrire sous la forme :
Al

z= =cosf+isiné

ol # est un réel, unique a 2 pres, tel que :
0 =Arg(z) [2n]
ou I’écriture [2 7] signifie modulo 2 7, ¢’est-a-dire :

@=arg(z)+2kn, kel

2. Pour tout nombre complexe z non nul, il existe un réel strictement positif, r, et un
réel, 6, tels que z s’écrive sous la forme :

z=ré? =rcos@+irsing

ou 6 est un réel, unique a 2 pres :

0 =arg(z) [27]

3. Pour tout nombre complexe z non nul, s’il existe un réel strictement positif, r, et un

réel 0 tels que :

z=ré% =rcos@+irsing

alors :

r= |z
0 = arg(z) [27]
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» Exponentielle complexe

Pour tout nombre complexe z = x + iy, (x,5) € R?, on pose :

e =" ="' = ¢" (cosy + i siny)

e désigne ainsi 1’exponentielle complexe.
Il est clair que, pour z = x € R, on retrouve I’exponentielle réelle.
D’autre part, I’exponentielle complexe étant définie a partir de I’exponentielle réelle, on aura

nécessairement, pour tout z de C, comme |¢?| = R :

e #0

Propriétés
1. Pour tout couple de nombres complexes (z,7') :
7 = e

2. Pour tout nombre complexe z et tout entier naturel n :

(&) = e
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Inversion des nombres complexes

1. Inverse d’'un nombre complexe
» Propriétés

1. Tout nombre complexe non nul 7 admet un unique inverse, noté z~!, tel que :

2. Pour tout nombre complexe 7 :

3. Pour tout nombre complexe z et tout entier relatif & :
() = &t

» Calcul de l'inverse d’'un nombre complexe

En pratique, pour calculer I'inverse d’un nombre complexe z = x + iy, (x,y) € R2, on

recherche I'inverse z~! du nombre complexe z sous la forme z=! = ¥’ +iy/, puis on écrit :

;. I x—iy _Xx—ly
Cx+iy (x+inx—-iy) 2+

(c’est la technique classique qui consiste a multiplier numérateur et dénominateur par
I’expression conjuguée du dénominateur, ce qui permet donc de faire apparaitre le mo-
dule de celui-ci.)

Il ne reste plus qu’a identifier parties réelles et imaginaires, tout nombre complexe
s’écrivant de maniere unique :

' X ’ Yy

X = — 2 y =——=
2+ 2 X2+ 42
Il en résulte :
1 z
z [ —

TP

M

2. Anneau commutatif

On désigne, souvent, C comme étant le corps des nombres complexes, parce qu’il est
muni d’une structure algébrique, dite structure de corps, qui désigne un ensemble muni
de deux opérations, notées « +» et « X », dans lequel tout élément non nul est inver-
sible. Plus précisément, un corps est un anneau commutatif, dans lequel tout élément
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non nul est inversible ; un anneau A est un ensemble (A, +, X), muni de deux lois de
composition internes, + et X, telles que :

e (A, +) est un groupe commutatif (c’est-a-dire un ensemble non vide, muni d’une
loi de composition interne, notée, en général, « + », associative, commutative, ad-
mettant un élément neutre 04, et telle que tout élément soit symétrisable), d’élément
neutre 04.

e la loi de composition interne X est associative :

V(z1,22,23) € A :
X(@mXz3)=(21 X22)X23

et distributive a gauche et a droite par rapport a la loi + :
V(zi,22,23) € A :

uX@t+B)=uxntaxy, @Q+)IXs=uXp+XxXs

e la loi de composition interne X admet un élément neutre, distinct de 0.4, noté 14.

Sila loi X est commutative, 1’anneau est dit commutatif, ou abélien.
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Propriétés fondamentales
des nombres complexes

Pour tout nombre complexe non nul z :
arg(?) = -arg(z) [27]
arg(=z) = arg(z) + m [27]
arg(—Z) = m—arg(z) [2n]
Pour tout nombre complexe non nul z, et tout réel strictement positif A :

arg(Az) = arg(z) [27]

Ces propriétés permettent de traduire des problemes de géométrie par des relations entre
nombres complexes.

Corollaire
e Pour tout couple de nombres complexes (z,7') € C* x C* :
arg(zz') = arg(z) + arg(z') (2]

e Pour tout couple de nombres complexes (z,7') € C* x C* :
arg (%) =arg(z) —arg(z) [27]

Démonstration :
11 suffit d’utiliser la forme polaire. [

Pour tout couple (z,z') € CxC*: (E,) =

hral

Z

e '7’

Pour tout nombre complexe z = x + iy, (x,y) € R :

Izl = VzZ = A/x% + >

Pour tout couple de nombres complexes (z,z’) : |z2/| = |z]|Z/].

%
9 4

Corollaire
Pour tout nombre complexe 7 € C, et tout réel A :

|z = |Allz]

7
&

Pour tout couple (z,7') € Cx C*:

Pour tout nombre complexe non nul z :

I | i
zZl
Pour tout couple (z,7) € C?: |z + 2| < Izl + |Z].
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1. Dans C, il n’y a plus la notion d’ordre usuelle « <», «>» : on ne peut donc comparer un
nombre complexe a un autre, ou dire s’il est positif ou négatif, etc ...

2. Le symbole /™ reste réservé aux nombres réels positifs.

» Formules d’Euler

Pour tout réel 6 : _
819
cos=— | sinf=
2

4o if ot o if
2i
» Formule de Moivre'

Pour tout réel 4, et tout entier naturel n :

(cos@+isinh)" =cosnf+1isinné

1. Abraham De Moivre (1667-1754). C’est un des premiers vrais « probabilistes ».
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Complément : les polynémes
de Tchebychev

Dans ce qui suit, on s’intéresse 4 la famille des polynémes de Tchebychev! (T),),s2,
définie, pour tout entier naturel n, par 7,(6) = cos(n, 6). On montre que chacun des T},
n € N, est un polyndme de degré n en cos 6.

Soit # un réel non nul.

1. Etape 1

Vérifions que cos(2 #) est un polynéme de degré 2 en cos 6 :
cos(26) = cos’6 —sin’@ =2 cos’6— 1 = P(cos8),

ot P est le polyndme défini sur C par P(z) = 27> — 1.

2. Etape 2

Montrons que cos(3 #) est un polyndéme de degré 3 en cos 6.
D’apres la formule de Moivre :

cos(36) = Re (')
Or:
: -
ol = (6‘9) = (cos @ +i sinf)’ = cos® 8+ 3i cos’ O sinf + 3 cos A (i sinb)” + (i sin )’

soit :
% = cos>@+3icos?6 sinf —3 cosf sin” @ — i sin’ @

En identifiant parties réelles et parties imaginaires, on en déduit :

cos(36) = Re (e3i8) = cos’ 0 —3 cos @ sin’ @ = cos> 0 — 3 cos 6(1 - cos” 0)

=4 cos’@—3 cos

3. Etape 3

Démontrons par récurrence que, pour tout entier naturel non nul n, cos(n 8) est un poly-
ndme, noté T, de degré n en cos 6, de coefficient dominant i

e Aurang 0:cos(0x 6) = | = cos’ (6).

e La propriété est vraie au rang 1 : cos 6 est bien un polynome de degré 1 en cos 6, de
coefficient dominant 2'~! = 1.

e La propriété est vraie au rang 2 : cos(26) = 2 cos®># — 1 est bien un polynéme de
degré 2 en cos 6, de coeflicient dominant 22-1 =9

1. Pafnouti Lvovitch Tchebychev (1821-1894), mathématicien russe, qui apporta de nombreuses contribu-
tions en probabilités et en statistiques.
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e Supposons la vraie jusqu’a un rang n > 1.
Les formules d’addition permettent alors d’écrire :
cos((n+1)8) =cos(nf) cosf —sin(nf) sinf,
et cos((n—1)60) =cos(nd) cosd + sin(n6d) sinb.

Par suite, en additionnant membre 2 membre ces deux relations, on en déduit :
cos((n+1)6)+cos((n—1)8) =2 cos(nb) cosb, puis :

cos((n+1)8) =2 cos(nd) costd —cos((n—1)8). (*)

Par hypothése de récurrence, cos(nfl) est un polyndome de degré n en cosé.
cos (n6) cos 6 est donc un polyndéme de degré n + 1 en cos 6. Comme cos ((n — 1) 6)
est un polyndme de degré n— | en cos 6, cos ((n + 1) @) est bien un polynéme de degré
n+1encosé.

Le coefficient du terme de plus haut degré est : 2 x 2"~} = 2% = 2#+1=1 1 a propriété
est donc vraie au rang n + 1.

Calculus

e Comme elle est vraie au rang 1, elle est donc vraie pour tout entier naturel n > 1.

Ce résultat peut aussi se démontrer grace a la formule de Moivre :

cos(nfl) = Re (ei A 9)

n n [«}]
; 9\ . ke e koo k- =
Or: e’”gz(e"g) =(cos B+ i sin@)" :Z Y cos B ® sin™ Q:Z C* cos"™* @i* sin* ¢ o]
k=0 k=0 'gi
P 3 ‘ i n 5 <
ou C,, désigne le coeflicient binomial i ) soit :
. Lt s s
et = Z Ck cos™* @i sin* 6 + Z C* cos"* 0" sin* g -
k=0, k pair k=0, k impair ;
E(%) E(%5') , -
= ) Gl cos" PR sin?P o+ Y G cos™ 2P g2 sin? Pt g Q
£ r=0
E(3 E(*5)
= D (1P CP cos"EraGsin? 0y +i ). (~1) CP* cos™ 2Pl g sin? Pt g
p=0 p=0
E(} E("5') ,
= Z (=1)P C27 cos™ 2P §(1 — cos® B) + i Z (—=)PC2P* cos" 2P gsin®P*! g
p=0 p=0
Par suite : :
o
E(3) , e
cos(nf) = Z (=1 €57 cos" 2P g (1 — cos” )P ol
p=0 a g
E(3) P £ O
2 -2 k ok 2k S w
= Z (=1)? C2P cos™ 2P g Z(—l) Ct cos?* g C 9
p=0 k=0 o 'E
E(3) p , 3‘ )
— Z(_l)p+k Cnp Cf’ COSP’E+2k—2p o) | =
p=0 k=0 2
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Le terme de plus haut degré est obtenu lorsque k = p, et vaut donc :

E(3) E(5) E(3)
Z (=12 C? C}) cos" f = Z CaP cos" 0 = cos" @ Z Ca?
p=0 p=0 p=0
Or:
n n E(%) E(%5)
Y=+ =Yckirit =N k=Y are et
k=0 k=0 p=0 p=0
n n E(%) E(ig_l)
0=(1-1"=) chenfk=Y k=Y r- Y o
En additionnant membre & membre ces deux relations, on en déduit :
E(%)
=2 > CF
p=0
E(%)
et donc : Z C,%p =21
p=0
4. Etape 4

Déterminons la relation de récurrence linéaire d’ordre 2 vérifiée par la suite de poly-
némes (T),57.

Si on pose, pour tout entier naturel non nul n, T,(cos#) = cos(n ), alors, pour tout
entier n > 2, la relation (%) s’écrit aussi :

T,ii(cosfl)y =2 cosBT,(cosf) —T,_1(cos )

T,, Ty-1, T,y étant des polyndmes, ils vérifient donc la relation de récurrence linéaire
d’ordre 2 :

Ty1(X) =2XT)(X) = Ty 1(X)

Cette relation permet, en particulier, d’obtenir I'expression du coefficient du terme de
plus haut degré de T,.

En effet, si on désigne par «,, ce coefficient, on a donc :
Qs =2,

(le degré du polyndme X T,,(X) est différent de celui de T, (X)).
En itérant, on en déduit, pour tout entier naturel n :

Qi) = Dk =28 D@y | w2 = 2

La suite (@), €5t une suite géométrique de raison 2, de premier terme 1 ; ainsi, pour
tout entier naturel # non nul : @, = 2!,
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Racines n'*™s de I'unité, racines
n'*M¢* complexes

fiche 67

1. Racines n®™e de l'unité
Définition

Etant donné un entier naturel non nul 7, on appelle racine #°*™¢ de ’unité (ou nombre
de Moivre) tout nombre complexe z solution de I’équation :

=1

Pour obtenir I’expression d’une racine n'*™ de 'unité, on cherche donc z dans C tel
que :

=1

On a donc, nécessairement : z # 0.

On peut donc chercher z sous la forme z = r¢'?, avec :
r=zgl € R¥ , 8=Arg(z) [2n] g
Il en résulte, grice a la formule de Moivre : 'g-,
(reie)" IR s I T <

—— ——

€ R} € RY

En identifiant les modules et arguments respectifs des deux membres, on en déduit :

m= 1 =
nf=2kn,keZ

Comme r € RY, il en résulte : b=

2
r=1 , @= i

Lk eZ
i

St on effectue la division euclidienne de k& € Z par I’entier naturel non nul n, on obtient :
k=nqg+r avecr € [0,n—1]

Par 2 m-périodicité du sinus et du cosinus, on a alors :

2ikn ZHOTGHEI,
e n = n

- 2irn 2irm
= 2Tt o

L’ensemble des racines 7™ complexes de 1 est donc donné par :

2iknm

S={ehnm,r e {0, 1,2, ...,n—l}}:{e ke o, 1,2, ...,n—l}}

Dans C, il existe exactement n racines n'*™* de "unité.
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Exemple

Résolvons, dans C : 73 = 1, soit :
Z3:€2ikﬂ' , kez
En identifiant module et argument, on en déduit que les solutions sont données par :
2ikm

z=e3 , ke (01,2}

L’ensemble des solutions est donc :

Figure 67.1- Les racines cubiques complexes de I'unité.

Proposition
Pour tout entier naturel n > 3, les points dont les affixes sont les n racines n'“™ de

I'unité, e e .k € {0, 1, 2 — 1}, sont les sommets d’un polygone régulier, de
centre O.

Demonstration Pour tout k de {0, 1, 2, ..., n— 1}, désignons par M le point d’affixe
S _
e n ,etpar M, = M le point d’affixe 1.

Alors :
_)/‘__‘—) /_)_‘-‘ - > i)
(OMk,OMk+1) = (OMk,z) + (t,OMk+1) [27]
= —arg (e l:lrm) + arg (eMkrT]m) [2 7]
71(k+|);r
= arg[ ] [2 7]
= g ) [27]
= — [27]
n
Le polygone MyM, ... M,, de centre O, est donc régulier. |

222



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

2. Racine n'*™¢ complexe

Définition

Etant donnés un entier naturel non nul r, et un nombre complexe zg, on appelle racine

ni®™m¢ complexe de 7y tout nombre complexe z solution de I’équation :

n

I =20

En pratique : pour déterminer les racines n'“™®

nul zp, il faut déja mettre ce dernier sous forme polaire :
w=poe® , po>0 , 6 €[0,2x]
On recherche ensuite z sous la forme :
z=pé? . p>0 , 6€[0,2x]
Ainsi :
7= e = py el = py el @2kD  p e 7

Il en résulte : [

p=p;

els P ok
g Hoterm  keZ

n

complexes du nombre complexe non

Si on effectue la division euclidienne de k € Z par I’entier naturel non nul n, on obtient :

k=ng+r

our € [[0,n—1].
Par 2 m-périodicité du sinus et du cosinus, on a alors :

i(Hg+2km) i(Bg+2(ng+rim) i{gg+2rm) 2ign £(9Q+2r7r)
e v =e¢ n =g n» g =g =

L’ensemble des racines n'“™* complexes de zq est donc donné par :

1 L ifgg+2kn)

S={pgei(60:2m),r c,1,2 ...,n—l}}={p66—" ke{o 1,2 ...,n—l}}

Exemple
Soit n € N*, Résolvons, dans C, I’équation suivante :

2 =-1

En remarquant que —1 = ¢, on en déduit :

2k+1)in
z=e = , kel0,....,n-1}
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Factorisation des polynomes
dans le corps C

1. Polynomes complexes
Définition
n étant un entier naturel, on appelle polynéme complexe de degré n une expression

de la forme :

n

P@=ai7" +a,17 +...+alz+a0=2akzk
k=0

ol a,, a,—1, ..., ap sont des nombres complexes.

Par définition, le degré du polyndme P, noté deg P, est donc celui de son terme (ou
monodme) de plus haut degré, c’est-a-dire a, 7".

Par convention, le degré du polyndme nul sera noté —co.

Tout polyndme complexe de degré n € N* s’écrit de maniere unique sous la forme :

n
P@)=a, "+ a1 7+ . +ajz+ag = Zakzk
k=0

(o = oo i) & P E™

Notation
On notera C[X] I’ensemble des polynémes complexes.

Le sous-ensemble de C[X] constitué par les polyndomes complexes de degré inférieur
ou égal a n sera noté C,[X].

2. Racine d'un polynéme complexe
Définition
On appelle racine d’un polynéme P, un nombre complexe z tel que :

Bigi=10

Théoréeme

Si zp est une racine du polynome P, supposé non nul, alors, il existe un polynome Q, de
degré deg P — 1, tel que :
P(z) = (z = 20) O(2)

Démonstration : Ce résultat s’obtient par une simple division euclidienne par z—z;. Le
reste, qui est constant, est obtenu en évaluant la valeur de P en 2y, et vaut donc zéro. m

224



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Exemple

Factorisons le polynéme P tel que :
VZeEC: P@)=2 +4z=2(Z+4)
0,2iet—2isontracines de P, et :

YzeC:P=z&+2D(@z—-20

» Racine double
Définition

On appelle racine double d’un polynéme P, un nombre complexe zj tel qu’il existe
un polynéme Q vérifiant :

P@) = (z - 20)* Q)
avec O(zg) # 0.

On dit aussi que zq est une racine de P de multiplicité 2.
» Racine triple
Définition

On appelle racine triple d’un polyndme P, un nombre complexe zp tel qu’il existe un
polyndme Q vérifiant :
P(2) = (2~ 20)’ Q)

avec Q(zp) # 0.

On dit aussi que z; est une racine de P de multiplicité 3.
» Racine d’ordre n
Définition

n étant un entier naturel non nul, on appelle racine d’ordre n d’un polynéme P, un
nombre complexe 7 tel qu’il existe un polynome Q vérifiant :

P(z) = (z— 20)" Q(2)
avec O(zp) # 0.

On dit aussi que Zp est une racine de P de multiplicité n.

» Theoréme de d’'Alembert-Gauss

Théoréme

Le corps C est dit algébriquement clos, ¢’est-a-dire tout polynéme non constant, a co-
efficients dans le corps des nombres complexes, admet au moins une racine.
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Par conséquent, tout polyndme a coeflicients entiers, rationnels ou encore réels admet
au moins une racine complexe, car ces nombres sont aussi des complexes.
a, b, ¢ étant trois nombres complexes tels que a # 0 :

azz +bz+c=a(z-2)(z—-2)

—-b-6 _—b+d

2a * B TRy
et ou le nombre complexe § vérifie 5 = b? — dac, c’est-a-dire est une racine carrée
complexe du discriminant A.

Ll =

. Dans C, A admet deux racines carrées complexes, 6 et —4. Choisir, comme racine, ¢ plutdt
que —o ne change en aucune fagon le résultat.
En effet, si on considére la racine complexe —¢ du discriminant A, on obtient alors, comme
racines :

-b+6 b=

!
= R O =37]
2a % 2a

Les racines sont donc les mé&mes, mais obtenues dans un ordre différent.

5 =
2. Le discriminant A n’admet de racines réelles que si b*> —4ac > 0.

» Discriminant réduit

a, b, ¢ étant trois nombres complexes tels que a # 0, on considere 1’équation :
2 .-
az”+bz+c=0

Lorsque b est de la forme b = 20, b’ € C, les racines z;, z; peuvent étre obtenues en
utilisant le discriminant réduit :

AN =b?-ac=6"

ce qui conduit a :
- — & -b'+¢
E—— 3 s ———
a a

ol le nombre complexe & vérifie 5% = b2 — ac, ¢’est-a-dire est une racine carrée com-
plexe du discriminant réduit A’.

Démonstration : Le discriminant est: A = b —4ac =4 ("% —ac). Ainsi :

-b—-6 =b-¢ -b+d6 =b+¢
= » Zz: =

2a a 2a a

1 =

1. Comme précédemment, choisir, comme racine, ¢’ plutdt que —¢” ne change en aucune fagon
le résultat.

2. Le discriminant réduit A" n’admet de racines réelles que si

b?-—ac>0
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Exemple

Résoudre, dans C (1 +)z> +iz— 1 =0.

On obtient : A =3 + 4.

11 s’agit alors de trouver un nombre complexe 6 tel que 5> = A ; on le cherche sous la forme
6 =a+ip,cequiconduita:

F=pf -1 Tdiaf=3+4i

Onendéduit: o> -p*=3 , aB=2.
2 et 1, —2 et —1 sont racines évidentes :

=2 , B=1 ou a=-2 , B=-1
Ces deux choix sont absolument équivalents, dans la mesure ot :
A=6=(a+ip)’ = (-0 =(-a~ip)
Ainsi, les solutions de I’équation du second degré initiale sont :

=
T T
SETEE T 1=
£ = T 7 —
2(1+10) 1+ 2

ou I'on a utilisé, pour simplifier I’expression de z», le passage a la forme conjuguée, afin

d’obtenir un dénominateur réel.

3. Relations coefficients-racines

» Relations coefficients-racines pour un polynéme de degré 2

Soit (s, p) € C2. Les nombres complexes z; et z» vérifiant :

222 peC
Zi+n=s5€C

sont exactement les racines de 7> — sz + p = 0.
Démonstration : 11 suffit de calculer :
(z-2)G-n) =2 -z@+)+un=22—-52+p -

» Relations coefficients-racines pour un polynéme complexe de degré n
n étant un entier naturel, on considere le polynéme complexe de degré n :

n
P(z):anz"+an_;z”" +...+alz+a0:Zakzk
k=0

ot {an: 21 o3 o @) & T,
On suppose qu’il existe n nombres complexes zi, 22, ..., 2, tels que :

PR =ayz-)z-2) ...G-zm)=an | [e-2)
k=1
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On appelle fonctions symétriques des racines :

n
o1= 1+ +...+2Zp = ZZ;‘
i=1
o= Z12+z123... = Z %iZj
I<i<j<n
ROy =Z1 023+ = Z ZiZjZk
I<i< j<k<n
i
Op = 2132+ = ]—[Zi
i=1

On dispose alors de relations entre les coefficients du polynome, c’est-a-dire les a;,
i=0, ..., n,etles fonctions symétriques :

& An—k
dy

Ykell,...,n} : op=(=1)

Ces relations sont également appelées relations de Viéte !, et peuvent étre extrémement
pratiques.

Démonstration : z;, ..., z, étant les racines de P : P(z) = a,(z —z1)... (z — z,). En
développant cette expression suivant les puissances décroissantes de z, on en déduit :

n

P(Z) = y Z” —dy Zk Zn_l + ay, ZiZj Z”_]
J

k=1 I<i<jsn
k
+...+(=Dka, Z ]—[zif. K (=Day 2.z

I<ii<iz<..<ip<n  j=1

n
Comme P(z) = a, 7"+ Z Ay "% on en déduit, par identification, que, pour tout entier
k=1

k
Ap—f = (_l)k ay Z l_l Zij | |

I<ii<ip<..<igsn j=1

kdef{l, ..., n}:

ce qui conduit au résultat cherché.

1. Francois Viete (1540-1603), mathématicien, géométre et astronome frangais, qui apporta de nombreuses
contributions a 1’algebre ; il est & "origine des prémices du calcul symbolique.
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Fractions rationnelles
et décomposition
en éléments simples

La décomposition en « éléments simples », ¢’est-a-dire comme somme de fractions ra-
tionnelles avec, en dénominateur, des puissances de polynémes irréductibles, et, en nu-
mérateur, un polynéme de degré strictement inférieur a celui du polynéme irréductible
qui intervient au dénominateur, est tres utilisée en calcul intégral, pour déterminer des
primitives, mais aussi en analyse spectrale, pour calculer des transformées de Laplace
inverses (on trouvera, notamment, des exemples dans [44]).

1. Corps des fractions rationnelles
» A coefficients réels

On désigne par R(X) I’ensemble des fractions rationnelles a coeflicients réels :

P(X
YR € R(X), AP € R[X]JetQ #0 € R[X] : R(X) = P
0(X)
R(X) est le corps des fractions rationnelles a coefficients réels.
La notation « X » est liée au fait que I’on manipule, ici, des polynémes formels, qu’il
faut bien distinguer des fonctions polynomiales.

» A coefficients complexes
On désigne par C(X) I’ensemble des fractions rationnelles a coefficients complexes :

P(X)
YR € C(X), AP € C[X]et 0eClX]: RX)=——
€ C(X) € C[X]etQ # 0 € C[X] : R(X) 0%

C(X) est le corps des fractions rationnelles a coefficients complexes.
Attention, les polyndmes P et Q ne sont en aucun cas uniques! 2 P et 2 Q conviennent aussi,

puisque :
P(X) 2P(X)

Q(X)  20(X)
Comme R Cc C, R(X) ¢ C(X) - il est donc judicieux, dans un premier temps, de
s'intéresser au cas des fractions rationnelles a coefficients complexes.

Proposition
Toute fraction rationnelle R, a coefficients dans le corps C, et supposée non constante,
peut s’écrire sous la forme

ol P et Q sont deux polyndomes complexes premiers entre eux :
PArQ=1

ce qui signifie qu’il n’existe pas de polyndme non constant divisant a la fois P et Q.
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2. Pole (d'une fraction rationnelle)
Définition
Soit R une fraction rationnelle, a coeflicients dans le corps C de la forme :

PiX
R(X) = o)
Q(X)
ou P et Q sont deux polyndomes complexes premiers entre eux.
On appelle pole de R toute racine 7y du polyndéme Q, c’est-a-dire tout nombre com-
plexe zo tel que :

Qz0) =0
Exemple

—1 et 2 sont les pdles de la fraction rationnelle :

X?+4
X+1H(X-2)

» Pole d’ordre p, p € N* (d"une fraction rationnelle)
Définition
Soit R une fraction rationnelle, a coefficients dans le corps C de la forme

O(X)
ou P et QO sont deux polyndomes complexes premiers entre eux.
On appelle pole d’ordre p, p € N* de R, toute racine zy de multiplicité p du poly-
nome Q, c’est-a-dire tout nombre complexe zj tel qu’il existe un polynéme Q véri-
fiant :
0(z) = z—20)’ O(2)

avec O(z9) # 0.

Exemple

3 est un pole d’ordre 4 de la fraction rationnelle

X+1
X-3¢*X*+1)

3. Division euclidienne dans C[X]

Etant donnés deux polyndmes P et Q a coefficients dans C, il existe un unique poly-
néme P, et un unique polyndme R, de degré strictement inférieur a celui de Q, tels que :

P(X) = P(X) Q(X) + R(X)

C’est la division euclidienne de P par Q. P est le quotient, et R le reste.
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Ce résultat ne fait qu’étendre aux polynomes la notion de division euclidienne qui existe pour
les réels. Le but est juste de simplifier le plus possible I’écriture d’une fraction rationnelle.

4. Décomposition d'une fraction rationnelle

» Décomposition en éléments simples dans C(X)

) P . . )
Soit R = — une fraction rationnelle, a coefficients dans le corps C, de poles zy, ..., 2,

k> 2.Ondésigne parn; € N, ..., n; € N, les ordres respectifs de zy, .. ., z.

La division euclidienne de P par le polyndme Q permet d’en déduire I’existence d’un
unique polynéme P, appelé partie entiére de R, et de complexes «;, sl < i<k
1 < j<mntels que:

R(X)

R(X) = P(X
(X)=P( )+Q(X)

avec deg R<deg Q-1

k
Comme Q(X) est, & un facteur multiplicatif prés, proportionnel & l—I(X - )", cette

i=1
relation peut aussi s’écrire sous la forme :

_ R(X "
R(X) = P(X) + p ) avec deg R<m+...+m—1

[ oz
i=1

ou encore :
k
~ &z &z 2 Xz, k
R(X) = P(X) + - + = +ott—
R ST E{X_Zi (X - z)* (X—Zi)”‘}
k  n;
_ = @z
a P(X)+ZZ (X -z)
i=l j=1 !
n; G s
Pour tout entier [ de {1,...,k}, Z ﬁ est la partie polaire de R associée au
- —Zi
Jj=1
pﬁle Zi-

Si la fraction rationnelle est a coefficients réels, et admet des poles réels, alors sa décomposi-
tion en éléments simples est & coeflicients réels.

Proposition
Soit R une fraction rationnelle, a coefficients dans le corps C, de poles zy, ..., 7, k € W,
qui se décompose sous la forme :

- R(X)
R(X) = P(X) + ——
(X) = P( )+Q(X)

ol P, Q et R sont trois polyndmes 2 coefficients complexes tels que deg R < deg Q.
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S’il existe un pdle zp de multiplicité 1, la décomposition de R peut s’écrire sous la
forme : .
R(X)
Qo(X) (X — z0)
ou Qp est un polyndome a coeflicients complexes, de degré deg Q — 1, et tel que :

Qo(z0) # 0

R(X) = P(X) +

LZO), ce qui signifie donc
Qo(z0) (X —z0)

7 s i : P(z
dans la décomposition en éléments simples de R est Po)

X - 29 Qo(z0)

Démonstration : La partie polaire de R associée au pdle z; est de la forme :

Alors, la partie polaire de R associée au pdle 7 est

que le coefficient de

&
X2 a e C
Par suite :
B R(X) _ a P(X)
RX)=PX)+ ———— = P(X
X =P+ o0 X -2 T L om

ou Py et O sont deux polynomes complexes tels que deg P < deg Q; et Q1(zp) # 0.
11 suffit alors de multiplier membre 4 membre par X — zj :

. R(X) & P (X)
(X = z0) P(X) + = (X —z20) P(X) + a + (X = z20)
Qo(X) 01(X)
puis d’évaluer I’expression obtenue en zq, ce qui conduit immédiatement 2 :
Pio) _ 5 .
Qo(z0)

Exemple

Décomposons en éléments simples la fraction rationnelle :

3X+4  3X+4

R = T " &on&E+D

1 et —1 sont des pdles simples. La partie entiére de R est nulle, puisque :
deg BX +4) <deg(X* - 1)

R étant a coefficients dans R, et ses pdles étant réels, on cherche donc des réels o, et o) tels

que :

¥ (04}
+
X+1 X-1

R(X) =

On aura donc :
3X+4 _ o £ o
(X=X =1) X+l X=I

En multipliant membre & membre (a) par X + 1, on en déduit :

3X+4
= (X 1) e
T X-1
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En évaluant cette derniére expression en —1, on obtient :

-3+4 -1
2 2 -

De méme, en multipliant membre 28 membre (a) par X — 1, on en déduit :

3X+4 a_1
=(X-1
X+1 (X )X+l

+ ¥

En évaluant cette derniére expression en 1, on obtient :

3+4_7_
2 2 ¢

La décomposition en éléments simples de R est donc :

1
X-1

1
R(X)=—=

L7
2X+1 2

» Détermination de la partie polaire d'une fraction rationnelle pour un péle
d'ordrep e N,p>2

Proposition

Soit R une fraction rationnelle, a coefficients dans le corps C, de la forme :

P(X) _ P(X)

R(X) = =
= 0(X)  Qo(X)(X — )

avec Qy(zo) # 0. On désigne par :
04

J
(X = z0)
la partie polaire de R associée au pole zp.

Alors, le coefficient de dans la décomposition en éléments simples de R est :

1
(X —z0)?

1 P
' 0V(z0)

Cl!p=

Les autres termes peuvent étre obtenus en effectuant un développement limité de

X-20 R =a1 (X -2 ' +a (X =202+ ...+ ap 1 (X —20) +
+(X = z0)P R1(X)

ol R; est une fraction rationnelle n’admettant pas zo pour pole, au voisinage de zg.
Ce développement limité étant de la forme :

a1 (X =20)" + o (X =) + .+ @y (X = 20) + @ + 0 (X = 20)")

on en déduit facilement, par unicité du développement limité, les valeurs des coeflicients
X wam & p-
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Démonstration : Notons ), le coefficient de dans la décomposition en élé-

1
. (X — z0)P
ments simples de R :
P(z0)

@p = [(X = 20)”" RX)]jx=y, = Oo(co)

La formule de Leibniz ! permet alors d’écrire :

P
0 (z0) = [(X = 20 QDN = | )€ (X =) 0" 0)
1=0 i
b (X =M 0],
= P! Qo(zo)

Il en résulte :
P(z) _ | P(z)

T 000y P 0Pz

Les autres résultats sont admis.

Exemple

X2 +2

(X -1y

La décomposition de R en éléments simples réels est de la forme :

Décomposons dans R(X) : R(X) =

(430 @12 3
- +
X-1 (X-12 (X-1)»

R(X) =

Le développement limité i I'ordre 3 de (X — 1)* R(X) = X? + 2 au voisinage de 1 est :
2 () 2 / _
[ +2@ _ +[x+2y] _ x-1)

Joeerel, o foreor)

53 T ELx -1 +o(x-1))

¢’est-a-dire :
TTE0— 1) +0X = 1) +o((X— 1)3)

Comme :
(X =1)*RX) = an (X —1)* +ap (X - 1)+ a3

on en déduit, par unicité du développement limité :
an=1, ap=2 , a3=3

Ainsi :
1 2 3

R =Tt G- T =1y

1. Etant donné un entier naturel n, et deux fonctions [ et g définies sur un méme intervalle 7 de R, n fois
dérivables sur 7, la fonction produit f g est n fois dérivable sur I, et :

(f” = Y Chf g
k=0

ol pour tout entier k de {0, ..., n}, C* désigne le coefficient binomial ( k) = #’7“.
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» Décomposition en éléments simples dans R(X)
Proposition
: ¥R . ; . ; .
Soit R = 5 une fraction rationnelle, & coefficients dans le corps R, o P et Q sont deux
polyndmes premiers entre eux, et oul, en outre, Q est unitaire (c’est-a-dire le coefficient
de son terme de plus haut degré vaut 1).
On désigne par xi, ..., xx, k € Nles poles de R, dontonnote n; € N,...,n € N, les

ordres respectifs.
Alors, Q peut étre factorisé en produit de polyndémes irréductibles sur R, sous la forme :

o) = [ [x—xy [ [+ X+ . reN (4p) e R, e N
1':1 I=1

et il existe un unique polyndme R, et des réels @y isilly ) € {Liws yRY By el Bi
ety () € (oo co?) X {1y v o5, telniquen:

R(X) = R(X)+ Z{ ot (xafiﬁ et (Xoi;)}

ﬁl,] X+ Vil ﬁi,f,— X+ Yit
+ o
Z X2 + /151 X + it (X2 + 2, X + i)l

K & Bii X+ vij

Les coeflicients §;; et v;;, (i, /) € {1,....r} X {1,...,€]}, pour les termes de la forme
Biji X +vi
(X2 + /IUX + i)
C(X), puis en regroupant les termes deux a deux conjugués, les racines complexes du trindbme

X2+ ; X + p;j étant deux a deux conjuguées.

, peuvent étre obtenus en commencant par décomposer la fraction R dans

Exemple
-1
X(X2+X+1) ‘
Le seul pole réel est 0 ; R admettant deux pdles complexes conjugués, j = e, et P = e,
on commence par décomposer R sur C(X).
La décomposition de R en éléments simples complexes est de la forme :

Décomposons dans R(X) : R(X) =

ROO=24 %, 22
x "x-;tx-p

Pour déterminer a, on multiplie membre & membre (%) par X, ce qui conduita :

X-1 a; ap
— + X
Bagsl O ST S

En évaluant cette derniere expression en (), on obtient :

-l=ua

235

Le plan complexe

lculus

d

-
.

Algebre

habilit

K o E 'l’:.'-: i

yr
!

»
)
x

2
o
=
=]
o
"
g

0
E
o
=
"
Q

-




1Nod.

Dt

ht © 2014

Copyright

Pour déterminer « ;, on multiplie membre a membre (%) par X — j, ce qui conduit a :

ond SRS 0 )+ e+ X - Yt
XE-H © =x 0 Dx_

En évaluant cette derniere expression en j, on obtient :

ji—1
— =g,
G-

soit :
j—1 j-1 1 1 J .
. = — . =———=-S=-5=-j=aq
=1 =00+ j+1 p P !
puisque j° = l,et 1+ j+ /> =0.
On détermine de méme « p en multipliant membre & membre (%) par X — 7%, ce qui conduit A :

X1
X(X=]

En évaluant cette derniére expression en j>, on obtient :

-1
ot -1 G=-DhG+h . 5 —
I = o1 =j+l=—j=a;=ap
puisque j° = I, et | + j+ /> = 0. Ainsi :
1 7

R(X) = e .
XX-j X-j
4 o) . i
1 jX =P+ X =)
X (X~ DX — %)
1 G+HHX-2)
X X2+ X+1
1, XF2
X X2+X+1

» Décomposition en éléments simples sur R(X) d'une fraction rationnelle paire

Soit R une fraction rationnelle, a coeflicients dans le corps R, paire, c’est-a-dire telle que

R(-X) = R(X)

- @y Ay 2 &y, k
R(X)= R(X - —iak i e
) Z {X X (X - x;)? (X - zi)’“}

Soit

& : ,Bz,l X +vi BB Bio: X +viyg,
= X2+/1f1X+ﬂi1 X2+ i X+ i)t
r &
’ Bij X +vij
RX) + _Fnid - :
; JZ] (X — x) ; le (X2 + 4 X + i)

la décomposition en éléments simples de R dans R(X).
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Alors :

k

o~ [e57N | Qy; 2 Xy, k

RX+E - + = +o—
0 = {X -5 (X-z) (X - xi)""}

+Zr: Bi1 X 49y - Bie X +vie
X2+ 4 X + piy (X2 + A, X + pig)li

k
~ @y 1 Xy 2 Ay, k
R(-X) + 3 b i B
e Z {—'X -x (=X- x,-)z (—X — xf)"i}

N 2{ Bi1 X + vy - Bie, X + viy, }
X=X +un (X2 X+ i)l

ce qui permet d’obtenir des relations entre les coeflicients a,, ;, (i, j)) € {l,...,k} X
{1,...,ng}, d’une part, B;; et y;;, (i, j) € {1,...,r} x{1,...,{;} d’autre part, et donc de
simplifier le calcul de ceux-ci.

Exemple

p=

r
L

“alculus

X2

Décomposons dans R(X) : R(X) = o1

Comme X*—1 = (X>~1)(X?+1) = (X- 1) (X+1) (X*+1), la décomposition de R en éléments
simples (réels) est de la forme :

()]
=i
[} o_ ﬁX +y 2
R(X) = - > b
X-1 X+1 X*+1 °
Par parité de R, on en déduit : <
ay w_| BX+y | | —-BX+vy
+ + = E
X-1 X+1 X?+1 -X-1 -X+1 X2+1 0
led)
Ilenrésulte: oy = —a—; ., B = —p.cequiconduitimmédiatementa = 0. E
Pour déterminer «, on multiplie membre & membre (x) par X — 1, ce qui conduit a : O
X aaX-D y®&-D S
X+DX2+1) T X+ X2+ 1 A

I F
L

En évaluant cette derniére expression en 1, on obtient :

|
— = @

4

On peut alors en déduire | = —a; = —%.

La valeur de y peut étre obtenue, par exemple, en évaluant la valeur de R(X)en O :
RO =0=-a1+a_; +y

ce qui conduit & :
1
= — ] = -
¥ 1 =5

La décomposition en éléments simples cherchée est donc :

2 1 o,
X4-1 4(X-1) 4X+1) 2(X2+1)
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» Décomposition en éléments simples sur E(X) d'une fraction rationnelle impaire

Soit R une fraction rationnelle, a coefficients dans le corps R, impaire, c¢’est-a-dire telle
que :
R(-X) = —R(X)

Soit alors :

Xy | () oy, k
R(X - T
(X) Z {X X; (X - x;)? (X - Zi)”i}

. - { [5:,1 X +7vi P Bie. X + i, }
X2+ A X+ (X2 + g, X + pig)"

+ZZ Bij X +vij
= X+ X+ )

la décomposition en €léments simples de R dans R(X).
Alors :

Il
=
s
+
gl
]
’;E

_><
H &,

k
- Xy | Xy 2 Xy
“RX) - { il g T g 4 —}
Z X—% &g (X = xy)m

i=1
B Z Bia X +vi I Bie, X + viyg,
X2 + g X +pn X2+, X+ i)
@y 1 Xy 2 Xy, k
R(-X) + ~— + = toer F——
=0 Z {—X —% (=X —x;)? (=X~ x.i)”"}
X+ o X + Yig,
. Z { ﬂ.! Vil ETY . ﬁz,f, Vit . }
Ait X + i (X2 = Aig, X + pig)"

ce qui permet d’obtenir des relations entre les coefficients a,, ;, (i,j) € {I,...,k} X
{I,...,ng}, d’une part, §;; et yij, (i, j) € {1,...,r} x{l,...,{;} d’autre part, et donc de
simplifier le calcul de ceux-ci.

Exemple

Dé s dans R(X) : R(X) = 3
écomposons dans R(X) : R(X) X1

Comme X*—1 = (X2-1)(X?>+1) = (X-1)(X+1) (X>+1), la décomposition de R en éléments
simples (réels) est de la forme :

- ¥t
@y ) +ﬁ ¥

R(X) = +
X) X-1 X+1 X2+1

(%)

Par imparité de R, on en déduit :

Q) N - +ﬁX+y_ Q) a_ X +y
¥X~1 X221 X241 -X-1 =-X+1 X¥+1
Il en résulte :
a=a- ., yY=-V

ce qui conduit immédiatement a y = (.
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Pour déterminer «, on multiplie membre & membre (%) par X — 1, ce qui conduit a :

X L e (XD XX -1
X+DX+D) T T xq1 X211

En évaluant cette derniere expression en 1, on obtient :

1
- = (¥

4

On peut alors en déduire @_; = @y = %.

La valeur de 8 peut étre obtenue, par exemple, en multipliant membre & membre () par X,

puis en passant a la limite lorsque X — +oo:

T @) - ﬁX+'?’}
= X{X—I+X+1+X2+1

lim X
Xoteo X4—1 Xote
soit :
0=a +a_ +ﬁ
ce qui conduita :
1
=—@ - =—=
B I >

La décomposition en éléments simples cherchée est donc :

X 1 . 1 X
X4—-1 4XF-1 4X+1) 2(X2+1)
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Transformations du plan:
translations, homothéties

1. Translations

Définition
7 étant un vecteur du plan, on appelle
translation de vecteur 7 I’application w
7, qui, a tout point M du plan associe
le point M’ tel que : e
% o ’ - - ’
MM' =i o
. 4\ Zo’
o
O : L
1

Figure 70.1- La translation de vecteur d.

» Expression analytique d’une translation de vecteur i
Le point M’, image du point M d’affixe z, par la translation de vecteur i, a pour affixe :

7 =z4+2zz
ol z; est I’affixe de il.

Réciproquement, une application de la forme z € C +— z + z; est la translation de
vecteur if.

—_—
Démonstration : La relation : MM’ = ii entraine : Tt = it soit: 7' —z = zzetdonc :
Z=z+z

La démonstration de la réciprocité est laissée au lecteur. ]

2. Homothéties

f: Définition

i k étant un réel non nul, on appelle homothétie de centre O, de rapport k, I’applica-
= —_— —_—

S tion Aok, qui, a tout point M du plan, associe le point M’ tel que : OM’ = k OM.

» Expression analytique d’'une homothétie de centre O, de rapport k

> k étant un réel non nul, le point M’, image du point M d’affixe z, par I’homothétie de
o centre O, de rapport k, a pour affixe : 7/ = kz.

Réciproquement, une application de la forme z € C + kz est 'homothétie de
centre O, de rapport k.
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fiche 70

Figure 70.2 - I'homothétie de centre O, de rapport k.

Démonstration : On traduit tout simplement, en termes d’affixes, le fait que :

ﬁ % ;;
OM' =kOM =
—
ce qui conduit & : 7' = kz U
La démonstration de la réciprocité est laissée au lecteur. ]
Définition
k étant un réel non nul, on appelle
homothétie de centre Q, de rapport k, z
i - ; L
I’application hqj qui, a tout point M du
plan associe le point M’ tel que : z -
— — ,"‘
QM’ = kQM. \ i
=
J
ol

Figure 70.3 - I'homothétie de centre 0, de
rapport k.

» Expression analytique d'une homothétie de centre Q, de rapport k

k étant un réel non nul, le point M’, image du point M d’affixe z, par I’homothétie de
centre €, de rapport k, a pour affixe : 2’ = zg + k(z — zo) ou zq est Iaffixe de Q.

Réciproquement, une application de la forme z € C — zo +k(z—z0) est 'homothétie
de centre Q, de rapport k.

Démonstration : On traduit tout simplement, en termes d’affixes, le fait que :
—} —_—
QM =kQM

soit :

7 -zg=k(z-z0)
ce qui conduit au résultat cherché. La démonstration de la réciprocité est laissée au
lecteur. ]

Le plan complexe
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Transformations du plan : rotations

1. Rotation de centre O
Définition
« étant un réel, on appelle rotation de il
centre O, d’angle «, I’application rg o ;

qui, a tout point M du plan distinct de
0, associe le point M’ tel que :

oM =0M

2
Nl

A
—.) s
| e
0

-
(OM,0OM") = a |2nr]

en laissant le point O invariant.

Figure 71.1- La rotation de centre O, d’angle c.
» Expression analytique d'une rotation de centre O

Le point M’, image du point M d’affixe z, par la rotation de centre O, d’angle @, a pour
affixe : 7' = ze'“

Rec1proquement, une application de la forme z € C  z¢€'? est la rotation de centre O,
d’angle a.

Démonstration : Si M est distinct de O, la relation (OM, OM’) = ¢ [2 ] entraine :

rgaan. ¢ —>—>
i M

—_ H ’
arg(z52) = (,,OM) + (OM, OM’) [27]
- il ra o
Comme T3 i= -r__,‘ efﬁ?‘g(z(m;) = 7--)‘ ei(di‘g(".w)-ﬁ-&) = 7._>| eiarg(ZW) eiﬂ(
oM~ oM’ “oM| "~ “oM
alors : T = Bt e soit: 7 = ze'®
On remarque que la relation reste encore vraie lorsque M coincide avec O.
La démonstration de la réciprocité est laissée au lecteur. ]
2. Rotation de centre Q
Définition
I‘ Z'
6 étant un réel, on appelle rotation de i oz
centre Q, d’angle 6, I’application rg g, L g
qui, a tout point M du plan, distinct de i s
Q, associe le point M’ tel que : 5
Q
QM =QM [
— —
(QM, QM"Y = 6 [2nx] Tl
]
en laissant le point £ invariant.

Figure 71.2- La rotation de centre (2, d'angle 4.
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» Expression analytique d’une rotation de centre Q

Le point M”, image du point M d’affixe z, par la rotation de centre Q, d’angle 6, a pour
affixe : 7 = zo + (2 — za) €'Y o zq est I"affixe de Q.

Réciproquement, une application de la forme z € C  zg + (z — zg) ¢'? est la rotation
de centre €2, d’angle 6.

Démonstration : Si M est distinct de €, la relation (QM,QM’) =6 [2 ] entraine :

m—— e

arg () = (.QM) + @M, QM) [27]
= arg (ZQ—M) +6 (2]

an :(arg(z—, +6) _

lar Z
e q( 4,) am

iar g z—>) e'e

Comme : 7— = ‘z Izsﬁ‘ ) QM\

—
QM’ QM

alors : o = Zom &
On remarque que la relation reste encore vraie lorsque M coincide avec €.
La démonstration de la réciprocité est laissée au lecteur. ]

,s0it: 7 —zo = (z—zg)e'? etdonc : 7 = zg + (z — zq) €'

3. Composée de deux rotations

z‘
,
r} _cz
z" B ;;]! -
La composée de deux rotations de IR Iy K, e
méme centre €2, d’angles respectifs @ et o ‘Q
[, est une rotation de centre €, d’angle f»“
d | o
a+ 5. o —T
]

Figure 71.3 - La composée de deux rotations de
méme centre O, d'angles respectifs a et g.

Démonstration : Soit 7’ I’affixe du point M’, image du point M d’affixe z € C par la
rotation rq 4, de centre £, d’angle @. On désigne par zq I’affixe de Q.

D’apres ce qui précede :

?=za+(k-z20)€"

Soit 7" I"affixe du point M”, image du point M’ d’affixe ¢’ par la rotation rq g, de centre
Q, d’angle S.

De méme que précédemment, on montre que : g’/

Par suite :

=z0 + (7 —zq) €P.

' =20+ —z0) e =20+ (2o + (- 20) €® — z0) &'F

soit 1 2" = zq + (z —zq) & P,
D’ou le résultat, qui était naturellement prévisible, comme on peut le constater sur le
dessin ! ]
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Transformations du plan : similitudes

Et si on composait une rotation et une homothétie ? On fait tourner, et on agrandit ou on
rétrécit ... ou I'inverse !

En géométrie euclidienne, une similitude est ainsi une transformation qui multiplie
toutes les distances par une constante fixe (son rapport), et conserve ou inverse le sens
des angles orientés. Ainsi, I'image de toute figure par une telle application est une figure
« similaire », ou « de méme forme ».

1. Similitudes directes

Considérons, dans un premier temps, I’homothétie de centre €2, de rapport k ; si on dé-
signe par zo I’affixe du point €, le point M’, image du point M d’affixe z, a pour affixe :
7 =za tk(z—z0)

Considérons, ensuite, la rotation de centre £, d’angle € ; le point M”’, image du point

M’, a pour affixe :
’

8]

= 20+ (7 —zg) €'’
20 + (zq + k(z - 20) — zg) €'?
20+ k(z—z0)ée"?
(1-ké%zg +kze'?

Réciproquement, considérons une application de la forme z +— az+ b,a € C*, b € C.

Lorsque a # 1, 'ensemble des points invariants est I’ensemble des points d’affixe z
b

1 —a

telsque z=az+b,soit: z =

Le point Q, d’affixe zg = - est donc le centre de I’application considérée.

D’autre part, si on considére un point M distinct de €, d’affixe z, et son image M’,
d’affixe 7/ = az + b, alors :

5 |b—a(1—a)z—b(l —a)

B b-(1-a)z

ab—(l—-a)z)
b-(1-a):z

= |al

Ainsi, M'Q = QM’ = |a| MQ = |a| QM. La relation reste valable lorsque M coincide
avec L.

L’application z — a z + b multiplie donc les distances par |a|.

Enfin, considérons quatre points M, M, Mz, My, tels que M| # My, M3 # My,
d’affixes respectives zj, 22, 23, 24, et leurs images M?, M, M; M;, d’affixes respectives
2\ 25, 25. Z;- On a alors M| # M et M} # M.
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De plus :

e = —

(M; M, MM = ; M;,Z) + (z, M M;) [2x]
o
= —ar (z—») + ar (z—r) [2 7] P~
g MM, g MM, Q
/ s ’ ’ ;
= —arg(z2 —zl)+arg(z4—zj) [2 7] .\_J
= —arg(a(z —z1)) + arg(a(z4 — 23)) [27] =

= —argla) — arg(z — 1) + argla) + arg (z4 — z3) 2]

= —arg(za —z21) + arg(z4 — 23) [27]

S e

= (M[Mz,M3M4) [27]

Les angles sont donc conservés par I’application z +— az + b.
Enfin : v
] ey o=y =
(QM, QM’) = (Q.M, i) + (i, QM’) [27] =
o
= —arg (ZW) +arg|z— [27] ©
b —
- —arg(z——)+arg(az+b— ) [27]
l—a l—a

= —arg(1—a)z—b)+arg(a(l —a)z—ab) [2x]
= —arg((l —a)z—-b)+arg((l —a)z—b) +arg(a) [2x]
= arg(a) [27]

Lorsque a = 1, on retrouve I’expression analytique d’une translation.

Algebre

Définition

On appelle similitude (directe), une application de C dans C, de la forme :

v

= az+b otae CretheC &

Le rapport de la similitude est |al|, I’angle, arg (a) [2n]. g
» Conservation des angles orientés =

' 4

=
I M
L

Une similitude directe conserve les
angles orientés.

La figure suivante montre I’action de simi-
litudes successives sur cing triangles, a qui
on fait subir une rotation ayant pour centre
le centre de gravité du pentagone central,
puis une homothétie de méme centre, de
rapport strictement plus petit que un. Et on
tourne ... Similarité a I’infini !

Figure 72.1- Transformation de triangles par
similitudes.

» Similitudes directes remarquables

Le plan complexe

o Lorsque a = 1 : la similitude z — z + b, b € C, est une translation de vecteur i, ou le
vecteur i a pour affixe b.

i
3]
X
L
o
&
=]
(=]
wvi
g
o)
=
o
c
wvi
)
—
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e Lorsque a = —1 : la similitude z = —z + b, b € C, est une symétrie centrale, dont le

. b
centre est le point d’affixe X

2. Composée de deux similitudes

La composée de deux similitudes est une similitude.

Démonstration : Considérons les similitudes Sy :z—> ayz+ by, et S> 1z a7+ ba.
Soit M un point du plan, d’affixe z; M,, d’affixe z;, son image par S;.
L’affixe z; point M>, image de M| par &, est donc donnée par :
D=muthh=am(az+b)+bry=aiaz+arb +b
&> o 8 est donc bien une similitude, de rapport |a; az| = |a;||aa]. [ |

Considérons maintenant une application z — aZ+b,a € C*, b € C.
L’ensemble des points invariants est ’ensemble des points d’affixe z tels que :
z=aZ+b,cequientraine :Z=az+hb. Parsuite: z =aaz+ab+b.
ab+b
I —la*
On vérifie, que, réciproquement :
ab+b , - aab+ab+(l- lal*) b

Ainsi, sifal #1:z=

— % -
TP 1 — [aP
_aab+ab+(1-la*)b
) L = laP
3 ab+b
) I~ laP
L application z — aZ+ b admet donc pour centre, dans le cas |a| # 1, le point Q), d"affixe
_ab+b
o= = |a|2.

D’autre part, si on considere un point M distinct de €, d’affixe z, et son image M’,
d’affixe 7/ = az + b, alors :

oM’ M'Q
oM MQ
abth —az-b
- T ab+h -

ab+b—a(l=la®z-b —a?)
ab+b—(1-]aP)z

ab-—a(l —|a®)zZ+blal
ab+b-(1-la?)z

a (E—(l —|a|2)z+ba)
ab+b-(1-laP?)z

a(b—(1—|a|2)z+f}a)
ab+b-(1-laP)z

= |al
= lal

(un nombre complexe et son conjugué ayant méme module).
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Ainsi, QM’ = |a|QM, et la relation reste vraie pour Q = M.
L’application z — a Z + b multiplie donc les distances par |al.
Enfin, considérons quatre points My, My, M3, My, tels que M, # M, Mz # My,
d’affixes respectives zy, 22, 23, 24, et leurs images M, Mé, Mg, M;, d’affixes respectives
’ s ' !
21 %1 335 4y
On a alors M| # M}, et M, # M.

De plus :
M’M@’M’ = MTA; 7@’ 3
1M Mgy | = 1Most| + |2, MMy [27]
= —arg|z—— | + ar (z—;) 2m
g(Mle) 9\ [27]
= —arg(zé—z})+arg(zft—z'3) [27]
= carglaG-z)+arg(ata-) 2]

Il

—arg(a) —arg(za — 21) + argla) + arg (24 — z3) [2 7]

= arg(zx — z1) — arg (24 — z3) [2n]

= —arg (ZM—al Mz) + arg (ZM—>3 M4) [2 7]
— S =

= - (M1 M>, M3M4) [27]

Les angles orientés sont donc changés en leurs opposés par ’application z — aZ + b, un
nombre complexe et son conjugué ayant des arguments Opposés.

3. Similitude indirecte
Définition
On appelle similitude indirecte, une application de C dans C, de la forme :
Z—azi+b

ova € C*,eth € C.

Le rapport de la similitude est |a].
Une similitude indirecte inverse le sens des angles orientés.
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Transformations complexes, fractales,

et représentations de la nature

Nous avons présenté, dans ce qui précede, les transformations usuelles que sont les
translations, les homothéties, rotations et similitudes. Il en existe une infinité d’autres.

L'ensemble de Mandelbrot

En particulier, considérons la transformation du plan complexe z € C + 22 + ¢,

¢ € C, et intéressons-nous a la suite (z,,),cy définie par :
= — 2 fien
0=0 , Zni=z,+c

Si on représente, dans le plan complexe, les images successives des termes de cette
suite, on obtient la figure suivante (les zones les plus claires sont celles avec les plus
faibles concentrations de points, la couleur fonce en lien avec cette concentration).

L'ensemble de Mandelbrot.

C’est I’ensemble de Mandelbrot, obtenu par le mathématicien Benoit Mandelbrot,
qui, pour la désigner, créa le terme de fractale [12]. Depuis, on désigne par frac-
tale une courbe de forme a priori irréguliere, mais dont la construction résulte en
fait d’un processus itératif, parfois trés simple, poussé a I’infini. Les propriétés de
I’ensemble de Mandelbrot ont été étudiées de facon approfondie par Adrien Douady
et John H. Hubbard [11], qui ont mis en évidence une propriété remarquable de ce
type d’ensembles : leur auto-similarité, c¢’est-a-dire le fait que ces figures semblent
se reproduire a I’imtérieur d’elles-mémes de fagon infinie. En faisant un « zoom » sur
une partie du dessin, on s’apercoit ainsi qu’on retrouve exactement la méme forme
que la figure initiale, en plus petite certes, mais en tout point semblable.
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Plan rapproché de I'ensemble de Mandelbrot.

Des structures fractales tres naturelles

Ce phénomene d’auto-similarité existant aussi dans la nature, par exemple, une feuille
est elle-méme composée de plus petites feuilles de la méme forme, elles-mémes
aussi, ... I’idée est alors venue d’utiliser les fractales pour représenter des formes
naturelles comme, bien sir, cette feuille de fougere, créée par le mathématicien aus-
tralien Michael Barnsley [13], [14], [15] :

La fougeére dite « de Barnsley ».

En biologie, notamment, les alvéoles pulmonaires présentent une structure fractale,
de méme que la ramification du réseau sanguin.

Il apparait que les représentations ainsi obtenues sont tres réalistes, et traduisent
trés bien de nombreux phénomeénes naturels.

T o

Une fractale obtenue a partir du flocon de Von Koch.
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L'origine des matrices

Des matrices pour la résolution de systéemes linéaires

Le concept de matrice est apparu au XVII® siecle, afin de simplifier la résolution et
I’étude des systémes linéaires. En 1678, Gottfried Wilhelm Leibniz introduit une
notation indicielle, dans le cas d’un systeme de trois équations a deux inconnues.
Les matrices seront ensuite utilisées par Gabriel Cramer, toujours pour la résolution
de systemes linéaires (1774). Ses travaux sont poursuivis par les Francais Alexandre
Théophile Vandermonde, puis Pierre Simon Laplace, qui définissent par récurrence
le déterminant d’une matrice carrée.

L’étude des transformations linéaires par Joseph Louis Lagrange et Carl Friedrich
Gauss renvoient, a nouveau, aux matrices : ainsi, Gauss utilise pour la premiere fois
une notation en tableau proche d’une écriture matricielle. Ses travaux seront poursui-
vis par Augustin-Louis Cauchy, qui définit le produit matriciel.

Le mot « matrice » est introduit par James Joseph Sylvester, pour désigner un ta-
bleau rectangulaire de nombres, mais c’est avec la publication par Arthur Cayley, en
1858, d’un article des Philosophical Transactions [17], que les matrices sont vérita-
blement mises en place [18].

e Gottfried Leibniz (1646-1716) est un philosophe, scientifique, mathématicien, lo-
gicien, diplomate, juriste, bibliothécaire et philologue allemand.

e Gabriel Cramer (1704-1752) est un mathématicien suisse, connu essentiellement
pour son fraité sur les courbes algébriques publié en 1750, ou il est le premier a
démontrer qu’une courbe du n*™® degré est déterminée par "—("2—“2 de ses points.
Il a également travaillé sur la résolution des systemes linéaires, qui lui doivent les
« formules de Cramer ».

e Théophile Vandermonde (1735-1796) est un mathématicien francgais, mais aussi
économiste, musicien et chimiste.
D’apres Lebesgue (Conférence d’Utrecht, 1937, [23]), le déterminant ne serait pas
de lui...

e Pierre Laplace (1749-1827) est un mathématicien, astronome et physicien frangais.

e Joseph Lagrange (1736-1813) est un mathématicien, mécanicien et astronome ita-
lien, mais de famille francaise par son arriere-grand-pere. Il s’est intéressé a I’al-
gebre, au calcul infinitésimal, aux probabilités, a la théorie des nombres, a la mé-
canique théorique, mais aussi la mécanique céleste, la mécanique des fluides, la
cartographie...

o Carl Gauss (1777-1855) est un mathématicien, astronome et physicien allemand.

e Augustin-Louis Cauchy (1789-1857) est un mathématicien francais, membre de
I’ Académie des sciences et professeur i I’Ecole Polytechnique. II est a I’origine
de I'introduction des fonctions holomorphes en analyse, ainsi que des criteres
de convergence pour les suites et les séries entieres (suites de Cauchy, critere de
Cauchy).
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e James Sylvester (1814-1897) est un mathématicien et géometre anglais. Il a, no-
tamment, travaillé avec Arthur Cayley sur les formes quadratiques et leurs inva-
riants (théoreme d’inertie de Sylvester), et les déterminants. Il a, également, in-
troduit 1a fonction indicatrice d’Euler, qui, a un entier naturel », associe le nombre
d’entiers strictement positifs inférieurs ou égaux a n et premiers avec n, tres utilisée
en théorie des nombres.

e Arthur Cayley (1821-1895) est un mathématicien britannique, un des fondateurs
de I’école britannique moderne de mathématiques pures.

