=
R"]

]

R T 1 i L]
i L T e = .
i X
] F ol
JIb ]
B

ks

Coutrs ef exercices car}-'@és‘ ey t’a,&z_f;aﬁe- c
1* cycle/Licence = Ecoles d'ingénicurs » IUT » BTS

ALGORITHMES
ET STRUCTURES DE
DONNEES GENERIQUES

2* edition

Michel Divay

DLINOD




ALGORITHMES
ET STRUCTURES DE
DONNEES GENERIQUES

Cours et exercices corrigés
en langage C

DUNOD



Illustration de couverture : Lionel Auvergne

Ce pictogramme mérite une explication.
Son objet est d'alerter le lecteur sur
la menace que représente pour I'avenir

de I'écrit, particuliérement dans
le domaine de I'édition tech-
nique et universitaire, le dévelop-
pement massif du photo-
copillage.

le Code de la propriété
intellectuelle du 1¢" juillet 1992
interdit en effet expressément la
photocopie & usage collectif

sans autorisation des ayants droit. Or,
cette pratique s'est généralisée dans les

DANGER

LE PHOTOCOPLLAGE
TUE LE LIVRE

établissements d'enseignement supérieur,
provoquant une baisse brutale des achats
de livres et de revues, au point que la

possibilité méme pour les auteurs
de créer des ceuvres nouvelles et
de les faire éditer correctement
est aujourd’hui menacée.

Nous rappelons donc que
toute reproduction, partielle ou
totale, de la présente publication
est interdite sans autorisation du
Centre francais d'exploitation du

droit de copie (CFC, 20 rue des Grands-
Augustins, 75006 Paris).

© Dunod, Paris, 1999, 2004

ISBN 210 007450 4

Toute représentation ou reproduction intégrale ou partielle faite sans le
consentement de I’auteur ou de ses ayants droit ou ayants cause est illicite
selon le Code de la propriété intellectuelle (Art L 122-4) et constitue une
contrefagon réprimée par le Code pénal. * Seules sont autorisées (Art L 122-5)
les copies ou reproductions strictement réservées a 1’usage privé du copiste et
non destinées a une utilisation collective, ainsi que les analyses et courtes
citations justifiées par le caractére critique, pédagogique ou d’information de
I’ceuvre a laquelle elles sont incorporées, sous réserve, toutefois, du respect des
dispositions des articles L 122-10 a L 122-12 du méme Code, relatives a la

reproduction par reprographie.




© Dunod - La photocopie non autorisée est un délit.

Table des matieres

AVANT-PROPOS

CHAPITRE 1 ¢ RECURSIVITE, POINTEURS, MODULES

1.1 Récursivité des procédures : définition

1.2 Exemples de fonctions récursives

1.2.1
122
123
1.2.4
1.2.5
1.2.6
1.2.7
1.2.8
129

Exemple 1 : factorielle

Exemple 2 : nombres de Fibonacci

Exemple 3 : boucles récursives

Exemple 4 : numération

Exemple 5 : puissance nieme d’un nombre
Exemple 6 : Tours de Hanoi

Exemple 7 : tracés récursifs de cercles
Exemple 8 : tracé d’un arbre

Conclusions sur la récursivité des procédures

1.3 Récursivité des objets

1.3.1
1.3.2
133
1.3.4

Rappel sur les structures

Exemple de déclaration incorrecte
Structures et pointeurs

Opérations sur les pointeurs

1.4 Modules

1.4.1
142

Notion de module et de type abstrait de données (TAD)
Exemple : module de simulation d’écran graphique

1.5  Pointeurs de fonctions

1.6 Résumé

IX



v Table des matieres
CHAPITRE 2 o LES LISTES 36
2.1 Listes simples : définition 36
2.2 Représentation en mémoire des listes 37
2.3 Module de gestion des listes 38
2.3.1 Création d’un élément de liste (fonction locale au module sur les listes) 41
2.3.2  Ajout d’un objet 41
2.3.3 Les fonctions de parcours de liste 43
2.3.4 Retrait d’un objet 44
2.3.5 Destruction de listes 47
2.3.6 Recopie de listes 47
2.3.7 Insertion dans une liste ordonnée 47
2.3.8 Le module de gestion de listes 48
2.4 Exemples d'application 51
2.4.1 Le type Personne 51
2.4.2 Liste de personnes 52
2.4.3 Les polynomes 55
2.4.4 Les systemes experts 61
2.4.5 Lespiles 66
2.4.6 Les files d’attente (gérée a I’aide d’une liste) 72
2.5 Avantages et inconvénients des listes 75
2.6 Le type abstrait de données (TAD) liste 75
2.7 Les listes circulaires 75
2.7.1 Le fichier d’en-téte des listes circulaires 76
2.7.2  Insertion en téte de liste circulaire 77
2.7.3 Insertion en fin de liste circulaire 78
2.7.4 Parcours de listes circulaires 78
2.7.5 Le module des listes circulaires 79
2.7.6 Utilisation du module des listes circulaires 79
2.8 Les listes symétriques 80
2.8.1 Le fichier d’en-téte des listes symétriques 80
2.8.2 Le module des listes symétriques 81
2.8.3 Utilisation du module des listes symétriques 84
2.9  Allocation contigué 86
2.9.1 Allocation - désallocation en cas d’allocation contigué 86
2.9.2 Exemple des polynomes en allocation contigué avec liste libre 87
2.9.3 Exemple de la gestion des commandes en attente 89
2.10  Résumé 100



© Dunod - La photocopie non autorisée est un délit.

Table des matiéres \'
CHAPITRE 3 ¢ LES ARBRES 102
3.1 Les arbres n-aires 102
3.1.1  Définitions 102
3.1.2  Exemples d’applications utilisant les arbres 103
3.1.3  Représentation en mémoire des arbres n-aires 106
3.2 Lesarbres binaires 108
3.2.1  Définition d’un arbre binaire 108
3.2.2  Transformation d’un arbre n-aire en un arbre binaire 108
3.2.3  Mémorisation d’un arbre binaire 109
3.2.4  Parcours d’un arbre binaire 114
3.2.5 Propriétés de I’arbre binaire 122
3.2.6  Duplication, destruction d’un arbre binaire 125
3.2.7  Egalité de deux arbres 127
3.2.8  Dessin d’un arbre binaire 127
3.2.9  Arbre binaire et questions de 1’arbre n-aire 130
3.2.10 Le module des arbres binaires 137
3.2.11 Les arbres de chaines de caracteres 140
3.2.12 Arbre binaire et tableau 149
3.2.13 Arbre binaire et fichier 153
3.2.14 Arbre binaire complet 154
3.3 Lesarbres binaires ordonnés 156
3.3.1  Définitions 156
3.3.2  Arbres ordonnés : recherche, ajout, retrait 157
3.3.3  Menu de test des arbres ordonnés de chaines de caracteres 163
3.4 Les arbres binaires ordonnés équilibrés 167
3.4.1  Définitions 167
3.4.2  Ajout dans un arbre ordonné équilibré 168
3.43  Exemple de test pour les arbres équilibrés 179
3.5 Arbres n-aires ordonnés équilibrés : les b-arbres 182
3.5.1  Définitions et exemples 182
3.5.2 Insertion dans un B-arbre 183
3.5.3  Recherche, parcours, destruction 185
3.6  Résumé 196
CHAPITRE 4 o LES TABLES 197
4.1  Cas général 197
4.1.1  Définition 197
4.1.2  Exemples d’utilisation de tables 198
4.1.3  Création, initialisation de tables 200
4.1.4  Acces séquentiel 201
4.1.5  Acces dichotomique (recherche binaire) 203
4.1.6  Le module des tables 206
4.1.7  Exemples d’application des tables 210



Vi Table des matieres
4.2 Variantes des tables 213
4.2.1  Rangement partitionné ou indexé 213
4.2.2  Adressage calculé 215
4.3  Adressage dispersé, hachage, hash-coding 217
4.3.1  Définition du hachage 217
4.3.2  Exemples de fonction de hachage 218
4.3.3  Analyse de la répartition des valeurs générées par les fonctions de hachage 220
4.3.4  Résolution des collisions 221
4.3.5 Résolution a I’aide d’une nouvelle fonction 222
4.3.6  Le fichier d’en-téte des fonctions de hachage et de résolution 227
4.3.7  Le corps du module sur les fonctions de hahscode et de résolution 227
4.3.8  Le type TableHC (table de hachage) 228
4.3.9 Exemple simple de mise en ceuvre du module sur les tables de hash-code 233
4.3.10 Programme de test des fonctions de hachage 235
4.3.11 Résolution par chainage avec zone de débordement 237
4.3.12 Résolution par chalnage avec une seule table 238
4.3.13 Retrait d’un élément 244
4.3.14 Parcours séquentiel 244
4.3.15 Evaluation du hachage 244
4.3.16 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale) 245
4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier) 249
44 Résumé 253
CHAPITRE 5 ¢ LES GRAPHES 254
5.1 Définitions 254
5.1.1  Graphes non orientés (ou symétriques) 254
5.1.2  Graphes orientés 255
5.1.3  Graphes orientés ou non orientés 256
5.2  Exemples de graphes 257
5.3 Mémorisation des graphes 259
5.3.1  Mémorisation sous forme de matrices d’adjacence 259
5.3.2  Mémorisation en table de listes d’adjacence 260
5.3.3  Liste des sommets et listes d’adjacence : allocation dynamique 260
5.4 Parcours d'un graphe 261
5.4.1  Principe du parcours en profondeur d’un graphe 262
5.4.2  Principe du parcours en largeur d’un graphe 262
55 Mémorisation 263
5.5.1  Le type Graphe 264
5.5.2  Le fichier d’en-téte des graphes 264
5.5.3  Création et destruction d’un graphe 265
5.5.4  Insertion d’un sommet ou d’un arc dans un graphe 267
5.5.5  Ecriture d’un graphe (listes d’adjacence) 267
5.5.6  Parcours en profondeur (listes d’adjacence) 268
5.5.7  Parcours en largeur (listes d’adjacence) 268



Table des matiéres Vi
5.5.8  Plus court chemin en partant d’'un sommet 269
5.5.9  Création d’un graphe a partir d’un fichier 274
5.5.10 Menu de test des graphes (listes d’adjacence et matrices) 276
5.6  Mémorisation sous forme de matrices 281
5.6.1  Le fichier d’en-téte du module des graphes (matrices) 281
5.6.2  Création et destruction d’un graphe (matrices) 282
5.6.3  Insertion d’un sommet ou d’un arc dans un graphe (matrices) 283
5.6.4 Lecture d’un graphe (a partir d’un fichier) 284
5.6.5  Ecriture d’un graphe 284
5.6.6  Parcours en profondeur (matrices) 285
5.6.7  Parcours en largeur (matrices) 285
5.6.8  Plus courts chemins entre tous les sommets (Floyd) 286
5.6.9  Algorithme de Floyd 288
5.6.10 Algorithme de calcul de la fermeture transitive 290
5.6.11 Menu de test des graphes (matrices) 293
57 Résumé 293
5.8 Conclusion générale 294
CORRIGES DES EXERCICES 295
BIBLIOGRAPHIE 337
INDEX 339






Avant-propos

Ce livre suppose acquis les concepts de base de la programmation tels que les
notions de constantes, de types, de variables, de tableaux, de structures, de fichiers et
de découpage en fonctions d’un programme. Il présente des notions plus complexes
trés utilisées en conception de programmes performants sur ordinateur.

Le chapitre 1 introduit la notion de récursivité des procédures et de récursivité des
données conduisant a la notion d’allocation dynamique et de pointeurs. Il introduit
ensuite la notion de découpage d’une application en modules communiquant grace a
des interfaces basées sur des appels de fonction. Le module devient un nouveau type
de données : I'utilisateur du module n’accéde pas directement aux données du
module qui sont masquées et internes au module. On parle alors d’encapsulation des
données qui sont invisibles de I’extérieur du module. Le type ainsi défini est un type
abstrait de données (TAD) pour I'utilisateur qui communique uniquement par un jeu
de fonctions de I’interface du module. Cette notion est constamment mise en appli-
cation dans les programmes de ce livre.

Le chapitre 2 présente la notion de listes, tres utilisée en informatique deés lors que
I’information a gérer est sujette a ajouts ou retraits en cours de traitement. Un module
est défini avec des opérations de base sur les listes indépendantes des applications. Des
exemples de mise en ceuvre sont présentés, ainsi que des variantes des listes (circu-
laires, symétriques) et des mémorisations en mémoire centrale ou secondaire (fichiers).

Le chapitre 3 définit la notion d’arbres (informations arborescentes). La plupart
des algorithmes utilisent la récursivité qui s’impose pleinement pour le traitement



X 1 ¢ Avant-propos

des arbres. Les algorithmes sont concis, naturels, faciles a concevoir et a
comprendre des lors que le concept de récursivité est maitrisé. De nombreux exem-
ples concrets sont donnés dans ce but. La fin du chapitre présente les arbres
ordonnés (les éléments sont placés dans 1’arbre suivant un critere d’ordre) pouvant
servir d’index pour retrouver rapidement des informations a partir d’une clé. En cas
d’ajouts ou de retraits, on peut étre amené a réorganiser la structure d’un arbre (le
rééquilibrer) pour que les performances ne se dégradent pas trop.

N

Le chapitre 4 traite de la notion de tables : retrouver une information a partir
d’une clé I'identifiant de maniére unique. Plusieurs possibilités sont passées en
revue en précisant leurs avantages et leurs inconvénients. Plusieurs techniques de
hachage (hash-coding) sont analysées sur des exemples simples.

Le chapitre 5 est consacré a la notion de graphes et a leurs mémorisations sous
forme de matrices ou de listes d’adjacence. Il donne plusieurs algorithmes permet-
tant de parcourir un graphe ou de trouver le plus court chemin pour aller d’un point
a un autre. La également récursivité et allocation dynamique sont nécessaires.

Les algorithmes présentés sont écrits en C et souvent de maniere complete, ce qui
permet au lecteur de tester personnellement les programmes et de jouer avec pour en
comprendre toutes les finesses. Jouer avec le programme signifie étre en mesure de le
comprendre, de faire des sorties intermédiaires pour vérifier ou expliciter certains
points et éventuellement étre en mesure de I’améliorer en fonction de 1’application
envisagée. Les programmes présentés font un minimum de contréles de validité de
fagcon a bien mettre en évidence ’essentiel des algorithmes. Les algorithmes pourraient
facilement étre réécrits dans tout autre langage autorisant la modularité, la récursivité et
I’allocation dynamique. Le codage est secondaire ; par contre la définition des fonc-
tions de base pour chaque type de structures de données est fondamentale. Chaque
structure de données se traduit par la création d’un nouveau type (Liste, Nceud, Table,
Graphe) et de son interface sous la forme d’un jeu de fonctions d’initialisation, d’ajout,
de retrait, de parcours de la structure ou de fonctions plus spécifiques de la structure de
données. Des menus de tests et de visualisation permettent de voir évoluer la structure.
IIs donnent de plus des exemples de mise en ceuvre des nouveaux types créés.

Les programmes sont génériques dans la mesure ou chaque structure de données
(liste, arbre, table, etc.) peut gérer (sans modification) des objets de types différents
(une liste de personnes, une liste de cartes, etc.).

L’ensemble des notions et des programmes présentés constitue une boite a outils
que le concepteur de logiciels peut utiliser ou adapter pour résoudre ses problemes.

Certains des programmes présentés dans ce livre peuvent étre consultés a
I’adresse suivante : www.iut-lannion.fr/MD/MDLIVRES/LivreSDD.

Vous pouvez adresser vos remarques a I’adresse électronique suivante :
Michel.Divay @univ-rennes1.fr

D’avance merci.
Michel Divay


http://www.iut-lannion.fr/MD/MDLIVRES/LivreSDD

© Dunod - La photocopie non autorisée est un délit.

Chapitre 1

Reéecursivité, pointeurs, modules

Ce premier chapitre présente la notion de récursivité, notion tres utilisée en
programmation, et qui permet 1’expression d’algorithmes concis, faciles a écrire et a
comprendre. La récursivité peut toujours tre remplacée par son équivalent sous
forme d’itérations, mais au détriment d’algorithmes plus complexes surtout lorsque
les structures de données a traiter sont elles-mémes de nature récursive. La premiere
partie de ce chapitre présente la récursivité des procédures sur des exemples simples.
La seconde partie présente des structures de données récursives et introduit la notion
d’allocation dynamique et de pointeurs. La troisieme partie présente la notion de
découpage d’application en modules.

1.1 RECURSIVITE DES PROCEDURES : DEFINITION

La récursivité est une méthode de description d’algorithmes qui permet a une procé-
dure de s’appeler elle-méme (directement ou indirectement). Une notion est récur-
sive si elle se contient elle-méme en partie, ou si elle est partiellement définie a partir
d’elle-méme.

L’expression d’algorithmes sous forme récursive permet des descriptions
concises et naturelles. Le principe est d’utiliser, pour décrire 1’algorithme sur une
donnée D, I’algorithme lui-m&me appliqué a un ou plusieurs sous-ensembles de D,
jusqu’a ce que le traitement puisse s’effectuer sans nouvelle décomposition. Dans
une procédure récursive, il y a deux notions a retenir :

* la procédure s’appelle elle-méme : on recommence avec de nouvelles données.

* il y aun test de fin : dans ce cas, il n’y a pas d’appel récursif. Il est souvent préfé-
rable d’indiquer le test de fin des appels récursifs en début de procédure.



2 1 e Récursivité, pointeurs, modules

void p (.-.) {

if (fin) {
- pas d*appel récursif (partie "alors")
} else {
p (--2); la procédure p s"appelle elle-méme
- une ou plusieurs fois (partie "sinon™)
}
}

Ainsi, si on dispose des fonctions void avancer (int lg) ; qui trace un segment de
longueur lg sur I’écran dans la direction de départ, et de la fonction void
tourner (int d) ; qui change la direction de départ d’un angle de d degrés, on peut
facilement tracer un carré sur ’écran en écrivant la fonction récursive suivante :

void carre (int Ig) {
avancer (1g);
tourner (90);
carre (19); // recommencer

}

Cependant, la fonction ne comporte pas de test d’arrét. On recommence toujours
la mé&me fonction carre(). Le programme boucle. Cet exemple montre la nécessité
de la condition d’arrét des appels récursifs.

1.2 EXEMPLES DE FONCTIONS RECURSIVES

1.2.1 Exemple 1: factorielle

La factorielle d’un nombre n donné est le produit des nombres entiers inférieurs ou
égaux a ce nombre n. Cette définition peut se noter de différentes facons.

Une premiere facon consiste a donner des exemples et a essayer de généraliser.

0l'=1

1'=1

21=1x2

31=1x2x3

n!=1 sin=0
n!l=1*2%_.%(n-1)*n sin>0

Une deuxieme notation plus rigoureuse fait appel a la récurrence.
n!l=1 sin=0
n!=n%* (n-1)! sin>0

n! se définit en fonction d’elle-méme (n-1)!



© Dunod - La photocopie non autorisée est un délit.

1.2  Exemples de fonctions récursives 3

La fonction factorielle (n) permet de calculer la factorielle de n. Cette fonction est
récursive et se rappelle une fois en factorielle (n-1). Il y a fin des appels récursifs
lorsque n vaut 0.

/* factorielle.cpp
Calcul récursif de la factorielle d"un entier n >= 0 */

#include <stdio.h> // printf, scanf

// version 1 pour explication
long factorielle (int n) {
if (n==0) {
return 1;
} else {
long y = factorielle (n-1);
return n*y;
¥
¥

void main ) {
printf (“Entier dont on veut la factorielle (n<=14) ? ");
int n; scanf ("%d", &n);

printf (“Factorielle %d est : %ld\n", n, factorielle (n) );
¥

Avec 16 bits, n doit étre compris entre O et 7 O'=1, 7!'=5040
Avec 32 bits, n doit étre compris entre 0 et 14 14! =1 278 945 280

factorielle (3); [n=3;
y = factorielle (2); [n=2;
y = factorielle (1); [n=1;
y = factorielle (0); [n=0;

return 1;
return 1*1;
return 2*1;

return 3*2;

Figure 1 Appels récursifs pour factorielle (3).

Pour calculer factorielle(3) sur la Figure 1, il faut calculer factorielle(2). Pour
calculer factorielle(2), il faut calculer factorielle(1). Pour calculer factorielle(1), il
faut connaitre factorielle(0). factorielle(0) vaut 1. On revient en arriére terminer la
fonction au niveau 3, puis 2, puis 1.

Il y a autant d’occurrences des variables n et y que de niveaux de récursivité. Il y
a création, a chaque niveau, d’un nouvel environnement comprenant les parametres
et les variables locales de la fonction. Cette gestion des variables est invisible a
I'utilisateur et effectuée automatiquement par le systeme si le langage admet la
récursivité.



4 1 e Récursivité, pointeurs, modules

En fait y est ajouté dans la fonction factorielle() pour mieux expliquer la récursi-
vité. Les deux instructions long y = factorielle(n-1) ; et return n*y ; peuvent étre
remplacées de maniere équivalente et plus concise par return n*factorielle(n-1).

// calcul récursif de factorielle
// 32 bits : limite = 14!
// version finale
long factorielle (int n) {
it (n==0) {
return 1;

} else {

return n*factorielle (n-1);

}
}

La procédure itérative donnée ci-dessous est plus performante pour le calcul de
factorielle (mais moins naturelle). Il n’y a ni appels en cascade de la fonction, ni
environnements multiples des variables. Sur cet exemple, la récursivité ne s’impose
pas, et les deux versions (récursive et itérative) ont leurs avantages et leurs inconvé-
nients.

/* factoriellelter.cpp
Calcul itératif de la factorielle d"un entier n >= 0 */

#include <stdio.h>

long factoriellelter (int n) {
long f = 1;
for (int i=1; i<=n; i++) f =T * 1i;
return f;

}

void main ) {

printf (“Entier dont on veut la factorielle ? ");

int n; scanf ("'%d", &n);

printf ("Factorielle %d est : %ld\n", n, factoriellelter (n) );
3

1.2.2 Exemple 2 : nombres de Fibonacci

La suite des nombres de Fibonacci se définit comme suit :

f,=0

f1=1

f,=1f_.f» sin>1
n 0 1 2 3 4 5 6 7 8
f, 0 1 1 2 3 5 8 13 21

Figure 2 Valeurs de f, pour n de 0 a 8.



© Dunod - La photocopie non autorisée est un délit.

1.2  Exemples de fonctions récursives 5

On peut formuler cette suite sous forme de fonction (n >=0) :
fibonacci (n) =n sin<=1
fibonacci (n) = fibonacci (n-1) + fibonacci (n-2) sin> 1

Exemples de calculs
fibonacci (10) =55
fibonacci (20) =6765
fibonacci (30) =83204

Le programme C récursif correspondant est donné ci-dessous.

/* fibonacci.cpp
calcul de fibonacci d"un entier n >= 0 */

#include <stdio.h>

// version 1 pour explication
long fibonacci (int n) {

if (n<=1)
return n;

} else {
long x = Fibonacci (n-1);
long y = fibonacci (n-2);
return x + vy;

}

b

void main () {

printf (“Fibonacci de n ? ");

int n; scanf ("%d", &n);

printf (“"Fibonacci de %d est %ld\n", n, fibonacci (n) );
}

Une fonction récursive peut s’appeler elle-méme plusieurs fois avec des parame-
tres différents. La fonction fibonacci (n) s’appelle récursivement 2 fois en fibonacci
(n-1) et fibonacci (n-2).

1 2 3
fibonacci (3); n=3;
x = fibonacci (2); n=2;
x = fibonacci (1); n=1;
return 1;
y = fibonacci (0); n=0;
return 0;
return 1+0;
y = fibonacci (1); n=1;
return 1;
return 1+1;

Figure 3 Appels récursifs pour fibonacci (3).



6 1 o Récursivité, pointeurs, modules

Pour calculer fibonacci(3) sur la Figure 3, il faut calculer fibonacci(2) et fibo-
nacci(1). Pour calculer fibonacci(2), il faut calculer fibonacci(1) et fibonacci(0).
L’exécution sur la Figure 3 se déroule ligne par ligne, et pour chaque ligne, de la
gauche vers la droite.

En fait x et y sont inutiles et ajoutés uniquement pour mieux expliquer la récursi-
vité. La version suivante de fibonacci() est équivalente et plus concise.

// version définitive
long fibonacci (int n) {
if (n<=1) {
return n;
} else {
return fibonacci (n-1) + fibonacci (n-2);
3
3

La fonction récursive est inefficace : les calculs sont répétés un grand nombre de
fois. L’appel de la fonction est abrégé en fib() sur la Figure 4.

——— fib(1)
———— fib(2 +
,——» fib (3) L fib(0)
*—— .
fib (4) + fib (1)
— 1. fib()
fib (2) +
3 | 4 fib (0)

Figure 4 Appels récursifs pour fibonacci(4) (abrégé en fib(4)).

Pour calculer fib(4) sur la Figure 4, il faut calculer fib(3) et fib(2). Pour calculer
fib(3), il faut calculer fib(2) et fib(1), etc.
fib(2) est évalué 2 fois,
fib(1) est évalué 3 fois,
fib(0) est évalué 2 fois.
Il est facile de trouver un algorithme itératif plus performant, mais moins naturel
a écrire.
/* FTibonaccilter.cpp
calcul de fibonacci itératif d"un entier n >= 0 */

#include <stdio.h>

// £(0) = 0; f(1) = 1; f(n) = f(n-1) + ¥ (n-2);
long fibonaccilter (int n) {
long fnm2 0; // fibonacci de n moins 2
long fnml 1; // fTibonacci de n moins 1



© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives 7

long fn; // fibonacci de n
if (n<=1) {
fn = n;
3} else {
for (int i=2; i<=n; i++) {
fn = fnml + fnm2;
fnm2 = fnml;
fnml = fn;
}
¥

return fn;

}

void main O {
printf (“Fibonacci de n ? ");
int n; scanf ("%d", &n);

printf (“Fibonacci de %d est %ld\n", n, fibonaccilter (n) );
}

1.2.3 Exemple 3 : boucles récursives

Une boucle peut s’écrire sous forme récursive. Il faut réaliser une action (écriture
par exemple), et recommencer avec une nouvelle valeur de I’indice de boucle. La
boucle peut étre croissante ou décroissante suivant que 1’action est réalisée avant ou
apres 1’appel récursif.

/* boucles.cpp boucles sous forme récursive */
#include <stdio.h>

// boucle décroissante de n a 1
void boucleDecroissante (int n) {
if (n>0) {
printf (“'BoucleDecroissante valeur de n : %d\n", n);
boucleDecroissante (n-1);
}
3

// boucle croissante de 1 a n
void boucleCroissante (int n) {
if (n>0) {
boucleCroissante (n-1);
printf (“"BoucleCroissante valeur de n : %d\n", n);
}
3

void main() {
boucleDecroissante (5);
printf(*'\n"");
boucleCroissante (5);
printf("'\n");

¥



8 1 e Récursivité, pointeurs, modules

Résultats de I’exécution :

boucleDecroissante valeur de
boucleDecroissante valeur de
boucleDecroissante valeur de
boucleDecroissante valeur de
boucleDecroissante valeur de

D I R R
PN WO

boucleCroissante valeur de
boucleCroissante valeur de
boucleCroissante valeur de
boucleCroissante valeur de
boucleCroissante valeur de

D R I
a b wN PP

Exercice 1 - Boucle sous forme récursive

Ecrire une fonction récursive void boucleCroissante (int d, int f. int i); qui
effectue une boucle croissante de 1’indice d de départ jusqu’a I’indice f de fin par pas
de progression de i (i : entier positif). Exemple : boucleCroissante (5, 14, 2); effectue
la boucle avec I’indice de départ 5, en progressant de 2 a chaque fois, jusqu’a
I’indice 14, soit:5,7,9, 11 et 13.

1.2.4 Exemple 4 : numération

La fonction récursive long convertirEnBaselO (long n, int base); convertit un
nombre n>=0 écrit en base base (avec des chiffres compris entre 0 et 9) en un
nombre en base 10. Ainsi convertirEnBase10 (100, 2) fournit 4 ; convertirEnBase10
(137, 11) fournit 161 ; convertirEnBase10 (100, 16) fournit 256.

/* convertir.cpp convertir de facon récursive
un nombre d"une base dans une autre base */

#include <stdio.h>

// la fonction convertit en base 10, n en base 'base';
// n est composé des chiffres de 0 a 9; n >= 0, base > 0
long convertirEnBaselO (long n, int base) {
long quotient = n / 10;
long reste =n % 10;
if (quotient == 0) {
return reste;
} else {
return convertirEnBaselO (quotient, base) * base + reste;
3
3

La Figure 5 indique le déroulement de 1’exécution de la fonction convertirEnBase10
() pour la conversion de 137 en base 11. L’exécution se déroule, pour chaque ligne du



© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives 9

tableau, de haut en bas et de gauche a droite. L’appel de la fonction est abrégé en
convert() sur le schéma.

1 2 3
convert (137, 11); n =137, n=13; n=1;
base = 11; base = 11; base = 11;
quotient = 13; quotient = 1; quotient = 0;
reste =7; reste = 3; reste =1;
convert (13, 11); convert (1, 11); return 1;
1*11+43;
return 14;
14*11+7;
return 161;

Figure 5 Appels récursifs pour la conversion de 137 en base 11.

La fonction récursive void convertirEnBaseB (long n, int base); convertit un
entier n en base 10, en un nombre en base base.

// convertir en base "base'™, un nombre n en base 10

// (n>=0; 1<base<=16)
void convertirEnBaseB (long n, int base) {
static char chiffre[] = "0123456789ABCDEF";
long quotient = n / base;
long reste = n % base;
if (quotient !'= 0) convertirEnBaseB (quotient, base);
printf ("%c", chiffre [reste]);

¥

void main () {
long n = 100;
int base = 2;

printf ("%ld en base %2d = %ld en base 10\n",
n, base, convertirEnBaselO0 (n, base) );

n = 137;
base = 11;
printf ("%ld en base %2d = %ld en base 10\n",
n, base, convertirEnBaselO (n, base) );

n = 100;
base = 16;
printf ("%ld en base %2d = %ld en base 10\n",
n, base, convertirEnBaselO0 (n, base) );

printf (""\n0 en base 2 '); convertirEnBaseB (O, 2);
printf ("\n25 en base 2 : "); convertirEnBaseB (25, 2);
printf (*"\n255 en base 2 : "); convertirEnBaseB (255, 2);
printf (""\n256 en base 2 : "); convertirEnBaseB (256, 2);
printf (*\n10 en base 8 : "); convertirEnBaseB (10, 8);
printf ("\n161 en base 11: "); convertirEnBaseB (161, 11);
printf (""\n26 en base 16: "); convertirEnBaseB (26, 16);
printf ("\n255 en base 16: ')

printf (*"\n256 en base 16: ")

printf ("\n");

; convertirEnBaseB (255, 16);
; convertirEnBaseB (256, 16);



10 1 e Récursivité, pointeurs, modules

Résultats du programme précédent :
100 en base 2 4 en base 10
137 en base 11 161 en base 10
100 en base 16 256 en base 10

0 en base 2 : 0

25 en base 2 : 11001

255 en base 2 : 11111111
256 en base 2 : 100000000
10 en base 8 : 12

161 en base 11: 137
26 en base 16: 1A
255 en base 16: FF
256 en base 16: 100

1.2.5 Exemple 5 : puissance nieme d'un nombre

Pour calculer un nombre x" (x a une puissance entiere n, n>=0), on peut effectuer n
fois la multiplication de x par lui-méme, sauf si n vaut zéro auquel cas x° vaut 1.
Ainsi, pour calculer 3* (x=3 a la puissance n=4), on multiplie 3*3*3*3. Une autre
facon plus efficace de faire est de calculer 32 (3*3), et de multiplier ce résultat par
lui-méme 3*3. Ainsi, si n est pair, le calcul de x" se ramene au calcul de X2 que ’on
multiplie par lui-méme. Si n est impair, prenons le cas de 35 (x=3 a la puissance
n=5), on calcule de méme 32 que ’on multiplie par lui-méme 32 puis par 3. On
applique récursivement la méme méthode pour calculer 32. Le programme qui en
découle est donné ci-dessous. On pourrait ajouter un cas particulier pour n=1, mais
il n’est pas nécessaire du point de vue algorithmique.

/* puissance.cpp puissance nieme entiére d“un nombre réel */
#include <stdio.h>

// puissance niéme d"un nombre réel x (n entier >= 0)
double puissance (double x, int n) {
double r; // résultat

if (n==0){
r =1.0;

} else {
r = puissance (X, n/2);
iT (n%2 == 0) {

r = r*r; // n pair
} else {
r = r*r*x; // n impair
3
3
return r;



© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives 1

void main ) {
printf ("3  puissance
printf (""3.5 puissance
printf (2 puissance
printf ("2 puissance

%.2F\n", puissance (3, 4) );
%.2F\n", puissance (3.5, 5) );
.2A\n", puissance (2, 0) );
%.2F\n", puissance (2, 1)

WN R OU A
=

, )
printf ("2 puissance %.2F\n", puissance (2, 2) );
printf ("2 puissance %.2F\n", puissance (2, 3) );
printf (2 puissance 10 %.2f\n", puissance (2, 10) );
printf ("2 puissance 32 %.2f\n", puissance (2, 32) );
printf (2 puissance 64 %.2Ff\n", puissance (2, 64) );

¥
Exemples de résultats :
3 puissance 4 81.00
3.5 puissance 5 525.22
2 puissance 0 1.00
2 puissance 1 2.00
2 puissance 2 4.00
2 puissance 3 8.00
2  puissance 10 1024.00
2 puissance 32 4294967296.00
2 puissance 64 18446744073709551616.00

1.2.6 Exemple 6 : Tours de Hanoi

Les « Tours de Hanoi » est un jeu ou il s’agit de déplacer un par un des disques
superposés de diametre décroissant d’un socle de départ D sur un socle de but B, en
utilisant éventuellement un socle intermédiaire I. Un disque ne peut se trouver au-
dessus d’un disque plus petit que lui.

Le schéma de la Figure 6 montre le raisonnement mettant en évidence le caractere
récursif de 1’algorithme a suivre. Pour déplacer un disque de D vers B, le socle I
(intermédiaire) est inutile. Pour déplacer 2 disques, il faut transférer celui qui est au
sommet sur le socle I, déplacer le disque reposant sur le socle D vers B, et ramener
le disque du socle I au sommet de B. Pour déplacer 3 disques, il faut déplacer les 2
disques en sommet de D vers I (en utilisant B comme intermédiaire), ensuite
déplacer le disque reposant sur le socle de D vers B, et ramener les 2 disques mis de
coté sur I, en sommet de B. Pour déplacer 3 disques, on utilise 2 fois la méthode
permettant de déplacer 2 disques sans entrer dans le détail de ces mouvements, ce
qui met en évidence la récursivité.

Avec 1 disque : déplacer (1, D, B, I)




12 1 e Récursivité, pointeurs, modules

Avec 2 disques : déplacer (2, D, B, I)

 e—

I
- I
D B I

Avec 3 disques : déplacer (3, D, B, I)
_ I _El_ Déplacer (2, D, I, B)

_ I _El_ D vers B
i __ Déplacer(2,1,B,D)
B

I

Figure 6 Tours de Hanoi : principe.

D’une maniere générale comme 1’indique la Figure 7, pour déplacer N disques de
D vers B, il faut déplacer les N-1 disques de D vers I en utilisant B comme intermé-
diaire, déplacer le disque restant de D vers B, ramener les N-1 disques de I vers B en
utilisant D comme intermédiaire.

/ Déplacer (N-1,D, I, B)
Déplacer (N, D, B, 1) \ Déplacer de D vers B
Déplacer (N-1,1,B, D)

Figure 7 Tours de Hanoi : algorithme.




© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives 13

Lalgorithme récursif découle directement du raisonnement suivi ci-dessus.

/* hanoi.cpp tours de Hanoi
exemple de programme avec deux appels récursifs */

#include <stdio.h>
#include <time.h> // time()

// déplacer n disques du socle depart vers le socle but
// en utilisant le socle intermédiaire.
void deplacer (int n, char depart, char but, char intermediaire) {
if (n>0) {
deplacer (n-1, depart, intermediaire, but);
printf ('Déplacer un disque de %c --> %c\n", depart, but);
deplacer (n-1, intermediaire, but, depart);

}

void main O {
printf (“Nombre de disques a déplacer ? *);
int n; scanf ("%d", &n);

//time_t topDebut; time (&topDebut);

deplacer (n, "A", "B", "C");

//time_t topFin; time (&topFin);

//printf ("de %d a %d = %d\n", topDebut, topFin, topFin - topDebut);
¥

Sin =3, le résultat de I’exécution de deplacer() est le suivant :

Déplacer un disque de A--> B
Déplacer un disque de A-->
Déplacer un disque de B-->
Déplacer un disque de A-->
Déplacer un disque de C-->
Déplacer un disque de C-->
Déplacer un disque de A-->

W wWw>woOo

Les déplacements sont schématisés sur la Figure 8. Au départ, on a 3 disques de
taille décroissante 3, 2, 1 sur le socle A. Il faut les transférer sur le socle B, ce qui est
accompli a la derniere ligne du tableau.

Socle A Socle B Socle C
2 1
2 1

Départ
A—>B
A->C
B—>C
A—->B
Co>A
C—>B 1
A—B

—_

wlwlw|w

NINININ

—_

wWlwlw|w
N

2 |1

Figure 8 Tours de Hanoi : résultats.



14 1 e Récursivité, pointeurs, modules

Le test de la procédure récursive aurait pu étre écrit de maniere légerement diffé-
rente mais équivalente, correspondant au raisonnement suivant : s’il n’y a qu’un
disque, le déplacer, sinon déplacer les N-1 du sommet de D vers I, déplacer le disque
restant de D vers B, ramener les N-1 de I vers B.

// déplacer n disques du socle depart vers le socle but
// en utilisant le socle intermédiaire.
void deplacer (int n, char depart, char but, char intermediaire) {

if (n==1) {
printf ("Déplacer un disque de %c --> %c\n", depart, but);
} else {

deplacer (n-1, depart, intermediaire, but);
printf (“"Déplacer un disque de %c --> %c\n', depart, but);
deplacer (n-1, intermediaire, but, depart);

}

On peut évaluer le nombre de déplacements a effectuer pour transférer n disques
de D vers B (départ vers but).

sin=1,
déplacer le disque de D vers B ¢, =1
sinon
déplacer n-1 disques de D vers I Cho1
déplacer le disque n de D vers B 1
déplacer n-1 disques de I vers B Cpo1

c,=2%c,+1

Cette équation peut se développer en :
b2 4 241
qui est la somme 2" —1 des n termes d’une progression géométrique de raison 2.

sin=1 alors C,=2"-1 =1

sin=2 alors C,=2%2 -1 =3

sin=3 alors Cy;=23 -1 =7 (voir Figure 8)
sin=4 alors C,=2% -1 =15

sin=64 alors Ces=2% -1

Les tests suivants utilisant la fonction time() fournissant le temps écoulé depuis le
1/1/1970 en secondes permettent de calculer le temps d’exécution (la fonction printf
de deplacer() étant mise en commentaire) :

//ordinateur : Pentium 111 800 Mhz (Linux Red Hat)
//n 25 26 27 28 29 30 31 32
//durée en secondes 2 5 8 17 35 67 140 270



© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives 15

Avec 64 disques, si un déplacement s’effectue en 60 nanosecondes (valeur
approximative calculée ci-dessus), il faut plus de 30 mille ans pour effectuer tous les
déplacements.

Exercice 2 - Hanoi : calcul du nombre de secondes ou d’années pour déplacer n
disques
Un déplacement se faisant en 60 nanosecondes, faire un programme qui calcule :
* le nombre de secondes nécessaires pour déplacer de 25 a 32 disques.
* le nombre d’années nécessaires pour déplacer 64 disques.
Utiliser la fonction time() fournissant le temps écoulé en secondes depuis le 1/1/

1970 pour chronométrer, sur votre ordinateur, le temps d’exécution pour des valeurs
de n entre 25 et 32.

1.2.7 Exemple 7 : tracés récursifs de cercles

Le premier dessin de la Figure 9 représente un cercle qui contient deux cercles qui
contiennent deux cercles, ainsi de suite, jusqu’a ce que le dessin devenant trop petit,
on décide d’arréter de dessiner. Le dessin peut étre qualifié de récursif. Le dessin se
contient lui-méme, et il y a un arrét a ce dessin récursif. Ceci est également vrai pour
le deuxiéme dessin contenant trois cercles.

Figure 9 Cercles récursifs.

Le codage des algorithmes de tracé de cercles est tres dépendant du systeme
d’exploitation et du compilateur utilisés. Néanmoins, 1’algorithme en lui-méme est
général et peut étre codé avec le jeu de fonctions de dessin graphique disponibles.
On suppose définie une fonction void cercle (x, y, r) ; qui trace un cercle de rayon r
centré en (X, y).

Pour la fonction deuxCercles(), si le rayon r est supérieur a 10 pixels, on trace un
cercle de rayon r en (X, y), et on recommence une tentative de tracé de 2 cercles de
rayon pr=r/2 en (X+pr, y), et en (x-pr, y). Si r est inférieur ou égal a 10, on ne fait
rien, ce qui arréte les tracés récursifs en cascade.



16 1 e Récursivité, pointeurs, modules

void deuxCercles (int x, inty, int r) {
if (r > 10) {
cercle (x, y, r);
int pr =r / 2; // petit rayon
deuxCercles (x+pr, y, pr);
deuxCercles (x-pr, y, pr);

Remarque : la circonférence du cercle englobant est 2nr, de méme que la
somme des circonférences des 2 cercles de rayon r/2, ou celle des 4 cercles de
rayon 1/4.

Pour la fonction troisCercles(), le calcul du rayon des cercles inclus et des coor-
données des centres demandent une petite étude géométrique. Soient r, le rayon du
cercle englobant, pr, le rayon des 3 cercles inclus et h, la distance entre le centre du
grand cercle et le centre d’un des 3 cercles inclus. Les centres des 3 cercles inclus
déterminent un triangle équilatéral. Les hauteurs de ce triangle équilatéral détermi-
nent 6 triangles rectangles d’hypoténuse h et de grand c6té pr.

v

Figure 10 Calcul du rayon des cercles intérieurs.

On a les relations suivantes :

r =h+pr;
pr =h *sqrt (3)/2;
d’ol on peut déduire :
pr =Q2*sqrt (3)-3) *r =0.4641 *r;

h =4 -2%sqrt (3)) *r =0.5359 *r;



© Dunod - La photocopie non autorisée est un délit.

1.2 ¢ Exemples de fonctions récursives

17

Les coordonnées des centres des trois cercles intérieurs s’en déduisent alors faci-

lement.

void troisCercles (int x, int vy, int r) {

if (r > 10) {
cercle (x, y, r);
//int pr = int ((2*sqrt(3.0)-3)*r);
int pr = (int) (0.4641*r);
inth =r - pr;
troisCercles (x-h, v, pr);
troisCercles (x+h/2, y+pr, pr);
troisCercles (x+h/2, y-pr, pr);

¥

¥

1.2.8 Exemple 8 : tracé d'un arbre

Le dessin de I’arbre de la Figure 11 est obtenu par exécution d’un programme

récursif de tracé de segments.

Figure 11 Arbre récursif de tracé de segments.

La fonction void avance (int lg, int x, int y, int angle, int™* nx, int* ny) ; trace un trait
de longueur lg en partant du point de coordonnées (x, y), et avec un angle en degrés
angle (voir Figure 12). Le point d’arrivée est un parametre de sortie (nx, ny). La largeur
du trait 1g/10 est obtenue en tracant plusieurs traits les uns a coté des autres. La fonction
void traceTrait (x1, y1, x2, y2) ; trace un trait entre les 2 points (x1, y1) et (x2, y2).

(nx,ny)

. y) \\\\\\\ angle de déplacement

Figure 12 La fonction avance().



18 1 e Récursivité, pointeurs, modules

void avance (int Ig, int x, int y, int angle, int* nx, int* ny ) {
#define Pl 3.1416

*nx = x + (int) (Ig * cos (angle*2*P1 / 360.));
*ny =y - (int) (Ig * sin (angle*2*P1 / 360.));
traceTrait (X, y, *nx, *ny);

// 1"épaisseur du trait du segment : nb segments juxtaposés
int nb = 1g/10;
// si nb =0 ou 1, la boucle n"est pas effectuée
for (int i=-nb/2; i<nb/2; i++) {
traceTrait (X+i, y, *nx+i, *ny);
3
3

La fonction void dessinArbre (int lg, int x, int y, int angle) ; ajoute aléatoirement
a lg une valeur comprise entre 0 et 10 % de lg de facon a introduire une 1égere dissy-
métrie dans I’arbre. On trace un trait de longueur lg en partant du point (x, y) dans la
direction angle. Si 2*¥Ig/3 est supérieur a un pixel, on génere un nombre aléatoire n
valant 2, 3 ou 4, et on appelle récursivement la fonction arbre() 2, 3 ou 4 fois avec
une longueur a tracer de 2/3 de la longueur de départ et dans des directions réparties
entre —7t/2 et /2 de I’angle initial. Sur la Figure 13, on trace un segment de longueur
lg, puis 3 segments de longueur 2*1g/3.

Figure 13 La fonction dessinArbre() pour n = 3.

// aléatoire entre 0 et max; voir man rand
int aleat (int max) {
return (int) (rand(Q) % max);

}

void dessinArbre (int Ig, int x, int y, int angle) {
int nx, ny;
Ig = (int) (Ig + 0.1 * aleat(lg));
avance (lg, x, y, angle, &nx, &ny);
Ig = 2*1g 7/ 3;
if (Ig> 1) {
int n = 2 + aleat (3);
int d = 180 7/ n;
for (int i=1; i<=n; i++) {
dessinArbre (Ig, nx, ny, angle-90 - d/2 + i*d);
3
}
}



© Dunod - La photocopie non autorisée est un délit.

1.3 o Récursivité des objets 19

Exercice 3 - Dessin d'un arbre

Modifier la fonction dessinArbre() de fagon a dessiner le segment terminal en vert
et a insérer de fagon aléatoire, un fruit rouge (segment ou cercle rouge).

1.2.9 Conclusions sur la récursivité des procédures

On a vu qu’une boucle peut s’écrire sous forme récursive. Quand il n’y a qu’un seul
appel récursif, on peut passer a une procédure itérative avec boucle ; c’est le cas des
exemples pour factorielle, les nombres de Fibonacci ou les conversions (numération).
Par contre, si la procédure divise le probleme récursivement en plusieurs sous-
problémes, la récursivité s’impose. Refuser la récursivité, c’est s’obliger a gérer une
pile pour retrouver le contexte. Dans le cas de deux appels récursifs par exemple, il y
a deux taches a accomplir. 1 faut effectuer le premier appel récursif, en sauvegardant
le contexte que 1’on retrouve quand on a fini le premier appel récursif et les appels
qu’il a engendrés en cascade. La procédure itérative serait beaucoup plus longue et
beaucoup moins naturelle. Les procédures des Tours de Hanoi, des dessins des
cercles ou de I’arbre s’écrivent, sous forme récursive, de maniere concise et naturelle.

1.3 RECURSIVITE DES OBJETS

Un objet récursif est défini par rapport a lui-méme. La construction de procédures
récursives est particulierement appropriée quand la structure des objets manipulés
est elle-méme récursive.

1.3.1 Rappel sur les structures

Le programme suivant décrit une structure de type Personne et deux variables jules
et jacques de ce nouveau type.

/* structurel.cpp rappel sur les structures */

#include <stdio.h>
#include <string.h>

typedef char chl5 [16]; // 15 car. + 0 de fin de chaine

// le type structure Personne
typedef struct {

ch15 nom;

chl5 prenom;
} Personne;

void main Q {
Personne jules; // jules variable de type Personne
Personne jacques; // jacques variable de type Personne



20 1 e Récursivité, pointeurs, modules

// copier dans la structure jules
strcpy (Jules.nom, “"Durand™);
strcpy (Jules.prenom, “Jules™);

// copier dans la structure jacques
strcpy (Jacques.nom, "Dupond™) ;
strcpy (Jacques.prenom, ‘‘Jacques™);

printf ("%s %s\n", jacques.nom, jacques.prenom);

} /7 main

1.3.2 Exemple de déclaration incorrecte

Le programme suivant est incorrect car il essaie de décrire une personne comme
ayant les caractéristiques suivantes : un nom et un prénom, une personne pere et une
personne mere. La structure est récursive (autocontenue) puisqu’on décrit une
personne comme contenant deux variables de type Personne qui contiennent
chacune deux variables de type Personne, etc. Cette déclaration est incorrecte car le
compilateur ne peut déterminer a priori la taille en octets de la structure Personne.

/* structure2.cpp
déclaration incorrecte de structure autocontenue */

#include <stdio.h>
#include <string.h>

typedef char chl5 [16];
// le type Personne se référencant lui-méme

// --> erreur de compilation
typedef struct {

chl5 nom;

chi15 prenom;

//Personne pere; // --> syntax erreur
//Personne mere; // --> syntax erreur

} Personne;

void main ) {
Personne jules;

strcpy (Jules.nom, "Durand™);
strcpy (Jules.prenom, "Jules™);

printf ("%s %s\n", jules.nom, jules.prenom);

1.3.3 Structures et pointeurs

Au lieu de décrire un champ de type Personne dans un objet de type Personne, on décrit
un pointeur sur un objet de type Personne. Un pointeur fournit I’adresse de la personne
pointée. Le programme suivant permet la construction de structures de données
complexes correspondant a un arbre généalogique. pere est un pointeur de Personne sur
la personne pere. Ainsi, pour chaque Personne, on a I’adresse en mémoire de son pere et
de sa mere. L’ absence de pointeur (pere ou mere inconnus sur I’exemple) se note NULL.



© Dunod - La photocopie non autorisée est un délit.

1.3 o Récursivité des objets 21

Pour bien mettre en évidence les différences d’allocation et de notation, deux
structures sont allouées dynamiquement (en cours d’exécution du programme a
I’aide de malloc()) : celles pointées par jules et jacques, alors que la structure berthe
est allouée statiquement en début de programme (voir Figure 14).

Jjules->pere se lit : le (champ) pere de la structure pointée par jules.
berthe.pere se lit : le (champ) pere de la structure berthe.

Jjacques->pere = jules ; Mettre dans le (champ) pere de la structure pointée par
jacques, le pointeur jules.

jacques->mere = &berthe ; Mettre dans le champ mere de la structure pointée
par jacques, 1’adresse de la structure berthe.

p = jules ; Le pointeur p repere la méme Personne que le pointeur jules.

*n = *jacques ; On range a 1’adresse pointée par p, les informations (champs) de
la Personne se trouvant a 1’adresse pointée par jacques.

/* structure3.cpp pointeurs de personnes */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef char chl5 [16];

typedef struct personne {
chi15 nom;
chl5 prenom;
struct personne* pere; // pere est un pointeur de Personne
struct personne* mere; // mere est un pointeur de Personne
} Personne;

void main () {

Personne* jules; // pour allocation dynamique
Personne* jacques; // pour allocation dynamique
Personne berthe; // allocation statique

// Réserver de la place en mémoire pour une personne,

// et mettre I adresse de la zone allouée

// dans le pointeur de Personne jules

//jules = (Personne*) malloc (sizeof (Personne)); // en C
//jacques = (Personne*) malloc (sizeof (Personne));

jules = new Personne(); // en C++

Jacques = new Personne();

strcpy (Jules->nom, “Durand™);
strcpy (Jules->prenom, “Jules™);
Jules->pere = NULL;
Jjules->mere = NULL;



22 1 e Récursivité, pointeurs, modules

strcpy (Jacques->nom, "Durand™);
strcpy (Jacques->prenom, ‘Jacques');
Jacques->pere = jules;

Jacques->mere = &berthe;

strcpy (berthe.nom, ""Dupond™) ;

strcpy (berthe.prenom, "Berthe™);

berthe.pere = NULL;

berthe.mere = NULL;

printf ('Nom de berthe o %15s\n'*, berthe.nom);
printf ('Nom de jacques : %15s\n', jacques->nom);

printf ("'\n");

printf (“"Pére de Jacques : %15s %15s\n",
Jacques->pere->nom, jacques->pere->prenom);
printf ("Méere de Jacques : %15s %15s\n",
Jacques->mere->nom, jacques->mere->prenom);
printf ("'\n");

Personne* p;
p = jules; // p pointe sur le méme objet que jules
printf (“'Personne p : %15s %15s\n', p->nom, p->prenom);

p = (Personne*) malloc (sizeof (Personne));

*p = *jacques; // L objet pointé par p recoit le contenu
// de 1"objet pointé par jacques

printf (“"Personne p : %15s %15s\n', p->nom, p->prenom);

free (Jules);
free (Jacques);
free (p);

¥

Les pointeurs permettent de relier entre elles les différentes structures correspon-
dant aux différentes personnes. Le pere de jacques, c’est jules ; la mere de jacques,
c’est berthe (voir Figure 14). On peut facilement parcourir les différentes structures
de données grace aux pointeurs et retrouver par exemple, a partir du pointeur
jacques, le nom de la mere de jacques.

nom prénom pere  mere

jules E—>| Durand | Jules |/ |/ ‘

4
jacques \j—*| Durand | Jacques | ! | . ‘
!
!

berthe |Dupond |Beﬁhe |/ |/

Figure 14 La structure de données des relations entre personnes.



© Dunod - La photocopie non autorisée est un délit.

1.3 o Récursivité des objets 23

1.3.4 Opérations sur les pointeurs

Soient p et q, deux pointeurs sur un objet de type t.

a) création dynamique d’un objet

t* p = (t*) malloc (sizeof (t) ); //enC

crée un objet de type t ; p pointe sur cet objet. p contient I’adresse de 1’objet créé ;
p est un pointeur de t.

Le langage C++ permet de créer un objet (une structure) de type t a I’aide de
new() comme suit : t* p = new t();

b) affectation de pointeurs
p=NULL; NULL indique un pointeur nul (absence de pointeur)
p=q; p et q reperent le méme objet

c) affectation de zones pointées
*p=*q; mettre a 1’adresse pointée par p,
ce qu’il y a a I’adresse pointée par q.

d) comparaison de pointeurs (== et !=)
if(p==q){... si p et q reperent le méme objet ...
if(p!=q {.. si p et q ne reperent pas le méme objet ...

On peut tester si un pointeur est supérieur ou inférieur a un autre pointeur notam-
ment lorsqu’on parcourt un tableau d’éléments de type t. Le pointeur courant doit
étre compris entre 1’adresse de début et I’adresse de fin du tableau. Pour deux objets
indépendants alloués par malloc(), seules égalité et inégalité ont un sens.

e) acces a I’élément pointé
p—nom = "Durand"; le champ nom de la structure pointée par p
p—svt—nom = "Dupond";

nom svt nom svt
p \j—>| Durand | —|—>| Dupond | |
p —svt

Figure 15 Le champ nom de la structure pointée par p—svt.

f) suppression de la zone allouée dynamiquement
free (p) ; rend au systeme d’exploitation 1’espace mémoire occupé par I’objet
pointé par p, et alloué par malloc(), ou new().

g) addition, soustraction de pointeurs

Si p pointe un objet de type t, p+1 pointe 1’objet suivant de type t, de méme que
p++.



24 1 e Récursivité, pointeurs, modules

Si p et q sont 2 pointeurs de type t, p-q indique le nombre d’objets de type t entre
petq.

Sur I’exemple précédent concernant le type Personne, on pourrait rajouter les
instructions suivantes pour tester ces cas d’additions de constantes a un pointeur ou
de soustraction de deux pointeurs. On déclare un tableau de Personne que 1’on initia-
lise partiellement. ptc est un pointeur courant de Personne, donc de type Personne*,
initialisé sur le début du tableau.

Personne tabPers [5];
Personne* ptc = tabPers;

strcpy (tabPers [0].nom, "P0™);
strcpy (tabPers [1].nom, "P1");
strcpy (tabPers [2].nom, "P2');
strcpy (tabPers [3].nom, "P3™);
strcpy (tabPers [4].nom, "'P4™);

printf ("%s\n*, ptc->nom); // PO

ptc++;
printf ("%s\n", ptc->nom); // P1
ptc += 2;

printf ("%s\n", ptc->nom); // P3

printf ("%d\n*, &tabPers[4] - &tabPers[0]); // 4
printf ('%d\n'", &tabPers[0] - &tabPers[4]); // -4

1.4 MODULES

1.4.1 Notion de module et de type abstrait de données (TAD)

D’une maniere générale, un module est une unité constitutive d’un ensemble. En
algorithmique, un module est un ensemble de fonctions traitant des données
communes. Les objets (constantes, variables, types, fonctions) déclarés dans la
partie interface sont accessibles de I’extérieur du module, et sont utilisables dans un
autre programme (un autre module ou un programme principal). Il suffit de réfé-
rencer le module pour avoir acces aux objets de sa partie interface. Celle-ci doit étre
la plus réduite possible, tout en donnant au futur utilisateur un large éventail de
possibilités d’utilisation du module. Les déclarations de variables doivent étre
évitées au maximum. On peut toujours définir une variable locale au module a
laquelle on accede ou que 1I’on modifie par des appels de fonctions de I’interface. On
parle alors d’encapsulation des données qui sont invisibles pour I'utilisateur du
module et seulement accessibles a travers un jeu de fonctions. L’utilisateur du
module n’a pas besoin de savoir comment sont mémorisées les données ; le module
est pour lui un type abstrait de données (TAD). Du reste, cette mémorisation locale
peut évoluer, elle n’affectera pas les programmes des utilisateurs du module des lors
que les prototypes des fonctions d’interface restent inchangés.



© Dunod - La photocopie non autorisée est un délit.

1.4 ¢ Modules 25

module

Partie interface | - constantes
visible donc | - déclarations de types
accessible | - déclarations de variables
de I'extérieur
du module | - déclarations de prototypes
(module.h) | de fonctions (A)

Données locales | - constantes
au module, | - déclarations de types
inaccessibles | - déclarations de variables
de I'extérieur
du module | - définitions des fonctions dont
(module.cpp) | le prototype a été donné en (A) ci-dessus

- définitions de fonctions locales au
module

Figure 16 La notion de module.

L’implémentation de la notion de module varie d’un langage de programmation a
I’autre. En Turbo Pascal, le module est mémorisé dans un fichier ; les mots-clés inter-
face et implementation délimitent les deux parties visible et invisible du module.
L utilisateur référence le module en donnant son nom : uses module. En C, la partie
interface est décrite dans un fichier a part module.h appelé fichier d’en-téte. La partie
données locales est mémorisée dans un autre fichier module.cpp qui référence la partie
interface en incluant module.h. De méme, le programme utilisateur référence 1’inter-
face en faisant une inclusion de module.h, ce qui définit pour lui, la partie interface.
Cette notion de module est aussi référencée sous le terme d’unité de compilation ou de
compilation séparée. Chaque unité de compilation connait grace aux fichiers d’en-téte,
le type et les prototypes des fonctions définies dans une autre unité de compilation.

1.4.2 Exemple : module de simulation d’écran graphique

On veut faire une simulation de dessins en mode graphique. Pour cela, on définit un
module qui a I’interface suivante :

* void initialiserEcran (int nl, int nc) ; initialise un espace mémoire de simulation
de I’écran de nl lignes sur nc colonnes numérotées de 0 a nl-1, et de 0 a nc-1; le
crayon de couleur noire est positionné au milieu de I’écran.

* void crayonEn (int nl, int nc) ; positionne le crayon en (nl, nc).
* void couleurCrayon (int c) ; définit la couleur du crayon (de 0 a 15 par exemple).

* void ecrirePixel (int nl, int nc) ; écrit au point (nl, nc) un pixel de la couleur du
crayon (en fait écrit un caractere dépendant de la couleur du pixel).

* void avancer (int d, int n) ; avance de n pixels dans la direction d ; 4 directions
sont retenues : gauche, haut, droite, bas.



26 1 e Récursivité, pointeurs, modules

* void rectangle (int xcsg, int ycsg, int xcid, int ycid) ; trace un rectangle de la
couleur du crayon, de cordonnées (xcsg, ycsg) pour le coin supérieur gauche et
(xcid, ycid) pour le coin inférieur droit.

* void ecrireMessage (int nl, int nc, char* message) ; écrit message en (nl, nc).
e void afficherEcran() ; affiche I’écran.

* void effacerEcran() ; efface 1’écran.

* void detruireEcran() ; détruit I’écran (libere 1’espace alloué).

e void sauverEcran (char®* nom) ; sauve I’écran dans le fichier nom.

La partie interface définit également les couleurs utilisables (NOIR, BLANC) et
les directions de déplacement du crayon (GAUCHE, HAUT, DROITE, BAS).
Aucune variable ne figure dans la partie interface. L’ utilisateur ne sait pas comment
son écran est mémorisé. L’écran est, pour lui, un type abstrait de données (TAD).

1.4.2.a Le fichier d’en-téte de I'écran graphique
Le fichier d’en-téte décrit les objets visibles pour les utilisateurs du module (constantes
NOIR et BLANC, directions de déplacement, prototypes des fonctions).

/* ecran.h Tfichier d"en-téte pour le module ecran.cpp */

#ifndef ECRAN_H
#define ECRAN_H

#define NOIR 0
#define BLANC 15

#define GAUCHE 1
#define HAUT 2
#define DROITE 3
#define BAS 4

void initialiserEcran (int nl, int nc);

void crayonEn (int nl, int nc);

void couleurCrayon (int ¢);

void ecrirePixel (int nl, int nc);

void avancer (int d, int Ig);

void rectangle (int xcsg, int ycsg, int xcid, int ycid);
void ecrireMessage (int nl, int nc, char* message);
void afficherEcran O:

void effacerEcran O;

void detruireEcran O:

void sauverEcran (char* nom);

#endif

1.4.2.b Le module écran graphique

Comme I’indique la Figure 16, ecran.cpp contient les données locales, et les défini-
tions des fonctions déclarées dans la partie interface. Les données globales (externes
aux fonctions) étant static ne peuvent tre référencées de 1’extérieur du module. Ces
données sont locales au fichier ecran.cpp.



© Dunod - La photocopie non autorisée est un délit.

1.4 ¢ Modules 27

/* ecran.cpp simulation d"écran graphique */

#include <stdio.h> // printf, FILE, fopen, fprintf
#include <stdlib.h> // malloc, free, exit
#include <string.h> // strlen

#include "ecran.h"

// données locales au fichier ecran.cpp,
// inaccessibles pour I®utilisateur du module.
// static = locales au fichier pour les variables externes aux fonctions

static char* ecran; // pointeur sur le début de 1"écran
static int nbLig; // nombre de lignes de 1"écran
static int nbCol; // nombre de colonnes de l"écran
static int ncc; // numéro de colonne du crayon
static int nlc; // numéro de ligne du crayon
static int couleur; // couleur du crayon

// 17écran est un tableau de caractéres ecran alloué dynamiquement
// de nl lignes sur nc colonnes et mis a blanc
void initialiserEcran (int nl, int nc) {

nbLig = nl;
nbCol = nc;
ecran = (char*) malloc (nbLig * nbCol * sizeof(char));

effacerEcran ();

}

// le crayon est mis en (nl, nc)
void crayonkEn (int nl, int nc) {
nlc = nl;
ncc = nc;

}

// la couleur du dessin est c

void couleurCrayon (int c) {
if (c>15) ¢ = ¢c % 16;
couleur = c;

}

// écrire un caractére en fonction de la couleur en (nl, nc)
void ecrirePixel (int nl, int nc) {
static char* tabCoul = "*123456789ABCDE."";
if ( (n1>=0) && (nl<nbLig) && (nc>=0) && (nc<nbCol) )
ecran [nl*nbCol+nc] = tabCoul [couleur];
}

// avancer dans la direction d de lIg pixels
void avancer (int d, int n) {

switch (d) {

case DROITE:
for (int i=ncc; i<ncc+n; i++) ecrirePixel (nlc, i1);
ncc += n-1;
break;

case HAUT:
for (int i=nlc; i>nlc-n; i--) ecrirePixel (i, ncc);
nlc += -n+1;
break;

case GAUCHE:
for (int i=ncc; i>ncc-n; i--) ecrirePixel (nlc, i);
ncc += -n+1;
break;



1 e Récursivité, pointeurs, modules

case BAS:
for (int i=nlc; i<nlc+n; i++) ecrirePixel (i, ncc);
nlc += n-1;
break;

} /7 switch

}

// tracer un rectangle défini par 2 points csg et cid
void rectangle (int xcsg, int ycsg, int xcid, int ycid) {
int longueur = xcid-xcsg+1;
int largeur = ycid-ycsg+1l;

crayonkEn (ycsg, Xcsg);
avancer (BAS, largeur);
avancer (DROITE, longueur);
avancer (HAUT, largeur);
avancer (GAUCHE, longueur);

}

// écrire un message a partir de (nl, nc)
void ecrireMessage (int nl, int nc, char* message) {
for (int i=0; i<strlen(message); i++) {
if ( (n1>=0) && (nl<nbLig) && (nc>=0) && (nc<nbCol) ) {
ecran [nl*nbCol+nc] = message[i];
nc++;
3
}
3

// afficher le dessin
void afficherEcran () {
for (int i=0; i<nbLig; i++) {
for (int j=0; j<nbCol; j++) printf ("%c', ecran [i*nbCol+j]);
printf ("'\n");

3
printf ("'\n");

// mettre I"écran a blanc
void effacerEcran () {
for (int i=0; i<nbLig; i++) {
for (int j=0; j<nbCol; j++) ecran[i*nbCol+j] = = *;

¥
couleurCrayon (NOIR); // par défaut
crayonkEn (nbLig/2, nbCol/2); // milieu de I"écran

// rendre au systéeme d"exploitation, I"espace alloué par
// malloc() dans initialiserEcran()
void detruireEcran () {

free (ecran);

}

// sauver l"écran dans le fichier nomFS
void sauverEcran (char* nomFS) {
FILE* fs = fopen (nomFS, "w');
if (fs==NULL) { perror (‘'sauverEcran'); exit (1); };
for (int i=0; i<nbLig; i++) {
for (int j=0; j<nbCol; j++) fprintf (fs, "%c'", ecran [i*nbCol+j]);
fprintf (fs, "\n");

3
fprintf (fs, "\n");
fclose (fs);



© Dunod - La photocopie non autorisée est un délit.

1.4 ¢ Modules 29

1.4.2.c Le programme d’application de I’écran graphique

Ce programme principal utilise le module écran pour dessiner une maison. Bien sfir,
il faudrait augmenter la résolution pour avoir un dessin plus fin.

/* ppecran.cpp programme principal ecran */

#include <stdio.h>
#include "ecran.h"

void main () {
initialiserEcran (20, 50);

rectangle ( 3, 10, 43, 17); // maison
rectangle ( 3, 4, 43, 10); // toiture
rectangle (20, 12, 23, 17); // porte
rectangle (41, 1, 43, 4); // cheminée
rectangle (10, 12, 14, 15); // fenétre gauche
rectangle (30, 12, 34, 15); // fenétre droite
ecrireMessage (19, 15, "Maison de réves™);

afficherEcran ();
sauverEcran ("maison.res");
detruireEcran Q;

}

1.4.2.d Le résultat de "'exécution du test du module écran

Apres exécution du programme d’application ppecran.cpp précédent, le fichier
maison.res contient le dessin suivant.

*xx
* *
* *

AEAEXAXKXAAXAAAXAXAAAXAAAXAAAAAAAXAAAXAAAAXAAAXAAAAKXX

% % % X
* O% % % X

AEEXAXXAAXAAAXAXAAAAAAXAAAXAAAAXAAAXAAAAXAAAXAAAAKXX

* *
* *AhAkX *
* * * * * * * *
* * * * * * * *
* *hhkx * * *hhkx *
* * * *

AEAIEAXAAAXAAAXAAAAAAAXAAAAAAAAAAAAAAXAAAXAAAAXX

Maison de réves
Figure 17 Dessin d'une maison avec le module ecran.

La notion de classe en programmation objet correspond a I’extension de la notion
de module. Une classe comprend des objets (données propres) et des fonctions appe-
1ées méthodes qui gerent ses objets. Sur I’exemple, il n’y a qu’un seul écran ; si on



30 1 e Récursivité, pointeurs, modules

veut pouvoir gérer plusieurs écrans, il faut passer en parametre de chaque fonction
un pointeur d’écran : un pointeur sur une structure contenant les données spécifiques
de chaque écran. En programmation (orientée) objet, on définirait une classe ecran,
chaque élément de cette classe ayant ses propres données. D’autres mécanismes
plus spécifiques de la programmation objet ne sont pas abordés ici comme 1’héritage
ou les méthodes virtuelles.

L’exemple donné pourrait étre complété en définissant d’autres fonctions mises a
la disposition de I'utilisateur. On pourrait définir des fonctions de tracé de figures
géométriques (cercles, carrés, ellipses, etc.). Les directions de déplacement
devraient étre quelconques ; on devrait pouvoir avancer de n pas suivant un angle
donné. On devrait pouvoir tourner a droite ou a gauche d’un angle donné. On pour-
rait refaire de cette facon le langage Logo qui facilite le dessin sur écran et I’appren-
tissage de la programmation.

Exercice 4 - Spirale rectangulaire (récursive)

En utilisant le module ecran défini précédemment, écrire la fonction récursive
void spirale (int n, int IlgMax) ; qui trace la spirale de la Figure 18 ; n est la longueur
du segment ; lgMax est la longueur du plus grand segment a tracer.

Figure 18 Dessin d'une spirale rectangulaire.

Exercice 5 - Module de gestion de piles d’entiers (allocation contigué)

Une pile d’entiers est une structure de données contenant des entiers qui sont
gérés en ajoutant et en retirant des valeurs en sommet de pile uniquement. On utilise
une allocation contigué : un tableau d’entiers géré comme une pile ; ¢’est-a-dire ol
les ajouts et les retraits sont effectués au sommet de la pile uniquement. Le type Pile



© Dunod - La photocopie non autorisée est un délit.

1.4 ¢ Modules

31

décrit une structure contenant une variable max indiquant le nombre maximum
d’éléments dans la pile, une variable nb repérant le dernier occupé de la pile
(sommet de pile) et le tableau element des éléments de la pile. Les fonctions a appli-
quer a la pile consistent a initialiser une pile en allouant dynamiquement le tableau
des max entiers, a tester si la pile est vide ou non, a ajouter une valeur en sommet de
pile s’il reste de la place, a extraire une valeur du sommet de pile si la pile n’est pas
vide, a lister pour vérification toutes les valeurs de la pile, et a détruire la pile. Le
fichier d’en-téte pile.h est le suivant :

/* pile.h version avec allocation dynamique du tableau */

#ifndef PILE_H
#define PILE_H

typedef struct {
int max;
int nb;
int* element;
} Pile;

Pile* creerPile
int pileVide
void empiler
int depiler
void listerPile

// nombre maximum d"éléments dans la pile
// repére le dernier occupé de element
// le tableau des éléments de la pile

(int  max);

(Pile* p);

(Pile* p, int valeur);
(Pile* p, int* valeur);
(Pile* p);

void detruirePile (Pile* p);

#endif

La fonction int depiler (Pile* p, int* valeur) ;

* fournit O (faux) si la pile est vide, 1 (vrai) sinon.

* met dans I’entier pointé par valeur, et la supprime de la pile, la valeur en sommet
de pile (cas de la pile non vide).

Ecrire le corps du module pile.cpp et un programme de test pppile.cpp
(programme principal des piles) contenant un menu permettant de vérifier tous les
cas. Le menu est proposé ci-dessous.

GESTION D"UNE PILE

0 - Fin

1 - Création
2

3 -

4 - Retrait
5 - Listage

de la pile

- La pile est-elle vide ?
Insertion dans la pile

de la pile
de la pile

Votre choix ?



32 1 e Récursivité, pointeurs, modules

Exercice 6 - Module de gestion de nombres complexes

Un nombre complexe se compose d’une partie réelle et d’une partie imaginaire.

Les fonctions que I’on peut réaliser sur les complexes sont données ci-dessous :

* fonction (crC) permettant la création d’'un nombre complexe a partir de 2 réels,

e fonction (crCP) permettant la création d’un nombre complexe a partir de son
module, et de son argument en radians entre -T et +,

e fonctions (partReelC, partlmagC, moduleC, argumentC) délivrant la partie
réelle, la partie imaginaire, le module ou I’argument d’un nombre complexe,

e fonctions (ecritureC, ecritureCP) faisant I’écriture des 2 composantes d’un
nombre complexe sous la forme (X + y i) comme par exemple (2 + 1.5 i), ou sous la
forme en polaire (2.5, 0.64),

e fonctions (opposeC, conjugueC, inverseC, puissanceC) délivrant le
complexe opposé, le conjugué, I’inverse ou une puissance entiere d’un nombre
complexe,

e fonctions (additionC, soustractionC, multiplicationC, divisionC) faisant
I’addition, la soustraction, la multiplication ou la division de deux nombres
complexes.

Le fichier d’en-téte complex.h décrivant I’interface du module est le suivant. Le
type Complex est décrit comme une structure de deux réels partReel et partimag.

/* complex.h */

#ifndef COMPLEX_H
#define COMPLEX_H

#define M_PI 3.1415926535

typedef struct {

double partReel; // partie réelle
double partlmag; // partie imaginaire
} Complex;
// les constructeurs
Complex crC (double partReel, double partimag);
Complex crCP (double module, double argument);
double  partReelC (Complex z);
double partimagC (Complex z);
double moduleC (Complex z);
double argumentC (Complex z);
void ecritureC (Complex z);
void ecritureCP (Complex z);
Complex opposeC (Complex z);
Complex conjugueC (Complex z);
Complex inverseC (Complex z);
Complex puissanceC (Complex z, iInt n);
Complex additionC (Complex z1, Complex z2);

Complex soustractionC (Complex z1, Complex z2);



© Dunod - La photocopie non autorisée est un délit.

1.5 e Pointeurs de fonctions

33

Complex multiplicationC (Complex z1, Complex z2);

Complex divisionC

#endif

(Complex zl1, Complex z2);

Ecrire dans le fichier complex.cpp, les fonctions du module déclarées dans

complex.h.

Ecrire un programme principal de test des différentes fonctions du module.

Exemples de résultats (la derniere colonne donne les résultats en polaire) :

cl =
c2 =
c3 =
c4 =
cS5 =
c6 =
c7 =

pl =
p2 =
p3 =
p4 =
pS =
p6 =
p7 =

pl a pour module 1 et pour argument :
p2 a pour module 1 et pour argument :

cl
cl
cl
cl
cl

pl
pl
pl
pl
pl

**3

+ p2
= p2
/ p2
**x 3

AAAAAAAD

-00
-00
-00
-00
.63
-19
-50

.71
-00
.71
.71
.71
.71
.71

+ + + + + + +

+ + + + + + +

1.50
1.75
& 25
-0.25
0.50
-0.92
14.63

LTI TR TR TR O TR 1]
A Wl A S T

0.71
1.00
1.71
-0.29

0.71
-0.71

0.71

[T T TR TR O T 1]
LS T A S T A

/4 =0.79
w2 =1.57

A AAAAAAND

AAAAAAAD

O o~ WNNDN

1

(&)

PR R ORRPR

.50,
.66,
.25,
.01,
.64,
.94,
.62,

.00,
-00,
-85,
77,
.00,
-00,
.00,

.64)
.42)
.57)
.06)
.07)
.78)
.93)

.79)
.57)
.18)
.39)
.36)
.79)
.36)

1.5 POINTEURS DE FONCTIONS

La plupart des langages de programmation autorise le passage en parametre d’une
fonction définie par ses propres parametres et son type de retour. Le tracé d’une
courbe peut se faire en passant la fonction en parametre de la fonction de tracé de

dessin.

Les exemples ci-dessous définissent plusieurs courbes ayant deux parametres
entiers et fournissant une valeur entiere.

// fnparam.cpp passage en paramétre de fonctions

#include <stdio.h>



34 1 e Récursivité, pointeurs, modules

// les différentes fonctions de deux paramétres entiers

int fsom (int nl, int n2) {
return nl + n2;

}

int fdif (int nl1, int n2) {
return nl - n2;
3

int fmult (int nl, int n2) {
return nl * n2;
3

int fdiv (int nl1, int n2) {
return nl /7 n2;
¥

La fonction calculer() accepte un premier parametre de type pointeur de fonction
ayant deux entiers en parametre et délivrant un entier.

// la fonction calculer ayant un parametre
// de type fonction de deux entiers fournissant un entier
int calculer ( int (*f) (int, Int), int vl, int v2) {

int resu = ¥ (v1,v2);

return resu;

}

calculer (fsom, 10, 20): exécuter la fonction calculer() avec comme premier
parametre la fonction fsom.

void main () {
printf (“"fsom %d\n", calculer (fsom, 10, 20) );
printf ("fdif %d\n", calculer (fdif, 10, 20) );
printf ("fmult %d\n", calculer (fmult, 10, 20) );
printf ('fdiv %d\n", calculer (fdiv, 10, 20) );

// on peut utiliser une variable

// de type fonction de deux entiers fournissant un entier
// et lui affecter une valeur

int (*f) (int, int) = fsom;

printf ("\nf %d\n'", calculer (f, 10, 20) );

1.6 RESUME

Certains problemes peuvent étre résolus plus logiquement en utilisant la récursivité.
Les programmes sont plus compacts, plus faciles a écrire et a comprendre. Son
usage est naturel quand les structures de données sont définies récursivement, ou
quand le probleme a traiter peut se décomposer en deux ou plus sous-problemes
identiques au probléme initial mais avec des valeurs de parametres différentes.
Refuser la récursivité dans ce dernier cas oblige I'utilisateur a gérer lui-méme une
pile des différentes valeurs des variables, ce que le systéme fait automatiquement

lors de I’utilisation de la récursivité.



1.6 ¢ Résumé 35

Lallocation dynamique permet de demander de la mémoire centrale au systeme
d’exploitation au fil des besoins. L’allocation dynamique de mémoire pour I’écran
graphique (voir initialiserEcran()) permet d’allouer une zone mémoire contigué en
fonction des dimensions voulues de I’écran. En allocation statique (déclaration d’un
tableau a deux dimensions), il aurait fallu figer lors de la déclaration les deux dimen-
sions de I’écran pour toutes les applications. La structure de données des relations
entre personnes de la Figure 14 illustre bien la nécessité de pouvoir allouer de
nouvelles zones dynamiquement, en cours d’exécution du programme, pour y enre-
gistrer les caractéristiques d’une nouvelle personne. Les différentes zones allouées
sont reliées entre elles a 1I’aide de pointeurs.

Comme dans toute réalisation humaine complexe, il convient d’étre méthodique
et de décomposer le probleme en sous-problemes de moindre difficulté. La construc-
tion d’une voiture se fait en assemblant des modules (moteur, boite de vitesses, etc.)
qui doivent respecter des normes d’interface trés précises. Si les normes sont respec-
tées, on peut facilement remplacer le moteur par un autre moteur plus performant. Il
en va de méme en programmation. Une application doit étre découpée en modules
qui communiquent par des interfaces définies sous forme de prototypes de fonc-
tions. On pourra toujours remplacer un module par un module plus performant des
lors que I’interface ne change pas.



Chapitre 2

Les listes

2.1 LISTES SIMPLES : DEFINITION

Une liste est un ensemble d’objets de méme type constituant les éléments de la liste.
Les éléments sont chainés entre eux et on peut facilement ajouter ou extraire un ou
plusieurs éléments. Une liste simple est une structure de données telle que chaque
élément contient :

e des informations caractéristiques de I’application (les caractéristiques d’une
personne par exemple),

* un pointeur vers un autre élément ou une marque de fin s’il n’y a pas d’élément
successeur.

Exemple : une liste d’attente chez un médecin.

|
premier ——~|Dupond | | |Duroc | I |

| Dufour | /| | Durand | ']

Figure 19 Une liste de clients.

La Figure 19 peut représenter une salle d’attente ou les clients sont dispersés dans
toute la salle. Cependant, il y a un ordre de passage correspondant a 1’ordre



© Dunod - La photocopie non autorisée est un délit.

2.2 * Représentation en mémoire des listes 37

d’arrivée. L’arrivée d’un nouveau client n’entraine pas de déplacement pour les
clients déja présents. Il doit occuper un des sieges libres.

Le schéma peut aussi représenter les informations sur les clients dispersées en
mémoire centrale d’ordinateur mais reliées entre elles par un chainage. La mémori-
sation d’un nouveau client se fait par demande au systeme d’exploitation d’une zone
mémoire libre pour y loger les caractéristiques du nouveau client. Les informations
sur les autres clients n’ont pas a étre déplacées.

En salle d’attente, on pourrait aussi imaginer un banc d’attente avec décalage des
clients a chaque passage chez le médecin. Cela correspondrait a une gestion en
tableau en mémoire centrale avec décalage des informations.

Les listes permettent une gestion sans déplacement en mémoire quand I’informa-
tion est volatile, c’est-a-dire quand il y a de fréquents ajouts et retraits d’éléments.
Une gestion en tableau est difficile quand des éléments doivent étre ajoutés ou
retirés en milieu de tableau. Si les éléments sont toujours ajoutés ou retirés en début
ou en fin de liste, une structure en tableau peut étre envisagée.

2.2 REPRESENTATION EN MEMOIRE DES LISTES

Allocation dynamique Allocation contigué
(a la demande)
p — 0 | Dupond 2
50 P —>| Dupond | | , | 1 | Dufour /
| 2 | Durand 3
100 —'| Durand | | | | 3 | buroc !
] 4
5
10 000 _'| Duroc | | | |
|
IgMax = 6
1000 | Dufour / | Tableau ou fichier en accés direct

Figure 20 Mémorisation des listes (dynamique ou contigué).

En allocation dynamique a la demande, les différents éléments sont dispersés en
mémoire centrale. L’espace est réservé au fur et a mesure des créations d’éléments.
La seule limite est la taille de la mémoire centrale de I’ordinateur ou 1’espace
mémoire alloué au processus. Sur I’exemple de la Figure 20, la structure de
Dupond se trouve a 1’adresse 500, celle de Durand a I’adresse 100. Ainsi, le suivant
de Dupond se trouve a I’adresse 100. Cette adresse est un pointeur sur 1’élément
suivant.



