

ALGORITHMES
ET STRUCTURES DE

DONNÉES GÉNÉRIQUES

Cours et exercices corrigés
en langage C

Michel Divay

Professeur à l’université Rennes 1

2

e

 édition

000Lim Divay Page I Lundi, 19. janvier 2004 10:56 10

Illustration de couverture :

Lionel Auvergne

© Dunod, Paris, 1999, 2004

ISBN 2 10 007450 4

Ce pictogramme mérite une explication.
Son objet est d’alerter le lecteur sur
la menace que représente pour l’avenir
de l’écrit, particulièrement dans
le domaine de l’édition tech-
nique et universitaire, le dévelop-
pement massif du photo-
copillage.

Le Code de la propriété
intellectuelle du 1er juillet 1992
interdit en effet expressément la
photocopie à usage collectif
sans autorisation des ayants droit. Or,
cette pratique s’est généralisée dans les

établissements d’enseignement supérieur,
provoquant une baisse brutale des achats
de livres et de revues, au point que la

possibilité même pour les auteurs
de créer des œuvres nouvelles et
de les faire éditer correctement
est aujourd’hui menacée.

Nous rappelons donc que
toute reproduction, partielle ou
totale, de la présente publication
est interdite sans autorisation du
Centre français d’exploitation du

droit de copie (CFC, 20 rue des Grands-
Augustins, 75006 Paris).

Toute repr�sentation ou reproduction int�grale ou partielle faite sans le
consentement de lÕauteur ou de ses ayants droit ou ayants cause est illicite
selon le Code de la propri�t� intellectuelle (Art L 122-4) et constitue une
contrefa�on r�prim�e par le Code p�nal. ¥ Seules sont autoris�es (Art L 122-5)
les copies ou reproductions strictement r�serv�es � lÕusage priv� du copiste et
non destin�es � une utilisation collective, ainsi que les analyses et courtes
citations justifi�es par le caract�re critique, p�dagogique ou dÕinformation de
lÕÏuvre � laquelle elles sont incorpor�es, sous r�serve, toutefois, du respect des
dispositions des articles L 122-10 � L 122-12 du m�me Code, relatives � la

reproduction par reprographie.

000Lim Divay Page II Lundi, 19. janvier 2004 10:56 10

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Table des matières

AVANT-PROPOS

IX

CHAPITRE 1 •

RÉCURSIVITÉ, POINTEURS, MODULES

1

1.1 Récursivité des procédures : définition 1

1.2 Exemples de fonctions récursives 2

1.2.1 Exemple 1 : factorielle 2
1.2.2 Exemple 2 : nombres de Fibonacci 4
1.2.3 Exemple 3 : boucles récursives 7
1.2.4 Exemple 4 : numération 8
1.2.5 Exemple 5 : puissance nième d’un nombre 10
1.2.6 Exemple 6 : Tours de Hanoi 11
1.2.7 Exemple 7 : tracés récursifs de cercles 15
1.2.8 Exemple 8 : tracé d’un arbre 17
1.2.9 Conclusions sur la récursivité des procédures 19

1.3 Récursivité des objets 19

1.3.1 Rappel sur les structures 19
1.3.2 Exemple de déclaration incorrecte 20
1.3.3 Structures et pointeurs 20
1.3.4 Opérations sur les pointeurs 23

1.4 Modules 24

1.4.1 Notion de module et de type abstrait de données (TAD) 24
1.4.2 Exemple : module de simulation d’écran graphique 25

1.5 Pointeurs de fonctions 33

1.6 Résumé 34

algorTDM.fm Page III Samedi, 17. janvier 2004 10:33 10

IV

Table des matières

CHAPITRE 2 •

LES LISTES

36

2.1 Listes simples : définition 36

2.2 Représentation en mémoire des listes 37

2.3 Module de gestion des listes 38

2.3.1 Création d’un élément de liste (fonction locale au module sur les listes) 41
2.3.2 Ajout d’un objet 41
2.3.3 Les fonctions de parcours de liste 43
2.3.4 Retrait d’un objet 44
2.3.5 Destruction de listes 47
2.3.6 Recopie de listes 47
2.3.7 Insertion dans une liste ordonnée 47
2.3.8 Le module de gestion de listes 48

2.4 Exemples d’application 51

2.4.1 Le type Personne 51
2.4.2 Liste de personnes 52
2.4.3 Les polynômes 55
2.4.4 Les systèmes experts 61
2.4.5 Les piles 66
2.4.6 Les files d’attente (gérée à l’aide d’une liste) 72

2.5 Avantages et inconvénients des listes 75

2.6 Le type abstrait de données (TAD) liste 75

2.7 Les listes circulaires 75

2.7.1 Le fichier d’en-tête des listes circulaires 76
2.7.2 Insertion en tête de liste circulaire 77
2.7.3 Insertion en fin de liste circulaire 78
2.7.4 Parcours de listes circulaires 78
2.7.5 Le module des listes circulaires 79
2.7.6 Utilisation du module des listes circulaires 79

2.8 Les listes symétriques 80

2.8.1 Le fichier d’en-tête des listes symétriques 80
2.8.2 Le module des listes symétriques 81
2.8.3 Utilisation du module des listes symétriques 84

2.9 Allocation contiguë 86

2.9.1 Allocation - désallocation en cas d’allocation contiguë 86
2.9.2 Exemple des polynômes en allocation contiguë avec liste libre 87
2.9.3 Exemple de la gestion des commandes en attente 89

2.10 Résumé 100

algorTDM.fm Page IV Samedi, 17. janvier 2004 10:33 10

Table des matières

V

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

CHAPITRE 3 •

LES ARBRES

102

3.1 Les arbres n-aires 102

3.1.1 Définitions 102
3.1.2 Exemples d’applications utilisant les arbres 103
3.1.3 Représentation en mémoire des arbres n-aires 106

3.2 Les arbres binaires 108

3.2.1 Définition d’un arbre binaire 108
3.2.2 Transformation d’un arbre n-aire en un arbre binaire 108
3.2.3 Mémorisation d’un arbre binaire 109
3.2.4 Parcours d’un arbre binaire 114
3.2.5 Propriétés de l’arbre binaire 122
3.2.6 Duplication, destruction d’un arbre binaire 125
3.2.7 Égalité de deux arbres 127
3.2.8 Dessin d’un arbre binaire 127
3.2.9 Arbre binaire et questions de l’arbre n-aire 130
3.2.10 Le module des arbres binaires 137
3.2.11 Les arbres de chaînes de caractères 140
3.2.12 Arbre binaire et tableau 149
3.2.13 Arbre binaire et fichier 153
3.2.14 Arbre binaire complet 154

3.3 Les arbres binaires ordonnés 156

3.3.1 Définitions 156
3.3.2 Arbres ordonnés : recherche, ajout, retrait 157
3.3.3 Menu de test des arbres ordonnés de chaînes de caractères 163

3.4 Les arbres binaires ordonnés équilibrés 167

3.4.1 Définitions 167
3.4.2 Ajout dans un arbre ordonné équilibré 168
3.4.3 Exemple de test pour les arbres équilibrés 179

3.5 Arbres n-aires ordonnés équilibrés : les b-arbres 182

3.5.1 Définitions et exemples 182
3.5.2 Insertion dans un B-arbre 183
3.5.3 Recherche, parcours, destruction 185

3.6 Résumé 196

CHAPITRE 4 •

LES TABLES

197

4.1 Cas général 197

4.1.1 Définition 197
4.1.2 Exemples d’utilisation de tables 198
4.1.3 Création, initialisation de tables 200
4.1.4 Accès séquentiel 201
4.1.5 Accès dichotomique (recherche binaire) 203
4.1.6 Le module des tables 206
4.1.7 Exemples d’application des tables 210

algorTDM.fm Page V Samedi, 17. janvier 2004 10:33 10

VI

Table des matières

4.2 Variantes des tables 213

4.2.1 Rangement partitionné ou indexé 213
4.2.2 Adressage calculé 215

4.3 Adressage dispersé, hachage, hash-coding 217

4.3.1 Définition du hachage 217
4.3.2 Exemples de fonction de hachage 218
4.3.3 Analyse de la répartition des valeurs générées par les fonctions de hachage 220
4.3.4 Résolution des collisions 221
4.3.5 Résolution à l’aide d’une nouvelle fonction 222
4.3.6 Le fichier d’en-tête des fonctions de hachage et de résolution 227
4.3.7 Le corps du module sur les fonctions de hahscode et de résolution 227
4.3.8 Le type TableHC (table de hachage) 228
4.3.9 Exemple simple de mise en œuvre du module sur les tables de hash-code 233
4.3.10 Programme de test des fonctions de hachage 235
4.3.11 Résolution par chaînage avec zone de débordement 237
4.3.12 Résolution par chaînage avec une seule table 238
4.3.13 Retrait d’un élément 244
4.3.14 Parcours séquentiel 244
4.3.15 Évaluation du hachage 244
4.3.16 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale) 245
4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier) 249

4.4 Résumé 253

CHAPITRE 5 •

LES GRAPHES

254

5.1 Définitions 254

5.1.1 Graphes non orientés (ou symétriques) 254
5.1.2 Graphes orientés 255
5.1.3 Graphes orientés ou non orientés 256

5.2 Exemples de graphes 257

5.3 Mémorisation des graphes 259

5.3.1 Mémorisation sous forme de matrices d’adjacence 259
5.3.2 Mémorisation en table de listes d’adjacence 260
5.3.3 Liste des sommets et listes d’adjacence : allocation dynamique 260

5.4 Parcours d’un graphe 261

5.4.1 Principe du parcours en profondeur d’un graphe 262
5.4.2 Principe du parcours en largeur d’un graphe 262

5.5 Mémorisation 263

5.5.1 Le type Graphe 264
5.5.2 Le fichier d’en-tête des graphes 264
5.5.3 Création et destruction d’un graphe 265
5.5.4 Insertion d’un sommet ou d’un arc dans un graphe 267
5.5.5 Écriture d’un graphe (listes d’adjacence) 267
5.5.6 Parcours en profondeur (listes d’adjacence) 268
5.5.7 Parcours en largeur (listes d’adjacence) 268

algorTDM.fm Page VI Samedi, 17. janvier 2004 10:33 10

Table des matières

VII

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

5.5.8 Plus court chemin en partant d’un sommet 269
5.5.9 Création d’un graphe à partir d’un fichier 274
5.5.10 Menu de test des graphes (listes d’adjacence et matrices) 276

5.6 Mémorisation sous forme de matrices 281

5.6.1 Le fichier d’en-tête du module des graphes (matrices) 281
5.6.2 Création et destruction d’un graphe (matrices) 282
5.6.3 Insertion d’un sommet ou d’un arc dans un graphe (matrices) 283
5.6.4 Lecture d’un graphe (à partir d’un fichier) 284
5.6.5 Écriture d’un graphe 284
5.6.6 Parcours en profondeur (matrices) 285
5.6.7 Parcours en largeur (matrices) 285
5.6.8 Plus courts chemins entre tous les sommets (Floyd) 286
5.6.9 Algorithme de Floyd 288
5.6.10 Algorithme de calcul de la fermeture transitive 290
5.6.11 Menu de test des graphes (matrices) 293

5.7 Résumé 293

5.8 Conclusion générale 294

CORRIGÉS DES EXERCICES

295

BIBLIOGRAPHIE

337

INDEX

339

algorTDM.fm Page VII Samedi, 17. janvier 2004 10:33 10

algorTDM.fm Page VIII Samedi, 17. janvier 2004 10:33 10

Avant-propos

Ce livre suppose acquis les concepts de base de la programmation tels que les
notions de constantes, de types, de variables, de tableaux, de structures, de fichiers et
de découpage en fonctions d’un programme. Il présente des notions plus complexes
très utilisées en conception de programmes performants sur ordinateur.

Le chapitre 1 introduit la notion de récursivité des procédures et de récursivité des
données conduisant à la notion d’allocation dynamique et de pointeurs. Il introduit
ensuite la notion de découpage d’une application en modules communiquant grâce à
des interfaces basées sur des appels de fonction. Le module devient un nouveau type
de données : l’utilisateur du module n’accède pas directement aux données du
module qui sont masquées et internes au module. On parle alors d’encapsulation des
données qui sont invisibles de l’extérieur du module. Le type ainsi défini est un type
abstrait de données (TAD) pour l’utilisateur qui communique uniquement par un jeu
de fonctions de l’interface du module. Cette notion est constamment mise en appli-
cation dans les programmes de ce livre.

Le chapitre 2 présente la notion de listes, très utilisée en informatique dès lors que
l’information à gérer est sujette à ajouts ou retraits en cours de traitement. Un module
est défini avec des opérations de base sur les listes indépendantes des applications. Des
exemples de mise en œuvre sont présentés, ainsi que des variantes des listes (circu-
laires, symétriques) et des mémorisations en mémoire centrale ou secondaire (fichiers).

Le chapitre 3 définit la notion d’arbres (informations arborescentes). La plupart
des algorithmes utilisent la récursivité qui s’impose pleinement pour le traitement

01Avant-propos Page IX Samedi, 17. janvier 2004 10:33 10

X 1

•

Avant-propos

des arbres. Les algorithmes sont concis, naturels, faciles à concevoir et à
comprendre dès lors que le concept de récursivité est maîtrisé. De nombreux exem-
ples concrets sont donnés dans ce but. La fin du chapitre présente les arbres
ordonnés (les éléments sont placés dans l’arbre suivant un critère d’ordre) pouvant
servir d’index pour retrouver rapidement des informations à partir d’une clé. En cas
d’ajouts ou de retraits, on peut être amené à réorganiser la structure d’un arbre (le
rééquilibrer) pour que les performances ne se dégradent pas trop.

Le chapitre 4 traite de la notion de tables : retrouver une information à partir
d’une clé l’identifiant de manière unique. Plusieurs possibilités sont passées en
revue en précisant leurs avantages et leurs inconvénients. Plusieurs techniques de
hachage (hash-coding) sont analysées sur des exemples simples.

Le chapitre 5 est consacré à la notion de graphes et à leurs mémorisations sous
forme de matrices ou de listes d’adjacence. Il donne plusieurs algorithmes permet-
tant de parcourir un graphe ou de trouver le plus court chemin pour aller d’un point
à un autre. Là également récursivité et allocation dynamique sont nécessaires.

Les algorithmes présentés sont écrits en C et souvent de manière complète, ce qui
permet au lecteur de tester personnellement les programmes et de

jouer avec

 pour en
comprendre toutes les finesses. Jouer avec le programme signifie être en mesure de le
comprendre, de faire des sorties intermédiaires pour vérifier ou expliciter certains
points et éventuellement être en mesure de l’améliorer en fonction de l’application
envisagée. Les programmes présentés font un minimum de contrôles de validité de
façon à bien mettre en évidence l’essentiel des algorithmes. Les algorithmes pourraient
facilement être réécrits dans tout autre langage autorisant la modularité, la récursivité et
l’allocation dynamique. Le codage est secondaire ; par contre la définition des fonc-
tions de base pour chaque type de structures de données est fondamentale. Chaque
structure de données se traduit par la création d’un nouveau type (Liste, Nœud, Table,
Graphe) et de son interface sous la forme d’un jeu de fonctions d’initialisation, d’ajout,
de retrait, de parcours de la structure ou de fonctions plus spécifiques de la structure de
données. Des menus de tests et de visualisation permettent de voir évoluer la structure.
Ils donnent de plus des exemples de mise en œuvre des nouveaux types créés.

Les programmes sont

génériques

 dans la mesure où chaque structure de données
(liste, arbre, table, etc.) peut gérer (sans modification) des objets de types différents
(une liste de personnes, une liste de cartes, etc.).

L’ensemble des notions et des programmes présentés constitue une boîte à outils
que le concepteur de logiciels peut utiliser ou adapter pour résoudre ses problèmes.

Certains des programmes présentés dans ce livre peuvent être consultés à
l’adresse suivante : www.iut-lannion.fr/MD/MDLIVRES/LivreSDD.

Vous pouvez adresser vos remarques à l’adresse électronique suivante :

Michel.Divay@univ-rennes1.fr

D’avance merci.

Michel Divay

01Avant-propos Page X Samedi, 17. janvier 2004 10:33 10

http://www.iut-lannion.fr/MD/MDLIVRES/LivreSDD

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

C

hapitre

1

Récursivité, pointeurs, modules

Ce premier chapitre présente la notion de récursivité, notion très utilisée en
programmation, et qui permet l’expression d’algorithmes concis, faciles à écrire et à
comprendre. La récursivité peut toujours être remplacée par son équivalent sous
forme d’itérations, mais au détriment d’algorithmes plus complexes surtout lorsque
les structures de données à traiter sont elles-mêmes de nature récursive. La première
partie de ce chapitre présente la récursivité des procédures sur des exemples simples.
La seconde partie présente des structures de données récursives et introduit la notion
d’allocation dynamique et de pointeurs. La troisième partie présente la notion de
découpage d’application en modules.

1.1 RÉCURSIVITÉ DES PROCÉDURES : DÉFINITION

La récursivité est une méthode de description d’algorithmes qui permet à une procé-
dure de s’appeler elle-même (directement ou indirectement). Une notion est récur-
sive si elle se contient elle-même en partie, ou si elle est partiellement définie à partir
d’elle-même.

L’expression d’algorithmes sous forme récursive permet des descriptions
concises et naturelles. Le principe est d’utiliser, pour décrire l’algorithme sur une
donnée

D,

 l’algorithme lui-même appliqué à un ou plusieurs sous-ensembles de

D,

jusqu’à ce que le traitement puisse s’effectuer sans nouvelle décomposition. Dans
une procédure récursive, il y a deux notions à retenir :

• la procédure s’appelle elle-même : on recommence avec de nouvelles données.

• il y a un test de fin : dans ce cas, il n’y a pas d’appel récursif. Il est souvent préfé-
rable d’indiquer le test de fin des appels récursifs en début de procédure.

02Chap_01 Page 1 Samedi, 17. janvier 2004 10:36 10

2 1

•

Récursivité, pointeurs, modules

void

p

 (...) {

 if (fin) {
 ... pas d'appel récursif (partie "alors")
 } else {
 ...

p

 (...); la procédure p s'appelle elle-même
 ... une ou plusieurs fois (partie "sinon")
 }
}

Ainsi, si on dispose des fonctions

void avancer (int lg) ;

 qui trace un segment de
longueur lg sur l’écran dans la direction de départ, et de la fonction

void
tourner (int d) ;

 qui change la direction de départ d’un angle de d degrés, on peut
facilement tracer un carré sur l’écran en écrivant la fonction récursive suivante :

void

carre

 (int lg) {
 avancer (lg);
 tourner (90);

carre

 (lg); // recommencer
}

Cependant, la fonction ne comporte pas de test d’arrêt. On recommence toujours
la même fonction

carre()

. Le programme boucle. Cet exemple montre la nécessité
de la condition d’arrêt des appels récursifs.

1.2 EXEMPLES DE FONCTIONS RÉCURSIVES

1.2.1 Exemple 1 : factorielle

La factorielle d’un nombre n donné est le produit des nombres entiers inférieurs ou
égaux à ce nombre n. Cette définition peut se noter de différentes façons.

Une première façon consiste à donner des exemples et à essayer de généraliser.
0! = 1
1! = 1
2! = 1 x 2
3! = 1 x 2 x3

n! = 1 si n = 0
n! = 1 * 2 * ... * (n-1) * n si n > 0

Une deuxième notation plus rigoureuse fait appel à la récurrence.
n! = 1 si n = 0
n! = n * (n-1)! si n > 0

n! se définit en fonction d’elle-même (n-1)!

02Chap_01 Page 2 Samedi, 17. janvier 2004 10:36 10

1.2 •

Exemples de fonctions récursives

3

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

La fonction

factorielle (n)

 permet de calculer la factorielle de n. Cette fonction est
récursive et se rappelle une fois en factorielle (n-1). Il y a fin des appels récursifs
lorsque n vaut 0.

/* factorielle.cpp
 Calcul récursif de la factorielle d'un entier n >= 0 */

#include <stdio.h> // printf, scanf

// version 1 pour explication
long

factorielle

 (int n) {
 if (n == 0) {
 return 1;
 } else {
 long y =

factorielle

 (n-1);
 return n*y;
 }
}

void

main

 () {
 printf ("Entier dont on veut la factorielle (n<=14) ? ");
 int n; scanf ("%d", &n);

 printf ("Factorielle %d est : %ld\n", n,

factorielle

 (n));
}

Avec 16 bits, n doit être compris entre 0 et 7 0! = 1, 7! = 5 040
Avec 32 bits, n doit être compris entre 0 et 14 14! = 1 278 945 280

Figure 1

Appels récursifs pour factorielle (3).

Pour calculer factorielle(3) sur la Figure 1, il faut calculer factorielle(2). Pour
calculer factorielle(2), il faut calculer factorielle(1). Pour calculer factorielle(1), il
faut connaître factorielle(0). factorielle(0) vaut 1. On revient en arrière terminer la
fonction au niveau 3, puis 2, puis 1.

Il y a autant d’occurrences des variables n et y que de niveaux de récursivité. Il y
a création, à chaque niveau, d’un nouvel environnement comprenant les paramètres
et les variables locales de la fonction. Cette gestion des variables est invisible à
l’utilisateur et effectuée automatiquement par le système si le langage admet la
récursivité.

1 2 3 4

factorielle (3); n = 3;
y = factorielle (2);

return 3*2;

n = 2;
y = factorielle (1);

return 2*1;

n = 1;
y = factorielle (0);

return 1*1;

n = 0;
return 1;

02Chap_01 Page 3 Samedi, 17. janvier 2004 10:36 10

4 1

•

Récursivité, pointeurs, modules

En fait y est ajouté dans la fonction

factorielle()

 pour mieux expliquer la récursi-
vité. Les deux instructions long y = factorielle(n-1) ; et return n*y ; peuvent être
remplacées de manière équivalente et plus concise par return n*factorielle(n-1).

// calcul récursif de factorielle
// 32 bits : limite = 14!
// version finale
long

factorielle

 (int n) {
 if (n == 0) {
 return 1;
 } else {
 return n*

factorielle

 (n-1);
 }
}

La procédure itérative donnée ci-dessous est plus performante pour le calcul de
factorielle (mais moins naturelle). Il n’y a ni appels en cascade de la fonction, ni
environnements multiples des variables. Sur cet exemple, la récursivité ne s’impose
pas, et les deux versions (récursive et itérative) ont leurs avantages et leurs inconvé-
nients.

/* factorielleIter.cpp
 Calcul itératif de la factorielle d'un entier n >= 0 */

#include <stdio.h>

long

factorielleIter

 (int n) {
 long f = 1;
 for (int i=1; i<=n; i++) f = f * i;
 return f;
}

void

main

 () {
 printf ("Entier dont on veut la factorielle ? ");
 int n; scanf ("%d", &n);
 printf ("Factorielle %d est : %ld\n", n,

factorielleIter

 (n));
}

1.2.2 Exemple 2 : nombres de Fibonacci

La suite des nombres de Fibonacci se définit comme suit :
f

o

 = 0
f

1

 = 1
f

n

 = f

n-1 +

f

n-2

si n > 1

Figure 2

Valeurs de f

n

 pour n de 0 à 8.

n 0 1 2 3 4 5 6 7 8

f

n

0 1 1 2 3 5 8 13 21

02Chap_01 Page 4 Samedi, 17. janvier 2004 10:36 10

1.2 •

Exemples de fonctions récursives

5

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

On peut formuler cette suite sous forme de fonction (n >= 0) :
fibonacci (n) = n si n <= 1
fibonacci (n) = fibonacci (n-1) + fibonacci (n-2) si n > 1

Exemples de calculs
fibonacci (10) = 55
fibonacci (20) = 6 765
fibonacci (30) = 83 204

Le programme C récursif correspondant est donné ci-dessous.

/* fibonacci.cpp
 calcul de fibonacci d'un entier n >= 0 */

#include <stdio.h>

// version 1 pour explication
long

fibonacci

 (int n) {
 if (n <= 1) {
 return n;
 } else {
 long x =

fibonacci

 (n-1);
 long y =

fibonacci

 (n-2);
 return x + y;
 }
}

void

main

 () {
 printf ("Fibonacci de n ? ");
 int n; scanf ("%d", &n);
 printf ("Fibonacci de %d est %ld\n", n,

fibonacci

 (n));
}

Une fonction récursive peut s’appeler elle-même plusieurs fois avec des paramè-
tres différents. La fonction

fibonacci (n)

 s’appelle récursivement 2 fois en fibonacci
(n-1) et fibonacci (n-2).

Figure 3

Appels récursifs pour fibonacci (3).

1 2 3

fibonacci (3); n = 3;
x = fibonacci (2);

y = fibonacci (1);

return 1+1;

n = 2;
x = fibonacci (1);

y = fibonacci (0);

return 1+0;

n = 1;
return 1;

n = 1;
return 1;

n = 0;
return 0;

02Chap_01 Page 5 Samedi, 17. janvier 2004 10:36 10

6 1

•

Récursivité, pointeurs, modules

Pour calculer fibonacci(3) sur la Figure 3, il faut calculer fibonacci(2) et fibo-
nacci(1). Pour calculer fibonacci(2), il faut calculer fibonacci(1) et fibonacci(0).
L’exécution sur la Figure 3 se déroule ligne par ligne, et pour chaque ligne, de la
gauche vers la droite.

En fait x et y sont inutiles et ajoutés uniquement pour mieux expliquer la récursi-
vité. La version suivante de

fibonacci()

 est équivalente et plus concise.

// version définitive
long

fibonacci

 (int n) {
 if (n <= 1) {
 return n;
 } else {
 return

fibonacci

 (n-1) +

fibonacci

 (n-2);
 }
}

La fonction récursive est inefficace : les calculs sont répétés un grand nombre de
fois. L’appel de la fonction est abrégé en

fib()

 sur la Figure 4.

Figure 4

Appels récursifs pour fibonacci(4) (abrégé en fib(4)).

Pour calculer fib(4) sur la Figure 4, il faut calculer fib(3) et fib(2). Pour calculer
fib(3), il faut calculer fib(2) et fib(1), etc.

fib(2) est évalué 2 fois,
fib(1) est évalué 3 fois,
fib(0) est évalué 2 fois.

Il est facile de trouver un algorithme

itératif

 plus performant, mais moins naturel
à écrire.

/* fibonacciIter.cpp
 calcul de fibonacci itératif d'un entier n >= 0 */

#include <stdio.h>

// f(0) = 0; f(1) = 1; f(n) = f(n-1) + f (n-2);
long

fibonacciIter

 (int n) {
 long fnm2 = 0; // fibonacci de n moins 2
 long fnm1 = 1; // fibonacci de n moins 1

+
+

+

+
3

fib (4)

fib (3)

fib (2)

fib (2)
fib (1)

fib (0)

fib (1)

fib (1)

fib (0)

02Chap_01 Page 6 Samedi, 17. janvier 2004 10:36 10

1.2 •

Exemples de fonctions récursives

7

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

 long fn; // fibonacci de n

 if (n <= 1) {
 fn = n;
 } else {
 for (int i=2; i<=n; i++) {
 fn = fnm1 + fnm2;
 fnm2 = fnm1;
 fnm1 = fn;
 }
 }
 return fn;
}

void

main

 () {
 printf ("Fibonacci de n ? ");
 int n; scanf ("%d", &n);

 printf ("Fibonacci de %d est %ld\n", n,

fibonacciIter

 (n));
}

1.2.3 Exemple 3 : boucles récursives

Une boucle peut s’écrire sous forme récursive. Il faut réaliser une action (écriture
par exemple), et recommencer avec une nouvelle valeur de l’indice de boucle. La
boucle peut être croissante ou décroissante suivant que l’action est réalisée avant ou
après l’appel récursif.

/* boucles.cpp boucles sous forme récursive */

#include <stdio.h>

// boucle décroissante de n à 1
void

boucleDecroissante (int n) {
 if (n > 0) {
 printf ("BoucleDecroissante valeur de n : %d\n", n);
 boucleDecroissante (n-1);
 }
}

// boucle croissante de 1 à n
void boucleCroissante (int n) {
 if (n > 0) {
 boucleCroissante (n-1);
 printf ("BoucleCroissante valeur de n : %d\n", n);
 }
}

void main() {
 boucleDecroissante (5);
 printf("\n");
 boucleCroissante (5);
 printf("\n");
}

02Chap_01 Page 7 Samedi, 17. janvier 2004 10:36 10

8 1 • Récursivité, pointeurs, modules

Résultats de l’exécution :

boucleDecroissante valeur de n : 5
boucleDecroissante valeur de n : 4
boucleDecroissante valeur de n : 3
boucleDecroissante valeur de n : 2
boucleDecroissante valeur de n : 1

boucleCroissante valeur de n : 1
boucleCroissante valeur de n : 2
boucleCroissante valeur de n : 3
boucleCroissante valeur de n : 4
boucleCroissante valeur de n : 5

Exercice 1 - Boucle sous forme récursive

Écrire une fonction récursive void boucleCroissante (int d, int f, int i) ; qui
effectue une boucle croissante de l’indice d de départ jusqu’à l’indice f de fin par pas
de progression de i (i : entier positif). Exemple : boucleCroissante (5, 14, 2); effectue
la boucle avec l’indice de départ 5, en progressant de 2 à chaque fois, jusqu’à
l’indice 14, soit : 5, 7, 9, 11 et 13.

1.2.4 Exemple 4 : numération

La fonction récursive long convertirEnBase10 (long n, int base); convertit un
nombre n>=0 écrit en base base (avec des chiffres compris entre 0 et 9) en un
nombre en base 10. Ainsi convertirEnBase10 (100, 2) fournit 4 ; convertirEnBase10
(137, 11) fournit 161 ; convertirEnBase10 (100, 16) fournit 256.

/* convertir.cpp convertir de façon récursive
 un nombre d'une base dans une autre base */

#include <stdio.h>

// la fonction convertit en base 10, n en base "base";
// n est composé des chiffres de 0 à 9; n >= 0, base > 0
long convertirEnBase10 (long n, int base) {
 long quotient = n / 10;
 long reste = n % 10;
 if (quotient == 0) {
 return reste;
 } else {
 return convertirEnBase10 (quotient, base) * base + reste;
 }
}

La Figure 5 indique le déroulement de l’exécution de la fonction convertirEnBase10
() pour la conversion de 137 en base 11. L’exécution se déroule, pour chaque ligne du

02Chap_01 Page 8 Samedi, 17. janvier 2004 10:36 10

1.2 • Exemples de fonctions récursives 9
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

tableau, de haut en bas et de gauche à droite. L’appel de la fonction est abrégé en
convert() sur le schéma.

Figure 5 Appels récursifs pour la conversion de 137 en base 11.

La fonction récursive void convertirEnBaseB (long n, int base) ; convertit un
entier n en base 10, en un nombre en base base.

// convertir en base "base", un nombre n en base 10

// (n>=0; 1<base<=16)
void convertirEnBaseB (long n, int base) {
 static char chiffre[] = "0123456789ABCDEF";
 long quotient = n / base;
 long reste = n % base;
 if (quotient != 0) convertirEnBaseB (quotient, base);
 printf ("%c", chiffre [reste]);
}

void main () {
 long n = 100;
 int base = 2;
 printf ("%ld en base %2d = %ld en base 10\n",
 n, base, convertirEnBase10 (n, base));

 n = 137;
 base = 11;
 printf ("%ld en base %2d = %ld en base 10\n",
 n, base, convertirEnBase10 (n, base));

 n = 100;
 base = 16;
 printf ("%ld en base %2d = %ld en base 10\n",
 n, base, convertirEnBase10 (n, base));

 printf ("\n0 en base 2 : "); convertirEnBaseB (0, 2);
 printf ("\n25 en base 2 : "); convertirEnBaseB (25, 2);
 printf ("\n255 en base 2 : "); convertirEnBaseB (255, 2);
 printf ("\n256 en base 2 : "); convertirEnBaseB (256, 2);
 printf ("\n10 en base 8 : "); convertirEnBaseB (10, 8);
 printf ("\n161 en base 11: "); convertirEnBaseB (161, 11);
 printf ("\n26 en base 16: "); convertirEnBaseB (26, 16);
 printf ("\n255 en base 16: "); convertirEnBaseB (255, 16);
 printf ("\n256 en base 16: "); convertirEnBaseB (256, 16);
 printf ("\n");
}

1 2 3

convert (137, 11); n = 137;
base = 11;
quotient = 13;
reste = 7;
convert (13, 11);

n = 13;
base = 11;
quotient = 1;
reste = 3;
convert (1, 11);

n = 1;
base = 11;
quotient = 0;
reste = 1;
return 1;

1*11+3;
return 14;

14*11+7;
return 161;

02Chap_01 Page 9 Samedi, 17. janvier 2004 10:36 10

10 1 • Récursivité, pointeurs, modules

Résultats du programme précédent :
100 en base 2 = 4 en base 10
137 en base 11 = 161 en base 10
100 en base 16 = 256 en base 10

0 en base 2 : 0
25 en base 2 : 11001
255 en base 2 : 11111111
256 en base 2 : 100000000
10 en base 8 : 12
161 en base 11: 137
26 en base 16: 1A
255 en base 16: FF
256 en base 16: 100

1.2.5 Exemple 5 : puissance nième d’un nombre

Pour calculer un nombre xn (x à une puissance entière n, n>=0), on peut effectuer n
fois la multiplication de x par lui-même, sauf si n vaut zéro auquel cas x0 vaut 1.
Ainsi, pour calculer 34 (x=3 à la puissance n=4), on multiplie 3*3*3*3. Une autre
façon plus efficace de faire est de calculer 32 (3*3), et de multiplier ce résultat par
lui-même 3*3. Ainsi, si n est pair, le calcul de xn se ramène au calcul de xn/2 que l’on
multiplie par lui-même. Si n est impair, prenons le cas de 35 (x=3 à la puissance
n=5), on calcule de même 32 que l’on multiplie par lui-même 32 puis par 3. On
applique récursivement la même méthode pour calculer 32. Le programme qui en
découle est donné ci-dessous. On pourrait ajouter un cas particulier pour n=1, mais
il n’est pas nécessaire du point de vue algorithmique.

/* puissance.cpp puissance nième entière d'un nombre réel */

#include <stdio.h>

// puissance nième d'un nombre réel x (n entier >= 0)
double puissance (double x, int n) {
 double r; // résultat

 if (n == 0) {
 r = 1.0;
 } else {
 r = puissance (x, n/2);
 if (n%2 == 0) {
 r = r*r; // n pair
 } else {
 r = r*r*x; // n impair
 }
 }
 return r;
}

02Chap_01 Page 10 Samedi, 17. janvier 2004 10:36 10

1.2 • Exemples de fonctions récursives 11
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

void main () {
 printf ("3 puissance 4 %.2f\n", puissance (3, 4));
 printf ("3.5 puissance 5 %.2f\n", puissance (3.5, 5));
 printf ("2 puissance 0 %.2f\n", puissance (2, 0));
 printf ("2 puissance 1 %.2f\n", puissance (2, 1));
 printf ("2 puissance 2 %.2f\n", puissance (2, 2));
 printf ("2 puissance 3 %.2f\n", puissance (2, 3));
 printf ("2 puissance 10 %.2f\n", puissance (2, 10));
 printf ("2 puissance 32 %.2f\n", puissance (2, 32));
 printf ("2 puissance 64 %.2f\n", puissance (2, 64));
}

Exemples de résultats :
3 puissance 4 81.00
3.5 puissance 5 525.22
2 puissance 0 1.00
2 puissance 1 2.00
2 puissance 2 4.00
2 puissance 3 8.00
2 puissance 10 1024.00
2 puissance 32 4294967296.00
2 puissance 64 18446744073709551616.00

1.2.6 Exemple 6 : Tours de Hanoi

Les « Tours de Hanoi » est un jeu où il s’agit de déplacer un par un des disques
superposés de diamètre décroissant d’un socle de départ D sur un socle de but B, en
utilisant éventuellement un socle intermédiaire I. Un disque ne peut se trouver au-
dessus d’un disque plus petit que lui.

Le schéma de la Figure 6 montre le raisonnement mettant en évidence le caractère
récursif de l’algorithme à suivre. Pour déplacer un disque de D vers B, le socle I
(intermédiaire) est inutile. Pour déplacer 2 disques, il faut transférer celui qui est au
sommet sur le socle I, déplacer le disque reposant sur le socle D vers B, et ramener
le disque du socle I au sommet de B. Pour déplacer 3 disques, il faut déplacer les 2
disques en sommet de D vers I (en utilisant B comme intermédiaire), ensuite
déplacer le disque reposant sur le socle de D vers B, et ramener les 2 disques mis de
côté sur I, en sommet de B. Pour déplacer 3 disques, on utilise 2 fois la méthode
permettant de déplacer 2 disques sans entrer dans le détail de ces mouvements, ce
qui met en évidence la récursivité.

Avec 1 disque : déplacer (1, D, B, I)

D B I

02Chap_01 Page 11 Samedi, 17. janvier 2004 10:36 10

12 1 • Récursivité, pointeurs, modules

Avec 2 disques : déplacer (2, D, B, I)

D B I

Avec 3 disques : déplacer (3, D, B, I)

D B I
Figure 6 Tours de Hanoi : principe.

D’une manière générale comme l’indique la Figure 7, pour déplacer N disques de
D vers B, il faut déplacer les N-1 disques de D vers I en utilisant B comme intermé-
diaire, déplacer le disque restant de D vers B, ramener les N-1 disques de I vers B en
utilisant D comme intermédiaire.

Figure 7 Tours de Hanoi : algorithme.

Déplacer (2, D, I, B)

D vers B

Déplacer (2, I, B, D)

Déplacer

Déplacer

Déplacer

(N -1, D , I , B)

Déplacer (N , D , B , I) de D vers B

(N -1, I , B , D)

02Chap_01 Page 12 Samedi, 17. janvier 2004 10:36 10

1.2 • Exemples de fonctions récursives 13
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

L’algorithme récursif découle directement du raisonnement suivi ci-dessus.

/* hanoi.cpp tours de Hanoi
 exemple de programme avec deux appels récursifs */

#include <stdio.h>
#include <time.h> // time()

// déplacer n disques du socle depart vers le socle but
// en utilisant le socle intermédiaire.
void deplacer (int n, char depart, char but, char intermediaire) {
 if (n > 0) {
 deplacer (n-1, depart, intermediaire, but);
 printf ("Déplacer un disque de %c --> %c\n", depart, but);
 deplacer (n-1, intermediaire, but, depart);
 }
}

void main () {
 printf ("Nombre de disques à déplacer ? ");
 int n; scanf ("%d", &n);

 //time_t topDebut; time (&topDebut);
 deplacer (n, 'A', 'B', 'C');
 //time_t topFin; time (&topFin);
 //printf ("de %d à %d = %d\n", topDebut, topFin, topFin - topDebut);
}

Si n = 3, le résultat de l’exécution de deplacer() est le suivant :

Déplacer un disque de A--> B
Déplacer un disque de A--> C
Déplacer un disque de B--> C
Déplacer un disque de A--> B
Déplacer un disque de C--> A
Déplacer un disque de C--> B
Déplacer un disque de A--> B

Les déplacements sont schématisés sur la Figure 8. Au départ, on a 3 disques de
taille décroissante 3, 2, 1 sur le socle A. Il faut les transférer sur le socle B, ce qui est
accompli à la dernière ligne du tableau.

Figure 8 Tours de Hanoi : résultats.

Socle A Socle B Socle C

Départ 3 2 1

A → B 3 2 1

A → C 3 1 2

B → C 3 2 1

A → B 3 2 1

C → A 1 3 2

C → B 1 3 2

A → B 3 2 1

02Chap_01 Page 13 Samedi, 17. janvier 2004 10:36 10

14 1 • Récursivité, pointeurs, modules

Le test de la procédure récursive aurait pu être écrit de manière légèrement diffé-
rente mais équivalente, correspondant au raisonnement suivant : s’il n’y a qu’un
disque, le déplacer, sinon déplacer les N-1 du sommet de D vers I, déplacer le disque
restant de D vers B, ramener les N-1 de I vers B.

// déplacer n disques du socle depart vers le socle but
// en utilisant le socle intermédiaire.
void deplacer (int n, char depart, char but, char intermediaire) {
 if (n == 1) {
 printf ("Déplacer un disque de %c --> %c\n", depart, but);
 } else {
 deplacer (n-1, depart, intermediaire, but);
 printf ("Déplacer un disque de %c --> %c\n", depart, but);
 deplacer (n-1, intermediaire, but, depart);
 }
}

On peut évaluer le nombre de déplacements à effectuer pour transférer n disques
de D vers B (départ vers but).

si n = 1,
déplacer le disque de D vers B c1 = 1

sinon

déplacer n-1 disques de D vers I cn-1

déplacer le disque n de D vers B 1
déplacer n-1 disques de I vers B cn-1

cn = 2 * cn-1 + 1

Cette équation peut se développer en :
2n-1 + 2n-2 + ... 2 + 1
qui est la somme 2n –1 des n termes d’une progression géométrique de raison 2.

si n = 1 alors C1 = 21 – 1 = 1
si n = 2 alors C2 = 22 – 1 = 3
si n = 3 alors C3 = 23 – 1 = 7 (voir Figure 8)
si n = 4 alors C4 = 24 – 1 = 15
si n = 64 alors C64 = 264 – 1

Les tests suivants utilisant la fonction time() fournissant le temps écoulé depuis le
1/1/1970 en secondes permettent de calculer le temps d’exécution (la fonction printf
de deplacer() étant mise en commentaire) :

//ordinateur : Pentium III 800 Mhz (Linux Red Hat)
//n 25 26 27 28 29 30 31 32
//durée en secondes 2 5 8 17 35 67 140 270

02Chap_01 Page 14 Samedi, 17. janvier 2004 10:36 10

1.2 • Exemples de fonctions récursives 15
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Avec 64 disques, si un déplacement s’effectue en 60 nanosecondes (valeur
approximative calculée ci-dessus), il faut plus de 30 mille ans pour effectuer tous les
déplacements.

Exercice 2 - Hanoi : calcul du nombre de secondes ou d’années pour déplacer n
disques

Un déplacement se faisant en 60 nanosecondes, faire un programme qui calcule :
• le nombre de secondes nécessaires pour déplacer de 25 à 32 disques.
• le nombre d’années nécessaires pour déplacer 64 disques.
Utiliser la fonction time() fournissant le temps écoulé en secondes depuis le 1/1/

1970 pour chronométrer, sur votre ordinateur, le temps d’exécution pour des valeurs
de n entre 25 et 32.

1.2.7 Exemple 7 : tracés récursifs de cercles

Le premier dessin de la Figure 9 représente un cercle qui contient deux cercles qui
contiennent deux cercles, ainsi de suite, jusqu’à ce que le dessin devenant trop petit,
on décide d’arrêter de dessiner. Le dessin peut être qualifié de récursif. Le dessin se
contient lui-même, et il y a un arrêt à ce dessin récursif. Ceci est également vrai pour
le deuxième dessin contenant trois cercles.

Figure 9 Cercles récursifs.

Le codage des algorithmes de tracé de cercles est très dépendant du système
d’exploitation et du compilateur utilisés. Néanmoins, l’algorithme en lui-même est
général et peut être codé avec le jeu de fonctions de dessin graphique disponibles.
On suppose définie une fonction void cercle (x, y, r) ; qui trace un cercle de rayon r
centré en (x, y).

Pour la fonction deuxCercles(), si le rayon r est supérieur à 10 pixels, on trace un
cercle de rayon r en (x, y), et on recommence une tentative de tracé de 2 cercles de
rayon pr=r/2 en (x+pr, y), et en (x-pr, y). Si r est inférieur ou égal à 10, on ne fait
rien, ce qui arrête les tracés récursifs en cascade.

02Chap_01 Page 15 Samedi, 17. janvier 2004 10:36 10

16 1 • Récursivité, pointeurs, modules

void deuxCercles (int x, int y, int r) {
 if (r > 10) {
 cercle (x, y, r);
 int pr = r / 2; // petit rayon
 deuxCercles (x+pr, y, pr);
 deuxCercles (x-pr, y, pr);
 }
}

Remarque : la circonférence du cercle englobant est 2πr, de même que la
somme des circonférences des 2 cercles de rayon r/2, ou celle des 4 cercles de
rayon r/4.

Pour la fonction troisCercles(), le calcul du rayon des cercles inclus et des coor-
données des centres demandent une petite étude géométrique. Soient r, le rayon du
cercle englobant, pr, le rayon des 3 cercles inclus et h, la distance entre le centre du
grand cercle et le centre d’un des 3 cercles inclus. Les centres des 3 cercles inclus
déterminent un triangle équilatéral. Les hauteurs de ce triangle équilatéral détermi-
nent 6 triangles rectangles d’hypoténuse h et de grand côté pr.

Figure 10 Calcul du rayon des cercles intérieurs.

On a les relations suivantes :
r = h + pr ;
pr = h * sqrt (3)/2 ;

d’où on peut déduire :
pr = (2 * sqrt (3) – 3) * r = 0.4641 * r ;
h = (4 – 2 * sqrt (3)) * r = 0.5359 * r ;

h

pr

02Chap_01 Page 16 Samedi, 17. janvier 2004 10:36 10

1.2 • Exemples de fonctions récursives 17
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Les coordonnées des centres des trois cercles intérieurs s’en déduisent alors faci-
lement.

void troisCercles (int x, int y, int r) {
 if (r > 10) {
 cercle (x, y, r);
 //int pr = int ((2*sqrt(3.0)-3)*r);
 int pr = (int) (0.4641*r);
 int h = r - pr;
 troisCercles (x-h, y, pr);
 troisCercles (x+h/2, y+pr, pr);
 troisCercles (x+h/2, y-pr, pr);
 }
}

1.2.8 Exemple 8 : tracé d’un arbre

Le dessin de l’arbre de la Figure 11 est obtenu par exécution d’un programme
récursif de tracé de segments.

Figure 11 Arbre récursif de tracé de segments.

La fonction void avance (int lg, int x, int y, int angle, int* nx, int* ny) ; trace un trait
de longueur lg en partant du point de coordonnées (x, y), et avec un angle en degrés
angle (voir Figure 12). Le point d’arrivée est un paramètre de sortie (nx, ny). La largeur
du trait lg/10 est obtenue en traçant plusieurs traits les uns à côté des autres. La fonction
void traceTrait (x1, y1, x2, y2) ; trace un trait entre les 2 points (x1, y1) et (x2, y2).

Figure 12 La fonction avance().

(n x , n y)

(x , y)
angle de déplacement

lg

02Chap_01 Page 17 Samedi, 17. janvier 2004 10:36 10

18 1 • Récursivité, pointeurs, modules

void avance (int lg, int x, int y, int angle, int* nx, int* ny) {
 #define PI 3.1416

 *nx = x + (int) (lg * cos (angle*2*PI / 360.));
 *ny = y - (int) (lg * sin (angle*2*PI / 360.));
 traceTrait (x, y, *nx, *ny);

 // l'épaisseur du trait du segment : nb segments juxtaposés
 int nb = lg/10;
 // si nb = 0 ou 1, la boucle n'est pas effectuée
 for (int i=-nb/2; i<nb/2; i++) {
 traceTrait (x+i, y, *nx+i, *ny);
 }
}

La fonction void dessinArbre (int lg, int x, int y, int angle) ; ajoute aléatoirement
à lg une valeur comprise entre 0 et 10 % de lg de façon à introduire une légère dissy-
métrie dans l’arbre. On trace un trait de longueur lg en partant du point (x, y) dans la
direction angle. Si 2*lg/3 est supérieur à un pixel, on génère un nombre aléatoire n
valant 2, 3 ou 4, et on appelle récursivement la fonction arbre() 2, 3 ou 4 fois avec
une longueur à tracer de 2/3 de la longueur de départ et dans des directions réparties
entre –π/2 et π/2 de l’angle initial. Sur la Figure 13, on trace un segment de longueur
lg, puis 3 segments de longueur 2*lg/3.

Figure 13 La fonction dessinArbre() pour n = 3.

// aléatoire entre 0 et max; voir man rand
int aleat (int max) {
 return (int) (rand() % max);
}

void dessinArbre (int lg, int x, int y, int angle) {
 int nx, ny;
 lg = (int) (lg + 0.1 * aleat(lg));
 avance (lg, x, y, angle, &nx, &ny);
 lg = 2*lg / 3;
 if (lg > 1) {
 int n = 2 + aleat (3);
 int d = 180 / n;
 for (int i=1; i<=n; i++) {
 dessinArbre (lg, nx, ny, angle-90 - d/2 + i*d);
 }
 }
}

02Chap_01 Page 18 Samedi, 17. janvier 2004 10:36 10

1.3 • Récursivité des objets 19
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Exercice 3 - Dessin d’un arbre

Modifier la fonction dessinArbre() de façon à dessiner le segment terminal en vert
et à insérer de façon aléatoire, un fruit rouge (segment ou cercle rouge).

1.2.9 Conclusions sur la récursivité des procédures

On a vu qu’une boucle peut s’écrire sous forme récursive. Quand il n’y a qu’un seul
appel récursif, on peut passer à une procédure itérative avec boucle ; c’est le cas des
exemples pour factorielle, les nombres de Fibonacci ou les conversions (numération).
Par contre, si la procédure divise le problème récursivement en plusieurs sous-
problèmes, la récursivité s’impose. Refuser la récursivité, c’est s’obliger à gérer une
pile pour retrouver le contexte. Dans le cas de deux appels récursifs par exemple, il y
a deux tâches à accomplir. Il faut effectuer le premier appel récursif, en sauvegardant
le contexte que l’on retrouve quand on a fini le premier appel récursif et les appels
qu’il a engendrés en cascade. La procédure itérative serait beaucoup plus longue et
beaucoup moins naturelle. Les procédures des Tours de Hanoi, des dessins des
cercles ou de l’arbre s’écrivent, sous forme récursive, de manière concise et naturelle.

1.3 RÉCURSIVITÉ DES OBJETS

Un objet récursif est défini par rapport à lui-même. La construction de procédures
récursives est particulièrement appropriée quand la structure des objets manipulés
est elle-même récursive.

1.3.1 Rappel sur les structures

Le programme suivant décrit une structure de type Personne et deux variables jules
et jacques de ce nouveau type.

/* structure1.cpp rappel sur les structures */

#include <stdio.h>
#include <string.h>

typedef char ch15 [16]; // 15 car. + 0 de fin de chaîne

// le type structure Personne
typedef struct {
 ch15 nom;
 ch15 prenom;
} Personne;

void main () {
 Personne jules; // jules variable de type Personne
 Personne jacques; // jacques variable de type Personne

02Chap_01 Page 19 Samedi, 17. janvier 2004 10:36 10

20 1 • Récursivité, pointeurs, modules

 // copier dans la structure jules
 strcpy (jules.nom, "Durand");
 strcpy (jules.prenom, "Jules");

 // copier dans la structure jacques
 strcpy (jacques.nom, "Dupond");
 strcpy (jacques.prenom, "Jacques");

 printf ("%s %s\n", jacques.nom, jacques.prenom);

} // main

1.3.2 Exemple de déclaration incorrecte

Le programme suivant est incorrect car il essaie de décrire une personne comme
ayant les caractéristiques suivantes : un nom et un prénom, une personne père et une
personne mère. La structure est récursive (autocontenue) puisqu’on décrit une
personne comme contenant deux variables de type Personne qui contiennent
chacune deux variables de type Personne, etc. Cette déclaration est incorrecte car le
compilateur ne peut déterminer a priori la taille en octets de la structure Personne.

/* structure2.cpp
 déclaration incorrecte de structure autocontenue */

#include <stdio.h>
#include <string.h>

typedef char ch15 [16];

// le type Personne se référençant lui-même
// --> erreur de compilation
typedef struct {
 ch15 nom;
 ch15 prenom;
 //Personne pere; // --> syntax erreur
 //Personne mere; // --> syntax erreur
} Personne;

void main () {
 Personne jules;

 strcpy (jules.nom, "Durand");
 strcpy (jules.prenom, "Jules");

 printf ("%s %s\n", jules.nom, jules.prenom);
}

1.3.3 Structures et pointeurs

Au lieu de décrire un champ de type Personne dans un objet de type Personne, on décrit
un pointeur sur un objet de type Personne. Un pointeur fournit l’adresse de la personne
pointée. Le programme suivant permet la construction de structures de données
complexes correspondant à un arbre généalogique. pere est un pointeur de Personne sur
la personne père. Ainsi, pour chaque Personne, on a l’adresse en mémoire de son père et
de sa mère. L’absence de pointeur (père ou mère inconnus sur l’exemple) se note NULL.

02Chap_01 Page 20 Samedi, 17. janvier 2004 10:36 10

1.3 • Récursivité des objets 21
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Pour bien mettre en évidence les différences d’allocation et de notation, deux
structures sont allouées dynamiquement (en cours d’exécution du programme à
l’aide de malloc()) : celles pointées par jules et jacques, alors que la structure berthe
est allouée statiquement en début de programme (voir Figure 14).

jules->pere se lit : le (champ) pere de la structure pointée par jules.
berthe.pere se lit : le (champ) pere de la structure berthe.

jacques->pere = jules ; Mettre dans le (champ) pere de la structure pointée par
jacques, le pointeur jules.

jacques->mere = &berthe ; Mettre dans le champ mere de la structure pointée
par jacques, l’adresse de la structure berthe.

p = jules ; Le pointeur p repère la même Personne que le pointeur jules.

*p = *jacques ; On range à l’adresse pointée par p, les informations (champs) de
la Personne se trouvant à l’adresse pointée par jacques.

/* structure3.cpp pointeurs de personnes */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

typedef char ch15 [16];

typedef struct personne {
 ch15 nom;
 ch15 prenom;
 struct personne* pere; // pere est un pointeur de Personne
 struct personne* mere; // mere est un pointeur de Personne
} Personne;

void main () {
 Personne* jules; // pour allocation dynamique
 Personne* jacques; // pour allocation dynamique

 Personne berthe; // allocation statique

 // Réserver de la place en mémoire pour une personne,
 // et mettre l'adresse de la zone allouée
 // dans le pointeur de Personne jules
 //jules = (Personne*) malloc (sizeof (Personne)); // en C
 //jacques = (Personne*) malloc (sizeof (Personne));
 jules = new Personne(); // en C++
 jacques = new Personne();

 strcpy (jules->nom, "Durand");
 strcpy (jules->prenom, "Jules");
 jules->pere = NULL;
 jules->mere = NULL;

02Chap_01 Page 21 Samedi, 17. janvier 2004 10:36 10

22 1 • Récursivité, pointeurs, modules

 strcpy (jacques->nom, "Durand");
 strcpy (jacques->prenom, "Jacques");
 jacques->pere = jules;
 jacques->mere = &berthe;

 strcpy (berthe.nom, "Dupond");
 strcpy (berthe.prenom, "Berthe");
 berthe.pere = NULL;
 berthe.mere = NULL;

 printf ("Nom de berthe : %15s\n", berthe.nom);
 printf ("Nom de jacques : %15s\n", jacques->nom);
 printf ("\n");

 printf ("Père de Jacques : %15s %15s\n",
 jacques->pere->nom, jacques->pere->prenom);
 printf ("Mère de Jacques : %15s %15s\n",
 jacques->mere->nom, jacques->mere->prenom);
 printf ("\n");

 Personne* p;
 p = jules; // p pointe sur le même objet que jules
 printf ("Personne p : %15s %15s\n", p->nom, p->prenom);

 p = (Personne*) malloc (sizeof (Personne));
 *p = *jacques; // L'objet pointé par p reçoit le contenu
 // de l'objet pointé par jacques
 printf ("Personne p : %15s %15s\n", p->nom, p->prenom);

 free (jules);
 free (jacques);
 free (p);
}

Les pointeurs permettent de relier entre elles les différentes structures correspon-
dant aux différentes personnes. Le père de jacques, c’est jules ; la mère de jacques,
c’est berthe (voir Figure 14). On peut facilement parcourir les différentes structures
de données grâce aux pointeurs et retrouver par exemple, à partir du pointeur
jacques, le nom de la mère de jacques.

Figure 14 La structure de données des relations entre personnes.

/ /

/ /berthe Berthe

Durand

Durand

Dupond

jacques Jacques

jules Jules

nom prénom père mère

02Chap_01 Page 22 Samedi, 17. janvier 2004 10:36 10

1.3 • Récursivité des objets 23
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

1.3.4 Opérations sur les pointeurs

Soient p et q, deux pointeurs sur un objet de type t.

a) création dynamique d’un objet
t* p = (t*) malloc (sizeof (t)); // en C
crée un objet de type t ; p pointe sur cet objet. p contient l’adresse de l’objet créé ;

p est un pointeur de t.
Le langage C++ permet de créer un objet (une structure) de type t à l’aide de

new() comme suit : t* p = new t();

b) affectation de pointeurs
p = NULL ; NULL indique un pointeur nul (absence de pointeur)
p = q ; p et q repèrent le même objet

c) affectation de zones pointées
*p = *q ; mettre à l’adresse pointée par p,

ce qu’il y a à l’adresse pointée par q.

d) comparaison de pointeurs (== et !=)
if (p == q) {... si p et q repèrent le même objet ...
if (p != q) {... si p et q ne repèrent pas le même objet ...

On peut tester si un pointeur est supérieur ou inférieur à un autre pointeur notam-
ment lorsqu’on parcourt un tableau d’éléments de type t. Le pointeur courant doit
être compris entre l’adresse de début et l’adresse de fin du tableau. Pour deux objets
indépendants alloués par malloc(), seules égalité et inégalité ont un sens.

e) accès à l’élément pointé
p→nom = "Durand"; le champ nom de la structure pointée par p
p→svt→nom = "Dupond";

Figure 15 Le champ nom de la structure pointée par p→svt.

f) suppression de la zone allouée dynamiquement
free (p) ; rend au système d’exploitation l’espace mémoire occupé par l’objet

pointé par p, et alloué par malloc(), ou new().

g) addition, soustraction de pointeurs
Si p pointe un objet de type t, p+1 pointe l’objet suivant de type t, de même que

p++.

p

p

Durand

nom nomsvt svt

svt

Dupond

→

02Chap_01 Page 23 Samedi, 17. janvier 2004 10:36 10

24 1 • Récursivité, pointeurs, modules

Si p et q sont 2 pointeurs de type t, p-q indique le nombre d’objets de type t entre
p et q.

Sur l’exemple précédent concernant le type Personne, on pourrait rajouter les
instructions suivantes pour tester ces cas d’additions de constantes à un pointeur ou
de soustraction de deux pointeurs. On déclare un tableau de Personne que l’on initia-
lise partiellement. ptc est un pointeur courant de Personne, donc de type Personne*,
initialisé sur le début du tableau.

 Personne tabPers [5];
 Personne* ptc = tabPers;

 strcpy (tabPers [0].nom, "P0");
 strcpy (tabPers [1].nom, "P1");
 strcpy (tabPers [2].nom, "P2");
 strcpy (tabPers [3].nom, "P3");
 strcpy (tabPers [4].nom, "P4");

 printf ("%s\n", ptc->nom); // P0
 ptc++;
 printf ("%s\n", ptc->nom); // P1
 ptc += 2;
 printf ("%s\n", ptc->nom); // P3

 printf ("%d\n", &tabPers[4] - &tabPers[0]); // 4
 printf ("%d\n", &tabPers[0] - &tabPers[4]); // -4

1.4 MODULES

1.4.1 Notion de module et de type abstrait de données (TAD)

D’une manière générale, un module est une unité constitutive d’un ensemble. En
algorithmique, un module est un ensemble de fonctions traitant des données
communes. Les objets (constantes, variables, types, fonctions) déclarés dans la
partie interface sont accessibles de l’extérieur du module, et sont utilisables dans un
autre programme (un autre module ou un programme principal). Il suffit de réfé-
rencer le module pour avoir accès aux objets de sa partie interface. Celle-ci doit être
la plus réduite possible, tout en donnant au futur utilisateur un large éventail de
possibilités d’utilisation du module. Les déclarations de variables doivent être
évitées au maximum. On peut toujours définir une variable locale au module à
laquelle on accède ou que l’on modifie par des appels de fonctions de l’interface. On
parle alors d’encapsulation des données qui sont invisibles pour l’utilisateur du
module et seulement accessibles à travers un jeu de fonctions. L’utilisateur du
module n’a pas besoin de savoir comment sont mémorisées les données ; le module
est pour lui un type abstrait de données (TAD). Du reste, cette mémorisation locale
peut évoluer, elle n’affectera pas les programmes des utilisateurs du module dès lors
que les prototypes des fonctions d’interface restent inchangés.

02Chap_01 Page 24 Samedi, 17. janvier 2004 10:36 10

1.4 • Modules 25
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Figure 16 La notion de module.

L’implémentation de la notion de module varie d’un langage de programmation à
l’autre. En Turbo Pascal, le module est mémorisé dans un fichier ; les mots-clés inter-
face et implementation délimitent les deux parties visible et invisible du module.
L’utilisateur référence le module en donnant son nom : uses module. En C, la partie
interface est décrite dans un fichier à part module.h appelé fichier d’en-tête. La partie
données locales est mémorisée dans un autre fichier module.cpp qui référence la partie
interface en incluant module.h. De même, le programme utilisateur référence l’inter-
face en faisant une inclusion de module.h, ce qui définit pour lui, la partie interface.
Cette notion de module est aussi référencée sous le terme d’unité de compilation ou de
compilation séparée. Chaque unité de compilation connaît grâce aux fichiers d’en-tête,
le type et les prototypes des fonctions définies dans une autre unité de compilation.

1.4.2 Exemple : module de simulation d’écran graphique

On veut faire une simulation de dessins en mode graphique. Pour cela, on définit un
module qui a l’interface suivante :

• void initialiserEcran (int nl, int nc) ; initialise un espace mémoire de simulation
de l’écran de nl lignes sur nc colonnes numérotées de 0 à nl-1, et de 0 à nc-1 ; le
crayon de couleur noire est positionné au milieu de l’écran.

• void crayonEn (int nl, int nc) ; positionne le crayon en (nl, nc).

• void couleurCrayon (int c) ; définit la couleur du crayon (de 0 à 15 par exemple).

• void ecrirePixel (int nl, int nc) ; écrit au point (nl, nc) un pixel de la couleur du
crayon (en fait écrit un caractère dépendant de la couleur du pixel).

• void avancer (int d, int n) ; avance de n pixels dans la direction d ; 4 directions
sont retenues : gauche, haut, droite, bas.

module

Partie interface
visible donc

accessible
de l’extérieur

du module
(module.h)

- constantes
- déclarations de types
- déclarations de variables

- déclarations de prototypes
de fonctions (A)

Données locales
au module,

inaccessibles
de l’extérieur

du module
(module.cpp)

- constantes
- déclarations de types
- déclarations de variables

- définitions des fonctions dont
le prototype a été donné en (A) ci-dessus

- définitions de fonctions locales au
module

02Chap_01 Page 25 Samedi, 17. janvier 2004 10:36 10

26 1 • Récursivité, pointeurs, modules

• void rectangle (int xcsg, int ycsg, int xcid, int ycid) ; trace un rectangle de la
couleur du crayon, de cordonnées (xcsg, ycsg) pour le coin supérieur gauche et
(xcid, ycid) pour le coin inférieur droit.
• void ecrireMessage (int nl, int nc, char* message) ; écrit message en (nl, nc).
• void afficherEcran() ; affiche l’écran.
• void effacerEcran() ; efface l’écran.
• void detruireEcran() ; détruit l’écran (libère l’espace alloué).
• void sauverEcran (char* nom) ; sauve l’écran dans le fichier nom.

La partie interface définit également les couleurs utilisables (NOIR, BLANC) et
les directions de déplacement du crayon (GAUCHE, HAUT, DROITE, BAS).
Aucune variable ne figure dans la partie interface. L’utilisateur ne sait pas comment
son écran est mémorisé. L’écran est, pour lui, un type abstrait de données (TAD).

1.4.2.a Le fichier d’en-tête de l’écran graphique

Le fichier d’en-tête décrit les objets visibles pour les utilisateurs du module (constantes
NOIR et BLANC, directions de déplacement, prototypes des fonctions).

/* ecran.h fichier d'en-tête pour le module ecran.cpp */

#ifndef ECRAN_H
#define ECRAN_H

#define NOIR 0
#define BLANC 15

#define GAUCHE 1
#define HAUT 2
#define DROITE 3
#define BAS 4

void initialiserEcran (int nl, int nc);
void crayonEn (int nl, int nc);
void couleurCrayon (int c);
void ecrirePixel (int nl, int nc);
void avancer (int d, int lg);
void rectangle (int xcsg, int ycsg, int xcid, int ycid);
void ecrireMessage (int nl, int nc, char* message);
void afficherEcran ();
void effacerEcran ();
void detruireEcran ();
void sauverEcran (char* nom);

#endif

1.4.2.b Le module écran graphique

Comme l’indique la Figure 16, ecran.cpp contient les données locales, et les défini-
tions des fonctions déclarées dans la partie interface. Les données globales (externes
aux fonctions) étant static ne peuvent être référencées de l’extérieur du module. Ces
données sont locales au fichier ecran.cpp.

02Chap_01 Page 26 Samedi, 17. janvier 2004 10:36 10

1.4 • Modules 27
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

/* ecran.cpp simulation d'écran graphique */

#include <stdio.h> // printf, FILE, fopen, fprintf
#include <stdlib.h> // malloc, free, exit
#include <string.h> // strlen
#include "ecran.h"

// données locales au fichier ecran.cpp,
// inaccessibles pour l'utilisateur du module.
// static = locales au fichier pour les variables externes aux fonctions
static char* ecran; // pointeur sur le début de l'écran
static int nbLig; // nombre de lignes de l'écran
static int nbCol; // nombre de colonnes de l'écran
static int ncc; // numéro de colonne du crayon
static int nlc; // numéro de ligne du crayon
static int couleur; // couleur du crayon

// l'écran est un tableau de caractères ecran alloué dynamiquement
// de nl lignes sur nc colonnes et mis à blanc
void initialiserEcran (int nl, int nc) {
 nbLig = nl;
 nbCol = nc;
 ecran = (char*) malloc (nbLig * nbCol * sizeof(char));
 effacerEcran ();
}

// le crayon est mis en (nl, nc)
void crayonEn (int nl, int nc) {
 nlc = nl;
 ncc = nc;
}

// la couleur du dessin est c
void couleurCrayon (int c) {
 if (c>15) c = c % 16;
 couleur = c;
}

// écrire un caractère en fonction de la couleur en (nl, nc)
void ecrirePixel (int nl, int nc) {
 static char* tabCoul = "*123456789ABCDE.";
 if ((nl>=0) && (nl<nbLig) && (nc>=0) && (nc<nbCol))
 ecran [nl*nbCol+nc] = tabCoul [couleur];
}

// avancer dans la direction d de lg pixels
void avancer (int d, int n) {

 switch (d) {
 case DROITE:
 for (int i=ncc; i<ncc+n; i++) ecrirePixel (nlc, i);
 ncc += n-1;
 break;
 case HAUT:
 for (int i=nlc; i>nlc-n; i--) ecrirePixel (i, ncc);
 nlc += -n+1;
 break;
 case GAUCHE:
 for (int i=ncc; i>ncc-n; i--) ecrirePixel (nlc, i);
 ncc += -n+1;
 break;

02Chap_01 Page 27 Samedi, 17. janvier 2004 10:36 10

28 1 • Récursivité, pointeurs, modules

 case BAS:
 for (int i=nlc; i<nlc+n; i++) ecrirePixel (i, ncc);
 nlc += n-1;
 break;
 } // switch
}

// tracer un rectangle défini par 2 points csg et cid
void rectangle (int xcsg, int ycsg, int xcid, int ycid) {
 int longueur = xcid-xcsg+1;
 int largeur = ycid-ycsg+1;

 crayonEn (ycsg, xcsg);
 avancer (BAS, largeur);
 avancer (DROITE, longueur);
 avancer (HAUT, largeur);
 avancer (GAUCHE, longueur);
}

// écrire un message à partir de (nl, nc)
void ecrireMessage (int nl, int nc, char* message) {
 for (int i=0; i<strlen(message); i++) {
 if ((nl>=0) && (nl<nbLig) && (nc>=0) && (nc<nbCol)) {
 ecran [nl*nbCol+nc] = message[i];
 nc++;
 }
 }
}

// afficher le dessin
void afficherEcran () {
 for (int i=0; i<nbLig; i++) {
 for (int j=0; j<nbCol; j++) printf ("%c", ecran [i*nbCol+j]);
 printf ("\n");
 }
 printf ("\n");
}

// mettre l'écran à blanc
void effacerEcran () {
 for (int i=0; i<nbLig; i++) {
 for (int j=0; j<nbCol; j++) ecran[i*nbCol+j] = ' ';
 }
 couleurCrayon (NOIR); // par défaut
 crayonEn (nbLig/2, nbCol/2); // milieu de l'écran
}

// rendre au système d'exploitation, l'espace alloué par
// malloc() dans initialiserEcran()
void detruireEcran () {
 free (ecran);
}

// sauver l'écran dans le fichier nomFS
void sauverEcran (char* nomFS) {
 FILE* fs = fopen (nomFS, "w");
 if (fs==NULL) { perror ("sauverEcran"); exit (1); };
 for (int i=0; i<nbLig; i++) {
 for (int j=0; j<nbCol; j++) fprintf (fs, "%c", ecran [i*nbCol+j]);
 fprintf (fs, "\n");
 }
 fprintf (fs, "\n");
 fclose (fs);
}

02Chap_01 Page 28 Samedi, 17. janvier 2004 10:36 10

1.4 • Modules 29
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

1.4.2.c Le programme d’application de l’écran graphique

Ce programme principal utilise le module écran pour dessiner une maison. Bien sûr,
il faudrait augmenter la résolution pour avoir un dessin plus fin.

/* ppecran.cpp programme principal ecran */

#include <stdio.h>
#include "ecran.h"

void main () {
 initialiserEcran (20, 50);

 rectangle (3, 10, 43, 17); // maison
 rectangle (3, 4, 43, 10); // toiture
 rectangle (20, 12, 23, 17); // porte
 rectangle (41, 1, 43, 4); // cheminée
 rectangle (10, 12, 14, 15); // fenêtre gauche
 rectangle (30, 12, 34, 15); // fenêtre droite
 ecrireMessage (19, 15, "Maison de rêves");

 afficherEcran ();
 sauverEcran ("maison.res");
 detruireEcran ();
}

1.4.2.d Le résultat de l’exécution du test du module écran

Après exécution du programme d’application ppecran.cpp précédent, le fichier
maison.res contient le dessin suivant.

 * *
 * *

 * *
 * *
 * *
 * *
 * *

 * *
 * ***** **** ***** *
 * * * * * * * *
 * * * * * * * *
 * ***** * * ***** *
 * * * *

 Maison de rêves

Figure 17 Dessin d’une maison avec le module ecran.

La notion de classe en programmation objet correspond à l’extension de la notion
de module. Une classe comprend des objets (données propres) et des fonctions appe-
lées méthodes qui gèrent ses objets. Sur l’exemple, il n’y a qu’un seul écran ; si on

02Chap_01 Page 29 Samedi, 17. janvier 2004 10:36 10

30 1 • Récursivité, pointeurs, modules

veut pouvoir gérer plusieurs écrans, il faut passer en paramètre de chaque fonction
un pointeur d’écran : un pointeur sur une structure contenant les données spécifiques
de chaque écran. En programmation (orientée) objet, on définirait une classe ecran,
chaque élément de cette classe ayant ses propres données. D’autres mécanismes
plus spécifiques de la programmation objet ne sont pas abordés ici comme l’héritage
ou les méthodes virtuelles.

L’exemple donné pourrait être complété en définissant d’autres fonctions mises à
la disposition de l’utilisateur. On pourrait définir des fonctions de tracé de figures
géométriques (cercles, carrés, ellipses, etc.). Les directions de déplacement
devraient être quelconques ; on devrait pouvoir avancer de n pas suivant un angle
donné. On devrait pouvoir tourner à droite ou à gauche d’un angle donné. On pour-
rait refaire de cette façon le langage Logo qui facilite le dessin sur écran et l’appren-
tissage de la programmation.

Exercice 4 - Spirale rectangulaire (récursive)

En utilisant le module ecran défini précédemment, écrire la fonction récursive
void spirale (int n, int lgMax) ; qui trace la spirale de la Figure 18 ; n est la longueur
du segment ; lgMax est la longueur du plus grand segment à tracer.

 . .

 . . .

 .
 .

Figure 18 Dessin d’une spirale rectangulaire.

Exercice 5 - Module de gestion de piles d’entiers (allocation contiguë)

Une pile d’entiers est une structure de données contenant des entiers qui sont
gérés en ajoutant et en retirant des valeurs en sommet de pile uniquement. On utilise
une allocation contiguë : un tableau d’entiers géré comme une pile ; c’est-à-dire où
les ajouts et les retraits sont effectués au sommet de la pile uniquement. Le type Pile

02Chap_01 Page 30 Samedi, 17. janvier 2004 10:36 10

1.4 • Modules 31
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

décrit une structure contenant une variable max indiquant le nombre maximum
d’éléments dans la pile, une variable nb repérant le dernier occupé de la pile
(sommet de pile) et le tableau element des éléments de la pile. Les fonctions à appli-
quer à la pile consistent à initialiser une pile en allouant dynamiquement le tableau
des max entiers, à tester si la pile est vide ou non, à ajouter une valeur en sommet de
pile s’il reste de la place, à extraire une valeur du sommet de pile si la pile n’est pas
vide, à lister pour vérification toutes les valeurs de la pile, et à détruire la pile. Le
fichier d’en-tête pile.h est le suivant :

/* pile.h version avec allocation dynamique du tableau */

#ifndef PILE_H
#define PILE_H

typedef struct {
 int max; // nombre maximum d'éléments dans la pile
 int nb; // repère le dernier occupé de element
 int* element; // le tableau des éléments de la pile
} Pile;

Pile* creerPile (int max);
int pileVide (Pile* p);
void empiler (Pile* p, int valeur);
int depiler (Pile* p, int* valeur);
void listerPile (Pile* p);
void detruirePile (Pile* p);

#endif

La fonction int depiler (Pile* p, int* valeur) ;
• fournit 0 (faux) si la pile est vide, 1 (vrai) sinon.
• met dans l’entier pointé par valeur, et la supprime de la pile, la valeur en sommet

de pile (cas de la pile non vide).
Écrire le corps du module pile.cpp et un programme de test pppile.cpp

(programme principal des piles) contenant un menu permettant de vérifier tous les
cas. Le menu est proposé ci-dessous.

GESTION D'UNE PILE

0 - Fin

1 - Création de la pile

2 - La pile est-elle vide ?

3 - Insertion dans la pile

4 - Retrait de la pile

5 - Listage de la pile

Votre choix ?

02Chap_01 Page 31 Samedi, 17. janvier 2004 10:36 10

32 1 • Récursivité, pointeurs, modules

Exercice 6 - Module de gestion de nombres complexes

Un nombre complexe se compose d’une partie réelle et d’une partie imaginaire.
Les fonctions que l’on peut réaliser sur les complexes sont données ci-dessous :
• fonction (crC) permettant la création d’un nombre complexe à partir de 2 réels,
• fonction (crCP) permettant la création d’un nombre complexe à partir de son

module, et de son argument en radians entre -π et +π,
• fonctions (partReelC, partImagC, moduleC, argumentC) délivrant la partie

réelle, la partie imaginaire, le module ou l’argument d’un nombre complexe,
• fonctions (ecritureC, ecritureCP) faisant l’écriture des 2 composantes d’un

nombre complexe sous la forme (x + y i) comme par exemple (2 + 1.5 i), ou sous la
forme en polaire (2.5, 0.64),

• fonctions (opposeC, conjugueC, inverseC, puissanceC) délivrant le
complexe opposé, le conjugué, l’inverse ou une puissance entière d’un nombre
complexe,

• fonctions (additionC, soustractionC, multiplicationC, divisionC) faisant
l’addition, la soustraction, la multiplication ou la division de deux nombres
complexes.

Le fichier d’en-tête complex.h décrivant l’interface du module est le suivant. Le
type Complex est décrit comme une structure de deux réels partReel et partImag.

/* complex.h */

#ifndef COMPLEX_H
#define COMPLEX_H

#define M_PI 3.1415926535

typedef struct {
 double partReel; // partie réelle
 double partImag; // partie imaginaire
} Complex;

// les constructeurs
Complex crC (double partReel, double partImag);
Complex crCP (double module, double argument);

double partReelC (Complex z);
double partImagC (Complex z);
double moduleC (Complex z);
double argumentC (Complex z);

void ecritureC (Complex z);
void ecritureCP (Complex z);

Complex opposeC (Complex z);
Complex conjugueC (Complex z);
Complex inverseC (Complex z);
Complex puissanceC (Complex z, int n);

Complex additionC (Complex z1, Complex z2);
Complex soustractionC (Complex z1, Complex z2);

02Chap_01 Page 32 Samedi, 17. janvier 2004 10:36 10

1.5 • Pointeurs de fonctions 33
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Complex multiplicationC (Complex z1, Complex z2);
Complex divisionC (Complex z1, Complex z2);

#endif

Écrire dans le fichier complex.cpp, les fonctions du module déclarées dans
complex.h.

Écrire un programme principal de test des différentes fonctions du module.
Exemples de résultats (la dernière colonne donne les résultats en polaire) :

c1 = (2.00 + 1.50 i) (2.50, 0.64)
c2 = (-2.00 + 1.75 i) (2.66, 2.42)
c3 = c1 + c2 (0.00 + 3.25 i) (3.25, 1.57)
c4 = c1 - c2 (4.00 + -0.25 i) (4.01, -0.06)
c5 = c1 * c2 (-6.63 + 0.50 i) (6.64, 3.07)
c6 = c1 / c2 (-0.19 + -0.92 i) (0.94, -1.78)
c7 = c1 ** 3 (-5.50 + 14.63 i) (15.62, 1.93)

p1 = (0.71 + 0.71 i) (1.00, 0.79)
p2 = (0.00 + 1.00 i) (1.00, 1.57)
p3 = p1 + p2 (0.71 + 1.71 i) (1.85, 1.18)
p4 = p1 - p2 (0.71 + -0.29 i) (0.77, -0.39)
p5 = p1 * p2 (-0.71 + 0.71 i) (1.00, 2.36)
p6 = p1 / p2 (0.71 + -0.71 i) (1.00, -0.79)
p7 = p1 ** 3 (-0.71 + 0.71 i) (1.00, 2.36)

p1 a pour module 1 et pour argument : π/4 = 0.79
p2 a pour module 1 et pour argument : π/2 = 1.57

1.5 POINTEURS DE FONCTIONS

La plupart des langages de programmation autorise le passage en paramètre d’une
fonction définie par ses propres paramètres et son type de retour. Le tracé d’une
courbe peut se faire en passant la fonction en paramètre de la fonction de tracé de
dessin.

Les exemples ci-dessous définissent plusieurs courbes ayant deux paramètres
entiers et fournissant une valeur entière.

// fnparam.cpp passage en paramètre de fonctions

#include <stdio.h>

02Chap_01 Page 33 Samedi, 17. janvier 2004 10:36 10

34 1 • Récursivité, pointeurs, modules

// les différentes fonctions de deux paramètres entiers

int fsom (int n1, int n2) {
 return n1 + n2;
}

int fdif (int n1, int n2) {
 return n1 - n2;
}

int fmult (int n1, int n2) {
 return n1 * n2;
}

int fdiv (int n1, int n2) {
 return n1 / n2;
}

La fonction calculer() accepte un premier paramètre de type pointeur de fonction
ayant deux entiers en paramètre et délivrant un entier.

// la fonction calculer ayant un paramètre
// de type fonction de deux entiers fournissant un entier
int calculer (int (*f) (int, int), int v1, int v2) {
 int resu = f (v1,v2);
 return resu;
}

calculer (fsom, 10, 20) : exécuter la fonction calculer() avec comme premier
paramètre la fonction fsom.

void main () {
 printf ("fsom %d\n", calculer (fsom, 10, 20));
 printf ("fdif %d\n", calculer (fdif, 10, 20));
 printf ("fmult %d\n", calculer (fmult, 10, 20));
 printf ("fdiv %d\n", calculer (fdiv, 10, 20));

 // on peut utiliser une variable
 // de type fonction de deux entiers fournissant un entier
 // et lui affecter une valeur
 int (*f) (int, int) = fsom;
 printf ("\nf %d\n", calculer (f, 10, 20));
}

1.6 RÉSUMÉ

Certains problèmes peuvent être résolus plus logiquement en utilisant la récursivité.
Les programmes sont plus compacts, plus faciles à écrire et à comprendre. Son
usage est naturel quand les structures de données sont définies récursivement, ou
quand le problème à traiter peut se décomposer en deux ou plus sous-problèmes
identiques au problème initial mais avec des valeurs de paramètres différentes.
Refuser la récursivité dans ce dernier cas oblige l’utilisateur à gérer lui-même une
pile des différentes valeurs des variables, ce que le système fait automatiquement
lors de l’utilisation de la récursivité.

02Chap_01 Page 34 Samedi, 17. janvier 2004 10:36 10

1.6 • Résumé 35
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

L’allocation dynamique permet de demander de la mémoire centrale au système
d’exploitation au fil des besoins. L’allocation dynamique de mémoire pour l’écran
graphique (voir initialiserEcran()) permet d’allouer une zone mémoire contiguë en
fonction des dimensions voulues de l’écran. En allocation statique (déclaration d’un
tableau à deux dimensions), il aurait fallu figer lors de la déclaration les deux dimen-
sions de l’écran pour toutes les applications. La structure de données des relations
entre personnes de la Figure 14 illustre bien la nécessité de pouvoir allouer de
nouvelles zones dynamiquement, en cours d’exécution du programme, pour y enre-
gistrer les caractéristiques d’une nouvelle personne. Les différentes zones allouées
sont reliées entre elles à l’aide de pointeurs.

Comme dans toute réalisation humaine complexe, il convient d’être méthodique
et de décomposer le problème en sous-problèmes de moindre difficulté. La construc-
tion d’une voiture se fait en assemblant des modules (moteur, boîte de vitesses, etc.)
qui doivent respecter des normes d’interface très précises. Si les normes sont respec-
tées, on peut facilement remplacer le moteur par un autre moteur plus performant. Il
en va de même en programmation. Une application doit être découpée en modules
qui communiquent par des interfaces définies sous forme de prototypes de fonc-
tions. On pourra toujours remplacer un module par un module plus performant dès
lors que l’interface ne change pas.

02Chap_01 Page 35 Samedi, 17. janvier 2004 10:36 10

C

hapitre

2

Les listes

2.1 LISTES SIMPLES : DÉFINITION

Une liste est un ensemble d’objets de même type constituant les éléments de la liste.
Les éléments sont chaînés entre eux et on peut facilement ajouter ou extraire un ou
plusieurs éléments. Une liste simple est une structure de données telle que chaque
élément contient :

• des informations caractéristiques de l’application (les caractéristiques d’une
personne par exemple),

• un pointeur vers un autre élément ou une marque de fin s’il n’y a pas d’élément
successeur.

Exemple

 : une liste d’attente chez un médecin.

Figure 19

Une liste de clients.

La Figure 19 peut représenter une salle d’attente où les clients sont dispersés dans
toute la salle. Cependant, il y a un ordre de passage correspondant à l’ordre

/

Duroc

Durand

premier Dupond

Dufour

03Chap_02 Page 36 Samedi, 17. janvier 2004 10:36 10

2.2 •

Représentation en mémoire des listes

37

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

d’arrivée. L’arrivée d’un nouveau client n’entraîne pas de déplacement pour les
clients déjà présents. Il doit occuper un des sièges libres.

Le schéma peut aussi représenter les informations sur les clients dispersées en
mémoire centrale d’ordinateur mais reliées entre elles par un chaînage. La mémori-
sation d’un nouveau client se fait par demande au système d’exploitation d’une zone
mémoire libre pour y loger les caractéristiques du nouveau client. Les informations
sur les autres clients n’ont pas à être déplacées.

En salle d’attente, on pourrait aussi imaginer un banc d’attente avec décalage des
clients à chaque passage chez le médecin. Cela correspondrait à une gestion en
tableau en mémoire centrale avec décalage des informations.

Les listes permettent une gestion sans déplacement en mémoire quand l’informa-
tion est volatile, c’est-à-dire quand il y a de fréquents ajouts et retraits d’éléments.
Une gestion en tableau est difficile quand des éléments doivent être ajoutés ou
retirés en milieu de tableau. Si les éléments sont toujours ajoutés ou retirés en début
ou en fin de liste, une structure en tableau peut être envisagée.

2.2 REPRÉSENTATION EN MÉMOIRE DES LISTES

Figure 20

Mémorisation des listes (dynamique ou contiguë).

En allocation dynamique à la demande, les différents éléments sont dispersés en
mémoire centrale. L’espace est réservé au fur et à mesure des créations d’éléments.
La seule limite est la taille de la mémoire centrale de l’ordinateur ou l’espace
mémoire alloué au processus. Sur l’exemple de la Figure 20, la structure de
Dupond se trouve à l’adresse 500, celle de Durand à l’adresse 100. Ainsi, le suivant
de Dupond se trouve à l’adresse 100. Cette adresse est un pointeur sur l’élément
suivant.

Dupond

Dupond

Durand

Durand

Duroc

Duroc

Dufour

Dufour

/

p
0 2

1

2

3

4

5

/

3

1

p

500

100

10 000

1 000

Allocation dynamique
(à la demande)

Allocation contiguë

lgMax = 6

Tableau ou fichier en accès direct

03Chap_02 Page 37 Samedi, 17. janvier 2004 10:36 10

38 2

•

Les listes

Le schéma de l’allocation contiguë représente une allocation où l’espace est
réservé sur des cases consécutives avec une dimension maximale (lgMax sur le
schéma) à préciser lors de cette réservation. L’allocation dynamique à la demande
présente beaucoup plus de souplesse puisqu’il n’y a pas de limite à fixer. Le fait de
devoir fixer une limite est gênant pour une application. Si la limite est trop basse, on
ne peut résoudre les problèmes ayant de nombreuses valeurs, ou alors, il faut réal-
louer une zone plus grande et déplacer les informations. Si la limite est trop grande,
l’espace est alloué inutilement. Le schéma de l’allocation contiguë peut représenter
un tableau en mémoire centrale ou un fichier en accès direct sur disque.

Les déclarations concernant les allocations dynamiques à la demande et contiguës
sont données ci-dessous. Il faut remarquer que l’allocation contiguë peut être faite
de manière statique (déclaration d’un tableau) ou dynamique par

malloc()

 en début
ou en cours de programme.

