

pour

Oracle

DU MÊME AUTEUR

C. Sou-rou, P. B1HluARD, N. SouQUE'I" e l D. BARBARIN. - SQL Server 2014.
N° 13592, 20 15, 890 page.,.

C. Sou-rou. - Pro gramm er avec MySQL (3' édition).
N° 137 19, 20 13, 520 page.,.

C. Sou-rou. - Modélisation de bases de données (3' éd ition) .
N° 14 206, 20 15, 352 page.,. Àparafn ·e.

AUTOUR D'ORACLE ET DESQL

R. B1zoî - Oracle 12c - Administration.
N° 14056, 20 14, 564 page.,.

R. B1zoî - Oracle 12c - Sauvegarde et r estauration.
N° 14057, 20 14 , 336 page.,.

R. B1zoî - SQL pour Oracl e 12c.
N° 14054, 20 14, 4 16 page.,.

R. B1zoî - PLISQL pour Or-acle 12c.
N° 14055, 20 14 , 340 page.,.

C. P11fü<B DB GeveR e l G. PONÇON- Mémento PH P et SQL(3 ' éd ition) .
N° 13602, 20 14, 14 page.,.

R. B1zoî - Oracle llg - Administration.
N° 12899 , 20 11 , 600 page.,.

R. B1zoî - Oracle llg - Sauvegarde et r estauration.
N° 12899 , 20 11 , 432 page.,.

G. BRIARD - Oracle IOg sous Windows.
N° 1 1707, 2006, 846 page.,.

R. B1zoî - SQLpourOrocl e IOg.
N° 12055 , 2006 , 650 page.,.

G. BRIARD - Oracle IOg sous Windows.
N" 11707 , 2006 , 846 page.,.

G. BRIARD - Oracle9i S(MJS Linux.
N° 11337,2003, 894 page.,.

Christian Soutou

pour

Oracle
Applications avec Java, PHP et XML

Optimisation des requêtes et schémas

Avec SO exercices corrigés

EYROLLES

ÉDITIONS EYROLLES
6 1, bd Sa int-Germa in
75240 Par is Cedex 05

www.ed itions-eyro lles.com

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement orn partiellement le présent ouvrage,
sur quelque support que ce soit, sans l'a utorisation de !'Éditeu r ou du Centre Français d 'exploitation du droit de copie,
20 , rue des Grands Augustins, 75006 Paris .
© Groupe Eyrolles,2004 -2015 , ISBN : 978-2 -212-14156-6

Si Oracle était doué d'écriture, il penserait certainement
aux journalistes et aux autres victimes qui ont perdu la vie

au cours des attentats de Paris en janvier2015.

SélectK>nner XE

SOL> SELECT • JE SUIS CHARLIE. AS .. dtdiceco ..

JE SUIS CHARLIE

SOL>

"'

Avant-propos

Nombre d'ouvrages traitent de SQL et d'Oracle ; certains résultent d''une traduction hasar­
deuse et sans vocation pédagogique, d'autres ressemblent à des annuaires téléphoniques. Les
survivants, bien qu' intéressants, ne sont quant à eux plus vraiment à jour.

Ce livre a été rédigé avec une volonté de concision et de progression dans sa démarche ; il est
illustré par ailleurs de nombreux exemples et figures. Bien que notre source principale d'infor­
mations fût la documentation en ligne d'Oracle, J'ouvrage ne constitue pas, à mon sens, un
simple condensé de commandes SQL. Chaque notion importante est introduite par un exemple
facile et démonstratif (du moins je J'espère). À la fin de chaque chapitre, des exercices vous
permettront de tester vos connaissances.

Depuis quelques années, la documentation d'Oracle représente des centaines d'ouvrages au
format HTML ou PDF (soit plusieurs dizaines de milliers de pages) ! Ainsi, il est vain de
vouloir expliquer tous les concepts, même si cet ouvrage ressemblait à un annuaire. J'ai tenté
d'extraire les aspects fondamentaux sous la forme d'une Ce livre résulte de mon
expérience d'enseignement dans des cursus d'informatique à vocation professionnelle (IUr,
master professionnel et interentreprise).

Cet ouvrage s'adresse principalement aux novices désireux de découvrir SQL et de program­
mer sous Oracle.

• Les étudiants trouveront des exemples pédagogiques pour chaque concept abordé, ainsi
que des exercices thématiques.

• Les développeurs C, C++, PHP ou Java découvriront des moyens de stocker Jeurs données.

• Les professionnels connaissant déjà Oracle seront peut-être intéressés par certaines
nouveautés décrites dans cet ouvrage.

Les fonctionnalités de la version l lg ont été prises en compte lors de la troisième édition de
cet ouvrage. Certains mécanismes d'optimisation (index, cl11sters, partitionnement, tables
organisées en index, vues matérialisées et dénormalisation) sont apparus lors de la quatrième
édition en même temps que quelques nouveautés SQL (pivots, transpositions, requêtes pipe
li11e, CTE et récursivité). La cinquième édition enrichissait l'intégration avec Java (connexion
à une base MySQL, Daia So11rces et RowSets) et PHP (API POO : PHP Daia Objects). La
sixième édition présentait l'outil SQL Data Modeler. Celle-ci inclut des nouveautés de la
version 12c et actualise principalement la technologie XML DB.

© Éditions Eyrol/es VII 1

1 SQl llOlll OrllCll

Par ailleurs, plusieurs compléments qui concernent des usages d'Oracle moins courants sont
disponibles en téléchrugement sur la fiche de J'ouvrage (à J'adresse w.vw.editions-eyrolles.com):

• l'installation de différentes versions (complément 1 : Installation des versions 9i à 12c) ;

• la technologie SQLJ (complément 2 : L'approche SQU) ;

• les procédures externes (complément 3 : Procédures stockées et externes) ;

• les fonctions PL/SQL pour construire des pages HTML (complément 4 : PUSQL Web
Toolkit et PUSQL Server Pages).

Guide de lecture

1 VIII

Ce livre s'organise autour de trois parties distinctes mais complémentaires. La première inté­
ressera Je lecteur novice en la matière, car elle concerne les instructions SQL et les notions de
base d'Oracle. La deuxième partie décrit la programmation avec Je langage procédural
d'Oracle PUSQL. La troisième partie attirera l'attention des programmeurs qui envisagent
d'utiliser Oracle tout en programmant avec des langages évolués (C, C++, PHP ou Java) ou
via des interfaces Web.

Première partie : SQL de base
Cette partie présente les différents aspects du langage SQL d'Oracle en étudiant en détail les
instructions élémentaires. À partir d'exemples simples et progressifs, nous expliquons notamment
comment déclarer, manipuler, fuire évoluer et interroger des tables avec Jeurs différentes caracté­
ristiques et éléments associés (contraintes, index, vues, séquences). Nous étudions aussi SQL
dans un contexte multi-utilisateur (droits d'accès), et au niveau du dictionnaire de données.

Deuxième partie : PIJSQL
Cette partie décrit les caractéristiques du langage procédural PUSQL d'Oracle. Le chapitre 6
aborde des éléments de base (structure d'un programme, variables, structures de contrôle, inter­
actions avec la base, transactions). Le chapitre 7 traite des sous-programmes, des curseurs, de
la gestion des exceptions, des déclencheurs et de l'utilisation du SQL dynamique.

Troisième partie : SQL avancé
Cette partie intéressera les programmeurs qui envisagent d'exploiter une base Oracle en utili­
sant un langage de troisième ou quatrième génération (C, C++ ou Java), ou en employant une
interface Web. Le chapitre 8 est consacré à J' étude des mécanismes de base du précompilateur
d'Oracle Pro*C/C ++. Le chapitre 9 présente les principales fonctionnalités de J' API JDBC.

© ÉdWions Eyroles

l llMll11111110 a 1

Le chapitre JO traite des deux principales API disponibles avec Je langage PHP (OCI8 et
POO). Le chapitre 11 présente les fonctionnalités de XML DB et J 'environnement XML DB
Repository. Enfin, Je chapitre 12 est dédié à J' optimisation des requêtes et des schémas rela­
tionnels.

Conventions d'écriture et lictoorammes

'
..:...' 12' ..t

La police courrier est utilisée pour souligner les instructions SQL, noms de types, tables,
contraintes, etc. (exemple: SELECT nom FROM Pilote).

Les majuscules sont employées pour les directives SQL, et les minuscules pour les autres
éléments. Les noms des tables, index, vues, fonctions, procédures, etc ., sont précédés d'une
majuscule (exemple : la table CompagnieAerienne contient la colonne nomConp).

Les termes d'Oracle (bien souvent traduits littéralement de l'anglais) sont notés en italique
(exemple : row, trigger, table, col1mu1, etc.).

Dans une instruction SQL, les symboles { et) désignent une liste d'éléments, et Je symbole 1
un choix (par exemple, CREATE {TABLE 1 VIEW} exprime deux instructions possibles :
CREATE TIIBLE ou CREATE VIEW). Les signes [et] désignent Je caractère facultatif d'une
option (par exemple, CRE.l\TE TABLE Avion(. .. } [TABLESPACE USERSJ exprime deux écri­
tures possibles : CREATE TABLE Avion(... } TABLESPACE USERS et CREATE TABLE
Avion(. .. }).

Ce pictogramme introdu it une définition, un concept ou une rema rque importante. Il appara ît
soit dans une partie théorique , soit dans une partie technique , pour sou ligner des instructions
importantes ou la marche à suivre avec SOL.

Ce pictogramme annonce soit une impossibilité de mise en œuvre d'un soit une mise
en garde. Il est principalement utilisé dans la partie consac rée à SOL.

Ce pictogramme indique une astuce ou un conse il personnel.

Ce pictogramme indique une commande ou option dispon ible uniquement à partir de la
vers ion 12c.

© Éditions Eyrol/es

1 SQl llOlll OrllCll

Cootact avec l'auteur et site Web

Si vous avez des remarques à formuler sur Je contenu de cet ouvrage, n'hésitez pas à m'écrire
(christian.soutou@gmail.com). Vous trouverez sur Je site d'accompagnement, accessible par
w.vw.edlions-eyrolles.com, les compléments et errata, ainsi que Je code de tous les exemples et
les exercices corrigés.

© ÉdW/ons Eyroles

Table des matières

Introduction . 1
SQL, une norme, un succès . 1
Modèle de données . 2

Tables et données . 2
Les clés ... 3

Oracle . 3
Un peu d'histoi re . 4
Rachat de Sun (et de MySOL} 5
Offre du moment . 6
Notion de schéma . 8
Accès à Oracle depuis Windows 9
Détail d'un numéro de version .. 9

LescllentsSQL .. 10
SOL'Plus . 10
SOL Developer . 11
SOL Data Modeler . 12
Premiers pas . 13
Variables d'env ironnement . 15
À propos des accents et jeux de caractères . 16

Partie 1 SQl de base . 19

1 Définition des dmmées. 21
Tables rela11onnelles . 21

Création d'une table (CREATE TABLE} 21
Casse et commentaires . 22
Premier exemple . 23
Contraintes de colonnes . 23
Conventions recommandées . 24
Types des colonnes. 26
Structure d'une table (DESC} 31
Commentaires stockés (COMMENT) . 31
Noms des objets . 32

Utlllsa11on de SQL Developer Da1a Modeler . 33
Suppression des tables.. 37

© Éditions Eyrol/es XI 1

1 SQl llOlll OrllCll

2 Mantplllatlon des données . 43
Insertions d'enregistrements (INSERT)................................... 43

Syntaxe ... 43
Renseigner ou pas toutes les colonnes . 44
Ne pas respecter des contraintes . 45
Dates/heures . 46
Caractères Unicode. 49
Données LOB . 50

Séquences . 51
Création d'une séquence (CREA TE SEQUENCE) . 51
Manipulation d'une séquence . 54
Utilisation d'une séquence dans un DEFAUL T .. 56
Modification d'une séquence (ALTER SEQUENCE). 56
Visualisation d'une séquence . 57
Suppression d'une séquence (DROP SEQUENCE) . 58
Colonnes auto-incrémentées . 58

Modifications de valeurs .. 59
Syntaxe (UPDATE) .. 60
Modification d'une ligne. 60
Modification de plusieurs lignes . 60
Ne pas respecter des contraintes . 61
Dates et intervalles . 62

Suppressions d'enregistrements . 66
Instruction DEL ETE. 66
Instruction TRUNCATE ... 67

Intégrité référentlelle . 68
Cohérences . 68
Contraintes côté • père • . 69
Contraintes côté • fils • . 69
Clés composites et nulles . 70
Cohérence du fils vers le père. 71
Cohérence du père vers le fils. 71
En résumé . 72

3 ÉVOiution d'IDI schéma . 11
Renommer une table (RENAME) . 77
Modifications structurelles (AL TER TABLE). 78

Ajouter des colonnes.. 78
Renommer des colonnes . 79
Modifier le type des colonnes . 79
Supprimer des colonnes . 80
Colonnes UNUSED.. 80
Colonne virtuelle . 81
Colonnes invisibles . 83

1 XII © ÉdW/ons Eyroles

Mod lflcatlons comportementales . 84
Ajout de contraintes. 84
Suppression de contraintes . 85
Désactivation de contraintes . 87
Réactivation de contraintes . 89

Contraintes différées . 92
Directives DEFERRABLE et INITIALL Y . 92
Instructions SET CONSTRAINT . 94
Instruction ALTER SESSION SET CONSTRAINTS . 94
Directives VAUDATE et NOVALIDATE................................... 94
Directive MODIFY CONSTRAINT . 96

4 lntel'l'Oll3tlon des données . 101

© Éditions Eyrol/es

Généralités . 101
Syntaxe (SELECT) . 102
Pseudo-table DUAL.. 102

Proje ct ion (élémen ts du SELECT) . 103
Extraction de toutes les colonnes . 104
Extraction de certaines colonnes.. 105
Alias.. 105
Duplicatas . 106
Expressions . 106
Ordonnancement . 107
Substitutions conditionnelles . 108

ROWID . 108
ROWNUM.. 109

Insertion multiligne. 109
limi tation du nombre de lignes ... 110

Restricti on (WHERE) . 111
Opérateurs de comparaison . 112
Opérateurs logiques . 113
Opérateurs intégrés . 114

Fonctions . 115

Caractères . 115
Numériques . 119
Valeurs spéciales pour les flottants . 120
Fonctions pour les flottants . 120
Dates ... 124
Conversions.. 125
Autres fonctions. 126

Regr oupemen ts . 127
Fonctions de groupe . 128
Étude du GROUP BY et HAVING 129

XIII 1

1 SQl llOlll OrllCll

1 XIV

Opérateurs ensemblistes . 132
Restrictions . 132
Exemple . 133
Opérateur INTERSECT. 133
Opérateurs UNION et UNION ALL . 134
Opérateur MINUS . 134
Ordonner les résultats. 135
Produit cartésien. 136
Bilan . 137
Sous-interrogations dans la dause FROM . 138

Jointures . 140
Classification . 140
Jointure relationnelle. 141
Jointures SOL2 . 141
Types de jointures . 142
Équijoinb.Jre. 142
Autojointure . 144
lnéquijointure. 145
Jointures externes. 146
Jointures procédurales . 151
Jointures mixtes . 155
Sous-interrogations synchronisées. 155
Autres d irectives SOL2 . 157

...
Définition. 160
Classification . 160
Division inexacte en SOL . 161
Division exacte en SOL . 162

Requêtes hiérarchiques . 162
Point de départ du parcours (ST ART WITH) . 163
Parcours de l'arbre (CONNECT BY PRIOR). 163
Indenta tion. 164
Élagage de l'arbre (WHERE et PRIOR) . 165
Jointures . 167
Ordonnancement . 167
Extraction de chemins. 168
Extraction d'un élément. 169
Nature d'un élément . 169
Éviter un cycle. 170

Mises à jour conditionnées (fusions).. 172
Syntaxe (MERGE)... 172
Exemple . 173
Suppressions dans la table cible. 173
Exemple . 174

© ÉdW/ons Eyroles

Expressions régulières .. 175
Quelques exemples . 177
Fonction REGEXP _LIKE .. 177
Fonction REGEXP _REPLACE . 180
Fonction REGEXP _INSTR . 181
Fonction REGEXP _SUBSTR . 183

. 184
Extractions diverses . 185

Directive WITH . 185
Fonction WIDTH_BUCKET . 187
Récursivité avec WITH (CTE} . 188
Pivots (PIVOT). 197
Transpositions (UNPIVOT) . 201
Fonction LISTAGG . 203

5 COntréile des données .. 209

© Éditions Eyrol/es

Les tablespaces . 21 O
Indépendance logique/physique . 21 O
Tablespaces déjà livrés . 210
Création d'un tablespace. 212

GeS11on des utilisateurs . 212
Classification . 213
Création d'un utilisateur (CREATE USER} . 213
Modification d'un utilisateur (ALTER USER}. 215
Suppression d'un utilisateur (DROP USER} . 216
Profils... 216

Privilèges . 219
Privilèges système. 219
Privilèges objets . 221
Privilèges prédéfinis . 224

Rôles ... 225
Création d'un rôle (CREATE ROLE}. 226
Rôles prédéfinis . 228
Révocation d'un rôle . 228
Activation d'un rôle (SET ROLE} . 229
Modification d'un rôle (ALTER ROLE}.................................... 230
Suppression d'un rôle (DROP ROLE}.. 231

Vues.. 231
Création d'une vue (CREATE VIEW) . 232
Classification . 234
Vues monotables . 234
Vues complexes . 239
Autres utilisations de vues. 242
Transmission de droits . 246

XV 1

1 SQl llOlll OrllCll

Partie 1

Modification d'une vue (AL TER VIEW) . 246
Suppression d'une vue (DROP VIEW) . 246

Synonymes.. 247
Création d'un synonyme (CREA TE SYNONYM) . 247
Transmission de droits . 249
Suppression d'un synonyme (DROP SYNONYM) . 249

Dictionnaire des données . 249

Constitution . 250
Classification des vues . 250
Démarche à suivre . 251
Principales vues . 253
Objets d'un schéma. 255
Structure d'une table . 255
Recherche des contraintes d'une table . 256
Composition des contraintes d'une table . 256
Détails des contraintes référentielles . 256
Recherche du code source d'un sous-programme . 257
Recherche des utilisateurs d'une base de données . 258
Rôles reçus . 258

Le multltenant . 259
Les consoles d'admlnlstra11on. 262

Enterprise Manager Database Express . 262
SOL Developer . 264

PIJSQL.......... 211

& Bases du PIJSQL. 213

1 XVI

Généralités . 273
Environnement client-serveur . 273
Avantages .. 274
Structure d'un programme.. 274
Portée des objets . 275
Jeu de caractères . 276
klent iflcateurs . 276
Commentaires.. 277

Variables. 277
Variables scalaires . 278
Affectations . 278
Restrictions . 279
Variables % TYPE . 279
Variables %ROWTYPE . 280
Variables RECORD.. 281
Variables tableaux (type TABLE) 282

© ÉdW/ons Eyroles

Résolution de noms . 284
Opérateurs . 284
Variables de substitution . 285
Variables de session . 286
Conventions recommandées . 286

Types de données PL/SQL . 287

Types prédéfinis . 287
Sous-types . 287
Le sous-type SIMPLE_INTEGER . 288
Les sous-types flottants . 289
Variable de type séquence . 289
Conversions de types . 290

Structures de contrôles .. 290

Structures conditionnelles . 290
Structures répétitives. 293
La directive CONTINUE . 297

Interaction s avec la base. 298
Extraire des données. 298
Manipuler des données . 300
Curseurs implicites . 302
Paquetage DBMS_OUTPUT . 303

Transactions . 306

Caractéristiques . 306
Début et fln d'une transaction . 307

Contrôle des transactions . 308
Niveaux d' isolation. 308
Le problème du verrou mortel (deadlock) . 311
Verrouillage manuel. 313

Transactions imbriquées . 314
Où placer les transactions ? . 314

1 ProunUnmatlonavancée 311

© Éditions Eyrol/es

Sous-programmes . 317
Généralités . 317
Procédures cataloguées . 318
Fonct ions cataloguées.. 319
Codage d'un sous-programme PUSQ L . 320

Exemples . 320
Compilation . 323
Appels .. 323
À propos des paramètres . 325
Récursivité . 326
Sous-programmes imbriqués . 326
Recom pilation d'un sous-programme . 328

XVII 1

1 SQl llOlll OrllCll

1 XVIII

Destruction d'un sous-programme . 328
Paquetages (packages) . 328

Généralités . 328
Spécification . 329
Compilation . 330
Implémentation ... 330
Appel ... 331
Surcharge . 331
Recompilation . 331
Destruction d'un paquetage . 331
Comment retourner une table ? . 332

Curseurs . 332
Généralités . 333
Instructions . 333
Parcours d'un curseur . 334
Utilisation de structures (%ROWTYPE) . 335
Boude FOR (gestion semi-automatique) . 336
Utilisation de tableaux (type TABLE).. 337
Utilisation de LIMIT et BULK COLLECT . 338
Paramètres d'un curseur . 339
Accès concurrents (FOR UPDATE et CURRENT OF) . 340
Variables curseurs (REF CURSOR) . 341
Fonctions table pipelined. 343

Exceptions . 345
Généralités . 345
Exception interne prédéfinie . 34 7
Exception utilisateur . 351
Utilisation du curseur implicite. 353
Exception interne non prédéfinie . 354
Propagation d'une exception. 355
Procédure RAISE_APPLICATION ERROR . 357

Déclencheurs . 358
À quo i sert un dédencheur ?. 358
Généralités . 359
Mécanisme général . 359
Syntaxe . 360
Déclencheurs LMD . 361
Transactions autonomes . 373
Déclencheurs LOD . 374
Déclencheurs d'instances .. 374
Appels de sous-programmes . 375
Gestion des déc lencheurs.. 376
Ordre d'exécut ion . 377
Tables mutantes . 377

© ÉdW/ons Eyroles

Activation et désactivation. 378
Ordre d'exécu tion (FOLLOWS). 378
Déclencheur composé.. 379
Résolution au problème des tables mutantes . 381

SQL dynamique . 382
Classification . 383
Utilisation de EXECUTE IMMEDIATE.. 384
Utilisation d'une variable curseur. 385
Nouveautés de la version 12c. 386

Partie Ill SQl avancé. 393

B Le précondateur Pro"CIC++ 395
Généralités . 39 5

Ordres SOL intégrés . 395
Variables . 396
Variable indicatrice . 397
Cas du VARCHAR. 398
Zone de communication (SQLCA). 398
Connexion à une base.. 399
Gestion des exceptions . 399
Transactions . 400

Extraction d'un enregistrement . 400
Mises à jour . 402
Utlllsa11on de curseurs . 402

Variables scalaires . 402
Variables tableaux. 403

Utlllsa11on de Microsoft Vlsual C++ . 405

9 L'lnteiface Jœc ... 401

© Éditions Eyrol/es

Généralités . 407
Classification des pilotes (drivers). 408
Les paquetages . 409
Structure d'un programme ... 410
Variables d'environnement . 411
Test de votre configuration . 412

Connexion à une base ... 412
Base Access . 413
Base Oracle.. 414
Base MySQL ... 416
Déconnexion . 417
Interface Connection . 417
Sources de données . 417

XIX 1

1 SQl llOlll OrllCll

États d'une connexion 418
Interfaces disponibles . 418
Méthodes génériques pour les paramètres................................ 419
États simples (interface Statement) . 419
Méthodes à utiliser . 420

Correspondances de types .. 421
Interactions avec la base . 422

dé donnééS . 422
Ajout d'enreg istrements. 423
Modification d'enreg istrements . 423

Ex1ractlon de données . 423
Curseurs statiques . 424
Curseurs navigables . 425

Curseurs modifi ables . 429
Suppressions . 431
Modifications . 432
Insertions. 432
Restrictions . 433

Ensembles de lignes (RowSet). 434
RowSet sans connexion . 435
RowSet avec ResultSet. 435
RowSet pour XML . 436
Mises à jour d'un RowSet . 437
Notifications pour un RowSet . 437

Interf ace ResultSetMetaOata . 439
Interf ace OatabaseMet aData. 440
lnS1ructlons paramétrées (Prepared Statement) . 442

Extraction de données (executeQuery). 443
Mises à jour (executeUpdate). 443
Instruction LOD (execute) . 444

Appels de sous-programmes . 444
Appel d'une fonction . 445
Appel d'une procédure . 446

Transaction s . 44 7
Points de validation. 44 7

Traitement des exceptions . 449
Affichage des erreurs . 449
Traitement des erreurs . 450

10 a-&cle el Pll'. 453

1 XX

Configuration adoptée .. 453
Les logiciels. 453
Les fichiers de configuration . 454
Test d'Apache et de PHP . 454

© ÉdW/ons Eyroles

Test d'Apache , de PHP et d'Oracle...................................... 455
API de PHP pour Oracle (OCI). 456

Connexions . 456
Constantes prédéfinies . 457

Interactions avec la base. 458
Extractions simples . 459
Passage de paramètres . 463
Traitements des erreurs . 464
Procédures cataloguées . 467
Métadonnées . 468

API Objet PHP pour Oracle (POO) . 471
Connexions . 471
Mises à jour . 472
Extractions. 47 4
Procédures cataloguées . 475

11 Oracle lllYI IB ... 411
Généralltés . 477

Historique . 477
Architecb.Jre générale . 478
Répertoire logique. 479

Les modes de S1ockage. 479

Le type XML Type 480
Insertion d'un document . 481

Grammaire XML S<:hema. 483
Enregistrement de la grammaire . 483
Validation totale. 484
Contraintes . 485

Stockage en mode object-relatlonal. 487
Annotation de la grammaire . 487
Création d'une table (ou colonne) object-relational .. 490
Validation partielle. 491
Validation totale. 491
Contraintes . 493

Extractions . 496
La fonction XMLQuery . 498
La fonction XMLCast . 499
La fonction XMLTable .. 501
La fonction XMLExists . 502
La fonction isSchema Val id . 504

Mises à jour . 504
Insertion d'un fragment . 504
Suppression d'un fragment . 505
Modification d'un fragment . 506

© Éditions Eyrol/es XXI 1

1 SQl llOlll OrllCll

Indexati on . 508
Index B-tree. 509
Mode non strucb.Jré (Unstrucb.Jred XMLlndex) . 511
Mode structuré (Structu red XMLlndex) . 512
Mode mixte . 513

Génération de contenus . 513
Les fonctions SOL/XML. 514

ét analy$é. 517
Les fonctions d'O racle. 519

Les vues . 520
Vues relationnelles . 521
Vues XML Type . 523

Les paquetages pour PL/SOL .. 526
Le paquetage DBMS_XMLGEN . 527
Le paquetage DBMS_XMLSTORE . 528
Le paquetage DBMS_XMLPARSER .. 530
Le paquetage DBMS_XMLDOM .. 531

XML DB Reposltory . 532
Arborescence . 533
Paquetages DBMS_XBD_REPOS . 533
Les grammaires XML Schema . 536
Accès par SOL . 536
Les Access Control Lists (ACL). 539

Dictionnaire des données . 543

12 ai11m1sa11ons . 545

1 XXII

Cadre général. 545
Les acteurs . 546
Contexte et objectifs . 546
Présentation du jeu d'exemp le . 547
Les assistants d'O racle . 548
Les optimiseurs . 549
L'estimateur. 551
Traitement d'une instruction . 552
Configuration de l'optimiseur (les hints) . 552

Les statistiques destinées à l'optlmlseur . 553
Les histogrammes . 554
Collecte . 555

Outlls de mesure de performances . 559
Visualisation des plans d'exécut ion. 559
L'outil tkprof . 566
Paquetage DBMS_APPLICATION_INFO .. 571
L'utilitaire runstats de Tom Kyle . 574
Bilan ... 576

© ÉdW/ons Eyroles

Organ lsatlon des don nées . 577
Des contraintes au plus près des données . 577
Indexation . 578
Joinb.Jres . 591
Variables de lien . 599
Comment réaliser des fetchs multilignes? . 601

Gestion du cache . 602
Cache pour les requêtes . 603
Cache pour les fonctions PL/SOL . 604
Cache pour les tables . 605

Tables organisées en Index . 607
Comparatif. 607
Les débordements. 608
Création d'une IOT . 609
Comparaison avec une table en heap.. 609
Limites .. 610

Partitionnement . 61 O
La dé de partition . 61 O
Partitions par intervalle . 611
Intervalles automatiques . 612
Partitions par hachage. 613
Partitions par liste . 614
Partitions par référence. 615
Sous-partitions. 616
Index partitionné . 617
Index partitionné local . 618
Index partitionné global . 619
Opérations sur les partitions et index . 620
Partitionnement des tables IOT. 620

Vues matérialisées .. 621
Réécriture de requêtes . 622
Le rafraîchissement. 623
Exemples . 623

Dénormallsatlon . 625
Colonnes calculées . 625
Duplication de colonnes . 626
Ajout de clés étrangères . 627
Exemple de stratégie. 627

Dern lers conseils . 627
Requêtes inefficaces . 628
Les10commandementsdeF . Brouard 629

Index ... 631

© Éditions Eyrol/es XXIII 1

Introduction

Ce ne introduction présente tout d'abord le cadre général dans lequel cet ouvrage se positionne
(SQL, Je modèle de données et J'offre d'Oracle). Vient ensuite l'utilisation des principales
interfaces de commandes pour que vous puissiez programmer avec SQL dès Je chapitre 1.
Vous trouverez dans les compléments (sur la fiche de J'ouvrage disponible à J'adresse
www.editions-eyrolles.com) les procédures d'installation de différentes versions d'Oracle pour
Windows (édition Express ou E11terprise, de 9î à 12c).

SOL. une norme. un succès

C'est IBM, à tout seigneur tout honneur, qui, avec System-R, a implanté Je modèle relationnel
au travers du langage SEQUEL (Stmctured E11glish as QUEry l.a11g1mge) rebaptisé par la
suite SQL (Stmctured Query l.a11guage).

La première norme (SQLJ) date de 1987. Elle était Je resultat de compromis entre constructeurs,
mais fortement influencée par Je dialecte d 'IBM. SQL2 a été normalisée en 1992. Elle définit quatre
ni\eaux de conformité : Je niveau d'entrée (e11try level), les niveaux intermédiaires (tra11sitio11al et
i11termediate /evels) et Je niveau supérieur ifrdl level). Les langages SQL des principaux éditeurs
sont tous conformes au premier niveau et ont beaucoup de caractéristiques relevant des niveaux
supérieurs. La norme SQL3 (intitulée initialement SQL:J 999) comporte de nombreuses parties :
concepts objets, entrepôts de données, séries temporelles, à des sources non SQL, replication
des données, etc. (chaque partie étant nommée ISO/IEC 9015-i:cnulée, i allant de 1 à 14 et cnulée
étant la date de sortie de la dernière spécification). Une partie récente de la norme concerne la
programmation côté serveur (ISO/IEC 90754:20 Il, partie 4 : Persiste11t Stored Modules).

Le succès que connaissent les grands éditeurs de SGBD relationnels (IBM, Oracle, Microsoft,
Sybase et Computer Associates) a plusieurs origines et repose notamment sur SQL :

• Le langage est une nonne depuis 19&6 qui s'enrichit au fil du temps .

• SQL peut s'interfacer avec des langages de troisième génération comme Cou Cobol, mais
aussi avec des langages plus évolués comme C++ et Java Certains considèrent ainsi que Je
langage SQL n'est pas assez complet (Je dialogue entre la base et l'interface n'est pas
direct) et la linérature parle de « défaut d'impédance» (impeda11ce mismatch).

• Les SGBD rendent indépendants programmes et données (la modification d'une structure de
données n'entraîne pas forcément une importante refonte des programmes d'application).

• Ces systèmes sont bien adaptés aux grandes applications informatiques de gestion (archi­
tectures type client-serveur et Internet) et ont acquis une maturité sur Je plan de la fiabilité
et des performances.

© Éditions Eyrol/es 1 1

1 SQl llOlll OrllCll

• Ils intègrent des outils de développement comme les précompilateurs, les générateurs de
code, d'états et de formulaires .

• Ils offrent la possibilité de stocker des informations non structurées (comme le texte,
l'image, etc .) dans des champs appelés LOB (Larg e Obj ect Bi11ary).

Les principaux SGBD Open Source (MySQL, Firebird, Berkeley DB, PostgreSQL) ont adop­
tés depuis longtemps SQL pour ne pas rester en marge.

Nous étudierons les principales instructions SQL d'Oracle qui sont classifiées dans Je tableau
suivant.

T....., 1-1 c1mmca11oe des anlres SŒ

Ol'lhs SQL AlpOCI du langage

CREATE - ALTER - DROP - COMMElll' - RENAME - TRUNCATE des données (DOL :
- GRAllI' - REVOKE Data Deflnltfon Languagè).

SELECT - INSERT - UPDATE - DELETE - MERGE - LOCK Manlpulatlondesdonnées (DML :
TABLE Data Manpulatfon LMguagè).

COMMIT - ROLLBACK - SA VEPOilll' - SET TRANSACTI ON Contrôle des transactions (TCL :
TrMsaction Control Statements).

Modèle de données

12

Le modèle de données relationnel repose sur une théorie rigoureuse bien qu ·adoptant des prin­
cipes simples. La table relationnelle (relati onal table) est la structure de données de base qui
contient des enregistrements, également appelés « lignes» (rows). Une table est composée de
colonnes (col1m111s) qui décrivent les enregistrements.

Tables et domées
Considérons la figure suivante qui présente deux tables relationnelles permettant de stocker
des compagnies, des pilotes et le fait qu'un pilote soit embauché par une compagnie :

Figure 1-1 Deux tables

c omp agn ie

coup nrue rue ville nom_ comp

AB 1 Geor s Brassens Ba nac Air Bus
ACTMP 24 René L sse Balma AC Toulouse

pilo t e

id_pil breve t nom_9i l nb h vol conp a

250 Pl-1 Sa-da 8500 AB
25 Pl-2 Bene ch 5000 ACTMP
12 Pl-3 Soutou 2000 ACTMP

© ÉdW/ons Eyroles

Les clés

La clé primaire (primary keiJ d'une table est l'ensemble minimal de colonnes qui permet
d'identifier de manière unique chaque enregistrement.

Dans la figure précédente, les colonnes « clés primaires • sont notées en gras. La colonne comp
identifie chaque compagnie, tandis que la colonne id_pil permet d' îdentiner chaque pilote.

Une dé est dite• candidate• (candidate keiJ si elle peut se substituer à la clé primaire à tout
instant. Une table peut contenir plusieurs clés candidates ou aucune.

Dans l'exemple, la colonne brevet pourrait jouer le rôle d'une clé candidate, car il est proba­
ble que chaque numéro de brevet soit unique. Pour les compagnies, le nom (oom_comp) s'il est
supposé unique peut également jouer le rôle de clé candidate.

• IZJ Une clé étrangère (foreign keiJ référence dans la majorité des cas une clé primaire d'une autre
table (sinon une clé candidate sur laquelle un index unique aura été défini). Une clé étrangère
est composée d'une ou plusieurs colonnes. Une table peut contenir plusieurs dés étrangères
ou aucune.

Oracle

La colonne compa (notée en italique dans la figure) est une clé étrangère, car elle permet de
référencer un enregistrement unique de la table conpagnie via la clé primaire comp.

Le modèle relationnel est ainsi fondamentalement basé sur les valeurs. Les associations entre
tables sont toujours binaires et assurées par les clés étrangères. Les théoriciens considèrent
celles-ci comme des pointeurs logiques. Les clés primaires et étrangères seront définies dans
les tables en SQL à l'aide de contraintes.

Il sera très difficile, pour ne pas dire impossible, à un autre éditeur de logiciels de trouver un
nom mieux adapté à la gestion des données que celui d' « Oracle•. Ce nom semble prédestiné
à cet usage ; citons Le Petit Laro11sse :

ORACLE 11.m. (lat. oraculrlln) ANTIQ. Répo11se d '1111e divinité a11fidèle q11i la co11s1dtait;
divi11ité q11i re11dait cette répo11se; sa11ctuaire 01} cette répo11se était re11d11e. Li'lT. Décisio11
j11gée infaillible et éma11a11t d '1111e perso1111e de gra11de a11torité; perso1111e co11sidérée
comme ilifaillible.

Oracle représenterait ainsi à la fois une réponse infuillible, un lieu où serait rendue cette
réponse et une divinité. Rien que ça ! Tout cela peut être en partie vérifié si votre conception

© Éditions Eyrol/es

1 SQl llOlll OrllCll

14

est bien faite, vos données insérées cohérentes, vos requêtes et programmes bien écrits.
Ajoutons aussi Je fait que les ordinateurs fonctionnent bien et qu'une personne compétente se
trouve au support. C'est tout Je mal que nous vous souhaitons.

Oracle Corporation, société américaine située en Californie, développe et commercialise un
SGBD et un ensemble de produits de développement. Oracle a des filiales dans un grand
nombre de pays. Initialement composée de cinq départements (marketing, commercial, avant­
vente, conseil et formation), la filiale française (Oracle France) a été créée en 1986. Le dépar­
tement formation a été dissous en 20 JO, donnant naissance à la société EAS YTEAM (premier
partenaire Platinum en France), composée des ex-formateurs d'Oracle France.

Un peu d'hiSloire
En 1 'Y/7, Larry Ellison, Bob Miner et Ed Oates fondent la société Software Development
I..aboratories (SOL). L'article de Edgar Frank Codd (1923-2003), « A Relational Mode! of
Data for Large Shared Data Banks», Comm1micatio11s of the ACM paru en 1970, fuit devenir
Je mathématicien et ancien pilote de la RAF durant la Seconde Guerre mondiale, inventeur du
modèle relationnel et de SQL. Les associés de SOL devinent Je potentiel des. concepts de Codd
et se lancent dans J'aventure en baptisant leur logiciel « Oracle». En 1 'Y/9, SOL devient Rela­
tio11a1 Software bic. (RSI) qui donnera naissance à la société Oracle Corp. en 1983. La
première version du SGBD s'appelle RSl-1 et utilise SQL. Le tableau suivant résume la chro­
nologie des versions.

T- 1-2 ClnllilOllll des llll'lloDS d'OrllCll

1979 Oracle 2 Première version ccmmerclale écrite en Classembleur pour Digital - pas de mode
transactionnel.

1983 Oracle 3 Réécrit en C - verrous.

1984 Oracle 4 Portage sur IBMNM, MVS, PC-transaction (lecture consistante).

1986 Oracle 5 Architecture client-serveur avec SOL.Net - version pour Apple.

1988 Oracle 6 Verrouillage niveau ligne - sauvegarde/restauration - AGL - PUSQL.

1991 Oracle 6. 1 Pwsle/ Serversur DEC.

1992 Oracle 7 Contraintes référentielles - procédures cataloguées - déclencheU1rs - version
Windows en 1995.

1994 Serveur de données vidéo.

1995 Connexions sur le Web.

1997 Oracle 8 Objet-relationnel - partitionnement - LOB - Java.

1998 Oracle81 1 comme Internet, SQW - Linux - XML

2001 Oracle91 Services Web - serveur d'applications - architectures sans fll.

2004 Oracle 10g g comme Grld computfng (ressources en c/usters).

2007 Oracle 11 g Auto-configuration.

2013 Oracle 12c Architecture multitenant, Cloud et Big Data.

© ÉdW/ons Eyroles

Avec IBM, Oracle a fuit un pas vers l'objet en 1997, mais cette approche ne compte toujours
pas parmi les priorités des clients d'Oracle. L'éditeur met plus en avant ses aspects transac­
tionnels, décisionnels, de partitionnement et de réplication. Les technologies liées à Java, bien
qu'elles soient largement présentes sous Oracle9i, ne constituent pas non plus la majeure
partie des applicatifs exploités par les clients d'Oracle.

La version 1 Og renforce Je partage et la coordination des serveurs en équilibrant les chruges
afin de mettre à disposition des ressources réparties (répond au concept de J 'informatique à la
demande). Cette idée est déjà connue sous Je nom de « mise en grappe» des serveurs (cl11ste­
ri11g). Une partie des fonctions majeures de la version IOg est présente dans la version 9i RAC
(Real Application Cl11Ster).

La version llg Oracle insiste sur les capacités d'auto-diagnostic, d'auto-administration et
d'auto-configuration pour optimiser la gestion de la mémoire et pour pouvoir faire remonter
des alertes de dysfonctionnement. Fn raison des exigences en matière de traçabilité et du désir de
capacité de décision (datami11i11g), la quantité de données gérées par les SGBD triplant tous les deux
ans, llg met aussi l'accent sur la capacité à optimiser Je stockage.