Les applications du calcul matriciel dans I'industrie

Le calcul matriciel occupe, maintenant, une place fondamentale dans I’industrie, pour
la modélisation et le calcul numérique. Ainsi, dans 1’aéronautique, on utilise des mo-
deles tridimensionnels de CFD (Computationnal Fluid Dynamics). L’ ordinateur crée
un modele de la surface de 1’avion a 1’aide d’un réseau de « boites », situées soit a1’in-
térieur de la surface, soit a I’extérieur, soit a cheval entre les deux. Les « boites » qui
intersectent (rencontrent) la surface de I’avion sont & nouveau divisées en un nouveau
réseau de « boites » encore plus petites, ou on ne retient que celles qui intersectent la
surface. On itere le procédé jusqu’a ce que le réseau obtenu soit constitué de « boites »
de tres petite taille, afin d’obtenir le plus de précision possible. Pour déterminer la
circulation de I’air autour de 1’avion, et dong, les efforts s’exercant sur celui-ci, 1’or-
dinateur est, finalement, amené a résoudre un systeme d’équations linéaires de trés
grande taille, puisque celle-ci peut atteindre 2.10°, soit 2 millions d’équations — ou
plus ! Le second membre du systeme est modifié a chaque calcul (ou itération), en
fonction des résultats des calculs précédents, et des données du réseau.

Le stockage des données afférentes doit étre fait de la facon la plus optimale pos-
sible, afin que 1’ordinateur puisse effectuer, en un temps minimum, les calculs. Les
données sont, ainsi, stockées sous forme de tableaux de nombres (des matrices, ou
des vecteurs). D’autre part, afin d’optimiser les calculs, on essaye toujours de les ex-
primer sous une forme simplifiée au maximum. Pour une matrice, la présence de « z¢é-
ros » judicieusement placés, regroupés en « blocs », facilitera ceux-ci. Mais, méme
simplifiés a I’extréme, ceux-ci, en raison de la taille des systémes, restent toujours
complexes. L'algebre linéaire, la théorie de la réduction matricielle, la factorisation,
sont des outils trés puissants pour améliorer les performances et les résultats des si-
mulations numériques. Le lecteur intéressé pourra trouver plus de précisions dans
[19]. sur le plan formel, et dans [20], pour une vision plus appliquée.

251

Le plan complexe

wi
@
x
sl
o
E
o
o
73
i
£
E
o
=
7
Q
-




unod.

2014 D

p)
4

4

i
1kt

(@)]

Copyri

Matrices de taille 2 x 2

1. Définitions

On appelle matrice de taille 22 une collection de 2Xx2 = 4 nombres, a1, a2, az;, az,
réels ou complexes, arrangés en tableau, sous la forme :

ap a2
A=

az| dx
a2

azz

a )
(a“ ) est le premier vecteur colonne de A, (
21

) son second vecteur colonne.

1. Dans ce qui suit, on se limitera au cas de matrices & coeflicients réels.

2. M; (R) désigne I’ensemble des matrices de taille 2 X 2 a coeflicients réels.

» Matrice triangulaire supérieure

Lorsqu’une matrice est de la forme :
ap a
A= ( 1 12)
0 ax»
elle est dite triangulaire supérieure.

» Matrice triangulaire inférieure
Lorsqu’une matrice est de la forme :
ajp 0
A=
az| ax
elle est dite triangulaire inférieure.

» Matrice diagonale

Lorsqu’une matrice est de la forme :
_ ar 0
A ( 0 az’z)
elle est dite diagonale.
» Transposée

Etant donnée une matrice de taille 2 x 2, A = (ai J-) ,» 0N appelle transposée de

1<i<2, 1<j<
la matrice A la matrice ‘A telle que :

T — _[an a2
A=la Jji s o
1<€ig2, l-<._]-<\2 alz azz
ce qui signifie que, par rapport a la matrice A, on a échangé les lignes et les colonnes.
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» Trace

Etant donnée une matrice A = (ai j) lcicr <o de taille 2 x 2, la trace de A, notée tr A,
B TR ES

est la somme de ses termes diagonaux :
2
trA=ay +axn= Zai,—
i=1

2. Opérations élémentaires

Etant donnée une matrice de taille 2 x 2, A = (a,- j) on appelle opération

1<ig2, 15jg2’
élémentaire sur les colonnes de A I’'une des opérations suivantes :

- dapy ap apz 4y
e Transposition : A = > :
az) dx az ajzg

e Dilatation : A = (a“ a12) — (ﬂa“ ap
azy ax Aax an

) A € R*, ou encore

ag d ayy da
Ao [@nar) | fandap) o ps
az| ax a» dax

" a ap ap+Adapn ap
e Transvection : A = >
az| a ax + Adax axn

) A € R, ou encore :

a aj day ap + dag
Ao mmy ., . 1 ap ) 1eRr
ax| ax ) ax + Adaz)

(A une colonne donnée, on ajoute 1’autre colonne, multipliée par un facteur A.)

1. L’opération élémentaire de transposition ne conduit pas du tout & la transposée d’une
matrice.

2. On peut définir, de méme, des opérations élémentaires sur les lignes de A.

3. Les opérations élémentaires sont inversibles, ¢’est-a-dire il est possible de revenir a la
matrice de départ par d’autres opérations élémentaires.
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Déterminant de matrices
de taille 2 x 2

1. Définitions
» Déterminant d’'une matrice

Etant donnée une matrice de taille 2 x 2,A = (ai j)
de la matrice A le nombre :

<3, 1<’ on appelle déterminant

ap a2
an) dzp

det A = =aj|day —dr d;n

Proposition
Une matrice de taille 2 X 2 et sa transposée ont le méme déterminant :

YA € Mo(R) : det’'A =detA
Démonstration : Il suffit de reprendre la formule donnée en définition. ]

» Déterminant de 2 vecteurs

On appelle déterminant de deux vecteurs if = (uy,us) et # = (vy,v2) du plan R?, le
nombre :

det(if, V) =

uy vy
U

‘:ulUZ_MZUl

C’est donc, tout simplement, le déterminant de la matrice :
up v
U U2

1. Etant donnée une matrice de taille 2x2, A = (a; J,-)

2. Propriétés

Lcicr 1< ica’ dont on désignera par
slss, IS

C; et C; les vecteurs colonnes, le déterminant de la matrice A vérifie les propriétés
suivantes :

e Antisymétrie :
detA = det(C,,C,) = —det (C>,C))

L antisymétrie traduit le fait que le déterminant change de signe si on échange
deux colonnes.

e Homogénéité :
YA eR: det(1C1,Cz) = A det(Cy.Cr)
¢ Invariance par transvection :
YA e R :det(C|+AC2Cr2) =det(C,Ca)

La valeur du déterminant ne change pas si on ajoute, a une colonne donnée,
I’autre colonne multipliée par un facteur A.
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Le déterminant d’une matrice et de sa transposée étant égaux, les propriétés d’invariance du
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont €également
valables pour les lignes de la matrice.

2. Le déterminant d’une matrice triangulaire est égal au produit des termes diago-

naux.
Exemples
1.
11
’23‘—1x3—2x1—3—2—1
2

-11

‘ 3 4’-—1><4—3><1_—4—3_—7

3. Deux vecteurs il = (uy,u3) et ¥ = (v1,02) du plan sont non colinéaires si et seule-
ment si leur déterminant est non nul :

u| v

det(il, 0) =
(if, ) i v

#0

Démonstration : On démontre ce résultat par la contraposée : deux vecteurs i = (uy, uz)
et U= (v1, v2) du plan sont liés si et seulement si leur déterminant est nul.

e Supposons i et U liés et tels que i = Gouv=0 : on a alors, clairement,
det(u,v) = 0

e Supposons i et U liés et tels que i # Oet # 0, il existe alors un réel non nul A tel
que :
v=Ai

Par suite :
det(ii, A1) = A det(i, ) =0

e Réciproquement, si det(if, 7)) = 0, alors :

vy —urv; =0

Sivy#0:
115
U= —1u
U2
Comme :
115
U = —
U2
on a donc : ”
2
i=—0
U2

les vecteurs i et U sont bien liés.
On démontre de méme le résultat dans le cas o up # 0.

Lorsque u> = va = 0, u; et vy peuvent prendre chacun une valeur quelconque dans R.
Les vecteurs # et o sont alors colinéaires, et donc 1iés.
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Matrices de taille 3 x3

1. Définitions

On appelle matrice de taille 3 x 3 une collection de 3 X 3 = 9 nombres, réels ou
complexes, a1, a12, 13, a1, a», a3, as;, dsz, ass, arrangeés en tableau, sous la forme :

ap ap az
A=\ az ax ax;

as) asz asjz

apg ap a13

az; | est le premier vecteur colonne de A, | @y | son second vecteur colonne, | a3

asg asn ass
son troisieme vecteur colonne.

\ 1. Dans ce qui suit, on se limitera au cas de matrices a coeflicients réels.

) 2. M3 (IR) désigne I'ensemble des matrices de taille 3 x 3 a coefficients réels.

» Matrice triangulaire supérieure

Lorsqu’une matrice est de la forme :

ap apz a3
A=| 0 ax ax
0 0 a3z
elle est dite triangulaire supérieure.
» Matrice triangulaire inférieure
Lorsqu’une matrice est de la forme :
ap 0 0
A= daz) dzz 0
asy asz asz
elle est dite triangulaire inférieure.
» Matrice diagonale
Lorsqu’une matrice est de la forme :
an 0 0
A= 0 ar» 0
0 0 ass

elle est dite diagonale.
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» Transposée

Etant donnée une matrice de taille 3 X 3, A = (a,- j) i3, 143" on appelle transposée de

la matrice A la matrice ‘A, de taille 3 x 3, telle que :

ajy ax as

‘A= (a ) =|ap ax axn
M<j<3, 1<i<3

ai3 ax; as;

ce qui signifie que, par rapport a la matrice A, on a échangé les lignes et les colonnes.

» Trace

Etant donnée une matrice A = (a,— j) de M5 (R), la trace de A, notée tr A, est la

1<i<3,1€j<3
somme de ses termes diagonaux :

3
trA =a +axn+ax =Zaii
i=1

2. Opérations élémentaires

Etant donnée une matrice de taille 3 x 3, A = (ai',-) on appelle opération

1<i<3, 1<j<3’
élémentaire sur les colonnes, respectivement désignées par Cy, C», Cs, de A, I'une des

opérations suivantes :

¢ Transposition :

ap ap ans apz ap a3
A =(C1,C2,C3) = | az1 ax ax3 | = (C2,C1,C3) = | ax az1 ax
az) asx as as; az ass
ou encore :
ay ap apg
A =(C1,C2,C3) =|az axn ax | = (C1,C3,C)
az| as asz
(o (%59

L’ opération élémentaire de transposition consiste donc a échanger deux colonnes de
la matrice.

e Dilatation :

ap ap ags Aday apn ap
A=(C1,C2C3) =|az axn ay | = (1C,C2,C3) =| Adaz axn ax | A € R*
az| azn azz Adaz azx az;
ou encore :
ay ap ag; ap dapp ap
*
A=(C1,C2,C3)=|az ax ax | = (C1,4C2,C3)=|ax danay | A €R
az| az az; az Adaz as;
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ou :

ap ap an apn ap dap
+*
A=(C,C2,C3)=|az ax ax | = (C1,C2,AC3) = az1 ap daz | 1 € R
az| as as; azl az Aazz

L’ opération élémentaire de dilatation, par un réel non nul A, consiste donc a multiplier
une colonne de la matrice par A.

e Transvection :

ay ap as ay +Adap an aps
A=(C1,C2,C3)=|az| ax a3 [—=(C1+1C2,C2,C3)=| a1 +daxp ax axy| , 1€R
as| az ass az) + dax az ass
ou encore .
ay a2 as
A=(C1,C2,C3) =] az ap ayn |- (C,C2+1C5,C3) , 4 €R
asy az ass
etc.

A une colonne donnée, on ajoute une combinaison linéaire des autres colonnes.

. 1. L'opération élémentaire de transposition ne conduit pas du tout a la transposée d’une matrice.

2. On peut définir, de méme, des opérations élémentaires sur les lignes de A.

3. Les opérations élémentaires sont inversibles, c’est-a-dire qu’il est possible de revenir 2 la
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matrice de départ par d’autres opérations élémentaires.
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Déterminant de matrices
de taille 3 x 3

1. Définitions
» Mineur
Soit A € Ms(R).

Etant donné i jefl,..., 3}2, on appelle mineur d’indice (i, j) le déterminant, noté
A;j(A), de la matrice obtenue en enlevant a A la ligne i et la colonne j.
» Cofacteur
Soit A € Ms(R).

Etant donné (i, h e {1,2, 3)%, on appelle cofacteur d’indice (i, j) :

(D™ Aj(A)

» Comatrice

Soit A € M3(R).
On appelle comatrice de la matrice A, et on note ComA € M;(R) la matrice des
cofacteurs :
ComA = ((_I)M Aff(A))lsis3,1< <3

» Déterminant

Etant donnée A € M;3(R), on appelle déterminant de la matrice A = (ai j)1<i<3 i3 le

nombre, noté det A, qui peut étre calculé de la facon suivante :

e par un développement suivant la ligne i, i € {1, ..., 3}:

det A =

3
(—1" agrdgA)

j=1

e par un développement suivant la colonne j, j € {1, ..., 3}:

3
det A = Z(—I)Hj aij AU(A)

i=1

On choisit la ligne ou la colonne que I’on veut; quel que soit le choix, on obtient bien siir le
méme résultat !

Proposition
Une matrice de taille 3 X 3 et sa transposée ont le méme déterminant :

VA € MyR) : det'A = detA
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Démonstration : Ce résultat s’obtient immédiatement a partir de la formule donnant le
développement suivant une ligne ou une colonne. ]

\ 1. si on développe par rapport & une ligne :

ay a3 daz| dz; dp) d
detA = ay —dra +d3
as dsj as| dsjz as| asz
apz a3 dap) dj3 ap dz
= =4 +dxn —an
azp daj daz) asz az) as
a2 a3 dap a3 ap a2
= ds —das; +ds3
az a3 dz) dp; az| dz

2. et si on développe par rapport & une colonne :

d dz; ajp a3 dap ap
det A = -

azp dszz azy ds3 dpy A3
- —q az) a3 ap a3 ap a3
= —dp

a3y dsj as] dsj dn|
_ day dx| an dap ap diz

ds| ds; as| as az| ax

2. Propriéteé

1. Etant donnée une matrice de taille 3 x 3, A = (aij) dont on désigne

1<i<3, 153’
par Cy, Cz, C3 les vecteurs colonnes, le déterminant de la matrice A vérifie les

propriétés suivantes :

o Antisymétrie :
detA = det(C,C,C3) = —det(C>2,C,C3) = —det(C,C3,C2)

L’ antisymétrie traduit le fait que le déterminant change de signe si on échange
deux colonnes.
¢ Homogénéité :

VYA eR:det(ACy,Cr,C3) = A det(C1,C2.C3)

o Invariance par transvection : ¥V (1, u) € R? :

det(Cy,C2,C3 + ACH)
det (C; + 1C»,C»,C3)
det(Cy + 21C2 + pC3,C2,C3)

det(C,C2 + 1C1,C3)

= det (C1,C»,C3)

La valeur du déterminant ne change pas si, a une colonne donnée, on ajoute une
combinaison linéaire des autres colonnes.
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Le déterminant d’une matrice et de sa transposée étant égaux, les propriétés d’invariance du
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont €également
valables pour les lignes de la matrice.

2. Le déterminant d’une matrice triangulaire est égal au produit des termes diago-
naux.

Démonstration : Il suffit de développer par rapport a la premiére colonne. ]
3. Le déterminant d’une matrice diagonale est égal au produit des termes diagonaux.

Démonstration : Une matrice diagonale est un cas particulier de matrice triangulaire.
|

Définition

On appelle déterminant de trois vecteurs @ = (u,ux,u3), 0 = (vy,02,03),
w = (w;,wy, ws) de 'espace R3, le déterminant de la matrice :

Hp v wy
det(i, U, ) = | up v2 wn
U3 U3 wj

4. Trois vecteurs ¥ = (uy,ur,u3), U = (v1,v2,03), W = (wy,wr, ws) de I'espace R3,
sont non coplanaires si et seulement si leur déterminant est non nul :

up vy wy
det(iZ, 7, w) = |uz va wr | #0
U3 U3 W3

Démonstration : On démontre ce résultat par la contraposée : frois vecteurs i =
(y,uz2,u3), U = (v1,02,03), W = (wy,wr, us) sont liés si et seulement si leur détermi-
nant est nul.
e Supposons i, U, o liés ; alors, soit la famille (iZ, ) est liée, soit w € R + R .
Dans le premier cas, soit I/ = 6, ce qui conduit immédiatement & det(il, 7, W) = 0, soit
il existe un réel @ tel que ¥ = @ . On a alors :

det(i, ¥, ) = det(a v, ¥, W) = a det(@, v, ) = o det(V — 0,7, ) = 0

en utilisant I’invariance du déterminant par transvection.

Dans le second cas, il existe deux réels A et u tels que @ = A# + ud. Par suite :
det(i, 7, w) = det(if, v, A il + u0) = det(id, v, 1) = 0
(On utilise I'invariance du déterminant par transvection.)

e La réciproque se démontre par le calcul, de facon analogue a ce qui a été fait en
dimension 2. ]
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1. Coefficients d’'une matrice

m et n étant des entiers naturels non nuls, on appelle matrice de taille m X n une collec-
tion de m X n nombres, réels ou complexes, arrangés en tableau :

ay ... dp

A= (aij)léiém,léjén -
Al oo Qin

Les a;; sont appelés coefficients de la matrice : par convention, le premier indice désigne
I'indice de ligne, le second, I’indice de colonne.

Dans ce qui suit, on se limitera au cas de matrices a coefficients réels.

m et n étant des entiers naturels non nuls, on désigne par M,,, (R) I'’ensemble des
matrices de taille m X n, a coefficients réels!.

2. Matrice carrée d’ordre n

n étant un entier naturel non nul, on appelle matrice carrée d’ordre n une matrice de
taillen X n :
ary ... diy

A= (aij)lgign, 1<j<n -

Adnl ... Uuy

n étant un entier naturel non nul, on désigne par M, (R) I'’ensemble des matrices carrées
d’ordre n, a coefficients réels.

Etant donnée une matrice A = (ai-j) de M, (R), les coefficients a;;,

I<ign, I<j<n
i=1, ..., n, sont les termes diagonaux de A.

Etant donnée une matrice A = (at- j) de M, (R), 1a trace de A, notée rr A, est

I<isn,l<j<n
la somme de ses termes diagonaux :

n

trA=aq+...+ay; = ZCI,‘,‘
i=1

3. Matrice ligne et colonne

n étant un entier naturel non nul, on appelle matrice ligne une matrice de taille 1 x n, de
la forme :

A=(a...a,)

1. On peut aussi trouver la notation M., (R).
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m étant un entier naturel non nul, on appelle matrice colonne, ou encore vecteur co-
lonne, une matrice de taille m x 1, de la forme :

aj

Um

Etant donnée une matrice A = (a_[- j) de M, , (R), on appelle transposée de la

I<i<m, 1< j<n
matrice A la matrice ‘A, de taille n x m, telle que :

ary ... gl

4= (o)
=la =]

M h<isnl<j<m
Ay - -« Qup

ce qui signifie que, par rapport a la matrice A, on a échangé les lignes et les colonnes
de A.
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Opérations sur les matrices

Dans ce qui suit, m, n, p, g désignent des entiers naturels non nuls.

1. Définitions
» Addition de deux matrices
Etant données deux matrices A et B de M, (R), on définit la matrice somme A + B
comme étant la matrice C € M,,, (R) telle que :

ap +bi ... ap+ by

C=A+B= :

Al F D v Togn F Doy

» Multiplication par un scalaire

Etant donnée une matrice A de M, (R), on définit le produit de A par le réel A comme

étant la matrice :
/16111 s /161],2

AA = € Mm,n(R)
Al % v Ao

» Multiplication de deux matrices

La multiplication d’une matrice A = (ai_,-) , de taille m X n, par une matrice

I<i<m, 1< jsn

B= (b; ) _ ., de taille n X p, conduit a la matrice produit C, de taille m X p, telle
H<isn, 1<j<p

que, pour tout couple d’entiers (i, j) de {1, ..., m} x {1, ..., p}:
C=AB= (Cij)lgiém, 1<j<p
davec
n
Cij = Z ik by
k=1
Exemple

101 1 Ix1+0x0+1x1 2
21001101 =12%x1+1x0+0x1 (=2
100 | Ix1+0x0+0x1 1

Attention ! Pour pouvoir faire le produit de deux matrices, il est indispensable que le nombre
de colonnes de la premiére matrice soit égal au nombre de lignes de la seconde matrice.

En pratique, le coefficient situé ligne i, colonne j de la matrice produit est obtenu en « mul-
tipliant la ligne i de la premiére matrice par la colonne j de la seconde matrice »

Coefficient de A B ligne i, colonne j

I
Z coefficients de la ligne i de A X coef ficients de la colonne j de B

un par un
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ce qui permet de comprendre pourquoi le nombre de colonnes de la premiére matrice doit étre
égal au nombre de lignes de la seconde matrice : il faut tout simplement qu’il y ait le méme
nombre de coefficients sur cette ligne que sur la colonne.

La multiplication des matrices n’est pas commutative. En général,

AB+ BA

2. Propriétés de la multiplication matricielle
La multiplication matricielle est :

e distributive a gauche :

V(A,B,C) € Myu®) X (My,(®) : AB+C)=AB+AC
e distributive a droite :

V(A,B,C) € (Mua(R))* x M, p(R) :(A+B)C=AC+BC
e associative :

Y(A,B,C) € Myn(R) x M, ,(R) x M, ,(R) : A(BC)=(AB)C

Si on désigne par Cy, ..., C, les vecteurs colonnes d’une matrice A de taille m X n, alors, pour

X1
tout vecteur X =| . |, on peut aussi €crire :
Xn
X1
AX=A =JC1C'[+...+JCnC,,
Xn

3. Formule du bindme de Newton

Etant données deux matrices A et B de M, (R), qui commutent, c’est-a-dire A B = BA,
alors, pour tout entier naturel p, la formule du bindme de Newton permet de calculer
(A+B)P:

p
(A+B)y" =) CkA*Br*
k=0

ol, pour tout entier k de {0, ..., p}, Cf, désigne le coefficient binomial :

(P)zp_!
k]~ kl(p-k)
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Matrices remarquables

1. Matrice identité
Définition

n étant un entier naturel non nul, on appelle matrice identité d’ordre n, la matrice
carrée, de taille n X n:

| (S e 0
01 0 0

In = = (6ij)lsi3n,1SjSﬁ‘
0...... 01

Propriéte
L’élément neutre de la multiplication dans M,,(R) est la matrice identité I, :

VA e MyR): Al,=1,A=A

2. Base canonique
Définition
m et n étant des entiers naturels non nuls, on désigne par [Ei fJ la base

I<ism, 1< jsn
canonique de M,, , (R), ¢’est-a-dire la famille des m n matrices telles que :

V(i) € {l...,mbx{l, ... n} : Eyj= (6% )

I<ksm , 1<i<n

ou les 6;; désignent les symboles de Kronecker' :

1 si i=j
Y(i,j) € N*xXN* : §;; = .
@J) "] 0 sinon
Cela signifie que, pour i et j donnés, les coeflicients de la matrice E;; sont tous nuls, sauf
celui situé sur la /™ ligne et la j°™ colonne, qui vaut 1.
Ainsi, pour toute matrice A = (a,; J-) de M, (R):

I<i<m, 1< jsn

m n
i=1 j=1

1. Leopold Kronecker (1823-1891), mathématicien allemand. A Iorigine, il était théoricien des nombres,
mais apporta de nombreuses contributions & 1’analyse algébrique.
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Proposition
Lorsque I’on est dans M, (R), c’est-a-dire lorsque les matrices sont carrées :

VG, kD) € {1,...,n}* : EijEn =63 Eq

Démonstration : On 2.1 : B : (6,~m 10) jp)lSmSn,lspSn f Eyi= (6km 61{,) ——
La formule du produit matriciel permet alors d’exprimer le terme d’indices m, p de la

matrice produit E;; Ey; :

1

(Eij Ekl)mp = Z (Eij)m (Ekl)qp

g=1

1]

n
Z 6im 9 Jq 5kq 5lp
q=1
= Oim0j0r;Oup
Gim Okj Opp

(Le seul terme non nul de la somme est obtenu pour g = j.)
On reconnait ainsi : E;; Ey = 6 Ej. [ |

3. Matrice de transposition
Définition

n étant un entier naturel non nul, on appelle matrice de transposition, ou encore,
matrice de permutation, toute matrice carrée d’ordre n, de la forme :

|
1
00...010......... 0
1
= 1 =1, —E;—E;;+ E;; % Ej;
"lo...010...00 e

G ell,...,nf,i#j
(Les coeflicients non écrits sont nuls.)

Proposition

Pour toute matrice A de M,,(R), le produit A S ;; de la matrice A par la matrice de permu-
tation Sy, (i, j) € {1, ..., n)?, i # J» est la matrice obtenue a partir de A en échangeant
les colonnes i et j.
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Démonstration : A I’aide de la formule du produit matriciel, on peut exprimer le terme
situé ligne k et colonne / de la matrice A S;;, qui vaut :

n

(A Si-")kl - Z kp (S ij)pl

p=1
n

= Z Aip (6,171 - 61';) 6['.’ - 6jp 6_]'1 + 61',17 6_]'1 + 6_;',11 6;'[)
p=I
= Al — Qgi O — Ak O j1 + g O j1 + agj Oy

Ainsi, pour toute colonne [ différente de la colonne i et de la colonne j :
(s ff)k.! =

et, pour la colonne i : (A Sii)k' =dy — Al — akféji + ak,-é,-,; + Adij = agj.
ki g :
De meme, pour la colonne ¥

(A Sij)ki = Qyj— g 51'_}: — Qi + ay; 5J,'J,' =+ agj (S}'j = day
qui est le résultat cherché. ]
4. Matrice de dilatation
Définition
n étant un entier naturel non nul, et A un réel non nul différent de 1, on appelle matrice
de dilatation, toute matrice de M,,(R) de la forme :

1

D;(1) = A =L,+(A-1DE; ,ie{l,...,n}

1
(Les coeflicients non écrits sont nuls.)

Proposition

Pour toute matrice A de M, (R), et tout réel non nul 4 # 1, le produit A D;(1) de la
matrice A par la matrice de dilatation D;(1), i € {l, ..., n}, est la matrice obtenue a
partir de A en multipliant la /*™ colonne par A.

Démonstration : A I’aide de la formule du produit matriciel, on peut exprimer le terme
situé ligne k et colonne / de la matrice A D;(1), qui vaut :

n

ADDa = D ary (DD
p=1
= > akp (61 + (A= 1) 81 6)

p=1
= ag + ag; (A = 1)y
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Ainsi, pour toute colonne [ # i : (A D;(A)); = ay, pour la colonne i :
(ADi()y; = ari + ari (A — 1) = day
qui est le résultat cherché. ]
5. Matrice de transvection
Définition

n étant un entier naturel non nul, et A un réel, on appelle matrice de transvection,
toute matrice de M, (R) de la forme :

1

Tij(ﬂ.) = . = In G /IEU

) efl,...,nf?,i# ]

(Les coeflicients non écrits sont nuls.)
6. Matrice élémentaire
Définition

On appelle matrice élémentaire une matrice de transposition, de dilatation, ou de
transvection.
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U TR Introduction aux déterminants
{1l de matrices de taille n xn

1. Définitions
» Déterminant
Etant donnée A € M, (R), on appelle déterminant de la matrice A = (ai j)]<i<n (@

nombre, noté det A, qui peut étre calculé, par récurrence, de la fagon suivante :

e par un développement suivant la ligne i, i € {1, ..., n}:

det A = 3 (=1)* a;; Ay(A)
j=1

e par un développement suivant la colonne j, j € {I, ..., n}:

n
det A = Z(—l)”i aij A,‘j(A)

i=1

ou, pour tout couple d’indices (i, j) € {I, ..., n)?, A; j» appelé mineur d’indice (i, j),
est le déterminant de la matrice obtenue en enlevant a A la ligne i et la colonne ;.
Quel que soit le mode de calcul retenu, on obtient, bien sir, le méme résultat.

Le déterminant d’une matrice de taille n x n se calcule donc par récurrence a partir de déter-
minants de matrices de taille (n — 1) X (n — 1), puis (n — 2) X (n — 2), ..., et, finalement, de
déterminants de matrices de taille 2 x 2.

» Cofacteur
Soit A € M,(R). Etant donné (i, j) € {1, ..., n}*, on appelle cofacteur d’indice (i, j) :

(=D Ay
» Comatrice

Soit A € M,(R).
On appelle comatrice de la matrice A, et on note ComA € M, (R) la matrice des
cofacteurs :
e (AN AL
ComA = (=1 8), ey 1jan
Une matrice de taille n X n et sa transposée ont le méme déterminant :

VA € M,(R) : det’A = detA

Démonstration : Ce résultat est di au fait que le déterminant peut étre calculé, indiffé-
remment, grice au développement suivant une ligne ou une colonne. ]
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2. Propriétés

Etant donnés n vecteurs uy, ..., u,, le déterminant de la matrice M = (uy, ..., u,) vérifie
les propriétés suivantes ;

» Antisymétrie
det(uz’ulsu3, ) Mn) = —dEt(ulaMZaMSa OO Mn) = ... = —'det(uls (R Mﬂ)

L’antisymétrie traduit le fait que le déterminant change de signe si on échange deux
colonnes.

» Homogénéité
YAaeR,Vie({l,...,n}:det(uy,....,Au;, ..., uy)=A det(uy, ..., uy)
» Invariance par transvection

Pour tout réel A,
det (uy + Aua, ta, ..., u,) =det(uy + Aus, o, ..., uy) =...=det(uy, ..., u,)

La valeur du déterminant ne change pas si, a une colonne donnée, on ajoute une combi-
naison linéaire des autres colonnes.

Démonstration : Ce résultat s’obtient immédiatement a partir de la formule donnant le
développement suivant une ligne ou une colonne. ]

Le déterminant d’une matrice et de sa transposée étant égaux, les propriétés d’invariance du
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont également
valables pour les lignes de la matrice.

» Autres propriétés

1. Le déterminant d’une matrice triangulaire est égal au produit des termes diago-
naux.

2. Le déterminant d’une matrice diagonale est €gal au produit des termes diagonaux.

3. Déterminant du produit de deux matrices d’ordre n :

Y(A,B) € (Mu,(R))* : detAB = detA detB

271

fiche 80

«

Iculus

.d

C

r
) -

Algebre

/
és
L

ilit

Probal

' 4




unod.

2014 D

“rt*‘. 2

4

i
1F

Copyright

w)

Inversion des matrices carrées

1. Conditions d’inversibilité

Une matrice carrée A d’ordre n est dite inversible ou réguliére ou encore non singulieére,
s’1l existe une matrice B d’ordre n telle que :

AB=BA=1,

B est alors la matrice inverse de A. Elle est unique. On note, usuellement, A~ 1a matrice
inverse de A, qui est aussi de taille n X n.

Une matrice carrée qui n’est pas inversible est dite non inversible ou singuliére.

L’ensemble des matrices inversibles de M, (R) est appelé groupe linéaire d’ordre n,
et noté GL,(R) 1.

Proposition
Une matrice est inversible si et seulement si son déterminant est non nul.

2. Inverse d'une matrice carrée

Théoréme

YA € My(R) : A-"ComA ='ComA - A = detA - I,

oit "ComA désigne la transposée de la comatrice de A.

Démonstration : D’aprés la formule du produit matriciel :

mn n

(A -’ComA)ij = Zaik (’ComA)kj = Zaik (ComA)jy
k=1 k=1

n
Il faut donc calculer, pour tout couple d’indices (i, j) : Z aj (ComA) ..
k=1

» Premiercas:i#j

Quitte a échanger i et j, on peut supposer i < j.

1. Il possede une structure de groupe, puisqu’il est stable par multiplication et passage a I'inverse.
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Considérons la matrice obtenue en remplacant la j™ ligne de A par sa i*®™ ligne :

ajpp ... dig
aj | Ain
ajﬁl,l A ajﬁl,n
a,-,I Ce e ai,n
djy1,] «-- jrln
Ayl ... dpy

et développons son déterminant suivant la j™ ligne :

ay ... dia

ap| ... a;p

n

aj_:m aj_:m = ; ay (ComA) . = Z aix (rcOmA)kj

k=1
ai] ... iy
Ajel] --0 Ajrln
yl ... dpp

»

Cette matrice ayant deux lignes identiques (la /™ et la j*™), son déterminant est nul :

n

Z i ('ComA)kj =0

k=1
» Deuxiémecas:i=j

En développant det A suivant la i*™ ligne, on obtient :

apy ... Ay

»

Z : n n
detA = |8 cov Gy | = Za,—k (ComA), = Zaik (’ComA)ki
i 1 k=1 k=1

nl -+ Qnn

On a donc, finalement : (A "ComA);; = detA - §;;.
On montre de méme que : (‘ComA - A);; = detA - &;;.

D’ou le résultat. ]

Corollaire

1
YA R) : A~ = ——"ComA
€ GL,(R) ) Com
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» Inverse de la transposée d'une matrice (de G£,(R))

Corollaire
VA € GL®) : (A ="(a)

» Autre méthode

Pour inverser une matrice de déterminant non nul, ou dont on connait le caractére inver-
sible, on peut aussi utiliser I’algorithme Fang-Shen, ou algorithme de Gauss-Jordan,
ou méthode du pivot de Gauss ; si on pose X = (xy, ..., Xx,), inverser une matrice car-
rée A d’ordre n, de déterminant non nul, revient en effet a résoudre le systeme des n
équations d’inconnues xj, ..., X :

AX=Y

o Y = (y, ..., y,) € R", ce systtme pouvant aussi s’écrire : X = A~ Y.

Compte tenu de : i
AX=Y=LY, LLX=AlY

on crée un tableau a n lignes et 2n colonnes en bordant la matrice A par la matrice

identité 1, : . 2 1 9
1,1 """ Uln

(4

L)=

@pi *+* @pg 000 1
La transformation de Gauss-Jordan consiste a transformer ce systéme en un systeme
équivalent dont le bloc gauche est 1’identité, c’est-a-dire qu’il faut modifier la matrice
(A|l,) pour qu’elle devienne de la forme (/,|JA~") en utilisant les propriétés de I’algo-
rithme.

On désignera par :

e AY la matrice a I’itération i ;
. LS.” la j°™ ligne de la matrice a I’itération i.
A I’itération i, il faut obtenir une matrice de la forme :
@ ) @ (D (1)

i1 Bgp o By Gy e Gy,
0 agz} -"a(zg azl,i+1 a(ZIr)z
P
0 0 0 a?fi.iﬂ "'ag-)l,n
0 0 0 .
0 0 0 a,, ... dmn

(&) (@) @)
aveca,; #0, ..., a; ¢O,ai+],{+| # 0. _
Pour passer de la matrice A 3 1a matrice AY*D il faut faire apparaitre des 0 a partir
de la ligne i + 2 sur la colonne i + 1, ce que I’on fait en remplacant la ligne Lf;), JZi+Z

par la combinaison linéaire : @

ONY L I 2 0)
L.f (i) Li+'
i+ 1+l

Le nombre ¢

i lie1 ©St appel€ le pivot de Gauss.

274



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Il existe plusieurs stratégies pour choisir le pivot, de la plus économique en temps de
calcul a la plus robuste en terme d’erreurs numériques :
1. la méthode la plus rapide est, a Iitération i, de rechercher dans la colonne i le
premier élément non nul.
2. 1l est aussi possible de rechercher, dans la colonne i, le plus grand élément, et de
le choisir comme pivot.

On est ainsi amené a effectuer des permutations de lignes uniquement. Il est a noter que
le pivot doit nécessairement se trouver dans la partie inférieure de la matrice.

=(573)

Pour inverser A par opérations élémentaires, on commence donc par écrire :

wlm)=( 53] 1(09))

Les opérations a effectuer sont les suivantes :

6=)167)

Ligne 2 « Ligne?2 + 2 X Ligne 1

Exemple

‘alculus

-
L=

Ligne 2 « —Ligne?2

Ligne 1 « Ligne 1 +2 X Ligne 2
Il ne faut pas oublier de vérifier que le calcul est correct :
1 =2V {32 (10
-2 3 /J\-2-1) \01

On a donc bien: A™! = (:g i? )

3. Inverse d'un produit de matrices (de G£,(R))

Si A et Bsontdans GL,(R) : A B)fl gl

Démonstration : A et B étant dans GL,(R), leurs déterminants respectifs sont non nuls.
Il en résulte : det(A B) = det A det B # 0.
La matrice produit AB est donc inversible. Sa matrice inverse (A B)™! est telle que :
AB(AB) ' =1,
En multipliant 3 gauche par A~', onen déduit : A ABAB) ' =BAB) ' =A"".
De méme, en multipliant & gauche par B!, on en déduit :

B'BAB ' '=AB ' =841

On vérifie sans peine que :
ABB'A'=B'A""AB=1, n
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Les matrices et leurs applications

Calcul numérique

Etudions les vibrations verticales d’une passerelle soumise 4 un chargement vertical
F - 2 cet effet, on divise la passerelle en N éléments rectangulaires. Pour tout i de
{1,..., N}, on désigne par u; le déplacement de 1’élément i, et par f; I’effort subi par
I’élément i.

La passerelle.

w est la pulsation associé€e aux vibrations de la passerelle, et on considere le vecteur

Ui
des N déplacements verticaux uj, ..., uy : | : |, ainsi que le vecteur des efforts
un
colonnes [
s’appliquant sur chacun des N éléments, :
i

Le probléeme des vibrations de la passerelle, modélisée par la réunion des N élé-
ments rectangulaires, peut s écrire sous la forme matricielle suivante :

Mw*U-KU=F
ou encore :

(WM-K)U=F
Ainsi, les N déplacements verticaux peuvent étre calculés en résolvant le systeme
linéaire précédent ! Plus I'entier N retenu sera grand, plus grande sera la précision.
Génétique
» La construction d'une matrice d’hérédité

Considérons une population pour laquelle la distribution, pour la génération n, des
génotypes suivant p genes donnés gene;, géne,, ..., gene,, p € N*, est donnée par

Xn,1
N P
le vecteur : X, = 2 | avec : Z Xy i = 1 (c’est-a-dire une répartition de 100 %).
k=1
Xn,p
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Les divers croisements de genes pouvant avoir lieu peuvent étre récapitulés dans
une matrice de taille p x p, H, dite matrice d’hérédité, qui permet d’obtenir la distri-
bution, pour la génération n + 1, des génotypes, en fonction de celle de I’année n :

Xpy1 = WXH

Si on connait le vecteur X donnant la répartition initiale des génotypes, il est donc
possible, par récurrence, d’exprimer explicitement le vecteur X,, donnant la réparti-
tion des génotypes pour la génération n : X, = HX,_; = H*X,.0 = ... = H" Xy,
11 est clair que si la matrice H est diagonalisable, et donc semblable a une matrice
diagonale D, le calcul sera facilité !

» Comment disparaissent des génes

11
77300
: s : , 0 700
Prenons le cas ol p = 4, et ou la matrice H est donnée par : ‘H = L g 10
1
]
§-503
1
q
i
avec : Xg = % . La matrice ‘H est diagonalisable. Ses valeurs propres sont 1, %,
6
a1
2

%, et %; si on désigne par P la matrice de passage a la base des vecteurs propres
(dans chaque colonne, on retrouve les coordonnées des vecteurs engendrant les sous-

01 <30
; o 5 00 -30
espaces propres respectivement associés a chaque valeur propre) : P = -1 10
5
01 01
1000
- 0100 L
et D la matrice diagonale : D = 00lo alors, compte-tenu de : H = PDP
i
000 g

mm&@t&:@DFT&FPDFWDFRfDFWFﬁmw*%
soit :

1 1 (1 _ 1
1000 zm+z@m?)
04 00 i
_ m = _ 22n+1
Xn=Ploo Lol %= 1T 10
47 2 4 ontl — G 41
00 0 g 11 _11
8 39m 4
0
: . 0 T - S
Ilenrésulte : lim X, =| 5 |, ce quisignifie qu’au bout d’un trés grand nombre de
n—-+oco 2—4
0

générations, il ne reste plus dans la population que des individus portant le gene 3.
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Systémes linéaires

1. Définitions
1. m et n étant deux entiers naturels non nuls, on appelle systeme linéaire de m

équations, d’inconnues xp, ..., X, :
by

ajn xX;p+...+aiu Xy

Ayl X1+ ..o+ pp X = by

Les a;j, 1 <i<m, 1< j<nsont appelés coefficients du systeme.
Tout n-uplet (xi, ..., x,) vérifiant les m équations précédentes est appelé solution
du systeme.
2. Un systeme linéaire, d’inconnues xi, ..., X, de la forme :
A1 -X] F ot @igXp =0

pl X1+ .ot X, =0
est dit homogene'.
airX) t et Qg Xs: = b]
3. Le systeme homogene associé au systeme linéaire :
Gl X1 F oo+ iy X = by
anx +...+apx, =0
est:

A X1+ ...+ aux, =0
2. Propriétes
1. Un systeme linéaire, d’inconnues xy, ..., x,, de la forme :

an x1+...+a,,x, = b]

Apl X1+ oo+ Aoy X = Dy

peut aussi s’écrire sous la forme : AX = B

ajg - Qlp
ot A € M, ,(R) est la matrice (ai j) _ L = |, et B la matrice
i I<ism, 1< j<n ? ?
Al - mp
b
colonne | :
by
1. Le systéme est dit « homogene », car si le n-uplet (x;. ..., x,) est solution, alors, pour tout réel A, le
n-uplet (A xy, ..., Ax,) est également solution.
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2. Un systeme linéaire, d’inconnues xi, ..., x,, de la forme :

aj Xy +...+apx, = b

Ayl X1+ ...+ dpp Xy = by,

admet, suivant les cas : soit une solution unique (xj, ..., X,); soit une infinité de
solutions (qui seront exprimées en fonction d’un ou plusieurs parametres) ; soit

aucune solution.

3. Un systéme linéaire, d’inconnues x, ..., x,, de la forme :

aipx)1+...+ 4 X, = b

dg X1+ ...+ ayy X, = by

ary ... diy
admet une solution unique si et seulement si la matrice :

Ayl ..y
est inversible.

Corollaire
anxyt...taigpxy = bl
Un systeme linéaire, d’inconnues xy, ..., x,, de la forme :
Ayl X1+ ...+ dpy Xy = by
A1 vs « Ain
admet une solution unique si et seulement si : det| : c|#0
ayl - - - Qup

Un tel systéeme est appelé systeme de Cramer.

4. La solution d’un systeme de Cramer

ay xj+...+dyx, = by

Gy X1+ < oo Qg Xy = by,
est obtenue grice aux formules de Cramer :
Yi{l,...,n}:
- (Ci(A), ...,Cic1(A), B, Cis1(A), ..., Cu(A))
’ detA

qeme

o, pour tout jde {1, ..., n}, C;(A) désigne la j“° colonne de la matrice A.

Démonstration : Comme
det(Ci(A), ...,Ci-1(A), B, Ciz1(A), ..., Cy(A))
= det(Ci(A), ....Ci1(A), AX, Ci1(A), -. ., Cy(A))

det(C1(A), ..., Ci-1(A), Y. % Ci(A), Cir1 (A), ..., Cu(A)

i=1
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on utilise tout simplement les propriétés d’invariance par transvection du déterminant ;
le déterminant ne change pas si, a une colonne donnée, on ajoute une combinaison li-
néaire des autres colonnes :
Yifl,...,n}:
det(C(A), ...,Ci-1(A), B, Ci+1(A), ..., Cy(A))

det (Ci(A), ...,Ci-1(A), x; Ci(A), Cix1(A), ..., Cu(A))

x; det(C1(A), ...,Ci-1(A), Ci(A), Cis1(A), ..., Cy(A))
= x; detA

3. Réduction des systémes linéaires

Théoréme

Tout systeme linéaire de m équations a n inconnues, AX = B,A € M,,(R), B €
M, 1 (R), peut s’écrire sous la forme : AX =B

oit B € M1 (R), et ot A e M n(R) est une matrice de la forme :

1 %% %% % %

I % % % % =

)
Il

I = = =

Les coefficients non écrits sont nuls, les autres sont désignés par des astérisqgues.

On peut qualifier la matrice A de « matrice en escalier », dans la mesure ol les 1 forment un
escalier; cet escalier posséde donc des marches de profondeurs non nécessairement égales.
Au fond des « marches », se trouvent les « 1 ». Sous les « marches », les zéros (placard aux
z€éros). Au-dessus des marches, des coefficients absolument quelconques.

» Réduction des systémes linéaires d’ordre n

Théoréme

Tout systeme linéaire de n équations a n inconnues, AX = B,A € My,(R), B € M, 1(R),
peut s’écrire sous la forme : T X = B’

oin T € M,(R) est une matrice triangulaire supérieure dont les termes diagonaux sont
soit nuls, soit égaux a 1, et ou B" € M, 1(R).

Démonstration : La démonstration se fait par 1’algorithme du pivot de Gauss. ]
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Matrices, systemes linéaires et chimie

Soient a, b et ¢ trois réels strictement positifs. On considere la réaction chimique
aCr+b Oy = cCr0;s
La conservation des éléments conduit au systeme suivant :

Cr:lxa+0xb=2xc
O :0xa+2xb=3xc

10\ {a)_ (2¢
l02)(3)-(5:)
ce qui permet, en résolvant le systeme linéaire ainsi obtenu, de déterminer les expres-
sions de a et b en fonction de ¢ :

On a alors :

3¢
a4 =2 . b—;

Pour des systémes d’intérét biologique indéniable, ol les molécules en jeu présentent
des formules autrement plus compliquées, il est trés utile de vérifier un certain produit
matriciel. Considérons la réaction entre le glucose et I’ATP (adénosine triphosphate)
produisant du glucose-6-phosphate et de I’ADP (adénosine diphosphate) (il s’agit de
la toute premiere étape dans le processus de glycolyse ; dégradation du glucose et
production d’énergie) :

glucose + ATP = glucose-6-phosphate + ADP

Les formules chimiques brutes de chacun de ces composés, respectivement, sont les
suivantes : CgH20g, C1gH6N5013P3, CeH306P et C19H 5N50(P>.
On introduit alors la matrice C :

6 10 6 10
12 16 13 15
6 13 9 10
¢ 3 1 2
- I

composée du nombre d’éléments chimiques simples (en ligne, respectivement, C, H,
O, P, N) contenus dans chaque molécule (en colonne, respectivement, Glucose, ATP,
Glucose-6-phosphate et ADP), ainsi que le vecteur colonne V :
=1
=
1
1
constitué des coefficients algébriques stcechiométriques (négatifs pour les réactifs,
positifs pour les produits) relatant simplement le fait qu'une molécule de glucose
réagisse avec une molécule d’ ATP pour donner une molécule de glucose-6-phosphate
et une molécule d’ ADP.
Alors, le produit matriciel CV doit étre (par respect de la conservation de la ma-
tiere) le vecteur colonne dont tous les éléments sont nuls ; si cela n’était pas le cas,
cela voudrait dire qu’il y aurait eu erreur dans le décompte des nombres d’atomes.
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Vecteurs

1. Définitions et propriétés fondamentales

On appelle vecteur a 3 composantes, un triplet de réels if = (x, y, 7), que I’on peut aussi
X
écrire sous la forme | y |.

7
£

X, iy et z sont appelées composantes du vecteur i.

» Egalité de deux vecteurs
- , L, =
Le vecteur, dont les trois composantes sont nulles, est appelé vecteur nul, et noté 0.
Deux vecteurs sont égaux si et seulement s’ils ont les mémes composantes.
» Somme de deux vecteurs

On considere les vecteurs if = (X, yz, 2z) et ¥ = (X ¥, 25) de ’espace R.
On définit le vecteur il + ' = ) comme 1’unique vecteur de B3, dont les composantes
(xz, Yz 2z) sont données par :

Xp = Xg+ Xg
Yp = Ya + Yy
p = it g

» Multiplication d’un vecteur par un réel

On considere le vecteur if = (x, y;, 7;) de ’espace R?.
Alors, pour tout réel A, Aif est un vecteur de R3, de composantes (A xz, A yz, A 2;).

2. Familles de vecteurs libres (ou famille libre de vecteurs)

» Combinaison de vecteurs

On appelle combinaison linéaire de deux vecteurs # et 7, toute expression de la forme :
ail+bv

ou a et b sont des réels.

n étant un entier naturel supérieur ou égal a 2, on appelle combinaison linéaire de n
vecteurs u}, ..., Uy, toute expression de la forme :

n

-
E a; U;
i=1

ol a, ..., a, sont des réels.
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» Vecteurs liés

Deux vecteurs i et ¥ sont dits liés s’il existe une combinaison linéaire non triviale de ces
vecteurs égale au vecteur nul, ¢’est-a-dire lorsque les coeflicients de la combinaison sont
non simultanément nuls, de la forme :

aid+bi=0  (a,b)#(0,0)

Dire que deux vecteurs @ et U sont liés revient a dire qu’ils sont proportionnels, ou encore
colinéaires.

)

Figure 83.1- Deux vecteurs liés, et deux vecteurs libres

Deux vecteurs i/ et ' sont dits libres s’ils ne sont pas liés.

» Généralisation

i — — “ % 3 . . i 2 T G

Trois vecteurs i, v et w sont dits liés s’il existe une combinaison linéaire non triviale de
ces vecteurs €gale au vecteur nul, ¢’est-a-dire lorsque les coefficients de la combinaison
sont non simultanément nuls, de la forme :

ail +bi+cw=0 (a,b,c) # (0,0,0)

n étant un entier naturel supérieur ou égal a 2, n vecteurs uj, ..., i, sont dits liés s’il
existe une combinaison linéaire non triviale de ces vecteurs égale au vecteur nul, c’est-a-
dire lorsque les coefficients de la combinaison sont non simultanément nuls, de la forme :

n

ﬂ

i=1

oua, ..., a, sont des réels tels que (ay, ..., a,) # (0, ..., 0).

Trois vecteurs i@, U et @ sont dits libres s’ils ne sont pas liés.

n étant un entier naturel supérieur ou égal a 2, n vecteurs uj, ..., i, sont dits libres
s’ils ne sont pas liés

Attention ! Trois vecteurs liés ne seront pas nécessairement deux & deux colinéaires : la seule

chose que I’on peut dire, c’est qu’il existe une combinaison linéaire non triviale de ces vec-
teurs, qui est égale au vecteur nul.

283

fiche 83

ités

il

Probal

' 4




2014 Dunod.

C)

it

ah

Copyrig

Exemple

Soit un triangle non aplati' de sommets A, B, C :
AB+BC+CA=0

T = —— .. . e, . . n
Les vecteurs AB, BC et CA sont liés, mais non colinéaires ! Comme ils sont dans un méme
plan, ils sont coplanaires.

Figure 83.2 - Trois vecteurs liés

Propriéte
Pour toute famille (i, 7, @) de vecteurs libres :

aii+bi+ci=0= (ab,c)=(0,0,0)

ce qui signifie que, s’il existe une combinaison linéaire nulle de ces vecteurs, alors les
coeflicients de cette méme combinaison linéaire sont nécessairement nuls.

Exemple

On considere les vecteurs o = (1,2,3), 0= (3,2, Detw = (-1, 2, 1).
Pour déterminer s’ils sont liés ou non, on cherche s’il existe des réels a, b et ¢ tels que :

5
au+bit+cw=0

soit :
(a+3b—-c,2a+2b+2c,3a+b+c¢)=1(0,0,0)

ce qui implique donc, puisque deux vecteurs sont égaux si et seulement si leurs composantes
sont égales :

a+3b—-c =0
2a+2b+2c=0
3a+b+c =0
puis
a=bh=c=0

Les vecteurs i = (1,2,3), 5= (3,2, ) et = (-1, 2, 1) sont donc linéairement indépendants.
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3. Repéres
Définition

O étant un point de ’espace, et i f, K trois vecteurs non coplanaires, on dit que
23 ~
(0; i f, k) est un repere de ’espace.

Proposition
Soit (O; i, J, E) un repere de 1’espace. Alors, pour tout point M de I’espace, il existe trois
réels x, y, z, chacun de ces réels étant défini de maniere unique, tels que :

e ? K 7
OM=xi+yj+zk
— = 25 =
(x, y, z) sont les coordonnées du vecteur OM dans le repere (O; i, 7.k, )

Proposition
Soit (O; i ffc) un repere de I’espace. Alors, tout vecteur if de 1’espace peut s’écrire de
maniere unique sous la forme :

i= x?+yf+zfg

avec (x,y,2) € R3.

x, y, z étant des réels, il est essentiel de faire la distinction entre le point M de I’espace, de
coordonnées (x, y, z), et le vecteur i, de coordonnées (x, y, ).
La position du point M est fixe, et enticrement déterminée par x, y et z, puisque I’origine du

_) - "
vecteur OM, qui est le point O, est fixe.
Le vecteur i, de coordonnées (x, y, z), n’a pas d’origine fixe : pour le placer, on peut choisir
n’importe quel point de 1’espace comme origine.
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Barycentres

1. Barycentre d'un systeme pondéré de deux points
Définition

Etant donnés deux réels a et B tels que a + B # 0, et deux points A(xa, Ya,24)
et B(xp,yg.zp) de DI’espace R, on appelle barycentre du systtme pondéré
{(A, @), (B,pB)} le point G tel que :

— — =
aGA +BGE =0

1
Lorsque @ = 3 = =, le barycentre du systeme pondéré {(A, a), (B, 5)} est bien siir le milieu du
segment [A, B] !

Théoréme

Etant donnés deux réels « et 8 tels que a + B # 0, et deux points A(xa,ya,24) et
B(xp, yp, z) de I'espace R, un point G de I'espace est le barycentre du systéme pondéré
{(A, @), (B, )} si et seulement, pour tout point M de l'espace :

— — —
aMA+BMB=(a+p) MG
Démonstration : Si G est le barycentre du systeme pondéré {(A, @), (B, )}, alors :
—_— —_— ]
aGA+pBGB =0

La relation de Chasles permet d’en déduire :

ce qui conduit bien a :

—_— — —
aMA+BMB=(a+p) MG

Réciproquement, si le point G est tel que, pour tout point M de I’espace :
—— _— e
aMA+BMB=(a+p) MG

on en déduit, pour M = G :
e —

—4
aGA+LGB=0 ]
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» Coordonnées cartésiennes du barycentre d’un systéme pondéré de deux points

Etant donnés deux réels a et B tels que @ +  # 0, et deux points A(xa,y4,24) €t
B(xp,yg, zg) de I’espace R3, le barycentre G du systeme pondéré {(A, @), (B, )} a pour
coordonnées :

axpy+Bxp ays+Pyp aza+Pzp
a+p  a+B T a+p

2. Barycentre d'un systéme pondéré de n points, n € N*
Définition
n
Etant donnés n réels ay, ..., @, tels que Zaf,- # 0, et n points A(x1.y1,21),
=1

v Ap(Xstns2n) de Pespace R, on appelle barycentre du systtme pondéré
{(A1,a1),...,(A,, @,)} le point G tel que :

. =
> aiGA; =0
i=1
Théoréme
n
Etant donnés n réels a, ... a, tels que ch,- # 0, et n points Aj(x1,41,21), -

i=1
An(X Y 20) de Uespace R3, un point G de espace est le barycentre du systeme pondéré
{(Ay,aq), ..., (A, an)} si et seulement, pour tout point M de ’espace :

i &; M_)Al = (i (Ij] EFG}
=1 =1

Démonstration : Si G est le barycentre du systeme pondéré {(A,a),...,(A,, a,)},
alors :

Z&ga:'=6
i=1

La relation de Chasles permet d’en déduire :

ce qui conduit bien & :
n n
Z & m = (Z (1’1'] ﬂ?&
i=1 i=1
Réciproquement, si le point G est tel que, pour tout point M de I’espace :

Zn:a‘im = (iﬂ!i] J"M_)G
i=1 1

1=
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on en déduit, pour M = G :

—

ijGA,'=6 |
i=1

» Coordonnées cartésiennes du barycentre d'un systéme pondéré de n points,
n e W*

1
Etant donnés n réels ay, ..., a, tels que Zcxi # 0, et n points Aj(x1,Y1,21),
i=1
o Ap(xysyn.zy) de  Tespace R?, le barycentre G du systtme pondéré
{(Aj,a1),...,(A,, a,)} a pour coordonnées :

n

n n
E ;X E @; Yi 5 @; Z;
i=1 i=1

i=1

)

n n ? n
2o i Qa
i=1 i=1 i=1

3. Isobarycentres

» Isobarycentre d’'un ensemble de n points, n € N*

Etant donnés n points Ay(x1,Y1,21)s - - - An(Xn, Yn, 2n) de 'espace R3, on appelle isoba-
rycentre des points Ay, ..., A, le point G tel que :

< == =
> .GA; =0
i=l
> Isobarycentre d’un ensemble de 3 points, A, B, C

Etant donnés 3 points A, B, C de I'espace R3, leur isobarycentre est le centre de gravité
du triangle ABC, point de concours des médianes.

Figure 84.1- Le centre de gravité G du triangle ABC.

4. Associativité du barycentre d’un systéme pondéré de trois points

On considere 3 réels a, aa, @3 tels que Z a; # 0, et 3 points Ay, Ay, Az de I'espace R3.
i=1
On désigne par G| le barycentre du systeme pondéré {(A;,a|), (A2, a2)}, par G;3 le
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barycentre du systeme pondéré {(A;, @), (A3, @3)}, et par G 3 le barycentre du systeme
pondéré {(Az, @), (A3, a3)}.

Alors, le barycentre G du systeme pondéré {(A;, 1), (Az, @2), (A3, 3)} est aussi
celui du systeme pondéré {(G,, | + az), (A3, @3)}, mais aussi aussi celui du sys-
teme pondéré {(G)3,@; + a3), (A2, @2)}, ou encore aussi celui du systeme pondéré
{(Ga3, a2 + @3), (A, @)}

Ce résultat est, bien siir, généralisable a un systeme pondéré de n points, n € N*.

Exemple

Considérons un rectangle ABCD ; on désigne par / le milieu du segment [A, B], J le milieu du
segment [C, D] ; le centre de gravité du rectangle, qui est 'isobarycentre des points A, B, C et
D, est aussi celui des points [ et J, respectivement isobarycentres des points A, B d’une part,
C et D d’autre part.

AN
\
\

\7

[ ---x___-- -

D = ¢

Figure 84.2 - Le rectangle ABCD, son centre de gravité G, et les milieux / et J des segments [A, B]
et [C, D).
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85 Droites, plans

1. Droites
Définition
On appelle droite vectorielle engendrée par un vecteur non nul i I’ensemble :

D=Ri={1i, 1 € R}
Définition

On appelle droite affine passant par le point A et dirigée par le vecteur i (ou encore
par la droite vectorielle engendrée par if) I’ensemble

D=A+Ri={A+2i, 1 € R}

Une droite affine passant par ’origine O peut aussi étre considérée comme une droite vecto-
rielle.

Exemple

La droite affine passant par le point A de coordonnées (1, 1, 1) et dirigée par le vecteur & =
(1,2,3) est donc I’ensemble

Ty A+Rid
Mx,y,2)/x=1+A,y=1+21,z=1+31,1 € R}

¢’est-a-dire I’ensemble des points M de coordonnées (x, y, z) tels que :

= 1+4
1+2A4
1+34

, A R

x
Y
Z

On a ainsi obtenu une représentation paramétrique, ou paramétrage, de D,
En éliminant le parametre A, par exemple, en utilisant la premiére relation, 4 = x — 1, on en
déduit :
y=1421=1+4+2x-2=2x-1
{Z = 1< 3l=143x—3 =3x -2

on obtient un systéme d’équations cartésiennes de D.
Inversement, il serait aussi possible, & partir d’un systéme d'équations cartésiennes de D, d’en
déduire une représentation paramétrique.

