Christian Soutou

S0L

Oradl

7¢ édition

(
002?
(S 0{
G?Oé :
7

Applications avec Java, PHP et XML
Optimisation des requétes et schémas

Avec 50 exercices corrigés

EYROLLES

Christian Soutou est maitre de conférences a l'université Toulouse Jean-Jaurés et consultant indé-
pendant. Rattaché au département Réseaux et Télécoms de I'IUT de Blagnac, il intervient autour des
technologies de I'information en DUT, licence et master professionnels, ainsi que pour le compte de
la société Orsys. Il est également l'auteur d'ouvrages sur SQL Server, MySQL, UML et les bases de
données, tous parus aux éditions Eyrolles.

Apprendre SQL par 'exemple

Tout particulierement destiné aux débutants et aux étudiants, cet ouvrage permet d'acquérir les notions essen-
tielles d"Oracle, leader des systémes de gestion de bases de données. Condis et de difficulté Fmé]ressive, il est
émaillé de nombreux exemples et de 50 exercices corrigés qui illustrent tous les aspects fondamentaux de
SQL. Couvrant les versions 9i & 12¢ d'Oracle, il permet de se familiariser avec ses principales fonctionnalités,
ainsi quavec les APl les plus utilisées (JBDC, PHP et XML DB). Ce livre consacre également un chapitre entier 3
I'optimisation des requétes et des schémas relationnels, en étudiant Foptimiseur, les statistiques, la mesure des
performances et 'emploi de la boite & outils : contraintes, index, tables organisées en index, partitionnement,
vues matérialisées et dénormalisation. Mise & jour et augmentée, cette septidme édition actualise la partie XML
DB et présente |architecture multitenant de la version 12¢

A qui sadresse cet ouvrage ?

« A tous ceux qui souhaitent s'initier & SOL, & Oracle ou & la gestion de bases de données
« Aux développeurs C, C++, Java, PHP et XML qui souhaitent stocker leurs données

Installez vous-méme Oracle !

Les compléments web de cet ouvrage décrivent en détail les procédures d'installation des différentes versions
d'Orade, de la 9/ la 12¢ (éditions Express et Enterprise). Ces versions peuvent é&tre téléchargées gratuitement
sur le site d’Oracle : destinées a des fins non commerciales, elles sont complétes et sans limitation de durée.

Au sommaire

Partie 1: SQLde base. Définition des données. Manipulation des données. Evolution d‘un schéma. Intemrogation
des données. Confrole des données. Partie Il : PL/SQL. Bases du PL/SOL. Programmation avancée. Partie Il :
SQL avancé, Le précompilateur Pro®C/C++. Linterface JDBC. Omcle et PHP. Oracle XML DB. Optimisation.

r\ ,;'_Wj sur le site www.editions-eyrolles.com -
— = Téléchamgez le code source des exemples et le corrigé des exercices B2

» Consultez les mises & jour et les compléments ==

= Dialoguez avec auteur e

55

&

BR

P

8

Groupe Eyrolles | Diffusion Geodif

SQL

Oracle

DU MEME AUTEUR

C. Sovrou, F. Brouarn, N_Sououer et . Barsakin, — SQL Server 2014.
N®13592, 2015, 890 pages:

C. Souron. - Programmer avee MySQL (¥ édition).
N=13719, 2013, 520 pages.

C. Sourou. - Modélisalion de bases de données (3* édition).
N714206., 2015, 352 puges. A paraitre.

AUTOUR D'ORACLEET DE SQL

E. Bizoi — Oracle 12¢ - Administration.
N°14056, 2014, 5364 pages:

R. Brzoi — Orack 12¢ - Sauvegarde et restauration.
NE14057, 2014, 336 pages.

R. Brzoi — SQL pour Oracle 12¢.
N14054, 2014, 416 pages:

R. Bzl — PLASQL pour Oracle 12¢.
NE14055, 2014, 340 pages:

C. Prmee pe Gever et G. Poxgon — Mémento PHP et SQL (3 édition).
N°13602. 2014, 14 pages.

R. Brzoi - Oracle 11z — Administration.
NT12Z899, 2011, 600 pages.

R. Bizoi— Oracle 11g - Sauvegarde et restauration,
NT12899, 2011, 432 pages.

G. Brann ~ Oracle 10g sous Windows,
NT11707, 2006, 846 pages.

R. Bizoi — SQL pour Oracle Hg.
NEI2055, 2006, 650 pages.

G. Briarn ~ Oracle g sous Windows.
NeL1707, 2006, 846 pages.

G. Bruawn ~ Oracle® sous Linux,
N°11337,2003, 894 pages.

Christian Soutou

SQL

Oracle

Applications avec Java, PHP et XML
Optimisation des requétes et schémas

Avec 50 exercices corrigés

EYROLLES

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou pamtiellement le présent ouvrage,
sur quelque support que ce soit, sans "autorisation de I'Editeur ou du Centre Frangais d’exploitation du droit de copie,
20, rue des Grands Augusting, 75006 Paris.

© Groupe Eyrolles 2004-2015, ISBN : 978-2-212-14156-6

8i Oracle était doué d’écriture, il penserait certainement
aux journalistes et aux auires victimes qui ont perdu la vie
au cours des attentats de Paris en janvier 2015.

Avant-propos

Nombre d’ouvrages traitent de SQL et d’'Oracle ; certains résultent d'une traduction hasar-
deuse et sans vocation pédagogique, d’autres ressemblent 4 des annuaires téléphoniques. Les
survivants, bien gu’intéressants, ne sont quant & eux plus vraiment a jour.

Ce livre a été rédigé avec une volonté de concision et de progression dans sa démarche ; il est
illustré par ailleurs de nombreux exemples et figures. Bien que notre source principale d'infor-
mations it la documentation en ligne d'Oracle, I'ouvrage ne constitue pas, 4 mon sens, un
simple condensé de commandes SQL. Chaque notion importante est introduite par un exemple
facile et démonstratif (du moins je 'espére). A la fin de chaque chapitre, des exercices vous
permettront de tester vos connaissances.

Depuis quelques années, la documentation d’Oracle représente des cemtaines d’ouvrages au
tormat HTML ou PDF (soit plusieurs dizaines de milliers de pages) ! Ainsi, 1l est vain de
vouloir expliguer tous les concepts, méme si cet ouvrage ressemblait 4 un annuaire. Jai tenté
d’extraire les aspects fondamentaux sous la forme d'une synthése. Ce livre résulte de mon
expérience d'enseignement dans des cursus d'informatique 4 vocation professionnelle (IUT,
master professionnel et interentreprise).

Cet ouvrage s’ adresse principalement aux novices désireux de découvrir SQL et de program-
mer sous Oracle.

Les émudiants trouveront des exemples pédagogiques pour chaque concept abordé, ainsi
que des exercices thématiques.

Les développeurs C, C++, PHP ouJava découvriront des moyens de stocker leurs données.

Les professionnels connaissant déja Oracle seront peut-étre intéressés par certaines
nouveautés décrites dans cet ouvrage.

Les fonctionnalités de la version 1 lg ont été prises en compte lors de la troisigme édition de
cet ouvrage. Certains mécanismes d’optimisation (index, clusters, partiionnement, tables
organisées en index, vues matérialisées et dénormalisation) sont apparus lors de la quatrigme
édition en méme temps que quelques nouveautés SQL (pivots, transpositions, requétes pipe
line, CTE et récursivité). La cinquieéme édition enrichissait I'intégration avec Java (connexion
4 une base MySQL, Dara Sources et RowSeis) et PHP (AP1 PDO : PHP Dara Objects). La
sixitme édition présentait 'outil SOL Data Modeler. Celle-ci inclut des nouveautés de la
version 12¢ et actualise principalement la technologie XML DB.

@ Editions Eyrolles vii

[501 pour Dracle |

Par ailleurs, plusieurs compléments qui concernent des usages d’Oracle moins courants sont
disponibles en téléchargement sur la fiche de I'ouvrage (4 1'adresse www editions-eyrolies.com) :

I'installation de différentes versions (complément | : Installation des versions 9 & 12¢) ;
la technologie SQLJ (complément 2 : L'approche SQLI) ;

les procédures externes (complément 3 : Procédures stockées et externes) ;

les fonctions PL/SQL pour construire des pages HTML (complément 4 : PL/SQL Web
Toolkit et PL/SQL Server Pages).

Guide de lecture

Ce livre s’organise autour de trois parties distinctes mais complémentaires. La premiére inté-
ressera le lecteur novice en la matiére, car elle concerne les instructions SQL et les notions de
base d'Oracle. La deuxiéme partie décrit la programmation avec le langage procédural
d'Oracle PL/SQL. La troisiéme partie aftirera Iattention des programmeurs qui envisagent
d’utiliser Oracle tout en programmant avec des langages évolués (C, C++, PHP ou Java) on
via des interfaces Web.

Premiére partie : SOL de hase

Cette partie présente les différents aspects du langage SQL d'Oracle en étudiant en détail les
instructions € mentaires. A partir d'exemples simples et progressifs, nous expliquons notamment
comment déclarer, manipuler, faire évoluer et interroger des tables avec leurs différentes caracté-
ristiques et éléments associés (contraintes, index, vues, séquences). Nous étudions aussi SQL
dans un contexte multi-utilisateur (droits d’acceés), et au niveau du dictionnaire de données.

Deuxiéme partie : PLSOL

Cette partie décrit les caractéristiques du langage procédural PL/SQL d'Oracle. Le chapitre 6
aborde des éléments de base (structure d"un programme, variables, structures de contrile, inter-
actions avec la base, transactions). Le chapitre 7 traite des sous-programmes, des curseurs, de
la gestion des exceptions, des déclencheurs et de 'utilisation du SQL dynamique.

Troisiéme partie : SOL avance

Cette partie intéressera les programmeurs qui envisagent d’exploiter une base Oracle en utili-
sant un langage de troisiéme ou quatriéme génération (C, C++ ou Java), ou en employant une
interface Web. Le chapitre 8 est consacré 4 I'étude des mécanismes de base du précompilateur
d'Oracle Pro*C/C++. Le chapitre 9 présente les principales fonctionnalités de I'API IDBC.

Vil & Editions Eyrolles

Ruant-prepos |

Le chapitre 10 traite des deux principales API disponibles avec le langage PHP (OCIS et
PDO). Le chapitre 11 présente les fonctionnalités de XML DB et 'environnement XML DB
Repository. Enfin, le chapitre 12 est dédié & I'optimisation des requétes et des schémas rela-
fionnels.

Conventions o’ écriture et pictogrammes

D e L E R i R R

& 0@ B

T

=
-

L3

e

La police courrier est utilisée pour souligner les instructions SQL, noms de types, tables,
contraintes, etc. (exemple : SELECT nom FROM Pilote).

Les majuscules sont employées pour les directives SQL, et les minuscules pour les autres
éléments. Les noms des tables, index, vues, fonctions, procédures, etc., sont précédés d'une
majuscule (exemple : la table Compagnieferienne contient la colonne nomComp).

Les termes d'Oracle (bien souvent traduits littéralement de 1'anglais) sont notés en italique
(exemple : row, trigger, table, column, etc.).

Dans une instruction SQL, les symboles { et } désignent une liste d’éléments, et le symbaole |
un choix (par exemple, CREATE {TABLE | WVIEW} exprime deux instructions possibles :
CREATE TABLE ou CREATE VIEW). Les signes [et | désignent le caractere facultatif d'une
option (par exemple, CREATE TABLE Avion({..) [TABLESPACE USERS] expnme deux écri-
tures possibles : CREATE TABLE Avien(.) TABLESPACE USERS et CREATE TABLE
Avion(.)).

Ce pictogramme introduit une définition, un concept ou une remarque importante. |l apparait
soit dans une partie théorique, soit dans une partie technique, pour souligner des instructions
importantes ou la marche a suivre avec SQL.

Ce pictogramme annonce soit une impossibilité de mise en ceuvre d'un concept, soit une mise
en garde. Il est principalement utilisé dans la partie consacrée a SQL.

Ce pictogramme indique une astuce cu un conseil personnel.

Ce pictogramme indigue une commande ou option disponible uniquement a partir de la
version 12¢.

@ Editions Eyrolles 1%

[501 pour Dracle

Contact avec I'auteur et site Weh

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

X

Si vous avez des remarques & formuler sur le contenu de cet ouvrage, n'hésitez pas 4 m’écrire
(christian.soutou@gmail.com). Vous trouverez sur le site d'accompagnement, accessible par

www.editions-eyrolles.com, les compléments et errata, ainsi que le code de tous les exemples et
les exercices corrigés.

& Editions Eyrolles

Tahle des matieres

RO R R T TR TS S e S U S R S S BS U GS N AS UE R B R R SSRGS W B R S R N W W T T e W

Introduetion R A R R e R N0 R N R A

Partie |
1

SQL, UNe NOFME, UNBUCCASt v i et i b e b i e as
Modéle de dONMGRSonvve it e ernr e ias s a e ia s e e
Tables et donmEesottt e e e e e e
L S o i B R R e B R
I o m R S TT
Llnpein et olees o S R I A
Rachatde Sun (etde MySQL)ot i ee
Offre dUmMOMENT .. .ot e i i e e r i e e
NotON S SONEIMA o cvec b s s vt s &8 R RS 808 8 S A R RS e e
Accks & Oracle depuis WINDOWS . . .« vvcv v vinn v it sa s as
Détail d'un numéro de varsionot i il s e i e
Eegalends S0 . e e e e
T8 e 1
T ey
L Lt AN - i R S AT
Promuers Pas o v v e vl v R s e
Variables denmironnement it e e e
A propos des accents et jeux de Caractlresu et ie et

ORI NI s i DA B R N N

Définition des domnées. I T PRI

Tablesrelationnelles i e s
Création d'une tabla (CREATETABLE) oottt innean .
Gasgaat commeniaReas LD O e B L B R B
PR B o S S e S S e
Contraintes de COIONNES . oo o0 vt i i i e e e e e
Conventions recomMMANdBEE.viarv sen s o e s e s b v e e o
TYPAE dos COIOMINEE - cocc s as asos e 88 RS a8 o R F AR B e e
Structure d'unatable (DESGY i souin cv b 8800 Soihn e o ko8 8 aa
Commentaires stockés (COMMENT) ...ttt ie e ee e
Noms desobjets e

Utilisation de SQL Developer DataMedelercoiiiiiiiiinnn

Suppresslondestables.icciiiiiiiisaasasr i b es s s a0

@ Editions Eyrolles

(a0« R T4 L I S T T T

X1

[501 pour Dracle

Xn

2

3

Manipolation des HODREBSc.covvvvnnvvrorsrnnsesnnnasonns 43
Insertions d'enregistrements (INSERT).ot iiii i 43
SYNEAXE L et e e e e 43
Renseigner ou pas toutes |8SCOIONNES .+ ..o vt nrcevn s cnnns 44
Ne pas respecterdes contraimteso i i iiii i e 45
D VRS o B S P R B A 46
Caracitras Unicodes.: oo B ER R B SR e B 49
Donndes LOB or i i e 50
SOOUBIMCESottt et e et e e e e e 51
Création d'une séquence (CREATE SEQUENCE).c.ociviiiiiiiininnas 51
Manipulation d'Une SEQUENCE it e e it i i i e et 54
LUtilisation d'une séguencedans un DEFAULT ..o i en 56
Modification d'une séquence (ALTER SEQUENCE).cooooiiiiininnn 56
Visualisation d'Une SEQUENCE oo vt i i it e i e s 57
Suppression d'une séquence (DROP SEQUENCE).ooiiiinnn. 58
Colonnes auto-INCrBMentes iiiiai i iiannsiiiiianiisseass 58
Moditicatlons da Yol ... vornim o i i i s s 59
Svintane (LIPDATEY .o ammmai sniiimaminniiiimagaemennn 60
Medification d'une Hgne. . .. e i i i i e e 60
Modification de plusieurs ignesottt ii i 60
Ne pasrespacterdas contralnas v vviiin s s s e e e s &1
Dates: et intenvalles ..o s e T T R S S 62
Suppressions d'enregistrements. o i ii e i e 66
Imiskoetion: DELETE. 00 samnn v s e i s i 66
Instruction TRUNCATEo i i i e s e i i es 67
A GRS rATETENRIONE | .. v o i v e i Wi om0 M N Vi e 68
I B o BB A D A R R RS A 68
CONtraintas OO« PATE # b i bie G R G 69
Contraintes 608 « fils .. .ocviii v e ianainniin i i s 69
Clescompositesetnullest s 70
Cohérence dufilsSvers [Pare.ot i i 71
Gohamnes o4 Prevers MU oo s e o s e R e Kh
T o T A T T e A 72
Evolution d'un SCHBMAccviiiiiinniinneniieniiianans n
Renommer une table (RENAME) iiiiiiiiiiiiininann 77
Modifications structurelles (ALTERTABLE}.cooiiiiiinnnnn, 78
AJoUEY des COIONNGEE . o o kks s s s uess s 85 R a8 o AR R e 78
Renommer:des 0oloNmes. | o i i b e wm i Sl sl 79
Modifier le typedes Godonnes . . L Lo v diin i iiiiid e s il 79
Supphimer dos ColONNEE . .« v sas s i o s ams i s sie s isaaenninge 80
Colonnes UNUSED. ocn i e i e 80
SOTONTENE MMM, om0 S I A S 81
Colannas IVABIBIEE: = v bomsm s oo i B s 4 S0 B R RS 5 83

& Editions Eyrolies

Tahie des matiares |

Modifications comportementales.o 84
FOOUT o CONEEABTIOR - cimis s s 0 e e e s 84
Suppresslondecontralntes.l il i il s e e 85
Désactivation de contralmtes ot i i e e e 87
Réactivation de CoOntralntes . . «ovn vv vu e v wisinm i e wm Wi W ¥ e e e e 89

Contralntes dITFENEeS . oo s e s b e e i e o A i 82
Directives DEFERRABLE et INITIALLYoit it iiiieiiinens 92
Instructions SET CONSTRAINT ... v mr v v e se s vl v ¥ isiss s s i 94
Instruction ALTER SESSION SET CONSTRAINTS ivvivinnecnnnnn.. 94
Directives VALIDATE et NOVALIDATE. ittt ci i 94
Diractive MODIFY CONSTRAINTttt i ce e iieciiieceanee .. 9B

4 Inerrogation des UONMBeSovvven v inrinrnrernrinrorionrananas 101

GEDETAIIAE =i s e T T B SR 101
Syrtaa (BB ECT) o s o e e e T e 102
Pseudotable DUAL. . .. covr it e i i et v i e e e e 102

Projection (6léments dUSELECT)coci i iiiinnniniiiinerinnnessna. 103
Extraction detowtes les colonnes0 .. o i iiiiiii i iiiii oo 104

Extraction de certaines Colonmnes.o vr v i i incrcn i s e 105
BRI s R A R A A A RS A A SR 105
DA A e e e T S T T 106
I L R T A T A G A 106
OrdonnanCEMENT.ottt e e e e et et et e e e e e e e e 107
Substitutions conditionnelles v iar i s e e e s e s 108
Pestido-Colotme BOWID .o oo s s i d s e s s i 108
Pseudo-colonne ROWNUM.t iac it 109
Insertion MUBIIGNE.o i e e e i e e et 109
Limitationdunombre de lignes coveniiiiiisaneiiiiiiasieiinsan.. 110
Regtrictlon (WHERE) ... o covoo s Soid sbba 8800 S ilslh s e e st de 111
Operalotlrs da COMPasBantl <, & i s mdime s i e e 12
CRISEAMSUE IOOIGUIBE 1y v wimin s woviuinine i oinle o Sinios s wnsiasas e) 0 6 WA e m 13
Opéraleurs MIBOIGE o s s e s e s e e e e s 114
T N T A S R e T A S A 115
L T == 115
I D OIS o B A e P B B B AT 19
Valeurs spécialespourlesflottants o0 i i il il iiii i aaa 120
Fonctions pourles flottantso oo i i i ce e e e 120
CHRRENR oo A S B A) D) A, 124
O BN v T e T S R 125
i M B R S L S R A g 126
REgroupementst e e e e e 127
FONCHONS BB QOIS - con b msia s oo aa & F R R0 B 4 S R s £ 128

Etude du GROUP BY @t HAVINGiivviin it anieinnsenviiann.. 129

@ Editions Eyrolles pAll]

[501 pour Dracle |

Opérateursensemblistes i 132
R I T T e T 132
0N oy e e T T R e 133
Dptrabous T BRSBTS AT e A 133
Opérateurs UNION et UNIONALL oot i i e i i i 134
Opérateur MINUS _ ... o i i i e e 134
CROOTHIAr M85 TOSUMATE . o v b e s D B e e o P B B 2 135
Progult cart8sien oo oo S D e T LI 136
Y T A A L B Y e R R R 137
Sous-interrogationsdansladause FROMt 138

JOIMEUPES. i e e e ek 140
CIABSRCAMIN - oo e v mmnsn b bR e s S R R B i R 140
Jointure relationnelle. o i sudi s BsRE s s s e 141
dottmeig B s R S R T A A R B R 141
Typesdaiaintures: o0 saammm e ili e e e 142
EQUIDINIITE « « . e oo et e e ee et e e e e e e e e e e 142
AUOJOIMIUIE . -« oo ot et e s 144
T T LT T P T 145
JOMUMES MAMBS: « T R D e R 146
Jotrtneis procSnraBaG I D L S B R 151
JOIMtUrES MIXEES i e e e e e 155
Sous-interrogations synchroniSEes.ottt it i e e 155
TS OOV BOTER e s annian s s R B RSB0 B R R 157

D Y o R S A 159
e L A A B S A 160
Classification . . oo ov v i i e e e e s 160
Division inexacte en SAL oo e s 161
DR IoN Saeta N BEI . o0 o v S R S e T AT R 162

Requétes hiérarchiquesccoiiiiiiiiiiiiiaiiiiiiiiiians 162
Point de départ du parcours (STARTWITH).o oo i i 163
Parcours de ['arbre (CONNECT BY PRICR). oo iiiiii i e 163
o = =N T 164
Elagage de l'arbre (WHERE 8t PRIOR) . .. v vvv v v eeerens nenenens 165
I e e B R S 167
b S I B T L G A A A A 167
Extracton deehammiig: oo v i e e s e e 168
Extraction d'un lément.o vt ii i i e e 169
HARES TN SIS | oo n s i S 0 b W e T A R et 169
EEOT 0 IR < v s L e e T A 170

Mises & jour conditionnées (fusions).cccooiiieiiiiiinn 172
Byntawa (MERGE) - < sminn i o St e e i s aea 172
EXBIMPIE © oo oo et e e e e e e e e e e e e 173
Suppressionsdanslatablecible.ovoi i i n s e e 173
EBEITRIEE e e B 174

X & Editions Eyrolies

Tahie des matiares |

3 Contrdie des données R A
Les tablespaces

@ Editions Eyrolles

Expressions réguliéres

Extractions diverses

Gestion des utilisateurs

Privileges

Réles

00 L IO o T T S B
Fonclion REGEXP-LIKE - covsvun ousi s svans i s o va e 880is
Foneion:REGSEXPREPLACE ¢ oo s Gl bl R s B b G i
Fonction REGEXP_INSTR it i ce i s ee
Fonclion BEGEXP-BUBETR: ccommmmmmm e s oo v
SOUS-BYPIBSEONG . vovan kb =i & s 0 R E A B I & o 4 S PR B B e e

Divactiva WITH oo iiimaaiennbnaiiimayas siavnail
Fonction WIDTH_BUCKETt it e et e e e ie e e e e
RECUrSIVItE AVEE WITH (CTE) « . vv vt vn et e eeee e ee eeates et eenee e e e
T T =11
Transposiions: (LINPIVOTY wormm oy y e s s v i v
g L [T R A A A B B A S A

Indépendance logiqueMhysiQUe oo vivi i ii e i e e
Tabiespaces A IVIES o i i s S T e R A
Création duntablespace. i iiii

ClassifiCationt e e e e
Création d'un utilisateur (CREATEUSER) cooiiiiiiiiiiinnneiana
Modification d'un utilisateur (ALTERUSER)oooiiiiiiiiinnn et
Suppression d'un utilisateur (DROPUSER)ooiii i i,
PO e e e e R e R

PAVIIBGES SYSIBITIE. . . 1. v e e e e e e e e ee e e e e e e e e
PEOORISORIONGT s sy e A T P R S A B
Privitagss pradaints. . o v vaui e SR D e e

Création d'un réle (CREATEROLE) . .. oo covn it i e ae
R 2 PR CHIINES.. o oo s 0 S B Y 0 A S
RENOCATON ATUNTOMS - pomosneissas sieomsn s s ssa0a B 6 S R B RSB e
Actvationdimy rdle (SET ROLE) . oo co vl i s ad sl s s
Modification d'un rdle (ALTER ROLE).oiit it
Suppression dunile{(DROPROLE)cv0vi i iiiniiiinnnnie cn i

Création dunevue (CREATEWIEW)ooiniiiiiiniiiiiniiinneinanen s
D B G P A S A S A
Ve anORabIls e e e e e
WVUBS COMPIBKES . . .o ottt e et e ettt et e e e e e et e e e e e
Autres UTSAtONS 00 MUBS . . v voaiens v wimin s sivies soninin n v i s s siies saiaia am a
Transmission o8 drolls < v se amonms s b fm e 5 4w R b R 3

Xv

[501 pour Dracle |

Meadification d'une vue (ALTERVIEW) oot i ee e 246
Suppressiond'unevue (DROPVIEW) oo i iiiirnneinrinncniiennss 246
TN YT I e T A P A 247
Création d'un synonyme (CREATE SYNONYM) oo, 247
Transmission e drois . . o u o v i i i e i i i e e e e 249
Suppression d'un synonyme (DROP SYNONYM)ccoiiiiini i, 249
Dictlonnalie des donMEBE . . o v e v s = M i a8 W R e 249
st e o A i e ey 250
Clagsificatlon des VUes .« ciiiviv s o v b i e s e e 250
DEMANChE S SUINTE . .. oottt it et e e e e e e e e e e 251
PRRGET VU v s o 9005 i 0 M S 0 WA VS 253
Ohjets d'Un SERBIMAL ;v ks s s 08 RS R RS §08 SRR RS 255
SHUCTUre U@ B e T T R 255
Recherche descontraintesdunetable. 0 i e 256
Composition des contraintes dunetablettt 256
Détails des contraintes référentiellesot 256
Recherche du code source d'Un SOUS-PrOGIAMIMEo ve v vt e e caans 257
Recherche des utilisateurs d'une basededonnéesoooviiiiiinienenes 258

R an MenIa cor s ot e e e S e 258
-y L T G R Sy Pl A el U G T i O T A 259
Les consoles d'administration. 262
Enterprise Manager Database Expressccoviiiirincivinii o innns 262
L DYBVBIOR BT e i e T e A 264
PR N PR cy dn e i iy e i i iy sy Zn
6 BasesmuPLSOLt q
CEREEBITIEG . cono ot e s T e A T S 273
Ervironnement client-serveur ittt s s e e s 273
N Tyt = 274
Structure d'Un PrOgramimIB. . . .« .v ottt e e e et e e e e s e e 274
POtta des OBIRIS .. v v mimin s wom e v e s s e S Al ¥ S e 275
B L e o T T T e Y 276

B B e T A S O A S A 276
COMMEMEAITES. oo v v v vt v e e e e i i e i s e n e e e e e e 277
Variables.t i e e e 277
Variables SCalAIres . . u o bns s e s verse st b ba seia o o sra s R s 278
O AN & s s BB A B L S e e B S 278
R A A A 279
Nastabibes SaT Y PE . o sy e s e A e e 279
Variables SoR0W Y PE . . . oottt i e e e e s 280
Nartabiles RECERD. vy o v e soims 8 vimie s s v s a0 60y 5 ¥ SH v 281
Variables tableaux (type TABLE)ot it i it i e i e i s s 282

xwi & Editions Eyrolies

Tahie des matiares |

RésolUtion A& MOMS cn it e e e e e 284
TR s s R A R A e A 284
Viariahies 06 stBSTRION o mmmsass e RE E 285
Yeariahies ta oo, (i bl e D S B S B R S 286
Conventions recommandées. it it i e e 286
TypesdedonnéesPL/SQLo 287
TVPBE TEEOARINE oo s s v O S e S e 287
SOUSWPBE: o s R e e 287
Le sous-type SIMPLE_INTEGERcociiiiiiiiiiiiiiiiniinan... 288
Les sous-types floftlants. o e 289
Variable de type SEqUeNCe v vrns s v e s s e e 289
Carvaraions OB WPBE o oo popom s s s wm e sm o B8 o S R R 85 290
SUOCLUNSS o CONMIPBIOE (oo e e s R L e e e s 290
Structures conditionnelleso i e e e 290
Structures repetitives.o ce it i e e e e 293
Ladirective CONTINUE i en s 297
Interactions aveclabase.coiviiiiiiiieniiiiaaa e iaeaie e 298
Exirare des OIS v tibiaiiniE Dt nn e i e s 2098
Manipuler des donnBes . .. oot it i e et e e e e e 300
Curseurs impliciteso e 302
Paquetage DBMS OUTPUT ot ot et e e et et e e ieeeee e 303
TOAMBOCHONG - occoc v b e s o B RS e B 0 S R B R s 306
CaracteHelgUBE - v T S Y e T R 306
Début et fin d'unetransacfion oo i iiii i i e e 30T
Contrale destransactionscoii ittt ie it i e 308
Niveaux d'isolation. .. oo u oo i i e e 308

Le probléme du verrou mortel (deadlock)o oe it e 311
VO IIEEVEION oo A L e S R B 33
Transaciors-TmEHELSES /LG 0 L B S D s B A D 314
QU placer lestransactions ? i ii e i ii e e e 314

1 Programmation SUBNCEE.cooiinuniinunensisnsiiansranas an
SOUEDTOIBITRTIEE . oo o e T S e 0 UM 37
O e T T B L n7
Proctdures-eatalogudee v S s S S S R R L 318
Fonctions CataloguUBes. .« . . ie it it i i i e e e e e e e e 319
Codage d'un sousprogramme PL/SAL ... iiis i in e 320
T] T Py 320
N B e A A S P A A 323
DS st R S R L 323

A propossdes patamiies s e gl e e e e 325
RECUISIVIEEo o i i e e i e e e e e e e 326
Sous-programmes imbrigUesoovers s ivirseasrn s ines e 320
Recompilation d'un SOUS-PrOGrAMIMEcuvivrin i incaarie it isannsin.. 328

@ Editions Eyrolles Xvii

[501 pour Dracle |

Destruction d'un SOUS-PrOGIAMITIEo rnn et it et eeem e e e e 328
Paguetoges (DACKOERGY: ..o:xnporm s e s o R e e s S s R R e 328
Ganaralidis: s i T S S S T e 328
Tl v R A R A T e 329
Compilation . o oo v v e e e e e e i e e e e 330
IMPIEMENtation i i i i e e e 330
PR om0 R PR S 331
BAPERRIO: i e R R R 33
S R Y5 A R A S A R B S 331
Destruction d'un pagUetanet e e e 331
Comment retourner une table ? s 332
QUIFRBLING . ;. pom s ara v FFa bR RS e 5 S R R B i B R s 332
Ganaralilis s i S S S S T 333
v B T B A A G A R L 333
Parcours d'UN GUISEBLUI . . v v v v et v e e sn e e s et e e e e e 334
Utilisation de structures (3eROWTYPE) . .. oovnin it i i i i i ie e 335
Boucle FOR (gestion semi-automatique)c.viir e ianr it nass 336
Utilisation de tableaux (type TABLE). . .. v o i i s e v e v 337
Utilisation de LIMIT et BULK GOLLEGTooo ittt ittt e 338
Paramétres d'Un CUMSEUr. .. o cvv v v it vn i ii i s an e aa s amsnnns 339
Accés concurrents (FOR UPDATE et CURRENTOF)oo vt 340
Variables curseurs (REF CURSOR}coviinii i iiini s v innns 341
Fonctions tabla pipelined. ccc e i s i i s e s 343
B O e s T P A 345
OBl - T e T e S e e 345
Exception interne prédefinieo e i e 347
Exception UHSAEUr .. .o i e i e e 351
Utilisation du curseur implicite.oov v viiiiiii s snes i e enas 353
Exception interne nonprédeéfinie.o i ii i ci i e e s 354
Propagationd'uneexception. i iiii i i i i s 355
Procédura RAISE_APPLICATIONERRORccoviiiiiiiiiiininann 357
DEClenCRBLIFS i e e s 358
AQUOL 58 UN GBCIBNCRBUIET. ¢ ccovviviss v vevavn i imseies 5 o ws s i s i s e 3 358
EETIREE IR c e vt s S T P A 359
RAScanlaTmig NARal v T S B A B R 359
1 == 360
Déclencheurs LMDo n i i i i i e e s 361
Transactions auMONOMBS. o x v we s s s ve s as &5 bR EaaE & s 8w e a8 b ke s 5 373
T T T I T T P T 374
Déctenchetirs: MSTANCES: L S0 RE B DR R 374
Appels de SoUS-PrOgrammMEs . .. o. i ar et ie s e aanesinnns 375
Gestion des dBCIBNChBUIS . - . . L. ..t e i e e et 376
ETrR P BXBCIHON . o v vy i v wonsns e 5 0 W b L AT) R RS 377
TADIEE MBS = o o oo porm i s g o s 20 3 SR FR SR a2 377

xXvii & Editions Eyrolies

Tahie des matiares |

Activation et désactivation. or it e 378
Ordre d'exéeution (FOLLOWS). .. oo vviviiaiiosissasnisiiansinsnesanas 378
DB eNCIELIr GO i s s s o e R A Vi B B s 379
Résolution au probléme des tablesmutantes oo oo oooio oL 3B
BOL YRR, - o i R e A e e 382
ERRSIRERON . - woocomrnnmcne e s e e A 383
Utilisation de EXECUTEIMMEDIATEot e civn e s e e an o 384
Utllisation d'une variable Ursaur. ottt s e 385

Nouveautés dalaversion 12¢o i it i ii i ciiiivedao .. 386

Parfielll SOLAVANCE.ccv s ire crarnenmnennnsnsnrnnennsess 390

8 leprécompilatetr PRO*C/B4+.o e 395
G ralIbE L e e e e e 395
Ordres SOL INtEgM8S . oo ov v v it ciiii et e i e 395
BRI o A S L S A, A B RS 306
Variable IndBealien o smnins i i s i e R R 397
A NP AR o e s R A G e e 398
Zone de communication (SQLCA).o iiiia i iiinniiaiea.. 388
Connexion A UNE BASE. e 399
Gestion des eXCeplionNsot i e e 399
T OGS oo o e e A G B B R R B S DB 400
Extraction d'un enregistrement ciiiiiiiiieaee. .. 400
L i e A s o B O L R A T S i 402
Utilisationde curseursccoviinr i iininni i inennns 402
Vartales SCAIANEE oo b momes s v R R S0 05 RS AR RE B B 402
Variables MBIEAD. oo i s s S R R A 403
Utilisation de Microsoft VISURI Ca+o il aiiin e ieeiiinn o 405
9 Llinterface)l8C.............. i R o e T D S ao1
GEREralItES i e e e e e e e 407
Classification des pilotes {drivers).ccviniiiiiieviinn i i innecenn e oo 408
T [0 o = e T 409
ShucTureC O o o L S A R S T R R 410
Variables demvironnement oo e e 411
Tastdo Mo GOrMOUIATON . o oo g e o e 412
CONNBXION 8 UG BBBB .. . oo v wonnin i v vy ¥ s ¥ oinin a3 Bl 6 S et e o 412
Bt ARSI B L P S 413
S R B A SR R A R 414
Base MySOL . s v s s e R e e 416
DECONMEXION & .\ . e i it e e e e e e e e e e e a7
Irberface CONDBCRON .\ o i v ine v e s S s ge e iy ¥ 6 s o e v 47

T e O MO B e e G B R R B S S S B a7

@ Editions Eyrolles XX

[501 pour Dracle |

Etats d'une CONNEXIONttt e e e e e e e e 418
Interfaces disponibles . ..o v sraa e s e e e R e S 418
Méthodes générigues pour les parametres.o v i i in e i aen 419
Etats simples (interface Statemant)ooiiiiiiiiiiiiii i ii i 419
Mathodes & ulillser o cnamat i Salam e R e 420

Correspondances de tYPeS.ot i it e s 421

Interactionsavec labasecoiiiiiiiii i e i 422
Bpprasaiori-de donmeas: (e B A B A 422
Ajoutdenregistraments.o i e i e e e 423
Medification d'enregistrements oo e 423

Extraction de dOmMBaS e vy e v e s s s s S Al §E E S s 423
SO BIATTRIBEG oo LS S e i L e T B B 424
Curseurs navigables: . . ooii iy s e S8 eardadh s e e 425

Curgeirg-moditiahleg (il en Ser SR SR S 429
SUPPIBSESIONS. « ot v vt vt v e e s e e e e e e 431
TUBEAMRTHH EOORINR oo o S A S IV A RS 432
INSETEONG - ccocioimrara v s e R e o 80 5 4 B B R B e 432
B SRR oo e s B L R R 433

Ensembles de lignes (ROWSet). ooivuiniin i iiie e iiaais 434
RowSet sans CONNEMION . .. ccvv v vt in e niiernneanssssssnaninans 435
RowSet avec ResultSet. i i e 435
ROWSE poUr XML . . ooy v v e wossa o i o o s e me s i 68 Fisie weeacs 436
W, S O e FEOWEIO T oo coms s e A S R B RSB S 437
Notilcaions pott U BowSat oo i v s i s s v e i 437

Interface ResultSetMetaData 0 i i iiiiiiiiiiiiiiiia 439

Interface DatabaseMetaData. ii i i 440

Instructions paramétrées (PreparedStatement).o 442
Extraction de donnaes (execiteQuerny). . .. oo va s e ce e 443
Mises-a jour [exectelIpdaba): oo i v i simnnni b Sni e sl 443
Instruction LDD (8X@cUe) .« cvocis v i e ai it e ci it 444

Appels de SOUS-PrOGIAMIMES\ttt ittt et e it i e ens 444
Appeb-dune INCHON. .. oy o v s s s e s e A S e 445
APDEL- NS PROBBRIGIPE. .- 5o b pmmssss s ie s B R S a0 B e s B e 446

THANSACtIONS: v d o v S S R B SR e e 447
Paoints de validation.o it e e 447

Traltement desexceptions............ccmmminnr s s s s 449
AMCRADE TOS GITOLIS . vvuna pssisian s s ie e Han8 S-S 0E8 B8 & Sy 5 R B a8 449
Trattemant das SIMOEINS . s mis e e s A B S e 450

W IR O PP, . oo it o o o A R T A 453

Configurationadoptée., i i e e e 453
Leslogiciels.o e e e 453
Les fichiars da cOMGUIRATION «.ow vosann somme s s s s v v 68 s wateie 454
B o T B o 454

XX & Editions Eyrolies

Tahie des matiares |

Test dApache, de PHP et d'Oracle.oov it n i i e e 455
AP e PHP pour OFacie QG oo mom i s s s b f s s i 456
Connedanes: s v S R R e 456
Gongtantes pracldfbriles i s S D S s B R R 457
Interactions aveclabase. it e e 458
ExiracHons SIMRIES . .o o cone o sim g h o S o e 6 S R SR 459
Pasaagis de DRIBIWIIOG . ¢ qxomoma s o asn s b e 5 4 s R R e £ 463
Tratamants GBS BMBUIS Copou it hhs b i S 464
Procédures catalOgUEBS <. oo cvviinvevomeaneiin s s e s s nsneaa i e e n e 467
MEEGONMBES it i e e e e 468
APIObjet PHP pour Oracle (PDO)cconviiinrrneiniiniinnesnnnae. 471
ORI, o e T P 471
T - g T R e S s R P Ry S e e 472
I L R T A A A 474
Procédures catalogUBes .. .o vu vt vt i e it e e e e 475

B el S S e s an
GOIOEBIIER vy wis v T A A b) A N RS 477
HISDOIEY e vt s i L B R AL 477

O A 0y o A A 478
Reperkding Jonlgue . oudsa s ik inide L e 479
Les modes de stoCKage. et 479
Lo ypar MU TVIE .o b mssiniasss e o im0 B S R s £ 480
Irvsertion dian COCUIMBEE cxcw s e e U R 481
Grammalre XML Schema. oo oo c e e e i 483
Enregistrementde lagrammaire cciiiiiiiiiiaeao.... 4B3
Validation totale.o v oo i e e e s 484
CORBEEIIES v v e ki o B A e) D) B e 485
Stockage en mode object-relational. ccciiiiiiiiii i iiiie 487
Annotation de lagrammalre:-ol iis i e i e e 487
Creation d'une table (ou colonne) object-relational0000. 480
Validation partielleo e e 491
VadAHom TOIEIB.. .. oo vinis womnone o s o i S e s W S SR v 491
CONMPAINIES ooy b pm s e s g R R SRR 8 B PR R R B 493
EXTRaetIOng: oo i s B e S S S e 496
La fonction XMLOUEM . . . on et i i e it e e e e e e e 498
Lafonction XMLCASt . v oo v ir i i i e i s i i e 499

LA metiod XWLT AN . . o o o e o i it e) el) A et e 501
La-fonetion MMEEMISES .oz commmmm i s s i i s s s s 502
La fonction igSchemaVialld - .oiovnr vou s s e e v 504
IR O A G S A R T S A AP g 504
Insertion d'un FragmBnt . .o et 504
Sipronelon XN RO 0 o oo v e s B 0 A e 505
Modification dun fragmento i ii i i a e e a e 506

@ Editions Eyrolles XX

[501 pour Dracle |

IRdeXEtION e s 508
e B trOE - s i T A 509
Mede non structuré (Unstructured XMLIndex) coiii oo e 511
Mode structuré {Structured XMLIndex)ocov i i i e 512
Mode Mite . .o e e e e e e e 513

Générationdecontenust ii it e s 513
Lo FOnCBONE BOLMML . ovcn ppmmmmme s s a0 g i S & = 4 B0 FAS A bR e 2 514
COPVEIRION S8t ARS8 S0 L B A D L B R 517
Lag forichons ' Opaicier: . ooassas oy e sinsamran e il iaanass nae 518

LS WUBS . L o . ot i e e e e e e e e e e 520
Muag retaliDNNeRBES . . oy s visin s soimnn s v s s v e WA S e 521
NS FORAL TN oo e S S A 523

Les paquetages pour PL/SQL.o iiiiii e i e 526
Le paquetage DBMS XMLGEN i i 527
Le paguetage DBMS XMLSTORE. cccviiin it i i i e anes 528
Le paquetage DBMS XMLPARSER. ccitinii e i v i e s 530
Le paquetage DBMS XMLDOM. v iiiiinn it i s i s s aes 531

XML DB Repository ¢ . vsiion il il g shiaa e Sauihs i i et 532
Aborescaness:, L R e e S e R e 533
Paguetages DBMS_XBD _REPOS i i e 533
Lesgrammaires XML Schemao vvinrivnnevvn s sevnns s smne snwns 536
BOCDE RAE T canes o s e e R A 0 P R 536
Les Access Contrel Lists (ACL). .. covin vocv oot e it 539

Dictionnairedes données. iiiiiiiiiiiiiiii i i e 543

12 Optimisations R T R R T e a3

Cadre général.ottt i e e e 545
Log ACtOURE « ocnonom s b b e s s v B B B 0 e R R R s 546
GOt oRROOREE oo o o A S S R R SR A 546
Présentation dujeu dexemplel oot i s et 547
Lesassistants d'Oracle ccvc i i i i e i e 548
Les OPHIMISEUIS oot e i et i et e e e e e e e e e 549
LYCBIERIE, oo i i o) R A b T 0 S e 551
Traiterment d'une iNSEAICHON - . c- o.vc i i i i i s e i s 552
Configuration de l'optimiseur (les hints) . ..o iiiiici e vin 552

Les statistiques destinées a l'optimiseur, 553
Los alograniIoe .. - oo e v oo mor s g e e e 554
EROTIENENE o s A R A L A A S 555

Qutils demesurede perfOrManCesc.ovviie i cin e innns 559
Visualisation des plans d'exéeution. oo i i i i i e 559
Lot el s oo s e S e e e e 566
Paquetage DBMS_APPLICGATION_INFOottt i e e 571
L'utilitafra runstats de Tom Kyte v vevnmsmnn i snn e savnn s v s sms vann s 574
BMAN oo pommmimne s e o 3 A R S B BB R 2 576

xxn & Editions Eyrolies

Tahie des matiares |

Organisation des donméest i 577
Des contraintes au plus prés des donnges . c..oviiiie v v cn s nneae 9T
B A S A S A R T S R R A 578
Jalniee e R e e e e e 591
Variablesde BN .. . v e i e e e 599
Comment réaliser des fetchs multilignes ?o iiiiiiiaaa. .. 601

€ R T e R e e S i P P 602
Cache pourles requBLEsottt i e e s 603
Cache pour les fonctions PLISOLvevs vomv v ne vy s o swan e o 0%
Gache:pourles SaNRS oo s s e S A R 605

Tables organiséesen Index i it 607
ComParatif. e e e e 607
L O VI TIE . o s 0 Y 0 A S 608
Cravatton dUNe T oo e popom e ses s sm iy fos s 08 o S R R 085 609
Comparaison avecunetableenheap........covviiiia oo i o 609
e e e e e R e e 610

POt emsn . o e e s e 610
L Gl B PartBOM oo s mcvconssanss wraansn b e s R R R e 610
Partifons:parintemvalle . cooooeenn sannsiimasiis s saa e B s o 611
Intervalles aUtomMatigUes -« v v h it e ie e it i 612
Partitions par Rachage oot it i e 613
PartBaTE R B0 . oo i o o i s e A) A R 614
Partifons par EaIORONGE s e s ms iahrs aes V E 615
D e O o A B A G A 616
Il Patitonne o i e e R e e 617
Index partitionné 1ocal v vt e i e s 618
Index pARTONNS QAR <.« ¢ vcovvmie s vmmars 0 f s s sre S R RS B e 619
Opérations sur les partitions etindex o it iiiiii it 620
Partiionnementdestables 10T,o o i iiiiiiiiiiiic i ieeen. .. B20

Vues matérialis@es. e 621
RebnE g 0 NOTHENEG o s A S e R A s e 622
L A AT SOOI im0 A S B s 623
T R T A G A A 623

Dénormalisation.ot e e 625
COlONNES CAICKIEBS v xca b pom masiinias s s sy 580 ool 8 5 8 R SR SRR B R 0 8 625
Disalication de: colommens: s iy e T i v T 626
Ajoutde clés StrangBres ittt i e e e 627
Exemple de strat@gie.o e e e 627

DErtiBIS COMBBIIE". .. .oy o i woinin e o il s S oasvns e s 0 6 Wi Woessdne s 627
Aequdtes MeMCanes v i vaisbie vl v e BBE R i e s 628
Les 10 commandementsde F. Brouardcoiiiiiiiiiiiiii i 629

DM v 0 ST L0 N A S B 8 631

@ Editions Eyrolles XX

Cette introduction présente tout dabord le cadre général dans lequel cet ouvrage se positionne
(SQL, le modéle de données et 'offre d’Oracle). Vient ensuite 1'utilisation des principales
interfaces de commandes pour que vous pulssiez programmer avec SQL dés le chapitre 1.
Vous trouverez dans les compléments (sur la fiche de 1'ouvrage disponible & I'adresse
www.editions-eyroffes.com) les procédures d'installation de différentes versions d'Oracle pour
Windows (édition Express ou Enterprise, de 9i 4 12¢).

SOL, une norme, N SUCces

C’est IBM, & tout seigneur tout honneur, qui, avec System-R, a implanté le modéle relationnel
au travers du langage SEQUEL (Structured English as QUEry Language) rebaptisé par la
suite SQL (Structured Query Language).

La premiére norme (SQL1) date de 1987. Elle était le résultat de compromis entre constructeurs,
mais fortement influencée par le dialecte d"IBM. SQL2 a été nommalisée en 1 992, Elle définit quatre
niveaux de conformité : le niveau d'entrée (entry level), les niveaux intermédiaires (fransitional et
intermediate levels) et le niveau supérieur (full level). Les langages SQL des principaux éditeurs
sont tous conformes an premier niveau et ont beaucoup de caractéristiques relevant des niveaux
supérieurs. La norme SQL3 (intitulée initialement SQL:1999) comporte de nombreuses parties :
concepts objets, entrepits de données, séries temporelles, accés i des sources non SQL, réplication
des données, etc. (chagque partie étant nommée ISOAEC 9075-i:année, § allant de 1 & 14 et année
étant la date de sortie de la demigre spécification). Une partie récente de b norme conceme la
programmation c6té serveur (ISO/TEC 9075-4:2011, partie 4 : Persistent Stored Modules).

Le succés que connaissent les grands éditeurs de SGBD relationnels (IBM, Oracle, Microsoft,
Sybase et Computer Associates) a plusieurs origines et repose notamment sur SQL :
Le langage est une norme depuis 1986 qui §'enrichit au fil du temps.
SQL peut s'interfacer avec des langages de troisiéme génération comme C ou Cobol, mais
aussi avec des langages plus évolués comme C++ et Java. Certains considérent ainsi que le
langage SQL n'est pas assez complet (le dialogue entre la base et I'interface n'est pas
direct) et 1a littérature parle de « défaut d’impédance » (impedance mismatch).
Les SGBD rendent indépendants programmes et données (la modification d'une structure de
données n'entraine pas forcément une importante refonte des programmes d’application).
Ces systémes sont bien adaptés aux grandes applications informatiques de gestion {archi-
tectures type client-serveur et Internet) et ont acquis une maturité sur le plan de la fiabilité
et des performances.

@ Editions Eyrolles 1

[501 pour Dracle

IIs intégrent des outils de développement comme les précompilateurs, les générateurs de
code, d’états et de formulaires.

1ls offrent la possibilité de stocker des informations non structurées (comme le texte,
I'image, etc.) dans des champs appelés LOB (Large Object Binary).

Les principaux SGBD Open Source (MySQL, Firebird, Berkeley DB, PostgreSQL) ont adop-
tés depuis longtemps SQL pour ne pas rester en marge.

Nous étudierons les principales instructions SQL d”Oracle qui sont classifiées dans le tableau
suivant.

Taifeau |-1 Ciassification des ordres SOL

Ordres SQL Aspect du langage

CREATE - ALTER - DROP - COMMENT - RENAME - TRUNCATE Définition des données (DDL :

- GRANT - REVCKE Data Definiffion Language).

SELECT - INSERT - UPDATE - DELETE - MERGE - LOCK Manipulation des données (DML :

TABLE Data Manjpulation Language).

COMMIT - ROLLBACK - SAVEPOINT - SET TRANSACTION Contréle des transactions (TCL :
Transaction Control Statements).

2

Le modele de données relationnel repose sur une théorie rigoureuse bien qu’adoptant des prin-
cipes simples. La table relationnelle (relational table) est la structure de données de base qui

contient des enregistrements, également appelés « lignes » (rows). Une table est composée de
colonnes (colunms) qui décrivent les enregistrements.

Tahies et données

Considérons la figure suivante qui présente deux tables relationnelles permettant de stocker
des'compagnies, des pilotes et le fait qu’un pilote soit embauché par une compagnie :

Figure 1 Deux tables

compagnie

comp nrua rua ville nom _comp

AB 1 Georges Brassens | Blagnac Air Bus

ACTMP | 24 René Lagasse Balma AC Toulouse
pilote
id pil [brevet |nom pil ob h wol |compa
250 PL-1 Sarda 8500 AB
25 PL-2 Benech 5900 ACTMP
12 PL-3 Soutou 2000 ACTMP

& Editions Eyrolles

Introduction |

Les ciés

- La clé primaire (prmary key) d'une table est I'ensemble minimal de colonnes qui permet
d'identifier de maniére unigue chaque enregistrement.

Dans la figure précédente, les colonnes « clés primaires » sont notées en gras. La colonne comp
identifie chaque compagnie, tandis que la colonne id pil permetd'identifier chaque pilote.

u Une dé est dite « candidate » (candidate key) si elle peut se substituer & 1a clé primaire & tout
instant. Une table peut contenir plusieurs clés candidates ou aucune.

Dans I'exemple, la colonne brevet pourrait jouer le role d'une clé candidate, car il est proba-
ble que chaque numéro de brevet soit unique. Pour les compagnies, le nom (nom_comp) s'il est
supposé unique peut également jouer le role de clé candidate.

“ Une clé étrangére (foreign key) référence dans la majorité des cas une clé primaire d'une autre
table (sinon une clé candidate sur laquelle un index unigue aura été défini). Une clé étrangére
est composée d'une ou plusieurs colonnes. Une table peut contenir plusieurs clés etrangéres
ou aucune.

La colonne compa (notée en italique dans la figure) est une clé étrangére, car elle permet de
référencer un enregistrement unique de la table compagnie via la clé primaire comp.

Le modéle relationnel est ainsi fondamentalement basé sur les valeurs. Les associations entre
tables sont toujours binaires et assurées par les clés étrangéres. Les théoriciens considérent
celles-ci comme des pointeurs logiques. Les clés primaires et étrangéres seront définies dans
les tables en SQL 41'aide de contraintes.

11 sera trés difficile, pour ne pas dire impossible, i un autre éditeur de logiciels de trouver un
nom mieux adapté i la gestion des données que celui d'« Oracle ». Ce nom semble prédestiné
Acet usage ; citons Le Petit Larousse
ORACLE nam. (lat. oraculum) ANTIQ. Réponse d’une divinité au fidéle qui la consuliair ;
divinité qui rendait cefie réponse ; sanctuaire ol celte réponse était rendue. LITT. Décision
Jugée infaillible et émanant d'une personne de grande auforité ! personme comsidérée
comme infaillible,

Oracle représenterait ainsi 4 la fois une réponse infaillible, un lieu oi serait rendue cette
réponse et une divinité. Rien que ¢a ! Tout cela peut étre en partie vérifié si votre conception

@ Editions Eyrolles 3

[501 pour Dracle

4

est bien faite, vos données insérées cohérentes, vos requétes et programmes bien écrits.
Ajoutons aussi le fait que les ordinateurs fonctionnent bien et qu'une personne compétente se
trouve au support. C'est tout le mal que nous vous souhaitons.

Oracle Corporation, société américaine située en Californie, développe et commercialise un
SGBD et un ensemble de produits de développement. Oracle a des filiales dans un grand
nombre de pays. Initialement composée de cing départements (marketing, commercial, avant-
vente, conseil et formation), la filiale francaise (Oracle France) a ét€ créée en 1986. Le dépar-
tement formation a été dissous en 2010, donnant naissance a la société EASYTEAM (premier
partenaire Platinum en France), composée des ex-formateurs d'Oracle France.

Un peu d'histoire

En 1977, Larry Ellison, Bob Miner et Ed Qates fondent la société Software Development
Laboratories (SDL). L'article de Edgar Frank Codd (1923-2003), « A Relational Model of
Data for Large Shared Data Banks », Communications of the ACM paru en 1970, fait devenir
le mathématicien et ancien pilote de la RAF durant la Seconde Guerre mondiale, inventeur du
modéle relationnel et de SQL. Les associés de SDL devinent le potentiel des concepts de Codd
et se lancent dans 1"aventure en baptisant leur logiciel « Oracle ». En 1979, SDL devient Rela-
tional Saftware Inc. (RSI) qui donnera naissance i la société Oracle Corp. en 1983. La
premi¢re version du SGBD s’appelle RSI-1 et utilise SQL. Le tableau suivant résume la chro-
nologie des versions.

Tabiean -2 Chronologie des versions d'Oracle

1979 Oracle 2 Premidre version commerciale &crite en Classembleur pour Digital — pas de mode
transactionnel.

1983 Oracle 3 Rééerit en C — verrous.

1984 Cracle 4 Fortage sur IBM/NVM, MVS, PC — transaction (lecture consistante).
1986 Oracle 5 Architecturs ellent-serveur avec SCOL Net — version pour Apple.

1988 Oracle 6 Verrouillage niveau ligne — sauvegarde/restauration — AGL — PL/SQL.
1991 Oracle 6.1 Paraffel Server sur DEC.

1992 Oracle 7 Contraintes référentielles — procédures cataloguées — déclencheurs — verslon
Windows en 1995,

1994 Serveur de données vidéo.

1995 Connexions sur le Web.

1897 Oracle 8 Objet-relationnel — partitionnement — LOB - Java.

1688 Oracles/ Icomme Internet, SQLJ — Linwe — XML,

2001 Oracle®f Services Web — serveur d'applications — architectures sans fil.
2004 Oracle 10g g comme Grid compuling (ressources en clusters).

2007 Oracle 11g Auwtc-configuration.

2013 Oracle 12¢ - Architecture multitenant, Cloud et Big Data.

& Editions Eyrolles

Introduction |

Avec IBM, Oracle a fait un pas vers "objet en 1997, mais cette approche ne compte toujours
pas parmi les priorités des clients d’Oracle. Léditeur met plus en avant ses aspects transac-
tionnels, décisionnels, de partitionnement et de réplication. Les technologies liées & Java, bien
qu’elles solent largement présentes sous Oracle9i, ne constituent pas non plus la majeure
partie des applicatifs exploités par les clients d"Oracle.

La version 10g renforce le partage et la coordination des serveurs en équilibrant les charges
afin de mettre & disposition des ressources réparties (répond au concept de I'informatique & la
demande). Cette idée est déja connue sous le nom de « mise en grappe » des serveurs (cluste-
ring). Une partie des fonctions majeurss de la version 10g est présente dans la version 9% RAC
(Real Application Cluster).

La version llg Oracle insiste sur les capacités d'auto-diagnostic, d’auto-administration et
d'auto-configuration pour optimiser la gestion de la mémoire et pour pouvoir faire remonter
des alertes de dystonctionnement. En raison des exigences en matiére de tragabilité et du désir de
capacité de décision (datamining), la quantité de données gérées par les SGB D triplant tous les deux
ans, 1 1g met aussi |'accent sur la capacité i optimiser le stockage.

La version 12¢ bouleverse |'architecture d'une instance assimilée 4 une base unigue en intro-
duisant 1"architecture multitenant capable d’héberger plusieurs bases de données enfichables
(pluggable database) dans une base de données de conteneur multipropriétaire (container
darabase).

Rachat de Sun (et de MySQLD

Contrairement a la rameur du début de 2007, MySQL n’enire pas en Bourse, il est racheté
pour un milliard de dollars en janvier 2008 par Sun Microsystems déja propriétaire de Java.
Sun arrive ainsi sur un segment o il était absent, aux cotés d'Oracle, d'IBM et de Microsott.

Craignant 1'achat de Sun par IBM et redoutant HP dans le haut de gamme Unix, Oracle se
repositionne dans le hardware et sur le marché des services pour datacenters en avril 2009, en
achetant Sun. Ce sont aussi les langages Java et le systéme d'exploitation Solaris qui ont pesé
dans la balance. En effet, c'est sur Solaris, et non sur Linux, que sont déployés le plus grand
nombre de serveurs Oracle.

11 faudra attendre novembre 2009 pour que la Commission européenne confirme son refus de
la fusion entre Oracle et Sun, suspectant que le rachat de MySQL aboutisse i une situation de
quasi monopole sur le marché des SGDB. En décembre 2009, avec le soutien de
quelque 59 sénateurs américains, Oracle publie 10 engagements concernant toutes les zones
géographiques et pour une durée de 5 ans.

1. Assurer aux utilisateurs le choix de leur moteur (MySQL's Plugeable Storage Engine
Archirecture).

2. Ne pas changer les clauses d’utilisation d"une maniére préjudiciable & un fournisseur tiers.

3. Poursuivre les accords commerciaux contractés par Sun.

@ Editions Eyrolles 5

[501 pour Dracle

4. Garder MySQL sous licence GPL.
5. Ne pas imposer un support des services d'Oracle aux clients du SGBD.
6. Augmenter les ressources allouées 4 la R&D de MySQL.

7. Créer un comité d'utilisateurs pour, dans les 6 mois, étudier les retours et priorités de
développement de MySQL.
8. Créer ce méme comité pour les fournisseurs de solutions incluant MySQL.

9. Continuer d'éditer, metire & jour et distribuer gratuitement le manuel d'utilisation du
SGBD.

10, Laisser aux utilisateurs le choix de la société qui assurera le support de MySQL.
Considérant d'une part ces engagements, et d’autre part I'existence de concurrents (notam-
ment IBM, Microsoft et PostgreSQL dans le monde du libre), Ia Commission européenne
avalise la fusion fin janvier 2010 pour un montant de 7 4 milliards de dollars. Cing ans aprés
{en 2015), MySQL est toujours dans le giron d'Oracle et, selon un dirigeant d'Oracle, les
effectits dédiés au développement et au support de MySQL ont doublé en cing ans, et ceux de
1" assurance qualité ont triplé.

Dffre du moment

La page d'accueil d'Oracle (www.oracle.com) focalise sur les technelogies & la mode (pour le
moment le cloud). Sans parler des matériels, services, support, progiciels, etc., la base de
données semble n'étre qu'une brique 4 1" offre tentaculaire. ..

Flgure 2 Offre Oracle

e] Cperating Syilems Enginasred Syatdms Wirtuatization
Gracie Mabite Omcie Solerin B Liwa Apphimce Origs Sucura Dlotal Doskaop

i i L Enctaiba (ndialicon Mo hine It WM Servnr for wd
Agplication Emongs Eluniic Cléxd I;

Business Analytic I SN e lor SPARL
oot [apewr & " - Eumbptics it Marrory Mactiie e -
Eameeraine Freiamarny Midclawary Diabatiann Apphace s Servicas

Cionsd Apgrcinion [oirsbiion CRaGl SLparChusa) Canmeiting
Eoderpsrie Rerioctio Mg Elilas riigealion: Cracin VAl Cormpuls Applanen Framen Suppon
dtein §agetal Mareormect pnlity el Cuacle 275 Sinenge Agphancs Amemncnd Cusorer Sugport
Sy O M sgpeesant Meeni Foattorn A Timiung
il Appic aborm Sarace-Cieien] At ot ’."'"‘ Clowil S o
At aern Prstit | e I, Process A lanagsmsnt SPWAC Francing

Wubaneo vin)
muh:- Wabi ogi Eada Orache Customer Programs
oy Cambabnay Mty Cuntonmms Pariniar
e Cxakatne MR, Enterpsise Sanagesint M:ﬂ
Tt e AhiBterint Cionel Marsagummind Storage and Tage
Faeed Ay sy’ (i Appi alion blyagumedl SAN Sronage Froducis A7 List
Diepin Wwratasng Dmtgbisae biarageirunt MAS Slomee Orache Products from Acguired
[t sz i Tape: Shoitge Companiss
Cistetre Sear e aned Vi
s ™ Managenwes Networsing and Owta Carter Froduct Price List
Oraciy WS, Demabans Hetirogesriies Mandgiei g T
Tormiers e s Maemory [eacsss Lifecye e areagmmont Emterprise Communications

Java

 Editfons Eyrofies

Introduction |

Depuis la version 10g, les principales éditions du produit Oracle Database ont pour nom
Entreprise, Standard et Standard One. Le produit monoposte est qualifié de Personal et la
version gratuite de Express.

Flgure I-3 Editions d'Oracle Database ; extralt du site

Mumrn 1

] i

e b M sriant

Oracts Detadane
Erprans Edition

=

P

-!..".'B!!'i

Ornets Databane
Nandent EdSon O

[P

2 Societ

W |

Un grand nombre d’options (payantes en sus de la base et en fonction de I'édition) permettent
de renforcer, notamment, les performances, la sécurité, le traitement transactionnel et le
darawarehouse. Citons les plus connues : Data Guard, Real Application Clusters, Partitioning
Advanced Security, Advanced Compression, Diagnostics Pack, Tuning Pack, OLAP, Data
Mining et Spatial.

Les prix des licences, clairement atfichés sur le site d'Oracle, permettent deux modes de
calcul : en fonction du nombre d'utilisateurs nommés (named wser plus) ou du nombre de
processeurs (processors). Le premier calcul convient généralement i des applications en mode
client-serveur, le second serait davantage adapté aux architectures multitiers et Web.

@ Editions Eyrolles

Figure -4 Prix d'Oracle 2015 ; extrait du site

Tababres Prodhests

Ciracis Ditabase

Aaaiard Fobiuwn s
Starsiard Eidion

Enterprae Eiron

Psnal Echlam

ok Sor

o501 Catabase Emerpase Edion
Frberprive Editian Opoms.
b

R Appimbor Closters

Fesal Mpopks sbors Chusters One Fode
A Deaka Gasaend

Wl
350
i
Lo

B

Orsch Datasass

B == ==

N

Ll
g
10020

&

mw
10
am
et
B0
]
fiew
=m
S0

]
VI
ar s

23000
o

)
000
w00
140
11,500
11,500
11,500
5,000
1500

Prices in USA jfhstini)

(P
3 0
20 o Db

7

[501 pour Dracle

Notion de schema

Au niveau d'une base de données, qu'elle soit conventionnelle, enfichable ou conteneur (avec
I'option multitenant de la version 12¢), un schéma ne se distingue d'un utilisateur (user) que
parce qu'il contient des objets (table, index, vue, etc.). Ainsi, chaque objet d’une base est asso-
cié a son propriétaire ('utilisateur qui I'a créé ; c’est le cas de 1’ufilisateur Christian de la
figure suivante). §'il ne détient aucun objet, un user peut étre percu simplement comme un
identificateur de connexion (c"est le cas de Paul). Tout utilisateur peut toutefois accéder i des
objets ne lui appartenant pas, sous réserve d’avoir regu des droits accordés par le propriétaire
ou un administrateur.

Figure 15 Schéma et utifsateur

user Christian ." o o
posside —'— S !
LA g
— W ' Dichonnaire des i
waar Paul \“I"'mnm ‘
g ditient das droits ; ﬁ:j ,” "
' Déclencheurs '

Tous les éléments d'un schéma ne seront pas étudiés car certains sont trés spécifiques et
sortent du cadre traditionnel de 1'apprentissage. Le tableau suivant indique dans quel chapitre
du livre vous trouverez les principaux €léments d'un schéma :

Tablegu -3 Béments d'un schéma Oracle

Eléments étudiés ~ Chapitre Aspects non étudiés
Déclencheurs (friggers) — 7 Dimensions {cubes)
Fonctions et procédures cataloguées, paquetages —7 Liens de bases de données (database links)
Librairies de procédures externes— site d'accompagnement Opérateurs

Index—1, 12 Tahlga types et vues objets
Java — 9, site d'accompagnement Spata

Séquences et synonymes — 2, 5

Tables et tables en index — 1

Vues (views) — 5

XML—-11

Clusters — 12

Partitions — 12

Vues matérialisées — 12

8 & Editions Eyrolles

Introduction |

Accés a Oracle depuis Windows

Aprés avoir installé Oracle sur vorre ordinateur, vous serez libre de choisir 1'accés qui vous
comvient (le client SQL comme on dit). Ce livre utilise prncipalement I'interface SQL*Plus
(livrée avec la base et dans toutes les versions clientes d"Oracle). Vous pouvez opter pour SQL
Developer (produit Java gratuit sur le site d'Oracle qui ne nécessite aucune installation, simple-
ment une décompression dans un de vos répertoires), ou pour un programme Java (via JDBC) ou
PHE

1l existe d'autres clients SQL qui sont payants ou gratuits ; citons SQL Developer, SQLTools,
SQL Navigator et TOAD le plus renommé et probablement le plus performant.

Detail d°'un numero de version

Détaillons la signification du numéro de la version 11.1.0.6.0 {premiére release de la 11g
disponible sous Windows) :

11 désigne le numéro de la version majeure de la base ;

1 désigne le numéro de version de la maintenance ;

0 désigne le numéro de version du serveur d’applications ;

6 désigne le numéro de version du composant {patch) ;

0 est le numéro de la version de la plate-forme.

Vous pourrez controler la version de I'interface SQL*Plus et celle du serveur & I'issue de votre
premiére connexion comme le monire la figure I-6 (ici, les versions de 'outil client et du
serveur sont identiques car 1"installation du serveur inclut installation de I'interface de méme
version).

Figure 6 Version du serveur et du client

mdL=Plus: Release 12.1.0.1.0 Production on Jeu. Nou. 6 05:57:36 2014

| Copyright {(c) 1982 2013, Oracle. All rights reserved.

H ntrez le nom utilisateur : system
ntrez le mot de passe :)
eure de la dernilire connexion rBussie . Jeu. Nou. ©F 2814 85.51.16 +01.00

@ Editions Eyrolles 9

[501 pour Dracle

Les clients SOL

O W O R RN R O (-, (- e W e

Les clients SQL permettent de dialoguer avec la base de différentes maniéres :
exécution de commandes SQL, SQL*Plus et de blocs PL/SQL ;
échanges de messages avec d'autres utilisatenrs ;
création de rapports d’impression en incluant des calculs ;
réalisation des tiches d’ administration en ligne.

S0L*Plus
En fonction de la version d’Oracle dont vous disposez, plusieurs interfaces SQL*Plus peuvent
étre disponibles sous Windows :

en mode ligne de commande (qui ressemble i une fenétre DOS ou telnet) ;

avec I'interface graphique (qui est la plus proche du monde Windows) ;

avec 'interface graphique SQL*Plus Worksheet de I'outil Enterprise Manager (plus
évoluée que la précédente) ;

avec le navigateur via 'interface web iSQL*Plus (i comme « Internet » ; cette interface
s apparente assez & celle de EasyPHP en étant trés intuitive).

Du fait que les interfaces graphigues et web aient &té abandonnées depuis la version 11g, ut-
lisez toujours l'interface en ligne de commande gui restera nécessairement disponible pour les
versions a venir.

Le principe général de ces interfaces est le suivant : aprés une connexion locale ou distante,
des instructions sont saisies et envoyées i la base qui retourne des résultats affichés dans la
méme fenétre de commandes. La commande SQL*Plus HOST permet d’exécuter une
commande du systtme d’exploitation qui héberge le client Oracle (exemple : DIR sous
Window ou 1s sous Unix).

Figure I-7 Principe général des interfaces SQL "Plus

SQPLUE [user/passwd | [sdegeriptevrConnexion |
//"' —‘—a.________* _—
= - —
’ w Lle -
\ ST commar
[Q"wt'm” - s §QL» CREATE -
o oxploftation |
N fiil> SE
.
SGl> EXECUTE -
S{ls CONNECT
GUIT ou EXIT gQL>

10 & Editions Eyrolles

Introduction |

Connexion i Oracle

Quel que seit le mode de connexion que vous allez choisir, vous devrez toujours renseigner le
nom de I'utilisateur et son mot de passe. D" autres paramétres peuvent étre nécessaires comme
le nom ou I'adresse du serveur, un numéro de port, un nom d’instance ou de service. Commen-
gons par faire simple et utilisons |'interface SQL*Plus pour connecter 1'utilisateur systema
I'zide du mot de passe donné lors de I'installation, vous devez obtenir un résultat analogue (si
vous disposez d'une version Express ; sinon, vous visualiserez davantage d'informations
concernant la version du serveur).

Figure -8 Connexion & Oracle

QL=Plus: Release 11.2.0.2 0 Production on Jeu. Now. & @7:13:43 2018

opyright (c) 1882, 2814, Oracle. All rights reserved.

OL» connect system

S0L Deveioper

SQL Developer est un outil gratuit de développement (écrit en Java) disponible sur le site
d’'Oracle (www.oracle.comitechnetworkideveloper-toolsisql-developer). Différentes versions sont
disponibles (Windows 32 et 64 bits, Mac et Linux RPM et autres). ..

Depuis la version 3, cet outil inclut un générateur de requétes (query builder) et un gestion-
naire de jobs (schedule builder). De plus, il est possible d’analyser sommairement des perfor-
mances de requétes (Explain, Autotrace et SQL Tuning Advisor). Des assistants d’exportation
(par exemple, au format C8V) et d’importation (par exemple, de données Excel) sont égale-
ment disponibles. Il permet méme de visualiser et de manipuler des données spatiales et déci-
sionnelles (Spatial et Data Miner).

Depuis la premigre version 4, une vue DBA permet d'administrer en partie une base (paramé-
tres de configuration, backup et recovery avec RMAN, exportation et importation, comptes
utilisateur, profils, réles, privileges, etc.). Utilisé conjointement avec le pack Tuning et
Diagnostic, il est possible de visualiser I'activité (avec ADDM, AWR et ASH).

@ Editions Eyrolles 1

[501 pour Dracle

12

Fligure 9 SQL Developer

Be [Yew Bpgate B Qebug Soge Iook e

QoEg 92> X&E0 0 0 8- ke
| Scigoeten o) s Sl
0T PEIA® SdWN & 0,50506 M1 secomds C |
1y [} b 535 statemont i
| iy SELECT FRODTCT FRON PROTACT_COMPONENT VERETON: =
- ﬂ Tabdas
[1ae Eaman:
+ [0 185 pEpmLED
) 1ag pasensy
= e
4 |) inceoes ; Bl - |
&L Fechages “',- L
L4 .l g I =) -: & 1 ik €
dF“m B remits | [sorpe Cutpus | Wi oo | Wi Autotrace | (NDERs curpnt | @bom Outout
] oy . ™
i3 Triggers
% (B Troes
4 Sequerues
L Materisden) Wasa
15~ L) Materistend vz Laga Orscle Detahsse ilp Fnterprise Fdition I
W Syroryms e
2 .
| Pubic Syromos THE for 3i-bit Windows: 3
%[Dt aase Links -
4 (B Puble Datsbasn Lrbs L1 I L
W Dermctones T -
- [0 k. Schomas SlLaggng Page - Log . I
% Pecycle Bin :_!L-'-' Sequence | Dispsed | Starce esage |
+ | Cther Lsers = Messagey Lagorg Page 4 |=
arals Tdting

Aprés avoir téléchargé SQL Developer, vous n’aurez qu'a décompresser l'archive dans le
répertoire Programmes et i exécuter sgldeveloper . exe Mises i part les éditions Express
d’Oracle, SQL Developer est inclus dans les éditions Standard et Enterprise, et se trouve dans
le menu Démarrer Oracle.../Développement d'applications. A la premiére execu-
tion, le chemin du JDK vous sera probablement demandé.

Bien gue I'outll permette un grand nombre de fonctionnalités, certaines commandes SAL*Plus
(GET, START, (0L, ACCEPT..) ne sont pasopérantes.

S0L Data Modeler

Un outil de développement SQL n’est pas forcément un outil de conception. Ce dernier vise &
construire ou « cartographier » des tables alors que le premier les manipule. Les outils de
conception sont nombreux mais le plus souvent payants (TOAD Data Modeler, Power AMC,
DeZign for Databases, ERwin Data Modeler, Enterprise Architect, ER/Studio, Navicat, etc.).
Oracle fournit gratuitement SQL Data Modeler (www.oracle.comiechnstwork/developer-tools/
datamedeler) qui est construit sur une interface analogue & son homologue S QL Developer. Le

& Editions Eyrolles

Introduction |

niveau conceptuel des données n’est pas le plus abouti mais si vous travaillez uniquement au
niveau des tables, contraintes et index, il vous conviendra sans doute. Il vous permetira de
générer des scripts de création de tables ou de visualiser graphiquement des tables d'un
schéma, ce qui est trés intéressant pour la compréhension et pour écrire des requétes réalisant
des jointures cohérentes (voir le chapitre 4).

Figure F10 SQL Devwefoper Data Modeler

Shi memte Aiiase Eiae e Duts b
I.nm (3 B [N
R

Premiers pas

pulations basigues qui vous servirant fréquemment par la suite, car il y a de grandes chances
pour que cette interface soit présente dans les différents environnements que vous frequente-
rez. Si vous commencez par SQL Developer, vous n'ufiliserez plus SCL*Plus et le jour ol vous
ne disposerez que de cette interface, vous risquez d'étre blogué et de ne pas pouvoir fournir les
résultats attendus...

é; Débutez votre apprentissage avec |'interface SQL*Plus afin de vous familiariser avec les mani-

Création d’un utilisateur

Pour créer un utilisateur, utilisez le script CreaUtilisateur.sgl situé dans le répertoire
Introduction. Choisissez-lui ensuite un nom (supprimer les caractéres < et >) ainsi qu'un
mot de passe. Si vous enregistrez ce fichier avec un autre nom dans un autre répertoire, il est
préférable de ne pas utiliser de caractéres spéciaux (ni d'espaces) dans le nom de vos répertoi-
res.

Une fois connecté, exécutez votre script dans 1'interface SQL*Plus grice a la commande
start chemin/nom script (par exemple, start C:\temp\cre evrolles.sgl).
L’écran suivant concerne la création d'un utilisateur dans la base enfichable {PDBORCL par

@ Editions Eyrolles 13

[501 pour Dracle

14

défaut). Pour des éditions antérieures i la version 12c, les trois instructions encadrées ne sont
pas i exécuter.

Fligure 11 Création d'un ulilisateur

™ _—_____ -

iSﬂLIPan: Release 12.1.0.1.0 Production on Jeu. Nov. & 11:53:01 2014
'anvrldmt {c) 1982, 2013, Oracle. All rishts reserved.

ntrez 1= nom utilisateur @ system

ntrez le mot de passe :

e ¥
-rnﬁe atsbase 12c Enterprise Edition Release 12.1.9.1.8 - Gdbit Prn?u:tam
::Hlth the E'm'tltiuning. BEAP. Advanced Analytics and g:nl kpplication Testim

mol de passe de

GL> conn syss &k AS sysdba ; ot
L I'instafiation

onnect O
GL>» alter plugsaable database PDBORCL open;
ase de donnlles pluggable modifile.

GL?> alter session set container=PDBORCL;

spécifique & Oraclel2c
{multitenant)

ess lon modif ibe.
#SaL> start Cistemphcre_eyrolles.sal

Vous devez obtenir les deux messages suivants (aux accents pres) :

Utilisateur créé.

Autorisation de privileges (GRANT) acceptée.
Voila, votre utilisateur est créé, il peut se connecter et posséde les prérogatives minimales pour
exécuter la plupart des commandes décrites dans cet ouvrage.

Sivous voulez afficher vos instructions avant gu'elles ne s'exécutent sous SQL"Plus (utile pour
tracer 'exécution de plusieurs commandes), lancez la commande set echo on qui restera
valahle pour toute la session.

ATinstar de la syntaxe du langage SQL d'Oracle, les commandes SQL*Plus sont insensibles &
la casse. Dans cet ouvrage, elles sont en général mentionnées en majuscules.

Commandes basiques de SQL*Plus

Le tableau I-4 récapitule les commandes qui permettent de manipuler le buffer de I'interface
SQL*Plus. Une fois écrite dans 1'interface, la commande (qui peut constituer une instruction
SQL ou un bloc PL/SQL) pourra &tre manipulée, avant ou aprés son exécution.

& Editions Eyrolles

Introduction |

Tablesu -1 Commandes du bufler d'enirée as pour /500 *Plas)

Commande ‘Commentaires

R Exécute (run).

L Liste le contenu du buffer.

L* Liste la ligne courante.

Ln Liste la niéme ligne du buffer qul devient la igne courante.

I Insére une ligne apres la igne courante.

A fexte Ajoute texte 4 la fin de la ligne courante.

DEL Supprime 1a ligne courante.

Cltexte 1/texted/ Substitution de la premigre occurrence de texie T par fexte?
dans la ligne courante.

CLEAR Efface le contenu du buffer,

QUIT oU EXIT Quitte SQL"Plus.

COMNECT user/ Autre connexion (sans sortir de linterface).

password@descripteur

GET fichier Charge dans le buffer le contenu du fichier sql qui se trouve
dans le répartoire courant.

SEVE fichier Ecrit le contenu du buffer dans fichier.sql qul se trouve dans le
répertoire courant.

STERT fichier ou @fichier Charge dans le buffer et exécute fichier.sqgl.

SPOOL fichier Crée fichier.Ist dans le répertoire courant qui va contenir la trace

des entrées/sorties jusqu'a la commande SFOOL OFF.

Variables d’environnement

Les variables d’'environnement {voir le tablean I-5) vous permettront de paramétrer votre
session SQL*Plus. L'affectation d'une variable s'opére avec SET (ou par un menu si vous
utilisez encore 1'interface Windows graphique). A tout moment, la commande SHOW nom_
variable vous renseignera a propos d'une variable d’environnement (voir le tableau I-6).

@ Editions Eyrolles 15

[501 pour Dracle

16

Tableau -5 Variahles d'esvironnement

Commande Commentaires

SET AUTOCCMMIT {ON | OFF | Validation automatique aprés une ou n commandes.
IMMEDIATE | n}

SET ECHO (ON | OFF} Affichage des commandes avant exécution.

SET LINESIZE {80 | n} Taille en caractéras d'une ligne de résultate.

SET BRGESIZE {24 | n} Taille en lignes d'une page de résultats.

SET SERVEROUT [PUT]{CN | oFF} Activation de laffichage pour tracer des exécutions.

SET TERMOUT {CN|OFF} Affichage des résultats.

SET TIME {ON|OFF} Affichage de I'heure dans le prompt.

Tahlesu 16 Paraméires de la commande SHOW

variabl eEnvi ropnemen Variahle d'environnement (AUTTOCOMMIT, ECHD, 8fc.).

BALL Toutes les variables d'emvironnement.

ERRCRS Erreurs de compilation d'un bloc ou d'un sous-programme.
RELEASE Vergion du SGBD ufilise.

USER Nom de l'utilisateur connecté,

A propos des accents et jeux de caracléres

D est possible de paramétrer sous Oracle certains formats, tels que la date, 1" heure, les jours de
1a semaine, la monnaie, le jeu de caractéres, etc. La principale difficulté étant que ces paramé-
tres peuvent étre différents entre le serveur Oracle, les systémes d’exploitation hébergeant la
base et le programme client (client Oracle natit comme 'interface SQL*Plus ou client utili-
sant un pilote Oracle JDBC par exemple).

En soit cette différence n'est pas dangereuse car Oracle opére les conversions automatique-
ment, mais il est important de savoir quel format de données le client attend. Une base de
données peut stocker des prix en dollars car son jeu de caractéres est américain et les resti-
tuer en euros car le client est européen. Bien siir le chiffre stocké en base est en valeur
d’euros et s'il est affiché par un client local il apparaitra sous la forme de dollar. Ce raison-
nement vaut pour les dates et accents.

& Editions Eyrolles

Introduction |

Configuration cdté serveur

Pour connaitre la configuration c6té serveur (instance sur laquelle vous Etes connecté), il faut
interroger la vue NLS_DATABASE PARAMETERS qui renseigne, entre autres, la langue, au
territoire (pour le format des dates, des monnaies) et au jeu de caractéres. Dans cet exemple, la
base installée est Oracle 10g Express Edition.

EQL> SELECT FARAMETER, VALUE FROM NLS DATABASE PARAMETERS
WHERE parameter IN ('NLS_IANGUAGE', 'NLS_TERRITORY ',
'NLS_CHARACTERSET', 'NLS_CURRENCY') ;

PARAMETER VALUE
NLS_LAMGUAGE AMERTCAN
NLS_TERRITORY AMERTCA
NLS_CURRENCY s
NLS_CHARACTERSET AL3ZUTFR
PARAMETER VALUE

1l apparait la langue anglaise (AMERICAN) de I'instance, les codes américains pour le
format des dates, des monnaies (AMERTCA) et le jeu de caractéres par défaut (AL3I2UTFE)
qui est une extension (pour les plates-formes ASCII) du classique Unicode UTF-8 codé sur
4 octets.

Configuration cété client

Pour connaitre la configuration coté client (ici une session SQL*Plus), il faut interroger la vue
NLS_SESSION_PARAMETERS qui renseigne un certain nombre de paramétres mais pas le
Jjeu de caractéres.

SQL> SELECT PARAMETER, VALUE FROM NLS_SESSION PARAMETERS
WHEEE parameter IN
("NLS_TANGUAGE", "NLS_TERRITORY ', 'NLS_CUREENCY');

PARAMETER VALIE
NLS_LANGUAGE FRENCH
NLS_TERRITORY FRANCE
NLS_CURRENCY C

1l apparait que le client a éi€ installé en choisissant la langue francaise avec ses conventions
(notamment pour le format de dates et de la monnaie). Le jeu de caractéres n’est pas ici acces-
sible. Le symbole € n’est pas restitué car certaines interfaces SQL*Plus utilisent une police de
caractére de type Courrier qui n’inclut pas ce symbole.

@ Editions Eyrolles 17

[501 pour Dracle

Afin de pouvoir restituer des caractéres accentués :

Concernant le client SQL*Plus en mode ligne de commande, il faut affecter la variable
NLS_LANG (sous Windows set NLS_LANG=FRENCH_ FRANCE.WEBPC850, par
exemple avec Unix export NLS_LANG=..).

Pour les autres clients graphiques Windows tels que SQOL Developer, vous devrez vous assurer
que la base de registres contient la valeur FREENCH_FRANCE . WESMSWIN1252 pour la
¢lé NL.S_LANG (choix Edition/Rechercher..en langant regedit).

Une fois ceci fait, vous devriez pouvoir gérer les accents au niveau des données, tables, colon-
nes, etc. L'exemple suivant illustre cette possibilité (ici le test est réalisé dans la console SOL
Developer).

Flgure 1-12 Reslitulion de caractéres accenlués

i
WANLE tableicoentude (fem WANCWANE (15), dtablissewant VAKCHAR|19),
Prime MOMBEN, devies VARCHARS (6))
|SRFERT INTO. tobloAccentube WALOEE ('écic Wercau', "Collége J, Jaurds', 1Z3.45) ‘€'}3
INAERT INTO tablahocsitude VALUER (Yagnas Bidal', 'lycés & Pau', Li4%.4, "5'0)
BEIRCT now, dtablinsesment, prime, deviees PRiM tableAccantubs |

CREATE- DASLE sucoseded,
1 rowm inssried
i rown insetted

L= LT ANLT SEENENT iRk bEvisd
arim Morsau Tollege 7, Jaurss 123,45
agnbs Bidal Lyeés & Dan 145, 6 3

18 Editfons Eyrofies

Partie |

SOL de hase

Chapitre 1
Deéfinition des donneées

Ce chapitre décrit les instructions SQL qui constituent I"aspect LDD (langage de définition des
données) de SQL. A cet effet, nous verrons notamment comment déclarer une table, ses éven-
tuels contraintes et index.

Tables relationnelles

Une table est créée en SQL par I'instruction CREATE TABLE, modifiée au niveau de sa struc-
ture par I'instruction ALTER TABLE et supprimée par la commande DROP TABLE.

Gréation d'une table (GREATE TABLE)

Pour pouvoir créer une table dans votre schéma, il faut que vous ayez regu le privilege CREATE
TAELE. 5i vous avez le privilége CREATE ANY TABLE, vous pouvez créer des tables dans tout
schéma. Le mécanisme des privileges est décrit au chapitre « Contréle des données ».

La syntaxe SQL simplifiée est la suivante :

CREATE TABLE |[scheéma. lnomTable
{ colonmel typel! [DEFAULT valeurl] [NOT NULL]
[, colonmneZ type2 [DEFAULT valeurZ] [WNOT NULL]]
[CONSTRAINT nomContraintel typeContraintell..) ;

schéma ; 87l est omis, il sera assimilé au nom de I'utilisateur connecté, 37il est précisé, il
désigne soit I'utilisateur courant soit un autre utilisateur de la base (dans ce cas, il faut que
I'utilisateur courant ait le droit de créer une table dans un autre schéma). Nous aborderons
ces points dans le chapitre 5 et nous considérerons jusque-la que nous travaillons dans le
schéma de |'utilisateur couramment connecté (ce sera votre configuration la plupart du
temps).

nomTabl e : peut comporter au maximum 30 caractéres (lettres, chiffres et caractéres _, $
et #). Si I'identificateur n'est pas encadré par des guillemets (quoted identifier), le nom est
insensible 4 lacasse et sera converti en majuscules dans le dictionnaire de données (ilenva
de méme pour le nom des colonnes).

@ Editions Eyrolles 21

S(E do bass |

22

colonnei typei: nom de colonne ef son type (NUMBER, VARCHARZ, DATE.).
L'option DEFAULT fixe une valeur en cas de non-renseignement (NULL). L'option NOT
NULL interdit que la valeur de la colonne ne soit pas renseignée.

ﬂ Le marqueur NULL ne désigne pas une valeur mais une absence de valeur qu'on peut traduire

comme non disponible, non affectée, inconnue ou inapplicable. NULL est différent d'une chaine
vide, d'un zéro ou des espaces. Ce marqueur est & étudier de prés car, dans bien des cas,
deux NULL ne sont pas identiques. Les requétes d'extraction peuvent renvoyer des résultats
aberrants si les NULL sont mal interprétés. En positionnant le plus possible de NOT NULL dans
vos colonnes, vous diminuerez les traitements additionnels & opérer par la suite.

nomContraintei typeContraintei: noms de la contrainte et son type (clé
primaire, clé étrangére, etc.). Nous allons détailler dans le paragraphe suivant les différen-
tes confraintes possibles.

; symbole qui termine une instruction SQL d’Oracle. Le slash (/) peut également termi-
ner une instruction a condition de le placer & la premiére colonne de la derniére ligne.

Basse et commentaires

Dans toute instruction SQL (déclaration, manipulation, interrogation et contrile des données),
il est possible d'inclure des retours chariots, des tabulations, espaces et commentaires (sur une
ligne précédée de deux tirets --, sur plusieurs lignes enfre /* et */). De méme, la casse n'a
pas d’importance au niveau des mots-clés de SQL, des noms de tables, colonnes, index, etc.
Les scripts suivanis décrivent la déclaration d’'une méme table en utilisant différentes
conventions :

Tablean +1 Difiéranies éoritures SOL

Sans commentaire Avec commentaires

CREATH TAELE
CREATE TABLE M@mesdévdénement saliosl == nom de la table
{colenne CHAR); TEST (
-- degeription
CREATE TABLE Test COLONNE NUMBER(38,8)
{eelenne NUMBER(38,8));)
== fin, ne pas ocublier le point-virgule,
CREATE table test (Colonne F
NUMBER(38,8)) ; CREATE TABLE Test (
£* une plus grande description
des ceolonnes */
COLONNE NUMEER(38,8));

& Editions Eyrolies

[chapitre n® 1 Détinition des données |

! - La casse a une incidence majeure dans les expressions de comparaisen entre colonnes et
v valeurs, gue ce soit dans une instruction SQL ou un test dans un programrme. Ainsi, I'expression
« nomComp="Air France' » n‘aura pas la méme signification que l'expression « nomComp

='RIR France' =.

Premier exemple

Le tableau 1-2 décrit |'instruction SQL qui permet de créer, dans le schéma soutou, la table
vol_jour illustrée par la figure suivante. L'absence du préfixe soutou. aurait conduit an
méme résultat si la connexion était établie par I'utilisateur sewrou lors de la création de la
table. L'utilisateur sourou devient propriétaire (owner) de 1'objet table vo! jour (on dit aussi
que le schéma sourou contient la table vol_jour).

Figure 1-1 Table a créer

I voL_jour
NUM_VOL | AERO_DEP |AERO_ARR COMP | JOUR_VOL NB_PASSAGERS |
Tablesn +-2 Création d'une [alie o1 de ses conwaintes
Instruction SQL Commentaires
CREATE TAELE wol_jour La table contient six colonnes (quatre chaines
{rumn_wol VARCHAR2 {6) NOT NULL, de caractéres variables, une date et un entier
aero_dep VARCHARZ (3) NOT NULL, relatif de trois chiffres).
aero_arr VARCHARZ (3) NOT NULL, La table inclut cing contraintes en ligne.
com VARCHARZ (4) DEFAULT 'AF', *4NOT NULLqui imposent de renseigner gua-
Jour_wol DATE WOT NULL, tre colonnes.
nb_passagers NUMBER(3)); * 1 DEFAULT qui fixe un code compagnie &

défaut d'étre renseigne.

Contraintes de colonnes

Les contraintes de colonnes ont pour but de programmer des régles de gestion au niveau des
colonnes des tables. Elles peuvent alléger un développement c6té client (si on déclare qu'une
note doit &tre comprise entre 0 et 20, les programmes de saisie n'ont plus a tester les valeursen
entrée mais seulement le code retour aprés connexion 4 la base ; on déporte les contraintes
cOté serveur).

Les contraintes de colomnnes peuvent étre déclarées de deux mamiéres :

En méme temps que la colonne (valable pour les confraintes monocolonnes), ces contraintes
sont dites « en ligne » (inline constraints). L'exemple précédent en déclare deux.

@ Editions Eyrolles 23

S(E do bass |

24

Une fois la colonne déclarée, ces contraintes ne sont pas limitées 4 une colonne et peuvent
étre personnalisées par un nom (out-of-line constrainis).

En nommant chacune de vos contraintes de colonnes, vous disposez de quatre types possibles.

CONSTRAINT nomContrainte
« INIQUE (colonnel [, colonne?]..)
« PRIMARY EEY (coleonnel [,colonneZ].)
« FOREIGN KEY (colomnel [, coleonna2ll.)
REFERENCES [scheéma. |nomTablePere (colonnel [,colommeZ].)
[ON DELETE { CASCADE | SET NULL }]
* CHECE {(condition)

La contrainte UNIQUE impose une valeur distincte sur les colonnes concernées (les NULL
font exception 4 moins que NOT NULL soit aussi appliqué sur chaque colonne).

La contrainte PRIMARY KEY déclare la clé primaire, qui impose une valeur distincte sur les
colonnes concernées (MOT NULL est aussi appliqué sur chaque colonne).

La contrainte FOREIGN KEY déclare une clé étrangére pour relier cette table & une autre
table pére (voir la section « Intégrité référentielle » du chapitre 2).

La contrainte CHECK impose une condition simple ou complexe entre les colonnes de la
table. Par exemple, (3IECK (nb_passagers>0) interdira toute valeur négative tandis que
CHECK (aero_dep!=aero_arr) interdira la saisie d'un trajet qui part et revient du méme
agroport.

Dans le cas de UNIQUE et EBRIMRRY KEY, unindex unigue est généré sur les colonnes concermées.
Vious pouvez disposer de plusieurs contraintes UNIQUE mais seule une clé primaire est autorisée.

Si vous ne nommez pas une de vos contraintes, un nom sera généré sous la forme sulvante
(figure 1-2 ci-contra).

Nous verrons au chapitre 3 comment ajouter, supprimer, désactiver, réactiver et différer des
contraintes (options de la commande ALTER TABLE).

Conuentions recommandees

Adoptez les conventions d’écriture sulvantes pour vos contraintes

Préfixez par pk_ le nom d'une contrainte cle primaire, £k_ une clé étrangére, ck_ une verifi-
cation, un_ une unicité.

Pour une contrainte ¢lé primaire, suffixez du nom de la table la confrainte {exemple pk_Pilote).

Pour une contrainte clé étrangére, renseignez (ou abrégez) les noms de la table source, de
la clé, et de la table cible (exemple £k _Pil compa_Comp).

& Editions Eyrolies

[chapltre n° 1

Détinition des données |

Le script d’écriture des tables suivantes respecte ces conventions. La clé étrangére concrétise
une association un-d-plusieurs entre les deux tables. Ici, il s’agit de relier chaque vol a sa
compagnie (pour plus de détails concernant la modélisation, consultez la bibliographie

« UML 2 pour les bases de données »).

Tableau 1-3 Conmiraintes en Hgne el nommées
Tables

Contraintes
CEEATE TRELE compagnie Une contrainte en ligne
{comp VARCHARZ (4) , et deux cortraintes
TLOM,_ Oy VARCHARZ (15, hors ligne.

date_creation DATE COMSTRAINT nn_date crea NOT NULL,
CONMSTRAINT pk compagnie PRIMARY EEY (comp),
COMSTRAINT un nom comp UNIQUE (nom comp));

CREATE TABLE wvol_jour

{num_wvel VARCHARZ (6) NOT NULL,
aero_dep VARCHARZ (1) CONSTRAINT nn_depart NOT NULL,
aero_arr VARCHARZ (3) CONSTRAINT nn arrivee NOT NULL,
comp VARCHRRZ (4) DEFAULT 'AF',
Jour_wol DATE NOT WULL,
nb_passagers NUMEER(3),
CONSTRAINT pk_vol_ fjour PRIMARY EEY(num vol, jour_wvol),
COMSTRAINT fk_wel_ gour comp compaghnie

FOREIGN EEY (comp)

REFERENCES compagnie | comp) ,
CONMSTRAINT ck_nb pax CHECK (nb_passagers>0(),
CONSTRAINT ck_trajet CHECK (aerc_dep !|= aero_arr));

Une contrainte en ligne
nommee (NOT NULL)
et quatre contraintes
hors ligne nommées :
+ Clé primaire.

+ CHECE (nombre
d'heures de vol
compris entre 0 et
20000).

+ UNIQUE
(homonymes
interdits).

= Clé étrangére.

La figure suivante présente le détail des contraintes (capture d'écran de 1'outil SQL Develo-
per).

@ Editions Eyrolles

Flgure 1-2 Conlraintes d'une table

B voL_jour

Colonnes | Donndes - Droits | Statistiques | Déclencheurs | Flashback | Dépendances | Détails |

{ CONSTRAINT_NAME

6 PR_VOL_JOUR
7 sYs_c0010521
8 sYs_£0010524

Frimary Key (nuall)

Check

Check

[CONSTRAINT_TYPE | SEARCH_CONDITION

1 CK_NB_PAX Check nb_passagers>0

2 CK_TRAJET Check aerc_dep != aerc arr

3 FR_VOL_JOUR COMF CCMPAGNIE Foreign Key (null)

4 NN_ARRIVEE Check "AERD RARR" IS NOT NULL
5 NN_DEPART Check "ARERO DEF" IS NOT NULL

"NuUM_VOL® IS NOT NULL
"JOUR_VOL" IS NOT MULL

25

S(E do bass |

26

Lordre de creation des contraintes hors ligne n'est pas impertant au sein d'une table.

En revanche, I'ordre de création des tables est imposé, si les contraintes sont créées en méme
temps que les tables. En effet, il existe une certaine hiérarchie 4 respecter pour les clés
étrangéres : il faut d'abord créer les tables référentes, puis les tables qui en dépendent (la des-
truction des tables se fera dans l'ordre inverse).

Il est possible de créer les contraintes aprés avoir créé les tables via la commande ALTER
THBLE (voir le chapitre 3).

Types des colonnes

Pour décrire les colonnes d’une table, Oracle fournit les types prédéfinis suivants (built-in daratvpes) :
caractéres (CHAR, NCHAR, VARCHARZ, NVARCHARZ, CLOB, NCLOB, LONG) ;
valeurs numeériques NUMBER ;

date/heure (DATE, INTERVAL DAY TO SHOOND, INTERVAL YEAR TO MONTH, TIMESTAME,
TIMESTAMP WITH TIME ZONE TIMESTAMP WITH LOCAL TIME ZOMNE)

données binaires (BLOB, BFILE, RAW, LONG RAW) ;
adressage des enregistrements ROWID.

Détaillons & présent ces types. Nous verrons comment utiliser les plus courants au chapitre 2
et les autres au fil de 'ouvrage.

Caractéres

Le tableau 1-4 décrit les types convenant aux données textuelles. NCHAR, MNVARCHARZ et
NCLOB permettent de stocker des caractéres Unicode (multibyre). Cette méthode de codage
fournit une valeur unique pour chaque caractére quels gue soient la plate-forme, le programme
ou la langue.

Reservez le type CHAE aux donnees textuelles de taille fixe et constante.

Depuis Qracle 9, le type VARCHAR est remplacé par VARCHARZ. Le premier gérait des chaines
maximales de 2 000 caractéres et utilisalt des NULL pour compléter chague donnée. Le
second est plus puissant en termes de stockage ; il n'occupe pas d'espace supplémentaire et
n'utilise pas de NULL en interne.

Depuis la version 12¢, la taille maximale d'un VARCHAR2 ou NVARCHARZ peut éfre étendue a
32 767 octets (32 Ko) si le paramétre dinitialisation MAX_STRING_SIZE est positionné a
EXTENDED (STANDARD par défaut). Une fois positionné, il ne vous sera plus possible de revenir
aun comportement standard (limitation a 4 000 caractéres).

& Editions Eyrolies

[chapitre n® 1 Détinition des données |
Tahlean -4 Types de domnées caraciéres
Type Description Commentaires pour une colonne
CHRR(n [BYTE | Chaine fixe de n Taille fixe (complétée par des blancs si nécessairg).
CHAR]) caractéres ol octets. Maximum de 2 000 octets ou caractéres.
VARCHARZ (n Chaine variable de n Taille variable. Maximum de 4 000 octets ou
[BYTE | CHAR]) caractéres ol octets. caractéres.
NCHAR (n) Chaine fixe de n Taille fixe (complétée par des blancs sl nécessaire).

caractéres Unicode.

Taille double pour le jeu AL1EUTFLE &t triple pour
le jeu vrFe. Maximum de 2 000 caractéres.

NVARCHARZ (n)

Chalne variable de n
caractéres Unicode.

Taille variabls. Mémes caractéristiques que NCHAR
sauf pour la taille maximale qui est ici de 4 000 octets.

CLOE Flot de caractéres (CHAR). Jusqu'a 4 gigaoctets.
NCLOB Flot de caractéres ldem CLOB.
Unicode (MCHAR).
LONG Flot variable de Jusqu'a 2 ginaoctets. Toujours fourni pour assurer
caractéres. la compatibilité, mais & remplacer par le type CLOB.
XMLTYPE Stockage de documents Jusqu'a 4 gigaoctets.
XML

Valeurs numériques

Le type MUMBER sert & stocker des entiers positifs ou négatifs, des réels & virgule fixe ou flot-
tante. La plage de valeurs possibles va de 21 x10-130 4 49.9...99 x10125 (trente-huit 9 suivis de
quatre-vingt-huit ().

Type

Tabiegn -5 Tvpe de donnges numérigues

Description

Commentaires pour une colanne

KRUMBER [(t,d)]

Flottant de fchiffres
dont d décimales.

Maximum pour £: 38.
Plage pour o : [-84, +127].
Espace maximum utilisé : 21 octets.

Lorsque la valeur de d est négative, I'arrondi se réalise 4 gauche de la décimale comme le
montre le tableau suivant.

@ Editions Eyrolles

Tabiean 1-6 Représentation du nombre 7456123.88

Type Description

NUMEER T456123.89

NUMEER (9] 7456124

NUMEEER(9,2) T456123.89

WITMBER {9,1) T456123.9

HITMEER { 6] Précision inférieurs & la tallle du nombre.
HNUMBER (7,-2) 7456100

NUMBER (-7, 2) Précision infériaure 4 1a talle du nombre.

27

S(E do bass |

28

Determinez toujours un nombre de décimales fixe de sorte a ne pas subir des arrondis, et donc
des approximations, lors de calculs importants (sur des montants de facture ou des soldes de
comptes bancaires, par exemple).

Pour définir des colonnes clé primaire, fixez toujours un nombre de décimales a zéro (par
exaemple, NUMEER (3, () qui estidentigue a4 NUMEER (3)).

Enfin, n'utilisez pas toujours des entiers pour définir des clés primaire numériques, (par exem-
ple, un numéro de Sécurité sociale CHAR {13) est préférable &4 WIMBER (13) car vous n'opére-
rez jamais de calculs sur ces données, juste des fris ou des extractions de parties). De plus, si
la taille de ce type de donnée n'est pas fixe, vous pourrez compléter avec des 0 devant (ce qui
n'est pas possible pour les numériques).

Depuis la version 12¢, il est possible d'utiliser un type numérique (entier) pour définir une
colonne auto-incrémentée (voir le chapitre 2). Le mot-clé qui est utilisé dans les instructions
CREATE TABLE et ALTER TABLE pour désigner un tel mécanisme est GENERATED.. AS
IDENTITY..

Flottants

Depuis Oracle 10g, deux types numériques apparaissent : BINARY FLOAT et BINARY
DOUBLE qui permettent de représenter des grands nombres (plus importants que ceux définis
par NUMBER) sous la forme de flottants. Les nombres flottants peuvent disposer d'une déci-
male située a tout endroit (de la premiére position & la derniére) ou ne pas avolr de décimale
du tout. Un exposant peut éventuellement &tre utilisé (exemple : 1.777 e#7). Une échelle de
valeurs ne peut étre imposée i un flottant puisque le nombre de chiffres apparaissant apres la
décimale n'est pas restreint.

Tabfean 1-7 Types de fotlanls

Type Description Commentaire pour une colonne

BINARY FLOAT Flattant simple précision. Sur 5 octets (un représentant la longuedur).
Valeur entiére maximale 3.4 x 1098 valeur
entiére minimale -3,4 x 103, Plus petite
valeur positive 1,2 x 1032, plus petite valeur
négative -1,2 x 10°%,

BINARY DOUBLE Flottant double précision. Sur 9 octets (un représentant la longueur).
Valeur entidgre maximale 1,79 x 10439,
valeur entiégre minimale -1,79 x 10433,
Plus petite valeur positive 2,3 x 10739,
plus petite valeur négative -2,3 x 10-%8,

& Editions Eyrolies

[chapltre n° 1

Détinition des donnéas |

Le stockage des flottants différe de celui des NUMBER en ce sens que le mécanisme de repré-
sentation interne est propre i Oracle. Pour une colonne NUMEER, les nombres & virgule ont
une précision décimale. Pour les types BINARY FLOAT et BINARY DOUBLE, les nombres
i virgule ont une précision exprimée en binaire.
Oracle fournit également le type ANSI FLOAT qui peut aussi s'écrire FLOAT (n) . L'entier n
(de 1 & 126) indique la précision binaire. Afin de convertir une précision binaire en précision
décimale, il convient de multiplier I'entier par 0.30103. La conversion inverse nécessite de
multiplier # par 3.32193. Le maximum de 126 bits est & peu prés équivalent & une précision
de 38 décimales.
L'écriture d'un flottant est la suivante :
[+|=] {chiffre [chiffre]... [.] [chiffre [chiffre]...}.chiffre [chiffre]...}
[e[+|-] chiffre [chiffre]...] [£|d]

& (ou E) indique la notation scientifique {mantisse et exposant) ;

£ (ou F) indique que e nombre est de type BINARY FLOAT

d (ou D) indique que le nombre est de type BINARY DOUBLE,
51 le type n'est pas explicitement précisé, I'expression est considérée comme de type NUMBER.

Date/heure
Le type DATE permet de stocker des moments ponctuels, la précision est composée du
siecle, de I'année, du mois, du jour, de 1’heure, des minutes et des secondes.
Le type TIMESTAMP est plus précis dans la définition d’un moment (fraction de seconde).
Le type TIMESTAMP WITH TIME ZONE prend en compie les fuseaux horaires.

Le type TIMESTAMP WITH LOCAL TIME ZONE permet de faire la dichotomie entre une
heure c6té serveur et une heure cté client.

Le type INTERVAL YEAR TO MONTH permet d’extraire une différence entre deux momenis
avec une précision mois/année.

Le type INTERVAL DAY TO SECCHD permet d’extraire une différence plus précise entre
deux moments (précision de 1'ordre de la fraction de seconde).

@ Editions Eyrolles 29

[Parfie | S(E do bass |
Tebieau 1-8 Twnes de données date/hears

Type Description Commentaires pour une colonne

DATE Date et heure du 1 janvier 4712 Sur 7 octets. Le format par défaut
avant.).-C. au 31 décembre 4712 est spécifié par le paramatre
aprés J.-C. NLE DATE FORMAT.

INTERVAL YEAR {an) TO Période représentde en années Sur 5 octets. La précision de an

MOWTH et meis, vade 04 9 (par défaut 2),

INTEEVAL DAY (jo) TO Période représentée en jours, Sur 11 oetets. Les précisions jo et

SECCND (fsec) heures, minutes et secondes, fsec vontde 0 a 9 (par défaut 2

pour le jour et & pour les fractions
de secondes).

TIMESTAMF (fsec) Date et heure incluant des De 7 & 11 octets. La valeur par
fractions de secondes (précision défaut du paramétre dinitialisation
qui dépend du systéme est située dans 1.5 TIMESTAME
d'axploitation). FORMET. La précision des fractions

de secondes va de 04 9 (par
défaut 6).

TIMESTAMP (fsec) WITH Date et heure avec le décalage Sur 13 octets. La valeur par

TIME EZONE de Greenwich (UTC) au format défaut du paramétre de I'heure
"hm' (heures:minutes par rapport du serveur est située dans NLS_
au méridien, exemple : -5:07. TIMESTAMP_TZ FORMAT.

TIMESTAMP (fsec) WITH Comme le précédent mais cadré De 7 411 octets.

LOCAL TIME ZONE sur I'heure locale {client) qui peut
étre différerte de celle du serveur.

Nutilisez jamais un format textuel pour stocker des dates ou des heures (par exemple,

CHAR{10) pour un format jj/mm/aaaaa) car vous ne pourrez pas béneficier de contréles et de
calculs, toujours nécessaires a un moment donné dans ces cas-la.
Données binaires
Le tableau 1-9 présente les types permettant de stocker des données non structurées (images,
S0ms, etc.).

Tablean 18 Types de dennées binaires

Type Description Commentaires pour une colonne

BLOB Données binalres non structurées. Jusqu'a 4 gigaoctets.

BFILE Données binares stockées dans idem.

un fichier externe & la base.

RAW(size) Données binaires. Jusqu'a 2 000 octets.

LONG RAW Données binaires. Jusqu'a 2 gigaoctets, toujours.
fourni pour assurer la compatibilité,
mais & remplacer par le type BLOE.

30 & Editions Eyrolles

[chapltre n° 1

Détinition des données |

Structure d’'une tabie (DESC)

DESC (raccourci de DESCRTBE) est une commande SQL*Plus, car elle n’est comprise que dans
I'interface de commandes d’Oracle. Elle permet d’extraire la structure brute d'une table. Elle
peut aussi s’appliquer i une vue ou un synonyme. Enfin, elle révéle également les paramétres
d'une fonction ou procédure cataloguée.

| DESC [RTIEE] [schéma.]élément

Si le schéma n'est pas indiqué, il s"agit de celui de I'utilisateur connecté. L'élément désigne le
nom d'une table, vue, procédure, fonction ou synonyme.

La structure brute des tables précédemment créées est présentée i 1'aide des commandes
suivantes. Il n"y a que le nom, le type et la non-nullité de la colonne qui apparaissent. Le nom
des contraintes n’est pas indiqué ici (comme peut le produire I'outil SQL Developer, voir
figure 1-2).

Figure 1-3 Structure brute des fables

S0L> desc wol_jour

Nom NULL ? Type
NUM_UOL NOT NULL UARCHAR2(6)
AERD_DEP NOT NULL UARCHAR2(3)
AERD_ARR NOT NULL UARCHAR2(3)
COMP UARCHARZ(4)
JOUR_UoL NOT NULL DATE
NB_PASSAGERS NUMBER(3)
/saL> desc compagnie

Nom NULL ? Type

comMP NOT NULL URRCHAR2(Y4)
NOM_COMP UARCHARZ(15)
DATE_CREATION NOT NULL DATE

Commentaires stockes (GOMMENT)

Les commentaires stockés permettent de documenter une table, une colonne ou une vue.
L'instruction SQL pour créer un commentaire est COMMENT.

COMMENT N { TABLE [schéma.]nomTable |
COLN [scheéma. InomTable. nomColonne }
IS 'Texte décrivant le commentaire';

@ Editions Eyrolles 31

S(E do bass |

32

Pour supprimer un commentaire, il suffit de le redéfinir en inscrivant une chaine vide (* ')
dans la clause I3. Une fois définis, nous verrons i la section « Dictionnaire des données »
du chapitre 5 comment retrouver ces commentaires.

Le premier commentaire du script ci-aprés documente la table Compagnie, les trois suivants
renseignent trois colonnes de cette table. La derniére instruction supprime le commentaire i
propoes de la colonne nomCanp.

COMMENT 0N TABLE Corpagnie IS 'Table des compagmies aériennes francaises';
COMMENT (8 COLIMN Compagri e . comp I8 '"Code sbreviation de la ocompegrie’;
COMMENT (1] COLUMN Compagnie.nomComp IS 'Un mauvais commentaire’;
COMMENT ON COLUMMN Compagnie.ville IS "Ville de la compagnie, defaut :
Paris"';

COMMENT (3 COLUMN Compagnie . nomComp IS "°;

Noms des ohjels

Chaque objet ou constituant de la base (table, index, contrainte, colonne, variable, etc.) est
nommé & 1'aide d'un identifiant de 1 & 30 caractéres (composé de lettres, de chiffres ou des
caractéres _, S et #).

Le nom peut étre écrit entre guillemets — la casse doit alors étre impérafivement respectée de
méme que 1'utilisation des guillemets (on parle de guoted identifier). Le seul exemple présenté
dans cet ouvrage qui adopte ce style de notation est le suivant ; vous y découvrirez la possibi-
lité de décrire des identifiants sous la forme de mots séparés par des espaces (ce qui n'est pas
conseillé).

Figure 1-4 Nommage de type « quoted identifier »

SOL> CREATE TRABLE “vols du jour”

2 (“numlol” UARCHARZ2(&) NOT NULL,

3 “comp” UARCHAR2(4) DEFAULT "AF",

L] "jour wel® DATE NOT NULL,

5 CONSTRAINT "pk vols du jour” PRIMARY KEY(“numUel™., "jour wel")):
Table crége.
S0L> DESC “"wols du jour™

Nom NULL 7 Type

numblal NOT NULL URRCHAR2(E)

comp URARCHARZ(&)

jour uol NOT NULL DATE

SOL> SELECT numUol FROM “uvols du jour":
-

ERREUR a la ligne 1 :
ORA-908904: "NUMUOL" : identificateur non valide

& Editions Eyrolles

[chapltre n° 1

Détinition des données |

- Seuls les noms de base (8 caractéres) et les noms de database link (128 caractéres) sont tou-

jours stockés en majuscules et sont insensibles a la casse.

Le nom de chaque colonne doit &tre unigue pour une table {en revanche, le méme nom d'une
colonne peut &tre utiisé dans différentes tables). Les noms des objets (tables, colonnes, con-
traintes, vues, etc.) doivent étre uniques au niveau du schéma (en revanche, plusieurs tables
peuvent porter le méme nom dans différents schémas).

Avec une notation sans guillemets, vous ne devez pas emprunter les mots réservés (TABLE,
SELECT, INSERT, IF, efc.). Vous trouverez la liste de ces mots réservés dans la documentation
officielle a I'annexe D du livre SQL Refarence.

Il n'est pas recommandé d'utiliser les caractéres § et # (trés employés en interne par Oracle).

Les identifiants sans guillemets (ronguoted identifiers) ne sont donc pas sensibles i la casse et
sont traduits en majuscules dans le dictionnaire des données (voir le chapitre 5). Ainsi, les trois
écritures désignent le méme identifiant : asroport, AEROPORT el "AEROPORT™.

Utilisation de SOL Developer Data Modeler

Une des utilisations de 1'outil d’Oracle SQL Developer Data Modeler consiste 4 générer
des scripts de création de tables (DDL scripts, DDL pour Dara Definition Language) aprés
avoir saisi les caractéristiques de chaque table sous une forme graphique (modéle rela-
tionnel des données). Ce procédé est appelé forward engineering car il chemine dans le
sens d'une conception classique pour laquelle 1'étape finale est concrétisée par la création
des tables.

Dans 1'arborescence de gauche, par un clic droit sur I'élément Mod&les relationnels,
choisir Mouveau modéle relationnel. Une fois dans le modéle relationnel, les icones
indiquées vous permettront de créer vos tables et toutes les liaisons entre elles (clés étrangé-
res). A titre d’exemple, créons deux tables reliées par une clé étrangére (ici, un pilote qui est
rattaché & sa compagnie).

Pour créer une table, vous devez la nommer dans la fenétre de saisie (le choix Applicuer
modifiera le nom complet), puis définir ses colonnes. En choisissant 1'entrée Colonnes, le
symbole « + » vous permetira de saisir le nom et le type de chaque colonne de latable. N'ajou-
tez aucune contrainte pour 1'instant (clé primaire et cl€ étrangére), contentez-vous de saisir les
colonnes sans ajouter de colonnes de nature clé érangére.

@ Editions Eyrolles 33

S(E do bass |

Figure 1-5 Création dun modelke relationnel avec Data Modeler

r i - . T e -
O Orate SO Deetoper Data Mo Ao

Fichier Modifier Affichage Gestion des versions Outils Alde
hEAMEESs . OR @ QB0 N @ @

e i s g e e

B Propriétés de Ia table - TASLE 3

—
Géndral I
| e
Contraint |fI"| I ‘"
Index Calone ; Froprtés de l coinne
Ciés étrangbres PERTS AB0 Mo ¢ fbrevet

Colonids imhcipien [tom Type de donn,.. | Typé dé donndes: () Demaine (3) Logique
Propriftis: #a vohane) Ririckurd () Frsaih

Grougis de colonnes Type : ;
Rezponsables | wanE | e

@ Editions Eyrofies

[chapltre n° 1

Détinition des données |

&

Définissez ensuite la clé primaire de chaque table (colomne brevet de la table Pilote et
colonne comp de la table Compagnie).

Figure 1-7 Clé primaire avec Data Modeler

Colonnes Clé primaire

COATBINTEE Uil uss P

Freden

Contraintes da nevenu toble || yom Pilate_PU

Cles duangtres talorman

Colonnes imbiquies

Propridtis tu wlome r«ul § (Dolenne

Pt s | ~

A I'issue de cette étape, le diagramme se modifie pour faire apparaitre les deux nouvelles
contraintes.

Flgure 1-8 Tables dotées d'une clé primaire avec Data Mod'eler

@ Oracke SQL Developer Data Modeler : Relational_1 (e1) .)
Fichier Modifier Affichage Gestion des versions Qutils Alde
LEORIETS. AR & R/ EHS e a e
; web * | L] sten Page * metational 1 fat) * | 2.
| 3 waatfs [3] f |7
= A

* B Moddle lgigue

3 Moddles mulidenen

B Mookies relsbonewly (1] AbMosl MUMBER (.31

i Domaines [1] | T

@ Modble de typs de don —

Reliez la table Compagnie i la table Pilote en sélectionnant I'icone de clé étrangére. Une
bofte de dialogue s”affiche alors et décrit les caractéristiques de la nouvelle contrainte référen-
tielle (voir le chapitre 3).

Assurez-vous gue la table source comresponde la table de rfrence (ici, les compagnies) et
ninterprtez pas le terme * source " comme source de la fl che qui d crit le sens du lien, et
* cible ” comme la table cible de ce lien. C est tout | inverse

Vous remarquerez que la colonne de type clé étrangére générée est automatiquement nommeée
4 I'aide de la table et de la colonne de référence : rablesource_cleprimaire (ici, Compagnie
comp, que nous choisissons de renommer compa).

@ Editions Eyrolles 35

[Partie | S dobase |

Figure 1-8 Définition d'une ¢lé étrangére avec Data Modeler

[Proprietes e 1a cie erangere - Piote_Compageie FK 'iﬁ-
| Colennes associées . Géndral |
Commentaires = - 2
Remrques Hom : e componic -
hnalyse d'impact M C
Tabie ; |Pilote
Récapitutanf Index de clé prmairs/dé unique | | Compagnie. Compagnis_F¥ i
Rigle de suppressian - woAcTion
Synonyme da table source : [Compagnie = |
Synonyime dé table cibi : Piote #]

Figure 1-10 Modéle relationnel final avec Data Modeler

E
@ Orade SQL Developer Data Modater ; Relational Ll {e1) E==100
- - - —— i — -
Fichier Modifier Affichage Gestion des versions Outils Aide
NS 0 O0R @ Q4B 8 Ol ¢
tgtavgatour Wb * |] WsteriPage * [ifRetet 1
1 Matrfa [1] o =
e [et
W Mol logigus ey Campagrn
#H Modides multidimensionnels [] e p—————iL I aemp A
& 8 Modéles ratatonnels [1) bom THARW) e ot
& I Restonal i P T e RS
b = o
8 vues [] lo= Compagnis, PH jsomp)
& B Ods strongéres [1]
5§ Picte.Piote_Compagaie_FK

La génération du script SQL s’opére par le menu Fichier/Exporter/Fichier DDL. Sélec-
tionner la version du SGBD cible, puis choisir Générer. Tous les éléments du modéle rela-
tionnel sont sélectionnés par défaut, mais vous pouvez volontairement écarter certaines tables
du script. Une fois votre sélection faite, le script SQL se génére automatiquement. Vous note-
rez que les contraintes sont déclarées aprés les tables (voir la commande ALTER TABLE au
chapitre 3). Ce procédé est bien adapté i la majorité des outils de conception, qui 1'adoptent
pour leur processus de reverse engineering.

36 & Editions Eyrolles

[chapitre n® 1 Détinition des données |

Figure 1-11 Sevipt de génération des tables avec Data Modeler

B Editeur de fichier DOL - Oracle Database 11g = | E SN
|| Oracle Database 11g =| | Retational_1 . Gandeor || Rechercher |

CHEATE TABLE Compagnas

[comp CHAR (4) HOT NOLL ,
rres WUMBER |1} ,

rue CHAR (30) .

ville CHAR (35) ,
romionp CHAR {13)) =2

ALTER TABLE Compaguie
ASD CONSTRAINT Compegnie P PRIMARY BEY | comp) -

CREATE TABLE Pilote
i breves CHAR (6} MDT NDLL ,
nem CHAR (15} ,
obfvol MOMHER (7.2) ,
cempa CHAR (4)) 3

ALTER TABLE Filpote
ADD CONSTRAINT Pilote PR PRINART EET | brswet | @

ALTER TABLE Pllore
ADD CINISTHAINT Pilote Compagnie FE FOREIGH EEY | compe
REFRRENCES Coepagnis (comp | =

Suppression des tables

1l vous sera sans doute utile d’écrire un script qui supprime tout ou partie des tables de votre
schéma. Ainsi, vous pourrez recréer un ensemble homogéne de tables (comme une sorte de
base « vierge ») i la demande. Bien entendu, si des données sont présentes dans vos tables,
vous devrez opter pour une stratégie d’exportation ou de sauvegarde avant de réinjecter vos
données dans les nouvelles tables. A ce stade de l1a lecture de I’ouvrage, vous n’en &tes pas Ia,
et le script de suppression vous permettra de corriger les erreurs de syntaxe que vous risquez
fort de faire lors de 1'écriture du script de création des tables.

Si vous définissez des contraintes en méme temps que les tables (dans I'ordre CREATE
TABLE...), vous devrez respecter I'ordre suivant : tables « péres » (de référence), puis les
tables « fils » (dépendantes). L'ordre de suppression des tables, pour des raisons de cohérence,
est totalement inverse : vous devez supprimer les tables « fils » d"abord, puis les tables de réfé-
rence. Dans I"exemple présenté a la section « Conventions recommandées », il serait malvenu
de vouloir supprimer la table Compagnie avant de supprimer la table Pilote. En effet, la clé
étrangére compa n’aurait plus de sens. Cela n'est d'ailleurs pas possible sans forcer I'option
CASCADE CONSTRAINTS (voir plus loin).

DROP TABLE [schéma.|nomTable [CASCADE CONSTRAINTS] [PURGE];

@ Editions Eyrolles 37

S(E do bass |

38

Pour pouveir supprimer une table dans son scheéma, il faut que la table appartienne al'utilisateur.
Si Iutilisateur a le privilége DROP ANY TABLE, Il peut supprimer une table dans tout schéma.

Linstruction DROP TABLE entraine la suppression des données, de la structure, de la des-
cription dans le dictionnaire des données, des index, des déclencheurs associés (triggers)
et la récupération de la place dans |'espace de stockage.

CASCADE CCHSTRAINTS permet de s'affranchir des clés étrangéres actives contenues dans
d'autres tables et qui référencent la table 4 supprimer. Cette option détruit les contraintes
des tables « fils » associées sans rien modifier aux données qui y sont stockées (voir
section « Intégrité référentielle » du prochain chapitre).
PURGE permet de récupérer instantanément 1'espace alloué aux données de la table (les
blocs de données) sans les disposer dans la poubelle d'Oracle (recycle bin) .
Certains €léments qui utilisaient la table (vues, synonymes, fonctions ou procédures) ne sont
pas supprimés mais sont temporairement inopérants. En revanche, les éventuels index et
déclencheurs sont supprimés.

Une suppression (avec PURGE) ne peut pas étre annulée par la suite.

La suppression d'une table sans PURGE peut &tre récupérée via l'espace recycle bin
par la technologie flashback (ce mécanisme, qui reléve davantage de 'administration, sort
du cadre de cet ouvrage).

Si les contraintes sont déclarées au sein des tables (dans chaque instruction CREATE TAELE),
il vous suffit de relire a I'envers le script de création des tables pour en deduire 'ordre de sup-
pression.

Utilisez avec parcimnnie I'ﬂptinn CASCADE CONSTRAINTS qIJi fera fi, sans vous le dire, du
mécanisme de |'intégrité référentielle assuré par les clés &trangéres (voir le chapitre 3).

& Editions Eyrolies

[chapltre n° 1

Détinition des données |

Exercices

R R I I T R R T R)

L objectif de ces exercices estde créer des tables, leur cl€ primaire et des contraintes de vénfication
(NOT MULL et CHECK). La premiére partie des exercices (de 1.1 & 1.4) concerne la base Parc Infor-
matigue). Le dernier exercice traite d'une autre base (Chantiers) que vous pouvez appliquer a
1a version d"Oracle & partir de la 11g.

GTIEED 11 Présentation de Ia base de données

Une entreprise désire gérer son parc informatigue & lalde d'une base de données. Le batiment est
composé de trols étages. Chague étage posséde son réseau (ou segment digtinet) Ethernet. Ces réseaux
traversent des salles éguipées de postes de travail. Un poste de travail est une machine sur laguelle sont
installés certains logidels. Quatre catégories de postes de travail sont recensées (stations Unix, terminau
X, PC Windows et PC NT). La base de données devra aussi décrire les installations de logiciels.

Les noms et types des colonnes sont les suivants :

Tableaw 1-10 Caraciéristiques des colonnes

Colonne. Commentaires Types

indIp Trois premiers groupes IP (exemple : 130.120.80). VARCHARZ (11)
nomSegment Nom du segment. VARCHRRZ (20)
stage Etage du segment. NUMBER { 2)
nsalle MNuméro de la salle. VAERCHARZ (7)
nomsalle MNom de la salle. VARCHARZ (20)
nbPoste Mombre de postes de travail dans la salle. NUMBER (2)
nPoste Code du poste de travail. VARCHARZ (7)
nomPoste Nom du poste de travail. VARCHARZ (20)
ad Dernier groupe de chiffres IP (exemple : 11). VARCHARZ (3]
typePoste Type du poste (Unix, TX, PCWS, PCNT). VARCHRR2 (3)
dateIns Date d'installation du logiciel sur le poste. DATE

nLog Code du logiciel. VARCHRR2 (5)
nomLog Nom du logiciel. VARCHRRZ (20)
datebeh Date d'achat du logiciel. DATE
veraion Version du logiciel. VARCHARZ [7)
typelog Type du logiciel (Unix, TX, PCWS, PCNT). VARCHARZ (9)
prix Prix du logiciel. NUMBER(6,2)
numIng Muméro séquentiel des instalations. NITMEER (&)
dateIna Date d'installation du logiciel. DATE

delai Intervalle entre achat et installation. INTERVAL DAY (5) TO SECOND(Z),
typelP Types des logiciels et des postes. VARCHARZ (9)
nomType Noms des types (Terminaux X, PC Windows...). VARCHRRZ (20)

@ Editions Eyrolles

39

[Partie | S dobase |

1.2 création des tables

Ecrivez puis exécutez le script SAL (que vous appellerez creParc. sql) de création des tables avec
leur clé primaire {en gras dans le schéma suivant) et les contraintes suivantes :

+ Les noms des segments, des salles et des postes sont non nuls.
+ Le domaine de valeurs de la colonne ad s'étend de 0 & 255.

* Laeolonne prix st supétieure ou &gale 4 0.

« Lacolonne datelns estégale 4 la date du jour par défaut.

Flgure 1-12 Schema des tables

Segment

[indTE | nomgegment |etage |

Salle

[nBalle Juemsalle |nbPoate [indrp |

Poste

|nPoste |nomPoste | indip |ad |typePoste |[nsSalle |
Logiclel

|nLog |nomlog |datesch|version]typelog lprix |
Installer

[nPoste [nLog |numTna [dateins |delai |

Types

[cypeLP |nomType |

ARl 1.3 structure des tables

Ecrivez puis exécutez le script SOL (que wous appellerez descParc . sql) qui affiche 1a description
de toutes ces tables (en utilisant des commandes DESC). Comparez avec le schéma.

ITIEE) 14 Destruction des tables

Ecrivez puls exécutez le script SQL de destruction des tables (que vous appellerez dropPare . sal).
Lancez ce script puls & nouveau celui de la création des tables.

40 Editfons Eyrofies

[chapitre n® 1 Détinition des données |

1.9 Schéma de la base Chantiers (Oracle 11g)

Une société désire informatiser les visites des chantiers de ses employés. Pour définir cette base de
données, une premiére étude fait apparaitre les informations suivantes :

+ Chague employé est modélisé par un numére, un nom et une qualification,
« Un chantier est caractérisé par un numéro, un nom et une adresse.

+ Lentreprise dispose de véhicules pour lesquels il est important de stocker pour le numéro d'imma-
triculation, le type {uncode valant par exemple 0 pour une camionnette, 1 pour une moto et 2 pour
une voiture) ainsi que le kilométrage en fin dannée,

+ Le gestionnaire a besoin de connaitre les distances parcouruss par un véhicule pour chaque visite
d’'un chantier.

+ Chague jour, un seul employé sera désigné conducteur des visites d'un wéhicule.
* Pour chague visite, il est important de pouvoir connaftre les employés transportes.
Les colonnes & utiliser sont les suivantes :

Tabiesu 111 Garactésstliues des colonnes 2 ajouter

Colonne Commentaires Types
kilometres Kilometrage d'un véhicule lors d'une sortie. NITMEEER
n_conducteur Numéro de I'employé conductaur. VARCHARZ (4)
n_transporte Numéro de I'employé transporté. VARCHARZ (4]

Lemercice consiste 4 compléter e schéma relationnel cl-aprés (gjout de colonnes et définition des
contraintes de clé primaire et étrangére).

CEEATE TABLE Employe (n_emp VARCHRR (4),nom_emp VARCHAR|Z0) ,
qualif_emp VARCHAR(|12), CONSTRAINT pk_emp PRIMRRY KEY(n_emp));

CRERTE TAELE Chantier {n_chantier VARCHAR(10), nom_ch VARCHAR(10),
adresse_ch VARCHAR (15), CONMSTRAINT pk_chan PRIMARY KEY(n_chantier)) ;

CEEATE TAELE Vehicule {n_wvebicule VARCHAR(10), type_wehicule VARCHAR({1),
kilometrage NUMEER, CONSTRAINT pk_wehi PRIMARY KEY (n_wehiecule));

CEEATE TRELE Visite(n chantier VARCHRER(10), n_wehicule VARCHRR{10),
date_four DATE, ...

COMSTRAINT pk_visite PRIMARY EEY¥(...),

CONSTRAINT fk_depl chantier FOREIGN EEY (n_chantier) ...,
CONSTRAINT £k depl wehicule FOREIGN EEY (n_wehicule) ...,
CONSTRAINT fk_depl emplove FOREIGH KEY (n_conducteur) ...);

CEEATE TAELE Transporter (...

CONSTRAINT pk_transporter PRIMARY KEY (...),
CONSTRAINT £k transp visite FOREIGN EEY ...
CONSTRAINT f£k_transp enployve FOREIGN EEY ...);

@ Editions Eyrolles 41

Chapitre 2
Manipulation des données

Ce chapitre décrit une partie de I"aspect DML (Data Manipulation Language) du langage
SQL d’Oracle. Bien qu'il existe d'autres possibilités d'insérer des données (techniques
d'importation ou de chargement), SQL propose trois instructions de base pour manipuler des
données :

I'insertion d’enregistrements : INSERT ;

la modification de données : UPDATE ;

la suppression d’enregistrements ;: DELETE.

|I'ISEI‘|II]I'IS t’enregistrements (INSERT)

Pour pouvoir insérer des enregistrements dans une table, il faut que cette derniére soit dans
votre schéma ou que vous ayez recu le privilége INSERT sur la table. Si vous avez le privilege
INSERT ANY TABLE, vous pouvez ajouter des données dans n'importe quelle table de tout
schéma.

11 existe plusieurs possibilités d’insertion : 1'insertion monoligne qui ajoute un enregistrement
par instruction (que nous allons détailler maintenant) et 1'insertion multiligne qui insére
plusieurs valeurs (que nous détaillerons au chapitre 4).

Syntaxe

La syntaxe simplifiée de I'instruction INSERT monoligne est la suivante :

INSERT INTC [schéma.] { nomTable | nomVue | reguéteSELECT }
[{colonnel, colonneZ.)]
| VALUES (valeurl | DEFAULT, valeur? | DEFAULT..) ;

A T'aide d’exemples, nous allons détailler les possibilités de cette instruction en considérant la
majeure partie des types de données proposés par Oracle.

@ Editions Eyrolles 43

[Partie | S(E do bass |
Renseigner ou pas toutes ies colonnes
Le script suivant insére trois compagnies et quatre vols en utilisant différentes options de
U'instruction MMSERT. 11 s’agit de renseigner ou pas les colonnes d'une table par une liste de
valeurs de type adéquat. Le mot-clé DEFAULT utilisé en tant que valeur permet d’affecter
explicitement une valeur par défaut la colonne associée.
Tableau 2-1 inserBons de lignes
Instructions SQL Commentaires
INSERT INTO compagnie Les valeurs sont renseignées
VALUES ('SING', 'Singapore AL', TO_ dans l'ordre de la structure de
DARTE('19470101", ' ¥¥¥yMMDD')) ; la table.
INSERT INTO compagnie Les valeurs sont renseignées
(nom_cemp, comp, date_creation) dans l'ordre de la liste.
VALUES ('Rir France'; 'AF', TO_DATE('l19330101',
'YYYYMMDD' |) ;
INSERT INTC compagnie
(nomn_compr, comp, date_creation)
VALUES (NULL, 'GO',
TO_DATE('20141231 ', '¥YYY¥YMMDD')) ;
INSERT INTO wol_qour La compagnie est omise, donc
{num_vol, aerc_dep,aerc_arr, jour vol,nb passagers) lavaleur par défaut s'appliquera
VALUES ('AF6143', 'TLS', 'ORY', TO_DATE('20141120 (AF).
15:30", 'YYYYMMDD HH24:MT'),120);
INSERT INTO wol jour Le nombre de passagers est
{num_vol,aero_dep,asro_arr, jour_vol) omis, donc MULL s'appliquera.
VALUES ('AF6145', 'ORY', 'TLS', TO_DATE('20141120
18:45"', 'YYYYMMDD HH24:MI'));
INSERT INTO wvol_jour Le nombre de passagers est
{mum_ vol, aero_dep, asro_arr, somp, jour_wvol, explicitement valué & NuLL.
nh _passagers)
VALUES ('SQ747', 'CDG', 'SIN', 'SING',
TO_DATE('20141120 19:30°",
'YYYYMMDD HH24:MI'),NULL);
INSERT INTO wel_jeur La eompagnile est explicitement
(num_wvol , aero_dep, asro_arr, comp, jeur_wvel,nb_ valuée & la valeur par défaut.
passagers)
VALUES ('AF6550', 'CD@', 'TLS'; DEFAULT,
TO_DATE ('20141120 20:00",
'Y¥YYYMMDDHHZ4 : MI'), 195) ;
Bannissez le premier style d'écriture et renseignez toujours le plus de colonnes possible dans
vos instructions INSERT, vous subirez ainsi le moins de comportements par défaut.
44 & Editions Eyrolles

[chapitre n® 2 Wanipuiation des donnéas |

Une fois la validation effectuée (par commit, voir chapitre 6), le résultat est présenté avec SQL
Developer de 1a maniire suivante.

Figure 2-1 Tables gprés les insertfions

£ compaGNE

1/ COMP|{} NOM_COMP _|{) DATE_CREATION

SING Singapore RL 01/01/47

AE Air Prance 01/01/33

GO {oull) 31/12/14

VOL_JOUR

(NUM_VOL |{) AERO DEP _|{} AERO ARR |0 cOMP. _ [# JOUR VL |O' NB_PASSAGERS.
AF6143 TLS ORY AF 20/11/14 120
AFE550 CDG TLS AR 20711714 183
50747 cDG s SING 20/11/14 {null)
AF6143 ORY TLS AF 20/131/14 {null)

oy

il 1 F Depuis la version 12¢, toute colonne peut étre définie 4 DEFAULT ON NULL valeur defaut.

L Ainsi, l'nsertion d'un NULL, qu'elle soit explicite ou implicite, sera remplacée par la valeur par
défaut.

Ne pas respecier des contraintes

Insérons des vols qui ne respectent pas des contraintes. Les messages renvoyés pour chagque
erreur font apparaitre le nom de la contrainte. Les valeurs qui sont les facteurs déclenchant
sont notées en gras. La premiére erreur est un doublon de clé primaire, la deuxiéme un NULL
interdit et la troisiéme une condition de vérification. La derniére erreur signifie que la clé
étrangére référence un absent (pour plus de détails i ce sujet, consultez la section « Intégrité
référentielle »).

@ Editions Eyrolles 45

[Parfie | S(E do bass |
Tabiean 2-2 Ervesr typlgue de coniraintes
Instruction Message d'erreur
SQL> INSERT INTO wol jour ERREUR & lafigne 1:
fnum_vel,aero_dep,asro_arr,comp, jour_vel, ORA-00001: violation
nb_passagers) de contrainte unique
VALUES ('AF§550', 'AGN', 'TLS', 'AF', [S0UTOU . PE_VOL_
TO_DATE (120141120 20:00°, FOUR)
"YYYYMMDD HHZ4:MI'),95) ;
SQL> INSERT INTO wol_jour EFRREUR & lafigne 3 :
{num_vol, aero_dep,aero_arr, comp, jour_vol, ORA-01400:
nb_passagers) impossible dinsérer
VALUES ('AF6530', 'ACGN', NULL, 'AF', NULL dans ("sou-
T DATE ('20141120 10:00°, TOU" . "WVOL_
'YYYYMMDD HH24 :MI'),95); JOUR" . "AERD_ARR")
5QL> INSERT INTO wol_jour ERREUR & laligne 1 :
{rum_vol,aero_dep,asro_arr, comp, jour_wvol, ORA-02290: violation
nb_pagsagers) de contraintes
VALUES ('AF§530', 'AGN', 'AGN', 'AF', [SOUTCU . CKE_TRAJET)
TO_DATE | '20141120 10:00', de vérification
'YYYYMMDD HH24 :MI'),95);
SQL> INSERT INTO wol_jour ERREUR & lafigne 1 :
{num_vol, aero_dep, asro_arr, comp, jour_wvol , ORA-02251: violation
nb_passagers) de contrainte d'intégrité
VALUES ('AF§530', 'AGN', 'TLS', '"BA', [SOUTOU . FE_VOL_
T DATE ('20141120 10:00°, JOUR_CCMP_COMPR-
'"YYYYMMDD HHZ4 :MI'),858); GNIE) - clé parent
introuvable
Dates/heures
Nous avons décrit an chapitre 1 les caractéristiques générales des types Oracle pour stocker
des €léments de type date/heure.
Type DATE
Déclarons la table Pilote qui contient deux colonnes de type DATE.
CREATE TRELE pilote
{brevet VARCHARZ (6), prenom VARCHARZ2 (20} NOT NULL,
niom VARCHARZ (20) NOT NULL, date nais DATE NOT NULL,
embauche DATE NOT NULL,
CONSTRATINT pk pilote PRIMARY EEY (brevet)};
La premigre insertion initialise la date de naissance au 35 février 1965 (A zéro heure, zéro
minute et zéro seconde), tandis que la date d’embauche inclura les heures, minutes et secondes
46 & Editions Eyrolles

[chapitre n® 2 Wanipuiation des donnéas |

par la fonction SYSDATE. La seconde insertion utilise un antre format en entrée et initialisera
I'embauche au jour présent {i zéro heure, z€ro minute et zéro seconde) par la fonction TRUNC.

INSERT INTO Pilote(brevet, prenom, nom, date nais, embauche)
VAIUES ('Bl', 'Christian’, "Mexrmoz',
TO_DATE("05/02/1965" , "LD/MM/YYYY ") ,SYSDATE) ;

THSERT INTO Pilote(brevet, prenom, nom, date nais, embauche}
VAIUES ('B2', 'Christian', 'Msrmoz’,
TO_DATE("1965020% , "YYYYMMOD ') , TRUNC (SYSDATE)) ;

JZ7] La fonction T0_DATE doit toujours étre utiisée pour appliquer un format 4 la date qui peut étre
’ précis a la seconde. Par exemple, le 5 février 1965 4 6 h 30 sera codé TO_DATE('05-02-
1965:06:30", ' DD-MM-TYYY -HH24:MI').

Nous verrons au chapitre 4 comment afficher les heures, minutes et secondes d'une colonne de
type DATE. Nous verrons aussi qu'il est possible d'ajouter ou de soustraire des dates entre
elles.

Types TIMESTAMP

Latable Evenements contient la colonne arrive (TIMESTAMP) pour stocker des fractions de
secondes et la colonne arrivelocalement (TIMESTAMP WITH TIME ZONE) pour considérer
aussi le fuseau horaire.
| CREATE TABLE Evenements

(arrive TIMESTAMP, arrivelocalement TIMESTAMP WITH TIME ZONE);

L'insertion suivante initialise :
la colonne arrive au 5 février 1965 & 9 heures, 30 minutes, 2 secondes et 123 centiémes
dans le fusean défini au niveau de la base ;

la colonne arrivelocalement au 16 Janvier 1965 & 12 heures, 30 minutes, 5 secondes et
98 centitmes dans le fuseau décalé vers I'est de 4h 30 par rapport au méridien de
Greenwich.

INSERT INTOD Evenements (arrive, arrivelLocalement)
VALUES (TIMESTAMP '1965-02-05 09:30:02.123",
TIMESTAME ‘1%65-01-16 12:30:05.98 + 4:30');

Le format par défaut de ces types est décrit dans les variables NLS_TIMESTAME FORMAT
(' ¥YYY-MM-DD HH:MM:55.4" d:décimales) et NLS_TIMESTAMP TZ FORMAT ('Y¥¥¥-Md-DD
HH:MM:SS.d+ hh:mn', avec hh:mn en heures-minutes par rapport & Greenwich).

@ Editions Eyrolles 47

S(E do bass |

48

Types INTERVAL

Les types INTERVAL permettent de déclarer des durées et non pas des moments.

La table Durees contient la colonne dureefnneesMols (INTERVAL YEAR TO MONTH) pour
stocker des intervalles en années et en jours, et la colonne dureeJourSecondes (INTERVAL
DAY TO SECOMD) pour stocker des intervalles en jours, heures, minutes, secondes et fractions de
secondes.

CREATE TABLE Durees
(dureelrmeesMois INTERVAL YEAR TO MONTH,
dureefourSecondes INTERVAL DAY TO SECOND) ;
L'insertion suivante initialise :
la colonne dureshAnmeessMois i lavaleur d'1 an et 7 mois ;

la colonne dureedourSecondes la valeur de 5 jours, 15 heures, 13 minutes, 56 secondes
et 97 centigmes.

INSERT INTC Durees(dureelirmmeesMois, dureedourSecondes)
VALUES('1-7'; '§ 15:13:56.97");

Nous verrons comment ajouter ou soustraire un intervalle i une date ou i un autre intervalle.

Variables utiles

Les variables suivantes permettent de retrouver le moment de la session et le fuseau du serveur
(si tant est qu'il soit déporté par rapport au client).

CURRENT_DATE : date et heure de |a session (format DATE) ;

LOCALTIMESTRMP : date et heure de la session (format TIMESTAMP) ;
SYSTIMESTRAMP : date et heure du serveur (format TIMESTAMP WITH TIME ZONE);
DETIMEZONE : fuseau horaire du serveur (format VARCHARZ) ;

SESSIONTIMEZONE :fuseau horaire de la session client (format VARCHAR2).

11 faut utiliser la pseudo-table DUAL, que nous détaillerons au chapitre 4, qui permet d’afficher
une expression dans I'interface SQL*Plus.

Lexemple suivant montre que le script a été exécuté le 23 avril 2003 & 19 h 33, 8 secondes et
729 centitmes. Le client est sur le fuseau GMT+2h, le serveur quelgque part aux Ftats-Unis
(GMT-T), option par défaut i I'installation d"Oracle. Ce demnier sait pertinemment qu’on a
choisi la langue francaise mais a quand méme laissé sa situation géographique. Il faudra la

& Editions Eyrolies

[chapitre n® 2 Wanipuiation des donnéas |

modifier (dans le fichier de configuration) si on désire positionner le fuseau du serveur dans le
méme fuseau que le client.

SELECT CURRENT DATE, LOCALTIMESTAMP, SYSTIMESTAMP, DETIMEZONE,
SESSIONTIMEZONE FROM DURL;

CURRENT_DATE LOCALT IMESTAMP SYSTIMESTAMP

23/04/03 23/04/03 19:33:08,725000 23/04/03 19:33:08,7259000 +02:00
DET IMELONE SESSTONT IMEZONE

=07 :00 +02:00

Garactéres Unicode

51 vous envisagez de stocker des données gui ne sont ni des lettres, mi des chiffres, ni les
symboles courants : espace, tabulation, % ' }¥+—, [y <>=1_&~(| I07$#@ "],
vous devrez utiliser, pour manipuler des caractéres Unicode, les types NCHAR, NCHARZ et
NCLOB

Le jeu de caractéres d*Oracle pour une installation francaise est WES8ISO8859P1 {condensé de
Western Europe 8-bir ISO 8859 Part 1). Le jeu de caractéres national utilisé par défaut pour les
types NCHAR est AL16UTF 16,

Pour plus de détails, consultez le livre consacré au support du multilangue (Darabase Globali-
zation Support Guide). Vous y découvrirez que, comme pour les caractéres accentués (voir
I'introduction), c’est au niveau du client (SQL Developer, Toad, SQL*Plus...) que vous
devrez paramétrer des variables d'environnement ou des fichiers de configuration afin de
pouvoir visualiser les données Unicode stockées. Par ailleurs, il est recommandé de préférer
I'interface SQL Developer (plus apte & gérer des informations UTF-8) 4 SQL*Plus qui n’est
pas adaptée et dédife aux caracteres ANSI ou ASCII. La fonction UNISTR sert & transformer
un paramétre Unicode pour retourner une information codée dans le jeu de caractéres de la
base (AL16UTF 16 ou UTF8).

@ Editions Eyrolles 49

[Parfie | S(E do bass |

Flgure 2-2 Insertion de caractéres Unicode

Feuifle de caloul SQL Historique
PEw-B0 B30 8% A M 0078 secondes
s cu ool ety Bles
CREATE TABLE CaracterssUnicode
{eall NVARCHARZ(10), col2 NVARCHARZ{10)):
INSERT INTO CaracterssUnicode(coll,coll)
VALUES (N'copyright', UNISTR('\0O0R9'))s
INSERT INTO CaracteresUnic
VALUES (N'du hindi®,
SELECT * FROM CaracteresUnicode i

de (coll,call)

UNISTR({*\0930\0941\0S2AN0BZF\O92R"))

aw
[l sorve de script * | [> Résultat de requéte *

& B A B Tiche terminde en 0,076 secondes
table CARACTERESUNICODE créé(e).
1 lignes insécé.

1 lignas inséré.

COLI CoL2

copyright &
di hindi T

Données LOB

Les types LOB (Large Object Binary) d'Oracle sont ELOB, CLOB, NCLOB et BFILE. Ils servent &
stocker de grandes quantités de données mon structurées (textes, images, vidéos, sons). Ils
succédent aux types LONG. Les LOB sont étudiés plus en détail dans la partie consacrée 4 la
programmation PL/SQL.

Considérons la table suivante.

| CREATE TRBLE Traombinoscope (nomEtudiant VARCHAR (30), photo BFILE);

Le stockage de I'image photoCS. jpg, qui se trouve 4 'extérieur de 1a base (dans le répertoire
D:\PhotosEtudiant), est réalisé par I'insertion dans la colonne BFILE d'un pointeur ({oca-
tor) qui adresse le fichier externe via la fonction BFILENAME du paquetage DEMS_LOB. L'utili-
sateur doit avoir recu au préalable le privilége CREATE ANY DIRECTCRY.

' CREATE DIRECTORY repertoire etudiants AS 'D:\PhotosEtudiant®;
INSERT INTO Trombinoscope
VALIES ('Soutou’, BFILENAME('repertoire etudiants', 'photoCS.jpg'l));

50 Editfons Eyrofies

[chapitre n° 2

Wanipuiation des donnéas |

L'interface en mode texte SQL*Plus n’est pas capable d'afficher cette image. I faudra pour
cela utiliser un logiciel approprié (une interface Web ou Java par exemple, aprés avoir chargé
cette image par la fonction LOADFROMFILE du paquetage DEMS_LOB).

Séquences

Une séquence est un objet de schéma (appartenant 4 1"utilisateur qui 1'a créé) qui a pour objec-
tif de générer automatiquement des valeurs (de type NUMBER). Bien qu’elles soient majoritai-
rement utilisées pour composer des valeurs auto-incrémentées pour les clés primaires, il est
possible de les employer du sein de différentes tables.

Gérée indépendamment d'une table, une séquence peut étre partagée par plusieurs utilisateurs.

Depuis la version 12¢ il est possible de définir une colenne auto-incrémentée a |'aide de la
directive GENERATED.. AS IDENTITY.. avec les mémes options dediées initialement aux
séquences (voir l'instruction CREATE SEQUENCE). La directive d'auto-incrémentation peut étre
utilisée dans une instruction CREATE TABLE ou ALTER TABLE.

La figure suivante illustre la séquence seqnff utilisée pour initialiser les valeurs de la clé
primaire numAff de la table Affreter. Seules deux fonctions (aussi appelées pseudo-
colonnes ou directives) peuvent étre appliquées i une séquence : CURRVAL retourne la valeur
courante, NEXTVAL incrémente la séquence et retourne la valeur obtenue (ici le pas est de 1,
nous verrons qu’il peut étre différent de cette valeur).

Flgure 223 Séquence appliguée & une clé primaire

Affreter seghff. -'lek\'h:.._-‘j
vegATE . HEXTVAL=4

DURALE jdoump immat |dateArf nbPax —_—

1 Al F-WITSS | 13-08-2003 a5

2 SING F-GAFU [06-02-2003 | 155
3 AF FWITSS | 1505-2000 a2

Gréation 'une séguence (CREATE SEQUENCE

Vous devez avorr le privilege CREATE SEQUEMCE pour pouvoeir créer une séquence dans votre
schéma. Pour en créer une dans un schéma différent du votre, le privilége CREATE ANY

SEQUENCE est requis.

La syntaxe de création d'une séquence est la snivante :

@ Editions Eyrolles 51

S(E do bass |

52

CREATE SEQUENCE |schéma. lnomSéguence
[INCREMENT EY entier |
[START WITH entier]
[{ MYVALUE entier | NOMAXWALUE }]
[{ MINVALUE eéntier | NOMINVALUE })
[{ CYCLE | MOCYCLE }]
[{ CACHE entier | NOCACEE }]
[{ CRDER | NOORDER }] ;

Si aucun nom de schéma n'est spécifié la séquence créée vous appartient. Si aucune option
n'est précisée, la séquence créée commencera i | et augmentera sans fin (la limite réelle d'une
séquence est de 10%-1). En spécifiant seulement « INCREMENT BY -1 » la séquence créée
commencera i -1 et sa valeur diminuera sans limites (la borne inférieure réelle d’une séquence
est de -1027-1).

INCREMENT BY : donne 'intervalle entre deux valeurs de la séquence (entier positif ou
négatif mais pas nul). La valeur absolue de cet intervalle doit &tre plus pefite que
(MAIVALUE-MINVALUE). L'intervalle par défaut est 1.

START WITH : précise la premiere valeur de la séquence & générer. Pour les séquences
ascendantes {d'un incrément positif), la valeur par défaut est égale & la valeur minimale de
la séquence. Pour les séquences descendantes, la valeur par défaut est égale i la valeur
maximale de la séquence (entier jusqu’a 10%-1, pour les négatifs : -10%741).

MAYWALUE : donne la valeur maximale de la séquence. Cette limite doit &tre supérieure ou
égale 4 I'entier défini dans START WITH et supérieure i MINVALUE.

NOMAMVALUE (par défaut) fixe le maximum & 10%-1 pour une séquence ascendante et
-1077+1 pour une séquence descendante.

MINVALUE précise la valeur minimale de la séquence. Cette limite doit &tre inférieure ou
égale i I'entier défini dans START WITH et inféricure & MAXVALUE.

NOMINVALUE (par défaut) fixe le minimum & 1 pour une séquence ascendante et i la valeur
-1027-1 pour une séquence descendante.

CYCLE indique que la séquence doit continuer de générer des valeurs méme aprés avoir
atteint salimite. Au-dela de la valeur maximale, la séquence générera la valeur minimale et
incrémentera comme cela est défini dans la clause concernée. Aprés la valeur minimale,
la séquence produira la valeur maximale et décrémentera comme cela est défini dans la
clause concernée.

MOCYCLE (par défaut) indique que la séquence ne doit plus générer de valeurs une fois la
limite atteinte.

CACHE fixe le nombre de valeurs de la séquence que le cache va contenir (et qui évite la
sollicitation du compteur en temps réel). Le minimum est 2 et le maximum théorigue est
fonction d'une formule analogue & maxi_seguence-mini_sequencefincremeni_sequence
(par exemple, pour une séquence de valeur maximale 50 000 et de valeur mininale 1 avec

& Editions Eyrolies

[chapitre n° 2

Wanipuiation des donnéas |

un pas de 2, le nombre maximal de valeurs en cache serait de 25 000). Par défaut, le cache
contient 2() valeurs.

- En fonction du nombre de séquences mises en cache, et selon 'utilisation (méme si d'autres

utilisateurs ou d'autres connexicns emploient cette séquence) veire l'interruption du serveur, il
est possible gue des valeurs retoumeées ne se succédent pas d'une seule valeur du pas de
lncrément du fait du cache perdu. En revanche, le contrat qu'Oracle remplit consiste a délivrer
toujours une nouvelle valeur aprés 'appel de NEXTVAL.

ORDER garantit que les valeurs de la séquence sont générées dans 1'ordre des requétes. Si
vos séquences jouent le role d’horodatage (timestamp), vous devrez utiliser cefte option.
Pour la génération de clés primaires, cette option n’est pas importante.

Créons les deux séquences (gegAf £ et seqPax) qui vont permettre de donner leur valeur anx
clés primaires des deux tables illustrées a la fi gure suivante. On suppose qu’on ne stockera pas
plus de 100 000 passagers et pas plus de 10 000 affrétements.

Servons-nous aussi de la séquence segaAff dans la table Passager pour indiquer le dernier
vol de chaque passager. seqgAff sert & donner leur valeur i la clé primaire de Affreteretila
clé étrangére de Passager. La section « Intégrité référentielle » détaille les mécanismes rela-
tifs aux clés érangéres.

Flgure 2-4 Séquences

[= SRR L0 numPax | nom siege derniaryel
geagrax. LUREY i i
e B e
f

Affreter

numA £ £ COmp immat datehff nbPax

1 AF FWITSS [13-05-2003 |85

= SING F-GAFU | 05-02-2003 55 [saqagt . currvAL=3

1
3 AF FWTES | 15-05-2000 82 l Beqghfl |i<=qa*’i HEXTVAL=4
T |]

Le script SQL de définition des données est indiqué ci-aprés. Notez que les déclarations sont
indépendantes, ce n'est qu’au moment des insertions qu’on affectera aux colonnes concernées
les valeurs des séquences.

@ Editions Eyrolles 53

S(E do bass |

54

Tahleau 2-3 Tahles et séquences

Tables Séquences
CREATE TABLE Affreter CHREATE SEQUENCE seqAff
(numhff NUMEER (5) , comp VARCHARZ (4), 1 ; 10000
immat VARCHARZ(6), dateAff DATE, nbPax NUMBER(2Z), NOMINVALUE ;
CONSTRAINT pk Affreter FRIMARY KEY (numaff));
CREATE TABLE Passager CREATE SEQUENCE seqgPax
(numPax NUMEER(6) , nom VARCHARZ(18), INCREMENT BY 10
slege VARCHARZ({4), dernierVel NUMBER (5), START WITH 100
CONSTRRINT pk_Passager PRIMARY KEY |(numPax), MAXVALUE 100000
CONMSTRAINT fk Pax wvol Affreter NOMINVALUE ;

FOREIGN KEY(dernierVol)REFERENCES Rffreter(numAff)) ;

Manipuiation d’'une sénuence

Vous devez avoir le privilege SELECT sur une séquence {privilége donné par (RANT SELECT
@ seq TO wtilisatewr) pour pouvoir eén utiliser une. Pour manipuler une séquence dans un
schéma ditférent du vitre, le privilége SELECT ANY SEQUENCE est requis. Dans ce cas il fandra
toujours préfixer le nom de la séquence par celul du schéma (par exemple jean.seg).

Une fois créée, une séquence seq ne peut se manipuler gue via deux directives (qu'Oracle
appelle aussi pseudo-colonnes) :

s8q.CUREVAL qui retourne la valeur courante de la séquence (lecture seule) ;

seg.NEXTVAL qui incrémente la séquence et retourne la nouvelle valeur de celle-ci (&criture
et lecture).

Le premier appel & NEXTVAL retourne la valeur initiale de la séquence (définie dans START
WITH). Les appels suivants augmentent la séquence de la valeur définie dans INCREMENT
WITH.

Chaque appel & CURRVAL retourne la valeur courante de la séquence. Il faut utiliser au moins
une fois NEXTVAL avant d'appeler CURRVAL dans une méme session {SQL*Plus, bloc PL/SQL
ou programme). Ces directives peuvent s utiliser :

au premier niveau d'une requéte SELECT (voir le chapitre 4) ;

dans la clause SELECT d'une instruction INSERT (voir la section « Insertion multilignes »
du chapitre 4) ;

dans la dlause VALUES d'une instruction INSERT (voir |'exemple suivant) ;

dans la clause SET d’une instruction UPDATE (vorr la section ci-aprés).

& Editions Eyrolies

[chapitre n® 2 Wanipuiation des donnéas |

Les principales restrictions d'utilisation de NEXTVAL et CURRVAL sont :
sous-interrogation dans une instruction DELETE, SELECT, ou UPDATE (voir le chapitre 4) ;
dans un SELECT d'une vue (voir le chapitre 5) ;

dans un SELECT utilisant DISTINCT, GROUF BY, ORDER BY ou des opérateurs ensemblistes
(vair le chapitre 4) ;

en tant que valeur par défaut (DEFAULT) d'une colonne d'un CREATE TABLE ou ALTER
TRBLE ;

dans la condition d'une contrainte CHECK d'un CREATE TAELE ou ALTER TAELE.

Le tableau suivant illustre 1'évolution de nos deux séquences en fonction de |'insertion des
enregistrements décrits dans la figure précédente. Nous utilisons NEXTVAL pour les clés
primaires et CURRVAL pour la clé étrangére (de maniére & récupérer la derniére valeur de la
séquence utilisée pour la clé primaire).

Tabless 2-3 Manipuiation de séquences

seqhff segPax
Instructions SQL Séquences - — -
CURRVAL NEETVAL (CURRVAL NEXTVAL
--Aucune insertion encore Pas définles
INSERT INTO Affreter VALUES
(Seghff NEXTVAL, 'AF', 'F-WISS', '13-05~
2003, 85) ; 1 2
Pas définies

INSERT INTO Affreter VALUES
{8eqhff NEXTVAL, 'SING', 'F-GAFU','05-02-
2003 ,155);

INSERT INTOC Passager VALUES
{seqPax MEXTVAL , 'Payrizsat', 'Ta',
seghff CORRVAL) ; 2 3
INSERT INTO Affreter VALUES
{deqhff MEXTVAL, 'AF', 'F-WISS', '15-05-
2003 ,82); 100 110
INSERT INTO Passager VALUES
{segPax NEXTVAL, 'Castaings', '2ZE',
seqhff CURRVAL) ; 3 4 110 1z0

@ Editions Eyrolles 55

S(E do bass |

i
]

56

Utilisation d'une séguence dans un DEFAULT

Depuis la version 12¢, la valeur par défaut d'une colonne numérique entiére peut &tre définie
avec NEXTVAL ou CURRVAL. Ainsi, lors d'insertions, la géneration automatique de valeurs se
produira en utilisant la séquence précisée dans la clause DEFAULT.

Le code suivant présente 1'utilisation de cette option pour deux séquences dédides i une clé
primaire et & une clé étrangére, sous réserve que les transactions s'exécutent toujours dans
I'ordre : ajout du vol, puis des passagers. La génération des clés étrangéres ne perturbe pas la
valeur de la cié primaire qui est gérée par la séquence principale.

Teblesgn 2-5 Senuences par 0éfam SUr ume colonns

Création des séquences et mise en place insertions

CREATE SEQUENCE master gedq; INSERT INTO vol (degscrip-

CREATE SEQUENCE detail sed; tion, jour_wol)

CREATE TABLE wol | VALUES ('AF6143', SYSDATE-1) ;
id NIMEER DEFAULT master sedg.

MEXTVAL, INSERT INTO places (pax nom)
desecription VARCHARZ (&), VALUES ('Joppé');
jour_vol DATE) ; INSERT INTO places (pax_nom)

CREATE TABLE places | VALUES ('Rienna');
id HIMBER DEFAULT detail seq . NEXTVAL, INSERT INTO places (pax _nom)
wol_id NUMEER DEFAULT master sed. VALUES {'Gullbaud');
CUERVAL,

pax _nem VARCHAEZ (30));

Flgure 2-5 Séquences par défaut

E peaces
13 voL i m}f vop |f PAX_NOM
I { DESCRIPTION | JOUR_VOL | - foppe
F6143 19/11/14 i
3 uilbaud

master_seq

Modification d’'une sénuence (ALTER SEQUENCE

Vous devez avoir le privilége ALTER SEQUENCE pour pouvoir modifier une séquence de votre
schéma. Pour modifier une séquence dans un schéma diftérent du vitre, le privilége ALTER
ANY SEQUENCE est requis.

& Editions Eyrolles

[chapitre n° 2

Wianipuiation des données |

Les modifications les plus courantes sont celles qui consistent & augmenter les limites d*une
séquence ou i changer le pas de son incrémentation. Dans tous les cas, seules les valeurs &
venir de la séquence modifiée seront changées (heureusement pour les données existantes des
tables).

La syntaxe de modification d'une séquence reprend la plupart des éléments de sa création.

ALTER SEQUENCE [schéma.]nomSégquence
[{INCREMENT BY entisr]
[{ MAXVALUE entier | NOMAXVALUE }]
[{ MINVALUE entier | NOMINVALUE }]
[{ CYCLE | NMOCYCLE }]
[{ CACHE entier | NOCACHE }]
[{ ORDER | MOCRDER }] ;

La clause START WITH ne peut ére modifide sans supprimer et recréer la séquence. Des
contriles sont opérés sur les limites, par exemple MAXVALUE ne peut pas étre affectée 4 une
valeur plus petite que la valeur courante de la séquence:

Supposons qu'on ne stockera pas plus de 95 000 passagers et pas plus de 850 aftrétements. De
plus les incréments des séquences doivent étre égaux 4 5. Les instructions SQL & appliquer
sont les suivantes : chaque invocation des méthodes NEXTVAL prendra en compte désormais le
nouvel incrément tout en laissant intactes les données existantes des tables.

ALTER SEQUENCE seqAff INCREMENT BY 5 MAMVALIE BS50;
ALTER SEQUENCE seqPax INCREMENT BY 5 MAXVALUE 295000;

Visualisation d’'une séguence

La pseudo-table DUAL peut étre utilisée pour visualiser le contenu d'une séquence. En appli-
quant la directive CURRVAL on extrait le contenu actuel de la séquence (la derniére valeur
générée).

En appliquant la directive NEXTVAL dans un SELECT la séquence s'incrémente avant de s'affi-
cher. Vous réalisez alors un effet de bord car la valeur qui apparait & I'écran est désormais
perdue pour une eventuelle utilisation dans une clé primaire.

Le tablean swivant illustre I'utilisation de la pseudo-table DUAL pour visualiser les séquences
créées auparavant.

@ Editions Eyrolles 57

S(E do bass |

i
8

58

Tahlean 2-6 Wisualisation de séquences

Besoin Requéte SOL et résultat sous SQL*Plus

Quelles sont les derniéres valeurs SELECT #egAff CURRVAL "segaff (CURRVAL)" ,
générées par mes séquences ? SeqPas. CURRVAL "seqPax (CURRVAL) "
FROM DUAL;
seghff (CURRVAL) segPax (CURRVAL)

Quelles sont les prochaines valeurs SELECT SedqAff. NEXTVAL "segAff (NEXTVAL)",
produites par mes séquences 7 (qui SegAff NEXTVAL "segPax (NEXTVAL)"
sort perdues car les incréments FROM DUAL;

s'opérent lors de la requéte) seghff (NENXTVAL) seqPax (NEXTVAL)

Suppression d'une séquence (DROP SEQUENCE)
Linstruction DROP SEQUENCE supprime une séquence. Celle-ci doit se trouver dans votre
schéma (vous en étes propriétaire) ou vous devez avoir le privilége DROP ANY SEQUENCE.
La suppression d'une séquence peut &tre utilisée pour refaire partir une séquence donnée aun
chifire nouveau (clause START WITH). En ce cas, il faut bien siir recréer la séquence aprés
I’ avoir supprimée.
La syntaxe de suppression d'une séquence est la suivante.

DROP SEQUENCE [schéma.]nomSéguence ;
Supprimons les deux séquences de notre schéma par les instructions suivantes :

DROP SEQUENCE seqhff;
DROP SEQUENCE seqPax;

Colonnes auto-incrémentées

Depuis la version 12¢; il est possible dufiliser un type numérique (entier) pour définir une
colonne auto-incrémentée avec la clause GENERATED.. AS IDENTITY.. disponible dans les
instructions CRERTE TABLE et ALTER TABLE.

Avant de détailler les options d'anto-incrémentation, vous devez savoir qu’une colonne auto-
incrémentée dispose en interne d'une séquence générée automatiquement et qui lul est dédide.
Alinsi, vous retrouverez les options INCREMENT, START.. lorsque vous définirez un auto-
incrément.
GENERATED [ALMAYS | BY DEFAULT [ON NULL])
AS IDENTITY [(cptions sequence)]

& Editions Eyrolles

[chapitre n® 2 Wanipuiation des donnéas |
ALWAYS (par défaut) utilise le générateur de séquences et interdit qu’une valeur soit expli-
citement imposée lors d'un INSERT ou UPDATE (erreur ORA-32795 impossible
d'insérer la valeur dans une colonne d'identité.).

BY DEFAULT utilise le générateur de séquences mais n’interdit pas qu'une valeur soit
explicitement imposée d'un INSERT ou UPDATE. Avec I'option ON MULL, la séquence est
capable d'affecter implicitement une valeur i chaque INSERT ou si un guelconque NULL
arrive en lieu et place de la colonne concernée.
options secuence sont identiques i celles du CREATE SEQUENCE.
Le code suivant présente 'utilisation de cette option pour une clé primaire. Il est & noter que le
NOT MULL est implicite sur une telle colonne et que vous ne pouvez disposer que d’un seul
auto-incrément par table.
Tabigan 2-1 Colonne suiD-incrémenlés
Créatlon de la table et de son auto-Incrémentation Inserfions
CREATE TABLE billets | INSERT INTO billetsiwol_id,pax nom,siege pax)
id NUMBER(S) VALUES {(‘AF6143 ', 'Guilbaud’, '03F');
CGENERATED ATWAYS INSERT INTC billets(vel_id,pax_nom,slege pax)
AS IDENTITY, VALUES {'AF6145", 'Blanchet’, '23B');
vol_id VARCHARZ (6) NOT NULL, INSERT INTD billets(vel_id,pax_nomn, 8iege pak)
jour wel DATE DEFAULT SYSDATE NOT NULL, VALUES {'AF§145', ‘Bruchez', '02A");

pax_nem VARCHARZ (30) NOT NULL,
slege pax CHAR(3) NOT NULL ,
COMSTRAINT pk_billets PRIMARY KEY(id));

Flgure 2-6 Colbonne aulo-incrémentee

SOL> SELECT » FROM billets;

ID UOL_ID JOUR_UOL PAX_NOM

1 AFB143 20/11/14 Guilbaud
2 AFB145 20/11/14 Blanchet
3 AFB145 20/11/14 Bruchez

SIEGE_PaY

L'instruction UPDATE permet la mise & jour des colonnes d'une table. Pour pouvoir modifier
des enregistrements d’une table, il faut que cette derniére soit dans votre schéma ou que vous
ayez regu le privilége UPDATE sur la table. Si vous avez le privilége UPDATE ANY TABLE, vous

pouvez modifier des enregistrements de tout schéma.

@ Editions Eyrolles

59

[Parfie | S0 de bass |
Syntaxe (UPDATD
La syntaxe simplifiée de 1" instruction UPDATE est la suivante.
UBDATE [schéma.] nomTable
SET colonnel = { expression | (regquéte SELECT) | DEFAULT }
[colonne2 .1
La premigre écriture de la clause SET met & jour une colonne en lui affectant une expression
(valeur, valeur par défaut, calcul, résultat d'une requéte). La deuxiéme écriture rafraichit
plusieurs colonnes 4 1'aide du résultat d’une requéte.
La condition filtre les lignes & mettre & jour dans la table. 8i aucune condition n'est précisée,
tous les enregistrements seront mis & jour. Si la condition ne filire aucune ligne, aucune mise
i jour ne sera réalisée.
Modification d'une ligne
Affectons un nom i la compagnie de code ‘G0 et modifions sa date de création.
UPDATE compagnie
SET naom_comp = '"Go Alrways',
date_creation = TQO DATE('30/12/2014', 'ID/MM/YYYY"')
WHERE comp = "G0';
Modification de plusieurs lignes
Pour remplacer le marqueur NULL par le nombre 10, il suffit de conditionner la mise i jour i
l'aide de la fonction IS NULL (voir le chapitre 4). Attention, si vous utilisez la condition
WHERE nb passagers = NULL, vous ne sélectionnerez aucune ligne car deux NULL sont
différents entre eux.
UPDATE vol_jour
SET nb passagers = 10
WHERE nb_passagers IS NULL;
Les modifications sont présentées dans la figure suivante.
60 & Editions Eyrolles

[chapitre n° 2

Wanipuiation des donnéas |

Figure 2-7 Table aprés les modifications

SING
AF
Go

[compacnie
§ comp |} NOM_cOMP _ |} DATE CREATION | Go Airways

Singapore AL 01/01/47 - .
Air Frange 0Q1/03/37 0/12/14

nall) = 31/12/16) <

3 vor_our
{} HUM_

30747

AF6143 TLS CRY AF 20/11/14
APES50

AFE145 ORY LS RF 20/11/14 nul

X
vOL |(} AERD_DEP | AERO_ARR | comp |llour vor |8§* ;kasmns
120

TLS AF 20/11/14 195

CcOG
CDG SIN SING 20/11/14 nu

e pas respecter des contrainies

11 fant, comme pour les insertions, respecter les contraintes qui existent au niveau des colonnes.
Dans le cas inverse, une efreur est renvoyée (le nom de la contrainte apparait) et la mise i jour
n'est pas effectuée.