2.3 MODULE DE GESTION DES LISTES

Un

élément

 de liste contient toujours un pointeur sur l’élément suivant ou une
marque indiquant qu’il n’y a plus de suivant (marque NULL en C). Les autres carac-
téristiques dépendent de l’application. Pour que le module de gestion des listes soit
le plus général possible, il faut bien séparer ce qui est spécifique des listes de ce qui
est caractéristique des applications. Ci-dessous, les informations sont regroupées
dans une structure (un objet) et repérées par un pointeur de type Objet* (soit void*)
appelé référence. Cette référence peut contenir l’adresse de n’importe quel objet.

La liste peut être représentée par un pointeur sur le premier élément de la liste. On
peut aussi regrouper quelques caractéristiques de la liste dans une structure de type
tête de liste qui contient par exemple un pointeur sur le premier élément et un pointeur
sur le dernier élément de façon à faciliter les insertions en tête et en fin de liste. Un
pointeur courant est également ajouté pour faciliter le parcours des listes. Le type

Liste

 est ainsi défini comme une structure contenant trois pointeurs d’éléments : un

Allocation dynamique
(à la demande)

typedef char ch15 [16];
typedef
 struct element* PElement;

typedef struct element {
 ch15 nom;
 PElement suivant;
} Element;

Allocation contiguë (statique)

#define lgMax 6
#define NULLE -1
typedef int PElement;

typedef struct {
 ch15 nom;
 PElement suivant;
} Element;

soit un tableau de structures

Element tab [lgMax];

soit un fichier en accès direct

FILE* f;

03Chap_02 Page 38 Samedi, 17. janvier 2004 10:36 10

2.3 •

Module de gestion des listes

39

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

pointeur sur le premier élément de la liste, un pointeur sur le dernier élément, et un
pointeur qui repère l’élément courant à traiter. Le nombre d’éléments est également
inséré dans la tête de liste, ainsi que le type de la liste (non ordonnée, ordonnée crois-
sante ou ordonnée décroissante). Deux fonctions dépendant des objets traités et
permettant de fournir la chaîne de caractères à écrire pour chaque objet ou de
comparer deux objets complètent cette structure de type Liste. La fonction de compa-
raison fournit 0 si les deux objets sont égaux, une valeur inférieure à 0 si le premier
objet est inférieur au deuxième, et une valeur supérieure à 0 sinon. Ces deux fonctions
sont des paramètres de la liste et varient d’une application à l’autre.

Les déclarations correspondantes pour l’allocation dynamique à la demande sont
les suivantes :

typedef void Objet;

// un élément de la liste
typedef struct element {
 Objet* reference; // référence un objet (de l'application)
 struct element* suivant; // élément suivant de la liste
}

Element

;

// le type Liste
typedef struct {
 Element* premier; // premier élément de la liste
 Element* dernier; // dernier élément de la liste
 Element* courant; // élément en cours de traitement (parcours de liste)
 int nbElt; // nombre d'éléments dans la liste
 int type; // 0:non ordonné, 1:croissant, 2:décroissant
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);
}

Liste

;

Une liste ne contenant aucun élément a ses trois pointeurs à NULL pour indiquer
qu’il n’y a ni premier, ni dernier, ni élément courant.

Figure 21

Une liste vide.

La fonction d’initialisation de la liste pointée par li est donnée ci-dessous. li est
l’adresse d’une structure de type

Liste ;

 li est donc de type

Liste*

. La barre oblique /
représente NULL sur la Figure 21.

li->premier indique le champ premier de la structure pointée par li.

Par défaut, l’objet référencé par l’élément de liste est une chaîne de caractères.
Les deux fonctions définies ci-dessous permettent d’initialiser par défaut les para-
mètres fonctions de la tête de liste.

li /

premier

/

dernier

/

courant

0

nbElt

0

type

03Chap_02 Page 39 Samedi, 17. janvier 2004 10:36 10

40 2

•

Les listes

// comparer deux chaînes de caractères
// fournit <0 si ch1 < ch2; 0 si ch1=ch2; >0 sinon
static int

comparerCar

 (Objet* objet1, Objet* objet2) {
 return strcmp ((char*) objet1, (char*) objet1);
}

static char*

toChar

 (Objet* objet) {
 return (char*) objet;
}

// initialiser la liste pointée par li (cas général)
void

initListe

 (Liste* li, int type, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

 li->premier = NULL;
 li->dernier = NULL;
 li->courant = NULL;
 li->nbElt = 0;
 li->type = type;
 li->toString = toString;
 li->comparer = comparer;
}

// initialisation par défaut
void

initListe

 (Liste* li) {
 initListe (li, NONORDONNE, toChar, comparerCar);
}

Les fonctions suivantes créent et initialisent la tête de liste, et fournissent un poin-
teur sur la tête de liste créée.

Liste*

creerListe

 (int type, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

 Liste* li = new Liste();

initListe

 (li, type, toString, comparer);
 return li;
}

Liste*

creerListe

 (int type) {
 return

creerListe

 (type, toChar, comparerCar);
}

Liste*

creerListe

 () {
 return

creerListe

 (NONORDONNE, toChar, comparerCar);
}

Pour savoir si une liste est vide, il suffit de tester si son nombre d’élément vaut 0.

// la liste est-elle vide ?
booleen

listeVide

 (Liste* li) {
 return li->nbElt == 0;
}

La fonction

nbElement()

 fournit le nombre d’éléments dans la liste li :

// fournir le nombre d'éléments dans la liste
int

nbElement

 (Liste* li) {
 return li->nbElt;
}

03Chap_02 Page 40 Samedi, 17. janvier 2004 10:36 10

2.3 •

Module de gestion des listes

41

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

2.3.1 Création d’un élément de liste
(fonction locale au module sur les listes)

La liste contient des éléments ; chaque élément référence un objet spécifique de
l’application.

// créer un élément de liste
static Element*

creerElement

 () {
 return new Element();
}

2.3.2 Ajout d’un objet

2.3.2.a Ajout en tête de liste

Avant l’appel de cette fonction d’ajout, l’objet à insérer et pointé par objet a été
alloué et rempli avec les informations spécifiques de l’application. Un élément de
liste est créé et son champ

reference

 repère l’objet à insérer.

// insérer objet en tête de la liste li
// l'objet est repéré par le champ reference de l'élément de la liste
void

insererEnTeteDeListe

 (Liste* li, Objet* objet) {
 Element* nouveau = creerElement();
 nouveau->reference = objet;
 nouveau->suivant = li->premier;
 li->premier = nouveau;
 if (li->dernier == NULL) li->dernier = nouveau;
 li->nbElt++;
}

Figure 22

Insertion de objet en tête de la liste li de type 0 (non ordonnée). Après
insertion, la liste contient 3 éléments.

2.3.2.b Ajout après l’élément précédent (fonction locale au module)

L’élément doit être ajouté à une place particulière après l’élément

precedent

. Il faut
d’abord trouver l’élément

precedent

 avant d’appeler la fonction

insererApres()

.

li

/3 0/

objet1 objet2 objet3

objet

nouveau

03Chap_02 Page 41 Samedi, 17. janvier 2004 10:36 10

42 2

•

Les listes

La procédure présentée ci-dessous insère dans la liste pointée par

li

, après l’élément
pointé par

precedent

, l’élément pointé par nouveau qui référence

objet

. Si

precedent

est NULL, l’insertion se fait en tête de liste.

// insérer dans la liste li, objet après precedent
// si precedent est NULL, insérer en tête de liste
static void

insererApres

 (Liste* li, Element* precedent, Objet* objet) {
 if (precedent == NULL) {
 insererEnTeteDeListe (li, objet);
 } else {
 Element* nouveau = creerElement();
 nouveau->reference = objet;
 nouveau->suivant = precedent->suivant;
 precedent->suivant = nouveau;
 if (precedent == li->dernier) li->dernier = nouveau;
 li->nbElt++;
 }
}

Figure 23

Insertion de nouveau (référençant objet) dans la liste li,
après l’élément pointé par precedent.

2.3.2.c Ajout en fin de liste

L’ajout en fin de liste se fait en tête de liste si la liste est vide ou après le dernier
élément si la liste contient déjà un élément. La fonction précédente peut donc être
utilisée pour définir cette fonction. Le pointeur sur le dernier élément conservé dans
la tête de liste permet une insertion en fin de liste rapide sans parcours de la liste pour
se positionner sur le dernier élément. Si la liste est vide, li->dernier vaut NULL.

// insérer un objet en fin de la liste li
void

insererEnFinDeListe

 (Liste* li, Objet* objet) {
 insererApres (li, li->dernier, objet);
}

li

//

li

//

nouveau

precedent

C

CBA

B

objet

A

03Chap_02 Page 42 Samedi, 17. janvier 2004 10:36 10

2.3 •

Module de gestion des listes

43

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

2.3.3 Les fonctions de parcours de liste

Les fonctions suivantes permettent à l’utilisateur du module

liste

 de parcourir une
liste en faisant abstraction des structures de données sous-jacentes. Ces fonctions
s’apparentent à celles utilisées pour parcourir séquentiellement les fichiers. L’utili-
sateur a besoin de se positionner en début de liste, de demander l’objet suivant de la
liste, et de savoir s’il a atteint la fin de la liste. L’utilisateur n’accède pas aux champs
de la structure de la tête de liste (premier, dernier, courant), ni au champ suivant des
éléments.

La fonction

ouvrirListe()

 permet de se positionner sur le premier élément de la
liste

li

.

// se positionner sur le premier élément de la liste li
void

ouvrirListe

 (Liste* li) {
 li->courant = li->premier;
}

La fonction booléenne finListe() indique si on a atteint la fin de la liste li ouverte
préalablement par ouvrirListe().

// a-t-on atteint la fin de la liste li ?
booleen finListe (Liste* li) {
 return li->courant==NULL;
}

La fonction locale elementCourant() fournit un pointeur sur l’élément courant de
la liste li et se positionne sur l’élément suivant qui devient l’élément courant.

// fournir un pointeur sur l'élément courant de la liste li,
// et se positionner sur le suivant qui devient le courant
static Element* elementCourant (Liste* li) {
 Element* ptc = li->courant;
 if (li->courant != NULL) {
 li->courant = li->courant->suivant;
 }
 return ptc;
}

La fonction objetCourant() fournit un pointeur sur l’objet courant de la liste li.
Chaque appel déplace l’objet courant sur le suivant.

// fournir un pointeur sur l'objet courant de la liste li,
// et se positionner sur le suivant qui devient le courant
Objet* objetCourant (Liste* li) {
 Element* ptc = elementCourant (li);
 return ptc==NULL ? NULL : ptc->reference;
}

La fonction listerListe(Liste* li) effectue un parcours complet de la liste en
appliquant la fonction toString() spécifique des objets de l’application et définie
dans la tête de liste lors de la création de la liste (voir creerListe()).

03Chap_02 Page 43 Samedi, 17. janvier 2004 10:36 10

44 2 • Les listes

void listerListe (Liste* li) {
 ouvrirListe (li);
 while (!finListe (li)) {
 Objet* objet = objetCourant (li);
 printf ("%s\n", li->toString (objet));
 }
}

La fonction listerListe(Liste* li, void (*f) (Objet*))) effectue un parcours
complet de la liste en appliquant la fonction f() donnée en paramètre pour chacun
des éléments de la liste. La fonction f() est spécifique de l’application. Par contre la
façon de faire le parcours est, elle, indépendante de cette application.

// lister la liste li;
// f est une fonction passée en paramètre
// et ayant un pointeur de type quelconque.
// Ceci s'apparente aux méthodes virtuelles en PO.
void listerListe (Liste* li, void (*f) (Objet*)) {
 ouvrirListe (li);
 while (!finListe (li)) {
 Objet* objet = objetCourant (li);
 f (objet); // appliquer la fonction f() à objet
 }
}

De manière assez similaire, la fonction chercherUnObjet() effectue un parcours
de liste en comparant l’objet cherché et l’objet référencé par l’élément courant de la
liste. Cette comparaison est dépendante de l’application et confiée à la fonction de
comparaison de deux objets définie lors de la création de la liste (voir creerListe()).
La fonction de comparaison retourne 0 en cas d’égalité des deux objets. objet-
Cherche doit contenir les caractéristiques (la clé) permettant (à la fonction de
comparaison) d’identifier l’objet cherché dans la liste li.

// fournir un pointeur sur l'objet "objetCherche" de la liste li;
// NULL si l'objet n'existe pas
Objet* chercherUnObjet (Liste* li, Objet* objetCherche) {
 booleen trouve = faux;
 Objet* objet; // pointeur courant
 ouvrirListe (li);
 while (!finListe (li) && !trouve) {
 objet = objetCourant (li);
 trouve = li->comparer (objetCherche, objet) == 0;
 }
 return trouve ? objet : NULL;
}

2.3.4 Retrait d’un objet

2.3.4.a Retrait en tête de liste

Il s’agit de retirer l’objet en tête de la liste pointée par li, et de fournir un pointeur sur
l’objet extrait. Si la liste est vide, on ne peut retirer aucun élément, la fonction
retourne NULL pour indiquer un échec.

03Chap_02 Page 44 Samedi, 17. janvier 2004 10:36 10

2.3 • Module de gestion des listes 45
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// extraire l'objet en tête de la liste li
Objet* extraireEnTeteDeListe (Liste* li) {
 Element* extrait = li->premier;
 if (!listeVide(li)) {
 li->premier = li->premier->suivant;
 if (li->premier==NULL) li->dernier=NULL; // Liste devenue vide
 li->nbElt--;
 }
 return extrait != NULL ? extrait->reference : NULL;
}

Figure 24 Retrait de l’objet en tête de la liste pointée par li.

2.3.4.b Retrait de l’élément qui suit l’élément précédent (fonction locale)

Pour extraire un élément d’une liste, il faut avoir un pointeur sur l’élément qui
précède puisqu’après extraction, le champ suivant du précédent doit contenir un
pointeur sur le suivant de l’élément à extraire. Si precedent vaut NULL, il s’agit
d’une extraction en tête de liste. Si on extrait le dernier élément de la liste, il faut
modifier le pointeur sur le dernier qui pointe, après extraction, sur precedent. La
fonction retourne un pointeur sur l’élément extrait (qui peut par la suite être détruit,
ou réinséré dans une autre liste).

// Extraire l'objet de li se trouvant après l'élément precedent;
// si precedent vaut NULL, on extrait le premier de la liste;
// retourne NULL si l'objet à extraire n'existe pas
static Objet* extraireApres (Liste* li, Element* precedent) {
 if (precedent == NULL) {
 return extraireEnTeteDeListe (li);
 } else {
 Element* extrait = precedent->suivant;
 if (extrait != NULL) {
 precedent->suivant = extrait->suivant;
 if (extrait == li->dernier) li->dernier = precedent;
 li->nbElt--;
 }

Avant : li = (C, A, B)

Après : li = (A, B)

li

/

C A B

//

li A B

C

/

03Chap_02 Page 45 Samedi, 17. janvier 2004 10:36 10

46 2 • Les listes

 return extrait != NULL ? extrait->reference : NULL;
 }
}

Remarque : pour extraire un élément d’une liste connaissant uniquement un
pointeur sur l’élément à extraire et si ce n’est pas le dernier élément de la liste,
on peut permuter l’élément à extraire et son suivant, et extraire le suivant.

2.3.4.c Retrait de l’objet en fin de liste

Pour extraire le dernier élément d’une liste, il faut connaître l’avant-dernier pour en
modifier le pointeur suivant. Sauf si la liste ne contient aucun, ou un seul élément, il
faut faire un parcours de la liste pour repérer le précédent du dernier.

// extraire l'objet en fin de la liste li
Objet* extraireEnFinDeListe (Liste* li) {
 Objet* extrait;
 if (listeVide(li)) {
 extrait = NULL;
 } else if (li->premier == li->dernier) { // un seul élément
 extrait = extraireEnTeteDeListe (li);
 } else {
 Element* ptc = li->premier;
 while (ptc->suivant != li->dernier) ptc = ptc->suivant;
 extrait = extraireApres (li, ptc);
 }
 return extrait;
}

2.3.4.d Retrait d’un objet à partir de sa référence

La fonction extraireUnObjet() extrait un objet connaissant un pointeur sur cet
objet :

// extraire de la liste li, l'objet pointé par objet
booleen extraireUnObjet (Liste* li, Objet* objet) {
 Element* precedent = NULL;
 Element* ptc = NULL;

 // repère l'élément précédent
 booleen trouve = faux;
 ouvrirListe (li);
 while (!finListe (li) && !trouve) {
 precedent = ptc;
 ptc = elementCourant (li);
 trouve = (ptc->reference == objet) ? vrai : faux;
 }
 if (!trouve) return faux;

 Objet* extrait = extraireApres (li, precedent);
 return vrai;
}

03Chap_02 Page 46 Samedi, 17. janvier 2004 10:36 10

2.3 • Module de gestion des listes 47
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.3.5 Destruction de listes

Pour détruire une liste, il faut effectuer un parcours de liste avec destruction de
chaque élément. La tête de liste est réinitialisée. Il faut se positionner en début de
liste, et tant qu’on n’a pas atteint la fin de la liste, il faut prendre l’élément courant et
le détruire. Le pointeur sur le prochain élément est conservé dans le champ courant
de la tête de liste.

// parcours de liste avec destruction de chaque élément
void detruireListe (Liste* li) {
 ouvrirListe (li);
 while (!finListe (li)) {
 Element* ptc = elementCourant (li);
 //free (ptc->reference); //si on veut détruire les objets de la liste
 free (ptc);
 }
 initListe (li);
}

2.3.6 Recopie de listes

La fonction void recopierListe (Liste* l1, Liste* l2) ; permet de transférer la liste l2
dans la liste l1 en réinitialisant la liste l2 qui est vide.

// recopie l2 dans l1 et initialise l2
void recopierListe (Liste* l1, Liste* l2) {
 detruireListe (l1);
 *l1 = *l2; // on recopie les têtes de listes
 initListe (l2);
}

2.3.7 Insertion dans une liste ordonnée

L’insertion dans une liste ordonnée se fait toujours suivant le même algorithme.
Cependant la comparaison de l’objet à insérer par rapport aux objets déjà dans la liste
dépend de l’objet de l’application. La comparaison peut porter sur des entiers, des
réels, des chaînes de caractères, ou même sur plusieurs champs (nom et prénom par
exemple). La fonction locale enOrdre() suivante indique si objet1 et objet2 sont en
ordre (croissant si ordreCroissant est vrai, décroissant sinon). Elle utilise la fonction
comparer() qui fournit une valeur <0 si objet1 < objet2, égale à 0 si objet1 = objet2,
et supérieure à 0 sinon.

// objet1 et objet2 sont-ils en ordre ?
static booleen enOrdre (Objet* objet1, Objet* objet2, booleen ordreCroissant,

int (*comparer) (Objet*, Objet*)) {
 booleen ordre = comparer (objet1, objet2) < 0;
 if (!ordreCroissant) ordre = !ordre;
 return ordre;
}

03Chap_02 Page 47 Samedi, 17. janvier 2004 10:36 10

48 2 • Les listes

Ainsi :
enOrdre de 10 et 20 en ordre CROISSANT vrai
enOrdre de 10 et 20 en ordre DECROISSANT faux
enOrdre de "Dupond" et "Duval" en ordre CROISSANT vrai

La fonction
void insererEnOrdre (Liste* li, Objet* objet);

insère dans la liste li, l’objet pointé par objet suivant le type croissant ou décrois-
sant de la liste défini lors de la création de la liste (voir creerListe()). Plusieurs cas
sont à envisager. Si la liste li est vide, il faut insérer objet en tête de la liste. Si objet
doit être inséré avant le premier élément, il s’agit également d’une insertion en tête
de liste. Sinon, il faut rechercher un point d’insertion tel que objet et l’objet de
l’élément courant de la liste soient en ordre tout en gardant un pointeur sur l’élément
précédent. Si on atteint la fin de la liste sans trouver ce point d’insertion, il s’agit
d’une insertion en fin de liste.

Cette fonction est indépendante du type des objets de l’application, le test étant
reporté dans la fonction enOrdre(). Des exemples d’utilisation sont donnés dans les
applications qui suivent.

// la fonction comparer
// dépend du type de l'objet inséré dans la liste
void insererEnOrdre (Liste* li, Objet* objet) {
 if (listeVide (li)) { // liste vide
 insererEnTeteDeListe (li, objet);
 //printf ("insertion dans liste vide\n");
 } else {
 Element* ptc = li->premier;
 if (enOrdre (objet, ptc->reference, li->type==1, li->comparer)) {
 // insertion avant le premier élément
 //printf ("insertion en tête de liste non vide\n");
 insererEnTeteDeListe (li, objet);
 } else { // insertion en milieu ou fin de liste
 //printf ("insertion en milieu ou fin de liste non vide\n");
 booleen trouve = faux;
 Element* prec = NULL;
 while (ptc != NULL && !trouve) {
 prec = ptc;
 ptc = ptc->suivant;
 if (ptc!=NULL) trouve = enOrdre (objet, ptc->reference,

 li->type==1, li->comparer);
 }
 // insertion en milieu de liste ou fin de liste
 insererApres (li, prec, objet);
 }
 }
}

2.3.8 Le module de gestion de listes

Le module liste (voir Figure 16, page 25) facilite la gestion des listes d’objets. Il se
compose d’un fichier d’en-tête liste.h décrivant l’interface du module et du corps
liste.cpp du module.

03Chap_02 Page 48 Samedi, 17. janvier 2004 10:36 10

2.3 • Module de gestion des listes 49
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.3.8.a Le fichier d’en-tête des listes simples

Le fichier d’en-tête liste.h contient les définitions des types Objet et Liste, et les
prototypes des fonctions du module de gestion de listes. Il doit être inclus dans
chaque application traitant des listes. Objet* (équivalent à void*) indique un poin-
teur (sans type) sur un objet dépendant de l’application. L’utilisateur du module ne
gère que des objets. Il n’a pas connaissance de la façon dont ceux-ci sont mémorisés
dans la liste. Il n’utilise pas le type Element, ni les fonctions traitant un Element.
Celles-ci sont locales au module liste et n’apparaissent que dans liste.cpp.

// liste.h

#ifndef LISTE_H
#define LISTE_H

#define faux 0
#define vrai 1
typedef int booleen;

typedef void Objet;

#define NONORDONNE 0
#define CROISSANT 1
#define DECROISSANT 2

// un élément de la liste
typedef struct element {
 Objet* reference; // référence un objet (de l'application)
 struct element* suivant; // élément suivant de la liste
} Element;

// le type Liste
typedef struct {
 Element* premier; // premier élément de la liste
 Element* dernier; // dernier élément de la liste
 Element* courant; // élément en cours de traitement (parcours de liste)
 int nbElt; // nombre d'éléments dans la liste
 int type; // 0:simple, 1:croissant, 2:décroissant
 int (*comparer) (Objet*, Objet*);
 char* (*toString) (Objet*);
} Liste;

void initListe (Liste* li, int type,
char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*));
void initListe (Liste* li);
Liste* creerListe (int type, char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*));
Liste* creerListe (int type);
Liste* creerListe ();

booleen listeVide (Liste* li);
int nbElement (Liste* li);

void insererEnTeteDeListe (Liste* li, Objet* objet);
void insererEnFinDeListe (Liste* li, Objet* objet);

03Chap_02 Page 49 Samedi, 17. janvier 2004 10:36 10

50 2 • Les listes

// parcours de liste
void ouvrirListe (Liste* li);
booleen finListe (Liste* li);
Objet* objetCourant (Liste* li);
void listerListe (Liste* li);
void listerListe (Liste* li, void (*f) (Objet*));
Objet* chercherUnObjet (Liste* li, Objet* objetCherche);

Objet* extraireEnTeteDeListe (Liste* li);
Objet* extraireEnFinDeListe (Liste* li);
booleen extraireUnObjet (Liste* li, Objet* objet);

void detruireListe (Liste* li);
void recopierListe (Liste* l1, Liste* l2);

// LISTE ORDONNEE
void insererEnOrdre (Liste* li, Objet* objet);

#endif

Remarque : La fonction en paramètre toString() doit être définie si on utilise
la fonction listerListe (Liste*).

De même, la fonction en paramètre comparer() doit être définie si on utilise
les fonctions chercherUnObjet() ou insererEnOrdre().

2.3.8.b Le module des listes simples

Le fichier liste.cpp contient les corps des fonctions dont les prototypes sont donnés
dans liste.h. Le corps de ces fonctions a été vu dans les paragraphes précédents. Le
module se présente donc comme suit :

/* liste.cpp
 Ce module de gestion de listes est très général
 et indépendant des applications. Il gère des listes
 simples d'éléments avec tête de liste. */

#include <stdlib.h>

#include "liste.h"

puis ensuite, le corps des fonctions définies dans liste.h : initListe(), creerListe(),
listeVide(), ..., detruireListe(), recopierListe(), insererEnOrdre(),

et les fonctions locales au module et déclarées static suivantes. Le corps de ces
fonctions a été vu dans les paragraphes précédents.

// locales au module
static Element* creerElement ();
static void insererApres (Liste* li, Element* precedent,

Objet* objet);
static Objet* extraireApres (Liste* li, Element* precedent);
static Element* elementCourant (Liste* li);
static booleen enOrdre (Objet* objet1, Objet* objet2,

booleen ordreCroissant,
int (*comparer) (Objet*, Objet*)) ;

03Chap_02 Page 50 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 51
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.4 EXEMPLES D’APPLICATION

2.4.1 Le type Personne

Le type Personne définit une structure (un objet) comportant un nom et un prénom.
Quelques fonctions utilisant cette structure sont définies ci-dessous. Elles permet-
tent de créer et d’initialiser une structure (un objet) de type Personne, d’écrire les
caractéristiques d’une personne et de comparer deux personnes.

Le fichier d’en-tête mdtypes.h contient la déclaration du type Personne :

/* mdtypes.h */

#ifndef MDTYPES_H
#define MDTYPES_H

typedef char ch15 [16];
typedef void Objet;

// une personne
typedef struct {
 ch15 nom;
 ch15 prenom;
} Personne;

Personne* creerPersonne (char* nom, char* prenom);
Personne* creerPersonne ();
void ecrirePersonne (Objet* objet);
char* toStringPersonne (Objet* objet);
int comparerPersonne (Objet* objet1, Objet* objet2);

#endif

Le fichier des fonctions mdtypes.cpp :

/* mdtypes.cpp différents types */

#include <stdio.h>
#include <string.h> // strcpy, strcmp
#include "mdtypes.h"

// constructeur de Personne
Personne* creerPersonne (char* nom, char* prenom) {
 Personne* p = new Personne();
 strcpy (p->nom, nom);
 strcpy (p->prenom, prenom);
 return p;
}

// lecture du nom et prénom
Personne* creerPersonne () {
 printf ("Nom de la personne à créer ? ");
 ch15 nom; scanf ("%s", nom);
 printf ("Prénom de la personne à créer ? ");
 ch15 prenom; scanf ("%s", prenom);
 Personne* nouveau = creerPersonne (nom, prenom);
 return nouveau;
}

03Chap_02 Page 51 Samedi, 17. janvier 2004 10:36 10

52 2 • Les listes

// écrire les caractéristiques d'une personne
void ecrirePersonne (Personne* p) {
 printf ("%s %s\n", p->nom, p->prenom);
}

// fournir les caractéristiques d'une personne
char* toStringPersonne (Personne* p) {
 char* message = (char*) malloc (30); // test à faire
 sprintf (message, "%s %s", p->nom, p->prenom);
 return message;
}

// comparer deux personnes
// fournir <0 si p1 < p2; 0 si p1=p2; >0 sinon
int comparerPersonne (Personne* p1, Personne* p2) {
 return strcmp (p1->nom, p2->nom);
}

void ecrirePersonne (Objet* objet) {
 ecrirePersonne ((Personne*) objet);
}

char* toStringPersonne (Objet* objet) {
 return toStringPersonne ((Personne*) objet);
}

int comparerPersonne (Objet* objet1, Objet* objet2) {
 return comparerPersonne ((Personne*)objet1, (Personne*)objet2);
}

2.4.2 Liste de personnes

Il s’agit de gérer une liste de personnes. On suppose qu’il y a de nombreux départs
et arrivées de personnes. L’information étant volatile, l’utilisation d’une liste permet
de résoudre le problème simplement sans réservation inutile d’espace mémoire.
L’inclusion du fichier d’en-tête liste.h fournit à l’utilisateur, la déclaration du type
Liste et les prototypes des fonctions. L’inclusion du fichier "mdtypes.h" définit le
type Personne et les fonctions correspondantes.

/* pplistpers.cpp programme principal de liste de personnes
 Utilisation du module de gestion de listes;
 Application à la gestion d'une liste de personnes */

#include <stdio.h>
#include "liste.h"
#include "mdtypes.h"

typedef Liste ListePersonnes; // un équivalent plus mnémonique

Le menu et le programme principal suivants permettent l’insertion d’une nouvelle
personne en tête ou en fin de liste, l’extraction de la personne en tête ou en fin de
liste ou d’une personne dont on fournit le nom, l’écriture de la liste des personnes, la
recherche d’une personne à partir de son nom et la destruction de la liste. On peut
également initialiser une liste ordonnée à partir d’un fichier dont on fournit le nom ;
l’insertion peut se faire en ordre croissant ou décroissant.

int menu () {
 printf ("\n\nGESTION D'UNE LISTE DE PERSONNES\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Insertion en tête de liste\n");

03Chap_02 Page 52 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 53
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 printf ("2 - Insertion en fin de liste\n");
 printf ("3 - Retrait en tête de liste\n");
 printf ("4 - Retrait en fin de liste\n");
 printf ("5 - Retrait d'un élément à partir de son nom\n");
 printf ("6 - Parcours de la liste\n");
 printf ("7 - Recherche d'un élément à partir de son nom\n");
 printf ("8 - Insertion ordonnée à partir d'un fichier\n");
 printf ("9 - Destruction de la liste\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod);
 printf ("\n");

 return cod;
}

void main () {
 Liste* lp = creerListe (0, toStringPersonne, comparerPersonne);
 booleen fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0:
 fini = vrai;
 break;

 case 1 : {
 Personne* nouveau = creerPersonne();
 insererEnTeteDeListe (lp, nouveau);
 } break;

 case 2 : {
 Personne* nouveau = creerPersonne();
 insererEnFinDeListe (lp, nouveau);
 } break;

 case 3 : {
 Personne* extrait = (Personne*) extraireEnTeteDeListe (lp);
 if (extrait != NULL) {
 printf ("Élément %s %s extrait en tête de liste",
 extrait->nom, extrait->prenom);
 } else {
 printf ("Liste vide");
 }
 } break;

 case 4 : {
 Personne* extrait = (Personne*) extraireEnFinDeListe (lp);
 if (extrait != NULL) {
 printf ("Élément %s %s extrait en fin de liste",
 extrait->nom, extrait->prenom);
 } else {
 printf ("Liste vide");
 }
 } break;

 case 5 : {
 printf ("Nom de la personne à extraire ? ");
 ch15 nom; scanf ("%s", nom);

03Chap_02 Page 53 Samedi, 17. janvier 2004 10:36 10

54 2 • Les listes

 Personne* cherche = creerPersonne (nom, "?");
 Personne* pp = (Personne*) chercherUnObjet (lp, cherche);
 booleen extrait = extraireUnObjet (lp, pp);
 if (extrait) {
 printf ("Élément %s %s extrait de la liste", pp->nom, pp->prenom);
 }
 } break;

 case 6:
 listerListe (lp);
 break;

 case 7 : {
 printf ("Nom de la personne recherchée ? ");
 ch15 nom; scanf ("%s", nom);
 Personne* cherche = creerPersonne (nom, "?");
 Personne* pp = (Personne*) chercherUnObjet (lp, cherche);
 if (pp != NULL) {
 printf ("%s %s trouvée dans la liste\n", pp->nom, pp->prenom);
 } else {
 printf ("%s inconnue dans la liste\n", nom);
 }
 } break;

 case 8:{
 printf ("1 - Insertion en ordre croissant\n");
 printf ("2 - Insertion en ordre décroissant\n");
 printf ("\nVotre choix ? ");
 int cd; scanf ("%d", &cd);

 FILE* fe = fopen ("noms.dat", "r");
 if (fe==NULL) {
 printf ("Erreur ouverture de noms.dat\n");
 } else {
 lp = creerListe (cd, toStringPersonne, comparerPersonne);
 while (!feof (fe)) {
 ch15 nom; ch15 prenom;
 fscanf (fe, "%15s%15s", nom, prenom);
 Personne* nouveau = creerPersonne (nom, prenom);
 insererEnOrdre (lp, nouveau);
 }
 fclose (fe);
 listerListe (lp);
 }
 } break;

 case 9:
 detruireListe (lp);
 break;
 } // switch
 } // while
}

Exemple d’exécution, le fichier noms.dat contient les informations suivantes :
Duval Albert
Dupont Julien
Dupond Michèle
Duvallon Jacqueline
Duroc René

03Chap_02 Page 54 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 55
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

GESTION D'UNE LISTE DE PERSONNES

0 - Fin
1 - Insertion en tête de liste
2 - Insertion en fin de liste
3 - Retrait en tête de liste
4 - Retrait en fin de liste
5 - Retrait d'un élément à partir de son nom
6 - Parcours de la liste
7 - Recherche d'un élément à partir de son nom
8 - Insertion ordonnée à partir d'un fichier
9 - Destruction de la liste

Votre choix ? 8

1 - Insertion en ordre croissant
2 - Insertion en ordre décroissant

Votre choix ? 1
Dupond Michèle
Dupont Julien
Duroc René
Duval Albert
Duvallon Jacqueline

2.4.3 Les polynômes

Il s’agit de mémoriser des polynômes d’une variable réelle et de réaliser des opéra-
tions sur ces polynômes. Le nombre de monômes est variable, aussi une allocation
dynamique d’espace mémoire s’impose. La gestion en liste facilite l’ajout ou la
suppression de monômes pour un polynôme donné.

Les polynômes suivants :
A = 3x5 + 2x3 + 1
B = 6x5 - 5x4 - 2x3 + 8 x2

peuvent être mémorisés comme indiqué sur la Figure 26.

coefficient exposant

Figure 25 Le type Monome.

03Chap_02 Page 55 Samedi, 17. janvier 2004 10:36 10

56 2 • Les listes

On crée un module polynome en définissant l’interface polynome.h du module
(voir Figure 16, page 25). Le type Monome est une structure (un objet) contenant un
coefficient réel et un exposant entier. Le type Polynome correspond au type Liste
puisqu’on utilise une liste ordonnée pour mémoriser le polynôme. Les fonctions du
module polynôme permettent de créer un monôme, d’insérer un monôme dans un
polynôme, de lister un polynôme et de calculer la valeur d’un polynôme pour une
valeur de x donnée.

2.4.3.a Le fichier d’en-tête des polynômes

Le fichier d’en-tête polynome.h décrit l’interface du module des polynômes.

// polynome.h

#ifndef POLYNOME_H
#define POLYNOME_H

#include "liste.h"

typedef struct {
 double coefficient;
 int exposant;
} Monome;

typedef Liste Polynome;

Monome* creerMonome (double coefficient, int exposant);
Monome* creerMonome ();
Polynome* creerPolynome ();
void insererEnOrdre (Polynome* po, Monome* nouveau);
void listerPolynome (Polynome* po);
double valeurPolynome (Polynome* po, double x);
Monome* chercherUnMonome (Polynome* po, Monome* nouveau);
booleen extraireMonome (Polynome* po, Monome* cherche);
void detruirePolynome (Polynome* po);
#endif

B

/

/

A

3 5 2 3 1 0

6 5 –5 4 –2 3 8 2

Figure 26 Mémorisation de polynômes sous forme de listes.

03Chap_02 Page 56 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 57
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.4.3.b Le module des polynômes

Le fichier polynome.cpp contient le corps des fonctions définies ci-dessus. listerPo-
lynome(), valeurPolynome() sont des algorithmes de parcours de listes.

/* polynome.cpp
 Utilisation du module de gestion des listes */

#include <stdio.h>
#include <stdlib.h> // exit
#include "polynome.h"

// LES MONOMES

Monome* creerMonome (double coefficient, int exposant) {
 Monome* nouveau = new Monome();
 nouveau->coefficient = coefficient;
 nouveau->exposant = exposant;
 return nouveau;
}

// créer un monôme par lecture du coefficient et de l'exposant
Monome* creerMonome () {
 double coefficient;
 int exposant;
 printf ("Coefficient ? "); scanf ("%lf", &coefficient);
 printf ("Puissance ? "); scanf ("%d", &exposant);
 return creerMonome (coefficient, exposant);
}

// écrire un monôme : +3.00 x**5 par exemple
static void ecrireMonome (Monome* monome) {
 printf (" %+.2f x**%d ", monome->coefficient, monome->exposant);
}

// comparer deux monômes m1 et m2
static int comparerMonome (Monome* m1, Monome* m2) {
 if (m1->exposant < m2->exposant) {
 return -1;
 } else if (m1->exposant == m2->exposant) {
 return 0;
 } else {
 return 1;
 }
}

// écrire un objet monôme, pour listerPolynoome()
static void ecrireMonome (Objet* objet) {
 ecrireMonome ((Monome*) objet);
}

static int comparerMonome (Objet* objet1, Objet* objet2) {
 return comparerMonome ((Monome*)objet1, (Monome*)objet2);
}

Polynome* creerPolynome () {
 return creerListe (DECROISSANT, NULL, comparerMonome);
}

void insererEnOrdre (Polynome* po, Monome* nouveau) {
 // sans (Objet*), le compilateur considère un appel récursif
 insererEnOrdre (po, (Objet*) nouveau); // du module liste
}

03Chap_02 Page 57 Samedi, 17. janvier 2004 10:36 10

58 2 • Les listes

// puissance nième d'un nombre réel x (n entier >=0)
// voir en 1.2.5 page 10
static double puissance (double x, int n) {
 double resu;
 if (n==0) {
 resu = 1.0;
 } else {
 resu = puissance (x, n/2);
 if (n%2 == 0) {
 resu = resu*resu; // n pair
 } else {
 resu = resu*resu*x; // n impair
 }
 }
 return resu;
}

// LES POLYNOMES

// lister le polynôme po
void listerPolynome (Polynome* po) {
 listerListe (po, ecrireMonome);
}

// valeur du polynôme po pour un x donné
double valeurPolynome (Polynome* po, double x) {
 Liste* li = po;

 double resu = 0;
 if (listeVide (li)) {
 printf ("Polynôme nul\n"); exit (1);
 } else {
 ouvrirListe (li);
 while (!finListe (li)) {
 Monome* ptc = (Monome*) objetCourant (li);
 resu += ptc->coefficient*puissance(x, ptc->exposant);
 }
 }
 return resu;
}

Monome* chercherUnMonome (Polynome* po, Monome* nouveau) {
 return (Monome*) chercherUnObjet (po, nouveau);
}

booleen extraireMonome (Polynome* po, Monome* objet) {
 return extraireUnObjet (po, objet);
}

void detruirePolynome (Polynome* po) {
 detruireListe (po);
}

2.4.3.c Le programme principal des polynômes

Le menu et le programme principal suivants permettent de définir un polynôme (une
liste ordonnée), d’y insérer des monômes en ordre décroissant des exposants, de
lister le polynôme, de calculer la valeur du polynôme pour une valeur donnée, de
supprimer un monôme à partir de son exposant ou de détruire la liste du polynôme.

03Chap_02 Page 58 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 59
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

/* pppolynome.cpp programme principal des polynômes
 Utilisation du module de gestion des listes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "polynome.h"

int menu () {
 printf ("\n\nGESTION DE POLYNOMES\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Insertion d'un monôme\n");
 printf ("2 - Écriture du polynôme\n");
 printf ("3 - Valeur du pôlynome pour un x donné\n");
 printf ("4 - Retrait d'un monôme à partir de son exposant\n");
 printf ("5 - Destruction de la liste\n");

 printf ("\nVotre choix ? ");
 int cod; scanf ("%d", &cod);
 printf ("\n");
 return cod;
}

void main () {
 Polynome* po = creerPolynome();
 booleen fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0:
 fini = vrai;
 break;

 case 1 : {
 Monome* nouveau = creerMonome();
 insererEnOrdre (po, nouveau);
 } break;

 case 2 : {
 listerPolynome (po);
 } break;

 case 3 : {
 printf ("A(x) = "); listerPolynome (po);
 printf ("\nValeur de x ? ");
 double x; scanf ("%lf", &x);
 printf ("A (%.2f) = %.2f\n", x, valeurPolynome (po, x));
 } break;

 case 4 : {
 printf ("Exposant du monôme à extraire ? ");
 int exposant; scanf ("%d", &exposant);
 Monome* cherche = creerMonome (0, exposant);
 Monome* ptc = chercherUnMonome (po, cherche);
 booleen extrait = extraireMonome (po, ptc);
 if (extrait) {
 printf ("extrait le monôme%.2f x** %d\n",
 ptc->coefficient, ptc->exposant);
 } else {
 printf ("pas de monôme ayant cet exposant\n");

03Chap_02 Page 59 Samedi, 17. janvier 2004 10:36 10

60 2 • Les listes

 }
 } break;

 case 5 :
 detruirePolynome (po);
 break;
 } // switch
 } // while
}

L’encadré suivant est un exemple d’exécution de pppolynome.cpp pour la créa-
tion du polynôme ordonné suivant les puissances décroissantes : A (x) = 3x5 + 2x3 +
1, et pour le calcul de sa valeur pour x=2.

GESTION DE POLYNOMES

0 - Fin
1 - Insertion d'un monôme
2 - Écriture du polynôme
3 - Valeur du polynôme pour un x donné
4 - Retrait d'un monôme à partir de son exposant
5 - Destruction de la liste

Votre choix ? 3

A(x) = +3.00 x**5 +2.00 x**3 +1.00 x**0
Valeur de x ? 2
A (2.00) = 113.00

Exercice 7 - Polynômes d’une variable réelle (lecture, addition)

Compléter les fonctions du polynôme du § 2.4.3.A, en créant un nouveau fichier
d’en-tête polynome2.h comme suit :

/* polynome2.h */

#include <stdio.h>
#include "polynome.h"

Polynome* lirePolynome (FILE* fe);
Polynome* addPolynome (Polynome* a, Polynome* b);
Polynome* sousPolynome (Polynome* a, Polynome* b);

Écrire les fonctions suivantes (fichier polynome2.cpp) :

• Polynome* lirePolynome (FILE* fe) ; qui crée un polynôme en lisant les coeffi-
cients et les exposants du polynôme dans le fichier fe.

• Polynome* addPolynome (Polynome* a, Polynome* b) ; qui fournit le polynôme
résultant de l’addition des polynômes a et b.

03Chap_02 Page 60 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 61
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

• Polynome* sousPolynome (Polynome* a, Polynome* b) ; qui fournit le polynôme
résultant de la soustraction des polynômes a et b.

Écrire un programme de test de lirePolynome(), addPolynome() et sousPoly-
nome().

2.4.4 Les systèmes experts

2.4.4.a Introduction

Les systèmes experts sont des logiciels fournissant dans un domaine particulier les
mêmes conclusions qu’un homme expert en ce domaine : fournir un diagnostic
médical à partir d’une liste de symptômes, ou classer des espèces animales ou végé-
tales à partir d’observations par exemple.

Un système expert doit donc :

• enregistrer les faits initiaux (les symptômes d’un malade, les observations sur
l’animal en cours d’examen),

• et appliquer des règles générales pour en déduire de nouveaux faits non connus
initialement.

Cet exemple est donné pour illustrer l’utilisation des listes, et non pour expliquer
les systèmes experts en détail. Les règles mentionnées ci-dessous sont données à
titre indicatif, sans prétention quant au domaine de l’expert, mais sur deux exemples
de règles pour montrer l’indépendance du logiciel d’inférence (de déduction) de
règles avec le domaine traité. Ce logiciel de déduction de nouveaux faits est habi-
tuellement appelé moteur d’inférence.

Figure 27 Principe de la mémorisation des faits et des règles dans un système expert.
Voir le détail de l’implémentation sur les figures suivantes.

La première liste de la Figure 27 contient les faits initiaux 1, 2, 3, 4, 5. La seconde
liste mémorise les règles A, B, C, D. Chaque règle est constituée de son nom, d’une

3 / 6 / 1

7

8 /

9 / 5

10 /

11 / 1

2 /

10 /

A B C D /

1 2 3 4 5 /

03Chap_02 Page 61 Samedi, 17. janvier 2004 10:36 10

62 2 • Les listes

liste d’hypothèses (1, 7, 8 pour la règle B) et d’une liste de conclusions (9 pour la
règle B). Il pourrait y avoir plusieurs conclusions. Les faits hypothèses et conclu-
sions sont indiqués par leur numéro. Les deux tableaux ci-dessous permettent de
passer à une application plus concrète et font correspondre un libellé à un numéro.
Le premier tableau fait référence à un système expert de diagnostic médical, le
second à une classification d’animaux.

La règle B pourrait se formuler comme suit :

B – si
 l’animal allaite ses petits
 et l’animal est couvert de poils
 et l’animal a quatre pattes
alors
 l’animal est un mammifère

À partir des faits initiaux 1, 2, 3, 4, 5, et en appliquant les règles, on peut ajouter
pour la règle A dont l’hypothèse 3 est donnée comme fait initial, le fait conclusion 6.
La règle B ne s’applique pas, seule l’hypothèse 1 est vérifiée. La règle C ne
s’applique pas, seule l’hypothèse 5 est vérifiée. La règle D s’applique, car les hypo-
thèses 1 et 2 sont données comme faits initiaux. Le fait 10 est ajouté à la liste de
faits. Il faut refaire un parcours des règles et voir si, suite à l’adjonction de nouveaux
faits, de nouvelles règles ne sont pas vérifiées.

C’est le cas de la règle C qui est vérifiée au deuxième passage car le fait 10 a été
ajouté par la règle D. Le fait 11 est donc ajouté. Un nouveau parcours des règles
n’entraîne aucun ajout. Cette façon de procéder s’appelle le chaînage avant. Si les
règles sont nombreuses, on risque de déduire de nombreux faits nouveaux, difficile-
ment exploitables.

Une autre façon de procéder consiste à demander si le système ne peut pas
démontrer un fait. Sur la Figure 27, peut-on démontrer le fait 11 ? Si le fait 11 n’est
pas donné comme fait initial, il faut trouver une règle qui a 11 pour conclusion, et

1 a de la fièvre 1 allaite ses petits

2 a le nez bouché 2 a des crocs développés

3 a mal au ventre 3 vit en compagnie de l’homme

4 a des frissons 4 grimpe aux arbres

5 a la gorge rouge 5 a des griffes acérées

6 a l’appendicite 6 est domestiqué

7 a mal aux oreilles 7 est couvert de poils

8 a mal à la gorge 8 a quatre pattes

9 a les oreillons 9 est un mammifère

10 a un rhume 10 est un carnivore

11 a la grippe 11 est un chat

03Chap_02 Page 62 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 63
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

essayer de démontrer ses hypothèses. Pour démontrer 11, il faut démontrer 5 et 10
(règle C). 5 est un fait initial, reste à démontrer 10. Pour démontrer 10 (règle D), il
faut démontrer 1 et 2 qui sont des faits initiaux. Donc 11 est vrai (démontré). Cette
méthode s’appelle le chaînage arrière (voir Figure 28).

Démontrer le fait 11 sur les deux exemples donnés consiste à démontrer que
l’animal est un chat, ou que le patient à la grippe.

2.4.4.b Listes de faits et liste de règles

Les structures de données de la Figure 27 sont décrites ci-dessous, ainsi que les fonc-
tions de gestion des faits initiaux et des règles. Le module de gestion de liste est utilisé
sans modification pour les listes de faits (faits initiaux, hypothèses, conclusions) et pour
la liste des règles. Le champ marque pour une règle est vrai si la règle s’est déjà
exécutée ; il est alors inutile de la tester lors des passages suivants. creerRegle() initia-
lise une règle à l’aide de son nom, la règle n’ayant aucune hypothèse ni aucune conclu-
sion. ajouterFait() ajoute un fait à une liste de faits comme par exemple la liste des faits
initiaux, la liste des faits hypothèses ou la liste des faits conclusions. listerFait() et
listerLesRegles() sont des parcours de listes.

// systexpert.cpp système expert

#include <stdio.h>
#include <string.h>
#include "liste.h"

typedef char ch3 [3];
char* message (int n); // fournit le libellé du fait n

typedef Liste ListeFaits;
typedef Liste ListeRegles;
void ajouterFait (ListeFaits* listF, int n);
void listerFaits (ListeFaits* listF);
ListeFaits* creerListeFaits ();

11

5

10

1

2

Figure 28 Chaînage arrière dans un système expert.

03Chap_02 Page 63 Samedi, 17. janvier 2004 10:36 10

64 2 • Les listes

// LES REGLES

typedef struct {
 ch3 nom;
 booleen marque;
 ListeFaits* hypotheses;
 ListeFaits* conclusions;
} Regle;

// constructeur d'une règle à partir de son nom;
// les listes hypothèses et conclusions sont vides
Regle* creerRegle (ch3 nom) {
 Regle* regle = new Regle();
 strcpy (regle->nom, nom);
 regle->hypotheses = creerListeFaits();
 regle->conclusions = creerListeFaits();
 regle->marque = faux;
 return regle;
}

// ajouter le fait n aux hypothèses de la règle "regle"
void ajouterHypothese (Regle* regle, int n) {
 ajouterFait (regle->hypotheses, n);
}

// ajouter le fait n aux conclusions de la règle "regle"
void ajouterConclusion (Regle* regle, int n) {
 ajouterFait (regle->conclusions, n);
}

// lister la règle "regle"
void listerUneRegle (Regle* regle) {
 printf ("\nRègle : %s\n", regle->nom);
 printf (" hypothèses\n");
 listerFaits (regle->hypotheses);
 printf (" conclusions\n");
 listerFaits (regle->conclusions);
}

liste des hypothèses

liste des conclusions

A B

Figure 29 Détails de l’implémentation d’une règle.

03Chap_02 Page 64 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 65
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// lister toutes les règles
void listerLesRegles (ListeRegles* lr) {
 ouvrirListe (lr);
 while (!finListe(lr)) {
 Regle* ptc = (Regle*) objetCourant (lr);
 listerUneRegle (ptc);
 }
 printf ("\n");
}

Figure 30 Détails de l’implémentation d’une liste de faits.

// LES FAITS

typedef struct {
 int numero;
} Fait;

// constructeur de Fait
Fait* creerFait (int n) {
 Fait* nouveau = new Fait();
 nouveau->numero = n;
 return nouveau;
}

// LES LISTES DE FAITS

ListeFaits* creerListeFaits() {
 return creerListe();
}

// ajouter le fait n à la liste de faits listF
void ajouterFait (ListeFaits* listF, int n) {
 Fait* nouveau = creerFait (n);
 insererEnFinDeListe (listF, nouveau);
}

// lister les faits de la liste listF
void listerFaits (ListeFaits* listF) {
 ouvrirListe (listF);
 while (!finListe(listF)) {
 Fait* ptc = (Fait*) objetCourant (listF);
 printf (" %s\n", message (ptc->numero));
 }
}

Remarque : si on veut mémoriser le numéro de l’entier dans le champ refe-
rence, plutôt que le pointeur vers l’entier (voir Figure 30), il suffit de
remplacer :

/

1 2 3 4 5

03Chap_02 Page 65 Samedi, 17. janvier 2004 10:36 10

66 2 • Les listes

Fait* creerFait (int n) {
 return (Fait*) n; // n doit être considéré comme un pointeur
}

et de remplacer :
ptc->numero par (int)ptc ptc doit être considéré comme un entier

Exercice 8 - Systèmes experts : les algorithmes de déduction

• Écrire la fonction : booleen existe (ListeFaits* listF, int num) ; qui indique si le fait
num existe dans la liste listF.

• Écrire la fonction : int appliquer (Regle* regle, ListeFaits* listF) ; qui vérifie si la
règle pointée par regle s’applique, et ajoute les conclusions de cette règle à la liste de
faits listF si les hypothèses de la règle sont vérifiées.

• Écrire la fonction : void chainageAvant (ListeRegles* listR, ListeFaits* listF) ; qui à
partir de la liste de faits listF et de la liste des règles listR, ajoute à listF les conclu-
sions des règles vérifiées.

• Écrire la fonction récursive : booleen demontrerFait (ListeRegles* listR, ListeFaits*
listF, int num, int nb) ; qui en utilisant la liste de faits listF et la liste des règles listR,
démontre le fait num ; nb est utilisé pour faire une indentation (au fil des appels
récursifs) comme sur le schéma de la Figure 28.

• Écrire le programme principal qui crée les structures de données de la Figure 27,
liste les faits et les règles, effectue le chaînage avant et le chaînage arrière.

2.4.5 Les piles

Une pile est une structure de données telle que :

• l’ajout d’un élément se fait au sommet de la pile,

• la suppression d’un élément se fait également au sommet de la pile.
La structure de données est appelée LIFO : "last in, first out" soit "dernier entré,

premier sorti".

2.4.5.a Allocation dynamique (utilisation de listes)

Figure 31 Principe d’une pile gérée à l’aide d’une liste.

À l’aide d’une liste, les opérations sur une pile peuvent être réalisées comme suit :
initialiserPile initialiser une liste vide
pileVide vrai si la liste est vide
empiler ajouter un élément en tête de la liste
dépiler enlever un élément en tête de la liste

b c /apremier

03Chap_02 Page 66 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 67
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Le module de gestion de piles peut facilement se réaliser avec le module de
gestion des listes présenté précédemment en utilisant insererEnTeteDeListe() et
extraireEnTeteDeListe(). Un élément de la liste référence un objet spécifique de
l’application. Les déclarations et les opérations sur la pile sont données ci-
dessous.

2.4.5.b Le fichier d’en-tête des piles (utilisation de listes)

pile.h contient la déclaration du type pile et les prototypes des fonctions de gestion
de la pile.

// pile.h pile en allocation dynamique avec des listes

#ifndef PILE_H
#define PILE_H

#include "liste.h"

typedef Liste Pile;

Pile* creerPile ();
booleen pileVide (Pile* p);
void empiler (Pile* p, Objet* objet);
Objet* depiler (Pile* p);
void listerPile (Pile* p, void (*f) (Objet*));
void detruirePile (Pile* p);

#endif

2.4.5.c Le module des piles (utilisation de listes)

pile.cpp contient le corps des fonctions dont le prototype est défini dans pile.h.

/* pile.cpp pile gérée à l'aide d'une liste */

#include <stdio.h>
#include <stdlib.h>
#include "pile.h"

// créer et initialiser une pile
Pile* creerPile () {
 return creerListe ();
}

// vrai si la pile est vide, faux sinon
booleen pileVide (Pile* p) {
 return listeVide (p);
}

// empiler objet dans la pile p
void empiler (Pile* p, Objet* objet) {
 insererEnTeteDeListe (p, objet);
}

// fournir l'adresse de l'objet en sommet de pile,
// ou NULL si la pile est vide
Objet* depiler (Pile* p) {
 if (pileVide (p)) {

03Chap_02 Page 67 Samedi, 17. janvier 2004 10:36 10

68 2 • Les listes

 return NULL;
 } else {
 return extraireEnTeteDeListe (p);
 }
}

// Lister la pile du sommet vers la base
void listerPile (Pile* p, void (*f) (Objet*)) {
 listerListe (p, f);
}

void detruirePile (Pile* p) {
 detruireListe (p);
}

2.4.5.d Déclaration des types Entier et Reel pour le test de la pile

Les types Entier et Reel sont utilisés à plusieurs reprises dans la suite de ce livre. Les
déclarations et le corps des fonctions traitant de ces types sont insérés dans les
fichiers mdtypes.h et mdtypes.cpp (voir § 2.4.1, page 51), après les déclarations du
type Personne.

Dans mdtypes.h :

// **** une structure contenant un entier
typedef struct {
 int valeur;
} Entier;

Entier* creerEntier (int valeur);
Entier* entier (int valeur);
void ecrireEntier (Objet* objet);
char* toStringEntier (Objet* objet);
int comparerEntier (Objet* objet1, Objet* objet2);
int comparerEntierCar (Objet* objet1, Objet* objet2);

// **** une structure contenant un réel double
typedef struct {
 double valeur;
} Reel;

Reel* creerReel (double valeur);
void ecrireReel (Objet* objet);
int comparerReel (Objet* objet1, Objet* objet2);

Dans mdtypes.cpp :

// **** une structure contenant un entier

Entier* creerEntier (int valeur) {
 Entier* entier = new Entier();
 entier->valeur = valeur;
 return entier;
}

void ecrireEntier (Objet* objet) {
 Entier* entier = (Entier*) objet;
 printf ("%d\n", entier->valeur);
}

03Chap_02 Page 68 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 69
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// constructeur de Entier
Entier* entier (int valeur) {
 return creerEntier (valeur);
}

char* toStringEntier (Objet* objet) {
 char* nombre = (char*) malloc (50);
 sprintf (nombre, "%d", ((Entier*)objet)->valeur);
 return nombre;
}

// comparer deux entiers
// fournit <0 si e1 < e2; 0 si e1=e2; >0 sinon
int comparerEntier (Objet* objet1, Objet* objet2) {
 Entier* e1 = (Entier*) objet1;
 Entier* e2 = (Entier*) objet2;
 if (e1->valeur < e2->valeur) {
 return -1;
 } else if (e1->valeur == e2->valeur) {
 return 0;
 } else {
 return 1;
 }
}

// comparer des chaînes de caractères correspondant à des entiers
// 9 < 100 (mais pas en ascii)
int comparerEntierCar (Objet* objet1, Objet* objet2) {
 long a = atoi ((char*) objet1);
 long b = atoi ((char*) objet2);
 if (a==b) {
 return 0;
 } else if (a<b) {
 return -1;
 } else {
 return 1;
 }
}

// **** une structure contenant un réel double

Reel* creerReel (double valeur) {
 Reel* reel = new Reel();
 reel->valeur = valeur;
 return reel;
}

void ecrireReel (Objet* objet) {
 Reel* reel = (Reel*) objet;
 printf ("%.2f\n", reel->valeur);
}

2.4.5.e Utilisation du module de gestion de piles

Le programme suivant définit un menu et un programme principal permettant
d’initialiser une pile, de tester si la pile est vide, d’ajouter ou de retirer des éléments

03Chap_02 Page 69 Samedi, 17. janvier 2004 10:36 10

70 2 • Les listes

en sommet de pile et de lister pour vérification, le contenu de la pile. Le module
pile.h peut être utilisé pour n’importe quel objet à empiler (entier, réel, personne,
etc.). Pour cet exemple, repris dans l’exercice suivant, la variable de compilation
PILETABLEAU n’est pas définie.

// pppile.cpp programme principal des piles (avec listes ou tableau)

#include <stdio.h>

#ifdef PILETABLEAU
#include "piletableau.h"
#else
#include "pile.h"
#endif

#include "mdtypes.h"

int menu () {
 printf ("\n\nGESTION D'UNE PILE D'ENTIERS\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Initialisation de la pile\n");
 printf ("2 - La pile est-elle vide\n");
 printf ("3 - Insertion dans la pile\n");
 printf ("4 - Retrait de la pile\n");
 printf ("5 - Listage de la pile\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 printf ("\n");
 return cod;
}

void main () {
 #ifdef PILETABLEAU
 #define LGMAX 7
 Pile* pile1 = creerPile(LGMAX);
 #else
 Pile* pile1 = creerPile();
 #endif
 booleen fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0:
 fini = vrai;
 break;

 case 1:
 detruirePile (pile1);
 #ifdef PILETABLEAU
 pile1 = creerPile(LGMAX);
 printf ("pile = un tableau de %d places\n", LGMAX);
 #else
 pile1 = creerPile();
 #endif
 break;

03Chap_02 Page 70 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 71
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 case 2:
 if (pileVide (pile1)) {
 printf ("Pile vide\n");
 } else {
 printf ("Pile non vide\n");
 }
 break;

 case 3 : {
 int valeur;
 printf ("Valeur à empiler ? ");
 scanf ("%d", &valeur);
 empiler (pile1, creerEntier(valeur));
 } break;

 case 4 : {
 Entier* v;
 if ((v = (Entier*) depiler (pile1)) != NULL) {
 ecrireEntier (v);
 } else {
 printf ("Pile vide\n");
 }
 } break;

 case 5:
 listerPile (pile1, ecrireEntier);
 break;
 } // switch
 }

 detruirePile (pile1);

 printf ("\n\nGESTION D'UNE PILE DE PERSONNES\n");
 #if PILETABLEAU
 printf ("avec un tableau de %d places\n", LGMAX);
 Pile* pile2 = creerPile(LGMAX);
 #else
 Pile* pile2 = creerPile();
 #endif

 empiler (pile2, creerPersonne("Dupont", "Jacques"));
 empiler (pile2, creerPersonne("Dufour", "Jacques"));
 empiler (pile2, creerPersonne("Dupré", "Jacques"));
 empiler (pile2, creerPersonne("Dumoulin", "Jacques"));
 printf ("Valeurs dans la pile : du sommet vers la base\n");
 listerPile (pile2, ecrirePersonne);

 printf ("\nValeur dépilée : ");
 Personne* p = (Personne*) depiler (pile2);
 if (p!=NULL) ecrirePersonne (p);

 printf ("\n\nGESTION D'UNE PILE DE REELS\n");
 #if PILETABLEAU
 printf ("avec un tableau de %d places\n", LGMAX);
 Pile* pile3 = creerPile(7);
 #else
 Pile* pile3 = creerPile();
 #endif
 empiler (pile3, creerReel (2.5));
 empiler (pile3, creerReel (3.5));

03Chap_02 Page 71 Samedi, 17. janvier 2004 10:36 10

72 2 • Les listes

 empiler (pile3, creerReel (5.5));
 printf ("Valeurs dans la pile : du sommet vers la base\n");
 listerPile (pile3, ecrireReel);

 printf ("\nvaleur dépilée : ");
 Reel* r = (Reel*) depiler (pile3);
 if (r!=NULL) ecrireReel (r);
}

2.4.5.f Allocation contiguë (utilisation d’un tableau)

Les piles peuvent être également gérées à l’aide d’un tableau alloué sur des cases
contiguës et de taille a priori connue et donc limitée (à 7 sur la Figure 32). Les
éléments sont consécutifs en mémoire. Chaque élément du tableau contient un poin-
teur sur un objet de la pile. La pile peut être une pile d’entiers, de réels, de personnes
comme précédemment.

Figure 32 Principe d’une pile gérée à l’aide d’un tableau.

Exercice 9 - Le type pile (allocation contiguë)

Reprendre la déclaration de pile.h du § 2.4.5.b, page 67 et le module pile.cpp
correspondant de façon à gérer la pile à l’aide d’un tableau. Tester le programme
utilisateur pppile.cpp utilisé ci-dessus pour l’allocation dynamique en liste qui doit
rester inchangé sauf pour creerPile() qui contient un paramètre indiquant la taille de
la pile dans le cas de l’allocation contiguë. Le type pile est un TAD (Type Abstrait de
Données) ; son implémentation ne doit pas affecter les programmes utilisateurs.

2.4.6 Les files d’attente (gérée à l’aide d’une liste)

Une file d’attente est une structure de données telle que :

• l’ajout d’un élément se fait en fin de file d’attente,

• la suppression d’un élément se fait en début de file d’attente.
La structure de données est appelée FIFO : « first in, first out » soit « premier

entré, premier sorti ».

c

b

a

Sommet de pile (premier libre)

5

4

3

0

1

2

6

03Chap_02 Page 72 Samedi, 17. janvier 2004 10:36 10

2.4 • Exemples d’application 73
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.4.6.a Allocation dynamique (utilisation de listes)

Figure 33 Principe d’une file d’attente gérée à l’aide d’une liste.

À l’aide d’une liste, les opérations sur une file d’attente peuvent être réalisées
comme suit :

créerFile créer et initialiser une liste vide
fileVide vrai si la liste est vide
enfiler ajouter un élément en fin de la liste
défiler enlever un élément en tête de la liste
Le module de gestion des files d’attente peut facilement se réaliser avec le module

de gestion des listes en utilisant les fonctions insererEnFinDeListe() et extraireEn-
TeteDeListe().

Exercice 10 - Files d’attente en allocation dynamique

Soit le fichier d’en-tête suivant :

/* file.h file d'attente en allocation dynamique */

#ifndef FILE_H
#define FILE_H

#include "liste.h"

typedef Liste File;

File* creerFile ();
booleen fileVide (File* file);
void enFiler (File* file, Objet* objet);
Objet* deFiler (File* file);
void listerFile (File* file, void (*f) (Objet*));
void detruireFile (File* file);

#endif

En vous inspirant des programmes précédents pour le type pile en allocation
dynamique et du fichier d’en-tête file.h ci-dessus, écrire un module de gestion de
files d’attente file.cpp et un programme principal de test ppfile.cpp.

2.4.6.b Allocation contiguë d’une file d’attente (utilisation d’un tableau)

Les files peuvent être également gérées à l’aide d’un tableau de taille a priori
connue, et donc limitée (à 7 sur la Figure 34). Les éléments sont consécutifs en
mémoire. premier repère l’élément qui précède le premier élément. dernier repère le

a b c /

premier dernier

03Chap_02 Page 73 Samedi, 17. janvier 2004 10:36 10

74 2 • Les listes

dernier élément. La file est vide si premier est égal à dernier. La file est dite pleine si
dernier précède immédiatement premier. Il reste en fait une place inutilisée.

Figure 34 Principe d’une file d’attente gérée à l’aide d’un tableau.

Exercice 11 - Files d’attente en allocation contiguë

Écrire le module filetableau.cpp correspondant à la description suivante du fichier
d’en-tête filetableau.h et réalisant la gestion de files d’attente mémorisées sous
forme de tableaux. Le fichier de test ppfile.cpp doit être le même que pour l’exercice
précédent sauf pour creerFile() qui contient un paramètre indiquant la taille du
tableau. Le changement de structures de données pour mémoriser les files d’attente
ne doit pas perturber les programmes utilisateurs qui considèrent la file comme un
type abstrait de données (TAD).

/* filetableau.h */

#ifndef FILE_H
#define FILE_H

typedef int booleen;
#define faux 0
#define vrai 1

typedef void Objet;

typedef struct {
 int max; // nombre max d'éléments dans la file
 int premier; // élément précédant le premier
 int dernier; // dernier occupé
 Objet** element; // tableau alloué dynamiquement dans creerFile()
} File;

File* creerFile (int max);
booleen fileVide (File* file);
void enFiler (File* file, Objet* objet);
Objet* deFiler (File* file);
void listerFile (File* file, void (*f) (Objet*));
void detruireFile (File* file);

#endif

0
1
2 a
3 b
4 c
5
6

0 x
1 x
2 x
3
4 x
5 x
6 x

0
1
2
3
4
5
6

premier

dernier

premier

dernier
premier
dernier

03Chap_02 Page 74 Samedi, 17. janvier 2004 10:36 10

2.5 • Avantages et inconvénients des listes 75
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.5 AVANTAGES ET INCONVÉNIENTS DES LISTES

Une liste est une structure de données qui permet la résolution, de façon simple et
naturelle en utilisant le module de gestion de listes, de problèmes où l’information
est changeante ou de taille difficilement évaluable. Les données sont dispersées en
mémoire et reliées seulement par des pointeurs.

La structure de liste présente les avantages suivants :

• l’ajout ou le retrait d’un élément de la liste est facile (simple modification de
pointeurs),

• les éléments n’ont pas besoin d’être sur des cases contiguës (que ce soit en mémoire
centrale ou sur disque),

• en cas d’allocation dynamique, on n’a pas besoin d’indiquer a priori, le nombre
maximum d’éléments (pour la réservation de place). On demande de l’espace au fur
et à mesure des besoins.

Cette structure a également quelques inconvénients :

• il y a perte de place pour ranger les pointeurs qui s’ajoutent aux informations
caractéristiques de l’application. Avec l’augmentation sur ordinateur des tailles des
mémoires centrales ou secondaires, cet inconvénient devient mineur.

• l’accès à un élément ne peut se faire qu’en examinant séquentiellement ceux qui
précèdent. Ceci est beaucoup plus gênant. Si la liste est longue et souvent consultée,
cette structure devient inefficace, et il faut prévoir d’autres structures privilégiant
l’accès rapide à l’information.

2.6 LE TYPE ABSTRAIT DE DONNÉES (TAD) LISTE

L’utilisateur du module de gestion de listes doit utiliser uniquement les fonctions de
l’interface du module. Il doit faire abstraction des structures gérées par le module de
gestion de listes qui devient un type abstrait de données (TAD). L’utilisateur ne doit
jamais accéder directement aux éléments de la tête de liste (premier, dernier,
courant), ni au champ suivant d’un élément de liste. Ainsi, pour le type pile ou le
type file des exemples précédents, ce concept de type abstrait de données fait que le
programme de test est inchangé (sauf pour la fonction d’initialisation) quand on
passe d’une allocation dynamique sous forme de listes à une allocation contiguë
sous forme de tableaux. Les programmes utilisateurs ne sont pas de cette façon
affectés par un changement des structures de données du module. Cette notion est
reprise de manière plus systématique en programmation (orientée) objet par encap-
sulation des données (voir § 1.4.1 page 24).

2.7 LES LISTES CIRCULAIRES

Une liste circulaire est une liste telle que le dernier élément de la liste contient un
pointeur sur le premier (et non une marque de fin comme pour une liste simple). On

03Chap_02 Page 75 Samedi, 17. janvier 2004 10:36 10

76 2 • Les listes

peut ainsi parcourir toute la liste à partir de n’importe quel élément. Il faut pouvoir
identifier la tête de liste (soit par un pointeur, soit par une marque spéciale dans
l’élément de tête).

Figure 35 Une liste circulaire de personnes.

2.7.1 Le fichier d’en-tête des listes circulaires

Il est avantageux de remplacer le pointeur de tête par un pointeur sur le dernier
élément, ce qui donne facilement accès au dernier, et au premier élément qui est le
suivant du dernier. Un élément de liste est défini comme pour les listes simples par
un pointeur sur l’objet de l’application et un pointeur sur le suivant. initListeC()
initialise une liste circulaire. insererEnTeteDeListeC() et insererEnFinDeListeC()
réalisent respectivement l’insertion en tête et en fin de liste circulaire. La fonction
suivant() fournit un pointeur sur l’élément suivant celui en paramètre. Pour le
parcours, il n’y a plus de fin de liste puisque la liste est circulaire.

/* listec.h
 La liste circulaire est repérée par un pointeur
 sur le dernier élément
*/
#ifndef LISTEC_H
#define LISTEC_H

typedef void Objet;

typedef struct element {
 Objet* reference;
 struct element* suivant;
} Element;

typedef struct {
 Element* dernier;
} ListeC;

void initListeC (ListeC* lc);
ListeC* creerListeC ();

void insererEnTeteDeListeC (ListeC* lc, Objet* objet);
void insererEnFinDeListeC (ListeC* lc, Objet* objet);

// parcours
Element* premier (ListeC* lc);
Element* dernier (ListeC* lc);
Element* suivant (Element* elt);
void parcoursListeC (Element* depart, void (*f) (Objet*));

#endif

Dupont Martin Durand

03Chap_02 Page 76 Samedi, 17. janvier 2004 10:36 10

2.7 • Les listes circulaires 77
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2.7.2 Insertion en tête de liste circulaire

La fonction insererEnTeteDeListeC (ListeC* lc, Objet* objet) ; insère l’objet objet en
tête de la liste circulaire pointée par lc. L’objet a été alloué avant cet appel et contient
les informations spécifiques de l’application. Si la liste est vide, l’élément nouveau
pointe sur lui-même, d’où l’instruction nouveau->suivant = nouveau. Le pointeur lc-
>dernier->suivant repère le premier élément de la liste : c’est le suivant du dernier.

Figure 36 Insertion en tête de liste circulaire.

/* listec.cpp
 La liste circulaire est repérée par un pointeur
 sur le dernier élément */

#include <stdio.h> // NULL
#include "listec.h"

// initialiser une liste circulaire
void initListeC (ListeC* lc) {
 lc->dernier = NULL;
}

ListeC* creerListeC () {
 ListeC* lc = new ListeC();
 initListeC (lc);
 return lc;
}

// créer un élément de liste
static Element* creerElement () {
 return new Element();
}

// ajouter "objet" en début de la liste circulaire lc
void insererEnTeteDeListeC (ListeC* lc, Objet* objet) {
 Element* nouveau = creerElement();
 nouveau->reference = objet;
 if (lc->dernier == NULL) { // lc est vide
 nouveau->suivant = nouveau;
 lc->dernier = nouveau;
 } else {
 nouveau->suivant = lc->dernier->suivant;
 lc->dernier->suivant = nouveau;
 }
}

lc dernier

nouveau

objet

03Chap_02 Page 77 Samedi, 17. janvier 2004 10:36 10

78 2 • Les listes

2.7.3 Insertion en fin de liste circulaire

La fonction : void insererEnFinDeListeC (ListeC* lc, Objet* objet) insère objet en
fin de la liste circulaire pointée par lc (voir Figure 37).

// ajouter "objet" en fin de la liste circulaire lc
void insererEnFinDeListeC (ListeC* lc, Objet* objet) {
 Element* nouveau = creerElement();
 nouveau->reference = objet;
 if (lc->dernier == NULL) { // liste vide
 nouveau->suivant = nouveau;
 lc->dernier = nouveau;
 } else {
 nouveau->suivant = lc->dernier->suivant;
 lc->dernier->suivant = nouveau;
 lc->dernier = nouveau;
 }
}

2.7.4 Parcours de listes circulaires

// le premier est le suivant du dernier
Element* premier (ListeC* lc) {
 return lc->dernier->suivant;
}

Element* dernier (ListeC* lc) {
 return lc->dernier;
}

// fournir un pointeur sur le suivant de elt
Element* suivant (Element* elt) {
 if (elt == NULL) {
 return NULL;
 } else {
 return elt->suivant;
 }
}

// parcours de la liste circulaire en partant de l'élément depart
void parcoursListeC (Element* depart, void (*f) (Objet*)) {
 if (depart == NULL) {
 printf ("Liste circulaire vide\n");
 } else {
 f (depart->reference);
 Element* ptc = suivant (depart);

lc dernier

objet

nouveau

Figure 37 Insertion en fin de liste circulaire.

03Chap_02 Page 78 Samedi, 17. janvier 2004 10:36 10

2.7 • Les listes circulaires 79
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 while (ptc != depart) {
 f (ptc->reference);
 ptc = suivant (ptc);
 }
 printf ("\n");
 }
}

2.7.5 Le module des listes circulaires

Le module est donné de manière succincte de façon à illustrer les fonctions élémen-
taires sur les listes circulaires. On pourrait y ajouter de nombreuses fonctions.

/* listec.cpp
 La liste circulaire est repérée par un pointeur
 sur le dernier élément */

#include <stdio.h> // NULL
#include "listec.h"

plus le corps des fonctions définies ci-dessus pour les listes circulaires

2.7.6 Utilisation du module des listes circulaires

On peut parcourir toute la liste à partir de n’importe quel élément. On arrête quand on
retombe sur l’élément de départ. La liste traitée est une liste de personnes comme au
§ 2.4.1, page 51. La fonction ajouterPersonne() crée une personne à partir de son nom
et prénom et l’insère en fin de liste circulaire. La fonction parcoursListeC() permet de
lister tous les éléments de la liste en partant de n’importe quel élément.

Figure 38 Liste circulaire de Personne.

/* pplistec.cpp programme principal listec */

#include <stdio.h>
#include "listec.h"
#include "mdtypes.h"

// ajouter une personne en fin de liste circulaire
void ajouterPersonne (ListeC* lc, char* nom, char* prenom) {
 Personne* nouveau = creerPersonne (nom, prenom);
 insererEnFinDeListeC (lc, nouveau);
}

void main () {
 ListeC* lc = creerListeC();

 ajouterPersonne (lc, "Dupont", "Jacques");
 ajouterPersonne (lc, "Duroc", "Albin");
 ajouterPersonne (lc, "Dufour", "Michèle");

Dupont Jacques

03Chap_02 Page 79 Samedi, 17. janvier 2004 10:36 10

80 2 • Les listes

 // parcours à partir du premier de la liste
 printf ("En partant du premier\n");
 parcoursListeC (premier (lc), ecrirePersonne);
 printf ("En partant du dernier\n");
 parcoursListeC (dernier (lc), ecrirePersonne);
}

2.8 LES LISTES SYMÉTRIQUES

Une liste symétrique est une liste telle que chaque élément pointe sur l’élément
suivant et sur l’élément précédent.

Figure 39 Une liste symétrique.

On peut aussi définir des listes symétriques circulaires. On peut regrouper les
informations sur la liste (premier, dernier) dans une tête de liste de type ListeS.
L’intérêt majeur des listes symétriques réside dans le fait qu’il est facile d’extraire
un élément à partir d’un pointeur sur l’élément à extraire. Il n’y a pas besoin de
parcourir la liste pour retrouver le précédent. La liste symétrique peut se trouver en
mémoire centrale ou en mémoire secondaire (fichier en accès direct).

2.8.1 Le fichier d’en-tête des listes symétriques

Chaque élément de la liste contient un pointeur sur l’objet de la liste, un pointeur sur
l’élément suivant comme pour les listes simples, et un pointeur sur l’élément prece-
dent. Le type ListeS est une tête de liste contenant un pointeur sur le premier et un
pointeur sur le dernier élément de la liste symétrique. Les fonctions de gestion de la
liste permettent de créer et d’initialiser une liste, de savoir si la liste est vide ou pas,
de se positionner sur le premier ou sur le dernier élément, d’insérer ou d’extraire des
éléments, et de parcourir la liste en demandant le suivant d’un élément ou son précé-
dent. On peut parcourir la liste dans les deux sens.

/* listesym.h Gestion des listes symétriques */

#ifndef LISTESYM_H
#define LISTESYM_H

#include <stdio.h> // NULL

/
/ suivant

precedent

premier dernier

ls

03Chap_02 Page 80 Samedi, 17. janvier 2004 10:36 10

2.8 • Les listes symétriques 81
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

typedef int booleen;
#define faux 0
#define vrai 1
typedef void Objet;

typedef struct element* PElement;
typedef struct element {
 Objet* reference;
 PElement suivant;
 PElement precedent;
} Element;

typedef struct {
 Element* premier;
 Element* dernier;
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);
} ListeS;

void initListeSym (ListeS* ls, char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*));

ListeS* creerListeSym (char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*));

ListeS* creerListeSym ();
booleen listeVide (ListeS* ls);

void insererEnFinDeListeSym (ListeS* ls, Objet* objet);

Element* premier (ListeS* ls);
Element* dernier (ListeS* ls);
Element* suivant (Element* elt);
Element* precedent (Element* elt);

void parcoursListeSym (ListeS* ls, void (*f) (Objet*));
void parcoursListeSymI (ListeS* ls, void (*f) (Objet*));

Objet* chercherObjet (ListeS* ls, Objet* objet);
void extraireListeSym (ListeS* ls, Objet* objet);

#endif

2.8.2 Le module des listes symétriques

/* listesym.cpp module des listes symétriques */

#include <stdio.h>
#include <string.h> // strcmp
#include "listesym.h"

// comparer deux chaînes de caractères
// fournit <0 si ch1 < ch2; 0 si ch1=ch2; >0 sinon
static int comparerCar (Objet* objet1, Objet* objet2) {
 return strcmp ((char*)objet1, (char*)objet2);
}

static char* toChar (Objet* objet) {
 return (char*) objet;
}

03Chap_02 Page 81 Samedi, 17. janvier 2004 10:36 10

82 2 • Les listes

static Element* creerElement () {
 return new Element();
}

// initialiser une liste symétrique
void initListeSym (ListeS* ls, char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*)) {
 ls->premier = NULL;
 ls->dernier = NULL;
 ls->toString = toString;
 ls->comparer = comparer;
}

// créer et initialiser une liste symétrique
ListeS* creerListeSym (char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*)) {
 ListeS* ls = new ListeS();
 initListeSym (ls, toString, comparer);
 return ls;
}

ListeS* creerListeSym() {
 return creerListeSym (toChar, comparerCar); // par défaut
}

// la liste est-elle vide ?
booleen listeVide (ListeS* ls) {
 return ls->premier == NULL;
}

// insérer "objet" en fin de la liste symétrique ls
void insererEnFinDeListeSym (ListeS* ls, Objet* objet) {
 Element* nouveau = creerElement();
 nouveau->reference = objet;
 nouveau->suivant = NULL;
 if (listeVide(ls)) { // liste symétrique vide
 nouveau->precedent = NULL;
 ls->premier = nouveau;
 } else {
 nouveau->precedent = ls->dernier;
 ls->dernier->suivant = nouveau;
 }
 ls->dernier = nouveau;
}

// fournir un pointeur sur le premier élément de la liste
Element* premier (ListeS* ls) {
 return ls->premier;
}

// fournir un pointeur sur le dernier élément de la liste
Element* dernier (ListeS* ls) {
 return ls->dernier;
}

// fournir un pointeur sur le suivant de "elt"
Element* suivant (Element* elt) {
 return elt==NULL ? NULL : elt->suivant;
}

// fournir le précédent de "elt"
Element* precedent (Element* elt) {
 return elt==NULL ? NULL : elt->precedent;
}

03Chap_02 Page 82 Samedi, 17. janvier 2004 10:36 10

2.8 • Les listes symétriques 83
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Les parcours de listes symétriques :

// parcourir du premier vers le dernier
void parcoursListeSym (ListeS* ls, void (*f) (Objet*)) {
 if (listeVide(ls)) {
 printf ("Liste symétrique vide\n");
 } else {
 Element* ptc = premier (ls);
 while (ptc != NULL) {
 f (ptc->reference);
 ptc = suivant (ptc);
 }
 }
}

// parcours inverse : du dernier vers le premier
void parcoursListeSymI (ListeS* ls, void (*f) (Objet*)) {
 if (listeVide(ls)) {
 printf ("Liste symétrique vide\n");
 } else {
 Element* ptc = dernier (ls);
 while (ptc != NULL) {
 f (ptc->reference);
 ptc = precedent (ptc);
 }
 }
}

// chercher un pointeur sur l'élément contenant "objet" de la liste ls
static Element* chercherElement (ListeS* ls, Objet* objet) {
 booleen trouve = faux;
 Element* ptc = premier (ls);
 while ((ptc != NULL) && !trouve) {
 trouve = ls->comparer (objet, ptc->reference) == 0;
 if (!trouve) ptc = suivant (ptc);
 }
 return trouve ? ptc : NULL;
}

// chercher un pointeur sur l'objet "objet" de la liste ls
Objet* chercherObjet (ListeS* ls, Objet* objet) {
 Element* ptc = chercherElement (ls, objet);
 return ptc==NULL ? NULL : ptc->reference;
}

La fonction void extraireListeSym (ListeS* ls, Element* extrait) ; extrait
l’élément pointé par extrait de la liste symétrique ls. Dans le cas général où
l’élément à extraire se trouve entre deux autres éléments (donc pas en début ou fin
de liste), on peut facilement définir un pointeur sur le précédent et un pointeur sur le
suivant comme l’indique la Figure 40, et en conséquence, modifier le pointeur
precedent du suivant et le pointeur suivant du précédent.

// retirer l'élément "extrait" de la liste symétrique ls;
// plus besoin d'avoir un pointeur sur le précédent
static void extraireListeSym (ListeS* ls, Element* extrait) {
 if ((ls->premier==extrait) && (ls->dernier==extrait)) {
 // suppression de l'unique élément de ls
 ls->premier = NULL;

03Chap_02 Page 83 Samedi, 17. janvier 2004 10:36 10

84 2 • Les listes

 ls->dernier = NULL;
 } else if (ls->premier == extrait) {
 // suppression du premier de la liste ls
 ls->premier->suivant->precedent = NULL;
 ls->premier = ls->premier->suivant;

 } else if (ls->dernier == extrait) {
 // suppression du dernier de la liste ls
 ls->dernier->precedent->suivant = NULL;
 ls->dernier = ls->dernier->precedent;

 } else {
 // suppression de extrait entre 2 éléments non nuls
 extrait->suivant->precedent = extrait->precedent;
 extrait->precedent->suivant = extrait->suivant;
 }
}

void extraireListeSym (ListeS* ls, Objet* objet) {
 Element* element = chercherElement (ls, objet);
 if (element != NULL) extraireListeSym (ls, element);
}

Figure 40 Extraction dans une liste symétrique.

2.8.3 Utilisation du module des listes symétriques

Le programme principal suivant est un simple programme de test du module des
listes symétriques. La fonction parcoursListeSym() parcourt la liste en énumérant
les éléments du premier vers le dernier ; la fonction parcoursListeSymI() énumère
du dernier vers le premier ; il n’y a pas de tri à faire. La fonction chercherObjet()
fournit un pointeur sur un objet de la liste à partir de son nom. Voir le type Personne,
§ 2.4.1, page 51.

/* pplistesym.cpp */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "listesym.h"
#include "mdtypes.h"

int menu () {
 printf ("\n\nLISTES SYMETRIQUES\n\n");
 printf ("0 - Fin\n");

extrait → precedent extrait → suivant

suivant

precedent

extrait

03Chap_02 Page 84 Samedi, 17. janvier 2004 10:36 10

2.8 • Les listes symétriques 85
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 printf ("1 - Initialisation\n");
 printf ("2 - Insertion en fin de liste\n");
 printf ("3 - Parcours de liste\n");
 printf ("4 - Parcours inverse de liste\n");
 printf ("5 - Suppression d'un élément\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod);
 printf ("\n");
 return cod;
}

void main () {
 ListeS* ls = creerListeSym();
 booleen fini = faux;

 while (!fini) {
 switch (menu()) {
 case 0:
 fini = vrai;
 break;

 case 1: // initialisation de ls
 initListeSym (ls, toStringPersonne, comparerPersonne);
 break;

 case 2 : { // insertion d'un élément
 Personne* pers = creerPersonne();
 insererEnFinDeListeSym (ls, pers);
 } break;

 case 3: // parcours de liste
 parcoursListeSym (ls, ecrirePersonne);
 break;

 case 4: // parcours du dernier vers le premier
 parcoursListeSymI (ls, ecrirePersonne);
 break;

 case 5 : { // extraction d'un objet à partir de son nom
 printf ("Nom à extraire ? ");
 ch15 nom; scanf ("%s", nom);
 Personne* cherche = creerPersonne (nom, "?");
 Personne* ptc = (Personne*) chercherObjet (ls, cherche);
 if (ptc == NULL) {
 printf ("%s inconnu\n", nom);
 } else {
 ecrirePersonne (ptc); // toutes les caractéristiques (nom, prénom)
 extraireListeSym (ls, ptc);
 }
 } break;
 } // switch
 } // while
}

Le programme utilisateur (pplistesym.cpp) n’utilise que les appels de fonctions de
l’interface et n’accède pas directement aux informations de la tête de liste. D’autres
fonctions pourraient être ajoutées au module sur les listes symétriques de façon à
faciliter le travail de l’utilisateur de ce module.