Attention ! Dans I’espace, une droite, qui est aussi I'intersection de deux plans, est donc définie
par deux équations, par contre, dans le plan rapporté 4 un repere (O; i ﬁ une droite est définie
par une seule équation. On rappelle a cet effet qu’étant donnés trois réels a, b et ¢ tels que
(a,b) # (0,0), et une droite affine P, d’équation cartésienne ax + by + ¢ = 0, un vecteur
directeur de D est it = (—b, a).
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2. Plans
Définition
On appelle plan vectoriel engendré par deux vecteurs libres if et 7' 1’ensemble :
P=Ril+R¥={Ad+p7, () € R

C’est donc I’ensemble de toutes les combinaisons linéaires possibles (c’est-a-dire
donc une infinité !) des vecteurs i et U.

Un plan vectoriel est a comprendre comme une direction commune de plans, paralléles deux
a deux.

Figure 85.1- Un plan vectoriel.

Définition

On appelle plan affine passant par le point A et dirigé par deux vecteurs libres i et
I’ensemble :
P=A+RA+RT={A+d+u¥, (4p) € R?

Figure 85.2 - Un plan affine.

Un plan affine passant par I’origine O peut aussi étre considéré comme un plan vectoriel.
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Exemple

Le plan affine passant par le point A de coordonnées (1,1,1) et dirigé par les vecteurs
i=(1,2,3)et=(3,2,1)est donc ’ensemble :

P:A+Rﬁ+R6:{A +Aid+ul, (p) e Rz}
soit encore :
P={Mxy.2)/x=1+2+3u, y=1+22+2p,2=1+32 +u, (Lp) € R’

¢’est-a-dire I’ensemble des points M de coordonnées (x, y, z) tels que :

x= 1+A+3pu
y=1422+2u , (L € R?
z= 1+3A+u

On a ainsi obtenu une représentation paramétrique, ou paramétrage, de .

En éliminant les parametres A et y, par exemple, en utilisant les deux premiéres relations, on
en déduit :

x—2y+z=0
On obtient alors une équation cartésienne de P.

Inversement, il serait aussi possible, a partir d’une équation cartésienne de P, d’en déduire
une représentation paramétrique.
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Produit scalaire

1. Définitions

» Produit scalaire

On appelle produit scalaire de deux vecteurs i et U, de composantes respectives

(i1, U2, u3) et (vy, v2, v3), le nombre, aussi appelé « scalaire »
U= u v + Uz Uy + Uz U3

» Norme euclidienne

On appelle norme euclidienne d’un vecteur i, de composantes (i1, u2, u3), le réel positif

ou nul :

]| = u%+u§+u%: Vid - il

» Vecteur unitaire

Un vecteur est dit unitaire s’il est de norme 1.

» Vecteur orthogonaux

Deux vecteurs sont dits orthogonaux si leur produit scalaire est nul.

2. Propriétés
» Propriétés du produit scalaire
Le produit scalaire est une application

o bilinéaire, c’est-a-dire linéaire par rapport a chaque variable :

i-W+Aw)y=1u-

- 3 5 3 3 .
Y@, v,0) € RPxR*XR’,¥Y4 € R : {(17’+/1u?’)-ﬁ’=v-

e symétrique :
Yd,t) e R*xR : il-#=0-i
o définie positive : d’une part, la positivité,
Vi e R 1 il-il>0
et, d’autre part, le caractere défini :

ViieR: i1 -iil=0oil=0
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» Inégalité de Cauchy-Schwarz

Théoréme
V(il,7) € R xR : |i-a < ladll 1@

et [’égalité a lieu si et seulement si les deux vecteurs sont liés.
- - ~ = = LR z L .
Démonstration : On se place dans le cas ou & # 0 et 7 # 0, I'inégalité étant toujours

vérifiée lorsque i ou ¥ est égal au vecteur nul (on a alors une égalité).
Pour tout réel £ :

it + tA1* = (@ +t0) - @+ 1) = [dl]* + 21 - T+ 2 ||

On obtient ainsi un trindme du second degré en ¢, qui est toujours positif ; son discrimi-
nant réduit doit donc étre négatif ou nul :

(@- oy =l 19 < 0
ce qui conduit a :
liZ - o] < [ladl| [l

Si le discriminant est nul, alors, le trindme en r admet une racine double, et il existe alors
un réel 7 tel que :
it + 8> = 0

soit :
ey
i+tv=0

Les vecteurs u et U sont alors liés.
. - = = L - ., e
Réciproquement, si il # 0 et ¥ # 0 sont liés, il existe un réel A tel que :

=47

et on a alors :

P 2

lid - o = AN = [l [12N] L
» Propriétés d’'une norme

Une norme sur R est une application a valeurs dans R* qui doit vérifier les troix axiomes
suivants :

e séparation :
Viie R : |l =0 i=0

e homogénéité :
Vii € R, YA € R :||Adll = |l

e inégalité triangulaire' :

V(o) € RY xR : [l +d < |l + 1Al

1. « Le chemin le plus court est la ligne droite ! » Merci & Paul Pearce, étudiant PCME 2011 !
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3. Plans

L’ensemble des vecteurs orthogonaux a un vecteur i non nul est un plan vectoriel, appelé
plan orthogonal a .

Démonstration : Soit i/ un vecteur non nul, et P I’ensemble des vecteurs orthogonaux
ai.

On désigne par (i1, u», u3) les composantes de i, et on suppose, dans un premier temps,
us # 0.

P est donc I’ensemble des vecteurs de composantes (., y, z) telles que :

mx+uwy+uzz=20

ce qui conduit a :
Uy X+ y
g em————=X
u3

On peut alors écrire :

P

I

{(x,y,——'“ x;;“zy) [(x.y) € RZ}

{x (1,0, —”—]) +y (0, 1, ~ﬂ) [(xy) € R2}
U3 i3

R (1,0,—-”1)+R (0,1,—@)

13 U3

Il

Il

u u oy G i .
Les vecteurs (1,0,——1) et (0, 1,——2) étant linéairement indépendants, on obtient
i3 U3

I’équation d’un plan vectoriel, ainsi que les vecteurs engendrant celui-ci, qui sont

Le cas u3 = 0 est laissé au lecteur. "]

» Vecteur normal a un plan vectoriel

Etant donné un plan vectoriel P orthogonal a un vecteur 7 non nul, le vecteur 7 est appelé
vecteur normal au plan vectoriel P.

Proposition
Etant donnés trois réels non tous nuls a, b, ¢, et un plan vectoriel P, d’équation carté-
sienne a x + by + ¢z = 0, un vecteur normal a P est 7 = (a, b, ¢).

» Vecteur normal a un plan affine
On appelle vecteur normal a un plan affine P tout vecteur directeur d’une droite per-

pendiculaire a P.

Proposition
Etant donnés quatre réels a, b, c, d tels que (a,b,c) # (0,0,0), et un plan affine P,
d’équation cartésienne a x + by + ¢z = d, un vecteur normal a P est 7 = (a, b, ¢).
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Démonstration : Soit A(x4,y4,24) un point donné de P, et M(xy, Yy, Z) un point
quelconque de P.
Alors :

s
AM - it =a(xy — xa) + b(yp — xa) + ¢ (2p — 24)

A et M appartenant a P, leurs coordonnées vérifient I’équation de P :
axy+bys+caz =d
axy+byy+cyz=d
Par suite :
a(xy — xa) +b(ym —xa)+capm —24) =0

—
Les vecteurs AM et ii sont donc bien orthogonaux.
Le point M ayant été choisi quelconque, on en déduit I’orthogonalité du plan P et de

la droite passant par M et dirigée par le vecteur 7, et donc, I’orthogonalité du vecteur 77
au plan P. ]
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Pourquoi s’intéresse-t-on autant aux propriétés du produit scalaire ? Il s’agit, tout
simplement, de pouvoir étendre ces notions géométriques, relatives a un espace
concret, a des espaces plus abstraits, sur lesquels on va essayer de construire une
géométrie.

Considérons, ainsi, un fluide en mouvement ; la plupart du temps, on ne peut pas
déterminer la valeur exacte de la vitesse du fluide, on I’approche par des simula-
tions numériques les plus précises possibles (soit a 1’aide de différences finies, soit
de volumes finis). Si on ne connait certes pas la valeur exacte de cette vitesse, il faut
cependant étre sir que I’approximation choisie soit la meilleure possible. Ainsi, il est
indispensable de définir une « distance » entre la solution exacte et la solution appro-
chée. On se place alors dans ce que I'on appelle un « espace fonctionnel », ¢’est-a-dire
un espace de fonctions, dont les vecteurs sont, en fait, des fonctions. Si on considere
que le mouvement du fluide est rectiligne, et a lieu entre des points d’abscisses res-
pectives a et b > a, (a,b) € RZ, on peut ainsi considérer I’espace C'([a,b],R),
c’est-a-dire 1’espace des fonctions de classe C ! sur [a, b], & valeurs dans R (dont la
dérivée est continue sur [a, b], pour des questions de régularité : I’accélération, qui
est la dérivée de la vitesse, doit pouvoir étre définie). Pour pouvoir définir une « dis-
tance » entre la solution exacte veyucre €t 1a solution approchée v, prochée, il faut done
un produit scalaire ; on choisit 1’application :

¢ : C'([a,b],R) X C'([a, b],R) — R
b
(f.9) B [ f(x) g(x)dx
L application ¢ étant, clairement :
e symétrique :
V(f.g) € C'(la,bl,R) x C'([a,bL.R) : ¢(g, f) = ¢(f,9)
e bilinéaire :
e définie positive :
VfeCldablLR) : of,f)=0
clis

b
¥ f e C'([a,b],R) : tp(f,f)=0<=>f FPindx=0e f=0

(Si I'intégrale sur un segment [a, b] d’une fonction positive et continue est nulle,
alors cette fonction est identiquement nulle sur [a, b] ; réciproquement, et de facon
évidente : [”0dx = 0.)
¢’est un produit scalaire sur C Y[a,b],R), 2 partir duquel on pourra mesurer la « dis-
tance » entre la solution exacte et la solution approchée :

b
d (Uexactes Uapprochée) = J f (Uexacfe - Uapprochée)z(x) dx
a
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Produit vectoriel

Dans ce qui suit, on se place dans I’espace euclidien orienté, de dimension 3.

1. Définition géométrique

» Base directe de R3

Une famille libre de trois vecteurs (i, 7, i) de ’espace R est appelée base directe si :
det(if, v, ) > 0

» Angle entre deux vecteurs de R3

Soient if et # deux vecteurs de ’espace R>. On choisit de placer leur origine en un point

O de I’espace. Alors, par définition, ’angle (ﬁ’, ﬂ’) désigne 1’angle orienté entre les droites
passant par le point O, et de vecteurs directeurs respectifs i et 7.

» Produit vectoriel

Le produit vectoriel de deux vecteurs i = (u1,u2,u3) et ¥ = (v1, v2, v3) de I’espace R*
est le vecteur, noté i A 7, tel que :

P

e si et sontcolinéaires : i AT =0

-

e si i et Une sont pas colinéaires : i AT = ||i]|||7]| ‘sm 7.0 *

e .

o ol W est le vecteur unitaire

orthogonal a i et ¥/ tel que la base (i, U, @) soit d1recte.
il A Uest alors unique.

5 y " iy = " i "
Pour déterminer si une base (OA, OB, 0C ) de I’espace est directe, on peut utiliser la « régle

du bonhomme d’ Ampére » : si un personnage ayant les pieds en O, la téte en A, et regardant
vers B, voit le point C a sa gauche, la base est directe, et indirecte dans le cas contraire.

Exemple

-

Dans I’ espace euchdu:n de dlmenmon 3 rapporte au repeére orthonormé direct (O,if,k) :
_]/\L——k L/\k——] 5 e[l/\j £ 5 ]/\k—l ; k/\]———)

En pratique, dans I'espace euclidien de dimension 3 rapporté au repere orthonormé direct

| | U 115 Uz U3 — U3 U2

v ) - -9

(01, ], B :int=|u|[Alv|=|usvi —uiva
Uuj U3 Uy Uy — U U

2. Définition analytique

Définition

Le produit vectoriel de deux vecteurs i = (i1, u2, u3) et ¥ = (vy, v2, v3) de I’espace R3
est I’'unique vecteur, noté i A 7, tel que pour tout vecteur w = (wy, ws, ws) de R3, on

ait : det (i, U, W) = (i A U) - .

Démonstration : Par le calcul ... |
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> Proposition

1. Le produit vectoriel est antisymétrique :
V(@,o) e RRxR® : ind=-0Ad

2. Le produit vectoriel est bilinéaire :

2 3 3 3 . Lf/\(l?+/ll£j)=ﬁ/\ﬁ’+/1ﬁ/\tﬁ
Wity B RERIEOR B, Wb B W | {(a+m)/\ﬁ=5/\ﬁ+m/\ﬁ
3.
V@i, 0) e RFxR} : iinid=0e i et iliés
4.
Y@, 0) e R*xR® : @AD)Lid , (@AD)LE
5,

V@ e R xR : [[@ad| = naa |sin(zi’:-ﬂ’)‘

6. Double produit vectoriel
Y (i,v,w) € RIXRI xR’ : A AW = -w)v—(U-w)id
Démonstration : Par le calcul ... ]

» Application du produit vectoriel

Exemple

Déterminons un systeme d’équations cartésiennes de la droite 9 passant par le point A de
coordonnées (1,2, 3), et normale au plan P d’équation x + y + z = (.
P est orthogonal au vecteur & = (1, 1, 1). Il suffit donc d’écrire que D est I’ensemble des points

M de coordonnées (x, y, z) tels que les vecteurs AM et if soient colinéaires, ce qui peut aussi
s"écrire : — .
AM A =0
soit :
x—1 1 y—2—-z+3 y—z+1 0
y—=2 || L |=|g—=3=a¥l |=]| g—2=2]|=]|0
7= 1 x=1=y+2 x—y+1 0

ce qui conduit a :

y—z+1=0
g—5%—2 =0
x—y+1=0

La somme de ces 3 équations donnant 0, celles-ci ne sont pas indépendantes (elles sont liées) ;
le systeme précédent est donc équivalent, par exemple a :

y—z+1=20
z—x—-2=0

(les trois équations étant liées, il suffit d’en garder deux, a condition de bien les sélectionner,
puisque la troisiéme n’est en fait qu’une combinaison linéaire des deux autres).

On a donc bien obtenu un systéme d’équations cartésiennes de la droite D.
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Aires et volumes

1. Aire d'un triangle
Soit P un plan affine de R?, et A, B, C trois points non alignés de ce plan.
Si on reprend la définition géométrique du produit vectoriel, il existe un réel A, et un
vecteur 7, unitaire, orthogonal a P, tel que :
7 —
ABAAC = AH

Soit H le projeté orthogonal de C sur la droite (AB); on a alors :

— —  — —_— — — —
AB/\AC=AB/\(AH+HC)=AB/\HC

Figure 88.1- Le triangle ABC.

Par suite : ”1@ /\A_C)‘H = ”1@) A H_C)" , et donc :

Al = ”I’B A R’H = ”ﬁ A f??’” — AB.HC

puisque 1@ et ITC sont orthogonaux. On reconnait alors le double de 1'aire Aspc du

triangle ABC :
base X hauteur 3 ABx HC

2 2

Axpc =

2. Aire d’un parallélogramme

Soient A, B, C, D quatre points du plan R? formant un parallélogramme non aplati. L aire
du parallélogramme de sommets A, B, C, D est :

—  —
Aapcp = IAB A AD|
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Définition
Dans le plan R?, I’aire orientée du parallélogramme engendré par deux vecteurs if # 0

et 7 # 0 est donnée par :
A = det (il, 1)

Proposition

Dans le plan R?, l'aire orientée du parallélogramme engendré par les vecteurs
i = (uy,uy) et ¥ = (vy, v2) est égale a I’aire du parallélogramme engendré par les vecteurs
i et ¥+ A, o A est un réel quelconque.

Démonstration : L’aire orientée du parallélogramme engendré par les vecteurs
i = (uy,up) et ¥ = (vy,v2) est donnée par : A = det (i, ). L aire orientée du paral-
Iélogramme engendré par les vecteurs il et o' + Al est donnée par : det (il, 7 + i) =
det (i1, V) = A, puisque le déterminant n’est pas modifié lorsque, a une colonne donnée,
on ajoute une combinaison linéaire des autres colonnes. ]

Figure 88.2 - Trois parallélogrammes de méme aire.

3. Volume orienté d'un parallélépipéde
Définition

Dans ’espace R, le volume orienté du parallélépipéde engendré par trois vecteurs
non coplanaires et non nuls i, ' et  est donné par :

V = det (i, U, )
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Géomeétrie euclidienne — ou non ? Encore

des matrices !

Il n'y a pas qu’Euclide

La géométrie usuelle est la géométrie euclidienne, ainsi nommeée d’apres le mathéma-
ticien grec Euclide. 11 en existe toutefois de nombreuses autres ; ainsi, en géométrie
différentielle, on s’intéresse a I’étude des courbes et des surfaces du point de vue de

la longueur, la surface, la courbure ; un trés joli exemple est donné par le ruban de
Maébius.

Le ruban de Mdabius.

De fagon encore plus spécifique, la géométrie riemannienne étudie des espaces
courbes, les « variétés différentielles », sur lesquels existent des notions d’angles et de
longueur, a I’aide de systemes de coordonnées locales ; une variété n’est rien d’autre
qu’un espace topologique, c¢’est-a-dire un espace sur lequel on a défini une « topolo-
gie », ou « cartographie ».

La géométrie algébrique s’intéresse quant a elle a la description des ensembles de
zéros d’équations polynomiales, comme c’est le cas de la Sextique de Barth, dont une
équation cartésienne, en fonction d’un parametre réel m, est donnée par :

4@ - )@Y - D)W T =) - (1 +20) P+ + 7 —m Y m’ =0

. 1+ V5
ol =

est le nombre d’or.

La sextique de Barth.
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La géométrie tropicale pour des chemins optimaux

Il existe encore d’autres géométries, notamment, la géométrie tropicale, ainsi nom-
mée en I’honneur de son inventeur, le mathématicien et informaticien brésilien Imre
Simon (1943-2009). Cette géométrie est basée sur une re-définition de 1’addition et
de la multiplication :

a®b=min {a,b} , a®b=a+b
et ou les objets mathématiques sont remplacés par des objets affines par morceaux ;
ainsi, une droite « tropicale » est formée de trois demi-droites usuelles.

Une droite tropicale.

Elle connait actuellement un essor croissant, en raison de son champ d’applications,
notamment en théorie des graphes pour déterminer un chemin optimal, en cristallo-
graphie, ou encore en biologie quantitative [24],[25]. Prenons I'exemple d’une so-
ciété de transport routier souhaitant optimiser non pas les distances parcourues, mais

les cofits de transport [26] :
rea=E )

Les différents chemins possibles, dans le cas ou n = 4.

Dans le cas de n arréts possibles (n € N*, n > 2), on commence par écrire les
différents cofits possibles sous la forme d’une matrice de colt, Mcon:, de taille n X n,
le coefficient ligne i, 1 < i < n, colonne j, 1 € j < n, donnant le colit du transport
entre I’arrét numéro i et I’arrét numéro j. Si ’on considere alors une puissance kitme
k € N, de la matrice Mg, le coeflicient ligne i, | < i < n, colonne j, 1 < j < n,
donné par la formule du produit matriciel :

Meot)ij = & Meo)ip ® M)y

correspond exactement a la somme des colts des k trajets reliant 1’arrét numéro i et
I’arrét numéro j! Ainsi, pour résoudre le probleme donné, il suffit de calculer :

colit

+oo
eM
k=1
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il.,T 8 Bases et transformations linéaires
du plan

1. Bases
Définition

On appelle base du plan R? toute famille libre de deux vecteurs de R,

Exemple

1

Déterminons si la famille (i, 7) = ((]

)’(-]l )) est une base de R?; pour cela, il suffit de

calculer son déterminant :
det(ii,i) = -2 %0

(i, ¥) est une famille libre de deux vecteurs de R? : ¢’est une base.
Définition

On appelle base canonique du plan R? la famille @ f), avec :

)60

Proposition
Soit B = (¢}, >) une base de R2.
Pour tout vecteur i de R?, il existe une unique combinaison linéaire des vecteurs de B

. x , . X
égale A il : il = x1 €] + x2 & que I’on note aussi : (if)g = (xl ) x; € Ret x, € R sont les
2

coordonnées (ou composantes) du vecteur i dans la base B.

Les composantes d’un vecteur (x,y) de R? dans la base canonique (17, f) seront notées
y )

2. Transformations linéaires du plan

» Définitions

Définition

On appelle transformation linéaire du plan R?, ou encore application linéaire du
plan R?, une application f, de R? dans R?, linéaire :

~ ey 2t 1 b
opyrignt (

Y(@d,0) € R>xR*,YA € R : f(id+1A0) = f(id) + A f(@)
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Pour toute transformation linéaire / du plan R? :

f0) =0

Exemples
1. L’application: f : R* = R?, (x,y) = (x + 1,y) n’est pas linéaire.
2. Lapplication: f : R? = R?, (x,y) = (3x, 3 y) est linéaire.

Proposition

Etant donnée une matrice A = (a; j) de taille 2 x 2, a coeflicients réels, 1’appli-

1<i<2, 1<j<2

fa i R2 SR, (:)E—)A (x)z(a11x+a12y)

Y a; x+dany

cation :

est linéaire, et définit une transformation linéaire de R2.

» Matrice d’une transformation linéaire

Définition
On appelle matrice, dans une base 8 = (¢},¢3) donnée, d’une transformation
linéaire f de R2, 1a matrice dont les vecteurs colonnes sont les coordonnées, dans B,
des images des vecteurs de B : Matriceg(f) = (f (e1), f (¢3))

Une application linéaire remarquable : I'application identité du plan k2

Définition
On appelle application identité du plan R? 1’application, notée Idg:, de matrice

associée I, 1 il € R? — i

Domaine de définition

Proposition
Une transformation linéaire de R? est entierement définie par ses valeurs sur une base
donnée.

Démonstration : Soient f : R? — R? une transformation linéaire, et B = (¢}, €3) une
base de R?.
On suppose que les images des vecteurs €] et €3 sont données, de la forme :

flei)=anéi+ané
f(e)=ane +aneé
Alors, pour tout vecteur i = x| €] + x, €3 de R? :
1) f(x1€éi +xé3)
x1 f(€1) +x2 f(€3)

x1 (an € + axn )+ x2 (a2 €] + an é3)

Il

(x1 a1 +x2a12) €1 + (x1az21 + x2an) é

305

n
=
©
b))
£
»
c
0
s}
1]
&
L.
O
[Tt
vy
=
o
I—

Algebre

| N

babilité

K o E 'l’:.'-: i

yr
!

c

ay
o
=

)




2014 Dunod.

©)

ht

Copyrigt

Ainsi,

(f(ﬁ))ﬂz(au au)(x])

. ) a1 axn | \ X2
D’ou le résultat. [
Proposition
Une transformation linéaire de R? est entierement définie par la matrice qui lui est asso-
ciée dans une base donnée.

Démonstration : Le résultat découle immédiatement de la proposition précédente : une
transformation linéaire de R? est entierement définie par ses valeurs sur une base donnée.
]

Définition

On appelle matrice d’une transformation linéaire f de R?, la matrice de f dans la
base canonique (i, j). Elle sera notée, dans ce qui suit, sous la forme Ay :

Ay = Matrice; 5(f) = (.f (‘7) f (}))

Une transformation linéaire de R? étant entiérement définie par la matrice qui lui est associée
dans une base donnée, il est clair qu’il est préférable de se placer dans une base donnant une
expression la plus agréable possible de la matrice : triangulaire, ou diagonale. Cela s’appelle
trigonaliser ou diagonaliser une application linéaire.

» Propriétés
Composée de deux transformations linéaires
Proposition
La composée f o g de deux transformations linéaires f et g de R?, de matrices associées
Ag(f) et Ag(g) dans une base B = (&, &) donnée, est une transformation linéaire de R,
qui vérifie :
X = — —

Vil = (y) € R* : (fog)i) = f(g(ih) = Ag(f) (Ag(9) @) = (Ap(f)Ap(g) (%)
Ainsi, f o g a pour matrice, dans la base B : Ag(f o g) = Ag(f) Az(g).
Démonstration : Par le calcul ...

Drapres (x) : (f o g)(€1) = f(g(€1)), puis on utilise Ag(g) pour obtenir (f o g)(€))
comme combinaison linéaire de &) et &, et on procéde de méme pour (f o g)(&3). On
peut alors construire la matrice de f o g dans B, et constater, par le calcul, qu’elle est
égale au produit Ag(f) Ag(g). [ |

Noyau
Déefinition

On apelle noyau d’une transformation linéaire f de R?, que ’on note Ker f (de I’al-
lemand kern) I’ensemble des vecteurs de R? dont I'image par f est le vecteur nul :

Ker f =it € R?/ f(i) = 0}

Par extension, le noyau d’une matrice A € Ma(R) est le noyau de I’application linéaire
associée a la matrice A.
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Image
Définition

On apelle image d’une transformation linéaire f de R, que I’on note 7m f I’ensemble
des images des vecteurs de R? par f :

Imf={fa,i e R*
» Propriétés
Définition
Une transformation linéaire de R? est dite injective si :

V(T e RZxR? : f)=f@=>id=7

Théoréme

Une transformation linéaire de R? est injective si son noyau est réduit au vecteur nul :

Ker [ = {6]

Démonstration : Ce résultat découle de la linéarité de f. [ ]

Définition

Une transformation linéaire de R? est dite surjective si: Vil € R?, A7 € R? : il = f(7).
» Automorphisme
Définition

Une transformation linéaire de R? est un automorphisme de R? si elle est bijective.
Théoréme du rang dans 2 ou formule du rang

Théoréme
DansR?> :  dimIm f +dimKer f = 2.
dim Im f est le rang de f, noté aussi rqg f.

Caractérisation des automorphismes de R?

Théoréme

Soit f une transformation linéaire de R*. Alors :
finjective & f surjective & f bijective.
Pour qu’une transformation linéaire f de R? soit un automorphisme de RZ, il faut et il

suffit que le déterminant de sa matrice Ag(f) dans une base B quelconque soit non nul.
Saréciproque f~! est alors une transformation linéaire de R?, de matrice dans B :

As(f) = (Ag(f)™!
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Changement de base en dimension 2,
et déterminant d’une application
linéaire

1. Matrice de passage
Soient B = (¢1,>) et B = (&'}, ¢’») deux bases de R2.
On désigne par p;; et pa; les composantes de e—’)l suivant €] et @, :
€'y = pi1€+puér
et par pi2 et pyy les composantes de 672 suivant €; et @, :

= -
er=ppné +pné

P11 P12
p21 P22
vecteurs colonnes représentent les coordonnées (ou composantes) des vecteurs % | et eﬁ’g
dans la base B.

Pg_,g est appelée matrice de passage de 8a 5'.

On désigne par Pg_,g la matrice Py, = ( ), ¢’est-a-dire la matrice dont les

2. Formule de changement de base pour un vecteur

.o Lo X P
Soit i un vecteur de R%. On désigne par (th)g = ( ! ) ses coordonnées dans B, et par
X2

!
x ,
()g = ( : ) ses coordonnées dans $’. Alors :
X

2
X1 _ x]
(xz)_P%B’ (x'z)

(ﬁ)g = Pgug (ﬁ)zaf

SOit :

Démonstration :

= -
i = xey+x,es
Xy (P11 €1+ pa &) + X (p2é) + pn &)
(x’l P+ x'zplz) e +(x'2P21 3 Pzz) é

Comme i = x| €] + x» &>, alors, par unicité de la décomposition de if dans B :

X| = X] pu+ X, pi2
X2 = X5 p21 + X5 P

que I’on peut encore écrire :
% x| pi1+ X5 pi2 _ | P11 P2 x n
X2 Xy Par + Xy P2 P pn )\ X,
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Le fait que la formule de changement de base s’exprime sous la forme (#)g = Pgwwg (d)g
peut paraitre déroutant : il n’en est rien. Une illustration trés intéressante peut étre obtenue
pour la réduction de I’équation d une conique.

Exemple

Considérons la courbe plane, d’équation 3 x*> + 35> — 2 xy = 8 dans un repére orthonormé
direct. La présence des « termes croisés » —2 xy ne facilite pas I’étude de la conique : un
changement de base permet de faire disparaitre celui-ci.

On effectue le changement de coordonnées :

X+Y X-Y
X= g Y E—
V2

En injectant ces expressions dans I’équation de la conique, on obtient : X> + 2 Y? = 4.

Il est alors plus facile de déterminer la nature de la courbe (une ellipse).

Il est clair que, connaissant I'équation dans le repere initial, la démarche naturelle est d’expri-
mer les coordonnées de départ (x, i), en fonction des nouvelles coordonnées (X, ¥), et non le

contraire :
)= 05)05)
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Conjugaison - Matrices semblables
de taille 2 x 2

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso-
ciée a une application linéaire f.

Il peut étre intéressant de donner les relations permettant de passer de la matrice Ag(f)
associée & f dans une base B, a la matrice Ag (f) associée a f dans une autre base 8.

1. Matrices semblables
Considérons les bases B = (21,&,) et B = (¢/1,¢'») de R2.

On désigne par Ag(f) = (ai J-) la matrice associée a f dans la base B, et par

Ag(f) = (a"f)lsisz, 1<j<2
On appelle Pg...s la matrice de passage de Ba B'.

1<i<2, 1<j<2

la matrice associée a f dans la base 8.

; 515 X P
Soit i un vecteur de R?. On désigne par (if)g = ( I ) ses coordonnées dans B, et par
X2

g = (i,‘ ) ses coordonnées dans B’ ; de méme, on désigne par (f(if))4 les coordon-
2
nées de f(if) dans B, et par (f(il))g les coordonnées de f(if) dans B’.

Alors :
(f@)g = Ag(f) (i)g
= Ag(f) Pawp (il)g
Mais on a aussi :
(f(@)g = Az (f) (d)g
et

(fD)g = Pgwg (f(iD)g

Il en résulte :

(f(@)g = Ppg (f(i))g = PAg(f) (f)g = Pgus Ag () Py, g (iD)g

Comme
(fD)g = As(f) (i)g
on a donc :
Ag(f) (iD)g = Pgws Ag(f) Py, (iDg
ou encore :

(AB(.f) — Pgwg Ag(f) P E%i»fﬂ’) (d)g = (8)

Le vecteur # étant quelconque, on en déduit, en choisissant successivement pour i cha-
cun des vecteurs de B, la nullité de chaque colonne de Ag(f) — PAg/(f) Pl

A5(1) ~ Paesr A (1) Pty = ()
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ce qui conduit a :

Ag(f) = Pgws As () Pg. 4
ou encore :

As () = P55 As(f) Py

Définition

Deux transformations linéaires f et g de R?, de matrices associées A, et A, dans une
méme base B, sont dites conjuguées s’il existe une transformation linéaire bijective
¢ de R?, de matrice associée A, appelée conjugaison, telle que :

fop=g¢og
ce qui, matriciellement, se traduit par : Ay A, = A, Ay, ou encore, puisque A, est
inversible :
Ay =AZ AfA,

Les matrices Ay et A, sont dites semblables.

Proposition
Deux matrices semblables ont méme déterminant.

Démonstration : Soient A et B deux matrices semblables, de taille 2 x 2.
D’apres ce qui précede, il existe une matrice inversible P telle que :

P'AP=B

Il en résulte :

det(B) = det (P~ A P) = det(A P~' P) = det(A) n

2. Déterminant d’une application linéaire de R?2
Définition
On apelle déterminant d’une transformation linéaire f de R? le déterminant de sa

matrice dans la base canonique, ou, de fagon équivalente, dans une base quelconque B.

La valeur du déterminant d’une transformation linéaire f de R? ne dépend effectivement pas
de la base choisie : si B et B’ sont deux bases du plan R?, les matrices Ag(f) et Ag (f), qui
représentent donc la méme application linéaire dans deux bases différentes, sont semblables,
et ont donc méme déterminant.
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Opérateurs orthogonaux
en dimension 2

1. Définition
On appelle opérateur orthogonal du plan R?, ou transformation orthogonale du

plan R2, une transformation linéaire f de R2, de matrice A f» qui vérifie I'une des trois
propriétés équivalentes suivantes :

e f conserve le produit scalaire :
V@@, o) e RxR> : f@d) - f@=i-0
. ‘ArAs =1L ou Af'As=1
e les vecteurs colonnes Cy, C; de Ay constituent une base orthonormale, ¢’est-a-dire
une famille libre de vecteurs deux a deux orthogonaux et de norme 1 :

V(i j) e (1,21 : Ci-Cj=§;;

On dit alors que la matrice Ay est orthogonale.

| 1. Dire que f conserve le produit scalaire s’ explicite donc de la fagon suivante :
!

va’:(;‘) € R2, Vﬁ’:(;‘,) € R2 : Agil- A = A; (;‘)-Af (;)
=d-T=xx+yy
avec :

Asil LS_f(an aiz | [ X ayap\ (X' _[anx+any anx' +any
fu'AfU_ : ' - ' '
az dx [\ Y dz dn | \Y anx+any an Xx +any

= R) sont :
1<i<2, 1<j<2 M (R)

C[= ar CZ: ap
ax |’ an

2. les vecteurs colonnes Cy, C, de Ay = (a,- j)

Ainsi :
* ag a2
Ci-C= . =ay ap +axan
azi an
A ¥
La norme du premier vecteur colonne est : [|Cy[| = (fay, + a%l.

La norme du deuxiéme vecteur colonne est : ||Cz|| = }a%z + a%z.

L’ensemble des transformations orthogonales de R? est appelé groupe orthogonal de
R?, et noté O(R?).
2. Propriétes

Proposition
Si A est une matrice orthogonale, alors :
detA = +1

Démonstration :
A'A=1 = det (A ‘A) = (detA)* = 1 H
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Proposition
Une transformation orthogonale f, de matrice associée A s, conserve la norme (c’est une
isométrie) :
Vil = (x,y) € R* : ||fGD)l = ||l
ce qui se traduit matriciellement par :
Vi = (xy) € R : |Asdl = Il

Démonstration : 11 suffit d’utiliser le fait qu’une transformation orthogonale conserve
le produit scalaire :
Vi=(xy) € R* : Agil-Apit = ||l - |l e

Proposition
Une matrice orthogonale Ay peut aussi étre caractérisée par la propriété suivante :
Vi € B2 llAgil = |
qui signifie que 1’application linéaire associ€e f conserve la norme (c’est une isométrie).

Démonstration : On montre que cette propriété est équivalente a . :

e Si f conserve le produit scalaire, on a vu que :
Vit € R : |lAg il = |l

e Réciproquement, si f conserve la norme, on peut utiliser I’identité de polarisation :
1

V(D) € RPXR :d-7= g it + a2 - Nl - o1
el
2 2, 1 2 2
V@D € B2 xR : Api-Api= 7 IAr 7+ Ay 0F ~ 1A i~ ApdlF)
Par suite :
- 2 2 - - 1 — 2 - 2
V() € RPxR? : Apil-Api= 7 (A @@+ DI = 1A, @ - DI}
puis :
V(@0 € RZxR? : Asil-Afi = % (it + 9 =Nl - o) = it - 0
D’ou le résultat. [ |

Proposition
S1 A est une matrice orthogonale, alors A est de la forme :
cosf —& sinf
( sinfl & cosf )
ol f est un réel, et :
e=det A

Définition

L’ensemble des transformations orthogonales de R? de déterminant égal a 1 est appelé
groupe spécial orthogonal de R?, et noté SO(RR?).
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Rotations vectorielles du plan

1. Définition
Soient & un réel,  un point donné, et i un vecteur de R2.

Soient M le point tel que oM = i, et M’ I'image de M par la rotation de centre €,
d’angle 6.
On considere 1’application :

Ry: R? —» R2
— =
OM — QM’
C’est une application linéaire.
L’image par Ry d’un vecteur quelconque 7 de R? est ainsi le vecteur v tel que :

—
1271l
(@0

Ry est une rotation vectorielle, a distinguer des rotations affines vues au chapitre 1. Le
point Q peut étre choisi absolument quelconque. A la différence d’une rotation affine,
une rotation vectorielle de R? n’est ainsi définie que par son angle. On parlera, dans ce
qui suit, de rotation pour désigner une telle application.

l141
6 [2n]

2. Propriétés

Proposition
La matrice d’une rotation de R2, d’angle 6, dans une base orthonormale directe, est de la
forme :

cosf —sinf
sinf cosd
Démonstration : Pour tout vecteur i = (;C) de R? :

Ry(if) = cos 8 ii + sin @ ii*

ou i+ désigne le vecteur directement orthogonal a iZ, et de méme norme que il :
X

Ry(il) = cos @ (;) +siné (_xy)

D’ou le résultat. ]

Ainsi :
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On vérifie aisément que le déterminant d’une matrice de rotation vaut +1.

Proposition
Tout élément de S O(R?) est une rotation (de R?).

Démonstration : D’aprés ce qui précéde, il est clair que toute rotation de R? est dans
SO(R?).
Réciproquement, soit f un élément de S O(R?), de matrice dans la base canonique A f-
Ay est de la forme :

{b = cosy = cos((p+ 2 +k7r) = (=1)*! sing

_ ab 4
Ay —(cd) , (a.b,c,d) e R
-4,
f étant dans O(R?) : =
IAf'Af:IQ §
o
soit : o
a*+c* ab+cd (]())
ab+cd P+d* ) \01
ce qui conduit a :
at+c* =1
ab+cd=0
P+d =1
Il existe donc deux réels g et i tels que -
= b = cosy S
c = sing d = siny g
o
La condition : I
ab+cd=0 -
conduit a :
cos @ cosy + sing siny =0
soit :
cos( —p)=0 "
@
Il en résulte : =
n 5
'ﬁ“ﬁf’: 5 [7] =
ou encore : . c
=g+-+kr , keZ L
Y=g+5tkn =
Par suite : E
-
vy
=
o
|—

d=siny = sin((p+§+k7r) = (=¥ cosgp
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f étant dans § O(Rz), le déterminant de la matrice Ay doit étre égal a 1, soit :

ad—-bc=1

ce qui conduit a :
{~1)F (cos2 @ + sin’ (p) =1

k est donc pair,
k€ 2Z

b=-sing
d= cosgp

A = cosp —sing
F=\sing cosy

On a dong, finalement :

et

Le groupe spécial orthogonal de R?, S O(R?), est donc constitué :
o de I'application identité idp: ;
e desrotations d’anglef ¢ n7Z;

o des symétries par rapport a une droite.
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Bases de I'espace R3

Définition
On appelle base de ’espace R? toute famille libre de trois vecteurs de R’

Exemple

Déterminons si la famille
1 1 -1
(ﬁ! l_‘l: H_j) = 1 ) -1 ) 1
| 1

est une base de &3 : pour cela, il suffit de calculer son déterminant :

det (i, v, 1) = -4 # 0

-

(it, U, ) est bien une base de R>.

Définition

On appelle base canonique de ’espace R? la famille (z?, f, ]?), avec :

1 0 0
i=|lo|, j=|1]|, k=]|0
0 0 1

Proposition
Soit B = (&), &, &;) une base de R>.
Pour tout vecteur i de R3, il existe une unique combinaison linéaire des vecteurs de B8
égale a il :
3
= xlé’l +JC2?2+X333 = Zx,-é}
i=1
que 1’on note aussi :
X1
(11)3 = X2
X3
x1 € R, x» € R et x3 € R sont les coordonnées (ou composantes) du vecteur i dans la
base 8.

La décomposition d’un vecteur suivant une base donnée est ainsi unique.

; 2 2
Les composantes d’un vecteur (x,y,z) de R dans la base canonique (i, j, k) seront
notées :

M= =
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.78 Transformations linéaires

LY de I'espace R3

1. Définitions
Définition

On appelle transformation linéaire de I’espace R’, ou encore application linéaire
de I’espace R une application f, de R® dans R, linéaire :

V@@,t) e R*xR*, YA e R: fd+A0) = f(i) + 1 f®)

Pour toute transformation linéaire / de ’espace R* :

=5

f@) =0

Exemples

1. L’application :
f R %R3, xy,—(x+Ly-2,2
n’est pas linéaire.
2. L application :
f 1 RS R, (ny— B 332

est linéaire.

Proposition

Etant donnée une matrice A = (ai f)l 3’ de taille 3 x 3, a coeflicients réels, 1’ap-

<i<3, 1)<
plication :

apx+apy+aiz
=|ayX+dapy+aaz

az| X +dx Y +dxz

fa: RPSR?, - A

S T~
[ B ol

est linéaire, et définit une transformation linéaire de R3,

2. Matrice d’'une transformation linéaire
Définition

On appelle matrice, dans une base B = (€1, €3, €3) donnée, d’une transformation
linéaire f de R3, la matrice dont les vecteurs colonnes sont les coordonnées, dans B,
des images des vecteurs de B :

Matrices(f) = (f (€1), f(€2), f(€3))
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» Une application linéaire remarquable : I'application identité de I'espace R3
Définition

On appelle application identité de espace R? I’application, notée Idg3, de matrice
associée I :
ieRHi

» Domaine de définition

Proposition
Une transformation linéaire de R? est entierement définie par ses valeurs sur une base
donnée.

Démonstration : Soit f : R* — R? une transformation linéaire, et 8 = (¢}, €3, €3) une

base de R>.
On suppose que les images des vecteurs €7, €3 et €3 sont données :

e_).

Mm

Vie{l,2,3}: f(e)=
J=1

3
Alors, pour tout vecteur i = xj €] + X2 €2 + X363 = Z x; & de R :

Il
%-..h
M
Ry
8y

f (@)

Ailnsi :
app app az ) [ x
(f (@)g = | az1 ax ax || x
azy azp azz )\ x3
D’ou le résultat. [ ]
Proposition

Une transformation linéaire de R> est entierement définie par la matrice qui lui est asso-
ciée dans une base donnée.
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Démonstration : Le résultat découle immédiatement de la proposition précédente : une
transformation linéaire de R? est entierement définie par ses valeurs sur une base donnée.
]

Définition

On appelle matrice d’une transformation linéaire f de R?, la matrice de f dans la
base canonique (z f, k). Elle sera notée, dans ce qui suit, sous la forme A, :

Ar = Matriceg () = (£(0). £ (7). £ ()

Une transformation linéaire de R* étant entierement définie par la matrice qui lui est associée
dans une base donnée, il est clair qu’il est préférable de se placer dans une base donnant une
expression la plus agréable possible de la matrice : triangulaire, ou diagonale. Cela s’appelle
trigonaliser ou diagonaliser une application linéaire (ou une matrice).

» Composée de deux transformations linéaires

Proposition

La composée f o g de deux transformations linéaires f et g de R?, de matrices associées
Ag(f) et Ag(g) dans une base B = (&}, &>, &3) donnée, est une transformation linéaire de
R3, qui vérifie :

=l

X
Vii=|y|eR : (fog)d) = f(9@) = As(f) (As(9) i) = (As()) As(9)) i

Ainsi, f o g a pour matrice, dans la base B :

Ag(fog) = Ags(f)As(g)
» Noyau
Définition

On apelle noyau d’une transformation linéaire f de R3, que ’on note Ker f (de I’al-
lemand kern) I’ensemble des vecteurs de R dont I'image par f est le vecteur nul :

Ker f = (il € R/ f(i) =0}

Par extension, le noyau d’une matrice A € M;(R) est le noyau de I’application linéaire
associée a la matrice A.

» Image

Définition

On apelle image d’une transformation linéaire f de R?, que I’on note Im f 1’ensemble
des images des vecteurs de R? par f :

Imf={fa@,i e ®*)
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3. Propriétés
Définition
Une transformation linéaire de R est dite injective si :

V@0 e xR : fi=f@=>i=0

Théoreme
Une transformation linéaire de R> est injective si son noyau est réduit au vecteur nul :

Ker f = [6]

Démonstration : Ce résultat découle de la linéarité de f. [ |
Définition

Une transformation linéaire de R est dite surjective si :

Vii e R?, A0 eR’® : il = f()

4. Automorphisme
Définition

Une transformation linéaire de B> est un automorphisme de R si elle est bijective.

» Théoréme du rang dans k3 (ou formule du rang)

Théoréeme

Dans R :
dimImf +dimKerf =3

dim Im f est le rang de f, noté aussi rg f.

» Caractérisation des automorphismes de R3

Théoréme

Soit f une transformation linéaire de R>. Alors :
[ injective & f surjective & f bijective

Pour qu’une transformation linéaire f de R? soit un automorphisme de R, il faut et il
suffit que le déterminant de sa matrice Ag(f) dans une base B quelconque soit non nul.
Sa réciproque f~! est alors une transformation linéaire de R, de matrice dans B :

Ag(fh = (As(f) !

321

(7]
=
(1]
@
£
(7]
c
0
e
1]
&
L.
O
[T
vy
=
o
I—

fiche 95




nod.

© 2014 Dt

Copyright ¢

o

06 Changement de base en dimension 3

1. Matrice de passage
Définition
Soient B = (&1,¢é>,83) et B’ = ((371, e, 8_;3) deux bases de R>.

On désigne par Pg..g = (pi j) la matrice dont les vecteurs colonnes repré-

1<i<3, 15j<3
i - - =%
sentent les coordonnées (ou composantes) des vecteurs €', ¢’; et ¢’3 dans la base B :

3
Vie{l,2,3): &= puf
=1
Pg...s est appelée matrice de passage de 824 B'.

2. Formule de changement de base pour un vecteur

X1
Soit iZ un vecteur de R3. On désigne par (i) = | x2 | ses coordonnées dans B, et par
x3
x
() = | x5 | ses coordonnées dans B’. Alors :
’
X3
X1 x’l
X3 x%

soit :
(i) = Pgpy (d)g

Démonstration :

=)
Il
I M "
o
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(On a effectué un changement d’indices pour passer de 1’avant-derniere a la derniere
ligne.)
Comme :

alors, par unicité de la décomposition de i suivant B, pour tout i de {1, 2, 3} :

3

_ ’

Xi = Zpij-xj
J=1

que 1’on peut encore écrire :

X1 .XJI
X2 | = Pgausp )(?’2 |
X3 xg

323

(4]
(<]
=
(1]
@
=)
7]
=
L
fra)
(1]
£
L.
O
Chom
[72]
=
=
'—

Calculus

7

|

(’ Probabilités

@
LY
@©
o
v

o
)

T




unod.

2014 Du

Copyright ©

Conjugaison - Matrices semblables
de taille 3x3

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso-
ciée a une application linéaire f.

Il peut étre intéressant de donner les relations permettant de passer de la matrice Ag(f)
associée a f dans une base 5, a la matrice Ag (f) associée a f dans une nouvelle base 5’.

1. Matrices semblables

Considérons les bases B = (81, &>, 83) et B = (¢/1,¢'»,¢'3) de R3.
On désigne par Ag(f) = (a,-j)

Ag(f) = (aij)lsisj, 1<j<3
On appelle Pg...g la matrice de passage de 8a B'.

) .. la matrice associée a f dans la base B, et par
1<i<3, 1<j<3

la matrice associée a f dans la base #’.

X
xz] ses coordonnées dans 8, et par

X3
X1
xg] les
X3

les coordonnées de f(if) dans B'.

Soit 7 un vecteur de R?. On désigne par (i) =

xl
1
i)g = | x5 | ses coordonnées dans B’ ; de méme, on désigne par (f(i))g =
B 2 gne p B

i
X3

X
’
X2

%,

coordonnées de f (i) dans B, et par (f(i))g =

Alors :
(f(i)g =  Ag(f) (i)g
= Ag(f) Pgww (i)g

Mais on a aussi :
(f(i))g = Ag(f) (d)g
et

(f(iD)g = Pgwp (f(D)g

Il en résulte :

(f(i)g = Pows (f(il)g = Ppws Ag(f) (g = Pgws As (f) Pgl. g (i)g

Comme :
(fD)g = Ag(f) (i))g
on a donc :
Ag(f) (i)g = P Ap () Pglg (D5
ou encore :

(A(f) = Py A (f) Pgl,g) (il)g = 0

324



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Le vecteur i étant quelconque, on en déduit, en choisissant successivement pour i cha-
cun des vecteurs de B, la nullité de chaque colonne de Ag(f) — PAg(f) P~ :

Ag(f) = Pgwp A (f) Pgh.p

ou encore :
Ag(f) = Pg., 5 As(f) Pas
Définition

Deux transformations linéaires f et g de R3, de matrices associées A r et Ay, sont
dites conjuguées s’il existe une transformation linéaire bijective ¢ de R?, de matrice
associée A, appelée conjugaison, telle que :

Jop=¢og
ce qui, matriciellement, se traduit par :
ArA, =Ay A,
ou encore, puisque A, est inversible :

il
Ay =AJ ApA,

Les matrices A s et A, sont dites semblables.

2. Déterminant d’une application linéaire de R3

Proposition
Deux matrices semblables ont méme déterminant.

Démonstration : Soient A et B deux matrices semblables, de taille 3 x 3.
D’apres ce qui précede, il existe une matrice inversible P telle que :

P'AP=B

Il en résulte :
det(B) = det(P"' A P) = det (A P~ P) = det (A) n
Définition

On apelle déterminant d’une transformation linéaire f de R’ le déterminant de sa
matrice dans la base canonique, ou, de fagon équivalente, dans une base quelconque 5.

La valeur du déterminant d’une transformation linéaire f de R?® ne dépend effectivement pas
de la base choisie : si B et B’ sont deux bases de I’espace R?, les matrices Az(f) et Az (f), qui
représentent donc la méme application linéaire dans deux bases différentes, sont semblables,
et ont donc méme déterminant.

325

fiche 97

Algebre

(72
=
©
b))
c
=g
(7]

&g
O wn
- QU
[
¥
O
[ %=y
vy
=
©
l._




2014 Dunod.

©)

4

Copyright

Opérateurs orthogonaux
de I'espace R3

1. Définitions
On appelle opérateur orthogonal de I’espace IR®, ou transformation orthogonale
de IE{3, une transformation linéaire f de R3, de matrice A f» qui vérifie I'une des trois
propriétés équivalentes suivantes :
e f conserve le produit scalaire :
V(l,t) € R*x R : Apil-Apii =il - ¥
° IAfAfI]'g, ou Aj-‘Af:h
e les vecteurs colonnes Cy, C», C3 de Ay constituent une base orthonormale, ¢’est-a-dire
une famille libre de vecteurs deux a deux orthogonaux et de norme 1 :
VG, j) € {1,2,3)2 : Ci-Cj =6

On dit alors que la matrice A ; est orthogonale.

2. Isométrie

Proposition
Une transformation orthogonale f, de matrice associ€e Ay, conserve la norme (c’est une
isométrie) :
— 3
Vi = (x,y,2) € R ¢ || f@ll = |lid]
ce qui se traduit matriciellement par :
Vil = (x,y,2) € B ¢ |Apill = ||

Démonstration : 11 suffit d’utiliser le fait qu’une transformation orthogonale conserve
le produit scalaire :
Vil =(x,y,2) € RO Apil-Apit = |l - |l =

Proposition
Une matrice orthogonale Ay peut aussi €tre caractérisée par la propriété suivante :

- 3. S
Vi € R ||Agdll = |||
qui signifie que f conserve la norme (1’application linéaire f est donc une isométrie).

Démonstration : On montre que cette propriété qu’elle est équivalente a i. :
e Si f conserve le produit scalaire, alors :
Vii € R : Apid-Apil = ||idl] - ||id]
soit
Vil € B : ||Agdl® =
et donc :
Vii € R : ||Agill = ||l
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e Réciproquement, si f conserve la norme, on peut utiliser I’identité de polarisa-

tion :
V() e xR : id-v= % {2 + a1 — N1 - )
et
V(i) € R*xR® : Asil-Apif = i {MAyi+ AP - 1A - Apail)
Par suite :

V@0 e ROXR® : Apil- A= {IA, @+ DI - 1A, @ - DI

=

puis :

V(i) € ROXR : Apil-Api= < (lid+aP - d-af}=a-o

R

D’ou le résultat.

3. Groupe orthogonal

Définition

Lensemble des transformations orthogonales de R’ est appelé groupe orthogonal de

R3, et noté O(R>).

Proposition
Si A est une matrice orthogonale, alors :

detA = =1

Démonstration :
A'A = Iy = det (A 'A) = (detA)* = 1

Proposition

St A est une matrice orthogonale, alors A est semblable a une matrice de la forme :

cos@ —sinf 0
Ag = sinfé cosé 0
0 0 ¢
ol # est un réel, et :
e=det Ae{-1,1}

Définition

L’ensemble des transformations orthogonales de R* de déterminant égal a 1 est appelé

groupe spécial orthogonal de R?, et noté S O(RY).
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Rotations vectorielles de I’'espace R

1. Axe de rotation

Soient A un réel, i un vecteur de R?, et P le plan vectoriel orthogonal 4 i7. On désigne par
- =2 - S o " "

(ip, jp) une base de P telle que (ip, jp, 7) soit une base orthonormée directe de R3. Dans

cette base, un vecteur i de R? se décompose de maniére unique sous la forme :

i i
il = xgip+ Yz jp + it
Soit alors :
5 = o
up = Xgip + Yz Jp
et Rg la rotation (au sens vectoriel) de P, d’angle 6.
On considere 1’application :

Ry:R? > R3

=¥

P
u Rg(ﬁP) +ngf

C’est une application linéaire, qui est une rotation vectorielle de R?, d’angle 6. On par-
lera, dans ce qui suit, de rotation pour désigner une telle application.

S16 ¢ 2nZ, 'ensemble de ses invariants est la droite vectorielle dirigée par le vec-
teur 7i. Cette droite est appelée axe de la rotation.

2. Propriétés de I'axe de rotation

Proposition
0

Soit Ry la rotation d’axe dirigé par le vecteur k = | 0 |, d’angle 6.
|

Alors, pour tout vecteur i de I’espace R :
Rg(il) = cos Qi + sin@k A id+ (1 —cosb) (a’i?) k

Démonstration : Il suffit de vérifier la formule pour les trois vecteurs de la base cano-
. 7
nique (z, J» k). ]

Proposition
Soit Ry la rotation axiale, d’angle 6, dont 1’axe est dirigé par le vecteur unitaire 7.
Alors, pour tout vecteur i de ’espace R? :

Ry(if) = cos il +sin@it A il + (1 —cos @) (it - i) it

Démonstration : On compleéte 7 par deux vecteurs v] et v3, tels que (u], v3, #) soit une
base orthonormale directe de R,
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On a alors :

Il

cosBui +sinfi A v
cos @3 +sinfi A v3

Ry (v1) = cosfui +sinfvi
Ry (V3) = —sinfv] + cos 03
Ry(ii) = n

d’ou le résultat. ]

Proposition
La matrice d’une rotation axiale d’angle 6 € R, dans une base orthonormale directe dont
le troisieme vecteur dirige I’axe de la rotation, est de la forme :

cos —sind 0
Ag=| sinf cosd 0
0 0 1

Ag est une matrice de rotation ; I’angle de la rotation est 6.

0
Démonstration : Soit Ry la rotation d’axe dirigé par le vecteur k=0 d’angle 6.
1

Alors, pour tout vecteur if de I’espace R :

Ry(ii) = cos Qi + sin @k A i+ (1 —cosf) (:}’iz) K
I1 en résulte, pour les trois vecteurs de la base canonique (?, f, fé) %

Rg(?) = cos@i+sin@kAT = cosOi+ siné?f
Rg(ﬁ = cos@f-i— sin @k A fz —sin@i+ cosﬁf

-

Ry(k) = k

d’ou le résultat. ]

On vérifie ais€ment que le déterminant d’une matrice de rotation vaut +1.
Le cas d’une base quelconque est laiss€ au lecteur.

' Le groupe spécial orthogonal de R?, SO(R?), est donc constitué :

1. de I’application identité idp: ;
2. des rotations axiales ;

3. des symétries par rapport a une droite (cas particulier de rotations, d’angle ).
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Vecteurs en dimension n, n > 2

Dans ce qui précéde, on s’est intéressé aux espaces usuels que sont le plan R?, et I’es-
pace R3. R? est de dimension 2, car pour se repérer dans le plan, il faut deux coordonnées.
De méme, R3 est de dimension 3, car pour se repérer dans I’espace, il faut trois coordon-
nées. Mais dans la vie réelle de 1’ingénieur ou du scientifique, une grandeur n’est pas,
en général, caractérisée par deux ou trois coordonnées, mais plus : ainsi, des que I’on in-
troduit une référence temporelle, il faut prendre en compte une donnée supplémentaire,
le temps t. On se retrouve ainsi dans un espace de dimension 4, ot chaque grandeur est
caractérisée par ses trois coordonnées spatiales, et sa coordonnée temporelle.

De facon plus générale, il est donc utile de disposer de résultats et d’outils mathéma-
tiques permettant de gérer un nombre n de coordonnées, ce qui nous place ainsi dans un
espace de dimension n ; R", ol on généralise les résultats déja existants en dimension 2
ou 3, est I’exemple le plus naturel. Les résultats présentés dans ce qui suit s’appliquent
encore pour un espace (vectoriel) E de dimension n.

Notation
Dans ce qui suit, n et N désignent des entiers supérieurs ou égaux a 2.

1. Définitions et propriétés fondamentales
Définition

On appelle vecteur a n composantes, un n-uplet de réels x = (xi,..., x,), que 'on

X]
peut aussi écrire sous la forme
Xn
X1, ..., X, sont appelées composantes du vecteur x.

Propriéteé
Deux vecteurs sont égaux si et seulement si ils ont les mémes composantes.

» Vecteur nul

Le vecteur, dont les n composantes sont nulles, est appelé vecteur nul, et noté 0.
» Somme de deux vecteurs
Definition

On considere les vecteurs x = (xy,...,Xxp) ety = (y1,...,yn) de 'espace R".

On définit le vecteur x + y = z comme 1'unique vecteur de R”", dont les composantes
(z1,---,2,) sont données par :

Yiell,...,n} : i=x+y;
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» Multiplication d’un vecteur par un réel
Définition

On considere le vecteur (xi,. .., x,) de I’espace R".
Alors, pour tout réel A, A x est un vecteur de R”, de composantes (4 x1,...,d x,).

2. Familles de vecteurs libres (ou famille libre de vecteurs)
» Combinaison de vecteurs

On appelle combinaison linéaire de deux vecteurs x et y, toute expression de la forme :
Ax+uy

ol A et u sont des réels.
On appelle combinaison linéaire de N vecteurs xj,..., Xy, toute expression de la

forme :
N
Z A x;
i=1
oudy, ..., Ay sont des réels.

» Vecteurs liés et vecteurs libres

Deux vecteurs x et i sont dits liés s’il existe une combinaison linéaire non triviale de ces
vecteurs égale au vecteur nul, ¢’est-a-dire lorsque les coefficients de la combinaison sont
non simultanément nuls, de la forme :

Ax+uy=0 (A4, 1) #(0,0)
Deux vecteurs x et i sont dits libres s’ils ne sont pas liés.

» Généralisation

N vecteurs xp, ..., xy sont dits liés s’il existe une combinaison linéaire non triviale de
ces vecteurs égale au vecteur nul, c’est-a-dire lorsque les coefficients de la combinaison
sont non simultanément nuls, de la forme :

N
Zﬂf Xi = 0
i=1

ot 4y, ..., Ay sont des réels tels que (1, ..., Ay) # (0, ..., 0).
N vecteurs xi, ..., xy sont dits /ibres s’ils ne sont pas liés.

Propriéte
Pour toute famille (x|, ..., xy) de vecteurs libres :

/11)&71+...+/1N)CN=0:>(/11,...,/1N)=(0,...,0)

ce qui signifie que, s’il existe une combinaison linéaire nulle de ces vecteurs, alors les
coefficients de cette méme combinaison linéaire sont nécessairement nuls.
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Espace engendré par une famille
de vecteurs - Sous-espaces vectoriels
de R”

1. Bases
Définition
On appelle base de ’espace R" toute famille libre de n vecteurs de R".
» Base canonique
Définition

On appelle base canonique de I’espace R”" la famille :

1 0 0
0 1 0
0 =] 0 E ] » :

: 0
0 0 1

» Coordonnées d'un vecteur

Soit B = (ey,...,e,) une base de R". Pour tout vecteur x de R”, il existe une unique
combinaison linéaire des vecteurs de 5 égale a x :

n

X =X1€ +...+x,,€n=ine,'
i=1

x1 € R, ..., x, € R sont les coordonnées (ou composantes) du vecteur x dans la base 8.

Les composantes d’un vecteur (xj,...,x,) de R" dans la base canonique seront no-
X

tées
Xn
2. Famille génératrice

Etant donnée une famille (xi, ..., xy) de N vecteurs de R", on appelle espace engendré
par la famille (x;,..., xy) I’ensemble de toutes les combinaisons linéaires possibles de

cette famille, que I’on note Vect {xy, ..., xy}.
Une famille (xj,..., xy) de n vecteurs de R” est dite génératrice si :
Vect{xi,...,xy} =R"
Une famille (x;,...,xy) de N vecteurs de R" est une base de IR” si elle est libre et
génératrice.
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» Dimension d'une base de R”

Théoréme
1. Toute base de I'espace R" admet exactement n éléments.