Le tableau suivant décrit une tentative de modification pour chaque type de contrainte que
vous pourrez étre amené i renconirer. Les problémes présentés ici sont respectivement une clé
primaire en doublon, une colonne obligatoire, un aéroport de départ semblable i celui darri-
vée, un libellé dupliqué et une compagnie inexistante.

Type de contrainte

Tableau 2-8 Modifications Impossibles
Instructions SOL et résultats

Clé primaire

S0L> UPDATE compagnie SET comp = 'AF' WHERE comp = 'G0';
ERREUR : ORA-00001: wiclaticn de contrainte unigue
{SOUTOU . PFK_COMPAGNIE)

Non-nullite

SQL> UPDATE vol_ jour SET aero dep = NMULL WHERE nuim wvol = "AFS143';
EREEUR : ORA-01407: impossible de mettre & jour
{ "SOUTCU " . "WoL_JOUR". "AERC_DEP") avec NULL

Viérification

S0L> TUFDATE wol_jour SET asro_arr = 'TLS' WHERE num wvol = '"AFA1437;
ERREUR : ORA-02290: wviclatien de contraintes
{SOTUFTC . CE_TRAJTET) de vérification

Unicité

S50L> TUPDATE compagnie SET nom comp = "Go Alrways' WHERE comp = 'AF';
ERREUR : ORA-00001: vinlation de contrainte unique
| SOTFTOU . UN_NOM_COME)

Clé étrangare

5QL> UPDATE vol_jour SET comp = 'EJET' WHERE num_wol = 'AF6143°';
ERREUR : ORA-02291: wiolation de contrainte dintégrité
(SOUTOU. FE_VOL_TJOUR_COMP_COMPACGNIE) - clé parent introuvable

@ Editions Eyrolles

61

S(E do bass |

62

- La mise & jour d'une clé étrangére est possible si la nouvelle valeur est bien référancée. La

mise & jour d'une clé primaire est possible si aucune ligne daucune table ne la référence déja
(voir la section « Intégrité référentielle »).

Dates et intervalies

Le tablean suivant résume les opérations possibles entre des colonnes de type DATE et
Interval.

Tablean 2-9 Opérations entrs dates ol inwervalies

Opérande 1 Opérateur Opérande 2 Résultat
DRTE + ou - INTERVAL DATE
DATE + ou - NUMEER DATE
Interval + DATE DATE
DATE - DATE NIMEER
Interval + 0l - INTERVAL INTERVAL
Interval *oou NIMEER INTERVAL

Considérons la table suivante :

CREATE TRAELE Pilote
{brevet VARCHAR({6}, nom VARCHAR(20), datelaiss DATE, dernierVol DATE,
dateEmbauche DATE, prochainVolControle DATE,

nonmbreloursNaisBoulot NUMEER,

interval leNaisBoul ot INTERVAL DAY (7) TO SECCND(3) ,
interval leVolExterieur INTERVAL DAY (2) TO SECOND(O) ,
interval leEntreVols INTERVAL DAY (2) TO SBCOND(2) ,

interval leEmbaucheControle INTERVAL DAY (2) TO SECOND(1) ,
compa VARCHAR (4), CONSTRAINT pk Pilote PRIMARY EEY (brevet));

A Iinsertion du pilote, nous initialisons sa date de naissance, la date de son demier vol, sa date
d’embauche (i celle du jour via SYSDATE) et la date de son prochain contrile en vol au 13 mai 2003,
15k 30 (heures et minutes évalues i I'aide de la fonction TO_DATE qui convertit une chaine en
date).
INSERT INTO Pilote
WALUES ('PL-1', 'Thierry Albaric', '25-03-1967', '10-04-2003', SYSDATE,
TO_DATE('13-05-2003 15:30:00', 'DD:MM: YYVY HH24:MT:88'), NULL, MNULL,
NULL, NULL, NULL, ‘AF');
Les mises & jour par UPDATE sur cet enregistrement vont consister, sur la base de ces quatre
dates, & calculer les intervalles illustrés i la figure suivante :

& Editions Eyrolles

[chapitre n® 2 Wanipuiation des donnéas |
Figure 2-8 Intervalles & calculer
nembyedouralal sBoulor intervalleEntreVols
-+ > 4% —p
?;_1;‘4':;‘;&;” - P intsrvalleEnbautheControls
i 3 i i .
L] L] L} L} -
;::rt‘;;i:[:{ﬁ Aat eExbauche prochainVol Controls
qui passe & 12h35 it%’m :g;‘{:]-?l}.'ﬂ
*+ > guil piasse &
intervallslnisbouls 01052008
xh pe 10
A — E

intervallavol Bxter | sl

Modification d’une heure
On modifie une date en précisant une heure via la fonction TO_DATE.

UPDATE Pilote
SET dateNaiss = TO_DATE ('25-03-1967 12:35:00',
"DD:MM: YYYY HHZ4:MI:S5')
WHERE brevet = 'PL-1';

Ajout d’un délai

On modifie la date d’embauche de 10 minutes aprés la semaine prochaine. L'ajout d'une
semaine se fait par "opération +7 & une date. ["addition de 10 minutes se fait par 1'ajout de la
fraction de jour correspondante (10/(24%60)).

UPDATE Pilote

SET dateEmbauche = dateEmbauche + 7 + (10/(24%*60)) WHERE brevet =
"PL-1";

Différence entre deux dates

La différence entre deux dates renvoie un entier correspondant au nombre de jours.

UPDATE Pilote
SET nombreJourslaisBoulot = dateEmbauche-datelaiss WHERE brewvet =
"PE-T
Cette méme diftérence au format INTERVAL en nombre de jours requiert I'utilisation de la
fonction NUMTODSINTERVAL.

UPIATE Pilote
SET intervalleNaisBoulot =
NUMTODSINTERVAL (dateFmbauche-datellaiss, "OAY'),

@ Editions Eyrolles 63

[Parfie | S(E do bass |

interval leEntreVols =
NUMTODS INTERVAL {pr-ocha:i.nVD 1Controle-derniexVol, "DRY'),
intervalleVolExterieur =
NUMTODS INTERVAL (dateFmbauche—derni erVol, 'DAY ')
WHERE brevet = 'PL-1';

Différence entre deux intervalles
La différence entre deux intervalles homogénes renvoie un intervalle.

UBDATE Pilote

SET intervalleEmbaucheControle =
intervalleEntreVols-intervalleVolExterieur
WHEFE brewvet = 'PL-1';

La ligne contient désormais les informations suivantes. Les données en gras correspondent
aux mises & jour. On rouve qu’il a fallu 13 186 jours, 3 heures, 49 minutes et 53 secondes pour
que ce pilote soit embauché. 21 jours, 16 heures, 24 minutes et 53 secondes séparent le dernier
vol du pilote au moment de son embauche. 33 jours, 15 heures et 30 minutes séparent son
dernier vol de son prochain contrle en vol. La différence entre ces deux délais est de 11 jours,
23 heures, 5 minutes et 7 secondes.

Figure 2-8 Ligne modifiée par des calculs de dafes

Pilote
brevet | nom dateilains dernierVol [datefabauche prochaln¥olfuntrals
PLT | Thiary Albanc | 2s-0a-108 TO04-2000 | 24042000 O 1453 | 13052000 15.30.00 |
25-03-1087 12:35:00 01:05:2003 04:24:53

intarvalleVolExtarisir

Fonctions utiles

Les fonctions suivantes vous seront d'un grand secours pour manipuler des dates et des inter-
valles.

TO_CHAR (colonneDate [, format [, ‘NLS_DATE_LANGUAGE=Langue']]) convertit
une date en chaine suivant un certain format dans un certain langage :

TO_DATE (chaineCaractéres [, format [, 'NLS_DATE LANGUAGE=Langue']]])
convertit une chaine en date suivant un certain format dans un certain langage .

64 & Editions Eyrolles

[chapitre n° 2

Wanipuiation des donnéas |

EXTRACT ({YEAR | MONTH | DAY | HOUR | MINUTE | SECOND} FROM {expression-
DRTE | expressicnINTERVAL}) extrait une partie dennée d'une date ou d'unintervalle ;

WUMTOYMINTERVAL (expressionNumérigue, {'YERR' | 'MONTH'}) convertitunnom-
bra dans un type INTERVAL YEAR TO MONTH ;
NUMTODSINTERVAL|expressionNumérigue, ({'DAY' | 'HOUR' | 'MINUTE'

'SECOND' }) convertit un nombre dans un type INTERVAL DAY TO SECOND.

Les tableaux suivants présentent quelques exemples d utilisation de ces fonctions.

Tableau Z-10 Quelgues formats peur TO_CHAR

Expression Résultats Commentaires

TO_CHAR (dateNalss "dJ7) 2439575 Le calendrier julien est utilisé icl (comptage

du nombre de jours depuis le 1% janvier,
4712 av. J.-C. jusqu’au 25 mars 1967).

TO_CHAR (datelaizsa, 'DAY - SAaMEDI - MARS Affichage des libelkés des jours, mois et
MONTH ~- YEAR') -~ NINETEEN années. Oracle ne traduit pas encore notre

SIXTY-SEVEN année.

TO_CHAR (dateBmbauche ,'DDD') 121 Affichage du numéro du jour de l'annge

{ici il s'agit 1% mai 2003).

Tablean 2-11 Quelques lormats pour TO_DATE

Expression Commentaires
TO_DATE ('May 13, 1995, 12:30 Définition d'une date & partir d'un libellé au format américain.
B.M.', 'MONTH DD, YYYY, HH:MI
A.M.", 'NLS_DATE_LANGUAGE =
American')
TO _DATE('13 Mai, 1955, Définition de la méme date pour les francophones ('option NLS
12:30' ,'DD MONTH, YYYY, par défaut estla langue 4 'installation).
HH24:MI', 'NLS_DATE LANGUAGE
= French')

Tabieau 2-12 Uillisation de EXTRACT
Expression Résultats Commentaires
EXTRACT (DAY FROM 21 Extraction du nombre de jours dans
intervalleVolExterieur) l'intervalle contenu dans la colonne.
EXTRACT (MOMTH FROM dateNaiss) 3 Extraction du mois de la date contenue

dans la colonne.

@ Editions Eyrolles

[Parfie | S(E do bass |

Tabieau 2-13 Conversion ea imeralies

‘Expression Résultats Commentalres
NUMTOYMINTERVAL (1 .54, 'YEAR') +000000001-08 1 anet54 centidémes d'annde est comverti
en 1 .an et 6 mois.

NUMTO YMINTERVAL (1 .54, "MONTH") +000000000-01 1 mois et 54 centiémes de mols est
comverti en 1 mols & l'arrondi

NUMTODS INTERVAL (1 .54, 'DAY") +000000001 1 jour et 54 centiémes de jour est converti
12:57:36.00 en 1 jour, 12 heures, 57 minutes et
36 secondes.
NUMTODS INTERVAL (1 .54, "HOUR") +000000000 1 heure et 54 centiémes est converti en

01:32:24.00 1 heure, 32 minutes et 24 secondes.

suppressions o'enregistrements

Les instructions DELETE et TRINCATE permettent de supprimer un ou plusieurs enregistre-
ments d'une table. Pour pouvoir supprimer des données dans une table, il faut que cette
derniére soit dans votre schéma ou que vous ayez recu le privilege DELETE sur la table. 51 vous
avez le privilige DELETE 2NY TABLE, vous pouvez détruire des enregistrements dans
n'importe quelle table de tout schéma.

instruction DELETE

La syntaxe simplifiée de |'instruction DELETE est la suivante :
| DELETE FROM [schéma.]nomTable [WHERE condition];

La condition sélectionne les lignes i supprimer. Si aucune condition n’est précisée, toutes les
lignes sont supprimées. Si ’expression ne sélectionne aucune ligne, rien ne sera supprimé et
ancune erreur n'est retournée. Supprimons une compagnie et un vol journalier (notez qu'il faut
préciser I'heure dans le format de date si une heure a été incluse dans la date) i I'aide de cette
instruction :
S0L> DELETE FEOM compagnie WHEEE nom comp = 'Go Adrways';
1 ligne supprimée.
S0L> DELETE FROM wvol_jour
WHERE Jjour_wel = TO_DATE('20/11/2014 15:30", 'DD/MM/Y¥YY HH24:MI')
IND num_wol = 'AF6I43';
1 ligne supprimée.

Les suppressions sont présentées dans la figure suivante.

66 & Editions Eyrolles

[chapitre n° 2

Wanipuiation des donnéas |

Figure 2-10 Table aprés les suppressions

B cOMPAGNIE
{ COMP | NOM_COMP __ |{} DATE_CREATION,
SING Singapore AL 01/01/47
AF Air France 01/01/33
: 20./32/14

£ vor_our

JnuM voL | AERO DEP | AERO_ARR | coMP |0 JOUR vOL | Qff NB_PASSAGERS |
AF6550 CDG TLS AF 20/11/14 195
HFGTE4T—TLS ORY -AF 23411414 12
sQ747 CDG SIN SING 20/11/14 10
AFE145 ORY TLS AF 20/11/14 10

: u La suppression d'une ligne contenant une clé étrangére est possible si cette méme ligne ne

joue pas le rile de référent (cible d'une clé étrangére d'une autre table). La suppression d'une
ligne pour laguelle la clé primaire est utilisée dans une autre table en tant que clé étrangére
n'est pas possible sans un mécanisme de cascade (voir la section « Intégrité référentielle »).

Tentons de supprimer une compagnie qui est référencée par un pilote a 1"aide d'une clé étran-
gere. Une erreur s'affiche, laquelle sera expliquée dans la section « Intégrité référentielle ».

DELETE FROM Compagnie WHERE comp = 'SING';
ORA-02292: violation de contrainte (SOUTOU.FE_PIL_COMPA _COMP} d'inté-
grité - enregistrement fils existant

Instruction TRUNGETE

La commande TRUNCATE supprime tous les enregistrements d'une table et libére éventuelle-
ment I'espace de stockage utilisé par la table (chose que ne peut pas faire DELETE) :

TRUNCATE TAELE [schéma.]nomTable [{ DROP | REUSE } STORAGE];

Il n'est pas possible de tronguer une table qui est référencée par des clés étrangéres actives
(sauf si la clé étrangére est elle-méme dans la table & supprimer). La solution consiste 4 désac-
tiver les confraintes puis & tronquer la table.

La récupération de I’espace est réalisée i I'aide de 1'option IROP STORAGE (option par défaut).
Dans le cas inverse (REUSE STORAGE), | espace est utilisable par les nouvelles données de La table.

@ Editions Eyrolles 67

[Parfie | S(E do bass |

Intégrité référentielle

O W O R RN R O (-, (- e W e

Les contraintes référentielles forment le cceur de la cobérence d’une base de données relation-
nelle. Ces contraintes sont fondées sur une relation entre clés étrangéres et clés primaires et
permettent de programmer des régles de gestion (exemple : I’ affrétement d’un avion doit se
faire par une compagnie existant dans la base de données). Ce faisant, les contriles coté client
(interface) sont ainsi déportés cité serveur.

C’est seulement dans sa version 7 en 1992, qu'Oracle a inclus dans son offre les contraintes
référentielles.

Pour les régles de gestion trop complexes (exemple : I'affrétement d'un avion doit se faire par
une compagnie qui a embauché au moins quinze pilotes dans les six derniers mois), 1l faudra
programmer un déclencheur (voir le chapitre 7). I1 faut savoir que les déclencheurs sont plus
pénalisants que des contraintes dans un mode transactionnel (lectures consistantes).

u La contrainte référentielle concerne toujours deux tables — une table « pére » aussi dite « maitre »

; (parent/referenced) et une table «fils » (child'dependent) — possédant une ou plusieurs colonnes
encommun. Pour fatable « pére », ces colonnes composent laclé primaire (ou candidate avecun
index unique). Pour la table « fils », ces colonnes composent une clé étrangére.

1l est recommandé de créer un index par clé étrangére (Oracle ne le fait pas comme pour les
clés primaires). La seule exception concerne les tables « péres » possédant des clés primaires
(ou candidates) jamais modifiées ni supprimées dans le temps.

GCohérences

U'exemple suivant illustre quatre contraintes référentielles. Une table peut étre « pére » pour
une contrainte et « fils » pour une autre (c’est le cas de la table Avion).

- Deux types de problémes sont autormatiquement résolus par Oracle pour assurer l'intégrité
référentielle :

La cohérence du « fils » vers le « pére » : on ne doit pas pouvoir insérer un enregistrement
« fils » (ou modifier sa clé étrangére) rattaché & un enregistrement « pére » inexistant. Il est
cependant possible d'insérer un « fils » (ou de modifier sa clé étrangére) sans rattacher
d'enregistrement « pére » & la condition qu'il n'existe pas de contrainte NOT NULL au niveau
de la clé étrangére.

La cohérence du « pére » vers le « fils » : on ne doit pas pouvoir supprimer un enregistre-
ment « pére » (ou modifier sa clé primaire) si un enregistrement « fils » y est encore ratta-
ché. Il est possible de supprimer les « fils » associés (DELETE CASCADE) ou d'affecter la
valeur nulle aux clés éfrangéres des « fils » associés (DELETE SET NULL). Oracle ne parmet
pas de propager une valeur par défaut (set to defaulf) comme la norme SQL2 le propose.

68 & Editions Eyrolies

[chapitre n° 2

Wanipuiation des donnéas |

Figure 2-11 Talbles et contraintes référentielles

Pilote
braver nam nbHVal | compa
PL Amilie Sulpice AF
P2 Thomas Sulpice i) AF
PL3 Faul Souiou 000 | SN
Compagnie referenced / parent dependent / child

comp |nrue|rue ville nomComp
AF 124 | Por Foyal Pans Alr France <
[BING_[7| Camparals Singapour | Singapore AL e
A
Affrerer dependent / child Avion dependent/ chitd} . . .
compAff |immat [dateAff nbPax trmat typeAvion |nbHVol |proprio
AF FWTSE | 13:05-2000 | 65 FWTSS™ [Concoide | 8570 | SING
[SING F-GAFU | 05022003 | 156 F-GAFU | A320 3500 | AF
AF FWTSS 15050003 | 82 FGOFS [TBE0 2000 [SING |
[* referenced / parent

Déclarons 4 présent ces contraintes sous SQL.

Contraintes colé « pére »

La table « pére » contient soit une contrainte de clé primaire soit une contrainte de clé candi-
date qui s’exprime par un index unique. Le tableau suivant illustre ces dewx possibilités dans

le cas de la table Compagnie. Notons que la table possédant une clé candidate aurait pu aussi
contenir une clé primaire.

Tahisau 2-14 Ecrimres des contraintes de ia table « pére »

CREATE TAELE Compagrie CEELTE TAELE Compagnie
(comp VARCHARZ (4), nrue NUMEER(3), {comp VARCHARZ (4), nrue NUMBER(3),
Rue VARCHARZ (20), wille VARCHARZ (15), rues VARCHARZ (20), wille VARCHARZ(15),
nomComp VARCHARRZ (15), nomComp VARCHRARZ (15),
CONSTRAINT pk_Compagnie CONSTRAINT un_Compagnie UNIQUE |comp));
PRIMARY KEY (comp));

Gontraintes cOLE « fils »

Indépendamment de 1'écriture de la table « pére », deux écritures sont possibles au niveau de
latable « fils ». La premiére définit la contrainte en méme temps que la colonne. Ainsi elle ne

@ Editions Eyrolles 69

S(E do bass |

70

convient qu'aux clés composées d'une seule colomne. La deuxiéme écriture détermine la
contrainte aprés la définition de 1a colonne. Cette écriture est préférable car elle convient aussi
aux clés composées de plusieurs colonnes de par sa lisibilité.

Tablean 2-15 Ecritures des contraintes de fa tabie « [l »

Colonne et contrainte Contrainte et colonne
CREATE TABLE Pilote CREATE TABLE Pilote
[brevet VARCHARZ (6} CONSTRAINT [brevet VARCHAR2 (6}, nom VARCHARZ{15},
pk_Filobte PRIMARY KEY, nbHVol NIMBER(7.2); compa VARCHARD {4} .
nom VARCHARZ (15}, nbHVol NUMEER(T.2). CONSTRAINT pk_Filote PRIMARY KEY (brever),
compa VARCHARZ (d) CONSTRAINT fk_Pil compa Comp CONSTRAINT flk_Pil compa_Comp

REFERENCES Compagnie {compl); FOREIGH EEY [compa)

REFERENCES Compagnie{comp));

Clés composites et nulles

Les clés etrangéres ou primaires peuvent étre definies sur trente-deux colonnes au maxi-
mum (composite keys).
Les clés étrangéres peuvent &tre nulles si aucune confrainte HOT NULL n'est déclarée.

Décrivons i présent leTscipSe)M, spimmsdsn 4 7am e exemple (la syntaxe de création des
deux premiéres tables a été discutée plus haut) et étudions ensuite les mécanismes program-

més par ces contraintes.
CHEATE TRAELE Compagnie ..
CEEATE TRELE Pilote ..

CHEATE TAELE Avion
{immat VARCHARZ (5), typelvion VARCHARZ (1%), nbhVol NUMBER(10,2),
propric VARCHARZ (4);
CONSTRAINT pk_Awvion PRIMARY KEY(immat),
CONSTRAINT nn_proprio CHECKE (propric IS NOT NULL) ,
CONSTRAINT fk awion comp Compag FOREIGHN KEY (proprioc)
REFERENCES Compagnie (comp)) ;
CREATE TRABLE Affreter
(compAff VARCHARZ(4), immat VARCHARZ (6), dateAff DATE,
nbPax NUMBER(3) ,
CONSTRAINT pk Affreter PRIMARY FEY (conpiAff, immat, datedff),
CONSTRAINT £k Aff na Avion FOREIGN KEY (immat)
REFERENCES Avion (immat}),
CONSTRAINT fk Aff comp Compag FOREIGN KEY (compAff)
REFERENCES Compagnie {camp));

& Editions Eyrolles

[chapitre n® 2 Wanipuiation des donnéas |

Cohérence du fils vers le pére

- Sila clé étrangere est déclarée NOT NULL, l'insertion d'un enregistrement « fils » n'est possible
que s'il est rattaché a un enregistrement « pére » existant. Dans le cas inverse, l'insertion d'un
enregistrement « fils » rattache & aucun « pare » est possible.

Le tableau suivant décrit des insertions correctes et une insertion incorrecte. Le message
d'erreur est ici en anglais (en frangais : viclation de contrainte d'intégrité -
touche parent introuvable).

Tableau Z-16 Imseriions correctes el mcomecies

Insertions cormectes Insertion incorrecte
-- fils avec pbare -- avee pire incenriu
INSERT INTC Filote VALUES INSERT INTO Pilote VALUES
{"PL-3', 'Paul Soutou', 1000, "SING'); |('FL-5', 'Fb de Compagnie', 0, "2');
== fils sans pbére
INSERT INTC Pilote VALUES CRA-02291: integrity constraint
('PL-4', 'Un Connu', 0, NULL); (SOUTOU. FE_PIL_COMPA_COMP) wiolated -
-- fils avec péres parent key not found
INSERT INTC Avion VALUES
{ "F-WTSS', 'Concorde’, 6570, "BING");

INSERT INTO Affreter VAIUES
{"AF', '"F-WTES', "15-05-2003', 82)

Pour insérer un affrétement, il faut donc avoir ajouté au préalable au moins une compagnie et
un avion.

Le chargement de la base de données est conditionné par la hiérarchie des contraintes référen-
tielles. Ici, il faut insérer d’abord les compagnies, puis les pilotes (ou les avions), enfin les
affrétements.

Il suffit de relire le script de création de vos tables pour en déduire 'ordre d'insertion des enre-
gistrements.

Gohérence du pere vers le fils

Trois alternatives sont possibles pour assurer la cohérence de la table « pére » vers la table
« fils » via une clé étrangére :
Prévenir la modification ou la suppression d'une clé primaire (ou candidate) de la table
« pére », Cette alternative est celle par défaut. Dans notre exemple, toutes les clés éran-

géres sont ainsi composées. La suppression d'un avion n’est donc pas possible si ce dernier
est référencé dans un affrétement.

@ Editions Eyrolles 71

S(E do bass |

72

Propager la suppression des enregistrements «fils » associés i |'enregistrement « pére »
supprimé. Ce mécanisme est réalisé par la directive ON DELETE CASCADE Dans notre exem-
ple, nous pourrions ainsi décider de supprimer tous les affrétements dés qu’onretire un avion.
Propager 1"affectation de la valeur nulle aux clés étrangéres des enregistrements « fils »
associés i l'enregistrement « pére » supprimé. Ce mécanisme est réalisé par la directive oM
DELETE SET NULL. Il ne faut pas de contrainte NOT NULL sur la clé érangére. Dans notre
exemple, nous pourrions ainsi décider de mettre NULL dans la colonne compa de la table
Pilote pour chaque pilote d'une compagnie supprimée. Nous ne pourrions pas appliquer
ce mécanisme & la table Af freter qui dispose de confraintes NOT MULL sur ses clés étran-
géres (car composant la clé primaire).

Tableau 2-11 Cobérence du » pére » versfe« fis »
Alternative Exemple de syntaxe

Prévanir 1a madification ou la supprassion CONSTRAINT flg Aff _na Avion
d'une clé primaine: FOREIGN KEY{immat)} REFERENCES Avion(immat)

Prapager la suppression des amvagistrements CONSTRATNT flAff na Avion
FOREIGKN KEY{immat} REFERENCES Avion{immat})
ON DELETE CASCADE

Propager I"affectation de la valeur nulle aux CONSTRAINT fk_Pil_compa Comp
clés érangbres FOREIGH KEY (compal REFERENCES Compagnie(comp)
ON DELETE SET NULL

Lextension de la modification d'une clé primaire vers les tables référencées n'est pas automa-
tique (il faut la programmer si nécessaire par un déclencheur).

En résumé

Le tableau suivant résume les conditions requises pour modifier 1'état de la base de données en
respectant 1'inté grité référentielle.

Tahlean 2-18 Instructions 301 sur les clés

Instruction Table « parent » Table « fils»

INSERT Comecte si la clé primaire {ou candidate) Carrecte sila clé dtrangdre est iférencée
ast unigue, dans la tabla « pére »ou est nulle
(partiellemant ou en totalitd).

UPDATE Cormecte s linstructon ne laisse pas Correcte sila nouvelle clé érangére
d'anregistrements dans latable « fils » ayant référence un enregistrement « pére »
une cié étrangére non rférencée. existant,

DELETE Comrecte &i aucun enregistremant de la Correcte sans condition.
tabla « fils » ne référence le ou les
enegistrements détruits,

DELETE CASCADE Comectesans condifon. Cormecte sans condition.
DELETE SET NULL Comecte sans conditon. Correcte sans condition.

& Editions Eyrolles

[chapitre n° 2

Wanipuiation des donnéas |

Exercices

o o m o momom

W o E o m e o e o M O e N R NN R M M BN S NN S D SR SN e M M SR MM MM M M R M M e R omm Mmoo oW

Les objectifs des premiers exercices sont :

d’insérer des données dans les tables du schéma Pare Informatigue et du schéma des chantiers ;
de créer une séquence et d'insérer des données en utilisant une séquence ;
de modifier des données.

2.1 nsertion de données

Ecrivez puls exécutez le script SOL (que vous appellerez insParc. agl) afin dinsérer les données
dans les tables suivantes :

Tiblsau 2-19 Données des tables

Segment INDIF NOMSEGMENT ETAGE
130.120.80 Brin RDC
130.120.81 Brin ler d&tage
130.120 .82 Brin 2&me &tage

Salle NSALLE NOMSALLE NEPOSTE INDIP
a01 Salle 1 3 130.120.80
s02 Salle 2 2 130.120.80
803 salle 3 2 130.120.80
a1l Salle 11 2 130.120.81
812 Salle 12 1 130.120.81
521 Salle 21 2 130.120.82
223 Salle 22 G 130.120.83
823 Salle 23 0 130.120.83
Foste NPOSTE NOMFOSTE INDIF AD TYPEPOSTE NSALLE
pl Poste 1 130.120.80 01 TX a01
p2 Foste 2 130120, 80 02 UNIX a0l
p3 Poste 3 130.120.80 03 TX a0l
pd Poste 4 130.120.80 04 PCWS a02
p5 Poste 5 130.120.80 05 POWS 802
1 Poste 6 130.120.80 06 UNIX 203
p? Foste 7 130.120.80 07 TX =03
pé Foste 8 130.120.81 01 UNIX a1l
p9 Foste 9 130.120.81 02 TX a11
plo Poste 10 130.120.81 03 UNIX al2
pll Poste 11 130.120.82 01 PCNT a21
pl2 Poste 12 130.120.82 02 PCWS a2l

@ Editions Eyrolles

73

[Parfie | S(E do bass |
Tabieai 2-19 Donmées des tahles (suite)

‘Table: Données

Logiciel NLO@ NOMLOG DATEACH VERSICN TYPELOG PRIX
logl oOracle 6 13/05/95: 6. UNIX 3000
log2 oOracle 8 15/09/9% & UNIX 5600
legd SQL Server 12/04/98 7 PCNT 2700
logd ‘Front Page G3/06/87 8 POWS 500
logs WinDew 12705497 5 POWS 750
logé SQL*Net - UNIX 500
log? I. I. 8. l2/04/02 2 PCHT a1a
log® DreamWeaver ZLr09/03:2, BeQs 1400

Types TYPELP ROMTYPE

Terminal X-window
Sy téme Unisx

PC wWindows
PC Windows

NT

Hetwork Computer

2.1 Gestion d'une séquence
Dans ce méme script, créez la séquence sequenceIns commencant & la valeur 1, d'incrément 1, de

valeur maximale 10 000 et sans cycle. Utilisez cette séquence pour estimer la colonne numIns de la
table Installer. Insérez les enregistrements suivants :

74

Tabieau 2-20 Données de ia table installer

Table Données

Installer MNPOSTE NLOG NUMINS DATEINS DELAI
= logl 1 15/05/03
= log2 2 17/09/03
Bd logs k-
pé logé 4 20/05/03
=13 logl 5 20/05/03
=L} log2 6 19/05/03
B8 Logé 7 20/05/03
pll Log3 4 20/04/03
512 Logd 9 20/04/03
pll Llog? 10 20/04/03
=¥ Log? 11 0L/04/02

& Editions Eyrolles

[chapitre n° 2

Wanipuiation des donnéas |

23

Madification de données

Ecrivez le script modification.sql, qui permet de modfier (avec UFDATE) la colonne etage
{pour l'instant nulle) de latable Segment afin d'affecter un numéro d'étage correct (0 pour le segment
130.120.80, 1 pour le segment 130.120.81, 2 pour le segment 130.120.82).

Diminuez de 10 % le prix des logiciels de type 'PCNT".
Vérifiez :

SELECT * FROM Segment;

SELECT nLog, typelog, prix FROM Logiciel;

@ Editions Eyrolles

Insertion dans la base Chantiers

Ecrivez puis exsécutez le script SQL (que vous appellerez insChantier .aql) afin d'insérer les
données suivantes :

« une dizaine d' employés (numéros E1 & E10) en considérant diverses qualifications (OS5, Assistant,
Ingénieur et Architecte) |

+ quatre chantiers et cing véhicules :
+ deuwx ou trois visites de différents chantiers durant trois jours ;
+ la composition (de un & trois employés transportés) de chaque visite.

75

Chapitre 3
Evolution d’un schema

L’évolution d'un schéma est un aspect trés important & prendre en compte, car il répond aux
besoins de maintenance des applicatifs qui utilisent la base de données. Nous verrons qu’il est
possible de modifier une base de données d'un point de vue structurel (colonnes et index) mais
aussi comportemental (contraintes).

L'instruction principalement utilisée est ALTER TABLE (commande du LDD) qui permet
d’ajouter, de renommer, de modifier et de supprimer des colonnes d'une table. Elle permet
aussi d’ajouter, de supprimer, d’activer, de désactiver et de différer des contraintes. Avant de
détailler ces mécanismes, éudions la commande qui permet de renommer une table.

Renommer une tahie (RENAME)

L'instruction REMAME renomme une table. Cefte commande convient aussi aux séquences,
synonymes et vues. Il faut &tre propriétaire de I'objet que 1'on renomme.

| REMAME asncieniNom TO nouveaulNom;
Les contraintes d'intégrité, index et prérogatives associés 4 |'ancienne table sont automatique-

ment transférés sur la nouvelle. En revanche, les vues, synonymes et procédures catalogués
sont invalidés et doivent étre recréés,

1l est aussi possible d'utiliser la directive RENAME TO de l'instruction ALTER TABLE pour
renommer une table existante. Le tableau swivant décrit comment renommer la table Pilote
sans perturber 1'intégrité référentielle :

Tableau 3-1 Renommer une tahie

Commande RENAME Commande ALTER TABLE
REMAME Pilote TO Navigant; ALTER TABLE Pilote REMAME TO Navigant;

@ Editions Eyrolles 7

[Parfie | S(E do bass |

Modifications structurelies (AITER TABLE)

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

Considérons la table suivante que nous allons faire évoluer :

SQL> CEEATE TABLE Pilote
{brevet VARCHAR2 (4), prenom VARCHARZ (20) , nom VARCHARZ (20));
Table créée.
SQL> INSERT INTO Pilote (brevet, prenom, nom) VALUES ('PL-1', 'JP',
'‘Ferrage');
1 ligne créée.
Figure 3-1 Table avant les modifications

€ll proTe
{} BREVET |{} PRENOM | | NOM
PL-1 JP Ferrage

Rjouter des colonnes

La directive 20D de ['instruction ALTER TABLE permet d’ajouter une nouvelle colonne 4 une
table. Cette colonne est initialisée i NULL pour tous les enregistrements (i moins de spécifier
une contrainte DEFAULT, auquel cas tous les enregisirements de la table sont mis & jour avec
une valeur non nulle).

Il est possible d'ajouter une colonne en ligne HOT NULL seulement sila table est vide ou si une
contrainte DEFAULT est définie sur la nouvelle colonne (dans le cas inverse, il faudra utiliser
MODIFY & la place de ADD).

Le script suivant ajoute trois colonnes a la table Pilote. La premiére instruction insére la
colonne nbHVol en I'initialisant & NULL pour tous les pilotes (ici il n’en existe qu’une seule).
La deuxiéme commande ajoute deux colonnes initialisées i une valeur non nulle. La colonne
ville ne sera jamais nulle.

ALTER TABLE Pilote ADD {nbHVol NUMBER(7,2)};
ALTER TABLE Pilote
ADD (compa VARCHARZ (4) DEFAULT 'AF',
ville VARCHAR2 (30) DEFAULT 'Paris' NOT NULL) ;

La table est désormais la suivante :
Flgure 3-2 Table aprés I'sjout de colonnes

£ poTe
{} BREVET || PRENOM |§ NOM __ |() NBHVOL |} COMPA || VILLE |
PL-1 JP Ferrage (null) AF Paris

78 & Editions Eyrolles

[chapitre n° 3

Evolution d'un schéma |

Renommer des colonnes

11 faue utiliser la directive REMAME COLUMN de Iinstruction ALTER TABLE pOUr renommer une
colonne existante. Le nom de la nouvelle colonne ne doit pas étre déja utilisé par une colonne
de la table.

L'instruction suivante permet de renommer la colonne villeen adresse:

| ALTER TABLE Filote RENAME COLUMN ville TC adresse;

Modifier ie type des colonnes

La directive MODIFY de I'instruction ALTER TABLE modifie le type d'une colonne existante.

Il est pessible d'augmenter |a taille d'une colonne numérique (largeur ou précision) = ou d'une
chaine de caractéres (CHAR et VARCHARZ2) — ou de la diminuer sitoutes les dennées présentes
dans la colonne peuvent s'adapter & la nouvelle taille.

Les contraintes en ligne peuvent &tre aussi modifiées par cette instruction (DEFAULT, NOT
NULL, UNIQUE, PRIMARY KEY et FOREIGN KEY). Une fois la colonne changée, les nouvelles
contraintes s'appliqueront aux mises a jour ultérieures de la base.

Le tablean suivant présente différentes modifications de colonnes.

Tableau 3-2 Modificalions de colonnes

Instructions SQL Commentaires
ALTER TABLE Pilote Augmente la tallle de la colonne compa et
MODIFY compa VARCHAR (&) change la contrainte de valeur par défaut.

DEFAULT 'SING';
INSERT INTO Pilote (brevet, prenom, nom)

VALUES ('PL-2', 'BArnaud', 'Sayag')}

ALTER TABLE Pilote Diminue la colonne et modifie également son

MODIFY compa CHAR(4) NOT NULL; type de VARCHARZ en CHAR tout en le déclarant
nNOT NULL (possible car les données contenues
dans la colonhe ne dﬂ}&&sﬁm pas quairﬁ
caractéres).

ALTER TABLE Filote MODIFY compa NULL; Rend possible linsertion de valeur nulle dans la

colonne compa.

@ Editions Eyrolles 79

S(E do bass |

|so

La table est désormais la suivante :

Figure 3-3 Aprés modificalion des cofonnes

& pnoTe
{} BREVET |{} PRENOM | NOM |} NBHVOL |{} COMPA |{} ADRESSE |
FL-1 JP Ferrage (null) AF Paris

PL-2 Arnaud Sayag (null) SING Paris

Supnrimer des colonnes

Longtemps absente, la possibilité de supprimer une colonne permet 4 présent de récupérer
rapidement de I'espace disque et évite aux administrateurs d'exporter, d’ajouter, d'importer
des tables et de recréer les index et les contraintes.

La directive DROP COLIMM de 'instruction ALTER TABLE permet de supprimer une colonne.

Il n'est pas possible de supprimer avec cette instruction :
des clés primaires (ou candidates par UNIQUE) référencées par des clés étrangéres ;
des colonnes A partir desquelles un index a été construit ;
des pseudo-colonnes (ROWID et LEVEL) ou des colonnes de tables objets ;

toutes les colonnes d'une table.

La suppression de la colonne adresse de la table Pilote est programmée par 1'instruction
suivante :

ALTER TABLE Pilote DROP COLUMN adresse;

Colonnes UNUSED

Si vous désirez marquer des colonnes i I'effacement (sans les enlever de la table), il faut
utiliser la directive SET UNUSED COLUMM de l'instruction ALTER TAELE.

Les colonnes n'apparaitront plus dans la description de la table et ne seromt plus accessibles
tout en restant toujours présentes dans la table. Les contraintes, index associés i ces colonnes,
sont supprimées.

Gette option est intéressante dans la mesure ol le résultat est immeédiat, car aucune réper-
cussion d'ordre physique sur la base n'est opérée. Le temps d'exécution de suppression de
colonnes sur des bases de faille importante peut étre trés pénalisant.

& Editions Eyrolies

[chapitre n° 3 Evolution d'un schéma |

Marquons i I'effacement la colonne compa :

ALTER TABLE Pilcte SET UNUSED COLUMN compa;

I n'est plus possible de récupérer les colonnes marquées 4 'effacement d'une table pour les rendre
4 nouveau opérationnelles. Seule la directive DROP UNUSED COLUMNS est permise pour manipuler
de telles colonnes. Elle détruit toutes les colonnes d'une table qui sont marquées a l'effacement.

Détruisons les colonnes marquées 4 |'effacement de la table Pilote:

ALTER TABLE Pilote DROP UNUSED COLUMMNS;

Colonne virtuelle

La particularité d'une colonne virtuelle réside dans le fait qu'elle n'est pas stockée sur le
disque mais évaluée automatiquement i la demande (au sein d'une requéte, ou d'une instruc-
tion de mise i jour). Par analogie, les vues (étudiées au chapitre 5) sont des tables virtuelles.

Création d’une table
Au niveau de la création d'une table, la syntaxe & adopter est la suivante :

colonne [typesSQL] [GENERATED ALWAYS] AS (expression)
[VIRTUAL] [contraintelLigne [contrainteLigneZ]...]

Le type de la colonne (si vous ne voulez pas qu’il soit automatiquement déduit de I'expres-
sion) suit éventuellement son nom.
Les directives GRNERNTED ALWAYS et VIRTUAL sont fournies pour rendre le code plus clair
(considérées comme des commentaires).
L'expression qui suit la directive A5 détermine la valeur de la colonmne (valeur scalaire).
Le script suivant déclare la table Avion comportant une colonne virtuelle (qui permet ici de
calculer le nombre d’heures de vol par mois). Deux lignes sont ensuite ajoutées.
| CREATE TABIE Avion{immat VARCHARZ(&), typeAvion VARCHARZ (15},
nbhVol NUMBEE(10,2), age NUMEER(4,1),
freqVolMois GENERATED ALWAYS AS (nbhVol /age/12) VIRTUAL,
nhPax NUMEER (3), COMSTRAINT pk_Avicn PRIMARY KEY (immat));

INSERT INTO Avion (immat,typefvion,nbhVol,age,nbPax)
VALUES ('F-WISS', 'Concorde', 20000, 18, 90);

INSERT INTC Avion {immat,typefvion,nbhVol, age, nbPax)
VALUES ('F-GHTY', "A3B0', 450, 0.5, 460);

La description de cette table (DESC) fait apparaitre 1a colonne virtuelle. Pour obtenir les valeurs
de la colonne, 1l suffit, par exemple, d’évaluer son expression 4 partir d une requéte.

@ Editions Eyrolles 81

S(E do bass |

82

SELECT immat, freqVolMois FROM Avion;

IMMAT FREQVOIMOIS

F-WTSS 92,59259592. .,
F-GHTY 75

Une colonne virtuelle peut étre indexée mais pas directement modifiable. Seule une modifica-
fion des valeurs quiinterviennent dans I'expression fera évoluer une colonne virtuelle.

Ajout d'une colonne
Au niveau de la création d'une table, la syntaxe & adopter est 1a suivante :

ALTER TABLE nomTable ADD
colonne [typeSgL] [GENERATED ALWAYS]) AS l(expression)
[VIRTUAL] [comntrainteligne [contrainteLignel2]...];

Ajoutons i la table avion la colonne virtuelle qui détermine le ratio du nombre d’heures de
vol par passager en y ajoutant deux contraintes en ligne.

ALTER TABLE Avion
ADD heurePax NUMEER (10,2) AS (nbhVol/age)
CHECE. (heurePax BETWEEN (AND 2000) NOT NULL;

La figure suivante illustre comment la table se comporte lorsqu'elle est sollicitée en INSERT,
UPDATE ou DELETE
Flgure 34 Colonne virtuefles

Avion

immat typelvion |[nbHVel age |nbPax|freqVolMois :He urePax

F-WTSS | Concorde | 20 000 18 80 92,5925...
F-GHTY | A380 450 05 | 460 75 | 8900]

Restrictions

Seules les tables relationnelles de type heap (par défaut) peuvent héberger des colonnes
virtuelles (interdites dans les tables organisées en index, externes, objet-relationnelles,
cluster, et temporaires).

Lexpression de définiion d'une colonne virtuelle ne peut pas faire référence & une autre
colenne virtuelle et ne peut étre construite qu'avec des colonnes d'une méme table.

Le type d'une colenne virtuelle ne peut &tre XML, any, spatial media, personnalisé (userdefined),
LOBou LONG EAW.

& Editions Eyrolies

[chapitre n° 3 Evolution d'un schéma |

Colonnes nvisibies

i P Depuis la version 12¢, Il est possible de masquer des colonnes au niveau des applications. Par
L. défaut, toute colonne est visible mais peut étre masguée lors de la création de la table en ajou-
tant 'option INVISIBLE aprés avoir déclaré son type. Linstruction ALTER TAELE nom_table
MODIFY nom_colonne [VISIBLE | INVISIBLE] permet de démasquer (ou de masquer)
des colonnes existantes.

Le code suivant présente |'utilisation de cette option dans une table. La premiére insertion est
incorrecte car elle sous-entend que les quatre colonnes de la table sont visibles.

Tahisau 3-3 Golonne imvisibie

Déclaration d'une colonne invisible - Insertions
CREATE TAELE passagers SgQL> INSERT INTC passagers VALUES
{1d_pax NUMEBER (1), {1, 'Belfont',20.5,T0_DATE('05/03/1974 , 'DD/MM/YYYY'));
noin_pax VARCHARZ (30), EREEUR & la ligne 1 : ORA-00913: trop de wvaleurs
bonus NUMEEER (7,2) INVISIBLE,
date_naisa DATE); S0L> INSERT INTO passagetrs(id pax,nom pax,date nais)
VALUES

(1, 'Belfent', TO_DATE('05/03/1974", 'DD/MM/YYYY "))
1 ligne créée.

SQL> TNSERT INT{ passagers
{id_pax,nom_pax ,bonus,date_nais) VALUES

{2, 'Fontbel ', 45.6, TO_DATE('05/03/15990" , 'DD/MM/YYYY ')) ;

1 ligne créée,

Une fois la colonne invisible insérée, ses données sont accessibles d'une maniére explicite. Ce
comportement sera respecté jusqu'a ce que la colonne redevienne visible par ALTER TABLE
passagers MODIFY bonus VISIBLE.

Tahleay 31 Bxtraction d'ume colonne ivisihle

Requéte implicite Requéte explicite
5QL> SELECT * FROM pagsagerd ; SQL> SELECT id_pax, nom pax, bomus FROM passagers;
ID_PAX MOM_PRX DATE_NAT ID_PRY NOM_PRX BONUS
1 Belfont 05/03/74 1 Belfont
2 Fontbel 05 /03780 2 Fontbel 45,8

Dans SQL*Plus, positionnez la variable d'environnement SET COLINVISIELE ON afin de
constater l'existence de colonnes virtuelles a la suite dune commande DESCRIBE nom
tahle.

@ Editions Eyrolles 83

[Parfie | S(E do bass |

Modifications comportementaies

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

Nous étudions dans cette section les mécanismes d’ajout, de suppression, d’activation et de
désactivation des contraintes.

Faisons évoluer le schéma suivant. Les clés primaires sont nommées pk_Compagnie pour la
table Compagnie et pk_avion pour la table Avion.

Figure 3-5 Schéma a faire évoluer

Compagnie

2 omp nrue | rus ville nomComp
AF 12d | Port Hoyal Parns Air France

SING | 7 Camparis Bingapour Singapore AL

Affreter ASEIN

compAff |immar |dateAff rbPax Ammat typeAvion |nkiVol |propric|
AF F-WISS | 13-05-2003 BE FWI5S Loncornde 6570 SING
SING F-GAFD | 05022003 | 155 F-GAFU A320 3500 AF

AF FWISS [15052003 | B2 F-GIFS TE-20 2000 | SING |

Rjout de conirainies

Jusqu”a présent, nous avons créé des tables en méme temps que les contraintes. Il est possible
de créer des tables seules {dans ce cas |'ordre de création n’est pas important et on peut méme
les créer par ordre alphabétique), puis d’ajouter les contraintes. Les outils de conception
(Win'Design, Designer ou PowerAMC) adoptent cette démarche lors de la génération automa-
tique de scripts SQL.

La directive ADD CONSTRAINT de I'instruction ALTER TABLE permet d'ajouter une contrainte
4 une table. La syntaxe générale est la suivante :

| ALTER TABLE [schéma.]lnomTable
ADD [COMSTRAINT nomContrainte] typeContrainte;
Comme pour |'instruction CREATE TABLE, quatre types de coniraintes sont possibles :
UNIQUE (colonnel [,colonneZ]..)
BRIMARY KEY (colonnel [,colonne2]..)
FOREIGN KEY (colonnel [,colennel]..)
REFERENCES [schéma.]nomTablePére (colonnel [,colonneZ]..)
[CN DELETE { CASCADE | SET NULL }]
CHECK (condition)

84 Editfons Eyrofies

[chapitre n° 3

Evolution d'un schéma |

Clé étrangeére

Ajoutons la clé étrangére & la table Avion au niveau de la colonne proprio en lui assignant
une contrainte MOT NULL :
| ALTER TAELE Awvion

ADD (COMSTRAINT nn proprio CHECE (proprio IS NOT NULL),

CONSTRAINT fk Avion comp Compag FOREIGH KEY (proprio)

REFERENCES Compagnie (comp)) ;
Clé primaire

Ajoutons la clé primaire de la table Affreter et deux clés étrangéres (vers les tables Avion et
Compagnie) :

| ALTER TARLE Affrete ADD |
CONSTRAINT pk Affreter PRIMAEY FEY (conphAff, immat, datedff),
COMSTRAINT fk Aff na Awvion FOREIGN FEY{immat) REFERENCES
Avion (immat) ,
CONSTRAINT fk Aff comp Compag FOREIGN EEY (compAff)

REFERENCES Compagnie{comp)) ;

Pour que 1'ajout d'une contrainte soit possible, il faut que les données présentes dans la table

respectent la nouvelle contrainte (nous émdierons plus tard les moyens de pallier ce
probléme). Les tables contiennent les contraintes suivantes :

Figure 3-6 Aprés ajout de contraintes

Compagnie referenced / parent

comp nrue | riue ville nomtonp
AF 724 | Por Hoyal Fars AIF France
SING |7 Camparols Singapour Singapore AL ———y
F 3
Affreter dependent/child Avion dhpendenté ditd MOT HULL
compAff |immat |dateAff nhFax immat typeAvion [nbHVel |proprio
AF FWTSS | 13052003 | 85 FWlas | Loncords | 6570
SING FOAFD [05022008 | 158 FGAFT T A320 500 | AF
AF WSS | 15052008 |52 FeFs [TE20 200 EING
1 f referenced /£ parent
Suppression de contraintes

La directive DROF CONSTRAINT de l'instruction ALTER TABLE permet d'enlever une
contrainte d'une table. La syntaxe générale est la suivante :

ALTER TRABLE [schéma.)nomTable DROP CONSTRAINT nomContrainte [CASCADE] ;

@ Editions Eyrolles

S(E do bass |

La directive CASCADE supprime les contraintes référentielles des tables « péres». On
comprend mieux maintenant pourquoi il est si intéressant de nommer les contraintes plutt
que d'utiliser les noms automatiquement générés.

Supprimons la contrainte HOT KULL qui porte sur la colonne proprio de la table Avion:

| ALTER TABLE Avion DROP CONSTRAINT nn proprio;

Clé¢ étrangére

Supprimons la clé étrangére de la colonne proprio. Il n’est pas besoin de spécifier CASCADE,
car il s"agit d'une table « fils » pour cette contrainte d’intégrité référentielle.

ALTER TABLE Avion DROP CONSTRAINT fk Avion comp Compadg;

Clé primaire (ou candidate)

Supprimons 1a clé primaire de la table Avion. Il faut préciser CASCADE, car cette table est réfé-
rencée par une clé étrangére dans la table Af freter. Cette commande supprime i la fois laclé
primaire de la table Avion mais aussi les contraintes clés étrangéres des tables dépendantes
(ici seule la clé érrangére de la table Affreter est supprimée).

ALTER TABLE Avicn DROP CONMSTRAINT pk Avion CASCADE;

Si I'option CASCADE n'avait pas été spécifise, Oracle aurait renvoyé l'emeur « ORA-02273 :
cette clé unigue/primaire est référencée par des clés &trangéres ».

La figure soivante illustre les trois contraintes qui restent: les clés primaires des tables
Campagnie et Affreter et laclé étrangére de la table Affreter.

Flgure 3-7 Aprés suppression de contraintes

Compagnie referenced s poreni

comp nrue | rue ville nomeong
AF 124 | Port Hoyal Fans Air France
(SING | 7 Camparols Singapour Singapore AL
F 3
Affrater dependent/ child Avien
compAff | immat dateAff nhbPax immat typeAvion |nkEVel |proprio |
AF FWTSS | 13052003 | 68 WSS | Loncorde | B5/0
SING FGAFU | 05-02-2008 | 155 L L) F500 T AF
AF FWTSS [15052000 [62 FEIFE TE20 2000 | SING

Les deux possibilités pour supprimer ces trois contraintes sont décrites dans le tablean swivant.
La deuxiéme écriture est plus rigoureuse car elle prévient des effets de bord. Il sutfit, pour les

& Editions Eyrolles

[chapitre n° 3

Evolution d'un schéma |

éviter, de détruire les contraintes dans |’ordre inverse d’apparition dans le script de création
(tables « fils » puis « péres »).

Tahisau 3-5 Suppression de coniralnies

Avec CASCEDE Sans CASCADE
ALTER TABLE Compagnie ALTER TABLE Rffreter

DROF CONSTRAINT pk Compagnie CASCADE; DROF CONSTRAINT fk Aff comp Compagq;
ALTER TAPLE Affreter ALTER TABLE Compagnie

CROP CONSTRAINT pk_Af freter; DROP CONSTRAINT pk_Compagnie;

ALTER TAELE Rffreter
DROP CONSTRAINT pk Affreter;

Désactivation de contraintes

La désactivation de contraintes peut &tre intéressante pour accélérer des procédures de charge-
ment {(importation par SQL¥Loader) et d’exportation massive de données. Ce mécanisme
améliore aussi les performances de programmes batchs qui ne modifient pas des données
concernées par 1'intégrité référentielle ou pour lesquelles on vérifie la cohérence de la base a
lafin.

La directive DISABIE (ONSTRATINT de !'instruction ALTER TABLE permet de désactiver
temporairement (jusqu’i la réactivation) une contrainte existante.

Syntaxe
La syntaxe générale est la suivante :

ALTER TAELE [schéma.)nomTable
DISABLE [VALIDATE | NOVALIDATE] CONSTRAINT nomContrainte
{CRSCADRE] [{ KEEP | DROP } INDEX] ;

CASCADE répercute la désactivation des clés étrangéres des tables « fils » dépendantes. S1
vous voulez désactiver une clé primaire référencée par une clé émangére sans cette
option, le message d'Oracle renvoyé est : « ORA-02297: impossible désactiver
contrainte. - les dépendences existent ».

Les options KEEP INDEX et DROP IMDEX permettent de préserver ou de détruire I'index
dans le cas de la désactivation d'une clé primaire.

Mous verrons plus loin I'explication des options VALIDATE et NOVALIDATE.

En considérant |'exemple suivant, désactivons quelques contraintes et insérons des enregistre-
ments ne respectant pas les confraintes désactivées.

@ Editions Eyrolles 87

[Parfie | S(E do bass |

Flgure 3-8 Avant la désactivation de contraintes

Compagnie referenced / parent

comp nrue | rue ville nesmComp
AF 124 | Por Hoyal Pans Alr France
T Camparols Eingapour Singapore AL —
F 3
Affreter dependent/child Avicn dependent / child HOT W
compAff |immat dataAff nbPax immat typefvion |[nblVol |propric
. . | F-WIeS LONCOomme B5/0

T referenced / parent

Désactivons la contrainte NOT NULL qui porte sur la colonne propric de la table Avien et
insérons un avion qui n'est rattaché i aucune compagnie :

Contrainte de vérification

ALTER TABLE ZAvion DISABLE CONSTRAINT nn proprio;
INSERT INTC Avion VALUES ('Bidoml', 'TB-20', 2000, NULL);
Clé étrangére
Désactivons la contrainte de clé étrangére qui porte sur la colonne proprio de la table avion

el Insérons un avion rattach€ i une compagnie inexistante :

ALTER TABLE Avion DISABLE COMNSTRAINT fk Avion comp Compag;

INSERT INTO Avion WALUES {'F-GLFS', 'TB-22', 500, 'Toto'};
Clé primaire
Désactivons la contrainte de clé primaire de la table Aviorn, en supprimant en méme temps
I'index, et insérons un avion ne respectant plus la clé primaire :

ALTER TABLE Avion DISABLE CONSTRAINT pk Avion CASCADE DROP INDEX;
INSERT INTC Avion VALUES {'Bidoml', 'TB-21', 1000, 'AF'});

La désactivation de cette contrainte par CASCADE supprime aussi une des clés étrangéres de la
table Affreter. Insérons un affrétement qui référence un avion inexistant :

INSERT INTC Affreter VALUES ('AF', 'Toto', '13-05-2003', 0);
L état de la base est désormais comme suit. Les rowids sont précisés pour illustrer les options

de réactivation.

Bien qu’il semble incohérent de réactiver les contraintes sans modifier les valeurs ne respec-
tant pas les contraintes (notées en gras), nous verrons que plusieurs alternatives sont possibles.

88 & Editions Eyrolles

[chapitre n° 3 Evolution d'un schéma |

Figure 3-8 Aprés désactivation de contraintes

Compagnie referenced £ parent

ROWID |comp nrus | rue ville nomComp
R1 AF 124 | Port Royal Parls Alr France
2P [SING [7 Campariﬁs Singapour Singapore AL
Avien
ROWID | immat tyvpeAvion |nbHVel |proprio
H3 F-WTES | Concorde 8570 SING
z7] Bidon1 |16-20 2000 WULL
RE Bidon{ TB-21 1000 AF
Af f reterdependent f child 3 FaLrs | TB22 500 Tole |
ROWID |compAff | immat dateAff nbPax
(A7 AF F-Wiss 13.05-2003 | 85
(T8 AF Tola 13062008 | 0
Réactivation de coniraintes
La directive ENABLE CONSTRAINT de I'instruction ALTER TABELE permet de réactiver une
contrainte.
Syntaxe

La syntaxe générale est la suivante :

ALTER TABRLE [schéma.)nomTable

EMABLE [VALIDATE I NOVALIDATE] CONSTRAINT nomContrainte

[USING INDEX Clauselndex] [EXCEPTIONS INTO tableErreurs];
La clause d’index permet, dans le cas des clés primaires ou candidates (UNIQUE), de
pouvoir recréer I'index associé.

La clause d’exceptions permet de retrouver les enregistrements ne vérifiant pas la nouvelle
contrainte (cas étudi€ au paragraphe suivant).

Il n'est pas possible de réactiver une clé étrangére tant gque la contrainte de clé primaire réfé-
rencée n'estpas active.

En supposant que les tables contiennent des données qui respectent les contraintes a réufiliser,
la réactivation de la clé primaire (en recréant 'index) et d'une contrainte NOT NMULL de la table
Avion se programmerait ainsi :

ALTER TAELE Avion ENABLE CONSTRAINT plk_Avion
USING INDEX (CREATE UNIQUE INDEX pk_dwion ON Avion {immat));

ALTER TRAELE Avion ENABLE CONSTRAINT rn_proprio;

@ Editions Eyrolles 89

S(E do bass |

90

Récupération de données erronées

Loption EXCEPTIONS INTOde I'instruction ALTER TABELE permet de récupérer automatique-
ment les enregisirements gqui ne respectent pas des contraintes afin de les traiter (modifier,
supprimer ou déplacer) avant de réactiver les contraintes en question sur une table saine.

11 faut créer une table composée de quatre colonnes :

La premiére, de type ROWID, contiendra les adresses des enregistrements ne respectant pas
la contrainte ;

la deuxime colonne de type varchar? (30) contiendra le nom du propriétaire de la table ;
la troisiéme colonne de type varchar? (30) contiendra le nom de la table ;
la quatrieme, de type varcharZ (30), contiendra le nom de la contrainte.

Le tableau suivant décrit deux tables permettant de stocker les enregistrements erronés aprés
réactivation de confraintes.

Il est permis d'utiliser des noms de table ou de colonne différents mais il n'est pas possible
d'utiliser une structure de table différente.

Tableau 3-6 Tables des rejets

Tables conventionnelles (heap) Toutes tables (heap, Index-organized)
CREATE TABLE Problemes CREATE TAELE ProblemesBis
{adresse ROWID, {adresze UROWID,
utiligareur VARCHARZ (30]), utilisateur VARCHARZ (30),
nowTable VRERCHARZ (30, nomTable VARCHARZ (30),
newContrainte VARCHAR2(30)); nemCentrainte VARCHARZ (30)) ;

La commande de réactivation d'une contrainte avec l'option met autornatiquement & jour
latable des rejets et renvoie une erreur s'il existe un enregistremnent ne respectant pas la
contrainte.

Réactivons la contrainte NOT NULL concernant la colonne proprioc de la table Avion (enre-
gistrement incohérent de ROWID R4) :

AUTER TABLE Avion ENABLE COMSTRAINT rm proprio EXCEPTIONS INTO
Probl emes;

ORR-022593: impossible de valider (S0UTOU.MN_FROPRIO) - violation d'une
contrainte de contréle

Réactivons la contrainte de clé éirangére sur cette méme colonne (enregistrement incohérent :
ROWID R6 n'a pas de compagnie rétérencée).

& Editions Eyrolies

[chapitre n° 3

Evolution d'un schéma |

ALTER TARLE Awion ENABIE CONSTRAINT fk_Avion comp Compaog
EXCEPTIONS INTO Problemes;

OR2-02298: impossible de wvalider (SOUTOU.FE_AVION COMP COMPAG) - clés
parents introuvables

Réactivons la contrainte de clé primaire de la table Avien (enregistrements incohérents :
ROWID RS et R6 ont la méme immatriculation) :

ALTER TAELE Awion ENABLE CONSTRAINT pk fivion EXCEPTIONS INTO
Problemes;

ORA-02437: impossible de valider (SOUTOU. P _AVION) - wviolation de la clé
primaire

La table Problemes contient 4 présent les enregistrements suivants :

Flgure 310 Table des rejets

Prablemes

adragaa |utllisateur nomTak la nemContrainte

Hd nomUserCracle | AVION NN_FROFHID

HE nombiserOracle | AVION FE_AVION_COMP_COMPAG
515 nomUserOracie | AVION PE_AVION

Hd nomUserCracle | AVION PE_AVION

1l apparait que les trois enregistrements (R4, R5 et R6) ne respectent pas des contraintes dans
la table 2wvion. Il convient de les traiter au cas par cas et par type de contrainte. Il est possible
d’automatiser |'extraction des enregistrements qui ne respectent pas les contraintes en faisant

une jointure (voir le chapitre suivant) entre la table des exceptions et la table des données (on
testera la valeur des rowids).

Dans notre exemple, cholsissons :
de modifier I'immatnculation de 1'avion 'Bidonl' (rowid R4) en 'F-TB2(0)' dans la table Avion :
UPDATE Avion SET immat = 'F-TB20'

VHERE immat = 'Bidonl’' AND typelvion = 'TB-20°;

d’affecter la compagnie 'AF aux avions n’appartenant pas i la compagnie 'SING' dans la
table Avion (mettre & jour les enregistrements de rowid R4 et R6) :

UPDATE Avicon SET propric = 'AF' WHERE NOT (proprio = 'SING');

de modifier I'immatriculation de 'avion 'Toto' en 'F-TB20' dans la table Affreter :

UPLATE Affreter SET immat = 'F-TB20' WHERE immat = 'Toto’;

Avant de réactiver 4 nouveau les contraintes, il convient de supprimer les lignes de la table
d’exceptions (ici Problemes). La réactivation de toutes les contraintes avec ['option
EXCEPTIONS INTOne génére plus ancune erreur ef la table d’exceptions est encore vide.

@ Editions Eyrolles 91

S(E do bass |

| DELETE FROM Problemes ;
ALTER TABLE Avion ENABLE CONSTRAINT nn proprio EXCEPTIONS INTO
Probl emes ;
ALTER TABLE Avion ENABLE CONSTRAINT fk Avion comp Compag
EXCEPTICONS INTCO Problemes;

ALTER TAELE Avion ENAELE CONSTRATNT pk Avicon EXCEPTIONS INTO Problemes;
ALTER TAELE Affreter EMABLE CONSTRAINT fk_Aff na Avion
| EXCEPTIONS INTO Problemes;

L’état de la base avec les contraintes réactivées est le suivant (les mises & jour sonten gras) :

Figure 3-11 Tables aprés modificalion ef réactivation des contraintes

Compagnie retferenced / parent =
ROWID |comp nrue | rie ville nemComgs
AT AF 124 | Por Hoyal Pans ATt France
H2 SING |7 Camparols Singapour Singapore AL
F 3 Avion dependent / child | wor pops
ROWID | tmmat typahvion |nbHVel |proprioc
R FWISS | Concorda (23] SING
A FTBA |[TB-20 el i) AF
R Bidon1 T8-21 1000 AF
HE FGLFS |[TE-22 500 AF
AfErateyrdependent / ohild A
RONID |compAff | immat datekff nbPax
A7 AF FWTSS T3-05-2000_| 85
3k AF FTBR | 13052000 |0

Contrainies difiérées

92

l

Une contrainte est dite « différée » (deferred) si elle déclenche sa vérification sealement en
atteignant le premier COMMIT rencontré, Sila contrainte n'existe pas, aucune commande de la
transaction (suite d’instructions terminées par COMMIT) n'est réalisée. Les contraintes que
nous avons étudides jusqu’i maintenant étaient des contraintes immédiates (immediare) qui
sont contrblées aprés chaque instruction.

Directives DEFERRABLE et INITIALLY

Depuis la version 8, il est possible de différer & la fin d’un traitement la vérification des
contraintes par les directives DEFERRABLE et INITIALLY.

 Editfons Eyrofies

[chapitre n° 3 Evolution d'un schéma |

Chaque contrainte peut &tre reportée ou pas et est initialement définie différée ou immédiate.
En I'absence de directives particulieres, le comportement par défaut de toute contrainte est
NOT DEFERRAELE INITIALLY IMMEDIATE.

Les contraintes 10T DEFERRAELE ne pourront jamais ire différées (3 moins de les détruire et de
les recréer). Pour différer une ou plusieurs contraintes DEFERRABLE INTTIALLY IMMEDTATE
dans une transaction, il faut utiliser les instructions 8QL SET COMSTRAINT (S). Pour reporter une
ou plusieurs contraintes DEFERRABLE INITIALLY IMMEDIATE dans une session (suite de fran-
sactions), il faut employer la commande AITER SESSTON SET COMSTRATNTS.

Les instructions SET COMSTRAINT(S) caractérisent une ou plusieurs contraintes DEFERRABLE en
mode différé (DEFERRED) ou en mode immédiat (IMvEDIATE). Il n'est pas possible d’ utiliser
linstruction SET CONSTRAINT dans le corps d'un déclencheur.

Le tablean suivant illustre 1'utilisation des deux modes en différant une clé étrangére :

Tabieau 3-7 Conirainte DEFERRABLE

Mode différé Mode immédiat
CHRENTE TABLE Compagnie
(comp WARCHARZ (4), nrue NUMBER(3), rus VARCHRARZ(20),
ville VARCHARZ (15}, nomComp VARCHARZ(15),
CONSTRATNT pk_Compagnie PRIMARY KEY (comp) NOT DEFERRABLE INITIALLY IMMEDIATE) ;

CREATE TRBLE Avion CREATE TRELE Avion

(immat VRARCHARZ (&), typeivion VARCHARZ (15), (immat VARCHARZ(6), tyvpefivion VARCHARZ (15),
nbhiVol NUMBER (10,2}, proprio VRARCHARZ(d4), nbhVol NUMBER(10,2), proprio VARIHERZ(4),

CONSTRAINT fk_Avion_comp Compag CONSTRAINT £k_Avien comp_Compag

FOREIGN EEY (proprio) FOREIGN EKEY (proprio)

REFERENCES Compagnie (comp) BREFERENCES Compagnie (comp)

DEFERRABLE INITIALLY DEFERRED, DEFERRABLE INITIALLY IMMEDIATE,
CONSTRAINT pk_Avion PRIMARY KEY (immat)); CONSTRAINT pk_Avion PRIMARY KEY(immat));
~-=- fils sans pére -=- fils zans pére
INSERT INTO Avion VALUES INSERT INTO Avion VALUES
("F=WTES', 'Concorde', 6570, "BING'); ['P=WTSS', 'Concordse', 6570, *BING');

1 ligne crééa.

ORA-02081: transaction annulée

== Probléme & la validation ORA-02291: violaticn de contrainte (S0U-
comeT: TOU. FE_AVION COMP_COMPAS) d'intégrité -
ORA~D2091: transaction annulée touche parent introuvable

ORA=02291: wiolation de contrainte (80U-
TOU.FE_AVION COMP COMPAG) d'intégrité -
touche parent introuvable

== Modificatien du mode
SET CONSTRAINT
fk_Avion_comp Compag DEFERRED;

== fils mans pére

INSERT INTO Avion VALUES

(*F=WTS3', 'Concorde', 6570, ‘SING');
‘1 ligne crééde.

~=- MEme probléms au COMMIT

@ Editions Eyrolles 43

S(E do bass |

instructions SET CONSTRAMT

Pour modifier une ou toutes les contraintes DEFERFARLE dans une transaction, il faut utiliser
une des instructions de type SET CONSTRAINT (S). La syntaxe générale de cette instruction
est la suivante :

SET { CONSTRAINT | CONSTRAINTS }
{ nomContraintel [,nomContraintell.. | ALL }
{ IMMEDIATE | DEFERRED };
L'option ALL place toutes les contraintes DEFERRABLE du schéma courant dans le mode
spécifié dans la suite de I'instruction.
L’option TMMEDIATE place la ou les contraintes du schéma courant en mode immédiat.
L'option DEFERRED place la ou les contraintes du schéma courant en mode différé.

instruction ALTER SESSION SET CONSTRAINTS

Pour modifier une ou plusieurs contraintes DEFERRABLE dans une session (suite de transac-
tions), il faut utiliser I'instruction ATTER SESSICH SET COONSTRATINTS. La syntaxe de cette
instruction est la suivante :

ALTER SESSION SET CONSTRAINTS = (IMMEDIATE | DEFERRED | DEFAULT }

L'option IMMEDTATE place toutes les contraintes du schéma courant en mode immédiat.
L'option DEFERRED place toutes les contraintes du schéma courant en mode différé.

DEFAULT remet les contraintes du schéma dans le mode qu’elles avaient lors de leur défi-
nition (DEFERRED ou IMMEDIATE) dans les instructions CREATE TABLE ou ALTER TABLE.

Directives VALIDATE et NOVALIDATE

Depuis la version 87, les contraintes peuvent étre actives alors que certaines données contenues
dans les tables ne les vérifient pas. Ce mécanisme est rendu possible par I'utilisation des
directives VALIDATE et NOVALIDATE.

VALIDATE ef NOVALIDATE peuvent se combiner aux directives ENABLE et DISABLE précé-
demment étudiées dans les instructions CREATE TAELE et ALTER TAELE.

i - Les directives de validation ont la signification suivante :

94

ENABLE vérifie les mises & jour a venir (insertions et nouvelles modifications de la table) ;
DISAELE autorise toute mise & jour ;
VALIDATE verifie que les donnees courantes de la table respectent la confrainte ;

& Editions Eyrolles

[chapitre n° 3

Evolution d'un schéma |

NOVALIDATE permet que cerfaines données présentes dans la table ne respectent pas la
contrainte.

Quelgues remarques :

EMABLE VALIDATE est semblable 4 ENABLE, la contrainte est vérifiée et certifie qu’elle
sera respectée pour les enregistrements présents.

DISABLE NOVALIDATE est semblable & DISABLE, la contrainte n’est plus vérifide at ne
garantit pas les enregistrements présents,

EMABLE NOVALIDATE signifie que la contrainte est vérifiée, mais elle peut ne pas assurer
tous les enregistrements. Cela permet de conserver des données anciennes qui ne vérifient
plus la contrainte tout en la respectant pour les mises i jour ultérieures.

DISABLE VALIDATE désactive la contrainte, supprime les index éventuels tout en préser-
vant le respect de la contrainte pour les enregisirements présents.

Etdions dans le tablean suivant ces deux derniers cas :

L'exemple avec EMABLE NOVALIDATE souligne le fait qu'on peut avoir une contrainte
active tout en ayant des données ne la respectant plus.

L'exemple avec DISABLE VALIDATE illustre la situation ol on ne peut pas désactiver la
contrainte (des domnnées ne la respectant pas sont encore présentes dans la table). Pour
résoudre ce probléme, il faut extraire les enregistrements en réactivant la contrainte avec
I"option EXCEPTIONS INTO... et les traiter au cas par cas.

Tablean 3-8 VALHATE of NOUALIDATE

ENAELE NOVALIDATE DISABLE VALIDATE

CHRENTE TABLE Compagnie

(camp CHAR(4), nrue NUMBER(3), rue (HAR(20), wville CHAR(15), nomlomp CHAR(15),
CONSTRAINT pk Compagnie PRIMARY EEY (comp));

CREATE TRAELE Awvion CREATE TABLE Awvion
{immat CHAR(E), typehvion CHARI(1S), {immat CHAR(&), typefvion CHAR(15),
proprio CHAR(4), proprio CHAR(4),
CONSTRAINT fk_Avion proprio_Compag CONSTRAINT fk Avion proprio_Compag
FOREIGN KEY (propric) POREIGN EEY(proprio)
REFERENCES Compagnie(comp) DISABLE, REFERENCES Compagnie (comp).
CONSTRAINT pk_Avion CONSTRAINT pk Awion
PRIMARY KEY(immat)); PRIMARY KEY (immat]);
INSERT INTO Compagnie
VALUES ('S8mNG', 7, 'Camparols’', 'Singapour', 'Singapore AL');
INSERT INTO Avion VALUES INSERT INTO Avion
['F=WTSS', 'Concorde', 'Toto’)i VALUES ('F-WISS', 'Concorde’,
'SING')

ALTER TABLE Avion ENABLE NOVALIDATE

CONSTRAINT £k Avicon propric Compag; ALTER TABLE Avion DISABLE
CONSTRAINT £k_Avion proprio Compag;

@ Editions Eyrolles

95

S(E do bass |

96

Tablean 3-8 VALDATE of NOVRLDATE (siite)

ENABLE NOVALTDATE

DISABLE VALIDATE

--interdit
INSERT INTO Avion VALUES

('P=TH20', 'Concorde', "Toko");
ORA=-02291: wiolation de contrainte (S00-
TOU . FE_AVION PROPRIO_CCMPAG) d'intégrité
= touchs parent introuvablsa

--pos=ible
INSERT INTO Avion VALUES
('F-ABCD', 'Concorde’, *SING'):

==Table Avion

Immat Typahvion Proprio
B-WTSS Concorde Lot
F=ABECD Concorde SING

--parmis
IHSERT INTO Awvion
VALUES ('F-TB20', 'Concorde', "Toto');

==interdit (dernier avion ne vérifie pas)
ALTER TABLE Avion DISABLE VALIDATE

CONSTRAINT £k Avion proprio Compag;
OFRR-02238: impossible de walider (S0U-
TOU . FE_AVION_PROPRTO_COMPAG) - clés
parents introuvables

--Table Avion

Immat Typehvion Proprioc
F-WTSS Concorde SING
F-TEZ0U Consorde Tato

Directive MODIFY CONSTRAINT

1l est possible de modifier le mode d'une contrainte en utilisant la directive MODIFY CONSTRATNT
de la commande ALTER TABLE. La modification conceme les options suivantes :

DEFERRAELE ou NOT DEFERRAELE ;

INITIALLY DEFERRED ou INITTALLY IMMEDIATE

EMARIE ou DISARLE ;
VALIDATE ou NOVALIDATE.

L'exemple suivant déclare la table Pilote possédant trois contraintes. La troisiéme contrainte
(clé primaire) adopte le mode par défaut (MWOT DEFERRAELE INITIALLY IMMEDIATE

ENABLE VALIDATE).

CREATE TRELE Pilote

{brevet CHAR(§), nbVol NUMBER(7,2), nom CHAR(30), CONSTRAINT

mn_nom NOT NULL DEFERRABLE INITIALLY DEFERRED DISAELE VALIDATE,

CONSTRAINT ck_nbHVol CHECE (nbHVol BETWEEN 0 AND 20000)
DEFEFRABLE INITIALLY IMMEDIATE ENABLE MNOVALIDATE,

CONSTRAINT pk_Pilote PRIMARY KEY

(brevet)) ;

Les instructions suivantes modifient tous les parameéires des deux premiéres contraintes :

ALTER TABLE Pilcte

MODIFY CONSTRAINT rm_nom INITIALLY IMMEDIATE ENABLE NOVALIDATE;

ALTER TABLE Pilote

MODIFY CONSTRAINT ck_nkHVol INITIALLY DEFERRED DISABLE VALIDATE;

& Editions Eyrolles

[chapitre n° 3 Evolution d'un schéma |

Exercices

R R I I T R R T R)

Les objectifs de ces exercices sont :
d’ajouter et de modifier des colonnes ;
d’ajouter des contraintes ;

de traiter les rejets.

Exercice’ 31 Ajout de colonnes

Ecrivez le script évolution . sqgl qui contient les instructions nécessaires pour ajouter les colonnes
suivantes (avec ALTER TABLE). Le contenu de ces colonnes sera modifié ultérisurement.

Tableau 3-0 Données de ia table inslafier

Table Nom, type et signification des nouvelles colonnes-
Segment nhsalle NUMEER(Z) :nombre de salles
nbPoste NUMBER(Z) :nombre de postes
Logiciel nbInstall NUMEER(2) :nombre d'installations
Poate nhLog WUMBER(Z) :nombre de logiclels installés

Wérifier la structure et le contenu de chaque table avec DESC ¢t SELECT.

3.2 modification de colonnes
Dans ce méma script, ajoutez les instructions nécessaires pour :
+ augmenter la taille dans la table Salle de la colonne nomSal 1e (passer 4 VARCHARZ (30)) ;
« diminuer la taille dans la table Segment de la colonne nomSegment 4 VARCHARZ (15) ;
+ tenter de diminuer la taille dans la table Segment de la colonne nomSegment 4 VARCHARZ (14) .
Pourquoi la commande n'est-elle pas possible 7
Vérifiez par DESC la nouvelle structure des deux tables.
Vérifiez le contenu des tables :

SELECT * FROM Salle;
SELECT * FROM Segment;

3.3 Ajout de contraintes

Ajoutez les contraintes de clés étrangéres pour assurer I'imégrité référertielle entre les tables sui-
vantes (avec ALTER TARLE. ADD CONSTRATNT.). Adoptez les comventions recommandées dans
le chapitre 1 (comme indiqué pour la contrainte entre Poste et Types).

@ Editions Eyrolles 97

[Parse S0 da base |
Flgure 3-12 Contraintes référentiefles & créer
|etage |nbSalle|nbPoste]
[8alle [nomsaiie [nbPoste[indip |
Boate ¥
[APoste |nomPoste | indIpP laa [typePoste [nBalle [nblog |
A
|
Logiciel
|nLog | nomLog |davench [version|tvpelog [prix [nbInstall |
Installer
[pPoste [nLog |numing |dateins |delai |
i) |
typaLP O 3
YE Y Typ Ik_Poste typePoste Types

Si 'ajout d'une contrainte référentielle renvoie une erreur, vérifier les enregistrements des tables
= péres » et « fils = (notamment au niveau de la casse des chaines de caractéres, Tx' est différent de
TX par exemple).

Maodifiez le script S0L de destruction des tables {dropParce . sgl) en fonction des nouvelles contrain-
tes. Lancer ce script puls tous ceux Scrits jusquici.

98

4.4

Traltements des rejets
Créez la table Rej ets avec la structure suivante (ne pas mettre de clé primaire) :

Figure 3-13 Table des rejets (exceptions)

Rajate
11 |propridtaire |nomTable , [éontrainte |
ROWID VARCHARZ (30)

Cette table permettra de retrouver les enregistrements qui na vérifient pas de contraintes lors da la
réactivation.

 Editfons Eyrofies

[chapitre n° 3

Evolution d'un schéma |

@ Editions Eyrolles

Ajoutez les contraintes de clés étrangéres entre les tables Salle et Segment et entre Logiciel et
Types {en gras dans le schéma suivant), Utilisez la directive EXCEPTTIONS INTO pour récupérer des
informations sur les erreurs.

Figure 3-14 Coniraintes référentielles & créer

Segmant
|indIP |nomgegment |etage |nbSalle|nbPoste|
A
Salle
[sBalie [ncmsalie [nEbposte] fnalp |
Poata Y ‘L
|nPoste |pomPoste | indI® |ad |typePoste |nSalle |[nbLog |
A A
——
Logiciel
|nLog | nemLog Jdatench|version]| typelog|prix [nbinstaill |
Installer
[nPoste [niog |numins [dateins [delai |
T}"PES*
| typeLP - |nomType |
L

La creation de ces contraintes doit rervayer Une erreur car
+ il existe des salles (322" et 's23') ayant un numéro de segment qui n'est pas référencé dans latable
Segment ;
+ il existe un logiciel (logd") dont le type n'est pas référencé dans la table Types.
Vérifiez dans la table Rejets les enregistrements qui posent probléme. Vérifier la correspondance
avecles ROWID des tables Salle et Logiciel @
SELECT * FROM Rejets;
SELECT ROWID,s.* FROM Salle s
WHERE ROWID IN (SELECT ligne FROM Rejets);
SELECT ROWID,1.* FROM Logiciel 1
WHERE ROWID IN (SELECT ligne FROM Rejets);
Supprimez les enregistraments de la table Rejets.
Supprimez les enregistrements de la table Salle qui posent probléme. Ajouter le type de logiciel
(BeOs', 'Systéme Be')dans la table Types.

Exécutez & nouveau l'ajout des deux cortraintes de clé étrangére. Vérifier que les instructions ne
renvoient plus d'erreur et que |a table Rejets reste vide.

S(E do bass |

|1 [BICICE 3.5 Ajout de colonnes dans la base Chantlers

Ecrivez le script évolchantier. sql qul modifie 1a base Chantiers afin de pouwir stocker :
« la capacité en nombre de places de chaque véhicule ;

« laliste des types de véhicule interdits de visite concernant cenains chantiers ;

* laliste des employés autorisés a conduire certains types de véhicule ;

« le temps de trajet pour chague visite (basé sur une vitesse moyenne de 40 kilométres par heure).
Vous utiisersz une colonne virtuelle.

Vérifiez |a structure de chague table avec DESC.

100

3.6

Mise & jour de la base Chantlers

Ecrivez le seriptmaiChant ier . sl quimet & jour les nouvelles colonnes de la base Chantlers de la
marniére suivante

« affectation automatique du nombre de places disponibles pour chague véhicule (1 pour les motos,
3 pour les voitures et 6 pour les camionnettes) ;

= déclaration d'un chantier inaccessible pour une camionnette et d'un autre inaccessible aux motes ;

- déclaration de diverses autorisations pour chague conducteur (affecter toutes les autorisations &
un seul conducteur).

Vérifiez le contenu de chagque table (et de la colonne virtuelle) avec SELECT.

& Editions Eyrolles

Chapitre 4
Interrogation des données

Ce chapitre traite de 1'aspect le plus connu du langage SQL & savoir 'extraction des données
par requétes (nom donné aux instructions SELECT). Une requéte permet de rechercher des
données dans une ou plusieurs tables ou vues & partir de critéres simples ou complexes. Les
instructions SELECT peuvent étre exécutées dans I'interface SQL*Plus (voir les exemples de
ce chapitre) ou au sein d’un programme PL/SQL, Java, C, etc.

- Linstruction SELECT est une commande déclarative (décrit ce que I'on cherche sans décrire le
moyen de le réaliser). A linverse, une instruction procédurale (comme un programme) dévelop-
perait le moyen de réaliser I'extraction de données (comme le chemin & emprunter entre tables
ou une itération pour parcourir un ensemble d'enregistrements).

La figure suivante schématise les principales fonctionnalités de I'instruction SELECT. Celle-ci
est composée d'une directive FROM qui précise la (les) table(s) interrogée(s) et d'une directive
WHERE qui contient les critéres.

Figure 4-1 Possibilités de lnstruction SELECT

Avien Pilote

Restriction (wnere) Projection (szLEcT)

Compagnie

Al France

Jointure2 TT [Jointuret (wuers)

@ Editions Eyrolles 101

S(E do bass |

102

La restriction qui est programmée dans le WHERE de la requéte permet de resireindre la
recherche i une ou plusieurs lignes. Dans notre exemple, une restriction répond i la ques-
tion « Quels sont les avions de type 'A320' 7» ;

La projection qui est programmeée dans le SELECT de la requéte permet d'extraire une ou
plusieurs colonnes. Dans notre exemple, elle répond a la question « Quels sont les numéros
de brevet et nombres d'heures de vol de tous les pilotes ? » ;

La jointure qui est programmeée dans le WHERE de la requéte permet d’ex traire des données
de différentes tables en les reliant deux 4 deux (le plus souvent a partir de contraintes réfé-
rentielles). Dans notre exemple, la premiére jointure répond & la question « Quels sont les
numéros de brevet-et- nombres d’heures de vol des pilotes de la compagnie de nom Air
France 7 » La deuxiéme jointure répond i la question « Quels sont les avions de la compa-
gnie de nom Air France 7 »

En combinant ces trois fonctionnalités, toute question logique devrait trouver en théorie une
réponse par une ou plusieurs requétes. Les questions trop complexes peuvent étre pro-
grammées i 1'aide des vues (chapitre 5) ou par traitement (PL/SQL mélangeant requétes et
instructions procédurales).

Syniaxe (SELECT

Pour pouvoir extraire des enregisirements d'une table, 1l faut avoir recu le privilége SELECT
sur la table. Le privilege SELECT ANY TABLE permet d’extraire des données dans toute table
de tout schéma.

La syntaxe SQL simplifiée de 1'instruction SELECT est la suivante :

SELECT [{ DISTINCT | UNIQUE } | ALL] {listeColonnes | expression)}
FROM nomTablel [,nomTablel].
[WHERE condition |
[clauseHiérarchigque |
[clauseRegroupement]
[BAVING condition]
[{ UNION | UNION ALL | INTERSECT | MINUS } (sousRequéte)]
[clausedrdonnancement | ;

Au cours de ce chapitre, nous détaillerons chague option & 1'aide d’exemples.

Pseudo-tahie DUAL

La table DUAL est une table utilisable par tous (en lecture seulement) et qui appartient i 1" utili-
sateur SYS. Le paradoxe de DUAL réside dans le fait qu’elle est couramment sollicitée, mais les
interrogations ne portent jamais sur sa seule colonne (DUMMY définie en VARCHARZ et conte-
nant un seul enregistrement avec la valeur X). En conséquence, DUAL est qualifiée de pseudo-
table (c’est la seule qui soit ainsi composée).

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

- learmganan de DUAL est utile pour évaluer une expression de la maniére suivante : « SELECT
expression FROM DUAL » (seule I'instruction SELECT est permise sur DUAL). Comme DUAL
n'a qu'un seul enregistrement, les résultats fournis seront uniques (si aucune jointure ou
opérateur ensembliste ne sont utilisés dans l'interrogation).

Tabfean 4-1 Uilsations de DUAL

Besoln Requéte et résultat sous SQL*Plus
Aucun, utilisation proba- SELECT 'Il reste encore bsaucoup de pages?!
blement la plus superflue FROM DUAL;

de DURL,

"ILRESTEENCOREEEAUCOUPDEPAGES? '

Il reste encore beaucoup de pages?

J'al oublié ma montre |

SELECT TO, CHAR (SYSDATE, 'DD, MONTH YYYY, HH24:MI:SS')
"Maintenant : " FROM DUAL;

Maintenant :

12, MAT 2003, 00:13:39

Pour les matheux qui vou-
draient retrouver le résul-
tat de 214, le carré du
cosinus de 3n'2 et 1.

SELECT FOWER(2,14), POWER(COS(135+3.14159265355/180),2),
EXP(l) FROM DUAL;

POWEER(2,14) POWER(COS (135%3.14159265359/180),2) EXP{l)

16384 8 2,71828183

Frudions la partie de I'instruction SELECT qui permet de programmer 1"opérateur de projec-
fion {en surligné dans la syntaxe suivante) :

@ Editions Eyrolles

SELECT [{ DISTINCT | UNIQUE } | ALL] listeColonnes
FREOM nomTable [aliasTable]

[clausedrdonnancement | ;

DISTINCT et UNIQUE jouent le méme role : ne pas prendre en compte les duplicatas.
ALL : prend en compte les duplicatas (option par défaut).

ListeColonnes :

[[aS] alias2).}

[* | expressionl [[aS] aliasl] [, expressionZ

* ; extrait toutes les colonnes de la table.
expression: nom de colonne, fonction, constante ou caleul.

alias : renomme 'expression (nom valable pendant la durée de la requéte).

103

[Parfie | S(E do bass |

FROM : désigne la table (qui porte un alias ou non) i interroger.
clauseOrdonnancement ; tri sur une ou plusieurs colonnes ou expressions.
Interrogeons la table suivante en utilisant les principales options & I’aide d’exemples divers.

Figure 4-2 Table Pilote

£ poTE

{ BREVET |} PRENOM |ONOM [{ NBHVOL { COMPA
PL-1 Benoit Sarda 4500 AF
FL-2 Aime Giaconne 2000 AF
PL-3 Pierrs Calac 1500 SING
PL-4 Jean FPhi Ferrage 2450 CAST
PL-5 Jean Gazagnes (null) SING
PL-6 Arnaud Sayag 2450 AF

Exiraction de toutes les colonnes

Lextraction de toutes les colonnes d'une table est rendue possible par ['utilisation du
caractére *. L'ordre des lignes retournées, dans le cas des tables classiques (en tas : heap), suit
le séquencement des blocs de données dans lesquels se trouvent les lignes (1"ordre chronologi-
que des insertions est en premier lieu suivi).

Tahlean 4-2 Utilisation de *

Requéte SOL Résultat sous SOL*Plus
BREEVET PRENOM NOM NEHVOL COMPR
PL-1 Benoit Sarda 4500 AF

. NOPREN BT PL-2 Bime Glaconne 2000 aw

gt S PL-3 Pierre Calac 1500 SING

PL-4 Jean Fhi Ferrage 2450 CAST
PL-5 Jean Bazagnes SING
PL-6 Arnaud Savag 2450 AawF

Pratique au premier abord, limitez au maximum |'utilisation du caractére *, car vous risquez de
solliciter le réseau en interrogeant un nombre inconnu de colonnes et le SGBD qui devra dyna-
miguement extraire la liste des colonnes de la table interrogée. De plus, wous considérez la
structure du jeu de résultats comme étant constante alors que des colonnes de la table peu-
vent apparaitre ou disparaitre entre deux exécutions.

104 & Editions Eyrolles

[chapitre n® £ Interropation des données |

Exiraction de certaines colonnes
La liste des colonnes & extraire se trouve dans la clause SELRCT.
Tahicau 3-3 Liste g8 colonnes

Requéte SQL Résultat sous SQL*Pius.
COMFL BREVET

LF PL-1

PL-2

SELECT compa, brewet FROM Filote; Sha PR
CAST PL-4

SING PL-5

AF PL-6

Les alias permettent de renommer des colonnes 4 'affichage ou des tables dans la requéte. Les
alias de colonnes sont utiles pour les calculs.

; - + Oracle traduit les noms des alias en majuscules (valable aussi pour les expressions, colon-
nes, vues, tables, etc.).

Lutilisation de la directive A5 est facultative (pour se rendre conforme & SQL2).
Il faut préfixer les colonnes par I'alias de la table lorsqu'il existe.

Tahieau 4-1 Alias (colonnes ef tabies)

Alias de colonnes Alias de table

SELECT compa AS compagnie, nom AS name, SELECTa pilotes.compa AS compagnie,
brevet num pilote a_pilotes .nom

FROM FPilote; FROM Filote a_pilotes;

COMP NAME NUM_PILOTE COMP NOM

AF Sarda PL-1 AR Sarda

AF gGiaconne PL-2 AF Glaconne

SING Calac PL-3 SING Calac

CAST Ferrage PL-4 CAST Ferrage

SING Gazagnes PL-5 SING Gazagnes

AF Sayag PL-6 AR Sayag

@ Editions Eyrolles 105

S(E do bass |

106

Duplicatas

La directive DISTINCT (UMIQUE est un synonyme) élimine tout doublon de valeur. La
premiére requéte filtre les doublons au niveau du code compagnie. La deuxiéme filtre les
doublons au niveau d’un couple de valeurs. Ici, toutes les lignes sont refournées car aucun
pilote n’estidentique au niveau de ces deux colonnes.

Tabieau -5 Besfon des duplicatas

Utilisation Requétes SOL et résultats
Liste des compagnies (sans doublon) SQL> SELECT DISTINCT compa FROM Filote;

Elimination de doublon de couples SQL> SELECT UNIQUE nbhvol,compa FROM Pilote;

NEHVOL COMPA

La gestion des NULL par la directive DISTINCT ou UNIQUE est identique & celle des traite-
ments ensemblistes (voir la section « Les opérateurs ensemblistes ») & savoir que deux NULL
sont considérés identiques.

Expressions

Il est possible d'évaluer des expressions numériques ou alphanumeriques (incluant des fonc-
tions de dates) dans la clause SELECT.

Le resultat d'une expression numérigue incluant un NULL retourne un NULL. Si vous désirez
modifier ce compertement par déefaut, vous devrez transformer un NULL en une valeur choisie
{0 ou 1 par exemple) avec la fonction NVL.

Le résultat d'une expression alphanumérique incluant un NULL ne retourne pas systématique-
ment un NULL.

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

L'exemple suivani présente deux expressions incluant un NULL ; I'expression numérique est
impactée alors que la concaténation ne I'est pas. L' opérateur de concaténation d'Oracle (| |}
accepte différentes expressions (colonnes, calculs, fonctions, etc.) et retourne une chaine de
caractéres.

Tablead 4-§ Expressions numentues

Requéte Résultat sous SQL*Plus
SELECT brevet, EREVET PRIME HEURE_NOM
nEHVa1*1 .75 AS prima; 2= 0 seesees s emese s smesess s m——
nkHVel | fnom AS heure nom 1 7875 4500Sarda
FROM Filote; 2 3500 2000Giaconne
-3 2625 1500Calac
4
5
6

4287,5 2450Ferrage
Gazagnes
4287,5 24505avag

Drdonnancement

Pour trier le résultat d’une requéte, il faut spécifier la clanse d’ordonnancement par ORDER BY
de la maniére suivante :

ORDER [SIELINGS] BY

{ expressionl | positienl | aliasl } [ASC | DESC] [NULLS FIRST |
NULLS LAST]

[, {fexpressicn2? | position2 | alias2} [ASC | DESC] [NULLS FIRST | NULLS
LAST]).

SIBLINGS : relafif aux requétes hiérarchiques, couplé au COMNECT BY (étudié en fin de
chapitre).

expression:nom de colonne, fonction, constante, caleul.

position: entier qui désigne I’expression (au lien de la nommer) dans son ordre d’appa-
rition dans la clause SELECT.

ASC ou DESC : tri ascendant ou descendant (par défaut A3C).

NULLE FIRST ou NULLS LAST : position des valeurs nulles (au début ou 4 la fin du résul-
tat). NULLS LAST par défaut pour I"option ASC, NULLS FIRST par défaut pour I'option
DESC.

@ Editions Eyrolles 107

S(E do bass |

108

Tableau 4~1 Ordennsncement

Options par défaut Option sur les valeurs NULL

SELECT brevet, nom FROM Filote SELECT brevet, nbHVol FROM Fileote
ORDER BY rom; ORDER BY nbHvol ASC NULLS FIRST;

EREVET NOM BREVET HEHVOL

PL-5 Daniel Vielle PL-H

PL-2 Didier Donsez PL-2 0

PL~1 Gratien Viel PL-1 450

FL-4 Flacide Fresnais PL-3 1000

PL~3 Richard Grin PL-4 2450

Substitutions condiionnelles

Deux structures permettent de conditionner une expression : CASE (propre & Oracle et éudide
au chapitre 6) et DECODE (la fonction SQL normative). A I'aide de ce mécanisme, si la valeur
de I'expression est identique & la valeur testée, un résultat prévu peut étre retourné. Si aucune
correspondance n'est trouvée, une éventuelle valeur par défaut peut éwe retournée (sinon
MULL). La requéte suivante permet de substituer des libellés 4 des codes.

Tahleau 3-8 Structures conditionnelles

SELECT nom, DECODE ({compa, WOM COMPRCENIE

YAF 'RAir Frange', — sosmesemsmsmmmsmsmss s mmmmm e
'SING', 'Singapere Rir', Calae Singapore Rir

'CAST', 'Trans Casta', Ferrage Trans Casta
'Eutre ou aucune') Gazagnes Singapore Air

AS compagnie Gliaconne Air France

FROM Filote Sarda Bir France

ORDER. BY nom; Sayaqg Rir France

Pseudo-colonne ROWID

Le format du rowid de chague enregistrement inclut le numéro de l'objet, le numéro relatif du
fichier, le numéro du bloc dans le fichier et le déplacement dans le bloc. Le mot-clé qui désigne
cette pseudo-colonne non modifiable (mais accessible) est ROWID.

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Tablean 4-9 Aifichage de plusiears ROWID

Requéte Résultat sous SQL*Plus

SELECT ROWID, brevet, nom ROWID BREVET NOM
FROM Pilotar === messssccsscessssss s oesss sscessess s e—
ARATAVAATAARRRAOARY PL-1 Gratien Viel
ABATaVARJARARROAME PL-Z Didier Donsez
ARATAVARTRARARARORART FL~3 Richard Grin
ABATaVARJRRARRORRD PL-4 FPlacide Fresnais
ARATAVARTAARAROAME PL-5 paniel vielle

Pseudo-colonne ROWNUM

La pseudo-colonne ROWNUM retourne un entier indiquant I'ordre séquentiel de chaque enregis-
trerment extrait par la requéte. Le premier posséde implicitement une colonne ROWNUM évaluée
a1, pour le deuxieme elle I'est a 2, efc.

Tableau 4-10 AfMichape de ROWNUM

Requéte Résultat sous SOL*Plus

SELRCT ROWNTM, brevet, nNofi = =--======= ==s--= —ccsose——aoe—ce=
FROM Pilote; 1 PL-1 Gratien Viel

2 PL-2 Didier Donsez

i PL-3 Richard Qrin

4 PL-4 Flacide Fresnais

5 PL-5 Daniel Vielle

Vous pouvez facilement utiliser cette pseudo-colonne pour limiter le nombre de lignes extraites
(WHERE ROWNUM<=n) si aucun tri (ORDER BY) n'est associé 4 votre requéte. En revanche, si
vous triez également le résultat tout en désirant extraire les npremiéres lignes (ou les
ndernigres si le tri est descendant), vous devrez utiliser une sous-requéte (voir la section
« Sous-interrogations dans la clause FROM »). Depuis la version 12¢, la clause FETCH permet
de limiter le nombre de lignes plus facilernent (voir plus loin).

insertion multilione

Nous pouvons maintenant décrire 1’insertion multiligne évoquée au chapitre précédent. Dans
I'exemple suivant, il s’agit d'insérer tous les pilotes de la table Pilote (en considérant le
nom, le nombre d’heures de vol et la compagnie) dans 1a table NomsetHVoldesPilotes. La
requéte extrait des nouveanx rowids car il s’agit d’enregistrements différents de ceux contenus
dans la table source.

@ Editions Eyrolles 109

S(E do bass |

i
N
L)

110

Notez que les instructions (CREATE TABLE et INSERT...) peuvent étre remplacées par une
unique instruction (option A5 SELECT de la commande CREATE TABLE) comme le montre la
ligne suivante :

CHEATE TABLE NomsetHVoldesPilotes AS SELECT nom, nbHVol, compa FROM
Pilote;

Tablean 4-11 inserfion muliiigne

Création et inserfion Requéte sous SQL'Plus

CREATE TABLE SELECT ROWID, p.* FROM MomsetHVoldesPilotes p;
NomsetHVoldesFilotes
(nom VARCHAR (18) , ROWID NOM NEHVOL COMEPA
PR ENIGRE D) et sieomimie et i e e
compa CHAR(d)): AAATaaRATARRARMALRE Gratien Viel 450 AF
INSERT INTO NomsetHVoldesPilotes ABRATaaRATARRRAMAAR Didier Donsesz 0 AF
SELECT nom; nbHVol, compa AAATaaRAATARRAAMARC Richard Grin 1000 SING
FROM Pilote; AARTaaRATAARRAMAAD Placide Fresmais 2450 CAST
ARARTaaARTARARAMAAR Daniel WVielle AF

Limitation du nombre de Nones

Depuis la version 12¢, la clause FETCH (éventuellement precédee de OFFSET) vous permettra
de limiter le nombre de lignes d'un résultat (avec ou sans ex aquo si vous appliquez aussi un
tri). On trouve I'équivalent de cette fonctionnalité dans SQL Server (avec TOF) et dans MySQL
(avec LIMIT), dans les instructions CREATE TAELE et ALTER TABLE.

Dans la syntaxe suivante que vous devez utiliser & la fin de votre requéte (aprés le ORDER EY),
les termes ROW on ROWS sont équivalents, de méme que FIRST ou NEXT (encore une querelle
de langage SQL entre Oracle et la norme).

[OFFSET nb_lignes_a_sauter { ROW | RWS }]
[FETCH { FIRST | NEXT }
[{ nb_lignes_a_inclure | pourcentage PERCENT }]
{ ROW | ROWS } { ONLY | WITH TIES }]
OFFSET permet d’ignorer un certain nombre de lignes en amont.
PERCENT permet de raisonner en pourcentage de lignes plutdt qu’en nombre.
WITH TIES inclut les éventuels ex squo aprés un tri.
Le tableau 4-12 présente trois extractions avec ces différentes options.

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Tahlean 4-12 Limftation de Ngnes

Requétes Résultats

Les deux pilotes les mieux payés SELECT hrevet, prenom, nom, nbhwol
(triés par ordre alphabétique), ense FrOM Pilote

limitant & deux méme sl existe des WHERE nbhwol IS NOT NULL

salalres identiques... ORDER BY nbhvol DESC

FETCH FIRST 2 ROWS ONLY;

EREVET PREMNOM NOM NEHVOL
FL-1 Benoit Sarda 4500
PL-4 Jean Phi Ferrage 2450
Méme besoin en considérant les
ex aequo. FETCH MEXT 2 ROWS WITH TIES;
EBREVET PREMCM oM NEHVOL
PL~-1 Benoit Sarda 4500
PL-4 Jean Phi Ferrage 2450
PL-§ Arnaud Sayaqg 2450

La moitié de la population des pilotes, SELECT brevet, prencm, nom, Compa
triés par ordre alphabétique. FROM Pilote

CRDER BY nom ASC

FETCH FIRST 50 PERCENT ROWS OMLY;

EBREVET PREMOM NOM COMPA
PL-3 Pierre Calae SING
PL-4 Jean Phi Ferrage CAST
PL~-5 Jean Gazagnes SING

Vous ne pouvez pas bénéficier de cette fonctionnalité dans un SELECT .. FOR UPDATE ou une
requéte définissant une vue matérialisée (voir le chapitre 12). De méme, aucune séquence
avec les pseudo-colonnes CUREVAL et HEXTVAL ne peut &tre utilisée dans une requéte incluant
la clause FETCH.

Restriction (WHERE)

Les éléments de la clause WHERE d'une requéte permettent de programmer 1’ opérateur de restric-
tion. Cette clause limite la recherche aux enregistrements qui respectent une condition simple ou
complexe. Cette section s"intéresse i la partie surlignée de I'instruction SELECT suivante :
SELECT [{ DISTINCT | UNIQUE } | ALL) { IistaColonnes | expression }
FROM nomTable [aliasTable]
[WHERE condition]

@ Editions Eyrolles 111

S(E do bass |

112

condition : est composée de colonnes, d’expressions, de constantes liées deux 4 deux entre

des opérateurs :
— de comparaison (>, =, <, >=, <=, <>),

— logiques (NOT, AND ou OR) ;

— intégrés (BETWEEN, TN, LIKE, IS NULL).

Interrogeons la table suivante en utilisant chaque type d"opérateur :

Figure 4-3 Table Pilote

Pilota
brevet nem nioHYol Iprime aompa
PLA Gralien Viel 50 500 AF
PL-2 hdier Dionsaz] AF
PL3 Fichard Grin 1000 | 90 BING |
4 Placids Frasnais 2457 500 CAST
PLS Tranie] Vielle 00 GO0 TG |
FLE Francoize 1ot [i] TES

Opératems de comparaison

Le tableau suivant décrit des requétes pour lesquelles la clause WHERE contient des opérateurs

de comparaison.

Les écritures «prime=500» et « (prime=500)» sont équivalentes. Les écritures
«prime<>500» et « NOT (prime=500) » sont équivalentes. Les parenthéses sont utiles

pour compeser des conditions.

Notez |'utilisation du simple guillemet pour comparer des chaines de caractéres.

Tahleau 4-13 Egpalité, indpalith et comparaison

Egalité

Comparaison et inégalité

SELECT brevet, nom AS "Prime 500"
FROM Pilote WHERE prime = 500 ;

BREVET Frime 500

PL-1 Gratien viel

PL-4 Flacide Fresnais

SELECT brevet, nom "de Air-France"
FROM Filote WHERE compa = 'AF' ;

BREVET de Air-France

SELECT brevet, nom, prime
FROM Pilote WHERE prime <= 400,

EREVET NOM PRIME
BL-3 Richard Grin 20
BL-6 Francolise Tort il

SELECT brewvet, nom, prime FROM Pilote
WHERE prime <> 500 ;

BREVET NOM FRIME
PL-1 Gratien Viel PL-3 Richard Grin 90
PL-2 Didier Donsesz PL-5 Daniel Vielle a00

PL-6 Francoizse Tort a

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Dpérateurs logiques

Lordre de priorité des opérateurs logiques est NOT, AND et OR.
Les opérateurs de comparaison (>, =, <, >=, <=, <> gt ! =) sont prioritaires par rapport & NOT.
Les parenthéses permettent de modifier les régles de priorité.

La premiére requéte de 1'exemple suivant contient une condition composée de trois prédi-
cats qui sont évalués par ordre de prionté (d'abord AND puis OR). La conséquence est 1'affi-
chage des pilotes de la compagnie 'SING' avec les pilotes de 'AF' ayant moins de 500 heures
de vol.

La deuxiéme requéte force la priorité avec les parenthéses (2MD et OR sur le méme pied
d'égalité). La conséquence est 'affichage des pilotes ayant moins de 500 heures de vol des
compagnies 'SING' et 'AF.

Tabieas 4-14 Opératwurs loplgues

Requéte Résultat sous SQL*Plus

SELECT brewvet, nom, compa EREVET NOM COMFPA

FROM PFilote WHERE — mmmmmm e e

{compa = 'SING' OR PL-1 Gratien Viel AF

compa = 'AF' AND nbHVol =< 500); PL~-2 Didier Donsesz AR
BL-3 Richard Grin SING
PL-5 Daniel Vielle SING

SELECT brevet, nom, compa BEEVET MOM COMPL

FEOM Piloka WHERE === e e oo
{ (Sompa = 'SINGT OR cdompa = “AFY) PL-1 Gratien viel AF
AND nbHVel < 500); PL-2 Didier Donsez AF
PL-5 Daniel Vielle SI

@ Editions Eyrolles

113

[Parfie | S(E do bass |

Dpérateurs intégrés

Les opérateurs intégrés sont BETWEEN, IN, LIKE et TS NULL.

Tableau 4-15 Dpérateurs miegrés

Opérateur Exemple
BETWEEN IimiteInf AND IimitesSup teste SELECT brevet, nom, nbHVol FROM Filote
l'appartenance & un intervalle de valeurs. WHERE nbHVol BETWEEN 399 AND 1000
BEEVET NOM NEHVOL
PL-1 Gratien Viel 450
PL-3 Richard Grin 1000
PL-5 Danjiel Vielle 400
IN (listeValeurs) cOmpare Une expression SELECT brevet, nom, compa FROM Filote
avec une liste de valeurs. WHERE compa N/ ("CAST', 'S8ING");
BREVET ‘NOM COMPR
PL-3 Richard Grin SING
PL-4 Placide Fresnais CAST
PL-5 Daniel Vielle SING
PL-6 Francolse Tort CAST
LIKE (expression) comparede maniére SELECT brevet, nom, compa FROM Pilote
générigue des chaines de caractéres a une WHERE compa LIKE [“BA%');
exprassion.
Le symbole % remplace un ou plusieurs BREVET NOM COMPR
caractdéres. 2020200 meesse o msesscssssssesss seses
Le symbole _ remplace un caractére. PL-1 @ratien Viel AF
Ces symboles peuvent se combiner. PL-2 Didier Donses AF

Utiisez de préférence des colonnes VARCHAR OU PL-4 Placide Fresnais CAST
complétez sl nécessaire par des blancs jusqu'ala PL-6 Francoise Tort CAST
taille maximale pour des CHaR.
SELECT brevet, nom, compa FROM Pilote
WHERE compa LIKE (‘')

BEEVET NOM COMPA
PL~1 Gratien viel AF
PL-2 Didier Donsez AF
IS NULL compare une expression (colonne, SELECT nom, prime, nbHVel, compa
calcul, constante) & la valeur WULL. FROM Pilote

La négation s'écrit sott « expression IS NoT WHERE prime IS NULL OR nbHVol IS NULL ;
NULL » 30/t « NOT (expression IS NULL) .

oM PRIME NEHVOL COMPA
Didier Donsez 0 AF
Francolse Tort a CAST

114 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

Fonctions

T <N T O L A - e W R)

Oracle propose un grand nombre de fonctions qui s"appliquent dans les clauses SELECT ou
WHERE d'une requéte. La syntaxe générale d'une fonction est la suivante :

nomFonction({colonnel | expressionl [,colonne? | expression2 .])

Une fonction meneligne agit sur une ligne a la fois et raméne un résultat par ligne. On distin-
gue quatre familles de fonctions monolignes : caractéres, numériques, dates et conversions
de types de données. Ces fonctions peuvent se combiner entre elles (exemple :
MAE(COS(ABS(n))) désigne le maximum des cosinus de la valeur absolue de la colonne n).

Une fonction multiligne (fonction d'agrégat) agit sur un ensemble de lignes pour ramener un
résultat (voir la section « Regroupements »).

Caracieres

Interrogeons la table suivante en utilisant des fonctions pour les caractéres :

Figure 4-4 Tabie Pilote

Pilote

bravat prenom e g Rom Sompa
P Gratien viel dba AF
PL-2 Didsar donsaz amith AF
FL-3 nchard Grin Faucon SING
PL4 Pacide Fresnms [TAST
PL-5 Uanial vialla [ones SING
PL-G Francoise tord NomalaSup | CAST

La plupart des fonctions pour les caractéres acceptent une chaine de caractéres en paramétre

de nature CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB, ou NCLOR Le tablean suivant décrit les
principales fonctions :

@ Editions Eyrolles 115

[Parfie | S(E do bass |
Tableau 4-16 Fenclions pour les caraciéres
Fonction Objectit Exemple
ASCIT(e) Retourne le caractére ‘RSCIT ("A') donne 65
ASCI équivalent.
CHR{n) Retourne le caractére CHR (161) || cHR(162) donne ;¢
équivalent dans le jeu de
caractéres de la base ou
du jeu national (NLS).
CONCAT(cl,c2) Concaténe (dguivalent & SELECT COMCAT|(
| 1), est opérationnel pour CONCAT{riom, ' wvole pour ‘), compaj
les LOB. "Paersonnel" FROM Pilote;
FPersonnel
viel travaille pour AF
Grin travaille pour SING
INITCRP (o) Premiére lettre de chaque SELECT INITCAP (prenom) "Prénom",
mot en majuscule. INITCAP (nom) "Nom"
FROM Pilote WHERE compa = 'SING';
Prénon Nom
Richard Grin
Daniel Vielle
INSTR{cl, €2 [,p Premier indice d'une sous- SELECT [INSTR("Infos-Rir :/AirBus pour
[,oll) chaine 2 dans une chaine Air-France', 'Zir', 9, 2) "Indice"
cl. FROM DUAL;
Exemple : indice du 2¢ 'Air'
aprés le 9¢ caractére. Indice
25
LOWER f¢) Touten minuscules. SELECT LOWER(premom) || ' ' ||
LOWER {niem) "Etat ciwvwil-®
FROM Pilote WHERE compa = 'SING';
Etat ecivil
richard grin
daniel vielle
LENGTHI) Longueur de la chaine. SELECT LENGTH('Infos-Air : AirBus pour
Air-France'] "Taille" FROM DUAL;
Taille
34
116 & Editions Eyrolles

[chapitre n® £ Interropation des données |
Tahiean 4-16 Fomclioas powr les caracléres (suite)
Fonction Objectif Exemple
LPAD{el,n,c2) Insertion & gauche de ¢2 SELECT LPAD('Rien',20,'-.-") "a&ur 20"
dans c1 sur n caractéres. FROM DUAL;

sur 20
el Bl T B P L

LTRIM{el,c2) Enléve c24 ¢t en SELECT

examinant la gauche de
cl.

LTRIM{"BT4TET4TAIE0 & Blagnac', 'BI4T')
"Bye les Jumbo"™ FROM DUAL;

Bye lea Jumbo

4380 A Blagnac

REFLACE (cl, ¢2,
cl)

Recherche les e2
présentes dans c1 etles
remplace par c3.

SELECT
BEPLACE ('Matra et Bercspatiale’,
"Matra', 'EADS') "Changement"
FROM DUAL;

EADS et BRerospatiale

RERD(cl,n,c2)

Insetfion & drolte de c2
dans e7 sur n caractéres.

"sur 19"

SELECT RPAD|'Rien',18,'-.-')
FROM DUAL;

RTRIM{cl,cZ)

Enléve c2a cT en
examinant la droite de 1.

ETRIM{'A380 & BlagnacB747B74%7', "BT47")
"Bye les Jumbo" FROM DUAL;

Bye les Jumbo

B3804 Blagnac

SOUNDEX {c)

Extrait la phonétique d'une
expression (in english
only).

SELECT nom, surnom, compa FROM Filote
WHERE SOUNDEX{surnom) IN
(SOUNDEX(' SMYTHE! | , SOUNDEX (! John ')) ;

oM SURMOM COMPA
donsez smith EF
vielle jonas SING

@ Editions Eyrolles

117

[Parfie | S(E do bass |

Tableau 3-16 Fonclions pour les carachres (suffe)
‘Fonction Objectif Exemple:

SUBSTR{e,n, [t]) Extraction de la sous- SELECT
chaine coommengant 4la SUBSTRI'Air Frarce A Blagnas Coni',12,9)
position nsur { caractéres. "o ogart

FROM DUAL;
ol ga?
4 Blagnac
TRANSLATE('cl®, Transforme chaque SELECT TRANSLATE("ORACLESL',
tdet, ‘vers') caractére de ¢ existant 0123456 789ABCDEFGHIJHLMIOPOR' ,
dans de ayant un 'ChaineVers-Codage-0123456789")
correspondant dans vers. "Codage" FROM DUAL;
Codage
69-olasi

TRIM{cl FROM c2) Enléveles caractéres c1d SELECT
la chaine c2 (options LEA- TRIM('B' FROM 'BR380 4 BlagnacBBBEB')
DING et TRAILING pour "Bye leg Juibo" FROM DURL;
préciser le sens du
découpage). Bye les Jumbo

R3I80 A4 Blagnac

UPFPER Tout en majuscules. SELECT UPPER{prenom) || ' ' ||
UBPER{nom) "Pilotes de CAST"
FROM Pilote WHERE compa = 'CAST';

Pilotes de CAST
PLACTDE FRESMAIS
FRERCOISE TORT

118 & Editions Eyrolles

[chapitre n® £ Interropation des données |

Numeritues
La plupart des fonctions numériques acceptent en parameétre une ou plusieurs expressions de
type NUMBER.
Tableau 4-17 Fonclions numériques
AEBS (n) Valeur absolue de n.
ACOS (nn) Arc cosinus (nde -1 & 1),
retour exprimé en radians
(de 0 & pi).
LTREN (n) Arc tangente (¥ n), retour
exprimé en radians
(de —pii2 & pir2).
CEIL{n/ Plus petitentier 2 & n. CEIL{15.7) donne 16.
Cosin) Caosinus de nexprimé en COS(60*3 . 14159265359/180) donne 0.5,
radiansde 0 a2 pi
{conversion en degrés :
df3.14159265359/180).
COBH (a) Cosinus hyperbolique de n.
EXP (n)} e(2.71828183) ala
puissance n.
FLOCR (n) Plus grand entier <& n. FLOOR{L5.7) donne 15,
LN () Logarithme népérien de n.
LOG (n) {m,n) Logarithme de ndans une
base m.
MOD {m, nn) Division entiere de mpar n.
POWER (m, 1) mpuissance n.
ROUND (m, 11} Arrondi & une ou plusieurs BOUND(L7.567 ,2) donne 17 ,57.
décimales.
SIGN (n) Retourne le signe d'un
nombre.
5IM(n) Sinus de n exprimé an SIN{30#3.14159265355,/180) donne 0.5.
radians de 0 4 2 pi
[conversion en degrés :
of 3.14159265359/180).
SINH (n) Sinus hyperbolique de n.
SQRT (1) Racine carrée de n.
TAN (n)} Tangente de n exprimée
enradians de 0 & 2 pi.
TRENH (1} Tangente hyperbolique
de n.

@ Editions Eyrolles 119

S(E do bass |

120

Tableau 4-1] Fonclons numériques (suffe)

‘Fonction Objectif Exemple
TRUMNC (11, m) Coupure denam TRUNC{15.79,1) donne 15.7.
décimales.
WIDTH _BUCKET Construction d'histo-
(expression, grammes, expression

min, max,num) nombre ou date, min limite
inférieure, max limite
supérieure, num nombre
d'intervalles 4 construire.

Valeurs spéciales pour les flottants

La recommandation IEEE 754 définit des valeurs spéciales pour les flottants : I'infini positif
(+ 1), I'infini néfatif (-1MF) et Nal (Not a Number) qui est utilisé pour représenter les résultats
des opérations indéfinies. L'obtention de ces valeurs se réalise par les opérations suivantes :
dépassement de capacité (overflow) pour obtenir - INF, +IMF, opération invalide retourne Nali,
la division par zéro peut retourner -INF, + INF ou NaN. Les opérateurs SQL NAN et INFINITE
permettent de tester ces valeurs spéciales sur des flottants.

Le script suivant crée une table, insére deux flottants, modifie les chiffres pour insérer des
valeurs infinies (la premiére résultant d une division par zéro, la seconde d’un dépassement de
capacité).

CREATE TABLE Flottants (bfloat BINARY FLOAT, bdouble BINMARY DOUBLE) ;

INSERT INTO Flottants VALUES (+3.4e+38f, +1.7Te+308d);
SELECT * FROM Flottants;

EFLOAT EDOUBLE

3,4E+038 1,77E+308

UPDATE Flottants SET bfleat = bfleat/0, bBdeubles 2*bdouble;
SELECT * FROM Flottants WHERE bflcat IS INFINMITE OF bdeuble IS INFINITE;

BFLOAT BDOUBLE

Inf Inf

Fonctions pour les flottants

Plusieurs fonctions sont disponibles pour manipuler des flottants.

& Editions Eyrolles

[chapitre n° 4

Interropation des donnéas |

TO_BINARY _DOUBLE
Comme son nom l'indique, cette fonction transforme une expression en flottant de type
BINARY DOUELE. La syntaxe est la suivante :
TO_BINARY DOUBLE (expression [, 'format' [, '‘nlsparam']])
format et nlsparamont la méme signification que dans TO_CHAR ;
expression représente une valeur numénque ou 'INF, -INF', (HaN'.
Le script suivant présente 1'utilisation de cette fonction.

SELECT TO_BINARY_DOUBLE(13.56767) FROM DUAL:
TO_BINARY. DOUBLE (13.56767)

1, 357TE+001

SELECT TO BINARY DOUBLE('-INF') FROM DURL;
TO_BINARY DOUBLE (" -INF'}

-Inf

TO_BINARY FLOAT

Cette fonction transforme une expression en flottant de type BINMARY FLOAT. La syntaxe estla
suivinte
TO_BINARY_FLOAT (expression|, ' format'[, 'nlsparam']])

La signification des paramétres est identique i la fonction précédente.

DUMP

La fonction DUMP n'est pas dédide aux flottants mais elle peut &tre utile pour mieux visualiser
leur représentation. Cette fonction décrit la représentation interne de toute information sous
la forme d'une chaine de caractéres incluant le code du type de données, la taille en octets et la
valeur de chaque octet. Sa syntaxe est la suivante :
DUMP (expression|, FormatRetour [, position [, longueur 1 1 1)

FormatRetour:

— 8 pour retourner une netation octale.

— 10 pour retourner une notation décimale.

— 16 pour retourner une notation hexadécimale.

— 17 pour retourner des caractéres distincts.

position et longueur combinent la portion de la représentation interne a retourner
(par détaut, toute I’expression est décodée).

@ Editions Eyrolles 121

S(E do bass |

122

Voici deux exemples d'utilisation de cette fonction. La confirmation qu'un fottant de type
BIMARY_DOUBLE est représenté sur 9 octets (dont 8 visibles) apparait ici clairement. La valeur

de chaque octet en décimale est précisée dans la liste de valeurs retournées.

SELECT DUMP (‘T0_BINARY DOUBLE(13.56767) ,10} FROM DUAL;
DUME (T0_BINARY DOUBLE (13.56767) ,10)

Typ=101 Len=8: 192,43,34,165,164,105,215,52

SELECT DUMP{'C.Socutou', 10} *"C.Socutou en ASCII" FROM DUAL;
C.Soutou en ASCIT

Typ=96 Len=8: 67,46,83,111,117,116, 111,117

NANVL

La fonction NANVL permet de substituer la valeur NaN (Nor a Number) contenue dans un
flottant par une autre valeur donnée et compréhensible (exemple : zéro ou NULL). La syntaxe

de cette fonction est la suivante :

HNANVL(expression, substitution)

expression désigne la valeur a substituer (tout type numérique ou non numErique
pouvant étre implicitement converti en numérique). S11expression n’est pas Naty, la valeur
de |'expression est retournée. Sinon la valeur substitution est retournée.

Le code suivant décrit 'utilisation de cette fonction appliquée i deux fottants. L' opérateur 18
NAN est utilisé dans la deuxiéme requéte. Dans la troisiéme requéte, 1" opérateur NANVL permet
de substituer la valeur O au premier flottant et -1 an second quand ces deux valeurs sont indé-

terminées.
INSERT INTO Flottants VALUES (+3.4e+38f,+41.77e+3084) ;
INSERT INTC Flottants VALUES ('NaM','NaM') ;

SELECT * FROM Flottants;
BFLOAT BDOUBLE

3,4E+038 1,77E+308
Nan Nan

SELECT * FROM Flottants WHERE bfloat IS NOT MAN AMND bdouble IS NOT MAN;

BFLOAT EBDOUBLE

3,4E+038 1,77E+308

SELECT MANVL(bfleat,0), NANVL(bdouble,-1) FROM Flottants;

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

NANVL (BFLOAT, 0) MANVL({EDOUBLE, -1}

3,4E+038 1, 7TTE+308
0 ~1,0E+000

REMAINDER

La fonction REMATNDER retourne le reste de la division de m par n. La fonction 0D étudiée au
chapitre 4 est quelque peu similaire i REMATINDER (MOD utilise I'opérateur FLOOR alors que
REMATMDER utilise ROUND). La syntaxe de cette fonction est la suivante :

REMATNDER (f, 1)

m désigne l1a valeur a diviser (tout type numérique ou non numérique pouvant étre implici-
tement converti en numérique). n désigne de la méme maniére le diviseur.

Si n=10 ou si m est infini, et si les arguments sont de type NUMEER, la valeur retournée est
une erreur. Dans le cas de flottants (BINARY_FLOAT or BINARY DOUEBLE), la valeur retour-

née est Mal (Nor a Number).

Si n est différent de zéro, la fonction retourne la valeur m - (n*N) avec N plus grand entier

plus proche du résultat m/n.

Si m est un flottant et si le résultat vaut zéro, alors le signe du résultat est du signe de m. Si
m est un NUMBER et si le résultat vaut zéro, alors le résultat n'est pas signé.
Le code suivant décrit I'utilisation de cette fonction appliquée & deux flottants de différents
types également valués (1234,56). La valeur retournée n'est pas zéro du fait da la différence

des types.

INSERT INTO Flottants VALUES (1234.56,1234.56};

SELECT * FROM Flottants;
EFLOAT EDOUELE

1,235E+003 1,235E+003

SELECT bfloat, bdouble, REMATNDER(bfloat bdouble) FROM Flottants;

EFLOAT EDOUELE REI-!B]I\IIER{EE’IDHI‘,EDOUBIE}

1,235E+003 1,235E+003

@ Editions Eyrolles

123

[Parfie | S(E do bass |
Dates
Le tableau suivant décrit les principales fonctions pour les dates.
Tahiean 4<18 Fonctions pour les dates

Fonction Objectif Retour

ADD_MONTHS Ajome des mois a une date. DATE

CURRENT _DATE Retourne la date courante (calendrier grégorien) DaTm
dans la session et le fuseau de la base.

EXTRACT ({YEAR | MONTH | DAy | Extralt une partie donnée d'une date ou d'un NUMBER.

HOUR | MINUTE | SECOHND} FROM intervalle.

{4 | in)

LAST DAY (d) Retourne le dernier jour du mois. DATE

MONTHS_BEETWEEN (d1, d2) Retourne le nombre de mols entre deux dates (o1 NUMBER
et d avec di=d2).

NEW_TIME (d, 21,22) Retourne la date d exprimeée en zone z7dansla DATE
zone z2.

NEXT_DARY (d, jour) Retourne la date du prochain jour ouvrable DATE
(exemple jour *LUNDI‘} & partir de d.

ROUND{ d, format) Arrondit une date d selon un format (exemple : DATE
“YERE).

5Y SDATE Date courante (du systéme). DATE

TRUNC (d, format) Tronque une date d selon un format (exemple : DATE
YYERR').

124

Quelques exemples d'utilisation (SYSDATE est ici mercredi 14 mai 2003) sont donnés dans le

tableau suivant.

Tableau 4-19 Exemples de fonclions pour les dales
Besoinet fonction

Reésultat
Mercredien 7 7 Mercr/T
SELECT MEXT DAY(SYSDATE, 'MERCREDI!) "Mercr/7" FROM DUAL; —-===-==
21/05/032
Rendez-vous dans 4 mais. ROV
SELECT ADD MONTHS(SYSDATE,d4) "RODV" FROM DUAL; = —-==meee
14708703
Numéro du mois d'll y 2 65 jours ? Mois

SELECT EXTRACT (MONTH FROM (SYSDATE-65)) "Mois' FROM DUAL;

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Tableau 4-19 Exemples de fonclons pour fes dales (sufte)

Besoin et fonction Résultat
Arrondi du 28 octobre 2005 au niveau du moils. Arrondil
SELECT ROUMD(TO_DATE {120-0CT=2005") , ‘"MONTH") "Arrondi® FROM --=-----
DIIAL; 01/11/058
Coupe du 28 octobre 2005 au niveau du mois. Trongue
SELECT 'TRUNC(TO DATE |'28-0CT-2005') , ‘MONTH') "Trongue" FROM — --=-----
DUAL; 01/10/05
Gonversions

Oracle autorise des conversions de types implicites ou explicites.

Implicites

Il est possible d'affecter dans une expression ou dans une instruction SQL (INSERT,
UPDATE...), une donnee de type NUMEER (ou DATE) a une donnée de type VARCHAR2 (ou
CHAE). Il en va de méme pour I'affectation d'une colonne VARCHARZ par une donnée de type
DATE {ou NUMBER). On parle ainsi de conversions implicites.

Pour preuve, le script suivant ne renvole aicune erreur :

I CREATE TAHLE Test {cl NUMBER, c2 DATE, c3 VARCHAR2(1), c4 CHAR);
INSERT INTO Test VALUES ('548,45', '13-05-2003', 3, 5};

Explicites

Une conversion est dite explicite quam:l on utilise une fonction a cet effet. Les fonctions de
conversion les plus connues sont TO_KUMBER, TO_CHAR et TO_DATE.

Les tonctions de conversion sont décrites dans le tableau suivant.

Tahieau 3-20 Foncilons de comversion

Fonction Caonversion Exemple

EIN_TO_ Les bits en NUMBER. BIN TO NUM(1,0,1,0) donne 10,
NUM (b1, bi.)

CAST (expression Lexpression dans le type en CAST (2 A5 CHAR) donne *2°,
AS tvpedracle) paramétre.

@ Editions Eyrolles 125

S(E do bass |

126

‘Fonetion

Tabiean 4-20 Foactions de cenverslon (siife)
Conversion Exemple

CHARTOROWID)

La chaine cen ROWID.

COMPOSE ("')

La chaine cen Unicode.

CONVERT (&,
jeudest
[, jeusaures])

La chaine cdu jeu de caractéres COMVERT('A E L @',
source en jeu de destination. 'USTASCII), 'WESISO8855PL')
donng *A E I 77,

NUMTODSINTERVAL Un nombre dans un type INTER- Déja étudié.
VAL DAY TO SECOND.
NUMTOYMINTERVAL Un nombre dans un type INTER- Déja étudié.

VAL YEAR TO MONTH.

ROWIDTOCHAR ()

Le ROWID ren VARCHARZ.

TO_CHRR {c) La chalne en VARCHARZ,

TO_CHRR (d[, for- Ladate en VARCHARZ, Déja étudié.

mat)

TO_CHRR (n[, for- Le nombre en VARCHARZ . O NUMBER('1234.567 ", '9.9EEEE" jdo
mat) nne 1.3E+02.

TO_DSINTERVAL (¢

Une chaine cdans un type INTER-

[' paramnT.s']) VAL DAY TO SECOND.

TO_NUMEER (o Une chaine ccontenant unnombre TO NUMBER | '100 2678 ") donne

[, format dans un type MMBER-selon un 100,2678.

[, 'paramvis' 1) format etune langue.

TO_YMINTERVAL(e) Une chalne ¢ dans un type SYSDATE + TO ¥YMINTERVAL('01-02")
INTERVAL YEAR TO MONTEH. donne la date du jour + 1 an et 2 mois.

UNISTR('&") La chaine cen Unicode. UNISTR('\00DE&') donne &.

Rutres fonctions

D’autres fonctions n’appartenant pas i la classification précédente sont présentées dans le
tablean suivant :

Fonction

Tablgau 4-21 Ruires fonctions
Objectit Exemple

DECODE { colonne,
cherche, resultat

Programme un case. DECODE (grade, 1, 'Copilote!,
2, Instructeur') affiche

[, cherche, resultat]..) ‘Copilote* silacolonne grades=1.
GREATEST (expression[, Retournglaplus grande des GREATEST| 'Raffarin', 'Chirac',
expragsion].) expressions. "K-Men ') retourne 'X-Men' .
LEAST(expression|, Retourne Ja plus petite des LEAST('‘Raffarin', 'Chirac’,
expression].) expressions. “¥-Men') retourne 'Chirac'.

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Fonction

Tabtesu 4-21 Auires fonctions (suite)
Objecti Exemple

NULLIF (exprl, expr?) Si expr! = expr2 refourne NULLIF('Raffarine!, 'Parafine')

WULL, sinon retourne expri. retourne 'Raf farine'.

NVL {exprl, expr2) Convertit expr susceptible MVL(grade, 'aAucun | ') refourne
d'étre nulle en une valeur "ABucun I 8i grade estNULL.
réelle (expra).

Regroupements

WO e R R R e S e R e e B e B e B e R e B R S R R R G R e G e R e R R e B e B e W R e W

Cette section traite a la fois des regroupements de lignes (agrégats) et des fonctions de groupe
(multiligne). Nous étudierons la partie surlignée de I'instruction SELECT suivante :

| SELECT [{ DISTINCT | UNIQUE } | ALL] listeColonnes
FROM nomTable
["HERE condition]
[clauseRegroupement |
[HAVING condition]

[clausedrdonnancement] ;

H

IisteColonnes: peut inclure des expressions (présentes dans la clause de regroupe-
ment) ou des fonctions de groupe.

elauseRegroupement : GROUP BY (expressionl[,expression2].) permet de
regrouper des lignes selon la valeur des expressions (colonnes, fonction, constante, calcul).

HAVING condi tion: pour inclure ou exclure des lignes aux groupes (la condition ne peut
faire intervenir que des expressions du GROUP BY).

Interrogeons la table suivante en composant des regroupements et en appliquant des fonctions

de groupe :
Figure 4-5 Table Pilote

Pilote

brevet |nom nbHVol fprime |embauche typelvion compa
PL-1 Gratien Viel 450 500 050219685 | Ad20 AF
P2 Didier Donsez | 0 13051505 | Ad20 AF
PL-3 Richard Grin 1000 11/08/2001 | AS20 BING
FL-4 Placids Fresnais | 2450 00 21082001 | A330 SING
FL-5 Danial Vielle 400 BOO | 160171066 | AS40 AF
PL-6 Francoise |ort [i] 24/12/2000 A3d0 CAST

@ Editions Eyrolles

127

S(E do bass |

128

Fonctions de groupe
Nous émdions dans cette section les fonctions usuelles. D' autres sont proposées pour manipuler
des cubes (datawarehouse).

Le tableau suivant présente les principales fonctions. L'option DISTINCT évite les duplicatas
alors que ALL les prend en compte (par défaut). A I'exception de COUNT, toutes les fonctions
ignorent les valeurs NULL (il faudra utiliser VL pour contrer cet effet).

Tahlean 4-22 Foncions de groupe

‘Fonction Objectf

AVG([DISTINCT | ALL] expr) Moyenne de expr (nombre).

COUNT({* | [DISTINCT | ALL] expr}) Nombre de lignes [# toutes les lignes, expr pour
les colonnes non nulles).

MRX([DISTINCT | ALL] expr) Maximum de expr (nombre, date, chaine).

MIN([DISTINCT | ALL] expr) Minimum de expr (nombre, date, chaine).

STODEV([DISTINCT | ALL] expr) Ecart type de expr (nombre).

SUM([DISTINCT | ALL] expr) Somme de expr (nombre).

VARIEANCE([DISTINCT | ALL] expr) Varlance de expr (nombre).

Utilisées sans GROUP BY, ces fonctions s'appliquent & la totalité ou & une seule partie d'une
table comme le montrent les exemples suivants.

Tahleau 4-23 Exompies de fonclions de groupe

Fonction Exemples

AVG Moyenne des heures de vol et des primes des pilotes de la compagnie 'AF.
SELECT AVE (nbHVol), AVE(prime) FROM Pilote WHERE compa = 'AF';

AVG (NEHVOL) AVG(FPRIME)

283,333333 550
COUNT Nombre de pilotes, d'heures de vol et de primes (toutes et distinctes) recensées dans la
table.

SELECT COUNT(*), COUME(nbHVoel), COUNT(prime), COUNT[DISTINCT prime)
FROM Pilote;

COUNT (*) COUNT{NEHVOL) COUNT(PRIME) COUNT (DISTINCTPRIME)

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Tahlesu 4-23 Exemples de fonciions de proupe (Suils)

Fonction Exemples

MAX - MIN Nombre d'heures de vol le plus élevé, date d'embauche la plus récente. Nombre
d'heures de vol ke moins élevé, date d embauche la plus ancienne.
SELECT MAX (nbHVol), MAX(embauche) "Date+", MIN(prime),
MIN (embauche] "Date-" FROM Filote;

MAX (NEHVOL) Date+ MIN{FPRIME) Date-

2450 21/09/01 0 16/01/65
STDEV — Ecart type des primes, somme des heures de vol, variance des primes des pilotes de la
SUM— compaanie ‘AF,

VARIANCE SELECT STDDEY (prime), SUM{nbHVel), VARIANCE (prime) FROM Pilste
WHERE compa = 'AF';

STODEV (PFRIME) SUMINBHVOL) VARIANCE (PRIME)

T0,71067AL &850 5000

Etudions 4 présent ces fonctions dans le cadre de regroupements de lignes.

Etude du GROUP BY et HAVING

Le groupement de lignes dans une requéte se programme au niveau surligné de I'instruction
SQL suivante :
SELECT coll[, col2.), fonctioniGroupe({.}|[, fonction2Groupei..}..]
FROM nomTable
["HERE condition]
GROUP BY colll, col2].}
[HANING condition |
[ORDER BY..] ;
la clause WHERE de la requéte permet d’exclure des lignes pour chaque groupement, ou de
rejeter des groupements entiers. Elle s'applique donc & La totalité de la table ;

la clause GROUP BY liste les colonnes du groupement ;
Ia clause HAVING permet de poser des conditions sur chague groupement.

Les colonnes preésentes dans le SELECT doivent apparaitre dans le GROUP EY. Seules des
fonctions ou expressions peuvent exister en plus dans le SELECT.

Les alias de colonnes ne peuvent pas éfre utilisés dans la clause GROUF BY.

Dans I'exemple suivant, en groupant sur la colonne compa, trois ensembles de lignes (groupe-
ments) sont composés. Il est alors possible d'appliquer des fonctions de groupe i chacun de

@ Editions Eyrolles 129

S(E do bass |

ces ensembles (dont le nombre n'est pas précisé dans la requéte ni limité par le systéme qui
parcourt toute la table).

Flgure 4-6 Groupement surla colonne compa

Filote
bravet |noin nbRVel |prime |enbauche typeAvion |compa
PL-1 Gratien Viel 450 500 b
PL-2 Dichier Donsaz [i] 13/05/1995 | A320 AF
1 PL-5 Daniel Viefle 400 600 16/01/1965 | A340 AF
?L-S Francoise Tort [i] 24/12/2000 | A340 CAST
PC3 Fichard Gnn 650 Tioaeen] | Aaz0 BING |
PL-4 Placide Fresnais | 2450 | 600 21/08/2001 Aa_:lﬂ Siﬂcl-i_]

1 est aussi possible de grouper sur plusieurs colonnes (par exemple ici sur les colonnes compa
et typefvion pour classifier les pilotes selon ces deux critéres).

Utilisées avec GROUP BY, les fonctions s"appliquent désormais i chaque regroupement comme
le montrent les exemples suivants :
Tableau 4-24 Exemple de fonctions de groupe aves GROUP BY

Fonction Exemples
AVG

Moyenne des heures de wvol et des primes pour chagque compagnie.
SELECT compa, AVE(nbHVol), AVG@iprime] FROM Filote
GROUP BY (compal ;

COMP AVG (NEHVOL) AVG(PRIME)

EF 283,333333 550
CAST a
SING 1725 500

COUNT

Nombre de pilotes (et ceux qui ont de l'expérience du vol) par compagrie.
SELECT compa, COUNT(*), COUNT(nbHVol) FROM Pilote
GROUP BY{compa) ;

COMP COUNT (*) COUNT (NEHVOL)

BF 3 3
CAST 1: 0
SING 2 2

130 Editfons Eyrofies

[chapitre n° 4

Interropation des données |

Tahleau 4-24 Exemple de fenclions de groupe avec BROUP BY (suffe)

Fonctlon Exemples
MEX Nombre d'heures de vol le plus élevé, date dembauche la plus récente pour chague
compagnie.
SELECT compa, MAX(nbHVol), MAX({embauche) "Date+"
FROM Pilote GROUP BY (compa) ;
COMF MAX (NEHVOL) Datos
AF 450 13/05/95
CAST 24712700
SING 2450 21/09/01
STDEV - Ecarts type des primes et sommes des heures de vol des pilotes volant sur 'A320' de
sUM chague compagrnie.
(avec WHEFE) SELECT compa, STDDEV(prime), SUM(nbHVel) FROM Pilote
WHERE typelvicn = 'A3Z0' GROUP BY(compal ;
COMP STDDEV (FRIME) SUM(NEHVOL)
AF 4] 450
SING 100a
Plusieurs Nombre de pilotes qualifiés par type o'appareil et par compagnie.
colonnes SHLECT compa,typeivion, COUNT(brevet) FROM Filote
dans le GROUP BY (compa , typelvien) ;
GROUP BY
COMP TYFE COUNT (EREVET)
AF R3Z20 2
AF 340 1
CAST A340 1
SING R3Z0 1
SING R330 £
GrROUP BY et Compagnies (et nombre de leurs pilotes) ayant plus d'un pilote.
HAVING SELECT compa, COUNT(brevet) FROM Pilote

GROUP BY (compa)
HAVING COUNT(brevet)==2;

COMP COUNT { BREVET)

@ Editions Eyrolles

131

[Parfie | S(E do bass |

Opérateurs ensemblistes

O W O R RN R O (-, (- e W e

Une des forces du modéle relationnel repose sur le fait qu’il est fondé sur une base mathéma-
tique (théorie des ensembles). Le langage SQL programme les opérations binaires {(entre deux
tables) suivantes :
intersection par I'opérateur INTERSECT qui extrait des données présentes simultanément
dans les deux tables ;
union par les opérateurs UNICN et UNION ALL qui fusionnent des données des deux tables ;
différence par I’opérateur MINUS qui extrait des données présentes dans une table sans étre
présentes dans la deuxiéme table ;

produit cartésien par le fait de disposer de deux tables dans la clause FRQY, ce qui permet
de composer des combinaisons i partir des données des deux tables.

ﬂ Un opérateur ensembliste se place entre deux requétes comme le montre la syntaxe simplifiée
suivante :

SELECT .. FROM nomTable [WHERE ..] opérateur SELECT .. FROM nomTable [WHERE ..];

Les cpérateurs ensemblistes ont pour l'instant tous la méme priorité. Cependant, pour étre
conformes aux nouvelles directives de la norme, les versions ultérieures d'Oracle privilégieront
I'opérateur INTERSECT par rapport aux autres.

51 une requéte contient plusieurs de ces opérateurs, ils sont évalués de la gauche vers la droite,
quand aucune parenthése ne spécifie un autre ordre. Ainsi, les deux écritures suivantes produi-
sent des résultats différents :

SELECT .. INTERSECT SELECT .. UNION SELECT .. MINUS SELECT..
SELECT .. INTERSECT SELECT .. UNION (SELECT .. MINUS SELECT ..)

Restrictions

Seules des colonnes de méme type (CHAR, VARCHAR2, DATE ou NUMEER) doivent étre compa-
rées avec des opérateurs ensemblistes.

Il n'est pas possible d'utiliser les opérateurs ensemblistes sur des colonnes BLOB, CLOB, BFILE,
ou LONG. Les collections varrays et nested tables (extensions objets) sont également exclues.

Attention, pour les colonnes CHAR, 4 veiller & ce que la taille soit identique entre les deux
tables pour que la comparaison fonctionne. Le nom des colonnes n'a pas d importance. Il est
possible de comparer plusieurs colonnes de deux tables.

132 & Editions Eyrolies

[chapitre n® £ Interropation des données |

Exempie

Fiudions & présent chaque opérateur & partir de I'exemple composé des deux tables suivantes.
11 est visible que seules les deux premiéres colonnes peuvent étre comparées. Il ne serait pas
logique de tenter de faire tne intersection ou une union entre 'ensemble des prix d’achat et
des heures de vol par exemple.

Bien que permise par Oracle, I'union des prix et des heures de vol (deux colonnes NUMBER) ne
serait pas non plus valide d’un point de vue sémantique.

Figure &7 Tables

AviondeAF AviondeSING
{mma t typeivion nbHVol immatriculation |typeiy Prixhchat
[T-WT55 Concorde B5T0 S-ANS] A2l 104 500
F-GLFS AT20 el 5-AVEL Al 156 000
F-LTME A340 =-SMILE AJA0 1
[F-GTHP LD 204 500
Operateur NTERSECT

: - Lopérateur TNTERSECT est commutatif (requétel INTERSECT reguéte? est identique &
requéte? INTERSECT requétel). Cetopérateur élimine les duplicatas entre les deux tables
avant d'opérer l'intersection.

Notez qu’a I'affichage, le nom des colonnes est donné par la premiére requéte. La deuxidéme
fait apparaitre deux colonnes dans le SELECT.

Tablesn 4-25 Exempies avec INTERSECT
Besoin Requéte

Quels sont les types d'avions que SELECT typefvion FROM Avionsdenw
les deux compagnies exploitenten INTERSECT

commun 7 SELECT typedv FROM AvionsdeSING;
TYPERVION
R3Z0
B340
Quels sont les avions qui sont SELECT immat, typelvion FROM AvionsdedF
exploités par les deux compagnies INTERSECT
en commun 7 SELECT immatriculation,typelv FROM AvlonsdeSING;

IMMAT TYFEAVION

F-GTMP A340

@ Editions Eyrolles 133

S(E do bass |

|134

Si vous voulez continuer ce raisonnement en vous basant sur trois compagnies, il suffit
d’ajouter une clause INTERSECT et de la faire suivre d'une requéte concernant la troisiéme
compagnie. Ce principe se généralise, et, pour n compagnies, il faudra n requétes reliées
entre elles par n-1 clauses INTERSECT.

Opérateurs UNION et UNION ALL

Les opérateurs UNION et UNION ALL sont commutatifs. Lopérateur UNION permet d'éviter les
duplicatas (comme DISTINCT ou UNIQUE dans un SELECT). UNION ALL ne les &limine pas.

Tabtean 4-26 Exemples avec les opiralewrs UNION

Besoin Requéte
Quels sont tous les types d'avions que les deux SELECT typeAvion FROM AwvionsdeaF
compagnies exploitent ? UNION

SELECT typedv FROM AvionsdeSING;

Concorde

Méme requéte avec les duplicatas. On extraitles SELECT typefvicn FROM Awvicnsdear
types de la compagnie 'AF suivis des types dela UNION ALL
compagnie 'SING". SELECT typeAv FROM AvionsdeSING:

TYPEAVION

Ce principe se généralise & 'union de n ensembles par n requétes reliées avec n-I clauses
UMION ou UNLION ALL.

Dpérateur MINUS

Lopérateur MINUS est le seul opérateur ensembliste qui ne soit pas commutatif. Il élimine les
duplicatas avant d'opérer la soustraction.

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Tahiean 4-27 Exemples ave I'opérateur MiNKS

Besoin Requéte
Quels sont les types d'avions exploités par la SELECT typelvion FROM AvionsdedF
compagnie 'AF mals pas par ‘SING' 7 MINUS
SELECT typelAv FROM AvionsdeSING;
TYFPERVION
Concorde
Quels sont les types d'avions exploités par la SELECT typelv FROM AwvionsdeSING
compagnie 'SING' mais pas par 'AF 7 MINUS
SELECT typelvion FROM AvionsdedA¥F
TYPERYV
R330

Ce principe se généralise la différence entre n ensembles par n requétes reliées (dans le bon
ordre) par n-I clauses MINUS,

Ordonner les résultats

Pour un faible velume de données, le résultat d'une requéte ensembliste semble trié par défaut
par ordre creissant selon la premiére colonne extraite mais il n'en est rien dés que le nombre
de lignes retourné devient important. Pour tier un jeu de résultats issu d'une requéte ensem-
bliste, vous devez utiliser expliciternent la clause ORDER BY. Elle doit se placer une seule fois &
la fin de la requéte, et accepte soit des noms (ou alias) de colonne de la premiére requéte, soit
la position des colonnes (mais cela n'est pas recommanda).

Le tableaun suivant présente la méme requéte (types d’avions que les deux compagnies exploi-
tent) dont le résultat est trié par ordre décroissant. La premiére écriture utilise la clause ORDER
BY 4 1'aide du nom de la colonne de la premigre requéte, la deuxiéme utilise un alias de
colonne, et la demigre indique seulement la position de la colonne.

Tahiean 4-28 Exempies svec los oporatenrs UNION

Technique Requéte
Mom de la colonne SELECT typehvion FROM Avionsdeds
UNICH

SELECT typelv FROM AvionsdeSING
ORDER BY typedvion;

@ Editions Eyrolles 135

S(E do bass |

136

Tabieat 4-28 Exemples avec les onéraleurs UNMION (suffe)
Technique Requéte

Alias de colonne SELECT typefvion AS type FROM Avionsdel®
TINT O
SELECT typeRv FROM AvionsdeSING
ORDER BY Cype DESC;

Pesition de colonne SELECT typedvion AS type FROM Avionsdelw
UHION
SELECT typeAv FROM AvionsdeSING
ORDER BY 1 DESC;

TYPE (TYPEAVION pour la 1% raguéte)

Pour illustrer une autre utilisation d’un alias, tentons d’extraire les avions et leur prix d’achat
aungmenté de 20 % — liste triée en fonction de cette derniére hausse. Le probleme est que la
table AvionsdeaF ne posséde pas une telle colonne. Il suffit d'ajouter au SELECT de cette
table I'expression 0 pour rendre homogéne les deux jeux de résultats pour 1 opérateur UNICH.

Tableau 4-29 Alias pour ORDER BY

SELECT immatriculation, IMMATE PX
1 2%prixkchat pe| FROM AviorisdeSING -----= =--=m-m=---
N ICN F-GTMP. 245400
SELECT immmat, 0 FROM Avionsdear S-MILE 227800
ORDER BY pa DESC; S-AVEZ 187200
S=ANST 125400
F-GLFS 0
F-GTMP (]
F-WISS o

Produit cartésien

En mathématiques, le produit cartésien de deux ensembles E et F est 'ensemble des couples
(x,) onxe Eetye F En transposant au modele relationnel, le produit cartésien de deux
tables T7 et T2 est I'ensemble des enregistrements (x, v)oixe Tletye T2

Le produit cartésien total entre deux tables T1 et T2 se programme sous SQL en positionnant
les deux tables dans la clause FROM sans ajouter de conditions dans la clause WHERE.

Siles conditions sont de la forme « ¢ opérateur c2» avec ¢l e Ti ete2 e T2 on parlera de
jointure.

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Siles conditions sont de la forme « ¢7 opérateur valeur? » ou « ¢2 opérateur valeur2 », on
parlera de produit cartésien restreint.

Le produit cartésien restreint, illustré par I'exemple suivant, exprime les combinaisons d’équi-
page qu’il est possible de réaliser en considérant les pilotes de la compagnie 'AF et les avions
de la table AviondeaF.

Flgure 4-8 Produit cariésien d'enregistrements de tables

Pilote AviondeAF

bravet |nom nbHVol |compa immat typehvion |nbivel
PL-1 Laratien Viel 450 AF | FWTS5 | Concorde | 8570
PL2 Richard Grin 1000 SING) A FGLFE | A320 3500
PL-3 Hlacide Frasnais | 2450 CAST P F-GTME AJAD

FL-4 Daniel Viells 2000 AF -~

Le nombre d’enregistrements résultant d’un produit cartésien est égal an produit du nombre
d’enregistrements des deux tables mises en relation.

Dans le cadre de notre exemple, le nombre d’enregistrements du produit cartésien sera de
2 pilotes x 3 avions = 6 enregistrements. Le tableau suivant décrit la requéte SQL permettant

de construire le produit cartésien restreint de notre exemple. Les alias distinguent les colonnes
5"l advenait qu’il en existe de méme nom entre les deux tables.

Tablean 3-30 Produft cantésien

Besoin Requéte

Quels sont les couples possibles (avion, pflofe) en SELECT p.brevet, avAF.immat
considérant les avions et les pilotes de la FROM Filote p, AvionsdshF avisy
compagnie 'AF" 7 WHERE p.compa = 'AF';

6 lignes extralles EEEVET IMMAT

Seules les colonnes de méme type et représentant la méme sémantique peuvent étre comparées
4 l'aide de termes ensemblistes. 11 est possible d’ajouter des expressions (constantes ou

@ Editions Eyrolles 137

S(E do bass |

138

calculs) & une requéte pour rendre homogénes les deux requétes et permetire ainsi |'utilisation
d’un opérateur ensembliste {voir I’exemple décrit au tablean 4-27).

Sous-interrogations dans ia clause FROM

Introduite dans la norme SQL2, la possibilité de disposer une requéte au sein de la clause FROM
d’une requéte principale permet d’évaluer dynamiquement un jeu de résultats en construisant
une table avant de I'interroger. Vous découvrirez 4 la fin de ce chapitre que la directive WITH,
plus récente dans le langage, permet de généraliser ce mécanisme.

La construction d'une table par sous-interrogation pour alimenter une requéte principale suit
la syntaxe suivante :

SELECT colonnes ou_expressions

FROM [tablel alias 1, ...]
(SELECT... FROM tableZ WHERE...) alias_2
[, {(SELECT...) alias n]

[WHERE (conditions tablel_tablel.) 1;

Considérons deux exemples afin d’illustrer cette fonctionnalité.

Calcul d’un pourcentage partiel
Le premier exemple consiste A extraire le pourcentage partiel de pilotes par compagnie. Dans

1'exemple suivant, 5 pilotes sont représentés (dont 3 associés 4 la compagnie ' AF'). En consi-
dérant cette compagnie, 60 % (soit 3/5) des pilotes en dépendent.

Figure 4-9 Table Piote

Filote

brevet prenom nom nbHVol compa
PL-1 Pierre Lamothe 450 AF
PL-2 Didier Linxe 900 AF
PL-3 Christian Soutou 1000 SING
PL-4 Henri Alquié 3400 AF
FL-5 Wichel Castaings

La requéte utilise deux sous-interrogations pour construire deux tables (respectivement d’alias
a et b) dans la clause FROM. Ces sous-interrogations sont illusirées dans le tablean ci-aprés ;
ces jeux de résultats permettent de calculer les pourcentages pour chaque compagnie.

& Editions Eyrolies

[chapitre n® £ Interropation des données |

Tahleau 4-31 Sous-interrogatons pour des pourceniapes partlels

Requéte et tables évaluées dans le FROM Résultat
SELECT a.compa "Comp", Comp &#Pilote
a.nbpil/b.total*100 "gPilate” === seme mems——eeeee
FROM (SELECT compa, COUNT(*) nbpil- AF a0
FROM Filote GROUP BEY compa) a, SING 20
{SELECT COUNT{*) total 20

FROM FPilote) b;

a b
compa |nbpil total
AF 3 5

ELCEE

1

Afin d'isoler les pilotes qui ne sont associés 4 ancune compagnie, vous devrez ajouter le prédi-
cat WHERE compa IS NOT NULL aux deux sous-interrogations pour que les pilotes de la
compagnie ' AF ' représentent 75 % (soit 3/4) de la population totale.

Extraire les n premiéres/derniéres lignes d’un jeu de résultats

Le deuxiéme exemple consiste i exiraire les 5 premiers pilotes d'une compagnie donnée.

Présentée en début de chapitre, la pseudo-celonne ROWNUM s'applique avant un tri. Pour remeé-
dier & ce mécanisme problématique, utilisez une sous-interrogation qui sera triée (par ordre
croissant ou décroissant). Elle sera ensuite exploitée par une requéte principale qui limitera le
nombre de lignes retournées i l'aide de ROWNUM :

FROM (reguéte qui ordonne avec ORDER BY ASC ou DESC
et zans utiliser ROWNUM)
VWHERE ROWNUM < (ou >} x;

Supposons que le tableau des pilotes contienment davantage de lignes incluant plusieurs
compagnies et appliquons ce principe 4 la requéte désirée, voir tableau suivant.

Tahisau 4-32 Sous-imierropsfon pour Bmiter un jea de résuilals

Requéte Résultat

SELECT ROWNUM, prencin, nom ROWHUM FRENOM MOM
FROM (SELECT prenom, Mo = s==s;esse cssesssssas s ssss -

FROM Pilote 1 Henri 2lguid
WHERE compa = 'AF' 2 Agnes Bidal
ORDER BY nom ASC) 31 Fabienne Bonnet
WHERE ROWNUM < &; 4 Fred Brouard
5 Rudy Bruchesz

@ Editions Eyrolles 139

S(E do bass |

Jointures

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

140

Les jointures permettent d’exiraire des données issues de plusieurs tables. Le processus de
normalisation du modéle relationnel est basé sur la décomposition et a pour conséquence
d’augmenter le nombre de tables d'un schéma. Ainsi, la majorité des requétes utilisent des
Jointures nécessalres pour pouvoir extraire des données de tables distinctes.

Une jointure met en relation deux tables sur la base d'une clause de jointure (comparaison de
colonnes). Généralement, cette comparaison fait intervenir une clé étrangére d'une table avec
une clé primaire d'une autre table (le modéle relationnel est basé sur les valeurs).

En considérant les tables suivantes, les seules jointures logiques doivent se faire sur 1'égalité
soit des colonnes comp et compa soit des colonnes brevet et chefPil. Ces jointures permet-
tront d’afficher des données d’une table (ou des deux tables) tout en posant des conditions sur
une table {ou les deux). Par exemple, "affichage du nom des compagnies (colonne de la table

Campagnie) qui ont embauché un pilote ayant moins de 500 heures de vol (condition sur la
table Pilote).

Flgure 4-10 Deux tables 4 mettre en jointure

Compagnie

cOmp nrue | rue ville nomCokmp

AF 124 | Port Royal Pans Air France

SING |7 Camparols Singapour Singapore AL

CAST |1 . Brassens Blagnac Caagna'l AL
F 3

Filote ; +

brevet nom nbHVal | compa chefPil
PL Fretre Lamolhe 450 AF P32

| Uidiar Linxe 00 AF PL-4
PL-a Chrisfian Soutou 1000 SING

PL-4 Hann Alquié 3400 AF

Classification

Une jointure peut s'écrire, dans une requéte SQL, de différentes maniéres :

« relationnelle » (aussi appelée « SQL89 » pour rappeler la version de la norme SQL) ;
« SQL2 » (aussi appelée « SQLI2 ») ;

« procédurale » (qui qualifie la structure de la requéte) ;

« mixte » (combinaison des trois approches précédentes).

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Nous allons principalement étudier les deux premiéres écritures qui sont les plus utilisées.
Nous parlerons en fin de section des deux derniéres.

Jointure reiationnelle

La forme la plus courante de la jointure est la jointure dite « relationnelle » (aussl appelée
SOLBY [MAR 94]), caractérisée par une seule clause FROM contenant les tables et alias & mettre
en jointure deux a deux. La syntaxe générale suivante décrit une jointure relationnelle :

SELECT [aliasl.]cell, [alias2.]coll..
FROM nomTablel [aliasl], nomTablel [aliasZ]..

WHERE (conditionsDeJointure);

Cette forme est la plus utilisée car elle est la plus simple a écrire. Un autre avantage de ce type
de jointure est qu’elle laisse le soin au SGBD d’établir la meilleure stratégie d’accés (choix du
premier index & utiliser, puis du deuxi®éme, efc.) pour optimiser les performances.

Afin d'éviter les ambiguités concernant le nom des colonnes, on utilise en général des alias de
tables pour suffixer les tables dans la clause FROM et préfixer les colonnes dans les clauses
SELECT et WHERE.

Jointures S0L2

Afin de se rendre conforme & la norme SQL2, Oracle propose aussi des directives gui permet-
tent de programmer d'une maniére plus verbale les différents types de jointures :

SELECT [(DISTINCT | UNIQUE } | ALL] listeColonnes
FEOM nomTablel [{ INWER | { LEFT | RIGHT | FULL } [OUTER] }]
JOIN nomTable2{ ON condition | USING (colonnel [, colonnel]..) }
| { CcROSS JOIN | MATURAL [{ IMNER | (LEFT | RIGHT | FULL } [OUTER] }]
JOIN nemTablel } ..
[WHERE condition I;

Cette écriture est moins utilisée que la syntaxe relationnelle. Bien que plus concise pour des
jointures i deux tables, elle se complique pour des jointures plus complexes.

@ Editions Eyrolles 141

[Parfie | S(E do bass |

Tupes de jointures

Bien que dans le vocabulaire courant, on ne parle que de « jointures » en fonction de la nature
de 1’opérateur utilisé dans la requéte, de la clause de jointure et des tables concernées, on
distingue :
les jointures internes (imner joins).
I'équijointure (equi join) est la plus connue, elle utilise I opérateur d'égalité dans la clause
de jointure. La jointure naturelle est conditionnée en plus par le nom des colonnes. La non
équijointure utilise I'opérateur d’inégalité dans la clause de jointure.
lautojointure (self join) est un cas particulier de I’équijointure qui met en ceuvre deux
fois la méme table (des alias de tables permettront de distinguer les enregistrements
entre eux).
la jointure externe (outer join), la plus compliquée, qui favorise une table (dite « domi-
nante ») par rapport i 1"antre (dite « subordonnée »). Les lignes de 1a table dominante sont
retournées méme si elles ne satistont pas aux conditions de jointure.

Le tableau suivant illustre cetie classification sous la forme de quelques conditions appliquées
& notre exemple :

Tableau §-33 Evemples de conditons

Type de jointure ‘Syntaxe de la condition

Eqﬂijdnture WHERE comp = compa;

Autojointure WHERE alissl.chefPil = @&lias2 .brevet;
Jointure externe WHERE comp= compa (+) ;

“ Pour mettre trois tables T1, T2 et T3 en jeinture, il faut utiliser deux clauses de jointures (une
' entre T1 et T2 et 'autre entre T2 et T3). Pour ntables, il faut n-1 clauses de jointures. Si vous
oubliez une clause de jointure, un produit cartésien restreint est composé.

Emdions & présent chaque type de jointure avec les syntaxes « relationnelle » et « SQL2 ».

Enuijointure

“ Une équijcinture utilise 'opérateur d'égalité dans la clause de jointure et compare générale-
ment des clés primaires avec des clés étrangéres.

142 & Editions Eyrolies

[chapitre n° 4

Interropation des données |

En considérant les tables suivantes, les équijointures se programment soit sur les colonnes
comp et compa soit sur les colonnes brevet et chefPil. Extrayons par exemple :

I'identité des pilotes de la compagnie de nom 'Air France' ayant plus de 500 heures de vol
(requéte R1) ;

les coordonnées des compagnies qui embauchent des pilotes de plus de 950 heures de vol
{requéte R2).

La jointure qui résoudra la premiére requéte est illustrée dans la figure par les données grisées,
tandis que la deuxiéme jointure est représentée par les données en gras.

Flgure 411 Equijoiniures

Compagnie

o nrue | rue ville namComp
AF 124 | Porl Royal Fans At France
[s Lamparsls Singapaur singapore AL
CAST |1 G. Brassens Biagnac Castanet AL
A

Pilote .L v
bravet nem nbAVel | compa chefPil
PEA Pierre Lamothe 450 AF PL-d
P2 Didier Linxe £ AF PLa
PL-3 Thnshian ooulol | OO0 | SING
FL4 Henn Alquis 300 | AF

Ecriture « relationnelle »

Oracle recommande d'utiliser des alias de tables pour ameliorer les performances.

Les alias sont obligatoires pour des colonnes qui portent le méme nom ou pour les autojoin-
tures.

Ecriture « SQL2 »

La clause JOIN ... ON condition permet de programmer une équijeinture.

Lutilisation de la directive INNER devant JOIN.. est optionnelle et est appliquée par défaut.

Le tableau suivant détaille ces requétes avec les deux syntaxes. Les clauses de jointures sont
grisées.
@ Editions Eyrolles

143

[Parfie | S(E do bass |

Tableaw 4-31 Exemples ' équSointures

At SELECT brevet, nom SELECT brevet, nom
FROM Pilote, Compagnie FRM Compagnie
WHERE comp = compa JOIN Pilote ON comp = tompa
AND nomComp = 'Air Franoce' WHERE nomComp = 'Air France!'
AND nbHVel = 500; AND nbHVal = 500;
BREVET HOM

PL-4 Henri Alguié
PL~2 Didier Linxe

Rz SELECT cpg.nomlomp, Ccpg.nrus, SELECT nomComp, nrue, rus, ville
cpg.rue, opg,ville FROM Compagnie
FROM Pilote pil, Compagnie opg JOIN Pilote ON comp = compa
WHERE cpg.comp = pil.compa WHERE nbHVol = 950;
AND pil.nbHVol = 350
NOMTOME NEUE EUE VILIE
Alr France 124 Port Royal Paris
Singapore AL 7 Camparols Singapour
Rutojointure

Cas particulier de I’équijointure, 1’ autojointure relie une table 4 elle-méme.
Exfrayons par exemple :
I'identité des pilotes placés sous la responsabilité des pilotes de nom 'Alquié’ (requéte R3) ;
la somme des heures de vol des pilotes placés sous la responsabilité des chefs pilotes de la
compagnie de nom 'Air France' (requéte R4).
Ces requétes doivent étre programmées i 'aide d'une autojointure car elles imposent de
parcourir deux fois la table Pilnte (examen de chague pilote en le comparant & un autre). Les
autojointures sont réalisées entre les colonnes brevet et chefPil.

La jointure de la premiére requéte est illustrée dans la figure par les données surlignées en
clair, tandis que la deuxiéme jointure est mise en valeur par les données surlignées en foncé.

Figure 4-12 Autojointures

Compagnie
comp nrua|rus ville nimi g
sl 124 | Fort Royal Pans Rir France
r Lamparss =Ingapeur xngapone AL
FCAST |1 i3, Brassens Blagnac Castanst AL
F 3
Filote + *
bravet nem 1 el | compa chofFil
P Prarre Lamoha R | AT PLA
P2 Tidiar Linve —TAF FLA
| Chinshian Sodlon | SING
3 Hanri Alguie MO0

144 & Editions Eyrolles

[chapitre n® £ Interropation des données |

Le tablean suivant détaille ces requétes, les clauses d’autojointures sont surlignées. Dans les
deux syntaxes, il est impératif d utiliser des alias. Concernant I’écriture « SQL2 », les clauses
JOIN peuvent s’ imbriquer pour joindre plus de deux tables.

Tahieau 4-35 Exemples o smofoiniures

Requéte Jointure relationnelle Jointure SQL2
R3 SELECT pl.brewvet, pl.nom SELECT pl.brevet, pl.nom
FROM Pilote pl, Pilote p2 FROM Pilote pl
WHERE pl.chefPil = p2. brevet JOIN Pilote p2
RND pZ.nom LIKE '&alquidk’; 0N pl.chefril = p2 brevet

WHERE p2.riom LIEKE "%Alquié®';

PL-1 Pierre Lamothe
FL-Z Didier Linxe

A4 SELECT SUMipl.nbHvVol) SELECT SUM({pl .nbHvol)
FROM Pilote pl, Pilote p2, FROM Fillote pl
Compagnie cpg JOIN Pilote p2
WHERE pl.chefPil = p2 brevet ON pl.chefPil = p2.hrevet
AND cpg.comp = pI.compa JOIN Compagrnie
AND cpg.nemComp = 'Alr France'; ON comp = p2.compa
WHERE nomComp = 'Air France';

SUM | P1.NBHWVCL)

Inéguijointure

; - Les reguétes d'inéquijointures font intervenir tout type d'opérateur (<>, =, <, >=, <=, BETWEEN,
- LIKE, IN). A linverse des équijointures, la dause d'une inéguijointure n'est pas basée sur
I'égalité de clés primaires (ou candidates) et de clés étrangéres.

En considérant les tables suivantes, extrayons par exemple :
les pilotes ayant plus d’expérience que le pilote de numéro de brevet 'PL-2' (requéte RS).

le titre de qualification des pilotes en raisonnant sur la comparaison des heures de vol avec
un ensemble de références, ici la table HeuresVol (requéte R6). Dans notre exemple, il
s"agit par exemple de retrouver le fait que le premier pilote est débutant.

La jointure qui résoudra la deuxiéme requéte est illustrée par les niveaux de gris.

@ Editions Eyrolles 145

S0 de bass |
Figure 4-13 Inéquifointures
Pilote + +
bravet Hom rbHVeol | conpa chafpil
PLT Piarre Lamotha 450 AF PLE
PL= Didiar Uinxe 00 AF L4
[PL3 Chnstian Soulou 1000 BING
= Henn Alquis 00| AT
HeuresVol y,’ '_*
titre basnbHVel {hau tnbHVol
doutant 1] SO0
T BO1 1600
Expert [26060

Le tableau suivant détaille ces requétes, les clauses d’inéquijointures sont surlignées :

Tabisau 1-36 Exempies o inéguliointures

Requéte Jointure relationnelle Jointure SQL2
R5 SELECT pl.brevet, pl.nom, SELECT pl.brevet, pl.nom,
pl.nbHVol, p2 . nbHVel "Référence” pl.nbHVpl, p2.nbHVel "Référence”
FROM Pilote pl, Pilote p2 FROM Pllote pl JOIN
WHERE pl.nbHvel > p2 nbHVel Pilote pZ ON pl.nbBHVE1>pI . AbEVe1
AND p2 . brevet = 'PL-2'; WHERE p2.brewvet = 'PL-2';
BREVET NOM NBHVCL Référence
PL~4 Henri Algquié 3400 200
PL-3 Christian Soutou 1000 00
R& SELECT pil.brevet, pil.nom, SELECT brevet, nom, nbHVol, titre
pil.nbHVel, hv.titre

FROM Pilote pil, HeuresVel hv
WHERE pil.nbHVe]l BETWEER
hv.basnbHVel AND hy. hautnbHVSL ;

FROM Filote

JOIN HeuresVel oM nbHVol
BETWEEN bastbiysl AND hautabHvsl;

Pierre Lamothe
Didier Linxe
Christian Soutou
Henri Alquié

Inikié
Expert

Jointures externes

|14s

- Les jointures externes permettent d'extraire des enregistrements qui ne répondent pas aux
critéres de jointure. Lorsque deux tables sont en jointure externe, une table est « dominante »

 Editfons Eyrofies

[chapitre n° 4

Interropation des données |

par rapport & l'autre (qui est dite « subordonnée »). Ce sont les enregistrements de la table
dominante qui sont retournés (méme si les valeurs des colonnes des tables subordonnées ne

satisfont pas aux conditions de jointure ou sont nulles).

Comme les jointures internes, les jointures externes sont généralement basées sur les clés
primaires et étrangéres. On distingue les jointures unilatérales qui considérent une table domi-
nante et une table subordonnée, et les jointures bilatérales pour lesquelles les tables jouent un

réle symétrique (pas de dominant).

Jointures unilatérales

En considérant les tables suivantes, une jointure externe unilatérale permet d'extraire :

la liste des compagnies et leurs pilotes, méme les compagnies n'ayant pas de pilote

(requéte R7). Sans une jointure externe, la compagnie 'CAST' ne peut étre extraite ;

1a liste des pilotes et leurs qualifications, méme les pilotes n’ayant pas encore de qualifica-

tion (requéte RS).

La figure illustre les tables dominantes et subordonnées :

Figure 4-14 Jointwes externes unilatérales

Qualifs
brevet|cypealv |validice
PLA | AZel | 24062005 |
FLd A0 2a-0B-2005
PLZ_ | Aozl Ga-04-2006 |
Compagnie PLE | Aoan 13052006 |
Comp nrus | rus ville nomCom e tominae
AF 124 | Fort Royal Pans Mt France
[SIRG [7 Camparas Eingapour Smgapore AL
GAST |1 G. Brassens Blagnac Castanet AL
Kot
Pilote .L U
bravet =01 HEHVel | compa
FL-1 Fiarre Lamothe 450 AF
FL2 Didier Linxa T00 AF
PL3 Chrsban Soulou To00 | SING |
Hi-d Henri Alguia 3400 Ak

Ecriture « relationnelle »

La directive de jointure externe « (+) » se place du cité de la table subordonnée.

Cette directive peut se placer a gauche ou a droite d'une clause de jointure, pas des deux cOtés.
Une clause de jointure externe ne peut ni utiliser 'opérateur IN ni étre associée 4 une autre

condition par 'opérateur OF.

@ Editions Eyrolles

147

S(E do bass |

Ecriture « SQL2 »

table dominante.

Le sens de la directive de jointure externe LEFT ou RIGHT de la clause OUTEE JOIN désigne la

Le tableau suivant détaille les requétes de notre exemple, les clauses de jointures externes
unilatérales sont grisées. Les tables dominantes sont notées en gras (Compagnie pour la

premiére requéte et Pilote pour la deuxiéme).