38 2 o [es listes

Le schéma de I’allocation contigué représente une allocation ou I’espace est
réservé sur des cases consécutives avec une dimension maximale (IgMax sur le
schéma) a préciser lors de cette réservation. L’allocation dynamique a la demande
présente beaucoup plus de souplesse puisqu’il n’y a pas de limite a fixer. Le fait de
devoir fixer une limite est génant pour une application. Si la limite est trop basse, on
ne peut résoudre les problemes ayant de nombreuses valeurs, ou alors, il faut réal-
louer une zone plus grande et déplacer les informations. Si la limite est trop grande,
I’espace est alloué inutilement. Le schéma de 1’allocation contigué peut représenter
un tableau en mémoire centrale ou un fichier en acces direct sur disque.

Les déclarations concernant les allocations dynamiques a la demande et contigués
sont données ci-dessous. Il faut remarquer que 1’allocation contigué peut étre faite
de maniere statique (déclaration d’un tableau) ou dynamique par malloc() en début
ou en cours de programme.

Allocation dynamique Allocation contigué (statique)

(a la demande)
#define IgMax 6
#define NULLE -1

typedef char chl5 [16]; typedef int PElement;

typedef

* .
struct element* PElement; typedef struct {

chl5 nom;
typedef struct_element { PElement suivant:
ch15 noms, } Element;
PElement suivant; ?
} Element;

soit un tableau de structures
Element tab [IgMax];

soit un fichier en acces direct
FILE* f;

2.3 MODULE DE GESTION DES LISTES

Un élément de liste contient toujours un pointeur sur 1’élément suivant ou une
marque indiquant qu’il n’y a plus de suivant (marque NULL en C). Les autres carac-
téristiques dépendent de I’application. Pour que le module de gestion des listes soit
le plus général possible, il faut bien séparer ce qui est spécifique des listes de ce qui
est caractéristique des applications. Ci-dessous, les informations sont regroupées
dans une structure (un objet) et repérées par un pointeur de type Objet* (soit void*)
appelé référence. Cette référence peut contenir I’adresse de n’importe quel objet.
La liste peut étre représentée par un pointeur sur le premier élément de la liste. On
peut aussi regrouper quelques caractéristiques de la liste dans une structure de type
téte de liste qui contient par exemple un pointeur sur le premier élément et un pointeur
sur le dernier élément de facon a faciliter les insertions en téte et en fin de liste. Un
pointeur courant est également ajouté pour faciliter le parcours des listes. Le type
Liste est ainsi défini comme une structure contenant trois pointeurs d’éléments : un



© Dunod - La photocopie non autorisée est un délit.

2.3 » Module de gestion des listes 39

pointeur sur le premier élément de la liste, un pointeur sur le dernier élément, et un
pointeur qui repere I’élément courant a traiter. Le nombre d’éléments est également
inséré dans la téte de liste, ainsi que le type de la liste (non ordonnée, ordonnée crois-
sante ou ordonnée décroissante). Deux fonctions dépendant des objets traités et
permettant de fournir la chaine de caracteres a écrire pour chaque objet ou de
comparer deux objets complétent cette structure de type Liste. La fonction de compa-
raison fournit O si les deux objets sont égaux, une valeur inférieure a 0 si le premier
objet est inférieur au deuxieme, et une valeur supérieure a 0 sinon. Ces deux fonctions
sont des parametres de la liste et varient d’une application a I’autre.

Les déclarations correspondantes pour I’allocation dynamique a la demande sont
les suivantes :

typedef void Objet;

// un élément de la liste
typedef struct element {

Objet* reference; // référence un objet (de I application)
struct element* suivant; // élément suivant de la liste
} Element;

// le type Liste
typedef struct {
Element* premier; // premier élément de la liste
Element* dernier; // dernier élément de la liste
Element* courant; // élément en cours de traitement (parcours de liste)

int nbEIt; // nombre d"éléments dans la liste
int type; // 0:non ordonné, l:croissant, 2:décroissant
char* (*toString) (Objet*);
int (*comparer) (Objet*, Objet*);
} Liste;

Une liste ne contenant aucun €lément a ses trois pointeurs a NULL pour indiquer
qu’il n’y a ni premier, ni dernier, ni él€ément courant.

premier dernier courant nbElt type

Figure 21 Une liste vide.

La fonction d’initialisation de la liste pointée par li est donnée ci-dessous. li est
I’adresse d’une structure de type Liste ; li est donc de type Liste*. La barre oblique /
représente NULL sur la Figure 21.

li->premier indique le champ premier de la structure pointée par li.

Par défaut, I’objet référencé par I’élément de liste est une chaine de caracteres.
Les deux fonctions définies ci-dessous permettent d’initialiser par défaut les para-
metres fonctions de la téte de liste.



40

2 o [es listes

// comparer deux chaTnes de caractéres

// fournit <0 si chl < ch2; 0 si chl=ch2; >0 sinon

static int comparerCar (Objet* objetl, Objet* objet2) {
return strcmp ((char*) objetl, (char*) objetl);

3

static char* toChar (Objet* objet) {
return (char*) objet;

}

// initialiser la liste pointée par li (cas général)
void initListe (Liste* li, int type, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

li->premier = NULL;
li->dernier = NULL;
li->courant = NULL;
li->nbEIlt = 0;
li->type = type;
li->toString = toString;
li->comparer = comparer;

}

// initialisation par défaut
void initListe (Liste* li) {

initListe (li, NONORDONNE, toChar, comparerCar);
¥

Les fonctions suivantes créent et initialisent la téte de liste, et fournissent un poin-

teur sur la téte de liste créée.

Liste* creerListe (int type, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {
Liste* li = new Liste();
initListe (li, type, toString, comparer);
return li;

}

Liste* creerListe (int type) {
return creerListe (type, toChar, comparerCar);

}

Liste* creerListe () {
return creerListe (NONORDONNE, toChar, comparerCar);
}

Pour savoir si une liste est vide, il suffit de tester si son nombre d’élément vaut 0.
// la liste est-elle vide ?
booleen listeVide (Liste* Ii) {
return li->nbElt == 0;
3
La fonction nbElement() fournit le nombre d’éléments dans la liste Ii :
// fournir le nombre d*éléments dans la liste

int nbElement (Liste* Ii) {
return li->nbEIt;
}



© Dunod - La photocopie non autorisée est un délit.

2.3 ¢ Module de gestion des listes a1

2.3.1 Création d'un élément de liste
(fonction locale au module sur les listes)

La liste contient des éléments ; chaque élément référence un objet spécifique de
I’application.

// créer un élément de liste

static Element* creerElement () {
return new Element();

3

2.3.2 Ajout d'un objet

2.3.2.a Ajout en téte de liste

Avant I’appel de cette fonction d’ajout, 1’objet a insérer et pointé par objet a été
alloué et rempli avec les informations spécifiques de I’application. Un élément de
liste est créé et son champ reference repere I’ objet a insérer.

// insérer objet en téte de la liste li
// 1"objet est repéré par le champ reference de 1"élément de la liste
void insererEnTeteDeListe (Liste* li, Objet* objet) {

Element* nouveau creerElement();

nouveau->reference = objet;
nouveau->suivant = li->premier;
li->premier = nouveau;

if (li->dernier == NULL) li->dernier = nouveau;
Li->nbEIt++;

objet

objet1 objet2 objet3

A /
nouveau

( —

Y

Figure 22 Insertion de objet en téte de la liste li de type 0 (non ordonnée). Apres
insertion, la liste contient 3 éléments.
2.3.2.b Ajout aprés I'élément précédent (fonction locale au module)

L’élément doit étre ajouté a une place particuliere apres 1’élément precedent. 11 faut
d’abord trouver I’élément precedent avant d’appeler la fonction insererApres().



42 2 o [es listes

La procédure présentée ci-dessous insere dans la liste pointée par /i, apres 1’élément
pointé par precedent, I’élément pointé par nouveau qui référence objet. Si precedent
est NULL, I’insertion se fait en téte de liste.

// insérer dans la liste li, objet aprés precedent
// si precedent est NULL, insérer en téte de liste
static void insererApres (Liste* li, Element* precedent, Objet* objet) {
if (precedent == NULL) {
insererEnTeteDeListe (li, objet);
} else {
Element* nouveau
nouveau->reference
nouveau->suivant precedent->suivant;
precedent->suivant = nouveau;
ifT (precedent == li->dernier) li->dernier = nouveau;
li->nbEIt++;

creerElement();
objet;

objet

nouveau

precedent

S g
S e

Y

Figure 23 Insertion de nouveau (référencant objet) dans la liste i,
aprés |'élément pointé par precedent.

2.3.2.c Ajout en fin de liste

L’ajout en fin de liste se fait en téte de liste si la liste est vide ou apres le dernier
élément si la liste contient déja un élément. La fonction précédente peut donc étre
utilisée pour définir cette fonction. Le pointeur sur le dernier élément conservé dans
la téte de liste permet une insertion en fin de liste rapide sans parcours de la liste pour
se positionner sur le dernier élément. Si la liste est vide, li->dernier vaut NULL.

// insérer un objet en fin de la liste li
void insererEnFinDeListe (Liste* i, Objet* objet) {
insererApres (li, li->dernier, objet);

}



© Dunod - La photocopie non autorisée est un délit.

2.3 » Module de gestion des listes 43

2.3.3 Les fonctions de parcours de liste

Les fonctions suivantes permettent a I'utilisateur du module [liste de parcourir une
liste en faisant abstraction des structures de données sous-jacentes. Ces fonctions
s’apparentent a celles utilisées pour parcourir séquentiellement les fichiers. L’ utili-
sateur a besoin de se positionner en début de liste, de demander I’objet suivant de la
liste, et de savoir s’il a atteint la fin de la liste. L' utilisateur n’accede pas aux champs
de la structure de la téte de liste (premier, dernier, courant), ni au champ suivant des
éléments.

La fonction ouvrirListe() permet de se positionner sur le premier élément de la
liste /i.

// se positionner sur le premier élément de la liste li
void ouvrirListe (Liste* i) {

li->courant = li->premier;
3

La fonction booléenne finListe() indique si on a atteint la fin de la liste /i ouverte
préalablement par ouvrirListe().

// a-t-on atteint la fin de la liste li ?
booleen finListe (Liste* li) {
return li->courant==NULL;

}

La fonction locale elementCourant() fournit un pointeur sur I’élément courant de
la liste /i et se positionne sur 1’élément suivant qui devient I’élément courant.

// fournir un pointeur sur I"élément courant de la liste Ili,
// et se positionner sur le suivant qui devient le courant
static Element* elementCourant (Liste* li) {
Element* ptc = li->courant;
if (li->courant != NULL) {
li->courant = li->courant->suivant;
by

return ptc;

}

La fonction objetCourant() fournit un pointeur sur 1’objet courant de la liste /i.
Chaque appel déplace I’objet courant sur le suivant.

// fournir un pointeur sur l"objet courant de la liste Ii,
// et se positionner sur le suivant qui devient le courant
Objet* objetCourant (Liste* li) {

Element* ptc = elementCourant (li);

return ptc==NULL ? NULL : ptc->reference;
¥

La fonction listerListe(Liste* li) effectue un parcours complet de la liste en
appliquant la fonction roString() spécifique des objets de 1’application et définie
dans la téte de liste lors de la création de la liste (voir creerListe()).



44 2 o [es listes

void listerListe (Liste* Ii) {
ouvrirListe (Ii);
while (IfinListe (1i)) {
Objet* objet = objetCourant (li);
printf ("%s\n", li->toString (objet));
3
3

La fonction listerListe(Liste* li, void (*f) (Objet*))) effectue un parcours
complet de la liste en appliquant la fonction f{) donnée en parametre pour chacun
des éléments de la liste. La fonction f{) est spécifique de 1’application. Par contre la
facon de faire le parcours est, elle, indépendante de cette application.

// lister la liste li;
// T est une fonction passée en paramétre
// et ayant un pointeur de type quelconque.
// Ceci s"apparente aux méthodes virtuelles en PO.
void listerListe (Liste* li, void (*f) (Objet*)) {
ouvrirListe (li);
while (IfinListe (1i)) {
Objet* objet = objetCourant (li);
f (objet); // appliquer la fonction f() a objet

}

De maniere assez similaire, la fonction chercherUnObjet() effectue un parcours
de liste en comparant 1’objet cherché et I’ objet référencé par 1’élément courant de la
liste. Cette comparaison est dépendante de I’application et confiée a la fonction de
comparaison de deux objets définie lors de la création de la liste (voir creerListe()).
La fonction de comparaison retourne 0 en cas d’égalité des deux objets. objet-
Cherche doit contenir les caractéristiques (la clé) permettant (2 la fonction de
comparaison) d’identifier I’objet cherché dans la liste /i.

// fournir un pointeur sur I"objet "objetCherche”™ de la liste li;
// NULL si I"objet n"existe pas
Objet* chercherUnObjet (Liste* li, Objet* objetCherche) {
booleen trouve = faux;
Objet* objet; // pointeur courant
ouvrirListe (li);
while (!finListe (li) && !'trouve) {
objet = objetCourant (li);
trouve = li->comparer (objetCherche, objet) == O;
¥
return trouve ? objet : NULL;

3
2.3.4 Retrait d'un objet

2.3.4.a Retrait en téte de liste

Il s’agit de retirer 1’objet en téte de la liste pointée par li, et de fournir un pointeur sur
I’objet extrait. Si la liste est vide, on ne peut retirer aucun élément, la fonction
retourne NULL pour indiquer un échec.



© Dunod - La photocopie non autorisée est un délit.

2.3 ¢ Module de gestion des listes 45

// extraire I objet en téte de la liste li
Objet* extraireEnTeteDeListe (Liste* li) {
Element* extrait = li->premier;
if (MlisteVide(1i)) {
li->premier = li->premier->suivant;
iT (li->premier==NULL) li->dernier=NULL; // Liste devenue vide
li->nbElIt--;
}

return extrait '= NULL ? extrait->reference : NULL;

Avant : li = (C, A, B)

T ] 7]

Aprés : li = (A, B)

Figure 24 Retrait de I'objet en téte de la liste pointée par li.

2.3.4.b Retrait de I'élément qui suit I’élément précédent (fonction locale)

Pour extraire un élément d’une liste, il faut avoir un pointeur sur I’élément qui
précede puisqu’apres extraction, le champ suivant du précédent doit contenir un
pointeur sur le suivant de 1’élément a extraire. Si precedent vaut NULL, il s’agit
d’une extraction en téte de liste. Si on extrait le dernier élément de la liste, il faut
modifier le pointeur sur le dernier qui pointe, apres extraction, sur precedent. La
fonction retourne un pointeur sur 1’élément extrait (qui peut par la suite étre détruit,
ou réinséré dans une autre liste).

// Extraire I objet de li se trouvant apres I"élément precedent;
// si precedent vaut NULL, on extrait le premier de la liste;
// retourne NULL si I"objet a extraire n"existe pas
static Objet* extraireApres (Liste* li, Element* precedent) {
if (precedent == NULL) {
return extraireEnTeteDeListe (li);
} else {
Element* extrait = precedent->suivant;
if (extrait != NULL) {
precedent->suivant = extrait->suivant;
if (extrait == li->dernier) li->dernier = precedent;
li->nbElt--;
¥



46 2 o [es listes

return extrait !'= NULL ? extrait->reference : NULL;

}
}

Remarque : pour extraire un élément d’une liste connaissant uniquement un
pointeur sur I’é1ément a extraire et si ce n’est pas le dernier élément de la liste,
on peut permuter I’élément a extraire et son suivant, et extraire le suivant.

2.3.4.c Retrait de I'objet en fin de liste

Pour extraire le dernier élément d’une liste, il faut connaitre I’avant-dernier pour en
modifier le pointeur suivant. Sauf si la liste ne contient aucun, ou un seul élément, il
faut faire un parcours de la liste pour repérer le précédent du dernier.

// extraire I"objet en fin de la liste li
Objet* extraireEnFinDeListe (Liste* li) {
Objet* extrait;
it (listevide(li)) {
extrait = NULL;

} else if (li->premier == li->dernier) { // un seul élément
extrait = extraireEnTeteDeListe (li);
} else {

Element* ptc = li->premier;
while (ptc->suivant != li->dernier) ptc = ptc->suivant;
extrait = extraireApres (li, ptc);

3

return extrait;

}

2.3.4.d Retrait d’un objet a partir de sa référence

La fonction extraireUnObjet() extrait un objet connaissant un pointeur sur cet
objet :

// extraire de la liste li, I"objet pointé par objet
booleen extraireUnObjet (Liste* li, Objet* objet) {
Element* precedent = NULL;
Element* ptc = NULL;

// repéere 1 élément précédent
booleen trouve = faux;
ouvrirListe (Ii);
while (IfinListe (li) && !trouve) {
precedent = ptc;
ptc = elementCourant (li);
trouve = (ptc->reference == objet) ? vrai : faux;
¥

if (Itrouve) return faux;

Objet* extrait = extraireApres (li, precedent);
return vrai;



© Dunod - La photocopie non autorisée est un délit.

2.3 ¢ Module de gestion des listes 47

2.3.5 Destruction de listes

Pour détruire une liste, il faut effectuer un parcours de liste avec destruction de
chaque élément. La téte de liste est réinitialisée. Il faut se positionner en début de
liste, et tant qu’on n’a pas atteint la fin de la liste, il faut prendre 1’élément courant et
le détruire. Le pointeur sur le prochain élément est conservé dans le champ courant
de la téte de liste.

// parcours de liste avec destruction de chaque élément
void detruireListe (Liste* li) {
ouvrirListe (Ii);
while (!'finListe (1i)) {
Element* ptc = elementCourant (li);
//free (ptc->reference); //si on veut détruire les objets de la liste
free (ptc);
3
initListe (li);
}

2.3.6 Recopie de listes

La fonction void recopierListe (Liste* L1, Liste* [2) ; permet de transférer la liste 12
dans la liste 11 en réinitialisant la liste 12 qui est vide.

// recopie 12 dans I1 et initialise 12

void recopierListe (Liste* 11, Liste* 12) {
detruireListe (I11);
*11 = *12; // on recopie les tétes de listes
initListe (12);

¥

2.3.7 Insertion dans une liste ordonnée

L’insertion dans une liste ordonnée se fait toujours suivant le méme algorithme.
Cependant la comparaison de I’objet a insérer par rapport aux objets déja dans la liste
dépend de I’objet de I’application. La comparaison peut porter sur des entiers, des
réels, des chaines de caracteres, ou méme sur plusieurs champs (nom et prénom par
exemple). La fonction locale enOrdre() suivante indique si objetl et objet2 sont en
ordre (croissant si ordreCroissant est vrai, décroissant sinon). Elle utilise la fonction
comparer() qui fournit une valeur <0 si objet]l < objet2, égale a 0 si objet]l = objet2,
et supérieure a 0 sinon.

// objetl et objet2 sont-ils en ordre ?
static booleen enOrdre (Objet* objetl, Objet* objet2, booleen ordreCroissant,
int (*comparer) (Objet*, Objet*)) {
booleen ordre = comparer (objetl, objet2) < O;
if (lordreCroissant) ordre = lordre;
return ordre;



48

2 o [es listes

Ainsi :

enOrdre de 10 et 20 en ordre CROISSANT vrai
enOrdre de 10 et 20 en ordre DECROISSANT faux
enOrdre de "Dupond” et "Duval" en ordre CROISSANT vrai

La fonction
void insererEnOrdre (Liste* li, Objet* objet);

insere dans la liste /i, I’objet pointé par objet suivant le type croissant ou décrois-
sant de la liste défini lors de la création de la liste (voir creerListe()). Plusieurs cas
sont a envisager. Si la liste /i est vide, il faut insérer objet en téte de la liste. Si objet
doit étre inséré avant le premier élément, il s’agit également d’une insertion en téte
de liste. Sinon, il faut rechercher un point d’insertion tel que objer et I’objet de
I’élément courant de la liste soient en ordre tout en gardant un pointeur sur 1’élément
précédent. Si on atteint la fin de la liste sans trouver ce point d’insertion, il s’agit
d’une insertion en fin de liste.

Cette fonction est indépendante du type des objets de I’application, le test étant
reporté dans la fonction enOrdre(). Des exemples d’utilisation sont donnés dans les
applications qui suivent.

// la

fonction comparer

// dépend du type de I"objet inséré dans la liste
void insererEnOrdre (Liste* li, Objet* objet) {
if (listeVide (li) ) { /7 liste vide
insererEnTeteDeListe (li, objet);
//printf (Uinsertion dans liste vide\n");
} else {
Element* ptc = li->premier;
it ( enOrdre (objet, ptc->reference, li->type==1, li->comparer) ) {

}
3
¥

// insertion avant le premier élément
//printf (“insertion en téte de liste non vide\n");
insererEnTeteDeListe (li, objet);
else { // insertion en milieu ou fin de liste
//printf (Uinsertion en milieu ou fin de liste non vide\n");
booleen trouve = faux;
Element* prec = NULL;
while (ptc = NULL && !'trouve) {
prec = ptc;
ptc = ptc->suivant;
ifT (ptc!=NULL) trouve = enOrdre (objet, ptc->reference,
li->type==1, li->comparer);

// insertion en milieu de liste ou fin de liste
insererApres (li, prec, objet);

2.3.8 Le module de gestion de listes

Le module liste (voir Figure 16, page 25) facilite la gestion des listes d’objets. Il se
compose d’un fichier d’en-téte liste.h décrivant I’interface du module et du corps
liste.cpp du module.



© Dunod - La photocopie non autorisée est un délit.

2.3 ¢ Module de gestion des listes 49

2.3.8.a Le fichier d’en-téte des listes simples

Le fichier d’en-téte liste.h contient les définitions des types Objet et Liste, et les
prototypes des fonctions du module de gestion de listes. Il doit étre inclus dans
chaque application traitant des listes. Objet* (équivalent a void*) indique un poin-
teur (sans type) sur un objet dépendant de I’application. L’ utilisateur du module ne
gere que des objets. Il n’a pas connaissance de la facon dont ceux-ci sont mémorisés
dans la liste. I n’utilise pas le type Element, ni les fonctions traitant un Element.
Celles-ci sont locales au module liste et n’apparaissent que dans liste.cpp.
// liste.h

#ifndef LISTE_H
#define LISTE_H

#define faux 0
#define vrai 1
typedef int booleen;

typedef void Objet;

#define NONORDONNE O
#define CROISSANT 1
#define DECROISSANT 2

// un élément de la liste
typedef struct element {

Objet* reference; // référence un objet (de I"application)
struct element* suivant; // élément suivant de la liste
} Element;

// le type Liste
typedef struct {
Element* premier; // premier élément de la liste
Element* dernier; // dernier élément de la liste
Element* courant; // élément en cours de traitement (parcours de liste)

int nbEIt; // nombre d"éléments dans la liste
int type; // O:simple, l:croissant, 2:décroissant
int (*comparer) (Objet*, Objet*);
char* (*toString) (Objet*);
} Liste;
void initListe (Liste* li, int type,

char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*) );

void initListe (Liste* li);

Liste* creerlListe (int type, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*) );

Liste* creerListe (int type);

Liste* creerlListe O:

booleen listeVide (Liste* li);

int nbElement (Liste* li);

void insererEnTeteDelListe (Liste* li, Objet* objet);

void insererEnFinDeListe (Liste* li, Objet* objet);



50

2 o [es listes

2.3.8.b Le module des listes simples

// parcours de liste

void
booleen
Objet*
void
void
Objet*

Objet*
Objet*
booleen
void
void

// LISTE

void

#endif

ouvrirlListe
finListe
objetCourant
listerListe
listerListe
chercherUnObjet

extraireEnTeteDeListe
extraireEnFinDeListe
extraireUnObjet

detruireListe

recopierListe

ORDONNEE
insererEnOrdre

(Liste* li);
(Liste* 1i);
(Liste* 1i);
(Liste* 1i);
(Liste* li, void (*f) (Objet*));
(Liste* li, Objet* objetCherche);

(Liste* li);
(Liste* li);
(Liste* li, Objet* objet);

(Liste* li);
(Liste* 11, Liste* 12);

(Liste* li, Objet* objet);

Remarque : La fonction en parametre roString() doit étre définie si on utilise

la fonction listerListe (Liste*).

De méme, la fonction en parametre comparer() doit étre définie si on utilise
les fonctions chercherUnObjet() ou insererEnOrdre().

Le fichier liste.cpp contient les corps des fonctions dont les prototypes sont donnés

dans liste.h. Le corps de ces fonctions a été vu dans les paragraphes précédents. Le

module se présente donc comme suit :
/* liste.

cpp

Ce module de gestion de listes est trés général
et indépendant des applications. Il gere des listes
simples d"éléments avec téte de liste. */

#include

#include

<stdlib.h>

"liste_h"

puis ensuite, le corps des fonctions définies dans liste.h : initListe(), creerListe(),
listeVide(), ..., detruireListe(), recopierListe(), insererEnOrdre(),

et les fonctions locales au module et déclarées static suivantes. Le corps de ces

fonctions a été vu dans les paragraphes précédents.

// locales au module
static Element* creerElement
static void insererApres

static Objet* extraireApres
static Element* elementCourant (Liste* li);
static booleen enOrdre

O:

(Liste* li, Element* precedent,

Objet* objet);

(Liste* li, Element* precedent);

(Objet* objetl, Objet* objet2,

booleen ordreCroissant,
int (*comparer) (Objet*, Objet*)) ;



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 51

2.4 EXEMPLES D'APPLICATION

2.4.1 Le type Personne

Le type Personne définit une structure (un objet) comportant un nom et un prénom.
Quelques fonctions utilisant cette structure sont définies ci-dessous. Elles permet-
tent de créer et d’initialiser une structure (un objet) de type Personne, d’écrire les
caractéristiques d’une personne et de comparer deux personnes.

Le fichier d’en-téte mdtypes.h contient la déclaration du type Personne :

/* mdtypes.h */

#ifndef MDTYPES_H
#define MDTYPES_H

typedef char chl5 [16];
typedef void Objet;

// une personne
typedef struct {
chl5 nom;
chl5 prenom;
} Personne;

Personne* creerPersonne (char* nom, char* prenom);
Personne* creerPersonne O:

void ecrirePersonne (Objet* objet);

char* toStringPersonne (Objet* objet);

int comparerPersonne (Objet* objetl, Objet* objet2);
#endif

Le fichier des fonctions mdtypes.cpp :

/* mdtypes.cpp différents types */

#include <stdio.h>
#include <string.h> // strcpy, strcmp
#include "mdtypes.h"

// constructeur de Personne
Personne* creerPersonne (char* nom, char* prenom) {
Personne* p = new Personne();
strcpy (p->nom, nom);
strcpy (p->prenom, prenom);
return p;

}

// lecture du nom et prénom

Personne* creerPersonne () {
printf ("Nom de la personne a créer ? ');
chl5 nom; scanf ("%s', nom);
printf ("Prénom de la personne a créer ? ');
chl5 prenom; scanft (“"%s', prenom);
Personne* nouveau = creerPersonne (nom, prenom);
return nouveau;



52 2 o [es listes

// écrire les caractéristiques d"une personne
void ecrirePersonne (Personne* p) {
printf ("%s %s\n", p->nom, p->prenom);

// fournir les caractéristiques d"une personne

char* toStringPersonne (Personne* p) {
char* message = (char*) malloc (30); // test a faire
sprintf (message, "%s %s', p->nom, p->prenom);
return message;

¥

// comparer deux personnes

// fournir <0 si pl < p2; 0 si pl=p2; >0 sinon

int comparerPersonne (Personne* pl, Personne* p2) {
return strcmp (pl->nom, p2->nom);

}

void ecrirePersonne (Objet* objet) {
ecrirePersonne ( (Personne*) objet);

char* toStringPersonne (Objet* objet) {
return toStringPersonne ( (Personne*) objet);
3

int comparerPersonne (Objet* objetl, Objet* objet2) {
return comparerPersonne ( (Personne*)objetl, (Personne*)objet2);
3

2.4.2 Liste de personnes

Il s’agit de gérer une liste de personnes. On suppose qu’il y a de nombreux départs
et arrivées de personnes. L’ information étant volatile, 1’ utilisation d’une liste permet
de résoudre le probleme simplement sans réservation inutile d’espace mémoire.
L’inclusion du fichier d’en-téte liste.h fournit a 1’utilisateur, la déclaration du type
Liste et les prototypes des fonctions. L’inclusion du fichier "mdtypes.h" définit le
type Personne et les fonctions correspondantes.

/* pplistpers.cpp programme principal de liste de personnes
Utilisation du module de gestion de listes;
Application a la gestion d"une liste de personnes */

#include <stdio.h>
#include "liste.h"
#include "mdtypes.h"

typedef Liste ListePersonnes; // un équivalent plus mnémonique

Le menu et le programme principal suivants permettent I’insertion d’une nouvelle
personne en téte ou en fin de liste, I’extraction de la personne en téte ou en fin de
liste ou d’une personne dont on fournit le nom, I’écriture de la liste des personnes, la
recherche d’une personne a partir de son nom et la destruction de la liste. On peut
également initialiser une liste ordonnée a partir d’un fichier dont on fournit le nom ;
I’insertion peut se faire en ordre croissant ou décroissant.

int menu O {
printf ("\n\nGESTION D"UNE LISTE DE PERSONNES\n\n');
printf ("0 - Fin\n");
printf ("1 - Insertion en téte de liste\n");



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 53

printf ("2 - Insertion en fin de liste\n");

printf ('3 - Retrait en téte de liste\n");
printf ("4 - Retrait en fin de liste\n");
printf ("5 - Retrait d"un élément a partir de son nom\n*);

printf ("6 - Parcours de la liste\n");

printf ("7 - Recherche d"un élément a partir de son nom\n');
printf ('8 - Insertion ordonnée a partir d"un fichier\n");
printf ("'9 - Destruction de la liste\n");

printf ("\n");

printf (*Votre choix ? ");
int cod; scanf ("%d', &cod);
printf (''\n");

return cod;

void main ) {
Liste* Ip = creerListe (0, toStringPersonne, comparerPersonne);
booleen fini = faux;
while (Ifini) {

switch (menu(Q) ) {

case O:
fini = vrai;
break;

case 1 : {

Personne* nouveau = creerPersonne();
insererEnTeteDeListe (Ip, nouveau);
} break;

case 2 : {
Personne* nouveau = creerPersonne();
insererEnFinDeListe (Ip, nouveau);
} break;

case 3 : {
Personne* extrait = (Personne*) extraireEnTeteDeListe (lIp);
if (extrait = NULL) {
printf (“Elément %s %s extrait en téte de liste",
extrait->nom, extrait->prenom);
} else {

printf (“"Liste vide");
3
} break;
case 4 : {
Personne* extrait = (Personne*) extraireEnFinDeListe (lIp);
if (extrait !'= NULL) {
printf (“Elément %s %s extrait en fin de liste",
extrait->nom, extrait->prenom);
} else {
printf (“Liste vide™);
3
} break;
case 5 : {

printf ("Nom de la personne a extraire ? ");
ch15 nom; scanf (“"%s', nom);



54

2 o [es listes

Personne* cherche
Personne* pp
booleen extrait
if (extrait) {
printf ("Elément %s %s extrait de la liste", pp->nom, pp->prenom);

creerPersonne (nom, "?');
(Personne*) chercherUnObjet (Ip, cherche);
extraireUnObjet (lIp, pp);

}
} break;
case 6:

listerListe (Ip);
break;

case 7 : {

printf (“"Nom de la personne recherchée ? ");
ch15 nom; scanf ("%s', nom);
Personne* cherche = creerPersonne (nom, *"?');
Personne* pp (Personne*) chercherUnObjet (Ip, cherche);
if (pp '= NULL) {

printf ("%s %s trouvée dans la liste\n'", pp->nom, pp->prenom);
} else {

printf ("%s inconnue dans la liste\n", nom);

}
} break;

case 8:{

printf ("1 - Insertion en ordre croissant\n™);
printf ("2 - Insertion en ordre décroissant\n');
printf (""\nVotre choix ? ");

int cd; scanf (“"%d", &cd);

FILE* fe = fopen (“noms.dat", ''r™);
ifT (fe==NULL) {
printf (“Erreur ouverture de noms.dat\n");
} else {
Ip = creerListe (cd, toStringPersonne, comparerPersonne);
while ( !'feof (fe) ) {
chl5 nom; chl5 prenom;
fscanf (fe, "%15s%15s', nom, prenom);
Personne* nouveau = creerPersonne (nom, prenom);
insererEnOrdre (Ip, nouveau);

3
fclose (fe);
listerListe (Ip);

}
} break;

case 9:

detruireListe (Ip);
break;

} // switch
} /7 while

Exemple d’exécution, le fichier noms.dat contient les informations suivantes :

Albert
Julien
Michele

Duvallon Jacqueline

René



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 55

GESTION D®"UNE LISTE DE PERSONNES

- Recherche d"un élément a partir de son nom
- Insertion ordonnée a partir d"un fichier
- Destruction de la liste

0 - Fin

1 - Insertion en téte de liste

2 - Insertion en fin de liste

3 - Retrait en téte de liste

4 - Retrait en fin de liste

5 - Retrait d"un élément a partir de son nom
6 - Parcours de la liste

7

8

9

Votre choix ? 8

1 - Insertion en ordre croissant
2 - Insertion en ordre décroissant

Votre choix ? 1
Dupond Michele
Dupont Julien

Duroc René

Duval Albert
Duvallon Jacqueline

2.4.3 Les polynomes

Il s’agit de mémoriser des polyndomes d’une variable réelle et de réaliser des opéra-
tions sur ces polyndmes. Le nombre de mondmes est variable, aussi une allocation
dynamique d’espace mémoire s’impose. La gestion en liste facilite 1’ajout ou la
suppression de mondmes pour un polyndéme donné.

coefficient exposant

Figure 25 Le type Monome.

Les polyndmes suivants :
A=3x5+2x3+1
B =6x5-5x4-2x3+ 8 x2
peuvent étre mémorisés comme indiqué sur la Figure 26.



56

2 o [es listes

Figure 26 Mémorisation de polyndmes sous forme de listes.

On crée un module polynome en définissant 1’interface polynome.h du module
(voir Figure 16, page 25). Le type Monome est une structure (un objet) contenant un
coefficient réel et un exposant entier. Le type Polynome correspond au type Liste
puisqu’on utilise une liste ordonnée pour mémoriser le polyndme. Les fonctions du
module polynéme permettent de créer un mondme, d’insérer un monéme dans un
polyndme, de lister un polyndme et de calculer la valeur d’un polyndme pour une
valeur de x donnée.

2.4.3.a Le fichier d’en-téte des polynémes

Le fichier d’en-téte polynome.h décrit I’interface du module des polyndmes.

// polynome.h

#ifndef POLYNOME_H
#define POLYNOME_H

#include "liste.h"”

typedef struct {

double
int
} Monome;

coefficient;
exposant;

typedef Liste Polynome;

Monome*
Monome*
Polynome*
void

void
double
Monome*
booleen
void
#endif

creerMonome (double coefficient, int exposant);
creerMonome O:
creerPolynome O:

insererEnOrdre (Polynome*
listerPolynome (Polynome*
valeurPolynome (Polynome*
chercherUnMonome (Polynome*
extraireMonome (Polynome*
detruirePolynome (Polynome*

po, Monome* nouveau);
po);

po, double x);

po, Monome* nouveau);
po, Monome* cherche);

po);



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 57

2.4.3.b Le module des polynémes

Le fichier polynome.cpp contient le corps des fonctions définies ci-dessus. listerPo-
lynome( ), valeurPolynome() sont des algorithmes de parcours de listes.

/* polynome.cpp
Utilisation du module de gestion des listes */

#include <stdio.h>
#include <stdlib.h> // exit
#include "polynome.h"

// LES MONOMES

Monome* creerMonome (double coefficient, int exposant) {
Monome* nouveau new Monome();
nouveau->coefficient coefficient;
nouveau->exposant exposant;
return nouveau;

}

// créer un mondéme par lecture du coefficient et de I"exposant
Monome* creerMonome () {
double coefficient;
int exposant;
printf (“"Coefficient ? "); scanf ("%If", &coefficient);
printf ("Puissance ? "); scanf ("%d", &exposant);
return creerMonome (coefficient, exposant);

}

// écrire un monbme : +3.00 x**5 par exemple
static void ecrireMonome (Monome* monome) {
printf (" %+.2F x**%d ", monome->coefficient, monome->exposant);

// comparer deux mondmes ml et m2
static int comparerMonome (Monome* ml, Monome* m2) {
iIf (nl->exposant < m2->exposant) {
return -1;
} else if (ml->exposant == m2->exposant) {
return O;

3} else {

return 1;
¥

}

// écrire un objet mondme, pour listerPolynoome()
static void ecrireMonome (Objet* objet) {
ecrireMonome ( (Monome*) objet);

}

static int comparerMonome (Objet* objetl, Objet* objet2) {
return comparerMonome ((Monome*)objetl, (Monome*)objet2);

}

Polynome* creerPolynome () {
return creerListe (DECROISSANT, NULL, comparerMonome);
3

void insererEnOrdre (Polynome* po, Monome* nouveau) {
// sans (Objet*), le compilateur considere un appel récursif
insererEnOrdre (po, (Objet*) nouveau); // du module liste

}



58

2 o [es listes

// puissance niéme d"un nombre réel x (n entier >=0)
// voir en 1.2.5 page 10
static double puissance (double x, int n) {
double resu;
it (n==0) {
resu = 1.0;
} else {
resu = puissance (x, n/2);
if (n%2 == 0) {

resu = resu*resu; // n pair
} else {
resu = resu*resu*x; // n impair

}
3

return resu;
3

// LES POLYNOMES

// lister le polynbéme po

void listerPolynome (Polynome* po) {
listerListe (po, ecrireMonome);

¥

// valeur du polynéme po pour un x donné
double valeurPolynome (Polynome* po, double x) {
Liste* 1i = po;

double resu = 0;
if (listeVide (1i) ) {
printf (“"Polynéme nul\n™); exit (1);
} else {
ouvrirListe (Ii);
while (IfinListe (1i)) {
Monome* ptc = (Monome*) objetCourant (li);

}
}

return resu;
3

resu += ptc->coefficient*puissance(x, ptc->exposant);

Monome* chercherUnMonome (Polynome* po, Monome* nouveau) {

return (Monome*) chercherUnObjet (po, nouveau);

}

booleen extraireMonome (Polynome* po, Monome* objet) {
return extraireUnObjet (po, objet);
3

void detruirePolynome (Polynome* po) {
detruireListe (po);

}

2.4.3.c Le programme principal des polynémes

Le menu et le programme principal suivants permettent de définir un polyndme (une
liste ordonnée), d’y insérer des mondmes en ordre décroissant des exposants, de
lister le polyndme, de calculer la valeur du polynéme pour une valeur donnée, de
supprimer un mondme a partir de son exposant ou de détruire la liste du polyndme.



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’appli

cation

59

/* pppolynome.cpp programme principal des polynbmes

Utilisation du

#include <stdio.h
#include <stdlib.
#include <string.
#include "‘polynom

int menu O {
printf (""\n\nGE
printf ("0 - Fi

printf ("1 - In
printf ("2 - Ec
printf ("
printf (
printf ( - De

printf (""\nVotr
int cod; scanf

printf (''\n");

return cod;

}

void main Q) {
Polynome* po
booleen  fini

while (Ifini) {

switch ( menu

case 1 : {
Monome* nou
insererEnOr
} break;

case 2 : {
listerPolyn
} break;

case 3 : {
printf ("A(

module de gestion des listes */

>
h>
h>
e.h"

STION DE POLYNOMES\n\n');
n\n');

sertion d“un monéme\n™);
riture du polynéme\n');

2

3 - Valeur du polynome pour un x donné\n*);

"4 - Retrait d"un mondbme a partir de son exposant\n"
g

struction de la liste\n");

e choix ? ");
'%d", &cod);

creerPolynome();
faux;

0> {

veau = creerMonome();
dre (po, nouveau);

ome (po);

x) = "); listerPolynome (po);

printf (*"\nValeur de x ? ");

double x; s

printf ("A (%.2F) = %.2A\n", x, valeurPolynome (po, X));

} break;

case 4 : {
printf (“Ex
int exposan
Monome* che
Monome* ptc
booleen ext

canf ("%lf", &x);

posant du mondme a extraire ? ');

t; scanf ("'%d", &exposant);

rche = creerMonome (0, exposant);
chercherUnMonome (po, cherche);
extraireMonome (po, ptc);

rait

if (extrait) {

printf ('

} else {
printf ("

extrait le mondéme%.2F x** %d\n",
ptc->coefficient, ptc->exposant);

pas de mondme ayant cet exposant\n');



60 2 o [es listes

3
} break;

case 5 :
detruirePolynome (po);
break;
} // switch
} /7 while

}

L’encadré suivant est un exemple d’exécution de pppolynome.cpp pour la créa-
tion du polyndme ordonné suivant les puissances décroissantes : A (x) = 3x5 + 2x3 +
1, et pour le calcul de sa valeur pour x=2.

GESTION DE POLYNOMES

- Fin

- Insertion d"un monéme

- Ecriture du polynéme

Valeur du polynéme pour un x donné

- Retrait d"un monb6me a partir de son exposant
- Destruction de la liste

abs~rwNEFEO
|

Votre choix ? 3

A(X) = +3.00 x**5 +2.00 x**3 +1.00 x**0
Valeur de x ? 2
A (2.00) = 113.00

Exercice 7 - Polynomes d’une variable réelle (lecture, addition)

Compléter les fonctions du polynéme du § 2.4.3.A, en créant un nouveau fichier
d’en-téte polynome2.h comme suit :

/* polynome2.h */

#include <stdio.h>
#include "polynome.h"

Polynome* lirePolynome (FILE* fe);
Polynome* addPolynome (Polynome* a, Polynome* b);
Polynome* sousPolynome (Polynome* a, Polynome* b);

Ecrire les fonctions suivantes (fichier polynome2.cpp) :

* Polynome* lirePolynome (FILE* fe) ; qui crée un polyndme en lisant les coeffi-
cients et les exposants du polyndme dans le fichier fe.

* Polynome* addPolynome (Polynome* a, Polynome* b) ; qui fournit le polyndme
résultant de 1’addition des polyndmes a et b.



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 61

* Polynome* sousPolynome (Polynome* a, Polynome* b) ; qui fournit le polyndme
résultant de la soustraction des polyndmes a et b.

Ecrire un programme de test de lirePolynome(), addPolynome() et sousPoly-
nome( ).

2.4.4 Les systemes experts

2.4.4.a Introduction

Les systéemes experts sont des logiciels fournissant dans un domaine particulier les
mémes conclusions qu’un homme expert en ce domaine : fournir un diagnostic
médical a partir d’une liste de symptomes, ou classer des especes animales ou végé-
tales a partir d’observations par exemple.

Un systeme expert doit donc :

e enregistrer les faits initiaux (les symptdmes d’un malade, les observations sur
I’animal en cours d’examen),

e et appliquer des regles générales pour en déduire de nouveaux faits non connus
initialement.

Cet exemple est donné pour illustrer 1’utilisation des listes, et non pour expliquer
les systemes experts en détail. Les régles mentionnées ci-dessous sont données a
titre indicatif, sans prétention quant au domaine de I’expert, mais sur deux exemples
de regles pour montrer I’indépendance du logiciel d’inférence (de déduction) de
regles avec le domaine traité. Ce logiciel de déduction de nouveaux faits est habi-
tuellement appelé moteur d’inférence.

Figure 27 Principe de la mémorisation des faits et des régles dans un systéme expert.
Voir le détail de I'implémentation sur les figures suivantes.

La premicre liste de la Figure 27 contient les faits initiaux 1, 2, 3, 4, 5. La seconde
liste mémorise les regles A, B, C, D. Chaque regle est constituée de son nom, d’une



62 2 o [es listes

liste d’hypotheses (1, 7, 8 pour la regle B) et d’une liste de conclusions (9 pour la
regle B). Il pourrait y avoir plusieurs conclusions. Les faits hypotheses et conclu-
sions sont indiqués par leur numéro. Les deux tableaux ci-dessous permettent de
passer a une application plus concrete et font correspondre un libellé a un numéro.

Le premier tableau fait référence & un systeme expert de diagnostic médical, le
second a une classification d’animaux.

1 a de la fievre 1 allaite ses petits

2 | alenezbouché 2 | adescrocs développés
3 | amal auventre 3 | vit en compagnie de I'hnomme
4 | ades frissons 4 | grimpe aux arbres

5 | alagorge rouge 5 | a des griffes acérées

6 | al'appendicite 6 | est domestiqué

7 | a mal aux oreilles 7 | est couvert de poils

8 | amalalagorge 8 | a quatre pattes

9 | alesoreillons 9 | est un mammifére

10 | aunrhume 10 | est un carnivore

11 | alagrippe 11 | est un chat

La regle B pourrait se formuler comme suit :

B — si
I’animal allaite ses petits
et I”animal est couvert de poils
et I”’animal a quatre pattes
alors
I’animal est un mammifeéere

A partir des faits initiaux 1, 2, 3, 4, 5, et en appliquant les régles, on peut ajouter
pour la regle A dont I’hypothese 3 est donnée comme fait initial, le fait conclusion 6.
La regle B ne s’applique pas, seule I’hypothese 1 est vérifiée. La regle C ne
s’applique pas, seule I’hypothese 5 est vérifiée. La regle D s’applique, car les hypo-
theéses 1 et 2 sont données comme faits initiaux. Le fait 10 est ajouté a la liste de
faits. Il faut refaire un parcours des regles et voir si, suite a I’adjonction de nouveaux
faits, de nouvelles régles ne sont pas vérifiées.

C’est le cas de la regle C qui est vérifiée au deuxieme passage car le fait 10 a été
ajouté par la regle D. Le fait 11 est donc ajouté. Un nouveau parcours des regles
n’entraine aucun ajout. Cette fagon de procéder s’appelle le chainage avant. Si les
regles sont nombreuses, on risque de déduire de nombreux faits nouveaux, difficile-
ment exploitables.

Une autre fagon de procéder consiste a demander si le systtme ne peut pas
démontrer un fait. Sur la Figure 27, peut-on démontrer le fait 11 ? Si le fait 11 n’est
pas donné comme fait initial, il faut trouver une regle qui a 11 pour conclusion, et



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 63

essayer de démontrer ses hypotheses. Pour démontrer 11, il faut démontrer 5 et 10
(regle C). 5 est un fait initial, reste a démontrer 10. Pour démontrer 10 (regle D), il
faut démontrer 1 et 2 qui sont des faits initiaux. Donc 11 est vrai (démontré). Cette
méthode s’appelle le chalnage arriere (voir Figure 28).

Démontrer le fait 11 sur les deux exemples donnés consiste a démontrer que
I’animal est un chat, ou que le patient a la grippe.

’////////,,,, 5

10
\\\\\\\\\\) ,
Figure 28 Chainage arriére dans un systéme expert.

2.4.4.b Listes de faits et liste de regles

Les structures de données de la Figure 27 sont décrites ci-dessous, ainsi que les fonc-
tions de gestion des faits initiaux et des regles. Le module de gestion de liste est utilisé
sans modification pour les listes de faits (faits initiaux, hypotheses, conclusions) et pour
la liste des regles. Le champ marque pour une régle est vrai si la regle s’est déja
exécutée ; il est alors inutile de la tester lors des passages suivants. creerRegle() initia-
lise une regle a I’aide de son nom, la régle n’ayant aucune hypothese ni aucune conclu-
sion. ajouterFait() ajoute un fait a une liste de faits comme par exemple la liste des faits
initiaux, la liste des faits hypotheéses ou la liste des faits conclusions. listerFait() et
listerLesRegles() sont des parcours de listes.

// systexpert.cpp systeme expert
#include <stdio.h>
#include <string.h>

#include "liste.h"

typedef char ch3 [3];
char* message (int n); // fournit le libellé du fait n

typedef Liste ListeFaits;

typedef Liste ListeRegles;

void ajouterFait (ListeFaits* listF, int n);
void listerFaits (ListeFaits* listF);

ListeFaits* creerListeFaits ();



64

2 o [es listes

liste des hypotheses

A_) liste des conclusions

lal [PIT) B [T TT]

Figure 29 Détails de I'implémentation d'une regle

// LES REGLES

typedef struct {
ch3 nom;
booleen marque;
ListeFaits* hypotheses;
ListeFaits* conclusions;
} Regle;

// constructeur d"une regle a partir de son nom;
// les listes hypothéses et conclusions sont vides
Regle* creerRegle (ch3 nom) {

Regle* regle = new Regle();

strcpy (regle->nom, nom);

regle->hypotheses = creerListeFaits();

regle->conclusions = creerListeFaits();

regle->marque = faux;

return regle;

}

// ajouter le fait n aux hypothéses de la regle "regle"

void ajouterHypothese (Regle* regle, int n) {
ajouterFait (regle->hypotheses, n);

¥

// ajouter le fait n aux conclusions de la régle *“regle”
void ajouterConclusion (Regle* regle, int n) {
ajouterFait (regle->conclusions, n);

}

// lister la regle "regle”

void listerUneRegle (Regle* regle) {
printf (""\nRegle : %s\n", regle->nom);
printf (" hypothéses\n");
listerFaits (regle->hypotheses);
printf (" conclusions\n™);
listerFaits (regle->conclusions);



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 65

// lister toutes les regles
void listerLesRegles (ListeRegles* Ir) {
ouvrirListe (Ir);
while (IfinListe(lr) ) {
Regle* ptc = (Regle*) objetCourant (Ir);
listerUneRegle (ptc);

¥
printf ("'\n");
b

I%I
A B s B S e L ]

Figure 30 Détails de I'implémentation d'une liste de faits.

// LES FAITS

typedef struct {
int numero;
} Fait;

// constructeur de Fait
Fait* creerFait (int n) {
Fait* nouveau = new Fait();
nouveau->numero = n;
return nouveau;

}

// LES LISTES DE FAITS

ListeFaits* creerListeFaits() {
return creerListe();

}

// ajouter le fait n a la liste de faits listF

void ajouterFait (ListeFaits* listF, int n) {
Fait* nouveau = creerFait (n);
insererEnFinDeListe (listF, nouveau);

}

// lister les faits de la liste listF
void listerFaits (ListeFaits* listF) {
ouvrirListe (listF);
while (IfinListe(listF) ) {
Fait* ptc = (Fait*) objetCourant (listF);
printf (* %s\n', message (ptc->numero));

Remarque : si on veut mémoriser le numéro de ’entier dans le champ refe-
rence, plutdt que le pointeur vers I’entier (voir Figure 30), il suffit de
remplacer :



66 2 o [es listes

Fait* creerFait (int n) {
return (Fait*) n; // n doit étre considéré comme un pointeur

}

et de remplacer :
ptc->numero par (int)ptc ptc doit étre considéré comme un entier

Exercice 8 - Systemes experts : les algorithmes de déduction

« FEcrire la fonction : booleen existe (ListeFaits* listF, int num) ; qui indique si le fait
num existe dans la liste listF.

« Ecrire la fonction : int appliquer (Regle* regle, ListeFaits* listF) ; qui vérifie si la
regle pointée par regle s’applique, et ajoute les conclusions de cette regle a la liste de
faits listF si les hypotheses de la regle sont vérifiées.

« Ecrire la fonction : void chainageAvant (ListeRegles* listR, ListeFaits* listF) ; qui a
partir de la liste de faits listF et de la liste des regles listR, ajoute a listF les conclu-
sions des regles vérifiées.

« Ecrire la fonction récursive : booleen demontrerFait (ListeRegles* listR, ListeFaits*
listF, int num, int nb) ; qui en utilisant la liste de faits listF et la liste des regles listR,
démontre le fait num ; nb est utilisé pour faire une indentation (au fil des appels
récursifs) comme sur le schéma de la Figure 28.

« Ecrire le programme principal qui crée les structures de données de la Figure 27,
liste les faits et les regles, effectue le chainage avant et le chainage arriere.

2.4.5 Les piles

Une pile est une structure de données telle que :
* I’ajout d’un élément se fait au sommet de la pile,

* la suppression d’un élément se fait également au sommet de la pile.
La structure de données est appelée LIFO : "last in, first out" soit "dernier entré,
premier sorti".

2.4.5.a Allocation dynamique (utilisation de listes)

pomir - ——{ & [ ]

Figure 31 Principe d'une pile gérée a I'aide d'une liste.

A T’aide d’une liste, les opérations sur une pile peuvent étre réalisées comme suit :

initialiserPile initialiser une liste vide
pileVide vrai si la liste est vide
empiler ajouter un élément en téte de la liste

dépiler enlever un élément en téte de la liste



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 67

Le module de gestion de piles peut facilement se réaliser avec le module de
gestion des listes présenté précédemment en utilisant insererEnTeteDelListe() et
extraireEnTeteDeListe(). Un élément de la liste référence un objet spécifique de
I’application. Les déclarations et les opérations sur la pile sont données ci-
dessous.

2.4.5.b Le fichier d’en-téte des piles (utilisation de listes)

pile.h contient la déclaration du type pile et les prototypes des fonctions de gestion
de la pile.

// pile.h pile en allocation dynamique avec des listes

#ifndef PILE_H
#define PILE_H

#include "liste.h"

typedef Liste Pile;

Pile* creerPile O:

booleen pileVide (Pile* p);

void empiler (Pile* p, Objet* objet);
Objet* depiler (Pile* p);

void listerPile (Pile* p, void (*f) (Objet*));
void detruirePile (Pile* p);

#endif

2.4.5.c Le module des piles (utilisation de listes)

pile.cpp contient le corps des fonctions dont le prototype est défini dans pile.h.

/* pile.cpp pile gérée a I aide d"une liste */

#include <stdio.h>
#include <stdlib.h>
#include "pile_h"

// créer et initialiser une pile
Pile* creerPile ) {
return creerListe ();

}

// vrai si la pile est vide, faux sinon
booleen pileVide (Pile* p) {
return listeVide (p);

}

// empiler objet dans la pile p

void empiler (Pile* p, Objet* objet) {
insererEnTeteDeListe (p, objet);

}

// fournir I"adresse de I"objet en sommet de pile,
// ou NULL si la pile est vide
Objet* depiler (Pile* p) {

iT (pilevide (p)) {



68 2 o [es listes

return NULL;
} else {

return extraireEnTeteDeListe (p);

}

// Lister la pile du sommet vers la base
void listerPile (Pile* p, void (*f) (Objet*)) {
listerListe (p, T);

void detruirePile (Pile* p) {
detruireListe (p);
}

2.4.5.d Déclaration des types Entier et Reel pour le test de la pile

Les types Entier et Reel sont utilisés a plusieurs reprises dans la suite de ce livre. Les
déclarations et le corps des fonctions traitant de ces types sont insérés dans les
fichiers mdtypes.h et mdtypes.cpp (voir § 2.4.1, page 51), apres les déclarations du
type Personne.

Dans mdtypes.h :

// **** une structure contenant un entier
typedef struct {
int valeur;

} Entier;

Entier* creerEntier (int valeur);

Entier* entier (int valeur);

void ecrireEntier (Objet* objet);

char* toStringEntier (Objet* objet);

int comparerEntier (Objet* objetl, Objet* objet2);
int comparerEntierCar (Objet* objetl, Objet* objet2);

// **** une structure contenant un réel double
typedef struct {
double valeur;

} Reel;

Reel™ creerReel (double valeur);

void ecrireReel (Objet* objet);

int comparerReel (Objet* objetl, Objet* objet2);
Dans mdtypes.cpp :

// **** une structure contenant un entier

Entier* creerEntier (int valeur) {
Entier* entier = new Entier();
entier->valeur = valeur;
return entier;

3

void ecrireEntier (Objet* objet) {
Entier* entier = (Entier*) objet;
printf ("%d\n", entier->valeur);



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 69

// constructeur de Entier
Entier* entier (int valeur) {

return creerEntier (valeur);
¥

char* toStringEntier (Objet* objet) {
char* nombre = (char*) malloc (50);
sprintf (nombre, "%d", ((Entier*)objet)->valeur);
return nombre;

}

// comparer deux entiers
// fournit <0 si el < e2; 0 si el=e2; >0 sinon
int comparerkEntier (Objet* objetl, Objet* objet2) {
Entier* el = (Entier*) objetl;
Entier* e2 = (Entier*) objet2;
if (el->valeur < e2->valeur) {
return -1;
} else if (el->valeur == e2->valeur) {
return O;
3} else {
return 1;
}
}

// comparer des chaines de caractéres correspondant a des entiers
// 9 < 100 (mais pas en ascii)
int comparerEntierCar (Objet* objetl, Objet* objet2) {
long a = atoi ((char*) objetl);
long b = atoi ((char*) objet2);
if (a==b) {
return O;
} else if (a<b) {
return -1;
} else {
return 1;
3
3

// **** une structure contenant un réel double

Reel* creerReel (double valeur) {
Reel* reel = new Reel();
reel->valeur = valeur;
return reel;

}

void ecrireReel (Objet* objet) {
Reel* reel = (Reel*) objet;
printf ("%.2f\n", reel->valeur);

}

2.4.5.e Utilisation du module de gestion de piles

Le programme suivant définit un menu et un programme principal permettant
d’initialiser une pile, de tester si la pile est vide, d’ajouter ou de retirer des éléments



70 2 o [es listes

en sommet de pile et de lister pour vérification, le contenu de la pile. Le module
pile.h peut étre utilisé pour n’importe quel objet a empiler (entier, réel, personne,
etc.). Pour cet exemple, repris dans I’exercice suivant, la variable de compilation
PILETABLEAU n’est pas définie.

// pppile.cpp programme principal des piles (avec listes ou tableau)

#include <stdio.h>

#ifdef PILETABLEAU

#include "piletableau.h"

#else

#include "pile.h"

#endif

#include "mdtypes.h"

int menu O {
printf ("\n\nGESTION D"UNE PILE D"ENTIERS\n\n"");
printf ("0 - Fin\n");
printf ("1 - Initialisation de la pile\n");
printf ("2 - La pile est-elle vide\n");
printf ("3 - Insertion dans la pile\n");
printf ("4 - Retrait de la pile\n");
printf ( Listage de la pile\n™);

ng _
printf ("'\n");

printf (*'Votre choix ? ™);

int cod; scanf (""%d", &cod); getchar();
printf ("'\n");

return cod;

}

void main () {
#ifdef PILETABLEAU
#define LGMAX 7
Pile* pilel = creerPile(LGMAX);
#else
Pile* pilel = creerPile();
#endi T
booleen fini = faux;

while (1fini) {

switch (menu(Q) ) {

case 1:
detruirePile (pilel);
#ifdef PILETABLEAU
pilel = creerPile(LGMAX);
printf (“pile = un tableau de %d places\n", LGMAX);
#else
pilel = creerPile();
#endif
break;



© Dunod - La photocopie non autorisée est un délit.

2.4  Exemples d’application

71

case 2:
ifT (pilevide (pilel) ) {
printf ("Pile vide\n");
} else {
printf ("Pile non vide\n");

break;

case 3 : {
int valeur;
printf ("Valeur a empiler ? ");
scanf (""%d", &valeur);
empiler (pilel, creerEntier(valeur));
} break;

case 4 : {
Entier* v;
iT ((v = (Entier*) depiler (pilel)) != NULL) {
ecrireEntier (Vv);

3} else {
printf ("Pile vide\n");

}
} break;

case 5:
listerPile (pilel, ecrireEntier);
break;

} // switch

}

detruirePile (pilel);

printf ("\n\nGESTION D"UNE PILE DE PERSONNES\n");
#if PILETABLEAU

printf (“"avec un tableau de %d places\n", LGMAX);
Pile* pile2 = creerPile(LGMAX);

#else

Pile* pile2 = creerPile();

#endif

empiler (pile2, creerPersonne(*'Dupont™, "*Jacques'™));
empiler (pile2, creerPersonne(*'Dufour", "Jacques'));
empiler (pile2, creerPersonne(*'Dupré”, "*Jacques'™));

empiler (pile2, creerPersonne(*Dumoulin®, *"Jacques™));
printf (“"Valeurs dans la pile : du sommet vers la base\n");
listerPile (pile2, ecrirePersonne);

printf (''\nValeur dépilée : ");
Personne* p = (Personne*) depiler (pile2);
if (p!'=NULL) ecrirePersonne (p);

printf ("\n\nGESTION D"UNE PILE DE REELS\n");
#if PILETABLEAU

printf (avec un tableau de %d places\n", LGMAX);
Pile* pile3 = creerPile(7);

#else

Pile* pile3 = creerPile();

#endif

empiler (pile3, creerReel (2.5));

empiler (pile3, creerReel (3.5));



72 2 o [es listes

empiler (pile3, creerReel (5.5));
printf (“"Valeurs dans la pile : du sommet vers la base\n);
listerPile (pile3, ecrireReel);

printf (""\nvaleur dépilée : ");
Reel* r = (Reel*) depiler (pile3);
if (r1=NULL) ecrireReel (r);

3

2.4.5.f Allocation contigué (utilisation d’un tableau)

Les piles peuvent étre également gérées a I’aide d’un tableau alloué sur des cases
contigués et de taille a priori connue et donc limitée (a 7 sur la Figure 32). Les
éléments sont consécutifs en mémoire. Chaque élément du tableau contient un poin-
teur sur un objet de la pile. La pile peut étre une pile d’entiers, de réels, de personnes
comme précédemment.

6

5

4

3 > Sommet de pile (premier libre)
2 d

1 b

0 a

Figure 32 Principe d'une pile gérée a I'aide d'un tableau.

Exercice 9 - Le type pile (allocation contigué)

Reprendre la déclaration de pile.h du § 2.4.5.b, page 67 et le module pile.cpp
correspondant de facon a gérer la pile a I’aide d’un tableau. Tester le programme
utilisateur pppile.cpp utilisé ci-dessus pour I’allocation dynamique en liste qui doit
rester inchangé sauf pour creerPile() qui contient un parametre indiquant la taille de
la pile dans le cas de I’allocation contigug. Le type pile est un TAD (Type Abstrait de
Données) ; son implémentation ne doit pas affecter les programmes utilisateurs.

2.4.6 Les files d'attente (gérée a I'aide d’une liste)

Une file d’attente est une structure de données telle que :
* I’ajout d’un élément se fait en fin de file d’attente,

* la suppression d’un élément se fait en début de file d’attente.

La structure de données est appelée FIFO : « first in, first out » soit « premier
entré, premier sorti ».



© Dunod - La photocopie non autorisée est un délit.

2.4 » Exemples d’application 73

2.4.6.a Allocation dynamique (utilisation de listes)

o | - b |

premier \ dernier

Figure 33 Principe d'une file d’attente gérée a I'aide d’'une liste.

A T’aide d’une liste, les opérations sur une file d’attente peuvent étre réalisées
comme suit :

créerFile créer et initialiser une liste vide
fileVide vrai si la liste est vide

enfiler ajouter un élément en fin de la liste
défiler enlever un élément en téte de la liste

Le module de gestion des files d’attente peut facilement se réaliser avec le module
de gestion des listes en utilisant les fonctions insererEnFinDelListe() et extraireEn-
TeteDelListe().

Exercice 10 - Files d'attente en allocation dynamique

Soit le fichier d’en-téte suivant :

/* file.h file d"attente en allocation dynamique */

#ifndef FILE_H
#define FILE_H

#include "liste.h"

typedef Liste File;

File* creerFile O:

booleen fileVide (File* file);

void enFiler (File* file, Objet* objet);
Objet* deFiler (File* file);

void listerFile (File* file, void (*f) (Objet*));
void detruireFile (File* file);

#endif

En vous inspirant des programmes précédents pour le type pile en allocation
dynamique et du fichier d’en-téte file.h ci-dessus, écrire un module de gestion de
files d’attente file.cpp et un programme principal de test ppfile.cpp.

2.4.6.b Allocation contigué d‘une file d‘attente (utilisation d‘un tableau)

Les files peuvent étre également gérées a I’aide d’un tableau de taille a priori
connue, et donc limitée (a 7 sur la Figure 34). Les éléments sont consécutifs en
mémoire. premier repere 1’élément qui précede le premier élément. dernier repere le



74 2 o [es listes

dernier élément. La file est vide si premier est égal a dernier. La file est dite pleine si
dernier précede immédiatement premier. Il reste en fait une place inutilisée.

premier
0 0 0 X
1 <~ premier 1 1 X
2 a 2 e dernier 2 X <~ dernier
3 b 3 3 «~— premier
4 C <~ dernier 4 4 X
5 5 5 X
6 6 6 X

Figure 34 Principe d'une file d’attente gérée a I'aide d'un tableau.

Exercice 11 - Files d'attente en allocation contigué

Ecrire le module filetableau.cpp correspondant 2 la description suivante du fichier
d’en-téte filetableau.h et réalisant la gestion de files d’attente mémorisées sous
forme de tableaux. Le fichier de test ppfile.cpp doit étre le méme que pour 1’exercice
précédent sauf pour creerFile() qui contient un parametre indiquant la taille du
tableau. Le changement de structures de données pour mémoriser les files d’attente
ne doit pas perturber les programmes utilisateurs qui considerent la file comme un
type abstrait de données (TAD).

/* Tiletableau.h */

#ifndef FILE_H
#define FILE_H

typedef int booleen;
#define faux 0
#define vrai 1

typedef void Objet;

typedef struct {

int max; // nombre max d"éléments dans la file
int premier; // élément précédant le premier
int dernier; // dernier occupé
Objet** element; // tableau alloué dynamiquement dans creerFile()
} File;
File* creerFile (int max);
booleen fileVide (File* file);
void enFiler (File* file, Objet* objet);
Objet* deFiler (File* file);
void listerFile (File* file, void (*f) (Objet*));
void detruireFile (File* file);

#endif




© Dunod - La photocopie non autorisée est un délit.

2.5 ¢ Avantages et inconvénients des listes 75

2.5 AVANTAGES ET INCONVENIENTS DES LISTES

Une liste est une structure de données qui permet la résolution, de facon simple et
naturelle en utilisant le module de gestion de listes, de problemes ol I’information
est changeante ou de taille difficilement évaluable. Les données sont dispersées en
mémoire et reliées seulement par des pointeurs.

La structure de liste présente les avantages suivants :

e I’ajout ou le retrait d’'un élément de la liste est facile (simple modification de
pointeurs),

* les éléments n’ont pas besoin d’étre sur des cases contigués (que ce soit en mémoire
centrale ou sur disque),

* en cas d’allocation dynamique, on n’a pas besoin d’indiquer a priori, le nombre
maximum d’éléments (pour la réservation de place). On demande de I’espace au fur
et a mesure des besoins.

Cette structure a également quelques inconvénients :

e il y a perte de place pour ranger les pointeurs qui s’ajoutent aux informations
caractéristiques de 1’application. Avec I’augmentation sur ordinateur des tailles des
mémoires centrales ou secondaires, cet inconvénient devient mineur.

* J’acces a un élément ne peut se faire qu’en examinant séquentiellement ceux qui
précedent. Ceci est beaucoup plus génant. Si la liste est longue et souvent consultée,
cette structure devient inefficace, et il faut prévoir d’autres structures privilégiant
I’acces rapide a I’information.

2.6 LE TYPE ABSTRAIT DE DONNEES (TAD) LISTE

L utilisateur du module de gestion de listes doit utiliser uniquement les fonctions de
I’interface du module. Il doit faire abstraction des structures gérées par le module de
gestion de listes qui devient un type abstrait de données (TAD). L’utilisateur ne doit
jamais accéder directement aux éléments de la téte de liste (premier, dernier,
courant), ni au champ suivant d’un élément de liste. Ainsi, pour le type pile ou le
type file des exemples précédents, ce concept de type abstrait de données fait que le
programme de test est inchangé (sauf pour la fonction d’initialisation) quand on
passe d’une allocation dynamique sous forme de listes a une allocation contigué
sous forme de tableaux. Les programmes utilisateurs ne sont pas de cette facon
affectés par un changement des structures de données du module. Cette notion est
reprise de maniere plus systématique en programmation (orientée) objet par encap-
sulation des données (voir § 1.4.1 page 24).

2.7 LES LISTES CIRCULAIRES

Une liste circulaire est une liste telle que le dernier élément de la liste contient un
pointeur sur le premier (et non une marque de fin comme pour une liste simple). On



76 2 o [es listes

peut ainsi parcourir toute la liste a partir de n’importe quel élément. Il faut pouvoir
identifier la té€te de liste (soit par un pointeur, soit par une marque spéciale dans
I’élément de téte).

—>| Dupont | —|—>| Martin | —|—>| Durand | —|—>

Figure 35 Une liste circulaire de personnes.

2.7.1 Le fichier d'en-téte des listes circulaires

Il est avantageux de remplacer le pointeur de téte par un pointeur sur le dernier
élément, ce qui donne facilement acces au dernier, et au premier élément qui est le
suivant du dernier. Un élément de liste est défini comme pour les listes simples par
un pointeur sur 1’objet de I’application et un pointeur sur le suivant. initListeC()
initialise une liste circulaire. insererEnTeteDeListeC() et insererEnFinDeListeC()
réalisent respectivement 1’insertion en téte et en fin de liste circulaire. La fonction
suivant() fournit un pointeur sur 1’élément suivant celui en parametre. Pour le
parcours, il n’y a plus de fin de liste puisque la liste est circulaire.

/* listec.h
La liste circulaire est repérée par un pointeur
sur le dernier élément

*/

#ifndef LISTEC_H

#define LISTEC_H

typedef void Objet;

typedef struct element {

Objet* reference;
struct element* suivant;
} Element;

typedef struct {
Element* dernier;

} ListeC;

void initListeC (ListeC* 1c);

ListeC* creerListeC O:

void insererEnTeteDeListeC (ListeC* Ic, Objet* objet);
void insererEnFinDeListeC (ListeC* Ic, Objet* objet);

// parcours

Element* premier (ListeC* Ic);

Element* dernier (ListeC* 1c);

Element* suivant (Element* elt);

void parcoursListeC (Element* depart, void (*f) (Objet*));

#endif



© Dunod - La photocopie non autorisée est un délit.

2.7 * les listes circulaires 77

2.7.2 Insertion en téte de liste circulaire

La fonction insererEnTeteDeListeC (ListeC* Ic, Objet™ objet) ; insere I’objet objet en
téte de la liste circulaire pointée par Ic. L’ objet a été alloué avant cet appel et contient
les informations spécifiques de I’application. Si la liste est vide, I’élément nouveau
pointe sur lui-méme, d’ou I’instruction nouveau->suivant = nouveau. Le pointeur lc-
>dernier->suivant repere le premier élément de la liste : c’est le suivant du dernier.

objet
) ~_

nouveau

Ic dernier \\\\

] 2 11| | —— -

[ ]

Figure 36 Insertion en téte de liste circulaire.

/* listec.cpp
La liste circulaire est repérée par un pointeur
sur le dernier élément */

#include <stdio.h> // NULL
#include "listec.h"

// initialiser une liste circulaire
void initListeC (ListeC* Ic) {
Ic->dernier = NULL;

}

ListeC* creerListeC () {
ListeC* Ic = new ListeC();
initListeC (lc);
return lIc;

}

// créer un élément de liste
static Element* creerElement () {
return new Element();

}

// ajouter "objet" en début de la liste circulaire Ic
void insererEnTeteDeListeC (ListeC* Ic, Objet* objet) {

Element* nouveau = creerElement();
nouveau->reference = objet;
if (Ic->dernier == NULL) { // lc est vide
nouveau->suivant = nouveau;
Ic->dernier = nouveau;
} else {
nouveau->suivant = lc->dernier->suivant;

Ic->dernier->suivant = nouveau;



78 2 o [es listes

2.7.3 Insertion en fin de liste circulaire
La fonction : void insererEnFinDelListeC (ListeC* lc, Objet* objet) insere objet en
fin de la liste circulaire pointée par lIc (voir Figure 37).

objet
nouveau

Ic dernier

(

\
=y T [0

Figure 37 Insertion en fin de liste circulaire.

// ajouter "objet™ en fin de la liste circulaire Ic
void insererEnFinDeListeC (ListeC* Ic, Objet* objet) {

Element* nouveau = creerElement();
nouveau->reference = objet;
it (Ilc->dernier == NULL) { // liste vide

nouveau->suivant = nouveau;
Ic->dernier = nouveau;

} else {
nouveau->suivant = lc->dernier->suivant;
Ic->dernier->suivant = nouveau;
Ic->dernier = nouveau;

¥

3

2.7.4 Parcours de listes circulaires

// le premier est le suivant du dernier
Element* premier (ListeC* Ic) {

return lc->dernier->suivant;
3

Element* dernier (ListeC* Ic) {
return lc->dernier;
3

// fournir un pointeur sur le suivant de elt
Element* suivant (Element* elt) {
if (elt == NULL) {
return NULL;
} else {
return elt->suivant;
}

}

// parcours de la liste circulaire en partant de 1"élément depart
void parcoursListeC (Element* depart, void (*f) (Objet*)) {
if (depart == NULL) {
printf (“Liste circulaire vide\n");
} else {
T (depart->reference);
Element* ptc = suivant (depart);



© Dunod - La photocopie non autorisée est un délit.

2.7 * les listes circulaires 79

while (ptc != depart) {
T (ptc->reference);
ptc = suivant (ptc);

¥
printf ("'\n");

b e
¥

2.7.5 Le module des listes circulaires

Le module est donné de maniere succincte de fagon a illustrer les fonctions élémen-
taires sur les listes circulaires. On pourrait y ajouter de nombreuses fonctions.

/* listec.cpp
La liste circulaire est repérée par un pointeur
sur le dernier élément */

#include <stdio.h> // NULL
#include "listec.h"

plus le corps des fonctions définies ci-dessus pour les listes circulaires

2.7.6 Utilisation du module des listes circulaires

On peut parcourir toute la liste a partir de n’importe quel élément. On arréte quand on
retombe sur 1I’élément de départ. La liste traitée est une liste de personnes comme au
§ 2.4.1, page 51. La fonction ajouterPersonne() crée une personne a partir de son nom
et prénom et I’insere en fin de liste circulaire. La fonction parcoursListeC() permet de
lister tous les éléments de la liste en partant de n’importe quel élément.

A > Dupont | Jacques

Figure 38 Liste circulaire de Personne.

/* pplistec.cpp programme principal listec */

#include <stdio.h>
#include "listec.h"
#include "mdtypes.h"

// ajouter une personne en fin de liste circulaire

void ajouterPersonne (ListeC* lIc, char* nom, char* prenom) {
Personne* nouveau = creerPersonne (nom, prenom);
insererEnFinDeListeC (Ic, nouveau);

}

void main () {
ListeC* Ic = creerListeC();

ajouterPersonne (lc, "Dupont™, "Jacques™);
ajouterPersonne (Ic, "Duroc', "Albin");
ajouterPersonne (lc, "Dufour™, "Michele™);



80 2 o [es listes

// parcours a partir du premier de la liste
printf (“En partant du premier\n™);
parcoursListeC (premier (Ic), ecrirePersonne);
printf (“En partant du dernier\n™);
parcoursListeC (dernier (Ic), ecrirePersonne);

2.8 LES LISTES SYMETRIQUES

Une liste symétrique est une liste telle que chaque élément pointe sur 1’élément
suivant et sur I’élément précédent.

L=

premier  dernier

/ suivant
/ precedent

Figure 39 Une liste symétrique.

On peut aussi définir des listes symétriques circulaires. On peut regrouper les
informations sur la liste (premier, dernier) dans une téte de liste de type ListeS.
L’intérét majeur des listes symétriques réside dans le fait qu’il est facile d’extraire
un élément a partir d’un pointeur sur I’élément a extraire. Il n’y a pas besoin de
parcourir la liste pour retrouver le précédent. La liste symétrique peut se trouver en
mémoire centrale ou en mémoire secondaire (fichier en acces direct).

2.8.1 Le fichier d’en-téte des listes symétriques

Chaque élément de la liste contient un pointeur sur I’objet de la liste, un pointeur sur
I’élément suivant comme pour les listes simples, et un pointeur sur 1’élément prece-
dent. Le type ListeS est une téte de liste contenant un pointeur sur le premier et un
pointeur sur le dernier élément de la liste symétrique. Les fonctions de gestion de la
liste permettent de créer et d’initialiser une liste, de savoir si la liste est vide ou pas,
de se positionner sur le premier ou sur le dernier élément, d’insérer ou d’extraire des
éléments, et de parcourir la liste en demandant le suivant d’un élément ou son précé-
dent. On peut parcourir la liste dans les deux sens.

/* listesym.h Gestion des listes symétriques */

#ifndef LISTESYM_H
#define LISTESYM_H

#include <stdio.h> // NULL



© Dunod - La photocopie non autorisée est un délit.

2.8 o Les listes symétriques 81

typedef int booleen;
#define faux O
#define vrai 1
typedef void Objet;

typedef struct element* PElement;
typedef struct element {

Objet* reference;

PElement suivant;

PElement precedent;
} Element;

typedef struct {
Element* premier;
Element* dernier;
char* (*toString) (Objet*);

int (*comparer) (Objet*, Objet*);

} ListeS;

void initListeSym (ListeS* Is, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*));

ListeS* creerListeSym (char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*));

ListeS* creerListeSym O:

booleen listeVide (ListeS* 1Is);

void insererEnFinDeListeSym (ListeS* 1Is, Objet* objet);

Element* premier (ListeS* 1Is);

Element* dernier (ListeS* 1Is);

Element* suivant (Element* elt);

Element* precedent (Element* elt);

void parcoursListeSym (ListeS* Is, void (*f) (Objet*));

void parcoursListeSyml (ListeS* Is, void (*f) (Objet*));

Objet* chercherObjet (ListeS* Is, Objet* objet);

void extraireListeSym (ListeS* Is, Objet* objet);

#endif

2.8.2 Le module des listes symétriques

/* listesym.cpp module des listes symétriques */

#include <stdio.h>
#include <string.h> // strcmp
#include "listesym_h"

// comparer deux chatnes de caracteres

// fournit <0 si chl < ch2; 0 si chl=ch2; >0 sinon

static int comparerCar (Objet* objetl, Objet* objet2) {
return strcmp ((char*)objetl, (char*)objet2);

¥

static char* toChar (Objet* objet) {
return (char*) objet;
b



2 o [es listes

static Element* creerElement () {
return new Element();

}

// initialiser une liste symétrique
void initListeSym (ListeS* Is, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

Is->premier = NULL;
Is->dernier = NULL;
Is->toString = toString;
Is->comparer = comparer;

// créer et initialiser une liste symétrique
ListeS* creerListeSym (char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {
ListeS* Is = new ListeS();
initListeSym (Is, toString, comparer);
return Is;

}

ListeS* creerListeSym() {
return creerListeSym (toChar, comparerCar); // par défaut
}

// la liste est-elle vide ?

booleen [listeVide (ListeS* Is) {
return Is->premier == NULL;

3

// insérer "objet" en fin de la liste symétrique Is
void insererEnFinDeListeSym (ListeS* Is, Objet* objet) {
Element* nouveau = creerElement();
nouveau->reference = objet;
nouveau->suivant = NULL;
it (listeVide(ls)) { // liste symétrique vide
nouveau->precedent NULL ;
Is->premier nouveau;
} else {
nouveau->precedent = Is->dernier;
Is->dernier->suivant = nouveau;

Is->dernier = nouveau;

}

// fournir un pointeur sur le premier élément de la liste
Element* premier (ListeS* Is) {

return Is->premier;
}

// fournir un pointeur sur le dernier élément de la liste
Element* dernier (ListeS* Is) {

return Is->dernier;
}

// fournir un pointeur sur le suivant de "elt"
Element* suivant (Element* elt) {

return elt==NULL ? NULL : elt->suivant;
}

// fournir le précédent de “elt"”
Element* precedent (Element* elt) {
return elt==NULL ? NULL : elt->precedent;



© Dunod - La photocopie non autorisée est un délit.

2.8 o Les listes symétriques 83

Les parcours de listes symétriques :

// parcourir du premier vers le dernier
void parcoursListeSym (ListeS* Is, void (*f) (Objet*)) {
if (listevVide(ls)) {
printf ("Liste symétrique vide\n");
} else {
Element* ptc = premier (Is);
while (ptc != NULL) {
T (ptc->reference);
ptc = suivant (ptc);
3
¥
}

// parcours inverse : du dernier vers le premier
void parcoursListeSyml (ListeS* Is, void (*f) (Objet*)) {
if (listeVide(ls)) {
printf (“'Liste symétrique vide\n");
} else {
Element* ptc = dernier (Is);
while (ptc !'= NULL) {
T (ptc->reference);
ptc = precedent (ptc);
}
}
¥

// chercher un pointeur sur I"élément contenant "objet" de la liste Is
static Element* chercherElement (ListeS* Is, Objet* objet) {
booleen trouve = faux;
Element* ptc = premier (Is);
while ( (ptc !'= NULL) && !trouve ) {
trouve = Is->comparer (objet, ptc->reference) == 0;
if (1trouve) ptc = suivant (ptc);
3

return trouve ? ptc : NULL;

}

// chercher un pointeur sur I"objet "objet"” de la liste Is
Objet* chercherObjet (ListeS* Is, Objet* objet) {

Element* ptc = chercherElement (Is, objet);

return ptc==NULL ? NULL : ptc->reference;

}

La fonction void extraireListeSym (ListeS* s, Element* extrait); extrait
I’élément pointé par extrait de la liste symétrique Is. Dans le cas général ou
I’élément a extraire se trouve entre deux autres éléments (donc pas en début ou fin
de liste), on peut facilement définir un pointeur sur le précédent et un pointeur sur le
suivant comme ’indique la Figure 40, et en conséquence, modifier le pointeur
precedent du suivant et le pointeur suivant du précédent.

// retirer I"élément "extrait” de la liste symétrique Is;
// plus besoin d"avoir un pointeur sur le précédent
static void extraireListeSym (ListeS* Is, Element* extrait) {
if ( (Is->premier==extrait) && (Is->dernier==extrait) ) {
// suppression de I"unique élément de Is
Is->premier = NULL;



84

2 o [es listes

}
}

Is->dernier = NULL;

else if (Is->premier == extrait) {

// suppression du premier de la liste Is
Is->premier->suivant->precedent = NULL;
Is->premier = Is->premier->suivant;

else if (Is->dernier == extrait) {

// suppression du dernier de la liste Is
Is->dernier->precedent->suivant = NULL;
Is->dernier = Is->dernier->precedent;

else {

// suppression de extrait entre 2 éléments non nuls
extrait->suivant->precedent = extrait->precedent;
extrait->precedent->suivant = extrait->suivant;

void extraireListeSym (ListeS* Is, Objet* objet) {
Element* element = chercherElement (Is, objet);
ifT (element != NULL) extraireListeSym (Is, element);

}

extrait — precedent extrait extrait — suivant

Figure 40 Extraction dans une liste symétrique.

