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Avant-propos 

Cet ouvrage est destiné aux étudiants en licences de Sciences de la Vie et de la Terre, ou en 
classes préparatoires. Il se base sur nos cours donnés en première année de Licence à l'UPMC 
(université Pierre-et-Marie-Curie). 

Face aux demandes croissantes de nos étudiants, qui recherchaient un ouvrage de référence 
complet mais abordable, ainsi que des exercices d'application corrigés, nous nous sommes lan­
cés dans la conception de ce livre qui, nous l'espérons, sera un outil utile pour les générations 
d ' étudiants à venir. 

Cet ouvrage est donc le fruit d'un compromis: dans un volume condensé, nous avons essayé de 
donner suffisamment d'éléments recouvrant l'ensemble des mathématiques des premières années 
d 'études supérieures. Il correspond aussi à l' arrivée des nouveaux programmes universitaires et 
des classes préparatoires. Pour mieux assurer la jonction avec les mathématiques enseignées au 
lycée, nous avons opté, pour la première partie d'analyse, relative à l' étude des fonctions, à une 
présentation de type « Calculus », inspirée de l'esprit des« textbooks »anglo-saxons, qui permet 
d'aborder plus facilement le reste du programme, plus « classique », sur les suites et le calcul 
intégral. Pour l'algèbre, la présentation reprend celle de l'ouvrage Calcul Vectoriel (Collection 
Sciences Sup ), en allant un peu plus loin : JR.11

, réduction, espaces vectoriels. En ce qui concerne 
les probabilités, nous allons jusqu' aux probabilités continues, indispensables aux filières SVT, 
mais qui peuvent aussi intéresser les autres publics. 

Malgré tout le soin apporté à la rédaction, nous demandons l' indulgence du lecteur pour les 
éventuelles imperfections qui pourraient subsister ; qu'il n'hésite pas à nous les signaler. 

Claire David et Sami Mustapha 
Claire.David@upmc.fr 

Sami.Mustapha@imj-prg.fr 
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Comment utiliser cet ouvrage? 
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en trois grandes parties 

Ca\cu\US Calculus, Algèbre, Probabilités 
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Calcul us 

Introduction ___ _ 

Après de brefs rappels sur les ensembles de nombres, nous présentons, dans ce qui 
suit, les notions d'analyse indispensables à l'étude des fonctions: l'étude des limites; 
des généralités sur les fonctions numériques et les fonctions usuelles. Nous passons 
ensuite, naturellemment, à l'étude de la continuité, puis de la dérivabilité. Nous in­
troduisons alors les fonctions réciproques. Puis, nous passons à l'étude des développe­
ments limités, et aux équations différentielles. Enfin, nous introduisons brièvement les 
fonctions de deux et trois variables. 

Dans ce cours, certains résultats, dont la démonstration n'est pas considérée comme 
indispensable à l'apprentissage des techniques de base, sont admis. 

Plan 
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Focus: La construction de l'ensemble des réels : les coupures de Dedekind ......... 21 
Fonctions usuelles .. ........... .... ... ...... ........... . ...... ... .. . ....... . .. ......... 33 
Focus : John Napier et les tables logarithmiques ...... . ..... . .... .................... 38 
Focus : Leibniz et la fonction exponentielle .. . ....... ...... . . . . ...... ........... . . . . . 44 
Focus: L'origine de la trigonométrie ................................................. 49 
Continuité ................... . . . .......................................... . . . ......... 51 
Dérivabilité ........................... ...... ............... ........ ................ ... 58 
Fonctions réciproques ................................................................. 72 
Développements limités .... . ........ . . . . . . . ... .. . .. ........ .. ......... ..... ........ . . 81 
Développements asymptotiques ......... ... . .. .................. ... .................. 95 
Convexité ....... ........ ... ..... ....... ... ...... ... ......... ...... ....... .. ......... .. 96 
Équations différentielles linéaires du 1er ordre . ..................................... 100 
Suites ................................................................................ 111 
Focus: Suites arithmético-géométriques et finance .... . ....................... . .... 119 
Focus: Suites et systèmes dynamiques - L'attracteur de Hénon .............. ...... . 148 
Séries ................................................................................ 149 
Intégrales ............................................................................ 149 
Focus: Intégrale de Riemann vs intégrale de Lebesgue ............ ... .............. 183 
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Les ensembles de nombres 

Un ensemble E est une collection d'objets, qui constituent les «éléments» de l'en­
semble. Le nombre d'éléments de l'ensemble peut être fini, ou infini. 

1. Notation 

Pour décrire l'ensemble, on utilise des accolades, à l'intérieur desquelles on écrit les 
éléments de l'ensemble. 

Suivant les cas, on peut, simplement, placer, à l'intérieur des accolades, la liste des élé­
ments de l'ensemble; ainsi, dans le cas d'un ensemble E avec un nombre fini d'éléments 
e1, ... , en. où n est un nombre entier positif, on écrit: 

E = {e1, ... , en} 

ou bien, dans le cas d'un ensemble d'éléments vérifiant une propriété donnée P, on écrit 

E = { xlP(x)} ou encore {x, P(x)) ou encore {x; P(x)} 

ce qui désigne ainsi lensemble des éléments x tels que la propriété P soit vérifiée pour x. 

Exemples 

1. {l , 2, 3, 4) est un ensemble. Ses éléments sont les nombres l , 2, 3 et 4. 

2. {3, 4, 5, 6, , ... } est un ensemble. Ses éléments sont les nombres entiers supérieurs ou égaux 
à 3. 

3. {x E {l, 2, 3, 4, 5, 6) lxest impair}= {l, 3, 5}. 

> Les entiers naturels 

L'ensemble des entiers naturels, c'est-à-dire des entiers positifs ou nuls, est noté N : 

N = {0, 1, 2, 3, 4, 5, ... } 

> Les nombres pairs 

L'ensemble des entiers naturels pairs est noté 2 N : 

2 N = {O, 2, 4, 6,. .. } = {2n, n E N} 

> k N, k E N 

Étant donné un entier naturel k, k N désigne lensemble des entiers naturels mutiples de 
k: 

k N = {k n, n E N} 

> Les entiers relatifs 

L'ensemble des entiers relatifs, c'est-à-dire des entiers qui sont soit positifs ou nuls, ou 
négatifs ou nuls, est noté Z : 

z = { .. .,-5, -4, -3, -2, -1, 0, l, 2, 3, 4, 5,. .. } 

2 
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> a Z, a E IR 

Étant donné un réel a, a Z désigne lensemble des réels de la forme a k, où k est un 
entier: 

a Z = {a k, k E Z} 

1 

Exemple 

2nZ = (2krr, k E Z }. 

> Les nombres rationnels 

L'ensemble des nombres rationnels, c'est-à-dire de la forme !!.. , où p et q sont deux 
q 

entiers relatifs, avec q * 0, est noté Q. 

> Les nombres réels 

L'ensemble des nombres réels est noté R 

> IR 

L'ensemble RU{ - oo, + oo} est noté lR (c'est ce que lon appelle la « droite réelle achevée », 
ou encore, ladhérence de JR) 

> La notation « * » 

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant «*», cela signifie que 
l'on exclut 0 ; ainsi, N* désigne l'ensemble des entiers naturels non nuls ; Z* désigne 
l'ensemble des entiers relatifs non nuls ; etc. 

> La notation « + » 

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant «+», cela signifie que 
l'on ne considère que les nombres positifs de cet ensemble; ainsi, z+ (qui est aussi égal 
à N), désigne l'ensemble des entiers positifs ou nuls ; JR+ désigne l'ensemble des réels 
positifs ou nuls ; etc. 

> La notation « - » 

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant « - »,cela signifie que 
l'on ne considère que les nombres négatifs de cet ensemble; ainsi, z - (qui est aussi égal 
à - N), désigne l'ensemble des entiers négatifs ou nuls; R- désigne l'ensemble des réels 
positifs ou nuls; etc. 

> La notation « z » 

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant «:», cela signifie que 
l'on ne considère que les nombres strictement positifs de cet ensemble; ainsi, z : (qui 
est aussi égal à N* ), désigne l'ensemble des entiers strictement positifs ; R: désigne 
l'ensemble des réels strictement positifs ; etc. 

> La notation « ~ » 

Lorsque l'on écrit l'un des ensembles précédents avec l'exposant «:», cela signifie que 
l'on ne considère que les nombres strictement positifs de cet ensemble ; ainsi, z : (qui 
est aussi égal à - N*), désigne l'ensemble des entiers strictement négatifs; R: désigne 
l'ensemble des réels strictement négatifs ; etc. 

Propriété 
Ona : N c Z c Q c lR 

où le symbole c signifie « inclus dans». 
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2. Les ensembles 

:>- Ensemble vide 

Un ensemble ne contenant aucun élément est appelé ensemble vide, et noté 0. 

1 

Exemple 

{n E 3 N, n pair} ne contient aucun nombre : c'est l'ensemble vide. 

:>- Intersection d'ensembles 

Étant donnés deux ensembles E 1 et E2 , leur intersection, notée E 1 n E2 , est l'ensemble 
des éléments qui appartiennent à la fois à E1 et à E2 : 

E 1 n E2 = { x, x E E 1 et x E E2 } 

:>- Union d'ensembles 

Étant donnés deux ensembles E 1 et E2, leur union, notée E 1 U E2, est l'ensemble des 
éléments qui appartiennent à E 1, ou à E2 : 

E1 U E2 = {x, x E E1 ou x E E2} 

:>- Différence de deux ensembles 

Étant donnés deux ensembles E 1 et E2, leur différence, notée E 1 \ E2, est l'ensemble E 1 
privé de E2: 

Exemples 

1. lR \ {l , 2) est l'ensemble des réels différents del et de 2. 

2. lR \ rr Z est lensemble des réel s qui ne sont pas multiples de rr. 

:>- Complémentaire d'un ensemble 

Étant donnés deux ensembles E 1 et E2 tels que E1 soit inclus dans E 1 (que l' on écrit 
E2 c E 1), l'ensemble E 1 \ E1 est le complémentaire de E1 dans E 1, noté CE1 E1: 

C E1 E1 = E 1 \ E2 

1 Exemple 
CR {O} = JR* 

:>- Produit cartésien de deux ensembles 

Étant donnés deux ensembles E 1 et E2, leur produit cartésien, noté E 1 x E2, est l'en­
semble des couples d'éléments de la forme (x1, x2), où le premier élément x 1 appartient 
à E1, et le second, x2, à E2 : 

E1 X E2 = {(x1,x2), xi E E1 et x2 E E2} 

Exemples 

1. JR2 = { (x1, x2), x1 E lR et x2 E JR} est lensemble des couples de réels. 

2. N2 = { (n 1, n2) , n 1 E N et n2 E N} est l'ensemble des couples d 'entiers naturels. 

4 
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~ Produit cartésien de trois ensembles 

Étant donnés trois ensembles E 1, E1 et E3 , leur produit cartésien, noté E 1 x E1 x E3, 
est l'ensemble des triplets d'éléments de la forme (x1,x2,x3), où le premier élément x 1 
appartient à E 1, le second, x2 , à E2, et le troisième, x 3 , à E3 : 

E1 x E1 x E3 = {(x1,x2, x3), x1 E E1, x2 E E1 et x3 E E3} 

~ Produit cartésien de n ensembles, n E N, n ~ 2 

Étant donnés un entier naturel n ~ 2, et n ensembles E 1, .•• , En, leur produit cartésien, 
noté E 1 x ... x En, est l'ensemble des n-uplets d'éléments de la forme (x1, ••• , xn), où 
X1 E E J, ..• , Xn E En : 

E1 X ... X En= {(XJ, ... ,Xn), XJ E E1, ... , Xn E E 11 } 

~ Application 

Étant donnés deux ensembles E et F, une application 1.p de E dans F associe, à chaque 
élément de E, un et un seul élément de F. E est l'ensemble de départ, F, celui d'arrivée. 

Pour tout élément x de E, l'unique élément de F ainsi mis en relation avec x par 
l'application 1.p est noté 1.p(x), et appelé image de x. x est un antécédent de 1.p(x). On écrit : 

1.p:E-+ F 

Exemples 

1. 

X H i.p(X) 

<p: N ~ N 

XHX 

est une application de N dans N, appelée application identité de N. 

2. 

est une application de Q dans Q. 

~ Fonction 

l{t: Q ~ Q 
X H 2X 

Étant donnés deux ensembles de nombres E et F, une fonction f de E dans F associe, 
à chaque élément x de E, au plus un élément de F appelé alors image de x par f (ce 
qui signifie donc que tous les éléments de E n'ont pas nécessairement une image par f). 
E est l'ensemble de départ, F, celui d'arrivée. L'ensemble des éléments de E possédant 
une image par f est appelé domaine de définition de f, et noté V 1. Elle permet de définir 
une application de Vt dans F. 

Exemple f: ~ ~ ~ 
l 

XH--
1-X 

est une fonction de ~ dans ~. dont le domaine de définition est ~ \ { 1 }. Elle permet de définir 
une application de ~ \ { 1 } dans R 

5 

..c 
n:s 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Intervalles, voisinages, bornes 

L'ensemble des nombres réels est habituellement représenté sous la forme d'une droite 
graduée, appelée droite des réels, où il faut pouvoir se repérer. À cet effet, on introduit 
les notions d'intervalle et de voisinage d'un point. 

2 

1 
- 2 -1 0 

Figure 2.1- La droite des réels. 

1. Intervalles 
> Intervalle fermé et borné (ou segment) 

On appelle intervalle fermé et borné (ou segment) tout ensemble de la forme 

[a,b]={x E IR,a~x~b} (a,b) E IR2,a~b 

> Intervalle ouvert 

On appelle intervalle ouvert tout ensemble de la forme 

]a,b[= {x E R , a< x < b} (a,b) E R 2, a< b 

ou ] - oo, b[ = {x E R , x < b} b E R 
ou encore ]a, +oo[ = {x E R, a < x} a E R 
où IR2 = R x R est l'ensemble des couples de réels. 

> Intervalle ouvert et borné 

On appelle intervalle ouvert et borné tout ensemble de la forme 

]a,b[= {x E IR, a< x < b} (a,b) E IR2, a< b 

> Intervalle semi-ouvert et borné 

On appelle intervalle semi-ouvert et borné tout ensemble de la forme 

[a,b[= {x E IR, a~ x < b} (a,b) E IR2
, a< b 

ou ]a, b] = {x E R, a< x ~ b} (a, b) E R2, a < b 

> Intervalle fermé 

Par convention, tout ensemble de la forme 

[a, +oo[= {x E R, x ~a} 

ou ] - oo, b] = {x E IR, x ~ b} b E IR 
est considéré comme étant un intervalle fermé. 

> Ensemble vide 

a E R 

L'ensemble, noté 0, qui ne contient aucun nombre réel, est aussi un intervalle, appelé 
ensemble vide. 

> Singleton 

On appelle singleton un ensemble ne contenant qu'un seul élément, et qui est donc de la 
forme {a), où a est un nombre réel. 

6 
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~ Intervalle 

On appelle intervalle de lR l'un des ensembles définis ci-dessus, ou bien lR tout entier. 

Un singleton est un intervalle fermé (le singleton {a} est donc assimilé à l'intervalle fermé 
[a, a]). 

~ Adhérence d'un intervalle 

Soit I un intervalle de R Son adhérence Ï est l'ensemble tel que : 

• si I est un segment, alors Ï = I ; 

• si I est de la forme ]a,b[ ou ]a,b] ou [a,b[, (a,b) E JR2, alors Ï = [a,b]; 

• si I est de la forme ]a, +oo[ ou [a, +oo[, a E JR, alors Ï = [a, +oo[U { +oo}; 

• si I est de la forme] - oo,a[ ou] - oo,a], a E JR, alors Ï =] - oo,a] U {-oo}; 

• si I l'ensemble vide 0, alors Ï = 0. 

2. Voisinage 

~ Voisinage d'un point 

On appelle voisinage d'un point a de lR un sous-ensemble de lR contenant un intervalle 
ouvert de la forme ]a - T/, a + T/L où T/ est un réel strictement positif et tel que T/ < a. 

On peut étendre la notion de voisinage à +oo ou -oo; ainsi, un voisinage de +oo est une partie 
de lR contenant un intervalle ouvert de la forme ]xo, +oo[, où xo est un nombre réel quelconque. 
De même, un voisinage de -oo est une partie de lR contenant un intervalle ouvert de la forme 
] - oo, x0 [, où x0 est un nombre réel quelconque. 

3. Les intervalles de R 

Dans ce qui suit, a, b, x0 sont des réels tels que a < b. Le tableau suivant reprend les 
différents types d'intervalles de R 

[a, b] Segment 

]a, b[ Intervalle ouvert et borné 

]a,b] Intervalle semi-ouvert et borné (ouvert à gauche, fermé à droite) 

[a,b[ Intervalle semi-ouvert et borné (fermé à gauche, ouvert à droite) 

0 Ensemble vide 

{a} Singleton 

Jxo. +oo[ Voisinage de +oo 

[xo, +oo[ 

]- oo,Xo[ Voisinage de -co 

]- oo,xo] 

)- oo, +oo[ R tout entier 
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Limite d'une fonction en un point 

1. Limite finie d'une fonction en un point 

Soient f une fonction définie sur un intervalle Ide JR., à valeurs dans lR, a un point de/, 
et e un réel. 

On dit que f admet pour limite (finie) e en a si, lorsque x devient très proche de a, 
f(x) devient lui aussi très proche de f, ce qui se traduit mathématiquement par le fait que 
pour tout réel E strictement positif, il existe un réel 17 strictement positif tel que : 

V x E /, 0 < lx - al < 1J ~ IJ(x) - fi < E 

On écrit: lim f(x) = f ou limf = f. 
x->a a 

Exemple 

On considère la fonction qui, à tout x de ] - 1, l [, associe V l - x2• Alors : 

lim Vl - x2 = 0 
X-> J 

~ Notation o+ 
Soient f une fonction définie sur un intervalle l de JR., à valeurs dans JR., et a un point 
de/. 

On dit que f tend vers o+ en a si, lorsque x devient très proche de a, f(x) tend vers 
zéro, mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout 
réel E strictement positif, il existe un réel 1J strictement positif tel que : 

V X E /, 0 < lx - al < 1J ~ 0 ~ f (x) < E 

On écrit : lim J(x) = o+ ou lim J = o+. 
X->Q a 

Lorsque +oo est une borne de/, on dit que f tend verso+ en +oo si, lorsque x devient 
très grand, f(x) tend vers zéro, mais en restant positif, ce qui se traduit mathématique­
ment par le fait que pour tout réel E strictement positif, il existe un réel A strictement 
positif tel que : 

V x E /, x > A ~ 0 ~ f(x) < E 

On écrit: lim J(x) = o+ ou limf = o+. 
x->+oo +oo 

Lorsque -oo est une borne de l, on dit que f tend verso+ en - oo si, lorsque x devient 
très grand en valeur absolue, mais en restant à valeurs négatives, f(x) tend vers zéro, 
mais en restant positif, ce qui se traduit mathématiquement par le fait que pour tout réel 
E strictement positif, il existe un réel A strictement positif tel que : 

V X E /, X < -A ~ Ü ~ f(x) < E 

On écrit : lim f(x) = o+ ou lim J = o+. 
X->-OO -OO 

8 
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Exemple 

lim x2 = o+ 
X-->Ü 

~ On utilisera aussi la notation o+ pour indiquer que 1' on tend vers zéro par valeurs supérieures. 

~ . 

~ Notation o-
Soient f une fonction définie sur un intervalle I de JR, à valeurs dans JR, et a un point 
de/. 

On dit que .f tend verso- en a si, lorsque x devient très proche de a, f(x) tend vers 
zéro, mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour 
tout réel e strictement positif, il existe un réel T/ strictement positif tel que : 

V x E / , 0 < lx - al < 17 ~ - s < f(x) ~ 0 

On écrit : lim .f(x) = o- ou lim f = o-. 
x~a a 

Lorsque + oo est une borne de/, on dit que f tend verso- en + oo si, lorsque x devient 
très grand, .f(x) tend vers zéro, mais en restant négatif, ce qui se traduit mathématique­
ment par le fait que pour tout réel e strictement positif, il existe un réel A strictement 
positif tel que : 

V x E / , x > A ~ - & < .f(x) ~ 0 

On écrit : lim .f(x) = o- ou lim f = o-. 
x~+oo +oo 

Lorsque -oo est une borne de l , on dit que f tend vers o- en -oo si, lorsque x devient 
très grand en valeur absolue, mais en restant à valeurs négatives, .f(x) tend vers zéro, 
mais en restant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel 
t: strictement positif, il existe un réel A strictement positif tel que : 

V x E l , x < -A ~ -s < .f(x) ~ 0 

On écrit : lim .f(x) = o- ou lim f = o-. 
X~-00 -OO 

Exemple 

lim-x4 = o­
x-->O 

On utilisera aussi la notation o- pour indiquer que l'on tend vers zéro par valeurs inférieures. 

Exemple 

lim x3 = o-
x-->O-

~ Notation a+, a E IR. 

a étant un réel, la notation a+ signifie que l'on tend vers a par valeurs supérieures. 

~ Notation a-, a E IR. 

a étant un réel, la notation a- signifie que l'on tend vers a par valeurs inférieures. 
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2. Limite infinie d'une fonction en un point 

Soient f une fonction définie sur un intervalle 1 de JR, à valeurs dans JR, et a un point 
de/. 

On dit que f admet pour limite « plus l'infini (on note +oo) » en a si, lorsque x 
devient très proche de a, f(x) devient très grand, ce qui se traduit mathématiquement par 
le fait que pour tout réel A strictement positif, il existe un réel T/ strictement positif tel 
que: 

V x E /, 0 < lx - al < T/ ~ f(x) > A 

On écrit alors : lim f(x) = +oo ou lim f(x) = +oo. 
x~a a 

On dit que f admet pour limite « moins l'infini (on note - oo) » en a si, lorsque 
x devient très proche de a, f(x) devient très grand en valeur absolue, mais en étant à 
valeurs négatives, ce qui se traduit mathématiquement par le fait que pour tout réel A 
strictement positif, il existe un réel T/ strictement positif tel que : 

V x E /, 0 < lx - al < T/ ~ f (x) < -A 

On écrit : lim f (x) = - oo ou lim f = -oo. 
x~a a 

Exemple 

L 
lim = +oo 
x-.J+ ~ 

3. Limite finie à droite (ou par valeurs supérieures) 

Soient f une fonction définie sur un intervalle l de IR., à valeurs dans IR., a un point de ! , 
et fun réel. 

On dit que f admet pour limite (finie) f à droite en a (ou encore, par valeurs supé­
rieures) si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient 
lui aussi très proche de f, ce qui se traduit mathématiquement par le fait que pour tout 
réel s strictement positif, il existe un réel T/ strictement positif tel que : 

V x E / , 0 < x - a < T/ ~ l.f(x) - f i < s 

On écrit : lim f(x) = f ou lim f = f. 
x~a+ a+ 

Exemple 

lim (2+ ~) =2 
X-+ f + 

4. Limite finie à gauche (ou par valeurs inférieures) 

Soient f une fonction définie sur un intervalle l de IR., à valeurs dans IR., a un point del, 
et fun réel. 

On dit que f admet pour limite (finie) f à gauche en a (ou encore, par valeurs infé­
rieures) si, lorsque x devient très proche de a, en restant plus petit que a, f(x) devient lui 
aussi très proche de f, ce qui se traduit mathématiquement par le fait que pour tout réel 
s strictement positif, il existe un réel T/ strictement positif tel que : 

V x E /, -TJ < x - a < 0 ~ l.f(x) - f i < & 

On écrit : lim f(x) = f ou li1!1 f = f. 
x~a- a 

10 
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5. Limite infinie à droite (ou par valeurs supérieures) 

Soient f une fonction définie sur un intervalle I de IR, à valeurs dans IR, et a un point 
de/. 

On dit que f admet pour limite +oo à droite en a (ou encore, par valeurs supérieures) 
si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand, 
ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il 
existe un réel T/ strictement positif tel que : 

V x E /, 0 < x - a < T/ ~ f(x) > A 

On écrit : lim f(x) = + oo ou lim f = + oo. 
x->a+ a+ 

On dit que f admet pour limite - oo à droite en a (ou encore, par valeurs supérieures) 
si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand 
en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement 
par le fait que pour tout réel A strictement positif, il existe un réel T/ strictement positif 
tel que: 

V x E / , 0 < x - a < Tf ~ f(x) < -A 

On écrit : lim f(x) = - oo ou lim f = - oo. 
x->a+ a+ 

6. Limite infinie à gauche (ou par valeurs inférieures) 

Soient f une fonction définie sur un intervalle I de JR, à valeurs dans JR, et a un point 
de!. 

On dit que f admet pour limite + oo à gauche en a (ou encore, par valeurs inférieures) 
si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand, 
ce qui se traduit mathématiquement par le fait que pour tout réel A strictement positif, il 
existe un réel T/ strictement positif tel que : 

V x E / , -.,, < x - a < 0 ~ f(x) > A 

On écrit : lim_ f(x) = + oo ou lim f = + oo. 
x ->a a-

On dit que f admet pour limite - oo à gauche en a (ou encore, par valeurs inférieures) 
si, lorsque x devient très proche de a, en restant plus grand que a, f(x) devient très grand 
en valeur absolue, mais en étant à valeurs négatives, ce qui se traduit mathématiquement 
par le fait que pour tout réel A strictement positif, il existe un réel T/ strictement positif 
tel que: 

V x E / , Tf < x - a < 0 ~ f(x) < -A 

On écrit : lim f(x) = + oo ou lim f = + oo. 
x-.a- a -
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Limite d'une fonction en +oo ou -oo 

1. Limite finie d'une fonction en l'infini 

Soient f une fonction définie sur un intervalle de la forme [a, +oo[ de R, a E R, et f un 

réel. 
On dit que f admet pour limite (finie) f en« plus l'infini (on note +oo) » si, lorsque 

x devient très grand, f(x) devient très proche de f, ce qui se traduit mathématiquement 
par le fait que pour tout réel E strictement positif, il existe un réel « seuil »,A, strictement 
positif tel que : 

V x E [a, +oo[, x > A => IJ(x) - fi < E 

On écrit alors : lim f(x) = f ou lim f = f . 
x~+oo +oo 

Si f est définie sur un intervalle de la forme ]-oo, a] de JR, a E JR, et si f désigne encore 
un réel, on dit que f admet pour limite (finie) f en « moins l'infini (on note -oo) » 

si, lorsque x devient très grand en valeur absolue, mais en étant à valeurs négatives, f(x) 
devient très proche de f, ce qui se traduit mathématiquement par le fait que pour tout 
réel s strictement positif, il existe un réel A, strictement positif tel que : 

V x E] - oo, a], x < -A => lf(x) - fi < s 

On écrit alors : lim f (x) = f ou lim f = f. 
X~-00 -OO 

Exemple 

lim 1 - = 1 ( 
l ) 

x-Hoo Vx2 _ 1 

2. Limite infinie d'une fonction en plus l'infini 

Soit f une fonction définie sur un intervalle de la forme [a, + oo[ de JR, a E R 
On dit que f admet pour limite +oo en « plus l'infini » si, lorsque x devient très 

grand, f(x) devient lui aussi très grand, ce qui se traduit mathématiquement par le fait 
que pour tout réel B strictement positif, il existe un réel «seuil »,A, strictement positif 
tel que: 

V x E [a, +oo[, x > A => f(x) > B 

On écrit alors: lim f(x) = +oo ou limf = +oo. 
x~+oo +oo 

On dit que f admet pour limite -oo en « plus l'infini » si, lorsque x devient très 
grand, f(x) devient très grand en valeur absolue, mais en étant à valeurs négatives, ce 
qui se traduit mathématiquement par le fait que pour tout réel B strictement positif, il 
existe un réel «seuil », A, strictement positif tel que : 

V x E [a, +oo[, x >A => f(x) < -B 

On écrit alors : lim f(x) = -oo ou lim f = -oo. 
x~+oo +oo 

12 
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3. Limite infinie d'une fonction en moins l'infini 

Soit f une fonction définie sur un intervalle de la forme] - oo, a] de JR, a E R 
On dit que f admet pour limite + oo en« moins l'infini» si, lorsque x devient très 

grand en valeur absolue, mais en étant à valeurs négatives, f(x) devient lui aussi très 
grand, ce qui se traduit mathématiquement par le fait que pour tout réel B strictement 
positif, il existe un réel réel A, strictement positif tel que : 

V x E] - oo, a], x < -A ~ f(x) > B 

On écrit alors : lim f(x) = +oo ou lim f = +oo. 
X~-00 -OO 

On dit que f admet pour limite - oo en «moins l'infini » si, lorsque x devient très 
grand en valeur absolue, en étant négatif, f(x) devient aussi très grand en valeur absolue, 
en étant négatif, ce qui se traduit mathématiquement par le fait que pour tout réel B 
strictement positif, il existe un réel A, strictement positif tel que : 

V x E] - oo, a], x < -A ~ f(x) < -B 

On écrit alors : lim f(x) = -oo ou lim f = -oo. 
X~-00 - OO 

4. Forme indéterminée 

On appelle forme indéterminée une limite que l'on ne sait pas déterminer; cela cor­
respond donc à des quantités ne l'on peut pas quantifier de façon exacte, comme, par 
exemple, le quotient de + oo avec +oo. 
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Propriétés des limites 
Opérations sur les limites 

1. Propriétés des limites 
>- Unicité de la limite 

Soient f une fonction définie sur un intervalle I de JR, à valeurs dans JR, et a dans l. Si f 
possède une limite en a, celle-ci est unique. 

• Soient f une fonction définie sur un intervalle I de JR, à valeurs dans lR, a un point de 
/,et t dans R 

Alors, si f est définie dans un voisinage à gauche de a, et dans un voisinage à droite 
dea: 

lim f(x) = .e ~ lim f(x) = lim f(x) = e 
x->a x->a+ x->a-

• Soient f une fonction définie sur un intervalle Ide JR, à valeurs dans JR, et a dans Ï; m 
et M sont deux réels. Alors : 

- si lim f(x) < M, il existe un voisinage de a tel que, pour tout x de ce voisinage : 
x->a 

f(x) < M 

- si lim f(x) > m, il existe un voisinage de a tel que, pour tout x de ce voisinage : 
x->a 

f(x) > m 

>- Limites et comparaison 

Soient f et g deux fonctions définies sur un intervalle I de JR, à valeurs dans JR, et a dans 
Ï; met M sont deux réels. Alors, si f et g ont des limites finies en a, et s'il existe un 
voisinage 'V de a tel que, pour tout x de ce voisinage, 

f(x) ~ g(x) 

on a : lirn f(x) ~ lirn g(x) 
x->a x->a 

>- Limites et minoration 

Soient f et g deux fonctions définies sur un intervalle I de JR, à valeurs dans JR, et a 
dans l. S'il existe un voisinage de a tel que, pour tout x de ce voisinage, 

f(x) ~ g(x) 

et si, de plus, lim g(x) = -oo 
x->a 

alors : lim f(x) = -oo 
x->a 

>- Limites et majoration 

Soient f et g deux fonctions définies sur un intervalle Ide JR, à valeurs dans JR, et a dans 
l. S'il existe un voisinage de a tel que, pour tout x de ce voisinage, f(x) ~ g(x), et si 
lim g(x) = +oo, alors : 
x->a 

lim f(x) = +oo 
x->a 

14 
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~ Théorème des gendarmes 

Soient f et g et h trois fonction définies sur un intervalle I de R, à valeurs dans R, et a 
dans l ; e est un réel. S' il existe un voisinage de a tel que, pour tout x de ce voisinage, 
f(x) :( h(x) :( g(x), et si, de plus, lim f(x) = lim g(x) = e, alors : lim h(x) = e 

x->a x->a x ->a 

2. Opérations sur les limites 

~ Limite d'une somme de fonctions 

Soient f et g deux fonctions définies sur un intervalle I de R, à valeurs dans R, et a 
dans l ; e et f ' sont deux réels finis . Alors : 

lim f(x) limg(x) lim (f(x) + g(x)) 
X-+a X-+a X-+a 

e e' e+ e' 
e +oo +oo 

e -OO -OO 

+oo +oo +oo 

-OO - OO -OO 

+oo -OO Forme indéterminée 

~ Limite d'un produit de fonctions 

Soient f et g deux fonctions définies sur un intervalle I de R, à valeurs dans R, et a 

dans l ; e et e' sont deux réels. Alors : 

lim f(x) lim g(x) lim f(x) g(x) 
x--+a x--+a ____ x_ .... ._a _____ _ 

e {' 

e, avec e > 0 +oo 

e, avec e > o -OO 

e, avec e < o +oo 

e, avec e < 0 -OO 

0 +oo 

0 -OO 

~ Limite d'un quotient de fonctions 

ee' 
+oo 

-OO 

-OO 

+oo 

Forme indéterminée 

Forme indéterminée 

Soient f et g deux fonctions définies sur un intervalle I de R, à valeurs dans R, et a 
dans l ; e et f' sont deux réels. Alors : 

lim f(x) limg(x) r t<x> 1m-
X-+a X-+a x .... a g(x) 

e e', avec t' * O 
{ 

[' 

e +oo 0 

e -OO 0 

e, avec e > 0 o+ +oo 

e, avec e > o o- -OO 

e, avec e < O o+ -OO 

e, avec e < o o- +oo 

+oo +oo Forme indéterminée 

+oo -OO Forme indéterminée 

-OO +oo Forme indéterminée 

-OO -OO Forme indéterminée 
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Notations de Landau 

1. Négligeabilité 

Définition 

Soient f et g deux fonctions définies sur un intervalle l de R, à valeurs dans R, et a 
dans ï. 
On suppose que g ne s'annule pas dans un voisinage de a. On dit que f est négligeable 
devant g au voisinage de a si 

On note alors 

lim f(x) = 0 
x->a g(x) 

f(x) = o (g(x)) ou f = o (g) 
x~a a 

On dit que f est un «petit o » de g au voisinage de a. 

La notation «petit o » , de même que la notation «grand 0 » , qui sera vue plus loin, est appelée 
notation de Landau, en hommage au mathématicien Edmund Landau 1• Leur paternité est 
visiblement assez controversée, et reviendrait, a priori, à Paul Bachmann2 . 

Exemple 

On considère les fonctions f et q définies, pour tout réel x, par 

f(x) = x2 q(x) = x4 

Alors, comme lim /(x) = lim ~ = 0, on en déduit: f = o(q). 
x -++oo q(x) x-++oo x + oo 

Pour traduire le fait qu ' une fonction f possède une limite nulle en a, a E R, ou, éventuelle­
ment, a = +oo ou a = -oo, on écrit aussi : 

f(x) = o(l) 
,X-1(1 

2. Domination 

Définition 

Soient f et g deux fonctions définies sur un intervalle l de R, à valeurs dans R, et a 

dans Ï. On suppose que g ne s'annule pas dans un voisinage de a, sans, pour autant, 
que g(a) soit non nul. 

1. Edmund Georg Hermann Landau (1877-1938), mathématicien allemand, spécialiste de théorie des 
nombres. 
2. Paul Bachmann (1837-1920), mathématicien allemand lui aussi, et également spécialiste de théorie des 
nombres. 
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On dit que f est dominée par g au voisinage de a si il existe une constante positive C 
telle que, pour tout réel x dans un voisinage de a 

lf(x)I ~ C lg(x)I 

On note alors : 
f(x) = O(g(x)) ou f = O(g) 

X--tll a 

On dit que f est un «grand 0 » de g au voisinage de a. 

Exemple 

On considère les fonctions f et g définies, pour tout réel strictement positif x, par : 

2- .!. 
j(x) = 2x x 

Alors, comme, pour tout réel x > l : 

3 
g(x) = 2x 

lf(x)I = 
2 ;x ~ ~ 1:x1 ~ 1;x1 = lg(x)I 

on a bien : f(x) = O(g(x)). 
x-+oo 

3. Équivalence 

Définition 

Soient f et g deux fonctions définies sur un intervalle I de R, à valeurs dans R, et a 
dans l. On suppose que g ne s'annule pas dans un voisinage de a, sans, pour autant, 
que g(a) soit non nul. 

On dit que f est équivalente à g au voisinage de a si : 

f(x) - g(x) = o (g(x)) 
X-tel 

On note alors : 
f (x) ~ g(x) ou f ~ g 

:c~a a 

Exemple 

On considère les fonctions f et g définies, pour tout réel x, par 

f(x) = x4 + x3 g(x) = x4 + x2 

Alors, comme lim f(x) = l , on en déduit: f - g. 
x->+oo g(x) +oo 

Attention aux manipulations successives et hasardeuses d 'équivalents! 
Pour cette raison, on ne donnera pas, dans ce cours, de résultats généraux ni de « recettes» 
pour la manipulation d'équivalents, la meilleure méthode, la plus fiable et la plus sûre, étant de 
manipuler des « o » ou des « 0 », suivant les cas et ce qui est le mieux adapté. Mais attention, 
on ne peut pas utiliser ceux-ci dans des inégalités ! 
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Domaine de définition 
d'une fonction, graphe 

1. Domaine de définition d'une fonction 
On s'intéresse ici aux fonctions d'une variable réelle, à valeurs réelles, c'est-à-dire ap­
partenant à R Dans ce cadre, une « fonction» est un« procédé» permettant d'associer à 
un nombre réel x un autre nombre réel, noté f(x). 

Comme nous l'avons vu au début de cet ouvrage, il n'est pas nécessaire que ce «pro­
cédé » donne un résultat pour tous les nombres réels, mais seulement pour certains 
d'entre eux. L'ensemble V f des nombres réels pour lesquels ce« procédé» donne effec­
tivement un résultat est appelé domaine de définition de la fonction f. 

Ceci peut être résumé en disant que la fonction f est une application de V1 dans R 

Notation 
On écrit: f : V 1 --? lR 

X H j(x) 

La première flèche, «--? », signifie « dans» : f va de 1J f dans JR. 1J f est l'ensemble de 
départ de f, JR, l'ensemble d'arrivée de f. 

La seconde flèche, « H », signifie « a pour image» : x a pour image f(x). 

~ Il est essentiel, quand on étudie une fonction, de bien préciser son domaine de définition. 

2. Graphe d'une fonction 
Le graphe, ou courbe représentative, C1 d'une fonction f: V1 --? lR est l'ensemble 
des points (x, y) du plan JR2 tels que x appartienne à V1 et y = f(x) : 

c 1 ={ex, f(x)); x E v 1} 

Exemple 

Le graphe de la fonction définie sur R. par x H x3 est : 

y 

X 

Figure 7.1- Le graphe de la fonction définie sur IR par x H x 3. 
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1. Le graphe permet d 'associer un aspect géométrique à l ' étude d'une fonction. 

2. Il convient dès maintenant de bien distinguer les objets suivants : la fonction f (qui est 
donc une application), le nombre réel /(x), qui désigne la valeur de f en x, et le graphe Cf 
(qui est une partie du plan JR2

) . 

>- Droite asymptote à une courbe 

Soient f une fonction définie sur un intervalle I de R, à valeurs dans R, et a dans Ï. 
Étant donnés deux réels met p, la droite V, d'équation y = m x + p, (m, p) E R2 , est 

dite asymptote à la courbe représentative Cf de f lorsque x tend vers a si : 

lim (f(x) - m x - p) = 0 
x--+a 

La droite V, d'équation x = a, est dite asymptote verticale à la courbe représentative 
Cf de f lorsque x tend vers a si : 

lim 
x--+a, x<a 

f(x) = + oo ou lim 
x--+a x>a 

f(x) = + oo 

ou 
lim j(X) =-OO ou lim j(X) =-OO 

x--+a, x<a x--+a x>a 

Exemple 

La droite d'équation y = 2 x + l est asymptote à la courbe représentative de la fonction définie 
l 

sur lR par x H 2 x + 1 - -
2
--. lorsque x tend vers +oo et x tend vers -oo : 

X + l 

asymptote 
' 

courbe 

Figure 7.2- La droite d'équation y= 2x + 1 et la courbe représentative de la fonction 

définie sur lR par x f-> 2 x + 1 - -
2
-
1
-. 

X + 1 

>- Branche parabolique d'axe vertical 

Soit f une fonction définie sur un intervalle I de R contenant un voisinage de -oo ou 
+oo, à valeurs dans R. 

On dit que la courbe représentative Cf de f possède une branche parabolique d'axe 
vertical lorsque x tend vers +oo si : 

lim f(x) = + oo et 
x--++oo 

lim f(x) = +oo 
X--++oo X 

ou 
lim f(x) = -oo et lim f(x) = - oo 

x--++oo x--++oo X 
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On dit que la courbe représentative Cf de f possède une branche parabolique d'axe 
vertical lorsque x tend vers -oo si : 

lirn f(x) = + oo et lirn 
f(x) -- =-OO 

x~-oo X-t-00 X 

ou 

lim j(X) =-OO et lim 
f(x) -- = +oo 

X->-oo X->-oo X 

Exemple 

La fonction définie sur R. par x H x4 possède une branche parabolique d'axe vertical en +oo 
et en -oo : 

y 

-1 

-1 

Figure 7.3 - La courbe représentative de la fonction x H x 4
. 

>- Branche parabolique d'axe horizontal 

Soit f une fonction définie sur un intervalle l de R contenant un voisinage de -oo ou 
+oo, à valeurs dans R. 

On dit que la courbe représentative C 1 de f possède une branche parabolique d'axe 

horizontal lorsque x tend vers +oo si : lirn lf(x)I = +oo et lim .f(x) = 0 
X->+oo X->+oo X 

On dit que la courbe représentative C 1 de f possède une branche parabolique d'axe 

horizontal lorsque x tend vers -oo si : lirn l.f(x)I = oo et lim .f(x) = 0 
x->-oo x->-oo x 

>- Branche parabolique d'axe d'équation y = m x, m E R. 

Soit f une fonction définie sur un intervalle 1 de R contenant un voisinage de -oo ou 
+oo, à valeurs dans R. 

On dit que la courbe représentative Cf de .f possède une branche parabolique d'axe 
y= m x, m E R, lorsque x tend vers +oo si lim l.f(x)I = +oo et si : 

X->+oo 

Jim f(x) = m et lim (f(x) - m x) = +oo ou lim (f(x) - m x) = -oo 
x->+oo X x->+oo x->+oo 

On dit que la courbe représentative Cf de f possède une branche parabolique d'axe 
y = m x, m E R, lorsque x tend vers -oo si lim If (x)I = +oo et si : 

x->-oo 

Jim f(x) = m et Jim (f(x) - m x) = +oo ou lim (f(x) - m x) = -oo 
x->-oo x x-> - oo x-> - oo 
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On parle souvent, dans la littérature mathématique, de la « construction de l'en­
semble des réels». Qu'en est-il? 

À l'origine, seuls les nombres entiers et rationnels étaient connus des mathémati­
ciens, même si des irrationnels comme Yï, longueur de la diagonale d' un carré de 
côté 1, sont vite apparus comme des nombres« à part », difficilement quantifiables. 

La coupure par un rationnel 

La démonstration formelle de l'existence - ou construction - d'un ensemble de 
nombres contenant à la fois les entiers, les rationnels, et les non-rationnels, fut mise 
en œuvre pour la première fois au XIXe siècle par le mathématicien allemand Richard 
Dedekind (1831-1916). 

Elle est basée sur l' axiome de la borne supérieure, selon lequel toute partie non 
vide et majorée de l'ensemble IR des réels possède une borne supérieure. 

Richard Dedekind est, tout simplement, parti du fait que tout nombre rationnel 

!!.., (p,q) E Z X Z*, découpe Q, ensemble des nombres rationnels, en deux parties, 
q 

constituées respectivement par les rationnels strictement plus petits que !!.. , et par les 
q 

rationnels supérieurs ou égaux à !!.. . 
q 

La coupure par un irrationnel 

En étendant ce principe à un découpage par un « irrationnel » comme Yï, on dé­
coupe, de façon analogue, l'ensemble des rationnels en deux parties, constituées res­
pectivement par les rationnels négatifs, ou dont le carré est strictement plus petit que 
2, et par les rationnels positifs dont le carré est supérieur ou égal à 2. 

..fi 

1 1 1 1 111 1 
- 2 - 1 0 1 Ll 8_ 2 

10 5 

Figure 7.4- Une« coupure». 

Ainsi, Y2 apparaît comme la « coupure» entre ces deux ensembles, c'est-à-dire 
le nombre «non rationnel» qui se trouve « entre les deux ». 

Une autre construction assez populaire de l'ensemble des nombres réels peut être 
obtenue par l'intermédiaire de suites de Cauchy. 
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Comment définir une fonction ? 

Dès que l'on connaît quelques fonctions, on peut en construire de (nombreuses) autres 
en utilisant les procédés suivants : 

1. Les opérations algébriques 

Si f et g sont deux fonctions définies sur le même intervalle I, 

• lafonction somme f + g est définie, pour tout réel x de l' intervalle I , par : 

(f + g)(x) = f(x) + g(x) 

• lafonction produit f g est définie, pour tout réel x de l'intervalle I , par: 

(f g)(x) = f(x) g(x) 

• Lorsque la fonction g ne s'annule pas sur l'intervalle I, la fonction quotient [_est 
g 

définie, pour tout réel x de l'intervalle I, par : 

(
[_) (x) = f(x) 
g g(x) 

2. La composition 

Soit f une fonction définie sur un intervalle Ide JR, et g une fonction définie un intervalle 
J c lR contenant f(l). La fonction «composée» des fonctions f et g est la fonction, que 
l'on écrit go f, définie, pour tout réel x de l' intervalle I , par: 

(go f) (x) = g (f(x)) 

Exemple 

La fonction obtenue en composant la fonction f qui, à tout réel x, associe x2 avec la fonction g 
qui, à tout réel x, associe x + 1 est définie, pour tout réel x, par : (go f) (x) = x2 + 1. 

3. La restriction 

Soit f une fonction définie sur l'intervalle Ide JR, et Io c lR un intervalle contenu dans I . 
On appelle restriction de f à Io , que l'on note flI0 , la fonction définie sur Io par: 

V x E Io : fl10 (x) = f(x) 

Cela signifie que les fonctions f et fl10 prennent la même valeur en chaque point de 
l'intervalle J, mais la fonction !110 n'est définie que sur cet intervalle alors que la fonction 
f est aussi définie aux points de I qui ne sont pas dans Io. 
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1 
1 

y 

\ ~, 

\ restriction \ 
1 \ 
1 \ 
1 \ 
1 \ 
1 1 
1 \ 

~~~~,~~~~~--+"""""'-----'--~~~-----t-~~---. x 

1 1 
\ 1 
\ 1 
\ 1 
1 1 
\ 1 
\ 1 
\ 1 
~, \ 

1 
1 

Figure 8.1- Le graphe d'une fonction et de sa restriction à [- 2, 2). 

4. Le recollement: les fonctions définies par morceaux 

Considérons un intervalle I de IR, divisé en sous-intervalles disjoints / 1, Ji, ... , In, où 
n est un entier naturel, et envisageons le cas d'une fonction f ayant, sur chacun de ces 
sous-intervalles, une expression différente : 

fl1,, = fn 

La fonction ainsi obtenue par« recollement», est une fonction« définie par morceaux». 

Exemple 

La fonction f définie par : 

y 

~~~~__:"'--11--~~~1--~~~--~~~~---x 

Jr ~ 

2 - 1 2 

Figure 8.2- Le graphe d'une fonction définie« par morceaux». 

1T2 1T 1T 
- - x2 si - - ~ x ~ -
4 2""' ""'2 

f(x) = (x- ~r si 

(x + ~r si 

est une fonction définie «par morceaux ». 

1T 
X> -

2 

1T 
X< --

2 
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Majorations et minorations 

Définition 

Soit f une fonction définie sur un intervalle /. Etant donné un réel M , la fonction f 
est dite majorée par M sur I si, pour tout réel x E I: 

f(x) ~ M 

Définition 

Soit f une fonction définie sur un intervalle !. Etant donné un réel m, la fonction f 
est dite minorée par m sur I si, pour tout réel x E l : 

f(x) ;;i: m 

Définition 

Soit f une fonction définie sur un intervalle /. La fonction f est dite bornée sur I si 
elle y est à la fois majorée et minorée. 

Cette condition est vérifiée si et seulement s'il existe un nombre réel M tel que l/(x)I ~ M 
pour tout nombre réel x de / . 

Exemples 

1. La fonction qui, à tout réel x, associe - 1 + ) :
2 

1 
est bornée sur IR:., car majorée par l et 

minorée par - 1. 

2. 

3. 

24 

y 

---------------------- ---------------------

-1 

Figure 9.1- La courbe représentative de la fonction x E Ill H -1 + ~x
2 

• 
X + 1 

La fonction x H x2 est minorée par 0 mais non majorée sur IR:.. 
l 

La fonction x H - + x n'est ni majorée ni minorée sur ]0, oo[. 
X 
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Définition 

Soient f et g deux fonctions définies sur un même intervalle l de R On dit que f 
majore g, si, pour tout x del: 

f(x) ~ g(x) 

On écrit alors f ~ g. 

Exemple 
2x2 

Sur l' intervalle [0, +oo[ la fonction x H - 1 + -
2
--, est majorée par la fonction x H x. 

X + 1 

Définition 

y 

y=x 

~~~~~~~~----~~---+-~~~~----x 

-l 

2xz 
y=-1+-­

xz + l 

Figure 9.2- La courbe représentative de la fonction x H - 1 + ~x
2 

X + 1 
majorée sur JR+ par la fonction x H x. 

Soient f et g deux fonctions définies sur un même intervalle l de R On dit que f 
minore g, si, pour tout x de l : 

f(x) ~ g(x) 

On écrit alors f ~ g. 
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Fonctions monotones 

1. Définitions 
>- Croissance 

Soit f une fonction définie sur un intervalle I c R Elle est dite croissante sur I si : 

>- Décroissance 

Soit f une fonction définie sur un intervalle l c R Elle est dite décroissante sur l si : 

>- Croissance (au sens strict) 

Soit f une fonction définie sur un intervalle l c R Elle est dite strictement croissante 
sur I si: 

V x, E /, V X2 E l 

>- Décroissance (au sens strict) 

Soit f une fonction définie sur un intervalle I c R Elle est dite strictement décroissante 
sur l si : 

>- Monotonie 

Soit f une fonction définie sur un intervalle I c R Elle est dite monotone sur I si elle y 

est croissante ou décroissante. 

>- Monotonie (au sens strict) 

Soit f une fonction définie sur un intervalle I c R Elle est dite strictement monotone 
sur 1 si elle y est strictement croissante ou strictement décroissante. 

Étudier les variations d' une fonction consiste donc à partager son ensemble de définition en 
intervalles tels que, sur chacun d'eux, la fonction soit monotone. 

Exemples 

1. La fonction x H x + l est croissante sur R 

2. La fonction x H .x2 est croissante sur [0, +oo[. 

3. Les fonctions puissances, de la forme x E R. H .x!', n E N*, sont : 

• croissantes sur R. si n est impair ; 

• décroissantes sur] - oo, 0] et croissantes sur [0, +oo[ si n est pair. 

26 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
'<;j'" ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ....., ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

y 

y 

-1 

Figure 10.1- Les courbes représentatives des fonctions x ...... x3 et x ...... x4. 

2. Tableau de variations 

Pour rassembler les informations concernant les variations d'une fonction , le plus simple 
est d'utiliser un tableau de variations; la croissance est représentée par une flèche vers 
le haut, la décroissance, par une flèche vers le bas. On y indique aussi les valeurs aux 
bornes (du domaine de définition), qui peuvent n'être que des limites. 

Exemple 

Le tableau de variations de la fonction définie sur R. par x H x2 est : 

X -OO 0 +oo 

+oo +oo 

XHX2 

""" 
/' 

0 
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Parité, imparité 

1. Parité d'une fonction 

Définition 

Soit f une fonction définie sur un domaine 1J1 de lR. tel que 1J1 soit symétrique, i.e., 
pour tout x de 1J f : 

X E 1Jj ~ -x E 1Jj 

La fonction f est dite paire si, pour tout réel x de son domaine de définition 1J1 : 

f(- x) = f(x) 

Si la fonction f est paire, sa courbe représentative est symétrique par rapport à l 'axe des 
ordonnées (Oy). 

y 

~~___,,__~...-~--1----~~---+-~---+-~~-x 

-1 

Figure 11.1 - Le graphe d'une fonction paire. 

2. Imparité d'une fonction 

Définition 

Soit f une fonction définie sur un domaine 1J1 de lR. tel que 1J1 soit symétrique, c'est­
à-dire, pour tout x de 1J1 : 

X E 1Jf ~ -X E 1Jj 

la fonction f est dite impaire si, pour tout réel x de son domaine de définition v 1 : 

f(-x) = -f(x) 

28 
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1. Toute fonction f impaire s'annule en 0: f(O) =O. 

2. Si la fonction f est impaire, sa courbe représentative est symétrique par rapport à l'ori­
gine O. 

Exemple 

La fonction définie sur IR par x H x3 est impaire. 

y 

Figure 11 .2- Le graphe d'une fonction impaire. 

Les propriétés de parité permettent donc de réduire l'étude de la fonction à l' intervalle 1J1 n 
[O, oo[; on trace alors la partie du graphe correspondante, puis on complète par la symétrie 
convenable. 
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Symétries 

1. Centre de symétrie de la courbe représentative d'une fonction 

Soient f une fonction définie sur un domaine Dt de R, et a et b deux réels tels que, pour 
tout x de Vt: 

et a- x E Vt 

La courbe représentative Cf de f admet le point de coordonnées (a, b) comme centre de 
symétrie si et seulement si, pour tout réel x de v 1 : 

f(a + x) + f(a - x) = 2 b 

Démonstration: Considérons un point M d'abscisse a+ x appartenant à la courbe re­
présentative Cf de f; son ordonnée est donc f(a + x). 

Le point n, de coordonnées (a, b ), est centre de symétrie de Cf si et seulement si le 
~ ~ 

point M' tel que QM' = Mn est aussi sur la courbe. Les coordonnées (x', y') sont telles 
que: 

x' - a= a - (x +a)= -x y' - b = b - y = b - f(a + x) 

Le point M' appartient à la courbe Cf si et seulement si y' = f (x'). 
La condition précédente devient : f(a - x) + f(a + x) = 2 b. 

~ Le cas a = 0 est celui où la fonction est impaire. 

Exemple 

• 

La courbe représentative de la fonction définie sur lR. par x H 2 + (x - 2)3 admet le point de 
coordonnées (2, 2) comme centre de symétrie : 

y 

-1 
X 

-1 

Figure 12.1 - La courbe représentative de la fonction x H 2 + (x - 2)3
. 
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2. Axe de symétrie vertical de la courbe représentative 
d'une fonction 

Soient f une fonction définie sur un domaine 'D f de Ill, et a un réel. 
La courbe représentative Cf de f admet la droite d'équation x = a pour axe de symétrie 

de symétrie si et seulement si, pour tout réel x : 

f(a + x) = f (a - x) 

Démonstration: Considérons un point M d'abscisse a+ x appartenant à la courbe re­
présentative Cf de f; son ordonnée est donc f(a + x). Le point M' , symétrique de M par 
rapport à la droite d' équati.on x = a, a pour coordonnées (a - x, f(a + x)). Il appartient à 
la courbe Cf si et seulement si : f(a + x) = f(a - x). • 

Exemple 

La courbe représentative de la fonction définie sur lR par x H 2 + (x - 3)2 admet la droite 
d'équation x = 3 comme axe de symétrie : 

y 

1 

~~~~~0--~~~__.__~~~~--x 
-1 

-1 

Figure 12.2- La courbe représentative de la fonction x H 2 + (x - 3)2. 
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Fonctions périodiques 

1. Période 

Soit f une fonction définie sur un domaine V 1 de R, et T un nombre réel non nul tel 
que, pour tout réel x de V f : 

x+ TE V1 

La fonction f est dite T-périodique si, pour tout réel x de son domaine de définition v 1 : 

f(x + T) = f(x) 

Test une période de f. 

Figure 13.1- Le graphe d'une fonction périodique. 

Si f est une fonction périodique et si T et T' sont des périodes de f telles que 

T + T'-:/: 0 

alors - T et T + T' sont aussi des périodes de f. 

2. Période fondamentale 

Soit f une fonction périodique. Si l'ensemble des périodes strictement positives de fa 
un plus petit élément To , celui-ci est appelé période fondamentale de f (la notion de 
plus petit élément n'ayant pas été définie, on peut supposer que c'est une période qui 
est plus petite que toutes les autres; mais il reste à montrer qu 'elle existe). Toutes les 
périodes de f sont alors de la forme n To, n E Z. 

32 

Pour étudier une fonction périodique de période T, il suffit de se placer sur un intervalle Ir 
de longueur (ou d'amplitude) T. La courbe représentative de la fonction est alors obtenue en 
« recopiant le motif» obtenu sur Ir ! 
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Fonctions puissances entières 

1. Puissances entières 

1. Étant donnés un entier naturel non nul n et un réel a, an est égal au produit de n 
facteurs égaux à a : 

a11 = a X a x a X ... x a (n fois) 

2. Étant donnés un entier relatif strictement négatif k E z:, et un réel non nul a, ak 

est égal à l'inverse de a-k : 

3. Pour tout réel non nul a : a0 = 1. 

Propriété 

k 1 
a=­

a-k 

Soient a, b des réels et n, p des entiers. On suppose a, b non nuls chaque fois que 
l'exposant est négatif ou nul. Alors : 

Démonstration : Les propriétés du produit dans R permettent de justifier simplement 
les formules précédentes. • 

2. Fonction puissance 

Étant donné un entier relatif k non nul, la fonction qui, à tout réel x non nul, associe xk, 
est une fonction puissance. 

>- Parité des fonctions puissances 

Soit n un entier naturel non nul n. La fonction qui, à tout réel x, associe x1
, a la même 

parité que l' entier n. 
La fonction qui, à tout réel x non nul, associe x- n, a la même parité que l'entier n. 

Exemples 

1. La fonction qui, à tout réel x associe x5 , est impaire. 

2. La fonction qui, à tout réel x associe x4 , est paire . 

>- Sens de variation des fonctions puissances 

Soit n un entier naturel non nul. Alors : 

L La fonction qui, à tout réel x, associe x211
, est décroissante sur ]-oo, O] et croissante 

sur [O, +oo[. 

IL La fonction qui, à tout réel x, associe x211+1, est croissante sur R =] - oo, + oo [. 
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m. La fonction qui, à tout réel x non nul, associe x-2n, est croissante sur ] - oo, 0[ et 
décroissante sur ]0, +oo[. 

34 

1v . La fonction qui , à tout réel x non nul, associe x-2n-l, est décroissante sur] - oo, 0[ 

et sur ]O, +oo[. 

. . 
y= x2n 

y 

-1 0 

-1 

y 

1 
~ = x2n 

-1 0 

-1 

y 

y= x2n + l 

y 

--~;;;:::-~.,-~~-----;:------=-T"°"...._ X 
0 

-1 
I 

I 

I 

I 

1 
y=­

x2n+I 

Figure 14.1 - Quelques exemples de graphes de fonctions puissances. 

y 

y =x2n 

-1 

1 
y= x2n+I 

Figure 14.2- Comparaison des fonctions puissances. 
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Fonctions polynômes 
et fonction valeur absolue 

1. Fonction polynômes 

~ Fonction polynomiale 

Étant donné un entier naturel non nul n, toute fonction de la forme 

n 
2 "1 . 

x H ao + a 1 x + a2 x + ... + an ~ = L...J ai x1 

i=O 

où a0, a1, ... , an, sont des réels, est une fonction polynomiale. 

Exemple 

La fonction définie sur R. par x ~ ~~ x 3 + 2 X2- - 2 x est une fonction polynomiale. 

y 

Figure 15.1- Le graphe de la fonction x ...... ~~ x 3 + 2 x 2 
- 2x. 

~ Limites d'une fonction polynomiale en +oo ou -oo 

Il suffit de factoriser par le « monôme de plus haut degré », c'est-à-dire par le terme de 
plus haut degré, pour obtenir facilement le résultat ; étant donné un entier naturel non 
nul n, et une fonction polynomiale de la forme x H a0 + a 1 x + a2 x2 + ... +an~, où a0, 
a1, ... , an, sont des réels : 
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et, de même : 

lim (ao+a 1 x+a2 x2 + ... +an~) = lim an~ (~+ ai _
1 

+ a
2 

2 
+ ... + i) 

X-+-00 X-+-00 an xn an xn an xn-

= li m a11 ~ 
x-+-oo 

Exemple 

hm - 3x + x- + 4x - 2 = hm - 3x 1 - - - - + -. ( 3 . 2 . ) . . 3 ( · l 4 2 ) 
x-->+oo x-->+oo X 3 X 3 x2 

= lim -3x3 
x~+oo 

= -OO 

2. Valeur absolue d'un réel 

Étant donné un réel x, on appelle valeur absolue de x, que l'on note lxl, le réel positif : 

lxl = H = { x s ~ x ~ 0 
- X Sl X< Ü 

~ Interprétation géométrique de la valeur absolue 

Étant donnés deux réels x et y, lx - yl représente la distance entre les nombres x et y sur 
la droite réelle. 

1x-y1 

X y 

Figure 15.2- Interprétation géométrique de la valeur absolue. 

Propriété 
Pour tout couple de réels (x, y) : lx YI = lxl lyl. 

~ Inégalité triangulaire 

Propriété 
Pour tout couple de réels (x, y) : 

Corollaire 
Pour tout couple de réels (x, y): 

36 

lx+ YI ~ lxl + IYI 

llxl - lyll ~ lx+ YI 
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Propriétés 

1. Pour tout couple de réels (x, y), avec y ~ 0 : 

lxl ~ Y ~ -y ~ X ~ y 

2. Pour tout couple de réels (x, y), avec y ~ 0 : 

lxl ~ y ~ (x ~ y ou x ~ -y) 

>- Fonction valeur absolue 

On appelle fonction valeur absolue la fonction définie sur R par x H lxl. 

Propriété 
La fonction valeur absolue est paire. Elle est croissante sur R +, et décroissante sur R- . 

y 

~~~~~~-'-----'~----'~~~~~---x 

-l 
-l 

Figure 15.3- Le graphe de la fonction valeur absolue. 
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Les premières tables de calcul 

À partir du XIVe siècle, l'astronomie et la navigation deviennent de plus en plus pré­
cises. Elles requièrent, de ce fait, des calculs (multiplications, divisions, extraction de 
racines, .. . ),qui se révèlent de plus en plus longs et compliqués. Il devient nécessaire 
de mettre en place des outils permettant de les simplifier. Peu à peu, l'idée de tables 
permettant de faire, rapidement, multiplications et divisions, émerge. 

En 1614, le mathématicien anglais John Napier, ou Neper (1550-1617) 1, se basant 
sur le lien entre les progressions arithmétiques (des suites arithmétiques) et géomé­
triques (des suites géométriques), publie les premières tables logarithmiques (des lo­
garithmes de sinus, dans Mirifici logarithmorum canonis descriptio), qui permettent 
de transformer des produits en sommes. Ainsi, pour calculer le produit du nombre a 
par le nombre b, il suffit de chercher sur la table le logarithme de a et celui de b, de 
faire leur somme, et de retrouver ensuite, par simple lecture sur la table, le nombre 
dont cette somme est le logarithme ! 

Après les tables de Neper, Henry Briggs (1556-1630), mathématicien, géomètre et 
géographe, perfectionna les calculs de John Neper et publia des tables de logarithme 
de base 10 (aussi dit logarithme décimal), où le logarithme de 1 vaut 0, et celui de 
10, 1. Ainsi, le logarithme décimal de 100000000000000 = 1014 vaut 14. 

Des tables à la fonction logarithme 

Ces tables de valeur préfiguraient la fonction en elle-même. On l'a appelée « loga­
rithme népérien » en hommage à John Neper. Le logarithme népérien, ou de base e, 
noté ln, est celui prenant la valeur 1 en e "" 2,71828. C'est grâce à ces tables de va­
leurs que l'on a pu « construire » cette fonction. Le lecteur intéressé pourra trouver 
plus de précisions sur l'historique des logarithmes dans [ l]. Les tables de logarithmes 
ont été utilisées très longtemps. Avant l'apparition des calculatrices, la règle à calcul 
était un outil efficace et puissant pour la détermination des logarithmes ! 

La lecture d'une table de logarithmes. 

Nombre Logarithme 

a lna 

b lnb 

ab lna+lnb 

l. Il était aussi astronome, physicien, et théologien. 
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La fonction logarithme népérien 

On admet l'existence de la fonction logarithme népérien comme étant l'unique fonction 
vérifiant les propriétés suivantes. 

1. Propriétés 

Les propriétés suivantes sont admises : 

:> Logarithme népérien du nombre e 

Le nombre e tel que : 
lne = 1 

est appelé base du logarithme népérien (e ~ 2,71828). 

:> Logarithme népérien d'un produit 

Pour tout couple (a, b) de réels strictement positifs : 

ln(ab) = lna + lnb 

:> Logarithme népérien d'un quotient 

• Pour tout couple (a, b) de réels strictement positifs : 

ln ( *) = ln a - ln b 

• Pour tout réel strictement positif a, et tout entier naturel non nul n : 

• 
lnx 

lim - =0 
x-.+oo X 

lim lnx = -oo 
x-.o+ 

2. Fonction logarithme népérien 

ln (a-n) = -n ln a 

On appelle fonction logarithme népérien la fonction, notée ln, qui, à tout réel x de 
]O, +oo[, associe son logarithme népérien ln x. 

:> Tableau de variations de la fonction logarithme népérien 

X 0 +oo 

+oo 
lnx /' 

-OO 

• Comme lim ln x = - oo , l' axe (Oy) est asymptote verticale à la courbe représentative 
x-.o+ 

de la fonction logarithme népérien. 

• Comme lim ln x = 0, la courbe représentative de la fonction logarithme népérien 
x-.+oo X 

possède une branche parabolique horizontale lorsque x tend vers + oo. 
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Figure 16.1 - Le graphe de la fonction logarithme népérien. 

>- Une inégalité utile 

Pour tout réel strictement positif x: ln x ~ x - 1. 

>- Logarithme de base a, a E IR~ 

Soit a un réel strictement positif. Pour tout réel strictement positif x, on définit son 
logarithme de base a, noté loga x, par : 

40 

lnx 
loga x = -

1 
-

na 
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La fonction exponentielle 

On admet l'existence de la fonction exponentielle comme étant l'unique fonction véri­
fiant les propriétés ci-dessous. 

1. Propriétés 

Les propriétés suivantes sont admises : 

1. Pour tout couple de réels (a, b) : 

ea+b = ea eb 

2. Pour tout réel a, et tout entier naturel n : 

a a-b e 
e =­

eh 

(ea)" = ena (earn = _1_ 
ena 

3. Pour tout réel strictement positif a: elna =a. 
4. Pour tout réel a : ln ea =a. 

2. Fonction exponentielle 

On appelle fonction exponentielle la fonction, notée e, ou exp, qui, à tout réel x, associe 
ex (que l'on peut aussi écrire exp (x)). 

> Tableau de variations de la fonction exponentielle 

X -OO +oo 
+oo 

e" /' 

y 

-l 0 

-l 

Figure 17.1- La courbe représentative de la fonction exponentielle. 
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3. Puissance (quelconque) d'un réel strictement positif 

Étant donnés un réel a strictement positif, et un réel b, on définit le réel « a puissance 
b , b 

», note a , par : 

Cette définition est cohérente avec la définition de la puissance entière, puisque, pour tout réel 
strictement positif a, et tout entier relatif k : 

Étant donnés un réel strictement positif a, et un réel b : 

a-b = J_ = (~)b ab a 
Étant donnés un réel strictement positif a, et deux réels b1 et b2 : 

Étant donnés deux réels strictement positif a 1 et a2, ainsi qu'un réel b: 

4. Racine nième d'un réel strictement positif, n E N* 

Étant donnés un réel x strictement positif, et un entier naturel non nul n, on appelle racine 
nième de x, notée {/X, le réel : 

42 
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Fonctions puissances « non entières » 

1. Sens de variation des fonctions puissances non entières 

Soit a un réel non entier. La fonction x H f est définie sur R: . De plus : 

• Si a > 0, la fonction x H xr est croissante sur R:. 

• Si a < 0, la fonction x H f est décroissante sur R:. 

2. Comparaison des fonctions puissances non entières 

Soient a et f3 deux réels non entiers tels que a ~ {3. Alors : 

• pour tout réel x de ]0, 1] : f ~ :xf3; 

• pour tout réel x ~ 1 : f ~ :xf3. 

Exemple 

Pour tout réel x de ]0, l ] : 4 3 .2 l l l l O<x ::;;x ::;;.r::;;x::;; l ::;;-::;;-::;; - ::;;-
x4 x3 x2 x 

y 

0 

Figure 18.1 - Les graphes des fonctions puissances non entières. 

3. Limites usuelles des fonctions puissances non entières 

Soit a un réel strictement positif, non entier. Alors : 

limx_,o+ x" = o+ 

lim x" = + co 
x-.+oo 

lim x-cr = +co 
X-.---.-tO+ 

4. Croissances comparées 

Soit a un réel strictement positif, et f3 un réel quelconque. Alors : 

ex 
lim - = + oo 

x-Hoo .x<1' 

ex 
lim - = +oo 

x->+oo x-a 
l
. f 
1m -- =+oo 

x->+oo (ln xf 
lim xa (ln xf = 0 

x-.o+ 
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Historiquement, la « naissance » de la fonction exponentielle vient de la nécessité 
de trouver un moyen de définir les «puissances non entières » d'un réel strictement 
positif donné. En effet, autant des expressions de la forme a", a"+ 1, ••• , où a est un 
réel strictement positif, et n un entier naturel, ont toujours été « naturelles », autant 
il n' en a pas toujours été le cas pour des expressions de la forme ar, où r est, cette 
fois-ci, un réel (par exemple: a 1•38 , quelque part entre a 1 =a et a 2 ... ) 

En 1676, Isaac Newton et Gottfried Leibniz sont les premiers à écrire, successive­
ment, un nombre fractionnaire, puis un irrationnel, en exposant. Mais il faut attendre 
la fin du xvne siècle pour que de tels exposants commencent à être perçus comme 
des logarithmes. G. Leibniz donne la relation explicite en 1679, sous la forme : 

ln ( 1 + V ) = t <::::> 1 + V = b' 
1-v 1-v 

où il désigne par b une « grandeur constante dont le logarithme vaut 1 ».Ultérieure­
ment, le mathématicien suisse Leonhard Euler, introduira, à cet effet, la notation« e ». 
Jean Bernoulli finalisera l'étude de la fonction « exponentielle » ainsi obtenue, qui 
apparaît donc, naturellement, comme fonction réciproque du logarithme népérien. 

• Isaac Newton (1643-1727) était non seulement mathématicien, mais, aussi, philo­
sophe, physicien, alchimiste, astronome et théologien. C'est lui qui est à l 'origine 
du calcul infinitésimal, c'est-à-dire le calcul différentiel et intégral. Il est, égale­
ment, l' un des contributeurs majeurs en mécanique classique, avec la théorie de la 
gravitation universelle (la fameuse « pomme» de Newton, qui tomba d'un arbre 
sur sa tête). 

• Gottfried Leibniz (1646-1716) fut aussi philosophe, diplomate, juriste, et philo­
logue. C'est lui qui, le premier, employa le terme de «fonction », et introduisit le 
symbole J utilisé pour désigner une intégrale. 

• Leonhard Euler ( 1707-1783) contribua lui aussi au calcul infinitésimal, introduisit 
une grande partie des notations mathématiques modernes. Il est aussi l'auteur de 
nombreux travaux en mécanique, en dynamique des fluides, astronomie, ... 

• Jean Bernoulli (1667-1748), frère cadet du mathématicien suisse Jacques Bernoulli 
(1654-1705), oncle de Daniel (1700-1782) et Nicolas Bernoulli (1695-1726). Il 
trouva l'équation de la courbe dite « chaînette », correspondant à la fonction co­

sinus hyperbolique, et à la forme prise par un câble suspendu à ses extrémités et 
soumis à son poids. De façon amusante, il est l' ancêtre des prix Nobel de physique 
Pierre Curie et Pierre-Gilles de Gennes . 
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Fonctions circulaires 

1. Fonction sinus 

On appelle fonction sinus la fonction, notée sin, qui, à tout réel x, associe son sinus, 
smx. 

> Tableau de variations de la fonction sinus sur [O, rr] 

La fonction sinus étant impaire et périodique de période 21f, il suffit de l'étudier sur une 
demi-période, par exemple, [0, lf]. 

X 

sinx 

2. Fonction cosinus 

/' 

1C 

2 
1C 

On appelle fonction cosinus la fonction, notée cos, qui, à tout réel x associe son cosinus, 
cosx. 

> Tableau de variations de la fonction cosinus sur [O, rr] 

La fonction cosinus étant paire et périodique de période 2 lf, il suffit del' étudier sur une 
demi-période, par exemple, [O, lf]. 

,' , , , , , , , 

, , , 
, 

, , , , 

y 

cosx 

y=x ,' 

, , 
, , 

' , ' , 
\.,' , , , , 

y= sin x 

, , , , 

"" 

1C 

2 

0 

\, 
- 1 

y 

y= COS X 

Figure 19.1 - Les courbes représentatives des fonctions sinus et cosinus. 
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3. Fonction tangente 

On appelle fonction tangente la fonction, notée tan, qui, à tout X de lR \ { ~ +br, k E z}, 
associe sa tangente, tan x. 

>- Tableau de variations de la fonction tangente sur [O, rr] 

La fonction tangente est définie sur lR \ { ~ + k rr, k E z} par : 
sinx 

tanx= --
cos X 

Elle est impaire et périodique de période rr. Il suffit donc de l'étudier sur [o, ~[. 
0 1C 

4 
+ oo 

/' 
tanx 

/' 
o+ 

Comme lim tan x = + oo, la droite d'équation x = '.!..est asymptote à la courbe repré-
x_.rr- 2 

2 

sentative de la fonction tangente lorsque x tend vers i par valeurs inférieures. Il en est 

de même, par périodicité, de toute droite d'équation x = ~ + krr, k E Z. 

1 
1 
1 

:r= tan x 
\ 

y 

y=x \ , ,,,, 
, , , , , 

Figure 19.2- La courbe représentative de la fonction tangente. 

4. Valeurs remarquables des fonctions sinus, cosinus et tangente 

X 0 
7r 7r 7r 7r 

6 4 3 2 
;;::: 

sinx 0 
1 1 ~ 
2 Vi. 2 

:= 

cosx 
~ 1 

0 
2 Vi. 2 

tanx 0 
1 

~ non définie 
~ 

Pour tout réel x : 
cos2 x + sin2 x = 1 
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Fonctions hyperboliques 

1. Sinus hyperbolique 

Définition 

Étant donné un réel x, on appelle sinus hyperbolique de x le réel, noté sh x, tel que : 

ex - e-x 
shx= ---

2 

La fonction sinus hyperbolique, notée sh, est la fonction qui, à tout réel x, associe 
son sinus hyperbolique sh x. 

> Tableau de variations de la fonction sinus hyperbolique 

La fonction sinus hyperbolique est définie sur JR, et impaire. Il suffit de l'étudier sur R+. 

X 0 +oo 

+oo 

shx /' 

2. Cosinus hyperbolique 

Définition 

, , , 
~' 

, 

y 

y= sh x , 
\ 

" , , , , , 

, 
, , , 
, , 

,· 
y=x , ' , 

~,' , , , , 

Figure 20.1 - La courbe représentative 
de la fonction sinus hyperbolique. 

Étant donné un réel x, on appelle cosinus hyperbolique de x le réel, noté ch x, tel 
que: 

ex+ e-x 
chx=---

2 
La fonction cosinus hyperbolique, notée ch, est la fonction qui, à tout réel x, associe 
son cosinus hyperbolique ch x. 

> Tableau de variations de la fonction cosinus hyperbolique 

La fonction cosinus hyperbolique est définie sur JR, et paire. Il suffit de l'étudier sur R+. 
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X 0 +oo 

+oo 

chx /' 

y 

~~~~~~0---~~~~~--x 
-1 1 

-1 

Figure 20.2- La courbe représentative 
de la fonction cosinus hyperbolique. 

3. Tangente hyperbolique 

Définition 

Étant donné un réel x, on appelle tangente hyperbolique de x le réel, noté th x, tel 
que: shx ex - e-x 

thx=--=---
ch x ex+ e-x 

La fonction tangente hyperbolique, notée th, est la fonction qui, à tout réel x, associe 
sa tangente hyperbolique th x. 

>- Tableau de variations de la fonction tangente hyperbolique 

La fonction tangente hyperbolique est définie sur R, et impaire. Il suffit de l'étudier 
sur R+ . 

X 0 +oo 

thx /' 
o+ 

Propriétés 

48 

1. Comme: lim th X= 1 lim thx = -1 
x-.+oo X ---t-CXJ 

les droites d'équations respectives y = 1 et y = - l sont asymptotes à la courbe 
représentative de la fonction tangente hyperbolique lorsque x tend vers +oo et -oo 

respectivement. 
y 

__________ J 

Figure 20.3- La courbe représentative de la fonction tangente hyperbolique. 

2. Pour tout réel x : ch2 x - sh2 x = l 
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Les précurseurs grecs 

La chronologie exacte de l'apparition de la trigonométrie, et des fonctions circu­
laires, demeure incertaine. De tout temps, les astronomes ont eu besoin de tables 
permettant le passage de la mesure des angles à celle des arcs et des cordes sous­
tendues associées (dont la longueur est égale à deux fois le sinus de l'angle moitié). 
Il semblerait qu'il faille attendre le mathématicien et géomètre Hipparque de Nicée 
(180 av.J.-C./125 av.J.-C.), qui divise le cercle en 360°, pour qu'apparaissent ces 
premières tables (dans son ouvrage De l'étude des droites dans le cercle), pour les­
quelles il passa beaucoup de temps à observer les astres et leur mouvement. C'est lui 
qui inventa l'« astrolabe», qui permet d'établir la hauteur d'un astre par rapport à 

l'horizon. Il introduisit aussi la notion de parallèles et de méridiens pour repérer la 
position d'un point sur la terre. Ultérieurement c'est Ptolémée (environ 90-168, as­
tronome et astrologue grec, qui vécut à Alexandrie.) dans l'Almageste, qui expliqua 
comment calculer la longueur d'une corde, en donnant les tables correspondantes. 

corde 
I 

\ 
\ 
\ 
\ 

\ ' ............. \ .. . (} 
...... , .. sin 2 ...... .,. \ . 

.,,_.-' .!? \ ~, 
...... " 2 \\ 

Un angle, et la corde sous-tendue. 

(le rayon du cercle vaut 1) 

Des Indiens aux arabes: les débuts de l'algèbre 

La première définition véritable du sinus, de même que celle du cosinus, est due au 
mathématicien et astronome indien Aryabhata (476-550, travailla aussi sur l'approxi­
mation du nombre rr.) Il eut l'idée d'utiliser non pas la corde sous-tendue à un arc, 
mais la demi-corde, qui correspond donc exactement à la valeur du sinus de l'angle 
moitié. Le nom de sinus en lui-même, qui vient, bien sûr, du latin, semble devoir son 
origine à une erreur de traduction depuis le sanskrit. Aryabhata établit lui aussi des 
tables de valeurs, avec quatre décimales, ce qui était, pour l'époque, extrêmement 
précis. 

La formule bien connue qui donne, pour un angle e, cos2 (} + sin2 (} = 1, fut établie 
par le mathématicien et astronome indien Varahamihira (505-587). 
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Des calculs plus poussés furent ensuite donnés par le mathématicien perse 
Al-Khwarizmi, qui est aussi à l'origine de l'introduction de l'algèbre et des chiffres 
arabes en Europe. 

Peu à peu, d'autres mathématiciens apportèrent de nouvelles contributions, et dé­
montrèrent de nouvelles formules. L'Ègyptien Habash al-Hasib inventa la tangente, 
qui permet de mesurer des hauteurs. Abu Al-Wafa compléta les tables de valeurs 
déjà existantes, et introduisit les notions de« sécante» (l'inverse du cosinus) et« co­
sécante » (l' inverse du sinus). Il démontra les formules d'addition pour la fonction 
sinus. 

Nasir Al-Din Al-Tusi perfectionna les tables de valeurs déjà existantes. Il fut suivi 
au, XIVe siècle, par Al-Kashi, qui est aussi à l'origine du fameux théorème qui porte 
son nom (ce théorème est aussi appelé loi des cosinus). 

Les notations modernes 

En ce qui concerne la notation «sin», elle fut introduite en 1583 par le mathémati­
cien et physicien danois Thomas Fincke (1561-1656) dans son ouvrage« Geometria 
rotundi » ; la notation «cos» semble pouvoir être attribuée, conjointement, au mathé­
maticien et théologien anglais William Oughtred ( 157 4-1660), et au français Albert 
Girard. Albert Girard introduisit, aussi, la notation «tan». 

• Abu Abdallah Muhammad ibn Musa al-Khwarizmi (780-850), mathématicien, 
géographe et astronome perse, sous l'empire de la dynastie des Abbasides. Ce sont 
ses travaux, où il établit un classement systématique des équations et des méthodes 
de résolution associées, qui ont permis l'introduction de l'algèbre et des chiffres 
arabes en Europe. Le mot « algorithme » vient de la latinisation de son nom. Le 
mot« algèbre» provient, quant à lui, du mot arabe « al-jabr », utilisé pour désigner 
l'une des deux opérations qu'il utilisait pour résoudre une équation quadratique 
(c'est-à-dire de degré deux). 

• Habash al-Hasib (? -869), était aussi, bien sûr, astronome, et géographe. 

• Muhammad ibn Muhammad ibn Yahya ibn lsmail ibn al-Abbas al-Buzjani (940-
998), mathématicien et astronome perse, qui apporta aussi de nombreuses contri­
butions à l'arithmétique, il fut le premier à introduire les nombres négatifs. 

• Abû Jafar Muhammad ben Muhammad ben al-Hasan Nasîr ad-Dîn at-Tûsî (1201-
1274), philosophe, mathématicien, astronome, théologien et médecin perse. Le 
petit-fils de Genghis Khan, Houlagou Khan, fit construire, à son intention, l'ob­
servatoire de Maragha, qui lui permit d'établir des tables très précises permettant 
de calculer les positions des planètes. 

• Ghiyath al-Din Jamshid Masud al-Kashi, 1380-1429, mathématicien et astronome 
perse. 

• Albert Girard (1595-1632), apporta aussi des contributions en arithmétique, où il 
montra que tout nombre premier congru à l modulo 4 est égal à la somme de deux 
carrés, résultat qui sera ultérieurement démontré par Pierre de Fermat ( 1601-1665). 
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Continuité d'une fonction 
en un point 

1. Continuité en un point (Caractérisation de Weierstrass) 

Définition 

Soit f une fonction définie sur un intervalle l de JR, non vide, non réduit à un point, 
et a un point de/. La fonction f est dite continue en a si, pour tout réel strictement 
positif s, il existe un réel strictement positif 1J tel que, pour tout réel x de l vérifiant 
lx - al :::::; 1J, on ait lf(x) - f(a)I :::::; s, soit, en langage formalisé1 : 

Vs > 0, 311 > 0, V x E I : lx - al :::::; 1J => lf(x) - f(a)I :::::; s 

y 

X 
-l 0 

-l 

Figure 21.1 - Le graphe d'une fonction discontinue en un point a. 

Dire qu' une fonction est continue signifie, tout simplement, que sa courbe représentative ne 
présente pas de «sauts». Une fonction continue en un point a admet une limite en a . 

., Continuité à gauche 

Définition 

Soit f une fonction définie sur un intervalle l de JR, non vide, non réduit à un point, et 
a un point de !. La fonction f est dite continue à gauche en a si : 

lim_ f(x) = f(a) 
x~a 

1. Cette caractérisation a été donnée par le mathématicien allemand Karl Weierstrass (1815-1897). 
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-1 0 a 

-1 

Figure 21.2- Le graphe d'une fonction continue en un point a. 

> Continuité à droite 

Définition 

Soit f une fonction définie sur un intervalle I de JR, non vide, non réduit à un point, et 
a un point de/. La fonction f est dite continue à droite en a si : 

lim .f(x) = f(a) 
x-+a+ 

Lorsque l'on veut explicitement indiquer sur un graphe qu 'une fonction est continue à gauche 
et non à droite au point a, on place un « point » sur la valeur «à gauche», et un crochet«] » 
sur la valeur« à droite ». 

De même, lorsque l'on veut explicitement indiquer sur un graphe qu'une fonction est continue 
à droite et non à gauche au point a, on place un «point » sur la valeur« à droite », et un crochet 
« [ » sur la valeur « à gauche ». 

Exemple 

Voici un exemple de fonction continue à droite en chaque entier, et discontinue à gauche en 
chaque entier: la fonction « partie entière». 
La fonction « partie entière» d'un réel donné x est le plus grand entier nx inférieur ou égal à x . 
Ainsi, la partie entière du nombre 2,3 est 2, celle du nombre 4,7 est 4, etc. : 

V x ~ 0 : E(x) ~ x < E(x) + l 

Par définition, la fonction « partie entière», notée E, est la fonction qui, à tout réel positif x , 
associe sa partie entière. 

52 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

y 

3 e---{ 

2 e---{ 

e---{ 

X 
-4 -3 -2 -1 2 3 4 

---..{ -2 

---..{ -3 

---..{ -4 

Figure 21.3- La courbe représentative de la fonction« partie entière». 

>- Prolongement par continuité en un point 

Théorème 

Soient f une fonction définie sur un domaine 1J f de IR., à valeurs dans IR., et a un réel 
donné n'appartenant pas à V1. 

On suppose que f admet une limite finie e en a. Alors, la fonction J définie pour tout x 
de V1 U {a} par: 

/(x) = {f(x) s~ x *a 
f Sl X= a 

est continue en a, et constitue le prolongement par continuité de f en a. 

Exemple 

On considère la fonction qui, à tout réel x non nul, associe x cos ( ~ )· Cette fonction est définie 

sur JR*, mais peut être prolongée par continuité sur lR par la fonction : 

X H { X COS ( ~) si X * Û 

Û si X= Û 

>- Caractérisation séquentielle de la continuité 

Théorème 

Soient f une fonction définie sur un intervalle I de IR., à valeurs dans IR., et a un réel 
donné dans/. Il y a équivalence entre les propriétés suivantes: 

• f est continue en a ; 

• Pour toute suite (un)nEN• à valeurs dans /, de limite a, la suite (f(u11 ))neN converge 
vers f(a). 
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~ Opérations algébriques sur les fonctions continues 

Théorème 

Soient f et g des fonctions définies sur un même intervalle l de JR., et a un point de l. 
Alors: 

• Si f et g sont continues en a, les fonctions f + g et f g sont définies sur I et continues 
en a. 

l 
• Si g(a) * 0, et si g est continue en a, la fonction - est définie sur un intervalle de la 

g 
forme ]a - 17, a + 77[ n /, 0 < 17 < a, et est continue en a. 

~ Continuité des fonctions composées 

Théorème 

Soient f une fonction définie sur un intervalle I de JR., et g une fonction définie sur un 
intervalle J c lR. contenant f(l) : f (l) c J. 

Si f est continue en un point a de I et si g est continue au point f(a) E / , la fonction 
composée go f est définie sur l'intervalle I et continue en a. 

~ Continuité des fonctions usuelles 

Théorème 

Les fonctions usuelles, c'est-à-dire : 

• la fonction identité x H x; 

• la fonction logarithme népérien x > 0 H ln x; 

• la fonction exponentielle, 

• les fonctions sinus et cosinus, 

• les fonctions sinus hyperbolique et cosinus hyperbolique, 

sont continues en tout point de leur domaine de définition. 

Corollaire 
Les fonctions construites à partir des fonctions usuelles par opérations algébriques et 
composition sont continues en tout point où elles sont définies. 

54 

Quelques conséquences simples : 

• Les fonctions polynômes, de la forme X E lR. H On X1 + 011- I x!'- 1 + ... + ao, n E N*' 
(ao , ... , a11 ) E JR.n+ I, sont continues en tout point de R 

• Les fonctions «fractions rationnelles» x H P(x) (où Pet Q sont des polynômes et Q 
Q(x) 

n'est pas identiquement nul) sont continues en tout point où le polynôme Q ne s' annule 
pas. 

• Les fonctions de la forme x H x° , a E JR., sont continues en tout point où elles sont définies. 
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1. Continuité sur un intervalle 

On étend, ici, la notion de continuité en un point à un intervalle. 

Définition 

Soit f une fonction définie sur un intervalle l de IR. On dit que la fonction f est 
continue sur l si f est continue en tout point de /, soit, de façon formelle : 

V xo E /, Vs > 0, 317 > 0, V x E I : lx - xol ~ 17 ~ lf(x) - f(xo)I ~ s 

2. Théorèmes de continuité globale 

Les théorèmes de continuité en un point se traduisent immédiatement en des théorèmes 
de continuité globale : 

> Continuité et opérations algébriques 

Théorème 

Soient f et g des fonctions définies et continues sur un intervalle I de R Les fonctions 
f + g et f g sont définies et continues sur !. 

1 
De plus, si la fonction g ne s'annule pas sur!, la fonction - est définie et continue sur!. 

g 

> Continuité des fonctions composées 

Théorème 

Soient f une fonction définie et continue sur un intervalle l de JR, et g une fonction définie 
et continue sur un intervalle J c lR contenant f(l). 

La fonction composée go f est définie et continue sur l'intervalle !. 

> Continuité des fonctions usuelles 

Théorème 

• Les fonctions polynômes sont continues sur R 
• La fonction logarithme népérien est continue sur ]0, +oo[. 
• La fonction exponentielle est continue sur R 
• Les fonctions sinus et cosinus sont continues sur R 

Corollaire 
Les fonctions construites à partir des fonctions usuelles par opérations algébriques et 
composition sont continues sur tout intervalle où elles sont définies : 

L fi . 1: . . Il d l fi P(x) . • es onctwns «Jractwns ratwnne es», e a orme x H --) sont contmues sur tout 
Q(x 

intervalle où le polynôme Q ne s'annule pas. 
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• La fonction tangente est continue sur tout intervalle de la forme 

]-~ + k JT, ~ + k JT, [, k E Z. 

• Les fonctions x H ri, a E lR\., sont continues sur ]0, +oo[. 

Ces théorèmes permettent souvent de conclure à la continuité d'une fonction sur son ensemble 
de définition, à l'exception éventuelle de quelques points pour lesquels on doit faire une étude 
directe locale. C'est systématiquement le cas des points de raccordement lorsque la fonction 
est définie par morceaux, ou quand la fonction a été obtenue en prolongeant par continuité une 
autre fonction a priori non définie en un point. Ainsi, la fonction : 

xH{xsin(~) si 
0 si x=O 

est continue sur R 

3. Théorème des valeurs intermédiaires 

Théorème 

Soient f une fonction définie et continue sur un intervalle l de IR, et a et b deux réels 
de!. Alors, tout réel compris entre f(a) et f(b) possède au moins un antécédent par la 
fonction f. 