Tabiean 4-37 Ecrinures éguivalentes do jeintres sxicmes wallstérales

Requéte Jointures relaionnelles

Jointures SQL2

R7 SELECT cpg.nomComp, pil brevet,
pil.nem

FROM Pillote pil, Compagnie cpg

WHERE cpg.comp = pil . compal+);
--éqquivalent &

SELECT nomCompy, brevetb, nom
FROM Compagnie LEFT QUTER JOIN

Filote ON comp = compa;
—-éuivalent A

SELECT nomComp, brewvet, nom

WHERE pil.compai{+) = cpg.comp; FROM Pllote RIGHT GUTER JOIN
Compagnie CN comp = compa;
ROMCOMP BEEVET NOM
ARir France PL-4 Henril Alguié
Rir France PL-1 Flerre Lamothe
Air France PL-2 Didier Linxe
Singapore AL PL-3 Christian Soutou
Castanet AL
R& SELECT gua.typelv, pil.brevet, SELECT gua.typedv, pil.brevet,
pil.nom pil .nom
FROM Pilote pil, {malifs gqua FROM Qualifa dqua

WHERE qua.brever{+}=pil brevet;
-—équivalent &

WHERE pil.brevet=qua. brevet{+};

RIGHT OUTER JOIN Pilota pil
ON pil.brewet = gua.brevet;
--équivalent &
SELECT qua.typehy,
pil . nom
FR{OM Pilote pil
LEFT OUTHER JOIN Qualifs cqua
ON pil.brevet = gua.brevet;

pil.brevet,

Henri Alaguié

4 Henri alquié

2 Didier Linxe

-3 Christian Soutou
3 Pierre Lamothe

148

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Jointures bilatérales

Les deux tables jouent un role symétrique, il n'y a pas de table dominante. Ce type de jointure

permet d’extraire des enregistrements qui ne répondent pas aux critéres de jointure des deux

cotés de 1a clause de jointure.

En considérant les tables suivantes, une jointure externe bilatérale permet d’extraire par exemple :

Ia liste des compagnies et leurs pilotes, incluant les compagnies n’ayant pas de pilote et les
pilotes rattachés & ancune compagnie (requéte R9) ;

la liste des pilotes et leurs qualifications, incluant les pilotes n’ayant pas encore d'expé-

rience et les qualifications associées a des pilotes inconnus (requéte R10).

Flgure 4-15 Jointures exfernes bilatérales

Qualifs
brevat |typesAv |validite
PLA AZ20 24-06-2005
PLZ | Adz20 Ba-04-2006 |
' PL-3 AT30 T3-05-2006 |
Compagnie PL-7__| ASB0 | 20-07-2007 |
comp nrue | rue ville nomComp ~
AF 724 | Pon Hoyal Padis Al France
SING |7 Camparols Singapour ;un%pore AL
CAST [T . Brassens H%uc Tasl |
A

Pilote +

brovat nom nbHVol | compa
T2 T Didier Linxe AF
[PL3 Thiishan Soulou 1000 | SING
PLA Henn Alquie 34300 | AF
PLE B

Ecriture « relationnelle »

- La jointure externe bilatérale se programme en faisant |'union de deux jointures externes unila-
térales, en plagant alternativement le symbole « (+) »,

Ecriture « SQL2 »

La directive FULL OUTER JOIN permet d'ignorer l'ordre (et donc le sens de la jointure) des
tables dans la requéte.

@ Editions Eyrolles

149

S(E do bass |

150

Le tableau suivant détaille les requétes de notre exemple, les clauses de jointures externes
bilatérales sont surlignées. Les enregistrements qui ne respectent pas la condition de jointure
sont surlignés.

Tahleau 4-30 Joinlures exiernes bilalérajes

Requéte Jointures relationnelies Jointures SQL2
Rg SELECT cpg.nomComp, pil.brevet, SELECT nomComp, brevet, nom
pil.nom FROM Filote
FROM Filote pil, Compagnie cpg FULL OCUTER JOIN Compagnie
WHEEE cpg.compl+) = pil.compa ON comp = compa;
UNION -—équivalent A&
SELECT cpg.nemCorp, pil brevet, SELECT nomComp, brevet, nom
pil.nom FROM Compagnie
FROM Filote pil, Compagnie cpg FULL OUTER JOIN Pilote
WHERE cpyg.comp = pil.compal+); ON comp = compa;
HOMCOME EBREVET HOM
Rir France PL~4 Henri Alguié
Bir France PL-1 Plerre Lamothe
Air France PL-2 Didier Linxe
Singapore AL PL~-3 Christian Soutou
Casgtanet AL
PL~5 Michel Castaings
R10

SELECT gua.typedv, pil,brevet,
pil.nom

FROM Pilote pil, Qualifs qua

WHERE gua.brevet (+)=pil brevet

SELECT qua.typehvw, pil.brevet,
pil.nom

FROM Pilote pil, Qualifs gqua

WEHERE gua.brevet=pil brevet(+);

SELECT gua . typedv, pil. brevet,
pil .nem

FROM Pilote pil

FULL OUTER JOIN Qualifs qua
ON pil.brevet = gua.brevet;

—=dquivalent A

SELECT «ua . typedv, pill.brevet,
il nom

FROM Qualifs gqua

FULL OUTER JOIN Pilste pil
‘oN pilibrevet = qua.brevet;

Henri Alguiéd
Didier Linxe
Christian Scutou

PL=1 Pierre Lamathe
PL-5 Michel Castaings

& Editions Eyrolles

[chapitre n° 4

Interropation des donnéas |

lointures procédurales

Les jointures procédurales sont écrites par des requétes qui contiennent des sous-interroga-
tions (SELECT imbrigué). Chaque clause FROM ne contient qu'une seule table.

SELECT colonnesTablel
FROM nomTahblel
WHERE colonne{s) | expression(s) { I | = | opérateur }
[{SELECT colonne(s)delaTableZ FROM nomTableZl
WHERE colonne(s) | expression{s) { IN | = | opérateur }
{SELECT ..)

[END {(conditionsTablel)]

[AND (conditionsTablel)]:

Cette forme d'écriture n'est pas la plus utilisée mais elle permet de mieux visualiser certaines
Jjointures. Elle est plus complexe & écrire, car I'ordre d’apparition des tables dans les clauses
FROMa son Importance.

Seules les colonnes de la table qui se trouve au niveau du premier SELECT peuvent étre extrai-
tes.

La sous-interrogation doit étre placée entre parenthéses. Elle ne doit pas comporter de clause
CRDER BY mais peut inclure GROUP BY et HAVING.

Le résultat d"une sous-interrogation est utilisé par la requéte de niveau supérieur. Une sous-
interrogation est exécutée avant la requéte de niveau supérieur.

Une scus-interrogation peut ramener une ou plusieurs lignes. Les opérateurs =, >, <, »>=, <=
permettent d’en extraire une, les opérateurs IN, ANY et ALL permettent d”en ramener plusieurs.
Sous-interrogations monolignes

Le tableau suivant détaille quelques sous-interrogations monolignes. Nous nous basons sur
certaines requétes déja émdiées (forme relationnelle et SQL2).

@ Editions Eyrolles 151

S(E do bass |

152

Tahleau 4-30 Sous-inmteropsuons monolignes

Opérateur Besoin Requéte

= pour les A1 (Pilotes de la compagnle SELECT brevet, nom
équijpintures ou de nom "Air France® ayant FEOM Pilote
autojointures plus de 500 haures de vol.) WHERE compa =

(= teste une ligne) (SELECT comp

FROM Compagrie
WHERE nomCoffy = 'Air France')
AND nbHVel=500;

A3 (Pilotes sous la SELECT brewvet, nom
respongabilité du pilote de FROM Pilote
nom ‘Alguié’.) WHERE chefril =

{SELECT brevet FROM Filote
WHERE nom LIKE '$Alquiék') ;

= pour les R5 (Pllotes ayant plus SELECT brevet, nom, nbHWVol
inéquijointures d'expérience que le pilotede. FroM Pilote
brevet 'PL-2".) WHERE nkHVol =

({SELECT nbHVnl FROM Pilote
WHERE brevet = 'PL=2');

Sous-interrogations multilignes (IN, ALL et ANY)
Les opérateurs multilignes sont les suivants :

IN compare un éément 4 une donnée quelconque d'une liste ramenée par la sous-interro-
gation. Cet opérateur est utilisé pour les équijointures ou autojointures. L'opérateur HOT IN
sera employé pour les jointures extemes.

ANY compare I'élément 4 chague donnée ramenée par la sous-interrogation. Lopérateur
« =ANY » equivaut a IN. Lopérateur « <ANY » signifie «inférieur & au moins une des
valeurs » donc = inférieur au maximum ». Lopérateur « >ENY » signifie « supérieur & au
moins une des valeurs » donc « supérieur au minimum »=.

ALL compare I'élément a tous ceux ramenés par la sous-interrogation. Lopérateur « <ALL »
signifie « inférieur au minimum » et « >ALL » signifie « supéreur au maximum ».

Le tableau swvant détaille quelques sous-interrogations multilignes. Le dernier exemple
programme une partie d’une jointure externe.

La directive NOT I doit &tre utilisée avec prudence car elle retourne FALSE si un membre
ramené par la sous-interrogation est NULL.

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Tablean 4-40 Sous-inierrogalions muitiignes

Opérateur ‘Besoin Requéte
N RZ Coordonnées des SELECT nomComp, nrue, rue, ville
compagnies qui FROM Compagnie
embauchent des pilotes de WHERE comp IN
plus de 950 heures de vol. (SELECT compa FROM Pilote
WHERE nbHVol>550) ;
=etIN R4 Somme des heures de SELECT SUM (nbHVol)
vol des pilotes placés sous FROM Pilote
la responsabilité des chafs WHERE chefPil IN
pilotes de la compagnie de (SELECT brevet FROM Pilote
nom ‘Air France', WHERE compa. =
{SELECT comp FROM Compagriie
WHERE nomComp = 'Air France'));
NOT IN

Compagnies n'ayant pas de
pilote.

SELECT nomComp, nrue, rue, wville
FROM Compagnie
WHERE comp NOT IN
(SELECT compa FROM Pilote
WHERE compa IS NOT NULL) ;

Pour illustrer les opérateurs ANY et ALL, considérons la table suivante. Mous avons indiqué en
gras les nombres d'heures minimal et maximal des A320, en grisé les nombres d"heures mini-
mal et maximal des avions de la compagnie 'AF.

Figure 4-16 Table Avion

Avions

immat |typehv |[nbHVal compa
Al Ad20 1000 AF
A2 A330 1500 AF
A3 BA20 B50 SING
Ad A340 1800 SING
A5 A0 <00 AF
AB AZ30 100 AF

Le tableau suivant détaille quelques jointures procédurales utilisant les opérateurs ALL ef ANY.

@ Editions Eyrolles

1583

[Parfie | S(E do bass |
Tabiean 4-11 Opératears ALL et ANY
Opérateur Besoin Requéte
ANY A11. Avions dont le nombre SELECT immat, typefwv, nbHVol
d'heures de vol estinférieur FROM Avien
4 celul de nimporte quel WHERE nkHVol = ANY
A320. (SELECT nkHVol FROM Avien
WHERE typefv="R320');
IMMAT TYPE WEHVOL
ad R3Z20 550
a5 2340 2040
Af A330 100
A12 Compagnies et leurs SELECT immat, typehv, nbHVol, compa
avions dont le nombre FEOM Avien
d’'heures de vol est WHERE nbHVGl = ANY
supérieur & celul de (SELECT nbHVol FROM Avion
n'importe quel avion de la WHERE compa = 'SING');
compagnie de code "SING'.
IMMAT TYPE NBHVOL COMP
2l B320 1000 A&
AZ B330 1500 AF
nd R340 1800 SING
ALL R13 Avions dont le nombre SELECT immat, typedv, nbHVol
d'heures de vol estinférieur FROM Avien
atous les A320. WHERE nbHVGl < ALL
({SELECT nbHVol FROM Avien
WHERE typefvs"A320°');
IMMAT TYPE NEHVOL
A5 A340 Z00
LE RA30 104
R14. Compagnies et leurs SELECT immat, typehv, nbiHVoel, compa
avions dont le nombre FROM Rwion
d'heures de wol est supérieur WHERE nbHVol > ALL
atousles avionsde la {SELECT nkHVol FROM Avion
compagnie de code "AF. WHERE compa = 'BF");
IMMAT TYPE NBHVOL COMP
2d B340 1800 SING
154 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

lointures mixtes

5i vous avez besoin de combiner dans une requéte des clauses de jointures de la forme rela-
tionnelle, des sous-interrogations dans le FROM ou WHERE, ou d’utiliser conjointement des
directives SQL2 (IMNER JOIN, OUTER JOIN etc.), vous écrivez une jointure dite mixte.
La requéte suivante combine une jointure relationnelle (en gras) avec une jointure procédurale
(surlignée) pour extraire la somme des heures de vol des pilotes placés sous la responsabilité
des chefs pilotes de la compagnie Air France (requéte R4).
SELECT SUM(pl.nbHVol)

FROM Pilote pl, Pilote p2

WHERE pl.chefPil = p2.brevet

AND p2.compa = (SELECT comp FROM Compagnie WHERE nomComp =

‘Ady Franoe')
Ce type d'écriture peut étre intéressant s'il n’est pas nécessaire dafficher des colonnes des
tables présentes dans les sous-interrogations ou si I'on désire appliquer des fonctions a des
regroupements.

Sous-interrogations synchronisées

Une sous-interrogation est synchronisée si elle manipule des colonnes d’une table du niveau
supérieur (on parle de requéte imbriquée).

Une sous-interrogation synchronisée est exécutée une fois pour chaque enregistrement extrait
par la requéte de niveau supérieur. Cette technique peut étre aussi utilisée dans les ordres
UPDATE et DELETE.

La forme générale d'une sous-interrogation synchronisée est la suivante. Les alias des tables
sont utiles pour pouvoir manipuler des colonnes de tables de différents niveaux.

SELECT aliasl.e

FROM nomTablel aliasl %

WHERE coleon 8] opdrateur (SELECT aliael.z. 1
FROM nomTablel

WHERE aliasl.x opérateur alilasl.y)

[AND (econditionsTablel)];

Une sous-interrogation synchronisée peut ramener une ou plusieurs lignes. Diftérents opéra-
teurs peuvent étre employés (=, >, <, »=, <=, EXTSTE).

@ Editions Eyrolles 155

S(E do bass |

Opérateur mathématique

Le tableau suivant détaille un exemple d'opérateur mathématique appliqué & une sous-interro-
gation synchronisée.

Tehiean 4-42 Sous-interrogation synchvomisée
Besoin Requéte.

R15. Avions dont le nombre d'heures de vol SELECT awil.*
est supérisur au nombre d'heures de vol FROM Avion avil

moyen des avions de leur compagnie (ici WHERE avil.nbHVoel =
700 h pour "AF" et 1 115 h pour 'SING’). (SELECT AVG(avi2 . nbHVol] FROM Avien avil
WHERE aviZ2.compa = avil. compa) ;
IMMAT TYEE NBHVOL COMP
Bl R320 1000 AF
A2 2330 1500 aF
B4 B340 1800 SING

Opérateur EXISTS

n - Lopérateur EXTSTS permet dinterrompre la sous-interrogation dés le premier enregistrement frouvé.
La valeur FALSE est refournée si aucun enregistrement n'est extratt par la sous-interrogation.

Utilisons la table suivante pour décrire 1'utilisation de 1'opérateur EXISTS :

Figure 417 Utifsalion de EXISTS

Fllore + »+
bravat oo nbHVol |eompa chefPdl
LT Flate Lamoe L] i

= Diicliar Lirixe B A FL3
PL3 Fiflstan Soutou T | SING %]
P4 Hennl Aquie W _[AF

PL-5 Michal Castaings

La sous-interrogation synchronisée est surlignée dans le script suivant :

Tablean 4-13 Operawur EXISTS
Besoin ‘Requéte

R16. Pilotes ayant au moins un pilote sous SELECT pill.brevet, pill.nem, pill.compa
leur responsabilité. FROM Pilote pill
WHERE EXISTE
(SELECT pilZ. * FROM Pilote pilZ
WHERE pil2.chefPil = pill . brevet);

156 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

Opérateur NOT EXISTS

Lopérateur NOT EXISTS retourne la valeur TEUE s aucun enregistrement n'est extrait par la
sous-interrogation. Cet opérateur peut &tre utilisé pour écrire des jointures externes.

Tabiesu 4-44 Oméraiear NOT EXISTS

Besoin Requéte
Liste des compagnies mayant SELECT opg.*
pas de pilote. FROM Compagnie cpg
WHEFE NOT EXISTS
(SELECT compa FROM Pilote WHERE compa = opg.comp) ;
COMP NEUE RUR VILLE NOMCOMP
CAST 1 @. Brassens Blagnae Castanet AL
Autres directives 5012

Etudions enfin les autres options des jointures SQL2 (NATURAL JOIN, USTNG et CROSS JOIN).

Considérons le schéma suivant (des colonnes portent le méme nom). La colonne typehv dans
la table Navigant désigne le type dappareil sur lequel le pilote est instructeur.

Flgure 418 Deux tables & mettre en joinlure naturelie

VolsControle

bravet |typehv |validice
PLA A3e0 | x
PL2 | Ase0 04-04-2008
PLZ | A3S0 T3-05-2008 |
PLa | AdBo 20-07-2007
PL3 | ASE 120520005

Navigant +

bravat nom nbHVel | Evpeiy
PL Plee Lamolhe | 450
PL= Tidier Onve o00 R0
PL- Henri AlquE 3400 | A5BG
Opérateur NATURAL JOIN

La jointure naturelle est programmée par la clause NATURAL JOIN. Laclause de jointure est automa-
tiguement construite sur la base de toutes les colonnes portant le méme nom entre les deux tables.

@ Editions Eyrolles

157

S(E do bass |

158

Les concepteurs doivent donc penser 4 nommer d’une maniére semblable clés primaires et
clés étrangeres. Ce principe n’est pas souvent appliqué aux schémas volumineux.

Le tableau suivant détaille deux écritures possibles d'une jointure naturelle. La clause de jointure
est basée sur les colonnes (brevet, typefw). Une clause WHERE aurait pu aussi étre progammée.

Tabileau 4-45 lolnmires naturelles

Besoln Jointures SQL2
Navigants qualifiés sur un type d'appareil SELECT brevet, nom, typeRv, walidite
etinstructeurs sur ce méme type. FROM Navigant HNATURAL JOIN VolsControle;

--é&quivalent 4
SELECT brevet, nom, typeRv, wvalidite
FROM VolsControle NATURAL JOIN Navigant;

BREEVET NOM TYPEAV VALIDITE

PL-2 Didier Linxe A320 04/04/08

PL-3 Henri Alguié 2380 20/07/07
Opérateur USING

Ladirective USING(coll, coll.) de la clause JOIN programme une jointure naturelle restreinte
a un ensemble de colonnes. Il ne faut pas utiliser d'alias de tables dans la liste des colonnes.

Dans notre exemple, on peut restreindre la jointure naturelle aux colonnes brevet ou typeiv.
Si on les positionnait (brevet, typefyv) dans la directive USING cela reviendrait 4 cons-
truire un NATURAL JOIN. Le tableau suivant détaille deux écritures d’une jointure naturelle
restreinte :

Tabieau 4-36 lolnmires naturelles restrainies

Besoin Jointures SQL2°
Nom des navigants avec leurs qualifications SELECT nom, v.typedv, v.validite
etdates de validité. FROM Nawvigant

JOIN VolsContrele v USING (brevet);

SELECT nom, V.typeaAv, v.validite
FROM VolsControle v
JOIN Navigant USING (hrevet)

HOM TYPEAYV VALIDITE
Pierre Lamothe R3Z20 24/06/05
Didier Linxe B3IZ0 04/04/08
Didier Linxe A330 13/05/086
Henri Alguié B3RO 20/07707
Henri alguié A3Z0 12/03/08

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Opérateur CROSS JOIN

La directive CROSS JOIN programme un produit cartésien gu'on peut restreindre dans la
clause WHEEE.

Le tablean suivant présente deux écritures d'un produit cartésien (seul 1"ordre d’affichage des
colonnes change) :

Talieau 4-37 Frodult canésien

Besoin Jointures SQL2

Combinsison de toutes les lignes des deux. SELECT *

tebles. FROM Navigant CROSS JOIN VolsControle;
—-dguivalent &
SELECT *

FROM VolsControle CROSS JOIN Navigant;

EREVET NOM NEHVOL TYPEAV BREVET TYPEAV VALIDITE
PL-1 Pierre Lamothe 450 PL-1 A3Z20 24/06/05
PL~-2 Didier Linxe 900 A320 PL~-1 A3Z0 24/06/05
PL-3 Henri Aloquié 3400 A3IBO PL-1 AZ20 24/06/05
PL-1 Pierre Lamothe 450 PL-2 R3Z0 04704708
- 15 ligne(s) sélectionnée(s).

La division est un opérateur algébrique et non ensembliste. Cet opérateur est semblable, sur
le principe, & I'opération qu’on apprend au CE2 et qu’on a oubliée en terminale & cause des
calenleties. La division est un opérateur binaire comme la jointure car il s’agit de diviser une
table (ou partie de) par une autre table (ou partie de). Il est possible d"opérer une division &
partir d'une seule table, en ce cas on divise deux parties de cette table {analogue aux auto-
Jjointures).

Lopérateur de division n'est pas foumi par Oracle (ni par ses concurrents d'ailleurs). Il n'existe
donc malheureusement pas d'instruction DIVIDE.

Est-ce la complexité ou le manque d'intérét qui freinent les éditeurs de logiciels & programmer
ce concept ? La question reste en suspens, alors si vous avez un avis 2 ce sujet, faites-moi
signe !

@ Editions Eyrolles 159

S(E do bass |

160

Cet opérateur permet de traduire le terme « pour tous les » des requétes gu'on désire program-
mer en SQL.

On peut aussi dire que lorsque vous voulez comparer un ensemble avec un groupe de référence,
il faut programmer une division.

La division se traduit sous SQL par 'opérateur ensembliste MINUS et la fonction HOT EXIESTS.

La figure swivante illustre |'opérateur de division dans sa plus simple expression (nous ne
parlons pas du contenu des tables bien siir...). Le schéma fait davantage apparaitre le
deuxidme aspect révélateur énoncé ci-dessus, 4 savoir comparer un ensemble (la table T1)
avec un ensemble de référence (la table 72).

Flgure 4-18 Division

Quels sont les enregistrements de T1 gui sont

associés i « tous les » enregistrements de T2 7

Toson

Réponse : R =T1/T2

e

Définition

La division de la table T1fal,....an.b1.....bn] par la table T2[b1.....bn] (la structure de T2 est
incluse dans la structure de T7) donne la table T3fa7....,an] qui contient les enregisrements ti
vérifiant tie T3 (de structure [af,....an]), & e T2 (tj de structure [b1,....bnJ) et titie T1 (i tjde
structure fai,...,an,bi.....bnJ).

Gassification

Considérons I'exemple suivant pour décrire la requéte i construire. Il s'agit de répondre 4 la
question « Quels sont les avions affrétés par toutes les compagnies frangaises 7 » L'ensemble
de référence (A) est constitué des codes des compagnies frangaises. L'ensemble & comparer
(B) est constitué des codes des compagnies pour chaque avion.
Deux cas sont & envisager suivant la maniére de comparer les deux ensembles :
Division inexacte : un ensemble est seulement inclus dans un autre (A inclus dans B). La
question & programmer serait « Quels sont les avions affrétés par toutes les compagnies

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

francaises ? » sans préciser si les avions ne doivent pas e aussi affrétés par des compa-
gnies érangéres. L'avion (A3, Mercure) répondrait & cette question, que la derniére ligne

de la table Affrétements soit présente ou pas.

Division exacte : les deux ensembles sont égaux (B=A). La question & programmer serait
« Quels sont les avions aftrétés exactement {(ou uniquement) par toutes les compagnies
francaises 7 » L'avion (A3, Mercure) répondrait 4 cette question si la derniére ligne de la
table Affrétements est inexistante. Les lignes concernées dans les deux tables sont

grisées.

Affrétements

Figure 4-20 Divisions a programmer

Compagnie

immat | typehAv compa |dateAfl comp | nomComp pays
Al A320 SING 13-05-1005 | 3 Alr France F
AL A4 AF 22-0G-1868 | Air Lib F
A3 Wercure AF 05-02-1965 Singapore AL | oG
Ad A330 ALIB 16-07-1865
A3 Warcure ALTE 05-03-1042 Régultat

_hs __Mgrcurf glN_(:z‘__ [01 -9.3;1953 B

1mmat CypahAv
A3 Mercure

L’opérateur ensembliste MINUS combiné & la fonction EXTSTS permet de programmer ces
deux comparaisons (un ensemble inclus dans un autre et une égalité d’ensembles). Il existe
d’autres solutions & base de regroupements et de sous-interrogations (synchronisées ou pas)

que nous n'étudierons pas, parce qu'elles semblent plus compliquées. Ecrivons 4 présent ces
deux divisions a 1" aide de requétes SQL.

Division inexacte en SOL

Pour programmer le fait qu'un ensemble est seulement inclus dans un autre (iciA — B), il fant
qu’il n’existe pas d'élément dans I'ensemble {A-B}. La différence se programme & 1"aide de
I'opérateur MINUS, |'inexistence d"élément se programme i 1'aide de la fonction MOT EXISTS
comme le montre la requéte suivante :

SELECT DISTINCT immat,

WHERE NOT EXISTS

(EELECT comp FREOM Compagnie WHERE pavs =

MINUS

Areours de tous les avions

typehv FROM Affrétements aliashff

Ensemble A de référence

g

SELECT compa FROM Affrétements WHERE i{l alianREE. immati ;

@ Editions Eyrolles

insembie B 4 comparer

161

S(E do bass |

Division exacte en SOL

Pour programmer le fait qu'un ensemble est strictement €gal 4 un autre (ici A=B), il faut
qu’il n’existe ni d’élément dans I'ensemble {A-B} ni dans I'ensemble {B-A). La traduction
mathématique est la suivante : A=B<{A-B= et B-A={J). Les opérateurs se programment
de la méme maniére que pour la requéte précédente. Le « et » se programme avec un AMD
(of course).

Parcours de tous les avions

SELECT DISTINCT immat, typeAv FROM Affrdcements allashff
WHERE NOT EXISTS
| (SELECT comp FROM Compagnie WHERE pave = 'F* A-B
MINUS
SHELECT compa FROM A{frihcmn:n WHEEE immat = nlinn&f_f_._imnith
AND NOT EXISTE
(SELECT rcompa FEOM Affrétements WHERE 1lmmat = allasAff.ilmmat
MINUS
EELECT comp FROM Cowmpagmie WHERE pave = 'F');

B-A|

Requétes hierarchigues

162

Les requétes hiérarchiques extraient des données provenant d’une structure arborescente. Les
enregistrements d’une structure arborescente appartiennent, en général, & la méme table et
sont reliés entre eux par une association réflexive & plusieurs niveaux.

L'exemple décrit un arbre qui comprend trois niveaux. La table Trajeta décrit cet arbre. Des
deux colonnes qui assurent I’ association, il est facile de distinguer celle qui désigne 1’élément
supérieur (colonneSup ici départ) de celle qui désigne un élément inférieur (colonnelnf ici
arrivée).

La syntaxe générale d'une requéte hiérarchique est la suivante. La pseudo-colonne LEVEL
désigne le niveau de 1'arbre par rapport i une racine donnée.

| SELECT [LEVEL,| colonne, expression.
FROM nomTable
[WHERE condition]
[START WITH condition]
CONNECT BY PRIOR condition;

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Flgure 4-21 Arbre représents par une table

T Marsallle
A]g To ouBN—___ Nimes
Trajets calonnaini
K
colonneSup — ”3;‘3_:::‘ ‘;[:;::C‘ tiﬂm'pﬁ\uol
Fars Lyon 0.8
Parns WMarsanle 09
ac Pau 0.4
Lyon Grenable 0.3
Lyon Valence 0.4
renable Eap 0,35
nce Aas 0,25
Marsailla Frejus 0.2
raaille Toulon 15
[Marselle | Mimes 035

Point de départ du parcours (START WITH)

- Le point de départ est spécifié par la directive START WITH. Ce n'est pas forcément la racine
la plus haute de la hiérarchie.

Dans notre exemple, si on désire parcourir I'arbre en partant de la ville de Lyon, on utilisera
« START WITH départ='Lyon' ».

Si la directive STARET WITH est omise, tous les enregistrements sont considérés comme des
racines et le résultat devra étre interprété comme un ensemble d'arbres.

Parcours de I'arbre (CONNEGT BY PRIDR)

- Il faut indiquer dans la directive CONNECT BY la clause de connexion qui contient les colonnes
de jointure (colonneSup et colonnelnf). Celles-ci peuvent &tre composées. Le parcours de
l'arbre est le suivant :

du bas vers le haut avec la directive CONNECT BY PRIOR colonneSup=colonnelnf ;
du haut vers le bas avec la directive CONNECT BY PRIOR colonneInf=colonneSup.

@ Editions Eyrolles 163

[Parfie | S(E do bass |
Nous verrons plus tard que la directive PRIOR permet également d’éliminer des arborescences
entiéres du parcours.

Le tableau suivant détaille les chemins dans les deux sens de notre arbre. Les requétes contien-
nent des clauses hiérarchiques (en surligné) et des clanses de connexions (en gras).
Tabiegn 4-48 Resuéles hiérarchigues
Besoin Requéte et résultat
Parcours de l'arbre de bas en hawt SELECT LEVEL, arrivée, départ, tempsvol
en partant de la ville de Paris. FROM Trajets
START WITH départ = 'Paris’
COMNECT BY PRIOR départ = arrivée;
LEVEL ARRIVEE DEPART TEMPSVOL
1 Blagnac Paris 1)
1 Lyon Paris .8
1 Marseille Paris L8
Parcours de 'arbre de haut en bas SELECT LEVEL, départ, arrivée, tempsvol
en partant de la ville de Lyon. FROM Trajets
START WITH départ = ‘Lyon’
CONNECT BY PRIOR arrivée = départ;
LEVEL DEPART ARRIVEE TEMPSVOL
1 Lyon Srenchble pi 1
2 grenoble Sap 35
1 Liyon Valence J 2
2 Valence Ales 25
indentation
Pour composer un état de sortie indenté (comme pour un programme dans lequel vous inden-
tez vos blocs dans un souci de lisibilité) en fonction du parcours de 1'arbre, il faut utiliser
plusieurs mécanismes :
la pseudo-colonne LEVEL qui retourne le numéro du miveau courant de chague
enregistrement ;
la fonction LEAD insére i gauche une expression des caractéres ;
la directive COLIMN (mise en forme du nom et de la taille des colonnes dans 1'interface
SQL*Plus) permet de substituer un libellé i une colonne, i I'affichage.
164 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

La requéte suivante décale i gauche de quatre espaces les affichages pour chaque niveau (le
premier niveaun’est pas décalé, le deuxiéme ’est de quatre espaces, etc.). La concaténation de
ce décalage avec la colonne arrivée est renommée dans une variable (DepartParis), décla-

rée ici, de quinze caractéres.

Tableaw 4-48 Reguéte hiersrchinue (ndentztion)

Besaln

m el résultat sous SOL*Plus

Parcours de l'arbre en entier de haut enbas
en partant de la ville de Paris.

COLUMN DepartParis FORMAT R15

SELECT LPAD(' ',4*LEVEL-4) || arrivée
DepartParia, tempsVol

FROM Trajets

START WITH départ ='Paris’

CONNECT BY PRICE arrivée = départ;

DEPARTPARIE TEMPSVOL
Blagnac 1
Fau o4
Lyon 8
Grenoble P

Gap , 35

Valence 2
Rles P25
Marseille -
Frejus)
Toulon /15
Nimes i5

Hagage de I'arhre (WHERE et PRIDR)

Il existe deux possibilités (qui peuvent se combiner) d'affiner le parcours d'un arbre :

la clause WHERE permet d'éliminer des noeuds de l'arbre ;

la clause PRICR supprime des arborescences de |'arbre.

Le tableau suivant présente trois requétes hiérarchiques. La premiére enléve un nceud, la
deuxiéme une arborescence, la troisiéme combine ces deux élagages en Gtant 4 1'arbre un

nceud et I"arborescence rattachée.

@ Editions Eyrolles

165

[Parfie | S(E do bass |
Tablean 4-50 fiagage d'arbres
Besoln Requéte et résultat sous SQL*Plus
Parcours de l'arbre en entier de haut enbas SELECT LPAD(' ', 4*LEVEL-4) | |arrivée
en partant de la ville de Paris sans prendre DepartParis, tempsVol
en compte Lyon ni en départ ni en amivée. FROM Trajets
WHERE NOT (départ='Lyon' OR arrivée='Lyon')
START WITH départ ='Paris’
CONNECT BY PRICOR arrivée = départ;
DEPRRTPARIS TEMPSVOL
Blagnac 1
Pau L4
Gap 35
Ales Eid)
Margseille 9
Frejus o2
Toulon 15
Himes 35
Parcours de 'arbre en entier de haut enbas SELECT LPAD(' ', 4*LEVEL-4) | |arrivée
en partant de la ville de Paris sans prendre DepartParis, tempsVol
en compte las trajets depuis Lyon. FROM Trajets
START WITH départ ='Paris’
CONNECT BY FRIOR arrivée = départ
AND NOT départ = 'Lyon';
DEFARTFARIS TEMFSVOL
Blagnac 1
Pau 4
Lyon i
Marseille -
Frejus o2
Toulon .15
Mimes «35
Parcours de I'arbre en entier de hautenbas SELECT LFAD(' ', 4*LEVEL-4) | |arrivée
en partant de ia ville de Paris sans prendre DepartParis, tempsVel
&n compte Lyon et ses trajets. FROM Trajets
WHERE NOT (arrivée = 'Lyon')
START WITH départ ='Paris’
CONMECT- BY PRICR: arrivée = départ
AND MNOT départ = 'Lyon';
DEFARTFARIS TEMPSVOL
Blagnac 1
Fau .4
Marseille 3
Frejus o2
Toulon .15
Himes .35
166 & Editions Eyrolles

[chapitre n® £ Interropation des données |

lointures

- Les requétes hiérarchigues supportent les jointures mais seules des équijointures devraient
étre appliquées.

Si la clause WHEEE contient une sous-interrogation (jointure procédurale), 1a jointure sera réali-
sée avant la clause CONNECT BY. Si la clause WHERE ne contient pas de sous-interrogation, le
parcours de I'arbre est réalisé par le COMMECT BY puis les conditions du WHERE sont appliquées.

Dans le cas de jointures relationnelles, il faut que chaque nceud i parcourir vérifie la condition
de jointure sous peine de perdre des éléments de I'arbre, non pas du fait du parcours mais de la
jointure.

Supposons que nous disposions de la table Aéroports ci-dessous. L'équijointure relation-
nelle permet d’afficher les fréquences des aéroports sur les parcours.

Tableau 4-51 Renuéie hiérarchigue (Joinre reiationnelie)

Table néroport Requéte et résultat sous SQL*Plus
SELECT LPAD(' ‘,4*LEVEL-4) | |arrivée
HOMAERD FREQUENCETWR DepartFaris, tempsiol, frequenceTWR
—————————————————————— FEOM Trajets, Réroports
Rles 1203 WHERE NOT [arrivée = 'Lyon')
Blagnac 118,1 AND arrivée = nomiero
Frejus 114.7 START WITH départ="Parig'
Gap 122,17 CONNECT BY PRIOR arrivée = départ
Grencbhle 115,68 AND NOT départ = 'Lyon';
Lyon 123,8B
Marseille 118,7 DEPARTPARIS TEMPSVOL FREQUENCETWE
Nimes 1262 0 ermeemeemmcmmee e e i e i o i i i e
Paris 123, 4 Blagnac 1 iie, 1
Fau 117.,9 Fau .4 117,9
Toulon 119., & Marzellle - 118,%
Valence 126,98 Frejus 2 114,7
Nimes 35 126,2
Toulon - 7. 119,9
Ordonnancement

L'utilisation des directives ORDER. BY ou GROUP BY est incompatible avec le parcours hiérar-
chique de 1'arbre.

“ Pour classer des enregistrements d'une hiérarchie, il faut utiliser la directive ORDER SIBLINGS
" EY.

@ Editions Eyrolles 167

S(E do bass |

168

La requéte suivante affiche tout I'arbre en triant sur les escales par ordre alphabétique inverse.

Tabfean §-52 Ordonner une renuéte hisrarchinue

Requéte Résultat sous SQL'Plus
COLUMN DepartParis FORMAT ALS CEPARTPARIS TEMPSVOL
SELECT LFAD{' ',d*LEVEL-4) | |arrivée —=-reecemccmcee e
DepartParls, tempsvVol Margeille 8
FROM Trajets Toulon 15
START WITH départ='Paris’' Himes 35
CONNECT BY PRIDR arrivée = départ Frejus 2
ORDER SIBLINGS BY arrivée DESC ; Lyon 8
Valence .2
Rles .25
Grenoble .3
Gap .35
Blagnac 1
Pau -]

Extraction de chemins

Disponible depuis la version 10g, la fonction $¥S_COMMECT BY PATH extrait le chemin (sous
la forme d'une chaine VARCHARZ) a partir de la racine (ou des racines si aucune clause START
WITH n’est indiquée jusqu'aux feuilles terminales). La syntaxe de cette fonction est la
suivante :

SYS CONNECT BY PATH (colonne, caractére)

colonne et caractére sont de type CHAR, VARCHARZ, NCHAR, ou MVARCHARZ. Le premier
paramétre désigne la colonne de la table qui compose la hiérarchie définie par la clause
COMECT BY et qu'on désire afficher. Le second paramétre indique le séparateur utilisé pour
I'affichage du chemin complet.

La requéte suivante extrait tous les chemins complets partant de Paris.

COL chemin FORMAT A30 HEADING "Hélas tout part de Pardis..."
SELECT LEAD(' ', 2*LEVEL-1) | | S¥S_COMNECT BY PATH|arrivée,'/']
chemin, tempsyvol
FROM Trajets
START WITH depart = 'Parisg!'
CONNECT BY PRICR arrivée = départ;

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

| Hélas tout part de Faris. .. TEMPSVOL
/Blagnac T
/Blagnac /Pau P |
/Lyon .8
fLyon/Grenoble i3
/Lyon/Grencble/Gap W35
/Lyon/Valence o2
fLyon fValence/hles .25
/Marseille -
/Marseille/Frejus 2
/Marseille/Toulon .15
/Maraeille/Nimes .35

Extraction d’'un éiément

Disponible depuis 1a version 10g, I’opérateur COMNECT _BY_ROOT étend la fonctionnalité de la
condition COMYECT BY [PRIOR] en permettant de qualifier une colonne et de retourner non
seulement un enregistrement parent de |'enregistrement courant, mais également tous ses
ancétres. Cet opérateur ne peut pas €tre utilisé dans une clause START WITH ou CQMECT BY.

La requéte suivante extrait les chemins complets ayant deux escales. L' opérateur COMMECT
BY_RCOT permet ici d'afficher la premiére escale.

| COL chemin FORMAT A3(0 HEADING "Chemin..."
SELECT arrivée "De Paris a", CONMECT BY ROOT arrivée "arrivée”,
SY¥S_CONNECT_BY_PATH (départ, '/ ') chemin
FEOM Trajets WHERE LEVEL > 2
CONNECT BY PRIOR arrivée = départ;

De Paris & arrivée Chemin. . .
Gap Liyon /Paris/Lyon/Grencble
Ales Lyon {Paris/Lyon/Valence

Nature d'un element

Disponible depuis la version 10g, la pseudo-colonne COMNECT BY ISLEAF refourne la
valeur | sil'enregistrement courant est une feuille de la hiérarchie désignée par la condition
dans la clause COMMECT BY. Dans le cas inverse, cette pseudo-colonne vaut . Cette informa-
tion permet de savoir siun enregistrement courant est un neeud ou une feuille de la hiérarchie.

La requéte suivante extrait les chemins complets des trajets avec les destinations finales.
L'opérateur COMNECT_BY ISLEAF permet ici d'afficher seulement les terminaisons de la
hiérarchie.

@ Editions Eyrolles 169

[Parfie | S(E do bass |

COL chemin FORMAT A30 HEADING “Chemin..."
SELECT arrivée, CONNECT BY ISLEAF "IsLeaf", LEVEL,
SYS COMNECT BY PATH{départ,'/') chemin
FROM Trajets WHERE CONNECT BY ISLEAF = 1
START WITH départ='Paris’
CONNECT BY PRIOR arrivee = deépart;

ARRIVEE IsLeaf LEVEL Chemin.. .

Pau T 2 /Paris/Blagnac

Gap 1 3 /Paris/Lyon/Grencble
Ales I 3 /Paris/Lyon/Valence
Frejus 1 2 /Paris/Marseille
Toulon 1 2 /Paris/Marseille
Nimes 1 2 /Paris/Marseille

La requéte suivante extrait les chemins complets des trajets avec les destinations au bout de
deux escales non terminales.

COL chemin FOEMAT A35 HEADING *"Chemin 2 escales non terminales...*
SELECT arrivée, SYS_CONNECT BY PATH(départ, '/'} chemin

FROM Trajets

WHERE CONNECT BY ISLEAF = 0 AND IEVEL = 2

START WITH depart = 'Paris'

CONNECT BY PRIOR arrivée = départ;
ARRIVER Chemin 2 escales non terminales. ..

Grenoble /Paris/Lyon
Valence /Paris/Lyon

Euiter un cycle

Disponible depuis la version 10g, la pseudo-colonne COMMECT_BY ISCYCLE retourne la
valeur 1 s1 I'enregistrement courant est associé i un enregistrement enfant qui est également
son ancétre dans la hiérarchie désignée par la condition dans la clause COMMECT BY. Dans le cas
inverse, cette pseudo-colonne vaut 0. Elle n'a de sens que si le paramétre NOCYCLE a été spéci-
fié dans la clause COMMECT BY. Ce paramétre permet de retourner un résultat récursif qui
échouerait sans cette option. La syntaxe de la définition du parcours de la hiérarchie est la
suivante (elle est & placer aprés la condition WHERE de la requéte) :

[START WITH condition]
CONNECT BY [NOCYCLE | condition

170 & Editions Eyrolies

[chapitre n® £ Interropation des données |

Considérons la hiérarchie suivante qui inclut un cycle. Il sera nécessaire d’utiliser le paramétre
NOCYCLE et la pseudo-colonne COMNECT BY ISCYCLE pour que le cycle n'entraine pas
d'interférences dans les différentes requétes qui parcourront la hiérarchie.

Flgure 4-22 Higrarchie avec un cycle

LEVEL Parls

[reassrsses ransrsanEsnREn ERE

Marselle

O sy

Paiis Trajets
despart AT Ly tempayal
Faris Blagnac
Faris Lyon
Pars Marselle
3ac Fau
Blagnac Harts

La requéte suivante extrait les chemins complets des trajets avec les destinations finales et
intermédiaires. L’ opérateur COMNECT BY ISCYCLE permet ici de trouver le cycle.

0L chemin FORMAT A30 HEADING *Chemin..."
SELECT arrivée "De Paris 4", CONNECT BY ISCYCLE, LEVEL,
SYS_CONNECT_BY PATH (départ, '/') chemin
FROM Trajets
STRART WITH depart = 'Paris’
COMNNECT BY NOCYCLE FRIOR arrivée = départ;

De Paris & CONNECT BY_ISCYCLE LEVEL Chemin. ..

Elagnac 4] 1 /Pparis

Pau 0 2 /Paris/Blagnac
Faris 1. 2 /Paris/Blagnac

Inromn 4] 3 /Paris/Blagnac/Paris
Marseille Q 3 /Paris/Blagnac/Paris
Inrom 0 1 /Paris

Marseille] 1 /Paris

La requéte suivante extrait les chemins complets des trajets avec les destinations finales et
intermédiaires sans que le cycle n’interfére dans le résultat.

SELECT arrivée "De Paris &", LEVEL, SYS_(OONNECT BY PATH(départ, '/') che—
min

FROM Trajets

WHERE CONNECT BY ISCYCLE = { AND LEVEL < 3

START WITH départ = 'Paris’

CONNECT BY NOCYCLE PRIOR arriwvee = départ;

@ Editions Eyrolles 171

S(E do bass |
De Paris a LEVEL Chemin. ..
Blagnac 1 /Paris
Pau 2 /Paris/Blagnac
Lyon 1 /Paris
Marseille 1 /Paris

Mises a jour conditionnées (fusions)

172

Linstruction MERGE extrait des enregistrements d'une table source afin de mettre i jour
(UPDATE) ou d’insérer (INSERT) des données dans une table cible. Cela évite d'écrire des
insertions ou des mises & jour multiples en plusieurs commandes.

Vous devez avoir recu les priviliges INSERT et UFDATE sur la table cible et le privilege
SELECT sur la table source.

Syntaxe (MERGE)
La syntaxe générale de I'instruction MERGE est la suivante :

MERGE INTO [schéma.] nomTableCible [alias]
USING [schéma.] { nomTableSource | nomVue | requéte } [alias)
ON (condition)
WHEN MATCHED THEN
UFDATE SET coll = { expressionl | DEFAULT }
[,col2 = { expressionZ | DEFAULT }]..
WHEN NOT MATCHED THEN
INSERT (coll [, coll).) VALUES (expressionl [,expressionZl].);

Le choix entre la mise & jour et 'insertion dans la table cible est conditionné par la clause OM.
Pour chaque enregistrement de la table cible qui vérifie la condition, I’enre gistrement corres-
pondant de la table source est modifié (UPDATE). Les données de la table cible qui ne vérifient
pas la condition, déclenchent une insertion dans la table cible, basée sur des valeurs d"enregis-
trements de la table source.

Il n'est pas possible d'utiliser la directive DEFAULT en travaillant avec des vues.

Linstruction MERGE est déterministe : il n'est pas possible de mettre & jour plusieurs fois le
méme enregistrernent de la table cible en une seule instruction.

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Exemple

Supposons qu’on désire ajouter & la paye de chaque pilote un bonus. Si on en donne un & un
pilote n'ayant pas eu encore de prime, il faut ajouter ce pilote en affectant son bonus a son
salaire. La figure suivante illustre cet exemple qui, sans 1'utilisation de |'instruction MERGE,
nécessite d'utiliser une instruction UPDATE et une instruction INSERT (multiligne s1 plusieurs
pilotes n’étaient pas référencés dans la table Primes).

Figure 4-23 Mises a jour condifionnées

Vol solrce
brevet dateVol bonus L
PL-1 05-07 -2003] 2
PL3 15-07-2004 o e
= TETT 5003 = INSERT UFDATE v 0
Primes cibile
brevet A nsm p.aye' | compa
PL Aurelia Enta 100 "] AF
[FL2 Agnas Bidal 100 | AF
PL3 Sylvie Paynasal 0 SING |

Le tableau suivant décrit 'instruction MERGE 4 utiliser et le résultat produit. L'utilisation de
I'alias p permet de parcourir la table Primes et d’effectuer la jointure avec la table vol.

Tablean 4-53 Fuslon par MERGE

Requéte Résultat sous SAL'Plus
MERGE INTO Primes p 5QLs> SELECT * FROM Primes ;
USING (SELECT brewvet, bonus FROM Vol) v
an (p.brevet = w.brewvet) EREVET NOM PRYE COMP
WHEN, MATCHED THEY{. = eseees cescsosssessese= essseesse -——-
UPDATE SET p.paye = p.paye + v.bonus PL-1 Aurélia Ente 150 AF
WHEN NOT MATCHED THEN FL-2 Agnés Bidal 100 AF
INSERT (brevet, paye) PL-3 8ylvie Payrisaat a0 STHG
VALUES (v.brevet, v.bonus); PL~4 20

Suppressions dans 1a tahie cihle

Depuis la version 10g, I'instruction MERGE permet les trois types d’opération (UPDATE,
DELETE, ou INSERT). Cela évite d’écrire des insertions, mises & jour ou suppressions multi-
ples en plusieurs commandes. La nouvelle syntaxe de cette instruction est la suivante.

@ Editions Eyrolles 173

S(E do bass |

174

MERGE TNTO [scheéma.] nomTableCible [alias]
USING [schéma.) { nomTableSource | nomVue | reguéte } [alias]
OM {(condition)
[WHEN MATCHED THEM
UPLATE SET coll = {expressionl | DEFAULT}
[,c012 = {expression? | DEFAULT}]...
[WHERE condition]
[DELETE WHERE condition]]
[WHEN NOT MATCHED THEN
INSERT [(coll [, col2)...)]
VALUES [{expressionl [,expressionZ2]... | DEFAILT })
[WHERE condition]] ;

Le choix de I'opération dans la table cible est toujours conditionné par la clause oM. Pour
chaque enregistrement de la table cible qui vérfie la condition, I'enregistrement correspon-
dant de la table source est modifié. Les données de la table cible qui ne vérifient pas la condi-
tion déclenchent une insertion dans la table cible, basée sur des valeurs d’enregistrements de
la table source.

La clause DELETE permet de vider des enregistrements de la table cible, towt en la remplissant
ou en la modifiant. Les seuls enregistrements atfectés sont ceux qui sont concernés par la
tusion. Cette clause évalue seulement les valeurs mises i jour (pas les valeurs originales qui
sont évaluées par la directive UPDATE SET. .. WHERE condition). Si un enregistrement
de la table cible satisfait i la condition du DELETE, mais n’est pas inclus dans la jointure défi-
nie par la directive ON, 1l ne sera pas détruit.

La clause WHERE de I'instruction INSERT filtre les insertions par une condition sur la table
SOurce.

Il n'est pas possible de medifier une colonne référencee dans la clause de jointure ON.

Exemple

Supposons qu’on désire ajouter i la paye de chaque pilote de grade *CDB’ un bonus. Si un
bonus est donné & un pilote n'ayant pas encore eu de prime, il faudra ajouter ce pilote en affec-
tant sa paye au bonus regu. On désire aussi supprimer les primes des pilotes modifiés si la
valeur de leur paye est inférieure 4 90. La figure suivante illustre cet exemple qui, sans 1" utili-
sation de Dinstruction MERGE, requiert I'utilisation d'une instruction UPDATE, DELETE et
INSERT (qui serait multiligne s1 plusieurs pilotes n'étaient pas référencés dams la table
Primes).

& Editions Eyrolies

[chapitre n® £ Interropation des données |

Figure 424 Mises 4 jour conditionnées (4 partir de 10g)

Yol source
brevet dateVol bonus MR
FL-1 08 10-2004 50 ;
L2 13 102004 a0 R URDATE 45
FL-3 18- 10-2004 30 -
FL-4 18- 10-2004 20
Primes Gl
bravet nom grade | paye | | compa
PL-1 Aurelia Ente q coB 100 AF
FL-2 Agnds Bidal / FiL i) AR
DELETE —| PL-3 Sylvie Payrissat [[€5]=] 20 SING
N

l; | ML | KN [260 | IR |

Le tablean snivant décrit I'instruction MERGE 4 utiliser et le résultat produit.

Tahiean 4-54 Fusion par MERGE

Requéte Résultat sous SAL*Plus
MERGE INTC Primes p SQL> SELECT * FROM Brimes ;

USING (SELECT brewet, bonus FROM Vol) w

on (p.brevet = w.brevet) EREVET N GRADE PLYE COMP

WHEN MATCHED THEN @0 seeese cceessseeeses ssee= ssmee— meee

PL-1 Burélia Ente CLB 150 AF
UPDATE | SET p. = . 'y o

. Bimare= Ty PL-2 Ignds Bidal PIL BO AF

N PL~4 20

WHERE grade = 'CDB’
DELETE WHERE paye < 90
WHEN NOT MATCHED THEN
INSERT (brevet, paye)
VALUES (v.brevet, v.bonus);

EHIII'BSSIIJI'IS régulieres

Depuis la version 10g, Ormacle gére les expressions réguliéres. Ces derniéres ont un fort rapport
avec lanotion de format de donpées ou de grammaire associée. Par exemple, un numéro de télé-
phone en France s’écrit sur 10 chiffres, le plus souvent indiqués par groupes de 2 entre tirets
(exemple : 05-62-74-75-70). Les deux premiers chiffres indiquent une région (05 indique le
Sud-Ouest). Un auire exemple concerne les numéros d'immatrnculation des véhicules compo-
sés d’'une série de chiffres, de lettres et de chiffres représentant le département d’appartenance.

Les expressions réguliéres sont manipulées sous SQL ou PL/SQL par les opérateurs REGEXP_
LIKE, REGEXP REPLACE, REGEXP INSTR et REGEXP SUBSTR. Le tableau suivant décrit les
principaux éléments permettant de composer une expression réguliére.

@ Editions Eyrolles 175

S(E do bass |

176

Tablieay 355 [Eléments décrivant une expression régulidre

Description

Le caractére backslash (barre obligue inverse) permet d'annuler I'effet d'un caractére
significatif sulvant (opérateur, par exemple).

Désigne aucune ou plusieurs occurrences.

Désigne une ou plusieurs occurrences.

Désigne au plus une occurrence.

Opérateur spécifiant une alternative.

Désigne le début d'une ligne de caractéres.

Désigne Ia fin d'une ligne de caractéres,

Désigne tout caractére excepté la valeur NULL.

Désigne une liste devant vérifier une expression cortinue dans 1a liste. Une liste ne devart
pas veérifier une expression contenue dans la liste devra commencer par le caractére *.

Désigne une expression groupée et traitée comme une simple sous-expression.

Signifie exactement mfols.

Signifie au moins m fols.

Signifie au moins m fois mais pas plus de n fois.

Spécifie la classe de caractéres (précisée dans le tableau suivant).

Spécifie la classe d'équivalence (ex : ' [=a=] ' filtrera & &,4...).

Le tableau suivant recence les classes d'équivalence disponibles.

Tableau 4-36 Ciasses d'énuivalence

[:alnum:] Caractéres alphanumériques.
[ralpha:] Caractéres alphabétiques.
[:blank:] Caracteres d'espacement.
[:entrl:] Caractéres de contrdle.

[:digit:] Chiffres.

[igraph:] Caractéres de la forme [:punct:], [iupper:], [:lower:] et [:digir:].
[:lower:] Caractéres alphabétiques minuscules.
[:print:] Caractéres imprimables.

[:punct:] Caractéres de ponctuation.
[:space:] Caractéres espaces (non affichables).
[:upper:] Caractéres alphabétiques majuscules.
[rxdigit:] Caractéres hexadécimaux.

 Editfons Eyrofies

[chapitre n° 4

Interropation des données |

Quelgues exemples

Considérons les données suivantes décrivant des parcs Américains (issu de [GEN 03]).
La structure de la table Parcs est la suivante : endroit VARCHARZ (7), telephone
VARCHARZ (15}, description VARCHAR2 1400).

Flgure 4-25 Jeu d'essal

Parcs
endroit |telaphone descri ption
1 (#31) 436.4100 | Michigan's first stabe park encompasses approximatety 1800 acres of

Mackinac |sland The centerpiece is Fort Macknac, tuilt in 1780 by the
British to protect the Great Lakes Fur Trade For infarmatian by phone, dial
800-44. PARKS or 517.373. 1214

P2 (800 2554215 | Located almost at the very tp of the Keswenaw Fennnsula, Fort Wilkens 15
a restored amy fort built during the copper rush. Camping is available For
the modem campground, phone (B00) 447-275T. For group: camping, phons
906 789 4215, For information on cance, kayak, and cther boat rentds, cal
the concession office at (A06) 2854210

F3 (908) B63-9747 | This scenic siteis centerad around an imprassive waterfal A rustic, picnic
erea with waterpump s avalable

| =%] [] Bhe 3338 | A d1i-are park located on the site of an old lumber town, Deer Fark
Shower and follst facilities are available, as are campsites with slecncity.

P5 [906) B85-5275 [Michigan's largest stete park consists of some 60,000 acres of mastly viegin

tirmiber. Crwer 90 miles of trails are available to baclkpackers and hikesrs
Dicwrhill skiing is available in winter Rustic cabins ara availabie To resenve
& cabin, call (908) 8855275

P& HULL COne of the largest wateralls sast of the Mississippl 15 Found within this park’s
40,000+ acras. Lpper Tahquamendn Falls (s some 50 faat high, 200 feat
across, end suppons a flow that has been known o reach 50,000
gallonsisecond. The park phone is 906 492 3415,

Fonction REGEKP_LIKE

La fonction booléenne REGEXP LIKE permet d'identifier des enregistrements vérifiant une
condition & propos d'une expression réguliére. Cette fonction s'utilise majoritairement dans la
clause WHERE d'une requéte. La syntaxe de cette fonction est la suivante :

| REGEXP LIKE (chaineSource, grammaire [,paramétre ..])

paramétreest un texte littéral qui permet de moduler 1'expression réguliére. Les valeurs de
ce paramétre peuvent étre :

= 'i'sionne tient pas compte de la casse ;
'c' siontient compte de la casse ;
+ 'n' permet d'utiliser le caractére . en tant que fin de ligne ;

© ‘m' permet de traiter la chaine source comme plusieurs lignes. Oracle interpréte ~ et $
comme le début et la fin de chaque sous-ligne.

@ Editions Eyrolles 177

S(E do bass |

178

Si aucun paramétre n’est utilisé, la sensibilité i la casse est définie par la valeur de NLS_
SORT, le caractére . ne termine pas une ligne et la chaine est traitée comme une seule ligne.

Exemples pour Uextraction

Le tableau suivant illustre quelques utilisations de cette fonction manipulant des expressions
réguliéres. Le filtre porte sur la colonne description qui comporte plusieurs lignes. Nous
testons ici les différents formats des numéros de téléphone.

Tableau 4-57 Utilisasions de 12 fonciion RESENP_LAGE
Expression Requéte Bimilint FOL P
XXX SELECT endroit ENDROIT
FROM Pares mmemeee
WHERE REGEXP LIKE (descriptien, *...-...."); Pl
P2
Pd
5
ldem, x étantun SELECT endroit FROM Parcs ENDROIT
chiffre, &limine WHERE REGENP _LIFE (degcription, ===z =ee—c---
par exemple '[0-8][0-9] [0-9] ~[0-9] [0-9] [0-3] [0=-8]"); Fl
l'expression ou P2
"217-acra”. SELECT endroit FROM Parcs P5
WHERE REGEXP_LIEKE (description,
"T0-91{3}-[0-9]{4,4}");
ldem en SELECT endroit FHOM Pares ENDROIT
autorisant aussi WHEFE REGEXF_LIKE (descriptioen, 0 ——=—--=
les nombres "0-81{3}[-.1[0~-9] (4,43); Pl
séparés par des P2
points. 5
P5

Le tableau suivant illustre quelques autres expressions réguliéres extraites du jeu d'essal décrit

Cl-apres.

Figure 4-26 Jeu d'essal

Test Test
col ool
banjour rasune
Maitre [résuma |
enfant rasume
mailre resume
miokile rasume
pajaro FaSUmMme
[2uruck

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Tablean 4-58 Uilisation de ciasse de caraciires

Expression Requéte Résultat SOL*Plus

Chalnes SELECT col FROM Test coL

de 6 caractéres WHERE REGEXP _LIKE(col, ©([[:lowex:]]){6}"); --—---==---

et plus en bonj our

minuscules. enfant
maitre
ndbi le
pdjare
zuriick

Chaines SELECT col FROM Test CoL

de 6 caractéres WHERE REGEXP_LIKE(col, '{[[:lowex:] JI{6}&");: ~—r=rm==mm==

en minuscules. enfant
maitre
makile
pdjaroc
zurfick

Chaines SELECT col FROM Test REGEXP_LIKE(col, COoL

de 6 caractéres {[[:uppexc:]) {1} [[:lowex:] I {E35)); = —-==--=---

commengant par Maitre

une majuscule,

le reste en

minuscules.

Classe SELECT col FROM TestZ2 WHERE coL

d'équivalence REGEXP_LIKE{col, 'r[[=e=]]sum[[=a=]1"); ~-—--===-=-

du«e»=en resumne

deuxiéme et résumé

dernigre position, résume
resumé

Classe SELECT col FROM Test2 WHERE coL

d'équivalence REGEXF _LIFE(col, '®[[=as])sun][=e=]}"1: ---====-==

de « a»etde ragumé

CX-E8 rasume

Définition d’une contrainte

La fonction REGEXP LIKE permet également de définir des contraintes an niveau des colonnes
de tables afin de s’assurer du format des données. L' ajout de la contrainte suivante garantit que
la colonne telephone contient i présent des valeurs de la forme « (xxx) xex-xexx ».

! ALTER. TAELE Parcs
AT (CONSTRAINT ck_format_tel ephone
REGEXP_LIKE (telephone,
AL gt 11N [1diaiea 13 -1 Qigit Y1 (43510) :

@ Editions Eyrolles 179

S(E do bass |

180

Etudions & présent les fonctions par lesquelles on peut manipuler des chaines de caractéres
tout en utilisant des expressions réguligres.

Fonction REGEXP_REPLACE

La fonction REGEXP REPLACE étend la fonction REPLACE en permettant de modifier une
chaine de caractéres i partir d'une expression réguliére. Par défaut, la fonction remplace une
chaine source par chague occurrence d'une expression réguliere donnée. Cette fonction
retourne un VARCHARZ si le premier parameétre n'est pas une donnée de type LOB. Dans le cas
inverse, la fonction retourne une donnée de type CLOB. La syntaxe de cette fonction est la
suivante :

REGEXP REPLACE (source, modele [,remplace

[,position [, ocourrence [, parametre 1 1 11)

source indique la chaine 4 examiner (une colonne de type CHAR, VARCHAR?, NCHAR,
NVARCHARZ, CLOB, ou NCLOB) ;

modele désigne |"expression réguliere (jusqu’'a 512 octets) ;

remplace décrit, sous la forme de références arrieres (jusqu'a 500 expressions «\n »
avec n chiffres de 1 4 9), de quelle maniére la chaine source va étre transformée. Si le para-
métre remplace est un CLOB ou NCLOB, alors Oracle le tronque 432 Ko

positionestun entier indiquant la position de début de recherche (par défaut 1) ;

occurrence est un entier précisant le remplacement (0 pour remplacer toutes les occur-
rences qui conviennent & 1'expression réguliére, n pour remplacer la nitme) ;

paramétreala méme signification que dans 1 utilisation de la fonction REGEXP_LIKE.

Le tableau suivant illustre quelques utilisations de cette fonction de remplacement. Le premier
exemple remplace chaque caractre non nul par son équivalent suivi d’un tiret. Le deuxiéme
remplace plusieurs espaces par un seul.

Dans le froisiéme exemple, nous rendons homogeéne (& I'affichage) les différents formats des
numéros de téléphone de type « xxx*axc®ooer » (x étant un chiffre et * étant un tiret ou un
point) présents dans la colonne description par le format « (xex) xoe-xooo » Onremarque
que le numéro de téléphone codé en partie & I'aide de lettres n'a pas €t€ modihi€ car il ne
respecte pas I"expression réguligre. Utilisée dans un UPDATE, cette fonction pourrait permetire
de modifier cette colonne en conséquence.

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Tablean 4-59 Umlisation de is foncBon REGEXP REPLACE

Résultat SOL"Plus

CEEATE TAELE Test (col VARCHAR2 (30));
INSERT INTO Test VALUES ('Castanet');
INSERT INTO Test VALUES ('Blagnac');

INSERT INTO Test VALUES ('Paris');

REGEXF_REPLACE (COL, ' |

o i a2

CrA-g-tra-Na~t-

SELECT REGEXP REPLACE(col, "(.)', "\1-'"} E=l-a-g-n-a-c-
FROM Test ; P-a-r-i-a
SELECT REGEXP REPLACE ('IUT,1 Place Exemple 2
GiBEragsens Blagnac®, =~ = Tmosmommmsossssoasmees
SOz r) "Exemple 2" FROM DUAL; IUT, 1 Place G. Brassens, Blagmac

SELECT REGEXP REPLACE (description,

CEOLAgiesTIL3}) [~ 1 ([[sdigits]1{3})

[=) ([fagite]] (e},
FROM Parcs WHERE endroit

CIND) NE=AEY)
= 'BPl';

DESCRIPTION

Michigan's first state park
encompasses approximately

1800 acres of Mackinac Iszland.
The centerpiece is Fort Mackinac,
built in 1780 bw the British

to protect the Great Lakes Fur
Trade. For information by phone,
dial B800-44-FARKS or

(517) 373-1214 .

Fonction REGEXP _INSTR

La tonction REGEXP_TNSTR étend la fonction INSTR en permettant de rechercher une chaine
de caractéres i partir d'une expression réguliére. Cette fonction retourne un entier indiquant le
début {ou la fin) d'une sous-chaine vérifiant 1'expression réguliére, ceci en fonction d'un para-
métre de retour. Si aucune sous-chaine ne convient, la fonction retourne 0. La syntaxe de cette

fonction est la suivante :

REGEXF_ INSTR (source, modele

[, position [, occurrence [, optionRetour [, paramétre] 1] 1)

source indique la chaine 4 examiner (une colonne de type CHAR, VARCHARZ, NCHAR,

MVARCHARZ, CLOB ou NCLOB) ;

modéle désigne 1 expression réguliére (jusqu’a 512 octets) ;
positionestun entier positif indiquant la position de début de recherche (par défaut 1) ;

occurrence estun entier positif précisant quelle est 1'occurrence de 1’ expression recher-
chée (par défaut, 1 indiquant que la premiére occurrence est i eXaniner, n Pour examiner

la nitme) ;

@ Editions Eyrolles

181

S(E do bass |

182

optionRetour codifie ce qui doit étre retourné :

— 0 si la position du premier caractére de ['occurrence extraite doit étre retournée (option
par détaut) ;

— 1 si la position du premier caractére suivant I'occurrence extraite doit &tre retournée ;

paramétre a la méme signification que dans I'utilisation des fonctions REGEXP LIKEet
REGEXP_REPLACE.

Le tableau suivant illustre quelques utilisations de cette fonction de recherche.

Le premier exemple examine la chaine décrivant une adresse, recherche les occurrences des
caractéres non blancs en débutant au premier caractére et retowrne la premiére position du
quatrigme mot (15 correspond 4 la position qui débute avec 1'expression « 31703 »).

Le deuxiéme exemple examine la chaine et analyse les mots de sept letires commengant par s,
1, ou p (casse indifférente). La recherche débute au troisi¢éme caractére et retourne la position
du premier caractére suivant la seconde occurrence du type de mot recherché (ici, 28 corres-
pond i la position du « § » de « Shores » ; « Parkway » et « Redwood » étant deux mots qui
respectent I'expression réguliére).

Dans le troisiéme exemple, nous extrayons les endroits dont la description inclut une surface
(définis en acres mais hétérogénes au miveau de l'expression). Utilisées conjointement i
SUBSTR (qui extrait une sous-chaine), les fonctions REGEXP_INSTR permettent de délimiter
les différentes expressions décrivant une surface (1300 acres, 217-acre, 60,000 acres et
40,000+ acres). L'expression régulitre est divisée par une barre verticale qui filtre i la fois les
mots « acres » et « acre ». Les deuxiéme ef troisiéme appels & REGEXP_TNSTR servent i déter-
miner la taille de I'expression.

Tablean 3-60 Utlisations de ia fonciion REGEXP INSTR
Requéle Résultat SQL'Plus

SELECT REGEXP_INSTR ('IUT Dept GTR, 31703 Blagnac', Exerple 1
V[# J+', 1, 4) FROM DUAL; = ===-==—---

SELECT REGEXP INSTR('500 Oracle Parkway,Redwood Shores, Exemple 2
o el b oI R R iEe e i Rl i PR B [Rttty

"Exemple 2" FROM DUAL; 28
SELECT endroit, SUBSTR |(description, ENDROIT SURFACE

REGEXF_IMBTR(description, === =-sceeee scecocoeoees
[0+ actes: | [* Je=aere’, 1, 1,0, i),

REGEXP_INSTR(description, Pl 1800 acrea
A% acres | [* Tr-acre',1,1.1, 0y Pd 217-acre

- REGEXP_IMNSTR|description, BB 60,000 acres
Cfedw acres ||[f 1f-acret 1, L0010 P 40,000+ acres

"SURFACE"

FROM Parcs
WHERE REGEXP. LIKE({description,
"[% 1+ acres | [*]+-acre','i');

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Fonction REGEKP_SUBSTR

La fonction REGEXP SUBSTR étend la fonction SUBSTR en permettant d’extraire une sous-
chaine 4 partir d'une expression réguliére. Le fonctionnement de cette fonction est similaire &
celui de RESEXP_TNSTR sauf qu'au lieu de retourner la position d’une sous-chaine, REGEXP
SUBSTR retourne la sous-chaine elle-méme. La syntaxe de cette fonction est la suivante :

REGEXP SUBSTR (source, modéle

[, position [, occcurrence [, paramétre 1 1 1 }

source indique la chaine & examiner (une colonne de type CHAR, VARCHARZ, NCHAR,
NVARCHARZ, CLOB Ou NCLOB) ;

modél e désigne I'expression réguliére (jusqu’a 512 octets) ;

positionestun entier positit indiquant la position de début de recherche (par défaut 1) ;
occurrence est un entier positif précisant quelle est I'occurrence de 1'expression recher-
chée (par défaut, | indiquant que la premiére occurrence est & examiner, # pour eXaminer
la ni*™),

paramétreala méme signification que dans 1'utilisation des fonctions REGEXP_LIKE et
REGEXP REPLACE ef REGEXP TNSTSH.

Le tableau suivant illustre quelques utilisations de cetie fonction d’extraction reposant sur les
exemples précédents. Le premier exemple retourne la chaine correspondant au quatriéme mot.
Le deuxiéme exemple retourne la chaine correspondant & la seconde occurrence d'un mot de
sept letires commengant par s, 1, ou p {(casse indifférente). Dans le troisiéme exemple, nous
simplifions I'extraction précédemment éfudiée.

Tahieau 4-61 Utlisations de a fonclion REGENP SUBSTR

Requéte Résultat SQL*Plus
SELECT REGEXP SUBSTR('IUT Dept TR, 231703 Blagnac', oo T
CEEEYEY 4| FROM DUAL; 00 m--me
31703
SELECT Ex. 2
REGEXF_SUBSTH('500 Cracle Parkway, Redwood Shores, CA', ---=---
“Islz|pl [T:alpha: TI{6} 7, I, 2, 14 Redwood
"Ex. 2" FROM DUAL;
COLUMN surface format alld heading "Ex. 3" ENDROIT Ex. 3
SELECT endredi:t, — eesmesee ssessesee———
REGEXP_SUBSTR (description, '[# J+[- Jacres?',1,1,'14') -
sur face El 1800 acres
FROM Parcs P4 21F-acre
WHERE REGEXP LIKE(deascription,'[”]+[- lacres?','i'}); P& 60,000 acres
P& 40,000+ acres

@ Editions Eyrolles 183

S(E do bass |

184

Sous-expressions

Depuis la version 11g, les fonctions de recherche de chaine de caractéres et d'exiraction de
sous-chaine de caractires A partir d'une expression régulidre (RESEXP _INSTR et REGEMP_
SUBSTR) sont enrichies d'une option supplémentaire qui permet de cibler une sous-expression
particaliére de I'expression réguliére i évaluer.

La nouvelle fonction REGEXP_CCOUNT vient en complément de REGEXP_TNSTR pour compter le
nombre d’occurrences d une expression réguliére dans une chaine de caractéres.

Recherche et extraction
Concemant la recherche. |'option supplémentaire est indiquée en gras dans la syntaxe suivante :

REGEXP TNSTR (source, modele
[, position [, occurrence [, optionRetour
[, paramétre | [, sousexpr 1 1 1 1 }

L’option sousesxpr est un entier (de (0 &4 9) qui permet de rechercher une position d'une

sous-expression réguliére (fragment d'expression entre parenthéses). Une sous-expression

peut étre imbriquée et est numérotée dans I"ordre d’ apparition en fonction des parenthéses.

— Si 'option sousexpr vaut zéro (valeur par défaut), la fonction se raméne & celle étudiée
i la section précédente.

— Si I'option sousexpr est diftérente de zéro, alors la position de la sous-chaine (fragment)
qui correspond i1 ordre de la sous-expression est retourné. Si aucune position n’est trouvée,
la fonction retourne zéro.

Par exemple, considérons la chaine (I0T} (R{ei) (ms) }. Elle comporte quatre fragments qui
sont respectivement (dans 1'ordre des parenthéses) « TUT », « Redims », « ei » el « ms ». Alnsi,
la requéte suivante détermine la position de la troisiéme sous-expression (ici « ei ») au sein de
la chaine de caractéres source (ici « IUTReims »).

SELECT REGEXP_INSTR(' IUTReims', ' (IUT) (R{ei) (ms))',1,1,0,'i",3
"REGEXP_INSTR® FROM DUAL;

REGEXP INSTE

5
Concernant I'extraction, on retrouve la méme nouvelle option dans la syntaxe suivante :

REGEXP_SUBSTR (source, modele
[, position [, occurrence
[, paramétre | [, sousexpr 1 1 1]}

L'option scusexpr est un entier (de 0 & 9) qui permet d'extraire une sous-expression
réguliere (fragment d'expression entre parenthéses). Si 1'option socusexpr vaut zéro
{valeur par défaut), la fonction se raméne & celle étudiée i la section précédente.

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Si aucune sous-expression n’est trouvée, la fonction retourne NULL.
Considérons 1'exemple précédent, et extrayons la troisi#me sous-expression présente dans
I'expression réguliére au sein de la chaine de caractéres source.
SELECT REGEXP_SUBSTR (' IUTReims', ' (IUT} (R(ei) (ms))',1,1,"1",3)
"REGEXP SUBSTR" FROM DUAL;
REGEXP_SUBSTR

el

Comptage

La fonction REGEXP_COUNT compléte la fonction REGEXP_TNSTR en permettant de compter le
nombre d’occurrences d'une expression réguliére dans une chaine de caractéres. Si aucune
occumrence n'est trouvée, la fonction retoume zéro. La syntaxe de cette fonction est la suivante :
REGEXF_COUNT (source, modéle [, position [, paramétre]])

source indique 1a chaine 4 examiner.

modél e désigne 'expression réguliere (jusqu'a 512 octets). Si des sous-expressions sont

présentes (fragments), elles seront ignorées et considérées comme un tout.

position estun entier indiquant la position de début de recherche (par défaut 1).

paramétreala méme signification que dans 1"utilisation de la fonction REGEXP_LTKE.
L'exemple suivant retourne le nombre de fois ol I'expression IUT est présente dans la chaine
SOUFCE.

SEILECT REGEXP COUNT('IUT-BlagnacIUT', '{(IU)T*, 1, 'i'}
REGEXP_COUNT FROM LUAL;
REGEXF_COUNT

2

Extractions diverses

D T B T T T R R T .

Frudions, pour terminer ce chapitre consacré au requétage, d’autres fonctions disponibles
depuis la version 10g R2 avant de nous intéresser i celles proposées dans la version 11g R2.

Directive WITH

La directive WITH nomReguéte permet d’assigner un nom i une sous-requéte de fagon a
pouvoir I'utiliser 4 différents endroits et en particulier dans la requéte finale (main guery).
Oracle optimise I'interrogation en considérant la sous-requéte comme une vue ou Comme une
table temporaire.

@ Editions Eyrolles 185

S(E do bass |

186

Syntaxe
La syntaxe est la suivante :

WITH nomRequétel AS (requéteSQOL)

[inomRegquéteZ AS (reguétesgQLZ) J...
SELECT...

Le nom d'une sous-requéte est visible au nivean de la requéte finale et au sein de toutes les
autres sous-requétes exceptée celle qui définie la sous-requéte en question.

Chaque résultat d'une sous-requéte est appelé CTE (Common Table Expression).
Exemple

L'exemple suivant extrait le nom des compagnies dont la masse salariale est inférieure a la
masse salariale moyenne par compagnie. Nous utilisons ici deux sous-requétes nommées. La
premiére (comp_charges) construit un ensemble décrivant les compagnies avec leur masse
salariale. La seconde sous-requéte (moy_charges) se sert de la premiére afin d’extraire la
moyenne de la masse salariale. Les deux sont utilisées par la suite par la requéte finale.

WITH comp charges AS (SELECT nomComp, SUM(salaire) total sal comp
FROM Pilote p, Compagnie c
WHEEE p.compa = o.comp GROUP BY nomComp),
moy_charges AS (SELECT SUM(total sal comp)/COUNT(*} moyenne
FROM comp charges)
SELECT * FROM comp charges

WHERE total_sal_comp < (SELECT moyverme FROM moy_charges)
ORDER BY nomComp;

La figure suivante illustre cette directive 4 1" aide d’un exemple.

Figure 4-27 Jeu d'exemple pour les sous-reguétes nommees

Compagnie Pilote
comp | nomComp brevet salaire |compa
A A Fance PL 3400 | AF
SING | Singapore AL PL-2 4500 AF
CAST | Gastanet AL i o T
PL=4 10000 SING
PL-§ | 10050 BING
PL-& 16000 EING
PL-7 10000 CAST
PL-8 15000 CAST
; comp_charges
I total sal comp nomComp moy. ges
I 16000 Air France I moyenne
| 38080 Singapore AL | 2sopaa
| 25000 Castanet AL
i | EEEai

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Le résultat de cette extraction est le suivant :

HCMCOME TOTATL, SAT, COMP
Air France 14900
Castanet AL 25000

Il n'est pas possible d'utilisar une clause WITH dans une requéte ou une expression (la clause
WITH doit se trouver au plus haut niveau).

Fonction WIDTH_BUCKET

La fonction WIDTH BUCKET permet de définir des plages de valeurs & partir d’intervalles
calculés.

Syntaxe

La syntaxe est la suivante. Les parametres sont explicités au tableau 4-16.

| WIDTH_BUCKET (expression, valeurMin, valeurMax, nbrintervalle)

Exemple

L'exemple suivant permet de répartir les pilotes suivant leur expérience (nombre d heures de
vol). Considérons les données suivantes.

501> SELECT brevet, nom, nbhvol FROM Pilote ORDER BY nbHVol ;

EREVET NOM NBHVOL
PL-1 Henri Alquié 400
PL-2 Pierre Lamothe 500
PL-3 Didier ILinxe 200
PL-4 Christian Socutou 1000
PL-5 Gilles Laborde 1080
PL-& Pierre Sery 1600
PL-T Michel Castaings 1700
PL-9 Patrick Baudry 3959
PL-& Jules Ente 4000
PL-10 Daniel Viel 5000

La requéte suivante définit 10 plages de valeurs (heures de vol) entre les chiffres 600 et 4 000
(soit 10 plages de 340 unités). La premiére ira de 600 & 940 (non inclus), la seconde de 940 a
1 280 (non inclus), etc. Si le chifire est inférieur 4 la borne minimale, la plage est valuée 4
zéro, s'il est supérieur i la borne maximale, la plage est automatiquement calculée.

@ Editions Eyrolles 187

[Parfie | S(E do bass |

SELECT brevet, nom, nbHVol "Heures de vol®,
WIDTH BUCKET (rbHVol,600, 4000, 10) *Tranche Expérience”
FROM Pilote ORDER EY nbHVol;

Le résultat est le suivant. Notez les deux premiéres lignes et les deux derniéres qui sont hors

intervalle prédéfini.
BEEVET NOM Heures de vol Tranche Expérience
PL-1 Henri Alguié 400]
PL-2 Pierre Lamothe 500 0
PL-3 Didier Linxe 900 L
PL-4 Christian Soutou 1000 2
Pl-5 Gilles Laborde 1050 2
PL-6 Pierre Séry 1600 3
PL~7 Michel Castaings 1700 4
PL-9 Patrick Baudry 3999 10
EBL-8 Jules Ente 4000 1T
PL~10 Daniel Viel 5000 11

Recursivite avec WITH (CTE)

Depuis la release 2 de la version 11g, I'opérateur WITH permet de programmer la récursivité
d’une manigre plus efficace que la clause CONNECT BY. En effet, une sous-requéte peut
désormais ufiliser la requéte principale. On parle d'une expression commune de table (CTE
pour Common Table Expression). La syntaxe de cet opérateur permettant la récursivité est la
suivante :

WITH
nomRequetel ([alias coll [,alias col2]...])
AS
{sousReguetel)
[SERRCH { DEPTH FIRST BY alias cl [,alias c2]...
[ASC | DESC] [MULLS FIRST | NULLS LAST]
| BREADTH FIRST BY alias_cl [,alias_c2]...
[ASC | DESC] [NULLS FIRST | NULLS LAST])
BET col_ordre |
[CYCLE alias ol [.alias c2]...
SET alias_col_cycle TO valeur_cycle
DEFAILT valeur. non cycle]
[, nomReguetel ([alias_coll [,alias_col2]...]1)
AS
{sousRequete?) ..

188 & Editions Eyrolles

[chapitre n° 4

Interropation des donnéas |

- La sous-requéte (sousReguetel) programmant la récursivité doit étre composée de deux

requétes : la premiere est dite anchormember et la seconde est appelée recursive member. La
premiére ne peut pas référencer la requéte principale tandis que la seconde doit impérative-
ment la référencer, mais une seule fois. La premiére requéte peut &tre composée de plusieurs
sous-requétes reliées par des opérateurs ensemblistes (UNICN ALL, UNION, INTERSECT ou
MINUS). Par ailleurs, vous devrez utiliser 'opérateur UNICN ALL entre la requéte anchor mem-
ber et la requéte recursive member.

Premier exemple

Considérons I'exemple suivant décrivant la hiérarchie de quelques aéroports. Dans 1'exemple,
la récursivité va parcourir les liaisons entre enregistrements fils et parents (Castelnaudary
dépend de Toulouse qui dépend d'Orly, lui-méme sous Charles-de-Gaulle).

Tahieau 4-62 Données 4 parcourir

Contenu de la table
SQL> SELECT CACI, nomderc, OACI _resp FROM Reroport;

QACI MNOMAERO DACI _RESF

LFF3 Paris Charles de Gaulle

LFPO Paris Orly LFPG
LFE> Toulouse Blagnac LFED
LFED Bordeaux Merignac LFPO
LFCI ALbi LFEQ
LFCK Castres LFEQ
LFMW Castelnaudary LFEBO
LFMT Montpellier Fregorgues LFMM
LFMM Marseille Marignane LFEPC

Le nombre d'alias de colonnes d'une requéte principale doit &tre identique au nombre d'alias
de colonnes des requétes anchor member et recursive member.

La requéte recursive member ne doit pas contenir DISTINCT, GROUP BY, MODEL, fonctions
d'agrégat, sous-requétes ou jointures externes avec la requéte principale.

La requéte suivante parcourt |'arbre des aéroports récursivement (la condition de liaison est
basée sur I'égalité des colonnes clés. Dans 1'exemple, le point de départ est I'aéroport d’Orly
4 partir duquel Oracle recherche tous ses subordonnés, pour chaque subordonné, Oracle
recherche tous ses subordonnés, etc.

@ Editions Eyrolles 189

[Parfie | S(E do bass |

Tallean 4-63 Requéle récursive

Requéte Résultat
0L arbo FORMAT Al5
WITH OACI_EESP ARBD NIVEAT
acus_Paxis orly (GACT, OACT Fesn, HiVveal] & —s-csmscens mhorescnrasaioe ssnrese—-
AS { SELECT OARCI, OACI resp, 0 niveau LFPO LFED s
FROM Reroport LFFO LEFMM 1
WHERE QACI = 'LFPO' LFED LFEO 2
UNICN ALL LEMM LFMT 2
SELECT a.0ACI, a.0ACI_resp, niveau+l LFEO LFCT 3
FROM sous_Paris Orly sp, Reroport a LFBD LFCK 3
WHERE &p.0ACI = a.DACI_resp) LFEQ LEMW 3
SELECT OACI_resp,
LPAD(' ',2*niveau) | |OACI arbo, niveau

FROM smoug_Faris_oOrly
WHERE niveau=0
ORDER BY niveau, ORCI;

Constituer une liste des descendants

La requéte suivante parcourt ’arbre des aéroports récursivement en partant de 1'aéroport
d'Orly. A chaque subordonné trouve, la liste des descendants est complétée.

Tahieau 4-64 Hste des gescendants

Requéte Résultat
COL OACI FORMAT RS
WITH ORACT HIVEAU ARG _LISTE
sous_Pavis O¥ly 0200000 iesees seespssees seses s o e ses———
(QACI, CACI_resp, niveau, aro listas) LFPO 0 LFPG
A8 { SELECT OACI, OACI_resp, 0 niveau, LFED 1 LFFG, LFPO
CAST (OACI_resp AS VARCHARZ (25)) LEMM 1 LFFG,LFPO
FROM Reroport LFED 2 LFPG, LFPD, LFED
WHERE OACI = 'LFPO’ LEMT 2 LFPG,LFPO, LFMM
UNICN ALL LFCI 3 LFP3,LFPD, LFED, LFED
SELECT a.0aCI, a.0ACI_resp, niveau+l, LECE 3 LFPG,LFPQ, LFED,LFBD
CAST (aro_liste || ',' || LEMW i LFPG, LFPD, LFED, LFED

a .0RCT_resp AS VARCHARZ (25))
FEOM goug_Parig Orly sp, Reroport a
WHERE sp.0ORCT = a.0RCI_resp)
SELECT OACI, niveau, aro_liste
FROM sous_Paris _Orly
ORDEER BY niveau, OACI;

190 & Editions Eyrolles

[chapitre n® £ Interropation des données |

Ordonner les descendants

La clause SEARCH permet d’ordonnancer les lignes extraites lors du parcours. L'option
BREADTH FIRST BY retourne les lignes d'un méme niveau (sibling rows) avant de descen-
dre dans 'arbre (child rows). L'option DEPTH FIRST BY réalise 'inverse. L'ordre est indi-
qué par la colonne citée dans 1'opérateur BY et remonte au niveau de la requéte principale a
I'aide d'une colonne fictive présente dans 1'opérateur SET.

La requéte suivante parcourt I'arbre des aéroports récursivement en profondeur d'abord, puis
en largeur en partant de 1"aéroport d'Orly.

Tableau 4-65 Liste ordonnée par DEPTH FIRST BY

Requéte Résultat
COL ORCI FORMAT A5

WITH OACTI_RESF ARBO NIVEATT
seus_Paris Orly {OACTI, OACT_ Yesp, nivéau) — ==mescress ssescrcosss=nes cesssones-
AS LFPO LFBD 1
{ SELECT OACI, OACI resp, 0 niveau LFED LFEC 2
FRCM Aeroport LFBO LFCI 3
WHERE ORCI = 'LFEO’ LFBO LFCE 3
UNION ALL LFEO LEMW 3
SELECT a.0ACT, a.0ACI_resp, niveau+l LFPC LFMM 1
FROM sous_Paris Orly sp, Reroport a LEFMM LEMT 2

WHERE s2p.0ACT = a.0ACI_resp)
SEARCH DEPTH FIRST BY ORCI resp SET orderl
SELECT OACI_resp,

LPAD{' ',Z*niveau] | |ORCI arbo, niveau
FROM sous Paris Orly
WHEERE niveau=0
ORDER BY orderl;

La requéte suivante parcourt 1'arbre des aéroports récursivement en largeur d’abord, puis en
profondeur en partant de 1" aéroport d’Orly. Cela ne représente pas, dans notre exemple, 1'arbre
modélisé mais cela peut résoudre certaines problématigues.

@ Editions Eyrolles 191

[Parfie | S(E do bass |
Tahieau 4-66 Lisie ortonmée par BREADTH FIRST BY
Requéte Résultat
COL OACI FORMAT AL

WITH DACI_RESF ARBO NIVEAT
aous_Paris Orly (GAOT, OACT femp, Hivea] A secieesees seneesensmeinian cem e
LS LFFPO LFMM i
({SELECT OARCI, OACI resp, 0 niwvean LFFPO LFED 1
FROM Aeroporbt LFED LFBO 2
WHEEE OACI = 'LFPO’ LEMM LFMT 2
UNIGN ALL LFBO LFMW 3
SELECT a.0ACI, a.0RCI_resp, niwveau+l LFBD LFCK 3
FROM sous_Paris Orly sp, Reroport a LFED LFCI 3

WHERE &8p.0BRCI = a.0ACI_resp)
SEARCH BREADTH FIRST BY OACI resp SET crderl
SELECT OACI_resp,

LEAD ('

', 2*niveau) | |[OARCT arbo, niveau

FROM scus_Paris Orly
WHERE niweaws-0
ORDER. BY oxderl;

Cycles de colonnes

La clause CYCLE permet de détecter les cycles de colonnes, une ligne compose un cycle lors-
que 1'une de ces lignes ancétre (ascendant) a la méme valeur pour une colonne donnée (celle
du cycle cherché). Attention, il ne s’agit pas de cycle de I'arbre, qui, s’il existe, devra étre

considéré comme un graphe (voir la section qui suit).

CYCIE alias cl [,alias ¢c2)...
SET alias col_cyecle TO valeur cyole DEFAULT valeur non coyvole

Les alias suivant la clause CYCLE doivent faire référence aux colonnes de la requéte princi-
pale.

Les paramétres valeur_ cycleet valeur non cyvcele doivent étre des caractéres de
taille 1.

Dés qu'un cycle est détecté, alors lacolonne alias_col_cycleest mitialisée i la valeur
valeur cycle. La récursivité s'arréte sur cette ligne (aucume ligne descendante n'est
examinée) mais le traitement se poursuit sur les lignes de méme niveau (et leurs descen-
dantes).

8i ancun cycle n'est trouvé, la colonne alias col cycle contiendra la valear
valeur non_ cycle pour les lignes extraites. Cette colonne est d’aill eurs automatique-
ment ajoutée i la requéte finale.

Ajoutons i 'exemple précédent la colonne année de création et cherchons les aéroporis qui

ont un ancétre construit la méme année.

192

& Editions Eyrolles

[chapitre n® £ Interropation des données |

Tableau 4-67 Domnées & parcouri

Contenu de la table
SQL> SELECT OACI, nombere, OBCTI_resp, anneeCreation FROM Aeroport;

OACT NOMAERD OACI_FRESP ANNEECREATICON
LFFG Paris Charles de Gaulle 1578
LFPO Paris Orly LFPG 1967
LFBO Toulouse Blagnac LFED 1968
LFED Bordeaux Merignac LFFO 1972
LFCI Albd LFBO 1967
LFCK Castres LFBO 19280
LEMW Castelnaudary LFEQ 1981
LFMT Montpellier Fregorgues LEFMM 1973
LEMM Margeille Marignane LFFO 1978

La requéte suivante parcourt tout 1’ arbre récursivement et détecte un cycle sur I'année de création
entre Albi et Orly.

Tahleau 4-58 Recherche 0'un cycle suwr une colomne

Requéte et résultats

COL arbe FORMAT AlS
COL est_cycle FORMAT AS
WITH
sous_Paris _Orly (OACI, OACI_resp, niveau, creation)
aAs
({SELECT OACI, OACI_resp, 0 niveau, anneeCreation
FROM Reroport WHERE OACT = 'LFPO!
TUNION ALL
SELECT a.QACI, a.0ACI resp, niveau+l, anneeCreation
FROM goug_Paris Orly 2p, Aeroport a
WHERE 2p.0OACI = &.0RCI_resp)
SERFCH DEPTH FIRST BY OARCT resp SET orderl
CYCLE creaticn SET est_cycle TO 'Y' DEFAULT 'N'
SELECT CACI_reap, LPAD(' ',2%niveau) | |GhCI arbo,
niveau, creation, est_cycle
FROM sous_Paris Orly ORDER BY orderl;

ORCI_RESP RAREG NIVEAU CREATION EST CYCLE
LFPG 1FPO 0 1967 N
LFPO LFED 1 1972 N
LFED LEBO 2 1968 |
LFEO LECT 3 1967 ¥
1LFBO LFCK 3 1980 W
LFBO LEMW 3 1981 N
LFPO LEMM 1 1975 ®
LEM LEMT 2 1973 N

@ Editions Eyrolles 193

S(E do bass |

194

Parcours d’un graphe orienté

Lexemple du graphe suivant est extrait du blog de Frédéric Brouard (alias SQLpro), consul-
tant expert SQL et spécialiste de SQL-Server. Je lui rends ici hommage, au regard de la foulti-
mde d'articles de qualité qu'il a produit & propos de SQL (http:/blog.developpez.com/sgipro).
Bon, il n"aime pas trop Oracle, mais personne n’est parfait.

Figure 4-28 Graphe autoroutier

PARIS
i
I | |
385 420 470
| | |
NANTES - CLERMONT LYON
1o
1 | 3as 305 | 320
] i e i e e L A s P S
| I |
375 ') MONTPELLIER MARSETLLE
| 1
.................. 205
1 240 I
TOULOUSE NICE

La table Autoroutes permet d'implémenter cet état de fait. Nous allons progressivement
rechercher le détail des trajets possible entre la capitale et le Capitole.

Tableau 4-60 Données @ parcourir

Contenu de la table
SQL> SELECT ville_de, wille_ wers, km FROM Autoroutes;

VILLE_DE VILLE_VERS KM
PARTS NANTES i85
BARIS CLERMONT-FERRAND 420
PARIS LYON 470
CLERMONT -FERRAND MONTPELLIER 335
CLERMONT -FERRAND TOULOUSE 378
LYON MONTFELLIER 305
LYON MARSEILLE 320
MONTPELL TER TOULOUSE 240
MARSEILLE NICE 205

& Editions Eyrolles

[chapitre n® £ Interropation des données |

La requéte suivante parcourt le graphe récursivement pour extraire le nombre d'étapes des
différents trajets, entre Paris et la ville rose. On retrouve la jointure entre la table de référence
etcelle construite récursivement.

Tableau 4-T0 Recherche dans un graghs

Requéte Resuitat
WITH trajets (ville_vers, etape)
AS VILLE_VERS ETAFE
(SELECT DISTINCT ville de, 089 = = =secceccccremres sremeeaee-
FROM Rutoroutes TOULOUSE 2
WHERE wille_de = 'PARIS' TOULOTUSE 3
UNICHN ALL TOULOUSE 3

SELECT a.ville_vers, t.estape + 1
FROM Autoroutes a, trajets t
WHEFRE t.ville vers = a.ville_de)

SELECT ville_vers, etape
FROM trajets
WHERE wille_ wers = 'TOULOUSE';

La requéte suivante ajoute i la précédente la somme des kilométrages pour chaque ligne
extraite du graphe.

Tableay 4-71 Recherche dans un graphe (ncrémentation d'une varishiel

Requéte Résultat
WITH trajets VILLE VERS ETAFE DISTANCE
{ville wvers, etape, distance} === —sess-seessses —SssmsssRs ssnessaees
AS TOULOUSE 2 795
{SELECT DISTINCT ville_de, 0, 0 TOULOUSE 3 1015
FROM Rutoroutes TOULOUSE 3 285
WHERE wille_de = 'PARIS'
UNION ALL

SELECT a.wille_vers,
t.etape + 1, t.distance+a.km
FRCM Autorcutes a, trajets t
WHERE t.ville_wers = a.ville_da)
SELECT wille wvers, etape, distance
FROM trajets
WHERE ville vers = "TOULOUSE';

La requéte suivante ajoute i la précédente la construction progressive des chemins parcourus
(que j'estime 4 50 caractéres) et |'ordonnancement en fonction de la distance totale.

@ Editions Eyrolles 195

[Parfie | S(E do bass |
Teblesn 4-72 Recherche dans un graphe constoction de chemins
Requéte et résultats
WITH trajets (ville wers, etape, distance, trajet)
2SS
(SELECT DISTINCT ville de, 0, 0, CAST('PARIS' AS VARCHAR({50))
FROM Auteoroutes WHERE wille de = 'PARIS'
UNION ALL
SELECT a.ville wers, t.etape + 1, t.dizstance+a.km,
CAST(t.trajet|| *,' || a.ville_vers AS VARCHARZ (50))
FROM Rutoroutes a, trajets t
WHERE t.wille_wvers = a.ville_de)
SELECT trajet, etape, distance
FROM trajets WHERE wille wvers = 'TOULOUSE' ORDER BY distance;
TRAJET ETAPE DISTANCE
PARIS; CLERMONT-FERRAND, TOULOUSE 2 795
PARIS, CLERMONT-FERRAND, MONTPELLIER, TOULOUSE 3 995
PARIS, LYCN, MONTPELLIER , TOULOUSE 3 1018
Qu'adviendrait-il si toutes les étapes inverses (exemple : NANTES , PARTS, 385) éalent également
stockées dans la méme table 7 Toutes ces requétes sy perdraient dans les cycles, renvoyant I"erreur
« ORA-32044: cycle détecté lors de 1'exéoution de 1'interrogation WITH
réeursive ». Le paragraphe suivant décrit le moyen d'éviter ces désagréments.
Parcours d’un graphe non orienté
Ajoutons d’abord les étapes inverses i la table implémentant les trajets possibles.
Tableau 4-73 Mout des élapes Inverses
Requéte et résultats
SQL> INSERT INTO Autoroutes
SELECT ville wers,ville de, km FROM RAutoroutes;
SQL> SELECT wille_de, wille_wers, lmm
FROM Autoroutes CORDER BY wille_de, wille wers;
VILLE DE VILLE VERS KM
CLERMONT -FERRAND MONTPELLIER 335
CLERMONT -FERRAND PARIS 420
CLERMONT -FERRAND TOULOUSE 378
LYON MARSEILLE 3z0
LYON MONTFELLIER 305
LYON FARIS 470
MARSEILLE LYON 3za
MARSEILLE NICE 205
MONTPELL IER CLERMONT- FERRAND 335
196 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

Les requétes précédentes ne conviennent pas i cette table car Oracle détecte des cycles sans
fin.

Il est possible de se débarrasser des cycles en comparant tout chemin courant avec la colonne
evaluée en question. Ce n'est toutefois pas suffisant, car Oracle ne vous fait pas confiance et
teste la requéte avant dexécuter cette condition. En conséquence, il faut ajouter une condition
concernant un nombre maximal d'itération récursive.

La requéte suivante teste la ville d’arrivée avec tout chemin construit récursivement et élimine
ainsi les cycles. Par ailleurs, la recherche dans le graphie se limite i 10 niveaux.

Tahleau 4-14 Becherchs dans un graphe (constmiction de chemins)

Requéte et résultats
WITH trajets (ville wers, etape, distatce; trajet)
AS
(SELECT DISTINCT wille_de, 0, 0, CAST('PARIS' AS VARCHAR (50))
FROM Autoroutes WHERE wville de = 'PARIS’
UNION ALL
SELECT a.ville vers, t.etape + 1, t.distance+a.km,
CAST{t.trajet|| '," || a.ville vers AS VARCHARZ(50))

FEOM Autcroutes a, trajets bt
WHERE t.ville wers = a.ville de
AND t.trajet NOT LIKE '%' || a.ville_wexs || '%°'
AND t.etapa <10)
SELECT trajet, etape, distance
FROM trajets

WHERE wille wers = 'TOULOUSE'" CRDER BY distance;
TRAJET ETAPE DISTANCE
PALRIS , CLERMONT-FERRAND, TOULOUSE 2 795
PARIS , CLERMONT - FERRAND , MONTFELLIEER, TOULDUSE 3 995
PARIS, LYON , MONTPELLIER, TOULOUSE 3 1015
PARIE , LYON , MONT PELLI ER, CLERMONT-FERRAND, TOULOUSE 4 1485

Une nouvelle route apparait, puisque Montpellier est située sur le chemin de Clermont et de
Lyon. Comme dit Frédéric Brouard, « ¢’est la plus longue, mais peut-&tre la plus belle ».

Pivots (PIVOT)

Depuis la version 11g, 'opérateur PIVOT permet, i I'aide de requétes, de transformer des
lignes en colonnes tout en opérant une fonction d’agrégat i la volée (somme, moyenne, etc.).
La syntaxe de cet opérateur est la suivante.

@ Editions Eyrolles 197

[Parfie | S(E do bass |

table interroges PIVOT [XML]
{ fonection agregat | expression) [[A8S] alias)

[;fonction agregat (expression) [[A8S] alias]]...

FOR { colonne | (colonne [,colonne]l...) }
IN { { { { expression | (expression [,expression]...}} [[AS]
alias] }...

| requete SELECT | AMY [, ANY]_ .. }))

- La dause PIVOT contient une ou plusieurs fonctions d'agrégat, la clause FCR liste une ou plu-
sieurs colonnes (& grouper puis 4 faire pivoter). La clause 11 filtre les colonnes de la clause
FOR.

Le mécanisme du pivot est le suivant : calcul deis) agrégat(s) (sans GROUP EBY devenu impli-
cite du fait de la directive TN) puis transposition de chaque valeur calculée & la colonne corres-
pondante.

Exemples

Considérons I'exemple suivant décrivant les vols d'une semaine.

Tableau 4-79 Données & faire pivoter

Requéte Résultat

ID_VOL JOUR_ID NUMVCL NB_PASSAGERS

CREATE TABLE wols @ r<seemeeee meeeees mmmemee e mm e

{ 1d_wol NUMBER,
jour_id NUMBER,
rnumVel VARCHARZ (6),
nb passagers NUMEER) ;

How 00 -3 o e e by

=3
ST RS TUR R S S SRS e
W
™
u
=

Le tablean suivant présente deux requétes utilisant 1’opérateur PIVOT. La premiére requéte
totalise le nombre de passagers transportés par vol, la seconde opére deux agrégats (somme et
moyenne des passagers transportés le lundi et le mardi). Notez qu’Oracle nomme les colonnes
en concaténant les noms des alias.

198 & Editions Eyrolies

[chapitre n® £ Interropation des données |

Tableau 4-76 Reguétes de phot

Total des passagers ransportés par vol
SELECT * FROM
{SELECT numWVel, nb passagers
FROM vols)
PIVOT (SUMinb passagers) AS somme
FOR {(numvol)
IN ('AF6ld43' AS AFG143,
'BA234' RS BA234, 'CFEE' AS CFSE,
'p00s" As DOO09));

AF6143 SOMME BA234 SOMME CF56_SOMME D009 _SOMME

Total et moyenne des passagers transportés lundi et mardi
SELECT * FROM
{SELECT jour_id, nb_passagers
FROM vols)
PIVOT (SIMinb passagers) AS sommne,
2VG (nb_passagers) AS moy
FOR (jour_id)
IN (1 AS Lundi, 2 AS Mardi)):

LUNDI_SOMME LUNDI_MOY MARDI SOMME MRRDI_MOY

La requéte suivante construit un modéle i denx dimensions qui permet d’extraire le nombre
total des passagers transportés par vol et par jour. La directive WITH permet de travailler

temporairement avec une partie de la table vols (ici les vols du lundi, mardi et mercredi dont
le numéro ne commence pas par la lettre 'B'.).

Tabieau 4-71 Modéie & deux dimensions par pivol

Requéte Résuliat
WITH piwvot_data AS
{SELECT jour_id, numVel, NUMVOL LUNDI MARDI MERCREDI
nb passagers FROM vols) e e i i i i e i
SELECT * FROM pivot_data CF&6 30 50 &0
PIVOT (SIMinb passagers) RFE143 10 40 &0
FOR jour_id Doo% a0

IN (1 A5 Lundi,2 AS Mardi,
1 AS Mercredi))
WHERE NOT (numVel LIKE 'B%');

@ Editions Eyrolles 199

S(E do bass |

200

Il n'est pas possible de génerer un nombre incennu de valeurs pivot sans la clause XML.

Avec XML

Utilisé conjointement & 1'opérateur PIVOT, la directive XML implique que le résultat de la
requéte est une unique colonne contenant un document XML de racine PivotSet. Les lignes
sont représentés par les éléments item contenant antant d’éléments column que de colonnes
extraites. Les valeurs calculées sont dans ces éléments terminaux.

Seule la directive XML permet d'utiliser une liste de valeurs, une sous-requéte ou la clause ANY
{qui sélectionne toutes les valeurs des colonnes présentes dans la clause FOR pour pivet) dans
la clause IN.

Le tableau suivant présente deux requétes avec 'option XML de 1’opérateur PIVOT. La
premiére requéte extrait la somme des passagers fransportés par vol et pour tous les vols. La
seconde extrait le total et la moyenne du nombre de passagers en examinant tous les jours
(présents dans la table d'origine) avec ANy,

Tableau 3-18 Reguéies de pivol avec V'optien NML

Requéte Résultat
NUMVOL ML
SELECT * FROM === o eeeee e es e e esee e e e e
(SELECT numVol, nb_passagers <PivotSet>
FROM wols) <1t
PIVOT XML (SUMinb_passagers) AS pax <golunrn name="NUMVOL"=>AF6143</colum>
FOR (numvael) <golumn name="PARX">210</columm>
IN SELECT DISTINCT nunWVol <fitems
FROM wols)]; <itens>

<column names"NUMVOL" >BA23 4</columns>
<column names"PAX"=90</columnns
</item=
<items
<column name="NIMVOL" >CF86</col umn>
<colurn name="PAX">160</column>
</fitems>
<items
=colurt names="NIMVOL">D0 09</columnns>
<colurn names"PAX">90</columnns
=/item
< /PivotSet>

& Editions Eyrolies

[chapitre n° 4

Interropation des données |

Tableau 4-18 Reguéies de pivel avec V'optien NML (suite)

Requéte Résultat

<PivotSet>
<items
<colunn
<colunm
<column
</ 1 tems
<item>
<columr
<column
=column
</1 tesm
<item>
<column
<columm
<column
< 1 e
<item>
=colum
<column
<column
</1tems
</PivotSet>

SELECT * FROM
{SELECT ijour_id, nb_passagers
FROM wols)
FIVOT XML
(SUM(nb_passagers) AS somme,
VG (nb_passagers) AS moy
FOR jour_id IN (ANY)):

names"JOUR_ID"=1</column>
name="50MME" > 60=/ column>
name="MoY">Z0</co lumn>

riame=s"JOUR,_ID">2< fcolumns
name="SOMME" =90</ colummn>
name="MOY">45</column>

name="JOUR_ID">3< /column>
name="S0MME" >300< fcolumns
names="MOY">75</column>

name="JOUR _ID">4</ecolumn>
name="S0MME" >100< fcolumns>
name="MOY">100</column=

Transpositions (UNPNOT)

Comme son nom l'indique, I"opérateur UNPIVOT réalise I'opération inverse de 1’opérateur
PIVOT en convertisant des données disposées en colonnes sous la forme de lignes. On peut
parler de désagrégation (ou transposition). La syntaxe de l'opérateur UNPIVOT est la

suivante

table_interrcogée UNPIVOT [{INCLUDE | EXCLUDE} NULLS]

{ { colonne | (colomme [,colonne]...
FOR { colonne | (colonne [,colonnel...

IN { { colonne | (colomne [,colennel...

b}

by
)}

[AS { constante | (comstante [,constante]l... } }]

[, { colonne | (colenne [,colonne]...

[
1.1)

)3

AS { constante | (constante [,constantel...) } 1

nes (pas les valeurs) a transformer en lignes.

La clause tNPIVOT nomme les colonnes qui vont accueillir des valeurs résultantes de la désa-
grégation. Il est possible dinclure ou non des valeurs nulles (par défaut on les exclut). La
clause FOR compose les colonnes résultantes de la désagrégation. La clause INliste les colon-

@ Editions Eyrolles

[Parfie | S(E do bass |

Le mécanisme inverse du pivot est le suivant : parcours des colonnes puis transposition de
chaque valeur (en testant éventuellement sa nullité) calculée dans la colonne correspon-
dante. Considérons 'exemple suivant qui décrit les vols d'une semaine (en termes de
nombre de passagers fransportés).

Tableau 4-79 Domnées & désagréger

Contenu de la table vols2

NUMVOL LUNDI MARDI MERCREDI JEUDI VENDREDT SAMEDT
BRZ234 20 T0

CF56 30 50 a0

AFG143 &0 40 &0 100 180

alalul] an i0

Le tablean suivant présente |'opérateur UNPIVOT qui transforme les colonnes des différents
jours en lignes par I’apport de la colonne JOURS. Ici les valeurs nulles de 1a table d’origine ne
sont pas prises en compte.

Tableau §-B0 Reguile svec UNPINOT
Détall par vol et par jour du nombre de passagers Résultat

transporiés
NUMVOL JOURS PASSACERS
SELECT % FROM wolg2: === =ecees ccecseces scceeseeeee-
UNPIVOT (passagers BAZ34 LUNDI 20
FOR jours BAZ34 MERCREDI 70
IN (Lundi, Mardi, CF56 LUNDI 30
Mercredi, Jeudi, CF56 MARDI 50
Vendredi, Samedi) CF56 MERCREDT 80
Vi AFE143 LUNDT a0
AFE143 MARDT 40
AF5143 MERCREDT &0
AF6143 JEUDI 100

Dogs MERCEREDTI 80
DO0S SAMEDI 10

Loption INCLUDE NULLS prend en compte les valeurs nulles. Dans notre exemple, pour trans-
poser les vols en se basant uniquement sur les valeurs nulles, il faut aussi tester la nullité dans
le WHERE de la requéte globale.

202 & Editions Eyrolles

[chapitre n° 4

Interropation des données |

Tablean 3-81 Requéte avec UNPIVOT &1 INCLUDE NULLS

Jours ol les vols n'ont transporté aucun passager Résultat

SELECT * FROM wvols2 | mmmmmm mmmmmem s mmmmmmmm e

UNPIVOT INCLUDE NULLS BA2Z34 MARDI
(passagers BA234 JEUDI
FOR jours BAZ34 VENDREDI
IN (Lundi, Mardi, BA234 SAMEDI
Mercredi, Jeudi, CFRE JEUDI
Vendredi, Samedi) CFS6 VENDEEDT
) CF56 SAMEDT
WHERE passagers 15 NULL; BFG143 SAMEDT

Sans la restriction finale, la liste des vols par jour avec ou sans passagers aurait éé retournée
(résultat de 'union des deux précédentes requétes).

Fonction LISTAGG

Analogue au mécanisme de pivot, la fonction LISTAGE ordomne des domnées au sein de
chaque groupe cité par ORDER BY et concaténe le résultar décrit par le premier paramétre sous
la forme d"une chaine de caractéres. La syntaxe de cette fonction est la suivante :

IISTAGG (expression [, 'delimiteur'])
WITHIN GROUP (clause ORDER_EBY) [OVER clause partitionnement]

Cette fonction, qui appartient au domaine des fonctions anal ytiques du fait de 'existence de la
clause de partitionnement, ignore les valeurs NULL. Le tableau ci-contre présente une utilisa-
tion de cette fonction et extrait, pour chaque compagnie, I'identité des pilotes des moins expé-
rimentés aux plus expérimentés.

Si vous ne disposez pas de la version 1 1g, il vous est toutefois possible de programmer cette
fonction de plusieurs fagons notamment 4 1 aide de la directive WITH ou en utilisant conjointe-
ment ROW_NUMBER et SYS CONMMECT BY PATH (voir httprAwww.oracle-base comyarticles/misc/
string-aggregation-techniques. php).

@ Editions Eyrolles 203

[Parfie | S(E do bass |
Tabileau 4-B2 Exwacton avec USTRGE
Table Requéte
SQL> SELECT * FROM Pilote; 0L res FORMAT AS0 HEARDING "Du - au +
expér imenté"
EREVET PRENOM NoM NEHVOL COMP
——— SELECT comp,
100 steven King 24000 aw LISTAGE (prenan| |' ¢ | |oom, © -)
101 Neena Kochhar 17000 AF WITHIN GROUP
102 Lex De Haan 17000 BEF {ORDER BY nbHVol,nom) AS res,
103 Alexander Hunold 2000 nF MIN (nbHVel), MAX(nbHVel)
104 Bruce Ernst 6000 ET FROM Pilote
105 Dawvid Austin 4800 AF GROUP BEY cofp;:
106 Walli Pataballa 4800 ET
107 Diana Lorentz 4200 TAT
108 Nancy Greenberg 12000 TAT
10% Daniel Faviet 9000 AF

204

COMP Du - au + expérimentd

MIN(MBHVOL) MAX (NEHVOL)

AF David Rustin - Daniel Faviet - Alexander Hunold - 4800 24000
Neena Kochhar - Steven King

EJ Valli Pataballa - Bruce Ernst - Lex De Haan 4800 17000

TAT Diana Lorentz - Nancy Greenberg 4200 12000

& Editions Eyrolles

[chapitre n° 4

Interropation des données |

Exercices

O T, O (L W - O Y) N

Les objectifs de ces exercices sont :

de créer des tables et leurs données ;
d’écrire des requétes monotables et multitables ;
de réaliser des modifications synchronisées ;

de composer des jointures et des divisions.

Exercice LA

Création dynamigue de tables

Ecrivez le script cr éabynamique.sqgl permettant de créer les tables Soft = et PCSeuls suivantes
{en utilisant la directive A% SELECT de la commande CREATE 'TABLE). Vous ne poserez aucune
contrainta sur ces tables.

Flgure 4-29 Structures des nouwvelles tables

Softs

|nomsofe |version|prix |

PCSauls

lap | nomp |aeq laa |typep |zalle |

La table Softs sera construite sur la base de tous les enregistrements de |a table Logiciel que
vous avez créée et alimentée précédemment.

La table FCSeule doit seulement contenir les enregistrements de la table Poste qui sont de type
‘PCWS' ou 'PCNT.

Wérifier

SELECT * FROM Softs;

SELECT * FROM PCSeuls;

4.2

@ Editions Eyrolles

Requétes monotables

Ecrivez le script requétes. sql, permettant d'extraire, & l'aide dinstructions SELECT, les données
suivantes :

1 Type du poste "pd’.

Noms des logiciels Unix.

MNom, adresse IF, numéro de salle des postes de type "Unix’ ou 'PCWS'

Méme requéte pour les postes du segment "130.120.80° triés par numéros de salles décroissants.
Numéros des logiciels installés sur le poste ‘p6’.

5, B R]

205

[Parfie | S(E do bass |

6 MNuméros des postes qui hébergent le logiciel Togt".

7 Nom et adresse IP compléte (ex : '130.120.80.01") des postes de type TX (utiliser lopérateur de
concaténation).

43 Fonctions et groupements
8 Pourchague poste, le nombre de logiclels installés (en utilisantla table Tnstaller).
9 Pour chague salle, le nombre de postes (& partir de la table Posta).
10 Pour chaque logiciel, le nombre dinstallations sur des postes différents.
11 Moyenne des prix des logiciels "Unix’.
12 Plus récente date d'achat d'un logiciel.
13 Numéras des postes hébergeant 2 logiciels.

14 Nombre de postes hébergeant 2 logiciels (utiliser la requéte précédente en falsant un SELECT
dans la clause FROM).

[TEED 4.4 Requétes multitables

Opérateurs ensemblistes

15 Types de postes non recenses dans le pare informatique (utiliser la table Types).
16 Types existant & la fois comme types de postes et de logiclels.

17 Types de postes de fravail n'étant pas des types de logiciel.

Jointures procédurales

18 Adresses |P des postes qui hébergent le logiciel log6”.

19 Adresses |P des postes qui hébergent le logiciel de nom 'Oracle 8.

20 Noms des segments possédant exactement trois postes de travail de type TX.

21 Noms des salles ou I'on peut trouver au moins un poste hébergeant le logiciel 'Oracle 8
22 Nom du logiciel acheté le plus récent (utiliser la requéte 12).

Jointures relationnefles

Ecrire les requétes 18, 19, 20, 21 avec des jointures de la forme relationnelle. Numéroter ces nouvelles
requétes de 23 a 26.

27 Installations {nom segment, nom salle, adresse IP compléte, nom logiciel, date dlinstallation) triées
par segment, salle et adresse IP.
Jointures SQL2

Ecrire les requétes 18, 19, 20, 21 avec des jointures SALZ (JOIN, NATURAL JOIN, JOIN USING).
Numéroter ces nouvelles requétes de 28 & 31.

206 & Editions Eyrolies

[chapitre n° 4

Interropation des données |

4.5 modifications synchronisées

Ecrivez le sctipt modifSynchronisées . =gl pour ajouter les lignes suivantes dans la table
Installer :

Flgure 430 Lignes a sjouter

Installer

nPoste nLog numins datelns |deladi
p2 fogt sequence... | SVSDATE | HULL
p8 log1 SYSDATE | N

p10 log1 SYSDATE

Ecrivez les requétes UPDATE synchronisées de la forme suivante :

UPDATE tablel aliasl
SET colonne = (SELECT COUNT(*)
FROM table? alias2
WHERE aliasZ?.colonned = aliasl.colonneB.);

Pour mettre a jour automatiquement les colonnes rajoutées :

+ nbSalledans latable Segment (nombre de salles traversées par le segment) ;
+ nbPoste dans la table Segment (nombre de postes du segment) ;

+ nblInstall danslatable Logiciel (nombre d'installations du logiciel) :

+ nbLogdanslatable Poste (nombre de logiciels installés par poste).

Vérifier le contenu des tables modifiées (Segment, Logiciel et Posta).

45

@ Editions Eyrolles

Opérateurs existentiels
Ajoutez au script requétes . sqgl, les instructions SELECT pour extraire les données suivantes :

Sous-interregation synchronisée

32 Noms des postes ayant au maoins un logiclel commun au poste ‘pé' (on dolt trouver les postes p2,
pBetpi0).

Divisions

33 Noms des postes ayant les mémes logiciels que le poste 'pé’ (les postes peuvent avoir plus de logi-
ciels gue 'p&’). On doit trouver les postes p2' et 'p8’ (division inexacte).

34 Moms des postes ayant exactement les mémes logiclels que le poste "p2’ (division exacte), on doit
trouver ‘pé'.

207

[Parfie | S(E do bass |

[FTElE) AT Extractions dans la base Chantlers
Ecrivez dans le script regchantier.sql les requétes SOL permettant d'extraire :
35 Muméro et nom des conducteurs qui étaient sur la route un jour donné (format fmmiaaaa).
36 MNuméro et nom des passagers qui ont visités un chantier un jour donné (format fimmeaaas).
37 En déduire le numéro et nom des employés qui n'ont pas bougés de chez eux le méme jour.

38 Muméro des chantiers visités entre le 2 et le 3du mois et dune année donnés avec le nombre de
visites pour chacun d'eux.

39 En déduire les chantiers les plus visités.

40 Mombre de visites de chague employé (transporté ou conducteur) pour un meis donné.

41 Temps de conduite de chaque conducteur d'un mois donné.

42 Muméro du conducteur qui a fait le plus de kilométrage dans I'année avec le kilométrage total.
43 Mom et qualification du conducteur autorisé A piloter tous les types de véhiculs.

208 & Editions Eyrolies

Chapitre 9
control desd ;

Comme dans tout systéme multi-utilisateur, I'usager d'un SGBD sera toujours identifié avant
d'employer des ressources restreintes (& moins d’étre 1'administrateur principal : le compte
sys d'Oracle). L'accés aux données doit toujours étre controlé a des fins de sécurité et de
confidentialité. La figure suivante illustre un groupe d utilisateurs aux profils divers.

Figure 5-1 Conséquences de l'aspect muii-utifsateur

Peut supprimer
Peut créer des pifotes / un vol

) Peut consulter
e ' ‘ = les vols

..f‘-

" N s
Peut détruire la base] ﬁ
-_—r p

Cette section décrit I'utilisation de SQL pour contriler I’accés aux données an travers des
mécanismes suivants :

utilisateurs et espaces de stockage (fablespaces) ;

privileges systéme et privileges objet :

réles, vues et synonymes ;

dictionnaire des données.
Le demnier paragraphe « Le multitenant » est spécifique 4 1a version 12¢ dont I'architecture
ditfére radicalement des éditions précédentes et apporte un grand nombre de nouveautés
notamment au niveau des utilisateurs et du dictionnaire des données. Sans entrer dans les

détails, décrivons tout d’abord brigvement le concept de rablespace qui concerne directement
les urilisateurs et les objets qu'ils possédent.

@ Editions Eyrolles 209

[Partie | S dobase |

Les tahiespaces

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

Comme dans tout SGBD relationnel, I'indépendance entre le niveau physique (les fichiers et
répertoires dans le systéme d’exploitation) et le niveau logique (ce qu’on présente i 'utilisa-
teur) est masque.

ndépendance logigue/physique

La figure 5-2 illustre les différents mécanismes mis en ceuvre par Oracle.

Flgure 5-2 Correspondances logique-physique

Logigus

Le bloc de données (data block, aussi appelé page) est la partie la plus petite qu’Oracle est
capable de manipuler comme un tout, de la mémoire au disque (souvent 8 Ko par défaut).
11 contiendra principalement les données des tables et des index.

Un extent est un ensemble de blocs contigus sur le disque (souvent 64 Ko par défaut, soit
8 blocs). Une table ou un index a donc au minimum une taille égale & celle d'un extent.
Un segment (table ou index) regroupe plusieurs extents, pas forcément contigus (une table
peut étre créée un moment, puis occuper de la place au fur et 3 mesure tandis qu’une autre
table ou un autre index réserve aussides extents).

Un tablespace regroupe des segments et les stocke sur le disque dans un ou plusieurs
fichiers du systéme d’exploitation (darafile).

Tablespaces deja livres
Le mécanisme des tablespaces présente beaucoup d'avantages pour I'administrateur : exporta-

tion et sauvegarde de parties de la base, déplacement des données d'un disque a 1'autre, etc.
Les tablespaces qui préexistent dans votre base sont :

210 Editfons Eyrofies

[chapltre n° 5

Coniriie des données |

SYSTEM et SYSAUX qui contiennent notamment le dictionnaire des données, les procédures

cataloguées et les déclencheurs de tout le monde ;
USERS proposé par défaut pour stocker vos données ;

TEMP qui peut agir en complément de la mémoire pour vos tris et jointures ;

UNDOTBS1 qui permet la lecture consistante du mode transactionnel (rollback segment).

Le tableau 5-1 présente différentes interrogations du dictionnaire des données pour refrouver
certaines caractéristiques des composants des tablespaces présents.

Tahizay 5-1 Carsclérisgues des 1ablespaces

Requétes et résultats Commentaires
SELECT tablespace name AS espace, block_size, La taille du bloc
initial_ extent, status, contents de chaque espace est

FROM

dba_tablespaces
ORDER BY tablespace_name;

de B Ko et de 64 Ko
pour le premier extent de
la plupart des espaces.

ESFACE BLOCK,_SIZE INITIAL_EXTENT STATUS CONTENTS Les données seront
—— par alleurs permanentes
SYSAIX 8182 65536 ONLINE PERMANENT = pour certains.
SYSTEM 8182 65536 ONLINE PERMANENT
TEMP 8192 1048576 OHNLINE TEMPORARY
UNDOTES1 8192 65536 ONLINE UNDO
TUSERS 8192 65536 ONLINE PERMANENT
SELECT tablespace name AS espace, file name Localisation des fichiers
FROM dba_data_files; physiques de chaque
espace.
ESFACE FILE_NAME
USERS €1 \BFF\CSOUTOU, ORADATR\ORCLAUSERS01 . DEF
UNDGCTBES1 O \APP\CSOUTOUN\ ORADATAN\ORCLAUNDOTES01 .DEF
SYSAUX €1\ AP P\CSOUTOU ORADATANORCLA SY SAX0 1 . DEF
SYSTEM C: \APP\CSOUTOU ORRDATAORCLY, 5¥ STEM0 1 . DBF
SELECT tablespace name AS espace, Taille occupée
bytes 102471024 AS "Taille en Ma", et disponible
uger bytes/1024/1024 AS "Dispo en Mo" de chaque espace.

FROM dba data files;

ESFACE

USERS

UNDOTES1 895
SYSAUX 980
SYSTEM 790

Taille en Mo Dispo en Mo

@ Editions Eyrolles

211

S(E do bass |

Gréation d'un tahlespace

Selon les versions, un tablespace traditionnel (snallfile) peut contenir au plus 1 024 datafiles.
Un tablespace de type bigfile (depuis la version 10g) ne contiendra qu’un seul datafile (dont la
taille n*a plus beaucoup de limites...). La syntaxe trés simplifiée de création d'un tablespace
(avec les options par défaut ; locally managed auto et allocated rablespace’) est la suvante (K
désigne un Ko, Mun Mo, etc.).

CREATE [BIGFILE | SMALLFILE] TABLESPACE nom espace
DATAFTILE '‘nom fichier® SIZE taille initialle E/M/G/T/P/E [REUSE]
AUTCEXTEND {OFF | ON MEXT valeur extension KE/M/G/T/P/E}
MAXSIZE { UNLIMITED | taille _maxi E/M/G/T/B/E };

Le tableau 5-2 présente la création d"un tablespace personnalisé.

Tableau 5-2 Création d'un tablespace

Requéte et résultat Commentaires

SQL> CREATE SMALLFILE TAEBLESPACE ts_eyrolles Lespace ts_eyrolles
DATAFILE est créé dans le fichier
'O \APPN\CSOUTOU, CRADATANORCL\thlape_eyrolles . data' tbhlaspe _evrolles.
SIZE 4 M REUSE data (4 Ma), situé &
AUTOEXTEND ON MEXT 1 M lemplacement C: \AFFY
MRXSIZE 1 G; CS0UTCOU\ORADATAN
oRCL. Chague extension
Tablespace créé, nécessalre demandera
1 Mo supplémentaire et le
fichier ne devta pas
dépasser 1 Go.

Sivous utilisez la version 12¢ avec l'option multitenant (voir la section « Le multitenant » en fin
de chapitre), vous devrez vous placer dans une base enfichable (ALTER SESSION SET
CONTAINER=..) sous peine de créer un espace dans le container root.

Gestion des utilisateurs

D I I L

212

Un utilisateur (user) sera identifié par son nom (username) et un mot de passe permettant de se
connecter, puis d'exécuter des instructions et d"accéder aux données sous réserve d’avoir regu
des privileges. Comme nous I'avons présenté dans I'introduction, un schéma consiste en une
collection d’objets (tables, séquences, index, procédures, etc.) dont le propriétaire (owner) est

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

I"utilisateur. L'utilisateur et le schéma ont le méme nom et seule 'instruction CREATE USER
permet de créer un utilisateur.

Giassification

Les types d'utilisateurs, leurs fonctions et leur nombre peuvent varier d 'une base a une autre.
Néanmoins, pour chaque base de données en activité, on peut classifier les utilisateurs de la
maniére suivante.

Le (ou lesy DBA (DataBase Administrator), les comptes livrés par Oracle aprés I'installa-
tion system et sys sont prévus pour cela. De nombreuses tiches leur seront confiées,
notamment :

— 'installation et la migration des bases ;

— la gestion du réseau, de |'espace disque et des utilisateurs ;

— les sauvegardes et restaurations ;

— I"optimisation des performances {funing).

Les développeurs qui interagissent avec les DBA (droits, stockage, optimisation, sécurité,
etc.).

Les utilisateurs finaux qui doivent se connecter via des applications ou des outils (généra-
tion de rapports, modifications de données, etc.).

Tous seront des utilisateurs (au sens Oracle) avec des privileges différents.

Création d'on utilisateur (CRERTE USER)

Pour pouvoir créer un utilisateur vous devez posséder le privilége CREATE USER.
La syntaxe SQL de création d’un utilisateur est la suivante :

@ Editions Eyrolles

CREATE USER utilisateur IDENTIFIED

{ BY motdePasse: | EXTERNALLY | GLOBAILY AS ‘nomExterma’ }
[DEFAULT TARLESPACE nomTablespace

[QUoTA { entier [E | M] | UMLIMITED } ON nomTablespace]]
[TEMPORARY TABLESPACE nomTabl espace

[QUOTA { entier [K | M]| | UMLIMITED } ON nomTablespace 1.]
[PROFILE nomProfil | [PASSWORD EXPIRE | [ACCOUNT { LOCK | UNLOCK
Y1

IDENTIFIED BY motdePasse permet d’affecter un mot de passe i un utilisateur local
(cas le plus courant et le plus simple).

IDENTIFIED BY EXTERNALLY permet de se servir de 1'authenticité du systéme
d’exploitation pour s'identifier i Oracle (cas des compte OPS5 pour Unix).

213

[Parfie | S(E do bass |
IDENTIFIED BY GLOBALLY permet de se servir de l'authenticité d’un systéme
d’annuaire.

DEFAULT TABLESPACE nomTablespace associe un espace disque de travail (appelé
1ablespace) a1"utilisateur.
TEMPORARY TABLESPACE nomTablespace associe un espace disque temporaire (dans
lequel certaines opérations se dérouleront) a 1" utilisateur.
QUOTA permet de limiter ou pas chaque espace alloué.
PROFILE nomProfi] affecte un profil {caractéristiques systéme relatives au CPU et aux
connexions) i I'utilisateur.
PASSWORD EXPIRE pour obliger I'utilisateur & changer son mot de passe la premiére
connexion (par défaut il est libre). Le DBA peut aussi changer ce mot de passe.
ACCOUNT pour verrouiller ou libérer I'accés 4 la base (par défaut UNLOCK).
Si vous ne renseignez pas l'espace par défaut, le tablespace SYSTEM pourra éfre associé a
l'utilisateur en tant gu'espace de travail (et méme d'espace temporaire) | Utilisez done toujours
explicitement soit les tablespaces prédéfinis (USERS et TEMP), soit ceux que vous aurez crées
préalablement. Quantifiez également (quota) le volume d'espace prévisionne| pour chagque uti-
lisateur sur tous les espaces qu'll utilisera, mis a part les espaces temporaires.
La clause ALTER USER vous permetira de modifier un utilisateur pour changer notamment
I'espace par défaut et I'espace temporaire. Si aucun profil n’existe (voir la section suivante
« Profils »), le profil DEFAULT sera affecté i 1'utilisateur.
Le tableau suivant décrit la création de deux utilisateurs.
Tahiean 5-3 Création d'uilisateurs
Instruction SQL Résultat
CREATE devl Lutilisateur devl pourra créer des objets dans les
IDENTIFIED BY devl espaces USERS et TS_EYROLLES. Il devrachanger
DEFAULT TABLESFACE users son mot de passe 4 la premigre connexion.
QUOTAE 10M ON users
QUOTAE 1M ON ts_eyvrolles
TEMPORARY TABLESPACE temp
PASSWORD EXPIRE;
CREATE USER devl Lutilisateur dew2 ne peut utiliser que 10 Mo
IDENTIFIED BY devz sur l'espace USERS. Son compte est pour linstant
DEFAULT TABLESPACE users bloqué.
QUOTE 10M ON usgers
TEMPORARY TABLESPACE temp
ACCOUNT LOCK ;
214 & Editions Eyrolies

[chapltre n° 5

Coniriie des données |

Par défaut, les utilisateurs, une tois créés n'ont aucun droit sur la base de données sur laguelle
ils sont connectés. La section « Priviléges » étudie ces droits.

Selon les versions et les éditions, l'installation par défaut affecte des mots de passe (pour sys
c'est change_on_install et pour system, il s'agit de manager). Il est préférable que vous
utilisiez system & la place de sys (plutot réservé a de lourdes tiches comme la création
dune base, la sauvegarde, son arrét, etc.). Laffectation du réle DBA (voir la section « Réles »)
est & réaliser avec précaution. De plus, Il n'inclut pas les priviléges systéme SY3DER et
SYSOPER.

Modification d'un wtilisateur (ALTER USER)

Pour pouvoir medifier les caractéristiques d'un utilisateur (autres que celle du mot de passe)
vous devez posséder le privilege ATLTER USER.

La syntaxe simplifiée SQL pour modifier un utilisateur est la suivante. Cette instruction
reprend les options étudiées lors de la création d'un utilisateur.

ALTER USER utilisateur
[IDENTIFIED { BY password [REPLIACE old password] |
EXTERNAILY | GLOBALLY AS 'external_name' } |
[DEFAULT TRELESPACE nomTablespace
[QuoTh { entier [E | M] | UNLIMITED } ON nomTablespace |]
[TEMPORARY TRABRLESPACE nomTablespace
[QUOTA { enfier [K | M) | UNLIMITED } ON nomTablespace].]
[BROFILE nomProfil)
[DEFAULT ROLE { rSlel [,rfle2).. | ALL [EXCEPT rélel [,r5l1e2).] |
NONE }
[PASSWORD EXPIRE] [ACCOUNT { LOCK | UNIOCK }] ;

PASSWORD EXPIRE oblige l'ufilisateur & changer son mot de passe & la prochaine
connexion.
DEFAULT ROLE aftecte i 1'utilisateur des rdles qui sont en fait des ensembles de priviléges
(voir la section « Roles »).
Chaque utilisateur peut changer son propre mot de passe & 'aide de cette instruction. Les
autres changements seront opérationnels aux prochaines sessions de 1"utilisateur mais pas & la
session courante (cas de |'utilisateur qui déclare un espace de travail alors qu'il est couram-
ment connecté & un autre).

@ Editions Eyrolles 215

S(E do bass |

216

Le tableau suivant décrit des modifications des utilisateurs créés auparavant :

Tablean 5-4 Modification d'uilisatewrs

Instruction SOL Résultat

BALTER USER dewl devl change de mot de passe et son quota n'est

IDENTIFIED BY midp_devl plus limité sur I'un des espaces sur lesquels il
QUOTA UNLIMITED ON ta_eyrolles; pouvait acceder.

ALTER USER dev2 dev? peut accéder & un autre espace dans la imite
QUOTA 2M ON ts_ayrol les de 2 Mo. Le compte est déblogueé.
ACCOUNT UNLOCE ;

Suppression d'un utilisateur (DROP USER)

Pour pouvoir supprimer un utilisateur vous devez posséder le privilege tROP USER Un utili-
sateur connecté ne peut pas étre supprimé en direct avec cette commande. Pour forcer cetie
suppression, il faut arréter ses sessions par la commande ALTER SYSTEM et |'option KILL
SESSION. Sivous désirez effacer juste I'utilisateur en tant qu’entrée dans la base sans suppri-
mer ses objets, prétérez le retrait par REVOKE du privilége CREATE SESSICHN.
La syntaxe SQL pour supprimer un utilisateur est la smvante :

DROP USER ufilisateur [CASCADE];

Oracle ne supprime pas par défant un utilisateur s'il posséde des objets (tables, séquences,
index, déclencheurs, etc.). L' option CASCADE force la suppression et détruit tous les objets du
schéma de I'utilisateur.

Les contraintes d'intégrité d'autres schémas qui référencaient des tables du schéma & détruire
sont Aussi SUPprimees,

Les vues, synonymes, procédures ou fonctions cataloguées définis i partir du schéma détruit
mais présents dans d’autres schémas ne sont pas supprimés mais invalidés.

Les roles définis par I'utilisateur i supprimer ne sont pas détruits par I'instruction DROP USER.

Profiis

Un profil regroupe des caractéristiques systéme (ressources) qu’il est possible d’affecter a un
ou plusieurs utilisateurs. Un profil est identifié par son nom. Un profil est créé par CREATE
PROFILE, modifié par ALTER PROFILE et supprimé par DROP PROFILE. Il est affecté 4 un
utilisateur lors de sa création par CREATE USER ou aprés que |'utilisateur est créé par ALTER
USER. Le profil DEFAULT est affecté par défaut & chaque utilisateur si aucun profil défini n'est
précisé.

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Création d’un profil (CREATE PROFILE)

Pour pouvoir créer un profil vous devez posséder le privilége CREATE PROFILE. La syntaxe
SQL est la suivante :

CREATE PROFILE nomProfil LIMIT
{ ParamétreRessource | ParamétreMotdePasse }

[ParamétreRessource | Paramet reMotdePasse]..;

ParametreRessource :
{ { SESSIONS_PER USER | CPU_PER_SESSION | CPU PER CALL
| COMNECT TIME | ICLE TIME | LOGICAL READS PER _SESSION
| LOGICAL READS PER CALL | COMPOSITE LIMIT)} { entier | UNLIMITED |
DEFAULT }
| PRIVATE SGA {entier[¥|M] | UNLIMITED | DEFAULT}}

ParametreMotdePasse :

{ FATLED LOGIN ATTEMPTS | PASSWORD LIFE TIME | PASSWORD REUSE TIME
| PASSWORD REUSE MAX | PASSWORD LOCK, TIME | PASSWORD GRACE TIME }
{ expression | UNLIMITED | DEFRULT } }

Les options principales sont les suivantes :

@ Editions Eyrolles

SESSIONS PER_USER : nombre de sessions concurrentes autorisées.
CPU_PER_SESSICN : temps CPU maximal pour une session en centi#mes de secondes.
CPU_PER_CAIL: temps CPU antorisé pour un appel noyau en centfiémes de secondes.

COMMECT TIME : temps total autorisé pour une session en minutes (pratique pour les
examens de TP minutés).

IDLE_TIME: temps d'inactivité autorisé, en minutes, au sein d’une mé&me session (pour les
étudiants qui ne cloturent jamais leurs sessions).

PRIVATE_SGA : espace mémoire privé alloué dans la SGA (System Global Area).

FATLED LOGIN_ATTEMPTS : nombre de tentatives de connexion avant de bloquer 1 utilisa-
teur {pour la carte bleue, c’est trois}.

PASSWORD LIFE_TIME : nombre de jours de validité du mot de passe (il expire 5'il n’est
pas changé au cours de cette période).

PASSWORD REUSE TIME : nombre de jours avant que le mot de passe puisse éire utilisé &
nouvean. Si ce parametre est initialisé & un entier, le paramétre PASSWORD_REUSE MAY
doit &tre passé i UNLIMITED.

PASSWORD REUSE_MAY : nombre de modifications de mot de passe avant de pouvoir réuti-

liser le mot de passe courant. Si ce paramétre est initialisé 4 un entier, le paramétre
PASSWORD REUSE_TIME doit étre passé & INLIMITED.

217

S(E do bass |

218

PASSWORD LOCK_TIME: nombre de jours d'interdiction d’accés i un compte aprés que le
nombre de tentatives de connexions a été atteint (pour la carte bleue, ¢a dépend de plein de
choses, de toute fagon vous en recevrez une autre toute neuve mais toute chére...).

PASSWORD_GRACE_TIME : nombre de jours d'une période de griice qui prolonge I'utilisa-
tion du mot de passe avant son changement (un message d'avertissement s'atfiche lors des
connexions). Aprés cette période le mot de passe expire.

Les limites des ressources qui ne sont pas spécifiées sont initialisées avec les valeurs du profil
DEFAULT. Par défaut toutes les limites du profil DEFAULT sont & UMLIMITED. Il est possible de
visualiser chaque paramétre de tout profil en interrogeant certaines vues du dictionnaire des

données (voir le chapiire suivant).

Exemple

Le tableau suivant décrit la création d'un profil et I'explication de ses options.

Tableau 5-5 Modification d'uSHsatewrs

Instructions SQL

Explications

CREATE FROFILE
prefil Etudiants LIMIT

SESSIONS. PER_USER 3
CPU_PER_CALL 3000
CONNECT TIME 15
LOGICAL READS PER_CALL 1000
PRIVATE SCGA 15K
IDLE_TIME 40
FAILED LOGIN ATTEMPTS &
PASSWORD LIFE TIME 70
PASSWORD REUSE TIME 60
PLSSWORD_REUSE_MAX UNLIMITED
PASSWORD_LOCK_TIME 1/24

PASSWORD GRACE TIME 10;

+ 3 sessions simultanses autorisées.

* Un appel systéme ne peut pas consommer plus
de 30 secondes de CPU.

+ Chague session ne peut excéder 45 minutes.

* Un appel systéme ne peut lire plus de 1 000 blocs
de données en mémoire et sur le disque.

« Chaque session ne peut alouer plus de 15 ko de
mémoire en SGA.

* Pour chagque session, 40 minutes dinactivité
maximum sont autorisées.

+ 5 tentatives de connexion avant blocage du
compte.

+ Lemot de passe est valable pendant 70 jours etil
faudra attendre 60 jours avant qu'il puisse étre
utilisé & nouveau.

+ 1 seul jour dinterdiction d'accés aprés que les

5 tertatives de connexion ont &té atteintes.

+ La période de grace qui profonge |'utilisation du
mot de passe avant son changement est de

10 jours.

L affectation de ce profil i I'utilisateur Paul est réalisée via I'instruction ALTER USER suivante :

ALTER USER Paul PROFILE profil Etudiants

& Editions Eyrolies

[chapltre n° 5

Coniriie des données |

Modification d’un profil (ALTER PROFILE)

Pour pouvoir modifier un profil, vous devez posséder le privilége AU TER PROFILE La syntaxe
SQL est la suivante, elle utilise les options étudiées lors de la création d™un profil :

ALTER PROFILE nomProfil LIMIT
{ ParamétreRessource | ParametreMotdePasse }

[ParamétreRessource | ParamétreMotdePasse].;

Il est plus prudent de restreindre certaines valeurs du profil DEFAULT a 'aide de cette
commande (ALTER PROFILE DEFAULT LIMIT...).

Suppression d'un profil (DROP PROFILE)

Pour pouvoir supprimer un profil, vous devez posséder le privilege DIROP PROFILE. Le profil
DEFAULT ne peut pas étre supprimé. La syntaxe SQL est la suivante :

| DROP PROFILE nomProfil [CASCADE] ;

CASCADE permet de supprimer le profil méme si des utilisateurs en sont pourvus (option
obligatoire dans ce cas) et affecte le profil DEFAULT 4 ces derniers.

Depuis le début du livre nous avons parlé de priviléges, il est temps i présent de préciser ce
que recouvre ce ferme. Un privilege (sous-entendu ufilisateur) est un droit d'exécuter une
certaine instruction SQL (on parle de privilége systéme), ou un droit d’accéder i un certain
objet d'un autre schéma (on parle de privilége objet). Les priviléges systéme différent sensi-
blement d'un SGBD i un autre. En revanche, les priviléges objets sont les mémes et sont tous
pris en charge via les instructions GRANT et REVOKE.

Les privileges assortis de la mention ANY donnent la possibilité an bénéficiaire de s’en servir
dans tout schéma (n'incluant pas par défaut celui de 'utilisatenr S¥Y=). Par exemple le privi-
l2ge CREATE 2NY TABLE permet de créer des tables dans tout schéma alors que le privilege
CREATE TABLE ne permet de créer des tables que dans son propre schéma.

Privileges systéme

1l existe une centaine de privile ges systéme. Citons par exemple la création d utilisateurs (CREATE
USER), la création et la suppression de tables (CREATE/DROP TABLE), la création d'espaces
(CREATE TABLESPACE}, la sauvegarde des tables (BACKUFP ANY TABLE), efc.

Nous indiquons ici quelques priviléges systéme relatifs aux notions étudiées jusqu'ici. La liste
compléte de tous les priviléges {systéme et objets, ainsi que les roles prédéfinis) se trouve dans
la documentation & la fin de la commande GRANT du livre électronique SQL Reference.

@ Editions Eyrolles 219

[Parfie | S(E do bass |

Tehleau 5-8 Options possibles de queltues priviiépes sysiéme

Privilége ALTER CREATE DROF Autre

INDEX ® QUERY REWRITE (index basés sur des fonctions)
ANY INDEX * ® ®

TABELE ®

INY TABLE % X X BACKUP, INSERT, DELETE, SELECT, UFDATE
USER ® b BECOME (pour des importations de bases)
FROFILE x x x

SEQUENCE X

ANY SEQUENCE b4 ® b SELECT (pour utiliser toute séquence)

ANY OBJECT pour manipuler tout objet

PRIVILEGE

Attribution de priviléges systeme (GRANT)

La commande GRANT permet d’attribuer un ou plusieurs priviléges & un ou plusieurs bénéfi-
ciaires. Nous étudierons les roles dans la section suivante. L'utilisateur qui exécute cetie
commande doit avoir regu lui-méme le droit de transmetire ces privileges. Dans le cas des
utilisaieurs SYS et SYSTEM, la question ne se pose pas car ils ont tous les droits. La syntaxe
est la suivante :

GRANT { privilégeSystéme | nomRSle | ALL PRIVILEGES }
[, { privilégeSystéme | nomR&le | ALL PRIVILEGES }]..

T0 { utilisateur | nomRéle | PUBLIC } [,{ utilisateur | nomR&le |
PUEBLIC }]..

[IDENTIFIED BY motdePasse |
[WITH ADMIN OPTION] ;

privilégeSystéme: description du privilege systéme (exemple CREATE TABLE,
CREATE SESSION, efc.).

ALL PRIVILEGES: tous les priviléges systéme.

PUBLIC : pour attribuer le(s) privilége(s) & tous les utilisateurs.

IDENTIFIED BY désigne un utilisateur encore inexistant dans la base. Cette option n'est
pas valide si le bénéficiaire est un role ou est PUELIC.

WITH ADMIN OPTICN : permet d attribuer aux bénéficiaires le droit de retransmettre le(s)
privilége(s) regu(s) & une tierce personne (utilisateur(s) ou rile(s)).

Le tableau suivant décrit I aftectation de quelques priviléges systéme en donnant les explica-
tions associées.

220 & Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Tahleau 3-1 Affectation de mivilbges systéme

Administrateur Explications
GRANT CREATE SESSICN, CREATE SEQUENCE, devl peut se connecter avec SOL*Plus, SQL
CEEATE TAELE TO devl; Developer ou par ke bais de tout programme sous

réserve de disposer d'un pilote adéquat. | peuwt
aussi créer des séguences et des tables dans

son schéma.
GRANT CREATE SESSION, CREATE ANY devZ peut g8 connecter. || peut également créer
TABLE, DROP ANY TAELE TO devi; et détruire des tables de tout schéma (de la base

enfichable concernée si I'anchitecture multitenant
est mise en ceuvre).

Révocation de privileges systeme (REVOKE)

La révocation d'un ou de plusieurs priviléges est réalisée par I'instruction REVOKE Cette
commande permet d’annuler un privilége systéme ou un réle d'un utilisateur ou d’un réle.
Nous verrons aussi que cefte commande est opérationnelle pour les privileges objets. Pour
pouvoir révoquer un privilege ou un role, vous devez détenir au préalable ce privilege avec
I'option WITH AIMIM OPTION.

REVOKE
{ privilégeSystéme | nomRSle | ALL PRIVILEGES }
[.{ privilegeSysteme | nomRSle }].
FROM { utilisateur | momRéle | PUBLIC } [,{ utilisateur | nomRSle
¥l i
Les options sont les mémes que pour la commande GRANT.
ALL PRIVILEGES (valable si I'utilisateur ou le rdle ont tous les priviléges systéme).
PUBLIC pour annuler le(s) privilége(s) chaque utilisateur ayant re¢u ce(s) privilége(s) par
I'option PUBLIC.
Le tableau suivant décrit la révocation de certains privileges acquis des utilisateurs de notre
exemple.

Tableau 5-8 Révocaiion de priviiéges sysiéme

Administrateur Explications

REVOFE CREATE SESSION FROM devl, dev2; Les utiisateurs devl et dew2 ne peuventplus
accéder a la base tout en conservant les privigges
déja acquis.

Privileges objets

Les priviléges objets sont relatifs aux données de la base et aux actions sur les objets (table,
vue, séquence, procédure). Chaque type d’objet a différents priviléges associés comme 1'indi-
que le tableau suivant. Nous ne montrons ici que quelques-unes des possibilités de priviléges

@ Editions Eyrolles 221

S(E do bass |

222

objets. Il existe d’autres options de cette instruction concernant le stockage de LOB, 'accés a
des répertoires (DIRECTORY) et aux ressources Java.

Tahieau 5-8 Options possibles de quelgues priviléges objets

Privilége Table Vue Séquence Programme PLISQGL
ALTER ®

DELETE * ®

EXECUTE x

INDEX x

INSERT * =

REFERENCES ®

SELECT ® ® ®

UPDATE =

Attribution de priviléges objets (GRANT)

L'instruction GRANT permet d’attribuer un {ou plusieurs) privilége & un (ou plusieurs) objet
4 un (ou des) bénéficiaire (ou plusieurs). L' utilisateur qui exécute cette commande doit avoir
recu lui-méme le droit de transmetire ces privileges (sauf s'il s’agit de ses propres objets
pour lesquels il posséde antomatiquement les priviléges avec I'option GRANT CPTION).
GRANT { privilégeObjet | nomRSle | ALL PRIVILEGES } [(colonnel
[,colomme2)..)]
[. { privilégeObjet | nomR&le | ALL PRIVILEGES }] [(colonnel
[, colonne2)..)).
ON { [schéma.]nomObjet | { DIRECTORY nomRépertoire
| JAvA { SOURCE | REESOURCE } [schéma.]nomobjet } }

TO { wtilisateur | nomRéle | PUBLIC } [,{ utilisateur | nmomRéle |
PUBLIC } J..

[WITH GRANT OPTION] ;

privilégeobjet : description du privilege objet (ex : SELECT, DELETE, eic.).

colonne précise la ou les colonnes sur lesquelles se porte le privilege INSERT,
REFERENCES, ou UPDATE (exemple : UPDATE (typefAvion) pour n'autoriser que la
modification de la colonne typefvion).

ALL PRIVILEGES donne tous les priviléges avec 1'option GRANT CPTION) 1 objet en ques-
tion.

PUBLIC : pour atiribuer le(s) privilége(s) 4 tous les utilisateurs.

WITH GRANT OPTION : permet de donner aux bénéficiaires le droit de retransmetire les
priviléges recus 4 une tierce personne (utilisateur(s) ou réle(s)).

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Le tableau suivant décrit un scénario d’affectation de quelgues privilé ges objets entre deux

utilisatenrs.

Tableau 5-10 Affectations de privilénes ohiets
laurent_navarmo christlan_soutou
==Table Pilote ==Table Qualif
BREVET HOM ACE VILLE TYPEQUALIF PIL
Pl Sarda 46 Balma CFL Pd
P2 Glaconne 64 Toulouse FIfA Fl
P3 Calac 53 Cugnaus FI/a P2
Pd Garzagne 53 Toulouse IR P2

PL Pl
Affectation & l'utilisateur christian soulou des PEL joti!

privilages (1) de lecture sur la table Pi lote,
(2) de modification sur la colonne ville
et (3) de référence 4 la clé brevet.

GRANT REFERENCES (brewvet),
UPDATE (ville),
SELECT ON Pilote

TO christian seoutou;

Modification d'une ville dans la table Pilote du
schéma laurent_navarro.

UFDATE laurent pavarro,Pilote
SET villé = 'Cagtanet’

WHERE brevet = 'B3';

Lecture de la table Pilote duschéma laurent
navamo.

SELECT brevet, nom, wville

FROM laurent_navarro,Filote
WHERE ville = 'Castanet’;
BREVET NOM VILLE

B3 Calac Castanet

Déclaration d'une clé étrangére vers la table
pilote duschéma lawent navarro.

ALTER TABLE pualifications
ADD CONSTRAINT dans Filote laurent
NAvVArro

FOREICGH EEY (pil)

REFERENCES laurent
navarro.Pilote (brewvet) ;

Le privilége REFERENCES permet de pouvoir déclarer et de bénéficier d"une contrainte d’inté-
grité interschémas. Dans 'exemple précédent, les qualifications sont soumises & 1'existence

des pilotes situés dans un autre schéma.

@ Editions Eyrolles

223

S(E do bass |

224

Révocation de priviléges objets
Pour pouvoir révoquer un privilége objet, vous devez détenir au préalable cette permission ou
avoir regu le privilege systéme ANY OBJECT PRIVILEGE. Il n'est pas possible d’anmuler un
privilege objet qui a été accordé avec 1'option WITH GRANT OPTICN.
REVOKE { privilégeObjet | ALL PRIVILEGES } [(colonnel [,colonneZ]..}]
[. { privilégeObjet | ALL PRIVILEGES }] [(colomnel [,colonne2].)]..
ON { [schéma.]nomObjet | { DIRECTORY nomRépertoire
| JAvA { SOURCE | EESOURCE } [schéma.]nomobjet } }
FROM { utilisateur | nomRSle | PUEBLIC } [,{ utilisateur | nomR&le |
PUBLIC } lu
[CASCADE CONSTRAINTS] [FORCE]:

Certaines options sont similaires & celles de la commande GRANT. Les autres sont expliquées
ci-apres :
CASCADE CONSTRAINTS concerne les priviléges REFERENCES ou ALL PRIVILEGES.
Cette option permet de supprimer la contrainte référentielle entre deux tables de schémas
distincts.
FORCE: concerne les privileges EXECUTE sur les types (extensions SQL3). En ce cas, tous

les objets dépendants (types, tables ou vues) sont marqués INVALID et les index sontnotés
UNUSABLE.

Le tableau suivant décrit la révocation des priviléges de I'utilisateur christian_soutou :
Tableau 5-11 Révacaton de priviiépes objels
Taurent_navarro Explications

REVOFE UPCATE, SELECT christian_soufoune peut plus ni modifier i lire la
ON Pilote FROM christian_soutou; table Pilote du schéma laurent navarro.

REVOKE EREFERENCES christian_soutou ne peut plus bénéficier de latable
ON Pilote FROM christian sentou Pilote du schéma laurent_navarro en tant que
CASCADE CONSTRATINTS; référence (l'option CASCADE CONSTERINT est

requise).

Privileges prédéfinis
Oracle propose des privileges prédéfinis pour faciliter la gestion des droits. Le tableau suivant
en décrit quelques-uns :

& Editions Eyrolles

[chapitre n° 5 Coniriie des données |
Teblean 5-12 Privliépes prédéimis
Nom Priviléges
GRANT ANY PRIVILEGE Autorisation de donner tout privilége systéme.
GEANT ANY OBJECT Autorisation de donner tout privilége objet.
PRIVILEGE
COMMENT ANY TABLE Commenter une table, vue ou colonne de tout schéma.
SELECT ANY DICTICNARY Interroger les objets du dictionnaire des données (schéma svs).
SYSDEA ALTER DATABASE OFEN | MOUNT | BACHEUP, CREATE DATABASE,
ARCHIVELOS, RECOVERY, CREATE SPFILE, RESTRICTED SESSIOH
SYSOPER Idem sauf CREATE DATABASE
Le code suivant donne puis reprend la possibilité d’autoriser tout privilége & utilisateur
christian_soutou. Nom, il n'y a pas d’erreur, deux GRANT se suivent, et un GRANT suit un
REVOKE.
GRANT GRANT ANY OBJECT PRIVILECE
GRANT ANY PRIVILEGE T0 christian_soutou;
REVOKE GEANT ANY OETECT
GRANT ANY PEIVILEGE FEOM christian soutou;
Les privildges systéme SYSDBA et SYSOPER sont nécessaires pour qu’un utilisateur puisse
démarrer (startup) ou arréter (shutdown) la base de données. Pour une connexion avec le
privilege SYSOBA, vous étes dans le schéma de SYS. Avec SYSOPER, vous étes dans le schéma
PUBLIC. Les priviléges SYSOPER sont inclus dans ceux de SYSDBA.
Il est & noter gu'un utilisateur créé simplement (avec les riles COMNECT et RESOURCE)
ne peut pas lancer la console. Pour ce faire, il faut lu atiribuer le droit SELECT ANY
DICTIONARY. Sous SQL*Plus la manipulation 4 faire est la suivante :
Sous SYS ou SYSTEM dans SQL*Plus :
GRANT SELECT ANY DICTIOMARY TO utilisateur;
Roles

Un réle (role) est un ensemble nommé de privileges (systéme ou objets). Un rle est accordé a
un ou plusieurs utilisateurs, voire i tous (utilisation de PUBLIC). Ce mécanisme facilite la
gestion des priviléges.

Un réle peut étre aussi attribué 4 un autre role pour transmettre davantage de droits comme
le montre la figure suivante. Le réle president est constitué du privilége objet SELECT sur
la table vols, et du privilege systéme DROP de tables de tout schéma. Il hérite aussi des

@ Editions Eyrolles 225

[Parfie | S(E do bass |

priviléges du rile trésorier constitué du privilége systéme CREATE TABLE dans tout
schéma.

Figure 5-3 Rdles

riles priviliges
* Pl

| INSERT ON ‘.m-i.,-w

:|~1P| ECT CN Vols
p:’nuuur L “‘\)
Fabeite x/

B E'F'__ ANY TABLE

/ﬁ:.rn

i

-

=
i

- S ——
} 1 CREATE ANY 'T:\ﬂl.3|

La chronologie des actions & entreprendre pour travailler avec des roles est la suivante :
creer le rile (CREATE ROLE) :
I'alimenter de privileges systéme ou objets par GRANT
I"attribuer par GRANT i des utilisateurs (voire 4 tous avec FUBLIC), ou & d'autres roles ;
lui ajouter éventuellement de nouveaux priviléges systéme ou objets par GRANT.

Création d'un role (CREATE ROLE)

Pour pouvoir créer un role vous devez posséder le privilege CREATE ROLE. La syntaxe SQL
est la suivante :
CREATE ROLE nomRSle
[NOT IDENTIFIED | IDENTIFIED
{ BY motdePasse | USING [schéma.]paguetage | EXTERNAILY | GLOBALLY
1
NOT IDENTIFIEDindique que 'utilisation de ce rble est autorisée sans mot de passe.
IDENTIFIED signale que I"utilisateur doit étre autorisé par une méthode (locale par un mot
de passe, applicative par un paquetage, externe 4 Oracle et globale par un service
d’annuaire} avant que le role soit activé par SET ROLE (voir plus loin).

Il n'est pas possible de donner le privilege REFERENCES & un rdle.

La figure suivante décrit la mise en ceuvre de trois roles. Voir Base autorise I'accés en lecture
aux tables de deux schémas. Modif Pilotes autorise la modification de la table Pilote du

226 & Editions Eyrolles

[chapltre n° 5

Coniriie des données |

schéma laurent_navarro pour la colonne ville. Voir et Modifier hérite des deux riles
précédents et est affecté 4 1'utilisateur president.

Flgure 5-4 Réles a définir

utilisatenrs Holes il ‘ Qualificatin.ns@

christian_soutou

" SELECT schémas

Volr et Modifier

i_-._, president

Le tableau suivant décrit la chronologie 4 respecter pour créer, alimenter et affecter ces
roles :

Tabiesn 510 GesHon de roles

Adminstrateur Explication

CREATE ROLE Volr Base Création des trois roles.
NOT IDENTIFIED;

CREATE ROLE Modlf Pilotes
NOT IDENTIFIED;

CREATE ROLE Voir et Modifier
NOT IDENTIFIED;

GRANT SELECT Alimentation des réles par des priviléges.
oM laurent navarro.Pilote
TO Volr Base
GRANT SELECT
o christian gsoutcu . Qualifications
T Voir Base
GRANT UFDATE(wille)
oN laurent_navarro,.Filote
™0 Modif Piletes;

GRANT Voir Base, Modif Pilotes Alimentation d'un réile par deux autres réles.
TO Volr et Modifier ;
GRANT Modif Pilotes Affectation des trois rdles & des utilisateurs.

TO christian goutou;
GRANT Voir Base
TO christian soutou,
laurent _navarro;
GRANT Voir et Modifier TO president;

@ Editions Eyrolles

227

S(E do bass |

228

Roles predefinis

Selon la version, Oracle propose un certain nombre de roles prédéfinis (qui sont tous attribués
par défaut aux utilisateurs SYSTEM et S¥S). Ils sont générés lors de la création de la base
(scripts accessibles dans le sous-répertoire RDBEMS'\ADMIN). Vous pouvez utiliser ces réles en
les affectant, par exemple, 4 des ufilisateurs ou pour définir vos propres roles. Le tableau 5-14
résume les caractéristiques des principaux réiles prédéfinis.

Tahiegn 5-14 Quelgues riles prodéfinis

Nom du rle Commentaires

CONNECT Se connecter (CREATE SESSION),
créer des tables, vues et séquences.

RESCURCE Créer des procédures, déclencheurs,
tables et types.

DBA Détenir tous les privilkges systéme
avec la possibilité de les
retransmettre.

EXP_FULL _DATABASE et DATAPUMP EXFP FULL_DATABASE Réaliserdes exportations.

IMP_FULL_DATABASE et DATAPUMP_IMP_FULL _DATRAEASE Réaliserdes impartations.

EM_EXPRESS BASIC ot EM_EXNPRESS ALL Utiliser la console d'administration
(version 12¢ Express).

OEM_ADVISCR Régler des requétes (voir le
chapitre 12).

SELECT. CATRLOG_ROLE Accéder & tous les objets de tout
schéma (en consultation).

XOBADMIN Accéder & XML DB Repository (voir le
chapitre 11).

Depuis des années, la documentation conseille de ne plus utiliser les rbles CONNECT,
RESOURCE et DBA. lls sont toujours présents car beaucoup les ont utilisés dés le début. Il est
fort probable qu'ils soient toujours disponibles dans les versiens a venir.

Réuvocation d'un rdle

La révocation de priviléges d’un réle existant se réalise 4 l'aide de la commande REVOKE
précédemment éudide dans les sections « Priviléges ». Pour pouvoir annuler un réle, vous
devez détenir au préalable ce rile avec |'option ATMIN OPTION ou avoir regu le privilege
systéme GRANT ANY ROLE

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

| REVOFE nomRdle [, nomRSle..]
FROM {ufilisateur | nomRéle | PUBLIC} [,{utilisateur | nomR&le |
PUBLIC} ... ;
Le tableau suivant présente trois révocations. La premiére retire un privilége i un rble (et
affecte ainsi tous les utilisateurs qui bénéficiaient du réle). La deuxiéme retire un role (ici
Voir Base) i un utilisateur particulier (ici, lawrent_navarro. Enfin, la derniére retire un réle
(icl, Volr_Base) & un autre réle Voir_et_Modifier afin de restreindre davantage ce dernier.

Tahieau 5-15 Révocations de rdles el de privilopes

Administrateur Explications
REVORE SELECT Révocation d'un privilkge d'un rile.

ON christian scutou.Qualifications
FROM Volr Base;

REVOKE Voir_ Base FROM laurent navarro; Révocation d'un rdle d'un utilisateur.

REVOKE Voir_ Base FROM Voir_et Modifier; Révocation du rdle d'un rdle.

Activation d'un role (SET ROLD

Quand un utilisateur se connecte, il détient par défaut tous les priviléges qui lui ont &té attri-
bués soit directement soit via des rdles. Les r6les, une fois ¢créés et alimentés, sont donc actifs
par défaut. Durant la session (SQL*Plus ou programme), des riles peuvent &tre désactivés
puis réactivés par la commande SET ROLE. Le nombre de roles qui peuvent étre actifs en
méme temps est limité par le paramétre d'intialisation MAY _FNABLED ROLES.

I SET ROLE
{ nomrSle [IDENTIFIED EBY motdePasse] [,nomRdle [IDENTLIFIED BY motde-
Passe]]..
| ALL [EXCEPT nomR&le [,nomRélel.]
I MNONE } ;

IDENTIFIED indique le mot de passe du rile si besoin est.

ALL active tous les réles (non identifiés) accordés 4 'utilisateur qui exécute la commande.
Cette activation n'est valable que dans la session courante. La clause EXCEPT permet
d’exclure des réles accordés i 'utilisateur (mais pas via d’autres roles) de 1'activation
globale.

NOME désactive tous les réles dans la session courante (role DEFAULT inclus).

@ Editions Eyrolles 229

S(E do bass |

Le tableau suivant décrit un scénario de désactivation et d’activation :

Tehlean 5-16 Révocations de roles el de priviléges

Administrateur

Explications

CREATE ROLE Supprime Pilotes
IDENTIFIED BY Suppil;

GERANT DELETE
ON laurent_navarro.Pllote
TO Supprime Pilotes;

GRANT Supprime_Pilotes
TO christian soutol;

Création d'un réle identifié.
Alimentation du réle.

Attribution du réle & un utilisateur.

Connexions de christian_soutou

--Possible car rile actif par défaut
DELETE FROM laurent nawvarro.Pilote;

-—-Désactivation
SET ROLE NONE;

--Suppression plus permise car rdle inactif
DELETE FROM laurent navarrc.Pilote;
ERREUR & la ligme 1 :

ORA-00942: Table ou wue inexistante

-—-Désactivation de tous les réles
BET ROLE NONE;

—Activation
SET ROLE
Supprime Pilotes IDENTIFIED BY suppil ;

--Possible car rdle actif de nouveau
CELETE FROM laurent _navarro.FPilote;

Modification d'un role (ALTER ROLE)

Nous traitons ici de la modification d’un réle au niveau de I'identification. La modification du
contenu d'un réle (ajout ou retrait de privileges) se programme a I aide des commandes GRANT
(pour ajouter un privilége) et REVOKE (pour enlever un privilege).

La commande ALTER ROLE permet de changer le mode d'identification d’un réle. Vous devez
étre propriétaire du role ou 'avoir regu avec I'option WITH ADMIN OPTION, ou détenir le
privilege ALTER ANY ROLE. Les paramétres de cette commande ont les mémes significations
que dans le cas de la création d'un réle (CREATE ROLE).

ALTER ROLE nomR&le
[NOT IDENTIFIED | IDENTIFIED
{ BY motdePasse | USING

[schéma. |pagquetage | EXTERNALLY | GLOBALLY }] ;

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Le tableau suivant décrit le fait que I'administrateur change le mot de passe du rile
Supprime Pilotes sans prévenir 1 utilisateur (¢a arrive) :

Tabisau 5-11 Mod¥ication d'un role

Administrateur Utilisateur christian soutou

—Madification du réle —-Désactivation de tous las rles
ALTER ROLE Supprime FPllotes SET ROLE NCNE;
IDENTIFIED BY Ouille;

—Activation invalide

SET ROLE

Supprime Filotes IDENTIFIED BY suppil ;
ERREUR &4 la ligne 1

ORA-01379: Mot de passe absant ou
arroné pour le réle "SUPPRIME PILOTES'

Suppression d'un role (DROP ROLD

Pour pouvoir supprimer un réle vous devez en étre propriétaire ou en bénéficier via I'option
WITH ADMIN OPTICH. Le privilege DROP ANY ROLE vous domne le droit de supprimer un role
dans tout schéma.

La commande DROP ROLE supprime le rile et le désaffecte en cascade aux bénéficiaires. Les
utilisateurs des sessions en cours ne sont pas affectés par cette suppression qui sera active dés
une nouvelle session. La syntaxe de cette commande est la suivante :

DROP ROLE nomRdle;

WO R R M S e e e W e B e SR e B R S R R R SR MR R MR e N W R M R e B e B e W R R

Outre le contrile de 1"accés aux données (priviléges), la confidentialité des informations est un
aspect important qu'un SGBD relationnel doit prendre en compte. La confidentialité est assu-
rée par l'utilisation de vues (views), qui agissent comme des fenétres sur la base de données.
Ce chapitre décrit les différents types de vues qu’on peut rencontrer.

Les vues correspondent & ce qu'on appelle le nivean exierne qui refléte la partie visible de la
base de données pour chaque utilisateur. Seules les tables contiennent des données et pourtant,
pour 'utilisateur, une vue apparait comme une table. En théorie, les utilisateurs ne devraient
accéder aux informations qu'en questionnant des vues. Ces derniéres masquant la structure
des tables interrogées. En pratique, beaucoup d'applications se passent de ce concept en mani-
pulant directement les tables.

@ Editions Eyrolles 231

S(E do bass |

232

La figure suivante illustre ce qui a été dit en présentant trois utilisateurs. lls travaillent chacun
sur un schéma contenant des vues qui proviennent de données de différentes tables.

Flgure 55 Les vues

Agnds Michel .

Vua2

schéma ! | Vue3 sohémaz
oy
/T‘ Niveau axiems -

i
Fatven Wil
G 4

- Une vue est considerée comme une table virtuelle car elle ne nécessite aucune allocation en

mémoire pour contenir les données. Une vue n'a pas d'existence propre car seule sa structure
st stockée dans le dictionnaire de données.

Une vue est créée a l'aide d'une instruction SELECT appelée « requéte de définition ». Cette
requéte interroge une ou plusieurs table(s), vue(s) ou cliché(s). Une vue se recharge chague
fois qu'elle est interrogee.

Qutre le fait d’assurer la confidentialité des informations, une vue est capable de réaliser des
contréles de contraintes d'intégrité et de simplifier la formulation de requétes complexes.
Méme dans certains cas, la définition d’une vue temporaire est nécessaire pour écrire une
requéte qu'il ne serait pas possible de construire & partir des tables seules. Utilisées conjoin-
tement avec des synonymes et attribuées comme des priviléges (GRANT), les vues améliorent la
sécurité des informations stockées.

Gréation d'une voe (GREATE VEW)

Pour pouvoir créer une vue dans votre schéma vous devez posséder le privilége CREATE VIEW.
Pour créer des vues dans d’autres schémas, le privilége CREATE ANY VIEW est requis. La
syntaxe SQL simplifiée de création d'une vue est la suivante.

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

CREATE [OR REFLACE] [[NO]FORCE] VIEW [schema.]nomVue
[{ { alias [ContrainteInLine [Contraintelnline]..] |
ContrainteOutLine }
[, { alias ContrainteInLine [ContrainteInLine]l.. |
ContrainteCutLine } 1)
]
AS requéteSELECT [WITH { READ OMNLY I
CHECE, OPTION [CONSTRAINT nomCcontrainte] } 1;

OR REPLACE remplace la vue par la nouvelle définition méme si elle existait déja (évite
d’avoir & détruire la vue avant de la recréer).

FORCE pour créer la vue sans vérifier si les tables, vues ou clichés qui I'alimentent existent,
ou si les priviléges adéquats (SELECT, INSERT, UPDATE, ou DELETE) sur ces objets sont
acquis par 'utilisateur qui crée la vue.

NOFORCE (par défaut) pour créer la vue en vérifiant au préalable si les tables, vues ou
clichés qui l’alimentent existent et que les priviléges sur ces objets sont acquis.

alias désigne le nom de chaque colonne de la vue. Si I'alias n’est pas présent, la colonne
prend le nom de I'expression renvoyée par la requéte de définition.

ContraintelInLine indique une contrainte en ligne (exemple : nomPilote NOT NULL
avec namPilotel'alias et NOT NULL la contrainte en ligne). La syntaxe suivante décrit les
possibilités d’écriture d'une telle contrainte. Seule |'option DISABLE NOVALIDATE est
disponible & ce jour.
[CONSTRAINT nomContrainte]
{ [NOT] NULL | UNIQUE | PRIMARY KEY
| REFERENCES [schéma.]nomobjet [{coll [,co0l2.])] } DISABLE
NOVALIDATE

ContrainteOutLine indique une contrainte (exemple : CONSTRAINT id pilotedF
PRIMARY KEY (brevet) DISABLE NOVALIDATE). La syntaxe sulvante décrit les possi-
bilités d’écriture d’une telle contrainte :

CONSTRAINT nomContrainte

{ INIQUE(coll [,colZ]..) | PRIMARY FEY{coll [,colZ].
| FOREIGN FEY{coll [,col2.]) REFERENCES [schéma.]lnomObjet [{coll
[,col2.1}])

DISABLE NOVALIDATE

requéteSELECT: requéte de définition interrogeant une (ou des) table(s), vue(s),
cliché(s) pouvant contenir jusqu’a mille expressions dans la clause SELECT.

@ Editions Eyrolles

La requéte de définition ne peut inclure des fonctions sur des séquences CUERVAL et
NEXTVAL ainsi qu'une clause ORDER EBY.

233

S(E do bass |

234

Il @st nécessaire de mettre un alias, dans la requéte, sur les pseudo-colonnes ROWID,
ROWNUM, et LEVEL.