03Chap_02 Page 85 Samedi, 17. janvier 2004 10:36 10

86 2 • Les listes

2.9 ALLOCATION CONTIGUË

2.9.1 Allocation - désallocation en cas d’allocation contiguë

L’allocation dynamique en liste peut être simulée par une allocation contiguë
(réserver un tableau ou de l’espace secondaire (fichiers sur disque) de taille définie)
et une gestion par le programmeur de l’espace alloué (dans les applications où
l’information est volatile : nombreux ajouts et retraits).

Allocation : il s’agit d’obtenir un nouvel emplacement pour créer un élément.

Désallocation : il s’agit de libérer un élément, la place mémoire (centrale ou
secondaire) devenant disponible pour une éventuelle réutilisation ultérieure.

Soit la liste : Duroc - Durand - Dufour - Dupond. On examine plusieurs méthodes
pour gérer l’espace alloué à l’application.

2.9.1.a Allocation séquentielle avec ramasse-miettes

Pour allouer, on choisit le premier libre (repéré par pLibre mémorisé dans l’entrée 0 par
exemple). Sur la Figure 41, la première entrée libre à allouer est en 5. Après allocation
de l’entrée 5, le champ occupé de 5 est mis à 1 et le premier libre se trouve alors en 6.
Pour désallouer une entrée, il suffit de mettre à 0 le champ occupé de l’entrée corres-
pondante.

Figure 41 Gestion d’un espace mémoire (tableau ou fichier).

On ne retasse les éléments (ou on ne regénère le tableau ou le fichier) que s’il y a
saturation de l’espace (appel du ramasse-miettes), les éléments libérés n’étant pas
réutilisés tant qu’il reste de la place en fin de tableau ou de fichier. Les changements
de valeur des suivants en cas de suppression d’un élément et retassement sont peu
efficaces : il faut modifier tous les champs suivant supérieurs à l’entrée libérée. En
cas de suppression d’un élément, on peut aussi recopier le dernier occupé à la place
de l’élément supprimé, modifier en conséquence les listes incluant l’élément
déplacé et détruire le dernier. De cette façon, les éléments restent consécutifs. Le
premier élément peut avoir le numéro 0 ou 1 ; l’absence de suivant (Nil) peut être

pointeur vers le 1er libre : pLibre

1 Durand 4 1

2 Dupond / 1

3 Duroc 1 1

4 Dufour 2 1

5 0

6 0

0 15

1 : occupé
0 : libre

3

03Chap_02 Page 86 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 87
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

notée –1 ou 0. S’il s’agit d’un fichier, les nombreuses modifications d’enregistre-
ments font que la méthode est inappropriée car lente.

2.9.1.b Marqueur par élément (table d’occupation)

Figure 42 Gestion d’espace secondaire (disque) avec table d’occupation.

Pour un fichier, il est beaucoup plus efficace de réunir les marqueurs d’occupation
dans un fichier à part dit "table d’occupation" qui est chargée en mémoire centrale
avant l’utilisation du fichier. On évite ainsi les nombreux accès disque pour allouer
ou désallouer. Allouer consiste à parcourir la table d’occupation à la recherche d’un
élément binaire 0 qui est mis à 1. Le rang de l’élément binaire indique le rang de
l’entrée libre à allouer dans le tableau ou le fichier en accès direct. Désallouer
consiste à mettre l’élément binaire de la table d’occupation à 0 (voir Figure 42).

2.9.1.c Éléments libres en liste (allocation contiguë)

On peut aussi faire une liste des éléments libres. Pour trouver une place pour un
nouvel élément, il suffit d’extraire le premier de la liste libre et d’y ranger les infor-
mations caractéristiques de l’application. Pour détruire un élément devenu inutile, il
suffit de l’insérer en tête de la liste libre (voir Figure 43).

Initialiser consiste à insérer tous les éléments dans la liste libre
Allouer consiste à extraire un élément en tête de la liste libre
Libérer consiste à insérer l’élément à libérer en tête de la liste libre

Le dernier élément libéré est le premier à être à nouveau alloué.

2.9.2 Exemple des polynômes en allocation contiguë avec liste libre

La gestion de polynômes d’une variable réelle a déjà été traitée en utilisant l’alloca-
tion dynamique (voir § 2.4.3, page 55). La mémorisation peut aussi se faire en utili-
sant l’allocation contiguë. Le programmeur doit définir un espace pour la
mémorisation des différents polynômes et doit le gérer lui-même, c’est-à-dire
connaître en permanence ce qui est occupé et ce qui est libre. Il doit pouvoir allouer
une nouvelle entrée du tableau pour y loger un monôme ou désallouer une entrée

0 Durand 3 1

1 Dupond / 1

2 Duroc 0 1

3 Dufour 1 1

4

5

6

2
Table d’occupation

03Chap_02 Page 87 Samedi, 17. janvier 2004 10:36 10

88 2 • Les listes

devenue libre suite à la destruction d’un monôme. La Figure 44 montre la mémori-
sation des polynômes suivants :

A = 3x5 + 2x3 + 1
B = 6x5 – 5x4 – 2x3 + 8 x2

Figure 44 Polynômes : gestion d’espace mémoire en liste libre.

0 Durand 6

3

2 Dupond /

4

7

5 Duroc 0

6 Dufour 2

8

lgMax = 9

Allouer : extraire un élément en tête
de la liste libre

Désallouer : insérer un élément en

tête de la liste libre

1

5premier occupé de la liste →
liste libre (LL) →

/

3

4

1

7

8

Figure 43 Gestion d’espace mémoire avec une liste libre.

0 4

1 2 /8

2 5 106

3 3 82

4 6

5 5 33

6 7

7 9

8 0 /1

9 11

10 4 12-5

11 13

12 3 1-2

13 14

14 15

15 /

A5

B 2

Liste libre0

03Chap_02 Page 88 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 89
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

L’allocation d’un nouveau monôme consiste à extraire un élément de la liste libre.
Sur le schéma, c’est l’entrée 0 qui sera allouée en cas de nouvelle allocation. La
désallocation d’un monôme consiste à insérer l’entrée en tête de la liste libre.

Déclaration en cas d’allocation sous forme de tableaux :
#define NMAX 16
typedef struct {
 double coefficient;
 int exposant;
 int suivant; // indice du suivant
} Monome;

Monome monome [NMAX]; // l’espace à gérer

Dans les fonctions de gestion en allocation dynamique de listes p->suivant, par
exemple, s’écrit monome[p].suivant en allocation contiguë. Dès lors que les infor-
mations sont en mémoire centrale, l’allocation dynamique est plus simple à mettre
en œuvre, le système d’exploitation se chargeant de gérer l’espace alloué.

2.9.3 Exemple de la gestion des commandes en attente

Il s’agit de gérer les commandes en attente d’une société. Les commandes en attente
concernent des clients et des articles. On peut schématiser les entités et les relations
sur un modèle conceptuel des données (MCD) comme indiqué sur la Figure 45.

Figure 45 MCD des commandes d’articles en attente.

(1) un article donné est en attente pour de 0 à n clients
(2) un client donné attend de 0 à n articles

Articles

Clients

Articles

Attente

0, n (1)

0, n (2)

Attente

Clients

03Chap_02 Page 89 Samedi, 17. janvier 2004 10:36 10

90 2 • Les listes

2.9.3.a Exemples d’opérations envisageables

Initialisation des fichiers : le fichier Attente est géré avec une liste libre (voir
Figure 46) car il est très volatil. Il y a de nombreux ajouts et retraits. On peut espérer
que les commandes en attente ne resteront pas trop longtemps en attente.

Mise en attente des commandes suivantes (article, date, quantité, client) :
–Téléviseur 03/07/.. 3 Dupond
–Radio 10/08/.. 1 Dupond
–Chaîne hi-fi 02/09/.. 5 Dupond
–Téléviseur 12/09/.. 10 Durand
–Chaîne hi-fi 13/09/.. 7 Durand

Interrogations possibles :
–liste des articles en attente pour un client
–liste des clients en attente pour un article
–liste des envois à faire suite au réapprovisionnement d’un article (suppression

des commandes en attente satisfaites)

2.9.3.b Description des fichiers

Articles :
• nom de l’article
• la quantité en stock (1)
• la première commande en attente pour cet article (2)
• la dernière commande en attente pour cet article (3)

Clients :
• nom du client
• la première commande en attente pour ce client (1)
• la dernière commande en attente pour ce client (2)

Attente :
• la date de la commande
• la quantité commandée (1)

• le numéro de l’article concerné (2)
• l’entrée suivante pour le même article (3)
• l’entrée précédente pour le même article (4)

• l’entrée suivante pour le même client (5)
• l’entrée précédente pour le même client (6)
• le numéro du client concerné, ou si l’entrée est libre, le numéro de la prochaine

entrée libre (7)

03Chap_02 Page 90 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 91
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Articles

0

1 Radio 0 6 6

2

3 Téléviseur 0 3 8

4

5

6

7

8 Magnétoscope 25 / /

9

10 Chaîne hi-fi 0 12 14

11

nomArt (1) (2) (3)

Attente

0 1

1 2

2 4

3 03/07/.. 3 3 8 -1 6 -1 2

4 5

5 7

6 10/08/.. 1 1 -1 -1 12 3 2

7 9

8 12/09/.. 10 3 -1 3 14 -1 5

9 10

10 11

11 13

12 02/09/.. 5 10 14 -1 -1 6 2

13 15

14 13/09/.. 7 10 -1 12 -1 8 5

15 16

16 17

17 /

date (1) (2) (3) (4) (5) (6) (7)

Clients

0

1

2 Dupond 3 12

3

4

5 Durand 8 14

6 Dufour / /

7

8

nomCli (1) (2)

Figure 46 Commandes en attente : utilisation de listes symétriques.

03Chap_02 Page 91 Samedi, 17. janvier 2004 10:36 10

92 2 • Les listes

2.9.3.c Explications de l’exemple de la Figure 46

Le fichier Attente est géré à l’aide d’une liste libre ce qui permet la réutilisation des
entrées devenues disponibles suite à un réapprovisionnement par exemple. Sur
l’exemple, la tête de liste est mémorisée dans l’entrée 0 ; les entrées disponibles en
colonne (7) de Attente sont 1, 2, 4, 5, 7, 9, etc.

Les éléments sont chaînés à l’aide de listes symétriques ce qui facilite l’extraction
d’un élément des listes auxquelles il appartient en ne connaissant que son numéro
d’entrée.

Pour Téléviseur (article 3) par exemple, le premier article en attente est à l’entrée
3 du fichier Attente, le dernier à l’entrée 8 (champs 2 et 3 de Articles). Les champs
(3) et (4) de Attente contiennent les pointeurs suivant et precedent des commandes
en attente pour un article donné. Le pointeur (7) de Attente indique, si l’enregistre-
ment est occupé, le numéro du client concerné par cette commande en attente ; on
peut donc retrouver toutes les caractéristiques du client.

De même, pour Dupond (client 2), la première commande en attente est en 3 et la
dernière en 12 (champs 1 et 2 de Clients). Les champs (5) et (6) de Attente contien-
nent les pointeurs suivant et precedent des commandes en attente pour un client
donné. Le pointeur (2) de Attente indique le numéro de l’article concerné par la
commande en attente ; on peut donc retrouver les caractéristiques du produit et en
particulier son nom.

Cette structure est surtout valable si les fichiers sont importants. On peut très rapi-
dement à partir du numéro du client, retrouver ses commandes en attente avec toutes
leurs caractéristiques sans opérer de sélection ou de tri. Il suffit de suivre les poin-
teurs. La réciproque est aussi vraie : retrouver pour un article les clients en attente.
En cas de réapprovisionnement d’un article, il suffit également de suivre les poin-
teurs pour satisfaire les commandes en souffrance pour cet article et libérer les
entrées de attente devenues libres.

2.9.3.d Le fichier d’en-tête de la gestion en liste libre du fichier Attente

Ce module effectue la gestion de la liste libre du fichier Attente. lireDAtt() et ecrire-
DAtt() permettent un accès direct à un enregistrement du fichier Attente à partir de
son numéro. lireTeteListe() et ecrireTeteListe() permettent de lire ou de modifier la
valeur de la tête de la liste libre (mémorisée dans l’enregistrement 0). allouer()
fournit un numéro d’enregistrement libre. liberer() réinsère un enregistrement dans
la liste libre. initAtt() initialise la liste libre du fichier Attente.

/* attente.h
 Gestion du fichier Attente utilisant une liste libre */

#ifndef ATTENTE_H
#define ATTENTE_H

#define NBENR 20 // nombre d'enregistrements dans le fichier
#define NILE -1

03Chap_02 Page 92 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 93
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

typedef char ch8 [9];
typedef struct {
 int occupe; // enregistrement occupé
 ch8 date; // date de la commande
 int qt; // quantité commandée
 int numArt; // numéro de l'article
 int artSuivant; // article suivant
 int artPrecedent; // article précédent
 int cliSuivant; // client suivant
 int cliPrecedent; // client précédent
 int cliOuLL; // numéro de Client ou Liste Libre
} Attente;

void lireDAtt (int n, Attente* enrAtt);
void ecrireDAtt (int n, Attente* enrAtt);
int lireTeteListe ();
void ecrireTeteListe (int listLibre);
int allouer ();
void liberer (int nouveau);
void initAtt (char* nom);
void fermerAtt ();

#endif

2.9.3.e Le module de gestion en liste libre du fichier Attente

Le module correspond aux fonctions définies dans le fichier d’en-tête précédent.

/* attente.cpp Module de Gestion du fichier attente
 (utilisation d'une liste libre et de listes symétriques) */

#include <stdio.h>
#include <stdlib.h> // exit
#include "attente.h"

FILE* fr; // fichier relatif Attente

// lire Directement dans le fichier attente l'enregistrement n,
// et le mettre dans la structure pointée par attente
void lireDAtt (int n, Attente* attente) {
 fseek (fr, (long) n*sizeof (Attente), 0);
 fread (attente, sizeof (Attente), 1, fr);
}

// écrire Directement dans le fichier attente l'enregistrement n,
// à partir de la structure pointée par attente
void ecrireDAtt (int n, Attente* attente) {
 fseek (fr, (long) n*sizeof (Attente), 0);
 fwrite (attente, sizeof (Attente), 1, fr);
}

// fournir la valeur de la tête de liste
int lireTeteListe () {
 Attente attente;
 lireDAtt (0, &attente);
 return attente.cliOuLL;
}

// écrire la valeur de listLibre dans la tête de liste
void ecrireTeteListe (int listLibre) {
 Attente attente;

03Chap_02 Page 93 Samedi, 17. janvier 2004 10:36 10

94 2 • Les listes

 attente.cliOuLL = listLibre;
 ecrireDAtt (0, &attente);
}

// fournir le premier libre de la liste libre,
// ou NILE si la liste libre est vide
int allouer () {
 Attente attente;
 int nouveau = lireTeteListe();
 if (nouveau != NILE) {
 lireDAtt (nouveau, &attente);
 ecrireTeteListe (attente.cliOuLL);
 }
 return nouveau;
}

// ajouter nouveau en tête de la liste libre
void liberer (int nouveau) {
 Attente attente;
 attente.occupe = 0;
 attente.cliOuLL = lireTeteListe();
 ecrireDAtt (nouveau, &attente);
 ecrireTeteListe (nouveau);
}

// initialiser le fichier relatif, et la liste libre
void initAtt (char* nom) {
 Attente attente;

 fr = fopen (nom, "wb+");
 if (fr==NULL) { perror ("fichier inconnu : "); exit (1); }

 ecrireTeteListe (1);
 attente.occupe = 0;

 for (int i=1; i<NBENR-1; i++) {
 attente.cliOuLL = i+1;
 ecrireDAtt (i, &attente);
 }
 attente.cliOuLL = NILE; // le dernier enregistrement
 ecrireDAtt (NBENR, &attente);

 // pour avoir le schéma du cours
 // soit la liste libre 3, 6, 12, 8, 14, -1
 ecrireTeteListe (3);
 attente.cliOuLL = 6; ecrireDAtt (3, &attente);
 attente.cliOuLL = 12; ecrireDAtt (6, &attente);
 attente.cliOuLL = 8; ecrireDAtt (12, &attente);
 attente.cliOuLL = 14; ecrireDAtt (8, &attente);
 attente.cliOuLL = -1; ecrireDAtt (14, &attente);
}

void fermerAtt () {
 fclose (fr);
}

2.9.3.f Le programme de gestion des commandes en attente

Des parties du programme principal de la gestion des commandes en attente sont
données pour illustrer l’utilisation d’enregistrements chaînés et l’allocation en liste
libre. D’autres parties sont laissées en exercice.

03Chap_02 Page 94 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 95
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

/* ppattente.cpp
 Fichiers des commandes en attente
 avec liste libre et listes symétriques */

#include <stdio.h>
#include <string.h> // strcpy
#include <stdlib.h> // exit
#include "attente.h"

typedef int booleen;
#define faux 0
#define vrai 1
typedef char ch15 [16];

// les articles
typedef struct {
 ch15 nomArt;
 int qts; // quantité en stock
 int premier; // liste symétrique pour un article
 int dernier;
} Article;

// les clients
typedef struct {
 ch15 nomCli;
 int premier; // liste symétrique pour un client
 int dernier;
} Client;

FILE* fa; // fichier des articles
FILE* fc; // fichier des clients

// lire directement l'enregistrement n de fa
void lireDArt (int n, Article* article) {
 fseek (fa, (long) n*sizeof (Article), 0);
 fread (article, sizeof (Article), 1, fa);
}

// lire directement l'enregistrement n de fc
void lireDCli (int n, Client* client) {
 fseek (fc, (long) n*sizeof (Client), 0);
 fread (client, sizeof (Client), 1, fc);
}

// écrire directement l'enregistrement n de fa
void ecrireDArt (int n, Article* article) {
 fseek (fa, (long) n*sizeof (Article), 0);
 fwrite (article, sizeof (Article), 1, fa);
}

// écrire directement l'enregistrement n de fc
void ecrireDCli (int n, Client* client) {
 fseek (fc, (long) n*sizeof (Client), 0);
 fwrite (client, sizeof (Client), 1, fc);
}

// liste des articles en attente pour le client n
void listerArt (int n) {
 Attente attente;
 Article article;
 Client client;

 lireDCli (n, &client);

03Chap_02 Page 95 Samedi, 17. janvier 2004 10:36 10

96 2 • Les listes

 printf ("\nListe des articles en attente pour %s\n", client.nomCli);
 int ptc = client.premier;

 while (ptc != NILE) {
 lireDAtt (ptc, &attente);
 printf ("%10s ", attente.date);
 lireDArt (attente.numArt, &article);
 printf ("%s\n", article.nomArt);
 ptc = attente.cliSuivant;
 }
 printf ("\n");
}

// liste des clients en attente de l'article n
void listerCli (int n) {
 Attente attente;
 Article article;
 Client client;

 lireDArt (n, &article);
 printf ("\nListe des clients en attente de %s\n", article.nomArt);
 int ptc = article.premier;

 while (ptc != NILE) {
 lireDAtt (ptc, &attente);
 printf ("%10s", attente.date);
 lireDCli (attente.cliOuLL, &client);
 printf (" %s\n", client.nomCli);
 ptc = attente.artSuivant;
 }
 printf ("\n");
}

// initialiser la nième entrée du fichier article
void initArt (char* nomArt, int n, int qts) {
 Article article;
 strcpy (article.nomArt, nomArt);
 article.qts = qts;
 article.premier = NILE;
 article.dernier = NILE;
 ecrireDArt (n, &article);
 //printf ("initArt %s\n", nomArt);
}

// initialiser la nième entrée du fichier client
void initCli (char* nomCli, int n) {
 Client client;
 strcpy (client.nomCli, nomCli);
 client.premier = NILE;
 client.dernier = NILE;
 ecrireDCli (n, &client);
 //printf ("initCli %s\n", nomCli);
}

// mise en attente de qt article numArt pour le client numCli
void mettreEnAttente (int qt, int numArt, int numCli, char* date) {
 // à faire en exercice
}

03Chap_02 Page 96 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 97
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// extraire l'entrée n des listes de Attente
void extraire (int n) {
// à faire en exercice
}

// réapprovisionnement de qtr articles de numéro na
void reappro (int na, int qtr) {
// à faire en exercice
}

void main () {
// à faire en exercice
}

Exemple de résultats à partir de la Figure 46.

Fichier attente
 3 03/07/.. 3, 3 8 -1 : 6 -1 2
 6 10/08/.. 1, 1 -1 -1 : 12 3 2
 8 12/09/.. 10, 3 -1 3 : 14 -1 5
12 02/09/.. 5, 10 14 -1 : -1 6 2
14 13/09/.. 7, 10 -1 12 : -1 8 5

Fichier Article
1 Radio 6 6
3 Téléviseur 3 8
8 Magnétoscope -1 -1
10 Chaîne hi-fi 12 14

Fichier client
2 Dupond 3 12
5 Durand 8 14
6 Dufour -1 -1

Liste des articles en attente pour Durand
 12/09/.. Téléviseur
 13/09/.. Chaîne hi-fi

Liste des clients en attente de Téléviseur
 03/07/.. Dupond
 12/09/.. Durand

Exercice 12 - Commande en attente

• Écrire la fonction void mettreEnAttente (int qt, int numArt, int numCli, char*
date) ; qui insère une nouvelle commande en attente pour l’article numArt et le client
numCli à la date date. qt indique la quantité commandée.

03Chap_02 Page 97 Samedi, 17. janvier 2004 10:36 10

98 2 • Les listes

• Écrire la fonction void extraire (int n) ; qui extrait l’enregistrement n des
deux listes symétriques auxquelles il appartient, et libère (désalloue) cet enregis-
trement.

• Écrire la fonction void reappro (int na, int qtr) ; qui lance les commandes en
attente suite à un réapprovisionnement de qtr articles de numéro na. Les commandes
sont satisfaites dans l’ordre chronologique. La dernière commande peut n’être satis-
faite qu’en partie.

Exercice 13 - Les cartes à jouer

On dispose du module de gestion des listes simples décrit dans le fichier d’en-tête
liste.h et définissant les diverses fonctions opérant sur les listes. On veut simuler par
programme la distribution de cartes à jouer pour un jeu de 52 cartes. Il y a 4 couleurs
de cartes (numérotées de 1 à 4), et 13 valeurs de cartes par couleur (numérotées de 1
à 13). On définit le fichier d’en-tête cartes.h suivant.

/* cartes.h */

#ifndef CARTE_H
#define CARTE_H

#include "liste.h"

typedef struct {
 int couleur;
 int valeur;
} Carte;

typedef Liste PaquetCarte;
typedef PaquetCarte tabJoueur [4];

void insererEnFinDePaquet (PaquetCarte* p, int couleur, int valeur);
void listerCartes (PaquetCarte* p);
void creerTas (PaquetCarte* p);
Carte* extraireNieme (PaquetCarte* p, int n);
void battreLesCartes (PaquetCarte* p, PaquetCarte* paquetBattu);
void distribuerLesCartes (PaquetCarte* p, tabJoueur joueur);

#endif

Écrire les fonctions suivantes du module cartes.cpp :

• void insererEnFinDePaquet (PaquetCarte* p, int couleur, int valeur) ; qui
insère une carte de couleur et de valeur données en fin du paquet p.

• void listerCartes (PaquetCarte* p) ; qui liste la couleur et la valeur des cartes
du paquet de cartes p.

• void creerTas (PaquetCarte* p) ; qui crée un paquet de cartes p contenant les
cartes dans l’ordre couleur 1 pour les 13 cartes, puis couleur 2 pour les 13 suivantes,
etc., soit en tout 52 cartes.

03Chap_02 Page 98 Samedi, 17. janvier 2004 10:36 10

2.9 • Allocation contiguë 99
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

• Carte* extraireNieme (PaquetCarte* p, int n) ; qui extrait la nième carte du
paquet p et fournit un pointeur sur la carte extraite.

• void battreLesCartes (PaquetCarte* p, PaquetCarte* paquetBattu) ; qui crée à
partir du PaquetCarte p contenant 52 cartes, un nouveau PaquetCarte paquetBattu
résultat. On extrait aléatoirement une carte du paquet p pour l’insérer en fin de
paquetBattu jusqu’à ce que p soit vide. Utiliser la fonction rand() de génération de
nombre aléatoire.

• void distribuerLesCartes (PaquetCarte* p, tabJoueur joueur) ; qui distribue
jusqu’à épuisement de p (52 cartes), une carte à chacun des 4 joueurs.

Écrire le programme principal ppcartes.cpp qui génère un paquet de 52 cartes, les
affiche, les bat, les affiche à nouveau, les distribue aux 4 joueurs, et affiche la
poignée de chaque joueur.

Exercice 14 - Polynômes complexes

On veut utiliser des polynômes d’une variable complexe. Les polynômes sont
mémorisés dans des listes ordonnées décroissantes suivant l’exposant. Chaque objet
de la liste est composé d’un nombre complexe z et d’un entier puissance (puissance
de z du monôme). On dispose du module sur les complexes défini précédemment
lors de l’exercice 6, page 32 (fichier d’en-tête : complex.h) et du module sur les
listes ordonnées (voir § 2.3.8, page 48 : fichier d’en-tête liste.h).

Soit le fichier d’en-tête polynome.h suivant :

/* polynome.h */

#ifndef POLYNOME_H
#define POLYNOME_H

#include "complex.h"
#include "liste.h"

typedef struct {
 Complex z;
 int puissance;
} Monome;

typedef Liste Polynome;

Polynome* creerPolynome ();
void creerMonome (Polynome* p, Complex z, int puis);
Polynome* lirePolynome ();
void ecrirePolynome (Polynome* p);
Complex valeurPolynome (Polynome* p, Complex z);

#endif

Écrire les fonctions (fichier polynome.cpp) réalisant les opérations suivantes sur
les polynômes d’une variable complexe :

03Chap_02 Page 99 Samedi, 17. janvier 2004 10:36 10

100 2 • Les listes

• créer un polynôme vide (liste ordonnée),
• créer un monôme et l’ajouter au polynôme ordonné,
• lire un polynôme complexe sur l’entrée standard (clavier),
• écrire un polynôme complexe,
• calculer la valeur d’un polynôme complexe pour une valeur de z donnée.

Écrire un programme d’application (fichier pppolynomecomplex.cpp) réalisant :

• la lecture de polynômes complexes,
• l’écriture de polynômes complexes,
• le calcul de la valeur d’un polynôme complexe pour une valeur complexe z

donnée,
• le calcul de la valeur d’un produit de polynômes complexes pour un z donné,
• le calcul de la valeur d’un quotient de polynômes complexes pour un z donné.

Exemples de résultats attendus pour les polynômes en z suivants :

p1 = (3+3i) z3 + (2+2i) z2 + (1+i) z
p2 = (1+i) z3 + (3+3i) z2 + (2+2i) z

Liste du polynome p1 : (3.00 + 3.00 i) z** 3
 + (2.00 + 2.00 i) z** 2 + (1.00 + 1.00 i) z** 1

Liste du polynome p2 : (1.00 + 1.00 i) z** 3
 + (3.00 + 3.00 i) z** 2 + (2.00 + 2.00 i) z** 1

z1 = (0.50 + 1.00 i)
p1(z1) = (-7.38 + -2.87 i)
p2(z1) = (-7.38 + 2.13 i)
p1(z1)*p2(z1) = (60.50 + 5.53 i)
p1(z1)/p2(z1) = (0.82 + 0.63 i)

2.10 RÉSUMÉ

Les listes sont des structures de données permettant de gérer facilement des ensem-
bles de valeurs (ordonnées ou non) de taille a priori inconnue. L’utilisation de listes
d’éléments alloués dynamiquement facilite les insertions et les suppressions
d’éléments lorsque l’information évolue (apparaît et disparaît). Si on insère les
éléments suivant un critère d’ordre, on peut facilement obtenir une liste triée. Un
tableau au contraire nécessite une borne supérieure indiquant le nombre maximum
d’éléments mémorisables. Les retraits d’éléments d’un tableau et la réutilisation de
l’espace libéré sont par contre plus difficiles à gérer. Cependant, la plupart des traite-
ments sur les listes sont séquentiels, ce qui veut dire que pour accéder à un élément,

03Chap_02 Page 100 Samedi, 17. janvier 2004 10:36 10

2.10 • Résumé 101
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

il faut consulter les précédents. On ne peut pas se positionner directement sur un
élément. Si la liste contient de nombreux éléments, les traitements risquent de
s’allonger.

Le module de traitement des listes présenté dans ce chapitre est très général et
peut être facilement réutilisé dans de nombreuses applications comme l’indiquent
les divers exemples traités. La liste est un type abstrait de données que l’on met en
œuvre en respectant les prototypes de l’interface du module liste.h. Il existe
plusieurs variantes des listes (circulaires, symétriques) facilitant un des aspects du
traitement des listes (l’extraction par exemple pour les listes symétriques).

L’allocation contiguë permet de regrouper les informations de la liste dans un
même espace contigu en mémoire centrale ou secondaire. Cependant le program-
meur doit gérer lui-même cet espace et être en mesure d’allouer une place pour un
élément ou de libérer une place qui pourra être réutilisée par la suite. Sauf raisons
très particulières, il vaut mieux, en mémoire centrale, utiliser l’allocation dynamique
et bénéficier ainsi de la gestion de mémoire faite par le système d’exploitation. Sur
mémoire secondaire, l’utilisateur doit gérer son espace comme on l’a vu sur
l’exemple des commandes en attente.

03Chap_02 Page 101 Samedi, 17. janvier 2004 10:36 10

C

hapitre

3

Les arbres

3.1 LES ARBRES N-AIRES

3.1.1 Définitions

Arbre

 : un arbre est une structure de données composée d’un ensemble de nœuds.
Chaque nœud contient l’information spécifique de l’application et des pointeurs vers
d’autres nœuds (d’autres sous-arbres).

Figure 47

Un arbre n-aire.

L’arbre de la Figure 47 peut se noter :
(étudiant (nom, prénom, adresse (numéro, rue, ville, département))).

Feuilles

 : les nœuds ne pointant vers aucun autre nœud sont appelés feuilles (

nom,
prénom, numéro, rue, ville, département

 sont des feuilles).

Racine

 : il existe un nœud au niveau 1 qui n’est pointé par aucun autre nœud :
c’est la racine de l’arbre (

étudiant

 est la racine de l’arbre).

nom prénom adresse

numéro rue ville département

étudiant

04Chap_03 Page 102 Samedi, 17. janvier 2004 10:37 10

3.1 •

Les arbres n-aires

103

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Niveau

 : le niveau de la racine est 1. Les autres nœuds ont un niveau qui est
augmenté de un par rapport au nœud dont ils dépendent.

Hauteur

(profondeur) d’un arbre

: c’est le niveau maximum atteint (par la
branche la plus longue). La hauteur du nœud

étudiant

 est de 3.

Arbre ordonné

 : si l’ordre des sous-arbres est significatif, on dit que l’arbre est
ordonné (arbre généalogique par exemple).

Arbre binaire

 : un arbre binaire est un type d’arbre ordonné tel que chaque nœud
a au plus deux fils et quand il n’y en a qu’un, on précise s’il s’agit du fils droit ou du
fils gauche.

Degré d’un nœud

: on appelle degré d’un nœud, le nombre de successeurs de ce
nœud.

Degré d’un arbre

 : si N est le degré maximum des nœuds de l’arbre, l’arbre est dit
n-aire. Sur l’exemple,

adresse

 a un degré 4. L’arbre est un arbre 4-aire.

Taille

 : c’est le nombre total de nœuds de l’arbre. La taille est de 8 sur l’exemple
de la Figure 47.

Arbre binaire complet

 : c’est un arbre binaire de taille 2

k

-1 (k étant le niveau des
feuilles).

Arbre binaire parfaitement équilibré

 : un arbre binaire est parfaitement équilibré
si pour chaque nœud, les

nombres

de nœuds

des sous-arbres gauche et droit diffè-
rent au plus d’un.

Arbre binaire équilibré :

un arbre binaire est équilibré si pour chaque nœud, les

hauteurs

 des sous-arbres gauche et droit diffèrent au plus d’un.

3.1.2 Exemples d’applications utilisant les arbres

a) Expression arithmétique : arbre binaire ordonné
Une expression arithmétique ayant des opérateurs binaires peut être schématisée

sous la forme d’un arbre binaire. La Figure 49 représente l’expression arithmétique :
((a+b) * (c-d) – e).

L’arbre est ordonné : permuter 2 sous-arbres change l’expression.

k = 3 23 – 1 = 7 nœuds

Figure 48 Un arbre complet.

04Chap_03 Page 103 Samedi, 17. janvier 2004 10:37 10

104 3

•

Les arbres

b) Représentation de caractères

Soient à représenter les mots suivants :

mais, mars, mer, mon, sa, son, sel

. Les
débuts communs peuvent n’être mémorisés qu’une seule fois sous forme d’un arbre
de caractères. L’arbre peut aussi se noter sous la forme équivalente suivante : (m (a
(is, rs), er, on), s (a, on, el)). En fait, il faut ajouter un caractère '*' en fin de chaque
mot, pour pouvoir distinguer les mots sous-chaînes d’un mot plus long comme par
exemple

ma

 et

mars

.

c) Structure d’une phrase : arbre n-aire ordonné

–

e*

+ –

c dba

Figure 49 L’arbre d’une expression arithmétique.

m

a oe

r ni r

s s

s

oa e

n l

Figure 50 Un arbre de mots.

Phrase

Groupe sujet Groupe verbal Groupe complément

Pronom personnel Pronom personnel
complément

 Verbe Préposition Article Nom

je le regarde par la fenêtre

arbre ordonné

Figure 51 L’arbre syntaxique d’une phrase française.

04Chap_03 Page 104 Samedi, 17. janvier 2004 10:37 10

3.1 •

Les arbres n-aires

105

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Dans les traitements informatiques de la langue naturelle, on a souvent besoin de
connaître la structure d’une phrase pour :

• traduire cette phrase d’une langue dans une autre langue, (exemple : « Mary was
told that John left yesterday » devient « On a dit à Marie que Jean était parti hier »),

• prononcer la phrase sur synthétiseur de parole (une bonne intonation nécessite
une certaine connaissance de la structure de la phrase),

• comprendre le sens de la phrase et agir en fonction de la commande donnée en
langage naturel. Pour la commande d’un robot, on pourrait imaginer l’ordre suivant
en langage naturel : mettre la sphère verte sur le cube rouge.

Dans certaines applications, le langage peut être contraint, c’est-à-dire limité par
le vocabulaire de l’application et par les constructions syntaxiques acceptées qui
doivent être conformes à la grammaire de l’application. Par contre, en synthèse de
parole, le synthétiseur doit être capable de prononcer n’importe quel mot, nom
propre ou abréviation.

d) Arbre généalogique : arbre n-aire
L’arbre généalogique suivant est un arbre de descendance. Julie a deux enfants :

Jonatan et Gontran. Jonatan a trois enfants : Pauline, Sonia, Paul. Le degré de l’arbre
est de 3 ; l’arbre est dit 3-aire ou n-aire d’une manière générale. Le degré de chaque
nœud est variable puisqu’il dépend du nombre d’enfants de ce nœud. Julie est la
racine de l’arbre.

e) Tournoi de tennis
Un tournoi se schématise sous la forme d’un arbre, les matchs se déroulant des

feuilles vers la racine. Michel a battu Jérôme ; Gérard a battu Olivier. Les gagnants
ont joué ensemble et c’est Michel qui a gagné.

Figure 53

L’arbre d’un tournoi de tennis.

Julie

Jonatan Gontran

Pauline Sonia Paul Antonine

Figure 52 Un arbre généalogique.

Michel

Michel Gérard

Michel Jérôme Gérard Olivier

04Chap_03 Page 105 Samedi, 17. janvier 2004 10:37 10

106 3

•

Les arbres

f) ou encore

• la structure d’un chapitre de cours est arborescente : le chapitre se découpe en
sections et paragraphes.

• le répertoire des fichiers d’un système d’exploitation a une structure arborescente
faite de sous-répertoires et de fichiers.

• l’interface graphique d’un logiciel est constituée de fenêtres et sous-fenêtres qui
forment un arbre.

• la nomenclature d’un objet est un arbre : l’arbre des composants d’une voiture
(moteur, carrosserie, sièges, etc.), de la structure de la Terre (continents, pays, etc.),
du corps humain (tête, tronc, membres, etc.).

• la classification des espèces animales en vertébrés (poissons, batraciens, reptiles,
oiseaux, mammifères) et invertébrés (arthropodes (crustacés, myriapodes, arach-
nides, insectes), vers ou mollusques) forme un arbre. De même pour la classification
des espèces végétales en phanérogames (monocotylédones, dicotylédones) ou cryp-
togames (algues, champignons, lichens, mousses, fougères).

3.1.3 Représentation en mémoire des arbres n-aires

Il s’agit de mémoriser les arbres et leurs relations de dépendance père fils.

3.1.3.a Mémorisation par listes de fils

L’arbre de la Figure 52 peut se mémoriser comme l’indique la Figure 54. L’alloca-
tion est dans ce cas en partie contiguë et en partie dynamique. Avec cette structure de
données, les insertions et les suppressions de nœuds ne sont pas faciles à gérer pour
la partie contiguë. De plus, il est difficile de donner un maximum pour la déclaration
de cette partie si on peut ajouter des éléments. Sur l’exemple, Julie a un successeur
en 1 (soit Jonatan) et un autre en 5 (soit Gontran). Chaque nœud a une liste (vide
pour les feuilles) des successeurs de ce nœud.

Julie0

Jonatan1

Pauline /2

Sonia /3

Paul /4

Gontran5

Antonine /6

1 5 /

2 3 4 /

6 /

Figure 54 Mémorisation d’un arbre par listes de fils.

04Chap_03 Page 106 Samedi, 17. janvier 2004 10:37 10

3.1 •

Les arbres n-aires

107

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

3.1.3.b Allocation dynamique

Les éléments sont alloués au cours de la construction de l’arbre et reliés entre eux.
Le nombre de pointeurs présents dans chaque nœud dépend du degré de l’arbre. Si
le degré de chaque nœud est constant, cette mémorisation est parfaite. Sur l’exemple
de l’arbre généalogique (voir Figure 55), le nombre maximum N d’enfants pour une
personne est difficile à définir. De plus, il conduit à une perte importante de place
puisqu’il faut prévoir N pointeurs pour chaque nœud, y compris les feuilles.

La déclaration pourrait être la suivante :

typedef struct noeud* PNoeud;
typedef struct noeud {
 char nom [16];
 PNoeud p1;
 PNoeud p2,
 PNoeud p3;
} Noeud;

3.1.3.c Allocation contiguë (tableau ou fichier)

Figure 56

Allocation contiguë avec 3 descendants maximum.

Nom p1 p2 p3

0

Julie 1 5 /

1

Jonatan 2 3 4

2

Pauline / / /

3

Sonia / / /

4

Paul / / /

5

Gontran 6 / /

6

Antonine / / /

Julie /

Jonatan Gontran / /

Pauline / / / Sonia / / / Paul / / / Antonine / / /

Figure 55 Allocation dynamique avec 3 descendants maximum.

04Chap_03 Page 107 Samedi, 17. janvier 2004 10:37 10

108 3

•

Les arbres

L’arbre peut être mémorisé dans un espace contigu (voir Figure 56). L’espace
mémoire est réservé avant le début de l’exécution en précisant un maximum. Cet
espace peut être réservé en mémoire centrale ou sur mémoire secondaire. Les poin-
teurs sont alors des indices du tableau, ou des numéros d’enregistrements s’il s’agit
d’un fichier. Si l’entrée 0 est utilisée, on peut choisir –1 pour indiquer l’absence de
successeurs notée / sur le schéma.

D’où les déclarations :

#define NULLE -1
#define MAXPERS 7

typedef int PNoeud;
typedef struct {
 char nom [16];
 PNoeud p1, p2, p3;
} Noeud

Noeud genealogique [MAXPERS]; // pour un tableau

Dans les cas où il y a des ajouts et des retraits de nœuds, on pourrait envisager une
gestion en liste libre de l’espace non utilisé (voir § 2.9.1.c, page 87). Si un nœud a
10 successeurs, il faut envisager 10 pointeurs pour chaque nœud de l’arbre, d’où une
perte de place. Notation : genealogique[1].nom représente

Jonatan

 sur l’exemple.

3.2 LES ARBRES BINAIRES

3.2.1 Définition d’un arbre binaire

Un arbre binaire est un arbre ordonné tel que chaque nœud a au plus deux fils et
quand il n’y en a qu’un, on distingue le fils droit du fils gauche.

3.2.2 Transformation d’un arbre n-aire
en un arbre binaire

Lorsque le nombre de successeurs des nœuds est variable, il est souvent préférable
de convertir l’arbre n-aire en un arbre binaire équivalent. On mémorise alors pour
chaque nœud, un pointeur vers son premier

fils et un pointeur vers son frère immé-
diatement plus jeune. Les liens

premier fils

 et

frère immédiatement plus jeune

suffisent pour représenter tout arbre n-aire. Sur la Figure 57, le trait vertical repré-
sente le premier fils ; le trait horizontal représente le frère immédiatement plus
jeune.

04Chap_03 Page 108 Samedi, 17. janvier 2004 10:37 10

3.2 •

Les arbres binaires

109

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Exemple :

3.2.3 Mémorisation d’un arbre binaire

3.2.3.a Arbre généalogique

Allocation dynamique : création d’un nœud au fur et à mesure des besoins.

La mémorisation de l’arbre en allocation entièrement dynamique est donnée sur le
schéma de la Figure 58. Chaque nœud a au plus deux successeurs.

Julie

Jonatan Gontran

Pauline Sonia Paul Antonine

Julie

Jonatan

Pauline Sonia Paul Antonine

Gontran

Figure 57 Transformation d’un arbre n-aire en un arbre binaire.

Julie /0

Jonatan1

Pauline /2

Sonia /3

Paul / /4

Gontran5

Antonine / /6

/

Figure 58 Arbre binaire avec une représentation à 45° des liens fils et frère.

04Chap_03 Page 109 Samedi, 17. janvier 2004 10:37 10

110 3

•

Les arbres

Les fonctions suivantes permettent de créer de nouveaux nœuds et de construire
l’arbre généalogique de l’exemple. Comme pour les listes, afin de donner plus de
généralités au module, les informations spécifiques de l’application sont repérées
par un pointeur nommé

reference

 qui pointe sur l’objet de l’application (un entier,
une personne, etc.). Le pointeur est de type indifférencié soit de type void* ou
Objet* avec les notations suivantes.

typedef void

Objet

;

typedef struct noeud {
 Objet*

reference

;
 struct noeud*

gauche

;
 struct noeud*

droite

;
 int factEq; // facteur d'équilibre : si l'arbre est équilibré
}

Noeud

;

typedef struct {
 Noeud*

racine;
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);
} Arbre;

Les fonctions suivantes fournissent ou changent la valeur d’un paramètre d’une
structure de type Arbre (accesseurs).

Noeud* getracine (Arbre* arbre);
Objet* getobjet (Noeud* racine);
void setracine (Arbre* arbre, Noeud* racine);
void settoString (Arbre* arbre, char* (*toString) (Objet*));
void setcomparer (Arbre* arbre,

int (*comparer) (Objet*, Objet*));

Ces fonctions créent un nœud ou une feuille (une structure Nœud) :

// création d'un noeud interne contenant objet,
// gauche comme pointeur de SAG, et droite comme pointeur de SAD
Noeud* cNd (Objet* objet, Noeud* gauche, Noeud* droite) {
 Noeud* nouveau = new Noeud();

arbre

racine

objet 1

objet 2
objet 3

Figure 59 Dessin d’un arbre composé de nœuds. Chaque nœud référence un objet.

04Chap_03 Page 110 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 111
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 nouveau->reference = objet;
 nouveau->gauche = gauche;
 nouveau->droite = droite;
 return nouveau;
}

// création d'un noeud feuille contenant objet
Noeud* cNd (Objet* objet) {
 return cNd (objet, NULL, NULL);
}

// création d'une feuille contenant objet
Noeud* cF (Objet* objet) {
 return cNd (objet, NULL, NULL);
}

Ces fonctions créent ou initialisent un arbre (une structure Arbre).

void initArbre (Arbre* arbre, Noeud* racine,
char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*)) {

 arbre->racine = racine;
 arbre->toString = toString;
 arbre->comparer = comparer;
}

Arbre* creerArbre (Noeud* racine, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

 Arbre* arbre = new Arbre();
 initArbre (arbre, racine, toString, comparer);
 return arbre;
}

Arbre* creerArbre (Noeud* racine) {
 return creerArbre (racine, toChar, comparerCar);
}

Arbre* creerArbre () {
 return creerArbre (NULL, toChar, comparerCar); // valeurs par défaut
}

Les fonctions suivantes créent l’arbre généalogique particulier de la Figure 58.

Noeud* cF (char* message) {
 return cF ((Objet*) message);
}

Noeud* cNd (char* message, Noeud* gauche, Noeud* droite) {
 return cNd ((Objet*) message, gauche, droite);
}

// créer un arbre binaire généalogique
Arbre* creerArbreGene () {
 Noeud* racine =
 cNd ("Julie",
 cNd ("Jonatan",
 cNd ("Pauline",
 NULL,
 cNd ("Sonia", NULL, cF ("Paul"))
),

04Chap_03 Page 111 Samedi, 17. janvier 2004 10:37 10

112 3 • Les arbres

 cNd ("Gontran", cF ("Antonine"), NULL)
),
 NULL
);
 return creerArbre (racine);
}

Allocation contiguë
L’allocation peut aussi se faire dans un tableau en mémoire centrale, ou dans un
fichier en accès direct si le volume des données est important, ou si l’arbre doit être
conservé d’une session à l’autre.

Figure 60 Arbre binaire en allocation contiguë (tableau ou fichier).

Le schéma de la Figure 60 peut représenter soit :

• un tableau en mémoire centrale

• un fichier en accès direct en mémoire secondaire (disque).

3.2.3.b Expression arithmétique

nom gauche droite

0 Julie 1 /

1 Jonatan 2 5

2 Pauline / 3

3 Sonia / 4

4 Paul / /

5 Gontran 6 /

6 Antonine / /

–

e*

+ –

c dba

Figure 61 Arbre binaire de ((a+b)*(c-d))-e.

04Chap_03 Page 112 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 113
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

L’arbre de la Figure 61 peut être créé comme suit à l’aide des fonctions cF() et
cNd() vues précédemment.

// créer un arbre binaire (expression arithmétique)
Arbre* creerArbreExp () {
 Noeud* racine =
 cNd ("-",
 cNd ("*",
 cNd ("+", cF ("a"), cF ("b")),
 cNd ("-", cF ("c"), cF ("d"))
),
 cF ("e")
);
 return creerArbre (racine);
}

Mémorisation dynamique puis contiguë de l’expression arithmétique

Figure 62 Mémorisation de l’arbre binaire de ((a+b)*(c-d))-e.

nom gauche droite

0 – 1 8

1 * 2 5

2 + 3 4

3 a / /

4 b / /

5 – 6 7

6 c / /

7 d / /

8 e / /

–0

e / /8*1

–5+2

a / /3 b / /4 c / /6 d / /7

racine

arbre

04Chap_03 Page 113 Samedi, 17. janvier 2004 10:37 10

114 3 • Les arbres

3.2.4 Parcours d’un arbre binaire

Un algorithme de parcours d’arbre est un procédé permettant d’accéder à chaque nœud
de l’arbre. Un certain traitement est effectué pour chaque nœud (test, écriture, comp-
tage, etc.), mais le parcours est indépendant de cette action et commun à des algo-
rithmes qui peuvent effectuer des traitements très divers comme rechercher les enfants
de Gontran, compter la descendance de Julie, compter le nombre de garçons, ajouter
un fils à Paul, etc. On distingue deux catégories de parcours d’arbres : les parcours en
profondeur et les parcours en largeur. Dans le parcours en profondeur, on explore
branche par branche alors que dans le parcours en largeur on explore niveau par niveau.

3.2.4.a Les différentes méthodes de parcours en profondeur d’un arbre

Il y a 6 types de parcours possibles (P : père, SAG : sous-arbre gauche, SAD : sous-
arbre droit). Nous ne considérons dans la suite de ce chapitre que les parcours
gauche-droite. Les parcours droite-gauche s’en déduisent facilement par symétrie.

 Ces parcours sont appelés parcours en profondeur car on explore une branche de
l’arbre le plus profond possible avant de revenir en arrière pour essayer un autre chemin.

Figure 63 Les 6 types de parcours d’un arbre binaire.

Dans un parcours d’arbre gauche-droite, un nœud est visité trois fois :

• lors de la première rencontre du nœud, avant de parcourir le sous-arbre gauche.

• après parcours du sous-arbre gauche, avant de parcourir le sous-arbre droit.

• après examens des sous-arbres gauche et droit.

L’action à effectuer sur le nœud peut se faire lors de la visite (a), (b) ou (c).

gauche - droite droite - gauche

préfixé P . SAG . SAD P . SAD . SAG

infixé SAG . P . SAD SAD . P . SAG

postfixé SAG . SAD . P SAD . SAG . P

P

S ADS AG

(a) (b) (c)

Figure 64 Les 3 visites d’un nœud lors d’un parcours d’arbre binaire.

04Chap_03 Page 114 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 115
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.2.4.b Parcours sur l’arbre binaire de l’arbre généalogique

Parcours préfixé
Le premier type de parcours est appelé parcours préfixé. Il faut traiter le nœud lors
de la première visite, puis explorer le sous-arbre gauche (en appliquant la même
méthode) avant d’explorer le sous-arbre droit. Sur la Figure 58, Jonatan est traité
avant son SAG (Pauline Sonia Paul) et avant son SAD (Gontran Antonine). La
procédure se schématise comme suit :

• traitement de la racine

• traitement du sous-arbre gauche

• traitement du sous-arbre droit
Sur l’exemple, cela conduit au parcours de la Figure 65. Pour chaque nœud, on

trouve le nom du nœud concerné, les éléments du SAG, puis les éléments du SAD.

Parcours infixé
Dans un parcours infixé, le nœud est traité lors de la deuxième visite, après avoir
traité le sous-arbre gauche, mais avant de traiter le sous-arbre droit. La Figure 66
indique l’ordre de traitement des nœuds de l’arbre généalogique. Un nœud se trouve
entre son SAG et son SAD. Jonatan par exemple se trouve entre son SAG (Pauline
Sonia Paul) et son SAD (Antonine Gontran). La procédure se schématise comme
suit :

• traitement du sous-arbre gauche

• traitement de la racine

• traitement du sous-arbre droit

Parcours postfixé
En parcours postfixé, le nœud est traité lors de la troisième visite, après avoir traité
le SAG et le SAD. La Figure 67 indique par exemple que Jonatan est traité après son

Julie Jonatan Pauline Sonia Paul Gontran Antonine

Figure 65 Parcours préfixé de l’arbre généalogique de la Figure 58.

Pauline Sonia Paul Jonatan Antonine Gontran Julie

Figure 66 Parcours infixé de l’arbre généalogique de la Figure 58.

04Chap_03 Page 115 Samedi, 17. janvier 2004 10:37 10

116 3 • Les arbres

SAG (Paul Sonia Pauline) et après son SAD (Antonine Gontran). La procédure à
suivre est donnée ci-dessous :

• traitement du sous-arbre gauche

• traitement du sous-arbre droit

• traitement de la racine

Exercice 15 - Parcours d’arbres droite-gauche

Donner sur l’exemple de la Figure 58, les parcours préfixé, infixé, postfixé en
parcours droite-gauche (voir Figure 63).

3.2.4.c Parcours sur l’arbre binaire de l’expression arithmétique

Sur l’arbre binaire de l’expression arithmétique, les parcours correspondent à une
écriture préfixée, infixée ou postfixée de cette expression.

Parcours préfixé
L’opérateur est traité avant ses opérandes

Parcours infixé
L’opérateur se trouve entre ses deux opérandes.

L’expression infixée est ambiguë et peut être interprétée comme :
a + (b * c) - d - e ou (a + b) * (c - d) - e

Il faut utiliser des parenthèses pour lever l’ambiguïté. C’est la notation habituelle
d’une expression arithmétique dans les langages de programmation. En l’absence de
parenthèses, des priorités entre opérateurs permettent aux compilateurs de choisir
une des interprétations possibles.

Paul Sonia Pauline Antonine Gontran Jonatan Julie

Figure 67 Parcours postfixé de l’arbre généalogique de la Figure 58.

– * + a b – c d e

Figure 68 Parcours préfixé de l’expression arithmétique de la Figure 62.

a + b * c – d – e

Figure 69 Parcours infixé de l’expression arithmétique de la Figure 62.

04Chap_03 Page 116 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 117
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Parcours postfixé
L’opérateur se trouve après ses opérandes.

3.2.4.d Les algorithmes de parcours d’arbre binaire

Les fonctions de parcours découlent directement des algorithmes vus sur les
exemples précédents. Le simple changement de la place de l’ordre d’écriture
conduit à un traitement préfixé, infixé ou postfixé. La fonction toString(), passée en
paramètre de prefixe() fournit une chaîne de caractères spécifiques de l’objet traité.
Cette chaîne est imprimée lors du printf. La fonction toString() est dépendante de
l’application et passée en paramètre lors de la création de l’arbre. Par défaut, les
objets référencés dans chaque nœud sont des chaînes de caractères.

Algorithme de parcours préfixé
// toString fournit la chaîne de caractères à écrire pour un objet donné
static void prefixe (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 printf ("%s ", toString (racine->reference));
 prefixe (racine->gauche, toString);
 prefixe (racine->droite, toString);
 }
}

// parcours préfixé de l'arbre
void prefixe (Arbre* arbre) {
 prefixe (arbre->racine, arbre->toString);
}

Le déroulement de l’algorithme récursif prefixe() sur la Figure 62 où les pointeurs
ont été remplacés pour l’explication par des adresses de 0 à 8 est schématisé sur la
Figure 71. Les adresses des nœuds en allocation dynamique sont normalement
quelconques et dispersées en mémoire. L’appel prefixe() avec le nœud racine 0
entraîne un appel récursif qui consiste à traiter le SAG, d’où un appel à prefixe()
avec pour nouvelle racine 1 qui à son tour déclenche une cascade d’appels récursifs.
Plus tard, on fera un appel à prefixe() avec un pointeur sur SAD en 8. Le déroule-
ment de l’exécution de l’algorithme est schématisé ligne par ligne, de haut en bas, et
de gauche à droite.

a b + c d – * e –

Figure 70 Parcours postfixé de l’expression arithmétique de la Figure 62.

04Chap_03 Page 117 Samedi, 17. janvier 2004 10:37 10

118 3 • Les arbres

Figure 71 Parcours préfixé de l’arbre binaire de la Figure 62.

Algorithme de parcours infixé
Le nœud racine est traité (écrit) entre les deux appels récursifs.

// toString fournit la chaîne de caractères à écrire pour un objet
static void infixe (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 infixe (racine->gauche, toString);
 printf ("%s ", toString (racine->reference));
 infixe (racine->droite, toString);
 }
}

// parcours infixé de l'arbre
void infixe (Arbre* arbre) {
 infixe (arbre->racine, arbre->toString);
}

Algorithme de parcours postfixé
Le nœud racine est traité après les deux appels récursifs.

// toString fournit la chaîne de caractères à écrire pour un objet
static void postfixe (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 postfixe (racine->gauche, toString);
 postfixe (racine->droite, toString);
 printf ("%s ", toString (racine->reference));
 }
}

// parcours postfixé de l'arbre
void postfixe (Arbre* arbre) {
 postfixe (arbre->racine, arbre->toString);
}

prefixe (0); racine = 0;
printf (-);
prefixe (1);

racine = 1;
printf (*);
prefixe (2);

racine = 2;
printf (+);
prefixe (3);

racine = 3;
printf (a);
prefixe (NULL);
prefixe (NULL);

prefixe (4); racine = 4;
printf (b);
prefixe (NULL);
prefixe (NULL);

prefixe (5); racine = 5;
printf (-);
prefixe (6);

Racine = 6;
printf (c);
prefixe (NULL);
prefixe (NULL);

prefixe (7); racine = 7;
printf (d);
prefixe (NULL);
prefixe (NULL);

prefixe (8); racine = 8;
printf (e);
prefixe (NULL);
prefixe (NULL);

04Chap_03 Page 118 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 119
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Parcours préfixé avec indentation
Les écritures concernant les objets des nœuds visités sont décalées (indentées) pour
mieux mettre en évidence la structure de l’arbre binaire. Le niveau est augmenté de
1 à chaque fois que l’on descend à gauche ou à droite dans l’arbre binaire.

// toString fournit la chaîne de caractères à écrire pour un objet
// niveau indique l'indentation à faire
static void indentationPrefixee (Noeud* racine,

char* (*toString) (Objet*), int niveau) {
 if (racine != NULL) {
 printf ("\n");
 for (int i=1; i<niveau; i++) printf ("%5s", " ");
 printf ("%s ", toString (racine->reference));
 indentationPrefixee (racine->gauche, toString, niveau+1);
 indentationPrefixee (racine->droite, toString, niveau+1);
 }
}

void indentationPrefixee (Arbre* arbre) {
 indentationPrefixee (arbre->racine, arbre->toString, 1);
}

Résultats du parcours préfixé avec indentation :
L’exécution de la fonction indentationPrefixee() sur l’exemple de la Figure 62
conduit aux résultats suivants où la structure de l’arbre binaire est mise en évidence.

-
 *
 +
 a
 b
 -
 c
 d
 e

3.2.4.e Recherche d’un nœud de l’arbre

La fonction trouverNoeud() recherche récursivement le nœud contenant les infor-
mations définies dans objet, dans l’arbre commençant en racine. C’est un parcours
d’arbre interrompu (on s’arrête quand on a trouvé un pointeur sur l’objet concerné).
Si l’objet n’est pas dans l’arbre, la fonction retourne NULL.

Algorithme : la comparaison de deux objets est définie par la fonction comparer()
passée en paramètre et spécifique des objets traités dans l’application. Cette fonction
est définie lors de la création de l’arbre. Par défaut, il s’agit d’un arbre de chaînes de
caractères.

La recherche de objet dans un arbre vide retourne la valeur NULL (pas trouvé). Si
le nœud pointé par racine contient l’objet que l’on cherche alors le résultat est le

04Chap_03 Page 119 Samedi, 17. janvier 2004 10:37 10

120 3 • Les arbres

pointeur racine ; sinon, on cherche objet dans le SAG ; si objet n’est pas dans le
SAG, on le cherche dans le SAD.

static Noeud* trouverNoeud (Noeud* racine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {

 Noeud* pNom;
 if (racine == NULL) {
 pNom = NULL;
 } else if (comparer (racine->reference, objet) == 0) {
 pNom = racine;
 } else {
 pNom = trouverNoeud (racine->gauche, objet, comparer);
 if (pNom == NULL) pNom = trouverNoeud (racine->droite, objet,

comparer);
 }
 return pNom;
}

// recherche le noeud objet dans l'arbre
Noeud* trouverNoeud (Arbre* arbre, Objet* objet) {
 return trouverNoeud (arbre->racine, objet, arbre->comparer);
}

Cette procédure est utile pour retrouver un nœud particulier de l’arbre et déclencher
un traitement à partir de ce nœud. On peut par exemple appeler trouverNœud() pour
obtenir un pointeur sur le nœud Jonatan de la Figure 58 et effectuer une énumération
indentée à partir de ce nœud en appelant la fonction indentationPrefixee().

3.2.4.f Parcours en largeur dans un arbre

Une autre méthode de parcours des arbres consiste à les visiter étage par étage,
comme si on faisait une coupe par niveau. Ainsi, sur l’arbre généalogique binaire
de la Figure 58, le parcours en largeur est le suivant : Julie/Jonatan/Pauline-
Gontran/Sonia-Antonine/Paul. Sur l’arbre binaire de l’expression arithmétique de
la Figure 61, le parcours en largeur est : - * e + - a b c d. Ce parcours nécessite
l’utilisation d’une file d’attente contenant initialement la racine. On extrait
l’élément en tête de la file, et on le remplace par ses successeurs à gauche et à
droite jusqu’à ce que la file soit vide. Dans les parcours d’arbres, on effectue
plutôt des parcours en profondeur, bénéficiant ainsi des mécanismes automatiques
de retour en arrière de la récursivité. Le parcours en largeur est effectué lorsque les
résultats l’imposent comme pour le dessin d’un arbre binaire (voir § 3.2.8,
page 127).

La fonction enLargeur() effectue un parcours en largeur des nœuds de l’arbre.
Exemple de résultats pour l’arbre généalogique :

Parcours en largeur
Julie Jonatan Pauline Gontran Sonia Antonine Paul

04Chap_03 Page 120 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 121
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

static void enLargeur (Noeud* racine, char* (*toString) (Objet*)) {
 Liste* li = creerListe();
 insererEnFinDeListe (li, racine);

 while (!listeVide (li)) {
 Noeud* extrait = (Noeud*) extraireEnTeteDeListe (li);
 printf ("%s ", toString (extrait->reference));
 if (extrait->gauche != NULL) insererEnFinDeListe (li,

extrait->gauche);
 if (extrait->droite != NULL) insererEnFinDeListe (li,

extrait->droite);
 }
}

// parcours en largeur de l'arbre
void enLargeur (Arbre* arbre) {
 enLargeur (arbre->racine, arbre->toString);
}

La fonction EnLargeurParEtape() effectue un parcours en largeur des nœuds de
l’arbre en effectuant un traitement en fin de chaque étage (aller à la ligne ici). Il faut
utiliser 2 listes : une liste contenant les pointeurs sur les nœuds de l’étage courant, et
une autre contenant les successeurs des nœuds courants qui deviendront étage
courant à l’étape suivante.

Exemple de résultats :

Parcours en largeur par étage
Julie
Jonatan
Pauline Gontran
Sonia Antonine
Paul

static void enLargeurParEtage (Noeud* racine, char* (*toString) (Objet*)) {
 Liste* lc = creerListe(); // liste courante
 Liste* ls = creerListe(); // liste suivante
 insererEnFinDeListe (lc, racine);

 while (!listeVide (lc)) {
 while (!listeVide (lc)) {
 Noeud* extrait = (Noeud*) extraireEnTeteDeListe (lc);
 printf ("%s ", toString (extrait->reference));
 if (extrait->gauche != NULL) insererEnFinDeListe (ls,

extrait->gauche);
 if (extrait->droite != NULL) insererEnFinDeListe (ls,

extrait->droite);
 }

 printf ("\n"); // fin d'un étage
 recopierListe (lc, ls); // ls vide
 }
}

void enLargeurParEtage (Arbre* arbre) {
 enLargeurParEtage (arbre->racine, arbre->toString);
}

04Chap_03 Page 121 Samedi, 17. janvier 2004 10:37 10

122 3 • Les arbres

3.2.5 Propriétés de l’arbre binaire

3.2.5.a Taille d’un arbre binaire

La taille d’un arbre est le nombre de nœuds de cet arbre. La taille à partir du nœud
pointé par racine est de 0 si l’arbre est NULL, et vaut 1 (le nœud pointé par racine)
plus le nombre de nœuds du sous-arbre gauche et plus le nombre de nœuds du sous-
arbre droit sinon.

int taille (Noeud* racine) {
 if (racine == NULL) {
 return 0;
 } else {
 return 1 + taille (racine->gauche) + taille (racine->droite);
 }
}

// nombre de noeuds de l'arbre
int taille (Arbre* arbre) {
 return taille (arbre->racine);
}

Dans le cas où racine pointe sur une feuille par exemple Paul sur la Figure 58,
taille (racine) = 1 + taille (NULL) + taille (NULL)
 = 1 + 0 + 0
 = 1

3.2.5.b Feuilles de l’arbre binaire

La fonction estFeuille() est une fonction booléenne qui indique si le nœud pointé par
racine est une feuille (n’a pas de successeur).

// Le noeud racine est-il une feuille ?
booleen estFeuille (Noeud* racine) {
 return (racine->gauche==NULL) && (racine->droite==NULL);
}

La fonction nbFeuilles() compte le nombre de feuilles de l’arbre binaire à partir
du nœud racine. Si l’arbre est vide, le nombre de feuilles est 0 ; sinon si racine
repère une feuille, le nombre de feuilles est de 1, sinon, le nombre de feuilles en
partant du nœud racine est le nombre de feuilles du SAG, plus le nombre de feuilles
du SAD. Sur l’arbre binaire de la Figure 58, le nombre de feuilles de l’arbre binaire
est de 2 (Paul et Antonine), alors que le nombre de feuilles de l’arbre n-aire est de 4
sur la Figure 57.

static int nbFeuilles (Noeud* racine) {
 if (racine == NULL) {
 return 0;
 } else if (estFeuille (racine)) {
 return 1;
 } else {
 return nbFeuilles (racine->gauche) + nbFeuilles (racine->droite);
 }
}

04Chap_03 Page 122 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 123
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// fournir le nombre de feuilles de l'arbre binaire
int nbFeuilles (Arbre* arbre) {
 return nbFeuilles (arbre->racine);
}

La fonction listerFeuilles() énumère les feuilles de l’arbre binaire. C’est un
parcours préfixé d’arbre avec écriture lorsque racine pointe sur une feuille. Sur
l’arbre binaire de la Figure 58, la fonction liste les deux feuilles de l’arbre binaire :
Paul et Antonine.

static void listerFeuilles (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 if (estFeuille (racine)) {
 printf ("%s ", toString (racine->reference));
 } else {
 listerFeuilles (racine->gauche, toString);
 listerFeuilles (racine->droite, toString);
 }
 }
}

// lister les feuilles de l'arbre binaire
void listerFeuilles (Arbre* arbre) {
 listerFeuilles (arbre->racine, arbre->toString);
}

3.2.5.c Valeur du plus long identificateur des nœuds de l’arbre

Cette fonction fournit la longueur du plus long des identificateurs de l’arbre. Si
l’arbre est vide, la longueur maximum est 0 ; sinon le plus long identificateur en
partant du nœud racine est le maximum des 3 valeurs suivantes : le plus long du
sous-arbre gauche (SAG), le plus long du sous-arbre droit (SAD), et la longueur de
l’identificateur de l’objet du nœud racine. Sur l’arbre binaire de la Figure 58, la
longueur du plus long identificateur est 8 (Antonine).

static int maxIdent (Noeud* racine, char* (*toString) (Objet*)) {
 int lg; // longueur max
 if (racine == NULL) {
 lg = 0;
 } else {
 lg = max (maxIdent (racine->gauche, toString),
 maxIdent (racine->droite, toString));
 lg = max (lg, strlen(toString(racine->reference)));
 }
 return lg;
}

// longueur du plus long identificateur de l'arbre
int maxIdent (Arbre* arbre) {
 return maxIdent (arbre->racine, arbre->toString);
}

04Chap_03 Page 123 Samedi, 17. janvier 2004 10:37 10

124 3 • Les arbres

3.2.5.d Somme des longueurs des identificateurs des nœuds de l’arbre

Il s’agit de parcourir l’arbre et de faire la somme des longueurs des identificateurs
des objets de l’arbre. Cette fonction est utilisée ultérieurement pour effectuer le
dessin de l’arbre. Si l’arbre est vide, la somme des longueurs est nulle, sinon, pour
l’arbre commençant en racine, la somme des longueurs des identificateurs est la
somme des longueurs du SAG, plus la somme des longueurs du SAD, plus la
longueur de l’objet du nœud racine.

static int somLgIdent (Noeud* racine, char* (*toString) (Objet*)) {
 int s;
 if (racine == NULL) {
 s = 0;
 } else {
 s = somLgIdent (racine->gauche, toString) +
 somLgIdent (racine->droite, toString) +
 strlen(toString(racine->reference));
 }
 return s;
}

// somme des longueurs des identificateurs de l'arbre
int somLgIdent (Arbre* arbre) {
 return somLgIdent (arbre->racine, arbre->toString);
}

3.2.5.e Hauteur d’un arbre binaire, arbre binaire dégénéré

La hauteur d’un arbre binaire pointé par racine est le nombre de nœuds entre racine
(compris) et la feuille de la plus longue branche partant de racine. Si l’arbre est vide,
la hauteur est nulle. Sinon la hauteur en partant de racine est le maximum de la
hauteur de SAG et de SAD auquel on ajoute 1 pour le nœud racine. La hauteur d’une
feuille est de 1. Sur l’arbre binaire de la Figure 58, la hauteur du nœud Jonatan est de
4 (longueur de la plus longue branche en partant de Jonatan vers Paul).

static int hauteur (Noeud* racine) {
 if (racine == NULL) {
 return 0;
 } else {
 return 1 + max (hauteur (racine->gauche),
 hauteur (racine->droite));
 }
}

// hauteur de l'arbre
int hauteur (Arbre* arbre) {
 return hauteur (arbre->racine);
}

L’arbre binaire est dégénéré si pour chaque nœud interne, il n’y a qu’un succes-
seur, le dernier nœud étant une feuille. La méthode consiste à parcourir l’arbre et à
fournir faux quand on rencontre un nœud ayant deux successeurs. Il y a quatre cas.
Si on atteint la feuille terminale, dégénéré est vrai. Si les deux pointeurs sont diffé-
rents de NULL alors l’arbre n’est pas dégénéré. Si le SAG est vide, le résultat

04Chap_03 Page 124 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 125
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

dépend de l’examen de SAD ; et si SAD est vide, le résultat dépend de l’examen de
SAG. Sur l’arbre binaire de la Figure 58, le sous-arbre partant du nœud Pauline est
dégénéré.

// racine != NULL
static booleen degenere (Noeud* racine) {
 booleen d;
 if (estFeuille(racine)) {
 d = vrai;
 } else if ((racine->gauche != NULL) && (racine->droite != NULL)) {
 d = faux;
 } else if (racine->gauche==NULL) {
 d = degenere (racine->droite);
 } else {
 d = degenere (racine->gauche);
 }
 return d;
}

// l'arbre est-il dégénéré ?
int degenere (Arbre* arbre) {
 return degenere (arbre->racine);
}

3.2.6 Duplication, destruction d’un arbre binaire

La fonction dupliquerArbre() crée une copie de l’arbre passé en paramètre et fournit
un pointeur sur la racine du nouvel arbre créé. Si l’arbre à dupliquer est vide, sa copie
est vide (NULL). Sinon, il faut créer un nouveau nœud nouveau qui référence le même
objet que racine (copie du pointeur de l’objet, pas des zones pointées).

Il faut dupliquer le SAG ce qui fournit un pointeur sur ce nouveau SAG qui est
rangé dans le champ gauche de nouveau, et de même, il faut dupliquer le SAD et
ranger la racine de ce nouveau SAD dans le champ droit de nouveau. La fonction
retourne un pointeur sur le nœud créé.

// dupliquer l'arbre racine,
// sans dupliquer les objets de l'arbre
static Noeud* dupliquerArbre (Noeud* racine) {
 if (racine==NULL) {
 return NULL;
 } else {
 Noeud* nouveau = cNd (racine->reference);
 nouveau->gauche = dupliquerArbre (racine->gauche);
 nouveau->droite = dupliquerArbre (racine->droite);
 return nouveau;
 }
}

Arbre* dupliquerArbre (Arbre* arbre) {
 Noeud* nrac = dupliquerArbre (arbre->racine);
 return creerArbre (nrac, arbre->toString, arbre->comparer);
}

04Chap_03 Page 125 Samedi, 17. janvier 2004 10:37 10

126 3 • Les arbres

Si on veut dupliquer les objets référencés dans chaque nœud de l’arbre, il faut
passer en paramètre de dupliquer une fonction capable d’effectuer une copie de
l’objet. Cette fonction dépend de l’application.

// dupliquer l'arbre racine,
// en dupliquant les objets de l'arbre
// la fonction cloner permet de dupliquer l'objet du noeud
static Noeud* dupliquerArbre (Noeud* racine, Objet* (*cloner) (Objet*)) {
 if (racine==NULL) {
 return NULL;
 } else {
 Noeud* nouveau = cNd (cloner (racine->reference));
 nouveau->gauche = dupliquerArbre (racine->gauche, cloner);
 nouveau->droite = dupliquerArbre (racine->droite, cloner);
 return nouveau;
 }
}

// cloner un arbre
Arbre* dupliquerArbre (Arbre* arbre, Objet* (*cloner) (Objet*)) {
 Noeud* nrac = dupliquerArbre (arbre->racine, cloner);
 return creerArbre (nrac, arbre->toString, arbre->comparer);
}

La fonction detruireArbre() effectue un parcours postfixé de l’arbre et détruit le
nœud pointé par racine lors de la troisième visite du nœud (voir Figure 64,
page 114) après destruction du SAG et destruction du SAD. En fin d’exécution,
l’arbre est vide ; sa racine vaut NULL. Pour modifier la racine, il faut passer en para-
mètre l’adresse de la racine. Les objets ne sont pas détruits.

static void detruireArbre (Noeud** pracine) {
 Noeud* racine = *pracine;
 if (racine != NULL) {
 detruireArbre (&racine->gauche);
 detruireArbre (&racine->droite);
 free (racine);
 *pracine = NULL;
 }
}

// détruire l'arbre et mettre le pointeur de la racine à NULL
// sans détruire les objets pointés
void detruireArbre (Arbre* arbre) {
 detruireArbre (&arbre->racine);
}

Pour détruire les objets, il faudrait passer en paramètre de detruireArbre() une
fonction détruisant l’objet et ses composantes (effectuant le contraire de cloner() vu
ci-dessus).

static void detruireArbre (Noeud** pracine,
void (*detruireObjet) (Objet*)) {

 Noeud* racine = *pracine;
 if (racine != NULL) {
 detruireArbre (&racine->gauche, detruireObjet);
 detruireArbre (&racine->droite, detruireObjet);

04Chap_03 Page 126 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 127
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 detruireObjet (racine->reference);
 free (racine);
 *pracine = NULL;
 }
}

// détruire l'arbre et mettre le pointeur de la racine à NULL
// en détruisant les objets pointés
void detruireArbre (Arbre* arbre, void (*detruireObjet) (Objet*)) {
 detruireArbre (&arbre->racine, detruireObjet);
}

3.2.7 Égalité de deux arbres

La fonction ci-dessous teste l’égalité de deux arbres : les deux arbres doivent avoir
la même structure et les mêmes informations.

// égalité de deux arbres
static booleen egaliteArbre (Noeud* racine1, Noeud* racine2,

int (*comparer) (Objet*, Objet*)) {
 booleen resu = faux;
 if ((racine1==NULL) && (racine2==NULL)) {
 resu = vrai;
 } else if ((racine1!=NULL) && (racine2!=NULL)) {
 if (comparer (racine1->reference, racine2->reference) == 0) {
 if (egaliteArbre (racine1->gauche, racine2->gauche, comparer)) {
 resu = egaliteArbre (racine1->droite, racine2->droite, comparer);
 }
 }
 }
 return resu;
}

booleen egaliteArbre (Arbre* arbre1, Arbre* arbre2) {
 return egaliteArbre (arbre1->racine, arbre2->racine, arbre1->comparer);
}

3.2.8 Dessin d’un arbre binaire

La fonction void dessinerArbre (Noeud* racine, FILE* fs) ; dessine (en mode
caractère) dans le fichier fs, l’arbre binaire pointé par racine. Si fs=stdout, le
dessin se fait à l’écran.

La Figure 72 indique le résultat de l’exécution du programme de dessin sur
l’arbre binaire de la Figure 58. Chaque identificateur occupe une colonne de la
largeur de son identificateur. Les colonnes de début de chaque identificateur sont
attribuées en faisant un parcours infixé. Pauline, le premier identificateur en
parcours infixé (voir Figure 66), occupe les 7 premières colonnes de 0 à 6 ; sa posi-
tion est centrée en colonne 3. Sonia, le deuxième identificateur occupe les 5
colonnes suivantes de 7 à 11 ; la position centrée de Sonia est donc 9. Ainsi Paul
est en 14, Jonatan en 19, Antonine en 27, Gontran en 34 et Julie en 40. Ce calcul
est effectué par la fonction dupArb() qui duplique l’arbre (voir § 3.2.6) en ajou-
tant la position de chaque identificateur dans chaque objet du nœud. Chaque objet

04Chap_03 Page 127 Samedi, 17. janvier 2004 10:37 10

128 3 • Les arbres

référencé par un nœud de l’arbre contient le message à écrire et le numéro de
colonne de ce message (type NomPos, nom et position).

Exemple pour l’arbre généalogique
 |
 |
 ___________________Julie
 |
 |
 _____________Jonatan____________
 | |
 | |
Pauline___ ____Gontran
 | |
 | |
 Sonia___ Antonine
 |
 |
 Paul

Figure 72 Dessin d’un arbre binaire.

// dessin de l'arbre

// message et position d'un noeud de l'arbre
typedef struct {
 char* message; // message à afficher pour ce noeud
 int position; // position (n° de colonne) du noeud
} NomPos;

int posNdC = 0; // position du noeud courant : variable globale

// dupliquer l'arbre en remplaçant l'objet référencé par un objet NomPos
// contenant la chaîne de caractère à écrire et sa position.
static Noeud* dupArb (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine == NULL) {
 return NULL;
 } else {
 Noeud* nouveau = new Noeud();
 NomPos* objet = new NomPos();
 nouveau->reference = objet;
 objet->message = toString (racine->reference);
 nouveau->gauche = dupArb (racine->gauche, toString);
 int lg = strlen (toString(racine->reference));
 objet->position = posNdC + lg/2;
 posNdC += lg;
 nouveau->droite = dupArb (racine->droite, toString);
 return nouveau;
 }
}

04Chap_03 Page 128 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 129
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

static Arbre* dupArb (Arbre* arbre) {
 posNdC = 0; // globale pour dupArb
 Noeud* nrac = dupArb (arbre->racine, arbre->toString);
 return creerArbre (nrac, arbre->toString, NULL);
}

La fonction dessinerArbre() effectue un parcours en largeur de l’arbre binaire
(voir § 3.2.4.f, page 120), c’est-à-dire qu’elle traite les nœuds de l’arbre binaire
étage par étage : Julie/Jonatan/Pauline, Gontran/Sonia, Antonine/Paul. Pour cela, il
faut utiliser deux listes. Une liste courante lc qui contient les pointeurs vers les
nœuds de l’étage en cours de traitement (initialement un pointeur vers le nœud Julie,
la racine de l’arbre). On parcourt une première fois cette liste pour écrire les barres
verticales qui précèdent les noms des nœuds. On effectue un second parcours de la
liste courante pour écrire les noms des nœuds, tracer les tirets en fonction de la posi-
tion du SAG et du SAD et insérer dans la seconde liste ls, les nœuds à traiter lors de
la prochaine étape (les SAG et SAD des nœuds de la liste courante). En fin de ce
second parcours, on recopie la liste suivante dans la liste courante et on recommence
le processus jusqu’à ce que la liste courante soit vide. On utilise le module liste.h
pour la gestion des listes.

void dessinerArbre (Arbre* arbre, FILE* fs) {
 if (arbreVide(arbre)) {
 printf ("dessinerArbre Arbre vide\n");
 return;
 }

 // largeur requise pour le dessin
 int lgFeuille = somLgIdent (arbre);
 char* ligne = (char*) malloc (lgFeuille+1);
 ligne [lgFeuille] = 0;

 // narbre : nouvel arbre dupliqué
 Arbre* narbre= dupArb (arbre);

 Liste* lc = creerListe(); // Liste des noeuds du même niveau
 insererEnFinDeListe (lc, narbre->racine);
 Liste* ls = creerListe(); // Liste des descendants de lc

 while (!listeVide (lc)) {
 // écrire les barres verticales des noeuds de la liste
 for (int i=0; i<lgFeuille; i++) ligne[i]=' ';
 ouvrirListe (lc);
 while (!finListe (lc)) {
 Noeud* ptNd = (Noeud*) objetCourant (lc);
 NomPos* ptc = (NomPos*) ptNd->reference;
 ligne [ptc->position] = '|';
 }
 for (int i=1; i<=2; i++) fprintf (fs, "%s\n", ligne);

 // Pour chaque élément de la liste :
 // écrire des tirets de la position du SAG à celle du SAD
 // écrire le nom de l'élément à sa position
 for (int i=0; i<lgFeuille; i++) ligne[i]=' ';

04Chap_03 Page 129 Samedi, 17. janvier 2004 10:37 10

130 3 • Les arbres

 while (!listeVide (lc)) {
 Noeud* pNC = (Noeud*) extraireEnTeteDeListe (lc);
 Noeud* pSAG = pNC->gauche;
 Noeud* pSAD = pNC->droite;
 char* message = ((NomPos*) pNC->reference)->message;
 int lg = strlen (message);
 int position = ((NomPos*)pNC->reference)->position;
 int posNom = position - lg/2;
 int posSAG = pSAG==NULL ? position :

((NomPos*)pSAG->reference)->position;
 int posSAD = pSAD==NULL ? position :

((NomPos*)pSAD->reference)->position;
 if (pSAG != NULL) insererEnFinDeListe (ls, pSAG);
 if (pSAD != NULL) insererEnFinDeListe (ls, pSAD);

 for (int j=posSAG; j<=posSAD; j++) ligne [j] = '_';
 for (int j=0; j<lg; j++) ligne [posNom+j] = message[j];
 }

 fprintf (fs, "%s\n", ligne);
 recopierListe (lc, ls); // ls vide
 }

 // détruire l'arbre intermédiaire
 detruireArbre (narbre);
}

3.2.9 Arbre binaire et questions de l’arbre n-aire

Dans de nombreuses applications, l’arbre est donné sous sa forme n-aire. C’est le
cas de la nomenclature d’un objet comme par exemple les composantes et sous-
composantes d’un avion, d’une voiture, d’une maison, de la Terre, ou du corps
humain. Le nombre de sous-composantes étant variable (le degré des nœuds est
variable), la mémorisation se fait par conversion de l’arbre n-aire en un arbre binaire
(voir Figure 57). Il faut alors répondre à des questions de l’arbre n-aire en utilisant la
mémorisation de l’arbre binaire. Ainsi, pour l’arbre généalogique de racine Julie, les
feuilles de l’arbre n-aire correspondent aux personnes sans enfant (Pauline, Sonia,
Paul, Antonine) et sont différentes des feuilles de l’arbre binaire (Paul, Antonine) qui
n’ont pas d’intérêt pour l’application. Dans une nomenclature d’objet, les feuilles n-
aires sont les composants (les pièces) de base qu’il faut assembler pour constituer
l’objet.

Remarque : ayant un pointeur sur un nœud de l’arbre binaire (fourni par
exemple par la fonction trouverNoeud() (voir § 3.2.4.e, page 119), les descen-
dants n-aires de ce nœud se trouvent dans le sous-arbre gauche. L’appel des
diverses fonctions traitant de la descendance n-aire d’un nœud racine se fait
donc en explorant le SAG du nœud de départ.

3.2.9.a Feuilles n-aires

Une feuille n-aire a un sous-arbre gauche vide, le pointeur sur le premier fils est à
NULL. La fonction listerFeuillesNAire() est donc un parcours d’arbre binaire avec
écriture pour les nœuds qui ont un sous-arbre gauche vide.

04Chap_03 Page 130 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 131
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// lister les feuilles NAire à partir de racine
static void listerFeuillesNAire (Noeud* racine,

char* (*toString) (Objet*)) {
 if (racine != NULL) {
 if (racine->gauche == NULL) printf ("%s ",

toString (racine->reference));
 listerFeuillesNAire (racine->gauche, toString);
 listerFeuillesNAire (racine->droite, toString);
 }
}

Ayant un pointeur sur un nœud racine de l’arbre binaire, il faut explorer seule-
ment le sous-arbre gauche de ce nœud racine. On crée un nouveau nœud racine
ayant un sous-arbre droit vide.

void listerFeuillesNAire (Arbre* arbre) {
 if (arbre->racine != NULL) {
 Noeud* nrac = cNd (arbre->racine->reference,

arbre->racine->gauche, NULL);
 Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
 listerFeuillesNAire (narbre->racine, narbre->toString);
 free (nrac);
 free (narbre);
 }
}

Pour compter le nombre de feuilles n-aires, le principe est le même. Il faut
compter au lieu d’écrire.

// fournir le nombre de feuilles n-aires à partir de racine
static int nbFeuillesNAire (Noeud* racine) {
 int n = 0;
 if (racine == NULL) {
 return 0;
 } else {
 if (racine->gauche == NULL) n = 1;
 return n + nbFeuillesNAire (racine->gauche)
 + nbFeuillesNAire (racine->droite);
 }
}

int nbFeuillesNAire (Arbre* arbre) {
 int n = 0;
 if (arbre->racine != NULL) {
 Noeud* nrac = cNd (arbre->racine->reference,

arbre->racine->gauche, NULL);
 Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
 n = nbFeuillesNAire (narbre->racine);
 free (nrac);
 free (narbre);
 }
 return n;
}

04Chap_03 Page 131 Samedi, 17. janvier 2004 10:37 10

132 3 • Les arbres

3.2.9.b Descendants n-aires

Cette fonction énumère tous les descendants n-aires d’un nœud. Si racine repère le
nœud « Jonatan », descendantsNAire (racine, toString) fournit Pauline Sonia Paul
(voir Figure 57). Il faut faire un parcours préfixé du SAG de Jonatan.

// fournir les descendants n-aires de racine
static void descendantsNAire (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 if (racine->gauche == NULL) {
 printf ("Pas de descendant pour %s\n",

toString (racine->reference));
 } else {
 prefixe (racine->gauche, toString); // descendants dans SAG
 }
 }
}

void descendantsNAire (Arbre* arbre) {
 return descendantsNAire (arbre->racine, arbre->toString);
}

3.2.9.c Parcours indenté n-aire

Le parcours indenté de l’arbre binaire de la Figure 58 conduit au résultat suivant
(voir fonction indentationPrefixee(),§ 3.2.4.d, page 119) qui peut être intéressant
pour la mise au point des diverses fonctions basées sur la mémorisation de cet arbre
binaire mais n’a pas de signification particulière pour l’application.

Parcours préfixé (avec indentation binaire)
Julie
 Jonatan
 Pauline
 Sonia
 Paul
 Gontran
 Antonine

L’indentation n-aire est plus proche de l’application (voir Figure 57), et affiche les
fils d’un nœud avec le même décalage comme indiqué ci-dessous. Il faut explorer le
SAG du nœud de départ. C’est un parcours d’arbre avec changement de niveau
quand on descend dans le SAG (vers le premier fils). Le SAD concerne les frères qui
sont au même niveau.