La version 12c bouleverse J'architecture d'une instance assimilée à une base unique en intro­
duisant J'architecture multitenant capable d'héberger plusieurs bases de données enfichables
(pluggable database) dans une base de données de conteneur multipropriétaire (co111ai11er
database).

Rachat de s111 <et de MvSQU
Contrairement à la rumeur du début de2007, MySQL n'entre pas en Bourse, il est racheté
pour un milliard de dollars en janvier 2008 par Sun Micro systems déjà propriétaire de Java.
Sun arrive ainsi sur un segment où il était absent, aux côtés d'Oracle, d'IBM et de Microsoft.

Craignant l'achat de Sun par IBM et redoutant HP dans Je haut de gamme Unix, Oracle se
repositionne dans Je hardware et sur Je marché des services pour datacenters en avril 2009, en
achetant Sun. Ce sont aussi les langages Java et Je système d'exploitation Solaris qui ont pesé
dans la balance. En effet, c'est sur Solaris, et non sur Linux, que sont déployés Je plus grand
nombre de serveurs Oracle.

Il faudra attendre novembre 2009 pour que la Commission européenne confirme son refus de
la fusion entre Oracle et Sun, suspectant que Je rachat de MySQL aboutisse à une situation de
quasi monopole sur Je marché des SGDB. En décembre 2009, avec Je soutien de
quelque 59 sénateurs américains, Oracle publie JO engagements concernant toutes les zones
géographiques et pour une durée de 5 ans.

© Éditions Eyrol/es

1. Assurer aux utilisateurs Je choix de leur moteur (MySQL's Pl11ggable Storage E11gi11e
A rchitect11re).

2. Ne pas changer les clauses d'utilisation d'une manière préjudiciable à un fournisseur tiers.

3. Poursuivre les accords commerciaux contractés par Sun.

1 SQl llOlll OrllCll

16

4. Garder MySQL sous licence GPL.

5. Ne pas imposer un support des services d'Oracle aux clients du SGBD.

6. Augmenter les ressources allouées à la R&D de MySQL.

7. Créer un comité d'utilisateurs pour, dans les 6 mois, étudier les retours et priorités de
développement de M ySQL.

8. Créer ce même comité pour les fournisseurs de solutions incluant MySQL.

9. Continuer d'éditer, mettre à jour et distribuer gratuitement Je manuel d'utilisation du
SGBD.

1 O. Laisser aux utilisateurs Je choix de la société qui assurera Je support de MySQL.

Considérant d'une part ces engagements, et d'autre part l'existence de concurrents (notam­
ment IBM, Microsoft et PostgreSQL dans Je monde du libre), la Commission européenne
avalise la fusion fin janvier 2010 pour un montant de 7 ,4 milliards de dollars. Cinq ans après
(en 2015), MySQL est toujours dans Je giron d'Oracle et, selon un dirigeant d'Oracle, les
effectifs dédiés au développement et au support de MySQL ont doublé en cinq ans, et ceux de
J' assurance qualité ont triplé.

Offre du momenr
La page d'accueil d'Oracle (www.aacle.com) focalise sur les technologies à la mode (pour Je
moment Je cloud). Sans parler des matériels, services, support, progiciels, etc., la base de
données semble n'être qu'une brique à J'offre tentaculaire ..

Flgurel-2 Offre Oracle

OtadeC

_ ... _
....... -·-...... _ _.. <>•tt Olo04ll OMlllop er.._•ws.wr-.e - ._,_.,...,

Clf11tllWll\trwrlnt'iPAIK --· - --- --· - _... """"""' e,.............._ • .,.... -- ---c.-- -·- Miltn.«f ""'°" -- , ---
... .__,,_ - flflltw:lf'IQ - _,_ .. - - ar.c• Cu''°""' PrOQ11'•111• -·- - CUllOMH Mel ,"'1Mir ·-- l.uocc-•••_ °""'- • ...,.Md,...,. ---0-. --- ---- -- _

QQc• hvducb ,,_ Acquired --- -- -- COMpainln -- --- N....,.iflcl Md 0.. C•ne.t Pfoduc.t Prie• l.lt.t

""""' -..... 1"'5Ql_ -- f""1C ,.,...,...

, ·--,_

© ÉdW/ons Eyroles

Depuis la version IOg, les principales éditions du produit Oracle Da.tabase ont pour nom
Entreprise, Standard et Standard One. Le produit monoposte est qualifié de Personal et la
version gratuite de Express.

Figu re 1-3 Éditions d'Orsc/e Dstsbase ; extrsW du site

•
L:e L{ ,,f

.iiim -- -- -- °'" .. °"""9M ·-- --- -- ·--
""" , _
'"" "'""' - ... ""' -

Un grand nombre d'options (payantes en sus de la base eten fonction de l'édition) permettent
de renforcer, notamment, les performances, la sécurité, le traitement transactionnel et le
datawareho11se. Citons les plus connues : Data Gr1ard,RealApplication Cl11sters, Partitioni11g,
Advanced Security, Advanced Compression, Diagnostics Pack, Trmi11g Pack, OLAP, Dar.a
Mini11g et Spatial.

Les prix des licences, clairement affichés sur le site d'Oracle, permettent deux modes de
calcul : en fonction du nombre d' utilisateurs nommés (named 11ser pl.us) ou du nombre de
processeurs (processors). Le premier calcul convient généralement à des. applications en mode
client-serveur, le second serait davantage adapté aux architectures multitiers et Web.

Rgure 14 Prix d'Orsc/e 2015 ; extr9it du sWe

--· 0.1<1t0.1 ... --°"' 11,. • -- "" nœ
fr...,,...fdlllcin , -·- 10, • -- ,,
NolOL0.....6-prMfdllorl ""' 1100œ

Op#Mt· - ,.. noo
........... c 10130 ,,
A.llllHok*"C'*"-ONNode ""'

"' ,.,, ,., ,.,. .. .-..,....-.r...,. ,., ,.,. ..
........ c..- ,., _,_...., ,.. , "'" ,., ,..,m

© Éditions Eyrol/es

1 SQl llOlll OrllCll

1s

Notion de schéma
Au niveau d'une base de données, qu'elle soit conventionnelle, enfichable ou conteneur (avec
l'option multitenant de la version 12c), un schéma ne se distingue d'un utilisateur (11ser) que
parce qu'il contient des objets (table, index, vue, etc.). Ainsi, chaque objet d' une base est asso­
cié à son propriétaire (l'utilisateur qui l'a créé ; c'est Je cas de l'utilisateur Christian de la
figure suivante). S'il ne détient aucun objet, un user peut être perçu simplement comme un
identificateur de connexion (c'est le cas de Paul). Tout utilisateur peut toutefois accéder à des
objets ne lui appartenant pas, sous réserve d'avoir reçu des droits accordés par Je propriétaire
ou un administrateur.

Rgure /-6 Schéma et uUKsateur

Tous les éléments d'un schéma ne seront pas étudiés car certains sont très spécifiques et
sortent du cadre traditionnel de J' apprentissage. Le tableau suivant indique dans quel chapitre
du livre vous trouverez les principaux éléments d'un schéma :

Éléments étudiés - Chapitre

Déclencheurs (trlggers) - 7
Fonctions et procédures cataloguées, paquetages - 7
Lllralrles de procédures externes- sae d'aooompagnement
lndex-1 , 12
Java-9 , site d'aooompagnement
Séquences et synonymes - 2, 5
Tables et tables en Index - 1
Vues (vlews) - 5
XML-11
Clusters-1 2
Partitions - 12
Vues matérialisées - 12

Aspec19 non étudiés

Dimensions (cubes)
Liens de bases de données (database links)
Opérateurs
Tables, types et vues objets
Spatial

© ÉdWlons Eyroles

Accès à Oracle depuis WilXlows
Après avoir installé Oracle sur votre ordinateur, vous serez libre de choisir l'accès qui vous
convient (le client SQL comme on dit). Ce livre utilise principalement J'intedace SQL*Plus
(livrée avec la base et dans toutes les versions clientes d'Oracle). Vous pouvez opœr pour SQL
Developer (produit Java gratuit sur Je site d'Oracle qui ne nécessite aucune installation, simple­
ment une décompression dans un de \QS répertoires), ou pour un programme Ja\'a (via JDBC) ou
PHP.
Il existe d'autres clients SQL qui sont payants ou gratuits ; citons SQL Developer, SQLTools,
SQL Navigator et TOAD Je plus renommé et probablement Je plus performant.

Détail d'111 numéro de version
Détaillons la signification du numéro de la version 11. l.0.6.0 (première rtdease de la llg
disponible sous Windows) :

• 11 désigne Je numéro de la version majeure de la base ;
• 1 désigne Je numéro de version de la maintenance ;
• 0 désigne Je numéro de version du serveur d'applications ;
• 6 désigne Je numéro de version du composant (patch) ;

• 0 est Je numéro de la version de la plate-forme.

Vous pourrez contrôler la version de J'interfuce SQL*Plus et celle du serveur à l'issue de votre
première connexion comme Je montre la figure 1-6 (ici, les versions de l'outil client et du
serveur sont identiques car l'installation du serveur inclut l'installation de l'interface de même
version).

© Éditions Eyrolles

Rgure 1-6 Version di serveUI et du client

opy,..i ght (c) 1982 . 2013 . Orec l• . All rightt r t s t rvt d.

nt,.-tz lt no. utilis ateur sy• t••
ntrtz l• •ot de passe
iuf i di li d..-ni l fi éOFifiix i.on f luii i.i : Jiu . HOu. o; 2:01&1 OS:S1: 1 C •01 :00

OL>

1 SQl llOlll OrllCll

Les clients SOL

110

w clients SQL permettent de dialoguer avec la base de différentes manières :

• exécution de commandes SQL, SQL*Plus et de blocs PUSQL ;

• échanges de messages avec d'autres utilisateurs ;

• création de rapports d'impression en incluant des calculs ;

• réalisation des tâches d'administration en ligne.

SQL*Plus
En fonction de la version d'Oracle dont vous disposez, plusieurs interfaces SQL*Plus peuvent
être disponibles sous Windows :

• en mode ligne de commande (qui ressemble à une fenêtre DOS ou telnet) ;

• avec l'interface graphique (qui est la plus proche du monde Wmdows) ;

• avec l'interface graphique SQL*Plus Worksheet de l'outil E11terprise Manager (plus
évoluée que la précédente) ;

• avec le navigateur via l'interfuce web iSQL*Plus (i comme « Internet » ; cette interface
s'apparente assez à celle de EasyPHP en étant très intuitive).

Du fait que les interfaces graphiques et web aient été abandonnées depuis la version 11g, uti­
lisez toujours l'interface en ligne de commande qui restera nécessairement disponible pour les
versions à venir.

Le principe général de ces interfaces est le suivant : une connexion locale ou distante,
des instructions sont saisies et envoyées à la base qui retourne des résultats affichés dans la
même fenêtre de commandes. La commande SQL*Plus HOST permet d'exécuter une
commande du système d'exploitation qui héberge le client Oracle (exemple : DIR sous
Wmdow ou ls sous Unix).

Figure 1·7 PrlncjJe généra/ des Interfaces SOL"Plus

SQPLW> [u•t!'r{pa.••wd))

SOl'P h..e

SOL> t NSRRT -

SOL> C'RBATE -

)4---------i SOL-> SELKC"'J' -

SQL> BXit1JTB -

OUIT OU EXIT SOL>

© ÉdW/ons Eyroles

Connexion à Oracle

Quel que soit Je mode de connexion que vous allez choisir, vous devrez toujours renseigner Je
nom de l'utilisateur et son mot de passe. D'autres paramètres peuvent être nécessaires comme
Je nom ou J'adresse du serveur, un numéro de port, un nom d'instance ow de service. Commen­
çons par faire simple et utilisons l'interface SQL*Plus pour connecter l'utilisateur system à
J'aide du mot de passe donné lors de l'installation, vous devez obtenir wn résultat analogue (si
vous disposez d'une version Express; sinon, vous visualiserez davlUltage d'informations
concernant la version du serveur).

Figure /.Il Connexion à Oracle

OUcPlut : R•l•• S• 11. 2.e . 2 .e P,.oduction on Jeu . Hov . 6 8 7: 13 : .. 3 201 ..

opyright (c) 1982 , 28111, Orecl• . All r i9ht• r•s•ru•d .

OL> conn.ct eys t••
n ter p111word:
onnec ted .

Ol> -

SQL Developer
SQL Developer est un outil gratuit de développement (écrit en Java) disponible sur Je site
d'Oracle (www.orsc/e.com!technetworkldeveloper-too/s/sq/-deve/oper). Diftërentes versions sont
disponibles (Windows 32 et 64 bits, Mac et Linux RPM et autres) ..

Depuis la version 3, cet outil inclut wn générateur de requêtes (q11ery brlilder) et un gestion­
naire de jobs (schedrlle brlilder). De plus, il est possible d'analyser sommairement des perfor­
mances de requêtes (Explai11, A11totrace et SQL Timing Advisor). Des assistants d'exportation
(par exemple, au format CSV) et d'importation (par exemple, de données Excel) sont égale­
ment disponibles. Il permet même de visualiser et de manipuler des données spatiales et déci­
sionnelles (Spatial et Data Miner).

Depuis la première version 4, une vue DBA permet d'administrer en partie une base (paramè­
tres de configuration, backup et recovery avec RMAN, exportation et importation, comptes
utilisateur, profils, rôles, privilèges, etc.). Utilisé conjointement avec Je pack Tuning et
Diagnostic, il est possible de visualiser l'activité (avec ADDM, AWRet ASH).

© Éditions Eyrol/es 11 1

1 SQl llOlll OrllCll

'
112

Rgure 1-9 SOL Deve/oper

ffie t1* \1111111 !Pl 2'0t-tll SOWC• l9C*

1.3 1!) • 9 x•• • • Ill ·

..
. GI
• . Tlll.PU'FW
.-.c

· lll­,. q....,,,

·'*·­lt. ,,,_
!!:, Î"PJS

._
Cll-.. -.......-

i< !lt -. *""'­r-> 1!1--
. DetëMellh
F .
r.' Re(')(llflln

Ctt.r uwn

....
... wo Q, •

.a.

5IUX'f J'ROPOCT 111111111 PRœ«"T_tOllPOlltlT_\llP.SIOI:

1• liil"'""""" ..._ """""""" " °""''""" v a •
mw>CJCT

mm .
Gt•cle Uo !diuon
Pl./ IQI.
'M tot 12-ltu. lindowSi

v_..,_..,
a;...d - '--'------- _ __ ,,

... t..ef9r'ÇPq

Après avoir téléchargé SQL Developer, vous n'aurez qu'à décompresser l'archive dans le
répertoire Programnes et à exécuter sql deve l oper. exe Mises à part les éditions Express
d'Oracle, SQL Developer est inclus dans les éditions Standard et Enterprise, et se trouve dans
le menu Démarrer Orac l e ... /Déve l oppenent d 'appli cations. À la première exécu­
tion, le chemin du JDK vous sera probablement demandé.

Bien que l'outil permette un grand nombre de fonctionnalités, certaines commandes SQL'Plus
(GET' srART' COL, ACCEPT .•) ne sont pas opé rantes.

SQL Daia Modeler
Un outil de développement SQL n'est pas forcément un outil de conception. Ce dernier vise à
construire ou « cartographier» des tables alors que le premier les manipule. Les outils de
conception sont nombreux mais le plus souvent payants (1DAD Data Modeler, PowerAMC,
DeZign for Databases, ERwin Data Modeler, Enterprise Architect, ER/Studio, Navicat, etc.).
Oracle fournit gratuitement SQL Data Modeler (ww.v.oracle.comllechnef\torkldeve/oper·tools/
datamode/er) qui est construit sur une interfuce analogue à son homologue SQL Developer. Le

© ÉdW/ons Eyroles

niveau conceptuel des données n'est pas le plus abouti mais si vous travaillez uniquement au
niveau des tables, contraintes et index, il vous conviendra sans doute. Il vous permettra de
générer des scripts de création de tables ou de visualiser graphiquement des tables d'un
schéma, ce qui est très intéressant pour la compréhension et pour écrire des requêtes réalisant
des jointures cohérentes (voir le chapitre 4).

Figure /..10 SOL Devetoper 08/a Modeler

.... --.... , --- -----... ,,
-=::-

!I==-=--··--· ··- -· ···-·" ··­·-!==--·- · .. _ l ··-­··-:::
· •o.- ·•

; :::':::..- -. --'

Premiers pas

Débutez votre apprentissage avec l'interface SQL'Plus afin de vous familiariser avec les mani­
pulations basiques qui vous serviront fréquemment par la suite, car il y a de grandes chances
pour que cette interface soit présente dans les différents environnements que vous fréquente­
rez. Si vous commencez par SQL Deve/oper, vous n'utiliserez plus SOL' Plus et le jour où vous
ne disposerez que de cette interface, vous risquez d'être bloqué et de ne pas pouvoir fournir les
résultats attendus ...

Création d'un utilisateur

Pour créer un utilisateur, utilisez le script Cr e a u tilisat eur. sql situé dans le répertoire
Introdu c tion. Choisissez-lui ensuite un nom (supprimer les caractères < et >) ainsi qu'un
mot de passe. Si vous enregistrez ce fichier avec un autre nom dans un autre répertoire, il est
préférable de ne pas utiliser de caractères spéciaux (ni d'espaces) dans le nom de vos répertoi­
res.

Une fois connecté, exécutez votre script dans l'interface SQL*Plus grâce à la commande
s tart c hemin / nom_script (par exemple, s tart C : \ temp \cre_ eyrolles . sql) .
L'écran suivant concerne la création d'un utilisateur dans la base enfichable (PDBORCL par

© Éditions Eyrottes 13 1

1 SQl llOlll OrllCll

114

défaut). Pour des éditions antérieures à la version 12c, les trois instructions encadrées ne son t
pas à exécuter.

Figure /..11 CréaUon d 'un uU//sateur

e-::-

t
QL• Plus: Rele •s e 12.1.0.1.0 Production on Jeu. Nov. 6 11:53:01 2014

Cc) 1982, 2013, Oracle. All r eserved.

ntrez le no111 utilisateur : syste•
!Entrez le lfM>t de> oau1e :

12e Ent rprhe Edition Release 12.1.0.1.0 - 64b i t Productior
the Partltioning, &:AP, Advaneed Analytlcs and Real Application Testi"i

""o"'L"'>_e_o_n_n_• _vs_/.,...,.-.,.-....,._.,,s-.-,-.-db,...a- mot de passe de
onnectû. _. l'm1lita.bon

QL) alter pluggable database POBORCL open;

ase de donnües pluggable MocUf iOe.

QL) alter session set conta iner•PD80RCL:

ess ion 1nodif

QL) start C: 'letnp'c:re_ey,..ol l es . sql

à Oratlel2c
(multitenant)

Vous devez obtenir les deux messages suivants (aux accents près) :

1
Utilisa teur créé.
Autorisation de privi lèges (GRANI') acceptée.

Voilà, votre utilisateur est créé, il peut se connecter et possède les prérogatives minimales pour
exécuter la plupart des commandes décrites dans cet ouvrage .

Si vous voulez afficher vos instructions avant qu'elles ne s'exécutent sous SQL'Plus (utile pour
tracer l'exécution de plusieurs commandes), lancez la commande set echo on qui restera
valable pour toute la session.

À l'instar de la syntaxe du langage SOL d'Oracle, les commandes SQL'Plus sont insensibles à
la casse. Dans cet ouvrage, elles sont en général mentionnées en majuscules.

Commandes basiques de SQL*Plus
Le tableau 1-4 récapitule les commandes qui permettent de manipuler le buffer de l'interface
SQL*Plus. Une fois écrite dans l'interface, la commande (qui peut constituer une instruction
SQL ou un bloc PUSQL) pourra être manipulée, avant ou après son exécution.

© ÉdW/ons Eyroles

Corrrnande

R

L

L*

Ln

I

A texte

DEL

cttexte1/texte2!

CLEAR

QUIT OU EXIT

CONNECT used
passwor<i§>descr/pteur

GETflchler

SAVE fichier

START flchierou @fichier

s POOL fichier

Variables d'environnemenr

Commentaires

Exécute (ru0.

Liste le contenu du butter.

Liste la ligne courante.

Liste la nltlme ligne du butter qui devient la ligne courante.

Insère une ligne après la ligne courante.

Ajoute texte à la fin de la ligne courante.

suwrlme la ligne courante.

Substitution de la première occurrence de texte! par texte2
dans la ligne courante.

Efface le contenu du buffer.

Quitte SOL.Plus.

Autre connexion (sans sortir de l'lnterfaoe).

Charge dans le butter le contenu du flchier.sql qui se trouve
dans le répertoire courant.

Écrit le contenu du bufferdans flchier.sqlqul se trouve dans le
répertoire courant.

Charge dans le butter et exécute flchler.sql.

Crée flchler.lst dans le répertoire courant qui va contenir la trace
des entrées/sorties jusqu'à la commande srooL OFF.

Les variables d'environnement (voir Je tableau 1-5) vous permettront de paramétrer votre
session SQL*Plus. L'affectation d'une variable s'opère avec SET (ou par un menu si vous
utilisez encore J 'interface Wmclows graphique). À tout moment, la commande SHOW nom_
variable vous renseignera à propos d'une variable d'environnement (voirie tableau 1-6).

© Éditions Eyrolles 15 1

1 SQl llOlll OrllCll

116

Conmande

SET AUTOCOMMIT {ON 1 OFF 1

IMMEDIATE 1 n}

SET ECHO {ON 1 OFF }

SET LIN ESIZE { 90 n)

SET PAGESIZE { 2 4 n}

Commentaires

Validation automatique après une ou n commandes.

Affichage des commandes avant exécution.

Taille en caractères d'une ligne de résultats.

Taille en lignes d'une page de résultats.

SET SERVEROUT [PUT]{ ON 1 OFF } Activation de l'affichage pour tracer des exécutions.

SET TERMOUT {ONI OFF } Affichage des résultats.

SET TIME{ ONI OFF } Affichage de l'heure dans le prompt.

Commentaires

vari4bleEnvironnement Variable d'environnement (AUTOCOMMIT, ECHO, etc.).

AL L Toutes les variables d'environnement.

ERR ORS Erreurs de compilation d'un bloc ou d'un sous-programme.

RELEASE Version du SGBD utilisé.

USER Nom de l'utilisateur connecté.

À PrOPos des accents et ieux de caractères
Il est possible de panunétrer sous Oracle certains formats, tels que la date, J"heure, Jes jours de
la semaine, la monnaie, Je jeu de caractères, etc. La principale difficulté étant que ces paramè­
tres peuvent être différents entre Je serveur Oracle, les systèmes d'exploitation hébergeant la
base et Je programme client (client Oracle natif comme J'interfuce SQL*Plus ou client utili­
sant un pilote Oracle JDBC par exemple) .

En soit cette différence n'est pas dangereuse car Oracle opère les conversions automatique­
ment, mais il est important de savoir quel format de données Je client attend . Une base de
données peut stocker des prix en dollars car son jeu de caractères est américain et les resti­
tuer en euros car Je client est européen . Bien sûr Je chiffre stocké en base est en valeur
d'euros et s'il est affiché par un client local il apparaîtra sous la forme de dollar . Ce raison­
nement vaut pour les dates et accents.

© ÉdW/ons Eyroles

Configuration côté serveur

Pour connaître la configuration côté serveur (instance sur laquelle vous êtes connecté), il faut
interroger la vue NLS_DATABASE_PARAMETERS qui renseigne, entre autres, la langue, au
territoire (pour le format des dates, des monnaies) et au jeu de caractères. Dans cet exemple, la
base installée est Oracle lOg Express Edition .

SQL> SBLICT PAMMITBR, VAl.111 FROM NLS_ DATAJIASB_ PAMMITBRS

parameter IN (' NLS_Ll\IDUAGE ' , ' Nl.S_TERRI TORY' ,

' NLS_CHl\Rl\CTERSEI " , ' Nl.S_CURREN:Y ') ;

PARAMETER

NLS_Ll\IDUAGE

NLS_TERRITœY

NLS_CURRENCY

NLS_ CHl\Rl\CTERSEI'

PARAMETER

VALUE

l\MER!Cl\N

AMERICA

$

AL32UTF8

VALUE

Il apparaît la langue anglaise (AMERICAN) de l'instance, les codes américains pour le
format des dates, des monnaies (AMERICA) et le jeu de caractères par défaut (AL32UTF8)
qui est une extension (pour les plates-formes ASCII) du classique Unicode UTF-8 codé sur
4 octets.

Configuration côté client

Pour connaître la configuration côté client (ici une session SQL*Plus), il faut interroger la vue
NLS_SESSION_PARAMETERS qui renseigne un certain nombre de paramètres mais pas le
jeu de caractères.

SQL> SBLICT PARAMBTBR, VALUB P'ROM NLS_ SBSSION _ PARAMB'l'BRS

parameter IN

(' NLS_Ll\IDUAGE ' , ' Nl.S_TERRI TORY' , ' Nl.S_CURREN:Y ') ;

PARAMETER VALUE

NLS_Ll\IDUAGE FREN:H

NLS_TERRITœY FRl\N:'E

NLS_CURRENCY Ç

Il apparaît que le client a été installé en choisissant la langue française avec ses conventions
(notamment pour le format de dates et de la monnaie). Le jeu de caractères n'est pas ici acces­
sible. Le symbole € n'est pas restitué car certaines interfaces SQL *Plus utilisent une police de
caractère de type Courrier qui n'inclut pas ce symbole.

© Éditions Eyrol/es 17 1

1 SQl llOlll OrllCll

11s

Afin de pouvoir restituer des caractères accentués :

• Concernant Je client SQL*Plus en mode ligne de commande, il faut affecter la variable
NLS_LANG (sous Wmdows s et NLS_LANG=FRENC H_FRANCE. WE8PC850 , par
exemple avec Unix exp or t NLS_LANG= ...) .

• Pour les autres clients graphiques Windows tels que SQL Developer, vous devrez \QUS assurer
que la base de registres contient la valeur FRENCH_FRANCE. WE8MSWIN12 52 pour la
clé NLS_Ll\NG (choix Ed i tie n/ Rec herc her ... en lançant rege d i t) .

Une fois ceci fait, vous devriez pouvoir gérer les accents au niveau des données, tables, colon­
nes, etc. L'exemple suivant illustre cette possibilité (ici Je test est réalisé dans la console SQL
Developer).

Figure 1-12 Restitution de camctères accentués

OU::ATC 'fAllt.e tabl•ACC•ntu•• :M-a •tabll•••-nt t'&aCllM l19,
pr, .. • tMl&a , dOt.H YAAIC'MMI (6) l 1

lJl'llltt l•TO t•bleA.:oeentu•• 'l'IU.NEl('•ricMore•v', ' Coll•OJ• J, .Tavre.s • , 123 <tS,
a11urr "JM1'0 tabl•A.c:<c.ntu•• 1'AUJCl l'•gn.1 81d•l', ' :Lye•• à 1'au• , '$')J

1nr.:iç,i 't-atil••••a•nt, d••a•• OllOW t•l>J•AeC 1Ult\I•• 1

1 iro- .a.-•rt•d
N09t i7Alr.11HMCN7

•ne "oreau
a7M• l1dal

Colle90 J, J!aures
t.yoea • l'a.i 10, 6

Dl'Vltl

--3

© ÉdW/ons Eyroles

Panie 1

SQL de base

Chapitre 1

Définition des données

Ce chapitre décrit les instructions SQL qui constituent J' aspect LOD (langage de définition des
données) de SQL. À cet effet, nous verrons notamment comment déclarer une table, ses éven­
tuels contraintes et index .

Tables relatïonnenes

Une table est créée en SQL par l'instruction CREATE TABLE, modifiée au niveau de sa struc­
ture par J' instruction ALTER TABLE et supprimée par la commande IROP TABLE.

Création d'llJe talile (CREATE lllll.U
Pour pouvoir créer une table dans votre schéma, il faut que vous ayez reçu Je privilège CREATE

TABLE. Si vous avez Je privilège CREATE ANY TABLE, vous pouvez créer des tables dans tout
schéma Le mécanisme des privilèges est décrit au chapitre « Contrôle des données ».

La syntaxe SQL simplifiée est la suivante :

CREATB TABLE (schéma.)nomTabl e

(c olonn e l t ype l (DEFAULT val e url) (Nor NULL)

(, c olonn e2 t ype2 (DEFAULT val e ur2) (NJT NULL)

(CCNSTRAINT nomCon t rain te l t ypeCont rain te l) ...) ;

• schéma : s'il est omis, il sera assimilé au nom de l'utilisateur connecté. S'il est précisé, il
désigne soit l'utilisateur courant soit un autre utilisateur de la base (dans ce cas, il faut que
l'utilisateur courant ait Je droit de créer une table dans un autre schéma). Nous aborderons
ces points dans Je chapitre 5 et nous considérerons jusque-là que nous travaillons dans Je
schéma de l'utilisateur couramment connecté (ce sera votre configuration la plupart du
temps).

• n omTabl e: peut comporter au maximum 30 caractères (lettres, chiffres et
et #). Si J' identificateur n'est pas encadré par des guillemets (q11oted identifier), Je nom est
insensible à Jacasse et sera converti en majuscules dans Je dictionnaire de données (il en va
de même pour Je nom des colonnes).

© Éditions Eyrol/es 21 1

lr.111

1 22

• col onnei t ypei : nom de colonne et son type (NUMBER, VARCHAR2, DATE. .•).

L'option DEFAULT fixe une valeur en cas de non-renseignement (NlILL). L'option NOT
NlJLL interdit que la valeur de la colonne ne soit pas renseignée.

Le marqueur NULL ne désigne pas une valeur mais une absence de valeur qu'on peut traduire
comme non disponible, non affectée, inconnue ou inapplicable. NULL est différent d'une chaîne
vide, d'un zéro ou des espaces. Ce marqueur est à étudier de près car, dans bien des cas,
deux NULL ne sont pas identiques. Les requêtes d'extraction peuvent renvoyer des résultats
aberrants si les NULL sont mal interprétés. En positionnant le plus possible de NOT NULL dans
vos colonnes, vous diminuerez les traitements ackfitionnels à opérer par la suite.

• nomCon t rain te i typeCon train te i : noms de la contrainte et son type (clé
primaire, clé étrangère, etc.). Nous allons détailler dans Je paragraphe suivant les différen­
tes contraintes possibles.

• ; : symbole qui termine une instruction SQL d'Oracle. Le slash (/) peut également termi­
ner une instruction à condition de Je placer à la première colonne de la dernière ligne.

casse et commentaires
Dans toute instruction SQL (déclaration, manipulation, interrogation et contrôle des données),
il est possible d'inclure des retours chariots, des tabulations, espaces et commentaires (sur une
ligne précédée de deux tirets -- , sur plusieurs lignes entre / *et *!).De même, la casse n'a
pas d'importance au niveau des mots-clés de SQL, des noms de tables, colonnes, index, etc.
Les scripts suivants décrivent la déclaration d'une même table en utilisant différentes
conventions :

Sans corrrnentalre

CREATE TABLE Mêmesévén ement sàNoê l
(col onne CHAR);

CREATE TABLE T es t
(col onne NUMBER (38,8));

CREATE tabl e t est (Col onne
NUMBER (38, 8));

Avec commentaires

CREATE TABLE

TSST (
nom de l a t abl e

descrip t i on
COLONNE NUMBER (38 , 8)

)

f in, ne pas oubli er l e point-virgul e.

CREATE TABLE T es t (

/ * une plus g rande des c ript i on
des col onnes * /

COLONNE NUMBER (38 , 8));

© ÉdW/ons Eyroles

La casse a une incidence majeure dans les expressions de comparaison entre colonnes et
valeurs, que ce soit dans une instruction SOL ou un test dans un programme. Ainsi, l'expression
• nomComp= 'Air France' • n'aura pas la même signification que l'expression• nomComp
='AIR France' •

Premier exemple
Le tableau 1-2 décrit l'instruction SQL qui permet de créer, dans Je schéma so11to11, la table
vol_jour illustrée par la figure suivante. L'absence du préfixe s outou. aurait conduit au
même résultat si la connexion était établie par l'utilisateur so111011 lors de la création de la
table. L'utilisateur so11to11 devient propriétaire (owner) de l'objet table vol_jo11r (on dit aussi
que Je schéma so111011 contient la table vol_jour).

Figure 1-1 Table à créer

t:::lvououR
NUM_VOL AERO_DEP AERO...ARR COMP _jmuR._ VOL INe_PASSAGERS 1

llllleaa 1-2 cnauoe d'•• t• 11111 ses cœrllllles

Instruction SOL

C REATE TABLE vol _ j our
(nUJl\...vOl VARCHAR2 (6)
aer o_d ep VARCHAR2(3)
aer o_a.rr VARCHAR2(3)
comp VARCHAR 2 (4)

j our_ vol DATE
nb_passa g ers NUMBER (3));

Contrainles de colonnes

Commentaires

La table contient six colonnes (quatre chaînes
NOT NULL, de caractères variables, une date et un entier
NOT NULL, relatif de trois chiffres).
NOT NULL, La table Inclut cinq contraintes en ligne.

DEFAULT ' AF ' , • 4 NOT NULL qui Imposent de renseigner qua-
NOT NULL, tre colonnes.

• 1 DEFAU LT qui fixe un code compagnie à
défaut d'être renseigné.

Les contraintes de colonnes ont pour but de programmer des règles de gestion au niveau des
colonnes des tables. Elles peuvent alléger un développement côté client (si on déclare qu'une
note doit être comprise entre 0 et 20, les programmes de saisie n'ont plus à tester les valeurs en
entrée mais seulement Je code retour après connexion à la base ; on déporte les contraintes
côté serveur).

Les contraintes de colonnes peuvent être déclarées de deux manières :

• En même temps que la colonne (valable pour les contraintes monocolonnes), ces contraintes
sont dites « en ligne• (i11li11e co1istrai11ts). L'exemple précédent en déclare deux.

© Éditions Eyrol/es 23 1

lr.111

1 24

• Une fois la colonne déclarée, ces contraintes ne sont pas limitées à une colonne et peuvent
être personnalisées par un nom (011t-of-li11e co1istrai11ts).

En nommant chacune de vos contraintes de colonnes, vous disposez de quatre types possibles.

CONSTRAINT nomContrainte
UNIQUE (colonnel (, colonne2) ...)
PRIMl\RY KEY (colonnel (, colonne2) ...)

FOREIGN KEY (colonnel (, colônne2 J ...)
REFEREN:'ES (schéma.) nomTablePere (colonnel (,colonne2) ...)

(CN DELEI'E { CASCADE) SET NULL))

• OiEl::K (condition)

• La contrainte UNIQUE impose une valeur distincte sur les colonnes concernées (les NlJLL
font exception à moins que NOT Nl1LL soit aussi appliqué sur chaque colonne).

• La contrainte PRIMARY KEY déclare la clé primaire, qui impose une valeur distincte sur les
colonnes concernées (NOT NlJLLest aussi appliqué sur chaque colonne).

• La contrainte FOREIGN KEY déclare une clé étrangère pour relier cette table à une autre
table père (voir la section« Intégrité référentielle »du chapitre 2).

• La contrainte CHEX::K impose une condition simple ou complexe entre les colonnes de la
table. Par exemple, O!ECK(nb_passagers>O) interdira toute valeur négative tandis que
CHECK(aero_dep ! =aero_arr) interdira la saisie d'un trajet qui part et revient du même
aéroport.

Dans le cas de UNIQUE et PRil1l\RY KEY, un index unique est généré sur les colonnes concernées.
\bus powez disposer de plusieurs contraintes UNIQUE mais seule une dé primaire est autorisée.

Si vous ne nommez pas une de vos contraintes, un nom sera généré sous la forme suivante
(figure 1-2

Nous verrons au chapitre 3 comment ajouter, supprimer, désactiver, réactiver et différer des
contraintes (options de la commande ALTER TIIBLE).

convenlions recommandées
Adoptez les conventions d'écriture suivantes pour vos contraintes :

Préfixez par pk_ le nom d'une contrainte clé primaire, fk_ une clé étrangère, ck_ une vérifi­
cation, un_ une unicité.

Pour une contrainte dé primaire, suffixez du nom de la table la contrainte (exemple pk_Pilote).

Pour une contrainte dé étrangère, renseignez (ou abrégez) les noms de la table source, de
la clé, et de la table cible (exemple fk_Pil_compa_Comp).

© ÉdW/ons Eyroles

Le script d'écriture des tables suivantes respecte ces conventions. La clé étrangère concrétise
une association 1111-à-pl11sie11rs entre les deux tables. Ici, il s'agit de relier chaque vol à sa
compagnie (pour plus de détails concernant la modélisation, consultez la bibliographie
« UML 2 pour les bases de données »).

Tables

CREATE TABLE compag nie
(comp VARCHAR2 (4),
nom_comp VARCHAR2 (15),

ConlralnloS

Une contrainte en ligne
et deux contraintes
hors ligne.

d.ate _cr eat i on DATE CONSTRAINT nn_d.ate _cr ea NOT NOLL ,

CONSTllAJ:N'l' p k_com pagnie PIUMJU\Y DY (comp),
CONSTllAJ:N'l' u n_nom_comp ONl:QOZ(nom_comp));

CREATE TABLE vol _ j our
(num_vol VARCHAR2 (6) NOT NULL,
aero_dep VARCHAR2 (3) CONSTRAJ:N'l' nn_depart NO'l' NOLL,

Une contrainte en ligne
nommée (NOT NULL)
et quatre contraintes
hors ligne nommées : aero_arr VARCHAR2 (3) CONSTRAINT nn_ar ri vee NOT HULL ,

comp VARCHAR2 (4) DEFAULT ' AF ' ' • Clé primaire.
jour_ vo l DATE NOT NULL,
nb_passagers NUMBER(3),
CONSTllAJ:N'l' pk_ vol _ jour PIUMlU\Y DY (num_vo l , jour_ vol) ,

• CHECK (nombre
d'heures de vol
compris entre O et
20000). CONSTllAIN'l' fk_vo l _ jour_ comp_ compag nie

FOllZIQN DY (comp)
llZl'SRZNCSS compag nie(comp),

CONSTllAIN'l' ck_nb_pax CJIZClt (nb_passagers>O),

•UNI Q UE

(homonymes
Interdits).

CONSTRAINT ck_trajet CJmCJC (aero_dep ! = aero_arr)); • Clé étrangère.

La figure suivante présente Je détail des contraintes (capture d'écran de l'outil SQL Develo­
per) .

Figure 1-2 Contraintes d 'une table

[lJ VOt,JOIJI\

ColoMes 1 OoMees tralntes Droits 1 Stabs11aues 1 Oèdencheurs Flashback 1 Oeoendances . Détails 1

CONSTRAllIT _NAME CONSTRAllIT _TYPE SEARCH_COHD!TIOH
1 Cl_Nll_PAX Chec k nb _pa ssagers >O

2 Clt_n<AJET Chec k aer o_dep != ae ro_arr
J f'l'>_VOL_JOUR_COMP_COMPAGNIE f'ore19n_Key (null)

4 NN _ AARIVl!E Chec k "AERO_AAR" IS NOT NOLL

S NN_Dl!:PART Chec k "AERO_DEP" IS NOT NOLL

6 Plt_VOL_JOUR Pnmary_ltey (null)

7 SYS_C0010S21 Chec k "NIJM_VOL" IS NOT NULL

8 SYS_C0010S24 Chec k "JOUR_ VOL" IS NOT NULL

© Éditions Eyrol/es 25 1

lr.111

1 26

L:ordre de création des contraintes hors ligne n'est pas important au sein d'une table.

En revanche, l'ordre de création des tables est imposé, si les contraintes sont créées en même
temps que les tables. En il existe une certaine hiérarchie à respecte r pour les clés
étrangères : il faut d'abo rd créer les tables référentes, puis les tables qui en dépendent (la des ­
truction des tables se fera dans l'ordre inverse).

Il est possible de créer les contraintes après avoir créé les tables via la corn mande ALTER
TABLE (voir le chapitre 3).