2. On appelle dimension de R" le nombre d’éléments de toute base de R" :
dimR" =n

3. Toute famille libre de n éléments de 'espace R" est une base de R".

4. Toute famille génératrice de n éléments de I'espace R" est une base de R".

» Théoreme de la base incompléte

Théoréme

Toute famille libre {x1,....xny}, N € N, N < n, peut étre complétée en une base
{X0s e oy XN XN 10 - e ey Xy} de R,

3. Sous-espace vectoriel de R”
Définition
On appelle sous-espace vectoriel de R" un ensemble F de R" tel que :

e ) e F;

e étant donnés deux éléments x et y de F, x + y est aussi €lément de F (ce qui signifie
que F est stable par addition) ;

e ¢tant donnés un élément x de F, et un réel A, Ax est aussi élément de F (ce qui
signifie que F est stable par la multiplication par un scalaire).
» Caractérisation des sous-espaces vectoriels de R”

Théoréme

Un ensemble F de R" est un sous-espace vectoriel de R" si et seulement si, étant donnés
deux éléments x et y de F, et un réel A, x+ Ay est aussi élément de F (ce qui signifie que
F est stable par combinaisons linéaires) :

Yx,y) e R"xR", YA e R :x+ Ay € F

» Dimension d’un sous-espace vectoriel

Théoréme

On appelle dimension d’un sous-espace F de R" le nombre d’éléments de toute base
de F.

4. Somme de sous-espaces vectoriels de R”

F et F; étant deux sous-espaces vectoriels de R, I’ensemble :
Fl +F2: {x1 +.%0,.X] € Fl,JCQ (= Fz}

est un sous-espace vectoriel de R", appelé somme de F et F;.
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» Dimension d‘une somme de sous-espaces de R" : la formule de Grassmann'’

Théoréeme
F| et F> étant deux sous-espaces vectoriels de R" :

dim (Fj + F2) =dim F| +dim F> —dim (F; N F)

» Somme directe de sous-espaces vectoriels de "

Deux sous-espaces vectoriels F'| et F de R” sont dits en somme directe si tout élément
du sous-espace somme F| + F, s’écrit de maniere unique comme somme d’un élément
de Fy et d’un élément de F> :

VYx e F]+F2,3!(XI,XQ) e FixFy i x=x1+x

La somme F| + F»> se note alors F'y & 5.

» Caractérisation d’'une somme directe

Deux sous-espaces vectoriels Fy et F, de R" sont en somme directe si et seulement si :
Fyn Fp ={0}

5. Supplémentarité

» Sous-espaces vectoriels supplémentaires de R”

Deux sous-espaces vectoriels F et F> de R" sont dits supplémentaires dans [R" si tout
élément de R" s’écrit de maniere unique comme somme d’un élément de F et d’un
élément de F» :

Yx e R, Al (xi,x0) € FixFy : x=x1+x

On note alors : F| & Fr, = R™.

» Caractérisation de la supplémentarité dans "

Deux sous-espaces vectoriels Fj et F> de R" sont supplémentaires si et seulement si

Fi+F>,=R" et FinNnF,=1{0)

10d.

Dut
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—
o
o

. Hermann Giinther Grassmann (1809-1877), mathématicien, physicien et linguiste allemand. 11 fut I'un
des premiers a introduire la notion d’espace vectoriel.
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Transformations linéaires
de I'espace R"

1. Définitions

Définition
On appelle transformation linéaire de I’espace R", ou encore application linéaire

de P’espace R" une application f, de R" dans R", linéaire :
VYx,y) € R"XR", VYA e R : f(x+Ay) = f(x) + 1 f(y)

Pour toute transformation linéaire f de I’espace R” :

fO)=0

culus

Exemples

1. L’application :
f R SR, (x,...,05) @ +1,...,x,+ 1)

n’est pas linéaire.

2. Lapplication :

f iR SR, (x,...,x) = 3(xp,...,x0) =B x1,...,3x,)

Algébre

est linéaire.

Proposition

Etant donnée une matrice A = (af j) , de taille n X n, & coefficients réels, 1’ap-

1<i<n, 1<j<n

plication : =
X1 X1 app Xy +...+an X, =

SR SR eal | ;

X Xn Anl X1+ .o+ Qun Xn

est linéaire, et définit une transformation linéaire de R".

2. Matrice d'une transformation linéaire

Définition

On appelle matrice, dans une base B = (ey,...,e,) donnée, d’une transformation
linéaire f de R”, la matrice dont les vecteurs colonnes sont les coordonnées, dans B,
des images des vecteurs de B :

Matriceg(f) = (f(e1),..., f(en)

» Une application linéaire remarquable : I'application identité de R”
Définition

On appelle application identité de IR" I’application, notée /dg», de matrice asso-
ciee

=
B4
(]
(w]
©
o
W
o
=1

XxXeER" "> x
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» Domaine de définition

Proposition
Une transformation linéaire de R" est enticrement définie par ses valeurs sur une base
donnée.

Démonstration : Soit f : R” — R” une transformation linéaire, et B = (e, e3,...,¢,)
une base de R".

On suppose que les images des vecteurs ey, .. ., ¢, sont données :
i3

Yiell,2,...,n}: f(ef)=zaﬁ€j

J=1

n
Alors, pour tout vecteur x = xj ey + ...+ X, €, = Z x;e;de R :
i=1
n

T inei

i=1
n

2 Xi f (ei)

J(x)

Ailnsi :
(f(x)g =

D’ot le résultat. u
Proposition

Une transformation linéaire de R" est entierement définie par la matrice qui lui est asso-
ciée dans une base donnée.

Démonstration : Le résultat découle immédiatement de la proposition précédente : une

transformation linéaire de R" est entierement définie par ses valeurs sur une base donnée.
]

Définition

On appelle matrice d’une transformation linéaire f de R", la matrice de f dans la
base canonique. Elle sera notée, dans ce qui suit, A .

Une transformation linéaire de R” étant entierement définie par la matrice qui lui est associée
dans une base donnée, il est clair qu’il est préférable de se placer dans une base donnant une
expression la plus agréable possible de la matrice : triangulaire, ou diagonale. Cela s’appelle
trigonaliser ou diagonaliser une application linéaire (ou une martrice).
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» Composée de deux transformations linéaires

Proposition
La composée f o g de deux transformations linéaires f et g de R", de matrices associées

Ag(f) et Ag(g) dans une base B = (ey,...,e,) donnée, est une transformation linéaire
X1

de R", qui vérifie: VYx=| : | € R" :
Xn

(feg)(x) = f(g(x) = As(f) (Ag(g) x) = (Ag(f) As(g)) x

Ainsi, f o g a pour matrice, dans la base B :
Ag(f og) =Ag(f)Az(g)
» Formule du binéme de Newton

Proposition

Etant données deux transformations linéaires f et g de R" qui commutent, ¢’est-a-dire
telles que fog = go f, alors, pour tout entier naturel p, la formule du bindme de Newton
permet de calculer (f + g)”, ou la puissance est au sens de la composition :

P
(f+9) =) Chf og™
k=0
ou, pour tout entier k de {0, ..., p}, C;‘, désigne le coefficient binomial :

(P)= p!
k]~ kp—-h)!

> Noyau
Définition

On apelle noyau d’une transformation linéaire f de R", que I’on note Ker f (de I’al-
lemand kern) I’ensemble des vecteurs de R” dont I’'image par f est le vecteur nul :

Ker f = {x € R"/ f(x) = 0}
Par extension, le noyau d’une matrice A € M, (R) est le noyau de I’application linéaire
associée a la matrice A.
> Image
Définition

On apelle image d’une transformation linéaire f de R", que I’on note 7m f I’ensemble
des images des vecteurs de R” par f :

Imf ={f(x),x € R"}
3. Propriétés
Définition
Une transformation linéaire de R” est dite injective si :
Yi(xp,x2) € RTXR" @ f(x) = fn) = x1 =x
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Théoréme

Une transformation linéaire de R" est injective si son noyau est réduit au vecteur nul :

Ker f = {0}
Démonstration : Ce résultat découle de la linéarité de f. [
Définition

Une transformation linéaire de R”" est dite surjective si :
Yy eR" dx eR" : y= f(x)

4. Automorphisme
Définition

Une transformation linéaire de R” est un automorphisme, de R" si elle est bijective,
c’est-a-dire injective et surjective.

L’ensemble des automorphismes de R”" est appelé groupe linéaire de R”', et noté

GLIR?).

Proposition

Pour qu’une transformation linéaire f de R" soit un automorphisme de R”, il faut et il

suffit que le déterminant de sa matrice Ag(f) dans une base B quelconque soit non nul.
Sa réciproque f~! est alors une transformation linéaire de R”, de matrice dans B

Ag(f™) = (Ag(f)™!

» Théoréme du rang dans R"” (ou formule du rang)

Théoreme

Dans R" :
dimimf +dimKerf=n

dim I'm f est le rang de f, noté aussi rqg f.

» Caractérisation des automorphismes de R”

Théoréeme

Soit f une transformation linéaire de R". Les propriétés suivantes sont équivalentes :
e [ est injective
e [ est surjective ;

e [ est bijective.

1. car il posséde une structure de groupe, ¢’est-a-dire est stable par produit, et tout élément non nul est
inversible.
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103 Changement de base

1. Matrice de passage
Définition
Soient B = (ey,...,e,) et B’ = (e},...,¢€,) deux bases de R".

On désigne par Pg_,g = (p,— j) i, T<ien la matrice dont les vecteurs colonnes repré-
/

sentent les coordonnées (ou composantes) des vecteurs e e e, dans la base B :
n
7 . 4 —_— o %
Yiedl i g = Zpﬂej
=1
Pg_,g est appelée matrice de passage de B a B’.

2. Formule de changement de base pour un vecteur

X
Soit x un vecteur de R". On désigne par (x)g = | : | ses coordonnées dans B, et par
Xn
’
X
— : 3 4 i = i i
(x)g = : [ses coordonnées dans B’. Alors, si Pg_,g (p, J) R 1R est la matrice
/
xi’l
de passage de Ba B’ :
X1 X
. =" PB_)BI '
X : o

S0it :
(0)g = Pg_g (X)g

Démonstration :

n

ool
P
i=1
n n
!
2% Qpiei
=1 j=1
n 13
_ ’
= D D piKie;

i=1 j=1

n n
— .. ’ .
-3 S e

=1 j=1

=
Il Il

© Dunod. Toute reproduction non autorisée est un délit.
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(On a effectué un changement d’indices pour passer de I’avant-derniere a la derniere
ligne.)
Comme :

n
X = Ez,ﬁei
i=1

alors, par unicité de la décomposition de x suivant B, pour tout i de {1, ..., n}:

n

P

Xi = Zpijxj
i=1

que 1’on peut encore écrire :

340



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Conjugaison - Matrices semblables
de taille nxn

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso-
ciée a une application linéaire f.

11 peut étre intéressant de donner les relations permettant de passer de la matrice Ag(f)
associée a f dans une base B, a la matrice Ag (f) associée a f dans une nouvelle base 8.

1. Matrices semblables

Considérons les bases 8 = (ey,...,ep) et B =(e'y,...,¢ ) de R",
On désigne par Ag(f) = (ai i) icicn, ician la matrice associée & f dans la base B, et par
_ - = = S 72
Ag(f) = (Q’J)lgi@, I<jn la matrice associée a f dans la base B’.
On appelle Pg...s la matrice de passage de Ba B'.
X1
Soit x un vecteur de R". On désigne par (x)g = | : [ses coordonnées dans B, et par
Xn
s
4
(x)g = : |ses coordonnées dans B’ ; de méme, on désigne par (f(x))g les coordon-
xl

n

nées de f(x) dans B, et par (f(x))g les coordonnées de f(x) dans B’. Alors :
(fGg = Ag(f) (0g
= Ag(f) Pgwp (X)g
Mais on a aussi :
(f(g =As(f) (g
et:
(f()g = Pgws (f(X)g

I1 en résulte :

(f(g = P (f()g = Ppwp Ag (f) (Ng = Ppws Ag (f) Pglp (5

Comme
(f(x)g = Ag(f) (Ng

on a donc :

A5(f) (g = Ppws Ap () PEL.e (s
ou encore :

(A8(f) = Pwsr Ap(f) Pgl,p) (005 =0
Le vecteur x étant quelconque, on en déduit, en choisissant successivement pour i cha-
cun des vecteurs de B, la nullité de chaque colonne de Ag(f) — PAg(f) P! :

As(f) = Pgop A () PEl 5
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ou encore :
. = :
Ag(f) = Pg..g As(f) Paws
Définition
Deux transformations linéaires f et g de R", de matrices associées Ay et A,, sont

dites conjuguées s’il existe une transformation linéaire bijective ¢ de R", de matrice
associée A, appelée conjugaison, telle que :

fop=pog
ce qui, matriciellement, se traduit par :
ArA, =A Ay
ou encore, puisque A, est inversible :
Ag=AZ ArA,
Les matrices Ay et A, sont dites semblables.
Définition

Deux matrices A et B de M, (R) sont dites semblables s’il existe une matrice inver-
sible P € GL,(R) telle que :
B=P'AP

Les matrices A et B jouent des rdles symétriques.

2. Déterminant d'une application linéaire de R”

Proposition
Deux matrices semblables ont méme déterminant.

Démonstration : Soient A et B deux matrices semblables, de taille n X n.
D’apres ce qui précede, il existe une matrice inversible P telle que :

PlAP=8
Il en résulte :
det (B) = det (P"' AP) = det (A P~! P) = det(A) n
Définition
On apelle déterminant d’une transformation linéaire f de R" le déterminant de sa
matrice dans la base canonique, ou, de facon équivalente, dans une base quelconque 5.

La valeur du déterminant d’une transformation linéaire f de R" ne dépend effectivement pas
de la base choisie : si B et B’ sont deux bases de ’espace R", les matrices Ag(f) et Az (f), qui
représentent donc la méme application linéaire dans deux bases différentes, sont semblables,
et ont donc méme déterminant.

342



Copyright © 2014 Dunod.

=
©
=
=
=
z
w
o
]
Z
g2
=
=
=
g
=]
=]
2
=
£
=}
E
=
z
]
E
=
=
-]
=
=
a

Réduction des matrices carrées

1. Valeur propre, vecteur propre

Soit A = (a,- j) _ __une matrice carrée d’ordre n, a coeflicients réels. On appelle
I<ign, I1sj<n

X1
valeur propre de A un réel A tel qu’il existe un vecteur non nul X =| : [ vérifiant :

Xn
AX=41X

X est alors un vecteur propre de la matrice A.
L’ensemble des valeurs propres de A est appelé Spectre de A, et noté S p(A).

Théoréme

Etant donnée une matrice A = (ai J.-) e M, (R), les valeurs propres de A sont

I<ign, 1<j<n
les racines du polynome caractéristique de A :

xa(d) =det(A-A11,)
Démonstration : S’il existe un vecteur X nonnul tel que AX = 41X, 1 € R, on a aussi :
(A-aL)X =0

Ce systeme linéaire admet alors une infinité de solutions ; en effet, s1 X # 0 est solution,
alors, pour tout réel a :
A-AL)aX=0

Le déterminant du systéme est donc nul :
det(A-21,)=0

Réciproquement, si A est racine de det (A — A1,) = 0, le noyau de I"application linéaire
associée a la matrice A — A1, n’est pas réduit au vecteur nul ; il existe donc un vecteur
non nul X tel que :

(A-AL)X =0

A est donc bien valeur propre de la matrice A. ]

» Multiplicité d'une valeur propre

Soient A = (a,-_,—)[gi@, g
propre, de multiplicité n; € N, de A, si A est racine d’ordre n, du polyndéme caracté-
ristique de A.

e M,(R), et A une valeur propre de A. A est dite valeur
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> Espace propre

Soient A = (a’f )1g<n. I<jn
On appelle espace propre associé a la valeur propre A I’ensemble des vecteurs X tels
que A X = AX. C’est un sous-espace vectoriel de R", que I’on note E :

€ M, (R), et A une valeur propre de A.

Ei=Ker(A-A1,)
» Sous-espace caractéristique

Soient A = (aij)léién. 1< j<n
On appelle sous-espace caractéristique associé a la valeur propre A le noyau
Ker(A—Al,)" de (A — A1,)", c’est-a-dire ’ensemble des vecteurs X tels que :

e M,(R), et 1 une valeur propre de A, de multiplicité n,; < n.

A-A5)*X=0
C’est un sous-espace vectoriel de R".

2. Diagonalisabilité

Soit A = (aij)l-iisﬂ, 1< j<n
base (X1,...,X,) de R" de vecteurs propres.

Si P est la matrice de passage de la base canonique a la base (Xi,..., X)), alors la
matrice P~' AP = D est diagonale. C’est, tout simplement, la matrice de 1’application
linéaire associée a A, mais exprimée dans la base (X, ..., X,,). Les coeflicients diago-
naux de la matrice D ainsi obtenue sont les valeurs propres de A.

€ M,(R). La matrice A est dite diagonalisable s’il existe une

Théoréme

Pour qu’une matrice A = (ai j) e M,(R), dont le polynéme caractéristique

I<isn, 1<j<n
est scindé sur R, soit diagonalisable, il faut et il suffit que la dimension de chaque espace

propre soit égale a la multiplicité de la valeur propre associée :

VYA e Sp(A) : dim E; = multiplicité(1)

Notation
N

Etant donné un polyndme P a coeflicients réels, de la forme 2 ay x¥ ,N € N, etune ma-
k=0
trice A = (a,- j)]<_< e & M, (R), P(A) est la matrice carrée d’ordre n, 4 coeflicients
]IS, 15 JsN
réels, donnée par :

N
P(A):ZakAk:1n+a1A+...+aNAN
k=0

(Par convention, A = I,,.)

Théoréme

Pour qu’une matrice A = (a,— j)1<,< 1<icn € M, (R), soit diagonalisable, il faut et il suffit
<ign, 1€ j<n

qu’il existe un polynome scindé a racines simples P € R[X] annulant A : P(A) = 0.
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Théoréme

Soit A = (a,-j) . )
I<i<n, 1€ j<n
racines simples, alors A est diagonalisable.

e M,(R). Si le polynéme caractéristiqgue de A est scindé et a

3. Trigonalisabilité

Soit A = (a"f) Tk, TE3%h
base (X1,...,X;) de R" dans laquelle la matrice de I’application linéaire associée a A
est triangulaire. Les coeflicients diagonaux de la matrice ainsi obtenue sont les valeurs
propres de A.

Si P est la matrice de passage de la base canonique a la base (Xi,...,X,), alors la
matrice P~' A P = T est triangulaire. C’est, tout simplement, la matrice de I’application
linéaire associée a A, mais exprimée dans la base (X1, ..., X,).

€ M,(R). La matrice A est dite trigonalisable s’il existe une

Théoréme

Soit A = (a,;j)_ _ .
I<ign, 1< jsn
A est trigonalisable.

€ M, (R). Si le polynéme caractéristique de A est scindé, alors

Exemple

Prenons le cas ot n = 3, ol le polynOme caractéristique de A est scindé, avec une seule racine
A, et ou I'espace propre E, est de dimension 1.

SoitA = (a,- j)lsiss, i € Mi(R) une matrice trigonalisable. On désigne par A I'unique valeur
propre de A, de multiplicité 3.

Trigonaliser A revient donc a déterminer une famille libre (X, X5, X3) de vecteurs tels que :

A X, AX
AXy AXy + 112 X, ., (tiz,h3,13) € R
AXs = AXs5+03 X1 +13 X5

Pour le premier vecteur, X1, il est naturel de prendre un vecteur propre associé a la valeur
propre A.

Pour le second vecteur, X», il est intéressant de remarquer que la seconde relation s’ écrit aussi :
A-AB)X; =12 X,
Si on multiplie & gauche par A — A, I3, on obtient :
(A-ALY X =tpn(A-4 )X =0

puisque, par définition, X; est dans le noyaude A — A I5.

11 suffit donc de choisir pour X, un vecteur du noyau de (A — A I3)* qui soit indépendant de X;.
Pour le troisieme vecteur, X, il est intéressant de remarquer que la troisiéme relation s’écrit
aussi :

A-AL)X; =113X1 +13 X2

Si on multiplie & gauche par (A — A 13)?, on obtient :

(A—ALYP X3 =13(A- AL X + 3 (A—16L)* X,
= 0

puisque X est dans le noyau de A— A1 I3, et, par construction, X, est dans le noyau de (A—A I3)°.
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I1 suffit donc de choisir pour X3 un vecteur du noyau de (A — A1)3, ¢’est-a-dire dans R? (car
on est en dimension 3) qui soit indépendant de X, et X;.

11 est a noter que le dernier vecteur, X3, peut étre choisi quelconque du moment qu’il est indé-
pendant de X, et X : en effet, trigonaliser revient juste a exprimer la matrice de 1’application
linéaire associée 4 A dans une nouvelle base. Dans la mesure ot le dernier vecteur colonne de
la matrice obtenue par trigonalisation a des composantes suivant chacun des vecteurs X, .. .,
X3, le choix de X3 importe donc peu.

La réciproque se vérifie aisément.

Pour trigonaliser une matrice de M, (R) dont le polynéme caractéristique est scindé, on pro-
cede de fagon analogue.
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Si SOR?) s’appelle le groupe spécial orthogonal de R?, c’est, aussi, parce qu’il
possede une structure de groupe, et constitue, donc, un ensemble muni d’une loi
de composition interne, associative, admettant un élément neutre et telle que chaque
élément de ’ensemble (du groupe, donc), admette un €lément symétrique, ce qui est
bien le cas :

si on munit SO(R3) de la loi « o », I’élément neutre est I’application identité idy; ;
en composant une symétrie avec elle-méme, on obtient I’identité ;

en composant une rotation de centre (2, d’angle 6, avec la rotation de centre €2,
d’angle —#6, on obtient également I’identité.

Application a la chimie moléculaire

En chimie moléculaire, un certain nombre de fonctions caractéristiques des molé-
cules sont des éléments d’espaces vectoriels (c’est-a-dire un ensemble muni d’une
structure permettant d’effectuer des combinaisons lin€aires), qui doivent étre inva-
riantes par les opérations du groupe auquel la molécule appartient ; ces opérations,
qui sont, tout simplement, des symétries ou des rotations, font en effet coincider la
molécule avec elle-méme.

Un espace vectoriel sur un corps K (K = R ou C le plus souvent) est un en-
semble £, muni d’une loi de composition interne, associative et commutative,
notée, usuellement, +, telle que (E, +) soit un groupe, et d’une loi de composition
externe, appelée multiplication par un scalaire, et notée « - », vérifiant les quatre
axiomes suivants :

Yuv)e EXEY1leK :Ad-(u+v)=A4-u+d-v;
Y(uv) e EXE, Y(Au) € K A+p) - u=A-u+yu-u;
Y(u,v) € EXE, V(A1) € K2 . Aw)-u=A4-(u-u;
YuekE:1l-u=u

Ainsi, les molécules dites « ballons de football », ou fulleréne Cgy, posseédent,
comme groupe de symétries, celui de I’icosaédre’ .

Le groupe des rotations de 1’icosaedre est formé par les rotations de 1’espace qui
laissent invariante la position globale de I'icosaedre, tout en permutant certaines
faces.

Les molécules de fulleréne ont une structure d’icosaédre tronqué, et possédent donc
les mémes symétries que I’icosaédre de départ.

L’importance de ces symétries est fondamentale, dans la mesure ol ce sont les
symétries qui peuvent aider a suggérer les formules de liaison chimiques, et donc,
ensuite, de classer les molécules en fonction de leurs propriétés.

1. ¢’est-a-dire un polyédre, solide de dimension 3, comportant, exactement, 20 faces.
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Une molécule de fulleréne.

L'icosaédre, et l'icosaédre tronqué.
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Diagonalisation — La toupie de Lagrange

(et de Micheéle Audin)

Considérons une toupie, de masse m, et lancons-la :

La toupie.

- > a ey -
Désignons par M;gpie le moment cinétique de la toupie, et ﬁmupie son vecteur rota-
tion instantanée, mesuré par rapport a son axe ; on a alors :

A §)
Mz‘ouprle =J toupie ==toupie
oll Jyoupie €St la matrice d’inertie de la toupie par rapport a son axe, de la forme :

I 00
-Itoupie =0L 0
00~

Si on considere un axe A différent de celui de la toupie, la nouvelle matrice d’inertie
fmupie comporte des termes non nuls en dehors de sa diagonale (désignés par des
astérisques) : .

Ii * %

jtoupie =t|| f2 i‘

x x I3
11 est clair que prendre comme référence un axe différent de celui de la toupie com-
plique donc les calculs ...

C’est a partir de cette constatation que Joseph-Louis Lagrange introduisit la notion
de diagonalisation : diagonaliser une matrice revient, tout simplement, a en déter-
miner une expression équivalente (mais non égale), ol les termes en dehors de la
diagonale sont nuls.
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106 Les espaces vectoriels

On généralise ici les résultats dont on dispose sur I’espace R", en considérant, de facon
plus générale, des ensembles stables par combinaisons linéaires : les espaces vectoriels.

1. Définitions

» R-espace vectoriel

On appelle espace vectoriel sur R (ou R-espace vectoriel) un triplet (E, +, X) tel que :
1. (E, +) est un groupe commutatif, d’élément neutre O, ¢’est-a-dire

e étant donnés deux éléments xety de E, x +y = y + x est aussi élément de E, et
x+0r=0g+x=x;

e tout élément x de E admet I’élément —x comme opposé :
*x+(x)=(-—x)+x=0g

e ¢tant donnés trois éléments x, y et zde E, x + (y + ) = (x + y) + z (cela signifie
que la loi « +» est associative) ;

2. étant donnés deux €léments x et y de E, etunréel A, A (x + y) = (1x) + (1y) est
aussi élément de E ;

3. étant donnés un élément x de E, et deux réels A et u, (4 + p)x = (A x) + (ux) est
aussi élément de E ;

4. étant donnés un élément x de E, et deux réels A et yu :
Ay x =4 (ux)

5. étant donnés un élément x de E, le réel | est I’élément neutre de la multiplication
par un scalaire :
I x=x

Les éléments de (E, +, X) sont appelés vecteurs.
R est le corps de base de (E, +, X).

2014 Dunod.

Exemples

1. (R, +, X) est un R-espace vectoriel.
2. Etant donné un entier naturel non nul n, (R”, +, X) est un R-espace vectoriel.

3. Lespace C' ([0, 1], R) des fonctions de classe C' sur [0, 1] et & valeurs dans R est un R-
espace vectoriel.

Copyrig

4. L'espace R[X] des polyndmes a coefficients réels R est un R-espace vectoriel.
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» [K-espace vectoriel

De facon plus générale, si K est un corps', on appelle espace vectoriel sur le corps K
(ou K-espace vectoriel) un triplet (E, +, X) tel que :

1. (E,+) est un groupe commutatif, d’élément neutre Og, c’est-a-dire :

e étant donnés deux éléments x et y de E, x + y = y + x est aussi élément de E, et
x+0p=0g+x=x;

e tout élément x de E admet I’élément —x comme opposé :
x+(-x)=(-x)+x=0g
o étant donnés trois éléments x, y et zde E, x + (y + 2) = (x + y) + z (cela signifie

que la loi « + » est associative) ;

2. étant donnés deux €éléments x et y de E, et A dans K, A (x +y) = (1x) + (1y) est
aussi élément de £ ;

3. étant donnés deux éléments x et y de E, x + y est aussi élément de E ;
4. étant donnés un élément x de E, et A et u dans K, (A + u) x est aussi élément de E ;

5. étant donnés un €lément x de E, et A et u dans K :
(A x= A (ux)

6. étant donné un élément x de E, I'élément unité 1x de K est I’élément neutre de la
multiplication par un scalaire :

lgXxx=x

Les éléments de (E. +, X) sont appelés vecteurs.
K est le corps de base de (E, +, X).

Notation

1. Pour alléger les écritures, un K-espace vectoriel (E, +, X) sera noté E.

2. Les vecteurs d’un espace vectoriel seront notés « sans fleche » : x, pour les distinguer
des vecteurs du plan ou de ’espace.

2. Vecteurs

» Combinaison linéaire

Soit n un entier naturel supérieur ou égal a 2. Etant donnés un K-espace vectoriel E, et n
vecteurs xp, ..., x, de E, on appelle combinaison linéaire de xi, ..., x, tout vecteur de
la forme :

n
Arxi+ b+ + A, x, =Z/1ixi
i=1

Ainsi, un K-espace vectoriel E est stable par combinaisons linéaires a coefficients dans K :
toute combinaison linéaire d’éléments de E appartient a E.

L. Par exemple : C, Z, etc.
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» Vecteurs liés

Deux vecteurs x et i sont dits liés s’il existe une combinaison linéaire non triviale de ces
vecteurs égale au vecteur nul, c’est-a-dire lorsque les coefficients de la combinaison sont
non simultanément nuls, de la forme :

Ax+uy=0 (A,p) #(0,0)

» Vecteurs libres

Deux vecteurs x et y sont dits libres s’ils ne sont pas liés.

Généralisation

n vecteurs xi, ..., X, sont dits liés s’il existe une combinaison linéaire non triviale de
ces vecteurs égale au vecteur nul, ¢’est-a-dire lorsque les coefficients de la combinaison
sont non simultanément nuls, de la forme :

Zn:/)qxi =0
i=1

ou Ay, ..., 4, sont des réels tels que (4, ..., 4,) # (0, ..., 0).
n vecteurs xi, ..., x, sont dits /ibres s’ils ne sont pas liés

Propriéte
Pour toute famille (xi, ..., x,) de vecteurs libres :

Aixi+...+ 4, x,=0=(4,...,4,)=(0,...,0)

ce qui signifie que, s’il existe une combinaison linéaire nulle de ces vecteurs, alors les
coefficients de cette méme combinaison linéaire sont nécessairement nuls.

3. Dimension d’un espace vectoriel
» Espace vectoriel de dimension finie
Un K-espace vectoriel E est dit de dimension finie s’il posseéde une partie génératrice

finie.

Exemple

R3 est de dimension 3 (toute base de R? possede trois éléments).

» Espace vectoriel de dimension infinie
Un K-espace vectoriel E est dit de dimension infinie s’il ne possede pas de partie géné-

ratrice finie.

Exemple

L’espace C! ([0, 1], R) des fonctions de classe C' sur [0, 1] et 2 valeurs dans R est de dimension
infinie (on ne peut pas trouver de famille génératrice).
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> Espace vectoriel produit

Théoréme

n étant un entier naturel supérieur ou égal a 2, et Ey, . . ., E, des K-espaces vectoriels, on
munit 'ensemble E| X ... X E, des lois + et X en posant, pour tous n-uplets (xi, ..., x,)
et (Yy,...,Y,) d'éléments de E| X ... X E,, et tout A de K :

(X1 X))+ G ay) = (0 F Y Xt ) A, X)) = (AX, A X)

(Ey X ...X E,,+,X) est alors un K-espace vectoriel.
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Sous-espaces vectoriels

1. Définition
On appelle sous-espace vectoriel d’un espace vectoriel E un ensemble F de E tel que :
1. € .& F3

2. étant donnés deux éléments x et y de F, x+y est aussi €lément de F (ce qui signifie
que F est stable par adddition) ;

3. étant donnés un élément x de F, et A dans K, A x est aussi élément de F (ce qui
signifie que F est stable par la multiplication par un scalaire) ;

» Caractérisation des sous-espaces vectoriels

Théoreme

Un ensemble F de E est un sous-espace vectoriel du K-espace vectoriel E si et seulement
si, étant donnés deux éléments x et y de F, et A dans K, x + Ay est aussi élément de F
(ce qui signifie que F est stable par combinaisons linéaires) :

Vx,y) e FXF,YAie K:x+ Ay € F

2. Transformations linéaires d'un espace vectoriel E

» Définition

On appelle transformation linéaire d’un espace vectoriel £, ou encore application
linéaire d’un espace vectoriel E une application f, de E dans E, linéaire :

Y(x,y) e EXE,VYA e K : f(x+Ay) = f(x)+ A f(y)

» Une application linéaire remarquable : I'application identité

On appelle application identité de I’espace vectoriel E I’application, notée /df :

x e E— x

» Propriétés

Une transformation linéaire f d’un espace vectoriel E est dite injective si :
Y(xi,x) € EXE : f(x1)=flx2) = x1 = x
Une transformation lin€aire f d’un espace vectoriel E est dite surjective si :
Yy € E;dx € E = g= fi(x)

Une transformation linéaire d’un espace vectoriel E est un automorphisme de E si
elle est bijective, c’est-a-dire injective et surjective.
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L’ensemble des automorphismes d’un espace vectoriel E est appelé groupe linéaire
de E', et noté GL(E).

On apelle noyau d’une transformation linéaire f d’un espace vectoriel E, que I'on
note Ker f (de I’allemand kern) I’ensemble des vecteurs de E dont I'image par f est le
vecteur nul :

Kerf={x € E/f(x) =0}

Définition

On apelle image d’une transformation linéaire f d’un espace vectoriel E, que I’on
note 7m f ’ensemble des images des vecteurs de E par [ :

Imf={f(x),x € E}
Proposition

Etant donnée une transformation linéaire f d’un espace vectoriel E, Ker f et I'm f sont
deux sous-espaces vectoriels de E.

1. car il posséde une structure de groupe, ¢’est-a-dire est stable par produit, et tout élément non nul est
inversible.
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Somme de sous-espaces vectoriels

F et F; étant deux sous-espaces vectoriels d’un espace vectoriel E, I’ensemble
Fi+F,={x1+x,x € Fi, x; € F2}

est un sous-espace vectoriel de E, appelé somme de Fy et F.

» Somme directe de sous-espaces vectoriels

Deux sous-espaces vectoriels F'; et F d’un espace vectoriel E sont dits en somme di-
recte si tout élément du sous-espace somme F; + F; s’écrit de maniére unique comme
somme d’un élément de F; et d’un élément de F> :

Vxe Fi+F)Al(x1,m) € F1XFy : x=x1+x
On note alors :
Fi&F;

» Caractérisation d’'une somme directe

Deux sous-espaces vectoriels Fj et F> d’un espace vectoriel E sont en somme directe
dans E si et seulement si

FinF,={0}

» Sous-espaces vectoriels supplémentaires

Deux sous-espaces vectoriels F; et F> d’un espace vectoriel E sont dits supplémen-
taires dans E si tout élément de E s’écrit de maniere unique comme somme d’un élé-
ment de F; et d’un élément de F :

Yx € E,H!(x|,x2) eFXFy:x=x1+x

On note alors :
FieF,=E

» Caractérisation de la supplémentarité

Deux sous-espaces vectoriels F'| et F>» d’un espace vectoriel £ sont supplémentaires
dans E si et seulement si :

Fi+F,=E et FiNF,={0
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Projecteurs, symétries

1. Définitions
» Projection - Projecteurs

Soient E un espace vectoriel, et F; et F; deux sous-espaces vectoriels de E tels que :
E=FoF

Pour tout vecteur x de E, on considere 1'unique couple de vecteurs (x;,xp) de F; X F»
tel que :

X=Xx1+x2

On appelle projection (ou projecteur) sur F suivant la direction F; (ou parallelement
a F») application p; qui, au vecteur x, associe sa composante x| sur F :

pi1(x) = pi(x1 + x2) = x|

On appelle projection (ou projecteur) sur I, suivant la direction F'y (ou parallelement
a F|) ’application p> qui, au vecteur x, associe sa composante x sur F» :

p2(x) = pa(x1 + x2) = X2

» Symeétrie

Soient E un espace vectoriel, et F; et F> deux sous-espaces vectoriels de E tels que :
E=FeF;

Pour tout vecteur x de E, on considere I'unique couple de vecteurs (x;, xp) de F; X F»
tel que :

X=X +x2

On appelle symétrie par rapport a F; parallelement a F, ’application s; qui, au
vecteur x, associe le vecteur x; — x» :

51(x) = 51(x1 + x2) = X1 — X2

On appelle symétrie par rapport a F, parallelement a F; I’application s> qui, au
vecteur x, associe le vecteur x; — xq :

52(x) = so(x1 + x2) = X2 — x4
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2. Propriétes

» Caractérisation des projecteurs

Théoréme
Soient E un espace vectoriel, et p une transformation linéaire de E.

Alors, p est un projecteur de E si et seulement si :
pep=p

On dit alors que p est idempotent.

Théoréme

Soient E un espace vectoriel, et p un projecteur de E. Alors :
E=Kerp®Imp
Démonstration : Pour tout x de E :

X =x-p(x) + p(x)

Comme p(x — p(x)) = p(x) — p(x) = 0,on adonc : x — p(x) € Kerp.

De facon évidente : p(x) € Im p.

Par suite : £ = Kerp+ Im p.

Tl reste & montrer que la somme est directe. A cet effet, on considére un élément y de
Kerpn Imp.

Comme y € Im p, il existe un élément x de E tel que : y = p(x).

Or, comme y € Ker p, p(y) = 0, soit p(p(x)) = 0, soit p(x) = 0.

Par suite : x € Ker p, ety = p(x) = 0. La somme Ker p + I'm p est donc directe :

Kerp+Imp=Kerp@&Imp [ |

» Caractérisation des symétries

Théoréme
Soient E un espace vectoriel, et s une transformation linéaire de E.

Alors, s est une symétrie de E si et seulement si :
sos=Idg
On dit alors que s est involutif.

Théoréme

Soient E un espace vectoriel, et s une symétrie de E. Alors :

E =Ker(s—1dg)® Ker (s + Idg)
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Exercices
d’entrainement

www % I . . rpor -
». Lescorrigés sont disponibles en téléchargement sur le site dunod.com
' a partir de la page de présentation de I'ouvrage.

Le plan complexe

Racines n'emes

Résoudre, dans C : z* = 1.

Résoudre, dans C: 22 = 1.

On consideére 1’équation :
(z+ 1) = (z— 12"

oll n est un entier naturel non nul.

3.a) Montrer que I’on ne peut pas avoir z =
L.

3.b) Montrer que I'équation donnée admet
exactement 2n — 1 racines, que I’on dé-
signera par wy, ..., wa,-1, et qui sont
telles que :
pourkefl,...,2n—1}:

] (kﬂ)
Wy = —icotan | —
2n

3.c) Pour aller plus loin :
que vaut le produit des racines non
nulles ?

Trigonométrie

n Linéarisation

@ étant un réel non nul, linéariser :
sin® 6 et cos* 6.

Calculs de sommes

Soit8 € R\nZ,etn € N*, Donner, en fonc-
tion de 6, la valeur des sommes suivantes ;

cos 6,

n

5.a) S,(0) = Z P
k=0

5.b) S,(0) = Z ke

k=—n

H

5.0) S;30) = Z cos(k f) et

k=1
n

S4(0) = Z sin(k 6).

k=1
Donner ensuite les relations entre §(6),
52(8), S3(0), S4(0).

Transformations du plan
Translations, homothéties

Le plan euclidien orienté est rapporté a un re-
peére orthonormé direct (O; f ]?)

n Expression analytique d’une trans-
lation

Donner I’expression de 1" affixe z' du point M’
image du point M d’affixe z € Cpar:
6.a) la translation 7;; de vecteur (1, —2);

6.b) la translation 7 de vecteur (3, 1).

Expression analytique d’une ho-
mothétie

Donner I’expression de I’affixe 2’ du point M’

image du point M d’affixe z, € C par:

7.a) I’homothétie hgs, de centre O, de rap-
port2;

7.b) I’homothétie /14 _3, de centre A(1, 1), de
rapport —3;

7.¢) I"’homothétie hp 4, de centre B(—2, 0), de
rapport 4.

Rotations

“ Expression analytique d’une rota-

tion

8.a) Déterminer l'expression de l'affixe z’
du point M’ image du point M d’affixe
z € (C, distinct de A, par la rotation

ra.z, de centre A(1, 1), d’angle %
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8.b) Déterminer I'expression de I’affixe z’
du point M’ image du point M d’affixe
z € C* parlarotation rg,_, de centre O,
d’angle .

n Un peu de formalisme ...

9.a) Donner l'expression de 'affixe z/ du
point M’ image du point M d’affixe
z € C par la rotation rq_g, de centre €2,
d’angle € (on désignera par zo 1’affixe
de Q).

9.b) Donner I'expression de l'aflixe z/ du
point M” image du point M d’affixe
z € C par la rotation rq o, de centre
Q’, d’angle & (on désignera par zg 1"af-
fixe de Q).

9.c) Donner I'expression de I'affixe 7 du
point M" image du point M d’affixe
z € C par la composée r = ror g © Fa g
de ro.e et roy o-
Et, de méme, on détermine la com-
posée de deux homothéties de centres
distincts, la composée d’une rotation
et d’une translation, ... : ¢’est a vous !

Introduction aux matrices

Calcul matriciel

Calculs pratiques

0
Onconsidére:Xz(_ll), Z=12
3

12
A_(21)’

123
Bz(_ol” . D=|321
213

Quels sont les produits matriciels possibles ?
Les calculer.

n Une matrice remarquable
Soit (a, b, ¢) € R, tel que a® + b*> + ¢* = 1.
On pose :

l+a* ab ac
M=| ab 1+b* be et N=M- 1.
ac be 1+ c2

360

11.a) Montrer que N peut s’écrire comme
produitd’une matrice colonne et d’une
matrice ligne.

11.b) Calculer N", ot n désigne un entier na-
turel.

11.c) En déduire 'expression de M".

|28 Puissances 7™ d’une matrice

Soit @ un réel quelconque, supposé non nul.
On considére la matrice carrée d’ordre n
(n=?2):

0 a v o a
a0’
A=
.0 a
a...... a 0

12.a) Montrer que 1’on peut exprimer A% en
fonction de A et I, o [, désigne la
matrice identité d’ordre .

Pour aller plus loin :

12.b) On consideére le polyndme P tel que :
PX)=X'-(n-2)aX-(n-1Da*
On note
PA) =A’—(n-2)aA-(n-1)d*I,.

Vérifier que P(A) = 0.

12.¢) Soit k un entier naturel non nul. Effec-
tuer la division euclidienne de X* par
P, en montrant qu’elle conduit a un ré-
sultat de la forme :

X =PX)0X)+aX+p

ol @ est un polyndome que I’on cher-
chera pas a expliciter, et @ et § deux
réels.

Comment peut-on calculer simple-
ment @ et f3?

12.d) En remarquant que
A¥ = P(A) Q(A)+a A+B1,, en déduire
une méthode de calcul de A%,
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Déterminants de matrices de taille nxn

Un calcul pratique

Calculer le déterminant n X 1 suivant :

01 ...1
10
1o 10

n étant un entier naturel supérieur ou
égal a 2, soient a et b deux réels distincts,
non nuls, et (x;, ..., x,) une famille de réels.
Pour tout réel x, on pose :

Xi+x a+x ... a+x
b+x xp+x
Ay(x) =
; . a+x
b+x ... b+xx,+x

14.a) Montrer que la fonction x — A,(x)
est une fonction affine de x, c’est-a-
dire de la forme x — ax + 3, ol
(e, ) € R? (on ne cherchera pas a dé-
terminer « et 5 dans cette question).

14.b) Que valent A,(—a) et A,(—b)? En dé-
duire les valeurs des coefficients a et 5
introduits a la question précédente.

Un déterminant remarquable :
le Déterminant de Vandermonde'

Soit (xq, ..., x,) une famille de réels, et
x e R.
On considere les déterminants :
1 1 1
Xi X oo Xy
2 2
Vn(xl, L] xﬂ) = x% x2 xn ]
xn.—] xn—l ) x"-_]
. 1 g &
et Vn(x) = Vn(xl s oeees Xp—ls )C) =
1 1 ... 1 1
X1 X2 o Xpy-1 X
2 2., P

2 o e 2]

15.a) Montrer que Vn(x) est un polyndme de
degré inférieur ou égal an — 1 en x.

15.b) On suppose, dans toute la suite, que les
X, i =1, ..., n sont deux a deux dis-
tincts. Montrer que V,J(xl) = Fﬁn(xg) =

= Vn(xn_l), et en déduire qu’il
existe une constante réelle C, telle
que, pour tout réel x :

V)= Gl — 1) s X~ %)

15.¢) Déterminer la constante C,, et en dé-
duire I'expression de V,(xy, ..., x,).

15.d) Que peut-on dire en ce qui concerne le
casoules x;, i = 1, ..., n, ne sont pas
deux i deux distincts ?

Inversion des matrices carrées

Inversibilité et puissances 7™

16.a) Apres avoir vérifié leur inversibilité,
inverser les matrices suivantes :

010
A:(ég) _B=|100] .
001
121
c=l101
21 2

16.b) n étant un entier naturel non nul, soit
A € M,(R) telle que A> = A, avec
A # I,. A est-elle inversible ?

16.c) Soit a un réel quelconque, supposé
non nul. On considére la matrice car-
réed’ordren (n > 2) :

0a ...... a
a 0
A=
0 a
o T a 0

1. Alexandre-Théophile Vandermonde (1735-1796), mathématicien francais, mais aussi économiste, mu-
sicien et chimiste. D aprés Lebesgue (Conférence d’Utrecht, 1937, [23]), le déterminant ne serait pas de

lui ...
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e Montrer que I’on peut exprimer AZ
en fonction de A et [, ol I, désigne
la matrice identité d’ordre n.

e Pour quelles valeurs de a la matrice
A est-elle inversible ? Déterminer,
dans ce cas, sa matrice inverse A~'.

On considére les matrices :
53 31
w=(13) =)

17.a) Montrer que P est inversible, et calcu-
ler son inverse.

17.b) Que vautP-' M P?
17.¢) Montrer que, pour tout entier naturel
non nul n :
(P'MP'=pP'M"P
et en déduire une méthode de calcul
de M".
Systémes linéaires

(it Résolution d’un systéeme de taille
3x3

Résoudre :
x -y —z=4
2x+2y+z=-5
3x—y —z=06

Un systeme paramétré, une solu-

tion a discuter !

Soit a un réel non nul. Résoudre ;
x+ay+a*z=a

x+y+z =1

x—y+tz =-1

L'espace réel a 3 dimensions
Vecteurs

m Déterminer si les vecteurs suivants
sont linéairement indépendants ou non :

20.a) di=(1,2,3)etd=(-1,3,2):

20.b) i@ =(2,1,3),0=(4,2,6).

20.¢) @=(3,2.1),0=(3,0,1).

20d) i=(2,4,6).0=(4,2,6), 0 = (6,4,2).

200) @ = (-1,0,1), 7 = (LD, & =
©,1,2).

362

Droites et plans

Droites

Déterminer une représentation paramétrique,
puis un systéme d’équations cartésiennes, de
la droite O passant par le point A(-1,2, 1), et
dirigée par le vecteur i = (1,0, 1).

De quel type de droite s’agit-il, affine ou vec-
torielle 7

Déterminer une représentation para-
métrique, puis un systeme d’équations carté-
siennes, de la droite )" passant par le point
B(3,0,2), et orthogonale au plan # d’équa-
tion2x+ y—z = 3.

Déterminer une représentation para-
métrique, puis un systeme d’équations carté-
siennes, de la droite A passant par les points
C(-2,1,2),et D(—4,0,1).

m On considere la droite A" dont une re-
présentation paramétrique est donnée par :

x=1+4+21
y= 324 , LR
z=2-2A1

Donner un vecteur directeur de cette droite.

Plans

Déterminer une équation cartésienne
du plan P, passant par le point A(-1,2, 1),
et engendré par les vecteurs & = (1,1,1) et

g=(1,-1,1).

m Déterminer une équation cartésienne
du plan P, passant par le point B(1, 1, 1), et
orthogonal au vecteur i = (2, 3, 4).

On considere le plan vectoriel Py
dont une représentation paramétrique est
donnée par :

x=Ad—-pu
y=aA+p , Qp eR®
z=A—pu

Donner deux vecteurs engendrant Py.
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Aires et volumes
Déterminants et calculs d’aires

Dans ce qui suit, le plan euclidien orienté de

dimension 2 est rapporté a un repere ortho-
5 2% ? 3

normé direct (O; i f)

Aire d’un paraléllogramme

28.3) Soient ap, ay, as, ds, by, by, by, by
des réels non nuls, vérifiant :

ay<a; , as<az , by <by ,

bz<b3

On considére les points A (a, by),
Azx(az, by), As(as, b3), Aslas, by)

a quelle condition le quadrilatére
A1A2A3A, est-il un parallélogramme
non aplati ?

28.b) Lorsque ces conditions sont vérifiées,

calculer I'aire orientée, puis non orien-
tée, du parallélogramme A | A2A3A4.

28.¢) On suppose désormais que ||A1Az]| =
—
lA1Asll = a > 0, b1 = ba, as = a;. Que
remarque-t-on ?

Aire d’un triangle

Soient a, b, ¢, d des réels non nuls. Calculer
I"aire orientée, puis non orientée, du triangle
de sommets O, A(a, b), B(c, d).

Déterminants et calculs de volumes

Dans ce qui suit, I’espace euclidien orienté

de dimension 3 est rapporté a un repére or-
T ? 7

thonormé direct (O; i, J, ]z)

Soient a, b, ¢, d des réels non nuls.

30.a) On considere les points A(l, a?, a*),
B2,4°> + Z,a* + ), C,2cY),
D(1,d*,d* : quelle est la nature du
quadrilatere OABC?

30.b) On considere les points E, F, G,
images respectives de A, B, C par la
translation de vecteur OD : quelle est
la nature de OABCDEFG?

30.c) Calculer le volume orienté, puis le vo-
lume non orienté, de OABCDEFG.

Transformations linéaires
du plan

Linéarité - ou non?

Parmi les applications suivantes, lesquelles
sont linéaires? Donner, lorsque c’est pos-
sible, la matrice de I’application.

3la) f:R2 =S RL ()~ @x+y,2y+x);
31.b) g: R} S R, (x,y) s sin(xy);

Applications linéaires et matrices
On considere I"application linéaire :
f: R — R?
()= Bx—-y,2y+x)

32.a) Quelle est la matrice A, associée a f
dans la base canonique ?

32.b) Calculer detAy, et en conclure que f
est un automorphisme de R?, ¢’est-a-
dire une application linéaire bijective
de R? dans R2.

32.c) Déterminer le noyau de f, et retrouver
ainsi le résultat du .

32.d) Expliciter
i

I’application  réciproque

Transformations linéaires
de I'espace

Linéarité - ou non?

Parmi les applications suivantes, lesquelles e
sont linéaires 7 Donner, lorsque ¢’est pos- '
sible, la matrice de I’application.
33.a) f:R* >R (qy) = @x+y,2y+x);
33b) g: R} - R, (x,y,2) - cos(xyz);
33.0) h:RP >R,

gz =@+ yp+ax—y+2.0);

Applications linéaires et matrices
On considere les applications :
p: R? - R}
= Bx—y2Yy+xx—=9)
v: R - R?
(y,2) = (x+2,y—2)

34.a) Quelles sont les matrices A, et A, res-
pectivement associées a ¢ et ¢ dans la
base canonique ?
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34.b) Expliciter I’application composée oy
de deux facons différentes (on don-
nera, notamment, la matrice A, as-
sociée & ¢ o dans la base canonique).
Que remarque-t-on ?

L'espace R”
Dans ce qui suit, n est un entier supérieur ou
égal a 2.

Applications linéaires

On considére I"application linéaire f
dont la matrice dans la base canonique de R”
est :

01 ... 1
10°
Ap=
S0 1
1. ... 10

35.a) Montrer que [ est un automorphisme
de R".

35.b) On désigne par Idp. 1'application
identité de R". Montrer, de deux fa-
cons différentes, que f + Idp» n’est pas
un automorphisme de R”.

35.¢) Donner une base du noyaude [ — (n—
1) Idgn.

Soit ¢ une application linéaire de R”.
Montrer I’équivalence suivante :

Kerg=Kery®> @ R"=Kerg® Imy

Soient f et g deux applications li-
néaires de R” telles que :

fog=0 et f[+ginjective
Comparer Img et Ker f.

Soit f une application linéaire de R

nilpotente d’ordre n, ¢’est-a-dire telle que
=0 et f£0

(la puissance est au sens de la composition)

Comparer Imget Ker f.

364

38.a) Montrer qu’il existe une base B de R”
dans laquelle la matrice Ag(f) de f est
triangulaire.

38.b) Que vaut det (f + Idg:)?

38.c) Soit g une application linéaire de
R" commutant avec f : que vaut

det (f +¢)?

Réduction des matrices carrées

On considére la matrice

12
n=(a3)
39.a) Déterminer les valeurs propres de M.
39.b) Déterminer les sous-espaces propres
de M. M, est-elle diagonalisable ?
39.c) Déterminer la matrice de passage P a

une base de diagonalisation, ainsi que
son inverse.

39.d) Donner une matrice diagonale D,
semblable a M. Que peut-on en dé-
duire pour I'inversibilité de M, ?

39.e) Calculer, pour tout entier naturel non
nul n, M.

m On considere la matrice
04
w=(13)
40.a) Déterminer les valeurs propres de M>.

40.b) Déterminer les sous-espaces propres
de M,. M est-elle diagonalisable ?

40.c) Déterminer la matrice de passage P> a
une base de diagonalisation, ainsi que
son inverse.

40.d) Donner une matrice diagonale D,
semblable & M>. Que peut-on en dé-
duire pour I'inversibilité de M, ?

40.e) Calculer, pour tout entier naturel non

nul n, M.
m On considére la matrice :
3 —-1-1
A=|-1 3 -1
- =13
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41.a) Déterminer les valeurs propres de A.

41.b) Déterminer les sous-espaces propres
de A. A est-elle diagonalisable ?

41.c) Déterminer la matrice de passage Py a
une base de diagonalisation, ainsi que
son inverse.

41.d) Donner une matrice diagonale Dy
semblable a A.

41.e) Calculer, pour tout entier naturel non
nul n, A”.

Soient a et b deux réels non nuls. On
consideére la matrice carrée d’ordren (n = 2) :

/s Y. a
a b’
A=
. b oa
a...... a b

Déterminer les valeurs propres de A, puis ses
espaces propres, et montrer que A est diago-
nalisable.

Soit @ un réel non nul. On considére
la matrice :

-1 o —-a
M=|1 -1 0
1 0 -1

43.a) Déterminer le polyndme caractéris-
tique de M.

43.b) Déterminer les espaces propres de M.

43.¢c) M est-elle trigonalisable ? Si oui, la tri-
gonaliser.

m Pour aller plus loin : Réduction de
matrices blocs

Soit n un entier supérieur ou égal a 2.

Soit A une matrice de taille n X n, a coef-
ficients réels. On demande d’étudier la dia-
gonalisabilité de la matrice triangulaire supé-
rieure par blocs de taille 2n X 2n :

»=(5)

Espaces vectoriels

Sous-espaces vectoriels

On se place dans I’espace R*. Mon-
trer que ’ensemble D des vecteurs de com-
posantes (x, y, z) tels que :

2%-y+z=10
x+y—-z =0

est un sous-espace vectoriel de R3.

m On se place dans 'espace vecto-
riel R[X] des polyndmes a coefficients réels.
Montrer que 1'ensemble R;3[X] des poly-
ndémes de degré inférieur ou égal a 3, a co-
efficients réels, est un sous-espace vectoriel
de R[X].

On se place dans I'espace vectoriel
C ([0, 1], R) des fonctions continues sur 1’in-
tervalle [0, 1], & valeurs dans R. Montrer que
I’ensemble des fonctions continues sur 1’in-
tervalle [0, 1], a valeurs dans R, s’annulant en
0, est un sous-espace vectoriel de C [0, 1], R).

m On se place dans |'espace vectoriel
C ([0,1],R) des fonctions continues sur 1’in-
tervalle [0,1], a4 valeurs dans R. Montrer
que I'ensemble C'[0,1],R) des fonctions
de classe C' sur l'intervalle [0,1], a va-
leurs dans R, est un sous-espace vectoriel de
C((0,1,R).

On se place dans D'espace vecto-
riel C ([-1, 1], R) des fonctions continues sur
I'intervalle [—1, 1], & valeurs dans R. Montrer
que les ensembles :

C+
C_

{f € C([-1,1],R), fpaire} ,
{f € C(-1,11,R), fimpaire}

Il

sont deux sous-espaces supplémentaires de

Soit n un entier naturel supérieur ou
égal a 2. On se place dans I’espace vectoriel
M, (R) des matrices de taille n x n, a coeffi-
cients réels. Montrer que I’ensemble des ma-
trices de taille n X n, a coeflicients réels, de
trace nulle, est un sous-espace vectoriel de
M,(R).
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Soit E un R—espace vectoriel, et f

une application linéaire de F telle que :
fP=5f+6idg=0

Montrer que Ker (f—2 idg) et Ker (f—3 idg)

sont des sous-espaces supplémentaires de E.

Projecteurs

On se place dans I’espace vectoriel
R4[X] des polynémes a coeflicients réels, de
degré inférieur ou égal 4 4. On considere
I"application 7 qui, a tout polynéme P =

4
Z ay X* associe :

k=0
2
Z (0778 Xk
k=0

Montrer que 7 est un projecteur de R4[X],
puis déterminer son image et son noyau.

W Soit £ un R—espace vectoriel, et p et
g deux projecteurs de E tels que :

Impc Kerg

366

Onpose:r=p+g—pog.
Montrer que r est un projecteur de E, puis dé-
terminer son image et son noyau.

Soient E et F deux R-espaces vecto-
riels, f une application linéaire de E dans F,
et g une application linéaire de F dans E.

On suppose que :
fogof=f.gofog=g

54.a) Vérifier que f o g et g o f sont deux
projecteurs, en précisant leurs espaces
respectifs de départ.

54.b) Montrer que :
E = Ker(f)a®Im(g)

et:

F = Ker(g) ® Im(f)
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Probabilités

Introduction

Compter ... Dénombrer, inventorier, répertorier : avant de pouvoir dé-
terminer une probabilité, il est nécessaire de faire un « inventaire » des
situations possibles. C'est le domaine de I'analyse combinatoire, ou I'on
s'intéresse aux configurations possibles, soit d’'une collection d'objets,
soit d’un ensemble de situations.

L'analyse combinatoire permet de mettre en place les axiomes des es-
paces probabilisés, et de construire les variables aléatoires discrétes,
qui ne prennent gu'un nombre fini (ou dénombrable) de valeurs; on
arrive ainsi rapidement a la conclusion selon laquelle certains phéno-
menes aléatoires nécessitent |'utilisation de variables (aléatoires) conti-
nues, qui peuvent prendre toutes les valeurs réelles possibles dans un
intervalle fini ou infini.
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1. Factorielle
Définition
Soit n un entier naturel non nul. On appelle factorielle de I’entier non nul n la quantité :

n
n!:1x2><3><...><n=l—[k
k=1

Par convention :

Exemple

31=1x2%x3=6 , 4!=1x2x3x4=24 , 5!=1x2x3x4x5=120

n ! représente le nombre de fagons de permuter n objets.

Exemple

Quel est le nombre de facons de placer 125 étudiants dans un amphithéatre de 125 places ?
11 suffit de déterminer, de maniére récursive, I’emplacement de chaque étudiant pour un ordre
arbitraire fixe d’étudiants, Pour le premier étudiant, il y a 125 choix possibles. Il n’y en a plus
que 124 pour le second. Et 123 pour le troisiéme. Ainsi de suite ... Ce qui donne, au final :

125 ! possibilités = 1 X 2 x 3 X ... X 125 possibilités
ie.

1882677176888926099743767702491600857595403648714924258875982315083531
5633161359886688293288949592313364640544593005774063016191934138059781
888345755854705552432637556500713 1770880000000000000000000000000000000

On peut également représenter ce raisonnement de maniére graphique, en représentant le
nombre total de possibilités comme le nombre de feuilles d’un arbre avec 125 branches is-
sues des racines, 124 branches issues de chacune des premiéres 125 branches, 123 branches
issues des deuxieémes, etc. Etant donné qu’un tel dessin est impossible i représenter en réa-
lité, vu le nombre astronomique de branches, on comprend aisément I’intérét du raisonnement
itératif non graphique, et de la définition formelle de la factorielle !
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2. Formule de Stirling’
. nle"
lim —— =1
Rt gt N2 n
que I’on peut aussi écrire, sous forme d’équivalent lorsque ’entier n tend vers I’infini :

n!~N2nmn (E) ;
e

La formule de Stirling permet d’obtenir une estimation asymptotique de n!, lorsque
I’entier n tend vers 1’infini :

n 1 I 139 571
I~ V2 (E) 1+ + - + +
& T\ e 12n ' 28812 5184010 & 248832015

Toutefois nous n’aurons besoin, dans ce qui suit, que du premier terme de ce développe-
ment.