Indentation n-aire
Julie
 Jonatan
 Pauline
 Sonia
 Paul
 Gontran
 Antonine

04Chap_03 Page 132 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 133
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// parcours n-aire indenté
static void indentationNAire (Noeud* racine, char* (*toString) (Objet*),

int niveau) {
 if (racine != NULL) {
 for (int i=1; i<niveau; i++) printf ("%5s", " ");
 printf ("%s\n", toString (racine->reference));
 indentationNAire (racine->gauche, toString, niveau+1);
 indentationNAire (racine->droite, toString, niveau);
 }
}

void indentationNAire (Arbre* arbre) {
 if (arbre->racine != NULL) {
 Noeud* nrac = cNd (arbre->racine->reference, arbre->racine->gauche,

NULL);
 Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
 indentationNAire (narbre->racine, arbre->toString, 1);
 free (nrac);
 free (narbre);
 }
}

3.2.9.d Ascendants n-aires

La fonction ascendantsNAire() énumère les ascendants sur l’arbre n-aire d’un nœud
donné. ascendantsNaire (racine, “Paul”) fournit Jonatan Julie. Sur l’arbre n-aire
(voir Figure 57), l’ascendant direct de Paul est Jonatan, l’ascendant direct de
Jonatan est Julie. Il faut faire un parcours d’arbre interrompu quand on a trouvé
l’objet cherché et écrire uniquement quand on remonte d’un SAG (voir Figure 58),
donc après l’appel récursif examinant le SAG. La fonction fournit vrai si on a
trouvé, faux sinon. Cette fonction est très proche de la fonction trouverNoeud() qui
elle, fournit un pointeur sur le nœud recherché. La fonction utilise deux pointeurs de
fonctions : un pour écrire les caractéristiques des nœuds et l’autre pour trouver le
nœud dont on veut les ascendants.

// fournir les ascendants n-aires de "objet"
static booleen ascendantsNAire (Noeud* racine, Objet* objet,

char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*)) {

 booleen trouve;

 if (racine == NULL) {
 trouve = faux;
 } else if (comparer (objet, racine->reference) == 0) {
 printf ("%s ", toString (racine->reference));
 trouve = vrai;
 } else {
 trouve = ascendantsNAire (racine->gauche, objet, toString, comparer);
 if (trouve) {
 printf ("%s ", toString (racine->reference));
 } else {
 trouve = ascendantsNAire (racine->droite, objet, toString,

comparer);
 }
 }
 return trouve;
}

04Chap_03 Page 133 Samedi, 17. janvier 2004 10:37 10

134 3 • Les arbres

booleen ascendantsNAire (Arbre* arbre, Objet* objet) {
 return ascendantsNAire (arbre->racine, objet,

arbre->toString, arbre->comparer);
}

3.2.9.e Parcours en largeur n-aire

Le parcours en largeur consiste à traiter les nœuds de l’arbre étage par étage en
partant de la racine. Ainsi, sur l’arbre n-aire de la Figure 57, l’énumération en
largeur fournit : Julie, Jonatan Gontran, Pauline Sonia Paul Antonine. On peut
également réécrire le nom du sous-arbre et obtenir un fichier décrivant l’arbre n-aire
sous la forme suivante, ce que fait le programme enLargeurNAire() ci-dessous.

Julie: Jonatan Gontran;
Jonatan: Pauline Sonia Paul;
Gontran: Antonine;

La méthode consiste à créer une liste, chaque élément de la liste pointant sur un
nœud de l’arbre. Au début, la liste li contient un seul élément pointant sur la racine
de l’arbre (voir Figire 73). Ensuite, tant que la liste n’est pas vide, on extrait
l’élément en tête de la liste li, et on insère en fin de liste les fils n-aires du nœud. Sur
l’exemple, on extrait l’élément de la liste pointant sur Julie et on insère dans la liste
devenue vide, les fils n-aires de Julie, soit Jonatan et Gontran. Au tour suivant,
Jonatan est remplacé par ses fils n-aires Pauline, Sonia, Paul, et Gontran est
remplacé par Antonine. Là également, on utilise la mémorisation de l’arbre binaire
pour répondre à des questions de l’arbre n-aire.

Julie /

Jonatan

Pauline /

Sonia /

Paul / /

Gontran /

Antonine / /

//

li

Figure 73 Parcours en largeur n-aire d’un arbre binaire.

04Chap_03 Page 134 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 135
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

static void enLargeurNAire (Noeud* racine, char* (*toString) (Objet*)) {
 Liste* li = creerListe();
 insererEnFinDeListe (li, racine);
 while (!listeVide (li)) {
 Noeud* extrait = (Noeud*) extraireEnTeteDeListe (li);
 Noeud* p1F = extrait->gauche; // premier fils
 if (p1F != NULL) printf ("%s: ", toString (extrait->reference));
 Noeud* pNF = p1F;
 while (pNF != NULL) {
 printf (" %s", toString (pNF->reference));
 insererEnFinDeListe (li, pNF);
 pNF = pNF->droite;
 }
 if (p1F != NULL) printf (";\n");
 }
}

void enLargeurNAire (Arbre* arbre) {
 if (arbre->racine != NULL) {
 Noeud* nrac = cNd (arbre->racine->reference, arbre->racine->gauche,

 NULL);
 Arbre* narbre = creerArbre (nrac, arbre->toString, NULL);
 enLargeurNAire (narbre->racine, arbre->toString);
 free (nrac);
 free (narbre);
 }
}

3.2.9.f Duplication d’un arbre n-aire sur N niveaux

La fonction dupArbreNAireSNNiv() duplique nbniveau d’un arbre n-aire à partir du
nœud racine en utilisant la mémorisation de l’arbre binaire. Ainsi, sur l’arbre n-aire
de la Figure 57, on peut ne mémoriser que 2 niveaux soit Julie et Jonatan-Gontran.
L’algorithme est un algorithme de duplication d’arbre, y compris des objets réfé-
rencés (voir § 3.2.6, page 125), le niveau nbniveau étant décrémenté quand on
descend dans un SAG vers le premier fils. Il y a arrêt des appels récursifs si l’arbre
est vide ou si nbniveau vaut 0.

static Noeud* dupArbreNAireSNNiv (Noeud* racine, int nbniveau,
Objet* (*cloner) (Objet*)) {

 if ((racine == NULL) || (nbniveau==0)) {
 return NULL;
 } else {
 Noeud* nouveau = cNd (cloner (racine->reference));
 nouveau->gauche = dupArbreNAireSNNiv (racine->gauche, nbniveau-1,

cloner);
 nouveau->droite = dupArbreNAireSNNiv (racine->droite, nbniveau, cloner);
 return nouveau;
 }
}

Arbre* dupArbreNAireSNNiv (Arbre* arbre, int nbniveau,
Objet* (*cloner) (Objet*)) {

 Noeud* racine = dupArbreNAireSNNiv (arbre->racine, nbniveau, cloner);
 return creerArbre (racine);
}

04Chap_03 Page 135 Samedi, 17. janvier 2004 10:37 10

136 3 • Les arbres

3.2.9.g Dessin d’un arbre n-aire

La fonction dessinerArbreNAire (Noeud* racine, FILE* fs) ; dessine un arbre en
mettant en évidence les successeurs n-aires d’un nœud comme l’indique le schéma
de la Figure 74.

 |

 |

 _______Julie_______

 | |

 | |

 ______Jonatan______ Gontran

 | | | |

 | | | |

 Pauline Sonia Paul Antonine

Figure 74 Dessin n-aire d’un arbre.

L’arbre à dessiner est dupliqué en ajoutant pour chaque nœud sa position (son
numéro de colonne) sur la feuille de dessin. Les feuilles n-aires de l’arbre sont
numérotées dans un parcours infixé : Pauline 1, Sonia 2, Paul 3, Antonine 4. La posi-
tion d’un nœud qui n’est pas une feuille n-aire est la moyenne de la position de son
premier et dernier fils n-aires. Ainsi Jonatan se trouve en position (1+3)/2 = 2.
Gontran est en position 4. Julie est en position (2+4)/2=3. Cette position est multi-
pliée par la valeur du plus long identificateur déterminé par la fonction maxIdent().

On effectue alors un parcours en largeur. Connaissant les positions (numéros de
colonne) de chaque nœud, l’algorithme procède de la même manière que pour le
dessin de l’arbre binaire (voir § 3.2.8, page 127). On insère dans une liste lc un poin-
teur sur la racine de l’arbre à dessiner. On dessine les éléments de la liste courante lc,
et on les remplace par leurs fils n-aires dans une liste des suivants ls qui devient la
liste courante pour le prochain tour. Les tirets entourant le nom sont écrits entre la
position du premier fils et du dernier fils n-aires.

Exercice 16 - Dessin n-aire d’un arbre

En utilisant le module de gestion de listes (voir § 2.3.8, page 48), et en vous inspirant
de l’algorithme dessinerArbre() (voir § 3.2.8, page 127), écrire :

• la fonction : static Arbre* dupArbN (Arbre* arbre, int lgM) ; qui duplique l’arbre
et calcule la position de chaque nœud de l’arbre. La fonction maxIdent() (voir
§ 3.2.5.c, page 123) permet de calculer la valeur lgM (largeur maximale d’une
colonne).

• la fonction : void dessinerArbreNAire (Arbre* arbre, FILE* fs) ; qui dessine l’arbre
comme indiqué sur la Figure 74.

04Chap_03 Page 136 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 137
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.2.10 Le module des arbres binaires

3.2.10.a Le fichier d’en-tête pour les arbres binaires

Ce fichier d’en-tête arbre.h contient les définitions et les prototypes des fonctions
concernant les arbres binaires et les questions n-aires sur ces arbres binaires comme
vu précédemment.

// arbre.h

#ifndef ARBRE_H
#define ARBRE_H

typedef int booleen;
#define faux 0
#define vrai 1

typedef void Objet;

typedef struct noeud {
 Objet* reference;
 struct noeud* gauche;
 struct noeud* droite;
 int factEq; // facteur d'équilibre : si arbre équilibré
} Noeud;

typedef struct {
 Noeud* racine;
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);
} Arbre;

Noeud* getracine (Arbre* arbre);
Objet* getobjet (Noeud* noeud);
Noeud* getsag (Noeud* noeud);
Noeud* getsad (Noeud* noeud);
void setracine (Arbre* arbre, Noeud* racine);
void settoString (Arbre* arbre, char* (*toString) (Objet*));
void setcomparer (Arbre* arbre,

int (*comparer) (Objet*, Objet*));

// création de noeuds
Noeud* cNd (Objet* objet, Noeud* Gauche, Noeud* Droite);
Noeud* cNd (Objet* objet);
Noeud* cF (Objet* objet);

// création d'arbre
void initArbre (Arbre* arbre, Noeud* racine,

char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*));
Arbre* creerArbre (Noeud* racine,

char* (*toString) (Objet*), int (*comparer) (Objet*, Objet*));
Arbre* creerArbre (Noeud* racine);
Arbre* creerArbre ();

// parcours
void prefixe (Arbre* arbre);
void infixe (Arbre* arbre);
void postfixe (Arbre* arbre);
void infixeDG (Arbre* arbre);

04Chap_03 Page 137 Samedi, 17. janvier 2004 10:37 10

138 3 • Les arbres

void infixe (Arbre* arbre, void (*f) (Objet*));
void indentationPrefixee (Arbre* arbre);
void indentationPostfixee (Arbre* arbre);
Noeud* trouverNoeud (Arbre* arbre, Objet* objet);
void enLargeur (Arbre* arbre);
void enLargeurParEtage (Arbre* arbre);

// propriétés
int taille (Noeud* noeud);
int taille (Arbre* arbre);
booleen estFeuille (Noeud* arbre);
int nbFeuilles (Arbre* arbre);
void listerFeuilles (Arbre* arbre);
int maxIdent (Arbre* arbre);
int somLgIdent (Arbre* arbre);
int hauteur (Arbre* arbre);
booleen degenere (Arbre* arbre);
booleen equilibre (Arbre* arbre);

// duplication, destruction, dessin
Arbre* dupliquerArbre (Arbre* arbre);
Arbre* dupliquerArbre (Arbre* arbre, Objet* (*cloner) (Objet*));
void detruireArbre (Arbre* arbre);
void detruireArbre (Arbre* arbre,

void (*detruireObjet) (Objet*));
void dessinerArbre (Arbre* racine, FILE* fs);
booleen egaliteArbre (Arbre* arbre1, Arbre* arbre2);

// binaire NAire
int nbFeuillesNAire (Arbre* arbre);
void listerFeuillesNAire (Arbre* arbre);
void descendantsNAire (Arbre* arbre);
void indentationNAire (Arbre* arbre);
booleen ascendantsNAire (Arbre* arbre, Objet* objet);
void enLargeurNAire (Arbre* racine);
Arbre* dupArbreNAireSNNiv (Arbre* arbre, int niveau,

Objet* (*cloner) (Objet*));
void dessinerArbreNAire (Arbre* arbre, FILE* fs);

// arbre ordonné § 3.3, page 156
void insererArbreOrd (Arbre* arbre, Objet* objet);
Noeud* supprimerArbreOrd (Arbre* arbre, Objet* objet);
Noeud* rechercherOrd (Arbre* arbre, Objet* objet);
Objet* minArbreOrd (Arbre* arbre);
Objet* maxArbreOrd (Arbre* arbre);

// arbre AVL § 3.4, page 167
void insererArbreEquilibre (Arbre* arbre, Objet* objet);

// arbre de chaînes de caractères (cas particulier) § 3.2.11, page 140
// création de noeuds
// pour cF() et cNd(), la chaîne de caractères n'est pas dupliquée
// pour cFCh(), la chaîne est dupliquée
Noeud* cF (char* message);
Noeud* cNd (char* message, Noeud* gauche, Noeud* droite);
Noeud* cFCh (char* message);
// créer un arbre de chaînes de caractères à partir d'un fichier
Arbre* creerArbreCar (FILE* fe);

#endif

04Chap_03 Page 138 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 139
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.2.10.b Le corps du module des arbres binaires

// arbre.cpp module de création et manipulation d'arbres

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "arbre.h"

// fournir la valeur de la racine de l'arbre
Noeud* getracine (Arbre* arbre) {
 return arbre->racine;
}

// modifier la valeur de la racine de l'arbre
void setracine (Arbre* arbre, Noeud* racine) {
 arbre->racine = racine;
}

// fournir l'objet d'un noeud
Objet* getobjet (Noeud* racine) {
 return racine->reference;
}

// fournir un pointeur sur le sag
Noeud* getsag (Noeud* noeud) {
 return noeud->gauche;
}

// fournir un pointeur sur le sad
Noeud* getsad (Noeud* noeud) {
 return noeud->droite;
}

// modifier la fonction toString de arbre
void settoString (Arbre* arbre, char* (*toString) (Objet*)) {
 arbre->toString = toString;
}

// modifier la fonction comparer de arbre
void setcomparer (Arbre* arbre, int (*comparer) (Objet*, Objet*)) {
 arbre ->comparer = comparer;
}

booleen arbreVide (Arbre* arbre) {
 return arbre->racine == NULL;
}

Les pages précédentes ont détaillé le corps des procédures suivantes à
insérer ici :
cNd, cF, initArbre, creerArbre, prefixe, infixe, postfixe, indentationPre-
fixee, trouverNoeud, enLargeur, enLargeurParEtage,
taille, estFeuille, nbFeuilles, listerFeuilles, maxIdent, somLgIdent,
hauteur, degenere, dupliquerArbre, detruireArbre, egaliteArbre, dessiner-
Arbre,
listerFeuillesNAire, nbFeuillesNAire, descendantsNAire, indentation-
NAire, ascendantsNAire, enLargeurNAire, dupArbreNAireSNNiv,
dessinerArbreNAire (à faire voir exercice 16, page 136)

04Chap_03 Page 139 Samedi, 17. janvier 2004 10:37 10

140 3 • Les arbres

Les fonctions sur les arbres ordonnés et sur les arbres AVL sont données dans les
paragraphes suivants.

3.2.11 Les arbres de chaînes de caractères

Les arbres de chaînes de caractères sont un cas particulier d’arbres où chaque nœud
référence un objet chaîne de caractères.

Les fonctions creerArbreGene() (voir § 3.2.3.a, page 111) et creerArbreExp()
(voir § 3.2.3.b, page 112) effectuent la construction respectivement des exemples de
l’arbre généalogique et de l’arbre de l’expression arithmétique ce qui permet de tester
les diverses fonctions sur les arbres binaires vues précédemment. Pour changer
d’arbre, il faut réécrire ces fonctions. Si l’arbre est volumineux, l’écriture devient vite
complexe. La fonction creerArbreCar() construit un arbre binaire à partir d’une
description n-aire de l’arbre donnée dans un fichier. L’arbre n-aire de la Figure 57,
page 109, se note comme suit dans un fichier nommé Julie.nai :

Julie: Jonatan Gontran;
Jonatan: Pauline Sonia Paul;
Gontran: Antonine;

Julie a deux enfants Jonatan et Gontran ; Jonatan a trois enfants Pauline, Sonia,
Paul. Cette description correspond à l’arbre n-aire de la Figure 57. À partir de cette
description la fonction creerArbreCar() crée l’arbre binaire équivalent schématisé
sur la Figure 58.

Les fonctions suivantes lireUnMot(), ajouterFils() et creerArbre() créent
l’arbre binaire à partir d’une description n-aire contenue dans un fichier pour des
nœuds contenant un objet de type chaîne de caractères. (voir la syntaxe de
homme.nai dans l’exercice 17 ou de terre.nai § 3.2.11.b, page 147). Il faut donc
faire un petit analyseur reconnaissant les données conformes à la grammaire de
description d’un arbre n-aire. lireUnMot() lit une chaîne de caractères du fichier
fe, en ignorant les blancs en tête du mot, jusqu’à trouver un délimiteur de mots
soit un espace, ':' ou ';'. ajouterFils() ajoute les fils n-aires au nœud pere.
trouverNoeud() (voir § 3.2.4.e, page 119) fournit un pointeur sur le nœud pere
s’il existe dans l’arbre, sinon fournit NULL. On ajoute le premier fils dans le
SAG de pere et on chaîne entre eux les fils suivants dans le champ droite du
premier fils. Le dernier fils est suivi de ';'. creerArbreCar() lit le nom du pere
(suivi de ':') et appelle ajouterFils() pour traiter les fils de pere.

// arbre de chaînes de caractères

Noeud* cF (char* message) {
 return cF ((Objet*) message);
}

Noeud* cNd (char* message, Noeud* gauche, Noeud* droite) {
 return cNd ((Objet*) message, gauche, droite);
}

04Chap_03 Page 140 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 141
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// créer une feuille contenant un objet "chaîne de caractères";
// la chaîne de caractères est dupliquée
Noeud* cFCh (char* objet) {
 char* nobjet = (char*) malloc (sizeof (strlen(objet)+1));
 strcpy (nobjet, objet);
 return cF (nobjet);
}

// fournir la chaîne de caractères de objet
static char* toChar (Objet* objet) {
 return (char*) objet;
}

// comparer deux chaînes de caractères
// fournit <0 si ch1 < ch2; 0 si ch1=ch2; >0 sinon
static int comparerCar (Objet* objet1, Objet* objet2) {
 return strcmp ((char*)objet1, (char*)objet2);
}

static Objet* clonerCar (Objet* objet) {
 char* message = (char*) objet;
 int lg = strlen (message);
 char* nouveau = (char*) malloc (lg+1);
 strcpy (nouveau, message);
 return (Objet*) nouveau;
}

char c; // prochain caractère à analyser dans le fichier
 // fe de description de l'arbre

// lire dans chaine un mot du fichier fe
static void lireUnMot (FILE* fe, char* chaine) {
 // ignorer les espaces en tête du mot
 while (((c==' ') || (c=='\n') || (c=='\r')) && !feof (fe)) {
 fscanf (fe, "%c", &c);
 }

 // enregistrer les caractères jusqu'à trouver ' ', ':' ou ';'
 char* pCh = chaine;
 while ((c != ' ') && (c!=':') && (c!=';')) {
 *pCh++ = c;
 fscanf (fe, "%c", &c);
 if (c=='\n') c= ' ';
 }
 *pCh = 0;
}

// ajouter un ou plusieurs fils n-aire au noeud pere
static void ajouterFils (FILE* fe, Arbre* arbre, char* pere) {
 char nom [255];

 Noeud* pNom = trouverNoeud (arbre, pere);
 if (pNom != NULL) {
 // lire le premier fils de pere
 fscanf (fe, "%c", &c); // passer le délimiteur :
 lireUnMot (fe, nom);
 Noeud* fils = cFCh (nom);
 pNom->gauche = fils;

04Chap_03 Page 141 Samedi, 17. janvier 2004 10:37 10

142 3 • Les arbres

 // lire les fils suivants de pere jusqu'à ';'
 Noeud* filsPrec = fils;
 while ((c!=';') && !feof (fe)) { // après ;
 fscanf (fe, "%c", &c); // lit le délimiteur espace
 lireUnMot (fe, nom);
 fils = cFCh (nom);
 filsPrec->droite = fils;
 filsPrec = fils;
 }
 } else {
 printf ("Noeud %s non trouvé\n", pere);
 }
}

// créer un arbre de chaînes de caractères
// à partir d'un fichier n-aire
Arbre* creerArbreCar (FILE* fe) {
 Arbre* arbre = creerArbre();
 booleen debut = vrai;
 fscanf (fe, "%c", &c);
 char pere [255];
 lireUnMot (fe, pere);

 while (!feof(fe)) {
 if (debut) {
 setracine (arbre, cFCh (pere));
 debut = faux;
 }
 ajouterFils (fe, arbre, pere);
 fscanf (fe, "%c", &c); // passer le délimiteur ;
 lireUnMot (fe, pere);
 }
 return arbre;
}

Exercice 17 - Le corps humain

Soit le fichier homme.nai suivant :

homme: tete cou tronc bras jambe;
tete: crane yeux oreille cheveux bouche;
tronc: abdomen thorax;
thorax: coeur foie poumon;
jambe: cuisse mollet pied;
pied: cou-de-pied orteil;
bras: epaule avant-bras main;
main: doigt;

Dessiner l’arbre n-aire et l’arbre binaire correspondant.

3.2.11.a Menu de test du module des arbres binaires

Dans le programme de test des arbres binaires suivant, il y a un arbre par défaut
(l’arbre généalogique) qui peut être changé (choix 2 pour avoir l’arbre de l’expres-
sion arithmétique, ou choix 17 pour construire l’arbre à partir d’un fichier). La
racine de l’arbre est alors le nœud courant. L’option 3 permet de changer ce nœud
courant. Les différentes fonctions s’exécutent en partant de ce nœud courant

04Chap_03 Page 142 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 143
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

(parcours, dessins, etc.). Le menu proposé permet de tester les différentes fonctions
vues précédemment concernant l’arbre binaire ou les interrogations n-aires.

// pparbre.cpp programme principal arbre

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h> //isalpha
#include "arbre.h"
#include "mdtypes.h"
#include "arbrstat.h"

// créer un arbre binaire généalogique
Arbre* creerArbreGene () {
 Noeud* racine =
 cNd ("Julie",
 cNd ("Jonatan",
 cNd ("Pauline",
 NULL,
 cNd ("Sonia", NULL, cF ("Paul"))
),
 cNd ("Gontran", cF ("Antonine"), NULL)
),
 NULL
);
 return creerArbre (racine);
}

// créer un arbre binaire (expression arithmétique)
Arbre* creerArbreExp () {
 Noeud* racine =
 cNd ("-",
 cNd ("*",
 cNd ("+", cF ("a"), cF ("b")),
 cNd ("-", cF ("c"), cF ("d"))
),
 cF ("e")
);
 return creerArbre (racine);
}

int menu (Arbre* arbre) {
 printf ("\n\nARBRES BINAIRES\n\n");
 printf (" 0 - Fin du programme\n");
 printf ("\n");
 printf (" 1 - Création de l'arbre généalogique\n");
 printf (" 2 - Création de l'arbre de l'expression arithmétique\n");
 printf (" 3 - Nom du noeud courant (défaut:racine)\n");
 printf ("\n");
 printf (" 4 - Parcours préfixé\n");
 printf (" 5 - Parcours infixé\n");
 printf (" 6 - Parcours postfixé\n");
 printf (" 7 - Parcours préfixé (avec indentation)\n");
 printf (" 8 - Parcours en largeur\n");
 printf ("\n");
 printf (" 9 - Taille et longueur du plus long identificateur\n");
 printf ("10 - Nombre et liste des feuilles\n");
 printf ("11 - Hauteur de l'arbre binaire\n");
 printf ("12 - Tests arbre dégénéré ou équilibré\n");

04Chap_03 Page 143 Samedi, 17. janvier 2004 10:37 10

144 3 • Les arbres

 printf ("\n");
 printf ("13 - Duplication de l'arbre\n");
 printf ("14 - Destruction de l'arbre dupliqué\n");
 printf ("\n");
 printf ("15 - Dessin de l'arbre binaire (écran)\n");
 printf ("16 - Dessin de l'arbre binaire (fichier)\n");
 printf ("\n");
 printf ("Arbres n-aires\n");
 printf ("17 - Création à partir d'un fichier n-aire\n");
 printf ("18 - Indentation n-aire\n");
 printf ("19 - Descendants n-aires\n");
 printf ("20 - Ascendants n-aires\n");
 printf ("21 - Feuilles n-aires\n");
 printf ("22 - Parcours en largeur n-aire\n");
 printf ("23 - Dessin des descendants (écran)\n");
 printf ("24 - Dessin des descendants (fichier)\n");
 printf ("25 - Nombre de niveaux utilisés\n");
 printf ("26 - Arbre statique \n");

 printf ("\n");
 Noeud* racine = getracine (arbre);
 if (racine!=NULL) printf ("Noeud courant : %s\n",

arbre->toString (racine->reference));
 fprintf (stderr, "Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 printf ("\n");

 return cod;
}

void main () {
 Arbre* arbre = creerArbreGene();
 Arbre* arbreBis = creerArbre();

 booleen fini = faux;
 while (!fini) {
 switch (menu (arbre)) {

 case 0:
 fini = vrai;
 break;

 case 1:
 printf ("Création de l'arbre généalogique\n");
 detruireArbre (arbre);
 arbre = creerArbreGene();
 break;

 case 2:
 printf ("Création de l'arbre expr. arithmét.\n");
 detruireArbre (arbre);
 arbre = creerArbreExp();
 break;

 case 3: {
 printf ("Nom du noeud courant ? ");
 ch15 nom; scanf ("%s", nom);
 Noeud* trouve = trouverNoeud (arbre, nom);
 if (trouve == NULL) {
 printf ("%s inconnu dans l'arbre\n", nom);
 } else {
 arbre = creerArbre (trouve);

04Chap_03 Page 144 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 145
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 }
 } break;

 case 4: {
 printf ("Parcours préfixé\n");
 prefixe (arbre);
 } break;

 case 5:
 printf ("Parcours infixé\n");
 infixe (arbre);
 break;

 case 6:
 printf ("Parcours postfixé\n");
 postfixe (arbre);
 break;

 case 7:
 printf ("Parcours préfixé (avec indentation)\n");
 indentationPrefixee (arbre);
 break;

 case 8:
 printf ("Parcours en largeur\n");
 enLargeur (arbre);
 printf ("\n\nParcours en largeur par étage\n");
 enLargeurParEtage (arbre);
 break;

 case 9:
 printf ("Taille de l'arbre : %d\n", taille (arbre));
 printf ("Longueur de l'ident. le plus long %d\n", maxIdent (arbre));
 break;

 case 10:
 printf ("Nombre de feuilles : %d\n", nbFeuilles (arbre));
 printf ("Liste des feuilles : ");
 listerFeuilles (arbre);
 break;

 case 11:
 printf ("Hauteur de l'arbre : %d\n", hauteur (arbre));
 break;

 case 12:
 if (degenere (arbre)) {
 printf ("Arbre dégénéré\n");
 } else {
 printf ("Arbre non dégénéré\n");
 }
 if (equilibre (arbre)) {
 printf ("Arbre équilibré\n");
 } else {
 printf ("Arbre non équilibré\n");
 }
 break;

 case 13:
 arbreBis = dupliquerArbre (arbre);
 //arbreBis = dupliquerArbre (arbre, clonerCar);
 printf ("Parcours préfixé de l'arbre dupliqué\n");
 prefixe (arbreBis);

04Chap_03 Page 145 Samedi, 17. janvier 2004 10:37 10

146 3 • Les arbres

 break;

 case 14:
 detruireArbre (arbreBis);
 if (getracine(arbreBis) == NULL) printf ("Arbre détruit\n");
 break;

 case 15:
 dessinerArbre (arbre, stdout);
 break;

 case 16: {
 printf ("Dessin d'un arbre binaire (fichier)\n");
 printf ("Donner le nom du fichier à créer ? ");
 char nomFS [50]; scanf ("%s", nomFS);
 FILE* fs = fopen (nomFS, "w");
 if (fs==NULL) {
 printf ("%s erreur ouverture\n", nomFS);
 } else {
 dessinerArbre (arbre, fs);
 fclose (fs);
 }
 } break;

 case 17: {
 printf ("Création d'un arbre à partir d'un fichier\n");
 printf ("Nom du fichier décrivant l'arbre n-aire ? ");
 char nomFE [50]; scanf ("%s", nomFE);
 FILE* fe = fopen (nomFE, "r");
 if (fe==NULL) {
 printf ("%s erreur ouverture\n", nomFE);
 } else {
 detruireArbre (arbre);
 arbre = creerArbreCar (fe);
 }
 } break;

 case 18:
 printf ("Indentation n-aire\n");
 indentationNAire (arbre);
 break;

 case 19:
 printf ("Descendants n-aires\n");
 descendantsNAire (arbre);
 break;

 case 20: {
 printf ("Nom de l'élément dont on veut les ascendants ? ");
 ch15 nom; scanf ("%s", nom); getchar();
 printf ("Ascendants n-aires\n");
 ascendantsNAire (arbre, nom);
 } break;

 case 21:
 printf ("Feuilles n-aires\n");
 listerFeuillesNAire (arbre);
 break;

 case 22:
 printf ("Parcours en largeur n-aire\n");
 enLargeurNAire (arbre);
 break;

04Chap_03 Page 146 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 147
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 case 23: {
 dessinerArbreNAire (arbre, stdout);
 } break;

 case 24: {
 printf ("Dessin d'un arbre n-aire (fichier)\n");
 printf ("Donner le nom du fichier à créer ? ");
 char nomFS [50]; scanf ("%s", nomFS);
 FILE* fs = fopen (nomFS, "w");
 if (fs==NULL) {
 printf ("%s erreur ouverture\n", nomFS);
 } else {
 dessinerArbreNAire (arbre, fs);
 fclose (fs);
 }
 } break;

 case 25: {
 printf ("Nombre de niveaux à considérer\n");
 printf ("dans l'arbre n-aire ? ");
 int nbNiv; scanf ("%d", &nbNiv); getchar();
 Arbre* sa = dupArbreNAireSNNiv (arbre, nbNiv, clonerCar);
 dessinerArbreNAire (sa, stdout);
 } break;

 case 26: { voir 3.2.1.2
 ArbreS* arbres = creerArbreStat (arbre);
 printf ("\nNombre de noeuds (arbre en tableau) : %d\n",

tailleStat (arbres));
 printf ("\nEcriture du tableau\n");
 ecrireStat (arbres);
 printf ("\nIndentation n-aire en utilisant le tableau\n");
 indentationNAireStat (arbres);
 Arbre* arbre2 = creerArbreDyn (arbres);
 dessinerArbreNAire (arbre2, stdout);
 } break;

 } // switch
 if (!fini) {
 printf ("\n\nTaper Return pour continuer\n"); getchar();
 }
 } // while

}

3.2.11.b Exemples de créations et d’interrogations d’arbres binaires

Les encadrés suivants présentent des résultats de tests du programme de gestion des
arbres binaires. Le choix 17 a permis la construction de l’arbre à partir du fichier
terre.nai. Le choix 3 définit le nœud Europe comme racine du sous-arbre par défaut.
Le choix 23 dessine l’arbre à partir du nœud courant Europe.

Le fichier terre.nai (vous pouvez compléter ... jusqu’à votre bar favori !) :

Terre: Europe Asie Afrique Amerique Oceanie;
Europe: France Espagne Belgique Danemark;
France: Bretagne Corse Bourgogne;
Asie: Chine Inde Irak Japon;
Afrique: Niger Congo;

04Chap_03 Page 147 Samedi, 17. janvier 2004 10:37 10

148 3 • Les arbres

ARBRES BINAIRES

 0 - Fin du programme

 1 - Création de l'arbre généalogique
 2 - Création de l'arbre de l'expression arithmétique
 3 - Nom du noeud courant (défaut:racine)

 4 - Parcours préfixé
 5 - Parcours infixé
 6 - Parcours postfixé
 7 - Parcours préfixé (avec indentation)
 8 - Parcours en largeur

 9 - Taille et longueur du plus long identificateur
10 - Nombre et liste des feuilles
11 - Hauteur de l'arbre binaire
12 - Tests arbre dégénéré ou équilibré

13 - Duplication de l'arbre
14 - Destruction de l'arbre dupliqué

15 - Dessin de l'arbre binaire (écran)
16 - Dessin de l'arbre binaire (fichier)

Arbres n-aires
17 - Création à partir d'un fichier n-aire
18 - Indentation n-aire
19 - Descendants n-aires
20 - Ascendants n-aires
21 - Feuilles n-aires
22 - Parcours en largeur n-aire
23 - Dessin des descendants (écran)
24 - Dessin des descendants (fichier)
25 - Nombre de niveaux utilisés

Noeud courant : Europe
Votre choix ? 23

04Chap_03 Page 148 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 149
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 |
 |
 _________________Europe__________________
 | | | |
 | | | |
 _______France________ Espagne Belgique Danemark
 | | |
 | | |
 Bretagne Corse Bourgogne

Taper Return pour continuer

Autre exemple d’interrogation : l’indentation n-aire en partant de Europe.

Noeud courant : Europe
Votre choix ? 18

Indentation n-aire
Europe
 France
 Bretagne
 Corse
 Bourgogne
 Espagne
 Belgique
 Danemark

Taper Return pour continuer

3.2.12 Arbre binaire et tableau

Un tableau est habituellement alloué statiquement en fonction de la longueur
déclarée à la compilation. On peut cependant aussi allouer un tableau dynamique-
ment à l’exécution avec malloc(). Le terme d’allocation statique pour un tableau
devient alors ambigu ; il vaut mieux parler d’allocation contiguë, l’espace mémoire
alloué pour le tableau se trouvant sur des cases mémoires contiguës.

3.2.12.a Définitions, déclarations et prototypes de fonctions

L’arbre binaire peut aussi être mémorisé en allocation contiguë (voir Figure 75) soit
en mémoire centrale soit sur mémoire secondaire. Cette représentation permet le
stockage et la transmission de l’arbre, éventuellement pour recréer la forme dyna-
mique si l’arbre doit évoluer.

Les déclarations d’interface suivantes sont faites dans le fichier d’en-tête
arbrstat.h. NœudS est la structure correspondant à une ligne du tableau. creerAr-

04Chap_03 Page 149 Samedi, 17. janvier 2004 10:37 10

150 3 • Les arbres

brStat() alloue de l’espace pour un tableau à créer à partir de sa représentation
dynamique ; la taille du tableau est donnée par la fonction taille() qui opère sur la
représentation dynamique de l’arbre. creerArbreStat() remplit le tableau en faisant
un parcours d’arbre : on crée la structure de la Figure 75 à partir de celle de la
Figure 58, page 109 ; la racine de l’arbre se trouve dans l’entrée 0. creerArbreDyn()
effectue la conversion inverse de tableau en allocation dynamique. Si l’arbre doit
être modifié (ajout et retrait), il est plus facile d’utiliser la version avec allocation
dynamique et de regénérer le tableau si besoin est. tailleStat() donne la taille de
l’arbre du tableau (voir fonction taille() § 3.2.5.a, page 122). ecrireStat() écrit
séquentiellement le contenu du tableau. indentationNaireStat() effectue un parcours
préfixé indenté de l’arbre du tableau (voir indentationNaire(), § 3.2.9.c, page 132).

Figure 75 Allocation contiguë de l’arbre généalogique.

/* arbrstat.h conversion arbre statique
 en arbre dynamique et vice versa */

#ifndef ARBRSTAT_H
#define ARBRSTAT_H

#include "arbre.h"

#define NILE -1
typedef char Chaine [16];

typedef struct {
 Chaine nom;
 int gauche;
 int droite;
} NoeudS;

typedef struct {
 NoeudS* as;
} ArbreS;

ArbreS* creerArbreStat (Arbre* arbre);
Arbre* creerArbreDyn (ArbreS* arbres);
int tailleStat (ArbreS* arbres);
void ecrireStat (ArbreS* arbres);

nom gauche droite

0 Julie 1 /

1 Jonatan 2 5

2 Pauline / 3

3 Sonia / 4

4 Paul / /

5 Gontran 6 /

6 Antonine / /

04Chap_03 Page 150 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 151
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

void indentationNAireStat (ArbreS* arbres);

#endif

3.2.12.b Le module des arbres en tableaux

Les fonctions de conversion d’arbres (allocation dynamique ↔ contiguë)
Le fichier arbrstat.cpp contient les corps des fonctions décrites dans arbrstat.h et
faisant la conversion arbre dynamique arbre statique. Les procédures creerArbreStat()
et creerArbreDyn() sont des fonctions de duplication d’arbres avec changement de la
structure de base. Elles sont donc très proches de la fonction dupliquerArbre() vue
§ 3.2.6, page 125.

/* arbrstat.cpp conversion d'arbre dynamique
 en arbre statique et réciproquement */

#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcpy
#include "arbrstat.h" // NoeudS

// parcours de l'arbre racine en allocation dynamique
// et création du tableau as équivalent
static int creerArbreStat (Noeud* racine, NoeudS* as, int* nf,

char* (toString) (Objet*)) {
 if (racine == NULL) {
 return -1;
 } else {
 int numNd = *nf; // numéro du noeud en cours
 *nf = *nf +1; // nombre total de noeuds
 strcpy (as[numNd].nom, toString (racine->reference));
 as [numNd].gauche = creerArbreStat (racine->gauche, as, nf, toString);
 as [numNd].droite = creerArbreStat (racine->droite, as, nf, toString);
 return numNd;
 }
}

// initialisation et création du tableau as (arbre statique)
ArbreS* creerArbreStat (Arbre* arbre) {
 int nf = 0;
 ArbreS* arbres = new ArbreS();
 arbres->as = (NoeudS *) malloc (sizeof(NoeudS) * taille(arbre));
 creerArbreStat (arbre->racine, arbres->as, &nf, arbre->toString);
 return arbres;
}

// création d'un arbre de chaînes de caractères
// en allocation dynamique en partant du tableau as
static Noeud* creerArbreDyn (NoeudS* as, int racine) {
 if (racine == NILE) {
 return NULL;
 } else {
 Noeud* nouveau = cF (as[racine].nom);
 nouveau->gauche = creerArbreDyn (as, as[racine].gauche);
 nouveau->droite = creerArbreDyn (as, as[racine].droite);

04Chap_03 Page 151 Samedi, 17. janvier 2004 10:37 10

152 3 • Les arbres

 return nouveau;
 }
}

Arbre* creerArbreDyn (ArbreS* arbres) {
 return creerArbre (creerArbreDyn (arbres->as, 0));
}

Quelques fonctions sur la structure d’arbre en tableau
On peut facilement réécrire la fonction taille() de l’arbre avec la structure sous
forme de tableau.

// taille de l'arbre statique
static int tailleStat (NoeudS* as, int racine) {
 if (racine == NILE) {
 return 0;
 } else {
 return 1 + tailleStat (as, as[racine].gauche)
 + tailleStat (as, as[racine].droite);
 }
}

int tailleStat (ArbreS* arbres) {
 return tailleStat (arbres->as, 0);
}

// écriture du tableau
void ecrireStat (ArbreS* arbres) {
 int n = tailleStat (arbres);
 for (int i=0; i<n; i++) {
 NoeudS* nd = &arbres->as[i];
 printf ("%2d %15s %3d %3d\n", i, nd->nom, nd->gauche, nd->droite);
 }
}

// indentation n-aire en utilisant le tableau.
// Parcours préfixé du tableau as; racine repère le noeud
// racine du sous-arbre; niveau indique l'indentation
static void indentationNAireStat (NoeudS* as, int racine, int niveau) {
 if (racine != NILE) {
 for (int i=1; i<niveau; i++) printf ("%5s"," ");
 printf ("%s\n", as[racine].nom);

 indentationNAireStat (as, as[racine].gauche, niveau+1);
 indentationNAireStat (as, as[racine].droite, niveau);
 }
}

void indentationNAireStat (ArbreS* arbres) {
 indentationNAireStat (arbres->as, 0, 1);
}

3.2.12.c Exemple de conversion allocation dynamique / allocation en tableau

Exemple d’interrogation et de résultats obtenus pour l’arbre généalogique de la
Figure 58, page 109. On peut rajouter un 26e cas au menu de l’arbre binaire (voir
§ 3.2.11.a, page 142).

04Chap_03 Page 152 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 153
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Noeud courant : Julie
Votre choix ? 26

Nombre de noeuds (arbre en tableau) : 7

Ecriture du tableau
 0 Julie 1 -1
 1 Jonatan 2 5
 2 Pauline -1 3
 3 Sonia -1 4
 4 Paul -1 -1
 5 Gontran 6 -1
 6 Antonine -1 -1

Indentation n-aire en utilisant le tableau
Julie
 Jonatan
 Pauline
 Sonia
 Paul
 Gontran
 Antonine

3.2.13 Arbre binaire et fichier

Lorsque l’arbre binaire est trop volumineux, il faut le mémoriser sur disque. Ce
serait le cas de la nomenclature d’un avion. Un nœud est repéré par son numéro
d’enregistrement dans le fichier déclaré de type PNoeud ci-dessous. La fonction
void lireD (int n, Noeud* enr) ; effectue la lecture dans le fichier fr (variable globale)
du nième enregistrement du fichier fr et met cet enregistrement à l’adresse contenue
dans enr. La procédure prefixeF() effectue un parcours d’arbre en lisant un enregis-
trement à chaque appel récursif. Il y a autant d’allocations du nœud enr qu’il y a de
niveaux d’appels récursifs (voir § 1.2, page 2). La fonction tailleF() est également
redéfinie ci-dessous pour une allocation dans un fichier en accès direct. L’adaptation
des fonctions définies sur les arbres binaires en allocation dynamique à une structure
statique dans un fichier ne pose pas de problème particulier (si ce n’est qu’il faut
faire des lectures d’enregistrements).

#define NILE -1

typedef char ch15 [16];
typedef int PNoeud;

typedef struct noeud {
 ch15 nom;
 PNoeud gauche;
 PNoeud droite;
} Noeud;

FILE* fr; // fichier binaire contenant l'arbre

04Chap_03 Page 153 Samedi, 17. janvier 2004 10:37 10

154 3 • Les arbres

void lireD (int n, Noeud* enr) {
 fseek (fr, (long) n*sizeof (Noeud), 0);
 fread (enr, sizeof (Noeud), 1, fr);
}

// voir § 3.2.4.d, page 117
void prefixeF (PNoeud racine, int niveau) {

 if (racine != NILE) {
 Noeud enr;
 lireD (racine, &enr);

 for (int i=0; i<niveau; i++) printf ("%5s"," ");
 printf ("%s\n", enr.nom);

 prefixeF (enr.gauche, niveau+1);
 prefixeF (enr.droite, niveau+1);
 }
}

int tailleF (PNoeud racine) {
 int t;

 if (racine == NILE) {
 t = 0;
 } else {
 Noeud enr;
 lireD (racine, &enr);
 t = 1 + tailleF (enr.gauche) + tailleF (enr.droite);
 }
 return t;
}

3.2.14 Arbre binaire complet

Un arbre binaire est complet si chaque nœud interne a deux successeurs et si toutes
les feuilles sont au même niveau.

Alban

Berthe Camille

David FernandEugénie Ginette

0

1

2

3

4

5

6

Alban

Berthe

Ginette

Camille

David

Eugénie

Fernand

Figure 76 Mémorisation d’un arbre binaire complet.

04Chap_03 Page 154 Samedi, 17. janvier 2004 10:37 10

3.2 • Les arbres binaires 155
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Aucune place n’est perdue pour mémoriser les pointeurs gauche et droite qui sont
implicites. Soit n le nombre de nœuds de l’arbre (n vaut 7 sur la Figure 76). On a
alors les relations suivantes :

père (i) = (i-1) / 2 si 0<i< n, sinon nil
gauche (i) = 2*i + 1 si 2*i + 1 < n, sinon nil
droite (i) = 2*i + 2 si 2*i + 2 < n, sinon nil

père (5) = (5-1) / 2 = 2 père ("Fernand") = "Camille"
gauche (2) = 2 * 2 + 1 gauche ("Camille") = "Fernand"
droite (2) = 2 * 2 + 2 = 6 droite ("Camille") = "Ginette"

On peut facilement réécrire les fonctions de parcours avec cette mémorisation
compacte. Le tableau tab contient les pointeurs vers les nœuds de l’arbre.
prefixeC() effectue un parcours préfixé indenté pour un arbre complet. Le parcours
séquentiel des éléments du tableau correspond au parcours en largeur d’un arbre.

/* acomplet.cpp arbre complet */

#include <stdio.h>
#define NILE -1

char* tab [] = {"Alban", "Berthe", "Camille", "David",
 "Eugénie", "Fernand", "Ginette" };
int n = 7; // taille de l'arbre

int gauche (int i) {
 return 2*i+1<n ? 2*i+1 : NILE;
}

int droite (int i) {
 return 2*i+2<n ? 2*i+2 : NILE;
}

// parcours préfixé indenté pour un arbre complet
void prefixeC (int racine, int niveau) {
 if (racine != NILE) {
 for (int i=1; i<niveau; i++) printf ("%5s", " ");
 printf ("%s\n", tab [racine]);
 prefixeC (gauche(racine), niveau+1);
 prefixeC (droite(racine), niveau+1);
 }
}

void main () {
 // 0 : racine de l'arbre en tab [0];
 // 1 : niveau d'indentation
 prefixeC (0, 1);
}

La méthode peut s’appliquer si l’arbre n’est pas parfait, mais il y a perte de place
(voir l’exemple de la Figure 77 qui est un cas extrême d’arbre dégénéré). L’arbre
nécessite 7 places pour ranger les 3 nœuds. Si on doit faire des insertions ou des
suppressions de nœuds, cette représentation d’arbre complet n’est pas pratique.

04Chap_03 Page 155 Samedi, 17. janvier 2004 10:37 10

156 3 • Les arbres

3.3 LES ARBRES BINAIRES ORDONNÉS

3.3.1 Définitions

Les arbres binaires ordonnés sont des arbres binaires (ayant un SAG et un SAD) tels
que pour chaque nœud, les clés (identificateurs) des éléments du sous-arbre gauche
sont inférieures à celle de la racine, et celles du sous-arbre droit sont supérieures à
celle de la racine. Soit à insérer les clés alphabétiques suivantes dans un arbre
ordonné vide et dans l’ordre donné : 17, 11, 15, 14, 31, 19, 18, 28, 26, 35. On aboutit
à l’arbre de la Figure 78. La première clé 17 est racine de l’arbre ordonné. Les autres
clés sont insérées dans le SAG ou dans le SAD suivant qu’elles sont plus petites ou
plus grandes que 17. Chaque nœud d’un arbre ordonné référence un objet contenant
une clé et des informations associées à cette clé.

L’arbre peut même constituer un arbre d’index pour un autre fichier. Par exemple,
l’information de clé 17 se trouve à l’entrée 125 d’un tableau ou d’un fichier en accès
direct. Par la suite, seules les clés sont représentées.

Alban

Camille

Ginette

Figure 77 Exemple d’arbre binaire dégénéré.

17

11 31

14

15 19

18

17 125

28

26

35

Figure 78 Exemple d’arbre binaire ordonné.

04Chap_03 Page 156 Samedi, 17. janvier 2004 10:37 10

3.3 • Les arbres binaires ordonnés 157
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Le parcours infixé gauche-droite de l’arbre donne la liste en ordre croissant : 11,
14, 15, 17, 18, 19, 26, 28, 31, 35. Le parcours infixé droite-gauche donne la liste en
ordre décroissant. Ainsi, s’il s’agit d’un fichier de clients, on peut obtenir facilement
les clients par ordre croissant ou décroissant de la clé. La recherche d’un élément de
l’arbre à partir de sa clé est également facile et rapide. L’insertion se fait toujours au
niveau d’une feuille. La suppression d’un nœud feuille ne pose pas de problème
mais celle d’un nœud interne demande une réorganisation de l’arbre. L’arbre peut
être sur disque. On a alors un index arborescent ordonné sur la clé (numéro ou nom
de client par exemple). Les informations sont alors mémorisées dans un fichier de
données en accès direct.

Le type arbre ordonné est décrit de la même manière que le type arbre binaire. Il
faut cependant définir des fonctions spécifiques de ce type d’arbre concernant
l’insertion ou la suppression d’un objet de l’arbre, ou la recherche dans l’arbre en
tenant compte du critère d’ordre.

Déclarations faites en fin de arbre.h (voir § 3.2.10.a, page 137) et corps des
fonctions insérées dans arbre.cpp (voir § 3.2.10.b, page 139) :

// arbre ordonné
void insererArbreOrd (Arbre* arbre, Objet* objet);
Noeud* supprimerArbreOrd (Arbre* arbre, Objet* objet);
Noeud* rechercherOrd (Arbre* arbre, Objet* objet);
Objet* minArbreOrd (Arbre* arbre);
Objet* maxArbreOrd (Arbre* arbre);

3.3.2 Arbres ordonnés : recherche, ajout, retrait

3.3.2.a Recherche d’un élément dans un arbre binaire ordonné

Il n’est plus nécessaire de parcourir tout l’arbre pour retrouver un élément. À chaque
nœud, on peut décider du chemin à suivre, soit dans le sous-arbre gauche, soit dans
le sous-arbre droit. Il n’y a pas de retour en arrière pour explorer un autre chemin. Si
racine est NULL, on a atteint une feuille sans trouver l’objet cherché, l’élément n’est
pas dans l’arbre. Si le nœud racine contient l’objet que l’on cherche, on fournit le
pointeur sur le nœud racine. Sinon, si l’objet cherché est inférieur à l’objet de la
racine, on explore le SAG, sinon, on explore le SAD. La fonction en paramètre
comparer est spécifique des objets de l’application, et fournit 0 en cas d’égalité.

// fournir un pointeur sur le noeud contenant objet
static Noeud* rechercherOrd (Noeud* racine, Objet* objet,

int (*comparer) (Objet*, Objet*)) {
 int resu;
 if (racine == NULL) {
 return NULL;
 } else if ((resu=comparer (objet, racine->reference)) == 0) {
 return racine;
 } else if (resu < 0) {
 return rechercherOrd (racine->gauche, objet, comparer);
 } else {

04Chap_03 Page 157 Samedi, 17. janvier 2004 10:37 10

158 3 • Les arbres

 return rechercherOrd (racine->droite, objet, comparer);
 }
}

Noeud* rechercherOrd (Arbre* arbre, Objet* objet) {
 return rechercherOrd (arbre->racine, objet, arbre->comparer);
}

Exemple : rechercher 19 dans l’arbre de la Figure 78.

3.3.2.b Insertion dans un arbre binaire ordonné

L’ajout se fait toujours au niveau d’une feuille. L’algorithme procède en 2 étapes :

• recherche dans l’arbre permettant de déterminer la feuille où doit se faire l’inser-
tion,

• création du nœud et modification du lien père.

La structure de l’arbre dépend de l’ordre d’insertion des éléments. L’insertion
suivant les ordres : (10, 20, 30), (20, 10, 30) ou (30, 20, 10) donne trois arbres
ordonnés différents comme l’indique la Figure 80. Si les valeurs sont déjà ordonnées
(ordre croissant ou décroissant), on aboutit à un arbre dégénéré.

17

12 31

11 14

15 Ajout de 15 et modification
du lien du nœud père 14

Figure 79 Ajout de 15 dans un arbre ordonné.

10

20

30

2 0

10 30

30

20

10

Figure 80 La forme de l’arbre dépend de l'ordre d'insertion des éléments.

04Chap_03 Page 158 Samedi, 17. janvier 2004 10:37 10

3.3 • Les arbres binaires ordonnés 159
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

La fonction d’insertion s’apparente à une fonction de recherche dans un arbre
ordonné. Il faut trouver la feuille où l’insertion doit se faire. Pour cela, la compa-
raison de l’élément à insérer et de la clé du nœud visité permet de savoir si l’inser-
tion doit se faire dans le SAG ou le SAD. On transmet à la fonction récursive, non
pas le pointeur sur le SAG ou sur le SAD comme dans rechercherOrd(), mais
l’adresse du pointeur du SAG ou du SAD, de façon à pouvoir le modifier quand on
arrive sur une feuille et qu’il faut rattacher au père le nouveau nœud à créer. On veut
modifier un pointeur de nœud, il faut passer en paramètre l’adresse du pointeur, soit
un pointeur de pointeur de nœud. En Pascal, il faut passer le paramètre en var pour
indiquer qu’il s’agit d’une adresse de pointeur. Les notations sont un peu compli-
quées en C.

Premier cas : insertion de 17 dans un arbre vide. pracine repère la racine de
l’arbre qui est vide et vaut donc NULL. Il faut créer la feuille 17 (fonction cF()) et la
rattacher à l’adresse contenue dans pracine.

Deuxième cas : insertion de 12 dans l’arbre contenant déjà 17. 12 étant inférieur à
17, il faut insérer dans le SAG du nœud 17. On transmet à la fonction appelée récursi-
vement l’adresse pracine du pointeur du SAG. L’utilisation de la variable locale racine
permet de simplifier les notations, sinon il faudrait écrire en partant de pracine : inse-
rerArbreOrd (&(*pracine)->gauche, objet, comparer) ; de même
pour l’appel récursif à droite.

// pracine : pointeur sur la racine à modifier
void insererArbreOrd (Noeud** pracine, Objet* objet,

int (*comparer) (Objet*, Objet*)) {

17 / /

/pracine pracine

Figure 81 Insertion dans un arbre ordonné vide.

17 / / 17 /

12 / /

pracine pracine

Figure 82 Insertion dans un arbre ordonné (cas général).

04Chap_03 Page 159 Samedi, 17. janvier 2004 10:37 10

160 3 • Les arbres

 Noeud* racine = *pracine;
 int resu;

 if (racine == NULL) {
 racine = cF (objet);
 *pracine = racine;
 } else if ((resu = comparer (objet, racine->reference)) == 0) {
 printf ("objet existe déjà dans l'arbre\n");
 } else if (resu < 0) {
 insererArbreOrd (&racine->gauche, objet, comparer);
 } else {
 insererArbreOrd (&racine->droite, objet, comparer);
 }
}

void insererArbreOrd (Arbre* arbre, Objet* objet) {
 insererArbreOrd (&arbre->racine, objet, arbre->comparer);
}

3.3.2.c Minimum, maximum

Pour trouver la valeur minimum d’un arbre ordonné, il faut suivre le chemin le plus
à gauche dans l’arbre.

// min de l'arbre ordonné
static Objet* minArbreOrd (Noeud* racine) {
 Objet* resu;
 if (racine==NULL) {
 resu = NULL;
 } else if (racine->gauche == NULL) {
 resu = racine->reference;
 } else {
 resu = minArbreOrd (racine->gauche);
 }
 return resu;
}

Objet* minArbreOrd (Arbre* arbre) {
 return minArbreOrd (arbre->racine);
}

Pour trouver la valeur maximum d’un arbre ordonné, il faut suivre le chemin le
plus à droite dans l’arbre.

// max de l'arbre ordonné
Objet* maxArbreOrd (Noeud* racine) {
 Objet* resu;
 if (racine==NULL) {
 resu = NULL;
 } else if (racine->droite == NULL) {
 resu = racine->reference;
 } else {
 resu = maxArbreOrd (racine->droite);
 }
 return resu;
}

Objet* maxArbreOrd (Arbre* arbre) {
 return maxArbreOrd (arbre->racine);
}

04Chap_03 Page 160 Samedi, 17. janvier 2004 10:37 10

3.3 • Les arbres binaires ordonnés 161
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.3.2.d Suppression d’un élément dans un arbre binaire ordonné

Si le sous-arbre droit du nœud à supprimer est vide comme lors de la suppression de
28 sur la Figure 78, il suffit de modifier le pointeur du père et de le faire pointer sur
le SAG du nœud à supprimer. Le SAD de 19 pointe sur le nœud 26. De même pour
la suppression de 35 où le pointeur du père est remplacé par le SAG de 35 soit
NULL.

Si le sous-arbre gauche du nœud à supprimer est vide comme lors de la suppres-
sion de 11 sur la Figure 78, il suffit de modifier le pointeur du père et de le faire
pointer sur le SAD du nœud à supprimer. Le SAG de 17 pointe sur le nœud 15.

Sinon, dans le cas général, SAG et SAD ne sont pas NULL. La valeur à supprimer
est remplacée dans le nœud par la valeur la plus grande du sous-arbre gauche. Le
nœud contenant cette valeur maximum est supprimé. On pourrait également prendre
la valeur la plus petite du sous-arbre droit. La suppression de 31 sur la Figure 78 se
fait en remplaçant 31 par la valeur la plus grande du SAG de 31 soit 28 et en suppri-
mant l’emplacement anciennement occupé par 28.

Pour trouver le plus grand dans le SAG, il faut parcourir le sous-arbre en allant
toujours à droite jusqu’à ce que le SAD soit vide, ce qui est le cas du nœud 28 sur
l’exemple de la Figure 83. Il faut alors faire pointer le nœud père de 28 sur le SAG de 28.

17 /

racine

31

19 35 / /

18 / / 28 /

26 / /

28

pracine

Figure 83 Suppression de 31 : exemple du cas général.

04Chap_03 Page 161 Samedi, 17. janvier 2004 10:37 10

162 3 • Les arbres

// appelé avec sag et sad de *racine différents de NULL;
// fournit un pointeur sur le plus grand en partant de *pracine
Noeud* supMax (Noeud** pracine) {
 Noeud* racine = *pracine;
 Noeud* pg; // plus grand

 if (racine->droite == NULL) { // racine repère le plus grand
 pg = racine;
 racine = racine->gauche; // SAG de PG
 *pracine = racine;
 } else {
 pg = supMax (&racine->droite);
 }
 return pg;
}

Noeud* supprimerArbreOrd (Noeud** pracine, Objet* objet,
int (*comparer) (Objet*, Objet*)) {

 Noeud* racine = *pracine;
 Noeud* extrait;
 int resu;

 if (racine == NULL) {
 extrait = NULL;
 } else if ((resu=comparer(objet, racine->reference)) < 0) {
 extrait = supprimerArbreOrd (&racine->gauche, objet, comparer);
 } else if (resu > 0) {
 extrait = supprimerArbreOrd (&racine->droite, objet, comparer);
 } else {
 extrait = racine;
 if (extrait->droite == NULL) { // pas de SAD
 racine = extrait->gauche;
 } else if (extrait->gauche == NULL) { // pas de SAG
 racine = extrait->droite;
 } else {
 extrait = supMax (&racine->gauche);
 // permuter les références des objets
 Objet* temp = racine->reference;
 racine->reference = extrait->reference;
 extrait->reference = temp;
 }
 }

 *pracine = racine;
 return extrait;
}

Noeud* supprimerArbreOrd (Arbre* arbre, Objet* objet) {
 return supprimerArbreOrd (&arbre->racine,objet, arbre->comparer);
}

3.3.2.e Parcours infixé droite gauche (décroissant)

Le parcours infixé droite-gauche fournit les éléments en ordre décroissant. Voir
parcours d’arbres Figure 63, page 114.

// toString fournit la chaîne de caractères à écrire pour un objet
static void infixeDG (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine != NULL) {
 infixeDG (racine->droite, toString);

04Chap_03 Page 162 Samedi, 17. janvier 2004 10:37 10

3.3 • Les arbres binaires ordonnés 163
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 printf ("%s ", toString (racine->reference));
 infixeDG (racine->gauche, toString);
 }
}

// parcours infixé droite gauche de l'arbre
void infixeDG (Arbre* arbre) {
 infixeDG (arbre->racine, arbre->toString);
}

3.3.3 Menu de test des arbres ordonnés de chaînes de caractères

Les arbres ordonnés de chaînes de caractères référencent dans chaque nœud un objet
de type chaîne de caractères. Suivant le type de la clé, il faut faire une comparaison
de chaînes ascii ou d’entiers. Ainsi, en terme de chaînes ascii, "11" < "9" mais en
terme d’entiers 11>9. La clé est toujours mémorisée sous forme d’ascii.

// comparer deux chaînes de caractères
// fournit <0 si ch1 < ch2; 0 si ch1=ch2; >0 sinon
int comparerCar (Objet* objet1, Objet* objet2) {
 return strcmp ((char*)objet1, (char*)objet2);
}

// comparer des chaînes de caractères correspondant à des entiers
// 9 < 100 (mais pas en ascii)
int comparerEntierCar (Objet* objet1, Objet* objet2) {
 long a = atoi ((char*) objet1);
 long b = atoi ((char*) objet2);
 if (a==b) {
 return 0;
 } else if (a<b) {
 return -1;
 } else {
 return 1;
 }
}

On utilise les fonctions infixe() et dessinerArbre() du module des arbres binaires
qui permettent à l’aide du menu suivant de visualiser les modifications de l’arbre
après chaque ajout ou retrait dans l’arbre ordonné.

/* pparbreordonne.cpp programme principal des arbres ordonnés */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "arbre.h"
#include "mdtypes.h"

// créer un arbre ordonné de chaînes de caractères à partir du fichier fe
Arbre* creerArbreOrd (FILE* fe, int (*comparer) (Objet*, Objet*)) {
 Arbre* arbre = creerArbre (NULL, toChar, comparer);
 while (!feof(fe)) {
 char* message = (char*) malloc (20);
 fscanf (fe, "%s", message);
 insererArbreOrd (arbre, message);

04Chap_03 Page 163 Samedi, 17. janvier 2004 10:37 10

164 3 • Les arbres

 }
 return arbre;
}

int menu () {
 printf ("\n\nARBRES ORDONNES\n\n");
 printf ("0 - Fin du programme\n");
 printf ("\n");
 printf ("1 - Initialisation d'un arbre ordonné\n");
 printf ("2 - Création à partir de fichier\n");
 printf ("3 - Parcours infixé (croissant)\n");
 printf ("4 - Parcours infixéDG (décroissant)\n");

 printf ("\n");
 printf ("5 - Insertion d'un élément\n");
 printf ("6 - Recherche d'un élément\n");
 printf ("7 - Suppression d'un élément\n");
 printf ("\n");
 printf ("8 - Dessin à l'écran\n");
 printf ("9 - Dessin dans un fichier\n");
 printf ("\n");
 printf ("Votre choix de 0 à 9 ? ");

 int cod; scanf ("%d", &cod); getchar();
 printf ("\n\n");
 return cod;
}

void main () {
 int typCle; // 1 : ascii, 2 : entier
 int (*comparer) (Objet*, Objet*);
 Arbre* arbre = creerArbre();

 booleen fini = faux;
 while (!fini) {

 switch (menu()) {

 case 0 :
 fini = vrai;
 break;

 case 1 :
 detruireArbre (arbre);
 printf ("Type de la clé (1:ascii; 2:entière) ? ");
 scanf ("%d", &typCle); getchar();
 comparer = typCle==1 ? comparerCar : comparerEntierCar;
 arbre = creerArbre (NULL, toChar, comparer);
 break;

 case 2 : {
 printf ("Type de la clé (1:ascii; 2:entière) ? ");
 scanf ("%d", &typCle); getchar();
 comparer = typCle==1 ? comparerCar : comparerEntierCar;

 printf ("Nom du fichier contenant les valeurs ? ");
 char nomFE [50]; scanf ("%s", nomFE); getchar();
 FILE* fe = fopen (nomFE, "r");
 if (fe==NULL) {
 printf ("%s erreur ouverture\n", nomFE);
 } else {
 arbre = creerArbreOrd (fe, comparer);
 fclose (fe);

04Chap_03 Page 164 Samedi, 17. janvier 2004 10:37 10

3.3 • Les arbres binaires ordonnés 165
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 dessinerArbre (arbre, stdout);
 }
 } break;

 case 3 :
 printf ("Parcours infixé (croissant)\n");
 infixe (arbre);
 break;

 case 4 :
 printf ("Parcours infixéDG (décroissant)\n");
 infixeDG (arbre);
 break;

 case 5 : { // insertion
 printf ("Valeur à insérer ? ");
 char* message = (char*) malloc(20);
 scanf ("%s", message); getchar();
 Noeud* resu = rechercherOrd (arbre, message);
 if (resu != NULL) {
 printf ("Nom %s existe déjà dans l'arbre\n", message);
 } else {
 insererArbreOrd (arbre, message);
 dessinerArbre (arbre, stdout);
 }
 } break;

 case 6 : { // recherche
 printf ("Nom recherché ? ");
 char nom[20]; scanf ("%s", nom); getchar();
 if (rechercherOrd (arbre, nom) == NULL) {
 printf ("Nom %s inconnu\n", nom);
 } else {
 printf ("Nom %s existe dans l'arbre ordonné\n", nom);
 }
 } break;

 case 7 : {
 printf ("Nom à supprimer ? ");
 char nom[20]; scanf ("%s", nom); getchar();
 Noeud* extrait;
 if ((extrait = supprimerArbreOrd (arbre, nom)) == NULL) {
 printf ("Nom %s inconnu\n", nom);
 } else {
 printf ("Nom %s supprimé dans l'arbre\n", nom);
 free (extrait);
 dessinerArbre (arbre, stdout);
 }
 } break;

 case 8 :
 dessinerArbre (arbre, stdout);
 break;

 case 9 : {
 printf ("Nom du fichier recevant le dessin ? ");
 char nomFS [50]; scanf ("%s", nomFS); getchar();
 FILE* fs = fopen (nomFS, "w");
 if (fs == NULL) {
 perror ("dessin");
 } else {
 dessinerArbre (arbre, fs);

04Chap_03 Page 165 Samedi, 17. janvier 2004 10:37 10

166 3 • Les arbres

 fclose (fs);
 }
 } break;

 } // switch

 if (!fini) {
 printf ("\nTaper Return pour continuer"); getchar();
 }
 } // while
}

3.3.3.a Exemple de consultation des arbres ordonnés

L’arbre est construit à partir du fichier de valeurs nombres.dat contenant les clés 17
11 15 14 31 19 18 28 26 35 de la Figure 78.

ARBRES ORDONNES

0 - Fin du programme

1 - Initialisation d'un arbre ordonné
2 - Création à partir de fichier
3 - Parcours infixé (croissant)
4 - Parcours infixéDG (décroissant)

5 - Insertion d'un élément
6 - Recherche d'un élément
7 - Suppression d'un élément

8 - Dessin à l'écran
9 - Dessin dans un fichier

Votre choix de 0 à 9 ? 8

 |
 |
 _____17__________
 | |
 | |
11____ _____31__
 | | |
 | | |
 _15 _19____ 35
 | | |
 | | |
 14 18 _28
 |
 |
 26

Taper Return pour continuer

04Chap_03 Page 166 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 167
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

ou encore :

Choix 3 :

Parcours infixé (croissant)

11 14 15 17 18 19 26 28 31 35

Choix 4 :

Parcours infixéDG (décroissant)

35 31 28 26 19 18 17 15 14 11

L’insertion dans cet ordre des prénoms suivants : Michel, Lucien, Monique,
Berthe, Jean, Olivier, Marjolaine, Emmanuel, conduit à l’arbre ordonné suivant :

 |

 |

 _____________Michel____

 | |

 | |

 _______________Lucien______ Monique____

 | | |

 | | |

Berthe___________ Marjolaine Olivier

 |

 |

 ____Jean

 |

 |

 Emmanuel

3.4 LES ARBRES BINAIRES ORDONNÉS ÉQUILIBRÉS

3.4.1 Définitions

Un arbre binaire ordonné est parfaitement équilibré si en tout nœud de l’arbre :

• le nombre de nœuds dans le sous-arbre gauche

• et le nombre de nœuds dans le sous-arbre droit
diffèrent au plus de 1. Ce critère est difficile à maintenir car il nécessite des réorga-
nisations importantes, voire des reconstructions complètes de l’arbre. On utilise
alors un critère d’équilibre amoindri et on parle d’arbre équilibré.

04Chap_03 Page 167 Samedi, 17. janvier 2004 10:37 10

168 3 • Les arbres

Un arbre binaire ordonné est équilibré (balancé ou de type AVL) si en tout nœud
de l’arbre :

• la hauteur du sous-arbre gauche

• et la hauteur du sous-arbre droit
diffèrent au plus de 1. Ces arbres sont appelés arbres (binaires ordonnés) équilibrés,
ou arbre AVL, initiales des personnes ayant proposé cette structure ; (AVL : intro-
duits en 1960 par Adelson-Velskii et Landis).

La hauteur d’un nœud correspond à la longueur de la plus longue branche en
partant de ce nœud (voir § 3.2.5.e, page 124). On peut démontrer mathématiquement
que la hauteur totale d’un arbre équilibré est toujours inférieure à 1.5 fois la hauteur
d’un arbre parfaitement équilibré ayant le même nombre de nœuds. Ajouts et
suppressions peuvent déséquilibrer un arbre équilibré, il faut alors le réorganiser en
gardant le critère d’arbre binaire ordonné équilibré. Cette structure évite d’avoir un
arbre dégénéré où la recherche d’un élément est dégradée et devient une recherche
séquentielle dans une liste.

3.4.2 Ajout dans un arbre ordonné équilibré

Une réorganisation doit avoir lieu si la valeur absolue de la différence de hauteurs
entre la plus longue branche du SAD et celle du SAG d’un nœud devient > 1 à la
suite d’une insertion. Il y a quatre cas de réorganisations de l’arbre à envisager : le
déséquilibre vient du SAG du SAG (noté GG), du SAD du SAD (noté DD), du SAD
du SAG (noté GD), du SAG du SAD (noté DG). Les deux premiers et deux derniers
cas sont symétriques. Le facteur d’équilibre (hauteur du sous-arbre droit moins
hauteur du sous-arbre gauche) est donné entre parenthèses sur les figures qui
suivent.

3.4.2.a 1° cas : type GG

Le déséquilibre vient de la Gauche du sous-arbre Gauche. a, b sont des nœuds
(a<b) ; SA1, SA2, SA3 sont des sous-arbres équilibrés. Suite à l’insertion dans SA1,
le nœud a a un facteur d’équilibre de –1 ; le nœud b devrait avoir un facteur d’équi-

15

18

20

25

Figure 84 Arbre ordonné dégénéré.

04Chap_03 Page 168 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 169
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

libre de –2, ce qui est inacceptable. Il faut réorganiser a et b comme l’indique la
Figure 85.

L’insertion de 1, sans réorganisation, à une place imposée par le critère d’ordre,
déséquilibrerait l’arbre comme l’indique la Figure 86. La branche en gras indique le
chemin suivi par les différents appels récursifs pour atteindre le point d’insertion qui
est toujours une feuille. L’intérêt de la méthode réside dans le fait que seule cette
branche est affectée par une éventuelle réorganisation de l’arbre pour respecter le
critère d’ordre. La réorganisation se fait au retour de l’appel récursif, lors de la
remontée de la feuille vers la racine de l’arbre. La feuille insérée (ici 1) est équilibrée.
Le retour au nœud 3 trouve un facteur d’équilibre de 0 avant insertion qui devient –1
après insertion. On remonte au nœud 6 qui passe de même de 0 à –1. Le nœud 15 a un
facteur d’équilibre de –1 avant l’insertion qui a accentué le déséquilibre à gauche.

Il faut réorganiser les nœuds 6 et 15. 6 devient racine du sous-arbre à la place de 15
qui glisse à droite de 6. Le sous-arbre 9 est rattaché comme SAG de 15. Après ces
modifications, les nœuds 6 et 15 ont un facteur d’équilibre de 0. Les autres nœuds, en
amont des nœuds réorganisés, examinés lors de la remontée ne sont pas touchés ; il n’y
a aucun traitement à faire lors de la remontée après l’appel récursif ; sur l’exemple, le
nœud 25 garde donc son facteur d’équilibre de –1. Les autres parties de l’arbre
(branche droite de 25 par exemple) ne sont pas concernées par cette réorganisation.

a (0)

b (0)SA1

SA3SA2

devient

b (-1 → GG)

a (-1) SA3

SA1 SA2

Figure 85 Principe de la réorganisation GG (Rotation Droite).

25 (–1)

15 (–1) 30 (–1)

28 (0)20 (0)6 (0)

9 (0)3 (0)

25 (?)

15 (–1 GG) 30 (–1)

2820 (0)(0)6 (0 –1)

9 (0)3 (0 –1)

1 (0)

→

→

→

Figure 86 Arbre déséquilibré par l'insertion de 1.

04Chap_03 Page 169 Samedi, 17. janvier 2004 10:37 10

170 3 • Les arbres

L’arbre peut être réorganisé comme l’indique la Figure 87 (nœud a:6; nœud b:15),
le nœud a:6 devenant la nouvelle racine du sous-arbre.

Le détail des modifications de pointeurs sur les différents sous-arbres des nœuds
concernés par une réorganisation GG est donné sur la Figure 88 et la Figure 89. Quand
on exécute la fonction pour le nœud 15, ce qui a été passé lors de l’appel récursif est
l’adresse pracine du pointeur sur ce nœud. Après réorganisation, le pointeur à l’adresse
pracine pointe sur 6 au lieu de 15. Tout se passe comme s’il y avait eu une rotation à
droite des nœuds 6 et 15 ; 6 a pris la place de 15 ; 15 descend à droite de 6 ; 9 se
rattache à gauche de 15. La fonction rd (pracine) réalise cette permutation des
3 pointeurs.

25 (–1)

30 (–1)

28 (0)15 (0)3 (–1)

9 (0)1 (0) 20 (0)

6 (0)

Figure 87 Arbre après rééquilibrage GG de 6 et 15.

25

15

6 SA3

SA2SA1

p

pracine

racine

Figure 88 Arbre avant réorganisation GG.

04Chap_03 Page 170 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 171
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.4.2.b 2° cas : type DD (symétrique du cas 1)

Le déséquilibre vient de la droite du sous-arbre droit. L’insertion a provoqué un
déséquilibre dans le SAD du SAD. La réorganisation se fait comme indiqué sur la
Figure 90, qui est symétrique de la réorganisation GG de la Figure 85.

La Figure 91 présente un exemple simple de réorganisation DD. L’insertion de 30
déséquilibre l’arbre. Lors de la remontée, le facteur d’équilibre du nœud 20 passe de
0 à 1 ; celui de 10 qui devrait passer à 2, valeur interdite, provoque une réorganisa-
tion DD. Le principe est rigoureusement identique à celui de la réorganisation GG à
la symétrie près. On parle de rotation gauche. Sur l’exemple, b:20 prend la place de
10, a:10 descend à gauche selon le principe de la Figure 90. Les facteurs d’équilibre
de b:20 et a:10 sont alors de 0.

3.4.2.c 3° cas : type GD

Le déséquilibre vient de la Droite du sous-arbre Gauche (type GD). De même que
précédemment a, b, c sont des nœuds (a<b<c) ; SA1, SA2, SA3, SA4 sont des sous-

25

15

6 SA3

SA2SA1

p

pracine

racine

Figure 89 Arbre après réorganisation GG (Rotation Droite).

a (1 → DD)

b (1)S A1

S A3S A2

devient

b (0)

a (0) SA3

SA1 SA2

Figure 90 Principe de la réorganisation DD (Rotation Gauche).

04Chap_03 Page 171 Samedi, 17. janvier 2004 10:37 10

172 3 • Les arbres

arbres équilibrés. Le principe de la réorganisation est donné ci-dessous ; c’est b, la
valeur moyenne qui devient racine du sous-arbre à la place de c.

L’insertion de 8 à la place imposée par le critère d’ordre déséquilibre l’arbre
comme indiqué sur la Figure 93. La branche en gras indique le chemin des appels
récursifs qui a conduit à l’insertion de la feuille 8. La réorganisation se fait lors de
la remontée, donc avec une séquence d’instructions qui suit l’appel récursif. La
feuille 8 est équilibrée. Le nœud 9 voit son facteur d’équilibre passer de 0 à –1 (on
remonte par la gauche ; l’insertion a eu lieu dans le SAG de 9). Le nœud 6 passe
de 0 à 1 (on remonte par la droite, l’insertion a eu lieu dans le SAD de 6). Le
facteur d’équilibre du nœud 15 (-1) devrait passer à –2 car l’insertion a eu lieu
dans le SAG de 15.

Il faut donc réorganiser. Le déséquilibre vient du SAD du SAG de 15. Les nœuds
c:15, a:6 et b:9 sont réorganisés conformément à la Figure 92. b:9 devient racine du
sous-arbre à la place de c:15 qui glisse à droite du nœud b:9. Le nœud b:9 est devenu
équilibré et les autres nœuds en amont (25 sur l’exemple) ne sont plus concernés par
ce rééquilibrage. Dans le cas de l’insertion de 8, le facteur d’équilibre pour a:6 est de
0 et celui de c:15 de 1. Dans ce rééquilibrage GD, il y a trois cas à considérer du
point de vue des facteurs d’équilibre.

10 (1 →

→

 DD)

20 (0 1)

30 (0)

20 (0)

10 (0) 30 (0)

10 (1)

20 (0)

Figure 91 Exemple de réorganisation DD (Rotation Gauche).

a (1) SA4

SA1 b (-1, 1 ou 0)

SA2 SA3

ca

SA4SA3SA2SA1

c (–1 → GD) b(0)

Figure 92 Principe de la réorganisation GD.

04Chap_03 Page 172 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 173
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Avant la réorganisation sur le nœud c lors de la remontée récursive, le facteur
d’équilibre de c est de –1 ; celui de a vaut +1, et celui de b vaut –1, 1 ou 0 d’où les 3
cas illustrés par le tableau et les exemples suivants.

L’arbre peut être réorganisé comme l’indique la Figure 94 (nœud c:15 ; nœud
a:6 ; nœud b:9), le nœud b:9 compris entre a:6 et c:15 devenant la nouvelle racine du
sous-arbre.

L’insertion de 10 est schématisé sur la Figure 95 et la Figure 96 et illustre le
deuxième cas concernant les facteurs d’équilibre.

La Figure 97 illustre le troisième cas concernant les facteurs d’équilibre dans un
rééquilibrage GD.

Avant Après

a b c a b c

1 -1 -1 0 0 1

1 1 -1 -1 0 0

1 0 -1 0 0 0

25 (–1)

15 (-1) 30 (–1)

28 (0)20 (0)

9 (0) 3 (0)

25 (?)

15 (–1 → GD) 30 (–1)

28 (0) 20 (0) 6 (0 → + 1)

9 (0 → – 1)3 (0)

8 (0)

6 (0)

Figure 93 Arbre déséquilibré par l'insertion de 8 ; 15, 6 et 9 sont réorganisés.

25 (-1)

9 (0) 30 (–1)

28 (0) 15 (1) 6 (0)

8 (0) 3 (0) 20 (0)

Figure 94 Cas 1 : arbre après rééquilibrage GD; a:6 (0), b:9 (0), c:15 (1).

04Chap_03 Page 173 Samedi, 17. janvier 2004 10:37 10

174 3 • Les arbres

Du point de vue des modifications de pointeurs, cette transformation peut être
considérée comme une double rotation : rotation gauche sur le nœud a, puis rotation
droite sur le nœud c comme le schématise la Figure 98.

25 (–1)

15 (–1) 30 (–1)

28 (0) 20 (0) 6 (0)

9 (0) 3 (0)

15 (–1 → GD) 30 (–1)

28 (0) 20 (0) 6 (0 → 1)

9 (0 → 1) 3 (0)

10 (0)

25(?)

Figure 95 Arbre déséquilibré par l'insertion de 10 ; 15, 6 et 9 sont réorganisés.

25 (-1)

9 (0) 30 (-1)

28 (0)15 (0)6 (-1)

10 (0)3 (0) 20 (0)

Figure 96 Cas 2 : arbre après rééquilibrage GD ; a:6 (-1), b:9 (0), c:15 (0).

15 (–1 → GD)

6 (0→ 1)

9 (0)

6 (0)

9 (0)

6 (0) 15 (0)

15 (–1)

Figure 97 Cas 3 : arbre après rééquilibrage GD ; a:6 (0), b:9 (0), c:15 (0).

04Chap_03 Page 174 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 175
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.4.2.d 4° cas : type DG (symétrique du cas 3)

Le déséquilibre vient de la gauche du sous-arbre droit (type DG). Si le déséquilibre
vient de la gauche du sous-arbre droit, il faut réorganiser comme l’indique la Figure
99. Ceci peut aussi se décomposer en une rotation droite sur c, puis une rotation
gauche sur a. Il y a de même trois cas à considérer, pour les facteurs d’équilibre,
symétriques des cas GD.

La Figure 100 présente un exemple de réorganisation DG. L’insertion de 15 se fait
à gauche de 20. Le facteur d’équilibre de 20 passe de 0 à –1, celui de 10 devrait
passer à 2 ; il provoque une réorganisation DG.

c

a SA4

SA1 b

SA2 SA3

b

ca

SA4SA3SA2SA1

c

b SA4

SA1 SA2

SA3a

Figure 98 Réorganisation GD = rotation RG sur a, puis rotation RD sur c.

a (1 → DG)

SA1

SA4

SA3SA2

b (0)

ca

SA4SA3SA2SA1b (–1, 1, 0)

c (–1)

Figure 99 Principe de la réorganisation DG.

10 (1 → DG)

20 (0 → –1)

15 (0)

15 (0)

10 (0) 20 (0)

10 (1)

20 (0)

Figure 100 Exemple de réorganisation DG.

04Chap_03 Page 175 Samedi, 17. janvier 2004 10:37 10

176 3 • Les arbres

Pour les facteurs d’équilibre, on retrouve les 3 cas du type GD. Le tableau est
rigoureusement le même que pour le cas GD car afin d’avoir a, b et c en ordre crois-
sant, on a permuté c et a dans la symétrie GD/DG.

Exercice 18 - Facteur d’équilibre

Retrouver du point de vue des facteurs d’équilibre, les 3 cas de rééquilibrage DG
en insérant dans un arbre vide :

50, 40, 70, 80, 60, 58
50, 40, 70, 80, 60, 65
10, 20, 15

3.4.2.e Insertion dans un arbre binaire équilibré

Les paragraphes 3.4.2.a, b, c et d ont présenté les quatre réorganisations de l’arbre.
Il n’y a pas réorganisation à chaque ajout d’un élément dans l’arbre ordonné (en
moyenne, une réorganisation pour 2 ajouts). Dans certains cas, l’insertion améliore
l’équilibre de l’arbre comme sur la Figure 101 et la Figure 102.

Les notations concernant les arbres équilibrés sont celles décrites pour les arbres
binaires dans arbre.h. Toutefois, il convient d’ajouter le champ facteur d’équilibre
factEq pour chaque nœud de l’arbre. factEq vaut -1, 0 ou 1 ; c’est la différence de
hauteur entre le SAD et le SAG. Comme pour les arbres ordonnés, la clé peut être
numérique ou alphanumérique.

// ********** ARBRES EQUILIBRES

// permuter p1, p2, p3 : p2 = p1, p3 = p2, p1 = p3
static void permut (Noeud** p1, Noeud** p2, Noeud** p3) {
 Noeud* temp;

10 (1)

20 (0)

10 (1 → 0)

20 (0)5 (0)

Figure 101 L'insertion de 5 dans le SAG améliore l'équilibre du nœud 10.

20 (-1)

10 (0)

20 (-1 → 0)

10 (0) 30 (0)

Figure 102 L'insertion de 30 en SAD améliore l'équilibre du nœud 20.

04Chap_03 Page 176 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 177
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 temp = *p3;
 *p3 = *p2;
 *p2 = *p1;
 *p1 = temp;
}

// rotation droite
static void rd (Noeud** pracine) {
 Noeud* racine = *pracine;
 Noeud* p = racine->gauche;
 permut (pracine, &p->droite, &racine->gauche);
}

// rotation gauche
static void rg (Noeud** pracine) {
 Noeud* racine = *pracine;
 Noeud* p = racine->droite;
 permut (pracine, &p->gauche, &racine->droite);
}

// - insérer objet dans l'arbre d'adresse de racine "pracine";
// - req à vrai indique qu'il se peut qu'un rééquilibrage
// soit nécessaire en amont du noeud en cours
static void insererArbreEquilibre (Noeud** pracine, Objet* objet,

booleen* req,
char* (toString) (Objet*),

int (*comparer) (Objet*, Objet*)) {
 int resu;
 Noeud* racine = *pracine;

 if (racine == NULL) {
 racine = cNd (objet);
 racine->factEq = 0;
 *req = vrai;
 *pracine = racine;

 } else if ((resu=comparer (objet, racine->reference)) < 0) {
 insererArbreEquilibre (&racine->gauche, objet, req, toString, comparer);
 if (*req) {
 // L'insertion a eu lieu dans le SAG de racine
 switch (racine->factEq) {
 case 1: // 1 -> 0
 fprintf (stderr, "%s 1 -> 0\n", toString (racine->reference));
 racine->factEq = 0;
 *req = faux;
 break;
 case 0: // 0 -> -1
 racine->factEq = -1;
 fprintf (stderr, "%s 0 -> -1\n", toString (racine->reference));
 break;
 case -1:
 if (racine->gauche->factEq==-1) { // cas GG
 fprintf (stderr, "%s -1 -> GG\n", toString (racine->reference));
 Noeud* b = racine;
 Noeud* a = b->gauche;
 b->factEq = 0;
 a->factEq = 0;
 rd (pracine);
 } else { // cas GD
 fprintf (stderr, "%s -1 -> GD\n", toString (racine->reference));
 Noeud* c = racine;

04Chap_03 Page 177 Samedi, 17. janvier 2004 10:37 10

178 3 • Les arbres

 Noeud* a = c->gauche;
 Noeud* b = a->droite;
 c->factEq = b->factEq == -1 ? 1 : 0;
 a->factEq = b->factEq == 1 ? -1 : 0;
 b->factEq = 0;
 rg (&racine->gauche);
 rd (pracine);
 }
 *req = faux; // pas de rééquilibrage en amont de racine
 break;
 }
 }

 } else if (resu > 0) {
 insererArbreEquilibre (&racine->droite, objet, req, toString,

comparer);
 if (*req) {
 // L'insertion a eu lieu dans le SAD de racine
 switch (racine->factEq) {
 case -1: // -1 -> 0
 fprintf (stderr, "%s -1 -> 0\n", toString (racine->reference));
 racine->factEq = 0;
 *req = faux;
 break;
 case 0: // 0 -> 1
 racine->factEq = 1;
 fprintf (stderr, "%s 0 -> 1\n", toString (racine->reference));
 break;
 case 1:
 if (racine->droite->factEq == 1) { // cas DD
 fprintf (stderr, "%s 1 -> DD\n", toString (racine->reference));
 Noeud* a = racine;
 Noeud* b = a->droite;
 a->factEq = 0;
 b->factEq = 0;
 rg (pracine);
 } else { // cas DG
 fprintf (stderr, "%s 1 -> DG\n", toString (racine->reference));
 Noeud* a = racine;
 Noeud* c = a->droite;
 Noeud* b = c->gauche;
 c->factEq = b->factEq == -1 ? 1 : 0;
 a->factEq = b->factEq == 1 ? -1 : 0;
 b->factEq = 0;
 rd (&racine->droite);
 rg (pracine);
 }
 *req = faux; // pas de rééquilibrage en amont
 break;
 }
 }
 } else {
 *req = faux; // déjà dans l'arbre
 }
}

void insererArbreEquilibre (Arbre* arbre, Objet* objet) {
 booleen req;
 insererArbreEquilibre (&arbre->racine, objet, &req, arbre->toString,

arbre->comparer);
}

04Chap_03 Page 178 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 179
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

3.4.3 Exemple de test pour les arbres équilibrés

On pourrait de même que pour les arbres ordonnés faire un menu permettant de
tester les différentes fonctions des arbres équilibrés (voir § 3.3.3, page 163). Les
fonctions de parcours infixe(), infixeDG(), et de recherche rechercherOrd() restent
valables pour l’arbre équilibré. Pour le dessin, on peut concaténer le facteur d’équi-
libre au nom du nœud, la fonction dessinerArbre() restant valable. La fonction
d’insertion a été vue précédemment. La fonction de suppression est laissée à titre
d’exercice.