TVPes des colonnes
Pour décrire les colonnes d'Wle table, Oracle fournit les types prédéfinis suivants (bililt-i11 datatypes):

• caractères (O!AR, NCHllR, VARCHAR2, Nl/ARCHAR2, CLOB, NCLOB, LONG) ;

• valeurs numériques NUMBER;

• date/heure (DATE, INI'ERVAL Ill\Y 'IO SECOID, lNl'ER\IAL YEAR 'IO M!NI'I!, TIMESTAMP,
TlMESTAMP WI'IH TIME WNE, TIMESTAMP WITll LOCAL TIME ZONE) ;

• données binaires (BLOB, BFILE, RAW, LONG RAW) ;

• adressage des enregistrements ROWID.

Détaillons à présent ces types. Nous verrons comment utiliser les plus courants au chapitre 2
et les autres au fil de J'ouvrage.

Caractères
Le tableau 1-4 décrit les types convenant aux données textuelles. NCHAR, NVARCHAR2 et
NCLOB permettent de stocker des caractères Unicode (milltibyte). Cette méthode de codage
fournit une valeur unique pour chaque caractère quels que soient la plate-forrne, Je programme
ou la langue.

Réservez le type CHAR aux données textuelles de taille fixe et constante.

Depuis Oracle 9, le type VARCHAR est remplacé par VARCHAR2. Le premier gérait des chaînes
maximales de 2 000 caractères et utilisait des NULL pour corn piéter chaque donnée. Le
second est plus puissant en termes de stockage; il n'occupe pas d'espace supplémentaire et
n'utilise pas de NULL en interne.

Depuis la version 12c, la taille maximale d'un VARCHAR2 ou NVARCHAR2 peut être étendue à
32 767 octets (32 Ko) si le paramètre d'initialisation MAl(_STRING_ SIZE est positionné à
EXTENDED (STANDARD par défaut). Une fois positionné, il ne vous sera plus possible de revenir
à un comportement standard (limitation à 4 000 caractères).

© ÉdW/ons Eyroles

Type

CHAR(n [BYTE
CHAR])

VARCHAR2(n

[BYTEICHARJ)

NCHAR(n)

NVARCHAR2(n)

CLOB

NCLOB

LONG

XMLTYPE

Chaîne fixe de n
caractères ou octets.

Chaîne variable de n
caractères ou octets.

Chaîne fixe de n
caractères Unicode.

Chaîne variable de n
caractères Unicode.

Commentaires pour u .. colome

Taille fixe (complétée par des blancs si nécessaire).
Maximum de 2 000 octets ou caractères.

Taille variable. Maximum de 4 000 octets ou
caractères.

Taille fixe (complétée par des blancs si nécessaire).
Taille double pour le jeu AL16UTF16 et triple pour
le jeu UTF8. Maximum de 2 000 caractères.

Taille variable. Mêmes caractéristiques que NCHAR
sauf pour la taille maidmale qui est Id de 4 000 octets.

Flot de caractères (CHAR). Jusqu'à 4 gigaoctets.

Flot de caractères Idem CLOB.
Unicode (NCHAR).

Flot variable de Jusqu'à 2gigaoctets. Toujours fourni pour assurer
caractères. la mals à remplacer par le type CLOB.

Stockage de documents Jusqu'à 4 gigaoctets.
XML

Valeurs numériqu es

Le type NUMBER sert à stocker des entiers positifs ou négatifs, des réels à virgule fixe ou flot­
tante. La plage de valeurs possibles va de ±1 xlQ-130 à ±9.9 ... 99 x1om (trente-huit 9 suivis de
quatre-vingt-huit 0).

Type

NUMBER [(t,d)]

T-1-5 .. dl dclll6es -iltQues

Delctfpllon

Flottant de !chiffres
dont d décimales.

Commenlllres po" une colon,.
Maximum pour t: 38.
Plage pour d: (-84 , +127).
Espace maximum. utilisé: 21 octets.

Lorsque la valeur de d est négative, !'arrondi se réalise à gauche de la décimale comme le
montre le tableau suivant.

T- lof lllléltaladCle da aoan 7456123.89

Type

NUMBER 7456123.89

NUMBER(9) 7456124

NUMBER(9,2) 7456123.89

NUMBER(9,l) 7456123.9

NUMBER(6) Précision Inférieure à la taille du nombre.

NUMBER(7, -2) 7456100

NUMBER(-7, 2) Précision Inférieure à la taille du nombre.

© Éditions Eyrol/es

lr.111

- 12' î

1 28

Déterminez toujours un nombre de décimales fixe de sorte à ne pas subir des arrondis, et donc
des approximations, lors de calculs importants (sur des montants de facture ou des soldes de
comptes bancaires, par exem pie).

Pour définir des colonnes clé primaire, fixez toujours un nombre de décimales à zéro (par
exemple, NUMBER(3 , 0) qui est identique àNUMBER(3)).

Enfin, n'utilisez pas toujours des entiers pour définir des clés primaire numériques, (par exem­
ple, un numéro de Sécurité sociale CHAR (13) est préférable à NUMBER (13) car vous n'opére­
rez jamais de calculs sur ces données, juste des tris ou des extractions de parties). De plus, si
la taille de ce type de donnée n'est pas fixe, vous pourrez compléter avec des 0 devant (ce qui
n'est pas possible pour les numériques).

Depuis la version 12c, il est possible d'utiliser un type numérique (entier) pour définir une
colonne auto-incrémentée (voir le chapitre 2). Le mot-dé qui est utilisé dans les instructions
CREATE TABLE et ALTER TABLE pour désigner un tel mécanisme est GENERATED.. AS
IDENTITY .•

Flottants

Depuis Oracle IOg, deux types numériques apparaissent : BINARY_FLOAT et BINARY_
DOUBLE qui permettent de représenter des grands nombres (plus importants que ceux définis
par NUMBER) sous la forme de flottants. Les nombres flottants peuvent disposer d'une déci­
male située à tout endroit (de la première position à la dernière) ou ne pas avoir de décimale
du tout. Un exposant peut éventuellement être utilisé (exemple : 1.777 e·21C». Une échelle de
valeurs ne peut être imposée à un flottant puisque Je nombre de chiffres apparaissant après la
décimale n'est pas restreint.

Type

BINARY_ FLOAT

BINARY_ DOUBLE

T-1-1 1Y1111111 non1111s

Dela1pllon Corrrnenlalre poir une colome

Flottant simple précision. Sur 5 octets (un représentant la longueur).
Valeur entière maximale 3,4 x 10"'8 , valeur
entière minimale -3,4 x Plus petite
valeur poslti.a 1,2 x 1 plus petite valeur
négative -1,2 x 10""".

Flottant dotble précision. Sur 9 octets (un représentant la longueur).
Valeur entière maximale 1,79 x 10"'"'·
valeur entière minimale -1,79 x 10"'°8 .

Plus petite valeur positive 2,3 x 1 ü"08,

plus petite valeur négati...a -2,3 x 10°"'8 .

© ÉdW/ons Eyroles

l c11111111n° 1

Le stockage des flottants diffère de celui des NUMBER en ce sens que Je mécanisme de repré­
sentation interne est propre à Oracle. Pour une colonne NUMBER, les nombres à virgule ont
une précision décimale. Pour les types BINARY_FLOAT et BINARY_DOUBLE, les nombres
à virgule ont une précision exprimée en binaire.

Oracle fournit également Je type ANS! FLOAT qui peut aussi s'écrire FLOAT (11). L'entier 11

(de 1 à 126) indique la précision binaire. Afin de convertir une précision binaire en précision
décimale, il convient de multiplier l'entier par 0.30103. La conversion inverse nécessite de
multiplier 11 par 3.32193. Le maximum de 126 bits est à peu près équivalent à une précision
de 38 décimales.

L'écriture d'un flottant est la suivante :

f•l-1 { chi ff re [chi ffre] ... [.] [chi ffre [chi ffre J ... J .ch ifE.r e [chi ffre] ... }

[e f•l-1 chiffr e [c hiffr e] ... 1 f f ldl

• e (ou E) indique la notation scientifique (mantisse et exposant) ;

• f (ou F) indique que Je nombre est de type BINARY_FLO.l\T ;

• d (ou D) indique que Je nombre est de type BINARY_OOUBLE.

Si Je type n'est pas explicitement précisé, l'expression est considérée comme de type NUMBER.

Date/heure

• Le type DATE permet de stocker des moments ponctuels, la précision est composée du
siècle, de l'année, du mois, du jour, de l'heure, des minutes et des secondes.

• Le type TIMESTAMPest plus précis dans la définition d'un moment (fraction de seconde).

• Le type TIMESTAMP WITH TIME ZONE prend en compte les fuseaux horaires.

• Le type TIMESTAMP WITH LOCAL TIME ZONE permet de fuire la dichotomie entre une
heure côté serveur et une heure côté client.

• Le type INl'ERVAL YEAR TO MONI'H permet d'extraire une différence entre deux moments
avec une précision mois/année.

• Le type INI'ERVAL DAY 'IO SECCND permet d'extraire une différence plus précise entre
deux moments (précision de J 'ordre de la fraction de seconde).

© Éditions Eyrol/es 29 1

lr.111

1 30

Type

DATE

INTERVA L YEAR (an) TC

MONI'll

INTER VAL DAY (j o) TC
SECOND (fsE>C)

TIMESTAMP (fSE>C)

TIMESTAMP (fSE>C) WITH

TIME ZONE

TIMESTAMP (fSE>C) WITH

LOCAL TIME ZONE

Dela1pllon

Date et heure du 1" janvier 4712
avantJ.-C. au 31 décembre4712
après J.-C.

Période représentée en années
et mols.

Période représentée en jours,
heures, minutes et secondes.

Date et heure Incluant des
fractions de secondes (précision
qui dépend du système
d'exploitation).

Date et heure avec le décalage
de Greenwich (UTC) au format
'h:rrf (heures:mlnutes par rapport
au méridien, exemple : '-5:0').

Comme le préoédent mals cadré
sur l'heure locale (client) qui peut
être différente de œlle du serveur.

Corrrnenlalres poir une colome

Sur 7 octets. Le format par défaut
est spécifié par le paramètre
NLS_DATE_ FORMAT.

Sur 5 octets. La précision de 811

va de O à 9 (par défaut 2).

Sur 11 octets. Les précisions jo et
fsec "'nt de O à 9 (par défaut 2
pour le jour et 6 pour les fractions
de secondes).

De 7 à 11 octets. La valeur par
défaut du paramètre d'lnltlallsatlon
est située dans NLS_TIMESTAMP_
FORMAT. La précision des fractions
de secondes va de O à 9 (par
défaut6).

Sur 13 octets. La valeur par
défaut du paramètre de l'heure
du sen1eur est dans NLS_

TIMESTAMP_TZ_ FORMAT.

De 7 à 11 octets.

N'utilisez jamais un format texb.Jel pour stocker des dates ou des heures (par exemple,
CHAR(l O) pour un formatjj/mm/aaaaa) car vous ne pourrez pas bénéficier de contrôles et de
calculs, toujours nécessaires à un moment donné dans œs cas-là.

Données binaires

Le tableau 1-9 présente les types permettant de stocker des données non structurées (images,
sons, etc.).

Type

BLOB

BFI LE

RAW(size)

LONG RAW

Dela1pllon Commentaires pour une colonne

Données binaires non structurées. Jusqu'à 4 gigaoctets.

Données binaires stockées dans Idem.
un fichier externe à la base.

Données binaires. Jusqu'à 2 000 octets.

Données binaires. Jusqu'à 2 gigaoctets, toujours
fourni pour as.surer la
mals à remplacer par le type BLOB.

© ÉdW/ons Eyroles

1Cllldln1°1

Struct•e d'une table mESm
DESC (raccourci de DESCRIBE) est une commande SQL *Plus, car elle n'est comprise que dans
J'interfuce de commandes d'Oracle. Elle permet d'extraire la structure brute d'une table. Elle
peut aussi s'appliq uer à une we ou un synonyme. Enfin, elle révèle également les paramètres
d'une fonction ou procédure cataloguée.

1 DESC (RIBE) (schéma.) élément

Si Je schéma n'est pas indiqué, il s'agit de celui de l'utilisateur connecté. L'élément désigne Je
nom d'une table, we, procédure, fonction ou synonyme.

La structure brute des tables précédemment créées est présentée à !"aide des commandes
suivantes. Il n'y a que Je nom, Je type et la non-nullité de la colonne qui apparaissent. Le nom
des contraintes n'est pas indiqué ici (comme peut Je produire l'outil SQL Developer, voir
figure 1-2).

Rgure 1-3 Structure brute des tables

CL> desc
No11

NUH_UOL
AERO_DEP
AERO_ARR
COHP
JOUR_UOL
NB_PASSAGERS

SOL> desc co•pagnie
No11

COHP

1
NOM COHP
DATE_ CREATION

commentaires stockés <COMWŒHJl

NULL ?

NOT NULL
NOT NULL
NOT NULL

NOT NULL

NULL ?

Type

UARCHAR2(6)
UARCHAR2(3)
UARCHAR2(3)
UARCHAR2('+)
DATE
NUHBER(3)

Type

NOT NULL UARCHAR2('+)
UARCHAR2(15)

NOT NULL DATE

Les commentaires stockés permettent de documenter une table, une colonne ou une vue.
L'instruction SQL pour créer un commentaire est COMMENI'.

1
COMllEllT CN { TABLE (schéma.)nomTable)
a:JUJ MN (schéma.)nomTable.nomColonne)
IS ' Texte décrivant le commentaire ' ;

© Éditions Eyrol/es 31 1

l r.111

1 32

Pour supprimer un commentaire, il suffit de Je redéfinir en inscrivant une chaîne vide (' ')
dans la clause IS. Une fois définis, nous verrons à la section « Dictionnaire des données »

du chapitre 5 comment retrouver ces commentaires.

Le premier commentaire du script ci-après documente la table Compagnie, les trois suivants
renseignent trois colonnes de cette table. La dernière instruction supprime Je commentaire à
propos de la colonne nomCcrnp.

COMllllH1' Œ TABLE Cœpagùe IS 'Table des cœpagnies aérienœs frëllÇaises • ;

COMllllH1' Œ CXlUJllll G::r!p>gnie .cœp IS 'OXie abl:éviat:ion Œ la o:rrp>gnie ' ;

COMMBNT CN COL'OMN Ccmpagnie.ncmCon:p IS ' Un mauvais conmentaire ' ;

COMIŒllT Œ COLOMN Ccmpagnie.ville IS ' Ville de l a ccmpagnie, défaut

Par is';

COMIŒllT Œ COLOMN Ccmpagnie.ncmConp IS

Noms des obiets
Chaque objet ou constituant de la base (table, index, contrainte, colonne, variable, etc.) est
nommé à J'aide d'un identifiant de 1 à 30 caractères (composé de lettres, de chiffres ou des

$et #).

Le nom peut être écrit entre guillemets - la casse doit alors être impérativement respectée de
même que l'utilisation des guillemets (on parle de q1wted identifier). Le seul exemple présenté
dans cet ouvrage qui adopte ce style de notation est Je suivant ; vous y découvrirez la possibi­
lité de décrire des identifiants sous la forme de mots séparés par des espaces (ce qui n'est pas
conseillé).

('' nu•Uol "
" co•p"
.. jou,.. vo1 ··

Rgure t-4 Nommage de type. quoted ldenUfler.

"vol s du jour "
UARCHAR2(6)
UARCHAR2(q)
DATE

NOT HULL.
DEFAULT . AF . •
NOT HULL.

CONSTRAlNT "pk uols du jour" PRl HARY KEY("nu•Uol" ,

able creee.

"j our vol")) ;

[

OL::> CREATE TABLE

co•p UARCHAR2(q)
JOUr vol NOT NULL DATE

1SOL> SELECT nu•Uol FROM " vols du jour" ;
•

ERREUR a la ligno 1
ORA-889B·q : "HUMUOL.. : idonti ficateur non ualidt

© ÉdW/ons Eyroles

Seuls les noms de base (8 caractères) et les noms de database link (128 caractères) sont tou­
jours stockés en majuscules et sont insensibles à la casse.

Le nom de chaque colonne doit être unique pour une table (en revanche, le même nom d'une
colonne peut être utilisé dans différentes tables). Les noms des objets (tables, colonnes, con­
traintes, vues, etc.) doivent être uniques au niveau du schéma (en revanche, plusieurs tables
peuvent porter le même nom dans différents schémas).

Avec une notation sans guillemets, vous ne devez pas emprunter les mots réservés (TABLE,
SELECT, INSERT, IF, etc.). Vous trouverez la liste de ces mots réservés dans la documentation
officielle à l'annexe D du livre SOL Reference.

Il n'est pas recommandé d'utiliser les caractères$ et Il (très employés en interne par Oracle).

Les identifiants sans guillemets (11011q1wted identifiers) ne sont donc pas sensibles à la casse et
sont traduits en majuscules dans Je dictionnaire des données (voir Je chapitre 5). Ainsi, les trois
écritures désignent Je même identifiant : aeroport, AEROPORT et "AEROPORT".

Utilïsalïon de SOL DevelOPer Data Modeler

Une des utili sations de l'outil d'Oracle SQL Developer Data Modeler consiste à générer
des scripts de création de tables (DOL scripts, DOL pour Data Defi11itio11 La11g11age) après
avoir saisi les caractéristiques de chaque table sous une forme graphique (modèle rela­
tionnel des données). Ce procédé est appelé forward e11gi11eeri11g car il chemine dans Je
sens d'une conception classique pour laquelle l'étape finale est concrétisée par la création
des tables.

Dans J' arborescence de gauche, par un clic droit sur J' élément Modèles relationne l s,
choisir Nouveau modèle relationnel. Une fois dans Je modèle relationnel, les icônes
indiquées vous permettront de créer vos tables et toutes les liaisons entre elles (clés étrangè­
res). À titre d'exemple, créons deux tables reliées par une clé étrangère (ici, un pilote qui est
rattaché à sa compagnie).

Pour créer une table, vous devez la nommer dans la fenêtre de saisie (le choix Appliquer
modifiera Je nom complet), puis définir ses colonnes. En choisissant l'entrée Col onnes, Je
symbole«+» vous permettra de saisir le nom et Je type de chaque colonne de la table. N'ajou­
tez aucune contrainte pour J 'instant (clé primaire et clé étrangère), contentez-vous de saisir les
colonnes sans ajouter de colonnes de nature clé étrangère.

© Éditions Eyrol/es 33 1

l lWte l

1 34

Figure 1·5 CréaUon d'un modt!/e rel8llonnel a>ec Data Modeler

Oraœ SQt. Data Moœle<: RelatJonal. l (Unbtled . l)

fichier Affldwlge Gest'2n des venions Qutlls Alde

4:l -.e. 111 .:0 • l!!I :-..;;:
• .U--.U (-.,a)

Q iBuntJtled...t
Ill • Modèle 11>9lque

Il Moôêles mulbd•men110nntls
lii li Modtlffrolaoonnels[IJ

111 • Rolaoona1_1
"' l8 Domaines (!)

ili unknown
Ili e Modtlt OO typo de donnMs
Ill
Ôl e lnformabOns p<OltlliOMtllo

Il:! Demandes de modlfocotoon O

Figure 1·6 Colonnes d 'une table 8'1/ec Data Modeler

Q doo la table · TABLE.3

1 ==·- I

doo la table· TA8lf.._3

"'"°'" mm
CW prwna1re
ConttlintH -

-·
Propnttft dt 0

Contnllntn dt MtNv tlOlt
Clês êtnlngiru ttom : ------
ColonnH imbtlqu&s

Prop<Wludu­
"'oranêtês spatiales
CNMIPH de co6onnet
ResponS!lbles

°""""""" SO"l'IS
•fl>pnélés dyna_.,.

- Type de donn ...
iiffii .. !.

..,,..dt_, - '·­
Slrllchd

© ÉdW/ons Eyroles

Définissez ensuite la clé primaire de chaque table (colonne brevet de la table Pilote et
colonne comp de la table Compagnie).

Rgure 1-7 Clé primaire avec Data Modeler

c.ontrtH'llUcltlW'ttutatM
Clés êtratlgères
Colronntt
f'rOpnêt:êlduwolwN

....

À l'issue de cette étape, le diagramme se modifie pour faire apparaître les deux nouvelles
contraintes.

Figure f..IJ Tables dotées d 'une clé primaire avec 08/a Modeler

.. _ : ___ l(tl)

flchl« Modoflt< Affl<"°Oe Qulh AJd<

!< 'I..
...........

a. -1(1)
..... . ._,., ..

•

•0omt11W[l)

• Modiilt " tYPt dt

l1W1ft9te•iiJ _ •(• l)

,. <""" '4.•
11 P>
,,. , ... 1

t...,,•1•'1

Reliez la table Compagnie à la table Pilote en sélectionnant l'icône de clé étrangère. Une
boîte de dialogue s'affiche alors et décrit les caractéristiques de la nouvelle contrainte référen­
tielle (voir Je chapitre 3).

Assurez-vous que la table source corresponde la table de r f rence (ici, les compagnies) et
n interpr tez pas le terme · source ·· comme source de la fi che qui d crit le sens du lien, et
· cible ·· comme la table cible de ce lien. C est tout 1 inverse

Vous remarquerez que la colonne de type clé étrangère générée est automatiquement nommée
à l'aide de la table et de la colonne de référence : tableso11rce_cleprimaire (ici, Compagnie_
c omp, que nous choisissons de renommer c ompa).

© Éditions Eyrol/es 35 1

llWlll

1 36

Rgure t -9 Déflritfon d'une clé étrangi!re avec 081a Modeler

°"°nne11SI006a '4nkel

11
Rematquff Nom :

M6lyse d'import
Tobit : l'îlot• ,,,..,.... .. .,..,,.,,,_

"""'"""''"' Index do dé-e/dé - : COmi"'i"".COm!'!'i"ie_POt

Rêgle de supprenon : NOACTIOH

synonyme 61 llblt tourc. : compogn1t . 1
Synonyme do - Clblo : -·

Rgure 1-10 Modi!/e re/81/onnef fins/ avec Data Modeler

Fk:Ncr Modifict' Gestion 6cs venions O\ttilJ Alde

[\) ., .. X 4i '!\ œ •1 • ù
,.._, _. .) ,,.. .. s.. .. • .. ___________ _
i!:l -• (l)

Ill me•
l.Ji

• Mod@ln ""*'dll'l'\IMSIOMels (]

• - les relotlOllMll(l)
.i e f'iteletiOMLl

"' • T•bln[2) [)
., _,,.. .. (!) ., _

,.

r ·-

f'llClll•

CHNl (15t
lllUUff• (1.J)

!* --- ..
.- ..
HINMlllCI)

"'"' ,._,,,.
-c_...,,,.,

La génération du script SQL s'opère par Je menu Fichier /Exporter /Fichier DDL. Sélec ­
tionner la version du SGBD cible, puis choisir Générer. Tous les éléments du modèle rela­
tionnel sont sélectionnés par défaut, mais vous pouvez volontairement écarller certaines tables
du script. Une fois votre sélection fuite, Je script SQL se génère automatiquement. \bus note­
rez que les contraintes sont déclarées après les tables (voir la commande ALTER TI\BLE au
chapitre 3). Ce procédé est bien adapté à la majorité des outils de conception, qui l'adoptent
pour leur processus de reverse e11gi11eeri11g.

© ÉdW/ons Eyroles

Rgure 1-11 Script de génér8llon des tables 8'1/ec Data Modeler

• Editeur œ lidller DOi. - Orade O.tat>ose Ug

Oracle o.tabase l 1 g

•Jt• , ... '
<:UATI TM&.&

f C011P CllAll. (4) mT wi;ILL ,
ft.ru&c IR>IBD ,,, •
ive au po, .
'f'lll• au.a (:!i) • _ ,)):

ALTD. TAl!ILI
NIO aJISTIA.DrT C<IC*-:eU_Pr n.IK\U DT C C011P l

c:n.uz TA!ILZ PUote
f breYtt OP.a (C) Jll'T mu. ,

l!IC9 eau c \) .
lillll'rol aQl9D (1,Z) ,
CClllllt; CllAA (<4)) :

At:n::a TAl!IU '1.lote
N» COISTltAJJr'T PUou_n PltDWl.l mt C tlt't'Y't:t. J

ALTI& TAllU Pilote
NJO <Dl!TIUJIPf PUot.e_COlip•;rih_n: l'DR&lG9 UJ f co.pe.
11.P'EllDCIS f cœ:p) :

Suppressioo des tables

Il vous sera sans doute utile d'écrire un script qui supprime tout ou partie des tables de votre
schéma. Ainsi, vous pourrez recréer un ensemble homogène de tables (comme une sorte de
base « vierge») à la demande. Bien entendu, si des données sont présentes dans vos tables,
vous devrez opter pour une stratégie d'exportation ou de sauvegarde avant de réinjecter vos
données dans les nouvelles tables. À ce stade de la lecture de J'ouvrage, vous n'en êtes pas là,
et Je script de suppression vous permettra de corriger les erreurs de syntaxe que vous risquez
fort de faire lors de l'écriture du script de création des tables.

Si vous définissez des contraintes en même temps que les tables (dans l'ordre CREATE

TABLE ...), vous devrez respecter l'ordre suivant : tables « pères» (de référence), puis les
tables « fils » (dépendantes). L'ordre de suppression des tables, pour des raisons de cohérence,
est totalement inverse : vous devez supprimer les tables « fils »d'abord, puis les tables de réfé­
rence. Dans J 'exemple présenté à la section « Conventions recommandées », il serait malvenu
de vouloir supprimer la table Compagnie avant de supprimer la table Pil o te. En effet, la clé
étrangère c ompa n'aurait plus de sens. Cela n'est d'ailleurs pas possible sans forcer l'option
CASCADE CONSTRAJNI' S (voir plus loin).

1 DROP TABLE (s chéma.) nomTabl e (CASCADE OONS'IRAINl'S) (PUl<GE) ;

© Éditions Eyrol/es 37 1

lr.111

1 38

Pour poLNOir supprimer une table dans son schéma, il faut que la table appartienne à l'utilisateur.
Si l'utilisateur a le privilège DROP ANi TIIBLE, il peut supprimer une table dans tout schéma.

!.:instruction DROP TABLE entraîne la suppression des données, de la strucb.Jre, de la des­
cription dans le dictionnaire des données, des index, des déclencheurs associés (triggers)
et la récupération de la place dans l'espace de stockage.

• CASCADE o:NSTRA!Nfs permet de s'affranchir des clés étrangères actives contenues dans
d'autres tables et qui référencent la table à supprimer. Cette option détruit les contraintes
des tables « fils» associées sans rien modifier aux données qui y sont stockées (voir
section « Intégrité référentielle » du prochain chapitre).

• PURGE permet de récupérer instantanément J'espace alloué aux données de la table (les
blocs de données) sans les disposer dans la poubelle d'Oracle (recycle bi11).

Certains éléments qui utilisaient la table (vues, synonymes, fonctions ou procédures) ne sont
pas supprimés mais sont temporairement inopérants. En revanche, les éventuels index et
déclencheurs sont supprimés .

Une suppression (avec PURGE} ne peut pas être annulée par la suite.

La suppression d'une table sans PURGE peut être récupérée via l'espac:e recyc le bin
par la technologie flashback (ce mécanisme, qui relève davantage de l'administration, sort
du cadre de cet ouvrage}.

Si les contraintes sont déclarées au sein des tables (dans chaque instruction CREATE TABLE},
il vous suffit de relire à l'envers le script de création des tables pour en déduire l'ordre de sup­
pression.

Utilisez avec parcimonie l'option CASCADE CONSTRAIN!'S qui fera fi, sans vous le dire, du
mécanisme de l'intégrité référentielle assuré par les clés étrangères (voir le chapitre 3).

© ÉdW/ons Eyroles

Exercices

L'objectif de ces exercices est de créer des tables, leur clé primaire et des contraintes de vérification
(N:Yr NULLet CHEC<). La première partie des exercices (de 1.1 à 1.4) concerne la base Parc /11for­
matiq11e). Le dernier exercice traite d'une autre base (Chantiers) q ue vous pouvez appliquer à
la version d'Oracle à partir de la llg.

1.1 Présentation de la base de données

Une entreprise désire gérer son parc Informatique à l'aide d'une base de données. Le bâtiment est
composé de trois étages. Chaque étage possède son réseau (ou segment distinct) Ethernet. Ces réseaux
traversent des salles équjlées de postes de travail. Un poste de travail est une machine sur laquelle sont
Installés certains logiciels Quatre catégories de postes de travail sont reœnsées (stations Unix, terminaux
X, PC Windows et PC NT). La base de données devra aussi déalre les Installations de logiciels.

Les noms et types des colonnes sont les suivants :

Colonne Commentaires Types

indIP Trois premiers grol4)es IP (exemple : 130. 120.80). VARCHAR 2 (11)

nomsegment Nom du segment. VARCHAR 2 (20)

etage Étage du segment. NUMBER (2)

nsalle Numéro de la salle. VARCHAR 2 (7)

nomsalle Nom de la salle. VARCHAR 2 (20)

nbPoste Nombre de postes de travail dans la salle. NUMBER (2)

nPoste Code du poste de travail. VARCHAR 2 (7)

nomPoste Nom du poste de travail. VARCHAR 2 (20)

ad Dernier groupe de chWfres IP (exemple : 11). VARCHAR 2 (3)

type Poste Type du poste (Unix, TX, PONS, PCNT). VARCHAR 2 (9)

date ins Date d'installation du logiciel sur le poste. DATE

n LOg Code du logiciel. VARCHAR 2 (5)

n omLog Nom du logiciel. VARCHAR 2 (20)

dateAc h Date d'achat du logiciel. DATE

versio n Version du logiciel. VARCHAR 2 (7)

typeLOg Type du logiciel (Unix, TX, PCWS, PCNT). VARCHAR 2 (9)

prix Prix du logiciel. NUMBER (6 , 2)

numins Numéro séquentiel des Installations. NUMBER (S)

date ins Date d'installation du logiciel. DATE

de l ai Intervalle entre achat et Installation. INI'ERVAL DAY (S) TO SECOND (2),

typeL P Types des logiciels et des postes. VARCHAR 2 (9)

nomrype Noms des types (Terminaux X, PC Windows ...). VARCHAR 2 (20)

© Éditions Eyrol/es 39 1

l r.111

n:@îlJ6fl 1.2 Création des tables

Écrivez puis exécutez le script SOL (que vous appellerez cre Parc. sql) de création des tables avec
leur clé primaire (en gras dans le schéma suivant) et les contraintes suivantes :

Les noms des segments, des salles et des postes sont non nuls.

Le domaine de valeurs de la colonne ad s·étend de O à 255.

La oolonne prix est supérieure ou égale à O.

La oolonne dat ein s est égale à la date du jour par défaut.

Figure 1-12 Schéma des tables

Segment
l indIP l nomSeqment (etage

Salle
1 nSa lle (nomSalle ! nbPoste l indl P

POete
l nPoate (nomPoste (indIP l ad (trpePoste lnsalle

Logiciel
!nLog (nomLoq !dateAch ! vers1on ! t ypeL09 lpr1x

Installer
! nPoate (nLog)numlns !datelns !delai

rr;;:LP (nomType

n:@dtfill 1.3 Structure des tables

Écrivez puis exécutez le scr!Jt SOL (que l.()US appellerez descParc. sql) qui affiche la description
de toutes ces tables (en utilisant des commandes DESC). Comparez avec le schéma.

n:@ïlJBfl 1.4 Destruction des tables

1 40

Écrivez puis exécutez le script SOL de destruction des tables (que vous appellerez dropParc. sql).
Lancez ce script puis à nouveau celui de la création des tables.

© ÉdW/ons Eyroles

[3:131ïf!gg 1.5 Schéma de la base Chanl/etS(Oracle 11g)

© Éd/lions Eyrol/es

Une société désire Informatiser les visites des chantleis de ses employés. Pour définir cette base de
données, une première étude fait awaraître les Informations suivantes :

Chaque employé est modélisé par un numéro, un nom et une qualWlcatlon.

Un chantier est caractérisé par un numéro, un nom et une adresse.

L.:entreprlse dispose de véhicules pour lesquels Il est Important de stocker pour le numéro d'imma­
triculation, le type (un code valant par exemple O pour une camionnette, 1 pour une moto et 2 pour
une "'lture) ainsi que le kilométrage en fin d'année.

Le gestionnaire a besoin de connaître les dlstanoes parcourues par un véhicule pour chaque visite
d'un chantier.

Chaque jour, un seul employé sera désigné conducteur des visites d'un véhicule.

Pour chaque visite, Il est Important de pou"'lr connaître les employés transportés.

Les colonnes à utiliser sont les suivantes :

Colonne Commentaires Types

k ilometr es Kilométrage d'un véhicule lors d'une sortie. NUMBER

n_conducteur Numéro de l'employé conducteur. VARCHAR2 (4)

n_t ran sporte Numéro de l'employé transporté. VARCHAR2 (4)

L.:exerclce consiste à compléter le schéma relationnel cl-après (ajout de colonnes et des
contraintes de clé primaire et étrangère).

CREATE TABLE Emplo ye (n_emp VARCHAR(4) ,nO!l_emp VARCHAR(20)'
qua l if_ emp VARCHAR(l 2)' CONSTRAINI' p k_emp PRIMARY KEY(n_em p));

CREATE TABLE Ch ant i e r (n_c hant i er VARCHAR(lO)' nô!l_C h VARCHAR(lO)'
a dresse_ c h VARCHAR(l 5), CONSTRAINT p k_c han PRIMARY KEY(n_c hant i er));

CREATE TABLE Ve hi c ul e (n_ vehi c ul e VARCHAR(lO), t yp e_ vehi c ul e VARCHAR(l),
kil omet r age NUMBER, CONSTRAINI' p k _ vehi PRIMARY KEY(n_ vehi c ul e));

CREATE TABLE Vi s i te(n_c hant i er VARC HAR(lO), n _ vehi c ul e VARCHAR(lO),
date _ jour DATE,
CONSTRAINT p k_vi s i te PRIMARY KEY(...),

CONSTRAINT fk_de pl_ c hant i er FOREIGN KEY (n_c hant i e r)
CONSTRAINT fk_de pl_ vehi c ul e FOREIGN KEY (n_ve hi c ul e)

CONSTRAINI' fk_de pl_ emp l o ye FOREI GN KEY(n_co ndu cteur) . . .) ;

CREATE TAB LE Tran spo r ter (...

CONSTRAINT p k_transpor te r PRIMARY KEY (...)'
CONSTRAINT fk_t rans p_ vi s i te FOREIGN KEY ... ,

CONSTRAINT fk_t rans p _ emp l o ye FOREI GN KEY ...) ;

41 1

Chapitre 2

Manipulation des données
Ce chapitre décrit une partie de l'aspect DML (Data Ma11ip11/atio11 La11g11age) du langage
SQL d'Oracle. Bien qu'il existe d'autres possibilités d'insérer des données (techniques
d'importation ou de chargement), SQL propose trois instructions de base pour manipuler des
données :

• J' insertion d'enregistrements : INSERT ;

• la modification de données : UPDATE ;

• la suppression d'enregistrements : DELETE.

lnsenioos d'enrellislremenls ONSERT>

Pour pouvoir insérer des enregistrements dans une table, il faut que cette dernière soit dans
votre schéma ou que vous ayez reçu le privilège IIBERT sur la table. Si vous avez le privilège
INSERT ANi TABLE, vous pouvez ajouter des données dans n'importe quelle table de tout
schéma.

Il existe plusieurs possibilités d'insertion : J' insertion monoligne qui ajoute un enregistrement
par instruction (que nous allons détailler maintenant) et l'insertion multiligne qui insère
plusieurs valeurs (que nous détaillerons au chapitre 4).

svmaxe
La syntaxe simplifiée de J' instruction IIBERT monoligne est la suivante :

1
INSBRT INTO (s chéma.) { nomTabl e) nomVue / r e qu f!teS BLECT

((colonn e l , colonn e2 ...))
VAWES (val e url) DEFAULT, val e ur2) DEFAULT ...) ;

À J'aide d'exemples, nous allons détailler les possibilités de cette instruction en considérant la
majeure partie des types de données proposés par Oracle.

© Éditions Eyrol/es 43 1

lr.111

1 44

RenseiQner ou pas Ioules les colonnes
Le script suivant insère trois compagnies et quatre vols en utilisant différentes options de
l'instruction INSERT. Il s'agit de renseigner ou pas les colonnes d'une table par une liste de
valeurs de type adéquat . Le mot-clé DEFAULT utilisé en tant que valeur permet d'affecter
explicitement une valeur par défaut à la colonne associée .

lllllleaU 2·1 ll•toas Ill 1111•

SOL

INSERT INrO compagnie
VALUES (' S ING ' ' ' Singapo r e AL ' ' TO_

DATE(' 194 70101 ' , ' YYYYMMDD'));

INSERT INTO compa gni e
(nom_comp, comp, d.ate_creat i on)

VALUES (' Air France • ' ' AF ' ' TO_DATE (' 1 933 0101 ' '
' YYYYMMDD'));

INSERT INTO compa gni e
(nom_comp, comp, d.ate_creat i on)

VALUES (NULL, ' GO ' ,
TO_DATE (' 20141 231 ' , ' YYYYMMDD'));

INSERT INro vo l _j our
(num._vol, aero_dep,ae ro_arr, jour_vol,n.b _passagers)

VALUES (' AF6 143 ', ' TLS', ' ORY', TO_DATE (' 201411 2 0
1 5 : 3 0 ' , ' YYYYMMDD HH24:MI '), 1 20);

INSERT INro vo l _j our
(num,_vol ,ae ro_dep, aero_arr,j our_vol)
VALUES (' AF6 145 ', ' ORY', ' TLS', TO_DATE (' 201411 2 0

18 :45 ' , ' YYYYMMDD HH24:MI '));

INSERT INro vo l _j our
(num,_vol ,ae ro_dep, aero_arr, comp,j our_vol,

n.b_pa ssage rs)
VALUES (' SQ74 7 ', ' CDG ', ' SIN', ' SING ',

TO_DATE (' 201411 2 0 19: 3 0 ' ,
' YYYYMMDD HH2 4 :MI ') ,NULL);

INSERT INTO vol _jour
(num,_vol, aero _dep, aero_ arr, comp, jour_vol,n.b _
passager s)

VALUES (' AF655 0 ', ' CDG', ' TLS', DEFAULT,
TO_DATE (' 201411 2 0 20:00 ' ,

' YYYYMMDDHH24:MI '), 195);

Comment....,.
Les valeurs sont renseignées
dans l'ordre de la structure de
la table.

Les valeurs sont renseignées
dans l'ordre de la liste.

La compagnie est omise, donc
la valeur par défaut s'appliquera
(AF).

Le nombre de passagers est
omis, donc NtILL s'appliquera.

Le nombre de passagers est
explicitement valué à NULL.

la compagnie est explicitement
valuée à la valeur par défaut.

Bannissez le premier style d'écriture et renseignez toujours le plus de colonnes possible dans
vos instructions INSERT, vous subirez ainsi le moins de comportements par défaut.

© ÉdW/ons Eyroles

Une fois la validation effectuée (par comni t, voir chapitre 6), le résultat est présenté avec SQL
Developer de la manière suivante.

Rgure 2-t Tables sprt!s tes Insertions

CICOMPAGHIE

COMP NOM_COMP OATE_CREATIOH

SING Singapore AL 01/01/47

AF A.ir !'rance 01/01/33

GO (null) 31/12/14

CvotJOUR

• HUM_VOL AERO_DEP 1: AERO_,llAA 1 COMP JOUR._ VOL 101,ï' HB_PASSACERS

AF6143 TLS ORY AF 20/11/14 120
AF6550 CDG Tl.! AF 20/11/14 195
50747 CDG SIN SING 20/11/14 (null)

AF6145 ORY TL.s AF 20/11/14 (null)

- ' 12' G
/:.. Depuis la version 12c, toute colonne peut être définie à DEFAULT ON NULL valeur _defaut.

Ainsi, l'insertion d'un NULL, qu'elle soit explicite ou implicite, sera remplacée par la valeur par
défaut.

Ne pas respecter des contraines
Insérons des vols qui ne respectent pas des contraintes. Les messages renvoyés pour chaque
erreur font apparaître le nom de la contrainte. Les valeurs qui sont les facteurs déclenchant
sont notées en gras. La première erreur est un doublon de clé primaire, la deuxième un NlJLL

interdit et la troisième une condition de vérification. La dernière erreur signifie que la clé
étrangère référence un absent (pour plus de détails à ce sujet, consultez la section « Intégrité
référentielle »).