Si la requéte de definition selectionne toutes les colonnes d'un objet source (SELECT *
FROM...), et si des colonnes sont ajoutées par la suite & cet objet, la vue ne contiendra pas
ces colonnes définies ultérieurement a elle. Il faudra recréer la vue pour prendre en compte
I'évolution structurelle de I'objet source.

WITH READ ONLY déclare la vue non modifiable par INSERT, UPDATE, ou DELETE.

WITH CHECK OPT'ION rarantit que toute mise i jour de la vue par INSERT ou UPDATE
s'effectuera conformément au prédicat contenu dans la requéte de définition. Il existe
toutefois des situations particuliéres et marginales qui n’assurent pas ces mises & jour
(sous-interrogation de la vue dans la requéte de définition ou mises a jour & partir de
déclencheurs INSTEAD OF).

CONSTRAINT nomCon trainte nomme la clause CHECK OPTICN sous la forme d'un nom
de confrainte. En 1’absence de cette option, la clause porte un nom wnique généré par
Oracle au niveau du dictionnaire des données (SYS_Crimmni, 1 entier).

Ciassification

On distingue les vues simples des vues complexes en fonction de la nature de la requéte de
définition. Le tableau suivant résume ce que nous allons détailler an cours de cette section :

Tablean 5-18 Ciessificalion des vues

Requéte de définition Vue simple Vue complexe
Nombre de table 1 1 ou plusieurs.
Fonction Mon Oui
Regroupement Non Oul

Mises & jour possibles 7 Qui Pas toujours

Une vue monotable est définie par une requéte SELECT ne compertant qu'une seule table dans
sa clause FROM.

Yues monotabies

Les mécanismes présentés ci-aprés s'appliquent aussi, pour la plupart, aux vues multitables
{étudiées plus loin). Considérons les deux vues illustrées par la figure suivante et dérivées de
la table Pilote. La vue Pilotesar décrit les pilotes d' Air France 4 'aide d'une restriction
(€éléments du WHERE), La wvue Etat_civil est constifuée par une projection de certaines
colonnes (éléments du SELECT).

& Editions Eyrolies

[chapitre n° 5 Coniriie des données |

Figure 56 Deux vues dune table

Pilote
brevet rim nbHVoel |adrease compa
PL-1 Soutou a8 Castanal CAST
CREATE VIEW [ilotesAF I PL-2 Laroche | 500 Montauban CAST
AS SELECT + PL:3 Lamothe | 1200 Ramonwilie AF
o PLe4 Albaric | 500 ViolleToulouss | AF
: I pLs Bidal 120 Faris ASO
PL-8 Labat 120 Pau ASD
PL-T Tauzin 100 Bas-Mauco ASD

CREATE VIEW Ebak ciwvil
AS SELECT nom, nbHVol, sdresse,
compa FROM Pilote;

Une fois créée, une vue s'interroge comme une table par tout utilisateur, sous réserve qu'il ait
obtenu le privilége en lecture directement (GRANT SELECT ON nomVue TO...) ou viaun réle.
Le tableau suivant présente une interrogation des deux vues.

Tabieau 5-19 Interrogaion d'une voe

Somme des heures de vol des pilotes d Air France, SUM (NEHVOL)
SELBCT SUM{nbifVol] FROM PilotesAF; ~--------n-

Nombre de pilotes. COUNT ([*)
SELECT COUNT(*) FROM Etat_ciwvil; — ----------

A partir de cette table et de ces vues, nous allons éudier certaines autres options de I'instruc-
tion CREATE VIEW.

Alias

Les alias, s"ils sont utilisés, désignent le nom de chaque colonne de la vue. Ce mécanisme
permet de mieux controler les noms de colonnes. Quand un alias n’est pas présent la colonne
prend le nom de 1'expression renvoyée par la requéte de définition. Ce mécanisme sert &
masquer les noms des colonnes de I'objet source.

Les vues suivantes sont créées avec des alias qui masquent le nom des colonnes de la table
source. Les deux écritures sont équivalentes.

@ Editions Eyrolles 235

[Parfie | S(E do bass |
Tabieas 5-20 Vue avec slias
Ecriture 1 Ecriture 2
CREATE OR REFLACE VIEW CREATE OR REPLACE VIEW
PilotesPasiF PilotesPasAF
{codepil, nomPil, heuresPil, A3 SELECT brevet gedepil, nom nompPil,
adressePil, socidté) nbHVel heursspil, adresse adresseril,
LS SELECT * compa société
FROM Pilote FROM FPilote
WHERE NOT (compa = 'AF'); WHERE NOT (compa = "AF');
Contenu de la vue | CODEFIL NOMPIL HEURESPIL ADRESSEPTIL SOCTETE
PL-1 Soutou 890 Cagtanet CAST
PL-2 Laroche 500 Montauban CAST
PL-5 Bidal 120 Paris RSO
PL-§ Labat 120 Pau as0
BL=7F Tauzin 100 Bas-Mauco R3O
Vie d’une vue
L'objet source d"une vue est en général une table mais peut aussi étre une vue ouun cliché. La
vie suivante est définie i partir de la vue PilotesPasAF précédemment créée. Notez qu’il
aurait été possible d'utiliser des alias pour renommer i nouveau les colonnes de la nouvelle
Vie.
Tablean 5-21 Vue d'une uue
Création Contenu de la vue
CREATE OR REPLACE VIEW NOMEIL HEURESPIL ADRESSEPIL
ErarCivliavloraaBagaF =0 e et s ki s e
AS SELECT nomPil heuresPil,adressePi]l Soutou 550 Casgtanet
FROM PBilotesFasiF ; Laroche 500 Montaubarn
Bidal 120 Paris
Labat 120 Pau
Tauzin 100 Bas-Mauco
Viues en lecture seule
L’option WITH READ ONLY déclare la vue non modifiable par INSERT, UPDATE, ou DELETE.
Redéfinissons la vue PilotesPasAF i I'aide de cette option. Les messages d’erreur induits
par la clause de lecture seule, générés par Oracle ne sont pas trés parlants.
236 & Editions Eyrolles

[chapitre n° 5 Coniriie des données |

Tahieas 5-22 WVue en lectire seule

Création Opérations impossibles

CREATE OR REPLACE VIEW FilotesPasAFRDO INSERT INTO FilotesPasAFRO VALUES
AS SELECT * {'PL-8', 'Ferry', 5, 'Paris', 'ASQ');
FROM Pilote ORA-01733: les colonnes wvirtuelles
WHEERE NOT (compa. = 'AF') ne gont pas autorisées iei
WITH HEAD ONLY ; UFDATE FilotesFasAFRO

SET nbHvol=nbHvol+2;
ORA-01733: les celonnes wirtuelles
ne gont pas autorisdes ici
DELETE FROM FllcotesPasBAFRO ;
ORA-01752: Impossible de supprimer
de la vue sans exactement une table
protégée par clé

Vues maodifiables

E Lorsqu'il est possible d'exécuter des instructions INSERT, UPDATE ou DELETE sur une vue,

cette derniére est dite modifiable (updatable view). Vous pouvez créer une vue qui est modi-
fiable intrinséquement. Si elle ne l'est pas, il est possible de programmer un déclencheur
INSTEAD OF (voir la partie 2) qui permet de rendre toute vue modifiable. Les mises & jour sont
automatiguement répercutées au niveau d'une ou de plusieurs tables.

Pour metire i jour une vue, il doit exister une correspondance biunivoque entre les lignes de la
vue et celles de 1'objet source. De plus certaines conditions doivent étre remplies.

Pour gqu'une vue simple soit modifiable, sa requéte de définition doit respecter les critéres
suivants :

pas de directive DISTINCT, de fonction (AVS, COUNT, MAX, MIN, STDDEY, SUM, ou VARTANCE),
d'expression ou de pseudo-colonne (ROWNUY, ROWID, LEVEL) dans le SELECT ;

pas de GROUF BY, ORDER BY, HAVING ou CONNECT BY.

Dans notre exemple, nous constatons qu'il ne sera pas possible d'ajouter un pilote & la vue
Etat_eivil, carla clé primaire de la table source ne serait pas renseignée. Ceci est contradic-
toire avec la condition de correspondance biunivoque.

En revanche, il sera possible de modifier les colonnes de cette vue. On pourra aussi ajouter,
modifier (sous réserve de respecter les éventuelles contraintes issues des colonnes de la table
source), ou supprimer des pilotes en passant par la vue PilotesAF.

La derniére instruction est paradoxale car elle permet d’ajouter un pilote de la compagnie
'ASO'" en passant par la vue des pilotes de la compagnie 'AF'. La directive WITH CHECK
OPTICN permet d’éviter ces effets de bord indésirables pour I'intégrité de la base.

@ Editions Eyrolles 237

238

S(E do bass |
Tabieau 5-23 Mises & jour de wes

Opérations possibles Opérations impossibles
Suppression des pilotes de ASO Ajout d'un pliote
DELETE FROM Htat civil INSERT INTO ‘HEat aivil

WHERE compa = 'AS0'; VRLUES('Raffarin', 10, 'Poitiers', 'AS0");
Le pilote Lamothe double ses heures ORA-01400: impossible d'insérer NULL
UPDATE Etat civil dans {"SOUTOU" . "PILOTE" . "EREVET")

SET nbHVol = nbHVol*2

WHERE nom = 'Lamocthe’;
Ajout d'un pilote Toute mise & jour qui ne respecterait pas les
INSERT INTO FilotésaF VALUES contraintes de la table Filote

('PL-8', 'Ferry', 5, 'Paris’,

VAF);
Modification

UPDATE FilotesaF
SET nbHVel = nbHVol*Z;

Suppression
DELETE FROM Bilotesar
WHERE nom = 'Ferry';

Ajout d'un pilote qui n'est pas de "AF' |

INSERT INTC PiloteshF VALUES
{"PL-9', 'Raffarin', 10, 'Poitiers',
TREO') ;

Directive CHECK OPTION

La directive WITH CHECE OPTION empéche un ajout ou une modification non conformes 2 la
définition de la vue.

Interdisons 1'ajout (ou la modification de la colonne compa) d'un pilote au travers de la vue
PilptesAF, sile pilote n’appartient pas 4 la compagnie de code 'AF.
1l est nécessaire de redéfinir la vue Pilotesar. Le script suivant décrit la redéfinition de la

vue, I'ajout d'un pilote et les tentatives d’addition et de modification ne respectant pas les
caractéristiques de la vue :

Tablean 5-24 Vue svec CHECK OPTION

Opérations possibles Opérations impossibles

Recréation de la vue Ajout d'un pllote

CREATE OR REPLACE VIEW PilotesAr INSERT INTO PiletesAF VALUES

AS SELECT * FROM pilote ('PL-10"', "Juppé’, 10, 'Bordeaux’, "ASQ') ;
X = 'BRF' WITH CHECK OPTION; ORA-01402: vue WITH CHECK OPTION -

Nouveau pilote vislatien de clause WHERE

INSERT INTO PilotesAF VALUES Modification de pilotes

('PL-11', 'Teste', 500, 'Revel ', "AF'); UPDATE PilotesaF SET compa='ASO*

1 ligne eréée. ORA~- 01402 : vue WITH CHECK OPTION -

violation de clause WHERE

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Vues avee contraintes

Comme il est indiqué dans la clause de création d’une vue, il est possible de définir au niveau
de chaque colonne une ou plusieurs contraintes (en ligne ou compléte).

Oracle n'assure pas encore I'activation de ces contraintes. Elles sont créées avec |'option
DISAELE NOVALIDATE et ne peuvent étre modifiées par la suite. Les contraintes sur les vues
sont donc déclaratives (comme 'étaient las clés étrangeres de la version 6).

Les deux vues suivantes sont déclarées avec une contrainte de chaque type. Il sera possible
néanmoins d'y insérer des pilotes de méme nom.

Tableau 5-25 GContraintes décisratives d'une vos

In line Out of fine
CREATE OR REFLACE WIEW CREATE OFR REFPLACE VIEW
PilotesPasdF_inLine (codepil, PilotesPasAF_outline
nomPil UNIQUE DISABLE NOVALIDATE', {eodepil, nomPil, heuresPil,
heurespil, adressePil, société) adressePil, socidté,
AS SELECT * FROM FPilote CONSTRAINT un namPil UNIQUE (nemPil)
WHERE NOT (compa = 'AF') DISABLE NOVALIDATE)
WITH CHECEK OPTION; A5 SELECT * FROM Pilote

WHERE NOT (compa = 'AF')
WITH CHECE OPTION;

Vues complexes

Une vue complexe est caractérisée par le fait de contenir, dans sa définition, plusieurs tables
{jointures), et une fonction appliquée 4 des regroupements, ou des expressions. La mise i jour
de telles vues n’est pas toujours possible.

Les restrictions de création sont les suivantes .

Sila requéte de définition contient une sous-nterrogation (jointure procédurale), elle ne doit
pas étre Symhronisée ou faire intervenir la table source.

Il n'est pas possible d'utiliser les opérateurs ensemblistes (UNICON [ALL], INTERSECT ou
MINUS).

La figure suivante présente deux vues complexes qui ne sont pas modifiables. La vae multi-
table Pilotes multi AF est créée 4 partir d'une jointure entre les tables Compagnie
et Pilote. La vue Moyenne Heures Pil est créée A partir d'un regroupement de la
table Pilote.

@ Editions Eyrolles 239

S(E do bass |

240

Figure 57 Vues complexes

CREATE VIEW pilotes multl AF
AS SELECT pibrevet, p.nom,
ponbEVel, e.ville, o hoeConp
FROM Filote p, Compagnia ¢
WHERE, p.compa = ¢.comp AN p.compa = ‘AF';

Compagnlie

comp | prus | ros [vu]m TGO

AF 124 | Port Royal |_Panis Air France
LSING |7 | Camparals | Singapour Singapore AL

4

Pilote l

brevet i nbiVol | compa

PL-1 Améle Sulpice 4% AF

PL2 | ThomesSulpice AF i

PL-3 Paul Soutou 1000 | SING___ :
Mises a jour

Il apparait clairement qu’on ne peut pas insérer dans les deux vues car il manquerait les clés
primaires. Les messages d’erreurs générés par Oracle sont différents suivant la nature de la
vue (monotable ou multitable).

Tableau 5-26 Tentatives d'Insertlons dans tes Yues compiexss

INSERT INTD Moyenne Heures Pil INSERT INTC Pilotes multi_ AF
VALUES('TAT',50); VALUES|'PL-4', 'Test',6 400, 'Castanet’,

ORA-01732: les manipulations de den- 'Castanet Air Lines');

nées gont interdites sur cette vue ORA-01776: Impossible de modifier plus

d'une table de base wvia une vue jointe

On pourrait croire qu'il en est de méme pour les modifications et les suppressions. Il n'en est
rien. Alors que la vue monotable Moyenne Heures Pil n'est pas modifiable, ni par UPDATE
ni par DELETE (message d’erreur ORA-01732), la vue multitable Pilotes multi AF est
transformable dans une certaine mesure, car la table Pilote (qui entre dans sa composition)

est dite « protégée par clé » (kev preserved). Nous verrons dans le prochain paragraphe la
signification de cette notion.

Modifions et supprimons des enregistrements i travers la vue multitable Pilotes multi AF.
Il est & noter que seules les colonnes de la vue correspondant 4 la table protégée par clé
peuvent étre modifiées (ici nbHVol peut étre mise i jour, en revanche, wille ne peut pas

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

I'étre). Les suppressions se répercutent aussi sur les enregistrements de la table protégée par

clé (Pilote).
Tableau 5-21 Mises @ jour d'une vue muititable
Mise & jour Résultats
UPDATE Fileotes multi aw SQL> SELECT * FROM Piloteg _multi AF;
SET nbHVol = nbHVel * 2; BREVET NOM NEHVOL VILLE NOMCOMP

2 ligne(s) miseis) & jour.

Amélie Sulpice 900 Paris
Thomas Sulpice 1800 FParis

Rir France

FL-2 Air France

DELETE FROM Filotes multi AF ;

2 ligne(s) supprimée(s).

SQL> SELECT * FROM Pilote;
EREVET NOM

Paul Soutou

S0L> SELECT * FROM Compagnie;
CCMP NRUE RUE VILLE
Camparels Singapour Singapore AL
Port Royal Parig Rir France

Tables protégées (key preserved tables)

de clé primaire de la vue).

Une table est dite protégée par sa clé (key preserved) si sa clé primaire est préservée dans
la clause de jointure et se retrouve en tant que colenne de la vue multitable (peut jouer le rile

En considérant les données initiales,

pour la vue multitable Vue Multi Comp Pil, la table

préservée est la table Pilote, car la colonne brevet identifie chaque enregistrement extrait
de la vue alors que la colonne comp ne le fait pas.

Tableau 5-28 Vue multitable

Création de la vue

Résultats

CREATE VIEW Vue Multi Comp Pil
AS SELECT c.camp, c.nomComp,

‘p.brewet, p.nom, p.nbHVol
FROM ¥Pilote p, Compagnie c
WHERE p.compa = C.comp;

SQL> SELECT * FROM Vue_Multi Comp Pil:

COMP NOMOOMEP BREVET NOM NBHVOL
AF Air France PL~1 hmélie Sulpice 450
AF Air France PL-2 Thomas Sulpice 300
SING Singapore AL PL-3 Paul Soutou 1000

Cela ne veut pas dire que cette vue est modifiable de toute maniére. Aucune insertion n’est
permise, seules les modifications des colonnes de la table Pilote sont autorisées. Les
suppressions se répercuteront sur la table Pilote.

@ Editions Eyrolles

M

[Parfie | S(E do bass |
g Afin de saveir dans guelle mesure les colonnes d'une vue sont medifiables (en insertion ou
suppression), il faut interroger la vue USER_UPDATABLE_COLUMNS du dictionnaire des données
(aspect étudié dans le prochain chapitre).
Linterrogation suivante illustre ce principe. La fonction UPPER est utilisée pour convertir en
majuscules le nom de la table (tout est codé en majuscules dans le dictionnaire des données).
Les caractéristiques des colonnes apparaissent clairement.
Tebiean 5-23 CaractérisBques des colonnes d'une vue
Requéte Résultat
SELECT COLUMN_NAME, INSERTAELE, COLUMN_NEME INS UPD DEL
UFDATAELE, DELETABLE ==eemeemeeemcmeee oo oo oo
FROM USER_UPDATABLE COLUMNS COMP NO WO NO
WHERE TAELE NAME = UPPER("Wue Multi Comp PL1V); NOMCOMP WO NO NO
EBREVET ¥YES YES YES
NoM YES YES YES
MBHVOL YES YES YES
Etudions a présent les conditions qui régissent ces limitations.
Critéres
Une vue multitable modifiable (updatable join view ou modifiable join view) est une vue qui
n'est pas définie avec 1'option WITH READ OMLY et est telle que la requéte de définition
contient plusieurs tables dans la clause FROM.
Pour qu'une vue multitable soit modifiable, sa requéte de définition doit respecter les critéres
suivants :
La mise & jour (INSERT, UPDATE, DELETE) n'affecte gu'une seule table.
Seuls des enregistrements de la table protégée peuvent étre insérés. Si la clause WITH
CHECE OPTICN est utilisée, aucune insertion n'est possible (message d'erreur : CRA-01733:
les colonnes virtuelles ne sont pas autorisées ici)
Seules les colonnes de la table protégée peuvent étre modifiées.
Seuls les enregistrements de la table protégée peuvent &tre supprimes.
Autres ulilisations de vues
Les vues peuvent également servir pour renforcer la confidentialité, simplifier des requétes
complexes et programmer une partie de 1'intégrité référentielle.
242 & Editions Eyrolies

[chapltre n° 5

Coniriie des données |

Variables d’environnement

Une requéte de définition d’une vue peut utiliser des fonctions SQL relatives aux variables
d'environnement d’Oracle. Le tableau suivant décrit ces variables :

Tablean 5-30 Fonctions el variables d'enviromn ement

Varlable / Fonction Signification

USER Mam de l'utilisateur connecté.

UID Numéro d'identiffication de I'utilisateur connecté.

USERENYV('paramétre’) Fonction SESSIONID :numéro de la session.
ufllizant un TERMINAL : nom du terminal dans le systéme
des d'exploitation héte.
paramétres

d-corttre. ENTRY¥ID :numéro chronologique de la commande SQL
dans la session.

LANGUAGE : langage utifsé.

La vue Soutou Camparcls PilotesAF restituera les pilotes de la compagnie 'AF' pour
T'utilisateur Souton, ou pour un utilisateur connecté au terminal Camparols sous une version
Oracle francaise.

CREATE VIEW Scutou_Camparcls_PilotesAF
AS SELECT * FROM Pilote WHEEE compa = 'AF'
IND USER = 'S0UTOU*
OR (USERENV (' TERMINAL') = ‘CAMPAROLS
AND USERENV('IANGUAGE') LIKE 'FRENCH FRANCES') ;

Contriles d’intégriié référentielle

En plus de contraintes de vérification (CHECK), il est possible de contrbler I'intégrité réfé-
rentielle par des vues. Avant la version 7 d'Oracle, et en 'absence des clés émangéres,
¢'était un moyen de programmer I'intégrité référentielle (une autre fagon étant 1'utilisation
des déclencheurs).

La cohérence referentielle entre deux tables t7 (table « pére») et {2 (table «fils ») se
programme :

du « pére » vers le « fils » par I'itilisation d'une vue v7 de la table t1 définie avec la clause
NOT EXISTS;

du « fils » vers le « pare » par I'utilisation d'une vue v2 de la table {2 définie avec la clause
WITH CHECE QPTION.

@ Editions Eyrolles 243

S(E do bass |

244

Considérons les tables Compagnie (« pére ») et Pilote (« fils ») définies sans clés étrangéres
et programmons la contrainte référentielle 4 l'aide des vues VueDesCompagnies et

VueDesPilotes. Le raisonnement fait ici sur deux tables peut se généraliser & une hiérarchie
d’associations.

Flgure 5-8 Vies gui simulent 'ntégrité référentielle

Compagnie
comp e | rue ¥rillae nomZomp
Ak 124 | Port Hoyal Fans Air France
SING | 7 Camparols Singapour | Singapore AL
e TR DGR ot CREATE VIEW Vuelealompagniss
A% SELECT * FROM Pilote AS. BELACT. * . FRON Bompagnie: o
WHERE compa 1N WHERE WOT EXISTE
{FBLECT comp FROM Compagnie (EELECT brever FROM Pllote
OR compa I6 NOLL WHERE compasc,compl @
WITH CHECE OPTION |
Pilote ¢
bravet fiom rbHVel | compa
PL-1 Pierre Lke Luca 450 AF
PL-2 Yohan Delor BO0 AF
PL-3 Daniel Viells 1000 SING

La vue VueDesCompagnies restitue les compagnies qui n’embauchent aucun pilote. La vue
VueDesPilotes restitue les pilotes dont la colonne compa est référencée dans la table
Carpagnie, ou ceux n'ayant pas de compagnie attitrée (la condition IS MNULL peut étre
omise dans la définition de la vue si chaque pilote doit étre obligatoirement rattaché 4 une
compagnie).

Les régles a respecter pour manipuler les objets cité « pére » (table t7, vue v1} et coté « fils »
(table t2, vue v2) sont les suivantes :

ofité « pére » : modification, insertion et suppression via la vue v1, lecture de la table 11 ;
cfité « fils » medification, insertion, suppression et lecture via la vue v2.

Manipulons i présent les vues de notre exemple.

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Tablean 5-31 Manipuiations des wmes pouwr 'iméams réferentiele

Cohérence fils—pére Cohérence pére-fils

Insertion incorrects (pére absert) Toute insertion & travers la vue VueDesaCompagn ies

INSERT INTO VueDesFilotes VALUES est possible (sous réserve de |a validité des valeurs du
('PL-4', "Jear', 1000, ‘Rien") type des colonnes).

ORR-01402: wue WITH CHECK OPTION - Inserfion comecte :

violation de clause WHERE INSERT INTC WVueDesCompagnies VALUES

Insertions correctes : {'EASY',1, "3. Brassens', 'Blagnac’',

INSERT INTO VueDesPilotes VALUES 'Easy Jet');

{'PL~-4', 'Paul Scutou', 1000, NULL) ;
INSERT INTC VueDesPilotes VALUES
{("PL=-5'", 'Oliver Blanc',500, "SING");

Modification incorrecte (pére absent) : Modification incorrecte (fils présent) :
UFDATE VueDesPilotes UPDATE VieDesCompagnies
SET compa = 'Toto’ SET comp = 'AFZ' WHERE comp = 'AFY;
WHERE brevet = 'PL-4' 0 ligne({s) mise(s) & jour.
ORA-01402: wvue WITH CHECHE OPTION - Modifications correctes :
vionlation de clause WHERE UPDATE WueDesCompagnies SET
Modification corrects : ville = 'Perpignan' WHERE comp = '"EASY';
UPDATE VueDesPilotes UPDATE ViueDesCompagnies SET
SET compa = "AF" comp = 'EFET' WHERE comp = 'EASY';
WHERE brevet = 'PL-4';
Toute suppression est possible & travers la vue Suppression incorrecte (fils présent) :
VueDesPilotes. DELETE FROM VueDssCompagnies:

WHERE comp = 'AF';

0 ligne(s) supprimée(s) .

Suppression correcte :

DELETE FROM VueDesCompagnies
WHERE comp = 'EJET';

1 ligne supprimée.

Confidentialité
La confidentialité est une des vocations premiéres des vues. Outre 1'utilisation de variables
d'environnement, il est possible de restreindre 1'accés i des tables en fonction de moments.

Les vues suivantes limitent temporellement les accés en lecture et en écriture & des tables.

Tehleau 5-32 \ues powr restrelndre 'acces a des momenis précis

Définition de la vue Accés

CHEATE VIEW VueDesCompammiesJoursFériés Restriction, enlecture de la table compagni e, les
AS SELECT * FROM Compagnie samedi et dimanche. Mises & jour possibles a tout
WHERE TO_CHAR (SYSDATE, 'DAY') IN moment.

(VSAMEDI', 'DIMANCHE');

CREATE VIEW VueDesPilotesJourasOuvrables Restriction, en lecture et en écriture (& cause de
AS SELECT * FROM Filote WITH CHECE OPTION), delatable Filoteles
WHERE TO_CHAR(SYSDATE, 'HH24 :MI') jours ouvrables de B h 30 4 17 h 30.

BETWEEN ‘830" AND ‘17307
BND TO_CHAR(SYSDATE, "DAY')

NOT IN ('SEMEDI!, 'DIMANCHE)
WITH CHECK OPTICN;

@ Editions Eyrolles 245

S(E do bass |

246

Notez qu’il est possible, en plus, de limiter I'accés & un utilisateur particulier en ufilisant des
variables d’environnement précédemment étudiées (exemple : ajout de la condition AND
USER='S0UTOU" i la vue).

Transmission de droits

Les mécanismes de transmission et de révocation de privilé ges que nous avons émdiés s appli-
quent également aux vues. Ainsi, si un utilisateur désire transmettre des droits sur une partie
d’une de ses tables, il utilisera une vue. Seules les données appartenant i la vue seront acces-
sibles aux bénéficiaires.

Les privileges objets qu’il est possible d’attribuer sur une vue sont les mémes que ceux appl-
cables sur les tables (SELECT, INSERT, UPDATE sur une ou plusieurs colonnes, DELETE).

Tablesn 5-33 Privilépes sur les voes
Attribution du privilege Signification

GRANT SELECT ON Accés pour tous en lecture sur la vue
VueDesCompagniesJoursFérids TO PUBLIC; VueDesCompagniesJoursFériég.

GRANT INSERT ON Acceés pour Paulen écriture sur la vue
VueDesCompagniesJoursFériés TO Paunl; VueDesCompagni esJoursFérids.

Modification d'une vue (RITER VIEEW)

Pour pouvoir modifier une vue, vous devez en étre propriétaire ou posséder le privile ge ALTER
ANY VIEW. Lasyntaxe SQL est la suivante :

ALTER VIEW [schéma.lnomVue

{ ADD ContrainteCutLine | DROP

{ CONSTRAINT nomContrainte | FRIMARY FEY | UNIQUE({coll [, colZl.)} }
COMPILE ;

Les modifications concernent 1"ajout ou la suppression de contraintes qui ne sont pas encore
opérationnelles (voir la section « Vues avec contraintes »).

Suppression d'une vue (DROP VIEW)

Pour pouvoeir supprimer une vue, vous devez en ére propriétaire ou posséder le privilege DROP
ANY VIEW Lasuppression d’une vue n’entraine pas la perte des données qui résident toujours
dans les tables. La syntaxe SQL est la suivante :

DROP VIEW [schéma.]nomVue [CASCADE CONSTRAINTS];

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Les vues ou synonymes qui dépendent de la vue supprimée ne sont pas détruits, ils sont seule-
ment marqués comme invalides.

L'option CASCADE CONSTRAINTS est semblable & celle de la commande DROP TABLE et
concerne la suppression des clés primaires ou uniques pour lesquelles il faut répercuter la
suppression des clés étrangeres associ€es.

Synonymes

Un synonyme est un alias d'un objet (table, vue, séquence, procédure, fonction ou paquetage).
Les avantages d'utiliser des synonymes sont les suivants :
simplifier I'accés aux objets en abrégeant les noms de tables, par exemple, ou en regrou-
pant dans un méme alias les noms du schéma et de 1"objet, pour les objets qui ne vous
appartiennent pas, mais dont vous avez acces ;

masquer le vrai nom des objets ou la localisation des objets distants (réunis par liens de
base de données : darabase links) ;

améliorer la maintenance des applications dans la mesure ol la nature du synonyme peut
étre modifide sans mettre & jour tous les programmes qui I'utilisent (le synonyme garde le
méme nom tout en référengant un nouvel objet).
Il est ainsi possible d"attribuer plusieurs noms a un méme objet. Il est aussi permis de créer des
synonymes publics (en utilisant la directive PUBLIC) qui seront visibles et utilisables par tous.
Les autres synonymes (privés) ne seront pas accessibles par d’autres wtilisateurs i moins de
donner les autorisations nécessaires (par GRANT).

Création d'un synonyme (GREATE SYNODNYM)

Pour pouvoir créer un synonyme dans votre schéma, il faut que vous avez regu le privilege
CREATE SYNONYM. Sivous avez le privilége CREATE ANY SYNONYM, vous pouvez créer des
synonymes dans tout schéma. Enfin, pour pouvoir créer un synonyme public, il faut que vous
ayez regu le privilege CREATE PUBLIC SYNONYM

La syntaxe SQL est la smivante :

CREATE [OR REPLACE] [PUBLIC) SYNONYM [schéma.]nomSynonyme
FOR [schéma.lnomobjet [BlienBaseDonnées];

OR REPLACE recrée le synonyme méme s’il en existe déji un de ce nom (cela vous évite de
le détruire puis de le créer). Il existe une restriction pour les synonymes de types dont
dépend une table (extension objet non éudiée dans ce livre).

PUBLIC crée un synonyme public, accessible par tous, sous réserve que les utilisateurs
atent les privileges adéquats sur les objets concernés par le synonyme (par exemple Pau!

@ Editions Eyrolles 247

S(E do bass |

248

déclare un synonyme public nommé NavigantPublic référencant sa table Pilote Ce
synonyme est théoriquement accessible par I'utilisateur Jean. Pratiquement il faut que
Jean ait le privilege de lecture sur la table soutou. Pilote. Sila clause PUBLIC n'est pas
appliquée le synonyme est privé et son nom doit étre unique dans le schéma.

schéma: le premier désigne le schéma dans lequel va se trouver le synonyme (s'il n'est
pas renseigné, vous le créez dans votre schéma). Le dewdéme désigne le schéma dans
lequel se trouve 1'objet 4 référencer (s'il n'est pas renseigné, vous référencez un objet de
votre schéma). Pour les synonymes publics les deux options ne doivent pas étre utilisées.
nomSynonyme : nom du synonyme, alias qui va désigner 1'objet référencé.

nomobiet : nom de 1'objet référencé. Peuvent ére concernés : tables, vues, séquences,
paquetages, procédures ou fonctions cataloguées, classes Java, types ou autres synonymes.

LienBaseDonnées : désigne un objet distant via un database link.

Considérons les tables et la vue suivantes appartenant au schéma Sourow, et définissons
frois synonymes privés (Societes, Navigantl et Navigant2) et un synonyme public
(Navigant3).

Figure 5-8 Synonymes de lulilisateur Soutou

L I, Naviguantl)}aviguantiﬁ

Soutou it L E |) o Maviguant3
=~ \ VuePilote

el PUBLIC
Compagnie Pilote
o omp nomtomp brevet nom

AF Air France PL-1 Agnes Labat

Les instructions SQL sont les suivantes :

Tahisau 5-34 Créafon de SYnOnyVmes

Utilisateur Soutou Signification

CREATE SYNONYM Mavigantl FOR Pilaote; Deux synonymes privas équivalents de la table
Pilote.
CREATE SYNONYM Navigant2
FOR soutou.Pileote;

CREATE PUBLIC SYNONYM Havigant3 Un synonyrme public de la vue VuePilote vision
FOR VuePilote; de la table Pilote.

CREATE SYNONYM Socletes FOR Pilote; Remplacement du synonyme privé societes de
la table Compagnie & laplace de latable Pilote.
CREATE OR REPLACE SYNONYM Sociétés
FOR Compagnie;

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Pour tout synonyme public creeé qui référence une table, il n'est pas possible d'ajouter un autre
objet du méme nom dans le méme schéma.

Il n'est pas non plus possible de créer un synonyme public du nom d'un schéma existant
{Soutou par exemple).

Transmission de droits

La transmission et la révocation des privileges objets (SELECT, INSERT, UPDATE sur une ou
plusieurs colonnes, DELETE) s"appliquent également aux synonymes.

Tablegn 5-33 Priviiéges sur les synonvmes

Utilisateur Soufou Utilisateur Pawl
GRANT INSERT,SELECT ON Mavigant2 Ecriture Incomecte car | mangue le nom du schéma :
TO devl; SELECT * FROM NavigantZ2;
Ecritures correctes :

SELECT * FROM Soutou.Mavigantl;
IMSERT INTC Souteu.Mavigant2
VALUES ("FL-2', 'Jean Turcat'):

GRANT SELECT ON Mavigant3d TO devl; Ecriture correcte car synonyme public :
SELECT * FROM Navigantl;

Suppression d'un synonyme (DROP SYNONYM)
Pour pouvoir supprimer un synonyme, il faut qu’il se trouve dans votre schéma ou que vous
ayez recu le privilége DROP ANY SYNOMNYM. Pour pouvoir supprimer un synonyme public il
faut que vous ayez recu le privilége DROP BUBLIC SYNONYM.
La syntaxe SQL est la suivante :
DROP [PUBLIC] SYNONYM [schéma. |nomSynonyme [FORCE];
PUBLIC: pour détruire un synonyme public (en ce cas ne pas utiliser le préfixe schéma
pour désigner le synonyme).
FORCE concerne les synonymes de types pour lesquels il existe des tables ou des types qui
en dépendent.

Dictionnaire des données

Le dictionnaire des données (dara dictionary) est une partie majeure d'une base de données
Oracle qu’on peut assimiler & une structure centralisée. Le dictionnaire est constitué d'un
ensemble de tables systéme & partir desquelles sont définies environ six cents vues distinctes.
Celles-ci stockent toutes les informations décrivant tous les objets de la base de données.

@ Editions Eyrolles 249

[Parfie | S(E do bass |

Constitution
Le dictionnaire des données contient :

la définition des tables, vues, index, clusters, synonymes, séquences, procédures, fonc-
tions, paquetages, déclencheurs, efc. ;

la description de "espace disque alloué et occupé pour chaque objet ;

les valeurs par défaut des colonnes (DEFAULT) ;

la description des contraintes de vérification et d'intégrité rétérentielle ;

le nom des utilisatéurs de la base ;

les priviléges et rles pour chaque utilisateur ;

des informations d’andit {accés aux objets) et d’autre nature (commentaires par exemple).
Toutes les tables du dictionnaire des données sont accessibles en lecture seulement, elles
appartiennent & D'utilisateur SYS et sont situées dans I'espace de stockage (rablespace)

sYSTEM. Ce sont plutét les vues de ces tables qui sont intéressantes car bien structurées.
Linterrogation du dictionnaire des données ne peut se faire qu'au travers de requétes SELECT.

_ Toutes les informations contenues dans les tables systéme du dictionnaire des données et
) accessibles au travers de vues sont codées en MAJUSCULES.

Le dictionnaire des données est mis automatiquement a jour aprés chaque instruction SQL du
LMD (INSERT, UPDATE, DELETE, LOCK TABLE, MERGE).

Gassification des vues

Soit la vue v Trois classes de vues sont proposées par Oracle (le nom de la classe de vue
préfixe le nom de la vue du dictionnaire de données) :

USER,_v décrit les objets du schéma de ['utilisateur connecté (qui interroge le dictionnaire) ;

ALL v (extension de la précédente) décrit les objets du schéma de 1'utilisateur connecté et
les objets sur lesquels il a regu des priviléges ;

DEa_v décrit les objets de tous les schémas (de plus il faut préfixer le nom de la vue par
celui du propriétaire; ici SYS. DBA_v).

La structure de ces vues ne différe que par les points suivants ;

les vues préfixées par USER_ne comportent pas 1a colonne OWNER identifiant le propriétaire
de 1'objet. Cette colonne est implicitement paramétrée par le nom de 1'utilisateur
connecté ;

certaines vues préfixées par DEA_ ont des colonnes supplémentaires décrivant des aspects
systéme.

250 & Editions Eyrolies

[chapitre n° 5 Coniriie des données |

Démarche & suiure
La démarche i suivre afin d'interroger correctement le dictionnaire des données i propos d'un
objet est la suivante :

trouver le nom de la vue ou des vues qui sont pertinentes & partir de la vue DICTICHARY
situé au niveau le plus haut de la hiérarchie ;

choisir les colonnes de la vue & sélectionner en affichant la structure de la vue (par la
commande DESC) ;

interroger la vie en exécutant une requéte SELECT contenant les colonnes intéressantes.

La premiére étape peut étre omise si on connait déji le nom de la vue (ce sera le cas pour les
vues usuelles que vous aurez déja utilisées i plusieurs reprises).

Recherche du nom d’une vue

L'extraction du nom des vues qui concernent un objet est rendue possible par 'interrogation
de la vue DICTICNARY (de synonyme DICT). Le tableau suivant décrit dans un premier temps
la structure de la vue DICTICNARY. La requéte interroge cette vue pour extraire automatigque-
ment le nom des trois vues qui concernent les séquences (notez 'utilisation des majuscules
dans la condition).

Tahiesu 5-36 Recherche u nem des vues du dictionnaire des domnées @ partiy de TARE NANE)

Commande SQL Résultat
DESC DICTIOMARY Nom HULL 7 Type
TABLE MAME WVARCHARZ (30)
COMMENTS VARCHARZ (4000)
SELECT * FROM DICTIONARY TABLE NLME COMMENTS
WEERE talile-Tams === seessssrssssmess seassmessar s e nmeee -
LIKE '$SEQUENCER"; ALL_SEQUENCES Description of SEQUENCEs
accessible to the user
DBA_SEQUENCES Description of all

SEQUENCEs in the databage
USEER_SEQUENTES Description of the user's
own SEQUENCEs

On aurait pu interroger la vue DICTIONARY 4 propos des tables (TAELE), index (INDEX), syno-
nymes (SYNCNYM), contraintes (COMSTRAINT), déclencheurs (TRIGGER), etc. Il est aussi possi-
ble de tester la colonne COMMENTS qui décrit, sous la forme d'une phrase, la vue. Ce principe
de recherche raméne plus de résultats que I’ interrogation en testant le nom de colonne TABLE_
NAME (notamment i cause des synonymes de vues, ici SEQ). Interrogeons de cette maniére le
dictionnaire, en s'intéressant aux séquences comme le montre 1'exemple suivant.

@ Editions Eyrolles 251

S(E do bass |

252

Tablesu 5-37 Recherche du nom des vues du MicSonnaire des données (3 pantir de CONMENTS)

Commaende SQL Résultat

SELECT * FROM DICTIOMARY TABLE_NAME COMMENTS
WHERE UPPER (comments) e e e Lo e e e L L e L
LIKE '&SEQUENCES' ALY, _CATRALOG 211 tables, views, synonyms,

BEguenced accessible to the user
ALL_SEQUENCES
DA _CATALOG 211 database Tables, Views,
Synomyms, Segisnces
DBA_SEQUENCES
USER_AUDIT_OBJECT Audit trail records for statements

concerning objects, specifically:

table, cluster, .., SBguences ..
USER_CATALOG Tables, Views, Synormyms and
Sequences owned by the user
USER_SRQUENCES
SEQ Synonym for USER _SE{UENCES

Choisir les colonnes

Le choix des colonnes d'une vue du dictionnaire des données s’effectue aprés avoir listé la
structure de cette vue (par DESC). Le nom de la colomne est en général assez parlant. Dans
notre exemple, la vue USER_SEQUENCES contient huit colonnes. La colonne SEQUENCE NAME
désignera le nom des séquences du schéma courant, MIN_VALUE les valeurs minimales des
séquences, efc.

Si vous avez du mal & interpréter la signification d'une colonne d'une vue du dicticnnaire des
données, consultez la documentation Database Reference, chapitre 2 Static Data Dictionary
Views.

Tablean 5-38 Cholx des colonnes d'une wwe du diciomnnalre des données

Commande SQL Résultat

DESC USER_SEQUENCES Nom NULL ? Type
SEQUENCE NAME NOT NULL VARCHARZ (30)
MIN VALUE NUMEER
MAX VALUE NUMBER
INCREMENT BY MOT NIFLL NUMEER
CY¥CLE FLRAG VARCHARZ (1)
ORDER_FLAG VARCHARZ (1)
CACHE SIZE NOT NULL NUMBER
LAST NUMBER NOT NULL NUMBER

& Editions Eyrolles

[chapitre n° 5 Coniriie des données |

Interroger la vue

L'interrogation de la vue sur la base des colonnes choisies est I'étape finale de la recherche de
données dans le dictionnaire. [l convient d'écrire une requéte monotable ou multitable (jointu-
res) gui extrait des données contenues dans la vue. Ces données sont en fait renfermées dans
des tables systéme qui sont plus difficilement interrogeables du fait de la complexité de leur
structure. Supposons que notre schéma contienne les deux séquences suivantes (étudiées au

chapitre 2) :
Flgure 5-10 Séquences
CREATE SEQUENCE sagaflf Pasgager
MEXVALUE 10000
HOMENVALLIE | numpPax now siege |dernierVel |
CREATE BEQUENCE segPak 100 pa?-“ssm TA F
TNCREMENT BY 10 10| Casiaings |36 |3
ETART WITH T - SO Syt -

MAXVALUE 10

HOMINVALUE |
Affreter

numAEE cemp Immat dateaff nbPax

i AT FWIES | 15050008 | 85

p EING F-GAFU | 05-0g-2008 | 155 |

3 AF FWTSS [15052000 |82

t

Interrogeons le dictionnaire des données & travers les quatre premiéres colonnes de la vue
USER_SEQUENCES pour retrouver les caractéristiques de ces deux séquences. La valeur
courante de la séquence n'est pas stockée dans cette vue, elle est, en revanche, accessible via

la fonction CURRVAL.
Tableau 5-39 Inierrogation de ia wue USER_SEQUBNCES
Commande SOL Résultat

SELECT SEQUENCE_NAME, SEQUENCE_NAME MIN VALUE MAX VALUE INCREMENT BY
MIN VALUR, MAX VALIE, =eessssssasssses soesssses sssmes e o ———""—e—
INCREMENT EY SEQAFFE ' 10000 1
FROM USER SEQUENCES ; SEQPRY 1. 100000 10

Principales vues

Nous listons ici les principales vues qui concernent un utilisateur donné (préfixées par USER_),
pour s'intéresser aux objets sur lesquels on a recu des priviléges. Il faut préfixer ces vues par
ALL _, le préfixe DEA_ permetira d’extraire les objets dans tout schéma. Nous approfondirons
par la suite I'étude de certaines de ces vues.

@ Editions Eyrolles 253

S(E do bass |

Nature de I'objet

Tahlean 5-30 Principales yues do diciionnalre des données

Vues

Objets (au sens général)

TSER_OBJECTS : objets appartenant & 'utilisateur (synonyme OBJ).
USER_ERRORS !emeurs apras compilation des objets PL/SQL stodkés.
(procédures, fonctions, paquetages, dédencheurs).
USER_STORED_SETTINGS :p des objets PL/SOL stockés.
USER._SOURCE !source des objets PL/SOL stockés.

Tables USER_TABELES :description des tables relationnelles de I"utilisateur
{synonyme TABS).

USER_ALL_TABLES : description des tables relationnelles et objets de
futilisateur.

Colonnes. USER,_TAB_COLUMNS :colonnes des tables et vues {synonyme COLS).
USER, UNUSED_COL_TAES :colonnes éliminées des tables.

Index USER_INDEXES : dascription des indax (synonyme IND).
TUSER,_IND_EXPRESSIONS : expressions fonctionnelles des index.
USER._IND _COLUMNS :colonnes qui composent las index.

Contraintes USER_CONSTEATNTS :définition des contraintes de tables.
USER_CONS_COLIMIS ;composition des contraintes (colonnes).

Vues TSER_VIEWS :description das vues de l'utilisateur.

Synonymas USEER_SYNONYMS : description des synonymes privés d'un utilisateur
{synonyme SYIT).

DBA_SYNONYMS et ALL_SYNONYMS :description de tous les synonymes
{privés et publics).

Sequences Déja étudié en début de section.

Commantaires USER_TAE_COMMENTS :commentaires & propos des tables ou des vues.
USER_COL_COMMENTS :commentaires & propos des colonnes des tables et
vuBSs.

| Hilisateurs TSER_USERS :caractéristiques de I'utilisateur courant.

DEA_USERS et ALL_USERS :caractéristiques de tous les utiisateurs.

Priviléges USER_TAB_GRANTS : liste des autorisations sur les tables et les vues pour
lesquelles I'utilisateur est le propriétaire, ou ayant donné ou regu I'autorisation.
TUSER._TAE GRANTS MADE :liste des autorisations surles objets appartenant
a l'utilisateur.
USER_COL_GRANTS : colpnnes autorisées a 'acobs.
USER_COL_GRANTS_MADE : liste des autorisations sur les colennes des
tables ou des vues appartenant a I'utilisateur.
USER_COL_PRIVS_MADE : informations sur las colonnes pour lesguelies
I'utilisateur est propriétaire ou bénéficiaire.
TISER,_TAE_GEANTS_RECD : liste des objets pour lesquels l'utilisateur a regu
une autorisation,
USER_COL_PRIVS_RECD : informations sur les colonnes: pour lesguelles
I'utilisateur a regu une autorisation.

Roles DBA FOLES : tous les roles existants,

DBA_ROLE_FRIVS :riles donnés aux utiisateurs et aux autres riles.
USER, ROLE_PRIVS :roles donnés 4 lutilisateur,

ROLE ROLE_PRIVS :roles donnés aux autres riles.
ROLE_SYS_PRIVS : privildges systéme donnés aux roles.
ROLE TAE PRIVS : priviléges suries tables donnés awx riles.
SESSION _ROLES :riles aclifs & un instant {

254

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Interrogeons & présent quelques-unes de ces vues dans le cadre d’exemples concrets.

Disjets d'un schéma

La requéte suivante inferroge la vue USER_OBJECTS et permet de retrouver tous les objets du
schéma courant (avec la date de création). L'instruction SQL*Plus COL précise le nombre de
caractéres i éditer pour une colonne 4 1'atfichage.

| COL OBJECT MAME FORMAT A30

SELECT OBJECT NAME, OBJECT_TYFE, CREATED FROM USER_OBJECTS;

OBJECT NAME OBJECT TYPE CREATED

ACCES_SECURISE PACEAGE 03/09/03
ACCES_SECURISE PACFAGE BODY 03/08/03
AFFICHEAVIONS PROCEDURE 03/09/03
Compagni es JAVA CLASS 17/08/03
EFFECTIFSHEURE FUNCTION 16/09/03
ESPTONCOMNNEXTICN TRIGGER 16/09/03
FILOTE TABELE 18/059/03
PFE_PILOTE INDEX 18/09/03
VUEMULTICOMPPIL VIEW 14/09/03

Structure d'une tahle

1l est aisé d’extraire le nom des tables en ajoutant la condition « WHERE TABLE MNAME=
'"TABLE' » i |"interrogation précédente. Une fols qu'on connait le nom d’ une table, il est possi-
ble de retrouver sa structure (équivalent de ce que produit la commande SQL*Plus DESC) 4
I'aide de la vue USER TAB COLUMNS.

La requéte suivante décrit en partie la table INSTALLER qui fait partie du schéma des exercices
de ce livre.

@ Editions Eyrolles

COL COLUMN_MBME FORMAT AlS
COL DETA TYPE FORMAT 230
SELECT COLUMN_NAME, DATA TYPE, DATA LENGTH, DATA_PRECTSION
FROM USER_TAB COLUMNS VHERE TAELE MAME = 'INSTALLER';
COLUMN NAME DRTR TYEE DATA LENGTH DATA_DRECISION

NEOSTE VRRCHARZ 7
NLOG VARCHRRZ 5
NUMING NUMEER. 22 5
DATEINS DATE 7
DELAT INTERVAL DAY (5) TO SECOND(Z) 1 5

255

S(E do bass |

256

Recherche des contraintes d'une tahle

La vue USER_CONSTRAINTS décrit la nature des contraintes. Pour retrouver la liste des
contraintes d une table, il faut utiliser les colonnes CONSTRAINT NAME et CONSTRAINT TYPE
de Ia vue. Trois valeurs sont possibles au niveau de la colonne CCWSTRATNT TYPE (P désigne
la ¢1é primaire, R désigne une clé étrangére et C une contrainte CHECE, UNIQUE ou NOT MJLL).
La requéte suivante liste les contraintes de la table TNSTATLER :

SELECT CONSTRAINT N2ME, CONSTRAINT TYFE
FROM USER_CONSTRAINTS VWHERE TAEBLE NAME = °INSTALLER';

CONSTRAINT NAME CONSTRAINT_TYFE
PE_INSTALLER P
FE_INSTALLER NPOSTE POSTE R
FE_INSTALLER NLOG TOGICTIEL R

GComposition des contraintes d'une tahle

La vue USER CONS_COLUMNS décrit la composition des contraintes. Pour retrouver la
composition d’une clé primaire d une table, il faut utiliser la colonne POSITION de la vue.
La requéte suivante permet d'extraire la composition des contraintes et en particulier celle
de la clé primaire :
SELECT CONSTRAINT NAME, POSITION, COLUMN_NAME
FROM USER CONS_COLUMNS WHERE TABLE NAME = 'INSTALLER';

CONSTRAINT NAME POSITION CCLUMYI_NAME
FE_INSTALLER NLOG LOGICIEL 1 NLOG
FE_TNSTALLER _NFOSTE_POSTE 1 NBOSTE
PE_TNSTALLER 1 NPOSTE
PE_INSTALLER 2 HNLOG

Détails des contraintes réferentielles

La vue USER_CONSTRAINTS permet également de retrouver la nature de la référence pour
chaque clé étrangere. La colonne R_CONSTRAINT NAME (comme Remote CONSTRAINT NAME)
désigne le nom de la contrainte de la clé primaire cible. La requéte suivante retrouve le nom de
1a clé primaire des clés étrangéres de la table TNSTALLER :

SELECT CONSTRAINT NAME, COMSTRAINT TYPE, R_CONSTRAINT NAME
FROM USER_CONSTRAINTS WHERE TABLE NAME = 'INSTALLER®;

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

| CONSTRAINT NAME CONSTRAINT TYFE R _CONSTRAINT NAME
PFR_INSTALIER B
FEK_INSTALLER NPOSTE POSTE R PE_POSTE
F¥_INSTALLER NLOG LOGICIEL R PE_LOGICIEL

Vous allez me dire qu'on ne voit pas clairement de quelle table et de quelle colomne cible il
s'agit. Yous avez raison, le nom de la contrainte peut ne pas étre parlant. Afin d'extraire ces
éléments manquants, il faut faire une jointure avec la vue USER_CONS_COLUMNS. La requéte
suivante extrait le détail de chaque clé étrangére de la table INSTALLER :

COL OBJECT MAME FORMAT A30
SELECT OBJECT NAME, OBJECT TYPE, CREATED FROM USER OBJECTS;
COL CONSTRAINT_NAME FORMAT A26 HEADING *Clé étrangdre®
COL R_CONSTRAINT NAME FOFMAT Al7 HEADING "Nom cible®
COL COLUMN_MAME FORMAT AlS HEADING "Clé cible”
0L TABLE NAME FOEMAT Al5 HEADING "Table cible®
SELECT ul.CONSTRAINT MAME , ul.R CONSTRAINT NAME,
uZ.TAELE, NAME, uZ,COLUMN_NAME
FROM USER_CONSTRAINTS ul, USER_CONS_COLUMNS uZ

WHERE ul.TARLE NaME = '"TNESTATLER'

AND ul.R CONSTRAINT NEME = uZ.CONSTRAINT MNAME

AND ul.CONSTRAINT TYPE = 'R';
Clé étrangére Nom cible Table cible Clé cible
FE_THMSTALLER, NPOSTE POSTE FE_POSTE POSTE NPOSTE
F¥_INSTALLER,_WLOG LOGICIEL PE_LOGICIEL LOGICIEL NLOG

Recherche du code source d'un sous-programme

La vue USER_SOURCE décrit la composition des sous-programmes PL/SQL (procédures, fonc-
tions, paquetages et déclencheurs). La colonne MAME précise le nom du sous-programme. La
requéte suivante permet d’extraire le code source de la procédure de nom CHERCHEPILOTE :

SET LIMNESIZE 90
COL TEXT FORMAT A70
SELECT LINE,TEXT FROM USER_SOURCE WHERE NAME = 'CHERCHEPILOTE';

Ligne TEXT
1 PROCEDUEE cherchePilote (p_brevet IN VARCHARZ) IS
2 warl Pilote.nbHvol%TYEE;
3 BEGIN

@ Editions Eyrolles 257

[Parfie | S(E do bass |

4 SELECT nbHvol INTO varl FROM Pilote WHERE brewvet =

p brevet;

5 IF warl <= 1000 THEN

6 RAISE_APPLICATION ERROR (-20777, 'Desolé, le pilote mangue
d' ‘expérience’ };

7 EMD IF;

8 DBMS_OUTPUT.PUT_LIME('Ce pilote a plus de 1000 heures');
9 EXCEPTION

10 WHEN NO_DATA FOUND THEN

11 DEMS_OUTFUT.FUT LINE('Pas de pilote avec ce numéro de
brevet');

12 END cherchePilote;

Recherche des ulilisateurs d'une hase de données
Lavue ALL_USERS liste les utilisateurs de la base avec la date de leur création :

SELECT * FROM ALL_USERS;

USEEMAME USEER_TD CEEATED

5YS 0 12/05/02

SYSTEM 5 12/05/02

SCOTT 59 12/05/02

S0UTOU 61 16/08/03

TESTE 63 17/09/03
Rales recus

La vue USER_ROLE_PRIVS recense les r0les regus pour un utilisateur. La colonne GRANTED
ROLE contient le nom du rdle attribué. La colonne ADMIN OPTION précise la nature du rle
(transmissible & d’autres ou pas). La requéte suivante liste les roles détenus par I'utilisateur
connecté (ici Soufon). Cet utilisateur posséde trois roles (dont le superpuissant DBA).

SELECT USERNEME, GRANTED ROLE, ADMIN OPTICN FROM USER ROLE PRIVS;

USEFNAME GRANTED ROLE AM
S0UTOU CONMECT NG
S0UTOU DBA NG
S0UTOU RES0URCE juied

258 & Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Le muititenant

R R I I T R R T R)

Depuis la version 12¢, il est possible d"opter pour I'architecture mulitenant {option payante et
disponible uniquement pour I'édition Enterprise). Le choix vous est donné a I'étape suivante.

Figure 5-11 Choix de [Tnstalfation en tant gue multitenart

Gl ki o)
P e
ey
o Sredm we Casiares tmevess

A S et

G gepaat

Y A3

[frowy e i
. Sl e Craam rage [R
ffCi—— et pamnr T e R

"W d
| S L 1 L T i) R
e o ey oy 8T}

[T R

1 Sl Sefoet (N AL ¥

v

Cette option permet qu'une instance héberge plusieurs bases de données distinctes. Jusqu'a la
version 11g R2, instance et base de données étaient bien souvent confondues sous la forme
d'un ensemble contenant & la fois les données utilisateur et les données systéme. Avec le
multitenant, une instance est composée d'un unique CDB (Container DafaBase) appelé
COBSROOT qui peut contenir plusieurs bases enfichables (PDB : Pluggable DataBase). Chaque
PDB pourra étre dédiée 4 une application et contiendra i la fois les dormées utilisateur et les
programmes les manipulant. Le CDB sera consacré i la gestion des données systéme. La base
PDBSSEED est également livrée ; elle vous permettra de créer rapidement votre base par

clonage.

Dk g PR
Pals

Dol o PR
Vertay

@ Editions Eyrolles

Figure 5-12 Architecture muititenant

LOGIOUE PHYSIOLUE
I e i
Fons Pt —
S S
- V. DBA Gy (8D oo gl
@ pibpae — n'rm ICarion Vretes
iere bt

 plbvnnt:
7N "

[
‘I Aptication Paw

259

S(E do bass |

260

Ce type d'architecture vise i réduire les cofits, i consommer moins de ressources (RAM, CPU
et stockage) et & offrir davantage de souplesse dans I’ administration (migration et mises i jour
au niveau PDB). Ce type d’architecture impacte également les utilisateurs et leurs droits. On
distingue les utilisateurs au niveau CDB (common users dont le nom est préfixé par C## ou
c##) des utilisateurs locaux cantonnés i leur PDB.

Flgure 513 Utlisateurs dans fe multitenant

Utilisateurs locaux
utili
gl

devl sur
pdbgaie

ux
Y
| - 8¥8

ohNcha

Root (COBSROOT)

vl sur
pdbwentes

div E sur

cordbe pdbwentes

. — P

Enfin, depuis la version 12c, il est possible d’installer une instance non-CDB pour rester a
I'ancienne architecture (une seule base de données éventuellement répartie au niveau des
tablespaces). Avec le multitenant, chagque PDB peut étre associée i plusieurs tablespaces
applicatifs mais aussi systéme (le tablespace systemest présent dans chaque PDB mais n'est
pas identique entre deux PDB).

L'architecture multitenant induit un niveau supplémentaire au dictionnaire des données : il s"agit des
vues statiques préfixées par COB_, qui renseignent au niveau du container et permet d’ accéder a toutes
les PDB. Des nouvelles vues dynamiques (VS) sont également fournies (Vspdbe, par exemple).

Figure 514 Niveaux du dictionnaire des donnges avec e multtenant

C€DB_ Tous les objets d'un CDB et des PDB
DBA__ Tous les objets d'un COB ou d'un PDB

Objets accessibles par I'utilisateur courant

USER_ Objets de I'utilisateur courant

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Dans la plupart des vues du plus haut niveau, la colonne con_id identifie le container (qui
peut étre le CDB ou une PDB). La valeur 0 est réservée au CDB (c’est le cas pour les vues
d'une instance sans multitenant), la valeur 1 4 la base CDBSROOT, 2 4 la base PDBSSEED.
Ensuite, chaque PDB se voit affecter séquentiellement un chiffre de 3 & 254. Le tableau
suivant présente quelques utilisations de cette colonne.

Tabieau 5-41 Quelgues wues du multilenant

Interrogation du dictionnaire Commentaires

SQL> SELECT name, cdb, open_mode, con_id Linstance ORCL est multitenant (de
FROM VSDATABASE; type container).

NEME CDB OPEN_MODE COM_ID

ORCL YES READ WRITE i

S0L> SELECT name, opan_mnde, con_id Deux PDE sont disponibles : la base
FROM V4PDBES; PDBORCL qui est ouverte en écriture

et celle pour le clonage.

NEME OFEN_MODE CON_ID

PDESSEED READ ONLY 2

FDEORCL READ WRITE 3

SQL> SELECT table_name, owner, tablespace name Liste des tables (avec leur schéma
FROM CDB_TABLES et leur tablespace) contenues dans
WHERE eon id = (SELECT con_id FROM VSPDBS la base PDECRCL.

WHERE names='"FDBORCL ')
ORDER BY owner, table_ name;

TRELE_NAME OWNER TRELESPACE NRME
PILOTE EYROLLES USERS
BILLETS SOUTOU USERS
CARRCTERESUNICODE SOUTOU USERS

SQL> SELECT username, default_tablespace, comn_id Liste des utilisateurs locaux (avec
FROM CDB_USERS leur tablespace par défaut) de la
WHERE con_id4 = (SELECT con_id FROM VSPDBS base POECRCL.

WHERE names'FDBORCL ')
AND default_tablespace NOT IN

{"SYSTEM', 'SYSAUX')
ORDEER BY username;

USERNLME DEFAULT_TABLESPACE CON_ID

APEX_FUBLIC_USER USERS 3
AUDSYS USERS 3
BI EXAMFLE 3
DEVL USERS 3
DEVZ USERS k1

@ Editions Eyrolles 261

[Parfie | S(E do bass |

Les consoles d’administration

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

Depuis Oracle 9, chague nouvelle version a apporté un nouvel outil graphique d’administra-
tion, notamment la console Enterprise Manager. Au début, il s’agissait d'une interface Java qui
est devenue au fur et 4 mesure des versions une interface web de plus en plus sophistiquée.
Depuis la version 12¢, denx consoles sont proposées : Enterprise Manager Database Express,
qui convient pour des architectures restreintes, et Enterprise Manager Cloud Control pour
centraliser la gestion de plusienrs serveurs.

Enterprise Manager Database Express

Cette console permet de gérer des bases non-CDB, CDB ou de type PDB. Pour chacune de ces
bases, un port HT'TPS unigue doit &tre configuré (1"assistant DBCA réalise ces configurations
quand vous I'utilisez). La connexion 4 la console s'effectue & I'aide de I'URL suivante :
https://nom_serveur:port/em En vous connectant d sys AS sysdba, vous pouvez
retrouver avec la fonction gethttpsport du paquetage DBEMS_XDB CONFIG, le port assigné a
chacune de vos bases. La procédure sethttpsport vous permetira d'affecter un port s’il
n’'était pas déji configuré.

Tahlean 5-42 Port de ia console EM Express

Configuration de la session Commentaires
S0L> alter session set container=-CDBSROOT; Laconnexion i laconsole au niveau du
Seszion modifide. CDB s'effectue via

hips:ilocalhost: 5500/em.

SQL> SELECT DEMS_XDE_CONFIG.gethttpasport()
FROM DUAL;
DEMS_XDE_CONFIG.GETHTTFSFORT()

SQL> alter session set container=PDBORCL; La connexion & la console au niveau de la
Segsion modifide. PDB s'effectue via
httpsslocalfost:5501/em.
5QL> SELECT DBMS_XDB_CONFIG.gethitpsport()
FROM DUAL;

DEMS_¥DBE_CONFIG.GETHTTPSPORT()

Une fois connecté avec I'utilisateur system, vous retrouverez intuitivement le moyen d’agir
sur la'base (paramétres d’initialisation, espaces de stockage, utilisateurs, réles, profils, etc.).

262 & Editions Eyrolles

[chapitre n° 5 Coniriie des données |

Figure 5-15 Console EM Database Express

OIRACLE Enterprise Manager Daiavase Express 12 ke = L svstem | Deconnexon ()

B ORCL/ POBCRCL (12.1.0.1.0) J Configuration » € Stockag .

Iipertolre Tonging 0¢ W hike de Sonnbi st Peaerininiein 08 [La. %] &
e + Perfarmances Rl

e forcl)

= - § Amerns
"
& i, L o L i

' A o
i M) Wingn a4 00
A B M R B " W
- e CIVWE T R OETED § .

Concernant un utilisateur local, 'instruction CREATE USER précédemment étudiée sera géné-
rée en fonction de vos choix :

Flgure 5-16 Création d'un utilisateur

ORACLE Enterprise Manager Daistase Express 12

it eirs

i i . ke dén benpatz 1
v
oy Créer un wiisatenr L]
I 2 Compte utlssteor | tsmom
[
Augthantficaton @ a| Mol e paksn Evimne Gl

Mt do pases =

Confirme s mat de puas: =

/ ol | st P
Ml s pranss wpd |
Cistnpte st
| 38 Aorser | | B

L’onglet Stockage vous permettra de visualiser et de créer vos espaces de stockage.

@ Editions Eyrolles 263

S(E do bass |

264

Figure 517 Visualisation des tablespaces

B s LT TL R

L —— e —
van (i [| e [ewme e e
¢ S *+ O v AR
- M * 0D P
- s B L
o @ n e
v . * O)
- ™ s 0 P T
+ « n » comeni
e - |] PR BT

SOL Developer

Depuis la version 4 (décembre 2013), I'outil SQL Developer est fourni avec une « vue » DBA.
En créant une connexion au container principal et une autre & la base enfichable (ici,
POBORCL), vous pourrez gérer graphiquement vos espaces de stockage, utilisateurs, efc. -

Lécran suivant présente deux connexions: sur le CDB et sur la base enfichable. Sur la
premiére, il est possible d'opérer sur I'état d’une PDB (ouverture, fermeture, déconnexion,
suppression ou clonage).

Figure 5-18 Ve DBA de SOL Developer

Mrldlw

e W v aenone
3 swoma L i}
% |8 Base de donnies du conteneur 1eoN ID 3
< 2 NAME POBORCL
i s Configuration de 3 OPEN_MODE READ WRITE
i+ | S1enn de Ia bawe de donnéen AOFEN_TIME 29/11/14 12:09:34, 638000000
UL‘MM N* LT LLJULLLT N N, o -
it &) Gestonnaire de ressoutces Gcon ur Quwnr
[Performances 7aurn |
L Manficateur 8 CREATI| Supprimer une base de donndes plugpable..
:EWW 1 Cloner une base de données phuggable_
8 [Structure gu traducteur SOL 1 Déconnecter une base de donmées pluggable.
i [l Séturnd 1 Moditier Uétat.
= [sy pabee

(4| Stntut de le bass de doondes:

@ Editions Eyrofies

[chapitre n° 5 Coniriie des données |

L’écran suivant présente I'affichage des utilisateurs locaux de la PDB. Une fois sur un utilisa-
teur, vous pourrez attribuer des priviléges, changer un mot de passe ou un profil, supprimer le
schéma, créer un nouvel utilisateur, etc.

Figure 5-19 Gestion des utilsatewrs avec SQL Developer

0 D e
oW te

[T o' uas o | oot Seatus § Dinte | Ctwt Tatbospacn || Tengorary Tabh
| & (8 ae08a 1 ARCRAGHES IXFINED & LOCHED 28/06/13 EYSAIM TEY
= 1) wywen-paxed T mhEn_ L LSt EXPIRED & LOCRED 20706713 UEERS M
e e p— 1 APE_smne EXPIRED & LOCEED 28/36/10 SYOATK TENR
4 Ly Finind e b i e dumivées. 4 ATy EXFIMED & LOCNED 29/06/13 FYSATR TEHY
LD D g B AUy IXPINED & LOCKED 28/06/13 UBERE TEMY
= {ad Sdowme (5] TRETRED & LOCKED 26/0(34 EXAMOLE TP
W Prrmetes Fsuat yan SEEN 04704755 UISERS TERY
‘F&m & i IXFIRED & LOCKEED J0/0€/33 ETERTH TEMY
o I.:?Nl" D EXPIRED & LOCHED 28/06/13 EYBAL TEMP
1000 oBEN ILSEHAS UEERD TENF
b i I 11 nivy ooEN 31/p8/18 OsERE TEMF

@ Editions Eyrolles 265

S(E do bass |

Exercices

O W O R RN R O (-, (- e W e

Les ohjectifs de ces exercices sont :

de créer des vues monotables et multitables ;
d'insérer des enregistrements dans des vues ;

d'effectuer une mise i jour conditionnée via une vue.

266

Vues monotables
Viies 2ans contrainfes
Ecrivez le script vues . =gl, permettant de créer :

+ Lavue LogicielsUnix qui confient tous les logiciels de type 'Unix’ (toutes les colonnes sont
conservees). Vérifier la structure et le contenu de la vue (DESC et SELECT).

* Lavue Poste_0 de structure (nPosC, nomPosteld, nSallel, TypePostead, indIp, ad0) qui
contiant tous les postes du rez-de-chaussée (etage=0 au niveau de la table Segment). Faire
une jointure procédurale sinon la vue sera considérée comme une vue multitable. Vérifier la struc-
ture et le contenu de la vue.

Ingérez deux nouveaux postes dans la vue, tels qu'un poste soit connecté au segment du rez-de-

chaussée et l'autre & un segment dun autre étage. Vérifier le contenu de la vue et celui de la table.

Conclusion ?

Supprimez ces deux enregistrements de la table Poste.

Résoudre une reguéte complexe

Créez la vue SallePrix de structure (nSalle, nomSalle, nbPoste, prixLocation) qui
contient les salles et leur prix de location pour une journée (fonction du nombre de postes). Le montant
de la location d'une salle & la journée sera d'abord caleulé sur la base de 100 € par poste. Servez-
vous de l'expression 100*nbPoste dans la requéte de définition.

Vérifiez le contenu de la vue, puis afficher les sallas dont le prix de location dépasse 150 €.

Ajoutez lacolonne tari £ de type NUMBER (3) 4la table Types. Mettez A jour cette table de maniére
& Insérer les valeurs suivantes :

Tablesu 5-33 Tarils des posies
Type du poste Tarifen €

TX 50
BCWS 100
FCNT 120
UNIX 200
HC &0
Beds 400

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

Créez la vue SalleIntermédiaire de structure (nSalle, typePoste, nombre, tarif), de
telle sorte que le contenu de la vue refléte le tarff ajusté des salles en fonction du nombre et du type
des postes de travail. | s'agit de grouper par salle, type et tarff {tout en faisant une jointure avec latable
Types pour les tarifs), et de compter le nombre de postes pour avoir le résultat suivant :

NEALLE TYPEPOSTE HOMBRE TARLF
=01 TX 2 50
=01 UNIX 200
=02 PCWS 2 100

A partir de la vue SalleIntermédiaire, créez la vue SallePrixTotal{nSalle, Prixkéel)
quil refléte le prix réel de chague salle (par exemple la s01 sera facturée 2°50 + 1°200 = 300). Vérifiez
le contenu de cette vue.

Affichez les salles les plus économiques & la location.

Wues avec contrainies

Remplacez la vue Foste(en rajoutant l'option de contrdle (CHECK oOPTION). Tenter d'insérer un
poste appartenant & un étage différent du rez-de-chaussée.

Créez la vue Installer(de structure (nPoste, nLog, hum, datelns) ne permettant de travailler
gu'avec les postes du rez-de-chaussée, tout en interdisant linstallation d'un logiciel de type "PCNT.
Tentez d'insérer deux postes dans cette vue ne correspondant pas & ces deux contraintes : un poste
d'un étage, puis un logiciel de type 'PCNT . Insérer l'enregistrement 'p6', log2° qui doit passer & fravers
la vue.

9.2

@ Editions Eyrolles

Vue multitable

Créez la vue SallePoste de structure (nomSalle, nomPoste adrIP, nomTypePoste)
permettant d'extraire toutes les installations sous la forme suivante :

HNOMSALLE NOMPOSTE ADRIP NOMTY PEPOSTE
Salle 1 Poste 1 130.120.80.01 Terminal X-Window
Salle 1 Pozte 2 130.120.80.02 Systéme Unix

267

S(E do bass |

5.0 mises a jour conditionnées

A partir de la table Vol ci-dessous, définissez lavue v_Vols qui permettra, & 'aide d'une instruction
MERGE, de metfre correctement & jour la table Primes.

Figure 5-20 Mises & jour condiionnées

Val

brever darevVal

PL-1 SO0 -

PLA o5-ar- JiED

PLA E1- e o N T R INEERT UPDATE +B0

PL3 10-07-2003 40

PLE 15072003 | 406 Brimes cible

P i [20 Srever i, paye | loospa
FL-1 Kurdlia Enla 00 v | AF
P2 Agnus Bidal To0 A
FL-3 Sylvie Payrissal [4] allNG

[Fl4 I 12] I

268

3.0 Vues de la base Chantlers

Créez la vue chantier passagers permettant d'extraire le détail des visites des employés en tant
que passagers d'un mois donné sous 1a forme suivante (ici pour Avril 2008) :

CHANTIER JOUR VEHICULE PRSSAGER CONDUCTEUR TEMES
CH1 0L/04/08 Vi E7 E1 2,5
CHL 01/04/08 V1 B8 El 2,5
CHL 02/04/08 va El E1D 2

Créez la vue chantier conducteur permettant d'extraire le temps passé sur la route par les
conducteurs des visites d'un mols donné sous la forme suivante :

CHANTIER CONDUCTEUR JOUR TEMFS

CH1 E1 01l/04/08 2,5

Créez la vue chantier conducteur passagers permettant dextraire le temps passé sur la
route par les employés (conducteur ou passager) d'un mois donné sous la forme suivante :
EMPLOYE Temps passé

E1 8,5
E2 4,875

& Editions Eyrolles

[chapltre n° 5

Coniriie des données |

@ Editions Eyrolles

En utllisant ces vues, écrivez la requéte qui permet de facturer le temps passé par les employés sur
tous les chantiers. La formule & programmer est la sulvante : pour tout chantier, le prix est égal au
nombre d'emplay&s multiplié par le temps passé (sur la base de 30 euros de 'heure).

Un exemple est donné cl-aprés :

CHANTIER SUM{TEMPS) COUNT (EMPLOYE) PRIX
CHL 15,5 i 3255
CHZ2] 11 2970

269

Partie Il

PL/SOL

Chapitre 6
Bases du PL/SQL

Ce chapitre décrit les caractéristiques générales du langage PL/SQL :
structure d'un programme ;
déclaration et affectation de variables ;
structures de contrdle (si, rant gue, répéter, pour) ;
mécanismes d’interaction avec la base ;

programmation de transactions.

Geneéralités

Les structures de contrile habituelles d’un langage (1F, WHILE...) ne font pas partie intégrante
de la norme SQL. Elles apparaissent dans une sous-partie optionnelle de la norme (ISO/IEC
9075-5:1996. Flow-control statements). Oracle les prend en compte dans PL/SQL. Nombre de
concepts de PL/SQL proviennent du langage Ada.

Le langage PL/SQL (Procedural Langage/Structured Query Langage) estle langage de prédi-
lection d'Oracle depuis la version 6. Ce langage est une extension de SQL car il permet de
faire cohabiter des structures de contrdle (si, pour et fant que) avec des instructions SQL (prin-
cipalement SELECT, INSERT, UPDATE et DELETE). PL/SQL est aussi utilisé par des outils
d'Oracle (Forms, Report et Graphics).

Environnement client-servenr

Dans un environnement client-serveur, chaque instruction SQL donne lieu & I'envoi d'un
message du client vers le serveur suivi de la réponse du serveur vers le client. Il est préférable
de travailler avec un bloc PL/SQL plutdt qu’avec une suite d'instructions SQL susceptibles
d'encombrer le trafic réseau. En effet, un bloc PL/SQL donne lieu 4 un seul échange sur le
réseau entre le client et le serveur. Les résultats intermédiaires sont traités coté serveur et seul
le résultat final est retourné au client.

@ Editions Eyrolles 273

PUSQL|

274

Flgure 6-1 Différentes approches du client-serveur

SHECT..; Exdeution requéte
Y — -
INSERTINTO ..
SGBD
Exécution globale BEGEN
. SELECT ..

CALL oo

= UPDATE .5

BNGERT INTO...;
Bloc

BNDy;

Rvantages

Les principaux avantages de PL/SQL sont :

La modularité {(un bloc d'instruction peut étre composé d'un autre, etc.) : un bloc peut
étre nommeé pour devenir une procédure ou une fonction cataloguée, donc réutilisable.
Une procédure, ou fonction, cataloguée peut étre incluse dans un paquetage (package)
pour mieux controler et réutiliser ces composants logiciels.

La portabilité : un programme PL/SQL est indépendant du systéme d’exploitation qui
héberge le serveur Oracle. En changeant de systéme, les applicatifs n’ont pas i étre
modifiés.

Lintégration avec les données des tables : on retrouvera avec PL/SQL tous les types de
données et instructions dispomibles sous SQL, et des mécanismes pour parcourir des résul-
tats de requétes (curseurs), pour traiter des erreurs (exceptions), pour manipuler des données
complexes (paquetages DBMS soor) et pour programmer des transactions (COMMIT,
ROLLEACK, SAVEPOINT).

Structure d’un programme

Un programme PL/SQL qui n'est pas nommé (aussi appelé bloc) est composé de trois sections
comme le montre la figure ci-contre :

DECLARE (section optionnelle) déclare les variables, types, curseurs, exceptions, etc. ;
BEGIN (section obligatoire) contient le code PL/SQL incluant ou non des directives SQL
(jusqu’a 1'instruction END;). Le caractére «/ » termine un bloc pour son exécution dans
Pinterface SQL#*Plus. Nous n'indiquons pas ce signe dans nos exemples pour ne pas
surcharger le code, mais vous devrez I'inclure i la fin de vos blocs ;

& Editions Eyrolies

Bases du PUSQ |

EXCEPTION (section optionnelle) permet de traiter les erreurs retournées par le SGBD ala

suite d’exécutions d’instructions SQL.

Flgure 6-2 Streture d'un bloc PL/SQL

~- gestions des erreurs

END;
3t

Portée des ohjets

DECLARE

-- dégclarations

L DEILARE

EBEGIN 801N

-- aod o
— =g

Tl e

EXCEPTION

Un bloc peut étre imbriqué dans le code d'un autre bloc (on parle de sous-bloc). Un sous-bloc
peut aussi se trouver dans la partie des exceptions. Un sous-bloc commence par BEGIN et se

termine par END.

La portée d’un objet (variable, type, curseur, exception, etc.) est la zone du programme qui
peut y accéder. Un bloc qui déclare qu'un objet peut y accéder, ainsi que les sous-blocs. En
revanche, un objet déclaré dans un sous-bloc n’est pas visible du bloc supérieur (principe des

accolades de C et Java).

Figure 6-3 Visibilite des objets

DECLARE
v brevet VARCHARZ (6);

BEGIN ORCLARE

@ Editions Eyrolles

- o
= v _brevet accessible _— v_mom VARCHARD £204
™ HEAIH
e ¥ Brevat of v pom acesssibles
_:—""-_Fd-__
e BECEFTICH
T Ca ¥ bravet St v non accssaibles
EXCEFTION — R o
- v _brevet accessible i
END; v nom inaccessible

275

PUSQL|

276

Jeu de caraciéres

Comme SQL, les programmes PL/SQL sont capables d'interpréter les caractéres suivants :
lettres A aZetadz;
chiffres de0a 9 ;
symboles () +-Ff<>=1~" 0" @% ,"#5& | {}7[];
tabulations, espaces et retours-chariot.

Comme SQL, PL/SQL n’est pas sensible & la casse (nof case sensitive). Ainsl mméroBrevet
et NuméroBREVET désignent le méme identificateur (tout est traduit en majuscules au niveau
du dictionnaire des données). Les régles d'écriture concernant I'indentation et les espaces
entre variables, mots-clés et instructions doivent étre respectées dans un souci de lisibilité.

Tablean 6-1 Lisiiité du code
Peu lisible Clest miewx

IF x>y THEN max:=x;ELSE max:=y;END IF; IF x > y THEN
max := X

ldentificateurs

Avant de parler des différents types de variables PL/SQL, décrivons comment il est possible de
nommer des objets PL/SQL (variables, curseurs, exceptions, efc.).

Un identificatenr commerce par une letire suivie (optionnel) de symboles (lettres, chiffres, &,
_» #). Un identificateur peut contenir jusqu’i trente caractéres. Les autres signes pourtant
connus du langage sont interdits comme le montre le tableau suivant :

Tahlesu 6-2 Identificatenrs

Autarisés Interdits

X moi&tol (symbole &)

2 debi t-credit (symbole -)
téléphoned on/off (symbole /)
code_brevet code brevet (symbole espace)
codeBrevet

pracleSnombre

& Editions Eyrolles

[chapitre n° &

Bases du PUSH |

Variables

Commentaires

PL/SQL supporte deux types de commentaires :

monolignes, commengant au symbole -~ et finissant 4 la fin de la ligne ;

multilignes, commencant par /* et finissant par */.

Le tablean suivant décrit quelques exemples :

Tebieau 6-3 Commeniaires

Sur une ligne

Sur plusieurs lignes

-- Lecture de la table

SELECT salaire INTO v salaire

FROM Pilote -- Extraction du salaire
WHERE nom = 'Thierry Albarie';

v bonus := v _salaire * 0.15; -~ Caleul

{* Lecture de la table Pilote *J
SELECT salaire INTO v_salaire
FRCM Pllote
[+ Extraction du salaijre
pour calpuler le bonus */
WHERE noim = 'Thierry Albaric';
v_bonug = yv_salaire * 0.15; [*Caleul*)

Il n'est pas possible dimbriquer des commentaires. Pour les programmes PL/SQL qui sont
utilisés par des précompilateurs, il faut employer des commentaires multilignes.

Un programme PL/SQL est capable de manipuler des variables et des constantes (dont la valeur
est invariable). Les variables et les constantes sont déclarées (et éventuellement initialisées)
dans la section DECLARE. Ces objets permettent de transmetire des valeurs & des sous-
programmes via des paramétres, ou d’afficher des états de sortie sous U'interface SQL*Plus.

Plusieurs types de variables sont manipulés par un programme PL/SQL :

Variables PL/SQL :

— scalaires recevant une seule valeur d'un type SQL (exemple : colonne d’une table) ;
— composites (SROWIYPE, RECORD et TYPE) ;

— références (REF) ;
— LOB (locators).

Variables non PL/SQL : définies sous SQL*Plus (de substitution et globales), variables
hétes (déclarées dans des programmes précompilés).

@ Editions Eyrolles

277

[Partie N PUSQL|

Variahies scalaires
La déclaration d'une variable scalaire est de la forme suivante :
identificateur [CONSTANT] typeDeDonnée [NOT NULL] [:= | CEFAULT
expression] ;
CONSTANT précise qu'il s'agit d'une constante ;
NOT NULL pose une contrainte en ligne sur la variable ;
DEFAULT permet d’initialiser la variable {équivaut 4 I'affectation :=).
Le tableau suivant décrit quelques exemples :

Tahlean 6-1 Deéciarations

Variables Constantes et expressions
DECLARE DECLARE
v_dateNaissance DATE; ¢ _pi COMSTANT NUMEER := 3.14159;
£* dguivaut A w_rayon NUMBER := 1.5;
w_dateNaissance DATE:= NULL; v_aire NUMBER := g pi * w_rayeon**2 ;
*;" g
v_capacité WMBER(3) := 895; wv_groupeSanguin CHAR(3) := 'O+';
w_téléphone CHAR(14) F* dgquivaut &
NOT NULL := '06-76-85-14-89"; w_groupeSanguin CHAR(3) DEFAULT 'O+';
w_trouvé BOOLEAN NOT NULL := TRUE; *r
BEGIN w_dateValeur DATE := SY¥SDATE + 2
BEGIN

Il n'est pas possible d'affecter une valeur nulle & une variable définie NOT NULL ('erreur ren-
voyée est 'exception prédéfinie VALUE_ERROR).

La contrainte NOT NULL doit &tre suivie d'une clause d'initialisation.

Rifectations

1l existe plusieurs possibilités pour affecter une valeur i une variable :

I'affectation comme on la connait dans les langages de programmation (variable ;=
expression);

par la directive DEFAULT ;
par la directive INTCO d"une requéte (SELECT ... INTO variable FROM ...).
Le tableau suivant décrit quelques exemples.

278 & Editions Eyrolles

[chapitre n° & Bases tu PUSH |
Tablesw 6-5 AMectations
Code PLISQL Commentaires
DECLARE Déclarations de variables.
v _brevet VARCHARZ(6);
u_hrever? VARCHARZ (6] ;
v _prime NUMEER(5,2);
v_najisgance DATE;
v_Etrouve BOOLEAN NOT NULL
DEFAULT FALSE;
BEGIN Affectation d'une chaine de
v_brevet 1= 'FL-1'; caractéres,
v_brevet2 1= v_brayet; Affectation d'une variable.
v_prime 1= 500.50; Affectation d'un nombre.
v_naissance := '04-07-2003'; Affectation de dates.
v_naissance := TO_DATE('04-07-2003 17:30°",
"DD:MM:YYYY HH24:MI') ;
v_trouvé = TRUE; Affectation d'un booléen.
SELECT bravet INTO v_brevet Affectation d'une chaine de
FROM Pilote WHERE nom = 'Gratien Viel'; caractéres par une requéte.

Resirictions

Il est impossible d'utiliser un identificateur dans une expression s'il n'est pas déclaré au préa-
lable. ki, la déclaration de la variable maxi estincorecte :

DECLARE
maxi NUMBER := 2 * mini;
mini NUMBER := 15;

Alinverse de la plupart des langages récents, les déclarations multiples ne sont pas permises.
Celle qui suit est incorrecte :

DECLARE
i, j, k NUMBER;

Variables %TYPE

La directive $TYPE déclare une variable selon la définition d'une colonne d'une table ou d'une
vue existante. Elle permet aussi de déclarer une variable conformément i une auire variable
précédemment déclarée.

@ Editions Eyrolles 279

[Partie N PUSQL|

1 faut faire préfixer la directive $TYPE avec le nom de la table et celui de la colomne
(identificateur nomTable.nomColonne%TYPE) ou avec le nom d’une vanable existante
(identificateur? identi ficateurl¥TYPE). Le tablean suivant décrit cette syntaxe :

Tabigau 6-6 Unilisation de %TVYPE

Code PL/SQL Commentaires

DECLARE v_brevet prend le type de la colonne
v_brevet Ellote . brevet %TYPE; brevet delatable Pilote.
v_prime NUMBER(5,2) := 500.50; v_prime min prend le type de la variable
v_prime _min ¥ prime%TYPE := v _prime*0.9; v_prime e estinitialisée a 45045.

BEGIN

Uariahies %ROWTYPE

La directive $ROWTYPE permet de travailler au niveau d'un enregistrement (record). Ce dernier
est composé d'un ensemble de colonnes. L'enregistrement peut contenir toutes les colonnes
d'une table oun seulement certaines.

Cette directive est trés utile du point de vue de la maintenance des applicatifs. Utilisés i bon
escient, elle diminue les changements a apporter au code en cas de modification des types des
colonnes de la table. Il est aussi possible d’insérer dans une table ou de modifier une table en
utilisant une variable du type $3ROWTYPE. Nous détaillerons, au chapitre 7, le mécanisme des
curseurs qui emploient beaucoup cette directive. Le tableau suwivant décrit ces cas

d'utilisation :
Tahiesw 67 Uulisations de “ROWTYPE
DECLARE La structure rty_pilete ast composée de toutes
rty pilote | Eilote%ROWTYPE; les colonnes de latable Pilote.

v_brevet Pilote. brevetiTYPE;

BEGIN
SELECT * INTO zty pilote Chargement de lenregistrement rty pilote
FROM Pilote WHERE brevet='PL-1'; & parfir d'une figne de la table Pilote.
Acces & des valeurs de l'enregistrement par la
w_brevet := rty pilote.brevet; notation pointée.
rty pilote.brevet := "PL-3';
rty pllote nom := 'Pierre Bazex';

INSERT INTO Filote VALUES rty pilote; Insertion danslatable Pilote & partird'un
enregistrement.

280 & Editions Eyrolles

[chapitre n° &

Bases du PUSH |

Les colennes récupérées par la directive $R.0OWTYPE n'héritent pas des contraintes NOT NULL
qui seraient éventuellement déclarées au niveau de la table.

Variables RECORD

Alors que la directive $ROWTYPE permet de déclarer une structure composée de colonnes de
tables, elle ne convient pas & des structures de données personnalisées. Le type de données
RECORD (disponible depuis la version 7) définit vos propres structures de données (1"équivalent
du struct en C). Depuis la version 8, les types RECORD peuvent inclure des LOB (BLOB,
CLOB et BFILE) ou des extensions objets (REF, TABLE ou VARRAY).

La syntaxe générale pour déclarer un RECORD est la suivante :

TYPE nomRecord IS RECORD
{ nomChamp typeDonnéss [[NOT NULL] {:= | DEFAULT} expression)
[;pomChamp typelonnees.. ..);

L’exemple suivant décrit I’utilisation d'un record:

Tableau 6-8 Manipuiziion de RECORD

Code PL'SQL Commentaires
DECLARE Déclaration du RECORD contenant quatre
TYPE avicondirbus rec IS RECORD champs ; intialisation du champ uaine par
(nserie CHAR(10), nomdvien CHER{20), défaut
usine CHAR(10) := 'Blagmac',

nbHVol NUMBER(T,2));

r oundiz0 avionhirbus ree

r_FGLFS avionairkus rec; Déclaration de deux variables de type RECORD.
BEGIN

r unA320 nserie = Aty Inttialisation des champs d'un RECORD.

r unA320, nomAvien = 'A320-200";

r_inA3Z0, nbHVo 1 = 2500.60; Affectation d'un EECCRD.

r_FGLFS t= r_unA3do;

Les types RECORD ne peuvent pas étre stockés dans une table. En revanche, il est possible qu'un
champ dun RECORD soit lui-méme un RECORD, ou soit déclaré avec les directives $TYPE ou
SROWTYPE. L'exemple suivant illustre le RECORD r_vols déclaré avec ces trois possibilités :

DECLARE
TYPE avionAirhus rec IS5 RECORD
{nserie CHAR(10), nomAvion CHAR(2G),
usine CHAR(10) := ‘'Blagnac', nbHVol NUMBER(7,2));

@ Editions Eyrolles 281

PUSQL|

282

TYPFE vols rec IS RECORD
(r_aéronef avionPirbus.rec , dateVol DATE,
rty coPilote Pilote3ROWTYPE, affretéPar Compagnie.comptTYPE) ;

Les RECORD ne peuvent pas étre compares (nullité, égalité et indgalité), ainsi les tests suivants
sont incorrects :

vl avionAirbus rec;
v2 vols_ rec;
v3 vols_rec;
BEGIN
IF vl IS NULL THEN ..

IF v2 » v3 THEN ..

Uariables tahieaux (type TABLE)

Les vanables de type TABLE (tableaux associatifs ; associanive arrays) permettent de définir et
de manipuler des tableaux dynamiques (définis sans dimension initiale). Un tableau est
composé d'une clé primaire {de type BINARY INTEGER, PLS_INTEGER, ou chaine de caractd-
res) pour accéder a chaque élément de type scalaire ou composé (RECORD ou ROWIYPE).

Syntaxe
La syntaxe générale pour déclarer un type de tableau et une variable tableau est la suivante :

TYPE nom type tableau IS TABLE OF
{type scalaire | variable$TYFE | nom RECORD
nom_table.colonne¥TYPE | nom table.$ROWIYPE } [NOT NULL)
[INDEX BY {BINARY INTEGER | PLS_INTEGER} | WARCHARZ2(taille) 1;
nom_tableau nom_type_tableau;

Loption INDEX BY BINARY INTEGER est facultative depuis la version 8 de PL/SQL. Si elle est
omise, le type déclaré est considéré comme une nested table (extension objet). Si elle est pré-
sente, lindexation ne commence pas nécessairement a 1 et peut étre méme négative (lintervalle
de valeurs du type BINARY INTEGER vade -2 147 483 647 & 2 147 483 647).

L'exemple suivant décrit la déclaration de trois tableaux et 1'affectation de valeurs & différents
indices (-1, -2 et 7 800). L'accés & des champs d’éléments complexes se fait 4 1"aide de la nota-
tion pointée (voir la derniére instruction).

& Editions Eyrolies

Bases du PUSQ |

Tableau 6-0 Tahieaun PL'SQL

Code PLISOL

Commentaires

DECLARE
TYPE brevets_tytab IS TABLE OF VARCHARZ (6)
INDEX BY BINARY INTEGER;

Type de tableaux de chaines de six
caractéres.

TYFE nomPilotes_tytab IS TABLE OF Filete.nom¥TYFE
INDEX BY BINARY TNTEGER;

Type de tableaux de colonnes de
type nom de la table Pilote.

TYFE pilotes tytab IS TABLE OF Pilote3%ROWTYFE
INDEX EY BEINARY INTEGER;

Type de tableaux d'enregistrements
de type de la table Pilote.

tab _brevets brevets_tytab;
tab nomPileotes nomPilotes tytab;

Déclaration des tableaux.

tab pilotes pilotes _tytab;
BEGIN Initialisations.
tab breavetsa(-1) 1= 'PL-1";
tab brevets(-2) = YPL-2°
tab nomPilotes(7800) := 'Bidal';
tab pilotes(0).brevet := 'FL-0";

END;

Fonctions pour les tableaux

PL/SQL propose un ensemble de fonctions qui permettent de manipuler des tableaux (égale-
ment disponibles pour les nested rables et varrays). Ces fonctions sont les suivantes (les trois

derniéres sont des procédures) :

Tableau 6-10 Fonctions powr les Wbieauy

Fonction Description
EXISTS |x) Retourne TRUE sl le »® élément du tableau existe.
COUNT Retourne le nombre d'éléments du tableau.

FIRST / LAST

Retourne le premier/dernier indice du tableau (MULL 51 tableau vide).

PRIOR(x) / NEXT(x) Retourne l'éEment avant/aprés le x* élément du tableau.
DELETE Supprime un ou plusieurs éléments au tableau.

DELETE | x)

DELETE (X, y)

Il n'est pas possible actuellement d'appeler une de ces fonctions dans une instruction SQL

{SELECT, INSERT, UPDATE ou DELETE).

Les exemples suivants décrivent I utilisation de ces fonctions.

@ Editions Eyrolles

283

FUAIL|

284

Tableau 6-11 Fonctions PL/SOL pour les tahleaux

‘Code PL/SQL Commentaires
IF tab _pilotes.EXISTS|0) THEM. Renveie « vrai » car il existe un élément & lindice 0.
v_nombre := tab brevets.COUNT; La variable v_norbrecontient 2.
v_premier := tab brevets . FIRST; La variable v_premier contient -2, v_dernier
v_dernier := tab_brevets.LAST; contient -1,
v_avant := tab brevets.PRIOR|(-1); La variable v_avant comtlent -2,
tab brevets .DELETE; Suppression de tous les éléments de tab_brevets.

Résolution de noms

Lors des conflits potentiels de noms (variables ou colonnes) dans des instructions SQL
(principalement INSERT, UPDRTE, DELETE et SELECT), le nom de la colonne de la table est
prioritairement interprété au détriment de la variable (de méme nom).

Dans I'exemple suivant, |'instruction DELETE supprime tous les pilotes (et non pas seulement
le pilote 'Pierre Lamothe'), car Oracle considére les deux identificateurs comme la colonne de
la table et non pas comme deux variables différentes !

DECLARE

nom CHAR(20) := 'Pierre Lamothe';
BEGIN

DELETE FROM Pilote WHERE nom = nom

Pour se prémunir de tels effets de bord, deux solutions existent. La premiére consiste i
nommer toutes les variables explicitement et différemment des colonnes. La deuxiéme
consiste & utiliser une étquette de bloc (block label) pour lever les ambiguités. Le tableau
suivant illustre ces solutions concernant notre exemple :

Tebleau 6-12 Eviter les ambiguités

Préfixer les varlables Etiquette de bloc

DECLARE =<principal=>
v nom CHAR(Z20) := 'Plerre Lamothe'; DECLARE

BEGIN nem CHAR{20) := 'Plerre Lamothe';
DELETE FROM Filote WHERE nom = v_nom; BEGIN

END; CELETE FROM Pilote

WHERE nom = prinecipal.nom;
END;

Dpérateurs

Les opérateurs SQL étudiés au chapitre 4 (logiques, arithmétiques, concaténation...) sont
disponibles anssi avec PL/SQL. Les régles de priorité sont les mémes que dans le cas de SQL.

& Editions Eyrolles

[chapitre n° & Bases tu PUSH |

- L'opérateur IS NULL permet de tester une expression avec la valeur NULL. Toute expression
arithmétique contenant une valeur nulle est évaluée & NULL.

Le tableau suivant illustre quelques utilisations possibles d’opérateurs logiques :
Tableau 6-13 Utilisation d'opératewrs

Code PL/SQL Commentaires
DECLARE

v_compteur NUMBER({3) DEFAULT 0;

w_booléen BOOLEAN;

v_nombre NUMBER(3);

BEGIN
w_compteur := v_compteur+l; Incrémentation, opérateur +
v booléen = (v_compteur = v_nombre); v_booléenrecoll NULLdu falt delacondition.
v booléen := (v_nombre I35 NULL); v_booléen re¢olt TRUE car la condition est vraie.

Variahles de substitution

1l est possible de passer en paramétres d’entrée d'un bloc PL/SQL des variables définies sous
SQL*Plus. Ces variables sont dites de substitution. On accéde aux valeurs d une telle variable
dans le code PL/SQL en faisant préfixer le nom de la variable du symbole « & » (avec ou sans
guillemets simples suivant qu’il s"agit d"un nombre ou pas).

Le tablean suivant illustre un exemple de deux variables de substitution. La directive ACCEPT
permet la saisie au clavier de variables dans I'interface SQL*Plus. Elle doit éire utilisée
conjointement 4 la directive PROMPT toutes deux placées en amont d’un bloc PL/SQL qui
devra étre exécuté via la commande START. Dans cet exemple on exirait le nom et le nombre
d'heures de vol d'un pilote. Son numéro de brevet et la durée du vol sont lus au clavier et la
durée est ajoutée au nombre d’heures de vol du pilote. Il est 4 noter qu’il ne faut pas déclarer
des variables de substitution.

Tahieau 6-14 Variabies de substtution

Code PL'SQL Sous SQL*Plus
ACCEPT s brevet PROMPT 'Entrer code Brevet : '
ACCEPT = duréeVel PROMPT 'Entrer durde du vol : ' Entrer code Brevet : PL-2
DECLARE Entrer durée du vel : 27
V_riom Pilote, noméTYPE; Total heures vol : 927 de
v_nbHVel Pllete. nbHVel1%TYPE; Didier Linxe
BEGIN
SELECT nom, nbHVel INTD v_nom, v_nbHVol Procédure PL/SQL terminde
FROM Filote WHERE brevet = ‘&g brevet!; avec guccbs,

v.nbHVel := wv.nbHVel + L& _durdevol;
DEMS_OUTEUT . BUT_LINE
{'Total heures wel : ' || w.nbHVel ||
' de ' || wv.nom);
END;

@ Editions Eyrolles 285

[Parfie PLSOL
Il faut exécuter le bloc 4 I'aide de la commande START et nen pas par copler-coller d'un éditeur
de texte vers la fenétre SQL"Plus {é cause des instructions d'entrée MCEPT}.

Variahles de session
M est possible de définir des variables de session (bind variables) déclarées sous SQL*Plus &
I'exténeur d'un programme PL/SQL tout en pouvant étre utilisées dans le coxps du programme.
La directive SQL*Plus 4 utiliser en début de bloc est VARIABLE. Dans le code PL/SQL, il faut
faire préfixer le nom de la variable de session du symbole :. L'affichage de la variable sous
SQL*Plus est réalisé par la directive PRINT.
Le tableau suivant illustre un exemple de variable de session :
Tableau §-15 Variable de session
Code PLISQL ‘Sous SOL*Plus.
VARIABLE ¢ compteur NUMBER;
DECLARE SQL> PRINT /g COmpteury
v_compteur WMBER(3) := 99;
BEGIN G_COMPTEUR
scompleuyr. := v_compteur+tl; 0 0—-——---——-
END; loao
Conventions recommandées
Adoptez les conventions d’écriture suivantes pour que vos programmes PL/SQL soient plus
facilement lisibles et maintenables :
Tahleau 6-16 Conventions PUSHL
Objet Convention Exemple
Variable v_nomVariable v_compteur
Constante o_nomCons tante c_pi
Exception 8_nomException e_pasTrouyvd
Type RECORD namRecord_tyrec pilote_tyrec
Varighle RECORD v_nomVariable neomRecord_ rec V.pil pilote ree
Varigble RowTy FE rty_nomVariable rty pilote
Type-tableau nomTypeTableau_tytab pilotes tytab
Variable tableau tab_ncomTableau tab pilotes
Curseur nomCurseur_cur pilotes_cur
Variable de substitution {SQL"Plus) e_nomvariable a_brevet
Varigble de session (globale) g_nomvariable g_brevet
286 & Editions Eyrolles

[chapitre n° & Bases tu PUSH |

Tupes de données PL/SOL

O T, O (L W - O Y) N

PL/SQL inclut tous les types de données SQL que nous avons étudiés aux chapitres 1 et 2
(MIMBER, CHAR, BOOLEAN, VARCHARZ, DATE, TIMESTAMP, INTERVAL, BLOB, ROWID...). Nous
verrons ici les nouveaux types de données propres 4 PL/SQL.

Types prédéfinis

Les types BINARY INTEGER et PLS_INTEGER conviennent aux entiers signés {domaine de
valeurs de -231 & 23, soir -2 147483647 4 +2147483647). Ces types requiérent moins d'espace
de stockage que Ie type NUMBER.

Les types PLS_INTEGER et BINARY INTEGER ne se comportent pas de la méme maniére lors
d’erreurs de dépassement (overflow). PLS_INTEGER déclenchera 1'exception ORA-01426 :
dépassement numérique. BINARY INTEGER ne provoque aucune exception si le résuliat est
affecté i une variable NUMBER.

PLS INTEGER est plus performant au nivean des opérations arthmétiques que les types
NUMBER et BINARY INTEGER qui utilisent des librairies mathématiques.

Sous-types

Chaque type de données PL/SQL prédéfini a ses caractéristiques (domaine de valeurs, fonc-
tions applicables...). Les sous-types de données permettent de restreindre certaines de ces
caractéristiques i des données. Un sous-type n'introduit pas un nouveau type mais en restreint
un existant. Les sous-types servent principalement 4 rendre compatibles des applications & la
norme SQL ANSI/ISO ou plus pertinentes certaines déclarations de variables.

PL/SQL propose plusieurs sous-types prédéfinis et il est possible de définir des sous-types
personnalisés.

Prédéfinis
Le tableau suivant décrit les sous-types prédéfinis par PL/SQL.

Tableau 6-17 Sous-types prodéfinis

Sous-type Type restreint (surtype) Caractéristiques
CHARBCTER CHAR Mémas caractéristigues.
INTEGER NUMEER (38,0) Entiers sans décimales.
PLS_INTEGER NUMEER Déj4 étudie.
BINARY_INTEGER NUMBER Déja studie.

@ Editions Eyrolles 287

FUAIL|

288

Tabilean 6-17 Sous-Wpes prédéfinis (suite)

Sous-type Type restreint (sur-type)

Caractéristiques

HATURAL, POSITIVE BINARY TINTECER

HATURALN, POSITIVEN

MNon négatif.

Non négatif et nan nul.

SIGNTYPE Domaine de valeurs {-1,0, 1}.
DEC, DECIMAL, NUMERIC HUMBER Décimaux, prédsion de 36 chiffres.
DOUBLE FRECISION, FLOAT, Flottants.

REAL

INTEGER, INT, SMRLLINT Entiers sur 38 chiffres.

Personnalisés

1l est possible de définir un sous-type (dit « persomnalisé » car n'existant que durant le

programme) par la syntaxe suivante :

| BUBTYPE ncmSousType IS typeBase((contrainte)] [NOT NULL] ;

typeBase estun type prédéfini ou personnalisé.

contrainte s’applique au type de base et concerne seulement la précision ou la taille

maximale.

Des exemples de déclarations de sous-types sont présentés dans le tableau suivant.

Tablean 6-18 Sous-lypes PUSH

Code PL/SQL

Commentaires

DECLARE
BUBTYPE dateNalss sty IS DATE NOT MULL;
SUBTYPE compteur sty IS NATURAL;
SUBTYPE inszee_sty IS NMIMEER(13)
BUBTYPE nombre_ sty IS NUMBER(1,0);
TYPE r_tempsCourse
I3 RECORD (minutes NUMBER(2),
secondes . INTEGER) ;
SUBTYPE finishTime IS r_ tempsCourse ;
SUBTYPE brevel sty IS Pilote.brevetiTYPE;

Directive MOT MULL.

Contraintes sur les tallles de MmB=ER,
nombre_styirade-949.

Sous-type d'un RECORD.
Sous-type d'un ¥TYPE.

Des exceptions sont levées lorsque les valeurs des variables ne respectent pas les contraintes
des sous-types. Par exemple, U'initialisation « vl nembre sty:=10; » déclencherait une
exception ORA-06502 (voir plus haut).

Le sous-type SIMPLE INTEGER

Le sous-type SIMPLE_INTEGER dérive du type PLS_INTEGER Bien que son domaine de valeurs
soit identique 4 celui de PLs TNTEGER (-2 147 483 648 4 2 147 483 647), il est affecté d'une

& Editions Eyrolles

[chapitre n° &

Bases du PUSQ |

conirainte NOT NULL et différe de son prédécesseur du fait de sa robustesse de capacité de dépas-
sement (overflow). En effet, I'emreur 0RA-01426 : mmeric overflow n'est plus levée en cas
de dépassement en positif ou en négatif d'une variable de type SIMPLE TNTEGER.

Les sous-fypes fiotiants

Les sous-types SIMPLE FLOAT et SIMFLE DOUEBLE dérivent respectivement des types EINARY
FLOAT et BINARY_DOUBLE (mémes domaines de valeurs). Chacun différe de son prédécesseur
du fait de I'existence d’une contrainte NOT NULL.

Sans utiliser de ressources gérant la nullité, ces nouveaux sous-types sont plus performants,
lors d’opérations, que leurs prédécesseurs dans un mode opératoire par défaut (PLSQL_CODE
TYPE='NATIVE').

Variahle de type séquence

11 est désormais possible d'utiliser les directives CURRVAL et NEXTVAL au sein d"un bloc PL/
SQL (qui ne sont donc plus limitées aux mstructions SELECT, INSERT et UPDATE comme indi-
qué au chapitre 2). Les expressions séquence.CURRVAL et ségquence. NEXTVAL peuvent étre
présentes i tout endroit ol une expression de type NUMEER peut apparaitre.

En considérant 1'exemple de séquence du chapitre 2, le tableau suivant présente un bloc PL/
SQL exploitant la séquence a 'aide de deux affectations.

Tablesu 6-19 Varabie de hype séquence

Code SOL et PLISQL

Exécufion sous SQL*Plus

CREATE TABLE Affreter
(numA £ NUMBER({S) , comp CHAR(4),
immat CHAR(6), dateAff DATE,
nbFax NUMBER(3), CONSTRAINT
pk Affreter PRIMARY KEY (numAff));

CREATE SEQUENCE seghff
MRXVALUE 10000
NOMINVALUE;

DECLARE

gexi valeur NIMBER;

BEGIN

geq valeur = seqhff . CURRVAL;

DEMS_OUTEUT.FUT_LINE(|'Pour 1''ins-
tant, il y a '||TO_CHAR (seq_valeur) ||’
affrétements, ') ;

geq valeur := geqhff NEXTVAL:

SQL> INSERT INTO Affreter VALUES
(seghff . NEXTVAL, 'AF' , 'F-WIS5', S¥YS-
DATE, 85) ;

SQL> INSERT INTO Affreter VALUES
{seqAff. NEXTVAL, 'SING', 'F-GAFU', '05-
02-2007',155) ;

SQL> SELECT * FROM Affreter ;

NUMAFF COMF IMMAT DATEAFF NBFAX
1L AF F-WTSs 25/11/07 85
2 BING F-GAFU 05/02/07 155

-= exéeution du blee iei
Pour l'instant, il v a 2 affrétements.
Brocédure PL/SQL terminée avec succés.

SQL> SELECT * FROM Affreter ;

INSERT INTO Affreter NUMAFF COMP IMMAT DATEAFF NBPFRX
VALUES (geq_wvaleur, "AF', = s=sescs s;es sccceos s eeess e mes s e -
CF-WOWW' , SYSDATE-5,490) ; 1 AF F-WIL55 25/11/07 a5

END; 2 SING F-GAFU 05/02/07 155
! 3 AF F-WoOWwW 20/11/07 490
289

@ Editions Eyrolles

PUSQL|

Conversions de types

Comme pour SQL, les conversions de types PL/SQL sont implicites ou explicites. Les
principales fonctions de conversion ont déja été étudi€es au chapitre 4, section « Conver-
sions ».

L'exception levée en cas d’ affectation incorrecte pour les sous-types de BINARY, INTEGER
est: ORA-06502: PL/SQL : erreur numérique ou erreur sur une valeur.

Lexception qui est levée en cas d’affectation de la valeur nulle pour les sous-types NATURALN
et POSITIVEN est : PLS-00218: une variable déclarée NOT NULL doit avoir une
affectation d'initialisation.

Structures e controies

290

En tant que langage procédural, PL/SQL offre la possibilité de programmer :
les structures conditionnelles si et cas (IF... et CASE);
les structures répétitives fanf que, répéter et pour (WHILE LOOP, FOR).

Structures conditionnelles

PL/SQL propose deux structures pour programmer une action conditionnnelle : la structure IF
et la structure CASE.

Trois formes de IF

Suivant les tests 4 programmer, on peut distinguer trois formes de structure IF : IF-THEN
{si-alors) 1F-THEN-ELSE (avec le sinon & programmer), et IF-THEN-ELSIF (imbrications de
conditions).

Le tableau suivant décrit I'écriture des différentes structures conditionnelles IF. Notez
« END IF »en fin de structure et non pas « ENDIF ». L'exemple affiche un message diffé-
rent selon la nature du numéro de téléphone contenu dans la variable v_t&1éphone. La
fonction PUT_LINE du paquetage DEMS OUTPUT permet d afficher une chaine de caractéres
dans I'interface SQL*Plus. Nous étudierons plus loin les fonctions de ce paquetage.

& Editions Eyrolles

[chapitre n° & Bases tu PUSH |
Tehlean 6-20 Strucwures i
IF-THEMN -IF-THEN-ELSE IF-THEN-ELSIF
IF condition THEN IF condition THEN IF conditionl THEN
instructions; instructions; instructions;
EMND IF; ELSE ELSIF conditionZ THEN
Ingtruetions; Ingtrucetions;
END IF; ELSE
Ingtructions;
END IF:
DECLARE
v_télépheone CHAR(14) NOT NULL := '06-76-85-14-89';
BEGIN

IF SUBSTR (v_téléphone,l,2)='06' THEN
DEMS_OUTPUT .PUT_LINE ('C''est un portablel ');
ELSE
DEMS_CUTPUT .PUT_LINE ('C''est un fixe.');
END IF;
END;

Conditions booléennes

Les tableaux suivants précisent le résultat d’opérateurs logiques qui mettent en jeu des
variables booléennes pouvant prendre trois valeurs (TRUE, FALSE, NULL). Il est & noter que
la négation de NULL (NOT NULL) renvoie une valeur nulle.

Tahlean 6-21 Opératenr AND

AND TRUE FALSE NULL
TRUE TRUE FALSE NULL
FALSE FALSE FALSE FALSE
NULL NULL FALSE NULL

Tableau 6-22 Opératenr 0R

OR TRUE FALSE NULL
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE NULL
NULL TRUE NULL NULL

@ Editions Eyrolles 291

PUSQL|

292

Structure CASE

Comme |"instruction IF, la structure CASE permet d’exécuter une séquence d’instructions en
tonction de différentes conditions. La structure CASE est utile lorsqu'il faut évaluer une méme
expression et proposer plusieurs traitements pour diverses conditions.

En fonction de la nature de 'expression et des conditions, une des deux écritures suivantes
peut étre utilisée :

Tablegu 6-23 Strucwres CASE

CASE searched CASE

[==dtiguette>>] [<<dtigueties>]

CASE variable CASE
WHEN exprl THEN Instructionsi; WHEN conditionl THEN instructionsi;
WHEN expr? THEN instruckionsd; WHEN condition? THEN instructions2;
WHEN exprN THEN instructionsi; WHEN conditionN THEN instructionsN;
[ELSE instructionshN+1;] [ELSE ingtructionsi+l;]

END CASE [dtiquette]; END CASE [dtiguette];

Le tableau suivant décrit |'écriture avec IF d'une programmation qu'il est plus rationnel
d’effectuer avec une structure CASE (de type searched) :

Tabieau §-24 Diflérentes prow ammations

IF CASE
DECLARE
v_mention CHAR(2);
w_note NUMBER(4.2) := 9.8;

BEGIN

IF v _note = 16 THEN CASE
vomention 1= 'TB'; WHEN v_note >= 1§ THEN v_mention := 'TB';
ELSIF v_note »>= 14 THEN WHEN v_note »>= 14 THEN v_mention := 'B';
v_mention := 'B'; WHEN v_note »>= 12 THEN v_mention := "AB';
ELSIF v_note »>= 12 THEN WHEN v_note >= 10 THEN v_mention := 'BP';
v_mention 1= 'AB'; ELSE vomertion 1= TRY
ELSIF v _note »>= 10 THEN END CASE;
vomention := ‘P’ =
ELSE
vomention o= "R

END IF;

La clause ELSE est optionnelle. Si elle n’est pas présente, PL/SQL ajoute par défaut I'instruc-
fion « ELSE RATSE CASE NOT _FOUND; ». Celle-ci léve I'exception du méme nom quand le
code exécuté passe par cette instruction.

& Editions Eyrolles

[chapitre n° & Bases tu PUSH |

Structures répétitives

Les trois structures répétitives fant gue, répéter et pour utilisent 1'instruction LOOP.. END
LOOP.

Structure tant que

La structure tani gue se programme a 1'aide de la syntaxe suivante. Avant chaque itération (et
notamment avant la premiére), la condition est évaluée. Sielle est vraie, la séquence d’instruc-
tions est exécutée, puis la condition est réévaluée pour un éventuel nouveau passage dans la
boucle. Ce processus continue jusqu’a ce que la condition soit fausse pour passer en séquence
aprés le END LOOP. Quand la condition n'est jamais fausse, on dit que le programme boucle. ..

WHILE condition LOOP
instructions;

END LOOP;

Le tableaun suivant décrit la programmation de deux tant gue. Le premier calcule la somme des
100 premiers entiers. Le second recherche le premier numéro 4 dans une chaine de caractéres.

Tabiesu 6-2Z5 Structures tant que

Condition simple Condition composée

DECLARE DECLARE
v_Somne NUMEER (4) := 0O; v_téléphone CHAR(14) := '06-T76-85-14-89";
v_entier NUMEBEER(3) := 1; v _trouvé BOCLEAN = FALSE;

BEGIN v_indice MIMBER (2) := 1;

WHILE (v_entisy <= 100) LOOP EBEECIN
W_goine = V_aohimetv_entier; WHILE (v_indice <= 14 AND NOT v_oEFeuvE) LOOP

v_entier := v.entier + 1; IF SUBSTE (v téléphone,v_indice,l) = '4' THEN
LOCP ; v_trouvé := TRUE;
DEMS_OUTFUT. FUT _LINE ELSE
{'Somme = " || w_somme); v_indice := v indice + 1;
END; END IF;
END LOOF;
IF v_trouvd THEN
DEMS_OUTPUT. PUT_LINE
{'Trouvé 4 4 1''indice : ' || v indice);
END IF;
END;
Somme =5 050 Trouve 4 4 lindice : 11

Cette structure est la plus puissante carelle permet de programmer aussi un répéter et un pour.
Elle doit étre utilisée quand il est nécessaire de tester une condition avant d’exécuter les
instructions contenues dans la boucle.

@ Editions Eyrolles 293

PUSQL|

294

Structure répéter
La structure répérer se programme i 1'aide de la syntaxe LOOP EXIT suivante :

LOOP

instructicons;

EXIT [WHEN condition;]
END LOOP;

La particularité de cette structure est que la premiére itération est effectuée quelles que soient
les conditions initiales. La condition n’est évaluée qu’en fin de boucle.

Si aucune condition n'est spécifie (WHEN condition absent), la sortie de la boucle est
immédiate dés la fin des instructions.

Si la condition est fausse, la séquence d'instructions est de nouvean exécutée. Ce processus
continue jusqu'a ce que la condition soit vraie pour passer en séquence apres le END LOOP.
Quand la condition n'est jamais fausse, on dit aussi que le programme boucle. ..

Le tablean suivant décrit la programmation de la somme des 100 premiers entiers et de la
recherche du premier numéro 4 dans une chaine de caractéres i I'aide de la structure répéter.

Tableau 6-26 Structures répéler

Condition simple Condition composée
DECLARE DECLARE
V_scie NUMBER (4] := 0; v_téléphone CHAR(14) := '06-T76-85-14-89";
v_entier MUMBER(3) := 1; v_trouveé BOOLELN := FALSE;
BEGIN v_indice NUMBER (2) := 1:
LOOP BEGIN
v_somme = v somme+rv _entier; LOOP
v_entier := v _entier + 1; IF SUBSTR(wv_téléphone,v_indice,1) = '4' THEN
EXIT WHEN v_entisr = 100; w_trouwvé := TRUE;
END LOOP ELSE
DBEMS_OQUTPUT . PUT_LINE v_indiece = v_indice + 1;
('Bomme = ' || v.somme); END IF;
END; EXIT WHEM (v_indice > 14 OR wv_trouvé);
LOOP ;
IF w_trouvé THEN
DEMS_OUTPUT . PUT_LINE
{'Trouvé 4 & 1''indiece : ' || v_ indice);
END IF;
END;

Cette structure doit étre utilisée quand il n’est pas nécessaire de tester la condition avec les
données initiales avant d'exécuter les instructions contenues dans la boucle.

& Editions Eyrolies

[chapitre n° & Bases tu PUSH |

Structure pour

Célebre pour les parcours de vecteurs, tableaux et matrices en tout genre, la structure pour se
caractérise par la connaissance a priori du nombre d'itérations que le programmeur souhaite
faire effectuer 4 son algorithme.

La syntaxe générale de cette structure est la suivante :

FOR compteur IN [REVERSE] valeurInf..valeurfup LOOP
instructions;
END LOOP;

Le nombre d'itérations est calculé dés le premier passage dans la condition et n'est jamals
réévalué par la suite quelles que solent les instructions contenues dans la boucle. Ala premiére
itération le compteur regoit automatiquement la valeur initiale (valeurinf). Aprés chaque passage
le compteur est de fait incrémenté {(ou décrémenté si I'option REVERSE a été choisie). La sortie
de la boucle est automatique aprés 1'itération correspondant & la valeur finale du compteur
{valeurSup). La déclaration de la variable comptenr n’est pas obligatoire,

Il west pas possible de modifier le pas de la variable d'itération dans le corps d'une boucle
FOR. ..LOOP.

Le tableau suivant décrit la programmation de la somme des 100 premiers entiers et de la
recherche du premier numére 4 dans une chaine de caractéres i 1’aide de la structure pour.

Tableau 6-27 Struciures pour

Condition simple Condition composée
DECLARE DECLARE
V_somine NUMEER (4) := 0; v_téléphone CHRR(14) := '06-76-85-14-83';
EEGIN v_trouvé BOOLERN = FALSE;
FOR v_entier IN 1..100 LooPp v_indice NIUMEBEE (2] ;
v_somme := V. sommetdy_entier: v_eompteur NUMBER(2);
END LOOF; BECIN
DEMS _OUTPUT . PUT_LINE FOR v_compteur IN 1..14 LOOP
| 'Somme = ' || w_somme); IF SUBSTR (v_téléphone,v_compteur,1l)= '4' AND
END; ROT wv_trouwé THEN
v_trouwé := TRUE;
v indice :s v_compteur;
END IF;
END LOOF;
IF w_trouvé THEN
DEMS_OUTFUT. FUT_LINE
{'Trouvé 4 & 1''indice : * || w_indice);
HMD IF;
END;

Cette structure convient bien pour le premier exemple car on sait a priori qu'il faut faire
100 itérations. Pour le second, cette structure peut étre utilisée mais est moins efficace car elle
impose de parcourir tous les éléments de la chaine alors qu’on pourrait interrompre le traitement

@ Editions Eyrolles 295

[Parfie PLSOL
dés le numéro trouvé, De plus il est nécessaire de modifier le test dans la boucle de maniére i ne
garder que le premier numéro trouvé (et pas le dernier si le test n'était pas changé).

Boucles avec étiguettes
Comme les blocs de traitements, les boucles peuvent étre étiquetées. L'étiquette est notée par
un identifiant qui apparait aprés 1" instruction de fin de boucle par la syntaxe suivante :
<<gtiguette=>
LOOP
instructions;
END LOOP etiguette;
Ce mécanisme présente les deux avantages suivants :
meilleure lisibilité du code ;
sortie possible de plusieurs boucles imbriquées : de la boucle courante et de celle(s) qui
I'inclut{ent).
L exemple suivant décrit la programmation de la recherche d'un code d'une carte bleue (ici 8595)
en considérant tous les codes possibles (en partant de 0000). Quatre boucles sont imbriquées et on
doit sortir du programme dés que le code est rouvé pour ne pas examiner les autres combinaisons.
Tahlean 6-26 Boucle éBquetée
Déclarations Code PL'SQL
DECLARE BEGIN
wv_carteBleue NUMBER({4) := 8585; w.millisr := 0
v_test NUMEBER(4) := 0000; <<principal=>>
vounité NUMEER (2) ; LOOF
v_dizaine NUMBER (3) ; v_centaine := 0;
v_centaine NUMEER(4); Lage
v_millier NUMBER (5) ; v.dizaine := 0;
LOOE
v_unité = 0;
LOOF
EXIT principal WHEN v_test=v_carteBleue;
EXTT WHEN v unité = 11;
v_test = v_test + 1;
v unité ;= v unité + 1;
END LOOE;
v_dizaine := v dizaine + 10;
EXIT WHEN v_dizaine = 100;
END LOOF;
w_centaine := v centaine + 100;
EXIT WHEN v_centaine = 1000;
END LOOF;
vmillier := wvomillier + 1000;
EXIT WHEN v_millier = 10000;
END LOOP principal;
DEMS. OUTPUT . PUT_LINE
{'le code €¢B eat : " || v_test);
END ;
296 & Editions Eyrolles

[chapitre n° &

Bases du PUSQ |

L'étiquette <<principal>> marque la premiére boucle. La boucle la plus imbrnquée posséde
deux conditions de sortie : la nominale EXTT WEEN... et la sortie forcée EXIT principal

La direciive CONTINUE

La version 11g¢ de PL/SQL propose la directive CONTINUE. Comme pour Java, cette directive,
au sein d'une structure répétitive, interrompt 1’ itération en cours et revient au début de la struc-
fure (& la condition pour un WHILE, 4 I'itération suivante pour un FOR ou & 1'instruction qui suit
le T0OP) pour éventuellement refaire une nouvelle itération {a I'inverse, la directive EXTIT inter-
rompt i la fois I'itération mais aussi la structure répétitive).

La syntaxe revét une forme inconditionnelle et une forme conditionnelle (avec WHEN).

| CONTINUE [etiguette] [WHEN condition];

Dans le bloc PL/SQL suivant, 1a directive conTINUE déroute le programme aprés I'instruction
LOOP.

Tableau §-29 DirecEve CONTINUE

Bloc PL/SQL Résultat
DECLARE
* NIMBER := 0; Dans la boucle, x = 0
BEGIN Dans la boucle, x = 1
LOOP Danz la boucle, x = 2
== On arrive icil aprés CONTINUE Aprés CONTINUE, x = 3
DBMS,_OUTPUT. PUT_LINE Dans la boucle, x = 3
('Dana la boucle,x = '| |TO_CHRR{x)); Aprés CONTINUE, x = 4
® =%+ 1; Danz la boucle, x = 4
IF (% < 3} THEN Aprés CONTINUE, % = 5
CONTINUE; Aprég la structure, x = 5
END IF;
DEMS_OUTPUT. PUT_LINE Procédure PL/SQOL terminde
{‘Aprés CONTINUE,x = '||TO_CHRR(x)); aves succds.
EXIT WHEN (x = 5);
END LOOP;
DEMS_OUTFUT. FUT_LINE
{'Aprds la structure, x = '|| TO_CHAR(x));
END;

!

La forme conditionnelle de |'instruction CONTINUE permet de remplacer une structure IF
condition THEN CONTINUE. Ainsi, en remplagant la structure conditionnelle dans le bloc
précédent par I'instruction « CONTINUE WHEN x < 3; », on obtient le méme résultat.

@ Editions Eyrolles 297

PUSQL|

Si vous utilisez la directive conTmUE dans une boucle ForR manipulant un curseur (étudié au
chapitre 7}, vous fermez automatiquement le curseur.

interactions avec ia hase

298

Cette section décrit les mécanismes offerts par Oracle pour interfacer un programme PL/SQL
avec une base de données.

Extraire des données

La seule instruction capable d’extraire des données i partir d'un programme PL/SQL est
SELECT. Etudiée au chapitre 4 dans un contexte SQL, la particularité de cette instruction au
miveau de PL/SQL est la directive INTO comme le montre la syntaxe suivante :

SELECT liste INTO { nomVariablePLSQL [,nomVariablePLSQL].. |
nomRECORD } FROM nmomTable ..;

La clause INTD est obligatoire et permet de preéciser les noms des variables (PL/SQOL, globales
ou hétes) contenant les valeurs renvoyées par la requéte (une varable par colonne cu une
expression sélectionnée en respectant l'ordre). A contrario, la clause INTO est interdite sous

SQaL.

Le tableau suivant décrit I’ extraction de différentes données dans diverses variables :

Tableau 6~30 Extraction de données

Code PL/SQL Commentaires
VARTABLE ¢_niom CHAR(20) ;
DECLARE
rty pllote PiloteBROWTYEE;
V_compa Pilote.compa%TiFR; Extraction d'un enregistrement entier dans la.
BEGIN variable rty_pilote.
SHLECT * INTO rty pilote
FROM Pilote WHERE brevet='PL-1';
SELECT compa INTO v compa Exfraction de la valeur d'une colonne dans la
FROM Pilote WHERE brewvet='FL-2'; variable v_compa.
SELECT riom INTO :g nom Extraction de la valeur d'une colonne dans la
FROM Pilote WHERE brevet='PL-2'; variable globale g_nom.
END;

& Editions Eyrolles

[chapitre n° & Bases tu PUSH |

Une requéte SELECT ... INTO deit renvoyer un seul enregistrement {conformeément 4 la norme
ANSI du code SQL intégré).

Pour traiter des requétes renvoyant plusieurs enregistrements, il faut utiliser des curseurs
{étudiés au chapitre suvant).

Une requéte qui renvoie plusieurs enregistrements, ou qui n'en renvoie aucun, génére une
erreur PL/SQL en déclenchant des exceptions (respectivement ORA-01422 TCO_MANY_ROWS et

ORA-01403 NO_DATA FOUND). Le raitement des exceptions est détaillé dans le chapitre
suivarnt.

Le tableau ci-aprés décrit I'extraction de différentes données dans diverses variables. La
premiére requéte raméne la liste des codes des compagnies qui ne peuvent pas étre atfectées

dla simple variable v_compa. La deuxidéme requéte n’extrait aucun résultat car aucun pilote
n'a un tel code brevet.

Tabiezu 6-31 Exiractions per SELECT

Erreur TOO_MANY ROWS Erreur NO_DATR_FOUND
DECLARE DECLARE

v _compa Pilete . compa%TYPE; rty _pilote Pilote$ROWTYPE;
BEGIN BEGIN

SELECT compa INTO V_compa SELECT * INTO rty pilote

FROM Pilete; FROM Pilote WHERE brewet = 'SE%!;

END; END;
ORA-01422: l'extraction exacte ORA-01403: Aucune donnée trouvés

raméne plus gque le nombre de
lignes demandds

11 va de soi que les fonctions SQL (mono et multilignes) émudiées au chapitre 4 sont également
disponibles sous PL/SQL i condition de les utiliser au sein d’une instruction SELECT. Deux
exemples sont décrits dans le tableau suivant :

Tahieau 6-32 Utilisation de fenctions

DECLARE VARIARLE g _plusGrandHVol NUMBER;
v _nomEnMATUISCULES Pilote.nom%TYFE; DECLARE
EEGIN BECGIN
SELECT UPPER|nom) SELECT MAX (nbHVel) INTO :§ pluscrandHvel
INTO v_norEnMATUSCULES FROM Filote;
FEOM Pilote WHERE brevet = 'PL-1'; END;
END;

@ Editions Eyrolles 299

PUSQL|

300

Manipuler des données

Les seules instructions disponibles pour manipuler, sous PL/SQL, les éléments d’une base de
données sont les mémes que celles proposées par SQL : INSERT, UPDATE, DELETE ef MERGE.
Pour libérer les verrous au nivean d'un enregistrement (et des tables), il faudra ajouter les
instructions COMMIT ou ROLLBACK (aspects étudiés en fin de chapitre).

Insertions

Le tablean suivant décrit "insertion de différents enregistrements sous plusieurs écritures (il
est aussi possible d'utiliser des variables de substitution) :

Taibleau 533 Insertions d'enregistrements

Code PL/SOL Commentalres

DECLARE
rty pilote FPilote%ROWIYPE; Insertion d'un enregistrement dans la table
v_brevet Pilote . brevet®TYFE; rilote (tfoutes les colonnes sont

EBEGIN renseignées et les valeurs sont figées).

INSERT INTO Pilote VALUES
{('PL-5', 'José Bové', 500, 'AF');

v brovet := ‘PL-6'; Insertion d'un enregistrement en utilisant

INSERT INTO Pilote VALUES (W bBrévet, ure variable (toutes les colonnes sont
'Richard Virengue', 100, ‘AF'}); renseignées).

iy pilote:brevet := 'PL-7'; Insertion d'un enregistrament en utilisant un

rty. pilote. nom 1= 'Serge Miranda'; ROWTYPE &t en spécifiant les colonnes.

rty pilote nbHVel := 1340.90;

ety pilote.compa = 'AF';

INSERT INTC Pilote

(brevet, nom, nkHEVel, compa)

VALUES (rty_ pilote brevet,
rty pilote.nom, rty pilote nbHVol,
réy. pilote .compa) ;

Comme sous SQL, il faut respecter les noms, types et domaines de valeurs des colonnes. De
méme, les contraintes de vérification (CHECK et NOT NULL) et d’intégrité (PRIMARY FKEY et
FOREIGN KEY)doivent étre immédiatement valides (si elles ne sont pas différées).

Dans le cas inverse, une exception qui précise la nature du probléme est levée et peut étre
interceptée dans la section EXCEPTION (voir chapitre suivant). Si une telle partie n'existe pas
dans le bloc de code qui contient I'instruction INSERT, la premiére exception fera s'inter-
rompre le programme.

& Editions Eyrolles

[chapitre n° &

Bases du PUSH |

Modifications

Concernant la mise i jour de colonnes par UPDATE, la clause SET peut &tre ambigué dans le sens
ot I'identificateur 4 gauche de l'opérateur d'affectation est toujours une colonne de base de
données, alors que celui & droite de 1'opérateur peut correspondre i une colonne ou une variable.

UPDATE nomTable
SET nomColonne = { nomVariablePLSQL | expression | nomColonne |
{reguéte) }
{,nomColonneZ = .]
[WHERE ..];

Si aucun enregistrement n'est modifié, aucune erreur ne se produit et aucune exception n'est
levée {contrairement & l'instruction SELECT).

Un curseur implicite permet de savoir combien d'enregistrements ont &té modifiés (voir plus
loin SQL&ROWCOUNT).

Les affectations dans le code PL/SQL utilisent obligatoirement I'opérateur : = tandis que les
comparaisons ou affectations SQL necessitent ['opérateur =.

Le tableau suivant décrit la modification de différents enregistrements (il est aussi possible
d’'employer des variables de substitution).

Tablesu 6-34 Modifications d'enregistrements

Code PLISQL Commentaires
DECLARE
Vo duréeyol NUMBER(3, 1) := 4.8;
BEGIN
UFDATE Pilote Modification d'un enregistrement de la table

SET nbHVel = nbHVol + v durdeVel Pilote en utilisantune variable.
WHERE brewvet=s 'PL-6';

UPDATE Filote Modification de plusieurs enregistrements de la
SET nbHVel=s nbHvel + I table Pilete en utilisant une constante.
WHERE compa = 'AF';

END:
Suppressions

La suppression par DELETE peut &re ambigué (méme raison que pour 1'instruction UPDKTE)
au niveau de la clause WHERE.

DELETE FROM nomTable
WHERE nomColonne =
{ nomVariablePLSQL | expression | nomColonne | (reguéte) }
[;nomColonne? = ..] .

@ Editions Eyrolles 301

PUSQL|

302

- Si aucun enregistrement n'est modifié, aucune erreur ne se produit et aucune exception n'est

levée.
Un curseur implicite permet de savoir combien d'enregistrements ont ét& modifiés.

Le tableau suivant décrit la modification de différents enregistrements (il est aussi possible
d'utiliser des variables de substitution).

Tablean 6-35 Suppressions d'enregistrements

Code PL/SQL Commentaires
DECLARE
v hielMinl MUMBER(4) := 1000; Supprime les enregistrements de la table Pilote
EEGIN dontle nombre d'heures de vol est inférieur &
DELETE FROM Filote 1.000.
WHERE nbHVol = v hVolMind
DELETE FROM FPilote Ne supprime aucun enregistrement de 1a table
WHERE brewvret = '$g#'; Pilote.
END;

Curseurs implicites

PL/SQL utilise un curseur implicite pour chaque opération du LMD de SQL (INSERT, UPDATE
et DELETE). Ce curseur porte le nom S0L et il est exploitable aprés avoir exécuté I'instruction.
La commande qui suit le LMD remplace |'ancien curseur par un nouveau.

1l existe aussi le mécanisme des curseurs explicites (auxquels le programmeur affecte un nom)
qui servent principalement & parcourir un ensemble d'enregistrements. Nous émdierons ce
type de curseurs an chapitre suivant.

Les attributs de curseurs implicites permettent de connaftre un certain nombre d’informations
qui ont £té renvoyées aprés |'instruction du LMD et qui peuvent éire utiles au programmeur.
Ces attributs peuvent étre employés dans une section de traitement ou d’exception. Les princi-
paux attributs sont les suivants :

Tablean 6-35 Atiribuls d'un curseor impliciie

SOLSROWCOUNT Mombre de lignes affectées par la derniére instruction LMD.
SQLEFOUND Booléen valant TRUE si la derniére instruction LMD affecte au moins un enregistrement.

spLaNoTFOUND Booléen valant TRUE si la dernigre instruction LMD n'affecte aucun enregistrement.

Le tableau suivant décrit la suppression de plusieurs données et I'extraction du nombre d’enre-
gistrements supprimés par la commande LMD (ici DELETE).

& Editions Eyrolles

Bases du PUSQ |

Talieau 6-37 Modifications d'enregistrements

Code PLISOL Commentaires
VARIABLE g_pilotesAFDétruits NUMEER Supprime las enregistrements de la table
BEGIN riletede la compagnie ‘AF.

DELETE FROM Pilote WHERE compa = 'AF';

rg_piloteshFDétruits := SOLSROWCOUMT ; Inttialise puis affiche 1a variable giobale g_
END; pilotesaFDérrui ts qui contient le nombre
! d'enreglstrements supprimés.

PRINT g _piloteshFDétruits

Paquetage DBMS OUTPUT

Nous avons vu qu'il était possible d’afficher sous SQL*Plus des résultats calculés par un bloc
PL/SQL avec des variables de session (globales). Une autre possibilité, plus riche, consiste i
utiliser des procédures du paquetage DEMS OUTPUT. Ce paquetage assure la gestion des
entrées/sorties de blocs ou sous-programmes PL/SQL (fonctions et procédures cataloguées,
paguetages ou déclencheurs).

1l existe par ailleurs plus de cent paquetages prédéfinis a certaines tiches. Citons DEMS TOCK pour
gérer des verrous, DBMS RANDOM pour générer des nombres aléatoires, DBMS_ROWID pour manipi-
ler des rowids, DEMS_SQL pour construire statiquement ou dynamiquement des ordres SQL.

Le tableau suivant décrit les procédures du paquetage DEMS_OUTPUT. Au niveau des para-
métres, la directive T désigne un paramétre d’entrée alors que OUT en désigne un en sortie. La
procédure que vous utiliserez le plus est probablement PUT_LINE (équivalent du println
Java) ; elle vous aidera 3 déboguer vos programmes.

Tehiean 6-38 Procédures disponibies de DBMS_OUTPUT

Procédure Explication
ENARBLE (taille tampon IN Activation du paguetage dans la session.
INTEGER DEFAULT 2000)
DISABLE Désactivation du paguetage dans la session.
PUT{ligne IN VARCHARZ | DATE Mise dans le tampon d'un paramétre.
| NUMBER) ;
NEW_LINE({Iigne OUT VARCHARZ, Eeriture du caractére fin de ligne dans le tampon.
gtatut OUT INTEGER)
PUT_LINE(Iigne IN VARCHARZ | PUT plis NEW_LINE.
DATE NUMBER) ;
CET_LINE(Iligna OUT VARCHARZ, Affectation d'une chaine du tampon dans une
gtatut OUT INTEGER) variable.

GET_LINES (tab OUT DEMS_OUTPUT.CHARARR, Affectation de chaines dutampon dans un tableau.
nombreLignes IN OUT INTECGER) ;
CHARRRR table de VARCHRRZ (255)

@ Editions Eyrolles 303

PUSQL|

304

Sans parler de sorties sur I'écran, les procédures PUT et PUT_LINE disposent dans un tampon
des informations qui peuvent étre lues par d’autres bloc, déclencheur, procedure, fonction ou
paquetage par les procédures GET_LINE ou GET_LINES.

Au niveau de I'interface SQL*Plus, le paquetage doit étre activé au préalable dans la session
avec la commande SQL*Plus SET SERVEROUTPUT ON. Une fois exécutée, cette option reste
valable durant toute la session SQL*Plus.

L'appel de toute procédure d'un paquetage se réalise avec I'instrucfion nomPaguetage.
nanProcédure(paramétres). Dans notre exemple, 1"appel de la procédure PUT_LINE
§'écrira donc DEMS_OUTPUT. FUT_LINE(texte).

Gestion des sorties (PUT_LINE)

Le tableau suivant décrit I’ affichage de différentes variables :

Tablean 6-39 AMichage de résulals

Code PL/SQL Commentalres
SET SERVEROUTFUT ON Activation du
DECLARE paguetage sous
w_nhrPil NUMBER; SQLPlus.
BEGIN
DEMS_CUTPUT. ENABLE ; Actheation du
DEMS_OUTPUT. PUT_LINE ('Nous sommes le : ' || SYSDATE); paquetage sous PL/
DEMS_OUTET, PUE LINE ('La racine de 2 = ' || SQRT(2)); SaL.
SELECT COUNT(*) INTO v_nbrPil FROM Pilote; Affichage.
DEMS_OUTEUT. PUT_LINE
("Il vy a " || woobrpil || © pilotea dans la table');
END;
Nous sommes le : 14/07/03 Résuiltats,

La racine de 2 = 1,41421356237309504880168872420969807857
Il v a 4 pilotes danz la table

Procédure PL/SOL terminde awvec succds.

Gestion des entrées (GET_LINE et GET_LINES)

1l est possible d’extraire une ou plusieurs lignes & partir du tampon (buffer). La procédure
GET_LINE permet d’en retirer une seule (de type VARCHAR2 (255)). Cette ligne est la premiére
qui a été mise dans le tampon.

Lexemple suivant illustre un appel de GET_LINE(ligne COUT VARCHARZ, statut OUT
INTEGER). Si'exécution est correcte, le paramétre statut regoit 0. 8'il n'y a plus de lignes
dans le tampon, le paramétre statut regoit 1.

& Editions Eyrolies

[chapitre n° & Bases tu PUSH |
Tehlean 6-30 Utisation de GET_LINE

Code PL'SQL Commentaires

DECLARE
wonbrrPil NUMEER; Deux lignes sont mises
v_ligne VERCHRRZ {255) ; dans le tampon.
w_rézultat TINTEGER; GET_LINE dépile la

EEGIN ligne du tampon.

SELECT COUNT(*) INTO v_nbrPil FROM Pilote;
DEMS_ OUTPUT. PUT_LINE { ' Premidre ligne');

DEMS OUTFUT.PUT_LINE ('I1l v a ' || v_nbrPil || " pilotes');
DEMS_OUTPUT.GET_LINE (v _ligne, wv_résultat);
END;

Résultat dans v_ligne 'Premi#re ligne', v_résultat 0

La procédure GET_LINES(tab OUT DBEMS_OUTPUT.CHARARR, nombrelignes IN OUT
INTEGER) permetd’extraire plusieurs lignes vers le tableau tab. Le deuxiéme paramétre indi-
que le nombre de lignes i retirer. Ces lignes sont les premiéres i y étre mises.

L'exemple suivant illustre un appel de GET_LINES. Ici nous extrayons les trois premiéres
lignes du tampon dans le tableau tab.

Tahieau 6-41 Ulisagon de GET_LINES

Code PLISQL Commentalres

DECLARE
tab DEMS_OUTPUT . CHARARR |
v_resultat INTEGER := 3; Quatre lignes sont
w_nbrPil NUMEER ; mises dans le

BEGIN tampon.

SELECT COUNT(*) INTC v_nbrPil FROM Pilote; GET_LINES dépile
DEMS OUTPUTPUL. LINE | 'Premiére ligne'); trois lignes du
DEMS_OUTPUT.PUT_LINE | 'Deuxiéme ligne'): tampon
DEMS_ OUTPUT.PUT LINE ('Tl ¥ a ' || v.nbrPil || ' pilotes');

DEMS_ OUTPUT. PUT.LINE ('Quatridme ligne');
DEMS_OUTPUT.GET_LIMES (tab, v _resultat);
Résultat tak Pramidre ligne
Deuxiéme 1igne
Il y ad pilotes

@ Editions Eyrolles 305

[Partie N PUSQL|

Transactions

O W O R RN R O (-, (- e W e

Au sens SGBD du terme, une transaction est un bloc d’instructions LMD faisant passer la base
de données d'un état initial (cohérent) & un état imtermédiaire ou final cohérent. Si un
probleme logiciel ou matériel survient au cours d’une transaction, ancune des insiructions de
la transaction n’est réellement effectuée, quel que soit I'endroit de la transaction ol intervient
I'erreur. En invalidant toutes les opérations depuis le début de la transaction, la base retourne i
un état initial cohérent (principe du tout ou rien).

Pour réaliser cela, Oracle dipose de plusieurs mécanismes : le segment d’annulation (undo
segment) qui contient les blocs modifiés mais pas validés, les journaux de transactions (rede
log) qui inscrivent les transactions validées, et le mécanisme de verrouillage qui assure que
deux transactions ne modifient pas la méme donnée sans donner la priorité 41'une ou I'autre.
Le segment dannulation rend possible I'isolation des données au cours de la transaction. Les
langages plus évolués permettent également de programmer des transactions a travers leur API
{ComIT est implémenté dans le paquetage java.sql, par exemple).

Un exemple typique de transaction consiste au transfert d'une somme d'un compte épargne
vers un compte courant. Imaginez qu’aprés une panne (logicielle ou matérielle) votre compte
épargne ait é¢ débité sans que votre compte courant soit crédité du méme montant ! Vous ne
seriez pas trés content des services de votre banque (4 moins que I'erreur ne soit intervenue
dans 1"autre sens !). La réservation d 'une place au théatre ne permet pas non plus que plusieurs
personnes partagent le méme siége (il est vrai que 1'exemple est mal choisi car le surbooking
permet précisément de vendre le méme sigge i plusieurs personnes sachant qu'une seule en
bénéficiera). Le mécanisme transactionnel empéche tout scénario ficheux.

Figure 64 Risque de procédure ficheuse

E}m‘mnétrn.r] TRANSFERT [500€) PAME
S———— | zzan

|-
TEMPS 7 /
" UFDATE Codavd S0UE)

UFDATE Comptedeurant(+500:))

END

Garacieristigues

Une transaction assure les mécanismes ACID.

Atomicité des mstructions qui sont considérées comme une seule opération (principe du
tout ou rien).

Cohérence (passage d’un état de la base cohérent & un autre état cohérent).

306 & Editions Eyrolies

[chapitre n° &

Bases du PUSH |

Isolation des transactions entre elles (lecture consistante).

Durabilité (les transactions attendent tant que nécessaire pour assurer la cohérence de
I’ensemble).

' Une extraction (SELECT) génére un verrou partage (S) sur tout ou partie de la table. Si une

écriture (UPDATE ou MERGE) concerne cette partie de table, un verrou exlusif (X) est posé, et il
sera impossible d'obtenir le verrou (S) tant que la modification n'est pas validée. S'il s'agissait
d'une autre lecture, la requéte initiale pourra s'exécuter. Lidée de base est qu'une lecture ne
doit pas en bloguer une autre, mais qu'une écriture peut bloguer une autre écriture (ou lecture),
et gu'une lecture peut bloguer une écriture.

Déhut et fin d'une transaction

Il existe deux modes de gestion des transactions depuis |a version SQL:1988 de la norme.

Le mode implicite dans lequel la connexion 4 la base démarre une transaction que I'on doit
finaliser par une validation ou annulation {COMMIT ou ROLLEACK) et qui redémarre une nou-
velle transacticn aprés finalisation.

Le mode explicite qui implique de spécifier quand démarre la transaction (éventuellement
avec BEGIN) et quand l'arréter (avec COMMIT oU RO LLBACK).

Toute transaction se termine en échec a la fin anormale d'une session (ﬁarc,ée ou anomalie
logicielle ou matériells).

Oracle ne fonctionne pas nativement en mode aufocommil, ¢’ est-a-dire que chaque instruction
SQL du LMD doit étre explicitement validée sinon elle risque d’étre perdue.

Tout ordre SQL du Data Definition Language (CREATE, ALTER, DROP, COMMENT, RENAME,
TRUNCATE, SRANT et EEVOKE) génére une fin normale de la transaction en cours. En d'autres
termes, si vous avez modifié des données et que vous décidez de créer une table, vos mises &
jour seront validées.

Si vous désirez maitriser votre code et vous prémunir des incohérences dues & des accés
concurrents, vous devez programmer vos transactions explicitement & 'aide des primitives
décrites au tableau 6-42. 8i vous voulez monitorer de longues transactions, il est préférable de
les nommer.

@ Editions Eyrolles 307

FUAIL|

308

Tahiean 6-32 mstructions de gestion des ransacBons
Instructions Commentaires

SET TRANSACTION NAME ' transaction nom'; Débutde latransaction (nommée ou pas).
[BEGIN]

COMMIT [WORKE]; Termine avee succds |a transaction (validation).
Lib&ration des verrous.

ROLLEACKE [WORK] Termine avec échec |a transaction (invalidation).
Libération des verrous.

SAVEPOINT nom_savepoint; Déclare un point de validation au cours de la
transaction.

ROLLEACK TO nom savepoink; Imvalide les instructions réalisées depuis le peint
de validation.

Gontrdle des transaclions

I est intéressant de pouvoir découper une transaction en insérant des points de validation
(savepoints) qui permettent d”annuler tout ou partie de la transaction. La figure 6-5 illustre une
transaction découpée en trois parties. L’ annulation centrale permettra d’invalider les modifica-
tions (UPDRTE et DELETE) tout en laissant la possibilité de valider 1’ instruction TNSERT (si un
COMMTT suit).

Figure 6-5 Points de validation

Foint validation 1
UPDATE.
UPOATE..

Point validation 2
DELETE ..

Fin Transaction

Niveaux d'isolation

La concurrence des accés aux données induit des problémes inévitables. Prises isolément et
exécutées les unes aprés les autres, un ensemble de transactions modifiant des données en
commun ne générera aucune incohérence. Le probléme est que cet ensemble de transactions
est susceptible de s’exécuter simultanément. La mise en place d'un niveau d’isolation pour

& Editions Eyrolles

[chapitre n° & Bases tu PUSH |

chaque transaction permet de gérer au mieux cet état de fait. Chaque niveau permet de résou-
dre un type d’anomalie. Trois types d"anomalies classiques sont recensés :

1a lecture sale de données (dirry reads) qui se produit lorsqu'une transaction accéde i des
données qui sont modifiées par une autre transaction et qui n’ont pas été encore validées ;

la lecture non répétable de données (non repeatable reads) qui se produit quand deux
lectures successives d'une méme donnée au sein d'une transaction ne génére pas le méme
résultat parce qu'une autre transaction a modifi€ les données déja lues entre temps ;

Ia lecture de domnnées fantdmes (phantom reads) qui intervient lorsque de nouvelles
données apparaissent au cours de lectures successives (insertion de données effectuées par
une autre transaction).

11 est possible de changer de niveau d'isolation en cours de traitement, ¥ compris pendant la
transaction, mais cela ne constitue pas généralement une bonne pratique. Selon le mode
choisi, vous disposerez des fonctionnalités suivantes.

Tableau 6-13 Types de iransactions (norme SOU

Niveau d'isolation Lectures sales Lectures non répétables Lectures fantdmes
RERD URCOMMITTED Possible Possible Paossible

RERD COMMITTED Impossible Possible Possible
REFEATABLE READ Impossible Impossible Possible
SERIALIZABLE Impossible Impossible Impossible

L'exemple suivant correspond i la réservation de places pour un vol entre Toulouse et Paris.
Supposons qu'il reste 50 places et que deux transactions tentent de réserver simultanément
7 places pour |'une et 15 places pour | autre. L'état idéal serait que ces deux transactions lais-
sent au final 28 places disponibles pour le vol...

Flgure 6-6 Modification concurrente

T vols
wvol_mum wol_datevel vel_h_dep wvol_h_are vol_places libres aer_dep aer_arr
AF6148 12-12-28 18:15:88 19:45:89 5@ TLS ORY

La mise en place du niveau de tfransactiion s’opére au mniveau par l'imstruction SET
TRANSACTTON suivante :

@ Editions Eyrolles 309

PUSQL|

310

SET TRANSACTION [READ ONLY | READ WRITE]
[ISOLATION LEVEL [SERIALIZE | READ COMMITED]
[USE ROLILBACE SEGMENT 'segment_nom']
[NAME 'transaction_nom'];:

- Le niveau d'isolation s'applique a la transaction concernée et vous ne devez pas raisonner par

rapport aux autres transactions (dont vous ne pouvez maitriser le mode). Oracle ne fournit que
les niveaux READ COMMITTED et SERIALIZABLE (le mode le plus fort).

Par défaut, le mode READ COMMITTED est adopte il est le plus polyvalent et répond a la plu-
part des cas. Dans les deux modes, chague requéte ne verra gue des données validées (par
les autres transactions) avant la requéte (et pas avant la transaction).

Le niveau READ COMMITTED repose sur un contréle plutdt « optimiste » de la concurrence
alors que le mode SERTALIZABLE est davantage « pessimiste » du fait qu'aucune modifica-
fion, par une transaction extérieure, n'est possible sur des données mises & jour par latransac-
tion et depuis son début ('erreur détectée est ORR-08177: impossible de sérialiser
1'acces pour cette transaction).Ce dernier mode implémente lillusion pour une tran-
saction gu'aucune autre session ne modifie les données. Le mode SERIALIZABLE convient
aux transactions courtes modifiant peu de lignes et ol les modifications concurrentes sont
rares.

Il va de sol que, quel que scit le made, chaque requéte voit ses propres modifications méme si
la validation n'est pas encore réalisée. Par ailleurs, la béte noire des deux modes sont les
modifications concurrentes (surtout en mode SERIALIZABLE).

Enfin, un mode en lecture seule est également fournit (READ ONLY) ;il équivaut 4 SERTALIZA-
ELE qui n'opére aucune modification.

Au niveau d'une session, il est également prévu de définir le niveau d'isolation qui concernera
toutes les transactions qui s'y déroulent (ALTER SESSION SET ISOLATION_LEVEL ...

Lecture fantime

La figure 6-7 présente une lecture fantéme. La transaction | compte le nombre de vols d'un
passager et, dans 1'intervalle, la transaction 2 ajoute un vol au passager en question. Quand la
transaction | débute avant la transaction 2 et se prolonge dans le temps, le nouveau vol peut
apparaitre au cours du traitement ce qui ne refletait pas Iétat de la base au début de la transac-
tion de lecture.

Ense plagant au niveau d’isolation READ COMMITTED, cette lecture fantbme apparait. Le mode
SERIALIZABLE évitera ce comportement,

& Editions Eyrolies

[chapitre n° &

Bases du PUSH |

Figure 6-7 Lecture non consistants entre deux transactions en action

T_wols
vol_mum val datevel wal_h den vel_h_srr Ber_dep awer_are
AFE180 2012-12-28 18:15:99 s oy
MFE184 2812-12-38 19:55:9 ns L¥s

T_passagers_pax
val_mm val datevel eli rode pax prix
f ____________________________________
AF6180 2913-12-18 Droussd 220.68 by 3
AFE180 2012-12-28 Sewquét 192.68
_lar-c\u 912-1228 Srovard 230.68 = ey
i

D’autres niveaux d'isolation

Pourquoi faut-il sérialiser les transactions au lieu d autoriser un mode entrelacé 7 En s’ inspi-
rant de 'exemple de Jim Gray (chercheur au sein de Microsoft et récompensé du prix Turing
en 1998), imaginons deux transactions : I'une changeant les pilotes en avions et I'autre les
avions en pilotes.

Flgure 6-8 Lectures de clichés

Transaction 1
UPDATE P->R Transaction 2
A->P
L"—\-\-.q. T_volants
wol_nom vol typ
F-HCGA A
Brouard [
Bruchex P
F-HPPM A
Soutou ®

En mode SERTALIZABLE, I'exécution revient 4 exécuter 1'une, puis 1" autre indifférement. Ala
fin, le monde ne sera peuplé que de pilotes seuls ou d’avions seuls (tout le monde reste au sol
donc). En mode snapshot (proposé avec SQL Server), il est possible que les mises i jour soient
opérees simultanément. En conséquence, les pilotes sont devenus des avions et inversement
(les voyages peuvent reprendre en théorie; c'est ¢a le pur optimisme). Le mode
SERTALIZAELE permet de garder les pieds sur terre mais peut induire (comme le mode READ
covMTTED d'ailleurs) une étreinte fatale (deadlock) dés lors qu'une transaction doit attendre
indéfiniment que 1" autre ne reliche ses verrous (entrelacement des modifications).

Le probléme du verron mortel {deadlock)

Le phénoméne de deadlock, aussi appelg « étreinte fatale » se produit lorsque deux transac-
tions qui ont posé des verrous sur des objets distincts tentent d’acquérir un nouvean Verrou sur

@ Editions Eyrolles 311

[Parfie PLSOL
un objet déja verrouillé par 1" autre transaction. En plus du fait que les verrous mortels nécessi-
tent d’étre gérés comme des exceptions, ils sont gourmands en ressources CPU.

Le tableau 6-44 illustre deux transactions en interblocage (et ce, quel que soit le niveau
d'isolation). En supposant que la transaction 1 (f1) démarre avant la transaction 2 (¢2), le vol
AF6140 est d’abord verrouillé par #f jusqu'a la validation, ce qui n'empéche pas le
verrouillage du vol AF6144 par 12. Par la suite, 1] pose un verrou sur le vol AF6144 qui sera
reldché a la fin de £2, qui a posé un verrou sur le vol AF6140 qui sera quant a Iui reliché 2 la
fin de #1. Tout le monde attend ainsi 1" antre.
Tabtean 6-44 Transactions en imesrblocage
Transaction 1 Transaction 2
BEGIN BEGIN
UPCATE T_wvols UPDATE T_vols
SET wol_places_libressvel _places libres-17 SET vol_places_libressvol_places libres-15
WHERE vol_num = '"AFRl40 WHERE wol_num = '"AF6144°
AND wol_datewvel = TO_DATE("20121228", 2ND wvol_datewol = TO_DATE('20121228',
"YYY¥MMOD') ; VEYYEMMDD') ;
-- pendant ce temps, d'autres réservations
arrivent DEMS_LOCK.SLEEP(10); DEMS_LOCK.SLEEP (10 ;
UPDATE T_vols TUPDATE T_wvols

SET vol places libressvel places libres-4 SET vol places libres=svol _places libres-5

WHERE vol_num

'RFEL44 WHERE wol_num = 'AF&l40rC

AND wol_datevel = TO DATE('20121228', ARD wol_datewvol = TO_DATE('20121228',

'YYYYMMDD') ; 'YYYYMMED') ;

312

Quand un tel phénoméne est identifié, il est mis fin i la transaction la moins cofiteuse en
ressources (équivaut 4 ROLLBACK). Le message ORA-00060: détection d'interblocage
pendant l'attente d'une ressource est retourné au client malheureux tandis que
1"autre transaction continue.

Adoptez les regles suivantes pour limiter les risques de verrous mortels :
normalisez correctement le modéle de données et soignez l'indexation des tables ;

réduisez la durée de votre code en limitant les entrées-sorties, extrayant les données (peut-
étre en utilisant des tableaux associatifs) en un minimum de lecture, en verrouillant au plus
tard et libérant les verrous au plus 16t ;

limitez |'escalade potentielle de verrous en gérant manuellement des werrous si cela est
approprié.

& Editions Eyrolies

[chapitre n° & Bases tu PUSH |

Verrouillage manuel

La gestion manuelle des verrous est possible mais plus complexe i metire en ceuvre et & main-
tenir. Elle peut poser plus de problémes qu'elle n’en résoud.
Le momniteur de verrouillage peut faire de 1'escalade afin de minimiser les ressources

(passer d'un verrou de ligne 4 un verrou de page ou de table, par exemple, lorsque différen-
tes lignes sont mises 4 jour dans une méme transaction).

Le verrouillage manuel implique que le verrou devient statique, ce qui peut se révéler
inadéquat en tonction de la charge (modification de la volumétrie ou de la concurrence) ou
d’éventuelles modifications de la structure logique ou physique des données (création
d’index, par exemple).

Oracle ne garantit pas I'application du verrou posé dans certaines circonstances.

Le fait de verrouiller manuellement ne permet pas de profiter des éventuelles évolutions et
peut s'avérer non portable d'une version i 1'autre.

Pour effectuer un verrouillage manuel, une premiére possibilité utilise LOCK TAELE qui
prévient des accés concurrents au niveau de la table (ou des tables associées sila commande
concerne une vue). Une autre possibilité, plus fine, consiste i verrouiller seulement une partie
des lignes avec 1'option FOR UPDATE de la commande SELECT (voir au chapitre 7 un exemple
avec les curseurs). Ces verrous seront libérés i la fin de la transaction (suite i un COMMIT,
ROLLEACK ou une interruption involontaire).

Si vous désirez verrouiller une table, vous disposez des options suivantes.

IOCK TABLE [schema.] (table | wvue}
IN {ROW SHARE | SHARE UPDATE | ROW EXCLUSIVE |SHARE SHARE |
SHARE ROW EMCLUSIVE | EXCLUSIVE } MODE
[HARIT | WALIT secondes);

SHARE UPDATE (synonyme de ROW SHARE, ancienne dénomination) autorise les accés
concurrents mais interdit aux autres transactions de verrouiller exclusivement.

ROW EXCLUSIVE se comporte comme SHARE UPDATE en interdisant également le
verroulllage partagé (ce sont ces types de verrous qui se posent automatiquement lors de
mises 4 jour SQL).
SHARE SHARE auterise les lectures concurrentes mais interdit les mises a jour de la table.
SHARE ROW EXCLUSIVE autorise les lectures concurrentes mais interdit le verrouillage
partagé ou la mise i jour.
EXCLUSIVE ne permet que les lectures concurrentes.
L'interblocage présenté précédemment serait résolu, par exemple, en disposant au début de
chaque transaction :

soit un verrouillage au niveau de la table LOCK TABLE T vols IN SHARE ROW
EXCLUSIVE MODE WATIT 5 ;

@ Editions Eyrolles 313

PUSQL|

314

soit un verrouillage an niveau ligne par SELECT.. INTO .. FROM T wvols WHERE wvol
num=... AND vol_datevol=. FOR UPDATE OF vol_places_libres WAIT 5ensélec-
tionnant en préventif le deuxidéme vol & mettre i jour.

Transactions imbriguees

1l est possible de programmer plusieurs transactions se déroulant dans des blocs imbriqués
comme I'illustre la figure 6-9. Les mécanismes d’atomicité, de cohérence, d'isolation et de
durabilité seront également respectés.

Figure 6-9 Transactions imbriquées

BEGIN
al
BEGIN

EEGIN

Transaction 3 __—" Transaction 2.~ R

. / “/—/—*—-——_ END;

END; |

-

Du placer les fransactions ?

Lidée de manipuler des transactions depuis un code client (VB, Delphi, Java, C++...) est
séduisante mais peut entrainer un blocage du serveur du fait d"une non-libération des verrous
(si le client perd la connexion sans validation ou invalidation). Un autre probléme concerne les
entrées-sorties qui peuvent devenir également bloquantes. La logique transactionnelle doit
donc se trouver au plus prés du serveur et gui mieux que les procédures cataloguées (voir
chapitre 7) peuvent implémenter les transactions ?

Il est aussi possible d utiliser des objets métier dédiés (EJB, par exemple, dans une architec-
ture J2EE), mais ces derniers posent & nouveau des problématiques de round-rrips (latence du
fait du réseaun séparant les objets du serveur) pendant lequels les tables peuvent étre bloquées.
D'une maniére analogue, 'utilisation massive des ORM peut étre trés nocive d’un point de
vue transactionnel du fait de 'empilement des couches logicielles qui masquent ou empéchent
d'utiliser les fonctionnalités natives du SGBD qui ont fait leurs preuves depuis de nombreuses
années. Si les ORM font gagner du temps lors du développement, le bénéfice en termes de
performances n'est pas souvent équivalent.

& Editions Eyrolles

Bases du PUSQ |

Exercices

O T, O (L W - O Y) N

L’objectif de ces exercices est d’écrire des blocs PL/SQL puis des transactions PL/SQL mani-
pulant des tables du schéma Pare Informatigue.

Exercice LA

Tableaux et structures de controle

Ecrivez le bloc PL/SQL qui programme la fusion de deux tableaux (défa triés par ordre croissant) en un
seul (utiliser des structures WHILE...). Il faudra afficher ce nouveau tableau (utiliser une structure
FOR...) ainsi gque le nombre d'éléments de ce dernier.

Figure 6-10 Fusion de deux tableaux

tab compFrance
i France ir Littoral agiona

tab compMonde
[ALITALIA — [Quantas ISJ\B.E-NA |

Nombre df@léments =

tab résultat
if France ir Littoral uantas agiona -

6.2

Bloc PL/SQL et variables %TYPE
Ecrivez le bloc PL/SQL qui affiche, a l'alde du paquetage DEMS_OUTPUT, les détails de la derniére
installation sous la forme suivante :

Derniére installation en salle : numérodeSalle

Pozte : numérodePoste Logiciel : nomduLogiciel en date du dateInstalla-
tion

Vous utiliserez les directives $TY PE pour extraire directement les types des colonnes et pour améliorer
ainsi la maintenance du bloc.

Ne tanez pas compte, pour la moment, dee errelre gqul pourraient éventusllament se produire (aucune
installation de logiclel, poste ou logiciel non références dans la base, ete.).

6.3

@ Editions Eyrolles

Variables de substitution et globales

Ecrivez le bloc PL/SQL qui saisit un numéro de salle et un type de poste, et qui retourne un message
indiquant les mombres de postes et dlinstallations de logiciels correspondantes sous la farme
suivante :

Numéro de Salle : numérodeSalle

Type de poste : typedePoste

315

PUSQL|

G_NBFOSTE

nombredeFostes

G_NBINSTALL

nombred'installations

Vous utiliserez des variables de substitution pour la salsie et des variables globales pour les résultats.
Vous exécuterez le bloc & l'aide de la commande start et non pas par copler-coller (4 cause des
ordres RCCEPT). Ne tenez pas compte pour le moment d'éventuelles erreurs (aucun poste trouvé ou
aucune installation réalisée, etc.).

316

6.4

Transaction

Ecrivez une transaction permettant d'insérer un nouveau logiciel dans la base aprés avoir saisl toutes
ses caractéristigues (numére, nom, version et type du logiciel). La date d'achat doit &tre celle du jour.
Tracer avec PUT_LINE ['insertion du logiciel {message Logiciel inséré dans la base).

Il faut ensulte procéder & linstallation de ce logiciel sur le poste de numéro "p7” (utiliser une variable
pour pouveir plus faclement modifier ce paramétre). Linstallation doit se faire 4 la date du jour.
Pensez & actualiser correcternent la colonne delai qui mesure le délal (INTERWVAL) entre 'achat et
l'installation. Pour ne pas que ce délai soit nul (les deux insertions s& font dans la méme seconde dans
cette transaction), placer une attente de 5 secondes entre les insertions avec l'instruction DEMS_
LOCH. SLEEP(5) ;. Utiliser la fonction NUMTOD S INTERVAL pour calculer ce délal. Tracer avec PUT_
LINE linsertion de linstallation.

La trace suivante donne un exemple de ce que wous devez produire (les champs en gras sont ceux
saisis) :

S0L> START exo3plsgl

HNuméro de logiciel : logls

Nom du logiciel : Oracle Web Agent

Version du logiciel : 15.5

Typa du logiciel : Unix

Prix du logiciel (en euros) : 1500 TGS 05 S SaeeniesaeE niveal
Logicial inséré dans la base

Dates achat : 17-07-2003 13:48:08

Date installation : 17-07-2003 13:48:13
Logiriel installé sur le poste

Procédure PL/SQL terminée avec succes.

Vérifiez I'élat des tables mises 4 jour aprés la transaction. Ne tenez pas compte pour le moment
déventuelles erreurs {numéro du logiciel déja référence, type du logiciel Incorrect, installation déja
réalisée, etc.).

& Editions Eyrolies

Ghapitre 1
Programmation avancee

Sous-programimes

B E O W S M M M NN N M NN S NN A M N NN A SR NE NN M NN S B SN NN S NN SN NN e MM G M A M N M A M N M M M W

Les sous-programmes sont des blocs PL/SQL nommeés et capables d’inclure des paramétres en
entrée et en sortie. Il existe deux types de sous-programmes PL/SQL qui sont les procédures et
les fonctions. Comme dans tous les langages de programmation, les procédures réalisent des
actions alors que les fonctions retournent un unique résultat. Seule la procédure peut avoir
plusieurs paramétres en sortie.

Les sous-programmes sont en général écrits en PL/SQL (ce chapitre leur est consacré), mais
ils peuvent étre codés en Java (voir chapitre 11) ouen C.

Généralites
Dans Ie vocabulaire des bases de données, on appelle les sous-programmes « fonctions » ou
« procédures cataloguées » (ou stockées), car ils sont compilés et résident dans la base de

données. Il est possible de retrouver leur code au niveau du dictionnaire des données. Le sous-
programme peut Etre ainsi partageé dans un contexte multi-utilisateur.

Lors d'un appel d'une fonction ou d'une procédure, le noyan recompile le programme si un
objet cité dans le code a ét¢ modifié (ajout d’une colonne dans une table, modification de la
taille d'une colonne...) et le charge en mémoire.

Les avantages des sous-programmes catalogués sont nombreux :

sécurité : les droits d"acceés ne portent plus sur des objets (table, vue, variable...) mais sur
des programmes stockés. Ces droits sont délégués ((RANT EXBIUTE ON NOMPROCEDURE
TO UTILISATEUR);

intégrité : les traitements dépendants sont exécutés dans le méme bloc (ransactions) ;
performance : réduction du nombre d'appels a la base (utilisation d*un programme partagg) ;

productivité : simplicité de la maintenance des programmes (modularité, extensibilité,
réutilisabilité) notamment par 'utilisation de paquetages.

@ Editions Eyrolles 317

PUSQL|

318

Comme les blocs PL/SQL, nous verrons que les sous-programmes ont une partie de déclara-
tion des variables, une autre contenant les instructions et éventuellement une dernigre pour
gérer les exceptions (erreurs produites durant I'exécution).

Une procédure, comme une fonction, peut étre appelée 4 1'aide de I'interface de commande
SQL*Plus {commande EXECUTE) ou par I"intermédiaire d"un outil d’Oracle (Forms par exem-
ple), dans un programme externe (Java, C...), par d’autres procédures ou tonctions ou dans le
corps d'un déclencheur. Les fonctions peuvent étre appelées dans une instruction SQL
(SELECT, INSERT, et UPDATE).

Le cycle de vie d'un sous-programme est le suivant : création de la procédure ou fonction
(compilation et stockage dans la base), appels et éventuellement suppression du sous-
programme de la base. Il est & noter qu'un sous-programme se recompile automatiquement
dés que la structure d’un objet qu'il manipule est modifiée (tables, vues, séquences, index...).
Dans certains cas de dépendances indirectes, il est prévu de pouvoir recompiler manuellement
un sous-programme (ALTER PROCEDURE | FUNCTION .., COMPILE).

Procédures cataloguées

La syntaxe de création d'une procédure cataloguée est la suivante. Pour créer une procédure
dans son propre schéma, le privilége CREATE PROCEDURE est requis (inclus dans le rile
RESOURCE). Pour créer une procédure dans un auotre schéma, il faut posséder le privilége
CEEATE ANY PROCEDURE.

CREATE [OR REPLACE] PROCEDURE [schéma.|nomProcédure
[{paramétre [IN | OUT | IN OUT] [NOCOPY] typesSQL
[{:= | DEFAULT} expression]
[,paramétre [IN | OUT | IN OUT] [NOCOFY] typesSOL
[{:= | DEFAULT} expression]..}]]
[AUTHID { CURRENT USER | DEFINER }]
{ Is | a8 }
[ERAGMA AUTONOMOUS TRANSACTION;)
{ corpsduSousProgrammePL/S0L | LANGUAGE {
JAVA NAME ‘nomMéthodedava' |
C [NAME nomSourced] LIBRARY nomlLibrairie [AGENT IN (parametre))
[WITH CONTEXT] [PARAMETERS (paramétres)] } };

IN désigne un paramétre d’entrée, cut un paramétre de sortie et in out un paramétre
d'entrée et de sortie. Il est possible d'initialiser chague paramétre par une valeur.

NOCOFY permet de transmettre directement le paramétre. On 1'utilise pour améliorer les
performances lors du passage de volumineux paramétres de sortie comme les record,
les tables index-by (les paramétres 1 sont toujours passés en NOCOPY).

& Editions Eyrolies

[chapitre n° 7

Proprammation svancés |

@ Editions Eyrolles

La clause AUTHID détermine si la procédure s'exécute avec les priviléges de son proprié-
taire (option par défaut, on parle de definer-rights procedure) ou de I'utilisateur courant
{on parle de imvoker-rights procedure).

PRAGMA AJTOMOMOUS TRANSACTION déclare le sous-programme en tant que transaction
autonome (lancée par une autre transaction dite « principale »). Les transactions autono-
mes permettent de metire en suspens la transaction principale puis de reprendre la transac-
tion principale (voir la figure suivante).

Figure 7-1 Transaction aulonome

Transachon principale (TFP) Transaction aulonome (TA)

FPROCEDURE procl I8 FREOCEDURE proci I8
wemp_id uUHEER, PRAGR AUTOM. . .