2.8.3 Utilisation du module des listes symétriques

suivant

precedent

Le programme principal suivant est un simple programme de test du module des
listes symétriques. La fonction parcoursListeSym() parcourt la liste en énumérant
les éléments du premier vers le dernier ; la fonction parcoursListeSyml() énumere
du dernier vers le premier ; il n’y a pas de tri a faire. La fonction chercherObjet()
fournit un pointeur sur un objet de la liste a partir de son nom. Voir le type Personne,
§2.4.1, page 51.

/* pplistesym.cpp */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "listesym.h"
#include "mdtypes.h™

int menu O {
printf C"\n\nLISTES SYMETRIQUES\n\n");
printf ("0 - Fin\n");



© Dunod - La photocopie non autorisée est un délit.

2.8 o Les listes symétriques 85

printf ("1 - Initialisation\n");

printf ("2 - Insertion en fin de liste\n");
printf ("3 - Parcours de liste\n");

printf ("4 - Parcours inverse de liste\n");
printf ("5 - Suppression d"un élément\n");

printf ('\n");

printf ("'Votre choix ? ");
int cod; scanf ("%d", &cod);
printf ("\n");

return cod;

}

void main ) {
ListeS* Is = creerListeSym(Q);
booleen fini = faux;

while (Ifini) {
switch (menuQ)) {

case 1: // initialisation de Is
initListeSym (Is, toStringPersonne, comparerPersonne);
break;

case 2 : { // insertion d"un élément
Personne* pers = creerPersonne();
insererEnFinDeListeSym (Is, pers);
} break;

case 3: // parcours de liste
parcoursListeSym (Is, ecrirePersonne);
break;

case 4: // parcours du dernier vers le premier
parcoursListeSyml (Is, ecrirePersonne);
break;

case 5 : { // extraction d"un objet a partir de son nom

printf ("Nom a extraire ? ");

ch15 nom; scanf (“"%s', nom);

Personne* cherche = creerPersonne (nom, "?')

Personne* ptc = (Personne*) chercherObjet (Is, cherche);

ifT (ptc == NULL) {
printf ("%s inconnu\n', nom);

} else {
ecrirePersonne (ptc); // toutes les caractéristiques (nom, prénom)
extraireListeSym (Is, ptc);

3
} break;
} // switch
} /7 while
¥

Le programme utilisateur (pplistesym.cpp) n’utilise que les appels de fonctions de
I’interface et n’accede pas directement aux informations de la téte de liste. D’autres
fonctions pourraient étre ajoutées au module sur les listes symétriques de facon a
faciliter le travail de I'utilisateur de ce module.



86 2 o [es listes

2.9 ALLOCATION CONTIGUE

2.9.1 Allocation - désallocation en cas d'allocation contigué

L’allocation dynamique en liste peut €tre simulée par une allocation contigué
(réserver un tableau ou de I’espace secondaire (fichiers sur disque) de taille définie)
et une gestion par le programmeur de I’espace alloué (dans les applications ol
I’information est volatile : nombreux ajouts et retraits).

Allocation : il s’agit d’obtenir un nouvel emplacement pour créer un élément.

Désallocation : il s’agit de libérer un élément, la place mémoire (centrale ou
secondaire) devenant disponible pour une éventuelle réutilisation ultérieure.

Soit la liste : Duroc - Durand - Dufour - Dupond. On examine plusieurs méthodes
pour gérer I’espace alloué a 1’application.

2.9.1.a Allocation séquentielle avec ramasse-miettes

Pour allouer, on choisit le premier libre (repéré par pLibre mémorisé dans 1’entrée O par
exemple). Sur la Figure 41, la premiere entrée libre a allouer est en 5. Apres allocation
de I’entrée 5, le champ occupé de 5 est mis a 1 et le premier libre se trouve alors en 6.
Pour désallouer une entrée, il suffit de mettre a O le champ occupé de I’entrée corres-
pondante.

/

pointeur vers le 1¢ libre : pLibre

0 5 1

1 | Durand — 4 — |1

2 | Dupond [ ™ 1

3 | Duroc — 1 1

4 | Dufour 2 <1

5

6 0 ———+ 1: occupé

0: libre

Figure 41 Gestion d'un espace mémoire (tableau ou fichier).

On ne retasse les €léments (ou on ne regénere le tableau ou le fichier) que s’il y a
saturation de I’espace (appel du ramasse-miettes), les éléments libérés n’étant pas
réutilisés tant qu’il reste de la place en fin de tableau ou de fichier. Les changements
de valeur des suivants en cas de suppression d’un élément et retassement sont peu
efficaces : il faut modifier tous les champs suivant supérieurs a I’entrée libérée. En
cas de suppression d’un élément, on peut aussi recopier le dernier occupé a la place
de I’élément supprimé, modifier en conséquence les listes incluant I’élément
déplacé et détruire le dernier. De cette facon, les éléments restent consécutifs. Le
premier élément peut avoir le numéro O ou 1 ; I’absence de suivant (Nil) peut étre



© Dunod - La photocopie non autorisée est un délit.

2.9 ¢ Allocation contigué 87

notée —1 ou 0. S’il s’agit d’un fichier, les nombreuses modifications d’enregistre-
ments font que la méthode est inappropriée car lente.

2.9.1.b Marqueur par élément (table d’occupation)

Table d'occupation

Durand > 3 — 11
Dupond | - 1
Duroc — 0 1]
Dufour 1 — 1]

o U1 A W N - O

Figure 42 Gestion d'espace secondaire (disque) avec table d'occupation.

Pour un fichier, il est beaucoup plus efficace de réunir les marqueurs d’occupation
dans un fichier a part dit "table d’occupation” qui est chargée en mémoire centrale
avant I'utilisation du fichier. On évite ainsi les nombreux acces disque pour allouer
ou désallouer. Allouer consiste a parcourir la table d’occupation a la recherche d’un
€lément binaire 0 qui est mis a 1. Le rang de I’élément binaire indique le rang de
I’entrée libre a allouer dans le tableau ou le fichier en acces direct. Désallouer
consiste a mettre 1’élément binaire de la table d’occupation a 0 (voir Figure 42).

2.9.1.c Eléments libres en liste (allocation contigué)

On peut aussi faire une liste des éléments libres. Pour trouver une place pour un
nouvel élément, il suffit d’extraire le premier de la liste libre et d’y ranger les infor-
mations caractéristiques de 1’application. Pour détruire un élément devenu inutile, il
suffit de I’insérer en téte de la liste libre (voir Figure 43).

Initialiser consiste a insérer tous les éléments dans la liste libre
Allouer consiste a extraire un élément en téte de la liste libre
Libérer consiste a insérer 1’élément a libérer en téte de la liste libre

Le dernier élément libéré est le premier a étre a nouveau alloué.

2.9.2 Exemple des polynémes en allocation contigué avec liste libre

La gestion de polynomes d’une variable réelle a déja été traitée en utilisant 1’alloca-
tion dynamique (voir § 2.4.3, page 55). La mémorisation peut aussi se faire en utili-
sant l’allocation contigué. Le programmeur doit définir un espace pour la
mémorisation des différents polyndomes et doit le gérer lui-méme, c’est-a-dire
connaitre en permanence ce qui est occupé et ce qui est libre. Il doit pouvoir allouer
une nouvelle entrée du tableau pour y loger un mondme ou désallouer une entrée



88 2 o [es listes

premier occupé de la liste — 5
liste libre (LL) — 1 ==
0 [ Durand —6 —
1 3 o= Allouer : extraire un élément en téte
2 | Dupond I = de la liste libre
3 4 i
1
4 7 ==t Désallouer : insérer un élément en
5 | Duroc o téte de la liste libre
6 | Dufour 2
7 8 -
1
8 / <! IgMax =9

Figure 43 Gestion d'espace mémoire avec une liste libre.

devenue libre suite a la destruction d’un monoéme. La Figure 44 montre la mémori-
sation des polyndmes suivants :

A=3x5+2x3+ 1
B =6x5—-5x4—-2x3+ 8 x2

E Liste libre

0 4
.......... ~-11(8 2 / A

s [ JTimafe [s fho
32 3 8

4 6

5|3 5 3

6 7

7 9

8 (1 0 /

9 11

D105 14 12

11 13

<____::::’_12 -2 3 1

13 14

14 15

15 /

Figure 44 Polynomes : gestion d'espace mémoire en liste libre.



© Dunod - La photocopie non autorisée est un délit.

2.9 * Allocation contigué

89

L’ allocation d’un nouveau mondme consiste a extraire un élément de la liste libre.
Sur le schéma, c’est ’entrée 0 qui sera allouée en cas de nouvelle allocation. La

désallocation d’un mondme consiste a insérer I’entrée en téte de la liste libre.

Déclaration en cas d’allocation sous forme de tableaux :

#define NMAX 16
typedef struct {
double coefficient;

int exposant;

int suivant; // indice du suivant
} Monome;
Monome monome [NMAX]; // 1’espace a gérer

Dans les fonctions de gestion en allocation dynamique de listes p->suivant, par
exemple, s’écrit monome[p].suivant en allocation contigué. Des lors que les infor-
mations sont en mémoire centrale, I’allocation dynamique est plus simple a mettre
en ceuvre, le systeme d’exploitation se chargeant de gérer I’espace alloué.

2.9.3 Exemple de la gestion des commandes en attente

1l s’agit de gérer les commandes en attente d’une société. Les commandes en attente
concernent des clients et des articles. On peut schématiser les entités et les relations

sur un modele conceptuel des données (MCD) comme indiqué sur la Figure 45.

Articles Articles
0,n (1)
\
Attente
Attente
A
0,n (2)
Clients Clients

Figure 45 MCD des commandes d’articles en attente.

(1) un article donné est en attente pour de 0 a n clients
(2) un client donné attend de 0 a n articles



90 2 o [es listes

2.9.3.a Exemples d’opérations envisageables

Initialisation des fichiers : le fichier Attente est géré avec une liste libre (voir
Figure 46) car il est tres volatil. Il y a de nombreux ajouts et retraits. On peut espérer
que les commandes en attente ne resteront pas trop longtemps en attente.

Mise en attente des commandes suivantes (article, date, quantité, client) :

—Téléviseur 03/07/.. 3 Dupond
—Radio 10/08/.. 1 Dupond
—Chaine hi-fi 02/09/.. 5 Dupond
—Téléviseur 12/09/.. 10 Durand
—Chatne hi-fi 13/09/.. 7 Durand

Interrogations possibles :
—liste des articles en attente pour un client
—liste des clients en attente pour un article

—liste des envois a faire suite au réapprovisionnement d’un article (suppression
des commandes en attente satisfaites)

2.9.3.b Description des fichiers

Articles :

¢ nom de I’article

e la quantité en stock (1)

 la premiere commande en attente pour cet article (2)
e la derniere commande en attente pour cet article (3)

Clients :

e nom du client

* la premiere commande en attente pour ce client (1)
¢ la derniere commande en attente pour ce client (2)

Attente :
¢ ]a date de la commande
* la quantité commandée (1)

* le numéro de I’article concerné (2)
» ’entrée suivante pour le méme article (3)
* DI’entrée précédente pour le méme article (4)

* D’entrée suivante pour le méme client (5)
* I’entrée précédente pour le méme client (6)

* le numéro du client concerné, ou si I’entrée est libre, le numéro de la prochaine
entrée libre (7)



© Dunod - La photocopie non autorisée est un délit.

2.9 * Allocation contigué

91

W 0 N o 1 A W N = ©

- =
- O

Articles
Clients
Radio o| 6| s 0
1
Téléviseur o 3]s ; Dupond 3112
4
5 Durand 8 14
6 Dufour
7
Magnétoscope 25 / / 8
nomcCli mn @
Chaine hi-fi 0 12 | 14
nomArt mn @ 3
Attente
0 1
1 2
2 4
3 03/07/.. 3 3 8 -1 6 -1 2
4 5
5 7
6 10/08/.. 1 1 -1 -1 12 3 2
7 9
8 12/09/.. 10 3 -1 3 14 | 1 5
9 10
10 11
1 13
12 02/09/.. 5 10 | 14 | 1 -1 6 2
13 15
14 13/09/.. 7 10 -1 12 -1 8 5
15 16
16 17
17 /
date (1 2 6 @ 5) ) @

Figure 46 Commandes en attente : utilisation de listes symétriques.



92 2 o [es listes

2.9.3.c Explications de I'exemple de la Figure 46

Le fichier Attente est géré a I’aide d’une liste libre ce qui permet la réutilisation des
entrées devenues disponibles suite a un réapprovisionnement par exemple. Sur
I’exemple, la téte de liste est mémorisée dans I’entrée O ; les entrées disponibles en
colonne (7) de Attente sont 1, 2,4, 5,7, 9, etc.

Les éléments sont chainés a I’aide de listes symétriques ce qui facilite I’extraction
d’un élément des listes auxquelles il appartient en ne connaissant que son numéro
d’entrée.

Pour Téléviseur (article 3) par exemple, le premier article en attente est a 1’entrée
3 du fichier Attente, le dernier a I’entrée 8 (champs 2 et 3 de Articles). Les champs
(3) et (4) de Attente contiennent les pointeurs suivant et precedent des commandes
en attente pour un article donné. Le pointeur (7) de Attente indique, si 1’enregistre-
ment est occupé, le numéro du client concerné par cette commande en attente ; on
peut donc retrouver toutes les caractéristiques du client.

De méme, pour Dupond (client 2), la premiere commande en attente est en 3 et la
derniere en 12 (champs 1 et 2 de Clients). Les champs (5) et (6) de Attente contien-
nent les pointeurs suivant et precedent des commandes en attente pour un client
donné. Le pointeur (2) de Attente indique le numéro de I’article concerné par la
commande en attente ; on peut donc retrouver les caractéristiques du produit et en
particulier son nom.

Cette structure est surtout valable si les fichiers sont importants. On peut tres rapi-
dement a partir du numéro du client, retrouver ses commandes en attente avec toutes
leurs caractéristiques sans opérer de sélection ou de tri. Il suffit de suivre les poin-
teurs. La réciproque est aussi vraie : retrouver pour un article les clients en attente.
En cas de réapprovisionnement d’un article, il suffit également de suivre les poin-
teurs pour satisfaire les commandes en souffrance pour cet article et libérer les
entrées de attente devenues libres.

2.9.3.d Le fichier d’en-téte de la gestion en liste libre du fichier Attente

Ce module effectue la gestion de la liste libre du fichier Attente. lireDAtt() et ecrire-
DA1t() permettent un acces direct a un enregistrement du fichier Attente a partir de
son numéro. lireleteListe() et ecrireTeteListe() permettent de lire ou de modifier la
valeur de la téte de la liste libre (mémorisée dans I’enregistrement 0). allouer()
fournit un numéro d’enregistrement libre. liberer() réinsére un enregistrement dans
la liste libre. initAt#() initialise la liste libre du fichier Attente.

/* attente.h
Gestion du fichier Attente utilisant une liste libre */

#ifndef ATTENTE_H
#define ATTENTE_H

#define NBENR 20 // nombre d"enregistrements dans le fichier
#define NILE -1



© Dunod - La photocopie non autorisée est un délit.

2.9 * Allocation contigué

typedef char ch8 [9];
typedef struct {

int occupe; // enregistrement occupé
ch8 date; // date de la commande
int gt; // quantité commandée
int numArt; // numéro de ITarticle
int artSuivant; // article suivant
int artPrecedent; // article précédent
int cliSuivant; // client suivant
int cliPrecedent; // client précédent
int cliOulLL; // numéro de Client ou Liste Libre
} Attente;
void lireDAtt (int n, Attente* enrAtt);
void ecrireDAtt (int n, Attente* enrAtt);
int lireTetelListe O:
void ecrireTeteListe (int listLibre);
int allouer O:
void liberer (int nouveau) ;
void InitAtt (char* nom);
void fermerAtt O:
#endif

2.9.3.e Le module de gestion en liste libre du fichier Attente

Le module correspond aux fonctions définies dans le fichier d’en-téte précédent.

/* attente.cpp Module de Gestion du fichier attente
(utilisation d"une liste libre et de listes symétriques) */

#include <stdio.h>
#include <stdlib.h> // exit
#include "attente.h"

FILE* fr; // fichier relatif Attente

// lire Directement dans le fichier attente l“enregistrement n,
// et le mettre dans la structure pointée par attente
void lireDAtt (int n, Attente* attente) {
fseek (fr, (long) n*sizeof (Attente), 0);
fread (attente, sizeof (Attente), 1, fr);
b

// écrire Directement dans le fichier attente l"enregistrement n,
// a partir de la structure pointée par attente
void ecrireDAtt (int n, Attente* attente) {
fseek (fr, (long) n*sizeof (Attente), 0);
fwrite (attente, sizeof (Attente), 1, fr);
by

// fournir la valeur de la téte de liste
int lireTeteListe () {

Attente attente;

lireDAtt (0, &attente);

return attente.cliOuLL;

}

// écrire la valeur de listLibre dans la téte de liste
void ecrireTeteListe (int listLibre) {
Attente attente;



94 2 o [es listes

attente.cliOuLL = listLibre;
ecrireDAtt (0, &attente);
3

// fournir le premier libre de la liste libre,
// ou NILE si la liste libre est vide
int allouer () {
Attente attente;
int nouveau = lireTeteListe();
ifT (nouveau != NILE) {
lireDAtt (nouveau, &attente);
ecrireTeteListe (attente.cliOulLL);
3
return nouveau;

}

// ajouter nouveau en téte de la liste libre
void liberer (int nouveau) {
Attente attente;
attente.occupe 0;
attente.cliOuLL lireTeteListe();
ecrireDAtt (nouveau, &attente);
ecrireTeteListe (nouveau);

}

// initialiser le fichier relatif, et la liste libre
void initAtt (char* nom) {
Attente attente;

fr = fopen (nom, "wb+'");
if (fr==NULL) { perror ("fichier inconnu : "); exit (1); }

ecrireTeteListe (1);
attente.occupe = O;

for (int i=1; i<NBENR-1; i++) {
attente.cliOuLL = i+1;
ecrireDAtt (i, &attente);

attente.cliOuLL = NILE; // le dernier enregistrement
ecrireDAtt (NBENR, &attente);

// pour avoir le schéma du cours

// soit la liste libre 3, 6, 12, 8, 14, -1
ecrireTeteListe (3);

attente.cliOuLL 6; ecrireDAtt (3, <&attente);
attente.cliOuLL = 12; ecrireDAtt (6, &attente);
attente.cliOuLL 8; ecrireDAtt (12, &attente);
attente.cliOuLL = 14; ecrireDAtt (8, &attente);
attente.cliOuLL -1; ecrireDAtt (14, &attente);

}

void fermerAtt () {
fclose (fr);

2.9.3.f Le programme de gestion des commandes en attente

Des parties du programme principal de la gestion des commandes en attente sont
données pour illustrer I’utilisation d’enregistrements chainés et I’allocation en liste
libre. D’autres parties sont laissées en exercice.



© Dunod - La photocopie non autorisée est un délit.

2.9 ¢ Allocation contigué 95

/* ppattente.cpp
Fichiers des commandes en attente
avec liste libre et listes symétriques */

#include <stdio.h>

#include <string.h> // strcpy
#include <stdlib.h> // exit
#include "attente.h"

typedef int booleen;
#define faux O

#define vrai 1

typedef char chl5 [16];

// les articles
typedef struct {
ch15 nomArt;

int qts; // quantité en stock
int premier; // liste symétrique pour un article
int dernier;

} Article;

// les clients
typedef struct {
ch15 nomCli;

int premier; // liste symétrique pour un client
int dernier;
} Client;

FILE* fa; // fichier des articles
FILE* fc; // fichier des clients

// lire directement l"enregistrement n de fa
void lireDArt (int n, Article* article) {
fseek (fa, (long) n*sizeof (Article), 0);
fread (article, sizeof (Article), 1, fa);
3

// lire directement l"enregistrement n de fc
void lireDCIi (int n, Client* client) {
fseek (fc, (long) n*sizeof (Client), 0);
fread (client, sizeof (Client), 1, fc);
¥

// écrire directement l"enregistrement n de fa
void ecrireDArt (int n, Article* article) {
fseek (fa, (long) n*sizeof (Article), 0);
fwrite (article, sizeof (Article), 1, fa);
¥

// écrire directement l"enregistrement n de fc
void ecrireDCli (int n, Client* client) {
fseek (fc, (long) n*sizeof (Client), 0);
fwrite (client, sizeof (Client), 1, fc);
}

// liste des articles en attente pour le client n
void listerArt (int n) {

Attente attente;

Article article;

Client client;

lireDCli (n, &client);



96

2 o [es listes

printf (""\nListe des articles en attente pour %s\n", client.nomCli);

int ptc = client.premier;

while (ptc != NILE) {
lireDAtt (ptc, &attente);
printf  ("%10s ', attente.date);
lireDArt (attente.numArt, &article);
printf ("%s\n"", article.nomArt);
ptc = attente.cliSuivant;

¥
printf ("'\n");
}

// liste des clients en attente de lITarticle n
void listerCli (int n) {

Attente attente;

Article article;

Client client;

lireDArt (n, &article);

printf (""\nListe des clients en attente de %s\n', article.nomArt);

int ptc = article.premier;

while (ptc !'= NILE) {
lireDAtt (ptc, &attente);
printf (""%10s'", attente.date);
lireDCli (attente.cliOuLL, &client);
printf " %s\n", client.nomCli);
ptc = attente.artSuivant;

3
printf ("'\n");
¥

// initialiser la niéme entrée du fichier article
void initArt (char* nomArt, int n, int qts) {

Article article;

strcpy (article.nomArt, nomArt);

article.qts = qts;

article.premier = NILE;

article.dernier = NILE;

ecrireDArt (n, &article);

//printf (UinitArt %s\n", nomArt);

// initialiser la niéme entrée du fichier client
void initCli (char* nomCli, int n) {

Client client;

strcpy (client.nomCli, nomCli);

client_premier = NILE;

client.dernier = NILE;

ecrireDCli (n, &client);

//printf "initCli %s\n", nomCli);
3

// mise en attente de qt article numArt pour le client numCli

void mettreEnAttente (int qt, int numArt, int numCli, char* date) {

// a faire en exercice

}



© Dunod - La photocopie non autorisée est un délit.

2.9 * Allocation contigué

97

// extraire l"entrée n des listes de Attente

void extraire (int n) {
// a faire en exercice

}

// réapprovisionnement de qtr articles de numéro na

void reappro (int na, int qtr) {

// a faire en exercice

}

void main () {
// a faire en exercice

}

Exemple de résultats a partir de la Figure 46.

Fichier attente

-1 :
-1 :
& =
-1 :
12 :

3 03/07/.. 3, 3 8

6 10/08/.. 1, 1 -1

8 12/09/.. 10, 3 -1
12 02/09/.. 5, 10 14
14 13/709/.. 7, 10 -1
Fichier Article

1 Radio 6 6
3 Téléviseur 3 8
8 Magnétoscope -1 -1
10 Chatne hi-fi 12 14
Fichier client

2 Dupond 3 12
5 Durand 8 14
6 Dufour -1 -1

Liste des articles en attente pour Durand

12709/ .. Téléviseur
13709/ .. Chatne hi-fi

Liste des clients en attente de Téléviseur

03707/ .. Dupond
12/09/ .. Durand

6 -1
12 3
14 -1
-1 6
-1 8

OGNODNDN

Exercice 12 - Commande en attente

« Ecrire la fonction void mettreEnAttente (int qt, int numArt, int numCli, char*®
date) ; qui insere une nouvelle commande en attente pour I’article numArt et le client

numCli a la date date. qt indique la quantité commandée.



98 2 o [es listes

* Ecrire la fonction void extraire (int n); qui extrait ’enregistrement n des
deux listes symétriques auxquelles il appartient, et libére (désalloue) cet enregis-
trement.

« Ecrire la fonction void reappro (int na, int gtr) ; qui lance les commandes en
attente suite a un réapprovisionnement de qtr articles de numéro na. Les commandes
sont satisfaites dans I’ordre chronologique. La derniere commande peut n’étre satis-
faite qu’en partie.

Exercice 13 - Les cartes a jouer

On dispose du module de gestion des listes simples décrit dans le fichier d’en-téte
liste.h et définissant les diverses fonctions opérant sur les listes. On veut simuler par
programme la distribution de cartes a jouer pour un jeu de 52 cartes. Il y a 4 couleurs
de cartes (numérotées de 1 a 4), et 13 valeurs de cartes par couleur (numérotées de 1
a 13). On définit le fichier d’en-téte cartes.h suivant.

/* cartes.h */

#ifndef CARTE_H
#define CARTE_H

#include "liste.h"
typedef struct {

int couleur;
int valeur;

} Carte;

typedef Liste PaquetCarte;

typedef PaquetCarte tabJoueur [4];

void insererEnFinDePaquet (PaquetCarte* p, int couleur, int valeur);
void listerCartes (PaguetCarte* p);

void creerTas (PaquetCarte* p);

Carte* extraireNieme (PaquetCarte* p, int n);

void battrelLesCartes (PaguetCarte* p, PaquetCarte* paquetBattu);
void distribuerLesCartes (PaguetCarte* p, tabJoueur jJoueur);
#endif

Ecrire les fonctions suivantes du module cartes.cpp :

* void insererEnFinDePaquet (PaquetCarte* p, int couleur, int valeur); qui
insere une carte de couleur et de valeur données en fin du paquet p.

* void listerCartes (PaquetCarte™ p) ; qui liste la couleur et la valeur des cartes
du paquet de cartes p.

* void creerlas (PaquetCarte™ p) ; qui crée un paquet de cartes p contenant les
cartes dans I’ordre couleur 1 pour les 13 cartes, puis couleur 2 pour les 13 suivantes,
etc., soit en tout 52 cartes.



© Dunod - La photocopie non autorisée est un délit.

2.9 ¢ Allocation contigué 99

* Carte* extraireNieme (PaquetCarte* p, int n); qui extrait la nieme carte du
paquet p et fournit un pointeur sur la carte extraite.

* void battreLesCartes (PaquetCarte™* p, PaquetCarte* paquetBattu) ; qui crée a
partir du PaquetCarte p contenant 52 cartes, un nouveau PaquetCarte paquetBattu
résultat. On extrait aléatoirement une carte du paquet p pour I’insérer en fin de
paquetBattu jusqu’a ce que p soit vide. Utiliser la fonction rand() de génération de
nombre aléatoire.

* void distribuerLesCartes (PaquetCarte* p, tabJoueur joueur) ; qui distribue
jusqu’a épuisement de p (52 cartes), une carte a chacun des 4 joueurs.

Ecrire le programme principal ppcartes.cpp qui génére un paquet de 52 cartes, les
affiche, les bat, les affiche a nouveau, les distribue aux 4 joueurs, et affiche la
poignée de chaque joueur.

Exercice 14 - Polyn6mes complexes

On veut utiliser des polyndmes d’une variable complexe. Les polyndmes sont
mémorisés dans des listes ordonnées décroissantes suivant I’exposant. Chaque objet
de la liste est composé d’un nombre complexe z et d’un entier puissance (puissance
de z du mondme). On dispose du module sur les complexes défini précédemment
lors de I’exercice 6, page 32 (fichier d’en-téte : complex.h) et du module sur les
listes ordonnées (voir § 2.3.8, page 48 : fichier d’en-téte liste.h).

Soit le fichier d’en-téte polynome.h suivant :

/* polynome.h */

#ifndef POLYNOME_H
#define POLYNOME_H

#include "complex.h"
#include "liste_h"

typedef struct {
Complex z;
int puissance;

} Monome;

typedef Liste Polynome;

Polynome* creerPolynome ();

void creerMonome (Polynome* p, Complex z, int puis);
Polynome* lirePolynome O:
void ecrirePolynome (Polynome* p);

Complex valeurPolynome (Polynome* p, Complex z);

#endif

Ecrire les fonctions (fichier polynome.cpp) réalisant les opérations suivantes sur
les polynomes d’une variable complexe :



100 2 o [es listes

e créer un polyndme vide (liste ordonnée),

* créer un mondme et 1’ajouter au polyndme ordonné,

e lire un polyndme complexe sur I’entrée standard (clavier),

e écrire un polyndme complexe,

e calculer la valeur d’un polynéme complexe pour une valeur de z donnée.

Ecrire un programme d’application (fichier pppolynomecomplex.cpp) réalisant :

¢ lalecture de polyndmes complexes,
e D’écriture de polyndmes complexes,

* le calcul de la valeur d’un polyndme complexe pour une valeur complexe z
donnée,

e le calcul de la valeur d’un produit de polyndmes complexes pour un z donné,
¢ le calcul de la valeur d’un quotient de polyndmes complexes pour un z donné.

Exemples de résultats attendus pour les polyndmes en z suivants :

pl = (3+3i) 23 + (2+2i) 22 + (1+i) z
p2 = (1+i) 23 + (3+3i) 22 + (2+2i) z

Liste du polynome pl : (3.00 + 3.00 i) z** 3
+ (2.00 + 2.00 1) z** 2 (1-00 + 1.00 i) z** 1

+

Liste du polynome p2 : (1.00 + 1.00 i) z** 3
+ (3.00 + 3.00 i) z** 2 + (2.00 + 2.00 1) z** 1

z1 = ( 0.50+ 1.00 i)
pl(zl) = (-7.38 + -2.87 i)
p2(zl1) ( -7.38 + 2.13 1 )
pl(z1)*p2(z1) = ( 60.50 + 5.53 i )
pl(z1)/p2(z1) = ( 0.82 + 0.63 1 )

2.10 RESUME

Les listes sont des structures de données permettant de gérer facilement des ensem-
bles de valeurs (ordonnées ou non) de taille a priori inconnue. L’utilisation de listes
d’éléments alloués dynamiquement facilite les insertions et les suppressions
d’éléments lorsque I’information évolue (apparait et disparait). Si on insere les
éléments suivant un critere d’ordre, on peut facilement obtenir une liste triée. Un
tableau au contraire nécessite une borne supérieure indiquant le nombre maximum
d’éléments mémorisables. Les retraits d’éléments d’un tableau et la réutilisation de
I’espace libéré sont par contre plus difficiles a gérer. Cependant, la plupart des traite-
ments sur les listes sont séquentiels, ce qui veut dire que pour accéder a un élément,



2.10 ¢ Résumé 101

il faut consulter les précédents. On ne peut pas se positionner directement sur un
élément. Si la liste contient de nombreux éléments, les traitements risquent de
s’allonger.

Le module de traitement des listes présenté dans ce chapitre est tres général et
peut étre facilement réutilisé dans de nombreuses applications comme I’indiquent
les divers exemples traités. La liste est un type abstrait de données que 1’on met en
ceuvre en respectant les prototypes de l'interface du module liste.h. Il existe
plusieurs variantes des listes (circulaires, symétriques) facilitant un des aspects du
traitement des listes (I’extraction par exemple pour les listes symétriques).

Lallocation contigué permet de regrouper les informations de la liste dans un
méme espace contigu en mémoire centrale ou secondaire. Cependant le program-
meur doit gérer lui-méme cet espace et étre en mesure d’allouer une place pour un
élément ou de libérer une place qui pourra étre réutilisée par la suite. Sauf raisons
trés particulieres, il vaut mieux, en mémoire centrale, utiliser I’allocation dynamique
et bénéficier ainsi de la gestion de mémoire faite par le systeme d’exploitation. Sur
mémoire secondaire, I’utilisateur doit gérer son espace comme on l’a vu sur
I’exemple des commandes en attente.



Chapitre 3

Les arbres

3.1 LES ARBRES N-AIRES

3.1.1 Définitions

Arbre : un arbre est une structure de données composée d’un ensemble de noeuds.
Chaque nceud contient I’information spécifique de I’application et des pointeurs vers
d’autres nceuds (d’autres sous-arbres).

étudiant
nom prénom adresse
numéro rue ville département

Figure 47 Un arbre n-aire.

L’arbre de la Figure 47 peut se noter :
(étudiant (nom, prénom, adresse (numéro, rue, ville, département))).

Feuilles : les nceuds ne pointant vers aucun autre nceud sont appelés feuilles (nom,
prénom, numéro, rue, ville, département sont des feuilles).

Racine : il existe un nceud au niveau 1 qui n’est pointé par aucun autre noeud :
c’est la racine de I’arbre (étudiant est la racine de ’arbre).



© Dunod - La photocopie non autorisée est un délit.

3.1 ¢ Les arbres n-aires 103

Niveau : le niveau de la racine est 1. Les autres nceuds ont un niveau qui est
augmenté de un par rapport au nceud dont ils dépendent.

Hauteur (profondeur) d’un arbre : c’est le niveau maximum atteint (par la
branche la plus longue). La hauteur du nceud érudiant est de 3.

Arbre ordonné : si I’ordre des sous-arbres est significatif, on dit que 1’arbre est
ordonné (arbre généalogique par exemple).

Arbre binaire : un arbre binaire est un type d’arbre ordonné tel que chaque nceud
a au plus deux fils et quand il n’y en a qu’un, on précise s’il s’agit du fils droit ou du
fils gauche.

Degré d’un neeud : on appelle degré d’un nceud, le nombre de successeurs de ce
neeud.

Degré d’un arbre : si N est le degré maximum des nceuds de 1’arbre, I’arbre est dit
n-aire. Sur I’exemple, adresse a un degré 4. L’arbre est un arbre 4-aire.

Taille : c’est le nombre total de nceuds de I’arbre. La taille est de 8 sur I’exemple
de la Figure 47.

Arbre binaire complet : ¢’est un arbre binaire de taille 2%-1 (k étant le niveau des
feuilles).

k=3 2°-1 =7 noeuds

Figure 48 Un arbre complet.

Arbre binaire parfaitement équilibré : un arbre binaire est parfaitement équilibré
si pour chaque nceud, les nombres de neeuds des sous-arbres gauche et droit diffe-
rent au plus d’un.

Arbre binaire équilibré : un arbre binaire est équilibré si pour chaque nceud, les
hauteurs des sous-arbres gauche et droit différent au plus d’un.

3.1.2 Exemples d'applications utilisant les arbres

a) Expression arithmétique : arbre binaire ordonné

Une expression arithmétique ayant des opérateurs binaires peut étre schématisée
sous la forme d’un arbre binaire. La Figure 49 représente 1’expression arithmétique :
((a+b) * (c-d) —e).

Larbre est ordonné : permuter 2 sous-arbres change I’expression.



104 3 e Lesarbres

* e
+ —
a b ¢ d
Figure 49 L'arbre d'une expression arithmétique.

b) Représentation de caracteres

Soient a représenter les mots suivants : mais, mars, mer, mon, sa, son, sel. Les
débuts communs peuvent n’étre mémorisés qu’une seule fois sous forme d’un arbre
de caracteres. L’arbre peut aussi se noter sous la forme équivalente suivante : ( m (a
(is, 1s), er, on), s (a, on, el) ). En fait, il faut ajouter un caractere '*' en fin de chaque
mot, pour pouvoir distinguer les mots sous-chaines d’un mot plus long comme par
exemple ma et mars.

/TN I\
RN RN

n n |

q
-

S

Figure 50 Un arbre de mots.
c¢) Structure d’une phrase : arbre n-aire ordonné

arbre ordonné

Phrase
Groupe sujet Groupe verbal Groupe complément
Pronom personnel Pronom personnel Verbe Préposition Article Nom

complément

je le regarde par la fenétre

Figure 51 L'arbre syntaxique d'une phrase francaise.



© Dunod - La photocopie non autorisée est un délit.

3.1 ¢ Les arbres n-aires 105

Dans les traitements informatiques de la langue naturelle, on a souvent besoin de
connaitre la structure d’une phrase pour :

e traduire cette phrase d’une langue dans une autre langue, (exemple : « Mary was
told that John left yesterday » devient « On a dit a Marie que Jean était parti hier »),

e prononcer la phrase sur synthétiseur de parole (une bonne intonation nécessite
une certaine connaissance de la structure de la phrase),

* comprendre le sens de la phrase et agir en fonction de la commande donnée en
langage naturel. Pour la commande d’un robot, on pourrait imaginer I’ordre suivant
en langage naturel : mettre la sphere verte sur le cube rouge.

Dans certaines applications, le langage peut étre contraint, c’est-a-dire limité par
le vocabulaire de I’application et par les constructions syntaxiques acceptées qui
doivent étre conformes a la grammaire de 1’application. Par contre, en synthese de
parole, le synthétiseur doit étre capable de prononcer n’importe quel mot, nom
propre ou abréviation.

d) Arbre généalogique : arbre n-aire

Larbre généalogique suivant est un arbre de descendance. Julie a deux enfants :
Jonatan et Gontran. Jonatan a trois enfants : Pauline, Sonia, Paul. Le degré de I’arbre
est de 3 ; I’arbre est dit 3-aire ou n-aire d’une maniere générale. Le degré de chaque
neceud est variable puisqu’il dépend du nombre d’enfants de ce nceud. Julie est la
racine de I’arbre.

Julie

PN

Jonatan Gontran

e N

Pauline Sonia Paul Antonine

Figure 52 Un arbre généalogique.

e) Tournoi de tennis

Un tournoi se schématise sous la forme d’un arbre, les matchs se déroulant des
feuilles vers la racine. Michel a battu Jérdome ; Gérard a battu Olivier. Les gagnants
ont joué ensemble et ¢’est Michel qui a gagné.

Michel
Michel Gérard
Michel Jéréome Gérard Olivier

Figure 53 L'arbre d'un tournoi de tennis.



106 3 e Llesarbres

f) ou encore

 la structure d’un chapitre de cours est arborescente : le chapitre se découpe en
sections et paragraphes.

* le répertoire des fichiers d’un systéme d’exploitation a une structure arborescente
faite de sous-répertoires et de fichiers.

* D’interface graphique d’un logiciel est constituée de fenétres et sous-fenétres qui
forment un arbre.

* la nomenclature d’un objet est un arbre : 1’arbre des composants d’une voiture
(moteur, carrosserie, sieges, etc.), de la structure de la Terre (continents, pays, etc.),
du corps humain (téte, tronc, membres, etc.).

* la classification des especes animales en vertébrés (poissons, batraciens, reptiles,
oiseaux, mammiferes) et invertébrés (arthropodes (crustacés, myriapodes, arach-
nides, insectes), vers ou mollusques) forme un arbre. De méme pour la classification
des especes végétales en phanérogames (monocotylédones, dicotylédones) ou cryp-
togames (algues, champignons, lichens, mousses, fougeres).

3.1.3 Représentation en mémoire des arbres n-aires

Il s’agit de mémoriser les arbres et leurs relations de dépendance pere fils.

3.1.3.a Mémorisation par listes de fils

0 | Julie K 5 | /|

1 | Jonatan I2| I I3 I I4|/|
2 | Pauline /

3 | Sonia /

4 | Paul /

5 | Gontran ———I 6 | / |

6 | Antonine /

Figure 54 Mémorisation d'un arbre par listes de fils.

L’arbre de la Figure 52 peut se mémoriser comme I’indique la Figure 54. L’alloca-
tion est dans ce cas en partie contigué et en partie dynamique. Avec cette structure de
données, les insertions et les suppressions de nceuds ne sont pas faciles a gérer pour
la partie contigu&. De plus, il est difficile de donner un maximum pour la déclaration
de cette partie si on peut ajouter des éléments. Sur I’exemple, Julie a un successeur
en 1 (soit Jonatan) et un autre en 5 (soit Gontran). Chaque nceud a une liste (vide
pour les feuilles) des successeurs de ce nceud.



© Dunod - La photocopie non autorisée est un délit.

3.1 ¢ Les arbres n-aires 107

3.1.3.b Allocation dynamique

Les éléments sont alloués au cours de la construction de I’arbre et reliés entre eux.
Le nombre de pointeurs présents dans chaque noeud dépend du degré de I’arbre. Si
le degré de chaque noeud est constant, cette mémorisation est parfaite. Sur I’exemple
de I’arbre généalogique (voir Figure 55), le nombre maximum N d’enfants pour une
personne est difficile a définir. De plus, il conduit a une perte importante de place
puisqu’il faut prévoir N pointeurs pour chaque nceud, y compris les feuilles.

| Julie L | |/ |

Jonatan | | | | Gontran | | / | / |

[ Pauline [ /[ /] /][ sonia [/[7/[7/]] Pau [ /] 7]/ [Antonine [ /] /]/]

Figure 55 Allocation dynamique avec 3 descendants maximum.
La déclaration pourrait étre la suivante :

typedef struct noeud* PNoeud;
typedef struct noeud {

char nom [16];

PNoeud p1;

PNoeud p2,

PNoeud p3;
} Noeud;

3.1.3.c Allocation contigué (tableau ou fichier)

Nom p1 p2 p3
0 Julie 1 5 /
1 Jonatan 2 3 4
2 Pauline / / /
3 Sonia / / /
4 Paul / / /
5 Gontran 6 / /
6 Antonine / / /

Figure 56 Allocation contigué avec 3 descendants maximum.



108 3 e Lesarbres

L’arbre peut étre mémorisé dans un espace contigu (voir Figure 56). L’espace
mémoire est réservé avant le début de 1’exécution en précisant un maximum. Cet
espace peut étre réservé en mémoire centrale ou sur mémoire secondaire. Les poin-
teurs sont alors des indices du tableau, ou des numéros d’enregistrements s’il s’agit
d’un fichier. Si I’entrée O est utilisée, on peut choisir —1 pour indiquer I’absence de
successeurs notée / sur le schéma.

D’ou les déclarations :

#define NULLE -1
#define MAXPERS 7

typedef int PNoeud;
typedef struct {
char nom [16];
PNoeud pl1, p2, p3;
} Noeud

Noeud genealogique [MAXPERS]; // pour un tableau

Dans les cas ou il y a des ajouts et des retraits de nceuds, on pourrait envisager une
gestion en liste libre de I’espace non utilisé (voir § 2.9.1.c, page 87). Si un nceud a
10 successeurs, il faut envisager 10 pointeurs pour chaque nceud de 1’arbre, d’ol une
perte de place. Notation : genealogique[1].nom représente Jonatan sur I’exemple.

3.2 LES ARBRES BINAIRES

3.2.1 Définition d'un arbre binaire

Un arbre binaire est un arbre ordonné tel que chaque nceud a au plus deux fils et
quand il n’y en a qu’un, on distingue le fils droit du fils gauche.

3.2.2 Transformation d’un arbre n-aire
en un arbre binaire

Lorsque le nombre de successeurs des nceuds est variable, il est souvent préférable
de convertir I’arbre n-aire en un arbre binaire équivalent. On mémorise alors pour
chaque nceud, un pointeur vers son premier fils et un pointeur vers son fréere immé-
diatement plus jeune. Les liens premier fils et frere immédiatement plus jeune
suffisent pour représenter tout arbre n-aire. Sur la Figure 57, le trait vertical repré-
sente le premier fils ; le trait horizontal représente le frere immédiatement plus
jeune.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 109

Exemple :
Julie
Jonatan Gontran
Pauline Sonia Paul Antonine
Julie
Jonatan Gontran
Pauline ___ Sonia __ Paul Antonine

Figure 57 Transformation d'un arbre n-aire en un arbre binaire.

3.2.3 Meémorisation d'un arbre binaire

3.2.3.a Arbre généalogique

Allocation dynamique : création d’un neeud au fur et a mesure des besoins.
La mémorisation de I’arbre en allocation entierement dynamique est donnée sur le
schéma de la Figure 58. Chaque nceud a au plus deux successeurs.

0 | Julie | | / |

yd

1 Jonatan

2 Pauline | / | | 5 | Gontran | ‘ / |

3 Sonia / 6| Antonine | / | / |

\III

4 | Paul

Figure 58 Arbre binaire avec une représentation a 45° des liens fils et frere.



110 3 e Lesarbres

Les fonctions suivantes permettent de créer de nouveaux nceuds et de construire
I’arbre généalogique de 1’exemple. Comme pour les listes, afin de donner plus de
généralités au module, les informations spécifiques de 1’application sont repérées
par un pointeur nommé reference qui pointe sur 1’objet de 1’application (un entier,
une personne, etc.). Le pointeur est de type indifférencié soit de type void* ou
Objet* avec les notations suivantes.

racine

arbre

objet 3

Figure 59 Dessin d'un arbre composé de nceuds. Chaque nceud référence un objet.

typedef void Objet;

typedef struct noeud {

Objet* reference;

struct noeud* gauche;

struct noeud* droite;

int factEq; // fTacteur d"équilibre : si l"arbre est équilibré
} Noeud;

typedef struct {

Noeud* racine;

char* (*toString) (Objet*);

int (*comparer) (Objet*, Objet*);
} Arbre;

Les fonctions suivantes fournissent ou changent la valeur d’un parametre d’une
structure de type Arbre (accesseurs).

Noeud* getracine (Arbre* arbre);

Objet* getobjet (Noeud* racine);

void setracine (Arbre* arbre, Noeud* racine);

void settoString (Arbre* arbre, char* (*toString) (Objet*));
void setcomparer (Arbre* arbre,

int (*comparer) (Objet*, Objet*));
Ces fonctions créent un nceud ou une feuille (une structure Neeud) :

// création d"un noeud interne contenant objet,
// gauche comme pointeur de SAG, et droite comme pointeur de SAD
Noeud* cNd (Objet* objet, Noeud* gauche, Noeud* droite) {

Noeud* nouveau = new Noeud();



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 111

nouveau->reference = objet;
nouveau->gauche = gauche;
nouveau->droite = droite;

return nouveau;

}

// création d"un noeud feuille contenant objet
Noeud* cNd (Objet* objet) {

return cNd (objet, NULL, NULL);
¥

// création d"une feuille contenant objet
Noeud* cF (Objet* objet) {

return cNd (objet, NULL, NULL);
}

Ces fonctions créent ou initialisent un arbre (une structure Arbre).

void initArbre (Arbre* arbre, Noeud* racine,
char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*)) {
arbre->racine = racine;
arbre->toString toString;
arbre->comparer = comparer;

}

Arbre* creerArbre (Noeud* racine, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {
Arbre* arbre = new Arbre();
initArbre (arbre, racine, toString, comparer);
return arbre;

}

Arbre* creerArbre (Noeud* racine) {
return creerArbre (racine, toChar, comparerCar);
b

Arbre* creerArbre () {
return creerArbre (NULL, toChar, comparerCar); // valeurs par défaut
3

Les fonctions suivantes créent I’arbre généalogique particulier de la Figure 58.

Noeud* cF (char* message) {
return cF ( (Objet*) message);
3

Noeud* cNd (char* message, Noeud* gauche, Noeud* droite) {
return cNd ( (Objet*) message, gauche, droite);
3

// créer un arbre binaire généalogique
Arbre* creerArbreGene () {
Noeud* racine =
cNd ( "Julie™,
cNd ( “Jonatan®,
cNd ( "Pauline",
NULL,
cNd ( "Sonia"™, NULL, cF ("Paul™) )
).



112 3 e Lesarbres

cNd ( "Gontran', cF (“"Antonine'), NULL)
NULL

return creerArbre (racine);

}

Allocation contigué

L’allocation peut aussi se faire dans un tableau en mémoire centrale, ou dans un
fichier en acces direct si le volume des données est important, ou si 1’arbre doit étre
conservé d’une session a I’ autre.

nom gauche droite
0 Julie 1 /
1 Jonatan 2 5
2 Pauline / 3
3 Sonia / 4
4 Paul / /
5 Gontran 6 /
6 Antonine / /

Figure 60 Arbre binaire en allocation contigué (tableau ou fichier).

Le schéma de la Figure 60 peut représenter soit :
e un tableau en mémoire centrale
e un fichier en acces direct en mémoire secondaire (disque).

3.2.3.b Expression arithmétique

*/\

VRN
SN /N
a b ¢ d

Figure 61 Arbre binaire de ((a+b)*(c-d))-e.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 113

Larbre de la Figure 61 peut étre créé comme suit a 1’aide des fonctions cF() et
cNd () vues précédemment.

// créer un arbre binaire (expression arithmétique)
Arbre* creerArbreExp () {
Noeud* racine =

cNd ( =",
cNd ( ",
cNd ("+", cF ("a™), cF ('b™) ),
cNd (-, cF ('c™), cF ('d™) )
),
ckF ('e")

return creerArbre (racine);

}

Mémorisation dynamique puis contigué de I’expression arithmétique

racine

nom gauche droite
0 - 1 8
1 * 2 5
2 + 3 4
3 a / /
4 b / /
5 - 6 7
6 C / /
7 d / /
8 e / /

Figure 62 Mémorisation de I'arbre binaire de ((a+b)*(c-d))-e.



114 3 e Lesarbres

3.2.4 Parcours d'un arbre binaire

Un algorithme de parcours d’arbre est un procédé permettant d’accéder a chaque nceud
de I’arbre. Un certain traitement est effectué¢ pour chaque nceud (test, écriture, comp-
tage, etc.), mais le parcours est indépendant de cette action et commun a des algo-
rithmes qui peuvent effectuer des traitements trés divers comme rechercher les enfants
de Gontran, compter la descendance de Julie, compter le nombre de garcons, ajouter
un fils a Paul, etc. On distingue deux catégories de parcours d’arbres : les parcours en
profondeur et les parcours en largeur. Dans le parcours en profondeur, on explore
branche par branche alors que dans le parcours en largeur on explore niveau par niveau.

3.2.4.a Les différentes méthodes de parcours en profondeur d’un arbre

Iy a 6 types de parcours possibles (P : pére, SAG : sous-arbre gauche, SAD : sous-
arbre droit). Nous ne considérons dans la suite de ce chapitre que les parcours
gauche-droite. Les parcours droite-gauche s’en déduisent facilement par symétrie.

P
SAG SAD

Ces parcours sont appelés parcours en profondeur car on explore une branche de
I’arbre le plus profond possible avant de revenir en arriére pour essayer un autre chemin.

gauche - droite droite - gauche
préfixé P.SAG . SAD P.SAD . SAG
infixé SAG.P.SAD SAD . P.SAG
postfixé SAG.SAD.P SAD .SAG . P

Figure 63 Les 6 types de parcours d'un arbre binaire.

Dans un parcours d’arbre gauche-droite, un nceud est visité trois fois :
* Jors de la premiere rencontre du noeud, avant de parcourir le sous-arbre gauche.
* apres parcours du sous-arbre gauche, avant de parcourir le sous-arbre droit.
* apres examens des sous-arbres gauche et droit.

L’action a effectuer sur le nceud peut se faire lors de la visite (a), (b) ou (c).

7N AN N

Figure 64 Les 3 visites d'un nceud lors d'un parcours d'arbre binaire.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 115

3.2.4.b Parcours sur I'arbre binaire de I'arbre généalogique

Parcours préfixé

Le premier type de parcours est appelé parcours préfixé. 1l faut traiter le nceud lors
de la premiere visite, puis explorer le sous-arbre gauche (en appliquant la méme
méthode) avant d’explorer le sous-arbre droit. Sur la Figure 58, Jonatan est traité
avant son SAG (Pauline Sonia Paul) et avant son SAD (Gontran Antonine). La
procédure se schématise comme suit :

* traitement de la racine
e traitement du sous-arbre gauche

e traitement du sous-arbre droit

Sur I’exemple, cela conduit au parcours de la Figure 65. Pour chaque nceud, on
trouve le nom du nceud concerné, les éléments du SAG, puis les éléments du SAD.

Julie Jonatan Pauline Sonia Paul Gontran Antonine

Figure 65 Parcours préfixé de I'arbre généalogique de la Figure 58.

Parcours infixé

Dans un parcours infixé, le nceud est traité lors de la deuxieme visite, aprés avoir
traité le sous-arbre gauche, mais avant de traiter le sous-arbre droit. La Figure 66
indique I’ordre de traitement des noeuds de 1’arbre généalogique. Un nceud se trouve
entre son SAG et son SAD. Jonatan par exemple se trouve entre son SAG (Pauline
Sonia Paul) et son SAD (Antonine Gontran). La procédure se schématise comme
suit :

* traitement du sous-arbre gauche

* traitement de la racine

¢ traitement du sous-arbre droit

Pauline Sonia Paul Jonatan Antonine Gontran Julie
Ll | | [ | LJ
[ | | J
l | ]

Figure 66 Parcours infixé de I'arbre généalogique de la Figure 58.

Parcours postfixé
En parcours postfixé, le nceud est traité lors de la troisieme visite, apres avoir traité
le SAG et le SAD. La Figure 67 indique par exemple que Jonatan est traité apres son



116 3 e Lesarbres

SAG (Paul Sonia Pauline) et apres son SAD (Antonine Gontran). La procédure a
suivre est donnée ci-dessous :

* traitement du sous-arbre gauche
¢ traitement du sous-arbre droit
e traitement de la racine

Paul Sonia Pauline Antonine Gontran Jonatan Julie
| | | |
[ [ |

Figure 67 Parcours postfixé de I'arbre généalogique de la Figure 58.

Exercice 15 - Parcours d'arbres droite-gauche

Donner sur I’exemple de la Figure 58, les parcours préfixé, infixé, postfixé en
parcours droite-gauche (voir Figure 63).

3.2.4.c Parcours sur I'arbre binaire de I"expression arithmétique

Sur I’arbre binaire de I’expression arithmétique, les parcours correspondent a une
écriture préfixée, infixée ou postfixée de cette expression.

Parcours préfixé
L’ opérateur est traité avant ses opérandes

Figure 68 Parcours préfixé de I'expression arithmétique de la Figure 62.

Parcours infixé
L’ opérateur se trouve entre ses deux opérandes.

Figure 69 Parcours infixé de I'expression arithmétique de la Figure 62.

L’expression infixée est ambigué et peut étre interprétée comme :
a+(b*c)-d-e ou (a+b)*(c-d)-e
Il faut utiliser des parentheses pour lever I’ambiguité. C’est la notation habituelle
d’une expression arithmétique dans les langages de programmation. En I’absence de
parentheses, des priorités entre opérateurs permettent aux compilateurs de choisir
une des interprétations possibles.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 117

Parcours postfixé
L’ opérateur se trouve apres ses opérandes.

Figure 70 Parcours postfixé de I'expression arithmétique de la Figure 62.

3.2.4.d Les algorithmes de parcours d’arbre binaire

Les fonctions de parcours découlent directement des algorithmes vus sur les
exemples précédents. Le simple changement de la place de 1’ordre d’écriture
conduit a un traitement préfixé, infixé ou postfixé. La fonction toString(), passée en
parametre de prefixe() fournit une chaine de caracteres spécifiques de I’objet traité.
Cette chaine est imprimée lors du printf. La fonction toString() est dépendante de
I’application et passée en parametre lors de la création de I’arbre. Par défaut, les
objets référencés dans chaque noeud sont des chaines de caracteres.

Algorithme de parcours préfixé

// toString fournit la chaine de caracteres a écrire pour un objet donné
static void prefixe (Noeud* racine, char* (*toString) (Objet*)) {
if (racine = NULL) {
printf ("%s ", toString (racine->reference));
prefixe (racine->gauche, toString);
prefixe (racine->droite, toString);
}
3

// parcours préfixé de I"arbre
void prefixe (Arbre* arbre) {
prefixe (arbre->racine, arbre->toString);

Le déroulement de 1’algorithme récursif prefixe() sur la Figure 62 ot les pointeurs
ont été remplacés pour I’explication par des adresses de 0 a 8 est schématisé sur la
Figure 71. Les adresses des nceuds en allocation dynamique sont normalement
quelconques et dispersées en mémoire. L’appel prefixe() avec le nceud racine 0
entraine un appel récursif qui consiste a traiter le SAG, d’ou un appel a prefixe()
avec pour nouvelle racine 1 qui a son tour déclenche une cascade d’appels récursifs.
Plus tard, on fera un appel a prefixe() avec un pointeur sur SAD en 8. Le déroule-
ment de I’exécution de I’algorithme est schématisé ligne par ligne, de haut en bas, et
de gauche a droite.



118 3 e Lesarbres
prefixe (0); racine = 0; racine = 1; racine = 2; racine = 3;
printf (-); printf (*); printf (+); printf (a);
prefixe (1); prefixe (2); prefixe (3); prefixe (NULL);
prefixe (NULL);
prefixe (4); racine = 4;
printf (b);
prefixe (NULL);
prefixe (NULL);
prefixe (5); racine = 5; Racine = 6;
printf (-); printf (c);
prefixe (6); prefixe (NULL);
prefixe (NULL);
prefixe (7); racine =7,
printf (d);
prefixe (NULL);
prefixe (NULL);
prefixe (8); racine = 8;
printf (e);
prefixe (NULL);
prefixe (NULL);

Algorithme de parcours infixé
Le nceud racine est traité (écrit) entre les deux appels récursifs.

Figure 71 Parcours préfixé de |'arbre binaire de la Figure 62.

// toString fournit la chaTne de caractéres a écrire pour un objet
static void infixe (Noeud* racine, char* (*toString) (Objet*)) {

if (racine = NULL) {

infixe (racine->gauche, toString);

printf ("%s **

infixe (racine->droite, toString);

}
}

// parcours infixé de l"arbre

, toString (racine->reference));

void infixe (Arbre* arbre) {
infixe (arbre->racine, arbre->toString);

}

Algorithme de parcours postfixé
Le nceud racine est traité apres les deux appels récursifs.

// toString fournit la chaTne de caractéres a écrire pour un objet
static void postfixe (Noeud* racine, char* (*toString) (Objet*)) {
ifT (racine = NULL) {
postfixe (racine->gauche, toString);
postfixe (racine->droite, toString);
printf ("%s ', toString (racine->reference));
3
}

// parcours postfixé de l"arbre
void postfixe (Arbre* arbre) {
postfixe (arbre->racine, arbre->toString);



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 119

Parcours préfixé avec indentation

Les écritures concernant les objets des noeuds visités sont décalées (indentées) pour
mieux mettre en évidence la structure de I’arbre binaire. Le niveau est augmenté de
1 a chaque fois que I’on descend a gauche ou a droite dans 1’arbre binaire.

// toString fournit la chaine de caractéres a écrire pour un objet
// niveau indique I"indentation a faire
static void indentationPrefixee (Noeud* racine,
char* (*toString) (Objet*), int niveau) {
if (racine != NULL) {
printf ('"\n");
for (int i=1; i<niveau; i++) printf ("%5s", " ");
printf ("%s ", toString (racine->reference));
indentationPrefixee (racine->gauche, toString, niveau+l);
indentationPrefixee (racine->droite, toString, niveaut+l);
¥
3

void indentationPrefixee (Arbre* arbre) {
indentationPrefixee (arbre->racine, arbre->toString, 1);
¥

Résultats du parcours préfixé avec indentation :

L’exécution de la fonction indentationPrefixee() sur I’exemple de la Figure 62
conduit aux résultats suivants ou la structure de 1’arbre binaire est mise en évidence.

+
a
b
©
d
©

3.2.4.e Recherche d’un nceud de I’arbre

La fonction frouverNoeud() recherche récursivement le noeud contenant les infor-
mations définies dans objet, dans I’arbre commencant en racine. C’est un parcours
d’arbre interrompu (on s’ arréte quand on a trouvé un pointeur sur 1’objet concerné).
Si I’objet n’est pas dans 1’arbre, la fonction retourne NULL.

Algorithme : la comparaison de deux objets est définie par la fonction comparer()
passée en parametre et spécifique des objets traités dans 1’application. Cette fonction
est définie lors de la création de I’arbre. Par défaut, il s’agit d’un arbre de chaines de
caracteres.

La recherche de objet dans un arbre vide retourne la valeur NULL (pas trouvé). Si
le nceud pointé par racine contient 1’objet que 1’on cherche alors le résultat est le



120 3 e Lesarbres

pointeur racine ; sinon, on cherche objet dans le SAG ; si objet n’est pas dans le
SAG, on le cherche dans le SAD.

static Noeud* trouverNoeud (Noeud* racine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {
Noeud* pNom;
if (racine == NULL) {
pNom = NULL;
} else if (comparer (racine->reference, objet) == 0) {
pNom = racine;
} else {
pNom = trouverNoeud (racine->gauche, objet, comparer);
ifT (pNom == NULL) pNom = trouverNoeud (racine->droite, objet,
comparer);

}

return pNom;

}

// recherche le noeud objet dans l"arbre
Noeud* trouverNoeud (Arbre* arbre, Objet* objet) {
return trouverNoeud (arbre->racine, objet, arbre->comparer);

}

Cette procédure est utile pour retrouver un nceud particulier de 1’arbre et déclencher
un traitement a partir de ce nceud. On peut par exemple appeler trouverNceud() pour
obtenir un pointeur sur le nceud Jonatan de la Figure 58 et effectuer une énumération
indentée a partir de ce noeud en appelant la fonction indentationPrefixee().

3.2.4.f Parcours en largeur dans un arbre

Une autre méthode de parcours des arbres consiste a les visiter étage par étage,
comme si on faisait une coupe par niveau. Ainsi, sur 1’arbre généalogique binaire
de la Figure 58, le parcours en largeur est le suivant: Julie/Jonatan/Pauline-
Gontran/Sonia-Antonine/Paul. Sur I’arbre binaire de I’expression arithmétique de
la Figure 61, le parcours en largeur est: - * e + - a b ¢ d. Ce parcours nécessite
I'utilisation d’une file d’attente contenant initialement la racine. On extrait
I’élément en téte de la file, et on le remplace par ses successeurs a gauche et a
droite jusqu’a ce que la file soit vide. Dans les parcours d’arbres, on effectue
plutdt des parcours en profondeur, bénéficiant ainsi des mécanismes automatiques
de retour en arriere de la récursivité. Le parcours en largeur est effectué lorsque les
résultats I’imposent comme pour le dessin d’un arbre binaire (voir § 3.2.8,
page 127).

La fonction enLargeur() effectue un parcours en largeur des nceuds de 1’arbre.

Exemple de résultats pour I’arbre généalogique :

Parcours en largeur
Julie Jonatan Pauline Gontran Sonia Antonine Paul



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 121

static void enLargeur (Noeud* racine, char* (*toString) (Objet*)) {
Liste* Ii = creerListe();
insererEnFinDeListe (li, racine);

while (MlisteVide (i) ) {
Noeud* extrait = (Noeud*) extraireEnTeteDelListe (li);
printf ("%s ", toString (extrait->reference));
iT (extrait->gauche != NULL) insererEnFinDeListe (li,
extrait->gauche);
if (extrait->droite !'= NULL) insererEnFinDeListe (li,
extrait->droite);

be
b e

// parcours en largeur de 1"arbre
void enLargeur (Arbre* arbre) {
enLargeur (arbre->racine, arbre->toString);

La fonction EnLargeurParEtape() effectue un parcours en largeur des nceuds de
I’arbre en effectuant un traitement en fin de chaque étage (aller a la ligne ici). Il faut
utiliser 2 listes : une liste contenant les pointeurs sur les nceuds de 1’étage courant, et
une autre contenant les successeurs des nceuds courants qui deviendront étage
courant a I’étape suivante.

Exemple de résultats :

Parcours en largeur par étage
Julie

Jonatan

Pauline Gontran

Sonia Antonine

Paul

static void enLargeurParEtage (Noeud* racine, char* (*toString) (Objet*)) {
Liste* Ic = creerListe(); // liste courante
Liste* Is = creerListe(); // liste suivante
insererEnFinDeListe (lc, racine);

while (TlisteVide (lIc)) {
while (MlisteVide (lIc) ) {

Noeud* extrait = (Noeud*) extraireEnTeteDeListe (lIc);

printf ("%s ", toString (extrait->reference));

if (extrait->gauche '= NULL) insererEnFinDeListe (ls,
extrait->gauche);

ifT (extrait->droite !'= NULL) insererEnFinDeListe (ls,
extrait->droite);

}

printf ('"\n"); // fin d"un étage
recopierListe (lc, Is); // 1s vide
3

}

void enLargeurParEtage (Arbre* arbre) {
enLargeurParEtage (arbre->racine, arbre->toString);

}



122 3 e Lesarbres

3.2.5 Propriétés de I'arbre binaire

3.2.5.a Taille d’un arbre binaire

La taille d’un arbre est le nombre de nceuds de cet arbre. La taille a partir du nceud
pointé par racine est de O si I’arbre est NULL, et vaut 1 (le nceud pointé par racine)
plus le nombre de nceuds du sous-arbre gauche et plus le nombre de noeuds du sous-
arbre droit sinon.

int taille (Noeud* racine) {
if (racine == NULL) {
return O;
} else {
return 1 + taille (racine->gauche) + taille (racine->droite);
}
}

// nombre de noeuds de l"arbre
int taille (Arbre* arbre) {

return taille (arbre->racine);
3

Dans le cas ol racine pointe sur une feuille par exemple Paul sur la Figure 58,
taille (racine) 1 + taille (NULL) + taille (NULL)

1+0 +0

1

3.2.5.b Feuilles de I’'arbre binaire

La fonction estFeuille() est une fonction booléenne qui indique si le nceud pointé par
racine est une feuille (n’a pas de successeur).

// Le noeud racine est-il une feuille ?
booleen estFeuille (Noeud* racine) {
return (racine->gauche==NULL) && (racine->droite==NULL);

}

La fonction nbFeuilles() compte le nombre de feuilles de 1’arbre binaire a partir
du nceud racine. Si I’arbre est vide, le nombre de feuilles est O ; sinon si racine
repere une feuille, le nombre de feuilles est de 1, sinon, le nombre de feuilles en
partant du nceud racine est le nombre de feuilles du SAG, plus le nombre de feuilles
du SAD. Sur I’arbre binaire de la Figure 58, le nombre de feuilles de 1’arbre binaire
est de 2 (Paul et Antonine), alors que le nombre de feuilles de I’arbre n-aire est de 4
sur la Figure 57.

static int nbFeuilles (Noeud* racine) {
if (racine == NULL) {
return O;
} else if ( estFeuille (racine) ) {
return 1;
} else {
return nbFeuilles (racine->gauche) + nbFeuilles (racine->droite);
¥
}



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 123

// fournir le nombre de feuilles de I arbre binaire
int nbFeuilles (Arbre* arbre) {
return nbFeuilles (arbre->racine);

}

La fonction listerFeuilles() énumere les feuilles de I’arbre binaire. C’est un
parcours préfixé d’arbre avec écriture lorsque racine pointe sur une feuille. Sur
I’arbre binaire de la Figure 58, la fonction liste les deux feuilles de 1’arbre binaire :
Paul et Antonine.

static void listerFeuilles (Noeud* racine, char* (*toString) (Objet*)) {
if (racine = NULL) {
iT (estFeuille (racine)) {
printf ("%s ", toString (racine->reference));
} else {
listerFeuilles (racine->gauche, toString);
listerFeuilles (racine->droite, toString);
3
¥
¥

// lister les feuilles de I"arbre binaire
void listerFeuilles (Arbre* arbre) {
listerFeuilles (arbre->racine, arbre->toString);

}

3.2.5.c Valeur du plus long identificateur des nceuds de I’arbre

Cette fonction fournit la longueur du plus long des identificateurs de ’arbre. Si
I’arbre est vide, la longueur maximum est O ; sinon le plus long identificateur en
partant du nceud racine est le maximum des 3 valeurs suivantes : le plus long du
sous-arbre gauche (SAG), le plus long du sous-arbre droit (SAD), et la longueur de
I’identificateur de 1’objet du nceud racine. Sur ’arbre binaire de la Figure 58, la
longueur du plus long identificateur est 8 (Antonine).

static int maxldent (Noeud* racine, char* (*toString) (Objet*) ) {

int Ig; // longueur max

if (racine == NULL) {
Ig = 0;

} else {

Ig = max ( maxldent (racine->gauche, toString),
maxldent (racine->droite, toString) );
Ig = max (lg, strlen(toString(racine->reference)));

}

return lg;

}

// longueur du plus long identificateur de I arbre
int maxldent (Arbre* arbre) {
return maxldent (arbre->racine, arbre->toString);

}



124 3 e Lesarbres

3.2.5.d Somme des longueurs des identificateurs des nceuds de I'arbre

11 s’agit de parcourir I’arbre et de faire la somme des longueurs des identificateurs
des objets de I’arbre. Cette fonction est utilisée ultérieurement pour effectuer le
dessin de I’arbre. Si I’arbre est vide, la somme des longueurs est nulle, sinon, pour
I’arbre commencant en racine, la somme des longueurs des identificateurs est la
somme des longueurs du SAG, plus la somme des longueurs du SAD, plus la
longueur de I’objet du nceud racine.

static int somLgldent (Noeud* racine, char* (*toString) (Objet*)) {
int s;
if (racine == NULL) {
s = 03
} else {
s = somLgldent (racine->gauche, toString) +
somLgldent (racine->droite, toString) +
strlen(toString(racine->reference));

}

return s;

}

// somme des longueurs des identificateurs de l"arbre
int somLgldent (Arbre* arbre) {
return somLgldent (arbre->racine, arbre->toString);

}

3.2.5.e Hauteur d’un arbre binaire, arbre binaire dégénéré

La hauteur d’un arbre binaire pointé par racine est le nombre de nceuds entre racine
(compris) et la feuille de la plus longue branche partant de racine. Si I’arbre est vide,
la hauteur est nulle. Sinon la hauteur en partant de racine est le maximum de la
hauteur de SAG et de SAD auquel on ajoute 1 pour le nceud racine. La hauteur d’une
feuille est de 1. Sur I’arbre binaire de la Figure 58, la hauteur du nceud Jonatan est de
4 (longueur de la plus longue branche en partant de Jonatan vers Paul).

static int hauteur (Noeud* racine) {
if (racine == NULL) {
return O;
} else {
return 1 + max (hauteur (racine->gauche),
hauteur (racine->droite) );
3

}

// hauteur de l"arbre
int hauteur (Arbre* arbre) {
return hauteur (arbre->racine);

}

L’arbre binaire est dégénéré si pour chaque nceud interne, il n’y a qu’un succes-
seur, le dernier noeud étant une feuille. La méthode consiste a parcourir I’arbre et a
fournir faux quand on rencontre un nceud ayant deux successeurs. Il y a quatre cas.
Si on atteint la feuille terminale, dégénéré est vrai. Si les deux pointeurs sont diffé-
rents de NULL alors I’arbre n’est pas dégénéré. Si le SAG est vide, le résultat



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 125

dépend de I’examen de SAD ; et si SAD est vide, le résultat dépend de I’examen de
SAG. Sur I’arbre binaire de la Figure 58, le sous-arbre partant du nceud Pauline est
dégénéré.

// racine != NULL

static booleen degenere (Noeud* racine) {
booleen d;
iT (estFeuille(racine)) {

d = vrai;
} else if ( (racine->gauche != NULL) && (racine->droite != NULL) ) {
d = faux;

} else if (racine->gauche==NULL) {
d = degenere (racine->droite);

3} else {

d = degenere (racine->gauche);
}

return d;

}

// 1"arbre est-il dégénéré ?
int degenere (Arbre* arbre) {
return degenere (arbre->racine);

}

3.2.6 Duplication, destruction d’un arbre binaire

La fonction dupliquerArbre() crée une copie de I’arbre passé en parametre et fournit
un pointeur sur la racine du nouvel arbre créé. Si I’arbre a dupliquer est vide, sa copie
est vide (NULL). Sinon, il faut créer un nouveau noeud nouveau qui référence le méme
objet que racine (copie du pointeur de I’objet, pas des zones pointées).

Il faut dupliquer le SAG ce qui fournit un pointeur sur ce nouveau SAG qui est
rangé dans le champ gauche de nouveau, et de méme, il faut dupliquer le SAD et
ranger la racine de ce nouveau SAD dans le champ droit de nouveau. La fonction
retourne un pointeur sur le nceud créé.

// dupliquer I arbre racine,
// sans dupliquer les objets de 1"arbre
static Noeud* dupliquerArbre (Noeud* racine) {
if (racine==NULL) {
return NULL;
} else {
Noeud* nouveau
nouveau->gauche
nouveau->droite
return nouveau;

cNd (racine->reference);
dupliquerArbre (racine->gauche);
dupliquerArbre (racine->droite);

}
}

Arbre* dupliquerArbre (Arbre* arbre) {
Noeud* nrac = dupliquerArbre (arbre->racine);
return creerArbre (nrac, arbre->toString, arbre->comparer);

}



126 3 e Lesarbres

Si on veut dupliquer les objets référencés dans chaque nceud de I’arbre, il faut
passer en parametre de dupliquer une fonction capable d’effectuer une copie de
I’objet. Cette fonction dépend de I’application.

// dupliquer l"arbre racine,
// en dupliquant les objets de I arbre
// la fonction cloner permet de dupliquer 1"objet du noeud
static Noeud* dupliquerArbre (Noeud* racine, Objet* (*cloner) (Objet*)) {
ifT (racine==NULL) {
return NULL;
} else {
Noeud* nouveau
nouveau->gauche
nouveau->droite
return nouveau;

cNd (cloner (racine->reference));
dupliquerArbre (racine->gauche, cloner);
dupliquerArbre (racine->droite, cloner);

}
¥

// cloner un arbre

Arbre* dupliquerArbre (Arbre* arbre, Objet* (*cloner) (Objet*)) {
Noeud* nrac = dupliquerArbre (arbre->racine, cloner);
return creerArbre (nrac, arbre->toString, arbre->comparer);

¥

La fonction detruireArbre() effectue un parcours postfixé de ’arbre et détruit le
nceud pointé par racine lors de la troisieme visite du nceud (voir Figure 64,
page 114) apres destruction du SAG et destruction du SAD. En fin d’exécution,
I’arbre est vide ; sa racine vaut NULL. Pour modifier la racine, il faut passer en para-
metre 1’adresse de la racine. Les objets ne sont pas détruits.

static void detruireArbre (Noeud** pracine) {
Noeud* racine = *pracine;
if (racine = NULL) {
detruireArbre (&racine->gauche);
detruireArbre (&racine->droite);
free (racine);
*pracine = NULL;
3
3

// détruire I"arbre et mettre le pointeur de la racine a NULL
// sans détruire les objets pointés
void detruireArbre (Arbre* arbre) {

detruireArbre (&arbre->racine);

}

Pour détruire les objets, il faudrait passer en parametre de detruireArbre() une
fonction détruisant 1’objet et ses composantes (effectuant le contraire de cloner() vu
ci-dessus).

static void detruireArbre (Noeud** pracine,
void (*detruireObjet) (Objet*)) {
Noeud* racine = *pracine;
if (racine = NULL) {
detruireArbre (&racine->gauche, detruireObjet);
detruireArbre (&racine->droite, detruireObjet);



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 127

detruireObjet (racine->reference);
free (racine);
*pracine = NULL;
3
3

// détruire I arbre et mettre le pointeur de la racine a NULL

// en détruisant les objets pointés

void detruireArbre (Arbre* arbre, void (*detruireObjet) (Objet*)) {
detruireArbre (&arbre->racine, detruireObjet);

}

3.2.7 Egalité de deux arbres

La fonction ci-dessous teste 1’égalité de deux arbres : les deux arbres doivent avoir
la méme structure et les mémes informations.

// égalité de deux arbres
static booleen egaliteArbre (Noeud* racinel, Noeud* racine2,
int (*comparer) (Objet*, Objet*)) {
booleen resu = faux;
if ( (racinel==NULL) && (racine2==NULL) ) {
resu = vrai;
} else if ( (racinel!=NULL) && (racine2!=NULL) ) {
iT (comparer (racinel->reference, racine2->reference) == 0) {
if (egaliteArbre (racinel->gauche, racine2->gauche, comparer) ) {
resu = egaliteArbre (racinel->droite, racine2->droite, comparer);

¥
b
b
return resu;

}

booleen egaliteArbre (Arbre* arbrel, Arbre* arbre2) {
return egaliteArbre (arbrel->racine, arbre2->racine, arbrel->comparer);

}

3.2.8 Dessin d'un arbre binaire

La fonction void dessinerArbre (Noeud* racine, FILE* fs) ; dessine (en mode
caractere) dans le fichier fs, I’arbre binaire pointé par racine. Si fs=stdout, le
dessin se fait a I’écran.

La Figure 72 indique le résultat de 1’exécution du programme de dessin sur
I’arbre binaire de la Figure 58. Chaque identificateur occupe une colonne de la
largeur de son identificateur. Les colonnes de début de chaque identificateur sont
attribuées en faisant un parcours infixé. Pauline, le premier identificateur en
parcours infixé (voir Figure 66), occupe les 7 premieres colonnes de 0 a 6 ; sa posi-
tion est centrée en colonne 3. Sonia, le deuxieme identificateur occupe les 5
colonnes suivantes de 7 a 11 ; la position centrée de Sonia est donc 9. Ainsi Paul
est en 14, Jonatan en 19, Antonine en 27, Gontran en 34 et Julie en 40. Ce calcul
est effectué par la fonction dupArb() qui duplique 1’arbre (voir § 3.2.6) en ajou-
tant la position de chaque identificateur dans chaque objet du nceud. Chaque objet



128 3 e Lesarbres

référencé par un nceud de I’arbre contient le message a écrire et le numéro de
colonne de ce message (type NomPos, nom et position).

Exemple pour I’arbre généalogique

|
|
Jonatan
| |
| |
Pauline ______Gontran
| |
| |
n

ia Antonine

Figure 72 Dessin d'un arbre binaire.

// dessin de I arbre

// message et position d"un noeud de I"arbre
typedef struct {
char* message; // message a afficher pour ce noeud
int position; // position (n° de colonne) du noeud
} NomPos;

int posNdC = 0; // position du noeud courant : variable globale

// dupliquer 1"arbre en remplacant I"objet référencé par un objet NomPos
// contenant la chaTne de caractére a écrire et sa position.
static Noeud* dupArb (Noeud* racine, char* (*toString) (Objet*) ) {
if (racine == NULL) {
return NULL;
} else {
Noeud* nouveau new Noeud();
NomPos* objet new NomPos();
nouveau->reference = objet;
objet->message toString (racine->reference);
nouveau->gauche dupArb (racine->gauche, toString);

int Ig strlen (toString(racine->reference));
objet->position posNdC + 1g/2;
posNdC += 1g;

nouveau->droite duﬁArb (racine->droite, toString);

return nouveau;



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 129

static Arbre* dupArb (Arbre* arbre) {
posNdC = 0; // globale pour dupArb
Noeud* nrac = dupArb (arbre->racine, arbre->toString);
return creerArbre (nrac, arbre->toString, NULL);

}

La fonction dessinerArbre() effectue un parcours en largeur de I’arbre binaire
(voir § 3.2.4.f, page 120), c’est-a-dire qu’elle traite les nceuds de I’arbre binaire
étage par étage : Julie/Jonatan/Pauline, Gontran/Sonia, Antonine/Paul. Pour cela, il
faut utiliser deux listes. Une liste courante /c qui contient les pointeurs vers les
nceuds de I’étage en cours de traitement (initialement un pointeur vers le nceud Julie,
la racine de I’arbre). On parcourt une premiere fois cette liste pour écrire les barres
verticales qui précedent les noms des nceuds. On effectue un second parcours de la
liste courante pour écrire les noms des noeuds, tracer les tirets en fonction de la posi-
tion du SAG et du SAD et insérer dans la seconde liste Is, les noeuds a traiter lors de
la prochaine étape (les SAG et SAD des nceuds de la liste courante). En fin de ce
second parcours, on recopie la liste suivante dans la liste courante et on recommence
le processus jusqu’a ce que la liste courante soit vide. On utilise le module liste.h
pour la gestion des listes.

void dessinerArbre (Arbre* arbre, FILE* fs) {
iT (arbreVide(arbre)) {
printf (“'dessinerArbre Arbre vide\n");
return;

}

// largeur requise pour le dessin

int IgFeuille = somLgldent (arbre);

char* ligne = (char*) malloc (lIgFeuille+l);
ligne [IgFeuille] = 0;

// narbre : nouvel arbre dupliqué
Arbre* narbre= dupArb (arbre);

Liste* Ic = creerListe(); // Liste des noeuds du méme niveau
insererEnFinDeListe (Ic, narbre->racine);
Liste* Is = creerListe(); // Liste des descendants de Ic

while (TlisteVide (lIc)) {
// écrire les barres verticales des noeuds de la liste
for (int i=0; i<IlgFeuille; i++) ligne[i]=" ~;
ouvrirListe (Ic);
while (IfinListe (Ic) ) {
Noeud* ptNd = (Noeud*) objetCourant (lIc);
NomPos* ptc = (NomPos*) ptNd->reference;
ligne [ptc->position] = "|";
}
for (int i=1; i<=2; i++) fprintf (fs, "%s\n", ligne);

// Pour chaque élément de la liste :

//  écrire des tirets de la position du SAG a celle du SAD
// écrire le nom de I"élément a sa position

for (int i=0; i<lgFeuille; i++) ligne[i]=" °;



130 3 e Lesarbres

while (!IisteVide (1)) {
Noeud* pNC = (Noeud*) extraireEnTeteDeListe (Ic);
Noeud* pSAG = pNC->gauche;
Noeud* pSAD = pNC->droite;
char* message ((NomPos*) pNC->reference)->message;

int Ig = strlen (message);
int position = ((NomPos*)pNC->reference)->position;
int posNom = position - 1g/2;

int pOSsSAG pSAG==NULL ? position :

((NomPos*)pSAG->reference)->position;
int POSSAD = pSAD==NULL ? position :
((NomPos*)pSAD->reference)->position;
iT (pSAG != NULL) insererEnFinDeListe (Is, pSAG);
if (pSAD != NULL) insererEnFinDeListe (Is, pSAD);

for (int j=posSAG; j<=posSAD; j++) ligne [j] =
for (int j=0; j<lg; j++) ligne [posNom+j] = message[j]
¥

fprintf (fs, "%s\n", ligne);
recopierListe (lc, Is); // lIs vide
3

// détruire I arbre intermédiaire
detruireArbre (narbre);

}

3.2.9 Arbre binaire et questions de I'arbre n-aire

Dans de nombreuses applications, I’arbre est donné sous sa forme n-aire. C’est le
cas de la nomenclature d’un objet comme par exemple les composantes et sous-
composantes d’un avion, d’une voiture, d’une maison, de la Terre, ou du corps
humain. Le nombre de sous-composantes étant variable (le degré des nceuds est
variable), la mémorisation se fait par conversion de 1’arbre n-aire en un arbre binaire
(voir Figure 57). Il faut alors répondre a des questions de 1’arbre n-aire en utilisant la
mémorisation de I’arbre binaire. Ainsi, pour 1’arbre généalogique de racine Julie, les
feuilles de I’arbre n-aire correspondent aux personnes sans enfant (Pauline, Sonia,
Paul, Antonine) et sont différentes des feuilles de 1’arbre binaire (Paul, Antonine) qui
n’ont pas d’intérét pour I’application. Dans une nomenclature d’objet, les feuilles n-
aires sont les composants (les pieces) de base qu’il faut assembler pour constituer
I’ objet.