Démonstration : On ne donnera pas, ici, de démonstration compléte. La formule de
Stirling peut étre obtenue 2 I'aide des intégrales de Wallis? :

¥l Fig
5 5
fsin"tdt:f cos"tdt , nelN
0 0

On obtient, pour tout entier naturel p :

: 2p)! 3 47 (p 1y
f sin’tdr=n % : f sin?Pt rdr = &
0 2EPELP D) 0 2p+ D!

Le lecteur intéressé pourra trouver une tres jolie démonstration dans [27]. [ ]

1. James Stirling (1692-1770), mathématicien écossais. Il apporta de nombreuses contributions a 1’étude
des séries numériques. En ce qui concerne la « formule de Stirling », Abraham de Moivre avait déja montré
que, lorsque 'entier n tend vers Iinfini, n! ~ C n"2 ¢, ol C est une constante positive. La contribution
de James Stirling fut d’identifier la constante ( \/ﬂ).

2. John Wallis (1616-1703), mathématicien anglais, spécialiste de calcul différentiel et intégral. C’est lui
qui introduisit la notation « co ». A c6té de son ceuvre mathématique, il s’ intéressa aussi a la phonétique, et
est considéré comme un des précurseurs de 1’orthophonie.
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Arrangements

1. Arrangements
Définition
Soit n un entier naturel non nul. Pour tout entier naturel p < n, le nombre de fagcons

de choisir, de facon ordonnée, p éléments distincts parmi n est appelé arrangement
de p éléments parmi n.

Il est aisé de calculer ce nombre en utilisant un raisonnement itératif, équivalant a I’usage
d’un arbre. Pour le premier choix, on a n possibilités, pour le deuxieme, il en reste n— 1,
et ainsi de suite jusqu’au p'®™, pour lequel il y a n—(p— 1) possibilités. Ce raisonnement
permet de démontrer les résultats suivants, ol on remarque également que A} = n!.

Proposition
Pour tout couple d’entiers naturels (#, p) tels que p <n # 0,

n!

AA=nn-1..n-p+1)= ——.
(n-p)!

2. Permutations

n étant un entier naturel non nul, le nombre de facons de permuter n objets est le nombre
d’arrangements de tous ces entiers, i.e. le nombre de possibilités de choisir, de facon
ordonnée, n éléments parmi n, et vaut donc n !. Par convention :

0!'=1
Exemple : Séquencage de I'’ADN

Une séquence d’acide désoxyribonucléique (ADN) est constituée d’un enchainement de quatre
nucléotides : I’adénine, la cytosine, la guanine, et la thymine. L’information génétique corres-
pond a I’ordre dans lequel s’enchainent les quatre nucléotides, qui se regroupent par paires :

e 1’adénine avec la thymine ;

e la thymine avec I’adénine ;

la cytosine avec la guanine ;

e |a guanine avec la cytosine.

el R oS

Figure 111.1- La molécule d‘adénine CsHsNs, la molécule de guanine CsHsNsO, la molécule de
cytosine C4HsN3 O, et la molécule de thymine CsN,0;Hg.
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Il y a done, au total, quatre combinaisons possibles par nucléotide.
Le nombre d’arrangements possibles de deux nucléotides distincts correspond au nombre de
facons de choisir, de facon ordonnée, deux éléments parmi quatre :

!
Aﬁ=;—i=3x4=12

3. Arrangements avec répétitions

Soit n un entier naturel non nul. Pour tout entier naturel p < n, le nombre de facons
de choisir p éléments, non nécessairement distincts, parmi n, vaut p". Notons que ce
nombre est égal au nombre d’applications d’un ensemble a n éléments dans un ensemble
a p éléments.

Démonstration : Pour le premier élément, il y a n choix possibles ; pour le second, il y
a encore n choix possibles ; ... et, ce jusqu’au pe™e, -
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112 Combinaisons

1. Combinaison ou coefficient binomial
Définition

Soit # un entier naturel non nul. Pour tout entier naturel p < n, le nombre de fagons
de choisir, dans un ordre quelconque, p éléments distincts parmi n, est appelé com-

. . ry » - ) n e 9
binaison de p éléments parmi n, que 1’on note ou CF. Cette quantité s’appelle
p
aussi coefficient binomial de parametres n et p.

On peut utiliser 1a formule des arrangements pour calculer C?. En effet, si 1’ordre n’im-
porte pas dans le nombre de choix de p éléments parmi n, on peut‘ d’abord dénombrer
n!
(n—p)!
que chaque partie non ordonnée de p éléments sera dénombrée p ! fois dans les arrange-
ments, car le nombre de fagons d’ordonner les p éléments est le nombre de permutations

de p. Ceci démontre le résultat suivant :

le nombre de choix quand I’ordre importe, ¢’est-a-dire AL = , puis remarquer

Proposition
Pour tout couple d’entiers naturels (#, p) tels que p < n # 0,

P n AL n!
C}’I: -—_ :—':ﬁ.
p/ \n—p/ pl pln-p)!

Le coefficient binomial est noté, indifféremment, C? ou ( ) La notation ( ) est celle utilisée

dans les pays anglo-saxons. En France, la norme ISO 31 préconise, sans la rendre obligatoire,
cette derniere notation. L’un des auteurs de cet ouvrage préfere, par choix, garder la notation
C?. plus claire, et qui évite aussi beaucoup de confusions dés que 1’on travaille avec des
coeflicients binomiaux et des matrices colonnes.

2014 Dunod.

Exemple : Courses de chevaux...

Au tiercé, si 'ordre n’importe pas, le nombre de combinaisons possibles de trois chevaux
parmi dix est :

=4x3x10=120

o 10y 10! 8x9x10 8x9x10
W=\3 1731717 31 T 2x%3
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2. Formule du binédme de Newton
Soit n un entier naturel non nul. Alors, pour tout couple de réels (a, b) :

11

il
!
(@+b)' =Y Chd b= " gkpr

'(n—Fk)!
o — k!'(n—1k)!
Démonstration : Cette propriété est bien connue. Pour la démontrer, il suffit d’écrire :

(a+b)'=(a+b)(a+b)---(a+h),

n fois

puis de développer ce produit, en remarquant que le nombre de fois ot 1’on obtient
le terme a* b"* est exactement égal au nombre de fagons de choisir une partie non
ordonnée de k éléments parmi les n termes du produit. ]

Corollaire
Soit n un entier naturel non nul. Alors :

Démonstration : Il suffit d’appliquer la forme du bindme de Newton a (1 + 1)". ]

3. Le triangle de Pascal

Soit 7 un entier naturel non nul. Alors, pour tout entier naturel k <n—1:

k k+1 _ ~k+1
CoAC T =60

n N n\ _ (n+l
k] \k+1) \k+1
Cette propriété peut étre représentée a 1’aide du triangle suivant :

{1}
{1, 1}
{1, 2, 1}
{1, 3, 3, 1}
{1,4, 6,4, 1}
(1, 5, 10, 10, 5, 1}
(1, 6, 15, 20, 15, 6, 1}
{1, 7, 21, 35, 35, 21, 7, 1}

Figure 112.1- Le triangle de Pascal.

soit

La premiére ligne du triangle donne le coefficient binomial C? = ( (1)) = 1.

La seconde ligne du triangle donne les coefficient binomiaux C3 = (3) et Cy = (?)
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La troisieme ligne du triangle donne les coefficient binomiaux Cg = (0), Cé = ( : ) et

C% = (2), et ainsi de suite : la n*“* ligne du triangle donne les coefficients binomiaux

Cﬁz(;)pourpzo,pzl,...,p:n.

Pour tout entier i de {2,...,n}, et tout j de {2,...,n}, le coefficient binomial situé
ligne i, colonne j, s’obtient en ajoutant les coefficients binomiaux situés ligne i — 1,
colonne j— I, et ligne i — 1, colonne ;.

Démonstration : 11 suffit de calculer :

n! n!
-l ke D) ln—k=11
nl(k+1) nl(n - k)
S Ikt Dm-0] G+l —&k=1ln -5
n!lk+1) 5 nln—k)
k+D!n-K! *+D'!'n-%!
nlk+1+n-%k)

k k+1 _
C,+C;™ =

k+1D!'(n-k)!
B n!ln+1)
- k+D!(n-k)!
B (n+1)!
B k+D'(n+1-k-1)!
= Coil

4. Formule de Vandermonde'

Soient m et n deux entiers naturels. Alors, pour tout entier naturel k < m+n :

i J _ ok
Z Cm Crr - Cerrr

O<i<m, 0<j<n

i+j=k

Démonstration : La formule de Vandermonde se démontre a ’aide des identités poly-
nomiales suivantes :

Yxe R:

m+n m+n

m+n { t m+n—£ t £
(142" = 3" Chyy a1 =Y Clox
[’:U f=0

1. (1735-1796), mathématicien francais, mais aussi économiste, musicien et chimiste.
Il est surtout connu pour le déterminant qui porte son nom. Mais d’aprés Lebesgue (Conférence d’Utrecht,
1937, [23]), le déterminant ne serait pas de lui...
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et

(1 +x)"™" = (1 +x)" (1 + x)"

Il

m 1
D CL 1 | S Ch a1
i=0 =0

m

Il

a |3
i=0 =0
m n
= >y Caeh

=0 j=0
m+n

_ i
- 5y ad
k=0 sigm, 0<i<n

i+j=k

(On a commencé par effectuer un changement d’indices, en posant i + j = k; k varie
doncde 0 am+n.)

11 suffit ensuite d’identifier, pour tout entier i de {0,...,m + n}, les coeflicients des
puissances de x, ce qui conduit, pour tout entier k de {0, 1,...,m+n}a:
ck. = ci ¢! -
m+n m=n
O<ism, 0<j<n
i+j=k
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Espaces probabilisés

Dans ce qui suit, nous présentons les axiomes du calcul des probabilités, communs aux

situations discrétes ou non.

La modélisation mathématique probabiliste utilise le langage des ensembles. Les cor-

respondances avec les concepts probabilistes sont les suivantes :

Evénement impossible
Evénement certain

Epreuve, ou réalisation, ou issue,
ou issue élémentaire

Evénement

L'épreuve w est une réalisation possible

de I'événement A

L'événement A implique I'événement B
L'événement A ou I'événement B ont lieu
L'événement A et |I'événement B ont lieu
L'événement A et I'événement B sont incompatibles

L'événement contraire de A

« Ensemble vide » 0
« Ensemble plein » Q

«élémentw» w e Q

« Sous-ensemble de Q »,
AcQ

w e A

AcCB
AUB
AnB
AnB=0
A, ou A

De méme qu’il est préférable de ne pas confondre 1’élément w avec le singleton {w}, il

faut distinguer I'issue w € Q avec I’événement (élémentaire) A = {w} C Q.

1. Expérience aléatoire

Définition

On appelle expérience aléatoire une expérience renouvelable et qui, renouvelée dans
des conditions identiques, ne donne pas nécessairement le méme résultat a chaque

fois.

Exemple

Lancer plusieurs fois une méme piece parfaitement équilibrée est une expérience aléatoire.

2. Evénement, Univers

Définition

Etant donnée une expérience aléatoire, on appelle épreuves élémentaires les diffé-
rents résultats possibles de cette expérience. Leur ensemble constitue I’univers €.
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Exemple

Une enseignante de mathématiques doit concevoir un sujet d’examen. Elle veut que ses étu-
diants réussissent celui-ci le mieux possible. Elle est donc intéressée par les événements sui-
vants :

e & : lanote minimale & I’examen est supérieure ou égale a 90 sur 100;
e & lanote minimale 4 I'examen est supérieure ou égale a 95 sur 100;
e &3 : lanote minimale a I’examen est supérieure ou égale a 99 sur 100.

L’enseignante considere alors la famille d’événements « la note minimale a I’examen est de N
sur 100, ou N varie continiment de 0 a 100. L’enseignante est ainsi amenée a considérer 1’es-
pace de toutes les épreuves possibles, Q, et a I’identifier avec I'intervalle [0, 100]. On peut alors
s’intéresser 4 I’épreuve w : la note minimale 4 I’examen est 96,5 sur 100. L3, les événements
&) et &; sont réalisés, alors que I’événement E; ne I'est pas. Dans 'espace des possibilités Q,
I’épreuve w est identifiée avec 1’élément 96,5. L’événement &, est représenté par I'intervalle
[90, 100], I’événement &; est représenté par I'intervalle [95, 100], et I'événement &3 par I'in-
tervalle [99, 100]. L'appartenance « w € &; » est équivalente & « I'événement & est réalisé
par I’épreuve w ». Du fait que &; C &, 'appartenance « @ € &z » implique « I’événement &,
est réalisé par I’épreuve w », sans y étre équivalent ; de méme pour « w € &; ».

» Tribu (ou famille d’événements observables, ou c—algébre)

Etant donné un ensemble Q, une tribu (aussi appelée famille d’événements observables,
ou, encore, o—algebre) sur  est un sous-ensemble A de I'ensemble P(L2) des parties
de Q telle que :

e Q) appartient a A;
e Pour tout A de A, son complémentaire, noté A, ou encore, A, appartient lui aussi a A.

e Pour toute suite (A,),cn d’éléments de A, la réunion U A, appartient aussi & A.
neN

Les éléments de la tribu A sont les événements.

3. Probabilité
Définition

Soit € un ensemble (aussi appelé univers), et A une tribu (ou famille d’événements
observables) sur €. On appelle probabilité sur (Q, A) toute application P de A dans
[0, 1] telle que :

o« P(Q)=1;

e pour toute suite (A4,),cn d’événements incompatibles (i.e. deux a deux disjoints) :

P UA,, =§P(An)
n=1

neN*

(Q, A, P) est appelé espace probabilisé .
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Définir une probabilité sur (Q,A) consiste, tout simplement, & attribuer un « poids » a
chaque événement observable. L'événement certain a, bien évidemment, une probabilité de
1 = 100 %. C’est le sens du premier point dans la définition ci-dessus. La probabilité de
I’'union d’un nombre fini ou dénombrable d’événements deux a deux incompatibles doit étre

égale 2 la somme des probabilités de ces événements (¢’est le second point (sigma-additivité)).

Propriéteé
Soit Q un ensemble (ou univers), et A une tribu (ou famille d’événements observables)
sur £2.

Toute probabilité sur (Q, A) vérifie les propriétés suivantes :

1. Probabilité de I’événement impossible : P(0) = 0;

2. Probabilité de I’événement complémentaire :

P(A°) = 1 - P(A).

3. o-additivité :

Si (A,)uen est une suite d’événements disjoints, alors :
+oo +o0
Pl Jan| =D Pan.
n=0 n=0

4. Continuité décroissante :
Si (Ay)uen est une suite d’événements telle que, pour tout entier naturel n,

Ay C A, alors :
+0oo
lim P(A,) = P(ﬂAn].
n—+oe
n=0

5. Inégalité triangulaire :
Si (A;),en est une suite d’événements, alors :

P(GA,,} < i P(A,)
n=0 n=0

» Probabilité sur un univers fini

Une probabilité sur un univers fini {2 est une application P de P(€) dans [0; 1] telle que
P(Q) = 1 et, pour toutes parties disjointes A et Bde Q:

P(AU B) = P(A) + P(B)

» Evénement presque sQr

Soit (Q, A, P) un espace probabilisé. Un événement A est dit presque sir si sa probabi-
lité vaut 1 :
PA)Y=P{£}) =1
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» Evénement négligeable

Soit (Q, A, P) un espace probabilisé. Un évémenent A est dit négligeable si sa probabi-
lité vaut O :
PlA)=10

e  Nous rencontrerons, par la suite, des exemples d’événements négligeables qui ne sont pas

\ . - 'y . ~ .
pour autant impossibles (événement vide), méme dans le contexte discret.

» Systéme complet d'événements

Soient Aj,...,A, des événements d’un espace probabilisé (Q, A, P). On dit que
(Ay,...,A,) est un systeme complet d’événements de (Q,P) si les événements
Ay, ..., A, sont deux a deux disjoints (i.e. A; NA; =0sii# j)etsi:

OA,; = Q
=1

On dit aussi que Ay, ..., A, constituent une partition de Q2. On a, en particulier :

P[EJAI- = Zn:P(A,;) =1
=1 i=1

» Equiprobabilité de deux événements

Soit (Q, A, P) un espace probabilisé. Deux événements A, et A, sont dits équiprobables
s’ils ont la méme probabilité.

» Equiprobabilité de n événements, n € N

Soit (Q, A, P) un espace probabilisé, et n un entier naturel non nul. Des événements Ay,
..., A, sont dits équiprobables s’ils ont la méme probabilité.

Propriéteé

Si les événements Aj,...,A, d'un systtme complet (Ay,...,A,) d’événements de
(Q, A, P) sont équiprobables puisque fini. 11 est trés facile de calculer leur probabilité.
Ils sont, par hypothése, incompatibles entre eux. Il en résulte :

P(AjUAU...UA)=P@A)+P(A2)+...+P(A)

L’équiprobabilité signifie que :

P(A)=P(A2)=...= P(Ap)
et
PAUAU...UA)=P() =1
Par suite : i
P(A))=P(A))=...=P(A,) = -
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Les jeux de hasard

Le hasard intervient, ou semble intervenir, dans de nombreux phénomenes, a com-
mencer par les jeux dits de « de hasard »' . De facon plus concréte, toute mesure
physique est, elle-méme, entachée de « bruit » (qui peut résulter, notamment, d’une
préparation imparfaite du systéme a mesurer, d’une perturbation thermique, etc.) Aux
échelles les plus infinitésimales, ce bruit est de nature quantique, puisque des parti-
cules comme les photons peuvent étre concernées. Le « principe d’incertitude de Hei-
senberg »? [46] établit que I’'on ne peut mesurer simultanément la position et I’impul-
sion d’une particule avec une précision infinie.

A AllA AllA AllA A
& & | O Q| < S| #
o | O < o~
* *| o ol S| ® v
\4 VIV VIV VIV |4

Un carré d'as...

Une modélisation dite « déterministe » ou les événements sont régis par le principe
de causalité?, doit alors laisser place 4 une modélisation « probabiliste », puisque, bien
évidemment, lorsque I’on considere un phénomene aléatoire, on ne peut en prédire
le résultat avec certitude. Il est toutefois intéressant d’établir des modeles mathéma-
tiques qui permettront une étude plus précise. A cet effet, on aura besoin d’un espace
probabilisé, composé d’un ensemble (« I'univers » €2), d’une famille de parties de cet
univers (une « tribu » de sous-ensembles A C €2), et, bien évidemment, une probabi-
lité, qui représente la fonction mathématique modélisant le phénomene probabiliste
(nous renvoyons a [28] pour une étude plus générale des tribus).

1. Ces jeux de hasard furent, de fait & ’origine des premiéres théories probabilistes. C’est Blaise Pascal
(1623-1662), qui fut un des premiers contributeurs. Il envoya a Pierre de Fermat, en 1654, une méthode
de résolution du fameux « probléme des partis » , ol deux joueurs jouent a un jeu de hasard en trois
parties gagnantes ; chaque joueur mise la méme somme d’argent. Mais le jeu est interrompu avant la
fin. Comment faut-il partager les enjeux misés ?

2. Werner Karl Heisenberg (1901-1976), physicien allemand, & I’origine de la mécanique quantique,
qui lui valut, en 1932, le prix Nobel de physique. Sa présentation de la mécanique quantique est extré-
mement intéressante, car elle utilise, initialement, un formalisme matriciel.

3. Un fait — la cause — en engendre un autre.
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Dans certaines situations, en particulier lorsqu’il s’agit de modéliser des nombres
aléatoires diffus (ce que nous appellerons les « variables al€atoires continues », utiles
pour comprendre les phénomenes naturels et les études sociales a grande échelle),
il ne sera pas possible d’associer une probabilité a chaque issue élémentaire (i.e.
a chaque w € ). En particulier, nous ne pourrons pas nécessairement considérer
qu’un singleton {w} est un événement A. Toutefois, il devra toujours étre possible de
définir la fonction de probabilité P sur ’ensemble de tous les événements A qu’on
a le droit de considérer (i.e. la tribu qu’on choisit d’utiliser). Nous n’insisterons pas
sur ce point technique dans cet ouvrage, car il releve de la théorie mathématique dite
« de la mesure » ; il sera néanmoins évident, en fonction du contexte dans lequel on
se place, de déterminer les cas ou les singletons sont, ou non, des événements. Dans
le premier cas, on parle de situation discrete.
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Lancer de dés

Considérons le lancer de deux dés. Le choix le plus simple pour désigner I’'univers
est Q = {(i, j)i,j=1,2,...,6}. Cet univers est composé de 36 épreuves élémen-
taires. Supposons que les dés ne sont pas pipés, et que le lanceur ne contrdle pas les
résultats, ce qui signifie que tous les résultats sont équiprobables. Chacun des 36 élé-
ments w = (i, j) de Q peut étre considéré comme un événement {w}, ces 36 événe-

ments forment un systeme complet et sont équiprobables, de sorte que P ({w}) = 3%
Calculons la probabilité de I’événement A : « la somme des deux chiffres qui sortent

est supérieure ou égale a dix, mais strictement inférieure a douze ». Nous avons donc :
A = {(5,5),(5,6),(6,5),(6,4),(4.6)] .

La probabilité cherchée vaut donc

5
P(A) = %P({w» = o
Mais, si I’'on demande également que le résultat d’un des dés soit six, ceci signifie
que le résultat (5,5) n’est pas autorisé ; il faut donc chercher la probabilité de 1’évé-
nement :
C =1{(5,6),(6,5),(6,4),(4,6)}.

Cette probabilité vaut :
P(C) = d = ~1—
36 9
Mais, d’un autre coté, si on consideére que 1’on a restreint I’ensemble des possibilités
en demandant qu’un des dés ait le numéro 6, cela signifie que 1’on est en train de

changer I’univers, qui est donc :
§ = {(6; 1); (1; 6); (6; 2); (2; 6); (6; 2); (2; 6); (6; 4); (4, 6); (5;6); (6, 5); (6;6)}

Il n’y a que onze possibilités. La probabilité de I'événement A sachant que I’on doit
obtenir au moins un 6 devrait donc devenir la probabilité de I’événement :

{(6:4); (4, 6); (5;6); (6;5)}

lorsque I’univers est S, i.e. % Nous allons voir comment raisonner ainsi de maniere
systématique et aisée.

La réponse a la question P(C) = ? n’est pas identique a la réponse a celle qui
demande « quelle est la probabilité que la somme des deux chiffres qui sortent soit

supérieure ou égale a 10 et strictement inférieure a 12, si on a observé que I'un des
deux des vaut 6 ? »
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Un lancer de dés...

Imaginons qu'un ami vous propose un jeu ou il faut s’acquitter de la somme d’un
euro pour avoir le droit de lancer deux dés, un rouge et un bleu, et ot I’on gagne deux
euros si la somme des deux numéros obtenus est paire, i.e. si ’événement A s’est pro-
duit. Ce jeu semble équitable, nous verrons, ultérieurement, qu’il subsiste des choses
intéressantes a ajouter sur le sujet. Mais supposons maintenant que, si I’on accepte
de s’acquitter de cing centimes de plus, on acquiere le droit de savoir si le numéro
sorti sur le dé bleu est, ou non, supérieur ou égal a deux, et, partant, d’abandonner et
de récupérer sa mise. Comme I’événement B est indépendant de celui qui détermine
le gain, il est alors possible de refuser de jouer ! En effet, I'information concernant
I’événement B n’a pas d’influence sur 1I’événement A, et n’a donc aucune valeur. A
une échelle beaucoup plus impressionnante, certaines compagnies prétendent vendre
de I’information utile pour comprendre des opportunités d’investissement dans les
marchés financiers. Les meilleures entreprises, comme Bloomberg, ont une réputa-
tion de donner des informations fortement liées aux mouvements des actions dans
ces marchés, alors qu’il existe une multitude de petites compagnies qui parviennent a
vendre des informations qui sont, en réalité, indépendantes de ces mouvements, a des
investisseurs naifs et avides de connaissances que n’auraient pas leurs compétiteurs.
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114 Conditionnement

La notion de conditionnement est un outil fondamental de la théorie des probabilités,
dans la mesure ou toute information supplémentaire concernant la réalisation d’un évé-
nement spécifique A modifie la vraisemblance d’un événement B.
1. Probabilité conditionnelle
Définition
Soient A et B deux événements d’un espace probabilisé (€2, P), avec P(B) # 0. On
appelle probabilité conditionnelle de I'événement « A sachant B » la quantité, notée

P (A|B) telle que :
P(ANB)

P(A|B) = P(B)

2. Formule des probabilités composées

Soient A et B deux événements d’un espace probabilisé (€, P). Alors :
P(A N B) = P(A|B) P(B) = P(B|A) P(A)

Démonstration : Si la probabilité de 1I’événement B n’est pas nulle :

P(ANB)

P(A|B) = PB)

et donc :
P(AN B) = P(A|B)- P(B)

Il est clair que si la probabilité de I’événement B est nulle : P(A N B) = 0.
Ainsi, dans tous les cas : P(A N B) = P(A|B) P(B).
A et B jouant des roles symétriques, on démontre de méme I’ autre égalité. ]

3. Formule des probabilités composées généralisée

Soit (Ay,...,A,) un systeme d’événements d’un espace probabilisé (€2, P) tel que :

P[@A;] #0

Alors :

P[ﬂAi] =P(A1) P(A2JA)) P(A3lJA1 NA) ... P(A4JA1N...NAy)
i=1

Avec le méme argument que ci-dessus, on peut s’affranchir de I’hypothese P [m A;—] #0
=1

(voir page 106).

Démonstration : La démonstration se fait par récurrence sur ’entier n. ]
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Exemple

Considérons un jeu de 52 cartes a jouer, qui contient quatre dames distinctes, et donc 48 cartes
qui ne sont pas des dames. Calculons la probabilité qu'une main de 5 cartes ne contienne
aucune dame, puis celle qu’elle contienne exactement une dame. A cet effet, on procéde par
itération, en désignant par A; I’événement « la carte numéro i n’est pas une dame ». Dans le
premier cas, on cherche :

5
P[ﬂAt-] = P(A) P(A2lA) P(As3lA1 N Ar) P(A4A; N A2 N A3 P(As]Al N ... 0 As)
i=1
48 47 46 45 44

5251 5049 48
35673

54145
~ 0,66

Dans le second cas, il s’agit d’abord de déterminer laquelle des cing cartes est une dame. Il y a
donc cing événements disjoints B; correspondant, ot B; désigne I’événement « la carte numéro
i est une dame, et les quatre autres cartes ne le sont pas ». Calculons, dans un premier temps :

P(B)

Il

P(A‘{ N éAi)
P(AS) PA2JAS) PASIAS 0 A2) P(A4AS 1 Ax 1 As) P(ASIAS 0 A 1 Ap N Ay)
4 48474645 3243

= 0,060
En utilisant le méme raisonnement, on trouve aussi

48 4 474645
Piy= oo s = P(B\) = P(B3) = P(Bs) = P(Bs)

La probabilité cherchée est donc

5
5% 3243 3243
P Bi = — = ~ 5 S
[U ] SPB) = —5705 = Togag = 030

i=1

4. Formule des probabilités totales

Soit (Ay,...,A,) un systeme complet d’événements d’un espace probabilisé (Q, P) (i.e.
n

les A;, i = 1,...,n sont deux a deux disjoints, et tels que U A; = Q). Alors, pour tout

=1

événement B de (Q2, P) :

P(B) = P(BlA1) P(A1)+...+ P(B|A,) P(A,) = ) P(BIA) P(A)

n
i=1

Démonstration : Les ensembles BN Ay, ..., BN A, constituent une partition de B, i.e.
une réunion disjointe d’événements tels que :

B=OBﬁAi
=1
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On en déduit alors, par additivité :
i n
P(B) = Z P(BNA)) = Z P(B|A) P(A) -
i=1 i=1

Exemple

Une population de lapins comporte un tiers de lapins males et deux tiers de lapins femelles.
6 % des lapins miles sont blancs, contre 4 % des lapins femelles. On cherche A déterminer la
probabilité qu’un lapin choisi au hasard, et dont on ne connait donc pas le sexe, soit blanc.
On dispose donc de deux systémes complets d’événements :

o (Linae, Liemene) © «le lapin choisi est un méle, le lapin choisi est une femelle » ;
® (Luiancs L dune autre couteur) © <« l& lapin choisi est blanc, le lapin choisi n’est pas blanc ».

On a alors :

P(Lblanc) = P(-gblanc‘-ﬂmﬁ]e) P(‘Lmﬁle) i" P(-gblanclgfcmclle) P(Lfemellc)
= 0,06 x = +0,04 x =
3 7 3

150
~ 0,047

L’ utilisation de la formule des probabilités totales dans cet exemple est typique de questions
que I’on rencontre en théorie de la décision.

De fagon plus précise, cet exemple peut étre considéré comme « précurseur » d une méthodo-
logie dite « de Bayes », pour évaluer la probabilité d’un événement non observé, sachant qu’un
autre événement a été observé, connaissant les probabilités dites a priori des événements non
conditionnés, a partir d’un modéle pour les probabilités conditionnelles (dans le sens opposé
a ce que ’on cherche).

Corollaire (formule de Bayes)
Soient A et B deux événements d’un espace probabilisé (Q, P). Si P(A) > 0 et P(B) > 0,

alors :
P(BlA) P(A) P(B|A) P(A)

PAB) = =) = PBIAP @A) + P(BIAY P (A

Démonstration : D’aprés la formule des probabilités conditionnelles :

P(ANB)

P(A|B) = —

Grice a la formule des probabilités composées :

P(A N B) = P(A|B) P(B) = P(B|A) P(A) (114.1)
Par suite :
P(AIB) = P(ANB) _ P(B|A) P(A)
P(B) P(B)
La formule des probabilités totales permet de transformer le dénominateur de la premiere
formule de Bayes, pour obtenir la seconde. ]
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Corollaire (formule de Bayes généralisée)
Soit (A, ...,A,) un systeme complet d’événements d’un espace probabilisé (Q, P) (i.e.
n

les A;, i = 1,...,n sont deux a deux disjoints, et tels que UA; = Q), de probabilités

i=1
respectives non nulles. Alors, pour tout événement B de (Q, P) tel que P(B) # 0 :
P(B|A;) P(A})

n

D" P(BIA) P(A)

k=1

P (Ai|B) =

Démonstration : Comme dans le corollaire précédent, il suffit d’appliquer la formule
des probabilités totales :

B = T4iN5)

P (B|A;) P(A)

P(B)
P (BIAj) P(A)

> P(BIAY) P(AY) "
k=1

Exemple

En Europe, environ 65 personnes sur mille possedent une mutation du facteur de Leiden (Fac-
teur V). Cette mutation affecte la coagulation du sang, avec des risques importants de throm-
bose et d’embolie. Un premier test de résistance plasmatique & la protéine C activée permet de
détecter les personnes susceptibles de présenter cette mutation dans 90 % des cas. Par contre,
il y a des faux positifs dans treize cas sur cent.
Pour déterminer la probabilité qu’une personne présentant un résultat positif a ce test soit
porteuse de cette mutation, on commence par définir les événements
e My : la personne est porteuse de la mutation ;
e P*: le test est positif.
On a alors :
65 90 13
PMy)=— , P@P'My)=— , PPIM;)=—
M) = 1600 ®IM) = 106 (Pim7) 100

On obtient alors, grice a la formule de Bayes :

P (P IMy) P(My)

P(My|P) = - -
PPHMy) P(My) + P(PHIME) P(MS)
90 65
_ 100 1000
- 90 65 . 13 035
100 1 100 1000
B 90 x 65
B 90 x 65 + 13 x 935
ﬁ 90
B 277
~ 0,325.
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115 Indépendance

Définition
Deux événements A et B sont dits indépendants si

P(A N B) = P(A) P(B).

Exemple

Reprenons I"exemple du jet de deux dés non pipés. On peut réinterpréter le fait que le joueur
ne contrdle pas les numéros qui sortent, en remarquant en particulier que les événements liés
a un dé sont indépendants des événements liés a 1’autre. En particulier, comme chacun des
deux dés peut étre associé a son propre univers des possibles ayant six résultats élémentaires
équiprobables, certains calculs en sont facilités.

Par exemple, on obtient alors une démonstration intuitive du fait que les résultats du jet des
dés sont équiprobables, puisque, pour tout w = (i, j) de Q,

PG, ph = P(«le numéro du premier dé vaut i et le numéro du second dé vaut j »)

= P («le numéro du premier dé vaut i ») x P («le numéro du second dé vaut j »)
I 1

6 6
1

36

Calculons aussi la probabilité de I’événement A : « la somme des deux numéros qui sortent est
paire », et celle de B : « le numéro du second dé est inférieur ou égal a 2 ». A priori, comme
I’événement A dépend simultanément des deux dés, le calcul de sa probabilité pourrait ne pas

étre évident. Mais, par symétrie, on comprend, intuitivement, que cette probabilité doit étre
égale a celle de son événement complémentaire, et donc que :

2PA)=1

On peut également énumérer toutes les possibilités parmi les 36 pour en étre sir. Ainsi,

2014 Dunod.

1 2 1
P(A) = - PB)=-=-
(A) 7 (B) Sl
Calculons maintenant directement :
1
P(ANnB)=P({(1,1),3,1),(5,1,(2,2),4,2),(6,2)) = 3
Par suite,
P(ANnB)=P(A) P(B)
Les événements A et B sont donc indépendants. Bien que cela soit trés simple a déterminer, ce
n’est pas évident a priori.

Copyrig
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Variable aléatoire discrete
et loi associée

1. Variable aléatoire discréte
Définition
Soit (€, A, P) un espace probabilisé. On appelle variable aléatoire discrete sur

(Q, A, P) toute application X : Q — R, qui, a tout événement w de £ associe la quan-
tité X(w), et qui est telle que :

e I’ensemble des X(Q2) = {X(w), w € Q} des images des épreuves de ) est une partie
au plus dénombrable de R, i.e. ..., ce qui permet de « repérer » ses éléments par une
indexation de la forme :

X(€) = {xg, X1, o5 Xy o5}

e pour tout x; de X(Q), 'ensemble {w € Q, X(w) = x;} fait partie de la famille (ou
tribu) A d’événements auxquels on peut attribuer une probabilité par P.

Deés que I'univers £ est fini ou dénombrable, toutes les fonctions X définies sur € sont des
variables aléatoires discrétes. On se trouve, souvent, dans le cas d’univers dénombrables et
non finis.

Notations

1. Dans ce qui suit, on se placera, implicitement, dans un espace probabilisé
(Q, AP

2. Dans ce qui suit, I’abréviation « v.a. » sera utilisée pour « variable aléatoire ».

3. L’antécédent (image réciproque) X' (x;) de la valeur x; par la v.a. X, qui est, par
définition, un événement, s’écrira {X = x;}.

Propriéte
La famille de tous les événements {X = x;} est telle que :

P(X = xk) =]
X€ X(Q)

Pour représenter graphiquement une variable aléatoire discrete, il est aisé d utiliser un « dia-
gramme en bétons ». Quand celui-ci correspond a une distribution de données réelles, on
I’appellera aussi « histogramme ». Inversement, toute série de données réelles peut étre repré-
sentée grice a un histogramme, lequel peut, a son tour, étre interprété comme la distribution
d’une variable aléatoire. Pour une définition plus précise, on renvoie au concept de « loi »
défini ci-dessous.
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2. Loi d'une variable aléatoire discrete

Soit X une variable aléatoire discrete sur un espace probabilisé (Q, A, P). L'ensemble
X (Q) des valeurs possibles de X est donc au plus dénombrable. On le note {x; : kK € IN}.
On considere la fonction py définie sur X () par :

px (xx) = P(X = x)

Cette fonction s’appelle la masse ou la fonction de probabilité de X. On parle parfois,
abusivement, de loi ou distribution de X.

La loi, ou encore distribution, de X est la fonction d’ensembles Py définie sur toutes
les parties B de R par :

VBCR : Px(B)= ) PX=x)= ) px(x).

X EB xeB

1. Tl est intéressant de remarquer que la loi Py de X est déterminée par sa masse py, et inverse-
ment, d’ ol la possibilité de confondre les deux notions sans risque grave.

.
2. Ce n’est pas parce que deux variables aléatoires ont la méme loi qu’elles sont égales !

Exemple

Ainsi, considérons le lancer de deux dés, un dé rouge, et un dé vert. Si X est le chiffre qui sort
sur le dé rouge, et ¥ celui qui sort sur le dé vert, les variables aléatoires discretes X et Y sont
définies sur le méme espace probabilisé Q = {1,2,3,4, 5, 6}. Ainsi :

X(Q)=Y(Q)=1{1,2,3,4,5,6}

Si les deux dés sont non pipés, X et ¥ ont donc la méme loi.

Figure 116.1- Le lancer de dés...

Par contre, les variables aléatoires X et ¥ ne sont pas égales ; si tel était le cas, cela signifierait
que, pour tout événement w de 'univers des possibles €, on aurait X(w) = ¥(w), et donc que
tout lancer des deux dés permettrait, & coup siir, d’obtenir le méme numéro, ce qui n’est pas
le cas. De maniere équivalente, cela signifie que le lancer du dé rouge permettrait de prédire
a coup siir le numéro qui sort sur le dé vert, ce qui est bien siir choquant. La meilleure fagon
de comprendre pourquoi ce n’est pas possible est de faire 1"hypothése que les deux lancers
sont indépendants ; on se retrouve alors dans le cas de I’exemple précédent, ol les 36 résultats
possibles sont équiprobables. Le lancer du dé rouge ne donne aucune information sur celui du
dé bleu. Nous verrons ultérieurement que cet exemple permet de comprendre intuitivement la
notion d’indépendance pour des variables aléatoires.

3. Fonction d’une variable aléatoire discréte

Soit (€, A, P) un espace probabilisé, et f une fonction définie sur X(€2), a valeurs réelles.
La variable aléatoire discréte f(X) est appelée fonction de la variable aléatoire X.
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La formule ¥ = f(X) définit une autre variable aléatoire, puisque {¥ = f (x)} = {X = x}
pour tout x; € X (Q).

4. Variables aléatoires discrétes indépendantes

Deux variables aléatoires discretes X et Y définies sur le méme espace probabilisé
(Q, A, P) sont dites indépendantes si, pour tous x; € X (Q) et y, € Y (Q), les évé-
nements {X = x;} et {Y = y,} sont indépendants.

Dans ce cas, la « masse » de la paire (X, ¥), qui peut étre définie par :

pxy (X ye) = P({X = x} 0 {Y = ye})

a la forme d’un produit :

px,y (xk,ye) = px (xx) py (ye)

On obtient ainsi une regle de produit pour les probabilités des intersections de toutes les
paires d’événements basés sur X et Y.

Ces concepts se généralisent aisément a tout nombre fini de variables aléatoires dis-
cretes. En particulier, si X, X»,..., X, sont n variables indépendantes, alors, pour tout
xde Xz (Q), k=1,2,...,n,

PXi=xjetXo=xet...etX,=x,)=PX; =x)PX2=x)... P(X,, = xp).

Exemple

Si X et Y sont respectivement les valeurs obtenues en langant un dé rouge et un dé vert, et que
les deux lancers sont indépendants, alors pour tout couple d’indices (i, j) de {1,...,6} :

Xlu
6._

PX=ietY=)=PX=DP¥=))= 36

A =

De surcroit,

P (« X est pair et ¥ est un multiple de 3 ») = P (« X est pair») P (« Y est un multiple de 3 »)

"
3

=

1
6
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117 Fonction de répartition

Définition

On appelle fonction de répartition d’une variable aléatoire X la fonction, notée Fy,
définie pour tout réel ¢ par :

Fx(t)=Px(l-o0,fh)=PX<1t) = Z P(X = xi)

X eX(Q), xp<t

Exemples

1. Soit § la variable aléatoire donnant la somme des chiffres obtenus en langant deux dés a
six faces bien équilibrés. Sur I’espace de probabilités :

Q={G@j, G e l....68)
avec les 36 événements élémentaires équiprobables que nous connaissons,
SEp=i+j

On peut réaliser un tableau pour lequel I'élément situé ligne 7, colonne j, vauti + j,

213 |4 5 6 7
314|5] 6 7 8
41516 7 8 9
516 |7| 8 9 10
617 |8] 9 10| 11
71819101112

Laloi de S est déterminée par sa masse ps (k), définie pour les 11 valeurs k dans :
S(Q)=1{2,3,4,5,6,7,8,9,10,11, 12}

On calcule aisément :

unod.

5 2014 Di

1 2

Ps@=PS == @ =PE=Y= 2=
3

ps@=PS ===

5)=PS =5 = =1 ©6) = P(S =6) = —

Ps - =5 _36‘_9 s PS§ - = _36 5

= ST e L (8)=P(S=8) =~

Byl =S =05 =g s e =el = :
4 1

15'5(9)—P(S—9)_%_§

‘ 2
=, ps(UD=PES =11)=—=—,

3
] :P = = —
psil0y= B = 10) 12 36 18

36

~ ey 2t 1 b
opyrignt (

A

1
ps(12)=P(S =12) = 36
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La fonction de répartition de la variable aléatoire S est définie par :

Fs@)=Ps(l-c.)=PS <= > PX=x)

X1ES (), X<t
Calculons Fg(r) pourt =2,3,4,5,6,7,8,9,10,11, 12. Ainsi :

1

1 1 2
FsQ=ps@ =3¢ » Fs@=ps@+ps@)=g+2=7

1 2 3 1
Fg(d) = 23+ 3)+ h=—+—+—==
s(@) =ps(2)+ps Q)+ ps (4) 3%73%673% "5
et ainsi de suite. On note, en particulier, que F est croissante, et que
Fe(12)=1

2. Prenons un autre exemple élémentaire et traitons le rapidement. On s’intéresse au lancer,
de maniere indépendante, de trois pieces de monnaie. On suppose que la probabilité de
tomber sur « pile » vaut % pour chacune des pigces. On attribue la valeur 1 au cdté « pile »,
et 0 au coté « face ».

L’univers des possibles €2 possede huit éléments, qui sont les triplets de la forme (i, j, k),
ol i, j et k prennent les valeurs 0 et 1. En raison de I'indépendance, les huit résultats sont
équiprobables. On définit alors la variable aléatoire X, qui correspond au nombre de fois ot
les 3 pieces tombent sur « pile » non nécessairement de facon successive. X peut prendre
les valeurs 0, 1, 2, 3. Les événements possibles sont :

{X =0} = {(0,0,00
{X =1} =1{(0,0,1),(0,1,0),(1,0,0))
(X =2}={(0,1,1),(1,0,1),(1,1,0))
{X =3} ={(1, 1, D}

La loi de X est donnée par :
1 3 3 1
==, D=- 2)=-=, ==
rx(0) m px (1) 3 rx(2) 3 px (3) 3
La fonction de répartition de X est donc telle que :

si x<0

(= N )

si0<x< 1

B lah = sil<x<?2

si2<x<3

ool M=

—

si x=3

Théoréme

La fonction de répartition Fx d’une variable aléatoire discréte X est croissante sur R,
continue a droite, et bornée a gauche. Elle a pour limite 0 en —co et [ en +co,
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8 La loi de Bernoulli, de parameétre

Ik p < [0, 1]

Définition

On dit qu’une variable aléatoire discréte X suit la loi de Bernoulli de parametre
p € [0, 1] si elle ne prend que les valeurs O et 1, avec :

PX=l)=p , PX=0)=1-p

On note alors : X~ B(p)
®
0.8-
u I A
0.6
¢ @
0.4k
L « p=0.1
1 , ! p=03
02 p=05
1 - p=07
00 o0z 04 o6 08 10

Figure 118.1- Une représentation graphique de la fonction de probabilité pour la loi de Bernoulli,
pourp=0,1,p=03,p=05etp=0,7.
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Figure 118.2 - Une représentation graphique de la fonction de répartition de la loi de Bernoulli,
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Pour tout événement A de probabilité p, on définit sa fonction indicatrice I 4 par

lsiwe A

nA(“’)z{o Siwg A

16
1 st A estréalisé

0 si A n’est pas réalisé

La(w) = {

1. I, est une variable aléatoire de Bernoulli ; son paramétre p vaut P (A).

2. La variable de Bernoulli est utilisée le plus souvent pour désigner une expérience avec un

résultat binaire : un succeés, a qui I'on attribue la valeur 1, et un échec, a qui I’on attribue la

valeur 0.
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i<:\-8 La loi uniforme

INE) (sur un ensemble de réels)

Définition

On dit qu’une variable aléatoire discrete X suit la loi uniforme sur 1’ensemble de réels
{x1,...,x,} si, pour tout entier kde {1,...,n}:

il
P(X =)=~
n

ce qui signifie que la loi Px est la loi d’équiprobabilité.

396

La loi de Bernoulli est la loi uniforme sur {0, 1}.

Exemples
1.

Lors du lancer d’un dé a 6 faces non pipé, le chiffre qui sort suit la loi uniforme sur
{1,2,3,4,5,6}.

. Au casino de Monte Carlo, a la roulette, 1a boule peut tomber sur les valeurs entieres entre

1
0 et 36 de maniere équiprobable, ce qui signifie que la probabilité de chaque valeur est 77
La valeur obtenue est ainsi une variable uniforme sur {0, 1, 2, ..., 36}.

En revanche, a Las Vegas, la roulette posséde une case « 00 ». Chaque valeur a

s L : .
donc la probabilité 8 de sortir; la v.a. correspondante est uniforme sur 1’ensemble

{00,0,1,2,...,36}, bien que, & strictement parler, ce ne soit pas, si I’on se référe a la défi-
nition précédente, une loi uniforme. 11 suffit de remplacer la valeur 00 par —1 pour remédier
a ce probléme de notation.

L’apparition du double zéro 00 a Las Vegas peut étre interprétée comme une indication de
I"avidité des promoteurs du jeu dans cette ville du Far West, pour se donner un avantage
par rapport aux traditions européennes de fair play. On pourrait croire que les joueurs ne
seraient pas dupes, mais 1’ histoire pourrait donner raison a Las Vegas, si on mesure le suc-
ces d’un casino par le volume de jeu. Toutefois, bien que symbolique du succes des jeux
d’argent, Las Vegas fait maintenant pale figure dans ce domaine, en comparaison avec le
succes de I'industrie du jeu a Macao, région au régime administratif spécial de la Répu-
blique Populaire de Chine.
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Définition

On dit qu’une variable aléatoire discrete X suit la loi binomiale de parameétres
neN* et p € [0,1], B(n, p), si I'ensemble des valeurs possibles est
X(Q) =1{0,1,...,n}etsi, pour tout entier k de {0, 1,...,n}:

PX=R=Cpfl-py*= (Z)p" (1-py"*.

mﬁ”\ﬂx 1. On note alors :

\I‘, /

X ~ B(n, p)

2. La loi binomiale correspond au renouvellement, de mani¢re indépendante, de n épreuves de
Bernoulli de parametre p. Plus précisément, on dispose du résultat suivant :

1. De la loi de Bernoulli a la loi binomiale

Soit p un réel de l'intervalle [0, 1], et X1, ..., X,,, des v.a. indépendantes suivant la loi
de Bernoulli de parametre p. Alors, la somme X = X| + ... + X, suit la loi binomiale

B(n, p).

Inversement, toute v.a. X suivant la loi binomiale B(n, p) peut étre considérée comme la
somme de n v.a. indépendantes suivant la loi de Bernoulli de parametre p, ce qui signifie
qu’une loi binomiale B(n, p) peut s’interpréter comme celle du nombre de succes dans une
série de n expériences indépendantes pour lesquelles la probabilité de succes vaut p.

Démonstration : X vaut k si et seulement si on trouve, parmi les X;, k variables qui
valent 1, et n — k qui sont nulles. Les variables étant indépendantes, la probabilité d’une
telle configuration, ot les k variables qui sont €gales a 1 ont été choisies, est donnée par :

prop-(l=p)-(1=p)=pa-pr*.
N —
k fois n—k fois

Le nombre de facons de choisir les k variables qui valent 1 est précisement le nombre de
parties & k éléments pris parmi n, i.e. CX. Chaque choix correspondant 2 un événement
disjoint des autres, les probabilités correspondantes peuvent étre additionnées, ce qui
montre que :

P(X=k=Cpp"-p™

et donc que la v.a. X est bien binomiale de parametres n, p. ]
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0.10 L * *

e 0.1
= 03
+ 0.5
A 0.8

Figure 120.1- Une représentation graphique de la distribution de probabilité pour la loi
binomiale, pourp=0,1,p=0,3,p=0,5,p=0,8 et n = 50.

Lok .- —— —
08} = — |
0.6} B .
04+ —
= nl - 0.1
o2 Il — = . 03
= _| N 0.5
I A e ' e [ | S S s S 1 P 10 L S O 0 O s O 0 (O
5 10 15 20 25 30 35 - 0.8

Figure 120.2 - Une représentation graphique de la fonction de répartition de la loi binomiale, pour
p=01,p=03,p=05p=0_8etn=40.

On vérifie bien que :

ZP(X k)_ZCnP (1-p)"*=(p+1l=-p)=1

(c’est, tout simplement, la formule du bindme de Newton...)

2. Le théoreme du jury de Condorcet

En I’an de grice 1785, le marquis de Condorcet' produisit une justification formelle du
suffrage universel dans le cas d’un choix binaire, grice a4 un argument probabiliste. Son
argument était le suivant : dans la mesure ol le citoyen moyen a moins d’une chance sur
deux de se tromper, la somme de tous les votes des citoyens a trés peu de chance d’étre
erronée. Et, lorsque le nombre de participants augmente, la décision choisie tend a étre

1. Marie Jean Antoine Nicolas de Caritat, 1743-1794.
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la bonne. Mais cet argument ne tient que lorsque I’électeur n’a que deux choix, et non
plus... [38, 39].

La formule permettant de calculer la probabilité que la décision choisie soit la bonne
s’obtient a partir de la loi binomiale de parametres n, p, ou p est un nombre compris
entre -é— et 1, en sommant sur I’ensemble des votants (on ajoute les probabilités de « bon
vote ») :

P(X g E[g]’p) - ;{:ﬂ]dﬁpk(l -p) = kzgn[:ﬂ](ﬁ) (- pyr*

avec p=05+¢,¢ € R".

Lof
08 —
os|
04 —

02

T S T S AT SO SRR
0.2 0.4 0.6 0.8 1.0

Figure 120.3 - Une premiére illustration graphique du théoréme du jury de Condorcet: la
probabilité que le vote tende a étre le bon en fonction de p, pour un nombre de votants donné.

Lo 8_8,8,8,% %"
r 'l.-"..-o.-.l"'..
®

08+

0.0 I L ! L | L ! L | L ! L | L ! L | L L L 1 I L L 1
0 20 40 60 80 100 120

Figure 120.4- Une seconde illustration graphique du théoréme du jury de Condorcet : la
probabilité que le vote tende a étre le bon en fonction du nombre de votants n, pour une valeur de
p donnée (ici : p = 0,65).
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121 La loi géomeétrique

Définition

On dit qu'une variable aléatoire discréte X suit la loi géométrique de parameétre
p € [0, 1] si I’ensemble des valeurs possibles est X() = N* et si, pour tout entier

naturel n :
P(X =n)=p(l - p)y*

On note alors :

X ~G(p)
().2SE
020
0.15} -
I
0.10 n
®
® . 3 e p=0.1
L A @ ®
0.05 F . ., s p=03
: ® u . ® [ ] ® ° .
F A + . L ® ¢ o p=05
T a2 00428 .80 33§
2 4 6 8 10 12 14 A p=07

Figure 121.1- Une représentation graphique de la fonction de probabilité pour la loi géométrique,
pourp=0,1,p=03,p=05etp=0,7.

1. Propriété

Pour la loi géométrique de parametre p, les résultats sur les sommes de séries géomé-

triques conduisent a :
+00

> pa-pt!

k—n+l

Zp(l - p)

(l—p)"
1-(1-p)
p<1-p§’

(1 —p)”’

P(X > n)
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10k I— —
0.8+ - e
0.6 - - —
04 —
; @ p=0.1
o2k — e p=03
I e p=0.5
e s =

Figure 121.2- Une représentation graphique de la fonction de répartition de la loi géométrique,
pourp=0,1,p=03,p=05etp=0,7.

Comme pour le cas de la loi binomiale, et bien d’autres, la loi géométrique peut également
étre définie grice a une suite de variables de Bernoulli de paramétre p ; il faut alors considérer
une suite infinie de telles variables {X; : i = 1,2,...} indépendantes, et interpréter { comme
une variable temporelle, ce qui signifie que X; est le résultat obtenu (échec, (), ou succes, 1)
pour la tentative effectuée a I'instant /. On désigne par X le premier instant ou I’on obtient un
succes. L'événement {X = k} est donné par :

X=k={X=0n{X2=0}N---N{Xpe) =0} N (X, = 1}

En raison de I'indépendance des variables X;, et donc des événements correspondant, on ob-
tient immédiatement :
PX=k=010-pf'p

La v.a. X est donc géométrique, de parameétre p.
La propriété précédente est facile a2 redémontrer par un raisonnement analogue :

X>k=(X=0n{Xz=0ln---N{X, =0}

Par indépendance :
PX>k=1-pf

Le résultat suivant reprend cette discussion, qui rend, de fait, la définition et la proposition
précédentes redondantes.

Proposition

La loi géométrique G(p) est la loi du premier instant de succes dans une suite infinie
de tentatives indépendantes de probabilité de succes p (suite de variables de Bernoulli
B(p)).

Une variable aléatoire X, de loi G(p), vérifie :

PX=k=p-p~!

et:

PX>k=(l-pf
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peut étre traduit de fagon binaire (un échec ou un succes), avec une dépendance temporelle,
par exemple, des temps d’attente jusqu’a ce que se produise un événement attendu ou redouté,
lorsque le temps est mesuré de maniére discréte (nombre dheures, de jours, etc.).

. La loi géométrique correspond, précisement, a des temps de vie sans vieillissement.
Considérons deux entiers naturels m et n, et une variable X ~ G(p). Grice a la proposition

précédente,
PX>m)=(0-p)"

De plus, comme « X > m + n» implique « X > n», on a donc :
(X>m+nin{X>nl={X>m+n}
ce qui conduit alors, toujours grace a la proposition précédente, a :
PUX>m+ntn{X>n})=>U-p"""
La définition de la probabilité conditionnelle permet d’en déduire :

(] 7p)m+” 3 o
A=pr =(1-p"=PX>m).

Nous venons de démontrer la propriété suivante.

PX>m+nX>n)=

. Absence de mémoire pour une v.a. suivant la loi géométrique
de parametre p € [0, 1]

Soit X une v.a. suivant la loi géométrique de parametre p € [0, I[. La v.a. X vérifie la
propriété d’absence de mémoire :

Y(imn €e NXN: PX>m+nX>n)=P(X>m)

Cette propriété est assez naturelle, dans la mesure ou, dans une suite d’épreuves de Bernoulli,
la loi de probabilité du nombre d’épreuves 4 répéter jusqu’a 1’obtention du premier succes
reste la méme quel que soit le nombre d’échecs (les épreuves sont toutes identiques et indé-
pendantes).

Exemples

1. Nous avons fait allusion a I’existence d’événements négligeables non vides. La loi géomé-
trique donne une bonne illustration de ce phénomene. Si on lance, une infinité de fois, et
de facons indépendantes les unes des autres, une piece de monnaie, I’événement A : « on
ne tombe jamais sur pile » n’est pas un ensemble vide, puisque :

A ={0,0; 50

Si on désigne par X le nombre de lancers jusqu’a la premiere apparition de la face « pile »,
alors la v.a. X est géométrique, et A = {X = +oo}. Par suite :

P[A]:P[X:+oo]:l—P[X<+oo]=I—ZP[X=k]=1—1=O
k=0

L’événement A est bien non vide, mais négligeable.
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2. Prenons I’exemple du légendaire Ty Cobb. On suppose que, pour chaque tentative de frap-

per la balle, sa probabilité de succes vaut 0,3664, et que les tentatives successives sont
indépendantes. Le nombre X de tentatives jusqu’a 1’obtention de son premier succes est
donc une v.a. géométrique de paramétre p. La probabilité qu’il faille 2 Ty Cobb exactement
3 tentatives pour obtenir son premier succes est :

P(X = 3) = 0,3664 x 0,6336” ~ 0,1471

La probabilité qu’il n’arrive pas a frapper la balle dans une partie ot il a droit a 3 tentatives,
est identique a celle qu’il lui faille plus de 3 tentatives pour frapper la balle, et vaut donc :

P(X >3)=0,6336" ~ 0,2544

Sachant que Ty Cobb est dans un mauvais jour, et qu’il vient de rater 3 tentatives de frap-
per la balle, la probabilité qu’il n’ait toujours pas frappé la balle au bout de la cinquiéme
tentative est :

P(X>5X>3)=P(X>2)=0,6336" = 0,4014 (121.1)

En fait, avec les hypothéses utilisées pour cet exemple, méme si Ty Cobb avait eu une pé-
riode extrémement mauvaise dans laquelle il ne réussissait pas toujours a frapper la balle au
bout d’un grand nombre de tentatives, on ne dispose d’aucune information sur ses chances
de frapper celle-ci au cours des tentatives suivantes. Ce résultat peut étre contre-intuitif,
dans la mesure ol les historiens du baseball estiment qu’il était doué d’une capacité de
concentration hors du commun. Ceci dit, la modélisation géométrique permet néanmoins
de trés bonnes approximations dans de nombreux cas de tentatives répétées, et donc méme
pour notre champion Ty Cobb.
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122 La loi binomiale négative

Définition
On dit qu'une variable aléatoire discrete X suit la loi binomiale négative de para-

meétres n € N* et p € [0,1], BN(n, p)', si 'ensemble X(Q) des valeurs possibles
est ’ensemble des entiers supérieurs ou égaux a n, et si, pour tout entier k > n :

= n — k—l 1n —n
PX=k=Clp"(1-pf =(n_1)p (1-p)

On note alors :
X ~ BN(n, p)

La loi binomiale négative est une extension de la loi géométrique. Elle permet d’envisager les
cas oll le nombre n de succés (par rapport a un événement donné) est connu, et k est le nombre
d’épreuves nécessaires pour obtenir ces n succes que 1’on cherche. Comme d’habitude, p est
la probabilité d"un succes.

Pour comprendre ce phénomene, supposons que la suite des tentatives soit une suite
infinie de variables de Bernoulli $(p). La variable X que 1’on recherche est en fait la
somme de n variables géométriques indépendantes. En effet, pour obtenir exactement n
succes, il suffit d’attendre le premier succes, puis de recommencer 2 compter jusqu’au
second, etc., et, ce, jusqu’au n**. Chaque fois que I’on remet ainsi le compteur 4 zéro,
les tentatives qui ont permis d’atteindre le dernier succes sont indépendantes de celles
qui permettront d’atteindre le prochain.

Réfléchissons maintenant a I’événement {X = k}, i.e. « il faut exactement k tentatives
pour obtenir n succes ». Il faut bien sir k£ > n > 1. De plus, pour définir cet événement,
il suffit de décider ol se situeront les n tentatives qui seront des succes, les k — n autres
étant des échecs, tout en réalisant que la derniere des k tentatives doit étre un succes.
On définit donc I'événement {X = k} en choisissant n — 1 tentatives fructueuses restantes
parmi les k — 1 tentatives qu’il reste a choisir. Le nombre de facons de choisir est, bien
évidemment, C ;(’:1' , alors que, pour un choix donné des instants des succes, la probabilité
est p" (1 — p)*" puisqu’il y a n succes et k — n échecs. Ceci montre bien que :

P(X =k)=CZ) p" (1 - p)™

Nous résumons les résultats de cette discussion dans la proposition suivante, méme si,
comme dans le cas de la loi géométrique, il y a redondance avec la définition précédente.

1. Cette loi est aussi appelée Loi de Pascal, ou encore, Loi de Pdlya.
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Proposition
Une variable X ~ BN (n, p) peut s’écrire comme la somme de n variables géométriques
indépendantes X1, ..., X,, de parametre p :

X = iX,
i=1

De plus, pour tout couple d’entiers naturels (n, k) telsque k >n > 1,

PX =k =Crlp"(-pf™.
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Les tortues des Galapagos

Pour étudier le comportement d’une population de tortues géantes des Galdpagos,
on insere, a travers leur carapace, des micro-capteurs thermiques dans leur cavité
abdominale. Ces capteurs permettent de savoir si les tortues parviennent a échapper
au stress thermique 1i€ a la dégradation de leur environnement. Sur ces capteurs, seuls
80 % réussissent a fonctionner correctement et a recueillir les informations attendues.
On considére qu’il faut un minimum de vingt tortues dont les capteurs fonctionnent
pour que I’étude soit satisfaisante.