y 

1 

,' 1 
0 

~~~~~~~---~~~~~~.----"~~~~~~----x 

-1 1 

1 -1 

réel 

entre f(a) et f(b) 

a 

' ' ' 
antécédent 

b 

Figure 22.1- Illustration graphique du théorème des valeurs intermédiaires. 

On peut aussi énoncer ce théorème sous la forme suivante : l'image d' un intervalle par une 
fonction continue est un intervalle. 

4. Théorème de Weierstrass, ou des bornes atteintes 

Théorème 

Soient f une fonction définie et continue sur un segment l de IR, et a et b deux réels de !. 
Alors, f y est bornée et atteint ses bornes, ce qui signifie qu'il existe deux réels m et M 
tels que, pour tout réel x de I : 

m ~ f(x) ~ M 
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et qu'il existe deux réels Xm et XM de I tels que: 

f (xm) = m 

y 

M ----------------------

-~l~~~~+--~~~-a~~~~--~--#-~------+------b-----i-x 

-1 

m --------------------------

Figure 22.2- Illustration graphique du théorème de Weierstrass. 

Il résulte du théorème précédent que l'image d'un intervalle fermé et borné (c'est-à-dire un 
segment) par une fonction continue est un intervalle fermé et borné. 
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1. Conditions de dérivabilité 

Définition 

Soient f une fonction définie sur un intervalle I de IR, non vide, non réduit à un point, 
et a un point de/. La fonction f est dite dérivable en a si la fonction T, définie, pour 
tout x del\ {a}, par: 

r(x) = f(x) - f(a) 
x-a 

admet une limite en a. Dans ces conditions, la limite de la fonction T en a s'appelle 
dérivée de la fonction f en a, et se note f'(a). 

:> Interprétation graphique 

E, d , d , 1 d. . d I l . f (x2) - f(xi) . l tant onnes eux ree s istmcts x 1 et x2 e , e quotient est, tout s1mp e-
x2 -xi 

ment, le coefficient directeur de la corde joignant les points M1 et M2, de coordonnées 
respectives (x1, f(xi )) et (x2, f(x2)), si on se place dans un repère orthonormé direct. Étu­
dier ce qui se passe lorsque x 1 = a et x2 tend vers x 1 revient donc à étudier la position 
limite de la sécante à la courbe en a : 

sécante 

0 a 
---------

Figure 23.1- La sécante, la position limite de la sécante, et la tangente. 

La tangente à la courbe représentative de f en a ayant pour équation y= (x-a) f'(a)+ 
f(a), la fonction affine définie sur IR par x H (x-a) f' (a)+ f(a) permet donc d'approcher 
f par une fonction affine au voisinage de a. 

On peut, de façon équivalente, donner pour la dérivabilité la définition suivante : 

Définition 

Soient f une fonction définie sur un intervalle I de IR, non vide, non réduit à un point, 
et a un point de/. 
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La fonction f est dite dérivable en a s'il existe deux réels A et B tels que : 

où s est une fonction de limite nulle en O. On a alors : A = f(a) B = f'(a) 

~ La deuxième définition présente l'avantage de pouvoir être généralisée aux fonctions de plu-
U sieurs variables. Elle a aussi la conséquence immédiate suivante : 

Propriété 
Toute fonction f dérivable en un point a y est continue. 

~ La réciproque de cette proposition est FAUSSE ! 
E'.J Ainsi, la fonction x H lxl est continue en 0, mais n'est pas dérivable en ce point. 

Exemple : Une fonction continue partout, mais nulle part dérivable 

Soient a E )0, 1 [, et b un réel tel que ab > 1 + 
3 

2
rr. La fonction de Weierstrass 

+oo 

x E lR H I a" cos ( b" rr x) 
n=O 

est continue partout, mais nulle part dérivable, ce qui signifie qu'elle n'admet, nulle part, de 
tangente. 

y 

Figure 23.2- La courbe représentative de la fonction de Weierstrass, pour a= 
1
7
0

• et b = 10. 

Les sismogrammes constituent, par exemple, des exemples de courbes continues, mais n' ad­
mettant nulle part de tangente. 

2. Opérations algébriques et composition 
> Dérivabilité en un point et opérations algébriques 

Théorème 

Soient f et g des fonctions définies sur un même intervalle l de IR, et a un point de !. 
Alors: 

• Si f et g sont dérivables en a, les fonctions f + g et f g sont dérivables en a, et : 

(f + g)' (a)= J'(a) + g'(a) (f g)' (a) = f' (a) g(a) + f(a) g' (a) 
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1 
• Si g(a) * 0, et si g est dérivable en a, la fonction - est définie sur un intervalle de la 

g 
forme ]a - 17, a + 17[ n /, 0 < 17, et est dérivable en a. De plus : 

( ~)'(a) = - g' (a) 
g g(a)2 

>- Dérivabilité des fonctions composées 

Théorème 

Soient f une fonction définie sur un intervalle I de lll, et g une fonction définie sur un 
intervalle J contenant f (l). 

Si f est dérivable en un point a de I , et si g est dérivable au point f(a), alors la fonction 
composée gof est dérivable en a et: (go f)' (a) = f'(a) g' (f(a)) 

Démonstration : Posons b = f(a). La dérivabilité de la fonction f en a s'écrit: 

f(x) = f(a) + (x - a)J' (a)+ (x - a) s1 (x - a) 

où s 1 est une fonction de limite nulle en O. 
La dérivabilité de la fonction g en b s'écrit: 

g(x) = g(b) + (x - b) g' (b) + (x - b) s2(x - b) 

où s 2 est une fonction de limite nulle en O. 
En remplaçant x par f(x) dans la deuxième formule, on obtient : 

g(f(x)) = g(b) + ((x - a) f' (a)+ (x - a) s i (x - a))g' (b) + ((x - a) f' (a) 

+ (x - a) s i (x - a)) s2(f(x) - b) 

On remarque alors que, f étant continue en a, on peut écrire : 

f(x) - b = f(x) - f(a) = s 3(x - a) 

où s 3 est une fonction de limite nulle en O. 
Par suite: 

s 2 (f(x) - b) = s(x - a) 

où, pour alléger les écritures, et, de façon générique, on décide de désigner pars(.) 
x H s(x) n'importe quelle fonction de limite nulle en O. 

Finalement, en regroupant les termes qui contiennent à la fois un facteur (x - a) et un 
facteur s(x - a), on obtient : 

(go f) (x) = g (f(x)) = g(b) + (x - a) f' (a)g' (b) + (x - a) s(x - a) 

ce qui montre que la fonction g o f est dérivable en a et que : 

(go f)' (a) = f' (a) g' (f(a)) • 
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Dérivabilité sur un intervalle 

1. Conditions de dérivabilité sur un intervalle 

Définition 

Soit f une fonction définie sur un intervalle I de IR. On dit que la fonction f est 
dérivable sur I si f est dérivable en tout point de /. On appelle fonction dérivée de f 
la fonction f' définie sur I et qui, à chaque point a de l'intervalle/, associe /'(a). 

>- Dérivabilité et opérations algébriques 

Théorème 

Soient f et g des fonctions définies sur un même intervalle 1 de R Alors : 

• Si f et g sont dérivables sur l, les fonctions f + g et f g sont dérivables sur l , et, pour 
tout x de I: 

(f + g)' (x) = f' (x) + g' (x) (f g)' (x) = f' (x) g(x) + f(x) g' (x) 

1 
• Sig ne s'annule pas sur l, et si g est dérivable sur 1, la fonction - est dérivable sur 1. 

g 
De plus, pour tout x de 1 : 

(~)' (x) = - g'(x) 
g g(x)2 

>- Dérivabilité des fonctions composées 

Théorème 

Soient f une fonction définie sur un intervalle l de IR, et g une fonction définie sur un 
intervalle J contenant f (l). 

Si f est dérivable sur /, et si g est dérivable sur J, alors la fonction composée go f est 
dérivable sur I et, pour tout x de I : 

(go/)' (x) = f' (x) g' (f(x)) 

Exemple 

On considère la fonction f qui, à tout réel x, associe cos(x2
) . f est dérivable sur JR, et, pour 

tout réel x: 
f' (x) = -2 x sin(x2

) 

Le théorème de dérivabilité des fonctions composées peut être considéré comme l'un des plus 
importants du calcul des dérivées. Une application est de l'utiliser pour obtenir la dérivée 
d'un quotient de fonctions, ou, encore, pour obtenir celle d'un produit ; à cet effet, il suffit de 
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considérer deux fonctions f et g définies sur un même intervalle I de R Alors, compte tenu 
de l'identité : 

(f + g)2 = J2 + 2f g + g2 
on obtient, à l'aide de la formule donnant la dérivée d'une fonction composée: 

2 (f + g) (!' + g') = 2 f !' + !' g + f g' + 2 g g' 

ce qui conduit donc à : 
(f g )' = f' g + f g' 

Théorème 

Toute fonction dérivable sur un intervalle I de IR. y est continue. 

> Primitive 

Définition 

Soit f une fonction définie sur un intervalle Ide IR., continue sur/. On dit que Fest 

une primitive de f sur I si F est dérivable sur I et si, pour tout réel x de I : 

F'(x) = f(x) 

~ Une fonction continue sur un intervalle I y admet une infinité de primitives! 

Exemple 

La fonction qui, à tout réel x, associe x2, est une primitive sur lR. de la fonction qui, à tout réel x, 
associe 2 x. Mais la fonction qui, à tout réel x, associe x2 + l , est aussi une primitive sur lR. de 
la fonction qui, à tout réel x, associe 2 x. 

2. Dérivabilité des fonctions définies par morceaux 

Pour pouvoir étudier la dérivabilité en un point de raccordement des fonctions définies 
par morceaux, il est nécessaire d'introduire les notions de dérivée à droite et à gauche. 

> Dérivée à droite d'une fonction 

Soit f une fonction définie sur un intervalle ouvert I de IR., et a un point de /. La fonction 
f est dite dérivable à droite en a si la fonction T, définie, pour tout x de I \ {a}, par: 

r(x) = f(x) - f(a) 
x-a 

a une limite à droite en a, c' est-à-dire lorsque x tend vers a par valeurs supérieures. 
Cette limite est appelée dérivée à droite de la fonction f en a, et notée f~(a) . 

> Demi-tangente à droite 

Soit f une fonction définie sur un intervalle ouvert Ide IR., et a un point de/. On suppose 
que la fonction f est dérivable à droite en a. La demi-droite d'équation : 

y = f(a) + (x - a) f~(a) pour x ~ a 

est la demi-tangente à droite en a de la courbe représentative de f. 
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> Dérivée à gauche d'une fonction 

Soit f une fonction définie sur un intervalle ouvert Ide IR, et a un point de/. La fonction 
f est dite dérivable à gauche en a si la fonction r, définie pour tout x de I \ {a}, par: 

r(x) = f(x) - f(a) 
x-a 

a une limite à gauche en a, c'est-à-dire lorsque x tend vers a par valeurs inférieures. 
Cette limite est appelée dérivée à gauche de la fonction f en a, et notée f~(a). 

> Demi-tangente à gauche 

Soient f une fonction définie sur un intervalle ouvert l de IR, et a un point de /. On 
suppose que la fonction f est dérivable à gauche en a. La demi-droite d'équation 

y= f(a) + (x - a) f~(a) pour x ~a 

est la demi-tangente à gauche en a de la courbe représentative de f. 

Propriété 
Soient f une fonction définie sur un intervalle ouvert I de IR, et a un point de I. 

La fonction f est dérivable en a si et seulement si elle est dérivable à gauche et à droite 
en a, et si ses dérivées à gauche et à droite en a sont égales. 

y 

X 
-1 0 

-1 

Figure 24.1- Le graphe d'une fonction non dérivable en a: les deux dérivées à gauche et à droite 
ne sont pas égales. Il y a une demi-tangente à gauche, et une demi-tangente à droite. La courbe 

possède un point anguleux. 

Exemple 

La fonction valeur absolue, qui, à tout réel x, associe sa valeur absolue lxl, n'est pas dérivable 
en zéro, mais possède des dérivées à droite et à gauche en zéro. 

3. Dérivabilité et variations 
> Caractérisation des fonctions constantes dérivables 

Théorème 

Soient l un intervalle de IR, et f une fonction dérivable sur !. Alors, f est constante sur 
I si et seulement si sa dérivée f' est identiquement nulle sur I: 

V x E l : J' (x) = 0 
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> Caractérisation des fonctions croissantes dérivables 

Théorème 

Soient l un intervalle de R, et f une fonction dérivable sur !. Alors, f est croissante sur 
l si et seulement si sa dérivée f' est positive ou nulle sur l : 

V x E I : f' (x) ~ 0 

> Caractérisation des fonctions décroissantes dérivables 

Théorème 

Soient l un intervalle de R, et f une fonction dérivable sur !. Alors, f est décroissante 
sur I si et seulement si sa dérivée f' est négative ou nulle sur I : 

V x E l : f' (x) ~ 0 

> Caractérisation des fonctions strictement croissantes dérivables 

Théorème 

Soient I un intervalle de R, et f une fonction dérivable sur / . Alors, f est strictement 
croissante sur l si et seulement si sa dérivée f' est positive ou nulle sur !, et ne s'annule 
sur aucun intervalle de l non réduit à un point. 

> Caractérisation des fonctions strictement décroissantes dérivables 

Théorème 

Soient I un intervalle de R, et f une fonction dérivable sur / . Alors, f est strictement 
décroissante sur l si et seulement si sa dérivée f' est négative ou nulle sur / , et ne 
s 'annule sur aucun intervalle de l non réduit à un point. 
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1. Dérivée nième 

Étant donné un entier naturel non nul n, on définit, sous réserve d'existence bien sûr 
(c'est-à-dire lorsque cela est possible), la dérivée nième de f, notée ln), par récurrence: 

avec la convention : 

> Fonction n fois dérivable, n E N 

Si f admet une dérivée nième, n E N, on dit que f est n fois dérivable sur l. 

> Fonction indéfiniment dérivable 

Si, pour tout entier naturel n, f admet une dérivée nième on dit que f est indéfiniment 
dérivable sur /. 

Exemples 

1. Les fonctions polynômes, les fonctions trigomométriques sinus et cosinus, la fonction ex­
ponentielle x H ex, sont indéfiniment dérivables sur R 

2. Les fractions rationnelles sont indéfiniment dérivables sur tout intervalle qui ne contient 
pas de racine du dénominateur. 

3. La fonction logarithme népérien x H ln x et la fonction racine carrée x H -Vx sont indéfi­
niment dérivables sur ]O, oo[. 

2. Classes de fonction 
> Fonction de classe en, n E N 

Soient n un entier naturel non nul, et f une fonction définie sur un intervalle I de R 
On dit que f est de classe en sur I si f est n fois dérivable sur/, et si sa dérivée nième, 

ln), est continue sur / . 

> Fonction de classe C'' 

Soit f une fonction définie sur un intervalle I de R 
On dit que f est de classe C00 sur I si, pour tout entier naturel n, f est de classe en 

sur/. 

3. Théorèmes 
> Dérivée nième d'une combinaison linéaire de fonctions, n E N 

Théorème 

Soient f et g des fonctions définies sur un même intervalle Ide R, et n un entier naturel. 
On suppose que f et g sont n fois dérivables sur!. Alors, toute combinaison linéaire de 
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f et g est n fois dérivable sur I; pour tout couple (a,f3) de réels, a f + f3 g est n fois 
dérivable sur J et: (a f + f3 g)(n) = a j'C11

) + f3 gCn) 

> Formule de Leibniz 1 

Théorème 

Soient f et g des fonctions définies sur un même intervalle Ide R, et n un entier naturel. 
On suppose que f et g sont n fois dérivables sur /. Alors, la fonction produit f g est n 

n 

fois dérivable sur 1. et .. u g)(n) = I c~ fk) 9cn- k) 
k=O 

où, pour tout entier k de {O, ... , n}, C~ désigne le coefficient binomial: ( kn) = n ! 
k!(n-k)! 

Par convention, ce coefficient est nul si k > n. 

Démonstration : On ne donne, ici, que des éléments de preuve. Ce résultat se démontre 
par récurrence, à l'aide de la formule donnée par le triangle de Pascal ; étant donné un 
entier naturel non nul n, alors, pour tout entier naturel k ~ n - 1 : 

c k + ck+ 1 = ck+ J soit : ( n ) + ( n ) - ( n + 1 ) 
n n n+ J k k + l - k + l • 

> Dérivée nième d'un quotient de fonctions, n E N 

Théorème 

Soient f et g des fonctions définies sur un même intervalle l de R, et n un entier naturel. 
On suppose que f et g sont n fois dérivables sur /, et que g ne s'annule pas sur /. Alors, 

le quotient [_ est n fois dérivable sur/. 
g 

> Dérivée nième de la composée de deux fonctions, n E N 

Théorème 

Soit f une fonction définie sur un intervalle I de R, et g une fonction définie sur un 
intervalle J contenant f(J). 

Si f est nfois dérivable sur !, et g est nfois dérivable sur J, alors la.fonction composée 
go f est n fois dérivable sur /. 

Il existe une formule permettant de calculer la dérivée nième d'une fonction composée. Cette 
formule est due à Faà di Bruno2 : 

(k) J fn; ) 
(g 0 f)(n) = n ! '1 g 0 n 

L.J k ! n j ! 
l ~k~n 11 1+ ... +nk=n, n;~ I 

Le lecteur intéressé pourra trouver plus de précisions dans [4], page 165 . 

1. Gottfried Wilhelm Leibniz (1646-1716), philosophe, mathématicien, juriste et philologue allemand. Il 
apporta des contributions fondamentales en calcul différentiel et intégral. Il fut, également, l' inventeur d' une 
des premières machines à calculer. Ses œuvres philosophiques sont, elles aussi, de première importance. 
2. Francesco Faà di Bruno ( 1825- 1888), prêtre et religieux italien, en même temps que mathématicien 
renommé, et musicien de talent. Il fut l'élève d'Augustin Cauchy à la Sorboru1e. Il a été béatifié en 1988. 
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Théorème des accroissements finis 
et théorème de Rolle 

Une fonction dérivable, présentant un extremum en un point de son domaine de dé­
finition, possède, en ce point, une dérivée nulle. En pratique, cette remarque per­
met de trouver l'image d'un intervalle fermé borné par une fonction dérivable. Plus 
fondamentalement, elle est le point clef de la démonstration du théorème de Rolle 
et de ses conséquences : le théorème des accroissements finis et la formule de 
Taylor-Lagrange. 1 2 

1. Extremum sur un intervalle 
> Maximum d'une fonction sur un intervalle 

Soient f une fonction définie sur un intervalle Ide R, etc un point de/. La fonction f 
admet un maximum en c si, pour tout x de I : 

f(x) ~ f(c) 

> Minimum d'une fonction sur un intervalle 

Soient f une fonction définie sur un intervalle I de R, et c un point de !. La fonction f 
admet un minimum en c si, pour tout x de I : 

f(x) ~ f(c) 

> Extremum d'une fonction sur un intervalle 

Soient f une fonction définie sur un intervalle l de R, et c un point de l. La fonction f 
admet un extremum en c si elle admet en c un maximum ou un minimum. 

2. Extremum local 
> Maximum local d'une fonction 

Soient f une fonction définie sur un intervalle Ide R, etc un point de/. La fonction f 
admet un maximum local en c s'il existe un intervalle ouvert de la forme ]c-1], c+J][C ! , 
0 < 1J < c, tel que la restriction de f à cet intervalle admette un maximum en c : 

V X E ]c - 1], c + 1][ : f(x) ~ f(c) 

> Minimum local d'une fonction 

Soient f une fonction définie sur un intervalle Ide R, etc un point de/. La fonction f 
admet un minimum local en c s'il existe un intervalle ouvert de la forme ]c-1], c +J][C ! , 
0 < 1J < c, tel que la restriction de f à cet intervalle admette un minimum en c : 

V x E ]c - 1], c + 1][: f(x) ~ f(c) 

1. Brook Taylor (1685-1731), mathématicien, historien des sciences, musicien et peintre anglais. C'est lui 
qui découvrit l'intégration par parties, et est, bien sûr, à l'origine des« développements de Taylor ». 
2. Joseph Louis, comte de Lagrange ( 1736-1813 ), mathématicien, mécanicien et astronome italien. Il fut 
l'initiateur du calcul variationnel. En parallèle, il apporta de nombreuses contributions en algèbre, à la 
théorie des nombres, au calcul infinitésimal, aux probabilités, mais aussi à la mécanique. 
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~ Extremum local d'une fonction 

Soient f une fonction définie sur un intervalle Ide JR, etc un point de/. La fonction f 
admet un extremum local en c si elle admet en c un minimum local, ou un maximum 
local. 

~ Dérivée et extremum local 

Soient f une fonction définie sur un intervalle Ide JR, etc un point intérieur à I (c'est-à­
dire qui ne soit pas une borne de /). Si f est dérivable en c et admet en c un extremum 
local, alors : 

f'(c) = 0 

~ Interprétation graphique 

Une fonction admettant des extremums locaux en certains points intérieurs aura donc, 
en ces points, des tangentes horizontales. 

y 

maximum local 

maximum local 
;: 

~O.___.-r__~~~~~1-~~--+-~------ x 
-1 

\ 
minimum local 

Figure 26.1- Le graphe d'une fonction avec des extremums locaux. 

Démonstration : Le fait que f possède une dérivée nulle au point c est une propriété 
locale (elle ne dépend que des valeurs de f au voisinage du point c). 

Quitte à considérer la restriction de f à un sous-intervalle ouvert de / , de la forme 
]c - 17, c + 17[, 0 < 17 < c, on peut supposer que f possède un extremum en c. 

Supposons, dans un premier temps, que f possède un maximum en c. Alors, pour tout 
x de I tel que x < c : f(x) ~ f(c). Il en résulte : 

f_(_x)_-_f_(c_) ~ 
0 

x-c 

et donc: 
f'(c) = lim f(x) - f(c) ~ 0 

x-+c- X - C 

De même, pour tout x de I tel que x > c : f(x) ~ f(c). Il en résulte : 

f(x) - f(c) 
---- ~O 

x - c 

et donc : 
J'(c) = lim f(x) - f(c) ~ 0 

x-+c+ X - C 

D'où, nécessairement : f'(c) =O. 
Le cas où f possède un minimum en c se traite de façon analogue (il suffit de changer 

f en -f). • 
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u 
On voit bien dans cette démonstration l'importance de supposer que c soit intérieur à l ; ainsi, 
le point c n' est pas une extrémité de l'intervalle let les limites à gauche et à droite utilisées 
dans la démonstration ont un sens. 

Si on considère la restriction de l' application identité à l'intervalle [0, l] , cette restriction 
présente un extremum en 1, alors que la dérivée de la fonction ne s 'annule pas en 1. 

2. La réciproque de la proposition précédente est fausse : une fonction dérivable sur un intervalle 
peut avoir une dérivée nulle en un point qui n'est pas un extremum local. C'est le cas, par 
exemple, de la fonction définie sur R. par x H x3, au point O. 

>- Une application pratique 

Soit f une fonction définie et continue sur un intervalle fermé et borné [a,b]. Si cette 
fonction est dérivable sur l ' intervalle ouvert ]a, b[ alors son maximum Met son mini­
mum m sont à rechercher parmi les valeurs de la fonction f en a, ou en b, ou aux points c 
où sa dérivée f' s'annule. 

3. Le théorème de Rolle3 

Théorème 

Soient a et b deux réels tels que a < b, et f une fonction définie et continue sur L'inter­
valle [a, b], dérivable sur l 'intervalle ]a, b[. Alors, si f(a) = f(b), il existe un nombre c 
de L'intervalle ]a, b[ tel que : 

J'(c) = 0 

>- Interprétation graphique du théorème de Rolle 

y 

-~1~~~...,_...-~---~_,_~-------t..---..,,,__x 

-1 a c b 

Figure 26.2- Illustration graphique du théorème de Rolle. 

Démonstration : Il faut montrer que la fonction f admet un extremum en un point de 
l'intervalle ]a, b[. 

Comme f est continue sur l'intervalle fermé borné [a,b], l'image f([a,b]) de [a,b], 
est un intervalle fermé borné, de la forme [m, M], (m, M) E R2, m ::;; M. 

On distingue deux cas : 

• si la fonction f est constante sur l' intervalle [a, b], alors sa dérivée f' est identique­
ment nulle sur cet intervalle. N'importe quel point c de l' intervalle ]a, b[ convient, 
puisqu' il vérifie f'(c) =O. 

3. Ce théorème doit son nom au mathématicien français Michel Rolle (1652-1719), qui fut le premier à 
établir ce résultat, dans le cas de fonctions polynomiales. Ses contributions portent et sur l'algèbre, et sur 
l 'analyse. Il est à l 'origine de la notation {/X, pour désigner la racine n ème d'un réel positif x. 
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• Si la fonction f n'est pas constante, l'intervalle [m, M] n'est pas réduit à un point. 
Donc l'une, au moins, des deux inégalités strictes : M > f(a) = f(b), ou m < f(a) = 
f(b) est vérifiée. 

On supposera, dans ce qui suit : M > f(a) (le cas m < f(a) se traite de manière 
analogue). 

Comme M est un point de [m, M], il existe un point c de l'intervalle [a, b] tel que 
f(c) = M. Comme M > f(a) et M > f(b), c appartient en fait à l 'intervalle ]a, b[. La 
fonction f admet en c un maximum, étant dérivable sur ]a, b[, donc en c, elle vérifie 
donc : f'(c) =O. • 

4. Le théorème des accroissements finis 

Théorème 

Soient a et b deux réels tels que a < b, et f une fonction définie et continue sur l'inter­

valle [a, b], dérivable sur l 'intervalle ]a, b[. Alors, il existe un nombre c de l 'intervalle 
]a, b[ tel que : 

f(b) - f(a) = (b - a) f' (c) 

~ Interprétation graphique du théorème des accroissements finis 

Le théorème des accroissements finis traduit, tout simplement, le fait que la courbe re­
présentative de f possède, en c, une tangente parallèle à la corde joignant les points 
(a,f(a)) et (b,f(b)): 

y 

, , l',, ~~ngente 

~---------~--~----.-',___y~~~--x 
-1 -1 a c b ' 

Figure 26.3- Une illustration graphique du théorème des accroissements finis. 

Démonstration : On considère la fonction cp définie sur l'intervalle [a, b] par : 

f(b) - f(a) 
cp(x) = f(x) - f(a) - b _a (x - a) 

Elle est, comme la fonction f, continue sur [a, b] et dérivable sur ]a, b[. Par ailleurs elle 
vérifie : cp(a) = cp(b). Elle satisfait donc aux hypothèses du théorème de Rolle. Ainsi, il 
existe c dans l'intervalle ]a, b[ tel que : 

0 = cp'(c) = f'(c) - f(b) - f(a) 
b-a 

ce qui achève la démonstration. • 
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On présente, dans ce qui suit, la formule de Taylor-Lagrange, qui généralise la formule 
des accroissements finis pour les fonctions plusieurs fois dérivables. 

Théorème 

Soient a et b deux réels tels que a < b, et f une fonction définie sur l'intervalle [a, b]. 

On suppose que : 

• la fonction f est nfois dérivable sur l'intervalle [a, b]; 

• la dérivée nième de f, J<n), est continue sur l 'intervalle fermé [a, b] et dérivable sur 

l'intervalle ouvert ]a, b[. 

Alors, il existe un réel c, appartenant à l'intervalle ouvert ]a, b[, tel que : 

f"( ) j<n)( ) fn+I)( ) 
f(b)=f(a)+f'(a)(b-a)+-a-(b-a)2 + ... + a (b-a)'1+ c (b-at+' 

2 n ! (n + 1) ! 

Démonstration : Soit A le réel défini par: 

A n+l ' f"(a) 2 f 11)(a) 11 
-- (b- a) = f(b) - f(a) - (b - a) f (a) - -- (b - a) - ... - (b- a) 
(n + 1) ! 2 n ! 

Il s'agit de montrer qu' il existe un réel c, appartenant à l'intervalle ouvert ]a, b[, tel que: 

A= f'i+1)(c) 

On introduit, à cet effet, la fonction <.p définie, pour tout x de [a, b ], par : 

<.p(x) = f(b)- f(x)- f' (x)(b-x)- f"(x) (b-x)2 - .. __ J<n)(x) (b-x)'1- A (b-x)11+l 
2 n ! (n + 1) ! 

Il est évident que : 
<.p(b) = 0 

Le choix du nombre A conduit à : 

<.p(a) = 0 

Par ailleurs, la fonction <.p est, comme la fonction f et chacune de ses n premières déri­
vées, continue sur l' intervalle fermé [a, b], et dérivable sur l' intervalle ouvert ]a, b[. 

La fonction <.p satisfait donc les hypothèses du théorème de Rolle. 
Il existe donc un nombre c, appartenant à l' intervalle ouvert ]a, b[, tel que : 

1.p' (c) = 0 

Un calcul facile montre que : 

A J<n+l )(x) 
1.p' (x) = - (b - x)'1 

n! 
Comme le nombre c est différent de b, on peut en déduire que: 

A = J<n+l\ c) • 
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Fonctions réciproques 

On s'intéresse, dans ce qui suit, aux conditions d'existence d'une fonction réciproque 
pour une fonction définie et continue sur un intervalle, et, sous réserve d'existence, à ses 
propriétés : continuité, dérivabilité, représentation graphique. 

1. Définitions 

> Injectivité 

Étant données deux parties P 1 et P2 de R, une application l 
injective si, pour tout couple (x, x') E P 1 x P 1 : 

l(x) = f(x') => x = x' 

> Surjectivité 

Étant données deux parties P1 et P2 de R, une application l : P 1 ~ P2 est dite 
surjective si tout élément y de P2 admet au moins un antécédent par f : 

V y E P2, 3 x E P1 : y = l(x) 

> Bijectivité 

Étant données deux parties P 1 et P2 de R, une application l : P 1 ~ P2 est dite 
bijective si elle est injective et surjective, c'est-à-dire si tout élément y de P2 admet un 
unique antécédent par f : 

V y E P2, 3 ! x E P1 : y = l(x) 

> Application identité 

Étant donnée une partie P de R, l'application 

idp: p ~ p 
XHX 

est appelée application identité de P. 

> Fonction réciproque 

Soient P1 et P2 deux parties de R, et l : P 1 ~ P2 une application bijective. Pour 
chaque élément y de P2, l'unique élément x de P 1 tel que l(x) =y est noté l-1(y). 

L' application 1-1 : P2 ~ P 1 ainsi définie est appelée application réciproque del· 

Soient P 1 et P2 deux parties de R, et l : P 1 ~ P2 une application bijective. Alors, 
pour tout réel x de P 1 : 

v - l O f) (x) = 1- I (f(x)) = idp1 (x) = X 

et, pour tout réel y de P2 : 

v 0 l -1 ) (y) = l v-1 (y)) = idrp2 (y) = y 
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Il s'agit, ensuite, d'appliquer ces définitions générales au cas particulier des fonctions 
définies sur un intervalle / , non vide et non réduit à un point. 

~ 1. 

EJ 
Une fonction f définie sur un intervalle I est, par définition, une surjection de I surf(/). Par 
suite, la fonction f admet une application réciproque, définie sur f (/), si et seulement si elle 
est bijective de I surf(/), et donc si et seulement si elle est injective sur/. 

2. Pour s'assurer que la fonction réciproque d'une fonction donnée f est définie sur un intervalle 
J, il suffit de supposer que la fonction f est continue sur l' intervalle I car, alors, d' après le 
théorème des valeurs intermédiaires, on sait que J = f (/) est un intervalle. 

2. Injectivité et monotonie 

Soit f une fonction définie sur un intervalle I de IR, non vide, et non réduit à un point. 
Alors: 

• Si f est strictement monotone sur/, alors elle est injective sur /. 

• Si f est continue et injective sur / , alors elle est strictement monotone sur/. 

Démonstration : Ce théorème est admis. • 
On sait déjà que l'image d'un intervalle I par une fonction continue f est un intervalle; cepen­
dant lorsque, de p lus, la fonction f est strictement monotone, on peut préciser l'intervalle f(D. 

>- Image d'un intervalle par une fonction continue strictement monotone 

Soit f une fonction continue et strictement monotone sur un intervalle / , de bornes a 
et b. Alors, l'intervalle f(l) a pour bornes lim f(x) et lim f(x) (ces limites pouvant être 

x->a x-.b 
elles-mêmes finies ou infinies) et les intervalles let f(l) sont de même nature : fermés, 
ouverts, ou semi-ouverts. 

3. Théorème des fonctions réciproques 

Théorème 

Soit f une fonc tion continue strictement monotone sur un intervalle /. Alors : 

• L'ensemble J = f(l) est un intervalle (de même nature que/), et dont les extrémités 

• 
• 

• 

sont les limites de f aux bornes de /. 

La fonction f admet une fonction réciproque f- 1 définie sur J . 

La fonction réciproque f - 1 est continue et strictement monotone sur J, de même sens 
de monotonie que f. 
Si la fonction f est dérivable en un point a de I et si f'(a) * 0, la fonction f- 1 est 
dérivable au point b = f(a) et: 

v-1 )' (b) = f'~a) 
De façon équivalente : 

(f - J)' - _l _ 
- f'of- 1 
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Démonstration : les deux premiers points ont été vus dans les propositions précédentes. 
Le troisième point, c'est-à-dire la continuité de 1-1, est admis. On ne démontrera ici que 
la dérivabilité de la fonction réciproque. 

À cet effet, on suppose que la fonction lest dérivable en un point a de l' intervalle 1, et 
que l'(a) *O. 

Montrer que la fonction 1- 1 est dérivable au point b = l(a) revient à montrer que 

1 l-1cy)-r-1ch) 1 .. i d b b. A d e rapport · a une 1m1te orsque y ten vers , en restant 1en sur ans 
y-b 

l 'intervalle J . 
Pour tout y de J = l(l), le nombre x = 1 - 1 (y) del vérifie la condition y= l(x). Il en 

résulte: 
l- 1(y) - l- 1(b) X - a 

y - b l(x) - l(a)° 

Comme la fonction 1-1 est continue en b, le nombre x = l - 1(y) tend vers a = l - 1(b) 

lorsque y tend vers b. Le rapport x - a a donc une limite, puisque la fonction l 
l(x) - l(a) 

est dérivable en a et que sa dérivée j'(a) est non nulle. On obtient: 

( -J)' b - _1_ l ( ) - f'(a) • 

4. Représentation graphique 

Soit l une fonction continue et strictement monotone sur un intervalle l c IR. 
On note J = l(I). Par suite : 

(x E I et l(x) =y) ~ (Y E J et .r1 (y)= x) 

Ainsi, le graphe de la fonction réciproque 1-1, c'est-à-dire l'ensemble des couples 
(y,l- 1(y)) lorsque y parcourt l'intervalle J, est donc aussi l'ensemble des couples 
(f(x), x) lorsque x parcourt l'intervalle l. Or, dans un repère orthonormé, le point de 
coordonnées (a, b), (a, b) E IR2 , est le symétrique par rapport à la première bissectrice 
du point de coordonnées (b, a). 

~ Graphe d'une fonction réciproque 

Soit l une fonction continue, réalisant une bijection d'un intervalle l de IR sur un in­
tervalle J de R Alors, le graphe de 1- 1 est symétrique de celui de l par rapport à la 
première bissectrice (qui est aussi la droite d'équation y= x). 
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Figure 28.1 - Le graphe d'une fonction bijective, et celui de sa réciproque. 
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Les fonctions trigonométriques 
• inverses 

1. La fonction arcsinus 

La restriction sin1[ _ ~, fl de la fonction sinus à l 'intervalle [- ~ , ~] est continue et stricte­
ment croissante. D 'après le théorème des fonctions réciproques : 

Cette restriction établit une bijection de [- ~, ~] sur [ -1, 1]. 
La fonction réciproque de cette restriction est appelée fonction arcsinus, et notée 

arc sin. C'est une bijection de [ -1, 1] sur l'intervalle [-~, ~]. Pour tout réel x de [ -1, 1], 

arcsin x est donc l'unique élément de l'intervalle [-~, ~] qui a pour sinus le réel x : 

sin(arcsin x) = x 

De même, pour tout réel x de[-~,~] : 

arcsin(sin x) = x 

Par définition : 

arcsin(O) = 0 
• 1T 

arcsm(I) = l . (1) 1T arcsm l = 6' 

Les propriétés de la fonction arc sinus sont les suivantes : 

• La fonction arcsinus est continue et strictement croissante sur [-1, l] . C 'est une 
conséquence directe du théorème des fonctions réciproques. 

• La fonction arc sinus est impaire. Dans le plan rapporté à un repère orthonormé direct, 
la courbe représentative de la fonction arc sinus est la courbe symétrique par rapport à 
la première bissectrice de la courbe représentative de la restriction de la fonction sinus 
à l'intervalle[-~,~]. 

• La restriction sinl[-~,fl est dérivable sur[-~,~], de dérivée 

x H cos x = ~ 1 - sin2(x). 

Cette dérivée ne s'annulant pas sur]-~,~[, la fonction arcsinus est donc dérivable 
sur] - 1, l[, sa dérivée étant définie, pour tout x de] - l, l[, par: 

1 
(arcsin)' (x) = ----;====== 

~ 1 - sin2(arcsin x) 

1 
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y 
y = x 

y = arcsin x 

~~7r~~~1~~~___.,,__~~~~~~7r~-- X 

-2 - 2 
y= sin x 

1 

1 

' -1 

7r 

2 

Figure 29.1- La courbe représentative de la fonction arcsinus. 

2. La fonction arccosinus 

La restriction cosl[O,nl de la fonction cosinus à l'intervalle [O, 7r] est continue et stric­
tement décroissante. D'après le théorème des fonctions réciproques, elle établit une 
bijection de [O, 7r] sur [-1, l]. La fonction réciproque de cette restriction est appelée 
arccosinus, et notée « arccos ».C'est une bijection de [-1, 1] sur l ' intervalle [0,JT]. 

Pour tout réel x de [-1, J] , arccos x est donc l' unique élément de l'intervalle [O, 7r] qui 
a pour cosinus le réel x : 

cos(arccos x) = x 

De même, pour tout réel x de [O, 1T] : 

Par définition : 

1T 
arccos(O) = 2 

arccos(cos x) = x 

arccos(l) = 0 arccos( -1 ) = 1T 

Les propriétés de la fonction arccosinus sont les suivantes : 

• La fonction arccosinus est continue et strictement décroissante sur [-1, l]. 

• La restriction cosl[O,nJ est dérivable sur [0, 7r], de dérivée x H - sin x = - Yl - cos2 x, 
qui ne s'annule pas sur ]0,7r[. La fonction arccosinus est donc dérivable sur] - 1, l[, 
sa dérivée étant définie, pour tout x de ] - 1, 1 [, par : 

76 

1 
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y= COS X 
\ 

y 

Figure 29.2- La courbe représentative de la fonction arccosinus. 

3. La fonction arctangente 

La restriction tan l] -~.H de la fonction tangente à l'intervalle ]-~, ~[ est continue et 

strictement croissante sur ]-~, ~ [. 
D' après le théorème « des fonctions réciproques »: 

tan l]-"," [ (]-::, ::[) =] 1im_ tan x, lim tan x[ =IR 
2 2 2 2 X-+!!: X-+!!:+ 

2 2 

En outre, cette restriction établit une bijection de]-~,~[ sur R La fonction réciproque 

de la restriction de la fonction tangente à l'intervalle]-~ ,~ [ est appelée fonction arc­

tangente, et notée« arctan ». C'est une bijection de IR sur l'intervalle]-~,~[ . 

Pour tout réel x, arctan x est donc l'unique élément de l'intervalle]-~,~[ qui a pour 
tangente le réel x : 

tan (arctan x) = x 

Par définition: arctan(l) = ~-

Attention ! Il y a une infinité de réels dont la tangente est égale à L. Mais parmi ces réels, seul 

i appartient à l ' intervalle ]-I, I[· 

Les propriétés de la fonction arctangente sont les suivantes : 

• La fonction arctangente est continue et strictement croissante sur R C'est une consé­
quence directe du théorème des fonctions réciproques. De plus : 

1f 
lim arctan x = - -

x--+-oo 2 
1f 

lim arctan x = -
2 X--++oo 
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• La fonction arctangente est impaire. Dans le plan rapporté à un repère orthonormé 
direct, la courbe représentative de la fonction arctangente est la courbe obtenue par 
symétrie par rapport à la première bissectrice de la courbe représentative de la restric­
tion de la fonction tangente à l'intervalle]-~,~[. 

• On rappelle que la fonction tangente est dérivable sur ]- ~, ~[, de dérivée 

x H 1 + tan2 x . Cette dérivée n'est jamais nulle. Par suite, la fonction arctangente 
est donc dérivable sur R, sa dérivée étant donnée par : 

' 1 (arctan x) = -------
! + tan2(arctan x) 

1 

1 + x2 

• Pour tout réel strictement positif x : 

arctan x + arctan ( ~) = ~ 

et, pour tout réel strictement négatif x : 

arctan x + arctan ( ~) = - ~ 

y 

2 

y= arctan x 

2 

y= tan x 

Figure 29.3 - La courbe représentative de la fonction arctangente. 

78 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

Les fonctions hyperboliques inverses 

1. La fonction argument sinus hyperbolique 

La fonction sinus hyperbolique est bijective de R sur R Sa fonction réciproque est ap­
pelée argument sinus hyperbolique, notée Argsh, et vérifie, pour tout réel x : 

Argshx = ln(x+ ~) 
Les propriétés de la fonction argument sinus hyperbolique sont les suivantes : 

• La fonction argument sinus hyperbolique est continue, dérivable et strictement crois­
sante sur R. Sa dérivée est définie, pour tout réel x, par : 

1 1 
Argsh (x) = _ ~ 

vx2 + 1 

• La fonction argument sinus hyperbolique est impaire. 

y 

y= Argsh x 

- - - - - - - y= Sh X 

Figure 30.1 - La courbe représentative de la fonction argument sinus hyperbolique. 

2. La fonction argument cosinus hyperbolique 

La fonction cosinus hyperbolique est bijective de JR+ sur [l , +oo [. Sa fonction réciproque 
est appelée argument cosinus hyperbolique, notée Argch, et telle que, pour tout x de 
[l, + oo[ : 

Argch x = ln ( x + .,J x2 - 1) 
La fonction argument cosinus hyperbolique est continue sur [l , + oo[, dérivable sur 
]1, + oo[, et strictement croissante sur ]l, + oo[. Sa dérivée est définie, pour tout x de 
]1, + oo[, par: 

1 
Argch' (x) = ---

Y x2 - l 
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y 

y= Argch x 

Figure 30.2 - La courbe représentative de la fonction argument cosinus hyperbolique. 

3. La fonction argument tangente hyperbolique 

La fonction tangente hyperbolique est bijective de lR sur] - l, J [. Sa fonction réciproque 
est appelée argument tangente hyperbolique, notée Argth , et telle que, pour tout x de 
]-1, l[: 

1 ( l + x) Argthx = - ln --
2 1 -x 

Les propriétés de la fonction argument tangente hyperbolique sont les suivantes : 

• La fonction argument tangente hyperbolique est continue, dérivable et strictement 
croissante sur ] - 1, 1 [. Sa dérivée est définie, pour tout x de ] - 1, 1 [, par : 

1 
Argth' (x) = --

2 1-x 

• La fonction argument tangente hyperbolique est impaire. 

y 

y= th X 

---....1...---:..,"" -1 

,,,

/,/// 
- - y= Argth X 

,,' 

Figure 30.3 - La courbe représentative de la fonction argument tangente hyperbolique. 
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Développements limités 

On introduit ici un nouvel outil permettant l'étude locale des fonctions : les dévelop­
pements limités, qui permettent notamment de déterminer la limite en un point d'une 
fonction donnée sous une forme indéterminée (par exemple, le quotient de deux fonc­
tions ayant toutes les deux une limite nulle). Les développements limités sont aussi d' une 
grande utilité pour montrer qu' une fonction est dérivable en un point, trouver l'équation 
de la tangente à son graphe en ce point, et préciser la position relative du graphe et de sa 
tangente. 

1. Développement limité au voisinage d'un point 

Définition 

Soient f une fonction définie sur un intervalle l de Ill, a un point de l, et n un entier 
naturel non nul. On dit que f admet un développement limité d'ordre n au voisinage 
de a , s'il existe des nombres réels co, ci, ... , Cn et une fonction e de limite nulle en 0 
tels que, pour tout réel x de l : 

f(x) = co + c , (x - a)+ ... + Cn(x - a)"+ (x - a)11 e(x - a) 

ce qui s'écrit aussi, avec la notation « petit o » : 

f(x) = co + c1 (x - a)+ .. . + cn(x - a)'1 + o ((x - a)11) 

Un développement limité d'une fonction au voisinage d'un point consiste donc à approcher 
cette fonction par un polynôme. 

Exemple 

Au voisinage de zéro, la fonction sinus peut ainsi être approchée par les fonctions polyno-
x 3 x3 xs 

miales X H X X H X - - et X H X - - + - : 
' 3 ! ' 3 ! 5 ! 

y= sin x 

I 

I 

x 3 x 5 

y=x--+-
3! 5! , , , 

,' , , 

-1 

y 

Y=X 
\ 

\ 

x' y= x--
3! 

Figure 31.1 - Le graphe de la fonction sinus et de trois de ses approximations polynomiales au 
voisinage de O. 
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2. Partie principale d'ordre n E N d'un développement limité 

Définition 

Soit f une fonction définie sur un intervalle Ide JR, admettant un développement limité 
d'ordre n au voisinage de a E /,de la forme: 

f(x) = co + c1 (x - a)+ ... + Cn(x - a)'1 + (x - at s(x - a) 

On appe11e partie principale d'ordre n du déve]oppement limité de f Je polynôme: 

~ 1. 
t:J 

2. 

co + c1 (x - a)+ ... + Cn(x - a)'1 

Cette définition respecte la convention introduite dans le paragraphe précédent, où l'on a 
choisi, de façon générique, de désigner par E toute fonction de limite nulle en O. 

Quand x s' approche de a, c 'est-à-dire lorsque x - a devient très petit, chacun des termes du 
développement limité devient négligeable devant le terme qui le précède. Plus précisément, 
le terme c1 (x - a) devient petit devant c0 , qui est une constante; de même, c2 (x - a)2 devient 
lui aussi très petit, et négligeable devant (x - a), ... , cn(x - a)" devient très très, très petit, 
c'est-à-dire négligeable devant (x- a)'1-

1
, et, finalement, (x - a)n t:(x - a) devient encore plus 

petit, c' est-à-dire négligeable devant (x - a)". 

3. Même si le développement limité donne apparemment la valeur de la fonction en tout point 
de l'intervalle/, il ne faut pas oublier que l'on ne connaît aucune propriété de la fonction E en 
dehors de sa limite en O. Autrement dit, à partir du développement limité, on ne peut espérer 
obtenir aucune information sur le comportement de la fonction f ailleurs qu'au point a. C'est 
uniquement lorsque l'on recherche la limite en a d'une expression faisant intervenir la fonc­
tion f qu'il peut être avantageux de remplacer la fonction f par son développement limité 
en a. 

4. La partie principale d'ordre n, P(x) = co + c1(x- a)+ . .. + cn(x - a)", du développement 
limité est un polynôme de degré n, écrit de manière tout à fait adaptée pour étudier ce qui 
se passe lorsque x tend vers a. Il serait particulièrement maladroit de le développer suivant 
les puissances de x car on perdrait ainsi toute l'information contenue dans les coefficients c; , 
i = 0, ... , n. Par exemple, le coefficient c0 donne la valeur du polynôme P au point a, le 
coefficient c 1 donne la dérivée de Pen a, etc. 

S. Le reste (x-a)" t:(x- a) du développement limité est indispensable: en l'oubliant, on affirme 
que la fonction f est un polynôme de degré au plus n ce qui n 'est pas vrai en général. Il 
faut le considérer comme un indicateur de l'ordre du développement limité, c ' est-à-dire de la 
précision avec laquelle on veut connaître la fonction f au voisinage du point a. De plus, quand 
on effectue des opérations sur les développements limités, c'est en suivant les transformations 
successives de ce terme que l' on connaît l' ordre du développement limité obtenu à la fin. Cet 
ordre peut être en effet difficile à prévoir avant de faire les calculs explicites. 

3. Unicité du développement limité 

Théorème 

Soient f une fonction définie sur un intervalle !, et a un point de !. Si f admet un 
développement limité d'ordre n E N* au voisinage de a, alors ce développement est 

unique. 
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Démonstration : Ce théorème est admis. • 

Le théorème précédent signifie que, si on trouve, par exemple par deux calculs différents, 
deux développements limités pour la même fonction, ceux-ci sont égaux. Nous pourrons donc 
parler « du» développement limité à l'ordre n de la fonction f au voisinage de a. 

Exemple 
l 

La fonction x H - est définie sur l'intervalle ]O, oo[. Nous voulons en trouver le développe­
x 

ment limité en un point a > O. La première étape consiste à établir un développement limité 
. l 

de la fonct10n x H -- en O. 
1-x 

On remarque que, pour tout réel x * l : 

1 X -- = l + x + x2 + ... + x'1 + xfl __ 
l-x 1-x 

grâce à la formule classique donnant la somme des n + l premiers termes d ' une suite géomé­
trique de premier terme L, et de raison x * J : 

J - x'i+I 
l +x+x2 + ... +x'1 = ---

1-x 

En posant e(x) = _x_, on obtient alors le développement limité à l'ordre n, au voisinage de 
1-x 

. 1 
0, de la fonct10n x H --

1 - x 
Passons à la deuxième étape. Une méthode générale pour obtenir le développement limité 
d'une fonction au voisinage d ' un point a est de se ramener à un développement limité au 
voisinage de 0 en posant 

x=a+h 

où h tend vers 0 (en pratique, les développements limités «classiques» sont tous des déve­
loppements limités au voisinage de 0). 
Grâce au développement limité obtenu plus haut, on obtient : 

1 

X 

l 

a+h 
J 1 
-x---
a -h 

1--

~ l l + ( ~h H ~hl, + . + ( ~h r + ( ~h r . (~hl 1 
1 1 l 2 fil fi " ---(x-a)+-(x-a) + ... +(-1) - (x-a) +(x-a) ê(x-a) 
a a2 a3 an+I 
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Quoique faisant intervenir une notion globale (fonction dérivable sur un intervalle) dans 
son énoncé et un résultat qui nécessite l'étude globale des fonctions (théorème des ac­
croissements finis) dans sa démonstration, le résultat suivant est essentiel dans l'étude 
locale des fonctions. 

1. Intégration des développements limités 

Propriété 
Soient f une fonction définie sur un intervalle l de R, et a un point del. 

Si f est dérivable sur l, et si sa dérivée f' admet un développement limité d'ordre 
n E N* au voisinage de a, de la forme : 

J'(x) = co + c1 (x - a)+ ... + Cn(X - a)n + (x - at e(x - a) 
= co + c1 (x - a)+ ... + Cn(X - ayi + o ((x - a)n) 

alors f admet un développement limité d'ordre n + 1 au voisinage de a, dont la partie 
principale d'ordre n + 1 est obtenue en primitivant terme à terme celle du développement 
limité de f', de la façon suivante : 

f(x) = f(a) + co (x- a)+~ (x - a)2 + ... + --5::_ (x - a)'1+1 + (x- a)'1+1 e(x- a) 
2 n+l 

= f(a) + co (x - a)+~ (x - a)2 + ... + ~ (x - a)n+l + o (Cx - a)11+1) 
2 n+l 

Démonstration : Ce résultat est admis. 

>- Développement limité de la fonction logarithme népérien 
au voisinage de 1 

On intègre le développement limité: 

1 -- = 1 + x + x2 + ... + x1 + ~ e(x) 
1-x 

• 

Une primitive de la fonction x H -
1
- est la fonction x H - Jn(I - x), fonction qui 

1-x 
s'annule pour x = O. Il en résulte : 

x2 _xi+I 
-Jn(J - x) = x + - + ... + -- + ~+ I e(x) 

2 n+l 
Cette formule est vraie pour tout ordre n. On préfère écrire un développement limité 
d'ordre n: 

x 2 ~ nx! i 

Jn(l - x) = - x - - - ... - - + ~ e(x) = - 2..: - + X: e(x) 
2 n k=l k 

En changeant x en - x, on obtient : 

x2 ~ n (-Ji+I xf 
ln(l + x) = x- - + ... + (-l)n+I - + ~ e(x) = 2..: + ~ e(x) 

2 n k= l k 

84 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
. S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

> Développement limité de la fonction exponentielle au voisinage de zéro 

La fonction exponentielle est dérivable. Sa dérivée est la fonction exponentielle, qui vaut 
1 en O. On en déduit: 

ex = 1 + x + x t:(x) 

En intégrant le développement limité : 

ex = ex = 1 + x + x e(x) 

on trouve: 
x2 

ex = e0 + x + 2 + x2 t:(x) = 1 + x + x2 + x2 e(x) 

qui est aussi un développement limité de la fonction dérivée x H ex . En continuant 
à intégrer les développements de la fonction dérivée x H ex ainsi obtenus, on trouve 
finalement : 

x2 X3 X1 n .J< 
ex = 1 + x + - + - + ... + - + X1 e(x) = _I - + X1 e(x) 

2 3 ! n ! k=O k ! 

À partir de là, on obtient facilement le développement limité de la fonction exponentielle 
à l'ordre n en un point a: 

ea+h = ea eh 

( 
h 2 h3 h

11 
) 

ea 1 + h + 2 + 3! + . .. + n ! + h11 
t:(h) 

( 
(x - a)2 (x - a)3 (x - a)ll ) 

ea 1 + (x - a)+ 
2 

+ 
3 

! + ... + n ! + (x - a)11 e(x - a) 

y 
\ I 

\ graphe de la / 
\ fonction p lynomiale ,' 

\ ' \ ,, 
' ' ' ' ', ...... ~ 

1 

--~~-~======-----t--~___,_:_'~a:__~~~---x 
~ -1 -1 

y=eX 

Figure 32.1 - Le graphe d'une approximation polynomiale de la fonction exponentielle au 
voisinage de a. 

> Développement limité des fonctions sinus et cosinus au voisinage de zéro 

1. La fonction sinus vaut 0 en 0, elle est dérivable sur JR, sa dérivée est la fonction cosinus. 
La fonction cosinus vaut 1 en 0, elle est dérivable, sa dérivée est la fonction - sinus . 
On en déduit : 

cos x = 1 + 0 x x + x e(x) = l + e(x) 

En intégrant le développement limité : 

COS X = l + X ë( X) 
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on obtient: 
sin x = sin(O) + x + x2 s(x) = x + x2 s (x) 

En intégrant le développement limité : 

- sin x = - x + x2 s(x) 

on obtient: 
x2 x2 

cosx = cos(O) - 2 + x3 s(x) = l - 2 + x3 s(x) 

En continuant à intégrer successivement les développements des dérivées repectives des 
fonctions sinus et cosinus, on trouve finalement : 

x2 x4 x6 x2n n ( -1 )k x2k 
cosx = l - - + - - - + .. + (-lt -- + x2n+I s(x) = _L + x2n+I s(x) 

2 ! 4 ! 6 ! . (2n) ! k=O (2k) ! 

x3 x5 x7 x2n+l n (-l)k x2k+l 
sin x = x--+---+ .. . + (-lt + x2n+l s(x) = ~ + x2n+l s(x) 

3 ! 5 ! 7 ! (2n + 1) ! ~ (2k + l ) ! 

y 

graphe d 

y= C S X 

Figure 32.2- Le graphe d'une approximation polynomiale de la fonction cosinus au voisinage de O. 

À partir de là, on trouve facilement le développement limité de la fonction sinus, par 
exemple, à l'ordre 2 n en un point a : 

sin x = sin(a + h) 
= sin a cos h + cos a sin h 

( 
h2 h4 h2n ) = 1- - + - - ... + (-lt -- + h2n+l s(h) 
2 ! 4 ! (2n) ! 

+ cos( a) (h - h3 + ... + (-1 )n- 1 h2n-1 + h2n s(h)) 
3 ! (2n - 1) ! 

(x - a)2 . 1 cos(a) 2 1 sin a + (x - a) cos( a) - sin(a) + . .. + (-1r- (x - a) n-
2 ! (2n - 1) ! 

sin(a) 2 2 +(-l)n __ (x- a) /1 + (x- a) n s(x- a) 
(2n)! 

2 D , . 1 l' . 1 d 3n 1 ·-"'. d cos(O) . etermmons a 1m1te, orsque e ten vers -
2 

, par va eurs 1meneures, e ( ) ; on 
cos !l. 3 

pose e = 3
2
n - h, où h tend vers zéro par valeurs positives (ce qui est logique et assez 
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1 (} d 3 
7r 1 . t' . ' ' d' . 3 7r) nature , car ten vers l par va eurs m eneures, c est-a- Jre JUSte avant l : 

. cos(B) . cos( 32n - h) 
hm =hm----

e-. J;- cos ( ~) 1z-.o cos ( ~ - ~) 

= lim _ sin(h) 
h-.o sin(~) 

= -3 

2. Formule de Taylor-Young1 

Théorème 

Soit f une fonction dé.finie sur un intervalle I et soit a un point de /. Si f est n fois 
dérivable en a, alors f admet un développement limité d'ordre n en a donné par: 

f"(a) fn)(a) 
f(x) = f(a) + (x - a) f' (a) + --(x - a)2 + ... + (x - at + (x - at s(x - a) 

2 n! 

où, pour tout entier ide {l , ... , n}, fi) désigne la dérivée iième de f. 

Démonstration : On démontre ce résultat par récurrence sur l'entier n. 

• La propriété est bien vraie au rang l : par hypothèse, la fonction f est (une fois) 
dérivable en a. Elle satisfait donc la propriété caractéristique des fonctions dérivables : 

f(x) = f(a) + (x - a) f' (a) + (x - a) s(x - a) 

Ainsi, elle admet un développement limité d'ordre l en a, qui est bien de la forme 
annoncée. 

• Supposons la propriété vraie jusqu'à un rang n > 0 ; si la fonction f est n + 1 fois 
dérivable en a, sa dérivée f' est donc n fois dérivable en a. L'hypothèse de récurrence 
permet d'en déduire qu'elle admet donc un développement limité donné par: 

f<3)(a) fn+l)(a) 
f'(x)=f'(a)+(x-a)f"(a)+ 

2 
(x-a)2 + ... + (n)! (x-a)'1+o((x-a)'1) 

(la ;ième dérivée de f' est la (i + l)ième dérivée de f). 

Il suffit d'intégrer ce développement limité pour obtenir celui de f et la formule cher-

chée. • 

Une fonction peut admettre un développement limité à un ordre n ~ 2 au voisinage d'un point, 
sans être n fois dérivable en ce point. C'est le cas, par exemple, de la fonction f qui, à tout 

réel x non nul, associe x3 sin ( ~ )· 

l. William Henry Young (1863-1942), mathématicien anglais, spécialiste de calcul différentiel, théorie de 
la mesure, analyse spectrale, analyse complexe. 
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Au voisinage de zéro, f admet le développement limité à l ' ordre 2 suivant: 

avec: 

lim x sin(~)= 0 
x->0 X 

La dérivée de f peut être prolongée par continuité en zéro, puisque : 

x
3 sin(~)- O 

lim =Ü 
x->O X - Û 

mais ce n'est pas le cas de sa dérivée seconde, puisque: 

_3_x2_si_n_(_~_)X_-__ x_Û c_o_s_(-_~_) _-_O d X sin m- COS ( ~) 
n'a pas de limite ]orque x tend vers zéro. 
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Développements limités usuels 

Dans ce qui suit, n désigne un entier naturel. 

> Développement limité au voisinage de O de la fonction x H -
1 

1 
- X 

Théorème 

Pour tout réel x tendant vers 0 : 

1 -- = 1 + X + x2 + . . . + X1 + X1 e(x) 
1- x 

= 1 + X + x2 + ... + X1 + 0 (X1) 
n 

= I x" + o (X1 ) 
k=O 

> Développement limité au voisinage de 0 de la fonction x H -
1 

1 
+x 

Théorème 

Pour tout réel x tendant vers 0 : 
1 -- = 1 - x + x2 + ... + (-1)'1 X1 + xn e(x) 

1+ x 
= 1 - x + x2 + .. . + (- l)n X1 + o (X1) 

n 

= I c-1l x" + o (X1 ) 
k=O 

> Développement limité au voisinage de O de la fonction x H ln{1 + x) 

Théorème 

Pour tout réel x tendant vers 0 : 
x2 X1 

] n(l + X) = X - - + ... + ( - J r+ J - + X1 e(x) 
2 n 
x2 n+ I X1 (·.n) = x -2+ .. . +(-l) -;+ o x 

11 ( l )k+ 1 k = I -. X' + o(x'1 ) 
k=l k 

> Développement limité au voisinage de 0 de la fonction x H ln{1 - x) 

Théorème 

Pour tout réel x tendant vers 0: 
x2 X1 

ln(l - x) = - x - - - . .. - - + X1 e(x) 
2

2 
n 

X X1 = - x - - - ... - - + o (X1 ) 
2 n 

n xk 
= - I- + o (X1 ) 

k=l k 
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~ Développement limité au voisinage de O de la fonction exponentielle 

Théorème 

Pour tout réel x tendant vers 0 : 

x2 .x3 X1 
ex = 1 + x + 2 + 3! + ... + ~ + X1 e(x) 

x2 x3 X1 
1 +X+ 2 + 3! + .. . + n ! + 0 (.x!1) 

n J.! 
~ k ! + o(.x!1) 

~ Développement limité au voisinage de O des fonctions trigonométriques 

Théorème 

Pour tout réel x tendant vers 0 : 

90 

x2 x4 x6 x 2n 
cosx = 1- - + - - - + .. . + (-lt-- + x211+1 e(x) 

2 ! 4 ! 6 ! (2n) ! 
? 4 6 2n 

X- X X 11 X ( 2n+ 1 ) l--+---+ ... +(-1) --+o X 
2 ! 4 ! 6 ! (2n) ! 

i ( -1 )k x2k + o ( x2n+ 1 ) 

k==O (2k) ! 

x3 x5 x7 x2n+I 
sin x = x - - + - - - + ... + (-1)11 + x2n+2 e(x) 

3 ! 5 ! 7 ! (2n + 1 ) ! 

.x3 x5 x7 x2n+ 1 
x--+---+ . .. +(-1)11 +o(x2n+2) 

3 ! 5 ! 7 ! (2n + 1) ! 

n ( J )k 2k+ 1 I - X +o(x2n+2) 
k==O (2k + J ) ! 

.x3 2 x5 17 x7 

tan x = x + "'3 + lS + ill + x
8 

e(x) 

.x3 2 x5 17 x
7 

( &) 
=x+3+15+315+ox 

On ne donnera pas, ici, de développement limité à l'ordren, au voisinage de zéro de la fonction 
tangente; il faut savoir que ce développement existe, mais fait intervenir des quantités qu'il 
serait trop compliqué de définir ici (les nombres de Bernoulli en l 'occurence). 

x3 x5 ( -1 r x2n+ 1 
arctan x = x- - + - + ... + + x2n+2 e(x) 

3 5 2n + 1 

.x3 x5 (-1)11 x2n+I 
X - - + - + ... + + o (x2n+2) 

3 5 2n+l 
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~ Développement limité au voisinage de O des fonctions trigonométriques hyper­
boliques en O 

Théorème 

Pour tout réel x tendant vers 0 : 

x2 x4 x6 x2n 
ch (x) = 1 + - + - + - + ... + -- + x211+1 s(x) 

2 ! 4 ! 6 ! (2n) ! 

x2 x4 x6 x2n 
= 1 + - + - + - + ... + -- + o (x2n+ 1) 

2 ! 4 ! 6 ! (2n) ! 
11 2k 

= I-x- + o(x2n+I) 
k=O (2k) ! 

x3 .x5 x7 x2n+I 
sh (x) = x + - + - + - + ... + + x211+2 s(x) 

3 ! 5 ! 7 ! (2n + 1) ! 

x3 .x5 x7 x2n+ 1 

X+ 3ï + Sl + 7! + ... + (2n + 1) ! + o ( x2n+2 ) 

n x2k+l I , +o(x2n+2) 
k=O (2k + l) ! 

x3 2x5 17 x7 

th (x) = x - - + - - -- + x8 s(x) 
3 15 315 

x3 2 .x5 17 x7 
8 = x-3+15- 315 +o(x) 

De même que pour la fonction tangente, on ne donne pas, ici, de développement limité à 
l'ordre n, au voisinage de zéro de la fonction tangente hyperbolique, qui fait aussi intervenir 
les nombres de Bernoulli. 

x3 xs x211+1 
argthx = x + - + - + ... + -- + x211+2 s(x) 

3 5 2n+l 

x3 xs x211+1 
= x + 3 + 5 + ... + 2n + 1 + o (x211+2) 

~ Développement limité au voisinage de 0 de la fonction x H (1 +xr, œ E R.* 

Théorème 

( )
a J œ (a - 1) 2 a (a - 1) ... (a - n + 1) . .11 • .11 ( ) 

1 +x = +ax+ x + ... + A +A sx 
2 n! 

a (a - 1) 2 a (a - 1) .. . (a - n + 1) .Ji (·.11) 
l+ax+ x + ... + ..t +o A 

2 n! 
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Opérations algébriques et composition 
des développements limités 

Lorsque l'on veut calculer le développement limité d'une fonction, on commence par 
se ramener à un développement limité au voisinage de 0 (si cela est nécessaire, on pose 
donc x = a + h, avec h tendant vers 0). Nous nous contenterons donc, dans ce qui suit, 
de parler des développements limités au voisinage de O. 

1. Premier principe 

Dans un développement limité, il est inutile de conserver des termes plus petits que le 
reste. 
Ainsi, pour un développement limité à un ordre n donné (n E N*), si p est un entier 
strictement plus grand que n : 

xP + x" s(x) = x" s(x) xP s(x) + x" s(x) = x" s(x) 

ou encore, avec la notation « petit o » : 

xP + 0 (.x'1
) = 0 (.x'1) o (xP) + o (x'1) = o (x") 

(ceci vient du fait que xP = x'1xp-n = x'1 s(x)). 

On prendra bien garde au fait que ces égalités se lisent de la gauche vers la droite, et non 
l'inverse! 

À partir de ce principe, il est facile de calculer la somme ou le produit de deux déve­
loppements limités. 

Exemple 

Au voisinage de 0 : 

2. Second principe 

Pour éviter des calculs trop lourds et pénibles, on n'explicite les« factorielles» qu'à la 
fin! 
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Exemples 

1. Calcul à éviter 

Pour déterminer un développement limité à l'ordre 4 en zéro de la fonction x H ex sin x, il 
est peu judicieux de procéder ainsi : 

( 
x2 x3 x4 ) ( x3 ) 

exsinx= l+x+2! + 3! + 4 ,+o(x4) x-3!+o(x4) 

x3 x4 xs 
= x + x2 + - + - + - + o (x4

) 
2 6 24 

+ ... + horribles fractions 

2. Calcul modèle 

Pour déterminer un développement limité à l'ordre 4 en zéro de la fonction x H ex sin x, il 
est préférable de procéder ainsi : 

( 
x2 x3 x4 ) ( x3 ) 

exsinx= l+x+2!+3!+ 
4

,+o(x
4
) x-3!+o(x

4
) 

x3 x4 x3 x4 
= x + x2 + - + - + o (x4

) - - - - + o (x4
) 

2 3 ! 3 ! 3 ! 

x3 x4 x3 x4 
= x + x2 + - + - + o (x4

) - - - - + o (x4
) 

2 3 ! 3 ! 3 ! 

x3 
= x+x2+ 3 +o(x4) 

3. Troisième principe 

Pour déterminer le développement limité au voisinage de zéro, à un ordre n E N*, de 
la composée de deux fonctions f et g, où g tend vers zéro : on commence par poser 
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g(x) = X, et on effectue le développement limité de f en zéro à un ordre suffisamment 
élevé p afin que le développement de la fonction composée soit bien d' ordre n par rapport 
à X: 

(f 0 g) (x) = f(X) = ao + a1 X+ a2 X2 + ... + Œn XP + o(XP) 

Il reste ensuite à développer à l'ordre n par rapport à x les termes X = g(x), X2 = (g(x))2, 

.. . ' X p = (g( X) )P, en ne gardant que les termes en xn. 

Exemple 

Au voisinage de 0, à l 'ordre 4: 

. sin
2 x sin

4 x ( . ) 
cos(smx) = 1 - -

2
- + ~ +o sm4 x 

2 . 2 

= l - ~ (x - :, + o ( x4
) ) + 

4

1 
! (x - ;

3

! + o(x
4
)) + o ( x4

) 

= 
l 2 2x 4 X . 4 

( 
4 )2 4 

l - 2: x - 3T + o (x ) + 
4 

! + o (x ) 

= 
x2 5 x4 

l - - + - + o (x4
) 

2 24 

4. Quatrième principe 

Pour déterminer le développement limité, au voisinage de zéro, à un ordre n E N*, de la 
composée de deux fonctions f et g, il faut faire très attention dans les cas où la fonction g 

ne tend pas vers zéro en zéro ! 

Exemple 

Au voisinage de 0, à l'ordre 2: 
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Développements asymptotiques 

À la fin du XIXe siècle, le mathématicien Henri Poincaré1 s'intéresse au problème «des 
trois corps » , qui est un cas particulier du problème dit « des N corps » , où on cherche 
à décrire le système formé par N corps célestes (étoiles, planètes), dont les mouvements 
sont régis par les lois de l'attraction universelle, et à étudier leur stabilité. Dans le cas 
«des trois corps », qui sont en fait le Soleil, la Terre, la Lune, de masses respectives 

1 mtune ' . mtune l p , d 
m solei/ , mrerre ' mtune' e rapport -- est tres petit: -- « . our resou re ce pro-

m.wteil m suleil 
blème, Poincaré eut l'idée d'effectuer un développement limité par rapport à cette der-
nière quantité. C'est ainsi qu'est apparue la notion de« développement asymptotique», 
la grandeur msoleil étant« très grande». 

De façon générale, un développement asymptotique est obtenu lorsqu'une des quan­
tités en jeu tend vers une limite infinie. L'inverse de cette quantité tendant vers zéro, il 
est alors possible de se ramener à un développement limité au voisinage de zéro. 

Exemples 

1. Lorsque n tend vers +oo : 

( 
1 

)

Il 

l + - nln( l+!) n(!-:-1-,-+ 1 +o( 1 
)) l -_!_+:-1-,-+o( 1

) = e Il = e n 211- g ;;r = e 2rt ) 11- ~ 
n 

l 
(On a effectué un développement asymptotique à l'ordre 2 en - .) 

n 
Ainsi: 

lim (1 - ~)" = e 
11-->+oo n 

2. Lorsque n tend vers +oo : 

sin (n Yn2 + n) =sin (nn RJ = sin (nn { 1 + 2
1n - 8 ~2 + o (~2 )}) 

= 

= 

= 

= 

sin ( n JT + ~ - SJTn + o ( ~)) 
cos ( n JT - SJTn + o ( ~)) 

( - 1 Y' cos (- Snn + o ( ~)) 
( -1)" cos ( Snn + o ( ~)) 

= (-1)" {i -~~+a(~)} 
2 64n2 n2 

(-1)'1 {1- ___!!.____+a(~)} = 
128 n2 n2 

(On a effectué un développement asymptotique à l'ordre 2 en fi.) 
Ainsi, sin (n Yn2 + n) n'a pas de limite lorsque n tend vers l'infini. 

l. 1854-1912. Outre ses apports aux mathématiques (il est considéré comme un des fondateurs de la topo­
logie), il apporta aussi de nombreuses contributions à la physique théorique, en optique et en relativité. 
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Convexité 

La notion de convexité correspond à une réalité physique ; ainsi, en optique, une len­
tille dite« convexe » est un verre« bombé vers l'extérieur». Lorsqu'on la pose sur une 
table, sa forme « bombée » fait que, quelle que soit sa position, la table reste toujours ,O 
tangente au verre. De façon équivalente, en mathématiques, la première caractérisation Fiche 84 

de la convexité, qui s'applique à des courbes, est liée au fait que le barycentre d'un sys-
tème de points situés sur la courbe doit se trouver au-dessus de celle-ci (les fameuses 
« inégalités de convexité»), ou encore, que la courbe est située au-dessous de toutes ses 
cordes. 

1. Définitions 
> Fonction convexe 

Une fonction f, définie sur un intervalle l de JR, à valeurs dans JR, est dite convexe si, 
pour tout couple (a, b) d'éléments de 12 , et tout réel t de l'intervalle [O, l] : 

f(ta + (l - t)b) ~ tf(a) + (1- t)f(b) 

Cette définition traduit, tout simplement, le fait que tout point situé sur une corde joignant 
deux points de la courbe, de coordonnées respectives (a,f(a)) et (b,f(b)) , (a, b) E / 2 , est 
au-dessus de la courbe. Ce point étant sur la corde, son abscisse est de la forme ta+ ( 1 - t) b, 
t E [0, l], et son ordonnée de la forme t f(a) + (l - t) f(b), qui est donc plus grande que celle 
du point de la courbe d'abscisse ta+ (1 - t) b, c'est-à-dire f (ta+ (J - t) b). 

y 

f(b) - - -

1 
~~~~-+-~~~~~~~~~~~--x 

-1 -1 a b 

point de la corde 

Figure 36.1- Le graphe d'une fonction convexe. 

> Fonction concave 

Une fonction f, définie sur un intervalle l de JR, à valeurs dans JR, est dite concave si, 
pour tout couple (a, b) d'éléments de 12 , et tout réel t de l'intervalle [0, 1] : 

f(ta + (1- t)b);;:,: tf(a) + (1- t)f(b) 

Dire qu' une fonction f est concave revient donc à dire que son opposée -f est convexe. 
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Figure 36.2- Le graphe d'une fonction concave. 

2. Théorèmes 

>- Position de la courbe représentative d'une fonction convexe par rapport 
à ses cordes 

Une fonction f, définie sur un intervalle l de IR, à valeurs dans IR, est convexe si et 
seulement si sa courbe représentative est située en-dessous de toutes les cordes joignant 
deux points de cette courbe. 

y 

cordes 

Figure 36.3- Illustration graphique de la position de la courbe représentative d'une fonction 
convexe par rapport à ses cordes. 

>- Inégalité de convexité (ou inégalité de Jensen 1) 

Théorème 

Soient f une fonction définie sur un intervalle l de lR., à valeurs dans lR., convexe, et 
n 

t1, ... , t11, n réels positifs dont la somme vaut 1 : t1 + . .. + t11 = I ti = l. Alors, pour 
i=l 

tout n-uplet (x1, ... , Xn) de 111 : 

Cette définition traduit, tout simplement, le fait que tout barycentre d'un ensemble de points 
situés sur la courbe, de coordonnées respectives (x 1, f(x 1 )), ••• , (x,,, f(x,,)), (x1, ..• , x,,) E /'1, 

1. Mathématicien danois, 1859-1925. 
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n 

est au-dessus de la courbe. L'abscisse de ce point est donc de la forme Lli Xi , où !1 , ... , t,,, 
i=I 

n 

sont n réels positifs dont la somme vaut 1, et son ordonnée de la forme L ti f(x;) , qui est donc 
i= I 

plus grande que celle du point de la courbe d'abscisse t. t; x;, c'est-à-dire f [ t. t ; f(x;) J. 

>- Régularité d'une fonction convexe 

Théorème 

Une fonction f, définie sur un intervalle ouvert I de IR, à valeurs dans IR, convexe, est 
continue, et admet, en tout point de!, une dérivée à droite et une dérivée à gauche. 

e L'hypothèse selon laquelle l'intervalle l doit être ouvert est essentielle! 

>- Inégalité des pentes croissantes 

Théorème 

Une fonction f, définie sur un intervalle I de IR, à valeurs dans IR, dérivable sur !, est 
convexe si et seulement si, pour tout réel a de !, la fonction qui, à tout x de !, distinct 

d 
. l f(x) - f(a) . . , . l , d' e a, associe e rapport est croissante, ce qut est equtva enta tre que, pour 

x - a 
tout triplet de réels (a, b, c) de l tel que a < b < c: 

98 

f(b) - f(a) f(c) - f(a) f(c) - f(b) 
~~~~- ~ ~ ~~~~-

b - a c - a b-c 

Ce théorème traduit, tout simplement, le fait que la pente, ou coefficient directeur, de la droite 
joignant les points de coordonnées (a, f(a)) et (b, f(b)) , est plus petite que la pente de la droite 
joignant les points de coordonnées (a, f(a)) et (c, f(c)) , qui est elle-même plus petite que la 
pente de la droite joignant les points de coordonnées (b,f(b)) et (c,f(c)), comme illustré sur 
le dessin suivant : 

y 

~~-~l___,,,___,_._~~~~~~~~----x 

- 1 a b c 

Figure 36.4- Illustration graphique de l'inégalité des pentes croissantes. 
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~ Position de la courbe représentative d'une fonction convexe par rapport 
à ses tangentes 

Théorème 

Une fonction f, définie sur un intervalle l de IR, à valeurs dans IR, dérivable sur l , est 
convexe si et seulement si sa courbe représentative est située au-dessus de toutes ses 
tangentes. 

y 

tangen 

~~~_~l-_-1-+-~ •• ~1-.·-._._-,-:..\..-.~ • .--~.-•• -•• ~~~---x 

.·· .. · 
Figure 36.5- Illustration graphique de la position de la courbe représentative d'une fonction 

convexe par rapport à ses tangentes. 

~ Convexité et dérivabilité 

Théorème 

Une fonction f, définie sur un intervalle l de R à valeurs dans IR, dérivable sur !, est 
convexe si et seulement si sa dérivée f' est croissante. 

~ Cas des fonctions deux fois dérivables 

Corollaire 
Une fonction f, définie sur un intervalle l de R à valeurs dans R deux fois dérivable 
sur!, est convexe si et seulement si sa dérivée seconde f" est à valeurs positives, c'est­
à-dire si et seulement si, pour tout réel x de l : 

f"(x) ~ 0 
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Équations différentielles linéaires 
du 1er ordre homogènes 

Une équation différentielle est un type d'équation un peu particulier, dans la mesure où 
l'inconnue est une fonction , en général désignée par la notation « y ». On parle d' « équa­
tion différentielle », dans la mesure où les dérivées de la fonction inconnue figurent aussi 
dans l'équation. Par exemple, sil est un intervalle de JR., 

y'(x) = 2y(x) V x E l 

y(x) y' (x) + x = 1 V x E I 

(y'(x))2 +y(x)+x=O Vx E I 

sont des équations différentielles. 
Dans ce qui suit, on ne s'intéressera qu 'au cas des équations différentielles linéaires 

du premier ordre, c'est-à-dire linéaires par rapport à la fonction inconnue y, et ne faisant 
intervenir que la dérivée première y' de la fonction cherchée. 

Définition 

Soit a une fonction définie sur un intervalle I de JR., à valeurs dans JR., continue. 

On appelle équation différentielle linéaire du premier ordre homogène une équa­
tion de la forme : 

y' (x) = a(x) y(x) V x E l 

où y est une fonction dérivable sur/. On peut aussi écrire, pour alléger les notations : 

y'= a(x) y 

1. Méthode pratique de résolution 

Soit a une fonction définie sur un intervalle l de JR., à valeurs dans lR., continue. 
On s'intéresse à l'équation différentielle linéaire du premier ordre homogène, que l'on 

désignera, dans ce qui suit, par (80 ) : 

y' = a(x) y 

La fonction identiquement nulle sur l'intervalle lest solution de (80). 
Considérons une solution y de (80), définie sur un intervalle J c l , non identiquement 

nulle. On suppose que y ne s'annule pas sur J. Quitte à changer y en -y, on supposera 
que y est à valeurs strictement positives. 

On peut alors écrire : 

y'(x) = a(x) 
y(x) 

L " · · ' d J · y' (x) 1 d, · , d 1 f · · ' a 1onct1on qm, a tout x e , associe --, est a envee e a onct10n qm, a tout x 
y(x) 

de J, associe ln ly(x)I = ln (y(x)). 
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Ainsi, si on arrive à trouver une fonction <Fa dont a soit la dérivée sur J (c'est-à-dire 
<F~ = a), on aura, à une constante réelle C près : 

ln ly(x)I = 'Fa(x) + C V x E J 

(la dérivée de la fonction constante qui, à tout x de J, associe C, est la fonction identi­
quement nulle). 

On en déduit alors, pour tout x de J: 

y(x) = e'F,,(x)+C = é e'Fa(x) 

On vérifie que, réciproquement, toute fonction de la forme x E J H ec e'Fa(x) est solu­
tion de (80). 

On peut écrire que l'ensemble des solutions de l'équation différentielle initiale est: 

{x E J H ec e'Fa(x>, C E R} 

~ Solutions d'une équation différentielle linéaire du premier ordre homogène 

Théorème 

Soit a une fonction définie sur un intervalle l de R, à valeurs dans R, continue. 

Les solutions de l'équation différentielle linéaire du premier ordre homogène : 

y' (x) = a(x) y(x) V x E l 

sont les fonctions de la forme : 

x E l H K e'Fa(x) 

où K est une constante réelle, et <Fa une fonction telle que, pour tout x de l : 

<F~(x) = a(x) 

De façon équivalente, on peut écrire que l 'ensemble des solutions de l'équation dif.fé-
rentielle initiale est : 

Exemple 

Considérons l' équation différentielle : 

y'(x) = 2xy(x) 

On recherche les solutions y qui ne s'annulent pas sur R On a alors, pour tout réel x: 

y'(x) = 2x 
y(x) 

La fonction qui, à tout réel x, associe 2 x, est la dérivée de la fonction qui, à tout réel x, 

associe x2. 
On en déduit, pour tout réel x : 

ln ly(x)I = x2 + C 
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où C est une constante réelle; puis : 

que l'on peut encore écire sous la forme : 

y(x) = K ex2 

où K est une constante réelle positive (cela revient juste à appeler autrement é , qui est aussi 
une constante). 
On vérifie que, réciproquement, toute fonction de la forme x E lR. H K ex2 , K E JR., est 
solution de y'(x) = 2 x y(x). 
De façon équivalente, on peut écrire que l'ensemble des solutions de l'équation différentielle 
initiale est : 

2. Condition initiale {pour une équation différentielle linéaire 
du premier ordre homogène) 

Définition 

Soient a une fonction définie sur un intervalle I de IR, à valeurs dans IR, continue, xo 
un réel de / , et Yo un réel. 

On appelle équation différentielle linéaire du premier ordre homogène, avec la 
condition initiale y(xo) = xo, la donnée de l'équation différentielle : 

y' (x) = a(x) y(x) V x E l 

avec la condition : 
y(xo) = Yo 

~ Solutions d'une équation différentielle linéaire du premier ordre homogène 
avec une condition initiale 

Théorème 

Soient a une fonction définie sur un intervalle l de IR, à valeurs dans IR, continue, xo un 
réel de ! , et Yo un réel. 

L'équation différentielle linéaire du premier ordre homogène: 

y' (x) = a(x) y(x) V x E I 

avec la condition initiale : 
y(xo) = Yo 

admet pour unique solution la fonction : 

x E l H yo e - 'f"c,(xo) e'f"c, (x) 

où 'Fa est une fonction telle que, pour tout x de l : 

r;(x) = a(x) 

(on admet l'existence d'une telle fonction). 
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Équations différentielles linéaires 
du 1er ordre avec second membre 

1. Définitions et théorèmes 

> Équation différentielle linéaire du premier ordre avec second membre 

Soient a et b deux fonctions définies sur un intervalle l de JR., à valeurs dans JR., continues. 
On appelle équation différentielle linéaire du premier ordre avec second membre 

une équation de la forme : 

y' (x) = a(x) y(x) + b(x) V x E l 

que l'on peut aussi écrire, pour alléger les notations : 

y' = a(x) y + b(x) 

> Équation homogène associée à une équation différentielle linéaire 
du premier ordre avec second membre 

Soient a et b deux fonctions définies sur un intervalle l de JR., à valeurs dans JR., continues. 
On appelle équation homogène associée à l 'équation différentielle linéaire du premier 

ordre avec second membre y= a(x) y+ b(x) l'équation : 

> Principe de superposition 

Théorème 

y' (x) = a(x) y(x) V x E l 

Soient a, b1 et b2 trois fonctions définies sur un intervalle l de JR., à valeurs dans R 
continues. 

Si YI est une solution sur l de l'équation différentielle linéaire y'= a(x)y + b1(x), et Y2 
une solution sur l de l'équation différentielle linéaire y' = a(x) y+b2(x), alors, pour tout 
couple de réels (/1.1,ÀÙ À1 YI+ À2Y2 est une solution sur l de l'équation différentielle 
linéaire y' = a(x) y+ À1 b1 (x) + À2 b2(x). 

Corollaire 
Soient a et b deux fonctions définies sur un intervalle l de JR., à valeurs dans R continues. 

Si y 1 et Y2 sont deux solutions sur l de l 'équation différentielle linéaire avec second 
membre y' = a(x) y+ b(x), alors la fonction différence Y2 - YI est une solution sur l de 
l'équation différentielle homogène associée y' = a(x) y. 

Démonstration : Sachant que y 1 et y2 sont solutions sur l de l'équation différentielle 
y' = a(x)y + b(x), on obtient : 

Y2 -y1 = a(x)y; + b(x) -(a(x)y; + b(x)) = a(x)(y2 -y1)' 

D'où le résultat. • 
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Exemple 

On considère l'équation différentielle: 

y' =y+ 2 x +sin x 

La fonction qui, à tout réel x, associe - 2 x - 2 est solution sur lR. de l'équation diftërentielle : 

y'= y+ 2x 

sinx+ cosx 
La fonction qui, à tout réel x, associe -

2 
est solution sur lR. de l'équation différen-

tielle : 
y'= y+ sin x 

sinx + cosx 
La fonction qui, à tout réel x, associe -2 x - 2 - est donc solution sur lR. de 

2 
l'équation différentielle: 

y' =y+ 2 x +sin x 

~ Solution générale d'une équation différentielle linéaire du premier ordre 
avec second membre 

Théorème 

Soient a et b deux fonctions définies sur un intervalle l de IR, à valeurs dans IR, continues. 

La solution générale sur Ide l'équation différentielle linéaire du premier ordre avec 
second membre y' = a(x) y+ b(x) s'obtient comme somme de la solution générale sur 
Ide l'équation différentielle homogène associée, et d'une solution particulière sur Ide 
l'équation différentielle avec second membre. 

Pour mémoriser ce résultat, on peut le retenir sous la forme : 

Solution générale de l'équation avec second membre 

Solution générale de l'équation sans second membre 

+ 
Solution particulière de l'équation avec second membre 

ou, sous forme « abrégée » : 

Solution générale E.A.S.M. 

Solution générale E.S.S.M . 

+ 
Solution particulière E.A.S.M . 

Démonstration : Ce résultat vient du corollaire précédent ; en effet, si on connaît une 
solution y1 de l'équation différentielle avec second membre, définie sur un intervalle J, 
n'importe quelle solution sera de la forme y 1 + z, où z est une solution sur J de l'équation 
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homogène associée. Ainsi, toute solution sur J de l'équation avec second membre est 
telle que, pour tout réel x de J : 

y(x) = YI (x) +À e'T,,(x) 

OÙ À est une constante réelle arbitraire, et <fa une fonction telle que, pour tout X de J : 

r;(x) = a(x) • 
>- Extension aux fonctions à valeurs complexes 

On admet que l'ensemble des résultats précédents est généralisable aux fonctions à va­
leurs complexes, c'est-~a-dire dans C. 

2. Recherche de solutions particulières de l'équation avec second 
membre, dans le cas où la fonction a est constante 

>- Cas d'un second membre de type « exponentielle x polynôme» 

Soit: 
y' (x) = a y(x) + P(x) er x 

où Pest une fonction polynomiale, et r et a deux réels. 

• Premier cas: r = a. 

On cherche une solution particulière, définie sur IR, de la forme : 

x H Q(x) eax 

où Q est une fonction polynomiale de degré inférieur ou égal à degré de P + 1. 

Exemples 

1. Pour l'équation différentielle: 
y' = 3 !J - eJ X 

le second membre est de type «exponentielle x polynôme» , la fonction polynomiale étant 
de degré O. 

On cherche donc une solution particulière, définie sur JR, de la forme : 

x H y(x) = (Àx + µ) e3
x 

où À etµ sont deux réels, ce qui conduit, pour tout réel x, à : 

y'(x) =(À+ 3 À x + 3 µ) e3
x 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x: 

(À+ 3 À X+ 3 µ) e 3 x = 3 (À x + µ) e 3x - e 3 x 

soit : 
Àe3x = -e3x 

et donc: 
À= - 1 

Une solution particulière de l'équation avec second membre est donc: 

x H y(x) = -e3
x 

(Comme il n'y a pas de condition surµ , le casµ= 0 convient.) 
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2. Pour l 'équation différentielle: 

y' = 2 y+ (x + 1) e2
x 

le second membre est de type «exponentielle x polynôme» , la fonction polynomiale étant 
de degré 1. 

On cherche donc une solution particulière, définie sur JR, de la forme : 

X H y(x) = (,·l x2 +µX+ V) e2X 

où À, µ et v sont des réels, ce qui conduit, pour tout réel x, à : 

y' (x) = ( 2 À X + µ + 2 À x 2 + 2 µX + 2 V) e2 
X 

En injectant dans l'équation différentie lle, on en déduit, pour tout réel x: 

y' (x) = ( 2 À X + µ + 2 À x 2 + 2 µ X + 2 V) e2 
X = 2 (À x2 + µ + µ X + V) e2 

X + (x + l ) e2 
X 

soit : 
y'(x) = (2Àx+µ+) e2

x = (x+ l)e2
x 

et donc : 2 À = 1, µ = l. 
Une solution particulière de l'équation avec second membre est donc: 

x H y(x) = ( x: + x) e2
x 

• Deuxième cas: r-:/:. a. 

On cherche une solution particulière, définie sur lR, de la forme : 

X H Q(x)er x 

où Q est une fonction polynomiale de degré inférieur ou égal au degré de P. 

Exemples 

1. Pour l 'équation différentielle: 
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y'= y+ e 3x 

le second membre est de type « exponentielle x polynôme », la fonction polynomiale étant 
de degré O. 
On cherche donc une solution particulière, définie sur JR, de la forme : 

x H y(x) = Àe3
x 

où À est un réel, ce qui conduit, pour tout réel x, à : 

y'(x) = 3 À e3x 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x: 

3 À e3 x = À e3 x + e3 x 

soit : 
2 À e 3x = e3x 
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et donc: 
1 

À= 2 
Une solution particulière de l'équation avec second membre est donc: 

1 
X H y(x) = - e3 

X 

2 

2. Pour l'équation différentielle : 
y'= 2y + x2 + l 

le second membre est de type« exponentielle x polynôme», la fonction polynomiale étant 
de degré 2. 
On cherche donc une solution particulière, définie sur R., de la forme : 

X H y(x) = (,l x2 + µ x + v) eOxx =À x 2 + µ x + v 

où À,µ et v sont des réels, ce qui conduit, pour tout réel x, à : 

y'(x)=2Àx+µ 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x: 

2 À X + µ = 2 À x 2 + 2 µX + 2 V + x2 + l 

soit: 

et donc: 

Tl en résulte : 

2 (À - µ) x + µ - 2 v = (2 À + L) x2 + 1 

À=µ µ-2v=1 2À + 1 = 0 

µ- 1 3 1 
À=µ= --

2 
V= -- = --

2 4 
Une solution particulière de l'équation avec second membre est donc : 

x2 X 3 
X H y(x) = -2 - 2 - 4 

3. Pour l'équation différentielle: 
y'=2y+xex 

le second membre est de type « exponentielle x polynôme», la fonction polynomiale étant 
de degré J. 
On cherche donc une solution particulière, définie sur R., de la forme : 

X H y(x) = (À x + µ) ex 

où À etµ sont des réels, ce qui conduit, pour tout réel x, à : 

y' (x) = (À x + À + µ) ex 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x: 

y'(x) =(À X+ À+µ) ex = 2 (À x + µ) ex+ x ex 

soit: 

et donc: 
À= -1 À-µ =0 

Une solution particulière de l'équation avec second membre est donc : 

x H y(x) = - (x + l) ex 
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~ Cas d'un second membre de type « polynôme x cosinus » 

Soit: 
y' (x) = œ y(x) + P(x) cos(r x) 

où Pest une fonction polynomiale, et r un réel, on se ramène au cas précédent en recher­
chant une solution particulière sur C de l'équation différentielle : 

y'(x) = œy(x) + P(x) eirx 

Il suffit ensuite de prendre la partie réelle de la solution obtenue. 

Exemple 

Pour 1 'équation différentieJJe : 
y'= y+ cosx 

on se ramène à l'équation différentielle: 

y'= y + eix 

On cherche donc une solution particulière, définie sur IR., de la forme : 

x H y(x) = Àeix 

où À est un nombre complexe, ce qui conduit, pour tout réel x, à : 

y'(x) = iÀ eix 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x : 

ce qui conduit à : 
l l + i 

À=-= - -
i - l 2 

Une solution particulière de l'équation avec second membre initiale est donc: 

( ( 
l + i) . ) ( ( l + i) . ) x H 'Re - -

2
- e'x = 'Re - -

2
- (cosx+ i smx) 

= 'Re ( - cos x - i sin x 
2
- i cos x + sin x ) 

-cosx + sin x 
= 2 

~ Cas d'un second membre de type « polynôme x sinus» 

Soit: 
y' (x) = œ y(x) + P(x) sin(r x) 

où P est une fonction polynomiale, et r un réel, on se ramène au cas « exponentielle x 
polynôme » en recherchant une solution particulière sur C de l'équation différentielle : 

y'(x) = œy(x) + P(x)eirx 

Il suffit ensuite de prendre la partie imaginaire de la solution obtenue. 
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Exemple 

Pour l 'équation différentielle: 
y'= y+ sin x 

on se ramène à l'équation différentielle: 

y'= y+ eix 

On cherche donc une solution particulière de la forme : 

x H y(x) = Àeix 

où À est un nombre complexe, ce qui conduit, pour tout réel x, à : 

y'(x) = ÎÀeix 

En injectant dans l'équation différentielle, on en déduit, pour tout réel x: 

ce qui conduit à : 
1 1 + i 

À=-=--
i-1 2 

Une solution particulière de l 'équation avec second membre initiale est donc: 

(( l+i) ·) ((l+i) . ) x H 'Re - -
2

- e' x = Im - -
2

- (cosx+ i smx) 

(
-cos x - i sin x - i cos x +sin x) 

=Im 
2 

-cosx- smx 
= 

2 

3. Une méthode générale pour trouver une solution particulière 
de l'équation avec second membre: la méthode de variation 
de la constante 

Soient a et b deux fonctions définies sur un intervalle I de JR, à valeurs dans JR, continues. 
Cherchons une solution particulière de l'équation différentielle linéaire du premier 

ordre avec second membre: 
y' = a(x) y+ b(x) 

La solution générale de l'équation homogène associée étant donnée par: 

X H y(x) = /l /F'c,(x) 

où /l est une constante réelle arbitraire, et ra une fonction telle que, pour tout X de I : 

r~(x) = a(x) 

on peut se demander s'il n'existerait pas des fonctions de la forme: 

x H y(x) = /l(x) e'Fa(x) 

qui soient solutions de l'équation avec second membre. 
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En injectant cette expression dans l'équation avec second membre, on obtient, pour 
tout x de I : 

(a(x) À(x) + ,1' (x) e'T,, (x) = a(x) À(x) e'T,, (x) + b(x) 

ce qui conduit à : 
,1' (x) = b(x) e-'Fa(x) 

Il suffit donc de prendre, pour À, une fonction dont x H b(x) e-'Fa(x) soit la dérivée sur/. 

Exemple 

Résolvons, sur ]0, oo [, l'équation différentielle : 

y'= !!. + L (0) 
X 

L'équation homogène associée est : 

y'=!!. 
X 

qui admet pour solutions, sur ]0, +oo[, les fonctions de la forme x H À x , où À est une constante 
réelle. 
À l'aide de la méthode de variation de la constante, on recherche une solution particulière de 
l'équation différentielle avec second membre (0), sous la forme: 

X H y(x) = À(x) X 

On a alors, pour tout réel x strictement positif : 

y' (x) = A' (x) x + À(x) 

En injectant dans (0), on en déduit, pour tout réel x strictement positif: 

et donc: 

I l 
À (x) x + À(x) = - À(x) x + l = À(x) + l 

X 

A'(x) = ~ 
X 

Par suite, pour tout réel x strictement positif: 

À(x) = lnx+ C 

où C est une constante réelle. 
L'ensemble des solutions de (0) est donc l' ensemble des fonctions définies sur R: par: 

XHXlnx+Cx 

où C est une constante réelle. 
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Qu'est-ce qu'une suite'? L'espace 
des suites et opérations sur les suites 

Figure 39.1 - Le pavage des dominos. 

Soit n un entier naturel non nul. Considérons le nombre f 11 de façons de recouvrir un 
échiquier ayant une hauteur de 2 carreaux, et une longueur de n carreaux (il comporte 
donc 2 n carreaux), par des dominos bicolores. Chaque domino doit recouvrir deux car­
reaux, et les extrémités de deux dominos adjacents doivent être de couleurs différentes. 
Seule compte la position du domino (verticale ou horizontale), et non son sens (cela ne 
change rien que la face portant le numéro l soit en haut ou en bas). Il est clair que f 1 = 1 
(un domino vertical), f2 = 2 (deux dominos verticaux, ou deux dominos horizontaux), 
f3 = 3 (trois dominos verticaux, ou un domino vertical et deux dominos horizontaux 
(deux choix possibles)); on s' aperçoit ensuite que, pour tout entier naturel n ~ 2: 

fn+ 1 = fn - 1 + J,, ('R) 

Lorsque n parcourt N, l'ensemble des f 11 constitue donc une suite de nombres réels, 
appelée suite réelle, vérifiant la relation de récurrence ('R). 

Les suites sont un outil mathématique fondamental. Elles ont de nombreuses applica­
tions en physique, chimie, biologie. 

Elles peuvent servir, notamment, à étudier des systèmes dynamiques, des systèmes de 
particules (en physique quantique, par exemple, en théorie des orbitales moléculaires, 
pour un système de N noyaux et n électrons ... ), ou encore à résoudre numériquement 
une équation, ou une équation différentielle. 

Définition 

On appelle suite, à valeurs dans un ensemble E, une famille d'éléments de E indexée 
par les entiers naturels. 

111 

..c 
n:s 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Une suite numérique, qui est donc une liste de nombres, peut donc être considérée comme 
une application d'une partie de N (qui peut être égale à N), dans IR ou <C. On notera, dans ce 
qui suit, OC pour désigner IR ou <C. La plupart des résultats qui suivent sont présentés dans le 
cas des suites réelles. 

On désigne, habituellement, par (un)nEN la suite numérique qui, à un entier naturel n, 
associe le nombre Un. 

Soit no un entier naturel. On désigne, habituellement, par (un)n ::.no la suite numérique 
qui, à un entier naturel n ~ no, associe le nombre Un. 

1. Somme de suites 

Soient (un)nEN et (vn)nEN deux suites à valeurs dans le corps llC. 
Alors, la suite somme (wn)nEN = (u11 + vrJnEN est définie par : 

V n E N : Wn = Un + Un 

2. Multiplication d'une suite par un scalaire 

Soit (un)nEN une suite à valeurs dans le corps K, et À E llC. 
Alors, la suite (w11 ) 11EN = À (un)nEN est définie par : 

V n E N : Wn = À Un 

3. L'espace vectoriel des suites 

Théorème 

L'ensemble, noté KN des suites à valeurs dans K est un K-espace vectoriel, c'est-à-dire 
un ensemble non vide1, muni de l'addition et de la multiplication par un scalaire, tel 
que: 

1. étant données deux suites (ur,)nEN et (vn)nEN, à valeurs dans K, la somme de ces 
suites est aussi une suite à valeurs dans K : 

2. étant données deux suites (u11) 11EN et (vn)nEN' et un scalaire À, (tl u11 + Vn)nEN est 
aussi une suite à valeurs dans K : 

3. étant donnée une suite (un)nEN• et deux scalaires Il. etµ dans K, (Il.+µ) (un)nEN est 
aussi une suite à valeurs dans K : 

4. étant donnée une suite (u11 ) 11EN• à valeurs dans K, et deux scalaires À etµ dans K : 

1. Il est clair que la suite nulle (u,. = 0 pour tout entier naturel n) appartient à cet ensemble. 
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5. étant donnée une suite (un)nEN• à valeurs dans ]!{, le réel 1 est l'élément neutre de 
la multiplication par un scalaire : 

Ainsi, KN est stable par combinaisons linéaires : toute combinaison linéaire de suites 
à valeurs dans K est une suite à valeurs dans K. 

Définition 

Un sous-ensemble 8 de l'espace KN des suites est un sous-espace vectoriel s'il 
contient la suite nulle et s'il est stable par combinaisons linéaires, c'est-à-dire, étant 
données deux suites (un)nEN et (vn)nEN de 8, ainsi qu'un scalaire À E K : 

Définition 

Un sous-espace 8 de l'espace KN est dit de dimension.finie N E N* si il existe une 
base {{u~),,EN , {u~),,EN, ... , {u~),,EN) de KN, permettant d'exprimer, de façon unique, 
toute suite (un)nEN de 8, sous la forme : 

N 

(un)nEN = 2= s~ X {u~),,EN 
k=I 

4. Produit de suites 

Soient (un)nEN et (vn)nEN deux suites à valeurs dans K. 
Alors, la suite produit (wn)nEN = (un Vn)nEN est définie par : 

V n E N : Wn = Un Vn 
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Les différents types de suites 

1. Suites définies explicitement 

Définition 

Une suite (un)neN est définie explicitement si, pour tout n E N, l'expression de Un en 
fonction de l'entier n est connue, ce qui est le cas pour des expressions de la forme 
Un = f(n), où f est une fonction donnée. 

Exemple 

C' est le cas de la suite (u,,)11eN telle que, pour tout n de N: 

1 
u,, = l + -

2" 

2. Suites définies par une relation de récurrence d'ordre 1 

Définition 

Une suite (un)neN est définie par une relation de récurrence d'ordre 1 si son premier 
terme u0 est donné et si, pour tout entier n, Un+ 1 s'exprime en fonction de Un, ce qui est 
le cas pour des expressions de la forme Un+ 1 = f (un) , où f est une fonction donnée. 

Exemple 

C'est le cas de la suite (u11) 11eN telle que, pour tout n de N : 

>- Suite arithmétique 

Définition 

Uo = l VnE N :u11+1=~ 

Une suite (un)neN est dite arithmétique de raison r E ][(si, pour tout entier naturel n: 

Un+l =Un+ r 

>- Somme des termes d'une suite arithmétique 

nombre de termes X (premier terme+ dernier terme) 

2 
Mathématiquement, cela se traduit de la façon suivante : pour une suite arithmétique de 
premier terme up, p E N, on obtient, pour tout entier naturel n ~ p: 

I
n (n - p + 1) X (up + u11 ) 

Uk = 
2 

k=p 

(de up à Un, il y a exactement n - p + 1 termes). 
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> Suite géométrique 

Définition 

Une suite (un)nEN est dite géométrique de raison q E JI{ si, pour tout entier naturel n : 

Un+! = qun 

> Somme des termes d'une suite géométrique de raison * 1 

l - raisonnombre de termes 
premier terme X ----------

1 - raison 
Mathématiquement, cela se traduit de la façon suivante : pour une suite géométrique de 
raison q * l, de premier terme uP, p E N, on obtient, pour tout entier naturel n ~ p, 

n 1 _ qn- p+ l I Uk = Up X --1---q­
k=p 

(de up à Un, il y a exactement n - p + l termes). 

> Suite arithmético-géométrique 

Définition 

Soient a et b dans JI{ tels que a * l. Une suite (un)nEN telle que, pour tout entier 
naturel n: 

Un+l = GUn + b 

est dite arithmético-géométrique. 

> Étude d'une suite arithmético-géométrique 

On commence par déterminer s'il existe un nombrer E JI{ tel que la suite (un)nEN définie, 
pour tout entier naturel n, par : 

Un= Un+ r 

soit géométrique de raison a. Si un tel scalaire r existe, alors, pour tout entier naturel n : 

Un+ 1 = Un+ 1 + r = a Un + b + r = a Un = a Un + a r 

ce qui conduit donc à : 
b 

r=-­
a-1 

Réciproquement, on vérifie que la suite (un)nE N définie, pour tout entier naturel n, par: 

est géométrique de raison a. 

b 
Un= Un+-­

a-1 

On peut alors en déduire, pour tout entier naturel n : 

n n ( b ) Un = a uo = a uo + --
a - l 
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ce qui conduit, pour tout entier naturel n, à : 

Un= Un - _b_. =an (uo + _b_)- _b_ =an uo + _b_(a_'_i _-_1_) 
a- l a- 1 a- 1 a-1 

3. Suites définies par une relation de récurrence d'ordre 2 

Définition 

Une suite (un)nEN est définie par une relation de récurrence d'ordre 2 si ses deux 
premiers termes, uo et u1, sont donnés, et si, pour tout entier n ~ 1, Un+I s'ex­
prime en fonction de Un et Un- I, ce qui est le cas pour des expressions de la forme 
Un+ 1 = g(un, Un- 1 ), où g est une fonction donnée. 

Exemple 

C'est le cas de la suite (u,,),,eN telle que: 

UQ = l u, = 1 Vn E N * 

Définition 

Une suite (un)nEN, à valeurs dans K, est définie par une relation de récurrence linéaire 
d 'ordre 2 si ses deux premiers termes, u0 et u1, sont donnés, et si, pour tout entier 
n ~ 1, Un+I s'exprime linéairement en fonction de Un et Un- 1, c'est-à-dire s'il existe 
trois scalaires a, b etc dans K, (a, c) E K* x K*, tels que : 

V n E N* : a Un+ 1 + b Un + c Un- 1 = 0 

Théorème 

a, b et c, étant trois scalaires tels que (a, c) E K* X K*, l'ensemble Ôn;a,b,c des suites 
(un)nEN vérifiant la relation de récurrence linéaire d 'ordre 2 

V n E N* : a Un+ 1 + b Un + c Un-] = 0 

est un K -espace vectoriel de dimension 2. 

Démonstration : 

• Pour montrer que 8 11;a,b,c est un K-espace vectoriel de dimension 2, il suffit de montrer 
que c'est un sous-espace vectoriel de l'espace KN des suites réelles. 

Il est non vide, car la suite identiquement nulle appartient à Ôn;a,b,c· 

Il ne reste donc plus qu'à montrer la stabilité de 8n;a,b,c par combinaisons linéaires; à 
cet effet, on considère deux suites (un)nEN et (un)nEN de Ôn;a,b,c. ainsi qu' un scalaire A. 
On a, clairement, pour tout entier naturel non nul n : 

a (Un+ 1 + À Un+ 1) + b (Un + À Un) + C (Un- 1 + À Un+ 1) = a Un+ 1 + b Un + C Un- 1 

+ À (aun+ I + bun + CUn- 1) = 0 

Ainsi, la suite (un)nEN + À (un)nEN appartient bien à Ôn;a,b,c· 
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• Pour montrer que 8n;a,b,c est de dimension 2, on va montrer que l'application linéaire, 
qui, à toute suite de 8 11;a,b,c, associe ses deux premiers termes, est bijective (c'est un 
isomorphisme, c'est-à-dire une application linéaire injective et surjective); les deux 
espaces seront donc isomorphes, ce qui garantit l'égalité de leurs dimensions respec­
tives. 

Soit donc l'application : 'P : 8n;a,b,c -+ lK.2 

(un)nEN H (uo, u1) 

Il est clair que l'application cp est linéaire. 

Le noyau de l'application cp, c'est-à-dire l'ensemble des suites (u11 )nEN dont les deux 
premiers termes sont nuls, est réduit à la suite nulle : cp est donc injective. 

L'application cp est surjective, car, si on se donne deux réels uo et u 1, on peut définir 
une suite de 8n;a,b,c dont les deux premiers termes soient uo et u1. 

L'application cp est donc bien un isomorphisme : JK.2 étant de dimension 2, il en est 
donc de même de 8n;a,b,c· • 

Afin de pouvoir exprimer, le plus facilement possible, les termes d'une suite vérifiant 
une relation de récurrence linéaire d'ordre 2 de la forme ( 40.1 ), il peut être intéressant 
de déterminer une base de l'espace 8n;a,b,c· À cet effet, on commence par rechercher les 
suites géométriques (distinctes de la suite identiquement nulle) qui satisfont ce type de 
relations ; on cherche donc à déterminer les scalaires r, supposés non nuls, tels que : 

V n E N* : a r't+ 1 + b rn + c rn- l = 0 

r étant non nul, il en résulte : a r2 +br+ c = O. Par suite : 

• si le discriminant t,. = b2-4a c est non nul, le trinôme a r2 +b r+c admet deux racines 
distinctes r 1 et r2 dans C. 

Les suites géométriques (~tEN et (~tEN vérifient bien la relation de récurrence li­
néaire d'ordre 2 donnée, et sont linéairement indépendantes. Elles forment donc une 
base de 8n;a,b,c · 

Ainsi, toute suite (u11 ) 11EN vérifiant cette relation de récurrence est telle que : 

V n E N : Un = À r7 + µ ~ (À,µ) E C2 

Si la suite est réelle, et si les deux racines sont complexes, de la forme r1 = p ei8 et 
r2 = p e- i 8, toute suite (u11)nEN vérifiant cette relation de récurrence est aussi telle que: 

V n E N : u11 = ap11 cos(nB) + f3p 11 sin(nB) (a,f3) E IR2 

• si le discriminant t,. = b2 - 4 ac est nul, le trinôme a r2 + br + c admet une racine 
double ro E K 

Les suites (r3tEN et (n r3LEN vérifient bien la relation de récurrence linéaire d'ordre 
2 donnée, et sont linéairement indépendantes. Elles forment donc une base de 8n;a,b,c· 

Ainsi, toute suite (un)nEN vérifiant cette relation de récurrence est telle que : 

V n E N : Un =(À+µ n) r~ (À,µ) E JK.2 

Dans tous les cas, pour ce type de suite, il y a donc deux constantes a priori inconnues, À etµ. 
La connaissance de deux termes de la suite peut permettre de lever l'indétermination. Lorsque 
ce sont les deux premiers termes de la suite qui sont connus, on parle de conditions initiales. 
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~ Équation caractéristique 

Définition 

Étant donnée une suite (un)nEN• à valeurs dans K, vérifiant la relation de récurrence 
linéaire d'ordre 2 : 

V n E N* : a Un+ 1 + b Un + c Un- 1 = 0 (a,c) E K* X K* 

l'équation a r2 + br + c = 0 est appelée équation caractéristique. 

Exemples 

1. Considérons la suite (u,,),,eN définie par : 

uo = 1 UJ = 2 V n E N* Un+ 1 = 2 u,, + 3 Un- 1 

L'équation caractéristique est : r2 - 2 r - 3 = 0 

-1 et 3 sont racines évidentes. 

Ainsi, il existe deux réels À etµ tels que: V n E N : Un = À (-1)" + µ 3" 

bE K 

Les conditions sur uo et u 1 conduisent alors à: uo =À+µ= l u 1 = -À+ 3 µ = 2 

puis : À = ~ µ = * 
(- 1)" +311

•
1 

Par suite : V n E N : u" = 4 

2. Considérons la suite (u11 )neN définie par : 

UQ = l UJ = - 1 V n E N : U11+2 + U11+ 1 + Un = 0 

L'équation caractéristique est: r2 +r+1 = 0, de racines complexes j = e 
2

~n et j2 = e 
4

~n = ]. 
Comme Il l = IJ21 = 1, il existe deux réels À etµ tels que: 

(2nrr) . (2nrr) V n E N : U11 = À COS -
3

- + µ Stn -
3

-

Les conditions sur uo et u1 conduisent alors à : 

uo=À=l (2rr) . (2rr) l ../3 u1 = ;i cos 3 + µ sm 3 = -À 2 + µ 2 = - 1 

puis: µ = - ~-Par suite: V n E N : u,, = cos( 2 ~1r)- ~ sin (2 ~1r ) 

4. Suites définies par une relation de récurrence d'ordre p, p E N* 

Définition 

Une suite (un)nEN est définie par une relation de récurrence d'ordre p , p E N*, si ses 
p premiers termes, uo, u 1 , • •• , u p- I , sont donnés, et si, pour tout entier n ~ p, Un+ 1 

s'exprime en fonction de u11 , Un-J, .. . , Un-p+I, ce qui est le cas pour des expressions 
de la forme u11+1 = h(u11 , u11-1 , . .. , Un-p+ I ), où h est une fonction donnée. 
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Une« start-up »emprunte un capital C, C E IR:. 
On désigne par un le capital dû à la fin de l'année n (n E N*), par i le taux annuel 

(i E [0, 1]), et par M le montant d'une mensualité (M E IR:). 

L'amortissement de l'emprunt est supposé constant. 

On a alors: 
V n E N : Un+ J = ( 1 + i) Un - 12 M 

En reprenant la technique d'étude explicitée précédemment, on obtient, pour tout 
entier naturel n : 

. n 12 M ( (1 + i)n - 1)) 
Un = ( 1 + l) C - . 

l 

Soit N le nombre d'années nécessaires pour rembourser l'emprunt (N E N*). 

Au bout des N années (on est donc à l'année N + 1), le capital dû est donc nul : 

UN+I = Ü 

soit 
(1 + it C _ 12 M ( (l : ir - 1)) = O 

l 

On obtient alors le montant d'une mensualité : 

M= i(I+irc =---ic __ _ 
12((1 + i)n - 1) 12(1 - (1 + o -n) 

Cette dernière formule est bien connue des financiers, qm l'utilisent très 
fréquemment. 
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Étude d'une suite 

Pour étudier une suite, il est important de pouvoir étudier - et démontrer - ses propriétés, 
mais aussi de pouvoir comparer ses termes les uns avec les autres, et en particulier savoir 
s'ils augmentent ou diminuent... 

1. Récurrence simple 

Considérons une suite (un)nEN· Si jamais on souhaite démontrer qu'elle vérifie une pro­
priété, que nous noterons 'P, démontrer celle-ci par récurrence peut s'avérer extrêmement 
intéressant. 

En quoi consiste cette méthode? Tout simplement, on va commencer par regarder si 
la propriété tp est vérifiée à un rang initial no E N donné (no peut, bien sûr, être égal à 
zéro); si c'est le cas, on suppose ensuite qu'elle est vraie à un rang n ~ no quelconque, 
et on cherche à déterminer si elle est encore vraie au rang n + 1 : le fait qu'elle soit vraie 
au rang no permettra d'en déduire qu'elle est vérifiée pour tout entier n ~ no. 

Exemple 

Considérons la suite (vn)nEN définie par : 

n 

V n E N : u,, = I k2 

k=O 

On remarque que: 

Vo = Û , UJ = Û + J = l V2 = Û + l + 4 = 5 , V3 = Û + l + 4 + 9 = 14 

Démontrons alors, par récurrence, que : 

V n E N . fi k2 = n (n + 1)(2 n + 1) 
. L.J 6 

k=O 

• La propriété est bien vraie au rang O. 

• Supposons la propriété vraie à un rang n > 0; on a alors : 
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n+ I n 

I k2 = I k2 + <n + 1)2 
k=O k=O 

= 

= 

= 

= 

n (n + 1) (2 n + 1) 2 

6 
+ (n + 1) 

(n + 1) (n(2n+ l)+6(n+ 1))) 

6 

(n + l)(n + 2)(2 n + 3) 

6 
(n+ l)(n+2) (2(n+ l)+ 1) 

6 

(On factorise par n + 2, car -2 est racine évidente.) 
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La propriété est donc vraie au rang n + 1. 
Comme elle est vraie au rang 0, elle est donc vraie pour tout entier naturel n. 

Le raisonnement par récurrence permet de démontrer une propriété vérifiée, suivant les cas, 
pour tous les entiers naturels, dans d'autres, pour une infinité d 'entiers naturels, à partir d'un 
certain rang. 

2. Récurrence forte 

Considérons une suite (un)nEN· On cherche toujours à démontrer une propriété rp pour 
une suite (un)nEN · 

Comme pour la récurrence simple, on commence par regarder si la propriété rp est 
vérifiée à un rang initial no E N donné (no peut, bien sûr, être égal à zéro); si c'est le 
cas, on suppose ensuite qu'elle est vraie jusqu'à un rang n ~ no quelconque, et on 
cherche à déterminer si elle est encore vraie au rang n+ l : si oui, le fait qu'elle soit vraie 
au rang no permettra d'en déduire qu'elle est vérifiée pour tout entier n ~ no. 

Cette récurrence qui semble, en apparence, plus forte que la récurrence simple, lui est 
en fait équivalente, dans la mesure où elle revient à démontrer par récurrence simple la 
propriété à tout rang k ~ n. 

3. Récurrence double 

Il s' agit, cette fois-ci, d'un autre type de démonstration par récurrence : on cherche 
toujours à démontrer une propriété rp pour une suite (un)nEN• mais, pour commencer, au 
lieu de regarder si rp est vérifiée à un rang initial no E N donné, on regarde si elle est 
vraie aux rangs no et no+ l (no peut toujours être égal à zéro); si c'est le cas, on suppose 
ensuite que rp est vraie aux rangs n ~ no et n + 1, pour n quelconque, et on cherche à 
déterminer si elle est encore vraie aux rangs n + l et n + 2 : si oui, le fait qu'elle soit vraie 
aux rangs no et no+ l permettra d' en déduire qu'elle est vérifiée pour tout entier n ~ no. 

Exemple 

Soit () un réel. 
Démontrons par récurrence que, pour tout entier naturel non nul n, cos(n ()) est un polynôme, 
noté Tn, de degré n en cos(), de coefficient dominant 211

-
1• 

• La propriété est vraie au rang 1 : 

cos() est bien un polynôme de degré 1 en cos(), de coefficient dominant 2 1- 1 = 1. 

• La propriété est vraie au rang 2 : 

cos(2 ()) = 2 cos2 () - l est bien un polynôme de degré 2 en cos(), de coefficient dominant 
22-1 = 2. 

• Supposons la vraie jusqu'à un rang n > 1. 

Les formules d'addition permettent alors d'écrire: 

cos ((n + 1) ()) = cos (n ()) cos() - sin (n ()) sin() 

et : 
cos ((n - J) ()) = cos (n ()) cos()+ sin (n ()) sin() 
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Par suite, en additionnant membre à membre ces deux relations, on en déduit: 

cos((n + l)B) + cos((n - l)B) = 2 cos(ne) cose 

pms: 

cos ((n + 1) e) = 2 cos (ne) cos e-cos ((n - 1) e) 

Par hypothèse de récurrence, cos (ne) est un polynôme de degré n en cos e. cos (ne) cos e 
est donc un polynôme de degré n + l en cos e. Comme cos ((n - l) B) est un polynôme de 
degré n - l en cos e, cos ((n + 1) e) est bien un polynôme de degré n + l en cos e. 

Le coefficient du terme de plus haut degré est : 

2 X 2n- I = 2n = 211+1 - I 

La propriété est donc vraie au rang n + l. 

• Comme elle est vraie au rang l, elle est donc vraie pour tout entier naturel n ~ l. 

T11 est Je nième polynôme de Tchebychev 1• Tl est à noter que ce polynôme ne dépend pas de e. 
L'unicité de ce polynôme est admise. 
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Majorants, minorants d'une suite 
réelle - Croissance et décroissance 

1. Majorant et minorant d'une partie non vide de IR. 

>- Majorant 

Soit P une partie non vide de R Un réel Mrp est un majorant de Psi, pour tout x de 
p: X~ Mrp . 

Exemple 

Considérons l'ensemble { 2 + l' n E N*} : 3 est un majorant de cet ensemble. 

>- Minorant 

Soit P une partie non vide de R Un réel mrp est un minorant de P si, pour tout x de 
p: X): mrp. 

Exemple 

2 est un minorant de l'ensemble { 2 + ~, n E N* }· 

>- Deux propriétés fondamentales de l'ensemble des réels 

Toute partie PM non vide et majorée de IR. admet une borne supérieure finie. Cette borne 
supérieure est le plus petit des majorants de PM· 

De même, toute partie Pm non vide et minorée de IR. admet une borne inférieure finie. 
Cette borne inférieure est le plus grand des minorants de Pm. 

Exemple 

Considérons l'ensemble {2 + _!_, n E w}. Il est bien non vide. 2 + _!_o = 3 est sa borne supé-
~ 2 

rieure, qui est atteinte, et 2 sa borne inférieure, qui n'est pas atteinte. 

2. Le cas des suites 

>- Suite majorée 

Une suite réelle (un)nEN est dite majorée s'il existe un réel M tel que: 

Vn E N : Un~ M 

>- Suite minorée 

Une suite réelle (un)nEN est dite minorée s'il existe un réel m tel que: 

Vn E N : Un): m 
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Le majorant positif d'une suite réelle n'est jamais unique: si la suite (u,,),,eN est majorée par 
le réel positif M, elle l'est aussi par le réel 2 M, ou encore par le réel 3 M, ou encore, par 
M+l,M+2, ... 

V n E N : Un ~ M ~ 2 M ~ 3 M ~ ... 

De même, le minorant positif d' une suite n' est pas unique! si la suite (u,,),,eN est minorée par 
le réel positif m , elle l' est aussi par le réel ':f, ou encore par le réel fi, ... 

m m 
V n E N : u,, ~ m ~ l ~ 

22 
~ ... 

>- Suite bornée 

Une suite réelle (u,,)neN est dite bornée si et seulement si elle est à la fois majorée et 
minorée, c'est-à-dire s'il existe deux réels met M tels que : 

V n E N : m ~ Un :::;:; M 

ou, de façon équivalente, s'il existe une constante positive C telle que : 

V n E N : lunl :::;:; C 

Une suite complexe (un)neN est dite bornée si et seulement si les suites ('Re(un))neN et 
(I m(u,J)neN sont bornées. 

>- Suite positive 

Une suite réelle (un)neN est dite positive si : V n E N Un :;;: O. 

>- Suite négative 

Une suite réelle (un)neN est dite négative si : V n E N Un :::;:; O. 

3. Croissance et décroissance 

Une suite réelle (un)neN est dite : 

• croissante à partir du rang no E N si : V n :;;: no : Un :::;:; Un+ 1. 

• décroissante à partir du rang no E N si : V n :;;: no : Un :;;: U11+ 1. 

• stationnaire à partir du rang no E N si : V n :;;: no : Un = U11+ 1. 

Une suite réelle (u11 ) 11eN est dite : 

• strictement croissante à partir du rang no E N si : 

V n :;;: no : Un < Un+ 1 

• strictement décroissante à partir du rang n0 E N si : 

V n :;;: no : Un > Un+ 1 

Une suite réelle ou complexe (un)neN est dite constante si : 

V n E N : Un = Un+ 1 

Une suite réelle (un)neN est dite monotone à partir du rang no E N si elle est crois­
sante ou décroissante à partir du rang no. 

Une suite réelle (un)neN est dite strictement monotone à partir du rang no E N si 
elle est strictement croissante ou strictement décroissante à partir du rang n0 . 
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Techniques d'étude des suites réelles 

1. Étude de la différence Un+1 - Un 

Exemple 

On considère la suite (u11) 11EN définie par: 

Alors, pour tout entier naturel n : 

l 
V n E N : u11 = l + -

2" 

u -u - 1 + - - 1 - - - - - - l - --- < 0 1 1 1 (1 ) 1 
11+ 1 11 - 211+ 1 2n - 2n 2 - 2n+ 1 

La suite (u11 ) 11EN est donc strictement décroissante. 

, Un+1 
2. Etude du quotient dans le cas d'une suite à termes stricte-

Un 
ment positifs 

Exemple 

On considère la suite (u11) 11EN définie par : 

Alors, pour tout entier naturel n : 

l 
VnE N :u -­n - 211 

U11+I = ~ <] 
u,, 2 

La suite (u11 ),1EN est donc strictement décroissante. 

3. Étude de suites réelles définies par une relation de récurrence 
de la forme Un+1 = f(un} 

La connaissance des variations de la fonction x H f (x) - x peut être très utile pour 
l'étude de la suite (un)nEN· 

Exemple 

On considère la suite (u11) 11EN définie par : 

Uo = l V n E N : Un+I = ...;;;;+l 

Alors, pour tout entier naturel n : 

U11+1 - Un = j(un) - Un 

Par récurrence immédiate, on constate donc que la suite (u11) 11EN est à termes positifs. 
Étudions alors la fonction g : Jlt+ ~ lit, x H Yx+ï - x. 
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La fonction g est définie, continue et dérivable sur JR.+ : 

1 l-2YX+ï 
V x E JR.+ : g'(x) = -1 = -----

2 YX+ï 2 YX+ï 

Comme, pour tout réel positif x: YX+ï ;;::: 1, g'(x) ne s'annule jamais sur JR.+, où elle prend 
des valeurs négatives. 
La fonction g est donc strictement décroissante sur JR.+ . Soit cp la racine positive de l'équation 
g(x) =X. 

Si 0 < uo < cp, la suite (u,,),,eN croît vers cp; si uo > cp, la suite (u,,),,eN décroît vers cp. 

4. Un cas particulier: les suites homographiques 

Définition 

Étant donnés quatre scalaires a, b, cet d tels que: 

c*O 

on appelle suite homographique une suite (u,,)neN vérifiant une relation de récurrence 
de la forme: 

au,, +b 
V n E N : Un+ 1 = --­

c u,, +d 

Le nom vient du fait qu'une application de la forme: 

XE ][{\ -- H --{ d} ax+b 
C cx+d 

avec 
ad-bc-:t=O , c:t=O 

est une homographie, c'est-à-dire une application du plan complexe dans lui-même, qui laisse 
invariant l'ensemble des droites et des cercles de celui-ci (on parle de transformation projec­
tive bijective). Une homographie s'obtient comme la composée de translations, de rotations, 
d'homothéties et éventuellement d'une inversion. La condition précédente assure, tout sim­
plement, que la fonction n' est pas constante. En effet, dans le cas où ad - b c = 0, on obtient, 
pour tout x de ][{ \ {- ~} : 

ax+b acx+bc acx+ad a(cx+d) a 
= = = = 

cx+ d c(cx+d) c(cx+d) c(cx+d) c 

Proposition 
On considère quatre scalaires a, b, c et d tels que : 

La suite homographique (u11 ) 11ew telle que : 

est définie si et seulement si : 
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Convergence 

1. Définitions 

~ Suite convergente 

Une suite réelle (un)nEN converge vers une limite finie e E IR si, pour tout réel s > 0, il 
existe un rang no tel que : 

V n ~ no : lun - e1 ~ s 

La suite (un)nEN est dite convergente (ou converge), de limite 

e = lim U11 
n->+oo 

tR\ 1. 

fJ 
Le fait d'écrire « pour tout E > 0 » signifie que la quantité t:, qui est positive, peut être choisie 
aussi petite que l'on veut, et permet donc de comprendre de façon « intuitive » la notion de 
limite. 

~ -

2. Le choix de la quantité t: conditionne celle de l'entier n0 : une fois t: fixé, no l 'est aussi. 

Une suite complexe (un)nEN converge vers une limite finie e E <C si et seulement si les 
suites ('Re (un))nEN et (I m (un))11EN convergent respectivement vers 'Re (f) et I m (f). 

~ Suite divergente 

Une suite réelle (un)nEN diverge vers +oo si, pour tout réel strictement positif A, il existe 
un rang no tel que : 

Vn ~ no : un ~ A 

On écrit alors : 
lim Un= +oo 

n->+oo 

Une suite réelle (un)nEN diverge vers -oo si, pour tout réel strictement positif A, il existe 
un rang no tel que : 

V n ~ no : Un ~ -A 

On écrit alors : 
lim Un= -oo 

n->+oo 

Une suite (un)nEN qui n'a pas de limite finie est dite divergente. 

Une suite réelle qui a pour limite +oo est ainsi une suite divergente. Mais ce n'est pas parce 
qu'une suite diverge qu'elle tend vers+ ou -oo ! 

Exemple 

La suite (v11 ) 11eN définie par : 
V n E N : Un = L + ( -1 )n 

diverge, mais ne tend pas vers +oo ou -oo ; elle est en effet bornée 

V n E N : lv,,I ~ 2 
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2. Propriétés fondamentales 

Propriété 
Si la limite d'une suite existe, alors elle est unique. 

Démonstration: On démontre ce résultat par l'absurde, dans le cas d'une suite réelle 
convergente (un)nEN · 

On suppose qu'il existe deux réels f 1 et f2 tels que la suite (u11 ) 11EN converge vers f 1 

etf2 avec e, * f2 . 
Soit e > O. Il existe alors deux entiers n 1 et n2 tels que : 

On a alors, pour tout n ~ max(n 1, n2) : 

, . lf1 - f2 I 
e etant quelconque, on obtient, pour E = 

2 
: 

Si e 1 * f 2, c'est impossible. Il en résulte : 

Propriété 
Une suite convergente est bornée. 