© Éditions Eyrottes 45 1

lr.111

1 46

SQL> INSERT INrO vo l _ j our
(num,_vol, aero_dep,aero _arr,comp,jour _vol,
n.b_passagers)

VALUES (' AF6550 ' , ' AGN' , ' TLS ' , ' AF ' ,
TO.,DATE (' 20141120 20:00 ' ,

' YYYYMMDD HH24:MI'), 95);

SQL> INSERT INro vol _j our
(num,_vol ,aero _dep,aero _arr,comp,jour _vol ,
n.b_passagers)

VALUES (' AF6530 ' , ' AGN' , NOLL, ' AF ' ,
TO_DATE (' 20141120 10:00 ' ,

' YYYYMMDD HH24:MI') ,95);

SQL> INSERT INro vol_j our
(num,_vol, aero_dep,aero _arr,comp,jour _vol,
n.b_passagers)

VALUES ('AF6530 ' , 'A.GIN', 1 AQN 1 , 'AF ' ,
TO_DATE (' 20141120 10:00 ' ,

' YYYYMMDD HH24:MI') ,95);

SQL> I NSERT INro vol _j our
(num,_vol ,aero _dep,aero _arr,comp,jour _vol ,
n.b_passagers)

VALUES ('AF6530 ' , 'AGN' , 'TLS ' , 'BA 1 ,

TO_DATE (' 20141120 10:00 ' ,
' YYYYMMDD HH24:MI') ,95);

Message d'emour]

ERREUR à la ligne 1 :
ORA.-00 001: vlolatlon
de contrainte unique
(SOUTOU . PK_VOL_
JOUR)

ERREUR à la ligne 3 :
ORA.-01400:
Impossible d'insérer
NULL dans (•sou -
TOU" . "VOL_
JOUR". "AERO_ARR")

ERREUR à la ligne 1 :
ORA.-02 290: vlolatlon
de contraintes
(SOUTOU .CK_TRAJET)
de vérification

ERREUR à la ligne 1 :
ORA.-02 291: vlolatlon
de
(SOUTOU .FK_VOL_
JOtJR..COMP_COMPA­
GNI E) - clé parent
Introuvable

Nous avons décrit au chapitre 1 les caractéristiques générales des types Oracle pour stocker
des éléments de type date/heure.

Type DATE

Déclarons la table Pilote qui contient deux colonnes de type DATE.

CREATE TABLE p ilote

(breve t VARCHAR2 (6), prenom VARCHAR2 (20) =r NULL,

nom VARCHAR2 (20) Nor NULL, date_nais DATB Nor NULL,

embauche DATB l'O'l' NULL,

O:JNS'IRAINI' pk_pilote PRIMARY KEY (breve t)) ;

La première insertion initialise la date de naissance au 5 février 1965 (à zéro heure, zéro
minute et zéro seconde), tandis que la date d'embauche inclura les heures, minutes et secondes

© ÉdW/ons Eyroles

par la fonction SYSDATE. La seconde insertion utilise un autre format en entrée et initialisera
l'embauche au jour présent (à zéro heure, zéro minute et zéro seconde) par la fonction TRUN:.

INSERr I Nl'O Pi l ote (brevet , preno m, ncm, date_nais , enbauche}

VA.IDES ('Bl', 'Chri st i an ', ' Mermoz ',

'l'O_DATE('05/02/1965', '00 /MM/YYYY ') , SYSD!>.TE) ;

INSERr I Nl'O Pi l ote (brevet , preno m, nan , date_nais , en:bauche}

VA.IDES ('B2', 'Chri sti an ', ' Mermoz •,

'l'O_DATE('19650205', ' YYYYMMOO'), 'IRUNC(SYSDATE)) ;

La fonction TO_DATE doit toujours être utilisée pour appliquer un format à la date qui peut être
précis à la seconde. Par exemple, le 5 février 1965 à 6 h 30 sera codé TO_DATE (' 05 -0 2-
1965: 06 : 30 ', ' DD-MM- YYYY:HH24:MI') .

Nous verrons au chapitre 4 comment afficher les heures, minutes et secondes d'une colonne de
type DATE. Nous verrons aussi qu'il est possible d'ajouter ou de soustraire des dates entre
elles.

Types TIMESTAMP

La table Evenement s contient la colonne arrive (TIMESTAMP) pour stocker des fractions de
secondes et la colonne arriveL ocalement (TIMESTAMP WITH TIME ZONE) pour considérer
aussi le fuseau horaire.

1
ŒFATE TABLE Evenements

(a=ive TIMESTAMP, a=iveLoc alement TIMESTAMP WI'IH T IME ZONE) ;

L'insertion suivante initialise :

• la colonne arriv e au 5 février 1965 à 9 heures, 30 minutes, 2 secondes et 123 centièmes
dans le fuseau défini au niveau de la base ;

• la colonne arriveL ocalement au 16 janvier 1965 à 12 heures, 30 minutes, 5 secondes et
98 centièmes dans le fuseau décalé vers l'est de 4 h 30 par rapport au méridien de
Greenwich.

I NSERT I NTO Evenemen t s (arr ive , arr iveL o c a lemen t)

VAIJJES (TIMESTAMP '1965 - 02 - 05 09 : 30 : 02 . 123',

T IMES'l7\MP '1965 - 01- 16 12 : 30 : 05 . 98 + 4: 30') ;

Le format par défaut de ces types est décrit dans les variables NLS_TIMESTAMP _F'CRMAT

(' YYYY- MM- DD llll:MM: SS .d ' d : décimales) et NLS_TIMESTAMP_TZ_FORMAT('YYYY-Jlt.l-DD

llll:MM: SS .d ± hh:mn ' , avec hh:mn en heures-minutes par rapport à Greenwich).

© Éditions Eyrol/es 47 1

lr.111

1 48

Types INTERVAL

Les types INTERVAL permettent de déclarer des durées et non pas des moments.

La table Durees contient la colonne dureeAnneesMois (lNI'ERVAL YEAR TO MONI'H) pour
stocker des intervalles en années et en jours, et la colonne dureeJourSecondes (INl'ERVAL
Ill\Y TO SECOID) pour stocker des intervalles en jours, heures, minutes, secondes et fractions de
secondes.

1
CREATE TABLE D.lrees

(dureeAimeesMois INTBRVAL YBAR TO MONTS ,

dureeJourSecondes INTBRVAL DAY TO SECOND) ;

L'insertion suivante initialise :

• la colonne dureeAnneesMois à la valeur d' 1 an et 7 mois ;

• la colonne clureeJourseconcles à la valeur de 5 jours, 15 heures, 13 minutes, 56 secondes
et 97 centièmes.

INSERT IN'ID Durees(dureeAimeesMois, dureeJourSecondes)

VALUES('l -7', '5 15 : 13 : 56 .97');

Nous verrons comment ajouter ou soustraire un intervalle à une date ou à un autre intervalle.

Variables utiles

Les variables suivantes permettent de retrouver le moment de la session et le fuseau du serveur
(si tant est qu'il soit déporté par rapport au client).

CURRENT_DATE : date et heure de la session (format DATE) ;

LOCALTIMESTAMP : date et heure de la session (format TIMESTAMP) ;

SYSTIMESTAMP : date et heure du serveur (format TIMESTAMP WITH TIME ZONE) ;

DBTIMEZONE : fuseau horaire du serveur (format VARCHAR2) ;

SESSIONTIMEZONE : fuseau horaire de la session client (format VARCHAR2).

Il fuut utiliser la pseudo-table DUAL, que nous détaillerons au chapitre 4, qui permet d'afficher
une expression dans J'interfuce SQL*Plus.

L'exemple suivant montre que Je script a été exécuté Je 23 avril 2003 à 19 b 33, 8 secondes et
729 centièmes. Le client est sur Je fuseau GMT +2h, Je serveur quelque part aux États-Unis
(GMT-7), option par défuut à l'installation d'Oracle. Ce dernier sait pertinemment qu'on a
choisi la langue française mais a quand même laissé sa situation géographique. Il faudra la

© ÉdW/ons Eyroles

modifier (dans le fichier de configuration) si on désire positionner le fuseau du serveur dans le
même fuseau que le client.

SELECT CUllRDIT _DATB, LOCAI/l'XllBSTAXP , SYSTXIŒSTAXP , DBT:CllBZOlllJI:,

SBSS:COl\Pl'DŒZONE FROM DUAL ;
CURRENT_ OATE LOCALTIMESTAMP SYSTI MESTAMP

l3/04/03 l3/04/03 19:33:08,7l9000

OBTIMEZONE

-07 :OO

l3/04/03 19:33:08,7l9000 +Ol:OO

SESSIONTIMEZO NE

+Ol:OO

Caractères Unicode
Si vous envisagez de stocker des données qui ne sont ni des lettres, ni des chiffres, ni les
symboles courants : espac e, % • ' () * + - , .1\ : ; < > = ! _ & - {) I " ? $ # @ " [],

vous devrez utiliser, pour manipuler des caractères Unicode, les types NCH!\R, N'.:HAR2 et
NCLOB.

Le jeu de caractères d'Oracle pour une installation française est WE81S08859Pl (condensé de
We.stern E11rope 8-bit ISO 8859 Part /) . Le jeu de caractères national utilisé par défaut pour les
types NCHAR est ALI 6UTF 16.

Pour plus de détails, consultez le livre consacré au support du multilangue (Databas e Globali ­
zati.011 S11pport Grlide). Vous y découvrirez que, comme pour les caractères accentués (voir
l'introduction), c'est au niveau du client (SQL Developer, Toad, SQL*Plus ...) que vous
devrez paramétrer des variables d'environnement ou des fichiers de configuration afin de
pouvoir visualiser les données Unicode stockées . Par ailleurs, il est recommandé de préférer
l'interfuce SQL Developer (plus apte à gérer des informations UTF-8) à SQL *Plus qui n'est
pas adaptée et dédiée aux caractères ANSI ou ASCII . La fonction UNISTR sert à transformer
un paramètre Unicode pour retourner une information codée dans le jeu de caractères de la
base (AL16UTF1 6 ou UTF8) .

© Éditions Eyrol/es 49 1

l lWll l

1 50

Figure 2·2 Insertion de cwsctéres Unicode

Felllllo do <aloll SQL --
1il · JI (l 0,071ooa>fldes

CREATE TABLE CaracteresUnicode
(coll NVARCHAR2(10) , col2 NVARCHAR2(10));

INSERT IN"l'O caractereaonicode(coll , col2)
VALUES(N' copyright ', UNISTR(' \ OOA9 '));

INSERT INTO C•ractereaonicode(coll,col2)
VALUtS(N' du hindi ', UNTSTR(' \ 0930 \ 0941\092 A\ 092 F\093t 'll:

SELECT • FROH Caractereaunicode

RHJltat ci. requftt •

Tiche '""""" en 0.071 llOOlldn

table CARACTERtSUNICODE créé(e) .

1 liqnes inséré.
1 lignes inséré.
COLl COL2

copyright e
du hindi 'R'?1'T

Données LOB
w types LOB (Large Object Bi11ary) d'Oracle sont BLOB, Cl.OB, NCLOBet BFil.E. Ils servent à
stocker de grandes quantités de données non structurées (textes, images, vidéos, sons). Ils
succèdent aux types LO!'C. w LOB sont étudiés plus en détail dans la pattie consacrée à la
programmation PUSQL.
Considérons la table suivante.

1 CREATE TABLE TrCl!lbinoscope (ncmEtudian t VARCHAR (30) , photo BJ'ILB) ;

Le stockage de l'image photoCS. jpg, qui se trouve à l'extérieur de la base (dans le répertoire
D: \Photos Etudian t), est réalisé par l'insertion dans la colonne BFILE d'un pointeur (loca ­
tor) qui adresse le fichier externe via la fonction BFILENAME du paquetage DBMS_LOB. L'utili·
sateur doit avoir reçu au préalable le privilège CREATE AN'i DIRECTORY.

CRBATB DIRBC'l'ORY reper to ire_etudian ts AS 'D : \ PhotosEtudiant • ;

INSERT IN'ID Tronbinoscope

\11\IJJES (' Soutou ', BJ'ILENAMB(•repertoire_etudiants ', •pbotoCS.jpg •)) ;

© ÉdW/ons Eyroles

L'interface en mode texte SQL*Plus n'est pas capable d'afficher cette image. Il faudra pour
cela utiliser un logiciel approprié (une interfuce Web ou Java par exemple, avoir chargé
cette image par la fonction l.OADFROMFILE du paquetage IEMS_LOB).

Séquences

- 12' c:

Une séquence est un objet de schéma (appartenant à l'utilisateur qui l'a créé) qui a pour objec­
tif de générer automatiquement des valeurs (de type NJMBER). Bien qu'elles soient majoritai­
rement utilisées pour composer des valeurs auto-incrémentées pour les clés primaires, il est
possible de les employer au sein de différentes tables.

Gérée indépendamment d'une table, une séquence peut être partagée par plusieurs utilisateurs .

Depuis la version 12<; il est possible de définir une colonne auto-incrémentée à l'aide de la
directive GENERATED._ AS IDENTITL avec les mêmes options dédiées initialement aux
séquences (voir l'instruction CREATE SEQUENCE). La directive d'auto -incrémentat ion peut être
utilisée dans une instruction CREATE TABLE ou ALTER TABLE.

La figure suivante illustre la séquence seqAff utilisée pour initialiser les valeurs de la clé
primaire numAff de la table Affreter. Seules deux fonctions (awssi appelées pseudo­
colonnes ou directives) peuvent être appliquées à une séquence: CURRVAL retourne la valeur
courante, NEXTVAL incrémente la séquence et retourne la valeur obtenue (ici Je pas est de 1,
nous verrons qu'il peut être différent de cette valeur).

Figure 2-3 Séquence appliquée à une clé primaire

Affreter

Création d'llJe sé111ence (OOEIUE SEQUENCE

eeqAff. CURRVA!r>l
eeqAff. N'!XTVA!r>4

••qAff

Vous devez avoir Je privilège CREATE SEQUENCE pour pouvoir créer une séquence dans votre
schéma. Pour en créer une dans un schéma différent du vôtre, Je privilège CREATE ANY
SEQUENCE est requis.

La syntaxe de création d'une séquence est la suivante:

© Éditions Eyrol/es 51 1

l r.111

1 52

CRBATB SBQO'BllCB (schéma.)nomSéquence

(IOCREMENI' BY entier)
(STAR!' WITH entier)
({ MAXVALUE entier) IDMAXVALUE

({ MINVALUE entier) IDMINVALUE

({ CYCLE) IDCYCLE))

({ CAŒE entier) NOCACHE))

{ ORDER) IDORDER)) ;

Si aucun nom de schéma n'est spécifié la séquence créée vous appartient. Si aucune option
n'est précisée, la séquence créée commencera à 1 et augmentera sans fin (la limite réelle d'une
séquence est de 1029-1). En spécifiant seulement « INCREMENI' BY -1 »la séquence créée
commencera à -1 et sa valeur diminuera sans limites (la borne inférieure réelle d'une séquence
est de-1027_1).

• INCREMENI' BY : donne l'intervalle entre deux valeurs de la séquence (entier positif ou
négatif mais pas nul). La valeur absolue de cet intervalle doit être plus petite que
(MAXVALUE-MINVALUE). L'intervalle par défaut est 1.

• STARI' WI'IH : précise la première valeur de la séquence à générer. Pour les séquences
ascendantes (d'un incrément positif), la valeur par défaut est égale à la valeur minimale de
la séquence. Pour les séquences descendantes, la valeur par défaut esu égale à la valeur
maximale de la séquence (entier jusqu'à 1028-1, pourles négatifs : -1027+1).

• MAXVALUE: donne la valeur maximale de la séquence. Cette limite doit être supérieure ou
égale à l'entier défini dans STARI' WITH et supérieure à MINVALUE.

• NOMAXVALUE (par défaut) fixe le maximum à 1028-1 pour une séquence ascendante et à
-1027+ 1 pour une séquence descendante.

• MINVALUE précise la valeur minimale de la séquence. Cette limite doit être inférieure ou
égale à l'entier défini dans STARI' WITH et inférieure à MAXVALUE.

• NOMINl/ALUE (par défaut) fixe le minimum à 1 pour une séquence ascendante et à la valeur
-1027-1 pour une séquence descendante.

• CYCLE indique que la séquence doit continuer de générer des valeurs même après avoir
atteint sa limite. Au-delà de la valeur maximale, la séquence générera la valeur minimale et
incrémentera comme cela est défini dans la clause concernée. Après la valeur minimale,
la séquence produira la valeur maximale et décrémentera comme cela est défini dans la
clause concernée.

• NOCYCLE (par défaut) indique que la séquence ne doit plus générer de valeurs une fois la
limite atteinte.

• CACHE fixe le nombre de valeurs de la séquence que le cache va contenir (et qui évite la
sollicitation du compteur en temps réel). Le minimum est 2 et le maximum théorique est
fonction d'une formule analogue à maxi_seq1umce-mi11i_seq1umceli11creme11t_seq1umce
(par exemple, pour une séquence de valeur maximale 50 000 et de valeur mininale 1 avec

© ÉdW/ons Eyroles

lc11111111n°2

un pas de 2, le nombre maximal de valeurs en cache serait de 25 000). Par défaut, Je cache
contient 20 valeurs.

En fonction du nombre de séquences mises en cache, et selon l'utilisation (même si d'aut res
utilisateurs ou d'aut res connexions emploient cette séquence) voire l'interruption du serveur, il
est possible que des valeurs retournées ne se succèdent pas d'une seule valeur du pas de
l'incrément du fait du cache perdu. En revanche, le contrat qu'Oracle remp lit consiste à délivrer
toujours une nouvelle valeur après l'appel de NEXTVAL.

• ORDER garantit que les valeurs de la séquence sont générées dans l'ordre des requêtes. Si
vos séquences jouent Je rôle d'horodatage (timestamp), vous devrez utiliser cette option.
Pour la génération de clés primaires, cette option n'est pas importante.

Créons les deux séquences (seqAff et seqPax) qui vont permettre de donner leur valeur aux
clés primaires des deux tables illustrées à la figure suivante. On suppose qu'on ne stockera pas
plus de 100 000 passagers et pas plus de JO 000 affrètements.

Servons-nous aussi de la séquence seqAff dans la table Passager pour indiquer Je dernier
vol de chaque passager. seqAff sert à donner leur valeur à la clé primaire de Affreteret à la
clé étrangère de Passager. La section « Intégrité référentielle » détaille les mécanismes rela­
tifs aux clés étrangères.

eeqPAX. tlr;XTVAIP1 02

Affreter

Figure 24 Séquences

Passager

r----'"l
•aqAf f seqAff. N"CXTVAI.i=>4

,_ ___ _

Le scrip t SQL de définition des données est indiqué ci-après. Notez que les déclarations sont
indépendantes, ce n'est qu'au moment des insertions qu'on affectera aux colonnes concernées
les valeurs des séquences .

© Éditions Eyrol/es 53 1

lr.111

1 54

Tables

CREATE TABLE Aff r ete.r
(numAff NUMBER(S) ,comp VARCHAR2(4)'

imma t VARCHAR2 (6)' dateAff DATE, nbPax NUMBER(3)'
CONSTRAINI' pk_Affreter PRIMARY KEY (numA ff));

Séquences

Cll&AT& SZQODllCll: seqAff

MAXVALUE 10000
NOMINVALUE;

CREATE TABLE Passag er Cll&AT& SJ:QODIC& seqPax

(nwnPax NUMBER(6)' nom VARCHAR2(1S)' INCREMEllI' BY 10
siege VARCHAR2 (4)' demiervo l NUMBER (5)' START WITH 100

CONSTRAINI' pk_Passager PRIMARY KEY(nwnPax), MAXVALUE 100000
CONSTRAINI' fk_Pax_v ol_Aff.rete.r NOMINVALUE;
FORE IGN KEY(de miervo l)REFEREN CES Aff r eter(numAff));

Mani111lation d'une séquence
\bus devez avoir Je privilège SELECT sur une séquence (privilège donné par œANI' SELECT

CN seq TO utilisateur) pour pouvoir en utiliser une. Pour manipuler une séquence dans un
schéma différent du vôtre, Je privilège SELECT AN'i SEQUENCE est requis. Dans ce cas il faudra
toujours préfixer Je nom de la séquence par celui du schéma (par exemplejea11.seq).

Une fois créée, une séquence seq ne peut se manipuler que via deux directives (qu'Orade
appelle aussi pseudo-colonnes} :

seq.CURRVAL qui retourne la valeur courante de la séquence (lecture seule} ;

seq.NEXTVAL qui incrémente la séquence et retourne la nouvelle valeur de celle-ci (écrib.Jre
et lecture}.

Le premier appel à NEX'lVAL retourne la valeur initiale de la séquence (définie dans START
WITH). Les appels suivants augmentent la séquence de la valeur définie dans INClŒMENI'

WITH.

Chaque appel à CURRVAL retourne la valeur courante de la séquence. U faut utiliser au moins
une fois NEXTVAL avant d'appeler CURRVAL dans une même session (SQL *Plus, bloc PUSQL
ou programme). Ces directives peuvent s'utiliser :

• au premier niveau d'une requête SELECT (voir Je chapitre 4);

• dans la clause SELECT d'une instruction INSERT (voir la section « Insertion multilignes »

du chapitre 4) ;

• dans la clause VALUES d'une instruction INSERT (voir l'exemple suivant) ;

• dans la clause SET d'une instruction UPDATE (voir la section

© ÉdW/ons Eyroles

'
Les principales restr ictions d'ut ilisation de NEXTVAL et CURRVAL sont :

sous- inte rrogat ion dans une instructi on DELETE, SELECT, ou UPDATE (voir le chap itre 4);

dans un SELECT d'une vue (voir le chap itre 5) ;

dans un SELECT utilisant DISTINCT, GROUP BY, OROER BY ou des opé rateurs ensemb listes
(voir le chap itre 4) ;

en tant que valeur par défaut (DEFAULT) d'une colonne d'un CREATE TABLE ou ALTER
TABLE;

dans la cond ition d'une contrainte CHECK d'un CREATE TABLE ou ALTER TABLE.

Le tableau suivant illustre l'évolution de nos deux séquences en fonction de l'insertion des
enregistrements décrits dans la figure précédente. Nous utilisons NElITVAL pour les clés
primaires et CURRVAL pour la clé étrangère (de manière à récupérer la dernière valeur de la
séquence utilisée pour la clé primaire).

tnstruc11ons SOL Séquences

--Aucune insertion encore

I NSERT I Nro Aff reter VALUES
(seqAff .IDX'l'VAL. ' AF ' . ' F-wrss ' . '13-05-
2003 ' . 85);

seqAff seqPax

CURRVAL NEXTVAL CURRVAL NEXTVAL

Pas définies

1 2
---------------------------- Pas définies
I NSERT I NrO Af freter VALUES

(seqAff .IDX'l'VAL, ' S ING' , ' F-GAFU ' , ' 05-02-
2003 ' , 155);

I NSERT I Nro Passager VALUES
(seqPax. mTVAL , ' Payrissat ' , ' 7A ' ,
seqAff. ctllU\VAL);

I NSERT I NrO Af freter VALUES
(seqAff .IDX'l'VAL. ' AF ' . ' F-wrss ' . '15-05-
2003 ' '82);

I NSERT I NrO Passager VALUES
(seqPax. mTVAL , •castai ngs ' , ' 2E ' ,
s eqAf f . ctllU\VAL) ;

2

3

3

100 11 0

4 110 120

© Éditions Eyrol/es 55 1

lr.111

- 12' z
!:.·

1 56

Ullisation d'une séwence dans un DEFAUIJ

Depuis la version 12c, la valeur par défaut d'une colonne numérique entière peut être définie
avec NEXTVAL ou CURRVAL. Ainsi, lors d'insertions, la génération automatique de valeurs se
produira en utilisant la séquence précisée dans la dause DEFAULT.

Le code suivant présente l'utilisation de cette option pour deux séquences dédiées à une clé
primaire et à une clé étrangère, sous réserve que les transactions s'exécutent toujours dans
J' ordre : ajout du vol, puis des passagers . La génération des clés étrangères ne perturbe pas la
valeur de la clé primaire qui est gérée par la séquence principale .

T- 2-5 llill._ ... délllll Ill' • cei-

Créetlon des léquences el mite en place lnlerllons

CREATE SEQUENCE maste.r _seq ; INSERT INI' O vol
CREATE SEQUENCE deta il _ seq ; t i on, jour_ vol)
CREATE TABLE vol (VALUES (' AF6 143 ' , SYSDATE- 1);

i d NUMBER DEFAULT mas ter_s eq.
NEXTVAL, INSERT INI' O places (pax_nom)

desc rip t i o n VARCHAR2 (6), VALUES (' Jop pé ');
jour_ vo l DATE); INSERT INI' O places (pax_nom)

CREATE TABLE places (VALUES (' Ri e nna ') ;
i d NUMBER OEFAULT deta il_ s eq . NEXTVAL, INSERT INI' O places (pax_nom)
vol _ i d NUMBER DEFAULT master _ seq. VAL UES ('Guil .baud ');

C URRVAL ,
pax_nom VARCHAR2 (30));

Rgure 2-5 Séquences pa.r défaut

Cii Pl.ACES

Q DESCRIPTION 1 : 1 l J?ppé
F6143 ·19/11/1 4 2 1 i.enna

---- 3 uilb aud

---- master_seq _,..,

Modlieation d'une séquence WJm SEQUENCE
Vous devez avoir Je privilège ALTER SEQUENCE pour pouvoir modifier une séquence de votre
schéma. Pour modifier une séquence dans un schéma différent du vôtre, le privilège ALTER

ANY SEQUENCE est requis.

© ÉdW/ons Eyroles

'

Les modifications les plus courantes sont celles qui consistent à augmenter les limites d'une
séquence ou à changer Je pas de son incrémentation. Dans tous les cas, seules les valeurs à
venir de la séquence modifiée seron t changées (heure usement pour les d onnées existantes des
tables).

La syntaxe de modification d'une séquence reprend la plupart des éléments de sa création.

ALTER SBQO'ENCB (schéma.) nomSéquence

(IJOC:REMENI' BY ent i e r J
({ MAXVALUE ent i er) NCMl\X\IAWE))

({ MINVALUE ent i er) NCMINVAWE))

({ CYCLE) N:JCYCLE))

({ CAŒE ent i er) IDCAŒE))

({ œDER) IDORDER)) ;

La clause START WITH ne peut être modifiée sans supprimer et recréer la séquence. Des
contrôles sont opérés sur les limites, par exemple MAXVALUE ne peut pas être affectée à une
valeur plus petite que la valeur courante de la séquence.

Supposons qu'on ne stockera pas plus de 95 000 passagers et pas plus de 850 affrètements. De
plus les incréments des séquences doivent être égaux à 5. Les instructions SQL à appliquer
sont les suivantes : chaque invocation des méthodes NEXTVAL prendra en compte désormais Je
nouvel incrément tout en laissant intactes les données existantes des tables.

1
ALTER SBQO'ENCB seqAff INŒEMENT BY 5 Ml\X\IAUJE 850 ;

ALTER SBQO'ENCB seqPax IOCREMENI' BY 5 MAXVALUE 9 5000 ;

ViSualisation d'une séwence
La pseudo-table DUAL peut être utilisée pour visualiser Je contenu d'une séquence . En appli­
quant la directive CURRVAL on extrait Je contenu actuel de la séquence (la dernière valeur
générée).

En appliquant la d irective NEXTVAL dans un SELECT la séquence s' incrémente avant de s'aff i­
cher. Vous réalisez alors un effet de bord car la valeur qui apparaît à l 'éc ran est désormais
perdue pour une éventuelle utilisation dans une clé primaire.

Le tableau suivant illustre l'utilisation de la pseudo-table DUAL pour visualiser les séquences
créées auparavant.

© Éditions Eyrol/es 57 1

lr.111

Betoln

Quelles sont les dernières valeurs
générées par mes séquences ?

Quelles sont les prochaines valeurs
par mes séquences ? (qui

sont perdues car les Incréments
s'opèrent lors de la requête)

Requête SQl et réslllat IOUI SQL"Plus

SELECT seqAff .C'CJRRVAL • seqaff (CURRVAL)"

seqPax. CURRVAL • seqPax (CURRVAL)"

FROM DUAL;

seqAff (CURRVAL) seqPa x (CURRVAL)

110

SELECT seqAff . llDTVAL • seqA ff fNEXTVA L) "'
seqAff . llDTVAL • seqPax fNEXTVA L)"

FROM DUAL;

seqAff (NEXTVAL) seqPa x (NEXTVAL)

4 120

suœression d'une séquence IDROP SEQUENCE>
L'instruction DROP S ElÇpENCE supprime une séquence. Celle-ci doit se trouver dans votre
schéma (vous en êtes propriétaire) ou vous devez avoir Je privilège DROP ANY S EQUENCE.

La suppression d'une séquence peut être utilisée pour refaire partir une séquence donnée à un
chiffre nouveau (clause START WITH). En ce cas, il faut bien sûr recréer la séquence après
J' avoir supprimée.

La syntaxe de suppression d'une séquence est la suivante.

1 DROP SBQO'BNCB (s chéma .) nomSéquence ;

Supprimons les deux séquences de notre schéma par les instructions suivantes :

1
DROP SBQO'BNCB seqAf f;
DROP SBQO'BNCB seqPax;

COionnes auto-incrémenlées

- 12' c:
jrl Depuis la version 12c, il est possible d'utiliser un type numérique (entier} pour définir une

1 58

J.- colonne auto-incrémentée avec la dause GENERATED._ AS IDENTITL d isponible dans les
instructions CREATE TABLE et ALTER TABLE.

Avant de détailler les options d'auto-incrémentation, vous devez savoir qu "une colonne auto­
incrémentée dispose en interne d'une séquence générée automatiquement et qui lui est dédiée.
Ainsi, vous retrouverez les options INCREMENI', START ... lorsque vous définirez un auto­
incrément.

1
GENERATID (ALWAYS) BY DEFAULT (ON NULL))

AS IDENI'ITY ((opti ans_ sequence))

© ÉdW/ons Eyroles

lc11111111n°2

• ALWAYS (par défaut) utilise Je générateur de séquences et interdit qu ' une valeur soit expli­
citement imposée lors d'un IIBERT ou UPDATE (erreur ORA- 32795 impossible

d'insérer la valeur dans une colonne d'identité. ..).

• BY DEFAULT utilise Je générateur de séquences mais n'interdit pas qu'une valeur soit
explicitement imposée d'un INSERT ou UPDATE. Avec l'option ON NULL, la séquence est
capable d'affecter implicitement une valeur à chaque INSERT ou si un quelconque NULL

arrive en lieu et place de la colonne concernée.

• op t i ons_ s equen ce sont identiques à celles du CRE<\TE SEQUENCE.

Le code suivant présente l'utilisation de cette option pour une clé primaire. Il est à noter que Je
NOT NULL est implicite sur une telle colonne et que vous ne pouvez disposer que d'un seul
auto-incrément par table.

Création de la table et de 90n aulo-lnctémenlatlon

CREATE TABLE bill ets (
id NUMBER (6)

GENERATED ALWAYS
AS IDENI'ITY,

vol _ i d VARCHAR2 (6) NOT NtJLL,

jour_ v o l DATE DEFAULT SYSDATE NOT NULL,
p ax_no m VARCHAR2 (3 0) NOT NULL,
s i ege_ pax CHAR(3) NOT NULL '
CONSTRAINI' pk_bill et s PRIMARY KEY(i d));

INSERT INTO bill ets (vol _ i d , pax_ nom, s i ege_pax)
VALUES (' AF6143 ' , ' Guilbau d ' , ' 0 3 F ');

INSERT INTO bill ets (vol _ i d , pax_ nom, s i ege_pax)
VALUES (' AF6145 ' ' ' Blan chet ' ' ' 238 ');

INSERT INTO bill ets (vol _ i d , pax_ nom, s i ege_pax)
VALUES (' AF614 5 ' , ' Broche z ' , ' 0 2A ');

Rgure 2-6 Colonne auto -Incrémentée

SQL) SELECT K FROH billets :

ID UOL_ID JOUR_UOL PAX_NON

1 Guilbaud
2 Blanchet
3 Bruchez

Modificatioos de valeurs

SIEGE_ PAX

93F
239
92A

L'instruction UPDATE permet la mise à jour des colonnes d'une table. Pour pouvoir modifier
des enregistrements d'une table, il faut que cette dernière soit dans votre schéma ou que vous
ayez reçu Je privilège UPDATE sur la table. Si vous avez Je privilège UPDATE ANY TI\BLE, vous
pouvez modifier des enregistrements de tout schéma.

© Éditions Eyrol/es 59 1

l r.111

1 60

Syntaxe WPDll'E
La syntaxe simplifiée de J 'instruction UPDATE est la suivante.

1
UPDATE (s chéma.) nomTabl e

SEI' colo nnel = { e xpress i on) (r equête_SE L ECT)) DEFAUL.T)

(colo nne2 ...)

La première écriture de la clause SE.'!' met à jour une colonne en lui affectant une expression
(valeur, valeur par défaut, calcul, résultat d'une requête). La deuxième écriture rafraîchit
plusieurs colonnes à J'aide du résultat d'une requête.

La condition filtre les lignes à mettre à jour dans la table. Si aucune condition n'est précisée,
tous les enregistrements seront mis à jour. Si la condition ne filtre aucune ligne, aucune mise
à jour ne sera réalisée.

Modlieation d'une lgne
Affectons un nom à la compagnie de code 'GO ' et modifions sa date de création.

1

UPDATB ccmpagn i e
SBT ncm ccmp = ' Go Ai rways ',

date_creat i on = 'ID_DATE('30/12/201 4 ', '00 /MM/YYYY ')

WHERE c omp • ' GO ' ;

Modlieation de plusieurs Ignes
Pour remplacer Je marqueur NJLL par Je nombre JO, il suffit de conditionner la mise à jour à
J'aide de la fonction I S NlJLL (voir Je chapitre 4). Attention, si vous utilisez la condition
WHERE nb_pa ssagers = NlJLL, vous ne sélectionnerez aucune ligne car deux NlJLL sont
différents entre eux.

1
UPDATB vol _jour
SBT nb_passa gers = 10

nb_passa gers I S NULL;

Les modifications sont présentées dans la figure suivante.

© ÉdW/ons Eyroles

Rgure 2-7 Table après les modf/caUons

[] COMPAGNIE

COMP NOM_COMP DATE_ CREATION Go Airway:i
SING Un9apore AL 01/01/ 47 -Ar A.u Pranc:e 30/12/14
GO '1!>ull) Q i/12/lf) 10

CIVOUOUR
NUM_VOl AERO_DEP 1 AEROJAA COMP JOUR...VOl

A!'6143 TLS ORY AP 20/ 11/ 14
Al'6550 CDG TLS Ar 20/ 11 / 14
50747 CDG SIN SING 20/ 11/ 14
Ar6l45 ORY TLS Ar 20/ 11 / 14

Ne pas respecter des contraines
Il faut, comme pour les insertions, respecter les contraintes qui existent au niveau des colonnes.
Dans Je cas inverse, une erreur est renvoyée (Je nom de la contrainte apparaît) et la mise à jour
n'est pas effectuée.

Le tableau suivant décrit une tentative de modification pour chaque type de contrainte que
vous pourrez être amené à rencontrer. Les problèmes présentés ici sont respectivement une clé
primaire en doublon, une colonne obligatoire, un aéroport de départ semblable à celui d'arri­
vée, un libellé dupliqué et une compagnie inexistante.

T- 2·8 Modllta1lals -.Ssllles

de conlralnle lnstucilons SQl el réslllats

Olé primaire

Non-nullité

Vérl(lcatlon

Olé étrangère

© Éd!Uons Eyroltes

SQL> UPDATE compagnie SET CODIP • 'A7' WHERE comp = 'GO ' ;

ERREUR: ORA-00001 : vio l ation de contrainte W'lique
(SOUTOU. PK_COMPAGNI E)

SQL> UPDATE vol _ jour SET aero_dep • HULL WHERE num,_vo l

ERREUR' ORA-01407' impossi ble de mettre à jour
("SOUTOU" . "VOL_JOUR" . "AERO_J)EP") avE>C NULL

' AF6143 ';

SQL> UPDATE vol _ jour SET aero_ arr • 'TLS' WHERE num,_vol
ERREUR: ORA-02290: vio l ation de contraintes
(SOUTOU.CK_TRAJET) de vérification

' AF6143 ' ;

SQL> UPDATE compagnie SET noa_.caa p • 'Go Ai.rwaye 1 comp = 'AF ' ;
ERREUR: ORA-0000 1 : vio l ation de contrainte W'lique
(SOUTOU. UNJIOM,_COMP)

SQL> UPDATE vol _ jour SET cca.p • '&Jrr' WHERE num_v o l = 'AF6143 ' ;
ERREUR: ORA-0229 1 : vio l ation de contrainte d'intégrité
(SOUTOU.FK_VOL_JOUR,_COMP_COMPAGNI E) - c l é parent introuvab l e

61 1

lr.111

1 62

La mise à jour d'une clé étrangère est possible si la nowelle valeur est bien référencée. La
mise à jour d'une dé primaire est possible si aucune ligne d'aucune table ne la référence déjà
(voir la section• Intégrité référentielle•).

Dates el inlervales
Le tableau suivant résume les opérations possibles entre des colonnes de type DATE et

Interva l.

T_, 2·9 aiirlllolls _.,. dates Il llWRlll

Opérande 1 Opérateur Opérande 2 Réslftat

DATE ... ou - INI'ER VAL DATE

DATE ... ou - NUMBER DATE

Inte.rva l • DATE DATE

DATE DATE NUMBER

Inte.rva l ... ou - INI'ER VAL INI'ER VAL

Inte.rva l * ou / NUMBER INI'ERV AL

Considérons la table suivante :

CREATE TABLE Pi l ote
(brevet Vl\RCHAR(6), ncm Vl\RCHAR(20), dateNaiss Dl.TB , dernierVo l Dl.TB ,

dateEmba uche DATB , pr ocha inVo lContro le DATB ,

ncmbreJoursNa i s Boul ot NUMBER,

inte rvalleNaisBoul ot INTBRVAL DAY(7) TO SEXXND(3),

inte rvalleVol Ext erieur INTBRVAL DAY(2) TO SEXXND(O),

inte rvalle Fntr eVol s INTBRVAL DAY(2) TO SEXXND(2)'

inte rvalleEmbau c heContro le INTBRVAL DAY(2) TO SEXXND(l)'

conpa VARCHAR(4), CONS'IRAI NI' pk_Pi l ote P RI MARY IŒY(b r e vet)) ;

À J' insertion du pilote, nous initialisons sa date de naissance, la date de son dernier vol, sa date
d'embauche (à celle du jour via SYSDl\TE) et la date de son prochain con!IÔle en vol au 13 mai 2003,
15 h 30 (heures et minutes évaluées à J'aide de la fonction TO_Dl\TE qui convertit une chaîne en

date).

1

I NSERT I l'n'O Pil ot e
VALUES (' PL-1 '' 'Thier ry Albari c'' ' 25- 03-19 67 '' '10 - 04-2 003 '' SYSDM'IC,

TO_lll.TB(' 13-05 -2003 15:30:00 ', 'OO :MM: YYYY IDl24:11I:SS') , NULL, NULL,
NULL, NULL, NULL, 'AF') ;

Les mises à jour par UPDATE sur cet enregistrement vont consister, sur la base de ces quatre
dates, à calculer les intervalles illustrés à la figure suivante :

© ÉdW/ons Eyroles

Rgure 2../J Intervalles à calculer

n01nbr..,our1N•.l•Boulot

d.ateHaia
231S/1967
qui paua à 12h35

Modification d 'une heure

interv.dlttEntr•Vol•

OemterVol
10-04-2000

..

2•-6'-2000
xhy

qui passe à
01-06-2000
Kh y.10 ..

prochainVol Cc>ntrol•
1J.C6-2000
15h30

On modifie une date en précisant une heure via la fonction TO_DATE.

1

UPD.l\TE Pilote
SET dateNaiss = 'l'O_ DATB (' 25- 03- 19 67 12 : 35 :00' ,

'DD:Mll:YYYY
;HERE breve t = ' PL-1' ;

Ajout d 'un déla.i

On modifie la date d'embauche de 10 minutes après la semaine prochaine. L'ajout d'une
semaine se fait par l'opération+ 7 à une date. L'additi on de 10 minutes se fait par l'ajout de la
fraction de jour correspondante (10/(24*60)).