BERIN dept_id WHBER y
enp_id = 7783 BEGTH — - Suspension TP
nusEmr +—Début TP dept_id = 20
SELECT UPBATE L Debut TA
prac?, * IUTERT
DELETE = UPDATE -

CoMpIT | ————— Fin TP conmry, |_Fin TA

e i — Reprisa TP

corpsduSousProgrammePL/SQL contient la déclaration et les instructions de la procé-
dure, toutes deux écrites en PL/SQL.

JAVA NAME ‘nomMéthodeJava', désignation de la méthode Java correspondante (voir
chapitre 11).

€ [MAME nomSourceC]..., désignation du programme C correspondant (voir chapitre 8).

Fonctlions cataloguées

La syntaxe de création d'une fonction cataloguée est CREATE FUNCTION. Les prérogatives et
les options sont les mémes que pour les procédures.

CREATE [OR REPLACE | FUNCTION |[schéma.|nomFonction
[{paramétre [IN | OUT | IN OUT] [MCCOPY] typesSQL

[{:= | DEFAULT} expression]
[,paramétre [IN | OUT | IN OUT] [NOCOPY] typeSQL
[{:= | DEFAULT} expressionl..)]]

RETURN typesS0OL
[AUI‘HID{[EPII\ERICIM‘P_USHR}]
(15 | 25}

319

[Partie N PUSQL|

{ corpsdufousProgrammePL /S0L |
LANGUAGE {
JAVA NAME 'nomMéthodedava' |
C [NAME nomSourceC] LIERARY nomLibrairie [MGENT IN (paramétre)]
[WITH CONTEXT)] [PARBMETERS (paramétres)] } };

corpsduSousProgrammePl /S0 contient la déclaration et les instructions de la fonction
(il doit se trouver une instruction RETURN dans le code), toutes deux écrites en PL/SQL.

Codage d’'un sous-programme PL/30L

Dans une procédure, comme dans une fonction, il n'existe pas de section DECLARE ; les
déclarations des variables, curseurs et exceptions suivent directement I'en-téte du programme
{aprés la directive IS ou AS). Nous verrons aussi qu’il est possible de définir un sous-
programme dans la section de déclaration d'un autre sous-programme. La figure suivante
illustre la structure d'une spécification et d'un corps d un sous-programme PL/SQL.

Le bloc d'instructions doit contenir au moins une instruction PL/SQL (si vous désirez ne pas
en détinir une utilisez 1'instruction KULL;).

Figure 7-2 Siructure d'un sous-programme

I's PROCEDURE | FUMCTION nc

fous -programmas looaux | u

BEGIR

P gk
Tostrirct lona F;

Exemnies

Considérons la table Pilote. Nous allons écrire les sous-programmes suivants :

la fonction EffectifaHeure (comp,heures) retourne le nombre de pilotes d’une
compagnie donnée (premier paramétre) qui ont plus d’heures de vol que la valeur du
deuxiéme paramétre (si aucun pilote, retourne (). Si aucune compagnie n'est passée en

320 & Editions Eyrolles

[chapitre n® 7 Proprammation avancée

paramétre (mettre NULL), le calcul inclut toutes les compagnies. Les éventuelles erreurs ne
sont pas encore traitées (compagnie de code inexistant par exemple).

La procédure PlusBEspérimenté (comp, nom, heures) retourne le nom et le nombre
d’heures de vol du pilote (par I'intermédiaire des deuxiéme et troisiéme paramétres) le
plus expérimenté d'une compagnie donnée (premier paramétre). Si plusieurs pilotes ont la
méme expérience, un message d’erreur est affiché. Si ancune compagnie n'est passée en
paramétre (mettre NULL), la procédure retourne le nom du plus expérimenté et le code de
sa compagnie (par I'intermédiaire du premier parametre).

Flgure 7-3 Fonction et procédure

function procedure

Bf fectifsHeure (comp, heutrses) ; | PlusBExpérimentdé (comp, nom, heures);

L

(‘AP , "@illes Laborde’, 2450}

(*AF', 300] " (AF*,]

Pilote

bravet om nb#Vol | somp

[PL-1 Gilles Laborde 2450 | AF e

:; PL-2 Frédéric D'Almeyda | 900 AF

PL-3 Florence Pdrigsel 1000 SING
PL-4 Thierry Millan 2450 | CAST

PL-5 Christine Rayo 200 AF

PL-6 Aurélia Enta 2450 SING

La création de la fonction est réalisée i 1'aide du script suivant (Ef fecti feHeure. sgl).

Notez les deux paramétres d’entrée définis par la directive TN et la clause RETURN en fin de
codage.

CREATE OR REPLACE FUNCTION
EffectifsHeure (pcomp IN VARCHARZ, pheuresVol IN NUMEER) RETURN
MIMBER.
18
résultat NUMEER := 0;
EBEGIN
IF (pcomp IS NULL) THEN
SELFECT COUNT(*) INTO resultat FROM Pilote
WHERE nbHVol > pheuresVol ;
ELSE
SELECT COUNT(*) INTO résultat FROM Pilote
WHERE nbHVol > pheuresVol

@ Editions Eyrolles 321

[Parie FUAIL|

AND COompr = Poomp:
END IF;
RETURN résultat;
END EffectifsHeure ;

La création de la procédure est réalisée i 1'aide du script swivant (PlusExpérimenté&. sgl).
Notez les deux derniers paramétres de sortie définis par la directive OUT et le premier servant
d’entrée ou de sortie avec la directive 11 OUT.
CREATE OR REPIACE PROCEDURE PlusExpérimenté
(pcomp IN OUT VARCHMRZ, prnomPil OUT VARCHAR2?, pheuresVol OUT NUM-
EER)
15
pl NUMBER;
BEGIN
IF {pcomp IS NULL) THEN
SELECT COUNT(*) INTO pl FROM Pilote
VHERE nbHVol = (SELECT MAX (nBHVol) FROM Pilote);
ELSE
SEIECT COUNT(*) INTO pl FROM Pilote
WHERE nbHVol = (SELECT MAX (nbHVol) FROM Pilote WHERE comp = pconp)
AND comp = PComp;
END IF;
IF pl = 0 THEN
DEMS_OUTPUT. PUT_LITHNE('2Auncun pilote n''est le plus experimenté');
ELSIF pl > 1 THEN
DEMS_OQUTPUT. PUT_LINE ('Plusieurs pilotes sont les plus
expérimentés') ;
ELSE
IF (pcomp IS NULL) THEN
SELECT nom, nkHVol, comp INTO pnomPil, pheuresVol, pcomp
FROM Pilote
WHEEE nkHWol = (SELECT MAX{rnbHVol) FROM Pilcote);
ELSE
SELFCT nom, nbHVol INTO pnomPil, pheuresVol FROM Pilote
WHERE nbHVol = {SELECT MAX{nbHVol) FROM Pilote WHERE comp =
poomp |
AND comp = poomp;
END. IF;
END IF;
END PlusExpérimenté ;

322 & Editions Eyrolies

[chapitre n° 7

Programmation avancés

Gompilation

Pour compiler ces sous-programmes & partir de I'interface SQL*Plus, il faut rajouter le
symbole / en premiére colonne aprés chaque dernier END. Si le message suivant apparait,
Avertissement : Fonction/Procédure créée avee erreurs de compilation, deux
techniques peuvent étre utilisées pour visualiser les erreurs de compilation :

faire SHOW ERRORS sous SQL*Plus ;

interroger la vue USER_ERFORS (SELECT LINE, POSITION, TEXT FROM USER ERRORS
WHERE NAME='nomFonction'nomProcédure’ ;).

Une fois que le message Fonction/Procédure créée. apparail, le sous-programme est
carrectement compilé et stocké en base.

Appels

Le propriétaire d'un sous-programme peut exécuter ce dernier i la demande et sans aucune
condition préalable. Pour exécuter un sous-programme d'un autre schéma les conditions
suivantes doivent étre respectées :
détenir le privilege EXECUTE sur le sous-programme en question ou EXECUTE ANY
PROCEDURE :
mentionner le nom du schéma contenant le sous-programme & 1"appel de ce dernier (exem-
ple de I'appel de la procédure AugmenteCapacité du schéma jean pour 'avion d'imma-
triculation 'F-GLFS' Jean.AugmenteCapacitd('F-GLFS') ;).

Décrivons 'appel d'un sous-programme sous !'interface de commande SQL*Plus, dans un
programme PL/SQL et dans une instruction SQL. Les chapitres suivants décriront comment
coder un tel appel dans un programme externe (Java et C).

Sous SQL*Plus

En phase de tests, il est intéressant de pouvoir appeler un sous-programme directement dans
I'interface de commande. La commande EXECUTE permet d’appeler une procédure ou une
fonction (qui peut aussi &tre appelée dans une instruction SQL, ici un SELECT).

Le tablean suivant décrit 'appel et le résultat des deux sous-programmes.

@ Editions Eyrolles 323

324

PLISOL
Tabieau 11 Appels sous SQL*Fins
‘Procédure Fonction
VARTABLE ¢_colip VARCHARZ(4) ; VARIAPLE ¢_comp VARCHARZ (4] ;

VARIABLE g_nom VARCHARZ (16) ;
VARIABLE g_heuresVol HUMEER;
BEGIN

g _comp = "AF';
END;
/!
EXECUTE PlusExpérimenté (:g comp,
g hom, :g heuresVol) ;

VARIABLE g_heuresVol NUMBER;
VARIABLE g_résultat NIMBER;
BEGIN

g Comp r= 'AF';

g heuresVol:= 300
END;
/
EXECUTE :g _résultat :=
EffectifasHeurs(:d_comp, :d heurssaVol);

SQL> PRINT g_nom;
G NOM

Gilles Laborde

SQL> PRINT g _heuregVol ;

SQL> PRINT :g _réaultat;
G_RESULTAT

SQL> SELECT comp, EffectifsHeure|comp,300)
FROM Pilote GROUF BY cofp;

E:"HE_:L_HEES_“_’?E COMP EFFECTIFSHEURE (COMP, 200)
2450 - 5
CAST 1
SING 2
Dans un programme PL/SQL

Nous appelons les deux sous-programmes 4 présent dans un bloc PL/SQL. Le méme principe
peut &tre adopté pour 1" appel dans un sous-programme PL/SQL ou dans un déclencheur.

Tabiesn 7-2 Appeis dans un bloc PU/SQ

Procédure Fonction
SET SERVEROUT ON SET SERVEROUT "ON
DECLARE DECLARE
V_eomp VARCTHARZ (4) := 'AF'; v_Conp VARCHARZ(4) := 'AF';
v_nom VARCHARZ (16) ; v_heureaVel NUMBER(7,2) := 300;
v_heuresVol NUMBER(T, 2): v_résultat NIUMBER;
EEGIN BEGTIN
PlusExpériments (v_comp, v_résultat
v_nom, v_heluresVol); Ef factifsHeure |v_comp, v _heuresVol) ;
DEMS_OUTFUT . PUT_LINE DEMS_OUTEUT . FUT_LINE('Four AF et
{'Nom, heures de wol ' || v_nom || 300h résultat "] vorésultat);
"o || v heurssvel); END;
END; !
/

Nom, heures de wol Gilles Laborde

2450 Pour AF et 300h résultat : 2

Procédure PL/SQL terminde aver succés, Procédure PL/SQL terminéde avec

succeés,

& Editions Eyrolles

[chapitre n® 7 Proprammation avancée

Types d’appel

L'appel d'un sous-programme peut étre positionnel, nommé ou mixte (qui combine les deux précé-

dentes approches). Le tableau suivantdécrit ces trois notations pour Iappel de la procédure :
Tablesu 7-3 Différents appels d'une procédure

Type d'appel Code PLISGL

Pogitionnal rluaBwpérimenté(v_comp, v.nom, v haurasisl);

Mommé PlusExpérimenté{pnomPil = v_nom, rheuresVol = v_heuresVol, poomp = v.comp)i

Mixie rlusExpérimenté (v_comp, pheurssVol = v heureaVol, pnomPil =+ v.nom | ;

Pour tous les appels mixtes, il faut que les notations positionnelles précédent les notations
nommées.

A propos des parametres

Le passage par valeur d'un paramétre se réalise par la directive TN On peut assimiler le
passage d'un paramétre par référence & l'utilisation de la directive TN oUT. La directive
NOCOPY restreint le champ d’un paramétre comme le montre I'exemple suivant.

Dans cet exemple, les deuxidme et troisiéme paramétres (n2 et n3) passent en référence. Seul
n3 est déclaré. MOCOPY et son affectation & la valeur 30 dans la procédure répercutent la modi-
fication en local de ol et n2, (4 30). Cependant n2 retrouve sa valeur affectée auparavant (20)
au retour de I"appel du fait du caractére NOCOPY de n3.

Tabieau 7-4 Passape par valeur el par réiérence

Code PLSQL Commentaires
DECLARE

n NUMBER := 10;
BECIN

changeEtAfficheain, n, nl;

DEMS_OUTFUT . FUT_LINE (n) ; Affiche 20.
END;

!

CREARTE PROCEDURE changeEtRffiche
(nl IN NUMBER,rnZ2 IN OUT NUMEER, n3 IN OUT NOCOPY NUMEER) IS

BEGIN
neg =203
DEMS_OUTPUT.PUT_LINE (nl); Affiche 10.
nd := 30;
DEMS_OUTFUT. FUT_LINE (nl); Affiche 30.
END;
10 Résultat obtenu.
30
20

Procédure PL/SQL terminde avec succés.

@ Editions Eyrolles 325

PUSQL|

326

Recursivité

La récursivité est permise dans PL/SQL. Comme dans tout programme récursif, il ne fant pas
oublier 1a condition de terminaison ! L'exemple suivant décrit la programmation 4 1" aide d'une
fonction récursive du calcul de la factorielle d'un entier positif. Nous appelons cette fonction,
ici, dans un SELECT.

Tabiesn 7-5 Récorsivité

Code PL/SQL Commentaires

CREATE FUNCTICN factorielle(n FOSITIVE) RETURN INTEGER IS

BEGIN Condition de

IF n = 1 THEN terminaison.
RETUERN 1;
ELSE Appel récursif.
RETURN n * factorielle(n - 1);

END IF;

END factorialle;

!

SQL> SELECT factorielle(30) "Factorielle 30" FROM DUAL; Appel de la fonction.

Factorielle 30

2,6525E+32

Sous-programmes imbhAgues

Il est possible de créer un sous-programme (nested subprogram) dans la partie déclarative
d'un autre sous-programme. C'est aussi valable pour les blocs PL/SQL dont la section
DECLARE peut inclure un sous-programme. Ces sous-programmes imbrigqués n’ont d'existence
que le temps de I'exécution du sous-programme qui 1"inclut. Les sous-programmes imbrigués
doivent étre les derniers éléments de la section déclarative. Il n’est pas possible de déclarer,
derriére un nested subprogram, une variable, un curseur ou une exception.

Le tableau suivant décrit 1a déclaration et 1’ appel du sous-programme imbriqué Mouchard
dans la procédure PlusExpérimenté. Ce sous-programme insére une ligne dans une table
pour tracer 1'appel de la procédure en fonction de 1"utilisateur et du moment de I'exécution.
Dans le cas o plusieurs sous-programmes imbriqués s’ appellent entre eux, il est possible de
définir des références avant (forward dectaration) pour éviter de respecter un ordre i la décla-
ration et pour se prémunir de tout probléme de cohérence.

& Editions Eyrolles

[chapitre n® 7 Proprammation svancée

Tableau 1-6 Sous-programme imbriges

Code PLISQL Commentaires
CREATE OR REPLACE FROCEDURE PlusExpérimenté Déclaration du sous-
{peomp IN OUT VARCHARZ, programme.

priomFil OUT VARCHARZ,
pheuresVel OUT NUMBER)

is
pl NUMBER;
FROCEDURE Mouchard IS Déclaration du sous-
BEGIN programme imbrigué.
INSERT INTO Trace VALUES (USER ||
' a laneé PlusExpérimenté le ' | |SYSDATE) ;
END Mouchard;
BEGIN Début du sous-programine,
Mouchard; Appel du sous-programme

b imbrigué.
END PlusExpérimenté;

11 suffit de noter la signature des sous-programmes (nom et paramétres) avant de les redéfinir
au niveau du codage. Le code suivant décrit un exemple de la procédure KGE qui appelle
Mouchard et qui est toutefois définie avant :

Tableau 7-1 Référence svam d'un SOus-programme

Code PLISAL Commentaires
DECLARE Signature (référence avant).
PROCEDURE Mouchard;
PROCEDUEE KGE IS Déclaration de la procédure Ko,
BEGIN
Mouchard;
END KGB;
PROCEDURE Moucha¥d IS Déclaration de la procédure
EEGIN Mouchard
INSERT INTC Trace VALUES
(USER || ' a lancé le Bloc ' || SYSDATE);
END Mouchard;
BEGIN Codage du bloc.
KGE;
END;
/

@ Editions Eyrolles 327

PUSQL|

Recompilation d'un sous-programme

Oracle recompile automatiquement un sous-programme quand un objet qui en dépend directe-
ment (table, vue, synonyme, séquence, etc.) a €€ modifié dans sa structure. Les dépendances
peuvent aussi étre indirectes (exemple de modification de la structure d'une table qui définit
une vue utilisée dans un sous-programme). En ce cas, il peut émre nécessaire de recompiler
manuellement chaque sous-programme potentiellement affecté.

La recompilation manuelle d’un sous-programme s’exécute par la commande ALTER. Pour
pouvoir recompiler un sous-programme d'un autre schéma, vous devez détenir le privilege
ALTER ANY PROCEDURE. Les syntaxes suivantes permettent de recompiler manuellement une
procédure et une fonction :

ALTER PROCELURE nomProcédure COMPILE;
ALTER FUNCTION nomFonction COMPILE;

Destruction d'un sous-programme

La syntaxe de suppression d’un sous-programme est la suivante. Pour supprimer une procé-
dure ou une fonction dans un autre schéma, le privilége DROP ANY PROCEDURE est requis.

DROP PROCEDURE |[scheéma. |nomProcedure;
DROP FUNCTION [schéma.lnomFonction;

Il ne faut pas utiliser cette commande pour enlever une procédure ou une fonction d'un paque-
tage (notion abordée a la section suivante). Pour cela, nous verrons qu'il faudra redéfinir la
spécification et le corps du nouveau paguetage en utilisant la directive OR. REPLACE.

Patuetages (packages)

328

Un paquetage (package) est un composant qui regroupe plusieurs objets (variables, excep-
tions, curseurs, fonctions, procédures, etc.) formant un ensemble de services homogénes.
est parce qu'un paquetage permet d'utiliser des objets publics ou privés qu’il s'apparente au
concept de classe en programmation objet. L’ avantage principal d'un paquetage est qu’il faci-
lite la maintenance de I’application (modularité, extensibilité, réutilisabilité).

Genéralites

La figure suivante illustre les deux parties d'un paquetage. La spécification contient les signatures
des sous-programmes, la déclaration de variables, curseurs, d’exceptions, etc. L’ implémentation (le

corps) contient le code des sous-programmes. Ici, la procédure pl n'est pas définie dans la spécifi-
cafion et seuls les sous programmes du paquetage pourront y faire référence (ici p2 et £1).

& Editions Eyrolles

[chapitre n® 7 Proprammation avancée

Figure 7-4 Structure dun paquetage

CEELTE PACEAGE nomPaguerage AR
PROCEDURE p2i...0;
FUMCTION C10.--) RETURN . ..:
Vardzbles
Excapitlons .
. Fublic
BMB [ionPaclisbage] : Spécification

CEENTE PACEAGE BODY pomPaguertage 2E
PROZCEDURE pid...) I8
EEGIN

END Pl
warPrive HUMBEER; Prive

PROCELURE pl2d...bk T2
EBEGIN

END od;
OTIOH f1(...! RETURN ... IS
1IN

ERD £1;) .
END [romesquarage]; bnplémenation

Spécification
Pour créer un paquetage dans son propre schéma, il faut détenir le privilége CREATE PROCEDURE.
Pour pouvoir créer un paquetage dans un autre schéma, le privilége CREATE ANY PROCEDURE
doit étre requis. La syntaxe simplifiée de la déclaration de la spécification d'un paquetage
(CREATE PACKAGE) est la suivante :
CREATE [OR REPIACE] PACKAGE nomPaguetage
[AUTHID {CURRENT USER | DEFINER}] {15 | As}
[déclarationTyvpeRECORD.] [déclaraticonSUBTYFE ..]
[déclarationCONSTANT ..] [déclarat1onEXCEPTION ..]
[déclarationRECORD ..] [déclarationVariable ..]
{declarationCURSOR ..] [declarationFonction ..]
[déclarationProcédure ..]
| END [nomPaguetage];

Créons la spécification du paguetage GestienPilotes qui inclut trois objets publics : la
fonction EffectifsHeure, la procédure PlusExpérimenté et la variable résultat.
CREATE PACKAGE GestionPilotes AS
résultat NUMEER := 0;
FUNCTION EffectifsHeure({pcomp IN VARCHARZ, pheuresVol IN NUMBER})

@ Editions Eyrolles 329

[Parfie PLSOL
EETUEN NIMEER;
PROCEDURE PlusExpérimenté(pocomp IN OUT VARCHARZ,
ponomPil OUT VARCHARZ, pheuresVol
OUT NUMBER) ;
END GestionPilotes ;
/
Comnpilation
Pour compiler la spécification, comme 1'implémentation du paguetage, & partir de 'interface
SOQL *Plus, il faut procéder comme pour un sous-programme. En cas d’erreurs, il faut exécuter
SHOW ERRORS sous SQL*Plus ou interroger la vue USER_ERRCRS. Une fois que les messages
Package créépuis Corps de package crééapparaissent, le paquetage est opérationnel.
Implémentation
Pour mplémenter un paguetage, il faut détenir le privilége (REATE PROCEDURE. Pour créer un
paquetage dans un autre schéma, le privilege CREATE ANY PRCCEDURE doit étre requis. La syntaxe
simplifiée de I'implémentation d'un paquetage (CREATE PACKAGE BODY) estla sulvante :
CREATE [OR REPLACE] PACKAGE BODY nomPaguetage (IS | as}
[définition cbjets privés]
[définition sous-programmes privés)
[definition procedures publiques]
[définition fonctions publigques]
END [nomPaguetage];
Créons le corps du paquetage GestionPilotes en codant la fonction EffectifsHeure et la
procédure PlusExpérimenté :
CREATE PACKAGE BODY GestionPilotes AS
FUMNCTION EffectifsHeure (pocomp IN VARCHARZ, pheuresVol IN NUMEER)
RETUERN NUMBEE IS
BEGIN
IF (pcomp IS NULL} THEN
SELECT COUNT{(*)} INTO resultat FROM Pilote WHERE nbHVol >
pheuresVol ;
ELSE
SELECT COUNT (*) INTO résultat FROM Pilote
WHERE nbHVol > pheuresVol AND comp = poomp;
END IF;
RETURN résultat;
END EffectifsHeure;
330 & Editions Eyrolies

[chapitre n° 7

Programmation avancés

FROCEDURE PlusExpérimenté(pocomp IN OUT VARCHARZ, pnomPil OUT
VARCHARZ , pheuresVol OUT NIMEER) IS

BEGIN

«~Volr section préceédente

D PlusExperimente;

END GesticnPilotss ;
!

Appel

L'accés 4 un sous-programme sp d'un paquetage paq s'écrit pag. sp. L'appel de ce sous-
programme suit les mémes régles que celles étudiées dans les sections précédentes (procédures
et fonctions cataloguées). Les prérogatives d’exécution d" un sous-programme d’un paquetage
sont identiques i celles des sous-programmes classiques.

L'appel de la procédure PlusExpérimenté du paquetage GestiomPilotes sera codé
GestionPilotes.FlusExpérimenté(...) dans un programme PL/SQL, et la fonction
EffectifsHeure seracodée GestionPilotes.EffectifsHeured{...).

Surcharge

11 est possible de surcharger une fonction ou une méthode d’un paquetage. Les deux sous-
programmes doivent avoir le méme nom mais différents paramétres. La spécification du
paquetage liste tous les sous-programmes et contient un codage différent pour chacun.

Recompilation

Pour recompiler la spécification ou le corps d'un paquetage, il faut utiliser I'option OR
REPLACE de la commande CREATE PACKAGE aprés avoir modifié une des deux parties (ou les
deux) et réexécuté I'une ou Iautre partie du paquetage.

Destruction d'un paguetage
La syntaxe de suppression de la spécification et du corps d'un paquetage est la suivante : pour
supprimer une partie d'un paguetage d'un autre schéma, le privilége DROP ANY PROCEDURE
est requis.

DROP PACEAGE BODY [schéma.)nomPaguetage;

DROP PACEAGE |[schéma. lnomPaguetage;

@ Editions Eyrolles 331

PUSQL|

Comment retourner une tahle ?

1 est intéressant d'utiliser une fonction au sein d'un paquetage pour retourner tout ou partie
d'une table. La fonction retournera un tableau, le pagquetage contiendra la description du tableau
et la déclaration de la table. La méthode la plus appropriée, depuis la version 10g, est celle du
butk collect qui permet d’extraire sous la forme d'une collection un grand volume de données.
Le tableau suivant décrit d'une part la déclaration et le codage du paquetage contenant la fone-
tion qui retourne les pilotes d’une compagnie dont le code passe en paramétre, et d’autre part,
I"appel de la fonction et le résultat obtenu sous la forme d'un tableau (dont on extrait seule-
ment la colonne nom). Le jeu d’essai est dans le script en téléchargement.

Tabieau 7-8 Comment relourner une lahie 2

Description et codage du paquetage Appel de la fonction
CRERTE PACKAGE PKG_Pilotes IS
TYFE Pilote_tytab DECLARE

IS TABLE OF PiloteXROWTYPE
INDEX BY BINRRY INTEGER;
FUNCTION f_pilotes compagnie
{v_comp IN VARCHARZ)
EETUEN Pilote tytab;
END PEE_Filotes;
!

CREATE PACKAGE BODY PKG_Fillotes IS
FUNMCTION £ _pilotes compagnie
(v_comp IN VARCHARZ)
RETURN Pilote_tytab
Is
taly Pilote tytab;
EEGIN
SELECT * BULE COLLECT
INTO tabk FROM Pilote
WHERE compas=v_comp;
RETURN tab;
END;
END PEG_Filotes;
/!

tab_sortie PHG_FPilotes.Pilote _tytab;
nb_pil NUMBER ;
i NUMBER ;
EEGIN
tab sortie 1=
rEG_Pilotes . f_pilotes cowpagnie('nF');
nb pil := tab_sortie.COUNT;
FOR i IN 1..nb pil LOOP
DEMS_OUTPUT.PUT_LINE(tab sortie(i).nom);
END LOOP;
END;
f
Henri Alguid
Pierre Lamothe
Didier Linxe

Procédure PFL/SQL terminde avec succos.

Gurseurs

332

Au chapitre précédent nous avons parlé des curseurs implicites, ici nous allons étudier les
curseurs explicites (que les programmeurs appellent cursewrs tout simplement). Ils sont trés utili-
sés, pour ne pas dire qu'ils sont présents, dans toute procédure d'une application importante. Le
concept analogue au niveau de JDBC est programmé 4 I'aide de la classe Resultset, et sous
ASP de Microsoft, & 1'aide de la classe RecordSet (appelée Dataset avec .Net).

& Editions Eyrolles

[chapitre n® 7 Proprammation svancée

Geneéralités
Un curseur est une zone mémoire qui permet de traiter individuellement chaque ligne
renvoyée par un SELECT. Un programme PL/SQL peut travailler avec plusieurs curseurs

en méme temps. Un curseur, durant son existence (de 1'ouverture i la fermeture), contient en
permanence 1'adresse de la ligne courante.

La figure suivante illustre la manipulation de base d'un curseur. Le curseur est décrit dans la
partie déclarative. Il est ouvert dans le code du programme, il s’évalue alors et va se chargeren
extrayant les données de la base. Le programme peut parcourir tout le curseur en récupérant
les lignes une par une dans une variable locale. Le curseur est ensuite fermé.

Flgure 7-5 Principes dun cwrseur

PROCEDURE | FUNCTION nomfousProgramme [(...)] IS
Var...
CURSOR zone IS SELECT brevet, nbhVol, comp

FROM Pileote WHERE comp = “AF’

A Curseur
v 2450 AF
OPEN zone; 800 AF
PETCH zone INTO varg 200 AF

END
! var [P [2450 | aF |

Il existe plusieurs maniéres de parcourir un curseur, comme il existe plusieurs types de
curseurs i parcourir. Nous allons aborder toutes ces notions par difficulté croissante.

Instructions

Les instructions propres aux curseurs sont définies dans le tableau page suivante.

@ Editions Eyrolles 333

[Parfie PLSOL
Teblean 1-9 instructions pour les cursears
Instruction Commentaires et exemples
CURSOR nomCurseur IS Déclaration du curseur.
requéte; CURSOR zonel IS SELECT brevet, nbHVel, comp
FROM Pilote WHERE comp = 'AF';
OPEN nomCurseur; Ouverture du curseur (chargement des fignes). Aucune exception
n'est levée si la requéte ne raméne aucune ligne.
OPEN zonel;
FETCH nomCurseur INTO Pasitionnement sur la igne suivante et chargement de
listeVariables | I'enregistrement courant dans une ou plusieurs variables.
nomRECORD ; FETCE zonel INTO varl,var2,vard;
CLOSE nomCurseur; Ferme le curseur. Lexception INVALID_CURSOR e déclenche si des
accés au curseur sont opérés aprés sa fermeture.
CLOBE :zonel;
nomCurs eurtI SOPEN Retourne TRUE si le curseur est ouvert, FALSE sinon.
IF zonel%ISOPEN THEN ..
nomcurs eur$NOTFOUND Retourne TRUE si le dernier FETCH n'a pas renvoyé de ligne {fin de
curseur).
EXIT WHEN =zcnel$NOTROUND;
nomCureeurtFOUND Retourne TRUE si le dernier FETCH a renvoyé une ligne.
WHILE (zonel%FOUMD) LOOP
nomcurs eur$ROWCOUNT Retourne le nombre total de lignes traitées Jusqu'a présent (pointeur
absolu).
Parcours d'un curseur
Suivant le traitement & effectuer sur le curseur i parcourir, vous pouvez choisir d'utiliser une
structure répétitive fant que, répéter ou pour. Emdions dans un premier temps les deux
premuéres solutions. Le paragraphe suivant traitera de la derniére (structure FOR).
Le tableau ci-aprés présente le parcours d'un curseur i 1'aide des deux techmiques (fanf gue et
répéter). Ici, 1l s"agit de faire la somme des heures de vol des pilotes de la compagnie de code
‘AF.
Avant la premiére extraction, nomCurseuriNOTFOUND revoie toujours NULL. Si l'instruction
FETCH ne parvient jamais a s'exécuter correctement, la boucle répéter devient infinie. Il est
conseillé de programmer la sortie d'une structure rdpéter a l'aide de la condition composée :
EXIT WHEN nomCurseuriNOTFOUND OR nomCurseur%NOTFOUND IS NULL.
334 & Editions Eyrolles

[chapitre n° 7

Programmation avancés

Tablieau 7-10 Parcours d'un cursewr

Tant que Répéter
DECLARE
CURSBOR zonel I8 SELECT brevet, nbHVoal, comp
FROM Pilgte WHERE comp = 'AF';

varl Pilote.brevetTYPE;

varZ rilote.nbHEVol$TYPE;

wvar3 Pilote.compsTYIE;

totalHeures NUMBER := 0;

BEGIN BEGIN
OFEN zonel; OFEN zonel;
FETCH zonel INTO varl,var?,vard: LOOP
WHILE (zonelftFOUND) LOOP FETCH zonel INTO varl,vard,vard;
totalHeures :m totalHeures + vari; EXIT WHEN =cneliNOTFOUND;
FETCH =zonel INTO varl,varZ,wvard; totalHeures :» totalHeures + warl;
END LOOF: END LOOE;
CLOSE zonel @ CLOSE zonel;

Utilisation de structures (%:ROWTYPD

Accés par la notation pointée

11 est possible de définir un enregistrement en fonction de la liste des colonnes d’un curseur.
Cela évite de déclarer autant de variables que de colonnes contenues dans le curseur. L'accés
aux valeurs des colonnes se fait par la notation pointée comme 1'illustre I'exemple suivant qui
affiche le nom des pilotes n'appartenant pas i la compagnie de code 'AF,

Tahlesu 7-11 Wiilisadion d'une variable siructurée

Code PLISOL Commentalres
DECLARE Déclaration de la
CURSOR zonel? IS SELECT brevet, nom structune.

FROM Pilote WHERE NOT (comp='AF'};
enrey zoneZtROWIYPE;

BEGIN Chargement de la
OFEN zoned; striscture.

FETCH zone? INTO enreq;
WHILE (zone2%FOUND) LOOP

DEMS QUTPUT. FUT_LINE('nom : ' || enreg.nom || Acchs aux éléments de la
"' || enreg.brever || ').'): structure.
FETCH zone2 INTY enreg ;
END LOOP;
CLOZE zonel;
END;
!
nom : Florence Périssel (PL-13) Résultat.

nom : Thierry Millan (PL-4)
nom : Aurélia Ente (PL-6)

Procédure PL/S0OL terminée avec succés.

@ Editions Eyrolles 335

FUAIL|

336

Utilisation de la clause RETURN
La clause RETURN permet de préciser le type de retour d'un curseur. Il est intéressant de
combiner 'utilisation de cette clause avec une structure de données SROWTYPE si le curseur est
défini dans Ia spécification d'un paquetage. L'avantage de cette technique est de pouvoir
recompiler le corps sans avoir 4 modifier la spécification.
Le tableau suivant décrit une spécification de curseur qui peut étre implémentée de différentes
maniéres dans le temps :

Tahieau 7-12 Curseur définl avec RETURN

Code PL/SQL Commentaires

CREATE PACEAGE paguet_curseur AS
CURSOR. zonel RETURN PiloteiHOWTYPE; Spédfication du curseur.
END paguet curseur;

CREATE PACKAGE BODY paquet curseur AS
/CURSOR zoned RETURN Filote$ROWTYPE IS Implémentation du curseur.
SELECT * FROM Pilote WHERE comp = "AF';

END pagquet_curseur;

CREATE OR REPLACE PACKAGE BODY paquet_curseur AS ; ;
CURSOR zoné3d RETURN Pilote%ROWTYPE 1S Autre implémentation du curseur.
SELECT * FROM Pilote WHERE nbhvel > 500;

END paguet_curseur;

Boucle FOR (gestion semi-automatigue)

Lutilisation d'une bouck FOR de curseur facilite la programmation (évite les directives OPEN,
FETCH et CLOSE). La bouck sariéee d'elle-méme i la fin de 'extraction de la derniére ligne du
curseur. De plus, la varable de réception du curseur est aussi automabquement déclarée
(RROWTYPE du curseur). Ll accés aux valeurs des colonnes se fait é galement par la notation pointée.
Les lignes suivantes affichent le nom des pilotes qui n’appartiennent pas & la compagnie de
code 'AF' en utilisant une boucle FOR :

Tablean 7-13 Uilisaton d'une boucke FOR

Code PL/SQL Commentaires

DECLARE Déclaration du curseur.

CURSOR zonel IS SELECT brevet, nom
FROM Pilote WHERE NOT (comp='AF');

BEGIN
FOR enreg IN zoned LOOP ftération dans le curseur.
DEMS_OUTEUT. FUT_LINE('nom : ' || enreg.nom ||
't || enreg.brewvet || ').');
END;

!

& Editions Eyrolles

[chapitre n® 7 Proprammation svancés |

Pour ceux qui ne veulent pas perdre de temps & déclarer le curseur, Oracle oftre la possibilité
de le manipuler tout en le déclarant & I'inténeur de 1'instruction FOR. Ici, il ne sera pas possible
de réutiliser le curseur puisqu’il n’a d'existence que dans la boucle. Il ne sera pas possible non
plus d'utiliser des paramétres de curseur. Le code suivant réalise la méme action que le bloc
précédent, en utilisant un curseur temporaire :

Tahleau 7-14 Gurseur temporaire

Code PLSQL Commentaires
BEGIN Itération dans un curseur
FOR enreg IN temporaire.

(SELECT brewvet, nom FROM Pilote WHERE
NOT' (comp = ‘AF')) LOOP
DEMS_OQUTPUT. FUT_LINE|'nom : ' || enreg.nem || °
(' || enreg.brevet || ').');
END LOOP;
END;
f

Utilisation de tableaux (type TABLE)

11 est possible d’utiliser des tableaux PL/SQL (étudiés au chapitre précédent) pour récupérer
tout ou partie du contenu d’un curseur. Ceci est bien siir valable pour les curseurs qui renvoient
un nombre raisonnable de lignes.

Le bloc suivant décrit le chargement du tableau tab_nomPilote & partir des noms de tous les
pilotes de la compagnie de code 'AF ', et I'acces direct au deuxiéme élément du tablean.

Yableau 7-15 Ulfiisation de tableau

Code PLISOL Commentaires

DECLARE Déclaration du tableau.
TYFE nomFilotes tytab I8 TABLE OF
Pilote.nom$TYPE INDEX BY BINARY_ INTECGER;
tab nomPilote nomPilotes tytab
CURSOR zened IS SELECT brevet, nom
FROM Filote WHERE comp = 'AF';
i NUMBER := 1;

BEGIN

FOR enreg IN zoned LOOP
tab _nomPilote(i) := enreg.nom; Chargement du tableau.
i:=1i+1;

END LIO0P;

DEMS_CUTPUT.PUT_LINE('Z2éme pilote : ' ||

tab nomPilote{2)); Accés au deuxigme
END; élément.
!
Zéme pilote : Frédéric D'Almevda Résultat du bloc.

Procédure PL/SQL terminde avec succés.

@ Editions Eyrolles 337

[Parfie PLSOL
Utilisation de LIMIT et BULK COLLECT
Les options LIMIT et BULK COLLECT de I'instruction FETCH permettent de traiter de grands
volumes de données sans pour autant pénaliser la mémoire centrale ou le cache par le fait de
ne pas monter toutes les lignes d'une table en une fois. Ainsi, afin de retourner tout ou partie
d’'une table d'une potentielle grande volumétrie, la méthode la plus appropriée consiste i utili-
ser un tableau PL/SQL qu’on chargera dans une boucle en limitant le nombre d’enregistre-
ment tout en parcourant toute 1a table.
Le tableau swivant décrit une bonne et une mauvaise maniére de faire cette extraction. Le jeu
d'essai est dans le script en téléchargement.
Dans la procédure correcte, par défaut, 100 enregistrements pilotes au plus sont dans le
tableau, et pour chaque itération du curseur on réalise une boucle du nombre réel de pilotes
chargés dans le tableau. Supposons qu'il existe 2 343 pilotes, la boucle du curseur s’exécu-
tera 24 fois, et i sa derniére itération, la boucle interne sera effectuée 43 fois.
Dans la procédure incorrecte, par défaut, 100 enregistrements pilotes au plus sont dans le
tableau, mais si moins de 100 pilotes (ou le nombre indiqué dans la variable 1imite) sont
chargés dans le tableau, la boucle du curseur s’interrompt (EXIT WHEN pilotes_
cur%NOTFOUND). Pour les 2 343 pilotes, la boucle du curseur ne s’exécutera que 23 fois,
donc les 43 derniers pilotes ne seront pas traités.
Tahicau 7-16 Exemple de parcours d'une tabie o'on grand volume
La bonne maniére La mauvaise maniére
CEEATE PROCEDURE p_traite_all_rows CREATE FROCEDURE p_traite bug rows
(limite IN PLS_INTEGER DEFAULT 100) {limite IN PLS_INTESER DEFAULT 100)
15 1s
CURSOR pilotes_cur IS CURSOR pilotes_cur IS
SELECT * FROM Pilote; SELECT * FROM Filote;
TYPE Pilote_tytab IZ TYPE Pilote tytab IS
TABLE OF FiloteiROWTYPE TRAELE OF Filote%ROWTYPE
INDEY BY BINARY TNTECER; INDEX BY BINARY_ INTECER;
tab pilote Pilote tytab; talb pilote Pilote tytab;
EEGIN BEGIN
OPEN pilotes cur; OPEN pilotes cur;
LoOP LooP
FETCH piletes cur FETCH pilotes_eur
BULE COLLECT BULK COLLECT INTO tab pilote
INTO tab pilete LIMIT limite; LIMIT limite;
FOR 1 IN 1 .. tab_pilote.COUNT EXIT WHEN pilotes cur§NOTFOUND ;
LOOP FOR 1 IN 1 .. tab_pilote.COUNT
-- traitement de chagque 1igne LOOP
END LOOP; == trajtement de chague ligne
EXIT WHEN tab_pilote.COUNT < limite; END LOOP;
END LOOF; END LOOF;
CLOSE pilotes cur; CLOSE piletes_cur;
END p_traite all rows; END p_traite bug rows;
£
338 & Editions Eyrolles

[chapitre n° 7

Programmation avancés

Si vous chargez un tableau 4 l'aide de BULK COLLECT dans vos instructions FETCH, mefiez-
vous des directives $NOTFOUND et $FOUND dans les structures EXIT et WHILE. Préférez la
méthode COUNT pour tester la taille réelle du tableau chargé par le curseur.

Paramelres t'un curseur

Un curseur peut posséder des paramétres d’entrée. Cette technique est trés utile lorsqu’un
méme curseur doit étre utilisé plusieurs fois sous des critéres différents. Il faudra en ce cas
fermer le curseur s'il était déja utilisé, avant de 1"ouvrir & nouveau en lui passant des para-
métres différents.

Le passage des paramétres peut se faire & 1'ouverture du curseur (OPEN) ou dans la boucle FOR
(si le curseur est utilisé en mode semi-automatique). Comme les paramétres d'un sous-
programme, ceux d'un curseur ne doivent pas étre restreints au niveau de la taille, seul le type
est important.

Le tableau suivant décrit un bloc qui utilise deux fois le méme curseur en affichant d’abord les
pilotes de la compagnie de code 'AF puis ceux de la compagnie de code 'SING'. Nous utilisons
les deux écritures possibles pour passer les paramétres.

Tableau 7-11 Cursewr paraméiré

Code PLSQL Commentaires
DECLARE Déclaration du curseur avec
CURSOR ‘zoneS (p_codecomp IN VARCHARZ) IS un parametre,

SELECT brevet, nowm
FROM Pilote WHERE comp = p_codecomp;
enregblis zoneSSROWTYPE;

BEGIN
FOR enreg IN zonab('AF') LOGP Chargement et parcours du
DEMS_OUTPUT .PUT_LINE('AF, nom : ' || enreg.nom || curseur en passant le
(" || enreg.brever || ').'); parameétre 'AF.
END LOOF;
OPEN zone5('SING"); Chargement et parcours du
FETCH zoneS INTO enregbis ; cUrSelr en passant e
WHILE (zoneS%FOUND) LOOP paramétre "SING'.
DEMS_OUTPUT . PUT_LINE(' SING, nom : * ||
enregbis.nem|| '{'||enregbis.brevet||').");
FETCH zoneS INTO enregbis ;
END LOOP;
CLOSE zone5;
END;

/

@ Editions Eyrolles 339

PUSQL|

340

Acces concurrents (FOR UPDATE et GURRENT OF)

Sivous voulez verrouiller les lignes d’une table interrogée par un curseur dans le but de metire
4 jour la table, sans qu'un autre utilisateur ne la modifie en méme temps, il faat utiliser la
clause FOR UPDATE. Elle s'utilise lors de la déclaration du curseur et verrouille les lignes
concernées lorsque le curseur est ouvert. Les verrous sont libérés 4 la fin de la transaction.

La déclaration d'un curseur FOR UPDATE, qu'on peut qualifier de « modifiable », est la
suivante :

CURSOR nomCurseur|(paramétres)] IS
SELECT .. FROM {nomTable | nomVue } WHERE ..

FOR UPDATE [OF [[schéma.) {nomTable | nomVue }.)colonne [, ..]
[NOWAIT | WALIT entier]

La directive OF permet de connaitre les colonnes i vermouiller. Sans elle, toutes les colonnes
issues de la requéte seront verrouillées.

HOWATT précise de ne pas taire attendre le programme et de retourner un message d'erreur
si les lignes demandées sont verrouillées par une autre session.

WATT spécifie le nombre de secondes i attendre au maximum avant que les lignes soient
déverrouillées par une autre session. Sans NOWATT et WATT, le programme attend que les
lignes soient disponibles.

Une validation (COMMIT) avant la fermeture d'un curseur FOR UPDATE déclenchera une
erreur.

Il n'est pas possible de déclarer un curseur FOR UPDATE en utllisant dans |a requéte les
directives DISTINCT ou GROUP BY, un opérateur ensembliste, ou une fonction d'agré-

gat.

1l est souvent intéressant de pouvoir modifier facilement la ligne courante d’un curseur
{UPDATE ou DELETE a répercuter au niveau de la table). La clause WHERE CURRENT OF, située
au niveau de I'instruction de mise & jour (UPDATE ou DELETE), permet de référencer la ligne
courante d'un curseur. 1l est conseillé d utiliser un curseur FOR UPDATE pour verrouiller les
lignes i actualiser.

& Editions Eyrolies

[chapitre n® 7 Proprammation avancée

Le tableau suivant décrit un bloc gui utilise le curseur FOR UPDATE pour :
angmenter le nombre d heures de 100 pour les pilotes de la compagnie de code 'AF ;
diminuer ce nombre de 100 pour les pilotes de la compagnie de code 'SING' ;
supprimer les pilotes des autres compagnies.

Notez qu'il n’y a pas d'autre condition que WHERE CURRENT OF dans les instructions de mise

4 jour de la table.
Tableau 7-18 Curseur modifiahie
Code PL'SQL Commentaires
DECLARE Déclaration du curseur
CURSOR zoneMedifiable IS SELECT * FROM FPilote modifiable.
FOR UPDATE OF nbHVol NOWAIT;
BEGIN
FOR enreg IN zoneModifiable LOOP Chargement et parcours du
IF enreg.comp = 'AF' THEN curseur.
UFDATE Filote SET nbHVel = nbHVol + 100
WHERE CURRENT OF zoneModifiable; Mises & jour de la table
ELSIF enreg.comp = 'SING' THEN Pilote par limermédiaire
UFDATE Filote SET nbHVel = nbHvVoel - 100 du curseur.

WHERE CURRENT OF zoneModifiabhle;
ELSE
DELETE FROM Filote
WHERE CURRENT OF zoneModifiable;

END IF;

END LOGF;

COMMIT; Validation de la transaction.
END;
I

Variables curseurs (REF CURSOR)

Une variable curseur (REF CURSOR) définit un curseur dynamique qui n’est pas associé i
une requéte donnée comme un curseur classique (statique). Une variable curseur permet au
curseur d’évoluer an cours du programme.

Une variable curseur est déclarée en deux étapes : déclaration du type et de la variable du type.
Une variable REF CURSOR peut étre définie dans un bloc ou un sous-programme PL/SQL par
les instructions suivantes :

| TYPE nomTypeCurseurDynamigue IS REF CURSOR [RETURN typeRetourSgL];
nomCurseurDynamigue nomTypeCurseurDynamigue;

@ Editions Eyrolles 341

PUSQL|

342

Le type de retour représente en général la structure d'un enregisirement d'une table. Le
curseur dynamique est dit « typé » (strong) s”il inclut un type de retour. Dans le cas inverse, il
est non typé (weak) et permet une grande flexibilité car toute requéte peut y étre associée.
L'ouverture d'un curseur dynamique est commandée par I'instruction OPEN FOR requéte.
La lecture du curseur s’ opére toujours avec 1'instruction FETCH

Curseurs non typés

Le tableau suivant décrit un bloc qui utilise le curseur dynamique non typé zoneé. Ce curseur
sert i afficher dans un premier temps les numéros de brevet et noms des pilotes qui ne sont pas
de la compagnie de code 'AF'. Dans un second temps, le curseur est rechargé afin d'extraire les
muméros de brevet et le nombre d heures de vol de tous les pilotes de la compagnie de code 'AF.

Tatieau 7-19 Curseur pon Hpé

Code PL/SQL Commentaires

DECLARE Déclaration du curseur
TYPE ref_zonef IE CURSOR; dynamigue et des variables
zones ref zoned; de réception.

wvarl Filote.brevet ¥ TYPE;
varld Pllote.nom$TY PE;
ward Pilote.nbHVol $TYPE;

BEGIN Chargement et parcours du
OPEM zonef FOR SELECT brevet, nom curseur dynamique.
FROM Pilote WHERE NOT (comp = 'AF'):
FETCH zoneé INTO varl, warld;
WHILE (zone&6%FOUND) LOOP

DEMS_OUTFUT.PUT_LINE{'nom : ' || war2 ||
Vo || owazl || o).
FETCH zoneé INTO varl, wvarZ;
END LOOE;
CLOSE zoneh;
OPEN zones FOR SELECT brevet, nkHVel Autre chargement du
FROM Pilote WHERE comp = 'AF'; curseur dynamigue.

FETCH zoned INTO wvarl, wari;

CLOSE zoneb;
END;
/

& Editions Eyrolles

[chapitre n° 7

Programmation avancés

Curseurs typés

Le tableaun suivant décrit un bloe qui utilise le curseur dynamique typé zone7. Celui-ci sert
extraire toutes les colonnes de la table Pilote. Dans un premier temps le curseur dynamique
est chargé avec les pilotes qui ne sont pas de la compagnie de code 'AF. Ensuite, le curseur est
rechargé avec les pilotes qui sont de la compagnie de code 'AF.

Tableau 7-20 Curseur typé

Code PL'SQL Commeniaires
DECLARE Déclaration du curseur
TYPE ref zonel IS REF CURSOR dynamique et de la
RETUBRN Pilote$ROWTYEE; structure de réception.

zone? ref zoned;
enrey zonel$ROWIYRE;

BEGIN Chargement et parcours du
OFPEN =zone7 FOR SELECT * FROM Pilote cursewr dynamigue.
WHERE NOT |comp = 'AF');
FETCH zone?7 INTO enreq;
WHILE (zoneT?$%FOUND) LOOP

DEMS_OUTFUT.PUT_LINE('nom : ' || enreg.nom
[t | |enreg.comp || 1.0y
FETCH zone7 INTO enred;
END LOOP;
CLOSE zonel;
OFEN zone7 FOR SELECT * FROM Pilote Autre chargement du
WHERE comp = "AF '} cursaur dynamigue.

FETCH zone] INTO enredg;

CLOSE zone?;
END;
{

Fonctions tahle pipelined

Les fonctions table pipelined font jouer 4 PL/SQL le réle de source de données. La fonction
appelée le plus souvent dans la clause FROM d'une requéte (du fait que le retour de cette fonc-
tion est une table, il faudra utiliser 1" opérateur TABLE qui convertit une collection en table). I
est, dans certains cas, possible de I'invoquer dans une clause SELECT.

Ces fonctions peuvent accepter en paramétre une collection d'enregistrements : table PL/SQL,
VARRAY (extension objet). L'exécution d’une telle fonction se voit ainsi « parallélisée » du fait
que chaque ligne est retournée i ’appelant (directive PIPE ROW) sans attendre la fin de la
fonction. Ainsi ne vous préoccupez pas de placer un RETURN, il ne peut pas étre présent. Une
telle fonction est déclarée & I'aide de 'option PIPELINED.

@ Editions Eyrolles 343

[Parfie PLSOL
Le type de collection retourné par une fonction table pipelined est une table PL/SQL (sans
I'option INDEX BY BINARY INTEGER), une nested table ou un varray Dans le code de la fone-
fion, vous devez retourner des éléments de la collection en question (les types de données
supportes sont les types SQL NUMBER et VARCHARZ. N'utilisez pas les types de données PL/SQL,
tels que PLS_INTEGER ou BOOLEAN.
L'exemple suivant réalise la méme fonctionnalité que celle étudiée dans le paragraphe
« Comment retourner une table ? » La fonction fable pipelined retourne i chaque itération du
curseur un des pilotes d'une compagnie dont le code passe en paramétre. L' appel de la fonc-
tion se réalise dans la requéte (dont on extrait les colonnes brevet, nom et salaire). Lejeu
d’essai est dans le script en téléchargement.
Tableau 7-21 Fonction tabie pipefined
Description et codage du paquetage - Appel de la fonction table pipelined
REATE PACEAGE PKG_Pilotes IS
TYPE Pilote tytab SELECT brevet,nom,salaire FROM TABLE
IS TABLE OF Filote%ROWTYPE; (PEG_Pilotes.f_pilotes comp pipsli-

FUNCTION f pilotes_comp pipelined ned|*SING'));

{(v_comp IN VARCHARZ)

RETURN Pilote tytab PIPELINED; EREVET NOM SALATRE
ENE-PRE_PEToEER: 000 e e S e e o i e e o o e
i FL-4 Christian Soutou 10000
CREATE PACKACE BODY PHG Pilotes IS PL-5 @illes Laborde 10050

FUNCTION f_pilotes_comp pipelined PL~§ Plerre Séry 16000

{v_comp IN VARCHARZ)
RETUBRN Filote_ tytal PIPELINED IS
CURSCOR Pilote Comp Cur
IS5 SELECT * FROM Pilote
WHERE COMpA=V_comp;
rty_pilote PiloteRROWTYFPE;
EEGIN
OPEN Pilote_ Comp Cur;
FETCH Pilote Comp Cur INTO rty_pilote;
WHILE (FPilote Comp Cur$FOUND) LOOP
PIPE ROW{rty pilote);
FETCH Pilote_Comp_Cur INTO rty pilote;
END LOOF;
CLOSE Pilote_Comp_Cur;
RETURN ;
ENRD;
END PEG_Pilotes;
!

344

& Editions Eyrolies

[chapitre n® 7 Proprammation avancée

Exceptions

O T, O (L W - O Y) N

Afin d'éviter qu'un programme s’arréte i la premiére erreur (requéte ne retournant ancune
ligne, valeur incorrecte & écrire dans la base, conflit de clés primaires, division par zéro, etc.),
il est indispensable de prévoir tous les cas potentiels d’erreurs et d associer & chacun de ces cas
la programmation d'une exception PL/SQL. Dans le vocabulaire des programmeurs on dit
qu'on garde la main pendant I'exécution du programme. Le mécanisme des exceptions
(handling errors) est largement utilisé par tous les programmeurs car il est prépondérant dans
la mise en ceuvre des transactions.

Les exceptions peuvent se programmer dans un bloc PL/SQL, un sous-programme (fonction
ou procédure cataloguée), dans un paquetage ou un déclencheur.

Generaliles

Une exception PL/SQL correspond i une condition d’erreur et est associée & un identificateur.
Une exception est détectée (aussi dite « levée ») au cours de 'exécution d'une partie de
programme (entre un BEGIN et un END). Une fois levée, 1'exception termine le corps principal
des instructions et renvoie au bloc EXCEPTION du programme en question.

La figure suivante illustre les deux mécanismes qui peuvent déclencher une exception :

Une erreur Oracle se produit, I'exception associée est déclenchée automatiquement (exem-
ple du SELECT ne ramenant aucune ligne, ce qui déclenche I'exception ORA-01403 d'iden-
tificateur NO_DATA_FOUNT).

Figure 7-6 Frincpe géndral des exceplions

BEGTN

IF' «} THEN RAISE PILOTE TROP JEUNE ;
‘_:l.:'.LE-’."[i LHTC o FPROM .o
EXCEPTION

WHEN KO DATA FOUND THENW

{ Ipstructions A ’

WHEN ZERO DIVIDE TRHEN

[.’rmrm:rn.:-rm - B l

WHEN PILOTE TROR JEUMNE THEN

Inatructlions

WHEM OTHERS THEN

Ingstructions - D I

EHD ;

@ Editions Eyrolles 345

[Parie FUAIL|

Le programmeur désire dérouter volontairement (par lintermédiaire de l'instruction
RATSE) son programme dans le bloc des exceptions sous certaines conditions. L'exception
est ici manuellement déclenchée et peut appartenir 4 |'utilisateur (ici la condition PILOTE
TROE_JEUNE) ou €tre prédéfinie au niveau d’Oracle (division par zéro d'identificateur
ZERO_DIVIDE qui sera automatiquement déclenchée).
Si aucune erreur ne se produit, le bloc est ignoré et le traitement se termine (ou retourne i son
appelant s'il s’agit d"un sous-programme).
La syntaxe générale d'un bloc d’exceptions est la suivante. Il est possible de grouper plusieurs
exceptions pour programmer le méme traitement. La derniére entrée (OTHERS) doit étre
éventuellement toujours placée en fin du bloc d'erreurs.

EXCEPTION
WHEN exceptionl! [0R exceptionZ ..] THEN
instructions;

[WHEN exception3 [OR exceptiond ..] THEN
instructions; |

[WHEN OTHERS THEM
instructions; |

51 ime anomalie se produit, le bloc EXCEPTION s’ exécute.
Si le programme prend en compte ' erreur dans une entrée WHEN. .., les instructions de cette
entrée sont exécutées et le programme se termine.
Si I'exception n’est pas prise en compte dans le bloc EXCEPTION :
— il existe une section OTHERS ol des instructions s'exécutent ;
— il n’existe pas une section OTHERS et 'exception sera propagée au programme appelant
(une section traite de la propagation des exceptions).

Erudions & présent les trois types d’exceptions qui existent sous PL/SQL, en programmant des
procédures simples interrogeant la table Pilote illustrée & la figure 7-3.

346 & Editions Eyrolies

[chapitre n® 7 Proprammation svancée

Exception inteme prédéfinie
Les exceptions prédéfinies sont celles qui se produisent le plus souvent. Oracle atfecte un nom
de maniére a les traiter plus facilement dans le bloc EXCEPTIH. Le tablean suivant les décnit :

Tahieau 7-22 Exceptions prédefinies

Nom de F'exception- Numéro Commentalres

ACCESS_INTO NULL CRA-0E530 Affectation d'une valeur & un objet non initialise.

CRSE_WOT_FOUND ORA-06592 Aucun des cholx de la structure CASE 5ans ELSE
n'est effectué.

COLLECTION_IS_NULL ORA-06531 Utilisation d'une méthode autre que EXISTS sur
une collection (nested table ou varray) non
initialisée.

CURSOR_ALREADY OPEN ORA-06511 Ouverture d'un curseur déja ouvert.

DUP_VAL_CON_INDEX QRA-00001 Insertion d'une ligne en doublon (clé primaire).

INVALID CURSOR ORA-01001 Quverture interdite sur un curseur.

INVALID NUMEBER ORR-01722 Echec d'une conversion d'une chalne de
caractérgs en NUMBER.

LOGIN_DENTED ORA-01017 Caonnexion incorrecte.

WO_DATR_FOUND ORAR-01403 Requéte ne retournant aucun résultat.

NOT_LOGGED ON ORA-01012 Caonnexion inexistante.

PROGRAM_ERROR ORA-06501 Probléme PL/SQL interne (invitation au contact du
support...).

ROWTYPE_MISMATCH ORR-06504 Incompatibilité de types entre une variable externe
etune variable PL/SOL.

SELF_IS_NULL ORA-30625 Appel d'une méthode d'un type sur un objet NULL
(extension objet).

STCRAGE ERROR CRA-0E500 Dépassement de capacité mémaire.

SUBSCRIPT_BEYOND_COUNT ORA-06533 Référence & un indice incorrect d'une collection
(nested table ou varmay) ou variables de type

SUBSCRIFT_CUTSIDE_LIMIT ORA-(06532

e = TABLE.

S¥S_INVALID_ROWID ORR-01410 Echec d'une conversion d'une chane de
caractéres en ROWID.

TIMEQOUT,_ ON_RESOURCE ORR-00051 Dépassement du délai allowé & une ressource.

TO0_MANY_ROWS ORA-01422 Requéte retournant plusieurs lignes.

VALUE_ERROR ORA-06502 Erreur arithmétique (conversion, troncature, taille)
d'un MIREBER.

ZERO_DIVIDE ORR-01476 Division par zéro.

@ Editions Eyrolles 347

PUSQL|

348

Le code d’erreur (SQLCODE) qui peut &tre récupéré par un programme d'application (Java par
exemple sous JDBC), est inclus dans le numéro interne de I'erreur (pour la deuxidme excep-
tion, il s'agit de -6 392).

Concernant l'erreur NO_DATR_FOUND, rappelez-vous qu'elle n'est opérationnelle qu'avec l'ins-
truction SELECT. Une mise & jour ou une suppression (UPDATE et DELETE) d'un enregistre-
ment inexistant ne déclenche pas |'exception. Pour gérer ces cas d'erreurs, il faut utiliser un
curseur implicite et une excepfion utilisateur (voir la section « Utilisation du curseur
implicite »).

Si vous désirez programmer une erreur qui n’apparait pas dans cette liste (exemple :
erreur référentielle pour une suppression d'un enregistrement d'une table identifiée par
une clé étrangere), il faudra programmer une exception non prédéfinie (voir la section
suivante).

Plusieurs erreurs

Le tableau suivant décrit une procédure qui gére deux erreurs : aucun pilote n’est associé & la
compagnie de code passé en paramétre (NO_DATA FOUND) et plusieurs pilotes le sont (TO0_
MANY ROWS). Le programme se termine correctement si la requéte retourne une seule ligne
(cas de la compagnie de code 'CAST').

Tebleau 7-23 Deu exceptions trailéas

Code PL/SQL Commentaires

CREATE PROCEDURE procExceptionl (p comp IN VARCHARZ) IS Reguéte déclenchant
wvarl Pilote.nom$TYPE; potentiellement deux

EBEGIN exceptions prévues.

SELECT nom INTO warl FRCOM Pilote

WHERE comp = D_comp;
DEMS_OUTPUT . PUT_LINE('Le pilote de la compagnie '

|| poeomp || * est ' || warl);
EXCEFTION Aucun résultat renvoyé.
WHEN NO DATA FOUND THEM
DEMS_OUTEUT.PUT_LINE('La compagnie ' ||
pooomp || ' n''a aucun piletel');
WHEN TOO_MANY ROWS THEN - Plusieurs résultats
DBMS_OUTPUT.PUT_LINE('La compagnie ' || renvoyés.
poeomp || ' a plusieurs piletes!');

La trace de I'exécution de cette procédure est la suivante :

S0L> EXRCUTE procExceptionl ('AF');

& Editions Eyrolies

[chapitre n° 7

Programmation avancés

La compagnie AF a plusieurs pilotes!
Procédure PL/SQL terminée avec sucoés.

S01s EXECUTE procExceptionl ('RIEN®);
la compagnie RIEN n'a aucun pilote!

Procédure PL/SQL terminée avec succés.

S0L> EXECUTE procExceptionl('CAST");
Le pilote de la compagnie CAST est Thierry Millan

Procédure PL/SOL terminée aveo succeés.

Si une autre erreur se produit, en 1'absence de la directive OTHERS dans le bloc d'exceptions,
le programme se termine anormalement en renvoyant I'erreur en question. Dans notre exemple,
seule une erreur interne pourrait éventuellement se produire (PROGRAM ERROR, STORAGE_
ERROR, TIMECUT ON_RESOURCE).

Méme erreur sur différentes instructions

Le tableau 7-24 décrit une procédure qui gére deux fois 1'erreur non frouvée (NO_DATA
FOUND) sur deux requétes distinctes. La premiére requéte extrait le nom du pilote de code
passé en parameétre. La deuxiéme extrait le nom du pilote ayant un nombre d'heures de vol
égal & celui passé en paramétre. Le programme se termine correctement si les deux requétes ne
retournent qu'un seul enregistrement.

La directive OTHERS permet d’afficher en clair une autre erreur déclenchée par une des deux
requétes (ici notamment TOO_MANY_ROWS qui n'est pas prise en compte). Notez ici 1"utilisa-
tion des deux variables d'Oracle : SQLERRM qui contient le message en clair de 'erreur et
SULCODE le code associé.

La trace de I'exécution de cette procédure est la suivante :

S0l> EXECUTE procException?{'PL-1', 1000);
Ie pilote de PL-1 est Gilles Laborde
Le pilote ayant 1000 heures est Florence Périssel

Procédure PL/SQL terminée avec sucoés.

S0L> EXECUTE procException2('PL-0', 2450);
Pas de pilote de brevet : PL-0

Procédure PL/SOL terminése avec Succes.

Dans cette procédure, une erreur sur la premiére requéte fait sortir le programme (aprés avoir
traité I'exception) et de ce fait 1a deuxiéme requéte n'est pas évaluée. Pour cela, il est intéres-
sant d'utiliser des blocs imbriqués pour poursuivie le traitement aprés avoir traité une ou
plusieurs exceptions.

@ Editions Eyrolles 349

[Partie N PUSQL|

Tahleau 7-24 Une excep@ion traliée pour dem inshructions

Code PL/SQL Commentaires
CREATE PROCEDURE procException2 Requétes déclenchant
(p_brevet IN VARCHAR?, p_heures IN NUMBER) IS potentiellement une
wvarl Pilpte.nom$TYPE; exception prévue.
regquete NUMBER := 1;
BEGIN

SELECT nom INTO varl FroM Pilote
WHERE brevet = p_brevet;
DEMS_OUTPUT .FUT_LINE('Le pilote de ' ||
p brevet || ' est ' || warl);

requete = 2;

SELECT nom INTO warl FREOM Pilote
WHERE nbHVel = p_heures;

DEMS_OQUTFUT . FUT_LINE('Le pilote ayant ' ||

p_heures || ' heurea est ' || warl);
EXCEPTION Aucun résultat.
WHEM MO _DATA_FOUND THEN Traltement pour savoir
IF requete = 1 THEN quelle requéte a déclenche
DEMS_OUTPUT. PUT_LINE('Pas de pilote de brevet : l'exception.
|| p.brevet):
ELSE
DEMS_OUTFUT.PUT_LINE ('Pas de pilote ayant ce
nombre 4' 'heurea de vol @ * || p heures) ;
END IF;
WHEN OTHERS THEN Autre erreur.
BEMS_OUTFUT.PUT_LINE('Erreur d''Oracle ' ||
squeRmM || ' {' || SQuCODE || ')');
END;

Imbrication de blocs d’erreurs

Le tableau suivant décrit une procédure qui inclut un bloc d’exceptions imbriqué au code prin-
cipal. Ce mécanisme permet de poursuivre I'exécution aprés qu'Oracle a levé une exception.
Dans cette procédure, les deux requétes sont évaluées indépendamment du résultat retourné
par chacune d’elles.

L'exécution swivante de cette procédure déclenche les deux exceptions. Le message d'erreur
est contrdlé par le dernier cas d’exception, il ne s’agit pas d'une interruption anormale du
programme.

S0L.> EXECUTE procException3 {'PL-0', 2450} ;
Pas de pilote de brevet : PFI-0

Erreur d'Oracle ORA-01422: 1'extraction exacte raméne plus cue le nonbre
de lignes demandé (-1422)

350 & Editions Eyrolles

[chapitre n® 7 Proprammation avancée

Teblean 7-25 Bioc d'exceptions imbrigué

Code PLISQL Commentaires

CREATE PROCEDURE procException3
{p_brevet IN VARCHARZ, p heures IN NUMBER) IS
warl Pilote. nom%TYPE;
BECIN
(EECIN
SELECT noem INTO varl FrROM Pilote
WHERE brevet = p_breveth

DEMS_CUTPUT . PUT_LINE('Le pilete de ' || p_brevet Bloc imbrigué.
|| ' est ' || warl);
EXCEPTION
WHEN NO_DATA FOUND THEN Gestion des exceptions
DEMS_OUTPFUT.FUT_LINE('Pas de pilote de brewetr : ' de la premiére requéte.
|| p.brewvet);

WHEN COTHERS THEN
DEMS_OUTPUT.PUT_LINE('Erreur {''Oracle ' ||

SQLERRM || ' (' || SQuCODE || ') ');
END;
SELECT nom INTCO varl FROM Pilote Suite du traitement.
WHERE nbHVel = p_heures ;
DEMS_CUTPUT.PUT_LINE('Le pilote ayant ' || p_heures ||
' heures est ' || wvarl);
EXCEPTION
WHEN NO_DATA _FOUND THEN Gestion des exceptions
DEMS_OUTPUT.PUT_LINE('Fas de pilote ayant ce nowmbre de la deuxiéme
d''heures de vol : ' || p heures); requéte.

WHEM OTHERS THEM
DBEMS_OUTPUT. PUT_LINE{'Erreur 4''Oracle ' ||
SQLERRM || ' (' || sQucoDE || ') ')
END;:

Exception utdisateur
Il est possible de définir ses propres exceptions. Cela pour bénéficier des blocs de fraitements

d’'erreurs et aborder une erreur applicative comme une erreur renvoyée par la base. Cela
améliore et facilite la maintenance et I'évolution des programmes car les erreurs applicatives
peuvent trés facilement étre propagées aux programmes appelants.

Déclaration

La déclaration du nom de 'exception doit se trouver dans la section déclarative du sous-
programme.

nomException EXCEPTION;

@ Editions Eyrolles 351

[Partie N PUSQL|

Déclenchement

Une exception utilisateur ne sera pas levée de la méme maniére qu'une exception interne. Le
programme doit explicitement dérouter le traitement vers le bloc des exceptions par la direc-
tive RATSE. L'instruction RATSE permet également de déclencher des exceptions prédéfinies.

Drins notre exemple, programmons les deux exceptions suivantes :

erreur piloteTropdeune qui va imterdire l'insertion des pilotes ayant moins de
200 heures de vol ;

erreur piloteTropExpérimenté qui va interdire 1'insertion des pilotes ayant plus de
20 000 beures de vol.

Le tableau suivant décrit cette procédure qui intercepte ces deux erreurs applicatives :

Tableau 7-26 Exceptons milisaear

Code PL/SQL Commentaires
CREATE PROCEDURE saisiePilote Déclaration
{p_brevet IN VARCHARZ ,p nom IN VARCHARD, de l'exception.
p.nbHVel IN NUMBER, p_comp IN VARCHARZ) IS
erreur_piloteTropTeins EXCEPTION;
erreur pileoteTropExpérimenté EXCEPTION;
BECTN Corps du traitement
INSERT INTO Filote (brevet,nom,nbHVel,comp) (walidation).

VALUES (p_ brevet,p_nom,p nbHEVel, p_comp) ;
IF p.nbHVol < 200 THEN RAISE erreur piloteTroplfeune;
END IF;
IF ponbHVel = 20000 THEN

BAISE erreur piloteTropExpérimenté;
END IF;
COMMIT;

EXCEPTIOH
WHEN errsur piloteTropJeuns THEN Gestion de 'exception.
FOLLEACK ;
DEMS_OUTFUT. FUT_LINE ('Désolé, le pilote mandgue
d''expérience’);
WHEN erfeur piloteTropExpérimentéd THEN Gastion des autres
ROLLEACE; exceptions.

DEMS_OUTPUT. PUT_LINE ('Désolé, le pilote a
trop 4''expérience');
WHEN OTHERS THEN

ROLLBACE;
DEMS_OUTEUT. FUT_LINE('Erreur d''Oracle ' || SQLEREM
[| e || seroome || *)0);
END;

Latrace de I’exécution de cette procédure ol I'on passe des valeurs en paramétres qui déclen-
chent les deux exceptions est la suivante.

352 & Editions Eyrolies

[chapitre n® 7 Proprammation avancée

| 501> EXECUTE saisiePilote('Pl-9*, *Tuffery Michel', 1%%, 'AF');
Désolé, le pilote mangue d'expérience
Procédure PL/SQL terminée avec succes.
SQL> EXECUTE saisiePilote('PL-9', 'Tuffery Michel', 20001, 'AF');
Désolé, le pilote a trop d'expérience
Procédure PL/SQL terminde avec sucoés.

Utilisation du curseur implicite

Etudiés dans le chapitre 6, les curseurs implicites permettent ici de pallier le fait qu’ Oracle ne
&ve pas 'exception MO_DATA_FOUND pour les instructions UPDATE et DELETE. Ce qui est en
théorie valable (aucune action sur la base peut ne pas &tre considérée comme une erreur), en
pratique il est utile de connaitre le code retour de I'instruction de mise 4 jour.

Considérons a nouveau la procédure détruitCompagnie en prenant en compte I'erreur
applicative erreur_compagnielnexistante qui intercepte une suppression non réalisée.
Le test du curseur implicite de cette instruction déclenche 1'exception utilisateur associée.

Tahisau 7-27 Ullsation do cursesr implicite

Code PLISQL Commentaires
CEREATE OR REPLACE PROCEDURE détruitCompagnie

(p_comp IN VARCHARZ) IS Duéclaration
erreur_ilRestelnPilote EXCEPTION; des exceptions.

PRAGHA EXCEPTION INIT (erreur ilRestelnPilote , -2292);
erreur_compagriielnexistante EXCEPTION;
BEGIN Corps du traitement
DELETE FROM Compagnie WHERE comp = p_comp; {validation).
IF BQLANOTFOUND THEN
RAISE erreur_ compagnielnexistante;

END IF;

COMMIT;

DEMS_QUTFIT ., FUT_LINE('Canpagnie ' | |p comp|| @ détriite. ');

EXCEPTION

WHEN erreur ilResteUnPilote THEN Gastion
DEMS_CUTPUT ,PUT_LINE ('Désclé, 1l reste encore un des exceptions.

pilote 4 la compagnie ' || p_comp);

WHEN erreur compagnielnexistante THEN Gestion des autres

DEMS_OUTFUT .PUT_LINE |'La compagnie ' || p_comp || exceptions.

' n''existe pas dans la base!l');
WHEN OTHERS THEN
DEMS_OUTFUT . PUT_LINE('Erreur 4''Oracle ' || SQLERRM | |
(¢ || sgLcenE || 1))
END;

L'exécution de cette procédure ol I'on passe un code compagnie inexistant fait maintenant
dérouler la section des exceptions.

@ Editions Eyrolles 353

PUSQL|

354

S0L.> EXECUTE detruitCompagnie({'rien');
La compagnie rien n'existe pas dans la base!

Excention inteme non prédéfinie

Pour intercepter une erreur Oracle qui n'a pas &€ prédéfinie (pour laquelle Oracle n’a pas
associé de nom), e étre ainsi plus précis qu'avec la clause OTHERS, il faut wtiliser la directive
PRAGMA EXCEPTTON_INIT Celle-ci indique au compilateur d’associer un nom d’exception,
que vous aurez choisi, 4 un code d'erreur Oracle existant. La directive PRAGMA (appelée aussi
pseudo-instruction) est un mot-clé signifiant que I'instruction est destinée au compilateur (elle
n'est pas fraitée au moment de I'exécution).

Déclaration

Deux commandes sont nécessaires dans la section déclarative & la mise en ceuvre de ce
mécanisme : déclarer le nom de I'exception et associer cet identificateur 4 1" erreur Oracle.
nomException EXCEPTION;
PRAGMA EXCEPTION INIT (nomExceptlion, numéroErreurOracle);

Pour connaitre le numéro de I'erreur qui vous intéresse, consultez la liste des erreurs dans la
documentation d'Oracle (Error Messages qui est classée par numéros croissants et non pas
par fonctionnalites). Cherchez par exemple les entrées correspondant a foreign key dans le
chapitre des erreurs 0RA-02100 te ORA-04099.

Vous pouvez aussi écrire un bloc PL/SQL qui programme volontairement I'erreur pour voir sous
SQL"Plus le numéro qu'Oracle renvoie.

Déclenchement
Une exception non prédéfinie sera levée de la méme maniére qu'une exception prédéfinie, &
savoir suite i une instruction SQL pour laquelle le serveur aura renvoyé une erreur.

Considérons les deux tables suivantes. La colonne canp de la table Pilote est clé étrangére
vers la table Conpagnie. Programmons une procédure qui supprime une compagnie de code
passé en paramétre.

Figure 7-7 Deux tables

Compagnie Filate

comp |wille HiomEnmE. brevet nen noiNol |emp

AF Fans Al France PL-1 Gilles Laborde 2450 AR

SING | Singapour Singapors AL PL-2 Frédérie D' AImeyda 200 AF
CAST | Blagnac Castanst AL FL-3 Florence FPérissel 1000 | SING
EJET | Dublin Easy Jet PL-4 Thiarry Millan 2450 | CAST

— PLS Christine Royo 200 A
dpeliule PLE Auréiia Enle 2450 | SING

& Editions Eyrolies

[chapitre n° 7

Proprammation svancés |

Le tableau suivant décrit la procédure détruitCompagnie qui intercepte I'erreur ORA-
02292: enregistrement fils existant. Il s’agit de contrdler le programme si la
compagnie & détruire posséde encore des pilotes référencés dans la table Pilote.

Tableau 7-28 Exception Inteme non prédéfinie

Code PL/SQL Commentaires

CREATE FROCEDURE détruitCoempagnie(p comp IN VARCHAR2) IS Déclaration
erreur i lRestsUnPilote EXCEPTION; de l'exception.
PRAGMA EXCEPTION INIT(erreur ilHestelUnPilete , -2292);

BEGIN Corps du tratement
DELETE FEOM Compagnie WHERE comp = D_comp; (walidation).
COMMIT;

DEMS_QUTFUT.PUT_LINE ('Compagnie ' || pocomp ||
todétrulte.) ;

EXCEPTION
WHEN erreur ilResteUnPilote THEN Gestion de I'exception.

DEMS_OUTPUT .PUT_LINE ('Désolé, il reste encore un
pilote & la compagnie ' || p_comp);
WHEN OTHERS THEN
DEMS_CUTPUT . PUT_LINE('Erreur d''Oracle ' || SQLEREM Gestion des autres
[l "¢ || sQuCoDE || ') '): exeeptions.
END;

La trace de I'exécution de cette procédure est la suivante. Notez que si on applique cette procé-
dure i une compagnie inexistante, le programme se termine normalement sans passer dans la
section des exceptions.

S0Ls> EXECUTE détruitCompagniel 'AF');
Désolé, il reste encore un pilote a la compagnie AF
Procédure PL/SQL terminée avec succeés.

801> EXECUTE détruitCompagrie('EJET');
Compacmie EJET détruite.
| Procédure PL/SQL terminée avec succés.

Propagation 0'une exception

Nous avons vu jusqu’a présent que lorsqu’un bloc EXCEPTTION traite correctement une excep-
tion (car il existe soit une entrée dans le bloc correspondant 4 'exception, soit 1'entrée
CTHERS), I'exécution du traitement se poursuit en séquences aprés 1'instruction END du bloc
EXCEPTTON.

@ Editions Eyrolles 355

PUSQL|

356

Mécanisme général

Si une exception se déclenche mais qu’aucune entrée n’est prévue dans le bloc EXCEPTION (et
qu'il n'existe pas I'entrée OTHERS), I'exception se propage successivement au niveau des
blocs EMCEPTION contenus dans le code appelant (ou englobant), jusqu’é ce qu'une entrée
corresponde (ou I'entrée CTHERS). Si aucun des blocs d'erreurs ne peut traiter l‘exceptjon, le
programme principal se termine anormalement en renvoyant une erreur. La figure suivante
illustre ce processus :

Figure 7-8 Propagation des excsptions

BEGIN

BHEGIN
RATEE. .. ot
Instruction SQL . Déclenchement

EXCEPTION

WHEN .. THEN
2. Recherche de
WHEN ., THEN Pexception
END
L, -

3. Exception irouvée

EXCEFTION

S bis. Exceprion pas trowvée

l Abis. Recherche de
Péxception

. 4. Va en séguence

WHEHN .. THEN
END

Notez que lorsque I'exception se propage a un bloc englobant, les actions exécutables restantes
de ce bloc sont ignorées. Un des avantages de ce mécanisme est de pouvoir gérer des excep-
tions spécifiques dans leur propre bloc, tout en laissant le bloc englobant gérer les exceptions
plus générales.

Exceptions reroutées (reraise)

I est, dans certains cas, intéressant d"exécuter plusieurs blocs d’erreurs pour la méme excep-
tion. On déclenche plusieurs fois 1’exception (exception reraised). Le principe consiste &
utiliser la directive RATSE sans spécifier le nom de 1'exception i traiter de nouveau (voir la
figure suivante dans laquelle 'exception avienTropVieux est reroutée). Sil'exception ne
peut étre traitée dans le bloc englobant, alors elle est propagée a I'environnement appelant ou
englobant (voir section précédente).

& Editions Eyrolles

[chapitre n° 7

Programmation avancés

Flgure 7-8 Exceplion reroutée

avionTropVieux EXCEPTION;

BEGIN

BEGIN

IF THEN

RAISE ;
END ;

RATEE avienTropVieux;
ERD IF;
EXCEFTION

WHEN avionTropVieux THEH

\

EXCEPTION

WHEN .. THEN
END:

WHEH avisnTropVisusx THER

Procédure RAISE_APPLICATION ERROR

La procédure RAISE APPLICATICN ERROR permet de définir ses propres messages et codes
d'erreurs. Cette procédure évite le renvol d'exceptions non traitées car le numéro d'erreur
(inclus dans RATSE APPLTICATION ERROR) sera communiqué i I'environnement appelant.

RAISE_APPLICATION_ERROR (numéroErreur, message [, {TRUE | FALSE}]);

Excepiion
rerece

numéroErreur : valeur définie par l'utilisateur pour l'exception, comprise entre -20 000

et -20 999,

message : chaine de caractéres (max 2 (48 octets) décrivant 'erreur.

TRUE | FALSE : booléen facultatif. TRUE pour positionne I'erreur dans une pile si plusieurs
exceptions doivent étre propagées en cascade., FALSE par défaut remplace toutes les

erreurs précédentes dans la pile.

La procédure RATSE_APPLICATTON_ERROR peut ére utilisée dans le code ou dans la section
de traitement des exceptions d'un programme PL/SQL. L'appel 4 la procédure RAISE_
APPLICATION_ERROR interrompt le programme et retourne le numéro et le message d’erreur
qui peuvent étre récupérés par 1'environnement englobant (variables SQLCODE et SQLERRM).
La figure suivante illustre ce mécanisme qui est aussi programmable dans le cas des déclen-

cheurs.

@ Editions Eyrolles

357

FUAIL|

Figure 7-10 Utisalion de RAISE_APPLICATION_ERROR

srraurParsonnalisSe. EXCEPTION;

EXCEPTION
WHEN erreurPsrgonnslisée THEH
o

PRAGMA EXCEPTION INIT(errsucPerascanalisde ,

BEQINM
Appel du fous -progranie /

=BTy

1. Appel i sous -prograpme

VBN . THER o 2. Retowr avet
BEGTH SQLOODEL =20777)
— i BOLERRMI DErOLE Gu marche pas
IF . THEN
RAINE APPLICATION KRAOW(-20777, 'Désclé cx marche pas |°)
END 1P
EXCEPTION

WHEH THEN

BN ¢

Déclencheurs

358

Les déclencheurs (1riggers) existent depuis la version 6 d'Oracle. Ils sont compilables depuis
la version 7.3 (auparavant, ils étaient évalués lors de 1'exécution). Depuis la version 8, il existe
un nouvean type de déclencheur (INSTEAD OF) qui permet la mise & jour de vues multitables.

La plupart des déclencheurs peuvent étre vus comme des programmes résidents associés & un
événement particulier (insertion, modification d’une ou de plusieurs colonnes, suppression)
sur une table (ou une vue). Une table (ou une vue) peut « héberger » plusieurs déclencheurs ou
aucun. Nous verrons qu’il existe d’autres types de déclencheurs que ceux associés i une table
{ou & une vue) afin de répondre 4 des événements qui ne concernent pas les données.

A la différence des sous-programmes, 1'exécution d’un déclencheur n'est pas explicitement
opérée par une commande ou dans un programme, ¢'est I'événement de mise i jour de la table
(ou de la vue) qui exécute automatiquement le code programmé dans le déclencheur. On dit
que le déclencheur « se déclenche » (I'anglais le traduit mieux : fired frigger).

Lamajonté des déclencheurs sont programmeés en PL/SQL (langage trés bien adapté & la manipu-
lation des objets Oracle), mais il est possible d’utiliser un autre langage (C ou Java par exemple).

A quoi sert un déclencheur ?

Un déclencheur permet de :
Programmer toutes les régles de gestion qui n'ont pas pu &re mises en place par des
contraintes au niveau des tables. Par exemple, la condition : une compagrie ne fait voler un
pilote que §'il a totalisé plus de 60 heures de vol dans les 2 derniers mois sur le type

& Editions Eyrolles

[chapitre n° 7

Proprammation svancés |

d’appareil du vol en question, ne pourra pas étre programmee par une contrainte et néces-
sitera 1 utilisation d’un déclencheur.

Déporter des contraintes au niveau du serveur et alléger ainsi la programmation client.
Renforcer des aspects de sécurité et d audit.

Programmer I'intégrité référentielle et laréplication dans des architectures distribuées avec
T'utilisation de liens de bases de données (darabase links).

Generalites
Les événements déclencheurs peuvent éire :

une instruction INSERT, UPDATE, ou DELETE sur une table (ou une vue). On parle de
déclencheurs LMD ;

une instruction concernant des structures (CREATE, ALTER, DROP) et les prérogatives
{CRANT et REVOKE) sur un objet (table, index, séquence, etc.). On parle de déclencheurs LDD ;
le démarrage ou 1"arrét de la base (starrup ou shutdown), une erreur spécifique (NO_DATA
FOUND, DUE_VAL_CN_INDEX, etc.), une connexion ou une déconnexion d'un utilisateur. On
parle de déclencheurs d'instances.

Mécanisme général

La figure suivante illustre les étapes & suivre pour meftre en ceuvre un déclencheur. Il faut
d’abord le coder (comme un sous-programme), puis le compiler (il sera stocké ainsi en base).
Par la suite, au cours du temps, et sile déclencheur est actif (nous verrons qu'il est possible de
désactiver un déclencheur méme s’il est compilé), chaque événement (qui caractérise le
déclencheur) aura pour conséquence son exécution.

@ Editions Eyrolles

Figure 7-11 Mécanisme des déclencheurs

CREATE TRIGGER trigl

) BE - —rEAD 0
1. Déclaration | | BEPORE | AFTER | INSTEAD oF |

nacure de 148 mant ol
Bioe PLSQOL oy
Apped & N SOUS IO ATNe
g > .,:_, I 2. Compilation
3 Bvd ‘. < < e
. Evénement el £ . e ——..._\)
T —— —
1
“uﬂJ =] T 1
= =S B .- -
L~
= ——-‘3’;“:‘7—"”—)

4. Actions codées dans t rigl

359

PUSQL|

360

Syniaxe

Pour pouvoir créer un déclencheur dans votre schéma, vous devez disposer du privilege
CREATE TRIGGER (qui est inclus dans le réle RESOURCE mais pas dans COMNECT). Pour créer
un déclencheur dans un autre schéma, le privilége CREATE ANY TRIGGER est requis. En plus
de ces conditions, pour fabriquer un déclencheur d'instances, il faut détenir le privilége
ATMINISTER DATABASE TRIQSER.

Un déclencheur est composé de trois parties : la description de 1'événement traqué, une éven-
tuelle restriction (condition) et la description de I'action 4 réaliser lorsque 1'événement se
produit. La syntaxe de création d"un déclencheur est la suivante :

CREATE [OR REPLACE] TRIGGER [schémz.] nomDéclencheur

{ BEFORE | AFTER | INSTEAD OF }
{ { DELETE | INSERT | UPDATE [OF coll [,col2].] }
[0R { DELETE | INSERT | UPDATE [OF coll [,c012]..] }l.
ON { [schéma.] nomTable | nomVue }
[EEFEREMC ING
{ OID [AS] nomVieux | NEW [AS] nomNew | PARENT [AS] nomParent }
[OLD [AS] nomViews | NEW [AS] nomNew | PARENT [AS] nomParent]..]
[FOR EACH ROW])}
|
{ événementBase [OR événementBasel.. |
actionStructureBase [OR actionfStructureBasel.. }
O { [schéma.] SCHEMA | DATABASE } }

[vHEN (conditionm)]

{ Bloec PL/SQL (DECIARE variables BEGIN instructions BEND ;)
| CALL neomSousProgramme|{paramétres) }

Les options de cette commande sont les suivantes :

BEFORE | AFTER | INSTERD OF précise la chronologie entre 1'action 4 réaliser par le
déclencheur LMD et la réalisation de 'événement (exemple BEFORE INSERT program-
mera |'exécution du déclencheur avant de réaliser I'insertion).

DELETE | INSERT | UPDATE précise la nature de 1"événement pour les déclencheurs LMD.

ON {[schéma.] nomTable | nomvue} spécifie la table, ou la vue, associée au déclencheur
LMD,

REFERENCTNG permet de renommer des variables.
FOR FACH ROW différencie les déclencheurs LMD au niveau ligne ou au niveau état.

événement Base identifie la nature d'un déclencheur d’instance (STARTUP ou SHUTDOWN
pour exécuter le déclencheur an démarrage ou & 1'arrét de la base), d’'un déclencheur

& Editions Eyrolies

[chapitre n° 7

Proprammation svancés |

d’erreurs (SERVERERROR ou SUSPEND pour exécuter le déclencheur dans le cas d'une
erreur particuliére ou quand une transaction est suspendue) ou d'un déclencheur de
connexion (LOGON ou LOGOFF pour exécuter le déclencheur lors de la connexion ou de la
déconnexion i la base).

actionStructureBase spécifie la nature d'un déclencheur LDD (CREATE, ALTER,

DROP, etc. pour exécuter par exemple le déclencheur lors de la création, la modification ou
la suppression d'un objet de la base).

OM {[schéma.]SCHEMA | DATABASE}) précise le champ d’application du déclencheur
{de type LDD, erreur ou connexion). Utilisez DATABASE pour les déclencheurs qui
s'exécutent pour quiconque commence I'événement, ou SCHEMA pour les déclencheurs qui
ne doivent §'exécuter que dans le schéma courant.

WHEN conditionne |'exécution du déclencheur.

Il est conseillé de limiter la taille (partie instructions) d'un déclencheur & soixante lignes de
code PL/SQL (la taille d'un déclencheur ne peut excéder 32 ko). Pour contourner cette limita-
tion, appeler des sous-programmes dans le code du déclencheur.

Un déclencheur ne peut valider aucune transaction, ainsi les instructions suivantes sont
interdites : COMMIT, ROLLBACK, SAVEPOINT, et SET CONSTRAINT.

Attention & ne pas créer de déclencheurs récursifs (exemple d'un déclencheur qui exécute une
instruction langant elle-méme le déclencheur ou deux déclencheurs s'appelant en cascade
jusgu'a 'occupation de toute la mémoire réservee).

Frudions 2 présent plus précisément les caractéristiques de chaque type de déclencheur qu'il
est possible de programmer.

Déclencheurs LMD

Pour ce type de déclencheurs, I'événement & déterminer est une mise i jour particuliére de la
base (ajout, modification ou suppression dans une table ou une vue). L'exécution est dépen-
dante ou non du nombre de lignes concernées par 1'événement. On programme un déclencheur
de lignes (row trigger) quand on désire exécuter autant de fois le déclencheur qu'il y a de
lignes concernées par une mise 4 jour. S1 on désire exécuter une seule fois le déclencheur quel
que soit le nombre de lignes concernées, on utilisera un déclencheur d’état (statement trigger).
La directive FOR EACH ROW distingue ces deux familles de déclencheurs.

Dans I'exemple d'une table t] ayant cing enregistrements, sion programme un déclencheur de
niveau ligne avec I"événement APTER DELETE, et qu'on lance DELETE FROM t1, le déclen-
cheur exécutera cing fois ses instructions (une fois aprés chaque suppression). Le tablean
suivant explique ce mécanisme.

@ Editions Eyrolles 361

[Parfie PLSOL
Talleau 7-28 Exécutions des déciencheurs LMD
Nature de Etat (statement trigger) Ligne (row trigger)
I'événement $ans FOR EACH ROW 8VeC FOR EACH ROW
BEFCRE Exécution une fois avant la mise & jour. Exécution avant chague ligne mise & jour.
AFTER Exécution une fols aprés la mise & jour. Exécution aprés chaque ligne mise & jour.

362

Déclencheurs de lignes (row triggers)

Un déclencheur de lignes est déclaré avec la directive FOR EACH ROW. Ce n’est que dans ce
type de déclencheur qu’on a accés aux anciennes valeurs et aux nouvelles valeurs des colonnes
de la ligne atfectée par la mise & jour prévue par I'événement.

Quand utiliser la directive :NEW ?

Considérons 'exemple suivant, et programmons la régle de gestion fout pilote ne peut étre
qualifié sur plus de trois types d'appareils. Ici, il s'agit d’assurer la cohérence entre la valenr
de la colonne nbQualif de la table Pilote et les lignes de latable Qualifications.
Programmons le déclencheur TrigInsQualif qui surveille les insertions arrivant sur la
table Qualifications et incrémente de | la colonne nbQuali £ pour le pilote concerné, ou
refuse I'insertion pour le pilote ayant déji trois qualifications (cas du pilote de code 'PL-1'
dans la figure suivante).

Figure 7-12 Principe du déclencheur TriginsQualf

WM

.M M ola 3

Thierry Quibert #1
PL-3 Michel Tulls

Déclenchenr 2
Typekyion lification a TriginaQuallit
TYPR NOMTYFE TYPA EXFIRE
RiZd Blréacteur Alrbus 32 L~ 1
B335 Bipdacteur Alrbus 33 PL-1
R0 Quadrirdactaut Alrbus 540 PL-1
R380 Big-Quadriréscteur 180 PL-2
PL-2

L'événement déclencheur est ici BEFORE INSERT car il faudra s assurer, avant de faire
I'insertion, que le pilote n’est pas déja qualifié sur wois types d'appareils. On utilise
un déclencheur FOR EACH ROW car on désire qu’il s'exécute autant de fois qu'il y a de
lignes concernées par 1'événement déclencheur. §'il se produit une insertion multiple
de type INSERT INTO Qualifications SELECT..., on préfére lancer plusieurs fois le
déclencheur.

& Editions Eyrolles

[chapitre n° 7

Proprammation svancés |

Chaque enregistrement qui tente d’étre ajouté dans la table Qualifications est désigné par
‘NEW au mvean du code du déclencheur. L'accés aux colonnes de ce pseudo-enregistrement

dans le corps du déclencheur se fait par la notation pointée.

Le code minimal de ce déclencheur (on ne prend pas en compte 1'éventuelle erreur du SELECT

ne renvoyant aucun pilote) est décrit dans le tableau suivant :

Tableau 1-30 Declencheur auanl insertion

Code PL'SQL Commentaires
CREATE TRIGGER TrigInasgualif Diéclaration de I'événament
BEFORE INMSERT ON Qualifications déclencheur.
FOR EACH ROW
DECLARE Déclaration des variables
v_compteur Pilota,nbHVol%TYFE; locales
V_rican Pilote. nom$TYPE;
BEGIN Corps du déclencheur.
SELECT nbQualif, nom INTO v_compteur, v_nom Extraction et mise & jour
FROM Pilote WHERE brevet {NEW.brevet ; du pilote concerné par
IF v_compteur < 3 THENM la qualification.
UPDATE Pilote SET nbfualif = nbQualif + 1
WHERE brevet = NEW.brevet;
ELSE
RAISE_AFPLICATION_ERROR (-20100, 'Le pllote ' Renvol d'une erreur
|| wonom || ' a dé&jd 3 qualifications!'); utilisateur.
END IF;
END;

/

Le test de ce déclencheur peut étre réalisé sous SQL*Plus comme le montre la trace suivante.
On retrouve 1’ erreur utilisateur qui est levée en premier.

Tableau 7-31 Test du déciencheur

Ewﬁh’una:pt déclencheur

Sortie SAL*Plus

SQL> INMSERT INTO Qualifications
VALUES ('PL-27", 'A380',
*20-06-2006");

1 ligne créde.

SQL> SELECT * FROM Pilote;
BREVET HNOM NEHVOL COMP
FL-1 J.M Misztela 450 AF 3
PL-2 Thierry Cuibert 3400 AF 2
PL-3 Michel Tuffery 900 SING .

SQL> INSERT INTO (ualifications
VALUES ('"PL-1°', 'A3I80',
'20-06-2006") ;

ERREUR & la ligne 1

ORA-20100: Le pilote O.M Misztela a dé4a 3
qualifications! _

ORA-06512: & "SOUTOU.TRIGINSQUALIF", ligne 9
QRA-04088: erreur lors d'exécution du
déeclencheur ' SOUTOU. TRIGINSQUALIF'

@ Editions Eyrolles

363

PUSQL|

Comme linstruction RAISE, la procedure RATSE_APPLICATION_ERROR passe par la section
EXCEPTION (s'll en existe une) avant de terminer le déclencheur. En conséquence, sivous uti-
lisez aussi une section exception dans le méme bloc, il faut forcer la sortie du déclencheur par
la directive RATSE pour ne pas perdre le message d'erreur et surtout ne pas réaliser la mise a

jour de la base.

Afin d'illustrer cette importante remarque, ajoutons une section EMCEPTION au précédent
exemple. Cette section vérifiera I'existence du pilote.

Tableau 7-32 Décisncheur avec excepdons
Code PL/SQL Commentaires
CREATE TRIGGER TriglInaQualif Déclaration de '"événement
BEFORE INSERT OM Qualifications déclencheur.
FOR EACH ROW
DECLARE Déclaration des variables
v_compteur Pilots.nbHVol%TYPE; locales.
Ww_nom Pilote . .nom$TYPE;
BEGIN Corps du déclencheur.

SELECT nbQualif, nom INTO v_compteur,

FROM FPilote WHERE brevet

IF v_compteur < 3 THEN
UFDATE Filote SET nbQualif =
WHERE brevet

ELSE
RAISE APPLICATION ERRORT-
:NEW.brevet ||
END IF;
EXCEPTION
WHEN MO, DATA _FOUND THEN

RAISE APPLICATION ERROR (-20101,

de code brevet
WHEN OTHERS THEN .

:NEW.brevet ;

100,
' a déja 3 qualificatiens!');

v_nom
MEW . brevet;

Extraction et mise a jour
du pilote concerné par la
qualification.

nbgualif + 1

Renvole une erreur
utiisateur et annule
les mises & jour.

'‘Le pilote !

Sl efrelr au SELECT.
'Paz de pilote
'] :NEW.brevet) ;

Retour de 'etreur courante.

RAISE ;
END;
!

Le test d’erreur de ce déclencheur sous SQL*Plus est illustré dans le tablean suivant :

Tebleau 7-33 TVesi du déciencheur avec enceplions

Evénement déclencheur Sortie SQL*Plus
ERREUR & la ligne 1 :
SQL> INSERT INTO Qualifications ORA-20101: Pas de pilote ds code breveb gui?
VALUES (*gui?’, 'azs0', CRA-06512: & "SOUTOU.TRIGINSQUALIFT, ligne
*20-06-2006") ; 13
ORA-04088: erreur lors d'exdeution du

déclencheur 'SOUTOT. TRIGINSQUALIF'

364

& Editions Eyrolles

[chapitre n° 7

Proprammation svancés |

Pour que la cohérence soit plus compléte, il faudrait aussi programmer le déclencheur qui
décrémente la valeur de la colonne nbQualif pour chaque pilote conoerné par une suppres-
sion de lignes dans la table Qualifications. Il faut raisonner ici sur la directive :0LD.

Quand utiliser la directive :OLD ?

Chaque enregistrement qui tente d’étre supprimé d'une table qui inclut un déclencheur de type
DELETE FOR EACH ROW, estdésigné par :0LD au niveau du code du déclencheur. L'accés anx
colonnes de ce pseudo-enregistrement dans le corps du déclencheur se fait par la notation
pointée.

Programmons le déclencheur TrigDelQualif qui surveille les suppressions de la table
Qualifications et décrémente de | la colonne nbQualif pour le pilote concerné par la
suppression de sa qualification.

L’'événement déclencheur est ici AFTER DELETE car il faudra s”assurer gue la suppression n'est
pas entravée par d'éventuelles contraintes référentielles. On utilise un déclencheur
FOR EACH ROW, car s’il se produit une suppression de toute la table (DELETE FROM
Qualifications;) on exécutera autant de fois le déclencheur qu’il y a de lignes supprimées.
Le code minimal de ce déclencheur (on ne prend pas en compte le fait qu'il n’existe plus de
pilote de ce code brevet) est décrit dans le tableau suivant :

Tableau 7-34 Déclenchewr aprés suppression

Code PL/SQL Commentaires

CREATE THIGGER TrigDelQualif Déclaration de I'événement
AFTER DELETE ON Qualifications déclencheur.
FOR EACH ROW

BEGIN Corps du déclencheur.

UPDATE Pilote SET nbfualif = nbQualif - 1 Mise & jour du pilote
WHERE brevet = 0LD .brever; concerné parla
END; suppression.
/

En considérant les données initiales des tables, le test de ce déclencheur sous SQL*Plus estle
suivant :
Tableaa 1-35 Test du déciencheur

Evénement déclencheur Sortie SOL*Plus

2 ligneis) supprimés(s).
S0L> DELETE FROM CQualifications SQL> SELECT * FROM Pilote;

WHEEE typa = "A320'; BREVET NOM NEHVOL COMP MNBEDUALIF
FL-1 J.M Misztela 450 aF 2
PL-2 Thierry GQuibert 3400 aF a
PL=3 Michel Tuffery 500 SING I

@ Editions Eyrolles 365

PUSQL|

366

Pour tester le fait que I'instruction UPDATE n’affecte aucune ligne, il faudrait utiliser un
curseur implicite (SQLSFOUND) et une erreur utilisateur (voir le paragraphe « Utilisation du
curseur implicite » dans la section « Exceptions »).

Quand utiliser & la fois les directives :NEW et :OLD ?

Seuls les déclencheurs de type UPDATE FOR EACH ROW permettent de manipuler i la fois les
directives :NEW et :0LD. En effer, la mise & jour d'une ligne dans une table fait infervenir une
nouvelle donnée qui en remplace une ancienne. L'accés aux anciennes valeurs se fera par la nota-
tion pointée du pseudo-enregistrement :0LD. L'acceés aux nouvelles valeurs se fera par :NEW.

La figure suivante illustre ce mécanisme dans le cas de la modification de la colonne brevet du
dernier enregistrement de la table Qualifications. Le déclencheur doeit programmer deux
mises i jour dans la table Pilote,

Flgure 7-13 Principe du déclencheur TrigUpdQualif

Pllate
EREVET HOM NEHVOL QOMP NBQURLIF
PL-1 J.M Mipztela 450 AP
PL-2 Thisrry Suibert 3400 RY
FL- 3 HMichel Tulfery 909 EImG
Diéclenchenr 2
Qualifications TrigUpdQualif
| HEW VET TYPA EXFIRE
1 I B l PL-1
UPDATE PL-1
Fli=1
Pliz2
TS

L'événement déclencheur est ici AFTER UPDATE car il faudra sassurer que la suppression
n'est pas entravée par d’éventuelles contraintes référentielles. Le code minimal de ce déclen-
cheur (on ne prend pas en compte le fait qu'un pilote n’ait pas pu étre mis a jour) est décrit
dans le tablean 7-33.

En considérant les données présentées i la figure précédente, le test de ce déclencheur sous
SQL*Plus est présenté dans le tableau 7-34.

Synthése a propos de :NEW et :0OLD

Le tablean 7-35 résume les valeurs contenues dans les pseudo-enregistrements : OLD et : NEW
pour les déclencheurs FOR EACH ROW. Retenez que seuls les déclencheurs UPDATE peuvent
manipuler & bon escient les deux types de directives.

Attention, Oracle ne vous prévient pas a la compilation que vous utiisez une variable :0LD dans
un declencheur INSERT (ou : NEW dans un déclencheur DELETE), et qui sera toujours nulle.

& Editions Eyrolies

[chapitre n° 7

Programmation avancés

Tablean 7-36 Déclenchear aprés modification

Code PL/SQL

Commentalres

CREATE TRIGOER TrigUpdgualif
AFTER UPDATE OF brevet ON Qualificarions
FOR EACH ROW

Déclaration de 'événament
déclencheur.

DECLARE Déclaration des variables
v_compteur Pilote ntHVeldTYPE; locales.
V_ten Pilote. nom$TYPE;
BEGIN Carps du déclencheur.
SELECT nbiualif, nom INTO v_compteur, v nom
FROM Pileote WHERE brevet = NEW.brewvebt;

IF v_compteur < 3 THEN
UPDATE Pilote SET nbgualif = nbQualif + 1
WHERE brevet = :NEW.brevet;
UPDATE Pilote SET nbfualif = nblualif - 1
WHERE brevet = :0LD.brevet;

ELSE
RAISE APPLICATION ERROR (-20100, 'Le pilate ' ||
‘NEW.brevet || ' a déja 3 gqualifications!l');
END IF;
EXCEPTION

RAISE APPLICATION ERROR(-20101, 'Pas de pilote

Mise & jour des pilotes
concernés par la
modification de la
qualification.

Rervoi d'une erreur
utilisateur.

Rervol d'une erreur

de code brevet ' || :NEW.brevet); utilisateur.
WHEN OTHERS THEN
RAISE ; Retour de I'erreur courante.
END;:
/
Tabiean 7-37 Tes! du décienchewr
Evénement déclencheur ‘Sortie SQL*Plus

1 ligne mise & jour.
SQL> SELECT * FROM Pilote;

S0L> UPDATE Qualifications
SET brevet = "PL-2"

= BREEVET NOM
WHERE brevet = 'PL-3'

J.M Migztela

NEHVOL COMP REQUALIF

450 AF 3

END typa = "A330+; PL-1
PL-2 Thiesrry Guibert 3400 AF 2
PL-3 ¥ichel Tuffery a00 SING 0

Condition dans un déclencheur (WHEN)

11 est possible de restreindre I'exécution d’un déclencheur en amont du code de ce dernier. La
clause WHEN, placée avant le corps du déclencheur, permet de programmer cette condition. Si
celle-ci est réalisée pour 1 enregistrement concerné par I'événement, le déclencheur s’ exécute.

Dans le cas inverse, le déclencheur n'a aucun effet.

@ Editions Eyrolles

367

PUSQL|

368

Tableau 7-38 Valeurs de :0LD &1 .NEW

Nature de

Pévénement L0LD. colonne TNEW. ool onne
INSERT NULL Nouvelle valeur.
UPDATE Ancienne valeur. Nouvelle valeur.
DELETE Ancienne valeur. NULL

La condition contenue dans la clause WHEN doit &tre une expression SOL, et ne peut inclure de
requétes ni de fonctions PL/SQL.

Restreignons par exemple la régle de gestion que nous avons programmée jusqu’a présent —
tout pilote ne peut étre qualifié sur plus de trois types d'appareils — aux appareils de type
'A320, 'A330 ou 'A340". Il suffira de modifier les en-tétes des trois déclencheurs de la maniére
suivante (exemple pour le déclencheur d'insertion). Notez que dans la condition WHEN, les
« pseudo-enregistrements » NEW et OLD §'écrivent sans le symbole :.

Tabieau 7-39 Déclenchewr conditionnel

Code PL/SQL Commentaires
CREATE OF REPLACE TRIGGER TrigInsQualif Déclaration de l'événement
BEFORE INSERT ON Qualifications déclencheur.

FOR EACH ROW

WHEM (NEW.typa = 'A320' OR NEW.typa = 'R340° Condition de

OR NEW.typa = 'A330') déclenchement.

DECLARE Corps du déclencheur.
BEGIN
END;

/

Le tableau suivant présente un jeu de test pour ce déclenchewur.

Tableau 7-40 Test du décienchew

Evénement déclencheur Evénement non déclencheur
INSERT INTC Qualifications INSERT INTC Qualifications
VALUES ('PL-2',"A340','20-06-2006"'); VALUES ('PL-2','A380', '20-06-2006"'});

Corrélation de noms (REFERENCING)

La clause REFERENCING permet de mettre en corrélation les noms des psendo-enregistrements
(:0LD et :MEW) avec des noms de variables. La directive PARENT concerne les déclencheurs

& Editions Eyrolles

[Chapiiren 7

Proprammation svancés |

&

portant sur des collections nesred tables (extension objet). La condition écrite dans la directive
WHEMN peut utiliser les noms de variables corrélées.

Utilisons cette clause sur le précédent déclencheur pour renommer le pseudo-enregistrement
: NEW par la variable nouveau. Cet enregistrement est opérationnel dans la clause WHEN et dans
le corps du déclencheur.

Tahiieau 7-41 Corréiation de noms

Code PL/SQL Commentaires
CREATHE OR REFLACH TRIGOER TrigIns{ualif Evénemert déclencheur.
BEFORE INSERT ON Qualifications Renomme :NEW en nouvean.

REFERENCING NEW AS nouveau
FOR EACH ROW
WHEN (nouvead.typa = 'A320' CR
nouveau.typa='A340' OR nouveau.typa='A3I30')
DECLARE

DECLARE Corps du déclencheur,

BEGIN

.WHERE brewvet = :nouveau. brevet;

END;

Regroupements d’événements

Des événements (INZERT, UPDATE ou DELETE)} peuvent étre regroupés au sein d'un méme
déclencheur s'ils sont de méme type (BEFORE ou AFTER). Ainsi, un seul déclencheur est a
coder et des instructions dans le corps du déclencheur permettent de retrouver la nature de
I'événement déclencheur :

IF (INSERTING) THEN.exécute un bloc dans le cas d’une insertion ;

IF (UPDATING|'colonne')) THEN... exécute un bloc dans le cas de la modification
d’'une colonne ;

IF (DELETING) THEN..exécute un bloc en cas d'une suppression.

Utilisons cette fonctionnalité pour regrouper les déclencheurs de type AFTER que nous avons
Programimes.

Si vous regroupez ainsi plusieurs déclencheurs mono-événements en un déclencheur multi-
evenements, pensez a supprimer les declencheurs meno-événements (DROP TRIGGER..)
pour ne pas programmer involontairement plusieurs fois la méme action par l'intermédiaire des
différents déclencheurs existants.

@ Editions Eyrolles 369

PUSQL|

370

Tahleau 1-32 Regroupement d'éuinements

Code PL/SOL Commentaires
CREATE OR REPLACE TRIGGER TrigDelUpdQualif Regroupement de deux
événements déclencheurs.

AFTER DELETE OR UPDATE OF brevet ON Qualifications

FOR ERACH ROW

DECLARE
E\;GIN Bloc exécuté en cas de
IF |DELETING) THEN DELETE.

ELSIF (UPDATING('brevet')) THEN

Bloc exécuté en cas de
- UPDATE de la colonne
END IF; brevet.

END;

Déclencheurs d’état (statement triggers)

Un déclencheur d’état est déclaré sans la directive FOR EACH ROW. Il m’est pas possible
d'avolr acces aux valeurs des lignes mises & jour par I'événement. Le raisonnement de tels
déclencheurs porte donc sur la globalité de 1a table et non sur chaque enregistrement parti-
culier.

Dans le cadre de notre exemple, programmons le déclencheur périoded¥Qualifa qui inter-
dit toute mise & jour sur la table Qualifications pendant les week-ends. Quel que soit le
nombre de lignes concernées par un événement, le déclencheur s'exécutera une seule fois
avant chaque événement sur la table Qualifications.

Tableau 7-13 Décienchewr d'éiat

Commentaires

Déclaration des
évenements déclencheurs.

Code PL/SQL

CREATE TRIGGER péricdediQualifs
EEFCEE LDELETE OR UPDATE
OR INSERT ON Qualifications

BEGIN Bloc exécuté avant chague
IF TO CHAR(SYSDRTE, 'DAY') IN mise & jour de la table
{"SABMEDI', 'DIMANCHE') THEN Qualifications.

RAISE_APPLICATION_ERROR (=20102, 'Désolé pas
de migses & jour des cqualifs le week-end.!');
END IF ;
END;
/

Pour chaque actualisation de la table, le déclencheur renvoie le résultat suivant sous SQL *Plus
{ga tombe bien, j"ai écrit ce code un dimanche...).

& Editions Eyrolles

[chapitre n° 7

Programmation avancés

Tahiean 7-44 Test du déclenchenr

Evénements déclencheurs Sortle SOL'Plus
EFREUR & la ligne 1 :
UFDATE Qualificatieons SET .. ORA-20102 : Désolé pas de mises a jour des

gqualifs le week-end.

INSERT INTO Qualifications VALUES. ORA-06512: & "SOUTOU.PERIODEOKQUALIFS",
ligne 2

DELETE FROM Qualifications.. ORA-04088: erreur lors d'exécution du
déclencheur !SOUTOU, PERIODECKQUALIFS'

Déclencheurs INSTEAD OF

Un déclencheur TNSTEAD OF permet de metire & jour une vue multitable qui ne pouvait étre
modifiée directement par INSERT, UPDATE ou DELETE {voir chapitre 5). Nous verrons que
seulement certaines vues multitables peuvent éwe modifiables par 1'intermédiaire de ce type
de déclencheur. L'expression instead of est explicite : le déclencheur programmera des actions
au lien d'insérer, de modifier ou de supprimer une vue.

La version 7 d"Oracle n’ offrait pas cette possibilité. Ce mécanisme intéresse particulizrement
les bases de données réparties par liens (database links). Il est désormai s plus facile de modi-
fier des informations provenant de ditférentes tables par ce type de déclencheur.

Caractéristiques

Les déclencheurs INSTEAD OF :
tont intervenir la clause FOR EACH ROW;
ne s'utilisent que sur des vues ;

ne font pas intervenir les options BEFORE et AFTER.

Loption de contréle (WITH CHECE OPTION)d'une vue n'est pas vérifiée lars d'un événement
(ajout, modification ou suppression) si un déclencheur INSTEAD OF est programme sur cet
événement. Le corps du déclencheur doit donc explicitement prendre en compte la contrainte.

Il n'est pas possible de spécifier une liste de colonnes dans un déclencheur INSTERD OF
UPDATE, le declencheur s'executera guelle gue soit la colonne modifige.

Il n'est pas possible d'utiliser la clause WHEN dans un déclencheur INSTEAD OF.

Exemple

Considérons la vue VueMultiCompPil résultant d une jointure entre les tables Compagnie et
Pilote. Nous avons vu au chapitre 5 que cette vue n’était pas modifiable sous SQL. Nous
allons programmer un déclencheur TNSTEAD OF qui va permettre de la changer de maniére
fransparente.

@ Editions Eyrolles 371

FUAIL|

Flgure 7-14 Vue multitable & modifier

Pilote
bravet nom nbiVel | compa
PL-1 Agnes Bidal 450 AF
PL-2 Aurélia Ente 900 AF
Compagnie [PLa Florence Pénissal 1000 | SING
comp |nrue |rue ville |nomComp
AF 124 | Port Royal Paris Air France
SING |7 Campardls Singapour Singapore AL

CREATE VIEW VueMultiCompPil

AS BELECT o.comp,o.nomloep;p. brevet, p.nom, p.nbivVol
FROM Pillote p, Compagnie c
WHERE .comps = ©.oomp;

TP MO BREVET HOM

AT,

AP Alr Frapes
AP Air P

EING Sknoga,

kgnés Bidal 450
Pl-2 Aurflin Enve L 1]
AL Fl-1 ¥Florence Parissel 1000

Le déclencheur qui gére les insertions dans la vue est chargé d'insérer, 4 chague nouvel ajout,
un enregistrement dans chacune des deux tables.

Tableaa 7-33 Déclencheur INSTEAD OF

CREATE TRIGGER TrighulieuInsererVue Déclaration de la
INSTEAD OF INSERT ON VueMulticCompPil substitution de '"événement
FOR EACH ROW déclencheur.

DECLARE

v_coip NUMBER := 0;
v _pil NUMBER := 0;

BEGIN Corps du déclencheur.

SELECT COUNT(*) INTO w_pil FROM Pilote
WHERE brewet = :NEW.brevet;

SELECT COUNMT(*) INTO v_comp FROM Compagnie
WHERE comp = :NEW.COmp;

IF v.,pil = 0 BND v_comp > 0 THEH
RATSE_AFFLICATION _ERROR({-2010Z, 'Le pilote Cas d'erreur.

et la eompagnie existent dédilr);

ELSE
IF v comp = O THEN Ajout dans la table

INSERT INTO Compagnie VALUES Compagni e,

{ : NEW. compy, NULL, NULL, NULL, : NEW. homConp) ;
END IF;

IF v.pil = 0 THEN
INSERT INTO Pilote VALUES

Ajout dans latable Pilote.
{:NEW.brevet , :NEW.nom, :NEW. nbHVo 1, :NEW. comp) ;

END IF;
END IF;
END;

£

arz Editfons Eyrofies

[chapitre n° 7

Proprammation svancés |

Pour chaque mise & jour de la vue, le déclencheur insérera un pilote, une compagnie ou les
deux, suivant I'existence du pilote et de la compagnie. L'erreur programmée dans le déclen-
cheur concerne le cas pour lequel le pilote et la compagnie existent déja dans la base. Le
tableau suivant décrit une trace de test de ce déclencheur :

Tahiean 7-46 Tes! du déclenchenr

Evénement déclencheur Vérifieation sous SQL*Plus

S0L> SELECT * FROM Pilote;
INSERT INTO VueMultiCeompPil EREVET NOM NEHVOL COMP
VALUES | 'AERTI', 'R&ris = = srmmes codembsmmne e s s pr e e s
Toulsuse', 'FL-4', '"Pascal PL-1 Agnés Bidal 450 AF

Larrazet', 5800);
PL~-4 Pascal Larrazet 5600 AERT
1 ligne créée.

5QL> SELECT * FROM Compagnie;

COMP NRUE RUE VILLE NOMCOMP

STNG T Camparols Singapour Singapore AL

nF 124 Fort Royal Paris Rir France
ABRT Réris Touleuse

SQL> SELECT * FROM VueMulticCompPil;

COMP NOMCOMP EREVET NOM NEHVOL

AF Aiy France PL-1 Rgnéy Bidal 450

AF Bir France PL-2 Burélia Ente 900

SING Singapore AL PL-3 Florence Périssel 1000

AERI Béris Teulouse FL-4 Pascal Larrazet 5600

Transactions autonomes

Un déclencheur peut former une transaction (utilisation possible de COMMIT, ROLLBACK et
SAVEPOINT) si la directive PRAGMA AUTONCMOUS TRANSACTION est employée dans la partie
déclarative (voir figure 7-1). Une fois démarrée, une telle transaction est autonome et indépen-
dante (voir le début de ce chapitre). Elle ne partage aucun verrou ou ressource, et ne dépend
d'aucune transaction principale. Ces déclencheurs autonomes peuvent en outre exécuter des
instructions du LDD (CREATE, DROP ou ALTER) en utilisant des fonctions natives de PL/SQL
pour le SQL dynamique (voir la section suivante).

Les modifications faites lors d'une transaction autonome deviennent visibles par les autres
transactions quand la transaction autonome se termine. Une transaction autonome doit se
terminer explicitement par une validation ou une invalidation. Si une exception n’est pas trai-
tée en sortie, la transaction est invalidée.

@ Editions Eyrolles 373

PUSQL|

374

Déciencheurs LOD

Etudions 4 présent les déclencheurs gérant les événements liés 3 la modification de la structure
de Ia base et non plus 4 la modification des données de la base. Les options BEFORE et AFTER
sont disponibles comme le montre la syntaxe générale suivante. La directive DATABASE
précise que le déclencheur peut s’exécuter pour quiconque lance 'événement. La directive
scHEMA indique que le déclencheur ne peut s'exécuter que dans le schéma courant.
CREATE [OR REFLACE] TRIGGER [schéma.] nombéclencheur
EEFORE | AFTER { actionStructureBase [OR actionStructureBase].. }
ON { [schéma.] SCHEMA | DATABASE } }
Bloo PL/SQL (variables BEGIN instructions END ;)
| CALL nomSousProgramme(paramétres) }
Les principales actions sur la structure de la base prise en compte sont :
ALTER pour déclencher en cas de modification d'un objet du dictionnaire (table, index,
séquence, efc.).
COMMENT pour déclencher en cas d’ajout d'un commentaire.
CREATE pour déclencher en cas d’ajout d"un objet du dictionnaire.
DROP pour déclencher en cas de suppression d'un objet du dictionnaire.
GRANT pour déclencher en cas d'affectation de privilége 4 un autre utilisateur ou réle.
RENAME pour déclencher en cas de changement de nom d'un objet du dictionnaire.
REVOKE pour déclencher en cas de révocation de privilége d'un autre utilisateur ou role.
Le déclencheur suivant interdit toute suppression d’objet, dans le schéma soutou, se produl-
sant un lundi ou un vendredi.

Tabieas 1-41 Déciencheur LOD

Code PL/SQL Commentalres
CREATE TRIGGER surveilleDROPSoutou Evénement déclencheur
BEFORE DROP ON soutou.SCHEMA LDD.

BEGIN Corps du déclencheur.

IF TO_CHAR(SYSDATE, 'DAY') IN

{ 'LUNDI ', 'VENDREDI') THEN
RAISE_APPLICATICN ERROR(-20104, 'Désclé pas Retour d'une erreur.
de degstruction ce jour..') ;
END IF ;
END;

/

Déciencheurs d'instances

Le démarrage on 1'arrét de la base (starfup ou shutdown), une erreur spécifique (MO_DATA_
FOUND, DUP_VAL_ON_INDEX, efc.), une connexion ou une déconmexion d'un utilisatenr

& Editions Eyrolles

[chapitre n° 7

Proprammation svancés |

@ Editions Eyrolles

peuvent étre autant d’événements pris en compte par un déclencheur d'instances. Les événe-
ments précités sont programmés i l'aide des mots-clés STARTUP, SHUTDOWN, SUSPEIND,
SERVERERROR, LOGON, LOGOFF, dans la syntaxe suivante :

CREATE [(R REPLACE] TRIGGER [schéma.] nomDeclencheur
EEFORE | AFTER { événementBase [OR événementBase].. }
N { (schéma.] SCHEMA | DATABASE } }

Bloc PL/SQL (variables BEGIN instructicons END ;)
| CALL nomSousProgramme(paramétres) }

Les restrictions régissant ces déclencheurs sont les suivantes :
Seule 'option AFTER est valable pour LOGON, STARTUFP, SERVERERROR, et SUSPEND.
Seule 'option BEFORE est valable pour LOGOFF et SHUTDOWN.

Les options AFTER STARTUF et BEFORE SHUTDOWN s'appliguent seulernent sur les déclen-
cheurs de type DATABASE.

Les erreurs ORA-01403, ORA-01422, ORA~01423, ORA-01034 et ORA-04030 ne sont pas
prises en compte par I’événement SERVERERROR.

Le déclencheur suivant insére une ligne dans une table qui indique 1'utilisateur et 'heure de
déconnexion (sous SQL*Plus, via un programme d'application, etc.). On suppose la table
Trace|événement VARCHARZ (100)) créée.

Tabigau 7-48 Déciencheurs d'insiances

Code PL'SQL Commentaires
CREATE TRIGGER espionDéconnexion Evénement déclencheur.

BEFORE LOGOFF ON DATABASE
EECIN Carps du déclencheur

INSERT INTO Trace VALUES (USER || exécUté A chague
' déconnexien le ' || déconnexion.
TO_CHAR (SYSDATE, 'DD-MM-YYY¥Y HH24:MI:S5'));
END;

Rppels de sous-programmes

Un déclencheur peut appeler directement par CALL (ou dans son COrps) umn sous-programme
PL/SQL ou une procédure externe écrite en C, C4++ ou Java. Le tableau suivant décrit quelques
appels de sous-programmes qu'il est possible de coder dans un déclencheur (quel que soit son
type). On suppose la procédure PL/SQL suivante existante.

CREATE PROCEIUERE sousProgDeclencheur (param IN VARCHARZ) IS

375

[Partie N PUSQL|

BEGIN
INSERT INTO Trace VALUES ('sousProgDéclenchenr (' || param || ')");
END sousProgDéclencheur;

Tableau 7-30 Appels de sous-programmes dans un déclencheur

Code PL/SQL Commentaires
CREATE TRICOER espdonConnexion Appel direct d'une
AFTER LOGON ON DATRBASE procédure PL/SQL

CALL soutou.sousProgDéclencheur | SYSDATE)
/

CREATE TRIGGER TrigDelTrace Appel dans le corps du
AFTER SERVERERROR ON soutou.SCHEMA déclencheur d'une
BEGIN procédure PLISQL

sousProgDéclencheur ('Une erreur
8" Yest produite’);

END;

£

CREATE TRIGGER Ex_trig Java Appel dans le corps du
AFTER DELETE ON Compagnie FOR EACH ROW déclencheur d'un sous-

BEGIN programme Java (voir
Deux]lémeExenpl e affiche(: OLD nomecomp) ; chapitre 11).

END;

/

Gestion des declencheurs

Un déclencheur est actif, comme une contrainte, dés sa création. Il est possible de le désactiver,
de le supprimer ou de le réactiver i la demande grice aux instructions ALTER TRIGGER (pour
agir sur un déclencheur en particulier) ou ALTER TABLE (pour agir sur tous les déclencheurs
d'une table en méme temps). Le tableau suivant résume les commandes SQL nécessaires 4 la
gestion des déclencheurs :

Tahleau 7-50 Gestion des géciencheurs

saL Commentaires

ALTER TRIGGER nomDéclencheur COMPILE; Recompilation d'un déclencheur.

ALTER TRIGGER nomDdéclencheur DISABLE; Désactivation d'un déclencheur.

ALTER TABLE nomTable DISABLE ALL TRIGGERS; Désactivation de tous les déclenchaurs
d'une table.

ALTER TRIGGER nomDéclencheur EMABLE; Réactivation d'un déclencheur.

ALTER TABLE nomTalle EMABLE ALL TRIGGERS; Réactivation de tous les déclencheurs
d'une table.

DROP TRIGUER nomDéclencheur; Suppression d'un déclencheur.

376 & Editions Eyrolles

[chapitre n® 7 Proprammation avancée

Ordre d’exécution

La séquence d'exécution des déclencheurs est théoriquement la suivante. En pratique certaines
exécutions peuvent ne pas suivre cet ordre !

tous les déclencheurs d’état BEFORE ;

analyse de toutes les lignes atfectées par I'instruction SQL :

tous les déclencheurs de lignes BEFORE ;

verrouillage, modification et vérification des contraintes d’intégrité ;
tous les déclencheurs de lignes AFTER ;

vérification des contraintes différées ;

tous les déclencheurs d’état AFTER.

Tahles mutantes

11 est, en principe, interdit de manipuler la table sur laquelle se porte le déclencheur dans le

corps du déclencheur lni-méme. Oracle parle de mutating rables (erreur : ORA-04091: table
en mutation, déclencheur/fonction ne peut la voir).

Cette restriction concerne les déclencheurs de lignes (FOR EACH ROW), et les déclencheurs

d'état qui sont exécutés via la directive DELETE CASCADE. Les vues modifiables par des

déclencheurs INSTEAD OF ne sont pas considérées comme des tables mutantes.

L'exemple suivant décrit la programmation d’un déclencheur qui compte les lignes d'une table
aprés chaque nouvelle insertion. L'erreur n'est pas soulignée & la compilation mais est levée
dés la premiére insertion.

Tablesu 7-51 Déclencheur (aile muianie)

Code PL'SGL Trace SQL*Plus
CREATE OR REPLACE TRIGCEER TrigMutantl INSERT INTO Trace VALUES ('Insertion
AFTER INSERT ON Trace FOR EACH ROW le ' || TO_CHAR(|SYSDATE, 'DD-MM-YYYY
DECLARE HHZ4:MI:85'));
v nombre NUMBER; ERREUR & la ligne 1 :
BRI ORA-04091: table SOUTOU.TRACE en
SELECT COUNT{*) INTO v_nombre mutation, ,&é&le\ﬂeheurf_fbngtion: fa
FROM Trace; peut la volr
DEMS_OUTPUT.PUT_LINE ORA-06512: A "SOUTCOU, TRIGMUTANTL",
{'Nombre de traces : ' ligne 4
|| w_nombre} ; ORA-04088: erreur lors d'exécution du
END; déeclencheur 'SOUTOU. TRIGMUTANTL'
i

@ Editions Eyrolles 377

PUSQL|

378

Une solution consiste, dans ce cas, i programmer le méme code dans un déclencheur d’état (il
suffit d'enlever la clause FOR EACH ROW). Pour des cas plus complexes, il fallait programmer
(avant la version 11g) plusieurs déclencheurs dont le code et les variables sont définis dans un

paquetage & part.

Activation et désactivation

Bien qu'il soit possible de désactiver ou réactiver un déclencheur par ALTER TRIGGER ou
ALTER TABLE, tout déclencheur créé était de fait actif (enable) avant la version 11g. Depuis la
version 12, un déclencheur peut &tre désactivé dés sa création. En 1'absence de la directive
DISAELE ou en présence de la directive ENABLE (qui est appliquée par défaut), tout déclen-
cheur sera actif dés sa création. La syntaxe simplifiée qui permet la déclaration d'un tel
déclencheur est la suivante :

CREATE [OR REPLACE | TRIGGER [schéma.] nomTrigger
. { ENABLE | DISABLE }
BEGIN

EMND;
/

Ordre d’exécution (FOLLOWS)

Bien qu’Oracle permette que plusieurs déclencheurs soient programmeés pour le méme événe-
ment, il n’était pas possible de connaitre 1'ordre dans lequel les déclencheurs s’exécutaient.
Depuis la version 11g, la directive FoLLows précise cet ordre. La syntaxe simplifiée qui permet
la déclaration d'un tel déclencheur est la suivante :

CREATE [OR REPIACE] TRIGGER [schéma.] nomTrigger
FOLLOWE [schéma.] nomTriggerfulfexecutedvant ...
BEGIN

EMND ;
/

Lexemple suivant déclare deux déclencheurs portant sur le méme événement (avant chaque
insertion de la table Tyvpehwvion).

CEEATE (R REPLACE TRIGGER Trig follows_1
BEFORE INSEET ON TypelAvion FOR EACH ROW
BEGIN
DEMS CUTPUT.put_line('Trig_follows 1 en exécution’});
END;
/

& Editions Eyrolles

[chapitre n° 7

Programmation avancés

| CREATE OR REPLACE TRIGGER Trig follows 2
BEFORE INSERT (0 Typelvion FOR EACH ROW
BEGIN
DEMS_OUTEUT. put_line('Trig_follows. 2 en exécution');
EMD;
/

Si on désire que le premier déclencheur se lance toujours aprés le deuxigme, il faut recompiler
ce dernier de la maniére suivante (il n’est pas possible de faire une rétérence avant, i savoir
déclarer un déclencheur référencant un déclencheur inexistant) :

CREATE OR REFLACE TRIGEER: Trig_folleows_1
BEFORE INSERT (N Typelvion FOR EACH ROW
FOLLOWS Trig follows 2
BEGIN
CEMS_OUTEUT.put_line('Trig_follows_1 en exécution');
END;
/

Déclencheur composeé

Un déclencheur composé (compound trigger) permet de programmer plusieurs blocs pour
différents événements. Cette technique est particuliérement utile pour pallier le probléme des
tables mutantes.

Le corps d"un déclencheur composé est constitué d'une éventuelle section de variables globales
et d'au moins un (jusqu’i quatre) blocs PL/SQL correspondant i la chronelogie des événe-
ments au niveau ‘de la ligne ou de 1'éat. Les blocs peuvent contenir des variables locales.
Chaque section peut utiliser les directives TNSERTING, UPLATING et DELETING. La syntaxe
simplifiée qui permet la déclaration d'un tel déclencheur est la suivante :

CREATE [OR EEFPLACE]| TRIGGER [schéma.] nomTrigger
FOR { DELETE | INSERT | UFLATE

[OF coll [, col2]...] }
[OR { DELETE | INSERT | UFDATE [OF coll [, eol2]... 1]...
ON { [schéma. | nomTable | [schéma.] nomVue }

COMPOUND TRIGGER

-— Variables globales
BEFORE STATEMENT IS
EEGIN

END' BEFORE STRTEMENT ;
AFTER STATEMENT IS
BEGIN

@ Editions Eyrolles 37

PUSQL|

380

END AFTER STATEMENT;
BEFORE EACH ROW IS
BEGIN

END BEFORE EACH ROW;
AFTER EACH ROW IS
BEGIN

END AFTER EACH ROW;

END nomTrigger;

/

Le déclencheur suivant traque les ajouts et les suppressions dans la table TyvpefvionBis. Un
tableau fait office de variable globale et permet de tracer le code aprés une insertion multiple
€t une suppression collective.

CEEATE TRIGGER TrigCompose FOR DELETE OR INSERT ON TypelvionBis

COMPOUND TRIGGER
TYPE typav_tytsb IS TABLE OF VARCHARZ(30) INDEX EY BINARY TNTEGER;:
tab typav_tytab;
i NUMEER := 0;
BEFORE STATEMENT IS
BESIN
i 1= d41;
CASE
WHEN INSERTING THEN tab{i) := 'Avant insertion STATEMENT®;
WHEN DELETING THEN tab{i} := 'Avant suppression STATEMENT';
END CASE;
END BEFORE STATEMENT;
AFTER STATEMENT IS
BEGIN
i 1= 141;
tab (i) r= '"Aprés STATEMENT';
FOR 1 IN 1 .. tab.last LOOP
[EMS_OUTEUT. FUT_LINE (tab(i));
END LOOPE;
END AFTER STATEMENT;
BEFORE EACH ROW IS
BEGIN
i = d+1;
tab(i}) := 'Avant é&vénement niveau ligne';
END BEFORE EACH ROW;
AFTER EACH ROW IS

& Editions Eyrolles

[chapitre n° 7

Programmation avancés

BEGIN
1 o= i+l
CASE
VHEN INSERTING THEN tab(i) := :NEW.typa||' inséré’;
WHEN DELETING THEN tab(i) := :NEW.typa||' supprimé';
END CASE;

END AFTER EACH ROW;
END TrigCompose;
g

En considérant les tables et les données suivantes :

CREATE TAELE TypeAvion ({typa VARCHARZ (5}, nomtype VARCHARZ (30));
CREATE TABLE TypehAvionBis (typa VARCHARZ (5),nomtype VARCHARZ (30));
INSERT INTO Typelvion VALUES ('A320','Biréacteur Airbus 320');

INSEET INTO Typefvion VALUES (*A340', 'Quadrirédacteur Adrkbus 340');

La trace de 1'msertion multiple dans la table concernée par le déclencheur décrit la chrono-
logie des actions.

90L> INSERT INTO TypehvicnBis SELECT * FROM Typelvion;
Avant insertion STATEMENT

Avant événement niveau ligne

2320 inséré

Avant événement niveau ligne

2340 inseéreé

2prés STATEMENT

2 lignels) créée(s).

Les principales restrictions régissant ce type de dédencheurs sont les sulvantes :

Seuls les déclencheurs LMD peuvent étre composes.

Il n'est possible de déclarer un bloc d'exceptions que dans une section particuliére (aucune
exception globale n'est permise).

Seule la section BEFOFEE ERCH ROW peut modifier une valeur de type NEW.

Résolution au prohieéme des tahles muianies

Le déclencheur composé convient parfaitement pour résoudre le probléme des tables mutantes.
Les sections BEFORE STATEMENT et AFTER STATEMENT permettent de manipuler la table concer-
née par le déclencheur comme le montre I'exemple de la section précédente et sur les données

@ Editions Eyrolles

381

[Partie N PUSQL|

courantes. L' événement déclencheur i programmer était AFTER INSERT qui se traduit avec le
déclencheur composé de type FOR INSERT contenant les sections BEFORE STATEMENT pour
interroger la table et AFTER EACH ROW pour définir 1 action.

Tableau 1-52 Déclencheur composé pour résouidre mne 1ahie mutante

Code PL/SQL Trace SQL*Plus
CREATE OFR REPLACE TRIGGER TrigMutantl SQL>INSERT INTC Trace SELECT rnombiype
FOR INSERT ON Trace FROM Typelvion;
COMPOUND TRIGGER Nombre de traces : 0
v_nombre NITMBER; Nombre de traces : 0
BEFORE STATEMENT IS 2 ligne(s) créée(s).
BECIN
SELECT COUNT(*) INTC v_nombre SQL=INSERT INTD Trace VALUES
FROM Trace; {"Insertion le '||TO_CHAR(SYSDATE, 'DD-
END BEFORE STATEMENT; MM-YYYY HH24:MI:S55'));
AFTER EACH ROW IS Nombre de traces : 2
BEGIN 1 ligne crééea.
DEM3_OUTEUT. FUT_LINE
{ 'Mombre de traces : '||v_nombre); SQL>SELECT * FROM Trace;
END AFTER EACH ROW; EVENEMENT
EBp; - esaecsasesssssssssssssssssssssen =
! Biréacteur Airbus 320

Quadrirdactenr Birbus 340
Insertion le 23-11-2007 17:52:27

SOL dynamigue

PL/SQL inclut un aspect dynamique : en plus des directives SQL (LMD, LID}, il est possible
de construire automatiquement des instructions SQL du LDD et du LCD (CREATE, DROP,
GRANT et REVOKE) ainsi que des instructions relatives aux sessions (ALTER SESSION, SET
ROLE, efc.).

L utilisation de SQL dynamique dans un sous-programme PL/SQL permet de paramétrer des
instructions SQL au niveau de 1'organisation méme de la commande. Par exemple, il sera
possible de créer une table dont le nom passera en paramétre et ayant un nombre variable de
colonnes. Il sera aussi permis de construire automatiquement une requéte SQL en fonction des
choix d'un utilisateur. En plus des ordres simples, on pourra également paramétrer une suite
d'instructions dans un bloc PL/SQL ou 1'appel d'un sous-programme.

Une instruction SQL dynamique est stockée en tant que chaine de caractéres qui sera évaluée
4 Pexécution et non i la compilation (én opposition aux instructions SQL statiques qui
peuplent la majorité des sous-programmes).

382 & Editions Eyrolles

[chapitre n® 7 Proprammation avancée

Les instructions suivantes ne peuvent pas étre prises en compte par un ordre SQL dynamique :
CLOSE, DECLARE, DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, SET, WHEREVER.

Commeil n'y a pas de phase préalable de compilation, il n'y a pas de vérification des privileges
sur les objets avant 'exécution des instructions SAL qui sont construites dynamiquement.

Glassification

Les ordres SQL dynamiques peuvent étre classifiés en quatre familles :
instructions SQL (sauf les requétes) sans variables hites ;
instructions SQL, (sauf les requétes) avec un nombre connu de variables hites ;

instructions SQL (et requétes) avec un nombre connu de colonnes (dans le SELECT) et de
variables hites ;
instructions SQL (et requétes) avec un nombre inconnu de colonnes (dans le SELECT) et de
variables hites.
Ces familles d’instructions s’incluent entre elles : la famille 2 comprend la famille 1 ; la
famille 3 comprend la famille 2 ; la famille 4 comprend la famille 3. Le tableau suivant décrit
des exemples d’instructions en classifiant ces derniéres.

Tableau 7-53 Instructons SQL dynamigue sous PLSOL

Instruction Famibie

'DELETE FROM Avion WHERE nbHVel > 1000 1. Utilisation de EXECUTE IMMEDIATE.

"GRAMT SELECT OM Avion TO teste, soutou’

'INSERT INTO Avion 2. Utilisation de EXECUTE IMMEDIATE avec
VALUES (:variable, :wvariable, ..)' TUSING.

'DELETE FROM Avion WHERE immat = :variable

*SELECT comp, MAX(nbHVel) FROM Pllete 3. Utilisation de EXECUTE IMMEDIATE &vec
GROUP BY comp' USING et INTO.

'SELECT brevet, nbHVol FROM Pilote
WHERE comp = :variable '

'IMSERT INTO Avion (Inconnu) 4. Uilisation d'un curseur variable avec
VALUES (Tacommu ' OPEN, FETCH, &t CLOSE.

' SELECT Tagonny FROM Pilote
WHEEE comp = :wvariabls '

@ Editions Eyrolles 383

[Partie N PUSQL|

Utilisez au maximum les varables hétes (bind variables) pour vous prémunir d'éventuelles
injections de code SQL et ne pas dégrader les performances (dues a la régénération systéma-
tigue de plans d'exécution pour différentes valeurs en parametres).

11 existe deux méthodes pour construire des instructions: le paquetage DEMS_SQL et la
méthode native (EXECUTE IMMEDIATE). Avec ces deux approches, vous pourrez utiliser tout
type de donnée, méme les collections et les objets (user define). Depuis la version 11g, les
ordres SQL peuvent &tre construits a I'aide de CLOB (jusqu’a 32 Ko).

Utilisation de EXECUTE IMMEDIATE

La syntaxe de 'instruction PL/SQL EXECUTE IMMEDIATE, qui permet d'exécuter des ordres
SQL dynamiques des trois premiéres classifications, est la suivante.

EXECUTE IMMEDIATE chafneCaractéres
[INTO { wariable [,variable].. | typeRecord} |
[USING [IN | OUT | IN QUT] paramétre
[, [IN | CUT | I¥N OUT] paramétrel..]
[{RETURNING | RETURN} INTO paramétre [,paramétrel..]:

Le tableau ci-aprés décrit des exemples d utilisations réunis dans un bloc PL/SQL :

Tahlean 7-54 NEsadons de ENECUTE IMMEDIATE

Code PL/SQL Commentaites
DECLARE Déclaration des variables.
ordr e50LAdynani cque VARCHARZ (200) ;
pilote_record Pilote%ROWTYFPE;

blocPLSQL VARCHARZ (500) ;

w_immat VARCHARZ (6) := 'F-WILSS';
w_immat? VARCHARZ(6) := 'F-WIFG';
v_typehv CHAR(SZ) := 'Concorde’ ;
wv_nbHVel NIMBER(T,2) := 3650.70;
¥_comp VARCHARZ (4) := '2aF';
p_immat VARCHARZ(6) := 'F-WTSS';
v _brevet VARCHARZ(6) := 'PL-2';
EEGIN Famille 1.
EXECUTE IMMEDIATE 'DELETE FROM Avion Bans pafamétre.

WHEERE nbHVel > 1000 ';
EXECUTE IMMEDIATE 'CREATE TAELE AviencChazse
{immat VARCHARZ (), prixBurcos NUMBER)';

384 & Editions Eyrolles

[chapitre n° 7

Programmation avancés

Tablean 7-54 Uiiisations de EXECUTE IMMEDUNE (suite)

Code PLISQL Commentaires
ordresQldynamigque := 'INSERT INTO ZAwion Famille 2.
VALUES (:1, :2, =3, :4)'; Insertion paramétrée.
EXECUTE IMMEDIATE ordreS{Lldynamigque
USING v_immat, v _typeAv, v nbHVol, v _comp; Appel du sous-programme
blocPLSQL := 'BEGIN sousProg(:pl); END;'; SousProg.
EXECUTE IMMEDIATE blocPLIQL USING v_immat;
ordredgldynamique := 'SELECT * FROM Famille 3.
Pilote WHEHE brevet= zwl'; Extraction monoligne
EXECUTE TMMEDIATE ordreSgldynamigue INTO paramétrée.

pilote_record USING v_brevet;
END;
!

11 est bien sfir possible d'utiliser EXECUTE IMMEDIATE dans un sous-programme ou dans
un programme d’application (C, C4+, Java) en utilisant I'API du langage traduisant cefte
instruction. Par ailleurs, il est possible d’employer une section exception pour récupérer des
éventuelles erreurs d'exécution.

Uitilisation d'une variahle curseur

Les variables curseurs (REF CURSOR), décrites dans ce chapitre, permettent de programmer
les instructions SQL dynamiques les plus complexes (extraction paramétrée renvoyant
plusieurs lignes par exemple). On va retrouver I'utilisation des directives OPEM, FETCH et
CLOSE pour manipuler le curseur. La directive OPEN d'une variable curseur permettant de
construire une instruction SQL est 1a suivante :

| OPEN {variablecCurseur | :variableCurseurHfte }

FOR chaineCaracteéres
[USING paramétre |, paramétre]..];

Le tableau ci-aprés décrit la construction automatique d’une requéte qui extrait plusieurs
lignes. L'ouverture de la variable curseur déclenche le passage des paramétres au niveau du
SELECT et dans la clause WHERE.

Le bloc suivant affiche le nom des pilotes de la compagnie de code 'AF.

@ Editions Eyrolles 385

[Partie N PUSQL|

Tahleau 7-55 UiHisasion d'une variable civsear

Code PL/SQL Commentaires

DECLARE Déclaration de la variable
TYPE piloteCurs type IS HEF CUHSOR: curseur et des autres
refCursPilote plloteCurs_tyvpe; variables.
erdresQLAdynani que VARCHARZ (200) ;
w1 CHAE(A) := 'brevet';
w2 CHAR(3) := 'nom';
w_1 CHRE(6) := "nbHVol';
v d CHAR(2) := 'RF';

v_brevet WARCHARZ (6) ;
W_nom VARCHAR(20) ;
v_nbHVel NUMBER(7T,2) ;

BEGIN Famille 4, requéte
ardreSQidynamique := 'SELECT '; multligne paramétrée.
OPEN refCursPilote FOR ordreSQLdynanique Passage du paramétre.

[l [] tor Jlowca || vt |] vl [
! FROM Pilote WHERE comp = :vd' USING v_4:
LOCP
FETCH refCursPilote Parcours du eurseur.

INTO v_brevet,v_nom,v_nbHVol;
EXIT WHEN refCursPilote$NOTFOUND;
DEMS_OUTFUT .PUT_LINE ('Pilote : ' ||wv_nom);
END LOCP;
CLOSE refcursFPilote ;
END;
!

Nouvesutés de la version 12¢

Retourner des jeux de résultats (implict statement vesults)

Avant la version 12¢, PL/SQL ne permettait pas de retourner simplement un jeu de résultats
avec des entrées variables sans I'écriture d'une requéte, puis d'itérer en utilisant DEMS
OUTPUT. PUT_LINE pour afficher le résultat dans I'interface SQL*Plus.

o ¥ £ Depuis la version 12¢ la procédure RETURN_RESULT du paquetage DEMS_SOL permet de
4% gaffranchir dun paramétre de sortie de type REF CURSOR. La procedure GET_NEXT RESULT

du méme paquetage sert & parcourir plusieurs jeux de résultats produits par RETURN_RESULT .

Le tablean 7-36 présente une procédure qui compose deux jeux de résultats i retourner.
L'appel de cette procédure dans 1'interface SQL*Plus est également décrit.

386 & Editions Eyrolles

[chapitre n° 7

Programmation avancés

Tahleau 7-56 Retowr oo plusiears jemt de résaltats

Procédure

Appel dans SQL*Plus

CREATE OF REPLACE PROCEDURE liste_adh|
Pl IN adherent.civilite%TYPE,
P2 IN pratique,spid&TYEE) IS
v_cursor SYS_REFCURSOR;
BEGIN
OFEN v_cursor FOR SELECT prenon,
FROM adherent
WHEERE ¢iwvilite = pl ORDER BY nom;
DEMS3_S0L .RETURN_RESULT (v _cursor);
OPEN v_curscr FOR SELECT a.prenan,a.nom

nom

FROM pratigque p, adherent a
WHERE p.adhid = a.adhid
AND p.spld = pd;

DEMS_SOL.RETURN _RESULT (v _cursor);
END liste adh;
!

SQL> EXEC liste adh|'Mr.', 12);
Procédure FPLSSOL bterminde avec succéds.

Ensemble de résultats #1

PRENOM NoM

IVES RENOUF
THI BAIFLT JOUANNE
CLATUDE MARIEH
Enserble de résultats #2

FRENCM HOM
ROMUALD EBELLIN
STEPHANE DESLOGES
auy SPITER

Pour présenter la procédure GET NEXT

RESULT, considérons le bloc suivant qui appelle la

procédure et dépile les deux jewx de résultats 4 1'aide d’une boucle.
Tablesu 7-57 Uliisation de GET_NENT RESUDY

Bloc Appel dans SQL*Plus
DECLARE
v_our PLS_INTEGER; - jeu de résultats -

v_refeiur S5YS _REFCURSOR;

v_ret PLS_INTEGER;
v_ooll VARCHARZ (30) ;
v_cold VRRCHARZ {30) :
BEGIN
v_cur = DEMS_SQL.OPEN_CURSOR

({treat_as client for results => TRUE);
DEMS_SQL.PARSE (c == v_cur,
gtatement ==
language _ f£lag => DEMS_SQL.NATIVE) ;
v_ret := DBMS SQL.EXECUTE (v_cur);
LOoOP
BECIN

'BEGIN liste adh(''Mr.'',12);

le dernier MARC ZUNIGA

- jeu de résultats -
le dernier JESSICZ TILLAUT

Procédure PL/SQL terminde avec
succhs.

END; ',

DEME _SQL.GET NEXT RESULT(v_cur, v_refcur);

EXCEPTION
WHEN NO_DATA FOUND THEN EXIT;
END;

DEMS_OUTPUT.PUT_LINE('- jeu de resultats -'};

LOOP
FETCH v_refcur INTO v_coll, v_coll;
EXIT WHEN v_refcur$NCTFOUND;
END LOOF;
DEMS_OUTPUT. FUT_LINE(' le dernier '
|| v.eolz);
CLOSE v_refcur;
END LOOP;
END;
!

|| v_eoll []

@ Editions Eyrolles

387

[Partie N PUSQL|

Accessibilité

J
8

" Depuis la version 12¢, un sous-programme n'est pas forcément accessible par un objet du
&2 mame schéma (fonction, procédure, déclencheur ou paquetage). Ainsi, la clause ACCESSIBLE
BY qui peut étre ajoutée a un cbjet ou & un type constitue une liste d'autorisation.

Pour présenter ce mécanisme, considérons la procédure suivante qui ne peut étre invoquée que
par une fonction ou une procédure. L'appel direct provoque une erreur, mais en passant par
une unité de programme autorisée, I appel est valide.

Tahleau7-58 Niitsation

Déclaration de la liste blanche Appel correct
3¢L> CREATE (R REPLACE FROCEDURE p_tel_adh
{pl IN adherent.adhid&TYPRE) S0L> CREATE OR REPLACE
2 ACCESSIELE BY (PROCEDURE p_tel, FUNCTION f_tel) FPROCEDURE
3 Is p_tel(pl IN adherent.
4 result VARCHARZ (20} ; adhid&TYFE) IS
5 BEZIN 2 BEGIN
& SELECT tel INTO result FROM adherent WHERE adhid = pl; 3 p_tel_adhipl);
7 DEMS_OUTPUT.PUT_LINE('Tel : ' || result); 4 END;
% EXCEPTION 5
9 WHEN N©O_DATA FOUND THEN
ia DBMS_OUTPUT, PUT_LINE("Hon trouvé'); Procédure créde.
11 END;
1 SQL> EXEC p_tel (27486);
Procédure créde, Hon brouve.
SOL> EXEC p_tel adh(27486); Procédure PL/SQL terminée
ORAR-06550: Ligne 1, colonne 7 :PLS-00504: privilége avec succes.

insuffisant pour accéder & l’cbjet F_TEL_ADH

Pour les paquetages, la liste blanche s"applique au niveau de la spécification (et pas au niveau
d’une procédure, fonction ou d'un type de paquetage)

CREATE PACRAGE nom pag
ACCESSIBLE BY (PEOCEDURE nom_proc,.) AS

388 & Editions Eyrolies

[chapitre n° 7

Programmation avancés

Exercices
L objectif de ces exercices est d'écrire des déclencheurs et des sous-programmes PL/SQL
manipulant des curseurs et gérant des exceptions sur les bases de données Pare informatique
et Chantiers.

ENEICICE 11 curseur

On désire connaitre, pour chaque logiciel installé, le temps (nombre de jours) passé entre I'achat et
linstallation. Ce calcul devra renseigner la colonne delai de la table Installer pourlinstant nulle.
Les résultats devront étre affichés (par DEMS_OUTPUT . PUT_LINE) ainsi que les incohérences (date
dinstallation antérieure & la date d'achat, date d'installation ou date d'achat inconnue).

Ecrivez la procédure calculTemps pour programmer ce processus. Un exemple d'état de sortie est
présents ci-aprés :

Logiciel Oracle 6 sur Poste 2, attente 2924 jour(s).

liogiciel Oracle 8 sur Poste 2, attente 1463 jour(s).

Date d'achat inconmie pour le logiciel SQL*Net sur Poste 2

Pas de date d'installation pour le logiciel WinDev sur Posta 4

Logiciel I. I. 2. installé sur Poste 7 11 jour(s) avant 4d'étre acheté!

Transaction

Ecrivez la procédure transactionnelle installlogSeg permettant d'effectuer une installation grou-
pée sur tous les postes d'un méme segment d'un nouveau logiciel. La transaction doit enregistrer dans
un premier temps le nouveau logiciel puis, les différentes installations sur tous les postes du segment
de méme type que celui du logiciel acheté. Linstallation se fera 4 la date du jour.

Ne pas encore tenir compte des éventuelles exceptions et tracer les insertions. Utiliser les paramétres
sulvants pour tester votre procédure @

SQL> EXECUTE installlogSeg('130.120.80', 'log9%9', 'Blaster', '05-09-
2003', '§.%', 'POWS', 999.9)

Blaster stockdé dans la table Logicial

Installaticn sur Poste 4 dans Salle 2

Installation sur Poste 5 dans Salle 2

Procédure PL/SQL terminée avec succas.

13

@ Editions Eyrolles

Exceptions
Modifiez la procédure installlogSeg afin de prendre en compte les excepfions potertielles :
+ numéro de segment inconnu {erreur prédéfinle NO_DATA_FOUND) ;

389

PUSQL|

+ numéro de logiciel déja présent (erreur prédéfinie DUP_VAL_ON_INDEX) ;
+ date d'achat plus grande que celle du jour (erreur utilisateur date_fausse) ;
* type de logiciel inconnu (erreur non prédéfinie de code Oracle -2291) ;

+ aucune installation réalisée, car pas de poste de travall de ce type (erreur Wilisateur pas_
install_possibla).

Testez chacun de ces cas avec les valeurs suivantes @

--Mauvais segment

EXECUTE installlogSeg({'130:128:87"', .)

—--Logiciel déja présent

EXECUTE installlogSegi{'130.120.80', *logh',...)

--date = jour

EXECUTE installlogSeg('130.120.80', 'log6s', 'Test', *05-09-3000°, ..)
--Type de logiciel inconnu

EXECUTE installlogSeg('130.120.80', ‘logés', 'Test','05-09-2003"','9.9",
TAPPLY,)

—--Aucune install

EXECUTE installlegSeg{*130.320.81"Y, 'log5h5', 'w', ‘', '.', YBEWsY, ..)
——Bonne installation

EXECUTE installlogSeg('130.120.80', 'logé6’,'Budoraé’, '10-09-2003°',
'6.0', 'PCOWS'; 66)

390

Déclencheurs

Mises a jour de colonnes

Ecrivez le déclencheur Trig Aprés DI_Installer surla table Installer permettant de faire la
mise & jour atomatique des colonnes nblLog de la table Poste, etnbInstall de latable Logiciel.
Prévoir les cas de désinstallation d'un logiciel sur un poste, et dinstallation d'un logiciel sur un autre.
Ecrivez le déclencheur Trig Aprés DI_Poste sur la table Poste permettant de mettre 4 jour la
colonne nbFoste de la table Salle & chaque ajout ou suppression d'un nouveau poste.

Ecrivez le déclencheurTrig Apras UU_Sallesurlatable Salle qui met ajour automatiguement la
colonne nbPoste de latable Segment aprés la modification de la colonne nbPoste.

Ces deux derniers déclencheurs vont s'enchainer : l'ajout ou la suppression d'un poste entrainera
l'actualisation de la colonne nbFoste de latable Salle qui conduira & la mise & jour de la colonne

nbPoste de la table Segment. Ajouter un poste pour vérifier le rafraichissement des deux tables
(2alle et Segment). Supprimer ce poste puis vérifier & nouveau la cohérence des deux tables.

Programmation de contraintes

Ectivez le déclencheur Trig Avant UI Installer sur la table Installer permettant de
contréler, 2 chaque installation d'un logiciel sur un poste, que le type du logiciel correspond au type du
poste, et gue la date dinstallation est soit nulle soit pestérieure a la date d'achat.

& Editions Eyrolies

[chapitre n° 7

Programmation avancés

15

Transaction de la base Chantlers

Ecrivez la procédure finknnee permettant de rajouter & chaque véhicule les kilométrages faits lors
des visites de l'année. Vous utiliserez un seul curseur pour parcourir tous: les wéhicules. Il faudra
ensuite supprimer toutes les missions de l'année (visites et détalls des trgjets des employés trans-
portés).

16

@ Editions Eyrolles

Déclencheurs de la base Chantlers

Déclencheur figne

Ecrivez le déclencheur TrigPassagerConducteur sur la table transporter permettant de
vérifier qu'a chague nouveau fransport, le passager déclaré n'est pas déja enregistré en tant que
conducteur le méme jour.

Declenchewr composé

Ecrivez le déclencheur composé Trigcapaci teVehicule surla table transporter permettant
de contréler, qu'a chaque nouveau transport, la capacité du véhicule n'est pas dépassée.

Vous éviterez le probléme des tables mutantes en :

+ déclarant dans la zone de définition commune un tableau recensant le nombre de personnes
transportées par visite ;

+ déclarant dans cette méme zone un curseur qui va parcourir toutes les visites ;
+ chargeant le tableau dans la section BEFORE STATEMENT ;

+ examinant e tableau dans la section BEFORE EACH ROW et en le comparant avec les données &
insérer.,

Les messages & afficher pour tracer et rendre plus lisible ce déclencheur sont :

+ dans la section BEFORE ERCH ROW :"Enregistrement du transport de nom™ puis éventuellement
" Premier trajet de la visite” ;

+ dans lasection AFTER EACH ROW :"Transportde nom bien enregistré™ puis "l ne reste plus que
x place(s) disponible(s)":

+ dans la section AFTER STATEMENT :"Nombre de trajet(s) traité(s) : nombre” ;

Les messages d'erreur & produire le cas échéant sont les suivants :

+ "Capacité max atteinte n pour la visite chantierdu date, pour le véhicule v ;

+ "BASE INCORRECTE : Capacité dépassée n pour la visite chantierdu dafe, pour le véhicule v".

391

Partie lll

SOL avancé

Chapitre 8
Le precompilateur Pro*G/C++

Oracle fournit plusieurs précompilateurs permettant d"inclure des instructions SQL au sein de
programmes écrits dans des langages procéduraux (Cobol, Fortran, PL/1, C et C4+). Les pré-
compilateurs s’appellent ainsi: Pro*COBOL, Pro*FORTRAN, Pro*PL/I et Pro*C/C4+ que
nous étudions dans ce chapitre. Nous employons seulement une syntaxe C, mais les méca-
nismes décrits dans ce chapitre valent également dans le cas d'une syntaxe C++. Il existe un
autre mécanisme d'interfagage (que nous n'étudierons pas) qui consiste i utiliser des primitives
de bas nivean OCI(Oracle Call Interface).

Il est possible d'intégrer le précompilateur Pro*C/C4+ dans Microsoft Visual C4++, de maniére
a précompiler, & compiler et i exécuter dans le méme environnement de développement. La
derniére section de ce chapitre traite de la configuration 3 mettre en ceuvre.

Pour tester ces exemples, il faudra installer Pro*C/C4+ qui n’est pas inclus dans la version
Personal Edition. 1l faut exécuter une installation personnalisée et choisir d'installer
Oracle Call Interface.

Generalités

La précompilation est une technique qui permet d'incorporer dans un programme procédural
(dit « héte ») des commandes SQL dont la syntaxe est presque identique i celle de la forme
interactive. Le préprocesseur traduit ces commandes automatiquement en appels OCL

Figure 8-1 Précomphation

Précompilation Compilation (C on O et
Pro* 04+ edition de hiens

Oridres SOL intéorés

Les ordres SQL sont dits « intégrés » car ils apparaissent au méme niveau que des instructions du
langage (dont la syntaxe n’a rien 4 veir avec Oracle). Ces ordres sont déclaratifs ou exécutables.

@ Editions Eyrolles 395

| Partie W S0L avaned |

Les ordres déclaratifs permettent de déclarer des objets (au sens Oracle, variables, curseurs,
types, etc.) et des zones de communication (nommées SQLCA) entre le programme et la base.
Le tableau suivant décrit les instructions qui appartiennent & ce type d’ordres :

Tahlean 8-1 Ordres SOL intégrés déciaratiis

Code Pro*C Commentaires

BEGIN DECLARE SECTION Déclaration des variables hites (scalaires ou
tableaux).

END DECLARE SECTION

DECLARE .. Déclaration d'objets.

INCLUDE .. Inclusion de fichiers.

WHENEVER .. Capture des exceptions.

Les ordres exécutables SQL sont, d'une part, les instructions interactives qu’om connait
(CREATE, SELECT, INSERT...). D'autre part, il existe aussi des ordres non interactifs dont
quelques-uns sont résumés dans Ie tableau suivant :

Tableau 8-2 Ordres SOL imégrés non imeraciils

Code Pro*C Commentaires:

CLOSE ... Fermeture d'un curseur.
COMNECT ... Connexlon & une base.
FETCH .. Lecture dans un curseur.
OPEN .. Ouverture d'un curseur.

] - Pour inclure tout ordre SQL (dit « intégré ») dans un programme hote, il faut le faire précéder
de la directive EXEC SQL.

Variahles

Les variables hites (scalaires ou tableaux) permettent d'interagir avec la base. Elles peuvent se
trouver en paramétre d'un ordre SQL ou en tant que zone de réception d’'une extraction
(SELECT ou FET(H). Dans tout ordre SQL intégré, une variable hite est préfixée du symbole :
comme le montre le tableau suivant.

396 & Editions Eyrolles

12 précompliatsut Pro*S/++ |

Teblean 6-3 Varishies hotes

Code Pro*C Commentaires
EXEC SQL BEGIN DECLARE SECTION; Déclaration de quatre variables (trois
flpat nbHeuresVol; scalaires et un tableau).
int budgetMax;
VARCHAR codecomp[20];
VARCHAR tabMomcomp [15] [20];
Exmc S0L SELECT nbHVel, comp Extraction de données dans deux zones
INTO :nbHeurasVol, :codecomp de réception.
FROM Avion WHERE immat = 'F-WISS';
Emc SQL DECLARE CURSOR curs FOR Curseur paramétré.
SELECT nomComp FROM Compagnie
WHERE budget < :budgetMax ;
Emc SQL FETCH curs INTO :tabNomeomp ; C ement d'une partie du tableau
(détail plus loin).

Variahle indicatrice

1l est possible d’associer 4 toute variable un ndicateur (de type smallint), bien utile pour tester le
bon fonctionnement du transfert de données entre la base et le langage héte. Dans le cas d’'une
requéte, sa valeur permet de détecter une emeur: O, tout va bien; -1, aucune valeur n'a été
renvayée ; >0, la valeur renvoyée a été tronquée, ' indicateur contient la longueur de la chaine avant
I'opération. Dans le cas d'une mise 4 jour, I'indicateur permet d’attribuer la valeur nulle & une
colonne (valeur de I'indicateur de la variable comespondant fi la colonne positionnée i - 1). Tout indi-
cateur est préfixé du symbole : dans un ordre SQL intégré, comme le montre le tableau suivant :

Tabieau 8-1 indicawear de variables

Code Pro'C

Commentaires

EXEC SQL BEGIN DECLARE SECTION;
float nkHeuresVaol;
smallint indicnbHVol;
int budge tMax
VARCHAR codecomp[20];
EXEC SQL END DECLARE SECTION;

Déclaration de l'indicateur d'une variable.

EXRC S0L SELECT nbHVol, comp

INTO :nbHeuresVel :indicnbHVol
FROM Avion WHERE immat =

if (:indienbHVel == -1)

/* la eolonne nbHVoel eat NULL */

:codecomp
"F-WTSS' ;

Extraction de l'indicateur de la colanne
nbHVel.

indicnbHVel = -1;
EXEC SQL INSERT INTO Avion
VALUES ('F-GLDX', 'DR400',

inbHeurésVel :indicnbEVol , 'AF');

Insertion d'une valeur NULL dans la
colonne nkHVel de la table rvien.

@ Editions Eyrolles

397

S0L avaned |

398

Gas du VARCHAR

VARCHAR est considéré comme un « pseudo-type » au niveau du précompilateur, car il inter-
vient au méme niveau que les types primitifs int, float, char, etc. Chaque variable
VARCHAR déclarée (aussi valable pour les tableaux de chaines) doit étre manipulée & 1'aide de
la structure (struct) C/C4++ automatiquement générée i la précompilation. Souvenez-vous
de I'antislash zéro, des fonctions de chaines strepy, etc. Héritages de la pénible gestion des
entrées-sarties de ces langages (Java a heureusement simplifié 1a situation).

Le tablean suivant décrit comment manipuler une variable VARCHAR par sa structure C/C4+
dans le programme :

Taibleau 8-5 Correspondance VARCHAR / struct

Code Pro*C Commentaire

VARCHAR nomCompal[Z0]; structk
{ unsigned short len;
unzigned char arr(20]; } NomCompa ;

EXEC SQL SELECT nomComp INTO :nomCompa Chargement dela structure.
FROM Compagnie WHERE comp = 'AF';

nomCompa.arr [nomCompa.len]="%0"; Définition de la fin de chaine.
printf{"Compagnie: %s", nomCompa.arr); Affichage delachaine.

Penser a rajouter un caractére dans la déclaration & chaque variable hdte correspendant a une
colonne VARCHAR, VARCHARZ ou CHAR de la base (pour pouvoir stocker le « W0 »).

Ione de communication (SOLCA)

1l est indispensable d’inclure la zone de communication SQLCA (SOL Communicartion Area),
comme on inclut une bibliothéque, 4 'aide de l'instruction SQL intégrée INCLUDE. La
syntaxe i composer est la suivante © « EXEC 0L INCLUDE sglea.h; ».

A chaque ordre SQL intégré exécuté, cette zone est mise & jour et il est possible ainsi de tester
le code retour d'Oracle pour chague instruction. On retrouve les variables sglcode et
sqlerrm éudiées avec PL/SQL. La variable est une structure composée de deux champs :

struct { wnsigned short sglermml;
char sglerrme[70];)} sglerrm;

Le champ sglerrml indique le nombre de caractéres du message d’erreur : le champ
sglerrme contient le message d'erreur lui-méme.

& Editions Eyrolles

[chapitre n® & L2 précompliateur Pro*S/0++ |

Gonnexion & une hase

La connexion i une base Oracle se réalise par I'ordre SQL intégré COMNECT qui compaorte trois
variables hites de type VARCHAR (nom d'utilisateur, mot de passe et le descripteur de la
connexion). La syntaxe est la suivante :

EXEC SQL CONNECT :utilisateur IDENTIFIED BY :pwd USING :descripteur;

Gestion des exceplions

1l existe deux mécanismes pour gérer les erreurs :
I'exploitation de la zone SQLCA aprés chaque instruction SQL intégrée (test de la variable
saglea. saleode et affichage de la variable sglea. sglerrm. sglerrme) ;

I"utilisation de la directive WHENEVER qui met en ceuvre des étiquettes pour dérouter le trai-
tement en tonction de la nature de I'exception. Ce type de programmation est plus rigou-
reux et facilite la maintenance.

Notons que ces mécanismes peuvent cohabiter (voir le premier exemple). Les tableanx
suivants décrivent les possibilités de |'instruction :

| EXEC SQL WHENEVER &vénement action;

Tableau 8-6 Evénements pris en compte par WHENEVER

Evénement Commentaires

FOLERROR Toute exception.

SOLWARNING Anomalie (warning) signalée par Cracle.
NOT FOUND Donnée non trouvée (ORA-01403),

Tahisau B-T Actions prises en compie par WHENEVER

Action Commentaires

STOP Arrét du prﬁgramms {annulation de la transaction en cours).

CONTINUE Force le programme & continuer en séquences malgré l'erreur
retournée par Oracle.

GOTO £eiquette Branchement & I'étiquette indiquée par son identificateur.

D0 function([parameters]) Appel delafonction C/C++ en passant d'éventuels paramétres.

La portée de I'instruction WHENEVER est dictée par sa position (si elle se trouve dans le main
elle reste valable dans tout le bloc principal). L’ action spécifiée reste valable jusqu'i la fin
du bloc ou jusqu’a I'exécution d"une autre instruction WHENEVER portant sur le méme événe-
ment.

@ Editions Eyrolles 399

S0L avaned |

Transactions

1l est tout & fait possible de programmer des transactions comme le montrent les instructions
SQL intégrées du tablean suivant :

Tableau 8-8 Imstructions pour les (ransactions

Action Commentaites

EXEC SQL COMMIT WORK Validation de la transaction. Loption RELEASE lib&re les éventuels
[RELERSE] ; Verrous.

EXEC SQL ROLLEBACE WORK Invalidation de la transaction. ldem pour RELEASE.

[RELEASE] ;

EXEC S5QL SRVEFOINT Pose d'un point de validation.

nomPaint;

EXEC SQL ROLLEACE TO Invalidation d'une partie de 1a transaction.

SAVEFOINT nomFoint;

Extraction d’'un enregistrement

400

L'exemple suivant (proCl.pe) extrait d'un enregistrement de la table Avion & partir du
schéma scott/tiger et du descripteur de connexion CXBDSOUTOU. Si aucune donnée n'est
trouvée, le traitement se déroute vers I'étiquette pasTrouve. Dans le cas d"une autre erreur, le

traitement se déroute vers I'étiquette probleme oil est testée la possibilité que la requéte
raméne plusieurs enregistrements.

Tableau 8-3 Bdraction d'un enregistrement

Code Pro’C Commentaires

#ineclude <stdiec.h> Inclusion des biblicthéques C.
#include <ctype h> Déaclaration de la fonction qui affiche
#include <string. h> les messages d'arreur.

void afficheBrreur (void);

EXEC SQL BEGIN DECLARE SECTION; Déclaration des wvariables hétes.

VARCHAR utilisateur[30];
VARCHRR pwd[10];

VARCHAR descripteur[10];
VARCHAR immat[6];

VARCHAR typeav([l5];

int capacite;

VARCHAR codecomp[4];

EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE sdglca. h; Inclusion de la 2ome de communication.

& Editions Eyrolles

[chapitre n® & L2 précompliateur Pro*S/0++ |

Tablean 8-9 Ewiraciion d'un envegistrement (sSuite)

Code Pro'C Commentalres

void main()

{ strcpy(ichar *) utilisateur.arr, "SCOTT"); Initialisation des paramétres de
utilisateur.lén = connexion & la base.

{int) strlen((char *) utilisateur.arr);
strepy| (char *)pwd.arr, "TIGER");
pwd.len = (int) strlen{(char #) pwd. arr):
strepy ! (char *) deseripteur.arr, "CXBEDSOUTOU") ;
dezcripteur.len =
{int) mtrlen({char *)descripteur.arr);

EXEC SQL WHENEVER SQOLERROR GOTO problems; Préparation du déroutement en cas
- derreur.
EXEC SQL COMNECT :utilisateur
IDENTIFIED BY :pwd USING :descripteur; Catinaxion & |a bass,
EXEC SQL WHENEVER NOT FOUND GOTO pasTrouve; Gestion de l'exception.
EXEC S0L SELECT typehvion, cap, comp Extraction d'un enregistrement.