Démonstration : On démontre ce résultat dans le cas d'une suite réelle. 
Soit ainsi (un)nEN une suite réelle convergente, de limite f E R. 
Soit e > O. Il existe un entier no tel que : 

Par suite, pour tout entier n ~ n0 : 

Ainsi, en considérant 

M = max{luol, lu1l, .. . , lu110-1I, E +!fi } 

on en déduit, pour tout entier naturel n : 

qui est le résultat cherché ! 
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La réciproque est fausse ! Une suite bornée n'est pas nécessairement convergente.C'est le cas, 
par exemple, de la suite (u,,)11eN• définie par: 

V n E N : u,, = l + (- 1)" 

La suite (u,,)11eN est bien bornée, puisque, pour tout entier naturel n : 

lu,,I ~ 2 

Elle ne converge pas, car ( -1 )" n'est pas le terme d'une suite convergente (les valeurs prises 
étant, alternativement, - 1 et 1). 

3. De l'utilité des suites pour l'étude des fonctions : caractérisation 
séquentielle de la limite 

Théorème 

Soient f une fonction définie sur un intervalle l de R, et xo un réel donné dans !. Tl y a 
équivalence entre les propriétés suivantes : 

• lirn /(x) = e 
X-+Xo 

• Pour toute suite réelle (u11 ) 11eN· à valeurs dans /, de limite xo, la suite (f(u11))11eN 

converge vers e. 

Ce résultat est extrêmement puissant, dans la mesure où, pour une application continue f : 
I c IR ~ IR, et une suite (u,,)11eN• à valeurs dans / , convergeant vers une limite e" E / , on peut 
en déduire le résultat suivant : 

lim f (u,,) = f ( lim u,,) = f(fu) 
n-t+oo n-++oo 
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Convergence des suites monotones 

Propriété 
Une suite réelle croissante et majorée converge. 

Démonstration : Soit (un)nEN une suite réelle croissante et majorée. Désignons par 13s 
la borne supérieure (finie) de l'ensemble {un, n E N }. 

Comme 13s est le plus petit des majorants de cet ensemble, alors, pour tout s > 0, 
13s - s, qui est plus petit que 13s, n'est pas un majorant. Ainsi, il existe un entier no tel 
que: 

Or, la suite (u11 )nEN étant croissante, on aura donc, pour tout entier n ~ no : 

On retrouve ainsi la définition de la limite d'une suite : (u11 ) 11EN converge donc vers 13s . 

• 
Propriété 
Une suite réelle décroissante et minorée converge. 

Démonstration : Exercice. • 
1. Convergence des suites réelles définies par une relation de récur­

rence de la forme Un+1 = f(un) 

Théorème 

Soit (u11) 11EN une suite réelle définie par une relation de récurrence de la forme 
Un+ 1 = f(un), où f est une fonction donnée. 

Si (u11 )nEN converge vers une limite t, et si la fonction f est continue en t, alors: 

e = f(t) 

Démonstration : On suppose donc que la suite (un)nEN converge vers le réel t; ainsi, 
pour tout s > 0, il existe un rang no tel que : 

soit: 

s 
V n ~ no : lun+ 1 - l i ~ 2 

s 
V n ~ no : lf(un) - f i ~ 2 

Comme la suite (f(u11))11EN converge vers f(l), il existe un rang n1 à partir duquel : 

130 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

soit : 
. s 

Vn ~ n1 : lun+I - f(f)I ~ 2 
On a alors, pour tout entier n tel que n ~ max( no, n 1) : 

s 
If - f(f)I = If - Un+I + Un+I - f(f)I ~ If - Un+l I + lun+I - f(f)I ~ 2 2 = S 

Le réels ayant été choisi aussi petit que l'on veut, on a donc, nécessairement : 

e = f(f) 

2. Théorème du point fixe (de Banach) 

Théorème 

Soit f une fonction définie sur un intervalle 1 de R, à valeurs dans ! , contractante 1• 

Alors, la suite (un)nEN définie par: 

Vn E N : Un+I = f(un) 

converge vers l'unique point fixe f de f appartenant à l 'intervalle l. 

De plus, pour tout entier naturel n : 

• 

Démonstration: On admettra l'existence et l'unicité du point fixe e de f (cela est dû 
au fait que f est contractante). 

Pour tout entier naturel n : 

Comme 0 < k < l : 
lim k'1 = 0 

n->+oo 

D'où le résultat ! 
Il est à noter que ce théorème peut aussi se démontrer à l'aide de suites de Cauchy, 

comme cela sera fait plus loin. • 

1. c'est-à-dire lispchitzienne de rapport k < 1 ; pour tout couple de réels (x, y) E 12 : 

lf(x) - f(y)I ,;:;; klx - YI 
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Opérations sur les limites de suites 

1. Somme de suites 

Propriété 
Soient (un)nEN et (un)nEN deux suites, à valeurs dans lR ou C, convergentes, de limites 
respectives f u et f u. 

Alors, la suite (u11 + un)nEN est elle aussi convergente, de limite fu + fu. 

Propriété 
Soient (un)nEN et (u,JnEN deux suites réelles, de limites respectives Cu et + oo. 

Alors, la suite (un + u,JnEN est divergente, de limite + oo. 

Propriété 
Soient (un)nEN et (un)nEN deux suites réelles, de limites respectives fu et - oo. 

Alors, la suite (un + v11) 11EN est divergente, de limite - oo. 

Dans le cas de deux suites réelles divergentes (un)neN et (v,J11eN• de limites respectives - oo et 
+oo, il n'est pas possible de savoir, sans une étude supplémentaire, quelle est la limite (et si 
elle existe), de la suite (un + Vn)neN· 

2. Produit de suites 

Propriété 
Soient (un)nEN et (vn)nEN deux suites, à valeurs dans lR ou C, convergentes, de limites 
respectives f u et f u. 

Alors, la suite (un Vn)nEN est elle aussi convergente, de limite f u fu. 

Propriété 
Soient (u11 )nEN et (un)nEN deux suites réelles, de limites respectives fu > 0 et +oo. 

Alors, la suite (un un)nEN est divergente, de limite +oo. 

Dans le cas où t 11 = 0, il n'est pas possible de conclure sans une étude plus poussée (qui 
n'aboutira pas nécessairement). 

Propriété 
Soient (u11 )nEN et (un)nEN deux suites réelles, de limites respectives Cu > 0 et - oo . 

Alors, la suite (un un)nEN est divergente, de limite -oo . 

i-0E\ 1. Dans le cas où t 11 = 0, il n'est pas possible de conclure sans une étude plus poussée (qui 
e:J n'aboutira pas nécessairement). 

2. On dispose bien sûr de propriétés analogues pour le cas où t 11 < O. 
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Propriété 
Soient (un)neN et (v11)neN deux suites réelles divergentes, de limites respectives -oo 

et -oo. 

Alors, la suite (un Vn)neN est divergente, de limite +oo. 

Propriété 
Soient (un)neN et (v11)neN deux suites réelles divergentes, de limites respectives -oo 

et +oo. 

Alors, la suite (un v11 ) 11eN est divergente, de limite -oo. 

Propriété 
Soient (u11 ) 11eN et (v11 ) 11eN deux suites réelles divergentes, de limites respectives + oo et 
+oo. 

Alors, la suite (un v11 ) 11eN est divergente, de limite +oo. 

3. Inverse d'une suite 

Propriété 
Soit (u11 ) 11eN une suite, complexe ou réelle, à termes non nuls, convergente, de limite 
l u :f::. O. 

Alors, la suite (ïf-) est elle aussi convergente, de limite-}. 
n nEN Lu 

Propriété 
Soit (un)neN une suite réelle, à termes non nuls, divergente, de limite ±oo. 

Alors, la suite(~) est convergente, de limite nulle. 
Un nEN 

Propriété 
Soit (un)neN une suite réelle, à termes non nuls et strictement positifs à partir d' un rang 
no E N, convergente, de limite nulle. 

Alors, la suite(~ ) est divergente, de limite +oo. 
n n~no 

Propriété 
Soit (un)neN une suite réelle, à termes non nuls et strictement négatifs à pa1tir d'un rang 
no E N, convergente, de limite nulle. 

Alors, la suite (~ ) est divergente, de limite -oo. 
n n~no 

4. Multiplication d'une suite par un scalaire 

Propriété 
Soient (u11 )nEN une suite réelle, à valeurs dans OC, convergente, de limite lu, et À. dans K 

Alors, la suite (À. u11)nEN est elle aussi convergente, de limite À. lu. 

Propriété 
Soient (u11 )nEN une suite réelle, divergente, de limite +oo, et À. un réel. 

Si le réel À. est strictement positif, la suite (À. un)neN est elle aussi divergente, de li­
mite +oo. 

Si le réel À. est strictement négatif, la suite (;J. u11 ) 11EN est elle aussi divergente, de li­
mite - oo. 
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Propriété 
Soient (un)nEN une suite réelle, divergente, de limite -oo, et À un réel. 

Si le réel À est strictement positif, la suite (À un)nEN est elle aussi divergente, de li­
mite - oo. 

Si le réel À est strictement négatif, la suite (À un)nEN est elle aussi divergente, de li­
mite + oo. 

Dans le cas de deux suites divergentes (u11) 11eN et (v,,)neN• de limites respectives -oo et +oo, 

il n'est pas possible de savoir, sans une étude supplémentaire, quelle est la limite (et si elle 
existe), de la suite (u11 + v,,)11eN· 

S. Complément: le théorème de Cesàro1 

Théorème 

Soit (un)nEN* une suite réelle, de limite finie e E JR.. 

* 
U 1 + U2 + ... + Un 

La suite (v11 )nEN*, telle que: V n E N : Vn = -------
n 

1 /1 -;; I uk> a même 
k= I 

limite f que fa suite (Un )nEN*. 

Démonstration : 

• Par définition de la limite, pour tout E > 0, il existe un rang n0 tel que, pour tout entier 
naturel n ~ no : 

E 
lu - fi ~ -n ~ 2 

• Pour tout entier naturel n ~ no : 

1 n 
lvn-fl=- I(uk- f) 

n k=l 

no-1 

étant une quantité finie : lim ~ ~ (uk - f) = O. 
11->+oo n LJ 

k= l k= l 
Il existe donc un rang n 1 tel que, pour tout entier naturel n ~ n 1 : 

no- 1 
1 I E - (uk - f) ~ -
n 2 

k= I 

Par suite, pour tout entier naturel n ~ max {no , n1} : 

. no- l n 
1~ 1~ E n-no+lE E E 

lvn - fi ~ - LJ (uk - f) + - LJ (uk - f) ~ - + - ~ - + - = E 

n k= 1 n k=no 2 n 2 2 2 

Posons alors n2 = max {no , n 1 }. On a alors, pour tout entier naturel n ~ n2 : 

lvn - fi~ E 

La suite (v11 ) 11EN* a donc même limite que la suite (u11 )nEN*· • 
l. Ernesto Cesàro (1859-1906), mathématicien italien, qui apporta de nombreuses contributions à l'étude 
des séries numériques. C'était aussi un spécialiste de géométrie différentielle. 
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Convergence des suites 
homographiques réelles 

Proposition 
On considère quatre réels a, b, cet d tels que : 

ad-bc=FO , c =FO 

et la suite homographique réelle (un)neN vérifiant une relation de récurrence de la 
forme: 

GUn + b 
V n E N : U 11+ 1 = --­

C Un + d 

Pour que la suite soit définie pour tout entier naturel n, il faut que, pour tout entier 
naturel n: 

CUn + d =F 0 

Si la suite (u11 ) 11eN converge, sa limite test solution de l'équation : 

soit : c t 2 + (d - a) t - b = O. 

af + b 
f= --­

cf +d 

0 d 
. . af + b 

1 n supposera, ans ce qm smt : uo =F . A ors : 
cf + d 

• Si (d - a)2 + 4b c < 0, l'équation précédente n'a pas de solution réelle, et la suite 
diverge. 

• Si (d - a)2 + 4 b c = 0, l'équation précédente admet une racine double, a - d. La suite 
2c 

a-d 
converge vers ~. 

• Si (d - a)2 + 4b c > 0, l'équation précédente admet deux racines réelles distinctes t 1 
et f2, avec f 1 < f2 : 

- si lcf2 +dl < 1, la suite (u11 ) 11eN a pour limite f1 lorsque n tend vers + oo. 
cf1 +d 

- Si lcf2 +dl > l , la suite (u11)neN a pour limite f2 lorsque n tend vers +oo. 
cf1 +d 

. cf2 + d . . 
St = -1 , la smte (u11 )neN diverge. 

cf1 + d 

Démonstration : Si la suite converge, sa limite est un point fixe de la fonction : 

X E lR \ {-~} H _a_x _+_b 
c cx +d 

Un tel point fixe x est donc solution de : 

ax+b 
x=--­

cx+d 
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ce qui conduit à : 

c x2 + (d - a) x - b = 0 

Le discriminant est : 
J".,. = (d - a)2 + 4 b c 

Il faut donc envisager les cas suivants : 

1. Si (d - a)2 + 4 b c = 0 : 

136 

e = a - d est alors racine double du trinôme c x2 + (d - a) X - b = O. 
2c 

Considérons alors la suite (vn)nEN définie, pour tout entier naturel n, par : 

On obtient: 

Or : 

Vn+ l = 

= 

= 

= 

l 
Vn=-­

Un - t 

1 

Un+ I - f 

1 

aun + b al+ b 

CUn + d cf + d 

(cf + d)(c Un+ d) 

(ad - be) (un - .f) 

( C f + d) ( C (Un - .f) + C f + d) 

(ad - bc)(u11 - .f) 

ce + d (ce + d)2 

= c +-------
ad-be (ad-bc)(u11 -f) 

a+d 
c.f +d = -

2
-

et, compte tenu de (d - a)2 + 4b c = 0: 

ce qui entraîne : 

(d - a)2 

-b e= ---
4 

ad- be= 

= 

= 

= 

= 

(d - a)2 d 
4 + a 

4ad+(d-a)2 

4 
4 ad + d2 + a2 - 2 ad 

4 
2ad + d2 + a2 

4 
(a + d)2 

4 
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Ainsi: 
(et+d)2 (a+d)2 4 

= = 1 
(ad-be) 4 (a+d)2 

Il en résulte : 
et +d 1 et+d 

Un+ 1 = e + -- = e + Un 
ad - be Un - t ad - be 

. ( ) d . . h , . d . et + d La suite un nEN est one une smte ant met1que, e raison e ---
ad - be 

Par suite, pour tout entier naturel n : 

et+ d 
Un = uo + en --­

ad - be 

La suite (un)nEN diverge. La convergence de la suite (un)nEN vers a - d en résulte. 
2c 

2. Si (d - a)2 + 4 b c > 0 : 
Le discriminant /1 est strictement positif, l'équation «aux points fixes» admet 
deux solutions distinctes t 1 et t1 : 

Ainsi: 

a-d- V"iS. 
t 1 = -----

2c 

a-d+Y°iS. 
t1= -----

2e 

Considérons alors la suite (wn)nEN définie, pour tout entier naturel n, par: 

On obtient: 

Wn+I 

Un -t1 
Wn = 

Un -t2 

a Un+ b P 
-t,1 

CUn +d 
aun + b 
---- t2 
CUn + d 

aun + b at1 +b 

CUn +d ct1 +d 
aun + b at2 + b 

eu11 +d et2 +d 

et2 + d (ad - be) (un - t1) 

et, + d (ad - be) (un - t1) 

et2 + d Un - t1 

et1 + d Un - t2 

137 

..c 
n:s 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
:J 
0 
'<j" 
..--t 

0 
N 

@ 
....... 
.!: 
O'l 

·;:::: 
>-
0. 
0 
u 

puisque f 1 et f2 vérifient respectivement : 

L . ( ) d . , , . d . c f 2 + d a smte Wn nEN est one une smte geometnque, e raison . 
cf1 +d 

Par suite, pour tout entier naturel n : 

(
cf2 +d)" 

Wn = wo P d 
CL] + 

Ainsi: 

• si 1 cf
2 

+dl < 1, la suite (wn)nEN a pour limite 0 lorsque n tend vers +oo; 
cf1 +d 

Un - f i . 
comme, pour tout entier naturel n, w 11 = e , la smte (un)nEN a donc pour 

Un - 2 
limite f 1 lorsque n tend vers +oo. 

S.l cf2 +d1 . l . ( ) d" . • I > 1, a smte w11 nEN 1verge vers +oo; comme, pour tout entier 
cf1 + d 

naturel n, lwnl = 1 Un - f i 1, la suite (un)nEN a donc pour limite f2 lorsque n tend 
Un - f2 

vers +oo . 

. cf2 + d 
• S1 = -1, la suite (wn)nEN diverge; comme, pour tout entier naturel n, 

cf1 + d 
Un - f1 . . , 

Wn = , la smte (un)nEN diverge egalement. 
Un - f2 

3. Si (d - a)2 + 4 b c < 0: 
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Le discriminant !!!,. est strictement négatif, l équation « aux points fixes » admet 
deux solutions distinctes complexes e et e : 

a - d- i ô 
f= ----

2c 

où ô E R+ est solution de : 

- a -d+iô 
f= ----

2c 

Considérons alors la suite (zn)nEN définie, pour tout entier naturel n, par : 

un - e 
Zn = ---

Un - f 
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On obtient: 

Zn+ l 

= 

Un+l - f 

Un+ l - f 

aun + b ----e 
CUn +d 
aun + b ----- e 
CUn + d 

aun +b at+b 

CUn + d cf1 +d 

aun +b at+b 

CUn + d 
-

et+ d 

cf + d (ad - b c)(un - f) 

cf+ d (ad- bc)(un - f) 

cf + d Un - f 

cf + d Un -f 

puisque e et e vérifient respectivement 

at+ b 
f= ---

ct +d 

- at+ b 
f =---

ct +d 

et + d 
La suite (z11 )nEN est donc une suite géométrique, de raison c t + d. 

Par suite, pour tout entier naturel n : 

Or: 

(
ce + d)11 

Zn = zo ct+d 

l~~:~l=l et 

et+ d 

cf + d * 1 

La suite (z11) 11EN n'a pas de limite lorsque n tend vers + oo. Il en est de même de la 
suite (u11 )nEN· 

Il est à noter que la divergence de la suite peut s'obtenir directement, dans la 
mesure où l'équation aux points fixes n'admet pas de racine réelle ! La suite étant 
à valeurs réelles, sa limite est en effet nécessairement réelle. • 

' . ae+b . , . 
On exclut le cas ou le premier terme vaut--, pmsque 1 on a alors, pour tout entier natu­

c e + d 
rel n: 

ae+b 
Un=--

cf +d 
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Suites extraites 

Définition 

Soit (un)nEN une suite, à valeurs réelles ou complexes. 

On appelle suite extraite de la suite (un)nEN (ou sous-suite) une suite obtenue en 
sélectionnant, dans l'ordre, un sous-ensemble infini de termes de (un)nEN· 

Comme les termes sont retenus « dans l'ordre » , il existe ainsi une application stric­
tement croissante cp: N ~ N permettant d'indexer les termes de la suite extraite, sous 

la forme ( u<p(n) tEN. 

Exemple 

Étant donnée une suite réelle (u,,),,EN• la suite (u2 11),1EN• obtenue en ne retenant que les termes 
d' indices pairs, est une suite extraite de (u,,),,EN· 
L'application ip : N ----t N permettant d'indexer les termes de la suite extraite est donc ici : 
n H 2n. 

Lemme 

Toute application cp: N ~ N, strictement croissante, n'est pas majorée. 

Démonstration : Dans un premier temps, on démontre par récurrence que, pour tout 
entier naturel n : 

cp(n) ;;,, n 

• Cette propriété est bien vraie au rang 0, cp étant à valeurs dans N : 

cp(O) ;;:: 0 

• Supposons la propriété vraie à un rang n ;;,, 0: cp(n) ;;:: n. 

L'application cp étant strictement croissante, il en résulte : 

cp(n + 1) > cp(n) ;;,, n 

Ainsi, cp étant à valeurs dans N : 

cp(n + 1) > n 

ce qui conduit à : 

cp(n + l) ;;:: n + 1 

La propriété est donc vraie au rang n + 1. 

• Comme elle est vraie au rang 0, elle est donc vraie pour tout entier naturel n. 

140 



'O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
'<;j" ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

Comme lim n = +oo, il en résulte: 
n->+oo 

lim cp(n) = +oo 
n->+oo 

L'application 'P n'est donc pas majorée. 

Théorème 

Toute sous-suite d 'une suite convergente converge vers la même limite. 

Démonstration : On démontre le résultat dans le cas d'une suite réelle. 
Soit ainsi { u<p(n) teN une suite extraite d'une suite convergente (un)neN· 
On note e la limite de (un)neN· 
Alors, pour tout E > 0, il existe un rang no tel que, pour tout entier n ~ no : 

• 

L'application 'Pétant strictement croissante de N dans N, et non majorée, il existe donc 
un rang n 1 tel que, pour tout entier n ~ n 1 : 

cp(n) ~no 

Ainsi, pour tout entier n ~ n 1 

lu<p(n) - fi ~ E 

D'où le résultat. • 
> Théorème de Bolzano-Weierstrass 

Théorème 

De toute suite réelle (un)neN bornée, on peut extraire une sous-suite convergente. 

Démonstration : Ce théorème est admis. • 
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Suites de Cauchy 

Pour étudier le comportement d'une suite à l'infini, il n'est pas toujours nécessaire de 
connaître sa limite. Intuitivement, on comprend bien que, si une suite converge, ses 
termes seront, à partir d'un certain rang, assez proches les uns des autres. 

Définition 

La suite (un)nEN est une suite de Cauchy si, pour tout réel strictement positif s, il 
existe un entier no tel que : 

ce qui signifie que, à partir d'un certain rang, l'écart entre deux termes de la suite est 
toujours, en valeur absolue, aussi petit que l'on veut. 

>- Critère de Cauchy 

Propriété 
Une suite réelle converge si et seulement si c' est une suite de Cauchy 1• 

Démonstration : Soit (un)nEN une suite convergente, de limite finie e E IR. Alors, pour 
tout s > 0, il existe un rang no tel que : 

e 
V n ~ no : lun - fi ~ 2 

Par suite, pour tout couple d'entiers (p, q) tels que p ~ no et q ~ no : 

La suite (un)nEN est donc une suite de Cauchy. 
Réciproquement, considérons une suite réelle (u11 ) 11EN telle que, pour tout réel stric­

tement positifs, il existe un rang n0 tel que, pour tout couple d'entiers (p, q) tels que 
p~~ctq~~: s 

lup - uql ~ 2 
Il en résulte, en particulier, pour tout entier n ~ n0 : 

s 
lun - Un0 I ~ 2 

puis, par inégalité triangulaire : 
s 

lunl = lun - Un0 + Un0I ~ 2 + lunol 

La suite (un)nEN est donc bornée par max { uo, ... , lun0 - 1 I, ~ + lun0 1}. 

1. R est un espace complet, c'est-à-dire un espace où toute suite de Cauchy converge. 
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D'après le théorème de Bolzano-Weierstrass, on peut donc en extraire une sous-suite 
convergente ( u<p(n) L EN' dont on notera furp(nJ la limite. 

Il existe donc un rang n 1 tel que, pour tout entier n ~ n 1 

Par suite, pour tout entier n ~ max(n0, n 1 ) , comme ip(n) ~ n : 

La suite (un)nEN converge donc aussi vers f u'P(nJ. • 
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Comparaison des suites réelles 

1. Négligeabilité 

Définition 

Soient (un)nEN et (vn)nEN deux suites réelles, non identiquement nulles. 

La suite (un)nEN est dite négligeable devant la suite (vn)nEN s'il existe une suite (e11 ) 11EN' 
de limite nulle, et un rang n0 à partir duquel : 

On note alors : 

On dit que un est un «petit o » de Vn. 

La notation « petit o » , de même que la notation «grand 0 » , qui sera vue plus loin, est appelée 
notation de Landau, en hommage au mathématicien Edmund Landau 1• Leur paternité est 
visiblement assez controversée, et reviendrait, a priori, à Paul Bachmann2

. 

Exemple 

On considère les suites (u,,)11eN" et (v,,)11eN• définies par : 

* l V n E N : u,, = n4 v,, = n3 

Alors, comme : 
1. u,, l' _l -- 0 lffi - = lffi 

n->+oo v,, ll->+oo n 
on a bien: 

2. Domination 

Définition 

Soient (un)nEN et (vn)nEN deux suites réelles. 

La suite (u11 )nEN est dite dominée par la suite (un)nEN s'il existe un réel positif Met un 
rang no à partir duquel : 

On note alors : 

On dit que Un est un « grand 0 » de Vn . 

1. Edmund Georg Hermann Landau (1877-1938), mathématicien allemand, spécialiste de théorie des 
nombres. 
2. Paul Bachmann (1837-1920), mathématicien allemand lui aussi, et également spécialiste de théorie des 
nombres. 
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Exemple 

On considère les suites (un)nEN* et (v11 )nEN* définies par : 

5 + .!. 3 
V n E N * : u,, = --" v = -211 Il 211 

Alors, comme, pour tout entier naturel non nul n : 

on a bien: 
Un = O(v11 ) 

n~+oo 

3. Équivalence 

Définition 

Soient (u11 ) 11eN et (v11 ) 11eN deux suites réelles, non identiquement nulles. 

Les suites (u11),,eN et (v11),,eN sont dites équivalentes s'il existe une suite (a11) 11eN• de 
limite égale à 1, et un rang no à partir duquel : 

On note alors : 

Exemple 

On considère les suites (u1,)11EN* et (v11),1EN* définies par : 

Alors, comme : 

1 
V n E N * : Un = 1 + 4 

n 

1 
Vn = 1 + 3 

n 

l 
l + -

1. Un 1· n.3 l lm - = lm --- = 
n-t+co Vn n~+oo 1 

l + ­
n4 

les suites (u11),,EN et (v,,),,EN sont bien équivalentes lorsque n tend vers +oo. 

Attention aux manipulations successives et hasardeuses d'équivalents! 
Pour cette raison, on ne donnera pas, dans ce cours, de résultats généraux ni de « recettes » 

pour la manipulation d'équivalents, la meilleure méthode, la plus fiable et la plus sûre, étant 
de manipuler, suivant les cas et ce qui est le mieux adapté, des« o » ou des« 0 » . 

Théorème 

Soient (u11 ) 11eN et (v11 ) 11eN deux suites réelles, équivalentes lorsque n tend vers + oo. 

Alors: 

Réciproquement, si (u11),,eN et (v11)neN sont deux suites réelles telles que, lorsque n tend 
vers + oo 

Un = V11 + O(V11 ) 

elles sont aussi équivalentes lorsque n tend vers + oo. 
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Pouvoir déterminer, pour des suites, des relations de négligeablilité, équivalence, domination, 
est donc extrêmement utile pour étudier leur convergence ! 

4. Développement asymptotique 

Définition 

On appelle développement asymptotique d'une suite réelle (un)nEN une décomposi­
tion de la forme : 

où 

Un = Un, 1 + Un,2 + . . . + Un,p + 0 ( Un,p) 

lun,p 1 est très petit devant lun,p- 1 I 

lun,p- 1 I est très petit devant lun,p-21 

lun,21 est très petit devant lun,il 

Les développements asymptotiques peuvent être extrêmement utiles pour déterminer des li­
mites. 
On parle de développement asymptotique, car on étudie ce qui se passe lorsque n tend vers +oo. 

Exemple 

On considère la suite (u,,)neN* définie par : 

V n E N* : u,, = ( l - ~ r 
Lorsque n tend vers +oo : 

( l _ ~r = e"tn(1 - D = en(-~+o(D) = e- t+o( l l 

(On a effectué un développement asymptotique à l'ordre l en ~.) 

Ainsi : ( 1 )" 1 
lim l - - = e- 1 = -

11-->+oo n e 

5. Des propriétés intéressantes : suites adjacentes, théorème 
des gendarmes 

:> Suites adjacentes 

Définition 

Deux suites réelles (un)nEN et (vn)nEN sont dites adjacentes si : 

• l'une des suites est croissante ; 

• l'autre suite est décroissante : 

• lim (un - Un) = O . 
n->+oo 

Théorème 

Deux suites adjacentes convergent et ont même limite. 
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~ Théorème des gendarmes 

Théorème 

Soient (u11 ) 11EN et (v11 ),,EN deux suites réelles convergeant vers une même limite f. 

Alors, pour toute suite réelle (w,,)nEN telle que, pour tout entier naturel n: 

la suite (w11 ) 11EN est elle aussi convergente, de limite f. 

Démonstration : Comme les suites (u11 )nEN et (vn)nEN convergent vers f, il existe un 
rang no tel que, pour tout entier n ~ no : 

f - t: ~ U11 ~ f + e 

et: 

ce qui conduit à : 

puis: 

• 
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En physique, ou en mécanique, un système dynamique est un système évoluant, au 
cours du temps: 

• de façon causale, c'est-à-dire dont l'avenir est directement conditionné soit par son 
passé, soit par son état actuel ; 

• de façon déterministe, c'est-à-dire que la donnée d'une condition initiale corres-
pond à une unique évolution. 

Historiquement, l'un des premiers exemples de système dynamique est le système 
solaire, auquel s'intéressa le mathématicien Joseph-Louis Lagrange 1 • De nos jours, la 
théorie des systèmes dynamiques a de nombreuses applications, notamment, lorsqu'il 
s'agit d'étudier la stabilité d'un système, ou d'un ensemble de particules. 

Modéliser le chaos 

Un exemple intéressant est l'attracteur (c'est-à-dire l'ensemble des limites des solu­
tions du système) de Hénon. Il est construit par la donnée initiale d'un couple de réels 
(xo, yo), et de deux réels a et b, à partir desquels on génère la suite de points du plan 
de coordonnées (xn, Yn) tels que, pour tout entier naturel n : 

{ 
Xn+ 1 = Y n + l - a x;, 

Yn+l = bxn 

Lorsque a = 1, 4 et b = 0, 3, l'attracteur est chao­
tique, ce qui signifie qu'il devient fortement instable; 
son comportement à long terme n'est pas prédictible. Le 
fait que le système dynamique associé soit déterministe 
permet donc de contrôler, dans certains cas, le chaos. 

L'attracteur de Hénon peut apparaître comme une sim­
plification de l'attracteur de Lorenz, qui a de nom­
breuses applications en météorologie, plus précisément, 
pour modéliser le comportement du fluide turbulent 
qu'est l'atmosphère. 

L'attracteur de Hénon pour 

a = 0, 0941 et b = 0, 99681. 

L'attracteur de Lorenz. 

1. Joseph Louis, comte de Lagrange ( 1736-1813), mathématicien, mécanicien et astronome italien. Il 
fut l'initiateur du calcul variationnel. En parallèle, il apporta de nombreuses contributions en algèbre, à 
la théorie des nombres, au calcul infinitésimal, aux probabilités, mais aussi à la mécanique. 
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Séries 

1. Des sommes partielles aux séries 

'> Sommes partielles 

Soit (un)nEN une suite réelle. On appelle suite des sommes partielles de (un)nEN la suite 
(S n)nEN telle que, pour tout entier naturel n : 

'> Série 

n 

Sn = UQ + U J + . .. + Un = I Uk 

k=O 

Soit (un)nEN une suite réelle. On appelle série de terme général Un la suite des sommes 

partielles (f uk) , notée I Un. 

k=O nEN 

2. Convergence et divergence 

'> Convergence d'une série numérique 

Soit I Un une série réelle. On dit que I Un converge si la suite des sommes partielles 

(Ï uk) converge (i.e. admet une limite finie). 
k=O nEN 

'> Divergence d'une série numérique 

Soit I Un une série réelle. On dit que I Un diverge si la suite des sommes partielles 

(Ï uk) diverge (i.e. n'admet pas de limite finie). 
k=O nEN 

'> Somme d'une série convergente 

Soit I Un une série réelle convergente. On appelle somme de la série I u11 la quantité 

+oo n 

"\"1 U11 = lim "\"1 Uk U 11--H oo U 
n=O k=O 

qui est donc la limite de la suite des sommes partielles (f uk) . 

k=O nEN 
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~ Reste d'ordre n, n E N, d'une série convergente 

Soit ,L un une série réelle convergente. n étant un entier naturel non nul, on appelle 

Reste d'ordre n de la série ,Lu,, la quantité 

~ Série absolument convergente 

+oo 

R,, = I Uk 

k=n+ I 

Soit ,L un une série réelle. La série ,L Un est dite absolument convergente si la série 

,L lu,,I converge. 

Théorème 

Soit ,L Un une série absolument convergente. Alors, la série ,L Un converge. 

~ Série semi-convergente 

Soit ,L un une série réelle. On dit que ,L un est semi-convergente si elle est conver­
gente, mais non absolument convergente. 

~ Condition nécessaire de convergence d'une série 

Théorème 

Soit ,L Un une série réelle. Une condition nécessaire de convergence de ,L Un est : 

lim Un = 0 
n->+oo 

Attention! C'est une condition nécessaire, et non suffisante! Ainsi, ce n'est pas parce que 
l 

son terme général tend vers zéro qu'une série converge. Ainsi, la série de terme général Yn 
diverge. 

~ Somme de deux séries convergentes 

Théorème 

Soient ,L Un et ,L v,, deux séries convergentes. Alors, la série ,L (u,, + v,i) converge, et 
a pour somme : 

+oo +oo +oo 

I (u,, + v,,) = I Un + I Un 

n=O n=O n=O 
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1. Les séries géométriques 

Définition 

On appelle série géométrique toute série de la forme I rn, où r est un réel. 

Le réel r est la raison de la série géométrique I rn. 

~ Attention! Toutes les séries géométriques ne sont pas convergentes! 

~ Condition nécessaire et suffisante de convergence d'une série géométrique 

Théorème 

La série géométrique I rn converge si et seulement si lrl < 1. Dans ce cas, sa somme 

vaut: 
+oo 

~ rn = _l_ 
L..J 1-r 
n=O 

Démonstration : Pour tout entier naturel n : 

• Sir -=F 1, on peut utiliser la formule donnant la somme des n + 1 premiers termes d'une 
suite géométrique : 

n ,J< - l - ~+ ! I - i-r 
k=O 

Lorsque n tend vers l'infini, cette dernière quantité n'admet de limite que si lrl < 1. 

• Sir= I : 
n n 

I r*= Il=n+1 
k=O k=O 

Lorsque n tend vers l'infini, cette dernière quantité tend vers l'infini. 

Si lrl < 1, on a alors : 

+oo n l _ ~+ ! 

~ ~ = lim ~ r* = lim 
L..J n-->+oo L..J n-->+oo 1 - r 
n=O k=O 

l 

l - r 

puisque lim ~+ ! =O. 
n--t+oo • 

Exemple 

+oo l 1 
~ - -2 
L...211 - 1 -.!. -
n=O 2 
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Proposition 
+ oo 

La fonction qui, à tout réel x de] - 1, l[, associe I X1 est dérivable, et a pour dérivée 
n=O 

la fonction qui, à tout réel x de] - 1, l [, associe : 

+oo +
00 

+oo ( 1 )' 
XH ~nx'i- l = ~nx''- ' = ~(n+ l)X" = 1-x 

1 

(1- x)2 

Grâce à ce résultat, on peut dériver terme à terme. 

Ce résultat est admis. I x' est ce que l'on appelle une série entière. L'intervalle ] - 1, 1 [ est 
n;;,O 

son domaine de convergence, et 1, son rayon de convergence. Pour tout réel x de ce domaine, 
la série converge, et on peut dériver ou intégrer terme à terme. 

2. Les séries de Riemann 

Définition 

On appelle série de Riemann toute série de la forme "\' -
1 

, où a est un réel. L..J na 
n;;;. l 

:> Condition nécessaire et suffisante de convergence d'une série de Riemann 

Théorème 

La série de Riemann "\' _!_ converge si et seulement si a > 1. L..J na 
n;;;. 1 

Exemple 

152 

1. La série de Riemann I ~ , aussi appelée série harmonique, est une série divergente. 

" " 1 

2. La série de Riemann I ;
2 

est une série convergente, dont la somme vaut : 

3 . 

"" 1 

(Ce dernier résultat est admis. On peut le retrouver, notamment, à l'aide de séries un 
peu particulières : les séries de Fourier.) 

La série de Riemann I ;4 est une série convergente, dont la somme vaut : 

"" 1 

(Ce dernier résultat est admis.) 

+oo l 7T4 

I n4 = 90 
11= 1 
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Critères de convergence 
pour les séries à termes positifs 

1. Outils d'étude 

> Comparaison avec une série convergente 

Théorème 

Soient L Un et L Un deux séries à termes posit~fs, telles que, pour tout entier naturel 
n .'Un~ Un. 

Alors, si la série L Un converge, il en est de même de la série L Un. 

Exemple 

Pour étudier la convergence de la série I ~:
1

, il suffit de remarquer que, pour tout entier 
11;;, t 

e- 11 1 
naturel non nul n : -

3 
~ 3 . 

n n 

Comme I :
3 

est une série de Riemann convergente, on en déduit la convergence de la série 
n~ I 

- n 

I en3 . 
11;;, I 

> Comparaison avec une série divergente 

Théorème 

Soient L Un et L Un deux séries à termes positifs, telles que, pour tout entier naturel 
n .'Un~ Un. 

Alors, si la série L Un diverge, il en est de même de la série L Un. 

> Équivalence 

Théorème 

Soient L Un et L Un deux séries à termes positifs, telles que, pour tout entier naturel 
n: Un~ Un. 

Alors, si la série L u11 converge, il en est de même de la série L Un. 

Si la série L Un diverge, il en est de même de la série L Un. 

Exemple 

sin(-!-) 
Pour étudier la convergence de la série I 7, il suffit de remarquer que, lorsque n tend 

n~ I 

vers l'infini : 
sin(.!.) .!. 

" n 
~~n4' soit: 
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Comme I :
5 

est une série de Riemann convergente, on en déduit la convergence de la série 
n~ I 

" sinU) 
L..J 4 . 
n~ I n 

2. Critère de d'Alembert 

Théorème 

Soit I Un une série à termes positifs, non nuls à partir d 'un certain rang. Alors : 

. . Un+I '\°1 
• s1 hm -- < l : L..J un converge; 

n-> +oo Un 

. . Un+I '\°1 
• st hm -- > l : L..J Un diverge; 

n->+oo Un 

. . Un+ I '\°1 • st hm -- = l : on ne peut pas conclure sur la convergence de L..J Un. 
n->+oo Un 

Exemple 
- 211 

On s' intéresse à la convergence de la série I e n
4 

. Comme: 
n~ I 

e-2 (11 + 1) 

. (11+ 1)4 . e - 2 (11+1 ) n 4 . n 4 e - 2 
hm --, - = hm -- = hm = e- 2 < 1 

11-t+ oo r - " n-t+oo (n + 1 )4 e -2 11 n-t+oo (n + l )4 
114 

- 211 

on peut en déduire que la série I e n4 converge. 
n~ I 
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Qu'est-ce qu'une intégrale? 

Définition 

Considérons une fonction f : [a, b] c Ill ~ Ill, continue sur [a, b]. 

On appelle intégrale de a à b de fla valeur de l'aire comprise entre la courbe repré­
sentative de f sur [a,b] et l'axe des abscisses. 

y 

-1 a b 

Figure 54.1- L'aire sous la courbe représentative de f entre a et b. 

Le cas présenté ci-dessus ne reflète, hélas, pas la réalité des fonctions que l'on ren­
contre dans la vie de tous les jours du physicien, du chimiste, du biologiste, ... 

En effet, la plupart des fonctions ne possèdent pas toutes des propriétés de régularité, 
en particulier, elles ne sont pas nécessairement continues (ce qui est le cas, par exemple, 
d'un effort appliqué localement sur une poutre). 

Afin de pouvoir calculer l'intégrale d'une fonction qui n'est pas toujours continue, les 
mathématiciens ont commencé par construire l'intégrale de fonctions «échelonnées», 
ou «en escaliers », qui correspondent à des réalités physiques, comme, par exemple, 
une répartition de chaleur sur un barreau métallique de longueur infinie, en fonction de 

l'abscisse x: { 1 sur [-1, l] 
T(x) = 

0 ailleurs 

y 

-1 

Figure 54.2- Une fonction« créneau». 
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Si on cherche à représenter, par exemple, l'évolution du prix du blé en fonction du 
temps, en considérant qu' il garde une valeur constante chaque semaine, tout en pouvant 
augmenter ou diminuer la semaine suivante, on obtient aussi une fonction en escaliers : 

semaine 2 . 
: semaine 3 

. 
semaine 1 : . 

: semaine 4 

Figure 54.3- Un exemple de fonction en escalier: l'évolution du prix du blé en fonction du temps. 

Ainsi, Bernhard Riemann 1 choisit, pour calculer l'intégrale d' une fonction quel­
conque, d'approcher celle-ci par des fonctions « en escaliers » . 

Il est ensuite très facile d'étendre les résultats obtenus pour ces fonctions « basiques » 

à des fonctions beaucoup plus régulières ! 

1. Georg Friedrich Bernhard Riemann ( L826- L866), mathématicien allemand. Outre ses travaux sur l' inté­
gration, il a créé la théorie des fonctions algébriques, et développé les travaux de Cauchy sur les fonctions 
de variables complexes ; en géométrie différentielle, il introdui sit le concept de variété, qui conduira, ulté­
rieurement, à la géométrie riemannienne. 

156 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

Intégrale d'une fonction en escaliers 

1. Définitions 

> Subdivision d'un intervalle 

Étant donnés un intervalle [a, b] de IR, et n un entier naturel non nul, on appelle subdivi­
sion de [a, b] tout ensemble a- de réels {xo, x 1, ••• , xn } tel que : 

Xo = a < X) < X2 < ... < Xn- 1 < Xn = b 

x0 = a x, Xz x,,= b 

Figure 55.1 - Une subdivision de l'intervalle [a, b]. 

Le pas de la subdivision est : 

lo-1=Sup{xi-Xi-1,1 ~ i ~ n} 

> Subdivision régulière 

Une subdivision o- est dite régulière si elle est de pas constant. 

xo= a x1 Xz x,,= b 

Figure 55.2- Une subdivision régulière de l'intervalle [a, b]. 

> Finesse 

Étant donnés deux entiers naturels non nuls n et p, et deux subdivisions 
<Tx = {x0,x1, ... ,xn} et <Ty = {y0,y1, ... ,yP} d' un intervalle [a,b] c IR, la subdivision 
cr x est dite plus fine que cr y si : 

> Fonction en escalier 

Une fonction f, définie sur un intervalle [a, b] de IR, est dite en escaliers sur [a, b] 
s'il existe une subdivision cr= {xo, x 1, •• • ,x11 } de [a,b] telle que, pour tout ide 

{0, 1, 2, ... , n - 1 }, f soit constante sur ]xi, Xi+l [. 

> Subdivision adaptée à une fonction en escaliers 

Étant donnée une fonction f en escaliers sur un intervalle [a, b] de IR, une subdivision 
cr= {xo, x 1, ... , Xn} de [a, b] est dite adaptée à f si, pour tout ide {0, 1, 2, ... , n - l}, f 
est constante sur ]xi, Xi+I [. 
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Figure 55.3 - Le graphe d'une fonction en escaliers sur l'intervalle [a, b]. 

Propriété 
Étant donnés deux fonctions f et g en escaliers sur un intervalle [a, b] de IR, et un réel À, 

la fonction f +À g est aussi en escaliers sur [a, b] (l'existence d'une subdivision adaptée 
à f et g est admise). 

>- Intégrale d'une fonction en escaliers 

Soient f une fonction en escaliers sur un intervalle [a , b] de IR, n un entier naturel non nul, 
et <r = {x0, x 1, ... , Xn} une subdivision de [a, b]. Pour tout entier ide {0, 1, 2, ... , n - 1 }, 
on désigne par Yi la valeur de f sur l'intervalle ]xi, Xi+ l [. 

On appelle intégrale (de Riemann) de f sur [a, b] le réel 

Étant donnée une fonction en escaliers f sur un intervalle [a, b] de IR, la valeur de l'inté­
grale de f sur [a , b] ne dépend pas de la subdivision (adaptée à f) choisie. 

Si f est une fonction en escaliers sur un intervalle [a, b] de lR, alors : 

2. Propriétés 

>- Linéarité 

[ f(t) dt = - lb f(t) dt 

Étant donnés deux fonctions f et g en escaliers sur un intervalle [a, b] de IR, et un réel À: 

lb (f(t) + Àg(t)) dt= lb f(t)dt +À lb g(t)dt 

>- Positivité 

Étant donnée une fonction f en escaliers sur un intervalle [a, b] de IR, à valeurs posi-
tives : lb f(t)dt;;;: 0 
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Figure 55.4- L'intégrale d'une fonction en escaliers sur un intervalle [a, b], à valeurs positives. 

>- Croissance 

Étant données deux fonctions f et g en escaliers sur un intervalle [a, b] de lR telles que : 

V t E [a,b] : f(t) ~ g(t) 

alors : 

Lb 1 (t) dt ~ [ g(t) dt 

y 

y 

1 

a b 
-~1~---a--~~~~~~~~b----x 

-1 
-1 

Figure 55.5- Illustration graphique de la croissance pour une intégrale, dans le cas de fonctions en 
escaliers (les deux subdivisions ne sont pas nécessairement égales). 

>- Valeur absolue d'une intégrale 

Étant donnée une fonction f en escaliers sur un intervalle [a, b] de lR : 
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Figure 55.6- Comparaison entre la valeur absolue d'une intégrale et l'intégrale 
de la valeur absolue, dans le cas de fonctions en escalier. 

> Relation de Chasles 

Soit f une fonction f en escaliers sur un intervalle [a, b] de R Alors, pour tout c de 
[a, b] : 

rb f (t) dt = rc f(t) dt + rb f (t) dt 
Ja Ja Je 

> Fonctions « égales presque partout» 

Étant données deux fonctions f et g en escaliers sur un intervalle [a, b] de R, égales sauf 
en un nombre fini de points1 : 

Lb 1 (t) dt = Lb g(t) dt 

1. Des fonctions égales, sauf en des points isolés, sont dites« égales presque partout ». L'ensemble de ces 
points peut être infini. On a ici un cas particulier de «égales presque partout» sur [a, b ], puisqu 'elles ne 
diffèrent qu'en un nombre fini de points. 
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Figure SS. 7 - Illustration graphique de la relation de Chasles pour une fonction 
en escaliers sur un intervalle [a, b]. 

y 

• 

• 

a c b 

-1 

Figure 55.8 - Intégrale de deux fonctions en escaliers sur un intervalle [a, b], égales sauf en a etc . 
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Intégrale d'une fonction continue 
par morceaux 

1. Définitions 

:> Fonction continue par morceaux 

Une fonction f, définie sur un intervalle [a, b] de IR, est dite continue par morceaux 
sur [a,b] s'il existe une subdivision a-= {x0,x1, ••. ,xn} de [a,b] telle que, pour tout 
i de {O, 1, 2, ... , n - l}, la restriction .fiJx;,x;+i [ à l'intervalle ]xi , Xi+ 1 [ soit continue sur 
]xi, Xi+l [,et prolongeable par continuité en Xi et Xi+l · 

y 

-1 0 

-1 

Figure 56.1- Le graphe d'une fonction continue par morceaux. 

:> Subdivision adaptée à une fonction continue par morceaux 

Étant donnée une fonction f continue par morceaux sur un intervalle [a, b] de IR, 
une subdivision cr = {xo, x1, ••• , xn} de [a, b] est dite adaptée à f si, pour tout i de 
{0, l, 2, ... , n - l}, la restriction .fiix;,x;+i[ à l'intervalle ]xi, Xi+! [est continue sur ]xi, Xi+ ![, 

et prolongeable par continuité en xi et Xi+ 1 • 

2. Approximation d'une fonction continue par morceaux 
par des fonctions en escaliers 

Théorème 

Soit f une fonction continue par morceaux sur un intervalle [a, b] de R Alors, il existe 
deux suites, respectivement croissante et décroissante, de fonctions en escaliers (cpn)nEN 

et (l/!n)nEN• et un entier naturel no tels que, pour tout entier naturel n :?: no, et pour tout t 
de [a, b] : 
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cp11(t) ~ f(t) ~ l/!11 (t) et 0 ~ 'Pn(t) - l/!11(t) < -
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La croissance de la suite (cpn)nEN et la décroissance de la suite (rfln)nEN se traduisent par 
le fait que, pour tout entier naturel n, et tout t de [a, b] : 

'Pn(t) ~ 'Pn+ J (t) rfln+ I (t) ~ rfln(t) 

On dit alors que f est limite uniforme des suites (cpn)nEN et (rfln)nEN· 

y 

-1 
-1 

Figure 56.2 - Approximation d'une fonction par une fonction en escaliers. 

L' intérêt du théorème précédent est d' étendre la notion d' intégrale vue pour les fonctions en 
escaliers aux fonctions continues par morceaux. 

>- Un cas particulier intéressant de limite uniforme : le théorème de Weierstrass 

Théorème 

Toute fonction continue sur un segment est limite uniforme, sur ce segment, d'une suite 
de polynômes. 

3. Intégrale d'une fonction continue par morceaux 

Soit f une fonction continue par morceaux sur un intervalle [a, b] de R Alors, pour 
toute suite de fonctions en escaliers (cp11 ) 11EN dont f est limite uniforme, la suite 

( rb 'Pn(t) dt) est convergente, et ne dépend pas du choix de la suite (cpn)nEN· La limite 
Ja nEN 

de la suite (lb 'Pn(t) dt) est appelée intégrale de a à b de f , et notée lb f(t) dt. 
a nEN a 

Soit f une fonction continue par morceaux sur un intervalle [a, b] de R Alors : 

[ f(t) dt = - lb f(t) dt 

Cela vient simplement du fait que l'intégrale J;,a f(t) dt correspond à une aire comptée négati­
vement. 
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~ Sommes de Riemann, dans le cas d'une subdivision uniforme 

Théorème 

Soit f une fonction continue sur un intervalle [a, b] de R 

Alors: 

~ 1. 
E'J 

b - a n ( b - a) lb lim -- 2:! a+k-- = f(t)dt 
n->+oo n k= I n a 

y 
~ ... ..-.. 

/ l .J ). 

l l 
j l 

j l 
j ~ j l 

j l 
J ~ ) 

~ 

J l J 
J 

... ) .. .J .J 
X 

0 

Figure 56.3 - Illustration graphique de la limite d' une somme de Riemann. 

Ce résultat, quel' on ne démontrera pas dans ce cours, se comprend assez facilement de façon 

b-a " ( b-a) intuitive, dans la mesure où la somme -n- ~ f a+ k -n- représente tout simplement 

b-a ( ) la somme des aires des rectangles de longueur--, et de hauteur f a+ k h-a . n ,, 

2. On a présenté, dans ce qui précède, le cas d'une subdivision uniforme de l'intervalle [a, b]. 
Les sommes de Riemann ne se limitent pas à ce seul cas, et restent encore valables pour des 
subdivisions non uniformes, sous la condition bien sûr que le pas de celles-ci tende vers zéro 
lorsque n tend vers +oo. 

4. Propriétés 

~ Linéarité 

Étant donnés deux fonctions f et g continues par morceaux sur un intervalle [a, b] de R, 
et un réel Il.: 

lb (f(t) +Il. g(t)) dt = lb f(t) dt+ Il. lb g(t) dt 

~ Positivité 

Étant donnée une fonction f continue par morceaux sur un intervalle [a, b] de JR, à va­
leurs positives : 

lb f(t)dt ~ 0 
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~ Stricte positivité 

Étant donnée une fonction f continue par morceaux sur un intervalle [a, b] de Ill, à va­
leurs strictement positives : 

Lb f(t)dt > o 

~ Croissance 

Étant données deux fonctions f et g continues par morceaux sur un intervalle [a, b] de R 
telles que : 

alors : 

y 

-1 

Y= f(x) 

a 

' ' 

Vt E [a,b] : f(t)::::; g(t) 

Lb f(t) dt ::::; [ g(t) dt 

y 

b -1 a b 

Figure 56.4 - Illustration graphique de la croissance pour une intégrale, dans le cas de fonctions 
continues par morceaux. 

~ Valeur absolue d'une intégrale 

Étant donnée une fonction f continue par morceaux sur un intervalle [a, b] de R : 

~ Relation de Chasles 

Soit f une fonction f continue par morceaux sur un intervalle [a, b] de R Alors, pour 
tout c de [a, b] : 

Lb f(t) dt = Le f(t) dt + l b f(t) dt 

~ Fonctions «égales presque partout» 

Étant données deux fonctions f et g continues par morceaux sur un intervalle [a, b] de 
Ill, égales sauf en un nombre fini de points : 

Lb f(t) dt = Lb g(t) dt 

Théorème 

Soit f une fonction continue sur un intervalle [a, b] de Ill, à valeurs positives ou nulles. 
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Figure 56.5 - Illustration graphique de la relation de Chasles pour l'intégrale d'une fonction 
continue par morceaux. 

Alors, si f f(t) dt = 0, la fonction f est nulle sur [a, b] : 

Vt E [a,b] : f(t) = 0 

~ Inégalité de la moyenne 

Théorème 

Soit f une fonction continue sur un intervalle [a, b] de R 

On note: 
m = inf f(t) M = supf(t) 

/E[a,b] /E[a,b] 

Alors: 

m(b-a)~ f f(t)dt ~ M(b-a) 

y 

0 a b 

Figure 56.6- Illustration graphique de l'inégalité de la moyenne pour l'intégrale d'une fonction 
continue sur un intervalle [a, b]. 

Démonstration : La démonstration ne fait que formaliser les explications de la figure 
ci-dessus. 

Par hypothèse, pour tout t de [a, b] : 

m ~ f(t) ~ M 

La croissance de l'intégrale permet d'en déduire: 

lb mdt ~ f f(t)dt ~ lb M dt 
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soit : 

m (b - a) ~ Lb f(t) dt ~ M (b - a) 

~ Formule de la moyenne 

Théorème 

• 

Soient f et g deux fonctions continues sur un intervalle [a, b] de IR. On suppose que la 

fonction g est à valeurs positives : 

Vt E [a, b] : g(t) ~ 0 

Alors, il existe un réel c dans l'intervalle [a, b] tel que : 

Lb f(t) g(t) dt = f(c) Lb g(t) dt 

Démonstration : f étant continue sur [a, b ], il existe deux réels m et M tels que, pour 
tout t de [a, b] : 

m ~ f(t) ~ M 

la fonction g étant à valeurs positives, il en résulte, pour tout t de [a, b] : 

m g(t) ~ f(t) g(t) ~ M g(t) 

Par croissance de l'intégrale, il en résulte : 

Lb m g(t) d t ~ Lb f(t) g(t) dt ~ Lb M g(t) dt 

soit: 

m Lb g(t) dt ~ Lb f(t) g(t) dt ~ M Lb g(t) dt 

Si Lb g(t)dt = 0, n' importe quel c de [a , b] convient. 

Si Lb g(t) dt -:f:. 0, on peut diviser membre à membre par fab g(t) dt : 

Lb f (t) g(t) dt 

m~ ~M 

Lb g(t)dt 

Le théorème des valeurs intermédiaires permet alors d'en déduire l'existence d'un réel c 

de [a, b] tel que : 

lb f (t) g(t) dt 
f(c) = _ a _ b __ _ 

i g(t)dt 

ce qui conduit au résultat cherché. • 
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Calcul intégral 

1. Primitives 

Définition 

Soit f une fonction continue sur un intervalle Ide R Une fonction F, dérivable sur I, 
est une primitive de f sur l si et seulement si : 

F' = f sur I 

Propriété 
Soit f une fonction continue sur un intervalle l de R Alors, les primitives de f sur I 
diffèrent toutes d'une constante. 

Démonstration: Soient F1 et F1 deux primitives de .f sur l: 

F~ = F~ 
ce qui conduit à : 

soit : 

Il en résulte : 
F 1 - F 2 = Fonction à valeur constante sur l 

qui est le résultat cherché. • 

Ainsi, si F est une primitive sur J de la fonction f, alors, pour tout réel K, la fonction t E 

J H F(t) + K est aussi une primitive de f sur / , ce qui est assez logique, dans la mesure où la 
dérivée d'une fonction constante est nulle! 

2. Le théorème fondamental de l'analyse 

Théorème 

Soit f une fonction continue sur un intervalle l de R et a un réel appartenant à l. 

L'application del dans Ill, qui, au réel x de I, associe Lx f(t) dt, est une primitive de f 

sur l . 

Démonstration: Désignons par F la fonction qui, à tout x de l, associe Lx f(t) dt. 

Il s' agit donc de montrer que, pour xo donné dans l , F est dérivable en xo, avec 
F' (xo) = f(xo). 
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Soit E > O. f étant continue en xo, il existe un réel 1Jx tel que, pour tout x vérifiant 
lx - xol ~ 1Jx : 

lf(x) - f(xo)I ~ e 

Par suite, pour un tel x vérifiant x > xo : 

1 

F(x) - F(xo) _ f(xo)I = 
X- XQ 

= 

= 

= 

= 

l x J(t) dt - l xo J(t) dt 
(x - xo) f(xo) 

x-xo x-xo 

( X f(t)dt + [ f(t)dt 
Ja xo 

f(xo) ( x dt 
Jxo 

x-xo x-xo 

( X f(t)dt 
Jxo 

( x f(xo)dt 
Jxo 

x-xo 

( X f(t) dt 
Jxo 

x-xo 

x-xo 

f(xo) ( x dt 
Jxo 

x-xo 

(x (f(t) - f(xo)) dt 
Jxo 

x-xo 

( x lf(t) - f(xo)I dt 
Jxo 

lx-xol 

rx &dt 
Jxo 
lx-xol 

~ , . 1 F(x) - F(xo) 1 De meme, pour un tel x venfiant x < xo : - f(xo) ~ E. 
x-xo 

=E 

Le réel E étant quelconque, il peut être choisi aussi petit que possible. Il en résulte : 

1. F(x) - F(xo) f( ) 
im = x0 x-uo x- x0 

soit F' (x0) = f(x0 ), qui est le résultat cherché. • 

Théorème 

Soit f une fonction continue sur un intervalle l de JR, et a un réel appartenant à !. 

Pour tout réel C, il existe une unique primitive de f prenant en a la valeur C. C'est 
l 'application : 

l 4 lR 

X H C + l x f (t) dt 
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Théorème 

Soit f une fonction continue sur un intervalle [a, b] de R, et F une primitive de f. Alors: 

Lb f(t)dt = F(b) - F(a) 

On notera: [F(t)]~ = F(b) - F(a). 

3. Propriétés 
> Intégration par parties 

Théorème 

Soient f et g deux fonctions de classe C 1 sur un intervalle [a, b] de R 

Alors: 

Lb f(t) g' (t) dt = [f(t) g(t) J: -Lb 1' (t) g(t) dt 

Démonstration: Les fonctions f et g étant de classe C 1 sur [a, b], il en est de même de 
leur produit f g. De plus, pour tout réel t de [a, b] : 

(f(t) g(t))' = f(t) g' (t) + f' (t) g(t) 

f et g étant de classe C 1 sur [a, b], les fonctions f g' et f' g sont continues sur [a, b], et 
donc intégrables : 

Lb (f(t) g(t))' dt = Lb f(t) g' (t) dt + Lb f' (t) g(t) dt 

soit: 

[j(t) g(t) J: = Lb f(t) g' (t) dt + Lb 1' (t) g(t) dt 

D'où le résultat. 

Exemple 

Soit x un réel strictement positif. Alors : 
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Ix ln(t)dt = Ix ln(t) l dt 

I
X [ 

=[ln(t)t]f- -tdt 
1 t 

IX l 
= [ln(t) t]f - - t dt 

1 t 

= x ln(x) - Ix dt 

= x ln(x) - (x - 1) 
= x ln(x) - x + 1 
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~ Changement de variable 

Théorème 

Soit f une fonction continue sur un intervalle Ide R, et cp une fonction de classe C1 sur 
un intervalle J de lR telle que : 

cp(J) ç I 

Alors, pour tout couple de réels (a,f3) E 12 : 

L
-(3 [,(/3) 

f (cp(t)) cp'(t)dt = f (t) dt 
a <p(lr) 

Démonstration : f étant continue sur ! , elle possède au moins une primitive F sur /. 
Par dérivation composée : 

(F o cp)' = f o cp.cp' 

f o cp.cp' est continue sur 1, comme produit de fonctions continues sur 1. En intégrant de 
a à /3, on en déduit : 

[ (F o cp )' (t) dt = [ (f o cp) (t).cp' (t) dt 

soit: 

[ (F o cp) (t) ]~ = [ (f o cp )(t).cp' (t) dt 

ou encore: 

F (cp(/3)) - F (cp(a)) = [ (f o cp)(t).cp' (t) dt 

qui s'écrit aussi : 

[F(t)J~fa~ = [ (f o cp) (t).cp'(t) dt 

mais également : 

[,

(/3) L -(3 
f (t) dt = (f 0 cp) (t).cp' (t) dt 

cp(a) a 

D' où le résultat! • 
Exemple 

Considérons l'intégrale I = fo 1 

e1 Ve1 + 2 dt. Il est judicieux d'effectuer le changement de 

variable e' = u. L'application t H e1 est de classe C 1
. 

On peut donc appliquer le théorème du changement de variable : 

3 - r:v:i 3 

[ -~ [ 1 2 [ 3]e 2 (e +2)2 -2 v27 2 (e+2)2 -~ 
l= vu+2du = (u+2) ï du=- (u+2)ï = = -2 v3 

1 1 3 1 3 3 
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> Intégrale et parité 

Propriété 

Soit a un réel positif, et f une fonction continue et paire sur l'intervalle [-a, +a]. 

Alors: 

[ f(t)dt = 2 [ f(t)dt 

y 

- a a 

-1 

Figure 57 .1 - L'intégrale d'une fonction paire. 

Démonstration: On décompose tout simplement l'intégrale à l'aide de la relation de 
Chasles, puis on effectue un changement de variable : 1: f(t) dt = 1: f(t) dt + [ f(t) dt 

= [ f(-t) (-dt)+ [ f(t)dt 

= - [ f (t) dt + La f(t) dt (f étant paire : f( -t) = f(t)) 

= [ f(t)dt + [ f(t)dt 

= 2 [ f(t)dt • 

> Intégrale et imparité 

Propriété 

Soit a un réel positif, et f une fonction continue et impaire sur l'intervalle [-a, +a]. 

Alors: 

1: f(t)dt = 0 
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Figure 57.2- L'intégrale d'une fonction impaire. 

Démonstration : On décompose à nouveau l' intégrale à l'aide de la relation de Chasles, 
puis on effectue un changement de variable : 

[ f (t) dt = r. f (t) dt + [. f(t) dt 

= f f(-t)(-dt) + [. f(t)dt 

= - io -f(t) dt + [. f(t) dt (f étant impaire : f(-t) = - f(t)) 

= f f(t)dt + [. f(t)dt 

= - [. f(t)dt + [. f(t)dt 

=Ü • 

> Intégrale et périodicité 

Propriété 
Soit T un réel non nul, et f une fonction continue sur IR, de période T. 

Alors, pour tout réel a : 

[

+T (T 

a f(t) dt = Jo f(t) dt 

Figure 57 .3- L'intégrale d'une fonction continue de période T. 
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Primitives de fractions rationnelles 

1. Détermination d'une primitive 

Connaître la décomposition en éléments simples d'une fonction (réelle) «rationnelle » 
permet d 'en déterminer facilement une primitive: 

a 
• lorsque la fonction est de la forme x E IR\ {xo} H --, a E IR, x0 E IR, une 

x-xo 
primitive est : 

x E IR\ {xo} H a ln lx - xol 

• lorsque la fonction est de la forme x > x0 H a = a (x-x0 )-s, a E IR, x0 E IR, 
(x - xo)5 

s E IR, s * 1, une primitive est: 

a I s a 
x > xo H -- (x - xo) - = . 

1-s (l-s)(x-xo)S- 1 

1 1 + . d 1 + 1Q) a X+ f3 ( l ) E 1Ql 4 • orsque a ionct1on est e a iorme x E m,,. H 
2 

À , a,f3, /l,µ m,,. , 
X + x+µ 

.12 - 4 µ < 0, il est intéressant de remarquer que : 

2 x +À /3-Aa a 2 x +À /3- A.a 
a + 2 =- + 2 

2 x2 + À x + µ x2 + À x + µ 2 x2 + À x + µ ( A ) 2 A2 x+2 +µ-4 

= 

/3- 4f-
À2 

a 2x+À µ-4 
- +-----
2 x

2 + À X + µ (X+ ~ )2 

---+l 
it2 

µ-4 

. . . ax+f3 
Une pnm1t1ve de x E IR H 

2 
est alors de la forme : 

X + ÀX + µ 

f3 
Àa g ( À l a -- À x+-

x E IR H -
2 

ln jx2 + À x + µj + ; 2 µ - - arctan R 2 

µ - - 4 À2 
4 µ- 4 

c 'est-à-dire 
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2. Forme canonique 

Définition 

La factorisation de x2 +À x + µ en ( x + ~) 
2 

+ µ - : est appelée «forme canonique ». 

Exemple 
x- l 

Déterminons une primitive de la fonction x E R. H 
2 

. 
X +X+ l 

On a : 
x-L l 2x+ l 3 l 

---- = 
x2 +x+l 2x2 +x+l 2x2 +,x+ l 

1 2x+ l 3 L 
= 

2x2 +x+I 2 (x + t)2 - ~ + l 
2x+l 3 l 

= 
2x2+x+ l 2 (x + t)2 + ~ 

2x +l 3 4 l 
= 

2x2 +x+l 2 3 ~ (x + t)2 + 1 
l 2x+ 1 - 2 l = 
2x2+x+ l ~ (x + t)2 + l 

x-l 
Ainsi, une primitive de x E R. H 

2 
est: 

X +X+ f 

l Y3 ( 2 ( l )) x H 2 ln (x2 + x + l )- 2 T arctan Y3 x + 2 

c'est-à-dire : 
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Calcul approché d'intégrales 

1. La méthode des rectangles 

:> Le calcul approché en lui-même 

La méthode des rectangles, qui consiste à approcher la valeur d'une intégrale par la 
somme des aires de rectangles situés sous la courbe, utilise tout simplement les sommes 
de Riemann vues précédemment; pour l'intégrale d'une fonction f continue par mor­
ceaux sur un intervalle [a, b] de R, on commence donc par divi ser [a, b] en n sous-

b - a 
intervalles, de longueur--. 

n 
On choisit ensuite de considérer : 

• soit les rectangles de hauteur f (a+ k b-a ), k = 0, 1, ... , n - 1, et de largeur b - a. 
n n 

L'intégrale Lb f(t) dt est alors approchée par : 

b-a ~ ( b-a) -- L._Jf a+k--
n k=O n 

• soit les rectangles de hauteur f (a+ k b-a), k = 1, ... , n, de largeur b - a. L'intégrale 
n n 

Lb f (t) dt est alors approchée par : 

b-a fi ( b- a) -- L._Jf a+k--
n k=I n 

:> Étude de l'erreur commise 

Au-delà du calcul approché, il peut être intéressant de quantifier l' erreur ainsi commise, 
en valeur absolue. Pour la première configuration, elle est donnée par : 

l b b n-I ( b ) 
f(t) dt - ~ If a + k ~ 

a n k=O n 

~ [+~-: 1 ) h~a f(t)dt- b- a ~f(a + k b- a) 
k=O a+k » n k=O n 

n- 1 +(k+ J) b- a ( ( )) I [ b- a 

11 

f(t) - f a + k b - a dt 
k=O a+k » n 

n -1 [ +(k+I) b-a 1 ( b )1 ~ I _ " f(t) - f a + k ~ dt 
a+k IL!! n 

k=O 11 
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Considérons le cas d'une fonction de classe C1 ; d'après l'inégalité des accroissements 

[ 
b-a b-ai finis, pour tout k de {0, 1, ... ,n - l}, et tout t de a+ k-n-,a + (k + 1)-n- : 

l
f(t) - f (a+ k b - a)I ~ (r - a - k b - a) max l!'I 

n n 1e [a,bl 

on a alors: 