Remarque : ayant un pointeur sur un noeud de I’arbre binaire (fourni par
exemple par la fonction trouverNoeud() (voir § 3.2.4.e, page 119), les descen-
dants n-aires de ce nceud se trouvent dans le sous-arbre gauche. L’appel des
diverses fonctions traitant de la descendance n-aire d’un nceud racine se fait
donc en explorant le SAG du nceud de départ.

3.2.9.a Feuilles n-aires

Une feuille n-aire a un sous-arbre gauche vide, le pointeur sur le premier fils est a
NULL. La fonction listerFeuillesNAire() est donc un parcours d’arbre binaire avec
écriture pour les nceuds qui ont un sous-arbre gauche vide.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 131

// lister les feuilles NAire a partir de racine
static void listerFeuillesNAire (Noeud* racine,
char* (*toString) (Objet*)) {
if (racine '= NULL) {
if (racine->gauche == NULL) printf ("%s ",
toString (racine->reference));
listerFeuillesNAire (racine->gauche, toString);
listerFeuillesNAire (racine->droite, toString);
¥
b

Ayant un pointeur sur un nceud racine de 1’arbre binaire, il faut explorer seule-
ment le sous-arbre gauche de ce nceud racine. On crée un nouveau nceud racine
ayant un sous-arbre droit vide.

void listerFeuillesNAire (Arbre* arbre) {
if (arbre->racine != NULL) {
Noeud* nrac = cNd (arbre->racine->reference,
arbre->racine->gauche, NULL);
Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
listerFeuillesNAire (narbre->racine, narbre->toString);
free (nrac);
free (narbre);
¥
3

Pour compter le nombre de feuilles n-aires, le principe est le mé€me. Il faut
compter au lieu d’écrire.

// fournir le nombre de feuilles n-aires a partir de racine
static int nbFeuillesNAire (Noeud* racine) {
int n = 0;
ifT (racine == NULL) {
return O;
} else {
if (racine->gauche == NULL) n = 1;
return n + nbFeuillesNAire (racine->gauche)
+ nbFeuillesNAire (racine->droite);
3
}

int nbFeuillesNAire (Arbre* arbre) {

int n = 0;

if (arbre->racine != NULL) {
Noeud* nrac = cNd (arbre->racine->reference,

arbre->racine->gauche, NULL);

Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
n = nbFeuillesNAire (narbre->racine);
free (nrac);
free (narbre);

}

return n;

}



132 3 e Lesarbres

3.2.9.b Descendants n-aires

Cette fonction énumere tous les descendants n-aires d’un nceud. Si racine repere le
nceud « Jonatan », descendantsNAire (racine, toString) fournit Pauline Sonia Paul
(voir Figure 57). 1l faut faire un parcours préfixé du SAG de Jonatan.

// fournir les descendants n-aires de racine
static void descendantsNAire (Noeud* racine, char* (*toString) (Objet*)) {
if (racine = NULL) {
if (racine->gauche == NULL) {
printf (“'Pas de descendant pour %s\n',
toString (racine->reference));
} else {

prefixe (racine->gauche, toString ); // descendants dans SAG
¥

}
}

void descendantsNAire (Arbre* arbre) {
return descendantsNAire (arbre->racine, arbre->toString);

}

3.2.9.c Parcours indenté n-aire

Le parcours indenté de 1’arbre binaire de la Figure 58 conduit au résultat suivant
(voir fonction indentationPrefixee(),§ 3.2.4.d, page 119) qui peut étre intéressant
pour la mise au point des diverses fonctions basées sur la mémorisation de cet arbre
binaire mais n’a pas de signification particulieére pour I’application.

Parcours préfixé (avec indentation binaire)
Julie
Jonatan
Pauline
Sonia
Paul
Gontran
Antonine

L’indentation n-aire est plus proche de 1’application (voir Figure 57), et affiche les
fils d’un nceud avec le méme décalage comme indiqué ci-dessous. Il faut explorer le
SAG du nceud de départ. C’est un parcours d’arbre avec changement de niveau
quand on descend dans le SAG (vers le premier fils). Le SAD concerne les freres qui
sont au méme niveau.

Indentation n-aire
Julie
Jonatan
Pauline
Sonia
Paul
Gontran
Antonine



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 133

// parcours n-aire indenté
static void indentationNAire (Noeud* racine, char* (*toString) (Objet*),
int niveau) {
if (racine != NULL) {
for (int i=1; i<niveau; i++) printf ("%5s", " ");
printf ("%s\n', toString (racine->reference));
indentationNAire (racine->gauche, toString, niveau+l);
indentationNAire (racine->droite, toString, niveau);
¥
}

void indentationNAire (Arbre* arbre) {
if (arbre->racine != NULL) {
Noeud* nrac = cNd (arbre->racine->reference, arbre->racine->gauche,
NULL);
Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
indentationNAire (narbre->racine, arbre->toString, 1);
free (nrac);
free (narbre);
¥
¥

3.2.9.d Ascendants n-aires

La fonction ascendantsNAire() énumere les ascendants sur 1’arbre n-aire d’un nceud
donné. ascendantsNaire (racine, “Paul”) fournit Jonatan Julie. Sur I’arbre n-aire
(voir Figure 57), I’ascendant direct de Paul est Jonatan, 1’ascendant direct de
Jonatan est Julie. 11 faut faire un parcours d’arbre interrompu quand on a trouvé
I’objet cherché et écrire uniquement quand on remonte d’un SAG (voir Figure 58),
donc apres I'appel récursif examinant le SAG. La fonction fournit vrai si on a
trouvé, faux sinon. Cette fonction est treés proche de la fonction trouverNoeud() qui
elle, fournit un pointeur sur le nceud recherché. La fonction utilise deux pointeurs de
fonctions : un pour écrire les caractéristiques des noeuds et 1’autre pour trouver le
nceud dont on veut les ascendants.

// fTournir les ascendants n-aires de "objet"
static booleen ascendantsNAire (Noeud* racine, Objet* objet,
char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {
booleen trouve;

if (racine == NULL) {
trouve = faux;
} else if ( comparer (objet, racine->reference) == 0 ) {
printf ("%s ", toString (racine->reference));
trouve = vrai;
} else {
trouve = ascendantsNAire (racine->gauche, objet, toString, comparer);
if (trouve) {
printf ("%s ", toString (racine->reference));
3} else {
trouve = ascendantsNAire (racine->droite, objet, toString,
comparer);
3
3

return trouve;



134 3 e Lesarbres

booleen ascendantsNAire (Arbre* arbre, Objet* objet) {
return ascendantsNAire (arbre->racine, objet,
arbre->toString, arbre->comparer);

}

3.2.9.e Parcours en largeur n-aire

Le parcours en largeur consiste a traiter les noeuds de I’arbre étage par étage en
partant de la racine. Ainsi, sur ’arbre n-aire de la Figure 57, I’énumération en
largeur fournit : Julie, Jonatan Gontran, Pauline Sonia Paul Antonine. On peut
également réécrire le nom du sous-arbre et obtenir un fichier décrivant 1’arbre n-aire
sous la forme suivante, ce que fait le programme enLargeurNAire() ci-dessous.

Julie: Jonatan Gontran;
Jonatan: Pauline Sonia Paul;
Gontran: Antonine;

La méthode consiste a créer une liste, chaque élément de la liste pointant sur un
nceud de ’arbre. Au début, la liste li contient un seul élément pointant sur la racine
de l’arbre (voir Figire 73). Ensuite, tant que la liste n’est pas vide, on extrait
I’élément en téte de la liste li, et on insere en fin de liste les fils n-aires du nceud. Sur
I’exemple, on extrait I’élément de la liste pointant sur Julie et on insére dans la liste
devenue vide, les fils n-aires de Julie, soit Jonatan et Gontran. Au tour suivant,
Jonatan est remplacé par ses fils n-aires Pauline, Sonia, Paul, et Gontran est
remplacé par Antonine. La également, on utilise la mémorisation de I’arbre binaire
pour répondre a des questions de I’arbre n-aire.

L= "L/

| Gontran | / |

/

| Sonia | / | | | Antonine | / | / ‘

\
/—/L

| Paul |/|/|

Figure 73 Parcours en largeur n-aire d’'un arbre binaire.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 135

static void enLargeurNAire (Noeud* racine, char* (*toString) (Objet*)) {
Liste* li = creerListe();
insererEnFinDeListe (li, racine);
while (MlisteVide (i) ) {
Noeud* extrait = (Noeud*) extraireEnTeteDeListe (li);
Noeud* plF = extrait->gauche; // premier fils
if (plF !'= NULL) printf ("%s: ", toString (extrait->reference));
Noeud* pNF = plF;
while (pNF != NULL) {
printf (" %s"™, toString (pNF->reference));
insererEnFinDeListe (li, pNF);
pNF = pNF->droite;

¥
if (plF = NULL) printf (";\n");
b
b

void enLargeurNAire (Arbre* arbre) {
if (arbre->racine != NULL) {
Noeud* nrac = cNd (arbre->racine->reference, arbre->racine->gauche,
NULL);
Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
enLargeurNAire (narbre->racine, arbre->toString);
free (nrac);
free (narbre);
3
3

3.2.9.f Duplication d’un arbre n-aire sur N niveaux

La fonction dupArbreNAireSNNiv() duplique nbniveau d’un arbre n-aire a partir du
neceud racine en utilisant la mémorisation de 1’arbre binaire. Ainsi, sur 1’arbre n-aire
de la Figure 57, on peut ne mémoriser que 2 niveaux soit Julie et Jonatan-Gontran.
Lalgorithme est un algorithme de duplication d’arbre, y compris des objets réfé-
rencés (voir § 3.2.6, page 125), le niveau nbniveau étant décrémenté quand on
descend dans un SAG vers le premier fils. Il y a arrét des appels récursifs si ’arbre
est vide ou si nbniveau vaut 0.

static Noeud* dupArbreNAireSNNiv (Noeud* racine, int nbniveau,
Objet* (*cloner) (Objet*)) {
if ((racine == NULL) || (nbniveau==0) ) {
return NULL;
3} else {
Noeud* nouveau = cNd (cloner (racine->reference));
nouveau->gauche = dupArbreNAireSNNiv (racine->gauche, nbniveau-1,
cloner);
nouveau->droite = dupArbreNAireSNNiv (racine->droite, nbniveau, cloner);
return nouveau;
3
3

Arbre* dupArbreNAireSNNiv (Arbre* arbre, int nbniveau,
Objet* (*cloner) (Objet*)) {
Noeud* racine = dupArbreNAireSNNiv (arbre->racine, nbniveau, cloner);
return creerArbre (racine);

}



136 3 e Lesarbres

3.2.9.g Dessin d’un arbre n-aire

La fonction dessinerArbreNAire (Noeud* racine, FILE* fs) ; dessine un arbre en
mettant en évidence les successeurs n-aires d’un nceud comme 1’indique le schéma
de la Figure 74.

Jonatan Gontran

Pauline Sonia Paul Antonine

Figure 74 Dessin n-aire d'un arbre.

L’arbre a dessiner est dupliqué en ajoutant pour chaque nceud sa position (son
numéro de colonne) sur la feuille de dessin. Les feuilles n-aires de ’arbre sont
numérotées dans un parcours infixé : Pauline 1, Sonia 2, Paul 3, Antonine 4. La posi-
tion d’un nceud qui n’est pas une feuille n-aire est la moyenne de la position de son
premier et dernier fils n-aires. Ainsi Jonatan se trouve en position (143)/2 = 2.
Gontran est en position 4. Julie est en position (2+4)/2=3. Cette position est multi-
pliée par la valeur du plus long identificateur déterminé par la fonction maxIdent().

On effectue alors un parcours en largeur. Connaissant les positions (numéros de
colonne) de chaque nceud, I’algorithme procede de la méme maniere que pour le
dessin de I’arbre binaire (voir § 3.2.8, page 127). On insere dans une liste Ic un poin-
teur sur la racine de 1’arbre a dessiner. On dessine les éléments de la liste courante Ic,
et on les remplace par leurs fils n-aires dans une liste des suivants Is qui devient la
liste courante pour le prochain tour. Les tirets entourant le nom sont €crits entre la
position du premier fils et du dernier fils n-aires.

Exercice 16 - Dessin n-aire d'un arbre

En utilisant le module de gestion de listes (voir § 2.3.8, page 48), et en vous inspirant
de I’algorithme dessinerArbre() (voir § 3.2.8, page 127), écrire :

* la fonction : static Arbre* dupArbN (Arbre* arbre, int IgM) ; qui duplique I’arbre
et calcule la position de chaque nceud de I’arbre. La fonction maxldent() (voir
§ 3.2.5.c, page 123) permet de calculer la valeur 1gM (largeur maximale d’une
colonne).

* la fonction : void dessinerArbreNAire (Arbre* arbre, FILE* f5) ; qui dessine 1’arbre
comme indiqué sur la Figure 74.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 137

3.2.10 Le module des arbres binaires

3.2.10.a Le fichier d’en-téte pour les arbres binaires

Ce fichier d’en-téte arbre.h contient les définitions et les prototypes des fonctions
concernant les arbres binaires et les questions n-aires sur ces arbres binaires comme
vu précédemment.

// arbre_.h

#ifndef ARBRE_H
#define ARBRE_H

typedef int booleen;
#define faux O
#define vrai 1

typedef void Objet;

typedef struct noeud {

Objet* reference;

struct noeud* gauche;

struct noeud* droite;

int factEq; // facteur d"équilibre : si arbre équilibré
} Noeud;

typedef struct {
Noeud* racine;
char* (*toString) (Objet*);
int (*comparer) (Objet*, Objet*);

} Arbre;

Noeud* getracine (Arbre* arbre);

Objet* getobjet (Noeud* noeud);

Noeud* getsag (Noeud* noeud);

Noeud* getsad (Noeud* noeud);

void setracine (Arbre* arbre, Noeud* racine);

void settoString (Arbre* arbre, char* (*toString) (Objet*));
void  setcomparer (Arbre* arbre,

int (*comparer) (Objet*, Objet*));

// création de noeuds

Noeud*  cNd (Objet* objet, Noeud* Gauche, Noeud* Droite);
Noeud* cNd (Objet* objet);
Noeud* ckF (Objet* objet);
// création d"arbre
void initArbre (Arbre* arbre, Noeud* racine,

char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*));
Arbre*  creerArbre (Noeud* racine,

char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*));
Arbre* creerArbre (Noeud* racine);
Arbre* creerArbre O:

// parcours

void prefixe (Arbre* arbre);
void infixe (Arbre* arbre);
void postfixe (Arbre* arbre);

void infixeDG (Arbre* arbre);



138 3 e Lesarbres

void infixe (Arbre* arbre, void (*f) (Objet*));
void indentationPrefixee (Arbre* arbre);

void indentationPostfixee (Arbre* arbre);

Noeud*  trouverNoeud (Arbre* arbre, Objet* objet);

void enLargeur (Arbre* arbre);

void enLargeurParEtage (Arbre* arbre);

// propriétés

int taille (Noeud* noeud);
int taille (Arbre* arbre);
booleen estFeuille (Noeud* arbre);
int nbFeuilles (Arbre* arbre);
void listerFeuilles (Arbre* arbre);
int maxldent (Arbre* arbre);
int somLgldent (Arbre* arbre);
int hauteur (Arbre* arbre);
booleen degenere (Arbre* arbre);
booleen equilibre (Arbre* arbre);

// duplication, destruction, dessin

Arbre*  dupliquerArbre (Arbre* arbre);
Arbre* dupliquerArbre (Arbre* arbre, Objet* (*cloner) (Objet*));
void detruireArbre (Arbre* arbre);
void detruireArbre (Arbre* arbre,

void (*detruireObjet) (Objet*));
void dessinerArbre (Arbre* racine, FILE* fs);
booleen egaliteArbre (Arbre* arbrel, Arbre* arbre2);

// binaire NAire

int nbFeuillesNAire (Arbre* arbre);
void listerFeuillesNAire (Arbre* arbre);
void descendantsNAire (Arbre* arbre);
void indentationNAire (Arbre* arbre);
booleen ascendantsNAire (Arbre* arbre, Objet* objet);
void enLargeurNAire (Arbre* racine);

Arbre* dupArbreNAireSNNiv (Arbre* arbre, int niveau,
Objet* (*cloner) (Objet*));

void dessinerArbreNAire (Arbre* arbre, FILE* fs);

// arbre ordonné 8§ 3.3, page 156
void insererArbreOrd (Arbre* arbre, Objet* objet);

Noeud*  supprimerArbreOrd (Arbre* arbre, Objet* objet);

Noeud* rechercherOrd (Arbre* arbre, Objet* objet);

Objet* minArbreOrd (Arbre* arbre);

Objet* maxArbreOrd (Arbre* arbre);

// arbre AVL § 3.4, page 167
void insererArbreEquilibre (Arbre* arbre, Objet* objet);

// arbre de chaTnes de caracteres (cas particulier) § 3.2.11, page 140

// création de noeuds
// pour cF() et cNd(), la chaTne de caractéres n"est pas dupliquée
// pour cFCh(), la chaine est dupliquée

Noeud* cF (char* message);
Noeud* cNd (char* message, Noeud* gauche, Noeud* droite);
Noeud* cFCh (char* message);

// créer un arbre de chatnes de caractéeres a partir d“un fichier
Arbre* creerArbreCar (FILE* fe);

#endi f



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 139

3.2.10.b Le corps du module des arbres binaires

// arbre.cpp module de création et manipulation d"arbres

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "arbre.h"

// fournir la valeur de la racine de I arbre
Noeud* getracine (Arbre* arbre) {
return arbre->racine;

}

// modifier la valeur de la racine de I arbre
void setracine (Arbre* arbre, Noeud* racine) {
arbre->racine = racine;

}

// fournir I"objet d"un noeud
Objet* getobjet (Noeud* racine) {
return racine->reference;

}

// fournir un pointeur sur le sag
Noeud* getsag (Noeud* noeud) {
return noeud->gauche;

}

// fournir un pointeur sur le sad
Noeud* getsad (Noeud* noeud) {
return noeud->droite;

}

// modifier la fonction toString de arbre
void settoString (Arbre* arbre, char* (*toString) (Objet*)) {
arbre->toString = toString;

}

// modifier la fonction comparer de arbre
void setcomparer (Arbre* arbre, int (*comparer) (Objet*, Objet*)) {
arbre ->comparer = comparer;

}

booleen arbreVide (Arbre* arbre) {
return arbre->racine == NULL;

}

Les pages précédentes ont détaillé le corps des procédures suivantes a
insérer ici :

cNd, cF, initArbre, creerArbre, prefixe, infixe, postfixe, indentationPre-
fixee, trouverNoeud, enLargeur, enLargeurParEtage,

taille, estFeuille, nbFeuilles, listerFeuilles, maxldent, somLgldent,
hauteur, degenere, dupliquerArbre, detruireArbre, egaliteArbre, dessiner-
Arbre,

listerFeuillesNAire, nbFeuillesNAire, descendantsNAire, indentation-
NAire, ascendantsNAire, enLargeurNAire, dupArbreNAireSNNiv,
dessinerArbreNAire (a faire voir exercice 16, page 136)



140 3 e Lesarbres

Les fonctions sur les arbres ordonnés et sur les arbres AVL sont données dans les
paragraphes suivants.

3.2.11 Les arbres de chaines de caractéres

Les arbres de chaines de caracteres sont un cas particulier d’arbres ot chaque nceud
référence un objet chaine de caracteres.

Les fonctions creerArbreGene() (voir § 3.2.3.a, page 111) et creerArbreExp()
(voir § 3.2.3.b, page 112) effectuent la construction respectivement des exemples de
I’arbre généalogique et de I’arbre de 1’expression arithmétique ce qui permet de tester
les diverses fonctions sur les arbres binaires vues précédemment. Pour changer
d’arbre, il faut réécrire ces fonctions. Si I’arbre est volumineux, 1’écriture devient vite
complexe. La fonction creerArbreCar() construit un arbre binaire a partir d’une
description n-aire de 1’arbre donnée dans un fichier. L’arbre n-aire de la Figure 57,
page 109, se note comme suit dans un fichier nommé Julie.nai :

Julie: Jonatan Gontran;
Jonatan: Pauline Sonia Paul;
Gontran: Antonine;

Julie a deux enfants Jonatan et Gontran ; Jonatan a trois enfants Pauline, Sonia,
Paul. Cette description correspond a I’arbre n-aire de la Figure 57. A partir de cette
description la fonction creerArbreCar() crée 1’arbre binaire équivalent schématisé
sur la Figure 58.

Les fonctions suivantes lireUnMot(), ajouterFils() et creerArbre() créent
I’arbre binaire a partir d’une description n-aire contenue dans un fichier pour des
nceuds contenant un objet de type chalne de caracteres. (voir la syntaxe de
homme.nai dans 1’exercice 17 ou de terre.nai § 3.2.11.b, page 147). Il faut donc
faire un petit analyseur reconnaissant les données conformes & la grammaire de
description d’un arbre n-aire. lireUnMot() lit une chaine de caracteres du fichier
fe, en ignorant les blancs en téte du mot, jusqu’a trouver un délimiteur de mots
soit un espace, ":" ou ";". ajouterFils() ajoute les fils n-aires au nceud pere.
trouverNoeud() (voir § 3.2.4.e, page 119) fournit un pointeur sur le nceud pere
s’il existe dans 1’arbre, sinon fournit NULL. On ajoute le premier fils dans le
SAG de pere et on chalne entre eux les fils suivants dans le champ droite du

premier fils. Le dernier fils est suivi de " ;. creerArbreCar() lit le nom du pere
(suivi de " : ") et appelle ajouterFils() pour traiter les fils de pere.

// arbre de chaTnes de caracteéeres

Noeud* cF (char* message) {
return cF ( (Objet*) message);
}

Noeud* cNd (char* message, Noeud* gauche, Noeud* droite) {
return cNd ( (Objet*) message, gauche, droite);
}



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires

141

// créer une feuille contenant un objet ""chaine de caractéres";
// la chaine de caractéres est dupliquée
Noeud* cFCh (char* objet) {
char* nobjet = (char*) malloc (sizeof (strlen(objet)+1));
strcpy (nobjet, objet);
return cF (nobjet);
b

// fournir la chaine de caractéres de objet
static char* toChar (Objet* objet) {

return (char*) objet;
}

// comparer deux chaTnes de caractéeres

// fournit <0 si chl < ch2; 0 si chl=ch2; >0 sinon

static int comparerCar (Objet* objetl, Objet* objet2) {
return strcmp ((char*)objetl, (char*)objet2);

}

static Objet* clonerCar (Objet* objet) {
char* message = (char*) objet;
int Ig = strlen (message);
char* nouveau = (char*) malloc (lIg+l);
strcpy (nouveau, message);
return (Objet*) nouveau;

}

char c; // prochain caractere a analyser dans le fichier
// fe de description de I arbre

// lire dans chaine un mot du fichier fe
static void lireUnMot (FILE* fe, char* chaine) {
// ignorer les espaces en téte du mot

while C ((c==" *) || (c=="\n") || (c=="\r")) && !feof (fe) ) {

fscanf (fe, "%c', &c);
¥

// enregistrer les caractéres jusqu®a trouver " ", ":" ou ;"
char* pCh = chaine;
while ( (c I= " ") && (c!=":") && (c!=";") ) {

*pCh++ = c;

fscanf (fe, "%c', &c);

if (c=="\n") c= " ~;

3
*pCh = 0;
H

// ajouter un ou plusieurs fils n-aire au noeud pere
static void ajouterFils (FILE* fe, Arbre* arbre, char* pere) {
char nom [255];

Noeud* pNom = trouverNoeud (arbre, pere);
if (pNom 1= NULL) {
// lire le premier fils de pere
fscanf (fe, "%c', &c); // passer le délimiteur :
lireUnMot (fe, nom);
Noeud* fils = cFCh (nom);
pNom->gauche = fils;



142 3 e Lesarbres

// lire les fils suivants de pere jusqu"a ";*

Noeud* filsPrec = fils;

while ( (c!=";") && !feof (fe) ) { // apreés ;
fscanf (fe, "%c', &c); // lit le délimiteur espace
lireUnMot (fe, nom);

fils = cFCh (nom);
filsPrec->droite = fils;
FilsPrec = fils;
¥
} else {

printf (“"Noeud %s non trouvé\n', pere);

}

// créer un arbre de chaTtnes de caractéres
// a partir d"un fichier n-aire
Arbre* creerArbreCar (FILE* fe) {

Arbre* arbre = creerArbre();

booleen debut = vrai;

fscanf (fe, "%c", &c);

char pere [255];

lireUnMot (fe, pere);

while (Ifeof(fe)) {
ifT (debut) {
setracine (arbre, cFCh (pere));
debut = faux;

ajouterFils (fe, arbre, pere);
fscanf (fe, "%c', &c); // passer le délimiteur ;
lireUnMot (fe, pere);

}

return arbre;

Exercice 17 - Le corps humain

Soit le fichier homme.nai suivant :

homme: tete cou tronc bras jambe;

tete: crane yeux oreille cheveux bouche;
tronc: abdomen thorax;

thorax: coeur foie poumon;

Jambe: cuisse mollet pied;

pied: cou-de-pied orteil;

bras: epaule avant-bras main;

main: doigt;

Dessiner I’arbre n-aire et 1’arbre binaire correspondant.

3.2.11.a Menu de test du module des arbres binaires

Dans le programme de test des arbres binaires suivant, il y a un arbre par défaut
(I’arbre généalogique) qui peut étre changé (choix 2 pour avoir I’arbre de 1’expres-
sion arithmétique, ou choix 17 pour construire I’arbre a partir d’un fichier). La
racine de I’arbre est alors le nceud courant. L’option 3 permet de changer ce nceud
courant. Les différentes fonctions s’exécutent en partant de ce nceud courant



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 143

(parcours, dessins, etc.). Le menu proposé permet de tester les différentes fonctions
vues précédemment concernant 1’arbre binaire ou les interrogations n-aires.

// pparbre.cpp programme principal arbre

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h> //isalpha
#include "arbre._h"

#include "mdtypes.h"

#include "arbrstat.h"

// créer un arbre binaire généalogique
Arbre* creerArbreGene () {
Noeud* racine =
cNd ( "Julie”,
cNd ( "Jonatan®,
cNd ( "Pauline",
NULL,
cNd ( "Sonia"™, NULL, cF ("Paul™) )

),
cNd ( "Gontran", cF (“Antonine'), NULL)

NULL

return creerArbre (racine);

}

// créer un arbre binaire (expression arithmétique)
Arbre* creerArbreExp () {
Noeud* racine =

cNd ( -,
cNd ( ">,
eNd "+, cF ("a"), cF ("b™) ),
cNd ("=, cF ("c™), cF ("d™) )
),
ckF ('e™)

return creerArbre (racine);

}

int menu (Arbre* arbre) {
printf (""\n\nARBRES BINAIRES\n\n');
printf (" 0 - Fin du programme\n™);
printf ('"\n");
printf (" 1 - Création de l"arbre généalogique\n™);
printf (*" 2 - Création de l"arbre de l"expression arithmétique\n™);

printf (" 3 - Nom du noeud courant (défaut:racine)\n™);
printf (''\n");

printf (" 4 - Parcours préfixé\n™);

printf (" 5 - Parcours infixé\n");

printf (" 6 - Parcours postfixé\n');

printf (" 7 - Parcours préfixé (avec indentation)\n™);
printf (*" 8 - Parcours en largeur\n™);

printf (''\n");

printf (" 9 - Taille et longueur du plus long identificateur\n™);
printf (10 - Nombre et liste des feuilles\n");

printf (""11 - Hauteur de 1"arbre binaire\n");

printf (""12 - Tests arbre dégénéré ou équilibré\n™);



144 3 e lesarbres
printf ("'\n");
printf (""13 - Duplication de I1"arbre\n");
printf ("'14 - Destruction de 1"arbre dupliqué\n'™);
printf ("'\n");
printf (15 - Dessin de l"arbre binaire (écran)\n");
printf (16 - Dessin de l"arbre binaire (fichier)\n");
printf ("'\n");
printf (“Arbres n-aires\n");
printf (17 - Création a partir d“un fichier n-aire\n");
printf (""18 - Indentation n-aire\n");
printf ("'19 - Descendants n-aires\n');
printf ("'20 - Ascendants n-aires\n");
printf (""21 - Feuilles n-aires\n");
printf (''22 - Parcours en largeur n-aire\n");
printf (''23 - Dessin des descendants (écran)\n');
printf (''24 - Dessin des descendants (fichier)\n");
printf ("'25 - Nombre de niveaux utilisés\n™);
printf (""26 - Arbre statique \n");
printf ("'\n");
Noeud* racine = getracine (arbre);
iT (racine!=NULL) printf (“'Noeud courant : %s\n",
arbre->toString (racine->reference));
fprintf (stderr, "Votre choix ? ");
int cod; scanf (""%d", &cod); getchar();
printf (''\n");
return cod;
3

void main () {

Arbre* arbre
Arbre* arbreBis

creerArbreGene();
creerArbre();

booleen fini = faux;
whille (Ifini) {

switch (menu (arbre) ) {

case 1:
printf (“"Création de I"arbre généalogique\n™);
detruireArbre (arbre);
arbre = creerArbreGene();
break;

case 2:
printf (“"Création de l"arbre expr. arithmét.\n");
detruireArbre (arbre);
arbre = creerArbreExp();
break;

case 3: {
printf ('Nom du noeud courant ? ");
ch15 nom; scanf ("%s', nom);
Noeud* trouve = trouverNoeud (arbre, nom);
if (trouve == NULL) {
printf ("%s inconnu dans I"arbre\n', nom);

} else {

arbre = creerArbre (trouve);



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 145

b
} break;
case 4: {

printf (“'Parcours préfixé\n");
prefixe (arbre);
} break;

case 5:
printf (“'Parcours infixé\n");
infixe (arbre);
break;

case 6:
printf (“'Parcours postfixé\n');
postfixe (arbre);
break;

case 7:
printf (“"Parcours préfixé (avec indentation)\n");
indentationPrefixee (arbre);
break;

case 8:
printf (“"Parcours en largeur\n);
enLargeur (arbre);
printf ('"\n\nParcours en largeur par étage\n");
enLargeurParEtage (arbre);
break;

case 9:
printf ("Taille de 1"arbre : %d\n", taille (arbre) );
printf (“Longueur de I"ident. le plus long %d\n*", maxldent (arbre));
break;

case 10:
printf (“Nombre de feuilles : %d\n", nbFeuilles (arbre) );
printf (“'Liste des feuilles : ");
listerFeuilles (arbre);
break;

case 11:

printf (“"Hauteur de I®arbre : %d\n", hauteur (arbre) );
break;

case 12:
if (degenere (arbre)) {
printf (“"Arbre dégénéré\n™);
3} else {

printf (""Arbre non dégénéré\n');

}
iT (equilibre (arbre) ) {
printf ("Arbre équilibré\n™);
} else {
printf ("Arbre non équilibré\n™);

break;

case 13:
arbreBis = dupliquerArbre (arbre);
//arbreBis = dupliquerArbre (arbre, clonerCar);
printf (“'Parcours préfixé de l"arbre dupliqué\n™);
prefixe (arbreBis);



146 3 e Lesarbres

break;

case 14:
detruireArbre (arbreBis);
if (getracine(arbreBis) == NULL) printf (“Arbre détruit\n™);
break;

case 15:
dessinerArbre (arbre, stdout);
break;

case 16: {
printf (“'Dessin d"un arbre binaire (fichier)\n");
printf (“'Donner le nom du fichier a créer ? ");
char nomFS [50]; scanf ("'%s', nomFS);
FILE* fs = fopen (nomFS, "w'™);
if (fs==NULL) {
printf (""%s erreur ouverture\n", nomFS);
} else {
dessinerArbre (arbre, fs);
fclose (fs);

}
} break;

case 17: {
printf (“Création d"un arbre a partir d“un fichier\n");
printf (“Nom du fichier décrivant l"arbre n-aire ? ");
char nomFE [50]; scanf ("%s', nomFE);
FILE* fe = fopen (nomFE, "r™);
if (fe==NULL) {
printf ("%s erreur ouverture\n", nomFE);
} else {
detruireArbre (arbre);
arbre = creerArbreCar (fe);

3
} break;

case 18:
printf ("Indentation n-aire\n");
indentationNAire (arbre);
break;

case 19:
printf (“'Descendants n-aires\n™);
descendantsNAire (arbre);
break;

case 20: {
printf (“Nom de I1"élément dont on veut les ascendants ? ");
ch1l5 nom; scanf (""%s', nom); getchar();
printf (“"Ascendants n-aires\n™);
ascendantsNAire (arbre, nom);
} break;

case 21:
printf (“Feuilles n-aires\n");
listerFeuillesNAire (arbre);
break;

case 22:
printf (“"Parcours en largeur n-aire\n");
enLargeurNAire (arbre);
break;



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 147

case 23: {
dessinerArbreNAire (arbre, stdout);
} break;

case 24: {
printf ("'Dessin d"un arbre n-aire (fichier)\n");
printf (“'Donner le nom du fichier a créer ? ");
char nomFS [50]; scanf ("'%s', nomFS);
FILE* fs = fopen (nomFS, "w');
if (Fs==NULL) {
printf ("%s erreur ouverture\n", nomFS);
3} else {
dessinerArbreNAire (arbre, fs);
fclose (fs);

b
} break;

case 25: {
printf ("Nombre de niveaux a considérer\n™);
printf ("dans I arbre n-aire ? ");
int nbNiv; scanf ("%d", &nbNiv); getchar();

Arbre* sa = dupArbreNAireSNNiv (arbre, nbNiv, clonerCar);
dessinerArbreNAire (sa, stdout);
} break;

case 26: { voir 3.2.1.2

ArbreS* arbres = creerArbreStat (arbre);
printf (""\nNombre de noeuds (arbre en tableau) : %d\n",
tailleStat (arbres));
printf (""\nEcriture du tableau\n");
ecrireStat (arbres);
printf (""\nlndentation n-aire en utilisant le tableau\n™);
indentationNAireStat (arbres);
Arbre* arbre2 = creerArbreDyn (arbres);
dessinerArbreNAire (arbre2, stdout);
} break;

} /7 switch
if (Ifini) {
printf ("\n\nTaper Return pour continuer\n"); getchar();

(o]

} 77 while
3

3.2.11.b Exemples de créations et d’interrogations d’arbres binaires

Les encadrés suivants présentent des résultats de tests du programme de gestion des
arbres binaires. Le choix 17 a permis la construction de I’arbre a partir du fichier
terre.nai. Le choix 3 définit le noeud Europe comme racine du sous-arbre par défaut.
Le choix 23 dessine I’arbre a partir du nceud courant Europe.

Le fichier terre.nai (vous pouvez compléter ... jusqu’a votre bar favori !) :

Terre: Europe Asie Afrique Amerique Oceanie;
Europe: France Espagne Belgique Danemark;

France: Bretagne Corse Bourgogne;

Asie: Chine Inde Irak Japon;

Afrique: Niger Congo;



148 3 e Lesarbres

ARBRES BINAIRES
0 - Fin du programme
1 - Création de I arbre généalogique

Création de I"arbre de I"expression arithmétique
Nom du noeud courant (défaut:racine)

w N
| |

- Parcours préfixé

- Parcours infixé

Parcours postfixé

- Parcours préfixé (avec indentation)
- Parcours en largeur

0 ~N O 01 b
|

9 - Taille et longueur du plus long identificateur
10 - Nombre et liste des feuilles

11 - Hauteur de I"arbre binaire

12 - Tests arbre dégénéré ou équilibré

13 - Duplication de l1"arbre
14 - Destruction de 1"arbre dupliqué

15 - Dessin de 1"arbre binaire (écran)
16 - Dessin de 1"arbre binaire (fichier)

Arbres n-aires
17 - Création a partir d"un fichier n-aire

18 - Indentation n-aire
19 - Descendants n-aires
20 - Ascendants n-aires
21 - Feuilles n-aires
22 - Parcours en largeur n-aire

23 - Dessin des descendants (écran)
24 - Dessin des descendants (fichier)
25 - Nombre de niveaux utilisés

Noeud courant : Europe
Votre choix ? 23



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 149

l
|
Europe
| | | |
| | | |
_ France___ Espagne Belgique Danemark
| | |
| | |

Bretagne Corse Bourgogne

Taper Return pour continuer
Autre exemple d’interrogation : I’indentation n-aire en partant de Europe.

Noeud courant : Europe
Votre choix ? 18

Indentation n-aire
Europe
France
Bretagne
Corse
Bourgogne
Espagne
Belgique
Danemark

Taper Return pour continuer

3.2.12 Arbre binaire et tableau

Un tableau est habituellement alloué statiquement en fonction de la longueur
déclarée a la compilation. On peut cependant aussi allouer un tableau dynamique-
ment a 1’exécution avec malloc(). Le terme d’allocation statique pour un tableau
devient alors ambigu ; il vaut mieux parler d’allocation contigué, 1’espace mémoire
alloué pour le tableau se trouvant sur des cases mémoires contigués.

3.2.12.a Définitions, déclarations et prototypes de fonctions

L’arbre binaire peut aussi étre mémorisé en allocation contigué (voir Figure 75) soit
en mémoire centrale soit sur mémoire secondaire. Cette représentation permet le
stockage et la transmission de I’arbre, éventuellement pour recréer la forme dyna-
mique si I’arbre doit évoluer.

Les déclarations d’interface suivantes sont faites dans le fichier d’en-téte
arbrstat.h. NeeudS est la structure correspondant a une ligne du tableau. creerAr-



150 3 e Lesarbres

brStat() alloue de I’espace pour un tableau a créer a partir de sa représentation
dynamique ; la taille du tableau est donnée par la fonction faille() qui opere sur la
représentation dynamique de 1’arbre. creerArbreStat() remplit le tableau en faisant
un parcours d’arbre : on crée la structure de la Figure 75 a partir de celle de la
Figure 58, page 109 ; la racine de I’arbre se trouve dans I’entrée 0. creerArbreDyn()
effectue la conversion inverse de tableau en allocation dynamique. Si I’arbre doit
étre modifié (ajout et retrait), il est plus facile d’utiliser la version avec allocation
dynamique et de regénérer le tableau si besoin est. tailleStat() donne la taille de
P’arbre du tableau (voir fonction taille() § 3.2.5.a, page 122). ecrireStat() écrit
séquentiellement le contenu du tableau. indentationNaireStat() effectue un parcours
préfixé indenté de I’arbre du tableau (voir indentationNaire(), § 3.2.9.c, page 132).

nom gauche droite
0 | Julie 1 /
1 | Jonatan 2 5
2 | Pauline / 3
3 | Sonia / 4
4 | Paul / /
5 | Gontran 6 /
6 | Antonine / /

Figure 75 Allocation contigué de |'arbre généalogique.

/* arbrstat.h conversion arbre statique
en arbre dynamique et vice versa */

#ifndef ARBRSTAT_H
#define ARBRSTAT_H

#include "arbre.h"

#define NILE -1
typedef char Chaine [16];

typedef struct {
Chaine nom;

int gauche;
int droite;
} Noeuds;

typedef struct {
NoeudS* as;

} ArbreS;

ArbreS* creerArbreStat (Arbre* arbre);
Arbre* creerArbreDyn (ArbreS* arbres);
int tailleStat (ArbreS* arbres);

void ecrireStat (ArbreS* arbres);



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 151

void indentationNAireStat (ArbreS* arbres);

#endif
3.2.12.b Le module des arbres en tableaux

Les fonctions de conversion d’arbres (allocation dynamique <> contigué)

Le fichier arbrstat.cpp contient les corps des fonctions décrites dans arbrstat.h et
faisant la conversion arbre dynamique arbre statique. Les procédures creerArbreStat()
et creerArbreDyn() sont des fonctions de duplication d’arbres avec changement de la
structure de base. Elles sont donc trés proches de la fonction dupliquerArbre() vue
§ 3.2.6, page 125.

/* arbrstat.cpp conversion d"arbre dynamique
en arbre statique et réciproquement */

#include <stdio.h>

#include <stdlib.h> // malloc
#include <string.h> // strcpy
#include "arbrstat.h" // NoeudS

// parcours de l"arbre racine en allocation dynamique
// et création du tableau as équivalent
static int creerArbreStat (Noeud* racine, NoeudS* as, int* nf,
char* (toString) (Objet*) ) {
if (racine == NULL) {
return -1;

} else {
int numNd = *nf; // numéro du noeud en cours
*nf = *nf +1; // nombre total de noeuds

strcpy (as[numNd].nom, toString (racine->reference));
as [numNd].gauche = creerArbreStat (racine->gauche, as, nf, toString);
as [numNd].droite = creerArbreStat (racine->droite, as, nf, toString);
return numNd;
3
¥

// initialisation et création du tableau as (arbre statique)
ArbreS* creerArbreStat (Arbre* arbre) {

int nf = 0;
ArbreS* arbres = new ArbreS(Q);
arbres->as = (NoeudS *) malloc (sizeof(NoeudS) * taille(arbre));

creerArbreStat (arbre->racine, arbres->as, &nf, arbre->toString);
return arbres;

}

// création d"un arbre de chatnes de caracteres
// en allocation dynamique en partant du tableau as
static Noeud* creerArbreDyn (NoeudS* as, int racine) {
if (racine == NILE) {
return NULL;
} else {
Noeud* nouveau
nouveau->gauche
nouveau->droite

cF (as[racine].nom);
creerArbreDyn (as, as[racine].gauche);
creerArbreDyn (as, as[racine].droite);



152 3 e Lesarbres

return nouveau;

}
¥

Arbre* creerArbreDyn (ArbreS* arbres) {
return creerArbre (creerArbreDyn (arbres->as, 0));
}

Quelgues fonctions sur la structure d’arbre en tableau
On peut facilement réécrire la fonction faille() de I’arbre avec la structure sous
forme de tableau.

// taille de 1"arbre statique
static int tailleStat (NoeudS* as, int racine) {
if (racine == NILE) {
return O;
} else {
return 1 + tailleStat (as, as[racine].gauche)
+ tailleStat (as, as[racine].droite);
¥
¥

int tailleStat (ArbreS* arbres) {
return tailleStat (arbres->as, 0);
3

// écriture du tableau
void ecrireStat (ArbreS* arbres) {
int n = tailleStat (arbres);
for (int i=0; i<n; i++) {
NoeudS* nd = &arbres->as[i];
printf ("%2d %15s %3d %3d\n', i, nd->nom, nd->gauche, nd->droite);

}

// indentation n-aire en utilisant le tableau.
// Parcours préfixé du tableau as; racine repére le noeud
// racine du sous-arbre; niveau indique I"indentation
static void indentationNAireStat (NoeudS* as, int racine, int niveau) {
if (racine != NILE) {
for (int i=1; i<niveau; i++) printf ("%5s"™," ');
printf (""%s\n", as[racine].nom);

indentationNAireStat (as, as[racine].gauche, niveau+l);
indentationNAireStat (as, as[racine].droite, niveau);

}
}

void indentationNAireStat (ArbreS* arbres) {
indentationNAireStat (arbres->as, 0, 1);
3

3.2.12.c Exemple de conversion allocation dynamique / allocation en tableau

Exemple d’interrogation et de résultats obtenus pour 1’arbre généalogique de la
Figure 58, page 109. On peut rajouter un 26¢ cas au menu de 1’arbre binaire (voir
§ 3.2.11.a, page 142).



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 153

Noeud courant : Julie
Votre choix ? 26

Nombre de noeuds (arbre en tableau) : 7

Ecriture du tableau
Julie 1 -1
Jonatan 2 5
Pauline -1 3
Sonia -1 4
Paul -1 -1
Gontran 6 -1
Antonine -1 -1

OO WNEO

Indentation n-aire en utilisant le tableau
Julie
Jonatan
Pauline
Sonia
Paul
Gontran
Antonine

3.2.13 Arbre binaire et fichier

Lorsque I’arbre binaire est trop volumineux, il faut le mémoriser sur disque. Ce
serait le cas de la nomenclature d’un avion. Un nceud est repéré par son numéro
d’enregistrement dans le fichier déclaré de type PNoeud ci-dessous. La fonction
void lireD (int n, Noeud* enr) ; effectue la lecture dans le fichier fr (variable globale)
du nieme enregistrement du fichier fr et met cet enregistrement a 1’adresse contenue
dans enr. La procédure prefixeF() effectue un parcours d’arbre en lisant un enregis-
trement a chaque appel récursif. Il y a autant d’allocations du nceud enr qu’il y a de
niveaux d’appels récursifs (voir § 1.2, page 2). La fonction tailleF() est également
redéfinie ci-dessous pour une allocation dans un fichier en acces direct. L’ adaptation
des fonctions définies sur les arbres binaires en allocation dynamique a une structure
statique dans un fichier ne pose pas de probleme particulier (si ce n’est qu’il faut
faire des lectures d’enregistrements).

#define NILE -1

typedef char chil5 [16];
typedef int PNoeud;

typedef struct noeud {
chi5 nom;
PNoeud gauche;
PNoeud droite;

} Noeud;

FILE* fr; // Ffichier binaire contenant I"arbre



154 3 e Lesarbres

void lireD (int n, Noeud* enr) {
fseek (fr, (long) n*sizeof (Noeud), 0);
fread (enr, sizeof (Noeud), 1, fr);

3

// voir 8 3.2.4.d, page 117
void prefixeF (PNoeud racine, int niveau) {

if (racine = NILE) {
Noeud enr;
lireD (racine, &enr);

for (int i=0; i<niveau; i++) printf ("%5s"™," ');
printf (""%s\n", enr.nom);

prefixeF (enr.gauche, niveau+l);
prefixeF (enr.droite, niveau+l);
}
}
int tailleF (PNoeud racine) {
int t;
if (racine == NILE) {
t = 0;
} else {
Noeud enr;
lireD (racine, &enr);
t =1 + tailleF (enr.gauche) + tailleF (enr.droite);
}
return t;

}

3.2.14 Arbre binaire complet

Un arbre binaire est complet si chaque nceud interne a deux successeurs et si toutes
les feuilles sont au méme niveau.

" Alban
0 B
1 1+ Berthe
Alban
////////’ \\\\\\\\\ 2 1 | Camille
Berthe Camille 3 17— David
/ N\ VRN e
5 Eugénie
David Eugénie Fernand Ginette \
6
\\\\\\ Fernand
Ginette

Figure 76 Mémorisation d'un arbre binaire complet.



© Dunod - La photocopie non autorisée est un délit.

3.2 ¢ lesarbres binaires 155

Aucune place n’est perdue pour mémoriser les pointeurs gauche et droite qui sont
implicites. Soit n le nombre de nceuds de 1’arbre (n vaut 7 sur la Figure 76). On a
alors les relations suivantes :

pere (i) =(@1-1)/2 si O<i< n, sinon nil

gauche (i) =2*%+1 si 2*1 + 1 < n, sinon nil

droite (1) =2%1+2 si 2*1 + 2 < n, sinon nil

pere 5)=(5-1)/2=2 pere ("Fernand") = "Camille"
gauche 2)=2*2+1 gauche ("Camille") = "Fernand"
droite 2)=2*2+2=6 droite ("Camille") = "Ginette"

On peut facilement réécrire les fonctions de parcours avec cette mémorisation
compacte. Le tableau tab contient les pointeurs vers les nceuds de 1’arbre.
prefixeC() effectue un parcours préfixé indenté pour un arbre complet. Le parcours
séquentiel des éléments du tableau correspond au parcours en largeur d’un arbre.

/* acomplet.cpp arbre complet */

#include <stdio.h>
#define NILE -1

char* tab [] = {"Alban", "Berthe™, "Camille", "David",
"Eugénie', "Fernand', "Ginette" };
int n==17; // taille de 1"arbre

int gauche (int i) {
return 2*i+l<n ? 2*i+l1 : NILE;

}

int droite (int i) {
return 2*i+2<n ? 2*i+2 : NILE;

}

// parcours préfixé indenté pour un arbre complet
void prefixeC (int racine, int niveau) {
if (racine != NILE) {
for (int i=1; i<niveau; i++) printf (“"%5s", " ");
printf ("%s\n', tab [racine]);
prefixeC (gauche(racine), niveau+l);
prefixeC (droite(racine), niveau+l);
b
by

void main O {
// 0 : racine de I arbre en tab [0];
// 1 : niveau d"indentation
prefixeC (0, 1);

La méthode peut s’appliquer si I’arbre n’est pas parfait, mais il y a perte de place
(voir I’exemple de la Figure 77 qui est un cas extréme d’arbre dégénéré). L’arbre
nécessite 7 places pour ranger les 3 nceuds. Si on doit faire des insertions ou des
suppressions de nceuds, cette représentation d’arbre complet n’est pas pratique.



156 3 e Lesarbres

Alban

Camille

\

Ginette

Figure 77 Exemple d'arbre binaire dégénéré.

3.3 LES ARBRES BINAIRES ORDONNES

3.3.1 Définitions

Les arbres binaires ordonnés sont des arbres binaires (ayant un SAG et un SAD) tels
que pour chaque nceud, les clés (identificateurs) des éléments du sous-arbre gauche
sont inférieures a celle de la racine, et celles du sous-arbre droit sont supérieures a
celle de la racine. Soit a insérer les clés alphabétiques suivantes dans un arbre
ordonné vide et dans I’ordre donné : 17, 11, 15, 14, 31, 19, 18, 28, 26, 35. On aboutit
aI’arbre de la Figure 78. La premiere clé 17 est racine de I’arbre ordonné. Les autres
clés sont insérées dans le SAG ou dans le SAD suivant qu’elles sont plus petites ou
plus grandes que 17. Chaque nceud d’un arbre ordonné référence un objet contenant
une clé et des informations associées a cette clé.

L arbre peut méme constituer un arbre d’index pour un autre fichier. Par exemple,
I’information de clé 17 se trouve a I’entrée 125 d’un tableau ou d’un fichier en acces
direct. Par la suite, seules les clés sont représentées.

11/ \31

VN
VAN
/

26

|17 | s

Figure 78 Exemple d’arbre binaire ordonné.



© Dunod - La photocopie non autorisée est un délit.

3.3 ¢ Les arbres binaires ordonnés 157

Le parcours infixé gauche-droite de 1’arbre donne Ia liste en ordre croissant : 11,
14,15, 17, 18, 19, 26, 28, 31, 35. Le parcours infixé droite-gauche donne la liste en
ordre décroissant. Ainsi, s’il s’agit d’un fichier de clients, on peut obtenir facilement
les clients par ordre croissant ou décroissant de la clé. La recherche d’un élément de
I’arbre a partir de sa clé est également facile et rapide. L’insertion se fait toujours au
niveau d’une feuille. La suppression d’un nceud feuille ne pose pas de probleme
mais celle d’un nceud interne demande une réorganisation de 1’arbre. L’arbre peut
étre sur disque. On a alors un index arborescent ordonné sur la clé (numéro ou nom
de client par exemple). Les informations sont alors mémorisées dans un fichier de
données en acces direct.

Le type arbre ordonné est décrit de la méme maniere que le type arbre binaire. 1l
faut cependant définir des fonctions spécifiques de ce type d’arbre concernant
I’insertion ou la suppression d’un objet de I’arbre, ou la recherche dans 1’arbre en
tenant compte du critere d’ordre.

Déclarations faites en fin de arbre._h (voir § 3.2.10.a, page 137) et corps des
fonctions insérées dans arbre.cpp (voir § 3.2.10.b, page 139) :

// arbre ordonné

void insererArbreOrd (Arbre* arbre, Objet* objet);
Noeud*  supprimerArbreOrd (Arbre* arbre, Objet* objet);
Noeud* rechercherOrd (Arbre* arbre, Objet* objet);
Objet* minArbreOrd (Arbre* arbre);
Objet* maxArbreOrd (Arbre* arbre);

3.3.2 Arbres ordonnés : recherche, ajout, retrait

3.3.2.a Recherche d’un élément dans un arbre binaire ordonné

Il n’est plus nécessaire de parcourir tout I’arbre pour retrouver un élément. A chaque
nceud, on peut décider du chemin a suivre, soit dans le sous-arbre gauche, soit dans
le sous-arbre droit. Il n’y a pas de retour en arriere pour explorer un autre chemin. Si
racine est NULL, on a atteint une feuille sans trouver I’objet cherché, I’élément n’est
pas dans I’arbre. Si le nceud racine contient I’objet que 1’on cherche, on fournit le
pointeur sur le nceud racine. Sinon, si I’objet cherché est inférieur a 1’objet de la
racine, on explore le SAG, sinon, on explore le SAD. La fonction en paramétre
comparer est spécifique des objets de 1’application, et fournit 0 en cas d’égalité.

// fournir un pointeur sur le noeud contenant objet
static Noeud* rechercherOrd (Noeud* racine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {
int resu;
if (racine == NULL) {
return NULL;
} else if ( (resu=comparer (objet, racine->reference)) == 0 ) {
return racine;
} else if (resu < 0) {
return rechercherOrd (racine->gauche, objet, comparer);

3} else {



158 3 e Lesarbres

return rechercherOrd (racine->droite, objet, comparer);
3
3

Noeud* rechercherOrd (Arbre* arbre, Objet* objet) {
return rechercherOrd (arbre->racine, objet, arbre->comparer);

}

Exemple : rechercher 19 dans I’arbre de la Figure 78.

3.3.2.b Insertion dans un arbre binaire ordonné

L’ajout se fait toujours au niveau d’une feuille. L’algorithme procede en 2 étapes :

* recherche dans I’arbre permettant de déterminer la feuille ou doit se faire I’inser-
tion,

* création du nceud et modification du lien pere.

17
12 31

1" 14

\

15

Ajout de 15 et modification
du lien du nceud pere 14

Figure 79 Ajout de 15 dans un arbre ordonné.

La structure de I’arbre dépend de I’ordre d’insertion des €léments. L’insertion
suivant les ordres : (10, 20, 30), (20, 10, 30) ou (30, 20, 10) donne trois arbres
ordonnés différents comme 1’indique la Figure 80. Si les valeurs sont déja ordonnées
(ordre croissant ou décroissant), on aboutit a un arbre dégénéré.

10 30

\ /N /

20 20

\ /

30 10

Figure 80 La forme de I'arbre dépend de I'ordre d'insertion des éléments.



© Dunod - La photocopie non autorisée est un délit.

3.3 ¢ Les arbres binaires ordonnés 159

La fonction d’insertion s’apparente a une fonction de recherche dans un arbre
ordonné. Il faut trouver la feuille ou I’insertion doit se faire. Pour cela, la compa-
raison de 1’élément a insérer et de la clé du nceud visité permet de savoir si 1’inser-
tion doit se faire dans le SAG ou le SAD. On transmet a la fonction récursive, non
pas le pointeur sur le SAG ou sur le SAD comme dans rechercherOrd(), mais
I’adresse du pointeur du SAG ou du SAD, de fagon a pouvoir le modifier quand on
arrive sur une feuille et qu’il faut rattacher au pére le nouveau nceud a créer. On veut
modifier un pointeur de nceud, il faut passer en parametre I’adresse du pointeur, soit
un pointeur de pointeur de nceud. En Pascal, il faut passer le parametre en var pour
indiquer qu’il s’agit d’une adresse de pointeur. Les notations sont un peu compli-
quées en C.

Premier cas : insertion de 17 dans un arbre vide. pracine repere la racine de
I’arbre qui est vide et vaut donc NULL. Il faut créer la feuille 17 (fonction cF()) et la
rattacher a I’adresse contenue dans pracine.

pracine E—> pracine E—>

Figure 81 Insertion dans un arbre ordonné vide.

Deuxieme cas : insertion de 12 dans 1’arbre contenant déja 17. 12 étant inférieur a
17, il faut insérer dans le SAG du nceud 17. On transmet a la fonction appelée récursi-
vement I’adresse pracine du pointeur du SAG. L'utilisation de la variable locale racine
permet de simplifier les notations, sinon il faudrait écrire en partant de pracine : inse-
rerArbreOrd ( &(*pracine)->gauche, objet, comparer) ; de méme
pour I’appel récursif a droite.

pracine

| pracine /

Figure 82 Insertion dans un arbre ordonné (cas général).

// pracine : pointeur sur la racine a modifier
void insererArbreOrd (Noeud** pracine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {



160 3 e Lesarbres

Noeud* racine = *pracine;
int resu;

if (racine == NULL) {

racine = cF (objet);
*pracine = racine;
else if ( (resu = comparer (objet, racine->reference)) == 0 ) {

}

printf ("objet existe déja dans l"arbre\n™);
} else if (resu <0 ) {

insererArbreOrd (&racine->gauche, objet, comparer);
} else {

insererArbreOrd (&racine->droite, objet, comparer);
3

void insererArbreOrd (Arbre* arbre, Objet* objet) {
insererArbreOrd (&arbre->racine, objet, arbre->comparer);

}

3.3.2.c Minimum, maximum

Pour trouver la valeur minimum d’un arbre ordonné, il faut suivre le chemin le plus
a gauche dans I’arbre.

// min de l"arbre ordonné
static Objet* minArbreOrd (Noeud* racine) {
Objet* resu;
ifT (racine==NULL) {
resu = NULL;
} else if (racine->gauche == NULL) {
resu racine->reference;
} else
resu

}

return resu;

}

Objet* minArbreOrd (Arbre* arbre) {
return minArbreOrd (arbre->racine);

}

I Y|

minArbreOrd (racine->gauche);

Pour trouver la valeur maximum d’un arbre ordonné, il faut suivre le chemin le
plus a droite dans I’arbre.

// max de l"arbre ordonné
Objet* maxArbreOrd (Noeud* racine) {
Objet* resu;
if (racine==NULL) {
resu = NULL;
} else if (racine->droite == NULL) {
resu = racine->reference;
} else
resu = maxArbreOrd (racine->droite);
3

return resu;

}

Objet* maxArbreOrd (Arbre* arbre) {
return maxArbreOrd (arbre->racine);

}

~ 1



© Dunod - La photocopie non autorisée est un délit.

3.3 ¢ Les arbres binaires ordonnés 161

3.3.2.d Suppression d’un élément dans un arbre binaire ordonné

Si le sous-arbre droit du noeud a supprimer est vide comme lors de la suppression de
28 sur la Figure 78, il suffit de modifier le pointeur du pere et de le faire pointer sur
le SAG du nceud a supprimer. Le SAD de 19 pointe sur le nceud 26. De méme pour
la suppression de 35 ou le pointeur du pere est remplacé par le SAG de 35 soit
NULL.

Si le sous-arbre gauche du nceud a supprimer est vide comme lors de la suppres-
sion de 11 sur la Figure 78, il suffit de modifier le pointeur du pere et de le faire
pointer sur le SAD du nceud a supprimer. Le SAG de 17 pointe sur le nceud 15.

Sinon, dans le cas général, SAG et SAD ne sont pas NULL. La valeur a supprimer
est remplacée dans le nceud par la valeur la plus grande du sous-arbre gauche. Le
nceud contenant cette valeur maximum est supprimé. On pourrait également prendre
la valeur la plus petite du sous-arbre droit. La suppression de 31 sur la Figure 78 se
fait en remplagant 31 par la valeur la plus grande du SAG de 31 soit 28 et en suppri-
mant I’emplacement anciennement occupé par 28.

pracine

racine

28

/

z
w1 ¢ [BIX7]
1
\

yd

Pad

Figure 83 Suppression de 31 : exemple du cas général.

Pour trouver le plus grand dans le SAG, il faut parcourir le sous-arbre en allant
toujours a droite jusqu’a ce que le SAD soit vide, ce qui est le cas du nceud 28 sur
I’exemple de la Figure 83. Il faut alors faire pointer le nceud pere de 28 sur le SAG de 28.



162 3 e Lesarbres

// appelé avec sag et sad de *racine différents de NULL;
// Tournit un pointeur sur le plus grand en partant de *pracine
Noeud* supMax (Noeud** pracine) {

Noeud* racine = *pracine;

Noeud* pg; // plus grand

if (racine->droite == NULL) { // racine repére le plus grand
Pg = racine;
racine = racine->gauche; // SAG de PG
*pracine = racine;

} else {

pg = supMax (&racine->droite);

}
return pg;
¥

Noeud* supprimerArbreOrd (Noeud** pracine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {
Noeud* racine = *pracine;
Noeud* extrait;
int resu;

if (racine == NULL) {
extrait = NULL;
} else if ( (resu=comparer(objet, racine->reference)) < 0 ) {
extrait = supprimerArbreOrd (&racine->gauche, objet, comparer);
} else if (resu > 0) {
extrait = supprimerArbreOrd (&racine->droite, objet, comparer);

} else {
extrait = racine;
if (extrait->droite == NULL) { // pas de SAD
racine = extrait->gauche;
} else if (extrait->gauche == NULL) { // pas de SAG
racine = extrait->droite;
} else {
extrait = supMax (&racine->gauche);
// permuter les références des objets
Objet* temp = racine->reference;
racine->reference = extrait->reference;
extrait->reference = temp;
3
3

*pracine = racine;
return extrait;

}

Noeud* supprimerArbreOrd (Arbre* arbre, Objet* objet) {
return supprimerArbreOrd (&arbre->racine,objet, arbre->comparer);
¥

3.3.2.e Parcours infixé droite gauche (décroissant)

Le parcours infixé droite-gauche fournit les éléments en ordre décroissant. Voir
parcours d’arbres Figure 63, page 114.

// toString fournit la chaTne de caractéres a écrire pour un objet
static void infixeDG (Noeud* racine, char* (*toString) (Objet*)) {
ifT (racine '= NULL) {
infixeDG (racine->droite, toString);



© Dunod - La photocopie non autorisée est un délit.

3.3 ¢ Les arbres binaires ordonnés 163

printf ("%s ", toString (racine->reference));
infixeDG (racine->gauche, toString);
¥
}

// parcours infixé droite gauche de I arbre
void infixeDG (Arbre* arbre) {

infixeDG (arbre->racine, arbre->toString);
¥

3.3.3 Menu de test des arbres ordonnés de chaines de caractéres

Les arbres ordonnés de chaines de caracteres référencent dans chaque nceud un objet
de type chaine de caracteres. Suivant le type de la clé, il faut faire une comparaison
de chaines ascii ou d’entiers. Ainsi, en terme de chaines ascii, "11" < "9" mais en
terme d’entiers 11>9. La clé est toujours mémorisée sous forme d’ascii.

// comparer deux chatnes de caractéeres

// fournit <0 si chl < ch2; 0 si chl=ch2; >0 sinon

int comparerCar (Objet* objetl, Objet* objet2) {
return strcmp ((char*)objetl, (char*)objet2);

3

// comparer des chatnes de caracteéres correspondant a des entiers
// 9 < 100 (mais pas en ascii)
int comparerEntierCar (Objet* objetl, Objet* objet2) {
long a = atoi ((char*) objetl);
long b = atoi ((char*) objet2);
if (a==b) {
return O;
} else if (a<b) {
return -1;
} else {
return 1;
}
ke

On utilise les fonctions infixe() et dessinerArbre() du module des arbres binaires
qui permettent a 1’aide du menu suivant de visualiser les modifications de 1’arbre
apres chaque ajout ou retrait dans I’arbre ordonné.

/* pparbreordonne.cpp programme principal des arbres ordonnés */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "arbre.h"
#include "mdtypes.h"

// créer un arbre ordonné de chaines de caracteres a partir du fichier fe
Arbre* creerArbreOrd (FILE* fe, int (*comparer) (Objet*, Objet*)) {
Arbre* arbre = creerArbre (NULL, toChar, comparer);
while (Ifeof(fe)) {
char* message = (char*) malloc (20);
fscanf (fe, "%s', message);
insererArbreOrd (arbre, message);



164 3 e Lesarbres

}

return arbre;

}

int menu O {
printf (""\n\nARBRES ORDONNES\n\n');
printf ('O - Fin du programme\n™);
printf ("'\n");

printf ("1 - Initialisation d"un arbre ordonné\n");
printf ("2 - Création a partir de fichier\n");
printf ("3 - Parcours infixé (croissant)\n");

printf ("4 - Parcours infixéDG (décroissant)\n');
printf ("'\n");

printf ("5 - Insertion d®un élément\n");
printf ("6 - Recherche d*un élément\n™);
printf ("'7 - Suppression d*un élément\n');
printf ("'\n");

printf ('8 - Dessin a I"écran\n™);

printf ("9 - Dessin dans un fichier\n™);

printf ("'\n");
printf ("Votre choix de 0 a 9 ? ");

int cod; scanf (""%d", &cod); getchar();
printf ('\n\n");
return cod;

3

void main ) {
int typCle; // 1 : ascii, 2 : entier
int (*comparer) (Objet*, Objet*);
Arbre* arbre = creerArbre();

booleen fini = faux;
while (Ifini) {

switch ( menuQ) ) {

case 1 :
detruireArbre (arbre);
printf ("Type de la clé (l:ascii; 2:entiere) ? ");
scanf ("%d', &typCle); getchar();
comparer = typCle==1 ? comparerCar : comparerEntierCar;
arbre = creerArbre (NULL, toChar, comparer);
break;

case 2 : {
printf ("Type de la clé (l:ascii; 2:entiere) ? ");
scanf ('%d", &typCle); getchar();
comparer = typCle==1 ? comparerCar : comparerEntierCar;

printf ('Nom du fichier contenant les valeurs ? ");
char nomFE [50]; scanf ('%s', nomFE); getchar();
FILE* fe = fopen (nomFE, "r'™);
if (fe==NULL) {

printf ("%s erreur ouverture\n', nomFE);
} else {

arbre = creerArbreOrd (fe, comparer);

fclose (fe);



© Dunod - La photocopie non autorisée est un délit.

3.3 ¢ Les arbres binaires ordonnés

165

dessinerArbre (arbre, stdout);
¥
} break;

case 3 :
printf (“Parcours infixé (croissant)\n");
infixe (arbre);
break;

case 4 :
printf (“'Parcours infixéDG (décroissant)\n");
infixeDG (arbre);
break;

case 5 : { // insertion
printf ("Valeur a insérer ? ');
char* message = (char*) malloc(20);
scanf (""%s"™, message); getchar();
Noeud* resu = rechercherOrd (arbre, message);
if (resu = NULL ) {
printf ("Nom %s existe déja dans l"arbre\n", message);
} else {
insererArbreOrd (arbre, message);
dessinerArbre (arbre, stdout);

by
} break;

case 6 : { // recherche
printf ("Nom recherché ? ");
char nom[20]; scanf ('%s', nom); getchar();
if ( rechercherOrd (arbre, nom) == NULL ) {
printf (“"Nom %s inconnu\n", nom);
} else {
printf ("Nom %s existe dans l"arbre ordonné\n', nom);

}
} break;

case 7 : {

printf ("Nom a supprimer ? ');

char nom[20]; scanf ("'%s', nom); getchar();

Noeud* extrait;

if ( (extrait = supprimerArbreOrd (arbre, nom)) == NULL ) {
printf ("Nom %s inconnu\n', nom);

} else {
printf ("Nom %s supprimé dans l"arbre\n", nom);
free (extrait);
dessinerArbre (arbre, stdout);

by
} break;

case 8 :
dessinerArbre (arbre, stdout);
break;

case 9 : {
printf (“Nom du fichier recevant le dessin ? ");
char nomFS [50]; scanf ('%s"™, nomFS); getchar();
FILE* fs = fopen (nomFS, "w");
if (fs == NULL) {
perror (“'dessin');
3} else {

dessinerArbre (arbre, fs);



166 3 e Lesarbres

fclose (fs);
3
} break;
} // switch

if (Mfini) {
printf ("\nTaper Return pour continuer'); getchar();

T
¥ /7 while
3

3.3.3.a Exemple de consultation des arbres ordonnés

L’arbre est construit a partir du fichier de valeurs nombres.dat contenant les clés 17
111514 31 19 18 28 26 35 de la Figure 78.

ARBRES ORDONNES

0 - Fin du programme

1 - Initialisation d"un arbre ordonné
2 - Création a partir de fichier
3 - Parcours infixé (croissant)

4 - Parcours InfixéDG (décroissant)

5 - Insertion d"un élément

6 - Recherche d"un élément

7 - Suppression d"un élément

8 - Dessin a I"écran

9 - Dessin dans un fichier

Votre choix de 0 a 9 ? 8

Taper Return pour continuer



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 167

ou encore

Choix 3 :
Parcours infixé (croissant)

11 14 15 17 18 19 26 28 31 35

Choix 4 :

Parcours infixéDG (décroissant)
35 31 28 26 19 18 17 15 14 11

L’insertion dans cet ordre des prénoms suivants : Michel, Lucien, Monique,
Berthe, Jean, Olivier, Marjolaine, Emmanuel, conduit a I’arbre ordonné suivant :

| |

| |
Lucien_ Monique
| | |
| | |

Berthe Marjolaine Olivier

Emmanuel

3.4 LES ARBRES BINAIRES ORDONNES EQUILIBRES

3.4.1 Définitions

Un arbre binaire ordonné est parfaitement équilibré si en tout nceud de 1’arbre :
* le nombre de nceuds dans le sous-arbre gauche

¢ et le nombre de nceuds dans le sous-arbre droit

different au plus de 1. Ce critere est difficile a maintenir car il nécessite des réorga-
nisations importantes, voire des reconstructions completes de 1’arbre. On utilise
alors un critere d’équilibre amoindri et on parle d’arbre équilibré.



168 3 e Lesarbres

Un arbre binaire ordonné est équilibré (balancé ou de type AVL) si en tout nceud
de I’arbre :

* la hauteur du sous-arbre gauche

* et la hauteur du sous-arbre droit

different au plus de 1. Ces arbres sont appelés arbres (binaires ordonnés) équilibrés,
ou arbre AVL, initiales des personnes ayant proposé cette structure ; (AVL : intro-
duits en 1960 par Adelson-Velskii et Landis).

La hauteur d’un nceud correspond a la longueur de la plus longue branche en
partant de ce nceud (voir § 3.2.5.e, page 124). On peut démontrer mathématiquement
que la hauteur totale d’un arbre équilibré est toujours inférieure a 1.5 fois la hauteur
d’un arbre parfaitement équilibré ayant le méme nombre de nceuds. Ajouts et
suppressions peuvent déséquilibrer un arbre équilibré, il faut alors le réorganiser en
gardant le critere d’arbre binaire ordonné équilibré. Cette structure évite d’avoir un
arbre dégénéré ou la recherche d’un élément est dégradée et devient une recherche
séquentielle dans une liste.

Figure 84 Arbre ordonné dégénéré.

3.4.2 Ajout dans un arbre ordonné équilibré

Une réorganisation doit avoir lieu si la valeur absolue de la différence de hauteurs
entre la plus longue branche du SAD et celle du SAG d’un nceud devient > 1 a la
suite d’une insertion. Il y a quatre cas de réorganisations de 1’arbre a envisager : le
déséquilibre vient du SAG du SAG (noté GG), du SAD du SAD (noté DD), du SAD
du SAG (noté GD), du SAG du SAD (noté DG). Les deux premiers et deux derniers
cas sont symétriques. Le facteur d’équilibre (hauteur du sous-arbre droit moins
hauteur du sous-arbre gauche) est donné entre parenthéses sur les figures qui
suivent.

3.4.2.a 1° cas : type GG

Le déséquilibre vient de la Gauche du sous-arbre Gauche. a, b sont des nceuds
(a<b) ; SA1, SA2, SA3 sont des sous-arbres équilibrés. Suite a I’insertion dans SA1,
le nceud a a un facteur d’équilibre de —1 ; le nceud b devrait avoir un facteur d’équi-



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 169

libre de —2, ce qui est inacceptable. Il faut réorganiser a et b comme I’indique la
Figure 85.

b (-1 = GG) a(0)
a(-1) SA3 devient SA1/ \b(O)
SA1 SA2 SA2 SA3

Figure 85 Principe de la réorganisation GG (Rotation Droite).

L’insertion de 1, sans réorganisation, a une place imposée par le critere d’ordre,
déséquilibrerait I’arbre comme 1’indique la Figure 86. La branche en gras indique le
chemin suivi par les différents appels récursifs pour atteindre le point d’insertion qui
est toujours une feuille. L'intérét de la méthode réside dans le fait que seule cette
branche est affectée par une éventuelle réorganisation de I’arbre pour respecter le
crittre d’ordre. La réorganisation se fait au retour de 1’appel récursif, lors de la
remontée de la feuille vers la racine de I’arbre. La feuille insérée (ici 1) est équilibrée.
Le retour au nceud 3 trouve un facteur d’équilibre de O avant insertion qui devient —1
apres insertion. On remonte au nceud 6 qui passe de méme de 0 a —1. Le nceud 15 a un
facteur d’équilibre de —1 avant I'insertion qui a accentué le déséquilibre a gauche.

11 faut réorganiser les nceuds 6 et 15. 6 devient racine du sous-arbre a la place de 15
qui glisse a droite de 6. Le sous-arbre 9 est rattaché comme SAG de 15. Apres ces
modifications, les noeuds 6 et 15 ont un facteur d’équilibre de 0. Les autres nceuds, en
amont des nceuds réorganisés, examinés lors de la remontée ne sont pas touchés ;iln’y
a aucun traitement a faire lors de la remontée apres 1’appel récursif ; sur I’exemple, le
nceud 25 garde donc son facteur d’équilibre de —1. Les autres parties de 1’arbre
(branche droite de 25 par exemple) ne sont pas concernées par cette réorganisation.

25 (-1) 25 (7)
\
15/ 30 (-1) 15 (-1- GG) 30 (-1)
SN S N S
6 (0) 20 (0) 28 (0) 6 (0—-1) 20 (0) 28 (0)
N N
3 (0) 9 (0) 3(0--1) 9 (0)

/

1 (0)

Figure 86 Arbre déséquilibré par l'insertion de 1.



170 3 e Lesarbres

L arbre peut étre réorganisé comme 1’indique la Figure 87 (nceud a:6; nceud b:15),
le nceud a:6 devenant la nouvelle racine du sous-arbre.

25(-1)

TN

6(0) 30(-1)
3(-1) 15(0) 28(0)

1(0) 9(0) 20(0)

Figure 87 Arbre aprés rééquilibrage GG de 6 et 15.

Le détail des modifications de pointeurs sur les différents sous-arbres des noeuds
concernés par une réorganisation GG est donné sur la Figure 88 et la Figure 89. Quand
on exécute la fonction pour le noeud 15, ce qui a été passé lors de 1’appel récursif est
I’adresse pracine du pointeur sur ce nceud. Apres réorganisation, le pointeur a I’adresse
pracine pointe sur 6 au lieu de 15. Tout se passe comme s’il y avait eu une rotation a
droite des nceuds 6 et 15; 6 a pris la place de 15; 15 descend a droite de 6 ; 9 se
rattache a gauche de 15. La fonction rd (pracine) réalise cette permutation des
3 pointeurs.

pracine

racine !.

Figure 88 Arbre avant réorganisation GG.



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 171

pracine

racine

Figure 89 Arbre aprés réorganisation GG (Rotation Droite).

3.4.2.b 2° cas : type DD (symétrique du cas 1)

Le déséquilibre vient de la droite du sous-arbre droit. L’'insertion a provoqué un
déséquilibre dans le SAD du SAD. La réorganisation se fait comme indiqué sur la
Figure 90, qui est symétrique de la réorganisation GG de la Figure 85.

a(1—- DD) /b(())\
S A1 b (1) devient a(0) SA3
SA2 SA3 SA1 SA2

Figure 90 Principe de la réorganisation DD (Rotation Gauche).

La Figure 91 présente un exemple simple de réorganisation DD. L’insertion de 30
déséquilibre I’arbre. Lors de la remontée, le facteur d’équilibre du nceud 20 passe de
0 a1 ;celui de 10 qui devrait passer a 2, valeur interdite, provoque une réorganisa-
tion DD. Le principe est rigoureusement identique a celui de la réorganisation GG a
la symétrie pres. On parle de rotation gauche. Sur I’exemple, b:20 prend la place de
10, a:10 descend a gauche selon le principe de la Figure 90. Les facteurs d’équilibre
de b:20 et a:10 sont alors de 0.

3.4.2.c 3° cas : type GD

Le déséquilibre vient de la Droite du sous-arbre Gauche (type GD). De méme que
précédemment a, b, ¢ sont des noeuds (a<b<c) ; SA1, SA2, SA3, SA4 sont des sous-



172 3 e Lesarbres

10(1) 10(1— DD) 20(0)
20 (0) 20(0 - 1) 10(0) 30 (0)
30(0)

Figure 91 Exemple de réorganisation DD (Rotation Gauche).

arbres équilibrés. Le principe de la réorganisation est donné ci-dessous ; c’est b, la
valeur moyenne qui devient racine du sous-arbre a la place de c.

c(-1-> GD) b(0)

N N

a(1) SA4 a C
SA1 b(-1,10u0) SA1 SA2 SA3 SA4

SA2 SA3

Figure 92 Principe de la réorganisation GD.

L’insertion de 8 a la place imposée par le critere d’ordre déséquilibre 1’arbre
comme indiqué sur la Figure 93. La branche en gras indique le chemin des appels
récursifs qui a conduit a I’insertion de la feuille 8. La réorganisation se fait lors de
la remontée, donc avec une séquence d’instructions qui suit I’appel récursif. La
feuille 8 est équilibrée. Le nceud 9 voit son facteur d’équilibre passer de 0 a —1 (on
remonte par la gauche ; I’insertion a eu lieu dans le SAG de 9). Le nceud 6 passe
de 0 2 1 (on remonte par la droite, I’insertion a eu lieu dans le SAD de 6). Le
facteur d’équilibre du nceud 15 (-1) devrait passer a —2 car I’insertion a eu lieu
dans le SAG de 15.

Il faut donc réorganiser. Le déséquilibre vient du SAD du SAG de 15. Les nceuds
c:15, a:6 et b:9 sont réorganisés conformément a la Figure 92. b:9 devient racine du
sous-arbre a la place de c:15 qui glisse a droite du nceud b:9. Le nceud b:9 est devenu
équilibré et les autres nceuds en amont (25 sur I’exemple) ne sont plus concernés par
ce rééquilibrage. Dans le cas de I’insertion de 8, le facteur d’équilibre pour a:6 est de
0 et celui de c:15 de 1. Dans ce rééquilibrage GD, il y a trois cas a considérer du
point de vue des facteurs d’équilibre.



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés

173

Avant Aprés
a b (4 a b (4
1 -1 -1 0 0 1
1 1 -1 -1 0 0
1 0 -1 0 0 0

Avant la réorganisation sur le nceud c lors de la remontée récursive, le facteur
d’équilibre de c est de —1 ; celui de a vaut +1, et celui de b vaut —1, 1 ou 0 d’ott les 3
cas illustrés par le tableau et les exemples suivants.

25 (-1)

T

30 (-1)

15 (-1)

N

6 (0)

N

3(0) 9(0)

20 (0)

e

28(0)

6

25(7)

T T

15 (-1 - GD)

N

0—-+1) 20 (0)

N

3(0)

9(0—>-1)

8(0)

30 (-1)

e

28 (0)

Figure 93 Arbre déséquilibré par I'insertion de 8 ; 15, 6 et 9 sont réorganisés.

L arbre peut étre réorganisé comme I’indique la Figure 94 (nceud c:15 ; nceud
a:6 ; nceud b:9), le nceud b:9 compris entre a:6 et c:15 devenant la nouvelle racine du

sous-arbre.

3(0)

6 (0)

25(-1)

T

9 (0)

8(0)

15 (1)

30 (-1)

b

28 (0)

20 (0)

Figure 94 Cas 1: arbre apreés rééquilibrage GD; a:6 (0), b:9 (0), c:15 (1).

L’insertion de 10 est schématisé sur la Figure 95 et la Figure 96 et illustre le
deuxieme cas concernant les facteurs d’équilibre.

La Figure 97 illustre le troisieme cas concernant les facteurs d’équilibre dans un

rééquilibrage GD.



174 3 e Lesarbres

25 (-1) 25(7)
15 (-1) 30 (-1) 15(-1 - GD) 30 (-1)
SN S N S
6 (0) 20 (0) 28 (0) 6(0-1) 20 (0) 28 (0)
3(0) 9(0) 3{ \9(0—>1)
10 (0)

Figure 95 Arbre déséquilibré par I'insertion de 10 ; 15, 6 et 9 sont réorganisés.

25(-1)
9(0) 30(-1)
/N
6(-1) 15(0) 28(0)
/
3(0) 10(0) 20(0)

Figure 96 Cas 2 : arbre apres rééquilibrage GD ; a:6 (-1), b:9 (0), c:15 (0).

15 (-1) 15 (-1 - GD) 9 (0)

_— _— N

6 (0) 6 (0—1) 6(0) 15(0)

9 (0)
Figure 97 Cas 3 : arbre apres rééquilibrage GD ; a:6 (0), b:9 (0), c:15 (0).

Du point de vue des modifications de pointeurs, cette transformation peut étre
considérée comme une double rotation : rotation gauche sur le nceud a, puis rotation
droite sur le nceud ¢ comme le schématise la Figure 98.



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 175

AL AL
AN A N ANYAN
VANVAN

SA2 SA3 SA1 SA2

Figure 98 Réorganisation GD = rotation RG sur a, puis rotation RD sur c.

3.4.2.d 4° cas : type DG (symétrique du cas 3)

Le déséquilibre vient de la gauche du sous-arbre droit (type DG). Si le déséquilibre
vient de la gauche du sous-arbre droit, il faut réorganiser comme I’indique la Figure
99. Ceci peut aussi se décomposer en une rotation droite sur ¢, puis une rotation
gauche sur a. Il y a de méme trois cas a considérer, pour les facteurs d’équilibre,
symétriques des cas GD.

a(1->DG) b (0)

7N\ N

SA1 c(-1)
b(-1,1,0) SA4 SA1 SA2 SA3 SA4
SA2 SA3

Figure 99 Principe de la réorganisation DG.

La Figure 100 présente un exemple de réorganisation DG. L’insertion de 15 se fait
a gauche de 20. Le facteur d’équilibre de 20 passe de 0 a —1, celui de 10 devrait
passer a 2 ; il provoque une réorganisation DG.