Soit X la v.a. correspondant au nombre de tortues dont les émetteurs fonctionnent.
Si on consideére que les perturbations qui peuvent affecter le fonctionnement des cap-
teurs sont indépendantes les unes des autres, on en déduit, grice a la proposition

80
précédente, que X suit la loi binomiale négative BN (20, —)

100
La probabilité de devoir équiper exactement trente tortues de capteurs vaut donc :
80 \2° g0 \30-20
PX=30)=Cc¥!—] (I-—
( 30) = G5 (100) ( 100)

20
- a5 e

291 (4 (1)
19110 (5) (3)
20x 21 x...x29 4°

10! 530
4404 645779893911 552
186264 514923095 703 125

= 0,02365

Il serait peut-€étre plus intéressant de connaitre la probabilité qu’il faille équiper au
moins 30 tortues. Etant donné que la variable X peut prendre des valeurs k arbi-
trairement grandes, on calculera plutdt la probabilité de son complémentaire. Ceci
demande néanmoins de calculer 10 valeurs non triviales, ce qui, avec une calculatrice
simple, est peu aisé€, quoiqu’envisageable. Comme le nombre 10 n’est pas tres grand
au sens des théorémes limites que I’on rencontre en théorie des probabilités (voir, par
exemple, plus loin, le théoreme central limite), il n’y a pas d’autre possibilité qu’un
calcul direct :

29
P(X >30) = l—ZP(X:k)
k=20
=S
S\ 19 J\5) A5
367041806 162986909
~ 7450580596923 828 125
& 0,04926.
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On peut remarquer que la probabilité de I’événement {X = 30} représente pres de la
moitié de la masse de la queue entiere de la distribution de X a partir de 30. Ceci
indique que P (X > k) décroit trés vite, chose que I'on peut observer partiellement
en faisant les calculs a la main. On peut également se demander quelle valeur de k
maximise la probabilité P (X = k).

Nous verrons, ultérieurement, 1’importance de la notion d’espérance, qui corres-
pond a celle, intuitive, de moyenne. Dans cet exemple, il se trouve que P (X = k) est
maximal pour k = 25. Cette valeur de k est également la moyenne intuitive de X.
On s’attend en effet, puisque la chance de succes est de %, que 1’on doive attendre
en moyenne une durée de % avant d’obtenir un succes (ou, de maniere plus intuitive,
on aurait en moyenne 4 succes sur 5 tentatives consécutives) ; de plus, comme X est
la somme de 20 variables géométriques, pour obtenir 20 succés, on devrait attendre
20 x % = 25 tentatives successives en moyenne. Ce raisonnement intuitif sera rendu
entierement rigoureux dans ce qui suit lors des calculs d’espérance mathématique.

Les considérations de 1’exemple précédent peuvent également s’ appliquer a la loi
binomiale, lorsque n est assez grand (disons n > 30), puisque cette loi est aussi celle
de la somme de » variables de Bernoulli. Nous invitons le lecteur a fabriquer un tel
exemple, peut-étre avec notre ami Ty Cobb ? La seule différence notable entre les
deux types de variables est que la variable binomiale prend ses valeurs k entre O et
n, alors que la variable binomiale négative les prend au-dela de n. Mais lorsque n
est grand, les effets de décroissance rapide de la probabilité P (X = k), pour k grand,
et de maximisation de P (X = k) autour de la valeur moyenne intuitive de X, sont
similaires dans les deux cas. Ce phénomene est di au théoreme central limite, qui
sera vu ultérieurement.

030 -
o2sf 4
020
[ L J
0.15[
n " 5
0.10 - .
S - 0.1
L | |
r ]
0.05 . : - 03
[ e © © © 9 9 ¢ 0 ¢ o o
. 2. i *eo e 05
Y] A S S, I S S B T
o 5 0 15 0 - 0.8

Une représentation graphique de la fonction de probabilité pour la loi binomiale négative,
pourp=0,1,p=03,p=05etp=0,8.
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Une représentation graphique de la fonction de répartition de la loi binomiale négative, pour
p=01p=03,p=05etp=08.
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La loi hypergéomeétrique

Tirons simultanément n boules dans une urne contenant M boules rouges et N —M boules
noires. On peut utiliser comme univers £ I’ensemble des parties a n éléments parmi N,
sans que I’ordre importe. Si X désigne la variable aléatoire donnant le nombre de boules
rouges extraites, sa loi de probabilité est :

k —k M\(N-M
CM CKF—M = (k)( n—k )
n N
Cn ()
Pour comprendre cette formule, il faut remarquer que, dans I’ensemble € défini ci-
dessus, on fait I"hypothese selon laquelle chaque boule a la méme chance que les autres

d’étre tirée. Par conséquent, chaque partie a n éléments parmi N a la méme chance d’étre
tirée. La probabilité de chaque événement élémentaire de € a une probabilité équipro-

PX=k) =

bable égale a 1 sur le nombre de parties possibles, c¢’est-a-dire o
N

Supposons maintenant qu’on s’intéresse seulement aux parties qui ont exactement k
boules rouges. L’ensemble de ces parties correspond a exactement a {X = k}. Il nous
suffit donc de compter le nombre de parties avec k boules rouges parmi les parties de n
boules prises au sein des N boules. Pour déterminer une partie de n boules avec k boules
rouges, il suffit d’abord de décider quelles boules, parmi les M rouges, seront utilisées ;
ilya CL tels choix. Il reste alors a déterminer lesquelles des N — M boules noires seront
les n — k boules utilisées pour compléter la partie de n boules : il y a C K,‘_"}w tels choix.
La probabilité P (X = k) est donc bien celle annoncée ci-dessus. Nous sommes donc en
mesure de donner la définition suivante, qui fait également office de théoreme :

Définition
On dit qu’une variable aléatoire discréte X suit la loi hypergéométrique de para-
metres N € N*, M € N*etn € N*, H(N, M, n), si '’ensemble des valeurs possibles
est X(Q) ={0,1,...,N}etsi, pour tout entier k de {0, 1,...,n}:
= M\(N-M
oy G
PX=%k)= = =
Cx ()
i

Cette loi est celle du nombre d’éléments de type 7~ dans un échantillon de taille n pris
dans une population de N éléments comportant M éléments de type 7.
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On note alors :
X ~H(N, M, n)

Comme I'indique la définition, cette loi est utile pour comprendre le nombre d’éléments d’un
¢chantillon de taille n possédant une propriété donnée (le type 7 de la définition), connaissant

la proportion N d’éléments ayant cette propriété, et la taille N de la population.

Ce qui rend cette distribution non triviale est le fait que le choix de 1’échantillon
soit réalisé sans remplacement ; ainsi, lorsqu’on tire successivement des éléments pour
constituer 1’échantillon, le type de chaque élément déja tiré affecte les chances restantes
de tirer des éléments de type 7. Les tirages ne sont pas indépendants.

Exemple

Un bol rempli de N = 30 cerises comporte six cerises moisies, et donc M = 24 bonnes cerises.
On prend une poignée de 5 cerises au hasard (en fermant les yeux et en évitant de sentir).
Parmi ces n = 5 cerises, le nombre X de bonnes cerises a pour loi H (30, 24, 5). La probabilité
que notre poignée contienne au moins 4 bonnes cerises est :

(E%gJ N (E%%J _ i;gg ~ 0,7457

PX>4)=PX=4)+P(X=5)=

» Approximation binomiale de la loi hypergéométrique

On congoit aisement que si N est beaucoup plus grand que n, et que % n’est pas trop
proche de 0 ou 1, alors les tirages seront approximativement indépendants, puisque le
fait de retirer un petit nombre d’éléments d’une grande population a tres peu d’influence
sur la proportion d’éléments de type 7 dans la population restante.

Si on considere alors qu'un succes correspond au tirage d’un élément de type 7, la

probabilité d’un succes sera (approximativement) de p = N a chaque tirage.

La variable aléatoire X sera donc, approximativement, binomiale de parametres n et p.
Cette approximation n’est pas valable si p est proche de 0 ou de 1, ou si n n’est pas
petit devant N.
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Figure 123.1- Une représentation graphique de la fonction de probabilité pour la loi

0.8

0.2

0.6

0.4
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Figure 123.2- Une représentation graphique de la fonction de répartition de la loi
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La loi de Poisson

La loi de Poisson est utile pour compter le nombre d’événements qui ont lieu dans un
intervalle de temps donné, si on connait le nombre moyen d’événements par unité de
temps. Cette loi est plus difficile a interpréter que les lois rencontrées précédemment
faisant intervenir des variables de Bernoulli indépendantes, ou des tirages de parties.

Nous verrons, ultérieurement, que la somme de deux variables de Poisson indépen-
dantes est encore une variable de Poisson. Nous avons déja vu que ce n’est pas le cas
pour les autres types de variables. Par exemple, une somme de variables de Bernoulli in-
dépendantes est une variable binomiale, mais non de Bernoulli ; ou encore, une somme
de variables géométriques indépendantes est une variable binomiale négative, mais non
binomiale.

Cette propriété extraordinaire de stabilité par addition fait de la loi de Poisson un des
fondements d’une branche importante du calcul moderne des probabilités, celle des pro-
cessus stochastiques a sauts.

La seule autre loi que nous rencontrerons qui ait une propriété similaire de stabilité par
addition est une loi non discréete, la loi normale, qui est le point de départ du théoréme
central limite, et de la théorie des processus stochastiques continus.

Définition
On dit qu’une variable aléatoire discréte X suit la loi de Poisson de parametre A > 0
si I’ensemble des valeurs possibles est X(£2) = N et si, pour tout entier naturel k :

ek
k!

PX=k=

On note alors :

X ~P(1)

Une fagon de comprendre la loi de Poisson est d’imaginer un trés grand nombre # de variables
de Bernoulli, avec un parametre p = p, qui dépend de n, tel que np, reste constant. Ainsi,
la probabilité de succes devient d’autant plus petite que n est grand ; plus précisément, elle
est inversement proportionnelle au nombre 1 de tentatives. Le nombre de succés au sein des n
variables de Bernoulli approche alors une loi de Poisson. En raison du lien entre les variables
de Bernoulli et la loi binomiale, on obtient le théoréme suivant, dont la démonstration donnée
ci-dessous peut sembler trés formelle ; une fois que I’on disposera de la notion d’espérance
mathématique, il sera plus facile de comprendre, intuitivement, la relation entre n et p,,.
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» Convergence de la loi binomiale vers la loi de Poisson

Théoreme

Soient A un réel strictement positif, et (pn) i Une suite de réels de [0, 1] telle que :

lim np, =41
H—+00

0.10F
008 T,
0.06 - i ;. .

I T § - A=2
0.04 - : . 1 °

= . . . . . l=lo
002f . Lt : 4 e 1=20

Lo 1L 4] 1" ., Pe « A=30

Lot - PR ., .,
10 20 30 40 50

Figure 124.1- Une représentation graphique de la fonction de probabilité pour la loi de Poisson,
pourd=2,1=10,1=20et 1= 30.

|-U_’ _d— 7‘_— - __—I=
osf T o S
0.6+ = __
04 — i il - * A=A
: = o = . A=10
02t B - s . A=20
- u i = . A=30
= NS e e e i
5 10 15 20 25 30

Figure 124.2 - Une représentation graphique de la fonction de répartition de la loi de Poisson,
pour 1=2,1=10,1=20et1=30.

(X)) nerr une suite de variables aléatoires, de loi binomiale B (n, p,), et X une variable
aléatoire de loi de Poisson P(A), alors, pour tout entier naturel k :

lim P(X,=k) =PX =k)

n—+co
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Démonstration : Comme :

lim np,=41

Hn—+oco

on a donc, lorsque n tend vers +co :np, = A+ o(1), et :

Par suite, pour tout entier naturel & :

n—k

lim P(X, = k) lim C*pk (1= pp)
n—+co n—+00

n!

_ . k _ n—k
- Al K —rgr P (P

n—k
- n! b -k B A 1
_”Llek!(n_k)! a7 (1 + (1)) (1 - +o(n))

n!

) 5 (n—k)In(1-4 +o( 1))
MEELJETGJZ?STJ'H (I+o(l)) e

= : n! k_—k —("_M'l+()(”;k)
= nl—lalPoo m A n (] + 0(1)) € n n

n!

- &
R Sy '

7k (1 + o(1)) e 5+e(50)
n!

m —
n—too kl(n—k)!

K (1 +0(1)) e e ol

- s k -k -4 _o(l)
n]—l}-Pm—k!(n—k)!A n“(l+o(l)e e

. n! o
= lim ————— A p* ¢
n—+oo k!l (n—k)!

. n! _
- lim — k-1
n—+oo k| (n — k) | nk

g n!
k! n]—1>r-iI—100 (n - k)!njk
Ak e fis m—k+D(n—k+2)...n

Ak 1-k 2—k
- ° _ lim (1+ )(1+ )_._(1+0)
k! n—+00 n n
pLP L
- k!
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Exemple

L’incidence d’une maladie génétique rare liée a ’appartenance au peuple Mapuche (le nom de
ce peuple signifie « les Gens » (che) «de la Terre » (Mapu)) est estimée a 5 cas par million
dans la population chilienne ; les racines Mapuche sont distribuées de facon trés homogéne

dans les zones urbaines. La ville de Valparaiso, au Chili, compte 250 000 dmes. Si on consi-
1

1 d
) 105 200000 )
indépendamment des autres, le nombre X de personnes de Valparaiso qui ont cette maladie

dere que chaque habitant de Valparaiso a une chance p = "avoir la maladie,

est une variable de loi B (n, p) avec n = 250000 et p = On peut donc affirmer que

200000
cette loi est approximativement celle d’une variable de Poisson Y de paramétre A = np = —.

Ainsi, la probabilité qu’il y ait au moins une personne a Valparaiso avec cette maladie est
approximativement égale a :

PYz1)=1-PY=0)=1-¢

N

= 0,71.

0.15 - [ ]

0.10 -

0.05

2 4 6 8 10 12 14

Figure 124.3 - Une illustration graphique de la convergence de la loi binomiale vers la loi de
Poisson, dans le cas (100, 0,05) et P(5).
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Somme de vari
|PAY discrétes

ables aléatoires

1. Somme de deux variables aléatoires discretes indépendantes

Etant données deux variables aléat

oires discretes indépendantes X et Y, a valeurs en-

tieres, la loi de la v.a. somme X + Y est donnée, pour tout entier naturel k, par :

PX+Y=k)=

PX =10 P(Y = j)

iE€X(Q), jeY(), i+ j=k

Démonstration : On calcule :

PX+Y =k

(c’est grace a I'indépendance des v.aa. que P(X =i, Y = j) = P(X = i) P(Y = ))).

Exemple : Somme de deux v.a. i

Laloidelava. sommeX+Y =X, +
naturel k, par :
PIX+Y=k)

On retrouve donc, pourlav.a. X + Y,

416

P (
i€X (), jeV(€), i+ j=k

X=iY=j

PX=0L,Y=)
e X(Q), jeY(Q), i+ j=k

> PX =i)P(Y = j)

i+j=k

ndépendantes suivant respectivement les lois de

Poisson P(1) et P(u), (4, u) € (IRI )2

Soient A et ¢ deux réels strictement positifs, et X et ¥ deux v.a. discrétes indépendantes suivant,
respectivement, les lois de Poisson P(1) et P(u).

oo+ X, + ¥ +... 4+ X, est donc donnée, pour tout entier

PX=LY=))
i€N, jeN, i+ j=k
PX=0D)PY =)

ieN, jeN, i+ j=k

k
= ZP(Xzi)P(sz—i)
i=0

e
i=0

e—(/i+pj
k!

e*(flﬂt) i R
1 1 G &
e G

’ i=0

—(A+p) "
- At
la loi de Poisson P(A + p).

A Qi o #k—i
(k—10!
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Cette remarque permet de justifier certaines affirmations concernant la loi de Poisson. Sup-
posons en effet, que, dans le cadre du nombre de clients qui pénétrent dans un magasin, I'on
s’intéresse a la loi du nombre de clients qui arrivent pendant une période de n minutes, n € .
On considére que le nombre de clients qui arrivent au cours de toute période d’une minute suit
une loi de Poisson de paramétre A.

Supposons aussi que les variables de Poisson correspondant aux arrivées dans des périodes
temporelles disjointes soient indépendantes. Cette dernieére hypothése se justifie grice a un
raisonnement utilisant une approximation binomiale. On trouve alors que le nombre d’arrivées

n

X au cours d’une période de n minutes vaut X = Z X;, ouchaque X;,i =1, ..., n, désigne le
nombre d’arrivées au cours de la minute numéro ;', 1pendant la période des n minutes. Comme
X; ~ P (1), on trouve bien, grace au calcul de I’exemple précédent, appliqué itérativement,
X ~ P (n ). De surcroit, si I’on divise la période de longueur n minutes en deux sous-périodes
disjointes de durées respectives n; et ny minutes (n; € N, ny € N, ny + ny = n), les nombres
d’arrivées dans les deux sous-périodes seront indépendants, de lois de Poisson de parametres
respectifs n; A et ny A.

2. Propriété

La discussion précédente peut étre résumée a 1’aide d’un théoréme plus général, équi-
valent a la propriété d’auto-indéfinie-divisibilité de la loi de Poisson.

Théoréme

Soit X une variable de Poisson de parametre A > 0. On suppose que la valeur de
X correspond a des arrivées de deux types distincts, dits « type T » et « type T ».
p € [0, 1] désigne la probabilité qu’une arrivée soit de type T, X1 et X> sont, respecti-
vement, les nombres d’arrivées de type T et T>.

Alors, les v.a. X et X» sont indépendantes. De plus,
X ~ ?)(/11) et Xy ~P(Adr)

avec A = Apet Ao = A (1 = p). En particulier, X = X| + X.

Démonstration : 1l suffit de prendre la discussion ci-dessus comme modele. [ ]

En pratique, il n’est pas toujours nécessaire de passer par la formule générale pour la loi
d’une somme de variables indépendantes. C’est ainsi le cas lorsque les variables peuvent étre
considérées comme des sommes.

» Somme de deux v.a. indépendantes suivant respectivement les lois binomiales
B(m, p) et B(n, p), (m, n, p) € (%) x [0, 1]

Soient m et n deux entiers naturels non nuls, p un réel de I'intervalle [0,1], et X et ¥
deux v.a. discretes indépendantes suivant, respectivement, les lois binomiales B(m, p) et
B(n, p).

Nous avons déja vu que X peut étre considéré comme somme de m v.a. indépendantes
X1, . ... X, suivant chacune, la loi de Bernoulli B(p) ; de méme, Y peut étre considéré
comme la somme de n v.a. indépendantes Y1, ..., Y,, suivant chacune, la loi de Bernoulli

417

iscrétes

=
i
‘v
=
1]
L2
]
e
.

Probabilités

s




2014 Dunod.

©)

4

1h

(@)]

Copyri

B(p). Les v.a. en jeu étant, toutes, indépendantes, la v.a. somme
X+Y=X;+...+ X+ Y +...+ X, suit donc la loi binomiale B(m + n, p).

Ce résultat peut étre retrouvé par un calcul direct (a partir de la formule générale
pour les sommes de variables indépendantes, que nous ne présentons pas ici), grace a la
formule dite de Vandermonde : :

Z C:’Vi Cé = C]:;Hn

I<i<m, 1< j<n

i+ j=k

» Somme de deux v.a. indépendantes binomiales négatives de méme parameétre
p€]0,1[

Un raisonnement analogue au précédent montre que la somme de deux v.a. indépen-

dantes de lois binomiales négatives BN (n, p) et BN (m, p) est une v.a. qui suit égale-

ment la loi binomiale négative BN (n + m, p). 1l suffit en effet de considérer chacune des

deux premieres variables comme somme de variables géométriques indépendantes, de

parametre p.

Dans les deux exemples précédents, le fait que les variables que ’on somme aient le méme pa-

rameétre (probabilité de succes) p est crucial. La somme de deux variables N(n, p) et N(m, q)
lorsque p # g ne peut étre reliée a des lois classiques.
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Espérance

Nous avons déja évoqué la notion d’espérance pour des v.a., lorsque I’on a considéré la
valeur moyenne « intuitive » d’une variable. I’espérance, ou espérance mathématique,
formalise ce concept intuitif.

Définition

Soit X une variable aléatoire discrete telle que la famille (|xi| P (X = xp))y, ex(q) S0it
sommable, i.e.

Z el P(X = x) < +00
XeEX(Q)

On appelle espérance mathématique de X le réel E(X) tel que :

EX)= Y uP(X=x)
XEX(Q)

1. L'espérance mathématique peut donc étre considérée comme le barycentre des valeurs pos-
sibles de la variable aléatoire X, pondérées par leurs probabilités de réalisation. Ce concept
fonctionne encore si X est une v.a. vectorielle. On se limitera ici au cas scalaire.

2. Du fait de la condition d’absolue sommabilité dans la définition de 1’espérance, on n’a pas le

droit de parler d’espérance si la somme Z x; P(X = x;) est semi-convergente et non ab-
EX(D)
solument convergente. Le lecteur vérifiera qu’un exemple d’une telle situation non autorisée
est le suivant :
=% et P(X=x)=6k7"n"2

1. Propriétés

» Espérance d'une v.a. constante

Soit X une variable aléatoire discréte constante, prenant la valeur C > 0. Alors :
EX)=C

Démonstration :

E(X) = Z P (X =x) = Z CP(X=x)=CP(X=C)=C
XEX(Q) XEX(Q)

(puisque X(Q) = {C}). [ |
» Espérance et valeur absolue

Soit X une variable aléatoire discrete admettant une espérance E(X). Alors :

[EX)] < E(X]) < +00
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» Linéarité de I'espérance

Soient X et Y deux variables aléatoires discretes sur un espace probabilisé, admettant
chacune une espérance mathématique (E(X) et E(Y) respectivement). Alors :

E(X + ¥) = E(X) + B(Y)

et, pour tout réel a :
E(aX) = aE(X).

Plus généralement, si (X)), est une suite de variables aléatoires sur un espace proba-
bilisé, admettant chacune une espérance, et si (a,),eav est une suite de réels, alors pour

tout entier N = 0,
N

Z a; X;

=1

N

= > aB[X;]

i=1

E

St la famille |a;| E [|X;]] est sommable, la formule précédente reste encore valable en
passant a la limite lorsque N tend vers +co.

Démonstration : Considérons la variable aléatoire Z = X + Y. On choisit, dans un
premier temps, de s’intéresser au cas ot X(Q) et ¥(Q) sont finis. Z(€Q2) est donc aussi
fini, et I'existence de I’espérance mathématique de Z est assurée.

La loi de Z est donnée par :

Ve Z(Q): P(Z=z)= Z P(X =x,Y =y))

XitY j=Zk
Il en résulte :
E(Z) = 7 P(Z =1z)
ZKEZ(LL)

= Z Z (xi+y_f) P(X =x,Y =yj)
K EZ(QY) Xi+Y j=Zk

= (xi + ;) PX = x.,¥ = y))
XEX(Q) Y€V (Q)

= Z X Z P(X =x,Y =yj)

NeX(Q)  |yer)
+ ) gl Y PX=x.Y=y)

Y€ Y(Q) xieX(Q)

inP(X=xi)+ZyjP(Y=yj)

U J
= E(X) + E(Y)
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(On passe sans souci de

(xi +yj) PX = x,Y =y)

ZREZ(Y) Xi+Y j=Zk

Z Z (xi+yj) PX =x,Y =y;)

EX(Q) y;EV(Q)

[

car dire que z; parcourt Z(€2) revient & sommer toutes les valeurs possibles de X et de V' ;
la v.a. Z a, en effet, été définie directement comme somme des v.a. X et Y.)
La convergence absolue étant assurée, on peut sommer « par paquets » et réarranger :

E(Z) = D wP@Z=w)
ZWEZ(L)

= > > (w+y) PX=xY =yy)
ZREZ(L) Xity ;=2

= (xi +y)) P(X = x,Y = y)
xEX(Q) y,;€¥(Q)

= x4 Y PX=x,Y=y)

XEX(Q) €Y (Q)
>y D PX=xY=y)

(%) xeX(£2)

D5 PX = x)+ 3y P(Y = y))

i

&
= E(X) + E(Y)

Les assertions relatives aux suites de variables X; et de coefficients a; se démontrent
grice aux propriétés précédentes par itération. ]
» Positivité de I'espérance

Soit X une variable aléatoire discrete, a valeurs positives, admettant une espérance ma-
thématique E(X). Alors :
E(X)>0

» Croissance de |'espérance

Soient X et Y deux variables aléatoires discretes telles que X < Y, admettant chacune
une espérance mathématique (E(X) et E(Y) respectivement). Alors :

E(X) < E(Y)
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Théoréme de transfert

Soit X une variable aléatoire discreéte, et f une fonction définie sur X(Q), a valeurs
réelles. Alors, lav.a. f(X), définie par :

fX)(w)= fX(w) YweQ

est d’espérance finie si et seulement si la famille (f(x;) P(X = xp)) xeX(Q) €5t sommable.
On a alors :

Bf(X)]= )| fo)P(X=x)

X EX(Q)

2. Calcul des espérances

Dans ce qui suit, on calcule les espérances mathématiques des v.a. classiques présentées
précédemment. Pour celles qui peuvent étre considérées comme des sommes d’autres
v.a., le calcul sera particulierement aisé.

» Calcul de I'espérance dans le cas de la loi de Bernoulli

Considérons une variable aléatoire X suivant la loi de Bernoulli de parametre p. Alors :
EX)=0xPX=0)+1xPX=1)=0x(1-p+p=p

» Calcul de I'espérance dans le cas de la loi uniforme

Considérons une variable aléatoire X suivant la loi uniforme sur I’ensemble fini
{1,...,n}. Alors :

E(X)=Z:x/r<1”(X=xk)=Z:%=l :’<=ln(n-|-l)=n-'-1

k=1 k=1 1 k=1 " 2 2

» Calcul de I'espérance dans le cas de la loi binomiale B(n, p)

Considérons une variable aléatoire X suivant la loi binomiale $B(n, p). On a alors
XQ)={0,1,...,n}. Etant donné que X ne prend qu'un nombre fini de valeurs, on sait

n

qu’elle admet une espérance. X peut s’exprimer comme Z X;, ou Xj,..., X, sont des
i=1

v.a. de Bernoulli de parametre p indépendantes. Elles vérifient donc, pour tout entier i

de {1,...,n}, E(X;) = p. Sans mé&me utiliser la propriété d’indépendance, et grice, tout
simplement, a la linéarité, on obtient immédiatement :

n

S

i=l1

E(X)=E

= ZH:E(XI-) =np.
i=1

Le lecteur vérifiera qu’on retrouve le méme résultat, au prix d’un calcul bien plus com-
plexe, si on part de la formule P(X = k) = C* p* (1 — p)"* et de la définition de I’espé-
rance.
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» Calcul de I'espérance dans le cas de la loi géométrique de paramétre p > 0

Considérons une variable aléatoire X suivant la loi géométrique de paramétre p € ]0, 1[.
On a alors X(£)) = N, et, pour tout entier naturel non nul & :

P(X =k =p(l-pi!

Comme 0 < p < 1, la série de terme général k P(X = k) = k p(1 — p)*~! est clairement
convergente (comme série dérivée d’une série géométrique convergente ; on peut égale-
ment invoquer le fait, vérifiable par le lecteur grice a une simple étude de fonctions, que
pour k suffisamment grand,

z)k

k(l - "“4(1—
(I-p) 2

k
| P 4z Y .
ou (1 ) est le terme général d’une série géométrique convergente ; on peut, aussi,

utiliser le critere de d’ Alembert).
Il en résulte :

+o00
E(X) = ZkP(X:k)
k=1
400
= D lkp-p
k=1

= dx"]
= P B
;[d'x x=1-p

el

k=1

B d { x \]
= & E(] —x)_x=1_p
3 d (x—1+1

F [E( l-x )]x—l—p

a1 )]
B pidx L=x/]oip
ferd
PlT—=
(l_x)2x=l—p
[1
Pl 3
p x=1-
i P
p

(On applique le théoréme de dérivation terme a terme des séries entieres, puisque 'on
est bien a I'intérieur du disque de convergence dont le rayon est 1.)

» Calcul de I'espérance dans le cas de la loi binomiale négative de paramétres
pclo, 1, etnecN*

Considérons une variable aléatoire X suivant la loi binomiale négative de parametre
p€l0,1] et n € N*. On a alors X(Q) = N. X peut aussi étre considérée comme la
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n
somme Z Xi,ou Xy,..., X, sont des v.a. géométriques indépendantes, de parametre p.
i=1
Elles vérifient donc, pour tout entier i de {1,...,n}, E(X;) = p‘]. Par simple linéarité,
sans utiliser 1’indépendance, on obtient immédiatement :

- n
= ;]E(X,-)= >

Le lecteur vérifiera qu’on retrouve le méme résultat, au prix d’un calcul beaucoup plus
complexe, si on part de la formule

n

S

i=1

E(X)=E

k—1
P(X =k = (n B ])p” (1= p)

et de la définition de I’espérance.

» Calcul de I'espérance dans le cas de la loi de Poisson de paramétre 1 € R

Considérons une variable aléatoire X suivant la loi de Poisson de parametre 4 € R. On
e Ak
k!

est clairement convergente. On peut,

a alors X(Q) = N, et, pour tout entier naturel non nul k : P(X = k) =
-1 )k

La série de terme général k P(X = k) =k
par exemple, utiliser le critere de d’ Alembert, puisque :

67/1 /IkJr] 1
) (k+1)! Il
1 =
k—1>1:|-noo eifl /{k k—+00

a *k-1D!

k+1)

On peut donc calculer :

E(X)

Il
M
o
]
b
Il
o
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Moment d’ordre r, r ¢ N*,

IP¥J d’une variable aléatoire discréte
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Définition
Soient r un entier naturel non nul, et X une variable aléatoire discrete. On appelle

moment d’ordre r de la variable aléatoire X la quantité, notée E(X"), donnée par :

EX)= > (@) P(X=x)

XEX(Q)

sous réserve que E(|X]") = Z |x¢|” P (X = xp) soit fini.
XEX(L)

1. Existence du moment d’ordre

Si une variable aléatoire X admet un moment d’ordre r, r € N*, alors, pour tout entier
positif n < r, le moment d’ordre n, E(X"), existe aussi.

Démonstration : La série de terme général |x;|" P (X = x;) est une série positive.
Considérons, dans un premier temps, le cas d’un univers fini (comportant N éléments,
N € N*). Une sommation « par paquets » conduit a :

E(XI") = D bal" P(X = x)
HEX(QY)
= I PX=x)+ > Iul PX=x)
EeX(Q), [xl<1 XeEX(Q), [xel>1
< PX=x)+ D, lul' P(X=x)
X eX(Q), x|l X eX(€Y), [x|>1
< PX<D+ > lul P(X=x)
K EX(Q), =1
= 1 +E(X")
< +0oo

Ceci étant vrai pour toute somme finie comportant N termes, on en déduit, par passage
a la limite lorsque N tend vers +co, le résultat dans le cas général. ]

Cette propriété est aussi une conséquence de la fameuse inégalité de Jensen (prononcer
« Yennsenne » ; nous ne la démontrerons pas), qui dit que, pour toute variable aléatoire po-
sitive ¥ admettant une espérance, et toute fonction ¢ convexe positive sur [0, +oo[, alors :

¢ (B(Y)) <E[p(1)]

11 suffit en effet d’appliquer cette inégalité 2 ¥ = |X|" et & la fonction y > ¢ (y) = y, qui est
convexe puisque £ > 1.
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2. Inégalité de Markov

Soit X une variable aléatoire positive admettant une espérance mathématique. Alors,

pour tout réel r > 0 :
E(X
PX>21< (T)

Démonstration : 1l suffit de sommer « par paquets » :

EX)= » uPX=x)= » xPE=x)+ » xPX=x)

X€X(L2) X EX(L), xp<t XpEX (D), xp =t

Il en résulte, puisque la v.a. X est a valeurs positives :

EX)> > uP(X=x)

X €X(Q),xp2t

= Z tP(X = xp)
XLEX(Q). xp =t
=t > P(X=x)
xpEX(Q), xp =2t
= tP(X =1)
ce qui conduit directement au résultat. [ ]

Cette inégalité est utile pour estimer la vitesse de décroissance vers 0 de la queue P(X = 1)
d’une v.a. X lorsque ¢ tend vers I'infini. Elle signifie que la décroissance doit étre au moins
de I'ordre de ¢~'. Si des moments d’ordre plus grand que 1 existent, on obtient une vitesse
plus rapide, comme I’indique le corollaire suivant, qui s’ obtient immédiatement en appliquant
I'inégalité de Markov a I’événement {X > 1} = {X" > ¢'}.

Corollaire
Soit X une variable aléatoire positive admettant un moment d’ordre r €0, +oo[. Alors,
pour tout réel t > 0 :

E(X")

PX>n<=2

L’inégalité de Markov, ainsi que son corollaire, sont particuliérement utiles lorsqu’on ne
connait que trés peu de choses sur la loi d’une v.a. X, par exemple seulement I’existence
d’un moment donné. Pour les lois classiques, il est préférable d’utiliser des estimations plus
directes.
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Application de lI'inégalité de Markov

1. Dans I'attente d’'un premier client rue de la Paix

Supposons que le temps d’attente X pour Iarrivée du premier client apres I’ouverture,
dans un magasin de luxe rue de la Paix, mesuré en minutes entieres, suive la loi géo-
métrique G (p), avec p = 1—10. Le temps d’attente moyen est donc de E (X) = % =)
minutes. Mais qu’en est-il de la probabilité qu’il faille attendre plus de dix minutes,
plus de vingt minutes, ou plus d’une heure, pour qu’arrive le premier client ? Pour
ces deux probabilités, le calcul direct donne :

10

9
: =|— ~ 4
P(X > 10) (10 0,3487,
9 20
PX>20)=|—| = 0,216,
10
9 60
P(X >60) = (E— ~ 0,001797.

Supposons maintenant qu’on n’ait aucune raison de croire que la loi de X soit G (p),
par exemple, a cause du fait qu’on doute fort que la propriété d’absence de mémoire
soit vraie. Une raison pour un tel doute peut étre la suivante : on a observé que si on
a attendu longtemps le premier client, ¢’est le signe d’une mauvaise journée, et alors,
en raison de cette attente, le temps d’attente restant moyen devient nettement plus
élevé que 10 minutes. Néanmoins, on est toujours d’accord pour dire que le temps
d’attente moyen, en I’absence d’autres informations, est de 10 minutes. On peut alors
utiliser I’inégalité de Markov, puisque E(X) = 5, ce qui permet d’affirmer :
10
P(X > 10) < 0 I
0

1
P(X>20)< — = 05,
=2l

10
P(X < — =0,1666. ..
(X > 60) < = = 0,1666

Il est intéressant de remarquer que si X suivait la loi G (p), ces estimations devien-
draient de plus en plus mauvaises au fur et 2 mesure que I’on s’approche du compor-
tement asymptotique de la queue de X.
Poursuivons encore un peu I’analyse. Nous verrons, par la suite, que le second
moment de la loi G (p) se calcule aussi, et vaut :
E(X?) = 2%0
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Dans notre exemple, ceci donne E(X?) = 100 (2 - 10") = 190. Imaginons que
I’on trouve, empiriquement, que nous sommes d’accord avec cette valeur. Si nous
ne croyons toujours pas que X est géométrique, et en 1’absence de toute autre infor-
mation en dehors du second moment de X, on peut toujours utiliser le corollaire de
I’inégalité de Markov, appliquée au second moment de X :

P(X > 10) < = L9,

E
E

- e LUK .
P (X > 60) 360 0,05278

P(X >20) <

0,475,

On constate que la premiere estimation est moins bonne qu’avec le premier moment
(elle est méme stupide...), mais les deux autres sont meilleures.

La situation de ’exemple ci-dessus est typique de 1'usage délicat de I’inégalité de
Markov : lorsque 7 n’est pas tres grand, il est préférable de se servir du premier mo-
ment, mais lorsque ¢ devient tres grand, il devient progressivement avantageux d’uti-
liser des moments d’ordre plus élevés. Dans tous les cas, si on a plus d’informations
que celles données par les valeurs de quelques moments uniquement, il faut éviter de
recourir a cette inégalité.
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Considérons la répartition des températures moyennes mensuelles observées, res-
pectivement, dans une ville V|, et une ville V5. On dispose donc de deux séries
statistiques dont les individus sont les mois de 1’année, et la variable la température
mensuelle.

Janvier Février Mars Avril Mai Tuin Tuillet Aot Septembre  Octobre Novembre '~ Décembre

La répartition des températures dans la ville V4.

Janvier Féyrier Avril Mai Juin Tuillet Aolt Septembre Octobre ~ Novembre = Décembre

La répartition des températures dans la ville V5.
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En supposant, pour simplifier, que les douze mois ont tous la méme durée, on cal-
cule, grice aux histogrammes, que les moyennes annuelles des températures dans les
deux villes sont exactement les mémes :

67

il 16,75
Par contre, la répartition des températures dans les deux villes n’est pas du tout la
méme ! Un outil mathématique permettant de mesurer la « dispersion » autour des
moyennes annuelles est donc indispensable.

Calculons, pour la ville V', la quantité :

Dernier mois

(Température du mois — Moyenne annuelle)®

Premier mois

= 27.020
Nombre de mois
Faisons le méme calcul pour la ville V5 :
Dernier mois
Z (Température du mois — Moyenne annuelle)”
Premier mois - 87,64

Nombre de mois
On s’apercoit que ces grandeurs sont tres différentes ! Elles permettent de mesurer la
dispersion des températures autour de la moyenne annuelle.

Toutefois, ces grandeurs se mesurent en degrés au carré. Il est justifiable de consi-
dérer qu’on peut préférer une quantité qui permette de mesurer la dispersion dans
les mémes unités que les séries de départ. Une telle quantité pourrait s’ interpréter
comme I’écart moyen entre la température mensuelle et la température moyenne. La
convention adoptée en probabilités et en statistiques est de considérer tout simple-
ment la racine carrée des grandeurs précédentes ; on obtient, respectivement, environ
5,19816 pour la premiere ville, et 9,36166 pour la seconde. Ceci permet toujours
d’affirmer que les températures de la seconde ville sont plus dispersées que celles de
la premiere, mais aussi de dire que les valeurs obtenues en prenant la racine carrée
sont des mesures des écarts moyens. Si on se souvient que les formules données avant
de prendre les racines carrées font intervenir des moyennes de carrés des écarts, on
s’apercoit que la terminologie « écarts moyens » n’est pas tout a fait représentative de
la réalité des calculs ; il s’agit, plus précisément, de « racine carrée de la moyenne des
carrés des écarts ». On pourrait définir une autre quantité qui correspondrait de facon
plus précise a des « écarts moyens » dans la bonne unité : la moyenne de la valeur
absolue des écarts, c’est-a-dire en I’occurence, la quantité :

Dernier mois
Z |Température du mois — Moyenne annuelle

Premier mois

Nombre de mois
I1 se trouve que cette définition est bien moins pratique, mathématiquement, que celle
faisant intervenir la racine de la moyenne des carrés des écarts. Nous verrons, en
particulier, une propriété d’additivité des dispersions définies avec les carrés, trés utile
pour comprendre la dispersion des sommes de variables aléatoires indépendantes, qui
devient fausse si on remplace le carré par la valeur absolue.
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Variance, écart-type

1. Définitions
» Variance

Soit X une variable aléatoire discrete admettant un moment d’ordre 2. On appelle va-
riance de la variable aléatoire X la quantité, notée Var(X), donnée par :

Var(X) = E|(X - E(X))’|
» Ecart-type

Soit X une variable aléatoire discréte admettant un moment d’ordre 2. On appelle écart-
type de la variable aléatoire X la quantité, notée o(X), donnée par :

o(X) = \Var(X)
2. Propriétés
» Changement d'échelle

Soit X une variable aléatoire réelle admettant un moment d’ordre 2. Alors, pour tout
réel A :
Var(1X) = 2> Var(X)

Démonstration : Ona:
Var(AX) = E [(/1 X -EQ X))Z]

=E [(AX - AE(X ))2] (linéarité de 1’espérance)

= B2 (X -EX)’|

PE|(X -B(X))’| (linéarité de Iespérance)
= A2 Var(X) =
» Invariance par translation

Soit X une variable aléatoire réelle admettant un moment d’ordre 2. Alors, pour tout
réel p :
Var(X + p) = Var(X)

Démonstration : Ona:
Var(X +p) = B[(X + - B(X + )]

=E [(X +u —E(X) - ,u)z] (espérance d’une v.a. constante)

=  E[@-E®)Y|

Var(X) m

431

vy
Q
frer]
D
B
()
i
o
v
Q)
-
3
(1]
0
o
=
.

Probabilités

A
3

(=)




1Nod.

L

D

ht © 2014

Copyright

Corollaire Variance d’une v.a. constante

Soit X une variable aléatoire réelle constante. Sa variance est nulle :
Var(X) =0

Démonstration : 1l suffit d’appliquer la formule d’invariance par translation ; pour tout
réel u :
Var(0 + 1) = Var(0) = E [(0 - E(O))zl =E0)=0 n

» Variance nulle
Soit X une variable aléatoire réelle. Alors :
Var(X) = 0 & X = E(X) avec une probabilit¢ de | & X

est constante avec une probabilité de 1

Démonstration : 1l est clair que si X est une v.a. constante, alors son espérance est égale
a elle-méme ; sa variance est donc nulle.
Réciproquement, si X est une v.a. de variance nulle :

Var(X) = E [(X — ]E(X))Q] - Z (xp — B(X))? P(X = x) = 0
1 EX ()

Tous les termes de la somme étant positifs ou nuls, il en résulte, pour tout x; de X(Q) :
(i —EQX0))* P(X = x) = 0
Par suite, pour toutes les valeurs x; # E(X) :
PX=x,)=0

Il reste :
PX=EX)=1

qui est le résultat cherché. ]

» Formule de Koenig

Soit X une v.a. réelle admettant une espérance mathématique et un moment d’ordre 2.
Alors :
Var(X) = E [XZ] ~ [EX))?

Démonstration : On a:

Var(X) = E [(X - B(X))]
= E[X?-2XEX)+ EX)’|
= E|X?| - 2B(X)E(X) + E|(B(X))?] (linéarité de 1’espérance)
= B[X?|-2 BX) +EX)® (espérance de la constante (E(X))?)

= i} [XZ] — (B(X))?

432



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Le plus souvent, pour calculer des variances de variables aléatoires, la formule de Koenig
s’avere donner des calculs 1égerement plus simples que si on utilise la définition ; elle permet,
en outre, d’identifier les deux premiers moments séparément.

3. Exemples de calcul de la variance

» Calcul de la variance dans le cas de la loi de Bernoulli

Considérons une variable aléatoire X suivant la loi de Bernoulli de parametre p :
PiX=L)=p , PX=0)=1~=p
Pour calculer sa variance, le plus simple est d’utiliser la formule de Koenig :
EX)=0"xPX=0)+1>xPX=1)=0+p=p
Il en résulte :

Var(X) = B[X*| - [EX)I* = p— p* = p(1 - p)

Dans la littérature anglo-saxonne, on rencontre souvent la notation ¢ = 1 — p (probabilité
d’échec), qui conduit a la formule Var(X) = p g ci-dessus, et des expressions (cf. infra) utili-
sant aussi la notation g.

» Calcul de la variance dans le cas de la loi uniforme

Considérons une variable aléatoire X suivant la loi uniforme sur I’ensemble fini
{1,...,n}:

PX=l=+ , Bor)="3!
n 2
On calcule
i N LI lann+D)2n+1) M+DCn+1)
E(X?) =) PPX=k=)> —==-> kK =- =

Il en résulte, grace a la formule de Koenig :

(n+1)Q2n+1) @+ +D@m-1) n*-1
6 T4 12 T 12

Var(X) = E[X*| - [E(X)]* =

» Calcul de la variance dans le cas de la loi géométrique de paramétre p > 0

Considérons une variable aléatoire X suivant la loi géométrique de parametre p € ]0, 1[.
On a alors X(Q) = N*, et, pour tout entier naturel non nul & :

PX =k =p(-p*!

De plus :
1
E(X) = —
p
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On calcule :

E(X?) = ZkzP(X:k)
k=1

= +Z/‘czp(l pt!
k=1

1l

i~
+
'MS

a-u
o
Y

Il
=
|

I
=
I

Il
<
I

1
=
&~
&~
N
|
o
—_——

= p—

3 1 N 2.5
“Pla= T a9,

1 2(1—p>}
{lp2 2(1 3
_+(_;P)
P 2

(On applique le théoréme de dérivation terme a terme des séries entieres, puisque I’on
est bien a I'intérieur du disque de convergence.)

Il en résulte, grace a la formule de Koenig :
20-p) 1 1I-p

1
vart) = B[p] - w00 = L+ 2050 - -

Il est a noter que ce résultat peut étre également obtenu plus rapidement en calculant
EX(X-1)).

» Calcul de la variance dans le cas de la loi de Poisson de paramétre 1 € R

Considérons une variable aléatoire X suivant la loi de Poisson de parametre 4 € R. On
e Ak
k!

a alors X(€2) = N, et, pour tout entier naturel non nul k : P(X = k) =
Ona:
EX)=4
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On calcule alors :

E(XZ) - f}k%(x:@
k=1
+oo —zl/lk
- ;kz k!
i A gk
- ;k(k— Y
Foo e—/l’:tk
- Z(k_l 1)(k-l)!

k=1
i(k“ B e QK ++Z°°: etk
- (k—1)! - (k=1)!
foo e—/l /tk +oo e—/l /{k-i-]
k=1 +
kg; (k—1)! ; k!

& et Ak 3 et Ak

Z(k—Z)!JHl; Iz

k=2
=) _ + _
o e A /lk+2 ) zl/lk

Il

= e tel + et et
= 2+
I1 en résulte, grice a la formule de Koenig :

Var(X) = E [X2] —[EBXP=2+1-12=2

Les quatre exemples ci-dessus utilisent la formule de Koenig. Dans de nombreux cas, on
peut cependant recourir a des représentations de variables aléatoires comme sommes d’autres
variables indépendantes, pour calculer beaucoup plus facilement leurs variances. C'est le cas,
notamment, pour la loi binomiale et 1a loi binomiale négative.

A cet effet, il faut utiliser ’indépendance des termes intervenant dans ces sommes. Les ré-
sultats qui suivent apparaissent comme des cas particuliers faisant intervenir le concept de
covariance et des lois jointes de couples de v.a., que nous rencontrerons un peu plus loin.

4. Espérance mathématique d’'un produit de v.a. indépendantes

Théoreme
Soient X et Y deux variables aléatoires indépendantes admetiant, chacune, une espé-
rance mathématique. Alors, la v.a. produit X Y admet également une espérance mathé-

matique, donnée par :
E(XY) = E(X)E(Y).
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Ce théoréme peut étre utilisé pour calculer Ia variance de la somme de deux v.a. X et ¥ in-
dépendantes. Grace a la formule de Koenig, et 4 la linéarité de I’espérance, on obtient, en
développant les carrés :

Var(X +7Y)

JE(X2 + V24 2XY) ~EBX+Y))?
]E(XZ) + E(Y"—) +2E(XY) — (B(X))? — (E(¥))? - 2E(X)E(Y)
= B (XZ) —B&X)? + E(W) — (B (V))?
= Var(X) + Var (Y).

Nous avons donc démontré le résultat fondamental suivant :

» Additivité des variances pour les variables indépendantes

Corollaire
Soient X et Y deux variables indépendantes admettant des moments d’ordre 2. Alors :

Var(X+Y)=Var(X)+ Var(Y).

Ce corollaire implique immédiatement que si Xy, ..., X;,, n € N, sont des variables indépen-
dantes admettant des moments d’ordre 2, alors :

Var[i X;|= i Var (X;)
=1 i=1

=
Le cas particulier suivant est particulicrement utile.

» Variance de la somme de variables indépendantes et identiquement distribuées
(i.i.d.)

Corollaire
Soient Xy, ..., Xy, n € N, des v.a. indépendantes et identiquement distribuées (i.i.d),
admettant, chacune, deux moments. Alors,

Var [Z X,-) = nVar (X))

i=1
Exemples

1. Calcul de la variance dans le cas de la loi binomiale 8(n, p),n € N, p € [0,1]
Considérons une variable aléatoire X suivant la loi binomiale B(n, p). Nous avons déja
vu que E(X) = np, calcul qui a été grandement facilité par le fait qu’on peut considé-

n
rer X comme la somme Z X,oules X;, i = 1,...,n, sont des variables i.i.d, de loi
i=1
B(p), avec, pour tout entier i de {1,...,n}, E(X;) = p. Nous avons également vu que
Var(X;) = p (1 — p). En utilisant le corollaire précédent, on obtient immédiatement :

Var(X) =np(l - p)

Grice a la formule de Koenig :

E(X2) = np (1-p)+n?p?

np(l+(n—-1)p)
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Le calcul direct de cette variance (i.e. de ce second moment), & partir de la loi
P(X = k)= p* (1 - p)'"* (). et de la formule :

E(X?) = gkzP(sz)

est beaucoup plus ardu. C’est exactement la méme chose pour le calcul qui suit.

2. Calcul de la variance dans le cas de la loi binomiale négative BN (n,p), n € N,
p€lo,1]
Considérons une variable aléatoire X suivant la loi binomiale négative BN (n, p), n € N,
p € [0,1]. Nous avons déja vu que E(X) = g, résultat qui vient immédiatement du

n
fait que X peut étre considéré comme la somme ZX;, oules X;, i=1,..., n, sont des
i=1
1
variables i.i.d., de méme loi G (p). telles que, pour tout entier i de {1,...,n}, E(X|) = — et
P

Var(X;) = (1 - p) p'z. En utilisant le corollaire précédent, on obtient immédiatement :

1—
Var(ty= 24P
P
Grace a la formule de Koenig :
s n(l-p) n
E(X ) - P2 * ?
_ nn+1-p)
P2

L’inégalité suivante est tres utile pour évaluer les déviations d’une variable par rapport
a sa moyenne (espérance).
5. Inégalité de Tchebychev'

Soit X une v.a. admettant une variance Var(X). Alors, pour tout réel > 0 :

p Var(X)

P(X~ECO > 1) < —

Démonstration : 11 suffit d’appliquer I'inégalité de Markov :

E(X -ECOP)  var(x)
1 < 2

PIX-EX)|=t)=P (lX ~EX)] = r2) <

Le phénomeéne qu’on vient d’observer peut étre considéré comme « précurseur » de la concen-
tration de la mesure : lorsqu’on répete des expériences indépendantes de nombreuses fois, les
déviations autour des valeurs moyennes, toutes proportions gardées, ont tendance a s’estom-
per tres rapidement. L'ultime manifestation de ce phénomene est celui du théoréme central
limite, qu’on verra ultéricurement.

Il est néanmoins possible de bien comprendre déja ce phénomene, en regardant simplement
les écarts-type des moyennes empiriques.

1. (ou Chebysheyv, en transcription anglo-saxonne) Pafnouti Lvovitch Tchebychev (1821-1894), mathéma-
ticien russe, qui apporta de nombreuses contributions en probabilités et en statistiques.
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» Premiére manifestation de la concentration de la mesure

Soit  un entier naturel non nul, et (X;),<;c, une famille de variables i.i.d., d’espérance
E(X)=u € R, i=1,...,n de variance Var(X;) = 0> € R*,i=1,...,n On désigne
par §, leur « moyenne empirique » jusqu’au rang 7 :

Sn:_ Xi
4 i=1

Par linéarité de I’espérance, additivité et changement d’échelle de la variance, 1’espé-
rance et 1’écart-type de la moyenne empirique sont donnés, pour tout entier n > 1, par :

ES)=n » Var(S,) = —
i

Ainsi, la dispersion de la moyenne empirique tend vers O a la vitesse —, alors que son
n

espérance reste constante. On concoit donc bien que S, se concentre autour de u. L'in-

égalité de Tchebychev donne alors, pour tout x > 0 :

2
P(S, -l >x) < —
nx

La vitesse de décroissance vers 0 de la probabilité de déviation de S, au-dela d’une

1 i , est, au i — pour x fixé, u i
distance x de p, est, au moins de 1’ordre de our x fixé, et au moins de I’ordre de
n

1 . . . ) .
— pour n fixé. C’est une concentration de type quadratique. Le théoréme central limite
x

montrera que la vitesse de concentration est typiquement beaucoup plus rapide, d’ordre
exponentiel quadratique.
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Inégalité de Tchebychev et concentration

de mesure

Revenons a ’exemple du temps d’attente X pour I'arrivée du premier client dans
notre hypothétique magasin de luxe. Supposons a nouveau que I’on ne connaisse pas
la loi de X. Par contre, on a mesuré, empiriquement, E (X) = 10 et IE(XZ) = 190.
Grace a la formule de Koenig, on en déduit :

Var(X) =190 - 100 = 90

On peut alors invoquer I'inégalité de Tchebychev pour estimer la probabilité que la
déviation entre X et sa moyenne soit supérieure a cinq minutes :

90

POX—10[>3) < — =
(I |>3) % 52

3,6

Cette estimation n’a, évidemment, aucune valeur informative ! La difficulté vient du
fait que la v.a. X est fortement non symétrique, et a une forte variance par rapport au
carré de son espérance.

Considérons donc plutot le temps d’attente ¥ jusqu’a I’arrivée du dixieme client,
et supposons que les durées entre deux clients successifs sont indépendantes les unes
des autres. Il n’est alors pas mauvais de supposer que Y puisse €tre considéré comme
somme de 10 variables i.i.d., de méme loi que X. Par linéarité de I’espérance, additi-
vité de la variance pour les variables indépendantes, on obtient :

E(Y)=100 et Var(Y)=900

L’inégalité de Tchebychev conduit alors a :

900
P(]Y —100] > 50) < 2500 0,36.
Si I'on changeait encore la question, et que I’on s’intéressait a la probabilité que le
temps d’arrivée Z du 100° client dépasse de plus de 500 minutes la durée moyenne
d’attente de ce 100° client, qui est de E(Z) = 1000 minutes, on obtiendrait, par
Tchebycheyv :
9000

P(|Z - 1000] > 500) < 350000

= 0,036.
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Covariance

1. Inégalité de Cauchy-Schwarz

Théoreme
Soient X et Y deux variables aléatoires admettant, chacune, un moment d’ordre 2. Alors :

[EX Y) < VEX?) VE(Y?)

ou encore

IE(X Y)I* < E(X?)E(Y?)

1l y a égalité si et seulement si les v.a. X et Y sont colinéaires, i.e. 5'il existe un réel t tel
que X = tY presque siirement (la probabilité associée est 1).

Démonstration : Pour tout réel ¢, par linéarité de 1’espérance :
E[(X+ tY)z] = E[Xz] +t2E[Y2] +2tE[X Y]

X et Y admettant des moments d’ordre 2, I’existence de I’espérance E[X Y] est ainsi
assurée.

De plus, le trindme E [(X +1 Y)Z] étant toujours positif, et ce quelle que soit la valeur
du réel ¢, son discriminant réduit est donc négatif ou nul :

(E[XY])?-E [X2] E [YQ] <0
ce qui conduit au résultat cherché.
Le cas d’égalité correspond a I’existence d’une racine double #y, qui est donc telle que :
E[X+1577]|=0
ce qui équivaut a :
X + 19 Y = Opresque sirement
(i.e. la probabilité associée vaut 1).
X et Y sont donc presque stirement colinéaires. La réciproque est évidente. ]
2. Espérance d’un produit de v.a. indépendantes

On rappelle, dans ce qui suit, le théoréme sur l'espérance d’un produit de v.a. indépen-
dantes ; sa démonstration est donnée ci-dessous.

Théoreme
Soient X et Y deux variables aléatoires indépendantes admettant, chacune, une espé-
rance mathématique. Alors, la v.a. produit XY a également une espérance mathéma-
tique, donnée par :

E(XY) = E(X)E(Y)
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Démonstration : Par indépendance des v.a. X et ¥, pour tout x; de X(Q), et tout y; de
Y() :

| y; PX = xi, Y = yj)| = |y PX = ) P(Y = yj)| = Ixil |y)| PCX = x) P(Y = )

X et Y admettant une espérance mathématique, |x;| P(X = x;) et ly j| P(Y = y;) sont les
termes généraux de séries convergentes.
Lexistence de I’espérance du produit X Y est ainsi assurée. On a alors :

E(XY)

)C,'yj P(X = Xi, ¥ = yj)
GEX(Q), eV (L)
= D xyPX =x)PY =y))
XEX(EY), y;€Y(Q)

D aPX=x)p{ >y P =y))

HEX(Q) yEY(Q)

= E(X) E(Y) n

La réciproque est fausse ! Ce n’est pas parce que B(X ¥) = E(X) E(Y) que les v.a. X et Y sont
indépendantes, loin de la! Il y a néanmoins un type de variables aléatoires pour lesquelles
cette réciproque est vraie : les variables de Bernoulli. Le lecteur pourra réfléchir a la propriété
suivante : une variable de Bernoulli X est, en fait, équivalente a 1’événement A = {X = 1},
puisque, si X n’est pas égale 4 1, alors, nécessairement, X = (. De fait, I'indépendance de deux
variables de Bernoulli X et ¥ est équivalente a 1'indépendance des événements A = {X = 1}
et B={Y = 1}. On peut alors montrer que la relation E[X Y] = E[X] E[Y] est équivalente a
P[A N B] = P[A] P[B], qui implique, par définition, que A et B sont indépendants, et, par suite,
que X et ¥ sont indépendants.

Exemple

Voici un contre-exemple assez général illustrant I"'implication fausse de la remarque précé-
dente. Soient X| et X, deux variables indépendantes de méme loi, admettant, chacune, un
moment non nul d’ordre 2. On considere les v.a. :

X=X;+X, et Y=X-X5
Par linéarité :
E(Y)=0
Alinsi,
EX)EY)=0
De plus,

E(XY)=E(X{-X3)=0

et donc E(X Y) = E(X)E(Y).

Dans la plupart des exemples, X et ¥ ne sont pas indépendants. On peut noter, en particulier,
que X et ¥ ne peuvent pas étre de Bernoulli, sauf si une des deux variables X ou X, a une
variance nulle. Le lecteur vérifiera par exemple que, si X et X> suivent la loi B (p), p = 0,5.

PAX=1In{yY=0)=0
alors que :

PX=DP({¥=0)=
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3. Covariance
Définition

Soient X et Y deux variables aléatoires admettant, chacune, un moment d’ordre 2. On
appelle covariance du couple de v.a. (X, Y) la quantité :

Couv(X,Y) = E[(X — E(X)) (Y — E(Y))]

Soit X une variable aléatoire admettant un moment d’ordre 2. Alors :
Cov(X,X)=E [(X - E(X))Q] = Var(X)

» Covariance de deux v.a. indépendantes

Soient X et ¥ deux variables aléatoires indépendantes admettant, chacune, un moment
d’ordre 2. Leur covariance est alors nulle :

Cov(X,Y) =0

Attention ! La réciproque est fausse. Le contre-exemple précédent s”applique ici aussi (il suffit
de soustraire les espérances)...

Démonstration : Les v.a. X et Y étant indépendantes, il en est de méme des v.a. X —E(X)
et Y — E(Y). Par suite :

Cou(X,Y) = E[(X -EX)) (Y —E(Y)))
=E[X -EX)] E[Y - E(Y)]
{E[X] - EQX)}{E[Y] - E(Y)}

= 0

I

(On utilise, tout simplement, la linéarité de I’espérance par rapport aux constantes E(X)
et E(Y).) ]

4. Propriétés de la covariance

Soient X et Y deux variables aléatoires admettant, chacune, un moment d’ordre 2. La
covariance Cov(X, Y) du couple de v.a. (X, Y) vérifie les propriétés suivantes :

e Symétrie :
Cov(Y,X)=Couv(X,Y)

¢ Changement d’échelle : pour tout couple de réels (4, ) :
Cov(AX,uY)=AuCov(X,Y)
¢ Invariance par translation : pour tout couple de réels (o, f) :

Cov(X+a,Y +p)=Cov(X,Y)
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¢ Comparaison avec les écarts-types : d’aprés I'inégalité de Cauchy-Schwartz :

|Couv(X,Y)| € o(X) o(Y)

Démonstration :

e Symétrie : De par la définition de la covariance :

Coo(X,Y) = E[(X - E(X)) (Y = E(Y))] = E[(Y - E(Y)) (X - E(X))] = Cou(Y. X)

¢ Changement d’échelle : pour tout couple de réels (A, i), par linéarité de I’espérance :

Cov(AX,uY)==E[(AX -E@X)) (uY —-EuY))]

= = E[(AX - AE(X)) (u¥ — uE(V))]
=E[lu (X -EX) (¥ - EY))]
= ApE[(X - E(X)) (Y - E(Y))]
= AuCou(X,Y)

¢ Invariance par translation : pour tout couple de réels («, ), par linéarité de 1’espé-
rance :

CooX+a,Y+B) =E|[X+a-EX+a) (Y+B-EY +p))]
E[(X +a-EX)-a) (Y +B-EY)-p)]
= E[(X -EX)) (Y - E())]

= Cov(X,Y)

¢ Comparaison avec les écarts-types : d’apres I'inégalité de Cauchy-Schwartz :
|Cov(X,Y)| < o(X) o (Y) ]

» Coefficient de corrélation

Soient X et Y deux variables aléatoires non constantes admettant, chacune, un moment
d’ordre 2. Le coefficient de corrélation du couple de v.a. (X, Y) est la quantité définie
par :

Cov(X,Y)

PN = X0

Propriéteé
Soient X et ¥ deux variables aléatoires non constantes admettant, chacune, un moment
non nul d’ordre 2. Comme :

[Cov(X, Y)| € o(X)o(Y)

alors :
-1 <pX,Y)< 1
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» Formule de Koenig

Soient X et Y deux variables aléatoires telle que la covariance Couv(X, Y) existe. Alors :
Cov(X,Y)=E(XY)-E(X)E(Y)

Démonstration : Ona:

Cov(X,Y) = E[(X — E(X)) (Y — E(Y))]
= E[XTY+EX)EY)-XE(Y)-YEX)]
=E[XY]+EX)EY) - EX)E(Y)- E(Y)E(X) (linéarité de 1’espérance)
= E[X Y] -E(X)E(Y) .
Exemple

On considere deux variables X et X3 i.i.d., de loi B(p). On pose X = X| + Xz, et ¥V = X| Xs.
(les v.a. X et ¥ correspondent, respectivement & la somme et au mimimum des gains dans un
jeu de pile ou face, ot on lance, de facon indépendante, deux piéces, et oll on gagne un euro
chaque fois que tombe le c6té « pile » (avec une probabilité de p) et rien du tout chaque fois
que tombe le coté « face ».