l b b n- I ( b ) 
f(t) dt - ~ I 1 a + k ~ 

a n k=O n 

n- 1 [+(k+ I) b- a ( b ) 
~ maxlf'I I " t-a-k~ dt 

tEfa,b] k=O a+k b;,a n 

n- 1 [ l ( b - a )2]a+(k+ 1) b;,a 
= maxlf'I I - t-a-k-

~~~ 2 n b• 
k=O a+k -7,-1 

n- 1 2 

If
, 

1 

I i (b - a) max ----
1e [a,bJ 2 n 2 

k=O 

l(b-a)2 n-I 
maxlf'I- ~ 1 
/Efa,b] 2 n2 LJ 

k=O 

(b - a)2 

maxlf'l---
1efa,bJ 2 n 

b-a 
(Pour simplifier le calcul, on a choisi de primitiver t H t - a - k-- par 

n 

( )

2 1 b-a 1 b-a 
tH - t-a-k-- aulieudetH -t2-at-k--t,afind'obtenirlavaleur0 

2 n 2 n 
en a+ k b-a , et de simplifier le calcul en a+ (k + 1) b-a !) 

n n 

L'erreur commise est donc un 0 U ). 
Il est également possible d'obtenir cette majoration en appliquant, tout simplement, la formule 
de la moyenne. 

Exemple 

( (2n)!) ~ 
Déterminons la limite, lorsque n tend vers +oo, de -- . 

n"n! 
On a: 

1 

(<2n)!r 
n11 n! 

exp(~ ln <2n)!) 
n n11 n! 

= 

( 
l l X. 2 X ... X (2 n)) 

exp - ln------
n n" lx 2 x ... x n 

= 

( 
1 (n + 1) x (n + 2) x ... x (2n)) = exp - ln----------
n n" 

= exp ( ~ ln ( l + ~) x ( l + ~) x ... x ( l + ~)) 

= ( 
l Il-) ( k )] 

exp ;:; ln D 1 +;:; 

= ( l Il- ) ( k)] 
exp ;:; ti ln l + ;:; 
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On reconnaît alors : 

l rz-I ( k) l' lim - I ln l + - = ln(l + t) dt= [(t + 1) ln( l + t) - tJ6 = 2 ln 2 - l 
11--> + oo n k=O n 0 

Par continuité de la fonction exponentielle, il en résulte : 

1 

lim ( (2 n) ! ) ~ = e2 ln 2- 1 = ~ 
11-->+oo nn n! e 

2. La méthode des trapèzes 

Une alternative à la méthode des rectangles consiste à approcher la valeur d'une intégrale 
par la somme d'aires de trapèzes, qui, graphiquement déjà, sont plus proches de la courbe 
que les rectangles précédents. 

On rappelle la formule donnant l'aire d'un trapèze : 

(grande base+petite base) x hauteur 

2 

Ainsi, en considérant la suite des trapèzes de bases respectives f (a + k b~a ) et 

·( b-a) b- a f a+ (k + 1) n 'de hauteur -n-, k = 1, 2, ... 'n - 1: 

y 

a 

h-a 
f(a+ k-n-> 

h-a) f(a+ (k+ 1) -n-

h-a h-a h 
a+ k -n- a+ ( k + 1) -n-

Figure 59.1 - La méthode des trapèzes. 

L'intégrale Lb f(t) dt est alors approchée par: 

n-1 J(a + k b-a) + J (a+ (k + 1) b-a) 
(b-a) I n n 

k=O 2n 

178 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

qui s'écrit aussi : 

(b-a)- 2:1 a+k~ + 2:1a+(k+1)~ 1 [n-1 ( b ) n-l ( b )] 

2n k=O n k=O n 

(b -a)- 2:1 a+k~ + 2:1 a+k~ 1 [n-I ( b ) n ( b )] 
2n k=O n k= I n 

(b - a) - l(a) + 2 II a+ k ~ + l(b) 1 [ n- I ( b ) l 
2n k= l n 

b-a [l(a)+l(b) + I i (a+kb-a)] 
n 2 k=I n 

(On a effectué un changement d'indices dans la deuxième somme, puis regroupé les 
termes communs aux deux sommes, c'est-à-dire entre 1 et n - !). 

Graphiquement, on voit bien qu'approcher la fonction par les trapèzes ci-dessus per­
met une meilleure approximation. L'erreur commise (que nous n'étudierons pas ici) est 

alors un 0 (n1
2 

) , ce qui est donc plus précis que pour la méthode des rectangles. 

Il existe beaucoup de nombreuses méthodes permettant le calcul approché d'une in­
tégrale. Après la méthode des trapèzes, on trouve, en général, la méthode de Simpson 1, 

qui consiste à approcher la fonction sur l'intervalle d' intégration par un polynôme qua­
dratique, c'est-à-dire de degré 2, prenant les mêmes valeurs que celle-ci aux bornes de 
l'intervalle. Par rapport à la méthode des trapèzes, l'erreur commise est plus faible, dans 
la mesure où, graphiquement, on approche la fonction par une courbe et non une droite. 
En outre, il est clair qu'une expression polynomiale s' intègre facilement. 

3. Une application de la méthode des trapèzes : une variante 
de la formule de Stirling 

Considérons la fonction logarithme népérien : celle-ci étant concave, sa courbe repré­
sentative est située au-dessus des cordes. Ainsi, pour tout entier naturel k, l'aire sous la 
courbe entre k et k+ 1 est plus grande que l'aire du trapèze ayant pour sommets les points 
de coordonnées respectives (k, 0), (k + 1, 0), (k + 1, l(k + 1 )), (k, l(k)) : 

ln(k+l) ------- - - - -----

lnk - - - - - -

k+l 

Figure 59.2- La fonction logarithme népérien, et son intégrale entre k et k + 1. 

I k+ I ln k + In(k + 1) 
lntdt ~ ~~~~~-

k 2 

1. Thomas Si mpson ( 1710-1761), mathématicien anglais, essentiellement connu pour ses travaux sur le 
calcul infinitésimal (la méthode de Simpson, qui permet un calcul approché de l'aire sous une courbe), mais 
qui fut aussi l'auteur d'un important traité de trigonométrie, et à qui l'on doit les formules permettant de 
transformer un produit de cosinus ou sinus en somme, et vice versa. 
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On en déduit, en additionnant membre à membre les inégalités ainsi obtenues pour tout 
entier k de {l, .. ., n - l}: 

n- 1 r k+ l n- 1 lnk + ln(k + l) 
IJk 1ntdt ~ I 2 
k= l k k= I 

soit, grâce à la relation de Chasles, et en effectuant un changement d'indices dans 
n- 1 

I 1n(k+ 1): 
k= I 

I
n l 11- I l /1 

ln t dt ~ - I ln k + - I ln k 
1 2 

k= l 
2 

k=2 

n- 1 
~ Inn 

c'est-à-dire [t ln t - tJ7 ~ L.J ln k + 2 , ou encore: 
k=2 

fi Inn 
n lnn-n+ l ~ L.Jlnk-2 

k=2 

On reconnaît alors : ln (n kl = ln(n!) -
1~ n. Il en résulte : 

k=2 

Inn 
n ln n - n + 1 ~ ln(n') - -. 2 

puis: (n +!)Inn- n + 1 ~ ln(n!). 
Par croissance de la fonction exponentielle, on en déduit alors : 

soit: 

La concavité de la fonction logarithme népérien fait aussi que sa courbe représentative 
est située en-dessous de ses tangentes : ainsi, pour tout entier naturel k, la courbe est 
située en-dessous de la tangente en k, ce qui se traduit par: 

t-k 
f(t) ~ lnk + -k-

1 
On intègre alors cette dernière relation entre k et k + 2 : 

1 k 1 

Ik+ 2 ln k l l l J + ï 
ln t dt ~ - + - - (t - k)2 

k 2 k 2 k 

(Afin de simplifier les calculs, on primitive t H t - k part H ! (t - k)2, qui présente 
1 

l 'avantage de s'annuler en t = k, et se calcule aisément en t = k + 2.) 
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Il en résulte : 

I k+i ln k 1 
lntdt ~ - +­

k 2 8k 

De même, la courbe est située au-dessus de sa tangente en k + 1, pour tout entier k de 
{l, ... , n-1}. 

Ainsi, pour tout t de [ k + ~ , k + l l : 
t-k-l 

ln t ~ ln(k + 1) + _k _+_l_ 

1 
On intègre alors cette dernière relation entre k + l et k + 1 : 

i + I ln(k+ 1) 1 ll lk+ l 
ln t dt ~ + -- - (t - k - 1 )2 

k+ i 2 k + 1 2 k+ i 

1 
(Afin de simplifier les calculs, on primitive t H t - k - 1 par t H l (t - k - 1)2 , qui 

présente l'avantage de s'annuler en t = k + 1, et se calcule aisément en t = k + !.) Il en 
résulte : 

Lk+ I ln(k + 1) 1 
lntdt ~ - ---

k+l 2 8(k+l) 
2 

Il ne reste plus qu'à sommer les inégalités précédentes pour k = 1, .. . , n - 1 : 

n ln(l) Inn 1 1 1 n-1 ( ) i ln t dt ~ -- +ln 2 +ln 3 + . .. + ln(n - 2) + ln(n - 1) + - + - I - ---
1 2 2 8 k= 1 k k + 1 

soit: 

[t ln t - t]7 ~ - + ln 2 + ln 3 + .. . + ln(n - 2) + ln(n - 1) + - + - ~ - - --
ln 1 ln n 1 n- I ( 1 1 ) 

2 2 s B k k+ 1 

soit : n ln n - n + 1 ~ ~ ln k + -- + - ~ - - -- . 
. n-I ln(n) 1 n-I (1 1 ) 

B 2 s B k k+ 1 

n-I ( 1 ] ) I - --- est une somme téléscopique : 
k= I k k + 1 

~(~- k!1)=(l-~+~-~+~- .. + n~, -~) 
1 = 1--
n 
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On peut aussi retrouver ce résultat en séparant les sommes, et en effectuant un change­
ment d'indices : 

n-I ( 1 1 ) I --- -
k= I k k + 1 

n l n-1 l 

I--I-. 
k= I k k= I k+ 1 

n 1 n 1 
I--I-
k=I k k=2 k 

n- 1 l n- 1 l l 

=l+~k-~k-;; 
l 

1-­
n 

n- I J 1 ( 1) 
Ainsi : n ln n - n + 1 ~ I ln k + n n + - 1 - - , ou encore : 

k=I 2 8 n 

11 1 1 ( l) n ln n - n + l ~ I ln k - ~ n + S l - ;; 
k= I 

soit : 
ln(n) 1 ( l) n Inn - n + l ~ ln(n!) - -

2
- + 8 l - ;; 

puis: 

( l) l ( l) n + 2: ln n - n + 1 - S 1 - ;; ~ ln(n !) 

soit: 

( l) 7 l n + - ln n - n + - - - ~ ln(n !) 
2 8 8n 

Par croissance de la fonction exponentielle, on en déduit alors : 

exp ((n+ ~) lnn-n+ ~ - 8
1
n) ~ n! 

soit: 

On a donc obtenu l'encadrement suivant de n ! : 
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Pour une fonction donnée f définie et continue sur un intervalle [a, b] de IR., l' inté­
grale, dite de Riemann, de a à b de f, correspond à la valeur de l'aire comprise entre 
la courbe représentative de f sur [a, b] et l'axe des abscisses. 

Cette aire est calculée par l'intermédiaire d' un découpage, de plus en plus fin, de 
l'axe des abscisses, c'est-à-dire un découpage vertical de la forme suivante : 

a b 

--------------------------r---
----------------------~---

' 1 

' 1 

Intégrale de Riemann et intégrale de Lebesgue. 

Du découpage vertical au découpage horizontal 

Toutefois, un tel découpage n'est pas toujours adapté aux fonctions qui interviennent 
dans la vie de tous les jours du physicien, du mécanicien, du biologiste : dans ce 
cas, un découpage « horizontal », à partir donc de 1 ' intervalle des valeurs prises par 
la fonction, est plus judicieux : c'est l'idée qu 'eut le mathématicien Henri-Léon Le­
besgue1. 

Bien sûr, toute fonction intégrable au sens de Riemann 1' est au sens de Lebesgue . 
C'est la réciproque qui n'est pas vraie! 

L'intégrale de Lebesgue apparaît alors comme un moyen de « mesurer » une fonc­
tion. 

1. Henri-Léon Lebesgue (1875-1941), mathématicien françai s, dont la contribution à la théorie de l' in­
tégration fut essentielle. 
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Étant donnée une partie bornée P de R, la fonction caractéristique • 'P de P est 
définie par : 

l { l si XE tp 
'P : x H 0 sinon 

Lorsque P est un intervalle [a, b] de R, sa mesure de Lebesgue µ([a, b]) est égale à 
sa longueur b - a. Intégrales de Lebesgue et de Riemann coïncident alors ; si f est 
une fonction intégrable au sens de Riemann : 

(b f(t)dt = ( f dµ 
J a J[a ,b] 

où µ est la mesure de Lebesgue. 
Lorsque P est un ensemble dénombrable, fini ou infini, il est considéré comme 

étant « nul presque partout », et donc de mesure de Lebesgue nulle. 
Grâce à l'intégrale de Lebesgue, il est donc possible d'intégrer des fonctions pré­

sentant des discontinuités comme, par exemple, la fonction de Dirichlet, qui est la 
fonction caractéristique de l'ensemble des rationnels Q : 

il { l si x rationnel 
Q : x H 0 sinon 

L'ensemble des rationnels étant donc dénombrable, même s'il est infini, il est de 
mesure de Lebesgue nulle. 

Le lecteur intéressé trouvera plus de précisions sur l'intégrale de Lebesgue dans [5], 
et sur la théorie de la mesure dans la bibliographie. 
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Intégrales généralisées 

1. Intégrales impropres 
>- Intégrale impropre sur un intervalle de longueur infinie 

Définition 

Étant donnés un réel a, et une fonction f, définie sur l'intervalle [a, +oo[, continue par 
morceaux sur [a, +oo[, la quantité : 

L
+oo LX 

f(t) dt = lim f(t) dt 
a x-.+oo a 

est une intégrale dite« impropre ». 

En effet, la quantité Lx f(t) dt n'a pas toujours une limite finie lorsque X tend vers +oo. 

• Si cette limite existe et est finie, on dit que lintégrale L+oo f(t) dt est convergente. 

• Dans le cas contraire, on dit que l'intégrale L+oo f(t)dt est divergente. 

Exemples 

1. L'intégrale i +oo e-1 dt est convergente. En effet: 

l +oo lx 
e-1 dt = lim e- 1 dt 

0 X-Hoo O 

= lim [-e-1]x 
X-HOO 0 

= lim [1 - e-x] 
X->+oo 

= 1 

I +oo dt 
2. L' intégrale 2 est convergente. En effet : 

1 t 

I +oo dt = 
1 t2 

]. IX dt 1m -
X->+oo I t2 

r 
l lx - lim --

x-.+oo t 1 

= lim f 1 - _!_l 
X->+oo X 

= l 
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3. L'intégrale i +oo dt est divergente. En effet : 
1 t 

i +oo dt = lim IX dt 
1 t X->+oo 1 t 

= lim [ln t]; 
X->+oo 

= lim lnX 
X->+oo 

= +oo 

Ce n'est pas parce qu'une fonction est de limite nulle en l'infini que son intégrale va converger, 
comme on peut le voir avec l 'exemple précédent. 

~ Intégrale impropre sur un intervalle de longueur finie 

Définition 

Étant donnés deux réels a et b, et une fonction f , définie sur 1' intervalle [a, b[, continue 
par morceaux sur [a, b[, la quantité : 

l b f(t) dt = lim lx f(t) dt 
a X-+b a 

est une intégrale dite « impropre ». 

En effet, la quantité lx f(t) dt n'a pas toujours une limite finie lorsque X tend vers b. 

• Si cette limite existe et est finie, on dit que l'intégrale lb f(t) dt est convergente. 

• Dans le cas contraire, on dit que l' intégrale lb f(t) dt est divergente. 

Exemples 

186 

1. L' intégrale i' ln t dt est convergente. En effet: 

ro' lnt dt = lim r' lntdt 
) 0 x-.o+ J x 

= lim [t ln t - t]k 
X->o+ 

= lim [X ln X - X] 
x-.o+ 

= 0 

2 L, . , 1 L' dt . a' • mtegra e - est divergente. En eu et : 
0 t 

r ' lntdt = lim ( 'dt 
) 0 x-.o+ J x t 

= lim [ln t]k 
x-.o+ 

= lim lnX 
x-.o+ 

= -OO 
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2. Des intégrales généralisées remarquables : les intégrales 
de Riemann 

>- Intégrale de Riemann {sur un intervalle de longueur infinie) 

Définition 

Soit a un réel. On appelle intégrale de Riemann toute intégrale de la forme : 

L
+oo dt LX dt 

- = lim -
a [<1' x~+oo a t(l' 

où a est un réel. 

>- Intégrale de Riemann {sur un intervalle de longueur finie) 

Définit ion 

Soit b un réel. On appelle intégrale de Riemann toute intégrale de la forme : 

lb dt lb dt - = lim -
o f<1' x ~o+ x f<1' 

où a est un réel. 

>- Condition nécessaire et suffisante de convergence d'une intégrale de Riemann 
{sur un intervalle de longueur infinie) 

Soit a un réel. L'intégrale de Riemann : 

L+oo dt LX dt 
-= lim -

a [<1' X ~+oo a [<1' 

converge si et seulement si a > l. 

Démonstration : Il suffit de calculer, pour tout réel X > a : 

= 

r 
al -a xi -a l 

= -----
1-a 1-a 

= 1 ~a r a!-1 - xL 1 l 
Lorsque X tend vers +oo, cette dernière expression n' admet de limite finie que si a > 1. 

• 
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Exemples 

I
+oo dt 

1. 3 est une intégrale de Riemann convergente: 
1 t 

lim I X dt = lim IX C 3 dt 
X ->+oo 1 ! 3 X - >+oo 

= Ji m [ 1!1 --3 ]X 
X->+oo l - 3 ~ 

= lim - -[ 
t--2] 

X->+ oo[ 1 2x-~ ] 
= x~'!1oo 2 - 2 

l 
= + -

2 

I
+ oo l 

2. 
1 

Yi est une intégrale de Riemann divergente : 

lim r' _dt = lim r' t-i dt 
X->+oo J x Yt X->+oo J x 

= lim l t'-± J+ oo 

X->+oo l - t 1 

l t ~ J+oo 
lim -

X->+oo ~ I 

= lim ~ [t ~ ] +oo 
X->+oo 3 1 

= lim ~ [x~ - i] 
X->+oo 3 

= 

= +oo 

> Condition nécessaire et suffisante de convergence d'une intégrale de Riemann 
(sur un intervalle de longueur finie) 

Soit b un réel. L' intégrale de Riemann : 

( b dt = lim ( b dt 
Jo tir x-.o+ Jx tir 

converge si et seulement si a: < 1. 

Démonstration : Il suffit de calculer, pour tout réel positif X < b : 

l b dt= Lx 
a 

r a dt 
X ta 

r~lb 
l - a: 

r 
xi - cr - bÎ-cr l 
1 - o: 1- o: 

l ~ a: [xL1 - ba
1-1] 

Lorsque X tend vers o+, cette dernière expression n'admet de limite finie que si a: < 1. 
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Exemples 

1 (1 l . ' 1 d R' . Jo Yi est une integra e e 1emann convergente : 

l i dt 1 
lim _ r;. = lim [-2 -ft] 

X -->O+ X y t X -->O+ X 

= lim [2 - 2 vx] 
x-.o+ 

= 2 

2. (1 d: est une intégrale de Riemann divergente : Jo t 

3. Propriétés 

lim r1 dt - lim r' r 3 dt 
X-->o+ J x t3 - X-->O+ Jx 

= lim [_ë_l' 
X-->O+ ] - 3 X 

= lim __ t [ -2 1' 
X-.Q+ 2 X 

[
x-2 

i 1 
= )~°6+ 2 - 2 
= +oo 

Les propriétés usuelles des intégrales (linéarité, positivité, croissance, relation de 
Chasles, changement de variable) sont encore vraies pour des intégrales impropres. 

En ce qui concerne l'intégration par parties, le résultat peut être obtenu en se ramenant 
à un segment. Toutefois, pour alléger les écritures, et, bien évidemment, sous réserve de 
convergence des quantités en jeu, on pourra utiliser des notations de la forme : 

l
+oo l +oo 

f(t) g' (t) dt = [f(t) g(t) J;00 
- f' (t) g(t) dt 

a a 

4. Critères de convergence pour des intégrales positives 

:> Comparaison avec une intégrale convergente {sur un intervalle de longueur 
infinie} 

Soient a un réel, f et g deux fonctions définies sur [a, +oo[, positives, continues par 
morceaux, et telles que, pour tout réel t de [a, +oo[ : 

f(t) ~ g(t) 

r+oo i +oo 
Alors, si Ja g(t) dt converge, il en est de même de a f(t) dt. 

Ce résultat n'est vrai que si les fonctions sont à valeurs positives. En effet, si ce n'est pas le 
r+oo 

cas, rien ne dit que Ja f(t) dt ne vaut pas -oo, et -oo sera toujours plus petit que n'importe 

quelle quantité négative ... 
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~ Comparaison avec une intégrale divergente (sur un intervalle de longueur 
infinie} 

Soient a un réel, f et g deux fonctions définies sur [a, +oo[, positives, continues par 
morceaux, et telles que, pour tout réel t de [a, +oo[ : 

f(t) ~ g(t) 

Alors, si L+oo f(t) dt diverge, il en est de même de i +oo g(t) dt. 

Corollaire 
Soient a un réel, f et g deux fonctions définies sur [a, +ooL positives, continues par 
morceaux, et telles que, lorsque t tend vers +oo[: 

f(t) ~ g(t) 

r+oo r+oo 
Alors, si j a g(t) dt converge, il en est de même de j a g(t) dt. 

i
+oo i +oo 

De même, si a g(t) dt diverge, il en est de même de a g(t) dt. 

l
+oo 

Ce n ' est pas parce que, au voisinage de l'infini, vers f(t) ~ g(t), que les intégrales f(t) dt 
a 

et [ "° g(t) dt ont des valeurs équivalentes! 

Exemple 

On s' intéresse à la convergence de l' intégrale { +oo dt 
2

. J, (t+l) 
1 l 

Lorsque t tend vers +oo : 
(t+ 1)2 ~ fi 

l
+oo dt 
---

2 
est une intégrale de Riemann convergente. On peut donc en déduire la conver-

1 (t + 1) 

l
+oo dt 

gence de 
2

. 
1 (t + 1) 

On peut alors calculer : 

sachant que : 
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r +oo dt 

J, (t+ 1)2 

r +oo dt = 

J, t2 

J' { X dt 

= x!.1!100 J 1 (t + 1)2 
. [ 1 ] = hm ---

X-->+oo t + l 1 

= x~1J!oo [ ~ - X ~ 1 ] 
l 

= 2 

1
. { X dt 
Jill J, -

X -->+oo [ 1 } ]t~ 
= lim --

= li:-->+[~ - _j_] 
X-->+oo X+ l 

= 1 
l 

2 
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~ Comparaison avec une intégrale convergente (sur un intervalle de longueur 
finie} 

Soient a et b deux réels, f et g deux fonctions définies sur [a, b[, positives, continues par 
morceaux, et telles que, pour tout réel t de [a, b[ : 

f(t) ~ g(t) 

Alors, si Lb g(t) dt converge, il en est de même de Lb f(t) dt. 

Comme précédemment, ce résultat n'est vrai que si les fonctions sont à valeurs positives. En 
effet, si ce n'est pas le cas, rien ne dit que L,+"" f(t) dt ne vaut pas -oo, et -oo sera toujours 
plus petit que n'importe quelle quantité négative ... 

~ Comparaison avec une intégrale divergente (sur un intervalle de longueur finie} 

Soient a et b deux réels, f et g deux fonctions définies sur [a, b[, positives, continues par 
morceaux, et telles que, pour tout réel t de [a, b[ : 

f(t) ~ g(t) 

Alors, si Lb f(t) dt diverge, il en est de même de Lb g(t) dt. 

Corollaire 
Soient a et b deux réels, f et g deux fonctions définies sur [a, bL positives, continues par 
morceaux, et telles que, lorsque t tend vers b : 

f(t) ~ g(t) 

Alors, si [ g(t) dt converge, il en est de même de [ g(t) dt. 

De même, si Lb g(t) dt diverge, il en est de même de Lb g(t) dt. 

Exemples 

1. On s'intéresse à la convergence de l'intégrale L' e~­
Lorsque t tend vers o+ : 

e1 l 
-~-

Yi Yi 

L' ~ converge. Il en est donc de même de L' ~. 
On aurait également pu utiliser le fait que, pour tout réel strictement positif t: 

1 A ' 1 d r' dt et conc ure, grace a a convergence e Jo Yi. 
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2. On s' intéresse à la convergence de l'intégrale t si~ t . Jo t 
Lorsque t tend vers o+ : 

sin t t 
72 ~ (2 

soit: 
sin t 
-~-

t2 

LI~ L'~t - diverge. Il en est donc de même de -
2
-. 

0 t 0 t 

S. Comparaison série-intégrale 

Théorème 

Soit no un entier naturel, et f une fonction définie sur [no,+=[, positive et décroissante. 
Alors, la série de terme général f(n) converge si et seulement si f est intégrable sur 
[no, +=[. On a alors : 

r+oo f(t) dt ::;; f f(n) ::;; r+oo f(t) dt 
J no+ I k=no+ l J no 

192 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

Intégrales doubles sur un pavé 
du plan R2 

1. Définitions 

>- Pavé (du plan IR.2} 

On appelle pavé (du plan R2) tout domaine rectangulaire tp de la forme: 

tp = [a,b] x [c,d] 

où a, b, c, d sont des réels tels que a < b et c < d. 

d 

1 c -··· 

0 a b 

Figure 61.1- Un pavé du plan R2
• 

>- Intégrale double sur un pavé (du plan IR.2 ) 

Étant donnés quatre réels a, b, c, d tels que a < b etc < d, et une fonction f continue sur 
le pavé tp = [a, b] x [ c, d], à valeurs réelles, on appelle intégrale double sur de f sur le 
pavé tp le nombre : 

flt(x,y)dxdy =lb {{ f(x,y)dy} dx = r {f f(x,y)dy} dy 

2. Propriétés 

>- Linéarité de l'intégrale double sur un pavé (du plan IR.2 ) 

Théorème 

Soient a, b, c, d quatre réels tels que a < b et c < d, et f et g deux fonctions continues 
sur le pavé tp = [a, b] X [c, d], à valeurs réelles. Alors, pour tout réel À : 

JL{f(x, y)+Àg(x,y)} dxdy= fLf(x,y)dxdy+À JLg(x, y)dxdy 
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~ Positivité de l'intégrale double sur un pavé (du plan JR2 ) 

Théorème 

Soient a, b, c, d quatre réels tels que a < b etc < d, et f une fonction continue et positive 
sur le pavé tp = [a, b] X [c, d], à valeurs positives. Alors : 

flf(x, y)dxdy ~ 0 

~ Intégrale double sur un pavé (du plan JR2 ) et valeur absolue 

Théorème 

(61. l) 

Soient a, b, c, d quatre réels tels que a < b et c < d, et f une fonction continue sur le 
pavé tp = [a, b] X [c, d], à valeurs réelles. Alors : 

IIL f(x, y) dx dyl ~ IL lf(x, y)I dx dy (61.2) 

~ Théorème de Fubini 

Théorème 

Soient a, b, c, d quatre réels tels que a < b et c < d, et f une fonction continue sur le 
pavé tp = [a, b] x [c, d], à valeurs réelles. Alors: 

flf( x,y)dxdy =Lb {f f(x,y)dy} dx = f {Lb f(x,y)dy} dy (61.3) 

~ Additivité de l'intégrale double (sur un pavé du plan JR2) par rapport au domaine 
d'intégration 

Théorème 

Soient a, œ, b, c, y, d six réels tels que a < œ < b et c < y < d, et f une fonction continue 
sur le pavé tp = [a, b] x [c, d], à valeurs réelles. Alors : 

rr f(x,y)dxdy =LI f(x,y)dxdy +LI f(x,y)dxdy 
JJ '.P [a,a]x[c,d] [a ,b]x[c,d] 

(61.4) 

et, de même: 

Lr f(x, y)dxdy =LI f(x,y)dxdy +LI f(x, y)dxdy 
'P fa,b]x fc,y l fa,b]xfy,dl 

(61.5) 
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Exercices 
d'entrainement 

www 
Les corrigés sont disponibles en téléchargement sur le site dunod.com 

à partir de la page de présentation de /'ouvrage. 

par: 
On considère la fonction f définie 

f(x) = {e-± s~ x >* 0 
0 Sl X~ 0 

Étudier la continuité de f . 

On considère la fonction g définie 
par: 

g(x) = ln lxl 
{ 

1 
si x~ {0,-1, l} 

0 si X = l OU X = - 1 OU X = 0 

Étudier la continuité de g. 

On considère la fonction h définie 
par : 

{ 

l . 
h( ) 

_ -
2
- SI X E JR \ {- J, 1 } 

X - X - 1 
0 Si X = l OU X = - 1 

Étudier la continuité de h. 

On considère la fonction cp définie 
par: 

cp(x) = { x sin ( ~) si x * 0 
0 si X= 0 

Étudier la continuité de cp. 

On considère la fonction t/t définie 
par : 

t/t(x) = E(x) + lx - E(x)l4 

Étudier la continuité de t/t. 

Soient À E ]O, l [, et f une fonction 
continue sur l'intervalle [À, +oo[, telle que 
f(À) = 0 et lim f(x) = O. 

X--4+00 

Soit Fla fonction définie sur ]0, l] --7 lR par : 

F(x)=f(~+À-1) 

6.a) Montrer que F est bien définie sur 
]O, l]. 

6.b) Étudier la continuité de F sur ]O, l]. 

6.c) Montrer que F est prolongeable par 
continuité sur [0, 1]. 

Une équation fonctionnelle 

Déterminer les fonctions f, définies sur JR, à 
valeurs dans JR, continues en 0 et en 1 telles 
que, pour tout réel x : 

f(x2) = f(x) 

Dérivabilité 

Donner la dérivée de la fonction </J : 

XE lR H ln (2 +cos x) . 

On considère la fonction h1 définie, 
pour tout réel x, par: h1 (x) = e-x. 

Montrer que h1 est de classe C00 sur JR, et dé­
terminer, pour tout entier naturel non nul n, 
1' expression de sa dérivée nième. 

On considère la fonction h2 définie, 
pour tout x de lR \ {l}, par: 

1 
h2(x) = --

1 -x 

Montrer que h2 est dérivable sur lR \ { 1 }, et 
déterminer, pour tout entier naturel non nul 
n, l'expression de sa dérivée nième . 

On considère la fonction f définie, 
pour tout réel x, par : 

f(x) = { 1 - 1e-~ si x * 0 
SÎ X= 0 

Étudier la continuité et la dérivabilité de f. 
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On considère la fonction cp définie, 
pour tout réel x, par : 

cp(x) = {x
3 sin(~) si x * O 

0 Si X = 0 

Étudier la dérivabilité de cp. 

On considère la fonction l{I définie, 
pour tout réel x, par : 

l{l(x) = { l - e
1
- <x~I)- si x ;/: l 

si X= l 

Étudier la continuité et la dérivabilité de l{I. 

Des dérivées remarquables 

On considère les fonctions 1{1 1 et 1{12 définies 
par: 

Quel est le domaine de définition de ces deux 
fonctions? Étudier la dérivabilité de 1{1 1 et 
1/12, puis donner 1' expression de leurs dérivées 
respectives. 

Des inégalités classiques 

15.a) Montrer que, pour tout réel x : 
ex~ l + x. 

15.b) Montrer que, pour tout réel positif x: 
sinx ~ x. 

15.c) Montrer que, pour tout réel x > - 1 : 
ln(l + x) ~ x. 

Des limites remarquables 

16.a) Soit f 1 une fonction dérivable en zéro. 
Déterminer : 

et 

1
. ! 1 (2x) - f1(0) 
1m------
x-.o 2 X 

1
. ! 1 (2 x) - !1 (x) 
im------
x-.o X 

16.b) Soit fi une fonction définie sur R., dé­
rivable sur R.. Déterminer, pour tout 
réel a: 

1
. xfi(a) - afi(x) 
1m------

x->a X - a 

Règle de l'Hôpital1 

Soient f et g deux fonctions définies sur un 
intervalle [a, b] de R., à valeurs dans R., conti­
nues sur [a , b], dérivables sur ]a, b[. On sup­
pose que g' ne s 'annule pas sur ]a, b[. Mon­
trer qu ' il existe un réel c dans ]a, b[ tel que: 

f(b) - f(a) f'(c) 
= 

g(b) - g(a) g' (c) 

Une étude de fonction 

Soit n un entier naturel supérieur ou égal à 2. 
On considère la fonction 

J,, : IR+ --t R. 

X H { ( l - ~r -e - x si X E (0, n] 

0 sinon 

18.a) Montrer que J,, est dérivable sur (0, n[. 

18.b) Calculer, pour tout x de (0, n[, f,;(x), 
et montrer qu 'on peut l' écrire sous la 
forme 

f~(x) = e - x [ l - e h,,(x) ] 

où hn est une fonction définie sur (0, n[, 

dont on donnera l'expression. 

18.c) Étudier les variations de hn sur (0, n[, 
ainsi que son signe. On montrera qu' il 
existe un réel a,, E] 1, n[ tel que : 

h,,(a11) = 0 

18.d) Étudier les variations de f,, sur (0, n[, et 
montrer que, pour tout réel x de (0, n[ : 

Œn e - a ., 

IJ,,(x)I ~ --
n 

18.e) Etudier les variations de la fonction </> 

qui, à tout réel x de R.+ , associe xe-x, 
et en déduire que, pour tout réel x de 
[O, n[: 

l 
lfn(x)I ~ -

ne 
Que peut-on en conclure ? 

1. Guillaume François Antoine, marquis de L' Hôpital (1661-1704), mathématicien français, élève de Jean 
Bernoulli, spécialiste de calcul différentiel. Il est connu pour son ouvrage Analyse des Infiniment Petits pour 
l 'intelligence des Lignes Courbes, publié en 1696. Il travailla également sur les coniques. 
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Fonctions réciproques 

Donner la dérivée de la fonction l{t : 

x E IR* H arctan x +arctan ( ~ ) , et en déduire 

que, pour tout réel strictement positif x : 

arctan x + arctan ( ~) = ~ 

On considère la fonction f définie, 
pour tout x de l'intervalle [ 0, ~], par : 

f(O) = 1 
X 

f(x) = -
tanx 

. 1f 
SI 0 <X< l f (~)=O. 

21.a) Montrer que, pour tout réel x > 0 
sinx < x. 

21.b) Montrer que f est strictement décrois­

sante sur ]o, ~ [. 
21.c) Déterminer l'image J = f(/) de l'in­

tervalle I par f , et montrer que f admet 
une application réciproque g définie sur 
J. 

21.d) MontrerquegG) = ~-
21.e) Montrer que la fonction g est dérivable 

en ~, et calculer g1 
( ~ ). 

On considère la fonction f définie, 
e sinx - e-sinx 

pour tout réel x, par : f(x) = 
2 

22.a) Montrer que f est dérivable sur IR, et 
calculer, pour tout réel x, f'(x) . 

22.b) Déterminer l'image J = f (]- ~, ~ [) de 

]-~ , ~[par f, et montrer que f admet 

une application réciproque 1-1 définie 
sur J. 

22.c) Montrer que la fonction F' est déri­
vable en 0, et calculer la valeur de sa 
dérivée en ce point. 

Développements limités 

Déterminer le développement limité 
à l'ordre 5, au voisinage de 0, de la fonction: 

X H 'P1(x) = esin x 

Déterminer le développement limité 
à l' ordre 6, au voisinage de 0, de la fonction: 

x H <p2(x) = ln (cos x) 

Déterminer le développement limité 
à l' ordre 6, au voisinage de 0, de la fonction: 

X H <p3(X) = (cosx)sin x 

Déterminer le développement limité 

à l ' ordre 3, au voisinage de:: , de la fonction: 
2 

X H <p4(x) = COSX - X sinx 

Déterminer le développement limité 
à l' ordre 4 au voisinage de 0 de la fonction : 

x E IR H <ps(x) = e-x 

Déterminer le développement limité 
à l' ordre 3 au voisinage de 0 de la fonction : 

X E IR \{~} H <p6(X) = - 1
-

2 1 - 2x 

Pour p E N *, donner le développe­

ment limité de la fonction x H -
1
-

2 
à 

I+x 
l'ordre 2p en 0, et en déduire celui de la fonc-
tion x H arctan x à l'ordre 2p + 1 en O. 

Déterminer le développement limité 
à lordre 4, au voisinage de 0, de chacune des 
fonctions suivantes : 

cosx 
30.a) x H f1 (x) = -- - e x . 

l-x 

30.b) x H f2(x) = tan (ln(l + x2) ). 
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Déterminer le développement limité 
à l'ordre 4, au voisinage de 0 , de chacune des 
fonctions suivantes : 

31.a) x H 91 (x) = 
1 

+ arcsin(x). 
~ 

31.b) x H g2(x) =ln (cos2 x - sin2 
x ). 

Déterminer, lorsqu'elles existent, les 
limites suivantes : 

1
. Vl+sinx+e-1- 2 

32.a) 1m . 
x->0 x3 

e -.'t+sin~ _ e 
32.b) lim----

x->O tan X 

xt -x 
32.c) lim ---­

x-> 1 1 - x + ln x 

32.d) lim (1 + ~ )x, où œ est un réel. 
x->+oo X 

Équations différentielles 
linéaires du premier ordre 

Résoudre, sur R., l'équation différen­
tielle (81) : 

y' + !f = 2 shx 

Résoudre, sur JR., l'équation différen­
tielle (82) : 

!f
1 + 2 X !f = 2 X 

Résoudre, sur JR.: , l'équation diffé­
rentielle (83) : 

x y' - 3 x3 !f = 3 x3 e2
x

3 

Résoudre, sur l'intervalle I = ]O, + oo[, 
l'équation différentielle (84 ) 

2y 
y'= - +X 

X 

Soit À un réel. Résoudre, sur JR., 
léquation différentielle (8s) : 

(x2 + l) y' + y = À 

Déterminer les solutions polyno­
miales de l ' équation différentielle (86): 

x2 y' - x !f = x 3 + x 

Suites 

Étude de suites 

Étudier la suite (u,,),,EN définie par : 

uo = l u 1 = 2 et 

V n E N* : Un+ 1 = 2 u,, + 3 u,,_ 1 

Étudier la suite (v,,),,EN définie par : 

vo= l v1=-l et 

V n E N : V11+2 + Vn+ 1 + v,, = 0 

Démonstrations par récurrence 

Somme des n premiers entiers na­
turels, n e N 

Pour tout entier naturel non nul n, on pose : 
Il 

Sn= .L>· 
k= I 

41.a) En remarquant que : 

S,, = l + 2 + 3 
+ . . . + (n - 2) + (n - l) + n 

S,, = n + (n - 1) + (n - 2) 
+ ...... + 3 + 2 + 

en déduire que: 2 S 11 = n (n + 1), puis: 
S - 11(11+ 1) 

Il - 2 . 

41.b) Redémontrer ce résultat par récur­
rence. 

Somme des n premiers carrés, 
ne N 

42.a) Montrer que, pour tout entier naturel 
n+I n 

non nul n: I k3 = I<k + 1)3 + l. 
k=I k=I 

42.b) En déduire que, pour tout entier natu­

. fi 2 _ n (n+1)(2n+ l) 
rein. L.Jk -

6 
. 

k=O 

42.c) Redémontrer ce résultat par récur­
rence. 

Somme des n premiers cubes, 
ne N 

Considérons la suite suivante de carrés, em­
boîtés les uns dans les autres : 

2. On rencontre, notamment, ce type de fonct ions dans des équations aux dérivées partie lles présentant une 
invariance d'échelle. 
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10 

9 

8 

7 

6 

5 

4 

3 

2 

l n 
l 2 3 4 5 6 7 8 9 10 

Le premier carré a un côté de longueur l , 
le second, de longueur l + 2, le troisième, 
l + 2 + 3, etc. Le dernier (qui est le nième) 

- et plus grand des carrés - a donc pour côté 

~ n(n+l) . 
l + 2 + ... + n = L..J k = 

2 
. Son aire 

k= I 
n2 (n + 1)2 

.JI est donc égale à .JI = 
4 

. Il est 

également possible de calculer cette aire en 
additionnant celle du carré de longueur 1 et 
des surfaces en forme d' « équerre » : 

1+2+ ... +k-1 
i-------- - -

' k+ , ____ _ 
: 1+2+ .•. +k-1 

+ --k 

La kième équerre, composée d' un carré de côté 
k et de deux rectangles de côtés respectifs k 

k- 1 

et l + 2 + ... + k - l = I j , a pour aire : 
J=I 

k2 + 2 k (l + 2 + ... + k - l) 

=k2+2k(k-1)k 
2 

= k2 + k (k - l) k = k3 

43.a) Démontrer par récurrence que, pour 
tout entier naturel non nul n : 

Il 

I k3 = t 3 + 23 + . .. + n 3 

k=I 

( 

li )2 
= (l + 2 + ... + n )2 = ~ k 

43.b) Pour tout entier naturel non nul n, on 
pose: 

11-I 

E11 = 1+3+5+ ... +(2n-1) = I(2k+l) 
k=O 

• En remarquant que, pour tout entier 
naturel n : 

E11 =1+2+3+4+5+ ... 

+ (2 n - l) + 2 n - (2 + 4 

211 Il 

+ .. . + 2 n) = I k - 2 I k 
k= I k= I 

en déduire : E,, = n2
• 

• Redémontrer ce résultat par récur­
rence . 

Suites : limites, convergence, applica­
tions 

Des limites remarquables 

44.a) Soit r un réel positif, strictement plus 
petit que 1. Déterminer 

Il 

lim '11 
n-++oo LJ 

k=O 

44.b) Soit p un réel positif, strictement plus 
petit que l. Déterminer 

44.c) Que vaut 

Il 

lim '1 / 
n~+co LJ 

k=I 

Il 1 
lim '1 - ? 

11->+oo LJ 2k 
k=I 

Le nombre d'or 

Étudier la suite (<1111) 11eN définie par : 

uo E JR 

et, pour tout entier naturel n : 

<P11+ l = ~ 

La suite de Fibonacci 

Le mathématicien italien Leonardo Pisano, 
dit Fibonaci, s ' intéressa au problème suivant : 
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«Un homme met un couple de lapins dans un 
lieu isolé de tous les côtés par un mur. Com­
bien de couples obtient-on en un an si chaque 
couple engendre tous les mois un nouveau 
couple à compter du troisième mois de son 
existence ? » 

sous les hypothèses suivantes : 

• au début du premier mois, il y a juste un 
couple de bébés lapins ; 

• au bout d'un mois, ceux-ci sont devenus 
adultes, mais ils ne commenceront à avoir 
eux-mêmes des bébés lapins qu' à partir du 
début du troisième mois ; 

• à chaque début de mois, tout couple de la­
pins adultes susceptibles de procréer en­
gendre effectivement un nouveau couple 
de bébés lapins ; 

• les lapins ne meurentjamais. 

Génération 1 ; au total, un couple de lapins. 

l 

Génération 2; au total, 1+1=2 couples de lapins. 

,/ ~ 

Génération 3; au total, 2+2=4 couples de lapins. 

Pour résoudre celui-ci, on considère la suite 
('T,,),,eN ' où, pour tout entier naturel n, r,, re­
présente le nombre de couples de lapins au 
début du nième mois. 

Il est naturel de poser 'Fa = 0, puisque, avant 
que l'on ne dépose les lapins au pied du mur, 
il n'y en avant aucun. 

Comme il n'y a pas nouvelle naissance avant 
le début du troisième mois, on a ainsi 'Fi = 
'F2 = l. La naissance d'un nouveau couple de 
lapins au début de ce même troisième mois se 
traduit par : 'F3 = 2. 

Considérons désormais un mois n quel­
conque, avec n ;;:;: 2. Au mois n + 2, le nombre 
total de couples de lapins est obtenu en ajou­
tant le nombre de ceux présents au mois n à 
celui qu' il y avait au mois n + l : 

r,L+ 2 = r,L+ 1 + r,, 
La suite ('T,,)11eN vérifie donc une relation de 
récurrence linéaire d'ordre 2. 
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46.a) Exprimer, pour tout entier naturel n, 
r,, en fonction de n. 

46.b) Quelle est la limite de la suite 
('T,,),,eN ? 

Une somme télescopique 

On considère la suite (S 11) 11ew définie pour 
fl 1 

tout n de N* par : S" = I · . · 
k= lk(k+l) 

47.a) Vérifier que, pour tout entier naturel 
non nul k: 

l l l 

k (k + 1) k k + l 
47.b) Quelle est la limite de la suite 

(S n)neN*? 

La constante d'Euler 

On considère la suite (H11),,ew définie par : 
l l l 

V n E N* : H,, = l + - + - + ... + - - Inn 
2 3 n 

" l 
= I k-lnn 

k=I 

48.a) Montrer que les suites (H11 ) 11eN* et 

(H11 - ~) . sont adjacentes, et en 
n 11eN· 

déduire qu 'elles convergent vers une 
même limite, que l'on notera y (On 
pourra utiliser l'étude des variations 
des fonctions f : IR: ~ IR, 

1 ( l) . * t H ï+T - ln l + t et g . IR+ ~ IR, 

t H ~ - ln (} + ~ ).) 
48.b) Montrer que: 0 < y < 1. 

Fractions continues et suites homo­
graphiques 

Soit a un réel différent de -1. Quel sens peut­
on donner à: 

a 
a 

l+----a--
l +---a--

1 +--
l + ... 

(C'est ce que l'on appelle une « fraction 
continue») 

On pourra considérer la suite (a,,),,eN définie, 
pour tout entier naturel n, par : 

a0 =a 
a 

a,,+1 = --
1 +a11 
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Le théorème de Cesàro 

Soit (un)11eN* une suite réelle, de limite finie 
f E R.. 

On considère la suite (vn)neN* telle que : 
* U1 + U2 + · · . + U11 Vn EN : V11 = -------

n 

l " 
=-;; Iuk 

k=l 

SO.a) Montrer que, pour tout E: > 0, il existe 
un rang n0 tel que, pour tout entier na­
turel n ;;;. no : 

E: 
lun - fi~ 2 

SO.b) Vérifier que, pour tout entier naturel 
n ~ n0 : 

1 Il 

lv,, - e1 = - L:cuk - e) 
n k= I 

l 110- I n 
I (uk - e) + I(uk - e) 

n k= I k=110 

SO.c) Montrer qu ' il existe un rang n 1 tel que, 
pour tout entier naturel n ;;;. n1 : 

no- 1 

~ "\' (uk - t) ~ ~ 
n LJ 2 

k=I 

SO.d) En déduire qu' il existe un rang n2 tel 
que, pour tout entier naturel n ;;;. n2 : 

lv,, - e1 ~ E: 

Que peut-on en conclure ? 

Étude de suites doubles 

On considère les suites (a,,),,eN et (bn)11eN dé­
finies par 0 < a0 < b0 , et, pour tout n de N, 

a,,2 b,,2 
par : a,,+ 1 = b b,,+ 1 = b 

a,,+ Il an + Il 

Sl.a) Calculer, pour tout entier naturel n, la 
différence an+ 1 - b,,+ 1, puis l' exprimer 
en fonction de a0 et b0 . On notera, dans 
ce qui suit : d = ao - bo. 

Sl.b) Calculer, pour tout entier naturel n, le 
a 11+ 1 

rapport--. 
bn+ I 

ao 
En posant r = - , montrer que l' on a 

bo 
alors : 

a11+ I 2•+1 
-- =r 
b11+ l 

Sl.c) À l'aide des questions précédentes, ex­
primer, pour tout entier naturel n, a11 et 
b11 en fonction de n. 

Sl.d) On considère la suite de terme général 

" 
P,, = n ( l + r 2k ). 

k=O 

Déterminer la limite de la suite (P,,) 11eN 
lorsque n tend vers +oo. 

Développement asymptotique 

Pour tout entier naturel non nul n , on 

( 
l )

2
" pose : u11 = 1 + -;; 

Déterminer, à l ' aide d' un développement 
asymptotique, la limite de la suite (u,,),,eN*. 

Pour tout entier naturel n , on pose : 

v,, =sin (rr -Vn2+1). 

Développement asymptotique et 
solution approchée d'une équation 

Soit n un entier naturel non nul. Déterminer 
les troi s premiers termes du développement 
généralisé de la n ième racine strictement posi­
tive de l'équation 

tan x = x 

Intégration 

Quelques calculs simples 

SS.a) Calculer: (4 sin t cos t dt. J_4 
SS.b) Calculer : (

2

:r cos2 t d t . 
J_2:r 

SS.c) Calculer: fo1 

t e' dt. 

SS.d) 1
2 ln t 

Calculer : - dt. 
1 t 

Calculs de primitives 

Déterminer une primitive des fonctions sui­
vantes : 

S6.a ) ! 1 : JRZ -? JR, t H ln t. 

S6 b) +. . * ln t 
• J 2 . JR+ -7 JR, t H - . 

t 
S6.C) f3 : JR -7 JR, t H t COS t. 

S6.d) f4 : JR -7 JR, t H t2 é . 

S6.e) fs : JR \ { ~ + k rr, k E z}-7 JR, 
t H tant. 
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t 
56.f) f6: JR \ (- 1} ~ JR, t H --

3
. 

l + t 
t + 1 

56.g) j 7 : JR \ (- 2, 0, 2) ~ JR, t H -
3
--. 

t - 4 t 

Changement de variables 

Calculer, à l'aide d 'un changement de va­
riable, les intégrales suivantes : 

l +i 1 
57.a) / 1 = -~dx. 

o vl -x2 

l
i é 

57.b) /2 = -- dt. 
0 é + l 

57.c) 13 = fo1 
(sin2 x - cos2 x) dx. 

58.a) Rappeler les formules d 'addition pour 
le cosinus. 

58.b) Soient m et n deux entiers naturels. 
Calculer: 

fo2

1r cos(m t) cos(n t) dt 

(on pensera à distinguer le cas m = n = 
0, et, lorsque m et n sont strictement 
positifs: m =net m if:. n) 

59.a) Déterminer deux réels a et b tels que, 
1 

pour tout réel t tel que t if:. 2: et t if:. 

1 

2 
l a b 

---=--+--
4 t2 - l 2 t - l 2 t + l 

59.b) Calculer: 

Intégrales de Wallis3 

Pour tout entier naturel n, on pose : 

ln= LÎ sin" xdx , 111 = LÎ cos" xdx 

60.a) Calculer Io, 11 , h et Io, 11 , h. 

60.b) Montrer que, pour tout entier n ~ 2: 
n - J 

111 = --ln-2 
n 

60.c) Pour tout entier naturel p , donner l' ex­
pression de h P et h p+ 1 en fonction 
de p. 

60.d) Montrer que, pour tout entier stricte­
ment positif p , et tout x de [o, ~]: 

0 ~ sin2 p+ I x ~ sin2 P x ~ sin2p-I x 

et en déduire une inégalité portant sur 
h p+ 1 , h p et h p- 1 . 

60.e) En déduire que, pour tout entier stric­
tement positif p : 

/ip 2 p + 1 
l ~ -- ~ ---

l 2p+I 2p 

/i p 
60.f) Que vaut lim -- ? 

p--++oo Ji p+ 1 

60.g) En déduire que : 
. l 2 4p (p !)4 

rr= hm - --­
p--++oo p ((2 p) ! )2 

Pour tout entier naturel n, on pose : 

In= [ (lnx)" dx 

61.a) Calculer Io et I1. 

61.b) Exprimer, pour tout entier naturel n, 
In+ I en fonction de I n. 

61.c) Montrer que, pour tout entier natu­
rel n: 

e 
O ~ I11 ~ -­

n+ l 

61.d) Déterminer la limite, lorsque l'entier n 
tend vers +oo, de I 11 • 

Intégrales et convexité 

Soit f une fonction de classe C 1 sur lR+, à va­
leurs positives, convexe. 

On rappelle que le graphe d' une fonction 
convexe est situé au-dessous de ses cordes, 
mais au-dessus de ses tangentes. 

62.a) Montrer que, pour tout entier n ~ 2 : 
f( L) 2 + f(2) + ... + f(n - 1) 

+f(n) -i " f(t)dt ~ 0 
2 1 

3. John Wallis ( L6 l6- l 703), mathématicien anglais, spécialiste de calcul différentiel et intégral. C'est lui 
qui introduisit la notation « oo ».À côté de son œuvre mathématique, il s' intéressa aussi à la phonétique, et 
est considéré comme un des précurseurs de l'orthophonie. 
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62.b) Montrer que, pour tout entier k de 
{l , ... , n - l}: 

I k+! f(k) ] 
f(t) dt ;;,, - + -8· J' (k) 

k 2 
et: 

Lk+I j(k + 1) l 
f (t) dt ;;,, - - J' (k + 1) 

k+l 2 8 
2 

62.c) En déduire: 

1;1) + f(2) + ... + f(n - 1) + 1;n) 

( " f'(n)-f'(I) - J, j(t)dt ~ 8 

Sommes de Riemann 

Il 

63.a) Déterminer : lim '\' 
2 

n 
3 2

. 
11->+oo L..J k + n 

k= I 

Il k l 

63.b) Déterminer: lim n (1 + -) ". 
11->+oo n 

k=I 

63.c) Déterminer: 

• 11 sin ( ~:) cos ( ~:) 
hm '\' . 

n->+co L..J n 
k=I 

Limite d'une intégrale 

64.a) Déterminer : L' t e-t2 dt. 

64.b) 

64.c) 

Déterminer : lim ( x t e-'1 
dt. 

X->+ oo j I 

Que peut-on en déduire ? 

Une comparaison suite-intégrale 

Soit f une fonction définie sur JR.+, continue 
sur JR.+ , décroissante sur JR.+ . 

On considère la suite (u11 ),,eN définie par: 

V n E N : u,, = f(n) 

65.a) Montrer que, pour tout entier naturel 
non nul k: 

[+I f(t)dt ~ f(k) ~ I~, f(t)dt 

65.b) En déduire que, pour tout entier natu­
rel non nul n : 

i i+I f(t)dt ~ ~j(k) 

~ L" f(t) dt + f(O) 

puis: 

ii+I f(t)dt ~ i Uk ~ L" f(t)dt+ f(O) 
0 k=O 0 
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Algèbre 

La présentation est similaire à celle adoptée pour« Calcul Vectoriel» : 
après les nombres complexes, on présente les matrices ; les vecteurs ar­
rivent ensuite très naturellement, le fait de disposer de la notion de 
déterminant simplifie les calculs pour la détermination d'équations de 
droites ou de plans dans l'espace à trois dimensions. Il est ensuite lo­
gique de passer à l'étude des transformations linéaires du plan et de 
l'espace, qui préfigurent celles en dimension quelconque n ~ 2. On 
passe ainsi facilement à la dimension n ~ 2, et aux espaces vectoriels. 

elan,~~~~~~~~~~~~~~~~~~~~----
Le plan complexe - Les nombres complexes ............. . .. . ............... 206 
Focus : Les nombres complexes . ............ . .. . .. . ................. . .. . . . .. 209 
Focus : Transformations complexes, fractales, 

et représentations de la nature ..................................... 248 
Matrices . . .. . .... . .... . . . . . . .. . .. . ... . . .. . ......... . . . ..... . ...... . . . .. . . ... 252 
Focus : L'origine des matrices . .. . . . .. . . .. .. . . .. .. .. . ... . . . .. . . . .. . ... .. . . .. . 250 
Focus : Les matrices et leurs applications . ... .. . . .. .. . .. . . . ...... . .. . .. .... . 276 
Focus: Produit scalaire, espaces fonctionnels et calcul numérique . .. . .. . .. 297 
Focus : Géométrie euclidienne - ou non ? Encore des matrices ! . . . ..... . . . 302 
Transformations linéaires du plan .... . . . .. . ....... . .... . ....... . .. . . . ...... 304 
Transformations linéaires de l'espace .. . . . .. . .. . . .. . . .... . .. . .. . . . .... . .. . . 317 
L'espace JRn .. . . . .. . .... . .. . .. . . . .... . .. . ....... . ... .. .... . .. . .. . . . .... . .. . ... 330 
Focus : Groupe spécial orthogonal et cristallographie .. . .... . .. . . . .. . .... . 347 
Focus : Diagonalisation - La toupie de Lagrange (et de Michèle Audin) . . . 349 
Espaces vectoriels . .. . . . .. . .... . .. . ......... . .. . ....... . . . .. . .... . .. . ........ 350 
Exercices d'entraînement . . .. . .. . .. . . .. . . . . .... . .. . . .. . . .. . .... . .. . .... . . . .. 359 

www Les corrigés des exercices sont consultables sur dunod.com sur la 
~ page de présentation de l'ouvrage. 
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Le corps des nombres complexes 

Identifions JR2 à un plan muni d'un repère orthonormé direct ( 0; 7, ~ ;c'est assez naturel, 
dans la mesure où un point du plan est repéré par deux grandeurs, ses deux coordonnées, 
abscisse et ordonnée : on est ainsi en dimension 2. 

1. Le plan comme ensemble de nombres complexes 

Une interprétation très intéressante et très naturelle pour introduire les nombres com­
plexes est celle de Jean-Robert Argand 1 [8], et dont Jos Leys, Étienne Ghys et Aurélien 
Alvarez [10] donnent une interprétation extrêmement claire. 

Représentons (voir figure 62.1) l'axe des réels par une droite graduée ViR,, d'origine 0 ; 
la multiplication de 1 par -1 envoie 1 sur -1, qui est l'image de 1 par la symétrie de 
centre 0 , que l'on peut aussi considérer comme étant la rotation de centre 0 , d'angle ·1r. 

De même, la multiplication de -1 par -1 envoie -1 sur 1. 

- 3 - 2 CD 2 3 

Figure 62.1 - La droite réelle 

Notons ile point image de l par la rotation de centre 0 et d'angle ~ : ce point n'est 
plus sur la droite initiale, mais sur la perpendiculaire à celle-ci passant par l'origine. 

Si on va un peu plus loin, et que l'on assimile la multiplication par i à l'opération 
résultant de la rotation de centre 0 et d'angle ~'cela signifie que, si on applique cette 
même rotation au point i , c'est-à-dire qu'on le multiplie par lui-même, c 'est-à-dire i, on 
obtient le point situé en -1 sur la droite ViR, ! 

Considérer les points du plan comme des quantités sur lesquelles on peut définir 
une opération comme la multiplication permet donc de définir une racine carrée au 
nombre -1, puisque l'on a alors : 

iXi=-1 

Comme le point i a pour coordonnées (0, 1 ), il est donc naturel de poser : 

i = (0, 1) 

l. Jean-Robert Argand (1768-1822), mathématicien suisse, célèbre pour son interprétation géométrique des 
nombres complexes comme points du plan. Il a également démontré le théorème de d'Alembert-Gauss, qui 
sera vu ultérieurement dans les pages qui suivent. 
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Ainsi, à chaque point du plan R2
, de coordonnées (x, y) = x x (1, 0) +y x (0, 1), on peut 

associer le nombre complexe, ou nombre imaginaire : 

z=x +iy 

appelé affixe du point M. 
Il est clair qu' il est plus facile de manipuler la grandeur z = x + i y plutôt que x x 

(1, 0) +y x (0, 1) : on choisit donc, pour la suite, la notation la plus simple, c'est-à-dire 
la première ! 

2. Définitions et propriétés fondamentales 
> Ensemble C 

On appelle ensemble des nombres complexes, que l'on note C, l' ensemble: 

C ={z=x+iy,(x,y) E R2
} 

(qui est aussi l'ensemble des couples de réels de la forme (x, y), si on identifie R2 et C). 

> Écriture cartésienne 

On appelle écriture cartésienne d'un nombre complexe z sa décomposition sous la 
forme: 

z =x+iy 

où x et y sont des réels. 

> Racine 

i est une racine carrée complexe de - L, car il vérifie2 : 

i2 = - 1 

(« Une» racine, car -i est aussi une racine carrée complexe de - 1 : (-i)2 = - 1.) 

Théorème 

Tout élément z de C s'écrit, de manière unique z = x + i y, où x et y sont des réels. 

> Partie réelle 

On appelle partie réelle du nombre complexe z = x + i y, (x, y) E JR..2 , le nombre réel 
noté 'Re(z), et défini par : 

'Re(z) = x 

> Partie imaginaire 

On appelle Partie imaginaire du nombre complexez= x + i y, (x, y) E R2, le nombre 
réel noté I m(z), et défini par : 

Im(z) =y 

Tout nombre complexe dont la partie réelle est nulle, c'est-à-dire de la formez = i y, 
y E R, est appelé imaginaire pur. 

L'ensemble des nombres imaginaires purs est noté i R 

2. Les règles de calcul dans C seront développées au paragraphe suivant. 
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3. Règles de calcul dans C 

Théorème 

L'ensemble C peut être muni de deux lois, notées+ et x, qui prolongent les lois+ et x 
de R 

On aura donc, pour tous nombres complexes z = x + i y et z' = x' + i y' de C : 

zz' = (x+iy)(x'+iy') 
= x (x' + i y') + i y (x' + i y') 
= X X

1 + i X y' + Ï y X - y y' 
= x x' - y y' + i (x y' + y x') 

4. Conjugué 

On appelle conjugué du nombre complexez= x+i y, (x, y) E JR.2 , le nombre complexe: 

Propriété 
Pour tout nombre complexe z : 

Propriétés 

1. Pour tout nombre complexe z : 

2. Pour tout nombre complexe z : 

3. Pour tout nombre complexe z : 

z=x-iy 

'Re(z) = 'Re(z) 

{ 
z + z = 2 'Re(z) 
z - z = 2 i I m(z) 

Z E i JR ~ Z = - z 

4. Pour tout couple (z, z') de nombres complexes : 

{ 
z + z' = z + _i' 
z z' = z z' 

Il résulte de la propriété précédente que, pour tout nombre complexe z : 

- z = -z 
et tout entier naturel n : 
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Une paternité controversée 

Un peu d'histoire ... C'est la fameuse Controverse de Cardan, au sujet de la résolu­
tion des équations du troisième degré, de la forme x3 + px = q; Jérôme Cardan 
(1501-1576) publia, dans Ars magna en 1545, les formules donnant la solution de 
ces équations : 

x= 

La controverse vint du fait que ces formules furent également trouvées par Nico­
las Tartaglia (1499-1557), qui en revendiqua la paternité. Il semblerait, d'après ce 
qu'écrit Cardan, que ces formules furent découvertes, en premier, par Scipione da] 
Ferro (1465-1526), qui, malheureusement, ne publia jamais ces résultats, et ne les 
confia qu'à un cercle restreint d'élèves. 

À la fin du xv1ième siècle, le mathématicien italien Rafael Bombelli (1526-1572) 
applique, dans son ouvrage l'Algebra, cette formule à l' équation x3 - 15 x = 4, et 
obtient: 

X = ~2 - 11 Ç) + ~2 + 11 Ç) 

où l'écriture « ~ » désigne un nombre, a priori inconnu, dont le carré vaut -1. 
Une racine évidente entière de l'équation précédente est, bien sûr, 4. Mais si on 

recherche les autres racines, la formule obtenue par R. Bombelli prend un tout autre 
sens; bien que la fonction x H -V ne soit définie que sur JR+, on constate, en utilisant 
les identités remarquables : 

que : 

(2- Ç)_)3 = 23 + ..ç}_ - 3 X 4 ..ç}_ + 3 X 2(-1) = 2- 11 ..ç}_ 

et: 
(2 + V::Î)3 = 23 - V::Î + 3 X 4 V::Î + 3 X 2(-1) = 2 + 11 V::Î 

Ainsi: 

~2 - 11 V::Î + ~2 + 11 V::Î = 4 E JR 

qui a un sens, et est bien solution de l'équation de départ: 

43 -15x4-4=0 

Le fait que -1 puisse être le carré d'un nombre, même « imaginaire », a ainsi com­
mencé à faire son chemin. 
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Des nombres imaginaires bien pratiques 

Leonhard Euler (1707-1783), s'intéressa également aux nombres complexes. On lui 
doit, notamment, la formule portant son nom. Jean le Rond D'Alembert (1717-1783) 
mit en évidence la propriété de clôture algébrique du corps des nombres complexes. 

En 1799, Caspar Wessel ( L 745-1818), mathématicien danois et norvégien, publie 
un mémoire où il utilise les nombres complexes pour représenter des lignes géomé­
triques, caractérisées par leur longueur et leur direction. 

Les interprétations géométriques, et les applications qui en résultent, se déve­
loppent, essentiellement, à partir du x1xième siècle, avec, tout d'abord, le chanoine 
Buée, puis Jean-Robert Argand (1768-1822), Carl Friedrich Gauss (1777-1855) et 
Augustin Cauchy (1789-1857). Depuis, la recherche sur les nombres complexes 
connaît un essor considérable : les nombres complexes sont au cœur de la géométrie 
algébrique et analytique moderne (avec, notamment, les travaux de Jean-Pierre Serre, 
Alexandre Grothendieck, et Hans Grauert), puis ceux d'Adrien Douady (1935-2006), 
professeur à l'Université d'Orsay, qui s'intéressa à l'application aux systèmes dyna­
miques des nombres complexes, les ensembles de Julia, les fractales et ensembles de 
Mandelbrot ... 

Et c'est ainsi que sont nés les nombres complexes. Il faut les considérer comme 
des outils, extrêmement pratiques pour résoudre des problèmes qui, sinon, n'auraient 
pas de solution. 

• Adrien-Quentin Buée, chanoine honoraire de Notre-Dame, est mort en 1825 à 80 
ans ; versé dans les sciences, il publia des écrits mathématiques ; il est souvent 
qualifié« d'abbé» par confusion avec son frère 1' Abbé Buée, chanoine titulaire 
de Notre-Dame [7]. 

• Jean-Pierre Serre (1926-) fut lauréat de la médaille Fields en 1954. 

• Alexandre Grothendieck (1928-) fut lauréat de la médaille Fields en 1966, il appa­
raît comme un refondateur de la géométrie algébrique. 

• Hans Grauert est un mathématicien allemand (1930-2011), il travailla beaucoup sur 
les variétés complexes. Ses travaux se placent dans la lignée de ceux d'Hermann 
Weyl, David Hilbert, Bernhard Riemann. 

• Gaston Maurice Julia (1893-1978) est un mathématicien français. 

• Benoît Mandelbrot (J 924-2010) est un mathématicien franco-américain. 
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Représentation géométrique 
des nombres complexes 

On se place, dans ce qui suit, dans le plan R2 rapporté à un repère orthonormé direct 
( O; 7, 1). À tout nombre complexez = x + i y, on associe le point M de coordonnées (x, y) 

dans le plan. 

>Image 

On appelle image du nombre complexez= x + i y, (x, y) E R2, le point M de coordon­
nées (x, y). 

>Affixe 

On appelle affixe du point M de coordonnées (x, y) E R2, le nombre complexe 
aff(M) = ZM =X+ i y . 

_, --t --t 
On appelle affixe du vecteur u =AB le nombre complexe a.f f(AB) = zs - ZA· 

----7 
L'affixe du point M de coordonnées (x, y) est aussi celle du vecteur OM. 

Propriétés 

1. Pour tout couple de vecteurs (îl, iJ) du plan : 

af f (îl + iJ) = af f (îl) + af f(iJ) 

2. Pour tout vecteur ïl du plan, et tout réel À : 

af f(À îl) = À aff(îl) 

>Module 

On appelle module du nombre complexez = x + i y, (x, y) E R2, et on note lzl, le réel 
positif lzl = ~x2 + y2 (c'est aussi la distance du point d 'affixe z à l' origine). 

>Argument 

On appelle argument du nombre complexe non nul z = x+i y, (x, y) E R2, toute mesure, 

en radians, de l' angle orienté (t~} où M est le point d' affixe z. On notera arg(z) une 

telle mesure. 
L'unique argument de z appartenant à l'intervalle] - n , n] s'appelle l'argument prin­

cipal. 

~\ 1. Le nombre complexe nul 0 ne possède pas d' argument. 

EJ 2. Un nombre complexe non nul possède une infinité d'arguments! Si ()est un argument du 
nombre complexe z E C*, les autres arguments de z sont exactement les réels de la forme 
()+2kn,kE Z. 
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lm (z) z 

IZI 

-:-> arg(z) , 
J 
0 --:--> Re (z) 

I 

Figure 63.1 - Représentation géométrique d'un nombre complexe non nul. 

Pour tout nombre réel fJ, on pose : 

ei 8 = cos (} + i sin fJ 

Propriétés 

1. Tout nombre complexe z de module l peut s'écrire sous la forme : 

z = ei 8 = cos () + i sin () 

où ()est un réel, unique à 2 7r près, tel que : 

() = Arg(z) [2 7r] 

où l'écriture [27r] signifie modulo 2Tr, c'est-à-dire: 

() = arg(z) + 2 k 7r , k E Z 

2. Pour tout nombre complexe z non nul, il existe un réel strictement positif, r, et un 
réel, e, tels que z s' écrive sous la forme : 

3. 

z = r ei 8 = r cos()+ i r sin() 

où ()est un réel, unique à 2 7r près : 

() = arg(z) [2 7r] 

Pour tout nombre complexe z non nul, s'il existe un réel strictement positif, r, et un 
réel () tels que : 

z = r ei 8 = r cos()+ i r sin() 

alors: 

{
r = lzl 
() = arg(z) [2 7r] 
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~ Exponentielle complexe 

Pour tout nombre complexez = x + i y, (x, y) E R2, on pose : 

é = ex+ iy =ex ei y =ex (cos y+ i sin y) 

e désigne ainsi l'exponentielle complexe. 

Il est clair que, pour z = x E IR, on retrouve l' exponentielle réelle. 
D'autre part, l'exponentielle complexe étant définie à partir de l'exponentielle réelle, on aura 
nécessairement, pour tout z de <C, comme lél = e'Re(z) : 

Propriétés 

1. Pour tout couple de nombres complexes (z, z') : 

2. Pour tout nombre complexe z et tout entier naturel n : 
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Inversion des nombres complexes 

1. Inverse d'un nombre complexe 

>- Propriétés 

1. Tout nombre complexe non nul z admet un unique inverse, noté z- 1 , tel que : 

2. Pour tout nombre complexe z : 

3. Pour tout nombre complexe z et tout entier relatif k : 

>- Calcul de l'inverse d'un nombre complexe 

En pratique, pour calculer l'inverse d'un nombre complexez = x + i y, (x, y) E JR.2, on 
recherche linverse z- 1 du nombre complexez sous la forme z- 1 = x' + i y', puis on écrit : 

1 • 1 l X-iy X-Ly 
x+iy=--= =---

x + i y (x + i y)(x - i y) x2 + y2 

(c 'est la technique classique qui consiste à multiplier numérateur et dénominateur par 
l'expression conjuguée du dénominateur, ce qui permet donc de faire apparaître le mo­
dule de celui-ci.) 

11 ne reste plus qu'à identifier parties réelles et imaginaires, tout nombre complexe 
s'écrivant de manière unique : 

I X 
X=--­

x2 + y2 
y'= - y 

x2 + y2 

Il en résulte : 

2. Anneau commutatif 

- 1 z 
z = lzl2 

On désigne, souvent, C comme étant le corps des nombres complexes, parce qu'il est 
muni d 'une structure algébrique, dite structure de corps, qui désigne un ensemble muni 
de deux opérations, notées « + » et « x » , dans lequel tout élément non nul est inver­
sible. Plus précisément, un corps est un anneau commutatif, dans lequel tout élément 
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non nul est inversible; un anneau .7l est un ensemble (.7l, + , x), muni de deux lois de 
composition internes, + et x, telles que : 

• (.7l, +) est un groupe commutatif (c'est-à-dire un ensemble non vide, muni d'une 
loi de composition interne, notée, en général, « + », associative, commutative, ad­
mettant un élément neutre 0.11, et telle que tout élément soit symétrisable), d'élément 
neutre 0.11. 

• la loi de composition interne x est associative : 

V (z1 'z2, Z3) E 5(
3 

: 

Zl X (z2 X Z3) = (z 1 X z2) X Z3 

et distributive à gauche et à droite par rapport à la loi + : 

V (z1, Z2, Z3) E .7l3 : 

Z1 X (z2 + Z3) = Z! X Z2 + ZI X Z3 ' (z1 + z2) X Z3 = Z! X Z2 + Z2 X Z3 

• la loi de composition interne x admet un élément neutre, distinct de 0.11, noté 1.11. 

Si la loi x est commutative, l'anneau est dit commutatif, ou abélien. 
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Propriétés fondamentales 
des nombres complexes 

Pour tout nombre complexe non nul z: 

{ 

arg(z) = -arg(z) [2 rr] 

arg(-z) = arg(z) + rr [2 rr] 

arg( - z) = rr - arg(z) [2 rr] 

Pour tout nombre complexe non nul z, et tout réel strictement positif il : 

arg(il z) = arg(z) [2 rr] 

Ces propriétés permettent de traduire des problèmes de géométrie par des relations entre 
nombres complexes. 

Corollaire 

• Pour tout couple de nombres complexes (z, z') E C* X C* : 

arg(z z') = arg(z) + arg(z') [2 rr] 

• Pour tout couple de nombres complexes (z, z') E C* x C* : 

arg (; ) = arg(z) - arg(z') [2 rr] 

Démonstration : 
Il suffit d'utiliser la forme polaire. • 

Pour tout couple (z, z') E C x C* : (~) = z . 
z' z' 

Pour tout nombre complexez= x + i y, (x, y) E R2 : 

lzl = YU. = ~ x2 + y2 

Pour tout couple de nombres complexes (z, z') : lz z' I = lzl lz' 1-

Corollaire 
Pour tout nombre complexe z E C, et tout réel À : 

l/l zl = l/ll lzl 

1
z1 lzl Pour tout couple (z, z') E C x C* : z' = Ï?i. 

Pour tout nombre complexe non nul z : 1~1 = ~ . 
z lzl 

Pour tout couple (z, z') E C2 
: lz + z'I ~ lzl + lz'I. 
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Dans C, il n'y a plus la notion d'ordre usuelle «<»,«>» : on ne peut donc comparer un 
nombre complexe à un autre, ou dire s' il est positif ou négatif, etc ... 

2. Le symbole .y reste réservé aux nombres réels positifs. 

:> Formules d'Euler 

Pour tout réel (} : 
ei(} + e - i8 

cos(}=----
2 

:> Formule de Moivre 1 

Pour tout réel e, et tout entier naturel n : 

ei(} - e-i8 
sine=----

2i 

(cos e + i sin et = cos n e + i sin n e 

1. Abraham De Moivre (1667-1754). C'est un des premiers vrais «probabilistes». 
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Complément : les polynômes 
de Tchebychev 

Dans ce qui suit, on s' intéresse à la famille des polynômes de Tchebychev 1 (Tn)n~2 , 
définie, pour tout entier naturel n, par Tn(8) = cos(n, 8). On montre que chacun des T11 , 

n E N, est un polynôme de degré n en cos 8. 
Soit 8 un réel non nul. 

1. Étape1 

Vérifions que cos(2 8) est un polynôme de degré 2 en cos (} : 

cos(2 8) = cos2 8 - sin2 8 = 2 cos2 8 - 1 = P( cos 8), 

où Pest le polynôme défini sur C par P(z) = 2 z2 - 1. 

2. Étape 2 

Montrons que cos(3 8) est un polynôme de degré 3 en cos 8. 
D' après la formule de Moivre : 

cos(3 8) = <Re ( e3 
i 
8

) 

Or: 

e
3 

i 8 = ( ei 8)
3 

= (cos 8 + i sin 8)3 = cos3 8 + 3 i cos2 8 sin 8 + 3 cos 8 (i sin 8)2 + (i sin 8)3 

soit: 
e3 

i 
8 = cos3 8 + 3 i cos2 8 sin 8 - 3 cos 8 sin2 8 - i sin3 8 

En identifiant parties réelles et parties imaginaires, on en déduit : 

cos(3 8) =<Re ( e3 ;8) = cos3 (} - 3 cos(} sin2 8 = cos3 (} - 3 cos(} (1 - cos2 (}) 

= 4 cos3 8 - 3 cos 8 

3. Étape 3 

Démontrons par récurrence que, pour tout entier naturel non nul n, cos(n 8) est un poly­
nôme, noté T11 , de degré n en cos 8, de coefficient dominant 211

-
1• 

• Au rang 0: cos (0 x 8) = 1 = cos0 (8). 

• La propriété est vraie au rang 1 : cos 8 est bien un polynôme de degré l en cos 8, de 
coefficient dominant 21- 1 = 1. 

• La propriété est vraie au rang 2 : cos(2 8) = 2 cos2 8 - 1 est bien un polynôme de 
degré 2 en cos 8, de coefficient dominant 22- 1 = 2. 

l. Pafnouti Lvovitch Tchebychev (1821-1894), mathématicien russe, qui apporta de nombreuses contribu­
tions en probabilités et en statistiques. 
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• Supposons la vraie jusqu'à un rang n > 1. 
Les formules d'addition permettent alors d'écrire : 

cos ((n + 1) B) =cos (n B) cos B - sin (n B) sin B, 

et cos ((n - 1) B) = cos (n B) cos B + sin (n B) sin B. 

Par suite, en additionnant membre à membre ces deux relations, on en déduit 
cos ((n + 1) B) +cos ((n - 1) B) = 2 cos (n B) cos B, puis : 

cos ((n + 1) B) = 2 cos (n B) cos B - cos ((n - 1) B). 

Par hypothèse de récurrence, cos (n B) est un polynôme de degré n en cos B. 
cos (n B) cos Best donc un polynôme de degré n + 1 en cos B. Comme cos ((n - 1) B) 
est un polynôme de degré n- 1 en cos B, cos ((n + 1) B) est bien un polynôme de degré 
n + 1 en cos B. 

Le coefficient du terme de plus haut degré est : 2 x 2n- I = 211 = 211+ 1- 1 • La propriété 
est donc vraie au rang n + 1. 

• Comme elle est vraie au rang l , elle est donc vraie pour tout entier naturel n ~ 1. 

Ce résultat peut aussi se démontrer grâce à la formule de Moivre : 

cos(nB) = ~e(ei 118) 
Il /1 

Or: einB = ( ei 8f = (cos g + i sin et= I c~ cosk g in-k sin11-k B= I c~ COS
11-k g l sink g 

k=O k=O 

où c~ désigne le coefficient binomial ( ~ ) . soit : 

Il Il 

I I 
k=O, k pair k=O, k impair 

E(V E("ï ') 
~ C2 P COS11- 2 P (1 i2P sin2P 8 + ~ C2 p+ l COSn- 2 p-I 8 i2 p+I sin2 P+ I 8 
~ n ~ n 
p=O p=O 

EG) E("ï') I (-l)P c~P cos11
-

2 P B(sin2 B)P + i I (-l)P c~p+I cosn-2 p-l g sin2 p+l g 

p=O p=O 
E0) E("ï ') 

= _2= (-J)PC~Pcosn-2 PB( l-cos2 B)P +i L (-l)PC~p+lcos11-2 p-JBsin2P+ lg 
p=O p=O 

Par suite: 

E(V 

cos(n B) = L (-l)P C~ P cos11
-

2 PB (1 - cos2 B)P 
p=O 

E(~) p 

= ~(-l)PC~P cos•-2 re {~(-l)' c; cos"e} 

E(V p 

= I _2=(-l)p+k c~Pc~ cos11+2 k-2 pg 

p=O k=O 
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Le terme de plus haut degré est obtenu lorsque k = p , et vaut donc : 

E(V E0) E(V 

I c -0 2 p c~ p c: cosn e = I c~ p cos11 e = cosn e I c~ p 

p=O p=O p=O 

Or: 
11 n EG) E( "ï 1 

) 

2n = ci + l r = I c~ JP i n- k = I c~ = I c~ p + I c~ p+ 1 

k=O k=O p=O p=O 

11 11 E( V E( "ï 1 
) 

o = (l - 1)'1 = I c~ c-1l 111
- k = Ic-1)k c~ = I c~P - I c~p+ i 

p=O k=O p=O p=O 

En additionnant membre à membre ces deux relations, on en déduit : 

E(V 

et donc: I c~P = 211
-

1. 
p=O 

4. Étape 4 

E(V 

211 = 2 I c~P 
p=O 

Déterminons la relation de récurrence linéaire d'ordre 2 vérifiée par la suite de poly­
nômes (T11 )11~2· 

Si on pose, pour tout entier naturel non nul n, T11 (cos e) = cos (ne), alors, pour tout 
entier n ~ 2, la relation ( *) s'écrit aussi : 

T11+1(cose) = 2 coseT11(cose)-Tn- 1(cosB) 

T 11 , T 11_ 1, Tn- l étant des polynômes, ils vérifient donc la relation de récurrence linéaire 
d'ordre 2: 

Cette relation permet, en particulier, d'obtenir l'expression du coefficient du terme de 
plus haut degré de T11 • 

En effet, si on désigne par a 11 ce coefficient, on a donc : 

(le degré du polynôme X T,i(X) est différent de celui de T n- 1 (X)). 
En itérant, on en déduit, pour tout entier naturel n : 

La suite (œ11) 11EN * est une suite géométrique de raison 2, de premier terme 1 ; ainsi, pour 
tout entier naturel n non nul : œ11 = 211

-
1 . 
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Racines nièmes de l'unité, racines 
nièmes complexes 

1. Racines nième de l'unité 

Définition 

Étant donné un entier naturel non nul n, on appelle racine nième de l'unité (ou nombre 
de Moivre) tout nombre complexez solution de l'équation: 

fi= l 

Pour obtenir l'expression d'une racine nième de l'unité, on cherche donc z dans <C tel 
que: 

On a donc, nécessairement : z * O. 
On peut donc chercher z sous la forme z = r ei B, avec : 

r = lzl E IR: e = Arg(z) [2n] 

Il en résulte, grâce à la formule de Moivre : 

(reiB)'1 = ~einB = ~. eio 

E IR* E IR* + + 

En identifiant les modules et arguments respectifs des deux membres, on en déduit : 

{
r1= l 
n8=2k7r,kE Z 

Comme r E IR:, il en résulte : 

r = l 2kn 
8= -, k E Z 

n 

Si on effectue la division euclidienne de k E Z par l'entier naturel non nul n, on obtient: 

k = n q + r avec r E [O, n - 1] 

Par 2 n-périodicité du sinus et du cosinus, on a alors : 

2ik1r 2i(11 q+r)Tr 2 iqn+2irTr 2irTr 
e 11 =e 11 =e 11 =e 11 

L'ensemble des racines nièmes complexes de 1 est donc donné par : 

S = { /;,~" , r E {0, 1, 2, ... , n - 1}} = { /;,~" , k E {0, 1, 2, ... , n - 1}} 

Dans C, il existe exactement n racines nièmes de l'unité. 
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Exemple 

Résolvons, dans C : z3 = 1, soit: 

z3 = e2 i kTr , k E Z 

En identifiant module et argument, on en déduit que les solutions sont données par : 

2ilor z = e-3- , k E {Ü, 1, 2} 

L' ensemble des solutions est donc: 

où: 

Proposition 

{ 
z;n 4;n} {. ·2} S = l , e 3 , e 3 = l, J, J 

2iir 

j= eT 

0 

...... .... .... ...... .... .. 

Figure 67 .1 - Les racines cubiques complexes de l'unité. 

Pour tout entier naturel n ~ 3, les points dont les affixes sont les n racines nièmes de 
l'unité, /;,~", k E {0, 1, 2, ... , n - l}, sont les sommets d'un polygone régulier, de 
centre O. 

Démonstration: Pour tout k de {O, 1, 2, ... , n - J }, désignons par Mk le point d'affixe 
2

ik1r M M 1 . d' ffi 1 e-,-, , et par n = o e pornt a xe . . 
Alors: 

(oM:cJMk+1 ) = (o~r) + (r.~+1) [2 JT] 

= -arg e-,-, + arg e " [2n] ( 
2ikJT ) ( 2i(k+l)JT ) 

( 

2i(k+l )JT l 
e " 

arg 2ikJT 
e-,-, 

( 
2iJT ) arg elr 

2JT 

n 
Le polygone MoM1 ... Mn, de centre 0 , est donc régulier. 
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2. Racine nième complexe 

Définition 

Étant donnés un entier naturel non nul n, et un nombre complexe zo, on appelle racine 
nième complexe de zo tout nombre complexe z solution de l'équation : 

En pratique : pour déterminer les racines nièmes complexes du nombre complexe non 

nul zo, il faut déjà mettre ce dernier sous forme polaire : 

'(} 
zo =Po e1 0 Po > 0 

On recherche ensuite z sous la forme : 

Ainsi: 

Il en résulte : 

et : 

p>O 

B = Bo + 2 k n 
n 

Bo E [O, 2 n[ 

B E [0, 2 n[ 

kEZ 

Si on effectue la division euclidienne de k E Z par l'entier naturel non nul n, on obtient : 

k = nq + r 

où r E [O, n - l]. 
Par 2 n-périodicité du sinus et du cosinus, on a alors : 

i(Bp+2br) i(80 +2(11q+r)1r) i(Bp+2r1r) 
2

. i(80 +2nr) 

e = e = e " e iqrr = e " 

L'ensemble des racines nièmes complexes de zo est donc donné par : 

{ 

! i(8p+2nr) } { ! i (Op+2 k1r) 
S = Po e-11-, r E {0, 1, 2, ... , n - l} = Poe-,-, - , k E {0, 1, 2, 

Exemple 

Soit n E N*. Résolvons, dans C, l'équation suivante: 

En remarquant que -1 = ein, on en déduit: 

(2k+ l ) i;r 

z = e n k E {Ü, ... , n - 1) 

... , n-t}} 
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Factorisation des polynômes 
dans le corps C 

1. Polynômes complexes 

Définition 

n étant un entier naturel, on appelle polynôme complexe de degré n une expression 
de la forme: 

n 

P(z) = an i 1 + an- l zn- l + ... + a 1 z + ao = I ak / 
k=O 

où a11 , a 11_ 1, ••• , ao sont des nombres complexes. 

Par définition, le degré du polynôme P, noté deg P, est donc celui de son terme (ou 
monôme) de plus haut degré, c'est-à-dire a11 z11

• 

Par convention, le degré du polynôme nul sera noté -oo. 

Tout polynôme complexe de degré n E N* s'écrit de manière unique sous la forme: 

Il 

P(z) = a11 i 1 + an- 1 z11
-

1 + ... +al z + ao = I ak / 
k=O 

(a a) E tr<nx tr<*. Q, .•• ' Il Il., Il., 

Notation 
On notera C[X] l'ensemble des polynômes complexes. 

Le sous-ensemble de C[X] constitué par les polynômes complexes de degré inférieur 
ou égal à n sera noté Cn[X]. 

2. Racine d'un polynôme complexe 

Définition 

On appelle racine d'un polynôme P, un nombre complexez tel que: 

P(z) = 0 

Théorème 

Si zo est une racine du polynôme P, supposé non nul, alors, il existe un polynôme Q, de 
degré deg P - 1, tel que : 

P(z) = (z - zo) Q(z) 

Démonstration : Ce résultats' obtient par une simple division euclidienne par z - zo. Le 
reste, qui est constant, est obtenu en évaluant la valeur de P en zo, et vaut donc zéro. • 
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Exemple 

Factorisons le pol ynôme P tel que : 

V z E C P(z) = z3 + 4 z = z (z2 + 4) 

0, 2 i et -2 i sont racines de P, et: 

V z E C : P(z) = z (z + 2 i) (z - 2 i) 

>- Racine double 

Définition 

On appelle racine double d'un polynôme P, un nombre complexe zo tel qu'il existe 
un polynôme Q vérifiant : 

P(z) = (z - zo)2 Q(z) 

avec Q(zo) * O. 

On dit aussi que zo est une racine de P de multiplicité 2. 

>- Racine triple 

Définition 

On appelle racine triple d' un polynôme P, un nombre complexe zo tel qu'il existe un 
polynôme Q vérifiant : 

P(z) = (z - zo)3 Q(z) 

avec Q(zo) =f::. O. 

On dit aussi que zo est une racine de P de multiplicité 3. 

>- Racine d'ordre n 

Définition 

n étant un entier naturel non nul, on appelle racine d'ordre n d'un polynôme P, un 
nombre complexe zo tel qu'il existe un polynôme Q vérifiant: 

P(z) = (z - zo)n Q(z) 

avec Q(zo) =f::. O. 

On dit aussi que zo est une racine de P de multiplicité n. 

>- Theorème de d'Alembert-Gauss 

Théorème 

Le corps C est dit algébriquement clos, c'est-à-dire tout polynôme non constant, à co­
efficients dans le corps des nombres complexes, admet au moins une racine. 
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Par conséquent, tout polynôme à coefficients entiers, rationnels ou encore réels admet 
au moins une racine complexe, car ces nombres sont aussi des complexes. 

a, b, c étant trois nombres complexes tels que a * 0 : 

a z2 + b z + c =a (z - zi) (z - z2) 

où: 

ZI = 
-b-o 

2a 

et où le nombre complexe o vérifie o2 

complexe du discriminant /1. 

Z2 = 
-b+o 

2a 

b2 - 4a c, c'est-à-dire est une racine carrée 

107\ 1. 

u 
Dans C, /),,, admet deux racines carrées complexes, o et -o. Choisir, comme racine, o plutôt 
que -o ne change en aucune façon le résultat. 
En effet, si on considère la racine complexe -o du discriminant /),,,, on obtient alors, comme 
racmes: 

I -b+o 
Z1 = --- =z2 

2a 
I -b-0 

Z2 = --- =z1 
2a 

Les racines sont donc les mêmes, mais obtenues dans un ordre différent. 

2. Le discriminant /),,, n'admet de racines réelles que si b2 - 4 ac ;:_::,, O. 

>- Discriminant réduit 

a, b, c étant trois nombres complexes tels que a * 0, on considère l'équation : 

Lorsque b est de la forme b = 2 b', b' E <C, les racines z1, z2 peuvent être obtenues en 
utilisant le discriminant réduit : 

!1' = b'2 
- ac = o'2 

ce qui conduit à : 
-b' - ô' -b' + ô' 

Z1 =--- z2 = ---
a a 

où le nombre complexe ô' vérifie 8'2 = b'2 
- ac, c'est-à-dire est une racine carrée com­

plexe du discriminant réduit /1'. 

Démonstration : Le discriminant est : /1 = b2 - 4 ac = 4 (b'2 - ac). Ainsi : 

ZJ = 
-b-ô 

2a 

-b' - ô' 

a 

-b+ô 

2a 

-b' + ô' 

a • 

~\ 1. 
t:J 

Comme précédemment, choisir, comme racine, o' plutôt que -8' ne change en aucune façon 
le résultat. 

2. Le discriminant réduit/),,,' n'admet de racines réelles que si 

b'2 - ac;:_::,, 0 
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Exemple 

Résoudre, dans C (1 + i) z2 + i z - l =O. 
On obtient : D. = 3 + 4 i. 
Il s'agit alors de trouver un nombre complexe o tel que 62 = D.; on le cherche sous la forme 
o =a+ if3, ce qui conduit à: 

o2 = a2 
- {32 + 2 i a f3 = 3 + 4 i 

On en déduit: a 2 - {32 = 3 af3 = 2. 
2 et 1, - 2 et - 1 sont racines évidentes : 

a = 2 , f3 = 1 ou a = - 2 , f3 = -1 

Ces deux choix sont absolument équivalents, dans la mesure où : 

D. = 62 =(a+ if3)2 = (-6)2 =(-a - if3)2 

Ainsi, les solutions de l'équation du second degré initiale sont: 

-i - 2 - i 
{ ,, = = - 1 

2 (l + i) 
-i + 2 + i 1 l - i 

Z2 = = = 2 (l + i) 1 + i 2 

où l'on a utilisé, pour simplifier l'expression de z2, le passage à la forme conjuguée, afin 
d'obtenir un dénominateur réel. 

3. Relations coefficients-racines 

> Relations coefficients-racines pour un polynôme de degré 2 

Soit (s, p) E C2. Les nombres complexes z1 et z2 vérifiant: 

{ 
ZI Z2 = p E iC 

ZI + Z2 = S E iC 

sont exactement les racines de z2 - s z + p = O. 

Démonstration : Il suffit de calculer : 

> Relations coefficients-racines pour un polynôme complexe de degré n 

n étant un entier naturel, on considère le polynôme complexe de degré n : 

n 

P( ) n n- l "'""' _k z = an z + an- l z + ... + a 1 z + ao = L.J ak z 
k=O 

où (ao, a,, ... ' an) E en X C*. 
On suppose qu'il existe n nombres complexes z1, z2, ... , Zn tels que : 

n 

P(z) = an (z - Z1) (z - Z2) ... (z - Zn) = an n (z - Zk) 
k= I 

• 
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On appelle fonctions symétriques des racines : 

n 

(T 1 = z 1 + z2 + .. . + Zn I Zi 

i= l 

CT2 = z 1 z2 + z 1 z3. .. I Zi Zj 

l ~i<j~n 

0"3 = Zl Z2Z3 + Z1 Z2Z4 ... = I ZiZjZk 

l ~i<j<k~n 

O"n = Z J Z2 ... Zn 

On dispose alors de relations entre les coefficients du polynôme, c'est-à-dire les ai, 

i = 0, ... , n, et les fonctions symétriques : 

k an-k 
V k E {l , ... , n} : O"k = (- 1) -

an 

Ces relations sont également appelées relations de Viète 1, et peuvent être extrêmement 
pratiques. 

Démonstration : z1, ••• , Zn étant les racines de P : P(z) = an (z - z1) ••• (z - Zn). En 
développant cette expression suivant les puissances décroissantes de z, on en déduit : 

P(z) = an Z
11 

- an (f Zk l Z
11

- l +an ( 2.: Zi Zjl zn- l 

k= I l ~t<J~n 

+ ... + (-l)k an ( . I . n Zijl zn- k + ... + ( -1)11 an ZI ... Zn 

1 ~11 <12< ... <tk~n J= I 

n 

Comme P(z) = an~ + I an- k zn- k, on en déduit, par identification, que, pour tout entier 
k=l 

k de {1 , ... , n} : 

• 
ce qui conduit au résultat cherché. 

l. François Viète ( 1540-1603), mathématicien, géomètre et astronome français, qui apporta de nombreuses 
contributions à l 'algèbre; il est à l'origine des prémices du calcul symbolique. 
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Fractions rationnelles 
et décomposition 
en éléments simples 

La décomposition en «éléments simples», c'est-à-dire comme somme de fractions ra­
tionnelles avec, en dénominateur, des puissances de polynômes irréductibles, et, en nu­
mérateur, un polynôme de degré strictement inférieur à celui du polynôme irréductible 
qui intervient au dénominateur, est très utilisée en calcul intégral, pour déterminer des 
primitives, mais aussi en analyse spectrale, pour calculer des transformées de Laplace 
inverses (on trouvera, notamment, des exemples dans [44]). 

1. Corps des fractions rationnelles 

> À coefficients réels 

On désigne par R(X) l'ensemble des fractions rationnelles à coefficients réels : 

V R E R(X), 3 P E R[X] et Q -:F 0 E R[X] : R(X) = ~~~~ 

R(X) est le corps des fractions rationnelles à coefficients réels. 
La notation« X» est liée au fait que l'on manipule, ici, des polynômes formels, qu'il 

faut bien distinguer des fonctions polynomiales. 

> À coefficients complexes 

On désigne par C(X) l'ensemble des fractions rationnelles à coefficients complexes: 

V R E C(X), 3P E C[X] et Q -:F 0 E C[X] : R(X) = P(X) 
Q(X) 

C(X) est le corps des fractions rationnelles à coefficients complexes. 

Attention, les polynômes Pet Q ne sont en aucun cas uniques ! 2 Pet 2 Q conviennent aussi, 
puisque: 

P(X) 2 P(X) 
= 

Q(X) 2 Q(X) 

Comme R c C, R(X) c C(X) : il est donc judicieux, dans un premier temps, de 
s'intéresser au cas des fractions rationnelles à coefficients complexes. 

Proposition 
Toute fraction rationnelle R, à coefficients dans le corps C, et supposée non constante, 
peut s'écrire sous la forme 

R(X) = P(X) 
Q(X) 

où Pet Q sont deux polynômes complexes premiers entre eux : 

P/\Q=l 

ce qui signifie qu'il n'existe pas de polynôme non constant divisant à la fois Pet Q. 
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2. Pôle (d'une fraction rationnelle) 

Définition 

Soit R une fraction rationnelle, à coefficients dans le corps C de la forme : 

R(X) = P(X) 
Q(X) 

où P et Q sont deux polynômes complexes premiers entre eux. 

On appelle pôle de R toute racine zo du polynôme Q, c'est-à-dire tout nombre com­
plexe zo tel que : 

Q(zo) = 0 

Exemple 

- 1 et 2 sont les pôles de la fraction rationnelle : 

x2 +4 

(X+ J)(X - 2) 

~ Pôle d'ordre p, p E N* (d'une fraction rationnelle) 

Définition 

Soit R une fraction rationnelle, à coefficients dans le corps C de la forme 

R(X) = P(X) 
Q(X) 

où P et Q sont deux polynômes complexes premiers entre eux. 

On appelle pôle d'ordre p, p E N* de R, toute racine zo de multiplicité p du poly­
nôme Q, c'est-à-dire tout nombre complexe zo tel qu ' il existe un polynôme Q véri­
fiant : 

Q(z) = (z - zo)P Q(z) 

avec Q(zo) * O. 

Exemple 

3 est un pôle d' ordre 4 de la fraction rationnelle 

X+l 

(X -3)4 (X2 + 1) 

3. Division euclidienne dans C[X] 

Étant donnés deux polynômes P et Q à coefficients dans C, il existe un unique poly­
nôme Ï', et un unique polynôme R, de degré strictement inférieur à celui de Q, tels que : 

P(X) = Ï'(X) Q(X) + R(X) 

C'est la division euclidienne de P par Q. Ï' est le quotient, et R le reste. 
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Ce résultat ne fait qu 'étendre aux polynômes la notion de division euclidienne qui existe pour 
les réels. Le but est juste de simplifier le plus possible l' écriture d'une fraction rationnelle. 

4. Décomposition d'une fraction rationnelle 

> Décomposition en éléments simples dans C{X) 
p 

Soit R = Q une fraction rationnelle, à coefficients dans le corps CC, de pôles z 1, •• • , Zk. 

k ~ 2. On désigne par ni E N, ... , nk E N, les ordres respectifs de z i, .. . , Zk· 

La division euclidienne de P par le polynôme Q permet d'en déduire l'existence d'un 
unique polynôme P, appelé partie entière de R, et de complexes Œz;,J ' 1 ~ i ~ k, 

1 ~ j ~ ni , tels que : 

- R(X) 
R(X) = P(X) + Q(X) avec deg R ~ deg Q - l 

k 

Comme Q(X) est, à un facteur multiplicatif près, proportionnel à n (X - zi)'1i , cette 
i=l 

relation peut aussi s'écrire sous la forme: 

ou encore: 

R(X) = P(X) + __ R(_X_) _ 
k 

ncx- zir 
i= l 

avec deg R ~ n 1 + ... + nk - l 

R(X) = P(X) + ~ {~ + Œz;,2 + ... + Œz;,k } 
L.J X - z· (X - z·)2 (X - z·)n; i= l l l l 

k n; 

P(X) + I I Œz;,J . 

i= l J = l (X - Zï)J 

n ; a . 
Pour tout entier i de {l, ... , k}, ~ z;,J . est la partie polaire de R associée au fj_ (X - Zi)J 

pôle Zi -

Si la fraction rationnelle est à coefficients réels, et admet des pôles réels, alors sa décomposi­
tion en éléments simples est à coefficients réels. 

Proposition 
Soit Rune fraction rationnelle, à coefficients dans le corps CC, de pôles z1, ... , Zk. k E N* , 
qui se décompose sous la forme : 

- R(X) 
R(X) = P(X) + Q(X) 

où P, Q et R sont trois polynômes à coefficients complexes tels que deg R < deg Q. 
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S'il existe un pôle zo de multiplicité 1, la décomposition de R peut s'écrire sous la 
forme: 

- R(X) 
R(X) = P(X) + Qo(X) (X - zo) 

où Q0 est un polynôme à coefficients complexes, de degré deg Q - 1, et tel que : 

Qo(zo) * 0 

Al l · l · d R · ' Al P(zo) · · ·fi d ors, a partie po aire e assoc1ee au po e zo est , ce qm s1gm e one 
Qo(zo) (X - zo) 

l ffi · d 1 d l d , · · 'l' · l d R P(zo) que e coe c1ent e -- ans a ecompos1t1on en e ements s1mp es e est . 
X - zo Qo(zo) 

Démonstration : La partie polaire de R associée au pôle zo est de la forme : 

Par suite: 

œ 
X- zo 

œE C 

R(X) = P(X) + R(X) = P(X) + _œ_ + P1(X) 
Qo(X) (X - zo) X - zo Q1 (X) 

où P1 et Q1 sont deux polynômes complexes tels que deg P1 < deg Q1 et Q1 (zo) -:f. O. 
Il suffit alors de multiplier membre à membre par X - zo : 

- R(X) - Pi (X) 
(X - zo) P(X) + Qo(X) =(X - zo) P(X) + œ +(X - zo) Qi (X) 

puis d'évaluer !'expression obtenue en zo, ce qui conduit immédiatement à : 

P(zo) ---=œ 
Qo(zo) 

Exemple 

Décomposons en éléments simples la fraction rationnelle : 

3X+4 3X+4 
R(X) = . = -----

X2 - 1 (X - l)(X + 1) 

1 et - J sont des pôles simples. La partie entière de Rest nulle, puisque : 

deg(3X +4) < deg(X2
- l) 

• 

R étant à coefficients dans R., et ses pôles étant réels, on cherche donc des réels cL1 et a 1 tels 
que: 

On aura donc : 

a_, a 1 
R(X)= --+-­

X+ l X - 1 

3X + 4 a_, a 1 ----- = -- + --
(X - l) (X+ l) X+ J X - 1 

En multipliant membre à membre (a) par X+ 1, on en déduit: 

3X +4 a, 
-X-- -1- = a _,+ (X+ l)-X-- -1 
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En évaluant cette dernière expression en -1, on obtient: 

-3 + 4 - 1 
-- = - = a -1 

-2 2 

De même, en multipliant membre à membre (a) par X - 1, on en déduit: 

3X + 4 a_1 
--- = (X - L) --+a1 
X+l X+l 

En évaluant cette dernière expression en 1, on obtient : 

3 +4 7 -- = - = a i 
2 2 

La décomposition en éléments simples de R est donc : 

1 1 7 1 
R(X) = -- -- + - --

2X+1 2X-1 

~ Détermination de la partie polaire d'une fraction rationnelle pour un pôle 
d'ordre p E N, p ~ 2 

Proposition 
Soit R une fraction rationnelle, à coefficients dans le corps C, de la forme : 

P(X) P(X) 
R(X) = - = ----

Q(X) Qo(X) (X - zo)P 

avec Qo(zo) *O. On désigne par: 
a· ./ 

(X - zo)i 

la partie polaire de R associée au pôle z0 . 

1 
Alors, le coefficient de dans la décomposition en éléments simples de R est : 

(X - zo)P 

a = 1 P(zo) 
P P · Q<P>(zo) 

Les autres termes peuvent être obtenus en effectuant un développement limité de 

(X - zo)P R(X) = a i (X - zo)p- I + a2 (X - zo)P-2 + . .. + Œp-1 (X - zo) + ap 
+(X - zo)P R1 (X) 

où R 1 est une fraction rationnelle n'admettant pas zo pour pôle, au voisinage de zo. 

Ce développement limité étant de la forme : 

Œ( (X - zo)p- l + Œ2 (X - zo)p-2 + ... + Œp-1 (X - zo) + Œp + 0 ((X - zo)P) 

on en déduit facilement, par unicité du développement limité, les valeurs des coefficients 
Œ(, .. .,Œp. 
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1 
Démonstration : Notons œp le coefficient de dans la décomposition en élé-

(X - zo)P 
ments simples de R : 

P P(zo) 
œp = [(X - zo) R(X)Jix=zo = Qo(zo) 

La formule de Leibniz 1 permet alors d'écrire : 

Q(P)(zo) = [(X - zo)P Qo(X)]~~zo = [f C~ ((X - zo)P)(l) Q~-t) (X)l 
l=O IX=zo 

[cP ((X - zo)P)<P) Qo(X)] 
P IX=zo 

P ! Qo(zo) 

Il en résulte : 
P(zo) = P 1 P(zo) 

œp = Qo(zo) · Q<P)(zo) 

Les autres résultats sont admis. 

Exemple 

x2 + 2 
Décomposons dans JR.(X) : R(X) = (X_ l)3 . 

La décomposition de R en éléments simples réels est de la forme : 

R X 
Œ 11 Œ1 2 Œ1 3 

( )---+ +---
- X - 1 (X - 1)2 (X - 1)3 

Le développement limité à l'ordre 3 de (X - 1)3 R(X) = X2 + 2 au voisinage de 1 est: 

[<x2 + 2)(0) ]X=I + [cx2 + 2)']X=I (X - 1) 

[<x2 + 2)Cll] [cx2 + 2)<3)] 
+ X= I (X - 1)2 + X=I (X -1)3 + o((X _ L)3) 

2! 3! 

c'est-à-dire: 
3 + 2 (X - 1) + (X - 1)2 + o ((X - 1)3

) 

Comme: 
(X -1)3 R(X) = Œ11 (X -1)2 + Œ12 (X - 1) + Œ13 

on en déduit, par unicité du développement limité : 

Œ11 = 1 Œ12 = 2 Œ13 = 3 

Ainsi: 
1 2 3 

R(X) = -X---1 + (X - 1)2 + -(X---1)-3 

• 

l. Étant donné un entier naturel n, et deux fonctions f et g définies sur un même intervalle l de R, n fois 
dérivables sur / , la fonction produit f g est n fois dérivable sur / , et : 

Il 

<f g)(") = 2: c~ fkl g (11- k) 

k=O 

où, pour tout entier k de {0, ... , n), c~ désigne le coefficient binomial ( ~· ) = k' (;:~k) ' . 
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~ Décomposition en éléments simples dans R.(X) 

Proposition 
p 

Soit R = - une fraction rationnelle, à coefficients dans le corps IR, où P et Q sont deux 
Q 

polynômes premiers entre eux, et où, en outre, Q est unitaire (c'est-à-dire le coefficient 
de son terme de plus haut degré vaut 1). 

On désigne par x 1, •• ., Xk> k E N les pôles de R, dont on note n 1 E N, .. ., nk E N, les 
ordres respectifs. 

Alors, Q peut être factorisé en produit de polynômes irréductibles sur IR, sous la forme : 

k r 

Q(X) = n (X - Xir n (X2 + Ài X +µJ i 
i=l i= l 

et il existe un unique polynôme R, et des réels ax;,J• (i, j) E {l,. .. , k} x {l,. .. , nk}, /3iJ 

et /'iJ, (i, j) E {l,. .. , r} x {l,. .. , fd, tels que: 

k 

R(X) = R(X) + ""1 { Œx;, I + Œx; ,2 + ... + Œx;,k } 

~ X - Xi (X - Xi)2 (X - Xi)11
i 

+ ' + ... + , 1 , 1 Ir { /3i 1 X + 'Yit /3u X +l'if } 

i=I )(2 +À.il X+ µil (X2 + Ài,t; X+ µuY; 

= R(X) ~ ~ Œx;,) ~ ~ /3i,j X+ l'i) 
+ ~ ~ (X - Xi)J + ~ ~ (X2 + Àij X + µij)J 

Les coefficients f3ij et y,1, (i, j) E {l, ... ,r} x {1,. .. ,t; }, pour les termes de la forme 
{3 ·. X+ Y' . 

2 
' ·

1 11 
. , peuvent être obtenus en commençant par décomposer la fraction R dans 

(X + Àij X+ µij)1 

C(X), puis en regroupant les termes deux à deux conjugués, les racines complexes du trinôme 
X2 + Àij X+ µ ;1 étant deux à deux conjuguées. 

Exemple 
X-1 

Décomposons dans IR(X) : R(X) = 
2 

. 
X(X +X+ 1) 

Le seul pôle réel est 0; R admettant deux pôles complexes conjugués, j = e 
2;n , et j2 = e 

4;n , 
on commence par décomposer R sur C(X). 
La décomposition de R en éléments simples complexes est de la forme : 

ao ai a p 
R(X) = - + -- + -­

X X-) X-)2 

Pour déterminer ao, on multiplie membre à membre ( *) par X, ce qui conduit à : 

X-1 ai ap 
---- =ao+X--+X-­
X2+X+ l X-j X-)2 

En évaluant cette dernière expression en 0, on obtient : 

-1 = a0 
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Pour déterminer a1, on multiplie membre à membre(*) par X - j, ce qui condui t à: 

X - l - (X - 1.) ao + a . + (X - 1.) ~ 
X(X - )2) - X 1 X - j2 

En évaluant cette dernière expression en j, on obtient : 

j-1 
- a· 

}(}- )2) - J 

soit : 
j-1 j-1 ] ] j . 
--= =--=--=--=-1=a · 
)2-1 (j-l)(j+l) j+l p p J 

puisque J3 = 1, et 1 + j + j2 =O. 
On détermine de même ap en multipliant membre à membre (*)par X - )2, ce qui conduit à : 

X - l .2 a0 .2 ai 
X (X - j) = (X - 1 ) X + (X - 1 ) X - j + a i2 

En évaluant cette dernière expression en )2, on obtient: 

j2 - l 
----=a·2 
j2(j2-j) J 

soit: 
l - l (j - l )(} + l) . ·2 -
- .-- = . = l + l = -1 = Œj = ap 
1-1 1-1 

puisque J3 = l, et l + j + j2 =O. Ainsi: 

R(X) = l j j2 
-------

XX-} X - )2 
l j (X - )2) + j2 (X - j) 

= X (X - j)(X - j2) 
1 (j + j2) X - 2 j3 

= X X2 _+X+ 1 
l X +2 

--+----
X X2+X+ l 

= 

>- Décomposition en éléments simples sur IR.(X) d'une fraction rationnelle paire 

Soit Rune fraction rationnelle, à coefficients dans le corps JR, paire, c'est-à-dire telle que 

R(-X) = R(X) 

Soit 

R(X) = R(X) + + {~ + Œx; ,2 + ... + Œx; ,k } -fr X - Xi (X - Xi)2 (X - zï)n; 

~ { f3i 1 X + 'Yil f3i e X + 'Yi e } 
+ -fr X2 ~ Ail X + µil + ... + (X2 + ·~i,t; X + ~i,e)fi 

= R(X) + ~ Œx;,j ~ ~ /3i,j X+ 'Yij 

+ -fr ~ (X - Xi)j + -fr ~ (X2 + Àij X+ µij)j 

la décomposition en éléments simples de R dans JR(X). 
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Alors : 

R-(X) I k { Œx;, I Œx;,2 Œx;,k } + --+ 2 + ... + 
i= I X - Xi (X - Zi) (X - Xj)n; 

Ir { /3i 1 X + 'Yil /3i e- X + 'Yi t· } + , + ... + , 1 , 1 

. X2 + /l-1 X+ µ1 (X2 + /l- e- X+ µ ·e.)e; L=I l l l, i l , ' 

R-( X) I k { Œx;, I Œx;,2 Œx;,k } - + + 2 + . .. + 
i=I -X-xi (- X-xi) (-X-xi)n; 

+ , + ... + , 1 , 1 Ir { /3i 1 X+ 'Yil /3i e X+ 'Yi e } 
i= 1 X 2 - Àii X + µil (X2 - Ài,e; X + µ i,eYi 

ce qui permet d'obtenir des relations entre les coefficients Œx;,J' (i,j) E {1, . . . ,k} X 

{l, ... , nd, d'une part, /3iJ et 'Yi) ' (i, j) E {l , ... , r} x {l , ... , fil d'autre part, et donc de 
simplifier le calcul de ceux-ci. 

Exemple 
x2 

Décomposons dans IR(X): R (X) = -
4 
-. 

X - l 
Comme X4 - 1 = (X2 - 1) (X2 + 1) = (X - 1) (X+ 1) (X2+ 1 ), la décomposition de R en éléments 
simples (réels) est de la forme : 

Œt a _, f3X +y 
R(X) = -X-- -l + _X_+_I + _X_2_+_1 

Par parité de R, on en déduit : 

a 1 a _, f3X +y a 1 a_, -f3X +y 
--+--+ = + +---
X - 1 X+ 1 X2 + 1 -X - 1 - X + 1 X 2 + 1 

Il en résulte : a 1 = -a_ 1 f3 = -/3, ce qui conduit immédiatement à f3 = O. 
Pour déterminer a 1, on multiplie membre à membre (* ) par X - 1, ce qui conduit à: 

x2 a_,(X -1) y(X -1 ) 
------=a1 + + ---
(X+ l)(X2 + 1) X+ 1 X2 + 1 

En évaluant cette dernière expression en 1, on obtient : 

1 
- = a1 
4 

On peut alors en déduire a_1 = -ai = -~ . 
La valeur de y peut ê tre obtenue, par exemple, en évaluant la valeur de R(X) en 0 : 

R(O) = 0 = - a 1 +a_, +y 

ce qui conduit à : 
1 

Y= Œ1 -Œ-t = -
2 

La décomposition en éléments simples cherchée est donc : 

x2 i 1 1 
-- = - + ----
X4 - l 4 (X - 1) 4 (X+ 1) 2 (X2 + 1) 
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~ Décomposition en éléments simples sur IR(X) d'une fraction rationnelle impaire 

Soit R une fraction rationnelle, à coefficients dans le corps R, impaire, c' est-à-dire telle 
que: 

R(-X) = -R(X) 

Soit alors : 

k 

R(X) = R(X) + ~ {~ + Œx;,2 + ... + Œx;,k } 
~ X - X; (X - X;)2 (X - Z;)n; 

I
r { /3; 1 X + "';1 /3; e X + Yit } + ' I + ... + '' '' 

. X2 + A·1 X + µ ·1 (X2 + il- e X + µ ·e.)e; t=J t t L, l L, l 

= R(X) ~ ~ Œx;, j ~ ~ /3i,j X + Yij 
+ ~ ~ (X - Xi)j + ~ ~ (X2 + Àij X + µ;j)j 

la décomposition en éléments simples de R dans R(X). 
Alors: 

k 
-R(X) _ ~ {-Œ_x_;, l_ + Œx;,2 + ... + _ a_x_;,k_} 

~ X - X; (X - Zi)2 (X - x;)n; 

I
r { /3;1X+y;1 /3;e X + yi e } - , + + '1 '1 

. X2 + X 1 X+ µ ·1 . . . (X2 + il- t· X+µ · e. )e; t=J l l l, l l ,' 

= 

R-( X) I k { Œx;,l Œx;,2 Œx;,k } - + + + ... + 
i= l -X - Xi (-X - x;)2 (-X - xi)'1i 

+ ' + ... + '1 '1 

I
r { /3i 1 X + Yil /3it X + Yit } 

i= 1 X2 - À.iJ X + µil (X2 - Ài,{; X + µ;,e)fi 

ce qui permet d'obtenir des relations entre les coefficients Œx;,j ' (i , j) E {1, ... , k} x 
{l, ... , nd, d' une part, /3iJ et YiJ· (i , j) E {1,. .. , r} x {1 ,. . ., t;} d' autre part, et donc de 
simplifier le calcul de ceux-ci. 

Exemple 
, X 

Decomposons dans IR(X) : R(X) = X4 _ 
1 

. 

Comme X4 - 1 = (X2 - 1) (X2 + l) = (X - 1) (X+ l) (X2 + l), la décomposition de R en éléments 
simples (réels) est de la forme : 

a 1 a_, f3X+y 
R(X) = -X---1 + _X_+_l + _X_2_+_1 

Par imparité de R, on en déduit: 

a, a_, f3X+y a 1 Œ-1 - f3X + y 
--+--+ = - --
X - 1 X+ 1 X2 + 1 - X - 1 - X+ 1 x2 + l 

li en résulte : 
y= - y 

ce qui conduit immédiatement à y = O. 
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Pour déterminer œ1 , on multiplie membre à membre (*)par X - 1, ce qui conduit à: 

X œ_1 (X-1) (JX(X-1) 
------ = œ, + + ----
(X+ 1) (X2 + l) X+ 1 X2 + l 

En évaluant cette dernière expression en 1, on obtient: 

1 
- =œ1 
4 

On peut alors en déduire œ_, = œ, = t. 
La valeur de f3 peut être obtenue, par exemple, en multipliant membre à membre(*) par X, 
puis en passant à la limite lorsque X ~ +oo : 

soit: 

ce qui conduit à : 

]. X X 1. x{ œ1 œ_1 f3X+y} 1m ---= 1m --+--+---
X-->+oo X4 - l X-->+oo X - l X + l X2 + l 

O=œ1+œ_,+f3 

1 
f3 = -œ, - œ_1 = - 2 

La décomposition en éléments simples cherchée est donc : 

X 
X4 - l 

l 1 
4(X-l) + 4(X+l) 

X 

2(X2+1) 
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Transformations du plan : 
translations, homothéties 

1. Translations 

Définition 

Tl étant un vecteur du plan, on appelle 
translation de vecteur â l'application 
Ttt, qui, à tout point M du plan associe 
le point M' tel que : 

~ 

MM'= ü. 

Figure 70.1- La translation de vecteur û. 

---:--+ 
J 

0 _, 
i 

> Expression analytique d'une translation de vecteur ü 

z' 
, ., 

Zr 

Le point M', image du point M d'affixe z, par la translation de vecteur ü, a pour affixe : 

z' = z + za 

où za est l'affixe de ü. 
Réciproquement, une application de la forme z E C H z + za est la translation de 

vecteur ü. 

~ 

Démonstration : La relation : MM' = ü entraîne : z-w = za, soit : z' - z = za et donc : 
z' = Z + Zit 

La démonstration de la réciprocité est laissée au lecteur. • 
2. Homothéties 

Définition 

k étant un réel non nul, on appelle homothétie de centre 0, de rapport k, l'applica-
----t ~ 

tian ho,k. qui, à tout point M du plan, associe le point M' tel que : 0 M' = k 0 M. 

> Expression analytique d'une homothétie de centre 0, de rapport k 

k étant un réel non nul, le point M', image du point M d'affixe z, par l'homothétie de 
centre 0 , de rappmt k, a pour affixe : z' = k z. 

Réciproquement, une application de la forme z E C H k z est l'homothétie de 
centre 0 , de rapport k. 
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z' 

z 
j -· 
0 

Figure 70.2 - L'homothétie de centre o. de rapport k. 

Démonstration : On traduit tout simplement, en termes d' affixes, le fait que : 

~ ----7 
OM' = kOM 

ce qui conduit à : z' = k z 
La démonstration de la réciprocité est laissée au lecteur. 

Définition 

k étant un réel non nul, on appelle 
homothétie de centre n, de rapport k, 
l'application hn,k qui, à tout point M du 
plan associe le point M' tel que : 

~ ----7 
QM' = kOM. 

Figure 70.3- L'homothétie de centre n, de 
rapport k . 

j 

Oj 

z , 

> Expression analytique d'une homothétie de centre n, de rapport k 

z' 
, " 

• 

k étant un réel non nul, le point M', image du point M d'affixe z, par l'homothétie de 
centre Q, de rapport k, a pour affixe : z' = Zn + k (z - Zn) OÙ Zn est l'affixe de 0. 

Réciproquement, une application de la formez E C H zn + k (z- zn) est l'homothétie 
de centre n, de rapport k. 

Démonstration : On traduit tout simplement, en termes d' affixes, le fait que : 

~ ----7 
QM' = kQM 

soit: 
z' - zn = k (z - zn) 

ce qui conduit au résultat cherché. La démonstration de la réciprocité est laissée au 
~~- . 
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Transformations du plan : rotations 

1. Rotation de centre 0 

Définition 

œ étant un réel, on appelle rotation de 
centre 0, d'angle œ, l'application ro,a 
qui, à tout point M du plan distinct de 
0, associe le point M' tel que : 

{ 

~ =OM 
~ ----t 

(OM, OM') = œ [2rr] 

en laissant le point 0 invariant. 

z' ... 

. 
___, ,' \Œ -- ------ Z j , __ _ _ _ 

Oj 

Figure 71.1- La rotation de centre o. d'angle a. 

>- Expression analytique d'une rotation de centre 0 

Le point M', image du point M d'affixe z, par la rotation de centre 0 , d'angle œ, a pour 
affixe: z' = zeia. 

Réciproquement, une application de la formez E C H z ei a est la rotation de centre 0, 
d'angle œ. ---~ ----t 

Si M est distinct de 0, la relation (OM, OM') = œ Démonstration : [2 rr] entraîne : 

arg(z~) = (7,--;;-M) + (O;oM') [2rr] 

= arg ( züM) + œ [2 rr] 

Comme: 7_____. = lz------ 1 eiarg(zQMi) = lz----. 1 ei(arg(zm:;)+a) = lz----. 1 eiarg(zm:;) eia 
~OM' OM' OM OM 

alors · z_____. = z---. ei <x soit · z' = z ei a 
. OM' OM ' . 

On remarque que la relation reste encore vraie lorsque M coïncide avec O. 
La démonstration de la réciprocité est laissée au lecteur. 

2. Rotation de centre n 
Définition 

(} étant un réel, on appelle rotation de 
centre Q, d'angle 8, l'application rn,1J. 
qui, à tout point M du plan, distinct de 
Q , associe le point M' tel que : 

{ 

~ =QM 
~ ----t 

(QM, QM') = (} [2 rr] 

en laissant le point Q invariant. 
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Figure 71.2- La rotation de centre n, d'angle O. 
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~ Expression analytique d'une rotation de centre n 

Le point M' , image du point Md' affixe z, par la rotation de centre Q, d'angle (), a pour 
affixe : z' = zn + (z - zn) ei 8 où zn est l 'affixe de n. 

Réciproquement, une application de la forme z E C H zn + (z - zn) ei 8 est la rotation 
de centre Q, d'angle e. ___ 

~~ 

Démonstration : Si M est distinct de Q , la relation (QM, QM') = () [2 n] entraîne : 

( ) .... ~ ~---~ 
arg Z---t = (i, QM) + (QM, QM') [2n] nM 

arg ( ZruJ) + () [2 n] 

Comme. Z--> = lz--.1 eiarg(zru?) = lz-.1 ei(arg(zfiM)+e) = lz-.1 eiarg(zfiM) ei8 
. nM' nM' nM nM 

alors : ZQ!;f = ZruJ eiB, soit : z' - zn = (z - zn) ei 8 et donc : z' = zn + (z - zn) ei8. 

On remarque que la relation reste encore vraie lorsque M coïncide avec Q. 

La démonstration de la réciprocité est laissée au lecteur. 

3. Composée de deux rotations 

La composée de deux rotations de 
même centre Q , d'angles respectifs œ et 
[3, est une rotation de centre Q, d'angle 
œ +[3. 

z' , 

, a , ' z:• f3 ,-..,, -- -- . ..,----, / 

- ... __ ,, 1,," 

____, 
j 
0 ____, 

i 

-- ..; 

n 

.• z 

• 

Figure 71.3- La composée de deux rotations de 
même centre n, d'angles respectifs a etj3. 

Démonstration: Soit z' l'affixe du point M', image du point M d'affixe z E C par la 
rotation rn,a, de centre Q, d'angle œ. On désigne par zn l'affixe de Q. 

D'après ce qui précède : 
z' = zn + (z- zn)eia 

Soit z" l'affixe du point M", image du point M' d'affixe z' par la rotation rn, 13 , de centre 
Q , d'angle [3. 

De même que précédemment, on montre que : z" = zn + (z' - zn) ei/3. 

Par suite: 

z" = zn + (z' - zn) ei/3 = zn + (zn + (z - zn) eia - zn) ei/3 

soit : z" = zn + (z - zn) ei (a+/3) . 

D'où le résultat, qui était naturellement prévisible, comme on peut le constater sur le 
dessin! • 
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Transformations du plan : similitudes 

Et si on composait une rotation et une homothétie ? On fait tourner, et on agrandit ou on 
rétrécit ... ou l'inverse ! 

En géométrie euclidienne, une similitude est ainsi une transformation qui multiplie 
toutes les distances par une constante fixe (son rapport), et conserve ou inverse le sens 
des angles orientés. Ainsi, l'image de toute figure par une telle application est une figure 
«similaire», ou « de même forme ». 

1. Similitudes directes 

Considérons, dans un premier temps, l'homothétie de centre Q , de rapport k; si on dé­
signe par Z.n l'affixe du point Q, le point M', image du point M d'affixe z, a pour affixe: 
z' = z.n + k (z - z.n). 

Considérons, ensuite, la rotation de centre Q, d'angle(); le point M", image du point 
M', a pour affixe : 

z" = z.n + (z' - z.n) ei 8 

= z.n + (z.n + k (z - z.n) - z.n) ei8 

Z.n + k (z - Z.n ) eiB 
(1 - k ei 8) z.n + k z ei 8 

Réciproquement, considérons une application de la forme z H a z + b, a E C*, b E C. 
Lorsque a * 1, l 'ensemble des points invariants est l'ensemble des points d'affixe z 

tels que z = az + b, soit: z = _b __ 
1-a 

Le point Q, d ' affixe z.n = _b_' est donc le centre de l'application considérée. 
1-a 

D'autre part, si on considère un point M distinct de Q, d'affixe z, et son image M', 
d'affixe z' = az + b, alors: 

M'.Q 

M.Q lzn-tl 
Zn - z 

b 
- - az - b 
1-a 

- -z 
1 -a 

= ,b - a(l -a)z-b (l -a)' 
b -(1 -a)z 

'

a (b -(1 - a)z) ' 
b - (1 -a)z 

lai 

Ainsi, M'Q = QM' = lal MQ = lal QM. La relation reste valable lorsque M coïncide 
avec n. 

L'application z H a z + b multiplie donc les distances par lai. 
Enfin, considérons quatre points M 1, M2, M3, M4 , tels que M 1 * M2, M3 * M4, 

d'affixes respectives z1, z2, z3, Z4, et leurs images M'i , M;, M~, M~, d'affixes respectives 

z~, z;, z; , z~- On a alors M'i * M; et M; * M~. 
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De plus: 

(M' M~'M')-1 2' 3 4 - (M~, ry + (7.~M~) 
-arg (z____,) + arg (z____,) 

MÎMÎ M)M~ 

-arg ( z; - fi ) + arg ( z~ - z; ) 
- arg (a (z2 - z1 )) + arg (a (24 - Z3)) 

[2.ir] 

[2.ir] 

= -arg(a) - arg (z2 - z1) + arg(a) + arg (24 - z3 ) [2 .ir] 

- arg (z2 - z1) + arg (24 - z3) [2.ir] 

-arg ( z;w;-M; ) + arg ( zM;"M; ) (2 .ir] 

(M1M:M3M4) [2 .irl 

Les angles sont donc conservés par l'application z H a z + b. 
Enfin : 

(~r) + (û~~') 
-arg (z~) + arg (z~) 

OM OM' 

- arg(z - _b_) + arg (az + b - _b_) [2 .ir] 
1 -a 1 -a 

-arg(( l -a)z- b) +arg(a( l -a)z-ab) [2.ir] 

= -arg(( l -a)z- b)+ arg(( l -a)z- b)+arg (a) [2.ir] 

arg(a) [2.ir] 

Lorsque a= l, on retrouve l'expression analytique d' une translation. 

Définition 

On appelle similitude (directe), une application de <C dans <C, de la forme : 

z H a z + b où a E <C*, et b E <C 

Le rapport de la similitude est lai, l' angle, arg(a) [2n]. 

~ Conservation des angles orientés 

Une similitude directe conserve les 
angles orientés. 
La figure suivante montre l'action de simi­
litudes successives sur cinq triangles, à qui 
on fait subir une rotation ayant pour centre 
le centre de gravité du pentagone central, 
puis une homothétie de même centre, de 
rapport strictement plus petit que un. Et on 
tourne .. . Similarité à l'infini! Figure 72.1 - Transformation de triangles par 

similitudes. 

~ Similitudes directes remarquables 

• Lorsque a = 1 : la similitude z H z + b, b E <C, est une translation de vecteur il, où le 
vecteur i1 a pour affixe b. 
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• Lorsque a = -1 : la similitude z H - z + b, b E <C, est une symétrie centrale, dont le 

centre est le point d'affixe ~· 

2. Composée de deux similitudes 

La composée de deux similitudes est une similitude. 

Démonstration : Considérons les similitudes S 1 : z H a 1 z + b 1, et S2 : z H a2 z + b2. 
Soit M un point du plan, d'affixe z ; M 1, d'affixe z 1 , son image par S 1 . 
L'affixe z2 point M2 , image de M1 par S 2 , est donc donnée par : 

z2 = a2 z 1 + b2 = a2 ( a 1 z + b 1 ) + b2 = a 1 a2 z + a2 b 1 + b2 
S2 o S 1 est donc bien une similitude, de rapport la1 a1I = la1 l la2 I. • 

Considérons maintenant une application z H az + b, a E <C*, b E <C. 
L'ensemble des points invariants est l'ensemble des points d'affixe 

z = a z + b, ce qui entraîne : z = a z + b. Par suite : z =a a z +ab+ b. 

ab+ b 
Ainsi, si lai * 1 : z = 1 _ lal2 . 

On vérifie, que, réciproquement: 

a b + b a a b + a b + ( 1 - lal2 ) b 
a + b = ---------

1 - lal2 1 - lal2 
aab +ab+ (l - lal2 )b 

= 
1 - lal2 
ab +b 

= 
1 - lal2 

z tels que 

L'application z H a z + b admet donc pour centre, dans le cas lai * 1, le point n, d' affixe 
ab+b 

zn = J - lal2. 
D'autre part, si on considère un point M distinct de n, d'affixe z, et son image M', 

d'affixe z' = a z + b, alors : 
QM' 

QM 
= 

= 

M'Q 

MO. 

ab+b - az - b 
1- lai2 

a b+b _ z 
1-lal2 

= lab+b-a(l -lal2)Z -b(l -lal2)1 
ab + b - (l - lal2) z 

= 

= 

1 

ab - a (1 - lal2 ) z + b lal2 
I 

ab+ b - (l - lal2) z 

a (b- (l -lal2) z + ba) 
ab + b- (l - la12)z 

a (b- (1 -lal2)z + ba) 

ab +b-(l-lal2)z 
lai 
lai 

(un nombre complexe et son conjugué ayant même module). 
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Ainsi, Q.M' = lal!J.M, et la relation reste vraie pour n = M. 
L'application z H az + b multiplie donc les distances par lai. 
Enfin, considérons quatre points M1, M1, M3, M4, tels que M1 * M1, M3 * M4, 

d'affixes respectives z1, z2, z3, Z4, et leurs images M~, M;, M~, M~, d'affixes respectives 
I I I I 

Z1' Z2, Z3, Z4· 
On a alors M~ * M; et M~ * M~. 
De plus: 

(M~M~~M~) = ( M~,i) + (7, ~M~) 
-arg ( Z,----t) + arg ( Z,----t ) 

M 1M2 M 3 M 4 

-arg(z; - z~) + arg(z~ - z; ) 

-arg (a (z2 - z1)) + arg (a (z4 - Z3)) 

[21T] 

[2JT] 

[2 n] 

[2 n] 

= -arg(a) - arg (z2 - z1) + arg(a) + arg (Z4 - Z3) [2n] 

arg (z2 - z1) - arg (z4 - Z3) [2 n] 

-arg(z~) + arg(z~) [2JT] 

[2 JT] 

Les angles orientés sont donc changés en leurs opposés par l'application z H a z + b, un 
nombre complexe et son conjugué ayant des arguments opposés. 

3. Similitude indirecte 

Définition 

On appelle similitude indirecte, une application de C dans C, de la forme: 

où a E C*, et b E C. 

Le rapport de la similitude est lai. 
Une similitude indirecte inverse le sens des angles orientés. 
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Nous avons présenté, dans ce qui précède, les transformations usuelles que sont les 
translations, les homothéties, rotations et similitudes. Il en existe une infinité d' autres. 

L'ensemble de Mandelbrot 

En particulier, considérons la transformation du plan complexe z E C H z2 + c, 
c E C, et intéressons-nous à la suite (zn)neN définie par : 

zo = 0 2 
Zn+I = Zn + C 

Si on représente, dans le plan complexe, les images successives des termes de cette 
suite, on obtient la figure suivante (les zones les plus claires sont celles avec les plus 
faibles concentrations de points, la couleur fonce en lien avec cette concentration). 

L'ensemble de Mandelbrot. 

C'est l'ensemble de Mandelbrot, obtenu par le mathématicien Benoît Mandelbrot, 
qui, pour la désigner, créa le terme de fractale [12]. Depuis, on désigne par frac­
tale une courbe de forme a priori irrégulière, mais dont la construction résulte en 
fait d'un processus itératif, parfois très simple, poussé à l' infini. Les propriétés de 
l' ensemble de Mandelbrot ont été étudiées de façon approfondie par Adrien Douady 
et John H. Hubbard [11 ], qui ont mis en évidence une propriété remarquable de ce 
type d'ensembles : leur auto-similarité, c'est-à-dire le fait que ces figures semblent 
se reproduire à l' intérieur d'elles-mêmes de façon infinie. En faisant un« zoom» sur 
une partie du dessin, on s'aperçoit ainsi qu'on retrouve exactement la même forme 
que la figure initiale, en plus petite certes, mais en tout point semblable. 
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Plan rapproché de l'ensemble de Mandelbrot. 

Des structures fractales très naturelles 

Ce phénomène d'auto-similarité existant aussi dans la nature, par exemple, une feuille 
est elle-même composée de plus petites feuilles de la même forme, elles-mêmes 
aussi, ... l' idée est alors venue d'utiliser les fractales pour représenter des formes 
naturelles comme, bien sûr, cette feuille de fougère, créée par le mathématicien aus­
tralien Michael Barnsley [13], [14], [15] : 

La fougère dite« de Barnsley». 

En biologie, notamment, les alvéoles pulmonaires présentent une structure fractale, 
de même que la ramification du réseau sanguin. 

Il apparaît que les représentations ainsi obtenues sont très réalistes, et traduisent 
très bien de nombreux phénomènes naturels. 

Une fractale obtenue à partir du flocon de Von Koch. 
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Des matrices pour la résolution de systèmes linéaires 

Le concept de matrice est apparu au xvne siècle, afin de simplifier la résolution et 
l'étude des systèmes linéaires. En 1678, Gottfried Wilhelm Leibniz introduit une 
notation indicielle, dans le cas d'un système de trois équations à deux inconnues. 
Les matrices seront ensuite utilisées par Gabriel Cramer, toujours pour la résolution 
de systèmes linéaires (1774) . Ses travaux sont poursuivis par les Français Alexandre 
Théophile Vandermonde, puis Pierre Simon Laplace, qui définissent par récurrence 
le déterminant d'une matrice carrée. 

L'étude des transformations linéaires par Joseph Louis Lagrange et Carl Friedrich 
Gauss renvoient, à nouveau, aux matrices : ainsi, Gauss utilise pour la première fois 
une notation en tableau proche d'une écriture matricielle. Ses travaux seront poursui­
vis par Augustin-Louis Cauchy, qui définit le produit matriciel. 

Le mot« matrice» est introduit par James Joseph Sylvester, pour désigner un ta­
bleau rectangulaire de nombres, mais c'est avec la publication par Arthur Cayley, en 
1858, d'un article des Philosophical Transactions [17], que les matrices sont vérita­
blement mises en place [18]. 

• Gottfried Leibniz (1646-1716) est un philosophe, scientifique, mathématicien, lo­
gicien, diplomate, juriste, bibliothécaire et philologue allemand. 

• Gabriel Cramer ( 1704-1752) est un mathématicien suisse, connu essentiellement 
pour son traité sur les courbes algébriques publié en 1750, où il est le premier à 
démontrer qu 'une courbe du nième degré est déterminée par n(i~+3) de ses points. 

Il a également travaillé sur la résolution des systèmes linéaires, qui lui doivent les 
« formules de Cramer ». 

• Théophile Vandermonde (1735-1796) est un mathématicien français, mais aussi 
économiste, musicien et chimiste. 
D 'après Lebesgue (Conférence d'Utrecht, 1937, [23]), le déterminant ne serait pas 
de lui ... 

• Pierre Laplace ( 17 49-1827) est un mathématicien, astronome et physicien français. 

• Joseph Lagrange ( 1736-1813) est un mathématicien, mécanicien et astronome ita­
lien, mais de famille française par son arrière-grand-père. Il s'est intéressé à l'al­
gèbre, au calcul infinitésimal, aux probabilités, à la théorie des nombres, à la mé­
canique théorique, mais aussi la mécanique céleste, la mécanique des fluides, la 
cartographie ... 

• Carl Gauss (1777-1855) est un mathématicien, astronome et physicien allemand. 

• Augustin-Louis Cauchy ( 1789-1857) est un mathématicien français, membre de 
l'Académie des sciences et professeur à !'École Polytechnique. Il est à l'origine 
de l'introduction des fonctions holomorphes en analyse, ainsi que des critères 
de convergence pour les suites et les séries entières (suites de Cauchy, critère de 
Cauchy). 
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• James Sylvester (1814-1897) est un mathématicien et géomètre anglais. Il a, no­
tamment, travaillé avec Arthur Cayley sur les formes quadratiques et leurs inva­
riants (théorème d'inertie de Sylvester), et les déterminants. 11 a, également, in­
troduit la fonction indicatrice d'Euler, qui, à un entier naturel n, associe le nombre 
d'entiers strictement positifs inférieurs ou égaux à net premiers avec n, très utilisée 
en théorie des nombres. 

• Arthur Cayley (1821-1895) est un mathématicien britannique, un des fondateurs 
de l'école britannique moderne de mathématiques pures. 

Les applications du calcul matriciel dans l'industrie 

Le calcul matriciel occupe, maintenant, une place fondamentale dans l'industrie, pour 
la modélisation et le calcul numérique. Ainsi, dans l'aéronautique, on utilise des mo­
dèles tridimensionnels de CFD (Computationnal Fluid Dynamics). L'ordinateur crée 
un modèle de la surface de l'avion à l' aide d'un réseau de « boîtes », situées soit à l'in­
térieur de la surface, soit à l'extérieur, soit à cheval entre les deux. Les «boîtes » qui 
intersectent (rencontrent) la surface de l'avion sont à nouveau divisées en un nouveau 
réseau de « boîtes » encore plus petites, où on ne retient que celles qui intersectent la 
surface. On itère le procédé jusqu'à ce que le réseau obtenu soit constitué de « boîtes » 
de très petite taille, afin d'obtenir le plus de précision possible. Pour déterminer la 
circulation de l' air autour de l'avion, et donc, les efforts s'exerçant sur celui-ci, l'or­
dinateur est, finalement, amené à résoudre un système d'équations linéaires de très 
grande taille, puisque celle-ci peut atteindre 2.106, soit 2 mm ions d'équations - ou 
plus! Le second membre du système est modifié à chaque calcul (ou itération), en 
fonction des résultats des calculs précédents, et des données du réseau. 

Le stockage des données afférentes doit être fait de la façon la plus optimale pos­
sible, afin que l'ordinateur puisse effectuer, en un temps minimum, les calculs. Les 
données sont, ainsi, stockées sous forme de tableaux de nombres (des matrices, ou 
des vecteurs). D'autre part, afin d' optimiser les calculs, on essaye toujours de les ex­
primer sous une forme simplifiée au maximum. Pour une matrice, la présence de « zé­
ros » judicieusement placés, regroupés en « blocs », facilitera ceux-ci. Mais, même 
simplifiés à l'extrême, ceux-ci, en raison de la taille des systèmes, restent toujours 
complexes. L' algèbre linéaire, la théorie de la réduction matricielle, la factorisation, 
sont des outils très puissants pour améliorer les performances et les résultats des si­
mulations numériques. Le lecteur intéressé pourra trouver plus de précisions dans 
[19], sur le plan formel, et dans [20], pour une vision plus appliquée. 
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Matrices de taille 2 x 2 

1. Définitions 

On appelle matrice de taille 2x2 une collection de 2x2 = 4 nombres, a 11 , a 12, a21, a22, 

réels ou complexes, arrangés en tableau, sous la forme : 

A=(a11a12) 
a21 a22 

( a 11 
) est le premier vecteur colonne de A, ( a 12 

) son second vecteur colonne. a21 a22 
1. Dans ce qui suit, on se limitera au cas de matrices à coefficients réels. 

2. M 2 (R) désigne l'ensemble des matrices de taille 2 x 2 à coefficients réels. 

> Matrice triangulaire supérieure 

Lorsqu'une matrice est de la forme: 

A= ( a~1 :~~) 
elle est dite triangulaire supérieure. 

> Matrice triangulaire inférieure 

Lorsqu'une matrice est de la forme: 

elle est dite triangulaire inférieure. 

> Matrice diagonale 

Lorsqu'une matrice est de la forme : 

elle est dite diagonale. 

> Transposée 

A= (a~, a~2) 

Étant donnée une matrice de taille 2 x 2, A = (aiJ) . . , on appelle transposée de 
l ,,;1,,;2, I,,;; ,,;2 

la matrice A la matrice r A telle que : 

ce qui signifie que, par rapport à la matrice A, on a échangé les lignes et les colonnes. 
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~Trace 

Étant donnée une matrice A = (aiJ) . . de taille 2 x 2, la trace de A, notée tr A, 
1<;;1<;;2, 1<;;1<;;2 

est la somme de ses termes diagonaux : 

2 

tr A = a 11 + a22 = L aii 
i= I 

2. Opérations élémentaires 

Étant donnée une matrice de taille 2 x 2, A = (aiJ) . . , on appelle opération 
! <;;1<;;2, ! <;;1<;;2 

élémentaire sur les colonnes de A l'une des opérations suivantes : 

• Transposition: A = (ai 1 
a

12
) H ( a12 a, 1 

) · 
a21 a22 a22 a21 

• Dilatation : A = ( a 11 a 12 
) H ( À. a 11 a 12 

) À. E R *, ou encore 
a21 a22 À. a21 a22 

A =(a' 1 a12) H (a' 1 À.a12) À. E R* 
a21 a22 a 2 1 À.a22 

• (a11a12) (a11+À.a12a1 2) • Transvection : A = H 
1 

À. E R, ou encore : 
a21 a22 a21 + /1 a22 a22 

A= (a11 a12) H (a' 1 a12+À.ai1) À. E R 
a21 a22 a21 a22 + À.a21 

(À une colonne donnée, on ajoute l'autre colonne, multip]jée par un facteur À..) 

1. L'opération élémentaire de transposition ne conduit pas du tout à la transposée d'une 
matrice. 

2. On peut définir, de même, des opérations élémentaires sur les lignes de A. 

3. Les opérations élémentaires sont inversibles, c'est-à-dire il est possible de revenir à la 
matrice de départ par d 'autres opérations élémentaires. 

253 

"' :::::s 

:::::s 
V 

<a u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Déterminant de matrices 
de taille 2 x 2 

1. Définitions 

~ Déterminant d'une matrice 

Étant donnée une matrice de taille 2 x 2, A = (aij) . . , on appelle déterminant 1 ~1~2, 1 ~}~2 
de la matrice A le nombre : 

l
a11 a12 I det A = = a11 a22 - a 21 a12 
a21 a22 

Proposition 
Une matrice de taille 2 x 2 et sa transposée ont le même déterminant : 

VA E M2(R) : det 'A = detA 

Démonstration : Il suffit de reprendre la formule donnée en définition. 

~ Déterminant de 2 vecteurs 

• 

On appelle déterminant de deux vecteurs û = (u1, u2) et îl = (u1, u2) du plan R2, le 
nombre: 

det(îl, Ü) = 1 UJ V) 1 = UJ u2 - U2 UJ 
u2 u2 

C'est donc, tout simplement, le déterminant de la matrice : 

(
UJ V)) 
u2 u2 

2. Propriétés 

1. Étant donnée une matrice de taille 2x2, A = (aij ) . . , dont on désignera par 1 ~1~2, 1 ~}~2 
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C 1 et C2 les vecteurs colonnes, le déterminant de la matrice A vérifie les propriétés 
suivantes: 

• Antisymétrie : 
detA = det (C1 ,C2) = -det(C2,C1) 

L' antisymétrie traduit le fait que le déterminant change de signe si on échange 
deux colonnes. 

• Homogénéité : 

• Invariance par transvection : 

La valeur du déterminant ne change pas si on ajoute, à une colonne donnée, 
l'autre colonne multipliée par un facteur À.. 
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Le déterminant d'une matrice et de sa transposée étant égaux, les propriétés d'invariance du 
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont également 
valables pour les lignes de la matrice. 

2. Le déterminant d'une matrice triangulaire est égal au produit des termes diago­
naux. 

Exemples 

1. 

2. 

1
1 11 
23 

=lx3-2xl=3-2=1 

1
- l 11 
3 4 

=-lx4-3xl=-4-3=-7 

3. Deux vecteurs i1 = (u1, u2) et ï1 = (v 1, v2) du plan sont non colinéaires si et seule­
ment si leur déterminant est non nul : 

det(u, V) = * 0 _, 1 U( VJ 1 

U2 V2 

Démonstration : On démontre ce résultat par la contraposée: deux vecteurs Ü = (u 1, u2) 
et v = (v1, v2) du plan sont liés si et seulement si leur déterminant est nul. 

• Supposons i1 et v liés et tels que i1 = Ô ou v = Ô; on a alors, clairement, 

det(Ü, V) = 0 

• Supposons Ü et v liés et tels que i1 * Ô et v * Ô, il existe alors un réel non nul ,.l tel 
que: 

v=Ai1 

Par suite: 
det(Ü, ,.l Ü) = ,.l det(i1, Ü) = 0 

• Réciproquement, si det(Ü, Û) = 0, alors : 

Si v2 * 0 : 

Comme: 

on a donc: 

les vecteurs i1 et v sont bien liés . 

On démontre de même le résultat dans le cas où u2 * O. 

Lorsque u2 = v2 = 0, u 1 et v 1 peuvent prendre chacun une valeur quelconque dans R 
Les vecteurs i1 et ï1 sont alors colinéaires, et donc liés. 

• 
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Matrices de taille 3 x 3 

1. Définitions 

On appelle matrice de taille 3 x 3 une collection de 3 x 3 = 9 nombres, réels ou 
complexes, a11, a12, a13, a21, a22, a23, a31, a32, a33, arrangés en tableau, sous la forme: 

A = a21 a22 a23 
[

a11 a12 a13 l 
a31 a32 a33 

[
a11] [a12 ] [a13 ] a21 est le premier vecteur colonne de A, a22 son second vecteur colonne, a23 

a31 a32 a33 

son troisième vecteur colonne. 

~ 1. Dans ce qui suit, on se limitera au cas de matrices à coefficients réels. 

t::J 2. MJ (JE.) désigne l'ensemble des matrices de taille 3 x 3 à coefficients réels. 

~ Matrice triangulaire supérieure 

Lorsqu'une matrice est de la forme: 

elle est dite triangulaire supérieure. 

~ Matrice triangulaire inférieure 

Lorsqu'une matrice est de la forme : 

A= a21 a22 0 
[

a11 0 0 l 
a31 a32 a33 

elle est dite triangulaire inférieure. 

~ Matrice diagonale 

Lorsqu'une matrice est de la forme : 

elle est dite diagonale. 
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> Transposée 

Étant donnée une matrice de taille 3 x 3, A = (aiJ) . . , on appelle transposée de 
1 ~!~3. 1 ~;~3 

la matrice A la matrice 1 A, de taille 3 x 3, telle que : 

ce qui signifie que, par rapport à la matrice A, on a échangé les lignes et les colonnes. 

> Trace 

Étant donnée une matrice A = (aiJ ) . . de M 3 (IR), la trace de A, notée tr A, est la 
1 ~1~3. 1 ~;~3 

somme de ses termes diagonaux : 

3 

tr A = a 11 + a22 + a33 = L aii 
i=l 

2. Opérations élémentaires 

Étant donnée une matrice de taille 3 x 3, A = (ai;) . . , on appelle opération 
. 1 ~1~3, 1 ~;~3 

élémentaire sur les colonnes, respectivement désignées par C 1, C2 , C3, de A, l'une des 
opérations suivantes : 

• Transposition : 

ou encore: 

etc. 

L'opération élémentaire de transposition consiste donc à échanger deux colonnes de 
la matrice. 

• Dilatation : 

ou encore: 
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ou: 

L'opération élémentaire de dilatation, par un réel non nul À, consiste donc à multiplier 
une colonne de la matrice par À. 

• Transvection : 

ou encore: 

etc. 

À une colonne donnée, on ajoute une combinaison linéaire des autres colonnes. 

~ 1. L'opération élémentaire de transposition ne conduit pas du tout à la transposée d'une matrice. 

['.J 2. On peut définir, de même, des opérations élémentaires sur les lignes de A. 

3. Les opérations élémentaires sont inversibles, c'est-à-dire qu' il est possible de revenir à la 
matrice de départ par d'autres opérations élémentaires. 
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Déterminant de matrices 
de taille 3 x 3 

1. Définitions 

>Mineur 

Soit A E M 3(lR). 
Étant donné (i, j) E {l, ... , 3}2, on appelle mineur d'indice (i,j) le déterminant, noté 

~iJ(A) , de la matrice obtenue en enlevant à A la ligne i et la colonne j . 

> Cofacteur 

Soit A E M 3(R). 
Étant donné (i, j) E {l, 2, 3}2 , on appelle cofacteur d'indice (i,j): 

(-l)i+J ~iJ(A) 

> Comatrice 

Soit A E M 3(lR). 
On appelle comatrice de la matrice A, et on note ComA E M 3(R) la matrice des 

cofacteurs : 
ComA - (C-l)i+J ~-·(A)) 

- lj l ,;;i.;;3, l .;; j .;;3 

> Déterminant 

Étant donnée A E M 3(R), on appelle déterminant de la matrice A = (aiJ) . . le 
J,;;1.;;3' J,;;;.;;3 

nombre, noté det A, qui peut être calculé de la façon suivante : 

• par un développement suivant la ligne i, i E { 1, ... , 3} : 

3 

det A = L:c-1i+ J aiJ ~iJ(A) 
J=l 

• par un développement suivant la colonne j , j E { 1, ... , 3} : 

3 

det A = L:c-1i+ J aiJ ~iJ(A) 
i=I 

On choisit la ligne ou la colonne que l'on veut; quel que soit le choix, on obtient bien sûr le 
même résultat ! 

Proposition 
Une matrice de taille 3 x 3 et sa transposée ont le même déterminant : 
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Démonstration: Ce résultat s'obtient immédiatement à partir de la formule donnant le 
développement suivant une ligne ou une colonne. • 

~ 1. 

u 
si on développe par rapport à une ligne : 

detA = a,, 1:~~ :~~1-a121:~: :~~l+a131:~: :~~1 

2. et si on développe par rapport à une colonne : 

2. Propriété 

1. Étant donnée une matrice de taille 3 x 3, A = (aiJ ) . . , dont on désigne 
1:>;1:>;3, 1:>;1:>;3 
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par C 1, C2, C3 les vecteurs colonnes, le déterminant de la matrice A vérifie les 
propriétés suivantes : 

• Antisymétrie : 

L' antisymétrie traduit le fait que le déterminant change de signe si on échange 
deux colonnes. 

• Homogénéité : 

• Invariance par transvection : V (À,µ) E R2 : 

det(C1 , C2 + ÀC1,C3) = det(C1,C2,C3 + ÀC1) 
det(C1 + ÀC2,C2,C3) 

= det(C1 +ÀC2 +µC3,C2,C3) 

La valeur du déterminant ne change pas si, à une colonne donnée, on ajoute une 
combinaison linéaire des autres colonnes. 
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Le déterminant d' une matrice et de sa transposée étant égaux, les propriétés d' invariance du 
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont également 
valables pour les lignes de la matrice. 

2. Le déterminant d'une matrice triangulaire est égal au produit des termes diago­
naux. 

Démonstration : Il suffit de développer par rapport à la première colonne. • 
3. Le déterminant d'une matrice diagonale est égal au produit des termes diagonaux. 

Démonstration : Une matrice diagonale est un cas particulier de matrice triangulaire . 

Définition 

On appelle déterminant de trois vecteurs i1 = (u1, u2, u3), iJ 
w = (w1, w2, w3) de l'espace IR3, le déterminant de la matrice : 

UJ V] WJ 

det(Û, V, w) = U2 V2 W2 
U3 V3 W3 

• 

4. Trois vecteurs i1 = (u1,u2,u3), iJ = (v1,v2,v3), w = (w1,w2,w3) de l'espace IR3, 
sont non coplanaires si et seulement si leur déterminant est non nul : 

UJ UJ WJ 

det(Û, Û, w) = U2 V2 W2 -:f:. 0 
U3 V3 W3 

Démonstration : On démontre ce résultat par la contraposée : trois vecteurs i1 = 
(u1, u2, u3), iJ = (u1, u2, v3), w = (w1, w2, w3) sont liés si et seulement si leur détermi­
nant est nul. 

• Supposons û, ü, w liés; alors, soit la famille (i1, Ü) est liée, soit w E IR i1 + IR ü. 
--> 

Dans le premier cas, soit îJ = 0, ce qui conduit immédiatement à det(û, û, w) = 0, soit 
il existe un réel œ tel que i1 = œ v. On a alors : 

det(i1, v, w) = det(œ ü, v, w) = œ det(ü, v, w) = œ det(ü - ü, v, w) = 0 

en utilisant l' invariance du déterminant par transvection. 

Dans le second cas, il existe deux réels Il et µ tels que w 
det(i1, v, w) = det(û, ü, Il i1 + µ iJ) = det(i1, ü, i1) = 0 

(On utilise l'invariance du déterminant par transvection.) 

Il i1 + µ v. Par suite 

• La réciproque se démontre par le calcul, de façon analogue à ce qui a été fait en 
dimension 2. • 
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Matrices de taille m x n 

1. Coefficients d'une matrice 

m et n étant des entiers naturels non nuls, on appelle matrice de taille m x n une collec­
tion de m x n nombres, réels ou complexes, arrangés en tableau : 

Les ai) sont appelés coefficients de la matrice : par convention, le premier indice désigne 
l'indice de ligne, le second, l'indice de colonne. 

Dans ce qui suit, on se limitera au cas de matrices à coefficients réels. 

m et n étant des entiers naturels non nuls, on désigne par Mm,n (IR) lensemble des 
matrices de taille m x n, à coefficients réels 1. 

2. Matrice carrée d'ordre n 

n étant un entier naturel non nul, on appelle matrice carrée d 'ordre n une matrice de 
taille n X n: 

n étant un entier naturel non nul, on désigne par Mn (IR) l'ensemble des matrices carrées 
d'ordre n, à coefficients réels. 

Étant donnée une matrice A = (aiJ) . . de Mn (IR), les coefficients aii, 
l ,,;1,,;n, l ,,;1,,;n 

i = 1, . . . , n, sont les termes diagonaux de A. 
Étant donnée une matrice A = (aiJ) . . de Mn (IR), la trace de A, notée tr A, est 

l ,,;1,,;n, l ,,;1,,;11 
la somme de ses termes diagonaux : 

n 

tr A = a 11 + ... + ann = 2= aii 
i= l 

3. Matrice ligne et colonne 

n étant un entier naturel non nul, on appelle matrice ligne une matrice de taille l x n, de 
la forme: 

1. On peut aussi trouver la notation M mxn (JR.). 
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m étant un entier naturel non nul, on appelle matrice colonne, ou encore vecteur co­
lonne, une matrice de taille m x 1, de la forme : 

A=[] 
Étant donnée une matrice A = (aiJ) . . de Mm,n (R), on appelle transposée de la 

l.;;1,;;m, l .;;1.;;n 
matrice A la matrice 1 A, de taille n x m, telle que : 

[

a11 ... ami l 
rA . . = aji . . = . . { )I .;;1,;;11, J,;;1.;;m · · 

a1n . .. amn 

ce qui signifie que, par rapport à la matrice A, on a échangé les lignes et les colonnes 
de A. 
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Opérations sur les matrices 

Dans ce qui suit, m, n, p, q désignent des entiers naturels non nuls. 

1. Définitions 
> Addition de deux matrices 

Étant données deux matrices A et B de Mm,n (lR), on définit la matrice somme A + B 
comme étant la matrice C E Mm,n (!Et) telle que : 

( 

a11 + b11 

C=A+B= : 

ami+ bm1 

a1n + bin l 
.. · amn ~ bmn 

> Multiplication par un scalaire 

Étant donnée une matrice A de Mm,n (!Et), on définit le produit de A par le réel À comme 
étant la matrice : 

(

Àa11 .. . Àa111] 
ÀA = ; ; E Mm,n (!Et) 

Àaml ... Àamn 

> Multiplication de deux matrices 

La multiplication d'une matrice A = (aiJ) . . , de taille m x n, par une matrice 
1 ~1~m , 1 ~J~n 

B = (biJ) . . , de taille n x p, conduit à la matrice produit C, de taille m x p, telle 
l ,;;;1,;;;n, l ~;:;;;p 

que, pour tout couple d'entiers (i, j) de {l, .. . , m} x {l, ... , p}: 

avec: 

Exemple 

C =AB= (ciJ)l :;;;i:;;;m, 1 ,;;;j~p 

11 

Cij = L: aik bkj 
k= I 

[101][1] [l xl+OxO+lxl l [ 2 ] 
2. 10 0 = 2xl+lxO+Oxl = 2 
LOO 1 lxl+OxO+Oxl 1 

Attention ! Pour pouvoir faire le produit de deux matrices, il est indispensable que le nombre 
de colonnes de la première matrice soit égal au nombre de lignes de la seconde matrice . 
En pratique, le coefficient situé ligne i, colonne j de la matrice produit est obtenu en « mul­
tipliant la ligne ide la première matrice par la colonne j de la seconde matrice» 

Coefficient de AB ligne i, colonne j 

Il 
2: coefficients de la ligne ide A X coefficients de la colonne j de B 

un par un 
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ce qui permet de comprendre pourquoi le nombre de colonnes de la première matrice doit être 
égal au nombre de lignes de la seconde matrice: il faut tout simplement qu'il y ait le même 
nombre de coefficients sur cette ligne que sur la colonne. 
La multiplication des matrices n'est pas commutative. En général, 

ABt:. BA 

2. Propriétés de la multiplication matricielle 

La multiplication matricielle est : 

• distributive à gauche : 

V (A, B, C) E Mm,n(R ) x (Mn,p(R) )
2 

A (B + C) = AB+ AC 

• distributive à droite : 

V (A, B, C) E (Mm,n(R))2 x Mn,p(R) : (A+ B) C =AC+ B C 

• associative : 

V (A , B, C) E Mm,n(R ) x M 11,p(R ) x Mp,q(R ) : A (B C) = (AB) C 

Si on désigne par C 1, •• ., C11 les vecteurs colonnes d'une matrice A de taille m x n, alors, pour 

tout vecteur X = [ ~
1 

]· on peut aussi écrire : 

X11 

A X = A [ ~l l = X J C J + ... + X11 Cn 

X11 

3. Formule du binôme de Newton 

Étant données deux matrices A et B de M11(R), qui commutent, c'est-à-dire AB = BA, 
alors, pour tout entier naturel p, la formule du binôme de Newton permet de calculer 
(A+ B)P: 

p 

CA+ B)P = I c;Ak Bp-k 
k=O 

où, pour tout entier k de {O, ... , p}, c; désigne le coefficient binomial : 

(p) p! 
k k! (p - k)! 
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Matrices remarquables 

1. Matrice identité 

Définition 

n étant un entier naturel non nul, on appelle matrice identité d'ordre n, la matrice 
carrée, de taille n x n : 

Propriété 

l 0 ...... 0 
0 1 0 .. . 0 

· .. 0 

0 ...... 0 1 

- (o .. ) 
- 11 J::;;i::;;n, l ::;;j::;;n 

L'élément neutre de la multiplication dans M11 (IR.) est la matrice identité /11 : 

2. Base canonique 

Définition 

m et n étant des entiers naturels non nuls, on désigne par {Eij} . . la base 
J,;;1,;;m, l,;;1,;;11 

canonique de Mm,n (IR), c'est-à-dire la famille des m n matrices telles que : 

V (i, j) E {l,. . ., m} X { 1,. .. ' n} : Eij = (oik Ojt) 
l ,;;k,;;m , l ,;;t,;;n 

où les Ôij désignent les symboles de Kronecker' : 

V (i, j) E N* X N* : 8 .. - { l si i = j 
11 - 0 sinon 

Cela signifie que, pour i et j donnés, les coefficients de la matrice Eij sont tous nuls, sauf 
celui situé sur la iième ligne et la fème colonne, qui vaut 1. 

Ainsi, pour toute matrice A = (aij) . . de Mm,n (IR.) : 
l ,;;1,;;m , l ,;;1,;;n 

m n 

A= I IaijEij 
i=l j =l 

l. Leopold Kronecker (1823- 1891), mathématicien allemand. À l' origine, il était théoricien des nombres, 
mais apporta de nombreuses contributions à l 'analyse algébrique. 
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Proposition 
Lorsque l'on est dans M 11 (R), c'est-à-dire lorsque les matrices sont carrées: 

V (i , j , k, l) E { 1, .. ., n}4 
: Eij Ek1 = Ôjk Ea 

Démonstration: On a: Eij = (oim Ôjp) Ek1 = (okm ô1p ) . 
J:S;m:S;n, l :S;p:S;n 1911:5;11,l:S;p:S;n 

La formule du produit matriciel permet alors d'exprimer le terme d' indices m, p de la 
matrice produit Eij Ek1 : 

n 

(Eij Ek1)mp = I (Eij )mq (Ekl)qp 
q=I 

11 

I Ôim Ôjq Ôkq o,p 

q= I 

= Ôùn Ôjj Ôkj Ôtp 

Ôïm ÔkjÔ/p 

(Le seul terme non nul de la somme est obtenu pour q = j.) 
On reconnaît ainsi : Eij E kl = Ôjk Ei/ . 

3. Matrice de transposition 

Définition 

n étant un entier naturel non nul, on appelle matrice de transposition, ou encore, 
matrice de permutation, toute matrice carrée d'ordre n, de la forme : 

1 
00 ... 010 ......... 0 

1 

Sij = 1 
0 ... 010 . .. 00 

1 

1 

(i, j) E {l, ... , n}2 , i -:f:. j 

(Les coefficients non écrits sont nuls.) 

Proposition 

• 

Pour toute matrice A de M 11 (R ), le produit AS ij de la matrice A par la matrice de permu­
tation S ij . (i, j) E {l, ... , n}2, i * j, est la matrice obtenue à partir de A en échangeant 
les colonnes i et j. 
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Démonstration : À l' aide de la formule du produit matriciel, on peut exprimer le terme 
situé ligne k et colonne l de la matrice AS ij • qui vaut : 

n 

Iakp (sij)P1 
p=I 

n 

= I a kp (ôpt - Ôip ou - Ôj p Ôjl + Ôip Ôjl + Ôj p Ôit) 

p= I 

akt - aki ôu - akj Ôj t + aki Ôjl + akj ôu 

Ainsi, pour toute colonne l différente de la colonne i et de la colonne j : 

(A S ij t1 = akt 

et, pour la colonne i: (AS i j ) ki = aki - aki - akj Ôji + aki Ôj i + akj = akj · 

De même, pour la colonne j : 

(AS ij )ki = akj - aki Ôij - akj + aki Ôjj + akj Ôij = aki 

qui est le résultat cherché. 

4. Matrice de dilatation 

Défin ition 

n étant un entier naturel non nul, et À. un réel non nul différent de 1, on appelle matrice 
de dilatation, toute matrice de M 11 (R) de la forme: 

1 

1 
Di(A) = =l11 +(A-1)Eii ,i E {l, .. .,n} 

1 

(Les coefficients non écrits sont nuls.) 

Proposition 

• 

Pour toute matrice A de M 11(1R), et tout réel non nul À. =f:. 1, le produit A Di(À.) de la 
matrice A par la matrice de dilatation Di(À.), i E { 1, ... , n}, est la matrice obtenue à 
partir de A en multipliant la ëème colonne par À.. 

Démonstration: À l'aide de la formule du produit matriciel, on peut exprimer le terme 
situé ligne k et colonne l de la matrice A Di(À.), qui vaut : 

11 

I akp (Dï(À.))pt 

p=I 
11 

= Iakp (ôpt +(A-l)ôpiôli) 

p=I 

a k1 + aki (À. - 1) Ôü 
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Ainsi, pour toute colonne l * i: (A Dhl))k1 = ak1, pour la colonne i: 

qui est le résultat cherché. • 
S. Matrice de transvection 

Définition 

n étant un entier naturel non nul, et ,l un réel, on appelle matrice de transvection, 
toute matrice de MnOR) de la forme : 

(i,j) E {1, ... ,n}2 ,it=j 

10 ... 0 À 0 ... 0 
1 

1 

1 

(Les coefficients non écrits sont nuls.) 

6. Matrice élémentaire 

Définition 

On appelle matrice élémentaire une matrice de transposition, de dilatation, ou de 
transvection. 
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Introduction aux déterminants 
de matrices de taille n x n 

1. Définitions 

> Déterminant 

Étant donnée A E M 11(R), on appelle déterminant de la matrice A = (aiJ) . . le 
l .;;1.;;n , l .;;1.;;n 

nombre, noté det A, qui peut être calculé, par récurrence, de la façon suivante : 

• par un développement suivant la ligne i, i E { 1, ... , n} : 

Il 

det A = ,l.)-1i+ J aiJ tiij(A) 
J= I 

• par un développement suivant la colonne j , j E {l, ... , n}: 

Il 

det A= I(-l)i+J aiJ!iij(A) 
i= l 

où, pour tout couple d'indices (i, j) E {l, ... , nf, tiiJ• appelé mineur d'indice (i,j), 
est le déterminant de la matrice obtenue en enlevant à A la ligne i et la colonne j. 

Quel que soit le mode de calcul retenu, on obtient, bien sûr, le même résultat. 

Le déterminant d'une matrice de taille n X n se calcule donc par récurrence à partir de déter­
minants de matrices de taille (n - 1) x (n - 1 ), puis (n - 2) x (n - 2), . . . , et, finalement, de 
déterminants de matrices de taille 2 x 2. 

> Cofacteur 

Soit A E Mn(R ). Étant donné (i, j) E { 1, ... , n }2
, on appelle cofacteur d'indice (i, j) : 

( -1 )i+ j tiij 

> Comatrice 

Soit A E M 11 (1R). 

On appelle comatrice de la matrice A, et on note ComA E M 11(R) la matrice des 
cofacteurs : 

Une matrice de taille n x net sa transposée ont le même déterminant : 

VA E M 11(R) : det 1A = detA 

Démonstration : Ce résultat est dû au fait que le déterminant peut être calculé, indiffé­
remment, grâce au développement suivant une ligne ou une colonne. • 
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2. Propriétés 

Étant donnés n vecteurs u1, ... , u,,, le déterminant de la matrice M = (u1, ... , u,,) vérifie 
les propriétés suivantes : 

> Antisymétrie 

det(u2,u1 , u3, ... , u,,) = -det(u1,u2,u3, ... , u,,) = ... = -det(u1 , ... , u,,) 

L'antisymétrie traduit le fait que le déterminant change de signe si on échange deux 
colonnes. 

> Homogénéité 

V À. E Ill , Vi E {l, ... , n} det(u1, ... ,À.Uï, ... , u,,) =À. det(u1, ... , u,,) 

> Invariance par transvection 

Pour tout réel À., 

La valeur du déterminant ne change pas si, à une colonne donnée, on ajoute une combi­
naison linéaire des autres colonnes. 

Démonstration: Ce résultat s'obtient immédiatement à partir de la formule donnant le 
développement suivant une ligne ou une colonne. • 

Le déterminant d' une matrice et de sa transposée étant égaux, les propriétés d'invariance du 
déterminant par opérations élémentaires sur les vecteurs colonnes de la matrice sont également 
valables pour les lignes de la matrice. 

> Autres propriétés 

1. 

2. 

3. 

Le déterminant d'une matrice triangulaire est égal au produit des termes diago­
naux. 

Le déterminant d'une matrice diagonale est égal au produit des termes diagonaux. 

Déterminant du produit de deux matrices d'ordre n: 

V (A, B) E (M,,(JR))2 : detAB = detA det B 
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Inversion des matrices carrées 

1. Conditions d'inversibilité 

Une matrice carrée Ad' ordre n est dite inversible ou régulière ou encore non singulière, 
s'i l existe une matrice B d'ordre n telle que: 

AB= BA= 111 

Best alors la matrice inverse de A. Elle est unique. On note, usuellement, A- 1 la matrice 
inverse de A, qui est aussi de taille n x n. 

Une matrice carrée qui n'est pas inversible est dite non inversible ou singulière. 

L'ensemble des matrices inversibles de M 11 (JR.) est appelé groupe linéaire d'ordre n, 
et noté g.L11 (JR.) 1• 

Proposition 

Une matrice est inversible si et seulement si son déterminant est non nul. 

2. Inverse d'une matrice carrée 

Théorème 

V A E M 11 (JR.) : A.' ComA =1 ComA ·A = detA · 111 

où 1ComA désigne la transposée de la comatrice de A. 

Démonstration : D'après la formule du produit matriciel : 

n n 

(A -'ComAt = _Laik (1comA)kj = _Laik (ComA)jk 
k= I k= I 

n 

Il faut donc calculer, pour tout couple d'indices (i, j): _L aik (ComA)jk· 
k= I 

~ Premier cas : i :f. j 

Quitte à échanger i et j, on peut supposer i < j. 

1. Il possède une structure de groupe, puisqu 'il est stable par multiplication et passage à l' inverse. 
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Considérons la matrice obtenue en remplaçant la /ème ligne de A par sa iième ligne : 

a11 a1,n 

ai,l ai,n 

Gj- 1, l Gj-l ,n 

ai,1 a i,n 

Gj+l , I Gj+l ,n 

Gnl an,n 

et développons son déterminant suivant la / ème ligne : 

a11 

Gj- 1,1 

ai,1 

Gj+l,I 

a1,n 

Gj- 1,n 

ai,n 

Gj+l,n 

n n 

= .2=aik (ComA)Jk = .2=aik (1comA)kJ 
k=I k= 1 

Cette matrice ayant deux lignes identiques (la ëème et la / ème), son déterminant est nul : 

n 

I aik ('ComA )kJ = 0 
k= I 

>- Deuxième cas : i = j 
En développant det A suivant la ë ème ligne, on obtient : 

a11 ... a1 ,n 

n n 

detA = ail ai,n = I aik (ComA)ik = I aik (1comAti 
k=l k=l 

Gnl · · · Gn,n 

On a donc, finalement: (A .t ComA)iJ = detA · oiJ· 

On montre de même que : ('ComA · A)iJ = detA · OiJ· 

D'où le résultat. 

Corollaire 
1 

VA E 9.ln(JR) : A - 1 = --'ComA 
detA 

• 
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> Inverse de la transposée d'une matrice (de g.L:n(IR)) 

Corollaire 

> Autre méthode 

Pour inverser une matrice de déterminant non nul, ou dont on connaît le caractère inver­
sible, on peut aussi utiliser l'algorithme Fang-Shen, ou algorithme de Gauss-Jordan, 
ou méthode du pivot de Gauss ; si on pose X = (x1, ••• , Xn), inverser une matrice car­
rée A d'ordre n, de déterminant non nul , revient en effet à résoudre le système des n 
équations d'inconnues xi, . .. , Xn : 

AX=Y 

où Y= (y 1, ••• , Yn) E R n, ce système pouvant aussi s'écrire : X= A- 1 Y. 
Compte tenu de : 

A X = y = In y ' In X = A - l y 

on crée un tableau à n lignes et 2n colonnes en bordant la matrice A par la matrice 
identité ln : ; ·.: ~ ~1 

0 ... 1 

La transformation de Gauss-Jordan consiste à transformer ce système en un système 
équivalent dont le bloc gauche est l'identité, c'est-à-dire qu'il faut modifier la matrice 
(Alln) pour qu'elle devienne de la forme UnlA- 1) en utilisant les propriétés de l'algo­