Exemples de test :

ARBRES ORDONNES EQUILIBRES
0 - Fin du programme

1 - Initialisation d'un arbre ordonné vide
2 - Création d'un arbre équilibré (fichier)
3 - Parcours infixé de l'arbre ordonné (croissant)
4 - Parcours infixéDG de l'arbre ordonné (décroissant)

5 - Insertion d'un élément dans l'arbre équilibré
6 - Recherche d'un élément de l'arbre
7 - Suppression d'un élément de l'arbre A FAIRE

8 - Dessin de l'arbre courant à l'écran
9 - Dessin de l'arbre courant dans un fichier

Votre choix de 0 à 9 ? 8

 |
 |
 ________25(-1)_________
 | |
 | |
 ______15(-1)___ ___30(-1)
 | | |
 | | |
 __6(0)___ 20(0) 28(0)
 | |
 | |
3(0) 9(0)

04Chap_03 Page 179 Samedi, 17. janvier 2004 10:37 10

180 3 • Les arbres

Votre choix de 0 à 9 ? 5

Nom à insérer ? 1
3 0 -> -1
6 0 -> -1
15 -1 -> GG
 |
 |
 ________________25(-1)_________
 | |
 | |
 ___6(0)_______ ___30(-1)
 | | |
 | | |
 __3(-1) __15(0)___ 28(0)
 | | |
 | | |
1(0) 9(0) 20(0)

L’arbre est d’abord construit à partir de clés contenues dans un fichier, puis
affiché sur le premier écran. L’insertion de 1 sur l’écran 2 ci-dessus correspond à la
réorganisation de la Figure 86 et de la Figure 87. La trace des modifications des
facteurs d’équilibre des nœuds lors de la remontée récursive est également indiquée
pour les nœuds 3, 6 et 15.

Les instructions suivantes effectuent la construction et le dessin d’un arbre équi-
libré de Personne. La fonction dupliquerArbreBal() dessine l’arbre en indiquant le
facteur d’équilibre.

// dupliquer l'arbre en insérant le facteur d'équilibre
// dans le message de l'objet
Noeud* dupliquerArbreBal (Noeud* racine, char* (*toString) (Objet*)) {
 if (racine==NULL) {
 return NULL;
 } else {
 char* message = (char*) malloc(30);
 sprintf (message, "%s(%d)", toString (racine->reference),

racine->factEq);
 Noeud* nouveau = cF (message);
 nouveau->gauche = dupliquerArbreBal (racine->gauche, toString);
 nouveau->droite = dupliquerArbreBal (racine->droite, toString);
 return nouveau;
 }
}

// dupliquer un arbre en insérant dans chaque noeud,
// la chaîne de caractères du noeud et le facteur d'équilibre

04Chap_03 Page 180 Samedi, 17. janvier 2004 10:37 10

3.4 • Les arbres binaires ordonnés équilibrés 181
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Arbre* dupliquerArbreBal (Arbre* arbre) {
 Noeud* nracine = dupliquerArbreBal (arbre->racine, arbre->toString);
 return creerArbre (nracine, toChar, comparerCar);
}

void main () {
 Personne* p1 = creerPersonne ("Dupont", "Jacques");
 Personne* p2 = creerPersonne ("Dupond", "Albert");
 Personne* p3 = creerPersonne ("Dufour", "Aline");
 Personne* p4 = creerPersonne ("Dupré", "Berthe");
 Personne* p5 = creerPersonne ("Duval", "Sébastien");

 // arbre de Personne
 Arbre* arbrep = creerArbre (NULL, toStringPersonne, comparerPersonne);
 insererArbreEquilibre (arbrep, p1);
 insererArbreEquilibre (arbrep, p2);
 insererArbreEquilibre (arbrep, p3);
 insererArbreEquilibre (arbrep, p4);
 insererArbreEquilibre (arbrep, p5);

 printf ("\nordre croissant :\n");
 infixe (arbrep);

 printf ("\nordre décroissant :\n");
 infixeDG (arbrep);
 printf ("\n");

 printf ("dessin de l'arbre équilibré de personnes\n");
 dessinerArbre (arbrep, stdout);

 // dessin de l'arbre auquel on ajoute le facteur d'équilibre
 Arbre* narbrep = dupliquerArbreBal (arbrep);
 printf ("dessin de l'arbre équilibré de personnes

et du facteur d'équilibre\n");
 dessinerArbre (narbrep, stdout);
}

L’arbre équilibré et les facteurs d’équilibre pour chaque nœud :

 |

 |

 ________Dupond Albert(1)_________________________

 | |

 | |

Dufour Aline(0) _________Dupré Berthe(0)__________

 | |

 | |

 Dupont Jacques(0) Duval Sébastien(0)

Exercice 19 - Insertion de valeurs dans un arbre équilibré

Donner les différents schémas de réorganisation concernant l’insertion des
nombres entiers de 1 à 12 dans un arbre équilibré. Faire de même en partant de 12
vers 1.

04Chap_03 Page 181 Samedi, 17. janvier 2004 10:37 10

182 3 • Les arbres

3.5 ARBRES N-AIRES ORDONNÉS ÉQUILIBRÉS : LES B-ARBRES

3.5.1 Définitions et exemples

Les B-arbres sont des arbres n-aires ordonnés conçus pour de grands ensembles de
données sur mémoire secondaire. Chaque nœud contient plusieurs valeurs ordon-
nées qui délimitent les ensembles de valeurs que l’on peut trouver dans les sous-
arbres. Pour un B-arbre d’ordre N il y a, pour tout nœud sauf la racine, de N à 2*N
valeurs et donc au plus 2*N + 1 intervalles ou sous-arbres. La racine contient de 1 à
2*N valeurs. Un nœud est rebaptisé « page » dans la terminologie B-arbre. Les
valeurs courantes de N sur disque vont de 25 à 200. Chaque nœud a un nombre
minimum et un nombre maximum de valeurs ; chaque accès disque permet de lire
une page en mémoire centrale dans un tableau contenant les différentes valeurs et
leurs caractéristiques. La hauteur de l’arbre est faible, donc le nombre d’accès
disque pour retrouver une valeur est faible. On réserve de la place pour 2*N valeurs
dans chaque nœud mais un nœud contient de N à 2*N valeurs. Il y a donc allocation
inutilisée d’espace mémoire. On retrouve le compromis espace-temps. On accélère
la recherche au détriment de l’espace mémoire.

Exemple de principe de B-arbre d’ordre 2 (de 2 à 4 valeurs par nœud, de 3 à 5 fils)

Description d’un B-arbre d’ordre N

#define N 2
typedef char ch15 [16];
typedef int PNoeud;

typedef struct {
 ch15 cle;
 int numEnr; // le numéro d'enregistrement des informations
 PNoeud p;
} Element;

typedef struct {
 int nbE; // nombre réels d'éléments dans le noeud
 PNoeud p0;
 Element elt [2*N];
} Noeud;

26

2 6 11 14 17 19 24 25 28 29 31 33 35 44 45

12 21 30 38

Figure 103 B-arbre d’ordre 2.

04Chap_03 Page 182 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 183
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Les informations spécifiques de l’application ne sont pas indiquées sur les diffé-
rents schémas concernant les B-arbres. Une possibilité simple est de créer un fichier
d’index sous forme d’un B-arbre et un fichier de données en accès direct. Ainsi, sur
la Figure 105, la clé 20 fait référence à l’enregistrement numEnr=3 soit le troisième
enregistrement (20 Dufour, etc.) du fichier en accès direct Clients. La recherche d’un
enregistrement se fait donc par consultation de l’index, puis lecture directe de
l’enregistrement du fichier de données. Par la suite, les données ne sont pas mention-
nées car elles varient d’une application à l’autre.

Toutes les feuilles sont au même niveau. Les accès disque étant relativement lents,
cette structure permet de diminuer le nombre d’accès disque pour retrouver une valeur.
Un B-arbre d’ordre N est saturé si tous ses nœuds contiennent exactement 2*N
valeurs. Il est dit squelettique si tous ses nœuds sauf la racine contiennent exactement
N valeurs. On peut utiliser une recherche dichotomique pour retrouver, en mémoire
centrale, la clé ou le sous-arbre contenant la clé parmi les nbE clés du nœud.

3.5.2 Insertion dans un B-arbre

La contrainte nombre de valeurs compris entre N et 2*N doit être respectée pour tout
nœud (toute page) sauf pour la racine.

Algorithme d’insertion
L’insertion se fait toujours au niveau d’une feuille. Soit v la valeur à insérer et racine
la racine du B-arbre au départ.

2 12 20

2 / 13 15/ / 4 / 21 23/ / 25 / /262 / 10 11/ /

Figure 104 Détail de la structure d’un nœud d’un B-arbre d'ordre 2.

2 12 1 20 3
0

1 12 Dupont, etc.

2

3 20 Dufour, etc.

Fichier ClientsIndex Clients

< 12 > 12
< 20

> 20

elt [0] elt[2*N – 1]
nbe p0

Figure 105 Fichier index (B-arbre) et fichier de données.

04Chap_03 Page 183 Samedi, 17. janvier 2004 10:37 10

184 3 • Les arbres

si racine est une feuille alors // insérer la valeur v dans le nœud

s’il reste de la place dans racine,
– insérer la valeur v à sa place dans racine

sinon // éclatement du nœud racine en 2 nœuds : racine et nouveau
– créer un nouveau nœud nouveau
– déterminer la clé médiane des clés du nœud (v inclus)
– placer les valeurs supérieures à la clé médiane dans la nouvelle page

nouveau, celles inférieures restant dans racine,
– insérer la clé médiane dans le nœud père (le créer s’il n’existe pas) qui à

son tour peut éclater, et ce jusqu’à la racine, seul moyen d’augmenter la
hauteur de l’arbre. Ceci est fait lors de la remontée dans l’arbre, au
retour de l’appel récursif, de façon semblable à la réorganisation dans les
arbres ordonnés équilibrés.

sinon //on continue le parcours de l’arbre n-aire
– rechercher le sous-arbre concerné par v et recommencer (récursivité) avec
pour racine, la racine du sous-arbre

finsi

Pour insérer une valeur, on descend toujours jusqu’au niveau d’une feuille avant
de remonter éventuellement pour insérer la clé médiane. La seule façon d’augmenter
la taille de l’arbre se fait par éclatement de nœuds contenant déjà 2*N valeurs.
L’arbre est toujours équilibré quel que soit l’ordre des valeurs insérées. Cependant,
la structure de l’arbre dépend de l’ordre des valeurs entrées. Le taux de remplissage
peut varier de 50 % à 100 % suivant que tous les nœuds contiennent N ou 2*N
valeurs. L’ajout de valeurs déjà en ordre croissant conduit à un arbre squelettique.

Exemples d’insertion de valeurs dans un B-arbre d’ordre 2

Exemple 1

Exemple 2

10 11 27 35

2310 23 27 35

Figure 106 Insertion de 11 dans un B-arbre (avant et après).

10 11 15 16 27 35

23

10 11 15 16 27 35

12 23

Figure 107 Insertion de 12 dans un B-arbre ; éclatement du nœud 10.11.15.16.

04Chap_03 Page 184 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 185
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Exemple 3

3.5.3 Recherche, parcours, destruction

3.5.3.a Recherche d’un élément : accès direct

Il s’agit d’accéder directement à un élément du B-arbre. Le parcours de l’arbre n-aire
ordonné permet de retrouver facilement une valeur par descente récursive dans un des
sous-arbres. La valeur peut se trouver dans un nœud intermédiaire ou dans une
feuille. Si on atteint une feuille sans trouver la valeur cherchée c’est que la valeur
n’est pas dans l’arbre.

3.5.3.b Parcours des éléments : accès séquentiel

Il s’agit d’énumérer toutes les valeurs du B-arbre. Le parcours ressemble au
parcours de l’arbre binaire, mais cette fois, il y a (sauf pour la racine) de N+1 à
2N+1 sous-arbres qu’il faut parcourir récursivement.

void parcoursBArbre (PNoeud racine) {
 if (racine != NULL) {
 parcoursBArbre (racine->p0);
 for (int i=0; i<racine->nbE; i++) {
 printf ("%s ", racine->elt [i].cle);
 parcoursBArbre (racine->elt [i].p);
 }
 }
}

5 9

10 11 15 167 81 2 27 35 42 47

23 40

12

9 12 23 40

15 16 27 3510 111 2 7 8 42 47

Figure 108 Insertion de 5 ; éclatement de 1.2.7.8, puis de 9.12.23.40.

04Chap_03 Page 185 Samedi, 17. janvier 2004 10:37 10

186 3 • Les arbres

3.5.3.c Destruction d’un élément

La destruction d’un élément est a priori simple. Il faut localiser le nœud où se trouve
la clé et l’enlever. Cependant, si la clé est dans un nœud non feuille, le retrait de la
clé va poser des problèmes pour accéder aux valeurs du sous-arbre qui avaient été
rangées en fonction de cette valeur disparue. Il faut la remplacer par soit la plus
grande valeur du sous-arbre à gauche de la valeur retirée, soit par la plus petite du
sous-arbre à droite (voir § 3.3.2.d, page 161 : suppression dans un arbre ordonné). Si
pour un nœud le nombre de valeurs devient inférieur à N et si une des pages
voisines (gauche ou droite) a plus de N valeurs, il y a redistribution entre ces 2
pages, sinon les 2 nœuds (le nœud courant et celui de droite par exemple) sont
regroupés et un des nœuds est détruit. La valeur médiane est recalculée.

Exercice 20 - Gestion d’un tournoi à l’aide d’une liste d’arbres

(voir § 3.1.2.e, page 105)
On souhaite développer un logiciel qui permette d’enregistrer et de consulter les

résultats d’un tournoi. À partir de ces résultats enregistrés dans un fichier séquentiel,
on construit une liste d’arbres mémorisant les différents matchs joués. À la fin du
tournoi, la liste ne contient plus qu’un seul élément qui pointe sur la racine de l’arbre
des matchs. Cette racine contient des informations sur le match de finale. On désire
également répondre à des interrogations sur les résultats des matchs déjà enregistrés.
La construction de la liste d’arbres est schématisée sur les exemples suivants :

• un seul match joué, le fichier séquentiel contient :
b,a b a gagné contre a

• après enregistrement de :
b,a b a gagné contre a
c,d c a gagné contre d

li

/ /

b a / /

li

//

b a / / c d / /

04Chap_03 Page 186 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 187
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

• après enregistrement de : b,a ; c,d ; b,c ; h,g ; f,e ; h,f ;

• après enregistrement de tous les résultats du tournoi b,a ; c,d ; b,c ; h,g ; f,e ; h,f ;
b,h, il ne reste plus qu’un seul arbre dans la liste.

Les schémas précédents n’indiquent pas les détails de l’implémentation d’un
noeud de l’arbre. Le schéma de droite de la Figure 110 indique l’implémentation
réelle du noeud schématisé à gauche.

Soient les déclarations suivantes :

#include "liste.h"
#include "arbre.h"

#define LGMAX 20
typedef char Chaine [LGMAX+1]; // 0 de fin
typedef struct {
 Chaine joueur1; // gagnant = joueur1
 Chaine joueur2;
} Match;

Écrire les fonctions suivantes de consultation de l’arbre :

• void listerRestants (Liste* li) ; qui liste les joueurs de la liste li non encore
éliminés.

li

//

b c h f

b a / / c d / / h g / / f e / /

Figure 109 Une liste d'arbres.

b a

b a

Figure 110 Détail de l'implémentation d'un nœud.

04Chap_03 Page 187 Samedi, 17. janvier 2004 10:37 10

188 3 • Les arbres

• void listerArbres (Liste* li, int type) ; qui effectue le récapitulatif des matchs en
listant le contenu de chacun des arbres de la liste li. Le parcours est préfixé si
type=1, postfixé si type=2. Un dessin des arbres est donné si le type=3. Les résultats
attendus des parcours préfixé et postfixé de l’arbre de l’exemple sont donnés ci-
dessous.

• void listerMatch (Noeud* pNom, Chaine joueur) ; qui à partir d’un pointeur
pNom sur le dernier match enregistré pour un joueur donné, fournit la liste des
matchs que ce joueur a disputés

• void listerMatch (Liste* li, Chaine joueur) ; qui recherche joueur dans la liste li
des arbres, et fournit la liste des matchs de joueur.

Écrire les fonctions suivantes de création de l’arbre :

• void enregistrerMatch (Liste* li, Chaine j1, Chaine j2) ; qui enregistre le match
gagné par j1 contre j2 dans la liste li des arbres.

• void creerArbres (FILE* fe, Liste* li) ; qui crée la liste li des arbres à partir du
fichier séquentiel fe. Cette fonction utilise enregistrerMatch().

Faire un programme correspondant au menu suivant :

GESTION D'UN TOURNOI

0 - Fin
1 - Création de la liste d'arbres à partir d'un fichier
2 - Enregistrement d'un match
3 - Liste des joueurs non éliminés
4 - Parcours préfixé des arbres
5 - Parcours postfixé des arbres
6 - Dessins des arbres des matchs
7 - Liste des matchs d'un joueur

Exemples de résultats (choix 4) :

PARCOURS DE L'ARBRE

préfixé indenté :
 b gagne contre h
 b gagne contre c
 b gagne contre a
 c gagne contre d
 h gagne contre f
 h gagne contre g
 f gagne contre e

04Chap_03 Page 188 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 189
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Exemples de résultats (choix 5) :

postfixé indenté :
 b gagne contre a
 c gagne contre d
 b gagne contre c
 h gagne contre g
 f gagne contre e
 h gagne contre f
 b gagne contre h

matchs du joueur e
f gagne contre e

Un exemple du dessin d’une liste de deux arbres de jeu (choix 6).

dessins des arbres des matchs

 |
 |
 _________Guillaume:Ronan_______
 | |
 | |
Guillaume:Nicolas Ronan:Thomas

 |
 |
 _______Vincent:Julien_______
 | |
 | |
Vincent:Gilles Julien:Alain

Exercice 21 - Mémorisation d’un dessin sous forme d’un arbre binaire

(allocation contiguë, voir Figure 75, page 150)
Une image peut être représentée par un tableau à deux dimensions de booléens si

l’image est en noir et blanc. Une autre méthode plus économique en mémoire dans
certains cas (tracés continus) est de ne représenter que les points significatifs, sous
forme d’un arbre, et de restituer l’image à partir de cet arbre. On peut de plus très
facilement faire varier la taille du dessin. Sur la Figure 111, le premier dessin repré-
sente un caractère 1 manuscrit. Le deuxième dessin schématise ce caractère sous

04Chap_03 Page 189 Samedi, 17. janvier 2004 10:37 10

190 3 • Les arbres

forme d’un arbre n-aire. Il faut tracer le segment 0, puis en partant de la fin du
segment 0, il faut tracer le segment 1 et le segment 2. De même, en partant de la fin
du segment 2, il faut tracer les segments 3, 4 et 5. Le troisième dessin représente
l’arbre n-aire converti sous sa forme binaire équivalente. Les segments sont décrits
avec un code indiquant la direction de déplacement (1:nord, 2:nord-est, 3:est, 4:sud-
est, 5:sud, 6:sud-ouest, 7:ouest, 8:nord-ouest).

La description des différents segments est enregistrée dans le tableau desc.
L’arbre binaire est mémorisé en allocation contiguë dans le tableau arbre. Les struc-
tures de données utilisées sont les suivantes :

#include "ecran.h"

#define NULLE -1
typedef int PNoeud;

typedef struct {
 int indice; // indice sur desc []
 PNoeud gauche;
 PNoeud droite;
} Noeud;

int desc [] = { // description de l'image
// 0 15
 3, 5, 5, 5, 3, 6, 6, 6, 7, 5, 5, 5, 5, 5, 5, 5,
 3, 7, 7, 7, 3, 3, 3, 3, 2, 5, 5
};

Noeud arbre [] = { // l'arbre représentant l'image
 { 0, 1, -1 }, // 0
 { 4, -1, 2 }, // 1
 { 8, 3, -1 }, // 2
 { 16, -1, 4 }, // 3
 { 20, -1, 5 }, // 4
 { 24, -1, -1 } // 5
};

0

1

2

3 4

5

0

1
2

3 4 5

0

1

2

3

4

5

Figure 111 Mémorisation d'un tracé graphique sous forme d'arbre.

04Chap_03 Page 190 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 191
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

indice repère le rang dans le tableau desc [] de la description du segment que le
nœud représente. Le premier nœud de l’arbre en arbre[0] à un indice de 0 qui pointe
sur l’entrée 0 du tableau desc [] soit 3/5/5/5. Le 3 indique le nombre de valeurs à
prendre en compte ; 5 indique la direction de déplacement pour reconstituer le
segment 0 soit 3 caractères '*' vers le sud.

En utilisant le module ecran (voir § 1.4.2, page 25) :

• écrire la fonction void traiterNoeud (PNoeud pNd, int x, int y, int taille, int* nx,
int* ny) ; qui trace sur l’écran à l’aide de '*' le dessin du segment correspondant au
Nœud de rang pNd de arbre[]. x et y sont les coordonnées du début du segment sur
l’écran, nx et ny les coordonnées de la fin du segment. taille indique que chaque
élément du tableau desc[] doit être répété taille fois.

• écrire la fonction récursive void parcours (PNoeud racine, int x, int y, int taille) ;
qui effectue à partir de x et y, le dessin représenté par l’arbre commençant en racine :

Le programme principal est le suivant :

void main () {
 PNoeud racine = 0; // premier noeud de Arbre

 initialiserEcran (40, 40);
 parcours (racine, 10, 10, 2);
 afficherEcran () ;
 sauverEcran ("GrdEcran.res");
 detruireEcran ();
}

et le dessin :

 *
 *
 *
 *
 **
* *
 *
 *
 *
 *

 *

Le dessin est très simple pour faciliter les explications. On peut aussi tracer une
signature, des caractères chinois ou la Loire et ses affluents.

04Chap_03 Page 191 Samedi, 17. janvier 2004 10:37 10

192 3 • Les arbres

Exercice 22 - Références croisées (arbre ordonné)

On veut déterminer les références croisées d’un texte (ou d’un programme par
exemple). Ceci consiste à répertorier tous les mots du texte, à les classer par ordre
alphabétique, et à imprimer une table précisant pour chaque mot, les numéros des
lignes où on a rencontré le mot. Pour cela, on constitue un arbre ordonné de Nœud,
chaque nœud contenant un mot et la liste des numéros de ligne où ce mot a été trouvé.

Les structures de données utilisées sont les suivantes (on utilise le module liste.h
voir § 2.3.8.a, page 49) :

// les objets Elt (liste de numéros de lignes)

typedef struct {
 int numLigne;
} Elt;

// les objets Mot

typedef char Chaine [31]; // 30 + 0 de fin

// un mot et sa liste de lignes
typedef struct {
 Chaine mot;
 Liste li;
} Mot;

La Figure 112 indique que petit a été trouvé à la ligne 1 et à la ligne 2.

• Écrire une fonction void traiterNd (Mot* pmot) ; qui écrit le mot se trouvant dans
pmot suivi des numéros des lignes où ce mot a été rencontré. (Écrire 10 numéros par
ligne).

/

/

petit 21

Figure 112 Un nœud de l'arbre contenant une liste.

04Chap_03 Page 192 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 193
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

• Écrire une fonction void rechercherLignes (Arbre* arbre, char* mot) ; qui
recherche le mot mot de l’arbre binaire ordonné et écrit les numéros des lignes où ce
mot a été trouvé.

• Écrire une fonction void insererMot (Arbre* arbre, Chaine mot, int nl) ; qui
insère le mot mot dans l’arbre ordonné arbre. nl contient le numéro de ligne où on a
trouvé mot.

• Écrire le programme « références croisées » qui à partir d’un fichier d’entrée
constitue un fichier de sortie des références croisées de ce fichier. Le programme
analyse les caractères et ne retient que ceux pouvant constituer des mots qu’il insère
dans l’arbre ordonné. Les lignes lues sont réécrites dans le fichier de sortie, précé-
dées de leur numéro de ligne pour vérification des références croisées. Faire le
dessin de l’arbre ordonné.

• Modifier le programme d’insertion pour que l’arbre soit équilibré. En faire le dessin.

Exemple de résultats :

 1 le petit chat
 2 du petit garcon
 3 boit
 4 du lait
 5 dans sa gamelle

Références croisées
 boit : 3
 chat : 1
 dans : 5
 du : 2 4
 gamelle : 5
 garcon : 2
 lait : 4
 le : 1
 petit : 1 2
 sa : 5

Arbre ordonné :

 |
 |
 __le:1 __________
 | |
 | |
 ____chat:1 ___________ petit:1 2 _____
 | | |
 | | |
boit:3 ____du:2 4 ______________ sa:5
 | |
 | |
 dans:5 _____garcon:2 ______
 | |
 | |

 gamelle:5 lait:4

04Chap_03 Page 193 Samedi, 17. janvier 2004 10:37 10

194 3 • Les arbres

Arbre équilibré :

 |
 |
 ___________du:2 4 ________________________________
 | |
 | |
 ____chat:1 _____ _____________le:1 _______
 | | | |
 | | | |
boit:3 dans:5 ______garcon:2 _____ petit:1 2 ___
 | | |
 | | |
 gamelle:5 lait:4 sa:5

Exercice 23 - Arbre de questions

Soit un arbre binaire de questions contenant pour chaque nœud :

• un pointeur vers le texte correspondant à la question à poser,

• un pointeur sur le sous-arbre gauche des questions,

• un pointeur sur le sous-arbre droit des questions.

Les questions sont booléennes : on peut répondre par oui ou par non. La racine de
l’arbre de la Figure 113 correspond à la question « Est-ce un homme ? ». Le schéma
ne mentionne qu’un mot, il devrait en fait contenir toute la question. Le sous-arbre
gauche correspond aux questions à poser si la réponse est oui, le sous-arbre droit
celles à poser si la réponse est non.

homme

français

Dupont Smith

animal

vertébré

mammifère

tigre oiseau

insecte

mouche

Figure 113 Arbre de questions.

04Chap_03 Page 194 Samedi, 17. janvier 2004 10:37 10

3.5 • Arbres n-aires ordonnés équilibrés : les b-arbres 195
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

• Écrire la fonction void poserQuestions (Arbre* arbre) ; qui permet de
poser les questions d’une branche de l’arbre en fonction des réponses (O ou N) de
l’utilisateur. Exemple :

Est-ce un homme ? O
Est-ce un français ? N
Est-ce Smith ? O
Fin des questions : vous avez trouvé

Est-ce un homme ? N
Est-ce un animal ? N
Fin des questions : je donne ma langue au chat

• Écrire une fonction qui liste les questions de l’arbre de manière indentée. Exemple :

Arbre des questions

Est-ce un homme
 Est-ce un francais
 Est-ce Dupont
 Est-ce Smith
 Est-ce un animal
 Est-ce un vertébré
 Est-ce un mammifère
 Est-ce un tigre
 Est-ce un oiseau
 Est-ce un insecte
 Est-ce une mouche

• Écrire la fonction void insererQuestion (Arbre* arbre) ; qui permet
d’insérer une question à réponse booléenne dans l’arbre. La nouvelle question est
insérée au niveau d’une feuille après avoir répondu aux questions qui mènent à cette
feuille.

Exemple :
Insertion d'une question

Est-ce un homme (O/N) ? n
Est-ce un animal (O/N) ? n
Question à insérer ? : Est-ce un objet

• Écrire la fonction void sauverQuestions (Arbre* arbre, FILE* fs);
qui enregistre l’arbre dans le fichier fs en faisant un parcours préfixé de l’arbre, les
sous-arbres nuls étant notés "*".

04Chap_03 Page 195 Samedi, 17. janvier 2004 10:37 10

196 3 • Les arbres

• Écrire la fonction void chargerQuestions (Arbre* arbre, FILE* fe);
qui crée l’arbre à partir du fichier fe créé par sauverQuestions().
• Écrire le programme principal correspondant au menu suivant :

ARBRE DE QUESTIONS

 0 - Fin
 1 - Insérer une nouvelle question
 2 - Lister l'arbre des questions
 3 - Poser les questions
 4 - Sauver l'arbre des questions dans un fichier
 5 - Charger l'arbre des questions à partir d'un fichier

3.6 RÉSUMÉ

Les arbres sont des structures de données très importantes en informatique permettant
de résoudre certains problèmes de manière concise et élégante grâce aux techniques de
la récursivité qui se justifie pleinement sur ces structures. Les arbres n-aires ont une
structure imposée par l’application elle-même (exemple : l’arbre des continents et des
pays de la Terre). Si le nombre de sous-composants (sous-arbres) est variable, il faut
convertir l’arbre n-aire en un arbre binaire, tout en répondant à des questions de l’arbre
n-aire.

S’il y a un critère d’ordre, on peut créer un arbre ordonné en insérant les clés les
plus petites à gauche, et les plus grandes à droite. Cependant certaines branches
risquent dans certaines configurations de croître démesurément. Les arbres ordonnés
équilibrés évitent cet inconvénient en réorganisant l’arbre tout en gardant le critère
d’ordre. Si l’arbre est sur mémoire secondaire, il vaut mieux éviter les accès disques
qui sont relativement lents et regrouper plusieurs clés dans un même nœud. On
retrouve un arbre n-aire ordonné appelé B-arbre. La recherche de la clé dans l’arbre
ordonné permet de retrouver les informations attachées à la clé qui sont spécifiques
de chaque application.

04Chap_03 Page 196 Samedi, 17. janvier 2004 10:37 10

C

hapitre

4

Les tables

4.1 CAS GÉNÉRAL

4.1.1 Définition

Une table est une structure de données telle que l’accès à un élément est déterminé
à partir de sa clé. La clé permet d’identifier un élément de manière unique ; la clé
(un entier ou une chaîne alphanumérique) est dite discriminante. Dans la suite de
ce chapitre, on n’envisage pas les cas où une même clé peut correspondre à
plusieurs éléments. Connaissant la clé, on peut retrouver l’élément et ses caracté-
ristiques. L’allocation d’espace pour une table est souvent contiguë. Il faut
réserver l’espace mémoire en début de traitement (en mémoire centrale ou sur
mémoire secondaire).

Figure 114

Une table en mémoire centrale ou secondaire (fichier).

Clé Infos

0

1

2

Dupond

3

NMax -1

05Chap_04 Page 197 Samedi, 17. janvier 2004 10:38 10

198 4

•

Les tables

La partie Infos contient les informations spécifiques de l’application pour une
clé donnée. Ainsi, pour

Dupond

, la partie Infos peut contenir (Michel, rue des
mimosas par exemple). Sur mémoire secondaire, on peut aussi constituer une table
d’index en mettant dans la partie Infos, un numéro d’enregistrement (25 par
exemple) contenant les données qui sont elles mémorisées dans un autre fichier en
accès direct. On a un fichier d’index et un fichier de données (voir Figure 115). Le
fichier d’index peut être amené tout ou en partie en mémoire centrale, ce qui accé-
lère le traitement. Sur la Figure 115, on a créé une seconde table d’index basée sur
le numéro de téléphone.

Figure 115

Deux tables d’index pour un fichier de personnes.

4.1.2 Exemples d’utilisation de tables

4.1.2.a Gestion d’articles

Connaissant le numéro d’un article (HV32 par exemple), on peut retrouver la quan-
tité en stock (200) et le prix unitaire (50.00) par consultation de la table de la
Figure 116. (clé : Numéro ; Infos : QT et PU).

Fichier d’index sur Nom

Nom Numéro

2 Dupont 25

Fichier d’index sur Téléphone

Téléphone Numéro

5 0234872222 25

Fichier de données

Nom Prénom Adresse Téléphone

25 Dupont Michel rue des mimosas 0234872222

05Chap_04 Page 198 Samedi, 17. janvier 2004 10:38 10

4.1 •

Cas général

199

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Figure 116

Une table d’articles.

4.1.2.b Table d’étiquettes dans un compilateur

Un compilateur se constitue une table à partir des différents identificateurs déclarés
qu’il rencontre lors de la compilation d’un programme. Lors de la référence à un iden-
tificateur, le compilateur doit retrouver les attributs de cet identificateur. Le nom de
l’identificateur sert de clé ; à partir de cette clé, on peut retrouver : son type, son adresse
mémoire par rapport au début des données, etc. (clé : Nom ; Infos : Type, Adresse, etc.).
Sur la Figure 117, la variable A est de type entier (1), et a pour adresse 25 (25

e

 octet) par
rapport au début des données du programme. Il y a 2 phases :

• rangement des identificateurs lors de leur déclaration,

• recherche de leurs caractéristiques lors des références.

Figure 117

Une table d’un compilateur.

4.1.2.c Dictionnaire

Connaissant un mot français, on peut retrouver son équivalent anglais par consulta-
tion d’une table. (clé : mot français ; Infos : mot anglais).

4.1.2.d Remarques

Un vecteur (ou un tableau) est un cas particulier de table où la clé n’est pas mémo-
risée car les clés sont contiguës de 0 à n-1, n étant le nombre d’éléments dans la table.

Numéro QT PU

0

1

2

3

HV32 200 50.00

4

5

6

Nom Type Adresse

0

A 1 25

1

2

C 2 10

3

4

Fin 3 53

5

6

05Chap_04 Page 199 Samedi, 17. janvier 2004 10:38 10

200 4

•

Les tables

4.1.3 Création, initialisation de tables

En mémoire centrale, la table peut se déclarer comme indiqué ci-dessous de façon à
être la plus générique possible. Un objet de la table est constitué de la clé et des
informations concernant cette clé. Le type Table mémorise la longueur maximum
nMax de la table, le nombre n d’éléments dans la table et un pointeur vers le début
de la table proprement dite allouée dynamiquement lors de l’initialisation de la
table.

typedef void Objet;

typedef struct {
 int nMax; // nombre max. d'éléments dans la table
 int n; // nombre réel d'éléments dans la table
 Objet** element; // un tableau de pointeur vers les objets
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);

} Table;

Figure 118

Le type Table (les pointeurs des objets sont consécutifs).

La fonction

creerTable()

 effectue l’allocation dynamique de la table et de la
partie contiguë de la table. nMax indique le nombre maximum d’éléments dans la
table. La fonction

toString()

 fournit une chaîne de caractères correspondant à
l’objet de la table. La fonction

comparer()

 compare deux objets et fournit une
valeur <0, =0 ou >0 suivant que le premier objet est <, = ou > au deuxième. Voir
pointeurs de fonctions, § 1.5, page 33.

Table*

creerTable

 (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*)) {

 Table* table = new Table();
 table->nMax = nMax;
 table->n = 0;
 table->element = (Objet**) malloc (sizeof(Objet*) * nMax);
 table->toString = toString;
 table->comparer = comparer;
 return table;
}

0

1

2

/3

/4

nMax n element objet 0

objet 2

type Table

5 3

objet 1

05Chap_04 Page 200 Samedi, 17. janvier 2004 10:38 10

4.1 •

Cas général

201

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

// par défaut, les objets de la table sont des chaînes de caractères
Table*

creerTable

 (int nMax) {
 return creerTable (nMax, toChar, comparerCar);voir § 4.6.1.a, page 206

}

La fonction

detruireTable()

 désalloue la table allouée par

 creerTable()

.

void

detruireTable

 (Table* table) {
 free (table->element);
 free (table);
}

La fonction

insererDsTable()

 insère l’objet pointé par nouveau en fin de la table.
L’objet nouveau est créé et rempli avant l’appel de cette fonction.

// insérer nouveau dans la table
booleen

insererDsTable

 (Table* table, Objet* nouveau) {
 if (table->n < table->nMax) {
 table->element [table->n++] = nouveau;
 return vrai;
 } else {
 return faux;
 }
}

La fonction

lgTable()

 fournit le nombre d’éléments dans la table.

// nombre d'éléments dans la table
int

lgTable

 (Table* table) {
 return table->n;
}

La fonction

fournirElement()

 fournit un pointeur sur le nième objet de la table.

// fournir un pointeur sur le nième élément de la table
Objet*

fournirElement

 (Table* table, int n) {
 if ((n>=0) && (n<table->n)) {
 return table->element [n];
 } else {
 return NULL;
 }
}

4.1.4 Accès séquentiel

À partir de la clé, il faut retrouver les caractéristiques de l’objet ayant cette clé. La
méthode la plus simple consiste à chercher séquentiellement dans la table,

tant
qu’on n’a pas atteint la fin de la table et tant qu’on n’a pas trouvé.

4.1.4.a Accès séquentiel standard

La fonction

accesSequentiel()

 utilise un booléen

trouve

 pour indiquer s’il y a égalité
entre les clés de ce qu’on cherche

objetCherche

, et de ce qu’il y a à la ième entrée de
la table. La fonction pourrait être écrite différemment ; le codage privilégie la clarté

05Chap_04 Page 201 Samedi, 17. janvier 2004 10:38 10

202 4

•

Les tables

de l’algorithme plutôt que la concision. Si l’objet existe, la fonction fournit un poin-
teur sur l’objet correspondant dans la table, sinon elle retourne NULL. La fonction

comparer()

 fournit 0 si les deux clés comparées sont égales.

// fournir un pointeur sur objetCherche,
// ou NULL si l'objet est absent
Objet*

accesSequentiel

 (Table* table, Objet* objetCherche) {
 int i = 0;
 booleen trouve = faux;

 while ((i < table->n) && !trouve) {
 trouve = table->

comparer

 (objetCherche, table->element[i]) == 0;
 if (!trouve) i++;
 }
 return trouve ? table->element[i] : NULL;
}

4.1.4.b Accès séquentiel avec sentinelle

On recopie (le pointeur de) l’objet cherché dans l’élément n de la table (la première
entrée libre de la table). Il est alors inutile de tester si i < table->n dans la boucle
puisqu’on est sûr de trouver l’élément dans la table. Si on ne le retrouve pas avant
l’entrée n, c’est que l’élément n’est pas dans la table. Les éléments sont numérotés
de 0 à n-1. Une place doit être gardée libre en fin du tableau lors de l’insertion des
éléments. On peut aussi dans ce cas allouer nMax+1 éléments lors du

malloc()

 de

creerTable()

.

// méthode de la sentinelle : fournir un pointeur sur objetCherche,
// ou NULL si l'objet est absent
Objet*

accesSentinelle

 (Table* table, Objet* objetCherche) {
 int i = 0;
 booleen trouve = faux;

 table->element [table->n] = objetCherche; // il doit rester une place
 while (!trouve) {
 trouve = table->

comparer

 (objetCherche, table->element[i]) == 0;
 if (!trouve) i++;
 }
 return i < table->n ? table->element[i] : NULL;
}

4.1.4.c Évaluation de l’accès séquentiel

n

 étant le nombre d’éléments dans la table, il faut en moyenne

(n+1)/2

 accès à la
table pour retrouver un élément de la table.

n

 accès sont nécessaires si l’élément
n’est pas dans la table (élément inconnu).

Justification
Pour accéder au1

er

 élément : 1 accès
Pour accéder au 2

e

 élément : 2 accès
Pour accéder au n

e

 élément : n accès

Pour accéder une fois aux n éléments : 1 + 2 ...+ n accès soit : n(n+1)/2

05Chap_04 Page 202 Samedi, 17. janvier 2004 10:38 10

4.1 •

Cas général

203

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

donc :

(n+1) / 2

 accès à la table en moyenne pour retrouver

un

 élément de la table
(si les probabilités d’accès aux n éléments sont équiréparties).

On peut placer en tête de la table les éléments qui sont recherchés le plus souvent. Il
suffit de définir un compteur et de faire progresser en tête de la table les éléments le
plus souvent référencés. La recherche séquentielle dans une table en mémoire centrale
est suffisante si on a un nombre d’éléments inférieur à une trentaine d’éléments. Au-
delà, l’accès à un élément peut devenir long. Si la table est ordonnée, les recherches
infructueuses peuvent s’arrêter avant la fin de la consultation de la table.

4.1.5 Accès dichotomique (recherche binaire)

4.1.5.a Principe

Pour appliquer cette méthode de recherche dichotomique, la table doit être

ordonnée

suivant les clés. La recherche s’apparente à une recherche dans un dictionnaire qu’on
ouvrirait en son milieu. Si le mot cherché est sur une des deux pages ouvertes, on a
trouvé, sinon si le mot est inférieur à celui du haut des pages présentées, il faut cher-
cher dans la première moitié du dictionnaire, sinon dans la seconde moitié. On recom-
mence la division en deux parties égales avec la moitié choisie.

Au début, le premier élément de la table est nommé gauche, le dernier droite. On
calcule l’élément du milieu = (gauche + droite)/2. Si milieu contient l’élément
cherché, on a trouvé, sinon, si l’élément cherché est inférieur à celui de milieu, il
faut recommencer la recherche avec la sous-table gauche:milieu-1 ; sinon l’élément
cherché est supérieur à celui du milieu, il faut chercher dans milieu+1:droite. Cette
fonction peut facilement s’écrire de manière récursive.

Si on recherche

Duf

 dans la table de la Figure 119, l’élément du milieu est en 7.

Duf

 est inférieur à

Jea

, il faut recommencer la recherche dans la sous-table 0:6.
L’élément du milieu de la sous-table est alors 3 qui contient l’élément cherché et
donc ses caractéristiques.

Figure 119

Recherche dichotomique dans une table.

Clé Infos

Gauche 0

Bou Bouchard

1

Cab Cabon

2

Cos Cosson
3 Duf Dufour
4 Dup Dupond
5 Duv Duval
6 Gau Gautier

Milieu 7 Jea Jean
8 Leg Legoff
9 Pet Petit

10 Rab Raboutin
11 Rob Robert
12 Tan Tanguy
13 Xav Xavier

Droite 14 Zaz Zazou

05Chap_04 Page 203 Samedi, 17. janvier 2004 10:38 10

204 4 • Les tables

Évaluations
Il faut au maximum log2n accès à la table pour trouver un élément dans une table

de n éléments. Si n = 16 = 24, il faut log216, soit 4 accès maximum ; si n = 1024 = 210,
il faut log21024, soit 10 accès maximum. D’une manière générale, si n=2p est la
longueur de la table, il faut au maximum p accès à la table pour retrouver un élément.

La consultation dichotomique est conseillée si les phases de construction et de
consultation de la table sont séparées :

• 1re phase : construction de la table par insertion et tri,
• 2e phase : consultation de la table par accès dichotomique.

Si insertion et recherche dans la table ne se font pas en deux phases distinctes, la
méthode perd de l’intérêt car il faut retrier après chaque insertion.

4.1.5.b Dichotomie : version récursive

// dichotomie récursive
static Objet* dichotomie (Table* table, Objet* objetCherche,

int gauche, int droite) {
 Objet* resu;
 if (gauche <= droite) {
 int milieu = (gauche+droite) / 2;
 //printf ("%d %d %d\n", gauche, milieu, droite);
 int c = table->comparer (objetCherche, table->element[milieu]);
 if (c == 0) {
 resu = table->element [milieu];
 } else if (c < 0) {
 resu = dichotomie (table, objetCherche, gauche, milieu-1);
 } else {
 resu = dichotomie (table, objetCherche, milieu+1, droite);
 }
 } else {
 resu = NULL;
 }
 return resu;
}

// appel de la fonction récursive
Objet* dichotomie (Table* table, Objet* objetCherche) {
 return dichotomie (table, objetCherche, 0, table->n-1);
}

4.1.5.c Dichotomie : version itérative

L’algorithme récursif ci-dessus n’exécute qu’un seul appel récursif avec la première
ou la seconde sous-table. On n’a jamais besoin de revenir en arrière pour explorer
l’autre sous-table. La récursivité peut être remplacée par une itération.

// fournir un pointeur sur objetCherche
// ou NULL si l'objet est absent
Objet* dichotomieIter (Table* table, Objet* objetCherche) {
 Objet* resu = NULL; // défaut
 int gauche = 0;
 int droite = table->n-1;
 booleen trouve = faux;

05Chap_04 Page 204 Samedi, 17. janvier 2004 10:38 10

4.1 • Cas général 205
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 while ((gauche <= droite) && !trouve) {
 int milieu = (gauche+droite) / 2;
 int c = table->comparer (objetCherche, table->element[milieu]);
 if (c == 0) {
 resu = table->element [milieu];
 trouve = vrai;
 } else if (c < 0) {
 droite = milieu-1;
 } else {
 gauche = milieu+1;
 }
 }
 return resu;
}

4.1.5.d Tri de la table

La méthode de tri bulle permet de trier la table en déplaçant seulement les pointeurs
des objets de la table (voir Figure 118). La fonction comparer() (définie lors de
creerTable()) permet de trier les objets quelle que soit l’application. Le tri bulle
range au ième tour, en position i, le plus petit des restants non triés de i+1 à n.

// permuter les pointeurs des éléments n1 et n2
static void permuter (Table* table, int n1, int n2) {
 Objet* temp = table->element[n1];
 table->element[n1] = table->element[n2];
 table->element[n2] = temp;
}

// tri bulle
void trierTable (Table* table) {
 int n = lgTable(table);
 for (int i=0; i<n-1; i++) {
 for (int j=n-1; j>i; j--) {
 Objet* objet1 = fournirElement (table, j-1);
 Objet* objet2 = fournirElement (table, j);
 if (table->comparer (objet1, objet2) > 0) {
 permuter (table, j-1, j);
 }
 }
 }
}

4.1.5.e Listage de la table

On peut lister le contenu de la table pour vérification en utilisant la fonction
toString() définie lors de creerTable().

void listerTable (Table* table) {
 for (int i=0; i<lgTable(table); i++) {
 Objet* objet = fournirElement (table, i); // ième élément
 printf ("%2d %s\n", i, table->toString (objet));
 }
}

05Chap_04 Page 205 Samedi, 17. janvier 2004 10:38 10

206 4 • Les tables

4.1.6 Le module des tables

4.1.6.a Le type Table

Le fichier d’en-tête table.h du module des tables est le suivant :

/* table.h gestion des tables */

#ifndef TABLE_H
#define TABLE_H

typedef int booleen;
#define faux 0
#define vrai 1
typedef void Objet;

typedef struct {
 int nMax; // nombre max. d'éléments dans la table
 int n; // nombre réel d'éléments dans la table
 Objet** element; // un tableau de pointeurs vers les objets
 char* (*toString) (Objet*); voir § 1.5, page 33
 int (*comparer) (Objet*, Objet*);
} Table;

Table* creerTable (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*));

Table* creerTable (int nMax);
void detruireTable (Table* table);

booleen insererDsTable (Table* table, Objet* nouveau);
int lgTable (Table* table);
Objet* fournirElement (Table* table, int n);

Objet* accesSequentiel (Table* table, Objet* objetCherche);
Objet* accesSentinelle (Table* table, Objet* objetCherche);
Objet* dichotomie (Table* table, Objet* objetCherche);
Objet* dichotomieIter (Table* table, Objet* objetCherche);

void trierTable (Table* table);
void listerTable (Table* table);

#endif

Le corps du module table.cpp est donné ci-dessous. Il reprend les fonctions vues
précédemment.

// table.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "table.h"

// fournir la chaîne de caractères de objet
// fonction par défaut
static char* toChar (Objet* objet) {
 return (char*) objet;
}

05Chap_04 Page 206 Samedi, 17. janvier 2004 10:38 10

4.1 • Cas général 207
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// comparer deux chaînes de caractères
// fournit <0 si ch1 < ch2; 0 si ch1=ch2; >0 sinon
// fonction de comparaison par défaut
static int comparerCar (Objet* objet1, Objet* objet2) {
 return strcmp ((char*)objet1, (char*)objet2);
}

plus les fonctions vues précédemment : creerTable(), etc., listerTable().

4.1.6.b Menu de test des tables

Le programme pptable suivant est un programme de test du module des tables.

/* pptable.cpp programme principal de test des tables */

#include <stdio.h>
#include <stdlib.h>
#include "table.h"
#include "mdtypes.h" // type Personne voir § 2.4.1, page 51

int menu () {
 printf ("\n\nLES TABLES\n\n");
 printf ("0 - Fin du programme\n");
 printf ("\n");
 printf ("1 - Création à partir d'un fichier\n");
 printf ("\n");
 printf ("2 - Accès séquentiel à un élément\n");
 printf ("3 - Accès séquentiel avec sentinelle\n");
 printf ("4 - Accès dichotomique récursif\n");
 printf ("5 - Accès dichotomique itératif\n");
 printf ("6 - Accès au ième élément\n");
 printf ("7 - Listage de la table\n");
 printf ("8 - Tri de la table\n");
 printf ("\n");
 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 printf ("\n");

 return cod;
}

// lire un mot ou un nom dans le fichier fe; le ranger dans chaine
void lireMot (FILE* fe, char* chaine) {
 char c;

 fscanf (fe, "%c", &c);
 // passer les blancs avant le mot
 while(((c==' ') || (c=='\n')) && !feof(fe)) {
 fscanf (fe, "%c", &c);
 }

 char* pCh = chaine;
 // enregistrer le mot dans chaine jusqu'à trouver un séparateur
 while ((c!=' ') && (c!='\n') && !feof (fe)) {
 *pCh++ = c;
 fscanf (fe, "%c", &c);
 }
 *pCh = 0;
 //printf ("lireMot : %s \n", chaine);
}

05Chap_04 Page 207 Samedi, 17. janvier 2004 10:38 10

208 4 • Les tables

void ecrirePersonne (Personne* p) { voir § 2.4.1, page 51
 if (p!=NULL) printf ("personne : %s\n", toStringPersonne (p));
}

#if 0 // test n°1
void main () {
 #define NMAX 20

 Personne* p1 = creerPersonne ("aaaa", "aa");
 Personne* p2 = creerPersonne ("cccc", "cc");
 Personne* p3 = creerPersonne ("bbbb", "bb");
 Personne* p4 = creerPersonne ("eeee", "ee");
 Personne* p5 = creerPersonne ("dddd", "dd");

 Table* table = creerTable (NMAX, toStringPersonne, comparerPersonne);
 insererDsTable (table, p1);
 insererDsTable (table, p2);
 insererDsTable (table, p3);
 insererDsTable (table, p4);
 insererDsTable (table, p5);

 printf ("listerTable\n");
 listerTable (table);

 // la personne cherchée de clé "cccc"
 Personne* cherche = creerPersonne ("cccc", "?");
 Personne* trouve;
 trouve = (Personne*) accesSequentiel (table, cherche);
 ecrirePersonne (trouve);

 trouve = (Personne*) accesSentinelle (table, cherche);
 ecrirePersonne (trouve);

 trierTable (table);
 //printf ("listerTable triée\n");
 //listerTable (table);
 trouve = (Personne*) dichotomieRec (table, cherche);
 ecrirePersonne (trouve);

 trouve = (Personne*) dichotomieIter (table, cherche);
 ecrirePersonne (trouve);
}

#else // test n°2

// lire le nom (la clé) d'une personne
Personne* lireNom (Table* table) {
 Personne* cherche = new Personne();
 printf ("Clé (nom) de la personne ? ");
 scanf ("%s", cherche->nom); getchar();
 return cherche;
}

void main () {
 #define NMAX 20
 Table* table = creerTable (NMAX, toStringPersonne, comparerPersonne);
 Personne* trouve = NULL;
 int choix;

 booleen fini = faux;

05Chap_04 Page 208 Samedi, 17. janvier 2004 10:38 10

4.1 • Cas général 209
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 while (!fini) {

 switch (choix = menu()) {

 case 0 :
 fini = vrai;
 break;

 case 1 : { // On pourrait lire le nom du fichier
 FILE* fe = fopen ("personnes.dat", "r");
 if (fe==NULL) {
 perror ("Ouverture");
 } else {
 while (!feof (fe)) {
 Personne* nouveau = new Personne();
 lireMot (fe, nouveau->nom);
 lireMot (fe, nouveau->prenom);
 booleen resu = insererDsTable (table, nouveau);
 if (!resu) {
 printf ("Débordement table\n");
 }
 }
 fclose (fe);
 }
 } break;

 case 2 : {
 printf ("Recherche séquentielle\n");
 Personne* cherche = lireNom (table);
 trouve = (Personne*) accesSequentiel (table, cherche);
 } break;

 case 3 : {
 printf ("Recherche séquentielle (sentinelle)\n");
 Personne* cherche = lireNom (table);
 trouve = (Personne*) accesSentinelle (table, cherche);
 } break;

 case 4 : {
 printf ("Recherche dichotomique récursive\n");
 Personne* cherche = lireNom (table);
 trouve = (Personne*) dichotomie (table, cherche);
 } break;

 case 5 : {
 printf ("Recherche dichotomique itérative\n");
 Personne* cherche = lireNom (table);
 trouve = (Personne*) dichotomieIter (table, cherche);
 } break;

 case 6 : {
 printf ("Numéro de l'élément recherché ? ");
 int i; scanf ("%d", &i); getchar();
 trouve = (Personne*) fournirElement (table, i);
 if (trouve==NULL) {
 printf ("Element numéro:%d inconnu\n", i);
 } else {
 ecrirePersonne (trouve);
 }
 } break;

05Chap_04 Page 209 Samedi, 17. janvier 2004 10:38 10

210 4 • Les tables

 case 7 :
 listerTable (table);
 break;

 case 8 :
 trierTable (table) ;
 break ;
 } // switch

 if ((choix >= 2) && (choix <= 5)) {
 if (trouve == NULL) {
 printf ("personne inconnue\n");
 } else {
 ecrirePersonne (trouve);
 }
 }
 if (!fini) {
 printf ("\nTaper Return pour continuer\n");
 getchar();
 }
 } // while

 detruireTable (table);
}
#endif

4.1.7 Exemples d’application des tables

4.1.7.a Table de noms de personnes

Le fichier de données personnes.dat suivant est utilisé à titre d’exemple dans le
choix 1 du menu précédent. Ce fichier doit être trié si on veut tester la recherche
dichotomique. Pour le premier élément de la table, Bouchard est la clé ; celle-ci doit
être unique (nom de login par exemple).

Bouchard Jacques
Cabon Amélie
Cosson Sébastien
Dufour Georges
Dupond Marie
Duval Matisse
Gautier Renée
Jean Robert
Legoff Yann
Petit Albert
Raboutin Corentin
Robert Michel
Tanguy Monique
Xavier Roland
Zazou Chantal

Exemples de résultats :

LES TABLES

0 - Fin du programme
1 - Création à partir d’un fichier

05Chap_04 Page 210 Samedi, 17. janvier 2004 10:38 10

4.1 • Cas général 211
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

2 - Accès séquentiel à un élément

3 - Accès séquentiel avec sentinelle

4 - Accès dichotomique récursif

5 - Accès dichotomique itératif

6 - Accès au ième élément

7 - Listage de la table

8 - Tri de la table

Votre choix ? 4

Recherche dichotomique récursive

Clé (nom) de la personne ? Gautier

personne : Gautier Renée

4.1.7.b Table de noms de polynômes

Dans l’application sur les polynômes utilisant les listes (voir § 2.4.3.c, page 58), le
programme principal de test ne gère qu’un seul polynôme pointé par po. Pour
donner plus de généralité à ce programme, il faudrait créer une table contenant, pour
chaque polynôme, le nom choisi par l’utilisateur, et la tête de la liste des monômes.
Il faut déclarer un objet de type NomPoly, structure contenant le nom du polynôme
et sa tête de liste.

Le programme de test de l’accès à la table peut s’écrire comme suit. Il faudrait
développer un menu, ou mieux une interface graphique. Ce programme illustre
bien la nécessité de découper une application en modules réutilisables. Le
programme utilise le module des polynômes (creerMonome(), creerPolynome(),
insererEnOrdre(), listerPolynome(), voir § 2.4.3.b, page 57), et le module des
tables (type Table, creerTable(), insererDsTable(), dichotomie()).

Figure 120 Table des noms de polynômes (P1(x) = 2.5 x3 + 0.5 x2)
(sans les détails de l’implémentation).

La figure 120 indique les détails de l’implémentation de la table. L’utilisateur du
module n’a pas besoin d’avoir conscience de tous ses détails. Il utilise seulement les
fonctions de gestion des tables ou des listes.

nom po

9

0 P1

P2

... ...

2.5 3 0.5 2 /

05Chap_04 Page 211 Samedi, 17. janvier 2004 10:38 10

212 4 • Les tables

// tablepolynome.cpp

#include <stdio.h>
#include <string.h>
#include "polynome.h" voir § 2.4.3.a, page 56
#include "table.h" voir § 4.1.6.a, page 206

// chaque élément de la table repère un objet de type NomPoly
typedef struct {
 char nom[10];
 Polynome* po;
} NomPoly; // nom du polynôme

NomPoly* creerNomPoly (char* nom) {
 NomPoly* nomPoly = new NomPoly();
 strcpy (nomPoly->nom, nom);
 nomPoly->po = creerPolynome(); // liste ordonnée
 return nomPoly;
}

// écriture et comparaison des noms de polynômes (table)
char* toStringPoly (Objet* objet) {
 NomPoly* nomPoly = (NomPoly*) objet;
 return nomPoly->nom;
}

int comparerPoly (Objet* objet1, Objet* objet2) {
 NomPoly* nomPoly1 = (NomPoly*) objet1;
 NomPoly* nomPoly2 = (NomPoly*) objet2;
 return strcmp (nomPoly1->nom, nomPoly2->nom);
}

4 3

0

1

2

3

nMax n element

p1

type Table

p2

type NomPoly

2.5 3 0.5 2

 nom

coefficient exposant

type Monometype Liste

po

liste
des monômes de p2

Figure 121 Détails de l’implémentation de la table.

05Chap_04 Page 212 Samedi, 17. janvier 2004 10:38 10

4.2 • Variantes des tables 213
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// ajouter un nom de polynôme dans la table
void creerEntree (Table* table, char* nom) {
 NomPoly* nomPoly = creerNomPoly(nom);
 int resu = insererDsTable (table, nomPoly);
 if (!resu) printf ("Débordement de table\n");
}

void main () {
 #define NMAX 10
 Table* table = creerTable (NMAX, toStringPoly, comparerPoly);

 // insérer des noms de polynômes dans la table des polynômes
 creerEntree (table, "p1");
 creerEntree (table, "p2");
 creerEntree (table, "p3");
 trierTable (table);
 listerTable (table);

 // retrouver dans la table un polynôme à partir de son nom
 NomPoly* objetCherche = new NomPoly();
 strcpy (objetCherche->nom, "p2");
 NomPoly* trouve = (NomPoly*) dichotomie (table, objetCherche);
 if (trouve == NULL) {
 printf ("%s inconnu\n", "p2");
 } else {
 printf ("trouve : %s\n", table->toString (trouve));

 // insérer des monômes au polynôme p2 en ordre décroissant
 Monome* nouveau = creerMonome(3, 3);
 insererEnOrdre (trouve->po, nouveau);
 nouveau = creerMonome(2, 2);
 insererEnOrdre (trouve->po, nouveau);
 nouveau = creerMonome(4, 4);
 insererEnOrdre (trouve->po, nouveau);

 printf ("Polynôme %s : ", "p2");
 listerPolynome (trouve->po); // lister le polynôme de nom p2
 printf ("\n");
 }
}

Exemple de résultats :
 0 p1
 1 p2
 2 p3

trouve : p2
Polynôme p2 : +4.00 x**4 +3.00 x**3 +2.00 x**2

4.2 VARIANTES DES TABLES

4.2.1 Rangement partitionné ou indexé

Si la table est sur disque, on peut fractionner la table en sous-tables de façon à
limiter les accès disque. La première sous-table dite table majeure est amenée en
mémoire centrale lors de l’ouverture du fichier. Les sous-tables sont ordonnées. Si

05Chap_04 Page 213 Samedi, 17. janvier 2004 10:38 10

214 4 • Les tables

chaque sous-table contient 400 éléments (clé + pointeur de sous-table), on peut
accéder à 160 000 éléments avec seulement 2 niveaux de table (voir Figure 122). La
recherche à partir d’une clé demande une recherche dans la table majeure pour iden-
tifier quelle sous-table est concernée par l’élément cherché, une lecture de la sous-
table de disque en mémoire centrale, une recherche dans la sous-table, et un accès
direct au fichier de données. Le nombre de niveaux de sous-tables doit rester faible.
Les recherches dans les sous-tables ordonnées peuvent être dichotomiques. On
retrouve la partie tables d’index et la partie fichier de données. Cette structure
conviendrait par exemple pour un dictionnaire du français de 100 000 mots (et leurs
définitions) où il n’y a ni ajout ni retrait à faire.

Exemple :

Figure 122 Arbre de tables d’index et fichier de données.

Séquentiel indexé
Si on doit faire des ajouts et des retraits, on peut ne remplir que partiellement les
sous-tables de façon à laisser de la place pour les insertions. De toute façon, il faut
prévoir une zone commune de débordement des sous-tables, avec chaînage des
éléments débordant d’une même sous-table. Lorsqu’il y a trop d’éléments en zone
de débordement, on peut réorganiser entièrement les tables d’index.

Une autre méthode, plus souvent utilisée maintenant, consiste à utiliser les tech-
niques des B-Arbres (voir § 3.5, page 182). Les tables d’index constituent un arbre
n-aire qui peut être géré comme un B-Arbre. Lorsqu’une sous-table est pleine, elle
éclate en deux sous-tables. Si une sous-table ne contient plus assez d’éléments, elle
fusionne avec une sous-table voisine. Il n’y a alors pas besoin de zone de déborde-
ment.

Avec cette technique, on peut accéder directement à une clé en utilisant les index
mais on peut également parcourir les éléments séquentiellement.

deux
pépin
zéro

amiral 1
bassin 6
chaud 8
deux 2

entre
fourmi 3
golf
pépin

profit
rapide
sel
zéro

0
1
2
3

amiral
deux
fourmi

4 ...

Fichier de données

05Chap_04 Page 214 Samedi, 17. janvier 2004 10:38 10

4.2 • Variantes des tables 215
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

4.2.2 Adressage calculé

L’évaluation d’une expression arithmétique peut dans certains cas donner directe-
ment le rang dans la table de l’élément cherché. Cela est possible lorsque la clé est
structurée en sous-classes de tailles égales.

Exemple 1 : emploi du temps d’un établissement scolaire
On mémorise l’emploi du temps dans une table (en mémoire centrale ou sur disque)
ce qui permet de faire des interrogations sur un enseignement particulier. Il y a cours
du lundi (jour 1) au vendredi (jour 5). Il y a 8 groupes d’étudiants numérotés : A1,
A2, B1, B2, C1, C2, D1, D2. Il y a 4 plages horaires numérotées : 1 de 8h-10 h, 2 de
10h-12h, 3 de 14h-16h, 4 de 16h-18h. Cet emploi du temps peut être schématisé
comme indiqué sur la Figure 123 où les éléments sont rangés dans l’ordre jour,
groupe, tranche horaire.

Figure 123 Table de l’emploi du temps.

La clé se constitue de la concaténation des numéros de jour, de groupe et de
tranche horaire. Les numéros d’enseignant, de matière enseignée et de salle consti-
tuent la partie informations recherchées.

Exemple de recherche :
Comment retrouver les caractéristiques du cours du groupe A2 du mardi de 14h à
16h ? Si les indices commencent à 0, la clé se constitue de J=1 (2e jour), G=1 (2e

groupe), T=2 (3e tranche horaire). Le rang est donné par l’équation suivante : rang =
J*32 + G*4 + T soit 38. Il suffit d’accéder au 38e élément pour retrouver les carac-
téristiques du cours.

Si la table est en mémoire centrale, on accède à l’entrée 38 du tableau. Cepen-
dant, dans ce cas, on peut également considérer la table comme un tableau à 3
dimensions et accéder à un élément en donnant les indices J, G et T, laissant au

0 1 31 159

Numéro du jour 1 1 1 1 1 1 1 1 1 1 1 1 2

Groupe A
1

A
1

A
1

A
1

A
2

A
2

A
2

A
2

D
2

D
2

D
2

D
2

A
1

Tranche horaire 1 2 3 4 1 2 3 4 1 2 3 4 1

Numéro
 enseignant

Numéro de
matière

Numéro de salle

05Chap_04 Page 215 Samedi, 17. janvier 2004 10:38 10

216 4 • Les tables

compilateur le soin de faire la conversion. Le programme ci-dessous permet de
vérifier les 2 accès possibles. Les valeurs des numéros de jour, de groupe et de
tranche horaire ne sont pas mémorisées dans la structure de type cours car elles
sont implicites du fait de la séquentialité des valeurs (inutile de mémoriser les
indices pour un tableau).

/* emploiDuTemps.cpp tableau en mémoire centrale */

#include <stdio.h>

typedef struct {
 int nens; // numéro d’enseignant
 int nmat; // numéro de matière
 int nsal; // numéro de salle
} Cours;

#define Mardi 1
#define GrpA2 1
#define TrCh3 2

#define MAXJOUR 5 // Nombre max de jours
#define MAXGROU 8 // Nombre max de groupes
#define MAXTRAN 4 // Nombre max de tranches horaires

void main () {
 Cours epl [MAXJOUR][MAXGROU][MAXTRAN];
 char* nomEns[] = {"Dupont", "Duval", "Dufour"};
 char* nomMat[] = {"Maths", "Anglais", "Histoire"};
 char* nomSal[] = {"Amphi", "I115", "M210"};

 // initialisation (partielle) du tableau
 Cours P = {1, 1, 2};
 epl [Mardi][GrpA2][TrCh3] = P;

 // recherche dans le tableau 1ère méthode
 printf ("\n%s ", nomEns [epl [Mardi][GrpA2][TrCh3].nens]);
 printf ("%s ", nomMat [epl [Mardi][GrpA2][TrCh3].nmat]);
 printf ("%s ", nomSal [epl [Mardi][GrpA2][TrCh3].nsal]);

 // recherche dans le tableau 2ième méthode
 Cours* debTab = (Cours*) epl;
 // 1*8*4 + 1*4 + 2 = 38
 printf ("\n%s ", nomEns [debTab[38].nens]);
 printf ("%s ", nomMat [debTab[38].nmat]);
 printf ("%s ", nomSal [debTab[38].nsal]);
}

Exemple 2 : fichier étudiants
Dans un établissement universitaire, il y a 3 départements (1:D1, 2:D2, 3:D3).
Chaque département a deux promotions (1re et 2e année) d’au plus 160 étudiants. Un
étudiant est caractérisé par son numéro de département, sa promotion et son numéro
dans la promotion. Les étudiants pourraient être rangés par département, par promo-
tion et numéro dans la promotion comme l’indique la Figure 124. Cependant, il y a
perte de place (en grisé sur la figure) puisqu’il faut alors réserver 160 places par
promotion, même si le nombre d’étudiants est inférieur. L’accès est rapide, au détri-

05Chap_04 Page 216 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 217
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

ment de l’espace mémoire occupé. Si les nombres d’étudiants sont très variables
d’une promotion à l’autre, cette méthode n’est pas envisageable.

Figure 124 Table des étudiants (fichier en accès direct).

Le rang d’un étudiant connaissant son département D (de 1 à 3), sa promotion P
(de 1 à 2) et son numéro dans la promotion N (de 1 à 160) est rang = (D-1) * 320 +
(P-1) * 160 + N-1. Le premier étudiant a le rang 0.

4.3 ADRESSAGE DISPERSÉ, HACHAGE, HASH-CODING

4.3.1 Définition du hachage

Comme pour l’adressage calculé (voir § 4.2.2), il s’agit d’effectuer un calcul sur la
clé qui doit indiquer la position de l’élément dans la table. Cependant, la fonction de
calcul n’est plus injective ; deux clés différentes peuvent prétendre à la même place
dans la table. Il faut donc arbitrer les conflits et définir une place pour tous les
éléments. Le même calcul permet ensuite de retrouver un élément déjà rangé dans la
table pour obtenir ses caractéristiques. Dans cette méthode, les éléments ne sont pas
ordonnés dans la table.

Sur la Figure 125, à partir de la clé x, on définit une fonction h(x) qui engendre
une valeur représentant le rang (l’indice) de cet indicatif dans la table ou dans le
fichier. Il se peut que pour une autre clé x’, la fonction h(x’) fournisse la même place
que pour h(x). x’ est appelé synonyme de x ; on dit encore qu’il y a collision entre x
et x’. Il faut trouver une autre place pour x’. Ainsi, si h("Dupond") vaut 25,
"Dupont" est rangé à l’entrée 25 dans la table. Suivant la fonction h(x), il se peut que
h("Duval") vaille également 25, d’où le conflit à résoudre.

1 160 1 160 1 160 1 160 1 160 1 160

D1 D2 D3

0

N-1

– la fonction h n’est pas injective

– x est rangé en h(x)
x’ est appelé synonyme de x
x’ est en collision avec x

– il faut trouver une nouvelle place pour x’ :
c’est la résolution des collisions.

x h(x)

x’ h(x’)

Figure 125 Principe du hachage.

05Chap_04 Page 217 Samedi, 17. janvier 2004 10:38 10

218 4 • Les tables

h(x) fournit un rang dans la table compris entre 0 et N-1 pour l’insertion et pour
la recherche de x. h(x) doit produire, à partir des différents x théoriquement possi-
bles, des classes 0, ..., N-1 à peu près égales en nombre ; c’est-à-dire que les classes
h(x) doivent être équiréparties même si les x ne le sont pas. S’il peut y avoir poten-
tiellement C clés différentes, chaque entrée h(x) doit pouvoir en représenter C/N.
Enfin, la fonction doit être rapide à calculer.

Afin de réduire les collisions, la table doit être plus grande que le nombre
d’éléments à enregistrer (environ 2 fois plus). Là aussi, il y a perte de place mémoire
en vue d’accélérer l’accès.

Remarque : pour mieux illustrer les problèmes et leurs solutions sur les
exemples suivants, les tailles des tables sont faibles (une vingtaine voire une
cinquantaine d’entrées au plus). Dans la réalité, la méthode s’applique plutôt
avec des ensembles de taille moyenne (milliers d’éléments) ou grande
(centaines de milliers). Cependant, le principe reste le même.

4.3.2 Exemples de fonction de hachage

On effectue sur la clé des opérations arithmétiques et logiques qui produisent un
nombre place compris entre 0 et N-1 (N : longueur de la table ou du fichier). S’il n’y a
pas de collision (l’entrée place est libre), ce nombre permet de ranger la clé et ses
caractéristiques dans l’entrée place de la table. Le même calcul permet de la retrouver
en place. Quelques exemples de fonctions de hachage sont indiqués ci-dessous.

4.3.2.a Somme des rangs alphabétiques des lettres

h(x) = somme des rangs alphabétiques des lettres de x modulo N.

Exemple : h ("Dupond") ?

La somme des rangs alphabétiques ('a':1, ..., 'z':26) des lettres de Dupond est :
4+21+16+15+14+4 = 74. Si la taille de la table est N = 64, 74 modulo 64 vaut 10,
entrée attribuée à "Dupond" dans la table de 64 éléments.

Avec 10 caractères, la somme vaut au plus 260 pour “zzzzzzzzzz”. On ne peut donc
gérer de grands volumes de données avec cette fonction qui est peu utilisée dans la
pratique mais illustre bien le principe du hachage du point de vue pédagogique.

// somme des rangs alphabétiques des lettres de cle, modulo n
int hash1 (char* cle, int n) {
 int som = 0;
 for (int i=0; i<strlen (cle); i++) {
 if (isalpha (cle[i])) som += toupper (cle[i]) - 'A' +1;
 }
 return som % n;
}

Exemple d’appel : hash1 ("Dupond", 64); fournit 10.

05Chap_04 Page 218 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 219
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

4.3.2.b Addition des représentations binaires

On additionne la représentation binaire des caractères du mot, éventuellement en
neutralisant minuscules et majuscules.

Exemple :
h (“Dupond”) = ‘D’ + ‘u’ + ‘p’ + ‘o’ + ‘n’ + ‘d’ vaut 618. On se ramène dans

l’intervalle 0..N-1 par modulo N : 618 modulo 64 vaut 42 ; h (“Dupond”) = 42.

// somme des codes ascii des lettres de cle, modulo n
int hash2 (char* cle, int n) {
 int som = 0;
 for (int i=0; i<strlen(cle); i++) som += cle[i];
 return som % n;
}

Appel : hash2 ("Dupond", 64); fournit 42

4.3.2.c Méthode de la division

Cette méthode est la plus utilisée. Elle consiste à diviser la clé par la longueur N de
la table et à considérer comme entrée, le reste de la division. N ne doit pas être quel-
conque : une division par 1 000 fournirait toujours les 3 derniers chiffres de la clé.
Une division par 2n consisterait à isoler les n derniers éléments binaires de la clé. Si
N est un nombre premier, les différentes clés sont mieux réparties sur les diverses
entrées de 0 à N-1 de la table.

Exemple :
Soit un fichier contenant 500 articles numérotés entre 000 000 000 et 999 999

999. La fonction de hachage h(x) = x modulo 997 (reste de la division par 997)
fournit un h(x) compris entre 0 et 996 : 0 <= h(x) <= 996. Pour la clé 568419452,
l’entrée est 568419452 divisée par 997 qui a pour reste 839.

// méthode de la division
int hash3 (long cle, int n) {
 return cle % n;
}

Appel : hash3 (568419452, 997); fournit 839.

4.3.2.d Changement de base

Soit un fichier de 500 articles et une table de 1 000 entrées. On considère que la clé
est écrite en base 11 ; on la convertit en base 10 et on isole les trois derniers chiffres.
Que vaut h (406327) ?

4 x 115 + 6 x 113 + 3 x 112 + 2 x 11 + 7 = 652582
On isole les 3 derniers chiffres 582 pour avoir un nombre entre 000 et 999. Le

hash-code de h(406327) est 582.

// fonction récursive de conversion en base 10 du nombre n en base 11
long base11 (long n) {
 long q = n / 10; // quotient

05Chap_04 Page 219 Samedi, 17. janvier 2004 10:38 10

220 4 • Les tables

 long r = n % 10; // reste
 if (q == 0) {
 return r;
 } else {
 return base11(q)*11+r;
 }
}

int hash4 (long cle, int n) {
 return base11 (cle) % n;
}

Appel : hash4 (406327, 1000); fournit 582.

4.3.3 Analyse de la répartition des valeurs générées
par les fonctions de hachage

Remarques sur les fonctions de hachage : on peut envisager des opérations très
diverses : extraire du nombre ou de la chaîne de caractères, un certain nombre
d’éléments binaires que l’on concatène pour former un nouveau nombre ; élever la clé
au carré et isoler un certain nombre d’éléments binaires, etc. Il faut seulement veiller à
accéder à toutes les entrées de manière équirépartie. Si la fonction de hachage ne
génère par exemple que des nombres pairs, une entrée sur deux de la table ne sera
jamais sollicitée pour enregistrer une clé. Le nombre de collisions augmentera donc.

Les fonctions de hash-code hash1(), hash2() et une variante de hash1() appelée
hash11() sont testées sur un fichier de 107 noms répartis dans une table de longueur
170 entrées.

La fonction hash1() (somme des rangs alphabétiques des caractères) n’est pas équi-
répartie. La fonction génère plus de valeurs de hash-code entre 50 et 100 sur l’exemple
des 107 noms. Cinq noms ont pour hash-code 72 (Bouchard, Brunel, Etienne, Seznec,
Tsemo). De même cinq noms ont pour hash-code 83. Par contre, aucun nom ne génére
de hash-code entre 0 et 26, et seuls deux noms générent une valeur > 130.

La fonction hash2() (somme des codes ascii des caractères) génère des valeurs
mieux réparties sur l’ensemble des 170 entrées. Il y a au plus, sur l’exemple, 3
prétendants pour une entrée.

0

1

2

3

4

5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169

hash1

05Chap_04 Page 220 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 221
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

La fonction hash11() consiste à faire la somme modulo n des rangs des caractères
alphabétiques et à multiplier ce rang par 97 fois l’indice du caractère. La dispersion
est meilleure que pour hash1() sur l’ensemble des 170 entrées. Pour Dupond,

 rang de d plus 1 fois 97 +

 rang de u plus 2 fois 97 + etc.

4.3.4 Résolution des collisions

La clé x est rangée à l’adresse h(x) si l’entrée h(x) est libre. Si l’entrée est occupée,
x est un synonyme, il faut chercher une autre entrée pour x : cette procédure
s’appelle « résolution des collisions ». Il y a 2 variantes :

– la nouvelle entrée est donnée par une nouvelle fonction de résolution r(i), ou i
désigne la ième tentative de résolution. L’entrée à tester pour la ième tentative est
donc (N est la longueur de la table ; les entrées sont numérotées de 0 à N-1) : (h(x)
+ r(i)) modulo N.

– la nouvelle entrée est donnée par un chaînage qui fait référence à un élément :
– d’une table spéciale regroupant les synonymes,
– ou de la même table.

0

1

2

3

4

5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169

hash2

0

1

2

3

4

5

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163 169

hash11

05Chap_04 Page 221 Samedi, 17. janvier 2004 10:38 10

222 4 • Les tables

4.3.5 Résolution à l’aide d’une nouvelle fonction

La nouvelle fonction doit permettre de tester une et une seule fois, les différentes
entrées de la table.

4.3.5.a Résolution r(i) = i

On cherche séquentiellement à partir de h(x), une entrée libre.

Exemple :
Soient les éléments suivants à insérer dans une table de N=26 entrées (de 0 à 25)

et leur hash-code.
éléments : e1 e2 e3 e4 e5 e6 e7 e8 e9

hash-code : 0 0 2 0 3 9 9 25 25

Si l’entrée h(x) est occupée, il faut effectuer une ou plusieurs tentatives de résolu-
tion jusqu’à trouver une entrée libre. i indique la ième tentative de résolution. On
effectue le calcul suivant : ((h(x) + i) modulo N) avec N = 26. Pour e1, la place 0 est
disponible, e1 est rangé en 0. e2 devrait être en 0 mais la place est déjà prise. On
effectue une première tentative de résolution (i=1) en calculant (h(x)+i) modulo 26,
soit (0 + 1) modulo 26, soit 1. La clé e2 est rangée en 1, etc.

e9 devrait être en 25, la place est prise par e8 rangé avant e9. On effectue les
tentatives suivantes :

 i = 1 (25 + 1) mod 26 soit 0 occupé
 i = 2 (25 + 2) mod 26 soit 1 occupé
 i = 3 (25 + 3) mod 26 soit 2 occupé
 i = 4 (25 + 4) mod 26 soit 3 occupé
 i = 5 (25 + 5) mod 26 soit 4 occupé
 i = 6 (25 + 6) mod 26 soit 5 libre

La 6e tentative permet de trouver une entrée libre pour e9 qui est rangé dans
l’entrée 5. Le nombre de collisions augmente au fur et à mesure que la table se
remplit. Il peut se produire des points d'accumulation du fait que la résolution essaie
de ranger sur les entrées qui suivent l’entrée indiquée par la fonction de hachage
comme le montre le tableau précédent : il y a 3 prétendants pour la place 0 en début
de table. Les valeurs de hash-code sont indiquées sur le schéma pour vérification ;
elles ne sont pas mémorisées dans la table. La fonction resolution1() calcule l’entrée
à essayer pour un hash-code H dans une table de longueur N pour la ième tentative.

// résolution r(i) = i
int resolution1 (int h, int n, int i) {
 return (h+i) % n;
}

0 1 2 3 4 5 6 7 8 9 10 ... 24 25

e1 e2 e3 e4 e5 e9 e6 e7 e8

0 0 2 0 3 25 9 9 25

05Chap_04 Page 222 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 223
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

La séquence suivante fournit les entrées à essayer (jusqu’à trouver une entrée
libre) pour un hash-code H=2 dans une table de longueur N=26 (entrées de 0 à 25).
Les entrées suivant H=2 sont essayées successivement en considérant la table
comme circulaire ; le suivant de l’entrée 25 est l’entrée 0. Toutes les entrées sont
testées une et une seule fois jusqu’à trouver une entrée libre. Si aucune entrée libre
n’est trouvée, c’est que la table est pleine.

// résolution séquentielle r(i) = i
for (i=1; i<=25; i++) {
 printf ("%3d", resolution1 (2, 26, i));
}

Résultats :
3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24
25 0 1 2

Nombre d’accès à la table pour retrouver un élément :
1 : e1, e3, e6, e8; 2 : e2, e5, e7; 4: e4; 7 : e9.

4.3.5.b Résolution r (i) = K * i

On essaie de disperser les points d’accumulation en éloignant les synonymes de K
entrées les uns des autres. La fonction de résolution est donc : r (i) = K * i. Lors de
la ième tentative, l’entrée à essayer est donnée par (h(x) + K * i) modulo N. K et N
doivent être premiers entre eux : ils ne doivent avoir que 1 comme diviseur commun.

Exemple :
Ranger les identificateurs de l’exemple précédent avec K = 5 et N = 26. 5 et 26

sont premiers entre eux (pas de diviseur commun).
éléments : e1 e2 e3 e4 e5 e6 e7 e8 e9

hash-code : 0 0 2 0 3 9 9 25 25

pour e9
 h(x) + K * i modulo N
i = 1 25 + 5 * 1 modulo 26 soit 4 libre
La clé e9 est rangée dans l’entrée 4.

// résolution r(i) = k*i
int resolution2 (int h, int n, int i) {
 int k = 5; // ou par exemple, le premier avec n qui précède n
 return (h+k*i) % n;
}

Sur l’exemple, on diminue les points d’accumulation en début de table. Si la table
est de longueur N, la résolution doit permettre de tester toutes les entrées une fois et

0 1 2 3 4 5 6 7 8 9 10 ... 14 15 ... 25

e1 e3 e5 e9 e2 e6 e4 e7 e8

0 2 3 25 0 9 0 9 25

05Chap_04 Page 223 Samedi, 17. janvier 2004 10:38 10

224 4 • Les tables

une seule fois (donc générer des nombres de 0 à N-1). La séquence suivante fournit
les entrées à essayer (jusqu’à trouver une entrée libre) pour un hash-code H=2 dans
une table de longueur N=26 entrées (de 0 à 25), en progressant de K=5 entrées à
chaque tentative.

// résolution par pas de K, K=5 et N=26 premiers entre eux
for (i=1; i<=25; i++) {
 printf ("%3d", resolution2 (2, 26, i));
}

Pour un hash-code H=2, les entrées sont essayées une et une seule fois dans
l’ordre : 7, 12, 17, 22, 1, 6, 11, 16, 21, 0, 5, 10, 15, 20, 25, 4, 9, 14, 19, 24, 3, 8, 13,
18, 23. On progresse de 5 en 5 circulairement.

Nombre d’accès à la table pour retrouver un élément :
1 : e1, e3, e5, e6, e8; 2 : e2, e7, e9; 3: e4.

K et N doivent être premiers entre eux, sinon, toutes les entrées ne sont pas
essayées. La séquence suivante fournit les entrées à essayer (jusqu’à trouver une
entrée libre) pour un hash-code H=2 dans une table de longueur N=10 entrées
(numérotées de 0 à 9), en progressant de K=5 entrées à chaque tentative. K et N ont
un diviseur commun 5.

// résolution avec K=5 et N=10 non premiers entre eux
for (i=1; i<=9; i++) {
 printf ("%3d", resolution2 (2, 10, i));
}

Pour un hash-code H=2, seules les entrées 7 et 2 sont essayées. La séquence
générée est : 7, 2, 7, 2, 7, 2, 7, 2, 7.

4.3.5.c Résolution quadratique r(i) = i * i (N : nombre premier)

On progresse suivant le carré de i, ième tentative pour trouver une place pour un
élément en collision. La fonction resolution3() fournit l’entrée à essayer pour un
élément de hash-code H dans une table de longueur N, lors de la ième tentative. N
doit être un nombre premier.

Exemple
Ranger les identificateurs de l’exemple précédent (table de longueur N = 29).
éléments et leur hash-code.

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10
0 0 2 0 3 9 9 25 25 25

0 1 2 3 4 5 6 7 8 9 10 11 ... 15 ... 25 26 27 28

e1 e2 e3 e5 e4 e10 e6 e7 e8 e9

0 0 2 3 0 25 9 9 25 25

05Chap_04 Page 224 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 225
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

pour e10

h(x) + i * i modulo N
i = 1 25 + 1 * 1 modulo 29 soit 26 occupé
i = 2 25 + 2 * 2 modulo 29 soit 0 occupé
i = 3 25 + 3 * 3 modulo 29 soit 5 libre
La clé e10 est rangée dans l’entrée 5.

// résolution r(i) = i*i
int resolution3 (int h, int n, int i) {
 return (h+i*i) % n;
}

La boucle suivante permet de calculer les différentes entrées essayées pour un
élément de hash-code H=2 dans une table de longueur N=29.