INTO :typeav, :capacite, :codecomp

FROM Avicon WHERE immat = 'F-WL55';
typeav.arr [typeav.len] Oy Ajout du caractére \.0 en fin de
codecomp. arr [codecomp. len] Mg chaines,

printfi"Détails de l'avien : %38 %3 %s\n", Affichage des résultats.
typeav, arr, capacite, codecomp.arr);
return;

probleme: Gestion des erreurs.
if (eglea.sqlcode == -2112)
printf ("Trop de lignes ramendes!");
else
afficheErreur();
return;
pasTrouve:
printf | raucun avion de ce cede.\n"j;

nou

}

void afficheErreur() Affichage des messages d'erreur.
{printf{"%s (%d)'\n", sqlea.sqglarrm.sglerrmc,
~aglca.aqlcodae) ; }

Dans les exemples qui suivent, nous ne réécrivons pas les parties d’inclusion {des hibliothéques
et de la zone de communication) de la connexien i la base, et la fonction (afficheErreur)
d'atfichage des messages d'erreur,

@ Editions Eyrolles 401

| Partie W S0L avaned |

Moo e e e W e NN e NN S BN SR B SR M M R NN M MM R S MM UM R SN M M M SN R SM MM N R M R M M M A e MmN E W

L'exemple snivant (proC2 . pc) insére un enregistrement dans la table Compagnie.
Tabiean B-10 MEse 4 jour de ia base

Code Pro*C Commentaires
void main() Initiaisation.
{ =

EXEC SQL WHENEVER SQLERROR GOTO sortie; Connexion.

EXEC SQL COMNECT :utilisateur
IDENTIFIED BY :pwd USING :deacripteur;

EXEC SQL WHENEVER SQLERROR GOTO probleme;

EXEC SQL INSERT INTQ Compagnie Insertion.
VALUES ('BAW', ‘British Airways');

EXEC SQL COMMIT WORK; Validation.
return;

sortie: Trattement d'une erreur & la
printf ("Probléme de comnmexion!"); eannexion.
afficheErreur() ;
return;

probleme: Traitement d'une erreur lors de
afficheErreur() ; linsertion avec invalidation de la
EXEC SQL WHENEVER SQLERROR CONTINUE; transaction.

EXEC SQL ROLLBACK WOEE;
i

Utilisation de curseurs

Deés qu'une requéte retourne plusieurs enregistrements, il faut utiliser un curseur pour traiter
les résultats extraits. Le mécanisme des curseurs s'apparente i celui émdié au chapitre 7. 11
comporte quatre étapes chronologiques : déclaration, ouverture, parcours et fermeture.

Par ailleurs, & I'inverse de PL/SQL qui ne supporte que des variables scalaires (ou RECORD)
dans le type de retour, le précompilateur Pro*C/C++ permet de récupérer un ensemble de
lignes résultats dans un tableau (par paquets de données de la taille du tableau). Etudions 2
présent ces deux techniques.

Variahles scalaires

Lexemple suivant (proC3.pe) programme un curseur qui alimente des variables scalaires. 11
& agit d’afficher les caractéristiques des avions appartenant 3 une compagnie de nom saisi au
clavier (via la fonction C saisieChaine qui convient mieux que scanf}.

402 & Editions Eyrolles

[chapitre n® & L2 précompliateur Pro*S/0++ |

Talfean 8-11 Curseur suec variahles scalsires

Code Pro*C Commentalres
int sajsieChaine(char *,char *); Déclaration de la fonction.

vodd main()

i

EXEC S0L DECLARE curs CURSOR FOR Déclaration du eurseur.
SELECT ‘a.immat, a.typehvion, a.cap
FROM Cmpag'nie ©, Awvion a
WHERE ©.comp = a.comp AND nemeoip = :nomoomplu;

nomcomplu . len = saisieChaine Salsie du nom de la compagnie.
{"Ham de la compagnie (ou £in) @ " ,nomcompluy.arr);

nomcomplu . arr [nomcomplu. lenl='\0';

EXEC SQL WHENEVER SQLERROR GUTO erreur; Gestion de l'ouverture du curseur.

EXRC SQL OPEM curs;
EXEC SQL WHENEVEER NOT FOUND GOTO finBoucle;

printf("\nFlotte de %$s\n", nomcomplu.arr);

while(1)
{ EXEC SQL FETCH curs Parcours du curseur.
INTO :immat, J;y,pamr, Acupagite,
immat arr[immat.len] (R Affichage de l'enregistrement
typeav. arr [typeav. len] = '\0' courant.

printf({"ka %=z %d\n", immat. arr, typeav.ary,
capacite); }

finBouele: Fin de curseur.
EXEC SQL CLOSE curs;
return;

Berreur: Gestion des erreurs,
afficheBrreur();
return;
gortie:
printf ("Prcbleme 4 la conhexioni"y;
afficheErreur();
}

int saisieChaine (char texte[], char wvariable[]) Fonction de saisie d'une chalne.
{printf (texte) ;
fflush({stdout) ;
return (getsi{variable) ==
{char *)0 7 EOF : strlen(variablej);

Variahles tahleaux

L'utilisation de tableaux comme types de retour d'un curseur évite de nombreux échanges de
données entre la base et le programme. En effet, alors qu'il fallait une lecture (FETCH) du
curseur pour chaque enregistrement extrait (voir I'exemple précédent), la lecture d’un curseur
dans un tableau chargera un paquet d’enregistrements (d'un nombre égal & la taille du
tableau). Notons qu’il est aussi possible d’insérer par paquets (tableaux C initialisés qu'on
utilise comme paramétres d'une instruction SQL intégrée TNSERT).

@ Editions Eyrolles 403

S0L avaned |

404

- La variable sglerrd[2] de la zone SQLCA contient aprés chaque lecture dans le curseur
(exécution de FETCH), le nombre cumulé de lignes extraites.

L'exemple suivant (proC4.pc) met en ceuvre un curseur qui charge a chaque lecture quaire
tableaux de trois enregistrements. 1l s’agit d’afficher les caractéristiques de tous les avions.
Dés que la fin de curseur est atteinte, le programme se déroute a 1'étiquette £inBoucle. 8’il
reste des lignes i traiter (moins de trois enregistrements ont été extraits), le calcul du nombre
de lignes & traiter permet d’afficher le reste des tableaux. Par exemple, supposons que 7 enre-
gistrements soient i extraire et que la taille des tableaux est 3. Deux tours de boucle chargent
6 enregistrements, le dernier est traité par 'intermédiaire de 1'étiquette.

Tahieau 8-12 Baraciion dans des tableaux

Code Pro*C Commentaires
$define TAILLE 3 Déclaration de la fonction.
void affiche {int};
EXEC SQL BEGIN DECLARE SECTION:

;mzcmm tabimmat 31 171: Déclaration des tablaaux.

VARCHAR tabtypeaw 3] I[18};

inc tabcapacite [3];

VARCHAR tabnomcomp ([3] [261;

int nhpaguets;

int ligme regtante;

EXEC S0L END DECLARE SECTION;

void main()

EXEC SQL DECLARE ‘curs CURSOR FOR
SELECT a.immat, a.typeAvicn, 8.cap, C:nomMComD
FROM Compagmie o, Avion a
WHEEE C.comp = A O

EXEC S0L WHENEVER SOLERROR GOTO probleme;:

EXEC S0L OFEN curs;

EXEC SQL. WHENEVER NOT FOUKD GOT0 finBoucle;

Déclaration du curs eur,

rlbpaquer_s = (ks
princf(*Flotte”);
while(l)
(EXEC S0L FETCH curs INTO :tabimmat, :Eabtypeaw
:tabcapacite, :tabnomcomp;
affiche (TAILLE};
nbpaguets +4;)
finBoucle:
ligne restante =
sglca.sqlerrd[2] - (nbpaguets * TATLLE};
affiche(ligne_restante);
printf (*\meoss=ssscceccacaaint);
EXEC SQL CLOSE curs;
rerurn;
probleme:
afficheErreur(};
return;
sortie:
printf{*Probleme 4 la connexion!®);
afficheErreur(};
1]

Déclaration du curs eur,
Affichage du paquet.

Affichage du reste.

& Editions Eyrolles

[chapitre n® & L2 précompliateur Pro*S/0++ |

Tabtesu 8-12 Ewiraclion dans des tableaux (suffe)

Code Pro*C Commentalres
void affiche(int n}
- doridi;
prinkf ("\be=—e-r—eeeee— - *¥i
for (iel; d<m; i++} Affichape du tablesu
{ tabimmat[i].arr{tabimmat{i].len] = N0 chargé par s curseur,
tabtypeav il . arr{tabtypeav(i] . len] = \OY;
cabnomcomp (1] .arr{tabnomecmp[i]. len] = 404y

printf {"Yn%a’ i’ c¥d\cde", cabimmac{i].axx,
tabtypeav(i].arr, tabecapacite[i],
tabnomconp [1] .arr b;)

Le résultat de ce programme est le sulvant :

Flgure 8-2 Résultats a I'écran

"D estohchap SNEsmm e 2as pace 2| ADbugp)

Afin de travailler avec Microsoft Visual C++, vous devez éventuellement avoir installé le
précompilateur Pro*C/C4+ en lancant & nouveau une installation & partir des extensions
d'Oracle. La documentation & consulter est Pro*C/C++ Precompiler Gerting Started for
Windows, chapitre « Integrating Pro*C/C++ into Microsoft Visual C++ ». Elle est assez claire,
et plusieurs étapes sont & respecter, nous les résumons ici pour Oracle9; :

Spécifier la localisation des exécutables (en général C:\oracle\ora%2ibin).

Spécifier la localisation des sources & précompiler (en général C:\oraclé\ora92\
precompipublic)

Ajouter les sources (extensions .pc) & précompiler dans le projet.

Ajouter la librairie Pro*C/C++ (C: \oracle\orad2\precomp\ lib\mgve) au projet.

@ Editions Eyrolles 405

S0L avaned |

406

« Spécifier les options de compilation.

« Ajouter I'entrée vers Pro*C/C++ i la barre de menu, pour lancer une précompilation (C: \
oracle\orad2\bin\procui.exe) i partir de I'environnement.

Une fois tout mis en place, vous pouvez précompiler, compiler, créer des liaisons et exécuter

un programme C ou C4+ i travers 'interface suivante :

Figure 8-3 Développement sous MS Visual G+

=2i%

B e g Vow jent Proict Bkl Joos Whdow oy
& ﬁ“' Ry 7 Source fromgset, A4Fi2 _-.] ™
F = 5 T ke S R
i —i Visual Comperrnl Mghager
| ey :
s Erar Lookup
= i
‘?"’_'."szu'.':.'m M etiag Control Test Contaner
4] e A\ CUEICOM Ot rewer
...I:MH"-- A Spres VARCHAR pour 0 W~
. Piesoee File - =
o Ihm*&: ™
(8] o2 e i
;!1:::“‘ Gustomoe.. "
e B
oaELaLE SrRen.: 13
o s et 4]
Becord Quck Macro. Crrlaihiel
1 Pl kMt ChrlaShited
EXEC S0L INCLUDE sqlecs h;
€ * vold maind)
«
e e R T s
5o —
ST sune [Detug), Foainfies 1), Frwnriesz), Feouts [/ Teld [
Lt ol 10 i
& Editions Eyrolles

Chapitre 9
L'interface JDBG

La technologie JDBC (Jova DataBase Connectivity), congue initialement par Sun Micro-
systems et propriété d'Oracle depuis 2009, permet & des applications Java d’accéder & des
sources de données compatibles SQL (tables relationnelles en général, mais aussi données
issues d un fichier texte ou d'un classeur Excel, par exemple).

Cette spécification est considérée comme une API virtuelle ; tout éditeur de logiciels peut
donc 1'implémenter et proposer un pilote (driver) afin de permettre le dialogue avec du code
Java. C'est le cas de tous les SGBD qui disposent d'un ou de plusieurs pilotes IDBC. Inclus
dans le JDK depuis 1997, le paquetage java. =gl regroupe les fonctionnalités principales qui
sont détaillées dans ce chapitre. Certains aspects du paquetage javax.sgl, apparu avec
JDBC 2, seront aussi éudiés (DataSource et RowSet).

Depuis JDK 1.5, la version de JDBC est la 4.0. La prochaine version 4.1 devrait apparaitre
avec la version 7 du langage Java. Il y a relativement peu d’apports depuis JDBC 3, apparu
avec JDK 1.4 : citons la prise en compte de XML, du type ROWID, des Narional Character
(NCHAR, NVARCHAR. ..) et plus de possibilités pour les BLOB.

R R I R R R R R R R)

La technologie JDBC est conforme au niveau d'entrée de la norme ANSI SQL2 (entry level) et
de la spécification SQLX/OPEN CLI (Call Level Interface), compatible ODBC (Microsoft) et
avec d’autres API propriétaires. JDBC supporte la programmation mulrithréad. La communi-
cation est réalisée en mode client-serveur déconnecté et s'effectue en plusieurs étapes :

connexion i la base de données ;
émissions d'instructions SQL et exploitation des résultats provenant de 1a base de données ;
déconnexion de la base.

Le spectre de JDBC est large, car I'application Java connectée i la base peut étre une classe ou
une applet, une servier, un EIB (Enterprise Java Beans) ou une procédure cataloguée. Par
ailleurs, tous les outils de mapping chjet-relationnels générent en interne du code JDBC.

@ Editions Eyrolles 407

S0L avaned |

408

Ciassification des pilotes (drivers)

Un pilote (driver) JIDBC est la couche logicielle qui est chargée d'assurer la liaison entre
1"application Java cliente et le SGBD serveur. On parle de middiware. 11 est disponible sur le
site des éditeurs, le plus souvent gratuitement, sous la forme d'un fichier {en général, .qar,
.zip, .tar ou .gz). Vous devrez placer ce fichier, aprés décompression, dans le classpath de
votre environnement de compilation.
On distingue quatre types de pilotes JDBC.
Les pilotes de type 1 (JDBC-ODBC Bridge) utilisent la couche logicielle de Microsoft
appelée ODBC (Open DataBase Connectiviry). Le client est dit « épais » puisque le pilote
IDBC convertit les appels Java en appels ODBC avant de les exécuter. Cette approche
convient bien pour des sources de données Windows ou si 1'interface cliente est écrite dans
un langage natif de Microsoft.
Les pilotes de type 2 (Native-API Partly-Java Driver) utilisent un pilote fourni par le
constructeur de 1a base de données (natif). Le pilote n'étant pas développé en Java, le client
est aussi dit « épais » pour cette approche. En effet, les commandes JDBC sont toutes
converties en appels natifs au SGBD considéré. Cette approche convient pour les appli-
cations qui manipulent des sources de données unigues {tout Oracle ou IBM, etc.).

Les pilotes de type 3 (Ner Protocol All-Java Driver) utilisent un pilote générique natif écrit
en Java. Le client est plus « léger » car les appels JDBC sont transformés par un protocole
indépendant du SGBD. Cette approche convient pour des sources de données hétérogénes.

Les pilotes de type 4 (Nafive Protocol All-Java Driver) sont écrits en Java. Le client est
Iéger car il ne nécessite d’auctune autre couche logicielle supplémentaire. Les appels IDBC
sont traduits en sockers exploités par le SGBD. Cette approche est la plus simple mais pas
forcément la plus puissante, elle convient pour tous types d’architectures.

La figure suivante schématise le principe mis en ceuvre au travers des quatre types de pilote JDBC :

Figure 8-1 Types de pilotes JOBC

type 1 type 2 type 3 type 4
- L1 L]
. o |

e] E—
ICEC C
CDaC CriverB

I opac | f"\.w |

% % 80

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Le choix du pilote n’a pas d'influence majeure sur la programmation. Seules les phases de
chargement du pilote et de connexion aux bases sont spécifiques, les autres instructions sont
indépendantes du pilote. En d'autres termes, si vous avez une application déja écrite et que
vous décidez de changer le type du pilote — soit que la source de données migre d'Access a
Oracle ou & SQL Server par exemple, soit que vous optiez pour un autre pilote en conservant
votre source de données —, seules quelques instructions devront &tre réécrites.

Les paguetages

Les différentes spécifications JDBC se composent d’interfaces, classes, énumérations et
exceptions situées dans le paquetage java.sgl. Selon la version de JDBC, il existe aussi des
paquetages additionnels de type javasx.sgl.rowset. Oracle propose des AP propriétaires
qui implémentent les AP de référence de Sun (qui désormais lui appartiennent).

Le paguetage cracle. jdbc.driver devra étre importé pour utiliser un pilote de connexion
d'Oracle. Le paquetage oracle.sgl devra étre importé pour pouvoir manipuler des types
spécifiques & Oracle (BFILE, ROWID, extensions objets, etc.).

Le tablean suivant présente les éléments principaux du paguetage java.sgl de I'API IDBC
(versions 3 et ultérieures).

Tabiesn 8-1 Eiéments principaux de I'AP] JDBS

Classefinterface Description

java.sgl .Driver Pilotes JDBC pour les connexions aux sources de données
Java.sqgl .Connection SaL

Java.sgl . Statemnent Construction d'ordres SQL.

java.sgl.PreparedStat ement
java.sgl.Callabl eStatement

java.agl.ResultSet Gestion des résultats des requétes SQL.

java.sgl . DriverManager Gestion des pilotes de connexion.
java.sqgl.S0LException Gestion des erreurs SQL.

java.sgl . DatabaseMetaData Gestion des méta-informations (description de la base de
java.sgl .ResultSetMetaData données, des tables...).

java.sgl.SavePoint Gestion des transactions et sous-transactions.

@ Editions Eyrolles 409

S0L avaned |

410

Les pilotes d'Oracle supportent historiquement différentes versions de JDBC. Depuis la
version 11g R2, les pilotes sont compatibles avec JDBC 4.0. Les implémentations sont four-
nies au travers des paquetages oracle.jdbc (gestion des accés i la base) et oracle.saql
(types et manipulations), compatibles avec les JDK récents (1.5 et 1.6).

Le tableau suivant présente les éléments principaux du paquetage oracle. aql.

Tablesn 9-2 Eléments principaux de VAPL JOBG Oracle

oracle.sgl.OracleDriver Cannexions aux bases de données (pilotes JDBC
oracle. sql.oracleConnection OCH et lager).
oracle.sqgl.OracleStatement Construetion d'ordres SQL

oracle. gl OraclePreparedStatement
pracle. sgl.OracleCallableStatement

oracle.sgl.OracleResul tSet Gestion des résultats des requétes SQL.

oracle.sgl.oracleDriverManager Gestion des pilotes de connexion,

oracle. sgl.0racleSQLException Gestion des erreurs SQL.

oracle, sgl.OracleSavePoint Gestion des transactions et des sous-
transactions.

Les exemples de ce chapifre utilisent le pilote Oracle pour assurer la comnexion
(oracle. fdbe) et I'API de rétérence (java.sql).

Stmicture d'un programme

La structure d'un programme Java utilisant JDBC pour Oracle comprend successivement les

phases :
d'importation de paquetages ;
de chargement d'un pilote ;
de création d’une ou plusieurs connexions |
de création d'un ou de plusieurs états ;
d’émission d’instructions SQL sur ces états ;
de fermeture des objets créés.

Le code suivant (JDBCTest. java) décrit la syntaxe du plus simple programme JDBC. Nous
inscrivons toutes les phases dans un méme bloc mais elles peuvent se trouver dans différents
blocs ou dans plusieurs méthodes de diverses classes.

& Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |
Tablean 8-3 Programme JDBC
Code Java Commentaires
import java.sqgl.*; Importation de paquetages.
dmport oracle.jdbe . driver #;
class JDBCTest Classe ayant une méthode

{ public static void main (String args [])
throws SQLException

{try{

main.

DriverManager.registerDriver
{new oracle. jdbe.driver. OracleDriver());
Conriection conn = DriverManager gefConnecticn
{"jdbeioracle: thinBCAMPARDLS 1521 iBDSoutou” ,
vEsotEn) TElgern);

Chargement d'un pilote
JDBC Oracle et création
d'une connexion.

Statement stmt = conn.createStatement|) ;

Jf0ordres SQL, voir plus lein

Création d'un étatde
connexion et exécutions
d'instructions SQL.

} eatch{S0LException ex)(
System.err.println("Erreur : "+ex);} 1 }

Gestion des erreurs.

Le dernier bloc permet de récupérer les erreurs renvoyées par le SGBD. Nous détaillerons en

fin de chapitre le traitement des exceptions.

Uarahles d'environnement

L'environnement JDBC sous Oracle nécessite la configuration d un certain nombre de variables.
La variable PATH doit contenir le chemin ol se trouvent les exécutables javac.exe et
java.exe (généralement C: \Program Fileg\Java\version jdk\bin).

La variable CLASSPATH doit inclure le paquetage Oracle & utiliser en fonction du pilote
JDBC choisi (suivant, généralement, un chemin de la forme Oracle Homé'jdbeiliby
paquetage). Le tableau ci-aprés rappelle la configuration & mettre en ceuvre.

Tabiesu 9-1 Pamnerapes Oracie MBC

Version du JOK utllisé Paquetage JDBC Oracle

JDK 1.1 classes111.jar (1038135 octets).

JOK1.2etJDK 1.3

clagsesl2.jar (1202911 octets).

JDK 1.4 oidbeld.qar (1 181 670 octets).
JDK 15 63abeS. Jar (2 030 460 octets).
JDK 16 oidbe6. Jar {2 152 137 octets).

@ Editions Eyrolles

411

S0L avaned |

Test de votre configuration

Vous pouvez tester votre environnement en utilisant le fichier JTBCTest. java. Si vous utili-
sez I'outil JCreator, configurez la variable CLASSPATH de la manigre suivante : Configure/
Options/TDK Profiles, clic sur la version du JDK, puis Edit, mglct Classes, faire
Add Archive et choisir le paquetage adéquat (par exemple, ojdbe6. jar pour une version

llg XE), situé dans mon environmement: C:\oraclexe'\app\ocracle'\product
11.2.0%\server\jdbet\1ib.

Figure 8-2 Interface JCreator

Jate
i‘llpryrl wﬁu jdbo driwer =

1
i

gubh: static woid mein (String args []} throws BOlException

Lyl

(Br1vezMa rmltuﬂtuwim exacle :dh: driver OracleDriver())

Conpeetion copnn = fra

I * 3 orecle thin SCANEARIL 153: '.'-c.nn‘ ‘tigert).

Statessnt stel o conn cresteStatesspt |)

A ResultSet Test = stht sxscuteCuary ("SELBCT SYSDATE FROM DAAL").

ifiwhile (raet next ())

kg tem, out prlu!l.u “Kous somaes le ﬂﬁl !ul!u:mg 1
mraant

b g 68 e

1
8
0
1
]
5
L]
1
2
i |

i1
1
i
1
v
i

et mein_mmd s |

Cet exemple décrit le code nécessaire i la connexion & votre base (il faudra modifier le nom de
la base, le nom et le mot de passe de I'utilisateur dans I'instruction surlignée de la figure précé-
dente) et doit renvoyer les messages snivants :

Nous sommes le : 2003-07-27 13:49:55.0 (date et heure de U'exécution)

JDBC correctement configuré '

Connexion a une base

412

La connexion & une base de données est rendue possible par P'utilisation de la classe
DriverManager et de I'interface Connection

@ Editions Eyrofies

[chapltre n° 9

Ulnteriace JORE |

- Deux étapes sont nécessaires pour gu'un programme se connecte a une base :

Le chargement du pilote par 'appel de la méthode java.lang.Class. forName pour les
pilotes de type 1 ou la création d'un objet de la classe DriverManager pour les aufres
types de pilotes Oracle.

Létablissement de la connexion en appelant un cbjet (ici cx) de l'interface Connection par
l'instruction suivante :

cx = DriverManager.getConnection{chaineConnexion, login, password);

Depuis la version 4 de JDBC, le pilote java.sql.Driver se charge automatiquement. Il est
alors inutile d’invoquer Class . forName ; la premiére étape devient alors optionnelle.

Le paramétre chaineConnexion représente une variable de type «protocole:
sousProtocole: infoConnexion» permettant de désigner le protocole du pilote et
d'identifier la base de données cible.

protocoleprend lavaleur « jdbe » pour une connexion JDBC.

sousProtocole indique la nature du pilote (« odbc » pour un pilote de type 1,
« oracle:thin » pour un pilote Oracle de type 4, « oracle:oei » pour un pilote
Oracle de type 2).

infoConnexion donne les paramétres qui localisent et identifient la base de données cible.

Base Access

Etudions brizvement I'établissement de la connexion d'un pilote de type 1 pour se metire en
rapport avec une base Access via une source de données ODBC. La figure suivante illustre les
parties du panneau de configuration Windows qui permettent de désigner une base Access.
Dans notre exemple, la source (BaseGTR.MDB) est située dans le répertoire D:\..\SQL-
Oracle9i\Java et désignée par le DSN (Data Source Name) aourcebaseGTR :

|mmtzmr:.:::. « GO iz
iy DDBC] e pan I owgsmmet dr cormeson:. | & pmgpos
Gt i dnvnees ullivaea
Semtcen i chrmaes tpiinie l Guwnes e dorvmes drkim
| Staanas de torepes b
| P 1 dywam
| ChA_EH_[7 = - 8 Chiten [ekl
& donnees L
nstallation GOBE pout Micnid) Aver 21
| W 4 1 s e Bardes [soacabases 18 I of I
: Dismeegtion; Ji e Avcess EasnenGTH
| [Bwee e dorribes = .n.l_l
| Biwgedorntes (180 DsackeSimvaliianes A MO s |

@ Editions Eyrolles

Soostorow. | Cam | dispme, | Compees | s |

413 |

S0L avaned |

414

Le code suivant (TestJDBCODEC. java) charge le pilote de type 1 et se comnecte 4 la source
ODBC précitée (base Access, donc inutile de préciser le nom et le mot de passe de 1"utilisa-
teur). Le DSN est noté en gras dans le script.

Tableau 85 Programme JDBC

Code Java Commentaires

import java.sgl.*; Importation.

class TestJDBCODBC Classe ayant une méthode
{ publiec statie void main (String args []) main.

throws SQLException

{try [Clags.£érNams ("sun . jdbe edbe JdbeodbeDriver)}
catch (ClassNotFoundException ex) Ghafgemem d'un pﬂote
{ System.out.println |"Prebléme au chargement"); } JDBC/ODEC.
try {Connection conn = DriverManager.getConnection Connexion 4 la base
("jdbe:adbe: sourcebase@TR", "",""); Access.
-] ¥

catch (SQLException ex){ .. } } } Gestion des erreurs.

Base Oracle

Seules les phases de chargement de pilote et de création de la connexion changent. Afin de
charger un pilote Oracle, il faut utiliser la classe DriverManager de I'API Oracle comme le
montre le code suivant. Nous étudierons ensuite les différentes connexions qu'il est possible
d’établir. La connexion s'effectue par la méthode getComnection de I'interface
DriverManager.

Tahleau 9-6 Chargemen! du pliote Oracie

Code Java Commentaires
impert dawva.asgl.*; Importation.
import oracle.jdbe. driver.*;
public c¢lass testoracleSimple Classe ayant une
{ public statie woid main (String args []) méthode main.
throws SQLException Chargement d'un pilote
{ try { DriverManager registerDriver(new QOracle.
oracle.jdbe.driver. OracleDriveri)); Déclaration d'une
Connection conn = DriverManager.getConnection(.); connexion.
} catch(SQLException ex){ .. } } } Gestion des erreurs.

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Oracle fournit en standard deux types de pilotes : les pilotes OCI (Oracle Call Interface) qui
sont de type 2 selon la classification étudiée précédemment, et les pilotes légers (thin) de

type 4.

Connexions OCI

Ces types de connexions conviennent pour les applications utilisant des fonctionnalités du
middleware OracleNet (couches 5-6-7 ISO), pour des besoins de grandes architectures faisant
intervenir des bases de données réparties ou répliquées.

L'exemple suivani (JOBCOCI. java) réalise la connexion OCI de I'utilisateur scott 4 une
base de données identifiée par le descripteur de connexion CXBDSOUTOU (entrée du fichier
tnsnames . ora, voir « Introduction »).

Tebleau 8- Comnmexion DG

Code Java Commeniaires
Strirg chaineCx = "jdbe:oracle:oed:BCXBEDSOUTOU"; Description de la connexion.
try{
DriverManager.registerDriver Chargement d'un pilote
{new oracle. jdbe, driver OracleDriver()); Oracle OCI.
Connection conn = Déclaration d'une

DriverManager . getConnection (chaineCx, "scott", "tiger*); connexion.

} ecateh(SQLException ex){ . } ¥} Gestion des erreurs.

1l est possible d’établir une connexion en utilisant une autre forme de la méthode
getConnection (avec un seul paramétre).

‘Btring liemnBD = 'jdlx:;oracle:o:li:scbttftigé:@mDG_GJ“IDU';
Cormection conn = DriverManager.oetConnection(lienBD) ;

Connexion thin

Ces types de connexions conviennent pour les applications quin’ont pas besoin, cété client, de
fonctionnalités du middleware OracleNet. C’est la solution qui nécessite le moins de configu-
ration sur les postes clients,

Si vous avez noté, lors de 1"installation, le port UDP d’écoute du listener (en général 1521), le
nom du service (nom de votre base), et si vous connaissez le nom du serveur, vous pouvez
vous connecter sans probleme a priori.

Le code suivant (JDECThin. java) présente les quatre écritures possibles d'une connexion de
type 4, pour 'utilisateur soutou, a la base de données BDSoutou localisée sur le serveur
CAMPAROLS sur le port 1521,

@ Editions Eyrolles 415

| Partie W S0L avaned |
Tablean 3-8 Commexion thin
Code Java Commentaires
String liemBD = Définition de
"jdberoracle :thin: BCAMPAROLS: 1521 :BDSoutou™; 4 conmnexions.
Connection exl, ex2, cx3, oxd;
try{ DriverManager.registerDriver Chargement du pilote
(new oracle.jdbe.driver .OracleDriver()); Qracle.
cxl = DriverManager.getConnection Connexion explicite.
{"jdbec:oracle: thin:@CAMPAROLS: 1521 EDSoutou”,
"soutou’, tiukr)
ex2 = DriverMamager getCommectionilienBD, "soutou”, "iutn); Connexion implicite.
%3 = DriverManager.getConnection Connexion avec
("Jdbe:oracle:thin: 6193 .168.4.118: 1521 (BDsoitou”, adresse IR

o LR ST

exd = DriverManager getConnection
("jdbc:oracle:thin:@camparols : 1521 EDSoutou” ,
rHouton iUy

Connexion avec nam
du serveur.

} catch(sQLException ex){ .. } } }

Gestion des erreurs.

Base MySOQL

Les pilotes de MySQL sont disponibles sur le site de 1'éditeur (hfipz/dev. mysql.com/downloads’

cennector)). Yous y trouverez Connector/], pilote IDBC de type 4.

Le code suivant (JDBCMySQL. java) présente une connexion i la base MySQL BDsoutou,
hébergée sur 1a machine cliente pour I'utilisateur soutou. Suivant la version de votre pilote, le

premier tryest optionnel.

Tabiean 8-3 Conmexion MyS9L

Code Java Commentaires
try Chargement du
{ Class. forName | "com.myaql . jdbe . Driver") .newInstance(); } pilote MySQL.
catch (ClasgNotFoundException ex)
{ System.out.println{"Probléme au chargement"+ex. toString());}
try Déclaration de
{ Connection cx = DriverManager.getConnectieon la connexion.
{ "jdbe rmysgl://lecalhost /bdsoutouruserssoutoukpas-
aword=iut");
¥
cateh(SQLException ex) Gestion
e | des erreurs.

416

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Déconnexion

Appliquez la méthode close() & tous les objets Connecticn ouverts avant de terminer vos
programmes.

Interface Connection

Le tableau suivant présente les principales méthodes disponibles de I'interface Connection.
Nous détaillerons 1"invocation de certaines de ces méthodes 4 I'aide des exemples des sections
suivantes.

Tebiean 8-10 Méhodes de I'interface Conneclion

Méthode Description

createStatement () Création d'un objet destiné & recevolr un ordre SQL statique
non paramétra.

preparesStatement (String) Précompile un ordre SQL acceptant des paramétres et pouvant
Btre exécuté plusieurs fols.

prepareCall (String) Appel d'une procédure cataloguee (certains pilotes attendent

execute OU Ne supportent pas prepareCall).

vold sethutoCommit(boclean) Positionne ou non le commit automatique.

wold commit () Valide la transaction.
void rollback() Imvalide 1a transaction.
vold close() Ferme la connexion.

Sources de données

Apparue avec JDBC 3, U'interface javax.sqgl .DataScurce permet de créer une connexion
sans charger dynamiquement un pilote (et donc, sans utiliser 'interface DriverManager).
Oracle implémente cette interface i travers la classe OracleDataSource, située dans le
paquetage oracle. jdbe.pool.

11 est préférable d'utiliser ce mécanisme de connexion, car il est plus souple de modifier les
propriétés d’une source de données une fois créée (par exemple, le nom de la base, son empla-
cement physique ou encore le type du pilote). De plus, les instances de I'interface
Conmection, selon I'implémentation fournie par des DataSource, permettent de nouvelles
fonctionnalités telles qu'un pool de comnexion ou une transaction distribuée. Enfin, la
connexion i un annuaire de type JNDI (Java Naming and Directory Interface) est facilitée.

Sans traiter de ces aspects avancés, intéressons-nous i |'implémentation basique d’une source

de données. Le code sulvant {DataSourceExemple. java) décrt 1'initialisation de chacun
des six éléments constituant une connexion.

@ Editions Eyrolles 417

| Partie W S0L avaned |

Tahleat 5-11 Comnexdon & I'eide d'ume Sowrce de donmées

Code Java Commentalres
try {
oracle.jdbe.pool . OracleDataSource ds; Création de |a source.
= new oracle.qjdbe.pool OracleDataSourced) ;
.getDriverType ("thin"); Initialisation des éléments.
.setlerverName | "camparols") ;
.setNetworkProtocol ("tep") :
.setDatabaseName ("bdl0gR2") ;
.setPortNurber (1521) ; Création de la connexion.
.satlser {"soutou") ;
.setPassword{ "iut") ;
Connection conn = ds.getConnectiond);
w ¥

cateh{SQLException ex) g Gestion des erreurs.

BFERBRERRE

Notez 'existence de la méthode setURL("jdbc:oracle:thin:@//camparols:1521/
bdl0gR2 ") qui permet de regrouper certains éléments. Par ailleurs, il est possible d’utiliser la
méthode getConnection("soutou”, "iut") surl objet source de données avant de créer la
connexion.

Elats d'une connexion

Une fois la connexion établie, il est nécessaire de définir des états qui permettront 1’encapsulation
d’instructions SQL dans dn code Java. Un état permet de faire passer plusieurs instructions SQL
sur le réseau. On peut affecter & un état une (ou plusieurs) instruction SQL. 81 on désire exécuter
plusieurs fois la méme instruction, il est intéressant de rserver I'utilisation d'un état & cet effet.

Flgure 84 Connexion ef élats

(WINBER VARCHARL..)

paredstatement ()

Sratement

. . . .

Connection

=

Base

JDBC

interfaces disponihies

Diftérentes interfaces sont prévues i cet effet:
Statement pour les ordres SQL statiques. Ces états sont constroits par la méthode
createStatement appliquée a la connexion.

PreparedStatement pour les ordres SQL paramétrés. Ces états sont construits par la
méthode preparestatement appliquée 4 la connexion.

418 & Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

CallableStatement pour les procédures ou fonctions cataloguées (PL/SQL, C, Java,
etc.). Ces états sont construits par la méthode prepareCall appliquée i la connexion.
Sl ne doit plus étre utilisé dans la suite du code Java, chaque objet de type Statement,

PreparedStatement ou Callablestatement devra étre fermé i 1'aide de la méthode close.

Méthodes générigues pour les parametres

Une fois qu'un état est créé, il est possible de lui passer des paramétres par des méthodes géné-
riques {étudiées plus en détail par la suite) :
setocx ol Xxx désigne le type de la variable (exemple : set8tringou setInt) du sens
Java vers Oracle (serter methods). 11 s’ agit ici de paramétrer un ordre SQL (instruction ou
appel d'un sous-programme) ;
getxsoe (exemple : getString ou getInt) du sens Oracle vers Java. 1l s'agit ici d’extraire
des données de la base dans des variables hotes Java via un curseur Java (getter methods) ;
updatesxx (exemple : updateString ou upadateInt) du sens Java vers Oracle. Il
s'agit ici de mettre 4 jour des données de la base via un curseur Java (updater methods).
Ces méthodes sont disponibles seulement depuis la version 2 de JDBC (SDK 1.2).

Etats simples (interface Statement)

Nous décrivons ici I'utilisation d’un état simple (interface Statement). Nous étudierons par
la suite les instructions paramétrées (interface PreparedStatement) et appels de sous-
programmes (interface CallableStatement). Le tableau suivant décrit les principales
méthodes de 'interface Statemsnt.

Tableam 8-12 Méthodes de I'interface Statement

Méthode Description
ResultSet Exécute une requéte et retourne un ensemble de lignes (objet
executefuery (String) Resultset).

int executeUpdate(String) Exécute une instruction SAL et retourne le nombre de lignes
traitées (INSERT, UPDATE oU DELETE) ou 0 pour les instructions
ne retournant aucun résultat (LDD).

boolean execute({sString) Exécute une instruction SGL et renvoie true si ¢'est une
instruction SELECT, false sinon (instructions LMD ou plusieurs
résultats Result Set).

Connection getConnection() Retourne l'objetde la connexion.

vold setMaxRows(int) Positionne la limite du nombre d'enregistrements & extraire par
toute requéte issue de cet état.

int getlUpdateCount() Nombre de lignes traitées par l'instruction SOL (-1 si c’estune
requéte ou si linstruction n'affacte aucune ligne).

vold elosel) Ferme I'état,

@ Editions Eyrolles 419

S0L avaned |

420

Le code suivant (Etats.java) présente quelques exemples d'utilisation de ces méthodes sur
un état (objet etatSimple). Nous supposons qu'un pilote JDBC est chargé et que la
connexion ex a €€ créée. Nous verrons en fin de chapitre comment traiter proprement les

exceptions.
Tableau 813 Etts simples
Statement etatSimple = cx.createStatement(); Création de I'état.
BtatSimple, axecuta | "CREATE TAELE Compagnie{comps Ordre LDD.

VARCHAR (4} , nowComp VARCHAR(30), COMSTRAINT pk_Compagnie

FRIMARY FKEY(comp))");

ine § = etatSimple. exscutseUpdate ("CREATE TRELE Avion
(immat VARCHAR(6),typefAvion VARCHARR(15), cap NUMBER(3),

compa VARCHAR({4), CONSTRAINT pk_Avicn PRIMARY

KEEY (immat), CONSTRAINT fk_Avion_comp Compagnie FOREIGH

KEY (eoimpa) REFERENCES Compagtie|comp))");

Ordre LDD {autre écriture),
contient 0 (aucune ligne
n'est concernées).

int k = etatSimple.sxecutsUpdate ("INSERT INTC Compagnie

VALUES ('AF', 'Alr France')");

Ordre LMD, k contient 1
(une ligne est concernée).

Emtsmi'e'.'mml "INSERT INTC Rvicon VALUES
{'"F-WTSS', 'Concorde'; 90, 'AF' ") ;

etatSimple. execute | "INSERT INTO Avion VALUES
{'F-FGFB', "A320' 148, 'aF') "} ;

Ordres LMD (autres
écritures).

etatsinpl e, setMaxRows (10) ;

Pas plus de 10 lignes
retournées.

RegultSet curseurJava =

etatSimple. sxecuteQuery | "SELECT * FREOM
Avion");

Chargemnent d'un curseur
Java.

atatSimple execute ("DELETE FROM Awvion");
int 1 = etatSimple getUpdateCount () :

Ordre LMD, I contient 2
{avions supprimes).

Methodes a utiliser

Le tablean suivant indique la méthode préférentielle & utiliser sur I'état courant (objet

Statement) en fonction de 'instruction SQL i émettre :

Tehleau 8-11 Méthodes iava pour les onires SOL

Instruction SQL Méthode Type de retour
CREATE ALTER DROP executelpdate

INSERT UPDATE DELETE executelpdate

SELECT axecutefuery ResultSet

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Gorrespondances e types

R R I I T R R T R)

Les échanges de données entre variables Java et colonnes des tables Oracle impliquent de
prévoir des conversions de types. Les tableaux suivants présentent les principales correspon-
dances existantes :

Tableau 8-15 Comespondances entrs les iypes (0BG 1.0

CHAR CHAR lang.String CHAR

VARCHARZ VARCHAR lang.String CHAR

LONG LONGVARCHAER lang. String CHAR

NUMEER WNUMER I math.BigDecimal NIMEER

NUMEER DECIMAL math.BigDecimal MIIMEER

NUMEER BIT boolean NUMEER

NUMBER TINYINT by te NIUMEEE

NUMBEER SMALL INT short NUMBER

NUMBER INTEGER int NUMEER

NUMEER BIGINT long NIIMEER

NUMEER REAL float NITMEER

NUMEER FLOAT double NIMEER

NUMEER DOUBLE deuble NUMEER

BAW EBINARY by te RAW

RAW VAREINARY by te RAW

LONGRAW LONGVAREINARY by te RAW

DATE DATE jawva.sql.Date DATE

DATE TIME Java.sgl.Time DATE

DATE TIMES TAMP java.sgl.Timestamp DATE

Tabiean 9-16 Corresponfiances enlre les types UOBG 2.0)

Types Sl T o mpes Weesdvastmarss ScesonsOrecedestpes
BLOB ELOB Java.agl .Bleh oracle.sqgl . BLOB
CLOB CLOB java.sql.Clob oracle.sql.CLOB
Type objet STRUCT Java.sgl.Struct oracle sgl.STRUCT
Référence REF java. sqgl .Ref oracle.sgl.REF
Collection ARRAY Java.sgl.Array oracle.sgl . ARRAY

@ Editions Eyrolles

421

| Partie W S0L avaned |

Tabieau 9-17 Comespondances enire les types UDBC Oracie)

Types SQL Types JDBC Types Java Extensions Oracle des types Java
‘oracle.jdbe standards oracle.ibde.

BFILE OracleTypes . BFILE Méant EFILE

ROWID OracleTypes . ROWID Méant ROWID

REF CURSCR OracleTypes.CURSOR ResultSet oracle.jdbe.OracleResultSet

Interactions avec la base

Détaillons & présent les différents scénarios que 1'on peut rencontrer lors d'une manipu-
lation de la base de données par un programme Java. Les tableaux suivants répertorient
les conséquences les plus fréquentes. Les autres cas (relatifs aux contraintes référen-
tielles et aux problémes de syntaxe) seront étudiés dans la section « Traitement des
exceptions ».

Suppression de données

Tableau 9-18 EDnregistrements présents dans la labie
Code Java Résultat
etat.executeUpdate ("DELETE FROM Awvion"); Fait la suppression et passe
en séguence.
i = etat.executelUpdate |"DELETE FROM Avion"); Fait la suppression, affecte
& i le nombre
d'enregistrements

supprimés et passe en
séquence.

Tableau 8-19 Rucom enregisirement dans fa lable

atat.executelUpdate |"DELETE FROM Awvion"); Aucune action surla base
et passe en séquence.
i = etat.executeUpdate ("DELETE FROM Avion™); Aucune action surla base,

affecte & 4 la valeur 0 &t
passe en séquence.

422 Editfons Eyrofies

[chapitre n® 0 Ulnteriace JORE |

Rjout d’enregistrements

Tahieau 9-2Z0 Différentes écrimres d'un INSERT

Code Java Résultat

etat executelpdate ("INSERT INTO Compagnie VALUES Falt lnsertion et passe en

{'TAF' , 'Toulouse Alr Fres')"); séquence.

int j= etat.executeUpdate ("INSERT INTO Compagnie VALUES Falt |'nserfion, affecte & 4

{ 'TaF' , 'Toulouse Air Free')"); le nombre 1 et passe en
séquence.

Modification d’enregistrements

Tabieau 9-21 Différemies écritures d'un UPDATE

Code Java Résultat

etat.executelpdate ("UPDATE Compagnie SET nomComp = 'Air Faitlamodification et passe

France Compagrny' WHERE comp = 'AF'") en séquence. Sl aucun
enregistrement n'est

CONCErné, aucune
exception mest levée.

int j= etat.executeUpdate|"UPDATE Awvien SET Falt la (les) modffication(s),

capacitescapacite*1l.2"); affecte & 4 le nombre
d'enregistrements modifiés
et passe en séquence (0 sl
aucun enregistrement nest
modifi&).

Etudions ici 1a gestion des résultats d'une instruction SELECT.

- Le résultat d'une requéte est affecté dans un objet de l'interface Result Set quis'apparente &
| un curseur Java.

Le tableau suivant présente les principales méthodes disponibles de I'inferface ResultSet.
Les méthodes relatives aux curseurs navigables seront étudiées par la suite. Le parcours de ce
curseur s’opére par la méthode next. Initialement (aprés création et chargement du curseur),
on est positionné avant la premiére ligne. Bien qu’un objet de1'interface Resultset soitauto-
matiquement fermé quand son état est fermé ou recréé, il est préférable de le fermer explicite-
ment par la méthode close s’il ne doit pas étre réutilisé.

@ Editions Eyrolles 423 |

S0L avaned |

424

Tablean 9-22 Méthodes mincipales de I'nteriace ResuiSet

‘Méthode

‘Description

boolean next ()

Charge l'enregistrement suivant en retournant true, retourne
false lorsqulil 'y a plus d'enregistrement suivant.

void close()

Ferme le curseur.

getixacl int)

Récupére, au niveau de I'enregistrement, la valeur de la
colonne numérotée de type oo Exemple : get Int(1),
getSrring(1), getDate(1), etc. pour récupérer la valeur
de la premiére colonne.

updateso(.) Madifie, au niveau de l'enregistrement, la valeur de la colonneg
numérotée de type o Exemple : updateInt(1,i),
updatestring(1, nom), ete.

ResultSetMetaData Retourne un objet ResultSetMetabData correspondant au

getMetaDatal) curseur,

Distinguons 1'instruction SELECT qui génére un curseur statique (objet Resultset ufilisé
sans option particuliére) de celle qui produit un curseur navigable ou modifiable (objet
Resultset employé avec des options disponibles depuis la version 2 de JDBC).

Gurseurs statigues

Le code suivant (SELECTstatique.java) extrait les avions de la compagnie 'Air France' par
I'intermédiaire du curseur curseurdava. Notez I'utilisation des différentes méthodes get
pour récupérer des valeurs issues de colonnes.

Tahleau 9-23 Eviraction de doanées dans un curseur siafnue

Code Java

Commentaires
ery {.
Statement etatSimple = cx.createStatement(); Création de I'état.

ResultSet curseurJava =

Création et chargament

etatsimple sxecuteQuery ("SELECT immat, cap FROM Avion du curseur.
WHERE comp = (SELECT comp FROM Compagnie WHERE

nemComp="Air France')");

float moyenneCapacité =0;
int nbavions = 0;
while (curseurJava.next())

Parcours du curseur.

{Svstem.out .print {"Immat : "+ourgeurJava.getStringil)); Extraction de colonnes.

System.out printlni "Capacité

¢ "+eourseunrJava. getInk (21

moyvenneCapacité += curseurJava.getInt(2);

nbhviong ++; }
moyenneCapacité /= nbavions;

System.out.println{"Capacité moy @ "+moyenneCapacité);

curseurfava.close();

Fermeture du curseur.

} ecatch (SQLException ex) { ..}

Gestion des erreurs.

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Gurseurs navigables

Un curseur ResultSet déclaré sans option n'est ni navigable ni modifiable. Seul un déplace-
ment du début vers la fin (par la méthode next) est permis. Il est possible de rendre un curseur
navigable en permettant de le parcourir en avant ou en arriére, et en rendant possible Iaccés
direct i un enregistrement d'une maniére absolue (en partant du début ou de la fin du curseur)
ou relative (en partant de la position courante du curseur). Il est aussi possible de rendre un
curseur modifiable (la base pourra étre changée par |'intermédiaire du curseur).

Dés I'instant oit on déclare un curseur navigable, il faut aussi statuer sur le fait qu'il soit modi-
fiable ou pas (section suivante). La nature du curseur est explicitée i 1"aide d'options de la
méthode createStatement :

Statement createStatement {int typeCurseur, int modifCurseur)

Constantes

Les valeurs permises du premier paramétre (typeCurseur), et qui concernent le sens de
parcours, sont présentées dans le tableau suivant :

Tabiean 9-24 Comstamies de navipason d'um cursewr

Constante Explication

RegultSet . TYPE FORWARD ONLY Le parcours du curseur s'opére invariablement
du début a la fin (non navigable).

ResultSet TYPE_SCROLL_INSENSITIVE Le curseur est navigable mais pas sensible
aux modifications.

ResultSet . TYFE_SCROLL_SENSITIVE Le curseur est navigable et sensible aux
maodifications.

Un curseur est sensible dés gue des mises a jour de la table sont automatiquement répercu-
tées au niveau du curseur durant |a transaction. Lorsque le curseur est déclaré insensible, les
modifications de la table ne sont pas répercutées dans le curseur.

Méthodes

Les principales méthodes que 1'on peut appliquer & un curseur navigable sont les suivantes.
Les deux premigres sont aussi des méthodes de 'interface Statement qui affectent et préci-
sent le sens de parcours pour tous les curseurs de I'état donné.

@ Editions Eyrolles 425

| Partie W S0L avaned |
Teblean 9-25 Méthodes de navigation dans un corseur

Méthode Fonction

void setFetchDirectioniint) Afects la direction du parcours :
ResultSet FETCH _FORWARD (1000},
ResultSet FETCH REVERSE (1001) ou
ResultSet FETCH UNENOWN (1002).

int getFetchDirection() Extrait la direction courante (une des trols valeurs cl-dessus).

boolean isBeforeFirst() Indique si le curseur est positionné avant le premier enregistrement
(fal se sl aucun enragistrement rexiste).

void beforeFirst() Positionne le curseur avant le premier enregistrement {aucun effet
sl le curseur est vide).

boolean isFirst() Indique si le curseur est positionné sur le premier enregistrement
(£al =ze si aucun enregistrement mexiste).

boolean isLast() Indique si le curseur est positionné sur le dernier enreglstrement
(£al se si aucun enregistrement n'existe).

boolean ishfterLast() Indique si le curseur est positionné aprés le dernier enregistrement
{false si aucun enregistrement mexiste).

void afterLast() Positionne le curseur aprés le dernier enregistrement {aucun effet
gl le curseur est vide).

boolean first() Positionne le curseur sur le premier enregistrement (£alse si
aucun enregistrement n'existe).

boolean previous() Positionne le curseur sur enregistrement précédent (false si
aucun enregistrement ne précéde).

boolean last () Positionne le curseur sur le dernier enregistrement (£alse si
aucun enregistremeant n'existe).

boolean absolute(int) Positionne le curseur sur le n-i@meenregistrement (en partant du

426

début si npostif, ou da la fin si nnégatil, false si aucun
enregistrement n'existe & cet indice).

boolean relatiwve(int) Positionne le curseur sur le n-idéme enregistrement en partantde la
position courante (en avant si n positif, ou en arriére si n négatif,
false sl aucun enregistrement n'existe & cet indice).

Oracle ne permet pas encore de changer le sens de parcours d'un curseur au niveau de |'état
et du curseur |ui-méme (seule la constante ResultSet .FETCH_FORWARD est interprétée).
Aucune erreur n'a lieu a 'execution si vous modifiez le sens de parcours d'un curseur, la
direction restera simplement inchangée.

Aidnsi, pour parcourir un curseur i I’envers, il faudra utiliser des indices négatifs (dans les
méthodes abasolute et relative) ou la méthode previous en partant de 1a fin du curseur.

Parcours

Le code suivant (SELECTnavigable.java) présente une utilisation du curseur navigable
curseurNavidava. Le deuxiéme test renvoie false, car, aprés I'ouverture, le curseur n'est

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

pas positionné sur le premier enregistrement, et fa méthode next le place selon le sens du

parcours du curseur.

Tahieau 8-26 Parcours d'un curseur navigable

Code Java

Commentaires

try {.
Statement etatSimple =createStatement

(ResultSet . TYPE SCROLL INSENSITIVE,RasultSet CONCUR READ ONLY):

Création de 'état.

RegultSet curseurNMaviJava = etatSimple, execute-
Query("SELECT immat, typehvion, cap FROM Avien");

Création et
chargement du

Curseur.

if | curseurNaviJava. isBeforeFirsti())
System.ocut.println | "Curseur positionnd au début");

Test renvoyant true,

if { curseurNaviJava. isFirst() |
Syatem.out. println{"Curseur positionné sur le ler d&jam");

Test renvoyant false,

while| curseurNaviJava. nest())
{if | ecurseurNaviJava. isFirst())
System.out.println{"ler awvion : ");
if (curssurNavidava.lsLast())
System.out.println{*Dernier avion : "j;
System.out.print ("Immat: "+curseurNaviJava.getString(l));
System. out .println(" type : "+ourseurBaviJgava. getStrimg(2));}

Parcours du curseur en
affichant les premier e
dernier
enregistraments.

if | curdenrNavidava . isAfterbast())System.out.println{"Curseir
positionné aprés la £in");

Test renvoyant true.

if | curseurNavidava previous()) Affiche l'avant-dernier
if { purseurNaviJava.previous()) enregistrement.
{System.cut .prinln{"avant dernier avien : "+
curseurNaviJava .getsString (1)) ;:}
if | curseurNaviJava.fizst()) Affiche le premier
{System.out.println{"Firat avien : "+ enregistrement.
curseurNaviJava.getsering(l)):}
if { curseurNaviJava.last{]) Affiche le dernier
{Syatem, cut.println{"Last avion : "+ enregistrament.

curseurNaviJava.getString (1))}

cursenriavi Java. eloge () ;

Ferme le curseur.

} catech(SQLException ex) { . }

Gesfion des erreurs.

Créez des curseurs non navigables quand vous voulez rapatrier de trés gros volumes de
données (taille du cache limitative caté client). Fragmentez vos requétes quand vous voulez
manipuler des curseurs navigables. Les prochaines versions d'Oracle verront une gestion coté

serveur des curseurs navigables.

@ Editions Eyrolles

427

S0L avaned |

428

Positionnements

Des méthodes assurent I"accés direct & un curseur navigable. Notez que absolute (1) équivaut
A first(), de méme absolute(-1) équivaut i last (). Concernant la méthode relative,
il fant 1" utiliser dans un test pour &' assurer qu'elle s’applique & un enregistrement existant, par
adilleurs relative (0) n'aauncun effet. Considérons la table suivante qui est interrogée au niveau
des trois premiéres colonnes par le curseur navigable curseurPosJava -

Figure 9-5 Curseur navigable

Avian
r
dmana L typEivion |cap aLmg
aolute (1 o [FWTES Toncorde | 50 AF
TGrE Cohoorda e AF
rolative () —n| F-OLFD k] 140 TET
FHGLRT] =0 AERT
- [AT30 Ll AERT
absoluta 3 FGLZV LREL] 750 AREAT
L

cursasurfoalava

Le code suivant (SELECTPositions.java) présente les méthodes qui permettent d’accéder

directement 4 des enregistrements de ce curseur

Tabieau 9-27 Positionnements dans un curseur navigable

Code Java

Commentaires

ery {.
Statement etatSimple screateStatement
(ResultSet TYPE SCROLL INSENSITIVE,
ResultSet CONCUR READ OMLY);

Création da I'état avec
curseurs insensibles et non
modifiables.

ResultSet curseurPosfava =

etatSimple. executeQuery ("SELECT immat, typefvion,cap

FROM Avion");

Création et chargement du
curseur.

curgeurPogsfava absolute(l);

Curseur sur le premier
avion.

if (curseurPosTava.relative(2))
System.out.println("relative(2): "+

curseurPosJava. getString(1));

elzse

System.out.println("Pag de 3&me avion!");

Accés au troisiéme avion.

1f (eurseurPssJava.relative(-2))
System.out.println{ "relative{-2) : "+

alse

System.out.println{ "Pas retour -2 possible 17);

curseurPosfava . getString (1))

Retour au premier avion.

if {curseurPosJava.absolute (-2}
System.out.println("absclute(-2) : "+

curseurPesJava. getString (1))

alse

System. out.println| "Pas d'avant dernier avion");

Accés a lavant-dernier
enregistrement.

& Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

Tabieau 8-21 Posilionnements dans un cursedr Ravigable (suite)

Code Java Commentaires
curseurPosfava.afterLast(); Parcours du curseur en
S8NS inverse.

while (eurséurPosJava. previousi()) { ..)

curseurPosJava.close () ; Ferme le curseur.

} catch{sQLException ex) { .. } Gestion des erreurs.

Pour definir un curseur navigable :
Une requéte ne doit pas contenir de jointure.
Ecrivez (mais évitez) « SELECT a,* FROM table a.» alaplace de « SELECT * FROM table.».

Gurseurs modifiables

Un curseur modifiable permet de mettre i jour la base de données : modification de colonnes,
suppressions et insertions d’enregistrements.

Les valeurs permises du deuxiéme paramétre (modifcurseur) de la méthode
createStatement, définie i la section précédente, sont présentées dans le tableau suivant :

Tahlesu 9-28 Constames de modificalion d'un CUrsesr

Constante Explication
RegultSet . CONCUR_REARD ONLY Le curseur ne peut &tre modifie.
ResultSet CONCUR_UFDATABLE Le cursaur peut étre modifié.

Le caractére modifiable d'un curseur est indépendant de sa navigabilité. Néanmoins, il est
courant qu'un curseur modifiable soit également navigable (pour pouvoir se positionner a la
demande sur un enregistrement avant d'effectuer sa mise i jour).

La gestion des accés concurrents n'est pas totalement assurée par les pilotes JDBC : aucune
pose de verrou n'est automatiquement opérée & l'ouverture d'un curseur (il n'est pas pessible
de définir un curseur par une requéte de type SELECT.. FOR UPDATE).
Pour composer un curseur de nature CONCUR_UPDATABLE
Une requéte ne doit pas contenir de jointure ni de regroupement.
Ecrivez (mais évitez) « SELECT a.* FROM table a. » 4 la place de « SELECT * FROM
table. ».
Une requéte doit seulement extraire des colonnes (les fonctions monolignes et multilignes
sont interdites).

@ Editions Eyrolles 429

S0L avaned |

430

Les principales méthodes relatives anx curseurs modifiables sont les suivantes :

Tahiean 9-29 Méthodes de navigation dans un cursem

Méthode

Fonetion

int getResul tSetTypel)

Renvoie le caractére navigable des curseurs d'un état donné
(ResultsSet . TYPE_FORWARD_ONLY...).

int getResultSetConcurrency |)

Renvole le caractére modifiable des curseurs d'un &at donné
(ResultSet . CONCUR_READ_OMLY oU
ResultSet . CONCUR_UPDATABLE).

int getTypel()

Renvoie le caractére navigable d'un curseur donné.

int getConcurrency ()

Renvole le caractére modifiable d'un curseur donné.

void deleteRow()

Supprime |'enregistrement courant.

void updateRow()

Madifie 1a table avec l'enregistrement courant.

vold cancelRowUpdates()

Annule les modifications faites sur l'enregistrement courant.

void moveToInsertRowl)

Déplace le curseur vers un nouvel enregistrament.

void insertRow()

Insére dans la table l'enregistrement courant.

vold moveToCurrentRow!)

Retour vers 'enregistrement courant (& utiliser éventuellement
aprés moveToInser tRow).

Les opérations de modification et d'insertion (UFDATE et IINSERT) & travers un curseur se réali-
sent en deux ternps : mise & jour du curseur puis propagation a la table de la base de données.
Il suffit ainsi de ne pas exécuter la deuxiéme étape pour ne pas opérer la mise & jour de la base.

La suppression d'enregistrements (DELETE) & travers un curseur s'opére en une seule instruc-

tion qui n'est pas forcément validée par la suite : il faudra programmer explicitement le COMMIT
ou laisser le paramétre d'autocommit & true (par defaut).

La figure suivante illustre les modifications opérées sur la table awion par I'intermédiaire du
curseur CurseurModi £Tava utilisé par les trois programmes Java suivants :

Flgure 8-6 Mises & jourd'un curseur

.

.

Avion
immmat typehvion |dap cCOmp

[FWIES | Concorda | 90 AR
FTGre Concorde | 95 AF
TGS k] 140 TAT
F-GLRT Aaan 00 AEA
FGRUB Aza0_A380 | 240350| | AEAT
F-isl LV A3 Fia01] AEHI
F-LUTE THZD q WL

curseurBodi fJava

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Suppressions

Le code suivant (Resul tDELETE.java) supprime le troisiéme enregistrement du curseur et
répercute la mise & jour au niveau de la table Avion du schéma connecté. Nous déclarons ici
ce curseur « navigable » :

Tahleau 9-30 Suppression d'mn enregistrement

Code Java Commentaires
try f{. Création de 'état et
Statement etatSimple = désactivation de la validation

ex. createStatement (Resul tSet . TYPE SCROLL_TNSENSITIVE, automatique.
Regul tSet . CONCUR_UPDATABLE) ;
¥, setautoCommit (false);
ResultSet curseurModifiava = etatSimple.executefuery Création du curseur
("SELECT immat,typelvion,cap FROM Avion") ;

if (purseurModifiava.abselute(3)) Accés direct au troisidme

{ curseurModifJava. deleteRow|); avion, suppression de
cx.comntiE(); } I'enregistrement.

elge

System.out.println({"Pas de 3jéme avion!");

curseurModifIava.close(); Ferme le curseur.

} catch(SQLException ex) { . } Gestion des erreurs.

Le code suivant (ResultDELETEZ. java) supprime le méme enregistrement en supposant son
indice a priori Inconnu. Nous déclarons ici ce curseur « non navigable ». Notez 1'utilisation de
la méthode ecuals pour comparer deux chaines de caractéres :

Tableau 8-31 Supgwession d'un enrepisirement

Code Java Commentaires
try Création de l'état et
Statement etatgimple = désactivation de la

cx.createStatement (ResultSet . TYPE FORWARD_ONLY, validation automatique.
ResultSel . CONCUR UPDATABLE) ;
ex, sethutaCommit (falae);

ResultSet curseurModifJava = etatSimple.executeQuery Création du curseur.
["SELECT immat ,typelvion,cap FROM Avion™);

String p_immat = "F-QLFS™;

while (curseurModifJava.next|)) Accés a l'enregistrement et
{if {curgseurModifJava.getString(l).equalsg(p immat)) suppression.
{ curseurModifTava . delataRow!) ;
cx.commiti); }
H
curseurModifTava.closel) ; Ferme le curseur.
} catch(SQLException ex) { . } Gestion des erreurs.

@ Editions Eyrolles 431

S0L avaned |

432

Modifications

La modification de colonnes d'un enregistrement au niveau de la base de données s’opére en
deux étapes : mise A jour du curseur par les méthodes updatesess (updarer methods) puis
propagation des mises & jour dans la table par la méthode updateRow().

Les méthodes updatesccx ont chacune deux signatures. Par exemple, la méthode de modifica-
tion d'une chaine de caractéres (valable pour les colonnes CHAR, VARCHAR et VARCHARZ) est
disponible en raisonnant en fonction soit de la position soit du nom de la colonne du curseur :

void updateString(int positionColonne, String chaine)
void updateString (String nomColonne, String chaine)

Le code suivant (Resul tUPDATE. java) modifie, an niveau de la table Avion, deux colommes du
cinquiéme enregistrement du curseur. Nous déclarons ici ce curseur « sensible » pour pouvoir
éventuellement visualiser la modification réalisée dans le méme programme.

Tableau 8-32 Modifications d'mn enrsgistrement

Code Java Commentalres

ery fu Création de 'état et
Statement etatSimple = désactivation de

ex.createStatement (Regul tSet . TYPE _SCROLL_SENSITIVE; la validation automatique.
Resul tSet . CONCUR_UPDATABLE) ;
ox. getAutoComnit (false);
ResultSet curseurkModi fJava = etatSimple.executeguery Création du curseur.
("SELECT immat, typehvion, cap FROM Avien");

Lf {curseurModifJava.absoclute(5)) Accés a l'enregistrement.
{ curgeurModifJava.updatestring (2, "R3IB0"); Premiére étape.
curseurModi ffava updateInt (3, 350);

curssurMadi fTava updateRow(); Deuxiéme &tape.
cx.commit{); } Validation.

elae
System.out.println{"Pas de Séme avionln);

curaeurMod] fTava . cloae () ; Ferme le curseur.
} catch (SQLException ex) { ..} Gestion des erreurs.

insertions

L'insertion d’un enregistrement au niveau de la base de données s'opére en trois étapes :
préparation & 1'insertion dans le curseur par la méthode moveToInsertRow, mise & jour du
curseur par les méthodes updatesscx, puis propagation des mises & jour dans la table par la

& Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

méthode insertRow. L'éventuel retour i I'enregistrement courant se programme i ’aide de la
méthode moveToCurrentRow.

Le code suivant (Resul t INSERT . java) insére un nouvel enregistrement au niveau de la table
Avien. La quatriéme colonne de la table n'est pas indiquée dans le curseur, elle est donc
passée i NULL au niveau de la table en |'absence de valeur par détaut définie dans la colonne.

Tahieau 8-33 Inserlion d'un enrepisiement

Code Java Commentaires
try fuw Création de l'état et
Statement etatgimple = désactivation de la

ox.createStatement (ResultSet | TYPE SCROLL _SENSITIVE, valdation automatique.
FesultSet CONCUR_UPDATABLE | ;
eX. gethutoCommit (falae);

ResultSet curseurModifJava = etatSimple. executeQuery Création du curseur.
{ "SELECT immat , typebvion,cap FROM Avien");

curszeurMoedi £Java. moveTolnsertRow () ; Premidre étape.

curseurModi fJava . updatesString (1, "F-LUTE"}; Dewxdéme étape.
curseurModi fJava. updateString (2, "TE20");
curgeurMadi fJava. updateInt (3,4);

ecurseurModi fJava. insertRow(); Trolsiéme étape.
cx.commit]) ; Validation.
eurseurModifIava.clogel); Ferme le curseur.
} catch (SQLException ex) { . } Gestion des erreurs.
Restrictions

Les limitations d’Oracle sont, pour I'heure, les suivantes :

En travaillant avec des curseurs navigables, il n'est pas possible de se positionner sur un enre-

gistrernent avec les méthodes beforeFirst ou afterlast avant de supprimer, modifier ou
dinsérer un enregistrement.

On ne peut aveir acces en lecture 4 un nouvel enregistrement inséreé au sein du méme pro-
gramme Java (que le curseur soit sensible ou pas).

@ Editions Eyrolles 433

| Partie W S0L avaned |

Ensembies de lignes (RowSed

O W O R RN R O (-, (- e W e

Introduit avec JDBC 2.0, le concept de RowSet est natif dans JDK 3. Un RowSer est un objet
qui encapsule un ensemble de lignes (de type ResultSer ou d'une source de données tabulaire),
qui permet un mode de développement s*apparentant aux Java Beans, incluant un ensemble de
propriétés et un mécanisme de notifications. Un RowSer peut étre mis 4 jour et tout mouve-
ment d'un curseur est permis {méme si la base de données ou le pilote ne fournit pas native-
ment ces fonctionnalités).

L'interface RowSet (qui hérite de ResultSet) du paquetage javax. =gl autorise la confi-

guration d'un ensemble de lignes (nom de 'utilisateur, URL de la connexion ou instruc-

tion SQL), grice 4 des méthodes de type setXxX. Il n'est donc plus nécessaire

d'implémenter explicitement une Connection ou un Statement.

L'interface RowSetListener permet la gestion des événements relatifs aux RowSets.
Deux catégories de RowSeis se distinguent.

Les RowSets connectés. lls fonctionnent de la méme maniére que les ResuliSers et gardent
une connexion au SGBD durant leur cycle de vie.

Les RowSets déconnectés. Ils sont capables d'interrompre la connexion i la base, d” opérer
des modifications, puis de se reconnecter en transmettant les mises & jour, tout en gérant
d’éventuels conflits.

Présentes dans le paquetage javax.sgl.rowset, les interfaces suivantes héritent toutes de
RowSer, mais elles implémentent chacune un type ditférent de RowSers.

CachedRowSet : RowSer déconnecté particuliérement adapté aux clients légers (PDA ou
smartphones) et i un volume restreint de données. Pour contourner cette limitation, optez pour
linterface OracleCachedRowset présente dans le paquetage oracle. jdbe. rowssat.

WebRowSet : RowSet dérivé du CachedRowSet particulidrement adapté aux applications
Web et aux flux de domnées XML. L'interface implémentée par Oracle est
OracleCachedRowSet (paquetage oracle. jdbc.rowset).

FilteredRowSet : RowSer dérivé du WebRowset. Il permet de filtrer des données grice 4
I'interface Predicate. Pour ceux qui ne savent pas écrire des conditions SQL.

JoinFowSet : RowSer dérivé du WekRowSet. Il est adapté aux jointures de plusieurs
RowSets. Pour ceux qui ne savent pas écrire des jointures SQL.

JdbeRowSet : RowSer connecté. Il simule un ResultSet sous la forme d'un Java Bean.
Avant de manipuler un RowSet, il faut suivre trois étapes.
1. Lapremiére implémente une des interfaces pour obtenir une instance du RowSer.
2. Parla suite, vous devrez spécifier les propriéiés de cette instance.
3. Enfin, il faudra peupler ce RowSet par les données désirées.

434 & Editions Eyrolies

[chapitre n® 0 Ulnteriace JORE |

RowSel sans connexion

Le code suivant (RowSetl.java) illustre plusieurs avantages d'un RowSer: il n’est plus
nécessaire de créer explicitement une connexion et un état (Statement). De plus, une instruc-
tion peut étre paramétrée (4 la maniére d'un PreparedStatement).

Vous devrez importer le paquetage cracle.jdbe. rowset . OracleCachedRowSet.

Tableau 8-31 RowSe! déconnecté et paraméwe

Code Java Commentaires
OracleCachedRowSet rowset = new OracleCachedRowSet(); Création du RowSet.
rowset .setUrl ("jdberoracle:thin:8//soutcu-PC~-W7:1621/x8"); Spécification des
rowset . setUsername | "soutou”) ; propriétés du RowSel.

rowset . setPassword("iut");
rowset . getCommand | "SELECT immat ,cap, typeavion

FROM Avion WHERE eomp=T7");
rowset .set8tring(l, "AERI");
rowset . setType (Result Set. TYPE_SCROLL_INSENSITIVE) ;
rowset . setConcur rency (ReaultSet . CONCUR_UFDATABLE) ;

rowset . executel) ; Manipulation
while (rowset.next()) du RowSel.
System.out.println (rowset . getString(l) +
"ortrowset . getInt (2)+"-"+rowset.getString(3));

RowSel avec ResultSet

Le code suivant (RowSet2 . java) présente un autre avantage d'un RowSer : pouvoir manipu-
ler les données extraites d'un ResultSer aprés que la connexion soit fermée. Notez la méthode
populate qui initialise un RowSer i partir d"un ResulSer.

Tableau 9-35 RowSst déconmecté el peupié par un ResultSet

Code Java Commentaires
oracle. jdbe .pool .OracleDataSource ds; Création de la

da = new oracle. jdbe. pool, QracleDataSourcel); connexion, de I'état
ds.getURL(" jdbe: cracle:thin: 8/ /soutou-PC-W7:1521/XE") ; etd'un ResuwtSet

Connection cx = ds.getConnection{"soutou®,"iut");
Statement stmt = ox.createStatement();
EegultSet raet = stmt.executefuery

{"SELECT immat,cap,typeavion,comp FROM Avion®);

OracleCachedRowSet rowset = new OracleCachedRowSet(); Création et spécification
rowset . getType{Result Set . TYPE_SCROLL_INSENSITIVE) ; des prapﬂé'[és
rowset . setConcur rency (ResultSet , CONCUR_UPDATABLE) ; du RowSeal.
rowset . populateirset) ; Chargement
du RowSel.

@ Editions Eyrolles 435

S0L avaned |
Tahlean 8-35 RowSel déconnecté el peuplé par un ResufSel (suite)
ex.closel); Aprés fermeture,
rowset.afterLast(); lecture de la derniére

if (rowset.previeusi))
Systen. out.println (rowset. . getString (1) +
" -"trowset.getInt(2) +"-"+rowset . getString(3)) ;

ligne du RowSei.

RowSet pour KWL
Le code suivant (RowSet3 . java) présente la génération d"un fichier XML par I'intermédiaire

d'un RowSer de type WebRowSet. On suppose la connexion et 1 état créés. Notez 1utilisation
de la méthode writeXml qui génere en une passe le document XML.

Tabiean 9-36 RowSel pour generer du NML

Code Java Commentalres

ResultSet rset = stmt, executeQuery Création du ReswltSet
("SELECT immat,cap, typeavion,comp FROM Avion");

OracleWwebRowSet weet = new OracleWebRowSet (); Création et chargement du

weet . populateirset); RowSef.

try

{ FileWriter out = new FileWriter ("avions-base.zml"); Génération du fichier XML

waet. writeXml (out) ;
H
cateh (IOException exc)
{ System.out.println|("Probléme avec Filewriter"):,}

Le fichier XML généré contient les données sous I'élément data. Les premiéres balises

(properties et metadata) renseignent, d'une part, la connexion et, d’autre part. la structure
du résultat.

Figure 9-7 Fichier XML
généré

436 Editfons Eyrofies

[chapltre n° 9

Ulnteriace JORE |

A I'inverse, la méthode readxml charge un nouveau RowSer i partir d'un document XML
passé en paramétre (sous réserve qu'il vérifie la grammaire attendue).

Mises a jour d’'un RowSet

Un RowSet n'est pas contimuellement connecté 4 la source (& part les JDBC RowSets), sa mise
a jour nécessite donc 1'appel de la méthode acceptChanges qui transmet les modifications &
la source. La méthode commit est également nécessaire sl on n'est pas en mode autocommit.
Il est & noter que la connexion {ou reconnexion) a la source s’opére d une maniére transparente
a I'invocation des méthodes execute ou acceptChanges (sous réserve que les propriétés
user, password et URL solent correctement initialisées).

Le code suivant (RowSet4 . java) présente deux mises i jour de la table Avion (une modifica-
tion et un ajout) par I'mtermédiaire d'un RowSet de type CachedRowSet. On suppose ce
RowSer créé d'une maniére identique au premier exemple (RowSet1. java).

Tahieau 8-37 MEses & jour d'un RowSel

Code Java Commentaires
rowget , setCommand { "SELECT immat,cap, typeavion, comp FROM Avion®); Création
rowset . setType(Result Set . TYPE_SCROLL_TNSEMSITIVE) ; du RowSet.
rowset . setConcur rency (ResultSet , CONCUR_UPDATABLE) ;
rowset . executel) ; Chargement
du RowSet.

if (rowset.first()) Modification

{ rowset updateInt (2,92);rowset.updateRow(); } d'une colonne.
rowset . moveTolnsertRow() ; Ajout
rowset .updatestring (" IMMAT", "F-GUEFPR"); d'une ligne.

rowset .updateString (" TYFEAVION", "ATO1");
rowset . updateInt ("CAR", 16);

rowset .updateString|"COME", "AF");

rowset . insertRow ()

rowset . acceptChanges|) ; Validation.
rowset . commit();

Notifications pour un RowsSet

11 est possible d’intervenir lors de toutes les mises 4 jour d'un RowSer par un processus
d'écoute implémenté par 'interface RowSetListener, disponible dans le paquetage
javax.sgl. En implémentant cette interface 4 1'aide des méthodes suivantes.

@ Editions Eyrolles 437

S0L avaned |
Tableau 9-38 Méthotles de Iinterface RowSetlistense
void curscrMoved | RowSetEvent event) Dés que e curseur est en mouvement.
void rowChanged(RowSetEvent event) Deés qu'une ligne du curseur est modifiée.
vold rowSetChanged (RowSetEvent event) Dés que le curseur est modifié.

Le code suivant (EcouteRowSet.java) implémente Uinterface et permetra de tracer les
événements vécus par le RowSer.

Tahlesn 8-30 impiémentation de I'inwerface RowSelisener

Code Java Commentaires
import javax.sgl.*; Création d'une classe.
public elagss EcouteRowSet implements RowSetListener
{public woid cursorMoved|RowSetEvent event) Surcharge des trois

{ System.out.println("Le curseur bouge"); } méthodes.
publie woid rowChanged (RowSetEvent event)

{ Syastem.out.println("Une ligne du curseur change"); }

publiec woid rowSetChanged(RowSetEvent ewvent)
{ System.out println("Le cursgeur change"}; } '}

Le code suivant (RowSet5.java) attache ce processus d’écoute 4 un RowSer par la méthode
addRowSetListener. On suppose ce RowSer créé et initialisé d’une maniére identique au
précédent exemple (RowSet4. java). Pour détacher un processus d’écoute, vous devrez utili-
ser par analogie la méthode removeRowSetListenser.

Tabieau 8-30 Atschement d'un processus d'éeoute & un RowsSet

l# idem début de RowSetd.java Création du RowSet.

EcouteRowSet ecoute = new EcouteRowSet(); Affectation au RowSe! d'un processus
rowset . addRowSetListenar (ecoute) ; d'écoute.

if (rowset. firar())

. rowset,updatelInt(..) Maodifications du RowSet.

rowset .moveToInsertRow!) ;

Les mises a jour produisent le résultat suivant. Deux lignes du RowSer sont bien mises i jour
(la premiére concerne deux modifications, la seconde une insertion). La validation entraine la
mise i jour du RowSer dans son intégralité.

438 & Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Flgure 9-8 Trace des nolifications d'un RowSel

——— e f iguration - (Default >
Le curseur

Une ligne du curseur change

Une ligne du curseur change

La curseur changs

Frocess completed

Interface ResultSetMetaData

R R I i)

L'interface ResultSetMetaData est utile pour retrouver dynamiquement des propriétés des
tables qui sont manipulées par des curseurs ResultSet. Cette interface est intéressante pour
programmer dynamiquement des requétes ou d’autres instructions SQL. Ces fonctions vont
extraire de maniére transparente des informations par I'intermédiaire du dictionnaire des
données.

Une fois un curseur ResultSet programmé, il suffit de lui appliquer la méthode
getMetaData() pour disposer d'un objet ResultSetMetaData. Le tableau suivant
présente les principales méthodes disponibles de I'interface ResultSetMetaData :

Tableau 9-41 Mémodes principates de ['interface ResultSetMetalata

Méthode Description

int getColumnCount () Retourne le nombre de colonnes du curseur.

String getColumnName(|int) Retourne le nom de la colonne d'un indice donné du curseur.

int getColumnType(int) Retourne le code du type (selon la classification de
java.aql.Types) de la colonne d'un indice donné du
curseur.

String getColumnTypeName(int) Retourne le nom du type SOL de la colonne d'unindice donné
du curseur.

int ismullablefint) Indigue si la colonne d'un indice donné du curseur peut étre

nulle (eonetantas retourndes :
ResultSetMetabData.col umnloMulls,
ResultSetMetaData.columniNullableou
ResultSetMetaData. columniullabl elinknown).

int getPrecision (int) Nombre de chiffres avantla virgule de 1a colonne désignée.
int getScale(int) Nombre de décimales de la colonne désignée.

String getSchemaNWame|int) Nom du schéma propriétaire de la colonne.

gtring getTableName|(int) Nom de la table de la colonne.

@ Editions Eyrolles 439

S0L avaned |

Oracle n'emplole pas encore les méthodes getSchemallame() et getTablelame().

Le code suivant (ResulSetMeta.java) utilise des

méthodes de 1'interface

ResultSetMetaData sur la base de la requéte extrayant trois colonmes dans la table

Avion.
Tahlean 9-42 Extraciion de méia-infermations au nivesy d'un curseury
Code Java Commentaires
oy (s

ResultSet curseurJavasetatSimple.,executefuery
("SELECT immat, typeBvion, cap FROM Avion®);

Création du curseur.

ResultSetMetalata remd =
curseurJava.getMetabata () ;

Création dun objet Fesult -
SetMetaData.

int nbCol = ramd.getColumndountc();

nbol contient 3.

String nomZemeCol = remd.getColumniame (2);

nomZemeCol contient

TYFEAVTION.

String typelemeCol = remd.getColumnTypebame(2) ; typelemeol contient
VARCHARZ,

int codeTypeZensCol = rzmd.getColumnType (2); codeTypalemeCol contient
12 code pour VARCHARZ).

if (r=md.isNullable(l) == Test ranwoyant vrai

RegultSetMetaData. columNoNulls) {la premiere colonne est
Fi- |a clé primaire).

curseurdava.close() ;

Ferme le curseur.

} catchiSQLException ex) { . 1

Gestion des emeurs.

interface DatabaseMetaData

440

Linterface DatabaseMetaData est utile pour connaitre des aspects plus généraux de 1a base
de données cible (version, éditeur, si les transactions sont supportées...) ou des informations
sur la structure de la base (structures des tables et vues, prérogatives...).

Plus de quarante méthodes sont proposées par 'interfice DatabaseMetaData. Le tablean
suivant en présente quelques-unes. Consultez la documentation du JDK pour en savoir plus.

& Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

Tabiean 9-43 Méthodes principales de I'interizce ResuitSetMetabata

Méthode Description

ResultSet getColumnsi|String, Deseription de toutes les colonnes d'une table d'un

String, String, String) schéma donné.

String getDatabaseProductName() MNom de I'&diteur de la base de données utilisée.

String getDatabaseProductVersion () Numérodelaversion de la base utiisée.

ResultSet getTables(String, Description des tables d'un schéma donné,

String, String, Stringl])

String getUserName!() Nom de I'utilisateur connecté (schéma courant).

boolean supportsSavepoints () Renvoie true sila base supporte les points de
validation.

boolean supportsTransactions() Renvoie true sila base supporte les transactions.

Le code suivant (MetaData.java) utilise ces méthodes pour extraire des informations &
propos de la base cible et des objets (tables, vues, séquences...) du schéma courant.

Tableau 9-84 [Exiraction de méia-informations au niveau d'un schéms

try Création d'un objet
DatabaseMetaData.
DatabaseMetaData infoBaze = ex.getMetaDatal);
HesultSet toutesLesTables = infoBase. getTables("", Création d'un objet
infoBase.getUserMame (), null, null); Result Set contenant les
caractéristigues du schéma
courant.
while (toutesLesTables.nesti()) Parcours du curseur en
{ System.out.print{"Nom de 1'eobjet: "+ affichant quelques
toutesLesTables, getString(3)); caractéristigues.
Syatem.out . println{"Type : "+
teutesLesTables . getString(4)); }
System.out.println("Nom base : "+ Affiche le nom de la base.
infeBase.g b ductiame | |) ;
System.out.println("vVersion base : "+ Affiche la version de la
infoBage getDatabaseProductVersion ()); base
if {infoBase.supportaTransactiona ()) Transactions supportées ou
System.ocut.printlni{"Supporte les Transactions"); pas.
toutesLesTables . .closel); Ferme le curseur.
} cateh(SQLException ex) { . } Gestion des erreurs.

@ Editions Eyrolles 441

S0L avaned |

La trace de ce programme est la suivante (dans notre jeu d’exemple) :

Objets du schéma SOUTOU
Nom de 1'cbjet: AVION Type : TAELE
Mom de 1'objet: COMPAGHMIE Type : TAELE

Nom base : Oracle

Version base : Personal Oracle?i Release 9.2.0.3.0 - Preduction With the
Partitioning, OLAP and Oracle Data Mining options JServer Release
9.2.0.3.0 - Production

Supporte les Transactions

Instructions parameétrées (PreparedStatement)

B T T I I I T R S N

442

L'interface PreparedStatement hérite de 'interface Statement, et la spécialise en permet-
tant de paramétrer des objets (états préparés) représentant des nstructions SQL précompilées. Ces
états sont créés par la méthode prepareStatement de 1'interface Connection décrite ci-
aprés. La chaine de caractéres contient 1'ordre SQL dont les paramétres, s'il en posséde,
doivent étre indiqués par le symbole « ? ».

PreparedStatement preparefStatement (String)

Une fois créés, ces objets peuvent &tre aisément réutilisés pour exécuter 4 la demande
I'instruction SQL, en modifiant éventuellement les valeurs des paramétres d’entrée i 1 aide
des méthodes setooe (setrer methods). Le tableau suivant décrit les principales méthodes de
I'interface PreparedStatement :

Tahieau 8-45 Méthodes de I'interface PraparedStalem em

Méthode Description

ResultSet executeduery () Exécute la requéte et retourne un curseur ni navigable, ni
maodifiable par défaut.

int executeUpdate () Exécute une instruction LMD (I1#S=RT, UFDATE OU DELETE) et

retourne le nombre de lignes traitées ou 0 pour les instructions
SOL ne retournant aucun résultat (LDD).

boolean execute() Exécute une instruction SQL et renvoie true, S ¢'est une
instruction SELECT, false sinon.

vold setWull (int, int) Affecte la valeur MTLL au parameétre de numéro et de type
(classification java. sql . Types) spécifiés.
void closef) Ferme l'état.

Décrivons i présent un exemple d’appel pour chaque méthode de compilation d’un ordre
paramétré. On suppose la connexion cx créée :

& Editions Eyrolles

Ulnteriace JORE |

Extraction de données (executeQuery)

Le code suivant (PrepareSELRECT. java) illustre 'utilisation de la méthode executeQuery
pour extraire les enregistrements de la table Avion.

Tableau 8-36 Extrac@on de données par un ordre préparé

Code Java Commentaires
Ery
String ordreSQL =
"SELECT immat, typehvion, cap FROM Avion" ; Création d'un &tat préparé.
PreparedStatement StatPrépard =
&% . prepareStatement (ordresSQL) ;
ResultSet curseurfava =étabPrépard. executaguery (); Création du curseur
résultant de la compilation
while {curseurJava.next()) de I'état.

|

curseurdava.close();

Parcours du curseur.

Ferme le curseur.
étatPriéparé. closa () ; Fermeture de ['état.
} catch(SQLException ex) { .. }

Gestion des erreurs.

Mises 2 jour (executelipdate)

Le code suivant (PrepareINSERT. java) llustre 1'utilisation de la méthode executelpdate
pour insérer I enregistrement (F-NEW, 2319, 178, AF) dans la table Avion composée de quatre
colonnes : CHAR (6}, VARCHAR?2 (15), NUMBER (3) et VARCHAR? (4)

Tahieay 8-47 Inserfon d'on enregisirement par un ordre pyéuars

Code Java Commentaires
[i TS
String erdreSQL =
"INSERT INTO Avion VRALUES (7, 7, P, ?I"; Création d'un état préparé.

PreparedStatement étatPrépard =
cx.prepareStatement (ordresgL) ;

dtatPrépard . setString(l, "Fonmw"); Passage des paramétres.
EtatPréparé . setString(2, "A313");

ératPréparé, setInt (3, 178);

étatPréparé . setgexing(d, "AFY);

System.out.println| dtatPréparé executeUpdate () Exécution de linstruction.
+ " avion inséré. "),

EtatPréparé. close) ; Fermeture de état.

} catch{SQLException ex) { .. } Gestion des erreurs.

@ Editions Eyrolles

443

S0L avaned |

instruction LDD {execute)

Le code suivant (PrepareDELETE. java) illustre 'utilisation de la méthode execute pour
supprimer un avion dont I'immatriculation passe en parametre :

Tablesu 9-18 Suppression d'on enregisirement par un ordre préparé

Code Java Commentares
try | .
String ordreSQL =
"DELETE FROM Avior WHERE immat = 7" Création d'un état préparé.

PreparedStatement étatPréparé =
cx. prepareStatament (crdreSQL) ;

étatPrépard setString(l, "F-NEW "); Passage du paramétre.
if (! EEatPréparé execute(]) Exécution de linstruction.
{ System.eout.println("Enregistrement supprimé");
ex. oommit();)
étatPrépard.close|); Fermeture de |'état.
} eateh (SQLException ex) { ..} Gestion des erreurs.

Il n'est pas possible de paramétrer des instructions SQL du LDD (CREATE, ALTEE...). Pour
résoudre ce prebléme, il faut construire dynamiquement la chaine (String) qui contient l'ins-
truction & l'aide de |'cpérateur de concaténation Java (+). Cette chaine sera ensuite I'unique
paramétre de la méthode prepareStatement.

Appels de sous-programmes

444

Linterface CallableStatement permet d'appeler des sous-programmes (fonctions ou
procédures cataloguées écrites en PL/SQL, Java...), en passant d'éventuels paramétres en
entrée et en en récupérant en sortie. L'interface CallableStatement spécialise 1'interface
PreparedStatement. Les paramétres d’entrée sont affectés par les méthodes setxxx. Les
paramétres de sortie (définis OUT au nivean du sous-programme) sont extraits & I'aide des
méthodes getaoo

Ces états qui permettent d’appeler des sous-programmes sont créés par la méthode
prepareCall de linterface Connection, décrite ci-aprés :

Callablestatement prepareCall (String)

& Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Le tableau suivant décrit le paramétre de cette méthode (deux écritures sont possibles).
Chaque paramétre est indiqué par un symbole 7 :

Tablesu 9-49 Paraméte de prepareCall

Type du sous-programme . ‘Paramétre
Fonction {? = call momPonction{ [?, %, «])} }
Procédure {call apmProcéduze| [7) 7, wl) }

Une fois 1'état créé, il faut répertorier le type des paraméires de sortie (méthode
registerOutParameter), passer les valeurs des parameétres d’entrée, appeler le sous-
programme et analyser les résultats. Le tableau suivant décrit les principales méthodes de
I'interface CallableStatement :

Tablean 3-50 Méthodes de I'imerface CallableSialement

Méthode Description

ResultSet executeQuery() Idem PreparedStatement.

int executeUpdatef) Idemn Preparedstatement.

boolean executel) ldem PreparedStatement.

vold registercutParameter Transfare un paramétre de sortied unindice donné d'un type Java
{int, int) (classification § ava . sgl . Types).

boolean wasNulli) Déterming si le demier paramétre de sortie extrait esta NULL, Cete

miéthode doit étre seulement invogquée aprés une méthode de type get oo

Appel d'une fonction

Le programme JDBC suivant (CallableFonction.java) décrit I'appel de la fonction
LeNonCompagnieEst qui renvoie le nom de la compagnie d’un avion dont I'immatriculation
passe en parametre :

CREATE FUNCTION LeNomCompagnieBst({p_immat IN VARCHAR) RETUEN VARCHAR IS
résultat Compagnie.nomConp¥TYPE;

BEGIN
SETECT nomComp INTO résultat
FROM Compagnie WHERE comp = (SELECT comp FROM Avion WHERE immat = p_
immat) ;
RETURN résultat;

EXCEPTION
WHEN NO_DATA FOUND THEN RETURN NULL;

END;

@ Editions Eyrolles 445

| Partie W S0L avaned |
Nous appelons cette fonction pour 'avion d’immatriculation 'F-GLFS'.
Tahleau 9-51 Appel d'une fonction
Code Java Commentaires
ey f-u
String ordresgL =
"{? = call LeNemCompagnieEst{z)}"; Création d'un état appelable.
Callablestatemént étatippelable =
‘ox.preparacall (ordresSQL) ;
‘étathAppelable. registercutParameter Déclaration du paramétre de
(1,java.sql Types VARCHAR) ; sortie.
dtatippelable. setString (2, "F-GLFS"); Passage du paramétre d'entrée,
‘dratippelable. execute(); Exécution de la fonetion.
System.out, print ("Compagnie de F-GLFS : "+ Extraction du résultat.
dtatippelable getString (1))
dratippelable. close () ; Fermeture de l'état.
} catchiSpLException ex) { . } Gestion des erreurs.
Appel d'une procédure
Le programme JDBC suivant (CallableProcedure.java) décrit I'appel de la procédure
hugmenteCapacité (ayant deux paramétres) qui augmente la capacité d’un avion dont
I"immatriculation passe en paramétre.
| CREATE PROCEDURE AugmenteCapacité (p_immat IN VARCHAR,
p.n IN NUMEBER) IS
BEGIN
UPLATE Avion SET cap = cap + p.n WHERE immat = p_immat;
EMD ;
Nous augmentons la capacité de 1'avion 'F-GLFS' de 50 places :
Tableau 9-52 Appel d'une procédure
ERr .
String ordresQL = *{call RigmenteCapacité{?,)k
CallableStatemsnt étathppelable = Création d'un état
cx.preparecall (ordresgL); appelable.
étatippelable. setString (1, "F-GLFS") ; Passage des paramétres
dtatdppelable, sebInt(2,50) dentrée.
étatippelable, execute|) ; Exécution de la procédure.
dtatippelable. close () ; Fermeture de I'état.
} catch (SQLException ex) { .. 1 Gestion des erreurs.
446 & Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

Transactions

O T, O (L W - O Y) N

IDBC supporte le mode transactionnel qui consiste & valider tout ou une partie d’un ensemble
d'instructions. Nous avons déja décrit i la section « Interface Connection » les méthodes qui
permettent & un programme Java de coder des transactions (setAutoCommit, commit et
rollkack).

Par défant, chaque instruction SQL est validée (on parle d’autocommir). Lorsque ce mode est
désactivé, il fant gérer manuellement les fransactions avec commit ou rollback.

; - Quand le mode autocommit est désactivé :

La déconnexion d'un objet Connection (par la méthode close) valide impliciternent la
transaction (méme si commit n'a pas eté invogue avant la déconnexion).

Chague instruction du LDD (CEEATE, ALTER, DROP) valide implicitemnent la transaction.

Points de validation

Depuis la version 3.0 de JDBC (JDK 1.4), on peut inclure des points de validation et affiner
ainsi la programmation des ransactions. Les interfaces Connection et Savepoint rendent
possible cette programmation.

Interface Connection
Le tableau suivant présente les méthodes de I'interface Connection qui sont relatives au prin-
cipe des points de validation :
Tableau §-53 Méthodes concemant les polnts de validation de Vinterface Connection
Méthode Description

Savepoint setSavepoint() Positionne un point de validation anonyme et retourne un
objet Savepoint,

Savepoint setSavepsint(String) Pesitionne un point de validation nommé et retourne un
objet savepoint.

vold releaseSavepoint (Savepoint| Supprime le point de validation de la transaction courante.
void rollback(Savepoint) Invalide la transaction & partir du point de validation.

Oracle ne supporte pas encore la méthode releaseSavepoint.

@ Editions Eyrolles 447

S0L avaned |

448

Interface Savepoint

Les points de validation sont anonymes (identifiés toutefois par un entier) ou nommés. Le
tableau suivant présente les deux seules méthodes de 1'interface Savepoint :

Tablean 8-54 Mémodes de I'imerface Savepoint

Méthode Description
int getSavepointId() Retourne ldentifiant du point de validation de T'objet savepoint,
String getSavepolntName () Retourne Je nom du peint de validation de I'objet Savepoint.

Le code suivant (Transacticn2. java) illustre une transaction découpée en deux phases par
deux points de validation. Dans notre exemple, nous validons seulement la premiére partie. On
suppose la connexion cx créée.

Tablean 9-55 Points de valldatien

Code Java Commentaires
by

cx.gethutoComnit (false) ; Désactivation de I'autocommit.
String ordresQL = Creation d'un état appelable.

"INSERT INTO Avion VALUES (7, 2, 7; 71"
PreparedStatemnent ftatPréparéd =
cx.prepareStatement (ordreSQL) ;

‘Savepoint pl = cx.setSavepoint ("Fl"); Création du point de validation P1.
AtatPréparéd . setString (1, "F-NEW2"); Passage de paramétres et premiére
insertion.
1€ (| étatPréparé. exacutel))

System. put .println{"F-NEW2 insdéré");
Savepoint p2 = cx. setSavepoint("P2n); Création du point de validation P2,
étatPréparé setString(l, "F-NEW3"); Passage de parameétres et
- deuxigme insertion.
if (! étatrPréparé. executel))

System.out .println("F-NEW3 inséré®);
cx.rollback(p2); Annulation de la deuxiéme parfie.
ek, commit () ; Validation de la premigre partie.
ex.closel); Fermeture de la connexion.

} catch (S0LlException ex) { ..} Gestion des erreurs.

& Editions Eyrolles

[chapitre n® 0 Ulnteriace JORE |

Traitement des exceptions

R R I I T R R T R)

Les exceptions qui ne sont pas traitées dans les sous-programmes appelés, ou celles que les
sous-programmes ou déclencheurs peuvent retourner doivent &tre prises en compte au niveau
du code Java (dans un bloc try... catch...}. Le bloc d’exceptions permet de programmer des
traitements en fonction des codes d'erreur renvoyés par la base Oracle. Plusieurs blocs
d’exceptions peuvent &ire imbrigués dans un programme JDBC.,

Afin de gérer les erreurs renvoyées par le SGBD, IDBC propose la classe SQLException qui
hérite de la classe Exception. Chaque objet (automatiquement cré€ dés la premiére erreur) de
cette classe dispose des méthodes suivantes :

Tahieau 9-56 Mélhodes de ia classe SQLException

Méthode Description

String getMessagel) Message décrivant Perreur.

String getSQLStatel() Code erreur SQL Standard (XOPEN ou SQLS9).
int getBrrorCode () Code erreur SQL de la base.

SQLException getNextExcepticn() Chaihage & I'exception suivante (si une erreur renvoie
plusieurs messages).

Affichage des greurs

Le code suivant illustre une maniére d afficher explicitement toutes les erreurs sans effectuer
d'autres instructions :

Tableau 8-57 Atfichage des erremrs

Code Java Commentaires
import java.sgl.*;
import oracle.idbe.driver.*; Classe principale.

class Exceptionsl
{publie statiec vold main(String args [])
throws SQLExceptior
{tryi Instructions.
DriverManager.registerDriver (.);
Comnection cx = DriverManager . getConmnectioni..);
s}

catch(S0LException ex) Gestlon des erreurs.
{System.err.println| "Erreur");
while ({ex != null))
{System. err . println{"statut : "+ e, getepLetata(])
System.err.println({"Message : "+ ex.getMessage());
System.err.println{"Code base : "+ e, getErrorCoda());
ex = ex.getNextException();}
LoEY

@ Editions Eyrolles 449

| Partie W 0L avancé |
Traitement des erreurs
11 est possible d’associer des traitements a chaque erreur répertoriée avant |'exécution du
programme. On peut appeler des méthodes de la classe principale ou coder directement dans
le bloc des exceptions.
Le code suivant (Exceptions2.java) insére un enregistrement dans la table Avien en
gérant un certain nombre d'exceptions possibles. Le premier bloc des exceptions permet
d’afficher un message personnalisé pour chaque type d’erreur préalablement répertorié (dupli-
cation de clé primaire, mauvais nombre ou type de colonnes...). Si 'avion i insérer n’est pas
rattaché i une compagnie existante (contrainte rétérentielle), on décide de créer la compagnie
et 'avion & nouveau & I'aide de I'exception 2291 (touche parent introuvable). Le
dernier bloc d’exceptions affiche I'éventuelle erreur qui pourrait se produire lors de ces deux
insertions.
Tablesn 9-58 Traftement des exceptions
Code SQLJ Commentaires
String ordreSQL = Importation des
"INSERT INTC Awvion VALUES ('F-a0','A31%', 148, 'NEW')": paguetages.
tEy
{ DriverManager.registerDriver
(new cracle.jdbe.driver. OracleDriver());
Connection cx = DriverManager.getConnectioni...);
cx.setAutoComnit (false) ;
PreparedStatement &tatPréparéd =
cx.prepareStatenent (ordresQL) ;
System.out,printlniétatPréparé, executelpdate() +
" avion inséré,."); Validation.
cx.commit () ;
ex.cloge();: }
450 & Editions Eyrolles

[chapltre n° 9

Ulnteriace JORE |

Tablean 9-58 Traitement des exceptions (Suite)

Code SQLJ

Commentaires

cateh(S0LException ex)
{ if (ex getErrorCode() == 1)

Syatem.out.println{"Avion dé4A existant!");

eloe if (ax gatErrorCodel) ==

913)

System.out.println{"Trop de wvaleurs!");

elze if (@R getBrrorCode() ==
System. out.println{ "Nom de
else if | ax getErrorCode{) ==
System. out println("Mangque
else 1f (ex.getBErrorCodel) ==
Syatem, out.printlni "Valeur
else if |ax.getErrorCode() ==
System.out.println{"valeur
else if (px getErrorCode() ==

a42)

table inconmme!");
947

de valeurs!i");
1401)

trop leonguel");
1438)

trop lmportantel”);
2291)

try {Connection cx =

DriverManager . getConnection {u.w.) ;
cx. dethutoCommit (false) ;
String ordreSQL2 = "INSERT INTC Compagnie

VALUES ("MEW', 'Nouvelle Compagnie')";
PreparedStatement étatPréparé? =
cx.prepareStatement (ordreSQL2) ;
Syaten.out.printlniétatPrépardél executelpdate () +
" ocompagnie insdrée.");
dtatPréparél = cx.prepareStatement (ordresQL) ;
System.out . printlniétatPréparédl executeUpdate|) +
" avion inséré, "),
ex. commit () ;
ex.clogel);)
catch (SQLException e)
{System.err.println ("Erreur : " + e}; 1}

Gestion des erreurs.

Clé étrangére absente.

Insertion d'une compagnie.

Ingertion d'un avion.

Validation.

Gestion des erreurs.

ATaide de la méthode getErrorCode (en testant sur le numéro de 'erreur Oracle ou applica-
tiva), il est possible de récupérer des exceptions retournées par un SoUS-programme ol par un

déclencheur.

@ Editions Eyrolles

451

S0L avaned |

Exercices

O W O R RN R O (-, (- e W e

Lobjectif de ces exercices est de développer des méthodes de la classe Java ExoJDEC pour
extraire et mettre i jour certaines de vos tables.

8.1 curseur statique
Ecrire les méthodes :
+ Arraylist getSalles() quiretaurne sous la forme dune liste les enregistrements de la
table Salle.
« mainquise connecte & la base, appelle la méthode getSalles et affiche les résultats (exempla
donné ci-dessous) :
nSalle nomSalle nhPoste indIP
=01 g2alle 1 3 130.120. 80
=02 galle 2 2 130.120. 80
Ajoutez une nouvelle salle dans la table Salle sous SQL*Plus, validez et lancez & nouveau le
programme pour vérifier.
8.7 curseur modifiable

Ecrire la méthode void deleteSalle{int) quisupprime de latable Salle lenregistrement de
rang passé en parametre. Vous utiliserez la méthode del eteRow appliquée & un curseur modifiable.

Appeler cette méthode pour supprimer l'enregistrement de la table Sal le que vous avez ajoutd précé-
demment.

452

93

Appel d'un sous-programme:

Compiler dans votre schéma la fonction PLSCL supprimeSalle (VARCHARZ)qui se trouve sur le
Web et qui supprime une salle dont le numéro est passé en paramétre. La fonction retourne :

= 0silasuppression s'est déroulée correctement ;

= -1 sile code de la salle est inconnu ;

« -2 silasuppression estimpossible (contraintes référentielles).

Ecrire la méthode int deletesallePL{String) quiappelle lafonction supprimesalle. Ajou-
ter une nouvelle salle dans la table Salle sous SQLPlus, valider. Appeler la méthode deleteSal-
lePL dans le main pour supprimer la derniére salle créée. Essayer les différents cas d'erreurs en
appelant cette méthode avec un numéro de salle référenceé par un poste de travail et un numéro de
salle inexistant.

& Editions Eyrolles

Chapitre 10
Oracle et PHP

Ce chapitre détaille les moyens de faire interagir un programme PHP avec une base Oracle en
présentant les fonctionnalités principales des API OC8 et PDO. Vous trouverez dans les complé-
ments (disponibles i 1’ adresse www.edltions-eyrofies.com, sur la fiche de 1’ouvrage) d’ autres méca-
nismes un peu plus datés ; il s agit de PL/SQL Web Toolkit et de PL/SQL Server Pages.

Configuration adopiée

WO R R M S e e R W e B e SR e B R S R R R SR MR R MR e N R R M R e B e B e W R W

De nombreuses configurations sont possibles en fonction des versions PHP, Apache et Oracle
gue vous utiliserez. Si votre machine héberge plusieurs instances, la mise en place PHP et
Apache nécessite un environnement béton (fichiers de configuration, variables d’environne-
ment et chemins vers les répertoires). Evitez autant que possible d'utiliser Windows en version
64 bits, car il n'existe pas, pour I'heure, de version PHP adéquate et vous gjouterez une diffi-
culté i la mise en ceuvre de votre maquette (vous devrez installer un insrani client Oracle et
faire, par la suite, de nombreuses manipulations).

La configuration adoptée ici est Apache 2.2/PHP 5.2 avec une base 10g R2. A 1'époque
d&'Oracle9i, Apache était inclus et il fallait simplement modifier les fichiers de configuration.
Je décris ici une procédure minimale sans plus d’explications, car vous trouverez sur le Web
de nombreuses ressources i ce sujet {hitp:/www.oracle.comtechnetworktopics/php/).

Les logiciels

Téléchargez la derniére version stable d’Apache disponible sur htpshttpd.apache. org/down-
foad.cgi Pour Windows, optez pour le fichier apache x.x.xoc-win32-x86-no_
=2l .msi ; pour Linux, choisissez httpd-2.2 soc. tar.bz2. Aprés 1'installation, testez le
service dans un mnavigateur (http://localhost dans la plupart des cas, http://
camparols dans mon cas).

Téléchargez la derniére version thread safe de PHP au format archive : pour Windows, exten-
sion .zip (hitp:iwindows.php netidownlpad) ; pour Linux, au format tar.bz2 ou tar.gz
(httpzywww php.net/idownloads.php). Si vous utilisez Apache, optez pour la version VC6 (les
versions VC9 étant dédiées i I1S). Décompressez 'archive dans un de vos répertoires (C: \ PHP
dans mon cas).

@ Editions Eyrolles 453

S0L avaned |

454

Les fichiers de configuration

Concernant Apache, éditez le fichier httpd. conf (situé par défaut sous Windows dans C: 4,
Program Files‘\Apache Software Foundation‘\Apache2.Z), puis ajoutez les
lignes suivantes (# désigne un commentaire). Notez que les chemins de répertoires Windows
doivent étre écrits avec le symbole / et mon le 4.

écoute sur le port 9999
Listen 9999

LoadModule phpS_module "C:/php/phpSapache2_2.d411"
AddHandler application/x-httpd-php .php
PHPIniDir "C:/php®

répertoires des sources plp (pas d'accent dans le nom de répertoire)
DocumentRoot "C:/Donnees/dev/PHP-Oracle"

This should be changed to whatever you set DocumentRoot to..
<Mrectory "C:/Donnses/dev/PHP-Oracle”>

dans la section <IfModule mime modules :
AddType application/x-httpd-php .php

Concernant PHP, renommez le fichier php. ini-development en php.ini, puis éditez-le
pour :
modifier la ligne extension dir en indiquant le répertoire contenant les extensions de
PHP (et, notamment, la librairie php oci8.d11), dans mon cas: extension
dir="C:/php/fext”;
décommenter la ligne extension=php ocid.d11.
Les librairies Windows php_oci8.dll et php pdo_oci.dll conviennent aux bases 10g,
tandis que 1'utilisation de bases 11g nécessite php_ocif_ 11g.d1l.

Test d'Apache et de PHP

Ecrire le programme suivant (index.php) et disposez le dans le répertoire contenant les
sources PHP (D: /dev/PHP-Oracle dans mon cas).

html> <head> <title>test Apache et PHP</title> </head>
<body> Test de la configuration Apache - FHP

<%php

phpinfo() ;

7>

</body> </html>

& Editions Eyrolies

[chapitre n°® 10

Dracle ol PP |

Pour tester votre serveur, redémarrez le service Apache et inscrivez dans le navigateur
I'adresse du serveur (http://localhost:9999/index. php, dans mon cas). En fonc-
tion de la configuration choisie, vous devrez voir le message « Test de la configuration
Apache — PHP », suivi de la configuration actuelle de PHP (résultat de la fonction phpinfo).

Test d’Apache, de PHP et d’Oracle

Véritiez que les services Listener et I'instance Oracle sont démarrés. Le programme suivant
(el .php) doit se trouver dans le répertoire contenant les sources PHP (dans mon cas, C:
Donness\dev\PHP-Oracle). Renseignez le nom d'utilisateur, le mot de passe et la
description de I'instance (consultez le fichier tnsnames.ora situé dans ORACLE_HOME)
product . s x server\network \ADMIN ; dans la derniére version d’Oracle Express,
ORACLE HOME référence C:\oraclexe'\app'oracle).

Notez que vous pouvez aussi travailler sur votre base locale (installée par défauf) sans utiliser la
desuipticm du service et en ufilisant 1"instruction : $o¢t= ocl cormmect (Sutilisateur, Smdp).

<?php

Sservice = * (DESCRIPTION = (ADDRESS = (PROTOOOL = TCP) (HDST =
localhost) (PORT = 1521)) (CONNECT DATA = (SERVER = [DEDICATED}
{SERVICE_NAME = bdcsllg)))*;

Sutilisateur = "soutou”;

Smdp = "iut®;

print "Avant la comnexion
";

Scx = ool commedt (Sutilisatenr ,Smdp, S$service);

print "La cormexion <Bspasse </Bravec la description compléte cu
service! ";

oci_cloge (5cx);

P

Tester votre programme dans le navigateur (http://camparols:9999/cxl.php dans
mon cas). Vous devez obtenir le résultat saivant.

Flgure 10-1 Testd'une connexion

L.php - Microsoft Internet Explorer

Ecter gt Afichege quts o | &

(Adresse @ http:/fcamparols:9993/cxt.php j I Oi‘é | t;lsrrsc

Avant la connemon
La connexionpasse avec la description compléte du service!

@ Editions Eyrolles

| Partie W S0L avaned |

AP1 de PHP pour Oracie (OGD

O W O R RN R O (-, (- e W e

Les extensions Oracle (fonctions préfixées par ora) sont désormais obsolétes (elles étaient
valables avec des bases 7 et 8.0 et concernaient les premiéres versions de PHP). A partir de
la version 8i sont apparues des fonctions PHP dont les noms étaient préfixés par ocis. Ces
fonctions ont permis la gestion des LOB, descripteurs de fichiers, objets, collections et
ROWID. Par ailleurs, la manipulation des métadonnées (vues du dictionnaire des données)
&tait possible.

Depuis PHP 5, certaines de ces fonctions se sont standardisées ; le préfixe a été modifié en
oci_. Ainsi, OCILogin et OCIParse sont devenus, respeciivement, oci_connect et
oci_parse, etc. Notez que, bien que les anciens noms demeurent en tant qu’alias, il est plus
prudent de ne plus les utiliser. Vous trouverez dans le livre gratuit The Underground PHP and
Oracle Manual (http:iwww.oracle. comtechnetworkAopics/ php/underground-php-oracle-manual-
098250.html) toutes ces correspondances.

Les principales API pour accéder 4 Oracle via un programme PHP sont désormais OCI8 (Oracle
Call Interface) et PDO (PHP Data Objects). Ces extensions sont écrites en C et sont inclues en
tant que librairie de PHP (présente avec Windows dans php_oci8.d11 et php_pdo.d11). Si
vous désirez rendre votre code davantage portable (vers une mutre base qu’Oracle), vous devez
adopter PDO. Les extensions OCI8 vous permettront davantage de fonctionnalités (options de
connexion, LOB, etc.) et continueront i taire partie du langage PHP.

Avant de présenter la technologie PDO, éudions les principales fonctions OCI qui s’intégrent
i un programme PHP.

Gonnexions

La fonction oci connect retourne un identifiant de connexion utilisé par la majorité des
appels & la base (oci calls). Cette fonction ne rétablit pas une nouvelle connexion si une autre
avait été ouverte auparavant avec les mémes paramétres. Dans ce cas, oci_cornect retourne
I'identifiant de la précédente connexion ouverte. Il n'est donc pas possible d'utiliser cette
fonction pour programmer des transactions séparées. Il faudra utiliser a cet effet 1a fonction
oci_new connect (ayant méme signature que oci_connect).

Pour les bases Oracle d'une version supérieure 4 9.2, il est possible d'utiliser un paramétre
désignant le jeu de caractére i considérer lors de la connexion. oci_connect et
oci_new_conmect retournent FALSE si une erreur survient. La fonction oci_close
retourne TRUE en cas de succés, FALSE en cas d'erreur. Ces genres de connexions se
ferment implicitement en fin de programme PHP méme si elle n’ont pas £té cloturées avec
oci_close.

456 & Editions Eyrolies

[chapitre n® 10 Dracle ol PP |

Tableau 10-1 Fomcuon de connexion et Uéconnexion

Nom de Ia fonetion Paramétres
ool _connect (string wutilisateur, string pagsword [, Lhtilisateur, mot de passe, nom de
atring bd [, string charset]]) la base locale ou description du

service (en 'absence de ce
paramétra PHPS utilise la variable
ORACLE_SID). Le dernier
parametre désigne éventuellement
le Jeu de caractéres & considérer.

ool close(sconnexion) Ferme la connexion dont
lidentifiant passe en paramétre,

Les connexions persistantes sont des liens qui ne se ferment implicitement pas 4 la fin du
programme PHP. Quand une connexion persistante estinvoquée, PHP vérifie son existence ou
en créé une nouvelle (identique au nivean du serveur, de I'utilisateur et du mot de passe) en cas
d’absence. Cela permet de passer en paramétre un identifiant de connexion entre plusieurs
programmes PHP.

Ce ne sont pas ce type de connexions que |'on peut assimiler 4 des sessions. Les connexions persis-
tantes n'offrent pas de fonctionalités additionnelles en terme de transaction que les connexions non
persistantes. La fonction sedi_peonnect retourne un identifiant persistant de connexion.

Tablsau 10-2 Fonction ocl_poonmect

Nom de la fonction Paramétres
ool peonnect (string utilisateur, string password Mémes paramétres gue occi_
[, string bd [, string charset]]) connect .

Constantes prédéfinies

Les constantes suivantes permettent de positionner des indicateurs jouant le role de paramétres
systémes (modes d’exécution) au sein d’instruction SQL. Nous verrons au long de nos exemples
T'utilisation de certaines de ces constantes.

Tableau 10-3 Consianies prédéfinies

Constante Commentaires
OCI_DEFAULT Mode par défaut d'exécution des ordres SQL

(pas de validation automatique).
OCI_COMMIT ON_SUCCESS Validation automatique {aprés appel & cci_execute).
OCI_FETCHSTATEMENT_BY COLUMN Maode par défaut de linstruction oci_fetch_all.
OCI FETCHSTATEMENT _BY_ROW Made alternatif de linstruction cci_feteh all.

@ Editions Eyrolles 457

| Partie W S0L avaned |
Tahleau 10-3 Constantes prédéfinies (Suite)

_Constante Commentaires

OCI_ASS0OC Uhtilisé par oci_feteh alletoci fetch array
afin d'extraire un assoclative array comme résultat.

OCT_MNUM Utllisé par oci_fetch_all 8t oci fetch_array
afin d'extraire un enumerated array comme résultat.

OCI_EOTH Utiligé par eei_feteh all et eel feteh array

afin d'extraire un array supportant & la fois le mode
associatif et le mode numérique en indices.

OCI_RETURN_NULLS Utllisé par vei_ feteh array afin dextraire des
lignes méme si des colonnes sont valuées & WULL.

Interactions avec la hase

458

La majorité des traitements SQL, lorsqu’ils incluent des paramétres, s’effectuent comme suit :
connexion (comnect), préparation de 1"ordre (parse), association des paramétres a 1'ordre SQL
{bind), exécution dudit ordre (execure), lecture des lignes (pour les SELECT, fetch) et
libération des ressources (free et close) aprés validation ou annulation de la transaction
courante (commit et rollback).

La fontion cei parse prépare 1'ordre SQL puis retourne un identifiant d’état qui peut
étre utilisé notamment par les fonctions oci_bind by name et oci_execute. La
fonction oci parse retourne FALSE dans le cas d” une erreur mais ne valide ni sémanti-
quement ni syntaxiquement 'ordre SQL. Il faudra attendre pour cela son exécution par
ocd_execute,

La fonction oci_execute exécute un ordre SQL préparé. Le mode par défaut est 0CI_
COMIT ON_SUCCESS (aufo-commit). Pour la programmation de transactions, prétérez le
mode OCI_DEFAULT puis validez explicitement par oci_commit. La foncton oci_
execute retourne TRUE en cas de succés, FALSE sinon.

Tableau 10-4 Fonctions d'analyse ol d 'exécution

Nom de la fonction Paramétres

resgource ocl_parsge(ressource Le premier parameétre désigne l'dentifiant de la

connexdon, string erdresSQn) connexion. Le second contient I'ordre SQL & analyser
(sELECT, INSERT, UPDATE, DELETE, CREATE.)

boolean oci_execute(ressource Le premier parameétre désigne 'ordre SQL a exécuter.

ordresgL [,int mode]) Le deuxidéme paramétre est optionnel, Il définit le mode

de validation & l'aide d'une constante prédéfinie.

& Editions Eyrolles

[chapitre n® 10 Dracle ol PP |

Mises a jour

Les fonctions oci commit et ocel rollback pemettent de gérer des transactions, elles
refournent TRUE en cas de succeés, Sinon FALSE.

Tablean 10-5 Fonclions de valkdalion el o'anmulation

Nom de I fonction Paramétres

hoolean oci_commit (ressource Valide la transaction de la connexion en cours.
connexion)

boolean oci_rollbackiressource Annule la transaction de la connexion en cours.
eannaxion)

Le code suivant (partie du programme insertl.php) décrit 'insertion d'une nouvelle
compagnie (en supposant qu’aucune erreur n’est retournée de la part de 1a base). Notez que les
lignes d’'exécution et de validation auraient pu e remplacées par I'instruction « oci_
execute (Sordre, OCI_COMMIT ON_SUCCESS) » Ce mode de programmation est
également valable pour les modifications de colonnes (UPDATE) et suppression d'enregistre-
ments (DELETE). Nous étudierons plus loin comment récupérer au niveau de PHP les erreurs

renvoyées par Oracle.

Tahleas 10-6 mssrSon o un enregistrament
Code PHP Commentaires
Sinsertl = "INSERT INTO Compagnie Création de l'instruction.
VALUES ('aL', 'Alr Lib')"; Prépare linsertion.
Sordre = ool _parse(Scx, Sinasertl);
ool _execute (Sordre); Exécute l'ingertion.
ooi_commit {Sox); Validation.
oci free statement (Sordre) Libére les ressources.

ocl_close($cx);

8i vous souhaitez connaitre le nombre de lignes affectées par I'ordre SQL., utilisez « oed
num_rowa (Sordre) » (voir la section « Métadonnées »).

Bitractions simples

Les fonctions suvantes permettent d’extraire des données via un curseur que la documentation
de PHP appelle tableau. Il est & noter qu’Oracle retourne les noms de colonnes toujours en
majuscules. Cette remarque intéressera les habitués des tableaux i accés associatifs (exemple :
Stab['PRENCM'], PRENOMétant une colonne extraite d’'une table).

@ Editions Eyrolles 459

S0L avaned |

Tahiesu 10-7 Fonctions d'extraction

Nom de la fonction

Paramétres

int oci_fetch all (resacurce
ordrasQl, array &tableau [, int zaut
[, int maxrows [, int param]]])

Extrait les lignes dans un tableau. Retourne la nombre
de lignes extraites ou FALSE en cas derreur.
zaut désigne le nombre de lignes & ignorer (par défaut 0).
maxrowe désigne le nombre de lignes & lire (par
défaut -1 qui signifie toutes les lignes) en démarrant
de lindice zaut.
param paut étre une combinalson de :
OCI_FETCHSTATEMENT BY_FOW
OCI_FETCHSTATEMENT BY COLUMN (par défaut)
OCI_NUM
OCI_ASSOC

array oecil_fetch array|resscurce
ordresgL [, int param])

Retourne un tableau qui contient la igne du curseur
sulvante ou FALSE en cas d'erreur ou en fin de
curseur. Le tableau est accessible de maniére
associative ou numérique suivant le parameétre param
qui peut étre une combinaison de =
OCI_BOTH (par défaut, idenfique & OCT_ASSOC +
OCI_NUM).
OCI_ASS0C pour un tableau & accés associatif
{comme oci_fetch _assoe).
oCI_wuM pourun tableau & accés numérique
(comme oci_feteh_row).
OCI_RETURN_NULLS prend en compte les
valeurs NULL retournées par Oracle.

array oci_fetch assoc|ressource
ordrasgn)

Retourne la ligne du curseur suivante dans un tableau
associatif ou FALSE en cas d'erreur ou en fin de
curseur.

object oci_fetch objectirsssource
ordraSQrL)

Retourne la ligne du curseur suivante dans un objet
PHP ou FALSE en cas d'erreur ou en fin de curseur.

array ocl_fetch row(ressocurce
ordrasgL)

Retourne laligne du curseur suivante dans un tableau
numérique ou FALSE en cas d'erreur ou en fin de
curseur.

boolean oeci set prefatchiressource
ordresprl [, int nbLignes] |

Limite le nombre de lignes & extraire 4 la suite d'un
appel 4 oei_execute. Par défaut le deuxiéme
paramatre vaut 1. Retourne TRUE &n cas de sucess,
FALSE dans le cas inverse.

boolean ool cancel (resscurce
ordresgL)

Imvalide le curseur libérant les ressources. Retourne
TRUE €N cas de succés, FALSE sinon.

boolean oei free statement | res-
source ordregSQL)

Lib&re les ressources associfes aux curseurs
occupées aprés oci_parse; Retourne TRUE en cas
de succés, FALSE dans le cas inverse.

Mlustrons & partir d'exemples certaines utilisations de quelques-unes de ces fonctions.

& Editions Eyrolles

[chapitre n°® 10

Dracle ol PP |

@ Editions Eyrolles

Le code suivant (partie du programme selectl.php) décrit 'extraction des avions de la
compagnie de code 'AF avec la fonction oci fetch array. On suppose ici et dans les
programmes suivants que la connexion i la base est réalisée et se nomme $cx Le curseur
obtenu est nommé 1igne, il prend en compte les valeurs nulles éventuelles. La fonction oci_

num_fields renvoie le nombre de colonnes de la requéte et sa signature est détaillée a la
section « Métadonnées ».

Tabiesu 10-8 Fonclion ocl_ielch_anay

Code PHP Commentaires
Srequete = "SELECT immat, typeaviorn, Création de la requéte.
capacite, compa FROM Avion
WHERE compa = 'AF'"; Exécution de la requéte.
Sordre = oci_ parse(Scx, Srequete); Obtention du nombre de colonnes.
ocl_execute (Sordre); Exécution.
Srncola = oci_nim_fields{Sordra); Obtention.

print "Avions de la compagnie 'AF'"; Chargement et parcoursdu curseur.
print "=TABELE EORDER=1> "; Parcours des colonnes.
while (%ligne = oci_fetch array (dordre, Chargement.
OCI_NUM + OCT_RETURN_NULLS))

{print "<TR> ";

for | $i=0;5i < Sncola; Si++) Parcours.

{print "<TD> $ligne[$i] </TD>" ;} Affichage.

print "=/TR=> ";:}

print "</TRABLE> ";

Le résultat est le suivant (en supposant que la compagnie 'AF' dispose de 4 avions dont un est
affecté d'une capacité nulle).

Figure 10-2 Exemple avec oci_fefch_array

Eichler Ediion affichage Fayoris Qudds 7 | &
A@ml@ http: ffcamparalsi 9999 setect . php j BY ok | bens

At X compin A
Fors [a320 170/aF
F-GAFU (4320 [160[4F
F-wowWw 320 | [aF

461 |

| Partie W S0L avaned |

Le code suivant (partie du programme select2.php) décrit I'extraction de tous les avions &
I'exception des deux premiers (grice au troisiéme paramétre de la fonction oci_fetch
al11). Le curseur obtenu est nommé tabresults. L'instruction PHP reset replace le poin-
teur au premier €lément de la ligne courante du curseur. L’ instruction PHP each retourne la
paire {clé, valeur) et avance le curseur d'une ligne.

Tableau 10-9 FoncBon oci_leich sl

Srequete = "SELECT immat, typeavion, capacite FROM Création de la requéte.
Rvion";

Sordre = pei_parse ($ex, Srequete);
ool _execute (Sordre);

Exgcution de la requéte.
fnblignes = oci fetch alli{Sordre, Stabresults, 2);

Chbtention du nombre
if ($nblignes > 0) {
print "<table border=1>\n"; de lignes et chargament.
printrstrsin";
far ($1 = 0; $1 < $nblignes; $i++) { Parcours du curseur:

regal (Stabresults) ;
print "<trsin";
while ($ecel = each (Stabresults)) [
tdonnde = Scol ['value'];
print "<td>$donnde[$il</td>\n";} Parcours des colonnes.
print "s/tr=i\n®; } Affichage des colonnes.
print "</tablex\n";
¥
else
print "Pas de données
\n"; }

Le résultat est le suivant (en supposant toujours que la base ne stocke que 4 avions).

Flgure 10-3 Exemple avec oci_fetch_all

le (fetch_all) - Microsoft Internet Explorer

Bchier dton Affichage Fayoris Qs 2 | & |
W:Ii]http:ﬁcampads:’gg‘?gkeletﬁ‘.w 3 C(]uuu

FoAFy [Ax0 (180
F-WOWW [A380

462 & Editions Eyrolles

[chapitre n® 10 Dracle ol PP |

Passaue de parameétres

Les fonctions oci_define by name et oci_bind by name permettent d’associer & des
colonnes Oracle (toujours notées en majuscules) des variables PHP, et inversement. Ces fonc-
tions retournent TRUE en cas de succés, sinon FALSE.

Afin de vous prémunir d’éventuelles attaques par injection de code SQL., évitez de construire
dynamiquement une requéte et préférez 'utilisation de paramétres de liens (bind variables).

Tabiesu 10-10 Fonctions de passage de parametres

Nom de la fonction Parameétres

boolean oci_define_ by nams (ressource Définition d'une variable PHP de réception pour

ardreSQL, string nomColonne, mixed la colonne. Le parametre optionnel &ype

&variable [, int type]) concerne la gestion des LOBs par des
descripteurs.

boolean oci_bind by name (ressource Association d'une variable PHP & une colonne

ordresglL, string ":coloracle”, mixed Orade dans une instruction de manipulation de

gvariable [, int longueur [, int type]]) données de SOL (INSERT,UFDATE et DELETE).

Le paramétre Jongueur gjuste lataille en octets
de lavaleur passée en paramétre. Siil vaut -1,
oei_bind by name uliiseralatalle courante
de lavariable. Méme signification pour le
parametre optionne| type gue précédemment.

Le code suivant (partie du programme selectl.php) extrait 'immatriculation et le type
de tous les avions en utilisant la fonction oei_define by _name pour sélectionner les
colonnes.

Les deux variables PHP sont définies avant d’exécuter 1"ordre.

Tabieau 10-11 Fenction ocl define_by_name

Cade PHP Commentaires

$requete = "SELECT immat,typeavion,capacite FROM Avion"; Créationde la requéte.
sordre = ocl_parse ($ox, Srequete);

oci_define by name(fordre, "IMMAT", Simmatriculation); Défimition des variables PHP
oci_define by name|Scrdre, "TYFERVION", Stypaw);
ool execute (Sordre); Exécution de la requéte.

print "<BrListe des avions";
print "<TABLE EORDER=1> ";

while (oei_fetch _array(Sordre)) Chargement et parcours
{print "<TR> <TD> Simmatriculation </TD=" ; du curseur.
print " <TD> Stypav =<fTD> </TR> "; } Affichiage des colonnes.

print "</TARBLE> ";

@ Editions Eyrolles 463

S0L avaned |

464

Le code suivant (partie du programme insertZ.php) décrit l'insertion paramétrée d'une
nouvelle compagnie. La fonction oci_bind by name permet de faire passer deux paramé-
tres & I'instruction SQL.

Tublean 10-12 Fonction oc!_bind by name

Code PHP Commentaires
ScodeComp = "CAST"; Affectation des variables
fnomComp = "Castanet Adrn; PHP.

Sinsert? = "INSERT INTO Compagnie VRALUES (:wl, :vwZ) "; Définition de l'ordre
Sordre = pol_parse (%ox, Sinsert2); parameétré.

oci bind by name|Sordre, ":vl", ScedeCeomp, -1); Agsoclation avec les
oci_bind by name|fordre, ":vi", SnomComp, -1); variables PHF.

ool _execute|Sordre) ; Exécution de l'ordre.

ool _commit({Sex);

Traitements des errewrs

Les fonctions oci_error et oci_internal debug permettent de gérer les erreurs
retournées par Oracle. Le tableau associatif retourné par cci_error contient le code erreur
Oracle (colonne code), le libellé du message (colonne message), le texte de I'instruction
(colonne seltext) et le déplacement (débutant i 'indice 0) dans le texte de Uinstruc-
tion indiquant 1"erreur (colonne cffset).

Tabileau 10-13 Fonctions pour ia gestion des emeurs Dracie

‘Nom de la fonction Paramétres

array ocl_sxror([ressource source]) Dans la plupart des cas le paramétre = ouree dési-
gne I'ordre SQL. Pour les erreurs de connexion
(oci_rommect, ocl_new_connect U oci_
peonnect), il ne faut pas indiquer de paramétre.

void oci_internal debug|int valeur| Active ou désactive le deboggage interne parle

paramétre valeur (0 pour le désactiver, 1 pour
l'activer). Par défaut le déboggage est désactive.

1 faudra utiliser le préfixe @ devant la fonction pour laquelle vous souhaiter lever une éven-
tuelle exception. Ce préfixe entraine 1'annulation du rapport d'erreur de cette expression tout
en conservant les messages d’erreur dues aux erreurs d'analyse.

& Editions Eyrolles

[chapitre n°® 10

Dracle ol PP |

Le code suivant (programme erreurl.php) décrit I'affichage d'une erreur de connexion en
utilisant la fonction oci_error sans paramétre. Dans cet exemple, la connexion ne se déroule
pas correctement du fait d’un nom erroné du serveur.

Code PHP

Tableau 10-14 Fomction acl_srror (sans paramélre)

<html> <heads> <titlesBrreur connexion </titles </

head>
<body>
=7php

Sgervice =

" (DESCRIPTION = (ADDRESS = (PROTOCOL
TCP) (HOST = tote) (FORT = 1521)) (CONMECT_DATA

Début du code PHP.

i

{SERVER = DEDICATED) (SERVICE NAME = bdeslOg)))"

Sutilisateur "Eaoutou” ;
Smdp = "dut";
Sox = Boeci connect|Sutilisateur | Smdp, Sservice); Connexion.

if (ex)

{print "L'utilisateur futilisateur n'a pu se

Connexion.

connecter 4 la base <=BR>";

Staberr = oci_error(); Récupération de l'erreur.
print "Message : " . Staberr | 'message’']; Affichage
print "
Code : </Be" ., Staberr['cods']; de l'erreur,
}
elge

£
{f début de la transaction .
oci_close|Sex) ;

2>

< /body> </htmls

Codage de la transaction.
Fermeture de 1a connexion.

Le résultat est le suivant.

3 Erreur connexion - Microsoft Internet Explorer

[chisr Edtisn Affichage Fayors Qubls 7

Figure 10-4 FProbiéme de connexion déceld & lalde de ocl_error

Ma*.‘se Ié http:/jcamparols:9999 erreurl php

L'utihisateur soutou n'a pu se connecter 4 la base
Message : ORA-12545: Connect failed because target host or object does not eust
Code : 12545

@ Editions Eyrolles

465

S0L avaned |

Le code suivant (programme erreur2.php) décrit affichage détaillé d'une erreur au sein
d’une instruction SQL en utilisant la fonction oci error avec un paramétre. La position de
l'erreur est donnée pas la valeur du déplacement (offset) dans I'instruction (ici 1'erreur est

située en 8¢ position).

Tehlesu 1015 Fomctlon oci_emor (avec paraméire)

SrequetePB = "SELECT | FROM Avion"; Analyse et exécution de
Sordre = oci_parse{Scx, SrequetaPB); l'ordre (errané).

if (!lRBoci_execute (Sordre))

{

print "Probléme sur : <Bx ". SregquetePB . "<BRx>"; 1
A R s e Récupé&ration de 'erreur.
print "Message : " , Staberr|'message’]; Affichage détaille
print "
<BxCode 1 </Bs" . Staberr|'code']; du tableau associatif
print "<BR»<Brsgltext : " . Staberr(['sgltext']; -contenantle résultat
print "
<Broffsst ¢ </Bx" . Staberr['offset'];} da lerreur

Le résultat est le suivant.

Fctier Edtin Affichage Fyors Outis 7 | &

Figure 10-5 Erreur de synfaxe SOL décelé 4 lalde ocl_error

3 Erreur SELECT - Microsoft Internet Explorer ;JH_'

_‘:.;IE] I“;ttp:[fcampamls*.ggsgg'meurzzm El QK i | Lisns

Probléme sur | SELECT ! FROM Avion
Message : OFA-00936. mussing expression
Code : 936

sqltext : SELECT | FROM Avion

offset: 7

En activant le déboggage interne (appel & la fonction oci_internal debug), on obtient la

séquence suivante.

| // actiwve le deboggage
oci_internal debug(l);

Sox

466

= @oci_connect (Sutilisateur ,5mdp, Sservice);

& Editions Eyrolles

[chapitre n® 10 Dracle ol PP |
Le résultat détaille les différents appels aux fonctions OCT d’Oracle.
Flgure 10-6 Deboggage Interne & Falde de ocl_internal debug
Erreur de connexion avec deboggage - Mozilla Firefox - O
Fichler Ediion Affichage Historige Margue-pages Outils 7
e b O X @ L) Rt fleamganols 99 erreus 3 plp - |48 ¥

OCI8 DEBUG: OCINEEnviromment ' sriableGet st (ext\ociB'oci8.¢:1067) OCIE DEBUG: OCIEavNIsCreate at
(extiociBlocB. ¢ 1223) OCIE DEBUG: OCIHandleAlloc at (ext\ociBloci®. c:1252) OCIS DEBUG: OCIServerAtiach
ot (ext'oeilioal. o1 261) OCIE DEBUG: OCTEmorGet af (extioaiiocl. e:022) OCIS DEBUG: OCTHandleFree at
(ext\ociBlocif.c:1 543) OCIS DEBUG: OCTHandleFree at (ext\ocifocif e:1 547) L'utibisatenr soutou n'a pu se
cotinecter i la base

OCI8 DEBUG: OCTEmorGet at {ext\ocif\oci, ¢:911) Message : ORA-12245; Connexion impossible car Ihite on
Iobjet cible n'exmste pas

Code : 125450C18 DEBUG: OCTHandleFree ot (ext\ocifiocif o:461) OCTE DEBUG: OCTHmdleFree at (ext\oci8
\ocif. ¢ 466)

Procédures cataloguées

Comme dans tout autre langage hote, PHP permet d’invoquer des procédures cataloguées
situées cOté serveur. Supposons que nous disposions de la procédure suivante qui
augmente la capacité (premier paramétre) des avions d'une compagnie donnée (deuxiéme
parameétre).

| CREATE PROCEDURE augmenteCap (nbre IN NIMEER, compag IN CHAR) AS
BEGIN
UPDATE Zwion SET capacite = capacite + nbre WHERE compa = compag;
COMMIT;
END;
!

Le code suwivant (programme procedureCat.php) décrit appel de la procédure qui
augmente la capacité des avions de la compagnie de code 'AF d'une valeur de 50 places.
Notez I'utilisation de deux espaces lors de I'initialisation de la variable PHP Scomp car la
colonne compa de la table 2vion est dimensionnée en CHAR(4), L'utilisation de «-1 » lors
des bind indique que cest la longueur des variables PHP qui sera considérée dans la procédure
cataloguée.

@ Editions Eyrolles 467

| Partie W S0L avaned |
Tabiean 10-16 Appel d'une procédure catalogude
Code PHP Commentaires
Sprocedure = "BEGIN augmenteCap(:nbre,:compag); END;"; Déclarationetanalysedela
Sordre = pei_parse(Sex, Sprocedure); pmcédurs.
tnb = BO; Initialisation des variables
Seomp = 'AF ') de liens PHP.
oci_bind by _name (Sordre, ":nbre" , 3nb, =) Liaison des variables PHP
eci_bind by name (Sordre, ":compag", Scomp, -1); 4 l'ingtruction Oracle.
ooi_execute(Sordrea) ; Appel de la procédure.
print "Procédure réalisde correctement.”;
oci_free statement (Sordre);
ocl_close(Sex);
Métadonnees
Les fonctions suivantes permettent d’extraire des informations en provenance du dictionnaire
des données.
Talifeau 10-17 Foncilons pour gérer les mélatennies
Nom de la fonction Parametres
string oeci_server versiom|ressource Refourne une chaine décrivant la version du noyau
connexion) Oracle utiisé par la connexion passée en paramatre.
La fonction retourne FALSE en cas d'erreur.
boolean oeci_field_is_null(ressource Retourne TRUE sila colonne désignée (parameétre
ordrasgl, mixed colonnae) calonne Noté en majuscules) est NULL. La fonction
retourne FALSE sinon.
int oci_num fields(ressource Retourne le nombre de colonnes du resultat de
ardresgn) l'ordre SCL.
string oci_field name|ressource Retourne le nom de la colonne de l'ordre SQL
ordresgL, int pes) correspondant & la position pos (débutant 4 1 pourla
premiére colonne).
int oci_field precisionirsssource Retourne la précision de la colonne de 'ordre SQL
ordresQL, int pos) correspondant & la position pos. Pour les FLOAT, la
precision vaut -127. Si la précision est égale a0, il
s'agit d'un mEER. Sinon il s'agit de la précision
d'une colonne NUMBER. (precision, scale).
int oci_field seale(ressource Retourne l'echelle (nombre de décimales) de la colonne
ordresgn, int pos) de l'ordre SAL correspondant 4 la position pos. Méme
régle que pour oci_field precision. Siaucine
échelle n'existe, la valeur FRLSE est retournéde,
int oci_field_size{ressource Retourne la taille de la colonne de |'ordre SQL
ordresgn, mixed field) correspondant &la position fieldou au nom « field ».
468 & Editions Eyrolles

[chapitre n® 10 Dracle ol PP |
Tahleau 10-11 Fonclions pour pérer les méladonnées (sulte)
Nom de Ia fonetion Parambtres
astring oci_statement type|resscurce Retourne ke type de l'ordre SQL provenant de oci
ordrason) parse {1 pour SELECT, 2 pour UPDATE, 3 pour

DELETE, 4 pour INSERT, 5 pour CREATE, 6 pour
DROP, 7 pour ALTER, 8 pour BEGIN, 9 pour DECLARE,
10 pour TNENOWN).

mixed oci_field typeiresacurce Retourne le type de la colonne de lordre SQL
ardreSQL, int pos) correspondant & la position pos,

int oci_num_rows (ressource ordreSgL) Retourne le nombre de lignes affectées par un ordre
SOL (LMD ou LCD). Cette fonction ne raméne pas le
nombre de lignes extraites par un SELECT. Pour cela

utillsez coumer.
boolean oci_password change Change le mot de passe de 'utiisateur passé en
|resscurce connexion, string wtili- paramétre. Retourne TRUE sl le changment est
zateur, string ancienMDF, string effectif, FAL 5= ginon.

nouvea uMDE)

Hlustrons & partir d’exemples certaines de ces fonctions.

Le code suivant {(programme metal.php) décrit 1'extraction des avions de capacité nulle en
utilisant la fonction oci field is null.

Le résultat est le suivant.
Tabiean 10-18 Affichape de ia version et ies1 de nulllié

Code PHP: Commentaires
Sex = ool _connect(Sutilisateur | Smdp, Sservice);

print "
=User : <BxSutilisateur se connecte & la
base wversion :
"; Affichage de la version
print oci_server vwersion(%cx); de la base utilisée.

Srequete = "SELECT * FROM Avion";

Sordre = ool parse ($cx, Srequete);
oci_define by name(Sordre, "IMMAT", S$Simmatriculatien);
oei define by name(Sordre, "TYPEAVION", Stypav):

sei _define by name|Serdre, "CAPRCITE", Seap);
oci_execute (Sordre);

print "
Liste dez avions de capacité NULLE</BE>";
print "<TABLE BORDER=1> ";

while (oci_fetch_array(Sordre))

{if loeci_field is_nulliScrdre, "CAPRCTITE"))

{print "<TR> <TD> $immatriculation </TD=";

print " <TD> &Stypav </TD> < /TR=" ;} Test de la nullté de
} la colonne capacite.
print *</TABLE- *; Affichage des données
extraites.

@ Editions Eyrolles 469

S0L avaned |

470

Flgure 10-7 Affichage de la version de fa base et test de nullité dune colonne

Ficrosoft Internet Fxplorer

3

= Yk mes
=
User sowiou go cornects i la base version
Fersonal Oracle Dalabase 10g Releass 101 020 . Production With the Parsbioning OLAP and Diata Minng ophiotis
Lk&.*.l avions de eapacite NULLE
F-woww as |
' P

Le code snivant (programme meta2.php) décrit 1'extraction de la structure compléte (en
termes de colonnes) d'une table en utilisant les fonctions cei num fields, oed field
name, oci field type etoci field gize.

Tableau 10-19 Extraction de I2 structure d'une {abie

Sordre = oci_parse($cx, "SELECT * FROM Extraction des avions de la base.
Awion")

ocl_execute(Sordre);

print "sStructure de la table <BsAwion</B=";
print "<table border=1>";

print "<tre<theNom</th>";

print "<th>Type<,/th>";

print "<th>Taille</th></tr>";

Sncels - oci_pum fields(Sordre); Extraction du nombre de colonnes.

for (%1 = 1; $1 <= Sneels; Si++)
{¢col_nom = oci field name(Sordre, #i); Nom, type ettalle de la colonne extraite.
tcol_type = oci_field type(Sordre, $i);
Seol_size = oci_field size(Sordre, S$i);

print "<tes<tdsScel_nom</tds"; Affich des informations exirates.
print "<td=5cel_type</td="; age
print "etdzSenl _gizec/tdr<ftrst;

}
print "</table=\n";

 Editfons Eyrofies

[chapitre n® 10 Dracle ol PP |

Le résultat est le suivant.

Figure 10-8 Extraction de la structure d'une table

F@’W@ HIp;ﬁ;ampamIs:EJ?Q?Il'me;ae.um . :]’OK | Liens .

Structure de la table Avion

[Nem [Type |[Taille
MMAT [CHAR & |
[TYPEAVION [CHAR [13
|CAPACITE \NUMEER 22
jcoMPA CHAR |4

AP1 Objet PHP pour Oracle (PDD)

PDO (PHP Daia Objects) est une APl objet qui permet de traduire et de wansmettre les
instructions SQL au SGBD. Indépendante de 1'éditeur, la couche PDO est dite « abstraite »,
car elle permet de séparer les traitements de la base de données et s”adapte tout aussi bien &
Oracle qu’a MySQL, PostgreSQL, etc. Comme pour la technologie JDBC, chaque éditeur de
SGBD dispose d’un ou plusieurs pilotes PDO qu'il faudra inclure dans les librairies de PHP. 11
existe aussi des pilotes en provenance de la communauté PHP.

Le fait d'utiliser PDO ne rend pas vos requétes compatibles avec n'importe quelle base de
données, mais assure que les fonctions d’accés seront universelles (mises & jour, parcours d’un
résultat, efc.), sous réserve que le code SQL soit le plus standard possible. Ainsi, le jour ol
vous décidez de migrer vers une autre base de données, il suffira en principe de modifier le
fichier de configuration de la connexion sans avoir i réécrire totalement votre code. La docu-
mentation officielle se trouve sur le site http:fwww php.net‘manualirbook pdo. php.

Au préalable, vous devrez décommenter les lignes extension=php pdo_ocif.dll et
extension=php_pdo.dll du fichier php.ini, puis relancer le service d"Apache. Pour
des bases 11g, vous devrez agir sur la ligne concernant php_ocis_11g.411.

Gonnexions

Une connexion s'établit i la ceéation d'une instance de la classe PDO. Le constructeur accepte
plusieurs paramétres. Le premier est appelé « DSN » (Data Source Name), les autres comespon-

@ Editions Eyrolles 471

S0L avaned |

472

dent I'utilisateur, au mot de passe et & d'éventuelles options de connexion. Comme avec Java, il
est possible de router toute erreur par I'intermédiaire d’un objet PDOExcepticn.

Le code suivant (programme pdol.php) décrit la connexion & une base. La déconnexion
s'opére par la suppression de 1"objet (affectation null de la référence).

Tabiean 10-20 Connexion e déconmexion

Code PHP Commentaires
Sservice = "(DESCRIPTICN = (ADDRESS = (PROTDCOL = TOP)

{HOST = camparols) {PORT = 1521))

(COMNECT_DATA = (SERVER = DEDICATED)

(SERVICE_NAME = bdlOgRZ)))";
$dan = 'oci:dbname=' . Sgervice;

Sutilisateur = "soutou";

Sidp = "soutou";

try
{%ex = new PDO|Sdsn,Sutilisateur, Smdp); Connexion.
S/ traitement..
fex = null; Déconnexion.
¥
catch (PDOException $e) Gestion des erreurs.
{ print "Probléme conhnexion : ".Se->getMessage(); }

Afin de créér une connexion persistante (¢ est-a-dire qui n’est pas fermée i la fin du script,
mais mise en cache et réntilisable), il suffit d'ajouter le paramétre array (PDO::ATTR_
PERSISTENT => true)en quatriéme position du constructeur de la connexion.

Mises a jour
Le code suivant (programme pdo-insertl.php) décrit une transaction insérant une ligne
dans la table Avion.
La méthode setattribute permet de gérer les exceptions dues i une erreur cité serveur
lors de la transaction.
Linstruction paramétrée utilise les place holders (symbole ?) qu'il faudra associer i une
variable {ou valeur) par I'indice a 1'aide de la méthode bindvalue. Les constantes prédé-
finies du type PDO::PARAM soox renseignent le type de la colonne. Les méthodes
prepare et execute sont classiques dans ce genre de programmation.
La validation et 1'invalidation d'une transaction s’opére traditionnellement a 1'aide des
méthodes commit et rollBack.

Si vous souhaitez connaitre le nombre de lignes affectées par I'instruction SQL., utilisez la
méthode rowCount au niveau de I'état prep->rowCount ().

& Editions Eyrolles

[chagitre n° 10 Dracle el PP |
Tahiean 10-21 instrucion paraméirée avec bindValue
Code PHP Commentaires
try Création de la

{ connexion,

Sox = new PDO(Sdsn, Sutilisarteur, smdp);
Sex->getAttribute (PDO: :ATTR_ERRMODE, PDO::HERRMODE ENCEPFTION) ;
Scx->beginTransaction|); Débutdela
Sinsertl = "INSERT INTC Avien VALUES (7,7,7.7) transaction.
Sprep = Secx->prepars|Sinsertl); Préparation de
linstruction.
Sprep-sbindvalue(l, '"F-HARB', PDO::PARAM STR) ; Passage des
Sprep-=bindvalue (2, "ATO1 ', FDO:: PARBM_STR) ; paramétres.
Sprep->bindvalue (3, 10, PDO: i PARRM,_INT) ;
$prep->bindvalue(d, 'SINZ ', PDO: : FARMM_STR) ;

Sprep-=executel) Exécution et
Sox->commit () ; validation.
Sex = nully

catch (PDOException $e) Gastion des

{ erreurs et

Sox~>rollBack(); invalidation.

print "Frobléme : " . je->gerMessage();

¥

Le code suivant (programme pdo-updatel.php) décrit wne transaction modifiant tous les
avions (augmentation de la capacité, premier paramétre) d’une compagnie de code (dont la valeur
passe en deuxiéme paramétre). La phase de connexion n’est pas décrife pour alléger le code.

La méthode bindParam affecte & un place holder (ici, :v1 et :vw2) une variable. Avant
d’'exécuter 1'instruction, il convient d’affecter une valeur i chaque variable définissant un
parameétre (ici, $v1 et Sv2).

Tabieau 10-22 Instruction paramélrée avec bindParam

Code PHP Commentaires
Sex->beginTransaction(); Début dela
jupdatel = "UFDATE Avion SET capacitescapacite+ :wil transaction
WHERE compa= :va"; et préparation
Sprep = fox->prepare{Supdatel); de linstruction.
$prep->bindParam{ ' :vl'; Svl); Mise en place
{prep->bindParam (' :v2', Sv2); des paramétres.
S41l=60; Affectation
SviZ='AF ' des paramétres
Sprep-rexecute() ; et exécution.
Secx-roommit i) ; Validation
print "Mises A jour OK.".Sprep-rrowCount({)." lignei(s) modifide(s)"; etformeture
Sex = null; de la connexion.
473

@ Editions Eyrolles

| Partie W S0L avaned |

Extractions

Le code suivant (programme pdo-selectl.php) extrait les avions d'une compagnie de
code passant en paramétre. La phase de connexion n’est pas décrite pour alléger le code.

La phase de préparation, passage des parameétres, est similaire & I'exemple précédent. La
méthode fetch d'un objet de la classe PDOStatement permet d’extraire une ligne ramenée
par la requéte i chaque itération de la boucle. Chaque ligne est un tableau associatif qu’il suffit
de parcourir en utilisant le nom des colonnes.

Tablean 10-23 Requéle paramétrée

Sfselectl = "SELECT immat,typeavion,capacite FROM Rvion WHERE compa= :vl"; Préparation de

Sprep = Scx->prepare{Sselectl); l'instruction.
Sprep-=bindParam{':vwl', Svl) ;

Svl='AF '; Mise en place du

if (Sprep-rexecute()) paramétre et exécution.
{print "<table border=1s"; Parcours du résultat.

print "<tr><th>IMMAT</th><th>TYFEAVION</th></thr>";
while (frow = Sprep->fetch())
{ print "strs<tds" . Srow[' IMMAT']."</td=<td>".
Srow[TYPEAVION']."</tde</tr="; }
print "gitablex":
}
elge print "Aucune ligne...,";

Sex = mall; Fermeture de la
connexion,

Le résultat obtenu est le suivant.

Figure 10-8 Exiraction avec PDO

SELECT parametre avec PDO - Mozilla Firefox
Ehier Gaten Affichass Hivtorigs Margurpags QUi ¢
gh:a' € X b | b iearparals 9990 rei-salect] php e o »

1

L) SELECT porometre owec . | =
| IMMAT frYPEAVION|
b
Fours Ao
F-OAFU 320

[
[
{
= |

474 & Editions Eyrolles

[chapitre n°® 10

Dracle ol PP |

Procédures cataloguées

PDO permet I'appel de procédures cataloguées. Considérons la procédure suivante qui dispose
de trois paramétres. Le premier correspond au nombre de places ajoutées pour un avion, le
deuxiéme permet de désigner un code compagnie, et le dernier paramétre (de retour) renvoie
une chaine de caractéres.

| CREATE OR REPLACE FROCEDURE augmenteCap?
(obre IN NUMBER, compag IN CHAR, retour OUT VARCHAR)
AR
EBEGIN
UPDATE Awvion SET capacite = capacite + nbre
THERE compa = compag;
COMMIT;
retour := "COX°;
ERD ;
Le code swvant (programme pdo-procl.php) augmente d'une valeur de 20 places la capa-
cité des avions de la compagnie ‘SING’. Le code retour est affiché (La procédure a
retourné : OK).
Notez Putilisation du paramétre PARAM ooc| PDO: : PARAM INPUT _OUTEUT PARAM pour
typer le paramétre et désigner qu’il s’agit d'un paramétre d'entrée ou de sortie. La taille
(dernier paramétre de bindParam) est également requise.

Tablesu 10-23 Appel d'une procédure calalopuse

Code PHP Commentaires
Sproc = "BEGIN augmenteCap2i(?,?,7); END;"; Préparation de
Sgtmt = Scx->prepare|Sproe); I'appel.
Sstmt->bindPavamil,$vl, PDO: : PARAM INT|FDO:: FARAM INPUT CUTEUT,1000) ; Mise en place des
Sstmt-rbindParam(2, $v2, FDO: : FARAM_STR| FDO: : PARAM_INPUT OUTFUT,4); paramétres.
$stmt->bindParam(3, $v3, FDO: : PARRM STR| FDO:: FARAM INPUT_OUTPUT, 2) ;

vl = 20; Affectation des
SvZ = 'BING'; valeurs et appel de
Sstmt->execute() la procédure.
print "La procédure a retourné : ", Svi; Affichage d'un
Sew =il retour et fermeture

de la connexion.

@ Editions Eyrolles 475

Chapitre 11
Oracle KML DB

Généralités

B T T A R e RS RS S R W e s W

&

XML DB est le nom de la technologie d"Oracle qui permet de gérer du contenu XML (stoc-
kage, mises & jour et extractions). Alors que certains systémes ne permettent que la persis-
tance, XML DB oftre le contrile des transactions, I'intégrité, la réplication, I'indexation, la
sauvegarde, I'exportation, etc.

11 existe des alternatives & XML DB pour gérer du contenu XML ; citons le XDK (XML Deve-
lopment Kir) pour C, C++ et Java. Ces techniques permettent d’analyser le document
(parsing), les documents XML & I'extérieur de la base et de les stocker dans des types conven-
tionnels (CLOB, BLOB, BFILE, ou VARCHARZ). En faisant cela, vous ne pourrez pas bénéficier
de toutes les fonctionnalités précitées.

Historigue

XML a été pris en compte il y a une dizaine d’années par Oracle 8¢ avec 'apparition de
plusieurs paquetages PL/SQL (dont DBMS XMLSAVE ef IEMS XMLQUERY qui composaient
V'offre XSU : XML SQL Utility). Depuis la Reiease 1 de la version 9i, le type de donnée
XMLType est dédié a la gestion de contenus XML. Avec la version 9 R2, il est possible d’y
associer des grammaires XML Schema et de travailler avec XML Repository. La version 10g a
fait évoluer les grammaires XML Schema. La version 11g a introduit le mode de stockage
binary XML, un accés par Web Services. Depuis la version 12¢, XML DB est inclus native-
ment dans la base, le langage XQuery est adopté pour les mises i jour, des fonctionnalités
d'indexation textuelles apparaissent et le type CLCE a été abandonné en tant que mode de stoc-
kage.

Beaucoup (trop) de choses ont évolué depuis le début de cette technologie complexe : fonc-
tions d'extractions, mode de stockage, options par défaut, préconisations, etc. Espérons que
les versions a venir ne compromettront pas trop les fonctionnalites présentes.

@ Editions Eyrolles 477

| Partie W S0L avaned |

Pour contréler la présence de I'environnement XML DB, vérifiez que votre instance est bien
associée a un service (dans le systéme d’exploitation, la commande lsnrctl status doit
retourner « Le service ", .. XDB" comporte 1 instance(s)... ».

Ce chapitre présente les principales fonctionnalités de XML DB, qui est documenté dans la
section « Application Development » du livie Oracle XML DB Developer's Guide.

Architecture générale

Les deux principales caractéristiques de XML DB sont, d'une part, I'interopérabilité entre
SQL et XML (documents et grammaires) et, d’autre part, la gestion de ressources XML dans
un contexte mult-utilisateur avec XML Repository.

Figure 11-1 Architecture de XML DB (& doe. Oracle)

i

XML DB est en principe opérationnel si vous avez choisi les options par défaut lors de
I"installation. Dans le doute, vous pouvez interroger le dictionnaire des données pour constater

478 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

la présence de |'utilisateur XDB (le compte doit ére déverrouillé) ou de la vue RESOURCE
VIEW.

Répertoire logigue

Si vous n'utilisez pas I'environnement XML DB Repository, la création d’un répertoire logique
associé€ i celui qui contiendra vos documents XML est nécessaire. Pensez également & posi-
tionner certaines variables d’environnement dans SQL*Plus (SET LoMG 10000 et SET
PAGESIZE 100) pour ne pas tronquer vos résultats.

| CREATE DIRECTORY repaml a5 'C:\dev\XML';

Les modes de stockage

Suivant la nature du contenu XML que vous aurez i stocker, il vous faut choisir un mode de
stockage. Vous devez statuer sur la nature de vos documents XML entre :

orienté « données » (data-centric) ot la structure des données est relativement réguliére a
granularité fine (la plus petite information est située an nivean d'un élément terminal ou
d’un atiribut) et ne contenant peu ou pas du tout de contenus mixtes. Le mode préconisé est
object-relational {et son indexation B-free conventionnelle) ;

orienté « document » (document-centric), structure moins réguliere des données avec une
granularité importante et des contenus mixtes et un ordre des éléments trés significatif
(page HTML, par exemple). Le mode préconisé est binary XML (et son indexation spécifi-

que).
Flgure 11-2 Préconisations du mode de stockage (€ doc. Oracle)
Data-Contric Documant-Cantric
Use Case XML schema-based data, with Vasiable, free-form data, with Variable, free-form data
lite arinfion and Mtle stucturnl | some fed
‘changs over fime struciures
Typlcal Data | Employee meoord Tachnical drticie, with author, | Waeb documant or book chapter
date, and title Helds e
Storage Mode Birary XML
Indexing Btnbe index + TflEndex indox with siruchured | + XML Indes index with
and unstructurad unEtuCTred
« XML Full-Text intdex + XML Full-Teot Indax

@ Editions Eyrolles

479

S0L avaned |

{ - Selon le mede de stockage choisi, vous disposerez des mémes fonctions d'extraction mais de

480

mécanismes de validation, de mises a jour et d'indexation différents.

Depuis la version 12¢, le type CLCE est abandonné en tant que mode de stockage ; il convenait
auparavant pour les contenus XML non struciurés.

Le tableau 11-1 résume les points forts de chaque mode de stockage. Choisissez le mode
binary XML si le contenu XML ne doit pas étre associé i une grammaire.

Tableau 11-1 Comparatil des modes de stockage

Object-relational Binary XML

Extraction ++ (index B-tree)

Mises & jour ++ *

Espace disque s +

Flexibilité des données — {corformité & une grammalre) +

Flexibilité des grammaires XML Schema — (une seule grammaire) 4+ (une ou plusieurs grammaires)
Validation apres insertion Partielle + Totale (si grammaire)
Partitionnement + (colonne virtuelle)

Compression I +

Le tvpe KMLType

Le type de données XMLType fournit de nombreuses fonctionnalités, la plupart relatives a
XML (validation de schéma XML et transtormation XSL), ainsi que d’autres qui concernent
SQL:

définition d'une colonne d'une table (jouant le role d'un type de donnée) ;

définition d'une table (jouant le réle d'un type d’objet) ;

déclaration de variables PL/SQL ;

appel de méthodes (procédures PL/SQL).
Le mode de stockage se choisit i 1’aide de la clause XMLIYPE résumée dans Ia syntaxe

suivante :

IMLTYPE [STORE AS
{ OBTECT RETATTIONAL | BINARY ML }
[[XMLECHEMA nomXMLSchema]
ELEMENT { élément | nomXMLSchema # élément .})
[VIRTUAL COLIMNS (colconnel AS (expressionl),...)] 1;

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

La clause OBJECT RELATICNAL devra étre associde i 1’option XMLSCHEMA pour associer
une grammaire XML Schema.

La clause VIRTUAL COLUMNS est réservée au mode BINARY XML pour construire des index
ou des contraintes (définies avec ALTER TABLE).

En I'absence de clause STORE AS, le mode de stockage par défaut était object-relational
jusqu'ala version 11gR2, depuis c’est devenu binary XML.

Le tablean 11-2 présente différentes utilisations de types XML en mode binary XML.

Tableau 11-2 Table, colonne et variahle XMIype en mode hingry XML

Utilisation Code SOL
Table CREATE TAEBLE t_documents sxml OF XMLTYpe
XMLTYPE STORE AS BINARY XML,

Colornine CREATE TABLE t_col_xml
(e _doe VARCHARZ (30) PRIMARY EEY,
col_ml XMLTvDe)
XMLTYPE col _xml STCORE AS BINARY XML,

Variable PL/SQL DECLARE
var_ xm]l XMLTYPE;
-~ par défaut : Binary depuis 1lgR2
BEGIN ..

_ Un type XMLType peut centenir tout contenu XML & condition qu'il scit bien formé (sinon on
obtient les erreurs ORA-F4464: Erreur d’événement XML et ORA-19202: Une erreur

s'est produite lors du traitement la fonction XML.).

Le contenu peut étre contraint selon une grammaire XML Schema avec les avantages sui-
vants.

Le SGBD s'assure de la validitd du document XML avant de le stocker dans une ligne (ou
colonne) d'une table.

Comme le contenu d'une table (ou colonne) est conforme 4 une structure bien connue, XML
DB peut optimiser les requétes et mises a jour.

insertion d’un document

Le document XML non contraint par une grammaire qui sera stocké (compagnies . sml)est le
sulvant :

@ Editions Eyrolles 481

S0L avaned |

Figure 11-3 Document XML nen contraint

cormpagnie date_cre

1==4 0" anicoding="UTF-8"7
" 2010-08-30"
comp -AB-=comp

Dilodas

pifote brever="FL-1"
prenom-Bengit:/prenom
“nom-3arda</noms
salaire-4000 20</salaire
pakote
pikote brevet="FL-2"
pranom:Romaric «/[prenom
“noMe-Benech-</mom
salaira>5000.40-/salaire:
pilcte
pilotes
nomComg= Air Blagnac« nomComp
coMmpagnie:

Le tableau 1 1-3 présente différentes insertions de ce méme document (que vous aurez disposé
dans le répertoire associé au répertoire logique précédemment cré€) avec le constructeur qui
convient au paramétre BFILE. Notez 1'utilisation des majuscules pour désigner le répertoire
logique dans la fonction BFILENAME (comme tout objet de schéma au niveau du dictionnaire

des données).

Tablieau 11-3 Inserlon d'um comteny KIL bien formé

Code SQL

Table

INSERT INTO t_documents sml VALUES
(XML Type
{xmlData =»> BFILEMAME({ 'BEEPXML', 'compagnie.sml'),
caid => NLS_CHARSET ID{'ALI2TUTFE')));

Colonne

INSERT INTO t_col xml (nom_doc,col ml) VALUES
{ 'compagnie.xml',
(XMLType
{xmlData => BFILENAME {'REPXML', 'compagnie.saml"),
eald => NLS_CHARSET_ID('ALI2UTFE'))));

Variable PL/SOL

DECLARE
var_xml ¥MLTYFE;
BEGIN
var_xml := (XMLType
(xmlData => BEFILENAME('REPXML', 'compagnie.zxml'),
czid =» NLS_CHARSET_ID('ALI2UTFE'))};

482

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Grammaire KML Schema

R R I I T R R T R)

Voyons a présent comment valider un contenu XML 4 1"aide d'une grammaire qui sera enre-
gistrée au préalable dans I'environnement XML DB Repository. Considérons une simple gram-
maire (conpagnies . xad) au document XML précédent (compagnies . sanl).

Figure 11-4 Exemple de grammaire XML Schema

: xS sthema atributeF ormCwetaut="ungumted”
lolaiprantE comChatault="cuakt o’ |

wE complanType
*E SOQUNCEH
x5 slernent Hpes
x5 ghéamient Name="galiles™
i cormplexTyps:

5 5Hing" RarfeEcomp”

S SEQUENCE
vE harment nams = pliote” marOcours= 500" menicours= i
% complanType
5 SEQUENTH
5 T By
o ElETen
1S STt Bpes s Tosl” name="sadere”
V5 S QuaTCe
S bl fypsee Slnn " Nyl Utss"oplional
Fs e omiplaType
o il
S SAGUence
r= Comples Type
S Smant
% lermienl type=" Gl " narmes"mom Comp”
N LG

wE gliribute Bpe="rs Gale® narme ="t _Srod"
s Comps Type
x5 elamant
| +ies SChaME

Enregistrement de la grammaire

Pour enregistrer voire grammaire en base (dans le repository), vous devez utiliser la procédure
registerschema du paquetage DEMS_XMLSCHEM?A Sila grammaire existe déji, la procédure
deleteschema se chargera de la supprimer.
| BEGIN
CEMS ¥MLSCHEMA .deleteschema |
schemaurl => "http://www.actmp.fr/compagnies.xsd’',
delete_option => DEMS XMILSCHEMA,. DELETE CASCADE FORCE);

@ Editions Eyrolles 483

S0L avaned |

484

DEMS ¥MISCHEMAL. registerschema |

schemaurl = ‘http://www.actmp. fr/compagnies.xsd'
schemadoc => BFTLENAME('REPEMIL.', 'compagnies.xsd") ,
local == TRIE,
gentypes => FALSE,
gentables => FALSE,
options => DBMS_YMLSCHEMA .REGISTER BINARYXML,
ceid => NLS_CHARSET ID('AL32UTFE"));

END;

schemaurl spécifie une URI identifiant votre grammiaire.

delete option choisit la politique de suppression (ici, les fypes, tables et instances
conformes au schéma sont éventuellement détruits).

schemadoc référence le fichier grammaire (extension . xsd).

local précise que la grammaire est locale (emregistrement dans le répertoire /svs/
schemas/username/ . . . de XML DB Repository). Dans le cas contraire, la grammaire
serait globale et se trouverait dans le répertoire /sys/schemas/PUBLIC/ . ..

gentypes génére des types objet.

gentables génére une table associée.

opticns précise la nature de la grammaire (ici, I'encodage des contenus sera identique &
celui de leur grammaire).

caid indique le jeu de caractéres (AL32UTFS convient au type de donnée XML Type et
équivaut au standard UTF-8).

E Le mode de stockage binary XML associé & une grammaire fournit une validation compléte (fisll
compliant)

Valigation totale

Pour bénéficier de cette validation, il faut créer une table contenant une colonne de type
XML Tvpe en mode bingry XML avec I'option XMLSCHEMA et en indiquant 1"élément concerné
(ici, la racine).

& Editions Eyrolies

[chapitre n® 11

Oracle XML D8 |

Tablean 11-3 Tables NMUType powr i3 validation de schéma

Utilisation Code SQL

Table CREATE TABLE t_documents sxnl OF EMLTvie
XMLTYPE STORE AS BINRRY XML
XMLECHEMA "http://www,. actop . fr/compagnies . xad"
ELEMENT "compagnie®;

Colonne CREATE TABLE t_col _sanl
(nem doe VARCHARZ (30) PRIMARY EEY, col xml XMLType)
XMLTYPE col_snl STORE AS BEINARY XML
XMLSCHEMA "http://www . actmp. fr/compagnies xad"
ELEMENT "compagnien;

Tout contenu XML non conforme & la grammaire indiquée lors de la création de la table sera
rejeté (ORA-31000: La ressource .. n'est pas un document de schéma ¥DB).

Gontraintes

Bien que les grammaires XML Schema permettent de contraindre du contenu XML considéré
individuellement, une contrainte SQL étend une restriction 4 plusieurs documents (table ou
colonne XMLType). De méme, la technologie XML Schema n'est pas capable d'assurer
I'unicité d'une valeur parmi plusieurs documents ou |'existence d'une référence i |'extérieur
du document XML.

Si vous désirez bénéficier de contraintes SQL (INIQUE, PRIMARY KEY, FOREIGN EEY ou
CHECE), il est nécessaire de définir une ou plusieurs colonnes virtuelles. Une colonne virtuelle
est basée sur une expression XPath (qui retourne une valeur scalaire provenant d'un élément
ou d'un attribuf). Des dedlencheurs peuvent étre programmés pour les régles de gestion plus
complexes.

Attention, il n'est pas possible de définir une colonne virtuelle a posterior a I'aide de l'instruc-
tion ALTER TABLE.

Par ailleurs, ces mecanismes ne sont pas disponibles pour le stockage en mode CLOE.

Le tableau 11-5 définit trois colonnes virtuelles (sur le code, le nom et la date de création de la
compagnie). Notez ['utilisation du caractére @ pour désigner un attribut et le nom de la
colonne (doc_>anl) dans la seconde table & l'opposé de OBJECT VALUE pour la table
XML Type.

@ Editions Eyrolles 485

S0L avaned |

Tabieau 115 Tables XMLType pour la validation de schéma avec colonnes virluelles

Code SOL
Table

CREATE TABLE t_documents sanl OF XMLTwDe
XMLTYPE STORE AS BINARY XML

IMLSCHEMA "http://www.actmp, £r/compagnies xsd”
ELEMENT "compagnie®

VIRTUAL COLUMHS

{e_comp AS (XMLCast(XMLQuery (' /compagnie/comp’

FASSING OBJECT _VALUE RETURNING CONTENT)

AS VARCHARZ(6))),

c_hemcomp AS (XMLCast (¥MLQuery(' /compagni e /nomComg '

PASSING OBJECT VALUE RETURNING CONTENT)
AS VARCHRRZ(30))),

c_date_crea &S (XMLCast (XMLQuery|'/compagnie/e8date_crea’

PASSING OBJECT VALUE RETURNING CONTENT)
AS DATE)));

Colonne

CREATE TABLE t_col sl

(nom_doc VARCHARZ (30) PRIMARY FEY, col_nl XMLType)
¥MLTYPE col_xml STORE AS BINARY XML

XMLSCHEMA "http://www. actmp. fr/compagnies . xad”
ELFEMENT "compagnien

VIRTUAL COLUMNS

(¢_comp AS (XMMLCast {(XMIguery('/compagnie/comp'

PASSING col_xml RETURNING CONTENT)
AS VARCHARZ(6))),

¢ Nomeomy A3 (MMLCast (MMLQuery(' /fcompagnie/nomCom'
PASSING col sml RETURNING CONTENT)
AS VARCHRRZ(30))),

c_date_crea LS (XMiCast (XMLQuery('/compagnie/@date crea'

FASSING col sml BEETURNING CONTENT)
A3 DATE)));

Le tableau 11-6 présente toutes les contraintes qu'il est possible de programmer sur une
colonne ou sur une table XMLType en mode binary XML

Tabilesu 11-6 Déclaration de contralntes SOL
Contraintes

_ Instructions SQL
Uricité du nom de la compagnie

ALTER TABLE t_col_sml

ADD CONSTRAINT un_nomcomps_col_bin

UNIQUE (¢ _nomeomp) ;
Clé primaire sur le code compagnie

ALTER TABLE t_documents zanl

ADD CONSTRAINT pk_t_documents_xml
PRIMARY FEY(c_comp);

486

& Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

Tahlean 11-6 Déciaration de contraintes SOL (Suite)

Contraintes Instructions SQL

Vérification de valeurs ALTER TABLE t_col_sml
ADD COMSTRAINT ck _date crea
CHECK (c_date crea <
TO_DATE(' 01/01 /2015 ', 'DD /MM/¥¥YY")
AND c_date crea IS HOT NULL) ;

Intéqrité rétérentielle vers une fable classique qui ALTER TABLE t_col_sml
contient une clé avec un code analogue ADD COMSTRAINT £k _comp2
FOREIGN EEY (c_comp)
REFERENCES table_ref |comp _ref):

Tout contenu XML non conforme aux contraintes sera rejeté. En général, ¢’est I'erreur ORA-
31000: La ressource .. n‘est pas un document de schéma DB quiest retournée.

Stockage en mode objeci-relational

R I I T R T R I I)

} - Le mede object-relational convient pour les documents XML fortement structurés gu'il sera

possible de contraindre avec SQL. Vous devrez assodier une grammaire XML Schema a votre
table (ou colonne) de type XMLType pour ne pas obtenir l'emeur ORA-19002: URL XMLS-
chema absent.