rithme. 

On désignera par : 

• A(i) la matrice à l'itération i ; 

• L y) la /ème ligne de la matrice à litération i. 

À l' itération i, il faut obtenir une matrice de la forme : 
(i) (i) (i) (i) (i) 

ail a12 · · · ali a11+ 1 aln 

0 (i) (i) (t (i) 
a22 · · · a23 a2,i+ I a2n 

AU)= 0 0 (i) (i) (i) 
a .. ai,i+ I a. 

Il llî 

0 0 0 (i) 
ai+l ,i+l 

(i) 
· · · ai+l,n 

0 0 0 

0 0 0 
(i) 

an,i+ l 
(i) 

an,n 

(i) (i) (i) 
avec a 11 * 0, ... , aii -:f:. 0, ai+ l ,i+ l *O . 

Pour passer de la matrice A (i) à la matrice A (i+ 
1 >, il faut faire apparaître des 0 à partir 

de la ligne i + 2 sur la colonne i + 1, ce que l'on fait en remplaçant la ligne Ly>, j ~ i + 2, 
par la combinaison linéaire : 

(i) 

L(i) - aJ,i+ I 
j (i) 

ai+l,i+I 

Le nombre a~2l,i+ I est appelé le pivot de Gauss. 
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Il existe plusieurs stratégies pour choisir le pivot, de la plus économique en temps de 
calcul à la plus robuste en terme d'erreurs numériques : 

1. la méthode la plus rapide est, à l'itération i, de rechercher dans la colonne i le 
premier élément non nul. 

2. Il est aussi possible de rechercher, dans la colonne i, le plus grand élément, et de 
le choisir comme pivot. 

On est ainsi amené à effectuer des permutations de lignes uniquement. Il est à noter que 
le pivot doit nécessairement se trouver dans la partie inférieure de la matrice. 

Exemple 

( 1 -2) 
A= - 2 3 . 

Pour inverser A par opérations élémentaires, on commence donc par écrire : 

Les opérations à effectuer sont les suivantes : 

((~ =n 1 (~ n) 
Ligne 2 t- Ligne 2 + 2 x Ligne 1 

Ligne 2 t- -Ligne 2 

Ligne 1 t- Ligne l + 2 x Ligne 2 

Tl ne faut pas oublier de vérifier que le calcul est correct : 

(1 -2)(-3-2)=(10) 
- 2 3 -2 - 1 0 1 

(-3 -2) On a donc bien : A_, = _ 
2 

_ 
1 

. 

3. Inverse d'un produit de matrices (de g.L:n(R}) 

Si A et B sont dans Y Ln OR): 
(A B)-1 = B- 1 A-1 

Démonstration : A et B étant dans YLn(R), leurs déterminants respectifs sont non nuls. 
Il en résulte : det(A B) = det A det B =I= O. 

La matrice produit AB est donc inversible. Sa matrice inverse (A B)- 1 est telle que: 
AB (A B)-1 =ln 

En multipliant à gauche par A-1, on en déduit: A-1 AB (A B)- 1 = B (A B)- 1 = A-1• 

De même, en multipliant à gauche par B- 1, on en déduit: 

B- 1 B(AB)-1 = (AB)- 1 = B-1 A-1• 

On vérifie sans peine que : 
(A B) B- 1 A - 1 = B- 1 A - 1 AB= In • 
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Calcul numérique 

Étudjons les vibrations verticales d'une passerelle soumise à un chargement vertical 
F : à cet effet, on ruvise la passerelle en N éléments rectangulaires. Pour tout i de 
{ 1, ... , N}, on désigne par ui le déplacement de l'élément i, et par Ji l'effort subi par 
l'élément i. 

La passerelle. 

w est la pulsation associée aux vibrations de la passerelle, et on considère le vecteur 

des N déplacements verticaux u1 , ..• , UN : [~} ainsi que le vecteur des efforts 

s'appliquant sur chacun des N élément,, [ colo;:esfi l 
Le problème des vibrations de la passerelle, modélisée par la réunion des N élé­

ments rectangulaires, peut s'écrire sous la forme matricielle suivante : 

Mw2 U-KU = F 

ou encore: 
(w2 M-K) U = F 

Ainsi, les N déplacements verticaux peuvent être calculés en résolvant le système 
linéaire précédent ! Plus l'entier N retenu sera grand, plus grande sera la précision. 

Génétique 
>- La construction d'une matrice d'hérédité 

Considérons une population pour laquelle la distribution, pour la génération n, des 
génotypes suivant p gènes donnés gène1, gène2, .. ., gèneP' p E N*, est donnée par 

le vecteur: X11 = [~:::]avec: i Xn,k = 1 (c'est-à-rure une répartition de 100 %). 
k=l 

Xn,p 
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Les divers croisements de gènes pouvant avoir lieu peuvent être récapitulés dans 
une matrice de taille px p, 'H, dite matrice d'hérédité, qui permet d'obtenir la distri­
bution, pour la génération n + 1, des génotypes, en fonction de celle de l'année n : 

Si on connaît le vecteur Xo donnant la répartition initia]e des génotypes, il est donc 
possible, par récurrence, d'exprimer explicitement le vecteur Xn donnant la réparti­
tion des génotypes pour la génération n : Xn = 'H Xn- l = 'H2 Xn-2 = .. . = 'Hn Xo . 
Il est clair que si la matrice 'H est diagonalisable, et donc semblable à une matrice 
diagonale D , le calcul sera facilité ! 

> Comment disparaissent des gènes 

Prenons le cas où p 

1 
4 
1 

4, et où la matrice 'H est donnée par : 'H 

~ -! 0 0 
0 l 0 0 4 

l 0 1 0 4 

i -i 0 k 

avec : X0 = 7 . La matrice 'H est diagonalisable. Ses valeurs propres sont 1, ~' 
6 
1 

TI 
! , et k ; si on désigne par P la matrice de passage à la base des vecteurs propres 
(dans chaque colonne, on retrouve les coordonnées des vecteurs engendrant les sous-

espaces propres respectivement associés à chaque valeur propre) : P = [ ~ ~! =l; ~ ] 
0 1 0 1 

[

1000] 
et D la matrice diagonale : D = ~ t i ~ alors, compte-tenu de : 'H = PD p- l 

0 0 0 l 8 

on en déduit : Xn = (PD p-I r Xo = PD p-1 PD p-1 ..• PD p- I Xo = P D11 p- I Xo 
soit : 

1

1 0 0 0 

0 111 0 0 
X,,= p 0 0 J_ 0 

411 

0 0 0 in 

p - l Xo = 

Il en résulte: lim X11 = [ ~ ], ce qui signifie qu'au bout d'un très grand nombre de 
11--++oo 24 

0 
générations, il ne reste plus dans la population que des individus portant le gène 3. 
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Systèmes linéaires 

1. Définitions 

1. m et n étant deux entiers naturels non nuls, on appelle système linéaire de m 
équations, d'inconnues x 1, ... , x 11 : 

{ 

a11 x1 + ... + a1 11 x 11 = b1 

ami X] + . '.. + amn Xn = b~ 
Les aij, l ~ i ~ m, l ~ j ~ n sont appelés coefficients du système. 
Tout n-uplet (x1, ••• , Xn) vérifiant les m équations précédentes est appelé solution 
du système. 

2. Un système linéaire, d'inconnues x 1, ••• , Xn, de la forme : 

{ 

a11 XJ + . .. + a1n Xn = 0 

am 1 X 1 + · '. · + amn Xn = ~ 
est dit homogène1. 

3. Le système homogène associé au système linéaire : 
{ 

a 1 1 X 1 + ... + al n Xn = b 1 

am 1 X 1 + . '. . + amn X11 = b~11 
est: 

{

a11X1+ .. . +a1 11 Xn =0 

ami X)+.'..+ a 111n X11 = ~ 
2. Propriétés 

1. Un système linéaire, d' inconnues x 1, ••• , x11 , de la forme : 

{

a11x1 + ... +a111X11 = b1 

ami XJ + · '. · + amn Xn = b'.n 

peut aussi s'écrire sous la forme: A X= B 

[ 

a11 

où A E M m,11(lR) est la matrice (aij) . . = : 
1 ~!~m , 1 ,.,]~Il • 

ami 

. . . a111 l 
: , et B la matrice 

··· amn 

colonne [ ~' ] . 

bm 

1. Le système est dit «homogène», car si le n-uplet (x1, ••• , x,,) est solution, alors, pour tout réel A, le 
n-uplet (A x 1, ••• , A x11 ) est également solution. 
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2. Un système linéaire, d ' inconnues x 1, ••• , Xn, de la forme : 

{

a11 X1 + ... + a111Xn = b1 

ami X1 + · '. · + amn Xn = b'.n 
admet, suivant les cas : soit une solution unique (x1, ... , x11 ) ; soit une infinité de 
solutions (qui seront exprimées en fonction d ' un ou plusieurs paramètres); soit 
aucune solution. 

3. Un système linéaire, d'inconnues x1, ... , x 11 , de la forme : 

{ 

a 11 XI + ... + a 1 n Xn = b 1 

anl XJ + · '. · + ann Xn = ~n 

admet une solution unique si et seulement si la matrice : 

est inversible. 

Corollaire 

[

a11 ... a1n l 
a~ , ... a~n 

{ 

a 11 X1 + . :: . + a 111 Xn = b.:' 
Un système linéaire, d'inconnues x,, . .. , x11, de la forme: 

a11 1 XI + ... + ann X11 = b11 

[

a11 

admet une solution unique si et seulement si : det : 

an l 

Un tel système est appelé système de Cramer. 

4. La solution d ' un système de Cramer 

... a111. l 
: :;t 0 

... ann 

{

a11 X1 + ... +a111Xn =hi 

anl XI +. '.. + ann Xn = ~n 
est obtenue grâce aux formules de Cramer : 

Vi{l , ... ,n}: 

det (C1 (A), ... , Ci- I (A), B, Ci+l (A), ... , C11(A)) 
Xi=~~~~~~~~~~~~~~~~~~ 

detA 

où, pour tout j de {l , ... , n}, Cj(A) désigne la / ème colonne de la matrice A . 

Démonstration: Comme 

det(C1(A), ... , Ci-1(A), B, Ci+i (A), .. ., C11(A)) 

det(C1(A), ... , Ci- 1(A), AX, Ci+ i(A), .. . , C11 (A)) 
n 

= det(C1 (A), ... ,Ci- 1(A),LxiCi(A),Ci+1(A), ... , C11(A)) 
i= l 
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on utilise tout simplement les propriétés d'invariance par transvection du déterminant; 
le déterminant ne change pas si, à une colonne donnée, on ajoute une combinaison li­
néaire des autres colonnes : 
V i {l, ... , n} : 

det(C1(A), ... ,Cï- 1(A), B, Ci+1(A), .. ., C11(A)) 

det(C1(A), .. .,Ci- 1(A), XiCi(A), Ci+1(A), .. ., C11(A)) 

Xj det (C1 (A), .. ., ci-1 (A), Ci(A), Ci+I (A), .. ., Cn(A)) 

=Xi detA 

3. Réduction des systèmes linéaires 

Théorème 

• 

Tout système linéaire de m équations à n inconnues, A X = B, A E Mm,nOR.), B E 

Mm,1 (JR.), peut s'écrire sous la forme: À X= B 
où B E Mm,1(lR.), et où À E Mm,17(lR.) est une matrice de la forme: 

l****** * * 
* * * * * 

À= 1 * * * 

Les coefficients non écrits sont nuls, les autres sont désignés par des astérisques. 

On peut qualifier la matrice Â de« matrice en escalier», dans la mesure où les 1 forment un 
escalier; cet escalier possède donc des marches de profondeurs non nécessairement égales. 
Au fond des «marches», se trouvent les « 1 ». Sous les « marches», les zéros (placard aux 
zéros). Au-dessus des marches, des coefficients absolument quelconques. 

~ Réduction des systèmes linéaires d'ordre n 

Théorème 

Tout système linéaire den équations à n inconnues, A X = B, A E M 11(JR.), B E M 11, 1 (JR.), 
peut s'écrire sous la forme : T X = B' 

où T E M 11(JR.) est une matrice triangulaire supérieure dont les termes diagonaux sont 
soit nuls, soit égaux à 1, et où B' E M 11,1 (JR.). 

Démonstration : La démonstration se fait par l'algorithme du pivot de Gauss. • 
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Soient a, b et c trois réels strictement positifs. On considère la réaction chimique 

a Cr + b 02 ~ c Cr2 03 

La conservation des éléments conduit au système suivant : 

On a alors : 

Cr : 1 x a + 0 x b = 2 x c 
0 :Oxa+2xb=3xc 

(~~)(:)=(~~) 
ce qui permet, en résolvant le système linéaire ainsi obtenu, de déterminer les expres­
sions de a et b en fonction de c : 

a= 2 c b = 3c 
2 

Pour des systèmes d'intérêt biologique indéniable, où les molécules en jeu présentent 
des formules autrement plus compliquées, il est très utile de vérifier un certain produit 
matriciel. Considérons la réaction entre le glucose et l' ATP (adénosine triphosphate) 
produisant du glucose-6-phosphate et del' ADP (adénosine diphosphate) (il s'agit de 
la toute première étape dans le processus de glycolyse ; dégradation du glucose et 
production d'énergie) : 

glucose + ATP = glucose-6-phosphate + ADP 

Les formules chimiques brutes de chacun de ces composés, respectivement, sont les 
suivantes: C6H1206, C10H16Ns01 3P3, C6H1309P et C10H1sNs010P2. 

On introduit alors la matrice C : 
6 10 6 10 
12 16 13 15 
6 13 9 10 
0 3 1 2 
0 5 0 5 

composée du nombre d'éléments chimiques simples (en ligne, respectivement, C, H, 
0, P, N) contenus dans chaque molécule (en colonne, respectivement, Glucose, ATP, 
Glucose-6-phosphate et ADP), ainsi que le vecteur colonne 'V : 

constitué des coefficients algébriques stœchiométriques (négatifs pour les réactifs, 
positifs pour les produits) relatant simplement le fait qu'une molécule de glucose 
réagisse avec une molécule d' ATP pour donner une molécule de glucose-6-phosphate 
et une molécule d' ADP. 

Alors, le produit matriciel C 'V doit être (par respect de la conservation de la ma­
tière) le vecteur colonne dont tous les éléments sont nuls; si cela n'était pas le cas, 
cela voudrait dire qu' il y aurait eu erreur dans le décompte des nombres d'atomes. 
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Vecteurs 

1. Définitions et propriétés fondamentales 

On appelle vecteur à 3 composantes, un triplet de réels i1 = (x, y, z), que l 'on peut aussi 

écrire sous la forme [ ~ l 
x, y et z sont appelées composantes du vecteur ïl. 

> Égalité de deux vecteurs 
-+ 

Le vecteur, dont les trois composantes sont nulles, est appelé vecteur nul, et noté O. 
Deux vecteurs sont égaux si et seulement s' ils ont les mêmes composantes. 

> Somme de deux vecteurs 

On considère les vecteurs i1 = (x17, y17, za) et ü = (xiJ, YiJ, Zü) de l'espace IR.3 . 

On définit le vecteur i1 + ü = w comme l'unique vecteur de IR.3 , dont les composantes 
(xw, Yw· Zw) sont données par : 

{ 

xw = xa + XiJ 

Yw = Y11 + Yü 
zw = za + Zü 

> Multiplication d'un vecteur par un réel 

On considère le vecteur i1 = (xa, y17, za) de 1' espace IR.3 . 

Alors, pour tout réel A, ,.l i1 est un vecteur de IR.3 , de composantes (,.l xa, ,.l ya, ,.l za). 

2. Familles de vecteurs libres (ou famille libre de vecteurs) 

> Combinaison de vecteurs 

On appelle combinaison linéaire de deux vecteurs ü et il, toute expression de la forme : 

aïl+bü 

où a et b sont des réels . 
n étant un entier naturel supérieur ou égal à 2, on appelle combinaison linéaire de n 

vecteurs uî, ... , u~1 , toute expression de la forme: 

où a 1, ••• , an sont des réels. 
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> Vecteurs liés 

Deux vecteurs u et ïJ sont dits liés s'il existe une combinaison linéaire non triviale de ces 
vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison sont 
non simultanément nuls, de la forme : 

-7 ïJ -7 au + b = 0 (a, b) -t (0, 0) 

Dire que deux vecteurs i1 et iJ sont liés revient à dire qu'ils sont proportionnels, ou encore 
colinéaires. 

û 

-
Figure 83.1- Deux vecteurs liés, et deux vecteurs libres 

Deux vecteurs u et ïJ sont dits libres s'ils ne sont pas liés. 

> Généralisation 

Trois vecteurs u, Û et W sont dits liés s'il existe une combinaison linéaire non triviale de 
ces vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison 
sont non simultanément nuls, de la forme : 

au+bïJ+cw=Ô (a, b, c) -t (0, 0, 0) 

n étant un entier naturel supérieur ou égal à 2, n vecteurs uî, . .. , Un sont dits liés s'il 
existe une combinaison linéaire non triviale de ces vecteurs égale au vecteur nul, c ' est-à­
dire lorsque les coefficients de la combinaison sont non simultanément nuls, de la forme : 

Il 

~ -7 -7 

L.J ai Uj = Ü 
i=I 

où a1, .. . , a 11 sont des réels tels que (a1, ... , an) =F (0, . .. , 0). 
Trois vecteurs u, û et w sont dits libres s'ils ne sont pas liés. 
n étant un entier naturel supérieur ou égal à 2, n vecteurs uî, ... , u11 sont dits libres 

s'ils ne sont pas liés 

Attention ! Trois vecteurs liés ne seront pas nécessairement deux à deux colinéaires : la seule 
chose que l'on peut dire, c'est qu'il existe une combinaison linéaire non triviale de ces vec­
teurs, qui est égale au vecteur nul. 
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Exemple 

Soit un triangle non aplati 1 de sommets A, B, C: 

~ ~ ~ -; 

AB+ BC+CA = 0 

~~ ~ 

Les vecteurs AB, BC et CA sont liés, mais non colinéaires ! Comme ils sont dans un même 
plan, ils sont coplanaires. 

c 

A~---------------B 

Figure 83.2 -Trois vecteurs liés 

Propriété 

Pour toute famille (ïl, if, w) de vecteurs libres : 

-; -; -; -; 
au+ bu+ cw = 0 ~ (a,b,c) = (0,0,0) 

ce qui signifie que, s'il existe une combinaison linéaire nulle de ces vecteurs, alors les 
coefficients de cette même combinaison linéaire sont nécessairement nuls. 

Exemple 

On considère les vecteurs u = (1, 2, 3), î! = (3, 2, 1) et w = (-1, 2, 1). 
Pour déterminer s' ils sont liés ou non, on cherche s' il existe des réels a, b etc tels que: 

au+bv+cw=o 

soit : 
(a+ 3 b - c, 2 a+ 2 b + 2 c, 3 a+ b + c) = (0, 0, 0) 

ce qui implique donc, puisque deux vecteurs sont égaux si et seulement si leurs composantes 
sont égales : 

puis 

{ 

a+3b-c = 0 
2a+2b+2c = 0 

3a+b+c = 0 

a =b= c =O 

Les vecteurs u = (1, 2, 3), î! = (3, 2, 1) et w = (- 1, 2, 1) sont donc linéairement indépendants. 
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3. Repères 

Définition 

0 étant un point de l'espace, et 7, J, k trois vecteurs non coplanaires, on dit que 
( O; 7, J, k) est un repère de l'espace. 

Proposition 

( ...... __,) 
Soit O; i, j, k un repère de 1' espace. Alors, pour tout point M de 1' espace, il existe trois 
réels x, y, z, chacun de ces réels étant défini de manière unique, tels que : 

----t ... ... ... 
OM=xi+yj+zk 

----t ( ... ...... ) (x, y, z) sont les coordonnées du vecteur 0 M dans le repère O; i, j, k, . 

Proposition 

( ...... ... ) Soit O; i, j, k un repère de l'espace. Alors, tout vecteur ü de l'espace peut s'écrire de 
manière unique sous la forme : 

... 7 7 ... 
u=xi+y1+ z k 

avec (x, y, z) E R3. 

x, y, z étant des réels, il est essentiel de faire la distinction entre le point M de l'espace, de 
coordonnées (x, y, z), et le vecteur û, de coordonnées (x, y , z). 
La position du point M est fixe, et entièrement déterminée par x, y et z, puisque l'origine du 

~ 

vecteur OM, qui est le point 0 , est fixe. 
Le vecteur û, de coordonnées (x, y, z), n' a pas d ' origine fixe : pour le placer, on peut choisir 
n ' importe quel point de l'espace comme origine. 
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Barycentres 

1. Barycentre d'un système pondéré de deux points 

Définition 

Étant donnés deux réels œ et f3 tels que œ + f3 =t- 0, et deux points A(xA, YA· ZA) 

et B(xB, YB, ZB) de l'espace JR3 , on appelle barycentre du système pondéré 
{(A, œ), (B,{3)} le point G tel que : 

--7 --7 -; 
œGA +f3GB = 0 

Lorsque a= f3 = ~ ' le barycentre du système pondéré {(A, a), (B,/3)} est bien sûr le milieu du 

segment [A, B] ! 

Théorème 

Étant donnés deux réels œ et f3 tels que œ + f3 =t- 0, et deux points A(xA, YA, ZA) et 

B(xB, YB, ZB) de l'espace JR3, un point G de l'espace est le barycentre du système pondéré 
{(A,œ),(B,{3)} si et seulement, pour tout point M de l'espace: 

~ ~ ~ 

œ MA+ f3 MB = (œ + /3) MG 

Démonstration: Si Gest le barycentre du système pondéré {(A, œ), (B,{3)}, alors: 

--7 --7 -; 
œGA +f3GB = 0 

La relation de Chasles permet d'en déduire: 

Œ GM+MA +/3 GM+MB =0 (~ ~) (~ ~) -; 

ce qui conduit bien à : 
~ ~ ~ 

œ MA+ f3 MB = (œ + /3) MG 

Réciproquement, si le point Gest tel que, pour tout point M de l'espace: 

~ ~ ~ 

œ MA + f3 M B = ( œ + /3) MG 

on en déduit, pour M = G : 
--7 --7 -; 

œGA +{3GB = 0 • 
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~ Coordonnées cartésiennes du barycentre d'un système pondéré de deux points 

Étant donnés deux réels œ et f3 tels que œ + f3 * 0, et deux points A(xA, YA, ZA) et 
B(x8 , y8 , z8 ) del' espace JR3, le barycentre G du système pondéré {(A, œ), (B,[3)} a pour 
coordonnées : 

(
ŒXA +fJxs ŒYA +fJys ŒZA +fJ zs) 

œ+[J ' œ+[J ' œ+[J 

2. Barycentre d'un système pondéré de n points, n E N* 

Définition 
n 

Étant donnés n réels œ1, .. . , Œn tels que l:œi * 0, et n points A1(x1 , y1,z1), 
i=I 

.. ., An(Xn,Yn,Zn) de l'espace JR3, on appelle barycentre du système pondéré 
{(A 1, œ1 ), ... , (An, Œn)} le point G tel que: 

Théorème 
n 

Étant donnés n réels ŒJ, Œn tels que l: œi * 0, et n points A1(x1,y1,z1), .. ., 
i= I 

An(Xn, Yn, Zn) de l'espace JR3, un point G de l'espace est le barycentre du système pondéré 
{(A1, a,), ... , (An, Œn)} si et seulement, pour tout point M de l'espace : 

Démonstration: Si Gest le barycentre du système pondéré {(A1 ,œ1),. . .,(An,Œn)}, 
alors : 

La relation de Chasles permet d'en déduire : 

n 

Iœi (CiM +MA:)= o 
i=l 

ce qui conduit bien à : 

Réciproquement, si le point Gest tel que, pour tout point M de l'espace : 
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on en déduit, pour M = G : 

• 

>- Coordonnées cartésiennes du barycentre d'un système pondéré de n points, 
n E N* 

n 

Étant donnés n réels a1, . .. , a 11 tels que I ai * 0, et n points A1 (xi, Yi , z1 ), 
i=l 

.. . , A11(x11 , y11 , z11 ) de l'espace JR3, le barycentre G du système pondéré 
{(A1 , a1), ... , (A 11 , a 11 )} a pour coordonnées: 

n n n 

l: aixi l:aiYi l:aiZi 
~I ~I ~I 

3. Isobarycentres 

>- Isobarycentre d 'un ensemble de n points, n E N* 

Étant donnés n points A 1 (x1, YI , z1 ), .. . , A 11(x11 , y11 , z11 ) de l'espace JR3 , on appelle isoba­
rycentre des points A 1, .. . , A 11 le point G tel que : 

i = l 

>- Isobarycentre d'un ensemble de 3 points, A, 8, C 

Étant donnés 3 points A, B, C de l'espace JR3, leur isobarycentre est le centre de gravité 
du triangle ABC, point de concours des médianes. 

A 

Figure 84.1 - Le centre de gravité G du triangle ABC. 

4. Associativité du barycentre d'un système pondéré de trois points 
11 

On considère 3 réels a 1, a 2 , a 3 tels que I ai* 0, et 3pointsA 1, A2, A3 de l'espace JR3 . 

i= I 
On désigne par G 1,2 le barycentre du système pondéré {(A 1, a 1 ), (A2, a 2)}, par G 1,3 le 
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barycentre du système pondéré {(A 1, a 1 ), (A3, œ3)}, et par G1,3 le barycentre du système 
pondéré {(A2, œ2), (A3, œ3)}. 

Alors, le barycentre G du système pondéré {(A1, œ1 ), (A2 , œ2), (A 3, œ3)} est aussi 
celui du système pondéré {(G1,2, œ1 + œ2), (A 3 , œ3)), mais aussi aussi celui du sys­
tème pondéré {(G1,3, œ1 + œ3), (A2 , œ2)}, ou encore aussi celui du système pondéré 
{(G2,3, Œ2 + Œ3), (A1, Œ1)}. 

Ce résultat est, bien sûr, généralisable à un système pondéré de n points, n E N*. 

Exemple 

Considérons un rectangle ABC D; on désigne par Ile milieu du segment [A , B], J le milieu du 
segment [C, D]; le centre de gravité du rectangle, qui est l'isobarycentre des points A, B, Cet 
D, est aussi celui des points let J, respectivement isobarycentres des points A, B d'une part, 
C et D d'autre part. 

Figure 84.2- Le rectangle ABCD, son centre de gravité G, et les milieux I et J des segments [A. 8) 
et [C, D]. 

289 

"' :::::s 

:::::s 
V 

<a 
u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Droites, plans 

1. Droites 

Définition 

On appelle droite vectorielle engendrée par un vecteur non nul il l'ensemble : 

D = IR il= {il il, il E IR} 

Définition 

On appelle droite affine passant par le point A et dirigée par le vecteur il (ou encore 
par la droite vectorielle engendrée par il) l'ensemble 

1) =A+ IR il= {A +il il, il E IR} 

Une droite affine passant par l' origine 0 peut aussi être considérée comme une droite vecto­
rielle. 

Exemple 

La droite affine passant par le point A de coordonnées (1, l , l) et dirigée par le vecteur û = 
(1, 2, 3) est donc l'ensemble 

V= A+ R. û 
= {A + À Û, À E lR} 
= {M(x, y, z) / x = 1 +À , y= 1 + 2 À, z = 1 + 3 À , À E JR} 

c'est-à-dire l ' ensemble des points M de coordonnées (x, y, z) tels que: 

{

X= l+À 
y= 1+2À , À E JR 
z=l+3À 

On a ainsi obtenu une représentation paramétrique, ou paramétrage, de V. 
En éliminant le paramètre À, par exemple, en utilisant la première relation, À = x - l , on en 
déduit: 

{
y= 1+2À= l+2x-2=2x-1 
z=l+3À=l+3x-3=3x-2 

on obtient un système d'équations cartésiennes de V. 
Inversement, il serait aussi possible, à partir d' un système d'équations cartésiennes de V, d' en 
déduire une représentation paramétrique. 

Attention ! Dans l'espace, une droite, qui est aussi l' intersection de deux plans, est donc définie 
par deux équations, par contre, dans le plan rapporté à un repère (O; 7, ]>, une droite est définie 
par une seule équation. On rappelle à cet effet qu'étant donnés trois réels a, b etc tels que 
(a, b) * (0, 0), et une droite affine V, d'équation cartésienne a x + b y+ c = 0, un vecteur 
directeur de V est û = (-b, a). 
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2. Plans 

Définition 

On appelle plan vectoriel engendré par deux vecteurs libres u et ïl l'ensemble : 

C'est donc l'ensemble de toutes les combinaisons linéaires possibles (c'est-à-dire 
donc une infinité!) des vecteurs a et ïl. 

Un plan vectoriel est à comprendre comme une direction commune de plans, parallèles deux 
à deux. 

Figure 85.1- Un plan vectoriel. 

Définition 

On appelle plan affine passant par le point A et dirigé par deux vecteurs libres u et ïl 
l'ensemble : 

P = A + lR Û + lR ïl = {A + À. û + µ ïl, (À.,µ) E lR 2} 

Figure 85.2- Un plan affine. 

Un plan affine passant par l'origine 0 peut aussi être considéré comme un plan vectoriel. 
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Exemple 

Le plan affine passant par le point A de coordonnées (1, 1, l ) et dirigé par les vecteurs 
i1 = (1, 2, 3) et û = (3, 2, 1) est donc lensemble : 

P=A+ R. û+ R.Û = {A+ÀÛ+µ û, (À,µ) E R.2 } 

soit encore : 

p = { M(x, y, z) /X = 1 + À + 3 µ ' y = 1 + 2 À + 2 µ' z = 1 + 3 À + µ , (À,µ) E R.2 } 

c'est-à-dire l'ensemble des points M de coordonnées (x, y, z) tels que : 

{

x = l+tl+3µ 
y = 1 +2À+2µ , (À,µ) E R.2 

z= J+3tl+µ 

On a ainsi obtenu une représentation paramétrique, ou paramétrage, de P. 
En éliminant les paramètres À etµ, par exemple, en utilisant les deux premières relations, on 
en déduit: 

x-2y+z= O 

On obtient alors une équation cartésienne de P. 
Inversement, il serait aussi possible, à partir d'une équation cartésienne de P , d'en déduire 
une représentation paramétrique. 
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Produit scalaire 

1. Définitions 

>- Produit scalaire 

On appelle produit scalaire de deux vecteurs a et ü, de composantes respectives 
(u1, uz, u3) et (v1, vz, u3), le nombre, aussi appelé« scalaire» 

>- Norme euclidienne 

On appelle norme euclidienne d'un vecteur a, de composantes (u1, u2, u3), le réel positif 
ou nul: 

11t1J1 = ~ u~ + u~ + u~ = .Y a · a 

>- Vecteur unitaire 

Un vecteur est dit unitaire s' il est de norme 1. 

>- Vecteur orthogonaux 

Deux vecteurs sont dits orthogonaux si leur produit scalaire est nul. 

2. Propriétés 

>- Propriétés du produit scalaire 

Le produit scalaire est une application 

• bilinéaire, c'est-à-dire linéaire par rapport à chaque variable: 

-->-->--> 3 3 3 U · V+1tW =U·V+1tU·W 

{ 

.... (.... l -->) --> --> l --> --> 

V (u, v, w) E R x R x R , V ;l E R : (__, 1 __,) __, __, __, 1 __, __, 

• symétrique : 

V + / tW ·U =U·U+ / tW ·U 

-+ --) --) -+ 
U ·U=U·U 

• définie positive : d'une part, la positivité, 

va E R3 a. a~ o 

et, d'autre part, le caractère défini : 

-+-+ -+--) 

u·u=OÇ=>u=O 
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~ Inégalité de Cauchy-Schwarz 

Théorème 

V (it, Ü) E JR.3 
X lR3 

: lit· ül ~ llü11 llüll 

et l'égalité a lieu si et seulement si les deux vecteurs sont liés. 

Démonstration : On se place dans le cas où ü -:f:. Ô et ïJ -:f:. Ô, l'inégalité étant toujours 
vérifiée lorsque Ü ou ïJ est égal au vecteur nul (on a alors une égalité). 

Pour tout réel t : 

llïl + t üll2 = (it + t Ü) . (Ü + t Ü) = llü112 + 2 t ü. ïJ + t2 llüll2 

On obtient ainsi un trinôme du second degré en t, qui est toujours positif ; son discrimi­
nant réduit doit donc être négatif ou nul : 

ca · ï!)2 
- 11a112 11ül12 ~ o 

ce qui conduit à : 

lit. ül ~ llü11 llù11 

Si le discriminant est nul, alors, le trinôme en t admet une racine double, et il existe alors 
un réel t tel que : 

llïl + tüll2 = 0 

soit : 
ü+tv=ô 

Les vecteurs it et ïJ sont alors liés. 
-> -> 

Réciproquement, si it * 0 et ïJ * 0 sont liés, il existe un réel À tel que : 

ü =,lu 

et on a alors : 

lit. ül = l,ll llù112 = llü11 llV11 • 
~ Propriétés d'une norme 

Une norme sur JR.3 est une application à valeurs dans JR+ qui doit vérifier les troix axiomes 
suivants: 

• séparation : 
V Ü E lR3 llü11 = 0 {::> Ü = Ô 

• homogénéité : 

• inégalité triangulaire 1 

V (Ü, Ü) E lR3 
X lR3 

: llit + üll ~ llü11 + llüll 

1. « Le chemin le plus court est la ligne droite ! » Merci à Paul Pearce, étudiant PCME 2011 ! 
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3. Plans 

L'ensemble des vecteurs orthogonaux à un vecteur ü non nul est un plan vectoriel, appelé 
plan orthogonal à il. 

Démonstration : Soit ü un vecteur non nul, et P l'ensemble des vecteurs orthogonaux 
' .... au. 

On désigne par (u1, u2, u3) les composantes de ü, et on suppose, dans un premier temps, 

U3 *O. 
Pest donc l'ensemble des vecteurs de composantes (x, y, z) telles que : 

ce qui conduit à : 

On peut alors écrire : 

U 1 X + Uz y + U3 Z = 0 

z= 
UJ X + Uzy 

U3 

p = { (X, y, _ UJ X: U2 Y) j (X, y) E JR2} 

= {X ( 1, 0, - :~)+y ( 0, 1, - :~) j (X, y) E JR
2

} 

lR ( 1, 0, - :~) + lR ( 0, 1, - :~ ) 

Les vecteurs ( 1, 0, - :~) et ( 0, 1, - :~ ) étant linéairement indépendants, on obtient 

l'équation d' un plan vectoriel, ainsi que les vecteurs engendrant celui-ci, qui sont 

( 1, 0, - :~ )et ( 0, 1, - :~ )· 
Le cas u3 = 0 est laissé au lecteur. • 

> Vecteur normal à un plan vectoriel 

Étant donné un plan vectoriel P orthogonal à un vecteur ii non nul, le vecteur ii est appelé 
vecteur normal au plan vectoriel P. 

Proposition 
Étant donnés trois réels non tous nuls a, b, c, et un plan vectoriel P, d'équation carté­
sienne a x + b y + c z = 0, un vecteur normal à Pest ii = (a, b, c). 

> Vecteur normal à un plan affine 

On appelle vecteur normal à un plan affine P tout vecteur directeur d'une droite per­
pendiculaire à P. 

Proposition 
Étant donnés quatre réels a, b, c, d tels que (a, b, c) =F (0, 0, 0), et un plan affine P, 
d'équation cartésienne a x + b y+ c z = d, un vecteur normal à rp est n =(a, b, c). 
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Démonstration: Soit A(xA.YA. ZA) un point donné de 'P, et M(xM,yM, ZM) un point 
quelconque de 'P. 

Alors: 

A et M appartenant à 'P, leurs coordonnées vérifient l'équation de 'P: 

Par suite: 

{ 
a XA + b YA +CA Z = d 

a XM + b YM +CM Z = d 

~ 

Les vecteurs AM et il sont donc bien orthogonaux. 
Le point M ayant été choisi quelconque, on en déduit 1' orthogonalité du plan 'P et de 

la droite passant par M et dirigée par le vecteur il, et donc, l'orthogonalité du vecteur il 
au plan 'P. • 
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Pourquoi s'intéresse-t-on autant aux propriétés du produit scalaire? Il s'agit, tout 
simplement, de pouvoir étendre ces notions géométriques, relatives à un espace 
concret, à des espaces plus abstraits, sur lesquels on va essayer de construire une 
géométrie. 

Considérons, ainsi, un fluide en mouvement ; la plupart du temps, on ne peut pas 
déterminer la valeur exacte de la vitesse du fluide, on l'approche par des simula­
tions numériques les plus précises possibles (soit à l'aide de différences finies, soit 
de volumes finis). Si on ne connaît certes pas la valeur exacte de cette vitesse, il faut 
cependant être sûr que l'approximation choisie soit la meilleure possible. Ainsi, il est 
indispensable de définir une « distance » entre la solution exacte et la solution appro­
chée. On se place alors dans ce quel' on appelle un« espace fonctionnel», c'est-à-dire 
un espace de fonctions, dont les vecteurs sont, en fait, des fonctions. Si on considère 
que le mouvement du fluide est rectiligne, et a lieu entre des points d'abscisses res­
pectives a et b > a, (a,b) E JR2, on peut ainsi considérer l'espace C1([a,b], JR), 
c'est-à-dire l'espace des fonctions de classe C1 sur [a, b], à valeurs dans lR (dont la 
dérivée est continue sur [a, b], pour des questions de régularité : l'accélération, qui 
est la dérivée de la vitesse, doit pouvoir être définie). Pour pouvoir définir une« dis­
tance» entre la solution exacte Vexacte et la solution approchée Vappruchée. il faut donc 
un produit scalaire ; on choisit l'application : 

r.p: C1([a,b],JR) x C1([a,b], JR) ~ lR 

(f, g) H Lb f(x) g(x) dx 

L'application r.p étant, clairement : 

• symétrique : 

V(f,g) E C 1([a,b], JR) X C 1([a,b],JR) r.p(g,f) = r.p(f,g) 

• bilinéaire : 

• définie positive : 
V f E C 1([a,b], JR) : r.p(f,f);;::: 0 

et: 

V f E C 1([a,b], JR) : r.p(f,f) = 0 <=>lb J2(x)dx = 0 <=> f = 0 

(Si l'intégrale sur un segment [a, b] d'une fonction positive et continue est nulle, 
alors cette fonction est identiquement nulle sur [a, b]; réciproquement, et de façon 

évidente: J: Odx =O.) 

c'est un produit scalaire sur C 1 ([a, b], JR), à partir duquel on pourra mesurer la« dis­
tance » entre la solution exacte et la solution approchée : 

d (uexacte• Uapprochée) = lb (Uexacte - Uapprochée)
2(x) dx 
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Produit vectoriel 

Dans ce qui suit, on se place dans l'espace euclidien orienté, de dimension 3. 

1. Définition géométrique 
> Base directe de R.3 

Une famille libre de trois vecteurs (ïl, v, w) de l'espace R3 est appelée base directe si: 

det(ïl, v, w) > 0 

> Angle entre deux vecteurs de R.3 

Soient ïl et v deux vecteurs de l'espace R3 . On choisit de placer leur origine en un point 
0 de l'espace. Alors, par définition, l'angle ( ïl, v) désigne l'angle orienté entre les droites 
passant par le point 0, et de vecteurs directeurs respectifs ïl et v. 
> Produit vectoriel 

Le produit vectoriel de deux vecteurs a = (u1' u 2, U3) et V= (v1' V2 , V3) de l'espace R3 

est le vecteur, noté ïl /\ v, tel que : 
... 

• si ü et v sont colinéaires : ïl /\ v = 0 

• si a et V ne sont pas colinéaires : a/\ V= llûJlllV11 lsin ( ïl, v)I w où w est le vecteur unitaire 

orthogonal à ïl et v tel que la base (û, v, w) soit directe. 

ïl /\ v est alors unique. 

(~~~) Pour déterminer si une base OA, OB, OC de l'espace est directe, on peut utiliser la « règle 

du bonhomme d' Ampère » : si un personnage ayant les pieds en 0 , la tête en A, et regardant 
vers B, voit le point Cà sa gauche, la base est directe, et indirecte dans le cas contraire. 

Exemple 

Dans l'espace euclidien de dimension 3 rapporté au repère orthonormé direct (0; 7,], k) : 
-J -J -+ -+ -+ -+ -+ -J -+ -+ -J -+ -+ -+ -J 

j /\ i = -k , i /\ k = - j , . .. et i /\ j = k , j /\ k = i , k /\ j = -i 

En pratique, dans l'espace euclidien de dimension 3 rapporté au repère orthonormé direct 

( 0; 7, ], k) : Û /\ V = U2 /\ V2 = U3 V 1 - U 1 V3 
[

UJ] [Vil [U2V3- U3V2] 

U3 V3 U1V2-U2V1 

2. Définition analytique 

Définition 

Le produit vectoriel de deux vecteurs ïl = (u1, u2 , u3) et v = (v1, v2, v3) de l'espace R3 

est l'unique vecteur, noté ïl /\ v, tel que pour tout vecteur w = (w1, w2, w3) de R3, on 
. d ( ......... ) (... ;-f\ ... ait : et U, V, W = U /\ V J • W. 

Démonstration : Par le calcul ... 
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> Proposition 

1. Le produit vectoriel est antisymétrique : 

V (Ü, Û) E JR.3 X JR.3 i1 /\ û = -û /\ i1 

2. Le produit vectoriel est bilinéaire : 

V(
-; -; -;) 1!J) 3 1!J) 3 1!J) 3 V 1 1lJ) . u V + /lW = u V+/lU w {-; /\ (-; ] -;) -; /\ -; ] -; /\ -; 

u, V, W E .Il"'- X .Il"'- X .Il"'- , /l E .Il"'- • (_, 1 _,) _, _, _, 1 _, _, 
V+/lW /\ u=u /\U +/lW /\U 

3. 
V (ü, Û) E JR.3 x JR.3 : i1 /\ û = Ô ~ i1 et û liés 

4. 

5. 
V (ü, Û) E R3 

X R3 
: llü /\ ~I = lli111 llii11 lsin ( ü, v)I 

6. Double produit vectoriel 

V (Ü, V, w) E JR.3 
X JR.3 

X JR.3 (ü /\ V) /\ w = (ü . w) V - (il. w) i1 

Démonstration : Par le calcul ... • 

> Application du produit vectoriel 

Exemple 

Déterminons un système d'équations cartésiennes de la droite 'D passant par le point A de 
coordonnées (1, 2, 3), et normale au plan P d'équation x +y+ z =O. 
P est orthogonal au vecteur t1 = (1, 1, 1). II suffit donc d'écrire que 'D est l'ensemble des points 

----7 
M de coordonnées (x, y , z) tels que les vecteurs AM et t1 soient colinéaires, ce qui peut aussi 
s'écrire: 

soit: 

ce qui conduit à : 

----7 ... 
AM/\ t1=0 

[x-1] [l] [y -2-z+3] [y -z+ ll [O] y-2 /\ l = z -3-x+ l = z-x-2 = 0 
z-3 l x-l-y+2 x-y+ l 0 

{

y -z+l=O 
z-x-2 =0 
x-y+l =0 

La somme de ces 3 équations donnant 0, celles-ci ne sont pas indépendantes (elles sont liées); 
le système précédent est donc équivalent, par exemple à : 

{
y- z +l=O 
z-x-2 = 0 

(les trois équations étant liées, il suffit d 'en garder deux, à condition de bien les sélectionner, 
puisque la troisième n'est en fait qu'une combinaison linéaire des deux autres). 
On a donc bien obtenu un système d'équations cartésiennes de la droite 'D. 
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Aires et volumes 

1. Aire d'un triangle 

Soit <p un plan affine de R3, et A, B, C trois points non alignés de ce plan. 
Si on reprend la définition géométrique du produit vectoriel, il existe un réel Il, et un 

vecteur n, unitaire, orthogonal à <J>, tel que : 

~ -----? 
AB/\ AC= llii 

Soit H le projeté orthogonal de C sur la droite (AB); on a alors : 

AB/\ AC = AB/\ AH+ HC = AB/\ HC 
~ -----? ~ (~ ~) ~ ~ 

c 

1 

A ~----~' ------~ B 
H 

Figure 88.1- Le triangle ABC. 

Par suite : llxB /\ Aêll = llxB /\ Hêll' et donc : 

~ ~ 

puisque AB et HC sont orthogonaux. On reconnaît alors le double de l' aire 3IABC du 
triangle ABC : 

base X hauteur AB X HC 
3{ABC = = ----

2 2 

2. Aire d'un parallélogramme 

Soient A, B, C, D quatre points du plan R2 formant un parallélogramme non aplati. L'aire 
du parallélogramme de sommets A, B, C, D est: 

~ ~ 

3{ABCD = llAB /\ ADll 
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Il n'y a pas qu'Euclide 

La géométrie usuelle est la géométrie euclidienne, ainsi nommée d'après le mathéma­
ticien grec Euclide. Il en existe toutefois de nombreuses autres ; ainsi, en géométrie 
différentielle, on s' intéresse à l'étude des courbes et des surfaces du point de vue de 
la longueur, la surface, la courbure ; un très joli exemple est donné par le ruban de 
Mobius. 

Le ruban de Mobius. 

De façon encore plus spécifique, la géométrie riemannienne étudie des espaces 
courbes, les« variétés différentielles», sur lesquels existent des notions d'angles et de 
longueur, à l'aide de systèmes de coordonnées locales; une variété n'est rien d'autre 
qu'un espace topologique, c'est-à-dire un espace sur lequel on a défini une « topolo­
gie», ou «cartographie ». 

La géométrie algébrique s' intéresse quant à elle à la description des ensembles de 
zéros d'équations polynomiales, comme c'est le cas de la Sextique de Barth, dont une 
équation cartésienne, en fonction d'un paramètre réel m, est donnée par: 

4 (cp2 x2 -y2)(cp2 y2 -z2)(q} z2 _ x2)- (l + 2 cp)(x2 + y2 + z2 _ m2)2 m2 = 0 

t +vs 
où cp = 

2 
est le nombre d'or. 

La sextique de Barth. 
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La géométrie tropicale pour des chemins optimaux 

Il existe encore d'autres géométries, notamment, la géométrie tropicale, ainsi nom­
mée en l'honneur de son inventeur, le mathématicien et informaticien brésilien Imre 
Simon (1943-2009). Cette géométrie est basée sur une re-définition de l'addition et 
de la multiplication : 

aœb =min {a,b} a®b=a+b 

et où les objets mathématiques sont remplacés par des objets affines par morceaux ; 
ainsi, une droite « tropicale » est formée de trois demi-droites usuelles. 

Une droite tropicale. 

Elle connaît actuellement un essor croissant, en raison de son champ d'applications, 
notamment en théorie des graphes pour déterminer un chemin optimal, en cristallo­
graphie, ou encore en biologie quantitative [24],[25]. Prenons l'exemple d'une so­
ciété de transport routier souhaitant optimiser non pas les distances parcourues, mais 
les coûts de transport [26] : 

Les différents chemins possibles, dans le cas où n = 4. 

Dans le cas de n arrêts possibles (n E N*, n ~ 2), on commence par écrire les 
différents coûts possibles sous la forme d'une matrice de coût, Mcoûr. de taille n x n, 
le coefficient ligne i , 1 ~ i ~ n, colonne j, 1 ~ j ~ n, donnant le coût du transport 
entre l'arrêt numéro i et l'arrêt numéro j. Si l'on considère alors une puissance kième, 

k E N, de la matrice Mcoûi. le coefficient ligne i, 1 ~ i ~ n, colonne j, 1 ~ j ~ n, 
donné par la formule du produit matriciel : 

n 
(Afcoût)ij = EB (Mcoût)ip ® (Mcoût)pj 

p=I 

correspond exactement à la somme des coûts des k trajets reliant larrêt numéro i et 
l'arrêt numéro j ! Ainsi, pour résoudre le problème donné, il suffit de calculer: 

+oo k 
EB M coftt 

k=l 
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Bases et transformations linéaires 
du plan 

1. Bases 

Définition 

On appelle base du plan fü.2 toute famille libre de deux vecteurs de lR 2. 

Exemple 

Déterminons si la famille (i1, Ü) = ( ( ~), ( ~l)) est une base de R2
; pour cela, il suffit de 

calculer son déterminant: 
det(Û,Ü) = -2 * 0 

(û, Ü) est une famille libre de deux vecteurs de R2 
: c'est une base. 

Définition 

On appelle base canonique du plan JR.2 la famille (7, ]), avec : 

-t (1) -t (0) t= 0 '1= 1 

Proposition 
Soit 'B = ( ë1, i!2) une base de lR 2 . 

Pour tout vecteur i1 de JR.2 , il existe une unique combinaison linéaire des vecteurs de 'B 

, 1 ' _, _, _, _, 1' . (_,) ( Xt ) 1Dl 1Dl 1 ega eau: u = x1 e 1 + x2 e2 que on note aussi : u 'B = x
2 

. x1 E ~ et x 2 E ~sont es 

coordonnées (ou composantes) du vecteur ü dans la base 'B. 

Les composantes d' un vecteur (x, y) de JR.2 dans la base canonique (7, ]> seront notées 

(;). 
2. Transformations linéaires du plan 

~ Définitions 

Définition 

On appelle transformation linéaire du plan JR.2 , ou encore application linéaire du 
plan JR.2, une application f , de JR.2 dans JR.2, linéaire: 
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Pour toute transformation linéaire f du plan JR.2 : 

J(O) = o 

Exemples 

1. L'application: f : JR.2 
---? JR.2 , (x, y) H (x + l , y) n'est pas linéaire. 

2. L'application: f : JR.2 
---? JR.2 , (x, y) H (3 x, 3 y) est linéaire. 

Proposition 
Étant donnée une matrice A = (aij) . . de taille 2 x 2, à coefficients réels, l' appli-1.::;1:;:;2, 1:;:;; :;:;2 
cation: 

fA: JR2~ JR2, (X)HA(x)=(a11X+a12 Y) 
y y a21 x + a22 y 

est linéaire, et définit une transformation linéaire de JR2. 

~ Matrice d'une transformation linéaire 

Définition 

On appelle matrice, dans une base 13 = (el, éi) donnée, d'une transformation 
linéaire f de JE.2, la matrice dont les vecteurs colonnes sont les coordonnées, dans 13, 
des images des vecteurs de 13 : Matrice13(.f) = (f ( eî), f ( ë2)) 

Une application linéaire remarquable : l'application identité du plan JR2 

Définition 

On appelle application identité du plan JE.2 l'application, notée ldP..2, de matrice 
associée / 2 : U E JR2 

H U 

Domaine de définition 

Proposition 
Une transformation linéaire de JR2 est entièrement définie par ses valeurs sur une base 
donnée. 

Démonstration : Soient f : JR2 ~ JR2 une transformation linéaire, et 13 = (eî, eî) une 
base de JR2 . 

On suppose que les images des vecteurs eî et eî sont données, de la forme : 

{
f(eî ) = a11 eî +a21 eî 

f (eî) = a1 2 eî + a22 eî 

Alors, pour tout vecteur ü = x 1 eî + x2 eî de JR2 : 

f(u) = 

= 

f (x1 eî + x2 eî) 

x1 f( eî) + x2f (eî) 

= xi (a11 eî + a11 eî) + x2 (a12 eî + a12 eî) 

= (x1a11 + x2 a12) eî + (x1 a21 + x2 a22) eî 

305 

"' :::::s 

:::::s 
V 

<a u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Ainsi, 
(f(ü))13 = (a11 a12) (xi) a21 a22 x2 

D'où le résultat. • 
Proposition 
Une transformation linéaire de IR.2 est entièrement définie par la matrice qui lui est asso­
ciée dans une base donnée. 

Démonstration : Le résultat découle immédiatement de la proposition précédente : une 
transformation linéaire de IR.2 est entièrement définie par ses valeurs sur une base donnée . 

• 
Définition 

On appelle matrice d'une transformation linéaire f de 11'?.2, la matrice de f dans la 
-> -> 

base canonique (i, j). Elle sera notée, dans ce qui suit, sous la forme A f : 

At= Matrice(i,])(f) = (.t(D ,f (})) 

Une transformation linéaire de R.2 étant entièrement définie par la matrice qui lui est associée 
dans une base donnée, il est clair qu' il est préférable de se placer dans une base donnant une 
expression la plus agréable possible de la matrice: triangulaire, ou diagonale. Cela s'appelle 
trigonaliser ou diagonaliser une application linéaire. 

>- Propriétés 

Composée de deux transformations linéaires 

Proposition 
La composée f o g de deux transformations linéaires f et g de IR.2 , de matrices associées 
A11(f) et A11(g) dans une base 13 = (ë1, ë2) donnée, est une transformation linéaire de IR.2, 

qui vérifie : 

Vü = (;) E IR.2 
: (f 0 g)(il) = f(g(il)) = A11(f) (A13(q)Ü) = (A13(f)A13(g)) ü (*) 

Ainsi, f o q a pour matrice, dans la base 13 : A11(f o q) = A11(f) A11(q). 

Démonstration : Par le calcul ... 
D' après(*): (f o g)(ë1) = f(g(e1)), puis on utilise A11(g) pour obtenir (f o g)(ë1) 

comme combinaison linéaire de ë1 et ë2, et on procède de même pour (f o g) (ë2). On 
peut alors construire la matrice de f o g dans 13, et constater, par le calcul, qu'elle est 
égale au produit A11(f)A13(g). • 

Noyau 

Définition 

On apelle noyau d'une transformation linéaire f de IR.2 , que l'on note Ker f (de l'al­
lemand kern) l'ensemble des vecteurs de IR.2 dont l'image par f est le vecteur nul : 

Par extension, le noyau d'une matrice A E M 2(JR) est le noyau de l'application linéaire 
associée à la matrice A. 
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Image 

Définition 

On apelle image d'une transformation linéaire f de IR.2 , que l'on note I m f l'ensemble 
des images des vecteurs de IR.2 par f: 

> Propriétés 

Définition 

Imf = {!cü>,a E R2
} 

Une transformation linéaire de R2 est dite injective si : 

v ca, ï!) E R2 x R2 
: f(ïl) = f(ï!) ~ a= ü 

Théorème 

Une transformation linéaire de R2 est injective si son noyau est réduit au vecteur nul : 

Ker f = {ô} 

Démonstration : Ce résultat découle de la linéarité de f. 

Définition 

Une transformation linéaire de R2 est dite surjective si: V a E R2 , 3 Ü E R2 : a= f(ïJ). 

>Automorphisme 

Définition 

Une transformation linéaire de R2 est un automorphisme de IR.2 si elle est bijective. 

Théorème du rang dans JR.2 ou formule du rang 

Théorème 

Dans R2 : dimimf + dimKer f = 2. 

dim I m f est le rang de f , noté aussi rg f. 

Caractérisation des automorphismes de JR.2 

Théorème 

Soit f une transformation linéaire de R2. Alors: 

f injective <::::> f surjective <::::> f bijective. 

• 

Pour qu'une transformation linéaire f de R2 soit un automorphisme de R2, il faut et il 
suffit que le déterminant de sa matrice A73(f) dans une base 13 quelconque soit non nul. 
Sa réciproque f - 1 est alors une transformation linéaire de IR.2, de matrice dans 13 : 

A73(f- 1) = (A13(f))-I 

307 

"' :::::s 

:::::s 
V 

<a 
u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Changement de base en dimension 2, 
et déterminant d'une application 
linéaire 

1. Matrice de passage 

Soient :B = (ê1, ê2) et :B' = (e1 1, e1 2) deux bases de JR.2. 

On désigne par p 11 et P2I les composantes de e1 1 suivant ê1 et ê2 : 

_, _, _, 
e'1 = P11 e1 + P21 e1 

et par p 12 et p22 les composantes de e1 
2 suivant ê1 et ê2 : 

_, _, -:t 
e'2 = P12 e1 + P22 e2 

On désigne par P'B->'13' la matrice P'B->'13' = (p' 1 Pi 2 
), c'est-à-dire la matrice dont les 

P21 P22 

vecteurs colonnes représentent les coordonnées (ou composantes) des vecteurs e1 1 et e12 

dans la base :B. 
P '13->'13' est appelée matrice de passage de :B à :B'. 

2. Formule de changement de base pour un vecteur 

Soit a un vecteur de JR.2 . On désigne par (a)'B = ( ~~) ses coordonnées dans :B, et par 

(a)'B' = (~)ses coordonnées dans :B'. Alors : 

soit : 

Démonstration : 

Comme a= X1 ë, + X2 ê2, alors, par unicité de la décomposition de a dans :B: 

que 1 'on peut encore écrire : 

(XI)= (Xi Pll + x;p12) = (Pll P12) (xi) 
X2 x; P21 + x; P22 P21 P22 X2 • 
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Le fait que la formule de changement de base s'exprime sous la forme (ü)3 = P3..,,,.3 , (ü)3 , 

peut paraître déroutant : il n'en est rien. Une illustration très intéressante peut être obtenue 
pour la réduction de l'équation d' une conique. 

Exemple 

Considérons la courbe plane, d'équation 3 x2 + 3 y2 - 2 x y = 8 dans un repère orthonormé 
direct. La présence des « termes croisés » -2 x y ne facilite pas l'étude de la conique : un 
changement de base permet de faire disparaître celui-ci. 
On effectue le changement de coordonnées : 

X+Y 
x=--

-../2 
X-Y 

y=--
-../2 

En injectant ces expressions dans l'équation de la conique, on obtient: X2 + 2 Y2 = 4. 
Il est alors plus facile de déterminer la nature de la courbe (une ellipse). 
Il est clair que, connaissant l'équation dans le repère initial, la démarche naturelle est d 'expri­
mer les coordonnées de départ (x, y), en fonction des nouvelles coordonnées (X, Y) , et non le 
contraire: 
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Conjugaison - Matrices semblables 
de taille 2 x 2 

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso­
ciée à une application linéaire f. 

Il peut être intéressant de donner les relations permettant de passer de la matrice A'B(f) 
associée à f dans une base B, à la matrice A'B'Cf) associée à f dans une autre base B'. 

1. Matrices semblables 

Considérons les bases B = (ë1, ë2) et B' = (e1 1, e12) de R2 • 

On désigne par A'B(f) = (aij) . . la matrice associée à f dans la base B, et par 
1 ~1~2. 1 ~}~2 

A'B'Cf) = (œij) . . la matrice associée à f dans la base B'. 
1 ~1~2. 1 ~]~2 

On appelle P'B,..,....'B' la matrice de passage de B à B'. 

Soit ïl un vecteur de R2
. On désigne par (ïl)'B = (~~)ses coordonnées dans B, et par 

(û)'B' = ( ~l) ses coordonnées dans B'; de même, on désigne par (f(il))'B les coordon­

nées de f(Û) dans B, et par (J(il))'B' les coordonnées de f(Û) dans B'. 
Alors: 

(J(il))'B = A13(f) (û)'B 
= A'B(f) P'B,..,....'B' (û)'B' 

Mais on a aussi : 

et : 

Il en résulte : 

Comme 

on a donc: 

ou encore: 

Le vecteur ïl étant quelconque, on en déduit, en choisissant successivement pour i1 cha­
cun des vecteurs de B, la nullité de chaque colonne de A'B(f) - P A'B'Cf) p - I : 
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ce qui conduit à : 

ou encore: 

Définition 

Deux transformations linéaires f et g de R2, de matrices associées A f et Ag dans une 
même base 'B, sont dites conjuguées s'il existe une transformation linéaire bijective 
r.p de R2, de matrice associée A'P, appelée conjugaison, telle que: 

for.p=r.pog 

ce qui, matriciellement, se traduit par : A f A'P = A'P Ag, ou encore, puisque A'P est 
inversible : 

Les matrices A f et Ag sont dites semblables. 

Proposition 
Deux matrices semblables ont même déterminant. 

Démonstration : Soient A et B deux matrices semblables, de taille 2 x 2. 
D'après ce qui précède, il existe une matrice inversible P telle que : 

p - I AP = B 

Il en résulte : 
det(B) = det(P- 1 AP) = det(AP- 1 P) = det(A) • 

2. Déterminant d'une application linéaire de R2 

Définition 

On apelle déterminant d'une transformation linéaire f de R2 le déterminant de sa 
matrice dans la base canonique, ou, de façon équivalente, dans une base quelconque 'B. 

La valeur du déterminant d'une transformation linéaire f de R.2 ne dépend effectivement pas 
de la base choisie : si 13 et 13' sont deux bases du plan R.2 , les matrices A13(f) et A13,(f), qui 
représentent donc la même application linéaire dans deux bases différentes, sont semblables, 
et ont donc même déterminant. 
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Opérateurs orthogonaux 
en dimension 2 

1. Définition 

On appelle opérateur orthogonal du plan ffi2, ou transformation orthogonale du 
plan ffi2, une transformation linéaire f de R2 , de matrice At, qui vérifie l'une des trois 
propriétés équivalentes suivantes : 

• f conserve le produit scalaire : 
V (ï/, Û) E R2 

X R2 
: f(il) · f(Û) = ïl · Û 

• 
• les vecteurs colonnes C 1, C 2 de A f constituent une base orthonormale, c'est-à-dire 

une famille libre de vecteurs deux à deux orthogonaux et de norme 1 : 

vu, J) E {l , 2}
2 

: ci · cj = c5ij 

On dit alors que la matrice A f est orthogonale. 

~1. Dire que f conserve le produit scalaire s'explicite donc de la façon suivante: 

V ü = (;) E R
2

, V v = ( ;: ) E R
2 

: A tÜ · A 1it = At (:) ·At ( ;: ) 

= ü · v = x x' + y y' 
avec: 

A ü . A v = (a 11 a 12 ) ( x ) . ( a 1 1 a 12 ) ( x: ) = ( a 1 1 x + a 12 y) . ( a 1 1 x: + a 12 y: ) 1 1 a21 a22 y a21 a22 y a21 x + a22 Y a21 x + a22 Y 

2. les vecteurs colonnes C 1, C2 de A f = (a;1) . . E M 2 (lR) sont: 
l,,;;1,,;;2, 1,,;;1,,;;2 

c, =(a") , c2 = (a12) 
a21 a22 

C1 · C2 =(a")· (a 12
) = a11 a12 +a21 a22 

a21 a22 

La norme du premier vecteur colonne est: llC1 Il = ~aT 1 + a~ 1 • 

Ainsi: 

La norme du deuxième vecteur colonne est: llC2ll = ~af 2 + a~2 • 

L'ensemble des transformations orthogonales de R2 est appelé groupe orthogonal de 
R2 , et noté 0(R2). 

2. Propriétés 

Proposition 
Si A est une matrice orthogonale, alors : 

detA = ±1 

Démonstration : 
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Proposition 
Une transformation orthogonale f, de matrice associée A f, conserve la norme (c'est une 
isométrie) : 

V il= (x, y) E lR2 llf(û)ll = llûJI 

ce qui se traduit matriciellement par : 

V û = (x, y) E lR2 
: llA f ûJI = llîlll 

Démonstration : Il suffit d'utiliser le fait qu 'une transformation orthogonale conserve 
le produit scalaire : 

V û = (x, y) E lR2 
: A f û ·A f û = llûJI · llûJI • 

Proposition 
Une matrice orthogonale A f peut aussi être caractérisée par la propriété suivante : 

V il E lR2 
: llA f illl = llûJI 

qui signifie que l'application linéaire associée f conserve la norme (c'est une isométrie). 

Démonstration : On montre que cette propriété est équivalente à i. : 

• Si f conserve le produit scalaire, on a vu que : 

V il E lR2 
: llA f ûJI = llilll 

• Réciproquement, si f conserve la norme, on peut utili ser l'identité de polarisation : 

V (il, Ü) E lR2 
X lR2 

: il· Û = ~ {l lil + iJ11 2 
- llil - iJ11 2

} 

et : 

V(û, ïl) E lR2 x lR
2

: A1û·A1ï1= ~ {llA1û +A1üll
2

-llA1û -A1ül1
2

} 

Par suite: 

V(û,Ü) E lR2 x lR2
: A1il·A1ï1= ~ {l lA1(il +ï1)112 - llA1(il-ï1)112

} 

PUIS: 

V(il,Ü) E lR2 x lR2
: A1 i1·A1 ï1= ~ {11il +iJ112 -lli1-iJ112}=il ·ïf 

D'où le résultat. 

Proposition 
Si A est une matrice orthogonale, alors A est de la forme : 

où () est un réel, et : 

Définition 

(
cos() - e sin ()) 
sin () e cos () 

e = det A 

L'ensemble des transformations orthogonales de JR2 de déterminant égal à 1 est appelé 
groupe spécial orthogonal de JR2 , et noté SO(IR?.2). 

• 

313 

"' :::::s 

:::::s 
V 

<a u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Rotations vectorielles du plan 

1. Définition 

Soient (} un réel, Q un point donné, et ü un vecteur de R 2. 
----7 

Soient M le point tel que QM = ü, et M' l'image de M par la rotation de centre Q , 

d'angle e. 
On considère l'application : 

C ' est une application linéaire. 

Re: R2 --7 R2 
----7 ~ 
QMHQM' 

L'image par Re d'un vecteur quelconque ü de R2 est ainsi le vecteur v1 tel que: 

{ 

~V)~ = lliJ11 

(v, v') = e [2n] 

Re est une rotation vectorielle, à distinguer des rotations affines vues au chapitre 1. Le 
point n peut être choisi absolument quelconque. À la différence d'une rotation affine, 
une rotation vectorielle de R 2 n'est ainsi définie que par son angle. On parlera, dans ce 
qui suit, de rotation pour désigner une telle application. 

2. Propriétés 

Proposition 
La matrice d'une rotation de R2 , d'angle e, dans une base orthonormale directe, est de la 
forme: 

(
cose-sine) 
sin(} cos(} 

Démonstration : Pour tout vecteur ü = (;) de R 2 
: 

Re(Ü) = cos e Ü + sine ÜJ. 

où ÜJ. désigne le vecteur directement orthogonal à ü, et de même norme que ü : 

Ainsi : 

Re(Û) = cos B (;) + sine (-:) 

D'où le résultat. 
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~ On vérifie aisément que le déterminant d' une matrice de rotation vaut+ 1. 

Proposition 
Tout élément de SO(JR2) est une rotation (de JR2). 

Démonstration : D'après ce qui précède, il est clair que toute rotation de JR2 est dans 
S O(JR2). 

Réciproquement, soit fun élément de S O(R2), de matrice dans la base canonique A f. 

A f est de la forme : 

(a, b, c, d) E JR4 

f étant dans O(R2) : 

soit: 

ce qui conduit à : 

( 
a

2 
+ c

2 
a b + cd l = ( 1 o ) 

a b + cd b2 + d2 0 1 

{ 

a2 + c2 = l 
ab+cd = 0 
b2 + d2 = 1 

Il existe donc deux réels <.p et t/f tels que 

La condition : 

conduit à: 

soit: 

Il en résulte : 

ou encore: 

Par suite: 

{

a = c~s <.p 

c = sm<.p { 
b =cos t/! 
d = sin t/f 

ab+cd=O 

cos <.p cos t/f + sin <.p sin t/J = 0 

cos(t/; - <.p) = 0 

{ 

b = cos t/f =cos ('P + ~+br) = (-l)k+l sin <.p 

d = sint/; = sin(<.p+ ~+br)= (-l)k cos<.p 
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f étant dans S0(JR2
), le déterminant de la matrice At doit être égal à 1, soit: 

ce qui conduit à : 

k est donc pair, 

On a donc, finalement: 

et: 

ad-bc=l 

k E 2Z 

{
b = - sincp 
d = coscp 

A = ( c?s cp - sin cp) 
f sm cp cos cp 

Le groupe spécial orthogonal de IR2
, SO(IR2

), est donc constitué: 

• de l'application identité idR2 ; 

• des rotations d'angle () it rr Z ; 

• des symétries par rapport à une droite. 
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Bases de l'espace R3 

Définition 

On appelle base de l'espace JR3 toute famille libre de trois vecteurs de JR3. 

Exemple 

Déterminons si la famille 

est une base de R.3 ; pour cela, il suffit de calculer son déterminant : 

det(û, û, W) = - 4 :f. 0 

(û, û, W) est bien une base de R.3 . 

Définition 

On appelle base canonique de l'espace UR3 la famille (7, J, k), avec : 

Proposition 
Soit '13 = (ë1, ë2, e3) une base de JR3. 

Pour tout vecteur û de JR3, il existe une unique combinaison linéaire des vecteurs de '13 
égale à û: 

que l 'on note aussi : 

3 

û= xi ë 1 +x2ë2 +x3 e3 = Ixiëi 
i=l 

x 1 E JR, x2 E lR et x3 E lR sont les coordonnées (ou composantes) du vecteur û dans la 
base 'B. 

~ La décomposition d' un vecteur suivant une base donnée est ainsi unique. 
V 3 ...,...,__, 

Les composantes d' un vecteur (x, y, z) de lR dans la base canonique (i, j , k) seront 
notées: 
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Transformations linéaires 
de l'espace R3 

1. Définitions 

Définition 

On appelle transformation linéaire de l'espace IR.3, ou encore application linéaire 
de l'espace IR.3 une application f, de IR.3 dans IR.3, linéaire : 

Pour toute transformation linéaire f de l'espace JR3 : 

-; -; 

f(O) = 0 

Exemples 

1. L'application : 
f : JR3 

----t JR3 
, (x, y, z) H (x + 1, y - 2, z) 

n'est pas linéaire. 

2. L'application: 
f : JR3 

----t JR3 
, (x, y, z) H (3 x, 3 y, 3 z) 

est linéaire. 

Proposition 
Étant donnée une matrice A = (aiJ) . . , de taille 3 x 3, à coefficients réels, l'ap-

i ~1~3, 1 ~J~3 
plication : 

est linéaire, et définit une transformation Linéaire de IR.3. 

2. Matrice d'une transformation linéaire 

Définition 

On appelle matrice, dans une base 13 = (e\, eî, e'j) donnée, d 'une transformation 
linéaire f de JR3, la matrice dont les vecteurs colonnes sont les coordonnées, dans 13, 
des images des vecteurs de 13: 

Matrice'B(f) = (f (eî), f (e2) , f (e3)) 
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> Une application linéaire remarquable: l'application identité de l'espace IR.3 

Définition 

On appelle application identité de l'espace m.3 l'application, notée ldw._3 , de matrice 
associée h: 

a E IR3 Ha 

> Domaine de définition 

Proposition 
Une transformation linéaire de JR3 est entièrement définie par ses valeurs sur une base 
donnée. 

Démonstration : Soit f : JR3 
-? JR3 une transformation linéaire, et 13 = (eî, eî , é3) une 

base de IR3 . 

On suppose que les images des vecteurs eî, eî et é3 sont données : 

3 

ViE{l,2,3} f(ei)=_LaJiéj 
j= l 

3 

Alors, pour tout vecteur a= xi eî + X2 eî + X3 e3 = I Xj ëi de IR3 
: 

i=I 

f ( i1) = f [ t X; ej l 
3 

,L xif(ei ) 
i=I 

3 3 

= ,Lxi ,LaJiéj 
i=I )=I 

3 3 

= ,L,LxiaJiéj 
i= I j= I 

3 3 

= ,L ,Lx1aiJëi 
i=l j=I 

Ainsi: 

D' où le résultat. 

Proposition 

• 

Une transformation linéaire de JR3 est entièrement définie par la matrice qui lui est asso­
ciée dans une base donnée. 
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Démonstration : Le résultat découle immédiatement de la proposition précédente : une 
transformation linéaire de JR3 est entièrement définie par ses valeurs sur une base donnée . 

• 
Définition 

On appelle matrice d'une transformation linéaire f de IR3, la matrice de f dans la 
base canonique (7, J, k). Elle sera notée, dans ce qui suit, sous la forme A f : 

Une transformation linéaire de JR3 étant entièrement définie par la matrice qui lui est associée 
dans une base donnée, il est clair qu' il est préférable de se placer dans une base donnant une 
expression la plus agréable possible de la matrice: triangulaire, ou diagonale. Cela s'appelle 
trigonaliser ou diagonaliser une application linéaire (ou une matrice). 

> Composée de deux transformations linéaires 

Proposition 
La composée f o g de deux transformations linéaires f et g de JR3 , de matrices associées 
A'BC.f) et A'B(g) dans une base <.B = (ë1, ë2, e3) donnée, est une transformation linéaire de 
JR3 , qui vérifie : 

V û = [ ~) E R3 (f 0 g)(Û) = f (g(û)) =As(/) (As(g) il)= (As(f)As(g)) û 

Ainsi, f o g a pour matrice, dans la base <.B : 

>Noyau 

Définition 

On apelle noyau d'une transformation linéaire f de JR3, que l'on note Ker f (de l'al­
lemand kern) l'ensemble des vecteurs de JR3 dont l'image par f est le vecteur nul: 

Ker f = {zt E lR3 / f(û) = 0} 

Par extension, le noyau d'une matrice A E M 3(JR) est le noyau de l'application linéaire 
associée à la matrice A. 

>Image 

Définition 

On apelle image d'une transformation linéaire f de JR3, que l'on note Im f l'ensemble 
des images des vecteurs de lR 3 par f : 

Im f = {.tcz1), z1 E JR3
} 
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3. Propriétés 

Définition 

Une transformation linéaire de R3 est dite injective si : 

V (Û, Ü) E R3 
X R3 

: f(il) = f(Ü) => Û = Û 

Théorème 

Une transformation linéaire de R3 est injective si son noyau est réduit au vecteur nul : 

Ker J = {ô} 

Démonstration : Ce résultat découle de la linéarité de f. 

Définition 

Une transformation linéaire de R3 est dite surjective si : 

V Û E R3
, 3 Ü E R3 : Û = f(Ü) 

4. Automorphisme 

Définition 

Une transformation linéaire de R3 est un automorphisme de JR3 si elle est bijective. 

>- Théorème du rang dans JR3 (ou formule du rang) 

Théorème 

Dans R3 : 

dimimf + dimKer f = 3 

dim I m f est le rang de f, noté aussi rg f. 

>- Caractérisation des automorphismes de JR3 

Théorème 

Soit June transformation linéaire de IR3. Alors: 

J injective ~ f surjective ~ f bijective 

• 

Pour qu'une transformation linéaire f de R3 soit un automorphisme de R3, il faut et il 
suffit que le déterminant de sa matrice A13(f) dans une base :B quelconque soit non nul. 

Sa réciproque 1- 1 est alors une transformation linéaire de R3, de matrice dans :B : 
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Changement de base en dimension 3 

1. Matrice de passage 

Défin ition 

· ro _,_,-:t roi..., ...,..., 3 
Soient .u = (e 1, ez, e3) et .u = (e' 1, e' 2, e' 3) deux bases de Ill . 

On désigne par P13"""13, = (Pij) . . la matrice dont les vecteurs colonnes repré-
1.;;1.;;3, l '7;;j .;;3 

sentent les coordonnées (ou composantes) des vecteurs e1 1, e1 2 et e1 3 dans la base 13: 

3 

V i E {1, 2, 3} : e1 i = I p ji êj 
j= I 

P'B""-''B' est appelée matrice de passage de 13 à 13'. 

2. Formule de changement de base pour un vecteur 

Soit û un vecteur de lll.3 . On désigne par (û)" = ( :~) ses coordonnées dans '8, et par 

( û)", = ( ;, ) ses coordonnées dans '8' . Alors : 

soit : 

Démonstration : 
3 

Ü= Ix;e1 ; 
i=I 

3 3 

= Ix~ IPjiêj 
i= I j= I 

3 3 

= ILPji x;ej 
i = I j = l 
3 3 

= L LPij x) êi 
i= I j =I 
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(On a effectué un changement d'indices pour passer de l'avant-dernière à la dernière 
ligne.) 

Comme: 
3 

a= Ixi ëi 
i=l 

alors, par unicité de la décomposition de a suivant 13, pour tout ide { 1, 2, 3} : 

que l'on peut encore écrire : 

3 

Xi= IP;1x) 
J= l 

• 
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Conjugaison - Matrices semblables 
de taille 3 x 3 

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso­
ciée à une application linéaire f. 

Il peut être intéressant de donner les relations permettant de passer de la matrice A13(f) 
associée à f dans une base 13, à la matrice A13,(f) associée à f dans une nouvelle base 13'. 

1. Matrices semblables 

Considérons les bases 13 = (ê1, ê2, ê3) et 13' = (ei 1, ei 2, ei 3) de JR3• 

On désigne par A13(f) = (aij) . . la matrice associée à f dans la base 13, et par 
I .;;1.;;3, I .;;1.;;3 

A13'(f) = (œij) . 
3 

. 
3 

la matrice associée à f dans la base 13'. 
l .;;1.;; , l .;;j.;; 

On appelle P 13,.,,.,.13, la matrice de passage de 13 à 13'. 

Soit i1 un vecteur de JR3
. On désigne par (û),, = [ ~~) ses coordonnées dans !B, et par 

( i1)13, = [ 5, ) ses coordonnées dans !B' ; de même, on désigne par (f (il) )13 = [ ~~ ) les 

coordonnées de f (il) dans !B, et par (f (il) )13, = [ 5, ) les coordonnées de f (il) dans !B'. 

Alors: 
(!(il) )13 = A13(f) ( ïl)13 

= A13(f) P13,.,,.,.131 (ï/)13, 

Mais on a aussi : 

et : 

Il en résulte : 

Comme: 

on a donc: 

ou encore: 
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Le vecteur ü étant quelconque, on en déduit, en choisissant successivement pour ü cha­
cun des vecteurs de 13, la nullité de chaque colonne de A'B(f) - P A'B'(f) p - I : 

ou encore: 

Définition 

Deux transformations linéaires f et g de JR3, de matrices associées A 1 et Ag, sont 
dites conjuguées s'il existe une transformation linéaire bijective 'P de JR3 , de matrice 
associée A'P, appelée conjugaison, telle que : 

foip=ipog 

ce qui, matriciellement, se traduit par : 

ou encore, puisque A'P est inversible : 

Les matrices A 1 et Ag sont dites semblables. 

2. Déterminant d'une application linéaire de R3 

Proposition 
Deux matrices semblables ont même déterminant. 

Démonstration : Soient A et B deux matrices semblables, de taille 3 x 3. 
D'après ce qui précède, il existe une matrice inversible P telle que: 

p-I AP = B 

Il en résulte : 
det(B) = det(P- 1 AP) = det(AP- 1 P) = det(A) 

Définition 

• 

On apelle déterminant d'une transformation linéaire f de JR3 le déterminant de sa 
matrice dans la base canonique, ou, de façon équivalente, dans une base quelconque 13. 

La valeur du déterminant d' une transformation linéaire f de R.3 ne dépend effectivement pas 
de la base choisie : si 13et13' sont deux bases del' espace R.3 , les matrices A3(f) et A3, (f), qui 
représentent donc la même application linéaire dans deux bases différentes, sont semblables, 
et ont donc même déterminant. 
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Opérateurs orthogonaux 
de l'espace R3 

1. Définitions 

On appelle opérateur orthogonal de l'espace m.3 , ou transformation orthogonale 
de IF?.3 , une transformation linéaire f de R3, de matrice At, qui vérifie l'une des trois 
propriétés équivalentes suivantes : 

• f conserve le produit scalaire : 

V (Ü, Û) E R3 
X R3 

: A tÜ ·A /Ü = Ü · ïJ 

• 
1AtAt = /3 ou Af'At = /3 

• les vecteurs colonnes C 1, C2, C3 de At constituent une base orthonormale, c'est-à-dire 
une famille libre de vecteurs deux à deux orthogonaux et de norme 1 : 

V(i,j) E {l,2,3)2 
: Ci· C; = ÔiJ 

On dit alors que la matrice At est orthogonale. 

2. Isométrie 

Proposition 
Une transformation orthogonale f, de matrice associée At, conserve la norme (c'est une 
isométrie) : 

V ü = (x, y, z) E R3 
: 11.f(Ü)ll = llüil 

ce qui se traduit matriciellement par : 

V Ü = (x, y, z) E R3 
: llAt üil = llï111 

Démonstration : Il suffit d'utiliser le fait qu'une transformation orthogonale conserve 
le produit scalaire : 

V Ü = (x,y,z) E R3 
: At Ü ·At Ü = llüil · llüJI 

Proposition 
Une matrice orthogonale At peut aussi être caractérisée par la propriété suivante : 

V Ü E R3 
: llA t ûll = llüJI 

qui signifie que f conserve la norme (l'application linéaire f est donc une isométrie). 

Démonstration: On montre que cette propriété qu'elle est équivalente à i. : 

• Si f conserve le produit scalaire, alors : 

va E R3
: AtÜ•AtÜ= llüil · llüil 

soit 

et donc: 

V Û E R3 llAt üil = llüJI 
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• Réciproquement, si f conserve la norme, on peut utiliser l'identité de polarisa­
tion: 

et: 

V(ïl,Ü) E R3 x R3
: A1ïl·A1û= ~ {11A1ïl +A1ü112 -llA1ïl -A1ü112 } 

Par suite : 

V(ïl,Ü) E R3 x R3
: Afïl·A1û= ~ {llA1(ïl +Ü)i12 -llA1(ïl -Ü)i12

} 

puis: 

V(ïl,Ü) E R3 x R3
: Afïl·A1û= ~ {11 ïl +ü112 -llïl-ü112}=u·Û 

D'où le résultat. 

3. Groupe orthogonal 

Définition 

• 

L'ensemble des transformations orthogonales de R3 est appelé groupe orthogonal de 
R3, et noté O(R3). 

Proposition 
Si A est une matrice orthogonale, alors : 

detA = ±1 

Démonstration : 

Proposition 
Si A est une matrice orthogonale, alors A est semblable à une matrice de la forme : 

(

cos e - sin e O l 
Ao = sin e cos e 0 

0 0 s 
où e est un réel, et : 

s = det A E {-1, l} 

Définition 

L'ensemble des transformations orthogonales de R3 de déterminant égal à 1 est appelé 
groupe spécial orthogonal de R3, et noté S 0(R3). 

• 
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Rotations vectorielles de l'espace IR3 

1. Axe de rotation 

Soient() un réel, ii un vecteur de R3, et P le plan vectoriel orthogonal à ii. On désigne par 
(fp, JP) une base de P telle que (fp, Jp, ii) soit une base orthonormée directe de R3. Dans 
cette base, un vecteur ü de R3 se décompose de manière unique sous la forme: 

_, _, 
ü = xaip + Yû jp + zan 

Soit alors: 
-+ 7 7 
up = xa1p + Ya JP 

et R; la rotation (au sens vectoriel) de P, d'angle e. 
On considère l 'application : 

Re: R3 ~ R3 

ü H R;(üp)+ zan 

C'est une application linéaire, qui est une rotation vectorielle de R3, d'angle e. On par­
lera, dans ce qui suit, de rotation pour désigner une telle application. 

Si () (f. 2 n Z, l'ensemble de ses invariants est la droite vectorielle dirigée par le vec­
teur n. Cette droite est appelée axe de la rotation. 

2. Propriétés de l'axe de rotation 

Proposition 

Soit Re la rotation d'axe dirigé par le vecteur k = ( ~ } d'angle e. 

Alors, pour tout vecteur ü de l'espace R3 : 

;1\ ü _, _, ( _, _,) _, R8(u, = cos() +sin() k /\ u + (1 - cos()) u · k k 

Démonstration : Il suffit de vérifier la formule pour les trois vecteurs de la base cano-
nique (7, J, k). • 

Proposition 
Soit Re la rotation axiale, d'angle e, dont l'axe est dirigé par le vecteur unitaire n. 

Alors, pour tout vecteur ü de l'espace R3 : 

Re(ü) = cos() ïl +sin() n /\ ü + (1 - cos()) (ü · n) n 

Démonstration : On complète n par deux vecteurs vî et vî, tels que ( vî, vî, n) soit une 
base orthonormale directe de R 3 . 
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On a alors: 

d'où le résultat. 

Proposition 

{

Re(u] ) = cos élu]+ sinBu2 =cos élu]+ sinélil /\ u] 
Re ( v2) = - sine u] + cos e v2 = cos 8 v2 + sine il /\ v2 
Re(il) = il 

• 

La matrice d'une rotation axiale d'angle e E JR, dans une base orthonormale directe dont 
le troisième vecteur dirige l'axe de la rotation, est de la forme : 

( 

cos e - sin e o l 
Ae = sin e cos e 0 

0 0 1 

Ae est une matrice de rotation ; l'angle de la rotation est e. 

Démonstration : Soit Ro la rotation d'axe dirigé parle vecteurk ~ ( ~ J. d'angle 9. 

Alors, pour tout vecteur û de l'espace JR.3 : 

R8(u, = cos eu+ sine k /\ u + (1 - cos 8) u · k k ;-!'\ .... .... .... ( ........ ) .... 

( .... ........ ) Il en résulte, pour les trois vecteurs de la base canonique i, j, k : 

d'où le résultat. 

{ 

R (7) fi 7 . fi k.... 7 fi 7 . fi 7 e i = cos o i + sm o /\ 1 = cos o i + sm o J 
-A -+ -+ -+ -7 -t 

Re(JJ = cos e j + sine k /\ j = - sine i +cos e j 
.... .... 

Re(k) = k 

On vérifie aisément que le déterminant d' une matrice de rotation vaut+ 1. 
Le cas d' une base quelconque est laissé au lecteur. 
Le groupe spécial orthogonal de JR3, S 0(IR3) , est donc constitué: 

1. de 1' application identité idR.3 ; 

2. des rotations axiales ; 

3. des symétries par rapport à une droite (cas particulier de rotations, d'angle rr). 

• 
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Dans ce qui précède, on s'est intéressé aux espaces usuels que sont le plan R2, et l'es­
pace R3. R2 est de dimension 2, car pour se repérer dans le plan, il faut deux coordonnées. 
De même, R3 est de dimension 3, car pour se repérer dans l'espace, il faut trois coordon­
nées. Mais dans la vie réelle de l'ingénieur ou du scientifique, une grandeur n'est pas, 
en général, caractérisée par deux ou trois coordonnées, mais plus : ainsi, dès que l'on in­
troduit une référence temporelle, il faut prendre en compte une donnée supplémentaire, 
le temps t. On se retrouve ainsi dans un espace de dimension 4, où chaque grandeur est 
caractérisée par ses trois coordonnées spatiales, et sa coordonnée temporelle. 

De façon plus générale, il est donc utile de disposer de résultats et d'outils mathéma­
tiques permettant de gérer un nombre n de coordonnées, ce qui nous place ainsi dans un 
espace de dimension n; Rn, où on généralise les résultats déjà existants en dimension 2 
ou 3, est l'exemple le plus naturel. Les résultats présentés dans ce qui suit s'appliquent 
encore pour un espace (vectoriel) Ede dimension n. 

Notation 
Dans ce qui suit, n et N désignent des entiers supérieurs ou égaux à 2. 

1. Définitions et propriétés fondamentales 

Définition 

On appelle vecteur à n composantes, un n-uplet de réels x = (x1, ••• , xn), que l'on 

peut aussi écrire sous la forme [ J: l 
x1, ... , Xn sont appelées composantes du vecteur x. 

Propriété 
Deux vecteurs sont égaux si et seulement si ils ont les mêmes composantes. 

~ Vecteur nul 

Le vecteur, dont les n composantes sont nulles, est appelé vecteur nul, et noté O. 

~ Somme de deux vecteurs 

Définition 

On considère les vecteurs x = (x1, ••• , Xn) et y= (y 1, ••• , Yn) de l'espace R 11 
• 

On définit le vecteur x +y = z comme l'unique vecteur de Rn, dont les composantes 
(z1, ... , Zn) sont données par: 
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> Multiplication d'un vecteur par un réel 

Définition 

On considère le vecteur (x1, ••• , xn) de l'espace !Rn. 

Alors, pour tout réel A, A x est un vecteur de IR.n, de composantes (A x 1, ••• , A Xn). 

2. Familles de vecteurs libres (ou famille libre de vecteurs) 

> Combinaison de vecteurs 

On appelle combinaison linéaire de deux vecteurs x et y , toute expression de la forme: 

Ax+µy 

où A et µ sont des réels. 
On appelle combinaison linéaire de N vecteurs xi, ••• , XN, toute expression de la 

forme: 

où A.1, ... , ÀN sont des réels. 

> Vecteurs liés et vecteurs libres 

N 

~Xx· LJ 1 1 

i=I 

Deux vecteurs x et y sont dits liés s'il existe une combinaison linéaire non triviale de ces 
vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison sont 
non simultanément nuls, de la forme : 

A.x+µy=O (A.,µ)* (0,0) 

Deux vecteurs x et y sont dits libres s'ils ne sont pas liés. 

> Généralisation 

N vecteurs x1, ••• , XN sont dits liés s'il existe une combinaison linéaire non triviale de 
ces vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison 
sont non simultanément nuls, de la forme : 

N 

LÀï Xi = 0 
i= I 

où A.1 , ... , ÀN sont des réels tels que (A.1 , ... , ÀN) i= (0, ... , 0). 
N vecteurs x1, • •• , XN sont dits libres s'ils ne sont pas liés. 

Propriété 
Pour toute famille (x1, ••• , XN) de vecteurs libres : 

À.1 X1 + . .. + ÀN XN = 0 ~ (À.1,. .. , ÀN) = (0, .. ., 0) 

ce qui signifie que, s' il existe une combinaison linéaire nulle de ces vecteurs, alors les 
coefficients de cette même combinaison linéaire sont nécessairement nuls. 
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Espace engendré par une famille 
de vecteurs - Sous-espaces vectoriels 
de IRn 

1. Bases 

Définition 

On appelle base de l'espace Rn toute famille libre den vecteurs de Rn. 

~ Base canonique 

Définition 

On appelle base canonique de l'espace JR.ll la famille : 

l 0 0 
0 l 0 
0 0 

0 
0 0 l 

~ Coordonnées d'un vecteur 

Soit 13 = (e1, ••• , en) une base de Rn. Pour tout vecteur x de Rn, il existe une unique 
combinaison linéaire des vecteurs de 13 égale à x : 

n 

X= XJ e1 + ... + Xn en = .L Xi ei 
i=I 

x 1 E R , . . . , Xn E lR sont les coordonnées (ou composantes) du vecteur x dans la base 13. 
Les composantes d'un vecteur (x1, ••• , xn) de Rn dans la base canonique seront no-

tées[~']. 
Xn 

2. Famille génératrice 

Étant donnée une famille (x1, ••• , XN) de N vecteurs de JR.ll, on appelle espace engendré 
par la famille (x1, .. . , XN) l' ensemble de toutes les combinaisons linéaires possibles de 
cette famille, que 1' on note V ect { x 1, ••• , XN }. 

Une famille (x1, •• • , XN) den vecteurs de Rn est dite génératrice si : 

Vect{x,, .. . ,xN} = Rn 

Une famille (x1, ..• , XN) de N vecteurs de JR.11 est une base de ffi" si elle est libre et 
génératrice. 
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~ Dimension d'une base de JR.n 

Théorème 

1. Toute base de l'espace JRn admet exactement n éléments. 

2. On appelle dimension de JRn le nombre d'éléments de toute base de JRn: 

dim lRn =n 

3. Toute famille libre den éléments de l'espace JRn est une base de JR.11
• 

4. Toute famille génératrice de n éléments de l 'espace JR.11 est une base de ]Rn. 

~ Théorème de la base incomplète 

Théorème 

Toute famille libre {x1, ... , XN }, N E N, N < n, peut être complétée en une base 
{x1 ' ... , XN, XN+ ,, ... 'Xn} de JR.11

• 

3. Sous-espace vectoriel de JR.n 

Définition 

On appelle sous-espace vectoriel de ]Rn un ensemble F de ]Rn tel que : 

• 0 E F; 

• étant donnés deux éléments x et y de F, x +y est aussi élément de F (ce qui signifie 
que F est stable par addition) ; 

• étant donnés un élément x de F, et un réel À, ;lx est aussi élément de F (ce qui 
signifie que Fest stable par la multiplication par un scalaire). 

~ Caractérisation des sous-espaces vectoriels de JR.n 

Théorème 

Un ensemble F de JR.11 est un sous-espace vectoriel de JRn si et seulement si, étant donnés 
deux éléments x et y de F, et un réel À, x + ;l y est aussi élément de F (ce qui signifie que 
F est stable par combinaisons linéaires) : 

~ Dimension d'un sous-espace vectoriel 

Théorème 

On appelle dimension d'un sous-espace F de JRn le nombre d'éléments de toute base 
de F. 

4. Somme de sous-espaces vectoriels de R n 

F 1 et F2 étant deux sous-espaces vectoriels de JR'1, l'ensemble : 

F , + Fz = {x1 + x2, x , E F1, x2 E Fz} 

est un sous-espace vectoriel de JRn, appelé somme de F 1 et F 2• 
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> Dimension d'une somme de sous-espaces de !Rn : la formule de Grassmann 1 

Théorème 

F 1 et F 2 étant deux sous-espaces vectoriels de ]Rn : 

> Somme directe de sous-espaces vectoriels de !Rn 

Deux sous-espaces vectoriels F 1 et F 2 de JRn sont dits en somme directe si tout élément 
du sous-espace somme F 1 + F 2 s'écrit de manière unique comme somme d'un élément 
de F1 et d'un élément de F2 : 

La somme F 1 + F2 se note alors F 1 EB F2. 

> Caractérisation d'une somme directe 

Deux sous-espaces vectoriels F 1 et F 2 de JR.11 sont en somme directe si et seulement si : 

S. Supplémentarité 
> Sous-espaces vectoriels supplémentaires de JRn 

Deux sous-espaces vectoriels F 1 et F 2 de JRn sont dits supplémentaires dans IR\11 si tout 
élément de JR.11 s'écrit de manière unique comme somme d' un élément de F1 et d'un 
élément de F 2 : 

> Caractérisation de la supplémentarité dans JRn 

Deux sous-espaces vectoriels F1 et F2 de JRn sont supplémentaires si et seulement si 

l. Hermann Günther Grassmann (1809- 1877), mathématicien, physicien et linguiste allemand. Il fut l'un 
des premiers à introduire la notion d' espace vectoriel. 
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Transformations linéaires 
de l'espace IRn 

1. Définitions 

Définition 

On appelle transformation linéaire de l'espace IR", ou encore application linéaire 
de l'espace IR" une application f, de R n dans Rn, linéaire: 

V(x,y) E R n x Rn, V A E R : f(x + Ay) = f(x) + Af(y) 

Pour toute transformation linéaire f de l'espace TIR" : 

j(O) = 0 
Exemples 

1. L'application : 
f: llf' - R.", (x1, ..• ,x,,) H (x1 +l , ... , x,,+1) 

n'est pas linéaire. 

2. L'application : 

f : JR" -7 JR" , (xi , . .. , x,,) H 3 (xi , . .. , x,,) = (3 x 1, ... , 3 x,,) 

est linéaire. 

Proposition 
Étant donnée une matrice A = (aiJ) . . , de taille n x n, à coefficients réels, l'ap-

1,.;1,.;n, J,.;1,.;n 
plication : 

(
XJ] (XJ] (a11X1+ ... +a1nXnl 

fA : R n -7 R 11 
, : H A : = : 

Xn Xn anl X(+ ... + annXn 

est linéaire, et définit une transformation linéaire de R n. 

2. Matrice d'une transformation linéaire 

Définition 

On appelle matrice, dans une base 'B = (ei, .•• , e11 ) donnée, d'une transformation 
linéaire f de IR", la matrice dont les vecteurs colonnes sont les coordonnées, dans 'B, 
des images des vecteurs de 'B: 

Matrice'B(f) = (f(e1),. . .,f(en)) 

., Une application linéaire remarquable : l'application identité de JR.n 

Définition 

On appelle application identité de IR" l'application, notée I dR", de matrice asso­
ciée !11 : 

XE R11 
H X 
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~ Domaine de définition 

Proposition 
Une transformation linéaire de R n est entièrement définie par ses valeurs sur une base 
donnée. 

Démonstration : Soit f : JRn ~ Rn une transformation linéaire, et <J3 = (e 1, e1, ... , en) 
une base de Rn. 

On suppose que les images des vecteurs e 1, ... , en sont données : 
n 

Vi E {1, 2, ... , n}: f(ei) = Iajiej 
j=I 

n 

Alors, pour tout vecteur x = x1 e1 + ... + Xn en= I Xi ei de JR.n : 
i=l 

Ainsi: 

D'où le résultat. 

Proposition 

f (x) = f [t x,e;l 
n 

Ixif(ei) 
i=l 

n 11 

= Ixi IaJiej 
i=l j= I 

11 n 

IIxiajieJ 
i=I j=I 

11 n 

IIxjaiJei 
i=I j=I 

(
a11 ... a111](x1] 

(f (x))'B = : -. : : 
a~1 .. ._ a~n ~n 

• 
Une transformation linéaire de R n est entièrement définie par la matrice qui lui est asso-
ciée dans une base donnée. 

Démonstration : Le résultat découle immédiatement de la proposition précédente: une 
transformation linéaire de JR.n est entièrement définie par ses valeurs sur une base donnée. 

• 
Définition 

On appelle matrice d'une transformation linéaire f de m.11
, la matrice de f dans la 

base canonique. Elle sera notée, dans ce qui suit, A 1 . 

Une transformation linéaire de !Rn étant entièrement définie par la matrice qui lui est associée 
dans une base donnée, il est clair qu ' il est préférable de se placer dans une base donnant une 
expression la plus agréable possible de la matrice : triangulaire, ou diagonale. Cela s'appelle 
trigonaliser ou diagonaliser une application linéaire (ou une matrice). 
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> Composée de deux transformations linéaires 

Proposition 
La composée f o g de deux transformations linéaires f et g de Rn, de matrices associées 
A13(.f) et A13(g) dans une base 13 = (e 1, ••• , en) donnée, est une transformation linéaire 

de Rn, quivérifie:Vx=[ ~'] E Rn : 

Xn 

(f o g)(x) = f (g(x)) = A13(f) (A13(g) x) = (A13(f) A13(g)) x 

Ainsi, f o g a pour matrice, dans la base 13 : 

A13(f o g) = A13(f) A13(g) 

> Formule du binôme de Newton 

Proposition 
Étant données deux transformations linéaires f et g de Rn qui commutent, c' est-à-dire 
telles que f o g = go f , alors, pour tout entier naturel p, la formule du binôme de Newton 
permet de calculer (f + g)P , où la puissance est au sens de la composition : 

p 

(f + g )P = I c~ fk o gp-k 
k=O 

où, pour tout entier k de {0, ... , p}, c; désigne le coefficient binomial : 

> Noyau 

Définition 

( f ) - k ! c: ~ k) ! 

On apelle noyau d'une transformation linéaire f de IR.n, que l'on note Ker f (de l'al­
lemand kern) l'ensemble des vecteurs de JR.n dont l'image par f est le vecteur nul : 

Ker f = {x E Rn/ f(x) = O} 

Par extension, le noyau d'une matrice A E M n(R) est le noyau de l'application linéaire 
associée à la matrice A. 

> Image 

Définition 

On apelle image d' une transformation linéaire f de JR.n, que l'on note I m f l'ensemble 
des images des vecteurs de Rn par f: 

Imf={f(x) , x E Rn} 

3. Propriétés 

Définition 

Une transformation linéaire de Rn est dite injective si : 

V (x1, x2) E Rn X Rn : f(x1) = f(x2) ~ X1 = X2 
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Théorème 

Une transformation linéaire de Rn est injective si son noyau est réduit au vecteur nul : 

Ker f = {O} 

Démonstration : Ce résultat découle de la linéarité de f. 

Définition 

Une transformation linéaire de Rn est dite surjective si : 

V y E JR.11 
, 3 X E JRn : y = f(x) 

4. Automorphisme 

Définition 

Une transformation linéaire de JR.11 est un automorphisme, de lRn si elle est bijective, 
c'est-à-dire injective et surjective. 

• 

L'ensemble des automorphismes de lRn est appelé groupe linéaire de IR<.11 1
, et noté 

@L(JR.11). 

Proposition 
Pour qu'une transformation linéaire f de R11 soit un automorphisme de R11

, il faut et il 
suffit que le déterminant de sa matrice A'B(f) dans une base 13 quelconque soit non nul. 

Sa réciproque f - 1 est alors une transformation linéaire de Rn, de matrice dans 13 

A'B(f- 1) = (A'B(f))- 1 

~ Théorème du rang dans IRn (ou formule du rang) 

Théorème 

Dans JR.11
: 

dimimf + dim Ker f = n 

dim I m f est le rang de f, noté aussi rg f. 

~ Caractérisation des automorphismes de IRn 

Théorème 

Soit f une transformation linéaire de JR.11
• Les propriétés suivantes sont équivalentes : 

• f est injective; 

• f est surjective; 

• f est bijective . 

l. car il possède une structure de groupe, c'est-à-dire est stable par produit, et tout élément non nul est 
inversible. 
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1. Matrice de passage 

Définition 

Soient <J3 = (e 1, ••• , en) et <J3' = (e~, . .. , e;i) deux bases de R" . 

On désigne par P'B-.'B' = (Pij) . . la matrice dont les vecteurs colonnes repré-
1 ~l~fl, 1 ~}~fi 

sentent les coordonnées (ou composantes) des vecteurs e~, ... , e;
1 

dans la base <J3: 

n 

V i E { 1 , ... , n} : e; = I p ji e j 
j=I 

P'B-.'B' est appelée matrice de passage de <J3 à <J3'. 

2. Formule de changement de base pour un vecteur 

Soit x un vecteur de 111.•. On désigne par (x),. = (JJ ses coordonnées dans 'B, et par 

(x)'B' = [ ~~ ] ses coordonnées dans <J3'. Alors, si P'B-.'B' = (Pij) . . est la matrice 
• 1 ~1~n, 1 ~J~n 

x;1 
de passage de <J3 à <J3' : 

soit: 

Démonstration : 
n 

x = Ix; e; 
i=l 

n 11 

= Ix; IPjiej 
i=l j=l 

11 fi 

IIpjix;ej 
i=l j= l 

11 11 

I IPij x)ei 
i=I j=l 
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(On a effectué un changement d'indices pour passer de l'avant-dernière à la dernière 
ligne.) 

Comme: 
11 

x= Ixi ei 
i=l 

alors, par unicité de la décomposition de x suivant 13, pour tout ide {1 , ... , n} : 

que l'on peut encore écrire : 
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Conjugaison -
de taille n x n 

Matrices semblables 

Il a été vu précédemment que, pour une base donnée, il existe une unique matrice asso­
ciée à une application linéaire f. 

Il peut être intéressant de donner les relations permettant de passer de la matrice A'B(f) 

associée à f dans une base 13, à la matrice A'B1Cf) associée à f dans une nouvelle base 13'. 

1. Matrices semblables 

Considérons les bases 13 = (e1, ... , en) et 13' = (e' 1, ... , e' n) de JR.n. 
On désigne par A'B(f) = (aij) . . la matrice associée à f dans la base 13, et par 

1,.,1,.,n, l ,.,J,.,n 

A'B1Cf) = (aij) . . la matrice associée à f dans la base 13'. 
l ,.,1,.,n, 1,.,1,.,n 

On appelle P'B,.,,.,,'BI la matrice de passage de 13à13'. 

Soit x un vecteur de 11.". On désigne par (x)!ll = [J ses coordonnées dans 1l, et par 

(x)'B1 = [ '. ] ses coordonnées dans 13' ; de même, on désigne par (f(x))'B les coordon­

xn 
nées de f(x) dans 13, et par (f(x))'B1 les coordonnées de f(x) dans 13'. Alors : 

(f(x))'B = A'B(f) (x)23 

= A13(f) ?13,.,,.,,131 (x)'B1 

Mais on a aussi : 

et : 

Il en résulte : 

Comme 

on a donc: 

ou encore: 

(A23(f) - ?13,.,,.,,131 A131(f) Ps1,.,,.,,'BI) (x)23 = 0 

Le vecteur x étant quelconque, on en déduit, en choisissant successivement pour il cha­
cun des vecteurs de 13, la nullité de chaque colonne de A'BCf) - P A'B1(f) p - 1 : 

A'B(f) = P13,.,,.,,'B1 A'B1 (f) Ps1,.,,.,,'B1 
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ou encore: 

Définition 

Deux transformations linéaires f et g de Rn, de matrices associées A1 et Ag, sont 
dites conjuguées s'il existe une transformation linéaire bijective 'P de Rn, de matrice 
associée Acp, appelée conjugaison, telle que : 

foip=ipog 

ce qui, matriciellement, se traduit par : 

ou encore, puisque Acp est inversible : 

Les matrices A f et Ag sont dites semblables. 

Définition 

Deux matrices A et B de Mn(R ) sont dites semblables s'il existe une matrice inver­
sible P E 9..Ln(R) telle que : 

B = p - l AP 

~ Les matrices A et B jouent des rôles symétriques. 

2. Déterminant d'une application linéaire de R n 

Proposition 
Deux matrices semblables ont même déterminant. 

Démonstration : Soient A et B deux matrices semblables, de taille n x n. 
D'après ce qui précède, il existe une matrice inversible P telle que : 

p-l A P = B 

Il en résulte : 
det (B) = det (P- 1 A P) = det (A p- I P) = det (A) • 

Définition 

On apelle déterminant d'une transformation linéaire f de Rn le déterminant de sa 
matrice dans la base canonique, ou, de façon équivalente, dans une base quelconque 13. 

La valeur du déterminant d'une transformation linéaire f de R." ne dépend effectivement pas 
de la base choisie : si 13et13' sont deux bases de l'espace R.", les matrices A13(f) et A13, (f), qui 
représentent donc la même application linéaire dans deux bases différentes, sont semblables, 
et ont donc même déterminant. 
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1. Valeur propre, vecteur propre 

Soit A = (aiJ) . . une matrice carrée d'ordre n, à coefficients réels. On appelle 
l ~1~n, l ~;~n 

valeur propre de A un réel À tel qu'il existe un vecteur non nul X= [J vérifiant: 

AX=AX 

X est alors un vecteur propre de la matrice A. 

L'ensemble des valeurs propres de A est appelé Spectre de A, et noté S p(A). 

Théorème 

Étant donnée une matrice A = (aij ) . . E Mn OR), les valeurs propres de A sont 
1 ~1~n, l~;~n 

les racines du polynôme caractéristique de A : 

Démonstration : S'il existe un vecteur X non nul tel que A X= AX, À E JR, on a aussi: 

Ce système linéaire admet alors une infinité de solutions; en effet, si X * 0 est solution, 
alors, pour tout réel œ : 

Le déterminant du système est donc nul : 

det(A -À/11 ) = 0 

Réciproquement, si À est racine de det (A - À In) = 0, le noyau de 1 ' application linéaire 
associée à la matrice A - À ! 11 n'est pas réduit au vecteur nul ; il existe donc un vecteur 
non nul X tel que : 

À est donc bien valeur propre de la matrice A. • 
:> Multiplicité d'une valeur propre 

Soient A = (ai j) . . E M 11 (JR), et À une valeur propre de A. À est dite valeur 
1 ~i~n, 1 ~J~n 

propre, de multiplicité nA e N, de A, si À est racine d'ordre n,i du polynôme caracté-
ristique de A. 
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~ Espace propre 

Soient A = (aij) E Mn OR), et À une valeur propre de A. 
l ,;;, i ,;;,n, l ,;;, j ,;;,n 

On appelle espace propre associé à la valeur propre À l'ensemble des vecteurs X tels 
que A X= AX. C'est un sous-espace vectoriel de Rn , que l'on note E,i : 

E,i = Ker(A - Àln) 

~ Sous-espace caractéristique 

Soient A = (aij) . . E M,i(R ), et À une valeur propre de A, de multiplicité n,i ~ n. 
l ,;;,u;;;n, l ,;;,1,;;,11 

On appelle sous-espace caractéristique associé à la valeur propre À le noyau 
Ker(A - À i nr' de (A - Àln)'1A, c'est-à-dire l' ensemble des vecteurs X tels que: 

C' est un sous-espace vectoriel de Rn. 

2. Diagonalisabilité 

Soit A = (aij) . . E M11(R). La matrice A est dite diagonalisable s'il existe une 
J,;;,1,;;,n, J,;;,1,;;,11 

base (X1, ... , Xn) de R11 de vecteurs propres. 
Si P est la matrice de passage de la base canonique à la base (X1, ••• , X11), alors la 

matrice p- I A P = D est diagonale. C' est, tout simplement, la matrice de l'application 
linéaire associée à A, mais exprimée dans la base (X1, ... , X11 ) . Les coefficients diago­
naux de la matrice D ainsi obtenue sont les valeurs propres de A. 

Théorème 

Pour qu 'une matrice A = (aij) . . E M 11 (R), dont le polynôme caractéristique 
l ,;;,1,;;,n, l ,;;,1,;;,n 

est scindé sur R, soit diagonalisable, il faut et il suffit que la dimension de chaque espace 
propre soit égale à la multiplicité de la valeur propre associée : 

V À E S p(A) : dim E,i = multiplicité(A) 

Notation 
N 

Étant donné un polynôme P à coefficients réels, de la forme I ak Xk, N E N, et une ma­
k=O 

trice A = (aij) 
l ,;;,i ,;;,11, l ,;;,j,;;,n 

E Mn(R ), P(A) est la matrice carrée d'ordre n, à coefficients 

réels, donnée par : 

N 

P(A) = IakAk = 111 + a1 A+ ... + aNAN 
k=O 

(Par convention, A0 =ln.) 

Théorème 

Pour qu'une matrice A = (aij) . . E M 11(R), soit diagonalisable, il faut et il suffit 
l ,;;,1,;;,n, l ,;;,1,;;,n 

qu'il existe un polynôme scindé à racines simples P E R [X] annulant A: P(A) =O. 
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Théorème 

Soit A = (aij) E MnOR). Si le polynôme caractéristique de A est scindé et à 
l ~i~n, l ~j~n 

racines simples, alors A est diagonalisable. 

3. Trigonalisabilité 

Soit A = (aij) . . E MnOR). La matrice A est dite trigonalisable s'il existe une 
1 ~t~n, 1 ~J~ll 

base (X1, ••• , Xn) de JR.ll dans laquelle la matrice de l'application linéaire associée à A 
est triangulaire. Les coefficients diagonaux de la matrice ainsi obtenue sont les valeurs 
propres de A. 

Si P est la matrice de passage de la base canonique à la base (X 1, . . . , Xn), alors la 
matrice p - I A P = Test triangulaire. C'est, tout simplement, la matrice de l'application 
linéaire associée à A, mais exprimée dans la base (X1, ••• , X11). 

Théorème 

Soit A = (aij) E M 11(IR.). Si le polynôme caractéristique de A est scindé, alors 
1 ~ Î~ll, 1 ~j~ll 

A est trigonalisable. 

Exemple 

Prenons le cas où n = 3, où le polynôme caractéristique de A est scindé, avec une seule racine 
tl, et où l' espace propre EA est de dimension l. 

Soit A = (aij) . . E M 3(JR) une matrice trigonalisable. On désigne par A l' unique valeur 
l <;;1<;;3, l <;;1<;;3 

propre de A, de multiplicité 3. 
Trigonaliser A revient donc à déterminer une famille libre (X1, X2, X 3) de vecteurs tels que : 

Pour le premier vecteur, X1, il est naturel de prendre un vecteur propre associé à la valeur 
propre tl. 
Pour le second vecteur, X2 , il est intéressant de remarquer que la seconde relations' écrit aussi : 

Si on multiplie à gauche par A - ,1 1 13, on obtient: 

puisque, par définition, X1 est dans le noyau de A - ,l h 
Il suffit donc de choisir pour X2 un vecteur du noyau de (A - ,l h)2 qui soit indépendant de X1. 

Pour le troisième vecteur, X 3, il est intéressant de remarquer que la troisième relation s'écrit 
aussi: 

(A -À.!3) X 3 = t1 3 X1 + t23 X 2 

Si on multiplie à gauche par (A - ,l h)2, on obtient : 

(A - tl ! 3) 3 X3 = !1 3 (A - ,l IJ)2 X1 + !23 (A - ,l IJ)2 X 2 

= 0 

puisque X1 est dans le noyau de A-,l h et, par construction, X2 est dans le noyau de (A-tl 13)
2

. 
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Il suffit donc de choisir pour X3 un vecteur du noyau de (A - .:1.h)3, c'est-à-dire dans JR.3 (car 
on est en dimension 3) qui soit indépendant de X1 et X2• 

Il est à noter que le dernier vecteur, X3 , peut être choisi quelconque du moment qu'il est indé­
pendant de X1 et X2 : en effet, trigonaliser revient juste à exprimer la matrice de l'application 
linéaire associée à A dans une nouvelle base. Dans la mesure où le dernier vecteur colonne de 
la matrice obtenue par trigonalisation a des composantes suivant chacun des vecteurs X1, ••• , 

X3 , le choix de X3 importe donc peu. 
La réciproque se vérifie aisément. 

Pour trigonaliser une matrice de M 11(1R.) dont le polynôme caractéristique est scindé, on pro­
cède de façon analogue. 
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Si SO(IR.3) s'appelle le groupe spécial orthogonal de IR.3 , c'est, aussi, parce qu'il 
possède une structure de groupe, et constitue, donc, un ensemble muni d'une loi 
de composition interne, associative, admettant un élément neutre et telle que chaque 
élément de 1 'ensemble (du groupe, donc), admette un élément symétrique, ce qui est 
bien le cas : 

si on munit S O(IR.3) de la loi « o », 1 'élément neutre est 1 'application identité idJR.3 ; 

en composant une symétrie avec elle-même, on obtient l'identité; 

en composant une rotation de centre Q , d'angle fJ, avec la rotation de centre Q, 

d'angle -fJ, on obtient également l'identité. 

Application à la chimie moléculaire 

En chimie moléculaire, un certain nombre de fonctions caractéristiques des molé­
cules sont des éléments d' espaces vectoriels (c 'est-à-dire un ensemble muni d'une 
structure permettant d'effectuer des combinaisons linéaires), qui doivent être inva­
riantes par les opérations du groupe auquel la molécule appartient; ces opérations, 
qui sont, tout simplement, des symétries ou des rotations, font en effet coïncider la 
molécule avec elle-même. 

Un espace vectoriel sur un corps li: (IK = IR ou C le plus souvent) est un en­
semble E, muni d'une loi de composition interne, associative et commutative, 
notée, usuellement, + , telle que (E, +)soit un groupe, et d'une loi de composition 
externe, appelée multiplication par un scalaire, et notée « · » , vérifiant les quatre 
axiomes suivants : 

V (u, u) E EX E, V Il E IK : À· (u + u) =À · u +À· v; 

V (u, u) E EX E, V (Il,µ) E IK2 (Il+µ)· u =Il· u + µ · u; 

V(u, u) E E x E, V(/l,µ) E IK2 (llµ)·u=ll·(µ·u); 

Vu E E : I · u = u. 

Ainsi, les molécules dites « ballons de football», ou fullerène C60 , possèdent, 
comme groupe de symétries, celui de l'icosaèdre'. 

Le groupe des rotations de l'icosaèdre est formé par les rotations de l'espace qui 
laissent invariante la position globale de l'icosaèdre, tout en permutant certaines 
faces . 

Les molécules de fullerène ont une structure d'icosaèdre tronqué, et possèdent donc 
les mêmes symétries que 1' icosaèdre de départ. 

L'importance de ces symétries est fondamentale, dans la mesure où ce sont les 
symétries qui peuvent aider à suggérer les formules de liaison chimiques, et donc, 
ensuite, de classer les molécules en fonction de leurs propriétés. 

l. c' est-à-dire un polyèdre, solide de dimension 3, comportant, exactement, 20 faces. 

347 

"' :::::s 

:::::s 
V 

<a u 

..c 
<a 

..c 
0 
:i.. 
c.. 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
..._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

348 

Une molécule de fullerène. 
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Considérons une toupie, de masse m, et lançons-la : 

La toupie. 

Désignons par Mroupie le moment cinétique de la toupie, et Oroupie son vecteur rota­
tion instantanée, mesuré par rapport à son axe; on a alors : 

M roupie = lroupie Q toupie 

où l roupie est la matrice d'inertie de la toupie par rapport à son axe, de la forme : 

[

/1 0 0 l 
l roupie = Ü Ji Ü 

0 0 /3 

Si on considère un axe /'-,, différent de celui de la toupie, la nouvelle matrice d'inertie 
J,0 upie comporte des termes non nuls en dehors de sa diagonale (désignés par des 
astérisques) : 

[ 
11 * * l 

f roupie = * 12 ~ 
* * h 

Il est clair que prendre comme référence un axe différent de celui de la toupie com­
plique donc les calculs .. . 

C'est à partir de cette constatation que Joseph-Louis Lagrange introduisit la notion 
de diagonalisation : diagonaliser une matrice revient, tout simplement, à en déter­
miner une expression équivalente (mais non égale), où les termes en dehors de la 
diagonale sont nuls. 
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On généralise ici les résultats dont on dispose sur l'espace JR.n, en considérant, de façon 
plus générale, des ensembles stables par combinaisons linéaires : les espaces vectoriels. 

1. Définitions 

~ R.-espace vectoriel 

On appelle espace vectoriel sur lR (ou JR-espace vectoriel) un triplet (E, +, x) tel que : 

1. (E, +)est un groupe commutatif, d'élément neutre OE, c'est-à-dire 

• étant donnés deux éléments x et y de E, x +y= y+ x est aussi élément de E, et 
X+ OE = OE +X = X; 

• tout élément x de E admet l'élément -x comme opposé: 

x+(-x)=(-x)+x=OE 

• étant donnés trois éléments x, y et z de E, x +(y+ z) = (x +y)+ z (cela signifie 
que la loi « + » est associative) ; 

2. étant donnés deux éléments x et y de E, et un réel À, À (x +y) = (,1 x) + (Ay) est 
aussi élément de E ; 

3. étant donnés un élément x de E, et deux réels À etµ, (À+µ) x = (À x) + (µ x) est 
aussi élément de E ; 

4. étant donnés un élément x de E, et deux réels À etµ : 

(Àµ)x =À (µx) 

5. étant donnés un élément x de E, le réel l est l'élément neutre de la multiplication 
par un scalaire : 

lxx=x 

Les éléments de (E, +, x) sont appelés vecteurs. 
lR est le corps de base de (E, +, x). 

Exemples 

1. (R., +, x) est un R.-espace vectoriel. 

2. Étant donné un entier naturel non nul n, (JR.n, +, x) est un R.-espace vectoriel. 

3. L'espace C 1 ([0, l], R.) des fonctions de classe C 1 sur [0, l] et à valeurs dans R. est un R.­
espace vectoriel. 

4. L'espace JR.[X] des polynômes à coefficients réels lR. est un JR.-espace vectoriel. 
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~ OC-espace vectoriel 

De façon plus générale, si K est un corps 1, on appelle espace vectoriel sur le corps K 
(ou K-espace vectoriel) un triplet (E, +, x) tel que: 

1. (E, +)est un groupe commutatif, d'élément neutre OE , c'est-à-dire: 

• étant donnés deux éléments x et y de E, x +y= y+ x est aussi élément de E, et 
X+ OE = OE +X= X; 

• tout élément x de E admet l'élément - x comme opposé : 

x+(-x)=(-x)+x=OE 

• étant donnés trois éléments x, y et z de E, x +(y+ z) = (x +y)+ z (cela signifie 
que la loi « + » est associative) ; 

2. étant donnés deux éléments x et y de E, et À dans K, À (x +y) = (À x) + (Ay) est 
aussi élément de E ; 

3. étant donnés deux éléments x et y de E, x +y est aussi élément de E; 

4. étant donnés un élément x de E, et À etµ dans K, (À+µ) x est aussi élément de E; 

5. étant donnés un élément x de E, et À etµ dans K : 

(Aµ)x =À (µx) 

6. étant donné un élément x de E, l' élément unité Joc. de K est l'élément neutre de la 
multiplication par un scalaire : 

l oc X X= X 

Les éléments de (E, +, x ) sont appelés vecteurs. 
K est le corps de base de (E, +, x). 

Notation 

1. Pour alléger les écritures, un K-espace vectoriel (E, +, x) sera noté E. 

2. Les vecteurs d' un espace vectoriel seront notés « sans flèche » : x, pour les distinguer 
des vecteurs du plan ou de l'espace. 

2. Vecteurs 
~ Combinaison linéaire 

Soit n un entier naturel supérieur ou égal à 2. Étant donnés un K-espace vectoriel E, et n 
vecteurs x1, ... , Xn de E, on appelle combinaison linéaire de x 1, ... , Xn tout vecteur de 
la forme: 

n 

ÀJ XJ + À2 X2 + ... + Àn Xn = 2.:: Ài Xi 
i= I 

Ainsi, un OC-espace vectoriel E est stable par combinaisons linéaires à coefficients dans OC : 
toute combinaison linéaire d'éléments de E appartient à E. 

1. Par exemple : C, Z, etc. 
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~ Vecteurs liés 

Deux vecteurs x et y sont dits liés s' il existe une combinaison linéaire non triviale de ces 
vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison sont 
non simultanément nuls, de la forme : 

tlx+µy=O (A,µ)*- (0, 0) 

~ Vecteurs libres 

Deux vecteurs x et y sont dits libres s'ils ne sont pas liés. 

Généralisation 

n vecteurs x 1, ... , Xn sont dits liés s'il existe une combinaison linéaire non triviale de 
ces vecteurs égale au vecteur nul, c'est-à-dire lorsque les coefficients de la combinaison 
sont non simultanément nuls, de la forme : 

11 

~À.iXi = 0 
i= l 

où À.1, ... , Àn sont des réels tels que (tl1, ... , Àn) * (0, . .. , 0). 

n vecteurs x 1, ••• , x11 sont dits libres s'ils ne sont pas liés 

Propriété 

Pour toute famille (x1, ... , Xn) de vecteurs libres : 

À.1 X1 + ... + Àn Xn = 0 ~ (À.1, ... , À.11 ) = (0, ... , 0) 

ce qui signifie que, s'il existe une combinaison linéaire nulle de ces vecteurs, alors les 
coefficients de cette même combinaison linéaire sont nécessairement nuls. 

3. Dimension d'un espace vectoriel 

~ Espace vectoriel de dimension finie 

Un OC-espace vectoriel E est dit de dimension finie s'il possède une partie génératrice 
finie. 

1 

Exemple 

JR3 est de dimension 3 (toute base de JR3 possède trois éléments). 

~ Espace vectoriel de dimension infinie 

Un OC-espace vectoriel E est dit de dimension infinie s' il ne possède pas de partie géné­
ratrice finie . 

Exemple 

L'espace C 1 ([O, l] , JR) des fonctions de classe C 1 sur [0, 1] et à valeurs dans lR est de dimension 
infinie (on ne peut pas trouver de famille génératrice). 
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~ Espace vectoriel produit 

Théorème 

n étant un entier naturel supérieur ou égal à 2, et E 1, ... , En des K-espaces vectoriels, on 
munit l'ensemble E1 X ... X En des lois+ et X en posant, pour tous n-uplets (xi, ... , x11) 

et (y1, ... , y11) d'éléments de E 1 X ... X Em et tout À de K: 

(E1 x ... X E11 , + ,X) est alors un K-espace vectoriel. 
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1. Définition 

On appelle sous-espace vectoriel d'un espace vectoriel E un ensemble F de E tel que : 

1.0EF; 

2. étant donnés deux éléments x et y de F, x+y est aussi élément de F (ce qui signifie 
que F est stable par adddition) ; 

3. étant donnés un élément x de F, et ,1 dans K, ,1 x est aussi élément de F (ce qui 
signifie que Fest stable par la multiplication par un scalaire) ; 

> Caractérisation des sous-espaces vectoriels 

Théorème 

Un ensemble F de E est un sous-espace vectoriel du K -espace vectoriel E si et seulement 
si, étant donnés deux éléments x et y de F, et À dans K, x + À y est aussi élément de F 
(ce qui signifie que F est stable par combinaisons linéaires) : 

V (x, y) E F X F, V À E K : x + tl y E F 

2. Transformations linéaires d'un espace vectoriel E 
> Définition 

On appelle transformation linéaire d'un espace vectoriel E , ou encore application 
linéaire d'un espace vectoriel E une application f, de E dans E, linéaire : 

V(x,y) E ExE , Vtl E K : f(x+tly)=f(x)+tlf(y) 

> Une application linéaire remarquable : l'application identité 

On appelle application identité de l'espace vectoriel E l'application, notée ldE : 

> Propriétés 

Une transformation linéaire f d'un espace vectoriel E est dite injective si : 

Une transformation linéaire f d'un espace vectoriel E est dite surjective si : 

V y E E, 3 x E E : y = f(x) 

Une transformation linéaire d'un espace vectoriel E est un automorphisme de E si 
elle est bijective, c'est-à-dire injective et surjective. 
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L'ensemble des automorphismes d'un espace vectoriel E est appelé groupe linéaire 
de E 1, et noté {]L(E). 

On apelle noyau d' une transformation linéaire f d'un espace vectoriel E, que l'on 
note Ker f (de l'allemand kern) l'ensemble des vecteurs de E dont l'image par f est le 
vecteur nul : 

Kerf = {x E E / f (x) = 0} 

Définition 

On apelle image d'une transformation linéaire f d'un espace vectoriel E, que l'on 
note I m f 1' ensemble des images des vecteurs de E par f : 

I m f = {f(x ), x E E} 

Proposition 
Étant donnée une transformation linéaire f d' un espace vectoriel E, Ker f et Imf sont 
deux sous-espaces vectoriels de E. 

l. car il possède une structure de groupe, c'est-à-dire est stable par produit, et tout élément non nul est 
inversible. 
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F 1 et F1 étant deux sous-espaces vectoriels d'un espace vectoriel E, l'ensemble 

est un sous-espace vectoriel de E, appelé somme de F1 et F2. 

> Somme directe de sous-espaces vectoriels 

Deux sous-espaces vectoriels F 1 et F2 d'un espace vectoriel E sont dits en somme di­
recte si tout élément du sous-espace somme F 1 + F 2 s'écrit de manière unique comme 
somme d'un élément de F 1 et d'un élément de F 2 : 

On note alors : 

> Caractérisation d'une somme directe 

Deux sous-espaces vectoriels F 1 et F2 d'un espace vectoriel E sont en somme directe 
dans E si et seulement si 

> Sous-espaces vectoriels supplémentaires 

Deux sous-espaces vectoriels F 1 et F2 d'un espace vectoriel E sont dits supplémen­
taires dans E si tout élément de E s'écrit de manière unique comme somme d'un élé­
ment de F 1 et d'un élément de F2 : 

On note alors : 

> Caractérisation de la supplémentarité 

Deux sous-espaces vectoriels F 1 et F2 d'un espace vectoriel E sont supplémentaires 
dans E si et seulement si : 

F 1 + F 2 = E et F 1 n F 2 = { 0} 
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1. Définitions 

> Projection - Projecteurs 

Soient E un espace vectoriel, et F 1 et F 2 deux sous-espaces vectoriels de E tels que : 

Pour tout vecteur x de E, on considère l'unique couple de vecteurs (x1, x2) de F 1 x F1 
tel que: 

X= XJ + X2 

On appelle projection (ou projecteur) sur F 1 suivant la direction F 2 (ou parallèlement 
à F 2) l' application p 1 qui, au vecteur x, associe sa composante x1 sur F1 : 

On appelle projection (ou projecteur) sur F 2 suivant la direction F 1 (ou parallèlement 
à F1) l'application P2 qui, au vecteur x, associe sa composante x2 sur F1: 

>Symétrie 

Soient E un espace vectoriel, et F 1 et F1 deux sous-espaces vectoriels de E tels que : 

Pour tout vecteur x de E, on considère l'unique couple de vecteurs (x1, x2) de F 1 x F1 
tel que: 

On appelle symétrie par rapport à F1 parallèlement à F2 l' application s 1 qui, au 
vecteur x, associe le vecteur x 1 - x2 : 

On appelle symétrie par rapport à F2 parallèlement à F1 l'application s2 qui, au 
vecteur x, associe le vecteur x2 - x1 : 
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2. Propriétés 

> Caractérisation des projecteurs 

Théorème 

Soient E un espace vectoriel, et p une transformation linéaire de E. 

Alors, p est un projecteur de E si et seulement si : 

po P = P 

On dit alors que p est idempotent. 

Théorème 

Soient E un espace vectoriel, et p un projecteur de E. Alors : 

E = KerptFJimp 

Démonstration: Pour tout x de E: 

x = x - p(x) + p(x) 

Comme p (x - p(x)) = p(x) - p(x) = 0, on a donc : x - p(x) E Ker p. 
De façon évidente : p(x) E I m p. 
Par suite: E =Ker p + Imp. 
Il reste à montrer que la somme est directe. À cet effet, on considère un élément y de 

Ker p n Imp. 
Comme y E I m p, il existe un élément x de E tel que : y = p(x). 
Or, comme y E Ker p, p(y) = 0, soit p (p(x)) = 0, soit p(x) = O. 
Par suite : x E Ker p, et y = p(x) = O. La somme Ker p + I m p est donc directe : 

Ker p + Imp =Ker ptFJimp 

> Caractérisation des symétries 

Théorème 

Soient E un espace vectoriel, et s une transfonnation linéaire de E. 

Alors, s est une symétrie de E si et seulement si : 

s os= Ide 

On dit alors que s est involutif 

Théorème 

Soient E un espace vectoriel, et s une symétrie de E. Alors : 

E = Ker (s - Ide) œ Ker (s +Ide) 
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Exercices 
d'entrainement 

www 
Les corrigés sont disponibles en téléchargement sur le site dunod.com 

à partir de la page de présentation de /'ouvrage. 

Le plan complexe 

Racines niemes 

Résoudre, dans C : z4 = l. 

Résoudre, dans C : z5 = l. 

On considère l'équation : 

(z + 1)2n = (z _ 1)211 

où n est un entier naturel non nul. 

3.a) Montrer que l'on ne peut pas avoir z = 
l. 

3.b) Montrer que l'équation donnée admet 
exactement 2 n - 1 racines, quel' on dé­
signera par w,, ... , w 2 11- 1, et qui sont 
telles que: 
pour k E { 1 , ... , 2 n - 1 } : 

Wk = -i cotan ( ~:) 

3.c) Pour aller plus loin: 
que vaut le produit des racines non 
nulles ? 

Trigonométrie 

Linéarisation 

cos3 8, 

Calculs de sommes 

Soit 8 E lR \JT Z, et n E N*. Donner, en fonc­
tion de 8, la valeur des sommes suivantes : 

Il 

5.a) S1(8)= I>;ke. 
k=O 

Il 

5.b) S 2(8) = I e2ike_ 
k=- n 

Il 

5.c) S 3(8) = I cos(k 8) et 
k= I 

Il 

S4(8) = I sin(k8). 
k= I 

Donner ensuite les relations entre S 1 (8), 
S 2(8), S 3(8), S 4(8). 

Transformations du plan 

Translations, homothéties 

Le plan euclidien orienté est rapporté à un re­
père orthonormé direct ( O; 7, J). 

Expression analytique d'une trans-
lation 

Donner lexpression de l'affixe z' du point M' 
image du point M d'affixe z E C par : 

6.a) la translation Ta de vecteur Ü(l, - 2) ; 

6.b) la translation Tif de vecteur Ü(3, l ). 

Expression analytique d'une ho­
mothétie 

Donner l' expression de l'affixe z' du point M' 
image du point M d'affixe z, E C par : 

7.a) l'homothétie h0 ,2, de centre 0 , de rap­
port 2 ; 

7.b) l' homothétie hA,-J , de centre A(l, 1), de 
rapport -3; 

7.c) l'homothétie h8 ,4, de centre B(-2, 0), de 
rapport 4. 

Rotations 

Expression analytique d'une rota-
tion 

8.a) Déterminer l'expression de l'affixe z' 
du point M' image du point M d 'affixe 
z E C, distinct de A, par la rotation 

r A, i , de centre A(l , 1), d'angle i· 
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8.b) Déterminer l'expression de l'affixe z' 
du point M' image du point M d'affixe 
z E C* par la rotation ro,lr, de centre 0 , 
d'anglerr. 

Un peu de formalisme ... 

9.a) Donner l'expression de l'affixe z' du 
point M' image du point M d'affixe 
Z E C par ]a rotation rn, 8• de centre Q, 

d' angle() (on désignera par zn l'affixe 
de Q). 

9.b) Donner l'expression de l'a ffixe z" du 
point M" image du point M d'affixe 
z E C par la rotation rn.,8., de centre 
Q', d 'angle()' (on désignera par zn· l'af­
fixe de Q'). 

9.c) Donner l 'expression de l'affixe z"' du 
point M'" image du point M d'affixe 
z E C par la composée r = rn,, 8, o rn,8 
de rn,8 et rn' ,8' · 

Et, de même, on détermine la com­
posée de deux homothéties de centres 
distincts, la composée d'une rotation 
et d ' une translation, ... : c'est à vous! 

Introduction aux matrices 

Calcul matriciel 

Calculs pratiques 

On considère X= ( ~l), Z = m 
A=(; n. 

(-11) (123] 
B= 01 ,D=~~~ 

Quels sont les produits matriciels possibles? 
Les calculer. 

Une matrice remarquable 

Soit (a, b, e) E JR3
, tel que a2 + b2 + e2 = l . 

On pose: 

( 

l + a2 

M = ab 
ac 

360 

ab 
l + b2 

be 

ac l be et N = M-h 
l + c2 

11.a) Montrer que N peut s'écrire comme 
produit d'une matrice colonne et d'une 
matrice ligne. 

11.b) Calculer N", où n désigne un entier na­
turel. 

11.c) En déduire l 'expression de M". 

Puissances nièmes d'une matrice 

Soit a un réel quelconque, supposé non nul. 
On considère la matrice carrée d'ordre n 
(n ;;:: 2): 

0 a ...... a 

a 0 

A= 
0 a 

a ...... a 0 

12.a) Montrer que l'on peut exprimer A 2 en 
fonction de A et !,, , où !11 désigne la 
matrice identité d ' ordre n. 

Pour aller plus loin : 

12.b) On considère le polynôme P tel que: 

P(X) = X2 - (n- 2)aX - (n- l )a2 

On note 

P(A) = A2 - (n - 2)aA- (n - l)a2 !,,. 

Vérifier que P(A) = O. 

12.c) Soit k un entier naturel non nul. Effec­
tuer la division euclidienne de xk par 
P, en montrant qu'elle conduit à un ré­
sultat de la forme : 

Xk = P(X) Q(X) + a: X + /3 

où Q est un polynôme que l ' on cher­
chera pas à expliciter, et a: et f3 deux 
réels. 

Comment peut-on calculer simple­
ment a: et f3 ? 

12.d) En remarquant que 

Ak = P(A) Q(A)+a: A +j3 l,, , en déduire 
une méthode de calcul de Ak. 
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Déterminants de matrices de taille nxn 

Un calcul pratique 

Calculer le déterminant n x n suivant : 

0 1 1 

1 0 

1 1 0 

n étant un entier naturel supérieur ou 
égal à 2, soient a et b deux réels distincts, 
non nuls, et (x1, ••• , x,,) une famille de réels . 
Pour tout réel x, on pose : 

X1 + X a+ X a+ X 

b +X X2 + X 
~11(X) = 

b+ x 
a+x 

b +X Xn +X 

14.a) Montrer que la fonction x H ~11 (x) 
est une fonction affine de x, c'est-à­
dire de la forme x H a x + {3, où 
(a, {3) E IR 2 (on ne cherchera pas à dé­
terminer a et f3 dans cette question). 

14.b) Que valent ~,,(-a) et ~,,(-b)? En dé­
duire les valeurs des coefficients a et f3 
introduits à la question précédente. 

Un déterminant remarquable : 
le Déterminant de Vandermonde1 

Soit (x1, ••• , x,,) une famille de réels, et 
xER 

On considère les déterminants : 

V,,(x1, ••• , x,,) 

et Vn(X) = 
l l 1 

X1 X2 ... x,,_ 1 

x2 x2 2 
1 2 .. . x,,_ 1 

_x,1- I 
1 

x.•-1 
2 

~-1 
· · · n-1 

1 1 1 

_x,1- I 
1 

x._1- I 
2 

Xn 
x2 

n 

.. . x,:- 1 

V11(X1, ... , Xn- 1, x) 
l 
X 

x2 

x''- 1 

15.a) Montrer que Vn(x) est un polynôme de 
degré inférieur ou égal à n - l en x. 

15.b) On suppose, dans toute la suite, que les 
X; , i = 1, ... , n, sont deux à deux dis-- -
tincts. M_~mtrer que V,.,(x1) = V,,(x2) = 
.. . = V,,(x11_ 1), et en déduire qu' il 
existe une constante réelle C11 telle 
que, pour tout réel x : 

V,,(x) = C,, (x - x 1) ••• (x - x,,_1) 

11- I 

= c,, n<x- x;) 
i=I 

15.c) Déterminer la constante C,,, et en dé­
duire l'expression de V11 (x1, ... , x11 ). 

15.d) Que peut-on dire en ce qui concerne le 
cas où les x;, i = 1, ... , n, ne sont pas 
deux à deux distincts? 

Inversion des matrices carrées 

Inversibilité et puissances nièmes 

16.a) Après avoir vérifié leur inversibilité, 
inverser les matrices suivantes : 

[ 
o 1 ol 

B = l 0 0 
0 0 l 

c = 1 0 1 [
12-1] 
2 1 2 

16.b) n étant un entier naturel non nul, soit 
A E M ,,(IR) telle que A2 = A, avec 
A * ! 11 • A est-elle inversible ? 

16.c) Soit a un réel quelconque, supposé 
non nul. On considère la matrice car­
rée d'ordre n (n ~ 2): 

A= 

0 a ...... a 

a 0 

0 a 
a ...... a 0 

1. Alexandre-Théophile Vandermonde (1735-1796), mathématicien français, mais aussi économiste, mu­
sicien et chimiste. D'après Lebesgue (Conférence d'Utrecht, 1.937, [23]), le déterminant ne serait pas de 
lui ... 
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• Montrer que l' on peut exprimer A2 

en fonction de A et!,, , où !,, désigne 
la matrice identité d'ordre n. 

• Pour quelles valeurs de a la matrice 
A est-elle inversible? Déterminer, 
dans ce cas, sa matrice inverse A - 1

• 

On considère les matrices : 

M = (i ;) ' p = (i ~l ) 
17.a) Montrer que Pest inversible, et calcu­

ler son inverse. 

17.b) Que vaut p - 1 M P? 

17.c) Montrer que, pour tout entier naturel 
non nul n: 

(P- 1 M Pt = P-1 M 11 P 

et en déduire une méthode de calcul 
deM11

• 

Systèmes linéaires 

Résolution d'un système de taille 
3x3 

Résoudre: 

{

x-y-z=4 
2x + 2y + z = -5 
3x - y - z = 6 

Un système paramétré, une solu­
tion à discuter ! 

Soit a un réel non nul. Résoudre : 

{ 

x + a y + a
2 

z = a
4
• 

x+y+z = 1 
x-y+z = -L 

L'espace réel à 3 dimensions 
Vecteurs 

Déterminer si les vecteurs suivants 
sont linéairement indépendants ou non : 

20.a) i1 = (l , 2, 3) et v = (-1, 3, 2): 

20.b) Û= (2, 1, 3), Û= (4, 2, 6). 

20.c) i1 = (3, 2, 1), û = (3, 0 , 1). 

20.d) i1 = (2, 4, 6), û = ( 4, 2, 6), w = (6, 4, 2). 

20.e) i1 = (-L ,O, L), v = (1 , l, l), w = 
(0, l , 2). 
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Droites et plans 

Droites 

Déterminer une représentation paramétrique, 
puis un système d'équations cartésiennes, de 
la droite V passant par le point A(-1, 2, l), et 
dirigée par le vecteur a= (1, 0, 1 ). 

De quel type de droite s' agit-il, affine ou vec­
torielle? 

Déterminer une représentation para­
métrique, puis un système d'équations carté­
siennes, de la droite .V' passant par le point 
B(3, 0, 2), et orthogonale au plan P d'équa­
tion 2x + y - z = 3. 

On considère la droite li' dont une re­
présentation paramétrique est donnée par : 

{

x=l+2À 
y= 3À 
z = 2 - 2À 

, À E JR. 

Donner un vecteur directeur de cette droite. 

Plans 

On considère le plan vectoriel P 4 

dont une représentation paramétrique est 
donnée par: 

{

X=À-µ 
y= À+µ 
z =À-µ 

, (À,µ) E JR.2 

Donner deux vecteurs engendrant P4 . 
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Aires et volumes 

Déterminants et calculs d'aires 

Dans ce qui suit, le plan euclidien orienté de 
dimension 2 est rapporté à un repère ortho­

normé direct ( 0; 7, n. 
Aire d'un paraléllogramme 

28.a) Soient a,, a2, a3, a4,b1, b2, b3, b4 
des réels non nuls, vérifiant : 

On considère les points A1(a1, b 1), 
A2(a2, b2), A3(a3, b3), A4(a4, b4) : 
à quelle condition le quadrilatère 
A1A2A3A4 est-il un parallélogramme 
non aplati? 

28.b) Lorsque ces conditions sont vérifiées, 
calculer l'aire orientée, puis non orien­
tée, du parallélogramme A 1A2A3A4. 

-7 
28.c) On suppose désormais que llA1A2ll = 

-7 
llA1A4ll =a > 0, b1 = b2 , a4 =a,. Que 
remarque-t-on? 

Aire d'un triangle 

Soient a, b, c, d des réels non nuls. Calculer 
l ' aire orientée, puis non orientée, du triangle 
de sommets 0, A(a, b), B(c, d). 

Déterminants et calculs de volumes 

Dans ce qui suit, l'espace euclidien orienté 
de dimension 3 est rapporté à un repère or­

thonormé direct ( O; 7, J, k). 

Soient a, b, c, d des réels non nuls. 

30.a) On considère les points A(l , a2
, a 4), 

B(2, a2 + c2 , a4 + c4
), C(l, c2 , c4

), 

D( l, d 2
, d4) : quelle est la nature du 

quadrilatère OABC? 

30.b) On considère les points E, F, G, 
images respectives de A, B, C par la 

-------) 

translation de vecteur OD : quelle est 
la nature de OABCDEFG? 

30.c) Calculer le volume orienté, puis le vo­
lume non orienté, de OABCDEFG. 

Transformations linéaires 
du plan 

Linéarité - ou non ? 

Parmi les applications suivantes, lesquelles 
sont linéaires? Donner, lorsque c'est pos­
sible, la matrice de l' application. 

31.a) f: R2 ~ R2, (x, y) H (4x+y, 2y+x); 

31.b) g: R3 ~ R, (x, y) H sin(xy); 

Applications linéaires et matrices 

On considère l'application linéaire: 

f: R2 ~ R2 
(x, y) H (3x-y,2y+x) 

32.a) Quelle est la matrice A f associée à f 
dans la base canonique? 

32.b) Calculer detA f • et en conclure que f 
est un automorphisme de R2, c' est-à­
dire une application linéaire bijective 
de R2 dans R2. 

32.c) Déterminer le noyau de f, et retrouver 
ainsi le résultat du i. 

32.d) Expliciter l'application réciproque 

r'. 
Transformations linéaires 
de l'espace 

Linéarité - ou non ? 

Parmi les applications suivantes, lesquelles 
sont linéaires? Donner, lorsque c'est pos­
sible, la matrice de l'application. 

33.a) f: R2 ~ R2 , (x,y)H(4x+y,2y+x); 

33.b) g : R3 ~ R, (x, y, z) H cos(x y z); 

33.c) h: R3 ~ R3, 

(x, y, z) H (x + y + Z, X - y+ Z, 0); 

Applications linéaires et matrices 

On considère les applications : 

<p: R2 ~ R3 
(x,y) H (3x-y,2y+x,x-y) 

l./t: R3 ~ R2 
(x, y, z) H (x + z, y - z) 

34.a) Quelles sont les matrices Acp et A"' res­
pectivement associées à <p et l.{t dans la 
base canonique? 
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34.b) Expliciter l' application composée lf!oip 

de deux façons différentes (on don­
nera, notamment, la matrice A \ito<P as­
sociée à lfJ o ip dans la base canonique). 
Que remarque-t-on? 

L'espace Rn 

Dans ce qui suit, n est un entier supérieur ou 
égal à 2. 

Applications linéaires 

On considère l'application linéaire f 
dont la matrice dans la base canonique de IR11 

est: 
0 l 

l 0 

l 

0 1 
l .... .. l 0 

35.a) Montrer que f est un automorphisme 
de IR". 

35.b) On désigne par /dR" l'application 
identité de IR11

• Montrer, de deux fa­
çons différentes, que f + ldR" n'est pas 
un automorphisme de IR". 

35.c) Donner une base du noyau de f - (n -
1) /dR"· 

Soit <p une application linéaire de IR". 
Montrer l'équivalence suivante : 

Kerip = Kerip2 <=> IR"= Keripœimip 

Soient f et g deux applications li­
néaires de IR" telles que : 

f o g = 0 et f + g injective 

Comparer Img et Ker f. 

Soit f une application linéaire de IR11 

nilpotente d' ordre n, c' est-à-dire telle que 

f" = 0 et f''- 1 t 0 

(la puissance est au sens de la composition) 

Comparer Img et Ker f. 

364 

38.a) Montrer qu'il existe une base 13 de IR11 

dans laquelle la matrice A13(f) de f est 
triangulaire. 

38.b) Que vaut det (f + /dR .. )? 

38.c) Soit g une application linéaire de 
IR" commutant avec f : que vaut 
det (/ + g)? 

Réduction des matrices carrées 

On considère la matrice 

M1 = ( ~ ~) 
39.a) Déterminer les valeurs propres de M1• 

39.b) Déterminer les sous-espaces propres 
de M1• M 1 est-elle diagonalisable? 

39.c) Déterminer la matrice de passage P 1 à 
une base de diagonalisation, ainsi que 
son inverse. 

39.d) Donner une matrice diagonale D1 

semblable à M 1• Que peut-on en dé­
duire pour l' inversibilité de M1 ? 

39.e) Calculer, pour tout entier naturel non 
nuln, ~'· 

On considère la matrice 

40.a) Déterminer les valeurs propres de M1. 

40.b) Déterminer les sous-espaces propres 
de M 2. M 2 est-elle diagonalisable? 

40.c) Déterminer la matrice de passage P2 à 
une base de diagonalisation, ainsi que 
son inverse. 

40.d) Donner une matrice diagonale D2 
semblable à M2. Que peut-on en dé­
duire pour l'inversibilité de M2? 

40.e) Calculer, pour tout entier naturel non 
nul n, M~. 

On considère la matrice : 

[ 

3 - 1 - 1 i 
A= -1 3. -1 

- -1 3 
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41.a) Déterminer les valeurs propres de A. 

41.b) Déterminer les sous-espaces propres 
de A. A est-elle diagonalisable? 

41.c) Déterminer la matrice de passage PA à 
une base de diagonalisation, ainsi que 
son inverse. 

41.d) Donner une matrice diagonale DA 
semblable à A. 

41.e) Calculer, pour tout entier naturel non 
nul n, A 11

• 

Soient a et b deux réels non nuls. On 
considère la matrice carrée d'ordre n (n ~ 2): 

b a ...... a 

a b 

A= 

b a 
a ...... a b 

Déterminer les valeurs propres de A, puis ses 
espaces propres, et montrer que A est diago­
nalisable. 

Soit a un réel non nul. On considère 
la matrice: 

(

-1 a -ai 
M = 1 -1 0 

l 0 -l 

43.a) Déterminer le polynôme caractéris­
tique de M. 

43.b) Déterminer les espaces propres de M. 

43.c) M est-elle trigonalisable? Si oui, la tri­
gonaliser. 

Pour aller plus loin : Réduction de 
matrices blocs 

Soit n un entier supérieur ou égal à 2. 

Soit A une matrice de taille n X n, à coef­
ficients réels. On demande d'étudier la dia­
gonalisabilité de la matrice triangulaire supé­
rieure par blocs de taille 2 n x 2 n : 

Espaces vectoriels 

Sous-espaces vectoriels 

On se place dans l'espace JR.3 . Mon­
trer que l' ensemble 1J des vecteurs de com­
posantes (x, y, z) tels que : 

{
2x-y+z = 0 
x+y-z = 0 

est un sous-espace vectoriel de JR.3 . 

On se place dans l'espace vecto­
riel JR.[X] des polynômes à coefficients réels. 
Montrer que l'ensemble JR.3 [X] des poly­
nômes de degré inférieur ou égal à 3, à co­
efficients réels, est un sous-espace vectoriel 
de JR.[X]. 

On se place dans l'espace vectoriel 
C ([0, l], JR.) des fonctions continues sur l'in­
tervalle [O, l], à valeurs dans R Montrer que 
l'ensemble des fonctions continues sur l'in­
tervalle [O, l], à valeurs dans JR., s'annulant en 
0, est un sous-espace vectoriel de C [0, l], JR.). 

On se place dans l'espace vectoriel 
C ([0, l], JR.) des fonctions continues sur l'in­
tervalle [0, l], à valeurs dans R Montrer 
que l'ensemble C 1 [0, 1 ], JR.) des fonctions 
de classe C 1 sur l' intervalle [0, l], à va­
leurs dans JR., est un sous-espace vectoriel de 
C ([O, l], JR.). 

On se place dans l'espace vecto­
riel C ([-1, l], JR.) des fonctions continues sur 
l ' intervalle [ -1, l], à valeurs dans R Montrer 
que les ensembles : 

c+ = {! E C([-1, l] ,JR.) , /paire}, 
c- = {! E C ([ -1, l], JR.) , f impaire} 

sont deux sous-espaces supplémentaires de 
C([-1 , l], JR.) . 

Soit n un entier naturel supérieur ou 
égal à 2. On se place dans l'espace vectoriel 
M 11(1R.) des matrices de taille n x n, à coeffi­
cients réels. Montrer que l'ensemble des ma­
trices de taille n x n, à coefficients réels, de 
trace nulle, est un sous-espace vectoriel de 
M ,, (JR.). 
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Soit E un R.-espace vectoriel, et f 
une application linéaire de E telle que : 

j 2 
- 5 f + 6 ide = 0 

Montrer que Ker (f - 2 ide) et Ker (f -3 ide ) 
sont des sous-espaces supplémentaires de E. 

Projecteurs 

On se place dans l'espace vectoriel 
Jlli [X] des polynômes à coefficients réels, de 
degré inférieur ou égal à 4. On considère 
l'application rr qui, à tout polynôme P = 

4 I Œk x k associe : 
k=O 

2 

On pose: r = p + q - p o q. 

Montrer que r est un projecteur de E, puis dé­
terminer son image et son noyau. 

Soient E et F deux R.-espaces vecto­
riels, f une application linéaire de E dans F, 
et g une application linéaire de F dans E. 

On suppose que : 

f o g o f=f' g o f o g=g 

54.a) Vérifier que f o g et g o f sont deux 
projecteurs, en précisant leurs espaces 
respectifs de départ. 

I Œk xk 54.b) Montrer que: 
k=O 

Montrer que 1T est un projecteur de l!li [X], E = Ker(f) EB Jm(g) 
puis déterminer son image et son noyau. 

Soit E un R.-espace vectoriel, et p et 
q deux projecteurs de E tels que : 

Imp c Kerq 
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et: 

F = Ker(g) EB lm(/) 



"O 
0 
c 
::J 
0 
"<;t 
...... 
0 
N 

@ 
.._, 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Probabilités 

Introduction ________ ~---------

Compter ... Dénombrer, inventorier, répertorier : avant de pouvoir dé­
terminer une probabilité, i l est nécessaire de faire un « inventaire» des 
situations possibles. C'est le domaine de l'analyse combinatoire, où l'on 
s' intéresse aux configurations possibles, soit d'une collection d'objets, 
soit d'un ensemble de situations. 

L'analyse combinatoire permet de mettre en place les axiomes des es­
paces probabilisés, et de construire les variables aléatoires discrètes, 
qui ne prennent qu'un nombre fini (ou dénombrable) de valeurs ; on 
arrive ainsi rapidement à la conclusion selon laquelle certains phéno­
mènes aléatoires nécessitent l'utilisation de variables (aléatoires) conti­
nues, qui peuvent prendre toutes les valeurs réelles possibles dans un 
intervalle fini ou infini. 

~la~-~~~~~~~~~~~~~~~~~~~~~~~~~-.. 
Analyse Combinatoire . .. .... . .. . .... . . . .. . . .. . . .. . .. . .... . .... . .. . . . .. . .. . . 368 
Espaces probabilisés .. . .. . ...... .. .... . .. . . . . .. .... . .. . . . . . .. . .. . .... . . . .. . . 376 
Focus : Les jeux de hasard .. .. ... ...... .. ... . .. . .... . . . .. . .. .. .. .. .... . .. . .. 380 
Focus : Lancer de dés . . . . .. . . .. . . .. . . .... . .... . .. . .. . . .. . . .. . . . .. . . . .. . .. . . . 382 
Probabilités discrètes . .. .. .... ... ..... . . . .. . . .. .. . .. . ... . . .. ...... . ... ... . . . 389 
Focus : Les tortues des Galapagos . .. ..... . ...... . . . .. . . . ....... . .... .. . . ... 406 
Focus : Application de l'inégalité de Markov . ... .. .. . .. .... . .. . . . . .. . . .. . . . 427 
Focus : Variations de température . .. . . . . ....... . .. .. .. .. . . .. . .. . .... . .. . .. 429 
Focus : Inégalité de Tchebychev et concentration de mesure . . .. .. .. . . .. .. 439 
Probabilités continues ............ . .... . .. . ............... ... ............. . . 449 
Focus : Le coût d'un déminage avec la loi uniforme . . . ..... . .. . . . .. . . ..... 460 
Focus : Dans l'attente d'un nième client ............ . . . . ..................... 487 
Exercices d'entraînement .. . ................. . ....... . .... . .. . .... . .... . .. . . 489 
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www Les corrigés des exercices sont consultables sur dunod.com sur la 
~ page de présentation de l'ouvrage. 
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1. Factorielle 

Définition 

Soit n un entier naturel non nul. On appelle factorielle de l'entier non nul n la quantité: 

Par convention : 

Exemple 

n 

n!=1X2X3X ... Xn= nk 
k=I 

O! = 1 

3 ! = l X 2 X 3 = 6 , 4 ! = l X 2 X 3 X 4 = 24 , 5 ! = l X 2 X 3 X 4 X 5 = 120 

~ n ! représente le nombre de façons de permuter n objets. 

Exemple 

Quel est le nombre de façons de placer 125 étudiants dans un amphithéâtre de 125 places? 
Il suffit de déterminer, de manière récursive, l'emplacement de chaque étudiant pour un ordre 
arbitraire fixe d 'étudiants. Pour le premier étudiant, il y a 125 choix possibles. JI n'y en a plus 
que 124 pour le second. Et 123 pour le troisième. Ainsi de suite ... Ce qui donne, au final : 

125 ! possibilités= lx 2 x 3 x ... x 125 possibilités 

i.e. 

1882677176888926099743767702491600857595403648714924258875982315083531 
5633161359886688293288949592313364640544593005774063016191934138059781 
8883457558547055524326375565007131770880000000000000000000000000000000 

On peut également représenter ce raisonnement de manière graphique, en représentant le 
nombre total de possibilités comme le nombre de feuilles d' un arbre avec 125 branches is­
sues des racines, 124 branches issues de chacune des premières 125 branches, 123 branches 
issues des deuxièmes, etc. Étant donné qu'un tel dessin est impossible à représenter en réa­
lité, vu le nombre astronomique de branches, on comprend aisément l'intérêt du raisonnement 
itératif non graphique, et de la définition formelle de la factorielle ! 
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2. Formule de Stirling 1 

n 1 en 
lim · = 1 

n-->+oo nn Y2 7r n 

que l'on peut aussi écrire, sous forme d'équivalent lorsque l'entier n tend vers l'infini : 

La formule de Stirling permet d'obtenir une estimation asymptotique de n !, lorsque 
l 'entier n tend vers l'infini : 

n ! ~ Y2rrn (!!:)n (1 + _I_ + _1_2 - 139 3 + __ 5_7_1 _5 + .. ·) 
e 12n 288n 51840n 2488320n 

Toutefois nous n'aurons besoin, dans ce qui suit, que du premier terme de ce développe­
ment. 

Démonstration : On ne donnera pas, ici, de démonstration complète. La formule de 
Stirling peut être obtenue à l'aide des intégrales de Wallis2 : 

nE N 

On obtient, pour tout entier naturel p : 

" 
sin2

P t dt = rr · Lï . (2p) 1 

0 22p+l (p !)2 L
~ 4p (p !)2 

0 

sin2P+l t dt = 
(2 p + 1) ! 

Le lecteur intéressé pourra trouver une très jolie démonstration dans [27]. • 

1. James Stirling ( 1692-1770), mathématicien écossais. Tl appo1ta de nombreuses contributions à l'étude 
des séries numériques. En ce qui concerne la «formule de Stirling», Abraham de Moivre avait déjà montré 
que, lorsque l'entier n tend vers l'infini, n ! ~ C n"+ ! e-11

, où C est une constante positive. La contribution 
de James Stirling fut d'identifier la constante ( fu). 
2. John Wallis (1616-1703), mathématicien anglais, spécialiste de calcul différentiel et intégral. C'est lui 
qui introduisit la notation « oo ».À côté de son œuvre mathématique, il s'intéressa aussi à la phonétique, et 
est considéré comme un des précurseurs de l 'orthophonie. 
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Arrangements 

1. Arrangements 

Définition 

Soit n un entier naturel non nul. Pour tout entier naturel p ~ n, le nombre de façons 
de choisir, de façon ordonnée, p éléments distincts parmi n est appelé arrangement 
de p éléments parmi n. 

Il est aisé de calculer ce nombre en utilisant un raisonnement itératif, équivalant à l'usage 
d'un arbre. Pour le premier choix, on an possibilités, pour le deuxième, il en reste n - 1, 
et ainsi de suite jusqu'au pième , pour lequel il y a n - (p- 1) possibilités. Ce raisonnement 
permet de démontrer les résultats suivants, où on remarque également que A~ = n !. 

Proposition 
Pour tout couple d' entiers naturels (n, p) tels que p ~ n * 0, 

P - - n ! An - n (n - 1) ... (n - p + l) - ---
(n - p) ! 

2. Permutations 

n étant un entier naturel non nul, le nombre de façons de permuter n objets est le nombre 
d'arrangements de tous ces entiers, i.e. le nombre de possibilités de choisir, de façon 
ordonnée, n éléments parmi n, et vaut donc n !. Par convention : 

0 ! = 1 

Exemple : Séquençage de I' ADN 

Une séquence d'acide désoxyribonucléique (ADN) est constituée d' un enchaînement de quatre 
nucléotides: l ' adénine, la cytosine, la guanine, et la thymine. L' information génétique corres­
pond à l'ordre dans lequel s'enchaînent les quatre nucléotides, qui se regroupent par paires: 

• l'adénine avec la thymine ; 

• la thymine avec l'adénine; 

• la cytosine avec la guanine ; 

• la guanine avec la cytosine. 

Figure 111.1 - La molécule d'adénine C5H5N5, la molécule de guanine C5H5N50, la molécule de 
cytosine ~H5N30, et la molécule de thymine C5 N20 2 H6 • 
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Il y a donc, au total, quatre combinaisons possibles par nucléotide. 
Le nombre d'arrangements possibles de deux nucléotides distincts correspond au nombre de 
façons de choisir, de façon ordonnée, deux éléments parmi quatre : 

2 4! 
A4 = - = 3 X 4 = 12 

2! 

3. Arrangements avec répétitions 

Soit n un entier naturel non nul. Pour tout entier naturel p ~ n, le nombre de façons 
de choisir p éléments, non nécessairement distincts, parmi n, vaut pn. Notons que ce 
nombre est égal au nombre d'applications d'un ensemble à n éléments dans un ensemble 
à p éléments. 

Démonstration : Pour le premier élément, il y an choix possibles ; pour le second, il y 
a encore n choix possibles ; .. . et, ce jusqu'au p ième. • 

371 

"' :::::s 

:::::s 
V 

<a u 



Il Combinaisons 

"O 
0 
c 
::J 
0 
'<;j'" 
...... 
0 
N 

@ 
....., 
.s:: 
Ol 
'i: 
>-
0. 
0 
u 

1. Combinaison ou coefficient binomial 

Définition 

Soit n un entier naturel non nul. Pour tout entier naturel p ~ n, le nombre de façons 
de choisir, dans un ordre quelconque, p éléments distincts parmi n, est appelé com-

binaison de p éléments parmi n, que l'on note (;)ou Cfi. Cette quantité s'appelle 

aussi coefficient binomial de paramètres net p. 

On peut utiliser la formule des arrangements pour calculer Cfi. En effet, si l'ordre n'im­
porte pas dans le nombre de choix de p éléments parmi n, on peut d'abord dénombrer 

n! 
le nombre de choix quand l'ordre importe, c'est-à-dire Afi = , puis remarquer 

(n - p) ! 
que chaque partie non ordonnée de p éléments sera dénombrée p ! fois dans les arrange-
ments, car le nombre de façons d'ordonner les p éléments est le nombre de permutations 
de p. Ceci démontre le résultat suivant : 

Proposition 
Pour tout couple d'entiers naturels (n, p) tels que p ~ n * 0, 

P n n n n. 
( ) ( ) 

Ap ' 

Cn = p = n-p =Pl= p!(n-p)!. 

Le coefficient binomial est noté, indifféremment, c;. ou (; )· La notation (;) est celle utilisée 

dans les pays anglo-saxons. En France, la norme ISO 31 préconise, sans la rendre obligatoire, 
cette dernière notation. L'un des auteurs de cet ouvrage préfère, par choix, garder la notation 
c:; , plus claire, et qui évite aussi beaucoup de confusions dès que l'on travaille avec des 
coefficients binomiaux et des matrices colonnes. 

Exemple: Courses de chevaux ... 

Au tiercé, si l' ordre n' importe pas, le nombre de combinaisons possibles de trois chevaux 
parmi dix est : 

C3 = ( l 0) = ~ = 8 X 9 X 10 = 8 X 9 X 10 = 4 X 3 X l O = 120 
IO 3 3!7! 3! 2X3 
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2. Formule du binôme de Newton 

Soit n un entier naturel non nul. Alors, pour tout couple de réels (a, b) : 

11 n 1 
(a+ b)11 = I c~ ak bn-k = I , n. , ak bn-k 

k=O k=O k . ( n - k) . 

Démonstration : Cette propriété est bien connue. Pour la démontrer, il suffit d' écrire : 

(a+ b)11 =(a+ b)(a + b) ···(a+ b), 

n fo is 

puis de développer ce produit, en remarquant que le nombre de fois où l'on obtient 
le terme ak bn-k est exactement égal au nombre de façons de choisir une partie non 
ordonnée de k éléments parmi les n termes du produit. • 

Corollaire 
Soit n un entier naturel non nul. Alors : 

n 

211 = ~ ck L..J Il 

k=O 

Démonstration: Il suffit d'appliquer la forme du binôme de Newton à (1+1)11
• 

3. Le triangle de Pascal 

Soit n un entier naturel non nul. Alors, pour tout entier naturel k ~ n - 1 : 

c k + ck+i = ck+i 
11 11 n+ I 

soit : 

Cette propriété peut être représentée à l'aide du triangle suivant : 

{l} 
{ 1, 1} 

{1, 2, 1} 
{l , 3 , 3 , l} 

{1, 4, 6, 4, 1} 
{1, 5, 10, 10, 5, 1} 

{1, 6, 15, 20, 15, 6, l} 
{1 , 7, 21 , 35 , 35 , 21 , 7, 1} 

Figure 112.1- Le triangle de Pascal. 

La première ligne du triangle donne le coefficient binomial c? = ( ~) = 1. 

• 

La seconde ligne du triangle donne les coefficient binomiaux C~ = ( ~) et Ci = ( ~ )· 
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La troisième ligne du triangle donne les coefficient binomiaux C~ = ( ~ ), C~ = ( ~) et 

Cj = (; ), et ainsi de suite : la nième ligne du triangle donne les coefficients binomiaux 

cK = (;)pour P = o, P = 1, ... , P = n. 

Pour tout entier i de {2, ... , n}, et tout j de {2, .. . , n}, le coefficient binomial situé 
ligne i, colonne j , s'obtient en ajoutant les coefficients binomiaux situés ligne i - 1, 
colonne j - 1, et ligne i - 1, colonne j . 

Démonstration : Il suffit de calculer : 

n! n! 
~~~~+ ~~~~~~~-