1
UPD.l\TE Pilote

SET dateEmbauche = dateEI!bauche
' PL- 1' ;

Différence entre deux dates

+ 7 + ;HERE breve t

La différence entre deux dates renvoie un entier correspondant au nombre de jours.

1
UPD.l\TE Pilote

SET nonbreJoursNaisBou l ot = dateEmbauche-dateNaiss WH'.ERE breve t
' PL- 1' ;

Cette même différence au format INI'ERVAL en nombre de jours requiert l'utilisation de la
fonction NlMI'ODSINI'ERVAL.

1
UPD.l\TE Pilote
SET in t erval l eNaisBoulo t =

Ntlll'l'ODSINTBRVAL(da t eEmbauche-da teNaiss, ' D.l\Y') '

© Éditions Eyrol/es 63 1

lr.111

1 64

interval leFntreVo l s =
NDM'l'ODSINTBRVAL (prochainVolControle-dernierVol, • D!>.Y')'

inteI.Val l eVo l Exterieur =
NDM'l'ODSINTBRVAL (da t eFmbauche-dernierVol, 'DAY.)

WHERE breve t = ' PL- 1' ;

Différence entre deux intervalles

La différence entre deux intervalles homogènes renvoie un intervalle.

UPDATE Pilote

SEI' interva lleEI!b aucheContro l e
intervalleBntreVola-intervalleVolBxterieur

WHERE breve t = ' PL- 1' ;

La ligne contient désormais les informations suivantes. Les données en gras correspondent
aux mises à jour. On trouve qu'il a fallu 13 J86jours, 3 heures, 49 minutes et 53 secondes pour
que ce pilote soit embauché. 21jours,16 heures, 24 minutes et 53 secondes séparent Je dernier
vol du pilote au moment de son embauche. 33 jours, 15 heures et 30 minutes séparent son
dernier vol de son prochain contrôle en vol. La différence entre ces deux délais est de 11 jours,
23 heures, 5 minutes et 7 secondes.

Rgure 2-9 Ligne modK/ée par des calculs de dates

Pilote

Fonctions uti les

Les fonctions suivantes vous seront d'un grand secours pour manipuler des dates et des inter­
valles.

TO_CHAR(colonneDate [. format [. 'NLS_DATE_LANGUAGE=Lan.gue']]) convertit
une date en chaîne suivant un certain format dans un certain langage;

TO_DATE(chaîneCaractères [. format [. 'NLS_DATE_LANGUAGE=Langue']])
convertit une chaîne en date suivant un certain format dans un certa in langage ;

© ÉdWtons Eyroles

EXTRACT((YEAR 1 MONTH 1 DAY 1 HOUR 1 MINUTE 1 SECOND} FROM (exp ression ­
DATE 1 expressionINTERVAL }) extrait une partie donnée d'une date ou d'un intervalle ;

NUMTOYMINTERVAL (expressionNumérique, ('YEAR' 1 'MONTH'}) convertit un nom­
bre dans un type INTERVAL YEAR TO MONTH;

NUMTODSINTERVAL(expressionNumérique, ('DAY' 'HOUR' 'MINUTE'
'SECOND' }) convertit un nombre dans un type INTERVAL DAY TO SECOND.

Les tableaux suivants exemples d'utilisation de ces fonctions.

T- 2·10 QUllQles .,mats llOlll Tll_Clllll

Expesslon Réslllats Conmenlllres

TO_CHAR(dateNAiss , 'J • > 2439575 Le calendrier julien est utilisé Ici (comptage
du nombre de jours depuis le 1 « janvier,
4712 av. J.-C. jusqLJ'au 25 mars 1967).

TO_CHAR(dateNAiss, 'DAY - SAMEDI - MARS Afflchagedes llbellésdes jours, mols et
MONTR - nAR • > - NI NETEEN années. Oracle ne pas encore notre

SIXTY-SEVEN année.

TO_CHAR(dateanba uche , 'DDD • > 121 Affichage du numéro du jour de l'année
(Ici Il 1" mal 2003).

T....., 2-11 QUllQUIS llll'mts POii' 10 _Dllt

Expesslon Commentaires

TOJ>ATll: (' May 13, 1995, 12: 30 Définition d'une date à partlrd'un llle llé au format américain.
A .M. ' , ' MONTH DO, YYYY, HH:MI
A .M. ' , ' NLS_ DATE_ LANGUAGE =
Aaerican')

TO_,I>ATll:('13 Mai, 1995,

1 2:30 ' , ' DO MONTH, YYYY,
HH24 :MI' , ' NLSJ)ATE_LANGUAGE
= French')

Expesslon

ll:XTllACT (DAY FROM
inte.rva ll eVol Exterieur)

Définition de la même date pour les francophones (l'qitlon NLS
par défaut est la langue à l'installation).

Réslllats

21

Conmenlllres

Extraction du nombre de jours dans
l'intervalle contenu dans la colonne.

ll:XTllACT (MONTR FROM dat eNAis s) 3 Extraction du mols de la date contenue
dans la colonne.

© Éditions Eyrol/es 65 1

lr.111

Expression Réslllats Commentaires

NOll'roYMINTDVAL(l .54, • nJU\' > +000000001-0 6 1 an et 54 centièmes d'année est converti
en 1 an et 6 mols.

NOll'roYMINTDVAL(l .54, 'llONTll' > +000000000-01 1 mols et 54 centièmes de mols est
converti en 1 mols à l'arrondi.

NOll'roDSINTDVAL(l .54, 'DAY') +000000001
12 : 57 : 36. OO

NOll'roDSINTDVAL(l .54, 'ROtlR') +000000000
01 : 32 : 24 . OO

1 jour et 54 centièmes de jour est converti
en 1 jour, 12 heures, '57 minutes et
36 secondes.

1 heure et 54 centièmes estcon110rtl en
1 heure, 32 minutes et 24 secondes.

Suppressïons d'enregistrements

1 66

w instructions DELETE et TRlNCATE permettent de supprimer un ou plusieurs enregistre­
ments d'une table. Pour pouvoir supprimer des données dans une table, il faut que cette
dernière soit dans votre schéma ou que vous ayez reçu Je privilège DELETE sur la table. Si vous
avez Je privilège DELETE Mf'i TABLE, vous pouvez détruire des enregistrements dans
n'importe quelle table de tout schéma.

DB.DE
La syntaxe simplifiée de J 'instruction DELETE est la suivante :

1 DELBTB FROM (s ch éma.) nomTabl e (WHERE c ondi t ion) ;

La condition sélectionne les lignes à supprimer. Si aucune condition n'est précisée, toutes les
lignes sont supprimées. Si l'expression ne sélectionne aucune ligne, rien ne sera supprimé et
aucune erreur n •est retournée. Supprimons une compagnie et un vol journalier (notez qu'il faut
préciser l'heure dans Je format de date si une heure a été incluse dans la date) à J'aide de cette
instruction :

SQL> DJ!:LB'l'B FRCM ccmpagn i e WHERE ncm_ccmp = 'Go Airways • ;

1 ligne suppr imée.
SQL> DJ!:LB'l'B FRCM vol _j our

jour_ vol = 'ID_DATE('20/11/201 4 15 :30', '00/MM/YYYY HH24:MI ')
AND ml!ll_vo l = ' AF6 143 • ;

1 ligne suppr imée.

w suppressions sont présentées dans la figure suivante.

© ÉdW/ons Eyroles

'

Figure 2-10 Table spri!s les suppressions

Cl COMPAGNIE

COMPI HOM_COMP

SING Singapore
AF Air France
69 Ge

DATE_ CREA non

AL 01/01/ 47
01/01/33
39/12114

Ili! VOl_.JOUR

HUM_ VOL AERO_DEP AERO.)\RR COMP

AF6550 CDG TLS AF

JltP6143 \'!>:!! 8RY l\F

SQ747 CDG SIN SING
AF6145 ORY TLS AF

JOUll.VOL

20/11/1 4
29/11/14
20/11/14
20/11/14

loiD r1e_PASSACERS
195
129
10
10

La suppression d'une ligne contenant une clé étrangère est possible si cette même ligne ne
joue pas le rôle de référent (cible d'une clé étrangère d'une autre table). La suppression d'une
ligne pour laquelle la clé primaire est utilisée dans une autre table en tant que dé étrangère
n'est pas possible sans un mécanisme de cascade (voir la section• Intégrité référentielle•).

Tentons de supprimer une compagnie qui est référencée par un pilote à l'aide d'une clé étran­
gère. Une erreur s'affiche, laquelle sera expliquée dans la section « Intégrité référentielle•.

1
DELETB FRCM Ccmpagnie ccmp = ' SING ' ;

vio l ation de contrainte (SOOTOU.FK_PIL_COMPA_COMP) d ' inté­

grité - enregistrement fi l s existant

lnstrucliOn mUNClUE
La commande 'IRUNCATE supprime tous les enregistrements d'une table et libère éventuelle­
ment l'espace de stockage utilisé par la table (chose que ne peut pas faire DELETE) :

1 TRllNCATI TABLE [s chéma .) nomTabl e [{ DROP 1 REUSE) STORMlE) ;

Il n'est pas possible de tronquer une table qui est référencée par des clés étrangères actives
(sauf si la clé étrangère est elle-même dans la table à supprimer). La solution consiste à désac­
tiver les contraintes puis à tronquer la table.

La récupération de l'espace est realisée à l'aide de l'option IROP S'IORAGE (option par défaut).
Dans le cas inverse (RIDSE S'IORAGE), l'espace est utilisable par les nouvelles données de la table.

© Éditions Eyrol/es 67 1

lr.111

Intégrité rélérentiele

1 68

Les contraintes référentielles forment Je cœur de la cohérence d'une base de données relation­
nelle. Ces contraintes sont fondées sur une relation entre clés étrangères et clés primaires et
permettent de programmer des règles de gestion (exemple : l'affrètement d'un avion doit se
fuire par une compagnie existant dans la base de données). Ce faisant, les contrôles côté client
(interface) sont ainsi déportés côté serveur.

C'est seulement dans sa version 7 en 1992, qu'Oracle a inclus dans son offre les contraintes
référentielles.

Pour les règles de gestion trop complexes (exemple : l'affrètement d'un avion doit se faire par
une compagnie qui a embauché au moins quinze pilotes dans les six derniers mois), il faudra
programmer un déclencheur (voir Je chapitre 7). Il faut savoir que les déclencheurs sont plus
pénalisants que des contraintes dans un mode transactionnel (lectures consistantes).

La contrainte référentielle concerne toujours deux tables - une table • père • auss i dite• maître •
(parent/referenced) et une table• fils• (childldependenf) - possédant une ou plusieurs colonnes
en commun. Pour la table• père• , ces colonnes composent la clé primaire (ou candidate avec un
index unique). Pour la table• fils• , ces colonnes composent une clé étrangère.

Il est recommandé de créer un index par clé étrangère (Oracle ne Je fait pas comme pour les
clés primaires). La seule exception concerne les tables « pères• possédant des clés primaires
(ou candidates) jamais modifiées ni supprimées dans Je temps.

COhérences
L'exemple suivant illustre quatre contraintes référentielles. Une table peut être « père• pour
une contrainte et « fils» pour une autre (c'est Je cas de la table Avion).

Deux types de problèmes sont automatiquement résolus par Oracle pour assurer l'intégrité
référentielle :

La cohé rence du• fils • vers le• père• : on ne doit pas pouvoir insérer un enregist rement
•fils• (ou modifier sa dé étrangère) rattaché à un enregistrement• père• inexistant. li est
cependant possible d' insérer un • fils • (ou de modifier sa clé étrangè re) sans rattache r
d'enregistrement • père • à la condition qu' il n'existe pas de contrainte Nar NULL au niveau
de la dé étrangère.

La cohérence du • père• vers le • fils• : on ne doit pas pouvoir supp rimer un enregistre­
ment • père• (ou modifier sa clé primaire) si un enregistrement • fils • y est encore ratta­
ché. Il est possible de supprimer les • fils• associés (DELETE CASCADE) ou d'affecte r la
valeur nulle aux clés étrangè res des• fils• associés (DELETE SET NULL). Oracle ne permet
pas de propager une valeur par défaut (set to defaulf) comme la norme S.Ql2 le propose .

© ÉdW/ons Eyroles

Figure 2-11 Tables et contraintes référentielles

Pilote

Comp;ignie

/ clu1d HOT NULL

Déclarons à présent ces contraintes sous SQL.

Contrainles côté cc père u

La table « père » contient soit une contrainte de clé primaire soit une contrainte de clé candi­
date qui s'exprime par un index unique . Le tableau suivant illustre ces deux possibilités dans
le cas de la table Compagnie. Notons que la table possédant une clé candidate aurait pu aussi
contenir une clé primaire.

Clé primaire

CREATE TABLE Compagnie
(comp VARCHAR2 (4)' nru e NUMBER(3)'
Rue VARCHAR2(20), vi lle VARCHAR2(15),
n omeomp VARCHAR2 (15),

CONSTllAIN'l' p k_Compag ni e
PIUMlU\Y UY (comp));

Contrainles côté cc fils u

Clé candidate

CREATE TABLE Compag nie
(comp VARCHAR2 (4), nrue NUMBER(3),
rue VARCHAR2 (20), vil l e VARCHAR2 (15),
nomcomp VARCHAR2 (1 5) ,

CONSTllAINT un_Compagnie ONIQOZ (comp));

lndépendrunment de l'écriture de la table « père », deux écritures sont possibles au niveau de
la table « fils ». La première définit la contrainte en même temps que la colonne. Ainsi elle ne

© Éditions Eyrol/es 69 1

l r.111

1 70

convient qu'aux clés composées d'une seule colonne. La deuxième écriture détermine la
contrainte après la définition de la colonne. Cette écriture est préférable car elle convient aussi
aux clés composées de plusieurs colonnes de par sa lisibilité.

Colonne et contrainte Contmlnte et colonne

CR.F.ATE TABLE Pi lote CREATE TABLE Pilote
(brevet. VARCHAR2 (6 } COHS'l'R.Ulft'
pk_Pilot.e PJlIJo.RY Kft .
nom VARCHAR2 (15). nbHVol NUMBER(7,2}.
compa VAROlAR2 (4 } COllS'l'RADft' fk_P i l_compa_Comp

UPDJ:HC'.SS Compagnie (comp }} ;

(brevet. VAROlAR2 (6) , nom VARCHAR2 (15 } ,
nbHVol NUMBER(7,2}. compa VARCHAR2 (4) .
COllSTRADft' pk_Pilot.e PllIIDRY lœY (brevet. } ,
COllSTRADft' fk_Pil _ compa_Comp

J'OUIGllf lœY (compa }
UPSU'BCZS Compagnie (comp }} ;

IJés composites et nules

Les clés étrangères ou primaires peuvent être définies sur trente"eux colonnes au maxi­
mum (compositekeys).

Les clés étrangères peuvent être nulles si aucune contrainte NOT NULL n'est déclarée.

Décrivons à présent exemple (la syntaxe de création des
deux premières tables a été discutée plus haut) et étudions ensuite les mécanismes program­
més par ces contraintes.

CREATE TABLE Conpagnie ...

CREATE TABLE Pilote ...

CREATE TABLE Avion
(inma t VARCHAR2(6), typeAvion VARCHAR2 (15), nbhVol NUMBER(l0,2),

proprio VARCHAR2 (4),

O:JNS'IRAINI' pk_Avion PRIMl\RY IŒY(Îllllœ\t),

O:JNS'IRAINI' nn_proprio OiEX:K (proprio IS NOT NULL),

O:JNS'IRAINI' fk_Avion_conp_Ccmpag JOREIGll KEY (proprio)

REP'BRBNCBS Ccmpagnie (ccmp));

CREATE TABLE Affreter
(ccmpl>.ff VARCHAR2(4), Îllllœ\t VARCHAR2 (6), dateAff DATE,

nbPax NUMBER(3),

O:JNS'IRAINI' pk_Affreter PRIMARY KEY (conpAff, inma t , dateAff),

O:JNS'IRAINI' fk_Aff_na_Avion JORBIGll DY (Îllllœ\t)

REP'BRBNCBS Avion (inma t),

O:JNS'IRAINI' fk_Aff_conp_Ccmpag JORBIGll KBY (ccmpl>.ff)

REP'BRBNCBS Ccmpagnie (ccmp));

© ÉdW/ons Eyroles

Cohérence du fils vers le père

Si la clé étrangère est déc larée NOT NULL, l'insertion d'un enregistrement• fils •n'est possible
que s'il est rattaché à un enregistrement • père• existant. Dans le cas inverse, l'insertion d'un
enregistrement • fils• rattaché à aucun • père • est possible.

Le tableau suivant décrit des insertions correctes et une insertion incorrecte. Le message
d'erreur est ici en anglais (en français: vio lation cJe contrainte d 'int égrité -
touche parent introuvable).

conectes

-- fi l s avec père
I NSERT I Nro Pil ote VALUES

-- avec père inconnu
I NSERT INrO Pi l ote VALUES

(' PL-3 ' , ' Pau l SOu tou ' , 1000,
-- fi l s sans père

1 SING 1) ; (' PL-5 ' , ' Pb de Compag nie ' , 0, 1 ? 1) ;

I NSERT INrO Pil ote VALUES
(' PL-4 ' , ' un connu ' , 0, NULL);

-- fi l s avec pères
I NSERT I Nro Avi o n VALUES
('F-wrss • , •concorde ' , 6570, 'SING');
I NSERT I Nro Aff reter VALUES
('A:I", 'P-WTSS', '15-05-2003 ' , 82)

ORA-02291: integrity constra int
(SOUTOU. FK,_PI L_COMPA_COMP) viol ated -
parent key not found.

Pour insérer un affrètement, il fuut donc avoir ajouté au préalable au moins une compagnie et
un avion.

Le chargement de la base de données est conditionné par la hiérarchie des contraintes référen­
tielles. Ici, il faut insérer d'abord les compagnies, puis les pilotes (ou les avions), enfin les
affrètements.

Il suffit de relire le script de création de vos tables pour en déduire l'ordre d' insertion des enre­
gistrements.

Cohérence du père vers le fils
Trois alternatives sont possibles pour assurer la cohérence de la table « père » vers la table
« fils » via une clé étrangère :

• Prévenir la modification ou la suppression d'une clé primaire (ou candidate) de la table
« père». Cette alternative est celle par défaut. Dans notre exemple, toutes les clés étran­
gères sont ainsi composées. La suppression d'un avion n'est donc pas possible si ce dernier
est référencé dans un affrètement.

© Éditions Eyrol/es 71 1

l lWll l

'

1 72

• Propager la suppression des enregistrements « fils » associés à l'enregistrement « père »
supprimé. Ce mécanisme est réalisé par la directive ON DELETE CASCADE. Dans notre exem­
ple, nous pourrions ainsi décider de supprimer tous les affrètements dès qu 'on retire un avion.

• Propager l'affectation de la valeur nulle aux clés étrangères des enregistrements « fils»
à l'enregistrement « père» supprimé. Ce mécanisme est réalisé par la directive ON

DELE'l'E SET N\JLL. Il ne faut pas de contrainte NOT NlJLL sur la clé étrangère. Dans notre
exemple, nous pourrions ainsi décider de mettre NULL dans la colonne compa de la table
Pilote pour chaque pilote d'une compagnie supprimée. Nous ne pourrions pas appliquer
ce mécanisme à la table Affreterq ui dispose de contraintes NOT NULL sur ses clés étran­
gères (car composant la clé primaire).

lllllelU 2·11 Coll6r- 1111 • Pin. 11111'1 Il• Ils.

Alternat Ive Exemple de synlaxe

Prévenir la modficat.ion ou la suwressioo
d'Une dé p<inàre

CONSl'RAINl' fk..Aff _ na_Avion
FOREIGN KEY(inrnac } REFERENCES Avion(inrnac }

Prq>ager las1.4>P'ession des CONSl'RAINl' fk..Aff _na_.Avion
FOREIGN KEY(inrnac } REFERENCES Avion(inrnac }
OH DELZ'l'S CASCADE

Prq>ager 11affectation de la nt.lie aux CONSl'RAINl' fk_Pi l_ compa_Comp
désérangères FOREIGN KEY(compa } REFERENCES Compagnie(comp}

OH DELZ'l'S D'I' HULL

!.:extension de la modification d'une clé primaire vers les tables référencées n'est pas automa­
tique (il faut la programmer si nécessaire par un dédencheur).

En résumé
Le tableau suivant résume les conditions requises pour modifier l'état de la base de données en
respectant l'intégrité référentielle.

tnstruc11on

IN SERT

UPDATE

DELETE

DELETE CASCA DE

DELETE SET NULL

llllllMI 2·18 laslJUCllcils SQl mr Ill Cl6s

Table • parent •

Co1Tectesi la dép<inah (ou candidate)
est unique.

C<rreclB si nnsnicfon ne làssepas
d'erregisttements doos la latte • fis • ayoot
une dé étrangère non réf<lrenoée.

Co1Tecte s i auoon enregistrement de la
table • fils • ne référenoe le ou les
enregistrements détruts .

Co1Tectesoos condifon

Co1Tectesoos condifon

Table• 1119•

Corl8Cle si la dé étra.ng<lre est référencée
doos la table • p«e •ou est nule
(partiel..,,en t ou en totatté).

Correcte si la muvel.e clé llrangère
référenoe un enr&gsttement •père•
exis1ant.

Correcte sans condition.

Correcte sans condition.

Correcte sans condition.

© ÉdW/ons Eyroles

Exercices

Les objectifs des premier s exercices sont :

• d'insérer des données dans les tables du schéma Parc biformatiq11e et du schéma des chantiers ;

• de créer une séquence et d'insérer des données en utilisant une séquence ;

• de modifier des données .

2.1 Insertion de données

Écrivez puis exécutez le script SOL (que vous awellerez i nsParc . sql) afin d'insérer les données
dans les tables suivantes :

lllllleaU 2·19 Dam6es des 1111111

Table Domées

segment

Salle

Poste

© Éditions Eyrol/es

INDIP NOMSEGMENI'

13 0 . 120 . 80 Brin RDC
130. 120.8 1 Brin 1er étage
13 O . 120 . 82 Brin 2ème étage

NSALLS NOMSALLE

sO l sall e 1
s02 sall e 2
s03 sall e 3
s ll sall e ll
s l 2 sall e 12
s2 1 sall e 21
s22 sall e 22
s23 sall e 23

NPOST& NOMPOSTE

p l Poste 1
p2 Poste 2
p3 Poste 3
p 4 Poste 4
pS Poste 5
p6 Poste 6
p7 Poste 7
p8 Poste 8
p9 Poste 9
p l O Poste 10
pll Poste 11
p l 2 Poste 12

ETAGE

NBPOSTE I NDI P
--- ----- -- -----------

3 130. 120 .80
2 130. 120 .80
2 130. 120 .80
2 130. 120 .81
1 130. 120 .81
2 130. 120 .82
0 130. 120 .83
0 130. 120 .83

I NDI P AD TY PEPOSTE NSALLE
--- ----- --- --- ------- --
130 . 120. 80 0 1 TX sO l
130 . 120. 80 02 UNIX sO l
130 . 120. 80 03 TX sO l
130 . 120. 80 0 4 FCWS s02
130 . 120. 80 05 FCWS s02
130 . 120. 80 06 UNIX s03
130 . 120. 80 07 TX s03
130 . 120. 81 0 1 UNIX s ll
130 . 120. 81 02 TX s ll
130 . 120. 81 03 UNIX s l 2
130 . 120. 82 0 1 FCNT s2 1
130 . 120. 82 02 FCWS s2 1

73 1

llWtel

T- 2·19 Do1116es des tlllles (suite)

Tllble Données

LOgicie l NLOG NOMLOG DATEACH VERSI ON TYPELOG

l ogl orac l e 6 1 3/05/95 6.2 UNIX
l og2 orac l e 8 1 5/09/99 Si UNIX
l og3 SQL server 1 2/04/98 7 PCNl'

log4 Front Page 03/06/97 s FCWS
l og5 WinDev 1 2/05/97 5 FCWS
l og6 SQL*Net 2.0 UNIX
l og7 I . I . S. 1 2/04/02 2 PCNl'
l og8 oreamweave.r 2 1/09/03 2.0 seos

Types TYPllLP NOMTYPE

--------- --------------------
TX Terminal x-window
UNIX système Unix
PCNl' PC Windows NT
FCWS PC Windows
NC Network Computer

PRIX

3000
5600
2700

500
750
500
81 0

1400

n:rnii!W'I 2.2 Ges11on d'une séquence

1 74

Dans ce même script, créez la séquence sequenceins commençant à la valeur 1, d'incrément 1, de
valeur maximale 1 O 000 et sans cycle. Utilisez cette séquence pour estimer la oo Ion ne numins de la
table Ins taller. Insérez les enregistrements suivants :

T- 2-20 llom6es d1 lit• ll•lk

Tllble Données

Insta ll er NPOSTll NLOG NUMINS DATEINS DELAI
----- ---- -------------------------

p2 l ogl 1 15/05/03
p2 l og2 2 17 /09/03
p4 l og5 3
p6 l og6 4 20/05/03
p6 l ogl 5 20/05/03
p8 l og2 6 19/05/03
p8 l og6 7 20/05/03
p ll l og3 8 20/04/03
p l 2 l og4 9 20/04/03
p ll l og7 1 0 20/04/03
p7 l og7 11 01 /04/02

© ÉdW/ons Eyroles

[3:131ïf!gg 2.3 ModHlcatlon de données

Écrivez le script modification.sql , qui permet de modifier (avec UPDATE) la oolonne etage
(pour l'instant nulle) de la table Segment afin d'affecter un numérod·étage correct (0 pour le segment
130.120.80, 1 pour le segment 130.120.81, 2 pour le segment 130.120.82).

Diminuez de 1 O % le prix des logiciels de type 'PCNT'.

Vérifiez ;

SELECT • FROM Segment;
SELECT nLog, typeLog, prix FROM Logiciel;

[3:ŒŒtim 2.4 Insertion dans 1a base Chant/em

© Éditions Eyrol/es

Écrivez puis exécutez le script SOL (que vous appellerez insChanti er .sql) afin d'insérer les
données suivantes :

une dizaine d'employés (numéros E1 à E1 0) en oonsldérant diverses qua!Wlcatlons (OS, Assistant,
Ingénieur et ;

quatre chantiers et cinq véhicules ;

deux ou trois visites de différents chantiers durant trois jours ;

la oomposltlon (de un à trois employés transportés) de chaque visite.

75 1

Chapitre 3

ÉVOiution d'un schéma
L'évolution d'un schéma est un aspect très important à prendre en compte, car il répond aux
besoins de maintenance des applicatifs qui utilisent la base de données. Nous verrons qu'il est
possible de modifier une base de données d'un point de vue structurel (colonnes et index) mais
aussi comportemental (contraintes).

L'instruction principalement utilisée est ALTER TABLE (commande du LOD) qui permet
d'ajouter, de renommer, de modifier et de supprimer des colonnes d'une table. Elle permet
aussi d'ajouter, de supprimer, d'activer, de désactiver et de différer des contraintes. Avant de
détailler ces mécanismes, étudions la commande qui permet de renommer une table.

Renommer une table <RENA.ME>

L'instruction RENAME renomme une table. Cette commande convient aussi aux séquences,
synonymes et vues. Il faut être propriétaire de J' objet que J' on renomme.

1 RBNAMB ancienNom TO nouveauNom;

Les contraintes d'intégrité, index et prérogatives associés à J' ancienne table sont automatique­
ment transférés sur la nouvelle. En revanche, les vues, synonymes et procédures catalogués
sont invalidés et doivent être recréés.

Il est aussi possible d'utiliser la directive RENAME TO de l'instruction ALTER TI\BLE pour
renommer une table existante. Le tableau suivant décrit comment renommer la table Pilote
sans perturber l'intégrité référentielle:

T- 3-1 1111-• •• 111111

Conmande RENAME Commande ALTER TABLE

RDIMIS Pil ote TO Navigant; ALTO TABL& Pil ote RENAMS TO Navigant;

© Éditions Eyrol/es

llWlll

Modificalïons s1ruc1ure11es <ALTER TABLE>

'

1 78

Considérons la table suivante que nous allons faire évoluer:

SQL> ŒFATE TABLE Pilote
(brevet VARCHAR2 (4), prenom VARCHAR2 (20), nom VARCHAR2 (20));

Tabl e créée.
SQL> INSERI' INI'O Pi l ote (brevet, prencm, nom) VALUES (' PL-1 ' , ' JP ' ,

' Fe=age ');
1 l igne créée.

Nouter des colonnes

Figure 3-t Table avant les modf/caUons

CIPLOTE

BREVET PREllOM IQ NOM

PL- 1 JP Ferrage

La directive AID de l'instruction ALTER TI\BLE permet d'ajouter une nouvelle colonne à une
table. Cette colonne est initialisée à Nl1LL pour tous les enregistrements (à moins de spécifier
une contrainte DEFAULT, auquel cas tous les enregistrements de la table sont mis à jour avec
une valeur non nulle).

Il est possible d'ajouter une colonne en ligne NOT NULL seulement si la table est vide ou si une
contrainte DEFAULT est définie sur la nouvelle colonne (dans le cas inverse, il faudra utiliser
MODIFY à la place de AOD).

Le scrip t suivant ajoute trois colonnes à la table Pilote. La première instruction insère la
colonne nbHVol en l'initialisant àNlJLL pour tous les pilotes (ici il n'en existe qu'une seule).
La deuxième commande ajoute deux colonnes initialisées à une valeur non nulle. La colonne
vil l e ne sera jamais nulle.

ALTER TABLE Pi l ote ADD (nbHVo l NUMBER(7 , 2));

ALTER TABLE Pi l ote

ADD (conpaVARCHAR2(4) DEFAillll' ' AF ' ,

vi ll e VARCHAR2 (30) DEFAillll' • Paris ' Nor NULL);

La table est désormais la suivante :

Figure 3-2 Table après /'sjotA de cotonnes

CJ PD.OTE

BREVET PREllOM NOM HBHVOL jf\ COMPA VJUE
PL- 1 JP Ferrage Cnull) AF Paris

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

Renommer des colomes
Ilfaut utiliserla directive RENAME COLUMN de J' instruction ALTER TIIBLE pour renommer une
colonne existante . Le nom de la nouvelle colonne ne doit pas être déjà utilisé par une colonne
de la table .

L'instruction suivante permet de renommerla colonne vill e en adresse:

1 ALTER TABLI Pilote RKNAMI COXiOMN ville TO adresse;

Modifier le 1VPe des colomes
La directive MODIFY de l'instruction ALTER TABLE modifie Je type d'une colonne existante .

Il est possible d'augmente r la taille d'une colonne numérique (largeur ou précision) - ou d'une
chaîne de caractères (CHAR et VARCHAR2) - ou de la diminuer si toutes les données présentes
dans la colonne peuvent s'adapte r à la nouvelle taille.

Les contraintes en ligne peuvent être aussi modifiées par cette instruction (DEFAULT, NOT
NULL, UNIQUE, PRIMARY KEY et FOREIGN KEY). Une fois la colonne changée , les nouvelles
contraintes s'appliqueront aux mises à jour ultérieures de la base.

Le tableau suivant présente différentes modifications de colonnes .

Instructions SOL

ALTCR TABL& Pil ote
MODIPY compa VARCHAR (6)

OEFAULT ' S I NG ' ;

INSERT INrO Pil ote (brevet, p r e nom, nom)
VALUES (' PL-2 ' , ' Arna ud ' , •sayag ');

ALTCR TABL& Pil ote
MODIPY compa CHAR (4) NOT NULL ;

ALTO TABL& Pil ote MODIP'Y compa NULL;

© Éditions Eyrol/es

Commentaires

Augmente la taille de la oolonne compa et
change la oontralnte de valeur par défaut.

Diminue la oolonne et m.odlfle également son
type de VARCHAR2 en CHAR tout en le déclarant
NOT NULL (possll le car les données contenues
dans la oolonne ne dépassent pas quatre
caractères).

Rend possible l'insertion de valeur nulle dans la
oolonne compa.

79 1

l lWll l

'

1 80

La table est désormais la suivante :

Rgure 3-3 Aprés modif/caUon des colonnes

CJ PD.OTE

BREVET PRENOM NOM 1. llBHVOI. COMPA ADRESSE 1
PL-1
PL- 2

JP Ferrilqe (null) AF

Arnaud Sayaq (null) SING

suœriner des colonnes

Paris
Paris

Longtemps absente, la possibilité de supprimer une colonne permet à présent de récupérer
rapidement de J'espace disque et évite aux administrateurs d'exporter, d'ajouter, d'importer
des tables et de recréer les index et les contraintes.

La directive DROP COLll'IN de l'instruction ALTER TABLE permet de supprimer une colonne.

Il n'est pas poss ible de supprimer avec cette ins truction :

des clés primaires (ou candidates par UNIQUE) référencées par des clés étrangè res;

des colonnes à partir desque lles un index a été construit ;

des pseudo-co lonnes (ROWID et LEVEL) ou des colonnes de tables objets;

toutes les colonnes d'une table.

La suppression de la colonne adresse de la table Pilote est programmée par J' instruction
suivante:

1 ALTER TABLE Pi l ote DROP COLOMN adresse;

COionnes UNusm
Si vous désirez marquer des colonnes à l'effacement (sans les enlever ôe la table), il faut
utiliser la directive SET UNUSED COLUMN de l'instruction ALTER TABLE.

Les colonnes n'apparaîtront plus dans la description de la table et ne seront plus accessibles
tout en restant toujours présentes dans la table. Les contraintes, index associés à ces colonnes,
sont supprimées.

Cette option est intéressante dans la mesu re où le résu ltat est immédiat, car aucune répe r­
cuss ion d'o rdre physique sur la base n'est opé rée. Le temps d'exécut ion de supp ress ion de
colonnes sur des bases de taille importante peut être très pénalisant.

© ÉdW/ons Eyroles

'

ta1o1 d'• •C11611• I

Marquons à J' effacement la colonne c crnpa :

1 ALTER TABLE P ilote SET OHOSZD COLOMN conpa;

Il n'est plus possblede récupérer les colonnes marquées à l'effacement d'une table pour les rendre
à nouveau opérationnelles. Seule la directive DROP UNUSED COL!Il1NS est permise pour manipuler
de telles colonnes. Elle détruit toutes les colonnes d'une table qui sont marquées à l'effacement.

Détruisons les colonnes marquées à J' effacement de la table Pil o t e:

1 ALTER TABLE P ilote DROP OHOSED COLOMNS;

Colome vinuelle
La particularité d'une colonne virtuelle réside dans le fait qu'elle n'est pas stockée sur le
disque mais évaluée automatiquement à la demande (au sein d'une requête, ou d'une instruc­
tion de mise à jour) . Par analogie, les vues (étudiées au chapitre 5) sont des tables virtuelles .

Création d 'une table
Au niveau de la création d'une table, la syntaxe à adopter est la suivante :

1
c olonn e (t ypeSQL) (GENERATED ALWAYS) AS (expression)

(VIRI'UAL) (c ont rain teL ign e (c on t rain teL ign e2) ...)

• Le type de la colonne (si vous ne voulez pas qu'il soit automatiquement déduit de l'expres­
sion) suit éventuellement son nom .

• Les directives GENERATID Ali'IAYS et VIR'IUAL sont fournies pour rendre le code plus clair
(considérées comme des commentaires) .

• L'expression qui suit la directive AS détermine la valeur de la colonne (valeur scalaire) .

Le script suivant déclare la table Avion comportant une colonne virtuelle (qui permet ici de
calculer le nombre d'heures de vol par mois) . Deux lignes sont ensuite ajoutées .

ŒFATE TABLE Avion (inmat VARŒ1\R2 (6) , typeAv i on VARCHAR2 (15) ,

nbhVo l NUMBER(l0,2), a ge NUMBER(4 , 1),

freq'lolMoi s GENERATZD AI.WAYS AS V:CRTOAL,

nbPax NUMBBR(3), CCNSTRAINT pk_Avion PRI MARY IŒY(i nmat)) ;

INSERI' I NI'O Avi on (inmat , typeAvion , nbhVo l, age , nbPax)

VALUES (' F-Wl'SS ', ' Concorde ', 20000, 18, 90) ;

INSERI' I NI'O Avi on (inmat , typeAvion , nbhVo l, age, nbPax)

VALUES (' F- GHTY', ' A380 ', 450, O. 5, 4 60) ;

La description de cette table (DESC) fait apparaître la colonne virtuelle . Pour obtenir les valeurs
de la colonne, il suffit, par exemple, d'évaluer son expression à partir d'une requête .

© Éditions Eyrol/es 81 1

llWlll

'
1 82

SELEl:T imrœlt, freqVolMois FRCM Avion;

IMMAT FREQVOIMOIS

F-Wl'SS 92,59259592 ...

F-GHI'Y 75

Une colonne virb.Jelle peut être indexée mais pas directement modifiable. Seule une modifica­
tion des valeurs qui interviennent dans l'expression fera évoluer une colonne virb.Jelle.

Ajout d 'une colonne

Au niveau de la création d'une table, la syntaxe à adopter est la suivante:

1
AIII'ER TABLE nomTable ADD

colonne (typeSQL) (GENERATID AUqAYS) AS (expression)

(VIR'IUAL) (contrainteLigne (contrainteLigne2) ...) ;

Ajoutons à la table Avion la colonne virtuelle qui détermine le ratio du nombre d'heures de

vol par passager en y ajoutant deux contraintes en ligne.

1
AIII'ER TABLE A vi an

AID heurePax NUMBER(lO, 2) AS (nbhVol/age)

CHECK (heurePax BEI'lolEEN 0 AND 2000) NOT NULL;

La figure suivante illustre comment la table se comporte lorsqu'elle est sollicitée en INSERT,

UPD.l\TE ou DELEI'E.

Rgure 34 Colome vlrtueles

Avion

f reqVo !Mois : He ure Pax :

,__F-_WT_ S_S-+-_Co_ n_co_rde_-+-_2_0_0_00 _ _._18_+-_90--<= .. = = ;)f ((1) = = = = ;

'-'-F-G--"-'-H"'TY-'--'-"A"-38"'0'---'--4'-' 5"'0 _ _._o"',"'s_,__4'-'6-'-0_,_ - - - - - - _9pQ - - - - - - -

Restrictions

Seules les tables relationnelles de type heap (par défaut) peuvent héberger des colonnes
virtuelles (interdites dans les tables organisées en index, externes, objet-relationnelles,
duster, et temporaires).

!.:expression de définition d'une colonne virtuelle ne peut pas faire référence à une autre
colonne virtuelle et ne peut être construite qu'avec des colonnes d'une même table.

Le type d'une colonne virb.Jelle ne peut être XML, any, spatial media, personnalisé (user-defined),
LOB ou UNG RAW.

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

Colomes invisilies

Depuis la version 12c, il est possible de masquer des colonnes au niveau des applications. Par
défaut, toute colonne est visible mais peut être masquée lors de la création de la table en ajou­
tant l'option INVISIBLE après avoir déclaré son type. L.:instruction ALTER TABLE nom_ table
MODIFY nom_ colonne [VISIBLE 1 INVISIBLE] permet de démasquer (ou de masquer)
des colonnes existantes.

Le code suivant l'utilisation de cette option dans une table. La première insertion est
incorrecte car elle sous-entend q ue les quatre colonnes de la table sont visibles.

1 Déclaration d'une colon,. lnvlslble

CREATE TABLE passagers
(id....pax NUMBER(3),
nom_pax VARCHAR2 (30),

SQL> I NSERT I NrO passagers VALUES
(1 , ' Belfont • • 20 .5,TO_J)ATE (. 05/03/ 1974 • • • DD/MM/YYYY'));

ERREUR à l a l igne 1 : ORA-009 13: trop de va l e urs
bonus NUMBER (7, 2) INVl:SIBLS ,
dat e_nai s DATE) ; SQL> I NSERT I NTO passagers(id....Pax,noll_paX,date_nais)

VALUES
(l , ' Belfont . ,TO_ DATE(. 05/03/ 1974 • • ' DD/MM/YYYY.));

1 lign e créée.

SQL> I NSERT I NrO passagers
(id....Pax, noll_paX, bonue,da te_nais) VALUES

(2, ' Fontbe l • • ,5. 6 ,TO_ DATE(. 05/03/ 1990 • • • DD/MM/YYYY.));
1 lign e créée.