Annotation de 1a grammaire
1l est intéressant d’annoter la grammaire pour mieux faire correspondre le modéle de docu-
ment XML (éléments et attributs) avec les colonnes du SGBD (nom et type) :

spécifier les tables qui stockeront le contenu XML ;

surcharger le mapping entre les types XML Schema et les types SQL. ;

nommer les colonnes qui seront générées.

Préfixés par xdb (indiquant I'espace de nom imposé par Oracle hitp:#xmins.oracle.com/xdb), de
nombreux attributs permettent d'enrichir la grammaire. La figure 11-5 présente les principaux
attributs.

@ Editions Eyrolles 487

| Partie W S0L avaned |

Flgure 11-5 Attributs o'annotation

xdb;defaultTable Nom de la table par défaut générée autormatiquement
et exploitable avec XML DB Repository.

xdb:defaultTableschema MNom du schéma Oracle,

xdb: SOLName Nom d'une colonne donné & un élément
ou un attribut XML.

xdb: SQLType Nom du type Oracle.

xdb: 5QLCol1Type Nom du type de la collection.

xdb:storeVarrayAsTable true pardéfaut; la collection est stockée comme un
ensemble de lignes d'une table (ordered collection table :
OCT). 5i false, la collection est sérialisée et stockée
dans une colonne LOB.

xdb: columnProps Précise les caractéristiques des colonnes de la table
par défaut. Utile pour déclarer une clé primaire,
une clé élrangére ou une contrainte de vérification.

xdb: tableProps Indique les caractéristiques de stockage de la table
par défaut,

Par défaut, 'enregistrement de |a grammaire génére une table pour chaque élément global du
XML Schema (pour empécher cela : xdb: defaultTable="").

Cette technique d'annotation peut aussi &tre utilisée avec le mode de stockage binary XML
mais elle permet moins de fonctionnalités.

Considérons les annotations suivantes :

les types et colonnes sont notés en majuscules pour mieux les différencier des éléments et
attributs XML, mais aussi car ¢’est ainsi qu’Oracle les stocke en interne ;

Ies éléments code et nom de la compagnie sont obligatoires (minOccurs="1");
si une collection de pilotes existe, elle n'est pas vide ; notez 1'utilisation de 1attribut
EQLCol1Type.

Lélément de 1a collection est décrit par la figure 11-7, et les types de données des éléments
inclus sont précisés ainsi que le type de Iattribut (ici, le numéro de brevet sur 4 caractéres au
MAaximum).

Enfin, les tailles des colonnes sont précisées dans la grammaire (voir figure 11-8). Ici, le code
de la compagnie ne dépasse pas 6 caractéres, son nom 40 caractéres, les prémom et nom seront
limités & 30 caractéres et le salaire sera codé en NUMBER (9, 2).

488 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Flgure 11-6 Exemple de grammaie annotée

el vershane"1 0 ancoding = w8
exnd ochemd version="1 (" xmins esd="Tap M wi wmumsm*'@ xifty="TLp fiaming umcﬂ*;
xS Seinart names"Compagnis” e ="compagna Type' xdb JefaulTable=""/-
xsd complexType name="compagaieTyna® xob SOL Type="COMPAGNE_TYPE"
s gaguence.
e giement name="comp” pe="comp Type™ manCcows="1" xin SOLNrme="T 0P
<xsel elemant neme="priotes” ype"pictesType" wdb SOLMamez PILOTES
a5l alemaet names"NomComp” yes="nomCompType” minOCours="1" xity SOUNamE="N0M_COMP™

cxmdd attribute ype="iad date name="date_crea” sty SOLName="TATE_CREA" wdb S0L Type='TIATE"
<t compiea Type -
<xd complexType nama="pilktesTyps" u® SOL Type="PLOTES_TYPE™
B R T
w5 wlament name="piota” pe="piote Typs" minDcours="1" memDocurs="500"
b SQLANeme="PLOTE" xdb SOLCAlType="PILOTE _VRY_TYPE"-
NG SeqUENTe”
<fasg commpln Typo -

voir 1a suite plus loin. ..

Figure 11-7 Suite de la grammaire annolée

TS0 CompieaType name= picie ype Wb SLL Types PLOTE_TIPE
b SR
g wad ;urmr-mi'mm' BpearomTpe® wib SOLName="FRENOM wib S0 Types " ARCHARD":
WL SRR N =TT tyDe="nom Ty o SOUNST="TOM" wlb SCL Typa="V ARCHARZ""
w5 alEnel hame="sdaire” type="salane Type™ minliccurs="0" st SCL Name="541 ARE" wdb S0 Types"NUVEER"
« WS QU
sl BIIDLD NAMW="Dr LBO=10GIN R SOLNSTO=BREVET s SO Tyhe="V ARCHAR2"
< ES0 S Ty
wEa] FERCROn bases s anng™
ki Fenmngih s |
amad mand oogdh values"d"
sl restncion
(e e Ty
e BT e
w5 eorrpla Ty -
voir la suite phus join,,.
Figure 11-8 Suite et fin de la grammaire annotée
<xsd simpleType name="compTypa'» axed simplaType name="nomType":

‘w5d restriction bases="wsd siring"» <xsd restriction base="xsd sinng">
<xusel manLength values="1" st minLength value="1">
<xad manlength value="6"/- ‘usd maxl.ength value="30%

<xsd restriction- «/xsd restriction
<fxsd simplaType- </xsd simpleType-)
“xgd simpleType name="nomCompType" <xsd simplaType name="salalraTypea"-
x5 restriction base="xad siring" > =xsd restriclion basa="xsd dacimal'-
<xsd rinLength value="1"» s 1taIDigits valus="T">
<xsef mel.engthvalue="40"> s fractionDigits vaslue="2"/-
</wsd restriction= “ixsd restriction
clwsd simpleType- < st simphaType=
@ Edifions Eyrolles 489

| Partie W S0L avaned |

Vous devrez enregistrer cette grammaire avec un nouvel URI {(schemaurl) et sans utiliser le
paramétre options qui pourrait désigner une grammaire binary XML. Notez ici 1'utilisation
du paramétre gentypes pour générer les types objet qui sont nommés dans la grammaire.

BEGIN
DEMS_ F¥MLSCHEMA . DEIETESCHEM (
schemaarl => 'http://www.actmp. fr /compagniesammote.xsd’ ,

delete option => DBMS XMLSCHEMA ,DELETE CASCADE FORCE) ;
DEMS XMLSCHEMA. REGISTERSCHEMA (
schemaurl =»> ‘http://www.actmp. fr/compagniesarmote. xsd”®
schemadoc => BFILENAME('REEPEML','compagniesannote.xsd'),
local == TRIUE,
gantypes => TRUE,
gentables =» FALSE,
csid => NLS_CHARSET ID('AL32UTFE"));
EMND;

sée et donc mal adaptée pour les modifications de contenu. La clause VARRAY (voir plus loin)

é; En général, chaque collection (&lément XML disposant d'un attribut maxOccurs »1) est sériali-
définira une table de stockage pour maque collection afin de faciliter les mises éjGur’.

Création d'une table (ou colonne) ohject-relational

Le tableau 11-7 présente les deux possibilités pour stocker du contenu XML en mode object-

relational.
Tabieau 11-7 Modes de stockage oblect-relational

Utllisatton Code SOL
Table CHEATE TABLE t_documents_xml OF XMLType

XMITYPE STORE AS OBJECT RELATIONAL

HMLSCHEMR "http://www. actop. fr/compagmlesannote xad®

ELEMENT "compagnie";

Colonne CREATE TABLE t_eol_snl

(nom_doc WARCHARZ (30) FRIMARY KEY, col_mml XMLType)

¥MLTYPFE col_3nl STORE AS OBJECT RELATIOMAL

XMLSCHEMA "http://www.actmp.fr/compagniesannote, xad"
ELEMENT "compagnie";

480 & Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

Validation partielle

Par défaut, le mode de stockage abjeci-relafional n'oftre qu'une validation partielle méme si
la grammaire associée est enrichie.

Dans notre exemple, il sera possible d’insérer un document dans la table (ou la colonne) conte-
nant une compagnie sans pilote, sans nom ou code. Par ailleurs, 'ordre des éléments dans la
séquence ne sera pas respecté (le prénom peut se trouver aprés le salaire et le nom précéder le
prénom). De plus, le salaire n’est méme pas obligatoire, ce qui est en opposition avec la gram-
maire enregistrée | En revanche, vous ne pourrez pas insérer du contenu XML contenant des
€léments ou attributs supplémentaires (qui ne sont pas prévus dans la grammaire) ou dont
I"élément racine n'est pas celul de la grammaire (ici, compagnie).

Les erreurs retournées seront les mémes que pour la validation totale du mode binary XML, &
savoir ORA-31000: La ressource .. n'est pas un document de schéma XOB. Pour
les incohérences dues aux types de données (taille d'une chaine, précision d'un numérique ou
format de date), les messages peuvent étre plus clairs (voir le tableau 11-8).

Tahiean 11-8 Emeur de typage

Fragment XML concerné. Erreur Oracle

=7xml wvergien="1.0" encoding="UTF-8"7?> ORA-01847: le jour du moisz deit &tre
<compagnie date_crea="2010-08-35"> comprigs entre 1 et le dernier jour du
<comp>AB</ comp> .. mois.

<7iml version="1.0" encoding="UTF-8"7> ORA-30951: L éldment ou l'attribut
<compagnie date crea="2010-08-310"> (Xpath ABC-FTREZ) dépasgse la longueur
<comp>ABC-FTRG< /comp> .. maximale.

Validation lotale

Pour que la validation soit totale comme en mode binary XML (full compliant), vous devrez
ajouter & une table (ou colonne) XMLType en question soit une contrainte CHECK avec la fonc-
tion KMLISVALID, soit un déclencheur BEFORE INSERT.

Assurez-vous que la table ne contienne pas des enregistrements ne respectant pas la gram-
maire sinon Oracle retournera 1'erreur ORA-02293: impossible de wvalider (.) -
viplation d'une contrainte de contréle

Le tableau 11-9 décrit la mise en place de la validation totale pour une table ou une colonne
XMLType avec un mode de stockage objet.

@ Editions Eyrolles 491

| Partie W S0L avaned |

Tableau 11-8 Coniralntes de wérification

Auniveau table Au niveau colonne

ALTER TABLE t_tdocuments snl ALTER TABLE t_col_xml

ADD CONSTRAINT valide_comp_ t ADD CONSTREAINT valide comp_col
CHECK (XMLIsValid (OBEJECT VALUE) = 1); <CHECK (XMLIsValid{col xml) = 1);

Une fois cette contrainte activée, seuls les documents conformes i la grammaire pourront étre
stockés. L'erreur retournée, le cas échéant, sera invariablement ORA-02290: viclaticn de
contraintes (.) de vérification.

Si vous optez pour un déclencheur BEFORE INSERT, vous devrez utiliser la fonetion
SCHEMAVALIDATE qui retournera une exception en cas de contenu non conforme.

Tablean 11-10 Déciencheurs de validation

Au niveau table _ Au niveau colonne.

CREATE TRIGGER trig_wvalide_comp t CEEATE TRIGGER trig walide comp col
BEFORE INSERT CR UPDATE ON t_documents EEFCRE INSERT COR UPDATE ON t_col _xml

xml FOR EACH ROW
FOR EACH ROW BECGIN

BEGIN IF (:NEW.cel el IS NOT NULL) THEN
IF (:NEW.OBJECT VALUE IS NOT NULL) THEN :NEW.col ol . SchemaValidate () ;

‘HEW.CEJECT VALUE. SchemavValidate () ; END IF;

END IF; END ;

END ; !

7

En général, le déclencheur aura I'avantage de renseigner davantage les erreurs comme I'illus-
tre le code suivant dans lequel se trouve un probléme d’ordonnancement entre les éléments
composant la balise pilote.

Tableau 11-11 Insértion de conlenu RO confonme

Fragment XML concerné Erreur Oracle
<7xml wersion="1.0" encoding="UTF-8"7?> ORA-31154: document XML non valide
<compagnie date_crea="2010-08-30"> ORA-19202: Une erredr &'est produite
< ENp >AR< / comp> lers du traitement de la fonction XML
<pilotegs> (LSX-00213: seulement 0 occcurrences de
<pilote brevet="PL-1"> 14 élément "prenom” ; mindimam : 1).
=nom>Sarda< /nom> ORR-04088: erreur lors de 1'exécution
<salaire=4000 . .20</salaire> du déelencheur 'OXM.TRIG _VALIDE COMP T
=prenomn- Benol t</prenots
</pilote> .

492 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Contrainies

- Deux mécanismes peuvent ére mis en ceuvre pour définir une contrainte SQL. La pseudo-
colonne XMLDATA qui indigue un chemin dans une arborescence permetira de contraindre un
élément (ou un attribut). Pour disposer des confraintes sur des éléments (ou attributs) présents
dans une collection, vous devrez utiliser latable de stockage définie dans la directive VAREAY
{voir plus loin).

Eléments et attributs hors collection

Le tableau 11-12 présente toutes les contraintes qu’il est possible de programmer sur une
colonne ou sur une table XMLType en mode objet.

Tablezn 112 Déciaration de coniaintes SO

Contraintes Instructions SAL

Unicité du nom de la compagnie ALTER TABLE t_documents_xml
ADD COMSTRAINT un nomoomp bin
UNIQUE (XMLDATA. "HOM_COMP")

ALTER TABLE t_col_sxml
ADD COMSTRAINT un nomcomp_col_bin
UNIQUE{cel sml .XMLDATA. "NOM_COME") ;

Clé primaire sur ke code compagnie ALTER TABLE t_documents_xml
ADD CONSTRAINT pk_t_documents_snl
PRIMARY FEY (XMLDATA. " COMP");

Vérification de valeurs ALTER TABLE t_documents_xml
ADD COMSTRAINT ck_date crea
CHECK (XMLDATA."DATE CRER" <
TG DATE('01/01/2015', 'DD/MM/YYYY ")
AND XMLDATA."DATE CEEA" IS NOT NULL);

ALTER TABLE t_col_sxml
ADD CONSTRAINT ck_col_date crea
CHECK (col_sml.XMLDATA. "DATE_CREA" <
TO_DATE('01/01/2015 "', 'DD/MM/YYYY")
AND eol sxml.XMLDATA."DATE CEREA"
IS MOT NULL) ;

Intégrité référentielle vers une table classiqgue ALTER TABLE t_documenta sxml

qui contient une ¢lé avec un code analogue ADD COMSTRAINT fk _conpl
FOREIGN KEY (XMLDATA."CCOMP")
REFERENCES compagnie_ ref (comp ref);

ALTER TABLE t_eol_xml

ADD COMSTRAINT fk_compl
FOREIGN FEY (col_sml.XMLDATA . "COMP")
REFERENCES compagnie ref (comp ref);

@ Editions Eyrolles 493

S0L avaned |

494

Tout contenu XML non conforme aux contraintes sera rejeté avec des messages d'erreur plus
parlants que ceux du mode de stockage binary XML (qui retourne le plus souvent ORA-
31000:). Le tableau 11-13 présente les messages d'erreur potentiels (ici, cxmest le nom de
1'utilisatenr).

Tahlean 11-13 \Uérification des comirainies SOL

Contrainies Erreur Oracle

Unicité du nom de la compagnie ORAR-00001: vieclation de contrainte
unique [OXM.UN_NOMCOMP_BIN)

Clé primaire sur le code compagnie ORA-00001: wiclation de contrainte
unigque (OXM.PE_T_ DOCUMENTS XML}

Vérification de valeurs ORA-02290: vielation de contraintes
(0¥M.CE_COL_DATE _CREA) de vérifica-
tion

IntEgrité référentielle ORA-02291: violation de contrainte

d'intégritéd (OXM.FE_COMPZ2) - clé
parert introuvable

Eléments et attributs dans une collection

Pour manipuler efficacement des éléments (ou atiributs) se trouvant dans une collection XML,
vous devrez créer une table associée (appelée varray). Cette table imbriquée va stocker I'union
de toutes les collections des contenus XML. Pour contréler le nom des types générés pour
cette collection, vous pouvez annoter la grammaire (voir 1”attribut db: SQLCo11Type dans
1'exemple précédent).

Le nom de la table de stockage est défini dans la clause STORE AS de la directive VARRAY. En
interne et au niveau de chaque contenu XML, la colonne NESTED_TABLE_ID est l'identifiant de
la table de stockage. Avec le nom de la table stockage, il est possible de définir des contraintes
SQL sur des aléments (ou attributs) de la collection.

Le tableau 11-14 présente la création de tables imbriguées visant i manipuler des collections
d'éléments XML. La syntaxe est présentée pour une table XMLType et une colonne XMLType
de mode objet. Notez que chaque table imbriquée est nommée pour pouvoir définir par la suite
des confraintes.

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Tahieau 11-14 Stochage de coliections powr je mode object-reiational
Utilisation Code SQL

Table CREATE TABLE t_documents xml OF XMLType
XMLTYPE STORE AS OBJECT RELATIONAL
XMLSCHEMAR "http://www.actmp. fr/compagniesannote, xad"
ELEMENT "compagnie®

VARRAY "XMIDATA"."PILOTES"."PILOTE"
STORE AS TABLE pilote_table
{ (PRIMARY KEY (NESTED_TABLE_ID,

SYS_NC_ARRAY_INDEXS))) ;

Colonne CREATHE TAELE t_col_sml
{niom_doc VARCHARZ (30) FRIMARY KEY, col_xml IMLType)
¥MLTYFE col_xml STORE RS OBJECT RELATIONAL
¥MLSCHEMA "Http://www. actmp. fr/compagrii esannote . xsd"
ELEMENT "compagnis”
VARRAY col_sonl . "XMLDATA" . "PILOTES". "PILOTE"
BTORE AS TABLE pilote_ccl_table
{ (FRIMARY KEY (NWESTED_TABLE _ID,
S5YS_NC_ARRAY_INDEXS))) ;

Il existe d'autres moyens de définir des collections par annotation {(xdb:storeVarrayAsTa-
bles etxdb:maintainOrder) ou par indicateur lors de l'enregistrement de la grammaire (par
exemple, REEGISTER_NT_AS_IOT dans le paramétre cptions). Cependant, les valeurs par
défaut de ces paramétres ont déja évolué avec les versions d'Oracle.

Tabiezn 11-15 Créafon de contralmes SQL sor une collecton

Contraintes Code SOL
Unicité du code d'un brevet pour ALTER TABLE pilote_table
chaque compagnie ADD COMSTRAINT urn pilote table doc_brevet

UNIQUE (MESTED_TABLE_ ID, "EEEVET"):

ALTER TRBLE pilote_col_table
ADD COMSTRAINT un pileol table doc brevet
UNIQUE(NESTED _TABLE ID, "EREVET");
Unicité du code d'un brevet pour toutes ALTER TRBLE pilote_table
les compagnies (tousles contenus XML ADD COMSTRAINT un pilote_table docs_brevet
seront concernés) UNIQUE (brewvet);

ALTER TABLE pilote col_table
ADD COMSTRAINT un pilecl table docs brevet
UNIQUE (brewvet);

@ Editions Eyrolles 495

S0L avaned |
Tablean 11-15 Créatien de coalrainies SOL sur e collection (suite)
Contrainies Code SQL
Vérification de valeurs (ici, sur le salaite ALTER TABLE pilete_cel_table
etle prénom). Méme syntaxe pour la ADD CONMSTRAINT ck _pileol_tahle_salaire
table XMLType CHECK |((salaire IS NULL OR salaire > 600)
AND
prenom = UPPER (preriom)) ;
Intégrité référentielle Pas possible : ORA-3I0730: contrainte référen-

tielle interdite sur une colonne de table
imbrigués

Tout contenu XML non conforme i ces nouvelles contraintes sera rejeté avec des messages

d'erreur correspondants aux exceptions. Le tableau 11-16 présente les messages d'erreur
potentiels.

Tableau 11-16 Verificalion des conWaintes SOL sur une celieclion

Unieité du code d'un brevet pour chague ORA-00001: violation de contrainte unique
compagnie {O¥M,UN_PILCOL_TABLE DCO{C_BREVET)

Unicité du eode d'un brevet pour toutes les ORA-00001: viclation de contrainte unique
compagnies {OXM.UN_PILCOL_TABLE_DCOCS BREVET)
Vérification de valeurs

CRA-02290: vislation de contraintes
{OXM.CE_PILCOL_TABLE_SALATRE) de
vérification

Extractions

Oracle fournit différentes fonctions SQL pour XML qui manipulent ou retournent des frag-
ments XML. Les paramétres de ces fonctions ne sont pas définis dans les normes SQL ANSI/
ISO/IEC mais sont explicités dans des spécifications du W3C (notamment celles concernant
XPath, XQuery et les namespaces).

496 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Flgure 11-8 Fonctions SQL pour XML

APPENMDCHILDXML SYS DBURIGEN XMLAGG XMLPATCH
DELETEXML, SYS XMLAGG KMLCAST XMLPY

DREPTH SYS XMLGEN XMLCDATA XMLOQUERY
EXISTSNODE UPDATEXML XMLCOLATTVAL XMLROOT
EXTRACT (XML} XMLCOMMENT XMLSEQUENCE
EXTRACTVALUE XMLEONCAT XMLSERIALIZE
INSERTCHILDXML XMLDIFF XMLTABLE
INSERTCHILDXMLAFTER XMLELEMENT XML TRANSFORM
INSERT CHILDXMLBEFORE HHLEXIRTS

INSERTXMLAFTER XMLFORERT

INSERTXMLBEFORE FAULAALID

PATH XMLPARSE

Sans entrer dans les détails de tous les paramétres de chaque fonction, vous aurez besoin de
connafitre XMLOUERY, XML TABIF, XMLEXTSTS, et ZMLCAST pour interroger efficacement vos
contenus XML. Les requétes utilisant ces fonctions devront s'organiser de la maniére
suivante.

Flgure 11-10 Architecture générale d'une requéte Oracle SQL/XML

SELECT — Chemin Xpath ou clause FLOWR
MMLCAST (XMLQUERY ["sxpression Xouery®
PASSING BY VALUE exprassion [AS identifier] [,.]
RETURNING CONTENT [NULL ON EMPTY])
AS rype SQL) AS aliss [,-]
YORR ... a Table contenant du XMLType
WHERE NMLEXISTS (fexpression Kpusry* etiou jointure avec
PASSING BY VALUE exprassion {AS identifier] [,-]):

IMLTABLE
t im;cmes;ﬁmP—_—

'expression Xguery' Chague ligne d'une séquence XQuery
[FASSING BY VALUE expression [RS identifier] [,.]]
[EETURNING SEQUENCE BY REF]

[COLUMNS XML table column [, XML table column]...])

Ces fonctions respectent les normes SQL/XML:2011 et permettent :
« de générer du contenu XML a partir de tables/vues conventionnelles ;
« d’extraire des lignes (relarional data) a partir de contenu XML.

@ Editions Eyrolles 497

S0L avaned |

498

Pour éviter que les résultats de vos requétes soient tronqués dans la console SQL*Plus (SQL
Developer est beancoup moins stable pour cela), positionnez la variable d’environnement
LG & un chiffre suffisamment important (par exemple, SET LONG 10000).

Les fonctions EXTRACT et EXTRACTVALUE sont déclarées obsolétes depuis la version 11gR2.

La fonction KMLOuery

La fonction XMLQuery retourne une séquence d'instances XML Type (ou MULL) et sa syntaxe
simplifiée est la suivante :

XMLQuery
{expression, XQuery
[EASSING [BY VALUE] expression [AS identifiant] ...]
RETUBNING CONTENT [NULL O EMBTY]))

PASSING désigne une ou plusieurs expressions (colonnes, bind variable ou PL/SQL).
Chacune de ces expressions doit retourner un type XMLType ou un type SQL (qui ne doit
&tre ni objet ni collection). Le terme OBJECT VALUE (dénoté dans certaines versions SYS
NC_ROWINFOS) permet d’adresser une table XMLType.

NULL ON EMPTY (par défaut) retourne NULL sl aucun résultat ne peut &tre extrait.

Le tableau 11-17 présente quelques extractions avec la fonction XMLQuery ; trois documents
XML ont €t€ insérés dans les tables présentées précédemment (t_documents sxmlett_col_
xaul), et peu importe le mode de stockage, qu’il soit binary XML ou objet et qu’une grammaire
XML Schema soit associée ou pas. En remplagant col_xmil par OBJECT VALUE dans la clause
PASSING BY VALUE, vous obtiendrez expression XQuery pour la table XMLType
t_documents xml.

& Editions Eyrolies

[chapitre n® 11 Oracle XML D8 |
Tahlean 11-71 Utilisation de ia fonction KNEQuery
Code SQL Résultats
-=- Un élément
SELECT ncm_doc, HOM_DOC Seompagnie/corp
IMLQuary (" feonpagnis/ommp’ = =0 —eemmseecmemmmms s mmm e —m e m e
PASSING BY VALUE col_xaml compagnie . xml <comprhB</comp>
RETURNING CONTENT) compagnie? . xml <compeRC</comp>
as " /compagriie /comp” compagniel sl <comps>Th</comp>
FROM t_col_szanl;
-- Plusgieurs éléments <pilotez>
SELECT XMLQuery('/compagnie/pilotes’ <pllote brevet="PL-25">
FASSING BY VALUE col_xml <prencm-Jean-Fhi</prencm
RETURNING CONTENT) <nom>Ferrage</noms
AS " /feompagriie /pilotes” <galaire>5000</8alaire>
FROM t_cel_sxnl </pilote>
WHERE nom doc = 'compagnied sml'; <pilote brevet="PL-62">
<prenom>Joel</prenom>
=<nom= Har tmat<,/noms
<salairesx5000</zalal re=
</pilote>
</pilotes>
== Un attribut
SELECT nom_doc, NOM_DOC foompagnie/Bdate_crea
INIQuary | ' /compagrile Jddate_oread’ —--mrmrmmrmemmmems memeseee o re e —————
PASSING BY VALUE col_zml compagnie . sxml 2010-08-30
RETURNING CONTENT) compagnieZ.saml 2012-0%-01
A5 "/eompagnie/@date_crea” cotpagnied.sanl 2013-04-01
FROM t_col_sml;
-=- prédicat XPath NOM_DOC plus de KOO0
SELECT nom doc, = === = =eece;s;ccss;esssss sessssssss e esee———
XMLOuery | ' /compagnie/pilotes/pilote compagnie.sxml <nom=Sarda</nom>
[salaire<5000] /rom’ compagrnieZ. xml <nom-Glaccone</noms>
PASSING BY VALUE ecol_xml <piom=Cal ac< /roms

RETURNING CONTENT)
AS "plus de B000"
FROM t_col_zanl;

compagnied xml

La fonction XMLGast

La fonction 3ML.Cast transforme une expression en un type SQL (MUMBER, VARCHARZ, CHAR,
CLOB, BLOB, REF ¥MLTYPE ou DATE). Il n'est pas possible de transformer un type XML en un
autre type XML, ou un type SQL en un type XML. La syntaxe simplifiée de cette fonction est
la suivante :

SELECT ¥MLCast (XMLOUERY(..) AS Eype_SOL}
FROM

@ Editions Eyrolles 499

S0L avaned |

500

Le tableau 11-18 présente quelques extractions avec la fonction XM.Cast. En remplacant
col_xml par OBJECT VALUE dans la clause PASSING, vous obtiendrez 1'expression XQuery
pour la table XMIType t_documents_sxml.

Tableau 11-18 REisation de Ia Tonction KMLCast

Code SQL Résultats
-- Un &lément
SELECT nom_doc, WOM_DOC HOM_COMP
XMLOABT(0 mmemmememmememe mmmeem—mmmem e mmeoe

EMIOQUERY (' / compagnie/ nomComg '
PASSING col_sml BRETURNING CONTENT)
AS VARCHARZ (30)}) AS nom comp
FROM t_col sl

compagnie.anl
compagnie? xml
compagnield xml

Zir Bl agnac
Air Castanet
Toulouse Air

-- Un attribut

SELECT nom_doc, NOM_DOC DATE _CRER
MLCas®{ 000000 eeeeeeeesceseee seeeeeeeee——e———
EMLOUERY (' /compagnie/8date_crea'’ compagnie. xnl 30/08/10
PRASSTNG col_zml RETURNING CONTENT) compagrnie?. xml 01/09/12
AS DATE) AS date _crea compagniel . xml 01704713
FROM t_col_xml;
== prédicat XPath
SELECT nom_doc, NOM_DOC NOM
KMLCGASZ(= mmeemmemereme e memeee e
XMIQUERY (' fcompagnie/pilotes/plilote compagnie sl
[Ebrevet="PL~25"] /friom"’ compagn ie?. xml
PASSTNG col_san]l RETURNING CONTENT) compagniel.xml Ferrage

AS VARCHARZ(20)) AS nom
FROM t_col wml;

== plugieurs items retournés
SELECT XMLCAST { XMIQUERY (
' foompagnie/pilotes/pilote fnom!
PASSING col_sml RETURNING CONTENT)
AS VARCHARZ (80)) AS resultat
FROM t_col_sml
WHERE nom_doc = 'compagnie?.sml’;

GlacconeCalac

-- élément non terminal
SELECT XMLCAST |
FMLQUERY (' feompagnie/pi lotes '
PASSING col sxml RETURNING CONTENT)
AS VARCHARZ (80)) AS resultat
FROM t_col_xml
WHERE nom_doc = 'compaghie? . sml';

AimeGiacconed200FierreCalac3000

Cette fonction convient pour 'extraction de valeurs scalaires (éléments terminaux ou attributs).
Sil'élément est complexe, le résultat est la sérialisation de tout son contenu. Si plusieurs items
sont retournés, vous devrez utiliser conjointement la fonction XMLTAELE.

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

La fonction KiiTakle

La fonction XML Table transforme une expression en un type SQL (NUMBER, VARCHARZ, CHAR,
CLOB, BLOBE ou DATE). 11 n’est pas possible de transtormer un type XML enun antre type XML
ou un type SQL en un type XML. La syntaxe simplifiée de cette fonction est la suivante :

SELECT aliasl.col | alias2.col | aliasZ.COLIMN_VALUE ..
FROM nom_table aliasl , XMLTABLE
(expression_XQuery
[PRSSING expression [AS identifiant)
[COLUMNS column [PATH string] [,...] } aliasZ

expression mdigue le nom colonne XMLIype (ou OBJECT VALUE pour une table
XMLType).
CcoLuMMN_VALUE devra étre utilisé si aucune colonne n'est décrite dans la directive
COLUMNS.
Le tableau 11-19 présente quelques extractions avec la fonction ¥MITable. En remplagant
col_xnl par OBJECT_VALUE dans la clause PASSING, vous obtiendrez 1'expression XQuery
pour la table XMLType t_documents anl.

Tahleau T1-19 nilsation de ia fonciion NMTalie

Code SQL Résultats

-~ Plusieurs éléments non terminaux PILOTE

SELECT aZ.COLUMM_VALUE RS pilote =pllete brevet="PL-5">

FROM t_col_xml al, <prencim=hime</preoomns
XMLTABLE | <nom=-Glaccone< /nomns
' feompagnie/pilotes/pilote’ <galalre=4200«</salaire>
PASSING al.cel_xml) a2 </pilote>

WHERE al . nom doc= ‘compagnie? . sml'; <pilote brevet="FL-6">

<prenon>Pierre</prenomn>
<nom>Calacs f noms
<galaire=3000</salairex>

</pilotes
-= Plusieurs éléments terminaux NOM_DOC oM
SELECT al.nom _doe, compagtnie wxml <nom=-5arda</nom-
a2 COLUMM_VALUE AS nom compagnie . wxnl <nom=Benech< / toms
FROM t_col _xml al, compagniel. aml <nom>Glacceone</nom>
XMLTABLE | compagnle? . xml <nom=-Calac</nom-
' foompagnie/pilotes/pd lote/nom’ compagnied senl <nom>Gazagnes</nioms
PASSING al.col_xml) aZ; compagniel . xml <nom=Ferrage</noms

compagnield . xanl <nom-Har tman< /noms

@ Editions Eyrolles 501

| Partie W S0L avaned |
Tahiean 11-18 Ulilisation de ia lomclion KMiTsbie (suffe)
Code SQL Résultats
-= Idem avec COLUMNS NOM _DOC BEEVETPE NOMP
SELECT al.noe o, a2 Braveabn, AZLNON 2 Sosssdsssssndss sssssmsE s ess s sS e
FROM t_col_xnl al, -
XMLTABLE | compagnie. xaml PL-2 Benech
! feompagnie/pilotes/pilote ! compagnie? .xanl FL-6 Calac
PRSSING al. eol_zxml compagnied .sml PL-25 Ferrage
COLUMNS nemp VARCHARZ (20) PATH 'nom’', compagnied oxanl PL-15 Gazagnes
brevetp VARCHARZ (10) compagnie? (sml PL-9 Gilaccone
PATH '@brevet') a2 compagnield .xanl PL-62 Har tman
QORDER BY aZ.nomp; compagnie. aml PL-1 Sarda
== Plusieurs X¥MLTRBLE avec « jolinture »
NOM_DOC TROMC SALATRES
SELECT al nom doe, aZ:inoms, = @ secssssdessses sodeessoss oo sesesmsens
SUM{TC_NUMEER{a3.=zal)) AS salaires compagnield (sl Toulouse Air 17200
FROM t_col_sxml al, compagnie.sxmnl &air Blagnac 9000.6
XMUTABLE (' /compagnie’ FASSING al.col_xml compagnieZ.sm]l Air Castanet Tz00

502

COLUMNS nome VARCHARRZ (20) FATH
' nomComp !,

pils XMLType PATH 'piletes/pilote') a2,

XMLTABLE ('pilote’ PASSING aZ.pils

COLIMNS sal NUMBEER PFATH 'malaire') ald

GROUF BY al.nom _doc, aZ2.nomc;

La foncEon KMLExists

La fonction XMLExd st teste une expression XQuery et retourne TRUE si un fragment est non
vide (sinon FALSE). La syntaxe simplifiée de cette fonction est la suivante :

IMLEwists (expression XQuery

[PASSING expression [AS identifiant] 1)

Lutilisation de la fonction XMLEx1sts est limitée au WHERE et au CASE.

Par ailleurs, la fonction antérieure existsNode est obsoléte depuis la version 11gR2.

Le tableau 11-20 présente quelques exiractions avec la fonction XMLExists. En remplagant
col_xml par OBJECT VALUE dans la clause PASSING, vous obtiendrez I'expression XQuery

pour la table XMIType t_documents sml.

Vous découvrirez qu'il est souvent nécessaire d'utiliser conjointement la fonction XMUTable.
En effet, bien que les expressions XQuery qui vont se frouver dans le SELECT et dans le
WHERE utilisent le méme paramétre (dans PASSING), elles restent toutefois décorrélées.

& Editions Eyrolies

[chapitre n® 11

Oracle XML D8 |

Tablean 11-20 Utilisation de ia fonction KMLEKS1S
Code SQL Résultats

== Test sur une date

SELECT XMLCRST(emmmem e e e
XMLQUERY | ' /ocompagn ie/monConp Toulouse Alr

PASSING col_ sl RETURNING CONTENT)
AS VARCH&R2(30)) AS nom_comp
FROM t_col_xml
WHERE XMLEXISTS('/compagnie
[Bdate_creasxs:date("2013-04-01")]1"
PASSING col_sml);

-= Prédicats XPAth 4 2 éndroits

SELECT XMLCAST(2 mmmmee
XMLQUERY { ' feompagnie AC
[nomComp="air Cagtanet"]/comp’
PASSING col_xml RETURNING CONTENT)
A5 VARCHARZ(6)) AS comp
FROM t_col_xml
WHERE XMLEXISTS (' /compagnie
[Bdate crea=xz:date("2012-09-01")]"
PASSING col_jml);

-- Ne convient pas (décorrélation)

SELECT XMLCAST|(RESULTAT
HMLOUER¥Y, emmmeemeee e emm e
' feompagnie fpllotes/pilote fnom’ SazagnesFerrageHartman

PASSING col_zml RETURNING CONTENT)
AS VARCHAR2(30)) AS resultat
FROM t_col_sanl
WHERE XMLEXISTS|
'/eompagrile/pilotes/pilote
[Bbrevet="PL-25"]" PASSING col_xunl)
AND XMLEXISTS|
' feompagriie/pilotes/pilote/salaire
[number ()=5000] * PASSING col_zmal);

SELECT al.nomp

FEOM t_col_xml al, HOMP
XMLTABLE | ' /compagnie’ PASSING al.col_xml @ -=--rr=sr=e=e-
COLUMNS nomc VARCHARZ (20) PATH 'nomComp', Ferrage

pils XMLType PATH 'pilotes/pilote’)
a2,
XMLTRELE | 'pilote’ PASSING a2.pils
COLIMNS brev VARCHARZ (6) FATH '@brevet',
nomp VARCHARZ (20) PATH 'nom',

sal NUMBER PATH 'salaire') a3
WHEEE ai.sal = 5000
AND ai.brey = 'PL-25";

@ Editions Eyrolles

503

S0L avaned |

La fonction isSchemavalid

Laméthode isSchemavalid est associée i un type XMLType et permet de statuer sur la vali-
dation d'un document par rapport 4 une grammaire enregisirée. La syntaxe de cette fonction
est la suivante :

FUNCTION isSchemaValid(schurl IN VARCHARZ := NULL,
elam IN VARCHARZ 1= NULL} RETURN NUMBER

Cette fonction retourne 1 si 'objet est valide par rapport a sa grammaire, sinon (). Le tableau
11-21 présente un cas d'utilisation de cette fonction en supposant que la table contient du
contenu XML non contraint par une grammaire. La requéte permet de vénfier parmi les docu-
ments stockés lesquels sont valides par rapport i la grammaire dont I'URL est passée en paramé-
re. En remplagant eol_xml par OBJECT VALUE dans la clanse SELECT, vous frouverez
aisément les moyens d’appliquer ce raisonnement pour la table XMLType t_documents_aml.

Tableau 11-21 Déterminaton des documents invalldes

Code SQL Résultat

SELECT

gchurl => 'http://www.actmp. fr/compagnies. xsd', compagnie.iml

elem
FROM t

t.nom_doec, NOM_DOC VALIDATION
t.col_sxml.isSchemavalid{ = =0 —memmmmmmrmmmmmmmmmeem —mmmmeeeee

=> 'vompagnie') AS validation compagrie?. xml
ool _smml E; compagnied . xml
voll.xml
wold xnl

[R

Mises a jour

504

L8

.

Depuis la version 12¢, XML DB supporte et préconise |'utilisation de la syntaxe XQuery
Update. Ainsi, les fonctions XML précédentes de mise a jour sont déclarées obsolétes, notam-
ment UPDATEXML, INSERTCHILDEML, INSERTEMLEEFORE, APPENDCHILDXML et DELETEXML.

Vous trouverez la syntaxe compléte de XQuery Update sur le site du W3C (htto/Avww w3.org/
TRxquery-update-10/). Nous allons étudier 1" insertion, la suppression et la modification de frag-
ments XML grice 2 quelques exemples.

Insertion d'un fraoment

1 s’ agit ici d’ajouter un élément mail & un pilote en particulier.

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Figure 11-11 Fragment XML & insérer

|=aml version="1.0" encoding="UTF-8""
|<compagnie date_crea="2010-08-30"
-«comp>AB</comp:
pilotas

pilote braver="FL-1"> ...

“pilote brever="FL-2"
prenom=Romaric</prenom
nom=Benach</nom
-salaire-5000 40+-/salaire

pilote: R\

pilotes- mail
-nomComp=Air Blagnac-/nomComp
| icompagnie

Le tableau suivant présente les deux écritures possibles pour cette mise i jour. En remplagant
col sanl par OBJECT VALUE dans les clauses PASSING et SET, vous pourrez aisément trans-
poser ces instructions i la table XMLType t_documents xml.

Tahleau 1122 insertion d'un fragment

Fonction SQL (obsoléte) XQuery Update
UPDATE t_col_zml
UFDATE t_col_ xml SET col_ml =
SET col_ixml = XMLQuery | 'copy Stmp = . modify
AFPPENDCH TLOXML (for 51 in
col sl , Stmp/compagniespilotes/pilote
'eompagnie/pilotes/pilote where 5i/@8brevet = ''PL-2''
[Bbrevat="PL-2"]", return insert mnode
HMLType | <mail>r.benechBactmp. fr</mail>
r<mall>r.benech@actmp. fr</mail>")) ag lagt into $i)
WHERE nom_doc = 'compagnie.sanl'; return Stmp'

PASSTNG col_xml RETURNMING CONTENT)
WHERE nom_doc = 'compagnie.sxml';

Une autre possibilité consiste & insérer un fragment avant ou aprés une expression XPath
donnée. Dans cet exemple, il faudra remplacer as' last par before ou after le cas échéant.

Suppression d'un fragment

Dans cet exemple, nous voulons supprimer un élément pilote en particulier (ici, le denxiéme).

@ Editions Eyrolles 505

S0L avaned |

Flgure 11-12 Fragment XML & suppriner

mrnl varsion="1 0" encocing="UTF-8"7
‘compagnie date_crea="2012-09.01"-
<comp=AC</comp
‘pilotes:
pilote brevet="pL-9"
Cprenom= Aime < prenom
“nom-Giaccone</nom
salaire-4200</salaire
oilale:
pilote brevet="PL-&"
prenom-Fiemre=/prenom:
1 -nom=Calac</nom
-salaire=3000</salaire:

pilote-
-/pilotes
<nomComp=Air Castanet</nomComp:
compagnie-

Le tablean 11-23 présente les deux écritures possibles pour cette suppression. En remplagant
col_2aml par OBJECT VALUE dans les clauses PASSING et SET, vous pourrez aisément trans-

poser ces instructions i la table XMULType t_documents_sarl.

Tabieaw 11-23 Suppression d'um Iraomen!

'Fenction SQL (absoléte) XQuery Update
UPDATE t_col_xml
UPDATE t_col sl SET col_xml =
SET col_xml = XMLQuery | 'copy Stmp := . modify
DELET EXML | {for 5i in
Stmp fcompagnie /piletes/pilote

col_sml,
[pogition|)=2]

'feompagnie/pilotes/pilote
return delete node 5i)

[position{)=2]")
WHEERE nom_doc = 'compagnieZ . soml'; refturn Stmp'
PASSING col_nl RETURNING CONTENT)

WHERE nom doc = 'compaghie2.xml’;

Modification d'un fragment
1 s’agit de modifier un élément d'un pilote en particulier (ici, le salaire). Le remplacement
d’un fragment (ici, le premier pilote) sera également étudié.

506 Editfons Eyrofies

[chapitre n® 11 Oracle XML D8 |

Flgure 11-13 Fragment XML & modifier

=Tl varsion="1.0" en J="IUTF-8"7
(“compagnie date_crsa: 2013-04-01" <pilote brevet="PL-62">
comp=TA</comp {prenom>Arnaud</prenom>
e o . e i, e <nom>Sayag< /nom>
| pilote bravet="PL.15" <salaire>8800<¢/salaire>
I “prenam=Jean </pranom: l {/pilote>
i nom-Gazagnas - nam i
1 salaire- 7200</salalre I
T U LN R |

prenom-Jean-Phi - pranom
nom=Fermrage-/nom

salaire 5000 /salaire 7500.60
pilote ‘;h‘—*——

N P S T

Le tableau 11-24 présente les deux écritures possibles pour la premiére modification. En
remplacant col sl par OBJECT VALUE dans les clauses PASSING et SET, vous pourrez faci-
lement transposer ces instructions i la table XMLType t_documents sal.

Tableau 11-24 Modificalion d'un iragment

‘Fonction SQL (obsoléte) XQuery Update
UPDATE t_col_xml
UPDATE t_ecol_xml SET col_sxml =
SET col_xml = IMLQuery | 'copy Stmp = . modify
UPDATEXML (col xml, (for $1 in
' feompagnie/plletes/pilote Stmp/ecompagnie/pllotes /pilote
[@brevet="PL-25"] /salaireftext() ', [@brevat="PL-25"] /salaire/text()
7500 .60") return replace value of node i
WHERE nom_doc = 'compagnied sml'; with ''7500.60'")

return Stmp'
PASSING col_xml REETURNING CONTENT)
WHERE nom_doc = 'compagnied sxml';

Le code qui permet de remplacer un fragment plus complexe est présenté dans le tableau 1 1-25.
Par la méme occasion, vous découvrirez |'utilisation de deux expressions dans la clause
PASSTNG. La premiére désigne le document XML i modifier, la seconde le nouveau fragment.

@ Editions Eyrolles 507

| Partie W S0L avaned |
Tablean 11-25 Rempiacement d'un Iragment
KQuery Update Commentaires
DECLARE
wvar wxml XMLTYPE;
EEGIN
var yml =XMLType('<pilote breyet="PL-62"> Variable PL qui contient le
<prenom=krnauds/ prenoms nouveau fragment.
< noms S ayag< / noms
<galaire>8000=/salaire>
</plletes"');
UPDATE t_col_ sxml
SET col_xml =
XMLQuery | 'copy Stmp := Spl modify
({for 34 in Stmp/compagnie/pilotes/pilote
where 5j/8brevet = ''FL-15""
raturn replace noda 59§ with $p2) Remplacement du fragment
return Stnp' courant (désigne par $14) parle
PASSING col_3xml AS "pl", var_sxml AS "pd" nouveau.
HEETURNING CONTENT)
WHERE nom_doc = ‘'‘compagnied.xml’;
END;
indexation

Suivant le mode de stockage choisi, vous avez plusieurs possibilités d’indexation :
mode de stockage binary XML : XMLIndex (domain index), index textuels et index B-tree

(sur des colonnes virtuelles) ;
mode de stockage objet : index texmels et index B-tree (sur toute colonne ou expression).

—— P Depuis la version 12¢, les index basés sur la fonction extractValue (function based index)
L doivent plus &tre utilisés (CREATE INDEX... ON nom_table{extractValue(..}).

La figure 11-14 (hitp:/fr.slideshare.netMGrafike) résume les possibilités d'indexation de contenu
XML disponibles depuis la version 11gR2 d'Oracle XML DB.

508 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Flgure 11-14 Modes dindexation XML

Unstructured
AMLIndex

Structured
XMLIndex

index B-tree

Pour indexer les éléments du premier nivean comp, nomComp et I'attribut date crea, trois
index seront nécessaires. Pour I'élément brevet et 1'attribut nom, qui sont tous deux du
deuxiéme niveau (celui de la collection nommée pilstes), deux index seront nécessaires.

Figure 11-15 Exemple dindexation

ol wraredori="1 0F gtic =TE-8*7
|“Compagnia 2012-08.01"
Celcomp:
pllotes
<pilotebrevet = "PL.2"
prenam: Alme-</prenoms
RO BHaccong<noms
salaires 4200 </salaine
ipllote
pilote brevet="PL.6"
<prenom=Pierme </pranom:
“pom=Calacnom
<salaire= 3000/ salaira:
pilcte
‘pilotes
CRomCOMpopir Castanet-nomComp:
<[COMpAgNIe>

@ Editions Eyrolles 509

S0L avaned |

510

Le tableau 11-26 présente la création de ces index, que ce soit pour une table XMLType ou
une colomme XMLType.

Tabieau 11-26 Création dindex conventionnels

Syntaxe SQL Commentaires
CREATE UNIQUE INDEX idx_comp »ml_cel
ON t_dsocuments sl

{CAST ("XMLDATA"."COMP" A5 VARCHRRZ (6))); Sivous avez annoté la
grammaire, respectez la casse
CREATE UNIQUE INDEX idx_comp_xml des noms des colonnes.

ON t_eol _xml
(CAST (ecol_xml. "XMLDATA"."COMBE" AS VARCHARZ(6)));

CREATE INDEX idx_date_crea sml ON t_documents_xml Méme écriture, que ce soit un

{CAST ("XMLDATA"."DATE_CREA" AS DATE)); attribut ou un éément, respactez
la casse des noms des colonnes
CREATE IMDEX idx_ date crea sml col ON t_col sml de la grammaire.

(CAST (col_xml."XMLDATA"."DATE_CREA" AS DATE));

CREATE UNIQUE INDEX idx nomcomp snl

ON t_documents_xml Autre type d'écriture (depuis la
{XMLCast (version 11 qui n'utilise pas les
MMLGuery (' /compagnie/nomConp’ colonnes annotées).

PASSING OBJECT_VALUE RETURNING CONTENT)
AS VARCHARZ(20)));

CREATE UNIQUE INDEX idx nomcomp sl col
ON t_col_xml
(MMLCast (
MIguery | ' /compagnie/nonConp '
PRSSING col_xml RETURNING CONTENT)
AS VARCHARZ (20) 1)) ;

CREATE INDEX idx_coll_brevet_sml Utilisation du nom de la table de
ON pilote_col_table p stockage.
{p."BREVET", p.MNESTED TABLE ID);

CREATE INDEX idx_coll nompil ml
ON pilote_col_table p
(fz. "MOM", p.HESTED TABLE TD);

Les index des informations de premier niveau seront définis en interne FUNCTION-BASED
NORMAL. Ceux concernant les données d'une collection le seront en interne NORMAL.

& Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

Mode non structuré (Unstructured KMundex)

Le type d’index présenté ici (domain index) convient au mode de stockage binary XML et aux
contenus XML qui sont orientés document (figure 11-2). Un seul index de cette nature peut
&tre défini sur une table (ou une colonne) XMLType binary XML.

Le tablean 11-27 décrit la création d’'un XMLIndex non structuré sur une colonne XML Type.
Ce type d'index génere une table (path rable) et des index sur cette table qui auront pour but
de référencer les différentes parties des documents XML et les valeurs terminales (éléments et
attributs).

Tehlesn 11-27 Créstion o'imdex XMIType non Stractiré

Syntaxe SQL Commentalres

CREATE IMDEX compaghie smlindex ON t_col_ nl (col_xml)
INDEXTYFE IS XDB .XMLINDEX

PARAMETERS
{'FATH TABLE compagnie path_table La path table répertorie les

(TABLESPACE USERS) chamins.

FATH ID INDEX compagnie_idx Le path index idertifie des
|TABLESPACE USERS) fragments.

ORDER KEY INDEX compagnie_olk_idx Lorder index recense la
(TRELESPACE USERS) position higrarchique des

VALUE INDEX compagnie_value idx neeuds.

(TRELESFPRACE USERS) '); Le value index adresse les
valeurs des éléments
terminaux et des atiributs.

SQL> SELECT index_name, index_type, table_name

FROM user indexes;
INDEX NAME INDEX_TYPE TABLE_MAME
COMPRGNIE XMLINDEX FUNCTION-BASED DOMAIN T COL_XML
COMPRGNIE_VALUE_ IDX NORMAL COMPAGNIE_PATH,_ TRELE
COMPRGNIE_OF_TIDX NORMAL COMPAGNIE_PATH_TABLE
COMPRGNIE_IDX NORMAL COMPRAGNIE_PATH TRELE

Des index secondaires additionnels (conventionnels, function-based ou textuels) peuvent étre
ajoutés i la path table : CREATE INDEX .. ON nom_path table..Comme pour les tables
de stockage des collections, il n'est pas possible d’exécuter une requéte directement sur ce
type de table.

La clause PARAMETERS peut contenir 1 (00 caractéres au plus. Au-dela, vous devrez utiliser
les procédures registerParameter et modifyParameter du paquetage DEMS XMLINDEX.
Grice a cetfe clause ou i ces procédures, vous pouvez préciser les fragments i privilégier ou &
exclure avec ALTER INDEX .. INCLUDE ou EXCIUDE.. avec ADD ou REMOVE.

@ Editions Eyrolles 511

S0L avaned |

512

Mode structuré (Structured KMUndex)

Depuis Ia version 11gR2, il est possible de composer un nouveau type d'index destiné & du contenu
XML qui est principalement de type « orienté document », mais dont une partie est toutetois forte-
ment structurée. Un seul index de cette nature peut étre défini sur une table (ou une colonne)
XMLType binary XML. La clause GROUP dans PARAMETERS permet de définir un tel index.

Le tableau 11-28 décrit la création d'un XMLIndex structuré sur une colonne XMLType. Ici,
on indexe la collection et on retrouve les directives COLUMNS et PATH de la fonction XM Table
précédemment étudide. Plusieurs groupes peuvent exister dans un méme index mais une seule
colonne VIRTUAL est utilisée (pour une seule collection). Enfin, il est possible d'ajouter des
groupes ou d'en enlever avec ALTER INDEX. et ADD_GROUP ou DROP_GROUP. Ce type d'index
génére autant de tables que nécessaire et d’index qui auront pour but de référencer les différen-
tes parties des documents XML et les valeurs terminales (éléments et attributs).

Tohleau 11-28 Créatfon d'index KNEType non siruciuré

Syntaxe SGL Commentaires

CREATE INDEX compagnie snlindex ON t_col_xmlicol sanl)
INDEXTYFE I5 XDB.XMLINDEX

PARAMETERS Le premier groupe est destiné
{'"GROUF grp_pilote aux éléments présents dans
IMLTable tab compa sml la collection.
{TABLESPACE USERS COMPRESS FOR OLTP)
Y compagniet !

COLUMNS lineitem XMLTvpe
FATH ''pilotes/pileote'' VIRTUAL
XMLTable tab comp_pilote_sxml
(TABLESPACE USERS COMPFRESS FCOR OLTP)
vifpilote’" PASSING lineitem
COLUMNS numpil VARCHARZ (6) PATH ''Bbrewet'',
sal NUMEER(9) PATH ''salaire'',
nompil VARCHARZ (20) PATH ''nem''');

ALTER INDEX compagnie xmlindex Le second groupe est destiné
PARAMETERS | 'ADD_GROUF GROUP grp_compagnie aux éléments (et I'attribut) de
XML Table tab_comp i@l ' ' feompagnie’!' premier niveau du document.

COLUMNS date crea DATE PATH ''@date crea'',
comp VARCHARZ(6) FATH '‘'comp'',
nome VARCHARZ (30) PATH “"'nomComp ') ;

SQL> SELECT index name, index type, table name
FROM uzer_indexes;

TNDEX_ NAME INDEX_TYPE TABLE_NLME
COMPRGNTE_XMLINDEX FUNCTICON-BASED DOMATN T_COL_XML

SYS593644 93645 _KEY_IDX HOEMAL TAE COMPR_ XML
SYS593644_93645_RID_IDX NORMAL TABE_COMPA_XML
SYS593644_93648_RID_IDX HORMAL TAB_COMP_P ILOTE_XML
SYS931644 93648 FRY_IDX NORMAL TAB_COMP_P ILOTE XML
5Y593644 93651 _RID_IDX NORMAL TABE_COMP_XML

& Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

Mode mixie

Depuis la version 1 1gR2, il est possible de mixer un index XMLIndex avec des composants
structurés et un autre non structuré (un au maximum). Pour supprimer ce dernier, il faut agir au
niveau de I'index par ALTER INDEX.. PARAMETERS ('DROP PATH TABLE'). Par défaut, tous
les fragments indexés inclus dans la partie structurée de 1'index sont aussi indexés dans celle
non structurée. Pour exclure des fragments de la partie non structurée, il faut utiliser 1"option
PATHS.. EXCLUDE dans la clause PARAMETERS.

Le tableau 11-29 décrit la création d'un XMLIndex mixte sur une colonne XMLType. Tout
d'abord, la collection est exclue de 1'indexation (de méme que le nom de la compagnie). Puis
des éléments de la collection sont ajoutés & 'index.

Tablesu 11-28 Création d'index KMEType mixie

CREATE INDEX compagriie sonl index Création de lindex non structuré qui
ON t_esol_snl (col_xml) exclut deux fragments (dont la
INDEXTYPE IS XDB .XMLIMNDEX collection).

PARRMETERS ('PATH TAELE compagnie path table
PATHS |EXCLUDE |

foompagnie/pilotes
fcompagni e/nomComp)) ') ;
BEGIN Création d'un groupe pour inclure
DEME_XMLINDEX. registerParameter dans l'index deux &éléments de la
{'param_compagnie', collection.

'ADD GROUP GROUP grp pilote
XMLTable tab_compa_xml ''/compagnie'’
COLUMNS lineitem XMLTvpe
PATH ''pilotes/pilote'' VIRTUAL
XMiTable tab comp pilotes xml ''/pilote'’
PASSING lineitem
COLUMNS numpil VARCHARZ (6) PATH ''Bhrevet'',
nompil VARCHARZ(20) PATH ''nom''');
END;
!

BLTER INDEX compagnie snlindes Ajout de ce groupe structurd &
PARAMETERS | ' PARAM param compagnie'); I'index non structurd.

Génération de contenus

o o e

M E A M R S R W SR O SR R MR W MR S S R S R R SR S MW SR MW SR MR AR R A M S M R e e B e A o e owm e R

Plusieurs mécanismes permettent de générer du contenu XML i partir de données provenant
de tables relationnelles.

@ Editions Eyrolles

513

| Partie W S0L avaned |
Des tonctions SQL/XML (ANSI/ISO). Citons principalement XMLELEMENT (pour créer un
élément), XMLATTRIBUTES (pour ajouter un atiribut & un élément), XMLFOREST (pour créer
un fragment), ¥MILAGE (pour peupler une collection) et ¥MLCCMMENT (pour ajouter un
commentaire).
Des tonctions Oracle. XMLROCT (pour générer un prologue), XMLCOLATTVAL (pour géné-
rer un triplet {élément, atiribut, valeur)), ¥MLCDATA (pour générer une section i ne pas
parser) et XMLSerialize pour la mise en forme.
Le paquetage DBMS XMIGEN qui fournit des fonctions et procédures pour convertir des
requétes SQL en contenu XML préformaté (voir la section « Les paquetages pour PL/
SQL »).
Afin de présenter ces différentes fonctionnalités, considérons les données issues des trois
tables suivantes.
Flgure 11-16 Données relationnelles
0 compacuE R | T avion_r
{ copeC || nom_comP | Ihna |f Tvrav|(capactTE |4 PROPRID|
AF Air France F-GODF A320 170AB
EJ Easy Jet F-PROG A318 140 AF
AB Air Blagnac F-HGPFT A319 120AF
F-WOWW A3E0 490ET
i AFFRETER_R |
U NA | CODEC|{ DATELA ||} N8_PASSAGERS |
F-GODF EJ 12/08/14 120
F-GODF AF 12/08/14 150
F-PROG AF 12/08/14 130
F-PROG AF 12/09/14 110
F-WOWW AB 12/09/14 450
Les fonctions SOL/KML
Le code suivant décrit la génération d'une arborescence décrivant les affrétements de la
compagnie ‘AF’ ordonnés par capacité décroissante. Notez la possibilité de trier un agrégat
d’éléments construit avec XMLAGG. Le résultat brut (figure 11-17) ne contient pas encore de
mise en forme (utilisation conjointe de XMLSerialize, voir plus loin).
514 Editfons Eyrofies

[chapitre n® 11 Oracle XML D8 |

Tableau 11-30 Génétafion de contenu XML par fonctions SQL ANSLISD

Code SQL Commentalres
SELECT XMLElement (NAME "flotte", Création d'un élément
XMLAttributes (c.codec AS "eomp") flott e contenant un attribut
IMLElament (HAME "nomcomp", ©.nom_comps), comp, puis composé de deux
MMLElement (HAME "avions", éléments (nomcomp et
({SELECT XMLAgQY | avions).
XMLElement (HAME "avion",
XMLAttributes (av.na A5 "immat"), Peuplement de la collection &

XMLF orest (av.typav BS "type_avi", laide d'une jointure.
av.capacite AS "nb_pax"))
OBDEER. BY av.capacite DESC)

FROM avien_E av

WHERE av.proprio = c.codeo))

I
FROM compagnie R o
WHEREX c¢.codec = 'AF';

Figure 11-17 Sortie brute
KMLELEMENT(NAME“FLOTTE" , XMLATTRIBUTES(C.CODECAS "COMP™) , XHLELEMENT [NAME “NOMCOMP™ ,

<Fflotte comp= "AF"><nomcomp>Air France{/nomcomp><{avions><{avien immat:"F-PROG"><{ty
F-po_aui »A318</type_aui><nb_pax>140</nb_pax>{/avionr{avion immats="F-HGFT"><type_au
112A319¢/type_avi><nb_pax>128¢/nb_pax></avion></avions></flotte>

Le résultat remis en forme est présenté 4 la figure 11-18 ; il ne contient pas encore de prologue
(MMLROOT), ni de commentaires (utilisation conjointe de XMLCOMYENT).

Figure 11-18 Conteny XML mis en forme

flotte comp="AF"
nomeomp=Air France</nomcomp
“avions:
-avion immat="F-FROG"
type_avi=A318<ype_avi
<nb_pex> 140</nb_pax
Jaion
<avion immat="F-HGFT"
type_avi-A319-type_avi
<nb_pax=120</nb_pax:
“fanon
avions:

<Mlotte-

@ Editions Eyrolles 515

S0L avaned |

516

Une autre possibilité est d'utiliser un type objet & qui on domne la structure de ['¢lément
souhaité. Notez I"utilisation de la fonction XMLAGG car plusieurs lignes seront produites, et des
doubles guillemets sur les colonnes du type objet pour préserver la casse des noms d'éléments
et d’attributs (si le caractére @ est mis en préfixe). Le résultat produit n’est pas ordonné et subit
1"ordre des lignes et des blocs de la table relationnelle.

Tableau 11-31 Génération de comtesu KML & I'alde d'un type

Code SQL Commentalres
CREATE OR REPLACE TYPE aircraf ¢ AS OBJECT Création d'un type composé de
{"@immat" VARCHRRZ (&), quatre champs, le premier &tant
"type_av" VRRCHARZ(6), prédesting & devenir un attribut, les
"nb_p" NUMBER(3) , trols autres des &léments.
" O VARCHREZ (&)) ;
/
SELECT ¥MLE]l ement (NAME "avions®, Utilisation du constructeur (nom du
{SELECT MMLAgg!(type) pour instancier 4 chagque ligne
¥MLForest | retournée par la table des avions un

aireraf tina, typav,capacite, propric) &lément préstructuré.
AS "awion")
)
FEOM avion R av))
FROM DUJAL;

Figure 11-19 Sortie brute
XMLELEMENT(“AUIONS" , (SELECTXMLAGG(XMLFOREST(AIRCRAF_T(NA, TYPAU CAPACITE, PROPRIO)

<avionsr<avion immat:"F-GODF"><type_au>A320</type_aur<nb_p>1T78</nb_pr<comp>ABC/c
omp>< /avioni<{avion immat:"F-PROG">{type_au>A318</type_au>{nb_p>148¢/nb_p>{comp>A
F</fcomp></avion><avion immat:="F-HGFT"><type_av>A3192</type_av><nb_p>120</nb_p><{ce
mp »AF < feompl < /avion><avion immats"F-WOWM">type_aurA380</type_aur<nb_p>490</nb_p
><comp>EJ< /compd< /avion>< /auions>

Le résultat remis en forme est présenté & la figure 11-20; il ne contient ni prologue ni
commentaires.

Pour trier des éléments en amont, vous devrez utiliser I'ordonnancement au niveau de XMLAgy
et non du SELECT de la table. Ici, vous devrez adopter une écriture de ce type : XMLAgyg (XML~
Forest(...) ORDER BY...).

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Figure 11-20 Contenut XML mis en forme

avions
-avion immat="F-GODF"
type_av-A320<itype_av
nb_p=170</nb_p=
“comp=AB</comp=
</avion
avion immat="F-PROG"
type_av-A318<type_av:
-nb_p>140</nb_p
scomp=AF </comp:
avion
avion immat="F-HGFT"
type_av-A319<type_av
nb_p>120<mb_p
comp=AF </comp=
“favion
<avion immat="F-Woww"
type_av-A380<type av
nb_p-490</nb_p
comp-Ed<icomp
avion
avions

GConversions et analyse

La possibilité de convertir des caractéres en contenu XML, et inversement, est intéressante
pour la mise en forme de résultats. Nous allons émudier 1a fonction XML.Serialize qui trans-
forme du contenu XML en CLOB, BLOB ou chaine, et la fonction XML Parse qui analyse une
chaine pour retourner une instance XMLType.

Les options de la fonction XMLSerialize sont les suivantes :

. XMLSERIALIZE
{ { DOCUMENT | COWNTENT } expression [AS type_S0OL]
[BNCODING xml_encoding spec]
[VEBRSION chaine)
[MO INDENT | { INDENT [SIZE = nombre] }]
[{ HIDE | SHOW } DEFAULTS] }

@ Editions Eyrolles 517

| Partie W S0L avaned |
L'option DOCUMENT impose que le contenu de 1"expression soit un document XML bien
formé. Avec CONTENT, le contenu XML peut ne pas avoir de racine unique, mais il doit étre
par ailleurs bien formé.
Le type SQL concerne les caractéres (VARCHARZ ou VARCHAR mais pas NVARCHARZ) ou les
binaires (BLOB et CLOB, qui est le type par défaut). Pour les BLOB, la clause EMCODING
permet d’enrichir le prologue (encoding="...").
La clause VERSION concerne le prologue (<7xml version="..." ...7=).
L'indentation entre les éléments est déterminée par 'option INDENT SIZE = n Sila
clause TNDENT est présente sans le paramétre SIZE, I'indentation est fixée a 2. $IZE=0
entraine une séparation de tous les éléments (un par ligne et sans indentation).
HIDE DEFAULTS et SHOW DEFAULTS s’appliquent seulement i des documents basés sur
des grammaires XML schema et concernent les éventuelles errenrs.
Le code suivant décrit deux sérialisations. La premiére extrait une ligne d'une table & partir
d’un type et la transforme en chaine de caractéres pour I'état de sortie du document indenté.
La seconde extrait une instance XML Type & partir d'une colonne d'une table et la transforme
en CLOB pour détemminer la taille en nombre de caractéres du document aprés |'indentation
par défaut.
Tatieau 11-32 Sérialisaons de conleny
Code SQL Résultat
SELECT ¥MLSerialize(RESULTAT
DOCUMENT XMLElement (NMAME "avions", = —roro-ssscmcocc—mcscmmoee=
({SELECT ¥MLAgg| <avionss
IMLForest (aireraf ti zavien immat="F-WOWW">
na, typav, capacite, proprio) “type_av=Al8l«/type_av>
AS "awvien")) <nb_p>490</nb_p>
FROM avion R WHERE capacite > 300}) <comp>ET</comp>
A3 VARCHARZ (400) </avion=
INDENT SIZE=1l) AS resultat =/avions=
FROM DUAL;
DECLARE
wvar_CLOB CLOB;
taille INUMBER;
EEGIN
SELECT XMLSerialize{
DOCUMENT col_xml AS CLOB)
INTO var CLOB
FROM r_col_xml
WHERE HMLEXISTS (
'feompagnie/comp[text () ="AC"] taille CLOB :420
PASSING BY VALUE col sml);
taille:= DEMS LOE.GETLENGTH|var CLOE);: Procédure PL/SQL terminée avec
DEMS_OUTPUT.PUT_LINE('taille CLOE :°' sucoes,
|| taille);
END;
518 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Les options de la fonction XMLParse sontles suivantes :
| XMLPARSE ({DOCUMENT | CONTENT)} expression [WELLFORMED])
Les options DOCUMENT et CONTENT ont la méme signification que pour XML.Serialize.

L’ option WELLFORMED évite de vérifier la validité du document XML en la garantissant en
amont.

Le code suivant décrit trois analyses (parsing). La premiére est correcte du fait d'éléments
bien formés. La deuxiéme retourne une erreur car des éléments sont mal formés. Et la derniére
réutilise la mauvaise expression mais évite le contréle d'Oracle. La fonction getClabval
transforme une instance XMLType en CLOB.

Tableau 11-33 Analyses de conienu

Code SQL Résultat

SELECT XMLParse (CONTENT FRAGMENT

reaiioule immar="508-BAX=31"fx = 020 'l AEsEESEsEsEEsEEsESREsEsEEe-
<kn-2 34567 </ k= <vehicule/>") AS fragment <yehicule immat="508-BAX-31"/>
FROM DUAL; “Rm=234 567/ kre=vehicule />
SELECT XMLParse (CONTENT ORA-31011: Echec dranalyse XML
'AF<wehicule immat="508-BAX-31"><km>245647</km=<vehicule>') ORA-19213: une erreur s'est
FROM DURL; produite leors du traitement

XML aux lignes 1

LEX-00225: la balise de fin
drélément "DummyFragment” ne
concorde pas avec balise de
début drélément "vehicule"

DECLARE
var_string VARCHRRZ (300) := contenu mal formé. ..
'‘AfF<vehlcule immat="5038-BAX-31"> AF<yehicule immat="508-BAX-
<km>245647</ kmr<vehicules'; 31>
var_sxml XMLTYPE; <km=24564 7=/ ke <vehicules
BEGIN
SELECT MMLFarsel| Procédure PL/SQL terminéde avec
COMTENT var_string WELLFORMED) BUCCES .

INTO wvar_xml FROM DUAL;
DEMS_OUTEUT. PUT_LINE(
'eonteny mal formé...');
DEMS_COUTPUT . PFUT_LINE(
var xml.getClobval ()]);
END;

Les fonctions o’ Dracie

Le tableaun 11-34 présente les trois fonctions nafives qui completent les fonctions précédentes
en enrichissant du contenu XML.

@ Editions Eyrolles 519

| Partie W S0L avaned |

AMLROOT pour générer le prologue
¥MLCCOLATTVAL pour générer des triplets (€lément, attribut, valeur) ;
H¥MLCDATA pour générer une section i ne pas analyser par le parser.

Tabieau 11-34 Fometions XML propres & Oracle

Code L Reésultat
SELECT XMLRoot (XMLElement (NAME "avions", <73ml version="1.0" standalone="ves"7>
({SELECT XMLAgg(XMIForest <aviona>
(aireoraf_tina,typawv,capacite,proprio) <avicn immat="F-C0DF">
AS "avion®) <type_av>Ai20</type_avs
CRDER BY capacite DESC) <nb_p=1T70</nb_p=
FROM avien R WHERE typav = 'R320'))., <coiip=AB</comp>
VERSION MO VALUE, STANDALOME YES) =/avion>
FROM DUAL; <faviona>

SELECT ¥MLSerialize |DOCUMENT
(SELECT XMLElement (NAME "aircraft",

IMLAttributes (na AS "immat"), <aireraft immat="F-PROG">

XMLColattval | <golumn name="type aircraft >nilic</column>
Ewpaw AB "type ailrcraft", <column name="pax_num">140=</column>
capacite AS "pax_num", =colum names"compagnie">aF</column>
propric AB "compagnien)) <fairecraft>

FROM avion R WHERE typav = 'A318'")
AS CLOB INDENT) AS "doc xml®

FROM DUAL;
RESULTAT
SELECE IMLSarializa (DOCIMENE: == s—cecmceememmmmmcmm e eim i e i e e
{ SELECT XMLELEMENT (NAME "compagnies®, <compagniess>
EMIAGE | <compagries
¥MLELEMENT | "compagnie”, <conp>AB</comp>
¥MLFOREST (codec AS "comp", <noin_comp><! [COATA[2ir Blagnac-
XMLCDATA (nom_comp || '-=' *pére & fils.]]></nom_ comp>
|| 'pire & £ils.') AS "nom comp")) «</compagnie>
y <compagnies
J. AS resultat <compsAF</comp>
FROM compagnie R WHERE codec LIEE 'A%') <nom_comp><! [CDATA [Rir France->
AS CLOB INDENMT) AS "doc xml" pare & £ils.]]=</nom comps
FROM DURL; </ compagni ex
</ compagnies
Les vues

Plusieurs types de vues peuvent &tre utilisés dans un contexte de manipulation de documents
XML.

520 Editfons Eyrofies

[chapitre n® 11

Oracle XML D8 |

Les vues relationnelles fournissent un accés classique (tabulaire) & du contenu qui est
stocké en base sous la forme XML.

Les vues XMLType fournissent un contenu XML i des données conventionnelles stockées
dans des tables relarionnelles ou & des données plus structurées (tables objet-relationnel-
les). Ces vues XMLType peuvent éire contraintes par une grammaire (enregistrée au préa-
lable).

Les vues matérialisées (voir le chapitre 12) qui rendent persistant le résultat d"une requéte
(sans jointure) manipulant une table {ou colonne) XML Type.
De plus, il est possible de bénéficier du mécanisme d’indexation sur les vues relationnelles qui
concernent un mode de stockage binary XML et sur les vues matérialisées.

lues relationnelies

Le mécanisme de vue relationnelle permet de présenter sous une forme tabulaire du contenu
XML le plus souvent stocké en base (ou provenant de fichiers externes). La requéte de défini-
tion de ce type de vue fait intervenir la fonction XML Table utilisée conjointement a la clause
COLUMNS pour définir une correspondance entre les colonnes de la vue et les éléments (ou
attributs) des documents XML. La syntaxe simplifiee d’une telle vue est la suivante. Il s’agit
d’extraire une ligne par document XML ou d'« aplatir » les collections & 1'aide de jointures.

CREATE [OR REPIACE] VIEW [nom schema.lnom vuell({alias coll, alias_

coll...}]
AS SELECT ... FROM ...
XMLTABLE('/.../...' PASSING ...

COLUMNE col type S0L PATH 'chemin',...) alias,..

Le code suivant déclare une vue tabulaire qui extrait une partie de trois documents XML qui
modélisent chacun une compagnie. En remplacant col _sanl par OBJECT VALUE dans la
clause PASSING, vous obtiendrez 1'expression XQuery qui convient pour interroger la table
XMLType t_documents_anl via la vue.

Tahlean 11-35 Vue reiationnsiie de contemus NI

Code SQL Résultat

CREATE VIEW comp_master wue AS

SELECT a.* SQL> SELECT * FROM Comp_master_vie;
FROM t_col _xml,

XMLTable '/ compagnis’ CODE_C NOM_C DATE_C
PASSING colosml @ ======0 000 meesse sssacesspssssen sesme e
COLUMNS code o VARCHARZ(6) AR Air Blagnac A0/08/10

PATH 'comp', AC Lir Castanet 01/08/12
nom o VARCHARZ (30) Th Toulouse Al r 0104713

FPATH 'nomComp',
date_c DATE
PATH '@date_crea') a;

@ Editions Eyrolles 521

S0L avaned |

522

Le code suivant crée la vue qui est déduite de la collection. La clause FRCM référence trois sources :
Ia premiére concerne les documents XML, la deuxiéme (virtuelle) compose les colonnes du
premier niveau (code de chaque compagnie), la troisigme (virtuelle) définit les éléments de chaque
collection (pilotes). Une fois ces deux vues créées, les développeurs SQL seront capables d’extraire
classiquement tout renseignement issu de ces données désormais nommalisées.

Tablieau 11-36 Vue tebuialre d'mne collection KML

Code SQL Résultat
CREATE VIEW comp detail vie AS S0L> ALTER SESSION SET
SELECT a.comp, b.* nlas numeric characters = ".,";
FROM t_col ml,
¥MLTABLE(' /compagnie ' SQL> SELECT * FROM comp_detail_wvue ;
PASSING col_xml
COLUMNS comp VARCHARZ(6) COMP BREVET NOMPIL SALATEE
PATH ‘'eop', = o—mmmm = mmmmmm mmmmmmmmmm e mmmemm e
pils XDMLType AR PL-1 Sarda 4000,2
FATH 'pilotes/pilcte') a, 2B FL-2 Benech 5000.4
XMLTABLE| 'pilote’ AC PL-9 Glaccone 4200
PASSTNG a.pils ytal PL~-6 Calac 3000
COLUMNS brevet VARCHARZ(E) T& FL-15 Gazagnes 7200
PATH 'Bbrevet', A PL-25 Ferrage 5000
nompil VARCHARZ(20) TA PL-62 Hartman 5000

FATH 'nom',
salaire NUMBER
PATH 'salaire') b;

Pour bénéficier du mécanisme d'indexation, il faut que le mode de stockage des documents
soit binary XML, Les deux étapes suivantes sont nécessaires : vous enregistrez tout d’abord la
définition de la vue au niveau d’un paramétre d’un index XMLIndex {domain index) structuré,
puis vous créez l'index sur la table (ou la colonne) XMLType. Le tableau 11-37 décrit
I'indexation qui bénéficiera & la vue des compagnies.

Tablea 11-3] ©réation d'un XMiindsx pour une voe 1ahnialre

Code SQL Commentaires
BEGIN
DEMS_XMLINDEX.registerParaneter | Enregistrement du paramétre pour
'pATAan_Vie_comp master' lindex XMLType structuré.

DEMS_XMLSTORAGE_MANAGE. getSIDHDef FromView|
'COMP_MASTER _VUE'))

END;
/ Création de l'index avec le
CREATE INDEX idx comp on t_col _xml parametre de la définition de la vue.

{e¢ol sxml) INDEXTYPE IS XDB.XMLIndex
PARAMETERS ('PARAM param wvue comp master'):

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Yues KMiType

Les vues XMLType simulent la gestion de contenu XML de données qui sont stockées dans
des tables relationnelles (ou objet-relationnelles). Par ailleurs, il est possible d’associer une
grammaire enregistrée & votre vue pour la contraindre davantage. Enfin, comme pour les vues
objet, un OID (identifiant chaque ligne de la vue) peut étre créé.

Sans grammaire (non-schema based)

Le tablean 11-38 présente la création d'une vue XMLType qui tusionne des données des trois
tables relationnelles précédentes. La vue inclut un identifiant objet (ici basé sur le code de la
compagnie, par exemple).

Tahlean 11-38 Vue KMOype

Création de la vue Commentaires

CEREATE OR REPLACE VIEW compagnie_vue_xml OF XMLType

WITH OBJECT IDENTIFIER Définition de
{(MMICast (EMLQuery (' / compagnie/ @comp ' lidentifiant.

PASSING OBJECT_VALUE RETURNING CONTENT)
AS VARCHARZ(6)))
AS SELECT XMLRoot |

XMLE Lesmen t Construction de
(HEME "compagnie", XMLAttributesic.codec AS "comp"); larbre des
XML Forest (c.nom_comp AS "nom_comp"), éléments etdes
XMLElsment | "vols", attributs.

(SELECT XMLAGE (XMIE]l ement { "vel",
MMM Foreat (TO_CHAR(af .date_a, 'DD-MM-YYYY")
AS "date_wol",
av.typav AS "avion",
af.nb_passagers AS "passagers")))
FROM affreter R af, avion R av

WHERE af.codec = c.codec Jointure pour
END av.na = af.na)) composer la
1 collection.

VERSION MO VALUE, STANDALONE YES)
FROM compagnie R ¢
WHERE e.esdec = 'AF';

@ Editions Eyrolles 523

S0L avaned |

524

Figure 11-21 Vie XMLType

Hemi version="1 Q" 3
=compagnie comp="AF"
cnof_comp=-Air France-/nom_comp>
ls:

viol
=cate_vol>12.08-2014-/date_vol
=gvion= A320avion
<passagers~ 150-/passagers-

<date_vol>12-08-2014</date_vol
avion= A318</avion
‘passagers=130-passagers

vol
date_vol=12-09-2014/date_vol>
avion-A318«/avion
passagerns=110</passagers:
Aol
wols
ceampagnia

Avec grammaire (schema based)

Afin d'associer une grammaire i une vue XMLType, il faut au préalable enregistrer ladite
grammaire (sans forcément |’annoter). Considérons la simple grammaire caractérisant
I'élément avioncomp et définissons une vue XMLType qui sera peuplée a partir de tous les
avions de la table relationnelle.

Figure 11-22 Ligne de la vue XMLType

AONComp
sl nohamespaceSchamal ocabon="hitp e actmip frfav oncomp wsd”
er‘naf[:"' immatricuiation
TPy 01 =D Ivaeied W GrQI200 1ML Schama-instance™
typeav- [l typeavs type avion
-capacite-Il-capacite- capacite
COMpay:
comp ' ICOMpP code compagnie
nomcomp - NOMCemp
Compeny nom
‘ayioncomp: compagnio

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Le code suivant présente |'enregistrement d une grammaire qui décrit cette structure de docu-
ment. Notez ["utilisation du fichier source dans ' instruction {sans passer par le chargement de
celui-ci par BFILENAME). N'oubliez pas non plus les espaces de noms qui n'induisent des
problémes que lors d'extractions (et non i la création de la vue).

Tahiean 11-39 Envegisirement de ia grammatre

Code SOL Commentaires
EEGIN
DEMS _¥MLSCHEMA . DELETESCHEMA | Suppression de la
schemaurl => ‘hetp://www.actop. fr/avioneons xsd' , grammaire si elle

delete option => DEMS XMLSCHEMR . DELETE CRSCADE_FORCE); existaitavant.
DEMS_XMLSCHEMA . REGT STERSCHEMA
(achemaurl == "http://www.actop. frfaviencony . xad',
schemadoc ==
r=?ixml version="1.0" encoding="UTF-8"7>
<gehoma xmlns="http://www.wi. org /2001 ;/04.5chema" Description du XML

version="1.0" xmlns:xdb="http://xmlns oracle.comfxdb> Schema.
<element names="awviocncomp” >

<eomplexType
<Heduences
<slement name="typeav" types"atring"/>
<element name="capacite"” type="int"/>
<element name="compav">
<compl exTypes
<Seguences
<& lement nanme="comp" types"string" />
<alement name="nomcomp" types"string"/s
</sequence>
< feomp lexType>
< /e lemen t>
</seguences
<attribute name="immat" type="string"/>
= compl exTypes>
<felament>
</achema>',
local => TRUE,

URI de la grammaire.

Grammaire locale et

sans génération de
gentypes => FALSE); types.

END;

Le code suivant décrit la création de la vue. Notez 1'utilisation des directives XMLSCHEMA et
ELEMENT qui identifient la grammaire et sa racine. L'extraction d'une ligne de la vue est

présentée (et mise en forme i la main pour I'occasion). Si vous désirez formater ce résultat,
vous devrez utiliser la fonction ¥MISerialize.

@ Editions Eyrolles 525

| Partie W S0L avaned |

Tableau 1140 Vae XMIype associée 3 une orammaire
Code SOL Interrogation de la vue

CEEATE VIEW avicomp wie_snl OF XMLType
XMLSCHEMA "http://www,actmp. fr/avioncomp .xsd" SQL> SELECT OBJECT_ VALUE

ELEMENT "avioncomp" 2 FROM avicomp vue xnl
WITH OBJECT IDENMTIFIER 31 WHERE XMLEXISTS(
(¥MLCast (MMLQuery | ' favioncomp/@immat 4 ! favioncomp [@immat="F-GE0DF"] '
PASSING OBJECT VALUE RETURNING CONTENT) g FASSING OBJECT VALUE);
AS WARCHARZ(&)))
A5 OBITECT_VALUE
SELECT XMLElement [MAME "avieonscomp"; == =—==receesee e ceeeee e e e e e e e e e
oattributes | <avicncomp
‘http: / fwww . w3 org /2001 /XMLSchema- instance ' xmlns:xasi=
AS "xmlng:xsit, "http: / fwww. w3, org/2001 /2L Schema-ing tance"
thttp: / /www .actmp. fr/avioncomp . xsd! xs51:noNamespaceSchemal.ocatlons
AS "xgi:noNamespaceSchemalocation”, "http: S Swww. actmp . £r/avioncomp. xsd"
av.na AS "immat"), immat="F-G0DF">
XMiForest (av.typay A5 "typeav", <typeav>A320</typeavs
av.capacite A5 "capacite"), =capacite>1Tl</capacite>
XMIE]lement (NAME "compav", <COMpav>
¥MLForest (c. codec AS "comp", < compr- AB< / o omps
c.nom_comp AS "nomcomp”))) <nomcomnp=Air Blagnac< /romeomnps
FROM avion R awv, compagnie R ¢ =/ compays
WHERE av.proprio = ec.codes; ={avioncomps

Enfin, il est possible de créer des vues XMLType basées sur une grammaire en utilisant des
types objet {ou des vues objet). Le processus consiste i :

créer le type qui décrira la structure du document final ;

créer et annoter une grammaire associée pour faire mieux correspondre les noms et types
de colonnes souhaités ;

enregistrer la grammaire (depuis la version 12¢, la génération automatique n'est plus
permise) :

créer la vue XMLType dont la requéte qui interroge des tables utilisera le constructeur du
type pour peupler les documents.

Les pagquetages pour PL/SOL

Plusieurs paquetages PL/SQL sont disponibles (voir le tableau 11-41) pour prendre en compte

les spécificités de XML DB (pour le type XMLType, pour les grammaires et pour le repository
étudié a la section suivante).

526 Editfons Eyrofies

[chapitre n® 11 Oracle XML D8 |
Tabiean 11-11 Prindipaux paguetages PLSQL powr XML DB
Paquetage Fenctionnalités
DEMS XMLGEN Giénérer du contenu XML,
DEMS_ XML STORE Mapper du contenu XML
DEMS_FARSER Analyser du contenu XML
DEMS_XSLFROCESSOR Transformer du contenu XML avec un programme XSLT.
DEMS_ XMLDOM Manipuler du conteru XML
DEMS_ XMLSCHEMA Enregistrer et gérer des grammaires XML Schema.
DEMS_XMLSCHEMA ANMNOTATE Gérer des annotations opérées aprés I'enregistre ment de la grammaire.
DEMS_XMLSTORAGE_MAMAGE Gérer du stockage aprés |'enregistrement de la grammaire.
DEMS XDE_REFOS Gérer des accés et des ressources dans le repository.
DEMS_XDB_CONFIG Configurer le repository.
Le paguetage DBMS NMLGEN
Ce paquetage offre des méthodes pour générer du contenu XML (retoumé CLOB ou XMUType) & partir
de requétes SQL. Bien qu’il offre certaines fonctionnalités analogues & celles du paquetage DBMS
¥MLOUERY, il est toutefois problématique dans la construction d'attributs et se limite aux éléments.
Le code suivant présente les principales méthodes de ce paquetage. La procédure
setrowsettag définit le nom de la racine (par défaut, ROWSET) et la procédure setrowtag
fixe le nom de 1'élément qui détermine chaque ligne extraite de la requéte (par défaut, RCW).
Les sous-éléments sont construits dans 1a requéte i 1'aide d’alias de colonnes. Ici, tous les vols
sont parcourus et un calcul est effectué pour chacun.
Tabiean 11-42 Uilisation du paguetaps DENMS HMLGEN
Code SQL Commentaires
DECLARE
v_xmltype XMLTYFE;
v_ctx DEMS_XMLGEN. ctxhandle; Variable de contexte,
BEGIN
v_ctx ;= DBEMS XMLGEN.newcontext | Création du contexte.
'SELECT af.na AS "immat", af.codec AS "comp",
TO_CHAR (af.date_a, ' 'DD-MM-YYYY¥'') AS "date_wol®,
{av.capacite - af nb_passagers) a5 "nb_places"”
FROM affreter R af, avion R av
WHERE af.na = av.na
ORDER BY "date_wol", "immat"'];
DBMS _XMLGEN. setrowsettag(v_ctx, ‘'wols'); Définition du nom de la racine.
DBMS NMLGEN. setrowtag(wv_ctx, 'wvol'); Définition du nom de chaque élément.
v_xmltype := DEMS XMIGEN.getXmlType (v _ctx) Génére le document XML et retourne
DEMS_OUTPUT. PUT_LINE('nbre lignes : '|| un XMLType.
DEMS_XMLGEN.get numrowsprocessed (v_ctx)) ; Nombre da lignes traitées.
DBMS_XMLGEN. closeContext (v_ctx) ; Fermeture du contexte.

DBEMS_OUTPUT. PUT_LINE(v_smltype.getClobval) ;

END;

@ Editions Eyrolles 527

| Partie W S0L avaned |

Tablean 11-42 Utilisation du pamuetage DEMS KMLGEN (suite)

Code SQL Commentalres

nbre lignes : 5
“vols>
“vol>
<immat>F-C00F< /immat:>
<comp>EF< [comp >
<date vol>12-08-2014d</date vol=
<nb_places>50</nb_places>
< /vols>
<vals
<immat>F-GODF< fimmat>
<comprRF< / comp >
<date_wvol>12-08-2014d</date_wvol>
=nb_places>20</nb_places>
< {vol=

< /vola>

Le paguetage DBMS_KMLSTORE

Ce paquetage succéde & DEMS XMLSAVE et permet de stocker et de manipuler du contenm
XML dans des tables conventionnelles en faisant correspondre chaque sous-élément i une
ligne d"ume table. Les sources de données proviennent de différents types (VARCHARZ, CLOB
ou XMLTvpe). Le mapping est similaire 3 celm de DEMS XMLGEN. Le paquetage DBMS_
HMLSTORE est aussi limité 4 la construction d’éléments et ignore les éventuels attributs.

Le code suivant présente 1'insertion de quelques lignes dans la table pils créée 4 cet effet. La
procédure setUpdateColumn ajoute une colonne i la liste de correspondance. Dans le cas
d'une insertion, toutes les colonnes de la table seront par défaut mises & jour (attention aux
éventuelles contraintes NOT NULL qui pourraient exister). Notez enfin I'importance de la casse
au niveau du nom des balises (le premier sous-élément estignoré de la correspondance).

CHREATE TABLE pils{num NUMBER({4), nom VARCHAR2 (20}, date_nais DATE);

528 Editfons Eyrofies

[chapitre n® 11 Oracle XML D8 |

Tahleau 11-33 Unlisation du paguetage DBMS XMLSTORE

Code SQL Commentalres
DECLARE
v_insCty DBEMS XMLSTORE.ctxType: Création du contexte.
v_rows NUMBER;
v_zxmnl CLOB := '<ROWSET> Document XML & faire correspondre.
< ROW=

<num=101 < /num><nom>Roche< /noms>
<date_nais>31-12-1986</date_nais>

</ RiOW>
<ROW=
<IUM>40 1< /NUM><RNOM=Alaqui e< /NOM>
< /ROW>
<ROW>
<HIM mail="agayaglorange. fr">801</
M
<ROM>Sayad</NOM>
<DATE _NAIS>30-12-1988</DATE_HARIS>
< /ROW>
<ROW=>
<HUM>501< /HIM>
<ROM>Levade< /NOM=>
<DATE_MATS></DATE MAIS>
</ ROW=
</ROWSET>" ;
BEGIN
w_insCtx := DBMS_XMLSTORE.newContext|'pils'): Définition du nom de |a table.
DBMS_XMLSTORE . setUpdateColumn (v_insCtx, 'HIM'); Définttion de l'ordre des colonnes et des sous-
DBMS_XMLSTORE . setUpdateColumn (v_insCtx, 'NOM'); ééments.
DBEMS_XMLSTORE . setUpdateColumn (v_insCtx, 'DATE
NAIS');
v_rows := DBEMS NMLSTORE.insertXML (v_insCtx, wv_xml); Insertion viale document XML. Retourne le
DBMS_OUTPUT.PUT _LINE('Lignes insérées : ' || wv_ nombre de lignes traitées.
rows) ;
DBMS XMLSTORE.closeContext (v_insCtx); Fermeture du contexte.
END;

SQL> SELECT ROWNUM, num, nom, date_nais FROM pils;

FOWHTM NUM 190M DATE_NAIS
1
2 401 Alguie
3 801 sayag i0-12-1988
4 901 Levade

@ Editions Eyrolles 529

| Partie W S0L avaned |
Avec ce paquetage, il est également possible de modifier (avec updatex.) ou de supprimer
(avec deletedML) des lignes dans la table relationnelle i 1"aide de la corre spondance avec le
document XML fournit et le contenu de la table.
le paguetage DBMS_KMLPARSER
Ce paquetage permet d’analyser différentes sources de données (caractéres ou LOB principa-
lement) dans le but de créer un contenu XML (au sens DOM du terme et qui sera traité plus
loin avec le paquetage DBMS_XMLDOM).
Le code suivant présente une procédure qui a pour but de lire un LOB contenu dans une table
relationnelle et d"analyser (avec parseClob) ce dernier pour déterminer s'il s"agit d'un docu-
ment XML bien formé. Dans le cas contraire, une exception est relevée. Dans cet exemple, un
document Word et un docament XML sont stockés dans une table et sont tous deux analysés.
Tableau 11-44 Utilisation du paguetage DBMS_XWLPARSER
Code SQL Commentaires
CREATE FROCEDURE parse_clebipl IN NUMBER) RS
w_clob CLOB;
w_nomfic VARCHARZ(40);
w_parser DBMS XMLPARSER.parser; Déclaration d'un objet parser.
v_domdoc DEMS_XMLDOM . DOMD ocument ;
w_node DBMS_XMLDOM.DOMNcde;
mauvaiz_format XML EXCEPTION;
PRAGMA EXCEPTION INIT{mauvais format XML, -31011);
BEGSIN
SELECT texte, fie INTQ v_clob,v_nomfie
FROM table CLOE WHERE num = pl;
v_parser := DBMS XMLPARSER.newParser; Création d'un objet parser.

530

DEMS XMLPARSER .parseClob(p =» v_parser , doc =» w_cloh);

v_domdos := DBMS XMLPARSER.getDocumant (v_parser) ;

v_node ;= DBMS_XMLDOM. makeNode (v_domdoc) ;

DEMS XMLPARSER.freaParserip => v_parser);

DEMS_OUTPUT.PUT_LINE|'Format XML correct :
EXCEPTION

WHEN mauvais format XML, THEN

v wonomfie);

Analyse du documert LOB.

Abandon d'un objet parser.

Traitement de l'erreur

DEMS_OTFTPUT . PUT_LINE('Probleme format XML : ' || (document non XML).
w_nomfiec) ;
END;
Figure 11-23 Resultals
e o |
LT o TERTY
L compagnie. el <fxel vearsion="1.0" snopding="1S0-REL0- 1= coonpagnierion

ievi.doe ol kit & .)

S0L> EXEC parse_clobill;
Format XML cozrect : coumpagnie.xml

SQL> EXEC parse_clobild);
Froblems format XML : ovi. doo

& Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Le paguetage DBMS KMLDOM

Ce paquetage permet de manipuler des documents XML avec la méthode DOM & partir de
différentes sources de données (requéte SQL, CLOE ou ¥MLType). Plus avancé que le construc-
teur XMLType et le paquetage DEMS MMLGEN, le paquetage DEMS_XMLDOM est trés complet en
termes de fonctiomnalités et d’exceptions pour ajouter (appendChild, makelode et
createElement), supprimer et renommer des éléments ou des attributs (setAttribute) au
sein d'un contenu XML.

Le code suivant construit un document i partir d 'une jointure des tables des compagnies et des vols.

Tahleau 11-45 Utilisation du paguetage DBMS _XMLDOM

Code SQL Commentaires

DECLARE
w_smltype XMLTYPE;
v_domdoc DEMS_XMLDOM. DOMDocument;
v_root_pnode DEMS_ ¥MLDOM.DOMNode;
v_vols_element DEMS_ XMLDOM.DOMElement;
v_vols_node DEMS_XMIDOM. DOMNode ;
v_vol_eslement DBMS XMLDOM .DOMElement;
v_vol node DEMS_ XMLDOM . DOMHode;
v_immat_element DBEMS_XMIDCM.DOMElement;
v_immat _nede DEMS XMLDOM. DOMNode:
v _immat_text DEMS_ XMILDOM.DOMText;
v_immat_textnode DEMS_XMLDOM.DOMNode;

EBEGIN
v_domdoo = DEMES_XMLDOM. newDomDocument: ; Document vide.
v_root_node := DEMS_ XMLDOM.makeModa (v_domdoc) ;
w_vols _element := DBMS_XMLDOM.createElement (v_domdoc, 'wols') Racine.
v_vols_node : = DBMS_XMLDOM.appendChild (v_root_node, Meeud racine.
DEMS_XMILDOM.makeNode {v_vols_element));
FOR c_enreg IN (SELECT c.codec, o.nom comp, af.na, Requéte SQL &
af . date_a, af.nb_passagers traiter ligne par
FROM compagnie R ¢, affreter R af ligne.
WHERE c.codec = af. codec)
LOOP
v_vol_element := DEMS_XMLDOM.createElement (v_domdoc, *wol'); Pourchaque.
DBEMS_XMLDOM.sethttributa(v_vol_element, 'eomp’, ligne, ajout dun
£_enred . nom_ comp) ; élément
v_vol_node := DBMS_XMLDOM.appendChildiv_wols_ node, complexe.

DEMS_XMIDOM .makeNode | v_vol_element})) ;
v_immat element ;= DEMS_XMLDOM.createElement |
v_domdoc, 'immat ')
v_lmmat node := DBMS_XMLDOM.appendChild (v_wol node,
DBMS_X¥MLDOM. makeNode |
v immat_element)):
v_immat text ;= DBMS XMLDOM.creataTextNodas |
v_demdoc, c_snreg.na) ;

@ Editions Eyrolles 531

| Partie W S0L avaned |

Tableau 11-45 Utiisation du paguelage DBMS_XMLDOM (suite)

Code SOL Commentalres

¥_immat textnode := DBMS_XMLDOM. appendChild(
v_immat_node,
DEMS_X¥MIDOM.makeNede (v_immat text));
DEMS_¥MLDOM.setAttribute (v_vol_element, 'date_wol',
TO_CHAR(c_enreg.date_a, '¥YYY-MM-DD') | |'T"'|]|
TO_CHAR (c_enreq.date_a, 'HHIZA:MI:88'}));
DEMS_¥MIDOM. setattribate (v_vol_element,
'paggagers’', c_enreyg.nb passagers);

END LOOP;

v_smltype := DBEMS_XMLDOM.getXmlType (v_demdeoc);

DEMS_XMLDOM. freeDocument (v_domdoc) |

DBMS_OUTPUT. PUT_LINE (v_xmltype.getClobvall));
END;

Flgure 11-24 Document résultaf

<volg
<vol comp="Easy JaI" date_vol="2014-08-12T14:30:00" passagers="120">
<immat- F-GODF - immat-

« w -
<vol comp="Air France” date_voi="2014-08-12T14:45.00° passagers="150"~
< F-GODF </immat-

<vol comp="Air France” date_voi="2014-08-12714:45:00° passagers="130">
<immat-F-PROG - immat-
<Al
vol comp="Air France” date_vol="2014-09-12T16:30:00° passagers="110"~
<immat- F-PROG<immat-
vol comp="Air Blagnac® date_vol="2014-08-12T18:30 00" passagers="450"~
“immat - F-WOWW- immat -
‘vol

KML DB Repository

XML DB Repository est un environnement partagé de contenus (XML ou CLOB) basé sur le
concept de systéme de gestion de fichiers (répertoires). L’ environnement est compatible avec
la norme DAV (Distributed Authoring and Versioning), extension du protocole HTTP qui
permet un accés multi-utilisateur au contenu d'un dossier. Toutes les informations de cet envi-
ronnement sont stockées dans le schéma de 'utilisateur ¥0DB (& maintenir verrouillé). Toute la
documentation se trouve dans la partie V ou VI (suivant la version de votre base) du livre
Oracle XML DB Repository.

532 Editfons Eyrofies

[chapitre n® 11 Oracle XML D8 |

Les moyens d'accéder avec XML DB Repository sont les suivants :
protocoles FTP, WebDAV et HTTP(S) ;

avec PL/SQL et D'utilisation des paquetages DBMS XDB ADMTN, DBMS XDB CONFIG,
DEMS XDB REPOS el DEML, XDBERESOURCE ;

avec SQL par les vues RESOURCE_VIEW et PATH_VIEW ;
par I'API Java (XML DB API).

Arhorescence

La figure 11-25 décrit I"arborescence qu'Oracle préconise pour travailler avec le systéme de
gestion de fichiers de XML DB Repository.

Flgure 11-25 Arborescence du systéme de gestion de fichiers

'_“" o
i Dbanany fes |
sioved in
r—mnadma. i BLOfs
—atEnE M
—ric.dioc

Paquetages DBMS NBD REPOS

Le paquetage DEMS_XDB REPOS propose de nombreuses fonctions pour manipuler le systéme
de gestion de fichiers, notamment la création d’un répertoire (createfolder), la suppression
d'une ressource document ou répertoire (deleterescurce) ou la vérification de présence
d'une ressource (existsresource).

@ Editions Eyrolles 533

| Partie W S0L avaned |

Le code du tableau 11-46 crée, d'une part, deux répertoires { /home/OXM et /home/OXM/
general) et supprime, d’autre part, le répertoire /home /0XM (et son contenu). Notez 1"utilisa-
tion du conunit pour valider la mise 4 jour. La fonction ereatefolder retourne vrai si le
répertoire a été correctement créé.

Tahlean 11-36 Oestion de répertoires

Création de répertoires Suppression de répertoires
DECLARE
v_resultat BOOLERN; DECLARE
BEGIN w_resultat BOOLEAN;
v_resultar = BEGIN
DBMS_XDB_REFPOS.createfolder (' /home/CXM'); IF (DBMS _XDB REFOS.existsresource|
IF v_resultat THEN ' fhome/0X¥M')) THEN
DEMS_OUTPUT . PUT_LINE(' /fhome/0XM OK. ') ; DBMS_ XDB_REPOS.dsleterasource |
yv_rasultat := ' fhome /0¥,
DBMS XDE REPOS.crsatefolder | DBEMS XDBE_REPOS.DELETE RECURSIVE FORCE);
*fhome/OXM/general) ; COMMIT;
IF v_regultat THEN END IF;
DEMS_OIFTPUT . PUT _LINE (END ;
'home /OXM/general OK.'); !
COMMIT ;
ELSE

DEMS_OUTPUT. PUT_LINE(
'bug creation Mhome/0XM/general");
END IF;
ELSE
DEMS_OUTFUT. FUT_LINE(
'bug ecreation Jhome/Ci04');
END IF;
END ;

Le code du tableau 11-47 crée une ressource (avec createresource) sous la forme d'un
document XML situé dans un répertoire du systéme d’exploitation et déposé dans le répertoire
/home /O¥M/ general du repository. Le conunir valide la mise & jour et la fonction qui crée la
ressource retourne vrai en cas de succés.

Par ailleurs, I"extraction sous forme d'un LOB du document précédemment stocké est présen-
tée (getContentClob). La conversion au format XMLType est rendu possible par la méthode
createXML qui crée une instance qu'on interroge A la fin par une requéte SQL/XML.

534 & Editions Eyrolies

[chapitre n® 11 Oracle XML D8 |
Tableau T1-47 Gréation d'me ressource
Chargement d'un document Extraction sous I forme d'un CLOB
DECLARE
DECLARE W_rodm VARCHARZ (151) ;

v _resultat BOOLEAN;
BEGIN

v_xml HMLTYEE;
v_clob CLOB;

IF HOT (DEMS_XDE REFPOS.existsresourcel w_path VARCHARZ (40) ==
' thome foxM/ general fcompagnie.sanl')) THEN ' thome/oXM/general / compagnie . xml ' ;
v_resultat := BEGIN
DEMS_XDE_REPCS.createresource| v cleb 1=

abspath == DBEMS XDE REPOS.gatContentClebi(v_path);
' fhome /OXM/ general fcompagnie. sl ', DEMS_OUTPUT. PUT_LINE('Taille CLOE : ' ||

data => DEMS_LOE.GETLENGTH (v_cleb) | ;

BFILENAME ('REPXML', 'compagmie.sml'), v_xml := XMLTYPE, createXML |
csid s> NLS_CHARSET ID|'RLIZUTFS')); smlData=>v_clob);

IF v_resultat THEN

SELECT ¥MLCAST (XMLOUERY (

COMMIT; ' feompagnie/pilotes/pilote
DEMS_OUTPUT. PUT_LINE('dépot OFK.'); [8brevet="PL-2"] /nom'
ELSE PASSING v_ml RETURNING CONTENT)
DEMS_OUTFUT. PUT_LINE('bug dépot..."); AS VARCHARZ (15)) INTO v_nom
END IF; FROM DUAL;
ENMD IF; DEMS_OUTFUT.PUT_LINE('nom pilote PL-Z @
END; || v_nom);
£ END;
/
Taille CLOB : 42§
nom pilote PL-2 : Benech
SQL Developer permet d’accéder i ces ressources ; ici, le document déposé apparait dans son
répertoire.
Flgure 1126 Accés par SQL Developer
— Birage Cyowwngy
¢ -BTH A i = acvons:;
-1 Edwions (| RESOURCE_TYPE || RESOURCE_NAME ||| RESOURCE_SIZE || CREATED |
i#) Application Express: 1 FILE compagnie.xml 496 31/12/14 08:37:54,082000000
L Jeva
i L[5 Scheimas XML
= g REfdrentiel XML DB
- home
@ A MDSYS
b W OE
5 XM
daereral
@ Editions Eyrolles 535

S0L avaned |

536

Les gramimaires XML Schema

Lenregistrement d'une grammaire avec la procédure registerschema du paquetage DBMS_
HMLSCHEMA, décrite en début de chapitre, a pour conséquence le stockage de ladite grammaire
dans le répertoire /svs/schemas/nom_utilizateur sila grammaire est locale (sinon,
/sys/schemas /PUBLIC). Le paramétre local (par défaut & TRUE) peut &tre positionné i
FALSE pour enregistrer une grammaire globale qui pourra &tre utilisée par tout utilisateur.
Vous devez détenir le privilége XDBADMIN pour enregistrer une grammaire globale.

SQL Developer permet d'accéder aux grammaires, ici les grammaires locales précédemment
enregistrées.

Figure 11-27 - Accés aux grammalres par SQL Developer

iy Fiifdrentiod XML D
L o
& imagas
D plap_data_seciurity
[n sl pubilic
2 s
(1 acis
al - spps
i g
i prinagols
< 18 schernas
- OF
L 8 0%
kv ctma v
= i PUBRLIC]
(i 0 v Dpeeigs. Nt

i | RESOURCE_TYPE || RESOURCE_NAME (| RESOURCE_STE
1 FILE avioncomp.xsd 0

| i FILE compagnies . xsd i

‘ IFILE compagniesannote. xsd J

1

Recés par SOL

Deux vues permettent d’accéder aux ressources de XML DB Repository : RESOURCE VIEWet
PATH_VIEW. Toutes deux possédent une colonne virtuelle RES (de type XMLType) qui rend
possible 'accés & du contenu par la notation pointée (alias SQL). Chaque ligne de la vue
RESOURCE_VIEW concerne un unique chemin dans I'arborescence, tandis que chaque ligne de
la vue PATH VIEW cOnCerne une unigue ressource.

Vue RESOURCE_VIEW

Cette vue est composée de trois colonnes ;
RES (¥MLType) décrit une ressource d'un répertoire ;
ANY_PATH (VARCHARZ) indique un chemin (absolu) d'une ressource ;
RESID(RAW) contient I'identifiant d"une ressource.

La grammaire de la colonne RES (XDBResource.xsd) de la vue RESOURCE VIEW se situe
dans 1'arborescence /sys/achemas/PUBLIC/xanlns.oracle. com/xdb/. En considérant

& Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

certains éléments de cette grammaire, des requétes penvent étre composées pour extraire tout
ou partie du contenu stocké dans les ressources. Le tableau 11-48 décrit les principaux
éléments définis dans la grammaire XDEResource . xad.

Tabieau 7148 Parties de [a grammaire de [a yue RESOURCE_VEEW

Requétes SQL Commentaires
<Resource
xmlns="http: / fxnlns . oracle . com/xdb/¥DBERescurce. xsd" Répartolre ou fichier.

Containers"..".>

Dates de création et de modification de la

<CreationDate:- w =fCreationDates ressource.
<ModificationDate> .. </ModificationDate>
<Di splayNama:- - </Displ ayName= Mo du fichier.
<Language> « =/ Language> Langage, jeu de caract@res et type du contenu.
<CharacterSet > w =fCharacterSet>
<Content Type: « =fContentType
<ACL> w </ACL> Autorisations (Acces Control Lists).
<OWner= w2 Owrier > Compte Oracle propriétaire de la ressource,
<Creator> w =/Creators créateur et dernier utiisateur ayant modifié la
<LastModifier> w <fLastModifier> ressource.
<SchemsElament> .. </ SchemaElement > Elément da la ressource.
<Contents> Contenu de la ressource.
<text> w =ftexts </Contents>
</Resource:

Plusieurs fonctions SQL sont adaptées a ces vues, i savoir :

equals_path qui teste I'existence d’une ressource ;

under_path qui parcourt les répertoires ;

path et depth qui retournent respectivement le chemin et la profondeur d'une ressource,
et qui fonctionnent en corrélation avec les fonctions précédentes.

Le tableau 11-49 présente quelques extractions avec cette vue. MNotez 1'utilisation de
MMTNAMESPACES pour définir l'espace de noms de la grammaire concernée ({ici,

ADERegource . xsd).

Tableau 11-49 interrogations svec ia vue RESOURGE ViEW

Commentaires ef résultats

SELECT r.RES.getClobVall()
FROM RESOURCE _VIEW r
WHERE eaguals_path (r.RES,
' fhome /OXM/general /corpagnie xml') = 1;

Contenu du document compagnie .sonl situé
dans /home/0XM /general. Ce contenu est
encapsulé au sein dun éément Resource.

@ Editions Eyrolles

537

S0L avaned |

Tableau 1149 Intemopalions avec ia vee RESOURCE VIEW (sulfe)

Requétes SOL

Commentaires et résultats

SELECT COUNT({*) AS

"Norbre grammaires www.actmp.fr-
RESOURCE _VIEW rv

under_ path(rv.RES,

'/ avsfachemas /OXM fvwew. actmp . fr') = 1;

FEROM
WHERE

Nombre de ressources dans un répertoire donné.
Nombre grammaires www.actmp.fr

SELECT a.nom AS "Date création®
FEOM RESOURCE_VIEW rv,
XMLTABLE |
XMLMAMESPACES |
‘http: / fenlns . oracle. com/xdb/XDBResource. xsd’
AS "e"),
' /fe:Resource' PASSING rv.RES
COLIMNS nom VARCHARZ (20)
FATH ‘'e:CreationDate’) a
eguals path|rv.EES,
t Ahome/0XM/general /compagnie xaml') = 1;

WHERE

Date de création d'une ressource.

Date création

2014-12-31T08:37 : 54

SELECT ANY PATH
FEOM RESOURCE_VIEW rv,
XMLTABLE |
XMLNAMESFACES (
‘http: / fxmlns . oracle.com/xdb/XDBResource. . xsd "'
As "em),
' fe:Rescurce' PASSING rv.RES
COLUMNS noim VARCHARZ(20) PATH 'e:DisplayName',
proprio VARCHARZ(30) FATH 'e:0wner') a
WHERE a.tom LIKE '%.xml’
LAND a.propric = 'GXM';

Chemin des fichiers XML qui sont la propriété de
I'utllisateur OXM.

fhome /0¥M/general /comp agnie sanl

SELECT a.brewv AS brevet,
FROM RESOURCE VIEW v,
¥MLTRELE(

XMLNAMESPACES |
'http: / fxmlns . oracle., comn/xdb/XDBResource., xad’

A5 myny,
'{r:Rescurce/r:Content s/compagnief/pilotes/pilote’
PASSIMG rv.RES
COLUMNS nom VARCHARZ(15) FATH
brev VARCHARZ (&)
WHERE equals pathi(rv.RES,

* fhome/0XM/general /compagnie.sanl ") = 1;

. nom

nom',
PATH '@8brevet') a

Brevet et noms des pilotes contenus dans le
document compagn ie.m]l situé dans /home/
OXM/general /.

Sarda
Benech

Vue PATH _VIEW

Cette vue est composée de quatre colonnes :

PATH (VARCHAR?Z) indique un chemin (absolu) d'une ressource ;

RES (XML Type) présente une ressource du répertoire décrit dans PATH ;
LINK (¥MLType) décrit un lien vers la ressource ;

RESID(RaW) contient I'identifiant d"une ressource.

538

& Editions Eyrolles

[chapitre n® 11

Oracle XML D8 |

Le tableau 11-50 propose deux extractions de cette vue. La premiére parcourt les deux niveaux
sous le répertoire /home/0XM (la profondeur maximale est donnée par le deuxiéme paramétre
de under path, ici 3} ; la seconde examine deux répertoires.

Tabiean 11-50 Inierrogation o iz vue PATH_VIBN

Requéte SQL Résultat
SELECT pathi{l) pathil) depth (1)
AS rpabh (RN, 0 et m s e e s R R e s R ——
depthil) general %
AS "depth(l)" general /compagnie. ol 2
FROM PATH_VIEW
WHERE under_path(RES, 3,
‘fhome/OXM' 1) =1;
SELECT PATH, FATH depth{l) depth(2)
depth(l) S "depth(l]", ==—crerme e e e —_—— o ——
depth({2) AS "depth({2)" fays/achemas [OXM/www . actop. £ r 1
FROM PATH_VIEW Saya/achemas / OXM A www actop, fr/compagnd ea. xad 2
WHERE (under path(RES, 3, fays/schemas/ OXM/ www . actip . £r/conpagni esannote . xad 2
tfeys/schemas /03, 1) =1 [fave/schemas/ 0 www.actmp, £r/avionconp ., xsd 2
R wunder path(EE3, 1, fhome /OXM/general i
' fhomefOXad ,2)=1) Shome/0XM/general / compagnie. xanl 2

Les Access Control Lists (ACL)

Le mécanisme des ACL d'Oracle est identique & celui utilisé par Java, Microsoft, etc. Dans
XML DB Repository, chaque ressource est protégée par une ACL exprimée sous la forme d'un
document XML qui respecte la grammaire /sys/schemas/PUBLIC/3amlns . oracle.com/
xdb/facl . xsd

Composition
Dans cette grammuaire, 1'élément racine est acl et la liste des privileges d’accés est décrite
dans chaque sous-élément ace (pour access control entry) :
I'élément grant autorise (avec true) ou interdit (avec £alse) une liste de priviléges ;
I'élément principal décrit le bénéficiaire. {ou une liste de bénéficiaires dans un contexte
LDAP). Précédé de 1'élément invert, 'élément principal désigne tout autre bénéfi-
ciaire que celui indiqué ;
I'élément privilege contient un ou plusieurs droits ;
les attributs start_date ef end date servent i borner dans le temps une éventuelle
période de validité.

Par défaut, les utilisateurs disposant des rdles XDBADMIN et DEA ont un accés fotal aux ressources.
Les utilisateurs basiques {avec le rle CONNECT) peuvent lire et parcounr tous les répertoires.

@ Editions Eyrolles 539

| Partie W S0L avaned |

Les ACL systéme se situent dans /sys/acls. Vous y rouverez :

bootstrap_acl.xml : lecture pour tout le monde et tous privileges aux roles XDBADMIN
et DBA ;

all a1l acl.»ml: tous priviléges i tous ;
all_owner acl.xul : tous priviléges au propriétaire (owner) ;
ro_all_acl .l : lecture i tout le monde.

Interrogation

Enfin, les ACL étant elles-mémes des ressources, elles sont régies par la grammaire commune
A toute ressource, soif ¥DBResource.xsd. Notez [utilisation de la fonction
getACLDocument du paquetage DBMS_XDB_REPOS pour retrouver I’ACL d'un document
donné. Ici, il s’agit de bootstrap acl.xml, appliquée par défaut.

Tableau 11-51 Interrogation des ACL

Requéte SQL Résultat

SELECT r.RES.getClobvali() aia

FROM RESOURCE_VIEW r <Contents>

WHERE equals_path(r.RES, <acl description="Read-Only:Readable by all and

"feys/acls/ro all acl.yml')=1; writeable by none" smlns="http://;mlns . oracle.com/
xdb/acl . xed" snlng ixsi="http:/www.wi.org/2001/
MMLSchema-instance" xsi:schemalocation="http://
xmlng.oracle, com/xdb/acl.xad
http://xmlns.oracle,con/xdb/acl . xsd" shared="true"=

<acar
<grant>true</grant>
<principal >PUBLIC</principal>
<privilege>
<read-proparties/>
<raad-contents/>
<raad-acl/>
<resclve />
</privilege>
<facer
<facls
< /Contenta>
</Resource>

<acl degcription="Frotected:Readable by PUBLIC and all

SELECT privileges to .=
DBEMS_XDE REPOS.getACLDocument | <ace>
' fhome/0XM /general /fcompagnie . xml ') cgrant>true</grants>
FROM DUAL; <principalsdav:owner</principal>
<privilege>
<all/f=>
«/privilege>
< face>
=facl>

540 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Affectarion

Pour affecter une ACL & une ressource, vous devez utiliser la fonction setaCL du paquetage

DBMS_XDE REPOS. Dans le code suivant, I'ACL systéme qui permet atout le monde 1’accés en

lecture est appliquée au document compagnie . sml. Notez la validation qui doit s’en suivre.
Tahleau 11-52 Affectation d'ume AGL

Code SQL La nouvelle ACL du document

<acl description="Read-Only:Readable by all
and writeable by none" ..>

BEGIN <aces>
CEMS_XDE_REPOS . setACL| <grant>true</grants=
res path == ' /home/CXM/general feompagnie.sml ', <principal >PUBLIC</principals>
acl_path => '/faysfacls/ro_all_acl .xaml'); “privilege>
COMMIT; «<read-properties/>
END; <read-centents/>
! <read-acl/>
<resolve/s
<fprivilege=
<faces
</acl>

u Pour supprimer une ACL, vous devrez modifier toutes les ressources gui en dépendent avec
DEMS XDE_REPOS.setACL, puis supprimer la ressource en question avec DEMS_XDE
REPOS_REPOS.deleteResource,

Gestion des privileges

Pour construire vos propres ACL, vous utiliserez nécessairement des priviléges atomiques ou
agrégés et deux espaces de noms (xmlna="http: //xnlns. oracle. com/xdb/acl . xsd" et
wxmlng:dav="DAV:"). Vous trouverez le détail de tous ces privileges dans le chapitre
« Repository Access Control » du livie XML DB Developer's Guide.

Dans le code suivant, la fonction changePrivileges du paquetage DBMS_¥DE_REPOS ajoute
une entrée qui précise que I'utilisateur OXM2 aura tous les droits sur le document en question.
Notez la nécessité de positionner I"élément racine dans 1'espace de noms d'Oracle et de décla-
rer les autres espaces. La validation finale doit s”en suivre.

@ Editions Eyrolles 541

| Partie W S0L avaned |

Tableau 11-53 Rjout d'un priviidpe

Code SQL La nouvelle ACL du document
DECLARE
T PLS_INTEGER ; <ael .
v_ace XMLType; <ace>
v_char VARCHARZ(2000); <grant>true</grant>
BEGIN <principal >PUBLIC</principal>
v_char := cprivileges
'<ace xmlns="http://xmlins.ocracle.com/xdb/acl.xsd" <read-properties/>
wmlng :xsi="http:/ /www.wl . org/2001/XMLSchama~instanca™ <read-contents. >
#¥s8i:schemaLocation="http://mlns.oracle.com/wdb/acl .xad <read-acl /=
http://xmlne.oracle.com/xdb/acl.xed <regolyefs >
DAV:http: //xmlns.oracls. com/xdb/dav.xsd"> </privileges
<principal>0XM2< /principal> <face>
<grant >true</grant> SACE>
<privileage><all/></privileges =grant=true</grants
</ace>r"; <principal=>0MM2</principals>
v _ace := NMLType.createdXML(v_char) ; =privilege>
r := DBMS_XDB REPOS.changePrivileges| <all /=
re=z_path=>'/home/0XM/general fcompagnie.yml *, </privilegex>
ace => w_ace) ; </ aces
COMMIT; <facl>
END;

Dans ke code suivant, une nouvelle ACL (acl_csxm2 . sanl) est créée et déposée dans le répertoire /
home/C¥M/acls (qui devra ére préalablement créé). Cette ACL autorise 1'utilisateur OXM2 &
accéder en lecture A toute ressource et & pouvoir verrouiller ou déverrouiller toute ressournce.

542 & Editions Eyrolles

[chapitre n® 11 Oracle XML D8 |

Tableau 11-54 Création 0'une ACL

Code SQL Commentaires
DECLARE
v_regultat BOOLEAN;
BEGIN Création d'une ressource.

wv_resultat := DEMS XDE_REPOS.createResource |
abapath => ' ‘home /0¥M/acla/acl oxms . xml',
data == '<acl deseription="exemple acl"®
snlna="http:/ xmlns . oracle.com/xdb/acl xad"
xnlns :dav="DAV: "
smlns:xsai= "hetp: / fwww. w3 . org/2001 /XMLSchema- instance"
x8i:schemalocation=
"http://xmlns, oracle. com/xdb/acl .xsd Dé&finition de 'entrée.
http: //fanlns. oracle. com/xdb/acl . xad">
<ace
<grant>true</grants>
cprincipal>0MMi< /prineipal >
<privileges
zread-contents />
<dav:lock/>
zdav:unlock />
< /privilege>
</acex
<famls", Choix de l'espace de noms.
schemaurl => 'http://xlns.oracle.com/xdb/facl .xsd',
elem => "acl');:
IF v_resultat THEN Vérification du dépbt.
DEMS_COUTPUT. PUT_LINE('dépot RCL OH.'):
COMMIT;
ELSE
DBEMS_OUTPUT. PUT_LINE('Probléms au dépot ACL...');
END TF;:
END;

Une fois cette ACL créée, vous pourrez I'affecter 4 une ressource en particulier avec la
méthode setACL précédemment étudiée.

Dictionnaire des données

Le dictionnaire des données prend en compte toutes les spécificités relatives a4 XML DB,
notamment au niveau d'un utilisateur :

les tables et vues XMLType avec les vues USER_XMI, TABLES et USER_XMI, TAB COLS ;
les grammaires avec la vue USER_XML, SCHEMAS ;

la colonne XMLSCHEMA de cette vue contient le code complet de la grammaire ;

les vues XMLType avec USER XML, VIEWS.

@ Editions Eyrolles 543

| Partie W S0L avaned |

Le code suivant présente quelques extractions de ces vues.

Hablesy 11-55 Imterropation do diclionkaire pour NVL DB

Code SQL et résultats

S5QL> SELECT table name, storage type FROM USER XML TABLES ;
TABLE _NAME STCRAGE _TYPE

T_DOCUMENTS XML BINARY

avioncompssl _TAR CLOB

S5QL> SELECT table name,xmlachema,element name FROM USER XML TABLES;

TAELE_NAME XMLECHEMR ELEMENT_ NAME
T_DOCUMENTS_ XML
avisncomphSl_TRE htep: / fwwew. actonp . frfavioncomp . xasd avioncomp

SQL> SELECT column_name, element name, storage_type
FEOM USER XML TAB COLS;

COLUMM_ MAME ELEMENT NAME STORAGE _TYPE
COL_XML EINARY
SY¥S_NC_ROWINFOS avioncomp CLOB

8QL> SELECT schema url, local, binary FROM USER_XML_SCHEMAS;

SCHEMA,_ URL LOC BIN
http://www. actop. £r/compagnies. xad YES YES
http://www. actnp. fricompagniesannote. xsd YES NO
http://www.actop. fr/avioncomnp . xsd YES NO

S5QL> SELECT wiew name, xmlschema, element name FROM USER XML VIEWS;

VIEW_NAME AMLSCHEMA ELEMENT NAME
COMPAGNIE_VUE_MML
AVICOMP VUE_ XML http: / fwww. actmp . fr/avionsom . xad avioncomp

54 Editfons Eyrofies

Chapitre 12
Optimisations

Ce chapitre traite d'optimisations des requétes et des schémas relationnels. Plusieurs aspects
sont éudiés ; tout d'abord, le fonctionnement de |'optimiseur et 'utilisation de statistiques.
Par la suite, quelques outils de mesure de performances sont présentés. Enfin, nous ouvrons la
boite & outils qui servira i optimiser vos applications (contraintes, index, clusiers, tables orga-
nisées en index, partitionnement, vues matérialisées et principes de dénormalisation}.
L'optimisation des applications et des serveurs est un domaine de métiers i part entiére. En
conséquence, vous ne découvrirez pas dans ce chapitre la solution & votre probleme parti-
culier. D'abord parce qu’un ouvrage dédié i cela n'y suffirait pas, ensuite parce que chaque
problématique est unique et qu’il n'existe pas de recette miracle i adopter en tout cas.

En revanche, vous trouverez une synthése des mécanismes que vous pouvez mettre en euvre
pour améliorer vos performances. Ne sont pas étudiés ici les aspects systéme de 'optimi-
sation, tels que les fichiers de trace ou d’alerte, les paramétres d’initialisation (dans
init.ora ou dans les fichiers spfile), les tables et vues dynamiques renseignant 1'état de la
mémoire (sessions, requétes, transactions, etc.). La bibliographie référence des ouvrages plus
complets 4 ce sujet.

Cadre géneéral

P I i T

Commengons par un postulat : si une application ralentit les processus métier, elle doit &tre
optimisée. La problématique des performances concerne toute application et il est normal d'y
consacrer du temps méme si Oracle peut résoudre seul la majorité des problémes avec les
outils de la 11g.

Ny a une dizaine d’années, le développeur écrivait une requéte tout en laissant le soin au DBA
de la rendre performante. Depuis, les mentalités ont changé, ce qui ne veut pas dire que les
rapports entre les personnels représentant ces deux métiers se soient arrangés. ..

La réalité apporte son lot de désillusions : bien souvent, par soucis d’ économie, le chef de
projet réduit les délais ou affecte moins de ressources humaines que prévuy, la documentation
est rédigée et I'optimisation réfléchie aprés la mise en production.

Des experts estiment & 60 % le gain potentiel de performances rien que sur I'écriture du code SQL
et PL/SQL. Sachant que pour certaines applications, pour des raisons de pseudo-portabilité,
T'utilisation de PL/SQL est proscrite ! Tout devant étre codé dans les applications... vous

@ Editions Eyrolles 545

S0L avaned |

546

imaginez que la marge de manceuvre est réduite. Par ailleurs, bon nombre de problémes
proviennent du modéle de données (qui m'est pas toujours suffisament normalisé) et il est
souvent trop tard pour modifier fortement la structure des tables.

Les performances ne peuvent étre considérées sans un contexte : le disque, la mémoire, les
processeurs et le réseau sont autant d’€léments qui entrent en compte lors de mesures. Ainsi, la
performance n’a souvent de sens qu'associée & une action (on parle alors de benchmark) telle
qu’une migration vers une version supérieure, migration de données d'un tablespace i 1"autre,
apres ajout de RAM, changement de disque, etc.

Jusqu’a présent, vous avez fait confiance & Oracle (et vous avez bien fait) pour qu’il £labore la
meilleure stratégie d'accés i vos domnées. Dés qu'une requéte ou qu'un traitement (qui
confient des instructions dont une ou plusieurs requétes problématiques) va poser probléme,
votre confiance va s’ effriter et vous allez mettre en ceuvre des mécanismes pour chercher i les
rendre plus efficaces.

Cette dépendance provient du fait que SQL est un langage déclaratif (et non procédural
comme les structures de contréle de PL/SQL) ; le programmeur exprime toujours dans une
requéte ce qu'il souhaite et non pas le moyen de 1'obtenir. Oracle va utiliser son optimiseur afin
de produire I"algorithme le plus efficace, selon les données dont il dispose (les stafistiques),
pour extraire I'information recherchée.

Les acleurs

Plusieurs acteurs influent sur les performances.
Le concepteur se doit de fournir un modéle conceptuel de qualité, une arc hitecture logicielle
raisonnée et une programmuation modulare.

Le développeur vérifie en principe le modéle relationnel (normalisation et dénormalisation
raisonnée), écrit les instructions et requétes d'une maniére concise. Il programme ses
transactions en utilisant le plus de procédures cataloguées.

L’administrateur surveille 1"exécution des sessions, organise au mieux les espaces logiques
et physiques des bases de données. Il dimensionne la mémoire pour les données et
traitements.

L'utilisateur final qui se fait toujours connaitre quand une attente est trop importante. I1
convient de le sensibiliser en amont pour éviter parfois des contflits inutiles.

Contexie et objectifs
Idéalement, I'optimisation doit taire partie du cycle de développement et se réaliser ainsi avant
la mise en production. Ce n’est pas toujours le cas et cela entraine un certain nombre de freins.

De quels droits dispose-t-on pour diagnostiquer et identifier le probléme (par exemple, si
VOUS T'aVEZ pas accés aux vues vi ou aux fichiers de trace, votre premier diagnostic ne
peut pas étre précis) 7

& Editions Eyrolies

[chapitre n® 12

Dp@misations |

Est-il possible de modifier le schéma relationnel, le code SQL ou PL/SQL, le code applicatif,
I'organisation des données (index, types de table, etc.), la configuration de 1'instance, du
réseau et du matériel 7

L’organisation des données peut ne pas nécessiter de recompilation (ajout d’index ou d’une
index organised rable). La solution de changer de prime abord le matériel est souvent une fuite
en avant qui peut s’ avérer plus pénalisante avec une machine plus puissante.

L’objectif de toute optimisation doit &tre précis et mesurable (exemple : 9 ms pour extraire la
liste des produits d’une commande). En effet, un objectif flou ne sera jamais satisfait et ¢’est
une garantie contre la tentation d'optimisation excessive et contreproductive.

Utiliser un jen de tests (comparable aux données en production) permet de mesurer objective-
ment les performances. Se pose le probleme de I'accés aux données réelles.

Plus tot 'optimisation est prise en compte, meins elle va colter.

Les différents SGBD du marché ne se comportent pas de la méme maniére (une solution valable
pour un SGBD peut se révéler peu performante pour un autre). Gela se vérifie également pour
deux versions ou releases différentes d'Oradle.

Une solution convenable en mode mone-utilisateur peut s'avérer non opératonnelle en mode
multi-utilisateur.

Les causes principales d’ une mauvaise optimisation des instructions SQL sont :
Les statistiques destinées i |'optimiseur sont obsolétes ou non représentatives.
Dies structures d’accés sont inexistantes (index, vues matérialisées ou partitions).
La sélection de plans d’exécution est non optimale (certains €léments de 1'instruction SQL
sont mal évalués, par exemple son cofit, sa cardinalité ou la sélectivité de son prédicat).
Les instructions SQL sont mal construites (conditions de jointure manquantes, mauvais
predicats ou opérateurs, etc.).
Des performances médiocres peuvent également étre causées par des problémes matériels
{mémoire, entrées-sorties, CPU, disque, efc).

Présentation du jeu d'exemple

Dans ce jen d’essai, créé initialement par F. Brouard, des adhérents pratiquent des sports.
Deux tables de référence (Adherent et Sport) et une table d’association (Praticue) sont
mises en cenvre. Les index seront décrits ultérieurement.

La volumétrie initiale de ces tables est la suivante : 24 (033 adhérents, 12 sports et 27 011 lignes
dans la table Participe. Dans plusieurs sections (notamment Indexartion, Cluster, Partition-

@ Editions Eyrolles 547

| Partie W S0L avaned |
nement et Vues matérialisées), le nombre de participants est porté i plus d’un million (tables
Pratiquebis et Adherentbis) afin d'obtenir des résultats plus démonstratifs.
Tableau 12-1 Jeu d'exemple
Tables du Jeu d'essal
CREATE TABLE Sport
{spid NUMBER(S) NOT NULL, splibelle VARCHAR(Z20) NOT NULL);
CEREATE TABLE adherent
{adhid NUMBER(5) NOT NULL, nom VARCHAR(25) NOT NULL,
prenom VARCHAR(30) NOT NULL,
civilite VARCHAR(1Z) KOT MNULL, date_nais DATE NOT NULL,
tel VARCHAR(15));
CREATE TABLE PRATIQUE
{adhid MUMBER(S) NOT NULL, spid NUMBER(S) NOT NULL);
ALTER TABLE Sport ADD CONSTRAINT pk_Sport PRIMERY KEY (spid);
ALTER TAELE Adherent ADD CONSTRAINT pk Adherent PRIMARY KEEY (adhid) ;
ALTER TABLE Pratigue ADD CONSTRAINT pk Praticue PRIMARY KEY (adhid, spid);
ALTER TABLE Praticue
ADD CONSTRAINT fk_Fraticue Sport
FOREIGH EKEY (2pid) REFERENCES Sportispid);
ALTER TAELE Pratidgque
ADD CONSTRAINT fk_Pratique_ adherent
FOREIGN KEY (adhid) REFERENCES Adherent {adhid);
Les assistants d'Oracle
Avant de présenter quelques mécanismes basiques de contrdle de performances (section Ourils
de mesure de performances) qui sont basés sur les fichiers de trace SQL et les vues de perfor-
mances, résumons |'offre des outils de funing d'Oracle gu inclut de nombreuses fonctionnali-
tés que ce chapitre ne peut pas détailler.
Depuis la version 10g, le référentiel AW R (Auromaric Workload Repository) permet de collec-
ter et analyser les statistiques (successeur de Statspack). La version 11g automatise davantage
le tuning, en identifiant les instructions SQL problématiques et en exécutant la fonction de
conseil STA (SOL Tuning Advisor) sur ces instructions. Le moniteur ADDM (Auromatic Data-
base Diagnostic Monitor) analyse en permanence les informations de performances collec-
tées. Il identifie automatiquement les goulets d'éwanglement dans la base et fournit des
recommandations sur les options permettant de résoudre ces problémes.
548 & Editions Eyrolles

[chapitre n® 12

Dpimisations |

La fonction de conseil, SOL Access Advisor, analyse une instruction SQL et donne des
conseils sur les vues matérialisées, les index, les journaux des voes matérialisées et les
partitions.

La fonction d"analyse des performances, SQL Performance Analyzer, automatise 1’ évalua-
tion de 'impact des modifications (mise i niveau d'une base, ajout d'index), sur la charge
globale SQL en identifiant les écarts de performances pour chague instruction.

La fonction de surveillance, SQL Monitoring, permet de surveiller les performances des
instructions SQL pendant leur exécution.

La fonction de gestion du plan, SOL Plan Management, sert i controler I'évolution du plan
d’exécution.

Les oplimiseurs

Dans la version 6, les premiéres versions de |'optimiseur étaient basées sur les régles (RBO,
Rule-Based Optimizer). Avec cette technique, un rang était affecté a chaque opération (de 1
pour un accés direct par rowid & 15 pour le parcours séquentiel entier d"une table). Ainsi, toute
requéte était analysée syntaxiquement et pour les différents chemins d’accés aux données,
Oracle choisissait celui dont la somme des rangs était minimale.

En version 7, I’optimiseur CBO (Cost-Based Optimizer) est apparu et depuis la version 10g,
seul celui-ci bénéficie du support d'Oracle. Il estime chaque chemin d’accés des tables concer-
nées en fonction des statistiques (situées dans le dictionnaire des domnées) disponibles.
Collecter correctement ces statistiques est donc fondamental (en principe, cela fait partie de la
tiche du DBA).

Fonctionnement de CBO

L'optimiseur d’instructions est composé :
Du transformateur qui dispose en entrée d’une requéte parsée et la transforme de maniére
optimale (notamment par expansions). Un jeu de plans potentiels est généré en fonction
des chemins d'accés disponibles.
De l'estimateur qui calcule le coiit de chaque plan en fonction des statistiques du dictionnaire
de données, pour les caractéristiques des tables en matiére de répartition et de stockage des
données, ainsi que des index auxquels acciéde I'instruction SQL.
Le générateur de plan qui compare les différents plans et sélectionne celui dont le cofit est
le plus faible.

Parce que la recherche du meilleur plan d’exécution possible pour une interrogation est
complexe, I’objectif de I'optimiseur est de trouver un bon plan, généralement appelé « plan au
meilleur cofit ». Uoptimiseur adapte son plan d'exécution si les statistiques changent. A titre
d'exemple, si d’aprés les statistiques il résulte que 80 % des pilotes sont des hommes, le
balavage complet de table (full table scan) afin d’extraire les pilotes masculins constituera
probablement une meilleure solution que 1'utilisation d’un index.

@ Editions Eyrolles 549

| Partie W S0L avaned |

Figure 12-1 Mécanismes de l'optimiseur (© doc. Oracle)

Parsed Query
{from Parser)

-

|

Query Plan
(10 Row Source Generaton

Expansions

En fonction des index existants, vues matérialisées, partitions et statistiques, et avant d'effectuer
un calcul de coiit, I'optimisenr peut décider de transformer une requéte en une autre équivalente
avant de calculer le cofit de cette derniére et de 1'exécuter. Le principal objectif du transfor-
mateur est de déterminer s’il est avantageux de modifier 1'instruction afin qu’elle permette la
génération du meilleur plan.

Le transtormateur utilise plusieurs techniques telles que la transitivité, la fusion de vues,
I'inclusion automatique de prédicats, I'extraction de sous-interrogation, la réécriture de requéte,
la transtormation en étoile et |'expansion de 1"opérateur OR. Le tableau suivant présente quelques
équivalences classiques.

550 Editfons Eyrofies

[chapitre n® 12

Opimisations

Tahfean 12-2 Bmensions ciassiques

@ Editions Eyrolles

Expansion Requéte Initiale Requéte transformée
Opérateur OR SELECT adhid,nem, tel SELECT adhid,nem, tel FROM Adherent
FROM Adherent WHEEE nom = 'LEBLANC'
WHERE ciwvilite = 'Mlle.’ UNICH ALL
OF nom = 'LEBLANC'; SELECT adhid,nom, tel FROM Rdherent
WHERE civilite = 'Mlle.’
AND nom <> 'LEBLANC' @
Sous- SELECT adhid SELECT Fratigue, adhid
interrogation FEOM Pratigue FROM Pratigque, Sport
WHERE spid IN WHEFE Pratique.spid = Sport.spid
|SELECT spid FROM Sport AND Sport.splibelle='Tennis';
WHERE splibelles'Tennis') ;
Fusion de vues CREATE VIEW Adherent missg AS
SELECT adhid, prenom, SELECT prenom,nom, tel
nom, tel,date_nais FROM Adherent
FROM Adherent WHEFE eivilite = 'Mlle.’
WHERE civilite = 'Mlle.'; AND adhid » 7800;
SELECT prenom,nom,tel
FROM Adherent _miss
WHERE adhid > 7800;
Transitivité SELECT p.adhid,s splibelle SELECT p.adhid,s . splibelle
FROM Pratique , Sport s FROM Pratique p, Sport s
WHERE p.gpid = g.gpid WHERE p.spid = s.gpid
AND s.8pid = 12; AND s.3pid = 12
AND p.Bpid = 12;
|'estimaleur

L'estimateur gére trois types de mesures liées entre elles : la sélectivité, la cardinalité et le
coiit. La cardinalité est dérivée de la sélectivité, et le cofit dépend souvent de la cardinalité.

La sélectivité est une estimation de la proportion des lignes d'un ensemble qui est extraite par
un prédicat donné ou une combinaison de prédicats. Le calcul de la sélectivité est basé sur les
statistiques. En 1"absence de ces derniéres, 1"optimiseur utilise un mécanisme d’échantillonnage
dynamique (paramétre d’initialisation OPTIMIZER_DYNAMIC SAMPLING).

La cardinalité d'une opération du plan d’exécution d'une requéte représente 1'estimation du
nombre de lignes extraites par cette opération. Généralement, la source est une table, une vue,
ou le résultat d’une jointure ou d’un opérateur GROUP BY. Cette valeur est essentielle pour
déterminer le coiit des opérations de jointure, de filire et de tri. Pour chague colonne, on trouve
la relation : cardinalité = sélectiviié ¥ nbre_total_lignes. Considérons a titre d’exemple la
requéte suivante :

SEIECT adhid, nom FROM Adherent WHERE prencm = 'CELINE';

551

S0L avaned |

552

Etant donné que Ia table contient 24 033 lignes incluant 3 (40 prénoms distincts, les indicateurs
que I'optimiseur consultera sont les sulvants :

sélectivité = 1/3040 =+ 0,00032
cardinalité = 24033 X 1/3040 = 7,9

Traitement d'une instrniction

L'exécution d'une instruction SQL se décompose en diftérentes phases. Un curseur interne est
ouvert (open), puis fermé i I'issue du traitement (close). Entre ces étapes, les trois phases
majeures sont :
L’analyse syntaxique et sémantique de 'instruction (parse), qui vérifie les droits de 1'utili-
sateur, recherche puis élabore éventuellement le plan d'exécution (ensemble d’étapes),
charge le plan en mémoire (pour des utilisations ultérieures). L’ optimisation est réalisée
durant cette phase.
L'exécution proprement dite de 1" instruction (execure). Durant cette phase, Oracle applique
les étapes du plan précédemment &tabli.
L'extraction (ferch) d’une (ou de plusieurs) lignes).
Pour certaines requétes de faible ampleur, la phase de parse consomme davantage de temps
que les deux autres phases. Par ailleurs, si un plan existe déja en mémoire, il n'est pas regénéré
et I'instruction déclenche wn soft parse. Le cas contraire entraine un hard parse plus cofiteux.
C’est pour cela qu'exécuter deux fois de suite la méme requéte entraine en général un cofit
inférieur 4 la seconde exécution.

Deux requétes identiques (mot 4 mot) évaluant des valeurs différentes (exemple age=18 pour
lapremiére et age=2{ pour la seconde) peuvent générer deux plans d'exécution distincts. Pour
éviter ceci, une variable de lien peut étre utilisée dans vos programmes (age= :v_age ou
age=v_age suivant le contexte de programmation) ; voir la section Variables de lien. Il est
aussi possible d'agir sur le paramétre CURS0R_SHARING.

Il est toujours preférable de retoumner plusieurs lignes par fetch. Pour cela, consulter la section
Comment réaliser des fetchs mutlilignes.

Configuration de I'optimiseur (es hints)

Un conseil (hing) se place dans mne instruction sous la forme d'un commentaire (qui n’en est
pas un) et impose i I’optimiseur la sélection d'un certain plan d’exécution, en fonction de
critéres spécifiques.

La séquence de caractéres /*+ indicateur */ indique i 1'optimiseur que le commentaire
doit étre interprété en tant que conseil. Le symbole 4+ doit suivre immédiatement le délimiteur
de commentaire sans étre précédé d'un espace. La plupart des paramétres des hints sont
composés du nom des tables (ou alias), de colonnes et d’index.

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |
Le tableau suivant présente 1'utilisation de deux Ainss ; le premier (FULL) force le balayage
entier de la table et le second (INDEX) impose I'utilisation de I'index associée 4 la clé primaire
(colonne adhid). Dans les deux cas, 1’optimiseur avait choisi de lui-méme la meilleure stratégie
d'accés aux données.

Tableau 12-3 Expansions ciassigues
Expansion Opération cholsie Opération farcée
SELECT a.nom, a.tel Index clé primaire. SELECT /*+ INDEX(a PK_ADHERENTBIS) */
FROM Adherenthis a a.adhid, a.nom, a.tel
WHERE a.adhid = 20045; FRCM Adherentbis a
WHERE a.tel LIKE '+33%';
SELECT a.adhid, a.nom, a.tel Parcoursentierde SELECT /*+ FULL{a) */ a.nem, a.tel
FROM Adherenthis a |a table {fufl scan). FROM Adherenthis a
WHERE a.tel LIKE '+33%"'; WHERE a.adhid = 20045;

&

Il existe un grand nombre de hints, décrits dans le livre SOL Language Reference de la docu-
mentation officielle. Citons les hints qui privilégient le temps d’exécution, soit global (ALL
ROWS, par défaut), soit au profit des 1, 10, 100 ou 1 000 premiéres lignes (FIRST ROWS_n).

Vous devez utiliser les conseils avec parcimonie et uniquement aprés aveir collecté les statisti-
ques et évalué le plan de l'optimiseur sans conseils. Les modifications apportées 4 la base
(structurelles et sur les dennées) et I'ameélioration de performances peuvent les rendre moeins
pertinents (voire non valides).

Les statistinques destinées a I'optimiseur

_______ -

_______ S P T P

Les statistiques qui sont créées par Oracle pour 1'optimisation des nstructions sont stockées
dans le dictionnaire de données (USER_TAB_COLUMNS, USER_TABLES, UUSER_INDEXES, etc.).
Ces statistiques ne doivent pas étre confondues avec les statistiques de performances qui se
trouvent dans les vues vs.

Les statistiques consignent diverses informations concernant le systéme (utilisation de la CPU
et des entrées-sorties), les tables (volumétrie, taille moyenne des lignes, blocs, etc.), les index
{clés, nombre de blocs feuilles, ete.), les colonnes (nombre de valeurs distinctes, nombre de
NULL, taille moyenne) et les données de la table (valeurs minimale, maximale et distribution
des valeurs).

@ Editions Eyrolles 553

S0L avaned |

554

Toutes ces informations vont servir i Oracle pour décider des algonthmes i utiliser pour générer
chaque plan d’exécution. L'optimiseur choisira, pour une requéte donnée, le plan d’exécution
le moins cofiteux.

La commande ANALYSE est désormais obsoléte et ['utilisation du paquetage DEMS_STATS est
préconisé pour persennaliser vos collectes. Depuis la version 10g, la collecte des statistiques
est automatique (par defaut un batch est exécuté entre 22 heures et 6 heures tous les jours).

Loptimiseur considére par défaut que les données de toute colonne sont réparties de fagon
uniforme (hypothése de distribution uniforme des valeurs). Ce comportement peut entrainer la
génération de plans d'exécution non optimaux en cas de répartition inégale des données. Les
statistiques se doivent donc de refléter au mieux le contenu des tables. Si un histogramme est
disponible sur une colonne, |’ optimiseur 1 'utilise 4 1a place du nombre de valeurs distinctes.

Les histogrammes

Le mécanisme des histogrammes permet de pallier au mieux le probléme de répartition non
homogéne des données. Le fait de disposer d’histogrammes sur des colonnes contenant des
données inégalement réparties {(ou des valeurs présentant de grandes variations dans le nombre
de doublons) aide "optimiseur d'instructions 4 générer de bonnes estimations de sélectivité et
i prendre de meilleures décisions concernant |'utilisation des index, les ordres de jointure, les
méthodes de jointure, etc.

Les caractéristiques de tous les histogrammes sont stockées dans le dictionnaire des données
(DBA_TAB_HISTCGRAMS, DBA _PART HISTOGRAMS ef DBEA SUBPART HISTOGRAMS). La
génération des histogrammes est 'opération la plus consommatrice de ressources lors de la
collecte de statistiques.

Pour chaque colonne d'une table, en fonction du nombre de valeurs distinctes, Oracle peut
créer deux types d'histogrammes.

Lhistogramme de fréquence ot le nombre de valeurs distinctes d'une colonne est inférieur
ou €gal au nombre d’intervalles. Ce type d’histogramme sera créé siles données comportent
moins de 254 valeurs distinctes et que le nombre d'intervalles n'est pas précisé.

Ihistogramme équilibré en hauteur ot le nombre d'intervalles est inférieur au nombre de
valeurs distinctes d'une colonne.

Les histogrammes ne sont pas utiles pour les colonnes gui n'apparaissent pas dans les
clauses WHERE ou JOIN et celles déclarées avec une contrainte UNIQUE.

Les histogrammes sur les colonnes de type chaines de caractéres sont évalués sur les 32 pre-
miers octets de chaque valeur.

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

Considérons la table suivante contenant 1 000 lignes. 8i Oracle collecte trois valeurs distinctes
pour la colonne compa (on suppose gu'il n'existe que trois compagnies), alors les plans
d'exécution générés considéreront cette répartition (pour la recherche des pilotes d'une
compagnie donnée, Oracle s’attend & monter 'équivalent de 333 lignes en mémoire).
Lorsqu'une colonne est distribuée de maniere homogéne, |'histogramme se présente sous la
forme d’éléments de méme hauteur. A 1'inverse, lorsque la distribution est hétérogéne, la
colonne {ou I'index) est déséquilibrée en 1'absence d’histogrammes statistiques.

En revanche, puisque le salaire se répartit inégalement (la plupart des pilotes gagne entre
5000 et 16 000 €), Oracle générera un histogramme plus précis pour que 1'optimiseur ne se
base pas sur une répartition homogéne et prévoit moins de pilotes 3 extraire pour des faibles on
des hauts salaires.

Figure 12-2 Répartition des données dans une colonne

Pilota

braveat salalre | compa

PL-1 | 3400 | AF

PL-2 | 4500 | SING

PL-3 8000 | AF

PL-4 110000 | SING

PL-5 10050 | SING

PL-6 | 18000 | AF

PL-7 | 10060 | CAST

PL8 15000 o=
“PL10G0 _.CKST Salaires

0 3000 16600 20000

Gollecte

La procédure GATHER TABLE STATS du paquetage DEMS_STATS collecte les statistiques
sur une table, Les paramétres & renseigner obligatoirement sont le nom du schéma et celui de
la table. Plusieurs aufres paramétres sont intéressants a préciser :

METHOD_OPT qui permet de prévoir les histogrammes soit par un nombre d’intervalles de
Ihistogramme (entre 1 et 254), soit par distribution en fonction des valeurs des données de
la table.

CASCADE collecte également des statistiques sur les index aprés avoir examiné la table.

ESTIMATE PERCENT indique le pourcentage estimé de lignes utilisées pour calculer les
statistiques (MULL ou par défaut signifie toutes les lignes). Sa valeur peut étre comprise
entre 0,000001 et 100,

STALE PERCENT sert 4 déterminer le seuil 4 partir duguel les statistiques d'un objet sont
considérées comme obsolétes.

@ Editions Eyrolles 555

S0L avaned |

556

Le tableéau suivant détaille la collecte des statistiques sur la table Adherent du schéma
soutou. En fonction de la version d'Oracle, le paramétre METHOD _OPTn'a pas la méme valeur
par défaut (en 8i et %, il vant FOR ALL COLUMNS SIZE 1 ;i partir de 10g, ¢’est FOR ALL
COLUMNS SIZE AUTO).

Cette procédure est utile pour les traiternents manipulant des tables temporaires que les statis-
tiques automatiques ignorent et qui sont privées d'index.

Tablesu 12-4 Collects des statis@ues sur une table

Caleul de statistiques Cammentaires
BEGIN Toutes les colonnes de la table seront
DEMS STATS.GATHER TABLE STATS(analysées pour produire des
OWMNAME => 'SOUTOU', histogrammes qui comdennent le mieux.
TAENAME => 'ADHERENT', L'histogramme associé ala colonne tel
METHOD_OFT =»> 'FOR ALL COLIMNS SIZE AUTO est il fixé arbitrairement &
FOR COLUMNS tel SIZE 254, 254 intervalles.
CASCADE => true);
END;

Aprés avoir lancé cette procédure, il est possible d’examiner les résultats dans le dictionnaire
des données.

Visualisation des statistiques

Les tableaux suivants présentent le détail des statistiques concernant la table des adhérents. La
premiére requéte concerne les valeurs des données de toutes les colonnes. On y trouve le
nombre de valeurs distinctes et U'intervalle de ces valeurs (en hexadécimal).

Tabieau 12-5 Informailons sur fes colonnes (vajeurs)
Requéte et résultats
SELECT COLUMN_NAME, NUM_DISTINCT, LOW_VALUE, HIGH VALUE

FROM TUSER_TAB COLUMNS
WHERE TABLE MRME='RDHERENT';

COLUMN_NAM NUM_DISTINCT LOW_VALUE HIGH. VALUE

ADHID 24033 C102 C3033EL7

NOM 10738 41414241444c49 5A5953534D414E
PRENOM 3040 41204D41524945 CO4CAFA 44945
CIVILITE 3 44722E 4DT22E

DATE_WAIS 16570 77690414010101 786D071A010101

TEL 23286 30202020202020202020 30392038302030362030

& Editions Eyrolles

[chapitre n® 12 Ooiimisations |

La requéte suivante illustre que la colonne tel dispose de valeurs NULL. On y trouve également
la taille moyenne en octets pour chaque colonne.

Tableau 12-6 Informations sur les colomnes

Requéte et résultats
SELECT COLUMN _NAME, NUM _NULLS, AVG COL_LEN, SAMPLE_SIEZE

FROM USER _TAB_COLUMNS
WHERE TABLE _NAME='ADHERENT';

COLUMN_NAM NUM_NULLS AVE_COL_LEN SAMPLE SIZE

ADHID i} 5 24033
HOM [i} 8 5750
PRENCM 0 8 5750
CIVILITE 0 5 5750
DATE_NAIS 0 a 24033
TEL 765 15 5564

La requéte suivante renseigne, pour chaque colonne, la densité, le type d’histogramme et la
date de derniére analyse. Aucun histogramme n'est généré pour les colonnes adhid {clé
primaire) et date _nais du fait de leur wés forte sélectivité.

Tahisau 12-1 Informations sur les histogrammes

Requéte et résultats
SELECT COLUMN_NAME, DENSITY ,NUM_BUCKETS, LAST ANALYZED, HISTOGRAM

FROM USER_TAB_COLUMNS
WHEFRE TRELE NARME='ADHERENT';

ADHID , 000041609 1 06/05/10 NONE

HOoM , 000472367 254 06/05/10 HEIGHT EALANCED
PRENCM ,002040816 254 06/05/10 HEIGHT BALANCED
CIVILITE 000020666 3 06/05/10 FREQUENCY
DATE_NAIS ,00006035 1 06/05/10 BONE

TEL , 000050813 254 06/05/10 HEIGHT BALANCED

La densité est calculée a partir de la formule suivante : Linombre de valeurs distinctes non
nuffes. La colonne DENSITY exprime la sélectivité que I’optimiseur évalue pour toute équi-
jointure {a.adhid=p.adhid) et prédicat d’égalité (a.adhid=6). Les valeurs possibles sont
situées dans 1'intervalle de 0 & 1 (0 si aucune ligne n'est sélectionnée, 1 si toutes le sont). Plus
une colonne est sélective, moins 1’ optimiseur envisage de retourner des lignes & 1'évaluation du
prédicat. La sélectivité forme une partie importante de 'équation décidant du meilleur chemin.

@ Editions Eyrolles 557

S0L avaned |

558

La colonne MUM_BUCKETS exprime le nombre d’intervalles de valeurs (avec un maximum
de 254). Par défaut Oracle a considéré 254 intervalles pour répartir les données des colonnes
nem, prencm Concernant la colonne civilite, 3 valeurs sont possibles ('mr), 'Mlle.:
ou ‘Mme. '), donc 3 intervalles suffisent & modéliser ' histogramme associé.

La colonne HISTOGRAM renseigne 4 propos du type d’histogramme :

HETCHT BALANCED, les valeurs des colonnes sent divisées dans des intervalles d'une
maniére homogéne (conceme les colonnes nom, prenom et tel). On peut constater que
le prénom compose la colonne la moins sélective, les plus sélectives étant le numém
d’adhérent et le téléphone.

FREQUENCY, chaque intervalle contient le nombre d’occurences de cette valeur. Ce type
d’histogramme est cré lorsque le nombre de valeurs distinctes est plus petit gue le nombre
d'intervalles de I"histogramme demandé (ici pour la colonne civilite).

Quand mettre a jour les statistigues ?

La meilleure fréquence d'actualisation des statistiques est dés gue nécessaire | Ce sont
souvent des opérations trés cofiteuses, et il n’est pas envisageable d"actualiser les statistiques a
chaque modification des tables. Par ailleurs, les statistiques deviennent obsolétes aprés de
nombreuses mises & jour. Des statistiques perimées nuisent au plan d’exécution et peuvent
provoquer de réels écarts de performances. Il est courant de les calculer toutes les semaines
pour des bases en production voire toutes les nuits lorsque de forts mouvements peuvent avoir
lieux au cours d’une journée.

Dans tous les cas, 'actualisation des statistiques s'impose aprés des modifications fréquentes
et significatives au cours de la jeurnée, une migration, une importation conséquente ou une
moedification du modéle physique (changement d'un paramétre de stockage, création d'index,
partitionnement, réorganisation, etc.).

D'autres procédures jouent un réle similaire ; citons GATHER INDEX STATS, GATHER_
DATABASE STATS ef GATHER SCHEMA STATS du paquetage DBEMS STATS gui permettent
de récolter les statistiques au miveau d'une base, d'un schéma et des index. Le module DEMS_
SCHEDULER peut aussi étre configuré pour exécuter l'action GATHER _STATS JOB qui
collectera des statistiques en mode barch.

Siles statistiques ne sont pas utilisées, Oracle collecte des statistiques partielles en fonction du
parameétre OPTIMIZER, DYMAMIC SAMPT,ING. Ce mécanisme est intéressamnt pour des tables
4 la forte volatilité.

& Editions Eyrolies

[chapitre n® 12

Opimisations

Outiis de mesure de performances

O T, O (L W - O Y) N

Cette section présente les principales méthodes basiques qui vous permettront de mesurer les
performances de vos requétes et évaluer différents scénarios.

La visualisation des plans d'exécution dans une session SQL*Plus & 1'amide de la
commande AUTOTRACE, de I'instruction EXPLATN PLAN, de I'événement 10046 ou par
I'utilitaire tkprof.

L’analyse de certaines vues du dictionnaire des données, principalement V$SQLAREA qui
fournit des statistiques sur chaque instruction SQL en memoire, parsée et préte i 1'exécu-
tion. Depuis la version 9§, les vues VSSQLSTATS et V5SQL_PLAN décrivent les plans
d’exécution. Chaque fard parse met 4 jour ces vues et les mécanismes de monitoring sont
majoritairement basés sur ces vues.

L'utilisation du paquetage DEMS APPLICATION INFOqui peut étre utile aux développeurs
pour tracer et mieux controler leurs transactions.

L'utilitaire runstats de Thomas Kyte (créateur et animateur du célébre site hitpsy
asktom.oracle. com) permet de comparer deux implémentations.

Nous n’étudierons pas les paramétres d’initialisation de la base qui sont modifiés par ALTER
SESSION (tiche du développeur) ou par ALTER SYSTEM (tiche du DBA). Ces paramétres
conditionnent le plan d’exécution de toute requéte. Vous devrez veiller i ce que vos environne-
ments de test et de production solent comparables de ce point de vue.

Visualisation des pians d'execution

Un plan d’exécution est le résultat de 'action de I optimiseur qui présente au moteur d’exécution
les opérations qu'il doit effectuer de la maniére la plus efficace. Chaque plan est décrit sous la
forme d’un arbre contenant les informations suivantes :

I’ordre des tables auxquelles |'instruction fait référence ;

une méthode d'accés pour chague table mentionnée dans 1'instruction ;
une méthode de jointure pour chaque table affectée ;

des opérations sur les données (filtrage, tri ou agrégation).

Les sources

Plusieurs sources peuvent étre utilisées afin d'extraire un plan d'exécution :

@ Editions Eyrolles

La table pLaN_TABLE (utilisée avec AUTOTRACE ou EXPLATH PLAN sous SQL*Plus).

Des vues du dictionnaire de données VESQL,_PLAN, W$SQL_PLAN MONITOR (& partir de la
version 1lg), DBA_HIST SQL PLAN (référentiel AWR), STATSSSOL_PLAN (outil Stats-
pack).

559

S0L avaned |

560

La base de gestion SMB (SOL Management Base} qui stocke le journal des instructions,
les historiques de plan, les SQL Plan Baselines, ainsi que les profils SQL.

Des fichiers de trace de I'événement 10053 par un dump de 1'état des processus et ceux
geénérés par DEMS MONITOR.

- Bien que les commandes SET AUTOTRACE et EXPLATN PLAN affichent un plan d'exécution que

I'optimiseur est susceptible d'utiliser, la vue V430L_PLAN contient le plan réellement employé.

Linfrastructure du référentiel AWR et les rapports Statspack contiennent les plans des instruc-
fions les plus colteuses en ressources.

Laffichage

Le package DEMS_XPLAN fournit cing tables fonction.
DISPLAY qui met en forme et atfiche le contenu d’une table PLAN_TABLE.
DISPLAY_AWR qui meten forme et affiche le contenu du plan d’exécution d’une instruction
SQL stockée dans le référentiel AWR.
DISPIAY CURSOR qui met en forme ef affiche le contenu du plan d’exécution d'un curseur
chargé.
DISPLAY_SQL, PLAN BASELINE qui affiche un ou plusieurs plans d’exécution pour
I'instruction SQL indiquée.
DISPLAY SQLSET qui met en forme et affiche le contenu du plan d’exécution des mstructions
stockées dans un ensemble SQL Tuning Ser (STS).

L'arbre

Le plan d’exécution refléte une structure d’arbre dont chague étape compose un neeud (ou une
teuille) et dont la premiére étape 4 exécuter se trouve au niveau le plus bas et le plus & gauche
(ou en haut suivant |’ inspiration du dessinateur de I'arbre). A chaque €tape est associé un cofit
qui contient le cofit de toutes les étapes descendantes.

L'exemple suivant présente un plan d'exécution prévisionnel d'une jointure entre trois tables
(extraction de |'identité des prafiquants de handball nés en 1995). Outre la visualisation de
I'arbre, le plan peut éventuellement contenir des informations concernant le partitionnement et
I'exécution en mode paralléle.

& Editions Eyrolies

[chapitre n® 12 Opfimisations

Tahleay 12-8 Pian d'exécution d'ume jolnture

Requéte et plan d'exécution

SELECT a.adhid, a.prenom, a.nom
FROM Adherent a, Pratigue p, Sport &
WHERE TO_CHAR(DATE_MAILS, 'YYYY')='1995' AND a.adhid = p.adhid
AND g.8pid = p.epid AND s.splibelle = 'Hand-ball'
ORDER BY nom;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) |
| 0 | SELECT STATEMENT | | 31 | 2511 | 73 3]
| 1 | SORT ORDER EY | | 31 | 2511 | 73 3]
| 2 | NWESTED LOOES | | 31 | 2511 | 72 121
| 570 MERGE JOIN CARTESIAN | | zdo | 13z00 | 72 12y
|* 4 | TAELE ACCESS FULL | SEORT | 1| 25 | 3o
[BUFFER SORT | | 240 | 7200 | 69 (2)]
I TABLE ACCESS FULL | ADHERENT | 240 | 7200 | 69 12)]
[INDEX UNIQUE SCAN | PE_PRATIQUE | 1| 26 | a (o)

La mise en euvre prévisionnelle de cette jointure fait intervenir deux algorithmes distincts
un tri fusion (sort puis merge) et une boucle imbriqué (nested loops). La figure 12-8 illustre
1'arbre associé i ce plan d'exécution. Les nombres sur les liens correspondent aux lignes trai-
tées. L’ordre des opérations est le suivant: 4, 6, 5, 3, 7, 2, | puis 0. Le cofit principal (69)
correspond au parcours entier de la table Adherent réalisé lors de la deuxiéme étape. A ce
coiit, on ajoute 3 pour I"extraction du code du sport correspondant au handball. Ainsi le cofit
de la troisi2me étape est égal i la somme des deux premiéres, etc.

La commande SET AUTOTRACE

La commande SQL*Plus SET AUTOTRACE existe depuis la version 7.3 ; elle permet d'obtenir
aprés I'exécution d’une instruction, le plan d’exécution ainsi que des statistiques SQL.

@ Editions Eyrolles 561

| Partie W S0L avaned |

Flgure 12-3 Plan dexécution

Im)
sporT ',
20 adiliay. 20
m] 2 & S w B ow s
ADHERENT FRERFR 1 AR IR AR
&
-".!::.
PK
PRATIDUE

Les statistiques fournies par cette commande sont extraites de la vue VSSESSTAT.

La syntaxe de cette commande est la suivante. Si les deux derniéres options sont omises, les
statistiques et plans sont affichés par défaut.

SET AUTOT[RACE] {OFF | ON | TRACE[CNLY]} [EXP[LAIN]] [STAT[ISTICS]]
OFF : désactive le suivi d’exécution automatique.
O : active le suivi d’exécution automatique.

TRACHONLY : active le suivi d’exécution automatigue des instructions SQL en occultant le
résultat des instructions mais en exécutant toutefois la requéte.

EXPLATN : affiche les plans d’exécution mais pas les statistiques.

STATISTICS : affiche les statistiques mais pas les plans d”exécution.
Sous Oracle®i, vous devrez créer au préalable la table PLAN TABLE wvia le script
utlxplan. sqgl situé dans le réperioire ORACLE HOME/ rdbms/admin. Dans les autres cas,
vous n’avez qu’a affecter le role plustrace a 1'utilisateur qui désire bénéficier de I'mtotracage.
Si ce rble est absent, créez-le (sous SYS AS SYSDEA) 4 I'aide du script plustres. agl situé
dans le répertoire ORACLE HOME/sglplus/admin.

start ?hasglplus‘\admin\plustree. sgl (le symbole ? sera automatique ment substitué par

é; Pour vous connectez sous SQL'Plus : connect SYS/mot de passe AS SYSDBA puis
le chernin ORACLE_HOME).

Le tableau suivant présente le résultat et le plan d’exécution prévisionnel de la requéte retour-
nant le numére, prénom et nom des femmes nées en mai 1995, Le numéro du plan d’exécution
(hash value) est indiqué avant son détal.

562 & Editions Eyrolies

[chapitre n® 12 Opfimisations

Tablean 12-9 Piam o exécution completl

Requéte et plan d'exécution

SET AUTOTRACE ON

SELECT adhid, prencm, nom FROM Adherent
WHERE TO_CHAR|DATE_NAIS, 'YY¥Y')='1995"
AND TO_CHAR(DATE_NAIS, 'MM')='05"
AND civilite = ‘Mme.’
ORDER BY nom;

EDHID FRENOM NOM
21311 CHANTAL FOULON
19600 DENISE LANIESSE

Flan d'exécution

Plan hash walue: 1854364040

| 1d | operation | Mame | Rows | Bytea | Cost (%CPU)| Time |
1] SELECT STATEMENT 1 35 70 (33| 00:00:0
ik SORT ORDER BY 1 35 70 (39| 00:00:0
[* 2 | TABLE ACCESS FULL| ADHERENT | 1| 35 | 69 (2)] 00:00:0

2 - filter("CIVILITE"='Mme.' AND
TO_CHAR { INTERNAL_FUNCTION(" DATE_NAIS"), 'YYYY')='1985" AND
TO_CHAR { INTERNAL_FUNCTION("DATE_NATS"), 'MM')='05")

Le plan est présenté sous forme d'étapes (colonne Operation) imbriquées. Chaque étape
retourne un ensemble de lignes (prévisionnel) qui sont utilisées & 1'étape suivante jusqu'a
I'extraction finale. Un ensemble de lignes peut provenir d'une table, d'une vue ou du résultat
d’une jointure ou d’un regroupement. Le nom de la table (ou vues, colonne Name) est disposé
en regard de la méthode d’accés (jointure, filtre, tri ou fonction d'agrégat). Les éventuels
prédicats de chaque opération sont précisés par la suite. Le temps prévu (Time) est indiqué au
format HH: MI: S8, Le cofit prévu (Cost) est détaillé par étape.

: _ Le plan d'exécution présenté peut ne pas &tre le plan utilisé. Les causes de cette différence
i sont principalement la présence de variables de lien (bind vanables) dans ['instruction et I'cbso-
lescence des statistiques. En revanche, les statistiques chiffrées de AUTOTRACE refletent la

réalité de l'instruction.

@ Editions Eyrolles 563

| Partie W S0L avaned |

Le tableau suivant détaille les statistiques générées lors de |'exécution de la requéte.

Tableau 12-10 Détails des siatistigues issues de SET AUTOTRAGE

Stafistiques Commentaires
Statistigques
603 recursive calls MNombre d'instructions internes.
0 db block gets Nombre de blocs en mémoire pour une modification.
346 consistent gets Mombre de blocs extraits de la mémoire.
196 physical reads Nombre de blocs extraits du disque.
0 redo size Taille (en octets) utllisée dans le buffer rede log.
785 bytes sent via SQL*Net to client Nombre d'octets envoyés au serveur.
416 bytes received via SQL*Net from client Mombre d'octets retournés au client.
2 SpL*Met roundtrips to/from client Mombre d'allers-retours entre le client et le serveur.
31 sorts (memory) Nombre d'epérations de trl en mémaoire.
0 sorts {(diszk) Nombre d'opérations de tri sur disque.
8 rows processed Nombre de lignes extraftes.

Quelques informations complémentaires i propos de ces indicateurs :

Les appels internes, recursive calls, incluent la construction du plan lui-méme, les
exécutions des déclencheurs, des allocations mémoire pour les tris, des recherches et mises 4
jour du dictionnaire des données, etc. Ce nombre passe généralement & 0 & la prochaine
exécution de la méme requéte (le plan d’exécution est utilisé et il n"a pas & étre reconstmuit).

redo sizeest nul en principe pour un SELECT qui ne concerne pas les fichiers de journa-
lisation, redo log, concernés par toute mise & jour, et utilisés au cours d'une restauration
(recovery).

db block gets concerne les blocs lus en mode CURRENT et non pas en mode lecture

consistante. Les instructions UPDATE et DELETE ont besoin d’y accéder pour effectuer les
mises i jour.

consistent gets concerne les blocs en mode lecture consistante : les instructions
SELECT sont concernées de méme que les blocs d"annulation (rollback segments).

physical reads inclut aussi les lectures dans le cache du systéme de gestion de fichiers
du systeme d'exploitation.

Il faut additionner db block gets et consistent gets pourobtenir le nombre de buffers lus
logiquement.

Les tris doivent de prétérence &tre effectués dans la mémoire plutét que sur disque.

564 & Editions Eyrolies

[chapitre n® 12 Dpiimisations

Instruction EXPLAIN PLAN

Linstruction EXPLATN PLAN permet de générerun plan prévisionnel sans exécuter I'instruction. En
fonction des divers paramétrages (de session, de |'instance) et du moment, 'exécution réelle de la
requéte pourra toutefois §”effectuer suivant un plan différent de celui hypothétiquement calculé.
Vous devez disposer d'une table qui contiendra le résultat des plans générés. Créez la table
BLAN TABLE en exécutant le script utlxplan.sgl situé dans ORACLE HOME/rdbms/
admin Vous pouvez utiliser i présent EXBLATH BLAN avec la syntaxe suivante.

EXPLAIN PLAN
[SET STATEMENT ID = chaine caractere |
[INTO [schema. | table [@dblink 1]
FOR instruction SQL ;

SET STATEMENT 1D désigne I'identifiant du plan dans la table plan rable (par défaut le
plan de la derniére requéte exécutée sera considéré).

INTO désigne la table plan rable (par défaut celle générée par le script d"Oracle : PLAN
TABLE).

instruction SQL désigne l'instruction i évaluer.
Afin d’obtenir ke plan d’exécution de la jointure préocédente, il convient de lancer le script suivant.
Pour visualiser ce plan d’exécution, veus devez écrire une requéte ou utiliser la procédure DISPLAY
du paquetage DEMS_XPLAN (recommandé pour obtenir I'indentation du résultat qui permet d’inter-
préter le plan, car ks étapes ne §'exécutent pas indépendamment les unes des autres).
Tabiean 12-11 OblenSon d'un plan o' exéeuiion prévisionnel
Plan d'exécution d'une requéte
EXPLAIN PLAN
SET STATEMENT ID = 'exemplel' FOR
SELECT a.adhid, a.prenom, a.nom
FROM Adherent a, Pratigue p, Sport s
WHERE TO_CHAR(DATE_MAIS, 'YYYY')='1995"

AND a.adhid = p.adhid AND s.2pid = p.spid
AND a.splibelle = 'Hand-ball' ORDER BY nom;

SELECT * FROM TAELE
(DBMS_XPLAN.DISPLAY (' FLAN_TAELE', ‘'exemplel', 'TYPICAL', NULL));

lignes ramenées car il s'agit d'une estimation basée sur les statistiques.
La commande EXPLATN PLAN ne gére pas les conversions implicites de variables attachées

de type DATE et peut afficher des plans différents que ceux réellement exécutés du fait de I'uti-
lisation de variables de lien (bind variables).