k ! (n - k) ! (k + 1) ! (n - k - 1) ! 

n ! (k + 1) n !(n - k) 
~~~~~~-+~~~~~~~~~~ 

k ! (k + l)(n - k) ! (k + 1) ! (n - k - 1) !(n - k) 

n ! (k + 1) n !(n - k) 
~~~~~~ + ~~~~~~ 
(k + 1) ! (n - k) ! (k + 1) ! (n - k) ! 

n ! (k + 1 + n - k) 

(k + J) ! (n - k) ! 

n ! (n + l) 
(k + 1) ! (n - k) ! 

(n + 1) ! 

(k + 1) ! (n + 1 - k - 1) ! 

c k+ 1 
n+ I 

4. Formule de Vandermonde1 

Soient met n deux entiers naturels. Alors, pour tout entier naturel k ~ m + n : 

Ci cJ ck 
m n - m+n 

i+j=k 

• 

Démonstration: La formule de Vandermonde se démontre à l' aide des identités poly­
nomiales suivantes : 
VxE !R : 

m+n m+n 

(1 + xyri+n = I C~+n Xe 1m+n- e = I C~+n X e 

t=O t=O 

1. (L 735-1796), mathématicien français, mais aussi économiste, musicien et chimiste. 
Tl est surtout connu pour le déterminant qui porte son nom. Mais d' après Lebesgue (Conférence d' Utrecht, 
1937, (23]), le déterminant ne serait pas de lui ... 
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et : 

(1 + xyn+n = (1 + xr (l + xr = (f c:n xi 1m-i) (i c~ xi 1n-il 
t=O J=O 

(tac;"~] (~c~xi] 

m+n 

I 

m n 
~~ci c i xi+i 
L.J L.J m n 
i=O i =O 

k=O 0 . 0 . 
~t~m, ~J~n 

i+i =k 

(On a commencé par effectuer un changement d'indices, en posant i + j = k; k varie 
donc de 0 à m + n.) 

Il suffit ensuite d'identifier, pour tout entier i de {O, ... , m + n}, les coefficients des 
puissances de x, ce qui conduit, pour tout entier k de {0, 1, ... , m + n} à: 

O~i~m, O~i~n 

i+i =k 

. i c:ncn • 
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Dans ce qui suit, nous présentons les axiomes du calcul des probabilités, communs aux 
situations discrètes ou non. 

La modélisation mathématique probabiliste utilise le langage des ensembles. Les cor­
respondances avec les concepts probabilistes sont les suivantes : 

Événement impossible 

Événement certain 

Épreuve, ou réalisation, ou issue, 

ou issue élémentaire 

Événement 

« Ensemble vide » 0 

« Ensemble plein » Q 

«élément w », w E Q 

« Sous-ensemble den », 

A c Q 

L'épreuve w est une réalisation possible w E A 

de l'événement A 

L'événement A implique l'événement B A c B 

L'événement A ou l'événement B ont lieu A u B 

L'événement A et l'événement B ont lieu A n B 

L'événement A et l'événement B sont incompatibles A n B = 0 

L'événement contraire de A N, ou A 

De même qu'il est préférable de ne pas confondre l'élément w avec le singleton {w}, il 
faut distinguer l'issue w E Q avec l'événement (élémentaire) A= {w} c Q. 

1. Expérience aléatoire 

Définition 

On appelle expérience aléatoire une expérience renouvelable et qui, renouvelée dans 
des conditions identiques, ne donne pas nécessairement le même résultat à chaque 
fois. 

1 

Exemple 

Lancer plusieurs fois une même pièce parfaitement équilibrée est une expérience aléatoire. 

2. Événement, Univers 

Définition 

Étant donnée une expérience aléatoire, on appelle épreuves élémentaires les diffé­
rents résultats possibles de cette expérience. Leur ensemble constitue l'univers Q. 
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Exemple 

Une enseignante de mathématiques doit concevoir un sujet d 'examen. Elle veut que ses étu­
diants réussissent celui-ci le mieux possible. Elle est donc intéressée par les événements sui­
vants: 

• 8 1 : la note minimale à l'examen est supérieure ou égale à 90 sur 100 ; 

• 8 2 : la note minimale à l'examen est supérieure ou égale à 95 sur l OO; 

• 83 : la note minimale à l' examen est supérieure ou égale à 99 sur 100. 

L'enseignante considère alors la famille d'événements« la note minimale à l'examen est de N 
sur 1 OO, où N varie continûment de 0 à 1 OO. L'enseignante est ainsi amenée à considérer l'es­
pace de toutes les épreuves possibles, n, et à l'identifier avec lintervalle [0, 100] . On peut alors 
s'intéresser à l'épreuve w: la note minimale à l'examen est 96,5 sur 100. Là, les événements 
8 1 et 8 2 sont réalisés, alors que l'événement 8 3 ne l'est pas. Dans l'espace des possibilités n, 
l' épreuve w est identifiée avec l'élément 96,5. L'événement 8 1 est représenté par l'intervalle 
[90, 100], l'événement 8 2 est représenté par l'intervalle [95 , 100], et l'événement 8 3 par l'in­
tervalle [99, 100]. L'appartenance« w E 8 1 » est équivalente à « l'événement 8 1 est réalisé 
par l'épreuve w ».Du fait que 8 3 c 81, l'appartenance « w E 83 » implique « l'événement 81 
est réalisé par l'épreuve w », sans y être équivalent; de même pour « w E 8 2 » . 

:> Tribu (ou famille d'événements observables, ou cr-algèbre) 

Étant donné un ensemble Q, une tribu (aussi appelée famille d'événements observables, 
ou, encore, cr-algèbre) sur Q est un sous-ensemble JI de l'ensemble P(Q) des parties 
de Q telle que : 

• Q appartient à JI ; 

• Pour tout A de JI, son complémentaire, noté Ac, ou encore, A, appartient lui aussi à JI. 

• Pour toute suite (An)nEN d'éléments de JI, la réunion LJ An appartient aussi à JI. 
nEN 

Les éléments de la tribu JI sont les événements. 

3. Probabilité 

Définition 

Soit Q un ensemble (aussi appelé univers), et JI une tribu (ou famille d'événements 
observables) sur Q. On appelle probabilité sur (Q, JI) toute application P de JI dans 
[O, 1] telle que : 

• P(Q) = 1; 

• pour toute suite (A 11)nEN d' événements incompatibles (i.e. deux à deux disjoints): 

(Q, JI, P) est appelé espace probabilisé . 
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Définir une probabilité sur (.Q, .JI) consiste, tout simplement, à attribuer un « poids » à 
chaque événement observable. L'événement certain a, bien évidemment, une probabilité de 
1 = 100 %. C'est le sens du premier point dans la définition ci-dessus. La probabilité de 
l'union d'un nombre fini ou dénombrable d'événements deux à deux incompatibles doit être 
égale à la somme des probabilités de ces événements (c'est le second point (sigma-additivité)). 

Propriété 
Soit Q un ensemble (ou univers), et Jl une tribu (ou famille d'événements observables) 
surQ. 

Toute probabilité sur (Q, JI) vérifie les propriétés suivantes : 

1. Probabilité de l'événement impossible : P(0) = 0 ; 

2. Probabilité de l'événement complémentaire: 

P(Ac) = 1-P(A). 

3. cr-additivité : 

Si (An)nEN est une suite d'événements disjoints, alors : 

4. Continuité décroissante : 

Si (A11)nEN est une suite d'événements telle que, pour tout entier naturel n, 
An+I c An, alors: 

lim P (An) = P (n+oo An] . 
n-++oo 

n=O 

5. Inégalité triangulaire : 

Si (A11) 11EN est une suite d'événements, alors: 

>- Probabilité sur un univers fini 

Une probabilité sur un univers fini Q est une application P de P(Q) dans [O; 1] telle que 
P(Q) = 1 et, pour toutes parties disjointes A et B de Q : 

P(A u B) = P(A) + P(B) 

>- Événement presque sûr 

Soit (Q, Jl, P) un espace probabilisé. Un événement A est dit presque sûr si sa probabi­
lité vaut 1 : 

P(A) = P(Q) = 1 
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> Événement négligeable 

Soit (Q, 3{, P) un espace probabilisé. Un évémenent A est dit négligeable si sa probabi­
lité vaut 0 : 

P(A) = 0 

Nous rencontrerons, par la suite, des exemples d'événements négligeables qui ne sont pas 
pour autant impossibles (événement vide), même dans le contexte discret. 

> Système complet d'événements 

Soient A 1,. •• ,An des événements d'un espace probabilisé (Q,3l,P). On dit que 
(A 1, ••• , An) est un système complet d'événements de (Q, P) si les événements 
A 1, ••• , An sont deux à deux disjoints (i.e. Ai n A J = (/) si i * j) et si : 

On dit aussi que A 1, ... , An constituent une partition de Q. On a, en particulier : 

> Équiprobabilité de deux événements 

Soit (Q, 3l, P) un espace probabilisé. Deux événements A 1 et A2 sont dits équiprobables 
s'ils ont la même probabilité. 

> Équiprobabilité de n événements, n E N 

Soit (Q, 3l, P) un espace probabilisé, et n un entier naturel non nul. Des événements A 1, 

.. ., An sont dits équiprobables s'ils ont la même probabilité. 

Propriété 
Si les événements A 1, ... , A 11 d'un système complet (A 1, ... , A 11 ) d'événements de 
(Q, 3l, P) sont équiprobables puisque fini. Il est très facile de calculer leur probabilité. 
Ils sont, par hypothèse, incompatibles entre eux. Il en résulte : 

L'équiprobabilité signifie que : 

et : 

Par suite: 

P (A 1 U A2 U ... U An) = P (Q) = 1 

l 
P(Ai) = P(A2) = ... = P(A 11 ) = -

n 

379 

"' :::::s 

:::::s 
V 

<a 
u 



" 0 
c 
::J 
0 
'<;j" 
...... 
0 
N 

@ 
.j.J 

.s:: 
Ol 
'i: 
>-
0. 
0 
u 

Le hasard intervient, ou semble intervenir, dans de nombreux phénomènes, à com­
mencer par les jeux dits de « de hasard » 1 • De façon plus concrète, toute mesure 
physique est, elle-même, entachée de «bruit» (qui peut résulter, notamment, d'une 
préparation imparfaite du système à mesurer, d'une perturbation thermique, etc.) Aux 
échelles les plus infinitésimales, ce bruit est de nature quantique, puisque des parti­
cules comme les photons peuvent être concernées. Le« principe d'incertitude de Hei­
senberg »2 [46] établit que l'on ne peut mesurer simultanément la position et l'impul­
sion d'une particule avec une précision infinie. 

A A A A A A A A .. .. ÇJ ÇJ <> <> • • .. Q ô • 
"*" "*" ô ô <> <> • • V V V V V V V V 

Un carré d'as ... 

Une modélisation dite« déterministe » où les événements sont régis par le principe 
de causalité3, doit alors laisser place à une modélisation «probabiliste», puisque, bien 
évidemment, lorsque 1 'on considère un phénomène aléatoire, on ne peut en prédire 
le résultat avec certitude. Il est toutefois intéressant d'établir des modèles mathéma­
tiques qui permettront une étude plus précise. À cet effet, on aura besoin d'un espace 
probabilisé, composé d' un ensemble(« l'univers» Q), d'une famille de parties de cet 
univers (une« tribu» de sous-ensembles A c Q), et, bien évidemment, une probabi­
lité, qui représente la fonction mathématique modélisant le phénomène probabiliste 
(nous renvoyons à [28] pour une étude plus générale des tribus). 

l. Ces jeux de hasard furent, de fait à l'origine des premières théories probabilistes. C'est Blaise Pascal 
(1623-1662), qui fut un des premiers contributeurs. Il envoya à Pierre de Fermat, en 1654, une méthode 
de résolution du fameux « problème des partis » , où deux joueurs jouent à un jeu de hasard en trois 
parties gagnantes; chaque joueur mise la même somme d'argent. Mais le jeu est interrompu avant la 
fin. Comment faut-il partager les enjeux misés? 
2. Werner Karl Heisenberg ( 190 l-1976), physicien allemand, à l'origine de la mécanique quantique, 
qui lui valut, en 1932, le prix Nobel de physique. Sa présentation de la mécanique quantique est extrê­
mement intéressante, car elle utilise, initialement, un formalisme matriciel. 
3. Un fait- la cause - en engendre un autre. 
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Dans certaines situations, en particulier lorsqu 'il s'agit de modéliser des nombres 
aléatoires diffus (ce que nous appellerons les« variables aléatoires continues», utiles 
pour comprendre les phénomènes naturels et les études sociales à grande échelle), 
il ne sera pas possible d'associer une probabilité à chaque issue élémentaire (i.e. 
à chaque w E Q). En particulier, nous ne pourrons pas nécessairement considérer 
qu'un singleton {w} est un événement A. Toutefois, il devra toujours être possible de 
définir la fonction de probabilité P sur l'ensemble de tous les événements A qu'on 
a le droit de considérer (i.e. la tribu qu'on choisit d'utiliser). Nous n'insisterons pas 
sur ce point technique dans cet ouvrage, car il relève de la théorie mathématique dite 
« de la mesure » ; il sera néanmoins évident, en fonction du contexte dans lequel on 
se place, de déterminer les cas où les singletons sont, ou non, des événements. Dans 
le premier cas, on parle de situation discrète. 
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Considérons le lancer de deux dés. Le choix le plus simple pour désigner l'univers 
est Q = {(i, j); i, j = 1, 2, ... , 6}. Cet univers est composé de 36 épreuves élémen­
taires. Supposons que les dés ne sont pas pipés, et que le lanceur ne contrôle pas les 
résultats, ce qui signifie que tous les résultats sont équiprobables. Chacun des 36 élé­
ments w = (i, j) de Q peut être considéré comme un événement {w}, ces 36 événe-

1 
ments forment un système complet et sont équiprobables, de sorte que P ({w}) = 

36
. 

Calculons la probabilité de l'événement A : « la somme des deux chiffres qui sortent 
est supérieure ou égale à dix, mais strictement inférieure à douze». Nous avons donc : 

A = {(5, 5), (5, 6), (6, 5), (6, 4), (4, 6)}. 

La probabilité cherchée vaut donc 

P(A) = -2: P({w}) = 2-. 
wEA 36 

Mais, si l'on demande également que le résultat d'un des dés soit six, ceci signifie 
que le résultat (5, 5) n'est pas autorisé ; il faut donc chercher la probabilité de l' évé­
nement: 

Cette probabilité vaut : 

c = {(5,6),(6,5),(6,4),(4,6)}. 

4 1 
P(C) = - = -. 

36 9 

Mais, d'un autre côté, si on considère que l'on a restreint l'ensemble des possibilités 
en demandant qu'un des dés ait le numéro 6, cela signifie que l'on est en train de 
changer l'univers, qui est donc : 

s = {(6; 1);(1;6); (6; 2); (2; 6); (6; 2); (2; 6); (6; 4); (4; 6); (5; 6); (6; 5); (6; 6)} 

Il n'y a que onze possibilités. La probabilité de l'événement A sachant que l'on doit 
obtenir au moins un 6 devrait donc devenir la probabilité de l'événement : 

4 
lorsque l'univers est S, i.e. 11. Nous allons voir comment raisonner ainsi de manière 

systématique et aisée . 
La réponse à la question P ( C) = ? n'est pas identique à la réponse à celle qui 

demande «quelle est la probabilité que la somme des deux chiffres qui sortent soit 
supérieure ou égale à 10 et strictement inférieure à 12, si on a observé que l'un des 
deux des vaut 6 ? » 
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Un lancer de dés ... 

Imaginons qu' un ami vous propose un jeu où il faut s'acquitter de la somme d'un 
euro pour avoir le droit de lancer deux dés, un rouge et un bleu, et où l'on gagne deux 
euros si la somme des deux numéros obtenus est paire, i.e. si l'événement A s'est pro­
duit. Ce jeu semble équitable, nous verrons, ultérieurement, qu'il subsiste des choses 
intéressantes à ajouter sur le sujet. Mais supposons maintenant que, si l'on accepte 
de s'acquitter de cinq centimes de plus, on acquière le droit de savoir si le numéro 
sorti sur le dé bleu est, ou non, supérieur ou égal à deux, et, partant, d'abandonner et 
de récupérer sa mise. Comme 1' événement B est indépendant de celui qui détermine 
le gain, il est alors possible de refuser de jouer! En effet, l'information concernant 
l'événement B n'a pas d'influence sur l'événement A, et n' a donc aucune valeur. À 
une échelle beaucoup plus impressionnante, certaines compagnies prétendent vendre 
de l'inf01mation utile pour comprendre des opportunités d'investissement dans les 
marchés financiers. Les meilleures entreprises, comme Bloomberg, ont une réputa­
tion de donner des informations fortement liées aux mouvements des actions dans 
ces marchés, alors qu'il existe une multitude de petites compagnies qui parviennent à 
vendre des informations qui sont, en réalité, indépendantes de ces mouvements, à des 
investisseurs naïfs et avides de connaissances que n'auraient pas leurs compétiteurs. 
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La notion de conditionnement est un outil fondamental de la théorie des probabilités, 
dans la mesure où toute information supplémentaire concernant la réalisation d'un évé­
nement spécifique A modifie la vraisemblance d' un événement B. 

1. Probabilité conditionnelle 

Définition 

Soient A et B deux événements d'un espace probabilisé (Q, P), avec P(B) * O. On 
appelle probabilité conditionnelle de l'événement « A sachant B » la quantité, notée 
P (AIB) telle que : 

P(AIB) = P(A n B) 
P(B) 

2. Formule des probabilités composées 

Soient A et B deux événements d'un espace probabilisé (Q, P). Alors: 

P(A n B) = P(AIB) P(B) = P(BIA) P(A) 

Démonstration : Si la probabilité de l 'événement B n'est pas nulle : 

et donc: 

P(AIB) = p (A n B) 
P(B) 

P(A n B) = P(AIB) · P(B) 

Il est clair que si la probabilité de l'événement Best nulle : P(A n B) = O. 
Ainsi, dans tous les cas : P (A n B) = P(AIB) P(B). 

A et B jouant des rôles symétriques, on démontre de même l'autre égalité. • 

3. Formule des probabilités composées généralisée 

Soit (A 1, ••• , An) un système d'événements d' un espace probabilisé (Q, P) tel que : 

Alors: 

P(ô A;l = P(A 1) P(A2IA1) P(A3IA1 n Az) ... P(A.IA1 n ... n A._1) 

Avec le même argument que ci-dessus, on peut s'affranchir de 1' hypothèse P ( ô A; l * 0 

(voir page 106). 

Démonstration : La démonstration se fait par récurrence sur lentier n. • 
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Exemple 

Considérons un jeu de 52 cartes à jouer, qui contient quatre dames distinctes, et donc 48 cartes 
qui ne sont pas des dames. Calculons la probabilité qu'une main de 5 cartes ne contienne 
aucune dame, puis celle qu' elle contienne exactement une dame. À cet effet, on procède par 
itération, en désignant par A; l'événement« la carte numéro i n 'est pas une dame». Dans le 
premier cas, on cherche : 

p[ÔA;l = P(A,) P(A2IA1) P(A1IA1 nAi) P(A4IA1 nA, nA,)P(AslA1 n .. . nA,) 

48 47 4645 44 
= -----

52 515049 48 
35 673 

= 
54145 

~ 0,66 

Dans le second cas, il s'agit d 'abord de déterminer laquelle des cinq cartes est une dame. Il y a 
donc cinq événements disjoints B; correspondant, où B; désigne 1' événement« la carte numéro 
i est une dame, et les quatre autres cartes ne le sont pas». Calculons, dans un premier temps : 

P (Bi) = P(A~ nô A;) 
= P(An P (A2IAn P (A3IA~· n A1) P(A4IAT n A1 n A3) P(AslA~ n A1 n Ab n A4) 

4 48 47 46 45 3243 
= ----- = 

5251504948 54145 
0,060 

En utilisant le même raisonnement, on trouve aussi 

La probabilité cherchée est donc 

[US l 5 X 3243 3243 
p B; = 5 P(Bi)= 54145 = 10829 ~o,30. 

i=I 

4. Formule des probabilités totales 

Soit (A 1, ... , An) un système complet d'événements d'un espace probabilisé (D., P) (i.e. 
n 

les Ai, i = 1, ... , n sont deux à deux disjoints, et tels que LJ Ai = D.). Alors, pour tout 
i= l 

événement B de (D., P) : 

n 

P(B) = P(BIA1) P(A1) + ... + P(BIAn) P(An) = 2= P(BIAi) P(Ai) 
i= I 

Démonstration : Les ensembles B n A 1, .. . , B n An constituent une partition de B, i.e. 
une réunion disjointe d'événements tels que : 

11 

B= LJBnAi 
i= I 
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On en déduit alors, par additivité : 

n n 

P(B) = I P (B n Ai) = I P (BIAi) P (Ai) • 
i=l i=l 

Exemple 

Une population de lapins comporte un tiers de lapins mâles et deux tiers de lapins femelles. 
6 % des lapins mâles sont blancs, contre 4 % des lapins femelles. On cherche à déterminer la 
probabilité qu' un lapin choisi au hasard, et dont on ne connaît donc pas le sexe, soit blanc. 
On dispose donc de deux systèmes complets d'événements : 

• (Lmâie. L reme11e) : « le lapin choisi est un mâle, le lapin choisi est une femelle» ; 

• (Lb1anc. Lct·uneau1recou1eur): «le lapin choisi est blanc, le lapin choisi n'est pas blanc». 

On a alors: 

P (.[blanc) = P (.[blanclLmâie) P (Lmâle) + P (.[blancl.L'.remelle) P (.L'.remelle) 

= 
1 2 

0,06 X 3 + 0,04 X 3 
7 

= 
150 

0,047 

L'utilisation de la formule des probabilités totales dans cet exemple est typique de questions 
que l'on rencontre en théorie de la décision. 
De façon plus précise, cet exemple peut être considéré comme« précurseur» d 'une méthodo­
logie dite « de Bayes », pour évaluer la probabilité d'un événement non observé, sachant qu'un 
autre événement a été observé, connaissant les probabilités dites a priori des événements non 
conditionnés, à partir d'un modèle pour les probabilités conditionnelles (dans le sens opposé 
à ce que l'on cherche). 

Corollaire (formule de Bayes) 
Soient A et B deux événements d'un espace probabilisé (!2, P). Si P(A) > 0 et P(B) > 0, 

alors: 
P(BIA) P(A) P(BIA) P(A) 

P(AIB) - - --------
P(B) P(BIA)P(A) + P(BIAc)P(Ac) 

Démonstration : D'après la formule des probabilités conditionnelles : 

P(AIB) = P(A n B) 
P(B) 

Grâce à la formule des probabilités composées : 

P(A n B) = P(AIB) P(B) = P(BIA) P(A) 

Par suite: 
P(AIB) _ P(A n B) _ P(BIA) P(A) 

P(B) P(B) 

(114.1) 

La formule des probabilités totales permet de transformer le dénominateur de la première 
formule de Bayes, pour obtenir la seconde. • 
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Corollaire (formule de Bayes généralisée) 
Soit (A 1, .. . , An) un système complet d'événements d'un espace probabilisé (Q, P) (i.e. 

n 

les Ai> i = 1, ... , n sont deux à deux disjoints, et tels que LJ Ai = Q), de probabilités 
i=l 

respectives non nulles. Alors, pour tout événement B de (Q, P) tel que P(B) :/=- 0: 

p (AdB) = P(BIAï) P(Aï) 
n 

I P(BIAk) P(Ak) 
k= l 

Démonstration : Comme dans le corollaire précédent, il suffit d'appliquer la formule 
des probabilités totales : 

P(AdB) = 

Exemple 

P(Aï n B) 

P(B) 
P (BIAï) P(Ai) 

P(B) 
P (BIAï) P(Aï) 

11 

I P(BIAk) P(Ak) 
k= l 

• 

En Europe, environ 65 personnes sur mille possèdent une mutation du facteur de Leiden (Fac­
teur V). Cette mutation affecte la coagulation du sang, avec des risques importants de throm­
bose et d'embolie. Un premier test de résistance plasmatique à la protéine C activée permet de 
détecter les personnes susceptibles de présenter cette mutation dans 90 % des cas. Par contre, 
il y a des faux positifs dans treize cas sur cent. 
Pour déterminer la probabilité qu' une personne présentant un résultat positif à ce test soit 
porteuse de cette mutation, on commence par définir les événements 

• Mv : la personne est porteuse de la mutation ; 

• p + : le test est positif. 

On a alors: 

P(M ) -~ 
V - 1000 P(P+IM) = ~ 

V 100 

On obtient alors, grâce à la formule de Bayes : 

= 

= 

= 

90 65 
100 1000 

..2Q_ ....2i_ + Jl. ~ 
100 1000 100 1000 

90 X 65 

90 X 65 + 13 X 935 

90 

277 

0,325. 
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Définition 

Deux événements A et B sont dits indépendants si 

P(A n B) = P(A) P(B). 

Exemple 

Reprenons l'exemple du jet de deux dés non pipés. On peut réinterpréter le fait que le joueur 
ne contrôle pas les numéros qui sortent, en remarquant en particulier que les événements liés 
à un dé sont indépendants des événements liés à l'autre. En particulier, comme chacun des 
deux dés peut être associé à son propre univers des possibles ayant six résultats élémentaires 
équiprobables, certains calculs en sont facilités. 
Par exemple, on obtient alors une démonstration intuitive du fait que les résultats du jet des 
dés sont équiprobables, puisque, pour tout w = (i, j) de Q, 

P ( { (i, j)}) = P( « le numéro du premier dé vaut i et le numéro du second dé vaut j ») 
= P ( « le numéro du premier dé vaut i ») x P ( « le numéro du second dé vaut j ») 

1 1 
-x-
6 1 6 

= 

= 
36 

Calculons aussi la probabilité del' événement A : «la somme des deux numéros qui sortent est 
paire », et celle de B : «le numéro du second dé est inférieur ou égal à 2 ». A priori, comme 
l'événement A dépend simultanément des deux dés, le calcul de sa probabilité pourrait ne pas 
être évident. Mais, par symétrie, on comprend, intuitivement, que cette probabilité doit être 
égale à celle de son événement complémentaire, et donc que : 

2P(A) = 1 

On peut également énumérer toutes les possibilités parmi les 36 pour en être sûr. Ainsi, 

P(A) = ~ 2 1 
P(B) = - = -

6 3 

Calculons maintenant directement : 

Par suite, 

l 
P (An B) = P (((1, 1) , (3, 1) , (5 , 1) , (2, 2) , (4, 2) , (6, 2)}) = 6 

P(A n B) = P(A) P(B) 

Les événements A et B sont donc indépendants. Bien que cela soit très simple à déterminer, ce 
n'est pas évident a priori. 
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Variable aléatoire discrète 
et loi associée 

1. Variable aléatoire discrète 

Définition 

Soit (Q, 5{, P) un espace probabilisé. On appelle variable aléatoire discrète sur 
(Q, 5{, P) toute application X : n ~ JR, qui, à tout événement w den associe la quan­
tité X(w), et qui est telle que: 

• l'ensemble des X(Q) = {X(w), w E Q} des images des épreuves de Q est une partie 
au plus dénombrable de lR, i.e . ... , ce qui permet de « repérer » ses éléments par une 
indexation de la forme : 

X(Q) = {xo, x1, .. . , Xk. ... , } 

• pour tout Xk de X(Q), l'ensemble {w E n, X(w) = xd fait partie de la famille (ou 
tribu) 5{ d'événements auxquels on peut attribuer une probabilité par P. 

Dès que l'univers Q est fini ou dénombrable, toutes les fonctions X définies sur Q sont des 
variables aléatoires discrètes. On se trouve, souvent, dans le cas d'univers dénombrables et 
non finis. 

Notations 

1. Dans ce qui suit, on se placera, implicitement, dans un espace probabilisé 
(Q,5{, P). 

2. Dans ce qui suit, l'abréviation « v.a. » sera utilisée pour « variable aléatoire». 

3. L'antécédent (image réciproque) x-1 (xk) de la valeur xk par la v.a. X, qui est, par 
définition, un événement, s'écrira {X= xd. 

Propriété 
La famille de tous les événements {X = Xk } est telle que : 

~ P(X = Xk) = 1 
XkEX(Q) 

Pour représenter graphiquement une variable aléatoire discrète, il est aisé d'utiliser un «dia­
gramme en bâtons». Quand celui-ci correspond à une distribution de données réelles, on 
l'appellera aussi « histogramme ». Inversement, toute série de données réelles peut être repré­
sentée grâce à un histogramme, lequel peut, à son tour, être interprété comme la di stribution 
d 'une variable aléatoire. Pour une définition plus précise, on renvoie au concept de « loi » 
défini ci-dessous. 
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2. Loi d'une variable aléatoire discrète 

Soit X une variable aléatoire discrète sur un espace probabilisé (Q, JI, P). L'ensemble 
X (Q) des valeurs possibles de X est donc au plus dénombrable. On le note {xk : k EN}. 
On considère la fonction Px définie sur X (Q) par : 

Cette fonction s'appelle la masse ou la fonction de probabilité de X. On parle parfois, 
abusivement, de loi ou distribution de X. 

La loi, ou encore distribution, de X est la fonction d'ensembles Px définie sur toutes 
les parties B de R par : 

V B c R Px(B) = I P(X = xk) = I Px (xk). 
XkE B XkE B 

~ 1. JI est intéressant de remarquer que la loi Px de X est déterminée par sa masse px, et inverse-
~ ment, d'où la possibilité de confondre les deux notions sans risque grave. 

2. Ce n'est pas parce que deux variables aléatoires ont la même loi qu'elles sont égales ! 

Exemple 

Ainsi, considérons le lancer de deux dés, un dé rouge, et un dé vert. Si X est le chiffre qui sort 
sur le dé rouge, et Y celui qui sort sur le dé vert, les variables aléatoires discrètes X et Y sont 
définies sur le même espace probabilisé n = { 1, 2, 3, 4, 5, 6). Ainsi : 

X(Q) = Y(Q) = {l, 2, 3, 4, 5, 6) 

Si les deux dés sont non pipés, X et Y ont donc la même loi. 

Figure 116.1- Le lancer de dés ... 

Par contre, les variables aléatoires X et Y ne sont pas égales ; si tel était le cas, cela signifierait 
que, pour tout événement w de l'univers des possibles n, on aurait X(w) = Y(w), et donc que 
tout lancer des deux dés permettrait, à coup sûr, d' obtenir le même numéro, ce qui n' est pas 
le cas. De manière équivalente, cela signifie que le lancer du dé rouge permettrait de prédire 
à coup sûr le numéro qui sort sur le dé vert, ce qui est bien sûr choquant. La meilleure façon 
de comprendre pourquoi ce n'est pas possible est de faire l'hypothèse que les deux lancers 
sont indépendants; on se retrouve alors dans le cas de l'exemple précédent, où les 36 résultats 
possibles sont équiprobables. Le lancer du dé rouge ne donne aucune information sur celui du 
dé bleu. Nous verrons ultérieurement que cet exemple permet de comprendre intuitivement la 
notion d' indépendance pour des variables aléatoires . 

3. Fonction d'une variable aléatoire discrète 

Soit (Q, JI, P) un espace probabilisé, et f une fonction définie sur X(Q), à valeurs réelles. 
La variable aléatoire discrète f(X) est appelée fonction de la variable aléatoire X. 
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La formule Y = f (X) définit une autre variable aléatoire, puisque {Y = f (xk)} = {X = xk} 
pour tout Xk E X (Q). 

4. Variables aléatoires discrètes indépendantes 

Deux variables aléatoires discrètes X et Y définies sur le même espace probabilisé 
(Q, 3l, P) sont dites indépendantes si, pour tous Xk E X (Q) et Ye E Y (Q), les évé­
nements {X= xd et {Y= ye} sont indépendants. 

Dans ce cas, la « masse » de la paire (X, Y), qui peut être définie par : 

Px,y(Xk.Ye) = P({X = Xk} n {Y= Ye}) 

a la forme d'un produit : 

On obtient ainsi une règle de produit pour les probabilités des intersections de toutes les 
paires d'événements basés sur X et Y. 

Ces concepts se généralisent aisément à tout nombre fini de variables aléatoires dis­
crètes. En particulier, si X1, X2 , •.• , Xn sont n variables indépendantes, alors, pour tout 
Xk de Xk (Q), k = 1, 2, . . . , n, 

Exemple 

Si X et Y sont respectivement les valeurs obtenues en lançant un dé rouge et un dé vert, et que 
les deux lancers sont indépendants, alors pour tout couple d'indices (i, j) de {l , ... , 6}2

: 

De surcroît, 

l l l 
P (X = i et Y = j) = P (X = i) P (Y = j) = - x - = -

6 6 36 

P («X est pair et Y est un multiple de 3 ») = P («X est pair») P ( « Y est un multiple de 3 ») 

l l 
= - X -

2 3 
l 

= -
6 
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Définition 

On appelle fonction de répartition d'une variable aléatoire X la fonction, notée Fx, 

définie pour tout réel t par : 

Fx(t) = Px(] - oo, t]) = P(X ~ t) = 

Exemples 

1. Soit S la variable aléatoire donnant la somme des chiffres obtenus en lançant deux dés à 
six faces bien équilibrés. Sur l'espace de probabilités: 

392 

Q = {U,j), (i,j) E {1, ... ,6}2
} 

avec les 36 événements élémentaires équiprobables que nous connaissons, 

s (i, j) = i + j 

On peut réaliser un tableau pour lequel l'élément situé ligne i, colonne j, vaut i + j, 

2 3 4 5 6 7 

3 4 5 6 7 8 

4 5 6 7 8 9 

5 6 7 8 9 10 

6 7 8 9 10 11 

7 8 9 10 11 12 

La loi de S est déterminée par sa masse Ps (k), définie pour les 11 valeurs k dans : 

S(Q) = {2,3,4,5, 6, 7,8,9, 10, 11, 12} 

On calcule aisément : 
1 

Ps (2) = P(S = 2) = 
36 
3 1 

Ps (4) = P(S = 4) = 
36 

= 
12 

4 l 
Ps (5) = P(S = 5) = 

36 
= 9 

6 1 
Ps (7) = P(S = 7) = 

36 
= 6 

4 1 
Ps (9) = P(S = 9) = 

36 
= 9 

2 1 
Ps (3) = P(S = 3) = - = -

' 36 18 

5 
, Ps (6) = P(S = 6) = 

36 

5 
, Ps (8) = P(S = 8) = 

36 

3 1 2 1 
Ps (10) = P(S = 10) = 36 = 12 'Ps (11) = P(S = 11) = 36 = 18 ' 

1 
Ps (12) = P(S = 12) = 

36 
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La fonction de répartition de la variable aléatoire S est définie par : 

F5 (t) = Ps (] - oo, t]) = P(S ~ t) = P(X = xk) 

Calculons F s (t) pour t = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12. Ainsi : 

1 1 2 1 
F5 (2) = Ps (2) = 

36 
Fs(3) = Ps (2) + Ps (3) = 

36 
+ 

36 
= 12 

l 2 3 1 
Fs(4) =ps(2)+ps(3)+ps(4)= 

36 
+ 

36 
+ 

36 
= 6 

et ainsi de suite. On note, en particulier, que F est croissante, et que 

Fs(l2) = l 

2. Prenons un autre exemple élémentaire et traitons le rapidement. On s'intéresse au lancer, 
de manière indépendante, de trois pièces de monnaie. On suppose que la probabilité de 
tomber sur « pile » vaut ~ pour chacune des pièces. On attribue la valeur l au côté « pile », 
et 0 au côté« face». 