Une fois la colonne invisible insérée, ses données sont accessibles d'une manière explicite. Ce
comportement sera respecté jusqu'à ce que la colonne redevienne visible par ALTER TI\BLE

passagers MODIFY bonus VISIB LE.

Requêle lrrf>Udle

SQL> SELECT * FROM passagers

I D_ PAX NOM_.PAX

1 Bel font
2 Fontbe l

DATE_NAI

05/03/74
05/03/90

Requêle explldle

SQL> SELECT id_pax, noJIU)ax, 1>oz11"' FROM passagers;

I D_ PAX NOM_.PAX

1 Bel font
2 Fontbe l

BONUS

45,6

Dans SQL'Plus, positionnez la variable d'environnement SET COLINVISIBLE ON afin de
constater l'existence de colonnes virtuelles à la suite d'une commande DESCRIBE nom_
table.

© Éditions Eyrol/es 83 1

l r.111

Modificalïons comoonememales

1 84

Nous étudions dans cette section les mécanismes d'ajout, de suppression, d'activation et de
désactivation des contraintes.

Faisons évoluer Je schéma suivant. Les clés primaires sont nommées pk_Compagnie pour la
table Compagnie et pk_Avion pour la table Avicn.

Rgure 3-5 Schéma à faire évoluer

Compagnie

Avion

Nout de contraintes
Jusqu'à présent, nous avons créé des tables en même temps que les contraintes. Il est possible
de créer des tables seules (dans œ cas! 'ordre de création n'est pas important et on peut même
les créer par ordre alphabétique), puis d'ajouter les contraintes. Les outils de conception
("'1'11 'Desig11, Designer ou PowerAMC) adoptent cette démarche lors de la génération automa­
tique de scripts SQL.

La directive ADD Q)NSTRAINI' de J' instruction ALTER TABLE permet d'ajouter une contrainte
à une table. La syntaxe générale est la suivante :

1
AIII'ER TABLE (schéma.)nomTable
ADD (CONSTRAI!ll' nomContrai nte) typeCont rai nte;

Comme pour J' instruction CREATE TI\BLE, quatre types de contraintes sont possibles :

• UNIQUE (col onnel (,colonne2) ...)

• PRIMl\RY KEY (co l onnel (,colonne 2) ...)

FOREIGN KEY (colonnel (,colonne2) ...)

REFERENCES (schéma.JnomTablePère (colonnel (,colonne2) ...)

[ON DELETE { CAS'.:ADE 1 SET NtJLL))

• CHECK (conditio n)

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

Clé étrangère

Ajoutons la clé étrangère à la table Avion au niveau de la colonne proprio en lui assignant
une contrainte NOT NULL :

1

ALTER TABLE Avion
ADD (CONSTRAINT nn_proprio OiEl::K (proprio IS l'O'l' NULL),

CONSTRAINT fk_Avion_conp_Ccmpag FOREIGN IŒY(proprio)

REFEREN::ES Ccmpagnie (ccmp));

Clé primaire

Ajoutons la clé primaire de la table Affreteret deux clés étrangères (vers les tables Avion et
Compagnie) :

ALTER TABLE Affrete ADD (

CONSTRAINT pk_Affreter

CONSTRAINT fk_Aff_na_Avion

PRIMl\RY IŒY (carpl>J:f, imna t , dateAff),

FOREIGN IŒY(i111!0.t) REFEREN:'ES

Avion (imna t),

CONSTRAINT fk_Aff_ccmp_Cœpag FOREIGN IŒY (carpAff)

REFERENCES Conpagni e (COI!p)) ;

Pour que l'ajout d'une contrainte soit possible, il faut que les données présentes dans la table
respectent la nouvelle contrainte (nous étudierons plus tard les moyens de pallier ce
problème). Les tables contiennent les contraintes suivantes :

Rgure 3·6 Après ajout de contraintes

Compagnie ,.fer'11t:etl I p<mml

dt/Hndtlll / rhild NOT HVLL

Sup .. ession de contraintes
La directive DROP CCNSTRAINI' de l'instruction ALTER TABLE permet d'enlever une
contrainte d'une table. La syntaxe générale est la suivante :

Aill'ER TABLE (schéma.) nomTable DROP CONS'I!IAINT nomContrainte (Cl\SCADE) ;

© Éditions Eyrol/es 85

llWlll

'

1 86

La directive CASCADE supprime les contraintes référentielles des tables « pères». On

comprend mieux maintenant pourquoi il est si intéressant de nommer les contraintes plutôt
que d'utiliser les noms automatiquement générés.

Supprimons la contrainte NOT NlJLL qui porte sur la colonne proprio de la table Avion:

1 AIII'ER TABLE Avion DROP CONSTRAINT nn_proprio;

Clé étrangère

Supprimons la clé étrangère de la colonne proprio. Il n'est pas besoin de spécifier CAS:ADE,
car il s'agit d'une table « fils» pour cette contrainte d'intégrité référentielle.

1 AIII'ER TABLE Avion DROP CONSTRAINT fk_Avion_conp_Ccmpag;

Clé primaire (ou candidat e)

Supprimons la clé primaire de la table Avion. Il faut préciser CASCADE, car cette table est réfé­
rencée par une clé étrangère dans la table Affreter. Cette commande supprime à la fois la clé
primaire de la table Avion mais aussi les contraintes clés étrangères des tables dépendantes
(ici seule la clé étrangère de la table Affre ter est supprimée) .

1 AIII'ER TABLE Avion DROP CONSTRAINT pk_Avion CASCADE;

Si l'option CASCADE n'avait pas été spécifiée, Oracle aurait renvoyé l'erreur • ORA-02273:
cette clé unique / primaire est référencée par des clés étrangères».

La figure suivante illustre les trois contraintes qui restent : les clés primaires des tables
Ccrnpagnie et Affreteret la clé étrangère de la table Affreter.

Figure :J.7 Aprt!s suppression de contraintes

Compagnie re/ere11ce1I/ parent

Les deux possibilités pour supprimer ces trois contraintes sont décrites dans Je tableau suivant.
La deuxième écriture est plus rigoureuse car elle prévient des effets de bord. Il suffit, pour les

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

éviter, de détruire les contraintes dans l'ordre inverse d'apparition dan:s le script de création
(tables « fils » puis « pères »).

Avec CASCADE Sans CASCADE

ALTER TABLE Compagnie ALTER TABLE Aff r eter
DROP CONSTRAINT pk_compag nie CASCADE;

ALTER TABLE Aff r eter
DROP CONSTRAINT fk_Aff_comp_Compag ;

ALTER TABLE Compag nie
DROP CONSTRAINT p k_Aff r ete r; DROP CONSTRAINT pk_Compagnie ;

ALTER TABLE Aff r eter
DROP CONSTRAINI' pk_Aff r eter ;

Désactivation de contrainles
La désactivation de contraintes peut être intéressante pour accélérer des procédures de charge­
ment (importation par SQL*Loader) et d'exportation massive de données. Ce mécanisme
améliore aussi les performances de programmes batchs qui ne modifient pas des données
concernées par l'intégrité référentielle ou pour lesquelles on vérifie la cohérence de la base à
la fin.

La directive DI SABLE Q)NSTRAINI' de)'instruction ALTER TABLE permet de désactiver
temporairement (jusqu'à la réactivation) une contrainte existante.

Syntaxe

La syntaxe générale est la suivante :

1
ALTER TABLE (s ch éma.) nomTabl e

DISABLB (VAL IDATE) IDVALID!>. TE) CONSTRAINT

(CASCADE) ({ IŒEP) DROP) INDEX) ;

nomCon t rain te

• CASCADE répercute la désactivation des clés étrangères des tables « fils» dépendantes. Si
vous voulez désactiver une clé primaire référencée par une clé étrangère sans cette
option, le message d'Oracle renvoyé est : « ORA- 02297: i.rrposs i b le désac tiver
contrainte. .. - les dépenden ces exi s tent».

• Les options KEEP INDEX et DROP INDEX permettent de préserver ou de détruire l'index
dans le cas de la désactivation d'une clé primaire.

• Nous verrons plus loin l'explication des options VALIDl\TE et NOVALIDATE.

En considérant l'exemple suivant, désactivons quelques contraintes et insérons des enregistre­
ments ne respectant pas les contraintes désactivées.

© Éditions Eyrol/es 87 1

l r.111

1 88

Figure 3../J Avant ta désactfvsUon de contraintes

Affreter J,,,..J,,,1/t:hi/J Avion dtprodtlll f rhi/d HOT tlt1LL

Contrainte de vérification

Désactivons la contrainte NOT NlJLL qui porte sur la colonne proprio de la table Avion et
insérons un avion qui n'est rattaché à aucune compagnie:

1
ALTER TABLE Avion DISABLB CONSTRAINT nn_proprio;

INSERT IN'ID Avion VALUES ('Bidonl', "IB -20', 2000, NIJLL);

Clé étrangère

Désactivons la contrainte de clé étrangère qui porte sur la colonne proprio de la table Avion
et insérons un avion rattaché à une compagnie inexistante :

1
ALTER TABLE Avion DISABLB CONSTRAINT fk_Avion_ccmp_Conpag;

INSERT IN'IDAvionVALUES ('F-GLFS', "IB -22 ', 500, 'Toto');

Clé primaire

Désactivons la contrainte de clé primaire de la table Avion, en supprimant en même temps
l'index, et insérons un avion ne respectant plus la clé primaire :

1
ALTER TABLE Avion DISABLB CONSTRAINT pk_Avion CASCADE DROP INDEX;

INSERT IN'ID Avion VALUES ('Bidonl' , "IB -21 ', 1000, ' AF ');

La désactivation de cette contrainte par CASCADE supprime aussi une des clés étrangères de la
table Affreter. Insérons un affrètement qui référence un avion inexistant :

1 INSERT IN'ID Affreter VAWES ('AF', 'Toto• , '13 - 05-2003', 0) ;

L'état de la base est désormais comme suit. Les rowids sont précisés pour illustrer les options
de réactivation.

Bien qu'il semble incohérent de réactiver les contraintes sans modifier les valeurs ne respec­
tant pas les contraintes (notées en gras), nous verrons que plusieurs alternatives sont possibles.

© ÉdWtons Eyroles

'

ta1o1 d'• •C11611• I

Figure 3-9 Aprés désactivation de contr9intes

Réaclvation de contraines
La directive ENABLE CONSTRAINI' de J' instruction ALTER TABLE permet de réactiver une
contrainte.

Syntaxe

La syntaxe générale est la suivante :

1
1\LTER TABLE (schéma.) nomTable

ENABLB (VALHl!>.TE) N0\11\LIDATE) CONSTRAINT nomContrainte
(USil'G INDEK Clauseindex) (EKCEPTIONS INI'O tableErreurs) ;

• La clause d'index permet, dans le cas des clés primaires ou candidates (UNIQUE), de
pouvoir recréer l'index associé.

• La clause d'exceptions permet de retrouver les enregistrements ne vérifiant pas la nouvelle
contrainte (cas étudié au paragraphe suivant).

Il n'est pas possible de réac tiver une dé étrangè re tant que la cont rainte de clé primaire réfé­
rencée n'est pas active.

En supposant que les tables contiennent des données qui respectent les contraintes à réutiliser,
la réactivation de la clé primaire (en recréant l'index) et d'une contrainte NOT NULL de la table
Avion se programmerait ainsi :

1

1\LTER TABLE Avion ENABLB CONSTRAINT pk_Avion

USING INDEX (ŒFATE UNIQUE INDEX pk_Avion Œ Avion (Îllllœ\t));

ALTER TABLE Avion ENABLB CONSTRAINT nn_proprio;

© Éditions Eyrol/es 89 1

llWlll

'

1 90

Récupération de données e"onées

L'option EXCEPTIONS INI'O de J' instruction ALTER TABLE permet de récupérer automatique­
ment les enregistrements qui ne respectent pas des contraintes afin de les traiter (modifier,
supprimer ou déplacer) avant de réactiver les contraintes en question sur une table saine.

Il fuut créer une table composée de quatre colonnes :

• La première, de type ROWID, contiendra les adresses des enregistrements ne respectant pas
la contrainte ;

• la deuxième colonne de type varchar2 (30) contiendra Je nom du propriétaire de la table ;

• la troisième colonne de type varchar2 (30) contiendra Je nom de la table ;

• la quatrième, de type varchar2 (30), contiendra Je nom de la contrainte.

Le tableau suivant décrit deux tables permettant de stocker les enregistrements erronés
réactivation de contraintes.

Il est permis d'ut iliser des noms de table ou de colonne différents mais il n'est pas possible
d'utiliser une strucb.Jre de table différente.

CREATE TABLE Probl emes
(adresse ROWID,

uti l isateur VARCHAR2(30),
nomrabl e VARCHAR2 (30),
nomcontrai nte VARCHAR2(30));

Toutes tables (heap, tndex-organlzed)

CREATE TABLE ProblemesBis
(adresse UROWID ,

uti l isateur VARCHAR2(30),
nomrabl e VARCHAR2 (30) '
nomeontrai nte VARCHAR2(30));

La commande de réactivation d'une contrainte avec l'option met automat iquement à jour
la table des rejets et renvoie une erreur s' il existe un enregistrement ne respectant pas la
contrainte.

Réactivons la contrainte NOT NlJLL concernant la colonne proprio de la table Avion (enre­
gistrement incohérent de RCXrlID R4) :

AIII'ER TABLE Avion ENABLB CONSTRAINT nn_propr i o EXCEPTIONS INTO
Problemes;

ORA-02293 : impossible de valider (SOOTOU.NN_PROPRIO) - v i o l at i on d •une

contrainte de contrô le

Réactivons la contrainte de clé étrangère sur cette même colonne (enregistrement incohérent :
RCXrlID R6 n'a pas de compagnie référencée).

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

ALTER TABLE Avion ENABLE CŒSTRAINT fk_Avion_ccmp_Conpag

EXCEPTIONS INTO Prob lemes;

ORA-02298: inpossible de valider (SOtm:XJ .FK_AVION_COMP_CCMPAG) - c lés

parents introuvables

Réactivons la contrainte de clé primaire de la table Avion (enregistrements incohérents :
ROWID R5 et R6 ont la même immatriculation) :

ALTER TABLE Avion BllABLB CONSTRAI NT pk_Avion EXCEPTIONS INTO

Prob lemes;

ORA-02437: inpossible de valider (SOUTOU.PK_AVICN) - violation de l a c lé

primaire

La table Problemes contient à présent les enregistrements suivants :

Figure :J.t o Table des rejets

Problemes

Il apparaît q ue les trois enregistrements (R4, R5 et R6) ne respectent pas des contraintes dans
la table Avion. Il convient de les traiter au cas par cas et par type de contrainte. Il est possible
d'automatiser J 'extraction des enregistrements qui ne respectent pas les contraintes en faisant
une jointure (voir Je chapitre suivant) entre la table des exceptions et la table des données (on
testera la valeur des rowids).

Dans notre exemple, choisissons :

• de modifier J' immatriculation de l'avion 'Bidon) ' (rowid R4) en 'F-1B20 ' dans la table Avion:

1
UPD.l\TE Avion SEI' inmat =

Îllllœ\t = 'Bidon! ' AND typeAvion = "IB -20';

• d'affecter la compagnie 'AF aux avions n'appartenant pas à la compagnie 'SING ' dans la
table Avion (mettre à jour les enregistrements de rowid R4 et R6) :

I UPD.l\TE Avion SEI' proprio = ' A7 ' WHERE Nor (proprio = ' SIN3 ') ;

• de modifier J'irnrnatriculation de l'avion 'Toto' en 'F-TB20 ' dans la table Affreter:

I UPD.l\TE Affreter SET Îllllœ\t = Îllllœ\t = 'Toto ' ;

Avant de réactiver à nouvea u les contraintes, il convient de supprimer les lignes de la table
d'exceptions (ici Problemes). La réactivation de toutes les contraintes avec l'option
EXCEPI'ION S INI'One génère plus aucune erreur et la table d'exceptions est encore vide.

© Éditions Eyrol/es 91 1

llWtel

DELEI'E FR.CM Prob l emes ;

AIII'ER TABLE Avion ENABLE O:JNS'IRAINI' nn_proprio EXCEPTICNS IN'ID

Prob lemes;

AIII'ER TABLE Avion ENABLE O:JNS'IRAINI' fk_Avion_ccmp_Ccmpag

EXCEPTICNS IN'ID Prob lemes;

AIII'ER TABLE Avion ENABLE O:JNS'IRAINI' pk_Avion EXCEPTICNS INTO Prob lemes;

AIII'ER TABLE Affre ter ENABLE CCNSTRAINT fk_Af f_na_Avion

EXCEPTICNS IN'ID Prob lemes;

L'état de la base avec les contraintes réactivées est le suivant (les mises à jour sont en gras) :

Figure :J.11 Tables après modK/caUon et réactlvaUon des contraintes

Compagnie P''""'

I child NOT NULL

At treterd•!Klld•nr I dùld

Cootraintes littérées

1 92

Une contrainte est dite « différée» (deferred) si elle déclenche sa vérification seulement en
atteignant le premier CCJ.IMIT rencontré. Si la contrainte n'existe pas, aucune commande de la
transaction (suite d'instructions terminées par CCJ.!MIT) n'est réalisée. Les contraintes que
nous avons étudiées jusqu'à maintenant étaient des contraintes immédiates (immediate) qui
sont contrôlées après chaque instruction.

Di'eclives DEFBIMBlE el INmAl.lY
Depuis la version 8i, il est possible de différer à la fin d'un traitement la vérification des
contraintes par les directives DEFERRABLE et INITIALLY.

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

Chaque contrainte peut être reportée ou pas et est initialement définie différée ou immédiate.
En l'absence de directives particulières, Je comportement par défaut de toute contrainte est
NOT DEFERRABLE INITIALLY JM.IEDIATE.

Les contraintes NOT DEFERRABLE ne pourront jamais être différées (à moins de les détruire et de
les recréer). Pour différer une ou plusieurs contraintes DEFERRABLE INn:TIALLY JM.IEDIATE
dans une transaction, il faut utiliser les instructions SQL SET CCNSTRAINr (s). Pour reporter une
ou plusieurs contraintes DEFERRABLE INITIALLY IMMEDIATE dans une session (suite de tran­
sactions), il fuut employer la commande ALTER SESSION SET CCNS'IRAJNI'S.

Les instructions SET CON3TRAINr (S) caractérisent une ou plusieurs contraintes DEFERRABLE en
mode différé (DEFERRED) ou en mode immédiat (IMMEDIATE). Il n'est pas possible d'utiliser
l'instruction SET CONSTRAINr dans Je corps d'un déclencheur.

Le tableau suivant illustre l'utilisation des deux modes en différant une clé étrangère :

Uode clttéré Uode Immédiat

CREATE TABLE Con:pagnie
(con:p VARCHAR2(4), nrue NUMBER(3), rue VARCHAR2(20),
ville VARCHAR2(15), norr:Comp VARCHAR2(15),

CONSTRAINT pk_Canpagnie PRIMARY KEY(comp) Ncrt' DBn:RRABLZ INl'rIALLY IIMZDIAH);

CREATE TABLE Avion
(imnat V1'.RCHAR2 (6), typeAvion V1'.RCHAR2 (15),
nbhVol NUMBE:R(l0,2), proprio VARCHAR2(4),

CONSTRAINT fk_Avion_comp _Compag
FOREIGt IŒY(proprio)
REFERENCES Con:pagnie (comp)
DBnl:RRABLZ IN'l'rIALLY m:nJtRS.D,

CONSTRAINT pk_Avio n PRIMARY KEY (immat)) ;

...... fils sans père
INSERT DtTO Avion VALUES
(' P-wTSS ', 'Co ncorde ', 6570, 'SDJG');
1 ligne créée.

...... Problème à la validation
COllKIT;
ORA .. 02091: transaction annulée
ORA .. 02291: violation de contrai n te (SOU ..

d'intégrité •
touche parent introuvable

© Éditions Eyrol/es

CREATE TABLE Avion
(irr:mat VARCHAR2(6), typeAvion VARCHAR2(15),
nbhVol NUMBER(l0,2), proprio VARCHAR2(4),

CONSTRAINT fk_Avion_con:p _Canpag
FOREIGN KEY (proprio)
REFERENCES Canpagnie (comp)
m:nJtRABLS INITIALLY IllKBDIA'l'Z,

CONSTRAINT pk_Avion PRDlARY KEY(immat));

...... fils sans père
INSERT INTO Avion VALUES
(' P .. WTSS ', ' Concorde ' ,. 6570, 'SING');

ORA ... 02091: transaction annulée
ORA ... 02291: violation de contrainte (SOU ...
TOU.PKj.VICN _ ca.r:P _ COMPAG) d'intégrité ...
touche parent introuvable

...... Modification du mode
SZT CONSTRAIN'r

fk_Avion_comp _ Con:pag DZPD.RZD;

...... fils sans père
INSERT INTO Avion VALUES
(' P .. WTSS ', ' Concorde ' ,. 6570, 'SING');
1 ligne créée .

...... Même problème au COMMIT

93 1

lr.111

1 94

SET ooNSmun
Pour modifier une ou toutes les contraintes DEFERRABLE dans une transaction, il faut utiliser
une des instructions de type SET CON3TRAINI' (S) . La syntaxe générale de cette instruction
est la suivante :

1
SBT { CONSTRAINT) CONSTRAINTS)

{ nomContraintel [,nomContrainte2) ...) ALL)

{ IMMEDIATE) DEFERRED) ;

• L'option ALL place toutes les contraintes DEFERRABLE du schéma courant dans Je mode
spécifié dans la suite de l'instruction.

• L'option IMMEDIATE place la ou les contraintes du schéma courant en mode immédiat.

• L'option DEFERRED place la ou les contraintes du schéma courant en mode différé.

AlnR SESSION SET CONSTRAINTS
Pour modifier une ou plusieurs contraintes DEFERRABLE dans une session (suite de transac­
tions), il faut utiliser l'instruction ALTER SESSICN SET Q)NSTRAINI' S. La syntaxe de cette
instruction est la suivante :

1 ALTER SESSION SBT CONSTRAINTS = { IMMEDIATE) DEFERRED) DEFADIJI')

• L'option IMMEDIATE place toutes les contraintes du schéma courant en mode immédiat.

• L'option DEFERRED place toutes les contraintes du schéma courant en mode différé.

• DEFAULT remet les contraintes du schéma dans Je mode qu'elles avaient lors de leur défi­
nition (DEFERRED ou IMMEDIATE) dans les instructions CREATE TABLE ou ALTER TABLE.

Di'eclives VAllJATE et NOVAllJATE
Depuis la version 8i, les contraintes peuvent être actives alors que certaines données contenues
dans les tables ne les vérifient pas. Ce mécanisme est rendu possible par J' utilisation des
directives VALIDATE et NOVALIDATE.

VALIDATE et NOVALIDATE peuvent se combiner aux directives ENABLE et DISABLE précé­
demment étudiées dans les instructions CREATE TABLE et ALTER TABLE.

Les directives de validation ont la signification suivante :

ENABLE vérifie les mises à jour à venir (insertions et nouvelles modifications de la table);

DISABLE autorise toute mise à jour;

VALIDATE vérifie que les données courantes de la table respectent la contrainte;

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

NOVALIDATE permet que certaines données présentes dans la table ne respectent pas la
con trainte.

Quelques remarques :

• ENABLE VALIDATE est semblable à ENABLE, la contrainte est vérifiée et certifie qu'elle
sera respectée pour les enregistrements présents.

• DISABLE NOVALIDATE est semblable à DISABLE, la contrainte n'est plus vérifiée et ne
garantit pas les enregistrements

• ENABLE NOVALIDATE signifie que la contrainte est vérifiée, mais elle peut ne pas assurer
tous les enregistrements. Cela permet de conserver des données anciennes qui ne vérifient
plus la contrainte tout en la respectant pour les mises à jour ultérieures.

• DISABLE VALIDATE désactive la contrainte, supprime les index éventuels tout en préser­
vant Je respect de la contrainte pour les enregistrements présents.

Étudions dans Je tableau suivant ces deux derniers cas :

• L'exemple avec ENABLE NOVALIDATE souligne Je fait qu'on peut avoir une contrainte
active tout en ayant des données ne la respectant plus.

• L'exemple avec DISABLE VALIDATE illustre la situation où on ne peut pas désactiver la
contrainte (des données ne la respectant pas sont encore présentes dans la table). Pour
résoudre ce problème, il faut extraire les enregistrements en réactivant la contrainte avec
l'option EXCEPTI ONS INI'O ... et les traiter au cas par cas.

T- W Vllllllt Il NOVll.llllt

ENABLE OOVALIDATE DISAB LE VALIDAT!!

CREATE TABLE Con:pagnie
(c anp CHAR(4) , nrue NUMBER (3) , .rue CHAR(20) , ville CHAR(lS) , non:Comp CHAR(l S) ,

CONSTRAINT p k_Con:pa gnie PRIMARY KEY (c anp)) ;

CREATE TABLE Avion
(irrma t CHAR(6) , t ypeAvion CHAR(lS) ,
proprio CHAR (4) ,

Ca.tSTRAINT fk_Avion_proprio_ Compag
FOREIGN KEY (proprio)

REF ERENCES Compagn ie (c omp) DZSABLS,

Ca.tSTRAINT p k_Avion
PRDlAR Y IŒY(inuna t)) ;

INSERT DtTO Compa gnie

CREATE TABLE Avion
(imma t CHAR(6) , t ypeAvion CHAR(lS) ,
proprio CHAR(4) ,

CONSTRAINl' fk_Avion_proprio_ Con:pag
FOREI GN KEY(proprio)
REP'EREN: E:S Compagnie (c anp) ,

CONSTRAINl' p k_Avion
PRIMARY KEY (irrma t)) ;

VAWE S ('SING ' , 7 , 'Can:parols' , 'Si ngapour' , 'Singapore AL ') ;

INSERT DtTO Avion VALUES
(' P• W'l'SS', 'Concorde', 'Tot o') ;

ALTER TABLE Avion Da.BU NOV:U.IDATZ

INSERT I NTO Avion
VALUES (' P- wrss•, • conc orde',

' S ING ') ;

CONSTRAINT fk_Avion_proprio_ Compag; ALTER TABLE Avion DI SABLE
CONSTRAINT fk_Avion_proprio_ Compag;

© Éditions Eyrol/es

l r.111

1 96

11111111 a-a Vllllllll et NOlllllll'I (suite)

ENABLE NOVALIDATE

.... interdi t
INSERT INTO Avion VALUES

('P .. TB20 ', 'Concorde', 'Toto');
ORA ... 02291: violation de contrainte (SOU­
TaJ. PK_AVION_PROPRIO_C<>IPAG) d'intégrité

• touc he parent introuvable

.... possible

INSERT INTO Avion VALUES
('F .. ABCD', 'Concorde', 'SDJG');

.... Table Avion

Inunat TypeAvion

P• WTSS Concorde
p .. ABCD Concorde

Proprio

Toto
SING

Di'eclive MDDIY OONSTRAINT

DISABLI! VALIDATE

.... permis

INS ERT IN'l'O Avion
VALUES (' P .. TB20', ' Concorde', ''l"oto');

.... interdi t (dernier avion ne vérifie pas)

ALTER TABLI! Avion DISABi.. VALmATll
CONSTRAINl' fk_Avion_proprio_Corr:pag;

ORA .. 02298: impossible de valider (SOU­
TOJ. FR...,AVI ON_ PROPRIO _ COMPAG) ... clés

paren ts int rouv ables

.. -Table Avion

Irrmat TypeAvion

P-wTSS Concorde
P-TB20 Concorde

Proprio

SING

Toto

Il est possible de moclifierle mode d'une contrainte en utilisant la directive M)DIFY CCNSTRAIN!'
de la commande ALTER TI\BLE. La modification concerne les options suivantes :

e DEFERRABLE ou NOT DEFERRABLE ;

e INITIALLY DEFERRED ou INITIALLY IMMEDIATE ;

e ENABLE ou DISAB LE ;

e VALIDl\TE ou NO\/ALIDATE.

L'exemple suivant déclare la table Pilote possédant trois contraintes. La troisième contrainte
(clé primaire) adopte Je mode par défaut (NOT DEFERRABLE INITIALLY IMMEDIATE

ENABLE VALIDATE).

CREATE TABLE Pi l ote
(bre vet CHAR(6). nbHVol NUMBBR(7 ,2). ncm CHAR(30). CCNSTRAINT

Illl_ncm NOI' NULL DEFERRABLE INITIALLY DEFERRED DISABLE VALID.l\TE,

a:JNS'IRAINI' ck_nbHVo l CHECK (nbHVol BEI'WEEN 0 AND 20000)
DEFERRABLE INITIALLY IMMEDIATE ENABLE IDVALID.l\TE,

CCNSTRAINT pk_Pilote PRIMl\RY KEY (bre vet));

Les instructions suivantes modifient tous les paramètres des deux premières contraintes :

AIJl'llR TABLE Pil ote
MODIFY CONSTRAINT Ill'l_nom INrr IALLY IMMEDIATE ENABLE NO\IALIDATE;

AIJl'llR TABLE Pil ote
MODIFY CONSTRAINT ck_nbHVo l INrr IALLY DEFERRED DISABLE VALIDATE;

© ÉdW/ons Eyroles

ta1o1 d'• •C11611• I

Exercices

Les objectifs de ces exercices sont :

• d'ajouter et de modifier des colonnes ;

• d'ajouter des contraintes ;

• de traiter les rejets.

[3:mîfl83 3.1 A)out de colonnes

Écrivez le scrjl t évo lution. sql qui contient les Instructions nécessaires pour ajouter les colonnes
suivantes (avec ALTER TABLE). Le contenu de ces colonnes sera modWlé ultérieurement.

llllllelU 3-9 Dam6es d1 lit• li• ...

Table Nom, lype et slgnltlcatlon des nouvelles colonnes

segment nbsa ll e NUMBER < 2 > : nombre de salles
nbPoste NUMBER < 2 > : nombre de postes

Logic i e l nbins tall NUMBER(2 > : nombre d'installations

Poste nbLog NUMBER < 2 > : nombre de logiciels Installés

Vérifier la structure et le contenu de chaque table avec OESC et SELECT.

[3:@îfl83 3.2 ModHlcatlon de colonnes

Dans ce même script, ajoutez les Instructions nécessaires pour :

augmenter la taille dans la table Salle de la colonne nomSalle (passer à VAACHAR2 (30)) ;

diminuer la taille dans la table Segment de la colonne namSegment à VAACHAR2 (15) ;

tenter de diminuer la taille dans la table Segment de la colonne namSegment à VARCHAR2 (14).

Pourquoi la commande n'est-elle pas possible?

Vérifiez par OESC la nouvelle structure des deux tables.

Vérifiez le contenu des tables :

SELECT • FROM Salle;

SELECT • FROM Segment;

[3:Œ!îfl83 3.3 A)out de contraintes

© Éditions Eyrol/es

Ajoutez les contraintes de clés étrangères pour assurer !'Intégrité référentielle entre les tables sui­
vantes (avec ALTER TABLE .•. AOD CONSTRAINT.-). Adoptez les conventions recommandées dans
le chapitre 1 (comme Indiqué pour la contrainte entre Poste et Types).

97 1

lr.111

Figure 3-12 Contmlntes référentfeles à créer

segment
!1ndIP lnomSegment !etage !nbSalle !nbPoste !

Salle
nSalle n0111Salle nbPoste indIP

Poste

rix nbinstall

! numins ! dateins ! de lai

eyp•LP !nomType 'f fk Poste typeP oste Types

SI l'ajout d'une contrainte référentielle renvoie une erreur, vérifier les enregistrements des tables
• pères • et • fils • (notamment au niveau de la casse des chaînes de caractères, 'fJ(est différent de
'TX' par exemple).

Modifiez le script SOL de destruction des tables (dropParc. sql) en fonction des nouvelles contrain­
tes. Lancer ce script puis tous ceux écrits jusqu'ici.

n:@îll63 3.4 Traitements des re)ets

1 98

Créez la table Reje t s a110c la structure suivante (ne pas mettre de clé primaire) :

Rgure 3-13 Table des rejets (exceptions)

ro riétaire

ROWIO VARCHAR2(30}

Cette table permettra de retrouver les enregistrements qui ne vérWlent pas de contraintes lors de la
réactivation.

© ÉdW/ons Eyroles

© Éditions Eyrol/es

ta1o1 d'• •C11611• I

Ajoutez les contraintes de clés étrangères entre les tables Salle et Segment et entre Logiciel et
Types (en gras dans le schéma suivant). Utilisez la directive EXCEPTIONS INTO pour récupérer des
Informations sur les erreurs.

Figure 3-14 Contra/nies référentfeles à créer

nt eta e nbSalle nbPoste

nbPoste lndI P

indIP ad typePoste nSalle nbL

dateAch version typeLog rix nblnstall

! numins !ctatdns !dela1

tiP•LP ! nomType

La création de ces contraintes renvoyer une erreur car :

Il existe des salles Cs22' et 's23') ayant un numéro de segment qui n'est pas référencé dans la table

Segment;

Il existe un logiciel Clog8') dont le type n'est pas référencé dans la table Types.

Vérifiez dans la table Reje ts les enregistrements qui posent problème. Vérifier la correspondance
a11ec les des tables Salle et Logiciel :

SELECT .. FROM Reje ts;

SELECT ROWID, s. • FROM Salle s

l'IHERE ROWID IN (SELECT ligne FROM Reje ts);

SELECT ROWID,l. • FROM Logiciel l

l'IHERE ROWID IN (SELECT ligne FROM Reje ts);

Supprimez les enregistrements de la table Reje ts.

Supprimez les enregistrements de la table Salle qui posent problème. Ajouter le type de loglclel
('BeOS', 'Sys t ème Be') dans la table Types.

Exécutez à nou11eau l'ajout des deux contraintes de clé étrangère. Vérifier que les Instructions ne
renvoient plus d'erreur et que la table Reje ts reste vide.

99 1

l r.111

n:@îlJ6fl 3.5 Ajout de colonnes dans la base ChanlletS

Écrivez le script évolChantier. sql qui modWle la base ChmUers afin de pou""lr stocker:

la capacité en nombre de places de chaque véhicule ;

la liste des types de véhicule Interdits de visite oonoernant certains chantiers ;

la liste des employés autorisés à oondulre certains types de véhicule ;

le temps de trajet pour chaque visite (basé sur une vitesse moyenne de 40 kilomètres par heure).
Vous utiliserez une ooionne virtuelle.

VérWlez la structure de chaque table 1Nec DESC.

n:@îlJ6fl 3.6 Mise à jour de la base Chantiers

1100

Écrivez le scr!JtmajChanti er. sql qui met à jour les nouvelles ooionnes de la base Chantiers de la
manière suivante :

affectation automatique du nombre de places disponibles pour chaque véhicule (1 pour les motos.
3 pour les voitures et 6 pour les camionnettes) ;

déclaration d'un chantier lnaoœsslble pour une camionnette et d·un autre lnaoœsslble aux motos ;

déclaration de diverses autorisations pour chaque oonducteur (affecter toutes les autorisations à
un seul oonducteur).

VérWlez le oontenu de chaque table (et de la oolonne virtuelle) 1Nec SELECT.

© ÉdW/ons Eyroles

Chapitre 4

Interrogation des données
Ce chapitre traite de l'aspect Je plus connu du langage SQL à savoir l'extraction des données
par requêtes (nom donné aux instructions SELECT). Une requête permet de rechercher des
données dans une ou plusieurs tables ou vues à partir de critères simples ou complexes . Les
instructions SELECT peuvent être exécutées dans l'interface SQL*Plus (voir les exemples de
ce chapitre) ou au sein d'un programme PUSQL, Java, C, etc .

Généralités

!.:instruction SELECT est une commande déclarative (décrit ce que l'on cherche sans décrire le
moyen de le réaliser). À l'inverse, une instruction procédurale (comme un programme) dévelop­
perait le moyen de réaliser l'extraction de données (comme le chemin à emprunter entre tables
ou une itération pour parcourir un ensemble d'enregistrements).

La figure suivante schématise les principales fonctionnalités de J' instruction SELECT . Celle-ci
est composée d'une directive FRCMqui précise la (les) table(s) interrogée(s) et d'une directive
WHERE qui contient les critères .

Rgure 4-1 PosslbNltés de f/nstruction SELECT

Avion Pilote

1 1 1 1 1
1 1 1
1 1 1 1 1

C:J Restriction (WHERE)
c=J Projection (SELECT)

Compagnie

1 1 1 1
1 1 A1rFranœ 1 1
1 1 1 1

Jointure2 tt c:::::J Jolnture1 (WH ERE)

© Éditions Eyrol/es 101 1

l r.111

11 02

• La restriction qui est programmée dans Je WHERE de la requête permet de restreindre la
recherche à une ou plusieurs lignes. Dans notre exemple, une restriction répond à la ques­
tion« Quels sont les avions de type 'A320' ? » ;

• La projection qui est programmée dans Je SELECT de la requête permet d'extraire une ou
plusieurs colonnes. Dans notre exemple, elle répond à la question« Quels sont les numéros
de brevet et nombres d'heures de vol de tous les pilotes?»;

• La jointure qui est programmée dans Je WHERE de la requête permet d' eJCtraire des données
de différentes tables en les reliant deux à deux (Je plus souvent à partir de contraintes réfé­
rentielles). Dans notre exemple, la première jointure répond à la question« Quels sont les
numéros de brevet et nombres d'heures de vol des pilotes de la compagnie de nom Air
France ? » La deuxième jointure répond à la question « Quels sont les avions de la compa­
gnie de nom Air France ? »

En combinant ces trois fonctionnalités, toute question logique devrait trou ver en théorie une
réponse par une ou plusieurs requêtes. Les questions trop complexes peuvent être pro­
grammées à J'aide des vues (chapitre 5) ou par traitement (PUSQL mélangeant requêtes et
instructions procédurales).

Syntaxe (SEllCTI

Pour pouvoir extraire des enregistrements d'une table, il faut avoir reçu Je privilège SELECT

sur la table. Le privilège SELECT AN'i TABLE permet d'extraire des données dans toute table
de tout schéma.

La syntaxe SQL simplifiée de J 'instruction SELECT est la suivante :

SBLBCT ({ DISTil'CT) UNIQUE)) ALL) { listeColonnes) expression)
FRCM nomTablel (, nomTable2) ...
(cond i t ion)
[clauseH i érarch iqu e

[clauseRegroupement

(HAVIN3 cond i t ion)
({ UNION) UNION ALL) INTERSEx::T) MINUS) (sousRequll te))
(clauseOrdonnancement) ;

Au cours de ce chapitre, nous détaillerons chaque option à J'aide d'exemples.

Pseudo-table DUAL

La table DUAL est une table utilisable par tous (en lecture seulement) et qui appartient à l'utili­
sateur S!lS. Le paradoxe de DUAL réside dans Je fait qu'elle est couramment sollicitée, mais les
interrogations ne portent jamais sur sa seule colonne (DUMMY définie en VARCHAR2 et conte­
nant un seul enregistrement avec la valeur X). En conséquence, DUAL est qualifiée de pseudo­
table (c'est la seule qui soit ainsi composée).

© ÉdW/ons Eyroles

!.:interrogation de DUAL est utile pour évaluer une expression de la manière suivante:• SELECT
expression FROM DUAL• (seule l' instruction SELECT est permise sur DUAL). Comme DUAL
n'a qu'un seul enregistrement, les résultats fournis seront uniques (si aucune jointure ou
opérateur ensembliste ne sont utilisés dans l'interrogation).

Betoln
Aucun, utilisation prcba­
blement la plus superllue
de DUAL.

J'ai oublié ma montre 1

T-. 4·1 llllsatoa 111 Dllll

Aequ6io ei nlsuliai IOUS SOL'Plus
SELECT 'Il reste encore bêaucoup de pages? '

FROM DUAL;

'ILRESTEENCOREBEAUCOUPDEPAGES? '

Il reste encore bêaucoup de pages?