10 (1) 10 (1 - DG) /15(0)\
20 (0) 20 (0 - -1) 10 (0) 20 (0)
15 (0)

Figure 100 Exemple de réorganisation DG.



176 3 e Lesarbres

Pour les facteurs d’équilibre, on retrouve les 3 cas du type GD. Le tableau est
rigoureusement le méme que pour le cas GD car afin d’avoir a, b et ¢ en ordre crois-
sant, on a permuté c et a dans la symétrie GD/DG.

Exercice 18 - Facteur d'équilibre

Retrouver du point de vue des facteurs d’équilibre, les 3 cas de rééquilibrage DG
en insérant dans un arbre vide :

50, 40, 70, 80, 60, 58

50, 40, 70, 80, 60, 65

10, 20, 15

3.4.2.e Insertion dans un arbre binaire équilibré

Les paragraphes 3.4.2.a, b, c et d ont présenté les quatre réorganisations de I’arbre.
Il n’y a pas réorganisation a chaque ajout d’un élément dans 1’arbre ordonné (en
moyenne, une réorganisation pour 2 ajouts). Dans certains cas, I’insertion améliore
I’équilibre de 1’arbre comme sur la Figure 101 et la Figure 102.

10 (1) 10 (1-0)

\

20 (0) 5(0) 20(0)

Figure 101 L'insertion de 5 dans le SAG améliore I'équilibre du nceud 10.

20 (-1) 20 (-1 - 0)

7 RN

10 (0) 10 (0) 30 (0)

Figure 102 L'insertion de 30 en SAD améliore I'équilibre du noceud 20.

Les notations concernant les arbres équilibrés sont celles décrites pour les arbres
binaires dans arbre.h. Toutefois, il convient d’ajouter le champ facteur d’équilibre
factEq pour chaque nceud de I’arbre. factEq vaut -1, 0 ou 1 ; c’est la différence de
hauteur entre le SAD et le SAG. Comme pour les arbres ordonnés, la clé peut étre
numérique ou alphanumérique.

[/ FFEFFRRkk ARBRES EQUILIBRES

// permuter pl, p2, p3 : p2 = pl, p3 = p2, pl = p3
static void permut (Noeud** pl, Noeud** p2, Noeud** p3) {
Noeud* temp;



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 177

temp = *p3;
*p3 = *p2;
*p2 = *pl;
*pl = temp;

}

// rotation droite
static void rd (Noeud** pracine) {
Noeud* racine = *pracine;
Noeud* p = racine->gauche;
permut (pracine, &p->droite, &racine->gauche);

// rotation gauche
static void rg (Noeud** pracine) {
Noeud* racine = *pracine;
Noeud* p = racine->droite;
permut (pracine, &p->gauche, &racine->droite);

}

// - insérer objet dans l"arbre d"adresse de racine "pracine’;
// - req a vrai indique quTil se peut qu®un rééquilibrage
// soit nécessaire en amont du noeud en cours
static void insererArbreEquilibre (Noeud** pracine, Objet* objet,
booleen* req,
char* (toString) (Objet*),
int (*comparer) (Objet*, Objet*) ) {
int resu;
Noeud* racine = *pracine;

if (racine == NULL) {

racine = cNd (objet);
racine->factEq = O;

*req = vrai;
*pracine = racine;

} else if ( (resu=comparer (objet, racine->reference)) < 0) {
insererArbreEquilibre (&racine->gauche, objet, req, toString, comparer);
it (Preq) {

// LTinsertion a eu lieu dans le SAG de racine
switch (racine->factkEq) {
case 1: // 1 ->0
fprintf (stderr, "%s 1 -> O\n", toString (racine->reference));

racine->factEq = 0O;
*req = faux;
break;
case 0: // 0 -> -1
racine->factEq = -1;
fprintf (stderr, "%s 0 -> -1\n", toString (racine->reference));
break;
case -1:

if (racine->gauche->factEq==-1) { // cas GG
fprintf (stderr, "%s -1 -> GG\n", toString (racine->reference));

Noeud* b = racine;
Noeud* a = b->gauche;
b->factEq = 0;
a->factEq = O;
rd (pracine);

} else { // cas GD

fprintf (stderr, "%s -1 -> GD\n", toString (racine->reference));
Noeud* ¢ = racine;



178

3 e Lesarbres

Noeud* a = c->gauche;

Noeud* b = a->droite;

c->factEq = b->factEq == -1 ? 1 : O;
a->factEq = b->factEq == 1 ? -1 : O;
b->factEq = O;

rg (&racine->gauche);
rd (pracine);
3
*req = faux; // pas de rééquilibrage en amont de racine
break;
3
}

} else if (resu > 0) {
insererArbreEquilibre (&racine->droite, objet, req, toString,

comparer);
it (reg) {
// LTinsertion a eu lieu dans le SAD de racine
switch (racine->factEq) {
case -1: // -1 -> 0
fprintf (stderr, "%s -1 -> O\n", toString (racine->reference));

racine->factEq = O;
*req = faux;
break;

case O: // 0 >1
racine->factEq = 1;
fprintf (stderr, "%s 0 -> 1\n", toString (racine->reference));
break;
case 1:
if (racine->droite->facteEq == 1) { // cas DD
fprintf (stderr, "%s 1 -> DD\n", toString (racine->reference));

Noeud* a = racine;
Noeud* b = a->droite;
a->factEq = O;
b->factEq = O;

rg (pracine);

} else { // cas DG
fprintf (stderr, "%s 1 -> DG\n', toString (racine->reference));
Noeud* a = racine;

Noeud* ¢ = a->droite;

Noeud* b = c->gauche;

c->factEq = b->factEq == -1 ? 1 : 0O;
a->factEq = b->factEq == 1 ? -1 : O;
b->factEq = O;

rd (&racine->droite);
rg (pracine);

}
*req = faux; // pas de rééquilibrage en amont
break;
3
3
} else {
*req = faux; // déja dans l"arbre
3
3

void insererArbreEquilibre (Arbre* arbre, Objet* objet) {
booleen req;
insererArbreEquilibre (&arbre->racine, objet, &req, arbre->toString,
arbre->comparer);



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés

179

3.4.3 Exemple de test pour les arbres équilibrés

On pourrait de méme que pour les arbres ordonnés faire un menu permettant de
tester les différentes fonctions des arbres équilibrés (voir § 3.3.3, page 163). Les
fonctions de parcours infixe(), infixeDG(), et de recherche rechercherOrd() restent
valables pour I’arbre équilibré. Pour le dessin, on peut concaténer le facteur d’équi-
libre au nom du nceud, la fonction dessinerArbre() restant valable. La fonction
d’insertion a été vue précédemment. La fonction de suppression est laissée a titre

d’exercice.

Exemples de test :

ARBRES ORDONNES EQUILIBRES

0 - Fin du programme

1 - Initialisation

2 - Création

3 - Parcours infixé

4 - Parcours infixéDG
5 - Insertion

6 - Recherche

7 - Suppression

8 - Dessin

9 - Dessin

d"un arbre ordonné vide

d"un arbre équilibré (fichier)

de I"arbre ordonné (croissant)
de 1"arbre ordonné (décroissant)

d"un élément dans I"arbre équilibré
d*un élément de 1 arbre
d*un élément de I"arbre A FAIRE

de 1"arbre courant a I"écran
de 1"arbre courant dans un fichier

Votre choix de 0 a 9 ? 8

_ 15(-1)___

I
I
_6(0)__
I I
I I
3(0) 9(0)

20(0)

25(-1)
|
|
__30C-1)
| |
| |
28(0)



180 3 e Lesarbres

Votre choix de 0 a 9 ? 5

Nom a insérer ? 1
30->-1

6 0 -> -1

15 -1 -> GG

| |
| |
6(0) __30(¢-D
| | |
| | |
_3(-1) __15(0) 28(0)
| | |
| | |
1(0) 9(0) 20(0)

L’arbre est d’abord construit a partir de clés contenues dans un fichier, puis
affiché sur le premier écran. L’insertion de 1 sur 1’écran 2 ci-dessus correspond a la
réorganisation de la Figure 86 et de la Figure 87. La trace des modifications des
facteurs d’équilibre des nceuds lors de la remontée récursive est également indiquée
pour les nceuds 3, 6 et 15.

Les instructions suivantes effectuent la construction et le dessin d’un arbre équi-
libré de Personne. La fonction dupliquerArbreBal() dessine 1’arbre en indiquant le
facteur d’équilibre.

// dupliquer I arbre en insérant le facteur d"équilibre
// dans le message de l"objet
Noeud* dupliquerArbreBal (Noeud* racine, char* (*toString) (Objet*)) {
if (racine==NULL) {
return NULL;
} else {
char* message = (char*) malloc(30);
sprintf (message, "%s(%d)', toString (racine->reference),
racine->factEq);
Noeud* nouveau
nouveau->gauche
nouveau->droite
return nouveau;
3
3

// dupliquer un arbre en insérant dans chaque noeud,
// la chaTne de caractéres du noeud et le facteur d"équilibre

cF (message);
dupliquerArbreBal (racine->gauche, toString);
dupliquerArbreBal (racine->droite, toString);



© Dunod - La photocopie non autorisée est un délit.

3.4 e les arbres binaires ordonnés équilibrés 181

Arbre* dupliquerArbreBal (Arbre* arbre) {
Noeud* nracine = dupliquerArbreBal (arbre->racine, arbre->toString);
return creerArbre (nracine, toChar, comparerCar);

}

void main Q) {
Personne* pl
Personne* p2
Personne* p3
Personne* p4
Personne* p5

creerPersonne (“'Dupont™, "Jacques');
creerPersonne (“'Dupond™, "Albert™);
creerPersonne (“'Dufour™, "Aline™);
creerPersonne (“'Dupré', 'Berthe");
creerPersonne (“'Duval*, 'Sébastien™);

// arbre de Personne

Arbre* arbrep = creerArbre (NULL, toStringPersonne, comparerPersonne);
insererArbreEquilibre (arbrep, pl);

insererArbreEquilibre (arbrep, p2);

insererArbreEquilibre (arbrep, p3);

insererArbreEquilibre (arbrep, p4);

insererArbreEquilibre (arbrep, p5);

printf (""\nordre croissant :\n");
infixe (arbrep);

printf ("\nordre décroissant :\n");
infixeDG (arbrep);
printf ("\n");

printf (“'dessin de 1"arbre équilibré de personnes\n');
dessinerArbre (arbrep, stdout);

// dessin de I arbre auquel on ajoute le facteur d"équilibre
Arbre* narbrep = dupliquerArbreBal (arbrep);
printf (“'dessin de l"arbre équilibré de personnes
et du facteur d"équilibre\n™);
dessinerArbre (narbrep, stdout);

}

Larbre équilibré et les facteurs d’équilibre pour chaque nceud :

|
|
Dupond Albert(1)
| |
| |
Dufour Aline(0) _ Dupré Berthe(0)_
| |
| |
Dupont Jacques(0) Duval Sébastien(0)

Exercice 19 - Insertion de valeurs dans un arbre équilibré

Donner les différents schémas de réorganisation concernant 1’insertion des
nombres entiers de 1 a 12 dans un arbre équilibré. Faire de méme en partant de 12
vers 1.



182 3 e Lesarbres

3.5 ARBRES N-AIRES ORDONNES EQUILIBRES : LES B-ARBRES

3.5.1 Définitions et exemples

Les B-arbres sont des arbres n-aires ordonnés congus pour de grands ensembles de
données sur mémoire secondaire. Chaque nceud contient plusieurs valeurs ordon-
nées qui délimitent les ensembles de valeurs que I’on peut trouver dans les sous-
arbres. Pour un B-arbre d’ordre N il y a, pour tout nceud sauf la racine, de N a 2*N
valeurs et donc au plus 2*N + 1 intervalles ou sous-arbres. La racine contient de 1 a
2*N valeurs. Un nceud est rebaptisé « page » dans la terminologie B-arbre. Les
valeurs courantes de N sur disque vont de 25 a 200. Chaque nceud a un nombre
minimum et un nombre maximum de valeurs ; chaque acces disque permet de lire
une page en mémoire centrale dans un tableau contenant les différentes valeurs et
leurs caractéristiques. La hauteur de I’arbre est faible, donc le nombre d’acces
disque pour retrouver une valeur est faible. On réserve de la place pour 2*N valeurs
dans chaque nceud mais un noeud contient de N a 2*N valeurs. Il y a donc allocation
inutilisée d’espace mémoire. On retrouve le compromis espace-temps. On accélere
la recherche au détriment de I’espace mémoire.

Exemple de principe de B-arbre d’ordre 2 (de 2 a 4 valeurs par nceud, de 3 a 5 fils)

S\

2611 |[141719 || 2425 || 28290 [[313335 || 4445 |

Figure 103 B-arbre d’ordre 2.

Description d’un B-arbre d’ordre N

#define N 2
typedef char chl5 [16];
typedef int PNoeud;

typedef struct {

ch15 cle;
int numenr; // le numéro d"enregistrement des informations
PNoeud p;

} Element;

typedef struct {
int nbE; // nombre réels d"éléments dans le noeud
PNoeud pO;

Element elt [2*N];
} Noeud;



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 183

2l ol [ 7 / o] o e e e

Figure 104 Détail de la structure d'un nceud d’un B-arbre d'ordre 2.

Les informations spécifiques de I’application ne sont pas indiquées sur les diffé-
rents schémas concernant les B-arbres. Une possibilité simple est de créer un fichier
d’index sous forme d’un B-arbre et un fichier de données en acces direct. Ainsi, sur
la Figure 105, la clé 20 fait référence a I’enregistrement numEnr=3 soit le troisieme
enregistrement (20 Dufour, etc.) du fichier en acces direct Clients. La recherche d’un
enregistrement se fait donc par consultation de I’index, puis lecture directe de
I’enregistrement du fichier de données. Par la suite, les données ne sont pas mention-
nées car elles varient d’une application a I’autre.

elt [0] elt[2*N - 1]
nbe p0
L2]y Lol Joolsfy [ [ [ [ [ [ ] °
l l l 1 12 Dupont, etc.
2
<12 : ;(2) >20 3 20 Dufour, etc.
Index Clients Fichier Clients

Figure 105 Fichier index (B-arbre) et fichier de données.

Toutes les feuilles sont au méme niveau. Les acces disque étant relativement lents,
cette structure permet de diminuer le nombre d’acces disque pour retrouver une valeur.
Un B-arbre d’ordre N est saturé si tous ses noeuds contiennent exactement 2*N
valeurs. I est dit squelettique si tous ses nceuds sauf la racine contiennent exactement
N valeurs. On peut utiliser une recherche dichotomique pour retrouver, en mémoire
centrale, la clé ou le sous-arbre contenant la clé parmi les nbE clés du nceud.

3.5.2 Insertion dans un B-arbre

La contrainte nombre de valeurs compris entre N et 2*N doit étre respectée pour tout
nceud (toute page) sauf pour la racine.

Algorithme d’insertion
L’insertion se fait toujours au niveau d’une feuille. Soit v la valeur a insérer et racine
la racine du B-arbre au départ.



184 3 e Lesarbres

si racine est une feuille alors // insérer la valeur v dans le nceud

s’il reste de la place dans racine,
— insérer la valeur v a sa place dans racine

sinon // éclatement du nceud racine en 2 nceuds : racine et nouveau

— créer un nouveau nceud nouveau

— déterminer la clé médiane des clés du nceud (v inclus)

— placer les valeurs supérieures a la clé médiane dans la nouvelle page
nouveau, celles inférieures restant dans racine,

— insérer la clé médiane dans le nceud pere (le créer s’il n’existe pas) qui a
son tour peut éclater, et ce jusqu’a la racine, seul moyen d’augmenter la
hauteur de I’arbre. Ceci est fait lors de la remontée dans I’arbre, au
retour de 1’appel récursif, de fagon semblable a la réorganisation dans les
arbres ordonnés équilibrés.

sinon //on continue le parcours de I’arbre n-aire
— rechercher le sous-arbre concerné par v et recommencer (récursivité) avec
pour racine, la racine du sous-arbre

finsi

Pour insérer une valeur, on descend toujours jusqu’au niveau d’une feuille avant
de remonter éventuellement pour insérer la clé médiane. La seule fagcon d’augmenter
la taille de I’arbre se fait par éclatement de nceuds contenant déja 2*N valeurs.
L’arbre est toujours équilibré quel que soit I’ordre des valeurs insérées. Cependant,
la structure de 1’arbre dépend de I’ordre des valeurs entrées. Le taux de remplissage
peut varier de 50 % a 100 % suivant que tous les nceuds contiennent N ou 2*N
valeurs. L’ajout de valeurs déja en ordre croissant conduit a un arbre squelettique.

Exemples d’insertion de valeurs dans un B-arbre d’ordre 2

|1011 27 35 |

Exemple 1

Figure 106 Insertion de 11 dans un B-arbre (avant et apreés).

Exemple 2
[10111516 | | 2735 || 1011 | | 1516 | 2735

Figure 107 Insertion de 12 dans un B-arbre ; éclatement du nceud 10.11.15.16.



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 185

Exemple 3

9122340

1278

23 40

112 | [78 | [ 1011 | [ 1516 [ 2735 || a4

Figure 108 Insertion de 5 ; éclatement de 1.2.7.8, puis de 9.12.23.40.

3.5.3 Recherche, parcours, destruction

3.5.3.a Recherche d’un élément : accées direct

Il s’agit d’accéder directement a un élément du B-arbre. Le parcours de I’arbre n-aire
ordonné permet de retrouver facilement une valeur par descente récursive dans un des
sous-arbres. La valeur peut se trouver dans un nceud intermédiaire ou dans une
feuille. Si on atteint une feuille sans trouver la valeur cherchée c’est que la valeur
n’est pas dans I’arbre.

3.5.3.b Parcours des éléments : accés séquentiel

Il s’agit d’énumérer toutes les valeurs du B-arbre. Le parcours ressemble au
parcours de I’arbre binaire, mais cette fois, il y a (sauf pour la racine) de N+1 a
2N+1 sous-arbres qu’il faut parcourir récursivement.

void parcoursBArbre (PNoeud racine) {
if (racine = NULL) {
parcoursBArbre (racine->p0);
for (int i=0; i<racine->nbE; i++) {
printf ("%s ", racine->elt [i]-.-cle);
parcoursBArbre (racine->elt [i]-p);
3
}
3



186 3 e Lesarbres

3.5.3.c Destruction d’un élément

La destruction d’un élément est a priori simple. Il faut localiser le nceud ou se trouve
la clé et I’enlever. Cependant, si la clé est dans un nceud non feuille, le retrait de la
clé va poser des problemes pour accéder aux valeurs du sous-arbre qui avaient été
rangées en fonction de cette valeur disparue. Il faut la remplacer par soit la plus
grande valeur du sous-arbre a gauche de la valeur retirée, soit par la plus petite du
sous-arbre a droite (voir § 3.3.2.d, page 161 : suppression dans un arbre ordonné). Si
pour un nceud le nombre de valeurs devient inférieur a N et si une des pages
voisines (gauche ou droite) a plus de N valeurs, il y a redistribution entre ces 2
pages, sinon les 2 nceuds (le nceud courant et celui de droite par exemple) sont
regroupés et un des nceuds est détruit. La valeur médiane est recalculée.

Exercice 20 - Gestion d’un tournoi a I'aide d'une liste d'arbres

(voir § 3.1.2.e, page 105)

On souhaite développer un logiciel qui permette d’enregistrer et de consulter les
résultats d’un tournoi. A partir de ces résultats enregistrés dans un fichier séquentiel,
on construit une liste d’arbres mémorisant les différents matchs joués. A la fin du
tournoi, la liste ne contient plus qu’un seul élément qui pointe sur la racine de 1’arbre
des matchs. Cette racine contient des informations sur le match de finale. On désire
également répondre a des interrogations sur les résultats des matchs déja enregistrés.
La construction de la liste d’arbres est schématisée sur les exemples suivants :

* un seul match joué, le fichier séquentiel contient :
b,a  ba gagné contre a

=

* apres enregistrement de :
b,a  ba gagné contre a
c,d cagagnécontre d

{1




© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres

187

* apres enregistrement de : b,a; c,d; b,c;h,g;fe;hf;

I

elafr s fefdfrfrl [hlefr]/]

3
flel/]7]

Figure 109 Une liste d'arbres.

 apres enregistrement de tous les résultats du tournoi b,a ; c,d ; b,c ; h,g; f,e ; h,f;

b,h, il ne reste plus qu’un seul arbre dans la liste.

Les schémas précédents n’indiquent pas les détails de I’implémentation d’un
noeud de I’arbre. Le schéma de droite de la Figure 110 indique I’implémentation

réelle du noeud schématisé a gauche.

o]

A

W

Figure 110 Détail de I'implémentation d'un noeud.

Soient les déclarations suivantes :

#include "liste.h"”
#include "arbre.h"

#define LGMAX 20
typedef char Chaine [LGMAX+1]; // O de fin
typedef struct {
Chaine joueurl; // gagnhant = joueurl
Chaine joueur2;
} Match;

Ecrire les fonctions suivantes de consultation de 1’arbre :

* void listerRestants (Liste* [i),; qui liste les joueurs de la liste li non encore

éliminés.



188 3 e Lesarbres

* void listerArbres (Liste* li, int type) ; qui effectue le récapitulatif des matchs en
listant le contenu de chacun des arbres de la liste li. Le parcours est préfixé si
type=1, postfixé si type=2. Un dessin des arbres est donné si le type=3. Les résultats
attendus des parcours préfixé et postfixé de I’arbre de 1’exemple sont donnés ci-
dessous.

* void listerMatch (Noeud* pNom, Chaine joueur); qui a partir d’un pointeur
pNom sur le dernier match enregistré pour un joueur donné, fournit la liste des
matchs que ce joueur a disputés

* void listerMatch (Liste* li, Chaine joueur) ; qui recherche joueur dans la liste li
des arbres, et fournit la liste des matchs de joueur.

Ecrire les fonctions suivantes de création de ’arbre :

* void enregistrerMatch (Liste* li, Chaine jl, Chaine j2); qui enregistre le match
gagné par j1 contre j2 dans la liste li des arbres.

* void creerArbres (FILE* fe, Liste* li) ; qui crée la liste li des arbres a partir du
fichier séquentiel fe. Cette fonction utilise enregistrerMatch().

Faire un programme correspondant au menu suivant :

GESTION D"UN TOURNOI

- Fin

- Création de la liste d"arbres a partir d"un fichier
- Enregistrement d"un match

- Liste des joueurs non eliminés

Parcours préfixé des arbres

- Parcours postfixé des arbres

- Dessins des arbres des matchs

- Liste des matchs d"un joueur

~NOoO ok wWwN PP O
|

Exemples de résultats (choix 4) :
PARCOURS DE L*"ARBRE

préfixé indenté :
b gagne contre h
b gagne contre c
b gagne contre a
Cc gagne contre d
h gagne contre f
h gagne contre g

T gagne contre e



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 189

Exemples de résultats (choix 5) :

postfixé indenté :
b gagne contre a
c gagne contre d
b gagne contre c
h gagne contre g
T gagne contre e
h gagne contre f
b gagne contre h

matchs du joueur e
T gagne contre e

Un exemple du dessin d’une liste de deux arbres de jeu (choix 6).

dessins des arbres des matchs

|

|
__ Guillaume:Ronan__
| |
| |

Guillaume:Nicolas Ronan:Thomas

|

|
______ Vincent:Julien__
| |
| |

Vincent:Gilles Julien:Alain

Exercice 21 - Mémorisation d’un dessin sous forme d’un arbre binaire

(allocation contigué, voir Figure 75, page 150)

Une image peut étre représentée par un tableau a deux dimensions de booléens si
I’image est en noir et blanc. Une autre méthode plus économique en mémoire dans
certains cas (tracés continus) est de ne représenter que les points significatifs, sous
forme d’un arbre, et de restituer I’image a partir de cet arbre. On peut de plus tres
facilement faire varier la taille du dessin. Sur la Figure 111, le premier dessin repré-
sente un caractere 1 manuscrit. Le deuxieme dessin schématise ce caractere sous



190

3 e Lesarbres

forme d’un arbre n-aire. Il faut tracer le segment O, puis en partant de la fin du
segment 0, il faut tracer le segment 1 et le segment 2. De méme, en partant de la fin

du segment 2, il faut tracer les segments 3, 4 et 5. Le troisieme dessin représente
I’arbre n-aire converti sous sa forme binaire équivalente. Les segments sont décrits
avec un code indiquant la direction de déplacement (1:nord, 2:nord-est, 3:est, 4:sud-

est, 5:sud, 6:sud-ouest, 7:ouest, 8:nord-ouest).

0 0

Figure 111 Mémorisation d'un tracé graphique sous forme d'arbre.

La description des différents segments est enregistrée dans le tableau desc.

L’ arbre binaire est mémorisé en allocation contigué dans le tableau arbre. Les struc-

tures de données utilisées sont les suivantes :

#include "ecran.h"

#define NULLE -1
typedef int PNoeud;

typedef struct {
int indice; // indice sur desc []
PNoeud gauche;
PNoeud droite;

} Noeud;

int desc [] = { // description de I"image
// 0 15

3, 5,5,5,3,6,6,6,7,5,5,5,5,5,5,5,
3, 7,7,7,3,3,3,3,2,5,5
¥
Noeud arbre [] = { // 1"arbre représentant I"image
{o, 1, -1}, //0
{4, -1, 23}, /71
{8, 3,-13}, //2
{16, -1, 43}, // 3
{20, -1, 5%, // 4
{24, -1, -1} // 5



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 191

indice repere le rang dans le tableau desc [] de la description du segment que le
nceud représente. Le premier nceud de I’arbre en arbre[0] a un indice de 0 qui pointe
sur I’entrée O du tableau desc [] soit 3/5/5/5. Le 3 indique le nombre de valeurs a
prendre en compte ; 5 indique la direction de déplacement pour reconstituer le
segment 0 soit 3 caracteres '*' vers le sud.

En utilisant le module ecran (voir § 1.4.2, page 25) :

» écrire la fonction void traiterNoeud (PNoeud pNd, int x, int y, int taille, int* nx,
int* ny) ; qui trace sur 1’écran a I’aide de '*' le dessin du segment correspondant au
Neeud de rang pNd de arbre[]. x et y sont les coordonnées du début du segment sur
I’écran, nx et ny les coordonnées de la fin du segment. taille indique que chaque
élément du tableau desc[] doit étre répété taille fois.

» écrire la fonction récursive void parcours (PNoeud racine, int X, int y, int taille) ;
qui effectue a partir de x et y, le dessin représenté par I’arbre commencant en racine :

Le programme principal est le suivant :

void main () {
PNoeud racine = 0; // premier noeud de Arbre

initialiserEcran (40, 40);

parcours (racine, 10, 10, 2);
afficherEcran O :

sauverEcran (""GrdEcran.res™);
detruireEcran O:

}

et le dessin :

*
O % % %

¥ o % X

*khkk

Le dessin est tres simple pour faciliter les explications. On peut aussi tracer une
signature, des caracteres chinois ou la Loire et ses affluents.



192 3 e Lesarbres

Exercice 22 - Références croisées (arbre ordonné)

On veut déterminer les références croisées d’un texte (ou d’un programme par
exemple). Ceci consiste a répertorier tous les mots du texte, a les classer par ordre
alphabétique, et & imprimer une table précisant pour chaque mot, les numéros des
lignes ou on a rencontré le mot. Pour cela, on constitue un arbre ordonné de Noeud,
chaque nceud contenant un mot et la liste des numéros de ligne ou ce mot a été trouvé.

Les structures de données utilisées sont les suivantes (on utilise le module liste.h
voir § 2.3.8.a, page 49) :

// les objets EIt (liste de numéros de lignes)
typedef struct {
int numLigne;
} Elt;
// les objets Mot
typedef char Chaine [31]; // 30 + 0 de fin
// un mot et sa liste de lignes
typedef struct {
Chaine mot;
Liste 1i;

} Mot;

La Figure 112 indique que petit a été trouvé a la ligne 1 et a la ligne 2.

A

Y
ili< Y

<
<
<<

1
|petit|||/||1| 2

Figure 112 Un noeud de I'arbre contenant une liste.

« Ecrire une fonction void traiterNd (Mot* pmot) ; qui écrit le mot se trouvant dans
pmot suivi des numéros des lignes ot ce mot a été rencontré. (Ecrire 10 numéros par
ligne).



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 193

* Ecrire une fonction void rechercherLignes (Arbre* arbre, char* mot); qui
recherche le mot mot de I’arbre binaire ordonné et écrit les numéros des lignes ou ce
mot a été trouvé.

* Ecrire une fonction void insererMot (Arbre* arbre, Chaine mot, int nl); qui
insere le mot mot dans 1’arbre ordonné arbre. nl contient le numéro de ligne ot on a
trouvé mot.

* Ecrire le programme « références croisées » qui a partir d’un fichier d’entrée
constitue un fichier de sortie des références croisées de ce fichier. Le programme
analyse les caracteres et ne retient que ceux pouvant constituer des mots qu’il insere
dans I’arbre ordonné. Les lignes lues sont réécrites dans le fichier de sortie, précé-
dées de leur numéro de ligne pour vérification des références croisées. Faire le
dessin de I’arbre ordonné.

* Modifier le programme d’insertion pour que I’arbre soit équilibré. En faire le dessin.
Exemple de résultats :

1 le petit chat

2 du petit garcon
3 boit

4 du lait

5 dans sa gamelle

Références croisées
boit :
chat
dans

du
gamelle
garcon
lait

le
petit
sa

GFRF FPANUONCRERP®W

Arbre ordonné :

le:1

| |
| |
s:5 garcon:2
| |
| |
t

gamelle:5 lai



194 3 e Lesarbres

Arbre équilibré :

du:2 4

chat:1 le:l

=3 dans:5 garcon:2
| |

| |
t

gamelle:5 lai

petit:1 2 _

4 sa:5

Exercice 23 - Arbre de questions

Soit un arbre binaire de questions contenant pour chaque nceud :
* un pointeur vers le texte correspondant a la question a poser,
* un pointeur sur le sous-arbre gauche des questions,
* un pointeur sur le sous-arbre droit des questions.

Les questions sont booléennes : on peut répondre par oui ou par non. La racine de
I’arbre de la Figure 113 correspond a la question « Est-ce un homme ? ». Le schéma
ne mentionne qu’un mot, il devrait en fait contenir toute la question. Le sous-arbre

gauche correspond aux questions a poser si la réponse est oui, le sous-arbre droit
celles a poser si la réponse est non.

homme
/N
francais animal
SN
Dupont Smith vertébré
/ \
mammifere insecte
tigre oiseau mouche

Figure 113 Arbre de questions.



© Dunod - La photocopie non autorisée est un délit.

3.5 ¢ Arbres n-aires ordonnés équilibrés : les b-arbres 195

o Ecrire la fonction void poserQuestions (Arbre* arbre) ; qui permet de
poser les questions d’une branche de 1’arbre en fonction des réponses (O ou N) de
I’utilisateur. Exemple :

Est-ce un homme ? O

Est-ce un francais ? N

Est-ce Smith ? O

Fin des questions : vous avez trouvé

Est-ce un homme ? N
Est-ce un animal ? N
Fin des questions : je donne ma langue au chat

* Ecrire une fonction qui liste les questions de I’arbre de maniere indentée. Exemple :

Arbre des questions

Est-ce un homme
Est-ce un francais
Est-ce Dupont
Est-ce Smith
Est-ce un animal
Est-ce un vertébré
Est-ce un mammifere
Est-ce un tigre
Est-ce un oiseau
Est-ce un insecte
Est-ce une mouche

o Ecrire la fonction void insererQuestion (Arbre* arbre) ; qui permet
d’insérer une question a réponse booléenne dans I’arbre. La nouvelle question est
insérée au niveau d’une feuille apres avoir répondu aux questions qui menent a cette
feuille.

Exemple :

Insertion d"une question

Est-ce un homme (0O/N) ? n
Est-ce un animal (O/N) ? n
Question a iInsérer ? : Est-ce un objet

e Ecrire la fonction void sauverQuestions (Arbre* arbre, FILE* fs);
qui enregistre I’arbre dans le fichier fs en faisant un parcours préfixé de I’arbre, les
sous-arbres nuls étant notés ""*"".



196 3 e Lesarbres

o Ecrire la fonction void chargerQuestions (Arbre* arbre, FILE* fe);
qui crée I’arbre a partir du fichier fe créé par sauverQuestions().
* Ecrire le programme principal correspondant au menu suivant :

ARBRE DE QUESTIONS

- Fin

- Insérer une nouvelle question

- Lister 1"arbre des questions

Poser les gquestions

- Sauver I1"arbre des questions dans un fichier

A

- Charger ITarbre des questions a partir d"un fichier

ah WNFEFO
|

3.6 RESUME

Les arbres sont des structures de données trés importantes en informatique permettant
de résoudre certains probleémes de maniere concise et élégante grace aux techniques de
la récursivité qui se justifie pleinement sur ces structures. Les arbres n-aires ont une
structure imposée par I’application elle-méme (exemple : I’arbre des continents et des
pays de la Terre). Si le nombre de sous-composants (sous-arbres) est variable, il faut
convertir I’arbre n-aire en un arbre binaire, tout en répondant a des questions de 1’arbre
n-aire.

S’il y a un critere d’ordre, on peut créer un arbre ordonné en insérant les clés les
plus petites a gauche, et les plus grandes a droite. Cependant certaines branches
risquent dans certaines configurations de croitre démesurément. Les arbres ordonnés
équilibrés évitent cet inconvénient en réorganisant I’arbre tout en gardant le critere
d’ordre. Si I’arbre est sur mémoire secondaire, il vaut mieux éviter les acces disques
qui sont relativement lents et regrouper plusieurs clés dans un méme nceud. On
retrouve un arbre n-aire ordonné appelé B-arbre. La recherche de la clé dans I’arbre
ordonné permet de retrouver les informations attachées a la clé qui sont spécifiques
de chaque application.



Chapitre 4

Les tables

4.1 CAS GENERAL

4.1.1 Définition

Une table est une structure de données telle que I’acces a un élément est déterminé
a partir de sa clé. La clé permet d’identifier un élément de manieére unique ; la clé
(un entier ou une chaine alphanumérique) est dite discriminante. Dans la suite de
ce chapitre, on n’envisage pas les cas ol une méme clé peut correspondre a
plusieurs éléments. Connaissant la clé, on peut retrouver I’élément et ses caracté-
ristiques. L’allocation d’espace pour une table est souvent contigug€. Il faut
réserver I’espace mémoire en début de traitement (en mémoire centrale ou sur
mémoire secondaire).

Clé Infos

Dupond

W N = O

NMax -1

Figure 114 Une table en mémoire centrale ou secondaire (fichier).



198 4 e |es tables

La partie Infos contient les informations spécifiques de 1’application pour une
clé donnée. Ainsi, pour Dupond, la partie Infos peut contenir (Michel, rue des
mimosas par exemple). Sur mémoire secondaire, on peut aussi constituer une table
d’index en mettant dans la partie Infos, un numéro d’enregistrement (25 par
exemple) contenant les données qui sont elles mémorisées dans un autre fichier en
acces direct. On a un fichier d’index et un fichier de données (voir Figure 115). Le
fichier d’index peut étre amené tout ou en partie en mémoire centrale, ce qui accé-
lere le traitement. Sur la Figure 115, on a créé une seconde table d’index basée sur
le numéro de téléphone.

Fichier d’'index sur Nom
Nom Numéro
2 Dupont 25
Fichier d’index sur Téléphone
Téléphone Numéro
5 0234872222 25
Fichier de données
Nom Prénom Adresse Téléphone
25| Dupont Michel rue des mimosas 0234872222

Figure 115 Deux tables d'index pour un fichier de personnes.

4.1.2 Exemples d'utilisation de tables

4.1.2.a Gestion d’articles

Connaissant le numéro d’un article (HV32 par exemple), on peut retrouver la quan-
tit€ en stock (200) et le prix unitaire (50.00) par consultation de la table de la
Figure 116. (clé : Numéro ; Infos : QT et PU).



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 199

Numéro QT PU

HV32 200 50.00

S 1 A W N =2 O

Figure 116 Une table d'articles.

4.1.2.b Table d’étiquettes dans un compilateur

Un compilateur se constitue une table & partir des différents identificateurs déclarés
qu’il rencontre lors de la compilation d’un programme. Lors de la référence a un iden-
tificateur, le compilateur doit retrouver les attributs de cet identificateur. Le nom de
I’identificateur sert de clé ; a partir de cette clé, on peut retrouver : son type, son adresse
mémoire par rapport au début des données, etc. (clé : Nom ; Infos : Type, Adresse, etc.).
Sur la Figure 117, la variable A est de type entier (1), et a pour adresse 25 (25¢ octet) par
rapport au début des données du programme. I y a 2 phases :

* rangement des identificateurs lors de leur déclaration,
» recherche de leurs caractéristiques lors des références.

Nom Type Adresse
0 A 1 25
1
2 C 2 10
3
4 Fin 3 53
5
6

Figure 117 Une table d’un compilateur.

4.1.2.c Dictionnaire

Connaissant un mot francgais, on peut retrouver son équivalent anglais par consulta-
tion d’une table. (clé : mot francgais ; Infos : mot anglais).

4.1.2.d Remarques

Un vecteur (ou un tableau) est un cas particulier de table ou la clé n’est pas mémo-
risée car les clés sont contigués de 0 a n-1, n étant le nombre d’éléments dans la table.



200 4 e |es tables

4.1.3 Création, initialisation de tables

En mémoire centrale, la table peut se déclarer comme indiqué ci-dessous de facon a
étre la plus générique possible. Un objet de la table est constitué de la clé et des
informations concernant cette clé. Le type Table mémorise la longueur maximum
nMax de la table, le nombre n d’éléments dans la table et un pointeur vers le début
de la table proprement dite allouée dynamiquement lors de I’initialisation de la
table.

typedef void Objet;

typedef struct {
int nMax; // nombre max. d"éléments dans la table
int n; // nombre réel d-"éléments dans la table
Objet** element; // un tableau de pointeur vers les objets
char* (*toString) (Objet*);

int (*comparer) (Objet*, Objet*);
} Table;
type Table

nMax n element objet 0
0
1 P objet 1
2 »,

objet 2

3 /
4 /

Figure 118 Le type Table (les pointeurs des objets sont consécutifs).

La fonction creerTable() effectue 1’allocation dynamique de la table et de la
partie contigué de la table. nMax indique le nombre maximum d’éléments dans la
table. La fonction toString() fournit une chalne de caracteres correspondant a
I’objet de la table. La fonction comparer() compare deux objets et fournit une
valeur <0, =0 ou >0 suivant que le premier objet est <, = ou > au deuxieme. Voir
pointeurs de fonctions, § 1.5, page 33.

Table* creerTable (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

Table* table new Table();

table->nMax = nMax;

table->n = 0;

table->element = (Objet**) malloc (sizeof(Objet*) * nMax);
table->toString = toString;

table->comparer = comparer;

return table;



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 201

// par défaut, les objets de la table sont des chaines de caracteres
Table* creerTable (int nMax) {

return creerTable (nMax, toChar, comparerCar);voir 8 4.6.1.a, page 206
3

La fonction detruireTable() désalloue la table allouée par creerTable().

void detruireTable (Table* table) {
free (table->element);
free (table);

3

La fonction insererDsTable() insere 1’objet pointé par nouveau en fin de la table.
L’ objet nouveau est créé et rempli avant I’appel de cette fonction.

// insérer nouveau dans la table
booleen insererDsTable (Table* table, Objet* nouveau) {
if (table->n < table->nMax) {
table->element [table->n++] = nouveau;
return vrai;
} else {
return faux;
}

}

La fonction IgTable() fournit le nombre d’éléments dans la table.

// nombre d"éléments dans la table
int IgTable (Table* table) {
return table->n;

}

La fonction fournirElement() fournit un pointeur sur le nieme objet de la table.

// fournir un pointeur sur le nieme élément de la table
Objet* fournirElement (Table* table, int n) {
if ( (n>=0) && (n<table->n) ) {
return table->element [n];
} else {
return NULL;
3

}

4.1.4 Acces séquentiel

A partir de la clé, il faut retrouver les caractéristiques de 1’objet ayant cette clé. La
méthode la plus simple consiste a chercher séquentiellement dans la table, fant
qu’on n’a pas atteint la fin de la table et tant qu’on n’a pas trouvé.

4.1.4.a Acces séquentiel standard

La fonction accesSequentiel() utilise un booléen trouve pour indiquer s’il y a égalité
entre les clés de ce qu’on cherche objetCherche, et de ce qu’il y a a la ieme entrée de
la table. La fonction pourrait étre écrite différemment ; le codage privilégie la clarté



202 4 e |es tables

de I’algorithme plut6t que la concision. Si I’objet existe, la fonction fournit un poin-
teur sur 1’objet correspondant dans la table, sinon elle retourne NULL. La fonction
comparer() fournit O si les deux clés comparées sont égales.

// fournir un pointeur sur objetCherche,

// ou NULL si I"objet est absent

Objet* accesSequentiel (Table* table, Objet* objetCherche) {
int i = 0;
booleen trouve = faux;

while ( (i < table->n) && !trouve) {
trouve = table->comparer (objetCherche, table->element[i]) == O;
it (Itrouve) i++;

return trouve ? table->element[i] : NULL;

}

4.1.4.b Acces séquentiel avec sentinelle

On recopie (le pointeur de) I’objet cherché dans 1’élément n de la table (la premiere
entrée libre de la table). Il est alors inutile de tester si i < table->n dans la boucle
puisqu’on est siir de trouver 1’élément dans la table. Si on ne le retrouve pas avant
Ientrée n, c’est que I’élément n’est pas dans la table. Les éléments sont numérotés
de 0 a n-1. Une place doit étre gardée libre en fin du tableau lors de I’insertion des
éléments. On peut aussi dans ce cas allouer nMax+1 éléments lors du malloc() de
creerTuble().

// méthode de la sentinelle : fournir un pointeur sur objetCherche,
// ou NULL si I"objet est absent
Objet* accesSentinelle (Table* table, Objet* objetCherche) {
int i = 0;
booleen trouve = faux;

table->element [table->n] = objetCherche; // il doit rester une place
while (Itrouve) {

trouve = table->comparer (objetCherche, table->element[i]) == O;

if (Itrouve) i++;

}

return i < table->n ? table->element[i] : NULL;

}

4.1.4.c Evaluation de I'accés séquentiel

n étant le nombre d’éléments dans la table, il faut en moyenne (n+1)/2 acces a la
table pour retrouver un élément de la table. n acces sont nécessaires si 1’élément
n’est pas dans la table (élément inconnu).

Justification

Pour accéder auler élément : 1 acces
Pour accéder au 2¢ élément : 2 acces
Pour accéder au n® élément : n acces

Pour accéder une fois aux n éléments : 1+ 2 ..+ nacces soit:n(n+1)/2



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 203

donc : (n+1) /2 acces a la table en moyenne pour retrouver un élément de la table
(si les probabilités d’acces aux n éléments sont équiréparties).

On peut placer en téte de la table les éléments qui sont recherchés le plus souvent. Il
suffit de définir un compteur et de faire progresser en téte de la table les éléments le
plus souvent référencés. La recherche séquentielle dans une table en mémoire centrale
est suffisante si on a un nombre d’éléments inférieur a une trentaine d’éléments. Au-
dela, ’acces a un élément peut devenir long. Si la table est ordonnée, les recherches
infructueuses peuvent s’arréter avant la fin de la consultation de la table.

4.1.5 Acces dichotomique (recherche binaire)

4.1.5.a Principe

Pour appliquer cette méthode de recherche dichotomique, la table doit étre ordonnée
suivant les clés. La recherche s’apparente a une recherche dans un dictionnaire qu’on
ouvrirait en son milieu. Si le mot cherché est sur une des deux pages ouvertes, on a
trouvé, sinon si le mot est inférieur a celui du haut des pages présentées, il faut cher-
cher dans la premiere moitié du dictionnaire, sinon dans la seconde moitié. On recom-
mence la division en deux parties égales avec la moitié choisie.

Au début, le premier élément de la table est nommé gauche, le dernier droite. On
calcule I’élément du milieu = (gauche + droite)/2. Si milieu contient I’élément
cherché, on a trouvé, sinon, si I’élément cherché est inférieur a celui de milieu, il
faut recommencer la recherche avec la sous-table gauche:milieu-1 ; sinon I’élément
cherché est supérieur a celui du milieu, il faut chercher dans milieu+1:droite. Cette
fonction peut facilement s’écrire de maniere récursive.

Si on recherche Duf dans la table de la Figure 119, I’élément du milieu est en 7.
Duf est inférieur a Jea, il faut recommencer la recherche dans la sous-table 0:6.
L’élément du milieu de la sous-table est alors 3 qui contient 1’élément cherché et
donc ses caractéristiques.

Clé Infos

Gauche 0 | Bou Bouchard

1| Cab Cabon

2 | Cos Cosson

3 | Duf Dufour

4 | Dup Dupond

5 | Duv Duval

6 | Gau Gautier
Milieu 7 | Jea Jean

8| Leg Legoff

9 | Pet Petit

10 | Rab Raboutin

11 | Rob Robert

12 | Tan Tanguy

13 | Xav Xavier
Droite 14 | Zaz Zazou

Figure 119 Recherche dichotomique dans une table.



204 4 e |es tables

Evaluations

11 faut au maximum log,n acces a la table pour trouver un élément dans une table
de n éléments. Sin =16 =24, il faut log, 16, soit 4 accés maximum ; si n = 1024 =210,
il faut log,1024, soit 10 acceés maximum. D’une maniere générale, si n=2P est la
longueur de la table, il faut au maximum p acces a la table pour retrouver un élément.

La consultation dichotomique est conseillée si les phases de construction et de
consultation de la table sont séparées :

* 1 phase : construction de la table par insertion et tri,
* 2¢phase : consultation de la table par acces dichotomique.

Si insertion et recherche dans la table ne se font pas en deux phases distinctes, la
méthode perd de I’intérét car il faut retrier aprés chaque insertion.

4.1.5.b Dichotomie : version récursive

// dichotomie récursive
static Objet* dichotomie (Table* table, Objet* objetCherche,
int gauche, int droite) {
Objet* resu;
iT (gauche <= droite) {
int milieu = (gauche+droite) 7/ 2;
//printf ("%d %d %d\n", gauche, milieu, droite);

int ¢ = table->comparer (objetCherche, table->element[milieu]);
if (c==0) {
resu = table->element [milieu];
Yelseif (c<0) {
resu = dichotomie (table, objetCherche, gauche, milieu-1);
} else {
resu = dichotomie (table, objetCherche, milieu+l, droite);
¥
} else {

resu = NULL;
3

return resu;

// appel de la fonction récursive

Objet* dichotomie (Table* table, Objet* objetCherche) {
return dichotomie (table, objetCherche, 0, table->n-1);

¥

4.1.5.c Dichotomie : version itérative

L’algorithme récursif ci-dessus n’exécute qu’un seul appel récursif avec la premicre
ou la seconde sous-table. On n’a jamais besoin de revenir en arriere pour explorer
I’autre sous-table. La récursivité peut étre remplacée par une itération.

// fournir un pointeur sur objetCherche
// ou NULL si I"objet est absent
Objet* dichotomielter (Table* table, Objet* objetCherche) {
Objet* resu NULL ; // défaut
int gauche = 0;
int droite = table->n-1;
booleen trouve = faux;



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 205

while ( (gauche <= droite) && !trouve ) {
nt milieu = (gauche+droite) / 2;
nt ¢ = table->comparer (objetCherche, table->element[milieu]);
f (c=0){

resu = table->element [milieu];

trouve = vrai;
} else if (c < 0) {

droite = milieu-1;
} else {

gauche = milieu+l;

}

}

return resu;
¥

4.1.5.d Tri de la table

La méthode de tri bulle permet de trier la table en déplacant seulement les pointeurs
des objets de la table (voir Figure 118). La fonction comparer() (définie lors de
creerTable()) permet de trier les objets quelle que soit 1’application. Le tri bulle
range au ieme tour, en position i, le plus petit des restants non triés de i+1 a n.

// permuter les pointeurs des éléments nl et n2

static void permuter (Table* table, int nl, int n2) {
Objet* temp = table->element[nl];
table->element[nl] = table->element[n2];
table->element[n2] temp;

}

// tri bulle
void trierTable (Table* table) {
int n = IgTable(table);
for (int i=0; i<n-1; i++) {
for (int j=n-1; j>i; j--) {
Objet* objetl = fournirElement (table, j-1);
Objet* objet2 = fournirElement (table, j);
if (table->comparer (objetl, objet2) > 0) {
permuter (table, j-1, j);
}
}

b
¥

4.1.5.e Listage de la table

On peut lister le contenu de la table pour vérification en utilisant la fonction
toString() définie lors de creerTable().

void listerTable (Table* table) {
for (int i=0; i<lgTable(table); i++) {
Objet* objet = fournirElement (table, i); // ieme élément
printf ("%2d %s\n", i, table->toString (objet));
3
}



206 4 e |es tables

4.1.6 Le module des tables

4.1.6.a Le type Table
Le fichier d’en-téte table.h du module des tables est le suivant :
/* table.h gestion des tables */

#ifndef TABLE_H
#define TABLE_H

typedef int booleen;
#define faux O
#define vrai 1
typedef void Objet;

typedef struct {

int nMax; // nombre max. d"éléments dans la table

int n; // nombre réel d"éléments dans la table

Objet** element; // un tableau de pointeurs vers les objets

char* (*toString) (Objet*); voir § 1.5, page 33

int (*comparer) (Objet*, Objet*);
} Table;
Table* creerTable (int nMax, char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*));

Table* creerTable (int nMax);
void detruireTable (Table* table);

booleen insererDsTable (Table* table, Objet* nouveau);
int IgTable (Table* table);
Objet* fournirElement (Table* table, int n);

Objet* accesSequentiel (Table* table, Objet* objetCherche);
Objet* accesSentinelle (Table* table, Objet* objetCherche);
Objet* dichotomie (Table* table, Objet* objetCherche);
Objet* dichotomielter (Table* table, Objet* objetCherche);

void trierTable (Table* table);
void listerTable (Table* table);
#endif

Le corps du module table.cpp est donné ci-dessous. Il reprend les fonctions vues
précédemment.

// table.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "table.h"

// fournir la chaTne de caractéres de objet
// fonction par défaut
static char* toChar (Objet* objet) {
return (char*) objet;
3



© Dunod - La photocopie non autorisée est un délit.

4.1 » Cas général

207

// comparer deux chaTnes de caractéres
// fournit <0 si chl < ch2; 0 si chl=ch2; >0 sinon
// fonction de comparaison par défaut
static int comparerCar (Objet* objetl, Objet* objet2) {

return strcmp ((char*)objetl, (char*)objet2);

}

plus les fonctions vues précédemment : creerlable(), etc., listerTable().

4.1.6.b Menu de test des tables
Le programme pptable suivant est un programme de test du module des tables.

/* pptable.cpp programme principal de test des tables */

#include <stdio.h>
#include <stdlib.h>
#include ""table.h"
#include "mdtypes.h"

int menu O {
N\nLES TABLES\n\n");

- Fin du programme\n');
n");
- Création a partir d"un fichier\n");

n);

printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (
printf (

\
\
\
4

0
1
2
3
5
6
7

printf ("8 -
printf ("'\n");
printf (""Votre choix ? ");

int cod; scanf ("%d", &cod); getchar();
printf ("'\n");

return cod;

}

// lire un mot ou un nom dans le fichier fe;

Acces
Acces
Acces
Acces
Acces

// type Personne

voir 8 2.4.1, page 51

séquentiel a un élément\n™);

séquentiel avec sentinelle\n™);
dichotomique récursif\n');
dichotomique itératif\n");

au ieme élément\n");

Listage de la table\n");
Tri de la table\n");

void lireMot (FILE* fe, char* chaine) {

char c;

fscanf (fe, "%c', &c);

// passer les blancs avant le mot

while(C ( (c==" ") || (c=="\n") ) && !feof(fe) ) {
fscanf (fe, "%c', &c);

}

char* pCh = chaine;

le

ranger dans chaine

// enregistrer le mot dans chaine jusqu"a trouver un séparateur
while ( (c!=" ") && (c!'="\n") && Ifeof (fe) ) {

*pCh++

C;

fscanf (fe,

¥
*pCh = 0;

//printf ("lireMot :

"%c, &c);

%s \n", chaine);



208 4 e |es tables

void ecrirePersonne (Personne* p) { voir § 2.4.1, page 51
it (p!=NULL) printf (“personne : %s\n", toStringPersonne (p));

#if 0 // test n°l
void main () {
#define NMAX 20

Personne* pl
Personne* p2
Personne* p3
Personne* p4
Personne* p5

creerPersonne (“'aaaa', "aa");
creerPersonne (‘‘cccc’, "cc');
creerPersonne (“bbbb*, *"bb");
creerPersonne (‘“'eeee’, "ee");
creerPersonne (‘'dddd*, "dd™);

Table* table = creerTable (NMAX, toStringPersonne, comparerPersonne);
insererDsTable (table, pl);
insererDsTable (table, p2);
insererDsTable (table, p3);
insererDsTable (table, p4);
insererDsTable (table, p5);

printf ("listerTable\n");
listerTable (table);

// la personne cherchée de clé "cccc"

Personne* cherche = creerPersonne (‘‘cccc', "?");
Personne* trouve;

trouve = (Personne*) accesSequentiel (table, cherche);
ecrirePersonne (trouve);

trouve = (Personne*) accesSentinelle (table, cherche);
ecrirePersonne (trouve);

trierTable (table);

//printf (“listerTable triée\n");

//listerTable (table);

trouve = (Personne*) dichotomieRec (table, cherche);
ecrirePersonne (trouve);

trouve = (Personne*) dichotomielter (table, cherche);
ecrirePersonne (trouve);

}

#else // test n°2

// lire le nom (la clé) d"une personne

Personne* lireNom (Table* table) {
Personne* cherche = new Personne();
printf ("'Clé (nom) de la personne ? "™);
scanf ("'%s'", cherche->nom); getchar();
return cherche;

}

void main ) {
#define NMAX 20
Table* table = creerTable (NMAX, toStringPersonne, comparerPersonne);
Personne* trouve = NULL;
int choix;

booleen fini = faux;



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 209

while (Ifini) {

switch (choix = menu(Q)) {

case 1 : { // On pourrait lire le nom du fichier
FILE* fe = fopen (“'personnes.dat", "r");
ifT (fe==NULL) {
perror (“‘Ouverture™);
} else {
while (Ifeof (fe) ) {
Personne* nouveau = new Personne();
lireMot (fe, nouveau->nom);
lireMot (fe, nouveau->prenom);
booleen resu = insererDsTable (table, nouveau);
if (Tresu) {
printf (“'Débordement table\n');
¥

3

fclose (fe);
3
} break;

case 2 : {
printf (“'Recherche séquentielle\n™);
Personne* cherche = lireNom (table);
trouve = (Personne*) accesSequentiel (table, cherche);
} break;

case 3 : {
printf (“'Recherche séquentielle (sentinelle)\n™);
Personne* cherche = lireNom (table);
trouve = (Personne*) accesSentinelle (table, cherche);
} break;

case 4 : {
printf (“'Recherche dichotomique récursive\n");
Personne* cherche = lireNom (table);
trouve = (Personne*) dichotomie (table, cherche);
} break;

case 5 : {
printf (“'Recherche dichotomique itérative\n);
Personne* cherche = lireNom (table);
trouve = (Personne*) dichotomielter (table, cherche);
} break;

case 6 : {
printf ("Numéro de 1"élément recherché ? ");
int i; scanf ("%d", &i); getchar();
trouve = (Personne*) fournirElement (table, 1);
ifT (trouve==NULL) {
printf ("Element numéro:%d inconnu\n", i);

} else {

ecrirePersonne (trouve);
b

} break;



4 e |es tables

210
case 7 :
listerTable (table);
break;
case 8 :
trierTable (table) ;
break ;
} /7 switch
if ( (choix >= 2) && (choix <=5) ) {
if (trouve == NULL) {
printf (“'personne inconnue\n');
} else {
ecrirePersonne (trouve);
3
3
if (Ifini) {
printf ("\nTaper Return pour continuer\n');
getchar();
3
} /7 while
detruireTable (table);
¥
#endif

4.1.7 Exemples d’application des tables

4.1.7.a Table de noms de personnes

Le fichier de données personnes.dat suivant est utilisé a titre d’exemple dans le
choix 1 du menu précédent. Ce fichier doit étre trié si on veut tester la recherche
dichotomique. Pour le premier élément de la table, Bouchard est la clé ; celle-ci doit

étre unique (nom de login par exemple).

Bouchard Jacques
Cabon Amélie
Cosson Sébastien
Dufour Georges
Dupond Marie
Duval Matisse
Gautier Renée
Jean Robert
Legoff Yann
Petit Albert
Raboutin Corentin
Robert Michel
Tanguy Monique
Xavier Roland
Zazou Chantal

Exemples de résultats :

LES TABLES

0 - Fin du programme

1 - Création a partir d’un fichier

A



© Dunod - La photocopie non autorisée est un délit.

4.1 * Cas général 211

- Acces séquentiel a un élément

- Acces séquentiel avec sentinelle
- Accés dichotomique récursif
Accés dichotomique itératif

- Acces au ieme élément

- Listage de la table

- Tri de la table

Votre choix ? 4

Recherche dichotomique récursive

W N O 0o B~ WN
|

Clé (nom) de la personne ? Gautier
personne : Gautier Renée

4.1.7.b Table de noms de polynémes

Dans I’application sur les polyndmes utilisant les listes (voir § 2.4.3.c, page 58), le
programme principal de test ne gere qu’un seul polyndme pointé par po. Pour
donner plus de généralité a ce programme, il faudrait créer une table contenant, pour
chaque polynome, le nom choisi par I'utilisateur, et la téte de la liste des monomes.
1l faut déclarer un objet de type NomPoly, structure contenant le nom du polynome
et sa téte de liste.

Le programme de test de 1’acces a la table peut s’écrire comme suit. Il faudrait
développer un menu, ou mieux une interface graphique. Ce programme illustre
bien la nécessité de découper une application en modules réutilisables. Le
programme utilise le module des polyndmes (creerMonome(), creerPolynome(),
insererEnOrdre(), listerPolynome(), voir § 2.4.3.b, page 57), et le module des
tables (type Table, creerTable(), insererDsTable(), dichotomie()).

lesfs ] os[ 2| /|

P2

Figure 120 Table des noms de polynémes (P1(x) = 2.5 x3 + 0.5 x2?)
(sans les détails de I'implémentation).

La figure 120 indique les détails de I’implémentation de la table. L’utilisateur du
module n’a pas besoin d’avoir conscience de tous ses détails. Il utilise seulement les
fonctions de gestion des tables ou des listes.



212

4 e |es tables

nMax n element

type Liste

type Monome
coefficient exposant

25] 3 |

[05] 2 |

type Table

' A
type NomPoly \
> v
p1 A;? I e N
/7 nom po
0 =
! N liste
p2 ——> des monémes de p2

Figure 121 Détails de I'implémentation de la table.

// tablepolynome.cpp

#include <stdio.h>
#include <string.h>
#include "polynome.h"
#include "table.h"

vo
Vo

r
ir

§2.4.3
§ 4.1.6

.a, page 56
.a, page 206

// chaque élément de la table repére un objet de type NomPoly

typedef struct {
char nom[10];
Polynome* po;

3} NomPoly; // nom du polyndme

NomPoly* creerNomPoly (char* nom) {
NomPoly* nomPoly = new NomPoly();

strcpy (nomPoly->nom, nom);
nomPoly->po = creerPolynome();

return nomPoly;

}

// liste ordonnée

// écriture et comparaison des noms de polynémes (table)
char* toStringPoly (Objet* objet) {
NomPoly* nomPoly = (NomPoly*) objet;

return nomPoly->nom;

}

int comparerPoly (Objet* objetl, Objet* objet2) {

NomPoly* nomPolyl =
NomPoly* nomPoly2 =

}

(NomPoly*) objetl;
(NomPoly*) objet2;
return strcmp (nomPolyl->nom, nomPoly2->nom);



© Dunod - La photocopie non autorisée est un délit.

4.2 e Variantes des tables 213

// ajouter un nom de polynéme dans la table
void creerEntree (Table* table, char* nom) {
NomPoly* nomPoly = creerNomPoly(nom);
int resu = insererDsTable (table, nomPoly);
if (resu) printf (“'Débordement de table\n");
}

void main ) {
#define NMAX 10
Table* table = creerTable (NMAX, toStringPoly, comparerPoly);

// insérer des noms de polynémes dans la table des polynémes
creerEntree (table, "pl™);

creerEntree (table, ""p2™);

creerEntree (table, ""p3™);

trierTable (table);

listerTable (table);

// retrouver dans la table un polynéme a partir de son nom
NomPoly* objetCherche = new NomPoly();
strcpy (objetCherche->nom, "'p2');
NomPoly* trouve = (NomPoly*) dichotomie (table, objetCherche);
if (trouve == NULL) {

printf (""%s inconnu\n', "p2");
} else {

printf (“"trouve : %s\n", table->toString (trouve));

// insérer des mondmes au polynéme p2 en ordre décroissant
Monome* nouveau = creerMonome(3, 3);

insererEnOrdre (trouve->po, nouveau);

nouveau = creerMonome(2, 2);

insererEnOrdre (trouve->po, nhouveau);

nouveau = creerMonome(4, 4);

insererEnOrdre (trouve->po, nouveau);

printf ('Polynbme %s : ", "p2");
listerPolynome (trouve->po); // lister le polyn6éme de nom p2
printf ('\n");

}
}
Exemple de résultats :
0 p1
1 p2
2 p3

trouve : p2
Polynéme p2 : +4.00 x**4 +3.00 x**3 +2.00 x**2

4.2 VARIANTES DES TABLES

4.2.1 Rangement partitionné ou indexé

Si la table est sur disque, on peut fractionner la table en sous-tables de facon a
limiter les acces disque. La premicre sous-table dite table majeure est amenée en
mémoire centrale lors de I’ouverture du fichier. Les sous-tables sont ordonnées. Si



214 4 e |es tables

chaque sous-table contient 400 éléments (clé + pointeur de sous-table), on peut
accéder a 160 000 éléments avec seulement 2 niveaux de table (voir Figure 122). La
recherche a partir d’une clé demande une recherche dans la table majeure pour iden-
tifier quelle sous-table est concernée par 1’élément cherché, une lecture de la sous-
table de disque en mémoire centrale, une recherche dans la sous-table, et un acces
direct au fichier de données. Le nombre de niveaux de sous-tables doit rester faible.
Les recherches dans les sous-tables ordonnées peuvent étre dichotomiques. On
retrouve la partie tables d’index et la partie fichier de données. Cette structure
conviendrait par exemple pour un dictionnaire du francais de 100 000 mots (et leurs
définitions) ou il n’y a ni ajout ni retrait a faire.

Exemple :

amiral Fichier de données

bassin
chaud

deux

deux | ——|entre

pépin fourmi |3 |--------!
zéro golf

pépin

0

1 |amiral
2 |deux
3

4

N[y —

fourmi

profit
rapide
sel
zéro

Figure 122 Arbre de tables d’index et fichier de données.

Séquentiel indexé

Si on doit faire des ajouts et des retraits, on peut ne remplir que partiellement les
sous-tables de facon a laisser de la place pour les insertions. De toute facon, il faut
prévoir une zone commune de débordement des sous-tables, avec chalnage des
éléments débordant d’une méme sous-table. Lorsqu’il y a trop d’éléments en zone
de débordement, on peut réorganiser enticrement les tables d’index.

Une autre méthode, plus souvent utilisée maintenant, consiste a utiliser les tech-
niques des B-Arbres (voir § 3.5, page 182). Les tables d’index constituent un arbre
n-aire qui peut étre géré comme un B-Arbre. Lorsqu’une sous-table est pleine, elle
éclate en deux sous-tables. Si une sous-table ne contient plus assez d’éléments, elle
fusionne avec une sous-table voisine. Il n’y a alors pas besoin de zone de déborde-
ment.

Avec cette technique, on peut accéder directement a une clé en utilisant les index
mais on peut également parcourir les éléments séquentiellement.



© Dunod - La photocopie non autorisée est un délit.

4.2 e Variantes des tables 215

4.2.2 Adressage calculé

L’évaluation d’une expression arithmétique peut dans certains cas donner directe-
ment le rang dans la table de I’élément cherché. Cela est possible lorsque la clé est
structurée en sous-classes de tailles égales.

Exemple 1 : emploi du temps d’un établissement scolaire

On mémorise I’emploi du temps dans une table (en mémoire centrale ou sur disque)
ce qui permet de faire des interrogations sur un enseignement particulier. Il y a cours
du lundi (jour 1) au vendredi (jour 5). Il y a 8 groupes d’étudiants numérotés : Al,
A2,B1,B2,Cl1,C2, D1, D2. 1l y a4 plages horaires numérotées : 1 de 8h-10 h, 2 de
10h-12h, 3 de 14h-16h, 4 de 16h-18h. Cet emploi du temps peut étre schématisé
comme indiqué sur la Figure 123 ou les éléments sont rangés dans 1’ordre jour,
groupe, tranche horaire.

0 1 31 159

Numérodujour [ 1T [T [T [T [T [1T[1]1 11111 112

Groupe |A|AJA|AJAJATA|A D(D|D| D |A

1111111121222 212122 |1

Tranche horaire | 1 |23 |4 | 1|2 |3 |4 112134 |1
Numéro
enseignant
Numéro de
matiére

Numéro de salle

Figure 123 Table de I'emploi du temps.

La clé se constitue de la concaténation des numéros de jour, de groupe et de
tranche horaire. Les numéros d’enseignant, de matiere enseignée et de salle consti-
tuent la partie informations recherchées.

Exemple de recherche :

Comment retrouver les caractéristiques du cours du groupe A2 du mardi de 14h a
16h ? Si les indices commencent a 0, la clé se constitue de J=1 (2¢ jour), G=1 (2¢
groupe), T=2 (3¢ tranche horaire). Le rang est donné par I’équation suivante : rang =
J*32 + G*4 + T soit 38. 1l suffit d’accéder au 38¢ élément pour retrouver les carac-
téristiques du cours.

Si la table est en mémoire centrale, on accede a I’entrée 38 du tableau. Cepen-
dant, dans ce cas, on peut également considérer la table comme un tableau a 3
dimensions et accéder a un élément en donnant les indices J, G et T, laissant au



216 4 e |es tables

compilateur le soin de faire la conversion. Le programme ci-dessous permet de
vérifier les 2 acces possibles. Les valeurs des numéros de jour, de groupe et de
tranche horaire ne sont pas mémorisées dans la structure de type cours car elles
sont implicites du fait de la séquentialité des valeurs (inutile de mémoriser les
indices pour un tableau).

/* emploiDuTemps.cpp tableau en mémoire centrale */
#include <stdio.h>

typedef struct {
int nens; // numéro d’enseignant
int nmat; // numéro de matiere
int nsal; // numéro de salle

} Cours;

#define Mardi 1
#define GrpA2 1
#define TrCh3 2

#define MAXJOUR 5 // Nombre max de jours
#define MAXGROU 8 // Nombre max de groupes
#define MAXTRAN 4 // Nombre max de tranches horaires

void main ) {
Cours epl [MAXJOUR][MAXGROU][MAXTRAN];
char* nomEns[] {''Dupont', "‘Duval", ""Dufour"};
char* nomMat[] {""Maths'", "Anglais', "Histoire'"};
char* nomSal[] {"Amphi*, "1115", ""M210""};

// initialisation (partielle) du tableau
Cours P = {1, 1, 2};
epl [Mardi][GrpA2][TrCh3] = P;

// recherche dans le tableau 1lére méthode

printf (''\n%s ", nomEns [epl [Mardi][GrpA2][TrCh3].nens]);
printf ("%s ', nomMat [epl [Mardi][GrpA2][TrCh3].-nmat]);
printf ("%s ', nomSal [epl [Mardi][GrpA2][TrCh3].nsal]);

// recherche dans le tableau 2iéme méthode
Cours* debTab = (Cours*) epl;

// 1*8*4 + 1*4 + 2 = 38

printf ("'\n%s ", nomEns [debTab[38].nens]);
printf ("%s ', nomMat [debTab[38].nmat]);
printf ("%s ', nomSal [debTab[38].nsal]);

}

Exemple 2 : fichier étudiants

Dans un établissement universitaire, il y a 3 départements (1:D1, 2:D2, 3:D3).
Chaque département a deux promotions (1™ et 2¢ année) d’au plus 160 étudiants. Un
étudiant est caractérisé par son numéro de département, sa promotion et son numéro
dans la promotion. Les étudiants pourraient étre rangés par département, par promo-
tion et numéro dans la promotion comme ’indique la Figure 124. Cependant, il y a
perte de place (en grisé sur la figure) puisqu’il faut alors réserver 160 places par
promotion, méme si le nombre d’étudiants est inférieur. L’acces est rapide, au détri-



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 217

ment de 1’espace mémoire occupé. Si les nombres d’étudiants sont tres variables
d’une promotion a I’autre, cette méthode n’est pas envisageable.

D1

A

D2 D3

A4
A
A4
A
Y

1 160 1 160 1 160 1 1601 1601 160
Figure 124 Table des étudiants (fichier en accés direct).

Le rang d’un étudiant connaissant son département D (de 1 a 3), sa promotion P
(de 1 a 2) et son numéro dans la promotion N (de 1 a 160) est rang = (D-1) * 320 +
(P-1) * 160 + N-1. Le premier étudiant a le rang 0.

4.3 ADRESSAGE DISPERSE, HACHAGE, HASH-CODING

4.3.1 Définition du hachage

Comme pour I’adressage calculé (voir § 4.2.2), il s’agit d’effectuer un calcul sur la
clé qui doit indiquer la position de I’élément dans la table. Cependant, la fonction de
calcul n’est plus injective ; deux clés différentes peuvent prétendre a la méme place
dans la table. Il faut donc arbitrer les conflits et définir une place pour tous les
éléments. Le méme calcul permet ensuite de retrouver un élément déja rangé dans la
table pour obtenir ses caractéristiques. Dans cette méthode, les éléments ne sont pas
ordonnés dans la table.

Sur la Figure 125, a partir de la clé x, on définit une fonction h(x) qui engendre
une valeur représentant le rang (I’indice) de cet indicatif dans la table ou dans le
fichier. Il se peut que pour une autre clé x’, la fonction h(x”) fournisse la méme place
que pour h(x). X’ est appelé synonyme de x ; on dit encore qu’il y a collision entre x
et x’. Il faut trouver une autre place pour x’. Ainsi, si h("Dupond") vaut 25,
"Dupont" est rangé a I’entrée 25 dans la table. Suivant la fonction h(x), il se peut que
h("Duval") vaille également 25, d’ou le conflit a résoudre.

- la fonction h n’est pas injective

0 .
x h(x) —x est rangé en h(x)
x' est appelé synonyme de x
x' est en collision avec x
— il faut trouver une nouvelle place pour x’ :
X h(x) c’est la résolution des collisions.
N-1

Figure 125 Principe du hachage.



218 4 e |es tables

h(x) fournit un rang dans la table compris entre O et N-1 pour I’insertion et pour
la recherche de x. h(x) doit produire, a partir des différents x théoriquement possi-
bles, des classes 0, ..., N-1 a peu pres égales en nombre ; c’est-a-dire que les classes
h(x) doivent étre équiréparties méme si les x ne le sont pas. S’il peut y avoir poten-
tiellement C clés différentes, chaque entrée h(x) doit pouvoir en représenter C/N.
Enfin, la fonction doit étre rapide a calculer.

Afin de réduire les collisions, la table doit étre plus grande que le nombre
d’éléments a enregistrer (environ 2 fois plus). La aussi, il y a perte de place mémoire
en vue d’accélérer ’acces.

Remarque : pour mieux illustrer les problémes et leurs solutions sur les
exemples suivants, les tailles des tables sont faibles (une vingtaine voire une
cinquantaine d’entrées au plus). Dans la réalité, la méthode s’applique plutot
avec des ensembles de taille moyenne (milliers d’éléments) ou grande
(centaines de milliers). Cependant, le principe reste le méme.

4.3.2 Exemples de fonction de hachage

On effectue sur la clé des opérations arithmétiques et logiques qui produisent un
nombre place compris entre O et N-1 (N : longueur de la table ou du fichier). S’iln’y a
pas de collision (I’entrée place est libre), ce nombre permet de ranger la clé et ses
caractéristiques dans I’entrée place de la table. Le méme calcul permet de la retrouver
en place. Quelques exemples de fonctions de hachage sont indiqués ci-dessous.

4.3.2.a Somme des rangs alphabétiques des lettres

h(x) = somme des rangs alphabétiques des lettres de x modulo N.
Exemple : h ("Dupond") ?
La somme des rangs alphabétiques (‘a":1, ..., 'z":26) des lettres de Dupond est :

4421+16+15+14+4 = 74. Si la taille de la table est N = 64, 74 modulo 64 vaut 10,
entrée attribuée a "Dupond" dans la table de 64 éléments.

Avec 10 caracteres, la somme vaut au plus 260 pour “zzzzzzzzzz”. On ne peut donc
gérer de grands volumes de données avec cette fonction qui est peu utilisée dans la
pratique mais illustre bien le principe du hachage du point de vue pédagogique.

// somme des rangs alphabétiques des lettres de cle, modulo n
int hashl (char* cle, int n) {
int som = 0O;
for (int i=0; i<strlen (cle); i++) {
if (isalpha (cle[i]) ) som += toupper (cle[i]) - "A" +1;
3

return som % n;

}
Exemple d’appel : hashl ("Dupond", 64); fournit 10.



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 219

4.3.2.b Addition des représentations binaires

On additionne la représentation binaire des caracteres du mot, éventuellement en
neutralisant minuscules et majuscules.

Exemple :
h (“Dupond”) = ‘D’ + ‘0’ + p’ + ‘0" + ‘n’ + ‘d’ vaut 618. On se ramene dans
I’intervalle 0..N-1 par modulo N : 618 modulo 64 vaut 42 ; h (“Dupond”) = 42.
// somme des codes ascii des lettres de cle, modulo n
int hash2 (char* cle, int n) {
int som = 0;
for (int i=0; i<strlen(cle); i++) som += cle[i];
return som % n;

}
Appel : hash2 ("Dupond", 64); fournit 42

4.3.2.c Méthode de la division

Cette méthode est la plus utilisée. Elle consiste a diviser la clé par la longueur N de
la table et a considérer comme entrée, le reste de la division. N ne doit pas étre quel-
conque : une division par 1 000 fournirait toujours les 3 derniers chiffres de la clé.
Une division par 2" consisterait a isoler les n derniers éléments binaires de la clé. Si
N est un nombre premier, les différentes clés sont mieux réparties sur les diverses
entrées de 0 a N-1 de la table.

Exemple :

Soit un fichier contenant 500 articles numérotés entre 000 000 000 et 999 999
999. La fonction de hachage h(x) = x modulo 997 (reste de la division par 997)
fournit un h(x) compris entre 0 et 996 : 0 <= h(x) <= 996. Pour la clé 568419452,
I’entrée est 568419452 divisée par 997 qui a pour reste 839.

// méthode de la division

int hash3 (long cle, int n) {
return cle % n;

}
Appel : hash3 (568419452, 997); fournit 839.

4.3.2.d Changement de base

Soit un fichier de 500 articles et une table de 1 000 entrées. On considere que la clé
est écrite en base 11 ; on la convertit en base 10 et on isole les trois derniers chiffres.
Que vaut h (406327) ?
4x115+6x113+3x112+42x 11 +7= 652582
On isole les 3 derniers chiffres 582 pour avoir un nombre entre 000 et 999. Le
hash-code de h(406327) est 582.

// fonction récursive de conversion en base 10 du nombre n en base 11
long basell (long n) {
long g = n / 10; // quotient



220 4 e |es tables

long r = n % 10; // reste
it (g==0) {
return r;
} else {
return basell(q)*11+r;
¥

}

int hash4 (long cle, int n) {
return basell (cle) % n;

by
Appel : hash4 (406327, 1000); fournit 582.

4.3.3 Analyse de la répartition des valeurs générées
par les fonctions de hachage

Remarques sur les fonctions de hachage : on peut envisager des opérations tres
diverses : extraire du nombre ou de la chaine de caracteres, un certain nombre
d’éléments binaires que 1’on concatene pour former un nouveau nombre ; élever la clé
au carr€ et isoler un certain nombre d’éléments binaires, etc. Il faut seulement veiller a
accéder a toutes les entrées de maniere équirépartie. Si la fonction de hachage ne
génere par exemple que des nombres pairs, une entrée sur deux de la table ne sera
jamais sollicitée pour enregistrer une clé. Le nombre de collisions augmentera donc.

Les fonctions de hash-code hash1(), hash2() et une variante de hash1() appelée
hash11() sont testées sur un fichier de 107 noms répartis dans une table de longueur
170 entrées.

La fonction hash1() (somme des rangs alphabétiques des caracteres) n’est pas équi-
répartie. La fonction génere plus de valeurs de hash-code entre 50 et 100 sur I’exemple
des 107 noms. Cinqg noms ont pour hash-code 72 (Bouchard, Brunel, Etienne, Seznec,
Tsemo). De méme cinq noms ont pour hash-code 83. Par contre, aucun nom ne génére
de hash-code entre 0 et 26, et seuls deux noms générent une valeur > 130.

3
/ — hasht

| L
J .

17 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115 121 127 133 139 145 151 157 163 169

La fonction hash2() (somme des codes ascii des caracteres) génere des valeurs
mieux réparties sur I’ensemble des 170 entrées. Il y a au plus, sur ’exemple, 3
prétendants pour une entrée.



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding

221

[

L AR

17 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115 121 127 133 139 145 151 157 163 169

La fonction hash11() consiste a faire la somme modulo n des rangs des caracteres
alphabétiques et a multiplier ce rang par 97 fois I'indice du caractere. La dispersion
est meilleure que pour hash1() sur I’ensemble des 170 entrées. Pour Dupond,

rang de d plus 1 fois 97 +
rang de u plus 2 fois 97 + etc.

/AN
NSEEEANOL AL

17 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103109 115121 127 133 139 145 151 157 163 169

—

4.3.4 Résolution des collisions

La clé x est rangée a ’adresse h(x) si I’entrée h(x) est libre. Si I’entrée est occupée,
x est un synonyme, il faut chercher une autre entrée pour x : cette procédure

s’appelle « résolution des collisions ». Il y a 2 variantes :

— la nouvelle entrée est donnée par une nouvelle fonction de résolution r(i), ou i
désigne la ieéme tentative de résolution. L’entrée a tester pour la ieéme tentative est

donc (N est la longueur de la table ; les entrées sont numérot
+ (i) ) modulo N.

éesdeOaN-1): (h(x)

— la nouvelle entrée est donnée par un chainage qui fait référence a un élément :

— d’une table spéciale regroupant les synonymes,
— ou de la méme table.



222 4 e |es tables

4.3.5 Résolution a l'aide d'une nouvelle fonction

La nouvelle fonction doit permettre de tester une et une seule fois, les différentes
entrées de la table.

4.3.5.a Résolution r(i) = i

On cherche séquentiellement a partir de h(x), une entrée libre.

Exemple :

Soient les éléments suivants a insérer dans une table de N=26 entrées (de 0 a 25)
et leur hash-code.

éléments : €, € € € € € € €5 €

hash-code: 0 0 2 0O 3 9 9 25 25

Si I’entrée h(x) est occupée, il faut effectuer une ou plusieurs tentatives de résolu-
tion jusqu’a trouver une entrée libre. i indique la ieme tentative de résolution. On
effectue le calcul suivant : ((h(x) + i) modulo N) avec N = 26. Pour el, la place 0 est
disponible, el est rangé en 0. e2 devrait étre en 0 mais la place est déja prise. On
effectue une premiere tentative de résolution (i=1) en calculant (h(x)+i) modulo 26,
soit (0 + 1) modulo 26, soit 1. La clé e2 est rangée en 1, etc.

0 1 2 3 4 5 6 7 8 9 10 .. 24 25
el e2 | e3 | ed4 | e5 | €9 e6 | e7 e8
0 0 2 0 3 25 9 9 25

e9 devrait étre en 25, la place est prise par e8 rangé avant e9. On effectue les
tentatives suivantes :

i=1 25+1) mod 26 soit 0 occupé
i=2 25+2) mod 26 soit 1 occupé
1i=3 25 +3) mod 26 soit 2 occupé
i=4 25 +4) mod 26 soit 3 occupé
i=5 25 +5) mod 26 soit 4 occupé
i=6 (25+6) mod 26 soit 5 libre

La 6¢ tentative permet de trouver une entrée libre pour €9 qui est rangé dans
I’entrée 5. Le nombre de collisions augmente au fur et a mesure que la table se
remplit. Il peut se produire des points d'accumulation du fait que la résolution essaie
de ranger sur les entrées qui suivent I’entrée indiquée par la fonction de hachage
comme le montre le tableau précédent : il y a 3 prétendants pour la place 0 en début
de table. Les valeurs de hash-code sont indiquées sur le schéma pour vérification ;
elles ne sont pas mémorisées dans la table. La fonction resolution1() calcule I’entrée
a essayer pour un hash-code H dans une table de longueur N pour la ieéme tentative.

// résolution r(i) =i
int resolutionl (int h, int n, int i) {
return (h+i) % n;

}



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding

223

La séquence suivante fournit les entrées a essayer (jusqu’a trouver une entrée
libre) pour un hash-code H=2 dans une table de longueur N=26 (entrées de 0 a 25).
Les entrées suivant H=2 sont essayées successivement en considérant la table
comme circulaire ; le suivant de ’entrée 25 est I’entrée 0. Toutes les entrées sont
testées une et une seule fois jusqu’a trouver une entrée libre. Si aucune entrée libre
n’est trouvée, c’est que la table est pleine.

// résolution séquentielle r(i) =i

for (i=1;

i<=25;

i++) {

printf ("%3d", resolutionl (2, 26, i) );

Résultats :
3456789 10 11 13 14 15 16 17 18 19 20 21 22 23 24
2501 2

Nombre d’acces a la table pour retrouver un élément :

1:el,e3,e6,e8; 2:e2,e5,e7;, 4:ed; 7T:e9.