é; Vous devrez vérifier que le nombre de lignes (Rows) soit en adéquation avec le nombre réel de

@ Editions Eyrolles 565

S0L avaned |

566

Les consoles

Selon la version d’Oracle, les consoles d’administration peuvent disposer d"un onglet (dans la
version 11g, il se nomme Schems/Feuille de calcul SQL.) pour visualiser les plans
d’exécution. Pensez i donner & 1'utilisateur les prérogatives nécessaires (par exemple, SELECT
ANY DICTINARY). L'outil SQL Developer fournit depuis longtemps un apercu graphigue
d'un plan d’exécution :

Flgure 12-4 Plan dexécution avec SQL Developer

FROM Adherent a, Pratique p, Sport s
WHERE TO_CHAR(DATE_NAIS, 'YYYY')='1955"
AND a.adhid = p.adhid

AND s.spid = p.spid

AND s.splibelle = '"Hand-ball' ORDER BY nom;
A = .
[Résultat de requite » EPlan dexéaution *
OPERATION QBIECT _NAME CARDINALITY | COST
{= @ SELECT STATEMENT 33 a7
= - SORT (ORDER BY) 3 87
= P HASH JOM k] 87
= (Jm Access Predicates
B M AND
AADHID=P ADHID
§_SPID=F.SPID
=B MERGE 10 (CARTESIAN 275 ”
L' outil tkprof

Loutil tkprof n'est pas une commande SQL ou SQL*Plus mais un exécutable du systéme
d’exploitation. Il utilise les fichiers de trace d"Oracle et foumit des informations détaillées (sous
forme de fichiers texte) a4 propos des sessions. Les informations extraites concernent les temps
des opérations parse, execute et feich, le nombre de lignes traitées et les plans d’exécution réels.

La procédure 4 suivre pour |'utilisation de cet outil est la suivante :
positionnement d'un certain nombre de paramétres affectant le tracage (statistiques et
localisation du fichier de trace) ;

activation du tragage de la session (ALTER SESSION.., ou DEMS_SESSION.SET SQL_
TRACE...) ;

exécution de la session dont les instructions sont désormais tracées ;

& Editions Eyrolles

[chapitre n® 12 Ooiimisations |

désactivation du tracage (ALTER SESSION... ou DBEMS SESSION.SESSION TRACE
DISABLE...);

exécution de 1"utilitaire tkprof afin de produire un rapport basé sur le fichier des traces.

Positionnement des paramétres

Le pammétre TIMED STATTISTICS doit étre positionné i vrad au niveau de 1'instance (fichiers de
configuration ou par le biais de la commande ALTER EYSTEM). Au niveau d'une session seule
I'instruction ALTER SESSION SET TIMED STATISTICS = TRUE; peut suffire.

Assurez-vous de disposer d'une taille suffisante lors de la création du fichier de trace (exemple
pour 1 Mo : ALTER SESSION SET MAX DUMP FILE SIZE = 1000000;).

L'emplacement du répertoire USER_DUMP_DEST est déterminé au niveau de I'instance dans le
fichier d'initialisation et il ne peut étre modifié que par le DBA et ce, pour toute I'instance. La
recherche du nom du fichier de trace (de la forme nom instance ORA numero.tre)

associé 4 la session en cours ne peut s'effectuer qu'en interrogeant des vues dynamiques du
dictionnaire des données.

Tebleau 12-i2 Recherche du répertoire o1 du nom du Mchier race

Extraction du nom du ficher trace de la session courante

SQL> SELECT walue AS "Fichier trace"
FROM widiag info
WHERE name = 'Defanlt Trace File';

Fichier trace

€ NAPPACSOUTOUdiagh rdbmayorcl\orel\ trace\orel _ora_d4464. tre

Activation et désactivation du tracage

Vous devrez disposez de la prérogative ALTER SESSION pour activer le tragage dans une
session. Le tableau suivant présente les instructions i exécuter dans une session SQL*Plus.
La deuxiéme écriture présente |’ avantage de pouvoir se trouver a 1'intérieur d'une procédure

cataloguée.
Tablean 12-13 RctivaSion du tragage sous S0 *Pius
Avant 10g Aprés 10g
ALTER SESSICN BEGIN
BET aqgl_trace=TRUE; DEMS_SESSION.SET _SQL _TRACE(sqgl trace => true);

END;

@ Editions Eyrolles 567

S0L avaned |

568

En plagant, de la méme maniére, 4 FALSE le paramétre sgl_trace, la session n'est plus
tracée. Vous devez ensuite choisir an niveau de la session d'inclure ou non les attentes et les
variables de lien. L'instruction PL/SQL suivante positionne & vrai ces deux paramétres :
DEMS SESSTON.SESSION TRACE ENMABLE (waits => true, binds =» true);

Exécution de tkprof

Une fois vos requétes ou vos procédures exécutées et la trace désactivée, vous pouvez faire
appel & tkprof en précisant principalement le nom du fichier résultat et le chemin vers le fichier
de trace d'Oracle. Beancoup de paramétres sont disponibles ; nous ne les détaillerons pas.
Dans 1'exemple suivant, tkprof crée le fichier matrace. txt dans le répertoire C: \Temp. Les
options choisies ici sont sys=no qui évite de tracer les instructions internes et waits=yes qui

prend en compte les attentes,

tkprof C:\app\soutou'\diaghrdms\bdecsllgr2ibdosllgr2\ trace\ EDCS11GR2
ORA_5928.trc C:\Temp\ma_trace.txt sys=no waits=yes

Le tableau suivant présente la premiére partie du fichier de résultat (reformaté pour I'alléger)
qui correspond & la trace de la requéte qui extrait, par ordre alphabétique, 1'identité des adeptes

féminines du golf nées entre 1955 et 1994 et disposant d’un numéro de téléphone portable.
Tableau 12-14 Résultatl (U2) de tkpro

Premiére partle du fichler de sortle

TEPROF: Release 11.2.0.1.0 - Development on Luri. Mai 10 12:08:50 2010
Copyright (o) 1982, 200%, Oracle and/or its affiliates. BAll rights resgerved.

Trace £ile: @:\appisoutou\diag\rdbms'\bdesllgr2\bdesllgr2\ trace \BDCS11GR2_ORA_5928. tro
Sort options: default
**% SRSSION ID: (29.847) 2010-05-10 12:04:08.343

SELECT a.adhid, a.prenom, a.nom FROM Adherent a, Pratigue p, Sport s
WHERE TO_NIMBER (TO_CHAR (DATE_NAIS, 'YYYY')) < 1585
AND TO_NUMBER (TO_CHIR (DATE_MATS, 'YYYY')) > 1954
BND WNOT (CIVILITE = 'Mr.') AND SUBSTR (TEL,1,2) = '06'
AN a.adhid = p.adhid AND s.spid = p.spid AWD s.splibelle = 'Golf’
OFDER BY nom

Alors que EXPLATN PLAN présentait des valeurs estimées (prédictives), cette trace indique par
exemple que la requéte a effectivement durée 9 centiémes de secondes. La signification de ces
données est la suivante :

& Editions Eyrolies

[chapitre n® 12

Dp@misations |

count : nombre d’appels d'une phase (parse, execute et fetch) ; icl 8 opérations ferch ont
&té nécessaires pour extraire 104 lignes contenues dans 250 blocs.

cpu : temps processeur {(en secondes) ; s'il est & zéro, vous n’avez pas dii positionner i
TRUE le paramétre TIMED SATISTICS.

elapsed: temps incluant les attentes qui ne sont ni CPU, ni entrée-sorties (verrouillages
par exemple) ; sil est & & zéro, voir 'item cpu...

disk : nombre de lectures physiques (ici aucune car la requéte avait déji été exécutée,
donc le résultat monté en SGA).

query: nombre de blocs (lecture consistante, équivalent & consistent gets de
EXPLATN PLAM).

current : nombre de blocs en mode CURRENT (équivalent & db block gets de EXPLATN
PLAN).

rows 1 nombre de lignes traitées (n'inclut pas les sous-requétes) ; pour les extractions, ce
nombre se trouve dans la ligne Fetch ; pour les mises A jour, il se situe dans la ligne
Execute.

Plutdt que de focaliser sur cpu et elapsed, surveillez disk et query. En effet, trouver systé-
matiquement un grand nombre de lectures physiques pour la méme extraction peut étre inquié-
tant et peut mener a un travail sur la meémoire (tuning). De méme, frouver un trés grand nombre
de blocs manipulés pour un faible nombre de lignes retournées peut imposer de réorganiser
les données (index, cluster; etc.).

Plus le temps cpud'une requéte différe du temps d'exécution avec attentes (elapsed), plusil
est probable gue certaines contentions du systéme d'exploitation existent (CPU trop sollicitée,
beaucoup d'entrée-sorties, répartition physique mal adapteée, verouillages, efc.).

Le nombre de blocs lus (query+current) est le facteur influencant les autres, notamment
rows ; il n'est pas anormal que ce dernier soit egal a 10€ si 10° blocs sont également lus. En
revanche, vous devrez peut étre agir si I'extraction lit 108 blocs pour ne ramener que quelgues
lignes.

Tous ces facteurs sont & diviser par le nombre de fois ol la requéte a &té exécutée (count).
Traiter un million de blocs en un appel est bien plus performant que de les traiter en
10 000 appels.

@ Editions Eyrolles 569

| Partie W S0L avaned |
La seconde partie du fichier de sortie concemne le plan d’exécution et les attentes.
Tableau 12-15 Résultat (2/2) de thprof
Seconde partie du fichier de sortie
Eonws Row Source Operation
104 SORT ORDER BY (cr=250 pr=0 pw=0 time=0 us cost=777 s5ize=2892720 card=42540)
104 HASH JOIN (er=250 pr=0 pw=0 time=717601 us cost=89 5ize=2892720 card=42540)
E TABLE ACCESS FULL SPORT (cr=7 pr=0 pw=0 time=0 us cost=3 #ize=1144 card=104)
3281 HASH JOIN fer=243 pr=0 pw=0 time=123756 us cost=85 2ize=279756 card=4908)
3195 TAEBLE ACCESS FULL ADHERENT (cr=1%0 pr=0 pw=0 time=35517 us cost=6% size=156555
card=3195)
27011 TABLE ACCESS FULL FRATIQUE l(cr=53 pr=0 pw=0 time=74659 us cost=15 size=216088

card=27011)

Elapzed times include waiting on following events:

Event waited on Times Max. Wait Total Waited
—— Waited =--remcmes ccmceeeee——-
50L*NHet message to client a 0,00 0.00
Disk file operations I/0 1 0.01 0.01
asynch descriptor resize 2 0.00 0.00
SQL*Net meszage from client g 0,11 Q.77

570

La signification de chaque ligne (row source) du plan d'exécution est la suivante. Afin d’obte-
nir ces détails, la trace de la session doit &tre désactivée avant d'exécuter le rapport (cr dési-
gne les lectures consistantes, r les lectures physiques et w les écritures physigues). On retrouve
i chaque étape, le temps d’exécution en microsecondes (time), le cofit (cost qui engloble le
cofit des étapes précédentes), la taille en octets (size) et le nombre de lignes traitées (card).
Concernant cette requéte, on peut dire que le coiit principal est le tri final de la jointure qui
concerne 250 blocs.

Bilan
Ne tenez pas compte uniquement des plans d'exécution lors de I'analyse d une trace tkprof.

L'étude du nombre de blocs est primordiale ; a ceux qui dédlarent « Le select met 50 secondes
& répondre, pourtant il n'y a pas d'access full | », on peut répondre gu'un access full ne rime
pas avec requéte mal écrite. Au contraire, guel gue soit le volume d'une table, Oracle se dis-
pense en fait souvent des index (& plus forte raison quand le volume de la table est faible).

Un index doit &tre examiné de prés (a créér s'il n'existe pas) et modifié si le nombre de blocs
traités est important par rapport aux lignes retounées. Plus le ratio {query+current)/rows est
important, plus il faut surveiller l'instruction SQL.

& Editions Eyrolies

[chapitre n® 12

Dpimisations |

Assurez-vous que vos configurations de tests et de production solent identiques sinon les plans
d’exécution seront différents. De méme, si vous tracez un programme, créez un index, puis
analysez le rapport ; les explains peuvent utiliser cet index et vous ne serez pas dans les mémes
conditions.

Enfin, il est possible d'exécuter tkprof méme si I'application n'est pas terminée. Bien que
certaines données concernant les lignes, blocs et temps n’ apparaissent pas, les plans d’exécution
sont disponibles.

Panuetage DEMS_APPLIGATION INFO

Dispenible depuis 1a version 9 release 2, le paquetage DEMS_APPLICATION_IMFO sert i enre-
gistrer des informations de surveillance utiles. Ces informations sont stockées dans les vues
VSSESSION et VSSQLAREA. Ce paquetage permet de répondre aux problématiques ou scéna-
rios suivants :

Quelle est 'application qui exécute la session, quelle est la partie du code exécutée ou
encore combien reste-t-il de temps avant de terminer 1’ opération en cours ?

Une procédure s’exécute et il est nécessaire d’éviter des exécutions simultanées (une
procédure doit étre en mesure de savoir si une autre est déji en cours d’exécution).

Plusieurs procédures effectuent des mises 4 jour qui peuvent entrainer des erreurs dues aux
verrous (ORA-00054 - resource busy ou ORA-00060 - deadlock detected).

Initialisation des informations
Afin d’informer d’autres applicatifs, votre application peut initialiser :

le nom du module (en général le nom de 1'application, de la procédure, du déclencheur,
etc.) & I'aide de la procédure SET_MODULE ;

le nom de 1'action (en général le nom de la transaction, la valeur d'un compteur, etc.) &
I'aide de la procédure SET_ACTICN;

des mnformations 4 propos du client (de toute nature) i 1'aide de la procédure SET
CLIENT TNFO.

Le tableau suivant décrit une procédure (qui ayjoute une ligne i la table Sport et compte
ensuite le nombre de sports) et informe de son exécution en ufilisant le paguetage DEMS
APPLICATION INFO. L'extraction des informations est réalisée en interrogeant la wvue
VSSESSION en précisant qu'il s’agit de la session en cours. Pour cela, il faut utiliser la vue
VSMYSTAT qui concerne les statistiques de la session en cours et tester le contexte d’exécution
a1'aide de I'identifiant de la session auditée (audsid).

@ Editions Eyrolles 571

| Partie W S0L avaned |

Tablean 12-16 Utilisation de DBMS_APPLCATION INFD

Procédure Initialisant les informations: Interrogation du dictionmalre

CREATE PROCEDURE ajoute_sport
(v_spid NIMBER, v_splibelle VARCHAR) AS
v_nbreport NUMBER :=0;

BEGIN SELECT =sid, serial#, module,
DBMS_AFPLICATION INFO.SET_CLIENT INFO action, client_info
{client_info => 'client Web'): FROM VESESSION
DBMS AFPPLICATION INFO.SET MODULE WHERE sid =
{module_ name => 'ajoute_ sport’', {SELECT DISTINCT sid
action name => NULL); FROM VESMYSTAT)
-- Transaction AND audsid =
INSERT INTO Sport (apid, splibelle) SYS5_CONTEXT (" usersnv',
VALUES (v_spid, v_splibelle); *gesaionid');
COMMIT;
SELECT COUNT(*) INTO w_nbrsport
FROM Sport;

DEMS APPLICATION INFO.SET_ ACTION
{action names => 'Nombre de sports @ !

| | w_nbreport);
END;
-- régultat de la regquite
SID SERIALY MODULE ACTICN CLIENT_INFO
19 111 ajeute_sport Nombre de sports : 13 eclient Web

En principe, il faut réinitialiser le nom du module, de "action et les informations du chient i la
fin de la transaction de sorte que ces données ne caractérisent pas toutes les transactions
suivantes de la session. L'appel aux procédures snivantes : SET_MODULE (NULL, NULL) et
SET_CLIENT INFO(NULL) du paquetage DBMS APPLICATTION TNFO doivent donc précéder
le EMD final.

Lecture des informations

11 est possible d’extraire le nom du module, de 'action et les éventuelles informations du
client a I'aide de READ MODULE, READ ACTION et READ CLIENT INFO du paquetage DEMS
APPLICATION TNFO. Le tableau suivant décrit un bloc qui extrait les informations de la
558101 €N COUTS.

572 & Editions Eyrolles

Ooiimisations |

[chapitre n® 12
Teblesn 12-17 Etraction d'informations avec DBMS APPLIC ATION_INFO

Procédure qui extralt les informations Résultat
DECLARE

v_elient_info VARCHARZ (64); ajoute_sport/Nombre

v_module VARCHARZ (48) ; de azports

v_action VARCHARZ (32); 1ifelient web
BECIN

DBMS_APPLICATION INFO.READ_MODULE(v_mcdule,w_actien);

DBMS_APPLICATION_INFO.READ_CLIENT INFO(wv_client_infa);

DEMS._OUTPUT. PUT_LINE

(v_module| |/ | |v_action] | '/ | |voclient_info);
END;
Contrile de la concurrence
Les informations du DEMS_APPLICATION INFO permettent aussi de contréler la concurrence
des procédures cataloguées. En effet, au lieu de coder I'exclusivité des processus par des
verrous ou par une valeur dans une table (ce qui posera toujours probléme si une session est
tuée ou finit anormalement), il suffit de consulter la vue V$SESSION pour constater si une
procédure donnée est en cours ou terminée.
Le tableau suivant décrit la fonction qui s"assure de I'exécution exclusive des procédures pl et
p2. Le raisonnement vaut également si pl et p2 ne font qu'une (on interdit alors & la procédure
d'étre multisession).
Tableau 12-18 Conirdle de ia concurrencs d'exéculion
Fonctien et les deux procédures

CREATE FUNCTION verifie esec{v_module IN VARCHARZ) RETURN BOODLEAN IS
w_nbre INTEGER;

BEGIN

SELECT 1 INTO v_nbre FROM V3SESSION

WHERE module = v_module AND ROWNUM = 1;

RETURHN {FALSE) ;
EXCEPTION
WHEN NO_DATA _FOUND THEN

RETURN (TRUE] ;

END;
CREARTE PROCEDURE pl IS CEREATE PROCEDURE p2 IS
BEGIN EBEGIN
IF NOT verifie exec('p2'] THEN IF ROT verifie_exeec('pl') THEN
DEMS_CQUTFUT. FUT_LINE DEMS_OUTFUT . FUT_LIKE
{'p2 est en cours d''execution...'); {('pl est en cours 4'‘'execution...');
RETIFRN; RETUERN ;
END IF; END TIF;

@ Editions Eyrolles 573

| Partie W S0L avaned |
Tablead 12-18 Coniride de Ia concurence d'exéculion (sulfe)
Fonction et les deux procédures
DEMS_APPLICATION INFO.SET_MODULE DEMS_APPLICATION INFO.SET_ MODULE
{*pl*, "ajout adherent'); {'p2' 'ajout adherent exterieur');
-= transaction ajout adherent .. == transaction ajout adherent exterieur
DEMS_APPLICATION_INFC.SET MODULE DEMS_APPLICATICN_INFO.SET MODULE
(NULL, NULL) ; (NULL, NULL);
END; END;

574

L'utikitaire runstats de Tom Hyte

Célebre gourou Oracle et fondateur du site Atfp:iasktom.oracle.com, Thomas Kyte est aussi
Iauteur du paquetage runstats (runstats_pkg) disponible sur htp:iappsdba.com/techinfo/
runstats.htm. 11 permet de comparer deux solutions d'implémentation différentes (requéte,
instruction, procédure, etc.) en se basant sur un certain type de verrous d’Oracle : les larches.

Ces verrous sont des mécanismes de sérialisation de bas niveau qui protégent les structures de
mémoire partagée dans la SGA. Les latches préservent la mémoire accédée par plusieurs tran-
sactions concurrentes, en interdisant la modification de la zone mémoire en question par
plusieurs process.

Le paquetage de Tom Kyte réalise un calcul ditférentiel des statistiques cumulatives contenues
dans les vues VSSYSSTAT et VSSESSTAT. En comparaison avec les autres utilitaires, runstats
permet de prévoir la solution qui conviendra le mieux en cas de montée en charge du volume
des données.

Il est préférable d'utiliser ce paguetage en travaillant seul sur la base de sorte & ce que les
mesures ne solent pas pertubées par d'autres transactions. Dans un mode mono-utilisateur,
vous devrez privilégier la solution minimisant le temps d'exécution. En revanche, dans un mode
multi-utilisateur, vous devrez préférer la solution minimisant les latches.

Préalables

Sous SYS AS SYSDEA, attribuez & 1'utilisateur qui désire exécuter le paquetage runstats le
droit CREATE VIEW et SELBECT sur les vues SYS.V_STIMER, SYS.V_SMYSTAT, SYS.V_
SLATCH et SYS.V_SSTATMAME. Exécutez ensuite le script runstats. sgl qui définit et implé-
mente le paquetage dans votre schéma.

Exemple

Le tableau suivant décrit deux implémentations de la mise & jour du solde de tous les adhé-
rents. La premiére solution est la pire qui soit car elle vérouille la table, utilise un curseur
parcourant toutes les lignes de la table puis accéde individuellement a chaque enregistrement
par son rowid La seconde réalise la mise & jour globale en une seule instruction.

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

Tahiean 12-19 Deux solations d'lmpiémentation

Mises & jour par térations Mise & jour globale
CREATE PROCEDURE test_plagl AS
BEGIN CREATE PROCEDURE test _sgl AS
LOCE TABLE Adherent IN EXCLUSIVE MODE; BEGIN

FOR rec IN UPDATE Adherent

{SELECT Adherent.* ROWID AS rid FROM Adherent) SET solde = golde + 1.1;

LOOP COMMTIT

UPDATE Adherent SET solde = solde * 1.1 END test_sql;
WHERE rowid = rec.rid;
END LOOE;
COMMIT;

END test_plagl:

Principe d'utilisation
Le principe est d’appeler le paquetage au début de la comparaison, d’exécuter la premiére

mmplémentation, d’appeler le paquetage, d’exécuter la seconde implémentation puis d’invo-
quer une derniére fois le paquetage afin d’ obtenir les résultats.

Le seul paramétre concerne la procédure rs_stop qui attend une valeur seuil (p_
difference_threshold) déterminant I"affichage des résultats (ici le seuil est fixé a 50). Les
résultats basés sur les statistiques et les latches seront done, pour chaque test, triés par ordre
croissant si la différence des chiffres obtenus (en valeur absolue) excéde: la valeur 50.

Tabieau 12-20 (Milisafon de runstais
Exécution et résultats
BEGIN Appels au paguetage runstats entre I'ex&cution des deux
runstats_pkg.ra_start; solutions d'implémentation & comparer.
test_plsgl;
runstats_pkg.rs_middle;
test_agl;
runstats_pkg.rs_stop (50);
END;

Runl ran in 101 hsecs
Rund ran in 25 hsgecs
run 1 ran in 404% of the time

Hame Runl Run2 Diff
STAT. . .recursdive cpu usage 86 24 -62
STAT. . .Elapsed Time 103 26 =77
STAT...CPU used by this sessio 105 23 -82
STAT.. .consistent gets from ca 474 558 a4
STAT...table scan blocks gotte 419 507 a8
LATCH.similator hash latch 2,339 z,433 a3

@ Editions Eyrolles 575

S0L avaned |

576

Tahiean 12-20 Utlisation de rmnsiats (suite)

Exécution et résultats

STAT, . .gession uga memory max 133,452 [i]
STAT...undo change vector size 2,117,578 3,515,000
STAT...reds size 5,985,752 10,173,954
Runl latches total versus rung -- difference and pect
Runil Run Diff Fot

178,215 198,754 20,579 89.65%

-123 452
1,407,424
4,188,204

La seconde implémentation est plus rapide d'un facteur 4 par rapport & la premiére mais
nécessite un peu plus de ressources concernant les fatches. On notera aussi que la mise i jour

globale implique deux tois plus de volume i la zone redo.

Larticle de Shirish Joshi (hftp:iwww.devx.com/dbzone/Article/407768/1954) compare ces mécanis-
mes. Le premier tableau liste les caractéristiques des outils en fonction de leur capacité 4 répon-

dre a des informations.
Tablean 12-21 GCarsciristigues des ulliitaires
Temps d'exdoution X X
Détails du SQL X
Enirées-sorties logigues X
Montée en chargedatching X
Evénements d'attente

Le second tableau compare les outils en fonction d’autres paramétres d'utilisation.

Tabieau 12-27 Ruwes lacieurs influant les milltsires

Explainplan Autotrace Runstats
Affecté par la mise en cache MNon Oui Oui
Estimé ou réalisé Estimé Estimé Réalisé
Fourni par Oracle Oui Oui Nan
Post-processing Non Nan Non
Facilité de comparaison Difficile Oui Oui

& Editions Eyrolles

[chapitre n® 12 Ooiimisations |

Explain Plan et Autorrace sont des solutions simples i metire en ceuvre, mais elles ne peuvent
désigner que des plans prévisionnels. Enfin, les résultats de runsrars peuvent fluctuer forte-
ment en fonction du cache, de la version et du paramétrage du serveur.

Organisation des données

Cette section décrit les composants de la boite & outils qui vous servira & optimiser vos appli-
cations. Plusieurs mécanismes penvent étre mis en ceuvre de maniére conjointe : les contrain-
tes, les index, le cache, le partitionnement, les voes matérialisées et la dénormalisation.

Des contraintes au plus pres des données

Vous devez définir, sur vos colonnes, le maximum de contraintes d’intégrité atin de renseigner
au mieux I'optimiseur. Bien que la contrainte CHECK ne soit pas encore utilisée par 1" optimiseur,
il est possible que dans le temps cette fonctionnalité soit présente.

Les colonnes NOT NULL

Le fait de déclarer des contraintes NOT NULL ne vous empéche pas de réaliser aussi des tests
du c6té de 1"application. En effet, il peut étre utile de vérifier qu'une valeur est présente dans
un champ de saisie d'un formulaire plutdt que d’attendre d’envoyer un grand nombre d’octets
au serveur qui renverra une erreur du fait d'un ¥OT NULL.

En supposant que la table Sport dispose de la colonne federation {dont les valeurs actuelles
sont non nulles), le tableau swivant présente deux déclarations de contrainte NOT NULL.

Tahleau 12-23 Déciaration de NOT NULL

Déclaration avec CHECK Déclaration en ligne (in fine)
ALTER TRELE Sport ALTER TABLE Sport
ADD CONSTRAINT ck_federation MODIFY federation NOT NULL;

CHECK (federation IS MOT NULL) ;

é; Définissez NOT NULL sur le plus de colonnes possibles pour renseigner l'optimiseur.

Préférez toujours la seconde écriture (in line constraing, pour que l'optimiseur puisse intégrer
cette information, alors qu'il ignorera la contrainte déclarée avec CHECK.

@ Editions Eyrolles 577

S0L avaned |

578

Les colonnes UNIQUE

Pour toute contrainte UNIQUE, un index (unique) est créé. Une contrainte NIQUE différe
d'une contrainte PRIMARY KEY par le fait que les valeurs NULL sont autorisées ; elle n’a donc
pas vocation A identifier toute ligne.

Définissez UNIQUE sur les colonnes potentiellement unigues de sorte que 'eptimiseur puisse
beneéficier d'un index supplémentaire (la désactivation d'une confrainte UNIQUE provogue la
suppression de |'index).

Le tablean suivant présente la déclaration d'une confrainte UNIQUE (création implicite d'un
index de nom un_rom prencm tel) et sa désactivation (suppression implicite d’'un index).
Comme 1l existe des homonymes au sein des adhérents, la contrainte UNIQUE minimale i
metire en ceuvre est composée du nom, prénom et numéro de téléphone.

Tableau 12-24 Déciarstion de UNMUE

Déclaration de la confrainte Désactivation
DLTER TAELE Adherent RLTER TAELE Adherent
ADD CONSTRAINT un_nom_prenom tel DISABLE COMSTRAINT un_nom_prenom tel;

UNIQUE (nom,prenom,tel);

Lindex multicolonnes (nom+prenom+tel) sera bénéfique pour les extractions dont un prédi-
cat est basé sur le nom, le prénom et le numéro, et sur un accés aux trois colonnes simul-
tané.

Indexation

Les différents types d’index ont été brievement présentés au chapitre 1. Sans index, toute
recherche s’apparente 4 un parcours séquentiel de toute la table. Ainsi pour n lignes, le nombre
movyen de lectures est égal n/2, ce qui est trés pénalisant dés que le volume de données devient
important. De plus, ce nombre d’accés croit proportionnellement avec le nombre de lignes
(100 fois plus de lignes implique un temps d'accés 100 fois plus long).

Frudions les cas d utilisation des index d"Oracle de sorte rendre une requéte plus optimale.

Index B-tree

Les index B-tree (B comme Balanced) sont constitués comme des arbres dont les noeuds
aiguillent vers des sous-noeuds (suivant la valeur recherchée) jusqu’aux blocs feuille (leaf
blocks) qui contiennent toutes les valeurs de I'index et les adresses de ligne (rowid) identifiant

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

le segment de données associé. Les blocs feuilles sont doublement chainés de sorte que 1'index
puisse étre parcouru dans les deux sens sans passer par la racine.

Ce mécanisme est bien plus performant qu'un accés séquentiel car pour n lignes, le nombre
moyen de lectures n’est plus proportionnel & n mais & fog(n). La taille maximale d’une entrée
d'index est environ égale & la moitié de la taille des blocs de données (soit de 1’ordre de
4 000 pointeurs pour une taille de bloc de 8 Ko).

Flgure 12-5 Index B-tree (© doc. Oracle)

| Di [LuRh|

e]ols] =] .|z 3fa

.LulDIocu" 4 v L 4 v
a| |@ Slo|2|8|e =] [=1 f=1 [<] 2181512
HHEHNEEEEEHREHHEEENHEHENREHEE
pa-11E1pa 111 -Ipa Lt e o
EEEmEE R B B R REHEE

Un index B-tree est congu automatiquement lors de la création de la clé primaire d’une table et
d'une contrainte UNIQUE. Les arbres B-rree présentent de nombreux avantages :

Malgré les mises i jour de la table, 1ls restent équilibrés (les blocs feuilles sont au méme
niveau). En conséquence, quelle que soit la valeur cherchée, le temps de parcours est sensi-
blement identique. Les blocs intermédiares sont remplis, en moyenne, aux trois-quarts de
leur capacité.

Les performances d'extraction, répondant 4 la majorité des prédicats des requétes, sont
excellentes, notamment les comparaisons d’égalité et d'intervalles.

Les répercussions des mises i jour sont efficaces et ne se dégradent pas en fonction d'une
forte augmentation de la taille des tables.

Nous ne traiterons pas ici des caractéristiques physiques des index (partitions, compression,
pourcentages des tailles de blocs, efc.).

Les principales opérations que |"optimiseur réalise sur un index sont les suivantes :

@ Editions Eyrolles 579

S0L avaned |

580

index unique scan passe par la racine de 1" arbre ; généralement toutes les colonnes de 1'index
sont concernées par une égalité dans le prédicat WHERE. Il s’agit en principe de la maniére
la plus optimale, mais qui n'est pas toujours utilisée par |'optimiseur au profit de range
scan.

index range scan passe par laracine de |'arbre et accéde séquentiellement aux blocs feuille
(doublement chainées). Opération trés utilisée par I'optimiseur, notamment lorsque une
colonne de I'index est concernée par une in€galité dans le prédicat WHERE, et que l'index
n'est pas unique. Dans tous ces cas, ['optimiseur juge qu'il est plus rapide de parcourir les
feuilles de 'index plutdt que I'index lui-méme.

Figure 12-6 Accés direct et par parcours par intervalles d'un index B-tree

A

I g T
Index umgne scan Tndex range xean

index full scan et index fast full scan sont une alternative au parcours ful | rable scan quand
I'index contient toutes les colonnes necéssaires i la requéte et qu'au moins une de ces
colonnes est MOT NULL Il ne peut pas &tre utilisé sur un index bitmap ; le parcours de 1'index
entier est plus rapide car il se réalise en mode lecture multibloc et peut &tre parallélisé.
index skip scan (concemne les index multicolonnes) utilise l'index alors que la (ou les)
premiére(s) colonne(s) de I'index n’est (ne sont) pas présente(s) dans le prédicat WHERE.

Figure 12-7 Parcours séquentiel et par saut d'un index B-tree

L b

Tnddex: flased fill scan Index skip scan

& Editions Eyrolles

[chapitre n® 12 Opfimisations

- Généralement, afin d'iscler le stockage physique des index, on utilise un tablaspace dédié (qui
peut se trouver sur un autre disque gue celul des données). Il est aussi d'usage de créer un
index pour chaque clé étrangére afin de rendre plus efficace les jointures.

Le tableau suivant présente d'une part la création de I'espace de stockage pour héberger les
index et, d"autre part, la création d’index affectés i cet espace (une clé primaire et une clé
etrangére non unique).

Tableau 12-25 Création d'index &n associafon avec un Bblespace

Création de I'espace Création d'index.
--golonne "clé primaire"
CEREATE TABLESPACE ths index ALTER TABLE Adherent
DATAFILE 'tba_index.dat' ADD CONMSTRAINT pk Adherent PRIMARY EEY
SIZE 500M REUSE (adhid)
AUTOEXTEND ON USING INDEX TABLESPACE tbs_index;

NEXT 500K MRXSIZE 2000M;
--golonne "ecldé Strangére”
CEEATE INDEX idx Praticque_adhid

ON Pratigue (adhid) TABLESPACE tbs index;

Pour se convaincre de 1'utilité des index, exécutez la requéte avec et sans index (il s’agit d'une
division) qui extrait les adhérents inscrits i tous les sports. L adhérente la plus sportive est,
sans conteste, Céline Larrazet et il faut 36 secondes sans indexage pour découvrir 1'identité de
la championne alors que la réponse est quasi instantanée en présence d'index sur les clés
étrangéres. Les chiffres sont éloquents méme pour une volumétrie réduite (24 000 adhérents
dans 1 800 blocs) : sans index, on recense 20 fois plus d’accés aux blocs et de nombreux fris.

Teblean 12-26 Performances d'ume extraciion avec ol sans index

Avec Index Sans Index

SELECT a.ciwvilite, a.prenom, a.nom, a.tel FROM adherent a
WHERE NOT EXISTS
(SELECT spid FROM Sport
MINUS SELECT spid FROM Pratigque WHERE adhid = a.adhid)
AND NOT EXISTS
{SELECT zpid FROM Pratigque WHERE adhid = a.adhid
MINUS SELECT spid FROM Sport);

CIVILITE PRENOM WOoM THL

Mime . CEL INE LARRAZET 05-62-18-04-T8
3 centidmes de secondes 36 secondes

114 recursive calls 533 recursive calls

72734 consistent gets 1442719 censistent gets

4] sorts |(memory) 48080 sorts (nemory)

@ Editions Eyrolles 581

S0L avaned |

582

&

Bien que les index B-tree soient majoritairement employés, ils ne conviennent pas aux condi-
tions suivantes :

Données de faible cardinalité : on considére qu'une colonne disposant de moins de 200 valeurs
disctinctes n'est pas une bonne candidate & un index B-tree (par exemple, la divilité qui ne
comporte que 3 valeurs). Les index bitmap sont une alternative a cette limitation.

Quand I'accés aux données s'effectue par une fonction SQL (built-in function), l'index B-free
n'est pas utilisé (par exemple WHERE UFPER (prenom)='PAUL' n'emploiera pas l'index sur
prenon). Le fait de créér un index sur cette fonction est une alternative & cette limitation.

Index et expressions (built-in function)

Sivous utilisez des fonctions caractéres (UPFER, SUBSTR, RTRIM, etc.) ou des tonctions numé-
riques (MOD, ROUND, TRUNC, etc.) dans le prédicat de vos requétes, n’espérez pas utiliser vos
index.

Le tableau 12-27 présente les résultats de différentes requétes selon deux stratégies d’indexage.
La volumétrie de la table Adherentbis est de plus d'un million d’adhérents (88 Mo de donn-
nées occupant prés de 90 000 blocs). Pour chaque requéte, sont donnés : le type de parcours de
'index (table access full : I'index n'est pas utilisé), le nombre de blocs lus (k) et le cofit (c).

Tabieau 12-Z71 Utlisation dindex B-ree sur des expressions de colonmes

Index existants Prédicats et résultats

CREATE INDEX idx_nom
ON Rdherentbis |nom)
TABLESPACE ths_index;

CREATE INDEX idx_szolde
ol Adherentbis (solde)
TABLESPACE ths_indes;

WHEEE noms='DUCLOS"
BND ciwvilite='Mr.'
AND tel LIKE '+33%'

Index range scan
(578 b-110¢)

WHERE

UFEER (mom) = ' DUCLOS '
BND ciwvilites='Mr. '
AND tel LIKE '+33%'

Table access full
(10236 b— 2797 ¢)

WHERE ROUND (@olda,1)=59030.8

Table access full
(10235 b— 2802 ¢

WHERE solde=9030.75

Index range scan
3b-3¢

CREATE INDEX idx UPFERnom
ON Adherentbis
(UPPER (nom) |
TABLESPACE ths_ indesx;

CREATE INDEX
idx ROUNDsolde
ON Adherentbis
{ROUND (solde, 1))
TABLESPACE tbs_index;

WHERE nom='DUCLOS!'
AND civilites'Mr.'
AND tel LIFE '+33%'

Table access full
(10220 b—-2795 ¢)

WHERE

UFPPER{nom)='DUCLOS "
BND eiwvilite='Mr.'
AND teel LIKE '+331%'

Index range scan
{578 b— 107 ¢}

WHERE ROUND (solde,l1)=9030.8

Index range scan
3b-3d

WHERE solde=2030.75

Table access fulf
{10229 b - 2795 ¢)

& Editions Eyrolies

[chapitre n® 12

Ooiimisations |

Les remarques que I’on peut déduire & propos de la premiére stratégie d’indexage sont les
suivantes :
Les fonctions ROUND et UPPER rendent inopérants les index définis pourtant sur les colonnes
CONCErnées.
Les index sur les colonnes numériques sont plus performants que les index sur les colonnes
chaines de caractéres.
Concernant la deuxiéme stratégie d'indexage, les fonctions ROUND et UPPER rendent opéra-
tionnels les index, mais les conditions simples sur les colonnes entrainent un parcours entier
de la table.

Index et NULL

Le principe de fonctionnement des index B-free ne permet pas une recherche directe (unigue
scan) sur une absence de valeur (NULL) ; en conséquence, si un index existe sur une colonne
non nulle, il ne sera pas utilisé au mieux lors de la recherche des NULL (prédicat IS NULL ou
IS MOT NULL).
Pour indexer efficacement une colonme qui peut confenir des NULL, plusieurs solutions
s'oftrent & vous :
index basé sur une fonction déterministe qui retourne un entier quand la colonne vaut
NULL ;
index composé par une colonne qui n'est jamais NULL ;
index basé sur une fonction adéquate comme NVL2 (chaine, valeur si_ NOT NULL,
valeur si_NULL).

Appliquez ces différentes solutions i votre base de sorte & déterminer la plus performante. Le
tableau suivant présente quelques résultats d'aprés la recherche du nombre d'adhérents en
fonction de leur numéro de téléphone donné (MULL, valeur, MOT NULL). Concernant les
données, 37 485 adhérents n’ont pas de numéro de téléphone (soit 3 % de la population). Pour
chaque type d’indexage, sont donnés la taille de 'index en Mo, le type de parcours de I'index,
le nombre de blocs lus (b) et le cofit ().

Tablean 12-26 UillisaSon d'index B-iree sur une coienne avant des valeurs NULL

SELECT COUNT {nom) tel='06-81-94-
FROM Adherent WHERE. Condition sur la nullité 44-31" tel IS NOT NULL

Sans index tel IS NULL

Table access full Table access full Table access full
(10228 b— 2793 0) (10228 b-2796) (10228 b— 2793 ¢

Index B-tree (taille : 38 Ma) tel I3 NULL
CREATE INDEX idx_tel btree Table access full Index range scan Index fast full scan
ON Adherent (tal); (10228 b—-2793 ¢ {4b-5¢g {4756 b— 1293 ¢}

@ Editions Eyrolles 583

S0L avaned |

584

Tablesn 12-28 Utilisation d'index B-ree sur une colomne ayaml des valewrs NUEL (suite)

SELECT COUNT {fiom)

FROM Adherent WHERE..

Condition sur la nullite

tel="'06-81-94~
44-31"

tel IS5 WOT NULL

Index fonction (talle : 0,68 Mo)

CREATE FUNCTION £_tel null
(p_tel Adhersntbiag. tel$type]
RETURN NUMBEF DETERMINISTIC AS

BEGIN

IF p_tel IS NULL
THEN RETURN 1;
ELSE RETURN NULL;
END IF;

END f_tel _null;

CREATE idx tel btree
ON Adherent (£ tel naull(tal});

f_tel null{tel)=1
Index fast full scan
(28 b—84 ¢)

Table access full
(10228 b—- 2796 c)

Sans objet

Index composé (taille : 41 Mo)

tel I35 NULL

CREATE idx_tel btree Index range scan Index range scan Index fast full scan

Oer Adbazant. (Eel,0)) (166 b—76 ¢} [4b=5c) (5150 b 1388 ¢)
Index fonction NVL2 (taille : 0,62 Mo) NVL2{tel,NULL,0)=0 Sans objet
CREATE INDEX idx tel btree Index fast full scan Table access full

OoN hdherent (NMVLZ(tel NULL,0)):

(T4 b-21 6

(10228 b—- 2796 ¢)

Index unigue (taile : 37 Ma)
CREATE UNIQUE INDEX idx tel_btree
OoN Adherentbis (tel);

tel IS NULL
Table access full
(10228 b—2793)

Index unigue scan
4b-3¢c)

Index fast full scan
{4598 b— 1250 ¢

Les index les plus performants sont :

Pour répondre au prédicat I8 NULL, ceux qui utilisent une fonction (déterministe pour 1'un

et VL2 pour |'autre).

Pour répondre au prédicat col=valeur, I'index classique, unique ou composé, qui offre

les mémes résultats.

Pour répondre an prédicat IS NOT NULL, |'index unique.

Index bitmap

Un index bifmap est organisé comme un index B-free dont chaque feuille permet de pointer
vers plusieurs lignes. Chaque en-téte de binmap contient un rowid de début et de fin. A partir
de ces valeurs, un algorithme met les birmaps en correspondance avec des rowid. Chagque posi-
tion de bitmap correspond 4 une ligne potentielle de la table, méme si cette ligne n’existe pas.
Le contenu de cette position, pour une valeur particuliére, indique si la ligne contient ou non
(1 ou 0) cette valeur dans les colonnes du bitmap.

& Editions Eyrolles

[chapitre n® 12

Ooiimisations |

Flgure 12-8 Accés direct et par parcours par infervalle dun ihdex B-tree

Table
Index B-tree
<My 10.0.3; 12.8.3, @umoouo 210000000
<Mile. 10.0.3; 12.8.3, /000101000 000000000 100100000>
<Mmes 10.0.3, 12.8.3, 010000000 001100000 000001001>
< 10.6.3, 12.8.3, 001000000 100000000 0010000102
clé ROWID ROWID Bitmap

dedébut defin

Les index bimmap sont trés répandus dans les environnements OLAP (OnLine Analvical
Processing) caractérisés par d’importants volumes de données et par 1" absence de mises i jour.
En effet, le verouillage d'un index birmap entraine aussi le verouillage de nombreuses lignes
de la table concernée.

L’indexation bimmap est idéale pour des colonnes de faible cardinalité sur des tables volumi-
neuses (quand le nombre de valeurs distinctes est trés nettement inférieur au nombre de lignes
de la table, de 'ordre de 1 %).

Les index bitmap sont performants pour les requétes ol chaque critére retourne beaucoup de
lignes et la sélectivité de 'ensemble des critéres est forte.

Il est déconseillé de créer des index bitmap sur des tables trés fortement actualisées car il est
trés coiiteux de reconstruire l'index a chague mise a jour.

Les index bitmap sont de taille réduite et acceptent de gérer les NULL.

Le principe du bifmap consiste & créer pour chaque ligne de la table un mot binaire comportant
autant de bits que de possibilités de valeurs de I'index. Lors d'une recherche, un simple AND
binaire valide ou non les correspondances entre les colonnes testées.

Dans 1'exemple, les valeurs possibles de la colonne civilite somt: 'Mr.', 'Mme.' et
'Melle. '. Chaque ligne de la table sera potentiellement associée a un des mots de 3 bits
suivants : 000 pour NULL, 001 pour 'Melle.', 010 pour 'Mme.' ou 100 pour 'Mr." Le

@ Editions Eyrolles 585

S0L avaned |

tableau suivant présente quelques résultats de recherche du nombre d’adhérents en fonction de
leur civilité. L'index le plus performant concernant la colonne civilite est sans conteste le
binnap.

Tableau 12-28 UuHsatlon d'index sur une colonne de faibie cardinalite

SELECT COUNT (nom) civilites'Mr ' civilite IN OT (eivi-
FROM Adherent WHERE. (‘Mlle.', 'Mme.') lite='Mr,')
Sans index Table access full Table access fll Table access full
(10235 b—2793 ¢) (10235 b-2795¢) (10235 b- 2793 ¢)
Index bitmap (taille : 0,43 Mo) Bitmap index single Bitmap index single Bitmap Index fast full
CREATE BITMAP INDEX idwx civilite bitmap value value scan
oN Adherentbis (civilite) (20 b—-14¢ (38 b—29¢) 53 b-42¢)
TABLESFACE ths_index;
Index B-free (tallle : 21 Mo) Index fast full scan Index fast full scan Index fast full scan
CHEATE INDEX idx_civilite _htree (2602 b—712 ¢) (2602 b-741 &) (2602 b—-T12 €)

Ol Adherentbis (civilite)
TABLESFACE ths_irdes;

586

&

Lutilisation optimale d'un index bitmap concerne les égalités col=valeur, les comparaisons &
des ensembles col IN (vl,v2..) que l'optimiseur traduit en col=vl COR col=v2., et les
inégalités NOT (col=valeur) que l'optimiseur traduit en colesvaleur.

Index multicolonnes

Un index peut étre composé de plusieurs colonnes (on parle aussi d'index multicolonnes ou
concaténé). Les colonnes de 'index ne doivent pas nécessairement éire adjacentes.

Le nombre maximal de colonnes est fixé a 32 pour un index B-tree et 30 pour un index bitmap.
Les colonnes LONG et LONG RAWne peuvent pas éfre indexées.

Les index multicolonnes offrent 1'avantage de pouvoir combiner des colonnes {ou expres-
sions) présentant une faible sélectivité pour former un index dont la sélectivité est plus élevée.
Par ailleurs, si toutes les colonnes concernées par une interrogation se trouvent dans un index
composé, 1'acces a1'index suffira (pas de nécessité d’accéder a la table).

Un index composé est utile principalement lorsque vos clauses WHERE font souvent référence
4 'ensemble, ou & la partie de téte, des colonnes de I'index. La version 10g a introduit la
recherche index skip scan pour utiliser un index composé en s'affranchisant d’'une partie de
I'en-téte de cet index (ses premiéres colonnes).

& Editions Eyrolies

[chapitre n® 12

Opiimisaiions

&

Bien que 'ordre des colonnes d'un index compesé ait moins d'importance gu'avant la version 9i
(les statistiques de la version 11g permettent de représenter la distribution relative de données
entre plusieurs colonnes), choissisez les colonnes les plus fréquemment ufilisées pour constituer
la téte de l'index.

Loptimiseur n'utilisera 'algorithme index skip scan que si la cardinalité de la (des) premiére(s)
colonne(s) de l'index est relativement faible (selon ses statistigues).

Mlustrons cet aspect des choses avec deux index créés sur la table Adherenthis. Le premier est
composé du nom, prénom et civilité, le second de la civilité, du nom et du prénom. Soumettons
4 ces deux index plusieurs requétes comportant dans la clause WHERE des prédicats basés sur
des colonnes appartenant ou non aux index.

Tableau 12-30 UtEsation dindex multicolonnes

Type d'Index Requétes et résultats
Index sur nom-+prénom-+civilité WHERE nom='..' WHERE prenom='..' WHERE prenom='.'
Taille : 42 Mo END prenom=‘..' AND civi- AND edwvi-
CREATE IMDEX idx _nom pre_ciwvilite AND civilite='.' lites'.." lite='..'
Ol Adherentbis AND tel='.."
{mmnﬂ‘l. Sivilita) Index range scan Index fast full scan Table access full
TABLESPACE tbs_index; {57 b=d) {5244 b 1388 ¢} {10229 b—2795 ¢)
Index sur civilté-+nom+prénom WHERE nom="'..' WHERE prefioi='..' WHERE prenom='..'
Taille : 42 Mo LEND Dprenom='..' END civi- BEND civi-
CREATE IMNLEX idx_civilite nom_pre AND civilite=rl lite=" " lice="L"'
ol Adherentbis BND tel='."'
T; ;:;;;:;,:En,frznm) Index range scan Index fast full scan Index range scan
s {56 b—4 o) {5245 b— 1473 ¢ (6830 b— 26 o)
WHERE nom="'..'
IND prenomns".."
Index skip scan
(73b-6¢c)

&

Lorsque la colonne nom (de grande cardinalit€) est en téte de I'index, aucun saut d’index n'est
réalisé et toute requéte n'utilisant pas cette colonne dans la clause WHERE est peu performante
(acces full).

Lorsque la colonne eivilite (de és faible cardinalité) est en téte de P'index, des sauts
d'index peuvent se produire et améliorer trés notablement les performances.

Si deux colonnes sont fréquemment utilisées simultanément, il vaut mieux employer un index
composite gue deux index monocolonnes.

Lors de la création d'index multicolonnes, ordonnez de préférence les colonnes de la plus faible
ala plus forte sélectivité.

@ Editions Eyrolles 587

| Partie W S0L avaned |

Index et expressions

1l est important de dissocier un index concernant une colonne et utilisation de cette colonne
dans une requéte via une expression.

Le fait d'indexer une colonne n'indique pas A 'optimiseur de mettre en ceuvre l'index lorsque la
comparaison concerne une expression sur la colonne et non la colonne elle-méme. Vous
devrez alors définir un index équivalent & l'expression.

Illustrons ce point avec deux index créés sur la table Adherentbis. Le premier est défini i
partir de la date de naissance, le second sur une fonction qui formate cette date. Soumettons
i ces deux index plusieurs requétes comportant dans la clause WHERE différents prédicats. Le
tablean suivant présente les résultats.

Tableau 12-31 Intdex basés sur une expression

Type d'index Requéies el résultats
Index sur la date de naissance SELECT SELECT SELECT al.tel, al.nom,
Taille : 25 Mo OOUIT | riom) COUNT(DISTINCT nom), al.date_nais
CREATE INDEX idx datenais FROM Adherentbis — TO_CHAR(date nais, FROM Adherentbis al,
O ndberentbis WHERE TO_CHAR ' DD/MMSYYYY) Adherentbis a2
(date nais) (date_nais, FROM Adherentbis WHERE NOT (&l . nom=a2 . nom)
TABLESFACE tbs_index; ' DD/ YTV) GROUP BY date_nais; AND al.date nais=
=117401/1980" ; a2.date_nais
AND TO_CHRR
{al.date_nais,
DD/ MM/ TYYY)
='17/01/1980" ;"
index fast full scan Table access full Table access full
(3135 b —BBE &) (10243 b -2B45 ¢ (20470 b-5621 &
Index sur une expression Méme requéte Méme requéte Méme requéte
Taila: 25 Mo Index range scan Table access full Index range scan
CREBATE. THDER 7b-3d (10243 b—2845 & (10291 b—2872 &

idx_to_char datenais
ON Bdherentbis
(TO_CHAR (date_nais,
'DD/MM/YYYY)
TABLESPACE ths_index;

Le premier index (qui n’est pas basé sur I'expression) :
Est utilisé dans 1a premiére requéte bien qu'il ne soit pas déclaré sur la fonction To_CHAR.

N'est pas utilisé dans la seconde requéte malgré le fait qu'il ne soit pas déclaré sur la
colonne date_nais (un regroupement ne justifie pas le parcours de I'index).

588 & Editions Eyrolies

[chapitre n® 12

Opiimisaiions

N'est pas utilisé dans la troisiéme requéte malgré le fait que le prédicat porte sur une
égalité des colonnes indexées (1'optimiseur juge qu’'il est plus intéressant de parcourir les
deux tables).

Le deuxiéme index (basé sur 'expression) :

Est utilisé de fagon optimale dans la premiére requéte car il est déclaré sur la fonction TO_
CHAR.

N’est pas utilisé dans la seconde requéte du fait qu’aucun prédicat ne le concerne.

Est utilisé dans la troisiéme requéte (et divise par 2 le coiit) car un prédicat le concerne.

Choix d'indexage

Quelques régles relatives & la gestion des index

Créez les index aprés l'insertion des données dans la table. Les données sont souvent char-
gées wia SQL*Loader ou un utilitaire d'importation et il est plus efficace d'insérer les données
avant d'y associer des index.

Créez un index si vous désirez extraire souvent moins de 15 % des lignes d'une table volumi-
neuse.

Il est important de connaitre le nombre de blocs concernés par un balayage de l'index en compa-
raison d'un parcours entier de la table. Si une table centient un million de lignes dans 5 000 blocs,
et gue les valeurs d'une des colonnes soient réparties sur plus de 4 000 blocs, il ne sera pas
optimal de créer un index.

Pour améliorer les jointures, indexez les clés étrangéres.
Les tables de faible volumétrie ne nécessitent pas d'index.
Les colonnes potentiellement indexables présentent les caractéristiques suivantes :

Il existe une grande plage de valeurs gui sont relativement uniques dans la colonne (index
B-tree).

Il existe une petite plage de valeurs (index bitmag).

Elles contiennent de nombreux NULL, mais les extractions concernent frés souvent les
lignes dont |a valeur est non nulle.

Taille d’un index

La procédure CREATE TNDEX COST du paquetage DBEMS3 SPACE (dédié a I'évolution des
segments et espaces pour les tables et index) permet de déterminer le coiit de création d'un
index. Avant d'utiliser cette procédure, vous devez vous assurer que la table existe et que les
statistiques sont collectées.

@ Editions Eyrolles 589

| Partie W S0L avaned |

Le script suivant décrit 1'appel de cette procédure qui retourne la taille du futur index unique
(42 Mo} sur les colonnes nom, prencm et tel du volume occupé (62 Mo) dans le segment du
tablespace the_indes.

Tableau 12-32 Estimation de ia tallle d'un index

Appel de la procédure et résultats

S0L> VRRIABLE v_octets_index HUMBER
SQL> VARIAELE v_octets_segment NUMBER
SQL> VARIABLE v_sgl CHAR{100)
SQL> EXEC v _sgl:="CRERTE UNIQUE INDEX idx_nom pre tel
ON Adherentbis (nom, prenom, tel) TABLESPACE tbs_index'
Procédure PL/SQL terminde awvec succés.

20L> EXEC DBMS SPACE.CHREATE IMDEX COST(:v_sgl, :v_occtete index, :v_octets gegment)
Procédure PL/SQL terminde avec succés.

SQL> PRINT :v_octetg index
V_OCTETS_INDEX

42394212
SQL> PFRINT :v_octets segment
V_OCTETS_SEGMENT

62914560

Réglage des index

Les quatre principaux facteurs qui guident I optimiseur i choisir ou non un index sont la sélec-
tivité des données, la taille des blocs, 1a taille moyenne des lignes et la cardinalité,

En fonction de ces facteurs, 'optimiseur étudie le clustering factor qui indique la synchroni-
sation entre I"ordre des rowid dans les feuilles de I'index et ceux de la table. Cette information se
trouve dans la colonne CLUSTERTNG FACTOR de la vue DBA INDEXES pour chaque index.
Plus ce nombre se rapproche dunombre de blocs du segment de la table, plus Iindex est optimal.
En revanche, plus il se rapproche du nombre de lignes de la table, moins 'index est optimal.

n Un index sera utilisé de fagon optimale pour les recherches de données sélectives s'il est
! caractérisé par un faible clustering factor.

Bien gu'indexant des donnees sélectives, un index de fort clustering factormanipulant des lignes
de tallle moyenne réduite ne sera généralement pas employé, au profit d'un parcours de la table.

La taille des blocs influence également la stratégie d'Oracle. Les index soumis 4 de nombreuses
opérations range scan ou fast full scan (par lecture multibloc) seront d’autant plus performants
en disposant d'une taille de blocs la plus grande (jusqu’a 32 Ko).

590 & Editions Eyrolies

[chapitre n® 12

Opiimisaiions

Reconstruction des index

Selon la fréquence de mise 4 jour et le volume de données modifiées d une table, vous devrez
reconstruire les index B-free du fait de leur fragmentation. Plus la densité des blocs feunilles est
élevée, meilleur est I'index. A I'inverse, il est souhaitable de reconstruire 1'index lorsqu’il
contient de nombreux blocs peu peuplés. Depuis 1a version 11g, 'outil segment advisor est
capable de détecter les index défaillant et de les reconstruire automatiquement.

Vous devrez choisir entre deux stratégies : la reconstruction (clause REBUILD de ALTER
INDEX) et la fusion (clause COALESCE de ALTER INDEX). Alors que REBUILD permet de
déplacer un index vers un autre tablespace (ou de modifier des caractéristiques physiques), la
tusion se focalise sur des branches de I'index. La reconstruction d'un index existant offre de
meilleures performances que la destruction de 1'index puis sa recréation,

Utilisation des index par I'optimiseur

Plusieurs autres facteurs influencent I'optimiseur sur la fagon d’utiliser un index ou non :
Le volume des tables ou relativement peu de lignes vérifiant une condition ne nécessitent
pas un parcours indexé, ou au contraire, un grand nombre de blocs o le parcours de la
table sera choisi.
Un conseil (hinf) incompatible comme /*+ NO_INDEX (.} */.
Le partitionnement de la table et 'absence d'index global (ou un non partitionnement et
des index locaux).
L'utilisation de variables de session (bind variables). L' optimiseur établit un plan d'exécution
sans connaitre a priori la valeur de ces variables. Une section est consacrée aux variables
de session.

Jointures

Les jointures ont &té étudiées au chapitre 4. Ainsi, plusieurs écritures sont possibles pour
répondre i toute interrogation mettant en relation plusieurs tables (généralement basées sur
I"égalité entre une colonne clé érangére et clé primaire ou unique). Dans toute jointure entre
deux tables, une ligne d'une table est appelée inmer, 'autre outer. Pour choisir un plan
d'exécution, I'optimiseur décide de la stratégie en fonction de plusieurs facteurs :

Le chemin d'accés afin d’extraire les données de chagque table lors de la jointure.

La méthode de jointure pour chaque paire de lignes jointes ; 1'opération adoptée est soit un

nested loop, soit un sort merge join, soit un cartesian join, ou hash join.

L'ordre dans lequel les jointures doivent se réaliser lorsqu’il y a plus de 2 tables en relation.
La deuxiéme jointure s’opére aprés la premiére, etc.

@ Editions Eyrolles 591

S0L avaned |

592

Ne vous souciez pas trop du style d'écriture de votre jointure (relationnel, SQL2, procédural ou
mixte), ni de I'ordre des tables dans la clause FROM. Loptimiseur d'Oracle se chargera de réé-
crire, dans la majorité des cas, votre requéte de la maniére optimale et choisira le meilleur plan
d'exécution (sous réserve d'une collecte des statistiques).

Loptimiseur détermine d’abord si la jointure retourne au final an moins une ligne. Cette
réponse est basée sur les contraintes UNIQUE et PRIMARY KEY des tables. Si ces contraintes
existent, I’optimiseur traite ces tables en premier puis rend optimale la suite des opérations en
minimisant les coiits (via les statistiques) :
des nesied loops en se basant sur le coiit des lectures en mémoire de chaque ligne de la
table oufer et chaque correspondance avec les lignes de la table inner ;

des hash join en s'appuyant principalement sur le coiit de construction d'une table de
hachage ;

des sort merge join en utilisant principalement le coiit des lectures en mémoire de toutes
les données et des tris.

1l existe aussi 'index bitmap join qui combine |'avantage du birmap i celui d’un prédicat de
jointure. Ce type d'indexage convient davantage aux trés gros volumes de données (dataware-
houses).

Nested loops

Une opération nested loop se déroule en trois temps. D'abord |'optimiseur choisit la table sur
laguelle conduire 'itération (outer table) et désigne 'autre table en tant que inner. Ensuite, pour
chaque ligne de |a table outer, Oracle accéde & toutes les lignes de |a table inner.

Les jointures programmées avec |'opérateur nested loop sont trés performantes lorsqu'un
faible nombre de données de la premigre table (oufer) est mis en jointure et que la condition de
jointure accéde efficacement 4 la deuxiéme table (inner). Si le chemin d’accés i la table inner
est indépendant de la table ourer, alors des mémes lignes sont extraites i chague itération de la
table suter (cela dégrade les performances et 1’ optimiseur choigira une opération hash join).

Dans un plan d’exécution, |'itération se présente par le mot-clé NESTED LOOPS, la table ourer
apparait avant la table inner. Dans I’exemple suivant; le hinr USE_NL force 1'opération sinon
un hash join plus performant serait utilisé par I'optimiseur. Selon les versions et releases
d'Oracle, vous trouverez différentes implémentations de 1'opération nested loop. Pour cetie
requéte, 2 904 blocs sont lus pour un cofit de 142,

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

Tahleau 12-33 Jointure mise en @uure avec nested loop

Requéte Plan d'exécution
| Id | operation | name | Rows |
SELECT %5 GOE-NL{R- D 8) ¥ = ceesm g e i e e e s) e i s o e e i e
a.adhid, a.nom, a.tel | 0 | SELECT STATEMENT | | 413§ |
FROM Adherent a, Sport =, Pratigue p | 1 | MNESTED LOOBS | | 4138 |
WHERE £ .splibelle | 2| NESTED LOOPS | | 48066 |
IN ('Escrime’,'Ping-pong') |* 3 TABLE ACCESS FULL| SPORT | 2|
AND a.adhid = p.adhid [TABLE ACCESS FULL| ADHERENT | 24032 |
BND =.s3pid = p.spid; |* & | INDEX UNIQUE SCAN | PE_PRATIQUE | 1

3 - filter("S"."SPLIBELLE"='Escrime' OR
"gn, "SPLIBELLE"='Ping-pong')
5 - access("A". "ADHID"="P","ADHID" AND
"gr,MEPIDY="F" . "SPID")
Statistiques (partielles)
2904 consistent gets
580 rows processed ..

Comme I'illustre 1"arbre suivant, la premiére itération met en jeu la table Sport (outer car elle
ne filre que 2 lignes) qui est combinée i la table Adherent (inner avec 24 033 lignes). Le
chemin d’accés a la table inner est complétement indépendant de la table outer, car il n'existe
pas de colonne commune (aucune ligne extraite ne sera donc identique pour chaque itération).
Le résultat de cette jointure retourne 48 066 lignes. La deuxi#éme itération combine ce résultat
(table outer) avec la table d’association Pratigue en utilisant son index. Des colonnes (adhid
et spid) sont communes et la jointure de ces deux tables restitue finalernent 4 138 lignes qui,
aprés élimination de certains doublons, donnera 590 adhérents.

Figure 12-8 Jointures par boucles imbriquées

L]

SPORT

!

24033 %BLED 48 066 B)
1] 9 anme sa
AOFERENT . 1 V53R STATEMENT

o
I

PK
PRATIOUE

@ Editions Eyrolles 593

S0L avaned |

Le hintMo _USE_NL (aliasl ..) interdit a 'optimiseur 'utilisation de beucles imbriquées pour
programmer les jointures.

Hash joins

Les jointures programmées avec 'opérateur hash join sont trés performantes lorsqu’il s'agit
de joindre d'importants volumes de données. Loptimiseur utilisera la table de plus faible
volumétrie pour construire en mémoire une table de hachage sur la clé de jointure. Ensuite, un
parcours de la table la plus volumineuse est réalisée, en vérifiant le prédicat par hachage pour
extraire les lignes jointes.

L'opération de hash foin est majoritairement utilisée pour les équijointures et quand un grand
velume de données doit &tre joint ou une importante fraction d'une table de faible taille doit &tre
jointe.

Dans un plan d’exécution, la jointure se présente par le mot-clé HASH JOIN, la table outer
apparait avant la table inner. L'exemple suivant illustre une jointure sur 3 tables (c’est la méme
requéte que la précédente écrite sous la forme SQL2). Le plan d’exécution est plus performant
que le plan nested loop, seulement 348 blocs sont lus (gain de 88 %) pour un cofit de 88 (gain
de 38 %). En écrivant ces jointures sous la forme relationnelle, le plan obtenu serait identique.

Tabieay 12-34 Jointure mise en euvre avec kash joln

Requéte Plan d'exécution
SELECT a.adhid, a.nom, a.tel | 1@ | ©peratien | mame | Rows |
FROM Adberent 'a =~ === 0 %0zl @ sserssscccssasrssssoseosasrsoseosssssrsensossosssoo
JOIN Praticque p | 0 | SELECT STATEMENT | | 4138 |
ON p.adhid = a.adhid |* 1 | =HASH JOIN | | 4138 |
INNER JOIN Sport s |* 2 | HASH JOIN | | 4138 |
OM =.apid = p.spid I* 3 | TABLE ACCESS FULL| SPORT | z |
WHERE &.splibelle | 4 | TAELE ACCESS FULL| PRATIQUE | 24829 |
IN {('Escrime', "Ping-pong'); | 5 | TAELE ACCESS FULL | ADHEREMT | 24033 |

1 - access{"P"."ADHID"="A". "ADHID")
2 - .access("S","SPID"="P"."SPID")
3 - filter("s"."SPLIBELLE"= 'Egcrime’
OR "5","SPLIBELLE"='Ping-pong')
Statistigques (partielles)
348 consistent gets
580 rows processed

594

& Editions Eyrolies

[chapitre n® 12

Dp@misations |

Comme I'illustre 1'arbre suivant, la premiére jointure met en jeu la table Sport (outer carelle
ne filtre que 2 lignes) qui est combinée & la table d'association Pratique (inner avec
24 829 lignes). Le résultat de cette jointure par hachage retourne 4 138 lignes. La deuxiéme
Jointure combine ce résultat (table oufer) avec la table Adherent sams utiliser son index. La
colonne adhid est commune et le résultat final aprés élimination de certains doublons donnera
590 adhérents.

Figure 12-10 Jointures par table de hachage

]

spoRT™ 2 .
i
24820 ° T Liap
I J;] Lk 4138 salL
. 24003 ¢ =
praTioUE R s
5
ANHERENT

Les hints USE_HASH(aliasl ..) eiNO_USE_HASH(aliasl ..) permettent respectivement de
forcer ou d'empécher 'optimiseur a utiliser la jointure par hachage.

Sort merge joins

Bien que 'algorithme hash joir soit souvent préféré aux antres (ce qui explique que la majorité
des joinfures solent mises en ceuvre ainsi), I'opération sort merge join (iri-fusion) peut offnr de
meilleures performances lorsque les lignes joindre sont déja mées ou qu'un tri doit étre effectué.

Dans un sort merge join, il n'y a pas de table qui pilote une autre, mais deux étapes successives :
le sort foin, ol les deux tables sont triées sur la clé de jointure, puis merge join qui fusionne les
listes trides. Si les tables & joindre sont déja triées, seule la deuxidme étape ast réalisée.

Lopération sort merge join peut étre choisie pour les inéquijointures (<, <=, >, ou >=) oli elle
offre de meilleur résultats que les algorithmes nested loop et hash join pour d'importants volu-
mes de données.

Dans un plan d’exécution, la jointure tri-fusion se présente par les mots-clés SORT JOIN puis
MERGE JOIN ; latable outer apparait avant la table inner.

L’exemple suivant illustre une inéquijointure sur 3 tables. On recherche les adhérents de code
supérieur & ceux qui pratiquent un sport de code est intérieur au plus petit des codes de rugby
etde moto. Dans le jeu de test, du fait qu’aucun adhérent ne soit adepte de moto et que le code
du rugby est le plus grand (823}, tous les sports sont sélectionnés. Cette inéquijointure effectue
deux tris sur des volumes approchant un méga-octets, puis fusionne (25 Go). Les statistiques

@ Editions Eyrolles 595

| Partie W S0L avaned |

indiquent que le nombre de blocs lus n’est pas important mais le transfert réseau, les triset la
tusion expliquent le temps de réponse (25 minutes d’attente dans mon environnement).

Tablean 12-35 Inéruioimure mise en MUUTe Vel 50r meme loin
Requéte Résultats
Statistigues

SELECT a.adhid, a.nom, a.tel WA S AanE SEeE

EROM: MdnEcait &, giorels, PTALIHIETD 21474946008 hvtes sent via SQL*Net o client
WHERE s.gsplibelle IN ('Rugby','Moto’) 424315179 bytes received via SQL*Net from client
AND a.adhid > p.adhid 38574435 B5QL*Net rounderips to/from client
D s.spld > p.spld; 4 zorts (memory)
¢ sorts (dick)
578616501 rows processed

18	Operatien	mMame	Rowe	Bytes	TempSpe	Cost (RCPU)	Time
©	SELECT STATEMENT		sdam	25		3272 (83	00:00:40
1	wmERsE Jom		Bddm	25G]	3272 (83	00:00:40	
2	somr Jom		45328	929k	2856K	315 (2} 00:00:04	
3 MERGE JOIN		45328	929E]	19 (11	oo:00:01		
& BORT JOIN	2	26		2 (0}	OD:0B:01		
[*: 5	TABLE ACCESS BY INDEX ROWID	SPORT	2 26		2 {0)] oo:00:01		
I & INDEX FULL SCAN	PE_spoRT	1z			1 (0] of:00:01		
[* 7	SORT JOIN	24829	193k	17 (12} o0:00:01			
8	TAELE ACCESS FULL	PRATIQUE	24829	193K		15 (0)] 00:00:01	
* 9	soRT JOIN		24033	&80K	1896K	262 (1)	co:00:04
10	TAELE ACCESS FULL	ADHERENT	24033	80E		63 (0)] 00:00:01	

Comme ['illustre 1"arbre suivant, le premier fri-fusion met en jeu la table Sport (outer car elle
ne filtre que 2 lignes) et la table d’association Pratique (inner avec 24 829 lignes) du fait de
leur colonne commune (spid). Le résultat de ce tri-fusion retourne 45 328 lignes. Le
deuxiéme tri-fusion combine ce résultat (table ourer) avec la table Adherent sans utiliser
d’index pour restituer au final prés de 590 millions de lignes.

Figure 12-11 Jointures par ti-fusion

sggm SPORT 8

|m e £ X =544 541 866 squ
| a 2403 . —
PRATIGUE 58 " MeieE STATERENT
l-] 24033 = #
ADHERENT R

596 Editfons Eyrofies

[chapitre n® 12

Opiimisaiions

&

Les hints USE_MERGE (aliasl ..) etNO_USE _MERGE(aliasl ..) permettent respectivement
de forcer ou d'empécher l'optimiseur d'utiliser la jointure par tri-fusion.

Algorithmes de jointure

D’ autres algorithmes de jointure sont mis en ceuvre par Oracle, citons :

Les produits cartésiens (absence de clause de jointure dans la requéte). Dans le plan
d’exécution, vous trouverez 1'opération MERGE JOIN CARTESTAN. L' optimiseur peut aussi
décider d'utiliser cet algorithme pour joindre deux tables i faible voluméirie & une autre
table de volume plus important.

Les jointures externes unilatérales ou bilatérales (extractions de lignes ne correspondant
pas aux critéres de jointure). Dans le plan d’exécution, vous trouverez généralement les
opérations NMESTED LOOPS QUTER, HASH JOIN OUTERet HASH JOIN FULL OUTER.

Requétes imbriquées

L’ optimiseur traduit les requétes imbriquées par des semi-jointures (semi joins) ou des anti-
Jointures (anfi joins).

Les semi-jointures sont des jointures qui ont la particularité de ne pas parcourir la table inmer
compléternent mais de stopper le parcours dés une certaine occurrence trouvée. Sont notarm-
ment concernées les requétes utilisant les opérateurs EXTSTS et IN (les jointures procédurales
font donc partie de cette programmation).

Les antijointures sont des jointures qui ont la parficularité d'extraire des lignes ne correspondant
pas au prédicat de la requéte imbriguée. Les requétes qui sont concernées sont notamment
celles qui utilisent l'opérateur NOT EXTSTS et MOT IN.

Suivant la volumétrie des tables, la distribution des données et I'existence d’index, les plans
d’exécution de vos semi-jointures utiliseront diverses opérations : HASH JOIN RIGHT SEMI,
HASH JOIN SEMI ou NESTED LOOPS SEMI (1'opérateur historique par défaut). Concernant les
antijointures, les opérateurs équivalents sont les suivants : HASH JOIN ANTT, HASH JOIN
RIGHT ANTT et NESTED LOOPS ANTI.

Le tableau suivant décrit les opérateurs qui programment des antijointures par requéte imbri-
quée. La volumétrie importante de la table Adherenthis explique que 1'optimiseur choisisse
lalgorithme hash join au démiment de nested loop (stratégie également choisie si on
programme la requéte avec NOT IN).

@ Editions Eyrolles 597

| Partie W S0L avaned |

Tableau 12-36 Antfolntures

Requéte. Opérateur

SELECT s.s3pid,s.splibelle FROM Sport = NESTED LOOFS ANTI
WHERE MOT EXISTS
(SELECT p.adhid FROM Pratique p WHERE p.spidss.zpid);

SELECT s.spid,s.splibelle FROM Sport = NESTED LOOFS ANTI
WHERE =.spid HOT IN
|{SELECT p.adhid FROM Pratique p);

SELECT a.adhid, a.nom, a.tel FROM Adherentbiz a HASH JOIN RIGHT
WHERE NOT EXISTS ANTI
({SELECT p.adhid FROM Praticque p WHERE p.adhid=a.adhid);

Le tableau suivant décrit les opérateurs qui programment des semi-jointures par requéte imbriquée.
Comme pour les anttjointures, I'optimiseur choisit] algonthme fuash join au démment du rested loop
du fait de la volumétrie (stratégie également choisie si on programme la requéte avec I1). La demiére
requéte écrite 4 la forme procédurale est celle étudiée aux sections Hash joins et Nested loops.

Tableau 12-37 Semi-jointures
Requéte Opérateur
SELECT s.s8pid,s.splibelle FROM Sport s NESTED LOOPS SEMI

WHERE EXISTS
({SELECT p.adhid FROM Praticue p WHERE p.spid=s.spid);

SELECT &.spid,s.splibelle FROM Sport = NESTED LODPS SEMI
WHERE g.gpid IN
{SELECT p.adhid FROM Pratigue p);

SELECT a.adhid, a.noem, a.tel FROM Adherenthis a HASH JOIN RISHT
WHERE EXISTS SEMI
{SELECT p.adhid FROM Praticue b WHERE p.adhid=a.adhid) ;

SELECT a.adhid, a.nom, a.tel HASH JOIN RIGHT
FROM Adherent a WHERE a.adhid IN SEMI
({SELECT p.adhid FROM Pratigue p WHERE p.spid IN
(SELECT g.splid FROM Sport &
WHERE s.s8plibelle IN ('Escrime', 'Ping-potig')));

L'arbre suivant illustre la derniére jointure qui est programmeée d’abord par une table de
hachage puis par une semi-jointure. Elle offre des performances similaires & celle programmée
exclusivement avec des algorithmes hash joins.

598 Editfons Eyrofies

[chapitre n® 12

Opiimisaiions

Flgure 12-12 Semi-jointures

]
sPoRT~. 2 B
g 4138 ° l
24820 ° VW 4138
N&d.
] A 413 saL
24033 H iN
s B o
]
ADHERENT

semi-jointures ni antijointures. Lopérateur FILTER sera préféré (chaque ligne de la table outer

é; Le hint 8O _UMNEST (& disposer dans la requéte imbriquée) force |'optimiseur & n'utiliser ni

examinera systématiquement plusieurs lignes de la table inner).

Auntres algorithmes

D'autres algorithmes (cette liste n'est pas exhaustive) sont utilisés par I" optimiseur :

BUFFER SORT qui utilise une table temporaire ou une zone de tri en mémoire pour stocker
des données mtermédiaires ; ces données ne sont pas nécessairement triées.

INLIST ITERATOR qui est utilisé soit pour les clauses I avec des valeurs, ou suite i des
prédicats d’égalité liés par OR

VIEW qui gére un ensemble variable de données.

COUNT STOPKEY qui programme une restriction définie via ROWNUM.

FIRST ROW qui est déclenché par les opérateurs MIN et MAX.

FILTER qui sert & éliminer une partie des lignes renvoyées par une autre étape (sous-
interrogations et prédicats sur une seule table).

CONCATENATION qui concaténe plusieurs ensembles de lignes (suite & UNIOM ALL et des
transtormations de I'opérateur OR).

Variahies de lien

L'utilisation des variables de lien est indispensable pour améliorer les performances d'une
application OLTP (c’est moins vrai pour des applications OLAP et des traitements batch). En
effet, chaque nouvelle instruction se traduit par hard parse souvent cofiteux (surtout en mode
multi-utilisateur) du fait de la pose de verrous internes.

@ Editions Eyrolles

589

S0L avaned |

600

Oracle assigne une valeur (hash value) i chaque nouvelle exécution d'une instruction SQL
{cette valeur est visible au début du plan d'exécution). Toute modification du code de cetie
instruction (par exemple le nom d'un alias a.nom et b.nom ou d'une valeur adhid=1 et
adid=2) donnera lieu i une nouvelle valeur hash générant & nouveau un hard parse.

L'optimiseur traite plusieurs écritures en tant que bind variable : les variables de session
{substitution), les variables PL/SQL, les vanables SQL dynamique (avec la directive USTING).
Les variables des instructions de toute API du marché (ODBC, ADO, JDBC, efc.) sont aussi
considérées hind variables. Dans le cas de Java, il s agit par exemple de la classe Prepared-
Statement. Le tableau suivant illustre quelques instructions contenant des bind variables.

Tabiean 12-38 Diféremtes impiémentaSons de biml variahies

Contexte Codage
SQL"Plus VARIABLE ¢_nom VERCHARZ (25)
BEGIN
rg_nom := 'LARRAZET';
END;

SELECT prencm, tel FREOM Adherenthis WHERE nOm = :g_nom
AMD civilite = 'Mme.' AND tel LIKE '05%';
Code PL/SQL DECLARE
v_nom Adherentbis nom¥TYFE;
v.p Adherentbls.prenom%TYFE;
v t Adherentbis. tel%TYFE;

BEGIN

w_nem := 'LARRAZET';

SELECT prencm, tel INTO v_p, v .t FROM Adherentbis

WHERE MOm = ¥_NOM AND civilite = ‘Mme.' AND tel LIKE "05%';
END;

SaL dynamigue
EXECUTE IMMEDIATE
'EELECT prenom, tel FROM Adherentbis WHEHRE nom = v _nom
AND civilite = ' 'Mme.'' AND tel LIKE ' '05%"" '

INTO v_p, v_t USING v_nom;

Attention ! Ne confondez pas une instruction construite dynamiguement dans le code et une
instruction intégrant des bind varables. En conséguence, n'utilisez pas de signe concaténation
(| |} dans vos instructions au profit du SQL dynamique.

Pour vous en convaincre, exécutez le script en téléchargement qui compare 'extraction des
250 000 premiers adhérents. Le premier bloc utilise le curseur suivant (qui ne fait pas usage de
variables de lien) OFEN curseur FOR 'SELECT nom FROM Adherentbis WHERE
adiid="||i. La seconde solution utilise une variable de lien : OPEN curseur FOR 'SELECT

& Editions Eyrolies

[chapitre n® 12

Ooiimisations |

nom FROM Adherentbis WHERE adhids:v_ad' USING i. Vous constaterez que la seconde
solution s exécute bien plus rapidement (de 1'ordre de 85 % de gain).

Lorsque 'optimiseur prend en compte le premier plan d'exécution généré avec des bind varia-
bles, on parle de bind peeking. Depuis la version 11g, Oradle peut construire plusieurs plans
d'exécution pour une méme requéte (avec des valeurs différentes pour les bind variables
associées) : il s'agit de l'adaptive cursor sharing.

GComment réaliser des fetchs multilignes ?

11 est toujours préférable de retourner plusieurs lignes par fetch, on parle de array fetch.
Plusieurs solutions existent ; citons la commande SET ARRAYSIZE sous SQL*Plus et I'option
BULK COLIECT de I'instruction FETCH dans un bloc PL/SQL (consulter la section Utilisation
de LIMIT et BULK COLLECT du chapitre 7).

Le tablean suivant présente une comparaison sous SQL*Plus de ces deux modes d’exécution.
La requéte pratiquant le fefch monoligne s’exécute en 30 secondes pour extraire plus d'un
million d’adhérents. Le fetch multiligne réduit ce temps & 3 secondes. Le nombre de blocs lus
sur disque est identique ; en revanche, le nombre de blocs manipulés en mémoire et transtérés
sur le résean est minimisé par la lecture mmltiligne.

Tehieau 12-39 Fetch monofigne vs muiliigne

1 ligne par detch (par détaut) 100 lignes par fetch
SQL> SET ARRAYSIZE 1 SQL> SET ARRAYSIZE 100
SQL> SET AUTOTRACE TRACEONLY SQL> SET AUTOTRACE TRACEONLY
SQL> SELECT a.adhid;a.nom,a.tel, a.date _nais SOL> SELECT a.adhid,a.nom,a.tel,a.date nais
FROM ARdherentbis a; FROM Adherentbis a;
1177618 ligneis) sélectionnéeis). 1177618 ligne(s) sélectionnée(s).
Eeould : 00 :00 :30.46 Ecouléd : 00 :00 :03.21
Statistigques Statistiques
594028 conslistent gets 21911 conaistent gets
10224 rphysical reads 10224 physical reads
134308135 bytesz gent via SQL*Net to client 49294367 bytez zent wvia SOL*Net to client
6477304 bytres received wia SQL*Net from 129982 bytes recelved via SQL*Net from
client elient
588810 SOL*Net roundtrips toffrom client 11778 SQL*Net roundtrips to/from client

@ Editions Eyrolles 601

| Partie W S0L avaned |

Sous SQL*Plus, la valeur de ARRAYSIZE peut éire comprise entre 1 et 5000, L'efficacité
dépend aussi de la configuration middleware et des capacités du réseau. Une valeur excessive
de ce paramétre peut nuire aux performances.

Le nombre de lignes & extraire par lecture doit 8tre positionné entre 100 et 200 (cette valeur
devrait convenir a la majorité des applications).

Gestion du cache

Depuis la version 11g, Oracle dispose d'un cache de résultat, faisant partie de |'espace
mémaoire qu'il gére (la SGA), et dont les requétes SQL et les fonctions PL/SQL peuvent béné-
ficier. Il est trés intéressant pour des requétes coliteuses et répétitives qui nécessitent d’étre
exécutées i chaque appel, méme si le plan d’exécution est préétabli et les blocs de données
sont tous en mémoire. Il va sans dire qu’aprés toute mise & jour d’une donnée dans le cache,
celui-ci est invalidé avant de se reconstruire i I interrogation suivante.

Figure 12-13 Cache SQL et PL/SQL (@ doc. Oracle)

Spatas tiital Lina

[(=]le=](e=]

Shared Pool
Lineney Caihe
Shared SOL Aras Privete SOL Aren
» Pamed SOL Stabemants (Bnared Sahme Orvty)

+ GL Empcufion Pl
+ Barved and Conpites FLBOL Progres Uit

Dictionary [——— Rewerved Pool and oty
Viewi Cache

S

| P Cacte

| FUAGR Faanoton

Fanat Cache

Les paramétres de votre cache disponible sont visibles i 1'aide de la requéte suivante :

602 & Editions Eyrolles

[chapitre n® 12

Opiimisaiions

501> SELECT name, value FROM viparameter
VWHERE name LIKE 'result cache%';

NAME VALUE
rezsult_cache mode MANUAL
result_cache max_size 4252608
raesult_cache max_result E

result cache remote expiration 0

La taille ici est de 4 Mo et le pourcentage du cache utilisable pour un résultat est de 5 % (par
défaut). Le cache est modifiable par ALTER SESSICN SET RESULT CACHE MODE = {FORCE
|MANUAL} ou ALTER SYSTEM. La valeur MANUAL est celle adoptée par défaut, la valeur FORCE
I"active pour la session ou pour les sessions & venir. Cette derniére n'est pas recommandée
puisqu’elle aurait pour conséquence la mise en cache de toutes les requétes, méme celles qui
sont non déterministes (dont le résultat peut changer avec les mémes paramétres en entrée).
Les autres paramétres sont également modifiables au niveau du systéme seulement (pas de la
session).

Pour vos tests, sachez que ALTER SYSTEM FLUSH SHARED POOL vide la SGA mais pas le
cache, tandis que ALTER SYSTEM FLUSH BUFFER CACHE vide seulement le cache.

Gache pour ies requétes

L’activation et la désactivation du cache au nivean d'une requéte peut se programmer i 1'aide
de hints : /*+RESULT CACHE*/ fait passer le paraméire RESULT CACHE MODE &4 FORCE et
[*4M0_RESULT CACHE*/ fait passer le méme paramétre i MANUAL.

Si vous avez déja mis en place le cache avec ALTERE SESSION ou ALTER SYSTEM et qu'une
requéte utilise un des hints précites, le hint I'emporte.

Comme les résultats du cache doivent étre non aleatoires, vous ne devez pas utiliser des
requétes avec des tables temporalres, séquences, pseudo-colonnes ou expressions avec une
date variable (SYSDATE par exemple).

Le tableau 12-40 présente les deux écritures de la méme requéte qui dispose le résultat en
cache. Vous devrez peut-ére exécuter plusieurs fois de suite la requéte pour bénéficier du
cache. Dans le plan d’exécution, vous retrouverez la preuve de 1'utilisation du cache et la
requéte associée i 'aide de la vue viresult_cache_objects.

@ Editions Eyrolles 603

| Partie W S0L avaned |

Tahlesu 12-40 MEisaion da cache powr les requétes

Avec un hint Avec le paramétre d'initialisation
S0L> SELECT a.adhid,a.civilite. ALTER SESSICN SET RESULT _CACHE MODE = FORCE;
FROM adherent a .. SELECT..
ADHID CIVIL FRENOM TR0M Flan 4 exécution
27000 Mlle. JENIFER THIRIET | Id | Operation | mwame | =t
Ecould : 00 :00 :37.71 =0 sessccscesssssssssssssessessssossssssossossssses
| 0 | SELECT STATEMENT | 2
SQL> SELECT /*+ RESULT CACHE */ | 1 | RESULT CACHE | afcOhndk7yOwbS6uuzgndetayu |
a.adhid,a.civilite.
FROM adherent a .. SQL> SELECT id, type, creation timestamp, status, name
FROM viresult_cache_objecta
SQL> SELECT /*+ RESULT CACHE */ WHERE cache id = 'aSclhndk?y0wbsfuuzgmictayu’;
ID TYFE CREATION STATUS HAME
ADHID CIVIL PRENOM oM 4 Result 12707714 Published
—————————————————————————————————— SELECT a.adhid,a.civilite,a.prenom,a.nom
27000 Mlle. JENIFER THIRIET FROM adherent a WHERE NOT EXISTS..

Ecoulé : 00 :00 :00.00

Gache pour ies fonctions PL/SOL

Avant la version 11g, la zone de cache (en PGA) qui était utilisée par les tableaux associatifs
dans les paquetages (package level collections, voir I'exemple de la section « Comment
retourner une table » du chapitre 6) était spécifique a chaque session. [l pouvait se produire des
problémes en cas de montée en charge. Depuis la version 11g, une fonction peut retourner des
résultats mis en cache disponibles pour d”autres sessions : il s’agit de la fonction resulr cache.

- Disposée au niveau de la création d'une fonction PL/SQL, I'option RESULT_CACHE permet de

’ bénéficier dune zone de cache pour stocker les résultats a chague appel avec de nouveaux
paramétres. Loption RELIES_ON (Implicite depuis la version 11gR2) assure que toute mise a
jour de données qui pourrait invalider le cache de résultat, entre deux appels identiques,
dedlenche une invalidation dudit résultat et une réevaluation.

Il est recommandé que votre fonction ait le moins possible d'effets de bord (modification d'une
table, écriture d'une trace DEMS_OUTPUT ou envoi dun e-mail, par exemple). De plus, méfiez-
vous des fonctions utilisant des données dont le format peut dépendre des paramétrages d'une
session (NLS_DATE_FORMAT ou TIME ZONE, par exemple).

Le tablean 12-41 présente une fonction qui retourne la concaténation du nom et du téléphone
d'un adhérent dont le numéro passe en paramétre. Cette fonction est appelée 101 fois dans le
bloc (100 fois avec le méme numéro) et une fois avec un autre numéro. Le résultat est que
seuls deux appels i la fonction sont opérés et 99 accés aux caches sont effectués. ..

604 & Editions Eyrolies

[chapitre n® 12 Opfimisations

Tahieay 12-41 (NHisation do cache de résultat pour mne fonction PL/SQL

Fonction result cache 101 appels de la fonction
CREATE FUNCTICON f_adhlu_cache SQL> DECLARE
(gl IN adherent. adhid%TYPE] adhid_in adherent . adhid%TYPE := 27342;
RETURN VARCHAR2 3 v_res VARCHARZ (100 ;
RESULT_CACHE 4 BEEGIN
RELIES_ON{adherent) 5 FOR 1 I 1 .. 100
Is é LOOP
result VARCHARZ(100): 7 v_res := f_adhlu_rache (adhid_in) ;
BEGIN a END- LOOF;
SELECT nom| | '-'| |tel INTC result 9
FROM adherent WHERE adhid = pl; 10 v_ras := f adhlu_cache(27504);
compteur. incremente() ; 11 DEMS_OQUTPUT.PUT_LINE('Compteur : '||compteur.affiche());
RETUEN result; 12 END;
END f£_adhlu_cache; 13 /
/ Compteur : 2

Plusieurs restrictions congcernent les fonctions result cache :
elle ne doit pas étre pipelined;
elle ne peut disposer de paramétres de refour (OUT ou IN OUT) ;

les paramétres d'entrée sont simples (pas de BLOB, CLOB, NCLOB, REF CURSOR, collections,
objets ou record) ;

le type de retour est simple (pas de BLOB, CLOB, NCLOE, REF CURSOR, objets). Les collec-
ticns ou record ne doivent pas centenir un type précité.

Gache pour les tahies

Depuis la version 11gR2, le cache de résultat peut étre aussi utilisé au niveau d'une table
(instructions concernées : CREATE TABLE et ALTHER TABLE). L'option RESULT CACHE (MODE
{FORCE | DEFAULT}) sert a activer ou désactiver le cache pour tout accés a la table. Une
autre possibilité lors de la création d'une table consiste & employer les directives CACHE ou
NOCRCHE.

Dans la premiére €criture, DEFAULT caractérise le comportement par défaut d'une table (a
savolr pas de mise en cache si ce n'est les blocs de données qui montent en mémoire naturel-
lement lors de toute extraction). Cefte option différe toute décision de I'utilisation du cache
par un paramétre systéme, de session, ou finalement un hint sur une requéte particuliére. Dans
le second type d’écriture, NOCACHE exprime le méme état de fait.

@ Editions Eyrolles 605

| Partie W S0L avaned |

Pour mettre en cache une jointure, vous devrez effectuer ce procéde pour toutes les tables
concemees. |l indique que les blocs extraits de ces tables sont placés en bonne place au
niveau de la liste LRU (Least Recently Used) dans le buffer cachie. Pour les tables de taille
réduite qui ne sont pas mises a jour trés fréquemment, c'est trés efficace.

Le tablean 12-42 présente la mise en cache de deux tables existantes et la création d'une
nouvelle table mise en cache d&s le début. La colonne result_cache du dictionnaire de
données renseigne 1 état de chaque table. En tragant vos requétes, vous constaterez que 1'utili-
sation du cache, A partir du deuxi@me appel, fait passer le nombre de gets a zéro.

Tahieau 12-42 Uilsaton da cache de 1zbie
En modification En création

SQL> ALTER TAELE sport RESULT CACHE (MODE FORCE) ;
SQL> ALTER TABLE pratique RESULT CACHE (MODE FORCE); SQL> CREATE TABLE adherentes
2 RESULT_CACHE (MODE FORCE)

SQL> SELECT table_ name, result_cache 3 AS SELECT *
2 FROM user_tables 4 FROM adherent
i WHERE table_name IN 5 WHERE eivilite IN ('Mme.',6K 'Mlle.');
{"PRATIQUE', 'SPORT', 'ADHERENT');
TAELE_MAME RESULT_ CRCHE Table créde.
FRATIQUE FORCE Figure 12-15 Trace d'un accés full
ADHERENT DEFAULT

'SOL» SET AUTOTRACE TRACEOMLY
SPORT FORCE SOL> SELECT nom, prenom
i Lﬂ; .ahu":‘::?
. i i
Flgure 12-14 Trace d'une jointure B 2 abouttan
S0L> SET AUTOTRACE TRACEONLY #
S0L> SELECT s.splibelle. p.adhid .4
2 FROM pratique p. sport &
3 WHERE p.adhid = 777
4 @AND p.epid:p.spid;

Plan d' exBeution

]
| 3yriqfaduTeydsiugujisveea) |
. 3 I

:I Id | Operation | Mam

] 55np:n5:2!fd‘5‘:lh8fnszutrd‘
e HE UTW CARTESIANI

INDEX RANGE SCAN | IDX_PRATIQUE_ADHID

BUFFER SORT I

TABLE ACCESS FULL | SPORT

Le cache n'est pas possible pour les tables organisées en index (10T).

606 & Editions Eyrolles

[chapitre n® 12 Ooiimisations |

Tahles organisées en index

O T, O (L W - O Y) N

Evoquée au chapitre 1, une table organisée en index (10T, index-organized table) est stockée
physiguement dans une structure d'index B-rree. Chaque entrée d'index (blocs feuilles)
contient alors les lignes entiéres de la table, au lieu de comporter ROWID dans le cas d’un index
classique accédant A une table classique (en Aeap). La clé primaire d'une table IOT peut étre
composée de plusienrs colonnes.

Les tables IOT sont particuliérement intéressantes i utiliser si on désire rapprocher physique-
ment des données ou les disposer dans un ordre particulier (base de données spatiales et
multidimensionnelles). Ce mécanisme existe aussi avec IBM DB2 et se nomme clustered
index avec Microsoft SQL-Server. Depuis 1a version 9 d'Oracle, il est également possible de
créer des index additionnels (sur des colonnes qui ne sont pas des clés). Le besoin de stoc-
kage est en théorie réduit, car les colonnes clés ne sont pas dupliquées dans une table et dans
un index.

Flgure 12.16 Tables organisées en index

Acces T e T Table iOT
par lindex { | | o Vit I | 1
T] L T Tl .I’U,
Y [w" [w
[(v 'y?
| | 'U ROWIT [e P
U- N
¢ ol 1
Table en heop Zzﬁe e Colonnes non ¢

_ Il est impératif de specifier une clé primaire a la création d'une table organisée en index. La
confrainte ne doit pas étre déclarée DEFERRAELE.

Par construction, les tables |OT offrent un accés rapide pour les extractions basées sur une
égalité de la clé primaire. Les recherches par inégalité ou intervalle sur la clé ne sont pas péna-
lisantes pour autant.

Gomparatif

Le tableau suivant compare les caractéristiques des tables classiques (heap-organized) et des
tables 10T.

@ Editions Eyrolles 607

S0L avaned |

608

Tableau 12-43 Comparafifs des tahles heap-orpanized /muex-organtt ed

Caractéristique Tables en heap Tables 10T

Identification Le rowid identifie toute ligne. Une clé La clé primaire doit &tre déclarée pour
primaire peut &tre déclarée. identifier toute ligne.

Rowid et indexage La pseudo-colonne ROWID (adresse La pseudo-colonne ROWLD (adresse

secondaire physique) permet un indexage logique) permet un indexage secondaire.
secondaire.

Accés direct Toute ligne peut &tre accessible Toute ligne est accessible indirectement
directement par son rowid. par la clé primaire.

Parcours entier full sran tableretournetoutesles index full scan ol fast full
lignes dans un certain ordre. index secan retournent toutes les lignes

dans un ordre similaire,

Clusters Peut étre stockée dans un cluster avec Pas de clusferpossible.
d'autres tables.

Colonnes Peut contenir des colonnes LONG et Peut contenir des colonnes LOB mais pas

multimédia LOB. des LoNG.

Colonnes virtuelles Autorisé, Interdit,

Une table organisée en index peut &tre utilisée pour des tables de référence, des tables d'asso-
ciation ou des tables auxquelles on accéde toujours via leur dlé primaire.

Les tables ayant peu de colonnes gui ne sont pas des clés et de taille relativement restreinte
peuvent également étre de bonnes candidates.

Les déhordements

Si les lignes de la table 10T sont volumineuses, vous devrez gérer les segments de débordement
{overflow segments). Ce probléme ne se pose pas pour les tables associées 4 des index B-free
car la taille de chaque entrée d’index est relativement réduite (valeur de la clé et rowid
associés).
Lorsqu'une zone de débordement est définie (directive OVERFLOW), chaque ligne de la table
10T est divisée en deux parties :
L'index qui contient les colonnes clé primaire, un rowid qui référence le reste de la ligne
dans la zone de débordement et, éventuellement, quelques colonnes qui ne sont pas des
clés. Tout ceci est stocké dans le segment d’index.

Le reste des colonnes de la ligne est stocké dans le segment de débordement.

Ce mécanisme présente un inconvénient majeur lorsque la majorité des accés aux données
g'effectue dans les segments de débordement ; I'efficacité de la table organisée en index est
alors considérablement réduite.

& Editions Eyrolles

[chapitre n® 12 Opfimisations

Gréation d'one 10T

La directive ORGANIZATION INDEX de I'instruction CREATE TABLE permet de définir une
table {une clé primaire doit aussi étre déclarée). Il existe plusieurs options :
OVERFLOW préserve la densité de 1’index permettant le stockage de colonnes non-clés dans
un segment séparé (de débordement).
PCTTHRESHOLD (valeur comprise entre 1 et 50, 50 par défaut) précise le pourcentage
d’espace libre réservé dans un bloc d'index pour chaque ligne. La colonne non-clé (et les
suivantes) qui dépasseront cette taille seront stockées dans le segment de débordement.
INCLUDING indique le nom d'une colomne non-clé & partir de laquelle sera effectuée la
séparation entre le segment d'index (privilégiant ainsi les acces & cette colonne et anx
précédentes) et le segment de débordement.
COMPRESS ne concerne que les tables IOT dont la clé primaire est composée de plusieurs
colonnes ; I'index est alors compressé en fonction de valeurs communes de certains
préfixes.

Comparaison avec une tahie en heap

Afin de comparer avec la table en heap Opérateurs et son index B-free sur la clé primaire
(colomne opeid), définissons la table organisée en index Operateurs iot de la maniére

sulvante.
Ishieau 12-44 Créstion d'une t2his 0T

Code SQL Commentalres
CREATE TABLE Operateurs_ilot Colonnes de la table.

{opeid CHAR(4) NOT NULL,

nomope VARCHAE (25) NOT NULL,

COMSTRAINT pk_Operateurs_iot Définition de la clé primaire.

PRIMARY EEY (opeid)) Le segment d'index se trouvera dans le tablespace

ORGANTZATION INDEX tbs_indes.

TABELESPACE tba_index Les 3 premiéres colonnes seront dans le segment

INCLUDING cCreacpe d'index.

PCTTHRESHOLD 20 8ila taille d'une ligne dépasse 20 % de la taille d'un

OVERFLOW TAELESPACE users; bloc, alors la colonnes et les suivantes seront

stockées dans le tablespace users,

En analysant la requéte qui extrait le code et le nom d'une dizaine d’opérateurs (prédicat
WHERE opeid IN ('SFR', 'Orange', 'M6T',..)), il apparait que 3 fois moins de blocs sont
extraits da la table IOT que de la table en heap.

@ Editions Eyrolles 609

S0L avaned |

Limites

Une table 10T ne peut ni contenir plus de 1 000 colonnes, ni définir une clé primaire de plus de
32 colonnes.

Sans clause de debordement, le nombre de colonnes contenues dans le segment d'index est
limité & 255.

Partitionnement

610

Le partitionnement permet de décomposer une table volumineuse (et ses index) en parties de
taille plus réduite : les partitions. Chaque partition est un objet (au sens Oracle, table ou index)
nommé, composé de la méme structure (colonnes et contraintes) et disposant de ses propres
caractéristiques de stockage (lablespace, options de blocs, etc.).
L'aceés aux partitions est transparent ; si vous adoptez le partitionnement en évolution d'une
implémentation classique, vous ne devrez pas réécrire le code. La stratégie de partitionnement
pour une table comme pour un index présente de nombreux autres avantages :
maintenance et administration plus précise (ajout, suppression, fusion, division, modification
d'une partition) ;
disponibilité accrue : le fait qu'une partition soit indisponible n’implique pas 1'indisponi-
bilité de la partition entiére. L'optimiseur supprime automatiquement du plan d'accés les
partitions indisponibles ;
réduction des contentions sur des ressources partagées (bases OLTP) et amélioration des
requétes sur des darawarehouses (bases OLAP).

La cié de partition

La clé de partition est composée d'une ou de plusieurs colonnes qui déterminent la partition
d’accueil de la ligne en question. Chaque ligne est atfectée i une seule partition.

Les stratégies basiques de partitionnement (single level partitioning) sont apparues progressi-
vement ; par intervalle (range partitioning en version 8.0)), par hachage (hash partitioning en
version 8.1) et par liste de valeurs (list parfitioning en version 9.0). La igure suivante illustre
les types de partitions possibles : la liste conduit & répartir les données selon les noms des
régions, I'intervalle 4 un classement de maniére temporelle (ici tous les deux mois) et le hachage
4 une présentation homogéne en utilisant un algorithme interne.

& Editions Eyrolies

[chapitre n® 12

Opimisations

Figure 12-17 Stratégies basigues de partiionnement (€ doc. Oracle)

List Range Hash
Partitioning Partitioning Partitioning

East Sales Reglon January and
New York | February
Virginia L L
Flonda hi
West Sales Region March and h2—
g.altomln i April h3
y
ol 5 na
May and
MT_C

Central Sales Region
g

lifirois I
Les tables qui sont de trés bonnes candidates au partitonnement :
Sont de taille superieure & 2 Go.

Contiennent des donnees historiques pour lesquelles des informations récentes s'ajoutent &
une nouvelle partition. Par exemple, une table contenant des données modifiables sur le
mois en cours et ol les information concernant les mois precédents sont en lecture seule.

Sont celles gui nécessitent différentes unités de stockage.

Le partitionnement ne peut pas s'appliguer a une table en cluster ou a une table contenant une
colonne de type LONG ou LONG RAN.

Texas
Missour

Intéressons-nous i présent i 1'application de ces différentes techniques de partitionnement
dans le but d’améliorer les performances des requétes. Nous émdierons ensuite 1'utilisation
des index partitionnés locaux et globaux.

Partitions par intervalle

La directive PARTITION BY RAMGE de |'instruction CREATE TABLE précise les colonnes de
partition et définit les intervalles.

Avec le partionnement par intervalle, les lignes de la table sont réparties en fonction des
valeurs de la clé de partitionnement. La directive VALUES LESS THAN indique la limite supé-
risure (sans l'inclure) de chaque partition. Toute ligne dont la colenne clé de la partition est
égale ou supérieure a cette limite sera disposée automatiquement dans une des partitions sui-

@ Editions Eyrolles 611

S0L avaned |

612

vantes. Toutes les partitions, a l'exception de la premiére, disposent implicitement d'une limite
basse (limite haute de la partition qui precede).

Le mot-clé MAXVALUE est utilisé dans la derniére partition.

En se basant sur la table Adherentbis qui contient des adhérents nées entre le 1/1/1920 et le
31/12/2005, comparons les deux implémentations (avec et sans partition). La table partition-
née en intervalles Adherent_partition_range est créée de la maniére suivante : trois parti-
tions sont définies, chacune dans un tablespace distinct. La premiére partition (retraites)
contiendra les adhérents nés avant le 1 janvier 1945, la deuxiéme (actifs) contiendra les
adhérents nés entre le 1°7 janvier 1945 et le 17 janvier 1993 et la derniére (mineurs) sera
peuplée des adhérents nés aprés le 1°7 janvier 1993,

Tableau 12-35 Création d'une 1able penitonnée en imervafies

Code SQL Commentaires
CREATE TABLE Adherent_partition_range Colonnes de la table.
{adhid NUMBER(10) MOT NULL,
e VARCHAR (25) MNOT NULL,
prencm VARCHAR (30) NOT NULL,

civilite VARCHAR(1Z) WOT NULL,
date_nais DATE NOT NULL,

tel VARCHERZ (20), sclde NUMBER(S,2))
PARTITION EY RAENGE (date nais) Définition de la clé de partition.
{PARTITION retraites VALUES LESS THAN La premiére partition se trouvera
{(TO_DATE('01/01 /1945 ', 'DD/MM/Y¥YY¥")) dans le tablespace ths_partl, ete.

TABLESFACE ths_partl,

PARTITION actifs VALUES LESS THAN
{(TC_DATE('01/01/1993 "', 'DD/MM/YYY¥"))
TABELESPACE tbs_part2,

PARTITION mineurs VALUES LESS THAN (MAXVALUE}
TABLESFACE ths_partl);

Afin de comparer les deux implémentations, considérons une requéte qui extrait I'identité des
adhérents selon la date de naissance (prédicat du type WHERE TO_CHAR (a.date_nais, 'DD/
MM/YYYY') »>= '01/01/1920' AND TO_CHAR(a.date nais, 'DD/MM/YYYY') < '01/
01/1945"). Sans aborder |"indexation, un gain de |'ordre de 40 % apparait déji au niveau des
lectures physiques.

intervalies auiomatiques
Que faire lorsque vous désirez créer des partitions d'intervalles portant sur des étendues de

valeurs identiques sans connaitre le nombre de partitions dont vous disposerez, la clé de partition
pouvant évoluer dans le temps ? Dans ce cas, utilisez les partitions i intervalles automatiques.

& Editions Eyrolies

[chapitre n® 12

Opiimisaiions

Le met-clé INTERVAL permet de gerer automatiqguement les partiions range (en fixant une
étendue de valeurs) sans devoir lister exhaustivement les intervalles. Linconvénient est qu'il
est impossible de disposer ces partitions dans des espaces predéfinis car leur nombre est, a
priori, inconnu.

Une partition initiale deit étre définie, fixant le premier intervalle.

« Partionnons » la table des adhérents selon le solde (valeur comprise entre 0 et 30 000) en
considérant des tranches de salaires de 8 000 euros. La premiére partition (pl) contiendra les
adhérents dont le solde est inférieur 4 8 001 euros. Les autres partitions seront créées automa-
tiquement lors de 1'insertion de lignes et selon la valeur de la colonne solde. Le nom des
partitions peut varier d'une session i I'autre.

Tablesn 12-36 Créalion d'une Ehie partitionnée en intervalies sutomatigues

Code SQL Visualisation des partitions
CEEATE TARBLE Adherent_part _range inter- SELECT partition_name, high_wvalue
wal FROM USEER_TAB_PARTITIONS
(adhid WUMBER (10) NOT NULL, .. WHERE table_name = 'ADHERENT PART RANGE INTERVAL'
tel VARCHARZ (20) , ORDER BY partition_name;
solde MUMBER (&, 2))
FARTITION BY RANGE (solde) PARTITION _NRME HIGH_ VALUE
INTERVAL 83000y === 00000 seseseecesseeen eeeeeeeee
(PARTITION pl VALUES LESS THAN (8001)); P1 8001
S¥YS_ P35 16001
SYS_Pi6 3001
5Ys P37 24001

Sans considérer |'indexation, I'optimiseur n'accédera qu'a une seule partition (économie sur
les blocs Ius) pour les prédicats filirant un solde particulier (ou un intervalle contenu dans une
partition). L'accés & une seule partition est décelé dans un plan d’exécution par la présence de
I'opérateur PARTITICN RANGE SINGLE, I'accés i plusieurs par PARTTTION RAMGE INMLIST
et1’acces i toutes par PARTTTION RANGE ALT.

La clé dun partiionnement par intervalle ne peut pas étre du type ROWID, LONG, LUB,
HMLType, 0U TIMESTAMP WITH TIME ZONE.

Partitions par hachage

La directive PARTITICN BY HASH de I'instruction CREATE TABLE précise les colonnes de
partition, dénombre les partitions et indique les rablespaces.

@ Editions Eyrolles 613

S0L avaned |

| 614

g Avec un partiionnement par hachage, les lignes de la table sont réparties selon un algerihme

interne en fonction des valeurs de la clé de partitionnement. La répartition est homogéne entre
les partiions gui sent de tailles a peu prés identiques. Ce mécanisme convient parfaitement
lorsque aucune sémantigue n'intervient dans la clé de partionnement.

Divisons la table des adhérents en quatre partitions par hachage sur le prénom. La table parti-
tionnée Adherent partition hash est créée de la manigre suivante. Si le nombre d'espa-
ces défini est inférieur au chiffre indiqué dans PARTITIONS, Oracle gére les partitions d'une
maniére cyclique (pour 5 partitions et 3 fablespaces, la quatriéme partition ira dans le premier
tablespace et la derniére partition se trouvera dans le deuxiéme rablespace).

Tableau 12-47 Création d'une table pardlionnés par hachage

Code SQL Commentaires
CREATE TABLE Adherent_partition_hash Colonnes de la table.
{adhid HUMEER(10) NOT NULL,
nem VARCHAR (25) NOT NULL,
prencm VARCHAR (30) NOT NULL,
civilite VARCHAR(12) WOT NULL,
date nais DATE NOT NULL, Définition de la clé de partition
el VARCHRRZ (20), solde NUMBER(S,2)) etdu nombre de partitions.
PARTITION BY HASH (prencm) La premiére partition se
PARTITIONS 4 trouvera dans le tablespace

STORE IN (tbs _partl the part2,tbs parti tbhs partd): tbhs _partl etc.

Dans ce type de partitionnement, n'espérez pas des gains de performances pour toutes vos
requétes. Néanmoins, sans index, I'optimiseur n’accédera qu’a une seule partition (conomie
de 75 % sur les blocs lus) pour les prédicats filtrant un prénom particulier, deux partitions au
plus pour les prédicats filtrant deux prénoms (gain de 50 %), etc. Les opérateurs que vous
verrez apparaitre dans vos plans d'exécution sont PARTTTION HASH SINGLE (pour une égalité
sur un prénom), PARTITICON HASH INLIST (pour une comparaison avec un ensemble de
prénoms) ou PARTITION HASH ALL (parcours de toutes les pa.nitions).

Partitions par liste

La directive PARTITION BY LIST de 'instruction CREATE TABLE précise les colonnes de
partition et liste les valeurs de laclé.

Le partitionnement par liste, répartit les lignes de la table selon les valeurs de la clé de parti-
tonnement. Lavantage de ce mecanisme est qu'il permet de faire intervenir une semantigue
dans la clé de partionnement (pas de notion d'ordre comme pour les intarvalles).

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

La partition DEFAULT permet d'éviter de lister exhaustivernent toutes les valeurs possibles de
la cle de partitionnement en ainsi d'indlure toutes les lignes de la table d'une maniere exclusive
par rapport a leur partition d'accueil.

Fragmentons les adhédents en trois parfitions par liste suivant leur sexe. La table partitionnée
Adherent_partition_list est créée de la maniére suivante.

Tablesu 12-38 Création d'une lable parOlionnée par Hsie

Code SQL Commentalres
CREATE TAELE Adherent partition_ list Colonnes de la tabls.
{adhid NUMEER (10) NOT NULL,
folaic] VARCHAR(25) NOT NULL,
prenom VARCHAR(30) NOT NULL,

civilire VARCHAR(12) NOT NULL,
date_nais DATE NOT NULL,

tel VARCHARZ (20,
aolde IMMEER (8, 2))
PARTITION BY LIST (civilite) Définttion de la clé& de partition.
(PARTITION femmes VALUES ('Melle.', 'Mme.') Lapremiére partition se trouvera
TAELESPACE ths_partl, dans le tablespace tha_partl, efc.

PARTITION hommes VALUES ('Mr.')
TABLESPACE ths_part2,

PARTITION autres VALUES (DEFAULT)
TABLESPACE tha_part3);

L’optimiseur n’ accédera qu’i une seule partition (économie de 50 % sur les blocs lus) pour les
prédicats filtrant un sexe particulier. Les opérateurs que vous verrez apparaitre dans vos plans
d'exécution sont PARTITION LIST SINGLE (pour une comparaison d’égalitg), PARTITION
LIST IMLIST (pour une comparason avec un ensemble de sexes) ou PARTTTION LIST ALL
{parcours de toutes les partitions).

Partitions par reference

Si la table & partitionner est une table de référence (des clés étrangéres d’autres tables pointent
vers elle), il est possible de partitionner les tables enfants (reference-partitioned table) de la
méme maniére que la table parent. Ce mécanisme n’est pas limité & une table enfant avec sa
table parent mais peut étre utilisé en cascade.

Ce dispositit offre plusieurs avantages car il rapproche physiquement des lignes qui étaient
déja relies logiquement. Des jointures peuvent étre plus pertormantes si des index locaux

sont aussi créés. De plus, toute gestion d"une partition affectera des lignes de différentes tables
mais d'une maniére cohérente et homogéne.

La directive PARTITION BY REFERENCE de l'instruction CREATE TABLE spécifie le nom de
la contrainte de clé étrangére entre la table enfant et la table de référence. Cette contrainte doit
&tre vérifiée et active.

@ Editions Eyrolles 615

| Partie W S0L avaned |

Fragmentons la table des opérateurs selon I'année de création en trois partitions disposées
dans des tablespaces distincts. En décidant de partitionner les adhérents (qui sont rattachés a
un opérateur) de la méme maniére, vous devez créér les tables de la maniére suivante.

Tableau 12-38 Créafion de tables paniiionnées par référence

Table parent Table enfant
CREATE TABLE Operateurg partition ref CREATE TABLE Adherent partition _ref
(opeid CHAR(4) NOT NULL, {adhid MIMEER (10) NOT NULL,
nomaope VARCHAR (25) NOT NULL, nom WARCHAR (25) NOT WULL,
Creante DATE NOT NULL, B enomn VARCHAR (30) NOT NULL,
slegesocial VARCHAR(15) WOT NULL, pivilite VARCHAR(12) NOT NULL,
nbelients WUMEER (T) NOT NULL, date_nals DATE NOT NULL,
CONSTRAINT pk_Ope_partition ref ral VARCHARZ (20) ,
PRIMARY KEEY (opeid)) solde MMBER (8,2),
PARTITION BY RANGE(creacpe) opaid CHAR (d) MOT NULL,
{ PARTITION P_19599%_2003 VALUES LESS THAN CONSTRAINT £k _adh_part _ref opa
(TOQ_DATE('01-01-2004", 'DD-MM-YYYY')) FOREIGN KEY (opeid)
TRELESPACE ths partl, REFERENCES Operateurs partitien ref (opeid)
PARTITION P_2004_2007 VALUES LESS THAN) FARTITION BY REFERENCE(fk adh part ref ope);

(TO_DATE (' 01-01-2008" , 'DD-MM-YYYY'))
TABLESFACE the_part2,
PARTITION P_apres_200% VALUES LESS THAN
(MAXVALUE) TABLESPACE the partd);

Sous-partitions

Sices mécanismes de partitionnement ne sont pas assez précis, rien ne vous empéche d’utiliser le

sous-partitionnement (composite partitioning) en divisant chaque partition. Dans la figure suivante,

la premiére table, déja partiionnée par intervalle de dates, est sous-partitionnée par hachage. La

deuxiéme table, déja partitionnée par intervalle de dates, est sous-partitionnée par liste de gions.
Figure 12-18 Sous-partitionnements (© doc. Oracle)

Composite Partitioning Compasite Partitioning
Range-Hash Range - List

January and March and May and

616 & Editions Eyrolles

[chapitre n® 12 Dpiimisations

En combinant un partitionnement sur 1'ige des adhérents (range) avec un sous-partitionnement
sur le sexe (list), il vient la table Adherent range_list. Ladirective SUBPARTITICON définit
chaque sous-partition ; 'option TEMPLATE permet d'adopter le méme sous-partiionnement
pour chaque partifion.

Tablean 12-50 Gréation d'une tshie pariitionnés par kachage

Code SOL Commentaires

CREATE TABLE Adherent range_ list Colonnes de la table.
{adhid NUMBER (10) NOT NULL, nom VARCHAR (25) NOT NULL,
prenom VARCHAR(30) NOT NULL, civilite VARCHAR(12) NOT NULL,
date nals DATE NOT NULL, tel VARCHARZ (20), solde NUMBER(S&,2))

PARTITIOM BY RANGE (date nais) Définition de la clé de partition.
SBUBPARTITION BY LIST (eivilite) Définition da la clé de sous-
SUBPARTITION TEMPLATE partitionnement.
{SUBPARTITION femmes VALUES ('Melle.’,'Mme.'}, Définition des sous-partitions.
SUBPARTITION hommes VALUES ('Mr.'),
SUBPARTITION autres VALUES (DEFAULT}) La premiére partition se trouvera
{PARTITION retraites dans le tablespace tba_partl,
VALUES LESS THAN (TO_DATE('01,/01/1545', 'DD/MM/YYYY')) etc.

TABL.ESPACE ths_partl,
PARTITION actifs
VALUES LESS THAN (TO_DATE({'0l/01/19%3', 'DD/MM/YYYY'))
TAELESFACE ths_ part2,
PARTITION mineurs
VALUES LESS THAN (MAXVALUE) TABLESFACE tbs part3d);

Index partitionne

Un index peut étre partitionné de sorte i rendre le meilleur accés 4 une table malgré les diffe-
rentes stratégies de partitionnement. Comme pour les tables, le partitionnement d’index faci-
lite la gestion et I'évolution, tout en améliorant la disponibilité et les performances.
1l existe deux types d'index :
les index partitionnés locaux {directive LOCAL de CREATE INDEX) sont partitionnés sur les
mémes colonnes que la table. Chaque partition d’index adresse une seule partition de la
table. Les avantages de rapprocher données et index sont nombreux. En particulier, ils’agit
d’éviter de reconstruire tout I'index si une des partitions des données venat i étre modifiée,
supprimée ou rendue indisponible suite i une action de maintenance ;
les index partitionnés globaux {directive GLOBAL de CREATE INDEX) sont partitionnés
indépendamment de la méthode de partitionnement de la table. L'avantage est d”optimiser
un accés A toutes les partitions en les considérant comme une table unique.

@ Editions Eyrolles 617

S0L avaned |

618

Figure 12-19 Index partitionnés locaux et globaux

Segment d'index é;;;,kl‘

Local index Partition pl Local index Partition p2

| o e B g1 |

R £
Segment de données

Partition A J l Partition B Partition C

Index local partitionné

—— pr— Segment d'index lr{&tﬂ

| Segment de données

]
p Vg

Partition B Partition C

Parnition A |

Index global partitionné

Index partitionné local

Un index partitionné local est un index B-tree dont les colonnes de 1'index sont les colonnes
clés de partitionnement de la table. Un index partitionné local peut adopter tout type de parti-
tionnement (intervalle, hachage, liste et composite). De méme, I'index et la table disposent du
méme nombre de partitions. Il est possible de créer un index local bitmap sur des tables parti-
Honnées.

Tout index partitionné local concerné est automatiquement reconstruit suite aux modifications
de partitions de la table. L"ajout d’une partition 4 un index local ne peut s’ effectuer que suite &
I'ajout d'ume partition i la table associée. De méme, la suppression d'une partition d'un index
local s opére seulement si la partition associée de la table est supprimée.

& Editions Eyrolles

Opimisations

Un index partitionné global est un index B-tree qui est partitionné indépendamment du parti-
tionnement de la table associée. Des fenilles d'un tel index peuvent adresser toute partition de
la table. Un index global ne peut étre partitionné qu’en intervalle ou par hachage.

Les index partitionnés globaux sont limités & 32 colonnes qui doivent correspondre i un
prétixe des colonnes de 'index (lefr prefix). Par exemple, si I'index est défini sur les colonnes
(nom, prenom, tel), dors les colonnes de partitionnement peuvent étre (nom, prencm, tel),
{nom, prencm ou (nom, tel). Les combinaisons (prenom, tel), (tel) et (prenom, nom)

Il est impossible d'utiliser la technique du bitmap sur un index partitionné global.
Une colonne clé de partiticnnement d'un index partitionné global ne peut pas étre du type

Le tableau sulvant présente quelques index qu'il serait intéressant d'appliquer aux tables parti-

Tablesu 12-51 Création d'index partitionnés

[chapitre n® 12
index partitionne glohal
seront invalides.
ROWID:
tionnées des exemples précédents.
Index

Commentaires

CREATE IMDEX Adh_part_date_nais_ loc_idx
ON Adherent_partition_range
{TO_CHAR (date_nais, 'DD/MM/YYYY'))
LOCAL ;

Lindex local accédera optimalement & chague
partition d'adhérents en fonction de la date de
naissance.

CREATE INDEX Adh_part_nom loc_idx
ON Adherent _partition_hash {nom)
LOCAL
STORE IN (ths _partl, ths partld);

Lindex local accédera optimalement & chague
partition d'adhérent en fonetion de son nom. Les
deux partitions de lindex se trouvent dans deux
tablespaces distincts.

CREATE INDEX Adh_part_nom pre_glob idx
ON Adherent partition_range (nom, premncom)
GLOBAL
TABLESPACE tbs_indesx;

Lindex global accédera optimalement,
indépendamment des partitions d'adhérents
(partitionnés sur la date de naissance), en fonction
des noms et prénoms. La partition de lindex se
trouve dans le fablespace dé&dié aux index.

CREATE INDEX Adh_part_solde_gleob idx
ON Adherent_partition_range (solde)
GLOBAL PARTITION BY RANGE (solde)
{FRRTITION pl VALUES LESS THAN (10000),
FARTITION p2 VALUES LESS THAN (25000),

FARTITION p3 VALUES LESS THAN (MAXVALUE))

TABLESPACE ths_index;

Lindex global accédera optimalement
indépendamment des partitions d'adhérents
{partiionnés sur la date de naissance} an fonction
du montant du solde. Les 3 partitions de l'index se
trouvent dans le fablespace dédié aux index.

@ Editions Eyrolles

619

S0L avaned |

620

1. 5i les colonnes de partitionnement sont incluses dans les colonnes de l'index a mettre en
ceuvre, optez pour un index local. Sinon, passez a l'étape 2.

2. Sil'index est unique et n'inclut pas les colonnes de partitionnement, optez pour un index glo-
bal. Sinon, passez a I'étape 3.

3. Si vous donnez priorité a la facilité de gestion, optez pour un index local. Sinon, passez a
I'étape 4.

4, 5i vous privilégiez les temps de réponse (applications OLTP), optez pour un index global.
Dans un contexte OLAP, optez pour un index local.

Opérations sur les pariitions &t index

L'évolution des caractéristiques des tables et index parfitionnés est possible. Ansi, plusieurs
opérations sont disponibles ; concernant les tables, il faudra agir & 'aide de 'instruction
AITER TABLE:

ajout/suppression d'une partition via la clause ADD/DROP/TRUNCATE PARTITION ;
union de partitions via la clause COALESCE PARTITION ;
transformation/fusion de partitions via la clause EX(CHANGE /MERGE PARTITION;

modification de partitions via la clause MODIFY DEFAULT ATTRIBUTES FOR
PARTTTION ;

déplacement/éclatement de partitions via la clause MOVE/SPLIT PARTITION ;
changement du nom/d’une partition via la clause RENAME PARTITICN.

Dans la majorité des cas et & moins que vous n’utilisiez conjointement la clause UPDATE
INDEXES, vous devrez reconstruire vos index partitionnés qui seront notifiés UNUSAELE.

Partitionnement des tahles 10T

En version 81, les tables organisées en index pouvaient aussi étre partitionnées mais seulement
en intervalle. La version 9¢ permettait le partitionnement par hachage. Depuis la version [0g,
tout type de partitionnement est autorisé (range, list ou hash) avec les caractéristiques
suivantes :

les colonnes de partition sont incluses (tout ou partie) dans la clé primaire ;

I'indexation en bimnap est possible et les index secondaires peuvent &tre locaux ou

globanx ;

la directive PARTITION peut inclure I'option OVERFLOW pour préciser le segment de débor-
dement au niveau de chaque partition.

& Editions Eyrolies

[chapitre n® 12 Ooiimisations |

La table suivante organisée en index est partionnée selon la date des contrats (avant 2000,
entre 2000 et 2010, et aprés).

Tableau 12-52 Création d'une table 0T partidonnée

Code SQL Commentaires
CREATE TABLE Historigue partition iet Colonnes de la table.
{opeid CHAR (4) NOT NULL,
adhid NUMBER (10) NOT NULL,
date_contrat DATE NOT NULL,
categorie WVARCHAR (15) NOT NULL,
religuat KUMBER({7) NOT NULL,

CONSTRAINT pk_Historigue partition_iot
PRIMARY KEY (opeid,adhid,date_contrar)) Définition de la clé primaire.

ORGANIZATION INDEX Le segment d'index se trouvera dans le

TAELESPACE ths_index tablespace tbhs_index.

INCLUDING date_contrat Les 3 premigres colonnes seront dans
OVERFLOW TABLESPACE users le segment dindex, le débordement
PARTITION BY RANGE (date_contrat) dans le tablespaceusers.

(PARTITION avant_ 2000 VALUES LESS THAN Le partitionnement est défini sur la date

(TO_DATE(" 01/01 /2000 ', 'DD/MM/Y¥YY")) du contrat et chaque partition se trouve
TABLESPACE ths_partl, dans un fablespace distinct.

BARTITION de_2000_a_2010 VALUES LESS THAN
{TO_DATE('01/01/2011 ", 'DD/MM/YYYY"))
TABLESPACE ths_part2,

PARTITION apres VALUES LESS THAN (MAXVALUE)
TABLESPACE ths_partl);

Vues matérialisées

Les vues (dématérialisées) étudiées au chapitre 5 permettent de simplifier I'écriture de certaines
requétes particulitrement complexes mais ne garantissent rien en regard des performances.
Dans le pire des cas, une vue peut €ire consommatrice de ressources si d’autres vues sont
impliquées en cascade dans la requéte.

Les vues matérialisées (materialized views, anciennement snapshois) sont formées a partir de
requétes dont le résultat est stocké (comme les lignes d'une table). Une requéte composant une
vue matérialisée peut concerner des tables, vues et vues matérialisées. Dans un contexte de
réplication, 1'utilisation premiére de ces vues, une vue matérialisée s appelle master table.
Dans un contexte de datawarehouse, une vue matérialisée est nommeée defail fable.

@ Editions Eyrolles 621

S0L avaned |

622

Flgure 12-20 Vues matériafisées (€ doc. Oracle)

Client Applications
m Remote Update
Local
Query
v
Matenalized View Master Table

Materialized Replicate Table Data
View Rafresh
Database

Sans aborder les avantages de ces vues dans wne architecture répartie ou d’entrepits de
données, & propos des performances, les vues matérialisées répondent partaitement a
I'amélioration des jointures du fait du stockage de lignes précalculées et de 1a possibilité de
réécriture de requétes (query rewrite). De plus, le partitionnement et I'indexation sont
possibles.

Réécriture de reqguétes

La réécriture de requétes est une technique d’optimisation qui transforme une requéte
complexe émise sur une table volumineuse en une requéte sémantiquement €quivalente
interrogeant la vue matérialisée. Dés qu’il est plus intéressant d’utiliser la vue matérialisée
parce gu’elle contient des résultats déja calculés (agrégats et jointures), toute requéte est
réécrite (d'une maniére transparente pour 1'utilisateur) et utilise la vue a la place de la table.
Aucun code n'est & ajouter dans 'instruction SQL qui ne référence que la (ou les) tables
interrogées.

& Editions Eyrolies

[chapitre n® 12

Opimisations

Figure 12-21 Réécriture de requétes

PN
S 8B s

Reguéte I Comparaison des cedits
R et cholx du meilleur pan
v | Génération r

duplan

Le rafraichissement

Du fait du stockage redondant des données (dans les tables et dans la vue matérialisée), des
méthodes de synchronisation (refresh) sont disponibles. La méthode de rafraichissement peut

&tre incrémentale (fast refresh) ou compléte (complete refresh).

Le rafraichissement incrémental évite de reconstruire entiérement la vue matérialisée. Cepen-
dant, ce mécanisme doit s’ opérer relativement rapidement (4 la demande on périodiquement)
pour garantir 'intégrité des données. Chaque table est associée & un journal d’opérations
(materialized view log) qui recense toutes les modifications effectuées sur Ia table.

Le rafraichissement complet se produit 4 la création de la vue matérialisée (définie avec BEUILD
IMMEDIATE). Bien que ce procédé puisse étre coiiteux si les volumes de données manipulés
sont importants, les requétes interrogeant ces tables seront bien plus performantes.

Exempies

Dans un contexte de réplication, les vues matérialisées permettent de maintenir sur une base
locale des copies de données distantes. Ces copies peuvent ére modifiables sous réserve
drutiliser I'option Advanced Replication. En général, ces vues sont basges sur la ¢lé primaire
des tables (ou les rowid). Dans un contexte d'entrepits de données, les vues matérialisées

composent généralement des regroupements (agrégations) et des jointures.

Utilisons une vue matérialisée pour préparer les extractions d’adeptes de I'escrime et du tennis

de table et comparons quelques extractions avec une solution classique.

@ Editions Eyrolles

623

S0L avaned |

Tablean 12-53

Code SQL

Création 'une e matéralisee

Commentaires

CREATE MATERIALIZED VIEW adh escrime pingpong

TABLESPACE ths_cluster

BUILD IMMEDIATE

REFRESH COMPLETE

ENABLE QUERY REWRITE

AS SELECT a.adhid, s.8pid, a.splibelle,
a.nom, a.prenom, a.tel, a.date nais, a.zolde
FROM Adherentbis a, Sport g, Pratiquebis p
WHERE =.splibelle IN ('Escrime', 'Ping-pong')
AND a.adhid = p.adhid
AND a.epid = p.spid
COEDER BY a.adhid, a.nom;

Création de la vue matérialisée située dans le
tablespace tha_cluster.

La construction est immédiate et la vue est
éligible & la réécriture de requéte (ENRBLE
QUERY REWRITE).

Les requétes de jointure entre adhérents et 1"escrime ou le tennis de table utiliseront la vue & la
place des tables d'une maniére bien plus efficace. L’ opérateur que vous verrez apparaitre dans
vos plans d’exécution est MAT_VIEW REWRITE ACCESS FULL.

Le rafraichissement automatique nécessite de créer un journal d’ opérations par table interrogée.
Les exemples suivants décrivent des vues matérialisées qui seront mises i jour automatiquement.
La premiére sera actualisée dés la modification de la table Sport. La deuxiéme le sera tous les

lundis & 15 h 00.
Tableau 12-54 Rafrzsichizsement avlom aligue
Code 5QL Commentaires
CREATE MATERIALIZED VIEW LOG Création du journal des opérations.

ON Sport WITH PRIMARY KEY, ROWID;
MATERIALIZED VIEW catalogue_sports
REFRESH FAST

ON COMMIT

WITH PRIMARY FEY
AS SELECT spid,
Sport;

CREATE

gplibelle FROM

Création de la vue matérialisée avec une
contrainte primary key (colonne clé primaire de
la table).

Rafraichissement incrémental (fasf) aprés
maodifications sur la table.

CREATE MATERIALIZED VIEW LOG
ON Adherentbis
WITH PRIMARY FEY, ROWID
PURGE FEPEAT INTERVAL '5' DAY;
CREATE MATERIALIZED VIEW Adherent homnmes
REFRESH FAST
START WITH ROUND(SYSDATE + 1) + 11/24
NEXT
NEXT_ DAY {TRUNC (SYSDATE) / LUNDI')+15/24
WITH FRIMARY KEY
AS SELECT a.adhid, a.nom, a.prenom,
a.tel, a.date_nai=, a.zclde
FROM Adherentbis a

WHERE a.civilite = 'Mr.';

Creation du journal des opérations qui sera
vidé tous les 5 jours.

Création de la vue matérialisée avec une
contrainte primary key (colanne clé primaire
de la table).

Rafrafchissement incrémental, premidre
actualisation : le lendemain 4 11 h puis tous
les lundis 4 15 h.

624

& Editions Eyrolies

[chapitre n® 12 Dpiimisations

Dénormalisation

La dénormalisation suppose que vos tables soient d’abord en forme normale (au moins la troi-
siéme forme).

La majorité des problémes de performances des applications en production survient a la
montée en charge au niveau du volume des données. En d’antres termes, manipuler des tables
mal congues s avére pénalisant seulement quand elles deviennent volumineuses et ne tiennent
plus en RAM. Des experts étudient alors le code pour se rendre compte que les tables ne sont
pas normalisées et il est souvent un peu trop tard. Partez sur de bomnes bases (c’est le cas de le
dire) : normalisez au maximum en amont |

Si vos tables sont normalisées (au minimum en troisiéme forme normale), que toutes vos
colonnes clés étrangéres disposent d'un index associé, que ni les clusters, le partitionnement
ou les vues matérialisées ne peuvent répondre 4 vos problématiques de temps de réponse, vous
pouvez tenter de dénormaliser quelques-unes de vos tables.

- Vous pouvez dénormaliser une table en y ajoutant des nouvelles colonnes qui permettront de

v stocker soit des colonnes calculées (qui éviteront des caleuls), soit des données redondantes
(mais plus accessibles) ou des clés primaires (de taille plus réduite, comme une séquence) ou
étrangéres (gui diminueront les jointures). Dans bien des cas, vous devrez programmer des
déclencheurs afin de maintenir I'intégrité dans le temps de votre nouvelle base.

La dénormalisation sera profitable si votre application effectue de nombreuses lectures et peu
de mises & jour. Si beaucoup de mises & jour sont réalisées, la dénormalisation dégradera sen-
siblement certaines performances. En revanche, si votre application effectue peu de lectures,
dénormaliser ne sert & rien (a fortiori lorsqu'il existe beaucoup de mises 2 jour).

Golonngs calculées

Dans I'exemple suivant, I'ajout des colonnes totaljp (nombre de jours i facturer) et total]j
(nombre de jours de formation dans I"année) évitera tout calcul impliquant des jointures avec
latable Insecriptions.

@ Editions Eyrolles 625

| Partie W S0L avaned |
Flgure 12-22 Dénormalisation par colonnes calcuies
Cours
ncours | titre nbi | TP totalip
| UMD 2 11 |4
- 05 |2
3 1 -
L 2.
Client
nee 1 mola | lien
UMb - l 11 Pa nmCL ldentite BOCLETE totali
UMB— |8 |11 [Pa_ i Laurent Robert | TOTAL 3
UJE 1 | 12 Na 2 Esielle Allemand | Airbus]
UTR 3 | a2 Pa 3 Michel Beili Alrbus [
PAT 3 | 04 Ly

626

Le revers de la médaille consiste en 1a nécessité de programmer plusieurs déclencheurs sur la
table Inscriptions qui mettront & jour ces deux colomnes i chaque inscription et i toute
désinscription. Une ou plusieurs vues matérialisées peuvent étre également utilisées.

Duplication de colonnes

Dans I'exemple suivant, 1’ajout des colonnes identite2 (nom du client) et ste2 (société du
client) évitera toute jointure avec la table C1ient pour lister les détails des inscriptions. Ici on
régresse de la troisiéme 4 la premiére forme normale.

Figure 12-23 Dénormalisation par ajout de colonnes

Cours

noours | titee !nhj TF

UMD UML 2.0, conception de bases de donnges 2 1 T

PAT n et design patiems 2 o

UJE Modéhser une apphication JEE avec UML 20 |3 | 158

UTR UML 2.0, pour le temps reet] 5
Inscriptions client

neo | nedi | moia | liew | ddentited stad | numci | tdentite soclete
UMD | 2 11 Pa Esielle Allemand | Aibus | |1 Lauren Robert | TOTAL
UMD |3 |11 | Pa | Michel Belli “Airbis 2 Eslelie Allemand | Alrbus
UJE |1 12 Na Lauren Robert TOTAL L3 Miche! Belll Airbus
UTR | 3 bl | Pa WMichel Beill Airbus
PAT |3 |4 Ly [MehelBailli | Aibus |

Les inconvénients de ce mécanisme sont d'une part I'espace utilisé et d'autre part le risque
d’incohérences si le nom d'un client (ou le nom de sa société) vient i changer. La solution
consiste 4 utiliser un déclencheur sur la table Client ou une vue matérialisée (contenant entre
autres ces colonnes additionnelles).

& Editions Eyrolles

[chapitre n® 12 Ooiimisations |

Rjout de ciés étrangeres
Dans I'exemple suivant, I'ajout de la colonne nseg (numéro de segment) évitera toute jointure
avec la table Salles pour relier des postes i leur segment. Ici on régresse de la troisiéme & la
deuxiéme forme normale.

Figure 12-24 Dénormalisation par ajout de clé

Fostes

[dap typos BAM | 1P ne nseg
[PIST %P e 01 187 | 182.167.10 |
[Vista 1 02 81 | 192.187.10
XP__ 25 105 |81 | 162.167.10 |
Linux 15 |01 [§2 | 19216720
Sallea Segments
nsalle | etage nbp nasg debit type “
§1 |12 12 192.167.10 | 10 paire blindée
62 12 10 19216720 | 1000 fibre V2
83 16 14 192.167.25 100 fibre
84 [0 B

On retrouve les mémes inconvénients que précédemment (espace perdu et redondances). Pour
y remédier, il fandra programmer un déclencheur ou passer par une vue matérialisée.

Exemple de stratégie

Dénormaliser constituera une action forte sur la base car la structure des tables sera altérée,
des redondances apparaitront et des déclencheurs devront &re mis en ceuvre. En conséquence,
cefte technique doit étre la derniére solution & un probléme de temps de réponse en exploita-
tion et en aucun cas justifiée par I'intérét du programmeur.

Normalisez au maximum avant de mettre en exploitation puis auditer régulidrement quelgues
semaines, mois ou années suivants la montée en charge.

Appliquez les requétes les plus pénalisantes & une base dénormalisée mais équivalents en
termes de données. Comparez les temps de réponse entre les deux bases. Si ce dernier est
inférieur de plus de 30 %, il devient vraiment intéressant de dénormaliser.

Derniers conseils

Pour en terminer avec tous ces mécanismes d’optimisation, vous trouverez quelques conseils
d’ordre général & propos de vos requétes et de I'utilisation d'un SGBD.

@ Editions Eyrolles 627

S0L avaned |

628

Les bases de données sont comme bien des situations dans la vie. Les avantages s accompa-
gnent inéluctablement d’inconvénients, et chaque probléme a sa solution. En d’antres termes,
une solution d’optimisation peut vous faire gagner du temps et de I'argent & un endroit et vous
pénaliser ailleurs. Vous devrez toujours peser le pour et le contre de toute optimisation et déci-
der finalement en connaissance de causes. Bonne chance.

Remuetes inefficaces

Le tableau suivant présente quelques erreurs classiques et les moyens d'y remédier.

Tebleas 12-55

Requéte inefficace

Queitmes rogubtes ineflicaces

Commentaires

SELECT COUNT (*)
FROM produits p
WHERE prod_list _price =
1.15 * (SELECT avglunit_cost)
FROM couta ¢
WHERE c.prod_id = p.prod_id)

On cherche le nombre de produits pour lesquels 'écart
entre le prix catalogue et le codt moyen est inférieur &
15 %. Le calcul de la moyenne s'exécute pour chague
produit. Il est préférable d'écrire :
SELECT COUNT(*) FROM produits p,
(SELECT prod_id, AVE{unit_cost) ac
FROM couts GROUP BY prod_id) e
WHERE p.prod_id = c.prod_id
AND p.prod list price = 1.15 * goLac

SELECT *
FROM jeb _history jh, employes &

Nutilisez plus jamais * |

La requéte applique des expressions aux colonnes de
jointure. Afin de bénéficier d'index, il faudra définir deux
index basés sur l'expression en guestion.

WHEFRE SUBSTR({TO_CHAR (e.employe_id), 2)=
SUBS'TR (TO_CHAR | ih.emplove id) ,2)
SELECT eode_date
FROM commandes

WHERE cde_id char = 1205

Le prédicat effectue une conversion implicite de type.
Alors gue la colonne est de type caractére, la
constante, est numérigue. Sl l'index est déclaré,
comparez la colonne & TO_CHAR (1205) ou & '1206°.

SELECT emp_id, emp_name
FROM amploves

WHERE TO_CHAR(salaire) = :szal

La conversion de type (TO_CHRR) est appliquée ala
valeur de colonne plutt gu'a la constante et est
appelée pour chaque ligne de la table. Modifiez le
prédicat : salaire=TO_NUMBER{ :sal) pour
bénéficier d'un index et éviter de multiples caleuls.

SELECT .. FROM avions AF
UNICNH

SELECT .. FROM avions_BREITAIR

Contrairement & URTON ALL, lopérateur UNTON évite
les doublons mais nécessite de réaliser un tri unigue.
Si vous savez qu'a priori, il n'existe pas de lignes
communes aux deux extractions, préférez UNION ALL.

Pensez a la necessite de modifier ultérieurement vos requétes. Toute medification devrait mini-
miser le besoin de redéployer des modules. L'utilisation de procédures cataloguées peut répon-

dre a ce besoin de maintenance.

& Editions Eyrolles

[chapitre n® 12

Opiimisaiions

Les 10 commandements de F. Brouard

Paru en 2008 sur le blog de F Brouard (hip:/blog.developpez.comisglpro), I'article Les
10 meilleures pratigues pour développer avec un SGBDR cite un certain nombre de postulats
qui sont ici résumes.

1

@ Editions Eyrolles

Une base de données relationnelle doit gérer des relations et non des fichiers.

Assurez-vous que vos tables ne contiennent pas un nombre trop important de colonnes.
Respectez la normalisation introduite par le modéle relationnel. Contrairement i une idée
regue, dans votre base, plus le nombre de tables ayant peu de colonnes est élevé, meilleures
sont les performances de vos requétes.

Une clé primaire artificielle est préférable & une clé métier (sémantique).

En choissisant le numéro d'immatriculation d'une voiture, qui vous dit qu’a la création de
I'enregistrement l'information sera connue ou que cette valeur n'évoluera pas dans le
temps (entrainant des effets de bord trés cofitenx) 7 La clé métier est en général plus volu-
mineuse qu’une simple colonne NUMBER. L'idéal est de définir une cl€ primaire artificielle
et de disposer aussi d"une clé métier (contrainte UNIQUE).

Ne codez jamais (i part dans vos tests ou démonstrations), une requéte du type SELECT * ..,
ceci pour ces 3 principales raisons :

— Moins de données circulent sur le réseau, plus les temps de réponse sont courts. 11 est
dong préférable d'indiquer dans la liste des colonnes uniquement celles qui sont néces-
saires.

— Allégez la charge du transformateur de requétes en lui évitant de rechercher les infor-
mations dans les tables systéme pour déduire la liste de toutes les colonnes et les privi-
léges associés.

— Allez-vous interdire implicitement que vos tables évoluent en terme de structure 7
Ajouter ou supprimer une colonne risque de rendre le code inopérant tout endroit oit
cette instruction se trouvera.

Evitez si possible d'utiliser des curseurs dans vos transactions.

Les curseurs imposent une programmation itérative (ot les données sont traitées ligne par

ligne comme avec un simple fichier) et non ensembliste. Un SGBD est optimisé pour traiter

de maniére ensembliste les données avec SQL. Depuis la version SQL 1999, 1a récursivité
est supportée et SQL devient un langage complet (au sens de la machine de Turing) oii tout
traitement peut étre théoriquement programmé i |'aide de requétes.

Ecourtez la durée de vos transactions et programmez c6té serveur (procédures catalo-

guées).

Une transaction nécessite d’accéder souvent exclusivement aux données et des verrous

sont automatiquement mis en ceuvre. Ces derniers induisent des temps d'attente pour les

utilisateurs concurrents. Si votre code n’est pas optimisé ou s'il s’exécute du cité du client,
la contention devient inévitable.

629

S0L avaned |

630

10.

. Utilisez le SQL dynamique pour écrire des requétes simples.

Le fait d’écrire une instruction avec du SQL dyvnamique évite au transformateur de requé-
tes un certain nombre de tiches et permet la réutilisation du plan d’exécution.

. Paramétrez la bonne collation.

Une collation sert & gérer la maniére dont les chaines de caractéres, constituant les données
de la base, vont se comporter face aux opérateurs de comparaison et & 1’ordonnancement
des données (tri). La gestion des majuscules/minuscules, accents, ligatures (comme dans
ceeur), etc., doit &tre prévue. Consultez 1a section A propos des accents et jeux de caracte-
res de I'introduction.

. N'utilisez jamais une requéte du type SELECT MAX(...)+1 ... pour générer une clé

Pprimaire.

Ce mode de calcul est & proscrire car il peut conduire, un jour ou 1'autre, au mieux i un
télescopage de clé, au pire 4 un blocage total. En effet tant que la nouvelle ligne pourvue de
cette nouvelle clé n'est pas encore insérée dans la base, toute auire transaction peut effec-
tuer le calcul générant la méme valeur. Afin de rendre cohérent ce mécanisme, il faudrait
programmer une transaction intégrant le calcul de max+1! et I'ordre d'insertion avec la
nouvelle clé {ce quin’est pas si simple qu’il y parait}. Préférez le mécanisme d’auto-incré-
ment de votre SGBD qui pour Oracle est la séquence.

. Utilisez avec parcimonie les tables temporaires.

Chaque objet temporaire créé au sein d'un SGBDR déclenche une écriture cofiteuse au
journal de transactions et dans le dictionnaire des données. Si de nombreuses transactions
sont effectuées en paralléle et qu'elles générent de nombreux objets temporaires, des
points de contention peuvent apparaitre. Préférez I'utilisation de requétes contenant des
fonctions table ou des CTE.

Utilisez des index mais 4 bon escient.

Jusqu'a 5 index, une table d'une base OLTP est dans une moyenne habituelle. Au-dela, il
faut analyser les raisons qui ont motivé une telle indexation (qui peuvent &tre justifiables).
Indexez vos clés érangéres et ne vous trompez pas dans le mode d'indexage (B-rree,
bitmap ou 10T). S1 une table I0T convient & une séquence, elle peut mener & des perfor-
mances désastreuses pour une clé sémantique alphanumérique de taille variable.

& Editions Eyrolies

RO R R T TR TS S e S U S R S S BS U GS N AS UE R B R R SSRGS W B R S R N W W T T e W

%FOUND 334
%ISOPEN 334
GNOTFOUND 334
GROWCOUNT 334
GROWTYPE 280
%TYPE 279

(+) 147

NEW 362

:OLD 365

7562

A

ABS 119
absolute 426
ACCEPT 285
acceptChanges 437
ACCESSIBLEBY 388
ACL 539
ACOS 119
adaptive cursor sharing 601
ADD CONSTRAINT 84
ADD_MONTHS 124
ADDM (Automatic Database Diagnostic Monitor) 548
addRow SetListener 438
ADMIN_OPTION 258
ADMINISTER DATABASE TRIGGER. 360
AFTER 362
afterLast 426
alias

colonne 103

table 105

vue 235
ALL 152
ALL_USERS 254, 258
ALTER PROFILE 219
ALTER ROLE 230
ALTER SEQUENCE 57

@ Editions Eyrolles

ALTER TABLE
ADD 78
ADD CONSTRAINT 84
DISABLE CONSTRAINT 87
DROP COLUMN 80
DROP CONSTRAINT 8BS
ENABLE CONSTRAINT 89
MODIFY 79
MODIFY CONSTRAINT 96
RENAME COLUMN 79
SET UNUSED COLUMN 80

ALTER TRIGGER 376

ALTER VIEW 246

ANALYSE 554

AND 113

anti joins 597

ANY 152

ANY_PATH 536

Apache 453

appendChild 531

APPENDCHILDXML 504

ASSELECT 110

ASC 107

ASCIT 116

ATANI119

audsid 571

AUTHID 319

autojointure 144

AVG 128

AWR (Automatic Workload Repository) 548

BEFORE 362
beforeFirst 426
BEGIN 274
BETWEEN 114
BFILE 30, 50, 482

631

[501 pour Dracle

BFILENAME 50
BIN_TO_NUM 125
binary XML 479
BINARY_INTEGER 287
bind peeking 601

bind variables 286, 591
bindParam 473

bindValue 472

bitmap join 592

BLOB 30

blac 210

block label 284
BREADTH FIRSTBY 191
B-tree 578

BUFFER SORT 599
BULK COLLECT 338
bulk collect 332

C

cache 602
CachedRowSet 434
CallableStatement 444
cancelRowUpdates 430
cardinalité 551
CASCADE 86, 87, 216, 219
CASCADE CONSTRAINTS 38, 224
CASE292
CAST 125
CBO (Cost-Based Optimizer) 549
CDB 259
CEIL 119
changePrivileges 541
CHARACTER 287
CHARARR 303
CHARTOROWID 126
CHR 116
clé

candidate 3

étrangére 3

primaire 3
clustering factor 590
colonne 2
COLUMN 164

632

COMMENT 31
COMMENT ANY TABLE 225
commentaire

PL/SQL 277

SQL 22
COMPOSE 126
COMPRESS 609
con_id 261
CONCAT 116
concaténation 107
CONNECT 15
CONNECT BY 163
CONNECT_TIME 217
Connection 417
Connectot!] 416
consistent gets 564
CONSTANT 278
CONSTRAINT_TYPE 256
CONTINUE 297, 399
contrainte 23

in-line 23

out-of-line 24

référentielle 68
conversions 125
CONVERT 126
C0s119
COSH 119
COUNT 128
COUNT STOPKEY 599
CPU_PER_CALL 217
CPU_PER_SESSION 217
CREATE DIRECTORY 479
CREATE FUNCTION 319
CREATE MATERIALIZED VIEW 624
CREATE PACKAGE 329
CREATE PACKAGE BODY 330
CREATE PROCEDURE 318
CREATE PROFILE 217
CREATE ROLE 226
CREATE SEQUENCE 51
CREATE SYNONYM 247
CREATE TABLE 21
CREATE TABLESPACE 212
CREATE TRIGGER 360

& Editions Eyrolies

Index |

CREATE USER 213
CREATE VIEW 233
CREATE_INDEX_COST 589
createElement 531
createfolder 533
createresource 534
createStatement 417
CROSS JOIN 159
csid 484
CTE 188
CURRENT_DATE 48, 124
CURRVAL 54
curseur

explicite 332

implicite 302, 353
CURSOR 334
CYCLE 52,192

data dictionary 249

Data Modeler 33
DatabaseM etaData 440
DataSource 417

DATE 30, 46

DAV 532

db block gets 564

DBA 228
DBA_ROLE_PRIVS 254
DBA_ROLES 254
DBMS_APPLICATION_INFO 571
DBMS_OUTPUT 303
DEMS_RANDOM 303
DBMS_ROWID 303
DBMS_SPACE 589
DBMS_SQL 303
DBMS_STATS 554
DBMS_XDB_CONFIG 262
DBMS_XDB_REPOS 533
DBMS_XMLDOM 531
DBMS_XMLGEN 527
DBMS_XMLINDEX 522
DEMS_XMLPARSER 530
DBMS_XMLQUERY 477

@ Editions Eyrolles

DBMS_XMLSAVE 477
DBMS_XMLSCHEMA 483
DBMS_XMLSTORE 529
DBMS_XPLAN 563
DBTIMEZONE 48
deadlock 311

DEC 288

DECIMAL 288

DECLARE 274

DECLARE SECTION 396
déclencheur 358

DECODE 108, 126
DEFAULT 44

DEFAULT ROLE 215
DEFAULT TABLESPACE 214
DEFERRABLE 92
DEFERRED 93

DELETE() 283
deleteresource 533
deleteRow 430
deleteschema 483
DELETEXML 504
DELETING 369

densité 557

DENSITY 557

depth 537

DEPTH FIRSTBY 191
DESC 31, 107

DICT 251

DICTIONARY 251
dictionnaire des données 249
dirty read 309

DISABLE ALL TRIGGERS 376
DISABLE CONSTRAINT 87
DISPLAY 565

division 159

DO 399

DOUBLE PRECISION 288
DriverManager 412

DROP COLUMN 80
DROP CONSTRAINT 85
DROP FUNCTION 328
DROP INDEX 87

DROP PACKAGE 331

633

[501 pour Dracle

DROP PACKAGE BODY 331
DROP PROCEDURE 328
DROP PROFILE 219

DROP ROLE 231

DROP SEQUENCE 58

DROP TABLE 38

DROP TRIGGER 376

DROP UNUSED COLUMNS 81
DROP USER 216

DROP VIEW 246

DUAL 102

ECHO 16
elapsed 569
ENABLE ALL TRIGGERS 376
ENABLE CONSTRAINT 89
ENABLE QUERY REWRITE 624
ENTRYID 243
equals_path 537
équijointure 142
ESTIMATE_PERCENT 555
étiquette 284, 399
étreinte fatale 311
EXCEPTION 275
exception

JDBC 449

PL/SQL 345
EXCEPTIONS INTO 90
EXECUTE 323
execute 419, 442, 445
EXECUTE IMMEDIATE 384
executeQuery 4 19, 445
executeUpdate 419, 442, 445
EXISTS 156
EXISTS() 283
existsNode 502
existsresource 533
EXIT 294
EXFP 119
EXPIRE 214
EXPLAIN PLAN 565
expression

réguligre 175

634

extent 210
EXTRACT 65, 124, 498
EXTRACTVALUE 498

F

FAILED_LOGIN_ATTEMPTS 217
FETCH 110, 334
FILTER 599
FilteredRowSet 434
FIRST 283

first 426

FIRST ROW 599
flashback 38

FLOAT 288

FLOOR 119

FOLLOWS 378

FOR 295

FOR EACH ROW 361
FOR UPDATE 340
FORCE 224,233
forward engineering 33
FROM 104

FULL 553

FULL OUTER JOIN 149

GATHER_DATABASE_STATS 558
GATHER_INDEX STATS 558
GATHER_SCHEMA STATS 538
GATHER_TABLE_STATS 555
GENERATED ALWAYS 81
gentables 484

gentypes 484

GET 15

GET_LINES 303
GET_NEXT_RESULT 386
getACLDocument 540
getClobVal 519

getColumnCount 439
getColumnName 439

getColumns 441

getColumnType 439
getColumnTypeName 439

& Editions Eyrolies

Index |

getConcurency 430
getConnection 419
getContentClob 534
getDatabase ProductName 441
getDatabase ProductVersion 441
getErrorCode 449
getFetchDirection 426
gethitpsport 262

getMessage 449

getMetaData 424
getNextException 449
getPrecision 439
getResultSetConcurrency 430
getResultSetType 430
getSavepointld 448
getSavepointName 448
getScale 439
getSchemalName 439
getSIDX DefFromView 522
gelSQLState 449
getTableName 439

getTables 441

getter methods 419

getType 430

getUpdateCount 419
getUseiName 441

GOTO 399

grammaire XML Schema 483
GRANT 220, 222

GRANT ANY OBJECT PRIVILEGE 225
GRANT ANY PRIVILEGE 225
GRANTED_ROLE 258
graphe 194

GREATEST 126

GROUF BY 127

hard parse 552

HASH JOIN 594

hash join 594

HASH JOIN ANTI 597

HASH JOIN FULL OUTER 597
HASH JOIN OUTER 547
HASH JOIN SEMI 597

@ Editions Eyrolles

hash partitioning 610
HAVING 127

hint 552
HISTOGRAM 558
histogramme 554
HOST 10

IDENTIFIED 226
IDENTIFIED BY 213
IDLE_TIME 217
IF 290
IMMEDIATE 93
IN 114, 152
IN OUT 322
INCREMENT BY 52
INDEX

hint 553
index

fast full scan 580

full scan 580

organized table 607

partitionné 617

range scan 380

skip scan 580, 586
INDEX BY BINARY INTEGER 282
index-organized table 607
inéquijointure 145
INITCAP 116
INITIALLY 92
INLIST ITERATOR 599
INNER JOIN 143
INSERT 43
INSERTCHILD XML 504
INSERTING 36%
insertRow 430
INSERTXMLBEFORE 504
INSTEAD OF 371
INSTR 116
INT 288
INTEGER 287, 288
intégrité réferentielle 68
INTERSECT 133
INTERV AL 613

635

[501 pour Dracle

INTERVAL DAY TO SECOND 30, 48
INTERVAL YEAR TO MONTH 30, 48
INTO 298

IOT (Index-Organized Table) 607

IS NULL 114, 285

isAfterd ast 426

isBeforeFirst 426

isFirst 426

isLast 426

isNullable 439

isSchemaValid 504

item 200

]

JDBC 407
JdbcRowSer 434
JOIN 143
JoinRowSet 434
jointure 140
equi join 142
exteme 146
inner join 142
naturelle 157
outer join 146
procédurale 151
relationnelie 141
self join 144
SQL2141

KEEFP INDEX 87
key preserved 241
KILL SESSION 216

L

LANGUAGE 243

LAST 283

last 426

LAST DAY 124
LEAST 126

lecture fantdme 309
lecture non répétable 309

636

lecture sale 309
LENGTH 116
LEVEL 164

LIKE 114

LIMIT 338
LINESIZE 16
LINK 538

list pattitioning 610
LISTAGG 203

LN 119

LOB 2,50

local 484
LOCALTIMESTAMP 48
LOCK TABLE 313
LOG 119
LOGOFF 375
LOGON 375
LOMNG 498

LONG RAW 30
LOOP 294
LOWER 116
LPAD 117, 164
LTRIM 117

M

makeNode 531
materialized view 621
MAX 128
MAXVALUE 612
MERGE 172, 173
JOIN 595
JOIN CARTESIAN 597
METHOD_OPT 555
MIN 128
MINUS 134
MOD 119
MODIFY 79

MODIFY CONSTRAINT %6

MONTHS_BETWEEN 124
moveToCurrentRow 430
moveTolnsertRow 430
mutating tables 377

& Editions Eyrolies

Index |

NATURAL 288
NATURAL JOIN 157
NATURALN 288

nested loop 592

NESTED LOOPS 592
NESTED LOOPS ANTI 597
NESTED LOOPS OUTER 597
NESTED LOOPS SEMI 597
nested subprogram 326
NESTED_TABLE ID 494
NEW_LINE 303
NEW_TIME 124

NEXT 283

next() 424

NEXT DAY 124
NEXTVAL 54
NLS_DATABASE PARAMETERS 17
NLS_SESSION_PARAMETERS 17
NO_UNNEST 599
NO_USE_HASH 594, 595
NO_USE_MERGE 597
NOCOPY 318

NOCYCLE 52

NOFORCE 233
NOMINVALUE 52

non repeatable read 309
NOT 112

NOT EXISTS 157

NOT IDENTIFIED 226
NOTIN 152
NOVALIDATE 95
NOWAIT 340

NULLIF 127

NULLS FIRST 107

NULLS LAST 107
NUM_BUCKETS 558
NUMBER 27

NUMERIC 288
NUMTODSINTERVAL 63, 65
NUMTOY MINTERV AL 65
NVL 127

@ Editions Eyrolles

OBJECT RELATIONAL 481
OBJECT_VALUE 498
ocidls

oci_bind_by_name 463
oci_cancel 460

oci_close 456

oci_commit 459

oci_connect 456

oci_default 457
oci_define_by_name 463
oci_error 464

oci_execute 458
oci_fetch_all 460
oci_fetch_array 460
oci_fetch_assoc 460
oci_fetch_object 460
oci_fetch_row 460
oci_fetchstatement_by_row 457
oci_field_is_null 468
oci_field_name 468
oci_field_precision 468
oci_field_scale 468
oci_field size 468
oci_field_type 469
oci_free_statement 460
oci_internal _debug 464
oci_new_connect 456
oci_num 458

oci_num_fields 461, 468
oci_num_rows 469
oci_parse 458
oci_password_change 469
oci_peonnect 457
oci_return_nulls 458
oci_rollback 459
oci_server_version 468
oci_set_prefetch 460
oci_statement_type 469

ociB 456

OLAP (OnLine Analytical Processing) 585
ON DELETE CASCADE 72
ON DELETE SET NULL 72

637

[501 pour Dracle

OPEN 334
OPEN FOR 342

OPTIMIZER _DYNAMIC SAMPLING 551

OR 113

OR REPLACE 233

ORA-00001 347
ORA-00051 347
ORA-00054 571

ORA-00060 312, 571

ORA-01001 347
ORA-01012 347
ORA-01017 347
ORA-01402 245

ORA-01403 299, 347

ORA-01410 347

ORA-01422 299, 347
ORA-01426 287, 289

ORA-01476 347
ORA-01722 347
ORA-01732 240

ORA-01733 237, 242

ORA-01752 237
ORA-01776 240
ORA-01847 491
ORA-02273 86

ORA-02290 492
ORA-02293 491
ORA-02297 87

ORA-(4091 377
ORA-06500 347
ORA-06501 347

ORA-06502 290, 347

ORA-06504 347
ORA-06511 347
ORA-06530 347
ORA-06531 347
ORA-06532 347
ORA-06533 347
ORA-06592 347
ORA-08177 310
ORA-19002 487

ORA-19202 481, 492

ORA-30625 347
ORA-30730 496

638

ORA-30851 491
ORA-31000 485, 491
ORA-31154 492
ORA-32044 196
ORA-32795 59
ORA-64464 481
ORDER BY 107
ORGANIZATION INDEX 609
ORM 314

OTHERS 346
OUTER JOIN 148
OVERFLOW 608

P

p_difference_threshold 575
PAGESIZE 16
paquetage 328
parseClob 530
PARTITION

BY HASH 613, 614

BYLIST 614

BY RANGE 611, 612

BY REFERENCE 615

HASHALL 614

HASHINLIST 614

LIST SINGLE 615

RANGE ALL 613

RANGE INLIST 613

RANGE SINGLE 613
PARTITION HASH SINGLE 614
PARTITION LIS ALL 615
PARTITION LIST INLIST 615
partitionnement 610

hachage 614

intervalles 612

liste 614

par référence 615
PASSWORD _GRACE_TIME 218
PASSWORD_LIFE_TIME 217
PASSWORD_LOCK_TIME 218
PASSWORD_REUSE_MAX 217
PASSWORD_REUSE_TIME 217
PATH 538

& Editions Eyrolies

Index |

path 537
PATH_VIEW 536, 538
PDO 471
PDOException 472
PDOSmement 474
phantom read 309
physical reads 564
PIPE ROW 343
PIPELINED 343
PIVOT 197
PivotSet 2010
PL/SQL 273
curseurs 332
exceptions. 345
fonction catalognée 317
paquetage 328
procédure catalogude 317
sous-programme 317
varable curseur 341
plan d’exécution 559
PLAN_TABLE 565
PLS_INTEGER 287
PLS-00218 290
plustrace 562
populate 435
POSITION 2356
POSITIVE 288
POSITIVEN 288
POWER 119
PRAGMA AUTONOMOUS_TRANSACTION 319
PRAGMA EXCEPTION_INIT 354
prepareCall 417
PreparedStatement 442
prepareStatement 417
previous 426
PRINT 286
PRIOR. 164, 283
PRIVATE SGA217
privilege 219
objet 221
systeme 219
Pro*C/C4+ 395
produit cartésien 136, 159
PUBLIC 220, 221

@ Editions Eyrolles

PURGE 38
PUT 303
PUT_LINE 303

QUOTA 214
quoted identifier 32

R_CONSTRAINT_NAME 256
RAISE 352
RAISE_APPLICATION_ERROR 357
range partitioning 610
RAW 30
RBO (Rule-Based Optimizer) 549
READ COMMITTED 310
READ_ACTION 572
READ_CLIENT_INFO 572
READ_MODULE 572
readXml 437
REAL 288
RECORD 281
recursive calls 564
récursivité 188, 326
recycle bin 38
redo size 564
REF CURSOR 341, 385
REFERENCING 368
REGEXP_COUNT 185
registerOutParameter 445
registerParameter 522
registerschema 483
relative 426
RELEASE 16
releaseSavepoint 447
removeRowSetListener 438
RENAME 77
RENAME COLUMN 79
RENAME TO 77
REPLACE 117
requéte 101

hiérarchique 162

639

[501 pour Dracle

imbriquée 155
récursive 188
reraise 356
RES 536
RESID 536, 538
RESQURCE 228, 318
RESOURCE_VIEW 536

RESULT_CACHE_MODE 603

ResultSet 423
ResultSetMetaData 439
RETURN 321, 336
RETURN_RESULT 386
REVERSE 295
REVOEKE 221, 224, 229
rile 225
ROLE_ROLE_PRIVS 254
ROLE_SYS_PRIVS 254
ROLE_TAB_PRIVS 254
ROUND 119, 124

row 2

row source 5700

row trigger 361

rowid 108
ROWIDTOCHAR 126
ROWNUM 109, 139
RowSet 434
RowSetListener 437
RPAD 117

RTRIM 117

5

SAVE 15
Savepoint 447
JDBC 447
savepoint 308
SCHEMA 374
schemadoc 484
schemaurd 484
SCHEMAVALIDATE 492
SEARCH 191
segment 210
SELECT 102
fonetions 115

640

FOR UPDATE 313
SELECT ANY DICTIONARY 225
SELECT... INTO 298
sélectivité 551, 557
semi joins 597
SEQUEL 1
SERIALIZABLE 310
SERVERERROR 375
SERVEROUT 16
SESSION_ROLES 254
SESSION_TRACE _ENABLE 568
SESSIONID 243
SESSIONS_PER_USER 217
SESSIONTIMEZONE 48
SET AUTOTRACE 561
SET CONSTRAINT 94
SET CONSTRAINTS 94
SETROLE 229
SET TRANSACTION 310
SET UNUSED COLUMN 80
SET_SQL_TRACE 567
setACL 541
setAttribute 472, 531
setAntoCommit 417
setFetchDirection 426
sethttpsport 262
setMaxRows 419
setNull 442
setrowsettag 527
setrowtag 527
setSavepoint 447
setter methods 419
setUpdateColumn 528
SHOW ERRORS 323
SHUTDOWN 375
SIBLINGS 107, 167
SIGN 119
SIGNTYPE 288
SIMPLE_DOUBLE 289
SIMPLE_FLOAT 289
SIMPLE_INTEGER 288
SIN 119
SINH 119
SMALLINT 288

& Editions Eyrolies

Index |

SMBE (SQL Management Base) 560

snapshot 621

soft parse 552

SORT JOIN 595

sort merge join 5935

SOUNDEX 117

sous-interrogation 151
synchronisée 155

SPOOL 15

SQL dynamique 382

SQL%FOUND 302

SQL%ENOTFOUND 302

SQLS%ROWCOUNT 302

sql_trace 567

SQL2 1

SQL3 1

SQLCA 398

SQLCODE 348

sqlerrd 404

SQLERRM 349

sglermml 398

SQLException 449

SQRT 119

STALE FERCENT 555

START 15

START WITH 163

STARTUP 375

Statement 419

statement trigger 370

STDDEV 128

STOP 399

STS (SQL Tuning Set) 560

SUBPARTITION 617

substitution 285

SUBSTR 118

SUBTYPE 288

SUM 128

supportsSavepoints 44 1

supportsTransactions 441

SUSPEND 375

SYN 254

synonyme 247

SYS_NC_ROWINFO$) 498

SYSDATE 62, 124

@ Editions Eyrolles

SYSDBA 225
SYSOPER 225
SYSTIMESTAMP 48

T

table 2, 21
dominante 146
fils 68
heap-organized 607
index-organized 607
key preserved 241
pere 68
reference-partitioned 615
subordonnée 147
tablean
associatf 282
Pro*CfCa+ 403
tablespace 210
TABS 254
TAN 119
TANH 119
TEMPLATE 617
TEMPORARY TABLESPACE 214
TERMINAL 243
TERMOUT 16
TIME 16
TIMED _STATISTICS 567
TIMESTAMP 30, 47
tkprof 566
TO_CHAR 64, 126
TO_DATE 63, 64
TO_DSINTERVAL 126
TO_NUMBER 126
TO_YMINTERVAL 126
transaction 306
TRANSLATE 118
TRIM 118
TRUNC 120, 124
TRUNCATE 67
tuning 548

641

[501 pour Dracle

u

UID 243

under_path 537

UNION 134

UNION ALL 134

UNIQUE 578

unique scan 580

UNISTR 49, 126

UNPIVOT 201

UPDATE 60

updater methods 419

updateRow 430

UPDATEXML. 504

UPDATING 369

UPPER 118

USE_HASH 595

USE_MERGE 597

USE_NL 592

USER 16, 243
USER_ALL_TABLES 254
USER_COL_COMMENTS 254
USER_COL_GRANTS 254
USER_COL_GRANTS_MADE 254
USER_COL_PRIVS_MADE 254
USER_COL_PRIVS_RECD 254
USER_CONS_COLUMNS 254
USER_CONSTRAINTS 254, 256
USER_ERRORS 254, 323
USER_IND_COLUMNS 254
USER_IND_EXPRESSIONS 254
USER_INDEXES 254
USER_OBJECTS 254, 255
USER_ROLE_PRIVS 254, 258
USER_SEQUENCES 252
USER_SOURCE 254, 257
USER_STORED_SETTINGS 254
USER_SYNONYMS 254
USER_TAB_COLUMNS 254, 255
USER_TAB_COMMENTS 254
USER_TAB_GRANTS 254
USER_TAB_GRANTS_MADE 254
USER_TAB_GRANTS_RECD 254
USER_TABLES 254

642

USER_UNUSED_COL_TABS 254
USER_UPDATABLE COLUMNS 242
USER_USERS 254

USER_VIEWS 254
USER_XML_SCHEMAS 543
USER_XMIL_TAB_COLS 543
USER_XML_TABLES 543
USER_XML VIEWS 543

USING 158

]

VEMYSTAT 571
viresult_cache_objects 603
VHSESSTAT 562
VESQL_PLAN 559
VESOQLAREA 559
VESQLSTATS 559
VALIDATE 94
VALUE _ERROR 278
VARIABLE 286
varable curseur 341
VARIANCE 128
VARRAY 494
VIRTUAL 81
VIRTUAL COLUMNS 481
vue 232
matérialisée 621
monotable 234
XMLType 521

W

WAIT 340

wasNull 445

WebRowSet 434

WHEN 367

WHENEVER 399

WHILE 293
WIDTH_BUCKET 120, 187
WITH 185

WITH ADMIN OPTION 220
WITH CHECK OPTION 234
WITH GRANT OPTION 222

& Editions Eyrolies

Index |

WITH READ ONLY 234, 236

WITH TIES 110
writeXml 436

XDB 479
XML DB 477

XML DB Repository 532
XMLAGG 514
XMLATTRIBUTES 514
XMLCAST 499
XMLCDATA 520
XMLCOLATTVAL 520
XMLCOMMENT 514

@ Editions Eyrolles

XMLDATA 493
XMLELEMENT 514
XMLEXISTS 502
XMLFOREST 514
XMLISVALID 491
XMLNAMESPACES 537
XMLPARSE 519
XMLQUERY 498
XMLROOT 520
XMLSCHEMA 481
XMLSERIALIZE 517
XMLTABLE 501
XMLType 480

XQuery Update 504

643