// résolution quadratique en i*i
for (i=1; i<=28; i++) {
 printf ("%3d", resolution3 (2, 29, i));
}

Résultats de la boucle précédente :

3, 6, 11, 18, 27, 9, 22, 8, 25, 15, 7, 1, 26, 24, 26, 7,
1, 15, 25, 8, 22, 9, 27, 18, 11, 6, 3

Les résultats montrent que seulement la moitié de la table peut être accédée car la
séquence générée est symétrique par rapport à l’élément du milieu 24. Ceci peut être
démontré mathématiquement. Si N est grand, l’accès à seulement la moitié des
éléments de la table pour loger un nouvel élément n’est pas réellement pénalisant.

Nombre d’accès à la table pour retrouver un élément :
1 : e1, e3, e5, e6, e8; 2 : e2, e7, e9; 3: e4; 4 : e10.

4.3.5.d Résolution pseudo-aléatoire (N : puissance de 2)

L’idée reste la même de disperser les synonymes sur toute la table, mais en évitant
les régularités comme précédemment où les synonymes sont répartis de K en K
entrées ou d’un pas variable dépendant du carré de i. On fait appel à un générateur
de nombres pseudo-aléatoires r(i) = aleat(i) compris entre 1 et N-1, générés une et
une seule fois, de façon à répartir les synonymes sur toute la table et éviter les points
d’accumulation. La séquence est pseudo-aléatoire, car c’est toujours la même
séquence (pour une longueur de table N donnée) pour ranger l’identificateur et pour
le retrouver. La longueur de la table doit être une puissance de 2.

Exemple:
La séquence r(i) suivante est générée par le générateur de nombres pseudo-aléa-

toires pour N=16 : 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3
ranger les éléments : e1 e2 e3 e4 e5
hash-code : 1 0 2 1 1

05Chap_04 Page 225 Samedi, 17. janvier 2004 10:38 10

226 4 • Les tables

pour e4 h (x) + r (i) modulo 16
i = 1 1 + 1 modulo 16 soit 2 occupé
i = 2 1 + 6 modulo 16 soit 7 libre pour e4

pour e5 h (x) + r (i) modulo 16
i = 1 1 + 1 modulo 16 soit 2 occupé
i = 2 1 + 6 modulo 16 soit 7 occupé
i = 3 1 + 15 modulo 16 soit 0 occupé
i = 4 1 + 12 modulo 16 soit 13 libre pour e5

Nombre d’accès à la table pour retrouver un élément :
1 : e1, e2, e3; 3 : e4; 5 : e5.

Le programme suivant permet de générer une et une seule fois des nombres
pseudo-aléatoires compris entre 0 et N-1. reInit est vrai s’il faut réinitialiser le géné-
rateur de nombres pseudo-aléatoires, c’est-à-dire recommencer la séquence.

// fournit une et une seule fois des nombres pseudo-aléatoires
// entre 0 et n-1 inclus
// programme donné sans démonstration (pour test)
// n doit être une puissance de 2 (4, 8, 16, ..., 256, etc.)
int aleat (int n, booleen reInit) {
 static int r = 1;
 static int n4 = n*4;
 if (reInit) {
 n4 = n*4;
 r = 1;
 return r;
 } else {
 r *= 5;
 r %= n4;
 // printf ("\naleat %2d\n", r/4);
 return r / 4;
 }
}

// réinitialiser le générateur de nombres pseudo-aléatoires
void initaleat (int n) {
 aleat (n, vrai);
}

// résolution pseudo-aléatoire
int resolution4 (int h, int n, int i) {
 return (h + aleat (n, faux)) % n;
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e2 e1 e3 e4 e5

0 1 2 1 1

05Chap_04 Page 226 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 227
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

La séquence suivante fournit les entrées à essayer (jusqu’à trouver une entrée
libre) pour un hash-code 1 dans une table de 16 entrées (numérotées de 0 à 15), en
progressant de aleat() entrées à chaque tentative.

initaleat (16); // réinitialiser le générateur de nombres aléatoires
for (i=1; i<=15; i++) {
 printf ("%3d", resolution4 (1, 16, i));
}

Pour un hash-code 1, les entrées sont essayées une et une seule fois dans l’ordre
2, 7, 0, 13, 14, 3, 12, 9, 10, 15, 8, 5, 6, 11, 4.

4.3.6 Le fichier d’en-tête des fonctions de hachage
et de résolution

Les fonctions de hachage et de résolution peuvent être regroupées dans les fichiers
fnhc.h et fnhc.cpp.

/* fnhc.h fonctions de hachage et de résolution */

#ifndef FNHC_H
#define FNHC_H

typedef int booleen;
#define faux 0
#define vrai 1

typedef void Objet;

int hash1 (Objet* objet, int nMax); // somme des rangs alphabétiques
int hash2 (Objet* objet, int nMax); // somme des codes ascii
int hash3 (Objet* objet, int nMax); // division par nMax
int hash4 (Objet* objet, int nMax); // base 11

int resolution1 (int h, int n, int i); // i
int resolution2 (int h, int n, int i); // k*i
int resolution3 (int h, int n, int i); // i*i
int resolution4 (int h, int n, int i); // pseudo-aléatoire

#endif

4.3.7 Le corps du module sur les fonctions
de hahscode et de résolution

D’une manière générale, la fonction de hash-code est passée en paramètre lors de la
déclaration de la table de hash-code. Elle opère sur un objet. La fonction de hash-
code peut aussi, si besoin est, être définie dans le programme d’application.

/* fnhc.cpp fonctions de hash-code et résolution */

#include <stdio.h>
#include <stdlib.h> // abs
#include <string.h> // strlen
#include <ctype.h> // isalpha

05Chap_04 Page 227 Samedi, 17. janvier 2004 10:38 10

228 4 • Les tables

#include "fnhc.h"

int hash1 (char* cle, int n) voir 4.3.2.a
int hash2 (char* cle, int n) voir 4.3.2.b
int hash3 (long cle, int n) voir 4.3.2.c
long base11 (long n) voir 4.3.2.d
int hash4 (long cle, int n) voir 4.3.2.d

int hash1 (Objet* objet, int n) {
 return hash1 ((char*) objet, n);
}

int hash2 (Objet* objet, int n) {
 return hash2 ((char*) objet, n);
}

int hash3 (Objet* objet, int n) {
 long* pcle = (long*) objet;
 return hash3 (*pcle, n);
}

int hash4 (Objet* objet, int n) {
 long* pcle = (long*) objet;
 return hash4 (*pcle, n);
}

int resolution1 (int h, int n, int i) voir ci-dessus
int resolution2 (int h, int n, int i)
int resolution3 (int h, int n, int i)
int resolution4 (int h, int n, int i)

4.3.8 Le type TableHC (table de hachage)

Le type TableHC est décrit dans le fichier tablehc.h suivant. Il comprend, comme
pour le type Table définit au § 4.1.6.a, page 206, le nombre maximum d’éléments
dans la table, le nombre réel d’éléments, et un tableau de pointeurs sur les objets du
tableau. 4 fonctions sont passées en paramètre (écriture et comparaisons des objets
de la table, hash-code et résolution).

Si on veut pouvoir effectuer des destructions, il faut distinguer 3 états : libre,
occupé, ou détruit. Un élément est déclaré ne pas appartenir à la table si l’entrée
proposée par la résolution est libre. En cas de retrait d’un élément, il ne faut pas
rompre cette liste implicite des éléments occupés. L’entrée est marquée détruite (et
non libre), ce qui permet une insertion, mais n’arrête pas la recherche d’un élément.
Les cas de retraits ne sont pas envisagés dans la suite des algorithmes, mais laissés
en exercice.

05Chap_04 Page 228 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 229
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

/* tableHC.h sans chainage des synonymes */

#ifndef TABLEHC_H
#define TABLEHC_H

#include "fnhc.h"

typedef void Objet;

typedef struct {
 int nMax; // nombre max (longueur) de la table
 int n; // nombre d'éléments dans la table
 Objet** element; // tableau de pointeurs sur les objets
 char* (*toString) (Objet*);
 int (*comparer) (Objet*, Objet*);
 int (*hashcode) (Objet*, int);
 int (*resolution) (int, int, int);
} TableHC;

TableHC* creerTableHC (int nMax, char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*),
 int (*hashcode) (Objet*, int),
 int (*resolution) (int, int, int));
TableHC* creerTableHC (int nMax);
booleen insererDsTable (TableHC* table, Objet* nouveau);
Objet* rechercherTable (TableHC* table, Objet* objetCherche);
void listerTable (TableHC* table);
int nbAcces (TableHC* table, Objet* objetCherche);
double nbMoyAcces (TableHC* table);
void listerEntree (TableHC* table, int entree);
void ordreResolution (TableHC* table, int entree);
#endif

0

/1

2

/3

/4

nMax n element
objet 0

objet 2

type TableHC

5 2

Figure 126 Le type TableHC (table de hachage). Les objets ont une place
attribuée par une fonction de hash-code et une fonction de résolution

des collisions. Les pointeurs des objets ne sont pas consécutifs en mémoire.

05Chap_04 Page 229 Samedi, 17. janvier 2004 10:38 10

230 4 • Les tables

4.3.8.a Création d’une table de hachage

L’espace de la table et des éléments du tableau est alloué dynamiquement comme
précédemment (voir § 4.1.3, page 200). La fonction creerTableHC() mémorise en
plus les fonctions de hachage et de résolution.

// création d'une table de hashcode de nMax entrées
TableHC* creerTableHC (int nMax, char* (*toString) (Objet*),

int (*comparer) (Objet*, Objet*),
int (*hashcode) (Objet*, int),

int (*resolution) (int, int, int)) {
 TableHC* table = new TableHC();
 table->nMax = nMax;
 table->n = 0;
 table->element = (Objet**) malloc (sizeof(Objet*) * nMax);
 table->toString = toString;
 table->comparer = comparer;
 table->hashcode = hashcode;
 table->resolution = resolution;
 return table;
}

TableHC* creerTableHC (int nMax) {
 return creerTableHC (nMax, toChar, comparerCar, hash1, resolution1);
}

La fonction : static int resolution (TableHC* table, int h) ; cherche une entrée
libre dans la table pour un élément de hash-code h. Cette fonction fournit la
place (entier) attribuée à l’élément en collision ou –1 si la table est saturée. Si la
résolution est pseudo-aléatoire, il faut réinitialiser le générateur de nombres, de
façon à recommencer au début de la séquence de nombres. L’algorithme est
simple : tant qu’on n’a pas effectué nMax-1 tentatives et tant qu’on n’a pas
trouvé une entrée libre (ou détruite), on appelle la fonction de résolution (passée
en paramètre lors de l’appel de creerTableHC()) pour connaître la prochaine
entrée à tester. Cet algorithme est le même quelles que soient les fonctions de
hachage et de résolution.

// fournir l'entrée réellement attribuée pour un hashcode h
// en appliquant la résolution de la table;
// fournit -1 en cas d'échec
static int resolution (TableHC* table, int h) {
 booleen trouve = faux;
 int i = 1; // ième tentative
 int re;
 initaleat (table->nMax); // si la résolution est aléatoire

 while ((i<table->nMax) && !trouve) {
 re = table->resolution (h, table->nMax, i);
 trouve = table->element[re] == NULL;
 i++;
 }
 if (!trouve) re = -1;
 return re;
}

05Chap_04 Page 230 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 231
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

4.3.8.b Ajout d’un élément dans une table de hachage

La fonction insererDsTable() insère l’élément pointé par nouveau dans la table
(voir § 4.1.6.a, page 206). Si l’entrée h désignée par la fonction de hachage est libre,
l’élément est rangé en h, sinon, on fait appel à la fonction de résolution qui attribue
une entrée re pour l’élément nouveau à insérer, ou –1 si la fonction de résolution n’a
pas trouvé de place libre. La fonction retourne vrai s’il y a eu insertion, et faux
sinon. Le nombre d’éléments dans la table est incrémenté de 1 en cas de succès.

// insérer l'objet nouveau dans la table;
// fournir faux si la table est saturée
booleen insererDsTable (TableHC* table, Objet* nouveau) {
 int h = table->hashcode (nouveau, table->nMax);
 if (table->element[h] == NULL) {
 table->element[h] = nouveau;
 } else {
 int re = resolution (table, h);
 if (re != -1) {
 table->element[re] = nouveau;
 } else {
 printf ("insererDsTable saturée hashcode %3d pour %s\n",
 h, table->toString(nouveau));
 return faux;
 }
 }
 table->n++;
 return vrai;
}

4.3.8.c Recherche d’un élément dans une table de hachage

La fonction rechercherTable() fournit un pointeur sur l’objet cherché (objet-
Cherche) de la table. Si l’élément n’est pas à l’entrée indiquée par son hash-code
hc, on le cherche en examinant successivement les entrées re données par la
fonction de résolution. Si l’entrée re est libre et que l’élément n’a toujours pas
été trouvé, c’est que l’élément n’est pas dans la table. Cette recherche s’appa-
rente aux différentes recherches vues précédemment pour le type Table. La fonc-
tion retourne un pointeur sur l’objet cherché, ou NULL si l’objet n’existe pas
dans la table.

// rechercher objetCherche dans la table
Objet* rechercherTable (TableHC* table, Objet* objetCherche) {
 booleen trouve = faux;
 int hc = table->hashcode (objetCherche, table->nMax);
 int re = hc;
 int i = 1;
 while ((i<table->nMax) && !trouve && (re != -1)) {
 if (table->element[re] == NULL) {
 re = -1;
 } else {
 trouve = table->comparer (objetCherche, table->element[re]) == 0;
 if (!trouve) re = table->resolution (hc, table->nMax, i++);
 }
 }
 return re==-1 ? NULL : table->element[re];
}

05Chap_04 Page 231 Samedi, 17. janvier 2004 10:38 10

232 4 • Les tables

4.3.8.d Listage de la table

La fonction listerTable() liste les entrées occupées de la table de hash-code. Elle
indique également le nombre moyen d’accès pour retrouver un élément dans la table.

// lister la table
// et calculer le nombre moyen d'accès pour retrouver un élément
void listerTable (TableHC* table) {
 int sn = 0;
 for (int i=0; i<table->nMax; i++) {
 if (table->element[i] != NULL) {
 printf ("%3d : hc:%3d %s\n", i,
 table->hashcode (table->element[i], table->nMax),
 table->toString (table->element[i]));
 int n = nbAcces (table, table->element[i]);
 if (n>0) sn += n;
 }
 }
 printf ("\nNombre d'éléments dans la table : %d", table->n);
 printf ("\nTaux d'occupation de la table : %.2f",
 table->n / (double) table->nMax);
 printf ("\nNombre moyen d'accès à la table : %.2f\n\n",
 sn / (double) table->n);
}

4.3.8.e Nombre moyen d’accès

nbAcces() fournit le nombre d’accès pour retrouver un élément de la table, ou -1 si
l’élément n’est pas dans la table.

// fournir le nombre d'accès à la table
// pour retrouver objetCherche; -1 si inconnu
int nbAcces (TableHC* table, Objet* objetCherche) {
 int na = 0; // nombre d'accès
 int hc = table->hashcode (objetCherche, table->nMax);
 if (table->element[hc] == NULL) {
 na = -1; // élément inconnu
 } else {
 int re = hc; // résolution
 int i = 1; // ième tentative
 na++;
 initaleat (table->nMax); // si la résolution est aléatoire
 while (table->comparer (objetCherche, table->element[re]) != 0) {
 na++;
 re = table->resolution (hc, table->nMax, i++);
 if (table->element[re] == NULL) return -1; // élément inconnu
 }
 }
 return na;
}

nbMoyAcces() fournit le nombre moyen d’accès pour retrouver un élément de la
table.

// nombre moyen d'accès
double nbMoyAcces (TableHC* table) {
 int sn = 0;
 for (int i=0; i<table->nMax; i++) {
 if (table->element[i] != NULL) {

05Chap_04 Page 232 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 233
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 int n = nbAcces (table, table->element[i]);
 if (n>0) sn += n;
 }
 }
 return sn / (double) table->n;
}

4.3.8.f Fonction de contrôle des emplacements

La fonction listerEntree() liste, à titre indicatif ou de mise au point, pour une entrée
donnée, les éléments à parcourir lorsqu’un élément n’est pas dans la table. La fonction
fournit les clés et les hash-codes des éléments rencontrés.

// lister les éléments à parcourir pour insérer
// un nouvel élément de hash-code entree
void listerEntree (TableHC* table, int entree) {
 printf ("\nentrée à parcourir pour hashcode %d\n", entree);
 if (table->element[entree] == NULL) {
 printf ("aucun objet de hash-code %d\n", entree);
 } else {
 int i = 1;
 int re = entree;
 while (table->element[re] != NULL) {
 printf ("%3d %3d : hc:%3d %s\n", i, re,
 table->hashcode (table->element[re], table->nMax),
 table->toString (table->element[re]));
 re = table->resolution (entree, table->nMax, i++);
 }
 }
}

4.3.8.g Ordre de la résolution

La fonction ordreResolution() fournit l’ordre de recherche d’une entrée libre en
partant d’une entrée donnée. Si la résolution est aléatoire, il faut réinitialiser le géné-
rateur de nombre aléatoire.

// l'ordre des nMax entrées essayées en cas de conflit
// pour un hashcode "entree"
void ordreResolution (TableHC* table, int entree) {
 printf ("\nordre des résolutions pour l'entrée %d\n", entree);
 initaleat (table->nMax); voir § 4.3.5.d, page 225
 for (int i=1; i<table->nMax; i++) {
 printf ("%2d ", table->resolution (entree, table->nMax, i));
 }
 printf ("\n");
}

4.3.9 Exemple simple de mise en œuvre du module
sur les tables de hash-code

Le programme suivant déclare une table de hash-code utilisant la fonction hash1()
de calcul du hash-code et la fonction de résolution resolution1(). Ces fonctions
pourraient être changées et définies dans le programme appelant si les fonctions
prédéfinies ne conviennent pas.

05Chap_04 Page 233 Samedi, 17. janvier 2004 10:38 10

234 4 • Les tables

void main () {
 Personne* p1 = creerPersonne ("Dupond", "Jacques");
 Personne* p2 = creerPersonne ("Dufour", "Albert");
 Personne* p3 = creerPersonne ("Duval", "Marie");
 Personne* p4 = creerPersonne ("Ponddu", "Jacques");
 Personne* p5 = creerPersonne ("Punddo", "Jacques");

 // table de Personne voir en 2.4.1, page 51
 TableHC* table = creerTableHC (16, toStringPersonne, comparerPersonne,

 hash1, resolution1);

 insererDsTable (table, p1);
 insererDsTable (table, p2);
 insererDsTable (table, p3);
 insererDsTable (table, p4);
 insererDsTable (table, p5);

 listerTable (table);

 printf ("\nrecherche de la personne Dupond\n");
 Personne* cherche = creerPersonne ("Dupond", "?");
 Personne* trouve = (Personne*) rechercherTable (table, cherche);
 printf ("trouve %s\n", toStringPersonne (trouve));

 printf ("\nrecherche de la personne Punddo\n");
 cherche = creerPersonne ("Punddo", "?");
 trouve = (Personne*) rechercherTable (table, cherche);
 printf ("trouve %s\n", toStringPersonne (trouve));
}

La table de hash-code de 16 éléments (hash1 et résolution1) : Dupond, Ponddu et
Punddo sont synonymes (hc : 10).

 0 :
 1 :
 2 :
 3 :
 4 :
 5 : hc: 5 1 Dufour Albert
 6 :
 7 :
 8 :
 9 :
 10 : hc: 10 1 Dupond Jacques
 11 : hc: 10 2 Ponddu Jacques
 12 : hc: 12 1 Duval Marie
 13 : hc: 10 4 Punddo Jacques
 14 :
 15 :

La recherche de Dupond trouvé directement à l’entrée 10

recherche de la personne Dupond
rechercherTable re : 10 occupé par Dupond Jacques
trouve Dupond Jacques

05Chap_04 Page 234 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 235
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

La recherche de Punddo trouvé après avoir consulté 10, 11, 12 et 13 (résolution
r(i)=i).

recherche de la personne Punddo
rechercherTable re : 10 occupé par Dupond Jacques
rechercherTable re : 11 occupé par Ponddu Jacques
rechercherTable re : 12 occupé par Duval Marie
rechercherTable re : 13 occupé par Punddo Jacques
trouve Punddo Jacques

4.3.10 Programme de test des fonctions de hachage

Le menu suivant permet de tester les fonctions de hachage définies ci-dessus, ainsi
que les diverses résolutions, et fonctions de gestion de la table.

TABLE (HASH-CODING)

 0 - Fin
 1 - Initialisation de la table
 2 - Hash-code d 'un élément
 3 - Ordre de test des N-1 entrées
 4 - Ajout d'un élément dans la table
 5 - Ajout d'éléments à partir d'un fichier
 6 - Liste de la table
 7 - Recherche d'une clé
 8 - Collisions à partir d'une entrée

Votre choix ? 1

Le choix 1 permet de préciser les paramètres de la table (longueur, fonctions de
hachage et de résolution). Le choix 2 permet de calculer le hash-code d’un élément à
fournir en fonction des paramètres de la table. Le choix 3 indique pour une entrée H
donnée, l’ordre dans lequel seront examinées les N-1 entrées restantes lors de la réso-
lution. Le choix 4 ajoute un élément dans la table, alors que le choix 5 ajoute des
éléments lus dans un fichier. Le choix 6 liste les entrées occupées de la table. Le choix
7 permet de retrouver un élément dans la table. Le choix 8 indique les différentes
tentatives pour trouver une entrée libre, en précisant pour chaque entrée consultée,
l’élément et son hash-code.

Votre choix ? 1

Paramètres
Longueur N de la table ? 26
Fonctions de hachage
 1 somme des rangs alphabétiques

05Chap_04 Page 235 Samedi, 17. janvier 2004 10:38 10

236 4 • Les tables

 2 division par N
 3 somme des caractères ascii
 4 changement de base
Votre choix ? 1
Résolution
 1 r(i) = i
 2 r(i) = K*i
 3 r(i) = i*i
 4 pseudo-aléatoire
Votre choix ? 1

Exemple du choix 6, correspondant à l’exemple de la fonction de hachage
hash1(), et à la résolution linéaire pour une table de longueur 26 (voir § 4.3.5.a,
page 222). La table a été créée à partir du fichier cles.dat suivant correspondant aux
exemples de résolution pour les fonctions r(i) = i, k*i et i*i vues précédemment. Z
(nommé e1 sur les exemples) a pour hash-code 0, ainsi que ZZ(e2) et ZZZ(e3), etc.

Z e1(0) fichier cles.dat
ZZ e2(0)
B e3(2)
ZZZ e4(0)
C e5(3)
I e6(9)
IZ e7(9)
Y e8(25)
YZ e9(25)

Listage de la table après création :

Votre choix ? 6 cas r(i)=i
 0 : hc: 0 1 Z e1(0)
 1 : hc: 0 2 ZZ e2(0)
 2 : hc: 2 1 B e3(2)
 3 : hc: 0 4 ZZZ e4(0)
 4 : hc: 3 2 C e5(3)
 5 : hc: 25 7 YZ e9(25)
 6 :
 7 :
 8 :
 9 : hc: 9 1 I e6(9)
 10 : hc: 9 2 IZ e7(9)
 11 :
 12 :
 13 :
 14 :
 15 :
 16 :
 17 :

05Chap_04 Page 236 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 237
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 18 :
 19 :
 20 :
 21 :
 22 :
 23 :
 24 :
 25 : hc: 25 1 Y e8(25)

Remarque : dans la réalité, les tables de hachage contiennent des milliers de
valeurs. L’exemple est seulement pédagogique.

Exercice 24 - Menu pour une table de hachage

Écrire le programme principal correspondant au menu donné précédemment pour
la mise en œuvre des fonctions de hachage.

4.3.11 Résolution par chaînage avec zone de débordement

Cette fois, les éléments en collision (les synonymes) sont chaînés entre eux. Pour la
recherche, il suffit de parcourir la liste pour retrouver un élément.

4.3.11.a Avec une table séparée pour les synonymes

Les synonymes sont chaînés dans une zone à part de débordement allouée dynami-
quement ou statiquement.

Allocation statique de la table et allocation dynamique de la zone de déborde-
ment. On crée une liste des éléments ayant même hash-code (voir Figure 127).

Exemple
Ranger les identificateurs suivants (longueur de la table n = 26) :
éléments : e1 e2 e3 e4 e5 e6 e7 e8 e9

hash-code : 0 0 2 0 3 9 9 25 25

0
1
2
3
4
5
6

25

e1

e3 /

e2 e4 /

e5 /

7
8
9 e6 e7 /

e8 e9 /

Figure 127 Chaînage en allocation dynamique des synonymes.

05Chap_04 Page 237 Samedi, 17. janvier 2004 10:38 10

238 4 • Les tables

Allocation statique (en mémoire centrale ou sur disque). La table ou le fichier en
accès direct est alloué en début d’exécution (voir Figure 128). La zone des synonymes
suit la table principale. La table principale a des entrées de 0 à N-1 directement accé-
dées à partir du hash-code. Si l’élément n’est pas dans l’entrée fournie par le hash-code,
il faut parcourir la liste des synonymes commençant dans le 3e champ de la table. Le
premier synonyme de e1 est en 27 (e4), le suivant est en 26 (e2) et c’est le dernier. La
table de débordement peut être pleine alors qu’il reste de la place en table principale. En
cas de retrait de clé, la zone de débordement peut être gérée en liste libre (voir § 2.9.1.c,
page 87).

4.3.12 Résolution par chaînage avec une seule table

4.3.12.a Expulsion de l’intrus

Devant la difficulté de gérer la table principale et la table de débordement, on peut
décider de ranger les éléments dans la seule table principale qui a plus d’entrées que
d’éléments à ranger. Il y a donc forcément des places disponibles. L’algorithme de
rangement d’un élément x est le suivant :

– si h(x) est libre, ranger x en h(x).

– si h(x) est occupée par un élément x’ tel que h(x) = h(x’),
on cherche une entrée libre pour x et on établit le chaînage.

0 e1 27
1
2 e3 /
3 e5 /
4
5
6
7
8
9 e6 28

10
..
.

25 e8 29
26 e2 /
27 e4 26
28 e7 /
29 e9 /
30
31

Table de
débordement

Table
principale

Il faut repérer le premier libre

Figure 128 Chaînage en zone de débordement des synonymes.

05Chap_04 Page 238 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 239
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

– si h(x) est occupée par un élément x’ tel que h(x’) est différent de h(x),
x’ est un intrus et doit être expulsé ailleurs :

– on enlève x’ de la liste,
– on range x,
– puis on cherche une nouvelle entrée libre pour x’.

Exemple :
Ranger les éléments suivants ; le chiffre entre parenthèses indique le hash-code :
e1(1), e2(1), e3(3), e4(1), e5(2) pour une table de longueur N = 16. La résolution est
pseudo-aléatoire (séquence 1, 6, 15, etc. pour N=16) avec chaînage des synonymes
et expulsion des éléments occupant une entrée ne correspondant pas à leur hash-
code.

e1 est rangé en 1, entrée libre.
pour e2, l’entrée h(e2)=1 est occupée par e1 tel que h(e1) = h(e2) ; e2 est un syno-

nyme de e1. On cherche une place pour e2 : (1 +1) mod 16 soit 2 qui est libre. e2 est
inséré dans l’entrée 2 ; on insère 2 (chaînage) en tête des éléments ayant hash-code 1.

e3 est rangé en 3, entrée libre.

pour e4, l’entrée h(e4)=1 est occupée par e1 tel que h(e1) = h(e4), e4 est un syno-
nyme de e1, on cherche une place pour e4 :

(1 + 1) mod 16 soit 2, déjà occupé
(1 + 6) mod 16 soit 7, libre
e4 est inséré dans l’entrée 7 ; on insère 7 (chaînage) en tête des éléments ayant

hash-code 1.

pour e5, l’entrée h(e5) = 2 est occupée par un intrus e2 n’ayant pas 2 pour hash-
code (h(e2) vaut 1) ;

– il faut déloger e2 qui n’est pas tête de liste, en l’enlevant de sa liste,
– insérer e5 qui est prioritaire à sa place,
– trouver une nouvelle place pour e2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e1 e2 e3

1 1 3

2 -1 -1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e1 e2 e3 e4

1 1 3 1

7 -1 -1 2

05Chap_04 Page 239 Samedi, 17. janvier 2004 10:38 10

240 4 • Les tables

h(x) + r (i) mod 16
i = 1 1 + 1 mod 16 soit 2 occupé
i = 2 1 + 6 mod 16 soit 7 occupé
i= 3 1 + 15 mod 16 soit 0 libre pour e2 qui est inséré en tête des

éléments ayant hash-code 1.

La situation finale de la table après retrait de e2, insertion de e5, et réinsertion de e2.

Nombre d’accès à la table pour retrouver un élément (on suit le chaînage) :
1 : e1, e3, e5; 2 : e2; 3: e4.

4.3.12.b Cohabitation avec l’intrus

On peut aussi décider de ne pas expulser l’intrus n’ayant pas le même hash-code. On
a alors des listes avec des éléments ayant des hash-codes différents, ce qui facilite
l’insertion mais allonge la recherche dans la liste des synonymes.

Exemple
Ranger : e1(1), e2(1), e3(3), e4(1), e5(2)

Comme précédemment, la résolution est pseudo-aléatoire (soit la séquence 1, 6,
9, 15, etc.) dans une table de longueur N = 16 avec chaînage et cohabitation (ou
coalition). Les rangements des éléments e1, e2, e3, e4 conduisent à la situation
suivante qui est la même que précédemment après insertion de e4.

pour e5, h(e5) = 2, l’entrée 2 est occupée par e2 tel que h(e2) est différent de h(e5).
on ne déplace pas e2, (cohabitation ou coalition)
on cherche une place pour e5

i = 1 2 + 1 mod 16 soit 3 occupé
i = 2 2 + 6 mod 16 soit 8 libre pour e5
On insère e5 en tête de la liste commençant en h(e5) soit 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e2 e1 e5 e3 e4

1 1 2 3 1

7 0 -1 -1 -1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e1 e2 e3 e4

1 1 3 1

7 -1 -1 2

05Chap_04 Page 240 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 241
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

On a donc, en entrée 1, une tête de liste qui contient des éléments ayant des hash-
codes différents (d’où coalition) :

Liste des éléments en partant de l’entrée 1 : e1(1) - e4(1) - e2(1) - e5(2)
Liste des éléments en partant de l’entrée 2 : e2(1) - e5(2)

Figure 129 Chaînage avec coalition.

Nombre d’accès à la table pour retrouver un élément :
1 : e1, e3; 2 : e4, e5; 3 : e2.

4.3.12.c Le type TableHCC (table de hachage avec chaînage)

Le type TableHC décrit dans le fichier tablehc.h (voir § 4.3.8, page 228) doit être
complété d’un champ entier suivant pour chaque élément de table. Ceci définit le
type TableHCC (table de hachage avec chaînage) :

/* tablehcc.h table de hash-code avec chainage */

#ifndef TABLEHCC_H
#define TABLEHCC_H

#include "fnhc.h"

#define NILE -1
typedef void Objet;

typedef struct {
 Objet* objet;
 int suivant; // chainage des synonymes
} ElementTable;

typedef struct {
 int nMax; // nombre max (longueur) de la table
 int n; // nombre d'éléments dans la table
 ElementTable* element;
 char* (*toString) (Objet*);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e1 e2 e3 e4 e5

1 1 3 1 2

7 8 -1 2 -1

e1 7 e4 2 e2 8 e5 /

hc = 1 hc = 1 hc = 1 hc = 2

1 7 2 8

h(x) = 1 h(x) = 2

05Chap_04 Page 241 Samedi, 17. janvier 2004 10:38 10

242 4 • Les tables

 int (*comparer) (Objet*, Objet*);
 int (*hashcode) (Objet*, int);
 int (*resolution) (int, int, int);
} TableHCC;

TableHCC* creerTableHCC (int nMax, char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*),
 int (*hashcode) (Objet*, int),
 int (*resolution) (int, int, int));
TableHCC* creerTableHCC (int nMax);
booleen insererDsTable (TableHCC* table, Objet* nouveau);
Objet* rechercherTable (TableHCC* table, Objet* objetCherche);
void listerTable (TableHCC* table);
int nbAcces (TableHCC* table, Objet* objetCherche);
double nbMoyAcces (TableHCC* table);
void listerEntree (TableHCC* table, int entree);
void ordreResolution (TableHCC* table, int entree);

#endif

Les fonctions creerTableHCC(), insererDsTable(), rechercherTable(), etc., doivent
être réécrites pour tenir compte du chaînage des synonymes.

TableHCC* creerTableHCC (int nMax, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*),

int (*hashcode) (Objet*, int),
int (*resolution) (int, int, int)) {

 TableHC* table = new TableHCC();

/0

1

/2

3

/4

3

-1

objet 1

objet 3

nMax n element

type TableHCC

5 2

Figure 130 Table de hachage avec chaînage des synonymes
(objet1 et objet3) de hc=1.

05Chap_04 Page 242 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 243
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 table->nMax = nMax;
 table->n = 0;
 table->element = (ElementTable*) malloc (sizeof(ElementTable)

* nMax);
 table->toString = toString;
 table->comparer = comparer;
 table->hashcode = hashcode;
 table->resolution = resolution;
 for (int i=0; i<nMax; i++) {
 table->element[i].objet = NULL; // fait par défaut
 table->element[i].suivant = NILE; // -1 indique "pas de suivant"
 }
 return table;
}

TableHC* creerTableHCC (int nMax) {
 return creerTableHCC (nMax, toChar, comparerCar, hash1, resolution1);
}

La recherche se fait en suivant le chaînage des synonymes :
Objet* rechercherTable (TableHC* table, Objet* objetCherche) {
 booleen trouve = faux;
 int hc = table->hashcode (objetCherche, table->nMax);
 int re = hc;
 while (re!=NILE && !trouve) {
 printf ("rechercherTable entree re : %d\n", re);
 trouve = table->comparer (objetCherche, table->element[re].objet)

== 0;
 if (!trouve) re = table->element[re].suivant;
 }
 return re==-1 ? NULL : table->element[re].objet;
}

4.3.12.d Exemples de mise en œuvre du hachage avec chaînage

On reprend le programme et l’exemple du § 4.3.9, page 233, avec la fonction de hash-
code hash1 et une résolution linéaire (résolution1) dans une table où les synonymes sont
chaînés entre eux. Les trois éléments de hc=10 sont chaînés entre eux en 10, 13 et 11.

listerTable
 0 :
 1 :
 2 :
 3 :
 4 :
 5 : hc: 5 n: 1 svt: -1 Dufour Albert
 6 :
 7 :
 8 :
 9 :
 10 : hc: 10 n: 1 svt: 13 Punddo Jacques
 11 : hc: 10 n: 3 svt: -1 Dupond Jacques
 12 : hc: 12 n: 1 svt: -1 Duval Marie
 13 : hc: 10 n: 2 svt: 11 Ponddu Jacques
 14 :
 15 :

05Chap_04 Page 243 Samedi, 17. janvier 2004 10:38 10

244 4 • Les tables

Exercice 25 - Hachage avec chaînage dans une seule table

Réécrire dans le cas du chaînage, les fonctions :

booleen insererDsTable (TableHCC* table, Objet* nouveau);
void listerTable (TableHCC* table);
int nbAcces (TableHCC* table, Objet* objetCherche);

Tester le menu et le programme principal de l’exercice 24, page 237. Les proto-
types des fonctions sont les mêmes et ne modifient pas le programme de tests sauf
pour les déclarations et les créations des tables.

4.3.13 Retrait d’un élément

Les méthodes de hachage sans chaînage des synonymes sont mal adaptées aux
suppressions d’éléments. L’élément supprimé doit être marqué détruit et non libre,
de façon à ne pas rompre l’accès aux éléments suivants. Il y a donc 3 états : occupé,
libre et détruit. L’entrée d’un élément détruit pourra être réutilisée lors d’une
nouvelle insertion.

4.3.14 Parcours séquentiel

L’accès séquentiel à tous les éléments de la table (ou du fichier) gérée suivant une
méthode de hachage demande un test pour savoir si l’entrée est libre ou occupée. Le
parcours séquentiel se fait dans l’ordre croissant des hash-codes. Si on veut un autre
parcours (alphabétique par exemple), il faut faire un tri suivant la clé.

4.3.15 Évaluation du hachage

Les méthodes de hachage sont des méthodes qui permettent un accès rapide à partir
d’une clé, les données se trouvant dans une table en mémoire centrale, ou dans une
table sur disque (fichier en accès direct). On peut faire une évaluation mathématique
du nombre moyen d’accès à la table pour retrouver un élément. On suppose que
toutes les entrées peuvent être sollicitées de manière équirépartie. Le nombre
moyen d’accès dépend du taux d’occupation de la table soit le rapport entre le
nombre d’entrées occupées sur le nombre d’entrées réservées. A priori, au départ, le
nombre d’entrées réservées doit être environ de deux fois le nombre d’éléments à
mémoriser. Ce taux moyen ne dépend pas du nombre d’éléments dans la table ou
fichier, ce qui en fait une excellente méthode pour accéder à de grands ensembles de
données pour peu que l’on accepte de perdre de la place.

La Figure 131 donne les nombres moyens d’accès en fonction du taux d’occupa-
tion pour différentes méthodes. La méthode de résolution des collisions qui consiste
à placer le synonyme sur les entrées qui suivent est la plus simple à programmer,
mais également la moins performante lorsque le taux d’occupation de la table
augmente. Les techniques de résolution par chaînage donnent d’excellents résultats

05Chap_04 Page 244 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 245
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

(on suit la liste des synonymes pour la recherche) au prix d’un encombrement légè-
rement supérieur puisqu’il faut mémoriser les chaînages.

Si on compare avec la recherche séquentielle ou même la recherche dicho-
tomique, on voit que cette méthode donne d’excellents résultats. Pour un fichier de
un million d’éléments :1

recherche séquentielle = n / 2 = 500 000 accès
recherche dichotomique = log2 n = 20 accès
hachage avec chaînage = 1.45 accès avec un taux d’occupation de 90% (si les
entrées de la table sont équiréparties).

Conclusions sur le hachage
Avantages des tables gérées par hachage
Le nombre d’accès pour retrouver un élément ne dépend pas de la taille de la table
mais uniquement du taux d’occupation de la table. L’accès est très rapide.

Inconvénients
La taille de la table doit être fixée a priori et supérieure au nombre d’éléments à
traiter. L’accès séquentiel aux éléments, suivant un ordre croissant ou décroissant de
la clé, nécessite un tri. Le retrait d’éléments peut présenter quelques difficultés sauf
dans le cas du chaînage.

4.3.15 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale)

On veut accélérer la recherche dans un arbre binaire non ordonné en mémoire centrale,
en créant une table accédée par hachage qui fournit un pointeur sur un nœud à partir de
sa clé (nom). L’arbre binaire est d’abord créé. La table de hachage est ensuite créée au
début de la consultation par parcours de l’arbre binaire. Les interrogations sur l’arbre
binaire permettent de trouver un nœud plus rapidement en consultant la table plutôt
qu’en parcourant l’arbre. La fonction de hachage retenue est la fonction hash1()
(voir § 4.3.6, page 227). L’arbre n-aire considéré à titre d’exemple est celui de la
nomenclature de la Terre donnée au § 3.2.11.b, page 147. Les hash-codes correspon-
dant aux différentes clés dans une table de longueur HCMAX=70 sont les suivants :

A = taux
d’occupation

linéaire
r(i) = i

pseudo-aléatoire chaînage

0.5
0.75
0.90

1.5
2.5
5.5

1.39
1.83
2.56

1.25
1.38
1.45

1. D’après Robert Morris, Communication of the ACM, volume 11, numéro 11, janvier 1968

Figure 131 Nombre moyen d’accès en fonction du taux d’occupation1.

05Chap_04 Page 245 Samedi, 17. janvier 2004 10:38 10

246 4 • Les tables

Figure 132 Hash-codes des éléments de terre.nai.

Il y a collision pour l’entrée 34 (Bourgogne et Asie), l’entrée 39 (Chine et Irak) et
l’entrée 67 (Espagne et Danemark). La table de hachage est gérée comme indiqué sur
la Figure 133. Chaque élément de la table contient un pointeur sur un nœud de l’arbre.

Les déclarations sont les suivantes :

/* nomenclaturehc.cpp
 utilise le type Arbre et le type TableHC ou TableHCC */

#include <stdio.h>
#include <string.h>

2 : Bretagne
7 : Afrique
8 : Belgique
10 : Europe
19 : Amerique
32 : Inde
34 : Bourgogne Asie
39 : Chine Irak

47 : France
52 : Oceanie
53 : Niger
54 : Congo
56 : Japon
60 : Corse
66 : Terre
67 : Espagne Danemark

0

1

2

3

4

nMax n element

type TableHC

34

Bretagne

Bourgogne

69

Figure 133 Table de hachage pour l’accès aux nœuds de l’arbre de la Terre.

05Chap_04 Page 246 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 247
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

#include "arbre.h"
#include "fnhc.h"

#ifndef CHAINAGE
#include "tablehc.h"
typedef TableHC Table;
#else
#include "tablehcc.h"
typedef TableHCC Table;
#endif

#define HCMAX 70

Pour chaque objet de la table, il faut fournir la référence du nœud.

char* toStringNd (Objet* objet) {
 Noeud* nd = (Noeud*) objet;
 return (char*) getobjet(nd);
}

Le hash-code d’un objet de la table s’obtient en utilisant la fonction hashNd().

int hashNd (Objet* objet, int n) {
 Noeud* nd = (Noeud*) objet;
 return hash1((char*) getobjet(nd), n);
}

La comparaison de deux objets de la table (deux pointeurs sur des nœuds de
l’arbre) se fait en utilisant la fonction comparer().

int comparer (Objet* objet1, Objet* objet2) {
 Noeud* nd1 = (Noeud*) objet1;
 Noeud* nd2 = (Noeud*) objet2;
 return strcmp ((char*) getobjet(nd1), (char*) getobjet(nd2));
}

La fonction parcoursArbre() parcourt l’arbre binaire pointé par racine et cons-
truit la table de hachage table. Pour chaque nœud visité, un pointeur sur ce nœud est
ajouté dans la table à une place dépendant du hash-code du nœud et de la résolution.

void parcoursArbre (Noeud* racine, Table* table) {
 if (racine != NULL) {
 insererDsTable (table, racine);
 parcoursArbre (getsag(racine), table);
 parcoursArbre (getsad(racine), table);
 }
}

La fonction construireTableHC() construit la table à partir de l’arbre :

// initialiser et construire la table de hachage à partir de l'arbre
void construireTableHC (Arbre* arbre, Table* table) {
 parcoursArbre (getracine(arbre), table);
}

05Chap_04 Page 247 Samedi, 17. janvier 2004 10:38 10

248 4 • Les tables

Le programme principal construit un arbre de caractères à partir du fichier
terre.nai. Il construit ensuite une table de hachage (avec ou sans chaînage) par
parcours de l’arbre. Il liste la table en indiquant les entrées occupées et effectue une
recherche à l’aide de la table de hachage du nœud "France". Le sous-arbre du nœud
"France" est alors dessiné.

void main () {
 printf ("Création d'un arbre binaire à partir d'un fichier\n");
 printf ("Donner le nom du fichier décrivant l'arbre n-aire ? ");
 char nomFE [50];
 //scanf ("%s", nomFE);
 strcpy (nomFE, "terre.nai");

 FILE* fe = fopen (nomFE, "r");
 Arbre* arbre;
 if (fe == NULL) {
 printf ("%s erreur ouverture\n", nomFE);
 } else {
 arbre = creerArbreCar (fe);
 }
 dessinerArbreNAire (arbre, stdout);

 #ifndef CHAINAGE
 Table* table = creerTableHC (HCMAX, toStringNd, comparer,

hashNd, resolution1);
 #else
 Table* table = creerTableHCC (HCMAX, toStringNd, comparer,

hashNd, resolution1);
 #endif

 construireTableHC (arbre, table);
 listerTable (table);

 Noeud* objetCherche = cF ("France");
 Noeud* nd = (Noeud*) rechercherTable (table, objetCherche);
 if (nd != NULL) {
 printf ("trouvé %s\n", (char*) getobjet(nd));
 Arbre* arbre = creerArbre (nd);
 dessinerArbreNAire (arbre, stdout);
 } else {
 printf ("%s inconnu dans l'arbre\n", (char*) getobjet(objetCherche));
 }
}

Exemple de résultats (seules les entrées non nulles de la table de hachage sont
écrites).

 2 : hc: 2 1 Bretagne
 7 : hc: 7 1 Afrique
 8 : hc: 8 1 Belgique
 10 : hc: 10 1 Europe
 19 : hc: 19 1 Amerique
 32 : hc: 32 1 Inde
 34 : hc: 34 1 Bourgogne r(i) = i
 35 : hc: 34 2 Asie
 39 : hc: 39 1 Chine

05Chap_04 Page 248 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 249
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 40 : hc: 39 2 Irak
 47 : hc: 47 1 France
 52 : hc: 52 1 Oceanie
 53 : hc: 53 1 Niger
 54 : hc: 54 1 Congo
 56 : hc: 56 1 Japon
 60 : hc: 60 1 Corse
 66 : hc: 66 1 Terre
 67 : hc: 67 1 Espagne
 68 : hc: 67 2 Danemark

Nombre d'éléments dans la table : 19
Taux d'occupation de la table : 0.27
Nombre moyen d'accès à la table : 1.16

Recherche à l’aide de la table de hachage du nœud France et dessin du sous-arbre.

 |
 |
 _______France________
 | | |
 | | |
 Bretagne Corse Bourgogne

4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier)

Soit l’arbre n-aire suivant du corps humain (voir exercice 17, page 142) :

homme: tete cou tronc bras jambe;
tete: crane yeux oreille cheveux bouche;
tronc: abdomen thorax;
thorax: coeur foie poumon;
jambe: cuisse mollet pied;
pied: cou-de-pied orteil;
bras: epaule avant-bras main;
main: doigt;

Si le nombre d’éléments décrivant l’arbre est important les éléments ne peuvent
pas être gardés en mémoire centrale. Il faut donc les enregistrer dans un fichier. Les
différents éléments de l’arbre binaire sont rangés dans un fichier en accès direct
suivant une méthode de hachage. La fonction de hachage est la fonction hash1()
(voir § 4.3.6, page 227) : somme des rangs alphabétiques des lettres (blancs et tirets
exclus) modulo 70. La résolution des collisions se fait par chaînage en table de
débordement (voir Figure 128).

Les hash-codes des éléments sont les suivants : tronc(0), yeux(5), oreille(6),
cuisse(6), mollet(7), orteil(9), cou-de-pied(12), thorax(16), cheveux(18), poumon(24),
avant-bras(28), jambe(31), pied(34), foie(35), main(37), cou(39), bras(40), crane(41),
tete(50), homme(54), bouche(54), abdomen(54), doigt(55), epaule(60), coeur(62). Il y

05Chap_04 Page 249 Samedi, 17. janvier 2004 10:38 10

250 4 • Les tables

a collision pour oreille et cuisse à l’entrée 6, et homme, bouche, abdomen qui préten-
dent tous les trois à l’entrée 54. L’arbre n-aire est mémorisé sous sa forme binaire en
allocation contiguë (voir Figure 60), les numéros d’enregistrements occupés par les
nœuds étant imposés par la fonction de hachage.

L’implantation de l’arbre en utilisant le hachage est indiquée ci-dessous. Seuls les
enregistrements occupés sont affichés. La première colonne est un booléen qui
indique si l’entrée est libre ou occupée. Les entrées 0, 5, 6, etc. sont occupées. Les
entrées 1, 2, 3, 4, 8, etc. sont inoccupées. C’est une concession à faire à cette
méthode : on utilise plus de places que nécessaire. La colonne 2 contient le nom du
nœud ; c’est la clé de la fonction de hachage. La colonne (3) contient le pointeur sur
le sous-arbre gauche (SAG), la colonne (4) le pointeur sur le sous-arbre droit (SAD).
Ainsi, tête (hash-code 50) est rangé dans l’entrée 50 ; son SAG commence en 41 et
son SAD en 39. La colonne (5) contient le chaînage des synonymes en zone de
débordement. Il y a un synonyme pour oreille à l’entrée 6 ; ce synonyme cuisse est
rangé en 72. Pour homme, il y a un synonyme en 71 (abdomen), suivi d’un autre
synonyme en 70 (bouche).

 (1) (2) (3) (4) (5)
 0 1 tronc 71 40 -1
 5 1 yeux -1 6 -1
 6 1 oreille -1 18 72
 7 1 mollet -1 34 -1
 9 1 orteil -1 -1 -1
 12 1 cou-de-pied -1 9 -1
 16 1 thorax 62 -1 -1
 18 1 cheveux -1 70 -1
 24 1 poumon -1 -1 -1
 28 1 avant-bras -1 37 -1
 31 1 jambe 72 -1 -1

homme (54)

tete (50)

cou (39)crane (41)

yeux (5)

...

...

Figure 134 Dessin partiel de l’arbre et des places attribuées à chaque élément.

05Chap_04 Page 250 Samedi, 17. janvier 2004 10:38 10

4.3 • Adressage dispersé, hachage, hash-coding 251
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 34 1 pied 12 -1 -1
 35 1 foie -1 24 -1
 37 1 main 55 -1 -1
 39 1 cou -1 0 -1
 40 1 bras 60 31 -1
 41 1 crane -1 5 -1
 50 1 tete 41 39 -1
 54 1 homme 50 -1 71
 55 1 doigt -1 -1 -1
 60 1 epaule -1 28 -1
 62 1 coeur -1 35 -1
 70 1 bouche -1 -1 -1
 71 1 abdomen -1 16 70
 72 1 cuisse -1 7 -1

La fonction trouverNoeud() (voir § 3.2.4.e, page 119) de recherche d’un nœud dans
un arbre non ordonné en mémoire centrale, peut être améliorée en utilisant la fonction
PNoeud trouverNoeud (char* nomC, Noeud* enr) ; définie ci-dessous qui utilise l’accès
direct du hachage. On calcule le hash-code hc de nomC (nom cherché). Si l’entrée hc est
inoccupée, nomC n’existe pas dans le fichier. Si l’entrée hc contient nomC, on a trouvé,
sinon, il faut parcourir la liste des synonymes pour trouver nomC, ou pour conclure que
nomC n’existe pas dans le fichier. La fonction void lireD (int n, Noeud* enr) ; effectue la
lecture directe de l’enregistrement n qui est mémorisé, au retour de l’appel, à l’adresse
contenue dans enr.

#define NILE -1

#define MAXENR 100
#define NBENTR 70

typedef char Chaine [16];
typedef int PNoeud;

typedef struct {
 booleen occupe;
 Chaine nom;
 PNoeud gauche;
 PNoeud droite;
 PNoeud syn;
} Noeud;

// lire directement l'enregistrement n,
// et le ranger à l'adresse pointée par enr
void lireD (int n, Noeud* enr) {
 fseek (fr, (long) n*sizeof (Noeud), 0);
 fread (enr, sizeof (Noeud), 1, fr);
}

// fournit le numéro de l'enregistrement contenant nomC
// si nomC existe, NILE sinon;
// *enr contient l'enregistrement s'il a été trouvé

05Chap_04 Page 251 Samedi, 17. janvier 2004 10:38 10

252 4 • Les tables

PNoeud trouverNoeud (char* nomC, Noeud* enr) {
 PNoeud pnom;
 PNoeud hc = hashCode (nomC, NBENTR);
 lireD (hc, enr);
 if (!enr->occupe) {
 pnom = NILE;
 } else if (strcmp (enr->nom, nomC) == 0) {
 pnom = hc;
 } else {
 pnom = NILE;
 PNoeud svt = enr->syn;
 booleen trouve = faux;
 while ((svt!=NILE) && !trouve) {
 lireD (svt, enr);
 if (strcmp (enr->nom, nomC) == 0) {
 pnom = svt;
 trouve = vrai;
 } else {
 svt = enr->syn;
 }
 }
 }
 return pnom;
}

On peut bien sûr reprendre le menu concernant les parcours et les interrogations
des arbres n-aires mémorisés sous forme binaire en mémoire centrale (voir
§ 3.2.11.a page 142). Le fait que l’arbre soit mémorisé dans un fichier ne change pas
les algorithmes, seulement le codage (voir § 3.2.13, page 153).

Nom du Noeud dont on cherche les descendants n-aire ? thorax

Descendants n-aires de thorax
 coeur
 foie
 poumon

Nom du Noeud dont on cherche les ascendants n-aire ? orteil

Ascendants n-aires de orteil
 orteil
 pied
 jambe
 homme

Exercice 26 - Hachage sur l’arbre de la Terre

En utilisant la même fonction de hachage et la même méthode de résolution que
sur l’exemple 2 du corps humain, donner le schéma d’implantation correspondant à
l’arbre n-aire de la Terre décrit dans le § 3.2.11.b, page 147.

Exercice 27 - Table des étudiants gérée par hachage avec chaînage

• Créer un fichier etudiant.dat d’une centaine de noms (clés) différents (plus des
informations spécifiques de chaque étudiant comme son prénom et son groupe

05Chap_04 Page 252 Samedi, 17. janvier 2004 10:38 10

4.4 • Résumé 253
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

par exemple). En reprenant les algorithmes du cours, écrire un programme de
création d’une table de hachage comprenant 197 entrées (de 0 à 196). La fonction
de hachage est hash2() (somme des caractères ascii) et la résolution est du type
r(i) = K * i (K=19) avec chaînage et expulsion de l’intrus. 19 et 197 sont premiers
entre eux.

• Effectuer des recherches à partir des noms des étudiants.

• Sur l’exemple du fichier etudiant.dat, écrire le hash-code et le nombre d’accès
pour chaque élément de la table, le taux d’occupation et le nombre moyen
d’accès. Comparer à l’évaluation du cours (Figure 131, page 245).

4.4 RÉSUMÉ

Les tables sont des structures de données permettant de mémoriser des ensembles de
valeurs et leurs attributs, et de retrouver (le plus rapidement possible) les différents
attributs à partir de la clé d’un élément (son nom par exemple). Lorsque le nombre
d’éléments de la table est faible (inférieur à une centaine) ou que les recherches dans
la table sont peu fréquentes, on peut envisager une recherche séquentielle qui est
simple à mettre en œuvre. Si le nombre d’éléments est faible, mais que les recher-
ches sont très fréquentes, on peut optimiser l’algorithme de recherche séquentielle
en utilisant la méthode de la sentinelle. Si insertions et recherches se font en deux
phases séparées, on peut ordonner la table en cours ou en fin d’insertion, et effectuer
par la suite, en mémoire centrale, des recherches dichotomiques. Si le nombre
d’éléments est important sur mémoire secondaire, il convient de limiter les accès
disque en regroupant les clés dans des sous-tables qui sont amenées en mémoire
centrale en un seul accès disque, la recherche se poursuivant en mémoire centrale
dans cette sous-table. Ce partitionnement en sous-tables peut utiliser les techniques
des B-arbres s’il y a des ajouts et retraits d’éléments.

Dans certains cas, lorsque la clé est structurée, on peut effectuer un calcul à partir
de cette clé qui fournit la place dans la table (ou fichier) de cette clé. Dans le cas
général, une autre technique très performante consiste à définir une fonction qui
fournit également la place dans la table à partir de la clé. Cependant, cette fonction
peut fournir une même place pour deux clés différentes ; il faut donc en cas de
conflit trouver une autre place pour l’élément synonyme (en collision). Ces techni-
ques de hachage sont très rapides et indépendantes du nombre d’éléments dans la
table. Les performances dépendent seulement du taux d’occupation de la table qui
doit être surdimensionnée ; on réserve plus de places que strictement nécessaire. Par
contre, le traitement séquentiel suivant l’ordre de la clé nécessite une copie et un tri
de la table, ce qui n’est pas gênant si ce traitement est peu fréquent.

05Chap_04 Page 253 Samedi, 17. janvier 2004 10:38 10

C

hapitre

5

Les graphes

5.1 DÉFINITIONS

Un graphe est une structure de données composée d’un

ensemble de sommets

, et
d’un

ensemble de relations entre ces sommets

.
Si la relation n’est pas orientée, la relation est supposée exister dans les deux sens.

Le graphe est dit non orienté ou symétrique. Dans le cas contraire, si les relations sont
orientées, le graphe est dit orienté. Une relation est appelée un

arc

 (quelquefois une
arête pour les graphes non orientés). Les sommets sont aussi appelés nœuds ou points.

5.1.1 Graphes non orientés (ou symétriques)

Le graphe de la Figure 135 peut se noter comme suit :

• S = {S1, S2, S3, S4, S5} ; ensemble des sommets

• A = {S1S2, S1S3, S2S3, S3S4, S3S5, S4S5} ; ensemble des relations symétri-
ques. Par exemple, S1S2 est vrai, de même que S2S1.

S1

S2

S5

S3 S4

Figure 135 Un graphe non orienté : les relations existent dans les deux sens.

06Chap_05 Page 254 Samedi, 17. janvier 2004 10:39 10

5.1 •

Définitions

255

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Graphe connexe

 : un graphe non orienté est dit connexe si on peut aller de tout
sommet vers tous les autres sommets. Le graphe de la Figure 135 est connexe ; celui
de la Figure 136 ne l’est pas ; il est constitué de deux composantes connexes.

5.1.2 Graphes orientés

Si les relations sont orientées, le graphe est dit

orienté

.

Pour un arc S1S2, S2 est dit successeur de S1 ou encore adjacent à S1 ; S1 est le
prédécesseur de S2.

d°(S3) = 5 degré du sommet S3 : nombre d’arcs entrants ou sortants
d+(S3) = 3 nombre d’arcs sortants : demi-degré extérieur ou degré d’émission
d-(S3) = 2 nombre d’arcs entrants : demi-degré intérieur ou degré de réception

S1

S2

S5

S3 S4

Figure 136 Un graphe non connexe et ses deux composantes connexes.

S3

S1

S5

S2 S4

Figure 137 Un graphe orienté.

S1 S2

S5S3

S4

Figure 138 Degrés d’un graphe orienté.

06Chap_05 Page 255 Samedi, 17. janvier 2004 10:39 10

256 5

•

Les graphes

Graphe fortement connexe

 : un graphe orienté est dit fortement connexe si on
peut aller de tout sommet vers tous les autres sommets (en passant éventuellement
par un ou plusieurs sommets intermédiaires).

5.1.3 Graphes orientés ou non orientés

Les définitions suivantes s’appliquent aux graphes orientés comme aux graphes non
orientés.

Une boucle (autoboucle) est une relation (Si, Si). Un multigraphe ou graphe
multiple est un graphe tel qu’il existe plusieurs arcs entre certains sommets. Sur la
Figure 140, la relation S2S3 existe 2 fois ; le graphe est un 2-graphe orienté ou plus
généralement un p-graphe. Un graphe

simple

 est un graphe sans boucle et sans arc
multiple.

Un graphe est dit valué (pondéré) si à chaque arc on associe une valeur représen-
tant le coût de la transition de cet arc.

Un

chemin

 dans un graphe est une suite d’arcs consécutifs.
La

longueur d’un chemin

 est le nombre d’arcs constituant ce chemin.
Un

 chemin simple

 est un chemin où aucun arc n’est utilisé 2 fois.
Un

circuit simple

 est un chemin simple tel que le premier et le dernier sommet
sont les mêmes.

Un

 circuit eulérien

 est un circuit qui passe une et une seule fois par tous les arcs.
Un

 circuit hamiltonien

 est un circuit qui passe une et une seule fois par tous les
sommets.

S1

S2 S3

S4 S1

S2 S3

S4

Figure 139 Graphe non fortement connexe et composantes fortement connexes.

S1 S2 S3 S4S1 S2

Figure 140 Une boucle et un graphe multiple.

S1 S2

5

Figure 141 Un graphe valué : la transition S1 vers S2 coûte 5.

06Chap_05 Page 256 Samedi, 17. janvier 2004 10:39 10

5.2 •

Exemples de graphes

257

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Un graphe est

 planaire

 si aucun de ses arcs ne se coupent. Il est impossible par
exemple de relier 3 puits vers 3 maisons sans que les arcs ne se coupent, chaque
puits étant relié à chacune des maisons.

Remarques

 : dans les graphes non orientés, on parle quelquefois de chaîne au
lieu de chemin et de chaîne simple pour un chemin simple. Le terme arête est
aussi utilisé à la place d’arc. Le terme de cycle indique un circuit simple
orienté.

Un graphe non orienté peut toujours être considéré comme un graphe orienté où
les relations symétriques sont explicitement mentionnées.

5.2 EXEMPLES DE GRAPHES

Exemple 1

 : Un réseau de communication (routier, aérien, électrique, d’alimentation
en eau, etc.) entre différents lieux peut être schématisé sous forme d’un graphe
comme l’indique la Figure 142. Le lieu peut être une ville ; il peut aussi indiquer
différents carrefours ou places dans une ville. Le graphe est symétrique : les rela-
tions existent dans les deux sens. On peut aller par exemple de Rennes vers Nantes
ou de Nantes vers Rennes. Ceci ne serait pas vrai s’il y avait par exemple des sens
interdits (cas de la circulation dans une ville).

Exemple 2

 : ordonnancement de tâches (graphe orienté sans cycle)
La construction d’un complexe immobilier, ou plus simplement d’une maison, d’un
appareil compliqué (fusée par exemple) s’effectue en suivant un ordre bien précis
dans l’accomplissement des différents travaux. Pour commencer certains travaux, il
faut que d’autres soient terminés. Certains travaux peuvent cependant se réaliser en
parallèle. Le graphe peut être valué, et certains travaux sont dits critiques, car si on
prend du retard pour ceux-ci, le projet en entier sera retardé. Pour des travaux en
parallèle, le plus long chemin est critique ; pour les autres, il y a une certaine latitude
qui ne retarde pas le projet.

Nantes

Brest St-Brieuc

Quimper Vannes

Rennes

St-Malo

Figure 142 Un réseau de communication.

06Chap_05 Page 257 Samedi, 17. janvier 2004 10:39 10

258 5

•

Les graphes

Le graphe présenté Figure 143 est un graphe d’ordonnancement non valué. Dans
un but pédagogique, on conseille d’étudier les différentes notions dans l’ordre
indiqué par le graphe, pour finalement aboutir au diplôme. En fait, comme les
notions sont très imbriquées, il est difficile d’établir un ordre séquentiel des cours.
Le graphe est orienté sans cycle

Exemple 3

 : un labyrinthe
Un labyrinthe peut être représenté par un graphe comme l’indique la Figure 144.
L’entrée se fait en A, la sortie en H. Chaque carrefour présentant un choix de
chemins est un sommet.

Exemple 4

 : un programme peut être considéré comme un graphe orienté. Les
sommets représentent les actions ; les arcs représentent l’enchaînement des actions.

Exemple : programme de calcul de la factorielle de n (voir

factorielleIter

 § 1.2.1,
page 4) :

Algorithmique Fichiers Analyse Diplôme

Base de données

Logiciel

Réseaux

Système
d'exploitation

Intelligence
artificielle

Assembleur
Architecture des

ordinateurs

Figure 143 Un graphe d’ordonnancement.

F

E

H

A

B C D

G

A

B
C D

E

F

G

H

Figure 144 Un labyrinthe et son graphe équivalent

06Chap_05 Page 258 Samedi, 17. janvier 2004 10:39 10

5.3 •

Mémorisation des graphes

259

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

int f, i;

f = 1;
for (i=1; i<=n; i++) {
 f = f * i;
}
printf (“%d”, f);

La schématisation est donnée sous forme d’organigramme et sous forme de
graphe. Le graphe est orienté avec cycle.

5.3 MÉMORISATION DES GRAPHES

Suivant le rapport entre le nombre de sommets et le nombre d’arcs, on choisit soit
une mémorisation sous forme de matrice (rapport important), soit une mémorisation
sous forme de listes d’adjacence. Dans ce dernier cas, la matrice serait dite creuse
avec beaucoup d’éléments mémorisés inutilement.

5.3.1 Mémorisation sous forme de matrices d’adjacence

Chaque arc (i, j) est représenté par un booléen V (vrai) dans la matrice. Une valeur F
(faux) non notée sur le schéma de la Figure 146 indique une absence de relation
entre le sommet i et le sommet j. Le tableau nomS contient les noms des sommets et
leurs caractéristiques. On peut facilement ajouter des sommets (si ns : nombre de
sommets < nMax : nombre maximum de sommets) et des arcs entre deux sommets à
partir de leur nom.

i <= n

f = 1;
i = 1;

f = f*i;
i = i+1;

printf (“%d”, f);

oui

S1

S2

S3

S4

Figure 145 Programme schématisé sous la forme d’un graphe.

06Chap_05 Page 259 Samedi, 17. janvier 2004 10:39 10

260 5

•

Les graphes

5.3.2 Mémorisation en table de listes d’adjacence

La partie concernant les caractéristiques des sommets est mémorisée dans une table
(voir Chapitre 4) contenant, pour chaque entrée, une liste des sommets que l’on peut
atteindre directement en partant du sommet correspondant à cette entrée. Par
exemple, du sommet 0 (S0), on peut aller au sommet numéro 1 (S1) et au sommet
numéro 2 (S2). On pourrait aussi mémoriser les listes dans un tableau en allocation
contiguë (voir Figure 44, page 88).

5.3.3 Liste des sommets et listes d’adjacence : allocation dynamique

On peut tout allouer dynamiquement : la liste des sommets, et pour chaque
sommet, la liste des sommets successeurs. On n’a plus besoin de définir nMax ;
l’allocation est entièrement dynamique. Le premier champ des listes de successeurs

S0

S2

S1

S3

Figure 146 Mémorisation sous forme d’une matrice d’adjacence.

nomS 0 1 2 3 nMax-1

0 S0 V V

1 S1 V V

2 S2 V

3 S3

nMax-1

1 2 /

0 3 /

1 /

S00

S11

S22

S33

nMax – 1

nomS li

Figure 147 Mémorisation sous forme d’une table de listes d’adjacence.

06Chap_05 Page 260 Samedi, 17. janvier 2004 10:39 10

5.4 •

Parcours d’un graphe

261

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

contient soit le numéro ou le nom du sommet successeur, soit un pointeur sur le
sommet. Le dernier cas facilite l’accès au sommet sinon il faut parcourir la liste des
sommets pour retrouver l’adresse du sommet et ses caractéristiques. Si le graphe
est valué, il faut ajouter le poids de l’arc dans chacun des éléments des listes de
successeurs.

5.4 PARCOURS D’UN GRAPHE

Il s’agit d’écrire un algorithme qui permet d’examiner les sommets une et une seule
fois. La présence de circuits doit être prise en considération de façon à ne pas visiter
plusieurs fois le même sommet. Il faut donc marquer les sommets déjà visités.
Comme pour les arbres (voir § 3.2.4, page 114), on distingue deux types de
parcours : le parcours en profondeur et le parcours en largeur.

Le graphe de la Figure 149 peut être décrit comme suit :

S0 S1 S2 S3 S4 S5 S6 S7 ; liste des sommets
S0: S1 (25) S6 (17) ; de S0, on peut aller en S1 et S6

S 0

S 1

S 2

S 3 /

S 1 S2 /

S 0 S3 /

S 1 /

S0

S1

S2

S3 /

/

/

/

Figure 148 Variantes de la mémorisation sous forme de listes d’adjacence.

15

25
33

25

20

35

S0 S1

S6

S2

S3

S5
S4

S7

17

30

18

22

26

Figure 149 Un graphe valué de distances entre lieux.

06Chap_05 Page 261 Samedi, 17. janvier 2004 10:39 10

262 5

•

Les graphes

S1: S2 (30) S3 (33) S5 (15) ;
S2: S3 (18) ;
S3: S1 (33) ;
S4: S3 (25) S5 (26) S7 (20) ;
S5: S1 (15) S3 (35) ;
S6: S5 (22) ;

5.4.1 Principe du parcours en profondeur d’un graphe

On part d’un sommet donné. On énumère le premier fils de ce sommet (par ordre
alphabétique par exemple), puis on repart de ce dernier sommet pour atteindre le
premier petit-fils, etc. Il s’agit pour chaque sommet visité, de choisir un des
sommets successeurs du sommet en cours, jusqu’à arriver sur une impasse ou un
sommet déjà visité. Dans ce cas, on revient en arrière pour repartir avec un des
successeurs non visité du sommet courant. En partant de S0 sur la Figure 149, on
peut aller en S1 ou S6. On choisit S1. De S1, on peut aller en S2, S3 ou S5. On
choisit S2. De S2, on peut aller en S3, seule possibilité. De S3, on pourrait aller en
S1 mais S1 a déjà été marqué. On revient en arrière sur S2 où il n’y a pas d’autre
alternative. On revient en arrière sur S1 ; reste à essayer S3 et S5. S3 a déjà été visité.
On prend donc le chemin S5. De S5, on ne peut explorer de nouveaux sommets. On
revient en S1, puis S0. Pour S0, il reste une alternative vers S6.

Tous les sommets n’ont pas été visités en partant de S0. Il faut repartir d’un des
sommets non encore visités, et essayer d’explorer en partant de ce sommet. On
repart de S4 qui mène à S7.

L’indentation met en évidence le parcours en profondeur :

S0
 S1
 S2
 S3
 S5
 S6
S4
 S7

L’ordre de parcours en profondeur du graphe est donc le suivant : S0, S1, S2, S3,
S5, S6, S4, S7.

5.4.2 Principe du parcours en largeur d’un graphe

On part d’un sommet donné. On énumère tous les fils (les suivants) de ce sommet,
puis tous les petits-fils non encore énumérés, etc. C’est une énumération par généra-
tion : les successeurs directs, puis les successeurs au 2

e

 degré, etc.
En partant de S0 sur la Figure 149, on visite S1 et S6. De S1, on visite S2, S3 et

S5. De S6, on ne peut pas explorer de nouveaux sommets. De S2, S3 et S5, on ne
peut pas explorer de nouveaux sommets. Il faut également repartir d’un sommet non

06Chap_05 Page 262 Samedi, 17. janvier 2004 10:39 10

5.5 •

Mémorisation (table de listes d’adjacence)

263

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

encore visité et non accessible de S0. On repart avec S4 qui nous conduit à S7. Le
graphe entier a été parcouru.

Parcours en largeur sur l’exemple de la Figure 149 :

Parcours en largeur

 S0 S1 S6 S2 S3 S5
 S4 S7

L’ordre de parcours en largeur du graphe est donc le suivant : S0 S1 S6 S2 S3 S5
S4 S7.

5.5 MÉMORISATION (TABLE DE LISTES D’ADJACENCE)

La mémorisation peut se faire en utilisant la notion de table pour enregistrer les
sommets et leurs caractéristiques. Le type Graphe utilise le type Table. Chaque objet
de table est caractérisé par le nom du sommet (la clé), un booléen marqué qui est
utilisé lors des parcours pour savoir si on est déjà passé par ce sommet et une liste li
des sommets successeurs.

Figure 150

La partie table correspondant au graphe de la Figure 149.
Le détail de l’implémentation est donné sur les figures suivantes.

element

clé marque li

0 S0

1 S1

2 S2

3 S3

4 S4

5 S5

6 S6

7 S7

 n = 8

nMax-1

06Chap_05 Page 263 Samedi, 17. janvier 2004 10:39 10

264 5

•

Les graphes

La partie liste utilise le module de gestion des listes vu au chapitre 2 (voir § 2.3.8,
page 48). Chaque élément de liste d’une entrée de la table contient un pointeur vers le
sommet successeur et le coût de la relation (voir Figure 151). Du sommet S0, on peut
aller en S1 (coût:25) ou en S6 (coût:17).

5.5.1 Le type Graphe

5.5.2 Le fichier d’en-tête des graphes

Le type Graphe peut donc être défini comme suit à partir du type Table et du type
Liste.

/* grapheadj.h graphe avec des listes d'adjacence */

#ifndef GRAPHEADJ_H
#define GRAPHEADJ_H

#include "liste.h"
#include "table.h"

9 8

0

1

2

3

4

nMax n element S0

type Table

f

type Sommet

liste des
successeurs

de S6

5

6

7

8

S1

li
S6

liste des
successeurs

de S1

25 17

objet marque num li

somSuc cout

type Succes

0

f 1

f 6

Figure 151 Implémentation du type Graphe (listes d’adjacence).

06Chap_05 Page 264 Samedi, 17. janvier 2004 10:39 10

5.5 •

Mémorisation (table de listes d’adjacence)

265

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

#define INFINI INT_MAX

typedef struct {
 Objet* objet; // les caractéristiques du sommet (son nom)
 booleen marque; // booléen marqué (pour le parcours)
 int num; // numéro du sommet dans la table
 Liste li; // liste des successeurs du sommet
} Sommet;

// successeur
typedef struct {
 Sommet* somSuc; // pointeur sur le sommet successeur
 int cout;
} Succes;

typedef struct {
 Table* table; // la table représentant le graphe
 booleen value; // le graphe est-il valué ?
} Graphe;

Graphe* creerGraphe (int nMax, booleen value, char* (*toString) (Objet*),
int (*comparer) (Objet*, Objet*));

Graphe* creerGraphe (int nMax, int value);
void detruireGraphe (Graphe* graphe);
void ajouterUnSommet (Graphe* graphe, Objet* sommet);

void ajouterUnArc (Graphe* graphe, Objet* sommetDepart,
 Objet* sommmetArrivee,
 int cout);
Graphe* lireGraphe (FILE* fe, int nMax);

void ecrireGraphe (Graphe* graphe);
void parcoursProfond (Graphe* graphe);
void parcoursLargeur (Graphe* graphe);
void plusCourt (Graphe* graphe, int nsi);

char* toStringSommetCar (Objet* objet);
int comparerSommetCar (Objet* objet1, Objet* objet2);
#endif

5.5.3 Création et destruction d’un graphe

La fonction Graphe* creerGraphe (int nMax, int value); alloue dynamiquement une
table de nMax entrées ; nMax est le nombre maximum de sommets envisagés dans
la table. La fonction razMarque() met par défaut tous les champs marque des
sommets à faux (sommet non visité). Les têtes de listes li de chaque entrée de la
table sont initialisées (listes vides). value indique si le graphe est valué ou non.

/* grapheadj.cpp module sur les graphes mémorisés
 avec une table de listes d'adjacence */

#include "grapheadj.h"

// pointeur sur le nième sommet (élément de la table)
Sommet* getsommet (Graphe* graphe, int n) {
 return (Sommet*) graphe->table->element[n];
}

06Chap_05 Page 265 Samedi, 17. janvier 2004 10:39 10

266 5 • Les graphes

// marquer le sommet n (visité)
void marquersommet(Graphe* graphe, int n) {
 getsommet(graphe,n)->marque = vrai;
}

// le sommet n a-t'il été visité ?
booleen estmarque (Graphe* graphe, int n) {
 return getsommet(graphe,n)->marque;
}

// nom du sommet pointé par sommet
char* nomsommet (Graphe* graphe, Sommet* sommet) {
 return graphe->table->toString (sommet);
}

// nom du nième sommet
char* nomsommet (Graphe* graphe, int n) {
 return nomsommet (graphe, getsommet(graphe, n));
}

// nombre de sommets dans le graphe
int nbsommet (Graphe* graphe) {
 return graphe->table->n;
}

// remise à faux du tableau marqué (pour les parcours de graphe)
static void razMarque (Graphe* graphe) {
 for (int i=0; i<nbsommet(graphe); i++) getsommet(graphe,i)->marque = faux;
}

// créer et initialiser un graphe avec nMax sommets
Graphe* creerGraphe (int nMax, booleen value, char* (*toString) (Objet*),

 int (*comparer) (Objet*, Objet*)) {
 Graphe* graphe = new Graphe();
 graphe->table = creerTable (nMax, toString, comparer);
 graphe->value = value;
 return graphe;
}

// créer et initialiser un graphe avec nMax sommets
// par défaut, les sommets sont des chaînes de caractères
Graphe* creerGraphe (int nMax, booleen value) {
 return creerGraphe (nMax, value, toStringSommetCar, comparerSommetCar);
}

La fonction detruireGraphe() effectue le travail inverse de creerGraphe(), en
désallouant les listes de chaque entrée li de la table, et en désallouant la table des
sommets du graphe.

void detruireGraphe (Graphe* graphe) {
 Table* table = graphe->table;
 for (int i=0; i<table->n; i++) {
 Sommet* sommet = getsommet (graphe,i);
 detruireListe (&sommet->li);
 }
 detruireTable (table);
}

06Chap_05 Page 266 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 267
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

5.5.4 Insertion d’un sommet ou d’un arc dans un graphe

La fonction ajouterUnSommet() ajoute au graphe, le sommet objet. Cet ajout est
sous-traité à insererDsTable() (voir § 4.1.3, page 200).

void ajouterUnSommet (Graphe* graphe, Objet* objet) {
 Sommet* sommet = new Sommet();
 sommet->objet = objet;
 sommet->marque = faux;
 Table* table = graphe->table;
 sommet->num = lgTable (table); // le numéro du sommet
 initListe (&sommet->li);
 insererDsTable (graphe->table, sommet);
}

La fonction ajouterUnArc() ajoute au graphe, un arc entre les sommets de nom
somDepart et somArrivee. La recherche du nom s’effectue grâce à la fonction acces-
Sequentiel() de recherche séquentielle dans une table. Un élément de type Succes
(successeur) est créé, rempli et inséré en fin de la liste des successeurs de somDepart
(voir Figure 151).

// ajouter un arc entre deux objets (deux villes par exemple)
void ajouterUnArc (Graphe* graphe, Objet* sommetDepart,
 Objet* sommetArrivee, int cout) {
 // rechercher un pointeur sur le sommet de départ
 Sommet d;
 d.objet = sommetDepart;
 Sommet* pSomD = (Sommet*) accesSequentiel (graphe->table, &d);
 if (pSomD == NULL) {
 printf ("Sommet %s inconnu\n", nomsommet(graphe, &d)); return;
 }

 // rechercher un pointeur sur le sommet d'arrivée
 Sommet a;
 a.objet = sommetArrivee;
 Sommet* pSomA = (Sommet*)accesSequentiel (graphe->table, &a);
 if (pSomA == NULL) {
 printf ("Sommet %s inconnu\n", nomsommet(graphe,&a)); return;
 }

 // enregistrer la relation entre les deux sommets
 Succes* succes = new Succes();
 succes->somSuc = pSomA;
 succes->cout = cout;
 insererEnFinDeListe (&pSomD->li, succes);
}

5.5.5 Écriture d’un graphe (liste d’adjacence)

Écrire les sommets et les relations (arcs) d’un graphe :

void ecrireGraphe (Graphe* graphe) {
 printf ("\n\ngraphe %s\n\n", graphe->value ? "valué" : "non valué");
 for (int i=0; i<nbsommet(graphe); i++) {
 printf ("%s ", nomsommet (graphe,i));
 }
 printf (";\n");

06Chap_05 Page 267 Samedi, 17. janvier 2004 10:39 10

268 5 • Les graphes

 for (int i=0; i<nbsommet(graphe); i++) {
 Sommet* sommet = getsommet (graphe,i);
 Liste* li = &sommet->li;
 printf ("%s : ", nomsommet (graphe,i));
 ouvrirListe (li);
 while (!finListe (li)) {
 Succes* succes = (Succes*) objetCourant (li);
 printf ("%s ", nomsommet (graphe, succes->somSuc));
 if (graphe->value) printf ("(%3d) ", succes->cout);
 }
 printf (";\n");
 }
}

5.5.6 Parcours en profondeur (listes d’adjacence)

Voir les explications en 5.4.1, page 262.

// Parcours récursif des successeurs de sommet; niveau permet
// de faire une indentation à chaque appel récursif
static void profondeur (Graphe* graphe, Sommet* sommet, int niveau) {
 sommet->marque = vrai;
 for (int i=1; i<niveau; i++) printf ("%5s"," ");
 printf ("%s\n", nomsommet (graphe, sommet));

 Liste* li = &sommet->li;
 ouvrirListe (li);
 while (!finListe (li)) {
 Succes* succes = (Succes*) objetCourant (li);
 if (!succes->somSuc->marque)
 profondeur (graphe, succes->somSuc, niveau+1);
 }
}

// parcours en profondeur de graphe
void parcoursProfond (Graphe* graphe) {
 razMarque (graphe);
 for (int i=0; i<nbsommet(graphe); i++) {
 // sommet : pointeur sur le ième sommet de graphe
 Sommet* sommet = getsommet (graphe, i);
 if (!sommet->marque) profondeur (graphe, sommet, 1);
 }
}

5.5.7 Parcours en largeur (listes d’adjacence)

Comme pour les arbres (voir § 3.2.4.f, page 120), le parcours en largeur nécessite
l’utilisation d’une liste (file d’attente) des sommets à traiter. ajouterDsFile() ajoute
(un pointeur sur) un sommet en fin de la liste. On part d’un sommet non marqué (le
premier par exemple), on l’insère dans la liste. On retire le premier élément de la
liste en le remplaçant par ses successeurs non encore marqués jusqu’à ce que la liste
soit vide. S’il reste un sommet non marqué, on recommence avec ce sommet.

06Chap_05 Page 268 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 269
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// ajouter sommet dans la file
static void ajouterDsFile (Liste* file, Sommet* sommet) {
 sommet->marque = vrai;
 Succes* succes = new Succes();
 succes->somSuc = sommet;
 insererEnFinDeListe (file, succes);
}

// effectuer un parcours en largeur du graphe
void parcoursLargeur (Graphe* graphe) {
 printf ("\nParcours en largeur\n");
 razMarque (graphe);
 Liste* file = creerListe();
 for (int i=0; i<nbsommet (graphe); i++) {
 // somDepart : pointeur sur le sommet de départ
 Sommet* somDepart = getsommet (graphe, i);
 if (!somDepart->marque) {
 printf ("\n %s ", nomsommet (graphe, somDepart));
 ajouterDsFile (file, somDepart);

 while (!listeVide (file)) {
 Succes* succes = (Succes*) extraireEnTeteDeListe (file);
 somDepart = succes->somSuc;

 // remplacer dans la file le sommet de départ par ses successeurs
 Liste* li = &pSomD->li;
 ouvrirListe (li);
 while (!finListe (li)) {
 succes = (Succes*) objetCourant (li);
 Sommet* somSuc = succes->somSuc;
 if (!somSuc->marque) {
 printf ("%s ", nomsommet (graphe, somSuc));
 ajouterDsFile (file, somSuc);
 }
 } // while
 } // while

 } // if
 } // for
}

5.5.8 Plus court chemin en partant d’un sommet

Il s’agit de trouver le plus court chemin pour aller d’un sommet vers les autres
sommets. Cette méthode est connue sous le terme d’algorithme de Dijkstra (les
coûts doivent être >= 0). Sur le graphe de la Figure 149, les plus courts chemins et
leur coût en partant du sommet initial S0 sont les suivants :

Plus court chemin pour aller de S0 à :
 S1 (cout = 25) : S0, S1
 S2 (cout = 55) : S0, S1, S2
 S3 (cout = 58) : S0, S1, S3
 S5 (cout = 39) : S0, S6, S5
 S6 (cout = 17) : S0, S6
De S0, on ne peut pas aller en S4, ni en S7.

06Chap_05 Page 269 Samedi, 17. janvier 2004 10:39 10

270 5 • Les graphes

Les fonctions tousMarque(), dMin() et ecrireResultats() sont des fonctions utilisées
dans la fonction de calcul du plus court chemin. Les structures de données de la mémo-
risation du graphe sont celles des Figures 150 et 151.

// fournir vrai si tous les sommets du graphe G
// sont marqués, faux sinon
static booleen tousMarque (Graphe* graphe) {
 int i = 0;
 while (i < nbsommet(graphe) && estmarque (graphe,i)) i++;
 return i >= nbsommet (graphe);
}

d est un tableau contenant le plus court chemin entre un sommet nsi (numéro du
sommet initial) et chacun des autres sommets. d[0] est la valeur du plus court chemin
de nsi à 0; d[1] la valeur du plus court de nsi à 1, etc. La fonction dMin() fournit le rang
dans d de la plus petite valeur de d correspondant à un sommet non marqué.

// retourner l'indice de l'élément non marqué ayant le d[i] minimum
static int dMin (Graphe* graphe, int* d) {
 int min = INFINI;
 int nMin = 0;
 for (int i=0; i<nbsommet(graphe); i++) {
 if (!estmarque (graphe,i)) {
 if (d[i] <= min) { min = d[i]; nMin = i; }
 }
 }
 return nMin;
}

La fonction ecrireResultats() écrit pour un sommet de départ nsi, le chemin le
plus court entre nsi et les autres sommets. d[i] indique la valeur du chemin le plus
court entre le sommet nsi et le sommet i (i != nsi). Si d[i] = INFINI (le plus grand
entier noté * sur la Figure 152), c’est par convention qu’il n’y a pas de chemin de nsi
à i. pr[i] indique quel est le sommet d’où on vient (avant-dernière étape) en prenant
le chemin le plus court pour arriver à i.

Exemple :

Figure 152 Plus court chemin en partant de S2.

Sommet d pr

0 S0 * 2

1 S1 51 3

nsi = 2 S2 0 2

3 S3 18 2

4 S4 * 2

5 S5 66 1

6 S6 * 2

7 S7 * 2

06Chap_05 Page 270 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 271
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Pour aller du sommet S2 au sommet S3, le plus court chemin a pour valeur 18;
pour aller de S2 à S5, le plus court chemin est 66. Pour aller de S2 à S4, il n’y a pas
de chemin (valeur INFINI notée par une *). Pour aller de S2 à S2, le coût est 0.

Le tableau pr permet de reconstituer le chemin en partant du sommet d’arrivée.
Pour aller de S2 vers S5, le sommet précédant l’arrivée est le sommet 1 (pr[5]).
Pour aller de S2 vers S1, le sommet précédant l’arrivée est le sommet 3 (pr[1]).
Pour aller de S2 vers S3, le sommet précédant l’arrivée est le sommet 2 (pr[3]).
Le chemin de S2 à S5 est donc S2, S3, S1, S5.