4.3.5.b Résolutionr (i) =K * i

On essaie de disperser les points d’accumulation en éloignant les synonymes de K
entrées les uns des autres. La fonction de résolution est donc : r (i) = K *i. Lors de
la ieme tentative, I’entrée a essayer est donnée par (h(x) + K * i) modulo N. K et N
doivent étre premiers entre eux : ils ne doivent avoir que 1 comme diviseur commun.

Exemple :

Ranger les identificateurs de I’exemple précédent avec K =5 et N = 26. 5 et 26
sont premiers entre eux (pas de diviseur commun).

éléments : e, € € € € € € e €
hash-code: 0 0 2 0 3 9 9 25 25
0o 1 2 3 4 5 6 7 8 9 10 14 15 .. 25
el e3 | e5 | e9 | e2 e6 | ed e7 e8
0 2 3 25 0 9 0 9 25
pour eq
h(x) + K *1i modulo N
i=1 25 +5%*%1 modulo 26 soit 4 libre

La clé e9 est rangée dans I’entrée 4.

// résolution r(i) = k*i
int resolution2 (int h, int n, int i) {

int k = 5; // ou par exemple,
return (h+k*i) % n;

}

le premier avec n qui précéde n

Sur I’exemple, on diminue les points d’accumulation en début de table. Si la table
est de longueur N, la résolution doit permettre de tester toutes les entrées une fois et



224 4 e |es tables

une seule fois (donc générer des nombres de 0 a N-1). La séquence suivante fournit
les entrées a essayer (jusqu’a trouver une entrée libre) pour un hash-code H=2 dans
une table de longueur N=26 entrées (de 0 a 25), en progressant de K=5 entrées a
chaque tentative.

// résolution par pas de K, K=5 et N=26 premiers entre eux
for (i=1; i<=25; i++) {

printf ("%3d", resolution2 (2, 26, i) );
3

Pour un hash-code H=2, les entrées sont essayées une et une seule fois dans
Iordre : 7,12,17,22,1, 6, 11, 16, 21, 0, 5, 10, 15, 20, 25, 4, 9, 14, 19, 24, 3, 8, 13,
18, 23. On progresse de 5 en 5 circulairement.

Nombre d’acces a la table pour retrouver un élément :
1:el,e3,e5,e6,e8; 2:€2,e7,e9; 3:ed.

K et N doivent étre premiers entre eux, sinon, toutes les entrées ne sont pas
essayées. La séquence suivante fournit les entrées a essayer (jusqu’a trouver une
entrée libre) pour un hash-code H=2 dans une table de longueur N=10 entrées
(numérotées de 0 2 9), en progressant de K=5 entrées a chaque tentative. K et N ont
un diviseur commun 5.

// résolution avec K=5 et N=10 non premiers entre eux
for (i=1; i<=9; i++) {

printf ("%3d", resolution2 (2, 10, i) );
}

Pour un hash-code H=2, seules les entrées 7 et 2 sont essayées. La séquence
généréeest:7,2,7,2,7,2,7,2,7.

4.3.5.c Résolution quadratique r(i) =i * i (N : nombre premier)

On progresse suivant le carré de i, iéme tentative pour trouver une place pour un
élément en collision. La fonction resolution3() fournit I’entrée a essayer pour un
élément de hash-code H dans une table de longueur N, lors de la ieme tentative. N
doit étre un nombre premier.

Exemple
Ranger les identificateurs de I’exemple précédent (table de longueur N = 29).
éléments et leur hash-code.

el e2 e3 ed4d e5 e6 e7 e8§ e9 ell

o 0 2 0 3 9 9 25 25 25

o 1 2 3 4 5 6 7 8 9 10 11 .. 15 .. 25 26 27 28
el |e2|e3|e5|ed|ell e6 | e7 e8 | e9
O|l0| 2 |3]|0]25 919 25| 25




© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 225

pour ey

h(x) +1*1 modulo N
i=1 25 +1*1  modulo 29 soit 26 occupé
i=2 25 +2%*2  modulo 29 soit 0 occupé
i=3 25 +3%3  modulo 29 soit 5 libre
La clé el0 est rangée dans I’entrée 5.

// résolution r(i) = i*i

int resolution3 (int h, int n, int i) {
return (h+i*i) % n;

b

La boucle suivante permet de calculer les différentes entrées essayées pour un
élément de hash-code H=2 dans une table de longueur N=29.

// résolution quadratique en i*i
for (i=1; i<=28; i++) {

printf ("%3d", resolution3 (2, 29, i) );
¥

Résultats de la boucle précédente :

3, 6, 11, 18, 27, 9, 22, 8, 25, 15, 7, 1, 26, 24, 26, 7,
1, 15, 25, 8, 22, 9, 27, 18, 11, 6, 3

Les résultats montrent que seulement la moitié€ de la table peut étre accédée car la
séquence générée est symétrique par rapport a I’élément du milieu 24. Ceci peut étre
démontré mathématiquement. Si N est grand, ’accés a seulement la moitié des
éléments de la table pour loger un nouvel élément n’est pas réellement pénalisant.

Nombre d’acces a la table pour retrouver un élément :
1:el,e3,e5,e6,e8; 2:e2,e7,e9; 3:ed; 4:elO.

4.3.5.d Résolution pseudo-aléatoire (N : puissance de 2)

L’idée reste la méme de disperser les synonymes sur toute la table, mais en évitant
les régularités comme précédemment ou les synonymes sont répartis de K en K
entrées ou d’un pas variable dépendant du carré de i. On fait appel a un générateur
de nombres pseudo-aléatoires r(i) = aleat(i) compris entre 1 et N-1, générés une et
une seule fois, de facon a répartir les synonymes sur toute la table et éviter les points
d’accumulation. La séquence est pseudo-aléatoire, car c’est toujours la méme
séquence (pour une longueur de table N donnée) pour ranger I’identificateur et pour
le retrouver. La longueur de la table doit étre une puissance de 2.

Exemple:

La séquence r(i) suivante est générée par le générateur de nombres pseudo-aléa-
toires pour N=16:1, 6, 15, 12, 13,2, 11, 8,9, 14, 7,4, 5, 10, 3

ranger les éléments : el e2 e3 e4 e5

hash-code : 1 0 2 1 1



226 4 e |es tables

e2 el e3 e4 e5

pour e4 h (x) + r (i) modulo 16

i= 1+1 modulo 16 soit 2 occupé

1=2 1+6 modulo 16 soit 7 libre pour e4
pour e5 h (x) +r (1) modulo 16

i=1 1+1 modulo 16 soit 2 occupé

i=2 1+6 modulo 16 soit 7 occupé

i=3 1+15 modulo 16 soit 0 occupé

1=4 1+12 modulo 16 soit 13 libre pour e5

Nombre d’acces a la table pour retrouver un élément :
1:el,e2,e3; 3:e4; 5:e5.

Le programme suivant permet de générer une et une seule fois des nombres
pseudo-aléatoires compris entre O et N-1. relnit est vrai s’il faut réinitialiser le géné-
rateur de nombres pseudo-aléatoires, ¢’est-a-dire recommencer la séquence.

// fournit une et une seule fois des nombres pseudo-aléatoires
// entre 0 et n-1 inclus
// programme donné sans démonstration (pour test)
// n doit étre une puissance de 2 (4, 8, 16, ..., 256, etc.)
int aleat (int n, booleen relnit) {
static intr = 1;
static int n4 = n*4;
if (relnit) {
n4d = n*4;
r =1;
return r;
} else {
r *= 5;
r %= n4;
// printf ("\naleat %2d\n", r/4);
return r / 4;
3
3

// réinitialiser le générateur de nombres pseudo-aléatoires
void initaleat (int n) {
aleat (n, vrai);

}

// résolution pseudo-aléatoire
int resolutiond (int h, int n, int i) {
return ( h + aleat (n, faux) ) % n;

}



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 227

La séquence suivante fournit les entrées a essayer (jusqu’a trouver une entrée
libre) pour un hash-code 1 dans une table de 16 entrées (numérotées de 0 a 15), en
progressant de aleat() entrées a chaque tentative.

initaleat (16); // réinitialiser le générateur de nombres aléatoires
for (i=1; i<=15; i++) {

printf ("%3d", resolutiond4 (1, 16, i) );
}

Pour un hash-code 1, les entrées sont essayées une et une seule fois dans 1’ordre
2,7,0,13,14,3,12,9, 10, 15,8, 5,6, 11, 4.

4.3.6 Le fichier d'en-téte des fonctions de hachage
et de résolution

Les fonctions de hachage et de résolution peuvent étre regroupées dans les fichiers
fnhc.h et fnhc.cpp.

/* fnhc.h fonctions de hachage et de résolution */

#ifndef FNHC_H
#define FNHC_H

typedef int booleen;
#define faux 0
#define vrai 1

typedef void Objet;

int hashl (Objet* objet, int nMax); // somme des rangs alphabétiques
int hash2 (Objet* objet, int nMax); // somme des codes ascili

int hash3 (Objet* objet, int nMax); // division par nMax

int hash4 (Objet* objet, int nMax); // base 11

int resolutionl (int h, int n, int 1); // i

int resolution2 (int h, int n, int i); // k*i

int resolution3 (int h, int n, int 1); // i*i

int resolutiond4 (int h, int n, int i); // pseudo-aléatoire

#endif

4.3.7 Le corps du module sur les fonctions
de hahscode et de résolution

D’une maniere générale, la fonction de hash-code est passée en parametre lors de la
déclaration de la table de hash-code. Elle opére sur un objet. La fonction de hash-
code peut aussi, si besoin est, étre définie dans le programme d’application.

/* fnhc.cpp fonctions de hash-code et résolution */

#include <stdio.h>

#include <stdlib.h> // abs
#include <string.-h> // strlen
#include <ctype.h> // isalpha



228 4 e |es tables

#include "fnhc.h"

int hashl (char* cle, int n) voir 4.3.2.a
int hash2 (char* cle, int n) voir 4.3.2.b
int hash3 (long cle, int n) voir 4.3.2.c
long basell (long n) voir 4.3.2.d
int hash4 (long cle, int n) voir 4.3.2.d

int hashl (Objet* objet, int n) {
return hashl ((char*) objet, n);
3

int hash2 (Objet* objet, int n) {
return hash2 ((char*) objet, n);
}

int hash3 (Objet* objet, int n) {
long* pcle = (long*) objet;
return hash3 ( *pcle, n);

}
int hash4 (Objet* objet, int n) {

long* pcle = (long*) objet;
return hash4 (*pcle, n);

voir ci-dessus

-+
jm]
=
~+

int resolutionl (int h, in
int resolution2 (int h, int n, int
n
n

-
o\ S\

)
]
5
)

int resolution3 (int h, i
int resolutiond (int h, i

4.3.8 Le type TableHC (table de hachage)

Le type TableHC est décrit dans le fichier tablehc.h suivant. Il comprend, comme
pour le type Table définit au § 4.1.6.a, page 206, le nombre maximum d’éléments
dans la table, le nombre réel d’éléments, et un tableau de pointeurs sur les objets du
tableau. 4 fonctions sont passées en parametre (écriture et comparaisons des objets
de la table, hash-code et résolution).

Si on veut pouvoir effectuer des destructions, il faut distinguer 3 états : libre,
occupé, ou détruit. Un élément est déclaré ne pas appartenir a la table si ’entrée
proposée par la résolution est libre. En cas de retrait d’un élément, il ne faut pas
rompre cette liste implicite des éléments occupés. L’entrée est marquée détruite (et
non libre), ce qui permet une insertion, mais n’arréte pas la recherche d’un élément.
Les cas de retraits ne sont pas envisagés dans la suite des algorithmes, mais laissés
en exercice.



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding

229

type TableHC

nMax n element

objet 0
1 /
2 I B

objet 2
3 /
4 /

Figure 126 Le type TableHC (table de hachage). Les objets ont une place
attribuée par une fonction de hash-code et une fonction de résolution

des collisions. Les pointeurs des objets ne sont pas consécutifs en mémoire.

/* tableHC.h sans chainage des synonymes */

#ifndef TABLEHC_H
#define TABLEHC_H

#include "fnhc.h"
typedef void Objet;

typedef struct {
int nMax;
int n;
Objet** element;
char* (*toString)

int (*comparer)

int (*hashcode)

int (*resolution)
} TableHC;

TableHC* creerTableHC

TableHC* creerTableHC
booleen insererDsTable
Objet* rechercherTable

void listerTable

int nbAcces

double nbMoyAcces

void listerEntree
void ordreResolution
#endif

// nombre max (longueur) de la table
// nombre d"éléments dans la table
// tableau de pointeurs sur les objets

(Objet=);

(Objet*, Objet*);
(Objet*, int);
(int, int, int);

(int nMax,

char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*),

int (*hashcode) (Objet*, int),

int (*resolution) (int, int, int));
(int nMax);

(TableHC*
(TableHC*
(TableHC*
(TableHC*
(TableHC*
(TableHC*
(TableHC*

table, Objet* nouveau);
table, Objet* objetCherche);
table);

table, Objet* objetCherche);
table);

table, int entree);

table, int entree);



230 4 e |es tables

4.3.8.a Création d’une table de hachage

L’espace de la table et des éléments du tableau est alloué dynamiquement comme
précédemment (voir § 4.1.3, page 200). La fonction creerTableHC() mémorise en
plus les fonctions de hachage et de résolution.

// création d"une table de hashcode de nMax entrées
TableHC* creerTableHC (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*),
int (*hashcode) (Objet*, int),
int (*resolution) (int, int, int)) {

TableHC* table new TableHC(Q);

table->nMax = nMax;

table->n = 0;

table->element = (Objet**) malloc (sizeof(Objet*) * nMax);
table->toString = toString;

table->comparer = comparer;

table->hashcode = hashcode;

table->resolution = resolution;

return table;

}

TableHC* creerTableHC (int nMax) {
return creerTableHC (nMax, toChar, comparerCar, hashl, resolutionl);

}

La fonction : static int resolution (TableHC* table, int h) ; cherche une entrée
libre dans la table pour un élément de hash-code h. Cette fonction fournit la
place (entier) attribuée a 1’élément en collision ou —1 si la table est saturée. Si la
résolution est pseudo-aléatoire, il faut réinitialiser le générateur de nombres, de
facon a recommencer au début de la séquence de nombres. L’algorithme est
simple : tant qu’on n’a pas effectué nMax-1 tentatives et tant qu’on n’a pas
trouvé une entrée libre (ou détruite), on appelle la fonction de résolution (passée
en parametre lors de 1’appel de creerTableHC()) pour connaitre la prochaine
entrée a tester. Cet algorithme est le méme quelles que soient les fonctions de
hachage et de résolution.

// fTournir 1"entrée réellement attribuée pour un hashcode h
// en appliquant la résolution de la table;
// fournit -1 en cas d"échec
static int resolution (TableHC* table, int h) {
booleen trouve = faux;
int i=1; // iéme tentative
int re;
initaleat (table->nMax); // si la résolution est aléatoire

while ((i<table->nMax) && !trouve) {
re = table->resolution (h, table->nMax, i);

trouve = table->element[re] == NULL;
i++;

3

if (Itrouve) re = -1;

return re;



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 231

4.3.8.b Ajout d’un élément dans une table de hachage

La fonction insererDsTable() insere 1’élément pointé par nouveau dans la table
(voir § 4.1.6.a, page 206). Si I’entrée h désignée par la fonction de hachage est libre,
I’élément est rangé en h, sinon, on fait appel a la fonction de résolution qui attribue
une entrée re pour I’élément nouveau a insérer, ou —1 si la fonction de résolution n’a
pas trouvé de place libre. La fonction retourne vrai s’il y a eu insertion, et faux
sinon. Le nombre d’éléments dans la table est incrémenté de 1 en cas de succes.

// insérer I"objet nouveau dans la table;
// fournir faux si la table est saturée
booleen insererDsTable (TableHC* table, Objet* nouveau) {
int h = table->hashcode (nouveau, table->nMax);
if (table->element[h] == NULL) {
table->element[h] = nouveau;
} else {
int re = resolution (table, h);
if (re 1= -1) {
table->element[re] = nouveau;
} else {
printf (“insererDsTable saturée hashcode %3d pour %s\n",
h, table->toString(nouveau));
return faux;

}

table->n++;
return vrai;

}

4.3.8.c Recherche d’un élément dans une table de hachage

La fonction rechercherTable() fournit un pointeur sur 1’objet cherché (objet-
Cherche) de la table. Si I’élément n’est pas a I’entrée indiquée par son hash-code
hc, on le cherche en examinant successivement les entrées re données par la
fonction de résolution. Si I’entrée re est libre et que 1’élément n’a toujours pas
été trouvé, c’est que I’élément n’est pas dans la table. Cette recherche s’appa-
rente aux différentes recherches vues précédemment pour le type Table. La fonc-
tion retourne un pointeur sur I’objet cherché, ou NULL si I’objet n’existe pas
dans la table.

// rechercher objetCherche dans la table
Objet* rechercherTable (TableHC* table, Objet* objetCherche) {
booleen trouve = faux;
int hc table->hashcode (objetCherche, table->nMax);
int re hc;
int i 1;
while ( (i<table->nMax) && !trouve && (re !'= -1) ) {
if (table->element[re] == NULL) {

re = -1;
} else {
trouve = table->comparer (objetCherche, table->element[re]) == O;
it (Itrouve) re = table->resolution (hc, table->nMax, i++);

}
}

return re==-1 ? NULL : table->element[re];



232 4 e |es tables

4.3.8.d Listage de la table

La fonction listerTable() liste les entrées occupées de la table de hash-code. Elle
indique également le nombre moyen d’acces pour retrouver un élément dans la table.

// lister la table
// et calculer le nombre moyen d"acces pour retrouver un élément
void listerTable (TableHC* table) {
int sn = 0;
for (int i=0; i<table->nMax; i++) {
it (table->element[i] != NULL) {
printf ("%3d : hc:%3d %s\n", i,
table->hashcode (table->element[i], table->nMax),
table->toString (table->element[i]));
int n = nbAcces (table, table->element[i]);
it (n>0) sn += n;
¥
}
printf (""\nNombre d"éléments dans la table : %d", table->n);
printf (""\nTaux d"occupation de la table : %.2f",
table->n / (double) table->nMax);
printf ("\nNombre moyen d"acceés a la table : %.2f\n\n",
sn / (double) table->n);
3

4.3.8.e Nombre moyen d’acces

nbAcces() fournit le nombre d’acces pour retrouver un élément de la table, ou -1 si
I’élément n’est pas dans la table.

// fournir le nombre d"acces a la table

// pour retrouver objetCherche; -1 si inconnu

int nbAcces (TableHC* table, Objet* objetCherche) {
int na = 0; // nombre d"acces
int hc = table->hashcode (objetCherche, table->nMax);
iT (table->element[hc] == NULL) {

na = -1; // élément inconnu
} else {

int re = hc; // résolution

inti =1; // ieme tentative

na++;

initaleat (table->nMax); // si la résolution est aléatoire
while ( table->comparer (objetCherche, table->element[re]) = 0 ) {

na++;

re = table->resolution (hc, table->nMax, i++);

if (table->element[re] == NULL) return -1; // élément inconnu
}

}

return na;

}

nbMoyAcces() fournit le nombre moyen d’acces pour retrouver un élément de la
table.

// nombre moyen d"acces
double nbMoyAcces (TableHC* table) {
int sn = 0;
for (int i=0; i<table->nMax; i++) {
iT (table->element[i] != NULL) {



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 233

int n = nbAcces (table, table->element[i]);
if (n>0) sn += n;
3
¥
return sn / (double) table->n;

}

4.3.8.f Fonction de contréle des emplacements

La fonction listerEntree() liste, a titre indicatif ou de mise au point, pour une entrée
donnée, les éléments a parcourir lorsqu’un élément n’est pas dans la table. La fonction
fournit les clés et les hash-codes des éléments rencontrés.

// lister les éléments a parcourir pour insérer
// un nouvel élément de hash-code entree
void listerEntree (TableHC* table, int entree) {
printf ("\nentrée a parcourir pour hashcode %d\n", entree);
if (table->element[entree] == NULL) {
printf (“aucun objet de hash-code %d\n', entree);
} else {
inti =1;
int re = entree;
while (table->element[re] != NULL) {
printf ("%3d %3d : hc:%3d %s\n", i, re,
table->hashcode (table->element[re], table->nMax),
table->toString (table->element[re]));
re = table->resolution (entree, table->nMax, i++);
¥
}
3

4.3.8.g Ordre de la résolution

La fonction ordreResolution() fournit 1I’ordre de recherche d’une entrée libre en
partant d’une entrée donnée. Si la résolution est aléatoire, il faut réinitialiser le géné-
rateur de nombre aléatoire.

// 17ordre des nMax entrées essayées en cas de conflit
// pour un hashcode "entree"
void ordreResolution (TableHC* table, int entree) {
printf ("\nordre des résolutions pour l"entrée %d\n", entree);
initaleat (table->nMax); voir 8 4.3.5.d, page 225
for (int i=1; i<table->nMax; i++) {
printf ("%2d ', table->resolution (entree, table->nMax, 1));

printf ("'\n");
¥

4.3.9 Exemple simple de mise en ceuvre du module
sur les tables de hash-code

Le programme suivant déclare une table de hash-code utilisant la fonction hashl()
de calcul du hash-code et la fonction de résolution resolutionl(). Ces fonctions
pourraient étre changées et définies dans le programme appelant si les fonctions
prédéfinies ne conviennent pas.



234

4 e |es tables

void main ) {

}

Personne* pl
Personne* p2
Personne* p3
Personne* p4
Personne* p5

creerPersonne (“'‘Dupond™, "Jacques');
creerPersonne (“'‘Dufour', "Albert");
creerPersonne (“'‘Duval™, "Marie");

creerPersonne (“'Ponddu’, *Jacques');
creerPersonne (“'Punddo™, "Jacques™);

// table de Personne voir en 2.4.1, page 51
TableHC* table = creerTableHC (16, toStringPersonne, comparerPersonne,
hashl, resolutionl);

insererDsTable (table, pl);
insererDsTable (table, p2);
insererDsTable (table, p3);
insererDsTable (table, p4);
insererDsTable (table, p5);

listerTable (table);

printf (""\nrecherche de la personne Dupond\n™);

Personne* cherche = creerPersonne (‘‘Dupond®, "?');

Personne* trouve = (Personne*) rechercherTable (table, cherche);
printf (“"trouve %s\n', toStringPersonne (trouve));

printf (""\nrecherche de la personne Punddo\n™);

cherche creerPersonne (‘'Punddo™, "?');

trouve (Personne*) rechercherTable (table, cherche);
printf (“"trouve %s\n", toStringPersonne (trouve));

La table de hash-code de 16 éléments (hash1 et résolutionl) : Dupond, Ponddu et
Punddo sont synonymes (hc : 10).

0 :

1 :

2 :

S

4 :

5 : hc: 5 1 Dufour Albert
6 :

7 :

8 :

9 :

10 : hc: 10 1 Dupond Jacques
11 : hc: 10 2 Ponddu Jacques
12 : hc: 12 1 Duval Marie

13 : hc: 10 4 Punddo Jacques
14 :

15

La recherche de Dupond trouvé directement a I’entrée 10

recherche de la personne Dupond
rechercherTable re : 10 occupé par Dupond Jacques
trouve Dupond Jacques



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 235

La recherche de Punddo trouvé apres avoir consulté 10, 11, 12 et 13 (résolution

r(i)=i).

recherche de la personne Punddo

rechercherTable re : 10 occupé par Dupond Jacques
rechercherTable re : 11 occupé par Ponddu Jacques
rechercherTable re : 12 occupé par Duval Marie
rechercherTable re : 13 occupé par Punddo Jacques
trouve Punddo Jacques

4.3.10 Programme de test des fonctions de hachage

Le menu suivant permet de tester les fonctions de hachage définies ci-dessus, ainsi
que les diverses résolutions, et fonctions de gestion de la table.

TABLE (HASH-CODING)

- Fin

- Initialisation de la table

- Hash-code d "un élément

- Ordre de test des N-1 entrées

Ajout d"un élément dans la table

- Ajout d"éléments a partir d"un fichier
- Liste de la table

- Recherche d"une clé

- Collisions a partir d"une entrée

O~NO U WNPEFEO
|

Votre choix ? 1

Le choix 1 permet de préciser les parametres de la table (longueur, fonctions de
hachage et de résolution). Le choix 2 permet de calculer le hash-code d’un élément a
fournir en fonction des parametres de la table. Le choix 3 indique pour une entrée H
donnée, I’ordre dans lequel seront examinées les N-1 entrées restantes lors de la réso-
lution. Le choix 4 ajoute un élément dans la table, alors que le choix 5 ajoute des
€léments lus dans un fichier. Le choix 6 liste les entrées occupées de la table. Le choix
7 permet de retrouver un élément dans la table. Le choix 8 indique les différentes
tentatives pour trouver une entrée libre, en précisant pour chaque entrée consultée,
I’élément et son hash-code.

Votre choix ? 1

Paraméetres
Longueur N de la table ? 26
Fonctions de hachage

1 somme des rangs alphabétiques



236

4 e |es tables

2 division par N
3 somme des caracteres ascii
4 changement de base

Votre choix ? 1

Résolution
1r@i) =i
2 r(i) = K*i

3 r(i) = i*i
4 pseudo-aléatoire
Votre choix ? 1

Exemple du choix 6, correspondant a I’exemple de la fonction de hachage
hash1(), et a la résolution linéaire pour une table de longueur 26 (voir § 4.3.5.a,
page 222). La table a été créée a partir du fichier cles.dat suivant correspondant aux
exemples de résolution pour les fonctions r(i) = i, k*i et i*i vues précédemment. Z
(nommé el sur les exemples) a pour hash-code 0, ainsi que ZZ(e2) et ZZZ(e3), etc.

1z

YZ

el(0) fichier cles.dat

e2(0)
e3(2)
e4(0)
e5(3)
e6(9)
e7(9)
e8(25)
e9(25)

Listage de la table apres création :

Votre choix ? 6

O : hc: O 1 7 el1(0)
1:hc: O 2 7Z e2(0)
2 - hc: 2 1 B e3(2)

3 : hc: 0 4 777 e4(0)

4 : hc: 3 2 C e5(3)

5 : hc: 25 7 YZ e9(25)

6 :

7 :

8 :

9 : hc: 9 11 e6(9)
10 : hc: 9 2 1Z e7(9)
11 :

12 :
13 :
14 :
15 s
16 :

cas r(i)=i



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 237

18

19

20

21

22

23

24 :

25 : hc: 25 1Y e8(25)

Remarque : dans la réalité, les tables de hachage contiennent des milliers de
valeurs. L’ exemple est seulement pédagogique.

Exercice 24 - Menu pour une table de hachage

Ecrire le programme principal correspondant au menu donné précédemment pour
la mise en ceuvre des fonctions de hachage.

4.3.11 Résolution par chainage avec zone de débordement

Cette fois, les éléments en collision (les synonymes) sont chainés entre eux. Pour la
recherche, il suffit de parcourir la liste pour retrouver un élément.

4.3.11.a Avec une table séparée pour les synonymes
Les synonymes sont chainés dans une zone a part de débordement allouée dynami-
quement ou statiquement.

Allocation statique de la table et allocation dynamique de la zone de déborde-
ment. On crée une liste des éléments ayant méme hash-code (voir Figure 127).

Exemple

Ranger les identificateurs suivants (longueur de la table n = 26) :
éléments: e, e, e; € € € € € €
hash-code:0 0 2 0 3 9 9 25 25

W oo ~NOYUTL B WN — O

e
%5 [ F—e | e |/ ]

Figure 127 Chainage en allocation dynamique des synonymes.




238 4 e |es tables

Allocation statique (en mémoire centrale ou sur disque). La table ou le fichier en
acces direct est alloué en début d’exécution (voir Figure 128). La zone des synonymes
suit la table principale. La table principale a des entrées de 0 a N-1 directement accé-
dées a partir du hash-code. Si I’élément n’est pas dans I’entrée fournie par le hash-code,
il faut parcourir la liste des synonymes commencant dans le 3¢ champ de la table. Le
premier synonyme de el est en 27 (e4), le suivant est en 26 (e2) et c’est le dernier. La
table de débordement peut étre pleine alors qu’il reste de la place en table principale. En
cas de retrait de clé, la zone de débordement peut étre gérée en liste libre (voir § 2.9.1.c,
page 87).

0 el 27
1
2 e3 /
3 |e5 /
4
5
Table 6
principale 7
8
9 |eb 28
10
25 e8 29
27 e4 26
Table de 28 |e7 /
débordement 29 |e9 /
30 ~——— |l faut repérer le premier libre
31

Figure 128 Chainage en zone de débordement des synonymes.

4.3.12 Résolution par chainage avec une seule table

4.3.12.a Expulsion de I'intrus

Devant la difficulté de gérer la table principale et la table de débordement, on peut
décider de ranger les éléments dans la seule table principale qui a plus d’entrées que
d’éléments a ranger. Il y a donc forcément des places disponibles. L’algorithme de
rangement d’un élément x est le suivant :

— si h(x) est libre, ranger x en h(x).

— si h(x) est occupée par un élément x’ tel que h(x) = h(x’),
on cherche une entrée libre pour x et on établit le chainage.



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 239

— si h(x) est occupée par un élément x’ tel que h(x’) est différent de h(x),
X’ est un intrus et doit &tre expulsé ailleurs :
— on enleve x’ de la liste,

on range X,

puis on cherche une nouvelle entrée libre pour x’.

Exemple :

Ranger les éléments suivants ; le chiffre entre parenthéses indique le hash-code :
e;(1), e5(1), e3(3), e4(1), e5(2) pour une table de longueur N = 16. La résolution est
pseudo-aléatoire (séquence 1, 6, 15, etc. pour N=16) avec chainage des synonymes
et expulsion des éléments occupant une entrée ne correspondant pas a leur hash-
code.

el est rangé en 1, entrée libre.

pour e,, I’entrée h(e2)=1 est occupée par e, tel que h(e,) = h(e,) ; €2 est un syno-
nyme de el. On cherche une place pour e, : (1 +1) mod 4 soit 2 qui est libre. e2 est
inséré dans I’entrée 2 ; on insere 2 (chalnage) en téte des éléments ayant hash-code 1.

e3 est rangé en 3, entrée libre.

el | e2 | e3

pour e,4, I’entrée h(e4)=1 est occupée par e, tel que h(e,) = h(e,), e4 est un syno-
nyme de el, on cherche une place pour e, :

(1 + 1) mod ¢ soit 2, déja occupé

(1 +6) mod ¢ soit 7, libre

e4 est inséré dans I’entrée 7 ; on insere 7 (chalnage) en téte des éléments ayant
hash-code 1.

el | e2 | e3 el

7 -1 -1 2

pour e5 'entrée h(e5) = 2 est occupé€e par un intrus €2 n’ayant pas 2 pour hash-
code (h(e2) vaut 1) ;
— il faut déloger e, qui n’est pas téte de liste, en ’enlevant de sa liste,
— insérer e; qui est prioritaire a sa place,
— trouver une nouvelle place pour e,



240 4 e |es tables

h(x) +r (1) mod 16
i=1 1+1 modl16 soit 2 occupé
i=2 146 modl16 soit 7 occupé

i=3 1+15 mod16 soit O libre pour e2 qui est inséré en téte des
éléments ayant hash-code 1.

La situation finale de la table apres retrait de €2, insertion de e5, et réinsertion de e2.

e2 | el e5 | e3 ed
1 1 2 3 1
7 0 -1 -1 -1

Nombre d’acces a la table pour retrouver un élément (on suit le chainage) :
1:el,e3,e5; 2:e2; 3:e4d.

4.3.12.b Cohabitation avec l'intrus

On peut aussi décider de ne pas expulser I’intrus n’ayant pas le méme hash-code. On
a alors des listes avec des éléments ayant des hash-codes différents, ce qui facilite
I’insertion mais allonge la recherche dans la liste des synonymes.

Exemple
Ranger : e,(1), e5(1), e5(3), e(1), e5(2)

Comme précédemment, la résolution est pseudo-aléatoire (soit la séquence 1, 6,
9, 15, etc.) dans une table de longueur N = 16 avec chainage et cohabitation (ou
coalition). Les rangements des éléments el, e2, €3, e4 conduisent & la situation
suivante qui est la méme que précédemment apres insertion de e4.

el e2 | e3 el

7 -1 -1 2

pour es, h(e5) = 2, I’entrée 2 est occupée par e, tel que h(e,) est différent de h(es).
on ne déplace pas e,  (cohabitation ou coalition)

on cherche une place pour es

i=1 2+1 mod 16  soit 3 occupé

i=2 2+6 mod 16  soit 8 libre pour €5

On insere e5 en téte de la liste commengant en h(es) soit 2.



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 241

el | e2 | e3 e4 | e5
1 1 3 1 2
7 8 | -1 2 | -1

On a dong, en entrée 1, une téte de liste qui contient des éléments ayant des hash-
codes différents (d’ou coalition) :

Liste des éléments en partant de I’entrée 1 : e;(1) - e,(1) - ey(1) - es(2)
Liste des éléments en partant de I’entrée 2 : e5(1) - e5(2)

1 8

7 2
el |7 ——fea ]2 | e2 | 8 |
/////, hc=1 hc=1 /////, hc=1 hc=2
h(x)=1 h(x) =2

Figure 129 Chainage avec coalition.

Nombre d’acces a la table pour retrouver un élément :
1:el,e3; 2:e4,e5; 3:e2.

4.3.12.c Le type TableHCC (table de hachage avec chainage)

Le type TableHC décrit dans le fichier tablehc.h (voir § 4.3.8, page 228) doit étre
complété d’un champ entier suivant pour chaque élément de table. Ceci définit le
type TableHCC (table de hachage avec chalnage) :

/* tablehcc.h table de hash-code avec chainage */

#ifndef TABLEHCC_H
#define TABLEHCC_H

#include "fnhc.h"

#define NILE -1
typedef void Objet;

typedef struct {

Objet* objet;

int suivant; // chainage des synonymes
} ElementTable;

typedef struct {
int nMax; // nombre max (longueur) de la table
int n; // nombre d"éléments dans la table
ElementTable* element;
char* (*toString) (Objet*);



242

4 e |es tables

int (*comparer) (Objet*,

int (*hashcode) (Objet*,

int (*resolution) (int,
} TableHCC;

TableHCC* creerTableHCC

TableHCC* creerTableHCC

booleen insererDsTable
Objet* rechercherTable
void listerTable

int nbAcces

double nbMoyAcces

void listerEntree
void ordreResolution
#endif

type TableHCC

Objet*);
int);
int, int);

(int nMax,

char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*),
int (*hashcode) (Objet*, int),
int (*resolution) (int, int, int));

(int nMax);

(TableHCC*
(TableHCC*
(TableHCC*
(TableHCC*
(TableHCC*
(TableHCC*
(TableHCC*

table, Objet* nouveau);
table, Objet* objetCherche);
table);

table, Objet* objetCherche);
table);

table, int entree);

table, int entree);

objet 1
nMax n element

0 > /

1 3

2 /

3 - -1

P —

objet 3 - 4 /

Figure 130 Table de hachage avec chainage des synonymes
(objet1 et objet3) de hc=1.

Les fonctions creerTubleHCC(), insererDsTable(), rechercherTuble(), etc., doivent
&tre réécrites pour tenir compte du chalnage des synonymes.

TableHCC* creerTableHCC (int nMax, char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*),
int (*hashcode) (Objet*, int),

int (*resolution) (int, int, int)) {

TableHC* table = new TableHCC(Q);



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 243
table->nMax = nMax;
table->n = 0;
table->element = (ElementTable*) malloc (sizeof(ElementTable)
* nMax);
table->toString = toString;
table->comparer = comparer;
table->hashcode = hashcode;
table->resolution = resolution;

}

for (int i1=0; i<nMax; i++) {
table->element[i].objet
table->element[i]-suivant

NULL; // fait par défaut
NILE; // -1 indique "pas de suivant"

return table;

TableHC* creerTableHCC (int nMax) {

return creerTableHCC (nMax, toChar, comparerCar, hashl, resolutionl);

La recherche se fait en suivant le chainage des synonymes :
Objet* rechercherTable (TableHC* table, Objet* objetCherche) {

}

booleen trouve = faux;

int hc = table->hashcode (objetCherche, table->nMax);

int re = hc;

while (re!=NILE && !trouve) {
printf (“rechercherTable entree re : %d\n", re);
trouve = table->comparer (objetCherche, table->element[re].objet)
if (Itrouve) re = table->element[re].suivant;

}

return re==-1 ? NULL : table->element[re].objet;

4.3.12.d Exemples de mise en ceuvre du hachage avec chainage

On reprend le programme et 1’exemple du § 4.3.9, page 233, avec la fonction de hash-
code hash1 et une résolution linéaire (résolution1) dans une table ot les synonymes sont
chainés entre eux. Les trois éléments de hc=10 sont chainés entre eux en 10, 13 et 11.

listerTable

0 :

1:

2 :

8 =

4 :

5 : hc: 5n: 1 svt: -1 Dufour Albert
6 :

7 -

8 :

9 :
10 : hc: 10 n: 1 svt: 13 Punddo Jacques
11 : hc: 10 n: 3 svt: -1 Dupond Jacques
12 : hc: 12 n: 1 svt: -1 Duval Marie
13 : hc: 10 n: 2 svt: 11 Ponddu Jacques
14 :
15 :



244 4 e |es tables

Exercice 25 - Hachage avec chainage dans une seule table

Réécrire dans le cas du chainage, les fonctions :

booleen insererDsTable (TableHCC* table, Objet* nouveau);
void listerTable (TableHCC* table);
int nbAcces (TableHCC* table, Objet* objetCherche);

Tester le menu et le programme principal de 1’exercice 24, page 237. Les proto-
types des fonctions sont les mémes et ne modifient pas le programme de tests sauf
pour les déclarations et les créations des tables.

4.3.13 Retrait d'un élément

Les méthodes de hachage sans chainage des synonymes sont mal adaptées aux
suppressions d’éléments. L’élément supprimé doit étre marqué détruit et non libre,
de facon a ne pas rompre I’acces aux éléments suivants. Il y a donc 3 états : occupé,
libre et détruit. L’entrée d’un élément détruit pourra &tre réutilisée lors d’une
nouvelle insertion.

4.3.14 Parcours séquentiel

L’acces séquentiel a tous les éléments de la table (ou du fichier) gérée suivant une
méthode de hachage demande un test pour savoir si I’entrée est libre ou occupée. Le
parcours séquentiel se fait dans 1’ordre croissant des hash-codes. Si on veut un autre
parcours (alphabétique par exemple), il faut faire un tri suivant la clé.

4.3.15 Evaluation du hachage

Les méthodes de hachage sont des méthodes qui permettent un acces rapide a partir
d’une clé, les données se trouvant dans une table en mémoire centrale, ou dans une
table sur disque (fichier en acces direct). On peut faire une évaluation mathématique
du nombre moyen d’acces a la table pour retrouver un élément. On suppose que
toutes les entrées peuvent étre sollicitées de manicre équirépartie. Le nombre
moyen d’acces dépend du taux d’occupation de la table soit le rapport entre le
nombre d’entrées occupées sur le nombre d’entrées réservées. A priori, au départ, le
nombre d’entrées réservées doit étre environ de deux fois le nombre d’éléments a
mémoriser. Ce taux moyen ne dépend pas du nombre d’éléments dans la table ou
fichier, ce qui en fait une excellente méthode pour accéder a de grands ensembles de
données pour peu que I’on accepte de perdre de la place.

La Figure 131 donne les nombres moyens d’acces en fonction du taux d’occupa-
tion pour différentes méthodes. La méthode de résolution des collisions qui consiste
a placer le synonyme sur les entrées qui suivent est la plus simple a programmer,
mais également la moins performante lorsque le taux d’occupation de la table
augmente. Les techniques de résolution par chainage donnent d’excellents résultats



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 245

(on suit la liste des synonymes pour la recherche) au prix d’un encombrement l1ége-
rement supérieur puisqu’il faut mémoriser les chainages.

A = taux linéaire seudo-aléatoire chainage
d’occupation (i) =i p 9
0.5 1.5 1.39 1.25
0.75 2.5 1.83 1.38
0.90 5.5 2.56 1.45

Figure 131 Nombre moyen d’accés en fonction du taux d'occupation?.

Si on compare avec la recherche séquentielle ou méme la recherche dicho-
tomique, on voit que cette méthode donne d’excellents résultats. Pour un fichier de
un million d’éléments :

recherche séquentielle = n/ 2 = 500 000 acces
recherche dichotomique = log, n = 20 acces

hachage avec chalnage = 1.45 acces avec un taux d’occupation de 90% (si les
entrées de la table sont équiréparties).

Conclusions sur le hachage
Avantages des tables gérées par hachage

Le nombre d’acces pour retrouver un élément ne dépend pas de la taille de la table
mais uniquement du taux d’occupation de la table. L’acces est trés rapide.

Inconvénients

La taille de la table doit étre fixée a priori et supérieure au nombre d’éléments a
traiter. L’acces séquentiel aux éléments, suivant un ordre croissant ou décroissant de
la clé, nécessite un tri. Le retrait d’éléments peut présenter quelques difficultés sauf
dans le cas du chainage.

4.3.15 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale)

On veut accélérer la recherche dans un arbre binaire non ordonné en mémoire centrale,
en créant une table accédée par hachage qui fournit un pointeur sur un nceud a partir de
sa clé (nom). L arbre binaire est d’abord créé. La table de hachage est ensuite créée au
début de la consultation par parcours de I’arbre binaire. Les interrogations sur 1’arbre
binaire permettent de trouver un nceud plus rapidement en consultant la table plutot
qu’en parcourant I’arbre. La fonction de hachage retenue est la fonction hash1()
(voir § 4.3.6, page 227). L’arbre n-aire considéré a titre d’exemple est celui de la
nomenclature de la Terre donnée au § 3.2.11.b, page 147. Les hash-codes correspon-
dant aux différentes clés dans une table de longueur HCMAX=70 sont les suivants :

1. D’apres Robert Morris, Communication of the ACM, volume 11, numéro 11, janvier 1968



246 4 e |es tables

2 : Bretagne 47 - France

7 : Afrique 52 : Oceanie

8 : Belgique 53 : Niger

10 : Europe 54 : Congo

19 : Amerique 56 : Japon

32 : Inde 60 : Corse

34 : Bourgogne Asie 66 : Terre

39 : Chine lrak 67 : Espagne Danemark

Figure 132 Hash-codes des éléments de terre.nai.

Il y a collision pour I’entrée 34 (Bourgogne et Asie), I’entrée 39 (Chine et Irak) et
I’entrée 67 (Espagne et Danemark). La table de hachage est gérée comme indiqué sur
la Figure 133. Chaque élément de la table contient un pointeur sur un noeud de 1’arbre.

type TableHC

nMax n element

1 ——7

Bretagne

1 A

(s

Bourgogne
A

34 ;Dj_‘b—il

69

Figure 133 Table de hachage pour I'accés aux noeuds de I'arbre de la Terre.

Les déclarations sont les suivantes :

/* nomenclaturehc.cpp
utilise le type Arbre et le type TableHC ou TableHCC */

#include <stdio.h>
#include <string.h>



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding 247

#include "arbre.h"
#include "fnhc.h"

#ifndef CHAINAGE
#include "tablehc.h"
typedef TableHC Table;
#else

#include "tablehcc.h”
typedef TableHCC Table;
#endif

#define HCMAX 70
Pour chaque objet de la table, il faut fournir la référence du nceud.

char* toStringNd (Objet* objet) {
Noeud* nd = (Noeud*) objet;
return (char*) getobjet(nd);

b

Le hash-code d’un objet de la table s’obtient en utilisant la fonction hashNd().

int hashNd (Objet* objet, int n) {
Noeud* nd = (Noeud*) objet;
return hashl( (char*) getobjet(nd), n);
¥

La comparaison de deux objets de la table (deux pointeurs sur des nceuds de
I’arbre) se fait en utilisant la fonction comparer().

int comparer (Objet* objetl, Objet* objet2) {

Noeud* ndl = (Noeud*) objetl;

Noeud* nd2 = (Noeud*) objet2;

return strcmp ((char*) getobjet(ndl), (char*) getobjet(nd2));
3

La fonction parcoursArbre() parcourt 1’arbre binaire pointé par racine et cons-
truit la table de hachage table. Pour chaque nceud visité, un pointeur sur ce nceud est
ajouté dans la table a une place dépendant du hash-code du nceud et de la résolution.

void parcoursArbre (Noeud* racine, Table* table) {
if (racine = NULL) {
insererDsTable (table, racine);
parcoursArbre (getsag(racine), table);
parcoursArbre (getsad(racine), table);
¥
}

La fonction construireTableHC() construit la table a partir de I’arbre :

// initialiser et construire la table de hachage a partir de I arbre
void construireTableHC (Arbre* arbre, Table* table) {
parcoursArbre (getracine(arbre), table);

}



248

4 e |es tables

Le programme principal construit un arbre de caracteres a partir du fichier
terre.nai. Il construit ensuite une table de hachage (avec ou sans chainage) par
parcours de I’arbre. Il liste la table en indiquant les entrées occupées et effectue une
recherche a 1’aide de la table de hachage du noeud "France". Le sous-arbre du nceud
"France" est alors dessiné.

void main ) {

}

printf (“'Création d"un arbre binaire a partir d"un fichier\n");
printf (“"Donner le nom du fichier décrivant l"arbre n-aire ? ");
char nomFE [50];

//scanf ('%s', nomFE);

strcpy (nomFE, "terre.nai');

FILE* fe = fopen (nomFE, "r'™);
Arbre* arbre;
if (fe == NULL) {
printf (""%s erreur ouverture\n", nomFE);
} else {
arbre = creerArbreCar (fe);

}

dessinerArbreNAire (arbre, stdout);

#ifndef CHAINAGE
Table* table = creerTableHC (HCMAX, toStringNd, comparer,

hashNd, resolutionl);
#else
Table* table = creerTableHCC (HCMAX, toStringNd, comparer,

hashNd, resolutionl);
#endif

construireTableHC (arbre, table);
listerTable (table);

Noeud* objetCherche = cF (“France™);
Noeud* nd = (Noeud*) rechercherTable (table, objetCherche);
if (nd = NULL) {

printf (“"trouvé %s\n', (char*) getobjet(nd));

Arbre* arbre = creerArbre (nd);

dessinerArbreNAire (arbre, stdout);

} else {
printf ("%s inconnu dans I"arbre\n", (char*) getobjet(objetCherche));

Exemple de résultats (seules les entrées non nulles de la table de hachage sont
écrites).

2 - hc: 2 1 Bretagne

7 - hc: 7 1 Afrique

8 : hc: 8 1 Belgique

10 : hc: 10 1 Europe

19 : hc: 19 1 Amerique

32 : hc: 32 1 Inde

34 : hc: 34 1 Bourgogne r(i) = i
35 : hc: 34 2 Asie

39 : hc: 39 1 Chine



© Dunod - La photocopie non autorisée est un délit.

4.3 ¢ Adressage dispersé, hachage, hash-coding

249

40 :

47

52 :
53 :
54 :
56 :
60 :
66 :
67 :
68 :

hc:
: hc:
hc:
hc:
hc:
hc:
hc:
hc:
hc:
hc:

39
47
52
53
54
56
60
66
67
67

NRRRPRRRPRRERN

Irak
France

Oceanie

Niger
Congo
Japon
Corse
Terre

Espagne
Danemark

Nombre d"éléments dans
Taux d"occupation de
Nombre moyen d"acceés a la table : 1.16

la table : 19
la table : 0.27

Recherche a I’aide de la table de hachage du nceud France et dessin du sous-arbre.

4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier)

Soit I’arbre n-aire suivant du corps humain (voir exercice 17, page 142) :

homme:
tete:
tronc:
thorax:
Jambe:
pied:
bras:
main:

Bretagne

|

|
France

|

|

Corse

Bourgogne

tete cou tronc bras jambe;
crane yeux oreille cheveux bouche;

abdomen thorax;

coeur foie poumon;
cuisse mollet pied;
cou-de-pied orteil;
epaule avant-bras main;

doigt;

Si le nombre d’éléments décrivant I’arbre est important les éléments ne peuvent
pas étre gardés en mémoire centrale. Il faut donc les enregistrer dans un fichier. Les
différents éléments de I’arbre binaire sont rangés dans un fichier en acces direct
suivant une méthode de hachage. La fonction de hachage est la fonction hashli()
(voir § 4.3.6, page 227) : somme des rangs alphabétiques des lettres (blancs et tirets
exclus) modulo 70. La résolution des collisions se fait par chalnage en table de

débordement (voir Figure 128).

Les hash-codes des éléments sont les suivants : tronc(0), yeux(5), oreille(6),
cuisse(6), mollet(7), orteil(9), cou-de-pied(12), thorax(16), cheveux(18), poumon(24),
avant-bras(28), jambe(31), pied(34), foie(35), main(37), cou(39), bras(40), crane(41),
tete(50), homme(54), bouche(54), abdomen(54), doigt(55), epaule(60), coeur(62). I y



250 4 e |es tables

a collision pour oreille et cuisse a I’entrée 6, et homme, bouche, abdomen qui préten-
dent tous les trois a I’entrée 54. L’arbre n-aire est mémorisé sous sa forme binaire en
allocation contigué (voir Figure 60), les numéros d’enregistrements occupés par les
nceuds étant imposés par la fonction de hachage.

homme (54)

/

tete (50)

RN

crane (41) cou (39)

N\ N

yeux (5)

AN

Figure 134 Dessin partiel de I'arbre et des places attribuées a chaque élément.

L implantation de I’arbre en utilisant le hachage est indiquée ci-dessous. Seuls les
enregistrements occupés sont affichés. La premiere colonne est un booléen qui
indique si ’entrée est libre ou occupée. Les entrées 0, 5, 6, etc. sont occupées. Les
entrées 1, 2, 3, 4, 8, etc. sont inoccupées. C’est une concession a faire a cette
méthode : on utilise plus de places que nécessaire. La colonne 2 contient le nom du
nceud ; c’est la clé de la fonction de hachage. La colonne (3) contient le pointeur sur
le sous-arbre gauche (SAG), la colonne (4) le pointeur sur le sous-arbre droit (SAD).
Ainsi, téte (hash-code 50) est rangé dans I’entrée 50 ; son SAG commence en 41 et
son SAD en 39. La colonne (5) contient le chainage des synonymes en zone de
débordement. Il y a un synonyme pour oreille a I’entrée 6 ; ce synonyme cuisse est
rangé en 72. Pour homme, il y a un synonyme en 71 (abdomen), suivi d’un autre
synonyme en 70 (bouche).

€)) @ G @ G

0 1 tronc 71 40 -1
5 4 yeux -1 6 -1
6 1 oreille -1 18 72
7 1 mollet -1 34 -1
9 1 orteil -1 -1 -1
12 1 cou-de-pied -1 9 -1
16 1 thorax 62 -1 -1
18 1 cheveux -1 70 -1
24 1 poumon -1 -1 -1
28 1 avant-bras -1 37 -1
1

Jjambe 72 -1 -1



© Dunod - La photocopie non autorisée est un délit.

4.3 o Adressa

ge dispersé, hachage, hash-coding

251

34 1 pied 12 -1 -1
35 1 foie -1 24 -1
37 1 main 55 -1 -1
39 1 cou -1 0 -1
40 1 bras 60 31 -1
41 1 crane -1 5 -1
50 1 tete 41 39 -1
54 1 homme 50 -1 71
55 il doigt -1 -1 -1
60 1 epaule -1 28 -1
62 1 coeur -1 35 -1
70 1 bouche -1 -1 -1
71 1 abdomen -1 16 70
72 1 cuisse -1 7 -1

La fonction trouverNoeud() (voir § 3.2.4.e, page 119) de recherche d’un nceud dans
un arbre non ordonné en mémoire centrale, peut étre améliorée en utilisant la fonction
PNoeud trouverNoeud (char* nomC, Noeud* enr) ; définie ci-dessous qui utilise I’acces
direct du hachage. On calcule le hash-code hc de nomC (nom cherché). Si I’entrée hc est
inoccupée, nomC n’existe pas dans le fichier. Si I’entrée hc contient nomC, on a trouvé,
sinon, il faut parcourir la liste des synonymes pour trouver nomC, ou pour conclure que
nomC n’existe pas dans le fichier. La fonction void lireD (int n, Noeud* enr) ; effectue la
lecture directe de 1’enregistrement n qui est mémorisé, au retour de 1’appel, a I’adresse
contenue dans enr.

#define NILE -1
#define MAXENR 100
#define NBENTR 70
typedef char Chaine [16];
typedef int PNoeud;
typedef struct {
booleen occupe;
Chaine nom;
PNoeud gauche;
PNoeud droite;
PNoeud syn;
3} Noeud;

// lire directement l"enregistrement n,
// et le ranger a I adresse pointée par enr
void lireD (int n, Noeud* enr) {
fseek (fr, (long) n*sizeof (Noeud), 0);
fread (enr, sizeof (Noeud), 1, fr);
b

// fournit le numéro de I"enregistrement contenant nomC

// si nomC existe, NILE sinon;

// *enr contient l"enregistrement s"il a été trouvé



252 4 e |es tables

PNoeud trouverNoeud (char* nomC, Noeud* enr) {
PNoeud pnom;
PNoeud hc = hashCode (nomC, NBENTR);
lireD (hc, enr);
if (lenr->occupe) {
pnom = NILE;

} else if (strcmp (enr->nom, nomC) == 0) {
pnom = hc;
} else {

pnom = NILE;

PNoeud svt = enr->syn;

booleen trouve = faux;

while ( (svt!=NILE) && !trouve) {
lireD (svt, enr);
it ( strcmp (enr->nom, nomC) == 0) {

pnom = svt;

trouve = vrai;
} else {

svt = enr->syn;
3

}
}

return pnom;
}

On peut bien siir reprendre le menu concernant les parcours et les interrogations
des arbres n-aires mémorisés sous forme binaire en mémoire centrale (voir
§ 3.2.11.a page 142). Le fait que I’arbre soit mémorisé dans un fichier ne change pas
les algorithmes, seulement le codage (voir § 3.2.13, page 153).

Nom du Noeud dont on cherche les descendants n-aire ? thorax

Descendants n-aires de thorax
coeur
foie
poumon

Nom du Noeud dont on cherche les ascendants n-aire ? orteil

Ascendants n-aires de orteil
orteil
pied
Jambe
homme

Exercice 26 - Hachage sur I'arbre de la Terre

En utilisant la méme fonction de hachage et la méme méthode de résolution que
sur I’exemple 2 du corps humain, donner le schéma d’implantation correspondant a
I’arbre n-aire de la Terre décrit dans le § 3.2.11.b, page 147.

Exercice 27 - Table des étudiants gérée par hachage avec chainage

e Créer un fichier etudiant.dat d’une centaine de noms (clés) différents (plus des
informations spécifiques de chaque étudiant comme son prénom et son groupe



4.4 o Résumé 253

par exemple). En reprenant les algorithmes du cours, écrire un programme de
création d’une table de hachage comprenant 197 entrées (de 0 a 196). La fonction
de hachage est hash2() (somme des caracteres ascii) et la résolution est du type
r(i) = K * 1 (K=19) avec chainage et expulsion de I'intrus. 19 et 197 sont premiers
entre eux.

» Effectuer des recherches a partir des noms des étudiants.

e Sur 'exemple du fichier efudiant.dat, écrire le hash-code et le nombre d’acces
pour chaque élément de la table, le taux d’occupation et le nombre moyen
d’acces. Comparer a 1’évaluation du cours (Figure 131, page 245).

4.4 RESUME

Les tables sont des structures de données permettant de mémoriser des ensembles de
valeurs et leurs attributs, et de retrouver (le plus rapidement possible) les différents
attributs a partir de la clé d’un élément (son nom par exemple). Lorsque le nombre
d’éléments de la table est faible (inférieur a une centaine) ou que les recherches dans
la table sont peu fréquentes, on peut envisager une recherche séquentielle qui est
simple a mettre en ceuvre. Si le nombre d’éléments est faible, mais que les recher-
ches sont tres fréquentes, on peut optimiser 1’algorithme de recherche séquentielle
en utilisant la méthode de la sentinelle. Si insertions et recherches se font en deux
phases séparées, on peut ordonner la table en cours ou en fin d’insertion, et effectuer
par la suite, en mémoire centrale, des recherches dichotomiques. Si le nombre
d’éléments est important sur mémoire secondaire, il convient de limiter les acces
disque en regroupant les clés dans des sous-tables qui sont amenées en mémoire
centrale en un seul acces disque, la recherche se poursuivant en mémoire centrale
dans cette sous-table. Ce partitionnement en sous-tables peut utiliser les techniques
des B-arbres s’il y a des ajouts et retraits d’éléments.

Dans certains cas, lorsque la clé est structurée, on peut effectuer un calcul a partir
de cette clé qui fournit la place dans la table (ou fichier) de cette clé. Dans le cas
général, une autre technique trés performante consiste a définir une fonction qui
fournit également la place dans la table a partir de la clé. Cependant, cette fonction
peut fournir une méme place pour deux clés différentes ; il faut donc en cas de
conflit trouver une autre place pour I’élément synonyme (en collision). Ces techni-
ques de hachage sont tres rapides et indépendantes du nombre d’éléments dans la
table. Les performances dépendent seulement du taux d’occupation de la table qui
doit étre surdimensionnée ; on réserve plus de places que strictement nécessaire. Par
contre, le traitement séquentiel suivant I’ordre de la clé nécessite une copie et un tri
de la table, ce qui n’est pas génant si ce traitement est peu fréquent.



Chapitre 5

Les graphes

5.1 DEFINITIONS

Un graphe est une structure de données composée d’un ensemble de sommets, et
d’un ensemble de relations entre ces sommets.

Si la relation n’est pas orientée, la relation est supposée exister dans les deux sens.
Le graphe est dit non orienté ou symétrique. Dans le cas contraire, si les relations sont
orientées, le graphe est dit orienté. Une relation est appelée un arc (quelquefois une
aréte pour les graphes non orientés). Les sommets sont aussi appelés nceuds ou points.

5.1.1 Graphes non orientés (ou symétriques)
Le graphe de la Figure 135 peut se noter comme suit :
e S={S1,S2,S3,S4, S5} ; ensemble des sommets

* A = {S1S2, S1S3, S2S53, S3S4, S3S5, S4S5} ; ensemble des relations symétri-
ques. Par exemple, S1S2 est vrai, de méme que S2S1.

@ s3 54

Figure 135 Un graphe non orienté : les relations existent dans les deux sens.



© Dunod - La photocopie non autorisée est un délit.

5.1 e Définitions 255

Graphe connexe : un graphe non orienté est dit connexe si on peut aller de tout
sommet vers tous les autres sommets. Le graphe de la Figure 135 est connexe ; celui
de la Figure 136 ne I’est pas ; il est constitué de deux composantes connexes.

(2 52) )

Figure 136 Un graphe non connexe et ses deux composantes connexes.

5.1.2 Graphes orientés

Si les relations sont orientées, le graphe est dit orienté.

6D )
55)

Figure 137 Un graphe orienté.

Pour un arc S1S2, S2 est dit successeur de S1 ou encore adjacent a S1 ; S1 est le
prédécesseur de S2.

(2)
© 6

(9

Figure 138 Degrés d'un graphe orienté.

d°(S3) =5 degré du sommet S3 : nombre d’arcs entrants ou sortants
d+(S3) =3 nombre d’arcs sortants : demi-degré extérieur ou degré d’émission
d-(S3) =2 nombre d’arcs entrants : demi-degré intérieur ou degré de réception



256 5 e Les graphes

Graphe fortement connexe : un graphe orienté est dit fortement connexe si on
peut aller de tout sommet vers tous les autres sommets (en passant éventuellement
par un ou plusieurs sommets intermédiaires).

2 G —®
N

Figure 139 Graphe non fortement connexe et composantes fortement connexes.

5.1.3 Graphes orientés ou non orientés

Les définitions suivantes s’appliquent aux graphes orientés comme aux graphes non

orientés.
EE)—@ E— (3

Figure 140 Une boucle et un graphe multiple.

Une boucle (autoboucle) est une relation (Si, Si). Un multigraphe ou graphe
multiple est un graphe tel qu’il existe plusieurs arcs entre certains sommets. Sur la
Figure 140, la relation S2S3 existe 2 fois ; le graphe est un 2-graphe orienté ou plus
généralement un p-graphe. Un graphe simple est un graphe sans boucle et sans arc
multiple.

Un graphe est dit valué (pondéré) si a chaque arc on associe une valeur représen-
tant le colit de la transition de cet arc.

5

E—®

Figure 141 Un graphe valué : la transition S1 vers S2 colte 5.

Un chemin dans un graphe est une suite d’arcs consécutifs.

La longueur d’un chemin est le nombre d’arcs constituant ce chemin.

Un chemin simple est un chemin ol aucun arc n’est utilisé 2 fois.

Un circuit simple est un chemin simple tel que le premier et le dernier sommet
sont les mémes.

Un circuit eulérien est un circuit qui passe une et une seule fois par tous les arcs.

Un circuit hamiltonien est un circuit qui passe une et une seule fois par tous les
sommets.



© Dunod - La photocopie non autorisée est un délit.

5.2 ¢ Exemples de graphes 257

Un graphe est planaire si aucun de ses arcs ne se coupent. Il est impossible par
exemple de relier 3 puits vers 3 maisons sans que les arcs ne se coupent, chaque
puits étant relié a chacune des maisons.

Remarques : dans les graphes non orientés, on parle quelquefois de chaine au
lieu de chemin et de chalne simple pour un chemin simple. Le terme aréte est
aussi utilisé a la place d’arc. Le terme de cycle indique un circuit simple
orienté.

Un graphe non orienté peut toujours étre considéré comme un graphe orienté ou
les relations symétriques sont explicitement mentionnées.

5.2 EXEMPLES DE GRAPHES

Exemple 1 : Un réseau de communication (routier, aérien, électrique, d’alimentation
en eau, etc.) entre différents lieux peut étre schématisé sous forme d’un graphe
comme 1’indique la Figure 142. Le lieu peut étre une ville ; il peut aussi indiquer
différents carrefours ou places dans une ville. Le graphe est symétrique : les rela-
tions existent dans les deux sens. On peut aller par exemple de Rennes vers Nantes
ou de Nantes vers Rennes. Ceci ne serait pas vrai s’il y avait par exemple des sens
interdits (cas de la circulation dans une ville).

St-Malo

Brest St-Brieuc

Rennes

Quimper Vannes

Nantes

Figure 142 Un réseau de communication.

Exemple 2 : ordonnancement de tches (graphe orienté sans cycle)

La construction d’un complexe immobilier, ou plus simplement d’une maison, d’un
appareil compliqué (fusée par exemple) s’effectue en suivant un ordre bien précis
dans I’accomplissement des différents travaux. Pour commencer certains travaux, il
faut que d’autres soient terminés. Certains travaux peuvent cependant se réaliser en
parallele. Le graphe peut étre valué, et certains travaux sont dits critiques, car si on
prend du retard pour ceux-ci, le projet en entier sera retardé. Pour des travaux en
parallele, le plus long chemin est critique ; pour les autres, il y a une certaine latitude
qui ne retarde pas le projet.



258 5 e Les graphes

Le graphe présenté Figure 143 est un graphe d’ordonnancement non valué. Dans
un but pédagogique, on conseille d’étudier les différentes notions dans 1’ordre
indiqué par le graphe, pour finalement aboutir au dipléme. En fait, comme les
notions sont tres imbriquées, il est difficile d’établir un ordre séquentiel des cours.
Le graphe est orienté sans cycle

Systéme
d'exploitation

Algorithmique ( Fichiers < Analyse >

i
Logiciel i
artificielle
Archi
rchltgcture des < Assembleur >
ordinateurs

Figure 143 Un graphe d’ordonnancement.

Exemple 3 : un labyrinthe

Un labyrinthe peut étre représenté par un graphe comme l'indique la Figure 144.
L’entrée se fait en A, la sortie en H. Chaque carrefour présentant un choix de
chemins est un sommet.

H

Figure 144 Un labyrinthe et son graphe équivalent

Exemple 4 : un programme peut étre considéré comme un graphe orienté. Les
sommets représentent les actions ; les arcs représentent I’enchainement des actions.

Exemple : programme de calcul de la factorielle de n (voir factoriellelter § 1.2.1,
page 4):



© Dunod - La photocopie non autorisée est un délit.

5.3 ¢ Mémorisation des graphes 259

int £, 1;

f
fo i=1; i<=n; i++) {

>

== I
In~rP

}
printf (“%d”, f);

La schématisation est donnée sous forme d’organigramme et sous forme de
graphe. Le graphe est orienté avec cycle.

oui

f = f*;
i=i+1;

]
—

printf (“%d", f);

Figure 145 Programme schématisé sous la forme d’un graphe.

5.3 MEMORISATION DES GRAPHES

Suivant le rapport entre le nombre de sommets et le nombre d’arcs, on choisit soit
une mémorisation sous forme de matrice (rapport important), soit une mémorisation
sous forme de listes d’adjacence. Dans ce dernier cas, la matrice serait dite creuse
avec beaucoup d’éléments mémorisés inutilement.

5.3.1 Mémorisation sous forme de matrices d'adjacence

Chaque arc (i, j) est représenté par un booléen V (vrai) dans la matrice. Une valeur F
(faux) non notée sur le schéma de la Figure 146 indique une absence de relation
entre le sommet i et le sommet j. Le tableau nomS contient les noms des sommets et
leurs caractéristiques. On peut facilement ajouter des sommets (si ns : nombre de
sommets < nMax : nombre maximum de sommets) et des arcs entre deux sommets a
partir de leur nom.



260 5 e Les graphes

nomS 0 1 2 3 nMax-1
0 S0 \Y \Y
1 S1 \Y Y,
2 S2 \Y
3 S3
nMax-1

Figure 146 Mémorisation sous forme d’une matrice d'adjacence.

5.3.2 Mémorisation en table de listes d’adjacence

La partie concernant les caractéristiques des sommets est mémorisée dans une table
(voir Chapitre 4) contenant, pour chaque entrée, une liste des sommets que 1’on peut
atteindre directement en partant du sommet correspondant a cette entrée. Par
exemple, du sommet O (SO), on peut aller au sommet numéro 1 (S1) et au sommet
numéro 2 (S2). On pourrait aussi mémoriser les listes dans un tableau en allocation
contigué (voir Figure 44, page 88).

nomS i

0 [so (1] | 2]/
1 [s1 lo| | 3]/

2 (52| -

3 [s3

Figure 147 Mémorisation sous forme d'une table de listes d’adjacence.

5.3.3 Liste des sommets et listes d’adjacence : allocation dynamique

On peut tout allouer dynamiquement: la liste des sommets, et pour chaque
sommet, la liste des sommets successeurs. On n’a plus besoin de définir nMax ;
I’allocation est entierement dynamique. Le premier champ des listes de successeurs



© Dunod - La photocopie non autorisée est un délit.

5.4 e Parcours d’un graphe 261

contient soit le numéro ou le nom du sommet successeur, soit un pointeur sur le
sommet. Le dernier cas facilite I’acces au sommet sinon il faut parcourir la liste des
sommets pour retrouver I’adresse du sommet et ses caractéristiques. Si le graphe
est valué, il faut ajouter le poids de 1’arc dans chacun des éléments des listes de
successeurs.

[sol [ F——ls1] F——sal/ |

[so |
[s1]
52 |

Figure 148 Variantes de la mémorisation sous forme de listes d'adjacence.

j
]

[s1]

[so] F——{s3]/]
sz ([ ——s1[ /]
s3]/ |

r
]

5.4 PARCOURS D'UN GRAPHE

1l s’agit d’écrire un algorithme qui permet d’examiner les sommets une et une seule
fois. La présence de circuits doit &tre prise en considération de fagon a ne pas visiter
plusieurs fois le méme sommet. Il faut donc marquer les sommets déja visités.
Comme pour les arbres (voir § 3.2.4, page 114), on distingue deux types de
parcours : le parcours en profondeur et le parcours en largeur.

Figure 149 Un graphe valué de distances entre lieux.

Le graphe de la Figure 149 peut étre décrit comme suit :

SO S1 S2 S3 S4 S5 S6 S7 ; liste des sommets
SO: S1 (25) s6 (17) ; de SO, on peut aller en S1 et S6



262 5 e Les graphes

S1l: S2 (30) S3 (33) S5 (15) ;
S2: S3 (18) ;

S3: S1 (33) ;

S4: S3 (25) S5 (26) S7 (20) ;
S5: S1 (15) S3 (35) ;

S6: S5 (22) ;

5.4.1 Principe du parcours en profondeur d’un graphe

On part d’un sommet donné. On énumere le premier fils de ce sommet (par ordre
alphabétique par exemple), puis on repart de ce dernier sommet pour atteindre le
premier petit-fils, etc. Il s’agit pour chaque sommet visité, de choisir un des
sommets successeurs du sommet en cours, jusqu’a arriver sur une impasse ou un
sommet déja visité. Dans ce cas, on revient en arriere pour repartir avec un des
successeurs non visité du sommet courant. En partant de SO sur la Figure 149, on
peut aller en S1 ou S6. On choisit S1. De S1, on peut aller en S2, S3 ou S5. On
choisit S2. De S2, on peut aller en S3, seule possibilité. De S3, on pourrait aller en
S1 mais S1 a déja été marqué. On revient en arriere sur S2 ou il n’y a pas d’autre
alternative. On revient en arriere sur S1 ; reste a essayer S3 et S5. S3 a déja été visité.
On prend donc le chemin S5. De S5, on ne peut explorer de nouveaux sommets. On
revient en S1, puis SO. Pour SO, il reste une alternative vers S6.

Tous les sommets n’ont pas été visités en partant de SO. Il faut repartir d’un des
sommets non encore visités, et essayer d’explorer en partant de ce sommet. On
repart de S4 qui mene a S7.

L’indentation met en évidence le parcours en profondeur :

SO
S1
S2
S3
S5
S6
S4
S7

L’ordre de parcours en profondeur du graphe est donc le suivant : SO, S1, S2, S3,
S5, S6, S4, S7.

5.4.2 Principe du parcours en largeur d’un graphe

On part d’un sommet donné. On énumere tous les fils (les suivants) de ce sommet,
puis tous les petits-fils non encore énumérés, etc. C’est une énumération par généra-
tion : les successeurs directs, puis les successeurs au 2¢ degré, etc.

En partant de SO sur la Figure 149, on visite S1 et S6. De S1, on visite S2, S3 et
S5. De S6, on ne peut pas explorer de nouveaux sommets. De S2, S3 et S5, on ne
peut pas explorer de nouveaux sommets. Il faut également repartir d’un sommet non



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 263

encore visité et non accessible de SO. On repart avec S4 qui nous conduit a S7. Le
graphe entier a été parcouru.
Parcours en largeur sur I’exemple de la Figure 149 :

Parcours en largeur

SO S1 S6 S2 S3 S5
S4 S7

L’ ordre de parcours en largeur du graphe est donc le suivant : SO S1 S6 S2 S3 S5
S4 S7.

5.5 MEMORISATION (TABLE DE LISTES D’ADJACENCE)

La mémorisation peut se faire en utilisant la notion de table pour enregistrer les
sommets et leurs caractéristiques. Le type Graphe utilise le type Table. Chaque objet
de table est caractérisé par le nom du sommet (la clé), un booléen marqué qui est
utilisé lors des parcours pour savoir si on est déja passé par ce sommet et une liste li
des sommets successeurs.

element
clé marque li
0 SO
1 S1
2 S2
3 S3
4 S4
5 Ss
6 Sé
7 S7
n=§
nMax-1

Figure 150 La partie table correspondant au graphe de la Figure 149.
Le détail de I'implémentation est donné sur les figures suivantes.



264 5 e Les graphes

La partie liste utilise le module de gestion des listes vu au chapitre 2 (voir § 2.3.8,
page 48). Chaque élément de liste d’une entrée de la table contient un pointeur vers le
sommet successeur et le cofit de la relation (voir Figure 151). Du sommet SO, on peut
aller en S1 (cofit:25) ou en S6 (cotit:17).

5.5.1 Le type Graphe

5.5.2 Le fichier d’en-téte des graphes

Le type Graphe peut donc étre défini comme suit a partir du type Table et du type
Liste.

type Succes

somSuc cout
type Sommet

Max  n element |:|5° (A [25] <|A [17]

f[o o s S I

um N
objet marque num li
0
1 - Y
] liste des
2 fl1 successeurs
3 de S1
(
4 S1
5
6 >
fl6 B liste des
7 successeurs
8 v l de 56
S6
type Table

Figure 151 Implémentation du type Graphe (listes d’adjacence).

/* grapheadj.-h graphe avec des listes d"adjacence */

#ifndef GRAPHEADJ_H
#define GRAPHEADJ_H

#include "liste.h"”
#include "table.h"



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 265

#define INFINI INT_MAX

typedef struct {

Objet* objet; // les caractéristiques du sommet (son nom)
booleen marque; // booléen marqué (pour le parcours)

int num; // numéro du sommet dans la table
Liste Ii; // liste des successeurs du sommet
} Sommet;

// successeur
typedef struct {

Sommet* somSuc; // pointeur sur le sommet successeur

int cout;
} Succes;

typedef struct {

Table* table; // la table représentant le graphe
booleen value; // le graphe est-il valué ?

} Graphe;

Graphe* creerGraphe (int nMax, booleen value, char* (*toString) (Objet*),

Graphe* creerGraphe

void detruireGraphe
void ajouterUnSommet
void ajouterUnArc

Graphe* lireGraphe

void ecrireGraphe
void parcoursProfond
void parcoursLargeur
void plusCourt

char* toStringSommetCar
int comparerSommetCar
#endif

int (*comparer) (Objet*, Objet*));

(int nMax, int value);

(Graphe*
(Graphe*

(Graphe*

(FILE*

(Graphe*
(Graphe*
(Graphe*
(Graphe*

graphe);
graphe, Objet* sommet);

graphe, Objet* sommetDepart,
Objet* sommmetArrivee,
int cout);

fe, Int nMax);

graphe);
graphe);
graphe);
graphe, int nsi);

(Objet* objet);
(Objet* objetl, Objet* objet2);

5.5.3 Création et destruction d'un graphe

La fonction Graphe* creerGraphe (int nMax, int value), alloue dynamiquement une
table de nMax entrées ; nMax est le nombre maximum de sommets envisagés dans
la table. La fonction razMarque() met par défaut tous les champs marque des
sommets a faux (sommet non visité). Les té€tes de listes /i de chaque entrée de la
table sont initialisées (listes vides). value indique si le graphe est valué ou non.

/* grapheadj.cpp module sur les graphes mémorisés
avec une table de listes d"adjacence */

#include "grapheadj-h"

// pointeur sur le niéme sommet (élément de la table)
Sommet* getsommet (Graphe* graphe, int n) {
return (Sommet*) graphe->table->element[n];

}



266 5 e Les graphes

// marquer le sommet n (visité)

void marquersommet(Graphe* graphe, int n) {
getsommet(graphe,n)->marque = vrai;

3

// le sommet n a-t"il été visité ?

booleen estmarque (Graphe* graphe, int n) {
return getsommet(graphe,n)->marque;

¥

// nom du sommet pointé par sommet

char* nomsommet (Graphe* graphe, Sommet* sommet) {
return graphe->table->toString (sommet);

¥

// nom du niéme sommet
char* nomsommet (Graphe* graphe, int n) {

return nomsommet (graphe, getsommet(graphe, n));
3

// nombre de sommets dans le graphe

int nbsommet (Graphe* graphe) {
return graphe->table->n;

3

// remise a faux du tableau marqué (pour les parcours de graphe)
static void razMarque (Graphe* graphe) {
for (int i=0; i<nbsommet(graphe); i++) getsommet(graphe,i)->marque = faux;

}

// créer et initialiser un graphe avec nMax sommets
Graphe* creerGraphe (int nMax, booleen value, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {
Graphe* graphe = new Graphe();
graphe->table = creerTable (nMax, toString, comparer);
graphe->value = value;
return graphe;
¥

// créer et initialiser un graphe avec nMax sommets
// par défaut, les sommets sont des chatnes de caracteres
Graphe* creerGraphe (int nMax, booleen value) {
return creerGraphe (nMax, value, toStringSommetCar, comparerSommetCar);
¥

La fonction detruireGraphe() effectue le travail inverse de creerGraphe(), en
désallouant les listes de chaque entrée /i de la table, et en désallouant la table des
sommets du graphe.

void detruireGraphe (Graphe* graphe) {
Table* table = graphe->table;
for (int i=0; i<table->n; i++) {
Sommet* sommet = getsommet (graphe,i);
detruireListe (&sommet->li);

detruireTable (table);



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 267

5.5.4 Insertion d’'un sommet ou d’un arc dans un graphe

La fonction ajouterUnSommet() ajoute au graphe, le sommet objet. Cet ajout est
sous-traité a insererDsTable() (voir § 4.1.3, page 200).

void ajouterUnSommet (Graphe* graphe, Objet* objet) {
Sommet* sommet = new Sommet();
sommet->objet objet;
sommet->marque = faux;
Table* table graphe->table;
sommet->num IgTable (table); // le numéro du sommet
initListe (&sommet->11i);
insererDsTable (graphe->table, sommet);

}

La fonction ajouterUnArc() ajoute au graphe, un arc entre les sommets de nom
somDepart et somArrivee. La recherche du nom s’effectue grace a la fonction acces-
Sequentiel() de recherche séquentielle dans une table. Un élément de type Succes
(successeur) est créé, rempli et inséré en fin de la liste des successeurs de somDepart
(voir Figure 151).

// ajouter un arc entre deux objets (deux villes par exemple)
void ajouterUnArc (Graphe* graphe, Objet* sommetDepart,
Objet* sommetArrivee, int cout) {

// rechercher un pointeur sur le sommet de départ

Sommet d;

d.objet = sommetDepart;

Sommet* pSomD = (Sommet*) accesSequentiel (graphe->table, &d);

if (pSomD == NULL) {

printf ("'Sommet %s inconnu\n', nomsommet(graphe, &d)); return;

// rechercher un pointeur sur le sommet d"arrivée
Sommet a;
a.objet = sommetArrivee;
Sommet* pSomA = (Sommet*)accesSequentiel (graphe->table, &a);
if (pSomA == NULL) {
printf ("Sommet %s inconnu\n", nomsommet(graphe,&a)); return;

// enregistrer la relation entre les deux sommets
Succes* succes = new Succes();

succes->somSuc pPSomA;

succes->cout cout;

insererEnFinDeListe (&pSomD->li, succes);

}

5.5.5 Ecriture d’un graphe (liste d’adjacence)

Ecrire les sommets et les relations (arcs) d’un graphe :

void ecrireGraphe (Graphe* graphe) {
printf ("\n\ngraphe %s\n\n", graphe->value ? "valué"™ : "non valué");
for (int i=0; i<nbsommet(graphe); i++) {
printf ("%s ", nomsommet (graphe,i));

printf (';\n");



268 5 e Les graphes

for (int i=0; i<nbsommet(graphe); i++) {

Sommet* sommet = getsommet (graphe,i);

Liste* 1i = &sommet->li;

printf ("%s : ', nomsommet (graphe,i));

ouvrirListe (1i);

while (IfinListe (i) ) {
Succes* succes = (Succes*) objetCourant (li);
printf ("%s ', nomsommet (graphe, succes->somSuc));
if (graphe->value) printf ("(%3d) ', succes->cout);

3
printf (';\n"");
3
3

5.5.6 Parcours en profondeur (listes d’adjacence)

Voir les explications en 5.4.1, page 262.

// Parcours récursif des successeurs de sommet; niveau permet

// de faire une indentation a chaque appel récursif

static void profondeur (Graphe* graphe, Sommet* sommet, int niveau) {
sommet->marque = vrai;
for (int i=1; i<niveau; i++) printf ("%5s"," ');
printf ("%s\n", nomsommet (graphe, sommet));

Liste* li = &sommet->li;
ouvrirListe (li);
while (IfinListe (li) ) {

Succes* succes = (Succes*) objetCourant (li);

if (Isucces->somSuc->marque)

profondeur (graphe, succes->somSuc, niveau+l);
3
¥

// parcours en profondeur de graphe
void parcoursProfond (Graphe* graphe) {
razMarque (graphe);
for (int i=0; i<nbsommet(graphe); i++) {
// sommet : pointeur sur le iéme sommet de graphe
Sommet* sommet = getsommet (graphe, i);
if (Isommet->marque) profondeur (graphe, sommet, 1);

}
}

5.5.7 Parcours en largeur (listes d’adjacence)

Comme pour les arbres (voir § 3.2.4.f, page 120), le parcours en largeur nécessite
I’utilisation d’une liste (file d’attente) des sommets a traiter. ajouterDsFile() ajoute
(un pointeur sur) un sommet en fin de la liste. On part d’un sommet non marqué (le
premier par exemple), on I’insere dans la liste. On retire le premier élément de la
liste en le remplacant par ses successeurs non encore marqués jusqu’a ce que la liste
soit vide. S’il reste un sommet non marqué, on recommence avec ce sommet.



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 269

// ajouter sommet dans la file
static void ajouterDsFile (Liste* file, Sommet* sommet) {
sommet->marque = vrai;
Succes* succes new Succes();
succes->somSuc = sommet;
insererEnFinDeListe (file, succes);
3

// effectuer un parcours en largeur du graphe
void parcoursLargeur (Graphe* graphe) {
printf (""\nParcours en largeur\n™);
razMarque (graphe);
Liste* file = creerListe();
for (int i=0; i<nbsommet (graphe); i++) {
// somDepart : pointeur sur le sommet de départ
Sommet* somDepart = getsommet (graphe, i);
if (IsomDepart->marque) {
printf ("\n %s ", nomsommet (graphe, somDepart));
ajouterDsFile (Ffile, somDepart);

while (!listeVide (File)) {
Succes* succes = (Succes*) extraireEnTeteDeListe (file);
somDepart = succes->somSuc;

// remplacer dans la file le sommet de départ par ses successeurs
Liste* 1i = &pSomD->11i;
ouvrirListe (li);
while (IfinListe (1i) ) {
succes = (Succes*) objetCourant (li);
Sommet* somSuc = succes->somSuc;
if (IsomSuc->marque) {
printf ("%s ", nomsommet (graphe, somSuc));
ajouterDsFile (File, somSuc);

b
¥ /7 while
¥ /7 while

} /77 af
} // for
b

5.5.8 Plus court chemin en partant d’'un sommet

Il s’agit de trouver le plus court chemin pour aller d’'un sommet vers les autres
sommets. Cette méthode est connue sous le terme d’algorithme de Dijkstra (les
cotits doivent étre >= 0). Sur le graphe de la Figure 149, les plus courts chemins et
leur cotit en partant du sommet initial SO sont les suivants :

Plus court chemin pour aller de SO a :
S1 (cout =25) : SO, S1
S2 (cout = 55) : SO, S1, S2
S3 (cout = 58) : SO, S1, S3
S5 (cout = 39) : SO, S6, S5
S6 (cout =17) : SO, S6
De S0, on ne peut pas aller en S4, ni en S7.