SELECT TO_CHAR(SYSDATE, ' DO, MONI'll YYYY, HH24:M I :SS ')

"Maintenant : " FROM DUAL;

Maintenant :

12, MAI 2003, 00: 1 3:39

Pour les matheux qui VOU- SELECT POWER(2, 14) . POWER(COS(l 35*3 . 141 59265359/ 180). 2).

draient retrou110r le résul- EXP< 1 > FROM DUAL;
tat de 2", le carré du
ooslnusde 37î12 et e•. POWER(2, 14) POWER(COS (135*3 .14 1 59265359/ 1 80). 2) EXP(l)

16384 ,5 2, 71828 183

Proïectïon <éléments du SELECT>

Étudions la partie de l'instruction SELECT qui permet de programmer l'opérateur de projec­
tion (en surligné dans la syntaxe suivante) :

1
SBLBCT ((DISTINCT 1 UNIÇUE) 1 ALL) listeColonnes

FROM nomTable (aliasTable)
(clauseOrdonnancement) ;

• DISTINCT et UNIQUE jouent le même rôle: ne pas prendre en compte les duplicatas.

• ALL: prend en compte les duplicatas (option par défaut).

• ListeColonnes : { * 1 expressionl ((AS) aliasl (, expression 2
((AS) alias 2) ...).

• • : extrait toutes les colonnes de la table.

• expression: nom de colonne, fonction, constante ou calcul.

• alias: renomme l'expression (nom valable pendant la durée de la requête).

© Éditions Eyrol/es 103 1

llWlll

'
1104

• FROM: désigne la table (qui porte un alias ou non) à interroger.

• c lauseord onnan cement : tri sur une ou plusieurs colonnes ou expressions.

Interrogeons la table suivante en utilisant les principales options à l'aide d'exemples divers.

Figure 4-2 Table Plote

tJ PLOTE

BREVET PRENOM 1 lmM NBHVOI. COMPA
PL-1 Benoit Sar da 4500AF
PL-2 Aime Giaconne 2000AF
PL-3 Pierre Cal ac 1500SING
PL-4 Jean Phi Ferrage 2 450CAST
PL-5 Jean Ga zagn es (null) SING
PL- 6 Arnaud Sayag 2450AF

Exlraclion de Ioules les colonnes
L'extraction de toutes les colonnes d'une table est rendue possible par l'utilisation du
caractère *. L'ordre des lignes retournées, dans le cas des tables classiques (en tas : heap), suit
le séquencement des blocs de données dans lesquels se trouvent les lignes (1 'ordre chronologi­
que des insertions est en premier lieu suivi).

llllleal 4-2 Ullsadoe dl •

Requête SOL Résultat sous SQL 'Plus

BREVET PRENOM NOM NBHVOL COMPA
---- ----- - ------------

PL-1 Benoit sarda 4500 AF
PL-2 Aime Giaconne 2000 AF
PL-3 Pierre calac l.500 SING

SELECT * FROM Pilote

PL-4 JE>an Phi Ferrage 2450 CAST
PL-5 JE>8Jt Gazagnes SING
PL-6 Arnaud sayag 2450 AF

Pratique au premier abord, limitez au maximum l'utilisation du caractère•, car vous risquez de
solliciter le réseau en interrogeant un nombre inconnu de colonnes et le SGBD qui devra dyna ­
miquement extraire la liste des colonnes de la table interrogée. De plus, vous considérez la
structure du jeu de résultats comme étant constante alors que des colonnes de la table peu­
vent apparaître ou d isparaître entre deux exécut ions.

© ÉdW/ons Eyroles

Extraction de cenaines colomes
La liste des colonnes à extraire se trouve dans la clause SELECT.

Requête SOL Résunat IOUI SQL "Plus

COMPA BREVET

AF PL-1

SELECT coaipa , brevet FROM Pi l ote ;
AF PL-2

S I NG PL-3

CAST PL-4

S I NG PL-5

AF PL-6

Alas
Les alias permettent de renommer des colonnes à J' affichage ou des tables dans la requête. Les
alias de colonnes sont utiles pour les calculs.

Oracle traduit les noms des alias en majuscules (valable aussi pour les expressions, colon­
nes, vues, tables, etc.).

1 Allas de colonnes

!.:utilisation de la directive AS est facultative (pour se rendre conforme à SQL2).

Il faut préfixer les colonnes par l'alias de la table lorsqu'il existe.

Allas de table

SELECT compa AS coapagnie, nom AS naae , SELECTa_ pilotee .compa AS compagnie,
brevet nwa_pilote a_pilotee .nom

FROM Pi l ote ; FROM Pi l ote a_pilotee;

COMP NAME NUM,_PI LOTE COMP NOM

AF SArda
AF Giaconne
SING Cal ac
CAST Fer.rage
SING Gazagnes
AF sayag

© Éditions Eyrol/es

PL-1

PL-2

PL-3

PL-4

PL-5

PL-6

AF sarda

AF Giaconne
SING Cal ac
CAST Ferrage
SING Gazagnes
AF sayag

105 1

lr.111

1106

Dl.lllicatas
La directive DISI'INCT (UNIQUE est un synonyme) élimine tout doublon de valeur. La
première requête filtre les doublons au niveau du code compagnie. La deuxième filtre les
doublons au niveau d'un couple de valeurs. Ici, toutes les lignes sont retournées car aucun
pilote n'est identique au niveau de ces deux colonnes.

Utlllsdon Requêtes SQl et résultats

Liste des compagnies (sansdotb lon) SQL> SELECT DISTINCT compa FROM Pilote;

Élimination de doublon de couples

COMPA

J>.F

CAST

SI NG

SQL> SELECT ONIQUZ nbhvo l ,compa FROM Pilote;

NBHVOL COMPA

2450 CAST
4500 AF
2000 AF
1 500 S ING
2450 AF

S ING

La gestion des NULL par la d irec tive DISTINCT ou UNIQUE est ident ique à celle des traite­
ments ensemb listes (voir la section• Les opérateurs ensemb listes•) à savo ir que deux NULL
sont considérés identiques.

f.11 .. essions

Il est possible d'éva luer des expressions numériques ou alphanumériques (incluant des fonc·
tions de dates) dans la clause SELECT.

Le résultat d'une expression numérique induant un NULL retourne un NULL. Si vous dés irez
modifier oe comportement par vous dev rez transformer un NULL en une valeur choisie
(0 ou 1 par exemple) avec la fonction NVL.

Le résultat d'une expression alphanumé rique induant un NULL ne retourne pas systémat ique­
ment un NULL.

© ÉdW/ons Eyroles

L'exemple suivant présente deux expressions incluant un NULL ; l'expression numérique est
impactée alors que la concaténation ne l'est pas. L'opérateur de concaténation d'Oracle (11)
accepte différentes expressions (colonnes, calculs, fonctions, etc.) et retourne une chaîne de
caractères.

Requête Réslllal IOUI SQl 0 Plu1

SELECT brevet, BREVET PRIME HEURE..)IOM
n.bHVol *l .75 AS prim e,
nbHVol l I nom AS heure_nom

FROM Pil ote ;

Ordonnancement

------ ----
PL-1 7875
PL-2 3500
PL-3 2625
PL-4 428 7' 5
PL-5
PL-6 428 7' 5

----- ----- ----
4500Sarda
2000Giaconne
1500Ca l ac
2450Ferrage
Ga2agnes
2450Sayag

Pour trier le résultat d'une requête, il faut spécifier la clause d'ordonnancement par ORDER BY

de la manière suivante :

ORDBR (SIBLI!iGS) BY

{ expressionl) positionl) aliasl) (ASC) DESC) (NCILLS FIRST)

NULLS LAST)

(, {expression2) position2) alias2) (ASC) DESC) (NCILLS FIRST) NCILLS

LAST)) ...

• SIBLINGS: relatif aux requêtes hiérarchiques, couplé au Q)NNEC'l' BY (étudié en fin de
chapitre).

• expression: nom de colonne, fonction, constante, calcul.

• position: entier qui désigne l'expression (au lieu de la nommer) dans son ordre d'appa­
rition dans la clause SELECT.

• ASC ou DESC: tri ascendant ou descendant (par défaut ASC).

• NULLS !'lf\Sf ou NULLS LAfIT: position des valeurs nulles (au début ou à la fin du résul­
tat). NULLS LASl' par défaut pour l'option ASC, NULLS FIRST par défaut pour l'option
DESC.

© Éditions Eyrol/es 107 1

lr.111

1108

Options par défaut

SELECT brevet , nom FROM Pil ote
OllDD BY n om;

BREVET NOM

PL-5 Dani e l Vie ll e
PL-2 Did i e r oonse z

PL-1 Gr at i en Vi e l
PL-4 Plac i de Fr esna is
PL-3 Ric hard Grin

Substitutions condiliomeles

Option 11r les valeurs NULL

SELECT brevet ,nbHVo l FROM Pil ote
OllDER BY nbHvo l ASC NOLLS r.tl\ST;

BREVET

PL-5
PL-2
PL-1
PL-3
PL-4

NBHVOL

0
450

1000
2 450

Deux structures permettent de conditionner une expression : CASE (propre à Oracle et étudiée
au chapitre 6) et DECODE (la fonction SQL normative). À J'aide de ce mécanisme, si la valeur
de l'expression est identique à la valeur testée, un résultat prévu peut être retourné. Si aucune
correspondance n'est trouvée, une éventuelle valeur par défaut peut être retournée (sinon
NULL). La requête suivante permet de substituer des libellés à des codes.

Requête

SELECT nom, IœCOD& (compa,

' AF ' , ' Air France ' ,
' SING' , ' Singapo r e Air ' ,
' CAST' , ' Trans Cas ta ' ,

' Aut r e ou aucune ')
AS compagni e

FROM Pil ote
OROER BY nom;

ROWIJ

Réslllat

NOM COMPAGNIE

cal ac sin gapo r e Air
Ferr age Tra ns Cas ta
Gazagnes sin gapo r e Air
Gi a.conne Ai r Fran ce
sarda Ai r Fran ce
sayag Ai r Fran ce

Le format du rowidde chaque enregistrement inclut le numéro de le numéro relatif du
fichier, le numéro du bloc dans le fichier et le dép lacement dans le bloc. Le qui dés igne
cette non modifiable (mais accessib le) est ROWID.

© ÉdW/ons Eyroles

Requêle

SELECT RONID, bre vet , nom
FROM Pil ote ;

Pseudo-colome ROWHUM

Résubal IOUS SQL "Plus

ROlfl:D BREVET NOM

AAAiaVAAJAAAAAOAAA PL-1 Gr at i en Vie l
AAAiaVAAJAAAAAOAAB PL-2 Did i er oonse z
AAAiaVAAJAAAAAOAAC P L-3 Ric h ard Orin

AAAiaVAAJAAAAAOAAD PL-4 Plac i de Fr e sna is
AAAiaVAAJAAAAAOAAE P L-5 Dani e l Vi e ll e

La ROIVNUM retourne un entier indiquant l'ordre séquentiel de chaque enregis­
trement extrait par la requête. Le premier possède implicitement une colonne ROIVNUM évaluée
à 1, pour le deuxième elle l'est à 2, etc.

T- 4-10 AlftClllDI Ill llOWlllM

Requêle Résubal IOUS SQL "Plus

ROWNUM BREVET NOM
SELECT RONNUM, brevet , nom

FROM Pil ote ; l PL-1 Gr at i en Vie l
2 PL-2 Didi er oonse z
3 PL-3 Ri c hard o rin
4 PL-4 Pl ac ide Fresnais
5 PL-5 Danie l Vi e ll e

Vous pouvez facilement utiliser cette pseudo-colonne pour limiter le nombre de lignes extraites
ROWNUM<=n) si aucun tri (ORDER BY) n'est associé à votre requête. En revanche, si

vous triez également le résultat tout en désirant extraire les n premières lignes (ou les
ndern ières si le tri est descendant) , vous devrez utiliser une sous-requête (voir la section
•Sous -interrogations dans la clause FROM •). Depuis la version 12c, la dause FETCH permet
de limiter le nombre de lignes plus facilement (voir plus loin).

Insertion mlillli!me
Nous pouvons maintenant décrire l'insertion multiligne évoquée au chapitre précédent. Dans
l'exemple suivant, il s'agit d'insérer tous les pilotes de la table Pil ote (en considérant Je
nom, Je nombre d'heures de vol et la compagnie) dans la table NomsetHV oldesPil otes. La
requête extrait des nouveaux rowids car il s'agit d'enregistrements différents de ceux contenus
dans la table source.

© Éditions Eyrol/es 109 1

lr.111

1110

Notez que les instructions (CRE<\TE TABLE et INSERT ...) peuvent être remplacées par une
unique instruction (option AS SELECT de la commande CREATE TABLE) comme Je montre la
ligne suivante :

1
CREATE TABLE NomsetHVoldesPilotes AS SBLBCT nom, nbHVol, cc:mpa FROM
Pilote;

1111111114-11 ••ID1 •11111•
Création et lnler ... n Requête IOUI SQL0Plus

CREAT!! TABLI! SELECT ROWID, p.* FROM NomsetHVoldesPilotes p;
NansetHVoldesPilotes

(nom VARCHAR (16) ,

nbHVol NUMBE:R(7 ,2),
compa CHAR (4));

ROWID NOM

AAAiaaAAJAAAAAIDAAA Gr a tien Viel
AAAiaaAAJAAAAAm.AAB Didier Donsez

NBHVOL CCMPA

450 AP
0 AP INSERT INTO NomsetHVoldesPilotes

Sa.s<:T nom, nbHVol, canpa
ftOll Pilote;

AAAiaaAAJAAAAAIDAAC Richard Grin 1000 SmG
AAAiaaAAJAAAAAm.AAD Placide Fresnais 2450 CAST
AAAiaaAAJAAAAAm.AAE Daniel Vielle AF

linitalion du nombre de Ignes

Depuis la version 12<; la clause FETCH (éventuellement précédée de OFFSET) vous permettra
de limiter le nombre de lignes d'un résultat (avec ou sans ex œquo si vous appliquez aussi un
tri). On trouve l'équivalent de cette fonctionnalité dans SOL Server (avec TOP) et dans MySQL
(avec LIMIT), dans les instructions CREATE TABLE et ALTER TABLE.

Dans la syntaxe suivante que vous devez utili ser à la fin de votre requête (après Je ORDER BY),
les termes ROW ou ROWS sont équivalents, de même que FIRST ou NEXT (encore une querelle
de langage SQL entre Oracle et la norme).

OFFSET nb_lignes_a_sauter { RCX>I) RCX>IS))
FEI'Ol { FIRST) NEKT)

({ nb_lignes_a_inclure) pourcentage PERCENI'))

{ RCM) RCMS) { ŒLY) WITH TIES))

• OFFSE!' permet d'ignorer un certain nombre de lignes en amont.

• PERCENI' permet de raisonner en pourcentage de lignes plutôt qu'en nombre.

• WITH TIES inclut les éventuels ex requo après un tri .

Le tableau 4 -12 présente trois extractions avec ces différentes options.

© ÉdW/ons Eyroles

1 Cllldt1n° 4

'

Requêtes

Les deux pilotes les mieux payés
(triés par ordre alphabétique), en se

à deux même s'il existe des
salaires Identiques ...

Même besoin en considérant les
ex aequo.

La de la population des pilotes.
triés par ordre alphabétique.

RésUtats

SELECT brevet , prenom, nom, n.bhvol
FROM Pil ote
WHERE nbhvol IS NOT NtJLL

ORDER BY nbhvol OESC
l'&'l'CH PI l\ST 2 ROlfS ONLY;

BREVET PRENOM

PL- 1 Ben oi t
PL- 4 JE>an Phi

NOM

sarda
Ferrage

l'&'l'CH NBXT 2 ROlfS WITH TI&S;

BREVET PRENOM NOM

PL- 1 Benoi t sarda
PL- 4 JE>8Jt Phi Ferrage
PL-6 Arnaud sayag

SELECT brevet , prenom, nom,
FROM Pil ote
ORDER BY nom ASC

compa

l'&'l'CH Pil\ST 50 P&RC&NT ROlfS ONLY;

BREVET PRENOM

PL-3 Pierr e
PL- 4 JE>8Jt Phi
PL-5 Jean

N OM

cal ac
Ferrage
Gazagnes

NBHVOL

4500
245 0

NBHVOL

4500
245 0
245 0

COMPA

SING
CAST

SING

Vous ne pouvez pas bénéficier de cette fonctionnalité dans un SELECT ·- FOR UPDATE ou une
requête définissant une vue matérialisée (voir le chapitre 12). De même, aucune séquence
avec les CURRVAL et NEXTVAL ne peut être utilisée dans une requête incluant
la clause FETCH.

Restriction twHERE>

Les éléments de la clause WllERE d'une requête permettent de programmer J' opérateur de restric­
tion. Cette clause limite la recherche aux enregistrements qui respectent une condition simple ou
complexe. Cette section s •intéresse à la partie surlignée de J' instruction SELECT suivante :

© Éditions Eyrol/es

SELECT ({ DIST =i') UNIQUE)) ALL) { lis teColonn es) expression)
FROM nomTabl e (aliasTabl e)
(condition)

111 1

lr.111

1112

• co11ditio11 : est composée de colonnes, d'expressions, de constantes liées. deux à deux entre
des opérateurs :

- de comparaison (>, =, <, >=, <=, <>) ;

- logiques (NOT, AND ou OR) ;

- intégrés (BETWEEN, IN, LIKE, I S N\JLL).

Interrogeons la table suivante en utilisant chaque type d'opérateur :

Figure 4-3 Table Plote

Pilot e

OIJéraleurs de comparaiSon
Le tableau suivant décrit des requêtes pour lesquelles la clause WHERE contient des opérateurs
de comparaison.

Les écritures • prime=S OO • et • (pri me=S OO) • sont équivalentes. Les écritures
• prime <>SOO • et •NOT (prime=S OO) • sont équivalentes. Les parenthèses sont utiles
pour composer des conditions.

Notez l'utilisation du simple guillemet pour comparer des chaînes de caractères .

lllllelU 4·13 " -.

Égaillé

SELECT brevet , nom AS "Prime 500"
FROM Pil ote wsm prime • 500 ;

BREVET Frime 500

PL-1 Grat i en Vi e l
PL-4 Plac i de Fr esna i s

SELECT brevet , nom "de Air -France"

Comparalton et lnégall1é

SELECT brevet , nom, prime
FROM Pil ote w:m:u prime <• 400;

BREVET NOM

PL-3 Ri c hard Grin
PL-6 Fr anco i se To r t

PRIME

90
0

FROM Pil ote WDR& compa = 'AF ' ; SELECT brevet , nom, prim e FROM Pil ote
wsm prime <> 500 ;

BREVET de Air-Fr a nce BREVET NOM PRIME

PL-1 Grat i en Vi e l
PL-2 Didi e r oonsez

PL-3 Ri c hard Grin
PL·S Dani e l Vie ll e
PL-6 Fr anco i se To r t

90
600

0

© ÉdW/ons Eyroles

Opérateurs logiQues

L:ordre de priorité des opérateurs logiques est NOT, AND et OR.

Les opérateurs de oomparaison (>, =, <, >=, <=, <>e t ! =)son t prioritaires par rapport à NOT.

Les parenthèses permettent de modifier les règles de priorité.

La première requête de l'exemple suivant contient une condition composée de trois prédi­
cats qui sont évalués par ordre de priorité (d'abord AND puis OR). La conséquence est l'affi­
chage des pilotes de la compagnie 'SING ' avec les pilotes de 'AF' ayant moins de 500 heures
de vol.

La deuxième requête force la priorité avec les parenthèses (AND et OR sur Je même pied
d'égalité). La conséquence est J' affichage des pilotes ayant moins de 500 heures de vol des
compagnies 'SING' et 'AF.

Requête

SELECT brevet, nom, compa
FROM Pi l ote WHERE

(compa ' S I NG ' OR

compa = ' AF ' AND nbHVol < 500);

SELECT brevet, nom, compa

FROM Pi l ote WHERE
((Compa = ' SI NG ' OR compa = ' AF ')

AND nbHVol < 500);

Réslllat IOUI SQl "Plus

BREVET NOM COMPA

--- --- ----------------
PL-1 Gratien Vie l AF

PL-2 Didier oonsez AF

PL-3 Richard Grin SI NG
PL-5 Daniel Vie ll e SI NG

BREVET NOM COMPA

--- --- ----------------
PL-1 Gratien Vie l AF

PL-2 Didier oonsez AF

PL-5 Daniel Vie ll e SI NG

© Éditions Eyrol/es 113 1

lr.111

1114

OIJéraleurs inlégrés
Les opérateurs intégrés sont BEIWEEN, IN, LIKE et IS N\JLL.

Opérateur

BE'IWEEN Hmi ternf AND limitesup teste
l'appartenance à un Intervalle de valeurs.

IN (lis te valeurs) compare une expression
a.ac une liste de valeurs.

LIKE (expression) compare de manière
générique des chaînes de caractères à une
expression.
Le symbole i remplace un ou plusieurs
caractères.
Le symbole _ remplace un caractère.
Ces symboles peuvent se combiner.
Utilisez de préférence des colonnes VARCHAR ou
complétez si nécessaire par des blancs jusqu'à la
taille maximale pour des CHAR.

IS NULL compare une expression (colonne,
calcul, constante) à la valeur NULL.
La négation s'écrit soit • expression IS NOT
NULL »so it oc NOT (expression IS NULL) »,

SELECT brevet, nom, n.bHVol FROM Pilote
WHERE nbHVol BE'IWEEN 399 AND 1000;

BREVET NOM NBHVOL

PL-1

PL-3

PL-5

Gratien Viel
Richard Grin
Daniel Vielle

450

1000

400

SELECT brevet, nom, compa FROM Pilote
WHERE compa IN (' CAST ' ' ' SING ');

BREVET NOM COMPA

PL-3 Richard Grin SING

PL-4 Placide Fresnais CAST
PL-5 Daniel Vielle SING

PL-6 Francoise Tort CAST

SELECT brevet, nom, compa FROM Pilote
WHERE compa LI!Œ (' 'A' ') ;

BREVET NOM

PL-1
PL-2

Gratien Viel
Didier oonsez

COMPA

AF
AF

PL-4 Placide Fresnais CAST
PL-6 Francoise Tort CAST

SELECT brevet, nom, compa FROM Pilote
WHERE compa LI!Œ (' A,_ ') ;

BREVET NOM

PL-1
PL-2

Gratien Viel
Didier oonsez

COMPA

AF
AF

SELECT nom, prime, nbHVol, compa
FROM Pilote
WHERE prime IS NULL OR nbHVOl IS NULL;

NOM PRIME NBHVOL COMPA

Didier oonsez
Francoise Tort 0

0 AF
CAST

© ÉdW/ons Eyroles

Fooctïons

Oracle propose un grand nombre de fonctions qui s'appliquent dans les clauses SELECT ou
WHERE d'une requête. La syntaxe générale d'une fonction est la suivante :

nomFonct i on(colonnel) e xpress i onl L colonne2) express i on2 ...))

Une fonction monoligne agit sur une ligne à la fois et ramène un résull'at par ligne. On d istin­
gue quatre familles de fonctions monolignes : caractères, numériques, dates et conversions
de types de données. Ces fonctions peuvent se combiner entre elles (exemple:
MAX{COS{ABS(n))) désigne le maximum des cosinus de la valeur absolue de la colonne n).

Une fonction multiligne (fonction d'ag régat) agit sur un ensemble de lignes pour ramener un
résultat (voir la section• Regroupements•).

Caractères
Interrogeons la table suivante en utilisant des fonctions pour les caractères :

Rgure 4-4 Table Pilote

Pilote

La plupart des fonctions pour les caractères acceptent une chaîne de caractères en paramètre
de nature CHAR, VARO!AR2, NCHAR, Nl/J\RCHAR2, CLOB, ou NCLOB. Le tableau suivant décrit les
principales fonctions :

© Éditions Eyrol/es 115 1

llWtel

111 6

Foncilon

ASC II (C)

CHR (n)

CONCAT (cl' c2)

I NI TCAP(C)

I NSTR(cl, c2 [,p

r. oJ 1 >

LOWER(C)

LENGTH(C)

T- 4·16 fCIKllols •• les CSllC!im

Objec1H Emmp•

Retourne le caractère ASCII <' A ' > donne 65
ASCII équivalent.

Retourne le caractère CHR (161) 11 CHR < 162) do.nne ; c
équivalent dans le jeu de
caractères de la basé ou
du jeu national (NLS).

Concatène (équivalent à SELECT CONCAT (
11), est opérationnel pour CONCAT (nom, ' vol e p our '), compa)

les LOB. "Perso nne l" FROM Pilote;

Première lettre de chaque
mot en majuscule.

Premier lndloe d'une sous­
chaîne c2 dans une chaîne
cl.
Exemple : Indice du 2• 'Al(
après le 9• caractère.

Tout en minuscules.

Longueur de la chaîne.

Personne l

vie l travai lle pour AF
Grin travai ll e pour SING

SELECT INITCAP (prenom) .. Prénom",

INITCAP (nom) "Nom"
FROM Pi l ote WHERE compa = ' S I NG ' ;

Prénom Nom

Richard Grin

Danie l Vie ll e

SELECT INSTR ('Infos-Air : AirBus pour
Air-France ' , 'Air ' , 9, 2) "Indi ce"

FROM DUAL;

Indice

25

SELECT LOWER(prenom) 11 ' ' 11
LOWER(nom) "Etat civi l"
FROM Pi l ote WHERE compa = ' S I NG ' ;

Etat civi l

richard grin
danie l vie ll e

SELECT LENGTH('Infos-Air : AirBus pour
Air-France ') "Taill e " FROM DUAL;

Taill e

34

© ÉdW/ons Eyroles

© Éditions Eyrol/es

Foncilon

LPAD (c l, n, c 2)

LTRIM (cl, c2)

REPLACE(cl, c2,
c3)

RPAD (c l, n, c 2)

RTRIM(cl,c2)

SOUNDEX(C)

T 4·16 fCIKlloa •• les cnctim (suite)

Objedt ex....,1e
Insertion à gauche de c2 SELECT LPAD < ' Rien ' , 20, ' •. • ' > •sur 2 o •
dans cl sur n caractères. FROM DUAL;

Enlè110 c2 à cl en
examinant la gauche de
cl.

Recherche les c2
présentes dans cl et les
remplace par c3.

sur 20

·,··,··,··,··,··Rien

SELECT
LTRIM(' B747B747A380â Blagnac ' , ' B747 ')
"Bye l es Jumbo " FROM DUAL;

Bye 1 es Jumbo

A380 à Blagnac

SELECT
REPLACE('Mat.ra et Ae.rospatiale ' .
'Mat.ra ' . ' EADS') "Changement"
FROM DUAL;

changement

EADS et Ae.rospatiale

Insertion à droite de c2 SELECT RPAD < ' Ri en ' , 19, ' •. · ' > •sur 19 •
dans cl sur n caractères. FROM DUAL;

sur 19

Rien-.--.--.--.--.-

SELECT Enlè110 c2 à cl en
examinant la droite de cl. RTRIM(' A380 à BlagnacB747B747 ' ' ' 8747 ')

"Bye l es Jumbo " FROM DUAL;

Bye 1 es Jumbo

A380 à Blagnac

la phonétique d'une SELECT nom, surnom, compa FROM Pilote
expression (kl engllsh WHERE SOUNDEX(surnom) IN

(SOUNDEX (' SMYTHE') 'SOUNDEX (' John ')) ;

NOM

donsez
vielle

SURNOM

oal.th
jonee

COMPA

AF

SING

117 1

l r.111

111 8

lllllelU 4-16 l'GllCdolls PO• les csllClires (suite)

Fonction

SUBSTR(c,n, [t])

ObjectH

Extraction de la sous­
chaîne coommençant à la
posa Ion n sur t caractères

TRANSLATE(' c l ' , Transbrme chaque
' de ' , ' vers ' > caractère de cl existant

dans œ ayant un
correspondant dans vllfs.

TRIM (c l FROM c2) Enlève les caractères cl à
la chaîne c2 (options LEA­
DING et TRAILING pour
préciser le sens du
découpage).

UPPER Tout en majuscules.

Emmple

SELECT
SUBSI'R('Air France à Blagnac Ccn ! ' , 12, 9)

"Où ça?"
FROM DUAL;

Où ça'?

à Blagnac

SELECT TRANSLATE ('ORACI.Sti 1,

' 0123456 789ABCDSFGHIJKLMNOPQR ' ,
' Chainevera-codage-0123456789 ')
"Codage • FROM DUAL;

Codage

69-o3asi

SELECT
TRIM (' B ' FROM ' BA380 à BlagnacBBBBB ')
"Bye l es Jumbo " FROM DUAL;

Bye l es Jumbo

A380 à Bl agnac

SELECT UPPER (prenom) 11 ' ' 11
UPPER(nom) "Pil otes de CAST"

FROM Pilote WHERE compa = ' CAST ' ;

Pilotes de CAST

PLACIDE FRESNAIS
FRANCOISE TORT

© ÉdW/ons Eyroles

NumériQues
La plupart des fonctions numériques acceptent en paramètre une ou plusieurs expressions de
type NUMBER.

Foncilon Objedt

ABS(n) Valeur absolue de n.
ACOS (n) Arcooslnus (nde -1 à 1),

retour exprimé en radians
(de 0 àpl).

ATAN(n) Arc tangente CV n), retour
exprimé en radians
(de -pl/2 à pV2).

CEIL(n) Plus petit entier ;,, à n. CEI L(l5. 7) donne 16.

COS(n) Cosinus de n exprimé en cos (60* 3 .14159265359/180) donne o. 5.
radians de o à 2 pl
(oon110rslon en degrés :
<!3. 141 592653591 180).

COSH (n) Cosinus hyperbolique de n.
EXP(n) e (2. 71828 183) à la

puissance n.
FLOOR(n) Plus grand à n. FLOOR(l5. 7)donne 15.

LN(n) népérien den.

LOG(n) (m,n) de ndans une
base m.

MOD(m,n) Division entière de m par n.
POWER(m,n) m puissance n.
ROUND(m, n) Arrondi à une ou plusieurs ROUND(l 7. 567, 2) donne 17, 57.

décimales

SIGN(n) Retourne le signe d'un
nombre.

SIN(n) Sinus de n exprimé en SIN(30* 3 .14159265359/180) donne 0. S.
radians de o à 2 pl
(oon110rslon en degrés :
<!3. 141 592653591 180).

SINH (n) Sinus hyperbolique de n.
SQRT(n) Racine carrée de n.
TAN(n) Tangente de n exprimée

en radians de O à 2 pl.

TANH(n) Tangente hyperbolique
den.

© Éditions Eyrol/es 119 1

lr.111

1120

Fonction

TRUNC(n,m)

WI DTH_BUC!ŒT
(expression,

min, max, num)

TmlelU 4-11 r.ctoa -iltQues (suite)

ObjectH

Coupure de n à m
décimales.

Construction d'histo­
grammes , expression
nombre ou date, min limite
Inférieure , max limite
supérieure, num nombre
d'interva lles à construire.

Emmple

TRUNC(lS. 79, l) donne 15.7'.

Valeurs spéeiales pour les nonants
La recommandation IEEE 754 définit des valeurs spéciales pour les flottants : l'infini positif
(+ INF), J' infini néfatif (-INF) et NaN (Not a Nrunber) qui est utilisé pour repr&enter les résultats
des opérations indéfinies. L'obtention de ces valeurs se réalise par les opérations suivantes :
dépassement de capacité (overjlow) pour obtenir -INF, +INF, opération invalide retourne NaN,
la division par zéro peut retourner -INF, +INFo u NaN. Les opérateurs SQL NAN et INFINITE
permettent de tester ces valeurs spéciales sur des flottants.

Le script suivant crée une table, insère deux flottants, modifie les chiffres pour insérer des
valeurs infinies (la première d'une division par zéro, la seconde d'un dépassement de
capacité).

C REATE TABLE Fl ottants (bfloat BINAJ\Y_ l'LOAT, bdoub l e BINAJ\Y_ ootl11Lll);
I NSERT I Nro Fl ottants VALUES (-1-3 . 4 ê 'l-38f, ..-1 . 77e 'l-308d);

SELECT * FROM Fl ottants;

BFLOAT BDOUBLE

3, 4E+038 l , 77E+308

UPDATE Fl ottants SET bfloat = bfloat/0, bdoub l e= 2*bdo ubl e;
SELECT * FROM Fl ottants WHERE bf l oat IS INl'INIT& OR bdoub l e I S INl'INIT& ;

BFLQ.l\T BOOUBLE

Inf Inf

Fonctions pour les nonants
Plusieurs fonctions sont disponibles pour manipuler des flottants.

© ÉdW/ons Eyroles

TO_BINARY_DOUBLE
Comme son nom J'indique, cette fonction transforme une expression en flottant de type
BINARY_OOUBLE. La syntaxe est la suivante :

1 TO_BINARY_DOUBLB(expr ession (, 'format' (, 'nlsparam')))

• f orma t et nlsparam ont la même signification que dans TO_CHAR ;

• express i on représente une valeur numérique ou 'INF', '-lNF', 'N:lN'.

Le script suivant présente l'utilisation de cette fonction.

SELECT TO_BINARY_DOOBLE(13 . 56767) FRCM DUAL;

TO_BINARY_IXJUBLE (13 . 56767)

1, 357E+001

SELECT TO_BI NARY_DOOBLE(' -!NF ') FRCM DUAL;

TO_BINARY_IXJUBLE (' - ! NF')

- I nf

TO_BINARY_FWAT
Cette fonction transforme une expression en flottant de type BINARY_FLOAT. La syntaxe est la
suivante :

1 TO_BINARY_!'LOAT (expr ess i o n [,' f o rma t ' [, 'nl sparam• J J)

La signification des paramètres est identique à la fonction précédente.

DUMP
La fonction DUMP n'est pas dédiée aux flottants mais elle peut être utile pour mieux visualiser
leur représentation. Cette fonction décrit la représentation interne de toute information sous
la forme d'une chaîne de caractères incluant le code du type de données, la taille en octets et la
valeur de chaque octet. Sa syntaxe est la suivante :

1 DUMP (expr ess i o n [, Fo rmatR etour [, p os i t i o n [, l o ngu eur J J J)

• FormatR etour :

- 8 pour retourner une notation octale.

- 10 pour retourner une notation décimale.

- 16 pour retourner une notation hexadécimale.

- 17 pour retourner des caractères distincts.

• p os i t i o n et l o ngu eur combinent la portion de la représentation interne à retourner
(par défaut, toute J' expression est décodée).

© Éditions Eyrol/es 121 1

lr.111

1122

Voici deux exemples d'utilisation de cette fonction . La confirmation qu'un flottant de type
BINARY_OOUBLEest représenté sur 9 octets (dont 8 visibles) apparaît ici clairement. La valeur
de chaque octet en décimale est précisée dans la liste de valeurs retournées .

SELEl:T l>tlMP (TO_BINARY_OOUBLE (13. 56767) , 10) FROM WAL;

DUMP(TO_BINARY_OOUBLE(13 . 56767),10)

Typ =lOl Len=S : 192, 43,3 4 ,165,16 4 ,105,215,52

SELEl:T l>OMP('C .Souto u•, 10) "C.Souto u en ASCII" FR.CM DUAL;

C.Souto u en ASCII

Typ=96 Len=S: 67, 46,83,111,117,116,111,117

NANVL

La fonction NANVL permet de substituer la valeur NaN (Not a Nrllnber) contenue dans un
flottant par une autre valeur donnée et compréhensible (exemple : zéro ou MJLL). La syntaxe
de cette fonction est la suivante :

1 NANVL(expre ssion , subs t i t u t i on)

• expr ess i on désigne la valeur à substituer (tout type numérique ou non nurnenque
pouvant être implicitement converti en numérique). Sil 'expression n'est pas NaN, la valeur
de l'expression est retournée. Sinon la valeur s ubs t i t u t i on est retournée.

Le code suivant décrit l'utilisation de cette fonction appliquée à deux flottants. L'opérateur I S

NJ\N est utilisé dans la deuxième requête. Dans la troisième requête, J' opéraneur NANVL permet
de substituer la valeur 0 au premier flottant et -1 au second quand ces deux valeurs sont indé­
terminées.

I NSERT INTO Flottants VALUES (+3.4e+38f ,+1 . 77e+30 8d)

I NSERT INTO Flottants VALUES ('NaN' , 'NaN') ;

SELEl:T • FR.CM Flottants;
BFLO.Z\T BOOUBLE

3, 4E+038 1,77E+308

Nan Nan

SELEl:T • FR.CM Fl ottants bfloat I S Nor NAN AND bdouble I S Nor NAN;

BFLO.Z\T BOOUBLE

3, 4E+038 1,77E+308

SELEl:T IWIVL(bfloa t , 0)' IWIVL(bdouble, -1) FROM Fl ottants;

© ÉdW/ons Eyroles

1

Nl\NVL(BFIDA T,0) Nl\NVL(BOOUBLE, - 1)

3 ,4E+038 1,77E+308

0 - 1,0E+OOO

REMAINDER

La fonction REMAINDER retourne Je reste de la division de m par 11. La fonction MOD étudiée au
chapitre 4 est quelque peu similaire à REMAINDER (MOD utilise J' opérateur FLOOR alors que
REMAINDER utilise ROUND). La syntaxe de cette fonction est la suivante :

1 REMAINDER(m, n)

• m désigne la valeur à diviser (tout type numérique ou non numérique pouvant être implici­
tement converti en numérique). 11 désigne de la même manière le diviseur.

• Si 11 = 0 ou si m est infini, et si les arguments sont de type NUMBER, la valeur retournée est
une erreur. Dans le cas de flottants (BINARY_FLOAT or BINARY_OOUiBLE), la valeur retour­
née est NaN (Not a Nrunber).

• Si 11 est différent de zéro, la fonction retourne la valeur m - (!1*N) avec N plus grand entier
plus proche du résultat m/11.

• Sim est un flottant et si le résultat vaut zéro, alors le signe du résultat est du signe de m. Si
m est un NUMBER et si le résultat vaut zéro, alors le résultat n'est pas signé.

Le code suivant décrit l'utilisation de cette fonction appliquée à deux flottants de différents
types également valués (1234,56). La valeur retournée n'est pas zéro du fuit da la différence
des types.

INSERI' INI'O Flo ttants VAIJJES (1234.56,1234.56);

SELECT * FROM Flo ttants;
BFIDAT BOOUBLE

1,235E+003 1,235E+003

SELECT bfloa t , bdouble, UlllllllDD (bfloat,bdoub l e) FROM Flo ttants;
BFIDAT BOOUBLE REMAINDER(BFIDA T, BOOUBLE)

1,235E+003 1,235E+003 5,8598-005

© Éditions Eyrol/es 123 1

lr.111

1124

Dates
Le tableau suivant décrit les principales fonctions pour les dates.

Fonction

T_, 4-18 fCIKllols i- les dates

ObjectH Retour

ADD_MONTHS

CURRENI' J)ATE

EXTRACT f {YEAR 1 MONTH 1 DAY 1

HOUR 1 MINUTE 1 SECOND} FROM
{ d 1 i })

LASTJ)AY fd)

MONTHS_ BE'IWEENfd1 , d2)

NEW_TIME fd, zl , z2)

NEXTJ)AY fd, jour)

ROUNDfd , format)

SYSDATE

TRUNCfd , format)

Ajoute des mols à une date.

Retourne la date oourante (calendrier grégorien)
dans la session et le fuse au de la base.

Extrait une partie donnée d'une date ou d'un
Intervalle.

Retourne le dernier jour du mols.

DATE

DATE

NUMBER

DATE

Retourne le nombre de mols entre deux dates (dl NUMBER

et d2 avec d1>d2J.

Retourne la date dexprlmée en zone z1 dans la DATE
zone z2.

Retourne la date du prochain jour ouvrable DATE
(exemple jour 'LUNDI') à partir de d.

Arrondit une date dselon un brmat (exemple : DATE
' YEAR').

Date courante (du système). DATE

Tronque une date dselon un format (exempie : DATE
' YEAR').

Quelques exemples d'utilisation (SYSDATE est ici mercredi 14 mai 2003) sont donnés dans Je
tableau suivant.