La fonction ecrireResultats() écrit les valeurs des tableaux d et pr, et donne
ensuite les chemins de l’arrivée vers le départ nsi pour tous les sommets différents
de nsi et s’il existe un chemin (d[i] != INFINI).

nsi S2
 S0 : * S2
 S1 : 51 S3
 S2 : 0 S2
 S3 : 18 S2
 S4 : * S2
 S5 : 66 S1
 S6 : * S2
 S7 : * S2

Plus court chemin (en partant de la fin) :
pour aller de S2 à :
 S1 (cout = 51) : S1, S3, S2
 S3 (cout = 18) : S3, S2
 S5 (cout = 66) : S5, S1, S3, S2

static void ecrireResultats (Graphe* graphe, int nsi, int* d, int* pr) {
 printf ("\nPlus court chemin (en partant de la fin) :\n");
 printf ("pour aller de %s à :\n", nomsommet(graphe,nsi));
 for (int i=0; i<nbsommet(graphe); i++) {
 if ((i!=nsi) && (d[i] != INFINI)) {
 printf (" %s (cout = %d) : %s", nomsommet(graphe,i),
 d[i], nomsommet(graphe,i));
 int j = i;
 while (pr [j] != nsi) {
 printf (", %s", nomsommet (graphe, pr[j]));
 j = pr [j];
 }
 printf (", %s\n", nomsommet (graphe, pr[j]));
 }
 }
 printf ("\n");
}

06Chap_05 Page 271 Samedi, 17. janvier 2004 10:39 10

272 5 • Les graphes

La fonction void plusCourt (Graphe* graphe, int nsi) ; réalise le calcul du plus
court chemin du graphe en partant du sommet nsi vers tous les autres sommets. La
fonction utilise un tableau d (d[i] : plus court chemin entre nsi et i), et un tableau pr
(qui indique le sommet précédemment visité pour arriver en i).

Si nsi vaut 0 (S0), au départ d et pr ont les valeurs suivantes sur l’exemple de la
Figure 149 :

 d pr
V 0 : 0 0 S0 visité
F 1 : 25 0 SOS1 : 25 arc du graphe
F 2 : * 0
F 3 : * 0
F 4 : * 0
F 5 : * 0
F 6 : 17 0 SOS6 : 17 arc du graphe
F 7 : * 0

On détermine le rang m du plus petit de d[i] non marqué soit : 6. On examine si en
partant de S6, on peut trouver des chemins plus courts que ceux jusqu’à présent réperto-
riés. De S6, on peut aller en S5 (coût : 17+22=39 meilleur que ce que l’on connaît pour
S5 qui est * donc inaccessible). Le sommet précédent pour arriver en S5 est donc 6 (S6).

nsi = 0, m = 6
 d pr
V 0 : 0 0
F 1 : 25 0
F 2 : * 0
F 3 : * 0
F 4 : * 0
F 5 : 39 6 pour arriver en 5, il faut passer par 6
V 6 : 17 0 S6 visité
F 7 : * 0

On détermine à nouveau le rang m du plus petit de d[i] non marqué soit : 1. On
examine si en partant de S1, on peut trouver des chemins plus courts que ceux
jusqu’à présent répertoriés. De S1, on peut aller en :

25
S0 S1

S 6

17

Figure 153 Recherche du plus court chemin : étape initiale.

25
S0 S1

S6

17

S5
22

25

39

Figure 154 Plus court chemin : étape 1.

06Chap_05 Page 272 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 273
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

– S2 (coût : 25+30=55 meilleur que ce que l’on connaît pour S2 qui est * donc inac-
cessible) ; le sommet précédent pour arriver en S2 est donc 1 (S1),

– S3 (coût : 25+33=58 meilleur que ce que l’on connaît pour S3 qui est * donc inac-
cessible) ; le sommet précédent pour arriver en S3 est donc 1 (S1),

– S5 (coût : 25+15=40 supérieur au coût déjà connu 39, donc non retenu).

nsi = 0, m = 1
 d pr
V 0 : 0 0
V 1 : 25 0 S1 visité
F 2 : 55 1 pour arriver en 2, il faut passer par 1
F 3 : 58 1 pour arriver en 3, il faut passer par 1
F 4 : * 0
F 5 : 39 6
V 6 : 17 0
F 7 : * 0

On détermine à nouveau le rang du plus petit de d[i] non marqué soit : 5. De S5,
on peut aller vers S1 (déjà marqué) ou vers S3 par un chemin plus long. Le sommet
5 est marqué.

On détermine à nouveau le rang du plus petit de d[i] non marqué soit : 2. De S2,
on peut aller vers S3 par un chemin plus long. Le sommet 2 est marqué.

On détermine à nouveau le rang du plus petit de d[i] non marqué soit : 3. De S3,
on peut aller vers S1 déjà marqué. Le sommet 3 est marqué.

Les sommets 4 et 7 sont inaccessibles (noté *) en partant de S0.

// plus court chemin en partant du sommet nsi
void plusCourt (Graphe* graphe, int nsi) {
 // allocation dynamique des tableaux d et pr
 int* d = (int*) malloc (sizeof (int) * nbsommet(graphe));
 int* pr = (int*) malloc (sizeof (int) * nbsommet(graphe));

 // initialisation par défaut de d et pr
 razMarque (graphe);
 for (int i=0; i<nbsommet(graphe); i++) {
 d [i] = INFINI;
 pr [i] = nsi;
 }
 d [nsi] = 0;

25
S0 S1

S6

1 7

S522 39

S2

S3

3 0

33

55

58

Figure 155 Plus court chemin : étape 2.

06Chap_05 Page 273 Samedi, 17. janvier 2004 10:39 10

274 5 • Les graphes

 // initialisation de d et pr en fonction de graphe
 Liste* li = &(getsommet(graphe,nsi)->li);
 ouvrirListe (li);
 while (!finListe (li)) {
 Succes* succes = (Succes*) objetCourant (li);
 int i = succes->somSuc->num;
 //printf ("num %d\n", i);
 d [i] = succes->cout;
 }

 printf ("NSI : %d\n", nsi);
 marquersommet (graphe,nsi); // marquer NSI

 while (!tousMarque (graphe)) {
 int m = dMin (graphe, d); // élément minimum non marqué de d
 marquersommet (graphe, m);

 if (d [m] != INFINI) {
 li = &getsommet(graphe,m)->li;
 ouvrirListe (li);
 while (!finListe (li)) {
 Succes* succes = (Succes*) objetCourant (li);
 int k = succes->somSuc->num;
 if (!estmarque (graphe,k)) {
 int v = d [m] + succes->cout;
 if (v < d [k]) {
 d [k] = v;
 pr [k] = m;
 }
 }
 }
 }
 }
 ecrireResultats (graphe, nsi, d, pr);
}

5.5.9 Création d’un graphe à partir d’un fichier

L’initialisation d’un graphe peut se faire à partir d’une description contenue dans un
fichier. lireGraphe() initialise le graphe, lit les noms des sommets et des relations
entre ces sommets pour construire le graphe. La fonction utilise ajouterUnSommet()
et ajouterUnArc() vues précédemment. lireUnMot() effectue la lecture d’un nom de
sommet en ignorant les espaces avant et après le nom.

Ce programme est le même que pour le test des graphes mémorisés sous forme de
matrices (ci-après). Les seules différences sont repérées par la variable de compila-
tion MATRICE.

/* liregraphe.cpp créer un graphe à partir d'une description
 du graphe faite dans un fichier
 pour liste d'adjacence ou matrices
 suivant la variable de compilation MATRICE */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

06Chap_05 Page 274 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 275
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

#ifndef MATRICE
#include "grapheadj.h"
#else
#include "graphemat.h"
typedef GrapheMat Graphe;
#endif

typedef char NomSom [20];
int c; // un caractère lu en avance dans lireUnMot

// ignorer les blancs
void lireBlancs (FILE* fe) {
 while (((c==' ') || (c=='\n') || (c==13)) && !feof(fe)) {
 c = getc(fe);
 }
}

// lire un nom de sommet en ignorant les espaces
void lireUnMot (FILE* fe, char* chaine) {
 char* pCh = chaine;

 //printf ("Debut lireUnMot %c %d\n", c, c);
 lireBlancs (fe); // blancs avant le mot
 while (isalpha(c) || isdigit(c)) {
 *pCh++ = (char) c;
 //printf ("-- %c %d\n", c, c);
 c = getc(fe);
 }
 *pCh = 0;
 lireBlancs (fe); // blancs après le mot
 //printf ("Fin lireUnMot %s\n", chaine); getchar();
}

Si les sommets sont suivis de valeurs entre parenthèses, le graphe est déclaré
valué sinon le graphe n’est pas valué (voir les fichiers correspondant au graphe non
valué et valué de la Figure 149).

// fournir un pointeur sur un graphe construit
// à partir d'un fichier fe de données
// value = vrai si le Graphe est valué
Graphe* lireGraphe (FILE* fe, int nMaxSom) {
 booleen value = faux;
 #ifndef MATRICE
 Graphe* graphe = creerGraphe (nMaxSom, faux);
 #else
 Graphe* graphe = creerGrapheMat (nMaxSom, faux);
 #endif

Graphe non valué
S0 S1 S2 S3 S4 S5 S6 S7 ;
S0 : S1 S6 ;
S1 : S2 S3 S5 ;
S2 : S3 ;
S3 : S1 ;
S4 : S3 S5 S7 ;
S5 : S1 S3 ;
S6 : S5 ;

Graphe valué
S0 S1 S2 S3 S4 S5 S6 S7 ;
S0 : S1 (25) S6 (17) ;
S1 : S2 (30) S3 (33) S5 (15) ;
S2 : S3 (18) ;
S3 : S1 (33) ;
S4 : S3 (25) S5 (26) S7 (20) ;
S5 : S1 (15) S3 (35) ;
S6 : S5 (22) ;

06Chap_05 Page 275 Samedi, 17. janvier 2004 10:39 10

276 5 • Les graphes

 // lire les noms des sommets
 c = getc(fe); // c global
 while (c != ';') {
 char* somD = (char*) malloc (20);
 lireUnMot (fe, somD);
 ajouterUnSommet (graphe, somD);
 }

 while (c != EOF) {
 c = getc(fe); // passe ;
 NomSom somD;

 lireUnMot (fe, somD); // lit le sommet de départ
 if (c != ':') {
 if (c != EOF) printf ("Manque : %c (%d)\n", c,c);
 graphe->value = value;
 return graphe;
 }

 c = getc(fe);
 while (c != ';') {
 NomSom somA;
 lireUnMot (fe, somA); // lit les sommets d'arrivée
 int cout;
 if (c == '(') {
 value = vrai; // si sommet suivi de (: S1(25)
 fscanf (fe, "%d", &cout);
 c = getc (fe); // passer)
 if (c != ')') printf ("Manque)\n");
 c = getc (fe);
 lireBlancs (fe); // prochain à analyser
 //printf ("cout %d\n", cout);
 } else {
 cout = 0;
 }
 ajouterUnArc (graphe, somD, somA, cout);
 }
 }
 graphe->value = value;
 return graphe;
}

5.5.10 Menu de test des graphes (listes d’adjacence et matrices)

Le menu suivant permet de créer un graphe, d’ajouter des sommets ou des arcs (rela-
tions) à ce graphe, d’afficher les parcours en profondeur ou en largeur, et de calculer
les plus courts chemins en partant des différents sommets du graphe.

/* ppgraphe.cpp pour listes et matrices
 MATRICE permet de compiler l'un ou l'autre */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#ifndef MATRICE
#include "grapheadj.h"
typedef char NomSom [20]; // défini dans graphemat.h
#else
#include "graphemat.h"
typedef GrapheMat Graphe;
#endif

06Chap_05 Page 276 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 277
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

int menu () {
 #ifndef MATRICE
 printf ("\n\nGRAPHES avec des listes d'adjacence\n\n");
 #else
 printf ("\n\nGRAPHES avec matrices\n\n");
 #endif
 printf ("0 - Fin du programme\n");
 printf ("1 - Création à partir d'un fichier\n");
 printf ("\n");
 printf ("2 - Initialisation d'un graphe vide\n");
 printf ("3 - Ajout d'un sommet\n");
 printf ("4 - Ajout d'un arc\n");
 printf ("\n");
 printf ("5 - Liste des sommets et des arcs\n");
 printf ("6 - Destruction du graphe\n");
 printf ("7 - Parcours en profondeur d'un graphe\n");
 printf ("8 - Parcours en largeur d'un graphe\n");
 printf ("\n");
 #ifndef MATRICE
 printf ("9 - Les plus courts chemins\n");
 #else
 printf ("9 - Floyd\n");
 printf ("10 - Produit et fermeture\n");
 printf ("11 - Warshall\n");
 #endif
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 printf ("\n");
 return cod;
}

void main () {
 Graphe* graphe;
 booleen fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0:
 fini = vrai;
 break;

 case 1: { // création à partir d'un fichier
 printf ("Nom du fichier contenant le graphe ? ");
 char nomFe [50];
 //scanf ("%s", nomFe);
 strcpy (nomFe, "graphe1.dat");
 FILE* fe = fopen (nomFe, "r");
 if (fe == NULL) {
 perror (nomFe);
 } else {
 graphe = lireGraphe (fe, 20); // 20 sommets maximum
 fclose (fe);
 }
 } break;

06Chap_05 Page 277 Samedi, 17. janvier 2004 10:39 10

278 5 • Les graphes

 case 2: { // création d’un graphe vide
 printf ("Nombre maximum de sommets ? ");
 int nMaxSom; scanf ("%d", &nMaxSom);
 printf ("0) graphe valué; 1) non valué ? ");
 int value; scanf ("%d", &value);
 #ifndef MATRICE
 graphe = creerGraphe (nMaxSom, value);
 #else
 graphe = creerGrapheMat (nMaxSom, value);
 #endif
 } break;

 case 3: { // ajouter un sommet
 printf ("Nom du sommet à insérer ? ");
 NomSom somD; scanf ("%s", somD);
 ajouterUnSommet (graphe, somD);
 } break;

 case 4: { // ajouter un arc
 printf ("Nom du sommet de départ ? ");
 NomSom somD; scanf ("%s", somD);
 printf ("Nom du sommet d'arrivée ? ");
 NomSom somA; scanf ("%s", somA);
 int cout;
 if (graphe->value) {
 printf ("Cout de la relation ? ");
 scanf ("%d", &cout);
 } else {
 cout = 0;
 }
 ajouterUnArc (graphe, somD, somA, cout);
 } break;

 case 5:
 ecrireGraphe (graphe);
 break;

 case 6:
 detruireGraphe (graphe);
 break;

 case 7:
 parcoursProfond (graphe);
 break;

 case 8:
 parcoursLargeur (graphe);
 break;

 #ifndef MATRICE
 case 9:
 if (graphe->value) {
 printf ("\nLes plus courts chemins\n\n");
 for (int i=0; i<graphe->table->n; i++) {
 plusCourt (graphe, i); getchar();
 }
 } else {
 printf ("Graphe non valué\n");
 }
 break;
 #else

06Chap_05 Page 278 Samedi, 17. janvier 2004 10:39 10

5.5 • Mémorisation (table de listes d’adjacence) 279
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 case 9:
 if (graphe->value) {
 printf ("\nLes plus courts chemins\n\n");
 floyd (graphe);
 } else {
 printf ("Graphe non valué\n");
 }
 break;

 case 10:
 produitEtFermeture (graphe);
 break;

 case 11:
 warshall (graphe);
 break;

 #endif

 } // switch

 if (!fini) {
 printf ("\n\nTaper Return pour continuer\n");
 getchar();
 }
 }
}

Exemple d’interrogation concernant les graphes :

GRAPHES avec des listes d'adjacence

0 - Fin du programme
1 - Création à partir d'un fichier

2 - Initialisation d'un graphe vide
3 - Ajout d'un sommet
4 - Ajout d'un arc

5 - Liste des sommets et des arcs
6 - Destruction du graphe
7 - Parcours en profondeur d'un graphe
8 - Parcours en largeur d'un graphe

9 – Les plus courts chemins

Votre choix ? 5

graphe valué

S0 S1 S2 S3 S4 S5 S6 S7 ;
S0 : S1 (25) S6 (17) ;

06Chap_05 Page 279 Samedi, 17. janvier 2004 10:39 10

280 5 • Les graphes

S1 : S2 (30) S3 (33) S5 (15) ;
S2 : S3 (18) ;
S3 : S1 (33) ;
S4 : S3 (25) S5 (26) S7 (20) ;
S5 : S1 (15) S3 (35) ;
S6 : S5 (22) ;
S7 : ;

Pour obtenir les plus courts chemins de tous les sommets vers tous les autres
sommets, il suffit d’appeler la fonction de calcul du plus court chemin avec pour
sommet initial S0, puis S1, etc. Les résultats sont donnés ci-dessous en chemin
inverse (du sommet d’arrivée vers le sommet de départ).

pour aller de S0 à :
 S1 (cout = 25) : S1, S0
 S2 (cout = 55) : S2, S1, S0
 S3 (cout = 58) : S3, S1, S0
 S5 (cout = 39) : S5, S6, S0
 S6 (cout = 17) : S6, S0

pour aller de S1 à :
 S2 (cout = 30) : S2, S1
 S3 (cout = 33) : S3, S1
 S5 (cout = 15) : S5, S1

pour aller de S2 à :
 S1 (cout = 51) : S1, S3, S2
 S3 (cout = 18) : S3, S2
 S5 (cout = 66) : S5, S1, S3, S2

pour aller de S3 à :
 S1 (cout = 33) : S1, S3
 S2 (cout = 63) : S2, S1, S3
 S5 (cout = 48) : S5, S1, S3

pour aller de S4 à :
 S1 (cout = 41) : S1, S5, S4
 S2 (cout = 71) : S2, S1, S5, S4
 S3 (cout = 25) : S3, S4
 S5 (cout = 26) : S5, S4
 S7 (cout = 20) : S7, S4

06Chap_05 Page 280 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 281
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

pour aller de S5 à :
 S1 (cout = 15) : S1, S5
 S2 (cout = 45) : S2, S1, S5
 S3 (cout = 35) : S3, S5

pour aller de S6 à :
 S1 (cout = 37) : S1, S5, S6
 S2 (cout = 67) : S2, S1, S5, S6
 S3 (cout = 57) : S3, S5, S6
 S5 (cout = 22) : S5, S6

5.6 MÉMORISATION SOUS FORME DE MATRICES

Voir § 5.3.1, page 259 : mémorisation sous forme de matrices d’adjacence.

5.6.1 Le fichier d’en-tête du module des graphes (matrices)

Une structure de type GrapheMat mémorisée sous forme d’une matrice contient :

• les variables n (nombre réel de sommets), nMax (nombre maximum de sommets)
et value (vrai si le graphe est valué),

• les tableaux nécessaires à la mémorisation du graphe : un tableau nomS des noms
des sommets, un tableau element de booléens indiquant les relations entre les
sommets, un tableau valeur indiquant le coût des relations, un tableau marque pour
le parcours du graphe, voir Figure 146, page 260.

0 1 2 3 4 1 2 3 4 5

S0

S1

S2

S3

0

1

2

3

4

nomS element

V

V

V

V

V

0

1

2

3

4

marquevaleur

type GrapheMat

Figure 156 Le type GrapheMat.

06Chap_05 Page 281 Samedi, 17. janvier 2004 10:39 10

282 5 • Les graphes

Les prototypes des fonctions sont les mêmes que pour le type Graphe mémorisé
sous forme de listes d’adjacence. Cependant la création d’un graphe se fait pour une
matrice avec creerGrapheMat() ; la fonction PlusCourt() est remplacée par la fonction
Floyd() et quelques nouvelles fonctions sont ajoutées.

/* graphemat.h
 pour la gestion de graphes mémorisés sous forme de matrices */

#ifndef GRAPHEMAT_H
#define GRAPHEMAT_H

#include <stdio.h>

typedef int booleen;
#define faux 0
#define vrai 1
typedef char NomSom[20]; // nom d'un sommet
#define INFINI INT_MAX

typedef int* Matrice;

typedef struct {
 int n; // nombre de sommets
 int nMax; // nombre max de sommets
 booleen value; // graphe valué ou non
 NomSom* nomS; // noms des sommets
 Matrice element; // existence d'un arc (i, j)
 Matrice valeur; // cout de l'arc (i, j)
 booleen* marque; // sommet marqué (visité) ou non
} GrapheMat;

GrapheMat* creerGrapheMat (int nMax, int value);
void detruireGraphe (GrapheMat* graphe);
void ajouterUnSommet (GrapheMat* graphe, NomSom nom);
void ajouterUnArc (GrapheMat* graphe, NomSom somD,

NomSom somA, int cout);
GrapheMat* lireGraphe (FILE* fe, int nMaxSom);
void ecrireGraphe (GrapheMat* graphe);

void parcoursProfond (GrapheMat* graphe);
void parcoursLargeur (GrapheMat* graphe);
void floyd (GrapheMat* graphe);
void produitEtFermeture (GrapheMat* graphe);
void warshall (GrapheMat* graphe);

#endif

5.6.2 Création et destruction d’un graphe (matrices)

La fonction creerGrapheMat() alloue dynamiquement et initialise une structure de
type GrapheMat. Si une relation n’existe pas entre 2 sommets i et j, la valeur est
notée INFINI (plus grand entier sur ordinateur). La fonction detruireGraphe() désal-
loue une structure de type GrapheMat allouée avec creerGrapheMat().

// remise à zéro du tableau de marquage
static void razMarque (GrapheMat* graphe) {

06Chap_05 Page 282 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 283
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 for (int i=0; i<graphe->n; i++) graphe->marque [i] = faux;
}

// création d'une variable de type GrapheMat;
// nMax : nombre maximum de sommets envisagés;
// value : vrai si le graphe est valué
GrapheMat* creerGrapheMat (int nMax, int value) {

 // allocation de graphe
 GrapheMat* graphe = (GrapheMat*) malloc (sizeof (GrapheMat));
 graphe->n = 0;
 graphe->nMax = nMax;
 graphe->value = value;
 graphe->nomS = (NomSom*) malloc (sizeof(NomSom) *nMax);
 graphe->marque = (booleen*) malloc (sizeof(booleen) *nMax);
 graphe->element = (int*) malloc (sizeof(int)*nMax*nMax);
 graphe->valeur = (int*) malloc (sizeof(int)*nMax*nMax);

 // initialisation par défaut
 for (int i=0; i<nMax; i++) {
 for (int j=0; j<nMax; j++) {
 graphe->element [i*nMax+j] = faux;
 graphe->valeur [i*nMax+j] = INFINI;
 }
 }
 for (int i=0; i<nMax; i++) graphe->valeur [i*nMax+i] = 0;
 razMarque (graphe);

 return graphe;
}

// désallocation d'un graphe
void detruireGraphe (GrapheMat* graphe) {
 free (graphe->nomS);
 free (graphe->marque);
 free (graphe->element);
 free (graphe->valeur);
 free (graphe);
}

5.6.3 Insertion d’un sommet ou d’un arc dans un graphe (matrices)

La fonction rang() fournit le rang dans le tableau nomS du nom.

static int rang (GrapheMat* graphe, NomSom nom) {
 int i = 0;
 booleen trouve = faux;

 while ((i<graphe->n) && !trouve) {
 trouve = strcmp (graphe->nomS [i], nom) == 0;
 if (!trouve) i++;
 }
 return trouve ? i : -1;
}

La fonction ajouterUnSommet() ajoute le sommet nom au graphe.

void ajouterUnSommet (GrapheMat* graphe, NomSom nom) {
 if (rang (graphe, nom) == -1) {

06Chap_05 Page 283 Samedi, 17. janvier 2004 10:39 10

284 5 • Les graphes

 if (graphe->n < graphe->nMax) {
 strcpy (graphe->nomS [graphe->n++], nom);
 } else {
 printf ("\nNombre de sommets > %d\n", graphe->nMax);
 }
 } else {
 printf ("\n%s déjà défini\n", nom);
 }
}

La fonction ajouterUnArc() ajoute au graphe un arc entre somD et somA.

void ajouterUnArc (GrapheMat* graphe, NomSom somD, NomSom somA, int cout) {
 int nMax = graphe->nMax;
 int rd = rang (graphe, somD);
 int rg = rang (graphe, somA);
 graphe->element [rd*nMax+rg] = vrai;
 graphe->valeur [rd*nMax+rg] = cout;
}

5.6.4 Lecture d’un graphe (à partir d’un fichier)

La fonction lireGraphe() pour la mémorisation sous forme de matrices est identique
à lireGraphe() (voir § 5.5.9, page 274) déjà vue pour les listes d’adjacence, à
quelques exceptions près (voir ifdef MATRICE). lireGraphe() utilise les fonctions
ajouterUnSommet(), ajouterUnArc() qui sont redéfinies (avec les mêmes proto-
types) pour la mémorisation en matrices. La création du graphe se fait avec creer-
Graphe() ou creerGrapheMat().

5.6.5 Écriture d’un graphe

L’écriture d’un graphe mémorisé sous forme de matrice :

void ecrireGraphe (GrapheMat* graphe) {
 int nMax = graphe->nMax;

 for (int i=0; i<graphe->n; i++) printf ("%s ", graphe->nomS[i]);
 printf (";\n");

 for (int i=0; i<graphe->n; i++) {
 printf ("\n%s : ", graphe->nomS[i]);
 for (int j=0; j<graphe->n; j++) {
 if (graphe->element [i*nMax+j] == vrai) {
 printf ("%s ", graphe->nomS[j]) ;
 if (graphe->value) {
 printf (" (%3d) ", graphe->valeur [i*nMax+j]);
 }
 }
 }
 printf (";");
 }
}

06Chap_05 Page 284 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 285
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

5.6.6 Parcours en profondeur (matrices)

La fonction de parcours en profondeur se réécrit très facilement avec cette nouvelle
structure de données (voir § 5.4.1, page 260 et 5.5.6, page 268).

static void profondeur (GrapheMat* graphe, int numSommet, int niveau) {
 int nMax = graphe->nMax;
 graphe->marque [numSommet] = vrai;
 for (int i=1; i<niveau; i++) printf ("%5s", " ");
 printf ("%s\n", graphe->nomS [numSommet]);

 for (int i=0; i<graphe->n; i++) {
 if ((graphe->element [numSommet*nMax+i] == vrai)
 && !graphe->marque [i]) {
 profondeur (graphe, i, niveau+1);
 }
 }
}

// marque pourrait contenir le numéro d'ordre de visite du sommet;
// -1 si pas visité; numéro d'ordre sinon
void parcoursProfond (GrapheMat* graphe) {
 razMarque (graphe);
 for (int i=0; i<graphe->n; i++) {
 if (!graphe->marque [i]) profondeur (graphe, i, 1);
 }
}

5.6.7 Parcours en largeur (matrices)

Le parcours en largeur nécessite une liste (file d’attente) des éléments à traiter (voir
§ 5.4.2, page 262).

// ajouter le numéro numS du sommet dans la file d'attente file
static void ajouterDsFile (GrapheMat* graphe, Liste* file, int numS) {
 graphe->marque [numS] = vrai;
 Succes* nouveau = (Succes*) malloc (sizeof (Succes));
 nouveau->numSom = numS;
 insererEnFinDeListe (file, nouveau);
}

// effectuer un parcours en largeur du graphe
void parcoursLargeur (GrapheMat* graphe) {
 int nMax = graphe->nMax;

 razMarque (graphe);
 Liste* file = creerListe();

 for (int i=0; i<graphe->n; i++) {
 if (!graphe->marque[i]) {
 printf ("\n %s ", graphe->nomS [i]);
 ajouterDsFile (graphe, file, i);

 while (!listeVide(file)) {
 Succes* succes = (Succes*) extraireEnTeteDeListe (file);
 int s = succes->numSom;

06Chap_05 Page 285 Samedi, 17. janvier 2004 10:39 10

286 5 • Les graphes

 // insérer dans file, les successeurs de s
 for (int j=0; j<graphe->n; j++) {
 if ((graphe->element [s*nMax+j] == vrai) && !graphe->marque[j]) {
 printf (" %s ", graphe->nomS [j]);
 ajouterDsFile (graphe, file, j);
 }
 }
 } // while
 }
 } // for
}

5.6.8 Plus courts chemins entre tous les sommets (Floyd)

Soit le graphe valué de la Figure 149, page 261. À partir du type GrapheMat
(matrice), on peut créer les 2 matrices a et p suivantes indiquant le coût et le dernier
sommet visité. Ainsi a(0,1) = 25 indique le coût de la relation entre S0 et S1 et p(0,1)
= 0 indique le numéro du sommet 0 d’où on vient quand on va de S0 à S1. a(0,2) =
INFINI (noté *) car il n’y a pas de relation directe entre S0 et S2 ; p(0,2) est mis à 0
mais il n’est pas significatif dans ce cas.

a : matrice initiale de coût p : dernier sommet visité
 0 25 * * * * 17 * 0 0 0 0 0 0 0 0
 * 0 30 33 * 15 * * 1 1 1 1 1 1 1 1
 * * 0 18 * * * * 2 2 2 2 2 2 2 2
 * 33 * 0 * * * * 3 3 3 3 3 3 3 3
 * * * 25 0 26 * 20 4 4 4 4 4 4 4 4
 * 15 * 35 * 0 * * 5 5 5 5 5 5 5 5
 * * * * * 22 0 * 6 6 6 6 6 6 6 6
 * * * * * * * 0 7 7 7 7 7 7 7 7

L’algorithme de Floyd envisage pour chaque arc (i, j) si un passage par un
sommet k peut raccourcir la distance entre i et j dans le cas où les chemins (i, k) et
(k, j) existent, ces chemins n’étant pas forcément élémentaires, mais pouvant se
constituer d’un chemin contenant des numéros de sommets inférieurs à k.

Voici ci-dessous les différentes étapes de l’exemple :

Passage par le sommet numéro 0

Comme on ne peut accéder à S0 en partant d’un autre sommet sur l’exemple, la
tentative de trouver des plus courts chemins en passant par S0 échoue.

k

i j

Figure 157 Principe de l’algorithme de Floyd.

06Chap_05 Page 286 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 287
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Passage par le sommet numéro 1
a : matrice de coût p : dernier sommet visité
 0 25 55 58 * 40 17 * 0 0 1 1 0 1 0 0
 * 0 30 33 * 15 * * 1 1 1 1 1 1 1 1
 * * 0 18 * * * * 2 2 2 2 2 2 2 2
 * 33 63 0 * 48 * * 3 3 1 3 3 1 3 3
 * * * 25 0 26 * 20 4 4 4 4 4 4 4 4
 * 15 45 35 * 0 * * 5 5 1 5 5 5 5 5
 * * * * * 22 0 * 6 6 6 6 6 6 6 6
 * * * * * * * 0 7 7 7 7 7 7 7 7

Le passage par le sommet 1 améliore les relations suivantes qui étaient INFINI.
S0-S2 S0-S1-S2 : 55 p[0][2] = p[1][2] = 1 avant dernière étape de S1-S2
S0-S3 S0-S1-S3 : 58 p[0][3] = p[1][3] = 1 avant dernière étape de S1-S3
S0-S5 S0-S1-S5 : 40 p[0][5] = p[1][5] = 1 avant dernière étape de S1-S5
S3-S2 S3-S1-S2 : 63 p[3][2] = p[1][2] = 1 avant dernière étape de S1-S2
S3-S5 S3-S1-S5 : 48 p[3][5] = p[1][5] = 1 avant dernière étape de S1-S5
S5-S2 S5-S1-S2 : 45 p[5][2] = p[1][2] = 1 avant dernière étape de S1-S2

Passage par le sommet numéro 2

La seule relation aboutissant en S2 est une relation directe S1-S2. Le passage par
2 n’apporte pas de nouvelles solutions.

Passage par le sommet numéro 3
a : matrice de coût p : dernier sommet visité
 0 25 55 58 * 40 17 * 0 0 1 1 0 1 0 0
 * 0 30 33 * 15 * * 1 1 1 1 1 1 1 1
 * 51 0 18 * 66 * * 2 3 2 2 2 1 2 2
 * 33 63 0 * 48 * * 3 3 1 3 3 1 3 3
 * 58 88 25 0 26 * 20 4 3 1 4 4 4 4 4
 * 15 45 35 * 0 * * 5 5 1 5 5 5 5 5
 * * * * * 22 0 * 6 6 6 6 6 6 6 6
 * * * * * * * 0 7 7 7 7 7 7 7 7

Le passage par le sommet 3 améliore les relations suivantes qui étaient INFINI :
S2-S1 S2-S3-S1 : 51 p[2][1] = p[3][1] = 3 avant dernière étape de S3-S1
S2-S5 S2-S3-S5 : 66 p[2][5] = p[3][5] = 1 avant dernière étape de S3-S5
S4-S1 S4-S3-S1 : 58 p[4][1] = p[3][1] = 3 avant dernière étape de S3-S1
S4-S2 S4-S3-S2 : 88 p[4][2] = p[3][2] = 1 avant dernière étape de S3-S2

L’étape précédente du chemin S2-S3-S5 est l’étape précédente du chemin S3-S5
soit S1 car p[3][5] vaut 1. De même, le chemin S4-S2 est amélioré en passant par
S3 : S4-S3-S2; cependant S3-S2 se fait en passant par S1, donc l’avant-dernière
étape est 1 pour S4-S2.

S3

S2 S5

S1

Figure 158 Chemin de S2 à S5.

06Chap_05 Page 287 Samedi, 17. janvier 2004 10:39 10

288 5 • Les graphes

Passage par le sommet numéro 4 : pas de nouveaux chemins

Passage par le sommet numéro 5
a : matrice de coût p : dernier sommet visité
 0 25 55 58 * 40 17 * 0 0 1 1 0 1 0 0
 * 0 30 33 * 15 * * 1 1 1 1 1 1 1 1
 * 51 0 18 * 66 * * 2 3 2 2 2 1 2 2
 * 33 63 0 * 48 * * 3 3 1 3 3 1 3 3
 * 41 71 25 0 26 * 20 4 5 1 4 4 4 4 4
 * 15 45 35 * 0 * * 5 5 1 5 5 5 5 5
 * 37 67 57 * 22 0 * 6 5 1 5 6 6 6 6
 * * * * * * * 0 7 7 7 7 7 7 7 7

Passage par le sommet numéro 6
a : matrice de coût p : dernier sommet visité
 0 25 55 58 * 39 17 * 0 0 1 1 0 6 0 0
 * 0 30 33 * 15 * * 1 1 1 1 1 1 1 1
 * 51 0 18 * 66 * * 2 3 2 2 2 1 2 2
 * 33 63 0 * 48 * * 3 3 1 3 3 1 3 3
 * 41 71 25 0 26 * 20 4 5 1 4 4 4 4 4
 * 15 45 35 * 0 * * 5 5 1 5 5 5 5 5
 * 37 67 57 * 22 0 * 6 5 1 5 6 6 6 6
 * * * * * * * 0 7 7 7 7 7 7 7 7

Passage par le sommet numéro 7 : pas de nouveaux chemins.

Les chemins inverses obtenus sont les mêmes que ceux du § 5.5.10, page 280, la
disposition étant la même. Exemples de reconstitution de chemins :

Chemin de S2 à S5 : p (2, 5) = 1; p (2, 1) = 3; p (2, 3) = 2

5.6.9 Algorithme de Floyd

On peut décomposer cet algorithme en différentes fonctions. ecrireEtape() permet
d’écrire les deux matrices a et p après chaque tentative de passage systématique par
le sommet k comme vu précédemment. Si k=-1, il s’agit de l’étape d’initialisation.

static void ecrireEtape (Matrice a, Matrice p, int k, int ns, int nMax) {
 if (k==-1) {
 printf ("Matrices initiales de cout et de dernier sommet visité\n");
 } else {
 printf ("Passage par le sommet numéro %d\n", k);
 }
 for (int i=0; i<ns; i++) {
 for (int j=0; j<ns; j++) {
 if (a [i*nMax+j]==INFINI) {
 printf (" %3s", "*");

S2 S5

S1
S3

Figure 159 Reconstitution du plus court chemin de S2 à S5.

06Chap_05 Page 288 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 289
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 } else {
 printf (" %3d", a [i*nMax+j]);
 }
 }
 printf ("%6s", " ");
 for (int j=0; j<ns; j++) {
 printf ("%3d", p [i*nMax+j]);
 }
 printf ("\n");
 }
 printf ("\n");
}

// écrire les plus courts chemins en consultant les tableaux a et p
static void ecrirePlusCourt (GrapheMat* graphe, Matrice a, Matrice p) {
 int nMax = graphe->nMax;

 printf ("\n\nPlus court chemin (Floyd)\n");
 for (int i=0; i<graphe->n; i++) {
 printf ("pour aller de %s à :\n", graphe->nomS[i]);
 for (int j=0; j<graphe->n; j++) {
 if ((i != j) && (a [i*nMax+j] != INFINI)) {
 printf (" %s (cout = %d) : ",
 graphe->nomS[j], a [i*nMax+j]);
 int k = p [i*nMax+j];
 printf ("%s, %s", graphe->nomS[j], graphe->nomS[k]);
 while (k != i) {
 k = p [i*nMax+k];
 printf (", %s ", graphe->nomS[k]);
 }
 printf ("\n");
 }
 }
 printf ("\n");
 }
 printf ("\n");
}

// initialiser les matrices a et p à partir de graphe
static void initFloyd (GrapheMat* graphe, Matrice* a, Matrice* p, int* ns) {
 int nMax = graphe->nMax;

 Matrice ta = (int*) malloc (sizeof(int)*nMax*nMax);
 Matrice tp = (int*) malloc (sizeof(int)*nMax*nMax);

 *ns = graphe->n;
 for (int i=0; i<graphe->n; i++) {
 for (int j=0; j<graphe->n; j++) {
 ta [i*nMax+j] = graphe->valeur [i*nMax+j];
 tp [i*nMax+j] = i;
 }
 }
 *a = ta;
 *p = tp;
}

// Cœur de l'algorithme : calcul des plus courts chemins
// pour chaque élément de la matrice; on effectue une tentative
// de passage par le kième sommet d'où 3 boucles imbriquées
void floyd (GrapheMat* graphe) {
 Matrice a, p;
 int ns;

06Chap_05 Page 289 Samedi, 17. janvier 2004 10:39 10

290 5 • Les graphes

 int nMax = graphe->nMax;

 initFloyd (graphe, &a, &p, &ns);
 ecrireEtape (a, p, -1, ns, graphe->nMax);

 for (int k=0; k<ns; k++) {
 for (int i=0; i<ns; i++) {
 for (int j=0; j<ns; j++) {
 if ((a [i*nMax+k] != INFINI) &&
 (a [k*nMax+j] != INFINI) &&
 (a [i*nMax+k] + a [k*nMax+j] < a [i*nMax+j])) {
 a [i*nMax+j] = a [i*nMax+k] + a [k*nMax+j];
 p [i*nMax+j] = p [k*nMax+j];
 }
 }
 }
 ecrireEtape (a, p, k, ns, graphe->nMax);
 }

 ecrirePlusCourt (graphe, a, p);
 free (a);
 free (p);
}

5.6.10 Algorithme de calcul de la fermeture transitive

La fermeture transitive permet de connaître l’existence d’un chemin de longueur
quelconque entre 2 sommets i et j.

Si M est la matrice représentant l’existence d’un chemin élémentaire entre i et j,
le produit :
• M2 = M*M représente l’existence d’un chemin de longueur 2 entre i et j ;
• M3 = M*M*M, l’existence d’un chemin de longueur 3.
• S’il y a N sommets, on peut calculer jusqu’à MN (M à la puissance N).

La somme SM des matrices M + M2 + ... + MN représente l’existence d’un
chemin de longueur 1, 2, ... ou N, entre i et j. C’est la fermeture transitive ainsi
appelée car il y a transitivité dans l’existence de chemins : s’il existe un chemin de i
à j, et s’il existe un chemin de j à k, il existe un chemin de i à k.

Exemple du produit booléen :

M2 (1, 1) = M (1, 0) * M (0, 1) 1-0-1
+ M (1, 1) * M (1, 1) 1-1-1
+ M (1, 2) * M (2, 1) 1-2-1
+ M (1, 3) * M (3, 1) 1-3-1

Il existe un chemin de longueur 2 pour aller de 1 à 1 si :

• il existe un chemin de 1 à 0 et de 0 à 1

• ou s’il existe un chemin de 1 à 2 et de 2 à 1

• ou s’il existe un chemin de 1 à 3 et de 3 à 1

06Chap_05 Page 290 Samedi, 17. janvier 2004 10:39 10

5.6 • Mémorisation sous forme de matrices 291
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

M (1, 1) vrai correspondrait à une boucle sur le sommet 1, cas non envisagé dans
ce chapitre.

Figure 160 Produit de matrices.

L’exemple de la Figure 149 peut être représenté sous forme d’une matrice
d’entiers, ou sous forme d’une matrice de booléens.

Nombre de chemins de longueur = 1
 0 1 0 0 0 0 1 0 F V F F F F V F
 0 0 1 1 0 1 0 0 F F V V F V F F
 0 0 0 1 0 0 0 0 F F F V F F F F
 0 1 0 0 0 0 0 0 F V F F F F F F
 0 0 0 1 0 1 0 1 F F F V F V F V
 0 1 0 1 0 0 0 0 F V F V F F F F
 0 0 0 0 0 1 0 0 F F F F F V F F
 0 0 0 0 0 0 0 0 F F F F F F F F

M2 = M*M représente le nombre de chemins de longueur 2 si la matrice M2 est
entière, et l’existence d’un chemin de longueur 2 si M2 est booléenne.

Nombre de chemins de longueur = 2
 0 0 1 1 0 2 0 0 F F V V F V F F
 0 2 0 2 0 0 0 0 F V F V F F F F
 0 1 0 0 0 0 0 0 F V F F F F F F
 0 0 1 1 0 1 0 0 F F V V F V F F
 0 2 0 1 0 0 0 0 F V F V F F F F
 0 1 1 1 0 1 0 0 F V V V F V F F
 0 1 0 1 0 0 0 0 F V F V F F F F
 0 0 0 0 0 0 0 0 F F F F F F F F

M

0 *

1 *

2 *

3 *

0 1 2 3

0

1 * * * * ?

2

3

M PN = M2

06Chap_05 Page 291 Samedi, 17. janvier 2004 10:39 10

292 5 • Les graphes

M2 indique 2 chemins de longueur 2 de :

S0 à S5 : S0-S1-S5 et S0-S6-S5
S1 à S1 : S1-S3-S1 et S1-S5-S1
S1 à S3 : S1-S2-S3 et S1-S5-S3
S4 à S1 : S4-S3-S1 et S4-S5-S1

La somme SM = M + M2 + M3 ... + M8 indique pour chaque i et j, le nombre de
chemins de longueur <= 8 (produit entier), ou l’existence d’un chemin de longueur
<= 8 (produit booléen) entre i et j.

La matrice booléenne SM représente la fermeture transitive :

F V V V F V V F
F V V V F V F F
F V V V F V F F
F V V V F V F F
F V V V F V F V
F V V V F V F F
F V V V F V F F
F F F F F F F F

On voit que pour le graphe de cet exemple, de S0, on peut aller vers S1, S2, S3, S5
et S6 (première ligne de la matrice). De S0, on ne peut pas aller vers S0, S4 ou S7.
La dernière ligne indique que de S7, on ne peut aller nulle part.

Remarque : un autre algorithme plus performant de calcul de la fermeture
transitive existe connu sous le nom d’algorithme de Warshall. Cet algorithme
envisage comme l’algorithme de Floyd un passage par les sommets intermé-
diaires k (de 0 à N-1) pour chaque couple w(i, j) de la matrice. Un chemin
existe entre i et j, s’il existe déjà (w(i, j) est à vrai), ou s’il y a un chemin entre
w(i, k) et w(k, j).

void warshall (GrapheMat* graphe) {
 int ns = graphe->n;
 int nMax = graphe->nMax;
 Matrice w = (int*) malloc (sizeof(int)*nMax*nMax);

 affMat (w, graphe->element, ns, nMax);

 for (int k=0; k<ns; k++) {
 for (int i=0; i<ns; i++) {
 for (int j=0; j<ns; j++) {
 w [i*nMax+j] = w [i*nMax+j] ||
 w [i*nMax+k] && w [k*nMax+j];
 }
 }
 }

 ecrireMat (w, ns, nMax);
 free (w);
}

06Chap_05 Page 292 Samedi, 17. janvier 2004 10:39 10

5.7 • Résumé 293
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Remarque : on retrouve les résultats de l’algorithme de Floyd (voir Passage
par le sommet 6 § 5.6.8, page 288). La fermeture transitive s’identifie à la
matrice de coût A des plus courts chemins en remplaçant INFINI ('*') par
faux, et toutes les autres valeurs par vrai. Il y a une différence pour les
éléments de la diagonale car dans l’algorithme de Floyd, on n’a pas retenu les
plus courts chemins pour aller de i à i ; les éléments de la diagonale ont été
initialisés à 0. Si on veut obtenir les plus courts chemins de longueur diffé-
rente de 0 pour aller de i à i, il faut initialiser la diagonale de la matrice A à
INFINI et non à 0.

Exercice 28 – Fermeture transitive par somme de produits de matrices

Écrire une fonction void produitEtFermeture (GrapheMat* graphe) ; qui à
partir d’un graphe écrit la fermeture transitive du graphe calculée par somme de
produits comme indiqué précédemment. Décomposer le problème en plusieurs
fonctions réalisant le produit et la somme de matrices.

5.6.11 Menu de test des graphes (matrices)

Le menu de test donné pour la mémorisation sous forme de listes d’adjacence (voir
§ 5.5.10, page 276) reste valable (aux ifdef près), les prototypes des fonctions
concernant les graphes sont les mêmes dans les deux cas (listes d’adjacence ou
matrice) : ajouterUnSommet(), ajouterUnArc(), parcoursProfond(), etc.). Le calcul
du plus court chemin est réalisé avec la fonction void plusCourt (Graphe* graphe,
int nsi) ; dans le cas des listes d’adjacences et par la fonction void floyd
(GrapheMat* graphe) ; pour la mémorisation sous forme de matrice. La création du
graphe se fait également avec une fonction au prototype légèrement différent (valeur
de retour).

5.7 RÉSUMÉ

Les graphes sont des structures de données très générales. On peut dire qu’un arbre
est un cas particulier de graphe, et qu’une liste est un cas particulier d’arbre. Il existe
de nombreux algorithmes sur les graphes. Ceux-ci sont examinés dans ce chapitre en
mettant l’accent sur la mémorisation des graphes, l’allocation dynamique, la modu-
larité et la récursivité.

Nous avons vu deux mémorisations possibles des graphes. La première représen-
tation sous forme de listes d’adjacence convient lorsqu’il y a de nombreux sommets
et peu de relations entre ces sommets. Une représentation sous forme de matrices
conduirait à une matrice creuse. La mémorisation sous forme de matrices se fait en
utilisant l’allocation dynamique pour allouer l’espace des matrices et ainsi éviter de
devoir figer un maximum de sommets pour un graphe. Ceci nous a amenés à créer
un nouveau type abstrait de données Graphe et quelques fonctions classiques sur les

06Chap_05 Page 293 Samedi, 17. janvier 2004 10:39 10

294 5 • Les graphes

graphes. Il existe de nombreux algorithmes concernant les graphes et le type Graphe
pourrait facilement être enrichi de nouveaux prototypes de fonctions.

Les parcours de graphes en profondeur et en largeur sont une généralisation des
parcours d’arbres. Il faut cependant veiller à marquer les sommets visités de façon à
ne pas énumérer plusieurs fois le même sommet et à ne pas tourner en rond lorsqu’il
y a présence de cycles.

Un problème classique des graphes consiste à trouver le plus court chemin d’un
sommet vers les autres sommets. Le calcul de la fermeture transitive permet de
connaître l’existence ou non (booléen) d’un chemin de longueur quelconque entre
les couples de sommets.

5.8 CONCLUSION GÉNÉRALE

Les principales structures de données ont été présentées (listes, arbres, tables,
graphes) en précisant à chaque fois leurs mémorisations, les algorithmes de parcours
(énumération des éléments de la structure), de création et de désallocation, plus des
algorithmes spécifiques à chaque structure de données.

Les nombreux exemples traités ont montré que ces différentes structures de
données peuvent se combiner entre elles afin de résoudre ou d’optimiser tel ou tel
aspect d’un programme. Le choix de la bonne structure de données est important,
mais n’est pas toujours évident car il dépend de nombreux critères (nombre
d’éléments, optimisation du temps d’accès ou de l’espace occupé, fréquence des
ajouts, des retraits et des recherches, mémorisation en mémoire centrale ou secon-
daire, etc.). Il convient cependant dans la mesure du possible de définir des modules
réutilisables. Le module de la gestion des listes par exemple est utilisé à maintes
reprises dans les différents chapitres sans devoir replonger à chaque nouvelle appli-
cation dans les détails de l’implémentation.

06Chap_05 Page 294 Samedi, 17. janvier 2004 10:39 10

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Corrigés des exercices

Exercice 1 : boucle sous forme récursive (page 8)

// boucle croissante de d à f, par pas de i (d:début, f:fin)
void

boucleCroissante

 (int d, int f, int i) {
 if (d <= f) {
 printf ("Boucle valeur de n : %d\n", d);

boucleCroissante

 (d+i, f, i);
 }
}

Exercice 2 : Hanoi : calcul du nombre de secondes ou d’années pour déplacer n disques (page 15)

/* dureehanoi.cpp */

#include <stdio.h>

// 1 mouvement = 60 nanosecondes
// écrire le nombre de disques
// et le nombre de secondes pour déplacer les disques
void

ecrireNbs

 (int n, double nbMvt) {
 double dureeEnSecondes = (nbMvt * 60) / 1000000000;
 printf ("nb de disques et de secondes : %2d : %.0f\n",
 n, dureeEnSecondes);
}

void

main

 () {

 // nombre de mouvements pour n disques : 2 à la puissance n
 double nbMvt26 = 1 << 26; // nombre de mouvements pour 26 disques
 double nbMvt27 = 1 << 27;
 double nbMvt28 = 1 << 28;
 double nbMvt29 = 1 << 29;
 double nbMvt30 = 1 << 30;
 double nbMvt31 = (double) 128.*256.*256.*256.;
 double nbMvt32 = (double) 256.*256.*256.*256.;
 double nbMvt64 = (double) 256.*256.*256.*256.*256.*256.*256.*256.;

 ecrireNbs (26, nbMvt26);
 ecrireNbs (27, nbMvt27);
 ecrireNbs (28, nbMvt28);
 ecrireNbs (29, nbMvt29);
 ecrireNbs (30, nbMvt30);
 ecrireNbs (31, nbMvt31);
 ecrireNbs (32, nbMvt32);

 // pour 64 disques
 double nsParAn = (3600 * 24. * 365.); // nombre de secondes par an

07Corriges Page 295 Samedi, 17. janvier 2004 10:39 10

296

Corrigés des exercices

 double dureeEnSecondes = (nbMvt64 * 60) / 1000000000;
 printf ("Nombre d'années pour %.0f mouvements : %.0f\n",

 nbMvt64, dureeEnSecondes / nsParAn);
}

// n 26 27 28 29 30 31 32
// durée en secondes 4 8 16 32 64 129 258

Exercice 3 : dessin d’un arbre (page 19)

Ajouter un paramètre à la fonction

avance()

 permettant de spécifier la couleur du trait :

void avance
(int lg, int x, int y, int angle, int* nx, int* ny, QColor couleur) ;

// dessiner un segment et recommencer récursivement à partir de la fin
// du segment courant en éclatant le segment en nb autres segments
void

dessinArbre

 (int lg, int x, int y, int angle, QColor couleur) {
 int nx, ny;

avance

 (lg, x, y, angle, &nx, &ny, couleur);
 lg = 2*lg / 3;

 couleur = black;
 if (lg > 3) {
 if (lg <= 5) {
 couleur = green; // feuille;
 int n2 = aleat (30);
 if (n2 == 1) {
 couleur = red;
 }
 }

 // ouverture de l'ensemble des nouveaux segments
 // pc : pourcentage d'aléatoire
 int nb = 3 + aleat (3);
 int a = angle;
 int d = ouverture / nb;
 int douv = 1 + (int) (ouverture*pc); // aléatoire ouverture
 int dlg = 1 + (int) (lg*pc); // aléatoire lg

 for (int i=1; i<=nb; i++) {
 a = angle - (ouverture/2) - (d/2) + i*d;
 a = a % 360;
 int deltaOuv = -(douv/2) + aleat (douv);
 int deltaLg = aleat (dlg);

dessinArbre

 (lg + deltaLg, nx, ny, a + deltaOuv, couleur);
 }
 }
}

Exercice 4 : spirale rectangulaire (récursive) (page 30)

/* spirale.cpp */

#include <stdio.h>
#include "ecran.h"

// exécute une boucle de la spirale à chaque appel;
// la longueur du segment tracé croît jusqu'à lgMax
void

spirale

 (int n, int lgMax) {
 if (n < lgMax) {
 avancer (DROITE, n);
 avancer (HAUT , n+1);
 avancer (GAUCHE, n+2);
 avancer (BAS, n+3);
 spirale (n+4, lgMax);
 }
}

void

main

 () {

 initialiserEcran (20, 50);

 couleurCrayon (BLANC);
 crayonEn (10, 25);
 spirale (3, 15);
 afficherEcran ();

 detruireEcran ();
}

07Corriges Page 296 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices

297

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Exercice 5 : module de gestion de piles d’entiers (allocation contiguë) (page 30)

/* pile.cpp */

#include <stdio.h>
#include <stdlib.h>
#include "pile.h"

#define FATAL 1
#define AVERT 2

static void

erreur

 (int typErr, char* message) {
 printf ("***Erreur : %s\n", message);
 if (typErr == FATAL) exit(0);
}

// le constructeur de Pile
Pile*

creerPile

 (int max) {
 Pile* p = (Pile*) malloc (sizeof (Pile)); // Pile* p = new Pile();
 p->max = max;
 p->nb = -1;
 p->element = (int*) malloc (max*sizeof(int));
 return p;
}

// la pile est-elle vide ?
int

pileVide

 (Pile* p) {
 return p->nb == -1;
}

// empiler une valeur s'il reste de la place
void

empiler

 (Pile* p, int valeur) {
 if (p->nb < p->max-1) {
 p->nb++;
 p->element [p->nb] = valeur;
 } else {
 erreur (AVERT, "Pile saturée");
 }
}

// dépiler une valeur si la pile n'est pas vide
int

depiler

 (Pile* p, int* valeur) {
 if (!pileVide (p)) {
 *valeur = p->element [p->nb];
 p->nb--;
 return 1;
 } else {
 erreur (AVERT, "Pile vide");
 return 0;
 }
}

// lister les éléments de la pile
void

listerPile

 (Pile* p) {
 if (pileVide (p)) {
 printf ("Pile vide\n");
 } else {
 for (int i=0; i<=p->nb; i++) {
 printf ("%d ", p->element[i]);
 }
 }
}

// restituer l'espace allouée
void

detruirePile

 (Pile* p) {
 free (p->element);
 free (p);
}

le programme principal de test :

/* pppile.cpp programme principal des piles */

#include <stdio.h>
#include "pile.h"

#define faux 0

07Corriges Page 297 Samedi, 17. janvier 2004 10:39 10

298

Corrigés des exercices

#define vrai 1
typedef int booleen;

int

menu

 (void) {
 printf ("\n\nGESTION D'UNE PILE\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Création de la pile\n");
 printf ("2 - La pile est-elle vide ?\n");
 printf ("3 - Insertion dans la pile\n");
 printf ("4 - Retrait de la pile\n");
 printf ("5 - Listage de la pile\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod);
 printf ("\n");

 return cod;
}

void

main

 () {
 int taillePile;

 printf ("Taille de la pile d'entiers ? ");
 scanf ("%d", &taillePile);
 Pile* p1 = creerPile (taillePile);

 booleen fini = faux;
 while (!fini) {

 switch (menu ()) {

 case 0 :
 fini = vrai;
 break;

 case 1 :
 detruirePile (p1);
 printf ("Taille de la pile d'entiers ? ");
 scanf ("%d", &taillePile);
 p1 = creerPile (taillePile);
 break;

 case 2 :
 if (pileVide (p1)) {
 printf ("Pile vide\n");
 } else {
 printf ("Pile non vide\n");
 }
 break;

 case 3 : {
 int valeur;
 printf ("Valeur à empiler ? ");
 scanf ("%d", &valeur);
 empiler (p1, valeur);
 } break;

 case 4 : {
 int valeur;
 if (depiler (p1, &valeur)) {
 printf ("%d\n", valeur);
 } else {
 printf ("Pile vide\n");
 }
 } break;

 case 5 :
 listerPile (p1);
 break;
 } // switch
 } // while

 detruirePile (p1);
} // main

07Corriges Page 298 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices

299

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Exercice 6 : module de gestion de nombres complexes (page 32)

/* complex.cpp
 Module des opérations de base sur les complexes */

#include <stdio.h>
#include <math.h> // cos, sin
#include "complex.h"

// création d'un Complexe
// à partir de partReel (partie réelle) et partImag (partie imaginaire)
Complex

crC

 (double partReel, double partImag) {
 Complex z;
 z.partReel = partReel;
 z.partImag = partImag;
 return z;
}

// création d'un complexe à partir de ses Composantes en Polaire
Complex

crCP

 (double module, double argument) {
 return crC (module * cos (argument), module * sin (argument));
}

// partie Réelle d'un Complexe
double

partReelC

 (Complex z) {
 return z.partReel;
}

// partie Imaginaire d'un Complexe
double

partImagC

 (Complex z) {
 return z.partImag;
}

// module d'un nombre Complexe
double

moduleC

 (Complex z) {
 return sqrt (z.partReel * z.partReel + z.partImag * z.partImag);
}

// argument d'un nombre Complexe
double

argumentC

 (Complex z) {
 return atan2 (z.partImag, z.partReel);
}

// écriture d'un nombre Complexe
void

ecritureC

 (Complex z) {
 printf (" (%5.2f + %5.2f i) ", z.partReel, z.partImag);
}

// écriture en polaire d'un nombre Complexe
void

ecritureCP

 (Complex z) {
 printf (" (%5.2f, %5.2f) ", moduleC (z), argumentC (z));
}

// opposé d'un nombre Complexe
Complex

opposeC

 (Complex z) {
 return crC (-z.partReel, -z.partImag);
}

// conjugué d'un nombre Complexe
Complex

conjugueC

 (Complex z) {
 return crC (z.partReel, -z.partImag);
}

// inverse d'un nombre Complexe
Complex

inverseC

 (Complex z) {
 return crCP (1/moduleC(z), -argumentC(z));
}

// puissance nième de z (n entier >=0)
Complex

puissanceC

 (Complex z, int n) {
 Complex p = crC (1.0, 0.0); // p = puissance
 for (int i=1; i<=n; i++) p = multiplicationC (p, z);
 return p;
}

// addition z = z1 + z
Complex

additionC

 (Complex z1, Complex z2) {
 return crC (z1.partReel + z2.partReel, z1.partImag + z2.partImag);
}

07Corriges Page 299 Samedi, 17. janvier 2004 10:39 10

300

Corrigés des exercices

// soustraction z = z1 - z2
Complex

soustractionC

 (Complex z1, Complex z2) {
 return crC (z1.partReel - z2.partReel, z1.partImag - z2.partImag);
}

// multiplication z = z1 * z2
Complex

multiplicationC

 (Complex z1, Complex z2) {
 return crCP (moduleC(z1) * moduleC(z2), argumentC(z1) + argumentC(z2));
}

// division z = z1 / z2
Complex

divisionC

 (Complex z1, Complex z2) {
 return multiplicationC (z1, inverseC (z2));
}

le programme principal de test :

/* ppcomplex.cpp
 programme principal sur les opérations complexes */

#include <stdio.h>
#include <math.h>
#include <stdlib.h> // exit

#include "complex.h"

void

ecrit

 (Complex z) {
 ecritureC (z);
 ecritureCP (z);
}

void

main

() {
 Complex c1, c2, c3, c4, c5, c6, c7;
 Complex p1, p2, p3, p4, p5, p6, p7;

 c1 = crC (2, 1.50);
 c2 = crC (-2, 1.75);
 printf ("\nc1 = "); ecrit (c1);
 printf ("\nc2 = "); ecrit (c2);

 c3 = additionC (c1, c2);
 c4 = soustractionC (c1, c2);
 c5 = multiplicationC (c1, c2);
 c6 = divisionC (c1, c2);
 c7 = puissanceC (c1, 3);

 printf ("\nc3 = c1 + c2 "); ecrit (c3);
 printf ("\nc4 = c1 - c2 "); ecrit (c4);
 printf ("\nc5 = c1 * c2 "); ecrit (c5);
 printf ("\nc6 = c1 / c2 "); ecrit (c6);
 printf ("\nc7 = c1 ** 3 "); ecrit (c7);

 // en polaire
 printf ("\n\n");
 p1 = crCP (1, M_PI/4);
 p2 = crCP (1, M_PI/2);
 printf ("\np1 = "); ecrit (p1);
 printf ("\np2 = "); ecrit (p2);
 p3 = additionC (p1, p2);
 p4 = soustractionC (p1, p2);
 p5 = multiplicationC (p1, p2);
 p6 = divisionC (p1, p2);
 p7 = puissanceC (p1, 3);

 printf ("\np3 = p1 + p2 "); ecrit (p3);
 printf ("\np4 = p1 - p2 "); ecrit (p4);
 printf ("\np5 = p1 * p2 "); ecrit (p5);
 printf ("\np6 = p1 / p2 "); ecrit (p6);
 printf ("\np7 = p1 ** 3 "); ecrit (p7);

 printf ("\nPartie réelle de p1 : %.2f ", partReelC (p1));
 printf ("\nPartie imag. de p1 : %.2f ", partImagC (p1));
 printf ("\nModule de p1 : %.2f ", moduleC (p1));
 printf ("\n");
}

07Corriges Page 300 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices

301

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Exercice 7 : polynômes d’une variable réelle (lecture, addition) (page 60)

/* polynome2.cpp utilise polynome.cpp */

#include <stdio.h>
#include <stdlib.h>
#include <math.h> // fabs
#include "polynome2.h"

#define ADD 1
#define SOUS -1

// lire le coefficient et l'exposant dans le fichier fe
static int

lireMonome

 (FILE* fe, double* coefficient, int* puissance) {
 // fscanf fournit -1 en cas de eof : man fscanf
 int n = fscanf (fe, "%lf %d", coefficient, puissance);
 if (n > 0) {
 return 1;
 } else {
 return 0;
 }
}

// lire les valeurs de chaque monôme du polynôme p
Polynome*

lirePolynome

 (FILE* fe) {
 Polynome* p = creerPolynome();
 double coefficient;
 int puissance;
 while (lireMonome (fe, &coefficient, &puissance)) {
 Monome* nouveau = creerMonome (coefficient, puissance);
 insererEnOrdre (p, nouveau);
 }
 return p;
}

// addition si typAouS vaut ADD,
// soustraction si typAouS vaut SOUS
// des polynômes a et b; résultat dans le polynôme c
static Polynome*

addOuSousPoly

 (Polynome* a, Polynome* b, int typAouS) {
 Polynome* c = creerPolynome();

 ouvrirListe (a);
 // pa : pointeur courant sur le polynome a
 Monome* pa = (Monome*) objetCourant (a);
 ouvrirListe (b);
 // pb : pointeur courant sur le polynome b
 Monome* pb = (Monome*) objetCourant (b);

 // tant qu'on n'a pas atteint la fin du polynôme a
 // ni celle du polynôme b
 while (pa!=NULL && pb!=NULL) {
 if (pa->exposant == pb->exposant) {
 double s = pa->coefficient + typAouS * pb->coefficient;
 if (s != 0) {
 Monome* nouveau = creerMonome (s, pa->exposant);
 insererEnOrdre (c, nouveau);
 }
 pa = (Monome*) objetCourant (a);
 pb = (Monome*) objetCourant (b);

 } else {
 if (pa->exposant < pb->exposant) {
 Monome* nouveau = creerMonome (typAouS*pb->coefficient, pb->exposant);
 insererEnOrdre (c, nouveau);
 pb = (Monome*) objetCourant (b);
 } else {
 Monome* nouveau = creerMonome (pa->coefficient, pa->exposant);
 insererEnOrdre (c, nouveau);
 pa = (Monome*) objetCourant (a);
 }
 }
 }

 // recopier la fin du polynôme a
 while (pa!=NULL) {
 Monome* nouveau = creerMonome (pa->coefficient, pa->exposant);
 insererEnOrdre (c, nouveau);
 pa = (Monome*) objetCourant (a);

07Corriges Page 301 Samedi, 17. janvier 2004 10:39 10

302

Corrigés des exercices

 }

 // recopier la fin du polynôme b
 while (pb!=NULL) {
 Monome* nouveau = creerMonome (typAouS*pb->coefficient, pb->exposant);
 insererEnOrdre (c, nouveau);
 pb = (Monome*) objetCourant (b);
 }

 return c;
}

Polynome* addPolynome (Polynome* a, Polynome* b) {
 return

addOuSousPoly

 (a, b, ADD);
}

Polynome* sousPolynome (Polynome* a, Polynome* b) {
 return

addOuSousPoly

 (a, b, SOUS);
}

le programme principal de test :

/* pppolynome.cpp */

#include <stdio.h>
#include <stdlib.h>
#include "polynome2.h"

void

main

 () {
 // ouverture des fichiers
 FILE* fe1 = fopen ("polya.dat", "r");
 if (fe1==NULL) {
 fprintf (stderr, "fe1 fichier inconnu\n"); exit (0);
 }
 FILE* fe2 = fopen ("polyb.dat", "r");
 if (fe2==NULL) {
 fprintf (stderr, "fe2 fichier inconnu\n"); exit (0);
 }

 Polynome* a =

lirePolynome

 (fe1);
 Polynome* b =

lirePolynome

 (fe2);
 Polynome* c =

addPolynome

 (a, b);
 Polynome* d =

sousPolynome

 (a, b);

 printf ("\nPolynome a : ");

listerPolynome

 (a);
 printf ("\nPolynome b : ");

listerPolynome

 (b);
 printf ("\nPolynome c = a + b : ");

listerPolynome

 (c);
 printf ("\nPolynome d = a - b : ");

listerPolynome

 (d);

 printf ("\nValeur de a pour x=1 : %14.2f",

valeurPolynome

 (a, 1));
 printf ("\nValeur de b pour x=1 : %14.2f",

valeurPolynome

 (b, 1));
 printf ("\nValeur de c pour x=1 : %14.2f",

valeurPolynome

 (c, 1));
 printf ("\nValeur de d pour x=1 : %14.2f",

valeurPolynome

 (d, 1));
 printf ("\n");
}

exemples de fichiers décrivant des polynômes :

/* polya.dat */
-6 7
3 5
-1 1
/* polyb.dat */
6 7
3 6
5 5
-2 3
3 1
5 0

exemple de résultats :

Polynome a : -6.00 x**7 +3.00 x**5 -1.00 x**1
Polynome b : +6.00 x**7 +3.00 x**6 +5.00 x**5 -2.00 x**3

+3.00 x**1 +5.00 x**0
Polynome c = a + b : +3.00 x**6 +8.00 x**5 -2.00 x**3 +2.00 x**1

+5.00 x**0
Polynome d = a - b : -12.00 x**7 -3.00 x**6 -2.00 x**5 +2.00 x**3

 -4.00 x**1 -5.00 x**0
Valeur de a pour x=1 : -4.00
Valeur de b pour x=1 : 20.00
Valeur de c pour x=1 : 16.00
Valeur de d pour x=1 : -24.00

07Corriges Page 302 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices

303

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Exercice 8 : systèmes experts : les algorithmes de déduction (page 66)

// le fait num existe-t'il dans la liste listF
booleen

existe

 (ListeFaits* listF, int num) {
 booleen trouve = faux;
 ouvrirListe (listF);
 while (!finListe (listF) && !trouve) {
 Fait* ptc = (Fait*) objetCourant (listF);
 trouve = ptc->numero == num;
 }
 return trouve;
}

// appliquer la règle pointée par regle à la liste de faits listF
int

appliquer (Regle* regle, ListeFaits* listF) {

 // Les hypothèses sont-elles vérifiées
 booleen verifie = vrai; // hypothèses vraies a priori
 Liste* lh = regle->hypotheses;
 ouvrirListe (lh);
 while (!finListe (lh) && verifie) {
 Fait* ptc = (Fait*) objetCourant (lh);
 verifie = existe (listF, ptc->numero);
 }

 // toutes les hypothèses de regle sont vraies;
 // il faut ajouter les conclusions de la règle à la liste de faits listF
 if (verifie) {
 regle->marque = vrai; // une règle ne s'applique qu'une fois
 Liste* lc = regle->conclusions;
 ouvrirListe (lc);
 while (!finListe (lc)) {
 Fait* ptc = (Fait*) objetCourant (lc);
 if (!existe (listF, ptc->numero)) {
 ajouterFait (listF, ptc->numero);
 }
 }
 }
 return verifie;
}

// À partir de la liste de faits, on essaie d'appliquer successivement
// toutes les règles. Si une règle s'est appliquée, de nouveaux faits
// ont été ajoutés qui peuvent permettre à des règles déjà examinées
// de s'appliquer.
// Si au moins une règle s'est appliquée, on refait un tour complet.
// Une règle ne s'applique qu'une seule fois.
void chainageAvant (ListeRegles* listR, ListeFaits* listF) {
 int fini = faux;

 while (!fini) {
 booleen again = faux; // refaire un examen des règles
 // si au moins une règle s'applique
 ouvrirListe (listR);
 while (!finListe (listR)) {
 Regle* ptc = (Regle*) objetCourant (listR);
 // si la règle n'a pas déjà été exécutée,
 // on essaie de l'appliquer.
 if (!ptc->marque) {
 int resu = appliquer (ptc, listF);
 if (resu) again = vrai;
 }
 }
 if (!again) fini = vrai;
 }
}

// écrire nb espaces
void indenter (int nb) {
 for (int i=0; i<nb; i++) printf (" ");
}

// à partir de la liste des règles et de la liste des faits,
// démontrer le fait num.
// nb sert à faire une indentation des résultats
booleen demontrerFait (ListeRegles* listR, ListeFaits* listF, int num, int nb) {
 booleen ok;
 indenter (nb); printf ("demontreFait %d\n", num);

07Corriges Page 303 Samedi, 17. janvier 2004 10:39 10

304 Corrigés des exercices

 if (existe (listF, num)) { // le fait est dans la liste de faits
 indenter (nb); printf ("Dans Liste de Faits %d\n", num);
 ok = vrai;

 } else { // rechercher une règle ayant num en conclusions
 Regle* ptr;
 ouvrirListe (listR);
 booleen trouve = faux;
 while (!finListe (listR) && !trouve) {
 ptr = (Regle*) objetCourant (listR);
 trouve = existe (ptr->conclusions, num);
 }

 if (!trouve) {
 indenter (nb); printf ("Pas démontré\n");
 ok = faux;
 } else {
 indenter (nb); printf ("Voir règle %s\n", ptr->nom);

 // démontrer récursivement chacune des hypothèses de la règle ptr
 Liste* lh = ptr->hypotheses; // liste des hypothèses de la règle ptr
 ouvrirListe (lh);
 ok = vrai; // a priori
 while (!finListe(lh) && ok) {
 Fait* ptf = (Fait*) objetCourant (lh);
 ok = demontrerFait (listR, listF, ptf->numero, nb+10);
 }
 }
 } // if
 return ok;
}

Le programme principal :
char* message (int n) {
#if 0
static char* libelle [] = {
" ",
"allaite ses petits",
"a des dents pointues",
"vit en compagnie de l'homme",
"grimpe aux arbres",
"a des griffes pointues",
"est domestiqué",
"est couvert de poils",
"a quatre pattes",
"est un mammifère",
"est un carnivore",
"est un chat"
} ;
#else
static char* libelle [] = {
" ",
"a de la fièvre",
"a le nez bouché",
"a mal au ventre",
"a des frissons",
"a la gorge rouge",
"a l'appendicite",
"a mal aux oreilles",
"a mal à la gorge",
"a les oreillons",
"a un rhume",
"a la grippe"
};
#endif

 return libelle [n];
}

void main () {
 ListeFaits* listF = creerListeFaits();

 ajouterFait (listF, 1);
 ajouterFait (listF, 2);
 ajouterFait (listF, 3);
 ajouterFait (listF, 4);
 ajouterFait (listF, 5);

 printf ("Liste faits : \n");

07Corriges Page 304 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 305
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 listerFaits (listF);

 ListeRegles* listR = creerListe();

 Regle* PRA;

 PRA = creerRegle ("A");
 ajouterHypothese (PRA, 3);
 ajouterConclusion (PRA, 6);
 insererEnFinDeListe (listR, PRA);

 PRA = creerRegle ("B");
 ajouterHypothese (PRA, 1);
 ajouterHypothese (PRA, 7);
 ajouterHypothese (PRA, 8);
 ajouterConclusion (PRA, 9);
 insererEnFinDeListe (listR, PRA);

 PRA = creerRegle ("C");
 ajouterHypothese (PRA, 5);
 ajouterHypothese (PRA, 10);
 ajouterConclusion (PRA, 11);
 insererEnFinDeListe (listR, PRA);

 PRA = creerRegle ("D");
 ajouterHypothese (PRA, 1);
 ajouterHypothese (PRA, 2);
 ajouterConclusion (PRA, 10);
 insererEnFinDeListe (listR, PRA);

 listerLesRegles (listR);

 // chaînage arrière
 booleen resu;
 resu = demontrerFait (listR, listF, 11, 0);
 printf ("Resu %d\n", resu);

 // chaînage avant : modifie la liste des faits listF
 chainageAvant (listR, listF);
 printf ("\nListe faits après chaînage avant : \n");
 listerFaits (listF);
}

Exercice 9 : le type pile (allocation contiguë) (page 72)

Le fichier d’en-tête piletableau.h pour les piles utilisant un tableau :
/* piletableau.h version avec allocation dynamique du tableau */

#ifndef PILE_H
#define PILE_H

typedef int booleen;
#define faux 0
#define vrai 1
typedef void Objet;

typedef struct {
 int max; // nombre maximum d'éléments dans la pile
 int nb; // repère le dernier occupé de element
 Objet** element; // le tableau des éléments de la pile
} Pile;

Pile* creerPile (int max);
int pileVide (Pile* p);
void empiler (Pile* p, Objet* objet);
Objet* depiler (Pile* p);
void listerPile (Pile* p, void (*f) (Objet*));
void detruirePile (Pile* p);

#endif
Le corps du module piletableau.cpp :

// piletableau.cpp

#include <stdio.h>
#include <stdlib.h>
#include "piletableau.h"

07Corriges Page 305 Samedi, 17. janvier 2004 10:39 10

306 Corrigés des exercices

#define FATAL 1
#define AVERT 2

static void erreur (int typErr, char* message) {
 printf ("***Erreur : %s\n", message);
 if (typErr == FATAL) exit(0);
}

// le constructeur de Pile
Pile* creerPile (int max) {
 Pile* p = (Pile*) malloc (sizeof (Pile));
 p->max = max;
 p->nb = -1;
 p->element = (Objet**) malloc (max*sizeof(Objet*));
 return p;
}

// la pile est-elle vide ?
int pileVide (Pile* p) {
 return p->nb == -1;
}

// empiler une valeur s'il reste de la place
void empiler (Pile* p, Objet* objet) {
 if (p->nb < p->max-1) {
 p->nb++;
 p->element [p->nb] = objet;
 } else {
 erreur (AVERT, "Pile saturée");
 }
}

// dépiler une valeur si la pile n'est pas vide
Objet* depiler (Pile* p) {
 if (!pileVide (p)) {
 Objet* objet = p->element [p->nb];
 p->nb--;
 return objet;
 } else {
 erreur (AVERT, "Pile vide");
 return NULL;
 }
}

// lister les éléments de la pile
void listerPile (Pile* p, void (*f) (Objet*)) {
 if (pileVide (p)) {
 printf ("Pile vide\n");
 } else {
 for (int i=0; i<=p->nb; i++) {
 f (p->element[i]);
 }
 }
}

// restituer l'espace allouée
void detruirePile (Pile* p) {
 free (p->element);
 free (p);
}

Le programme principal est le même que pour la pile gérée avec une liste (voir § 2.4.5.e, page 69).

Exercice 10 : files d’attente en allocation dynamique (page 73)

// file.cpp file gérée à l'aide d'une liste simple

#include <stdio.h>
#include <stdlib.h>

#include "file.h"

// créer et initialiser une File
File* creerFile () {
 return creerListe ();
}

// vrai si la File est vide, faux sinon
booleen fileVide (File* file) {

07Corriges Page 306 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 307
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 return listeVide (file);
}

// ajouter un objet dans la File
void enFiler (File* file, Objet* objet) {
 insererEnFinDeListe (file, objet);
}

// fournir l'adresse de l'objet en tête de File
// ou NULL si la File est vide
Objet* deFiler (File* file) {
 if (fileVide (file)) {
 return NULL;
 } else {
 return extraireEnTeteDeListe (file);
 }
}

// lister les objets de la File
void listerFile (File* file, void (*f) (Objet*)) {
 listerListe (file, f);
}

// détruire une File
void detruireFile (File* file) {
 detruireListe (file);
}

le programme principal ppfile.cpp (la variable de compilation FILETABLEAU n’est pas définie pour cet
exemple).
// ppfile.cpp programme principal des files (avec listes ou avec tableaux)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#if FILETABLEAU
#include "filetableau.h"
#else
#include "file.h"
#endif

#include "mdtypes.h"

int menu () {
 printf ("\n\nGESTION D'UNE FILE D'ENTIERS\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Initialisation de la file\n");
 printf ("2 - La file est-elle vide\n");
 printf ("3 - Insertion dans la file\n");
 printf ("4 - Retrait de la file\n");
 printf ("5 - Listage de la file\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod);
 printf ("\n");

 return cod;
}

void main () {
 #if FILETABLEAU
 File* file1 = creerFile(7);
 #else
 File* file1 = creerFile();
 #endif
 booleen fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0 :
 fini = vrai;
 break;

 case 1 :
 detruireFile (file1);

07Corriges Page 307 Samedi, 17. janvier 2004 10:39 10

308 Corrigés des exercices

 #if FILETABLEAU
 file1 = creerFile(7);
 #else
 file1 = creerFile();
 #endif
 break;

 case 2 :
 if (fileVide (file1)) {
 printf ("File vide\n");
 } else {
 printf ("File non vide\n");
 }
 break;

 case 3 : {
 int valeur;
 printf ("Valeur à enfiler ? ");
 scanf ("%d", &valeur);
 enFiler (file1, creerEntier(valeur));
 } break;

 case 4 : {
 Entier* v;
 if ((v=(Entier*)deFiler (file1)) != NULL) {
 ecrireEntier (v);
 } else {
 printf ("File vide\n");
 }
 } break;

 case 5:
 listerFile (file1, ecrireEntier);
 break;
 }
 }

 detruireFile (file1);

 printf ("\n\nGESTION D'UNE FILE DE PERSONNES\n\n");
 #if FILETABLEAU
 File* file2 = creerFile(7);
 #else
 File* file2 = creerFile();
 #endif

 enFiler (file2, creerPersonne ("Dupont", "Jacques"));
 enFiler (file2, creerPersonne ("Dufour", "Michel"));
 enFiler (file2, creerPersonne ("Dupré", "Jeanne"));
 enFiler (file2, creerPersonne ("Dumoulin", "Marie"));
 listerFile (file2, ecrirePersonne);
}

Exercice 11 : files d’attente en allocation contiguë (page 74)

/* filetableau.cpp */

#include <stdio.h>
#include <stdlib.h>

#include "filetableau.h"

#define FATAL 1
#define AVERT 2

static void erreur (int typErr, char* message) {
 printf ("***Erreur : %s\n", message);
 if (typErr == FATAL) exit (0);
}

File* creerFile (int max) {
 File* file = new File();
 file->max = max;
 file->premier = max-1;
 file->dernier = max-1;
 // allouer un tableau de pointeurs d'objets
 file->element = (Objet**) malloc (max * sizeof(Objet*));

07Corriges Page 308 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 309
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 return file;
}

int fileVide (File* file) {
 return file->premier == file->dernier;
}

void enFiler (File* file, Objet* objet) {
 int place = (file->dernier+1) % file->max;
 if (place != file->premier) {
 file->dernier = place;
 file->element [place] = objet;
 } else {
 erreur (AVERT, "File saturée");
 }
}

Objet* deFiler (File* file) {
 int place = (file->premier+1) % file->max;

 if (!fileVide (file)) {
 Objet* objet = file->element [place];
 file->premier = place;
 return objet;
 } else {
 erreur (AVERT, "File vide");
 return NULL;
 }
}

void listerFile (File* file, void (*f) (Objet*)) {
 printf ("Premier : %d, Dernier : %d\n", file->premier, file->dernier);

 if (fileVide (file)) {
 printf ("File vide\n");
 } else {
 for (int i=(file->premier+1) % file->max;
 i!=(file->dernier+1) % file->max; i=(i+1) % file->max) {
 f (file->element[i]);
 }
 printf ("\n");
 }
}

void detruireFile (File* file) {
 free (file->element);
}

ppfile.cpp est le même que pour l’exercice 10 sauf que creerFile() a un paramètre. La variable de
compilation FILETABLEAU est définie pour cet exemple.