270 5 e Les graphes

Les fonctions tousMarque(), dMin() et ecrireResultats() sont des fonctions utilisées
dans la fonction de calcul du plus court chemin. Les structures de données de la mémo-
risation du graphe sont celles des Figures 150 et 151.

// fournir vrai si tous les sommets du graphe G

// sont marqués, faux sinon

static booleen tousMarque (Graphe* graphe) {
int i =0;
while ( 1 < nbsommet(graphe) && estmarque (graphe,i)) i++;
return i >= nbsommet (graphe);

}

d est un tableau contenant le plus court chemin entre un sommet nsi (numéro du
sommet initial) et chacun des autres sommets. d[0] est la valeur du plus court chemin
de nsi a 0; d[1] la valeur du plus court de nsi a 1, etc. La fonction dMin() fournit le rang
dans d de la plus petite valeur de d correspondant a un sommet non marqué.

// retourner I"indice de I"élément non marqué ayant le d[i] minimum
static int dMin (Graphe* graphe, int* d) {
int min = INFINI;
int nMin = O;
for (int i=0; i<nbsommet(graphe); i++) {
if (lestmarque (graphe,i)) {
ifT (d[i] <= min) { min = d[i]; nMin = i; }

return nMin;

}

La fonction ecrireResultats() écrit pour un sommet de départ nsi, le chemin le
plus court entre nsi et les autres sommets. d[i] indique la valeur du chemin le plus
court entre le sommet nsi et le sommet i (i !=nsi). Si d[i] = INFINI (le plus grand
entier noté * sur la Figure 152), c’est par convention qu’il n’y a pas de chemin de nsi
a i. pr[i] indique quel est le sommet d’ou on vient (avant-derniere étape) en prenant
le chemin le plus court pour arriver a i.

Exemple :

Sommet d pr

0 SO * 2

1 S1 51 3

nsi=2 S2 0 2

3 S3 18 2

4 S4 * 2

5 S5 66 1

6 S6 * 2

7 S7 * 2

Figure 152 Plus court chemin en partant de S2.



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 271

Pour aller du sommet S2 au sommet S3, le plus court chemin a pour valeur 18;
pour aller de S2 a S5, le plus court chemin est 66. Pour aller de S2 a S4, il n’y a pas
de chemin (valeur INFINI notée par une *). Pour aller de S2 a S2, le coiit est 0.

Le tableau pr permet de reconstituer le chemin en partant du sommet d’arrivée.
Pour aller de S2 vers S5, le sommet précédant I’arrivée est le sommet 1 (pr[5]).
Pour aller de S2 vers S1, le sommet précédant I’arrivée est le sommet 3 (pr[1]).
Pour aller de S2 vers S3, le sommet précédant I’arrivée est le sommet 2 (pr[3]).
Le chemin de S2 a S5 est donc S2, S3, S1, S5.

La fonction ecrireResultats() écrit les valeurs des tableaux d et pr, et donne
ensuite les chemins de I’arrivée vers le départ nsi pour tous les sommets différents
de nsi et s’il existe un chemin (d[i] != INFINI).

nsi S2
SO : * S2
S1 : 51 S3
S2 : 0 S2
S3 : 18 S2
S4 : * S2
S5 : 66 S1
S6 : * S2
S7 : * S2

Plus court chemin (en partant de la fin) :
pour aller de S2 a :

S1 (cout = 51) : S1, S3, S2

S3 (cout = 18) : S3, S2

S5 (cout = 66) : S5, S1, S3, S2

static void ecrireResultats (Graphe* graphe, int nsi, int* d, int* pr) {
printf ("\nPlus court chemin (en partant de la fin) :\n");
printf (“"pour aller de %s a :\n", nomsommet(graphe,nsi));
for (int i=0; i<nbsommet(graphe); i++) {
if ( (i'=nsi) && (d[i] = INFINI) ) {
printf (" %s (cout = %d) : %s'", nomsommet(graphe,i),
d[i], nomsommet(graphe,i));
int j = 1i;
while (pr [J1 '= nsi) {
printf (', %s", nomsommet (graphe, pr[jl));
J =pr 0Ol
¥
printf (', %s\n", nomsommet (graphe, pr[jl1)):;
s

b
printf ('\n");
}



272 5 e Les graphes

La fonction void plusCourt (Graphe* graphe, int nsi) ; réalise le calcul du plus
court chemin du graphe en partant du sommet nsi vers tous les autres sommets. La
fonction utilise un tableau d ( d[i] : plus court chemin entre nsi et i), et un tableau pr
(qui indique le sommet précédemment visité pour arriver en i).

Si nsi vaut 0 (S0), au départ d et pr ont les valeurs suivantes sur I’exemple de la
Figure 149 :

d pr
vV 0 : 0 0 SO visité
F 1: 25 0 SOS1 : 25 arc du graphe
F 2 : * 0
F 3 : * 0
F 4 : * 0
F 5 : * 0
F 6 : 17 0 S0S6 : 17 arc du graphe
F 7 : * 0

‘3) 25 <:>

D

Figure 153 Recherche du plus court chemin : étape initiale.

On détermine le rang m du plus petit de d[i] non marqué soit : 6. On examine si en
partant de S6, on peut trouver des chemins plus courts que ceux jusqu’a présent réperto-
riés. De S6, on peut aller en S5 (cofit : 17+22=39 meilleur que ce que ’on connait pour
S5 qui est * donc inaccessible). Le sommet précédent pour arriver en S5 est donc 6 (S6).

>
n
1
o
3
|
)}
he]

N
[eNelNoNoNoNoNoNaly

F~N O ¥ % >(-(J'IOQ.I

pour arriver en 5, il faut passer par 6
S6 visité

mT<TTTnTnTnnn<
NoO o~ WNREO
= W

Figure 154 Plus court chemin : étape 1.

On détermine a nouveau le rang m du plus petit de d[i] non marqué soit: 1. On
examine si en partant de S1, on peut trouver des chemins plus courts que ceux
jusqu’a présent répertoriés. De S1, on peut aller en :



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 273

— S2 (cofit : 25+30=55 meilleur que ce que I’on connait pour S2 qui est * donc inac-
cessible) ; le sommet précédent pour arriver en S2 est donc 1 (S1),

— S3 (cofit : 25+33=58 meilleur que ce que I’on connait pour S3 qui est * donc inac-
cessible) ; le sommet précédent pour arriver en S3 est donc 1 (S1),

— S5 (colt : 25+15=40 supérieur au colit déja connu 39, donc non retenu).

>

"
-
1

o, m=1
d p
0

25

55

58

39

17

*

S1 visité
pour arriver en 2, il faut passer par 1
pour arriver en 3, il faut passer par 1

T<TTTTmnN<<<
~N~NoahwNERO
[eNeoNoNeoN N —NoNoky]

30 (s2) 55

17 33 (s3) 58

Figure 155 Plus court chemin : étape 2.

On détermine a nouveau le rang du plus petit de d[i] non marqué soit : 5. De S5,
on peut aller vers S1 (déja marqué) ou vers S3 par un chemin plus long. Le sommet
5 est marqué.

On détermine a nouveau le rang du plus petit de d[i] non marqué soit : 2. De S2,
on peut aller vers S3 par un chemin plus long. Le sommet 2 est marqué.

On détermine a nouveau le rang du plus petit de d[i] non marqué soit : 3. De S3,
on peut aller vers S1 déja marqué. Le sommet 3 est marqué.

Les sommets 4 et 7 sont inaccessibles (noté *) en partant de SO.

// plus court chemin en partant du sommet nsi

void plusCourt (Graphe* graphe, int nsi) {
// allocation dynamique des tableaux d et pr
int* d = (int*) malloc (sizeof (int) * nbsommet(graphe));
int* pr = (int*) malloc (sizeof (int) * nbsommet(graphe));

// initialisation par défaut de d et pr
razMarque (graphe);
for (int i=0; i<nbsommet(graphe); i++) {
d [i] = INFINI;
pr [i] = nsi;

¥
d [nsi] = 0;



274 5 e Les graphes

// initialisation de d et pr en fonction de graphe
Liste* li = &(getsommet(graphe,nsi)->li);
ouvrirListe (1i);
while (IfinListe (li) ) {
Succes* succes = (Succes*) objetCourant (li);
int 1 = succes->somSuc->num;
//printf ("'num %d\n", 1);
d [i] = succes->cout;

}

printf (“NSI : %d\n", nsi);
marquersommet (graphe,nsi); // marquer NSI

while (ItousMarque (graphe)) {
int m = dMin (graphe, d); // élément minimum non marqué de d
marquersommet (graphe, m);

if (d [m] '= INFINDI) {

li = &getsommet(graphe,m)->li;

ouvrirListe (li);

while (IfinListe (1i) ) {
Succes* succes = (Succes*) objetCourant (li);
int k = succes->somSuc->num;
if (lestmarque (graphe,k)) {

int v = d [m] + succes->cout;

if (v<d[kD {

d [K] = v;
pr [K] = m;
}
¥
}
}
ecrireResultats (graphe, nsi, d, pr);

}

5.5.9 Création d'un graphe a partir d'un fichier

L’initialisation d’un graphe peut se faire a partir d’une description contenue dans un
fichier. lireGraphe() initialise le graphe, lit les noms des sommets et des relations
entre ces sommets pour construire le graphe. La fonction utilise ajouterUnSommet()
et ajouterUnArc() vues précédemment. lireUnMot() effectue la lecture d’un nom de
sommet en ignorant les espaces avant et apres le nom.

Ce programme est le méme que pour le test des graphes mémorisés sous forme de
matrices (ci-apres). Les seules différences sont repérées par la variable de compila-
tion MATRICE.

/* liregraphe.cpp créer un graphe a partir d"une description
du graphe faite dans un fichier
pour liste d"adjacence ou matrices
suivant la variable de compilation MATRICE */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 275

#ifndef MATRICE

#include "grapheadj.-h"
#else

#include "graphemat.h
typedef GrapheMat Graphe;
#endif

typedef char NomSom [20];
int c; // un caractere lu en avance dans lireUnMot

// ignorer les blancs
void lireBlancs (FILE* fe) {
while C C (c==" ") || (c=="\n") || (c==13) ) && !Ifeof(fe) ) {
= getc(fe);
b

}

// lire un nom de sommet en ignorant les espaces
void lireUnMot (FILE* fe, char* chaine) {
char* pCh = chaine;

//printf ("Debut lireUnMot %c %d\n', c, c);
lireBlancs (fe); // blancs avant le mot
while ( isalpha(c) || isdigit(c) ) {
*pCh++ = (char) c;
//printf ("-- %c %d\n", c, c);
c = getc(fe);
3
*pCh = 0;
lireBlancs (fe); // blancs apres le mot
//printf ("Fin lireUnMot %s\n", chaine); getchar();
}

Si les sommets sont suivis de valeurs entre parenthéses, le graphe est déclaré
valué sinon le graphe n’est pas valué (voir les fichiers correspondant au graphe non
valué et valué de la Figure 149).

Graphe non valué Graphe valué

SO Sl S2 S3 S4 S5 S6 S7 ; SO Sl S2 S3 S4 S5 S6 S7 ;

SO : S1 S6 ; SO : S1 (25) S6 (17) ;

S1 : S2 S3 S5 ; S1 : S2 (30) S3 (33) S5 (15)
S2 : S3 ; S2 : S3 (18) ;

S3 : S1 ; S3 : S1 (33) ;

S4 : S3 S5 S7 ; S4 - S3 (25) S5 (26) S7 (20)
S5 : S1 S3 ; S5 : S1 (15) S3 (35) ;

S6 - S5 ; S6 : S5 (22) ;

// fournir un pointeur sur un graphe construit

// a partir d"un fichier fe de données

// value = vrai si le Graphe est valué

Graphe* lireGraphe (FILE* fe, int nMaxSom) {
booleen value = faux;
#ifndef MATRICE
Graphe* graphe = creerGraphe (nMaxSom, faux);
#else
Graphe* graphe = creerGrapheMat (nMaxSom, faux);
#endif



276

5 e Les graphes

// lire les noms des sommets
c = getc(fe); // c global
while (¢ = ";") {

}

char* somD = (char*) malloc (20);
lireUnMot (fe, somD);
ajouterUnSommet (graphe, somD);

while (c '= EOF) {

}

c = getc(fe); // passe ;
NomSom somD;

lireUnMot (fe, somD); // lit le sommet de départ
if (c 1= ":7) {
if (c '= EOF) printf (“"Manque : %c (%d)\n", c,c);
graphe->value = value;
return graphe;

c = getc(fe);
while (c = ";") {
NomSom somA;
lireUnMot (fe, somA); // lit les sommets d"arrivée
int cout;
if (c =" {
value = vrai; // si sommet suivi de ( : S1(25)
fscanf (fe, "%d", &cout);
c = getc (fe); // passer )
if (c = ")") printf ("Manque )\n");
c = getc (fe);
lireBlancs (fe); // prochain a analyser
//printf (“cout %d\n', cout);
} else {
cout = O;

ajouterUnArc (graphe, somD, somA, cout);

}

graphe->value = value;
return graphe;

}

5.5.10 Menu de test des graphes (listes d’adjacence et matrices)

Le menu suivant permet de créer un graphe, d’ajouter des sommets ou des arcs (rela-
tions) a ce graphe, d’afficher les parcours en profondeur ou en largeur, et de calculer

les plus courts chemins en partant des différents sommets du graphe.

/* ppgraphe.cpp pour listes et matrices
MATRICE permet de compiler 17un ou l"autre */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef MATRICE

#include '‘grapheadj.-h"

typedef char NomSom [20]; // défini dans graphemat.h
#else

#include *‘graphemat.h"

typedef GrapheMat Graphe;

#endif



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation

(table de listes d’adjacence)

277

int menu O {
#ifndef MATRI

CE

printf (""\n\nGRAPHES avec des listes d"adjacence\n\n");

#else

printf (""\n\nGRAPHES avec matrices\n\n");

#endif

printf ("0 -
printf ("1 -
printf ("\n")
printf ("2 -
printf ("3 -
printf ("4 -
printf ("\n")
printf ('5 -
printf ("6 -

~

Fin du programme\n™);

Création a partir d"un fichier\n");
Initialisation d"un graphe vide\n");
Ajout d"un sommet\n™);

Ajout d"un arc\n');

Liste des sommets et des arcs\n");
Destruction du graphe\n™);

printf (*'7 - Parcours en profondeur d"un graphe\n);
Parcours en largeur d"un graphe\n™);

printf ("8 -
printf ("\n")
#ifndef MATRI
printf (9
#else
printf ("9
printf ('10
printf (11
#endif
printf ("\n")

C
- Les plus courts chemins\n");

- Floyd\n"™);

- Produit et fermeture\n");
- Warshall\n");

printf ("'Votre choix ? ");

int cod; scan

printf ("'\n");

return cod;

}

void main O {
Graphe* graph
booleen fini

while (Ifini)
switch ( me

case O:
fini = vr
break;

case 1: {
printf ("
char nomF

//scanf
strcpy (n
FILE* fe
it (fe ==
perror

} else {
graphe
fclose

by
} break;

f ("%d", &cod); getchar();

e;
= faux;

{
nuO ) {

ai;

// création a partir d"un fichier
Nom du fichier contenant le graphe ?
e [50];
'%s', nomFe);
omFe, '‘graphel.dat™);
= fopen (nomFe, *r');
NULL) {
(nomFe);

= lireGraphe (fe, 20); // 20 sommets
(fe);

maximum



278 5 e Les graphes

case 2: { // création d’un graphe vide
printf ('Nombre maximum de sommets ? ");
int nMaxSom; scanf ('%d", &nMaxSom);
printf ('0) graphe valué; 1) non valué ? );
int value; scanf ("%d", &value);
#ifndef MATRICE
graphe = creerGraphe (nMaxSom, value);
#else
graphe = creerGrapheMat (nMaxSom, value);
#endif

} break;

case 3: { // ajouter un sommet
printf ("Nom du sommet & insérer ? ");
NomSom somD; scanf ("%s'", somD);
ajouterUnSommet (graphe, somD);

} break;

case 4: { // ajouter un arc
printf ('Nom du sommet de départ ? ");
NomSom somD; scanf (“"%s', somD);
printf (“"Nom du sommet d"arrivée ? ");
NomSom somA; scanf ("'%s', somA);
int cout;
it (graphe->value) {
printf (“'Cout de la relation ? ");
scanf (""%d", &cout);
} else {
cout = O;

ajouterUnArc (graphe, somD, somA, cout);
} break;

case 5:
ecrireGraphe (graphe);
break;

case 6:
detruireGraphe (graphe);
break;

case 7:
parcoursProfond (graphe);
break;

case 8:
parcoursLargeur (graphe);
break;

#ifndef MATRICE
case 9:
it (graphe->value) {
printf (""\nLes plus courts chemins\n\n");
for (int i=0; i<graphe->table->n; i++) {
plusCourt (graphe, i); getchar();
}

} else {
printf (“"Graphe non valué\n™);

break;
#else



© Dunod - La photocopie non autorisée est un délit.

5.5 ¢ Mémorisation (table de listes d’adjacence) 279

case 9:
if (graphe->value) {
printf (""\nLes plus courts chemins\n\n");
floyd (graphe);
} else {

printf (“'Graphe non valué\n");
break;

case 10:
produitEtFermeture (graphe);
break;

case 11:
warshall (graphe);
break;

#endif

} /7 switch

if (Ifini) {
printf ("\n\nTaper Return pour continuer\n');
getchar();

¥

¥
¥

Exemple d’interrogation concernant les graphes :
GRAPHES avec des listes d"adjacence

0 - Fin du programme
1 - Création a partir d"un fichier

2 - Initialisation d"un graphe vide

3 - Ajout d"un sommet

4 - Ajout d"un arc

5 - Liste des sommets et des arcs

6 - Destruction du graphe

7 - Parcours en profondeur d®"un graphe
8 - Parcours en largeur d*un graphe

9 — Les plus courts chemins
Votre choix ? 5
graphe valué

SO S1 S2 S3 S4 S5 S6 S7
SO : S1 ( 25) S6 ( 17) ;



280

5 e Les graphes

S1
S2
S3
S4
S5
S6
S7

S2
S3
S1
S3
S1
S5

AAAAAA

30) S3 ( 33) S5 ( 15)

18) ;
33) ;

25) S5 ( 26) S7 ( 20)

15) S3 ( 35) ;

22) ;

Pour obtenir les plus courts chemins de tous les sommets vers tous les autres
sommets, il suffit d’appeler la fonction de calcul du plus court chemin avec pour
sommet initial SO, puis S1, etc. Les résultats sont donnés ci-dessous en chemin

inverse (du sommet d’arrivée vers le sommet de départ).

pour
S1
S2
S3
S5
S6

pour
S2
S3
S5

pour
S1
S3
S5

pour
S1
S2
S5

pour
S1
S2
S3
S5
S7

aller
(cout
(cout

(cout =
(cout =

(cout

aller
(cout
(cout
(cout

aller
(cout
(cout
(cout

aller
(cout
(cout
(cout

aller
(cout
(cout

(cout =
(cout =

(cout

de SO
=825))
ER55))
58)
39)
= 17)

de S1
= 30)
= 33)
= 15)

de S2
= 51)
= 18)
= 66)

de S3
= 33)
= 63)
= 48)

de S4
= 41)
= 71)
25)
26)
20)

o o e Q

o o Qy o o Q) o o Qy

o e Q

S1,
S2,
SO
S58
S6,

S2,
S3,,
5.

S1,
SSH
SEH

S1,
S2,
S5,

S,
S2,
S3,
S5,
S7,

SO
S1,
S1,
S6,
SO

S1
S1
S1

SSH
S2
S1,

S3
S1,
S1,

S58
S1,
S4
S4
S4

SO
SO
SO

S2

SSH

S3
S3

S4
S5,

S2

S4



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices

281

pour

S1
S2
S3

pour

5.6 MEMORISATION SOUS FORME DE MATRICES

S1
S2
58
55

aller
(cout
(cout

(cout =

aller
(cout
(cout
(cout
(cout

d

d

e S5 a :

15) : S1, S5

45) : S2, S1, S5

35) : S3, S5
e S6 a :

37) : S1, S5, S6

67) - S2, S1, S5, S6
57) : S3, S5, S6

22) : S5, S6

Voir § 5.3.1, page 259 : mémorisation sous forme de matrices d’adjacence.

5.6.1 Le fichier d'en-téte du module des graphes (matrices)

Une structure de type GrapheMat mémorisée sous forme d’une matrice contient :

e les variables n (nombre réel de sommets), nMax (nombre maximum de sommets)
et value (vrai si le graphe est valué),

* les tableaux nécessaires a la mémorisation du graphe : un tableau nomS des noms
des sommets, un tableau element de booléens indiquant les relations entre les
sommets, un tableau valeur indiquant le cofit des relations, un tableau marque pour
le parcours du graphe, voir Figure 146, page 260.

nomsS element valeur
o 1 2 3 4 1 2 3
0 | SO V|V
1 S1 V Vv
2 S2 V
3 S3
4

type GrapheMat

marque

Figure 156 Le type GrapheMat.



282 5 e Les graphes

Les prototypes des fonctions sont les mémes que pour le type Graphe mémorisé
sous forme de listes d’adjacence. Cependant la création d’un graphe se fait pour une
matrice avec creerGrapheMat() ; 1a fonction PlusCourt() est remplacée par la fonction
Floyd() et quelques nouvelles fonctions sont ajoutées.

/* graphemat.h
pour la gestion de graphes mémorisés sous forme de matrices */

#ifndef GRAPHEMAT_H
#define GRAPHEMAT_H

#include <stdio.h>

typedef int booleen;

#define faux O

#define vrai 1

typedef char NomSom[20]; // nom d“un sommet
#define INFINI INT_MAX

typedef int* Matrice;

typedef struct {

int n; // nombre de sommets

int nMax; // nombre max de sommets
booleen value; // graphe valué ou non
NomSom* nomS; // noms des sommets

Matrice element; // existence d"un arc (i, j)

Matrice valeur; // cout de I*arc (i, J)

booleen* marque; // sommet marqué (visité) ou non
} GrapheMat;

GrapheMat* creerGrapheMat (int nMax, int value);

void detruireGraphe (GrapheMat* graphe);

void ajouterUnSommet (GrapheMat* graphe, NomSom nom);

void ajouterUnArc (GrapheMat* graphe, NomSom somD,
NomSom somA, int cout);

GrapheMat* lireGraphe (FILE* fe, iInt nMaxSom);

void ecrireGraphe (GrapheMat* graphe);

void parcoursProfond (GrapheMat* graphe);

void parcoursLargeur (GrapheMat* graphe);

void floyd (GrapheMat* graphe);

void produitEtFermeture (GrapheMat* graphe);

void warshall (GrapheMat* graphe);

#endif

5.6.2 Création et destruction d'un graphe (matrices)

La fonction creerGrapheMat() alloue dynamiquement et initialise une structure de
type GrapheMat. Si une relation n’existe pas entre 2 sommets i et j, la valeur est
notée INFINI (plus grand entier sur ordinateur). La fonction detruireGraphe() désal-
loue une structure de type GrapheMat allouée avec creerGrapheMat().

// remise a zéro du tableau de marquage
static void razMarque (GrapheMat* graphe) {



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices

283

for (int i=0; i<graphe->n; i++) graphe->marque [i] = faux;

}

// création d"une variable de type GrapheMat;

// nMax : nombre maximum de sommets envisagés;
// value : vrai si le graphe est valué

GrapheMat* creerGrapheMat (int nMax, int value) {

// allocation de graphe

GrapheMat* graphe = (GrapheMat*) malloc (sizeof (GrapheMat));
graphe->n ;
graphe->nMax
graphe->value
graphe->nomS
graphe->marque
graphe->element
graphe->valeur

nMax;
value;
(NomSom*) malloc (sizeof(NomSom) *nMax);
(booleen*) malloc (sizeof(booleen) *nMax);
(int*) malloc (sizeof(int)*nMax*nMax);
(int*) malloc (sizeof(int)*nMax*nMax);

// initialisation par défaut

for (int i=0; i<nMax; i++) {
for (int j=0; j<nMax; j++) {
graphe->element [i*nMax+j]
graphe->valeur [i*nMax+j]

faux;
INFINI;

for (int i=0; i<nMax; i++) graphe->valeur [i*nMax+i] = O;
razMarque (graphe);

return graphe;

}

// désallocation d"un graphe
void detruireGraphe (GrapheMat* graphe) {
free (graphe->nomS);
free (graphe->marque);
free (graphe->element);
free (graphe->valeur);
free (graphe);
}

5.6.3 Insertion d’'un sommet ou d’un arc dans un graphe (matrices)

La fonction rang() fournit le rang dans le tableau nomS du nom.

static int rang (GrapheMat* graphe, NomSom nom) {
int ] = 0;
booleen trouve = faux;
while ( (i<graphe->n) && !trouve) {
trouve = strcmp (graphe->nomS [i], nom) == 0;
if (Itrouve) i++;
}

return trouve ? i : -1;

}
La fonction ajouterUnSommet() ajoute le sommet nom au graphe.

void ajouterUnSommet (GrapheMat* graphe, NomSom nom) {
if (rang (graphe, nom) == -1) {



284 5 e Les graphes

if (graphe->n < graphe->nMax) {
strcpy (graphe->nomS [graphe->n++], nom);

} else {
printf (""\nNombre de sommets > %d\n", graphe->nMax);
¥
} else {
printf ("'\n%s déja défini\n", nom);

}
}

La fonction ajouterUnArc() ajoute au graphe un arc entre somD et somA.

void ajouterUnArc (GrapheMat* graphe, NomSom somD, NomSom somA, int cout) {
int nMax = graphe->nMax;
int rd = rang (graphe, somD);
int rg = rang (graphe, somA);
graphe->element [rd*nMax+rg]
graphe->valeur [rd*nMax+rg]

vrai;
cout;

}

5.6.4 Lecture d'un graphe (a partir d’un fichier)

La fonction lireGraphe() pour la mémorisation sous forme de matrices est identique
a lireGraphe() (voir § 5.5.9, page 274) déja vue pour les listes d’adjacence, a
quelques exceptions pres (voir ifdef MATRICE). lireGraphe() utilise les fonctions
ajouterUnSommet(), ajouterUnArc() qui sont redéfinies (avec les mémes proto-
types) pour la mémorisation en matrices. La création du graphe se fait avec creer-
Graphe() ou creerGrapheMat().

5.6.5 Ecriture d'un graphe

L’écriture d’un graphe mémorisé sous forme de matrice :

void ecrireGraphe (GrapheMat* graphe) {
int nMax = graphe->nMax;

for (int i=0; i<graphe->n; i++) printf (""%s ', graphe->nomS[i]);
printf (';\n"");

for (int i=0; i<graphe->n; i++) {
printf ("\n%s : ", graphe->nomS[i]);
for (int j=0; j<graphe->n; j++) {
ifT (graphe->element [i*nMax+j] == vrai) {
printf ("%s ', graphe->nomS[j])
if (graphe->value) {
printf (" (%3d) ', graphe->valeur [i*nMax+j] );

}
}
printf (";");
}
}



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices 285

5.6.6 Parcours en profondeur (matrices)

La fonction de parcours en profondeur se réécrit tres facilement avec cette nouvelle
structure de données (voir § 5.4.1, page 260 et 5.5.6, page 268).

static void profondeur (GrapheMat* graphe, int numSommet, int niveau) {
int nMax = graphe->nMax;
graphe->marque [numSommet] = vrai;
for (int i=1; i<niveau; i++) printf ("%5s", " ");
printf ("%s\n", graphe->nomS [numSommet]);

for (int i=0; i<graphe->n; i++) {
iT ( (graphe->element [numSommet*nMax+i] == vrai)
&& 'graphe->marque [i] ) {
profondeur (graphe, i, niveau+l);
}
}
¥

// marque pourrait contenir le numéro d"ordre de visite du sommet;
// -1 si pas visité; numéro d"ordre sinon
void parcoursProfond (GrapheMat* graphe) {
razMarque (graphe);
for (int i=0; i<graphe->n; i++) {
if (Igraphe->marque [i]) profondeur (graphe, i, 1);

}

5.6.7 Parcours en largeur (matrices)

Le parcours en largeur nécessite une liste (file d’attente) des éléments a traiter (voir
§ 5.4.2, page 262).

// ajouter le numéro numS du sommet dans la file d"attente file

static void ajouterDsFile (GrapheMat* graphe, Liste* file, int numS) {
graphe->marque [numS] = vrai;
Succes* nouveau = (Succes*) malloc (sizeof (Succes) );
nouveau->numSom = numsS;
insererEnFinDeListe (file, nouveau);

}

// effectuer un parcours en largeur du graphe
void parcoursLargeur (GrapheMat* graphe) {
int nMax = graphe->nMax;

razMarque (graphe);
Liste* file = creerListe();

for (int i=0; i<graphe->n; i++) {
if (Igraphe->marque[i]) {
printf ('\n %s ", graphe->nomS [i]);
ajouterDsFile (graphe, file, 1);

while (MlisteVide(file)) {
Succes™* succes = (Succes*) extraireEnTeteDeListe (file);
int s = succes->numSom;



286 5 e Les graphes

// insérer dans file, les successeurs de s
for (int j=0; j<graphe->n; j++) {
if ( (graphe->element [s*nMax+j] == vrai) && !graphe->marque[j] ) {
printf (" %s ', graphe->nomS [j]);
ajouterDsFile (graphe, file, j);
}

3
} 7/ while

¥
} 7/ for

}

5.6.8 Plus courts chemins entre tous les sommets (Floyd)

Soit le graphe valué de la Figure 149, page 261. A partir du type GrapheMat
(matrice), on peut créer les 2 matrices a et p suivantes indiquant le cofit et le dernier
sommet visité. Ainsi a(0,1) = 25 indique le cofit de la relation entre SO et S1 et p(0,1)
=0 indique le numéro du sommet 0 d’ou on vient quand on va de SO a S1. a(0,2) =
INFINI (noté *) car il n’y a pas de relation directe entre SO et S2 ; p(0,2) est mis a 0
mais il n’est pas significatif dans ce cas.

a : matrice initiale de colt p : dernier sommet visité
0O 25 * *= * *x 17 * 0O 0 0O OO 0 OO
* 0 3 383 * 15 * * 1111 1 1 11
* * 0 18 * * * * 2 2 2 2 2 2 2 2
* 33 * o0 * * * * 3 33 3 3 3 3 3
* * * 25 0 26 * 20 4 4 4 4 4 4 4 4
* 15 * 3% * 0o * * 5 5 5 5 5 5 5 5
*oox ok x x 22 0 * 6 6 6 6 6 6 6 6
ook ok ox kX %0 7T 7 7 7 7 7 7 7
k

i j

Figure 157 Principe de |'algorithme de Floyd.

L’algorithme de Floyd envisage pour chaque arc (i, j) si un passage par un
sommet k peut raccourcir la distance entre i et j dans le cas ou les chemins (i, k) et
(k, j) existent, ces chemins n’étant pas forcément élémentaires, mais pouvant se
constituer d’un chemin contenant des numéros de sommets inférieurs a k.

Voici ci-dessous les différentes étapes de I’exemple :
Passage par le sommet numéro O

Comme on ne peut accéder a SO en partant d’un autre sommet sur I’exemple, la
tentative de trouver des plus courts chemins en passant par SO échoue.



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices

287

Passage par le sommet numéro 1
a : matrice de colt

X F X F X %O

25 55 58
0 30 33
* 0 18

33 63 O

15 45 35
* * *

* * *

¥ X X O F X F X

p =
40 17 =
15 * *
* * *
48 = x
26 * 20
O * *
2 0 *
* * O

dernier sommet visité

~N~NoOoah~AWNRERO
~N~Noah~AwWNRERO
~NORRARPNRRE
NOORAWNERRE
~N~Nogah~hwWNRERO
~NOORARNPRRE
~N~Noah~hwWNRERO
~N~Noah~hwWNRERO

Le passage par le sommet 1 améliore les relations suivantes qui étaient INFINI.

S0-S2
S0-S3
S0-S5
S3-S2
S3-S5
S5-52

SO-S1-S2:
S0-S1-S3:
SO-S1-S5::
S3-S1-S2:
S3-S1-S5:
S5-S1-S2:

55
58
40
63
48
45

Passage par le sommet

plO][2] =p[1][2] = 1
plO1[3] = p[1][3] =1
plO][5] =pl1][5] =1
pB3I2]1 =p[l][2] =1
p3I51=p[][5]1 =1
p5102] = pll][2] =1

numéro 2

avant derniere étape de S1-S2
avant derniere étape de S1-S3
avant derniere étape de S1-S5
avant derniere étape de S1-S2
avant derniere étape de S1-S5
avant derniere étape de S1-S2

La seule relation aboutissant en S2 est une relation directe S1-S2. Le passage par
2 n’apporte pas de nouvelles solutions.

Passage par le sommet numéro 3
a : matrice de colt

¥ %X % % % % %O

¥ X X O * * % ¥

p -
40 17 *
15 * *
66 * *
48 x>
26 * 20
O * *
22 0 *
* * O

dernier sommet visité
1

~N~Nooh~hwWNEFO
~NOOwWwwwr o
~NORRFRPRFEPNPRE

~NOORAWNREPR
~N~Nooh~hwWNEFO
~N~NoOhRPRRERER
~N~Nooh~hWNEFO
~N~Nooh~hwWNRERO

Le passage par le sommet 3 améliore les relations suivantes qui étaient INFINI :
S2-S3-S1:51 pl2][1]=pl3][1]=3
S2-S3-S5:66 pl2][5] =pl3]5]=1
S4-S3-S1:58 pl4][1]=p[3][1]=3
S4-S3-S2: 88 pl4][2] =p[3][2] =1

S2-S1
S2-S5
S4-S1
S4-S2

avant derniere étape de S3-S1
avant derniere étape de S3-S5
avant derniere étape de S3-S1
avant derniere étape de S3-S2

L’ étape précédente du chemin S2-S3-S5 est I’étape précédente du chemin S3-S5
soit S1 car p[3][5] vaut 1. De méme, le chemin S4-S2 est amélioré en passant par
S3: S4-S3-S2; cependant S3-S2 se fait en passant par S1, donc 1’avant-derniere

étape est 1 pour S4-S2.

S2

S3

S1

S5

Figure 158 Chemin de S2 a S5.



288 5 e Les graphes

Passage par le sommet numéro 4 : pas de nouveaux chemins

Passage par le sommet numéro 5

a : matrice de colt p : dernier sommet visité
0 25 55 58 * 40 17 * 0O 01 1 0 1 0 O
* 0 30 33 * 15 * * 11 1 1 1 1 1 1
* 51 0 18 * 66 * * 2 3 2 2 2 1 2 2
* 33 63 0 * 48 * * 3 3 1 3 3 1 3 3
* 41 71 25 0 26 * 20 4 5 1 4 4 4 4 4
* 15 45 35 * 0 * * 5 5 1 5 5 5 5 5
* 37 67 57 * 22 0 * 6 5 1 5 6 6 6 6
* * * * * * * 0 7T 7 7 7 7 7 7 7

Passage par le sommet numéro 6

a : matrice de colt p : dernier sommet visité
0O 25 55 58 * 39 17 * 0 01 1 0 6 0O0
* 0 30 33 * 15 * * 11 1 1 1 1 1 1
* 51 0 18 * 66 * * 2 3 2 2 2 1 2 2
* 33 63 0 * 48 * * 3 31 3 3 1 3 3
* 41 71 25 0 26 * 20 4 5 1 4 4 4 4 4
* 15 45 3 * o0 * * 5 5 1 5 5 5 5 5
* 37 67 57 * 22 0 * 6 51 5 6 6 6 6
* * * * * * * 0 7T 7 7 7 7 7 7 7

Passage par le sommet numéro 7 : pas de nouveaux chemins.

Les chemins inverses obtenus sont les mémes que ceux du § 5.5.10, page 280, la
disposition étant la méme. Exemples de reconstitution de chemins :

Cheminde S2aS5:p(2,5)=1p(2,1)=3;p(2,3)=2

S3
S1

S2 S5

Figure 159 Reconstitution du plus court chemin de S2 a S5.

5.6.9 Algorithme de Floyd

On peut décomposer cet algorithme en différentes fonctions. ecrireEtape() permet
d’écrire les deux matrices a et p apres chaque tentative de passage systématique par
le sommet k comme vu précédemment. Si k=-1, il s’agit de I’étape d’initialisation.

static void ecrireEtape (Matrice a, Matrice p, int k, int ns, int nMax) {
if (k==-1) {
printf ("Matrices initiales de cout et de dernier sommet visité\n");
} else {
printf (“'Passage par le sommet numéro %d\n*, k);
by

for (int i=0; i<ns; i++) {
for (int j=0; j<ns; j++) {
ifT (a [i*nMax+j]==INFINI) {
printf (' %3s", "*);



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices 289

3} else {
printf (" %3d", a [i*nMax+j]);

3

printf ("%6s", " ');

for (int j=0; j<ns; j++) {
printf ("%3d™, p [i*nMax+j]);

3
printf ("'\n");

}
printf ("'\n");

// écrire les plus courts chemins en consultant les tableaux a et p
static void ecrirePlusCourt (GrapheMat* graphe, Matrice a, Matrice p) {
int nMax = graphe->nMax;

printf ("\n\nPlus court chemin (Floyd)\n");
for (int i=0; i<graphe->n; i++) {
printf ("pour aller de %s a :\n", graphe->nomS[i] );
for (int j=0; j<graphe->n; j++) {
if ((0 1= j) && (a [i*nMax+j] = INFINI) ) {
printf (** %s (cout = %d) : ",
graphe->nomS[j], a [i*nMax+j]);
int kK = p [i*nMax+j];
printf ("%s, %s'", graphe->nomS[j], graphe->nomS[k]);
while (k = 1) {
k = p [i*nMax+k];
printf (', %s ", graphe->nomS[k]);

¥
printf (""\n");
}

b
printf (''\n");

¥
printf (""\n");

// initialiser les matrices a et p a partir de graphe
static void initFloyd (GrapheMat* graphe, Matrice* a, Matrice* p, int* ns) {
int nMax = graphe->nMax;

Matrice ta = (int*) malloc (sizeof(int)*nMax*nMax);
Matrice tp = (int*) malloc (sizeof(int)*nMax*nMax) ;

*ns = graphe->n;
for (int i=0; i<graphe->n; i++) {
for (int j=0; j<graphe->n; j++) {
ta [i*nMax+j] = graphe->valeur [i*nMax+j];
tp [i*nMax+j] = i;

b
¥
*a = ta;
*p = tp;

}

// Ceur de I algorithme : calcul des plus courts chemins
// pour chaque élément de la matrice; on effectue une tentative
// de passage par le kieme sommet d"ou 3 boucles imbriquées
void floyd (GrapheMat* graphe) {

Matrice a, p;

int ns;



290 5 e Les graphes

int nMax = graphe->nMax;

initFloyd (graphe, &a, &p, &ns);
ecrirekEtape (a, p, -1, ns, graphe->nMax);

for (int k=0; k<ns; k++) {
for (int i=0; i<ns; i++) {
for (int j=0; j<ns; j++) {
it ( (a [i*nMax+k] != INFINI) &&

(a [k*nMax+j] '= INFINI) &&
(a [i*nMax+k] + a [k*nMax+j] < a [i*nMax+j]) ) {

a [i*nMax+j] = a [i*nMax+k] + a [k*nMax+j];

p [i*nMax+j] p [k*nMax+j];

¥
¥
ecrireEtape (a, p, k, ns, graphe->nMax);
3
ecrirePlusCourt (graphe, a, p);
free (a);
free (p);

}

5.6.10 Algorithme de calcul de la fermeture transitive

La fermeture transitive permet de connaitre [’existence d’un chemin de longueur
quelconque entre 2 sommets i et j.

Si M est la matrice représentant 1’existence d’un chemin élémentaire entre i et j,
le produit :
e M2 = M*M représente 1’existence d’un chemin de longueur 2 entre i et j ;
o M3 = M*M*M, I’existence d’un chemin de longueur 3.
* S’il y a N sommets, on peut calculer jusqu’a MN (M a la puissance N).

La somme SM des matrices M + M2 + ... + MN représente 1’existence d’un
chemin de longueur 1, 2, ... ou N, entre i et j. C’est la fermeture transitive ainsi
appelée car il y a transitivité dans 1’existence de chemins : s’il existe un chemin de i
aj, et s’il existe un chemin de j a k, il existe un chemin de i a k.

Exemple du produit booléen :

M2(1,1)= M (1,0)*M (0, 1) 1-0-1
+ M, )*M(,1) 1-1-1
+ M(1,2)*M (2, 1) 1-2-1
+ M((1,3)*M@3,1) 1-3-1
1l existe un chemin de longueur 2 pour allerde 1 a 1 si :
* il existe un cheminde 1aOetdeOal
e ous’il existe un cheminde 1 a2etde2al

e ous’il existe un cheminde 1 a3etde3al



© Dunod - La photocopie non autorisée est un délit.

5.6 ¢ Mémorisation sous forme de matrices 291

M (1, 1) vrai correspondrait a une boucle sur le sommet 1, cas non envisagé dans
ce chapitre.

M
0 *
1 *
2 *
3 *
0 1 2 3

0

1 * * * * 2

2

3

M PN = M?

Figure 160 Produit de matrices.

Lexemple de la Figure 149 peut étre représenté sous forme d’une matrice
d’entiers, ou sous forme d’une matrice de booléens.

Nombre de chemins de longueur = 1

01 0 0 0 0 1 O FV F F F F V F
0 01 1 0 1 0O FF V V F V F F
0 0 01 0 0 O O F F FV F F F F
01 0 0 0 0 0 O FV F F F F F F
0 0 01 0 1 0 1 FF F V F V FV
01 01 0 0 0 O FV FV F F F F
0 0 0 0 0 1 0 O F F F F F V F F
0 0 0 0O OO OO F F F F F F F F

M2 = M*M représente le nombre de chemins de longueur 2 si la matrice M2 est
entiére, et I’existence d’un chemin de longueur 2 si M2 est booléenne.

Nombre de chemins de longueur = 2
0 0 1 1 0

o

Ocoooooo
ORRNORN
coroORrROO
ORRRRON
Ocoooooo
OCoOrOROON
Oooooooo
Ocoooooo
MMM AT
T<<<TI<<T
TTm<Tm<TT<
TT<<<<<TI< <
MMM AT
TTm<Tm<TT<
MMM AT
MMM AT



292 5 e Les graphes

M2 indique 2 chemins de longueur 2 de :

S0 a S5 : SO-S1-S5 et SO-S6-S5
S1aS1:S1-S3-S1 et S1-S5-S1
S1aS3:S1-S2-S3 et S1-S5-S3
S4 a S1:S4-S3-S1 et S4-S5-S1

La somme SM =M + M2 + M3 ... + M8 indique pour chaque i et j, le nombre de
chemins de longueur <= 8 (produit entier), ou I’existence d’un chemin de longueur
<= 8 (produit booléen) entre i et j.

La matrice booléenne SM représente la fermeture transitive :

T T T TTTTT
M<<<<<<<<
M<<<<<<<<
M<<<<<<<<
T T T TTTTT
M<<<<<<<<
T TTTTTmn<
TTMTM<TTTT

On voit que pour le graphe de cet exemple, de SO, on peut aller vers S1, S2, S3, S5
et S6 (premiere ligne de la matrice). De SO, on ne peut pas aller vers SO, S4 ou S7.
La derniere ligne indique que de S7, on ne peut aller nulle part.

Remarque : un autre algorithme plus performant de calcul de la fermeture
transitive existe connu sous le nom d’algorithme de Warshall. Cet algorithme
envisage comme 1’algorithme de Floyd un passage par les sommets intermé-
diaires k (de 0 a N-1) pour chaque couple w(i, j) de la matrice. Un chemin
existe entre i et j, s’il existe déja (w(i, j) est a vrai), ou s’il y a un chemin entre
w(i, k) et w(k, j).

void warshall (GrapheMat* graphe) {
int ns = graphe->n;
int nMax graphe->nMax;
Matrice w (int*) malloc (sizeof(int)*nMax*nMax) ;

affMat (w, graphe->element, ns, nMax);

for (int k=0; k<ns; k++) {
for (int i=0; i<ns; i++) {
for (int j=0; j<ns; j++) {
w [i*nMax+j] = w [i*nMax+j] 1|1
w [i*nMax+k] && w [k*nMax+j];
3

¥
¥

ecrireMat (w, ns, nMax);
free (W);



© Dunod - La photocopie non autorisée est un délit.

5.7 ¢ Résumé 293

Remarque : on retrouve les résultats de I’algorithme de Floyd (voir Passage
par le sommet 6 § 5.6.8, page 288). La fermeture transitive s’identifie a la
matrice de coilt A des plus courts chemins en remplagant INFINI ('*') par
faux, et toutes les autres valeurs par vrai. Il y a une différence pour les
éléments de la diagonale car dans I’algorithme de Floyd, on n’a pas retenu les
plus courts chemins pour aller de i a1 ; les éléments de la diagonale ont été
initialisés a 0. Si on veut obtenir les plus courts chemins de longueur diffé-
rente de O pour aller de i a i, il faut initialiser la diagonale de la matrice A a
INFINI et non a 0.

Exercice 28 - Fermeture transitive par somme de produits de matrices

Ecrire une fonction void produitEtFermeture (GrapheMat* graphe) ; qui a
partir d’un graphe écrit la fermeture transitive du graphe calculée par somme de
produits comme indiqué précédemment. Décomposer le probleme en plusieurs
fonctions réalisant le produit et la somme de matrices.

5.6.11 Menu de test des graphes (matrices)

Le menu de test donné pour la mémorisation sous forme de listes d’adjacence (voir
§ 5.5.10, page 276) reste valable (aux ifdef pres), les prototypes des fonctions
concernant les graphes sont les mémes dans les deux cas (listes d’adjacence ou
matrice) : ajouterUnSommet(), ajouterUnArc(), parcoursProfond(), etc.). Le calcul
du plus court chemin est réalisé avec la fonction void plusCourt (Graphe™* graphe,
int nsi); dans le cas des listes d’adjacences et par la fonction void floyd
(GrapheMat* graphe) ; pour la mémorisation sous forme de matrice. La création du
graphe se fait également avec une fonction au prototype légerement différent (valeur
de retour).

5.7 RESUME

Les graphes sont des structures de données treés générales. On peut dire qu’un arbre
est un cas particulier de graphe, et qu’une liste est un cas particulier d’arbre. Il existe
de nombreux algorithmes sur les graphes. Ceux-ci sont examinés dans ce chapitre en
mettant I’accent sur la mémorisation des graphes, 1’allocation dynamique, la modu-
larité et la récursivité.

Nous avons vu deux mémorisations possibles des graphes. La premiere représen-
tation sous forme de listes d’adjacence convient lorsqu’il y a de nombreux sommets
et peu de relations entre ces sommets. Une représentation sous forme de matrices
conduirait a une matrice creuse. La mémorisation sous forme de matrices se fait en
utilisant I’allocation dynamique pour allouer I’espace des matrices et ainsi éviter de
devoir figer un maximum de sommets pour un graphe. Ceci nous a amenés a créer
un nouveau type abstrait de données Graphe et quelques fonctions classiques sur les



294 5 e Les graphes

graphes. Il existe de nombreux algorithmes concernant les graphes et le type Graphe
pourrait facilement étre enrichi de nouveaux prototypes de fonctions.

Les parcours de graphes en profondeur et en largeur sont une généralisation des
parcours d’arbres. Il faut cependant veiller a marquer les sommets visités de fagon a
ne pas énumérer plusieurs fois le méme sommet et a ne pas tourner en rond lorsqu’il
y a présence de cycles.

Un probléme classique des graphes consiste a trouver le plus court chemin d’un
sommet vers les autres sommets. Le calcul de la fermeture transitive permet de
connaitre 1’existence ou non (booléen) d’un chemin de longueur quelconque entre
les couples de sommets.

5.8 CONCLUSION GENERALE

Les principales structures de données ont été présentées (listes, arbres, tables,
graphes) en précisant a chaque fois leurs mémorisations, les algorithmes de parcours
(énumération des éléments de la structure), de création et de désallocation, plus des
algorithmes spécifiques a chaque structure de données.

Les nombreux exemples traités ont montré que ces différentes structures de
données peuvent se combiner entre elles afin de résoudre ou d’optimiser tel ou tel
aspect d’un programme. Le choix de la bonne structure de données est important,
mais n’est pas toujours évident car il dépend de nombreux criteres (nombre
d’éléments, optimisation du temps d’acces ou de I’espace occupé, fréquence des
ajouts, des retraits et des recherches, mémorisation en mémoire centrale ou secon-
daire, etc.). Il convient cependant dans la mesure du possible de définir des modules
réutilisables. Le module de la gestion des listes par exemple est utilisé a maintes
reprises dans les différents chapitres sans devoir replonger a chaque nouvelle appli-
cation dans les détails de I’implémentation.



Corrigés des exercices

Exercice 1 : boucle sous forme récursive (page 8)

// boucle croissante de d a f, par pas de i (d:début, f:fin)
void boucleCroissante (int d, int f, int i) {
if (d<=1){
printf (“Boucle valeur de n : %d\n", d);
boucleCroissante (d+i, f, i);
H
b

Exercice 2 : Hanoi : calcul du nombre de secondes ou d’années pour déplacer n disques (page 15)
/* dureehanoi.cpp */
#include <stdio.h>

// 1 mouvement = 60 nanosecondes
// écrire le nombre de disques
// et le nombre de secondes pour déplacer les disques
void ecrireNbs (int n, double nbMvt) {
double dureeEnSecondes = (nbMvt * 60) / 1000000000;
printf ('nb de disques et de secondes : %2d - %.0f\n",
n, dureeEnSecondes);

b
void main O {

// nombre de mouvements pour n disques : 2 a la puissance n
double nbMvt26 = 1 << 26; // nombre de mouvements pour 26 disques

double nbMvt27 1 << 27;
double nbMvt28 = 1 << 28;
double nbMvt29 1 << 29;
double nbMvt30 1 << 30;

double nbMvt31
double nbMvt32
double nbMvt64

(double) 128.*256.*256.*256. ;
(double) 256.*256.*256.*256. ;
(double) 256.*256.*256.*256.*256.*256.*256.*256. ;

ecrireNbs (26, nbMvt26);
ecrireNbs (27, nbMvt27);
ecrireNbs (28, nbMvt28);
ecrireNbs (29, nbMvt29);
ecrireNbs (30, nbMvt30);
ecrireNbs (31, nbMvt31l);
ecrireNbs (32, nbMvt32);

// pour 64 disques
double nsParAn = (3600 * 24. * 365.); // nombre de secondes par an



296

Corrigés des exercices

double dureeEnSecondes =
printf (“Nombre d"années

// n
// durée en secondes

(nbMvt64 * 60) / 1000000000;
pour %.0f mouvements :

%.0fF\n",

nbMvt64, dureeEnSecondes / nsParAn );

26 27 28 29 30 31 32
4 8 16 32 64 129 258

Exercice 3 : dessin d’un arbre (page 19)

Ajouter un paramétre a la fonction avance() permettant de spécifier la couleur du trait : void

(int Ig, int x, int

y, int angle, int* nx,

int* ny, QColor couleur) ;

// dessiner un segment et recommencer récursivement a partir de la fin
// du segment courant en éclatant le segment en nb autres segments

void dessinArbre (int lg,
int nx, ny;
avance (lg, x, y, angle,
Ig = 2*1g / 3;

couleur = black;
if (g >3) {
if (Ig <=5) {
couleur = green;
int n2 = aleat (30);
if (n2 ==1) {
couleur = red;
}

}

int x, inty,

&nx, &ny, couleur);

// feuille;

// ouverture de I"ensemble des nouveaux segments

// aléatoire
// aléatoire Ig

// pc : pourcentage d"aléatoire
int nb = 3 + aleat (3);
int a = angle;
int d = ouverture / nb;
int douv = 1 + (int) (ouverture*pc);
int dlg = 1 + (int) (lg*pc);
for (int i=1; i<=nb; i++) {
a = angle - (ouverture/2) - (d/2) + i*d;

a=a % 360;
int deltaOuv =

int deltaLg = aleat

-(douv/2) + aleat (douv);

dlg);

int angle, QColor couleur) {

ouverture

dessinArbre (lg + deltalLg, nx, ny, a + deltaOuv, couleur);

}
3
}

Exercice 4 : spirale rectangulaire (récursive) (page 30)

/* spirale.cpp */

#include <stdio.h>
#include "ecran.h"

// exécute une boucle de la spirale a chaque appel;
// la longueur du segment tracé croit jusqu®a lIgMax

void spirale (int n,
if (n < IgMax) {

int IgMax) {

avancer (DROITE, n);
avancer (HAUT , n+l1);
avancer (GAUCHE, n+2);
avancer (BAS, n+3);
spirale (n+4, IgMax) ;

}
}

void main ) {

initialiserEcran (20, 50);

couleurCrayon (BLANC);
crayonkEn (10, 25);
spirale ( 3, 15);
afficherEcran ;

detruireEcran ();

avance



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

297

Exercice 5 : module de gestion de piles d’entiers (allocation contigué) (page 30)
/* pile.cpp */

#include <stdio.h>
#include <stdlib.h>
#include “pile.h"

#define FATAL 1
#define AVERT 2

static void erreur (int typErr, char* message) {
printf ("***Erreur : %s\n", message);
ifT (typErr == FATAL) exit(0);

H

// le constructeur de Pile
Pile* creerPile (int max) {

Pile* p = (Pile*) malloc (sizeof (Pile)); // Pile* p = new PileQ);
p->max = max;

p->nb = -1;

p->element = (int*) malloc (max*sizeof(int));

return p;

¥

// la pile est-elle vide ?
int pilevide (Pile* p) {
return p->nb == -1;

// empiler une valeur s"il reste de la place
void empiler (Pile* p, int valeur) {
if (p->nb < p->max-1) {

p->nb++;
p->element [p->nb] = valeur;
} else {
erreur (AVERT, "Pile saturée™);

b
b

// dépiler une valeur si la pile n"est pas vide
int depiler (Pile* p, int* valeur) {
if ( Ipilevide (p) ) {
*valeur = p->element [p->nb];
p->nb--;
return 1;
3 else {
erreur (AVERT, "Pile vide");
return 0O;
3
3

// lister les éléments de la pile
void listerPile (Pile* p) {
if (pilevide (p) ) {
printf (“Pile vide\n");
} else {
for (int i=0; i<=p->nb; i++) {
printf ("%d ", p->element[i]);

}
¥

// restituer l"espace allouée
void detruirePile (Pile* p) {
free (p->element);
free (p);

le programme principal de test :
/* pppile.cpp programme principal des piles */

#include <stdio.h>
#include "pile.h"

#define faux 0



298 Corrigés des exercices

#define vrai 1
typedef int booleen;

int menu (void) {
printf ("\n\nGESTION D*UNE PILE\N\n");
printf ('O - Fin\n");

printf ("1 - Création de la pile\n™);
printf ("2 - La pile est-elle vide ?\n");
printf ("3 - Insertion dans la pile\n");
printf ("4 - Retrait de la pile\n");
printf ('5 - Listage de la pile\n");
printf ('\n");

printf ('Votre choix ? ");
int cod; scanf ("'%d", &cod);
printf ("\n");

return cod;

¥

void main  {
int taillePile;

printf ("Taille de la pile d"entiers ? ");
scanf ('%d", &taillePile);
Pile* pl = creerPile (taillePile);

booleen fini = faux;
while (!fini) {

switch (menu O ) {

case O :
Ffini = vrai;
break;

case 1 :
detruirePile (pl);
printf ("Taille de la pile d"entiers ? ');
scanf ("%d", &taillePile);
pl = creerPile (taillePile);
break;

case 2 :
if (pilevide (p1) ) {
printf ("Pile vide\n");
} else {
printf ("Pile non vide\n");
3

break;

case 3 : {
int valeur;
printf (valeur a empiler ? ™);
scanf  ("%d", &valeur);
empiler (pil, valeur);
} break;

case 4 : {
int valeur;
if (depiler (p1, &valeur)) {
printf (%d\n", valeur);
} else {
printf ("Pile vide\n™);

}
} break;

case 5 :
listerPile (pl);
break;
} /7 switch
} 7/ while

detruirePile (pl);
} // main



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

299

Exercice 6 : module de gestion de nombres complexes (page 32)

/* complex.cpp
Module des opérations de base sur les complexes */

#include <stdio.h>
#include <math.h> // cos, sin
#include “complex.h"

// création d"un Complexe
// a partir de partReel (partie réelle) et partlmag (partie imaginaire)
Complex crC (double partReel, double partimag) {

Complex z;
z_.partReel = partReel;
z.partlmag = partlmag;
return z;

3

// création d"un complexe a partir de ses Composantes en Polaire
Complex crCP (double module, double argument) {
return crC (module * cos (argument), module * sin (argument));

¥

// partie Réelle d"un Complexe
double partReelC (Complex z) {
return z.partReel;

3

// partie Imaginaire d*un Complexe
double partimagC (Complex z) {
return z.partlmag;

¥

// module d"un nombre Complexe
double moduleC (Complex z) {
return sqrt (z.partReel * z_partReel + z.partlmag * z.partimag);

>

// argument d“un nombre Complexe
double argumentC (Complex z) {
return atan2 (z.partlmag, z.partReel);

¥

// écriture d"un nombre Complexe
void ecritureC (Complex z) {
printf " ( %5.2F + %5.2F i ) ", z.partReel, z.partimag);

// écriture en polaire d“un nombre Complexe
void ecritureCP (Complex z) {
printf " ( %5.2F, %5.2F) *, moduleC (z), argumentC (2));

// opposé d"un nombre Complexe
Complex opposeC (Complex z) {
return crC (-z.partReel, -z.partlimag);

¥

// conjugué d"un nombre Complexe
Complex conjugueC (Complex z) {
return crC (z.partReel, -z_partlmag);

¥

// inverse d"un nombre Complexe
Complex inverseC (Complex z) {

return crCP (1/moduleC(z), -argumentC(z));
b

// puissance nieme de z (n entier >=0)

Complex puissanceC (Complex z, int n) {
Complex p = crC (1.0, 0.0); // p = puissance
for (int i=1; i<=n; i++) p = multiplicationC (p, z);
return p;

// addition z = z1 + z
Complex additionC (Complex z1, Complex z2) {
return crC (zl.partReel + z2_partReel, zl._partlmag + z2.partimag);



300 Corrigés des exercices

// soustraction z = z1 - z2
Complex soustractionC (Complex z1, Complex z2) {

return crC (zl.partReel - z2.partReel, zl.partlmag - z2.partimag);
3

// multiplication z = z1 * z2
Complex multiplicationC (Complex z1, Complex z2) {

return crCP ( moduleC(zl) * moduleC(z2), argumentC(zl) + argumentC(z2) );
}

// division z = z1 / z2
Complex divisionC (Complex z1, Complex z2) {
return multiplicationC (z1, inverseC (z2) );

le programme principal de test :

/* ppcomplex.cpp
programme principal sur les opérations complexes */

#include <stdio.h>
#include <math._.h>
#include <stdlib.h> // exit

#include "complex.h™

void ecrit (Complex z) {
ecritureC (2);
ecritureCP (2);

void main() {
Complex cl1, c2, c3, c4, c5, c6, c7;
Complex pl, p2, p3, p4, p5, p6, p7;

cl = crC (2, 1.50);

c2 = crC (-2, 1.75);

printf (""\ncl = "); ecrit (cl);
printf (""\nc2 = "); ecrit (c2);
c3 = additionC (cl, c2);

c4 = soustractionC (cl, c2);

c5 = multiplicationC (cl, c2);

c6 = divisionC (cl, c2);

c7 = puissanceC (c1, 3);

printf ("\nc3
printf ("\nc4
printf (""\nc5
printf (""\nc6
printf (""\nc7

cl + c2 "); ecrit (c3);
cl - c2 "); ecrit (c4);
cl * c2 "); ecrit (c5);
cl / c2 "); ecrit (c6);
cl ** 3 "); ecrit (c7);

// en polaire

printf ("\n\n");

pl = crCP (1, M_P1/4);
p2 = crCP (1, M_PI1/2);
printf ("\npl = "); ecrit (pl);
printf (""\np2 = "); ecrit (p2);

p3 = additionC (pl, p2);
p4 = soustractionC (pl, p2);
p5 = multiplicationC (pl, p2);
p6 = divisionC (pl, p2);
p7 = puissanceC (1, 3);
printf (‘"\np3 pl + p2 "); ecrit (p3);
printf (‘"\np4 pl - p2 "); ecrit (p4);

printf (""\np5
printf (""\np6
printf ("\np7

); ecrit (p6);
"); ecrit (p7);

D
D
pl * p2 "); ecrit (p5);
")
D

printf ("\nPartie réelle de pl : %.2f ", partReelC (pl));
printf ("\nPartie imag. de pl : %.2f ", partlmagC (pl));
printf (""\nModule de pl1 : %.2Ff *, moduleC  (pl));
printf ('\n");



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

Exercice 7 : polynémes d’une variable réelle (lecture, addition) (page 60)

/* polyn

#include
#include
#include
#include

#define
#define

// lire
static i
// fsc
int n
if (n
retu
} else
retu

3
/7 lire

ome2.cpp utilise polynome.cpp */

<stdio.h>
<stdlib.h>
<math.h> // fabs
“polynome2.h"

ADD 1
Sous -1

le coefficient et I"exposant dans le fichier fe
nt lireMonome (FILE* fe, double* coefficient, int* puissance) {
anf fournit -1 en cas de eof : man fscanf

= fscanf (fe, "®lf %d", coefficient, puissance);
>0) {

rn 1;

{

rn 0;

les valeurs de chaque mondme du polynéme p

Polynome* lirePolynome (FILE* fe) {

Polyno
double
int
whille
Mono
inse
3
return

¥

// addit
// soust

me* p = creerPolynome();

coefficient;

puissance;

(lireMonome (fe, &coefficient, &puissance)) {

me* nouveau = creerMonome (coefficient, puissance);
rerEnOrdre (p, nouveau);

p:

ion si typAouS vaut ADD,
raction si typAouS vaut SOUS

// des polyndmes a et b; résultat dans le polyndme c
static Polynome* addOuSousPoly (Polynome* a, Polynome* b, int typAouS) {
Polynome* c = creerPolynome();

ouvrirl

// pa :

Liste (a);
pointeur courant sur le polynome a

Monome* pa = (Monome*) objetCourant (a);
ouvrirListe (b);

// pb :

pointeur courant sur le polynome b

Monome* pb = (Monome*) objetCourant (b);

// tant qu“on n"a pas atteint la fin du polynéme a
// ni celle du polynéme b
while (pa!=NULL && pb!=NULL) {
if (pa->exposant == pb->exposant) {
double s = pa->coefficient + typAouS * pb->coefficient;

if

(s 1=0) {

Monome* nouveau = creerMonome (s, pa->exposant);

}
pa
pb

insererEnOrdre (c, nouveau);

= (Monome*) objetCourant (a);
= (Monome*) objetCourant (b);

} else {

it

(pa->exposant < pb->exposant) {

Monome* nouveau = creerMonome (typAouS*pb->coefficient, pb->exposant);

insererEnOrdre (c, nouveau);

pb = (Monome*) objetCourant (b);
} else {

Monome* nouveau = creerMonome (pa->coefficient, pa->exposant);

insererEnOrdre (c, nouveau);

pa = (Monome*) objetCourant (a);

¥
b
b

// recopier la fin du polynoéme a

while (pal!=NULL) {
Monome* nouveau = creerMonome (pa->coefficient, pa->exposant);
insererEnOrdre (c, nouveau);

pa =

(Monome™) objetCourant (a);



302

Corrigés des exercices

¥

// recopier la fin du polynoéme b
while (pb!=NULL) {
Monome* nouveau = creerMonome (typAouS*pb->coefficient, pb->exposant);
insererEnOrdre (c, nouveau);
pb = (Monome*) objetCourant (b);

return c;

}

Polynome* addPolynome (Polynome* a, Polynome* b) {
return addOuSousPoly (a, b, ADD);

}

Polynome* sousPolynome (Polynome* a, Polynome* b) {
return addOuSousPoly (a, b, SOUS);

}

le programme principal de test :
/* pppolynome.cpp */

#include <stdio.h>
#include <stdlib._h>
#include "polynome2.h"

void main Q) {
// ouverture des fichiers
FILE* fel = fopen (“polya.dat™, "r');
if (fel==NULL) {
fprintf (stderr, "fel fichier inconnu\n™); exit (0);

}

FILE* fe2 = fopen (“polyb.dat™, "r');

if (fe2==NULL) {
fprintf (stderr, "fe2 fichier inconnu\n"); exit (0);

}

Polynome*
Polynome*
Polynome*
Polynome*

printf ("\nPolynome a
printf ("\nPolynome b
printf (""\nPolynome c
printf ("\nPolynome d

a
b
c
d

lirePolynome (fel);
lirePolynome (fe2);
addPolynome (a, b);
sousPolynome (a, b);

printf (""\nvaleur
printf ("\nvaleur
printf ("\nvaleur
printf (""\nvaleur
printf ('\n™);

de
de
de
de

: "); listerPolynome
: "™); listerPolynome
=a+b : "); listerPolynome
=a-b : "); listerPolynome

a pour x=1 : %14.
b pour x=1 : %14.
c pour x=1 : %14.
d pour x=1 : %14.

exemples de fichiers décrivant des polynomes :

3 5

|
N
OoOrwWwuo-~N

exemple de résultats :

Polynome a
Polynome b

Polynome c

Polynome d

/* polya.dat */
7

1
/* polyb.dat */

Valeur de a pour
Valeur de b pour
Valeur de c pour
Valeur de d pour

a+hb
a-b
X
X
X
X

e

-6.00 x**7 +3.00 x**5
+6.00 x**7 +3.00 x**6

+3.00 x**6 +

-12.00 x**7

-4.00
20.00
16.00
-24.00

2f", valeurPolynome (a, 1) );
2f", valeurPolynome (b, 1) )
2f", valeurPolynome (c, 1) )
2f", valeurPolynome (d, 1) );

(@);
(b);
©);
@;

-1.00 x**1
+5.00 x**5 -2.00 x**3

+3.00 x**1  +5.00 x**0

8.00 x**5 -2.00 x**3 +2.00 x**1

+5.00 x**0

-3.00 x**6 -2.00 x**5 +2.00 x**3

-4.00 x**1 -5.00 x**0



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

303

Exercice 8 : systemes experts : les algorithmes de déduction (page 66)

// le fait num existe-t"il dans la liste listF
booleen existe (ListeFaits* listF, int num) {
booleen trouve = faux;
ouvrirListe (listF);
while (IfinListe (listF) && !trouve) {

Fait* ptc = (Fait*) objetCourant (listF);
trouve = ptc->numero == num;
3
return trouve;
3

// appliquer la regle pointée par regle a la liste de faits listF

int appliquer (Regle* regle, ListeFaits* listF) {

// Les hypotheses sont-elles vérifiées

booleen verifie = vrai; // hypothéses vraies a priori

Liste* 1h = regle->hypotheses;
ouvrirListe (lh);
while (IfinListe (Ih) && verifie) {
Fait* ptc = (Fait*) objetCourant (lh);
verifie = existe (listF, ptc->numero);

¥

// toutes les hypotheses de regle sont vraies;

// il faut ajouter les conclusions de la régle a la liste de faits listF

if (verifie) {

regle->marque = vrai; // une regle ne s"applique qu“une fois

Liste* Ic = regle->conclusions;
ouvrirListe (lc);
while (IfinListe (Ic)) {
Fait* ptc = (Fait*) objetCourant (lc);
if (lexiste (listF, ptc->numero)) {
ajouterFait (listF, ptc->numero);

¥
b e

return verifie;

3

// A partir de la liste de faits, on essaie d"appliquer successivement
// toutes les regles. Si une regle s”est appliquée, de nouveaux faits
// ont été ajoutés qui peuvent permettre a des regles déja examinées

// de s*appliquer.

// Si au moins une regle s"est appliquée, on refait un tour complet.

// Une régle ne s"applique qu“une seule fois.

void chainageAvant (ListeRegles* listR, ListeFaits* listF) {

int fini = faux;

while (*Fini) {

booleen again = faux; // refaire un examen des réegles
// si au moins une regle s"applique

ouvrirListe (listR);
while (IfinListe (listR) ) {
Regle* ptc = (Regle*) objetCourant (listR);
// si la régle n"a pas déja été exécutée,
// on essaie de I"appliquer.
it (Iptc->marque) {
int resu = appliquer (ptc, listF);
if (resu) again = vrai;

3

it (Yagain) fini = vrai;
b
b

// écrire nb espaces
void indenter (int nb) {

for (int i=0; i<nb; i++) printf ' *);
H

// a partir de la liste des regles et de la liste des faits,

// démontrer le fait num.
// nb sert a faire une indentation des résultats

booleen demontrerFait (ListeRegles* listR, ListeFaits* listF,

booleen ok;

indenter (nb); printf (“demontreFait %d\n", num);



304

Corrigés des exercices

}

if ( existe (listF, num) ) { // le fait est dans la liste de faits
indenter (nb); printf (“'Dans Liste de Faits %d\n", num);
ok = vrai;

} else { // rechercher une regle ayant num en conclusions
Regle* ptr;
ouvrirListe (listR);
booleen trouve = faux;
while (!finListe (listR) && !trouve ) {
ptr = (Regle*) objetCourant (listR);
trouve = existe (ptr->conclusions, num);
if (Mtrouve) {
indenter (nb); printf ('Pas démontré\n™);
ok = faux;
} else {
indenter (nb); printf ('Voir regle %s\n", ptr->nom);
// démontrer récursivement chacune des hypotheses de la régle ptr
Liste* Ih = ptr->hypotheses; // liste des hypotheses de la régle ptr
ouvrirListe (lh);
ok = vrai; // a priori
while (!finListe(lh) && ok ) {
Fait* ptf = (Fait*) objetCourant (lh);
ok = demontrerFait (listR, listF, ptf->numero, nb+10);
}
3
}y /7 it
return ok;

Le programme principal :

char* message (int n) {
#if 0
static char* libelle [] = {

"a
"a
"y

llaite ses petits",
des dents pointues”,
it en compagnie de I“homme",

"grimpe aux arbres",

"3

des griffes pointues”,

“est domestiqué",
"est couvert de poils”,

"a

quatre pattes",

“est un mammifere”,
“est un carnivore”,
“est un chat"

#e

Ise

static char* libelle [] = {

B I ] H
LoD LDDDDD DD

de la fievre”,
le nez bouché",
mal au ventre',
des frissons",
la gorge rouge™,
1 appendicite",
mal aux oreilles”,
mal a la gorge",
les oreillons™,
un rhume",

la grippe"”

#endif

return libelle [n];

}

void main  {
ListeFaits* listF = creerListeFaits();

ajouterFait (listF, 1);
ajouterFait (listF, 2);
ajouterFait (listF, 3);
ajouterFait (listF, 4);
ajouterFait (listF, 5);

printf (“Liste faits : \n");



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 305

listerFaits (listF);
ListeRegles* listR = creerListe();
Regle* PRA;

PRA = creerRegle A"
ajouterHypothese (PRA, 3):
ajouterConclusion (PRA, 6);
insererEnFinDeListe (listR, PRA);

PRA = creerRegle ¢'B");
ajouterHypothese (PRA, 1);
ajouterHypothese (PRA, 7);
ajouterHypothese (PRA, 8);
ajouterConclusion (PRA, 9);
insererEnFinDeListe (listR, PRA);

PRA = creerRegle ([GH
ajouterHypothese (PRA, 5);
ajouterHypothese (PRA, 10);
ajouterConclusion (PRA, 11);
inserereEnFinDeListe (listR, PRA);

PRA = creerRegle ¢'D'");
ajouterHypothese (PRA, 1);
ajouterHypothese (PRA, 2);
ajouterConclusion (PRA, 10);
insererEnFinDeListe (listR, PRA);

listerLesRegles (listR);

// chainage arriére

booleen resu;

resu = demontrerFait (listR, listF, 11, 0);
printf ("Resu %d\n', resu);

// chatnage avant : modifie la liste des faits listF
chainageAvant (listR, listF);

printf ("\nListe faits apres chatnage avant : \n");
listerFaits (listF);

Exercice 9 : le type pile (allocation contigué) (page 72)

Le fichier d’en-téte piletableau.h pour les piles utilisant un tableau :
/* piletableau.h version avec allocation dynamique du tableau */

#ifndef PILE_H
#define PILE_H

typedef int booleen;
#define faux O
#define vrai 1
typedef void Objet;

typedef struct {

int max; // nombre maximum d*éléments dans la pile
int nb; // repere le dernier occupé de element
Objet** element; // le tableau des éléments de la pile

} Pile;

Pile* creerPile (int max) ;

int pileVide (Pile* p);

void empiler (Pile* p, Objet* objet);

Objet* depiler (Pile* p);

void listerPile (Pile* p, void (*f) (Objet*));
void detruirePile (Pile* p);
#endif
Le corps du module pi letableau.cpp:
// piletableau.cpp

#include <stdio.h>
#include <stdlib.h>
#include “piletableau.h™



306 Corrigés des exercices

#define FATAL 1
#define AVERT 2

static void erreur (int typErr, char* message) {
printf ("***Erreur : %s\n', message);
if (typErr == FATAL) exit(0);

// le constructeur de Pile
Pile* creerPile (int max) {

Pile* p = (Pile*) malloc (sizeof (Pile));

p->max = max;

p->nb = -1;

p->element = (Objet**) malloc (max*sizeof(Objet*));
return p;

}

// la pile est-elle vide ?

int pileVide ( e* p) {
return p->nb == -1;

¥

// empiler une valeur s"il reste de la place
void empiler (Pile* p, Objet* objet) {
if (p->nb < p->max-1) {

p->nb++;
p->element [p->nb] = objet;
} else {
erreur (AVERT, "Pile saturée");

}
}

// dépiler une valeur si la pile n"est pas vide
Objet* depiler (Pile* p) {
if ( Ipilevide (p) ) {
Objet* objet = p->element [p->nb];
p->nb--;
return objet;
} else {
erreur (AVERT, "Pile vide™);
return NULL;
}
}

// lister les éléments de la pile
void listerPile (Pile* p, void (*f) (Objet*)) {
if (pilevide (p) ) {
printf ("Pile vide\n");
} else {
for (int i=0; i<=p->nb; i++) {
f (p->element[i]);

}
}

// restituer l"espace allouée
void detruirePile (Pile* p) {
free (p->element);
free (p);

Le programme principal est le méme que pour la pile gérée avec une liste (voir § 2.4.5.e, page 69).

Exercice 10 : files d’attente en allocation dynamique (page 73)
// fTile.cpp file gérée a I aide d"une liste simple

#include <stdio.h>
#include <stdlib.h>

#include "file_h"
// créer et initialiser une File

File* creerFile O {
return creerListe ();
}

// vrai si la File est vide, faux sinon
booleen fileVide (File* file) {




© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

307

return listeVide (file);
3

// ajouter un objet dans la File
void enFiler (File* file, Objet* objet) {
insererEnFinDeListe (Ffile, objet);

// fournir I"adresse de lI"objet en téte de File
// ou NULL si la File est vide
Objet* deFiler (File* file) {
if (filevide (file)) {
return NULL;
} else {
return extraireEnTeteDeListe (file);
b
3

// lister les objets de la File

void listerFile (File* file, void (*f) (Objet*)) {
listerListe (file, f);

3

// détruire une File

void detruireFile (File* file) {
detruireListe (file);

}

le programme principal ppfile.cpp (la variable de compilation FILETABLEAU n’est pas définie pour cet

exemple).

// ppfile.cpp programme principal des files (avec listes ou avec tableaux)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if FILETABLEAU

#include "filetableau.h"
#else

#include "file.h"
#endif

#include “mdtypes.h"
int menu O {

printf ("\n\nGESTION D"UNE FILE D"ENTIERS\n\n"");
printf ('O - Fin\n");

printf ("1 - Initialisation de la file\n");
printf ("2 - La file est-elle vide\n");
printf ("3 - Insertion dans la file\n");
printf ("4 - Retrait de la file\n");
printf ("5 - Listage de la file\n");
printf ('\n");

printf ('Votre choix ? ");
int cod; scanf ("'%d", &cod);
printf ('\n");

return cod;

¥

void main ) {
#if FILETABLEAU
File* filel = creerFile(7);
#else
File* filel = creerFile();
#endif
booleen fini = faux;

while (Ifini) {
switch (menuQ) ) {
case O :
fini = vrai;
break;

case 1 :
detruireFile (filel);



308 Corrigés des exercices

#if FILETABLEAU
filel = creerFile(7);
#else

filel = creerFile();
#endif

break;

case 2 :
if (Filevide (filel) ) {
printf (“File vide\n");
} else {
printf (“File non vide\n");

break;

case 3 : {
int valeur;
printf ("valeur a enfiler ? ™);
scanf ("%d™, &valeur);
enFiler (filel, creerEntier(valeur));
} break;

case 4 : {
Entier* v;
it ((v=(Entier*)deFiler (filel)) != NULL) {
ecrireEntier (v);
} else {
printf ("File vide\n");

}
} break;

case 5:
listerFile (filel, ecrireEntier);
break;
3
}

detruireFile (Ffilel);
printf ("\n\nGESTION D"UNE FILE DE PERSONNES\n\n");

#if FILETABLEAU
File*x file2 = creerFile(7);

#else

File* file2 = creerFile();

#endif

enFiler (file2, creerPersonne (“'‘Dupont", "Jacques™));
enFiler (file2, creerPersonne (‘‘Dufour™, “Michel™));

enFiler (file2, creerPersonne (*'Dupré', “Jeanne'));
enFiler (file2, creerPersonne (“'Dumoulin®™, "Marie'™));
listerFile (file2, ecrirePersonne);

Exercice 11 : files d’attente en allocation contigué (page 74)
/* filetableau.cpp */

#include <stdio.h>
#include <stdlib.h>

#include "filetableau.h"

#define FATAL 1
#define AVERT 2

static void erreur (int typErr, char* message) {

printf ("***Erreur : %s\n", message);
if (typErr == FATAL) exit (0);

File* creerFile (int max) {

File* file = new File(Q;
= max;

file->premier = max-1;

file->dernier = max-1;

/7 allouer un tableau de pointeurs d"objets
file->element = (Objet**) malloc (max * sizeof(Objet*));



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

309

return file;

3

int filevide (File* file) {
return file->premier == file->dernier;

void enFiler (File* file, Objet* objet) {
int place = (file->dernier+1l) % file->max;
if (place != file->premier) {
file->dernier = place;
file->element [place] = objet;
3 else {

erreur (AVERT, "File saturée');

¥

Objet* deFiler (File* file) {
int place = (file->premier+1) % file->max;

it (Ifilevide (file)) {
Objet* objet = file->element [place];
file->premier = place;
return objet;
else {
erreur (AVERT, “File vide™);
return NULL;

3

void listerFile (File* file, void (*f) (Objet*)) {
printf (“Premier : %d, Dernier : %d\n", file->premier, file->dernier);

if (filevide (file)) {
printf ("File vide\n");
} else {
for (int i=(file->premier+l) % file->max;
i!=(file->dernier+1l) % file->max; i=(i+1) % file->max ) {
T (File->element[i]);

b
printf ('\n");
3
b s

void detruireFile (File* file) {
free (file->element);

ppFile.cpp est le méme que pour I’exercice 10 sauf que creerFile() a un paramétre
compilation FILETABLEAU est définie pour cet exemple.

Exercice 12 : commande en attente (page 97)

// insertion en fin des listes de l"article et du client

// en attente de gt articles de numéro numArt

// pour le client numCli a la date "date"

void mettreEnAttente (int qt, int numArt, int numCli, char* date) {
non corrigé

}

// extraire l"entrée n des listes de Attente
// et lTinsérer dans la liste libre
void extraire (int n) {
non corrigé
b

// réapprovisionnement de gtr articles de numéro na
void reappro (int na, int qtr) {

Attente attente;

Article article;

Client client;

lireDArt (na, &article);

if (article.premier = NILE) {
int ptc = article.premier;
booleen fini = faux;
while ((ptc !'= NILE) && !fini) {

. La variable de



310

Corrigés des exercices

lireDAtt (ptc, &attente);
lireDCli (attente.cliOuLL, &client);

if (attente.qt <= qtr) {

printf ("Envoi de %2d %15s a %15s\n",
attente.qt, article.nomArt, client.nomCli);
qtr -= attente.qt;
fini = qtr == 0;
extraire (ptc);
ptc = attente.artSuivant;

} else {

printf ("Envoi de %2d %15s a %15s (%2d commandé)\n',
qtr, article.nomArt, client.nomCli, attente.qt);
attente.qt -= qtr;
ecrireDAtt (ptc, &attente);
fini = vrai;

¥
}
}
}

void main ) {

fa = fopen ( "article.rel™, "wb+");
if (fa == NULL) { printf ("Erreur ouverture FA\n"); exit (1); }
fc = fopen ( “"client.rel”,
("Erreur ouverture FC\n"); exit (1); }

if (fc == NULL) { printf

(“"Radio™,
('Téléviseur”,
(“"Magnétoscope',
("Chaine hi-fi",

("'Dupond™, 2);
(""'Durand”, 5);
("'Dufour™, 6);

initAtt (“attente.rel™);

mettreEnAttente ( 3, 3,
mettreEnAttente ( 1, 1,
mettreEnAttente ( 5, 10,
mettreEnAttente (10, 3,
mettreEnAttente ( 7, 10,

listerTous Q;
listerArt (5);
listerCli (3);

reappro (3, 10); //

listerTous Q);
listerArt (5);
listerCli (3);

fclose (fa);
fclose (fc);
fermerAtt ;

1,
3,
8,
1

Wb+ 3

0);
0);
25);

0, 0);

"03/07/.."
*'10/08/ . .
"02/09/7.."
"'12/09/7.."
"13/09/7.."