Puisque :

E(X) =B((X))’) = p
alors, par indépendance :
— 2 Y. _ 2
E(XY)=E(X{X2+ X\ X})=pXp+pxp=2p
et :
EX)EY)=pxp=p~

Grice 4 la formule de Koenig :
Cov(X,Y) =2p* - p* = p*.

On a aussi :
Var (X,) = Var(Xy) = p (1 = p)

Il en résulte : 5
p o P
pll=p) 1-p
Il est intéressant de noter que le coefficient de corrélation entre X et Y est précisément égal a
ce que I’on appelle, dans le langage des jeux d’argent, la « cote de la face pile ».

pX.Y) =
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Nous avons déja rencontré certaines propriétés des paires de variables aléatoires, parti-
culierement lorsqu’elles sont indépendantes, mais pas nécessairement, comme 1’illustre
le dernier exemple ci-dessus. Nous introduisons, dans ce qui suit, de nouveaux éléments
permettant d’étudier, de facon plus systématique, ces paires de v.a.

1. Couple de variables aléatoires discrétes
Définition

Soit (Q, A, P) un espace probabilisé. On appelle couple de variables aléatoires dis-
cretes sur (), A, P) toute application Z : Q — R2, qui, a tout événement w de € as-
socie le couple (X(w), ¥(w)), ou X et Y sont deux variables aléatoires discretes sur €.

Un couple de variables aléatoires peut étre considéré comme une variable aléatoire a valeurs
dans R2.

Exemple

Considérons le lancer de deux dés. On désigne par X le plus grand des deux nombres obtenus,
et par Y le plus petit. Alors, Z = (X, Y) est un couple de variables aléatoires.

Théoréme

Soient (2, A, P) un espace probabilisé, et (X,Y) un couple de v.a. discrétes sur €. Sup-
posons que les valeurs prises par chacune des deux composantes X et Y de ce couple
sont :

XQ)=1{x1,....%a} s Y ={y1,....4}
ot (m,n) € (N*U {+00})2.
Alors, la famille d’événements :
(X =x}n{Y = yi})lsism, I<jsn = ({(X=xjetY = yi})lsism, 1<jgn

est un systeme complet d’événements de €.

On utilisera la notation :

X=x,Y=y}={(X=xiin{¥Y =y}.

2. Lois

» Loi conjointe

Soient (Q, A, P) un espace probabilisé, et (X, ¥) un couple de variables aléatoires dis-
crétes sur (€2, A, P). On appelle loi conjointe du couple de v.a. (X, ¥) I’application, notée
P XY -
X(Q)x Y(Q) — [0, 1]
(xy) P PX=xY=y
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» Lois marginales

Soient (€, A, P) un espace probabilisé, et (X, ¥) un couple de variables aléatoires dis-
cretes sur (Q, A, P). On appelle lois marginales les lois de probabilités respectives des
va. Xett.

Théoréme

Soient (Q2, A, P) un espace probabilisé, et (X,Y) un couple de v.a. discretes sur Q, de la
forme :
X(Q) ={x1,....xm} , Y ={y1,...,yn}
oi (m,n) € N* x N*,
Alors, les lois des v.a. X et Y sont respectivement données par :

e pour tout entier i de {1,...,m}:

n

P(X=x)=) P(X=xY =y
=1
e pour tout entier jde {1,...,n}:

m

P(yzyj):ZP(X=xisY:yf)

i=1
» Lois conditionnelles
Soit (€2, A, P) un espace probabilisé, et (X, ¥) un couple de variables aléatoires discretes
sur (Q, A, P). Pour tout y de Y(Q) tel que P (Y = y) # 0, 'application P(Y = y) :
X(Q) — [0, 1]

P =, F=
I BPX=xY=g)= ( B 9
P(Y =y)
est appelée loi conditionnelle de X sachant que Y = y. On utilisera parfois la notation
explicite P (:|Y = y), au lieude P (Y = y).
De méme, pour tout x de X(Q) tel que P (X = x) # 0, application P(X = x) :
Y(Q) — [0,1]
PX=x,Y=y)
y ¥ =ylX =x) PX =)
est appelée loi conditionnelle de Y sachant que X = x.

Nous avons déja rencontré des variables aléatoires indépendantes, mais rappelons quand
méme la définition associée.

Définition
Soient (€, A, P) un espace probabilisé, et (X, ¥) un couple de variables aléatoires
discrétes sur (2, A, P).
Les v.a. X et ¥ sont indépendantes si la loi conjointe est le produit des lois marginales,
c’est-a-dire, pour tout (x, y) de X(Q) X Y(Q) :

PiX=x Y=y)=P(X=3) PU¥ =p)
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Un théoréme limite
pour les variables aléatoires
discretes : la loi des grands nombres

De fagon treés intuitive, il est clair que les caractéristiques d’un échantillon choisi au
hasard se rapprocheront d’autant plus des caractéristiques réelles de la population que la
taille de I’échantillon augmente. Curieusement, la taille de I’échantillon a considérer ne
dépend que faiblement de la taille de la population. Ainsi, pour déterminer la préférence
d’une population en chocolat noir corsé ou au lait, un sondage sur le méme nombre
d’individus dans un petit pays comme le Luxembourg ou, au contraire, dans un pays a
plus forte population comme les Etats-Unis, suffit! On peut se rappeler de I’'exemple
de I’approximation binomiale de la loi hypergéométrique, pour illustrer ce phénomene :
I’approximation est bonne, que 1’on ait ou non une population qui soit des centaines ou
des centaines de milliers de fois plus grandes que I’échantillon.

En ce qui concerne le probleme tres précis de calculer une moyenne empirique, et son
interprétation en tant qu’espérance de la population, on dispose d’un outil extrémement
général : la « loi des grands nombres », dont il existe au moins deux versions, une faible,
une forte. Nous disposons déja des outils pour en démontrer une version faible.

C’est le mathématicien suisse Jacob (Jacques, James) Bernoulli' qui en établit le pre-
mier, le modele formel, en 1690. La plupart des sondages se basent, au minimum, sur
ce résultat. Le cadre extrémement vaste d’application de ce théoréme a un prix : la loi
des grands nombres, qui dit que la moyenne empirique de données i.i.d. converge vers
leur espérance mathématique, ne donne pas d’ordre de grandeur de la vitesse de conver-
gence, et ne permet donc pas d’obtenir ce que I’on appelle communément une « marge
d’erreur », qui requiert le théoreme central limite.

1. La loi faible des grands nombres

Théoréme

Soit (X,,),civ+ une suite de variables aléatoires indépendantes et identiguement distri-

buées, définies sur un méme espace probabilisé (Q, A, P), avec une espérance mathé-
. Xi+X+---+ X,
matique E(X). Alors,

n
se traduit mathématiquement par le fait que, pour tout € > 0,

converge « en probabilité » vers B(X), ce qui

lim P

H—+00

— E(X)

(’X1+X2+---+Xn
n

28)=0

Démonstration : On peut présenter une démonstration, simple, et trés complete, de la
loi faible des grands nombres, en supposant que les variables X, ont un moment d’ordre 2
fini. Cette hypothese, beaucoup plus forte, permet méme d’affaiblir les autres hypotheses
du théoreme, en supprimant en particulier 1’hypothese i.1.d.

1. (1654-1705), frere de Jean Bernoulli (1667-1748), lui aussi mathématicien, oncle de Daniel (1700-1782)
et Nicolas Bernoulli (1695-1726).
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Supposons plutdt que les X, sont indépendants et possedent tous la méme espérance
et la méme variance. Soit alors :

_ XXyt b Xy
n

M,

On calcule alors, en utilisant la linéarité de I’espérance, 1’additivité et le changement
d’échelle de la variance :

EXD+EX) +---+EXy)

E[M,] . =E (X)),
Var (X)) + Var (Xo) + --- + Var (X,,) _ Var(Xy)

n? n

Var(M,)

Grace a I’inégalité de Tchebychev, on obtient alors :

P(an - E(X)l = 8)
Var(M,)

Xy Sl » ol Xy
e

M

7]
VarS(X 1)
ng2

Pour tout £ > 0, cette expression tend vers 0 lorsque » tend vers +oco. Nous avons donc
démontré le résultat suivant. [

2. Une loi faible des grands nombres avec second moment,
sans hypotheése i.i.d.

Théoréeme

Soit (X,)),er+ une suite de variables aléatoires indépendantes définies sur un méme es-
pace probabilisé (), A, P), toutes avec la méme espérance mathématique E(X) et la

méme variance Var(X) finie.
X1+ Xo+---+X
Alors, I 2  converge en probabilité vers E(X).
7]

En renforcant encore un peu les hypothéses concernant les moments, on peut démontrer fa-
cilement, grice 4 un résultat connu sous le nom de lemme de Borel-Cantelli, 1a loi forte des
grands nombres. Cette loi est néanmoins vraie en toute généralité, sans I'existence de mo-
ments d’ordres plus élevés que 1, mais sa démonstration sort largement du cadre de ce cours.
Nous la mentionnons sans plus de commentaires.

3. La loi forte des grands nombres

Théoréme

Soit (X)), une suite de variables aléatoires i.i.d. définies sur un méme espace probabi-

lisé (Q, A, P), avec une espérance mathématique B(X) finie. Alors, avec une probabilité
Xi+Xo+-+ X .
égale a1, = = = converge vers B(X) lorsque ’entier n tend vers I'infini.
n
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Du discret au continu : variables
aléatoires continues

Jusqu’a présent, I'univers des possibles, €, était dénombrable. Il n’est pas toujours pos-
sible de modéliser les phénomenes de la vie réelle en se restreignant a de tels univers.
Néanmoins, beaucoup des concepts développés dans le cadre discret restent encore va-
lables lorsque € n’est pas nécessairement dénombrable. La théorie de la mesure, que
nous ne traitons pas dans ce cours, permet de donner une définition précise des types
d’espaces probabilisés (€, A, P) qui sont utiles en modélisation probabiliste. Modulo
ce point que nous ne détaillerons pas, il est trivial de redéfinir le concept de variable
aléatoire et les quantités associées.

Définition

Soit (Q, A, P) un espace probabilisé. On appelle variable aléatoire réelle sur
(Q, A, P) toute application X : Q — R.

La fonction de répartition Fy de X est la fonction de la variable réelle x définie par :
Fyx)= B(X = I,
La loi, ou la distribution, de X, peut étre identifiée a cette fonction Fy.
Propriéteé

Comme dans le cas discret, avec Fy définie comme ci-dessus, Fx est croissante,
lim Fx(x)=0et lim Fx(x)=1.
X——00 X—+o0

Dans ce qui suit, on se place, implicitement, dans un espace probabilisé (Q, A, P),
pour lequel ['univers Q n’est pas dénombrable. 1l s’agira donc simplement d’admettre
sans démonstration que les variables aléatoires que nous serons amenés a utiliser sont
définies sur de tels espaces.
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133 Variables a densité

1. Densité de probabilité

Définition

~+0co
Une fonction f : R — R, a valeurs positives, intégrable (i.e. j fHdt = f [ dt
R —o0

existe) est appelée densité de probabilité si et seulement si :

f c’of(r)dt =1

Exemples

1. La fonction caractéristique de I'intervalle [0, 1], I [0.1], €st une densité de probabilité, puis-
qu’elle est a valeurs positives, intégrable, et telle que :

oo 1 1
f .I[o’]]dl‘=f ldl‘=f dt=1
—c0 0 0

2. Lafonction f définie sur R par :

0 pour x <0
e pour x >0

f(x)—{

est une densité de probabilité pour les mémes raisons, en particulier :

+00 . 0 +00 . A
Lﬂ f(t)drzj:m()dr-i-j(: eldr=0+|(-e7)]| =0-0+1=1.

2. Variable aléatoire continue
Définition

Soit f une densité de probabilité. On dit qu’une variable aléatoire réelle X suit la loi
de densité f si, pour tout couple de réels (a.h) telque a < b :

b
P(X € [a,b)]) = f f(t)dt
a
On dit aussi que la v.a. X est continue.

Pour toute v.a. continue,
P(X € [a,b]) = P(X €]la,b])

~ ey 2t 1 b
opyrignt (

puisque I'intégrale de f sur I’intervalle ouvert a gauche Ja, b] est la méme que celle sur I'in-
tervalle fermé [a, b], ou celle sur 'intervalle ouvert b, al.

450



Copyright © 2014 Dunod.

© Dunod. Toute reproduction non autorisée est un délit.

Propriéteé
Soit X une v.a. réelle de densité f. Sa fonction de répartition Fy est telle que :

e Pour tout réel x : .
Fy(x) = f ftydr

e F'y est continue sur K.

e Si f est continue en x € R, alors Fy est dérivable en x, et :
Fy(x) = f(x)

3. Espérance d'une variable aléatoire continue

Pour comprendre intuitivement ce que représente le concept d’espérance pour les v.a.
continues, il est intéressant de considérer une variable aléatoire discrete prenant ses va-
leurs dans I’ensemble {1,...,n}.

Sa fonction de probabilité est donnée par :

pk)=P(X =k)
pourk = 1,2,...,n.
Si on change de notation et que I’on écrit :

-
n

. X . : .
on est amené a s’intéresser a la v.aa. ¥ = —, qui est toujours discrete, mais prend ses
n

1 2
valeurs dans {—, e 1} c [0, 1].
nn

On s’apercoit, en particulier, que la fonction de probabilité de Y est donnée par :

Par définition,

Par linéarité :

k
Enfin, s’il s’avere que la fonction p est telle que la suite f(—)) , l.e. la suite

Iy
(n p (k))),cpr» converge vers une limite f (x), ou f est une densité de p?(e)babilité, quand

k/n converge vers x € [0, 1] (par exemple, en prenant k = [n x], partie entiere de nx),
alors on reconnait que la formule ci-dessus pour E[Y] est la somme de Riemann asso-

P LY 1 2 w " .
ciée a I'intégrale fo t f(t) dt. Si, de surcroit, la fonction f est continue par morceaux,
nous avons vu que la somme de Riemann converge vers 'intégrale, i.e. :

1
lim E[¥Y] :f tf(t) dt
n—00 0
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n p (k) peut aussi étre interprété comme une approximation de la densité f d’une variable
aléatoire Z, correspondant a la loi limite de la loi de ¥. On divise p (k) par la longueur de
I’intervalle [!‘_Tl, f], pour permettre a la probabilité de ne pas tendre vers une limite tri-
viale. Plus précisément, toujours avec k = [n x], on peut écrire, sous réserve d’existence
des limites en jeu,

dF7 (x
f= aFz (x)
dx i
P(Ze X— - x])
= T
= lim nP[Ye k_l,E”
n—+co n

Il
e
3
~
—

Il
=
=
=
—_—
=
~—

Et:
1
1= im 501 = i 25 (1)< [T a

Le lecteur assidu pourra vérifier « 4 la main » que la situation ci-dessus s’applique a des O
exemples que nous avons déja rencontrés, y compris dans le cas ot la v.a. X est de loi B (n, p). Ll
On trouve alors :

Fiche 136

1 x2
fO=Qn exp(—;)

Toutefois, méme pour ce cas binomial, les calculs sont un peu ardus, et vont au-dela de ce que
la théorie générale prédit, car il s agit du cas particulier des variables binomiales, qui ont des
propriétés tres fortes. Le seul résultat que I’on peut obtenir par le théoreéme central limite est :

hmP[Y—— x]—j f(2)dz

qui est celui du théoreme de De Moivre-Laplace. Cette remarque permet non seulement d’ex-
pliquer la relation entre fonction de probabilité de variables discrétes et densités de variables
continues, mais aussi de motiver la définition suivante.

Définition

+00
Soit X une variable aléatoire réelle, de densité f, telle que 1’intégrale f |x| f(x)dx

converge. L’ espérance mathématique de la v.a.r. X est la quantité, notée E(X), don-
née par :

]E(X)=fmxf(x)dx.

(e}

4. Propriétés

Les propriétés suivantes s’obtiennent trivialement a partir des propriétés correspondantes
pour les intégrales. Les nouveaux concepts en jeu, les moments notamment, sont essen-
tiellement identiques a ceux définis précédemment pour les variables discreétes. Nous
omettons donc les démonstrations. Les interprétations « intuitives » sont les mémes.
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> Espérance et valeur absolue

Soit X une variable aléatoire admettant une espérance E(X). Alors :
[E(X)] < E(IX]) < +oo0

» Positivité de I'espérance

Soit X une variable aléatoire réelle a valeurs positives, admettant une espérance mathé-
matique E(X). Alors :

E(X) > 0.

» Croissance de I'espérance

Soient X et ¥ deux variables aléatoires réelles telles que X < Y, admettant chacune une
espérance mathématique (E(X) et E(Y) respectivement). Alors :

E(X) < E(Y)

» Linéarité de I'espérance

Soient X et Y deux variables aléatoires réelles, admettant chacune une espérance mathé-
matique (E(X) et E(Y) respectivement). Alors :

E(X + Y) = E(X) + E(Y)

» Transfert de I'espérance

Soient X une variable aléatoire réelle, de densité f, et une fonction réelle g, telle que

+00
I’intégrale f lg (x)| f(x)dx converge.

(&)
Alors Y = g (X) est une variable aléatoire dont I’espérance est donnée par

%mﬂ"mmm

oo

» Momentd'ordre nd'une v.a.r.,, ne

Définition
Soient n un entier naturel non nul, et X une variable aléatoire réelle, de densité f, telle
+00
que I’intégrale |x[* f(x)dx converge. Le moment (absolu) d’ordre n de la v.a.r.

—00
X est la quantité donnée par :

Em%fhmmx

oo
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» Variance d'une v.a.r.
Définition
—+co
Soit X une variable aléatoire réelle, de densité f, telle que I"intégrale f x> f(x)dx

converge. La variance de la v.a.r. X est la quantité, notée V(X), donnée par :

V(X)=E[(X ~EX)’| = f (x~E(X))’ f(x) dx

» Formule de Koenig

Soit X une v.a. réelle admettant une espérance mathématique et un moment d’ordre 2.
Alors :

+00

Var(X) = E[Xz] — [EX)]? = f 2 f(x)dx - [EX)]*.

—0

» Inégalité de Markov

Soit X une variable aléatoire réelle, positive, admettant une espérance mathématique.
Alors, pour tout réel t > 0 :
E(X
PX>1)< %
Démonstration : La démonstration qui suit s’avere plus simple que dans le cas dis-
cret. Il serait aussi possible d’unifier les cas discret et continu en utilisant I’intégrale de
Stieltjes par rapport a une mesure donnée.
La v.a.r. X étant a valeurs positives, sa densité f est identiquement nulle sur ] — oo, 0[.
On peut alors calculer, pour tout réel 1 > 0 :

E(X) = f x f(x)dx

= f x f(x)dx
2 0 —+0co
= f x f(x)dx + f x f(x)dx
0 e V1
> x f(x)dx
= f f(x)dx
> tP(X =
qui est le résultat cherché. ]

» Inégalité de Tchebychev

Soit X une v.a. admettant une variance Var(X). Alors, pour tout réel > 0 :

= Var(X)

2

P(X -EX)| > 1)
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5. Fonction de survie d'une v.a.r. positive

I1 est souvent utile de déterminer la probabilité qu’une variable positive dépasse un cer-
tain seuil ; si la variable peut étre assimilée a une durée de vie, cette probabilité devient
une chance de survie.

Définition

Soit X une v.a.r. positive. On appelle fonction de survie, la fonction Gy définie pour
tout réel x > 0, par :
Gx(x) = P(X > x) = 1 - Fx(x).

Gy est décroissante et positive, avec :

lim Gy (x)=0

X—+00

La positivité de X implique que Gy (0) = 1.

La notation anglo-saxonne pour la fonction de survie, y compris dans le domaine des
assurances, est Sy (x), ou, parfois . g, dans le cas des assurances vie (la probabilité
qu’un individu survive jusqu’a I’age x).

6. Intervalle de confiance

En statistique, particulierement dans 1’étude des sondages, on a besoin du concept d’in-
tervalle de confiance que nous définissons ci-dessous :

Définition

Soit @ un réel de I'intervalle [0, 1], et X une variable aléatoire réelle. On appelle in-
tervalle de confiance, pour la v.a.r. X, tout intervalle /, de R tel que :

PXel)=1-a

1 — @, qui est, en général, exprimé sous forme de pourcentage, est le degré de
confiance de I'intervalle considéré. On peut affirmer que I’on est certain a 100 (1 — @)
pour cent que la variable X se trouve dans I’intervalle 7,,.

En pratique, on parle souvent d’intervalle de confiance I, de degré « si on est capable
de démontrer que P(X € I,) > 1 — «. Ceci n’est évidemment pas une définition pré-
cise, mais permet d’affirmer qu’on est certain au moins a 100 (1 — @) % que la variable
X se trouve dans l'intervalle /,. Nous éviterons ici, lorsque cela est possible, ce type
d’inégalité.

La probabilité o pouvant étre répartie différement de part et d’autre des bornes de
I'intervalle de confiance, on écrit, en général, « sous la forme :

a=a+a , (a,@) € [0,1]°

Ainsi, Iy = [Xmin, Xmax], €t :
P(X < xmin) =)
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et:
P(X > Xmax) = @2

L’ intervalle de confiance est dit :
e bilatéral si ; #Oetay #0;

sy . . &
e symétrique sia; = a3 = 5;

e disymétrique si a; # a3 ;

e unilatéral si ¢; = O ou a2 = 0.

1. Par exemple, dans le cas ol @) = @, @z = 0, on a un intervalle de confiance unilatéral de la
forme [Xmin, +o0[. xmin € R, ce qui veut dire que I’on est certain a 100 (1 — @) que X = Xnin.

2. Les valeurs du parameétre « les plus fréquentes sont 10 %, 5 %, | %, ce qui correspond donc
respectivement, en termes de degré de confiance, a 90 %, 95 %, 99 %.

3. D’autre part, s’assurer que l'intervalle de confiance est le moins large possible permet-
tra d’obtenir le maximum d’informations, en préférant les approximations précises du type
P(X € I,) = | —a acelles de la forme :

PXel)>1-a

dont on ne contrdle pas la précision.
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Lois uniformes

Les lois uniformes sont utiles pour modéliser des valeurs aléatoires qui sont bornées,
mais pour lesquelles on ne dispose pas, a priori, d’autres informations.

Définition

Soient a et b deux réels tels que a < b. On dit qu’une v.a. réelle suit une loi uniforme
sur 'intervalle [a, b] si sa densité f est telle que, pour tout réel x :

1l si x € [a,b]
flo) = P bipx)=4b—a
0 sit € lab]

Figure 134.1- La densité de la loi loi uniforme sur [a, b].

1. Fonction de répartition pour la loi uniforme

Soient a et b deux réels tels que a < b. La fonction de répartition d’une v.a. suivant la loi
uniforme sur I'intervalle [a, b] est telle que, pour tout réel x :

0 si x<a
1 * x—a
* 1 ¥ — | 1 = ia<x<
Fx(x)=f f(t)dt=mf Lautdiss b—ad, BASESE REXRSS
I .
b—_a“fbl[a,b](f)dtzl si x=b

On peut le formuler différemment, en disant que le graphe de Fx est obtenu par interpo-
lation linéaire de (a,0) a (b, 1) ; ce graphe se doit d’étre horizontal au-dela de (a, b), par
cohérence avec les limites en —oo et +oo et la croissance de Fx.
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Figure 134.2 - La fonction de répartition de la loi uniforme sur [a, b].

Propriété
Soit A un sous-intervalle de [a, b] de longueur |A|. On a alors :

A

—

P(XGA)=b

En effet :

P(XEA)—fbl (1) : dt = l fbl (n)dt = Al
Ja AN =4 " b-a i A T b-a

2. Espérance d'une v.a.r. suivant la loi uniforme

Soient a et b deux réels tels que a < b, et X une v.a.r. suivant la loi uniforme sur I'inter-
valle [a, b]. L’espérance de X est :

a+b

E(X) =

+00

1 b
Démonstration : Il est clair que f |x] f(x)dx = - f |x| dx converge. On peut

—00

alors calculer :

EX) = f+ooxf(x)dx

o

1 b
= f xdx
b—a J,

1 b -a2
b—a 2
a+b
2 |

3. Variance d’une v.a.r. suivant la loi uniforme

Soient a et b deux réels tels que a < b, et X une v.a.r. suivant la loi uniforme sur I’inter-
valle |a, b]. La variance de X est :
(b —a)?

VX ==
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Démonstration : On calcule :

+00
E[XZ] = f 2 f(x)dx
-
= 2 dx
b-a 4
1 b -a
b—-a 3
1 (b-a)b*+ab+ad?)
b—a 3
b2 +ab+a®
3

La formule de Koenig permet alors d’en déduire :

V(X) = E[x?] - B
b+ab+a (a+b)

3 4
4 +ab+a)—3(a+b)?

12
A(B? +ab+a®)—3a® —3b% —6ab

2
a2+bl——6ab

12
(a—b)

12
(b —ay’

12 [ ]

4. La loi uniforme est stable par conditionnement

Soient a et b deux réels tels que a < b, et X une v.a.r. suivant la loi uniforme sur
I'intervalle [a,b]. Soit [c¢,d] C [a,b]. Soit P4 (-) la loi conditionnelle de X sachant
{X € [c,d]}. Alors Py 4 (+) est la loi uniforme sur [c, d].

Démonstration : On calcule, pour x € [¢, d],

P({X € [¢,d]} N {X €] — o0, x]})
P(X € [c,d])

Pregi (X €] = 00,x]) =

_ P(X € [¢,x])

B P(X € [c,d])
Xi—

_ b—a
d—c¢
b—a

_ Xi— C

- d—c¢

Cette fonction est la fonction de répartition de la loi uniforme sur [c,d]. Elle prend la
valeur | pour x = d, et 0 pour x = ¢; ainsi, pour x € [c,d], ou récupere également les
bonnes valeurs. ]
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Le colit d’'un déminage avec la loi uniforme

Un groupe terroriste a placé une mine sur une route de 100 km de long entre deux
villages isolés dans le Sahara occidental ; un militant du groupe émet un appel té-
léphonique pour avertir les autorités de la présence de la mine, avant que personne
n’ait emprunté la route, mais ne donne pas plus d’informations sur I’emplacement
de celle-ci. Les autorités envoient une équipe de déminage pour désamorcer 1’engin
explosif. On désigne par X la distance a parcourir jusqu’a I’emplacement de la mine.

11 est prudent de supposer que X est une variable uniforme sur Iintervalle [0, 100].
On calcule, en particulier, ’espérance que I’emplacement de la mine soit :

100 +0

2
alors que I’écart-type de cet emplacement est :

f 2
(100 — 0) _ 100 ~ 28.87
12 243

La probabilité que les démineurs n’aient pas trouvé la mine au bout de 90 km est :
100-90
100-0
Sachant que les démineurs n’ont toujours pas trouvé la mine au bout de 90 km, la

probabilité qu’ils la trouvent avant le km 94 est celle qu'une variable Y uniforme sur
[90, 100] soit inférieure a 94 :

=50

P(X > 90) = P(X € [90,100]) = 0,1.

94 - 90
P(X<94]X>90)—P(90€Y<94)— m —0,4.

On peut aussi calculer le colit moyen associé au travail des démineurs. Les autorités
estiment le que codt total Z est égal a 5000 MAD (dirhams) de colt fixe, auquel il
faut ajouter 100 MAD par kilometre parcouru, ainsi qu’un terme égal a X> MAD
pour prendre en compte le stress accumulé lors de missions longues, ce qui conduit
donc a : )

Z = 5000+ 100X + X

Par linéarité de I’espérance, et grace a la formule de Koenig, on obtient :

E(X) = 50
1 1
IE(XZ) = Var(X) + E(X)? = % +50% = @,

Le coit moyen de 1’opération de déminage est donc :

E(Z) = 5000 + 100E (X) + (E (X))*

= 5000+ 100 x 50 + 1()3&
~ 40000

: 3

= 13333 MAD

1.e. environ 1 200 euros.
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Lois exponentielles

Les lois exponentielles sont tres proches, en esprit, des lois géométriques. Elles sont
utilisées pour modéliser des temps d’attente, avec la propriété d’absence de mémoire,
i.e. dans le cas ol la connaissance de la durée d’attente ne donne aucune information sur
la durée restante.

Un exemple typique est la durée de vie d’un atome radioactif avant sa désintégration.

1. Loi exponentielle (de paramétre 1€ R})
Définition
Soit A un réel strictement positif. Une v.a. réelle X suit la loi exponentielle de para-

metre A si sa densité f est telle que, pour tout réel x :

de**six=0

f(x) = 2e™ ¥ Ljg poof (%) = {

0 six<0
On note : X ~ &)
2.0
15
Lok
0.5k
i - A=0.5
—_— A=1
. L - - . - — =1
1 2 3 4 A=2

Figure 135.1- La densité de la loi exponentielle, pour différentes valeurs du paramétre 1.

2. Fonction de répartition pour la loi exponentielle de paramétre
A>0

Soit A un réel strictement positif. La fonction de répartition d’une v.a. suivant la loi
exponentielle de parametre A est telle que, pour tout réel x :

§ . 0 stx<0
Fx(x) = f f(de = f e M g oo () = fx,le/udt =1l-e"six>0

o
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Exemple : Demi-vie d'un élément radioactif

Calculons, pour un élément radioactif de temps de vie X ~ &), 4 € R7, la relation entre sa
demi-vie et le paramétre A.

Cette demi-vie est le temps nécessaire pour que 'intensité de la radioactivité diminue de moi-
tié. Si on considére que la substance radioactive est formée d’un grand nombre d’atomes ra-
dioactifs dont les durées de vie sont indépendantes, on peut alors assimiler la demi-vie 71 a la
durée correspondant a 50 % des chances de vie, i.e. i

1
P(x > 1) = 3
On obtient :
l _ e—(lt%
= 3
ce qui conduit 4 :
In2
1 = —
2 A

3. Fonction de survie

Soient A un réel strictement positif et X ~ &(A). La fonction de survie Gy de la loi de
X vaut, pour tout réel x > 0 :

Gx(x) =P(X >x)=1—-Fx(x) = e .

- A=0.5
—_— A=1
A=2

Figure 135.2 - La fonction de survie de la loi exponentielle, pour différentes valeurs du
paramétre 1.

4. Absence de mémoire

Soient A un réel strictement positif, et X une v.a. réelle positive a densité. Alors, X suit
la loi exponentielle de parametre A si et seulement si elle vérifie la propriété d’absence

de mémoire :

Vs20,Vt20: PX>t+sX>)=P(X>y9)
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Démonstration : On ne démontrera ici que la premiére implication. La réciproque est
demontrée en remarque ci-dessous, en supposant de surcroit que la densité de la v.a.r. est
continue.

Pour tout couple de réels positifs (s, ) :

_PX>t+setX>p et

PXzt+sX20= PX >0 = — =e‘/1s=P(X>S) m
e

Pour démontrer la réciproque, considérons une v.a.r. positive X, de densité fx continue sur R,
(f doit étre nulle sur R_). On suppose que la propriété d’absence de mémoire est vérifice. La
fonction de survie Gy de X est de classe C' sur R, et :

dGy

I S @ .
sur R,. On a, pourtout s = Oettoutt =0 : T;
=
P{X>t+stn{X>1}) T
: = P(X"> ]
PX>0) X 0 o
ce qui s’ écrit aussi ;
Gy (t+5) =Gy (s)Gx (1)

En posant s = £ > 0, on en déduit : 45
o
Gx(t+8)—-Gx () Gy (Gx(e)—1) E=)
& P> <

Comme Gy est dérivable en 0 et en 7, on en déduit : A\

lim M = f¢ (0 , lim Gx(t+e)—Gx (1) _ dGx

£—0 £ £—0) £ dx

Q)

lités

On a donc montré que, pour tout x = 0,

dG
d—xx (x) = fx (0) Gx (x)

Probab

On obtient ainsi une équation différentielle ordinaire qui admet pour unique solution, avec la
condition initiale, Gy (0) = 1, la fonction Gy telle que, pour tout réel positif x :

Gx(x) (x) = e O
En posant A = fy (0), on obtient pour tout x > 0,
fr@)=aet

qui est le résultat cherché.

5. Espérance d'une v.a.r. suivant la loi exponentielle £(1)

Soient A un réel strictement positif, et X une v.a.r. suivant la loi exponentielle &(A).
L’espérance de X est :

v
Q
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e
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E(X) = -
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+00

+00
Démonstration : 1l est clair que f |x] fa(x)dx = f Ix| e~ dx converge. Une
= 0

(0.0}

intégration par parties conduit a :

+00 +R0
f X fi(x) dx f xde ¥ dx
—00 0

o [ i —Adx
[-xe ]0 e dx

= [_

Cette formule montre que le parametre A peut étre interprété de facon similaire au parametre p
de la o1 géométrique : ¢’est I'inverse du temps d’attente moyen, représenté par E (X). Ces deux
parametres peuvent, aussi, étre assimilés a des fréquences d’arrivée.

—
=] 1= b

oo

+
e—/i %X

P

6. Variance d’une v.a.r. suivant la loi exponentielle (1)
Soient A un réel strictement positif, et X une v.a.r. suivant la loi exponentielle &(A). La

variance de X est :

ViX) = —

+00

x* filx)dx = f x* 1e ¥ dx converge. On

peut alors utiliser deux intégrations par parties pour calculer :

Démonstration : Il est clair que f

+oo
E[x?] = f 2 fa(x) dx
+00
= f X de M dxdx
0
+co oo
= [—x2 e"”] + f 2xedx
. 0
I xe X" +oo g ,~dx
e R A
A
f+00 26—/1 %
[ e ]"’0"
La variance de la v.a.r. X s’obtient alors grice a la formule de Koenig :
2 1 1
_ 2 2 _ 3
V(X) = B[ X?] - (B(X)) = e S "
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Lois normales (ou gaussiennes)

Ces lois sont, peut-étre, les plus importantes de toute la théorie des probabilités. Nous
verrons, en particulier, le théoréme central limite, qui prouve que, pour toute suite i.i.d.
de variables (X,,),cn. d’espérance nulle et de variance o finie, la moyenne empirique

13
M, = l Z Xk, qui tend vers O (cf. la loi des grands nombres), a une limite normale de
=
variance o> aprés qu’on I’ait multipliée par /7. Le caractére universel de ce théoréme,
ne dépendant de la loi des X, qu’au travers de leur variance, est ce qui rend essentielles
les lois normales, et explique pourquoi tant de phénomenes naturels et sociaux se modé-
lisent bien avec des lois normales.

1. Loi normale (de paramétres m, o)
Définition
Soient u et ¢ > 0 deux réels. Une v.a. réelle X suit la loi normale (de parametres

i, o), N(u, o) (aussi appelée loi gaussienne de paramétres m, o)) si sa densité f, - est
telle que, pour tout réel x :

_ew?
.fu, )= e 202
o V2n
On note :
X ~ N, o)
— p=0,0=0.1
/ \ — p=0,0=05
/ '\% — p=1,0=02
[ k —_— u==2,0=03
/
0] —_— p=0,0=1

Figure 136.1- La densité de la loi normale, pour différentes valeurs des paramétres y et o
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» Loi normale centrée réduite
Définition
On appelle loi normale centrée réduite la loi normale de parametres u = 0, o = 1,

N(0, 1), dont la densité est donc définie, pour tout réel x, par :

I _
Joi(x) = o e

=l

» Intégrale de Gauss
Définition

On appelle intégrale de Gauss I’intégrale convergente :

+00
f e dx= 7

o

Par parité :

Proposition
Soient u et o > 0 deux réels, et X une v.a.r. suivant la loi normale N(u, o). La v.a.r.
y="0

suit la loi normale centrée réduite N (0, 1).
o

Démonstration : Soient a et b deux réels tels que a < b. Alors :

Pla<Y <b)= P@< ”sﬂ

= Plca<X-u<ob)

a

Ploa+u<X<ob+ypy)
f}'b+},{ 1 -
= e 2% dx
aatpy O VZJT

1 J%%d
— B pa— e Iy
V2 Ja

(on effectue, tout simplement, le changement de variable y =

ﬂ.) =

» Loi normale et transformation affine

Soient y et o > 0 deux réels, et X une v.a.r. suivant la loi normale de parametres u, o,
N(u, o). Alors, pour tout couple de réels («,8) € R* xR, la var. @ X + f suit la loi
normale de de paramétres a u + 8, @* o

a'X+,8~N(aqu +B,(},’2(Tz)
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Démonstration : Soient a et b deux réels tels que a < b. Alors :

Pla<aX+B<b)= Pla-B<aX<bh-p

(04 &
b
fT 1 _(X_!-‘)Z d
= e 202 dx
“B o N2r

fbﬁ 1G] ;
= e 2 —ax
a—f o N2 @
j‘l’_’g 1 _a—ap)? d

—_— 202 2 X
a-B ao V2nm

b 1 _Gap-p?

= —_— 20202 dx

]
a o V2n

I

Exemple : Loi normale et intervalle de confiance

Soient p et ¢ > 0 deux réels, @ un réel de I'intervalle [0, 1], et X une v.a.r. suivant la loi

normale N (1, o?). La v.a. centrée réduite e suit donc la loi normale standard A(0, 1). On

o
cherche a déterminer I'intervalle de confiance symétrique /, tel que :

X_
P( L ela)zl—ﬂr
a

(c’est la symétrie, par rapport a I’axe des ordonnées, de la courbe représentative de la fonction

e 2

V2n

A cet effet, on cherche I, sous la forme :

X qui incite a rechercher un intervalle de confiance symétrique.)
*
I{x = [_x{za xa'] s Xo € R+

Pour que 7, soit symétrique, il faut donc :

P(X<—xa)=% , P(X>xa)=%

ce qui donne, pour les degrés de confiance usuels 90 %, 95 %, et 99 % :
Xo0 6 = 1,645 , xosq =196 , x99q =258

On peut alors revenir & 1a v.a.r. initiale X :

X_
P( L I“)
o

X_
P( H e I(,)
a

X_
P( £ g [—xa,xa])
a
PX—pu € [-0 x40 x,])
=P(X € [u— 0 xp. pt + T X4])

L’intervalle de confiance pour la v.a.r. X est donc :

[t — o X0,y + 0 x4]

467

v
Q
=
e
e}
c
o
(%)
(%]
@
=
:E
m©
Q2
9
o

Calculus

/" Algébre

lités

Probab




noda.

Du

ht © 2014

Copyright

» Espérance d’une v.a.r. suivant la loi normale N(y, o2)

Soient y et o > 0 deux réels, et X une v.a.r. suivant la loi normale N (i, @), L’espérance
de X est ;

E(X) = u
Démonstration : 11 lai fmnf (x)d f“” -
émonstration : est clair que X furx)dx = e 20?2 dx
—00 e - O V21
converge. On peut alors calculer :
+00 +00 x _w
f x.f,u,(f('x) dx = j e 202 dx
—56 —o O V27
T x+ 2
= f [1 red 202 dx
—o o V21
+00 X _L
= f e 2 dx
-0 o V21
+oo iz
+ j F_ o3 dx
-0 o V21

+00 2 —+co 32
= f TV &% ody + f E__ o737 dx
o o N27m —o O V27

—+00 2
AT
= f # e 202 (dx
-0 o V21

+00 2
X
— [l ‘[ e 202 dx
o V2n J-w

‘u —+00 5
= f e V2odx

o V2

= K o \n
- Umx/i\/‘

puisque :

» Variance d’une v.a.r. suivant la loi normale N(u, 0?)

Soient u et o > 0 deux réels, et X une v.a.r. suivant la loi normale N(u, o%). La variance
de X est :

V(X) = o*
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~+00 —+00 1 e )2
Démonstration : 1l est clair que j & JuoeW)dx = f B T dx
—00 o V2nm

—0a

converge. On peut alors calculer :

+00
E[Xz] = f xzf,u,rr(x) dx
+00 .
= f x e_(z_:ﬁ)— dx
—c0o o V21
+00 + 2 _12
—c0o O V21
O 4 2ux 2
= f —,Ux a e 202 dx
—c0 o V2r
o 2 2 TR 2ux 2 L TR
= e 202 dx+f e 202 dx+f e 202 dx
\[m ' V27T —oo O \I271' —ca (T V2?T
oty _2]" too gy 2
— [_ e 20?2 +f e 20 dx
o V2 S —o o V27
2 b +oo +00 2
+ [——U E ez + f e 2o dx
o V2 oo -0 T N2m
T (2 4 y?) 2
— f .(—"u).e 92 dx
-0 o V21
+00 2 2
+
= f —(0- K )e_)‘2 V2 o dx
—o T N2m

f+°° @ +D) o
= —f) dx
Y~

B (o +p?)
7 Vr

i o2+ 2
La variance de la v.a.r. X s’obtient alors grice a la formule de Koenig :
VX)=E [Xz] —EX) =+ -yt =0 -
2. Théoréme central limite'

Théoréme

Soient p et o > 0 deux réels, et (X,)),cpi+ une suite de variables aléatoires indépendantes,

de méme loi, de moyenne p, de variance o>

Soit (M),eri+ la suite des moyennes empiriques (arithmétiques), c’est-a-dire, pour tout
entier naturel non nul n :

Xi+...+X, 1 v
M= TNy
n n nkzi; T

1. C’est le mathématicien et physicien frangais Pierre-Simon de Laplace (1749-1827), qui publia, en 1809,
la premiére démonstration du théoréme. Mais le cas particulier ol les variables suivent la loi de Bernoulli
de parametre p = —;: avait déja été étudié par Abraham De Moivre (1667-1754) en 1733.
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et (Z,),ex+ la suite des v.a.r. centrées réduites définies pour tout entier naturel non nul n
par:
_ M, - E(M,) _ My — — \/E(Mn _,u)
VWar(M,) o/ Vn 7

Pour tout intervalle [a,b]l de R (a < b), on a :

b
1 2
lim P(a<Z, sb):f e T d.
n—+oo a 2z

On dit aussi que la suite de v.a.r. (Z,),cn+ converge en loi vers la loi normale standard
N0, 1), ou que la loi de la suite (Z,,),ecx+ converge vers N(0, 1) (en loi).

Le théoréme central limite est un résultat essentiel en théorie des probabilités. Ce résultat est
extrémement puissant, il permet de dire que toute somme de variables aléatoires indépendantes
et identiquement distribuées tend vers une variable aléatoire gaussienne, aprés normalisation.
Il traduit aussi le fait que, dans la loi des grands nombres, les fluctuations autour de la limite

1 . . )
de la moyenne sont de 'ordre de — (c’est une idée que nous avions déja vue, dans une
n

certaine mesure, dans le cadre de I’application de I'inégalité de Tchebyshev), mais, surtout,
que la loi de ces fluctuations est universelle, dans la mesure ou elle suit la loi normale, et ne
dépend donc pas de la loi initialement suivie par les v.a. considérées.

Pour des variables de moyenne nulle, le seul élément qui subsiste de cette loi initiale est
leur variance, et, du fait de la propriété de changement d’échelle de 1a variance, si on divise
au préalable les variables par leur écart-type, on obtient un résultat universel, ne dépendant
d’aucun parameétre.

Soit n un entier naturel trés grand devant 1. Si on considere n v.a. X1, .. ., X;;, de méme

loi, ayant une espérance u et une variance o finie, la loi de leur moyenne empirique

X +...+X e _ 2
e Bl peut étre approximée par la loi normale N (,u, %) On constate que la

Variange de cette approximation de la moyenne empirique est inversement petite d’autant
que n est grand. C’est le phénomene de « concentration de la mesure » , que nous avions
observé en partie avec la loi des grands nombres, et que 1’on retrouve ici, puisque la loi
N (,u, %) converge vers celle de la variable aléatoire constante égale a p.

Pour s’assurer qu’on utilise le théoreme central limite de maniere efficace, il est utile
de convertir le probleme pratique a traiter pour qu’il dépende de la quantité :

Xi+...+X,—nu
o\n '

C’est, en effet, cette quantité Z, qui, d’apres le théoreme central limite, a (approxima-
tivement) une loi universelle normale centrée réduite. L’ opération qui consiste a passer
de la suite (X;);=;.. , a la variable Z, est précisément la standardisation de sa somme
partielle, i.e. une opération qui consiste a soustraire la moyenne de sa somme partielle,
puis de la diviser par son écart-type.

Z, =
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Le lecteur assidu se demandera dans quelle mesure 1"approximation du théoréme central 1i-
mite représente une bonne approximation. Il s’avére que, pour les variables qui ont aussi un
troisieme moment fini p = E [lX | |3] < 400, le théoreme dit « de Berry-Esseen », donne une
réponse a cette question :

1 Cp
V2rm a3 %
ol la constante universelle C n’est pas connue de maniére optimale, mais se situe entre 0,41

et 0,48. Ce résultat implique, par exemple, que si les probabilités calculées grice au théoreme
central limite sont comprises entre 5 % et 95 %, pour que I’ordre de grandeur dans I’ approxi-

12
e Idt

<

b
kmsasm—f
a

mation soit au moins d’un ordre de grandeur inférieur & ces niveaux, i.e. pas plus de 200°
il est préférable de choisir n de ’ordre d’une dizaine de milliers. En pratique, on applique
le théoreme beaucoup plus fréquemment, souvent dés que n > 100, ce qui peut étre abusif,
puisque des probabilités de 1’ordre de 5 % seraient alors nettement plus faibles que I’erreur
commise si on appliquait le théoréme central limite. Si on suppose que Cpo— est de ’ordre
de 1, pour s’assurer au moins que le niveau 5 % est au moins du méme ordre que I’erreur dans

le théoreme de Berry-Esseen, alors il est préférable de prendre n > 400.

3. Théoréme de De Moivre-Laplace??>

Théoréme

Soit p un réel de Uintervalle [0, 1], et X une variable aléatoire, de loi binomiale B (n, p).
La loi de la v.a. : ;
Y=n2(X-np)

petit étre approchée, lorsque I'entier n est trés grand, par la loi normale N (0, p (1 — p)).

Démonstration : La démonstration de ce résultat est immédiate avec le théoréme cen-
tral limite, puisque X peut étre considérée comme la somme de n variables indépendantes
de loi B (p), d’espérance p, de variance p (1 — p). [

La qualité de 1’approximation proposée par le théoreme de de Moivre-Laplace est nettement
meilleure que celle du théoréme de Berry-Esseen. En pratique, il est parfois légitime, pour
obtenir des erreurs inférieures a 1 %, de s’assurer que I'entier n est plus grand que 30, mais il
est plus sage de prendre n = 100, mé&me si on est dans le cas de variables binomiales.

2. Abraham De Moivre (1667-1754). Aprés I'impulsion donnée par le suisse Jacob Bernoulli (1654-1705),
De Moivre est un des premiers vrais « probabilistes ».

3. Pierre-Simon de Laplace (1749-1827). 1l était non seulement mathématicien, spécialiste de calcul diffé-
rentiel et intégral, et apporta de nombreuses contributions en théorie des probabilités, tout en étant aussi
astronome et physicien.
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Couples de variables aléatoires
réelles

Avant de donner plus de résultats sur les variables gaussiennes, et d’introduire d’autres
lois, il est important de présenter, pour le cas continu, les concepts rencontrés dans le cas
discret.

1. Densité de probabilité sur R?
Définition
Une fonction f : R*> — R, a valeurs positives, intégrable (i.e. f f f(x,y)dxdy
R2

existe) est appelée densité de probabilité sur IR” si et seulement si :

ff fx, ) dxdy =1
RZ

» Fonction de répartition d'un couple de v.a.r.

Soit (X, Y) un couple de variables aléatoires réelles. La fonction de répartition du
couple de v.a. (X, ¥) est la fonction, notée Fy y), telle que :

F(X’y} B R2 =¥ [0, 1]
(x,y) > P(X<xetY<y).

Elle vérifie, pour tout couple de réels (a, b) :

yl_iffm Fixyya,y) = Fx(a) XETW Fixy)(x,b) = Fy(b)

On dit que (X, Y) admet la densité / (ou densité jointe f) si [ est une densité de proba-
bilité, et si :

X Yy
FX,Y(X»U)=f f (X' y)dy dx.

» Densités marginales de deux v.a.r.

Soit (X, Y) un couple de variables aléatoires réelles, de densité de probabilité fix y).
Alors, les composantes X et Y sont des variables aléatoires a densité, dont les densi-
té€s de probabilités respectives sont :

Fly= f Ferilndidy . Jelgh= f Fiiln i

fx(x) est la densité marginale de la v.a.r. X, fy(y) est la densité marginale de la v.a.r. V.

Démonstration : Il faut montrer que les fonctions x — fx(x) et y — fy(y) sont bien
des densités de probabilité sur R. A cet effet, on calcule :

P(X < x)=P((X.Y) €] - o, x] X R)= f { f f(X,Y}(M,y)dM} du= f foo(u0) du
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et:
+00
[ swas= [ oy =1.
On procede de méme pour fy. ]

» Densité conditionnelle de deux v.a.r., loi conditionnelle de deux v.a.r.

Soit (X, Y) un couple de variables aléatoires réelles, de densité de probabilité fixy). On
désigne par fx et fy les densités marginales respectives de X et Y. Soit y un réel tel
que fy(y) > 0. La densité conditionnelle de X sachant que Y = y est définie lorsque
fx(x) > 0, pour tout réel x, par :

_ Jxn(xy)
trp ) = Jr(y)

Etant donnés deux réels a et b tels que a < b, la loi conditionnelle de X sachant que
Y = y est définie par :
Jox (X, y)

P ol =
P(X€la,bllYy =y) = fleY jaydx = fb Jr(y)

De méme, la densité conditionnelle de Y sachant que X = x est définie, pour tout réel
Yy, par :

dx

Jaxn(xy)
Sx(x)

Etant donnés deux réels a et b tels que a < b, la loi conditionnelle de Y sachant que
X = x est définie par :

frix=x(y) =

" foxn(ny)
fx(x)
Le lecteur pourra se référer a la discussion précédant la définition de I’espérance d’une v.a.r

continue, qui permet de motiver la définition de la densité conditionnelle. En bref, pour un
couple (U, V) de variables aléatoires discrétes prenant comme valeurs les paires d’entiers

P(Y €la,bliX =x) = fb Jrix=x(y)dy =

uvyv . ..

(G p;i,j=1,...n) et (X,Y) = (—, —), I’expression fix y)(x, y) représente la limite, sous
non

réserve d’existence bien siir, de :

nzP(X [x—:] Y = [y”])

n
alors que % est celle de :
pli- 2y o)
n n
n
= T1]
n

2. Indépendance de deux v.a.r.
Définition
Deux v.a.r. X et ¥ sont dites indépendantes si, pour tout (x,y) de R?

PX<x,Y<y=PX<x)P(Y<y
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» Caractérisation de I'indépendance de deux v.a.r. a densité

Deux v.a.r. X et Y, de densités de probabilités respectives fx et fy sont indépendantes si
et seulement si le couple (X, Y) a une densité fx y) et que, pour tout (x, y) de R? ;

Jan(xy) = fx(x) fry).

Exemples
1. On considére un couple de variables aléatoires (X, ), dont la densité jointe est donnée par :

2" ¥sixz0ety >0,
Osix<Oouy<0.

Jxy (y) = {

On peut écrire :
Txy (. y) = fx () fr ()

ou fx et fy désignent, respectivement, les densités de la loi exponentielle & (2) et &£(1). Ce
sont donc les lois respectives des variables X et Y, qui sont indépendantes. On vérifie, en
particulier, que ce produit est non nul si et seulement si x et y sont positifs.

2. On considére un couple de variables aléatoires (X, Y) dont la densité jointe est donnée par :

1

fer () =1 6
0 sinon

si xe[0,2]ety € [0,3],

On peut écrire :
Sxy Cey) = fx (o) fr (y)

ol fx et fy désignent, respectivement, les densités de la loi uniforme sur [0, 2] et [0, 3]. Ce
sont, encore, les lois respectives des variables X et ¥, qui sont indépendantes. On vérifie,
en particulier, que ce produit est non nul si et seulement si x € [0,2] et y € [0, 3].

g Les deux exemples ci-dessus mettent en lumiére une propriété importante des couples de

variables & densité indépendantes ; le domaine sur lequel la densité jointe est non nulle
_ (i.e. le support de la densité) est un rectangle, égal au produit cartésien des support des
deux densités marginales.

3. On peut aisément construire un exemple mettant en jeu un couple de variables qui semblent,
a priori, indépendantes, mais pour lesquelles la propriété concernant le support ne s’ap-

plique pas.
Soit donc (X, Y) un couple de variables aléatoires (X, ¥), dont la densité jointe est donnée
par :
1
3 | x€[0,2]etye[0,2]etx =y,
fey () =12 g 4
0 sinon

Le support de ce couple de v.a. est un triangle rectangle isocele, de c6té de 1"angle droit de
longueur 2, done de surface 2, ce qui explique la constante normalisatrice % Cette densité
est en fait uniforme sur une surface du plan d’aire finie. La dépendance entre X et ¥ est assez
évidente, puisqu’avec une probabilité de 1, on dispose de larelation 0 € ¥ < X < 2 : par
exemple, conditionnellement 2 ¥ = 1,9, la loi de X sera concentrée sur |’intervalle [1,9, 2],
alors que, conditionnellement &4 ¥ = 0,1, la loi de X sera concentrée sur [0,1, 2]. On peut
aussi vérifier facilement par un caleul direct que ces lois conditionnelles sont uniformes
sur ces intervalles. Cette derniere propriété se généralise a toutes les lois conditionnelles de
lois jointes uniformes.

On constate également, dans cet exemple, et de maniére générale pour les lois uniformes
dans le plan, que les coordonnées X et ¥ ne sont pas indépendantes (sauf si le support est
un rectangle), car la loi conditionnelle et la loi marginale sont distinctes.
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Quelques résultats concernant
la somme de variables aléatoires
continues

On peut, de fagon systématique, calculer la densité de la somme de deux v.a.r. indépen-
dantes a densité.

1. Produit de convolution de deux fonctions
Définition
Soient f et g deux fonctions définies sur R, a valeurs réelles, continues par morceaux,

et intégrables sur R. Leur produit de convolution est la fonction, notée f * g, définie,
pour tout réel x, par :

mehf.mmey

» Symétrie du produit de convolution de deux fonctions

Soient f et g deux fonctions définies sur R, a valeurs réelles, continues par morceaux, et
intégrables sur R. Leur produit de convolution vérifie :

frg=g=*f

Démonstration : Ce résultat s’obtient immédiatement a I’aide d’un changement de
variable. |

2. Somme de deux variables aléatoires réelles indépendantes

Etant données deux variables aléatoires réelles indépendantes X et Y, de densités respec-
tives fx et fy, la densité fx,y de la v.a. somme X + Y est donnée par :

fxev = fx* fr

Démonstration : Soient a et b deux réels tels que a < b. Alors :

I/ fx(x) fy () dxdy
xeR, yeR, a<x+y<b

b +00
f Ix(s) fy(s — D) dtds

o0

Pla<X+Y<bh)

b
f (fx * fy) (s)ds .

» Somme de deux variables aléatoires réelles indépendantes suivant respective-
. " uy s 2
ment les lois exponentielles de parameétres distincts 1 et g, (4, p) € (R:) AEp

Soient A et u deux réels strictement positifs et distincts, et X et ¥ deux variables aléatoires
réelles indépendantes suivant respectivement les lois exponentielles de parametres A et .
On désigne par fx et fy les densités respectives des v.a. X et Y.
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La densité de la v.a. somme X + Y est définie, pour tout réel x > 0, par :

Sfx+y(x) (fx = fr) (%)

f fx(x—y) fr(y)dy

X
f e (x—y)Ju e MY dy
0

X
= g Ax f /l)ue(ﬁ—.u)y dy
0

e—ﬂx [/{‘u e{/{_ﬂ)y ]X

A— i
= apen L
A=p
e—,u_r_e—rlx
= A
S

» Somme de deux variables aléatoires réelles i.i.d. de loi exponentielle de para-

meétre 1€ R}

La formule précédente peut étre extrapolée au cas ou A = pu, en remarquant que, pour
tout x > 0,

lim——— =—x lim ——— = =
1 X 1m it xe

e hE _ Ax eHY — gt de” ~Ax
#4)/1 /-{ = ‘u ‘!1,1’4)41.\’ l.[x - /1 X t=Ax

Lorsque X et ¥ sont i.i.d., de loi & (1), la densité de X + Y est :
Sray (0) = Bxet,

Nous verrons, prochainement, que cette densité, i.e. celle de la somme de deux v.a. 1.i.d.
exponentielles de méme parametre, est un cas particulier de celle de la classe dite des
lois Gamma.

Exemples

1. Somme de deux variables aléatoires réelles indépendantes suivant respectivement
les lois normales de paramétres respectifs uy, o et uz, o2, (1, g2) € R2,

(o1, 02) € (B?)

Soient u, > deux réels, oy, o deux réels strictement positifs, et X et ¥ deux variables
aléatoires réelles indépendantes suivant respectivement les lois normales N Ull,a'f) et
N(ua, crg). On désigne par fx et fy les densités respectives des v.a. X et Y.
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La densité de la v.a. somme X + ¥ est définie, pour tout réel x, par :

Jxv(x) (fx * fr) (x)

+00
= f Sx(x—y) fy(y) dy
+co - _ »2 _ g »
= f ; e Zch ; e lrr,g dy
o o V27 lop) \J227r
+00 R B (U D e
= f ! e ¥ ey
—ca 2 oo

+oo P s S S SO U (2 e 7 X 10!
= f I e

€
w 2O 03

1 1 2 ylx—uy—4y)
. —(2 +1—z) L e
+00 1 _x uzzc-;l) 1 T3 ;r%[#{-#:]
= — ¢ e 1 )] dy
o 2O O

i s e
co 1 _ Loy 1 Ta [ + ] 4[| ]
—_— | =TT s +
- | et e ) Azl gy
= no)0
o0
_(_12_,_ L ) s Lr=pp =y )
+ 00 1 __(l‘-ﬂz-ﬂj)z 21 ;“2; ) I ;
= f e IJIl e 1 lal 'Z_::g dy
21‘(0‘1 ()
—co
(x-prp—1p)?
1 gy~ ) I 2/ 4,0 - (A e Y
_ & 2a el el e \271 ZU'%de
2ro 0 |
gy P
1 _ ooy ) 401[ l§.2+27;.2] ] +00 J d
= e 1 e =71 2 24 Y
27{'0"] a2 1 + 1 Jew
2(7'? 20‘% r
_(rugﬁu])z . 5
= \/E 1 g 2o (1 "I*"z)
2no 0 1 1
2072 203
P e | 2
< VJ'_T 0'1 0—2 e 2(0’%+a‘%)
\/Eﬂer as HO'% e O‘%
1 _Gop-up?

V21 \Jo? + o

La v.a. somme X + Y suit donc la loi normale N(u; + u2, 0 + 2).
1 9

Somme de N variables aléatoires réelles indépendantes suivant respectivement les
lois normales de parametres respectifs pq, 1, v.uy fyy, TNy (Hiye00spiy) € RBY.
(@1yeeesom) € (BY), N € N*

Soit N un entier naturel non nul, yy, ..., gy N réels, oy, ..., oy N réels strictement
positifs, et X, ..., Xy, N variables aléatoires réelles indépendantes suivant respecti-
vement les lois normales N(ul,oﬁ), e N(yN,ori,). Une récurrence immédiate a par-
tir de I’exemple précédent montre que la v.a. somme X + ...+ Xy suit la loi normale
N+ ...+ py, o + ...+ 0%).
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L’exemple précédent est d’importance, il met en lumiére le fait que les variables normales sont
stables par combinaisons linéaires affines de termes indépendants. Le seul autre exemple de
ce type que nous ayons rencontré est celui des variables de Poisson (bien que, dans ce cas, on
n’ait que le droit d’ajouter les variables, sans les multiplier par des coeflicients, ni leur ajouter
des constantes). C’est, aussi, un cas tres particulier du théoréme central limite. En effet, si on
considére une suite de variables (X),)),cy 1.i.d. de loi N (u, @), alors, d’aprés ce méme théoréeme
central limite, la loi de :

v M, = Vi (2

e+ Xy
Nroh )

n

tend vers la loi normale N/ (0, 0'2).