Exercice 12 : commande en attente (page 97)

// insertion en fin des listes de l'article et du client
// en attente de qt articles de numéro numArt
// pour le client numCli à la date "date"
void mettreEnAttente (int qt, int numArt, int numCli, char* date) {
 non corrigé
}

// extraire l'entrée n des listes de Attente
// et l'insérer dans la liste libre
void extraire (int n) {
 non corrigé
}

// réapprovisionnement de qtr articles de numéro na
void reappro (int na, int qtr) {
 Attente attente;
 Article article;
 Client client;

 lireDArt (na, &article);
 if (article.premier != NILE) {
 int ptc = article.premier;
 booleen fini = faux;
 while ((ptc != NILE) && !fini) {

07Corriges Page 309 Samedi, 17. janvier 2004 10:39 10

310 Corrigés des exercices

 lireDAtt (ptc, &attente);
 lireDCli (attente.cliOuLL, &client);
 if (attente.qt <= qtr) {
 printf ("Envoi de %2d %15s à %15s\n",
 attente.qt, article.nomArt, client.nomCli);
 qtr -= attente.qt;
 fini = qtr == 0;
 extraire (ptc);
 ptc = attente.artSuivant;
 } else {
 printf ("Envoi de %2d %15s à %15s (%2d commandé)\n",
 qtr, article.nomArt, client.nomCli, attente.qt);
 attente.qt -= qtr;
 ecrireDAtt (ptc, &attente);
 fini = vrai;
 }
 }
 }
}

void main () {
 fa = fopen ("article.rel", "wb+");
 if (fa == NULL) { printf ("Erreur ouverture FA\n"); exit (1); }
 fc = fopen ("client.rel", "wb+");
 if (fc == NULL) { printf ("Erreur ouverture FC\n"); exit (1); }

 initArt ("Radio", 1, 0);
 initArt ("Téléviseur", 3, 0);
 initArt ("Magnétoscope", 8, 25);
 initArt ("Chaine hi-fi", 10, 0);

 initCli ("Dupond", 2);
 initCli ("Durand", 5);
 initCli ("Dufour", 6);

 initAtt ("attente.rel");

 mettreEnAttente (3, 3, 2, "03/07/..");
 mettreEnAttente (1, 1, 2, "10/08/..");
 mettreEnAttente (5, 10, 2, "02/09/..");
 mettreEnAttente (10, 3, 5, "12/09/..");
 mettreEnAttente (7, 10, 5, "13/09/..");

 listerTous ();
 listerArt (5); // lister les articles du client 5
 listerCli (3); // lister les clients pour l'article 3

 reappro (3, 10); // réapprovisionnement de 10 articles numéro 3

 listerTous ();
 listerArt (5); // lister les articles du client 5
 listerCli (3); // lister les clients pour l'article 3

 fclose (fa);
 fclose (fc);
 fermerAtt ();
}

Exercice 13 : les cartes à jouer (page 98)

/* cartes.cpp module des cartes */

#include <stdio.h>
#include <stdlib.h>

#include "cartes.h"

void insererEnFinDePaquet (PaquetCarte* p, int couleur, int valeur) {
 Carte* carte = new Carte();
 if (carte==NULL) {
 printf ("Erreur allocation de Carte\n"); exit (0);
 }
 carte->couleur = couleur;
 carte->valeur = valeur;
 insererEnFinDeListe (p, carte);
}

void listerCartes (PaquetCarte* p) {

07Corriges Page 310 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 311
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 int i=0;
 ouvrirListe (p);
 while (!finListe (p)) {
 i++;
 Carte* carte = (Carte*) objetCourant (p);
 printf ("i %2d : C %2d, V %2d\n", i, carte->couleur, carte->valeur);
 }
}

void creerTas (PaquetCarte* p) {
 initListe (p);
 for (int i=1; i<=4; i++) {
 for (int j=1; j<=13; j++) insererEnFinDePaquet (p, i, j);
 }
}

// La première carte a le numéro 1;
// fournit NULL si la carte n n'existe pas
Carte* extraireNieme (PaquetCarte* p, int n) {
 Carte* extrait;
 if (n<=0 || n>nbElement (p)) return NULL;
 ouvrirListe (p);
 for (int i=1; i<=n; i++) extrait = (Carte*) objetCourant (p);
 int resu = extraireUnObjet (p, extrait);
 return extrait;
}

void battreLesCartes (PaquetCarte* p, PaquetCarte* paquetBattu) {
 initListe (paquetBattu);
 for (int i=1; i<=52; i++) {
 int n = (rand() % (52-i+1)) + 1;
 Carte* extrait = extraireNieme (p, n);
 if (extrait != NULL) insererEnFinDeListe (paquetBattu, extrait);
 }
}

void distribuerLesCartes (PaquetCarte* p, tabJoueur joueur) {
 for (int nj=0; nj<4; nj++) initListe (&joueur[nj]);

 for (int i=1; i<=13; i++) {
 for (int nj=0; nj<4; nj++) {
 Carte* extrait = (Carte*) extraireEnTeteDeListe (p);
 insererEnFinDeListe (&joueur[nj], extrait);
 }
 }
}

le programme principal :
/* ppcartes.cpp programme principal cartes */

#include <stdio.h>
#include <stdlib.h>
#include "cartes.h"

void main () {

 // créer un tas et le lister
 PaquetCarte* tas1 = new PaquetCarte();
 creerTas (tas1);
 printf ("\nListe du tas1 au départ \n");
 listerCartes (tas1);

 // battre les cartes et afficher le nouveau tas tas2
 PaquetCarte* tas2 = new PaquetCarte();
 battreLesCartes (tas1, tas2);
 //printf ("\nListe du tas1 après BattreLesCartes\n");
 //listerCartes (tas1); // vide
 printf ("\nListe du tas2 après BattreLesCartes\n");
 listerCartes (tas2);

 // distribuer les cartes et afficher les 4 paquets des joueurs
 tabJoueur joueur;
 distribuerLesCartes (tas2, joueur);
 for (int i=0; i<4; i++) {
 printf ("\nListe du joueur %d \n", i);
 listerCartes (&joueur[i]);
 }
}

07Corriges Page 311 Samedi, 17. janvier 2004 10:39 10

312 Corrigés des exercices

Exercice 14 : polynômes complexes (listes ordonnées) (page 99)

/* polynome.cpp gestion de polynomes complexes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "polynome.h"

// comparer deux monômes
static int comparerMonome (Monome* m1, Monome* m2) {
 if (m1->puissance < m2->puissance) {
 return -1;
 } else if (m1->puissance == m2->puissance) {
 return 0;
 } else {
 return 1;
 }
}

static int comparerMonome (Objet* objet1, Objet* objet2) {
 return comparerMonome ((Monome*)objet1, (Monome*)objet2);
}

void creerMonome (Polynome* p, Complex z, int puissance) {
 Monome* nouveau = new Monome;
 nouveau->z = z;
 nouveau->puissance = puissance;
 insererEnOrdre (p, nouveau);
}

Polynome* creerPolynome () {
 return creerListe (DECROISSANT, NULL, comparerMonome);
}

Polynome* lirePolynome () {
 Polynome* p = creerPolynome();
 booleen fin = faux;
 while (!fin) {
 printf ("Coefficient réel (ou * pour finir) ? ");
 char ch [30];
 scanf ("%s", ch);
 if (!strcmp (ch, "*") == 0) {
 double pr = atof (ch);
 printf ("Coefficient imaginaire ? ");
 scanf ("%s", ch);
 double pi = atof (ch);
 Complex z = crC (pr, pi);

 printf ("Puissance ? ");
 scanf ("%s", ch);
 int pu = atoi (ch);
 creerMonome (p, z, pu);
 } else {
 fin = vrai;
 }
 }
 return p;
}

void ecrirePolynome (Polynome* po) {
 ouvrirListe (po);
 while (!finListe (po)) {
 Monome* ptc = (Monome*) objetCourant (po);
 Complex c = ptc -> z;
 double pr = partReelC (c);
 double pi = partImagC (c);
 int pu = ptc->puissance;

 if (pr != 0 && pi != 0) {
 printf (" (%.2f + %.2f i) z** %d ", pr, pi, pu);
 } else if (pr != 0) {
 printf (" %.2f z** %d ", pr, pu);
 } else {
 printf (" %.2f i z** %d ", pi, pu);
 }
 if (!finListe (po)) printf (" + ");
 }
 printf ("\n");
}

07Corriges Page 312 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 313
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Complex valeurPolynome (Polynome* po, Complex z) {
 Complex resu = crC (0, 0);
 ouvrirListe (po);
 while (!finListe (po)) {
 Monome* ptc = (Monome*) objetCourant (po);
 Complex mc = multiplicationC (ptc->z, puissanceC (z, ptc->puissance));
 resu = additionC (resu, mc);
 }
 return resu;
}

et le programme principal de test :
/* pppolynomecomplex.cpp */

#include <stdio.h>
#include "polynome.h"

void main () {

 Polynome* p1 = creerPolynome();
 creerMonome (p1, crC(2,2), 2);
 creerMonome (p1, crC(1,1), 1);
 creerMonome (p1, crC(3,3), 3);
 printf ("\n\nListe du polynome p1 : ");
 ecrirePolynome (p1);

 Polynome* p2 = creerPolynome();
 creerMonome (p2, crC(1,1), 3);
 creerMonome (p2, crC(2,2), 1);
 creerMonome (p2, crC(3,3), 2);
 printf ("\nListe du polynome p2 : ");
 ecrirePolynome (p2);

 Complex z1 = crC (0.5, 1);
 Complex resu1 = valeurPolynome (p1, z1);
 Complex resu2 = valeurPolynome (p2, z1);
 Complex resum = multiplicationC (resu1, resu2);
 Complex resud = divisionC (resu1, resu2);

 printf ("\nz1 = "); ecritureC (z1);
 printf ("\np1(z1) = "); ecritureC (resu1);
 printf ("\np2(z1) = "); ecritureC (resu2);
 printf ("\np1(z1)*p2(z1) = "); ecritureC (resum);
 printf ("\np1(z1)/p2(z1) = "); ecritureC (resud);
 printf ("\n");
}

Exercice 15 : parcours d’arbres droite-gauche (page 116)

Parcours préfixé : Julie Jonatan Gontran Antonine Pauline Sonia Paul

Parcours infixé : Julie Gontran Antonine Jonatan Paul Sonia Pauline

Parcours postfixé : Antonine Gontran Paul Sonia Pauline Jonatan Julie

Exercice 16 : dessin n-aire d’un arbre (page 136)

// dessiner arbre n-aire

// moyenne de la position du premier et dernier
// fils n-aires de racine
static int positionMoyenne (Noeud* racine) {
 Noeud* pf = racine->gauche; // pointeur fils NAire
 int pos1 = ((NomPos*)pf->reference)->position;
 while (pf->droite != NULL) pf = pf->droite;
 int posD = ((NomPos*)pf->reference)->position;
 return (pos1+posD)/2;
}

// nf : nombre de feuilles n-aires
int nf = 0; // variable globale pour dupArbN

// lgM = largeur d'une colonne
static Noeud* dupArbN (Noeud* racine, int lgM, char* (*toString) (Objet*)) {
 if (racine == NULL) {
 return NULL;
 } else {

07Corriges Page 313 Samedi, 17. janvier 2004 10:39 10

314 Corrigés des exercices

 Noeud* nouveau = new Noeud();
 NomPos* objet = new NomPos();
 nouveau->reference = objet;
 objet->message = toString (racine->reference);
 nouveau->gauche = dupArbN (racine->gauche, lgM, toString);

 if (racine->gauche == NULL) { // c'est une feuille n-aire
 ++nf;
 objet->position = lgM * nf;
 } else {
 objet->position = positionMoyenne (nouveau);
 }

 nouveau->droite = dupArbN (racine->droite, lgM, toString);
 return nouveau;
 }
}

static Arbre* dupArbN (Arbre* arbre, int lgM) {
 nf = 0;
 Noeud* nrac = dupArbN (arbre->racine, lgM, arbre->toString);
 return creerArbre (nrac, arbre->toString, NULL);
}

// dessiner l'arbre n-aire dans le fichier fs (à l'écran si fs=stdout)
void dessinerArbreNAire (Arbre* arbre, FILE* fs) {
 if (arbreVide (arbre)) {
 printf ("dessinerArbre Arbre vide\n");
 return;
 }

 int lgM = maxIdent (arbre) + 1 ;
 if (lgM < 5) lgM = 5;
 int lgFeuille = (nbFeuillesNAire (arbre)+1) * lgM;
 char* ligne = (char*) malloc (lgFeuille+1);
 ligne [lgFeuille] = 0;
 Arbre* narbre = dupArbN (arbre, lgM);

 Liste* lc = creerListe(); // liste des noeuds du même niveau
 insererEnFinDeListe (lc, narbre->racine);
 Liste* ls = creerListe(); // liste des descendants de lc

 while (!listeVide (lc)) {
 // écrire les barres verticales des noeuds de la liste
 for (int i=0; i<lgFeuille; i++) ligne[i]=' ';
 ouvrirListe (lc);
 while (!finListe (lc)) {
 Noeud* ptNd = (Noeud*) objetCourant (lc);
 NomPos* ptc = (NomPos*) ptNd->reference;
 ligne [ptc->position] = '|';
 }
 for (int i=1; i<=2; i++) fprintf (fs, "%s\n", ligne);

 // pour chaque élément de la liste :
 // écrire des tirets de la position du premier
 // fils à celle du dernier
 // écrire le nom de l'élément à sa position
 for (int i=0; i<lgFeuille; i++) ligne[i]=' ';
 while (!listeVide (lc)) {
 Noeud* pNC = (Noeud*) extraireEnTeteDeListe (lc);
 Noeud* pF = pNC->gauche;
 char* message = ((NomPos*) pNC->reference)->message;
 int lg = strlen (message);
 int posNom = ((NomPos*)pNC->reference)->position - lg/2;
 int pos1F; // position du premier fils
 int posDF; // position du dernier fils
 if (pF == NULL) {
 pos1F = posNom;
 posDF = posNom;
 } else {
 pos1F = ((NomPos*)pF->reference)->position;
 while (pF != NULL) {
 insererEnFinDeListe (ls, pF);
 posDF = ((NomPos*)pF->reference)->position;
 pF = pF->droite;
 }
 }

 for (int j=pos1F; j<=posDF; j++) ligne [j] = '_';

07Corriges Page 314 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 315
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 for (int j=0; j<lg; j++) ligne [posNom+j] = message[j];
 }

 fprintf (fs, "%s\n", ligne);
 recopierListe (lc, ls); // ls vide
 }

 // détruire l'arbre intermédiaire
 detruireArbre (narbre);
}

Exercice 17 : le corps humain (page 142)

Seules les 3 premières lignes de homme.nai sont prises en compte pour cette correction qui reste à compléter.

Arbre n-aire
 |
 |
 __________________________homme__________________________
 | | | | |
 | | | | |
 ______________tete_______________ cou __tronc__ bras jambe
 | | | | | | |
 | | | | | | |
 crane yeux oreille cheveux bouche abdomen thorax

Arbre binaire
 |
 |
 ________________________________homme
 |
 |
 ___________________________tete__
 | |
 | |
crane___ cou________________
 | |
 | |
 yeux____ __________tronc___
 | | |
 | | |
 oreille____ abdomen____ bras___
 | | |
 | | |
 cheveux____ thorax jambe
 |
 |
 bouche

Exercice 18 : facteur d’équilibre (page 176)

cas 1)
Valeur ou nom à insérer ? 60
70 1 -> 0
 |
 |
 ___50(1)________
 | |
 | |
40(0) ___70(0)___
 | |
 | |
 60(0) 80(0)

Valeur ou nom à insérer ? 58
60 0 -> -1
70 0 -> -1
50 1 -> DG a:50(1); b:60(-1); c:70(-1);
 |
 |
 ________60(0)___
 | |
 | |
 ___50(0)___ 70(1)___
 | | |
 | | |
40(0) 58(0) 80(0)
a:50(0); b:60(0); c:70(1);

07Corriges Page 315 Samedi, 17. janvier 2004 10:39 10

316 Corrigés des exercices

cas 2)
Valeur ou nom à insérer ? 60
70 1 -> 0
 |
 |
 ___50(1)________
 | |
 | |
40(0) ___70(0)___
 | |
 | |
 60(0) 80(0)

Valeur ou nom à insérer ? 65
60 0 -> 1
70 0 -> -1
50 1 -> DG a:50(1); b:60(1); c:70(-1);
 |
 |
 ___60(0)________
 | |
 | |
 ___50(-1) ___70(0)___
 | | |
 | | |
40(0) 65(0) 80(0)
a:50(-1); b:60(0); c:70(0);

cas 3)
Valeur ou nom à insérer ? 20
10 0 -> 1
 |
 |
10(1)___
 |
 |
 20(0)

Valeur ou nom à insérer ? 15
20 0 -> -1
10 1 -> DG a:10(1); b:15(0); c:20(-1);
 |
 |
 ___15(0)___
 | |
 | |
10(0) 20(0)
a:10(0); b:15(0); c:20(0);

Exercice 19 : insertion de valeurs dans un arbre équilibré (page 181)

Insertion de 1
 |
 |
1(0)

Insertion de 2
1 0 -> 1
 |
 |
1(1)___
 |
 |
 2(0)

Insertion de 3
2 0 -> 1
1 1 -> DD
 |
 |
 __2(0)___
 | |
 | |
1(0) 3(0)

07Corriges Page 316 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 317
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Insertion de 4
3 0 -> 1
2 0 -> 1
 |
 |
 __2(1)___
 | |
 | |
1(0) 3(1)___
 |
 |
 4(0)

Insertion de 5
4 0 -> 1
3 1 -> DD
 |
 |
 __2(1)_______
 | |
 | |
1(0) __4(0)___
 | |
 | |
 3(0) 5(0)

Insertion de 6
5 0 -> 1
4 0 -> 1
2 1 -> DD
 |
 |
 ______4(0)___
 | |
 | |
 __2(0)___ 5(1)___
 | | |
 | | |
1(0) 3(0) 6(0)

Insertion de 7
6 0 -> 1
5 1 -> DD
 |
 |
 ______4(0)_______
 | |
 | |
 __2(0)___ __6(0)___
 | | | |
 | | | |
1(0) 3(0) 5(0) 7(0)

Insertion de 8
7 0 -> 1
6 0 -> 1
4 0 -> 1
 |
 |
 ______4(1)_______
 | |
 | |
 __2(0)___ __6(1)___
 | | | |
 | | | |
1(0) 3(0) 5(0) 7(1)___
 |
 |
 8(0)

Insertion de 9
8 0 -> 1
7 1 -> DD
 |
 |
 ______4(1)_______
 | |
 | |
 __2(0)___ __6(1)_______
 | | | |
 | | | |
1(0) 3(0) 5(0) __8(0)___
 | |
 | |
 7(0) 9(0)

07Corriges Page 317 Samedi, 17. janvier 2004 10:39 10

318 Corrigés des exercices

Insertion de 10
9 0 -> 1
8 0 -> 1
6 1 -> DD
 |
 |
 ______4(1)_______________
 | |
 | |
 __2(0)___ ______8(0)___
 | | | |
 | | | |
1(0) 3(0) __6(0)___ 9(1)___
 | | |
 | | |
 5(0) 7(0) 10(0)

Insertion de 11
10 0 -> 1
9 1 -> DD
 |
 |
 ______4(1)_______________
 | |
 | |
 __2(0)___ ______8(0)_______
 | | | |
 | | | |
1(0) 3(0) __6(0)___ __10(0)___
 | | | |
 | | | |
 5(0) 7(0) 9(0) 11(0)

Insertion de 12
11 0 -> 1
10 0 -> 1
8 0 -> 1
4 1 -> DD
 |
 |
 ______________8(0)_______
 | |
 | |
 ______4(0)_______ __10(1)___
 | | | |
 | | | |
 __2(0)___ __6(0)___ 9(0) 11(1)___
 | | | | |
 | | | | |
1(0) 3(0) 5(0) 7(0) 12(0)

Pour l’insertion des nombres de 12 à 1, on obtient des schémas symétriques de ceux donnés ci-dessus. L’inser-
tion se fait toujours dans le sous-arbre gauche ; le rééquilibrage est donc un rééquilibrage GG au lieu de DD.

Exercice 20 : gestion d’un tournoi à l’aide d’une liste d’arbres (page 186)

/* tournoi.cpp programme de gestion d'un tournoi
 méthode : utilisation d'une liste d'arbres;
 quand le tournoi est fini, il reste un seul arbre dans la liste */

#include <stdio.h>
#include <string.h> // strcmp
#include <stdlib.h> // malloc
#include "liste.h"
#include "arbre.h"

#define LGMAX 20
typedef char Chaine [LGMAX+1]; // 0 de fin
typedef struct {
 Chaine joueur1; // gagnant = joueur1
 Chaine joueur2;
} Match;

// constructeur d'un match
Match* match (char* joueur1, char* joueur2) {
 Match* nouveau = new Match();
 strcpy (nouveau->joueur1, joueur1);
 strcpy (nouveau->joueur2, joueur2);
 return nouveau;
}

07Corriges Page 318 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 319
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// la chaîne à fournir pour un match
char* toStringMatch (Match* match) {
 char* chaine = (char*) malloc (2*LGMAX+1);
 sprintf (chaine, "%s:%s", match->joueur1, match->joueur2);
 return chaine;
}

// égalité : 0; sinon 1
int comparerMatch (Match* match1, Match* match2) {
 // match2->joueur1 contient le joueur cherché
 // égalité si le joueur cherché match2->joueur1
 // est dans la structure match1 (en joueur1 ou joueur2)
 if (strcmp (match1->joueur1, match2->joueur1) == 0 ||
 strcmp (match1->joueur2, match2->joueur1) == 0) {
 return 0;
 } else {
 return 1;
 }
}

char* toStringMatch (Objet* objet) {
 return toStringMatch ((Match*)objet);
}

int comparerMatch (Objet* objet1, Objet* objet2) {
 return comparerMatch ((Match*) objet1, (Match*)objet2);
}

// pour un match
void ecrireMatch (Match* match) {
 printf (" %s gagne contre %s\n", match->joueur1, match->joueur2);
}

// lister le contenu des racines des arbres de la liste,
// soit les joueurs non éliminés ayant déjà joués
void listerRestants (Liste* li) {
 printf ("\n\nJoueurs non éliminés\n");
 ouvrirListe (li);
 while (!finListe (li)) {
 Arbre* arbre = (Arbre*) objetCourant (li);
 Match* match = (Match*) getobjet (getracine(arbre));
 ecrireMatch (match);
 }
 printf ("\n");
}

// lister le contenu de chaque arbre de la liste des arbres;
// récapitulatif des matchs
// type 1 : préfixée; 2 : postfixée; 3 : dessins des arbres
void listerArbres (Liste* li, int type) {
 ouvrirListe (li);
 while (!finListe (li)) {
 Arbre* arbre = (Arbre*) objetCourant (li);
 switch (type) {
 case 1 :
 indentationPrefixee (arbre, 1);
 break;
 case 2 :
 indentationPostfixee (arbre, 1);
 break;
 case 3 :
 printf ("\n");
 dessinerArbre (arbre, stdout);
 break;
 }
 printf ("\n");
 }
 printf ("\n");
}

// lister les matchs d'un joueur connaissant un pointeur sur
// son dernier match joué (le plus haut dans l'arbre)
void listerMatch (Noeud* pNom, Chaine joueur) {
 if (pNom != NULL) {
 Match* match = (Match*) getobjet(pNom);
 ecrireMatch (match);
 if (strcmp (match->joueur1, joueur) == 0) {
 listerMatch (getsag(pNom), joueur);

07Corriges Page 319 Samedi, 17. janvier 2004 10:39 10

320 Corrigés des exercices

 } else {
 listerMatch (getsad(pNom), joueur);
 }
 }
}

// rechercher joueur dans la liste des arbres
// et lister les matchs du joueur
void listerMatch (Liste* li, Chaine joueur) {
 printf ("Matchs du joueur %s \n", joueur);
 booleen trouve = faux;
 Match* joueurCh = match (joueur, "");

 ouvrirListe (li);
 while (!finListe (li) && !trouve) {
 Arbre* arbre = (Arbre*) objetCourant (li);
 Noeud* noeud = trouverNoeud (arbre, joueurCh);
 trouve = noeud != NULL;
 if (trouve) listerMatch (noeud, joueur);
 }
 if (!trouve) {
 printf ("Aucun match enregistré pour %s\n", joueur);
 }
}

// enregistrer le résultat d'un match dans la liste des arbres
void enregistrerMatch (Liste* li, Chaine j1, Chaine j2) {
 Noeud* ptJ1 = NULL; // repère j1
 Noeud* ptJ2 = NULL; // repère j2

 printf ("enregistrerMatch %s contre %s\n", j1, j2);
 ouvrirListe (li);

 // chercher le noeud ptj1 du dernier match de j1
 // et le noeud ptj2 du dernier match de j2
 booleen fin = faux;
 while (!finListe (li) && !fin) {
 Arbre* arbre = (Arbre*) objetCourant (li);
 Noeud* noeud = getracine (arbre);
 Match* match = (Match*) getobjet(noeud);
 if (strcmp (match->joueur1, j1) == 0) {
 ptJ1 = noeud;
 extraireUnObjet (li, arbre);
 }
 if (strcmp (match->joueur1, j2) == 0) {
 ptJ2 = noeud;
 extraireUnObjet (li, arbre);
 }
 fin = (ptJ1!=NULL) && (ptJ2!=NULL);
 }

 // créer un Match, un Noeud et un arbre
 Match* nvMatch = match (j1, j2);
 Noeud* nvNoeud = cNd (nvMatch, ptJ1, ptJ2);
 Arbre* arbre = creerArbre (nvNoeud, toStringMatch, comparerMatch);
 insererEnFinDeListe (li, arbre);
}

// créer la liste des arbres à partir d'un fichier
// des résultats des matchs joués
void creerArbres (FILE* fe, Liste* li) {
 initListe (li);
 while (!feof (fe)) {
 Chaine j1;
 Chaine j2;
 fscanf (fe, "%10s%10s", j1, j2);
 if (feof (fe)) break;
 //printf ("creerArbres j1 : %s, j2 : %s\n", j1, j2);
 enregistrerMatch (li, j1, j2);
 }
}

// Les différentes possibilités du programme
int menu () {
 printf ("\nGESTION D'UN TOURNOI\n\n");
 printf ("0 - Fin\n");
 printf ("1 - Création de la liste d'arbres à partir d'un fichier\n");
 printf ("2 - Enregistrement d'un match\n");

07Corriges Page 320 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 321
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 printf ("3 - Liste des joueurs non éliminés\n");
 printf ("4 - Parcours préfixé des arbres\n");
 printf ("5 - Parcours postfixé des arbres\n");
 printf ("6 - Dessins des arbres des matchs\n");
 printf ("7 - Liste des matchs d'un joueur\n");
 printf ("\n");

 printf ("Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 return cod;
}

void main () {
 Liste* la = creerListe(); // la liste des arbres
 int fini = faux;

 while (!fini) {

 switch (menu()) {

 case 0:
 fini = vrai;
 break;

 case 1: {
 //printf ("Nom du fichier contenant les résultats des matchs ? ");
 char nomFE [50];
 //scanf ("%s", nomFE);
 strcpy (nomFE, "jeu.dat");
 FILE* fe = fopen (nomFE, "r");
 if (fe == NULL) {
 printf ("%s inconnu\n", nomFE); exit (1);
 }
 creerArbres (fe, la);
 fclose (fe);
 } break;

 case 2 : {
 printf ("nom du gagnant ? ");
 Chaine j1; scanf ("%s", j1);
 printf ("nom du perdant ? ");
 Chaine j2; scanf ("%s", j2);
 enregistrerMatch (la, j1, j2);
 } break;

 case 3:
 listerRestants (la);
 break;

 case 4:
 printf ("préfixé indenté\n\n");
 listerArbres (la, 1);
 break;

 case 5:
 printf ("postfixé indenté\n\n");
 listerArbres (la, 2);
 break;

 case 6:
 printf ("dessins des arbres des matchs\n\n");
 listerArbres (la, 3);
 break;

 case 7: {
 printf ("\nMatchs d'un joueur, nom cherché ? ");
 Chaine joueur; // nom du Joueur cherché
 scanf ("%s", joueur);
 listerMatch (la, joueur);
 } break;
 } // switch

 if (!fini) {
 printf ("\n\nTaper Return pour continuer\n");
 getchar();
 }
 } // while

} // main

07Corriges Page 321 Samedi, 17. janvier 2004 10:39 10

322 Corrigés des exercices

Exercice 21 : mémorisation d’un dessin sous forme d’un arbre binaire (page 189)

/* dessin.cpp Dessin mémorisé sous forme d'un arbre statique */

#include <stdio.h>
#include <stdlib.h>
#include "ecran.h"

#define NULLE -1
typedef int PNoeud;

typedef struct {
 int indice; // indice sur desc []
 PNoeud gauche;
 PNoeud droite;
} Noeud;

int desc [] = { // description de l'image
// 0 15
 3, 5, 5, 5, 3, 6, 6, 6, 7, 5, 5, 5, 5, 5, 5, 5,
 3, 7, 7, 7, 3, 3, 3, 3, 2, 5, 5
};

Noeud arbre [] = { // l'arbre représentant l'image
 { 0, 1, -1 }, // 0
 { 4, -1, 2 }, // 1
 { 8, 3, -1 }, // 2
 { 16, -1, 4 }, // 3
 { 20, -1, 5 }, // 4
 { 24, -1, -1 } // 5
};

// tracer le dessin correspondant à un noeud
void traiterNoeud (PNoeud pNd, int x, int y, int taille, int* nx, int* ny) {
 int ind = arbre[pNd].indice;
 int nb = desc [ind];
 for (int i=ind+1; i<=ind+nb; i++) {
 for (int j=1; j<=taille; j++) {
 ecrirePixel (y, x); // numéro de ligne d'abord
 switch (desc[i]) {
 case 1: y = y-1; break;
 case 2: x = x+1; y = y-1; break;
 case 3: x = x+1; break;
 case 4: x = x+1; y = y+1; break;
 case 5: y = y+1; break;
 case 6: x = x-1; y = y+1; break;
 case 7: x = x-1; break;
 case 8: x = x-1; y = y-1; break;
 }
 }
 }
 *nx = x;
 *ny = y;
}

// parcours et dessin de l'arbre
void parcours (PNoeud racine, int x, int y, int taille) {
 if (racine != NULLE) {
 int nx, ny;
 traiterNoeud (racine, x, y, taille, &nx, &ny);
 parcours (arbre[racine].gauche, nx, ny, taille);
 parcours (arbre[racine].droite, x, y, taille);
 }
}

// trace deux dessins : un grand et un petit
void main () {
 PNoeud racine = 0; // premier noeud de l’arbre

 initialiserEcran (40, 40);
 parcours (racine, 10, 10, 2);
 afficherEcran ();
 sauverEcran ("GrdEcran.res");
 detruireEcran ();

 initialiserEcran (20, 20);
 parcours (racine, 2, 2, 1);
 afficherEcran ();
 sauverEcran ("PtiEcran.res");
 detruireEcran ();
}

07Corriges Page 322 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 323
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

Exercice 22 : références croisées (arbre ordonné) (page 192)

/* refcrois.cpp
 références croisées : listes et arbres */

#include <stdio.h> // printf, FILE, fopen, fscanf
#include <string.h> // strcpy, strcmp, strlen
#include <stdlib.h> // exit
#include <ctype.h> // isalpha
#include "liste.h"
#include "arbre.h"

// les objets Elt (liste de numéros de lignes)

typedef struct {
 int numLigne;
} Elt;

// les objets Mot
typedef char Chaine [31]; // 30 + 0 de fin
// un mot et sa liste de lignes
typedef struct {
 Chaine mot;
 Liste li;
} Mot;

// LES FONCTIONS EN PARAMETRES

// utilisé par dessinerArbre() pour avoir les mots
char* toStringMot (Mot* pmot) {
 return pmot->mot;
}

// utilisé par dessinerArbre() pour avoir mots et numéros
char* toStringMot2 (Mot* pmot) {
 Liste* li = &pmot->li;
 ouvrirListe (li);
 char* reponse = (char*) malloc (50);
 char mot [10];
 sprintf (reponse, "%s:", pmot->mot);
 while (!finListe (li)) {
 Elt* nl = (Elt*) objetCourant (li);
 sprintf (mot, "%d ", nl->numLigne);
 strcat (reponse, mot);
 }
 return reponse;
}

// comparer deux Mot (pour rechercherOrd())
int comparerMot (Mot* mot1, Mot* mot2) {
 return strcmp (mot1->mot, mot2->mot);
}

// insérer mot, trouvé à la ligne nl, dans l'arbre ordonné
void insererMot (Arbre* arbre, Chaine mot, int nl) {
 Mot* motCherche = new Mot();
 strcpy (motCherche->mot, mot);
 // fournit un pointeur sur le noeud contenant motCherché
 // rechercherOrd() utilise comparerMot()
 Noeud* noeud = rechercherOrd (arbre, motCherche);

 if (noeud != NULL) {
 // le mot existe déjà; ajouter le numéro de ligne
 Mot* pmot = (Mot*) getobjet(noeud);
 Elt* elt = new Elt();
 elt->numLigne = nl;
 insererEnFinDeListe (&pmot->li, elt);

 } else {
 // première rencontre du mot : créer le Mot;
 // insérer nl en fin de liste (le premier élément)
 Mot* pmot = motCherche;
 initListe (&pmot->li);
 Elt* elt = new Elt();
 elt->numLigne = nl;
 insererEnFinDeListe (&pmot->li, elt);
 // insérer le Mot pointé par pmot dans l'arbre ordonné (ou équilibré)
 // en utilisant comparerMot pour trouver sa place
 insererArbreOrd (arbre, pmot);
 //insererArbreEquilibre (arbre, pmot);
 }
}

07Corriges Page 323 Samedi, 17. janvier 2004 10:39 10

324 Corrigés des exercices

// parcours de la liste du Mot pointé par pmot;
// écriture de 10 valeurs par ligne
void traiterNd (Mot* pmot) {
 Liste* li = &pmot->li;
 printf ("%15s : ", pmot->mot);

 int i = 0;
 ouvrirListe (li);
 while (!finListe (li)) {
 Elt* ptc = (Elt*) objetCourant (li);
 printf ("%6d", ptc->numLigne);
 i++;
 if ((i % 10 == 0) && !finListe (li)) {
 printf ("\n%18s", " ");
 }
 }
 printf ("\n");
}

// rechercher les numéros de ligne d'un mot
void rechercherLignes (Arbre* arbre, char* mot) {
 Mot* motCherche = new Mot();
 strcpy (motCherche->mot, mot);
 Noeud* noeud = rechercherOrd (arbre, motCherche);
 if (noeud != NULL) {
 traiterNd ((Mot*)getobjet(noeud));
 } else {
 printf ("%s inconnu\n", mot);
 }
}

// ce qui compose un mot : on pourrait y ajouter
// les lettres accentuées, les chiffres, etc.
int elementDeMot (char c) {
 return isalpha (c);
}

char* toStringMot (Objet* objet) {
 return toStringMot ((Mot*)objet);
}
char* toStringMot2 (Objet* objet) {
 return toStringMot2 ((Mot*)objet);
}

int comparerMot (Objet* objet1, Objet* objet2) {
 return comparerMot ((Mot*)objet1, (Mot*)objet2);
}

// pour infixe() dans main()
void traiterNd (Objet* objet) {
 traiterNd ((Mot*) objet);
}

void main() {
 printf ("Nom du fichier dont on veut les références croisées ? ");
 char nomFE [50]; // nom du fichier d'entrée
 scanf ("%s", nomFE);
 //strcpy (nomFE, "refcrois.dat");
 FILE* fe = fopen (nomFE, "r"); // fichier d'entrée
 if (fe == NULL) {
 printf ("Erreur ouverture %s\n", nomFE);
 exit (1);
 }

 //Arbre* arbre = creerArbre (NULL, toStringMot, comparerMot);
 Arbre* arbre = creerArbre (NULL, toStringMot2, comparerMot);

 int nl = 1; // numéro de ligne du fichier
 printf ("%6d ", nl);

 char c; // prochain caractère à traiter (analyseur)
 fscanf (fe, "%c", &c); printf ("%c", c);
 Chaine mot; // mémorise le mot lu dans fe

 while (! feof (fe)) {

 // passer les délimiteurs de mots

07Corriges Page 324 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 325
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 while (!feof (fe) && !elementDeMot (c)) {
 if (c == '\n') {
 nl = nl + 1;
 printf ("%6d ", nl);
 }
 fscanf (fe, "%c", &c); printf ("%c", c);
 }

 // lire les caractères du mot
 char* pMot = mot; // pointeur courant sur Mot
 while (!feof(fe) && elementDeMot (c)) {
 *pMot++ = c;
 fscanf (fe, "%c", &c); printf ("%c", c);
 }
 *pMot = 0;
 //printf ("mot : %s\n", mot);

 if (strlen (mot) > 0) {
 insererMot (arbre, mot, nl);
 }
 }
 fclose (fe);

 printf ("\n\nRéférences croisées\n");
 infixe (arbre, traiterNd);

 printf ("\n\nRéférences croisées de :\n");
 rechercherLignes (arbre, "petit");

 dessinerArbre (arbre, stdout);
} // main

Exercice 23 : arbre de questions (page 194)

/* question.cpp arbre de questions */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h> // toupper
#include "arbre.h"
#include "mdtypes.h" // toChar

const int MAX = 100;

void insererQuestion (Noeud** pracine) {
 Noeud* racine = *pracine;

 if (racine==NULL) {
 printf ("Question ? : ");

 char phrase [MAX]; fgets (phrase, MAX, stdin);
 phrase [strlen(phrase)-1] = 0; // enlever \n
 char* question = (char*) malloc (strlen(phrase)+1);
 strcpy (question, phrase);
 Noeud* nouveau = cNd (question);
 *pracine = nouveau;
 } else {
 printf ("%s (O/N) ? ", (char*) getobjet(racine));
 char rep; scanf ("%c", &rep); getchar();
 if (toupper(rep) == 'O') {
 insererQuestion (&racine->gauche);
 } else {
 insererQuestion (&racine->droite);
 }
 }
}

void insererQuestion (Arbre* arbre) {
 insererQuestion (&arbre->racine);
}

void poserQuestions (Noeud* racine) {
 if (racine != NULL) {
 printf ("%s (O/N) ? ", (char*) getobjet(racine));
 char rep; scanf ("%c", &rep); getchar();
 if (toupper(rep) == 'O') {
 if (racine->gauche == NULL) {
 printf ("Fin des questions : vous avez trouvé\n");

07Corriges Page 325 Samedi, 17. janvier 2004 10:39 10

326 Corrigés des exercices

 } else {
 poserQuestions (racine->gauche);
 }
 } else {
 if (racine->droite == NULL) {
 //printf ("Mystère et boule de gomme!\n");
 printf ("Fin des questions : ");
 printf ("je donne ma langue au chat\n");
 } else {
 poserQuestions (racine->droite);
 }
 }
 }
}

void poserQuestions (Arbre* arbre) {
 poserQuestions (getracine(arbre));
}

void sauverQuestions (Noeud* racine, FILE* fs) {
 if (racine==NULL) {
 fprintf (fs, "*\n");
 } else {
 fprintf (fs, "%s\n", (char*) getobjet(racine));
 sauverQuestions (racine->gauche, fs);
 sauverQuestions (racine->droite, fs);
 }
}

void sauverQuestions (Arbre* arbre, FILE* fs) {
 sauverQuestions (getracine(arbre), fs);
}

void chargerQuestions (Noeud** pracine, FILE* fe) {
 char phrase [MAX];
 fgets (phrase, MAX, fe);
 int lg = strlen (phrase);
 phrase [lg-1] = 0;

 if (phrase[0] == '*') {
 *pracine = NULL;
 } else {
 char* reference = (char*) malloc (strlen(phrase)+1);
 strcpy (reference, phrase);
 Noeud* nouveau = cNd (reference);
 *pracine = nouveau;

 chargerQuestions (&nouveau->gauche, fe);
 chargerQuestions (&nouveau->droite, fe);
 }
}

void chargerQuestions (Arbre* arbre, FILE* fe) {
 chargerQuestions (&arbre->racine, fe);
}

// détruire un objet de type Question
void detruireQuestion (Objet* objet) {
 char* message = (char*) objet;
 free (message);
}

int menu () {
 printf ("\nARBRE DE QUESTIONS\n\n");
 printf (" 0 - Fin\n");
 printf (" 1 - Insérer une nouvelle question\n");
 printf (" 2 - Lister l'arbre des questions\n");
 printf (" 3 - Poser les questions\n");
 printf (" 4 - Sauver l'arbre dans un fichier\n");
 printf (" 5 - Charger l'arbre à partir d'un fichier\n");
 printf (" 6 - Dessiner l'arbre des questions\n");
 printf (" 7 - Détruire l'arbre en mémoire\n");
 printf ("\n");

 printf (" Votre choix ? ");
 int cod; scanf ("%d", &cod); getchar();
 return cod;
}

void main () {
 Arbre* arbre = creerArbre();
 booleen fini = faux;

07Corriges Page 326 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 327
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 while (!fini) {
 switch (menu()) {
 case 0:
 fini = vrai;
 break;
 case 1 :
 printf ("Insérer une question\n");
 insererQuestion (arbre);
 break;
 case 2 :
 printf ("Arbre des questions\n");
 indentationPrefixee (arbre, 1);
 printf ("\n");
 break;
 case 3 :
 printf ("Questions\n");
 poserQuestions (arbre);
 break;
 case 4 : {
 printf ("Sauvegarde des questions\n");
 char nomFS [50];
 //printf ("Nom du fichier à créer ? ");
 //fgets (nomFS, 50, stdin);
 strcpy (nomFS, "question.dat");
 FILE* fs = fopen (nomFS, "w");
 sauverQuestions (arbre, fs);
 fclose (fs);
 printf ("Sauvegarde effectuée\n");
 } break;
 case 5 : {
 printf ("Chargement des questions\n");
 char nomFE [50];
 //printf ("Nom du fichier à charger ? ");
 //fgets (nomFE, 50, stdin);
 strcpy (nomFE, "question.dat");
 FILE* fe = fopen (nomFE, "r");
 chargerQuestions (arbre, fe);
 fclose (fe);
 printf ("Chargement effectué\n");
 dessinerArbre (arbre, stdout);
 } break;
 case 6 :
 dessinerArbre (arbre, stdout);
 break;
 case 7 :
 detruireArbre (arbre, detruireQuestion);
 printf ("Arbre détruit");
 break;
 } // switch

 if (!fini) {
 printf ("Return pour continuer\n\n"); getchar();
 }
 } // while
}

Exercice 24 : menu pour une table de hachage (page 237)

/* pphc.cpp programme principal hashcode
 avec ou sans chaînage suivant la variable
 de compilation CHAINAGE
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "mdtypes.h"

#ifndef CHAINAGE
#include "tablehc.h"
typedef TableHC Table;
#else
#include "tablehcc.h"
typedef TableHCC Table;
#endif

07Corriges Page 327 Samedi, 17. janvier 2004 10:39 10

328 Corrigés des exercices

// Les fonctions de hash-code
char* titreFn [] = {
 "somme des rangs alphabétiques",
 "somme des caractères ascii",
 "division par N",
 "changement de base"
};
#define NBFN 4

// Les résolutions
char* titreRe [] = {
 "r(i) = i",
 "r(i) = K*i",
 "r(i) = i*i",
 "pseudo-aléatoire",
};
#define NBRE 4

Table* creerTable (int nMax, char* (*toString) (Objet*),
 int (*comparer) (Objet*, Objet*),
 int (*hashcode) (Objet*, int),
 int (*resolution) (int, int, int)) {
 #ifndef CHAINAGE
 return creerTableHC (nMax, toString, comparer, hashcode, resolution);
 #else
 return creerTableHCC (nMax, toString, comparer, hashcode, resolution);
 #endif
}

int menu () {
 #ifndef CHAINAGE
 printf ("\n\nTABLE (HASH-CODING)\n\n");
 #else
 printf ("\n\nTABLE (HASH-CODING AVEC CHAINAGE)\n\n");
 #endif
 printf (" 0 - Fin\n");
 printf (" 1 - Initialisation de la table\n");
 printf (" 2 - Hash-code d'un élément\n");
 printf (" 3 - Ordre de test des N-1 entrées\n");
 printf (" 4 - Ajout d'un élément dans la table\n");
 printf (" 5 - Ajout d'éléments à partir d'un fichier\n");
 printf (" 6 - Liste de la table\n");
 printf (" 7 - Recherche d'une clé\n");
 printf (" 8 - Collisions à partir d'une entrée\n");
 printf ("\n");
 printf ("Votre choix ? ");

 int cod; scanf ("%d", &cod); getchar();
 printf ("\n");

 return cod;
}

void lireFichier (char* nomFE, Table* table) {
 FILE* fe = fopen (nomFE, "r");
 if (fe==NULL) { perror (nomFE); exit(1); };
 int c;

 while (!feof (fe)) {
 Personne* nouveau = new Personne();
 // lire la clé
 char* pNom = nouveau->nom;
 while ((c=getc(fe)) != ' ') *pNom++ = c;
 *pNom = 0;
 if (feof(fe)) break;
 // passer les espaces
 while ((c=getc(fe)) == ' ');
 // lire les infos
 pNom = nouveau->prenom;
 *pNom++ = c;
 while (((c=getc(fe)) != '\n') && !feof (fe)) {
 *pNom++ = c;
 }
 *pNom = 0;
 insererDsTable (table, nouveau);
 }
}

07Corriges Page 328 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 329
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

void main () {

 Table* table = creerTable (16, toStringPersonne, comparerPersonne, hash1, resolution1);

 booleen fin = faux;
 while (!fin) {

 switch (menu()) {
 case 0:
 fin = vrai;
 break;

 case 1: {
 printf ("Paramètres\n");
 printf ("Longueur N de la table ? ");
 int n; scanf ("%d", &n);
 printf ("Fonctions de hash-code\n");
 for (int i=1; i<=NBFN; i++) printf ("%3d %s\n", i, titreFn[i-1]);
 printf ("Votre choix ? ");
 int typFn; scanf ("%d", &typFn);
 if (typFn<1 || typFn>NBFN) typFn = 1;
 printf ("Résolution\n");
 for (int i=1; i<=NBRE; i++) printf ("%3d %s\n", i, titreRe[i-1]);
 printf ("Votre choix ? ");
 int typRes; scanf ("%d", &typRes);
 if (typRes<1 || typRes>NBRE) typRes = 1;
 int (*hash) (Objet*, int);
 switch (typFn) {
 case 1 : hash = hash1; break;
 case 2 : hash = hash2; break;
 case 3 : hash = hash3; break;
 case 4 : hash = hash4; break;
 }
 int (*resolution) (int, int, int);
 switch (typRes) {
 case 1 : resolution = resolution1; break;
 case 2 : resolution = resolution2; break;
 case 3 : resolution = resolution3; break;
 case 4 : resolution = resolution4; break;
 }
 table = creerTable (n, toStringPersonne, comparerPersonne, hash, resolution);
 } break;

 case 2:{
 printf ("Clé dont on veut le hash-code ? ");
 char cle[16]; scanf ("%s", cle);
 int h = table->hashcode (cle, table->nMax);
 printf ("Hash-Code : %d\n", h);
 } break;

 case 3: {
 printf ("Entrée du Hash-Code de départ ? ");
 int entree; scanf ("%d", &entree);
 ordreResolution (table, entree);
 } break;

 case 4 : {
 Personne* p = creerPersonne();
 insererDsTable (table, p);
 } break;

 case 5 : {
 printf ("Nom du fichier ? ");
 char nomFE [30]; scanf ("%s", nomFE);
 lireFichier (nomFE, table);
 } break;

 case 6 :
 listerTable (table);
 break;

 case 7 : {
 printf ("nom de la clé de l'objet cherché ? ");
 char nom[20]; scanf ("%s", nom); getchar();
 Personne* cherche = creerPersonne (nom, "?");
 Personne* trouve = (Personne*) rechercherTable (table, cherche);
 if (trouve!= NULL) printf ("trouve %s\n", toStringPersonne (trouve));
 } break;

07Corriges Page 329 Samedi, 17. janvier 2004 10:39 10

330 Corrigés des exercices

 case 8 : {
 printf ("Liste des collisions pour l'entrée ? ");
 int entree; scanf ("%d", &entree);
 listerEntree (table, entree);
 } break;
 }
 } // while
} // main

Exercice 25 : hachage avec chaînage dans une seule table (page 244)

booleen insererDsTable (TableHCC* table, Objet* nouveau) {
 int h = table->hashcode (nouveau, table->nMax);
 //printf ("insererDsTable hashcode %3d pour %s\n", h, table->toString(nouveau));
 if (table->element[h].objet == NULL) {
 // l'entrée est libre, on l'occupe
 //printf ("insererDsTable h2 %d\n", h);
 table->element[h].objet = nouveau;
 table->n++;
 } else {
 // entrée occupée
 Objet* occupant = table->element[h].objet;
 int hcOc = table->hashcode (occupant, table->nMax);
 if (hcOc == h) { // synonyme, on insère en tête de liste
 int re = resolution (table, h);
 if (re != -1) {
 // insertion de nouveau en tête de liste
 table->element[re] = table->element[h];
 table->element[h].objet = nouveau;
 table->element[h].suivant = re;
 table->n++;
 } else {
 printf ("Table saturée\n");
 return faux;
 }
 } else {
 // enlever l'occupant de sa liste commençant en hcOc
 // ne pas augmenter table->n
 int i = hcOc;
 int prec;
 while (i != h) {
 prec = i;
 i = table->element[i].suivant;
 }
 table->element[prec].suivant = table->element[h].suivant;

 // insérer nouveau en h
 table->element[h].objet = nouveau;
 table->element[h].suivant = NILE;

 // réinsérer l'expulsé
 insererDsTable (table, occupant);
 }
 }
 return vrai;
}

// lister la table
void listerTable (TableHCC* table) {
 int sn = 0;
 for (int i=0; i<table->nMax; i++) {
 if (table->element[i].objet != NULL) {
 int n = nbAcces (table, table->element[i].objet);
 printf ("%3d : hc:%3d n:%3d svt:%3d %s\n", i,

table->hashcode (table->element[i].objet, table->nMax), n,
table->element[i].suivant,

table->toString (table->element[i].objet));
 if (n>0) sn += n; //-1 si erreur
 } else {
 printf ("%3d :\n", i);
 }
 }

 printf ("\nNombre d'éléments dans la table : %d", table->n);
 printf ("\nTaux d'occupation de la table : %.2f",
 table->n / (double) table->nMax);
 printf ("\nNombre moyen d'accès à la table : %.2f\n\n",
 sn / (double) table->n);
}

07Corriges Page 330 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 331
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// fournir le nombre d'accès à la table
// pour retrouver objetCherche; -1 si inconnu
int nbAcces (TableHCC* table, Objet* objetCherche) {
 int na = 0; // nombre d'accès
 int hc = table->hashcode (objetCherche, table->nMax); // hash-code
 if (table->element[hc].objet == NULL) {
 na = -1; // élément inconnu
 } else {
 int courant = hc;
 int i = 1; // ième tentative
 na++;
 while (table->comparer (objetCherche, table->element[courant].objet) != 0) {
 courant = table->element[courant].suivant;
 if (courant == -1) return -1; // élément inconnu
 na++;
 }
 }
 return na;
}

Exercice 26 : hachage sur l’arbre de la Terre (page 252)

 2 1 Bretagne -1 60 -1
 7 1 Afrique 53 19 -1
 8 1 Belgique -1 70 -1
 10 1 Europe 47 34 -1
 19 1 Amerique -1 52 -1
 32 1 Inde -1 72 -1
 34 1 Asie 39 7 71
 39 1 Chine -1 32 72
 47 1 France 2 67 -1
 52 1 Oceanie -1 -1 -1
 53 1 Niger -1 54 -1
 54 1 Congo -1 -1 -1
 56 1 Japon -1 -1 -1
 60 1 Corse -1 71 -1
 66 1 Terre 10 -1 -1
 67 1 Espagne -1 8 70
 70 1 Danemark -1 -1 -1
 71 1 Bourgogne -1 -1 -1
 72 1 Irak -1 56 -1

Exercice 27 : table des étudiants gérée par hachage avec chaînage (page 252)

/* pphcetud.h programme principal hashcode etudiant
 avec ou sans chaînage */

#include <stdio.h>
#include <stdlib.h> // exit
#include "mdtypes.h" // Personne

#ifndef CHAINAGE
#include "tablehc.h"
typedef TableHC Table;
#else
#include "tablehcc.h"
typedef TableHCC Table;
#endif

// résolution r(i) = k*i
int resolution22 (int h, int n, int i) {
 int k = 19;
 return (h+k*i) % n;
}

void lireFichier (char* nomFE, Table* table) voir exercice 24

void main() {
 char* nomFE = "etudiant.dat";

 #ifndef CHAINAGE
 TableHC* table = creerTableHC (197, toStringPersonne,

comparerPersonne, hash2, resolution22);
 #else
 TableHCC* table = creerTableHCC (197, toStringPersonne,

comparerPersonne, hash2, resolution22);

07Corriges Page 331 Samedi, 17. janvier 2004 10:39 10

332 Corrigés des exercices

 #endif

 lireFichier (nomFE, table);
 //printf ("nombre moyen d'accès : %.2f\n", nbMoyAcces (table));
 listerTable (table);

 Personne* etu1 = creerPersonne ("TASSEL", "?");
 Personne* trouve = (Personne*) rechercherTable (table, etu1);
 printf ("%s\n", table->toString (trouve));
}

Exemple de table obtenue à partir d’un fichier « etudiant.dat » ordonné suivant le nom des étudiants.
 0 : hc: 0 n: 1 svt: -1 VERON Pascal
 1 : hc: 1 n: 1 svt: -1 CRAMBERT Pascal
 2 :
 3 :
 4 :
 5 : hc:145 n: 2 svt: -1 LE_NEDELEC Laurent
 6 :
 7 : hc: 7 n: 1 svt: 26 LOUSSOUARN Johann
 8 : hc: 8 n: 1 svt: 27 SOYER Benoît
 9 :
 10 : hc: 10 n: 1 svt: -1 BOURDAIS Candylène
 11 : hc: 11 n: 1 svt: -1 GUIRRIEC Stéphane
 12 :
 13 : hc:172 n: 2 svt: -1 DREAU Sylvain
 14 : hc: 14 n: 1 svt: -1 GUYOT Eric
 15 :
 16 : hc: 16 n: 1 svt: -1 LEVALOIS Fabien
 17 :
 18 : hc: 18 n: 1 svt: -1 LE_GLOAN Guenhaël
 19 :
 20 : hc: 20 n: 1 svt: 39 LE_LOCAT Yann-Gaël
 21 :
 22 :
 23 :
 24 : hc: 24 n: 1 svt:119 LOURENCO Gabriel
 25 :
 26 : hc: 7 n: 2 svt: -1 KERDRAON Benoît
 27 : hc: 8 n: 2 svt: -1 LARRONDE Stéphane
 28 :
 29 :
 30 :
 31 : hc: 31 n: 1 svt: -1 MER Patricia
 32 : hc: 32 n: 1 svt: -1 CAUDAL Vonig
 33 :
 34 :
 35 : hc: 35 n: 1 svt: 54 LE_MOUEL Jérôme
 36 :
 37 :
 38 :
 39 : hc: 20 n: 2 svt: -1 JAN Grégory
 40 :
 41 :
 42 : hc: 42 n: 1 svt: -1 BLASCO Nathalie
 43 : hc: 43 n: 1 svt:157 RONDEPIERRE Laurent
 44 :
 45 :
 46 : hc: 46 n: 1 svt: -1 GAUDIN Damien
 47 : hc: 47 n: 1 svt: -1 LE_GUILCHER Anne Claire
 48 :
 49 :
 50 :
 51 : hc: 77 n: 2 svt: -1 KERMARREC Patrice
 52 : hc: 52 n: 1 svt: -1 MONTEMBAULT Sébastien
 53 : hc: 53 n: 1 svt: -1 ROY Stéphane
 54 : hc: 35 n: 2 svt: -1 DANIEL Gilles
 55 :
 56 :
 57 :
 58 : hc: 58 n: 1 svt: -1 SALAUN Olivier
 59 :
 60 : hc: 60 n: 1 svt: -1 ORIERE Isabelle
 61 : hc: 61 n: 1 svt: 80 PIERRE Patrick
 62 : hc: 62 n: 1 svt:176 SEZNEC Olivier
 63 :
 64 : hc: 64 n: 1 svt: -1 MEULIN Benoît
 65 :
 66 : hc: 66 n: 1 svt: 85 TASSEL Jérôme

07Corriges Page 332 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 333
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

 67 :
 68 : hc: 68 n: 1 svt: -1 ROBERT Sébastien
 69 :
 70 :
 71 :
 72 :
 73 : hc: 73 n: 1 svt:168 LE_HENAFF Guénaëlle
 74 : hc: 74 n: 1 svt: -1 LE_POITEVIN Bertrand
 75 : hc: 75 n: 1 svt:170 REBOUX Franck
 76 : hc: 76 n: 1 svt: -1 LE_LAY Stéphane
 77 : hc: 77 n: 1 svt: 51 LE_GALLIC Régis
 78 :
 79 :
 80 : hc: 61 n: 2 svt: -1 PERIER Fabrice
 81 : hc: 81 n: 1 svt: -1 COUTELLEC Christophe
 82 : hc: 82 n: 1 svt: -1 UNVOAS Thierry
 83 :
 84 :
 85 : hc: 66 n: 2 svt: -1 GUILLO Yvan
 86 : hc: 86 n: 1 svt: -1 DEMEURANT Anne
 87 :
 88 :
 89 : hc: 89 n: 1 svt:108 SEYNHAEVE Emmanuel
 90 : hc: 90 n: 1 svt: -1 JACQ Armelle
 91 :
 92 : hc: 92 n: 1 svt: -1 HENNEQUIN Ludovic
 93 : hc: 93 n: 1 svt: -1 QUEMERAIS Claude
 94 : hc: 94 n: 1 svt: -1 KOWTUN Régis
 95 :
 96 : hc: 96 n: 1 svt: -1 LE_ROY Arnaud
 97 :
 98 :
 99 : hc: 99 n: 1 svt:118 LAIR Olivier
100 : hc: 62 n: 3 svt: -1 BRUNEL Pierre-Yves
101 :
102 : hc:102 n: 1 svt:121 VITTOZ Cécile
103 :
104 :
105 :
106 : hc:106 n: 1 svt: -1 LEYE Daouda
107 : hc:107 n: 1 svt: -1 CARREGA Philippe
108 : hc: 89 n: 2 svt: -1 LEMETAYER Valérie
109 :
110 :
111 : hc: 73 n: 3 svt: -1 DESCHAMPS Loic
112 :
113 : hc: 75 n: 3 svt: -1 BOUVET Yann
114 : hc:114 n: 1 svt:133 PRAT Yann
115 : hc:115 n: 1 svt: -1 RICHARD Didier
116 : hc:116 n: 1 svt: -1 BESCOND Arnaud
117 : hc:117 n: 1 svt: -1 DINCUFF Thierry
118 : hc: 99 n: 2 svt: -1 L'ESCOP Katia
119 : hc: 24 n: 2 svt: -1 MAO Véronique
120 :
121 : hc:102 n: 2 svt: -1 LE_CALVEZ Davy
122 :
123 :
124 :
125 : hc:125 n: 1 svt: -1 HERLIDO Jérôme
126 : hc:126 n: 1 svt: -1 ETIENNE Sébastien
127 : hc:127 n: 1 svt: -1 NICOLAS Christelle
128 : hc:128 n: 1 svt: -1 CLOATRE Gildas
129 :
130 : hc:130 n: 1 svt: -1 SALUDEN Yann
131 :
132 : hc:132 n: 1 svt:151 KERRIEL Philippe
133 : hc:114 n: 2 svt: -1 DELHAYE Sébastien
134 : hc:134 n: 1 svt:191 LESAINT Nicolas
135 : hc:135 n: 1 svt: -1 BOISSEL Jean-Christophe
136 : hc:136 n: 1 svt: -1 FOSSARD Arnaud
137 : hc:137 n: 1 svt:175 TORCHEN Yannick
138 : hc:138 n: 1 svt: -1 QUEMERE Marc
139 :
140 :
141 :
142 :
143 :
144 :
145 : hc:145 n: 1 svt: 5 RENAULT David

07Corriges Page 333 Samedi, 17. janvier 2004 10:39 10

334 Corrigés des exercices

146 :
147 :
148 : hc:148 n: 1 svt: -1 LE_MENN Erwann
149 : hc:149 n: 1 svt: -1 LE_GUEN Grégory
150 :
151 : hc:132 n: 2 svt: -1 AUFFRAY céline
152 : hc:152 n: 1 svt: -1 LE_MAOU Yann
153 : hc:134 n: 3 svt: -1 COSTARD Sylvain
154 : hc:154 n: 1 svt: -1 QUENTIN Thierry
155 :
156 : hc:137 n: 3 svt: -1 FOURBIL Stéphane
157 : hc: 43 n: 2 svt: -1 MOALIC Denis
158 : hc:158 n: 1 svt: -1 CABON Ronan
159 :
160 :
161 :
162 : hc:162 n: 1 svt: -1 CHEIN Anthony
163 :
164 : hc:164 n: 1 svt: -1 HERVAGAULT Stéphane
165 :
166 :
167 : hc:167 n: 1 svt:186 LOUVOIS Prébagarane
168 : hc: 73 n: 2 svt:111 MORVAN Alain
169 :
170 : hc: 75 n: 2 svt:113 AUTRET Frédéric
171 :
172 : hc:172 n: 1 svt: 13 RAMEL Olivier
173 : hc:173 n: 1 svt: -1 BETIN Béatrice
174 :
175 : hc:137 n: 2 svt:156 PORHIEL Pierrick
176 : hc: 62 n: 2 svt:100 BERESCHEL Frédéric
177 :
178 :
179 : hc:179 n: 1 svt: -1 URBAN Frédéric
180 : hc:180 n: 1 svt: -1 LE_DALLOUR David
181 : hc:181 n: 1 svt: -1 LEVEN David
182 : hc:182 n: 1 svt: -1 LE_BELLOUR Marina
183 : hc:183 n: 1 svt: -1 BALANANT Ronan
184 :
185 :
186 : hc:167 n: 2 svt: -1 FLOCH Mickaël
187 :
188 :
189 : hc:189 n: 1 svt: -1 LE_BOURHIS Thierry
190 : hc:190 n: 1 svt: -1 BOUCHARD David
191 : hc:134 n: 2 svt:153 LE_GALL Erwan
192 :
193 : hc:193 n: 1 svt: -1 LANGLAIS Yann
194 :
195 : hc:195 n: 1 svt: -1 TSEMO Edith
196 :

Nombre d'éléments dans la table : 107
Taux d'occupation de la table : 0.54
Nombre moyen d'accès à la table : 1.30

Exercice 28 : fermeture transitive par somme de produits de matrices (page 293)

static void ecrireFMEtape (Matrice pn, int l, int ne, int nMax) {

 if (l==-1) {
 printf ("Nombre de chemins de longueur <= %d\n", ne);
 } else {
 printf ("Nombre de chemins de longueur = %d\n", l);
 }
 for (int i=0; i<ne; i++) {
 for (int j=0; j<ne; j++) printf ("%3d", pn [i*nMax+j]);
 printf ("%10s", " ");
 for (int j=0; j<ne; j++) {
 printf ("%3s", pn [i*nMax+j]!=0 ? "V" : "F");
 }
 printf ("\n");
 }
 printf ("\n");
}

07Corriges Page 334 Samedi, 17. janvier 2004 10:39 10

Corrigés des exercices 335
©

 D
un

od
 –

 L
a

ph
ot

oc
op

ie
 n

on
 a

ut
or

is
ée

 e
st

 u
n

dé
lit

.

// affectation de matrices : mc = ms
static void affMat (Matrice mc, Matrice ms, int ne, int nMax) {
 for (int i=0; i<ne; i++) {
 for (int j=0; j<ne; j++) {
 mc [i*nMax+j] = ms [i*nMax+j];
 }
 }
}

// cumul de matrices : mc = mc + ms
static void addMat (Matrice mc, Matrice ms, int ne, int nMax) {
 for (int i=0; i<ne; i++) {
 for (int j=0; j<ne; j++) {
 mc [i*nMax+j] += ms [i*nMax+j];
 }
 }
}

// produit de matrices : pn = d * m
static void prodMat (Matrice pn, Matrice d, Matrice m, int ne, int nMax) {
 for (int i=0; i<ne; i++) {
 for (int j=0; j<ne; j++) {
 pn [i*nMax+j] = 0;
 for (int k=0; k<ne; k++) {
 pn [i*nMax+j] += d [i*nMax+k] * m [k*nMax+j] ;
 }
 }
 }
}

static void ecrireMat (Matrice m, int ne, int nMax) {
 for (int i=0; i<ne; i++) {
 for (int j=0; j<ne; j++) {
 printf ("%4d ", m [i*nMax+j]);
 }
 printf ("\n");
 }
 printf ("\n");
}

void produitEtFermeture (GrapheMat* graphe) {
 int nMax = graphe->nMax;
 int ns = graphe->n;

 Matrice pn = (int*) malloc (sizeof(int)*nMax*nMax);
 Matrice sm = (int*) malloc (sizeof(int)*nMax*nMax);
 Matrice d = (int*) malloc (sizeof(int)*nMax*nMax);

 affMat (d, graphe->element, ns, nMax);
 affMat (sm, graphe->element, ns, nMax);

 ecrireFMEtape (d, 1, ns, nMax);

 for (int i=2; i<=ns; i++) {
 prodMat (pn, d, graphe->element, ns, nMax) ;
 addMat (sm, pn, ns, nMax);
 affMat (d, pn, ns, nMax);
 ecrireFMEtape (pn, i, ns, nMax);
 }

 ecrireFMEtape (sm, -1, ns, nMax);

 free (pn);
 free (sm);
 free (d);
}

07Corriges Page 335 Samedi, 17. janvier 2004 10:39 10

336 Corrigés des exercices

07Corriges Page 336 Samedi, 17. janvier 2004 10:39 10

Bibliographie

Livres en français

A.Aho, J. Hopcraft, J. Ullman

,

Structures de données et algorithmes

, InterEditions, 1987.
(Types de données abstraites, arbres, ensembles, graphes, tris, algorithmes, gestion de la
mémoire.)

C. Carrez

,

Structures de données en Java, C++ et Ada 95

InterEditions, 1997.
(Introduction, les structures de base, algorithmes de tri, la recherche, problèmes et solu-
tions.)

J. Courtin, I. Kowarski

,

Initiation à l'algorithmique et aux structures de données

, volume 2 –
listes linéaires chaînées, structures linéaires particulières, les tables, les arbres, Dunod 1995

M. Divay,

Java et la programmation objet

, Dunod, 2002, ISBN 2 10 005891 6.

M. Divay

,

Unix, Linux et les systèmes d'exploitation

, Dunod 2004, ISBN 2 10 007451 2.

C. Froidevaux, M.C. Gaudel, M. Soria,

Types de données et algorithmes

, McGraw-Hill.
(Introduction à l'analyse des algorithmes, structures de données, algorithmes de recherche,
algorithme de tri, quelques algorithmes sur les graphes.)

J. Guyot, C. Vial

,

Arbres, Tables et Algorithmiques

, Eyrolles, 1988.
(Algorithmique, structures de données, algorithmes.)

E. Horowitz, S. Sahni, S. Anderson-Freed

,

L’essentiel

des structures de données en C

,
Dunod 1993.
(Concepts de base, piles et files, les listes, les arbres, les graphes, le tri, le hachage, les struc-
tures de tas, les structures arborescentes.)

B. Ibrahim, C. Pellegrini

,

Structuration des données informatiques,

Dunod, 1989.
(Structures statiques et dynamiques, chaînes, arbres, listes, graphes, réseaux, adressage
associatif, arbres de décision.)

08biblio Page 337 Samedi, 17. janvier 2004 10:40 10

338

Bibliographie

Niklaus Wirth

,

Algorithmes et structures de données

, Eyrolles, 1987.
(Structures de données fondamentales, le tri, algorithmes récursifs, structures de données
dynamiques, transformations de clés (hachage).)

Livres en anglais

A. Tenenbaum, M. Augenstein,

Data structures using Pascal

, Prentice-Hall, 1981.
(Information and meaning, the stack, recursion, queues and lists, Pascal list processing,
trees, graphs and their applications, sorting, searching.)

R. Johnsonbaugh

,

Discrete mathematics

, Macmillan Publishing Company, 1984.
(Introduction, counting methods and recurrence relations, graph theory, trees, network
models and Petri nets, boolean algebras and combinatorial circuits, automata grammars and
languages.)

08biblio Page 338 Samedi, 17. janvier 2004 10:40 10

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

Index

A

accès
séquentiel 201

adressage calculé 215

ajouterUnArc

267

,

284

ajouterUnSommet

267

,

283
algorithme

itératif 6
récursif 117

allocation
contiguë 30, 38, 74, 86, 87, 101, 107, 149
dynamique 35, 37, 38, 107, 117
statique 38, 149

appel
récursif 169

arbre 102
binaire 103, 108, 196
binaire complet 154
binaire de questions 194
binaire équilibré 103
binaire ordonné 156
binaire parfaitement équilibré 103, 167
de chaînes de caractères 140
équilibré 167, 181, 194
généalogique 105
n-aire 104, 134, 196
ordonné 103, 193
récursif 17

arc 254
ascendant n-aire

 133

AVL 168

B

B-arbre 182
d’ordre N 182

boucles récursives 7

C

carte à jouer 98
cercle récursif 15
cF 111
chaînage

arrière 63
avant 62

chercherUnObjet

 44
classe 29
clé 156, 176, 197, 215
cloner 126
cNd 110
collisions 218, 220

comparer

 47, 119, 157, 200, 202
corps humain 249

creerArbre

 111

creerGraphe

 266

creerGrapheMat

 283

creerListe

 40

algorIDM.fm Page 339 Samedi, 17. janvier 2004 10:41 10

340

Index

creerPersonne

 51

creerTable

 200

creerTableHC

 230

D

dégénéré 124
degré 107

d’un nœud 103
dépiler 66
descendant n-aire 132
dessin

d’un arbre binaire 128
d’un arbre n-aire 136
récursif 15

dessinerArbre

 127

dessinerArbreNAire

 136
dichotomique 183
Dijkstra 269
données

globales 26
locales 26

duplication d’arbre 135

dupliquerArbre

 125

E

égalité de deux arbres 127
empiler 66

encapsulation

 24

enOrdre

47
équirépartie 244

extraireEnFinDeListe

 46

extraireEnTeteDeListe

 45

extraireUnObjet

 46

F

facteur d’équilibre 168, 176
factorielle 2
fait initial 61, 62
fermeture transitive 290
feuille 102, 122, 183

n-aire 130
Fibonacci 4
fichier d’en-tête 25, 26, 31, 48, 56, 98
FIFO 72
file d’attente 72, 120

finListe

43
Floyd 286

fonction
de hachage 218
de résolution 223
en paramètre 33
locale 50

free

 23

frère immédiatement plus jeune

 108

G

graphe 254
connexe 255
d’ordonnancement 258
fortement connexe 256
multiple 256
non orienté 254
orienté 255

H

hachage 217

hash1

 218

hash2

219

hash3

219

hash4

 220
hash-code 220
hauteur 103

d’un arbre 124, 182
d’un nœud 168

héritage 30

homme.nai

 142

I

indentation 119
n-aire 132

inférence 61
information volatile 52, 86

initListe

 40

insererArbreOrd

 159

insererDsTable

 201, 231

insererEnFinDeListe

 42

insererEnOrdre

 48, 57

insererEnTeteDeListe

 41
interface 24, 26, 35, 101

L

LIFO 66

Liste

39
liste 36, 38, 129

circulaire 75

algorIDM.fm Page 340 Samedi, 17. janvier 2004 10:41 10

Index

341

©
 D

un
od

 –
 L

a
ph

ot
oc

op
ie

 n
on

 a
ut

or
is

ée
 e

st
 u

n
dé

lit
.

d’adjacence 260
d’hypothèses 62
de conclusions 62
de faits 63
de personnes 52, 79
de règles 63
libre 87, 92
ordonnée 47, 52, 56, 99
simple 36
symétrique 80

listerFeuilles

 123

listerListe

 44

listeVide

 40

M

malloc

 21, 23
matrice

d’adjacence 259
MCD 89

mdtypes.h

 51
menu 31
méthode 29

virtuelle 30
modèle conceptuel des données 89
module 24, 35, 48, 57, 67, 84, 101

écran

 29
moteur d’inférence 61

N

n-aire 130

nbElement

 40

new

 23
niveau 103

de récursivité 3
nœud 102
nombre complexe 32, 99
nomenclature 153

O

objet 29
récursif 19

objetCourant

 43

ouvrirListe

 43

P

parcours
d’arbre 114

en largeur 120, 129, 136, 263, 268
en largeur n-aire 134
en profondeur 114, 262
infixé 115
postfixé 115, 126
préfixé 115

pile 66
d’entiers 30

plus court chemin 269
pointeur 20, 37

de fonction 34
polynômes 55

premier fils

 108
procédure itérative 4
programmation objet 29, 30
prototype 25, 49, 101
puissance 10

R

racine 102
recherche dichotomique 203

rechercherOrd

 157

rechercherTable

 231
récursivité 1
référence croisée 192
remontée récursive 180
réorganisation 168

DD

171

DG

175

GD

172

GG

 170
résolution

des collisions 221
par chaînage 238
pseudo-aléatoire 225
quadratique 224

S

SAD 114
SAG 114
sommets

254
spirale 30

static

 50
système expert 61

T

table 197
d’index 198

algorIDM.fm Page 341 Samedi, 17. janvier 2004 10:41 10

342

Index

d’occupation 87
de hash-code 233

TAD

 24, 74, 75
taille d’un arbre 122
taux d’occupation 244

terre.nai

 147, 248
tête de liste 38

toString

 117, 200, 205
tournoi 186
Tours de Hanoi 11
tri bulle

205

trouverNoeud

 119, 251
type

abstrait de données

24, 74, 75

Arbre

110

DD

171

DG

175

GD

171

GG

168

Graphe

264

GrapheMat

281
Liste 49

Liste

39

ListeS

80

Monome

56

Objet

 49

Personne

51

Polynome

 56
Table 200
TableHC 228
TableHCC 241

U

unité de compilation 25

V

variable de compilation 70, 274
version

itérative 204
récursive 204

W

Warshall 292

algorIDM.fm Page 342 Samedi, 17. janvier 2004 10:41 10

	ALGORITHMES ET STRUCTURES DE DONNÉES GÉNÉRIQUES : COURS ET EXERCICES CORRIGÉS EN LANGAGE C, 2ÈME ÉD.
	Titre
	Copyright
	Table des matières
	Avant-propos
	Chapitre 1. Récursivité, pointeurs, modules
	1.1 RÉCURSIVITÉ DES PROCÉDURES : DÉFINITION
	1.2 EXEMPLES DE FONCTIONS RÉCURSIVES
	1.2.1 Exemple 1 : factorielle
	1.2.2 Exemple 2 : nombres de Fibonacci
	1.2.3 Exemple 3 : boucles récursives
	1.2.4 Exemple 4 : numération
	1.2.5 Exemple 5 : puissance nième d’un nombre
	1.2.6 Exemple 6 : Tours de Hanoi
	1.2.7 Exemple 7 : tracés récursifs de cercles
	1.2.8 Exemple 8 : tracé d’un arbre
	1.2.9 Conclusions sur la récursivité des procédures

	1.3 RÉCURSIVITÉ DES OBJETS
	1.3.1 Rappel sur les structures
	1.3.2 Exemple de déclaration incorrecte
	1.3.3 Structures et pointeurs
	1.3.4 Opérations sur les pointeurs

	1.4 MODULES
	1.4.1 Notion de module et de type abstrait de données (TAD)
	1.4.2 Exemple : module de simulation d’écran graphique
	1.4.2.a Le fichier d’en-tête de l’écran graphique
	1.4.2.b Le module écran graphique
	1.4.2.c Le programme d’application de l’écran graphique
	1.4.2.d Le résultat de l’exécution du test du module écran

	1.5 POINTEURS DE FONCTIONS
	1.6 RÉSUMÉ

	Chapitre 2. Les listes
	2.1 LISTES SIMPLES : DÉFINITION
	2.2 REPRÉSENTATION EN MÉMOIRE DES LISTES
	2.3 MODULE DE GESTION DES LISTES
	2.3.1 Création d’un élément de liste (fonction locale au module sur les listes)
	2.3.2 Ajout d’un objet
	2.3.2.a Ajout en tête de liste
	2.3.2.b Ajout après l’élément précédent (fonction locale au module)
	2.3.2.c Ajout en fin de liste

	2.3.3 Les fonctions de parcours de liste
	2.3.4 Retrait d’un objet
	2.3.4.a Retrait en tête de liste
	2.3.4.b Retrait de l’élément qui suit l’élément précédent (fonction locale)
	2.3.4.c Retrait de l’objet en fin de liste
	2.3.4.d Retrait d’un objet à partir de sa référence

	2.3.5 Destruction de listes
	2.3.6 Recopie de listes
	2.3.7 Insertion dans une liste ordonnée
	2.3.8 Le module de gestion de listes
	2.3.8.a Le fichier d’en-tête des listes simples
	2.3.8.b Le module des listes simples

	2.4 EXEMPLES D’APPLICATION
	2.4.1 Le type Personne
	2.4.2 Liste de personnes
	2.4.3 Les polynômes
	2.4.3.a Le fichier d’en-tête des polynômes
	2.4.3.b Le module des polynômes
	2.4.3.c Le programme principal des polynômes

	2.4.4 Les systèmes experts
	2.4.4.a Introduction
	2.4.4.b Listes de faits et liste de règles

	2.4.5 Les piles
	2.4.5.a Allocation dynamique (utilisation de listes)
	2.4.5.b Le fichier d’en-tête des piles (utilisation de listes)
	2.4.5.c Le module des piles (utilisation de listes)
	2.4.5.d Déclaration des types Entier et Reel pour le test de la pile
	2.4.5.e Utilisation du module de gestion de piles
	2.4.5.f Allocation contiguë (utilisation d’un tableau)

	2.4.6 Les files d’attente (gérée à l’aide d’une liste)
	2.4.6.a Allocation dynamique (utilisation de listes)
	2.4.6.b Allocation contiguë d’une file d’attente (utilisation d’un tableau)

	2.5 AVANTAGES ET INCONVÉNIENTS DES LISTES
	2.6 LE TYPE ABSTRAIT DE DONNÉES (TAD) LISTE
	2.7 LES LISTES CIRCULAIRES
	2.7.1 Le fichier d’en-tête des listes circulaires
	2.7.2 Insertion en tête de liste circulaire
	2.7.3 Insertion en fin de liste circulaire
	2.7.4 Parcours de listes circulaires
	2.7.5 Le module des listes circulaires
	2.7.6 Utilisation du module des listes circulaires

	2.8 LES LISTES SYMÉTRIQUES
	2.8.1 Le fichier d’en-tête des listes symétriques
	2.8.2 Le module des listes symétriques
	2.8.3 Utilisation du module des listes symétriques

	2.9 ALLOCATION CONTIGUË
	2.9.1 Allocation - désallocation en cas d’allocation contiguë
	2.9.1.a Allocation séquentielle avec ramasse-miettes
	2.9.1.b Marqueur par élément (table d’occupation)
	2.9.1.c Éléments libres en liste (allocation contiguë)

	2.9.2 Exemple des polynômes en allocation contiguë avec liste libre
	2.9.3 Exemple de la gestion des commandes en attente
	2.9.3.a Exemples d’opérations envisageables
	2.9.3.b Description des fichiers
	2.9.3.c Explications de l’exemple de la Figure 46
	2.9.3.d Le fichier d’en-tête de la gestion en liste libre du fichier Attente
	2.9.3.e Le module de gestion en liste libre du fichier Attente
	2.9.3.f Le programme de gestion des commandes en attente

	2.10 RÉSUMÉ

	Chapitre 3. Les arbres
	3.1 LES ARBRES N-AIRES
	3.1.1 Définitions
	3.1.2 Exemples d’applications utilisant les arbres
	3.1.3 Représentation en mémoire des arbres n-aires
	3.1.3.a Mémorisation par listes de fils
	3.1.3.b Allocation dynamique
	3.1.3.c Allocation contiguë (tableau ou fichier)

	3.2 LES ARBRES BINAIRES
	3.2.1 Définition d’un arbre binaire
	3.2.2 Transformation d’un arbre n-aire en un arbre binaire
	3.2.3 Mémorisation d’un arbre binaire
	3.2.3.a Arbre généalogique
	3.2.3.b Expression arithmétique

	3.2.4 Parcours d’un arbre binaire
	3.2.4.a Les différentes méthodes de parcours en profondeur d’un arbre
	3.2.4.b Parcours sur l’arbre binaire de l’arbre généalogique
	3.2.4.c Parcours sur l’arbre binaire de l’expression arithmétique
	3.2.4.d Les algorithmes de parcours d’arbre binaire
	3.2.4.e Recherche d’un noeud de l’arbre
	3.2.4.f Parcours en largeur dans un arbre

	3.2.5 Propriétés de l’arbre binaire
	3.2.5.a Taille d’un arbre binaire
	3.2.5.b Feuilles de l’arbre binaire
	3.2.5.c Valeur du plus long identificateur des noeuds de l’arbre
	3.2.5.d Somme des longueurs des identificateurs des noeuds de l’arbre
	3.2.5.e Hauteur d’un arbre binaire, arbre binaire dégénéré

	3.2.6 Duplication, destruction d’un arbre binaire
	3.2.7 Égalité de deux arbres
	3.2.8 Dessin d’un arbre binaire
	3.2.9 Arbre binaire et questions de l’arbre n-aire
	3.2.9.a Feuilles n-aires
	3.2.9.b Descendants n-aires
	3.2.9.c Parcours indenté n-aire
	3.2.9.d Ascendants n-aires
	3.2.9.e Parcours en largeur n-aire
	3.2.9.f Duplication d’un arbre n-aire sur N niveaux
	3.2.9.g Dessin d’un arbre n-aire

	3.2.10 Le module des arbres binaires
	3.2.10.a Le fichier d’en-tête pour les arbres binaires
	3.2.10.b Le corps du module des arbres binaires

	3.2.11 Les arbres de chaînes de caractères
	3.2.11.a Menu de test du module des arbres binaires
	3.2.11.b Exemples de créations et d’interrogations d’arbres binaires

	3.2.12 Arbre binaire et tableau
	3.2.12.a Définitions, déclarations et prototypes de fonctions
	3.2.12.b Le module des arbres en tableaux
	3.2.12.c Exemple de conversion allocation dynamique / allocation en tableau

	3.2.13 Arbre binaire et fichier
	3.2.14 Arbre binaire complet

	3.3 LES ARBRES BINAIRES ORDONNÉS
	3.3.1 Définitions
	3.3.2 Arbres ordonnés : recherche, ajout, retrait
	3.3.2.a Recherche d’un élément dans un arbre binaire ordonné
	3.3.2.b Insertion dans un arbre binaire ordonné
	3.3.2.c Minimum, maximum
	3.3.2.d Suppression d’un élément dans un arbre binaire ordonné
	3.3.2.e Parcours infixé droite gauche (décroissant)

	3.3.3 Menu de test des arbres ordonnés de chaînes de caractères
	3.3.3.a Exemple de consultation des arbres ordonnés

	3.4 LES ARBRES BINAIRES ORDONNÉS ÉQUILIBRÉS
	3.4.1 Définitions
	3.4.2 Ajout dans un arbre ordonné équilibré
	3.4.2.a 1˚ cas : type GG
	3.4.2.b 2˚ cas : type DD (symétrique du cas 1)
	3.4.2.c 3˚ cas : type GD
	3.4.2.d 4˚ cas : type DG (symétrique du cas 3)
	3.4.2.e Insertion dans un arbre binaire équilibré

	3.4.3 Exemple de test pour les arbres équilibrés

	3.5 ARBRES N-AIRES ORDONNÉS ÉQUILIBRÉS : LES B-ARBRES
	3.5.1 Définitions et exemples
	3.5.2 Insertion dans un B-arbre
	3.5.3 Recherche, parcours, destruction
	3.5.3.a Recherche d’un élément : accès direct
	3.5.3.b Parcours des éléments : accès séquentiel
	3.5.3.c Destruction d’un élément

	3.6 RÉSUMÉ

	Chapitre 4. Les tables
	4.1 CAS GÉNÉRAL
	4.1.1 Définition
	4.1.2 Exemples d’utilisation de tables
	4.1.2.a Gestion d’articles
	4.1.2.b Table d’étiquettes dans un compilateur
	4.1.2.c Dictionnaire
	4.1.2.d Remarques

	4.1.3 Création, initialisation de tables
	4.1.4 Accès séquentiel
	4.1.4.a Accès séquentiel standard
	4.1.4.b Accès séquentiel avec sentinelle
	4.1.4.c Évaluation de l’accès séquentiel

	4.1.5 Accès dichotomique (recherche binaire)
	4.1.5.a Principe
	4.1.5.b Dichotomie : version récursive
	4.1.5.c Dichotomie : version itérative
	4.1.5.d Tri de la table
	4.1.5.e Listage de la table

	4.1.6 Le module des tables
	4.1.6.a Le type Table
	4.1.6.b Menu de test des tables

	4.1.7 Exemples d’application des tables
	4.1.7.a Table de noms de personnes
	4.1.7.b Table de noms de polynômes

	4.2 VARIANTES DES TABLES
	4.2.1 Rangement partitionné ou indexé
	4.2.2 Adressage calculé

	4.3 ADRESSAGE DISPERSÉ, HACHAGE, HASH-CODING
	4.3.1 Définition du hachage
	4.3.2 Exemples de fonction de hachage
	4.3.2.a Somme des rangs alphabétiques des lettres
	4.3.2.b Addition des représentations binaires
	4.3.2.c Méthode de la division
	4.3.2.d Changement de base

	4.3.3 Analyse de la répartition des valeurs générées par les fonctions de hachage
	4.3.4 Résolution des collisions
	4.3.5 Résolution à l’aide d’une nouvelle fonction
	4.3.5.a Résolution r(i) = i
	4.3.5.b Résolution r(i) = K * i
	4.3.5.c Résolution quadratique r(i) = i * i (N : nombre premier)
	4.3.5.d Résolution pseudo-aléatoire (N : puissance de 2)

	4.3.6 Le fichier d’en-tête des fonctions de hachage et de résolution
	4.3.7 Le corps du module sur les fonctions de hahscode et de résolution
	4.3.8 Le type TableHC (table de hachage)
	4.3.8.a Création d’une table de hachage
	4.3.8.b Ajout d’un élément dans une table de hachage
	4.3.8.c Recherche d’un élément dans une table de hachage
	4.3.8.d Listage de la table
	4.3.8.e Nombre moyen d’accès
	4.3.8.f Fonction de contrôle des emplacements
	4.3.8.g Ordre de la résolution

	4.3.9 Exemple simple de mise en oeuvre du module sur les tables de hash-code
	4.3.10 Programme de test des fonctions de hachage
	4.3.11 Résolution par chaînage avec zone de débordement
	4.3.11.a Avec une table séparée pour les synonymes

	4.3.12 Résolution par chaînage avec une seule table
	4.3.12.a Expulsion de l’intrus
	4.3.12.b Cohabitation avec l’intrus
	4.3.12.c Le type TableHCC (table de hachage avec chaînage)
	4.3.12.d Exemples de mise en oeuvre du hachage avec chaînage

	4.3.13 Retrait d’un élément
	4.3.14 Parcours séquentiel
	4.3.15 Évaluation du hachage
	4.3.16 Exemple 1 : arbre n-aire de la Terre (en mémoire centrale)
	4.3.17 Exemple 2 : arbre n-aire du corps humain (fichier)

	4.4 RÉSUMÉ

	Chapitre 5. Les graphes
	5.1 DÉFINITIONS
	5.1.1 Graphes non orientés (ou symétriques)
	5.1.2 Graphes orientés
	5.1.3 Graphes orientés ou non orientés

	5.2 EXEMPLES DE GRAPHES
	5.3 MÉMORISATION DES GRAPHES
	5.3.1 Mémorisation sous forme de matrices d’adjacence
	5.3.2 Mémorisation en table de listes d’adjacence
	5.3.3 Liste des sommets et listes d’adjacence : allocation dynamique

	5.4 PARCOURS D’UN GRAPHE
	5.4.1 Principe du parcours en profondeur d’un graphe
	5.4.2 Principe du parcours en largeur d’un graphe

	5.5 MÉMORISATION (TABLE DE LISTES D’ADJACENCE)
	5.5.1 Le type Graphe
	5.5.2 Le fichier d’en-tête des graphes
	5.5.3 Création et destruction d’un graphe
	5.5.4 Insertion d’un sommet ou d’un arc dans un graphe
	5.5.5 Écriture d’un graphe (liste d’adjacence)
	5.5.6 Parcours en profondeur (listes d’adjacence)
	5.5.7 Parcours en largeur (listes d’adjacence)
	5.5.8 Plus court chemin en partant d’un sommet
	5.5.9 Création d’un graphe à partir d’un fichier
	5.5.10 Menu de test des graphes (listes d’adjacence et matrices)

	5.6 MÉMORISATION SOUS FORME DE MATRICES
	5.6.1 Le fichier d’en-tête du module des graphes (matrices)
	5.6.2 Création et destruction d’un graphe (matrices)
	5.6.3 Insertion d’un sommet ou d’un arc dans un graphe (matrices)
	5.6.4 Lecture d’un graphe (à partir d’un fichier)
	5.6.5 Écriture d’un graphe
	5.6.6 Parcours en profondeur (matrices)
	5.6.7 Parcours en largeur (matrices)
	5.6.8 Plus courts chemins entre tous les sommets (Floyd)
	5.6.9 Algorithme de Floyd
	5.6.10 Algorithme de calcul de la fermeture transitive
	5.6.11 Menu de test des graphes (matrices)

	5.7 RÉSUMÉ
	5.8 CONCLUSION GÉNÉRALE

	Corrigés des exercices
	Exercice 1 : boucle sous forme récursive (page 8)
	Exercice 2 : Hanoi : calcul du nombre de secondes ou d’années pour déplacer n disques (page 15)
	Exercice 3 : dessin d’un arbre (page 19)
	Exercice 4 : spirale rectangulaire (récursive) (page 30)
	Exercice 5 : module de gestion de piles d’entiers (allocation contiguë) (page 30)
	Exercice 6 : module de gestion de nombres complexes (page 32)
	Exercice 7 : polynômes d’une variable réelle (lecture, addition) (page 60)
	Exercice 8 : systèmes experts : les algorithmes de déduction (page 66)
	Exercice 9 : le type pile (allocation contiguë) (page 72)
	Exercice 10 : files d’attente en allocation dynamique (page 73)
	Exercice 11 : files d’attente en allocation contiguë (page 74)
	Exercice 12 : commande en attente (page 97)
	Exercice 13 : les cartes à jouer (page 98)
	Exercice 14 : polynômes complexes (listes ordonnées) (page 99)
	Exercice 15 : parcours d’arbres droite-gauche (page 116)
	Exercice 16 : dessin n-aire d’un arbre (page 136)
	Exercice 17 : le corps humain (page 142)
	Exercice 18 : facteur d’équilibre (page 176)
	Exercice 19 : insertion de valeurs dans un arbre équilibré (page 181)
	Exercice 20 : gestion d’un tournoi à l’aide d’une liste d’arbres (page 186)
	Exercice 21 : mémorisation d’un dessin sous forme d’un arbre binaire (page 189)
	Exercice 22 : références croisées (arbre ordonné) (page 192)
	Exercice 23 : arbre de questions (page 194)
	Exercice 24 : menu pour une table de hachage (page 237)
	Exercice 25 : hachage avec chaînage dans une seule table (page 244)
	Exercice 26 : hachage sur l’arbre de la Terre (page 252)
	Exercice 27 : table des étudiants gérée par hachage avec chaînage (page 252)
	Exercice 28 : fermeture transitive par somme de produits de matrices (page 293)

	Bibliographie
	Index