D
D
3
D

/7 lister les articles du client 5
// lister les clients pour I*article 3

// lister les articles du client 5
// lister les clients pour I*article 3

Exercice 13 : les cartes a jouer (page 98)

/* cartes.cpp module des cartes */

#include <stdio.h

>

#include <stdlib._h>

#include "cartes.h"

void insererEnFinDePaquet (PaquetCarte* p,
Carte* carte = new Carte();
if (carte==NULL) {

printf (“Erreur allocation de Carte\n™); exit (0);

carte->couleur = couleur;

carte->valeur

valeur;

insererEnFinDeListe (p, carte);

¥

void listerCartes (PaquetCarte* p) {

int couleur,

réapprovisionnement de 10 articles numéro 3

int valeur) {



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 31

int i=0;
ouvrirListe (p);
while (IfinListe (p)) {
I++;
Carte* carte = (Carte*) objetCourant (p);
printf ('i %2d : C %2d, V %2d\n', i, carte->couleur, carte->valeur);
3
3

void creerTas (PaquetCarte* p) {
initListe (p);

for (int i=1; i<=4; i++) {
for (int j=1; j<=13; j++) insererEnFinDePaquet (p, i, j);

¥

// La premiére carte a le numéro 1;
// fournit NULL si la carte n n"existe pas
Carte* extraireNieme (PaquetCarte* p, int n) {
Carte* extrait;
if (n<=0 || n>nbElement (p)) return NULL;
ouvrirListe (p);
for (int i=1; i<=n; i++) extrait = (Carte*) objetCourant (p);
int resu = extraireUnObjet (p, extrait);
return extrait;

3

void battrelLesCartes (PaquetCarte* p, PaquetCarte* paquetBattu) {
initListe (paquetBattu);
for (int i=1; i<=52; i++) {
int n = (randQ) % (62-i+1)) + 1;
Carte* extrait = extraireNieme (p, n);
if (extrait != NULL) insererEnFinDeListe (paquetBattu, extrait);
H
3

void distribuerLesCartes (PaquetCarte* p, tabJoueur joueur) {
for (int nj=0; nj<4; nj++) initListe (&joueur[nj]);

for (int i=1; i<=13; i++) {
for (int nj= j<4; nj++) {
Carte* extrait = (Carte*) extraireEnTeteDelListe (p);
insererEnFinDeListe (&joueur[nj], extrait);

¥

b
b
le programme principal :

/* ppcartes.cpp programme principal cartes */

#include <stdio.h>
#include <stdlib.h>
#include “cartes.h"

void main ) {

// créer un tas et le lister

PaquetCarte* tasl = new PaquetCarte();
creerTas (tasl);

printf ("\nListe du tasl au départ \n");
listerCartes (tasl);

// battre les cartes et afficher le nouveau tas tas2
PaquetCarte* tas2 = new PaquetCarte();
battreLesCartes (tasl, tas2);

//printf ("\nListe du tasl apres BattrelLesCartes\n");
//listerCartes (tasl); // vide
printf ("\nListe du tas2 apres BattrelLesCartes\n");

listerCartes (tas2);

// distribuer les cartes et afficher les 4 paquets des joueurs
tabJoueur Jjoueur;
distribuerLesCartes (tas2, joueur);
for (int i=0; i<4; i++) {
printf ("\nListe du joueur %d \n", i);
listerCartes (&joueur[i]);



312

Corrigés des exercices

Exercice 14 : polynomes complexes (listes ordonnées) (page 99)
/* polynome.cpp gestion de polynomes complexes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "‘polynome.h"

// comparer deux mondmes
static int comparerMonome (Monome* ml, Monome* m2) {
if (nl->puissance < m2->puissance) {
return -1;
} else if (ml->puissance == m2->puissance) {
return O;
} else {
return 1;

¥

static int comparerMonome (Objet* objetl, Objet* objet2) {
return comparerMonome ((Monome*)objetl, (Monome*)objet2);

void creerMonome (Polynome* p, Complex z, int puissance) {
Monome* nouveau = new Monome;
nouveau->z = z;
nouveau->puissance = puissance;
insererenOrdre (p, nouveau);

¥

Polynome* creerPolynome () {
return creerListe (DECROISSANT, NULL, comparerMonome);

Polynome* lirePolynome () {
Polynome* p = creerPolynome();
booleen fin = faux;
while ('fin) {
printf (“"Coefficient réel (ou * pour finir) ? ");
char ch [30];
scanf ("%s", ch);
if ( !strcmp (ch, "*") == 0 ) {
double pr = atof (ch);
printf (“"Coefficient imaginaire ? ');
scanf ("'%s'", ch);
double pi = atof (ch);
Complex z = crC (pr, pi);
printf (“Puissance ? ");
scanf ("%s', ch);
int pu = atoi (ch);
creerMonome (p, z, pu);
} else {
fin = vrai;
3
3
return p;

}

void ecrirePolynome (Polynome* po) {
ouvrirListe (po);
while (!finListe (po) ) {
Monome* ptc (Monome*) objetCourant (po);

Complex ¢ = ptc -> z;

double pr = partReelC (c);
double pi = partlmagC (c);
int pu = ptc->puissance;

if (pr!=0¢&& pi '=0) {

printf (" (%.2fF + %.2F i) z** %d ", pr, pi, pu);
} else if (pr !'=0) {

printf ( " %.2f z** %d ", pr, pu);
} else {

printf ( " %.2f 1 z** %d ", pi, pu);

}
if (IfinListe (po) ) printf (" + ');

3
printf ('\n™);



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

313

Complex valeurPolynome (Polynome* po, Complex z) {
Complex resu = crC (0, 0);
ouvrirListe (po);
while (IfinListe (po)) {
Monome* ptc = (Monome*) objetCourant (po);
Complex mc = multiplicationC (ptc->z, puissanceC (z, ptc->puissance));
resu = additionC (resu, mc);

return resu;

¥

et le programme principal de test :
/* pppolynomecomplex.cpp */

#include <stdio.h>
#include “polynome.h"

void main ) {

Polynome* pl = creerPolynome();
creerMonome (pl, crC(2,2), 2);
creerMonome (p1, crC(1,1), 1);
creerMonome (p1l, crC(3,3). 3):
printf ("\n\nListe du polynome pl : ");
ecrirePolynome (pl);

Polynome* p2 = creerPolynome();
creerMonome (p2, crC(1,1), 3);
creerMonome (P2, crC(2,2), 1);
creerMonome (p2, crC(3,3), 2);
printf ("\nListe du polynome p2 : ");
ecrirePolynome (p2);

Complex z1 = crC (0.5, 1);

Complex resul = valeurPolynome (pl, z1);
Complex resu2 = valeurPolynome (p2, z1);
Complex resum = multiplicationC (resul, resu2);
Complex resud = i

printf ("\nzl1

printf ("\npl(zl)
printf ("\np2(z1)
printf (""\npl(zl)*p2(z1)
printf ("\np1(z1)/p2(z1)
printf ('\n");

); ecritureC (z1);

); ecritureC (resul);
"); ecritureC (resu2);
"); ecritureC (resum);

); ecritureC (resud);

¥

Exercice 15 : parcours d’arbres droite-gauche (page 116)
Parcours préfixé : Julie Jonatan Gontran Antonine Pauline Sonia Paul
Parcours infixé : Julie Gontran Antonine Jonatan Paul Sonia Pauline

Parcours postfixé : Antonine Gontran Paul Sonia Pauline Jonatan Julie

Exercice 16 : dessin n-aire d’un arbre (page 136)
// dessiner arbre n-aire

// moyenne de la position du premier et dernier

// fils n-aires de racine

static int positionMoyenne (Noeud* racine) {
Noeud* pf = racine->gauche; // pointeur fils NAire
int posl = ((NomPos*)pf->reference)->position;
while (pf->droite != NULL) pf = pf->droite;
int posD = ((NomPos*)pf->reference)->position;
return (posl+posD)/2;

3

// nf : nombre de feuilles n-aires
int nf = 0; // variable globale pour dupArbN

// IgM = largeur d"une colonne

static Noeud* dupArbN (Noeud* racine, int IgM, char* (*toString) (Objet*) ) {

if (racine == NULL) {
return NULL;
} else {



314 Corrigés des exercices

Noeud* nouveau = new Noeud();

NomPos* objet = new NomPos();
nouveau->reference = objet;

objet->message = toString (racine->reference);

nouveau->gauche = dupArbN (racine->gauche, IgM, toString);

if (racine->gauche == NULL) { // c"est une feuille n-aire
++nf;
objet->position = IgM * nf;

} else {

objet->position = positionMoyenne (nouveau);

nouveau->droite = dupArbN (racine->droite, IgM, toString);
return nouveau;
}
3

static Arbre* dupArbN (Arbre* arbre, int IgM) {
nf =0;
Noeud* nrac = dupArbN (arbre->racine, IgM, arbre->toString);
return creerArbre (nrac, arbre->toString, NULL);

}

// dessiner l"arbre n-aire dans le fichier fs (a I"écran si fs=stdout)
void dessinerArbreNAire (Arbre* arbre, FILE* fs) {
if (arbreVide (arbre)) {
printf (“'dessinerArbre Arbre vide\n");
return;

int IgM = maxldent (arbre) + 1 ;

if (IgM < 5) IgM = 5;

int IgFeuille = (nbFeuillesNAire (arbre)+1) * IgM;
char* ligne = (char*) malloc (lgFeuille+l);
ligne [IgFeuille] = 0;

Arbre* narbre = dupArbN (arbre, IgM);

Liste* Ic = creerListe(); // liste des noeuds du méme niveau
insererEnFinDeListe (lc, narbre->racine);
Liste* Is = creerListe(); // liste des descendants de lc

while (MlisteVide (Ic)) {
// écrire les barres verticales des noeuds de la liste
for (int i1=0; i<lgFeuille; i++) ligne[i]=" ~;
ouvrirListe (lc);
while (!finListe (Ic) ) {
Noeud* ptNd = (Noeud*) objetCourant (lc);
NomPos* ptc = (NomPos*) ptNd->reference;

ligne [ptc->position] = *|";
for (int i=1; i<=2; i++) fprintf (fs, "%s\n", ligne);

// pour chaque élément de la liste :

//  écrire des tirets de la position du premier

// fils a celle du dernier

// écrire le nom de I"élément a sa position

for (int i1=0; i<lgFeuille; i++) ligne[i]=" *;

while (!listeVide (Ic)) {
Noeud* pNC = (Noeud*) extraireEnTeteDeListe (lc);
Noeud* pF = pNC->gauche;
char* message = ((NomPos*) pNC->reference)->message;

int Ig = strlen (message);

int posNom = ((NomPos*)pNC->reference)->position - 19/72;
int poslF; // position du premier fils

int posDF; // position du dernier fils

if (pF == NULL) {
poslF = posNom;
posDF = posNom;
} else {
poslF = ((NomPos*)pF->reference)->position;
while (pF != NULL) {
insererkEnFinDeListe (Is, pF);
posDF = ((NomPos*)pF->reference)->position;
pF = pF->droite;
3
}

for (int j=poslF; j<=posDF; j++) ligne [j] = "_";



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 315

for (int j=0; j<lg; j++) ligne [posNom+j] = message[j];
H

fprintf (fs, "%s\n", ligne);
recopierListe (lc, Is); // Is vide

¥

// détruire I arbre intermédiaire
detruireArbre (narbre);

bs
Exercice 17 : le corps humain (page 142)

Seules les 3 premieres lignes de homme.nai sont prises en compte pour cette correction qui reste a compléter.
Arbre n-aire

homme
| | | | |
I I I I O
tete cou __tronc__ bras jambe
| | | | | | |
| | | | | | |
crane yeux oreille cheveux bouche abdomen thorax
Arbre binaire
|
|
homme
|
|
tete_
| |
| |
crane___ cou
| |
| |
yeux ___ tronc___
| | |
I I
oreille__ abdomen_____ bras____
| | |
| |
cheveux thorax jambe
|
|
bouche

Exercice 18 : facteur d’équilibre (page 176)

cas 1)
Valeur ou nom a insérer ? 60
701 ->0
|
|
__50(1)
| |
| |
40(0) __700)___
|

|
| |
60(0) 80(0)

Valeur ou nom a insérer ? 58

60 0 -> -1

70 0 -> -1

50 1 -> DG a:50(1); b:60(-1); c:70(-1);
|

|
__ 60(0)__
| |
| |
__50(0)___ 70(1)__
| | |
| | |
40(0) 58(0) 80(0)
a:50(0); b:60(0); c:70(1);



316

Corrigés des exercices

cas 2)
Valeur ou nom a insérer ? 60
701 ->0
|

|
501
| |
| |
40(0) __70(0)___
| |

I I
60(0) 80(0)

Valeur ou nom a insérer ? 65

60 0 -> 1

70 0 -> -1

50 1 -> DG a:50(1); b:60(1); c:70(-1);

__60 20)—

| |

| |
__50¢-1 __70(0)__
| | |

| | |
40(0) 65(0) 80(0)
a:50(-1); b:60(0); c:70(0);
cas 3)
Valeur ou nom a insérer ? 20
100 -> 1
|

I
10(1)
|

I
20(0)

Valeur ou nom a insérer ? 15
200 > -1
10 1 -> DG a:10(1); b:15(0); c:20(-1);
|
|
__15(0)___
| |

10(0) 20(0)
a:10(0); b:15(0); c:20(0);

Exercice 19 : insertion de valeurs dans un arbre équilibré (page 181)

Insertion de 1
|
|

1(0)

Insertion de 2
10->1
|

|
1W__
|

|
2(0)

Insertion de 3
20 >1
11 ->DD
|
|
_2(0)__
| |

| |
10)  3(0)



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

317

Insertion de 4
30->1
20 ->1

|

_2({)_
| |

1(€IJ) 3(1)7
|

|
4(0)
Insertion de 5
40 ->1
31 ->DD
|

_2 (1)—

1(€IJ) v4(€|1)'
| |

3(5) 5(5)

Insertion de 6
50 ->1
40 ->1
21 ->DD
|

4(CIJ)A
| |

_2((|3)_ 5({)_
| | |

| | |
10 3(0) 6(0)
Insertion de 7

60 ->1
51 ->0DD

|
4((IJ)

_2((|3)_ _6((|3)_

1(5) 3(5) 5(5) 7(5)

Insertion de 8
70 ->1
60 ->1
40 ->1
|

4({)

_2 ((IJ)_ _6 ({)_

1(é) 3(é) 5(é) 7({)_
|

Insertion de 9
80 -—>1
7 1 -> DD

|

4({)

_2((|))_ _6({)
| | |

1((')) 3((')) 5((')) AB((IJ)A
|

7(5)




318 Corrigés des exercices

Insertion de 10
90 ->1
80 ->1
6 1 -> DD

4(D

| |
_2(0)__ 8(0)___
| | | |

| | | |
10 3(0) _6(0)__ 9(__
| | |
| | |
5(0) 7(0) 10(0)
Insertion de 11

100 -> 1
91 ->0DD

41
| |

| |
_2(0__ _ 8(0)___
| | | |

| | |
1(0) 3(0) _6(0)__
| |

|
10(0)__
|

|
) 11(0

O

| |
5(0) 7(0) 9(

Insertion de 12
110 -> 1
100 -> 1
80 ->1
41 -> DD

| | |
1(0)  3(0) 5(0)  7(0) 12(0)
Pour I’insertion des nombres de 12 a 1, on obtient des schémas symétriques de ceux donnés ci-dessus. Linser-
tion se fait toujours dans le sous-arbre gauche ; le rééquilibrage est donc un rééquilibrage GG au lieu de DD.

Exercice 20 : gestion d’un tournoi a I’aide d’une liste d’arbres (page 186)

/* tournoi.cpp programme de gestion d"un tournoi
méthode : utilisation d"une liste d"arbres;
quand le tournoi est fini, il reste un seul arbre dans la liste */

#include <stdio.h>
#include <string.h> // strcmp
#include <stdlib.h> // malloc
#include "liste.h"
#include "arbre.h"

#define LGMAX 20
typedef char Chaine [LGMAX+1]; // O de fin
typedef struct {
Chaine joueurl; // gagnant = joueurl
Chaine joueur2;
} Match;

// constructeur d"un match
Match* match (char* joueurl, char* joueur2) {
Match* nouveau = new Match(Q);
strcpy (nouveau->joueurl, joueurl);
strcpy (nouveau->joueur2, joueur2);
return nouveau;



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 319

// la chaTne a fournir pour un match

char* toStringMatch (Match* match) {
char* chaine = (char*) malloc (2*LGMAX+1);
sprintf (chaine, "%s:%s", match->joueurl, match->joueur2);
return chaine;

3

// égalité : 0; sinon 1
int comparerMatch (Match* matchl, Match* match2) {
// match2->joueurl contient le joueur cherché
// égalité si le joueur cherché match2->joueurl
// est dans la structure matchl (en joueurl ou joueur2)
if (strcmp (matchl->joueurl, match2->joueurl) [ |
strcmp (matchl->joueur2, match2->joueurl)
return O;
¥ else {

return 1;

¥

char* toStringMatch (Objet* objet) {
return toStringMatch ( (Match*)objet);

int comparerMatch (Objet* objetl, Objet* objet2) {
return comparerMatch ((Match*) objetl, (Match*)objet2);
b

// pour un match
void ecrireMatch (Match* match) {
printf (" %s gagne contre %s\n', match->joueurl, match->joueur2);

// lister le contenu des racines des arbres de la liste,
// soit les joueurs non éliminés ayant déja joués
void listerRestants (Liste* i) {
printf ("\n\nJoueurs non éliminés\n");
ouvrirListe (li);
while (IfinListe (1)) {
Arbre* arbre = (Arbre*) objetCourant (li);
Match* match = (Match*) getobjet (getracine(arbre));
ecrireMatch (match);

3
printf ('\n");

// lister le contenu de chaque arbre de la liste des arbres;
// récapitulatif des matchs
// type 1 : préfixée; 2 : postfixée; 3 : dessins des arbres
void listerArbres (Liste* li, int type) {
ouvrirListe (li);
while (!finListe (i) ) {
Arbre* arbre = (Arbre*) objetCourant (li);
switch (type) {
case 1 :
indentationPrefixee (arbre, 1);
break;
case 2 :
indentationPostfixee (arbre, 1);
break;
case 3 :
printf ("'\n");
dessinerArbre (arbre, stdout);
break;

b
printf ("'\n");

H
printf ('\n");

// lister les matchs d"un joueur connaissant un pointeur sur
// son dernier match joué (le plus haut dans 1"arbre)
void listerMatch (Noeud* pNom, Chaine joueur) {
it (pNom = NULL) {

Match* match = (Match*) getobjet(pNom);

ecrireMatch (match);

if (strcmp (match->joueurl, joueur) == 0) {

listerMatch (getsag(pNom), joueur);



320

Corrigés des exercices

} else {
listerMatch (getsad(pNom), joueur);
¥
3
3

// rechercher joueur dans la liste des arbres

// et lister les matchs du joueur

void listerMatch (Liste* li, Chaine joueur) {
printf ("Matchs du joueur %s \n'", joueur);
booleen trouve = faux;
Match* joueurCh = match (joueur, "');

ouvrirListe (li);

while (!finListe (li) && !'trouve) {
Arbre* arbre = (Arbre*) objetCourant (li);
Noeud* noeud = trouverNoeud (arbre, joueurCh);
trouve = noeud '= NULL;
if (trouve) listerMatch (noeud, joueur);

if (Mtrouve) {
printf (“"Aucun match enregistré pour %s\n", joueur);

}

// enregistrer le résultat d"un match dans la liste des arbres
void enregistrerMatch (Liste* li, Chaine j1, Chaine j2) {
Noeud* ptJ1l = NULL; /7 repere jl
Noeud* ptJ2 = NULL; // repere j2

printf (“enregistrerMatch %s contre %s\n", jl1, j2);
ouvrirListe (li);

// chercher le noeud ptjl du dernier match de j1
// et le noeud ptj2 du dernier match de j2
booleen fin = faux;
while (!finListe (Ii) && !'fin ) {
Arbre* arbre = (Arbre*) objetCourant (li);
Noeud* noeud getracine (arbre);
Match* match = (Match*) getobjet(noeud);
if (strcmp (match->joueurl, jl1) == 0) {
ptJ1l = noeud;
extraireUnObjet (li, arbre);
}
if (strcmp (match->joueurl, j2) == 0) {
ptJ2 = noeud;
extraireUnObjet (li, arbre);

3}
fin = (PtJ11=NULL) && (PtJ21=NULL);

// créer un Match, un Noeud et un arbre

Match* nvMatch = match (1, j2);

Noeud* nvNoeud = cNd (nvMatch, ptJl, ptJ2);

Arbre* arbre = creerArbre (nvNoeud, toStringMatch, comparerMatch);
insererEnFinDeListe (li, arbre);

}

// créer la liste des arbres a partir d*un fichier
// des résultats des matchs joués
void creerArbres (FILE* fe, Liste* li) {
initListe (li);
while (Ifeof (fe)) {
Chaine j1;
Chaine j2;
fscanf (fe, "%10s%10s", j1, j2);
if (feof (fe)) break;
//printf (“creerArbres j1 : %s, j2 : %s\n", j1, j2);
enregistrerMatch (Ii, j1, j2);

// Les différentes possibilités du programme
int menu O {
printf ("\nGESTION D*UN TOURNOI\N\n");
printf (0 - Fin\n");

printf ("1 - Création de la liste d"arbres a partir d"un fichier\n");

printf ("2 - Enregistrement d“un match\n");



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

321

printf (
printf (
printf
printf
printf
printf (

Liste des joueurs non éliminés\n');
Parcours préfixé des arbres\n™);
Parcours postfixé des arbres\n');
Dessins des arbres des matchs\n');
Liste des matchs d"un joueur\n™);

printf (“"Votre choix ? ");
int cod; scanf (""%d", &cod); getchar();

return cod;
H
void main Q {
Liste* la
int fini

while (!fini

D

creerListe(); // la liste des arbres

faux;

{

switch (menuQ) ) {

case 0:

fini = vrai;

break;

case 1: {

//printf ('Nom du fichier contenant les résultats des matchs ? ');

char nomFE [50];
//scanf ('%s", nomFE);
strcpy (nomFE, "jeu.dat™);

FILE* fe

fopen (nomFE, "r');

if (fe == NULL) {
printf (“%s inconnu\n', nomFE); exit (1);

creerArbres (fe, la);
fclose (fe);

} break;

case 2 : {

printf ('nom du gagnant ? *);
Chaine j1; scanf ('%s", j1);
printf ('nom du perdant ? *);
Chaine j2; scanf ('%s", j2);
enregistrerMatch (la, j1, j2);

} break;

case 3:

listerRestants (la);

break;

case 4:

printf ('préfixé indenté\n\n");
listerArbres (la, 1);

break;

case 5:

printf (“postfixé indenté\n\n");
listerArbres (la, 2);

break;

case 6:

printf ('dessins des arbres des matchs\n\n");
listerArbres (la, 3);

break;

case 7: {

printf (""\nMatchs d”un joueur, nom cherché ?
Chaine joueur;

// nom du Joueur cherché

scanf ("'%s', joueur);
listerMatch (la, joueur);

} break;

} /7 switch

if (Ifini) {
printf ("\n\nTaper Return pour continuer\n®);
getchar(Q);

¥
} 7/ while

} /7 main



322

Corrigés des exercices

Exercice 21 : mémorisation d’un dessin sous forme d’un arbre binaire (page 189)

/* dessin.cpp Dessin mémorisé sous forme d"un arbre statique */

#include <stdio.h>
#include <stdlib.h>
#include "ecran.h"

#define NULLE -1
typedef int  PNoeud;

typedef struct {
int indice; /7 indice sur desc []
PNoeud gauche;
PNoeud droite;

} Noeud;

int desc [] = { // description de I"image

// 0 15
3, 5,5,5,3,6,6,6,7,5,5,5,5,5,5,5,
3,7,7,7,3,3,3,3,2,5,5

}:

Noeud arbre [] = { // 1"arbre représentant I"image
{o, 1, -1}, //0
{4, -1, 2%, //1
{8, 3,-1% //2
{16, -1, 4%, //3
{20, -1, 5%, //4
{24, -1, -1}y //5

}:

// tracer le dessin correspondant a un noeud
void traiterNoeud (PNoeud pNd, int x, int y, int taille, int* nx,
int ind = arbre[pNd].indice;
int nb = desc [ind];
for (int i=ind+1l; i<=ind+nb; i++) {
for (int j=1; j<=taille; j++) {
ecrirePixel (y, x); // numéro de ligne d"abord
switch (desc[i]) {
1:

case y = y-1; break;
case 2: x = x+1; y = y-1; break;
case 3: x = Xx+1; break;
case 4: x = x+1; y = y+1; break;
case 5: y = y+1; break;
case 6: x = x-1; y = y+l; break;
case 7: x = x-1; break;
case 8: x = x-1; y = y-1; break;
3
3

3

*nx = X;

*ny =vy;

}

// parcours et dessin de l7arbre
void parcours (PNoeud racine, int x, int y, int taille) {
if (racine != NULLE) {
int nx, ny;
traiterNoeud (racine, x, y, taille, &nx, &ny);
parcours (arbre[racine].gauche, nx, ny, taille);
parcours (arbre[racine].droite, x, vy, taille);

}

// trace deux dessins : un grand et un petit
void main ) {
PNoeud racine = 0; // premier noeud de I”arbre

initialiserEcran (40, 40);

parcours (racine, 10, 10, 2);
afficherEcran (OH

sauverEcran ("'GrdEcran.res™);
detruireEcran O;

initialiserEcran (20, 20);

parcours (racine, 2, 2, 1);
afficherEcran (OH

sauverEcran ("PtiEcran.res™);
detruireEcran O;

int* ny) {



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 323

Exercice 22 : références croisées (arbre ordonné) (page 192)

/* refcrois.cpp
références croisées : listes et arbres */

#include <stdio.h> // printf, FILE, fopen, fscanf
#include <string.h> // strcpy, strcmp, strlen
#include <stdlib.h> // exit

#include <ctype.h> // isalpha

#include "liste.h"

#include "arbre.h"

// les objets Elt (liste de numéros de lignes)

typedef struct {
int numLigne;
} Elt;

// les objets Mot
typedef char Chaine [31]; // 30 + O de fin
// un mot et sa liste de lignes
typedef struct {
Chaine mot;
Liste li;
} Mot;

// LES FONCTIONS EN PARAMETRES

// utilisé par dessinerArbre() pour avoir les mots
char* toStringMot (Mot* pmot) {
return pmot->mot;

// utilisé par dessinerArbre() pour avoir mots et numéros
char* toStringMot2 (Mot* pmot) {
Liste* li = &pmot->li;
ouvrirListe (li);
char* reponse = (char*) malloc (50);
char mot [10];
sprintf (reponse, "%s:', pmot->mot);
while (IfinListe (1i)) {
ElIt* nl = (EIt*) objetCourant (li);
sprintf (mot, "%d ', nl->numLigne);
strcat (reponse, mot);
H
return reponse;

3

// comparer deux Mot (pour rechercherOrd())
int comparerMot (Mot* motl, Mot* mot2) {
return strcmp (motl->mot, mot2->mot);

3

// insérer mot, trouvé a la ligne nl, dans I"arbre ordonné
void insererMot (Arbre* arbre, Chaine mot, int nl) {
Mot* motCherche = new Mot();
strcpy (motCherche->mot, mot);
// fournit un pointeur sur le noeud contenant motCherché
// rechercherOrd() utilise comparerMot()
Noeud* noeud = rechercherOrd (arbre, motCherche);

if (noeud != NULL) {
// le mot existe déja; ajouter le numéro de ligne
Mot* pmot = (Mot*) getobjet(noeud);
Elt* elt = new EITQ;
elt->numLigne = nl;
insererEnFinDeListe (&pmot->li, elt);

¥ else {
// premiere rencontre du mot : créer le Mot;
// insérer nl en fin de liste (le premier élément)
Mot* pmot = motCherche;
initListe (&pmot->li);
ElIt* elt = new EITQ);
elt->numLigne = nl;
insererEnFinDeListe (&pmot->li, elt);
// insérer le Mot pointé par pmot dans I"arbre ordonné (ou équilibré)
// en utilisant comparerMot pour trouver sa place
insererArbreOrd (arbre, pmot);
//insererArbreEquilibre (arbre, pmot);



324

Corrigés des exercices

// parcours de la liste du Mot pointé par pmot;

// écriture de 10 valeurs par ligne
void traiterNd (Mot* pmot) {

Liste* li = &pmot->Ii;

printf ("%15s : ', pmot->mot);

int i =0;

ouvrirListe (li);

while (IfinListe (1i) ) {
Elt* ptc = (EIt*) objetCourant (li);
printf ("%6d", ptc->numLigne);
1++;
if ( (i % 10 == 0) && !finListe (li) ) {

printf ("\n%18s", " ");

}
printf ('\n");

// rechercher les numéros de ligne d"un mot

void rechercherLignes (Arbre* arbre, char* mot) {

Mot* motCherche = new Mot();
strcpy (motCherche->mot, mot);

Noeud* noeud = rechercherOrd (arbre, motCherche);

if (noeud '= NULL) {

traiterNd ((Mot*)getobjet(noeud));
} else {

printf ("%s inconnu\n", mot);

¥

// ce qui compose un mot : on pourrait y ajouter

// les lettres accentuées, les chiffres, etc.
int elementDeMot (char c) {

return isalpha (c);
}

char* toStringMot (Objet* objet) {
return toStringMot ((Mot*)objet);

char* toStringMot2 (Objet* objet) {

return toStringMot2 ((Mot*)objet);
3

int comparerMot (Objet* objetl, Objet* objet2) {
return comparerMot ((Mot*)objetl, (Mot*)objet2);

// pour infixe() dans main(Q)
void traiterNd (Objet* objet) {
traiterNd ( (Mot*) objet);

void main(Q) {

printf ('Nom du fichier dont on veut les références croisées ? ™);

char nomFE [50];
scanf (""%s"™, nomFE);

// nom du fichier d"entrée

//strcpy (nomFE, “refcrois.dat™);
FILE* fe = fopen (nomFE, "'r); // fichier d-entrée

if (fe == NULL) {

printf ("Erreur ouverture %s\n", nomFE);

exit (1);
}

//Arbre* arbre = creerArbre (NULL, toStringMot, comparerMot);
Arbre* arbre = creerArbre (NULL, toStringMot2, comparerMot);

int nl =1;
printf ("'%6d ", nl);
char c;

fscanf (fe, "%c", &c);
Chaine mot;

while (! feof (fe)) {

// numéro de ligne du fichier

// prochain caractere a traiter (analyseur)
printf ("%c", c);
// mémorise le mot lu dans fe

// passer les délimiteurs de mots



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

325

while ( !feof (fe) && !elementDeMot (c) ) {
if (c=="\n") {
nl = nl + 1;
printf '%6d **, nl);

by
fscanf (fe, "%c", &c); printf ('%c", c);
H
// lire les caractéres du mot
char* pMot = mot; // pointeur courant sur Mot
while (Ifeof(fe) && elementDeMot (c) ) {
*pMot++ = C;
fscanf (fe, "%c", &c); printf ('%c", c);
3
*pMot = O;
//printf (mot : %s\n", mot);

if (strlen (mot) > 0) {
insererMot (arbre, mot, nl);
3
3
fclose (fe);

printf ("\n\nRéférences croisées\n");
infixe (arbre, traiterNd);

printf (""\n\nRéférences croisées de :\n");
rechercherLignes (arbre, "petit™);

dessinerArbre (arbre, stdout);
} /7 main
Exercice 23 : arbre de questions (page 194)
/* question.cpp arbre de questions */
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

#include <ctype.h> // toupper
#include "arbre.h"
#include "mdtypes.h™ // toChar

const int MAX = 100;

void insererQuestion (Noeud** pracine) {
Noeud* racine = *pracine;

if (racine==NULL) {
printf (“"Question ? : ');

char phrase [MAX]; fgets (phrase, MAX, stdin);
phrase [strlen(phrase)-1] = 0; // enlever \n
char* question = (char*) malloc (strlen(phrase)+1);
strcpy (question, phrase);
Noeud* nouveau = cNd (question);
*pracine = nouveau;
} else {
printf ("%s (0/N) ? ", (char*) getobjet(racine));
char rep; scanf ("%c", &rep); getchar();
if (toupper(rep) == "0" ) {
insererQuestion (&racine->gauche);
} else {

insererQuestion (&racine->droite);

¥
}

void insererQuestion (Arbre* arbre) {
insererQuestion (&arbre->racine);
}

void poserQuestions (Noeud* racine) {
if (racine = NULL) {
printf ("%s (0/N) ? ", (char*) getobjet(racine));
char rep; scanf (""%c', &rep); getchar(Q);
if (toupper(rep) == "0" ) {
if (racine->gauche == NULL) {
printf (“Fin des questions : vous avez trouvé\n');



326 Corrigés des exercices

} else {
poserQuestions (racine->gauche);

}
} else {
if (racine->droite == NULL) {
//printf ("Mystere et boule de gomme!\n™);

printf ('Fin des questions : ");
printf ("je donne ma langue au chat\n");
} else {

poserQuestions (racine->droite);

3
}
}

void poserQuestions (Arbre* arbre) {
poserQuestions (getracine(arbre));

void sauverQuestions (Noeud* racine, FILE* fs) {
if (racine==NULL) {
fprintf (fs, "*\n");
} else {
fprintf (fs, "%s\n", (char*) getobjet(racine));
sauverQuestions (racine->gauche, fs);
sauverQuestions (racine->droite, fs);

¥

void sauverQuestions (Arbre* arbre, FILE* fs) {
sauverQuestions (getracine(arbre), fs);

void chargerQuestions (Noeud** pracine, FILE* fe) {
char phrase [MAX];
fgets (phrase, MAX, fe);
int Ig = strlen (phrase);
phrase [lg-1] = 0;

if (phrase[0] == "*) {
*pracine = NULL;
} else {
char* reference = (char*) malloc (strlen(phrase)+1);
strcpy (reference, phrase);
Noeud* nouveau = cNd (reference);
*pracine = nouveau;

chargerQuestions (&nouveau->gauche, fe);
chargerQuestions (&nouveau->droite, fe);
}
3

void chargerQuestions (Arbre* arbre, FILE* fe) {
chargerQuestions (&arbre->racine, fe);

// détruire un objet de type Question
void detruireQuestion (Objet* objet) {
char* message = (char*) objet;
free (message);

int menu O {
printf ("\nARBRE DE QUESTIONS\n\n");

printf (" 0 - Fin\n");

printf (" 1 - Insérer une nouvelle question\n");

printf (" 2 - Lister I1*arbre des questions\n');

printf (" 3 - Poser les questions\n™);

printf (" 4 - Sauver I1"arbre dans un fichier\n");
printf (" 5 - Charger [I"arbre a partir d"un fichier\n);
printf (" 6 - Dessiner l"arbre des questions\n™);

printf (" 7 - Détruire I*arbre en mémoire\n™);

printf ('\n™);

printf (' Votre choix ? ");
int cod; scanf ("%d", &cod); getchar();
return cod;

}

void main ) {
Arbre* arbre
booleen fini

creerArbre();
faux;



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

327

while (Ifini) {
switch ( menuQ) ) {

case

0:

fini = vrai;
break;

case

printf (“Insérer une question\n');
insererQuestion (arbre);

1:

break;

case

printf (“Arbre des questions\n');
indentationPrefixee (arbre, 1);

2 :

printf ('\n");
break;

case

3:

printf ('Questions\n™);
poserQuestions (arbre);
break;

case

printf ('Sauvegarde des questions\n');

4 {

char nomFS [50];

//printf ('Nom du fichier a créer ? ™);
//fgets (nomFS, 50, stdin);

strcpy (nomFS, "question.dat™);

FILE* fs = fopen (nomFS, "w');
sauverQuestions (arbre, fs);

fclose (fs);

printf (“"Sauvegarde effectuée\n');

} break;

case

printf ('Chargement des questions\n');

5:{

char nomFE [50];

//printf ('Nom du fichier a charger ? ™);
//fgets (nomFE, 50, stdin);

strcpy (nomFE, "question.dat™);

FILE* fe = fopen (nomFE, "'r');
chargerQuestions (arbre, fe);

fclose (fe);

printf ('Chargement effectué\n”
dessinerArbre (arbre, stdout);

} break;

case

dessinerArbre (arbre, stdout);

6 :

break;

case

detruireArbre (arbre, detruireQuestion);
printf (“Arbre détruit™)

7 :

break;
} /7 switch

it (1fini)

printf ('Return pour continuer\n\n'); getchar();

3
Y /7 while

Exercice 24 : menu pour une table de hachage (page 237)

/* pphc.cpp programme principal hashcode
avec ou sans chatnage suivant la variable

de compilation CHAINAGE

*/

#include
#include
#include
#include
#include

<stdio.h>
<string.h>
<stdlib.h>
<ctype.h>
"mdtypes.h"

#ifndef CHAINAGE

#include

“tablehc.h"

typedef TableHC Table;

#else
#include

“tablehcc.h"

typedef TableHCC Table;

#endif



328

Corrigés des exercices

// Les fonctions de hash-code
char* titreFn [] = {
“somme des rangs alphabétiques”,
"'somme des caractéres ascii”,
“division par N,
"changement de base"

}:
#define NBFN 4

// Les résolutions
char* titreRe [] = {
Qi) =i,
"r(i) = KFi"
"r(i) = i*iv,
"pseudo-aléatoire”,

#define NBRE 4

Table* creerTable (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*),
int (*hashcode) (Objet*, int),
int (*resolution) (int, int, int)) {
#ifndef CHAINAGE
return creerTableHC (nMax, toString, comparer, hashcode, resolution);
#else
return creerTableHCC (nMax, toString, comparer, hashcode, resolution);
#endif
¥

int menu ) {
#ifndef CHAINAGE
printf ("'\n\nTABLE (HASH-CODING)\n\n");
#else
printf ("\n\nTABLE (HASH-CODING AVEC CHAINAGE)\n\n');
#endif

printf ( " 0 - Fin\n");

printf ( " 1 - Initialisation de la table\n™);
printf ( " 2 - Hash-code d"un élément\n');

printf ( " 3 - Ordre de test des N-1 entrées\n");
printf ( " 4 - Ajout d"un élément dans la table\n");
printf ( " 5 - Ajout d"éléments a partir d*un fichier\n");
printf ( " 6 - Liste de la table\n");

printf ( " 7 - Recherche d“une clé\n™);

printf ( " 8 - Collisions a partir d“une entrée\n");
printf ('\n™);

printf ('Votre choix ? ");

int cod; scanf ("%d", &cod); getchar();
printf ("'\n");

return cod;

}

void lireFichier (char* nomFE, Table* table) {
FILE* fe = fopen (nomFE, *'r);
if (fe==NULL) { perror (nomFE); exit(l); };
int c;

while (1feof (fe) ) {
Personne* nouveau = new Personne();
// lire la clé

char* pNom = nouveau->nom;
while ( (c=getc(fe)) != " ") *pNom++ = c;
*pNom = 0;

if (feof(fe)) break;
// passer les espaces

while ((c=getc(fe)) == " ");
// lire les infos
pNom = nouveau->prenom;

*pNom++ = c;
while ( ((c=getc(fe)) = "\n") && !feof (fe) ) {
*pNom++ = c;

3
*pNom = 0;
insererDsTable (table, nouveau);



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 329

void main ) {
Table* table = creerTable (16, toStringPersonne, comparerPersonne, hashl, resolutionl);

booleen fin = faux;
while ('fin) {

switch (menuQ)) {

case 0:
fin = vrai;
break;

case 1: {

printf ('Paramétres\n™);

printf (“Longueur N de la table ? ");

int n; scanf ('%d", &n);

printf (“Fonctions de hash-code\n™);

for (int i=1; i<=NBFN; i++) printf ('%3d %s\n", i, titreFn[i-1]);
printf (“Votre choix ? ");

int typFn; scanf ('%d", &typFn);

if (typFn<l || typFn>NBFN) typFn = 1;

printf (Résolution\n™);

for (int i=1; i<=NBRE; i++) printf ("%3d %s\n", i, titreRe[i-1]);
printf ('Votre choix ? ™);

int typRes; scanf ("'%d", &typRes);

if (typRes<l || typRes>NBRE) typRes = 1;

int (*hash) (Objet*, int);

switch (typFn) {

case 1 : hash = hashl; break;

case 2 : hash = hash2; break;
case 3 : hash = hash3; break;
case 4 : hash = hash4; break;

int (*resolution) (int, int, int);
switch (typRes) {

case 1 : resolution resolutionl; break;

case 2 : resolution = resolution2; break;
case 3 : resolution = resolution3; break;
case 4 : resolution = resolution4; break;
3
table = creerTable (n, toStringPersonne, comparerPersonne, hash, resolution);
} break;
case 2:{

printf ("Clé dont on veut le hash-code ? ');
char cle[16]; scanf ('%s", cle);

int h = table->hashcode (cle, table->nMax);
printf (“'Hash-Code : %d\n", h);

} break;

case 3: {
printf (“Entrée du Hash-Code de départ ? ');
int entree; scanf ('%d", &entree);
ordreResolution (table, entree);
} break;

case 4 : {
Personne* p = creerPersonne();
insererDsTable (table, p);
} break;

case 5 : {
printf (“Nom du fichier ? ™);
char nomFE [30]; scanf ('%s', nomFE);
lireFichier (nomFE, table);
} break;

case 6 :
listerTable (table);
break;

case 7 : {
printf (“nom de la clé de I"objet cherché ? ");
char nom[20]; scanf (“%s", nom); getchar();
Personne* cherche = creerPersonne (nom, "?');
Personne* trouve = (Personne*) rechercherTable (table, cherche);
if (trouve!= NULL) printf (“trouve %s\n', toStringPersonne (trouve));
} break;



330 Corrigés des exercices

case 8 : {
printf (“"Liste des col ions pour l"entrée ? ");
int entree; scanf ('%d", &entree);
listerEntree (table, entree);
} break;

ks
} /7 while
} 7/ main

Exercice 25 : hachage avec chainage dans une seule table (page 244)

booleen insererDsTable (TableHCC* table, Objet* nouveau) {
int h = table->hashcode (nouveau, table->nMax);
//printf (“insererDsTable hashcode %3d pour %s\n", h, table->toString(nouveau));
if (table->element[h].objet == NULL) {
// 1"entrée est libre, on I"occupe
//printf (“insererDsTable h2 %d\n", h);
table->element[h].objet = nouveau;
table->n++;
} else {
// entrée occupée
Objet* occupant = table->element[h].objet;
int hcOc = table->hashcode (occupant, table->nMax);
if (hcOc == h) { 7/ synonyme, on insére en téte de liste
int re = resolution (table, h);
if (re 1= -1) {
// insertion de nouveau en téte de liste
table->element[re] = table->element[h];
table->element[h].objet = nouveau;
table->element[h].suivant = re;
table->n++;
} else {
printf ("Table saturée\n™);
return faux;
}
} else {
// enlever I"occupant de sa liste commengant en hcOc
// ne pas augmenter table->n
int i = hcOc;
int prec;
while (i !'=h) {
prec i;
i table->element[i].suivant;

table->element[prec].suivant = table->element[h].suivant;

// insérer nouveau en h
table->element[h].objet
table->element[h].suivant

nouveau,;
NILE;

// réinsérer I"expulsé
insererDsTable (table, occupant);
3
} -
return vrai;

¥

// lister la table
void listerTable (TableHCC* table) {
int sn = 0;
for (int i=0; i<table->nMax; i++) {
if (table->element[i].objet !'= NULL) {
int n = nbAcces (table, table->element[i].objet);
printf ("%3d : hc:%3d n:%3d svt:%3d %s\n", i,
table->hashcode (table->element[i].objet, table->nMax), n,
table->element[i].suivant,
table->toString (table->element[i].objet));
if (n>0) sn += n; //-1 si erreur
} else {
printf ("%3d :\n", i);

}

printf ("\nNombre d*éléments dans la table : %d", table->n);
printf (""\nTaux d"occupation de la table : %.2f",

table->n / (double) table->nMax);
printf ("\nNombre moyen d"acces a la table : %.2f\n\n",

sn / (double) table->n);



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices 331

// fournir le nombre d*acces a la table

// pour retrouver objetCherche; -1 si inconnu

int nbAcces (TableHCC* table, Objet* objetCherche) {
int na = 0; // nombre d"acces
int hc = table->hashcode (objetCherche, table->nMax); // hash-code
if (table->element[hc].objet == NULL) {

na = -1; // élément inconnu
} else {

int courant = hc;

int i =1; // ieme tentative

na++;

while ( table->comparer (objetCherche, table->element[courant].objet) = 0) {
courant = table->element[courant].suivant;
if (courant == -1) return -1; // élément inconnu
na++;

3

return na;

Exercice 26 : hachage sur I’arbre de la Terre (page 252)

2 1 Bretagne -1 60 -1

7 1 Afrique 53 19 -1

8 1 Belgique -1 70 -1
10 1 Europe 47 34 -1
19 1 Amerique -1 52 -1
32 1 Inde -1 72 -1
34 1 Asie 39 7 71
39 1 Chine -1 32 72
47 1 France 2 67 -1
52 1 Oceanie -1 -1 -1
53 1 Niger -1 54 -1
54 1 Congo -1 -1 -1
56 1 Japon -1 -1 -1
60 1 Corse -1 71 -1
66 1 Terre 10 -1 -1
67 1 Espagne -1 8 70
70 1 Danemark -1 -1 -1
71 1 Bourgogne -1 -1 -1
72 1 Irak -1 56 -1

Exercice 27 : table des étudiants gérée par hachage avec chainage (page 252)

/* pphcetud.h programme principal hashcode etudiant
avec ou sans chatnage */

#include <stdio.h>
#include <stdlib.h> // exit
#include "mdtypes.h™  // Personne

#ifndef CHAINAGE
#include "tablehc.h™
typedef TableHC Table;
#else

#include "tablehcc.h"
typedef TableHCC Table;
#endif

// résolution r(i) = k*i

int resolution22 (int h, int n, int i) {
int k = 19;
return (h+k*i) % n;

3

void lireFichier (char* nomFE, Table* table) voir exercice 24

void mainQ) {
char* nomFE = “etudiant.dat";

#ifndef CHAINAGE
TableHC* table = creerTableHC (197, toStringPersonne,
comparerPersonne, hash2, resolution22);
#else
TableHCC* table = creerTableHCC (197, toStringPersonne,
comparerPersonne, hash2, resolution22);



332

Corrigés des exercices

#endif

lireFichier (nomFE, table);

//printf ("nombre moyen d"acceés :

listerTable (table);

Personne* etul = creerPersonne (“"TASSEL", "?');

Personne* trouve

= (Personne*) rechercherTable
printf ("%s\n", table->toString (trouve));

%.2F\n"", nbMoyAcces (table));

’(table, etul);

Exemple de table obtenue a partir d’un fichier « etudiant.dat » ordonné suivant le nom des étudiants.

©CoO~NOOOBAWNEO

: he
: he

: he:
: he:

: he:
: he:

: he
: he:

: he:
; hc:

: he:

: he:

: he:
: he:

: he:
: he:

; hc:

: he:

: he:
: he:

; hc:
: he:

: he:
: he:
: he:
: he:

: he:
: he:
: he:
= he:
: he:

; hc:

: 0n:
: 1n:

:145

@~

10
11

t172
14

16

18

20

24

@~

31
32

35

20

42
43

46
47

77
52
53
35

58
60
61
62
64

66

53533

1
1

PR PR

=N

NN

e

PP [

NEFEEPN

svt:
svt:

svt:

svt:
svt:

svt:
svt:

svt:
svt:

svt:

svt:

svt:

svt:

svt:
svt:

svt:
svt:

svt:

svt:

svt:

svt

svt:
svt:

svt:
svt:
svt:
svt:

svt:

svt:

svt

svt:

svt:

26
27

-1
-1

-1
-1

39

119

-1
-1

-1
-1

54

-1
-1
-1
-1

-1
: 80
1176

85

LE_NEDELEC Laurent

LOUSSOUARN Johann

-1 VERON Pascal
-1 CRAMBERT Pascal

SOYER BenoTt

BOURDAIS Candyléne
GUIRRIEC Stéphane

DREAU Sylvain
GUYOT Eric

LEVALOIS Fabien

LE_GLOAN Guenhaél

LE_LOCAT Yann-Gaél

LOURENCO Gabriel

KERDRAON BenoTt

LARRONDE Stéphane

MER Patricia

CAUDAL

Vonig

LE_MOUEL Jérdme

JAN Grégory

BLASCO

RONDEPIERRE Laurent

GAUDIN

LE_GUILCHER Anne Claire

KERMARREC Patrice
MONTEMBAULT Sébastien

Nathalie

Damien

ROY Stéphane

DANIEL

SALAUN
ORIERE
PIERRE
SEZNEC
MEULIN

TASSEL

Gilles

Olivier
Isabelle
Patrick
Olivier

BenoTt

Jérome



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

333

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

hc: 68

hc: 73
hc: 74
hc: 75
hc: 76
hc: 77

hc: 61
hc: 81
hc: 82

hc: 66
hc: 86

hc: 89
hc: 90

hc: 92
hc: 93
hc: 94

hc: 96

hc: 99
hc: 62

hc:102

hc:106
hc:107
hc: 89

hc: 73

hc: 75
hc:114
hc:115
hc:116
hc:117
hc: 99
hc: 24

hc:102

hc:125
hc:126
hc:127
hc:128

hc:130

hc:132
hc:114
hc:134
hc:135
hc:136
hc:137
hc:138

hc:145

n:

n:
n:
n:
n:
n:

n:
n:
n:

n:

n:
n:

n:

n:

n:

n:

n:

n:
n:
n:

n:
n:
n:
n:
n:
n:
n:

n:

n:
n:
n:
n:

n:

n:
n:
n:
n:
n:
n:
n:

n:

B RRRR N NNRRRRP®

PRRRRNPR

svt: -1

svt:168
svt: -1
svt:170
svt: -1
svt: 51

svt: -1
svt: -1
svt: -1

svt: -1
svt: -1

svt:108
svt: -1
svt: -1
svt: -1
svt: -1

svt: -1

svt:118
svt: -1

svt:121

svt: -1
svt: -1
svt: -1

svt: -1
svt: -1
svt:133
svt: -1
svt: -1
svt: -1
svt: -1
svt: -1

svt: -1

svt: -1
svt: -1
svt: -1
svt: -1
svt: -1
svt:151
svt: -1
svt:191
svt: -1
svt: -1
svt:175
svt: -1
svt: 5

ROBERT Sébastien

LE_HENAFF Guénaélle
LE_POITEVIN Bertrand
REBOUX Franck

LE_LAY Stéphane
LE_GALLIC Régis

PERIER Fabrice
COUTELLEC Christophe
UNVOAS Thierry

GUILLO Yvan
DEMEURANT Anne

SEYNHAEVE Emmanuel
JACQ Armelle

HENNEQUIN Ludovic
QUEMERAIS Claude
KOWTUN Régis

LE_ROY Arnaud

LAIR Olivier
BRUNEL Pierre-Yves

VITTOZ Cécile

LEYE Daouda

CARREGA

Philippe

LEMETAYER Valérie

DESCHAMPS Loic

BOUVET Yann
PRAT Yann

RICHARD
BESCOND
DINCUFF
L*ESCOP

Didier
Arnaud
Thierry
Katia

MAO Véronique

LE_CALVEZ Davy

HERLIDO
ETIENNE
NICOLAS
CLOATRE

SALUDEN

KERRIEL
DELHAYE
LESAINT
BOISSEL
FOSSARD
TORCHEN
QUEMERE

RENAULT

Jérome
Sébastien
Christelle
Gildas

Yann

Philippe
Sébastien
Nicolas
Jean-Christophe
Arnaud

Yannick

Marc

David



Corrigés des exercices

334
146 :
147 :
148 : hc:148 n: 1 svt: -1
149 : hc:149 n: 1 svt: -1
150 :
151 : hc:132 n: 2 svt: -1
152 : hc:152 n: 1 svt: -1
153 : hc:134 n: 3 svt: -1
154 : hc:154 n: 1 svt: -1
155 :
156 : hc:137 n: 3 svt: -1
157 : hc: 43 n: 2 svt: -1
158 : hc:158 n: 1 svt: -1
159 :
160 :
161 :
162 : hc:162 n: 1 svt: -1
163 :

164 : hc:164 n: 1 svt: -1
165 :

166 :

167 : hc:167 n:
168 : hc: 73 n:
169 :

170 : hc: 75 n: 2 svt:113
171 :

172 : hc:172 n: svt: 13
173 : hc:173 n: 1 svt: -1
174 :

svt:186
svt:111

N =

[

175 : hc:137 n: 2 svt:156
176 : hc: 62 n: 2 svt:100
177 :
178 :
179 : hc:179 n: 1 svt: -1
180 : hc:180 n: 1 svt: -1
181 : hc:181 n: 1 svt: -1
182 : hc:182 n: 1 svt: -1
183 : hc:183 n: 1 svt: -1
184 :
185 :
186 : hc:167 n: 2 svt: -1
187 :
188 :

189 : hc:189 n: 1 svt: -1
190 : hc:190 n: 1 svt: -1
191 : hc:134 n: 2 svt:153
192 :
193 : hc:193 n: 1 svi: -1
194 :
195 : hc:195 n: 1 svt: -1
196 :

LE_MENN Erwann
LE_GUEN Grégory

AUFFRAY céline
LE_MAOU Yann
COSTARD Sylvain
QUENTIN Thierry

FOURBIL Stéphane

MOALIC Denis
CABON Ronan

CHEIN Anthony
HERVAGAULT Stéphane
LOUVOIS Prébagarane
MORVAN Alain

AUTRET Frédéric

RAMEL Olivier
BETIN Béatrice

PORHIEL Pierrick
BERESCHEL Frédéric

URBAN Frédéric
LE_DALLOUR David
LEVEN David
LE_BELLOUR Marina
BALANANT Ronan

FLOCH Mickaél

LE_BOURHIS Thierry
BOUCHARD David
LE_GALL Erwan
LANGLAIS Yann

TSEMO Edith

Nombre d*éléments dans la table : 107
Taux d"occupation de la table : 0.54
Nombre moyen d*acceés a la table : 1.30

Exercice 28 : fermeture transitive par somme de produits de matrices (page 293)

static void ecrireFMEtape (Matrice pn, int I,

if (1

D {

printf ('Nombre de chemins de longueur <= %d\n", ne);

} else {

printf ("Nombre de chemins de longueur = %

for (int i=0; i<ne; i++)

for (int j=0; j<ne; j++) printf ("%3d", pn [i*nMax+j]);

printf ('%10s™, " ");

{

for (int j=0; j<ne; j++) {
printf ("%3s", pn [i*nMax+j]!=0 ? "V :

3
printf ('\n™);

3
printf ('\n");

int ne,

d\n"*,

"F:



© Dunod - La photocopie non autorisée est un délit.

Corrigés des exercices

335

// affectation de matrices : mc = ms
static void affMat (Matrice mc, Matrice ms, int ne, int nMax) {
for (int i=0; i<ne; i++) {

for (int j=0; j<ne; j++) {

mc [i*nMax+j] = ms [i*nMax+j];

3
H
H

// cumul de matrices : mc = mc + ms
static void addMat (Matrice mc, Matrice ms, int ne, int nMax) {
for (int i=0; i<ne; i++) {

for (int j=0; j<ne; j++) {

mc [i*nMax+j] += ms [i*nMax+j];

H
H
3

// produit de matrices : pn =d *m
static void prodMat (Matrice pn, Matrice d, Matrice m, int ne, int nMax) {
i<ne; i++) {
for (int j=0; j<ne; j++) {
pn [i*nMax+j] = O;
for (int k=0; k<ne; k++) {
pn [i*nMax+j] += d [i*nMax+k] * m [k*nMax+j] ;

3
3
}
¥

static void ecrireMat (Matrice m, int ne, int nMax) {
for (int i=0; i<ne; i++) {
for (int j=0; j<ne; j++) {
printf ("%4d *, m [i*nMax+j]);
b
printf (''\n");
}
printf ('\n");
H
void produitEtFermeture (GrapheMat* graphe) {
int nMax = graphe->nMax;
int ns = graphe->n;
Matrice pn = (int*) malloc (sizeof(int)*nMax*nMax);
Matrice sm = (int*) malloc (sizeof(int)*nMax*nMax);

Matrice d = (int*) malloc (sizeof(int)*nMax*nMax) ;

affMat (d, graphe->element, ns, nMax);
affMat (sm, graphe->element, ns, nMax);

ecrireFMEtape (d, 1, ns, nMax);

for (int i=2; i<=ns; i++) {

prodMat (pn, d, graphe->element, ns, nMax) ;
addMat (sm, pn, ns, nMax);
affMat (d, pn, ns, nMax);
ecrireFMEtape (pn, i, ns, nMax);

3
ecrireFMEtape (sm, -1, ns, nMax);
free (pn);

free (sm);
free (d);






Livres en francais

A.Aho, J. Hopcraft, J. Ullman, Structures de données et algorithmes, InterEditions, 1987.
(Types de données abstraites, arbres, ensembles, graphes, tris, algorithmes, gestion de la
mémoire.)

C. Carrez, Structures de données en Java, C++ et Ada 95InterEditions, 1997.
(Introduction, les structures de base, algorithmes de tri, la recherche, problemes et solu-
tions.)

J. Courtin, I. Kowarski, Initiation a l'algorithmique et aux structures de données, volume 2 —
listes linéaires chainées, structures linéaires particulieres, les tables, les arbres, Dunod 1995

M. Divay, Java et la programmation objet, Dunod, 2002, ISBN 2 10 005891 6.
M. Divay, Unix, Linux et les systemes d'exploitation, Dunod 2004, ISBN 2 10 007451 2.

C. Froidevaux, M.C. Gaudel, M. Soria, Types de données et algorithmes, McGraw-Hill.
(Introduction a I'analyse des algorithmes, structures de données, algorithmes de recherche,
algorithme de tri, quelques algorithmes sur les graphes.)

J. Guyot, C. Vial, Arbres, Tables et Algorithmiques, Eyrolles, 1988.
(Algorithmique, structures de données, algorithmes.)

E. Horowitz, S. Sahni, S. Anderson-Freed, L’essentiel des structures de données en C,
Dunod 1993.
(Concepts de base, piles et files, les listes, les arbres, les graphes, le tri, le hachage, les struc-
tures de tas, les structures arborescentes.)

B. Ibrahim, C. Pellegrini, Structuration des données informatiques, Dunod, 1989.
(Structures statiques et dynamiques, chaines, arbres, listes, graphes, réseaux, adressage
associatif, arbres de décision.)



338 Bibliographie

Niklaus Wirth, Algorithmes et structures de données, Eyrolles, 1987.
(Structures de données fondamentales, le tri, algorithmes récursifs, structures de données
dynamiques, transformations de clés (hachage).)

Livres en anglais
A. Tenenbaum, M. Augenstein, Data structures using Pascal, Prentice-Hall, 1981.

(Information and meaning, the stack, recursion, queues and lists, Pascal list processing,
trees, graphs and their applications, sorting, searching.)

R. Johnsonbaugh, Discrete mathematics, Macmillan Publishing Company, 1984.
(Introduction, counting methods and recurrence relations, graph theory, trees, network
models and Petri nets, boolean algebras and combinatorial circuits, automata grammars and
languages.)

[ || | | | [ ] | n [ [N | l‘
Gl Lijigi Cibialig ~
Poranlinisia: sat oy




© Dunod - La photocopie non autorisée est un délit.

Index

A

acces
séquentiel 201
adressage calculé 215
ajouterUnArc 267, 284
ajouterUnSommet 267, 283
algorithme
itératif 6
récursif 117
allocation
contigué 30, 38, 74, 86, 87, 101, 107, 149
dynamique 35, 37, 38, 107, 117
statique 38, 149
appel
récursif 169
arbre 102
binaire 103, 108, 196
binaire complet 154
binaire de questions 194
binaire équilibré 103
binaire ordonné 156
binaire parfaitement équilibré 103, 167
de chaines de caracteres 140
équilibré 167, 181, 194
généalogique 105
n-aire 104, 134, 196
ordonné 103, 193
récursif 17

arc 254
ascendant n-aire 133
AVL 168

B-arbre 182
d’ordre N 182
boucles récursives 7

C

carte a jouer 98
cercle récursif 15
cF 111
chainage

arriere 63

avant 62
chercherUnObjet 44
classe 29
clé 156, 176, 197, 215
cloner 126
cNd 110
collisions 218, 220
comparer 47, 119, 157, 200, 202
corps humain 249
creerArbre 111
creerGraphe 266
creerGrapheMat 283
creerListe 40



340

creerPersonne 51
creerTuble 200
creerTableHC 230

D
dégénéré 124
degré 107
d’un nceud 103
dépiler 66
descendant n-aire 132
dessin
d’un arbre binaire 128
d’un arbre n-aire 136
récursif 15
dessinerArbre 127
dessinerArbreNAire 136
dichotomique 183
Dijkstra 269
données
globales 26
locales 26
duplication d’arbre 135
dupliquerArbre 125

E

égalité de deux arbres 127
empiler 66

encapsulation 24
enOrdre 47

équirépartie 244
extraireEnFinDelListe 46
extraireEnTeteDelListe 45
extraireUnObjet 46

F

facteur d’équilibre 168, 176
factorielle 2
fait initial 61, 62
fermeture transitive 290
feuille 102, 122, 183

n-aire 130
Fibonacci 4

fichier d’en-téte 25, 26, 31, 48, 56, 98

FIFO 72

file d’attente 72, 120
finListe 43

Floyd 286

fonction
de hachage 218
de résolution 223
en parametre 33
locale 50

free 23

frere immédiatement plus jeune 108

G

graphe 254
connexe 255
d’ordonnancement 258
fortement connexe 256
multiple 256
non orienté 254
orienté 255

H

hachage 217
hashl 218
hash2 219
hash3 219
hash4 220
hash-code 220
hauteur 103
d’un arbre 124, 182
d’un nceud 168
héritage 30
homme.nai 142

indentation 119

n-aire 132
inférence 61
information volatile 52, 86
initListe 40
insererArbreOrd 159
insererDsTable 201, 231
insererEnFinDelListe 42
insererEnOrdre 48, 57
insererEnTeteDeListe 41
interface 24, 26, 35, 101

L

LIFO 66

Liste 39

liste 36, 38, 129
circulaire 75



© Dunod - La photocopie non autorisée est un délit.

Index

341

d’adjacence 260
d’hypotheses 62
de conclusions 62
de faits 63
de personnes 52, 79
de regles 63
libre 87, 92
ordonnée 47, 52, 56, 99
simple 36
symétrique 80
listerFeuilles 123
listerListe 44
listeVide 40

M

malloc 21, 23
matrice
d’adjacence 259
MCD 89
mdtypes.h 51
menu 31
méthode 29
virtuelle 30

modele conceptuel des données 89
module 24, 35, 48, 57, 67, 84, 101

écran 29
moteur d’inférence 61

N

n-aire 130
nbElement 40
new 23
niveau 103
de récursivité 3
neeud 102
nombre complexe 32, 99
nomenclature 153

(o]

objet 29
récursif 19

objetCourant 43

ouvrirListe 43

P

parcours
d’arbre 114

en largeur 120, 129, 136, 263, 268

en largeur n-aire 134
en profondeur 114, 262
infixé 115
postfixé 115, 126
préfixé 115
pile 66
d’entiers 30
plus court chemin 269
pointeur 20, 37
de fonction 34
polynomes 55
premier fils 108
procédure itérative 4
programmation objet 29, 30
prototype 25, 49, 101
puissance 10

R

racine 102
recherche dichotomique 203
rechercherOrd 157
rechercherTable 231
récursivité 1
référence croisée 192
remontée récursive 180
réorganisation 168
DD 171
DG 175
GD 172
GG 170
résolution
des collisions 221
par chalnage 238
pseudo-aléatoire 225
quadratique 224

S

SAD 114

SAG 114
sommets 254
spirale 30

static 50

systeme expert 61

T

table 197
d’index 198



342

Index

d’occupation 87
de hash-code 233
TAD 24,774,175
taille d’un arbre 122
taux d’occupation 244
terre.nai 147, 248
téte de liste 38
toString 117, 200, 205
tournoi 186
Tours de Hanoi 11
tri bulle 205
trouverNoeud 119, 251

type

abstrait de données 24, 74,75

Arbre 110

DD 171

DG 175

GD 171

GG 168
Graphe 264
GrapheMat 281
Liste 49

Liste 39
ListeS 80
Monome 56
Objet 49
Personne 51
Polynome 56
Table 200
TableHC 228
TableHCC 241

U

unité de compilation 25

Y

variable de compilation 70, 274

version
itérative 204
récursive 204
W
Warshall 292



	ALGORITHMES ET STRUCTURES DE DONNÉES GÉNÉRIQUES : COURS ET EXERCICES CORRIGÉS EN LANGAGE C, 2ÈME ÉD.
	Titre
	Copyright
	Table des matières
	Avant-propos
	Chapitre 1. Récursivité, pointeurs, modules
	1.1 RÉCURSIVITÉ DES PROCÉDURES : DÉFINITION
	1.2 EXEMPLES DE FONCTIONS RÉCURSIVES
	1.2.1 Exemple 1 : factorielle
	1.2.2 Exemple 2 : nombres de Fibonacci
	1.2.3 Exemple 3 : boucles récursives
	1.2.4 Exemple 4 : numération
	1.2.5 Exemple 5 : puissance nième d’un nombre
	1.2.6 Exemple 6 : Tours de Hanoi
	1.2.7 Exemple 7 : tracés récursifs de cercles
	1.2.8 Exemple 8 : tracé d’un arbre
	1.2.9 Conclusions sur la récursivité des procédures

	1.3 RÉCURSIVITÉ DES OBJETS
	1.3.1 Rappel sur les structures
	1.3.2 Exemple de déclaration incorrecte
	1.3.3 Structures et pointeurs
	1.3.4 Opérations sur les pointeurs

	1.4 MODULES
	1.4.1 Notion de module et de type abstrait de données (TAD)
	1.4.2 Exemple : module de simulation d’écran graphique
	1.4.2.a Le fichier d’en-tête de l’écran graphique
	1.4.2.b Le module écran graphique
	1.4.2.c Le programme d’application de l’écran graphique
	1.4.2.d Le résultat de l’exécution du test du module écran


	1.5 POINTEURS DE FONCTIONS
	1.6 RÉSUMÉ

	Chapitre 2. Les listes
	2.1 LISTES SIMPLES : DÉFINITION
	2.2 REPRÉSENTATION EN MÉMOIRE DES LISTES
	2.3 MODULE DE GESTION DES LISTES
	2.3.1 Création d’un élément de liste (fonction locale au module sur les listes)
	2.3.2 Ajout d’un objet
	2.3.2.a Ajout en tête de liste
	2.3.2.b Ajout après l’élément précédent (fonction locale au module)
	2.3.2.c Ajout en fin de liste

	2.3.3 Les fonctions de parcours de liste
	2.3.4 Retrait d’un objet
	2.3.4.a Retrait en tête de liste
	2.3.4.b Retrait de l’élément qui suit l’élément précédent (fonction locale)
	2.3.4.c Retrait de l’objet en fin de liste
	2.3.4.d Retrait d’un objet à partir de sa référence

	2.3.5 Destruction de listes
	2.3.6 Recopie de listes
	2.3.7 Insertion dans une liste ordonnée
	2.3.8 Le module de gestion de listes
	2.3.8.a Le fichier d’en-tête des listes simples
	2.3.8.b Le module des listes simples


	2.4 EXEMPLES D’APPLICATION
	2.4.1 Le type Personne
	2.4.2 Liste de personnes
	2.4.3 Les polynômes
	2.4.3.a Le fichier d’en-tête des polynômes
	2.4.3.b Le module des polynômes
	2.4.3.c Le programme principal des polynômes

	2.4.4 Les systèmes experts
	2.4.4.a Introduction
	2.4.4.b Listes de faits et liste de règles

	2.4.5 Les piles
	2.4.5.a Allocation dynamique (utilisation de listes)
	2.4.5.b Le fichier d’en-tête des piles (utilisation de listes)
	2.4.5.c Le module des piles (utilisation de listes)
	2.4.5.d Déclaration des types Entier et Reel pour le test de la pile
	2.4.5.e Utilisation du module de gestion de piles
	2.4.5.f Allocation contiguë (utilisation d’un tableau)

	2.4.6 Les files d’attente (gérée à l’aide d’une liste)
	2.4.6.a Allocation dynamique (utilisation de listes)
	2.4.6.b Allocation contiguë d’une file d’attente (utilisation d’un tableau)


	2.5 AVANTAGES ET INCONVÉNIENTS DES LISTES
	2.6 LE TYPE ABSTRAIT DE DONNÉES (TAD) LISTE
	2.7 LES LISTES CIRCULAIRES
	2.7.1 Le fichier d’en-tête des listes circulaires
	2.7.2 Insertion en tête de liste circulaire
	2.7.3 Insertion en fin de liste circulaire
	2.7.4 Parcours de listes circulaires
	2.7.5 Le module des listes circulaires
	2.7.6 Utilisation du module des listes circulaires

	2.8 LES LISTES SYMÉTRIQUES
	2.8.1 Le fichier d’en-tête des listes symétriques
	2.8.2 Le module des listes symétriques
	2.8.3 Utilisation du module des listes symétriques

	2.9 ALLOCATION CONTIGUË
	2.9.1 Allocation - désallocation en cas d’allocation contiguë
	2.9.1.a Allocation séquentielle avec ramasse-miettes
	2.9.1.b Marqueur par élément (table d’occupation)
	2.9.1.c Éléments libres en liste (allocation contiguë)

	2.9.2 Exemple des polynômes en allocation contiguë avec liste libre
	2.9.3 Exemple de la gestion des commandes en attente
	2.9.3.a Exemples d’opérations envisageables
	2.9.3.b Description des fichiers
	2.9.3.c Explications de l’exemple de la Figure 46
	2.9.3.d Le fichier d’en-tête de la gestion en liste libre du fichier Attente
	2.9.3.e Le module de gestion en liste libre du fichier Attente
	2.9.3.f Le programme de gestion des commandes en attente


	2.10 RÉSUMÉ

	Chapitre 3. Les arbres
	3.1 LES ARBRES N-AIRES
	3.1.1 Définitions
	3.1.2 Exemples d’applications utilisant les arbres
	3.1.3 Représentation en mémoire des arbres n-aires
	3.1.3.a Mémorisation par listes de fils
	3.1.3.b Allocation dynamique
	3.1.3.c Allocation contiguë (tableau ou fichier)


	3.2 LES ARBRES BINAIRES
	3.2.1 Définition d’un arbre binaire
	3.2.2 Transformation d’un arbre n-aire en un arbre binaire
	3.2.3 Mémorisation d’un arbre binaire
	3.2.3.a Arbre généalogique
	3.2.3.b Expression arithmétique

	3.2.4 Parcours d’un arbre binaire
	3.2.4.a Les différentes méthodes de parcours en profondeur d’un arbre
	3.2.4.b Parcours sur l’arbre binaire de l’arbre généalogique
	3.2.4.c Parcours sur l’arbre binaire de l’expression arithmétique
	3.2.4.d Les algorithmes de parcours d’arbre binaire
	3.2.4.e Recherche d’un noeud de l’arbre
	3.2.4.f Parcours en largeur dans un arbre

	3.2.5 Propriétés de l’arbre binaire
	3.2.5.a Taille d’un arbre binaire
	3.2.5.b Feuilles de l’arbre binaire
	3.2.5.c Valeur du plus long identificateur des noeuds de l’arbre
	3.2.5.d Somme des longueurs des identificateurs des noeuds de l’arbre
	3.2.5.e Hauteur d’un arbre binaire, arbre binaire dégénéré

	3.2.6 Duplication, destruction d’un arbre binaire
	3.2.7 Égalité de deux arbres
	3.2.8 Dessin d’un arbre binaire
	3.2.9 Arbre binaire et questions de l’arbre n-aire
	3.2.9.a Feuilles n-aires
	3.2.9.b Descendants n-aires
	3.2.9.c Parcours indenté n-aire
	3.2.9.d Ascendants n-aires
	3.2.9.e Parcours en largeur n-aire
	3.2.9.f Duplication d’un arbre n-aire sur N niveaux
	3.2.9.g Dessin d’un arbre n-aire

	3.2.10 Le module des arbres binaires
	3.2.10.a Le fichier d’en-tête pour les arbres binaires
	3.2.10.b Le corps du module des arbres binaires

	3.2.11 Les arbres de chaînes de caractères
	3.2.11.a Menu de test du module des arbres binaires
	3.2.11.b Exemples de créations et d’interrogations d’arbres binaires

	3.2.12 Arbre binaire et tableau
	3.2.12.a Définitions, déclarations et prototypes de fonctions
	3.2.12.b Le module des arbres en tableaux
	3.2.12.c Exemple de conversion allocation dynamique / allocation en tableau

	3.2.13 Arbre binaire et fichier
	3.2.14 Arbre binaire complet

	3.3 LES ARBRES BINAIRES ORDONNÉS
	3.3.1 Définitions
	3.3.2 Arbres ordonnés : recherche, ajout, retrait
	3.3.2.a Recherche d’un élément dans un arbre binaire ordonné
	3.3.2.b Insertion dans un arbre binaire ordonné
	3.3.2.c Minimum, maximum
	3.3.2.d Suppression d’un élément dans un arbre binaire ordonné
	3.3.2.e Parcours infixé droite gauche (décroissant)

	3.3.3 Menu de test des arbres ordonnés de chaînes de caractères
	3.3.3.a Exemple de consultation des arbres ordonnés


	3.4 LES ARBRES BINAIRES ORDONNÉS ÉQUILIBRÉS
	3.4.1 Définitions
	3.4.2 Ajout dans un arbre ordonné équilibré
	3.4.2.a 1˚ cas : type GG
	3.4.2.b 2˚ cas : type DD (symétrique du cas 1)
	3.4.2.c 3˚ cas : type GD
	3.4.2.d 4˚ cas : type DG (symétrique du cas 3)
	3.4.2.e Insertion dans un arbre binaire équilibré

	3.4.3 Exemple de test pour les arbres équilibrés

	3.5 ARBRES N-AIRES ORDONNÉS ÉQUILIBRÉS : LES B-ARBRES
	3.5.1 Définitions et exemples
	3.5.2 Insertion dans un B-arbre
	3.5.3 Recherche, parcours, destruction
	3.5.3.a Recherche d’un élément : accès direct
	3.5.3.b Parcours des éléments : accès séquentiel
	3.5.3.c Destruction d’un élément


	3.6 RÉSUMÉ

	Chapitre 4. Les tables
	4.1 CAS GÉNÉRAL
	4.1.1 Définition
	4.1.2 Exemples d’utilisation de tables
	4.1.2.a Gestion d’articles
	4.1.2.b Table d’étiquettes dans un compilateur
	4.1.2.c Dictionnaire
	4.1.2.d Remarques

	4.1.3 Création, initialisation de tables
	4.1.4 Accès séquentiel
	4.1.4.a Accès séquentiel standard
	4.1.4.b Accès séquentiel avec sentinelle
	4.1.4.c Évaluation de l’accès séquentiel

	4.1.5 Accès dichotomique (recherche binaire)
	4.1.5.a Principe
	4.1.5.b Dichotomie : version récursive
	4.1.5.c Dichotomie : version itérative
	4.1.5.d Tri de la table
	4.1.5.e Listage de la table

	4.1.6 Le module des tables
	4.1.6.a Le type Table
	4.1.6.b Menu de test des tables

	4.1.7 Exemples d’application des tables
	4.1.7.a Table de noms de personnes
	4.1.7.b Table de noms de polynômes


	4.2 VARIANTES DES TABLES
	4.2.1 Rangement partitionné ou indexé
	4.2.2 Adressage calculé

	4.3 ADRESSAGE DISPERSÉ, HACHAGE, HASH-CODING
	4.3.1 Définition du hachage
	4.3.2 Exemples de fonction de hachage
	4.3.2.a Somme des rangs alphabétiques des lettres
	4.3.2.b Addition des représentations binaires
	4.3.2.c Méthode de la division
	4.3.2.d Changement de base

	4.3.3 Analyse de la répartition des valeurs générées par les fonctions de hachage
	4.3.4 Résolution des collisions
	4.3.5 Résolution à l’aide d’une nouvelle fonction
	4.3.5.a Résolution r(i) = i
	4.3.5.b Résolution r(i) = K * i
	4.3.5.c Résolution quadratique r(i) = i * i (N : nombre premier)
	4.3.5.d Résolution pseudo-aléatoire (N : puissance de 2)

	4.3.6 Le fichier d’en-tête des fonctions de hachage et de résolution
	4.3.7 Le corps du module sur les fonctions de hahscode et de résolution
	4.3.8 Le type TableHC (table de hachage)
	4.3.8.a Création d’une table de hachage
	4.3.8.b Ajout d’un élément dans une table de hachage
	4.3.8.c Recherche d’un élément dans une table de hachage
	4.3.8.d Listage de la table
	4.3.8.e Nombre moyen d’accès
	4.3.8.f Fonction de contrôle des emplacements
	4.3.8.g Ordre de la résolution

	4.3.9 Exemple simple de mise en oeuvre du module sur les tables de hash-code
	4.3.10 Programme de test des fonctions de hachage
	4.3.11 Résolution par chaînage avec zone de débordement
	4.3.11.a Avec une table séparée pour les synonymes

	4.3.12 Résolution par chaînage avec une seule table
	4.3.12.a Expulsion de l’intrus
	4.3.12.b Cohabitation avec l’intrus
	4.3.12.c Le type TableHCC (table de hachage avec chaînage)
	4.3.12.d Exemples de mise en oeuvre du hachage avec chaînage

	4.3.13 Retrait d’un élément
	4.3.14 Parcours séquentiel
	4.3.15 Évaluation du hachage
	4.3.16 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale)
	4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier)

	4.4 RÉSUMÉ

	Chapitre 5. Les graphes
	5.1 DÉFINITIONS
	5.1.1 Graphes non orientés (ou symétriques)
	5.1.2 Graphes orientés
	5.1.3 Graphes orientés ou non orientés

	5.2 EXEMPLES DE GRAPHES
	5.3 MÉMORISATION DES GRAPHES
	5.3.1 Mémorisation sous forme de matrices d’adjacence
	5.3.2 Mémorisation en table de listes d’adjacence
	5.3.3 Liste des sommets et listes d’adjacence : allocation dynamique

	5.4 PARCOURS D’UN GRAPHE
	5.4.1 Principe du parcours en profondeur d’un graphe
	5.4.2 Principe du parcours en largeur d’un graphe

	5.5 MÉMORISATION (TABLE DE LISTES D’ADJACENCE)
	5.5.1 Le type Graphe
	5.5.2 Le fichier d’en-tête des graphes
	5.5.3 Création et destruction d’un graphe
	5.5.4 Insertion d’un sommet ou d’un arc dans un graphe
	5.5.5 Écriture d’un graphe (liste d’adjacence)
	5.5.6 Parcours en profondeur (listes d’adjacence)
	5.5.7 Parcours en largeur (listes d’adjacence)
	5.5.8 Plus court chemin en partant d’un sommet
	5.5.9 Création d’un graphe à partir d’un fichier
	5.5.10 Menu de test des graphes (listes d’adjacence et matrices)

	5.6 MÉMORISATION SOUS FORME DE MATRICES
	5.6.1 Le fichier d’en-tête du module des graphes (matrices)
	5.6.2 Création et destruction d’un graphe (matrices)
	5.6.3 Insertion d’un sommet ou d’un arc dans un graphe (matrices)
	5.6.4 Lecture d’un graphe (à partir d’un fichier)
	5.6.5 Écriture d’un graphe
	5.6.6 Parcours en profondeur (matrices)
	5.6.7 Parcours en largeur (matrices)
	5.6.8 Plus courts chemins entre tous les sommets (Floyd)
	5.6.9 Algorithme de Floyd
	5.6.10 Algorithme de calcul de la fermeture transitive
	5.6.11 Menu de test des graphes (matrices)

	5.7 RÉSUMÉ
	5.8 CONCLUSION GÉNÉRALE

	Corrigés des exercices
	Exercice 1 : boucle sous forme récursive (page 8)
	Exercice 2 : Hanoi : calcul du nombre de secondes ou d’années pour déplacer n disques (page 15)
	Exercice 3 : dessin d’un arbre (page 19)
	Exercice 4 : spirale rectangulaire (récursive) (page 30)
	Exercice 5 : module de gestion de piles d’entiers (allocation contiguë) (page 30)
	Exercice 6 : module de gestion de nombres complexes (page 32)
	Exercice 7 : polynômes d’une variable réelle (lecture, addition) (page 60)
	Exercice 8 : systèmes experts : les algorithmes de déduction (page 66)
	Exercice 9 : le type pile (allocation contiguë) (page 72)
	Exercice 10 : files d’attente en allocation dynamique (page 73)
	Exercice 11 : files d’attente en allocation contiguë (page 74)
	Exercice 12 : commande en attente (page 97)
	Exercice 13 : les cartes à jouer (page 98)
	Exercice 14 : polynômes complexes (listes ordonnées) (page 99)
	Exercice 15 : parcours d’arbres droite-gauche (page 116)
	Exercice 16 : dessin n-aire d’un arbre (page 136)
	Exercice 17 : le corps humain (page 142)
	Exercice 18 : facteur d’équilibre (page 176)
	Exercice 19 : insertion de valeurs dans un arbre équilibré (page 181)
	Exercice 20 : gestion d’un tournoi à l’aide d’une liste d’arbres (page 186)
	Exercice 21 : mémorisation d’un dessin sous forme d’un arbre binaire (page 189)
	Exercice 22 : références croisées (arbre ordonné) (page 192)
	Exercice 23 : arbre de questions (page 194)
	Exercice 24 : menu pour une table de hachage (page 237)
	Exercice 25 : hachage avec chaînage dans une seule table (page 244)
	Exercice 26 : hachage sur l’arbre de la Terre (page 252)
	Exercice 27 : table des étudiants gérée par hachage avec chaînage (page 252)
	Exercice 28 : fermeture transitive par somme de produits de matrices (page 293)

	Bibliographie
	Index