Or, si on applique le résultat de I’exemple précédent, on montre facilement qu’en réalité la loi
de vn M, est exactement égale 3 N (O, 0'2) (cf. 'exemple suivant). C’est le seul cas de suites
1.1.d. ol ait lieu cette égalité.

3. Une application aux intervalles de confiance

On donne ici un exemple d’illustration des intervalles de confiance, exploitant 1’égalité
entre la loi de vn M, et la loi normale N (0, 0'2). Il est important de comprendre que le
théoreme central limite permettra de reprendre cet argument dans le cas ou le nombre
n de variables est grand, ce, méme si les lois individuelles ne sont pas normales (gaus-
siennes).

Soit N un entier naturel supérieur ou égal a 2, u un réel, a priori inconnu, et X, ...,
Xy, N v.a.r. suivant chacune la loi normale N(u, 1). Les v.a.r. centrées X| —p, ..., Xy — 1,
suivent donc chacune la loi normale centrée réduite N(0, 1). Les v.a.r. centrées réduites

X - Xy — . .
s . —‘u, suivent donc chacune la loi normale :

N 3 vy
poop 1 1
Lk o '
M)~ o)
La v.a. somme : Xj 4. FXy=Np Xk, 4 Xy
N - N #
suit donc la loi normale : N )
03—): 09_
N( N2 N( N)
Xi+...+X
On en déduit, finalement, que la v.a. My = VN (% —,u) suit la loi normale :
2
(VW)
N0, N =N, 1)

i.e. la loi normale centrée réduite.
On peut alors calculer :
2

1,96 e—'%
<1 ,96) ” f dx =0.55
~196 V271

Ceci veut dire que l'on est a 95 % certain que la moyenne empirique
M Xi+...+ Xy 1,96 1,96
N

= R
N VN VN

Xi+...+X
s

est dans I’intervalle [,u = . On rencontre parfois la
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notation abusive My = u+ l—%— avec, éventuellement, la mention marginale qu’il s’agit
d’un intervalle de confiance a 95 %.

On peut encore réinterpréter ce résultat pour créer un intervalle de confiance pour
I’espérance p, si on suppose, comme c’est souvent le cas en pratique, que g n’est pas
observée, alors que My peut I’étre, grace a un sondage. C’est, aussi, une procédure
d’estimation de p. Dire que ;

My €

i 1 96 1 96]
TN

équivaut a :

1,96 1,96

HGI:MN__MN = Igs
W TN

P(u € los) = P(My € [~ 1,96/ VN: 11 + 1,96/ VN]) ~ 0,95

Iys est donc un intervalle de confiance a 95 % pour la valeur théorique non observée u.

Or:

Exemple : Intervalles de confiance avec variance non unitaire
Examinons ce qui se produit lorsque o # 1. Soient ¥, Y»,..., ¥y des variables i.i.d. de loi

g Y,
N( ,0‘2). En posant, pour tout entier k de {I,..., N}, Xi = —k, Oon peut se ramener au cas
a

précédent. A 1’aide de la moyenne empirique :

5 Yi+...4%
MN=%:0'MN

W(MN —,u) = \/ﬁ(O'MN — L) ~ N(O,O‘Z)

et donc avec les méme calculs que précédemment,

_ 1 1

Pour transformer ceci en un intervalle de confiance pour g, nous buttons sur une difficulté
pratique qui vient du fait que, si ’on suppose ne pas connaitre y et qu’on veut se baser sur la
moyenne empirique My pour I’estimer, notre intervalle de confiance dépendra de o. Et il n’y
a aucune raison de supposer que o est plus facilement observable que p.

Ce que font, en pratique, les statisticiens, consiste a se baser sur la notion dite du « bootstrap ».
Ce terme anglo-saxon vient de I’expression colloquiale « pull yourself up by your bootstraps »,
dont le sens propre est « releve-toi en tirant sur les lacets (ou sangles) de tes propres bottes »,
qu’il faut interpréter par le fait qu’il faut se baser sur ses propres ressources pour effectuer un
travail qui semble demander un aide extérieure.

Pour construire un intervalle de confiance pour y, on utilise une procédure de ce type, qui
fonctionnerait bien si on connaissait y, pour estimer ¢ ; on utilise ainsi la valeur My comme
estimateur de u, ce qui introduit une petite erreur du fait de la circularité de 1’argument, qui
produit ensuite un intervalle de confiance pour . Nous n’entrerons pas dans les détails de
I’estimation quantitative de cette erreur.

Toujours est-il que, si I'on a une estimation précise & de la valeur de o, il n’est pas faux
d’atfirmer que I'intervalle :

on obtient :

L 1,96 1,96
Ios = | My — == &3 My + —= &
VN

VN

est un intervalle de confiance pour u & 95 %.
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139 Lois Gamma

Nous avons rencontré précédemment un exemple donnant la densité de la somme de
deux variables X et Y i.i.d., de lo1 &(A) :

ArxePsix>0

fX+¥(X)={ 0 six<O

Nous présentons, dans ce qui suit, la généralisation de ce résultat, avec les lois Gamma,
extrémement utiles pour modéliser les temps d’arrivée d’un n’“™¢ client, ou encore dans
des études de fiabilité, ou une défaillance technique est assimilée a un temps d’arrivée.
Ces lois sont aussi fondamentales en statistique.

1. Fonction Gamma
Définition

La fonction Gamma est la fonction définie sur R} par :
—+co
Ia) = f 7l g et
0

» Propriétés de la fonction Gamma
e Pour tout réel strictement positif a :
I'a+1)=alla)

e Pour tout entier naturel #» :
I'n+1)=n!

Comme, pour tout réel strictement positif @, I'(@ + 1) = « I'(a@), la fonction Gamma peut étre
considérée comme une généralisation de la notion de factorielle aux réels positifs non entiers.

Démonstration :

e Pour tout réel strictement positif @, on obtient, en intégrant par parties :

+o0
f el dt
0

+o0
= [~ e ]§7 + f ar® e dr
0

+00
= f at® e dt
0

= al(a)

I'la+1)
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e Pour tout entier naturel # :

I'n+ D =nln=nxnh-DxI'h-1x..xIxI'M)=nn-1)...1=n!

+00
puisque I“(l)=f e'dt=1.
0
i -+00 i "
I'is)= f tT2e ' dit
b [
—+00 5
=f e 2tdr
0
400
= 2f e dr
0

- W .

2. Loi Gamma (de paramétres a > 0, 8 > 0)

Soient @ et 5 deux réels strictement positifs. Une v.a. réelle X suit la loi Gamma (de
parametres «, ), I'(«, B) (aussi appelée loi eulérienne de parameétres «, ) si sa densité
fap est telle que, pour tout réel x :

X i e six>0
fa,ﬁ(x) = I'(a)
0 sinon

a est un parametre de forme. S est un parametre d’intensité, E est le parametre d’échelle

associé.

1. On note :

X~ I'(a.p)

0.4
0.3

02

L —_ a=1
0.1
i —_— =]

— =

0.0 . . : "
0 5 10 15 20

Figure 139.1- La densité de la loi Gamma, pour différentes valeurs du paramétre «, dans le cas
ouf=1,5.
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2. Avec I’exemple rappelé au début de cette section, on voit que si X et ¥ sont i.i.d. & (1), alors
laloide X+ YestI'(2,4), puisque ' (2)=1"!=1.

3. On voit aussi que la loi exponentielle &(A) est tout simplement la loi I"(1, 1) puisque
i =81=1.

» Loi d’Erlang (de paramétres n € N*, 8> 0)

Soient n un entier naturel non nul, et 8 un réel strictement positif. Une v.a. réelle X suit
la loi d’Erlang (de parameétres n € N*), si elle suit une loi Gamma dont le paramétre
de forme est entier ; sa densité f, g est donc telle que, pour tout réel x :

B 1 Bn e—ﬁ X
fopy=q (=1

0 sinon

six=0

» Loi de distribution de Maxwell-Boltzmann (de paramétre a > 0)

Soit a un réel strictement positif. Une v.a. réelle X suit la loi de distribution de
Maxwell-Boltzmann (de parametre a), si elle suit une loi Gamma dont le parametre

3 ;
de forme est 3 et le parametre d’échelle, 2 a® ; sa densité f;, est donc telle que, pour tout

réel x :
| X
Xz a_3 e 2at | 0
—— six >
fulx) = Van
0 sinon

La loi de distribution de Maxwell-Boltzmann est utilisée en Physique statistique pour déter-
miner la répartition des particules entre les différents niveaux d’énergie. La théorie cinétique
des gaz, qui suscite, en ce moment, beaucoup d’intérét dans la communauté mathématique
(voir, notamment, les travaux de Cédric Villani [41]), est basée sur cette distribution.

» Loi du y? (« Chi carré »)
Soit N un entier naturel non nul. Une v.a. réelle X suit 1a loi du y2 & N degrés de liberté,

|
X°(N), si elle suit une loi Gamma I” (— —); sa densité fy est donc telle que, pour tout

279
réel x :
N_ 1 _z
x2 e 2 0
— six>
o =1 Vv (%)
0 sinon
X ~ (V)
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04
03
02l
0.1
i — N=]
| e N =5
00 : — L
0 5 10 15 20 N=7

Figure 139.2 - La densité de la loi du y?, pour différentes valeurs du paramétre N.

2. Il est intéressant d’étudier, dans un premier temps, la loi du y* 4 un degré de liberté. Soit Z

une variable aléatoire, de loi N (0, 1). Si on considere la v.a. positive X = Z?, alors, pour tout
x>0,
Fx (x)

PiX <x

P(-Vx<Z< i)
v o

e

0o V2«

T dy.
On peut alors en déduire, grace a la formule de dérivation composée, et au théoréme fonda-
mental de I’analyse, I’expression de la densité de X, pour tout x > 0 :
1

\/_\/Q_rr

Du fait de la positivité de X : fy (x) = 0 pour x < 0; la valeur de fy en () n’a pas besoin d’étre
définie, et peut, par convention, étre considérée comme nulle. La densité fy est donc aussi
celle de la loi Gamma, de parametreq 3 et , ce qui constitue le résultat suivant.

wv«

)=

3. Propriétés

Lemme
SiZ ~ N (0, 1) alors Z> ~ I"'(1/2,1/2).

Ce résultat est un cas particulier de la propriété suivante, lorsque N = 1.

Propriéte

Soient N un entier naturel non nul, uy, ..., uy, 01 20, ...,
Xy des v.a.r. indépendantes suivant, respectivement, les lois normales N (uy,07), ...,
N (un, on).

oy = 0 des réels, et Xy, ...,

N 2
X — ’ . . . "
Alors, 1a v.a.r. Z (—#) suit la loi du Xz a N degrés de liberté :
T

i=1
N %, 0
Z( — ) ~ W)

=1 Ti
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Du fait de la propriété de changement d’échelle de la loi normale, la loi du y? & N degrés
de liberté est, tout simplement, la loi de probabilité de la somme des carrés de N variables
normales centrées réduites indépendantes entre elles.

La distribution y*(N) est utilisée en statistique inférentielle dans de nombreux contextes. La

propriété ci-dessus est un cas particulier particulierement simple. On peut s’en servir pour
Xi+.ooot XN

N ?

démontrer qu’on a aussi, avec notre amie la moyenne empirique My =

S=) (Xi—-My)? ~0*(N-1)

N
k=1
Si jamais on a une idée extrémement précise de la valeur de o, alors, lorsque N n’est pas trop
grand, on peut utiliser la statistique § pour déterminer si les données utilisées pour le calcul

de § ont une bonne chance de provenir de données gaussiennes i.i.d., ou non.

Démonstration : Cette propriété est une conséquence immédiate du lemme ci-dessus,
et de la proposition suivante. ]

Proposition
Soit N un entier naturel non nul, @, ..., @y, B des réels strictement positifs, et X, ...,
Xy des v.a.r. indépendantes suivant, respectivement, les lois (a1, /), ..., '(an,[5).

N N
Alors, la v.a.r. Z X; suit la loi Gamma de parametres Z i

i=1 i=1

N
2 Xi~T| ) anb
i=1 i=1

Démonstration : 1l suffit de démontrer cette propriété pour N = 2, le résultat pour
N = 2 s’en déduisant par simple itération.

La densité de probabilité de la loi Gamma de parametres «; + @3, 3, est donnée, pour
tout réel x > 0, par :
xﬂ‘|+02—lﬁ(}’|+02 e—ﬁx

I'(e) + @)

xmxazﬁmﬁaz e B

xI'(a; + an)

ﬁzl +(12,,B(x) =

On peut alors vérifier, grace a des calculs assez pénibles que nous détaillerons pas ici,
que :
fm-{-ag,ﬁ = f;n.ﬁ *fﬂ’z,ﬁ u
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. 1. Les deux résultats ci-dessus montrent en outre, grace au cas N = 2, que la loi exponentielle

& (1) est aussi celle du y? avec deux degrés de liberté, i.e. la loi de ¥? + Z2, ol Y et Z sont
1.1.d., de loi NV (0, 1).

. Dans le cas ol, pour tout entier i, @; = 1, en choisissant 1 = £, la proposition précédente

implique que la loi I" (N, A) est celle de la somme de N variables i.i.d de loi exponentielle
&E ().
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» Espérance d’une v.a.r. suivant la loi Gamma de paramétres ¢ >0, >0

Soient & et B deux réels strictement positifs, et X une v.a.r. suivant la loi Gamma I'(«, ).
L’espérance de X est : o
E(X) ==
B

—+00 f+00 ﬂ—] ﬁag e—ﬁx
x ——————e
0

Démonstration : 1l est clair que f x| fep(xydx = @ dx

-

converge. On peut alors calculer :

+00 +00 xa—lﬁae—ﬁx
f:m xfaﬁ(x)dx—f(; dox

f+oo xafﬁrr e—ﬁx
———dx
0 I'(a)

f+00 xa'ﬁ—rz e X d_x
0 I p

1 f*“’ xe*
CBr(a) Jy

Fa+1)

Il

1
BI (@)

|
= ﬁr(a)af(a)

(04

E [ ]

» Variance d'une v.a.r. suivant la loi Gamma de paramétres ¢ > 0, 8> 0

Soient a et § deux réels strictement positifs, et X une v.a.r. suivant la loi Gamma I'(a, ).
La variance de X est : -
B
400 +00 ciand)
< < ; | e
Démonstration : Il est clair que % flx)ydx = x e 207 (x
—o0 0 o N2

V(X) =

converge. On peut alors calculer :

E [x?]

Il

f N X Jap(x)dx

+oom xa—lﬁa e—Bx
j(: X’ T @ dx
+00 x{t+[ﬁae—,8x

0 I'(a)
B f+00 xa+lﬁfa~lﬁae~x @—
~Jo I () B

+00 xa+1 -2 —x
f e L
0 I' (@)

1
= Freler?

1
= BT (a@+ Dal(a)

ala+1)

ﬂz

dx
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La variance de la v.a.r. X s’obtient alors grice a la formule de Koenig :

+ 1 &
ele+l) o @ -

V(X) = B|X*| - BX)) = i

Nous avons vu, dans le cas oll @ = N est un entier naturel non nul, que I" (N, 4) est la loi de la
N

somme X = Z X de N variables 1.1.d. X, de lo1 & (1). Les formules donnant les espérances
k=1
et les variances conduisent alors a :

N N

EX)=— e Var(X)=—

X =7 )= 3

On aurait pu, aussi, obtenir ces formules directement par linéarité de I’espérance, et additi-

vité de la variance, les v.a. en jeu étant indépendantes. Nous avons, d’ailleurs, déja fait cette
remarque i propos des lois du chi carré (y?).
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Dans I'attente d‘un ni®™e client rue de la Paix

Dans notre magasin de luxe de la rue de la Paix, la propriétaire a constaté que la du-
rée d’attente avant I’arrivée d’un client ne donne pas d’information sur celles avant
I’arrivée des autres clients. Elle pense que ces temps d’attentes sont uniformes au
cours de la journée. En tenant compte de ces éléments, et de ses décisions précé-
dentes, elle est en droit de modéliser la durée X; d’attente entre le (k — 1) et le
ke client comme une variable exponentielle, de paramétre A = 6, et de considérer
les X; comme i.i.d.

Les deux employés et le gérant se sont mis d’accord pour que le premier prenne

sa pause café du matin aprés 1’arrivée du 10°™ client. Le temps d’attente pour cette
10

pause est donc X = ZX"’ de loi " (10, 6).
k=1
La densité fy de la v.a. X est nulle sur R™ et, pour tout x > 0 :

9610 —6x 9
X e _ 583 x93_6x.

@)= —gr—=—5
La durée moyenne de cette attente est :
1
E(X) = ?O = % = 1 heure 40 minutes
Son écart-type est :
10 10
VVar (X) = p=) = g ~ 0,5271 ~ 32 minutes

L’employé s’inquicte quand méme un peu, car I’heure du déjeuner approche, et il
n’a pas eu sa pause café ! Le magasin ouvre en effet a 10 heures, et le déjeuner est a
13 heures. La probabilité que la pause café n’arrive pas avant le dejeuner est donc :

PiX=3) :f fx (x)dxzf Sgﬁxge"@‘dx.
3 3 3

11 est possible de calculer cette intégrale explicitement a I’aide de 9 intégrations par
parties successives. On obtient :

35347283 _
35 ¢
L’employé n’a donc pas trop a s’inquiéter !
Mais, étant de nature anxieuse, il se demande si une telle situation pourrait lui
arriver au cours d’une année. Il décide donc de considérer que chaque jour de travail
est indépendant des autres, et veut estimer le nombre Y de fois ol il manquera sa
pause café. Comme il travaille 250 jours par an, il assimile le nombre Y a une variable
aléatoire binomiale de parametres n = 250 et p = 0,01538, ce qui conduit a :

E(Y) =np =250 0,01538 ~ 3,845
VVar(Y) = \Jnp(1 = p) = v/250 x 0,01538 x 0,9846 ~ 1,946

P(X>3)= 1% ~0,01538.

487

v
Q
=]
e
e}
(=
o
(%)
(%]
@
=
.-a
m©
Q2
9
o

Focus

Probabilités




Il semble assez probable que 1’événement redouté se produise une demi-douzaine
de fois par an. Il souhaite donc connaitre la probabilité P (Y = 6). Comme n est trés
grand, il ne semble pas possible d’expliciter cette derniere expression. Comme p est
assez proche de 0, cette situation semble intermédiaire entre celle ou I’on utiliserait
une approximation de Poisson, et une autre, ot le théoréme central limite s’ aplique-
rait. L’employé décide d’essayer les deux calculs :

e si on utilise I’approximation de Poisson, on peut considérer que la loi de Y est
proche de celle de la loi de Poisson de parametre A = n p = 3,845, ce qui conduit
alors a:

3]
P(Y >6)~ e ¥ Z

Y
e si on utilise le théoréme central limite, on peut considérer que 350 est la moyenne
empirique de 250 variables de Bernoulli, de parametre p = 0,01538. 1l faudrait

. = ) " . : s
donc dire que ———= est approximativement de loi N (0, 1), ce qui conduit a :
q Var @) Pp q
Y-3845 6-3.845
P(Y>26)="FP >
( ©) ( 1,946 1,946 )

I

P(N(0,1) = 1,107)
0,8659.

X

On s’apercoit que les deux approximations sont en léger désaccord. Mais, dans tous
les cas, les nouvelles ne sont pas bonnes pour I'employé. A I’aide d’un ordinateur
capable de calculer des factorielles d’un ordre élevé, on peut déterminer une valeur
approximative de P (Y > 6) : 0,8102.

L’ approximation de Poisson est donc la meilleure. Ce résultat €tait prévisible, puis-
qu’un bon critere pour pouvoir appliquer cette approximation est que » soit tres grand
devant 1, et que n p soit tres petit devant n. Le théoreme central limite s’applique

: : i Y
moins bien, car la moyenne empirique N ne se concentre pas assez autour de sa
moyenne ; ainsi,

Var(£) ~ 1,946 x 250" % ~ 0,1231

n’est pas assez petit devant 1.
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Exercices
d’entrainement

www T . . rpor -
. Les corrigés sont disponibles en téléchargement sur le site dunod.com
a partir de la page de présentation de I'ouvrage.

Espaces probabilisés

n Tirage de boules

On considére deux urnes : 1'une contient
six boules rouges et trois noires, |’autre six
noires et trois rouges. On choisit une urne
au hasard puis on tire deux boules (simul-
tanément). On obtient deux rouges. Quelle
est la probabilité qu’on ait choisi la premiere
urne ?

Généalogie
Soit n un entier naturel non nul.

On suppose connue la probabilité qu une fa-
mille ait n enfants. On désigne par p, (n =
0,1,...) cette probabilité. On suppose que
les 2" compositions (filles/gar¢ons) possibles
aient la méme probabilité conditionnelle (sa-
chant que la famille est composée de n en-
fants).

2.a) Quelle est la probabilité qu'une famille
n’ayant que des gargons soit composée
de k enfants ?

2.b) On suppose que p, = ap” pourn > 1,
ol @ > 0, p est un réel de I'intervalle
10,a7 ', et

po=1-ap(l+p+pi+..)=1-—1

Quelle est la probabilité qu’une famille
ait exactement k gargons ?

2.c¢) Sachant qu’une famille a au moins un
garcon, quelle est la probabilité (sous
les mémes hypothéses qu’a la question
précédente) qu’elle en possede deux ou
plus ? Généraliser & m ou plus, m = 2.

Probabilités discretes

Jeux de dés (1)

Soit n un entier naturel non nul. On s’ inté-
resse au lancer de 6 n dés.

3.a) Définir I'univers Q associé a cette ex-
périence aléatoire.

3.b) Calculer la probabilité de I’événement
« on obtient chacun des nombres 1, 2,
..., b exactement n fois ».

B Jeux de dés (2)

Soit 7 un entier naturel non nul. On consi-
dere I’expérience aléatoire qui consiste a lan-
cer successivement » fois un dé et a noter les
résultats obtenus.

4.a) Définir I'univers Q associé a cette ex-
périence aléatoire.

4.b) Calculer la probabilité de I'événe-
ment« on obtient au moins un 2 ».

Tirages de boules

Soit n un entier naturel non nul. Dans une
urne qui contient 2 n boules numérotées de |
a 2n, on tire k boules successivement et sans
remise (1 < k < n).

5.a) Définir I'univers Q associé a cette ex-
périence aléatoire.

5.b) Quelle est la probabilité que les k
boules portent toutes des numéros im-
pairs ?

n Un peu de géométrie

Soit n un entier naturel non nul, strictement
plus grand que 1. On marque n points sur un
cercle, puis on en choisit 2 au hasard.

6.a) Quelle est la probabilité pour qu’ils
soient voisins ?

6.b) Méme question pour n points choisis
sur une droite.

Rangements

Soit 7 un entier naturel non nul. n paires de
chaussettes de couleur rouge sont placées au
hasard dans n tiroirs.
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7.a) Quelle est la probabililité pour que | loin devant d’autres légendes comme Babe
chaque tiroir soit occupé ? Ruth? (10° a 0,3421) . Joe DiMaggio® (41¢
a 0,3246), Ichiro Suzuki® (53¢ a 0,3196),
Jackie Robinson® (98° a 0,3113), ou Alex
Rodriguez® (204° a4 0,3000). En supposant
que la performance de Ty Cobb était uni-
n Sur Ia fonction de répartition form? sur ses vingF-ql_latr? années de jeu (une
longévité extraordinaire également), calculer
la probabilité pour que, sur cing occasions de
frapper la balle (cingq « at bat ») Ty Cobb la
frappe au moins trois fois.

7.b) Reprendre le méme probléme, en sup-
posant les n paires de n couleurs diffé-
rentes.

On s’intéresse au lancer, de maniére indépen-
dante, de trois pieces de monnaie. On sup-
pose que la probabilité de tomber sur « pile »
vaut % pour chacune des piéces. On attribue la

valeur | an c6té « pile », et 0 au coté « face ». 10 Une histoive e cerfies chez Tes

On définit alors la variable aléatoire X, qui altermondialistes
correspond au nombre de fois ol les 3 piéces
tombent sur « pile ». Donner la loi de X, et sa
fonction de répartition.

Considérons un chargement de cerises en
route pour le marché international de Rungis.
Ces cerises sont destinées & étre utilisées dans
n I Benies i hasehull la préparation de .dessert's glacés pour une

chaine de restauration rapide McArnold. Des
Un batteur de baseball est considéré comme | altermondialistes dressent un barrage routier
extrémement bon s’il est capable de frap- | et répandent le contenu du chargement sur
per la balle au moins 300 fois sur mille, | ]a chaussée, sur la Nationale 7, dans la ban-
en moyenne, au cours de sa carriere. Le | licue de Montélimard. L'un d’eux estime que
meilleur batteur de tous les temps €tait le | Je nombre total de cerises est de trente mil-

légendaire Ty Cobb'. La probabilité qu’il lions, alors qu’un autre remarque que dans
avait de frapper la balle était p = 0,3664,

L. Prononcer « Taille C666b » ; au cours de sa carriére, au début du XX° siécle, il fut le seul joueur ayant,
pour la frappe de la balle, une probabilité de succeés supéricure a 0,3 pendant 23 saisons consécutives, un
record qui ne sera probablement jamais battu ; il a établi de nombreux autres records, qui ont duré plus de
cinquante ans.

2. Considéré comme le meilleur joueur de tous les temps, et ce malgré un embonpoint évident ; il a détenu
de nombreux records dans les années 1920, y compris le record du batteur le plus puissant — calculé grice
au « slugging percentage » — record qui tient encore. Il est donc toujours le batteur le plus redoutable de
tous les temps, mais Ty Cobb était encore plus efficace.

3. Joe, fils d’immigrés italiens, jouait pour les New York Yankees ; il détient toujours le record, établi en
1941, du plus grand nombre de jeux consécutifs avec un hit (« hitting streak »). 11 était toujours la coque-
luche des Américains de nombreuses années aprés sa retraite, et épousa Marilyn Monroe en 1954. Sur son
lit de mort en 1999, ses ultimes paroles furent « Je vais enfin pouvoir voir Marilyn ».

4. Un des rares joueurs de baseball avec une renommée internationale avant de jouer en Amérique du Nord,
il signa aux Seattle Mariners en 2000, et seulement une année plus tard, devint simultanément le meilleur
jeune de toutes les ligues nord-américaines (« MBL Rookie of the Year »), et le meilleur joueur de la Ligue
américaine (« American League MVP »).

5. Quinze ans avant le mouvement des droits civils contre le régime d’apartheid américain (ou « Jim Crowe
Laws », selon lesquelles les Afro-Américains ne pouvaient pas partager les mémes lieux publics que les
caucasiens), Jackie Robinson fut le premier joueur Afro-américain dans les ligues de premiere division
(MLB). II fut surnommé « Rookie of the Year » en 1947, et « MVP » (Most Valuable Player) de la National
League en 1949. Son début de carriére est décrit en 2013 dans le film hollywoodien « 42 ».

6. D’origine dominicaine, surnommé « A-Rod », il finira une trés longue carriere (1994-2017) dans I’ équipe
des New York Yankees, et restera probablement comme 'un des meilleurs joueurs de tous les temps — avec
un talent prodigicux repéré des sa plus tendre enfance — et ce, malgré de nombreuses controverses sur son
recours a des stéroides diiment interdits. A-Rod fut le joueur le mieux payé de tous les temps (275 millions
pour ses dix dernieres années aux Yankees), et détient de nombreux records ; par exemple, en 2007, il a
battu celui du joueur le plus jeune i atteindre 600 « home-runs », record détenu pendant prés d’un siecle par
Babe Ruth.
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plusieurs échantillons successifs, il semble
que la proportion de cerises non moisies soit
de 80 %. Le premier compere en conclut
qu’il doit y avoir environ 24 millions de
bonnes cerises répandues sur la chaussée. Les
compagnons ayant décidé de conserver le
barrage routier pendant toute la journée, ils
s’apercoivent qu’ils n’ont pas prévu de casse-
croiite. En accord avec le transporteur, qui
ferme les yeux car il a de la sympathie pour
les altermondialistes et n’aime pas la « mal-
bouffe », ils prennent des poignées de cerises,
par cing, pour appaiser leur faim et leur soif.

Quel est la loi du nombre de bonnes cerises
dans la premiere poignée ? Calculer la proba-
bilité qu’on puisse en consommer au Moins
quatre avec plaisir dans une poignée donnée.

Les clients de la boutique de
I’Opéra Garnier

Le nombre de clients qui pénétrent dans la
boutique de I’Opéra Garnier a Paris au mois
de février est, en moyenne, de dix par heure
en semaine. En |’absence de toute autre in-
formation, on peut (et méme on doit) modé-
liser le nombre de clients qui rentrent dans ce
magasin au cours d’une période de ¢ heures
comme une variable de Poisson de parametre
A = 101. Quelle est la probabilité qu’au
moins cinq clients pénétrent dans la boutique
entre dix heures et dix heures quinze ? Quelle
est la probabilité qu’il n’arrive pas plus de
trois clients pendant la période allant de dix
heures 4 dix heures dix ou de onze heures a
onze heures cing ?

Cléo et Chloé jouent a pile ou
face (1)

Cléo et Chloé jouent & pile ou face avec
une piece non truquée. Cléo joue quatre fois.
Chloé joue trois fois. Calculer la probabilité
que les deux amies ont de tirer au total au
moins 5 fois le coté « pile ».

Cléo et Chloé jouent a pile ou
face (2)

Chloé et Cléo changent maintenant légere-
ment de jeu. Cléo lance la piece jusqu’a ob-
tenir trois fois le coté « pile » ; Chloé lance
la piece jusqu’'a obtenir deux fois le coté

« pile ». Calculer la probabilité qu’il leur
faille au moins huit tirages.

Variables a densité

(38 Modélisation continue des temps
d’attente

On s’intéresse, ici, aux temps d’attente des
clients dans un magasin de luxe, situé rue
de la Paix, a Paris. On suppose que la pro-
priétaire est dgée de 58 ans, et que la clien-
tele a plus I'habitude de fréquenter le Café
des Deux Magots, & Saint-Germain-des-Prés,
plutdt que des cafés proches de cette boutique
de luxe, comme, par exemple, le Café de la
Paix. Supposons que la propriétaire ait cal-
culé, comme fréquence d’arrivée des clients,
6 par heure, en moyenne. Elle décide de mo-
déliser I’arrivée du premier client sans se res-
treindre aux moments d’arrivée mesurés en
minutes entieres. Elle a remarqué, contraire-
ment & 1"avis de son gérant, que la durée d’at-
tente jusqu’a I'arrivée du premier client ne
semble pas étre lie au temps passé 4 attendre
sans que le premier client n’arrive ; en réalité,
elle pense que son gérant est superstitieux de
considérer qu’une attente longue est de mau-
vais augure pour le reste de la journée.

Les seules informations utiles a retenir sont
donc les suivantes :

e on modélise le temps d’attente X comme
une variable qui peut prendre n’importe
quelle valeur réelle positive ; on supposera,
a cet effet, que X a une densité fyx.

e La propriétaire a noté la propriété d’ab-
sence de mémoire. on peut done, légitime-
ment, supposer que X est de loi exponen-
tielle.

e La propriétaire a calculé la fréquence
moyenne du nombre de clients, qui vaut
6 : on peut interpréter ce résultat en disant
que I'on doit prendre A = 6 (I'unité de X
est 1"heure). On peut aussi se baser sur le
fait que si I’on a, en moyenne, six clients
par heure, on peut répéter I'expérience en
cherchant plutét la durée moyenne d’at-
tente du premier client (voire la durée
moyenne d’attente entre 1’arrivée de deux
clients successifs, ces durées étant sup-
posées indépendantes). On trouvera alors

491

ités

o
©
Kol
(o]
=
Q.




Copyright © 2014 Dunod.

vraisemblablement E [X] = %, on attend le
client dix minutes en moyenne. Comme
E[X] = ]5 ceci conduit précisément a
A=6.
(Cette derniére opération est un cas trés parti-
culier de ce que 1’on appelle en statistique la

« méthode des moments » pour I’estimation
de parameétres.)

Calculer :
P(X>10min) , P(X >20min) |,
P (X > 60 min)

Retour au magasin de luxe

Supposons qu'un employé de notre magasin
de luxe de la rue de la Paix souhaite fumer
une cigarette sans incommoder les clients.
Lorsqu’il est pressé, cette activité lui prend

60 secondes. Il est intéressant de calculer la

probabilité qu’il parvienne a finir sa cigarette

avant que n’arrive le prochain client.

15.a) Supposons, d’abord, que 1’'employé ne
soit pas seul dans le magasin, et qu’il
ait promis a son coéquipier de servir le
second client, et qu’il parvienne a allu-
mer discrétement sa cigarette et a sortir
du magasin au moment méme ol entre
le premier client. Quelle est sa probabi-
lité de succes ?

15.b) Supposons maintenant que I’employé
se retrouve seul dans le magasin, et que
le premier client rentre et reste trois mi-
nutes avant de ressortir (il avait passé
une commande réglée sur internet, et
n’a eu qu’a récupérer celle-ci).

La durée d’attente X entre le premier et
le second client est donc supérieure a
trois minutes : X > &0

L’employé se précipite dehors, une mi-
nute apres le départ du client (il ne veut
pas faire mauvaise impression au cas
ol celui-ci serait toujours dans la rue).

4
Ainsi, X > —.
1msi 60
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Quelle est la probabilité qu’il arrive a
fumer sa cigarette avant I’arrivée du se-
cond client ?

Une application du théoréme
central limite

On s’amuse 4 lancer un dé 400 fois de
suite, et on désigne par X la v.a. donnant
le nombre d’apparitions d’un multiple de 2
(i.e. deux, quatre ou six). X suit la loi bino-

1
miale B (400, 5) Calculer son espérance et

son écart-type, puis la probabilité que X soit
compris entre 220 et 230.

Les élections présidentielles
en Floride (Fiction)

Lors de I’élection présidentielle américaine
de novembre 2000, la chaine de télévision
CNN a effectué un sondage a la sortie des
urnes (« exit poll ») des bureaux de vote
de 1’Etat de Floride, sur un échantillon de
1 000 personnes. Le candidat « W » recueille
a pour cent des suftfrages des 1 000 personnes
interrogées. On suppose que la valeur a est
proche de 50.

17.a) A T'aide du théoréme central limite,
donner un intervalle de confiance a
95% pour la véritable proportion u de
votants qui ont choisi le candidat « W »
en Floride. On assimile cette propor-
tion au score Sy réalisé par « W »,

17.b) A partir de quelle valeur de |a — 50|
peut-on se baser sur le sondage pour
connaitre le résultat de I’élection avec
95 % de certitude ?

17.¢) Sur un effectif total de 6 000 000 de vo-
tants floridiens, la différence de votes
entre le score de « W » et celui de
I’autre candidat est de 4000 voix.
Combien de personnes aurait-il fallu
interroger dans 1’« exit poll » de CNN
pour pouvoir déclarer le vainqueur avec
95 % de certitude? On notera N le
nombre recherché.
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Formulaires

Formulaire de trigonométrie
1. Formules d’addition

Pour tout couple de réels (a, b) :

cos(a+ b) = cosa cosbh —sina sinb

cos(a—b) = cosa cosh +sina sinb

sin(a + b) = sina cosb + cosa sinb

sin(a — b) = sina cosb —cosa sinb

= — sina

Formule d’addition avec un angle droit.

2
et, lorsque (a,b) € (R\{g +km,k € Z}) ’

tan(a + b) =

tan(a — b) =

tana + tan b sia+b € R\ {g+kﬂ,k & Z}

| —tana tan b

tana—tanb . . R\{gum,k c z}

| +tana tanb

2. Formules de duplication

Pour tout réel a :

« 72 .
{cos(Za) =cosla—sina=2cosla—1=1-2sin’a

sinf2a) = 2 sina cosa
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et, lorsque a # g [rlet2a+ g [7] :

2 tana
tan(2a) = ——
(2a) 1 —tana
3. Formules de linéarisation
Pour tout réel a :
5 1 +cos(2a)
cos d = —m—m——
2
.5 1—=cos(2a)
SIN“a = T

4. Formules de Simpson' pour la transformation de produits
en sommes

Pour tout couple de réels (a, b) :

1

cosa cosbh = 3 [cos(a+ b) + cos(a—>b)}
1

sing sinb = 3 {cos(a — b) —cos(a + b) }
|

sina cosbh = 3 {sin(a + b) + sin(a — b) }

5. Formules de Simpson pour la transformation de sommes
en produits

Pour tout couple de réels (p, g) :

+ —
cosp+cosqg = 2cos(p2q) cos(%)
_ i (P‘H]) ; (P—Q)
cosp—cosg = —2 sin sin | ——
2 2
+ f—
sinp +sing = 25in(p q) cos(u)
2 2
: : . (P—4 rtq
inp-sng = 2025 [ 259)
sin p — sing sin 7 cos >

6. Expression en fonction de la tangente de I'angle moitié

Pour tout réel a # m [2 ], on pose

= tan(a)
; 2
On a alors :
1=z
cosa =
1 +£2
. 2t
sina =
1 +£2
Si, de plus, a # z [7],ona:
2 2t
tana = =
[ -#

1. Thomas Simpson (1710-1761), mathématicien anglais, essentiellement connu pour ses travaux sur le
calcul infinitésimal (Ia méthode de Simpson, qui permet un calcul approché de 1’aire sous une courbe), mais
qui fut aussi I"auteur d’un important traité de trigonométrie.
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Dérivées usuelles

495




Copyright © 2014 Dunod.

496

Dérivées des fonctions
réciproques usuelles
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Primitives usuelles
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Limites usuelles des fonctions puissances

Soit n un entier naturel non nul. Alors :
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Rang d’'une matrice

Définition

Soit A € Mya(R).

On appelle rang de la matrice A, et on note rg A, la taille maximale d’une matrice

carrée inversible extraite” de A.

Exemples
1.
0101
A=11002
0011

La matrice A étant de taille 3 X 4, son rang sera inférieur ou égal a 3.
010

001

rgA=3

01
=(o2)
La matrice B étant de taille 2 x 2, son rang sera inférieur ou égal a 2.

Seules les matrices ( 1 ) et ( 2) extraites de B ont un déterminant non nul :

rg B =1

2. ¢’est-a-dire obtenue en enlevant des lignes et/ou des colonnes a A.

La matrice | 1 0 0 | extraite de A ayant un déterminant non nul, elle est inversible :
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cosinus hyperbolique 79
principal 211
sinus hyperbolique 79
tangente hyperbolique 80
Arrangements 370
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Index

avec répétition 371
Aryabhata 49
Associativité du barycentre 288
Astrolabe 49
Asymptote verticale 19
Auto-indéfinie-divisibilité de la loi de Poisson

417

Automorphisme 338, 307, 321, 354
Axe

d’une rotation 328

de symétrie vertical 31
Axiome de la borne supérieure 21, 123

B

Bachman 16, 144
Barycentre
d’un systeme pondéré de n points 287, 288
d’un systéme pondéré de deux points 286,
287
Base directe de R? 298
Baseball 490
Bernoulli Daniel 196
Bernouilli Jacques 44
Bernouilli Nicolas 44
Bijectivité 72
Bombelli 209
Bootstrap 479
Borel-Cantelli (Lemme de) 448
Branche parabolique d’axe
d’équationy =mx,m € R20
horizontal 20

vertical 19
Briggs Henry 38
Buée 210
C
Caractérisation
de I'indépendance de deux v.a.r. a densité
474

des fonctions constantes dérivables 63

des fonctions croissantes dérivables 64

des fonctions décroissantes dérivables 64

des fonctions strictement croissantes déri-
vables 64

des fonctions strictement décroissantes
dérivables 64
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des projecteurs 358
des symétries 358
séquentielle de la continuité 53
de Weierstrass 51
Cardan 209
Cauchy Augustin 210, 250
Causalité 380
Centre de gravité 288
Cesaro Ernesto 134
Changement
d’indices 182
de base 308, 322, 339
de variable 171
Chebyshev 437
Coeflicient de corrélation 443
Coefficients binomiaux 265
Cofacteur d’indice (i, j) 259, 270
Comatrice 259, 270
Combinaisons 372
linéaire 282, 331, 351
Comparaison avec une intégrale
convergente (sur un intervalle de longueur
finie} 191
convergente (sur un intervalle de longueur
infinie) 189
divergente (sur un intervalle de longueur
finie) 191
divergente (sur un intervalle de longueur
infinie) 190
Comparaison des fonctions puissances non
entieres 43
Complémentaire d’un ensemble 4
Composition (de fonctions) 22
Concentration de la mesure 470
Condition
initiale (pour une équation différentielle li-
néaire du premier ordre homogéene)
102
nécessaire de convergence d une série 150
Condition nécessaire et suffisante de conver-
gence 188
d’une intégrale de Riemann (sur un inter-
valle de longueur infinie) 187
d’une série de Riemann 152
d’une série géométrique 151
Conditions initiales 117
Condorcet 398
Conjugaison 311, 325, 342
Conjugué 208
Continuité
des fonctions composées 54
des fonctions usuelles 54

a droite 52

a gauche 51

d’une fonction en un point 51

des fonctions composées 55

des fonctions usuelles 55

et opérations algébriques 55
Convergence d’une série numérique 149
Convexité et dérivabilité 99
Corde 58

sous-tendue 49
Corps de base 350, 351
Cosécante 50
Cosinus 45

hyperbolique 47
Couple de variables aléatoires discretes 445
Coupures de Dedekind 21
Courbe représentative (d’une fonction) 18
Covariance 442

de deux v.a. indépendantes 442
Cramer 250
Critére

de Cauchy 142

de d’ Alembert 154
Croissance 26

(au sens strict) 26

(pour une intégrale) 159, 165

de I'espérance 421, 453

comparées 43
Curie Pierre 44

D

D’ Alembert Jean le Rond 210
Décomposition en éléments simples 231
sur R(X) d’une fraction rationnelle im-
paire 238
sur R(X) d’une fraction rationnelle paire
236
Décroissance 26
Dedekind Richard 21
Degré de confiance 455
De I’Hopital Guillaume 196
De Gennes Pierre-Gilles 44
Demi-tangente
a droite 62
a gauche 63
De Nicée Hipparque 49
Densité
conditionnelle de deux v.a.r. 473
de probabilité 450
de probabilité sur R? 472
jointe 472
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marginales de deux v.a.r. 472
Dérivabilité
des fonctions composées 60, 61
des fonctions définies par morceaux 62
en un point 58
en un point et opérations algébriques 59
et opérations algébriques 61
sur un intervalle 61
Décroissance (au sens strict) 26
Dérivée 58
a gauche d’une fonction 63
Dérivée n'*™ 65
d’un quotient de fonctions, n € I¥ 66
d’une combinaison linéaire de fonctions,
neN65
de la composée de deux fonctions, n € N
66
Déterminant
d’une application linéaire de R 311
d’une application linéaire de R* 325
d’une application linéaire de R” 342
d’une matrice de taille 2 x 2 254
d’une matrice de taille 3 x 3 259
d’une matrice diagonale 271
d’une matrice triangulaire 271
de deux vecteurs du plan 254
de trois vecteurs de I’espace 261
du produit de deux matrices d’ordre n 271
Déterminisme 380
Développement
asymptotique 95, 146
limité au voisinage d’un point 81
limité de la fonction exponentielle au voi-
sinage de zéro 85
limité de la fonction logarithme népérien
au voisinage de 1 84
limité des fonctions sinus et cosinus au
voisinage de zéro 85
limités usuels 89
Diagonalisabilité 344
Di Bruno Faa 66
Différence de deux ensembles 4
Dilatation 253
Discriminant réduit 226
Divergence d’une série numérique 149
Division euclidienne (de deux polynomes)
230
Domaine de définition (d’une fonction) 18
Domination 16, 144
Droite
affine 290
asymptote & une courbe 19
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réelle achevée 3
vectorielle 290

Ecart-type 431
Ecriture cartésienne 207
Ensemble 2
Ensemble vide 4, 6
Epreuve 376
Equation
caractéristique pour une suite récurrente
linéaire d’ordre deux 118
différentielle linéaire du premier ordre
avec second membre 103
homogene associée a une équation diffé-
rentielle linéaire du premier ordre
avec second membre 103
Equiprobabilité 379
Equivalence
de deux fonctions 17
de deux suites 145
Espace
caractéristique 344
complet 142
probabilisé 377
propre 344
vectoriel 347
vectoriel de dimension finie 352
vectoriel de dimension infinie 352
vectoriel des suites 112
vectoriel produit 353
Espérance 419
et valeur absolue 453
mathématique d’un produit de v.a. indé-
pendantes 435
Espérance d’une v.a.r.
suivant la loi Gamma de parametres o >
0,8 > 0485
suivant la loi normale N (u, o) 468
suivant la loi uniforme (sur un intervalle
la, b]) 458
suivant la loi exponentielle £(1) 463
Euler 44, 210
Evénement 376
élémentaire 376
indépendants 388
négligeable 379
presque siir 378
Expérience aléatoire 376
Exponentielle complexe 213
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Extremum
d’une fonction sur un intervalle 67
local d’une fonction 68

F

Factorielle 368
Famille d’événements observables) 377
Fermat 380
Fincke Thomas 50
Fomule de Taylor Lagrange 71
Fonction 5
n fois dérivable, n € I 65
concave 96
continue par morceaux 162
continue partout, mais nulle part dérivable
59
contractante 131
convexe 96
cosinus 45
d’une variable aléatoire discréte 390
de Dirichlet 184
de probabilité 390
de répartition d'un couple de v.a.r. 472
de répartition pour la loi exponentielle de pa-
rametre 4 > 0461
de répartition pour la loi uniforme 457
de répartition d’une variable aléatoire dis-
crete 392
de survie 462
de survie d’une v.a.r. positive 455
en escalier 157
exponentielle 41
Fonction de classe C* 65
Fonction de classe C", n € IV 65
Gamma 480
indéfiniment dérivable 65
logarithme népérien 39
polynomiale 35
puissance 33, 498
puissance non entiere 43
réciproque 72
sinus 45
tangente 46
valeur absolue 37
continues sur un intervalle 55
définies par morceaux 23
monotones 26
périodiques 32
symétriques des racines 228
Forme
canonique 175

indéterminée 13
Formule

de Bayes 386, 387

de changement de base pour un vecteur
308, 322, 339

de Grassmann 334

de Koenig 432, 444, 454

de la moyenne 167

de Leibniz 66, 234

de Moivre 217

de Stirling 179, 369

de Taylor-Young 84, 87

de Vandermonde 374, 418

des probabilités composées généralisée
384

des probabilités totales 385

des probabilités composées 384

du bindbme de Newton 373

du bindme de Newton 265, 337

du rang dans R? 307

du rang dans B3 321

du rang dans R” 338

d’addition 50, 493

d’Euler 217

de Cramer 279

de duplication 493

de linéarisation 494

de Simpson pour la transformation de pro-
duits en sommes 494

de Simpson pour la transformation de
sommes en produits 494

G

Gauss Carl Friedrich 250
Géométrie tropicale 303
Girard Albert 50
Gottfried Leibniz 44
Grand O 16, 17, 144
Graphe
d’une fonction 18
d’une fonction réciproque 74
Grassmann Hermann 334
Grauert Hans 210
Grothendieck Alexandre 210
Groupe
commutatif 215, 350
linéaire 355
linéaire d’ordre n 272
linéaire de R” 338
orthogonal 312, 327
spécial orthogonal 313,316,327, 329, 347
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Guillaume Francgois Antoine de 1’Hdpital

196

H
Heisenberg Werner 380
Hilbert David 210
Homographie 126
Homothétie 240

I
Idempotent 358
Identité de polarisation 313, 327

Image 5
d’un intervalle fermé et borné par une
fonction continue 57
d’un intervalle par une fonction continue
strictement monotone 73
d’une application linéaire 307, 320, 337,
355
Imaginaire pur 207
Imparité 28
Imre Simon 303
Inégalité
de Cauchy-Schwarz 294, 440
de convexité 97
de Jensen 97, 425
de la moyenne 166
de Markov 426, 437, 454
de Tchebychev 437, 454
des pentes croissantes 98
triangulaire 36, 294
Indépendance de deux v.a.r. 473
Indice
de colonne 262
de ligne 262
Injectivité 72, 307, 321, 337, 338, 354
des fonctions continues 73
Intégrale
de Gauss 466
d’une fonction continue par morceaux 163
d’une fonction en escalier 158
de Lebesgue 184
de Riemann 158, 187
de Stieltjes 454
double sur un pavé (du plan R?) et valeur
absolue 194
double sur un pavé (du plan R?) 193
impropre 185, 186
de Wallis 202, 369
Intégration
des développements limités 84
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par parties 170
Interprétation géométrique de la valeur abso-
lue 36
Intersection d’ensembles 4
Intervalle 7
de confiance 455, 478
de confiance bilatéral 456
de confiance disymétrique 456
de confiance symétrique 456
de confiance unilatéral 456
fermé borné 6
ouvert 6
ouvert et borné 6
semi-ouvert et borné 6
de confiance avec variance non unitaire
479
Invariance par transvection 271
Inverse
d’un produit de matrices 275
d’une suite 133
de la transposée d’une matrice 274
Involutif 358
Isobarycentre
d’un ensemble de 3 points, A, B, C 288
d’un ensemble de n points 288
Isométrie 313, 326

Jensen 97
Julia Gaston Maurice 210

K

K-espace vectoriel 351
Kronecker Leopold 266

L

Lagrange 67, 148, 250

L’ Almageste 49

Landau Edmund 16, 144

Laplace Simon 471

Lebesgue Henri-Léon 183

Leibniz Gottfried 66, 250

Limite(s)
d’un produit de fonctions 15
d’un quotient de fonctions 15
d’une fonction en +co ou —co 12
d’une fonction polynomiale en +co ou —co

35

d’une somme de fonctions 15
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finie a droite (ou par valeurs supérieures)
10
finie & gauche (ou par valeurs inférieures)
10
finie d’une fonction en un point 8
infinie a droite (ou par valeurs supé-
rieures) 11
infinie 4 gauche (ou par valeurs infé-
rieures) 11
mfinie d’une fonction en un point 10
uniforme 163
usuelles des fonctions puissances non en-
tieres 43
Linéarité
de I’espérance 420, 453
(pour une intégrale) 158, 164
de I'intégrale double sur un pavé (du plan
R?) 193
Logarithme
de base a,a € R} 40
Loi(s)
binomiale 397
binomiale négative 404
conditionnelle 446
conditionnelle de deux v.a.r. 473
conjointe 445
d’Erlang (de parameétres o € N*, 8 > 0)
482
d’une variable aléatoire discrete 390
de Bernoulli 394
de distribution de Maxwell-Boltzmann
(de parametre @ > 0) 482
de Pélya 404
de Pascal 404
de Poisson 412
des cosinus 50
du ¥* (2 N degrés de liberté, N € IN*) 482
exponentielle (de parameétre a € RY) 461
faible des grands nombres 447, 448
forte des grands nombres 448
géométrique 400
Gamma (de parametres o > 0, 5 > 0) 481
hypergéométrique 409
marginales 446
normale (de parametres w, o) 465
normale centrée réduite 466
normale et transformation affine 466
uniforme 396, 457

M

Majorant 123

Mandelbrot Benoit 210
Matrice
2w 2232
3x 3256
colonne 263
de dilatation 268
de passage 308, 310, 322, 324, 339, 341
de permutation 267
de taille m X n 262
de transposition 267
de transvection 269
diagonale 252, 256, 261
identité d’ordre n 266
inverse 272
inversible 272
ligne 262
orthogonale 312, 313, 326
singulieére 272
triangulaire 255, 261
triangulaire inférieure 252, 256
triangulaire supérieure 252, 256
semblables 311, 325, 342
Maximum
d’une fonction sur un intervalle 67
local d’une fonction 67
Médianes 288
Meéridiens 49
Méthode
de variation de la constante 109
de Simpson 179
des moments 492
des rectangles 176
des trapezes 178
du Pivot de Gauss 274
Miche Rolle 69
Mineur d’indice (i, j) 259, 270
Minimum local d’une fonction 67
Minorant 123
Module 211
Modulo 27212
Moment d’ordre n d’une v.a.r., n € I 453
Monotonie 26
Multiplication
d’un vecteur par un réel 282, 331
d’une suite par un scalaire 112, 133
Multiplicité 225
d’une valeur propre 343

N

Napier John 38
Nasir Al-Din Al-Tusi 50
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Négligeabilité 16, 144
Neper John 38
Newton Isaac 44
Nombre d’or 302
Nombres de Bernoulli 90, 91
Norme 294
Norme euclidienne 293
Notation

&t%3

« »3

«*»3
« 1‘ » 3

*

«*»3

de Landau 16, 144
Noyau
d’une application linéaire 306, 320, 337,
255
d’une matrice 306, 320, 337

0

Opérateur orthogonal 312, 326

Opération élémentaire 253, 257, 258

Opérations algébriques sur les fonctions
continues 54

Oughtred William 50

1

Paralleles 49
Paramétre de forme 481
Parité 28
Partie
entiére 52
entiere (d’une fraction rationnelle) 231
imaginaire 207
polaire (d’une fraction rationnelle) 231
principale d’ordre n € N d’un développe-
ment limité 82
réelle 207
Partition 379
Pas d’une subdivision 157
Pascal Blaise 380
Pavé (du plan R?) 193
Période fondamentale 32
Périodicité 32
Petit 0 16, 144
Pdle (d'une fraction rationnelle) 230
Pdle d’ordre p (d’une fraction rationnelle) 230
Pivot de Gauss 274
Plan
affine 291
vectoriel 291
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Poincaré Henri 95
Polyndme(s)
caractéristique 343
de Tchebychev 122
formels 229
Position de la courbe représentative
d’une fonction convexe
par rapport a ses tangentes 99
par rapport a ses cordes 97
Positivité
(pour une intégrale) 158, 164
de I'espérance 421, 453
de I'intégrale double sur un pavé
(du plan R?) 194
Primitives 62, 168
usuelles 497
Principe
d’incertitude de Heisenberg 380
de superposition 103
Probabilité 377
conditionnelle 384
sur un univers fini 378
Probléme des N corps 95
des partis 380
des trois corps 95
Processus stochastique
asaut 412
continu 412
Produit
cartésien de n ensembles,n € N, n =25
cartésien de deux ensembles 4
cartésien de trois ensembles 5
de convolution de deux fonctions 475
de suites 113, 132
scalaire 293
vectoriel 298
Projecteur 357
Projection 357
Prolongement par continuité en un point 53
Propriétés
de la covariance 442
de la fonction Gamma 480
Ptolémée 49
Puissance (quelconque) d’un réel strictement
positif 42

R

Racine
n“™ d’un réel strictement positif, n € N*
42

carrée complexe de —1 207
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d’ordre n 225
d’un polynéme 224
double 225
triple 225
niémes 221
Raison (d’une série géométrique) 151
Rang
d’une application linéaire 307, 321, 338
d’une matrice 499
R-espace vectoriel 350
R3
Récurrence
double 121
forte 121
Regle
de I’Hopital 196
du bonhomme d’ Ampere 298
Régularité d’une fonction convexe 98
Relation
de Chasles (pour une intégrale) 160, 165
de récurrence d’ordre p 118
de récurrence linéaire d’ordre 2 116
coefficients-racines pour un polynéme de
degré n 227
coeflicients-racines pour un polynéme de
degré 2 227
de Viete 228
Repére de I'espace 285
Représentation paramétrique
d’un plan affine 292
d’une droite 290
Reste d’ordre n, n € N, d’une série conver-
gente 150
Restriction d’une fonction a un intervalle 22
Riemann Bernhard 156
Rotation 242
vectorielle 314, 328
Ruban de Mabius 302

S

Scipione dal Ferro 209
Sécante 50, 58
Second membre
de type « exponentielle X polynéme » 105
de type « exponentielle x sinus » 108
de type « exponentielle X cosinus » 108
Segment 6
Sens de variation des fonctions puissances 33
Séquencage de I’ADN 370
Série 149
absolument convergente 150

de Riemann 152
entiere 152
géométrique 151
harmonique 152
semi-convergente 150
Sextique de Barth 302
Sigma-additivité 378
o—algebre 377
Similitude
directe 245
indirecte 247
Simpson Thomas 179, 494
Singleton 6
Sinus 45
Sinus hyperbolique 47
Solution d’une équation différentielle linéaire
du premier ordre
avec second membre 104
homogene 101
homogeéne avec une condition initiale 102
Somme
d’une série convergente 149
de deux séries convergentes 150
de deux v.a. indépendantes 416, 417, 475
de deux variables aléatoires discrétes in-
dépendantes 416
de deux variables aléatoires réelles indé-
pendantes 476
de deux vecteurs 282, 330
de sous-espaces vectoriels de R”" 333
de suites 112, 132
des n premiers carrés, n € N 198
des n premiers cubes, n € IN 198
des n premiers entiers naturels,n € I 198
directe de sous-espaces vectoriels 334,
356
directe de sous-espaces vectoriels de R”
334, 356
de Riemann 164, 176
partielles 149
Sous-espace vectoriel 333, 334, 354, 356
Sous-suite 140
Spectre 343
Stabilité par addition 412
Stirling 179
Stricte positivité (pour une intégrale) 165
Structure
de corps 214
de groupe 347
Subdivision adaptée a une fonction
continue par morceaux 162
escalier 157
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Subdivision
d’un intervalle 157
réguliére 157
Suite
adjacentes 146
arithmétique 114
arithmético-géométrique 115
bornée 124
constante 124
convergente 127
croissante 124
décroissante 124
de Cauchy 142
définies explicitement 114
divergente 127
extraite 140
géométrique 115
homographique 126, 135
majorée 123
minorée 123
monotone 124
négative 124
positive 124
stationnaire 124
Support (d’une densité) 474
Surjectivité 72, 307, 321, 338, 354
Sylvester 250
Symétrie 357

du produit de convolution de deux

fonctions 475
Symboles de Kronecker 266
Systeme

complet d’événements 379
de Cramer 279

homogene 278

linéaire 278

T

Tableau de variations 27
Tangente 46

hyperbolique 48
Tartaglia Nicolas 209
Tchebychev 122, 218, 437
Termes diagonaux 262
Théoréeme

central limite 469

de d’Alembert-Gauss 225

de Berry-Esseen 471

de Bolzano-Weierstrass 141

de Cesaro 134

de De Moivre-Laplace 452, 471
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de Fubini 194

de la base incompléte 333

de Rolle 69

de transfert 422

de Weierstrass 56, 163

des accroissements finis 70

des bornes atteintes 56

des fonctions réciproques 73

des gendarmes 15, 147

des valeurs intermédiaires 56

du jury de Condorcet 398

du point fixe 131

du rang dans R? 307

du rang dans R* 321

du rang dans R”" 338

fondamental de I’analyse 168
Trace d’une matrice

de taille 2 x 2 253

d’une matrice de taille 3 x 3 257

d’une matrice de taille n X n 262
Transformation linéaire 354

de ’espace R* 318

de I’espace R" 335

du plan 304

Transformation orthogonale 312, 313, 326

Translation 240

Transposée 252-255, 257-259, 261, 263, 270,

271
transposition 253
Transvection 253
Triangle de Pascal 66, 373
Tribu 377
Trigonalisabilité 345
Ty Cobb 490

U

Unicité
de la limite (d’une fonction) 14
du développement limité 82
Union d’ensembles 4
Univers 376

A%

Valeur
absolue d’un réel 36
absolue d’une intégrale 159, 165
propre 343

remarquables des fonctions sinus, cosinus

et tangente 46
Vandermonde 250, 374, 418
Varahamihira 49
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Variable aléatoire (v.a.) 389
continue 450
discrete 389
discrétes indépendantes 391
Variance 431
d’une v.a. constante 432
d’une v.a.r. 454
d’une v.ar suivant la loi exponentielle
E(A) 464
d’une v.a.r. suivant la loi Gamma de para-
metres @ > 0, 8 > 0485
d’une v.ar suvivant la loi normale
N(u, %) 468
d’une v.a.r. suivant la loi uniforme (sur un
intervalle [a, b]) 458
de la somme de variables indépendantes
et identiquement distribuées (i.i.d.).
436
Vecteur normal
aun plan affine 295

a un plan vectoriel 295
libres 283, 331, 352
liés 283, 331, 352
propre 343
unitaire 293
Viete 228
Voisinage d’un point 7
Volume orienté d’un parallélépipede 301

w

Wallis John 202, 369
Weierstrass 51, 59
Wessel Caspar 210
Weyl Hermann 210

Y

Young William Henry 87
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