L'univers des possibles Q possède huit éléments, qui sont les triplets de la forme (i, j , k), 
où i , jet k prennent les valeurs 0 et 1. En raison de l'indépendance, les huit résultats sont 
équiprobables. On définit alors la variable aléatoire X, qui correspond au nombre de fois où 
les 3 pièces tombent sur « pile » non nécessairement de façon successive. X peut prendre 
les valeurs 0, 1, 2, 3. Les événements possibles sont: 

{X= 0) = {(0, 0, 0)) 

{X= l} = {(0, 0, 1), (0, l , 0), (1, 0, 0)) 

{X= 2) = {(O, 1, 1) , ( 1, 0, 1) , (1, 1, 0)) 

{X = 3) = {(l, 1, L)} 

La loi de X est donnée par : 

1 
Px (0) = S 

3 Px<n= 8 
3 

Px (2) = S 

La fonction de répartition de X est donc telle que : 

0 Si X< 0 
l . S SI 0 ~X< l 

1 . 
F X (x) = l SI l ~X< 2 

7 . S SI 2 ~X< 3 

Si X~ 3 

Théorème 

1 
Px (3) = S 

La fonction de répartition F x d'une variable aléatoire discrète X est croissante sur R, 
continue à droite, et bornée à gauche. Elle a pour limite 0 en -oo et 1 en + oo. 
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La loi de Bernoulli, de paramètre 
p E [O, 1] 

Définition 

On dit qu 'une variable aléatoire discrète X suit la loi de Bernoulli de paramètre 
p E [0, 1] si elle ne prend que les valeurs 0 et 1, avec : 

P(X = 1) = p P(X = 0) = 1- p 

~ On note alors : X ~13(p) 

• 
0.8 

• 
0.6 

• • 
0.4 

• p:-0. l 

• • p:-03 
0.2 

• p :-0..5 

• • p:-0.7 

0.0 0.2 0.4 0.6 0 .8 1.0 

Figure 118.1 - Une représentation graphique de la fonction de probabilité pour la loi de Bernoulli, 

pour p = 0,1 , p = 0,3, p = 0,5 etp = 0,7. 

1.0 

0 .9 

0 .8 

0 .7 ---0 

0 .6 p:-0.l . 
0 .5 . p:-03 

p:-0.S . 
0.4 . p:-0.7 

0.5 1.0 1.5 2 .0 

Figure 118.2- Une représentation graphique de la fonction de répartition de la loi de Bernoulli, 
pour p = 0, 1, p = 0,3, p = 0,5 et p = 0,7. 
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Pour tout événement A de probabilité p, on définit sa fonction indicatrice ll A par : 

D ( ) = { 1 si w E A 
A w 0 si w lf. A 

i.e. : 

1 _ { 1 si A est réalisé 
A(w) - 0 si A n'est pas réalisé 

\02\ 1. l A est une variable aléatoire de Bernoulli; son paramètre p vaut P (A) . 

E'.J 2. La variable de Bernoulli est utilisée le plus souvent pour désigner une expérience avec un 
résultat binaire: un succès, à qui l'on attribue la valeur l, et un échec, à qui l'on attribue la 
valeur O. 
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La loi uniforme 
{sur un ensemble de réels) 

Définition 

On dit qu'une variable aléatoire discrète X suit la loi uniforme sur l'ensemble de réels 
{x1, ... , x11 } si, pour tout entier k de {l, ... , n}: 

1 
P(X = Xk) = -

n 

ce qui signifie que la loi Px est la loi d'équiprobabilité. 

~ La loi de Bernoulli est la loi uniforme sur {0, 1 }. 

Exemples 

1. Lors du lancer d ' un dé à 6 faces non pipé, le chiffre qui sort suit la loi uniforme sur 
{l, 2, 3, 4, 5, 6). 

2. Au casino de Monte Carlo, à la roulette, la boule peut tomber sur les valeurs entières entre 
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1 
0 et 36 de manière équiprobable, ce qui signifie que la probabilité de chaque valeur est 

37
. 

La valeur obtenue est ainsi une variable uniforme sur {O, 1, 2, ... , 36). 

En revanche, à Las Vegas, la roulette possède une case « OO ». Chaque valeur a 

donc la probabilité 
3

1

8 
de sortir; la v.a. correspondante est uniforme sur l'ensemble 

{OO, 0, 1, 2, ... , 36), bien que, à strictement parler, ce ne soit pas, si l'on se réfère à la défi­
nition précédente, une loi uniforme. Il suffit de remplacer la valeur OO par -1 pour remédier 
à ce problème de notation. 

L'apparition du double zéro OO à Las Vegas peut être interprétée comme une indication de 
l'avidité des promoteurs du jeu dans cette ville du Far West, pour se donner un avantage 
par rapport aux traditions européennes de fair play. On pourrait croire que les joueurs ne 
seraient pas dupes, mais l'histoire pourrait donner raison à Las Vegas, si on mesure le suc­
cès d'un casino par le volume de jeu. Toutefois, bien que symbolique du succès des jeux 
d' argent, Las Vegas fait maintenant pâle figure dans ce domaine, en comparaison avec le 
succès de l' industrie du jeu à Macao, région au régime administratif spécial de la Répu­
blique Populaire de Chine. 
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Définition 

On dit qu'une variable aléatoire discrète X suit la loi binomiale de paramètres 
n EN* et p E [O, 1], :S(n, p), si l'ensemble des valeurs possibles est 
X(Q) = {0, 1, ... , n} et si, pour tout entier k de {O, 1, ... , n} : 

~ 1. 
~ 

On note alors : 
X~ 13(n,p) 

i0!\ u 

2. La loi binomiale correspond au renouvellement, de manière indépendante, de n épreuves de 
Bernoulli de paramètre p. Plus précisément, on dispose du résultat suivant : 

1. De la loi de Bernoulli à la loi binomiale 

Soit p un réel de l'intervalle [O, l], et X1, ... , Xn, des v.a. indépendantes suivant la loi 
de Bernoulli de paramètre p. Alors, la somme X = X1 + ... + Xn suit la loi binomiale 
:S(n,p). 

Inversement, toute v.a. X suivant la loi binomiale 13(n, p) peut être considérée comme la 
somme de n v.a. indépendantes suivant la loi de Bernoulli de paramètre p, ce qui signifie 
qu'une loi binomiale 13(n, p) peut s' interpréter comme celle du nombre de succès dans une 
série den expériences indépendantes pour lesquelles la probabilité de succès vaut p. 

Démonstration: X vaut k si et seulement si on trouve, parmi les Xi, k variables qui 
valent 1, et n - k qui sont nulles. Les variables étant indépendantes, la probabilité d'une 
telle configuration, où les k variables qui sont égales à 1 ont été choisies, est donnée par : 

p ... p . (1 - p) ... (1 - p) = l (1 - p t -k . 
~ 

k fois n-k fois 

Le nombre de façons de choisir les k variables qui valent 1 est précisement le nombre de 
parties à k éléments pris parmi n, i.e. C~. Chaque choix correspondant à un événement 
disjoint des autres, les probabilités correspondantes peuvent être additionnées, ce qui 
montre que: 

P(X = k) = C~l (1- p)n-k 

et donc que la v.a. X est bien binomiale de paramètres n, p. • 
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0.20 •• 

• 
0. 15 ... ... 

• •• ... 
• • •• ... 

0. 10 • • • • • ... 

• • • • ... 
• 0.1 

• 0.3 

• 0.5 

10 20 30 40 j. 0.8 

Figure 120.1- Une représentation graphique de la distribution de probabilité pour la loi 
binomiale, pour p = 0, 1, p = 0,3, p = 0,5, p = 0,8 et n = 50. 

1.0 

0.8 

0.6 

0.4 

0.2 

10 15 20 25 30 35 

0.1 

0.3 

0.5 

• 0.8 

Figure 120.2- Une représentation graphique de la fonction de répartition de la loi binomiale, pour 
p = 0, 1, p = 0,3, p = 0,5, p = 0,8 et n = 40. 

On vérifie bien que: 

n n I P(X = k) = I c~ l (1- p)n-k = (p + 1 - p)" = 1 
k=O k=O 

(c 'est, tout simplement, la formule du binôme de Newton ... ) 

2. Le théorème du jury de Condorcet 

En l'an de grâce 1785, le marquis de Condorcet ' produisit une justification formelle du 
suffrage universel dans le cas d'un choix binaire, grâce à un argument probabiliste. Son 
argument était le suivant : dans la mesure où le citoyen moyen a moins d'une chance sur 
deux de se tromper, la somme de tous les votes des citoyens a très peu de chance d'être 
erronée. Et, lorsque le nombre de participants augmente, la décision choisie tend à être 

1. Marie Jean Antoine Nicolas de Caritat, 1743-1794. 
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la bonne. Mais cet argument ne tient que lorsque l'électeur n' a que deux choix, et non 
plus ... [38, 39]. 

La formule permettant de calculer la probabilité que la décision choisie soit la bonne 
s'obtient à partir de la loi binomiale de paramètres n, p, où p est un nombre compris 
entre ! et 1, en sommant sur l'ensemble des votants (on ajoute les probabilités de « bon 
vote») : 

avec p = 0,5 + s, s E R+. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.2 0.4 0.6 0.8 1.0 

Figure 120.3- Une première illustration graphique du théorème du jury de Condorcet: la 
probabilité que le vote tende à être le bon en fonction de p, pour un nombre de votants donné. 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0 

........................ ... ... ... 

20 40 60 80 100 120 

Figure 120.4- Une seconde illustration graphique du théorème du jury de Condorcet: la 
probabilité que le vote tende à être le bon en fonction du nombre de votants n, pour une valeur de 

p donnée (ici : p = 0,65). 
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Définition 

On dit qu'une variable aléatoire discrète X suit la loi géométrique de paramètre 
p E [0, l[ si l' ensemble des valeurs possibles est X(Q) = N* et si, pour tout entier 
naturel n: 

P(X = n) = p (1 - p)'1- 1 

On note alors: 
X ~ (j(p) 

0 .2 

0.20 

0.1 5 • 
• 

0.1 0 • 
• p=0.1 • 1 • À • • 0 .05 • • • p=0.3 • • • • • • • • • • • p=O.S À • • • • • 
2 4 6 8 10 12 14 À p=0.7 

Figure 121.1- Une représentation graphique de la fonction de probabilité pour la loi géométrique, 
pour p = 0,1,p = 0,3, p = 0,5 etp = 0,7. 

1. Propriété 

Pour la loi géométrique de paramètre p, les résultats sur les sommes de séries géomé­
triques conduisent à : 

400 

+ oo 

P(X > n) = I p(l - p)k- l 

= 

k=n+l 
+ oo 

I p(l - p)k 
k=n 

p(l - Pt 
1 - (1 - p) 
p(l - p)" 

p 
(1 - p)n. 
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1.0 

0.8 

0.6 

0.4 

• p=0.1 

0.2 • p=0.3 

• p=0.5 

-+--~~-+--~~~~~~~~~~-+--~~-+--~~~~~ • p = 0.7 
2 4 6 8 10 12 14 

Figure 121.2- Une représentation graphique de la fonction de répartition de la loi géométrique, 
pour p = 0, 1, p = 0,3, p = 0,5 etp = 0,7. 

Comme pour le cas de la loi binomiale, et bien d ' autres, la loi géométrique peut également 
être définie grâce à une suite de variables de Bernoulli de paramètre p ; il faut alors considérer 
une suite infinie de telles variables {X; : i = l , 2, ... } indépendantes, et interpréter i comme 
une variable temporelle, ce qui signifie que X; est le résultat obtenu (échec, 0, ou succès, l) 
pour la tentative effectuée à l'instant i. On désigne par X le premier instant ou l'on obtient un 
succès. L'événement {X= k) est donné par: 

{X= k) = {X1 = 0) n {X2 = 0} n ... n {Xk- 1 = 0} n {Xk = 1 l 

En raison de l'indépendance des variables X;, et donc des événements correspondant, on ob­
tient immédiatement : 

P(X = k) = (1- Pi- ' P 

La v.a. X est donc géométrique, de paramètre p. 
La propriété précédente est facile à redémontrer par un raisonnement analogue : 

{X > k) = {X, = 0) n {X2 = O} n . .. n {Xk = O} 

Par indépendance: 
P(X > k)=O-pi 

Le résultat suivant reprend cette discussion, qui rend, de fait, la définition et la proposition 
précédentes redondantes. 

Proposition 
La loi géométrique {i(p) est la loi du premier instant de succès dans une suite infinie 
de tentatives indépendantes de probabilité de succès p (suite de variables de Bernoulli 
13(p)). 

Une variable aléatoire X, de loi (J(p), vérifie : 

P(X = k) = p (1 - p/-1 

et : 
P(X > k)=(l-p)k 
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~ 1 u . La loi géométrique est donc utile lorsqu' il s'agit de modéliser des tentatives dont le résultat 
peut être traduit de façon binaire (un échec ou un succès), avec une dépendance temporelle, 
par exemple, des temps d'attente jusqu'à ce que se produise un événement attendu ou redouté, 
lorsque le temps est mesuré de manière discrète (nombre d' heures, de jours, etc.). 

2. La loi géométrique correspond, précisement, à des temps de vie sans vieillissement. 

Considérons deux entiers naturels met n, et une variable X ~ {J(p). Grâce à la proposition 
précédente, 

P(X > m) = (1 - pt' 

De plus, comme« X > m + n » implique «X > n », on a donc : 

{X > m + n} n {X > n} = {X> m + n} 

ce qui conduit alors, toujours grâce à la proposition précédente, à : 

P({X > m + n) n {X > n)) = (l - pt'+n 

La définition de la probabilité conditionnelle permet d'en déduire: 

(1 - pt'+" 
P(X > m + nlX > n) = ,, = (1- pt'= P(X > m). 

(l - p) 

Nous venons de démontrer la propriété suivante. 

2. Absence de mémoire pour une v.a. suivant la loi géométrique 
de paramètre p E [O, 1 [ 

Soit X une v.a. suivant la loi géométrique de paramètre p E [O, l [. La v.a. X vérifie la 
propriété d'absence de mémoire: 

V (m, n) E N x N : P (X> m + nlX > n) = P (X> m) 

Cette propriété est assez naturelle, dans la mesure où, dans une suite d'épreuves de Bernoulli, 
la loi de probabilité du nombre d'épreuves à répéter jusqu'à l'obtention du premier succès 
reste la même quel que soit le nombre d'échecs (les épreuves sont toutes identiques et indé­
pendantes). 

Exemples 

1. 
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Nous avons fait allusion à l'existence d'événements négligeables non vides. La loi géomé­
trique donne une bonne illustration de ce phénomène. Si on lance, une infinité de fois, et 
de façons indépendantes les unes des autres, une pièce de monnaie, lévénement A : «on 
ne tombe jamais sur pile» n'est pas un ensemble vide, puisque : 

A= (0,0, ... ) 

Si on désigne par X le nombre de lancers jusqu'à la première apparition de la face« pile », 
alors la v.a. X est géométrique, et A = (X = +oo}. Par suite : 

+co 

P[A] = P[X = +oo] = 1 - P[X < +oo] = l - I P[X = k] = l - l = 0 
k=O 

L'événement A est bien non vide, mais négligeable. 
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2. Prenons l'exemple du légendaire Ty Cobb. On suppose que, pour chaque tentative de frap­
per la balle, sa probabilité de succès vaut 0,3664, et que les tentatives successives sont 
indépendantes. Le nombre X de tentatives jusqu'à l'obtention de son premier succès est 
donc une v.a. géométrique de paramètre p. La probabilité qu' il faille à Ty Cobb exactement 
3 tentatives pour obtenir son premier succès est : 

P (X= 3) = 0,3664 X 0,63362 ~ 0,1471 

La probabilité qu'il n'arrive pas à frapper la balle dans une partie où il a droit à 3 tentatives, 
est identique à celle qu' il lui faille plus de 3 tentatives pour frapper la balle, et vaut donc : 

P (X > 3) = 0,63363 ~ 0,2544 

Sachant que Ty Cobb est dans un mauvais jour, et qu'il vient de rater 3 tentatives de frap­
per la balle, la probabilité qu'il n'ait toujours pas frappé la balle au bout de la cinquième 
tentative est : 

P(X > SIX > 3) = P(X > 2) = 0,63362 = 0,4014 (121.1) 

En fait, avec les hypothèses utilisées pour cet exemple, même si Ty Cobb avait eu une pé­
riode extrêmement mauvaise dans laquelle il ne réussissait pas toujours à frapper la balle au 
bout d'un grand nombre de tentatives, on ne dispose d 'aucune information sur ses chances 
de frapper celle-ci au cours des tentatives suivantes. Ce résultat peut être contre-intuitif, 
dans la mesure où les historiens du baseball estiment qu ' il était doué d'une capacité de 
concentration hors du commun. Ceci dit, la modélisation géométrique permet néanmoins 
de très bonnes approximations dans de nombreux cas de tentatives répétées, et donc même 
pour notre champion Ty Cobb. 
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Il La loi binomiale négative 
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Défin ition 

On dit qu'une variable aléatoire discrète X suit la loi binomiale négative de para­
mètres n E N* et p E [O, l], 13N(n,p)1, si l'ensemble X(Q) des valeurs possibles 
est l'ensemble des entiers supérieurs ou égaux à n, et si, pour tout entier k ~ n : 

On note alors : 

P(X = k) = cz::::: pn (l - p/-n = (k - 1 )pn (1 - p)k- n 
n-1 

X~ 13N(n,p) 

La loi binomiale négative est une extension de la loi géométrique. Elle permet d'envisager les 
cas où le nombre n de succès (par rapport à un événement donné) est connu, et k est le nombre 
d'épreuves nécessaires pour obtenir ces n succès que l' on cherche. Comme d'habitude, p est 
la probabilité d'un succès. 

Pour comprendre ce phénomène, supposons que la suite des tentatives soit une suite 
infinie de variables de Bernoulli 13(p). La variable X que l'on recherche est en fait la 
somme de n variables géométriques indépendantes. En effet, pour obtenir exactement n 
succès, il suffit d'attendre le premier succès, puis de recommencer à compter jusqu'au 
second, etc., et, ce, jusqu'au n ième_ Chaque fois que l'on remet ainsi le compteur à zéro, 
les tentatives qui ont permis d'atteindre le dernier succès sont indépendantes de celles 
qui permettront d'atteindre le prochain. 

Réfléchissons maintenant à l'événement {X= k}, i.e. «il faut exactement k tentatives 
pour obtenir n succès». 11 faut bien sûr k ~ n ~ 1. De plus, pour définir cet événement, 
il suffit de décider où se situeront les n tentatives qui seront des succès, les k - n autres 
étant des échecs, tout en réalisant que la dernière des k tentatives doit être un succès. 
On définit donc l'événement {X= k} en choisissant n-1 tentatives fructueuses restantes 
parmi les k - 1 tentatives qu'il reste à choisir. Le nombre de façons de choisir est, bien 
évidemment, cz::::11' alors que, pour un choix donné des instants des succès, la probabilité 
est pn (l - p)k- n puisqu'il y an succès et k - n échecs. Ceci montre bien que : 

P(X = k) = cz::::: pn (l - p)k- n 

Nous résumons les résultats de cette discussion dans la proposition suivante, même si, 
comme dans le cas de la loi géométrique, il y a redondance avec la définition précédente. 

1. Cette loi est aussi appelée Loi de Pascal, ou encore, Loi de Polya. 
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Proposition 
Une variable X ~ BN(n, p) peut s'écrire comme la somme den variables géométriques 
indépendantes X1, ••• , Xn de paramètre p : 

De plus, pour tout couple d' entiers naturels (n, k) tels que k ~ n ~ 1, 
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Pour étudier le comportement d'une population de tortues géantes des Galâpagos, 
on insère, à travers leur carapace, des micro-capteurs thermiques dans leur cavité 
abdominale. Ces capteurs permettent de savoir si les tortues parviennent à échapper 
au stress thermique lié à la dégradation de leur environnement. Sur ces capteurs, seuls 
80 % réussissent à fonctionner correctement et à recueillir les informations attendues. 
On considère qu'il faut un minimum de vingt tortues dont les capteurs fonctionnent 
pour que l'étude soit satisfaisante. 

Soit X la v.a. correspondant au nombre de tortues dont les émetteurs fonctionnent. 
Si on considère que les perturbations qui peuvent affecter le fonctionnement des cap­
teurs sont indépendantes les unes des autres, on en déduit, grâce à la proposition 

précédente, que X suit la loi binomiale négative 13N ( 20, 1
8

0~ ) . 

La probabilité de devoir équiper exactement trente tortues de capteurs vaut donc : 

( 
80 )20 ( 80 )30-20 

P(X = 30) = c~g::: ) lOO 1 - lOO 

Ci~(~)'° m'° 
29 ! (~)20 (~)10 

19 ! 10 ! 5 5 

20 X 21 X ... X 29 420 
10 ! 530 

4404 645 779 893 911 552 

186 264 514 923 095 703125 
0,02365 

Il serait peut-être plus intéressant de connaître la probabilité qu'il faille équiper au 
moins 30 tortues. Étant donné que la variable X peut prendre des valeurs k arbi­
trairement grandes, on calculera plutôt la probabilité de son complémentaire. Ceci 
demande néanmoins de calculer 10 valeurs non triviales, ce qui, avec une calculatrice 
simple, est peu aisé, quoiqu'envisageable. Comme le nombre 10 n'est pas très grand 
au sens des théorèmes limites que l'on rencontre en théorie des probabilités (voir, par 
exemple, plus loin, le théorème central limite), il n'y a pas d'autre possibilité qu'un 
calcul direct : 
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29 

P (X ~ 30) = 1 - 2= P (X = k) 
k=20 

1 - f (k - 1) (~)20 (~)k-20 
k=20 19 5 5 

367 041806162 986 909 

7450 580 596 923 828 125 

0,04926. 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
. S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

On peut remarquer que la probabilité de l'événement {X = 30} représente près de la 
moitié de la masse de la queue entière de la distribution de X à partir de 30. Ceci 
indique que P (X ~ k) décroît très vite, chose que 1' on peut observer partiellement 
en faisant les calculs à la main. On peut également se demander quelle valeur de k 
maximise la probabilité P (X = k). 

Nous verrons, ultérieurement, l'importance de la notion d'espérance, qui corres­
pond à celle, intuitive, de moyenne. Dans cet exemple, il se trouve que P (X= k) est 
maximal pour k = 25. Cette valeur de k est également la moyenne intuitive de X. 
On s'attend en effet, puisque la chance de succès est de ~.que l'on doive attendre 
en moyenne une durée dei avant d'obtenir un succès (ou, de manière plus intuitive, 
on aurait en moyenne 4 succès sur 5 tentatives consécutives); de plus, comme X est 
la somme de 20 variables géométriques, pour obtenir 20 succès, on devrait attendre 
20 x i = 25 tentatives successives en moyenne. Ce raisonnement intuitif sera rendu 
entièrement rigoureux dans ce qui suit lors des calculs d'espérance mathématique. 

Les considérations de l'exemple précédent peuvent également s'appliquer à la loi 
binomiale, lorsque n est assez grand (disons n ~ 30), puisque cette loi est aussi celle 
de la somme den variables de Bernoulli. Nous invitons le lecteur à fabriquer un tel 
exemple, peut-être avec notre ami Ty Cobb ? La seule différence notable entre les 
deux types de variables est que la variable binomiale prend ses valeurs k entre 0 et 
n, alors que la variable binomiale négative les prend au-delà de n. Mais lorsque n 
est grand, les effets de décroissance rapide de la probabilité P (X = k), pour k grand, 
et de maximisation de P (X = k) autour de la valeur moyenne intuitive de X , sont 
similaires dans les deux cas. Ce phénomène est dû au théorème central limite, qui 
sera vu ultérieurement. 

0.30 

0.25 • 
0.20 

• 
0.1 5 

• • • 
0.10 • 

• ... • 
0.05 • • • • • • 
0.00 

0 5 

• 
• 

• • • 1 • 
• 

• • • • • • • • • • • 
10 15 

• • • • • 
20 

0.1 

0.3 

0.5 

0.8 

Une représentation graphique de la fonction de probabilité pour la loi binomiale négative, 

pour p = 0, 1, p = 0,3, p = 0,5 etp = 0,8. 
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1.0 

0.8 

0.6 

0.4 

0.1 
0.2 - • 0.3 

0.5 

5 10 15 20 25 0.8 

Une représentation graphique de la fonction de répartition de la loi binomiale négative, pour 

p = 0, 1, p = 0,3, p = 0,5 et p = 0,8. 
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Tirons simultanément n boules dans une urne contenant M boules rouges et N - M boules 
noires. On peut utiliser comme univers Q l'ensemble des parties à n éléments parmi N, 
sans que l'ordre importe. Si X désigne la variable aléatoire donnant le nombre de boules 
rouges extraites, sa loi de probabilité est : 

Pour comprendre cette formule, il faut remarquer que, dans l'ensemble Q défini ci­
dessus, on fait l'hypothèse selon laquelle chaque boule a la même chance que les autres 
d'être tirée. Par conséquent, chaque partie à n éléments parmi Na la même chance d'être 
tirée. La probabilité de chaque événement élémentaire de Q a une probabilité équipro-

bable égale à l sur le nombre de parties possibles, c'est-à-dire d
11 

• 

N 

Supposons maintenant qu'on s'intéresse seulement aux parties qui ont exactement k 

boules rouges. L'ensemble de ces parties correspond à exactement à {X= k}. Il nous 
suffit donc de compter le nombre de parties avec k boules rouges parmi les parties de n 
boules prises au sein des N boules. Pour déterminer une partie de n boules avec k boules 
rouges, il suffit d'abord de décider quelles boules, parmi les M rouges, seront utilisées; 
il y a C~ tels choix. Il reste alors à déterminer lesquelles des N - M boules noires seront 
les n - k boules utilisées pour compléter la partie de n boules : il y a c~-_\t tels choix. 
La probabilité P (X = k) est donc bien celle annoncée ci-dessus. Nous sommes donc en 
mesure de donner la définition suivante, qui fait également office de théorème : 

Définition 

On dit qu'une variable aléatoire discrète X suit la loi hypergéométrique de para­
mètres N E N*, M E N* et n E N*, 'H(N, M, n), si l'ensemble des valeurs possibles 
est X(Q) = {0, 1, ... , N} et si, pour tout entier k de {0, 1, ... , n} : 

ck cn-k 
P(X = k) = M N- M en 

N 

(~)(~=~) 
(~) 

Cette loi est celle du nombre d'éléments de typer dans un échantillon de taille n pris 
dans une population de N éléments comportant M éléments de type T. 
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On note alors : 
X~ 'H(N, M, n) 

Comme l'indique la définition, cette loi est utile pour comprendre le nombre d'éléments d 'un 
échantillon de taille n possédant une propriété donnée (le type 'T de la définition), connaissant 

la proportion ~ d'éléments ayant cette propriété, et la taille N de la population. 

Ce qui rend cette distribution non triviale est le fait que le choix de l'échantillon 
soit réalisé sans remplacement; ainsi, lorsqu'on tire successivement des éléments pour 
constituer l'échantillon, le type de chaque élément déja tiré affecte les chances restantes 
de tirer des éléments de type 'T. Les tirages ne sont pas indépendants. 

Exemple 

Un bol rempli de N = 30 cerises comporte six cerises moisies, et donc M = 24 bonnes cerises. 
On prend une poignée de 5 cerises au hasard (en fermant les yeux et en évitant de sentir). 
Parmi ces n = 5 cerises, le nombre X de bonnes cerises a pour loi 1-f (30, 24, 5). La probabilité 
que notre poignée contienne au moins 4 bonnes cerises est : 

P(X~4)=P(X=4)+P(X=5)= (~
4

)(n + (254)(~) = 2530 ;:; 07457 
r eso) G) 3393 , 

., Approximation binomiale de la loi hypergéométrique 

On conçoit aisement que si N est beaucoup plus grand que n, et que ~ n'est pas trop 

proche de 0 ou 1, alors les tirages seront approximativement indépendants, puisque le 
fait de retirer un petit nombre d'éléments d'une grande population a très peu d'influence 
sur la proportion d'éléments de type 'T dans la population restante. 

Si on considère alors qu' un succès correspond au tirage d'un élément de type 'T, la 

probabilité d'un succès sera (approximativement) de p = ~ à chaque tirage. 

La variable aléatoire X sera donc, approximativement, binomiale de paramètres n et p. 
Cette approximation n'est pas valable si p est proche de 0 ou de 1, ou si n n'est pas 

petit devant N. 
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• 0.25 

• • 0.20 • 
• • 

0.15 

• • • 
0.10 

0.05 

5 

•• 

• • • 

15 

. ... 
• n= 10 

• n=20 

• n=30 

25 • n=40 

Figure 123.1 - Une représentation graphique de la fonction de probabilité pour la loi 
hypergéométrique, pour n = 10, n = 20, n = 30 et n = 40. 

1.0 

0.8 

0.6 

0.4 

• n= 10 

0.2 • n=20 

• n=30 

5 10 15 20 25 30 • n=40 

Figure 123.2- Une représentation graphique de la fonction de répartition de la loi 
hypergéométrique, pour n = 10, n = 20, n = 30 et n = 40. 
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La loi de Poisson est utile pour compter le nombre d'événements qui ont lieu dans un 
intervalle de temps donné, si on connaît le nombre moyen d'événements par unité de 
temps. Cette loi est plus difficile à interpréter que les lois rencontrées précédemment 
faisant intervenir des variables de Bernoulli indépendantes, ou des tirages de parties. 

Nous verrons, ultérieurement, que la somme de deux variables de Poisson indépen­
dantes est encore une variable de Poisson. Nous avons déjà vu que ce n'est pas le cas 
pour les autres types de variables. Par exemple, une somme de variables de Bernoulli in­
dépendantes est une variable binomiale, mais non de Bernoulli ; ou encore, une somme 
de variables géométriques indépendantes est une variable binomiale négative, mais non 
binomiale. 

Cette propriété extraordinaire de stabilité par addition fait de la loi de Poisson un des 
fondements d'une branche importante du calcul moderne des probabilités, celle des pro­
cessus stochastiques à sauts. 

La seule autre loi que nous rencontrerons qui ait une propriété similaire de stabilité par 
addition est une loi non discrète, la loi normale, qui est le point de départ du théorème 
central limite, et de la théorie des processus stochastiques continus. 

Définition 

On dit qu'une variable aléatoire discrète X suit la loi de Poisson de paramètre À> 0 
si l'ensemble des valeurs possibles est X(Q) = N et si, pour tout entier naturel k : 

On note alors : 

e- A. Àk 
P(X=k)= -­

k! 

X~ P(A) 

Une façon de comprendre la loi de Poisson est d' imaginer un très grand nombre n de variables 
de Bernoulli, avec un paramètre p = p 11 qui dépend de n, tel que np11 reste constant. Ainsi, 
la probabilité de succès devient d 'autant plus petite que n est grand ; plus précisément, elle 
est inversement proportionnelle au nombre n de tentatives. Le nombre de succès au sein des n 
variables de Bernoulli approche alors une loi de Poisson. En raison du lien entre les variables 
de Bernoulli et la loi binomiale, on obtient le théorème suivant, dont la démonstration donnée 
ci-dessous peut sembler très formelle ; une fois que l' on disposera de la notion d'espérance 
mathématique, il sera plus facile de comprendre, intuitivement, la relation entre n et p11 • 
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~ Convergence de la loi binomiale vers la loi de Poisson 

Théorème 

Soient À un réel strictement positif, et (pn)nEN* une suite de réels de [0, 1] telle que : 

0.10 

0.08 

0.06 .. 
0 .04 

0 .02 

. . 
10 20 

lim npn =À 
n-.+oo 

.. 
30 

. . 
40 50 

• À=2 

• À= lO 

À=20 

À=30 

Figure 124.1 - Une représentation graphique de la fonction de probabilité pour la loi de Poisson, 
pour A= 2, A = 10, A= 20 et A= 30. 

1.0 

0.8 

0.6 

0.4 -

0.2 

10 15 20 

--

25 30 

• À=2 

À= lO 

À=20 

À=30 

Figure 124.2- Une représentation graphique de la fonction de répartition de la loi de Poisson, 
pour A = 2, A = 10, A= 20 et A = 30. 

(X11 ) 11EN une suite de variables aléatoires, de loi binomiale 13 (n , Pn), et X une variable 
aléatoire de loi de Poisson 'P(À), alors, pour tout entier naturel k : 

lim P(Xn = k) = P(X = k) 
n-.+oo 
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Démonstration : Comme : 

lim np11 =il 
n-->+oo 

on a donc, lorsque n tend vers +oo : n p11 = il+ o(l), et: 

Par suite, pour tout entier naturel k : 

lim P(X11 = k) = 
11-->+oo 

lim c~ p~ (1 - P11t- k 
11-->+oo 

= l' n ! k ( )n- k 
n-!.Too k ! (n - k) ! p 11 l - p11 

= lim n · ilk n-k (1 + o(l)l 1 - - + o -' ( il ( 1 ))l1-k 
11-->+oo k ! (n - k) ! n n 

lim n ! ilk n-k (1 + o(l)) e <11- k)ln(1 -*+o(D) 
11-->+oo k ! (n - k) ! = 

= 
n ! k k (11-k) A ( 11-k ) lim il n - ( 1 + o( 1 ) ) e - -11-+o ,,--

11--> +oo k ! (n - k) ! 

n ! k k À k A ( 11-k ) lim il n- (1 + o(l)) e- +ïï+o ,,--
n-->+oo k ! (n - k) ! = 

n ! k k ,i k ,i + ( 11 - k ) 1 i m il n - (l + o( 1 ) ) e - e ïï 0 
,,--

n-->+oo k ! (n - k) ! = 

lim n ! ilk n- k (1 + o(l)) e -À eo( I) 
11-->+oo k ! (n - k) ! 

n! lim ilk n- k e- A 
n-->+oo k ! (n - k) ! 

= 

= 

n! 
lim ilk e- A 

n-->+oo k ! (n - k) ! nk 
= 

ilk e- A . n ! 
-- hm 

k ! 11-->+oo (n - k) ! nk 
= 

1
. (n - k + l)(n - k + 2) ... n 
lm 

11--> +oo nk = 

= ilk e- A ( 1 - k) ( 2 - k) -- lim 1 + -- l + -- ... (1 + 0) 
k ! 11-->+oo n n 

= 
• 
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Exemple 

L'incidence d'une maladie génétique rare liée à l'appartenance au peuple Mapuche (le nom de 
ce peuple signifie « les Gens» (che) « de la Terre» (Mapu)) est estimée à 5 cas par million 
dans la population chilienne ; les racines Mapuche sont distribuées de façon très homogène 
dans les zones urbaines. La ville de Valparafso, au Chili , compte 250 000 âmes. Si on consi-

dère que chaque habitant de Valparaiso a une chance p = 2._
6 

= 1 
d'avoir la maladie, 

10 200000 
indépendamment des autres, le nombre X de personnes de Valparaiso qui ont cette maladie 

l 
est une variable de loi 3 (n, p) avec n = 250 000 et p = 

200 
OOO. On peut donc affirmer que 

cette loi est approximativement celle d'une variable de Poisson Y de paramètre À = n p = ~. 
Ainsi, la probabilité qu' il y ait au moins une personne à Valparaiso avec cette maladie est 
approximativement égale à : 

5 
P(Y -;:, 1)= 1-P(Y=O)= 1- e- :i ;::, 0,71. 

0.2 0 

1 • 

O. 15 0 

4t 

,. 
O. 10 

i 

Il 

0.0 5 

0 
0 

î ' • - ! --2 4 6 8 10 12 14 

Figure 124.3- Une illustration graphique de la convergence de la loi binomiale vers la loi de 
Poisson, dans le cas B(100, 0,05) et 1'(5). 
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Somme de variables aléatoires 
discrètes 

1. Somme de deux variables aléatoires discrètes indépendantes 

Étant données deux variables aléatoires discrètes indépendantes X et Y, à valeurs en­
tières, la loi de la v.a. somme X + Y est donnée, pour tout entier naturel k, par : 

P(X +Y= k) = P(X = i)P(Y = j) 
iEX(Q), jEY(fl), i+ j=k 

Démonstration : On calcule : 

P(X +Y= k) = P( LJ {X= i, Y= j}) 
iEX(fl), jEY(Q), i+ j=k 

= P(X = i, Y= j) 
iEX(Q), jEY(Q), i+ j=k 

= I P(X = i) P(Y = j) 
i+j=k 

(c'est grâce à l'indépendance des v.a. que P(X = i, Y= j) = P(X = i) P(Y = j)). • 

Exemple : Somme de deux v.a. indépendantes suivant respectivement les lois de 

Poisson 'P(A) et 'P(µ), (A,µ) e (ffi:)2 

Soient À etµ deux réels strictement positifs, et X et Y deux v.a. discrètes indépendantes suivant, 
respectivement, les lois de Poisson P(À) et P(µ). 
La loi de la v.a. somme X+ Y = X1 + .. . + X111 + Y1 + ... + Xn est donc donnée, pour tout entier 
naturel k, par : 

P(X + y = k) = I P(X = i, y = j) 
iEN, jEN, i+ j =k 

= I P(X = i) P(Y = j) 

= 

= 

= 

= 

= 

iEN, jEN, i+ j=k 
k 

I P(X = i) P(Y = k - i) 
i=O 

k e-,1 ;ii e-µ µk- i 

~ -i !- (k - i) ! 

e-«t+µ) + k ! ;ii µk-i 

k ! ~ i ! (k - i) ! 
-(A+µ) k 

_e -- ~ ci ;ii k-i 
k! ~ k µ 
e-<A+µ) 

-k-! - (À + µ)k 

On retrouve donc, pour la v.a. X+ Y, la loi de Poisson P(À + µ). 
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Cette remarque permet de justifier certaines affirmations concernant la loi de Poisson. Sup­
posons en effet, que, dans le cadre du nombre de clients qui pénètrent dans un magasin, l'on 
s'intéresse à la loi du nombre de clients qui arrivent pendant une période den minutes, n E N. 
On considère que le nombre de clients qui arrivent au cours de toute période d'une minute suit 
une loi de Poisson de paramètre À. 

Supposons aussi que les variables de Poisson correspondant aux arrivées dans des périodes 
temporelles disjointes soient indépendantes. Cette dernière hypothèse se justifie grâce à un 
raisonnement utilisant une approximation binomiale. On trouve alors que le nombre d'arrivées 

Il 

X au cours d' une période den minutes vaut X= IX;, où chaque X; , i = 1, ... , n, désigne le 
i=I 

nombre d ' arrivées au cours de la minute numéro i, pendant la période des n minutes. Comme 
X;~ 'P(,l), on trouve bien, grâce au calcul de l' exemple précédent, appliqué itérativement, 
X ~ 'P (n ,l). De surcroît, si l'on divise la période de longueur n minutes en deux sous-périodes 
disjointes de durées respectives n 1 et n2 minutes (n 1 E N, n2 E N, n 1 + n2 = n), les nombres 
d'arrivées dans les deux sous-périodes seront indépendants, de lois de Poisson de paramètres 
respectifs n 1 ,l et n 2 A. 

2. Propriété 

La discussion précédente peut être résumée à l'aide d'un théorème plus général, équi­
valent à la propriété d'auto-indéfinie-divisibilité de la loi de Poisson. 

Théorème 
Soit X une variable de Poisson de paramètre À > O. On suppose que la valeur de 
X correspond à des arrivées de deux types distincts, dits « type T1 » et « type T2 ». 

p E [O, 1] désigne la probabilité qu'une arrivée soit de type T1, X 1 et X2 sont, respecti­
vement, les nombres d'arrivées de type T 1 et T 2 . 

Alors, les v.a. X1 et X2 sont indépendantes. De plus, 

avec À.1 =À pet ll2 =À (1 - p). En particulier, X= X1 + X2. 

Démonstration : Il suffit de prendre la discussion ci-dessus comme modèle. • 
En pratique, il n'est pas toujours nécessaire de passer par la formule générale pour la loi 
d'une somme de variables indépendantes. C'est ainsi le cas lorsque les variables peuvent être 
considérées comme des sommes. 

., Somme de deux v.a. indépendantes suivant respectivement les lois binomiales 
13(m, p) et 13(n, p), (m, n, p) E (N*/ x [O, 1) 

Soient met n deux entiers naturels non nuls, p un réel de l'intervalle [O, l], et X et Y 
deux v.a. discrètes indépendantes suivant, respectivement, les lois binomiales 13(m, p) et 
13(n,p). 

Nous avons déja vu que X peut être considéré comme somme de m v.a. indépendantes 
X1, ... , Xm, suivant chacune, la loi de Bernoulli 13(p); de même, Y peut être considéré 
comme la somme den v.a. indépendantes Y1, ••• , Yn, suivant chacune, la loi de Bernoulli 
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'B(p ). Les v.a. en jeu étant, toutes, indépendantes, la v.a. somme 
X+ Y= X1 + ... + Xm + Y1 + ... + Xn suit donc la loi binomiale 'B(m + n, p). 

Ce résultat peut être retrouvé par un calcul direct (à partir de la formule générale 
pour les sommes de variables indépendantes, que nous ne présentons pas ici), grâce à la 
formule dite de Vandermonde : : 

l <;;i<;;m, l <;;j<;;n 

i+J=k 

i j - k 
Cm Cn - Cm+n 

>- Somme de deux v.a. indépendantes binomiales négatives de même paramètre 
p E ]0, 1 [ 

Un raisonnement analogue au précédent montre que la somme de deux v.a. indépen­
dantes de lois binomiales négatives 'BN(n, p) et 'BN(m, p) est une v.a. qui suit égale­
ment la loi binomiale négative 'BN(n + m, p). Il suffit en effet de considérer chacune des 
deux premières variables comme somme de variables géométriques indépendantes, de 
paramètre p. 

Dans les deux exemples précédents, le fait que les variables que lon somme aient le même pa­
ramètre (probabilité de succès) p est crucial. La somme de deux variables N(n, p) et N(m, q) 
lorsque p * q ne peut être reliée à des lois classiques. 
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Nous avons déjà évoqué la notion d'espérance pour des v.a., lorsque l'on a considéré la 
valeur moyenne « intuitive » d'une variable. L'espérance, ou espérance mathématique, 
formalise ce concept intuitif. 

Définition 

Soit X une variable aléatoire discrète telle que la famille (lxki P (X = xd)xkEX(Q) soit 
sommable, i.e. 

L lxkl P(X = Xk) < +oo 
XkEX(Q) 

On appelle espérance mathématique de X le réel lE(X) tel que : 

lE(X) = I Xk P(X = Xk) 

XkEX(Q) 

~ 1. 

t:J 
L'espérance mathématique peut donc être considérée comme le barycentre des valeurs pos­
sibles de la variable aléatoire X, pondérées par leurs probabilités de réalisation. Ce concept 
fonctionne encore si X est une v.a. vectorielle. On se limitera ici au cas scalaire. 

2. Du fait de la condition d'absolue sommabilité dans la définition de l'espérance, on n' a pas le 

droit de parler d' espérance si la somme I xk P (X= xk) est semi-convergente et non ab­
xkeX(Q) 

solument convergente. Le lecteur vérifiera qu'un exemple d 'une telle situation non autorisée 
est le suivant : 

1. Propriétés 
>- Espérance d'une v.a. constante 

Soit X une variable aléatoire discrète constante, prenant la valeur C > O. Alors : 

lE(X) = C 

Démonstration : 

lE(X) = I Xk p (X = Xk) = I c p (X = Xk) = c p (X = C) = c 
XkEX(Q) XkEX(Q) 

(puisque X(Q) = { C}). • 
>- Espérance et valeur absolue 

Soit X une variable aléatoire discrète admettant une espérance lE(X). Alors: 

llE(X)I ~ lE(IXI) < +oo 
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~ Linéarité de l'espérance 

Soient X et Y deux variables aléatoires discrètes sur un espace probabilisé, admettant 
chacune une espérance mathématique (JE(X) et JE(Y) respectivement). Alors : 

JE(X + Y) = JE(X) + JE( Y) 

et, pour tout réel a : 

JE( a X) = a JE(X). 

Plus généralement, si (Xn)nEN est une suite de variables aléatoires sur un espace proba­
bilisé, admettant chacune une espérance, et si (an)nEN est une suite de réels, alors pour 
tout entier N ~ 0, 

Si la famille lail JE [IXilJ est sommable, la formule précédente reste encore valable en 
passant à la limite lorsque N tend vers +oo. 

Démonstration : Considérons la variable aléatoire Z = X + Y. On choisit, dans un 
premier temps, de s'intéresser au cas où X(Q) et Y(Q) sont finis . Z(Q) est donc aussi 
fini, et l'existence de l'espérance mathématique de Z est assurée. 

La loi de Z est donnée par : 

Il en résulte : 

420 

V z E Z(Q) : P(Z = Zk) = I P(X = X j, y= YJ) 
X;+yj= Zk 

JE(Z) = I Zk P(Z = Zk) 
ZkEZ (Q ) 

= I I (xi+Y1)P(X= xi,Y=yj) 
ZkEZ(Q) X;+yj=Zk 

= I I (xi +Y1)P(X=xi,Y=y1) 
x;EX(Q) YJEY(Q) 

= I Xi { I P(X = Xi, y = y j)} 
X;EX(Q) YJE Y(Q ) 

+ I YJ { I P(X = X j , y= YJ)} 
YJE Y(Q) X;EX(Q) 

= I Xi P(X =Xi) + I YJ P(Y = YJ) 
j 

= JE( X) + JE( Y) 
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(On passe sans souci de 

I I (xi+ Yj) P(X = Xi, Y= Yj) 
ZkEZ(Q) x;+yj=Zk 

à: 

I I (xi +Yj )P(X=xi, Y=yj) 
x;EX(Q) YjEY(Q) 

car dire que Zk parcourt Z(Q) revient à sommer toutes les valeurs possibles de X et de Y; 
la v.a. Z a, en effet, été définie directement comme somme des v.a. X et Y.) 

La convergence absolue étant assurée, on peut sommer « par paquets » et réarranger : 

E(Z) = I ZkP(Z = Zk) 

ZkEZ(Q) 

= I I (xi + Yj ) P(X =Xi, Y= Yj)) 
ZkEZ(Q) X;+yj=Zk 

= I I (xi+ Yj) P(X =Xi, Y= yj)) 
X;EX(Q) YjEY(Q) 

I Xi { I P(X = Xi, y = y j)} 
X;EX(Q) YjEY(Q) 

+ I y j { I P(X = Xi, y = y j)} 
YjEY(Q) X;EX(Q) 

I Xi P(X = Xj) + I Yj P(Y = Yj) 
j 

E(X) + E(Y) 

Les assertions relatives aux suites de variables Xi et de coefficients ai se démontrent 
grâce aux propriétés précédentes par itération. • 

> Positivité de l'espérance 

Soit X une variable aléatoire discrète, à valeurs positives, admettant une espérance ma­
thématique E(X). Alors : 

E(X) ~ 0 

> Croissance de l'espérance 

Soient X et Y deux variables aléatoires discrètes telles que X ~ Y, admettant chacune 
une espérance mathématique (E(X) et E(Y) respectivement). Alors : 

E(X) ~ E(Y) 
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Théorème de transfert 

Soit X une variable aléatoire discrète, et f une fonction définie sur X(!2), à valeurs 
réelles. Alors, la v.a. f(X), définie par: 

f(X)(w) = f (X(w)) V w E n 

est d'espérance finie si et seulement si la famille (f(xk) P (X= xd)xkEX(Q) est sommable. 
On a alors: 

JE [.f(X)] = I f(xk) P (X= Xk) 
XkEX(Q) 

2. Calcul des espérances 

Dans ce qui suit, on calcule les espérances mathématiques des v.a. classiques présentées 
précédemment. Pour celles qui peuvent être considérées comme des sommes d'autres 
v.a., le calcul sera particulièrement aisé. 

> Calcul de l'espérance dans le cas de la loi de Bernoulli 

Considérons une variable aléatoire X suivant la loi de Bernoulli de paramètre p. Alors : 

IE(X) = 0 X P(X = 0) + 1 X P(X = 1) = 0 X ( 1 - p) + p = p 

> Calcul de l'espérance dans le cas de la loi uniforme 

Considérons une variable aléatoire X suivant la loi uniforme sur l'ensemble fini 
{l, ... , n}. Alors: 

In In k 1 In 1 n (n + 1) n + 1 
IE(X) = Xk p (X = Xk) = - = - k = - = --

n n n 2 2 
k= I k= I k= I 

> Calcul de l'espérance dans le cas de la loi binomiale S(n, p) 

Considérons une variable aléatoire X suivant la loi binomiale :B(n, p ). On a alors 
X(!2) = {O, 1, ... , n}. Étant donné que X ne prend qu' un nombre fini de valeurs, on sait 

11 

qu' elle admet une espérance. X peut s'exprimer comme I Xi , où X1 , .. . , X11 sont des 
i= l 

v.a. de Bernoulli de paramètre p indépendantes. Elles vérifient donc, pour tout entier i 
de {1, ... , n}, IE(Xi) =p. Sans même utiliser la propriété d' indépendance, et grâce, tout 
simplement, à la linéarité, on obtient immédiatement : 

Le lecteur vérifiera qu'on retrouve le même résultat, au prix d'un calcul bien plus com­
plexe, si on part de la formule P(X = k) = C~pk (1 - p)n-k et de la définition de l'espé­
rance. 
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> Calcul de l'espérance dans le cas de la loi géométrique de paramètre p > O 

Considérons une variable aléatoire X suivant la loi géométrique de paramètre p E ]0, 1[. 
On a alors X(Q) = N, et, pour tout entier naturel non nul k : 

P(X = k) = p(l - p/-1 

Comme 0 ~ p < 1, la série de terme général k P (X= k) = k p (1 - p)k-I est clairement 
convergente (comme série dérivée d' une série géométrique convergente; on peut égale­
ment invoquer le fait, vérifiable par le lecteur grâce à une simple étude de fonctions, que 
pour k suffisamment grand, 

où ( 1 - ~ t est le terme général d'une série géométrique convergente ; on peut, aussi, 

utiliser le critère de d' Alembert) . 
Il en résulte : 

+oo 

IE(X) = IkP(X = k) 
k= I 

+oo 

= I k p o - p )k- 1 

k=l 

+oo rd./ l pI-
k=l dx x=l - p 

- p[~(~~JL_p 
= p [:xC ~JL_, 
= p [!!_(X - ) + 1 )] 

dx 1 - x x=l - p 

p r~C~xlL_, 
p r (1 ~ x)' L_, 

= p r;2 L_, 
1 

p 

(On applique le théorème de dérivation terme à terme des séries entières, puisque l'on 
est bien à l ' intérieur du disque de convergence dont le rayon est 1.) 

> Calcul de l'espérance dans le cas de la loi binomiale négative de paramètres 
p E ]O, 1 [, et n E N* 

Considérons une variable aléatoire X suivant la loi binomiale négative de paramètre 
p E ]O, l[ et n E N*. On a alors X(Q) = N. X peut aussi être considérée comme la 
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n 

somme ~Xi, où X1, ••• , Xn sont des v.a. géométriques indépendantes, de paramètre p. 
i= l 

Elles vérifient donc, pour tout entier i de { 1, . .. , n}, JE(X;) = p- 1• Par simple linéarité, 
sans utiliser l'indépendance, on obtient immédiatement : 

Le lecteur vérifiera qu'on retrouve Je même résultat, au prix d'un calcul beaucoup plus 
complexe, si on part de la formule 

P(X = k) = pn (l - Pl-n (
k- 1) 
n-1 

et de la définition de l'espérance. 

> Calcul de l'espérance dans le cas de la loi de Poisson de paramètre A E IR 

Considérons une variable aléatoire X suivant la loi de Poisson de paramètre À E R On 
- ,l ,,ik 

a alors X(Q) = N, et, pour tout entier naturel non nul k: P(X = k) = Ti· 
e- A ,,ik 

La série de terme général k P (X = k) = k k! est clairement convergente. On peut, 

par exemple, utiliser le critère de d'Alembert, puisque : 

lim 

e -1l ,,ik+ 1 

(k + 1) (k + 1) ! 

k-++oo 

On peut donc calculer : 
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- ,l lk 
k-e-/l_ 

k! 

À 

k! À = lim --- = lim - = 0 
k-++oo J k-++oo k 

(k - 1) ! 

= À 
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Moment d'ordre r, r E N*, 
d'une variable aléatoire discrète 

Définition 

Soient r un entier naturel non nul, et X une variable aléatoire discrète. On appelle 
moment d'ordre r de la variable aléatoire X la quantité, notée JE(Xr), donnée par: 

lE(Xr) = I (xk)r P (X = Xk) 
XkEX(Q) 

sous réserve que lE(IXn = I lxklr P (X = xk) soit fini. 
XkEX(Q) 

1. Existence du moment d'ordre 

Si une variable aléatoire X admet un moment d'ordre r, r E N*, alors, pour tout entier 
positif n::;; r, le moment d'ordre n, JE(Xn), existe aussi .. 

Démonstration : La série de terme général lxkln P (X = Xk) est une série positive. 
Considérons, dans un premier temps, le cas d'un univers fini (comportant N éléments, 

N E N*). Une sommation «par paquets» conduit à: 

= 

< 

I lxkln P (X= Xk) 
XkEX(Q) 

P(X = xk) + 

P(X::;; 1) + 

+oo 

Ceci étant vrai pour toute somme finie comportant N termes, on en déduit, par passage 
à la limite lorsque N tend vers +oo, le résultat dans le cas général. • 

Cette propriété est aussi une conséquence de la fameuse inégalité de Jensen (prononcer 
« Yennsenne »; nous ne la démontrerons pas), qui dit que, pour toute variable aléatoire po­
sitive Y admettant une espérance, et toute fonction </>convexe positive sur [0, +oo[, alors : 

</> (lE(Y))::; E [</>(Y)] 

Il suffit en effet d'appliquer cette inégalité à Y = IXln et à la fonction y H </>(y)= y ~ , qui est 
convexe puisque ~ ~ 1. 
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2. Inégalité de Markov 

Soit X une variable aléatoire positive admettant une espérance mathématique. Alors, 
pour tout réel t > 0 : 

lE(X) 
P(X ~ t) ~ --. 

t 

Démonstration : Il suffit de sommer « par paquets » : 

lE(X) = I Xk P (X = Xk) = I Xk P (X = xk) + I Xk P (X = Xk) 

XkEX(Q) XkEX(Q), Xk<f XkEX(Q), Xk~f 

Il en résulte, puisque la v.a. X est à valeurs positives : 

lE(X) ~ Xk P(X = xk) 

t 

t P(X ~ t) 

ce qui conduit directement au résultat. • 

Cette inégalité est utile pour estimer la vitesse de décroissance vers 0 de la queue P(X ~ t) 
d' une v.a. X lorsque t tend vers l'infini. Elle signifie que la décroissance doit être au moins 
de l'ordre de t - 1• Si des moments d'ordre plus grand que 1 existent, on obtient une vitesse 
plus rapide, comme l' indique le corollaire suivant, qui s'obtient immédiatementen appliquant 
l'inégalité de Markov à l'événement {X ~ t} = {X' ~ t '}. 

Corollaire 
Soit X une variable aléatoire positive admettant un moment d'ordre r E ]O, +oo[. Alors, 
pour tout réel t > 0 : 

IE(X,.) 
P(X ~ t) ~ --. rr 

L'inégalité de Markov, ainsi que son corollaire, sont particulièrement utiles lorsqu'on ne 
connaît que très peu de choses sur la loi d 'une v.a. X, par exemple seulement l'existence 
d'un moment donné. Pour les lois classiques, il est préférable d'utiliser des estimations plus 
directes. 
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1. Dans l'attente d'un premier client rue de la Paix 

Supposons que le temps d'attente X pour l'arrivée du premier client après l'ouverture, 
dans un magasin de luxe rue de la Paix, mesuré en minutes entières, suive la loi géo­
métrique g (p ), avec p = 1~. Le temps d'attente moyen est donc de JE (X) = ~ = 10 
minutes . Mais qu'en est-il de la probabilité qu'il faille attendre plus de dix minutes, 
plus de vingt minutes, ou plus d'une heure, pour qu'arrive le premier client? Pour 
ces deux probabilités, le calcul direct donne : 

(9)'° P(X > 10) = 10 ~ 0,3487, 

( 9 )'° P(X > 20) = lO ~ 0,1216, 

( 
9 )60 

P(X > 60) = 10 ~ 0,001797. 

Supposons maintenant qu'on n'ait aucune raison de croire que la loi de X soit g (p), 
par exemple, à cause du fait qu'on doute fort que la propriété d'absence de mémoire 
soit vraie. Une raison pour un tel doute peut être la suivante : on a observé que si on 
a attendu longtemps le premier client, c'est le signe d'une mauvaise journée, et alors, 
en raison de cette attente, le temps d'attente restant moyen devient nettement plus 
élevé que 10 minutes. Néanmoins, on est toujours d'accord pour dire que le temps 
d' attente moyen, en l'absence d'autres informations, est de 10 minutes. On peut alors 
utiliser l'inégalité de Markov, puisque JE(X) = 5, ce qui permet d'affirmer: 

10 
P (X > 10) ~ lO = 1, 

10 
P(X > 20) ~ 

20 
= 0,5, 

10 
P(X > 60) ~ 

60 
= 0,1666 ... 

Il est intéressant de remarquer que si X suivait la loi g (p) , ces estimations devien­
draient de plus en plus mauvaises au fur et à mesure que l'on s'approche du compor­
tement asymptotique de la queue de X . 

Poursuivons encore un peu l'analyse. Nous verrons, par la suite, que le second 
moment de la loi g (p) se calcule aussi, et vaut : 

2-p 
JE(X2) = --

p2 
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Dans notre exemple, ceci donne IE(X2) = 100{2- 10-1) = 190. Imaginons que 
l'on trouve, empiriquement, que nous sommes d' accord avec cette valeur. Si nous 
ne croyons toujours pas que X est géométrique, et en l'absence de toute autre infor­
mation en dehors du second moment de X, on peut toujours utiliser le corollaire de 
l'inégalité de Markov, appliquée au second moment de X: 

19 
P(X > 10) .:::; rn = 1,9, 

P(X > 20).:::; 

18 
= 0,475, 

P (X > 60) .:::; 
360 

~ 0,05278. 

On constate que la première estimation est moins bonne qu'avec le premier moment 
(elle est même stupide ... ), mais les deux autres sont meilleures. 

La situation de l'exemple ci-dessus est typique de l'usage délicat de l'inégalité de 
Markov: lorsque t n'est pas très grand, il est préférable de se servir du premier mo­
ment, mais lorsque t devient très grand, il devient progressivement avantageux d'uti­
liser des moments d'ordre plus élevés. Dans tous les cas, si on a plus d'informations 
que celles données par les valeurs de quelques moments uniquement, il faut éviter de 
recourir à cette inégalité. 
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Considérons la répartition des températures moyennes mensuelles observées, res­
pectivement, dans une ville 'V1, et une ville 'V2• On dispose donc de deux séries 
statistiques dont les individus sont les mois de l'année, et la variable la température 
mensuelle. 

La répartition des températures dans la ville '1'1. 

--

-

--
--

Janvier Févncr Avnl Juin Ju11Jc1 Aol11 Septembre Octobre Novembre Décembre 

La répartition des températures dans la ville '1'2 • 
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En supposant, pour simplifier, que les douze mois ont tous la même durée, on cal­
cule, grâce aux histogrammes, que les moyennes annuelles des températures dans les 
deux villes sont exactement les mêmes : 

67 
- ~ 16 75 4 , 

Par contre, la répartition des températures dans les deux villes n'est pas du tout la 
même! Un outil mathématique permettant de mesurer la «dispersion» autour des 
moyennes annuelles est donc indispensable. 

Calculons, pour la ville 'V1, la quantité : 
Dernier mois 

I (Température du mois - Moyenne annuelle )2 

Premier mois 
---------------- ~ 27,020 

Nombre de mois 
Faisons le même calcul pour la ville 'V2 : 

Dernier mois 

I (Température du mois - Moyenne annuelle )2 

Premier mois ---------------- ~ 87,64 
Nombre de mois 

On s'aperçoit que ces grandeurs sont très différentes! Elles permettent de mesurer la 
dispersion des températures autour de la moyenne annuelle. 

Toutefois, ces grandeurs se mesurent en degrés au carré. Il est justifiable de consi­
dérer qu'on peut préférer une quantité qui permette de mesurer la dispersion dans 
les mêmes unités que les séries de départ. Une telle quantité pourrait s' interpréter 
comme l'écart moyen entre la température mensuelle et la température moyenne. La 
convention adoptée en probabilités et en statistiques est de considérer tout simple­
ment la racine carrée des grandeurs précédentes ; on obtient, respectivement, environ 
5,19816 pour la première ville, et 9,36166 pour la seconde. Ceci permet toujours 
d'affirmer que les températures de la seconde ville sont plus dispersées que celles de 
la première, mais aussi de dire que les valeurs obtenues en prenant la racine carrée 
sont des mesures des écarts moyens. Si on se souvient que les formules données avant 
de prendre les racines carrées font intervenir des moyennes de carrés des écarts, on 
s'aperçoit que la terminologie « écarts moyens » n'est pas tout à fait représentative de 
la réalité des calculs; il s'agit, plus précisément, de« racine carrée de la moyenne des 
carrés des écarts». On pourrait définir une autre quantité qui correspondrait de façon 
plus précise à des « écarts moyens » dans la bonne unité : la moyenne de la valeur 
absolue des écarts, c'est-à-dire en l' occurence, la quantité: 

Dernier mois 

I jTempérature du mois - Moyenne annuelle 1 

Premier mois 

Nombre de mois 
Il se trouve que cette définition est bien moins pratique, mathématiquement, que celle 
faisant intervenir la racine de la moyenne des carrés des écarts. Nous verrons, en 
particulier, une propriété d'additivité des dispersions définies avec les carrés, très utile 
pour comprendre la dispersion des sommes de variables aléatoires indépendantes, qui 
devient fausse si on remplace le carré par la valeur absolue. 
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1. Définitions 

~Variance 

Soit X une variable aléatoire discrète admettant un moment d 'ordre 2. On appelle va­
riance de la variable aléatoire X la quantité, notée V ar(X), donnée par : 

Var(X) = JE [(X - JE(X))2
] 

~ Écart-type 

Soit X une variable aléatoire discrète admettant un moment d'ordre 2. On appelle écart­
type de la variable aléatoire X la quantité, notée c:r(X), donnée par : 

c:reX) = ,.,/VareX) 

2. Propriétés 
~ Changement d'échelle 

Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Alors, pour tout 
réel À: 

V are À X) = .l2 V are X) 

Démonstration : On a : 

V are À X) = JE [ e.l X - JEell X))2
] 

= JE [e.lx - ;l JE(X))2] (linéarité de l'espérance) 

= JE [ll2 (X - JEeX))2
] 

= ;l2 JE [ex- JEeX))2
] (linéaritédel'espérance) 

= !l2 VareX) 

~ Invariance par translation 

• 

Soit X une variable aléatoire réelle admettant un moment d'ordre 2. Alors, pour tout 
réelµ : 

Var(X + µ) = Var(X) 

Démonstration : On a : 

Varex +µ)= JE [ex+µ - JEex + µ))2
] 

= JE [ex+µ - JE(X) - µ)2] (espérance d 'une v.a. constante) 

= JE [ex - JEeX))2
] 

= VareX) • 
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Corollaire Variance d'une v.a. constante 

Soit X une variable aléatoire réelle constante. Sa variance est nulle : 

Var(X) = 0 

Démonstration: Il suffit d'appliquer la formule d'invariance par translation ; pour tout 
réelµ: 

Var(O + µ) = Var(O) = JE [(ü- JE(0))2] = JE(O) = 0 • 
~ Variance nulle 

Soit X une variable aléatoire réelle. Alors : 

Var(X) = 0 <::::> X = JE(X) avec une probabilité de l <=> X 

est constante avec une probabilité de 1 

Démonstration : Il est clair que si X est une v.a. constante, alors son espérance est égale 
à elle-même ; sa variance est donc nulle. 

Réciproquement, si X est une v.a. de variance nulle : 

Var(X) = JE [(X- JE(X))2
] = I (xk - JE(X))2 P(X = Xk) = 0 

XkEX(Q) 

Tous les termes de la somme étant positifs ou nuls, il en résulte, pour tout Xk de X(Q) : 

(xk - JE(X))2 P(X = xk) = 0 

Par suite, pour toutes les valeurs Xk -:/=- JE(X) : 

Il reste: 
P(X = E(X)) = l 

qui est le résultat cherché. 

~ Formule de Koenig 

• 

Soit X une v.a. réelle admettant une espérance mathématique et un moment d'ordre 2. 
Alors: 

Var(X) =JE [x2] - [JE(X)]2 

Démonstration : On a : 

Var(X) = JE [(X - JE(X))2
] 

= JE [x2 - 2X JE(X) + (JE(X))2] 

=JE (x2] - 2 JE(X) JE(X) + JE [0E(X))2] 

= JE [x2] - 2 (JE(X))2 + (JE(X))2 

= JE [ X2] - (JE(X))2 
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Le plus souvent, pour calculer des variances de variables aléatoires, la formule de Koenig 
s'avère donner des calculs légèrement plus simples que si on utilise la définition ; elle permet, 
en outre, d' identifier les deux premiers moments séparément. 

3. Exemples de calcul de la variance 

> Calcul de la variance dans le cas de la loi de Bernoulli 

Considérons une variable aléatoire X suivant la loi de Bernoulli de paramètre p : 

P(X = 1) = p P(X = 0) = 1 - p 

Pour calculer sa variance, le plus simple est d' utiliser la formule de Koenig : 

lE(X2
) = 02 x P(X = 0) + 12 x P(X = l) = 0 + p = p 

Il en résulte : 

Var(X) =JE [x2
]- [lE(X)f = p- p 2 = p(l - p) 

Dans la littérature anglo-saxonne, on rencontre souvent la notation q = l - p (probabilité 
d'échec), qui conduit à la formule Var(X) = pq ci-dessus, et des expressions (cf. infra) utili­
sant aussi la notation q. 

> Calcul de la variance dans le cas de la loi uniforme 

Considérons une variable aléatoire X suivant la loi uniforme sur l'ensemble fini 
{ 1, .. . , n} : 

On calcule 

l 
P(X = k) = -

n 
lE(X) = n; 1 

n n 2 n 
lE (x2) = ~ k 2 P(X = k) = ~ ~ = ~ ~ k2 = ~ n (n + l) (2n + 1) = (n + 1) (2n + 1) 

k= 1 k= 1 n n k= 1 n 6 6 

Il en résulte, grâce à la formule de Koenig : 

> Calcul de la variance dans le cas de la loi géométrique de paramètre p > O 

Considérons une variable aléatoire X suivant la loi géométrique de paramètre p E ]O, 1 [. 
On a alors X(Q) = N*, et, pour tout entier naturel non nul k : 

De plus: 

P(X = k) = p(l - p)k- I 

lE(X) = _!_ 
p 
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On calcule: 

= 

= 

= 

+oo 

Ik2 
P(X = k) 

k=I 
+oo Ie p(l - p/- l 
k=l 

+oo [d J<l pik -
k=l dx x=l-p 

p :X[~ (k")L_p 
d [ +oo l 

= p dx X ~ k~- l x=l -p 

d [ d { +oo }] = p- x- I~ 
dx dx k=O x=l - p 

= p~ [x~ {-1 }] 
dx dx 1 - x x=l - p 

= P :x [(!: x)2 L-r 
=p[ 1 

2
+ 2x

3
] 

(1 -x) (1 -x) x=l-p 

= 

= 

{
l 2(1-p)} 

p 2 + 3 
p p 
l 2 (1 - p) 
-+---
p p2 

(On applique le théorème de dérivation terme à terme des séries entières, puisque l'on 
est bien à l' intérieur du disque de convergence.) 

Il en résulte, grâce à la formule de Koenig : 

[ 2] 2 1 2 (1 - p) 1 1 - p 
Var(X) = JE X - [IE(X)] = - + - - = --

p p 2 p2 p 2 

Il est à noter que ce résultat peut être également obtenu plus rapidement en calculant 
IE (X(X - 1)). 

>- Calcul de la variance dans le cas de la loi de Poisson de paramètre A E lR 

Considérons une variable aléatoire X suivant la loi de Poisson de paramètre À E R On 
. e- A ,,ik 

a alors X(Q) = N, et, pour tout entier naturel non nul k: P(X = k) = k!· 
Ona: 

IE(X) =À 
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On calcule alors : 

Il en résulte, grâce à la formule de Koenig : 

Var(X) = JE [ X2
] - [JE(X)] 2 = tl2 + tl - tl2 = tl 

Les quatre exemples ci-dessus utilisent la formule de Koenig. Dans de nombreux cas, on 
peut cependant recourir à des représentations de variables aléatoires comme sommes d'autres 
variables indépendantes, pour calculer beaucoup plus facilement leurs variances. C'est le cas, 
notamment, pour la loi binomiale et la loi binomiale négative. 
À cet effet, il faut utiliser l'indépendance des termes intervenant dans ces sommes. Les ré­
sultats qui suivent apparaissent comme des cas particuliers faisant intervenir le concept de 
covariance et des lois jointes de couples de v.a., que nous rencontrerons un peu plus loin. 

4. Espérance mathématique d'un produit de v.a. indépendantes 

Théorème 

Soient X et Y deux variables aléatoires indépendantes admettant, chacune, une espé­
rance mathématique. Alors, la v.a. produit X Y admet également une espérance mathé­
matique, donnée par: 

IE(X Y) = IE(X) IE(Y). 
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Ce théorème peut être utilisé pour calculer la variance de la somme de deux v.a. X et Y in­
dépendantes. Grâce à la formule de Koenig, et à la linéarité de l' espérance, on obtient, en 
développant les carrés : 

Var(X +Y) = JE (X2 + f 2 + 2XY)-(JE (X + f))2 

= JE(X2) + JE (Y2) + 2JE (XY) - (JE (X))2 
- (JE (Y))2 

- 2JE (X) JE (Y) 

= JE (X2)- (JE (X))2 + JE (Y2)- (lE(Y))2 

= Var(X) + Var(Y). 

Nous avons donc démontré le résultat fondamental suivant : 

:>- Additivité des variances pour les variables indépendantes 

Corollaire 
Soient X et Y deux variables indépendantes admettant des moments d'ordre 2. Alors: 

Var(X +Y)= Var(X) + Var(Y). 

Ce corollaire implique immédiatement que si X1, .. ., X,,, n E N, sont des variables indépen­
dantes admettant des moments d'ordre 2, alors: 

Le cas particulier suivant est particulièrement utile. 

:>- Variance de la somme de variables indépendantes et identiquement distribuées 
{i.i.d.) 

Corollaire 
Soient X,, .. ., Xn, n E N, des v.a. indépendantes et identiquement distribuées (i.i.d), 
admettant, chacune, deux moments. Alors, 

Exemples 

1. Calcul de la variance dans le cas de la loi binomiale E(n, p), n e N, p e [0, 1] 
Considérons une variable aléatoire X suivant la loi binomiale 13(n, p). Nous avons déjà 
vu que JE (X) = np, calcul qui a été grandement facilité par le fait qu'on peut considé-
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rer X comme la somme I Xi , ou les Xi, i = 1, . . . , n, sont des variables i.i.d, de loi 

i= I 
13 (p), avec, pour tout entier i de { 1, . . . , n), JE (Xi)= p. Nous avons également vu que 
Var (XJ = p (1 - p ). En utilisant le corollaire précédent, on obtient immédiatement : 

Grâce à la formule de Koenig : 

Var(X) = np(l - p) 

E(x2) = np (1-p)+n2 p 2 

= np (1 + (n - 1) p) 
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Le calcul direct de cette variance (i.e. de ce second moment), à partir de la loi 
P (X = k) = pk (1 - p )"-k (~) , et de la formule : 

Il 

lE (x2)= Ik2P(X=k) 
k=O 

est beaucoup plus ardu. C'est exactement la même chose pour le calcul qui suit. 

2. Calcul de la variance dans le cas de la loi binomiale négative 1JN(n,p), n E N, 
p E ]0, l] 

Considérons une variable aléatoire X suivant la loi binomiale négative 13N(n, p), n E N, 

p E [O, l]. Nous avons déjà vu que lE(X) = !!.. , résultat qui vient immédiatement du 
p 

Il 

fait que X peut être considéré comme la somme IX;, ou les X;, i = 1, ... , n, sont des 
i= I 

variables i.i.d. , de même loi g (p ), telles que, pour tout entier ide {l , ... , n}, JE (X1) = .!_ et 
p 

Var(X;) = (1 - p) p- 2. En utilisant le corollaire précédent, on obtient immédiatement: 

Grâce à la formule de Koenig : 

Var(X) = n (1- p) 
p2 

lE {x2)= n(l-p)+n2 
p2 p2 

n (n + 1 - p) 

p2 

L'inégalité suivante est très utile pour évaluer les déviations d'une variable par rapport 
à sa moyenne (espérance). 

5. Inégalité de Tchebychev 1 

Soit X une v.a. admettant une variance Var(X). Alors, pour tout réel t ~ 0 : 

P (IX - IE(X)I ~ t) ~ V a~(X) 
t 

Démonstration : Il suffit d'appliquer l' inégalité de Markov : 

JE (IX - IE(X)l2) 
P (IX - IE(X)I ~ t) = P (IX - IE(X)l2 ~ t2 ) ~ 

2 t 

Var(X) 
~ --­

t2 • 
Le phénomène qu'on vient d'observer peut être considéré comme« précurseur » de la concen­
tration de la mesure: lorsqu' on répète des expériences indépendantes de nombreuses fois, les 
déviations autour des valeurs moyennes, toutes proportions gardées, ont tendance à s' estom­
per très rapidement. L' ultime manifestation de ce phénomène est celui du théorème central 
limite, qu 'on verra ultérieurement. 
Il est néanmoins possible de bien comprendre déjà ce phénomène, en regardant simplement 
les écarts-type des moyennes empiriques. 

l. (ou Chebyshev, en transcription anglo-saxonne) Pafnouti Lvovitch Tchebychev (1821-1894), mathéma­
ticien russe, qui apporta de nombreuses contributions en probabilités et en statistiques. 

437 

"' :::::s 

:::::s 
V 

<a u 



"O 
0 
c 
:J 
0 
'<j" 
..-t 
0 
N 

@ 
....... 
.!: 
O'l 

·;:::: 
>-
0. 
0 
u 

~ Première manifestation de la concentration de la mesure 

Soit n un entier naturel non nul, et (XJ 1,;;i ,;;n une famille de variables i.i.d., d'espérance 
JE (Xï) = µ E R, i = 1, ... , n, de variance Var (Xi) = a-2 E R+, i = 1, ... , n. On désigne 
par S 11 leur « moyenne empirique » jusqu' au rang n : 

Par linéarité de l'espérance, additivité et changement d'échelle de la variance, l'espé­
rance et l'écart-type de la moyenne empirique sont donnés, pour tout entier n ~ 1, par: 

,,,/var (S 11 ) = ~ 

1 
Ainsi, la dispersion de la moyenne empirique tend vers 0 à la vitesse - , alors que son 

n 
espérance reste constante. On conçoit donc bien que S 11 se concentre autour de µ. L' in-
égalité de Tchebychev donne alors, pour tout x > 0 : 

a-2 
P(ISn -µI > x) ~ - 2 nx 

La vitesse de décroissance vers 0 de la probabilité de déviation de S 11 au-delà d'une 

distance x de µ , est, au moins de l'ordre de ~ pour x fixé, et au moins de l' ordre de 
n 

1 
2 pour n fixé. C'est une concentration de type quadratique. Le théorème central limite 
X 
montrera que la vitesse de concentration est typiquement beaucoup plus rapide, d'ordre 
exponentiel quadratique. 
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Revenons à l'exemple du temps d'attente X pour l'arrivée du premier client dans 
notre hypothétique magasin de luxe. Supposons à nouveau que l'on ne connaisse pas 
la loi de X. Par contre, on a mesuré, empiriquement, JE (X) = 10 et JE ( X2) = 190. 
Grâce à la formule de Koenig, on en déduit: 

Var(X) = 190- 100 = 90 

On peut alors invoquer l'inégalité de Tchebychev pour estimer la probabilité que la 
déviation entre X et sa moyenne soit supérieure à cinq minutes : 

90 
P (IX - 101 > 5) ~ 

25 
= 3,6 

Cette estimation n'a, évidemment, aucune valeur informative! La difficulté vient du 
fait que la v.a. X est fortement non symétrique, et a une forte variance par rapport au 
carré de son espérance. 

Considérons donc plutôt le temps d' attente Y jusqu'à l'arrivée du dixième client, 
et supposons que les durées entre deux clients successifs sont indépendantes les unes 
des autres. Il n'est alors pas mauvais de supposer que Y puisse être considéré comme 
somme de 10 variables i.i.d., de même loi que X. Par linéarité de l'espérance, additi­
vité de la variance pour les variables indépendantes, on obtient : 

JE (Y) = 100 et Var (Y) = 900 

L'inégalité de Tchebychev conduit alors à: 

900 
P(IY - 1001 > 50) ~ 

2500 
= 0,36. 

Si l'on changeait encore la question, et que l'on s'intéressait à la probabilité que le 
temps d'arrivée Z du 10oe client dépasse de plus de 500 minutes la durée moyenne 
d'attente de ce 10oe client, qui est de JE (Z) = 1 000 minutes, on obtiendrait, par 
Tchebychev: 

9000 
P (IZ - 1 0001 > 500) ~ 

250 
OOO = 0,036. 
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1. Inégalité de Cauchy-Schwarz 

Théorème 
Soient X et Y deux variables aléatoires admettant, chacune, un moment d'ordre 2. Alors: 

IJE(X Y)I ~ ..,/JE(X2) ..,/JE(Y2) 

ou encore: 

Il y a égalité si et seulement si les v.a. X et Y sont colinéaires, i.e. s'il existe un réel t tel 
que X = t Y presque sûrement (la probabilité associée est 1 ). 

Démonstration : Pour tout réel t, par linéarité de lespérance : 

JE [(X+ t Y)2
] =JE [x2

] + t2 JE [ Y2
] + 2 t JE [X Y] 

X et Y admettant des moments d'ordre 2, l 'existence de l'espérance JE [X Y] est ainsi 
assurée. 

De plus, le trinôme JE [(X + t Y)2] étant toujours positif, et ce quelle que soit la valeur 
du réel t, son discriminant réduit est donc négatif ou nul : 

ce qui conduit au résultat cherché. 
Le cas d'égalité correspond à l'existence d'une racine double t0 , qui est donc telle que : 

ce qui équivaut à : 
X + to Y = 0 presque sûrement 

(i.e. la probabilité associée vaut 1). 
X et Y sont donc presque sûrement colinéaires. La réciproque est évidente. 

2. Espérance d'un produit de v.a. indépendantes 

• 

On rappelle, dans ce qui suit, le théorème sur l'espérance d'un produit de v.a. indépen­
dantes ; sa démonstration est donnée ci-dessous. 

Théorème 

Soient X et Y deux variables aléatoires indépendantes admettant, chacune, une espé­
rance mathématique. Alors, la v.a. produit X Y a également une espérance mathéma­
tique, donnée par : 

JE(X Y) = JE(X) JE(Y) 
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Démonstration: Par indépendance des v.a. X et Y, pour tout xi de X(Q), et tout Yj de 
Y(Q): 

lxi Yj P(X =Xi, Y= Yj)I = lxi Yj P(X =Xi) P(Y = Yj)I = lxil IYj l P(X =Xi) P(Y = Yj) 

X et Y admettant une espérance mathématique, lxd P(X = Xi) et IYjl P(Y = yj) sont les 
termes généraux de séries convergentes. 

L'existence de l'espérance du produit X Y est ainsi assurée. On a alors: 

IE(X Y)= 
XjEX(Q), !JjEY(Q) 

= 
XjEX(Q), y jEY(Q) 

= { I Xi P(X = xJ} { I Yj P(Y = Yj)} 
XiEX(Q) !JjEY(Q) 

IE(X) IE(Y) • 
La réciproque est fausse ! Ce n'est pas parce que E(X Y) = E(X) E(Y) que les v.a. X et Y sont 
indépendantes, loin de là ! Il y a néanmoins un type de variables aléatoires pour lesquelles 
cette réciproque est vraie : les variables de Bernoulli. Le lecteur pourra réfléchir à la propriété 
suivante : une variable de Bernoulli X est, en fait, équivalente à l'événement A= {X= l}, 
puisque, si X n'est pas égale à l , alors, nécessairement, X = O. De fait, l' indépendance de deux 
variables de Bernoulli X et Y est équivalente à l'indépendance des événements A = {X = 1} 
et B = {Y = l}. On peut alors montrer que la relation E[X Y] = E[X] E[Y] est équivalente à 
P[A n B] = P[A] P[B], qui implique, par définition, que A et B sont indépendants, et, par suite, 
que X et Y sont indépendants. 

Exemple 

Voici un contre-exemple assez général illustrant l'implication fausse de la remarque précé­
dente. Soient X1 et X2 deux variables indépendantes de même loi, admettant, chacune, un 
moment non nul d'ordre 2. On considère les v.a.: 

Par linéarité : 
E (Y) = 0 

Ainsi, 
JE(X) E(Y) = 0 

De plus, 

JE (XY) = E ( x? - xi) = o 
et donc IE(X Y) = JE(X) E(Y) . 
Dans la plupart des exemples, X et Y ne sont pas indépendants. On peut noter, en particulier, 
que X et Y ne peuvent pas être de Bernoulli, sauf si une des deux variables X1 ou X2 a une 
variance nulle. Le lecteur vérifiera par exemple que, si X1 et X2 suivent la loi '13 (p ), p = 0,5. 

P({X= l}n{Y=O})=O 

alors que: 
l l l 

P (X = 1) P (Y = 0) = - - = - -:F 0 
2 2 4 
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3. Covariance 

Définition 

Soient X et Y deux variables aléatoires admettant, chacune, un moment d'ordre 2. On 
appelle covariance du couple de v.a. (X, Y) la quantité : 

Cou(X, Y) =JE [(X - JE(X)) (Y - JE(Y))] 

Soit X une variable aléatoire admettant un moment d'ordre 2. Alors : 

Cou(X, X) = JE [(X - JE(X))2
] = Var(X) 

> Covariance de deux v.a. indépendantes 

Soient X et Y deux variables aléatoires indépendantes admettant, chacune, un moment 
d'ordre 2. Leur covariance est alors nulle: 

Cou(X, Y)= 0 

Attention! La réciproque est fausse. Le contre-exemple précédent s'applique ici aussi (i l suffit 
de soustraire les espérances) ... 

Démonstration : Les v.a. X et Y étant indépendantes, il en est de même des v.a. X - JE(X) 
et Y - JE(Y). Par suite : 

Cou(X, Y) = JE [(X - JE(X)) (f - JE(Y))) 
= = JE [X - JE(X)] JE [Y - JE(Y)] 
= {JE [X] - JE(X)} {JE [f] - JE(Y)} 

= 0 

(On utilise, tout simplement, la linéarité de l'espérance par rapport aux constantes JE(X) 
et JE(f).) • 

4. Propriétés de la covariance 

Soient X et Y deux variables aléatoires admettant, chacune, un moment d'ordre 2. La 
covariance Cou(X, Y) du couple de v.a. (X, f) vérifie les propriétés suivantes : 

• Symétrie: 
Cou( Y, X)= Cou(X, Y) 

• Changement d'échelle: pour tout couple de réels (A,µ): 

Cou(AX,µ Y)= AµCou(X, Y) 

• Invariance par translation : pour tout couple de réels (a,{3) : 

Cou (X+ a, Y+ /3) = Cou(X, Y) 
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• Comparaison avec les écarts-types : d'après l' inégalité de Cauchy-Schwartz : 

ICou(X, Y)I ~ a-(X) a-(Y) 

Démonstration : 

• Symétrie : De par la définition de la covariance : 

Cou(X, Y) = JE [(X - JE(X)) (Y - JE(Y))] = JE [(Y - JE(Y)) (X - JE(X))] = Cou(Y, X) 

• Changement d'échelle: pour tout couple de réels (À,µ) , par linéarité de l'espérance: 

Cou (ÀX,µ Y) = = JE [(ÀX - JE(ÀX)) (µY - JE(µ Y))] 
= = JE [(ÀX - ÀJE(X)) (µY - µ JE(Y))] 
= = JE [Àµ (X - JE(X)) (Y - JE(Y))] 
= = Àµ JE [(X - JE(X)) (Y - JE(Y))] 
= Àµ Cou(X, Y) 

• Invariance par translation : pour tout couple de réels (œ,{3), par linéarité de l'espé­
rance: 

Cou (X+ œ, Y+ /3) = JE [(X+ œ - JE(X +a)) (Y+ /3 - JE(Y + /3))] 
= JE [(X+ œ - JE(X) - œ) (Y+ {3- JE(Y) - /3)] 
= JE [(X - JE(X)) (Y - JE(Y))] 

= Cou(X, Y) 

• Comparaison avec les écarts-types : d'après l'inégalité de Cauchy-Schwartz : 

ICou(X, Y)I ~ a-(X) a-(Y) 

> Coefficient de corrélation 

• 

Soient X et Y deux variables aléatoires non constantes admettant, chacune, un moment 
d' ordre 2. Le coefficient de corrélation du couple de v.a. (X, Y) est la quantité définie 
par: 

Propriété 

Cou(X, Y) 
p(X, Y) = a-(X) a-(Y) 

Soient X et Y deux variables aléatoires non constantes admettant, chacune, un moment 
non nul d'ordre 2. Comme : 

ICou(X, Y)I ~ a-(X) a-(Y) 

alors : 

-1 ~ p(X, Y) ~ 1 
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~ Formule de Koenig 

Soient X et Y deux variables aléatoires telle que la covariance Cov(X, Y) existe. Alors : 

Cov(X, Y) = JE (X Y) - JE(X) JE(Y) 

Démonstration : On a : 

Cov(X, Y) = JE [(X - JE(X)) (Y - JE(Y))] 

Exemple 

JE [X Y+ JE(X) JE(Y) - X E(Y) - Y JE(X)] 
= JE [X Y] + JE(X) JE(Y) - JE(X) E(Y) - E(Y) JE(X) 

JE [X Y] - JE(X) E(Y) 
(linéarité de l'espérance) 

• 

On considère deux variables X1 et X2 i.i.d., de loi 13(p). On pose X= X1 + X2, et Y= X1 X2. 
(les v.a. X et Y correspondent, respectivement à la somme et au mimimum des gains dans un 
jeu de pile ou face, où on lance, de façon indépendante, deux pièces, et où on gagne un euro 
chaque fois que tombe le côté « pile» (avec une probabilité de p) et rien du tout chaque fois 
que tombe le côté « face ». 
Puisque: 

alors, par indépendance: 

et : 
E (X) E (Y) =px p = p2

. 

Grâce à la formule de Koenig : 

Cou (X, Y)= 2p2 
- p2 = p2

. 

On a aussi: 

Il en résulte : 
p2 p 

p (X, Y) = p (l - p) = l - p 

Il est intéressant de noter que le coefficient de corrélation entre X et Y est précisément égal à 
ce que l'on appelle, dans le langage des jeux d' argent, la« cote de la face pile ». 
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Couples de variables aléatoires 
discrètes 

Nous avons déjà rencontré certaines propriétés des paires de variables aléatoires, parti­
culièrement lorsqu'elles sont indépendantes, mais pas nécessairement, comme l'illustre 
le dernier exemple ci-dessus. Nous introduisons, dans ce qui suit, de nouveaux éléments 
permettant d'étudier, de façon plus systématique, ces paires de v.a. 

1. Couple de variables aléatoires discrètes 

Définition 

Soit (Q, Jl, P) un espace probabilisé. On appelle couple de variables aléatoires dis­
crètes sur (Q, Jl, P) toute application Z: Q ~ JR2, qui, à tout événement w de Q as­
socie le couple (X(w), Y(w)), où X et Y sont deux variables aléatoires discrètes sur Q . 

Un couple de variables aléatoires peut être considéré comme une variable aléatoire à valeurs 
dans JR.2. 

Exemple 

Considérons le lancer de deux dés. On désigne par X le plus grand des deux nombres obtenus, 
et par Y le plus petit. Alors, Z = (X, Y) est un couple de variables aléatoires. 

Théorème 

Soient (Q, Jl, P) un espace probabilisé, et (X, Y) un couple de v.a. discrètes sur Q. Sup­
posons que les valeurs prises par chacune des deux composantes X et Y de ce couple 
sont: 

X(Q) = {x1, ... , Xm} 

où (m, n) E (N* U {+00})2. 

Alors, lafamille d'événements: 

Y(Q) = {y1, ... , Yn} 

({X= xd n {Y= yd)1 ;:;; i;:;;m, l o:;; j ;:;;n =({X= Xi et y= yd)1 ;:;;i;:;;m, J;:;;j;:;;n 

est un système complet d'événements de Q. 

On utilisera la notation : 

2. Lois 

> Loi conjointe 

Soient (Q, Jl, P) un espace probabilisé, et (X, Y) un couple de variables aléatoires dis­
crètes sur (Q, Jl, P). On appelle loi conjointe du couple de v.a. (X, Y) l'application, notée 
Px,Y: 

X(Q) x Y(Q) -7 [O, l] 
(x, y) H P (X = X, Y = y) 
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> Lois marginales 

Soient (Q, .J'I, P) un espace probabilisé, et (X, Y) un couple de variables aléatoires dis­
crètes sur (Q, .J'I, P). On appelle lois marginales les lois de probabilités respectives des 
V.a. X et Y. 

Théorème 

Soient (Q, .J'I, P) un espace probabilisé, et (X, Y) un couple de v.a. discrètes sur Q, de la 
forme: 

X(Q) = {x1 , ... , Xm} 

où (m,n) E N* x N*. 

Alors, les lois des v.a. X et Y sont respectivement données par : 

• pour tout entier ide {l, ... , m}: 
n 

P(X = xJ = I P(x =xi, Y= y1) 
j = I 

• pour tout entier j de { 1, ... , n} : 
m 

p (y = y j) = I p (X = Xi' y = y j) 
i=I 

> Lois conditionnelles 

Soit (Q, .J'I, P) un espace probabilisé, et (X, Y) un couple de variables aléatoires discrètes 
sur (Q, .J'I, P). Pour tout y de Y(Q) tel que P(Y =y) =F 0, l'application P(Y =y): 

X(Q) ~ [O, 1] 
P(X =X y= y) 

x H P (X = xi Y = y) = ' 
P(Y =y) 

est appelée loi conditionnelle de X sachant que Y = y. On utilisera parfois la notation 
explicite P CIY = y) , au lieu de P (Y = y). 

De même, pour tout x de X(Q) tel que P (X = x) =F 0, l'application P (X= x) : 

Y(Q) ~ [O, 1] 
P(X =X y= y) 

y H P (Y = ylX = x) = ' 
P(X = x) 

est appelée loi conditionnelle de Y sachant que X = x. 

Nous avons déjà rencontré des variables aléatoires indépendantes, mais rappelons quand 
même la définition associée. 

Définition 

Soient (Q, .J'I, P) un espace probabilisé, et (X, Y) un couple de variables aléatoires 
discrètes sur (Q, .J'I, P) . 

Les v.a. X et Y sont indépendantes si la loi conjointe est le produit des lois marginales, 
c'est-à-dire, pour tout (x, y) de X(Q) x Y(Q): 

P (X = x, Y = y) = P (X = x) P (Y = y) 
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Un théorème limite 
pour les variables aléatoires 
discrètes : la loi des grands nombres 

De façon très intuitive, il est clair que les caractéristiques d'un échantillon choisi au 
hasard se rapprocheront d'autant plus des caractéristiques réelles de la population que la 
taille de l'échantillon augmente. Curieusement, la taille de l'échantillon à considérer ne 
dépend que faiblement de la taille de la population. Ainsi, pour déterminer la préférence 
d'une population en chocolat noir corsé ou au lait, un sondage sur le même nombre 
d'individus dans un petit pays comme le Luxembourg ou, au contraire, dans un pays à 
plus forte population comme les États-Unis, suffit! On peut se rappeler de l'exemple 
de l'approximation binomiale de la loi hypergéométrique, pour illustrer ce phénomène : 
l'approximation est bonne, que l'on ait ou non une population qui soit des centaines ou 
des centaines de milliers de fois plus grandes que l'échantillon. 

En ce qui concerne le problème très précis de calculer une moyenne empirique, et son 
interprétation en tant qu'espérance de la population, on dispose d'un outil extrêmement 
général : la « loi des grands nombres», dont il existe au moins deux versions, une faible, 
une forte . Nous disposons déjà des outils pour en démontrer une version faible. 

C'est le mathématicien suisse Jacob (Jacques, James) Bernoulli 1 qui en établit le pre­
mier, le modèle formel, en 1690. La plupart des sondages se basent, au minimum, sur 
ce résultat. Le cadre extrêmement vaste d' application de ce théorème a un prix : la loi 
des grands nombres, qui dit que la moyenne empirique de données i.i.d. converge vers 
leur espérance mathématique, ne donne pas d' ordre de grandeur de la vitesse de conver­
gence, et ne permet donc pas d'obtenir ce que l'on appelle communément une «marge 
d'erreur», qui requiert le théorème central limite. 

1. La loi faible des grands nombres 

Théorème 

Soit (X11 ) 11EN* une suite de variables aléatoires indépendantes et identiquement distri­
buées, définies sur un même espace probabilisé (n, 3l, P), avec une espérance mathé-

X1 +X2+ ···+X 
malique IE(X). Alors, 11 converge « en probabilité » vers IE(X), ce qui 

n 
se traduit mathématiquement par le fait que, pour tout s > 0, 

(I
X1+X2+···+X 1 ) 1 i m P n - IE(X) ~ s = 0 

n-++oo n 

Démonstration : On peut présenter une démonstration, simple, et très complète, de la 
loi faible des grands nombres, en supposant que les variables X11 ont un moment d'ordre 2 
fini. Cette hypothèse, beaucoup plus forte, permet même d'affaiblir les autres hypothèses 
du théorème, en supprimant en particulier l'hypothèse i.i.d. 

l. ( 1654-1705), frère de Jean Bernoulli ( 1667-1748), lui aussi mathématicien, oncle de Daniel ( 1700-1782) 
et Nicolas Bernoulli (1695-1726). 
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Supposons plutôt que les X11 sont indépendants et possèdent tous la même espérance 
et la même variance. Soit alors : 

X1 +X2 + ··· +Xn 
Mn=------­

n 

On calcule alors, en utilisant la linéarité de l'espérance, l'additivité et le changement 
d'échelle de la variance : 

IE (X1) + IE (X2) + · · · + IE (Xn) 
IE [M11] = = lE (X1), 

n 

( ) 
Var(X1) + Var(X2) + · · · + Var(Xn) Var(X1) 

Var Mn = = ---
n2 n 

Grâce à l'inégalité de Tchebychev, on obtient alors : 

(I
X1 + X2 +···+X 1 ) P n 

11 
- IE(X) ~ e = P (IM11 - IE(X)I ~ e) 

Var(M11 ) 

Pour toute > 0, cette expression tend vers 0 lorsque n tend vers +oo. Nous avons donc 
démontré le résultat suivant. 

2. Une loi faible des grands nombres avec second moment, 
sans hypothèse i.i.d. 

Théorème 

• 

Soit (X11 )nEN* une suite de variables aléatoires indépendantes définies sur un même es­
pace probabilisé (Q, Jl, P), toutes avec la même espérance mathématique IE(X) et la 
même variance Var (X) finie. 

X1 +X2 + ···+X 
Alors, n converge en probabilité vers IE(X). 

n 

En renforçant encore un peu les hypothèses concernant les moments, on peut démontrer fa­
cilement, grâce à un résultat connu sous le nom de lemme de Borel-Cantelli, la loi forte des 
grands nombres. Cette loi est néanmoins vraie en toute généralité, sans l ' existence de mo­
ments d ' ordres plus élevés que 1, mais sa démonstration sort largement du cadre de ce cours. 
Nous la mentionnons sans plus de commentaires. 

3. La loi forte des grands nombres 

Théorème 

Soit (Xn)nEN* une suite de variables aléatoires i. i.d. définies sur un même espace probabi­
lisé (Q, Jl, P), avec une espérance mathématique IE(X) finie. Alors, avec une probabilité 

X1 +X2 +···+X 
égale à 1, n converge vers IE(X) lorsque l'entier n tend vers l'infini. 

n 
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Du discret au continu : variables 
aléatoires continues 

Jusqu'à présent, l' univers des possibles, n, était dénombrable. Il n'est pas toujours pos­
sible de modéliser les phénomènes de la vie réelle en se restreignant à de tels univers. 
Néanmoins, beaucoup des concepts développés dans le cadre discret restent encore va­
lables lorsque n n'est pas nécessairement dénombrable. La théorie de la mesure, que 
nous ne traitons pas dans ce cours, permet de donner une définition précise des types 
d'espaces probabilisés (Q, 51, P) qui sont utiles en modélisation probabiliste. Modulo 
ce point que nous ne détaillerons pas, il est trivial de redéfinir le concept de variable 
aléatoire et les quantités associées. 

Définition 

Soit (Q, 51, P) un espace probabilisé. On appelle variable aléatoire réelle sur 
(Q, 51, P) toute application X : Q ~ R 

La fonction de répartition F x de X est la fonction de la variable réelle x définie par : 

Fx(x) = P(X ~ x). 

La loi, ou la distribution, de X, peut être identifiée à cette fonction Fx. 

Propriété 
Comme dans le cas discret, avec F x définie comme ci-dessus, F x est croissante, 
lim F x (x) = 0 et lim F x (x) = 1. 

x~-oo x~+oo 

Dans ce qui suit, on se place, implicitement, dans un espace probabilisé (Q, 51, P), 
pour lequel l'univers n n'est pas dénombrable. Il s'agira donc simplement d'admettre 
sans démonstration que les variables aléatoires que nous serons amenés à utiliser sont 
définies sur de tels espaces. 
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1. Densité de probabilité 
Définition 

Une fonction f : IR\.. ~ IR\.., à valeurs positives, intégrable (i.e. ( f(t) dt = f +oo f(t) dt 
J J!<. -OO 

existe) est appelée densité de probabilité si et seulement si : 

f
+oo 
OO f(t) dt= 1 

Exemples 

1. La fonction caractéristique de l'intervalle [0, 1], 1 LO, JJ , est une densité de probabilité, puis­
qu'elle est à valeurs positives, intégrable, et telle que : 

f+oo l' li ll [0, 1) dt = 1 dt = dt = 1 
OO Û Û 

2. La fonction f définie sur IR par : 

f (x) = { ~ pour x < 0 
e x pour x ~ 0 

est une densité de probabilité pour les mêmes raisons, en particulier : 

f+oo Io r +oo 

00 

f(t)dt= _
00

0dt+ Jo e-1dt=O+[(-e-1)]~
00

=0-0+l=l. 

2. Variable aléatoire continue 

Définition 

Soit f une densité de probabilité. On dit qu'une variable aléatoire réelle X suit la loi 
de densité f si, pour tout couple de réels (a, b) tel que a ~ b: 

P(X E [a,b]) =Lb f(t)dt 

On dit aussi que la v.a. X est continue. 

Pour toute v.a. continue, 
P(X E [a,b]) = P(X E ]a ,b]) 

puisque l'intégrale de f sur l'intervalle ouvert à gauche ]a, b] est la même que celle sur l'in­
tervalle fermé [a, b], ou celle sur l'intervalle ouvert ]b, a[. 
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Propriété 
Soit X une v.a. réelle de densité f. Sa fonction de répartition F x est telle que : 

• Pour tout réel x : 

F x(x) = J~ f(t) dt 

• F x est continue sur R 

• Si f est continue en x E JR., alors F x est dérivable en x, et : 

F~(x) = f(x) 

3. Espérance d'une variable aléatoire continue 

Pour comprendre intuitivement ce que représente le concept d'espérance pour les v.a. 
continues, il est intéressant de considérer une variable aléatoire discrète prenant ses va­
leurs dans l'ensemble {1, ... , n}. 

Sa fonction de probabilité est donnée par : 

p(k) = P(X = k) 

pour k = 1, 2, ... , n. 
Si on change de notation et que l'on écrit : 

l(~) = np(k) 

X 
on est amené à s'intéresser à la v.a. Y = -, qui est toujours discrète, mais prend ses 

n 

valeurs dans { ~' ~' ... , 1} c [0, 1]. 
On s'aperçoit, en particulier, que la fonction de probabilité de Y est donnée par : 

Par définition, 
n 

JE [X] = I k p (k) 
k=I 

Par linéarité : 
1 n k (k) JE [Y] = - I -f - . 
n k=I n n 

Enfin, s'il s'avère que la fonction p est telle que la suite (1 (~)tEN' i.e. la suite 

(n p (k)))nEN• converge vers une limite f (x), où lest une densité de probabilité, quand 
k/n converge vers x E [0, 1] (par exemple, en prenant k = [n x], partie entière de nx), 

alors on reconnaît que la formule ci-dessus pour JE [Y] est la somme de Riemann asso-

ciée à l ' intégrale fo1 
t f (t) dt. Si, de surcroît, la fonction f est continue par morceaux, 

nous avons vu que la somme de Riemann converge vers l'intégrale, i.e. : 

lim JE [Y] = (1 t f (t) dt. 
rr->oo j 0 
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n p (k) peut aussi être interprété comme une approximation de la densité f d' une variable 
aléatoire Z, correspondant à la loi limite de la loi de Y. On divise p (k) par la longueur de 
l'intervalle [k~I, ~],pour permettre à la probabilité de ne pas tendre vers une limite tri­
viale. Plus précisément, toujours avec k = [n x] , on peut écrire, sous réserve d' existence 
des limites en jeu, 

Et : 

f (x) = 

lim 
n->+oo 

dFz (x) 
dx 

P(zE[x-~,x]) 
1 

= lim nPlY E (~' ~JJ 
n->+oo l n n 

lim f (~) 
n->+oo n 
lim np (k) 

n->+oo 

JE [Z] = lim JE [Y] = lim - ~ - f - = t f (t) dt. l 
/1 

k (k) li 
n->+oo n->+oo n L..J n n 0 

k= I 

Le lecteur assidu pourra vérifier « à la main » que la situation ci-dessus s'applique à des 
exemples que nous avons déjà rencontrés, y compris dans le cas où la v.a. X est de loi 13 (n, p ). 
On trouve alors : 

1 ( x2) f(x) = (2rrrï exp - 2 
Toutefois, même pour ce cas binomial, les calculs sont un peu ardus, et vont au-delà de ce que 
la théorie générale prédit, car il s'agit du cas particulier des variables binomiales, qui ont des 
propriétés très fortes. Le seul résultat que l'on peut obtenir par le théorème central limite est: 

lim P [y - ~ ~ x] = Jx f (z) dz 
n~oo 2 -oo 

qui est celui du théorème de De Moivre-Laplace. Cette remarque permet non seulement d 'ex­
pliquer la relation entre fonction de probabilité de variables discrètes et densités de variables 
continues, mais aussi de motiver la définition suivante. 

Définition 

J
+oo 

Soit X une variable aléatoire réelle, de densité f, telle quel' intégrale 
00 

lxl f(x) dx 

converge. L'espérance mathématique de la v.a.r. X est la quantité, notée JE(X), don-
née par: 

J
+oo 

JE(X) = 
00 

x f(x) dx . 

4. Propriétés 

Les propriétés suivantes s'obtiennent trivialement à partir des propriétés correspondantes 
pour les intégrales. Les nouveaux concepts en jeu, les moments notamment, sont essen­
tiellement identiques à ceux définis précédemment pour les variables discrètes. Nous 
omettons donc les démonstrations. Les interprétations « intuitives » sont les mêmes. 
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> Espérance et valeur absolue 

Soit X une variable aléatoire admettant une espérance JE(X). Alors : 

llE(X)I ~ lE(IXI) < +oo 

> Positivité de l'espérance 

Soit X une variable aléatoire réelle à valeurs positives, admettant une espérance mathé­
matique JE(X). Alors : 

JE(X) ~ O. 

> Croissance de l'espérance 

Soient X et Y deux variables aléatoires réelles telles que X ~ Y, admettant chacune une 
espérance mathématique (JE(X) et JE(Y) respectivement). Alors: 

JE(X) ~ JE(Y) 

> Linéarité de l'espérance 

Soient X et Y deux variables aléatoires réelles, admettant chacune une espérance mathé­
matique (JE(X) et JE(Y) respectivement). Alors : 

JE(X + Y) = JE(X) + JE(Y) 

> Transfert de l'espérance 

Soient X une variable aléatoire réelle, de densité f, et une fonction réelle g, telle que 

f
+oo 

l'intégrale 
00 

lg (x) 1 f(x) dx converge. 

Alors Y = g (X) est une variable aléatoire dont 1 'espérance est donnée par 

f
+ oo 

IE(g (X)) = 
00 

g (x) f(x) dx. 

> Moment d'ordre n d'une v.a.r., n E N 

Définition 

Soient n un entier naturel non nul, et X une variable aléatoire réelle, de densité f, telle 

f
+oo 

que l'intégrale 
00 

lxln f(x) dx converge. Le moment (absolu) d'ordre n de la v.a.r. 

X est la quantité donnée par : 

f
+ oo 

JE [IXln] = 
00 

lxr' f(x) dx 
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~ Variance d'une v.a.r. 

Définition 

r +oo 
Soit X une variable aléatoire réelle, de densité f, telle que l'intégrale j _

00 

lxl2 f(x) dx 

converge. La variance de la v.a.r. X est la quantité, notée V(X), donnée par : 

V(X) = JE [(X - IE(X))2
] = 1:00 

(x - IE(X))2 f(x) dx 

~ Formule de Koenig 

Soit X une v.a. réelle admettant une espérance mathématique et un moment d'ordre 2. 
Alors: r +oo 

Var(X) = IE [x2
]- [IE(X)]2 = j _

00 

x2 f(x)dx- [IE(X)]2
. 

~ Inégalité de Markov 

Soit X une variable aléatoire réelle, positive, admettant une espérance mathématique. 
Alors, pour tout réel t > 0 : 

P(X ~ t) ~ IE(X) 
t 

Démonstration: La démonstration qui suit s'avère plus simple que dans le cas dis­
cret. Il serait aussi possible d'unifier les cas discret et continu en utilisant l'intégrale de 
Stieltjes par rapport à une mesure donnée. 

La v.a.r. X étant à valeurs positives, sa densité f est identiquement nulle sur] - =, O[. 
On peut alors calculer, pour tout réel t > 0: 

IE(X) = 1:00 

x f(x) dx 

= l +oo X f(x) dx 

= (' x f (x) dx + f +oo x f(x) dx 
Jo + 1 

~ f 00 

xf(x)dx 
t + 

~ t f 00 

f(x)dx 

~ t P(X ~ t) 

qui est le résultat cherché. 

~ Inégalité de Tchebychev 

Soit X une v.a. admettant une variance Var(X). Alors, pour tout réel t ~ 0 : 
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5. Fonction de survie d'une v.a.r. positive 

Il est souvent utile de déterminer la probabilité qu ' une variable positive dépasse un cer­
tain seuil ; si la variable peut être assimilée à une durée de vie, cette probabilité devient 
une chance de survie. 

Définition 

Soit X une v.a.r. positive. On appelle fonction de survie, la fonction Gx définie pour 
tout réel x ~ 0, par : 

Gx(x) = P(X > x) = 1 - Fx(x). 

G x est décroissante et positive, avec : 

lim Gx (x) = 0 
x~+oo 

La positivité de X implique que Gx (0) = 1. 

La notation anglo-saxonne pour la fonction de survie, y compris dans le domaine des 

assurances, est S x (x), ou, parfois oo qx dans le cas des assurances vie (la probabilité 
qu'un individu survive jusqu' à l'âge x). 

6. Intervalle de confiance 

En statistique, particulièrement dans l'étude des sondages, on a besoin du concept d ' in­

tervalle de confiance que nous définissons ci-dessous : 

Définition 

Soit œ un réel de l ' intervalle [0, 1], et X une variable aléatoire réelle. On appelle in­
tervalle de confiance, pour la v.a.r. X, tout intervalle la de R tel que : 

P (X E l a) = l - œ 

1 - œ, qui est, en général, exprimé sous forme de pourcentage, est le degré de 
confiance de l'intervalle considéré. On peut affirmer quel' on est certain à 100 (1 - œ) 

pour cent que la variable X se trouve dans l' intervalle la. 

En pratique, on parle souvent d ' intervalle de confiance la de degré œ si on est capable 
de démontrer que P (X E la) ~ 1 - œ. Ceci n'est évidemment pas une définition pré­
cise, mais permet d 'affirmer qu'on est certain au moins à 100 (1 - œ) % que la variable 
X se trouve dans l'intervalle I<r · Nous éviterons ici, lorsque cela est possible, ce type 
d'inégalité. 

La probabilité œ pouvant être répartie différement de part et d'autre des bornes de 
l'intervalle de confiance, on écrit, en général, œ sous la forme: 

Œ = Œ J + Œ2 

Ainsi, la = [Xmin . XmaxL et: 
P (X< Xrnin) = Œ1 
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et : 

L'intervalle de confiance est dit : 

• bilatéral si a 1 i= 0 et a2 i= 0; 
, . . a 

• symetrique s1 a1 = a2 = l; 
• disymétrique si a 1 i= a2 ; 

• unilatéral si a 1 = 0 ou a2 =O. 

P(X > Xmax) = a2 

~ 1. 

~ 
Par exemple, dans le cas où o: 1 = o:, o:2 = 0, on a un intervalle de confiance unilatéral de la 
forme [Xmin , +oo[, Xmin E R., ce qui veut dire que l'on est certain à 100 (1 - o:) que X ~ Xmin· 

2. Les valeurs du paramètre o: les plus fréquentes sont IO %, 5 %, l %, ce qui correspond donc 
respectivement, en termes de degré de confiance, à 90 %, 95 %, 99 %. 

3. D' autre part, s'assurer que l'intervalle de confiance est le moins large possible permet­
tra d'obtenir le maximum d' informations, en préférant les approximations précises du type 
P (X E l a) ~ l - o: à celles de la forme: 

P (X E la) > 1 - o: 

dont on ne contrôle pas la précision. 
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Les lois uniformes sont utiles pour modéliser des valeurs aléatoires qui sont bornées, 
mais pour lesquelles on ne dispose pas, a priori, d'autres informations. 

Définition 

Soient a et b deux réels tels que a< b. On dit qu' une v.a. réelle suit une loi uniforme 
sur lintervalle [a, b] si sa densité f est telle que, pour tout réel x : 

{ 

1 . 
l . -- SIX E [a,b] 

f(x) = b - a l fa,bJ(X) = b - a 
0 si t €t [a, b] 

l 

a 0 b 

Figure 134.1- La densité de la loi loi uniforme sur [a, b]. 

1. Fonction de répartition pour la loi uniforme 

Soient a et b deux réels tels que a < b. La fonction de répartition d'une v.a. suivant la loi 
uniforme sur l'intervalle [a, b] est telle que, pour tout réel x : 

0 Sl X~ a 

1 lx x-a 

L
x l Lx -- l [a,bJ(t)dt= -- si a~ X~ b 

Fx(x)= f(t)dt= -- l [a,bJ(t)dt = b- a a b- a 
OO b - a -OO 

b ~a Lb l [a,bJ(t) dt= l si x ~ b 

On peut le formuler différemment, en disant que le graphe de F x est obtenu par interpo­
lation linéaire de (a, 0) à (b, 1); ce graphe se doit d'être horizontal au-delà de (a, b), par 
cohérence avec les limites en - oo et +oo et la croissance de F x. 

457 

"' :::::s 

:::::s 
V 

<a u 

Q) 

""" ..c 
,Q) 

~ 

~ 



"O 
0 
c 
:J 
0 
'<j" 
..--t 

0 
N 

@ 
....... 
.!: 
O'l 

·;:::: 
>-
0. 
0 
u 

a 0 b 

Figure 134.2- La fonction de répartition de la loi uniforme sur [a, b]. 

Propriété 
Soit A un sous-intervalle de [a, b] de longueur IAI. On a alors: 

En effet: 

P(XEA)= ~­
b-a 

lb J l lb IAI 
P(X E A)= l A (t) --dt= -- l A (t)dt = --. 

a b-a b-a a b-a 

2. Espérance d'une v.a.r. suivant la loi uniforme 

Soient a et b deux réels tels que a < b, et X une v.a.r. suivant la loi uniforme sur l'inter­
valle [a, b]. L'espérance de X est: 

E(X) =a+ b 
2 

f +oo 1 lb 
Démonstration : Il est clair que lx! f(x) dx = -- lx! dx converge. On peut 

oo b-a a 
alors calculer : 

E(X) = J:"" xf(x)dx 

= b~a Lb xdx 

1 b2 - a2 
= b-a 2 

a+b 
= --

2 

3. Variance d'une v.a.r. suivant la loi uniforme 

• 

Soient a et b deux réel s tels que a < b, et X une v.a.r. suivant la loi uniforme sur l'inter­
valle [a, b]. La variance de X est : 
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Démonstration : On calcule : 

JE [x2
] = J:00 

x2 f(x) dx 

= _l_ lb x2dx 
b-a 

l b~ - a3 

= b-a 3 
l (b - a)(b2 +ab + a2 ) 

= b-a 3 
b2 +ab+ a2 

= 
3 

La formule de Koenig permet alors d'en déduire: 

V(X) = 

= 

= 

JE [x2] - [JE(X)f 

b+ab+a (a+b)2 

3 4 
4 (b +ab+ a) - 3 (a+ b)2 

12 
4 ( b2 + a b + a 2) - 3 a2 - 3 b2 - 6 a b = ~~~~~~~~~~~~~ 

a2 + bF- 6ab 
= 

12 
(a - b)2 

= 12 
(b - a)2 

= 
12 

4. La loi uniforme est stable par conditionnement 

• 

Soient a et b deux réels tels que a < b, et X une v.a.r. suivant la loi uniforme sur 
l'intervalle [a,b]. Soit [c,d] c [a,b]. Soit P[c,d] O la loi conditionnelle de X sachant 
{XE [c,d]}. Alors P[c,d ] 0 est la loi uniforme sur [c, d] . 

Démonstration : On calcule, pour x E [c, d], 

p (XE]_ 
00 

x]) = P({X E [c,d]} n {XE] - oo,x]}) 
[c,d] ' P (XE [c, d]) 

= 

= 

= 

P(X E [c, x]) 

P (X E [c,d]) 
x-c 

b-a 
d-c 

b-a x-c 

d-c 

Cette fonction est la fonction de répartition de la loi uniforme sur [c, d]. Elle prend la 
valeur 1 pour x = d, et 0 pour x = c; ainsi, pour x rt. [c, d], ou récupère également les 
bonnes valeurs. • 
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Un groupe terroriste a placé une mine sur une route de 100 km de long entre deux 
villages isolés dans le Sahara occidental ; un militant du groupe émet un appel té­
léphonique pour avertir les autorités de la présence de la mine, avant que personne 
n' ait emprunté la route, mais ne donne pas plus d' informations sur l'emplacement 
de celle-ci. Les autorités envoient une équipe de déminage pour désamorcer l'engin 
explosif. On désigne par X la distance à parcourir jusqu'à l'emplacement de la mine. 

Il est prudent de supposer que X est une variable uniforme sur l'intervalle [0, 100]. 
On calcule, en particulier, l' espérance que l'emplacement de la mine soit: 

100 + 0 = 50 
2 

alors que l'écart-type de cet emplacement est: 

(100 - 0)2 = 100 ~ 28 87 
12 2 .../3 ' 

La probabilité que les démineurs n'aient pas trouvé la mine au bout de 90 km est : 

100-90 
P(X > 90) = P(X E [90, 100]) = lOO-O = 0,1. 

Sachant que les démineurs n'ont toujours pas trouvé la mine au bout de 90 km, la 
probabilité qu'ils la trouvent avant le km 94 est celle qu'une variable Y uniforme sur 
[90, 100] soit inférieure à 94 : 

94-90 
P(X < 94IX > 90) = P(90 ~Y< 94) = lOO-

90 
= 0,4. 

On peut aussi calculer le coût moyen associé au travail des démineurs. Les autorités 
estiment le que coût total Z est égal à 5 000 MAD (dirhams) de coût fixe, auquel il 
faut ajouter 100 MAD par kilomètre parcouru, ainsi qu'un terme égal à X2 MAD 
pour prendre en compte le stress accumulé lors de missions longues, ce qui conduit 
donc à: 

Z = 5000 + lOOX + X2 

Par linéarité de l'espérance, et grâce à la formule de Koenig, on obtient: 

lE(X) = 50 

lE (x2) = Var(X) + JE(X)2 = 101~00 + 502 = 10~00' 

Le coût moyen de l'opération de déminage est donc: 

i.e. environ 1 200 euros. 
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JE (Z) = 5 000 + 100 JE (X) + (JE (X) )2 

= 5 000 + 1 OO x 50 + lO OOO 

40000 
3 

= 
3 
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Les lois exponentielles sont très proches, en esprit, des lois géométriques. Elles sont 
utilisées pour modéliser des temps d'attente, avec la propriété d' absence de mémoire, 
i.e. dans le cas où la connaissance de la durée d'attente ne donne aucune information sur 
la durée restante. 

Un exemple typique est la durée de vie d'un atome radioactif avant sa désintégration. 

1. Loi exponentielle {de paramètre À E IR!) 

Définition 

Soit À un réel strictement positif. Une v.a. réelle X suit la loi exponentielle de para­
mètre À si sa densité f est telle que, pour tout réel x : 

f(x) = À e- À x ll [0,+oo[(X) = . 
{

Àe-Ax six ~ 0 

Ü SI X< Ü 

~ Onnote : X ~ 8(À) 

2.0 

Figure 135.1- La densité de la loi exponentielle, pour différentes valeurs du paramètre A. 

2. Fonction de répartition pour la loi exponentielle de paramètre 
À>O 

Soit À. un réel strictement positif. La fonction de répartition d'une v.a. suivant la loi 
exponentielle de paramètre A est telle que, pour tout réel x : 

Ix Ix { 0 si x ~ O 
Fx(x) = oo f(t)dt = -oo Àe- Ar 1 [O,+oo[(t) = L x Ae- Ar dt= 1 - e-Ax si X ~ 0 
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Exemple : Demi-vie d'un élément radioactif 

Calculons, pour un élément radioactif de temps de vie X~ 8(À), À E R.:, la relation entre sa 
demi-vie et le paramètre À . 

Cette demi-vie est le temps nécessaire pour que l' intensité de la radioactivité diminue de moi­
tié. Si on considère que la substance radioactive est formée d'un grand nombre d'atomes ra­
dioactifs dont les durées de vie sont indépendantes, on peut alors assimiler la demi-vie l! à la 

2 
durée correspondant à 50 % des chances de vie, i.e. 

On obtient : 

ce qui conduit à : 

3. Fonction de survie 

1 -,tf 1 - = e ! 
2 

ln 2 
(1 = 
ï À 

Soient À un réel strictement positif et X ~ 8 (A). La fonction de survie Gx de la loi de 
X vaut, pour tout réel x ~ 0 : 

Gx(x) = P(X > x) = 1 - Fx(x) = e-Àx . 

Âi=Ü.5 

À;= l 

Âi=2 

Figure 135.2 - La fonction de survie de la loi exponentielle, pour différentes valeurs du 
paramètre A. 

4. Absence de mémoire 

Soient À un réel strictement positif, et X une v.a. réelle positive à densité. Alors, X suit 
la loi exponentielle de paramètre À si et seulement si elle vérifie la propriété d' absence 
de mémoire: 

Vs~ 0, V t ~ 0 P (X > t + slX > t) = P (X > s) 
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Démonstration : On ne démontrera ici que la première implication. La réciproque est 
demontrée en remarque ci-dessous, en supposant de surcroît que la densité de la v.a.r. est 
continue. 

Pour tout couple de réels positifs (s, t) : 

P (X > t + s et X > t) e- A (r+s) 
P(X~t+slX~t)= = =e- As =P(X>s) • 

P(X > t) e- Ar 

Pour démontrer la réciproque, considérons une v.a.r. positive X, de densité lx continue sur R+ 
(f doit être nulle sur R_). On suppose que la propriété d'absence de mémoire est vérifiée. La 
fonction de survie Gx de X est de classe C 1 sur R +, et: 

dGx =lx (x) 
dx 

sur R+. On a, pour touts ;;:: 0 et tout t ;;:: 0: 

ce qui s' écrit aussi : 

P ({X > t + s} n {X > t}) (X ) --------- = p > s 
P(X > t) 

Gx (t + s) = Gx (s) Gx (t) 

En posant s = & > 0, on en déduit : 

Gx (t + &) - Gx (t) Gx (t) (Gx (&) - 1) 
= 

Comme Gx est dérivable en 0 et en t, on en déduit : 

lim Gx (&) - 1 =lx (0) 
t:->O & 

1
. Gx (t + &) - Gx (t) dGx 
tm = -(t) 

t:->O & dx 

On a donc montré que, pour tout x ;;:: 0, 

dGx 
dx (x) = l x (0) Gx (x) 

On obtient ainsi une équation différentielle ordinaire qui admet pour unique solution, avec la 
condition initiale, Gx (0) = 1, la fonction Gx telle que, pour tout réel positif x : 

Gx(x)(x) = e -fx(O)x 

En posant À = lx (0), on obtient pour tout x ;;:: 0, 

lx (x) =À e -Ax 

qui est Je résultat cherché . 

5. Espérance d'une v.a.r. suivant la loi exponentielle cS(J) 

Soient Il un réel strictement positif, et X une v.a.r. suivant la loi exponentielle 8(/l). 
L'espérance de X est : 

IE(X) = * 
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Démonstration : Il est clair que lxl fA(x) dx = lxl À e-À x dx converge. Une J
+oo L+oo 
OO Û 

intégration par parties conduit à : 

J +oo xf;t(x)dx = L+oo XÀ.e- Axdx 

oo = [-xe-'~J:oo + f oo , - Ax dx 

= [-':xr 
l 

À 
= • 

Cette formule montre que le paramètre À peut être interprété de façon similaire au paramètre p 
de la loi géométrique: c'est l'inverse du temps d' attente moyen, représenté par JE (X). Ces deux 
paramètres peuvent, aussi, être as si mi lés à des fréquences d'arrivée. 

6. Variance d'une v.a.r. suivant la loi exponentielle 8(A) 

Soient À un réel strictement positif, et X une v.a.r. suivant la loi exponentielle 8(J). La 
variance de X est : 

V(X) = ; 2 

Démonstration: Il est clair que 1:
00 

x2 f;t(x) dx = L+oo x2 À.e-Àx dx converge. On 

peut alors utiliser deux intégrations par parties pour calculer : 

J
+oo 
00 

x2 f;t(x)dx 

r+oo Jo x2 À.e-Àx dxdx 

La variance de la v.a.r. X s'obtient alors grâce à la formule de Koenig: 

464 

V(X) = JE [x2] - (lE(X))2 = ~ - 2_ = 2_ 
J2 J 2 J2 • 



Il Lois normales (ou gaussiennes) 

"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

Ces lois sont, peut-être, les plus importantes de toute la théorie des probabilités. Nous 
verrons, en particulier, le théorème central limüe, qui prouve que, pour toute suite i.i.d. 
de variables (X11) 11EN > d'espérance nulle et de variance a-2 finie, la moyenne empirique 

M 11 = ~ i Xb qui tend vers 0 (cf. la loi des grands nombres), a une limite normale de 
k= I 

variance a-2 après qu'on l'ait multipliée par yn. Le caractère universel de ce théorème, 
ne dépendant de la loi des Xn qu' au travers de leur variance, est ce qui rend essentielles 
les lois normales, et explique pourquoi tant de phénomènes naturels et sociaux se modé­
lisent bien avec des lois normales. 

1. Loi normale (de paramètres m, cr) 

Définition 

Soientµ et a- > 0 deux réels. Une v.a. réelle X suit la loi normale (de paramètres 
µ ,a-), N(µ, a-) (aussi appelée loi gaussienne de paramètres m, a-)) si sa densité fµ ,a- est 
telle que, pour tout réel x : 

1 - (x-µ)2 

fµ ,a-(x) = e 20-
2 

<T -Y2n 

On note: 

- µ=0, 0'=0.1 

- µ=0, u=O.S 

µ=l, 0'=0.2 

- µ=-2, u=0.3 

0 - µ=0 , u=l 

Figure 136.1 - La densité de la loi normale, pour différentes valeurs des paramètresµ et cr. 
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~ Loi normale centrée réduite 

Définition 

On appelle loi normale centrée réduite la loi normale de paramètresµ = 0, cr= 1, 
N(O, 1), dont la densité est donc définie, pour tout réel x, par: 

~ Intégrale de Gauss 

Définition 

On appelle intégrale de Gauss l' intégrale convergente : 

Par parité: 

e-x- dx = - e-x2 dx = -l +oo , 1 J +oo YJi 
Û 2 -OO 2 

Proposition 
Soientµ et cr > 0 deux réels, et X une v.a.r. suivant la loi normale N(µ, cr). La v.a.r. 

Y = X - µ suit la loi normale centrée réduite N(O, 1). 
cr 

Démonstration : Soient a et b deux réels tels que a ~ b. Alors : 

P(a < Y~b)= P(a<X~µ~b) 
= P(cra<X-µ~crb) 

= P (cr a + µ < X ~ cr b + µ) 

= e 2-;;:2 dx [ 

b+µ l - (x- µ)2 

(Ta+µ cr -Y27i 
l [ il -- e- 2 dy 

'Y27i a 
= 

x-µ 
(on effectue, tout simplement, le changement de variable y= --.) 

cr 

~ Loi normale et transformation affine 

• 

Soientµ et cr > 0 deux réels, et X une v.a.r. suivant la loi normale de paramètresµ, cr, 
N(µ, cr). Alors, pour tout couple de réels (a,[3) E R* x R, la v.a.r. a X + f3 suit la loi 
normale de de paramètres aµ + [3, a 2 cr2 : 

a X +/3 ~ N(aµ +[3,a2 cr2
) 
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Démonstration : Soient a et b deux réels tels que a ~ b. Alors : 

P (a < œ X+ f3 ~ b) = P (a - f3 < œ X ~ b - /3) 

p(a:/3 < X ~ b:/3) 
b- /3 

l
a 1 _ (x-µ)2 

--- e 2,,-2 dx 
-[J (T Y2n 
" 

I
b-/3 l - (~ -µ)2 1 

= e ~-dx 
a-/3 cr Vln œ 

= e ~ dx I
b-/3 J - (x- aµ)2 

a-/3 œcr Vln 

l
b l (x-a µ-p)2 

- e 2a2u2 dx 
- a œcr Vln • 

Exemple : Loi normale et intervalle de confiance 

Soientµ et cr > 0 deux réels, a un réel de l'intervalle [0, l], et X une v.a.r. suivant la loi 

normale N(µ , cr2). La v.a. centrée réduite X - µ suit donc la loi normale standard N(O, l). On 
cr 

cherche à déterminer l'intervalle de confiance symétrique la tel que : 

(
X -µ ) 

P ---;;:---- E la = l - a 

(c'est la symétrie, par rapport à l' axe des ordonnées, de la courbe représentative de la fonction 
.\2 

x H ~-;_ qui incite à rechercher un intervalle de confiance symétrique.) 
v2n 

À cet effet, on cherche la sous la forme : 

Pour que la soit symétrique, il faut donc : 

a 
P(X < -x,,) = -

2 

X,, E JR.: 

a 
P(X > x,,) = 2" 

ce qui donne, pour les degrés de confiance usuels 90 %, 95 %, et 99 % : 

X90 % ~ 1,645 X95 % ~ 1,96 , X99 % ~ 2,58 

On peut alors revenir à la v.a.r. initiale X : 

(
X -µ 

p -- E 
cr 

la) = P (X~µ E la) 

= P(X ~µ E [-xa,Xa]) 

= P (X - µ E [-cr Xa, cr Xa ]) 

= P(X E [µ-cr x,r,µ +cr xa]) 

L' intervalle de confiance pour la v.a.r. X est donc : 
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~ Espérance d'une v.a.r. suivant la loi normale N{µ, u 2} 

Soientµ et u > 0 deux réels, et X une v.a.r. suivant la loi normale N(µ , u 2). L'espérance 
de X est: 

JE(X) = µ 

Démonstration : Il est clair que f ~00 lxl fµ ,rr(x) dx 

converge. On peut alors calculer : 

--- e 2cr2 dx I +oo lxl - (x-µ)2 

00 (J fu 

I
+oo 

00 

x fµ ,rr(x) dx = 

+ 

puisque: 

I+oo X - (x-µ)2 

--- e 2;;ï° dx 
00 (J fu 

I +oo x +µ _L 
--- e 2u2 dx 

00 (J fu 

I
+oo X x2 

--- e-ï;ï dx 
00 (J fu 

I
+oo µ x2 

--- e-ï;ï dx 
00 (J fu 

µ 

y2 y ~ ~ I+oo 
2 l 2 JZ _ ~ e- 2 dy = lim lim e- 2 lim e-T = l - 1 = 0 

OO v2rr Y->-ooZ-Hoo y Y->-oo 

~ Variance d'une v.a.r. suivant la loi normale N(µ, u 2 } 

• 

Soientµ et u > 0 deux réels, et X une v.a.r. suivant la loi normale N(µ, u 2). La variance 
de X est: 

V(X) = u 2 
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Démonstration : Il est clair que f :00 

x2 fµ,u(x) dx 

converge. On peut alors calculer : 

x2 e-~ dx f 
+oo J (x-µ)2 
00 cr Y2rr 

f :00 

x
2 

fµ,u(x) dx 

f 
+oo x2 - (x-µ)2 

--- e 2"2 dx 
00 cr fu 

f
+oo (x + µ)2 _ x2 
--- e ï;;:I dx 

00 cr fu 

f +oo X2 + 2 µ X + µ2 _ _L_ 
------ e 2a-2 dx 

OO cr fu 

--- e 2"2 dx + e 2"2 dx + e - 2"2 dx f
+oo x2 _ _L f+oo 2µ X _--2._ f+oo µ2 x2 

- oo cr fu -oo cr fu -oo cr fu 

+ 

- e 2"2 + e ï;;:I dx 
r 

cr2 X _--2._ l +oo f+oo cr2 - x2 

cr fu -oo -oo cr fu 

_ cr µ e-2a-2 + µ e-x2 Vlcrdx 
[ 

2 x2 l +oo f +oo 2 

cr fu - oo -oo cr fu 

f
+oo (cr2 + µ2) _ _L_ 

----e 2a-2 dx 
00 cr fu 

cr + µ e-x2 Vlcrdx f
+oo ( 2 2) 

00 cr fu 

f
+oo (cr2 + µ2) _ 2 

----e x dx 
00 Yi 

(cr2 + µ2) 

Yi Yrr 
cr2 + µ2 

La variance de la v.a.r. X s'obtient alors grâce à la formule de Koenig: 

V(X) =JE [x2] _ (JE(X))2 = cr2 + µ2 _ µ2 = cr2 

2. Théorème central limite 1 

Théorème 

• 

Soientµ et cr > 0 deux réels, et (Xn)nEN* une suite de variables aléatoires indépendantes, 

de même loi, de moyenneµ, de variance cr2. 

Soit (M,.,),.,EN* la suite des moyennes empiriques (arithmétiques), c'est-à-dire, pour tout 
entier naturel non nul n : 

X1 + ... +X,., 
M,.,=----­

n 

l. C'est le mathématicien et physicien français Pierre-Simon de Laplace (17 49-1827), qui publia, en 1809, 
la première démonstration du théorème. Mais le cas particulier où les variables suivent la loi de Bernoulli 
de paramètre p = ~avait déjà été étudié par Abraham De Moivre (1667-1754) en 1733. 
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et (Zn)nEN* la suite des v.a.r. centrées réduites définies pour tout entier naturel non nul n 
par: 

Mn -JE(Mn) Mn-µ yn(M11 -µ) 
Zn= = = -----

yVar(M11) <T/Yn <T 

Pour tout intervalle [a, b] de R (a < b ), on a : 

Lb l 12 

lim P(a ~Zn~ b) = -~ e - 2 dt. 
n->+oo a V 2 rr 

On dit aussi que la suite de v.a. r. (Z11),1EN* converge en loi vers la loi normale standard 
N(O, 1), ou que la loi de la suite (Z11 ) 11EN* converge vers N(O, l) (en loi). 

Le théorème central limite est un résultat essentiel en théorie des probabilités. Ce résultat est 
extrêmement puissant, il permet de dire que toute somme de variables aléatoires indépendantes 
et identiquement distribuées tend vers une variable aléatoire gaussienne, après normalisation. 
Il traduit aussi le fait que, dans la loi des grands nombres, les fluctuations autour de la limite 

l 
de la moyenne sont de l'ordre de Vn (c'est une idée que nous avions déjà vue, dans une 

certaine mesure, dans le cadre de l' application de l'inégalité de Tchebyshev), mais, surtout, 
que la loi de ces fluctuations est universelle, dans la mesure où elle suit la loi normale, et ne 
dépend donc pas de la loi initialement suivie par les v.a. considérées. 
Pour des variables de moyenne nulle, le seul élément qui subsiste de cette loi initiale est 
leur variance, et, du fait de la propriété de changement d' échelle de la variance, si on divise 
au préalable les variables par leur écart-type, on obtient un résultat universel, ne dépendant 
d'aucun paramètre. 

Soit n un entier naturel très grand devant l. Si on considère n v.a. X1, ••• , X11 , de même 
loi, ayant une espérance µ et une variance <T2 finie, la loi de leur moyenne empirique 
X1 + .. . + X11 A ( r2) n peut etre approximée par la loi normale N µ, ~ . On constate que la 

variance de cette approximation de la moyenne empirique est inversement petite d' autant 
que n est grand. C'est le phénomène de « concentration de la mesure » , que nous avions 
observé en partie avec la loi des grands nombres, et que l'on retrouve ici, puisque la loi 

N (µ, ~1
2

) converge vers celle de la variable aléatoire constante égale àµ. 
Pour s' assurer qu' on utilise le théorème central limite de manière efficace, il est utile 

de convertir le problème pratique à traiter pour qu'il dépende de la quantité : 

X 1 + ... + X11 - nµ 
Zn=-------

<Tyn 

C'est, en effet, cette quantité Zn qui, d'après le théorème central limite, a (approxima­
tivement) une loi universelle normale centrée réduite. L'opération qui consiste à passer 
de la suite (Xi)i= 1,. .. ,n à la variable Zn est précisément la standardisation de sa somme 
partielle, i.e. une opération qui consiste à soustraire la moyenne de sa somme partielle, 
puis de la diviser par son écart-type. 
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Le lecteur assidu se demandera dans quelle mesure l'approximation du théorème central li­
mite représente une bonne approximation. Il s' avère que, pour les variables qui ont aussi un 

troisième moment fini p = E [1X113] < +oo, le théorème dit «de Berry-Esseen », donne une 
réponse à cette question : 

où la constante universelle C n 'est pas connue de manière optimale, mais se situe entre 0,41 
et 0,48. Ce résultat implique, par exemple, que si les probabilités calculées grâce au théorème 
central limite sont comprises entre 5 % et 95 %, pour quel' ordre de grandeur dans l' approxi-

1 
mation soit au moins d ' un ordre de grandeur inférieur à ces niveaux, i.e. pas plus de 

200
, 

il est préférable de choisir n de l 'ordre d'une dizaine de milliers. En pratique, on applique 
le théorème beaucoup plus fréquemment, souvent dès que n > 100, ce qui peut être abusif, 
puisque des probabilités de l'ordre de 5 % seraient alors nettement plus faibles que l' erreur 
commise si on appliquait le théorème central limite. Si on suppose que Cp0"-3 est de l'ordre 
de 1, pour s'assurer au moins que le niveau 5 % est au moins du même ordre que l' erreur dans 
le théorème de Berry-Esseen, alors il est préférable de prendre n > 400. 

3. Théorème de De Moivre-Laplace2· 3 

Théorème 

Soit p un réel de l 'intervalle [O, 1], et X une variable aléatoire, de loi binomiale 13 (n, p). 
La loi de la v.a. : 

peut être approchée, lorsque l'entier n est très grand, par la loi normale N (0, p (1 - p)). 

Démonstration : La démonstration de ce résultat est immédiate avec le théorème cen­
tral limite, puisque X peut être considérée comme la somme de n variables indépendantes 
de loi :S(p), d'espérance p, de variance p(l - p). • 

La qualité de l'approximation proposée par le théorème de de Moivre-Laplace est nettement 
meilleure que celle du théorème de Berry-Esseen. En pratique, il est parfois légitime, pour 
obtenir des erreurs inférieures à 1 %, de s'assurer que l' entier n est plus grand que 30, mais il 
est plus sage de prendre n > 1 OO, même si on est dans le cas de variables binomiales. 

2. Abraham De Moivre (1667-1754). Après l' impulsion donnée par le suisse Jacob Bernoulli (1654-1705), 
De Moivre est un des premiers vrais « probabilistes». 
3. Pierre-Simon de Laplace (1749-1827). Il était non seulement mathématicien, spécialiste de calcul diffé­
rentiel et intégral, e t apporta de nombreuses contributions en théorie des probabilités, tout en étant aussi 
astronome et physicien. 
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Couples de variables aléatoires 
réelles 

Avant de donner plus de résultats sur les variables gaussiennes, et d'introduire d'autres 
lois, il est important de présenter, pour le cas continu, les concepts rencontrés dans le cas 
discret. 

1. Densité de probabilité sur R2 

Définition 

Une fonction f : R2 
-7 R, à valeurs positives, intégrable (i.e. fl

2 
f(x,y)dxdy 

existe) est appelée densité de probabilité sur R 2 si et seulement si : 

f L
2 

f(x, y) dx dy = 1 

> Fonction de répartition d'un couple de v.a.r. 

Soit (X, Y) un couple de variables aléatoires réelles. La fonction de répartition du 
couple de v.a. (X, Y) est la fonction, notée F(x, Y)> telle que : 

F(X,Y) : R2 
-7 [0, l] 

(x,y) H P(X ~ xet Y~ y). 

Elle vérifie, pour tout couple de réels (a, b) : 

lim F(x,Y) (a,y) = Fx(a) , lim F(x,Y)(x,b) = Fr(b) 
y~+oo x~+oo 

On dit que (X, Y) admet la densité/ (ou densité jointe f) si f est une densité de proba­
bilité, et si : 

( X (y 
F x,Y (x, y) = j _

00 

j _
00 

f(x', y') dy' dx'. 

> Densités marginales de deux v.a.r. 

Soit (X, Y) un couple de variables aléatoires réelles, de densité de probabilité .fcx.Y)· 
Alors, les composantes X et Y sont des variables aléatoires à densité, dont les densi­
tés de probabilités respectives sont : 

r+oo 
fx(x) = j _

00 

.fcx,Y)(X, y) dy , 
r+oo 

fy(y) = j _
00 

.fcx.Y)(X, y) dx 

fx(x) est la densité marginale de la v.a.r. X, fy(y) est la densité marginale de la v.a.r. Y . 

Démonstration: Il faut montrer que les fonctions x H fx(x) et y H fy(y) sont bien 
des densités de probabilité sur R À cet effet, on calcule : 

P(X ~ x)=P((X, Y) E]- oo,x] X R)= J: {f:00 

.fcx.Y)(u,y)du} du= J: .fcxlu)du 
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et : 

i+oo fx(x) dx = rr f(x, y) dx dy = l. 
OO JJ JR2 

On procède de même pour fy. • 
>- Densité conditionnelle de deux v.a.r., loi conditionnelle de deux v.a.r. 

Soit (X, Y) un couple de variables aléatoires réelles, de densité de probabilité f(x,Y)- On 
désigne par fx et fy les densités marginales respectives de X et Y. Soit y un réel tel 
que fy(y) > O. La densité conditionnelle de X sachant que Y = y est définie lorsque 
fx(x) > 0, pour tout réel x, par : 

f ( ) 
_ f(x,Y)(X, y) 

XIY=y X - fy(y) 

Étant donnés deux réels a et b tels que a < b, la loi conditionnelle de X sachant que 
Y = y est définie par : 

lb lb f(x,Y)(X, y) 
P(X E [a,b]IY =y)= fXIY=y(x)dx = . dx 

a a fy(y) 

De même, la densité conditionnelle de Y sachant que X = x est définie, pour tout réel 
y, par: 

!: ( ) _ f(x,Y)(X, y) 
YIX=x Y - fx(x) 

Étant donnés deux réels a et b tels que a < b, la loi conditionnelle de Y sachant que 
X = x est définie par: 

l b lb f(x,Y)(X, y) 
P(Y E [a,b]IX = x) = fvix=xCy)dy = dy 

a a fx(x) 

Le lecteur pourra se référer à la discussion précédant la définition de l'espérance d'une v.a.r 
continue, qui permet de motiver la définition de la densité conditionnelle. En bref, pour un 
couple (U, V) de variables aléatoires discrètes prenant comme valeurs les paires d'entiers 

((i, j); i, j = 1, ... n) et (X, Y) = ( ~, *)· l'expression f<.x,Y)(x, y) représente la limite, sous 

réserve d'existence bien sûr, de: 

n2 P(x = [xnn], y= [ynn]) 

2. Indépendance de deux v.a.r. 

Définition 

Deux v.a.r. X et Y sont dites indépendantes si, pour tout (x, y) de ltl2 : 

P (X ~ x, Y ~ y) = P (X ~ x) P (Y ~ y) 
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~ Caractérisation de l'indépendance de deux v.a.r. à densité 

Deux v.a.r. X et Y, de densités de probabilités respectives fx et fr sont indépendantes si 
et seulement si le couple (X, Y) a une densité f(x,Y) et que, pour tout (x, y) de R2 : 

f(x,Y)(x, y) = fx(x) fy(y). 

Exemples 

1. On considère un couple de variables aléatoires (X, Y), dont la densité jointe est donnée par : 

f 
(x ) = { 2e-2 

x-y si x > 0 et y > 0, 
X,Y 'y 0 Si X < 0 OU y < 0. 

On peut écrire : 

lx.Y (x, y) =lx (x) fr (y) 

où lx et fr désignent, respectivement, les densités de la loi exponentielle 8 (2) et 8 (1). Ce 
sont donc les lois respectives des variables X et Y, qui sont indépendantes. On vérifie, en 
particulier, que ce produit est non nul si et seulement si x et y sont positifs. 

2. On considère un couple de variables aléatoires (X, Y) dont la densité jointe est donnée par : 

{ 

~ si X E [0, 2] et y E [0, 3], 
lx.Y (x, y) = 6 

0 sinon 

On peut écrire : 
lx, Y (x, y) =lx (x) fr (y) 

où lx et fr désignent, respectivement, les densités de la loi uniforme sur [0, 2] et [O, 3]. Ce 
sont, encore, les lois respectives des variables X et Y, qui sont indépendantes. On vérifie, 
en particulier, que ce produit est non nul si et seulement si x E [0, 2] et y E [0, 3]. 

Les deux exemples ci-dessus mettent en lumière une propriété importante des couples de 
variables à densité indépendantes : le domaine sur lequel la densité jointe est non nulle 
(i.e. le support de la densité) est un rectangle, égal au produit cartésien des support des 
deux densités marginales. 

3. On peut aisément construire un exemple mettant en jeu un couple de variables qui semblent, 
a priori, indépendantes, mais pour lesquelles la propriété concernant le support ne s'ap­
plique pas. 
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Soit donc (X, Y) un couple de variables aléatoires (X, Y), dont la densité jointe est donnée 
par: 

lx.Y (x, y) = { ~ si x E [0, 2] et y E [0, 2] et x > y, 

0 sinon 

Le support de ce couple de v.a. est un triangle rectangle isocèle, de côté de l'angle droit de 
longueur 2, donc de surface 2, ce qui explique la constante normalisatrice t. Cette densité 
est en fait uniforme sur une surface du plan d 'aire finie. La dépendance entre X et Y est assez 
évidente, puisqu'avec une probabilité de 1, on dispose de la relation 0 .:;; Y.:;; X .:;; 2: par 
exemple, conditionnellement à Y = 1,9, la loi de X sera concentrée sur l'intervalle [1,9, 2], 
alors que, conditionnellement à Y = 0, 1, la loi de X sera concentrée sur [0, 1, 2]. On peut 
aussi vérifier facilement par un calcul direct que ces lois conditionnelles sont uniformes 
sur ces intervalles. Cette dernière propriété se généralise à toutes les lois conditionnelles de 
lois jointes uniformes. 

On constate également, dans cet exemple, et de manière générale pour les lois uniformes 
dans le plan, que les coordonnées X et Y ne sont pas indépendantes (sauf si le support est 
un rectangle), car la loi conditionnelle et la loi marginale sont distinctes. 
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Quelques résultats concernant 
la somme de variables aléatoires 
continues 

On peut, de façon systématique, calculer la densité de la somme de deux v.a.r. indépen­
dantes à densité. 

1. Produit de convolution de deux fonctions 

Définition 

Soient f et g deux fonctions définies sur JR, à valeurs réelles, continues par morceaux, 
et intégrables sur JR. Leur produit de convolution est la fonction, notée f * g, définie, 
pour tout réel x, par : 

r +oo 
CJ*g)(x)= J_

00 

f(x-y)g(y)dy 

>- Symétrie du produit de convolution de deux fonctions 

Soient f et g deux fonctions définies sur JR, à valeurs réelles, continues par morceaux, et 
intégrables sur R Leur produit de convolution vérifie : 

Démonstration: Ce résultat s'obtient immédiatement à l'aide d' un changement de 
variable. • 
2. Somme de deux variables aléatoires réelles indépendantes 

Étant données deux variables aléatoires réelles indépendantes X et Y, de densités respec­
tives fx et fy, la densité fx+Y de la v.a. somme X+ Y est donnée par: 

!x+Y = fx *fr 

Démonstration : Soient a et b deux réels tels que a< b. Alors: 

P(a ~X + Y~ b) = f' ( fx(x)fy(y)dxdy 
J xElR, yElR, a,;;,x+y,;;,b 

= Lb f~
00 

fx(s) .fy(s - t) dt ds 

= rb (fx * fy )(s) ds 
Ja • 

>- Somme de deux variables aléatoires réelles indépendantes suivant respective-

ment les lois exponentielles de paramètres distincts A etµ, {A,µ) E (IR: )
2

, A :f. µ 

Soient À. etµ deux réels strictement positifs et distincts, et X et Y deux variables aléatoires 
réelles indépendantes suivant respectivement les lois exponentielles de paramètres À etµ. 
On désigne par fx et fy les densités respectives des v.a. X et Y. 
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La densité de la v.a. somme X + Y est définie, pour tout réel x ;;,: 0, par : 

fx+r(x) = Ux * fr) (x) 

f
+ex> 

= = fx(x - y) fy(y) dy 

L x il e- A(x- y) µ e-µ y dy 

e- Ax L x ilµ e<A-µ) Y dy 

e-Ax [ilµ e<A-µ )y lx 

il-µ 0 

e<A- µ)x - 1 
ilµ e_Ax ___ _ 

il-µ 

e-µ x _ e- Ax 
ilµ---­

il-µ 

~ Somme de deux variables aléatoires réelles i.i.d. de loi exponentielle de para­
mètre A E IR: 

La formule précédente peut être extrapolée au cas où il = µ , en remarquant que, pour 
tout x > 0, 

un = -x lim = -x -- = x e- Ax . 1
. e-µx - e- Ax e- µx - e- Ax lde-'J 

µ->A il - µ µ x->Ax µx - il x dt t=ilx 

Lorsque X et Y sont i.i.d., de loi 8 (il), la densité de X+ Y est : 

fx+Y (x ) = il2 x e- Ax. 

Nous verrons, prochainement, que cette densité, i.e. ceJJe de la somme de deux v.a. i.i .d. 
exponentielles de même paramètre, est un cas particulier de celle de la classe dite des 
lois Gamma. 

Exemples 

1. Somme de deux variables aléatoires réelles indépendantes suivant respectivement 
les lois normales de paramètres respectifs µi, cr1 et µ 2, cr2, (µi, µ 2 ) e IP.?.2, 
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(cri, crz) e (!P.?.: )
2 

Soient µ 1 , µ 2 deux réels, cr1, cr2 deux réels strictement positifs, et X et Y deux variables 
aléatoires réelles indépendantes suivant respectivement les lois normales N(µ 1 , cr~) et 
N(µ 2, cr~) . On désigne par fx et fy les densités respectives des v.a. X et Y. 
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La densité de la v.a. somme X+ Y est définie, pour tout réel x, par : 

!x+r(x) = 

-(~+~)y2 
e -"î - 02 dy 

_1_ + _1_ 
2 <TÎ 2 <T~ 

La v.a. somme X+ Y suit donc la loi normale N(µ 1 + µ 2, crf +cr~). 

Somme de N variables aléatoires réelles indépendantes suivant respectivement les 
lois normales de paramètres respectifs µi, ui, •.• , µN, uN, (µi, .•. ,µN) E m_N, 

(ui, ... ,uN)E (m.:(,Ne N* 

Soit N un entier naturel non nul, µ 1, ••• , µN N réels, cr1, ••• , crN N réels strictement 
positifs, et X1, ••• , XN, N variables aléatoires réelles indépendantes suivant respecti-
vement les lois normales N(µ 1, crf), ... , N(µN, cri). Une récurrence immédiate à par­
tir de l'exemple précédent montre que la v.a. somme X1 + ... + XN suit la loi normale 
N(µ1 + .. . + µN, crf + ... +cri). 
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L'exemple précédent est d'importance, il met en lumière le fait que les variables normales sont 
stables par combinaisons linéaires affines de termes indépendants. Le seul autre exemple de 
ce type que nous ayons rencontré est celui des variables de Poisson (bien que, dans ce cas, on 
n'ait que le droit d'ajouter les variables, sans les multiplier par des coefficients, ni leur ajouter 
des constantes). C'est, aussi, un cas très particulier du théorème central limite. En effet, si on 
considère une suite de variables (Xn)neN i.i.d. de loi N (µ, lT), alors, d'après ce même théorème 
central limite, la loi de: 

. c. _ . c. (X' + ... +X,, ) vri M11 - vn - µ 
n 

tend vers la loi normale N ( 0, lT2 ) . 

Or, si on applique le résultat de l'exemple précédent, on montre facilement qu' en réalité la loi 
de vn M,, est exactement égale à N ( 0, lT2) (cf. l'exemple suivant). C'est le seul cas de suites 
i.i.d. où ait lieu cette égalité. 

3. Une application aux intervalles de confiance 

On donne ici un exemple d'illustration des intervalles de confiance, exploitant l'égalité 
entre la loi de yn M11 et la loi normale N ( 0, a-2 ). Il est important de comprendre que le 
théorème central limite permettra de reprendre cet argument dans le cas où le nombre 
n de variables est grand, ce, même si les lois individuelles ne sont pas normales (gaus­
siennes). 

Soit N un entier naturel supérieur ou égal à 2, µ un réel, a priori inconnu, et X1, ••• , 

XN, N v.a.r. suivant chacune la loi normale N(µ , l). Les v.a.r. centrées X1 -µ, .. ., XN-µ , 
suivent donc chacune la loi normale centrée réduite N(O, 1). Les v.a.r. centrées réduites 
x, -µ XN -µ 

N , .. ., N , suivent donc chacune la loi normale : 

La v.a. somme: X1 + ... +XN -Nµ 

N 

X1 + .. . +XN 
-µ 

N 
suit donc la loi normale : 

N(o, ;) = N(o, ~) 
, . .11:T(X1+ ... +XN ) .. On en dedmt, finalement, que la v.a. M N = v N N - µ smt la 101 normale : 

i.e. la loi normale centrée réduite. 
On peut alors calculer : 

( 
l

x+ +X 1 ) J' ,96e-4-P YN 1 
.. • N - µ ~ 1,96 = . ~ dx ~ 0,95 
N - l ,96 v2rr 

Ceci veut dire que l'on est à 95 % certain que la moyenne empmque 
X1+ ... +XN . [ 1,96 l,96J . 

M N = est dans l'mtervalle µ - --;µ + -- . On rencontre parfois la 
N YN YN 
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1 96 
notation abusive MN = µ ± 'vN , avec, éventuellement, la mention marginale qu'il s'agit 

d'un intervalle de confiance à 95 %. 
On peut encore réinterpréter ce résultat pour créer un intervalle de confiance pour 

l'espéranceµ, si on suppose, comme c'est souvent le cas en pratique, queµ n'est pas 
observée, alors que MN peut l'être, grâce à un sondage. C'est, aussi, une procédure 
d'estimation deµ. Dire que: 

équivaut à: 

Or: 
P(µ E !95) = P(MN E [µ- 1,96/YN;µ + 1,96/YNl) ~ 0,95 

!95 est donc un intervalle de confiance à 95 % pour la valeur théorique non observée µ. 

Exemple : Intervalles de confiance avec variance non unitaire 

Examinons ce qui se produit lorsque <T * 1. Soient Y1 , Y2, .•. , YN des variables i.i.d. de loi 

N (µ, <T2 ). En posant, pour tout entier k de { 1, ... , N}, Xk = yk, on peut se ramener au cas 
<T 

précédent. À l'aide de la moyenne empirique: 

- Y1 + ... + YN 
MN = = <TMN 

N 
on obtient: 

-YN(M.N -µ) = YN(<TMN- µ) -N(0,<T2
) 

et donc avec les même calculs que précédemment, 

(
- [ 1,96<.T 1,96<.TJ) P MNE µ- YN ;µ+ YN ~o,95. 

Pour transformer ceci en un intervalle de confiance pourµ, nous buttons sur une difficulté 
pratique qui vient du fait que, si l'on suppose ne pas connaîtreµ et qu'on veut se baser sur la 
moyenne empirique MN pour l ' estimer, notre intervalle de confiance dépendra de <T. Et il n' y 
a aucune raison de supposer que <T est plus facilement observable queµ. 
Ce que font, en pratique, les statisticiens, consiste à se baser sur la notion dite du « bootstrap ». 
Ce terme anglo-saxon vient de l'expression colloquiale « pull yourself up by your bootstraps », 
dont le sens propre est« relève-toi en tirant sur les lacets (ou sangles) de tes propres bottes », 
qu'il faut interpréter par le fait qu'il faut se baser sur ses propres ressources pour effectuer un 
travail qui semble demander un aide extérieure. 
Pour construire un intervalle de confiance pourµ, on utilise une procédure de ce type, qui 
fonctionnerait bien si on connaissait µ , pour estimer <T ; on utilise ainsi la valeur MN comme 
estimateur deµ , ce qui introduit une petite erreur du fait de la circularité de l'argument, qui 
produit ensuite un intervalle de confiance pourµ. Nous n 'entrerons pas dans les détails de 
l' estimation quantitative de cette erreur. 
Toujours est-il que, si l'on a une estimation précise â- de la valeur de <T, il n'est pas faux 
d'affirmer que l'intervalle : 

[ 
- 1,96 A - 1,96 A J 

/ 95 = MN - YN <T;MN + YN <T 

est un intervalle de confiance pourµ à 95 %. 
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Nous avons rencontré précédemment un exemple donnant la densité de la somme de 
deux variables X et Y i.i.d., de loi 8 (A) : 

f ( ) _ /l X e Sl X ::;:;-

{ 

12 - ,lx . ...... 0 
X+ Y X - Q . Q 

Sl X < 

Nous présentons, dans ce qui suit, la généralisation de ce résultat, avec les lois Gamma, 
extrêmement utiles pour modéliser les temps d'arrivée d'un nième client, ou encore dans 
des études de fiabilité, où une défaillance technique est assimilée à un temps d'arrivée. 
Ces lois sont aussi fondamentales en statistique. 

1. Fonction Gamma 

Définition 

La fonction Gamma est la fonction définie sur JR: par : 

r+oo 
T(œ) = Jo ta- I e- 1 dt 

> Propriétés de la fonction Gamma 

• Pour tout réel strictement positif a : 

T(a + 1) = aT(a) 

• Pour tout entier naturel n : 
T(n + 1) = n ! 

• 
r(~) = Yii 

Comme, pour tout réel strictement positif œ, I'(œ + 1) = œ I'(œ), la fonction Gamma peut être 
considérée comme une généralisation de la notion de factorielle aux réels positifs non entiers. 

Démonstration : 

• Pour tout réel strictement positif a, on obtient, en intégrant par parties : 

T(a + 1) = 
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• Pour tout entier naturel n : 

T(n + l) = n T(n) = n x (n - 1) x T(n - 1) x ... x 1 x T(l) = n (n - 1) ... 1 = n ! 

puisque T(l) = L+oo e-1 dt= 1. 

• 
r (~) = L+oo i-4 e- 1 dt 

= L+oo t- 1 e-12 2tdt 

= • 

2. Loi Gamma {de paramètres a > O. f3 > O) 

Soient œ et f3 deux réels strictement positifs. Une v.a. réelle X suit la loi Gamma (de 
paramètres œ,f3), T(œ,f3) (aussi appelée loi eulérienne de paramètres œ,f3) si sa densité 
f a,f3 est telle que, pour tout réel x : 

SÏ X> Ü 

smon 

1 
œ est un paramètre de forme. f3 est un paramètre d'intensité, - est le paramètre d'échelle 

/3 
associé. 

~ 1. On note: 

0.4 

0.3 

0.2 

0.1 

5 

X~ T(a:,{3) 

- a =l 

-a=S 

- a=1 

10 15 20 

Figure 139.1 - La densité de la loi Gamma, pour différentes valeurs du paramètre a, dans le cas 
où f1 = 1,5. 
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2. Avec l'exemple rappelé au début de cette section, on voit que si X et Y sont i.i.d. 8 (tl), alors 
la loi de X+ Y est T (2, tl), puisque T (2) = l ! = 1. 

3. On voit aussi que la loi exponentielle 8 (tl) est tout simplement la loi r (l, tl) puisque 
T(l)=Ü!=l. 

> Loi d'Erlang (de paramètres n E N*, {J > O) 

Soient n un entier naturel non nul, et {J un réel strictement positif. Une v.a. réelle X suit 
la loi d'Erlang (de paramètres n E N*), si elle suit une loi Gamma dont le paramètre 
de forme est entier ; sa densité fn,/3 est donc telle que, pour tout réel x : 

fa,fJ(x) = (n - j) ! 
{ 

~-J {Jn e-f3x . 
----- s1x~O 

0 sinon 

> Loi de distribution de Maxwell-Boltzmann (de paramètre a > O) 

Soit a un réel strictement positif. Une v.a. réelle X suit la loi de distribution de 
Maxwell-Boltzmann (de paramètre a), si elle suit une loi Gamma dont le paramètre 

3 
de forme est 2, et le paramètre d'échelle, 2 a 2 ; sa densité fa est donc telle que, pour tout 

réel x: 

smon 
{ 

1 3 _ _L 

fa(x) = x' a~ ' "' si X> Ü 

La loi de distribution de Maxwell-Boltzmann est utilisée en Physique statistique pour déter­
miner la répartition des particules entre les différents niveaux d'énergie. La théorie cinétique 
des gaz, qui suscite, en ce moment, beaucoup d' intérêt dans la communauté mathématique 
(voir, notamment, les travaux de Cédric Villani [41 ]), est basée sur cette distribution. 

> Loi du x2 («Chi carré») 

Soit N un entier naturel non nul. Une v.a. réelle X suit la loi dux2 à N degrés de liberté, 

(
N 1) x2(N), si elle suit une loi Gamma r "2' 2 ; sa densité fN est donc telle que, pour tout 

réel x: 

SÎ X> Ü 

smon 

~ 1. On note: 
X~ x\N) 
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N=l 
N=S 
N=7 

Figure 139.2- La densité de la loi du x 2
• pour différentes valeurs du paramètre N. 

2. Il est intéressant d'étudier, dans un premier temps, la loi du x2 à un degré de liberté. Soit Z 
une variable aléatoire, de loi N (0, l ). Si on considère la v.a. positive X = Z2, alors, pour tout 
X > 0, 

Fx (x) = P(X ~ x) 

= p (- -vx ~ z ~ -vx) 
rvx 1 y2 

= 2 Jo V2ir e-T dy. 

On peut alors en déduire, grâce à la formule de dérivation composée, et au théorème fonda­
mental de l'analyse, l'expression de la densité de X, pour tout x > 0: 

l 1 X 

fx (x) = - -- e-ï. 
Vx Y2ic 

Du fait de la positivité de X: fx (x) = 0 pour x < 0; la valeur de fx en 0 n'a pas besoin d'être 
définie, et peut, par convention, être considérée comme nulle. La densité fx est donc aussi 
celle de la loi Gamma, de paramètres t et t. ce qui constitue Je résultat suivant. 

3. Propriétés 

Lemme 
Si Z ~ N (0, 1) alors Z2 ~ r (1/2, 1/2). 

Ce résultat est un cas particulier de la propriété suivante, lorsque N = 1. 

Propriété 
Soient N un entier naturel non nul, µ1, .. . , µN, 0-1 ~ 0, ... , lTN ~ 0 des réels, et X1, ... , 

XN des v.a.r. indépendantes suivant, respectivement, les lois normales N (µ1, 0-1), ... , 

N (µN, 0-N). 

Alors, la v.a.r. f (Xi -.µi)
2 

suit la loi dux2 à N degrés de liberté: 
i=I 0-i 
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Du fait de la propriété de changement d'échelle de la loi normale, la loi du x2 à N degrés 
de liberté est, tout simplement, la loi de probabilité de la somme des carrés de N variables 
normales centrées réduites indépendantes entre elles. 

La distribution x2 (N) est utilisée en statistique inférentielle dans de nombreux contextes. La 
propriété ci-dessus est un cas particulier particulièrement simple. On peut s'en servir pour 

X1 + ... +XN 
démontrer qu'on a aussi, avec notre amie la moyenne empirique MN = N , 

N 

s = I (Xk - MN)2 
- 0"

2X2 (N - 1) 
k=I 

Si jamais on a une idée extrêmement précise de la valeur de O", alors, lorsque N n'est pas trop 
grand, on peut utiliser la statistique S pour déterminer si les données utilisées pour le calcul 
de S ont une bonne chance de provenir de données gaussiennes i.i.d., ou non. 

Démonstration : Cette propriété est une conséquence immédiate du lemme ci-dessus, 
et de la proposition suivante. • 

Proposition 
Soit N un entier naturel non nul, a 1, ... , a N, f3 des réels strictement positifs, et X1, ••• , 

XN des v.a.r. indépendantes suivant, respectivement, les lois T(a 1 ,/3), ... , T(aN,/3). 
N N 

Alors, la v.a.r. I xi suit la loi Gamma de paramètres I Œï, f3 : 
i== 1 i== 1 

Démonstration : Il suffit de démontrer cette propriété pour N = 2, le résultat pour 
N ~ 2 s'en déduisant par simple itération. 

La densité de probabilité de la loi Gamma de paramètres œ 1 + œ2, {3, est donnée, pour 
tout réel x > 0, par : 

x:x1x:x2[f1'1~2e-Px 

xT(œ1 + œ2) 

On peut alors vérifier, grâce à des calculs assez pénibles que nous détaillerons pas ici, 
que: 

• 
Les deux résultats ci-dessus montrent en outre, grâce au cas N = 2, que la loi exponentielle 
8 (1) est aussi celle du x2 avec deux degrés de liberté, i.e. la loi de Y2 + Z2, où Y et Z sont 
i.i.d., de loi N (0, 1). 

2. Dans le cas où, pour tout entier i, a; = l, en choisissant il = f3, la proposition précédente 
implique que la loi r (N, il) est celle de la somme de N variables i.i.d de loi exponentielle 
8(il). 
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> Espérance d'une v.a.r. suivant la loi Gamma de paramètres a > 0, f3 > 0 

Soient a etf3 deux réels strictement positifs, et X une v.a.r. suivant la loi Gamma I'(a,f3). 
L'espérance de X est : 

IE(X) = ~ 

Démonstration : Il est clair que f
+oo /3 

00 

lxl fa,13(x) dx = L
+oo x°'- 1 /3°' e-f3x 

X dx 
0 T(a) 

converge. On peut alors calculer : 

f +oo L+oo _x'l'.- 1 /3'1 e -/3 X 
x fa ,13(x) dx = x dx oo o T(a) 

L
+oo Xtr /3()' e-/3 X 

= dx 
o T(a) 

= l +oo x'r ~~:~-x ~ 

= ~~dx 
1 L+oo x°' e-x 

f3T(a) o 
1 

f3T(a) T(a + 1) = 

= 
l 

f3T(a) aT(a) 
a 

= 
/3 • 

> Variance d'une v.a.r. suivant la loi Gamma de paramètres a > 0, f3 > 0 

Soient a etf3 deux réels strictement positifs, et X une v.a.r. suivant la loi Gamma T(a,f3). 
La variance de X est : 

Démonstration : Il est clair que 

converge. On peut alors calculer : 

V(X) = ~ 
/3 

f :00 

x2 f(x) dx = 

f :00 

x
2 

fa,f3(x) dx 

= x2 dx L
+oo _x'l'.- 1 /3'r e-/3 X 

o T(a) 

L
+oo x°'+ 1 /3°' e -/3 x 

= dx 
o T(a) 

x2 e - 2cr2 dx 
L

+oo f (x-µ)2 

o cr~ 

= l +oo x°'+I /3~°'(:r e-x ~ 

L
+oo x°'+ 113-2 e-x 

= dx 
0 T(a) 

1 
2 

T(a + 2) 
f3 r (a) 

= 
1 

2 
(a+l)aT(a) 

f3 r (a) 
= 

a(a + 1) 
= 132 
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La variance de la v.a.r. X s'obtient alors grâce à la formule de Koenig: 

( + 1) 2 
V(X) =JE [x2] - (IE(X))2 = a a - ~ = ~ 

132 132 132 • 

Nous avons vu, dans le cas où a = N est un entier naturel non nul, que r (N, À) est la loi de la 
N 

somme X = 2:: Xk de N variables i.i.d. Xk. de loi 8 (À). Les formules donnant les espérances 
k=I 

et les variances conduisent alors à : 

E(X) =: et 
N 

Var(X) = À2 

On aurait pu, aussi, obtenir ces formules directement par linéarité de l'espérance, et additi­
vité de la variance, les v.a. en jeu étant indépendantes. Nous avons, d'ailleurs, déjà fait cette 
remarque à propos des lois du chi carré (K2). 
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Dans notre magasin de luxe de la rue de la Paix, la propriétaire a constaté que la du­
rée d'attente avant l'arrivée d'un client ne donne pas d'information sur celles avant 
l'arrivée des autres clients. Elle pense que ces temps d'attentes sont uniformes au 
cours de la journée. En tenant compte de ces éléments, et de ses décisions précé­
dentes, elle est en droit de modéliser la durée Xk d'attente entre le (k - l)ième et le 
kième client comme une variable exponentielle, de paramètre À. = 6, et de considérer 
les Xk comme i.i.d. 

Les deux employés et le gérant se sont mis d'accord pour que le premier prenne 
sa pause café du matin après l'arrivée du lüième client. Le temps d'attente pour cette 

10 

pause est donc X= 2= Xb de loir (10, 6). 
k=l 

La densité fx de la v.a. X est nulle sur R- et, pour tout x > 0: 

x9 610 e-6 x 5832 
fx (x) = = -- x9 e-6x. 

9 ! 35 

La durée moyenne de cette attente est : 

10 5 
JE (X) = 6 = 3 = 1 heure 40 minutes 

Son écart-type est : 

{10 YiO 
~Var (X) = '/ "62 = -

6
- ~ 0,5271 ~ 32 minutes 

L'employé s'inquiète quand même un peu, car l'heure du déjeuner approche, et il 
n' a pas eu sa pause café ! Le magasin ouvre en effet à 10 heures, et le déjeuner est à 
13 heures. La probabilité que la pause café n'arrive pas avant le dejeuner est donc : 

P(X>3)= fx(x)dx= --x9e-6xdx. L
oo Loo 5832 

3 3 35 

Il est possible de calculer cette intégrale explicitement à l' aide de 9 intégrations par 
parties successives. On obtient : 

P(X > 3) = 35 347 283 e-ts ~ 0,01538. 
35 

L'employé n'a donc pas trop à s'inquiéter! 
Mais, étant de nature anxieuse, il se demande si une telle situation pourrait lui 

arriver au cours d'une année. Il décide donc de considérer que chaque jour de travail 
est indépendant des autres, et veut estimer le nombre Y de fois où il manquera sa 
pause café. Comme il travaille 250 jours par an, il assimile le nombre Y à une variable 
aléatoire binomiale de paramètres n = 250 et p = 0,01538, ce qui conduit à : 

JE (Y) = n p = 250 X 0,01538 ~ 3,845 

..jvar(Y) = ..jnp(l - p) = ..j250 x 0,01538 x 0,9846 ~ 1,946 
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Il semble assez probable que l'événement redouté se produise une demi-douzaine 
de fois par an. Il souhaite donc connaître la probabilité P (Y ~ 6). Comme n est très 
grand, il ne semble pas possible d'expliciter cette dernière expression. Comme p est 
assez proche de 0, cette situation semble intermédiaire entre celle où l'on utiliserait 
une approximation de Poisson, et une autre, où le théorème central limite s'aplique­
rait. L'employé décide d'essayer les deux calculs: 

• si on utilise l'approximation de Poisson, on peut considérer que la loi de Y est 
proche de celle de la loi de Poisson de paramètre À = n p = 3,845, ce qui conduit 
alors à: 

5 3 845k 
P (Y ~ 6) ~ e- 3

,
845 L ' ~ 0,8087 

k=O k ! 

• si on utilise le théorème central limite, on peut considérer que 2~0 est la moyenne 

empirique de 250 variables de Bernoulli, de paramètre p = 0,01538. Il faudrait 

d d. y - JE (Y) . . d 1 . N (0 1) . d . ' one Ire que est approx1mat1vement e 01 , . , ce qm con mt a : 
yVar(Y) 

P(Y ~ 6) = p(y - 3,845 2 6 - 3,845) 
7 

1,946 
7 

1,946 

~ P (N (0,1) ~ 1,107) 

0,8659. 

On s'aperçoit que les deux approximations sont en léger désaccord. Mais, dans tous 
les cas, les nouvelles ne sont pas bonnes pour l'employé. À l'aide d'un ordinateur 
capable de calculer des factorielles d'un ordre élevé, on peut déterminer une valeur 
approximative de P (Y ~ 6) : 0,8102. 

L'approximation de Poisson est donc la meilleure. Ce résultat était prévisible, puis­
qu' un bon critère pour pouvoir appliquer cette approximation est que n soit très grand 
devant l, et que n p soit très petit devant n. Le théorème central limite s'applique 

moins bien, car la moyenne empirique ~ ne se concentre pas assez autour de sa 

moyenne ; ams1, 

~Var(~) ~ 1,946 X 250- ~ ~ 0,1231 

n'est pas assez petit devant 1. 
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Exercices 
d'entrainement 

www 
Les corrigés sont disponibles en téléchargement sur le site dunod.com 

à partir de la page de présentation de /'ouvrage. 

Tirage de boules 

On considère deux urnes : l'une contient 
six boules rouges et trois noires, l'autre six 
noires et trois rouges. On choisit une urne 
au hasard puis on tire deux boules (simul­
tanément). On obtient deux rouges. Quelle 
est la probabilité qu 'on ait choisi la première 
urne ? 

Généalogie 

Soit n un entier naturel non nul. 

On suppose connue la probabilité qu' une fa­
mille ait n enfants. On désigne par Pn (n = 
0, 1, ... ) cette probabilité. On suppose que 
les 211 compositions (filles/garçons) possibles 
aient la même probabilité conditionnelle (sa­
chant que la famille est composée de n en­
fants). 

2.a) Quelle est la probabilité qu'une famille 
n'ayant que des garçons soit composée 
de k enfants? 

2.b) On suppose que p,. = o:p11 pour n ~ 1, 
où a > 0, p est un réel de l'intervalle 
)0, a- 1 [,et 

Po = 1 -a p (1 + p + p2 + . .. ) = 1-~ 
1 - p 

Quelle est la probabilité qu'une famille 
ait exactement k garçons? 

2.c) Sachant qu' une famille a au moins un 
garçon, quelle est la probabilité (sous 
les mêmes hypothèses qu' à la question 
précédente) qu'elle en possède deux ou 
plus? Généraliser à mou plus, m ~ 2. 

Probabilités discrètes 

Jeux de dés (1) 

resse au lancer de 6 n dés. 

3.a) Définir l'univers Q associé à cette ex­
périence aléatoire. 

3.b) Calculer la probabilité de l'événement 
« on obtient chacun des nombres 1, 2, 
.. ., 6 exactement n fois ». 

Jeux de dés (2) 

Soit n un entier naturel non nul. On consi­
dère l'expérience aléatoire qui consiste à lan­
cer successivement n fois un dé et à noter les 
résultats obtenus. 

4.a) Définir l'univers Q associé à cette ex­
périence aléatoire. 

4.b) Calculer la probabilité de l'événe­
ment« on obtient au moins un 2 ». 

Tirages de boules 

Soit n un entier naturel non nul. Dans une 
urne qui contient 2 n boules numérotées de l 
à 2n, on tire k boules successivement et sans 
remise (1 :::;; k :::;; n). 

S.a) Définir l'univers Q associé à cette ex­
périence aléatoire. 

S.b) Quelle est la probabilité que les k 
boules portent toutes des numéros im­
pairs? 

Un peu de géométrie 

Soit n un entier naturel non nul, strictement 
plus grand que 1. On marque n points sur un 
cercle, puis on en choisit 2 au hasard. 

6.a) Quelle est la probabilité pour qu' ils 
soient voisins ? 

6.b) Même question pour n points choisis 
sur une droite. 

Rangements 

Soit n un entier naturel non nul. n paires de 
chaussettes de couleur rouge sont placées au 
hasard dans n tiroirs. 
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7.a) Quelle est la probabililité pour que 
chaque tiroir soit occupé? 

7.b) Reprendre le même problème, en sup­
posant les n paires de n couleurs diffé­
rentes. 

Sur la fonction de répartition 

On s' intéresse au lancer, de manière indépen­
dante, de trois pièces de monnaie. On sup­
pose que la probabilité de tomber sur « pile » 

vaut ~ pour chacune des pièces. On attribue la 
valeur l au côté « pile », et 0 au côté « face ». 

On définit alors la variable aléatoire X, qui 
correspond au nombre de fois où les 3 pièces 
tombent sur « pile». Donner la loi de X, et sa 
fonction de répartition. 

Légendes du baseball 

Un batteur de baseball est considéré comme 
extrêmement bon s' il est capable de frap­
per la balle au moins 300 fois sur mille, 
en moyenne, au cours de sa carrière. Le 
meilleur batteur de tous les temps était le 
légendaire Ty Cobb 1

• La probabilité qu'il 
avait de frapper la balle était p = 0,3664, 

loin devant d'autres légendes comme Babe 
Ruth2 (lOe à 0,3421) . Joe DiMaggio3 (4le 
à 0,3246), lchiro Suzuki4 (53e à 0,3196), 
Jackie Robinson5 (98e à 0,3113), ou Alex 
Rodriguez6 (204e à 0,3000). En supposant 
que la performance de Ty Cobb était uni­
forme sur ses vingt-quatre années de jeu (une 
longévité extraordinaire également), calculer 
la probabilité pour que, sur cinq occasions de 
frapper la balle (cinq « at bat ») Ty Cobb la 
frappe au moins trois fois. 

Une histoire de cerises chez les 
altermondialistes 

Considérons un chargement de cerises en 
route pour le marché international de Rungis. 
Ces cerises sont destinées à être utilisées dans 
la préparation de desserts glacés pour une 
chaîne de restauration rapide McArnold. Des 
altermondialistes dressent un barrage routier 
et répandent le contenu du chargement sur 
la chaussée, sur la Nationale 7, dans la ban­
lieue de Montélimard. L'un d 'eux estime que 
le nombre total de cerises est de trente mil­
lions, alors qu 'un autre remarque que dans 

l. Prononcer « Taille Côôôb »; au cours de sa carrière, au début du xxe siècle, il fut le seul joueur ayant, 
pour la frappe de la balle, une probabilité de succès supérieure à 0,3 pendant 23 saisons consécutives, un 
record qui ne sera probablement jamais battu ; il a établi de nombreux autres records, qui ont duré plus de 
cinquante ans. 
2. Considéré comme le meilleur joueur de tous les temps, et ce malgré un embonpoint évident ; il a détenu 
de nombreux records dans les années 1920, y compris le record du batteur le plus puissant - calculé grâce 
au « slugging percentage » - record qui tient encore. Tl est donc toujours le batteur le plus redoutable de 
tous les temps, mais Ty Cobb était encore plus efficace. 
3. Joe, fils d' immigrés italiens, jouait pour les New York Yankees ; il détient toujours le record, établi en 
1941, du plus grand nombre de jeux consécutifs avec un hit (« hitting streak »).Il était toujours la coque­
luche des Américains de nombreuses années après sa retraite, et épousa Marilyn Monroe en 1954. Sur son 
lit de mort en 1999, ses ultimes paroles furent « Je vais enfin pouvoir voir Marilyn » . 

4. Un des rares joueurs de baseball avec une renommée internationale avant de jouer en Amérique du Nord, 
il signa aux Seattle Mariners en 2000, et seulement une année plus tard, devint simultanément le meilleur 
jeune de toutes les ligues nord-américaines (« MBL Rookie of the Year »), et le meilleur joueur de la Ligue 
américaine ( « American League MVP » ). 
5. Quinze ans avant le mouvement des droits civils contre le régime d ' apartheid américain (ou « Jim Crowe 
Laws », selon lesquelles les Afro-Américains ne pouvaient pas partager les mêmes lieux publics que les 
caucasiens), Jackie Robinson fut le premier joueur Afro-américain dans les ligues de première division 
(MLB). Il fut surnommé « Rookie of the Year » en 1947, et « MVP » (Most Valuable Player) de la National 
League en 1949. Son début de carrière est décrit en 2013 dans Je film hollywoodien « 42 » . 

6. D 'origine dominicaine, surnommé « A-Rod », il finira une très longue carrière (1994-2017) dans l'équipe 
des New York Yankees, et restera probablement comme l'un des meilleurs joueurs de tous les temps - avec 
un talent prodigieux repéré des sa plus tendre enfance - et ce, malgré de nombreuses controverses sur son 
recours à des stéroïdes dûment interdits. A-Rod fut le joueur le mieux payé de tous les temps (275 millions 
pour ses dix dernières années aux Yankees), et détient de nombreux records ; par exemple, en 2007, il a 
battu celui du joueur le plus jeune à atteindre 600 « home-runs », record détenu pendant près d' un siècle par 
Babe Ruth. 
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plusieurs échantillons successifs, il semble 
que la proportion de cerises non moisies soit 
de 80 %. Le premier compère en conclut 
qu'il doit y avoir environ 24 millions de 
bonnes cerises répandues sur la chaussée. Les 
compagnons ayant décidé de conserver le 
barrage routier pendant toute la journée, ils 
s'aperçoiventqu'ils n' ont pas prévu de casse­
croûte. En accord avec le transporteur, qui 
ferme les yeux car il a de la sympathie pour 
les altermondialistes et n' aime pas la« mal­
bouffe »,ils prennent des poignées de cerises, 
par cinq, pour appaiser leur faim et leur soif. 

Quel est la loi du nombre de bonnes cerises 
dans la première poignée? Calculer la proba­
bilité qu'on puisse en consommer au moins 
quatre avec plaisir dans une poignée donnée. 

Les clients de la boutique de 
l'Opéra Garnier 

Le nombre de clients qui pénètrent dans la 
boutique de l'Opéra Garnier à Paris au mois 
de février est, en moyenne, de dix par heure 
en semaine. En l'absence de toute autre in­
formation, on peut (et même on doit) modé­
liser le nombre de clients qui rentrent dans ce 
magasin au cours d'une période de t heures 
comme une variable de Poisson de paramètre 
À = 10 t. Quelle est la probabilité qu' au 
moins cinq clients pénètrent dans la boutique 
entre dix heures et dix heures quinze? Quelle 
est la probabilité qu'il n'arrive pas plus de 
trois clients pendant la période allant de dix 
heures à dix heures dix ou de onze heures à 
onze heures cinq ? 

Cléo et Chloé jouent à pile ou 
face (1) 

Cléo et Chloé jouent à pile ou face avec 
une pièce non truquée. Cléo joue quatre fois. 
Chloé joue trois fois. Calculer la probabilité 
que les deux amies ont de tirer au total au 
moins 5 fois le côté « pile ». 

Cléo et Chloé jouent à pile ou 
face (2) 

Chloé et Cléo changent maintenant légère­
ment de jeu. Cléo lance la pièce jusqu'à ob­
tenir trois fois le côté « pile »; Chloé lance 
la pièce jusqu' à obtenir deux fois le côté 

« pile ». Calculer la probabilité qu' il leur 
faille au moins huit tirages. 

Variables à densité 

Modélisation continue des temps 
d'attente 

On s'intéresse, ici, aux temps d'attente des 
clients dans un magasin de luxe, situé rue 
de la Paix, à Paris. On suppose que la pro­
priétaire est âgée de 58 ans, et que la clien­
tèle a plus l'habitude de fréquenter le Café 
des Deux Magots, à Saint-Germain-des-Prés, 
plutôt que des cafés proches de cette boutique 
de luxe, comme, par exemple, le Café de la 
Paix. Supposons que la propriétaire ait cal­
culé, comme fréquence d'arrivée des clients, 
6 par heure, en moyenne. Elle décide de mo­
déliser l' arrivée du premier client sans se res­
treindre aux moments d'arrivée mesurés en 
minutes entières. Elle a remarqué, contraire­
ment à lavis de son gérant, que la durée d' at­
tente jusqu'à l ' arrivée du premier client ne 
semble pas être liée au temps passé à attendre 
sans que le premier client n'arrive ; en réalité, 
elle pense que son gérant est superstitieux de 
considérer qu'une attente longue est de mau­
vais augure pour le reste de la journée. 

Les seules informations utiles à retenir sont 
donc les suivantes : 

• on modélise le temps d ' attente X comme 
une variable qui peut prendre n'importe 
quelle valeur réelle positive; on supposera, 
à cet effet, que X a une densité fx. 

• La propriétaire a noté la propriété d' ab­
sence de mémoire. on peut donc, légitime­
ment, supposer que X est de loi exponen­
tielle. 

• La propriétaire a calculé la fréquence 
moyenne du nombre de clients, qui vaut 
6 : on peut interpréter ce résultat en disant 
que l'on doit prendre À = 6 (l ' unité de X 
est l'heure). On peut aussi se baser sur le 
fait que si l'on a, en moyenne, six clients 
par heure, on peut répéter l'expérience en 
cherchant plutôt la durée moyenne d'at­
tente du premier client (voire la durée 
moyenne d'attente entre l'arrivée de deux 
clients successifs, ces durées étant sup­
posées indépendantes). On trouvera alors 
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vraisemblablementE [X]= ~ ·on attend le 

client dix minutes en moyenne. Comme 

E [X] = l · ceci conduit précisément à 

À= 6. 
(Cette dernière opération est un cas très parti­
culier de ce que l'on appelle en statistique la 
« méthode des moments » pour l'estimation 
de paramètres.) 

Calculer: 

P(X > lOmin) P(X > 20min) 

P(X > 60 min) 

Retour au magasin de luxe 

Supposons qu'un employé de notre magasin 
de luxe de la rue de la Paix souhaite fumer 
une cigarette sans incommoder les clients. 
Lorsqu'il est pressé, cette activité lui prend 
60 secondes. Il est intéressant de calculer la 
probabilité qu'il parvienne à finir sa cigarette 
avant que n'arrive le prochain client. 

15.a) Supposons, d'abord, que l'employé ne 
soit pas seul dans Je magasin, et qu' il 
ait promis a son coéquipier de servir Je 
second client, et qu'il parvienne à allu­
mer discrètement sa cigarette et à sortir 
du magasin au moment même où entre 
le premier client. Quelle est sa probabi­
lité de succès? 

15.b) Supposons maintenant que l'employé 
se retrouve seul dans le magasin, et que 
le premier client rentre et reste trois mi­
nutes avant de ressortir (il avait passé 
une commande réglée sur internet, et 
n'a eu qu 'à récupérer celle-ci). 
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La durée d'attente X entre le premier et 
Je second client est donc supérieure à 

. . X 3 trois minutes : > 
60

. 

L'employé se précipite dehors, une mi­
nute après le départ du client (il ne veut 
pas faire mauvaise impression au cas 
où celui-ci serait toujours dans la rue). 

4 
Ainsi, X > 

60
. 

Quelle est la probabilité qu'il arrive à 
fumer sa cigarette avant l'arrivée du se­
cond client? 

Une application du théorème 
central limite 

On s ' amuse à lancer un dé 400 fois de 
suite, et on désigne par X la v.a. donnant 
le nombre d ' apparitions d' un multiple de 2 
(i.e. deux, quatre ou six). X suit la loi bino-

miale 13 ( 400, ~). Calculer son espérance et 

son écart-type, puis la probabilité que X soit 
compris entre 220 et 230. 

Les élections présidentielles 
en Floride (Fiction) 

Lors de l'élection présidentielle américaine 
de novembre 2000, la chaîne de télévision 
CNN a effectué un sondage à la sortie des 
urnes ( « exit poli ») des bureaux de vote 
de l'Etat de Floride, sur un échantillon de 
l 000 personnes. Le candidat « W » recueille 
a pour cent des suffrages des l 000 personnes 
interrogées. On suppose que la valeur a est 
proche de 50. 

17.a) À l'aide du théorème central limite, 
donner un intervalle de confiance à 
95% pour la véritable proportionµ de 
votants qui ont choisi le candidat« W » 
en Floride. On assimile cette propor­
tion au score S w réalisé par « W ». 

17.b) À partir de quelle valeur de 1 a - 501 
peut-on se baser sur le sondage pour 
connaître le résultat de l'élection avec 
95 % de certitude? 

17.c) Sur un effectif total de 6 000 000 de vo­
tants ftoridiens, la différence de votes 
entre le score de « W » et celui de 
l'autre candidat est de 4000 voix. 
Combien de personnes aurait-il fallu 
interroger dans l ' «exit poil» de CNN 
pour pouvoir déclarer le vainqueur avec 
95 % de certitude? On notera N le 
nombre recherché . 
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Formulaires 

Formulaire de trigonométrie 
1. Formules d'addition 

Pour tout couple de réels (a, b) : 

cos( a + b) = cos a cos b - sin a sin b 

cos( a - b) = cos a cos b + sin a sin b 

sin(a + b) = sin a cosb + cosa sinb 

sin(a - b) = sin a cos b - cos a sin b 

cos (a + ~) = - sin a 
cos ( ~ - a) = sm a 
sin (a + ~)= cos a 

sin ( ~ - a) = cos a 

Formule d'addition avec un angle droit. 

et, lorsque (a,b) E (IR. \{~ + klr ,k E z}f: 

{

tan(a + b) = 

tan(a - b) = 

tan a + tan b si a + b 
1- tanatanb 

tan a - tan b si a _ b 
1 + tana tanb 

2. Formules de duplication 

Pour tout réel a : 

E IR. \{~ + k1r ,k E z} 
E IR. \ {~ +krc,k E z} 

{
cos(2a) = cos2 a - sin2 a = 2 cos2 a - 1= 1- 2 sin2 a 

sin(2 a) = 2 sin a cos a 
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7r 7r 
et, lorsque a * '2 [ rr] et 2 a * 2 [ rr] : 

tan(2 a) = 
2 tan a 

1 - tan2 a 

3. Formules de linéarisation 

Pour tout réel a : 

{

cos2 a= 

sin2 a = 

1 + cos(2a) 

2 
1 - cos(2a) 

2 

4. Formules de Simpson 1 pour la transformation de produits 
en sommes 

Pour tout couple de réels (a, b) : 
1 

cos a cos b = '2 { cos(a + b) + cos(a - b)} 

1 
sin a sin b = '2 { cos(a - b) - cos(a + b)} 

sin a cos b = ~ { sin(a + b) + sin(a - b)} 

S. Formules de Simpson pour la transformation de sommes 
en produits 

Pour tout couple de réels (p, q) : 

cos p + cos q = 2 cos ( p ; q) cos ( p ; q) 
cos p - cos q = - 2 sin ( p ; q) sin ( p ; q) 
sin p + sin q = 2 sin ( p ; q) cos ( p ; q) 
sin p - sin q = 2 sin ( p; q) cos ( p; q) 

6. Expression en fonction de la tangente de l'angle moitié 

Pour tout réel a* rr [2rr], on pose 

On a alors: 

. d 7r S1, e plus, a* '2 [rr], on a: 

t =tan(~) 

{ 

1 - t2 
cos a= --

2 L + t 
. 2t 

sm a = --
2 1 + t 

2t 
tan a= --

2 L - t 

1. Thomas Simpson (1710-1761), mathématicien anglais, essentiellement connu pour ses travaux sur le 
calcul infinitésimal (la méthode de Simpson, qui permet un calcul approché de l'aire sous une courbe), mais 
qui fut aussi l' auteur d 'un important traité de trigonométrie. 
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Fonction 

XHx", a ER*\ {- 1} 

1 
XH -

X 

X H lnx 

X H COSX 

x H sinx 

x H tanx 

1 
x H cotanx = -­

tanx 

eJ< + e-X 
x H chx = 

2 

eX - e-X 
x H shx = 

2 

shx 
X H thX= - h 

C X 

1 
XH cothx= -h 

t X 

Dérivées usuelles 

Dérivée 

1 
XH -­x2 

1 
XH -

X 

x H - sinx 

X H COSX 

1 
XH 1 +tan2x= --2-

cos X 

1 
XH--­

SÏ n2 X 

XHSh X 

X H Ch X 

X H 1 - t h2 x 

1 
XH--­

S h2x 

Domaine de validité 

R* + 

R* 

lR.. 
+ 

R 

R 

R 

:;;= 
IR\(~ + br, k E z} 

R\ rr Z 

R 

R 

R 

R* 

1 

495 



"O 
0 
c 
:J 
0 
'<j" 
..--t 

0 
N 

@ 
....... 
.!: 
O'l 

·;:::: 
>-
0. 
0 
u 

496 

Dérivées des fonctions 
réciproques usuelles 

Fonction Dérivée Domaine de validité 

1 1 - 1, 1 [ x H arccosx XH -

v1 -x2 

x H arcsinx XH 

~ 
1 - 1, 1 [ 

1 
x H arctanx XH --

1 +x2 

x H argsh x 
1 

XH 

Yx2+1 

x H argchx 
~ 

]1, +oo[ 

x H argthx 
1 1 - 1, 1 [ XH --

1 -x2 



Primitives usuelles 

Fonction Primitive Domaine de validité 

1 
XH ln lxl IR* XH -

X 

X He" X He" IR 

X H COSX x H sinx IR 

x H sinx X H - COSX IR 

x H tanx x H - 1 n 1 cos xi IR\ 1 ~ + k JT, k E z} 
1 

IR\ 1 ~ + k JT, k E z) XH-- x H tanx 
cos2x 

1 
x H - cotanx = - ta~ x IR\JT z XH--

sin2 x 

1 1- 1, 1 [ XH- x H arccosx 
~ 

1 
x H arcsinx 1- 1, 1 [ XH 

v1 -x2 

1 
XH--

1 +x2 x H arctanx 

x H chx = 
e" + e - X 

XH shx 
2 

XH shx = 
ex - e -x 

XHChX 
2 

shx 
XH thX = h 

C X 
x H ln(chx) IR 

1 
XHthX IR\ { ~ + k JT, k E z) XH--

ch2x 

1 
x H - cothx IR* XH--

sh2x 

XH 
vx2+1 

x H argsh x 

"O :<; 

0 
"O 

= c " XH x H argchx 
::J ~ vx2 - 1 0 " " 

"<;t ~~ 
1 ...... s x H argthx IR 0 ~ XH--

N "' 
1 -x2 

0 

@ = 
.S ..._, ü XH lnx XHXlnx - x IR* 

.s:: " + 

Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
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Limites usuelles des fonctions puissances 

Soit n un entier naturel non nul. Alors : 

498 

lim x2n = +oo 
X--+-oo 

lim x2n = o+ 
X-+0+ 

lim x2n+1 = -oo 
X--+ - oo 

lim x2n+1 = o+ 
X--+0 + 

lim x-2n = o+ 
X--+-oo 

lim x-2n = + oo 
X--+0+ 

lim x-2n-l = o-
x--+-oo 

lim x-2n- l = + oo 
X--+O+ 

lim x 2n = +oo 
X-++oo 

lim x2n = o+ 
x-.o-

lim x2n+l = +oo 
X--++ oo 

l im x2n+l = o­
x-.o-

lim x2n = o+ 
X--++ oo 

lim x-2n = +oo 
x-.o-

lim x-2n- l = o+ 
X--++ oo 

lim x-2n- l = -oo 
X--+O-
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Rang d'une matrice 

Définition 

Soit A E Mm,nOR). 
On appelle rang de la matrice A, et on note rg A, la taille maximale d'une matrice 
carrée inversible extraite2 de A. 

Exemples 

1. 

2. 

[ 

0 l 0 l l 
A= 1 002 

0 0 1 1 

La matrice A étant de taille 3 x 4, son rang sera inférieur ou égal à 3. 

[
o i ol 

La matrice l 0 0 extraite de A ayant un déterminant non nul, elle est inversible : 
0 0 1 

rgA = 3 

B = (~;) 
La matrice B étant de taille 2 x 2, son rang sera inférieur ou égal à 2. 

Seules les matrices ( l ) et ( 2) extraites de B ont un déterminant non nul : 

rgB = 1 

2. c'est-à-dire obtenue en enlevant des lignes et/ou des colonnes à A. 
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Abbasides 50 
Abbé Buée 210 
Abélien 215 

A 

Abraham De Moivre 217, 469, 471 
Absence de mémoire 402, 462 
Abu Al-Wafa 50 
Additivité 

de l'intégrale double 194 
des variances 436 

Adhérence 
(d'un intervalle) 7 
de IR. 3 

ADN 370 
Adrien Douady 210 
Affixe 211 
Aire d'un parallélogramme 300, 301 
Al-Kashi 50 
Al-Khwarizmi 50 
Algébriquement clos 225 
Algorithme 50 

de Gauss-Jordan 274 
Fang-Shen 274 

Angle entre deux vecteurs de IR.3 298 
Anneau 215 
Anneau commutatif 214 
Antécédent 5 
Application 5 
Application identité 72, 354 

de IR." 335 
de l'espace IR.3 319 
du plan IR.2 305 

Application linéaire 354 
de 1' espace IR.3 318 
de l'espace IR." 335 
du plan 304 

Arccosinus 76 
Arcsinus 75 
Arctangente 77 
Argand Jean-Robert 206, 210 
Argument 211 

cosinus hyperbolique 79 
principal 211 
sinus hyperbolique 79 
tangente hyperbolique 80 

Arrangements 370 
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Index 

avec répétition 371 
Aryabhata 49 
Associativité du barycentre 288 
Astrolabe 49 
Asymptote verticale 19 
Auto-indéfinie-divisibilité de la loi de Poisson 

417 
Automorphisme 338, 307, 321 , 354 
Axe 

d 'une rotation 328 
de symétrie vertical 31 

Axiome de la borne supérieure 21 , 123 

Bachman 16, 144 
Barycentre 

B 

d'un système pondéré den points 287, 288 
d 'un système pondéré de deux points 286, 

287 
Base directe de IR.3 298 
Baseball 490 
Bernoulli Daniel 196 
Bernouilli Jacques 44 
Bernouilli Nicolas 44 
Bijectivité 72 
Bombelli 209 
Bootstrap 479 
Borel-Cantelli (Lemme de) 448 
Branche parabolique d'axe 

d'équation y= mx, m E IR. 20 
horizontal 20 
vertical 19 

Briggs Henry 38 
Buée 210 

Caractérisation 

c 

de l'indépendance de deux v.a.r. à densité 
474 

des fonctions constantes dérivables 63 
des fonctions croissantes dérivables 64 
des fonctions décroissantes dérivables 64 
des fonctions strictement croissantes déri-

vables 64 
des fonctions strictement décroissantes 

dérivables 64 
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des projecteurs 358 
des symétries 358 
séquentielle de la continuité 53 
de Weierstrass 51 

Cardan 209 
Cauchy Augustin 210, 250 
Causalité 380 
Centre de gravité 288 
Cesàro Ernesto J 34 
Changement 

d'indices 182 
de base 308, 322, 339 
de variable 171 

Chebyshev 437 
Coefficient de corrélation 443 
Coefficients binomiaux 265 
Cofacteur d'indice (i, j) 259, 270 
Comatrice 259, 270 
Combinaisons 372 

linéaire 282, 331 , 351 
Comparaison avec une intégrale 

convergente (sur un intervalle de longueur 
finie) 191 

convergente (sur un intervalle de longueur 
infinie) 189 

divergente (sur un intervalle de longueur 
finie) 191 

divergente (sur un intervalle de longueur 
infinie) 190 

Comparaison des fonctions puissances non 
entières 43 

Complémentaire d'un ensemble 4 
Composition (de fonctions) 22 
Concentration de la mesure 470 
Condition 

initiale (pour une équation différentielle li­
néaire du premier ordre homogène) 
102 

nécessaire de convergence d' une série 150 
Condition nécessaire et suffisante de conver­

gence 188 
d'une intégrale de Riemann (sur un inter­

valle de longueur infinie) 187 
d'une série de Riemann 152 
d'une série géométrique 151 

Conditions initiales 117 
Condorcet 398 
Conjugaison 311 , 325, 342 
Conjugué 208 
Continuité 

des fonctions composées 54 
des fonctions usuelles 54 

à droite 52 
à gauche 51 
d'une fonction en un point 51 
des fonctions composées 55 
des fonctions usuelles 55 
et opérations algébriques 55 

Convergence d'une série numérique 149 
Convexité et dérivabilité 99 
Corde 58 

sous-tendue 49 
Corps de base 350, 351 
Cosécante 50 
Cosinus 45 

hyperbolique 47 
Couple de variables aléatoires discrètes 445 
Coupures de Dedekind 21 
Courbe représentative (d'une fonction) 18 
Covariance 442 

de deux v.a. indépendantes 442 
Cramer 250 
Critère 

de Cauchy 142 
de d' Alembert 154 

Croissance 26 
(au sens strict) 26 
(pour une intégrale) 159, 165 
de lespérance 42 J, 453 
comparées 43 

Curie Pierre 44 

D 

D'Alembert Jean le Rond 210 
Décomposition en éléments simples 231 

sur IR(X) d' une fraction rationnelle im­
paire 238 

sur IR(X) d'une fraction rationnelle paire 
236 

Décroissance 26 
Dedekind Richard 21 
Degré de confiance 455 
De !'Hôpital Guillaume 196 
De Gennes Pierre-Gilles 44 
Demi-tangente 

à droite 62 
à gauche 63 

De Nicée Hipparque 49 
Densité 

conditionnelle de deux v.a.r. 473 
de probabilité 450 
de probabilité sur IR2 472 
jointe 472 
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marginales de deux v.a.r. 472 
Dérivabilité 

des fonctions composées 60, 61 
des fonctions définies par morceaux 62 
en un point 58 
en un point et opérations algébriques 59 
et opérations algébriques 61 
sur un intervalle 61 

Décroissance (au sens strict) 26 
Dérivée 58 

à gauche d 'une fonction 63 
Dérivée nième 65 

d'un quotient de fonctions, n E N 66 
d' une combinaison linéaire de fonctions, 

n E N 65 
de la composée de deux fonctions, n E N 

66 
Déterminant 

d'une application linéaire de R2 311 
d'une application linéaire de R3 325 
d'une application linéaire de R" 342 
d' une matrice de taille 2 x 2 254 
d' une matrice de taille 3 x 3 259 
d'une matrice diagonale 27 1 
d'une matrice triangulaire 271 
de deux vecteurs du plan 254 
de trois vecteurs de l'espace 261 
du produit de deux matrices d'ordre n 271 

Déterminisme 380 
Développement 

asymptotique 95, 146 
limité au voisinage d' un point 81 
limité de la fonction exponentielle au voi­

sinage de zéro 85 
limité de la fonction logarithme népérien 

au voisinage de l 84 
limité des fonctions sinus et cosinus au 

voisinage de zéro 85 
limités usuels 89 

Diagonalisabilité 344 
Di Bruno Faà 66 
Différence de deux ensembles 4 
Dilatation 253 
Discriminant réduit 226 
Divergence d'une série numérique 149 
Division euclidienne (de deux polynômes) 

230 
Domaine de définition (d 'une fonction) 18 
Domination 16, 144 
Droite 

affine 290 
asymptote à une courbe 19 
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réelle achevée 3 
vectorielle 290 

Écart-type 431 

E 

Écriture cartésienne 207 
Ensemble 2 
Ensemble vide 4 , 6 
Épreuve 376 
Équation 

caractéristique pour une suite récurrente 
linéaire d' ordre deux 118 

différentielle linéaire du premier ordre 
avec second membre 103 

homogène associée à une équation diffé­
rentielle linéaire du premier ordre 
avec second membre 103 

Équiprobabilité 379 
Équivalence 

de deux fonctions 1 7 
de deux suites 145 

Espace 
caractéristique 344 
complet 142 
probabilisé 377 
propre 344 
vectoriel 34 7 
vectoriel de dimension finie 352 
vectoriel de dimension infinie 352 
vectoriel des suites 112 
vectoriel produit 353 

Espérance 419 
et valeur absolue 453 
mathématique d ' un produit de v.a. indé­

pendantes 435 
Espérance d 'une v.a.r. 

suivant la loi Gamma de paramètres a > 
0, /3 > 0 485 

suivant la loi normale N(µ, a-2
) 468 

suivant la loi uniforme (sur un intervalle 
[a, b]) 458 

suivant la loi exponentielle 8(,l) 463 
Euler 44, 210 
Evénement 376 

élémentaire 376 
indépendants 388 
négligeable 379 
presque sûr 378 

Expérience aléatoire 376 
Exponentielle complexe 213 
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Extremum 
d'une fonction sur un intervalle 67 
local d'une fonction 68 

F 

Factorielle 368 
Famille d'événements observables) 377 
Fermat 380 
Fincke Thomas 50 
Fomule de Taylor Lagrange 71 
Fonction 5 

n fois dérivable, n E N 65 
concave 96 
continue par morceaux 162 
continue partout, mais nulle part dérivable 

59 
contractante 131 
convexe 96 
cosinus 45 
d'une variable aléatoire discrète 390 
de Dirichlet 184 
de probabilité 390 
de répartition d'un couple de v.a.r. 472 

de répartition pour la loi exponentielle de pa­
ramètre À > 0 461 

de répartition pour la loi uniforme 457 
de répartition d' une variable aléatoire dis-

crète 392 
de survie 462 
de survie d'une v.a.r. positive 455 
en escalier 157 
exponentielle 41 
Fonction de classe C00 65 
Fonction de classe C", n E N 65 
Gamma 480 
indéfiniment dérivable 65 
logarithme népérien 39 
polynomiale 35 
puissance 33, 498 
puissance non entière 43 
réciproque 72 
sinus 45 
tangente 46 
valeur absolue 37 
continues sur un intervalle 55 
définies par morceaux 23 
monotones 26 
périodiques 32 
symétriques des racines 228 

Forme 
canonique 175 

indéterminée 13 
Formule 

de Bayes 386, 387 
de changement de base pour un vecteur 

308, 322, 339 
de Grassmann 334 
de Koenig 432, 444, 454 
de la moyenne 167 
de Leibniz 66, 234 
de Moivre 217 
de Stirling 179, 369 
de Taylor-Young 84, 87 
de Vandermonde 374, 418 
des probabilités composées généralisée 

384 
des probabilités totales 385 
des probabilités composées 384 
du binôme de Newton 373 
du binôme de Newton 265, 337 
du rang dans R.2 307 
du rang dans R.3 321 
du rang dans R." 338 
d'addition 50, 493 
d'Euler 217 
de Cramer 279 
de duplication 493 
de linéarisation 494 
de Simpson pour la transformation de pro­

duits en sommes 494 
de Simpson pour la transformation de 

sommes en produits 494 

G 

Gauss Carl Friedrich 250 
Géométrie tropicale 303 
Girard Albert 50 
Gottfried Leibniz 44 
Grand 0 16, 17, 144 
Graphe 

d'une fonction 18 
d'une fonction réciproque 74 

Grassmann Hermann 334 
Grauert Hans 210 
Grothendieck Alexandre 210 
Groupe 

commutatif 215 , 350 
linéaire 355 
linéaire d 'ordre n 272 
linéaire de R." 338 
orthogonal 312, 327 
spécial orthogonal 313, 316, 327, 329, 347 
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Guillaume Francçois Antoine de !'Hôpital 
196 

H 

Heisenberg Werner 380 
Hilbert David 210 
Homographie 126 
Homothétie 240 

1 

Idempotent 358 
Identité de polarisation 313, 327 
Image 5 

d'un intervalle fermé et borné par une 
fonction continue 57 

d'un intervalle par une fonction continue 
strictement monotone 73 

d'une application linéaire 307, 320, 337, 
355 

Imaginaire pur 207 
Imparité 28 
Imre Simon 303 
Inégalité 

de Cauchy-Schwarz 294, 440 
de convexité 97 
de Jensen 97, 425 
de la moyenne 166 
de Markov 426, 437, 454 
de Tchebychev 437, 454 
des pentes croissantes 98 
triangulaire 36, 294 

Indépendance de deux v.a.r. 473 
Indice 

de colonne 262 
de ligne 262 

Injectivité 72, 307, 321, 337, 338, 354 
des fonctions continues 73 

Intégrale 
de Gauss 466 
d'une fonction continue par morceaux 163 
d'une fonction en escalier 158 
de Lebesgue J 84 
de Riemann 158, 187 
de Stieltjes 454 
double sur un pavé (du plan JR.2) et valeur 

absolue 194 
double sur un pavé (du plan JR.2) 193 
impropre 185, 186 
de Wallis 202, 369 

Intégration 
des développements limités 84 
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par parties 170 
Interprétation géométrique de la valeur abso­

lue 36 
Intersection d'ensembles 4 
Intervalle 7 

de confiance 455, 478 
de confiance bilatéral 456 
de confiance disymétrique 456 
de confiance symétrique 456 
de confiance unilatéral 456 
fermé borné 6 
ouvert 6 
ouvert et borné 6 
semi-ouvert et borné 6 
de confiance avec variance non unitaire 

479 
Invariance par transvection 271 
Inverse 

d'un produit de matrices 275 
d 'une suite 133 
de la transposée d'une matrice 274 

Involutif 358 
Isobarycentre 

d'un ensemble de 3 points, A, B, C 288 
d'un ensemble den points 288 

Isométrie 313, 326 

J 

Jensen 97 
Julia Gaston Maurice 210 

K 

K-espace vectoriel 351 
Kronecker Leopold 266 

L 

Lagrange 67, 148, 250 
L'Almageste 49 
Landau Edmund 16, 144 
Laplace Simon 4 71 
Lebesgue Henri-Léon 183 
Leibniz Gottfried 66, 250 
Limite(s) 

d'un produit de fonctions 15 
d'un quotient de fonctions 15 
d'une fonction en +oo ou -oo 12 
d'une fonction polynomiale en +oo ou -oo 

35 
d'une somme de fonctions 15 



"O :<; 

0 
"O 

= c " ::J ~ 

0 " " 
"<;t ~~ 
...... s 
0 ~ 
N "' 0 

@ = 
.S ..._, ü 

.s:: " 
Ol ~ 
'i: o. 

~ >- " o. :; 
0 f2 u 

'8 = :> 
Cl 
@ 

finie à droite (ou par valeurs supérieures) 
10 

finie à gauche (ou par valeurs inférieures) 
JO 

finie d'une fonction en un point 8 
infinie à droite (ou par valeurs supé­

rieures) 11 
infinie à gauche (ou par valeurs infé-

rieures) 11 
infinie d'une fonction en un point 10 
uniforme 163 
usuelles des fonctions puissances non en­

tières 43 
Linéarité 

de l'espérance 420, 453 
(pour une intégrale) 158, 164 
de l'intégrale double sur un pavé (du plan 

JR2) 193 
Logarithme 

de base a, a E JR: 40 
Loi(s) 

binomiale 397 
binomiale négative 404 
conditionnelle 446 
conditionnelle de deux v.a.r. 473 
conjointe 445 
d'Erlang (de paramètres œ E N*, f3 > 0) 

482 
d'une variable aléatoire discrète 390 
de Bernoulli 394 
de distribution de Maxwell-Boltzmann 

(de paramètre a > 0) 482 
de P6lya 404 
de Pascal 404 
de Poisson 412 
des cosinus 50 
dux2 (à N degrés de liberté, NE N*) 482 
exponentielle (de paramètre a E JR:) 461 
faible des grands nombres 447, 448 
forte des grands nombres 448 
géométrique 400 
Gamma (de paramètres œ > 0, f3 > 0) 481 
hypergéométrique 409 
marginales 446 
normale (de paramètresµ , <r) 465 
normale centrée réduite 466 
normale et transformation affine 466 
uniforme 396, 457 

M 

Majorant 123 

Mandelbrot Benoît 210 
Matrice 

2 X 2 252 
3 X 3 256 
colonne 263 
de dilatation 268 
de passage 308, 310, 322, 324, 339, 341 
de permutation 267 
de taille m X n 262 
de transposition 267 
de transvection 269 
diagonale 252, 256, 261 
identité d'ordre n 266 
inverse 272 
inversible 272 
ligne 262 
orthogonale 312, 313, 326 
singulière 272 
triangulaire 255 , 261 
triangulaire inférieure 252, 256 
triangulaire supérieure 252, 256 
semblables 311 , 325, 342 

Maximum 
d'une fonction sur un intervalle 67 
local d'une fonction 67 

Médianes 288 
Méridiens 49 
Méthode 

de variation de la constante 109 
de Simpson 179 
des moments 492 
des rectangles 176 
des trapèzes 178 
du Pivot de Gauss 274 

Miche Rolle 69 
Mineur d' indice (i, j) 259, 270 
Minimum local d' une fonction 67 
Minorant 123 
Module 211 
Modulo 2rr 212 
Moment d'ordre n d'une v.a.r., n E N 453 
Monotonie 26 
Multiplication 

d 'un vecteur par un réel 282, 331 
d'une suite par un scalaire 112, 133 

Multiplicité 225 
d'une valeur propre 343 

N 

Napier John 38 
Nasir Al-Din Al-Tusi 50 
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Négligeabilité 16, 144 
Neper John 38 
Newton Isaac 44 
Nombre d'or 302 
Nombres de Bernoulli 90, 9 L 
Norme 294 
Norme euclidienne 293 
Notation 

« +» 3 
«-» 3 
«*» 3 
«:» 3 
«~» 3 

de Landau 16, 144 
Noyau 

d'une application linéaire 306, 320, 337, 
355 

d'une matrice 306, 320, 337 

0 

Opérateur orthogonal 312, 326 
Opération élémentaire 253, 257, 258 
Opérations algébriques sur les fonctions 

continues 54 
Oughtred William 50 

p 

Parallèles 49 
Paramètre de forme 481 
Parité 28 
Partie 

entière 52 
entière (d' une fraction rationnelle) 231 
imaginaire 207 
polaire (d'une fraction rationnelle) 231 
principale d'ordre n E N d'un développe-

ment limité 82 
réelle 207 

Partition 379 
Pas d'une subdivision 157 
Pascal Blaise 380 
Pavé (du plan R2

) 193 
Période fondamentale 32 
Périodicité 32 
Petit o 16, 144 
Pôle (d'une fraction rationnelle) 230 
Pôle d'ordre p (d'une fraction rationnelle) 230 
Pivot de Gauss 274 
Plan 

508 

affine 291 
vectoriel 291 

Poincaré Henri 95 
Polynôme(s) 

caractéristique 343 
de Tchebychev 122 
formels 229 

Position de la courbe représentative 
d' une fonction convexe 

par rapport à ses tangentes 99 
par rapport à ses cordes 97 

Positivité 
(pour une intégrale) 158, 164 
de l' espérance 421 , 453 
de l'intégrale double sur un pavé 

(du plan R2
) 194 

Primitives 62, 168 
usuelles 497 

Principe 
d ' incertitude de Heisenberg 380 
de superposition 103 

Probabilité 377 
conditionnelle 384 
sur un univers fini 378 

Problème des N corps 95 
des partis 380 
des trois corps 95 

Processus stochastique 
àsaut 412 
continu 412 

Produit 
cartésien den ensembles, n E N, n ;;::: 2 5 
cartésien de deux ensembles 4 
cartésien de trois ensembles 5 
de convolution de deux fonctions 475 
de suites 113, 132 
scalaire 293 
vectoriel 298 

Projecteur 357 
Projection 357 
Prolongement par continuité en un point 53 
Propriétés 

de la covariance 442 
de la fonction Gamma 480 

Ptolémée 49 
Puissance (quelconque) d'un réel strictement 

positif 42 

R 

Racine 
n ème d' un réel strictement positif, n E N* 

42 
carrée complexe de - 1 207 
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d'ordre n 225 
d'un polynôme 224 
double 225 
triple 225 
nièmes 221 

Raison (d'une série géométrique) 151 
Rang 

d' une application linéaire 307, 321 , 338 
d' une matrice 499 

~-espace vectoriel 350 
lR 3 
Récurrence 

double 121 
forte 121 

Règle 
de l'Hôpital 196 
du bonhomme d' Ampère 298 

Régularité d'une fonction convexe 98 
Relation 

de Chasles (pour une intégrale) 160, 165 
de récurrence d' ordre p 118 
de récurrence linéaire d' ordre 2 116 
coefficients-racines pour un polynôme de 

degré n 227 
coefficients-racines pour un polynôme de 

degré 2 227 
de Viète 228 

Repère de l' espace 285 
Représentation paramétrique 

d'un plan affine 292 
d'une droite 290 

Reste d'ordre n, n E N, d'une série conver-
gente 150 

Restriction d' une fonction à un intervalle 22 
Riemann Bernhard 156 
Rotation 242 

vectorielle 314, 328 
Ruban de Mobius 302 

s 

Scipione dal Ferro 209 
Sécante 50, 58 
Second membre 

de type «exponentielle x polynôme » 105 
de type« exponentielle x sinus» 108 
de type « exponentielle x cosinus » l 08 

Segment 6 
Sens de variation des fonctions puissances 33 
Séquençage del' ADN 370 
Série 149 

absolument convergente 150 

de Riemann 152 
entière 152 
géométrique 151 
harmonique 152 
semi-convergente 150 

Sextique de Barth 302 
Sigma-additivité 378 
a--algèbre 377 
Similitude 

directe 245 
indirecte 247 

Simpson Thomas 179, 494 
Singleton 6 
Sinus 45 
Sinus hyperbolique 47 
Solution d'une équation différentielle linéaire 

du premier ordre 
avec second membre 104 
homogène l 0 l 
homogène avec une condition initiale 102 

Somme 
d'une série convergente 149 
de deux séries convergentes 150 
de deux v.a. indépendantes 416, 417, 475 
de deux variables aléatoires discrètes in-

dépendantes 416 
de deux variables aléatoires réelles indé-

pendantes 476 
de deux vecteurs 282, 330 
de sous-espaces vectoriels de lR.11 333 
de suites 112, 132 
des n premiers carrés, n E N l 98 
des n premiers cubes, n E N 198 
des n premiers entiers naturels, n E N 198 
directe de sous-espaces vectoriels 334, 

356 
directe de sous-espaces vectoriels de JR" 

334, 356 
de Riemann 164, 176 
partielles 149 

Sous-espace vectoriel 333, 334, 354, 356 
Sous-suite 140 
Spectre 343 
Stabilité par addition 412 
Stirling 179 
Stricte positivité (pour une intégrale) 165 
Structure 

de corps 214 
de groupe 347 

Subdivision adaptée à une fonction 
continue par morceaux 162 
escalier 157 
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Subdivision 
d'un intervalle 157 
régulière 157 

Suite 
adjacentes 146 
arithmétique 114 
arithmético-géométrique 115 
bornée 124 
constante 124 
convergente 127 
croissante 124 
décroissante 124 
de Cauchy 142 
définies explicitement l 14 
divergente 127 
extraite 140 
géométrique 115 
homographique 126, 135 
majorée 123 
minorée 123 
monotone 124 
négative 124 
positive 124 
stationnaire 124 

Support (d' une densité) 474 
Surjectivité 72, 307, 321 , 338, 354 
Sylvester 250 
Symétrie 357 

du produit de convolution de deux 
fonctions 475 

Symboles de Kronecker 266 
Système 

complet d'événements 379 
de Cramer 279 
homogène 278 
linéaire 278 

T 

Tableau de variations 27 
Tangente 46 

hyperbolique 48 
Tartaglia Nicolas 209 
Tchebychev 122, 218, 437 
Termes diagonaux 262 
Théorème 

510 

central limite 469 
de d'Alembert-Gauss 225 
de Berry-Esseen 471 
de Bolzano-Weierstrass 141 
de Cesàro 1 34 
de De Moivre-Laplace 452, 471 

de Fubini 194 
de la base incomplète 333 
de Rolle 69 
de transfert 422 
de Weierstrass 56, J 63 
des accroissements fini s 70 
des bornes atteintes 56 
des fonctions réciproques 73 
des gendarmes 15, 147 
des valeurs intermédiaires 56 
du jury de Condorcet 398 
du point fixe 131 
du rang dans R.2 307 
du rang dans R.3 321 
du rang dans R.11 338 
fondamental de l'analyse 168 

Trace d'une matrice 
de taille 2 x 2 253 
d'une matrice de taille 3 x 3 257 
d'une matrice de taille n X n 262 

Transformation linéaire 354 
de l'espace R.3 318 
de l'espace R.11 335 
du plan 304 

Transformation orthogonale 312, 313, 326 
Translation 240 
Transposée 252- 255, 257- 259, 261 , 263, 270, 

271 
transposition 253 
Transvection 253 
Triangle de Pascal 66, 373 
Tribu 377 
Trigonalisabilité 345 
Ty Cobb 490 

u 
Unicité 

de la limite (d'une fonction) 14 
du développement limité 82 

Union d'ensembles 4 
Univers 376 

V 

Valeur 
absolue d' un réel 36 
absolue d' une intégrale 159, 165 
propre 343 
remarquables des fonctions sinus, cosinus 

et tangente 46 
Vandermonde 250, 374, 418 
Varahamihira 49 



Variable aléatoire (v.a.) 389 
continue 450 
discrète 389 
discrètes indépendantes 391 

Variance 431 
d'une v.a. constante 432 
d'une v.a.r. 454 
d'une v.a.r. suivant la loi exponentielle 

8(J) 464 
d'une v.a.r. suivant la loi Gamma de para­

mètres a > 0, f3 > 0 485 
d'une v.a.r. suivant la loi normale 

N(µ,a2) 468 
d'une v.a.r. suivant la loi uniforme (sur un 

intervalle [a, b]) 458 
de la somme de variables indépendantes 

et identiquement distribuées (i.i.d.). 
436 

Vecteur normal 
à un plan affine 295 

à un plan vectoriel 295 
libres 283, 331 , 352 
liés 283, 331 , 352 
propre 343 
unitaire 293 

Viète 228 
Voisinage d'un point 7 
Volume orienté d'un parallélépipède 301 

Wallis John 202, 369 
Weierstrass 51 , 59 
Wessel Caspar 210 
Weyl Hermann 210 

w 
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Young William Henry 87 
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