Betoln et lonctlon Réslllat

Mercredi en 7 ? Mer c r /7
SELECT llDT _DAYfSYSDATE, ' MERCREDI') "Merc r /7 " FROM DUAL;

21 / 0 5/03

Rendez-vous dans 4 mols. RDV

SELECT ADD_..-m& f SYSDATE,4) "RDV" FROM DUAL;
14/ 09 / 03

Numéro du mols d' il y a 65 jours ? Moi s
SELECT DTIUICT (MONTH FROM (SYSDATE-6 5)) "Moi s " FROM DUAL ;

3

© ÉdW/ons Eyroles

• fZJ

,......, 4·19 EmmllleS Ill l•cloa llOlll les dates (suite)

Betoln el loncilon

Arrondi du 28 octcbre 2005 au niveau du mols.
SELECT ROOllD(TO_DATE(' 28-0CT-2005 '). 'MONTH') "Arr o ndi" FROM
DUAL;

Col4)e du 28 octobre 2005 au niveau du mols.
SELECT Tl\!lllC(TO _ DATE(' 28-0CT-2005 '). 'MONTH') "Tronqu e " FROM
DUAL;

ConversiOns
Oracle autorise des conversions de types implicites ou explicites.

Implicites

Résullal

Arrondi

01 / 11/ 05

Tronque

01 / 10/ 05

Il est possible d'affecte r dans une expression ou dans une instruction SOL (INSERT,
UPDATE ...), une donnée de type NUMBER (ou DATE) à une donnée de type VARCHAR2 (ou
CHAR). Il en va de même pour l'affectation d'une colonne VARCHAR2 par une donnée de type
DATE (ou NUMBER). On parle ainsi de conversions implicites.

Pour preuve, Je script suivant ne renvoie aucune erreur :

1
ŒFATE TABLE Tes t

INSERl' IN'l'O T est Vl\IJJES

Explicites

(cl NUMBER, c2 DATE, c3 VARCHAR2(1), c4 ŒAR) ;

('5 48, 45', '13 -05-2003', 3, 5) ;

Une conversion est dite explicite quand on utilise une fonction à cet effet Les fonctions de
conversion les plus connues sont TO_NUMBER, TO_CHAR et TO_DATE.

Les fonctions de conversion sont décrites dans Je tableau suivant.

Fonction Convwslon

BI N_TO_ Les bits en NUMBER. BIN_TO_NUM(1 , 0 , l , 0) donne 10.
NUM(b1 , b2 ...)

CAST < expression L.:expresslon dans le type en CAST (2 AS CHAR) donne '2 '.
AS typeoracle) paramètre.

© Éditions Eyrol/es 125 1

lr.111

1126

T_, 4-20 fCIKllols Ill œ111nm (suite)

Foncilon

CHARTCROWID (C)

COMPOSE (' C ')

CONVERT (C ,

j e udest
r' jeusouree])

NUMTODSINI'ERVAL

NUMTOYMINI'ERVAL

ROWIDTOCHAR (r)

TC_CHAR(C)

Conversion

La chaîne cen ROWID.

La chaîne cen Unicode.

La chaîne cdu jeu de caracières
source en jeu de destination.

Un nombre dans un type INI'ER ­
VAL DAY TC SECOND.

Un nombre dans un type INI'ER ­
VAL YEAR TO MONTH.

Le ROWID ren VARCHAR2.

La chaîne en VARCHAR2.

TC_CHAR (df, for- la date en VARCHAR2.
mat)

TC_CHAR (n f, for- Le nombre en VARCHAR2.
mat)

TC_DSINTERVAL (c
[' paramNLS '])

Une d'laîne c dans un type INI'ER ­
VAL DAY TC SECOND.

Exemple

CONVERT(' A t i 0 ' ,

'US7ASCII ' , ' WE8IS08859Pl ')
donne •A E r ? '.

Déjà étudié.

Déjà étudié.

Déjà étudié.

TC_NUMBER('1234. 56 7 ' , ' 9. 9EEEE')do
nne 1. 3E• 02.

TC..)IUMBER(C
r. format

Une chaîne ccontenant un nombre TO_NUMBER < '100, 9678 ') donne
dans un type un 100, 967 8.

[, ' para mNLS ']]) format et une langue.

TC_YMINTERVAL(c) Une chaîne cdans un type
INI'ERVAL YEAR TO MONTH.

UNISTR(' c ' > La chaîne cen Unicode.

Autres fonctions

SYSDATE • TO_YMINI'ERVAL (' 01-0 2 ')
donne la date du jour+ 1 an et 2 mols.

UNISTR(' \ 000 6 ') donne ô .

D'autres fonctions n'appartenant pas à la classification précédente sont présentées dans le
tableau suivant :

l_, 4-21 IUIJes ICIKllols

Foncilon Objedt Exemple

DECODE (co l onne , Programme un case. Dl:ICODl:(grade, l, •c opil ote ' ,
2, ' Instru cteur ') affiche
'Copil ote ' si la co lonne gr ade • 1.

cherche , resu l tat
r, cherche , resu l tat] ...)

GREATEST (expressio n [,
expression] ...)

LEAST(e xpressio n[,
expression] ...)

Retournelaplusgrandedes GUM'l:ST('Raffarin ' , ' Chirac ' ,
expressions. ' X-Men ') retourne' X- Men ' .

Retourne la plus petite des LUST(' Raff arin ' , 'Chirac ' ,
expressions. ' X-Men ') retourne ' Chirac ' .

© ÉdW/ons Eyroles

Foncilon

NULLIF (exprl, expr2)

NVL (exprl, expr2)

T_, 4-21 Alllm ICIKllols (suife)

ObjeciH

SI expr1 • expt2 retourne
NULL, sinon retourne expr1.

Con110rtlt expr1 susœptll le
d'être nulle en une valeur
réelle (expr2).

llULLII' (' Raffarine • , ' Parafine •)
retourne ' RAf far ine ' ,

llVL (g.rade, 'Aucun ! •)retourne
'Aucun ! ' si g.rade est NULL.

Regroupemems

Cette section traite à la fois des regroupements de lignes (agrégats) et des fonctions de groupe
(multiligne). Nous étudierons la partie surlignée de l'instruction SELECT suivante:

SBLBCT ({ DISTINCT) UNIÇUE)) l\LL) listeColonnes

FR.CM nomTable
condition)

clauseReg roupe.m ent

HAVIN'.> cond i t ion)

clauseOrdonnancement] ;

• lis teCo l onnes: peut inclure des expressions (présentes dans la clause de regroupe­
ment) ou des fonctions de groupe.

e c lauseRegro upemen t : ŒOUP BY (expressionl [, expression2) ...) permet de
regrouper des lignes selon la valeur des expressions (colonnes, fonction, constante, calcul).

• HAVING condi tion: pour inclure ou exclure des lignes aux groupe:s (la condition ne peut
faire intervenir que des expressions du GROUP BY).

Interrogeons la table suivante en composant des regroupements et en appliquant des fonctions
de groupe :

Rgure 4-5 Table Pilote

Pilote

© Éditions Eyrol/es 127 1

lr.111

1128

Fonctions de growe
Nous étudions dans cette section les fonctions usuelles. D'autres sont proposées pour manipuler
des cubes (datawareho11se).

Le tableau suivant présente les principales fonctions. L'option DISTINCT évite les duplicatas
alors que ALL les prend en compte (par défuut). À l'exception de OJUNI', toutes les fonctions
ignorent les valeurs NlJLL (il faudra utiliser NVL pour contrer cet effet).

T- 4·22 llilcloDS dl 81111111

Fonction Objecft

AVG([DISTINCT 1 ALL] expr) Moyenne de expr (nombre).

COUNI'({ * 1 [DISTINCT 1 ALL] expr }) Nombre de lignes (• toutes les l ignes, expr pour
les colonnes non nulles).

MAX ([DISTINCT 1 ALL] expr) Maximum de expr (nombre, date, chaîne).

MIN ([DISTINCT 1 ALL] expr) Minimum de expr (nombre, date, chaîne).

STDDEV([DISTINCT 1 ALL] expr) Écart type de expr (nombre).

SUM([DISTINCT 1 ALL] expr) Somme de expr (nombre).

VARIANCE([DISTINCT 1 ALL] expr) Variance de e xpr (nombre).

Utilisées sans GROUP BY, ces fonctions s'appliquent à la totalité ou à une seule partie d'une
table comme Je montrent les exemples suivants.

Fonction

AVG

COU NT

Exemples

Moyenne des heures de "'I et des primes des pilotes de la oompagmle 'AP.
SELECT AVQ (nbHVol)' AVG(prime) FROM Pil ote WHERE compa = ' AF ' ;

AVG(NBHVOL) AVG(PRIME)

2 83 ' 33 3333 550

Nombre de pilotes, d'heures de vol et de primes (toutes et distinctes) recensées dans la
table.
SELECT COOll'l'(*), coomtnbHV ol), COOll'l'tprime), COOll'l'tDISTINCT prime)
FROM Pil ote;

COUNI'(*) COUNI'(NBHVOL) COUNI'(PRIME) COUNT(DISTINCTPRIME)

6 5 4 3

© ÉdW/ons Eyroles

1 Cllldt1n° 4

'

Fonc11on

MAX-MIN

STDEV ­
SUM ­
VARIANCE

,......, 4-23 fi...-dl lllllCdolls dl 1111111111 (suite)

Nombre d'heures de vol le plus élevé, date d'embauche la plus récente. Nombre
d'heures de vol le moins élevé, date d'embauche la plus anclenme.
SELECT MAX (nbHVo l), MAX (emba u c h e) "Date •", MJ:N (pri me),

MIN(emba uc h e) "Date- " FROM Pil ote ;

MAX(NBHVOL) Date • MIN(FRIME) Date-

2450 21 / 09 / 01 0 16/01/65

Écart type des primes, somme des heures de vol, variance des primes des pilotes de la
compagnie 'AP.
SELECT STDDSV (prime)' Stlll (nbHVol)' VAJ\IAJIC'Z (prime) FROM Pil ote

WHERE compa = ' AF ' ;

STDDEV (PRIME) SUM (NBHVOL) VARIANCE (PRIME)

70, 710 67 81 850 5000

Étudions à présent ces fonctions dans Je cadre de regroupements de lignes.

Étude du GROUP BY et HAVING
Le groupement de lignes dans une requête se programme au niveau surligné de l'instruction
SQL suivante :

SELECT coll L c o12 ... J, fon ct ionl Group e(...) L fon ction2Group e(...) ...)

FR.CM nomTabl e
(condi t ion)
GROUP BY coll (. col2) ...)

(HAVING condition)
(ORDER BY...) ;

• la clause WHERE de la requête permet d'exclure des lignes pour chaque groupement, ou de
rejeter des groupements entiers . Elle s'applique donc à la totalité de la table ;

• la clause GROUP BY liste les colonnes du groupement ;

• la clause HAVIm permet de poser des conditions sur chaque groupement.

Les colonnes présentes dans le SELECT doivent apparaître dans le GROUP BY. Seules des
fonctions ou expressions peuvent exister en plus dans le SELECT.

Les alias de colonnes ne peuvent pas être utilisés dans la clause GROUP BY.

Dans l'exemple suivant, en groupant sur la colonne compa, trois ensembles de lignes (groupe­
ments) sont composés . Il est alor s possible d'appliquer des fonctions c!e groupe à chacun de

© Éditions Eyrol/es 129 1

l r.111

1130

ces ensembles (dont Je nombre n'est pas précisé dans la requête ni limité par Je système qui
parcourt toute la table).

Figure 4-6 Groupement sur ta colome compa

Pilo t e

brevet nom nbHVol prime embauche typeAvion compa

1

l'L•1 <.>rauen v1e1 .,., ,,.,.., -· "'"V Ae 1
PL·2 Didier Oonsez 0 13/0511995 A320 AF 1
PL-5 Daniel Vielle 400 600 16/0111965 A340 AF 1
PL-6 F rancoise Tort 0 24112'2000 A340 CAST

1 l'L-3 M1CnaRl e>nn IWU ' """'"w' "°"V '""" 1 1 PL-4 Placide Fresnaos 2450 500 21/09'2001 A330 SING

Il est aussi possible de grouper sur plusieurs colonnes (par exemple ici sur les colonnes compa
et typeAvicn pour classifier les pilotes selon ces deux critères).

Utilisées avec GROUP BY, les fonctions s'appliquent désormais à chaque regroupement comme
Je montrent les exemples suivants :

Foncilon

AVG

CO UNI'

Exemples

Moyenne des heures de vol et des primes pour chaque compagni e.
SELECT compa , AVG (nbHV ol), AVG(prime) FROM Pil ote

GROOP BY (c ompa) ;

COMP AVG(NBHVOL) AVG(PRIME)

J>.F

CAST

SING

2 83 , 333333

1725

550
0

500

Nombre de pilotes (et œux qui ont de l'expérience du "' I) par compagnie.
SELECT compa , COONT(*)' COONT(nbHV ol) FROM Pil ote

GROOP BY (c ompa) ;

COMP COUNI' (*) COUNI' (NBHVOL)

J>.F
CAST

SING

3
1
2

3
0
2

© ÉdWtons Eyroles

Foncilon

MAX

STDEV -
SUM

(avec WHERE)

Plusieurs
colonnes
dans le
G ROUP BY

Nombre d'heures de vol le plus élevé, date d'embauche la plus récente pour chaque
compagnie.
SELECT compa, MAX(nbHVol), MAX(emba u c he) "Date•"

FROM Pilote GROOP BY(compa) ;

COMP MAX(NBHVOL) Date•

AF 450 13/05/95
CAST 24/ 1 2/00
S ING 2450 21 /09/0 1

Écarts type des primes et sommes des heures de vol des pilotes volant sur 'A:32<J de
chaque compagnie.
SELECT compa, STDDSV(prime), SUM(nbHVol) FROM Pi l ote

WHERE type Avi on = ' A320 ' GROOP BY (compa) ;

COMP STDDEV (PRIME) SUM (NBHVOL)

AF
S ING

0 450
1 000

Nombre de pilotes qualWlés par type d'appareil et par compagnie.
SELECT compa,typeAvio n, COONT(brevet) FROM Pi l ote

GROOP BY (compa, typeAvio n) ;

COMP TYPE COUNI' (BREVET)

AF A320
AF A340
CAST A340
S I NG A320
S ING A330

2
1
1
1
1

G ROUP BY et Compagnies (et nombre de leurs pilotes) ayant plus d'un pilote.
HAVI NG SELECT compa, COONT(brevet) FROM Pi l ote

GROOP BY(compa)
BA.VIllQ COUNI'(brevet)>=2;

COMP COUNI' (BREVET)

AF
S ING

3
2

© Éditions Eyrol/es 131 1

llWlll

Opéra1eurs ensemblisles

'
1132

Une des forces du modèle relationnel repose sur le fait qu'il est fondé sur une base mathéma­
tique (théorie des ensembles). Le langage SQL programme les opérations binaires (entre deux
tables) suivantes :

• intersection par l'opérateur lNI'ERSECT qui extrait des données présentes simultanément
dans les deux tables ;

• union par les opérateurs UNION et UNION ALLqui fusionnent des données des deux tables ;

• différence par l'opérateur MINUS qui extrait des données présentes dans une table sans être
présentes dans la deuxième table ;

• produit cartésien par le fuit de disposer de deux tables dans la clause FRQll, ce qui permet
de composer des combinaisons à partir des données des deux tables.

Un opérateur ensembliste se place entre deux requêtes comme le montre la. syntaxe simplifiée
suivante:

SELECT ·- FROM noJitI'able [IVllERE ·-l opérateur SELECT ·- FROM nomTable [IVHERE ·-l;
Les opérateurs ensemblistes ont pour l'instant tous la même priorité. Cependant, pour être
conformes aux nouvelles directives de la norme, les versions ultérieures d'Orade privilégieront
l'opérateur INTERSECT par rapport aux autres.

Si une requête contient plusieurs de ces opérateurs, ils sont évalués de la gauche vers la droite,
quand aucune parenthèse ne spécifie un autre ordre. Ainsi, les deux écritures suivantes produi­
sent des résultats différents :

1
SELEl:T ... INTBRSBCT SELEl:T ... ONION SELECT ... MINUS SELEl:T ...

SELEl:T ... INTBRSBCT SELEl:T ... ONION (SELEl:T ... MINUS SELECT •..)

Reslrictions

Seules des colonnes de même type (CHAR, VARCHAR2, DATE ou NUMBER) doivent être compa­
rées avec des opérateurs ensemblistes.

Il n'est pas possible d'utiliser les opérateurs ensemblistes sur des colonnes BLOB, CLOB, BFILE,
ou LON:;. Les collections varrays et nested tables (extensions objets) sont également exdues.

Attention, pour les colonnes CHAR, à veiller à ce que la taille soit identique entre les deux
tables pour que la comparaison fonctionne. Le nom des colonnes n'a pas d'importance. Il est
possible de comparer plusieurs colonnes de deux tables.

© ÉdW/ons Eyroles

• ID

Exem.-e
Étudions à présent chaque opérateur à partir de J' exemple composé des deux tables suivantes.
Il est visible que seules les deux premières colonnes peuvent être comparées. Il ne serait pas
logique de tenter de faire une intersection ou une union entre l'ensemble des prix d'achat et
des heures de vol par exemple.

Bien que permise par Oracle, l'union des prix et des heures de vol (deux colonnes NUMBEI\) ne
serait pas non plus valide d'un point de vue sémantique.

Figure 4-7 Tables

AviondeAF AviondeSING

Opérateur .. TERSECT

!.:opé rateur INTERSECT est commutat if (requêtel INTERSECT requête2 est identique à
requête2 INTERSECT requêtel). Cet opérateur élimine les duplicatas entre les deux tables
avant d'opé rer l'intersection.

Notez qu'à l'affichage, Je nom des colonnes est donné par la première req uête. La deuxième
fait apparaître deux colonnes dans Je SELECT.

TmleaU 4-25 Ell IVIC INllllSICJ

Bet0ln Requ61e

Quels sont les types d'avions que SELECT typeAvio n FROM Avi onsdeAF
les deux compagnies exploitent en INTDSZCT
oommun? SELECT type.Av FROM Avi o nsdeSING;

TYPEAVION

A320
A340

Quels sont les avions qui sont SELECT iamat, typeAvio n FROM Avi o nsdeAF
par les deux compagnies INTDSZCT

en oommun? SELECT iamatriculation, type.Av FROM Avi onsdeSING;

IMMAT TYPEAVI ON

F-GTMP A340

© Éditions Eyrol/es 133 1

lr.111

1134

Si vous voulez continuer ce raisonnement en vous basant sur trois compagnies, il suffit
d'ajouter une clause INI'ERSECT et de la faire suivre d'une requête concernant la troisième
compagnie. Ce principe se généralise, et, pour 11 compagnies, il faudra /1 requêtes reliées
entre elles par 11- J clauses Im'ERSECT.

Opéraleurs UNION el UNION AU

Les opérateurs UNION et UNION ALL sont commutatifs. !.:opérateur UNION permet d'éviter les
duplicatas (comme DISTINCT ou UNIQUE dans un SELECT). UNION ALL ne les élimine pas.

Betoln

T- 4-26 lmmllleS IUIC les Clllirlt•s lllON

Requête

Quels sont tous les types d'avions que les deux
compagnies exploitent?

SELECT type.Avi on FROM Avi onsdeAF
ONl:ON
SELECT type.Av FROM Avi onsdeSING;

TYPEAVION

A320
A330
A340
concorde

Même requête 11:o1ec les duplicatas On extrait les SELECT typeAvion FROM Avi onsdeAF
types de la compagnie 'AP suivis des types de la om:oN ALL
compagnie 'SING'. SELECT typeAv FROM Avi onsdeSING;

TYPEAVION

concorde
A320
A340
A320
A320
A330
A340

Ce principe se généralise à l'union de 11 ensembles par 11 requêtes reliées avec 11- J clauses
UNION ou UNION ALL.

OIJéraleur MINUS

!.:opérateur MINUS est le seul opérateur ensembliste qui ne soit pas commutatif. Il élimine les
duplicatas avant d'opérer la soustraction.

© ÉdW/ons Eyroles

Betoln

Quels sont les types d'avions exploités par la
compagnie 'AP mals pas par 'SING' ?

Quels sont les types d'avions exploités par la
compagnie 'SING' mals pas par 'AP ?

Requête

SELECT type.Avio n FROM Avi onsdeAF

MJ:NUS

SELECT type.Av FROM Avi o nsdeSING;

TYPEAVION

concorde

SELECT type.Av FROM Avi o nsdeSING
MJ:NUS

SELECT type.Avio n FROM Avi onsdeAF

TYPEAV

A330

Ce principe se généralise à la différence entre 11 ensembles par 11 requêtes reliées (dans le bon
ordre) par 11-1 clauses MINUS.

Ordonner les résultats

Pour un faible volume de données, le résultat d'une requête ensembliste semble trié par défaut
par ordre croissant selon la première colonne extraite mais il n'en est rien dès que le nombre
de lignes retourné devient important. Pour trier un jeu de résultats issu d'une requête ensem­
bliste, vous devez utiliser explicitement la clauseORDER BY. Elle doit se placer une seule fois à
la fin de la requête, et accepte soit des noms (ou alias) de colonne de la première requête, soit
la position des colonnes (mais cela n'est pas recommandé).

Le tableau suivant présente la même requête (types d'avions que les deux compagnies exploi­
tent) dont le résultat est trié par ordre décroissant. La première écriture utilise la clause œJJER
BY à l'aide du nom de la colonne de la première requête, la deuxième utilise un alias de
colonne., et la dernière indique seulement la position de la colonne.

Technique

Nom de la colonne

,....., 4·28 Elt 1Vec 1es 1111irlt11n ura

Requête

SELECT type.Av i on FROM Avi onsdeAF
UNION

SELECT type.Av FROM Avi onsdeSING
ORDD. BY typé.Avion;

© Éditions Eyrol/es 135 1

lr.111

1136

Technique

Allas de colonne

Position de colonne

Requête

SEL ECT t ype.Av i on AS t ype FROM Avi onsdeAF
UNI ON
SELECT t ype.Av FROM Avi o nsdeSING
ORDl:R BY type DESC;

SELECT t ype.Av i on AS t ype FROM Avi onsdeAF
UNI ON
SELECT t ype.Av FROM Avi o nsdeSING
ORDl:R BY 1 DESC;

TYPE (TYPEAVION pour la 1re requête)

concorde
A340
A33 0
A32 0

Pour illustrer une autre utilisation d'un alias, tentons d'extraire les avions et leur prix d'achat
augmenté de 20 % - liste triée en fonction de cette dernière hausse. Le problème est que la
table AvionsdeAF ne possède pas une telle colonne. Il suffit d'ajouter au SELECT de cette
table l'expression O pour rendre homogène les deux jeux de résultats pour! 'opérateur UNICN.

T- 4-29 1111 •• 1111111 BY

Requête

SELECT i mmatricul at i on,
1.2*prixAcha t px FROM Avi onsdeSING

UNION
SELECT i mmat , 0 FROM Avi onsdeAF
OROER BY px DESC;

Produil car1ésien

Réslftat

IMMATR PX
-- ----- ---

F-GTMP 245 400
S - MI LE 2276 00
S - AVEZ 187200
S - ANSI 125 400
F-GLFS 0
F-GTMP 0
F-wrss 0

En mathématiques, Je produit cartésien de deux ensembles E et Fest l'ensemble des couples
(x, y) où x e E et y e F. En transposant au modèle relationnel, Je produit cartésien de deux
tables Tl et 12 est l'ensemble des enregistrements (x, y) où x e Tl et y e T2.

Le produit cartésien total entre deux tables T1 et T2se programme sous SOL en positionnant
les deux tables dans la clause FROM sans ajouter de conditions dans la clause l\TllERE.

Si les conditions sont de la forme• c1 opér at eur c2 • avec c1 e T1 et c2 e T2, on parlera de
joinb.Jre.

© ÉdW/ons Eyroles

Si les conditions sont de la forme• c1 opérateur valeur1 •ou• c2 opérateur valeur2• , on
parlera de produit cartésien restreint

Le produit cartésien restreint, illustré par l'exemple suivant, exprime les combinaisons d'équi­
page qu'il est possible de réaliser en considérant les pilotes de la compagnie 'AF et les avions
de la table AviondeAF.

Figure 4../J ProduW cartésien d 'enregistrements de tables

Pilote AviondeAF

Le nombre d'enregistrements résultant d'un produit cartésien est égal au produit du nombre
d'enregistrements des deux tables mises en relation.

Dans le cadre de notre exemple, le nombre d'enregistrements du produit cartésien sera de
2 pilotes X 3 avions = 6 enregistrements. Le tableau suivant décrit la requête SQL permettant
de construire le produit cartésien restreint de notre exemple. Les alias distinguent les colonnes
s'il advenait qu'il en existe de même nom entre les deux tables.

Betoln

Quels sont les oouples possllles (avion, piloté) en
considérant les avions et les pilotes de la
compagnie 'AP ?

6 /Ignes extr9ites

Blan

Requête

SELECT p.brevet, avAF.immat
PROM Pilote p, Avionsdé.AF avAF
WHERE p.compa = ' J>.F' ;

BREVET IMMAT

PL-1 F-WTSS

PL-4 F-WTSS

PL-1 F-GLFS

PL-4 F-GLFS

PL-1 F-GTMP

PL-4 F-GTMP

Seules les colonnes de même type et représentant la même sémantiq ue peuvent être comparées
à J'aide de termes ensemblistes. Il est possible d'ajouter des expressions (constantes ou

© Éditions Eyrottes 137 1

l r.111

1138

calculs) à une requête pour rendre homogènes les deux requêtes et permettre ainsi l'utilisation
d'un opérateur ensembliste (voir l'exemple décrit au tableau 4-27).

sous-inle1Togalions dans la clause moM
Introduite dans la norme SQL2, la possibilité de disposer une requête au sein de la clause FROM
d'une requête principale permet d'évaluer dynamiquement un jeu de résultats en construisant
une table avant de l'interroger. Vous découvrirez à la fin de ce chapitre que la directive WITH,
plus récente dans Je langage, permet de généraliser ce mécanisme.

La construction d'une table par sous-interrogation pour alimenter une requête principale suit
la syntaxe suivante :

SELB::T colonnes_ou_express ions

FRCM (tablel alias_l, ...)

(SELECT ••• FRCM table2 •••) alias_2

(, (SBLBC'l' •••) alia•_n)

(WHERE (cond i t ions_tablel_table2 ...)) ;

Considérons deux exemples afin d'illustrer cette fonctionnalité.

Calcul d 'un pource ntage partiel

Le premier exemple consiste à extraire Je pourcentage partiel de pilotes par compagnie. Dans
l'exemple suivant, 5 pilotes sont représentés (dont 3 associés à la compagnie ' AF '). En consi­
dérant cette compagnie, 60 % (soit 3/5) des pilotes en dépendent.

Figure 4-9 Table Plote

Pilote

brevet prenom nom nbHVol compa

Pl -1 Pierre Lamothe 450 AF
Pl -2 Didier Linxe 900 AF
Pl -3 Christian Soutou 1000 SING
Pl -4 Henri Alquié 3400 AF
PL -5 M1cne1 Lasta1ng.s

La requête utilise deux sous-interrogations pour construire deux tables (respectivement d'alias
a et b) dans la clause FROM. Ces sous-interrogations sont illustrées dans Je tableau ;
ces jeux de résultats permettent de calculer les pourcentages pour chaque compagnie.

© ÉdW/ons Eyroles

Requête el llbles évaluées dans le FROU

SELECT a .compa " Comp ",

a . nbpil / b .tota l*lOO "*Pilote "
FROM (SELECT compa, COUNI'(*) nbpil-

FROM Pil ote GROUP BY compa) • •
(SELECT COUNI'(*) tota l

FROM Pil ote) b;

Réslllat

Comp

AF 60
SI NG 20

20

Afin d'isoler les pilotes qui ne sont associés à aucune compagnie, vous devrez ajouter Je prédi­
cat WllERE compa I S N)T Nl1LL aux deux sous-interr ogations pour que les pilotes de la
compagnie 'AF' representent 75 % (soit 3/4) de la population totale.

Extraire les n premières/dernières lignes d'un jeu de résultats

Le deuxième exemple consiste à extraire les 5 premiers pilotes d'une compagnie donnée.

Présentée en début de chapitre, la pseudo-colonne ROlmuM s'applique avant un tri. Pour remé­
dier à ce mécanisme problématique, utilisez une sous-interrogation qui sera triée (par ordre
croissant ou décroissant). Elle sera ensuite exploitée par une requête principale qui limitera le
nombre de lignes retournées à l'aide de ROlmuM :

SELECT •••
FRCM (r e quête qui ordonne avec ORDER BY ASC ou DESC

et sans ut ilis er ROiVNUM}
ROWNDM < (ou >) x;

Supposons que Je tableau des pilotes contiennent davantage de lignes incluant plusieurs
compagnies et appliquons ce principe à la requête voir tableau suivant.

Requête

SELECT ROWNUM, prenom, nom
F ROM (SELECT prenom, nom

FROM Pilote
WHERE compa = 'AF '

OllDSR BY ""°' ASC)
WHERE RONNUM < 6 ;

Réslllat

ROWNUM PRENOM NOM

l Henri Alqui é
2 Ag n es Bidal
3 Fabienne Bonnet
4 Fred Brouard
5 Rudy a.ruchez

© Éditions Eyrol/es 139 1

l r.111

Jointures

1140

Les jointures permettent d'extraire des données issues de plusieurs tables. Le processus de
normalisation du modèle relationnel est basé sur la décomposition et a pour conséquence
d'augmenter Je nombre de tables d'un schéma. Ainsi, la majorité des requêtes utilisent des
jointures nécessaires pour pouvoir extraire des données de tables distinctes.

Une jointure met en relation deux tables sur la base d'une clause de jointure (comparaison de
colonnes). cette comparaison fait intervenir une clé étrangère d'une table avec
une clé primaire d'une autre table (le modèle relationnel est basé sur les valeurs).

En considérant les tables suivantes, les seules jointures logiques doivent se fuire sur l'égalité
soit des colonnes comp et compa soit des colonnes brevet et chefPi l. Ces jointures permet­
tront d'afficher des données d'une table (ou des deux tables) tout en posant des conditions sur
une table (ou les deux). Par exemple, l'affichage du nom des compagnies (colonne de la table
Ccrnpagnie) qui ont embauché un pilote ayant moins de 500 heures de vol (condition sur la
table Pilote).

Figure 4-10 Deux tables à mettre en jolntUle

Compagnie

CJassilieation
Une jointure peut s'écrire, dans une requête SQL, de différentes manières :

• « relationnelle » (aussi appelée « SQL89 »pour rappeler la version de la norme SQL) ;

• « SQL2 »(aussi appelée « SQL92 ») ;

• « procédurale» (qui qualifie la structure de la requête) ;

• « mixte» (combinaison des trois approches précédentes).

© ÉdW/ons Eyroles

• fZJ

Nous allons principalement étudier les deux premières écritures qui sont les plus utilisées.
Nous parlerons en fin de section des deux dernières.

Jointure relaliOnnele

La forme la plus courante de la jointure est la jointure dite • relationne lle• (aussi appelée
SQL89 [MAR 94]), caractéfiMé par üné Séülé claœé FROM conténant tablM ét alias à rnéttfé
en joinb.Jre deux à deux . La syntaxe générale suivante déc rit une joinb.Jre relationnelle :

SELECT [alia s l.] coll, [alia s 2.] co12._

FROM noIIfl'ablel [aliasl], nomTable2 [alias2] ·-

1\TllERE (conditionsDeJointure);

Cette forme est la plus utilisée car elle est la plus simple à écrire. Un autre avantage de ce type
de jointure est qu'elle laisse Je soin au SGBD d'établir la meilleure stratégie d'accès (choix du
premier index à utiliser, puis du deuxième, etc.) pour optimiser les performances.

Afin d'éviter les ambiguïtés concernant Je nom des colonnes, on utilise en général des alias de
tables pour suffixer les tables dans la clause FROM et préfixer les colonnes dans les clauses
S ELECI' et WllERE.

Jointures SQL2

Afin de se rendre conforme à la norme SQL2, Oracle propose aussi des d irec tives qui permet­
tent de programme r d'une manière plus verbale les d ifférents types de jointures :

SELECT [(DISTINCT 1 UNIQUE } 1 ALL] li s teColonne s

FROM nomTablel [(INNER 1 (LEFT 1 RIGHT 1 FULL } [OUTER] }]

JOIN nomTable2(ON condition 1 USING (colonnel [, colonne2] ·-) }
1 (CROSS JOIN 1 NATURAL [(INNER 1 (LEFT 1 RIGHT 1 FULL } [OUTER] }]

JOIN nomTable2 } ·-
1\TllERE condition] ;

Cette écriture est moins utilisée que la syntaxe relationnelle. Bien que plus concise pour des
jointures à deux tables, elle se complique pour des jointures plus complexes.

© Éditions Eyrol/es 141 1

l r.111

11 42

TVPes de iOimures
Bien que dans Je vocabulaire courant, on ne parle que de « jointures »en fonction de la nature
de J' opérateur utilisé dans la requête, de la clause de jointure et des tables concernées, on
distingue:

• les jointures internes (ilmer joins).

• J' équijointure (eq11i joi11) est la plus connue, elle utilise J 'opérateur d'égalité dans la clause
de jointure. La jointure naturelle est conditionnée en plus par Je nom des colonnes. La non
équijointure utilise l'opérateur d'inégalité dans la clause de jointure.

• J'autojointure (self joi11) est un cas particulier de J'équijointure qui met en œuvre deux
fois la même table (des alias de tables permettront de distinguer les enregistrements
entre eux).

• la jointure externe (0111er joi11), la plus compliquée, qui favorise une table (dite « domi­
nante») par rapport à! 'autre (dite « subordonnée»). Les lignes de la table dominante sont
retournées même si elles ne satisfont pas aux conditions de jointure.

Le tableau suivant illustre cette classification sous la forme de quelques conditions appliquées
à notre exemple :

T- 4-33 Ell dl cœllloDS

Type de)olnllre Syntaxe de la condlton

Équljolnture WHERE comp = compa ;

Autojolnture WHERE aliasl . c hefPil alias2 . bre vet ;

Jointure externe WHERE comp= compa (+) ;

Pour mettre trois tables T1, T2 et T3 en jointure, il faut utiliser deux clauses de jointures (une
entre T1 et T2 et l'autre entre T2 et T3). Pour n tables, il faut n-1 clauses de jointures. Si vous
oubliez une clause de joinb.Jre, un produit cartésien restreint est composé.

Étudions à présent chaque type de jointure avec les syntaxes « relationnelle » et « SQL2 ».

ÉtniioiJture

Une équijointure utilise l'opérateur d'égalité dans la clause de jointure et compare générale­
ment des clés primaires avec des clés étrangères.

© ÉdW/ons Eyroles

En considérant les tables suivantes, les équijointures se programment soit sur les colonnes
compet compa soit sur les colonnes brevet et chefPil. Extrayons par exemple:

• l'identité des pilotes de la compagnie de nom 'Air France' ayant plus de 500 heures de vol
(requête RI) ;

• les coordonnées des compagnies qui embauchent des pilotes de plus de 950 heures de vol
(requête R2).

La jointure qui résoudra la première requête est illustrée dans la figure par les données grisées,
tandis que la deuxième jointure est représentée par les données en gras.

Figure 4-1 t Équlfolntures

Compagnie

Écriture «relationnelle »

Oracle recommande d'ut iliser des alias de tables pour améliore r les performances.

Les a lias sont obligatoires pour des colonnes qui portent le même nom ou pour les autojoin­
tures.

Écriture « SQI.2 »

La dause JOIN ... ON condition permet de programmer une équijointure.

!.:utilisation de la d irective INNER devant JOIN .• est optionnelle et est app liquée par défaut.

Le tableau suivant détaille ces requêtes avec les deux syntaxes. Les clauses de jointures sont
grisées.

© Éditions Eyrol/es 143 1

l r.111

1144

RI

R2

Jol1111nrt1 11.

SELECT breve t , nom
FROM Pilo t e, Canpa gnie
WHERE con:p • compa
AND nanCon:p • 'Air Fr ance'
AND nbHVol > 5 00 ;

!l!U!V!!T NOM

Pt... 4 Henri Alquié
Pt... 2 Didier Linxe

SELECT cpg.non:Comp, cpg.nrue,
cpg.rue, cpg.ville

FROM Pilo t e pil, Canpa gnie cpg
WHERE cpg.comp • pil.canpa
AND pil. nbHVol > 950;

NOM:OMP NlWE RUE

JolntinSQL2

SELECT breve t , nan
FR<>l Compagnie
J OIN Pilote ON comp • compa
WHERE nomCanp • 'Air France'
AND nbHVol > 500 ;

SELECT nomCanp, nrue, rue, ville
FR<>l Canpagnie
JOIN Pilote ON comp • compa
WHERE nbHVol > 950 ;

VI LLI!

Air France
Singapore AL

12 4 Por t Royal
7 Camparols

Paris
Singapour

AutoiOinture
Cas particulier de J'équijointure, J'autojointure relie une table à elle-même.

Extrayons par exemple :

• l'identité des pilotes placés sous la responsabilité des pilotes de nom 'Alquié' (requête R3) ;

• la somme des heures de vol des pilotes placés sous la responsabilité des chefs pilotes de la
compagnie de nom 'Air France' (requête R4).

Ces requêtes doivent être programmées à J'aide d'une autojointure car elles imposent de
parcourir deux fois la table Pilote (examen de chaque pilote en Je comparant à un autre). Les
autojointures sont réalisées entre les colonnes brevet et chefFil.

La jointure de la première requête est illustrée dans la figure par les données surlignées en
clair, tandis que la deuxième jointure est mise en valeur par les données surlignées en foncé.

Figure 4-12 Autojolntures

Corrpagnie

© ÉdW/ons Eyroles

Le tableau suivant détaille ces requêtes, les clauses d'autojointures sont surlignées. Dans les
deux syntaxes, il est impératif d'utiliser des alias. Concernant l'écriture « SQL2 »,les clauses
J OIN peuvent s'imbriquer pour joindre plus de deux tables.

Requête

R3

R4

Jointure relallonrelle

SELECT pl . bre vet , pl . n om
FROM Pil ote pl, Pil ote p 2
WHERE pl.chefPil = p2.brevet
AND p 2 . n om LI!Œ ' t Alqui é t ' ;

BREVET NOM

Jolnlire SQL2

SELECT pl . bre vet , pl . nom
FROM Pil ote pl

JOIN Pil o te p2
ON pl.chefPil = p2.brevet

WHERE p 2 . nom LIKE ' t Alqui ét ' ;

PL-1 Pi erre Lamothe
PL-2 Did i er Linxe

SELECT SUM(pl.nbHV ol)
FROM Pil ote pl, Pil ote p 2 ,

compag nie c pg
WHERE pl.chefPil = p2.brevet
AND cpg. comp = p2. compa
AND cpg . nomeomp = 'Air France ' ;

SELECT SUM(pl . nbHVol)
FROM Pil ote pl
JOIN Pil ote p2
ON pl.chefPil = p2.brevet

JOIN Compagnie
ON comp = p2.compa
WHERE nomeomp = 'Air Fran ce ' ;

SUM(Pl .NBHVOL)

1350

lné111ii0in111re

Les requêtes d' inéquijointures font intervenir tout type d'opé rateu r (<>, >, <, >=, <=, BETWEEN,
LIKE, IN). À l'inverse des équijointures, la dause d'une inéquijointure n'est pas basée sur
l'égalité de clés primaires (ou candidates) et de clés étrangè res.

En considérant les tables suivantes, extrayons par exemple :

• les pilotes ayant plus d'expérience que Je pilote de numéro de brevet 'PL-2' (requête R5).

• Je titre de qualification des pilotes en raisonnant sur la comparaison des heures de vol avec
un ensemble de références, ici la table Heure svo l (requête RIS). Dans notre exemple, il
s'agit par exemple de retrouver Je fait que Je premier pilote est débutant.

La jointure qui la deuxième requête est illustrée par les niveaux de gris.

© Éditions Eyrol/es 145 1

lr.111

1146

Rgure 4-13 Jnéqulfolntures

Le tableau suivant détaille ces requêtes, les clauses d'inéquijointures sont surlignées:

Requête

RS

Jolnlire rela..,nnelle

SELECT pl.brevet, pl.nom,
pl.nbHVo l , p2.nbHVo l "Référe nce•

FROM Pi l ote pl, Pi l ote p2
WHERE pl.nbHV ol > p2.nbHV ol
AND p2.brevet = ' PL-2 ' ;

Jolnllre 5012

SELECT pl.brevet, pl.nom,
pl.nbHVo l , p2.nb HVol "Référence •
FROM Pi l ote p l JOIN
Pil ote p2 ON pl.nbHV o l >p2.nb HVo l
WH ERE p2. brevet = ' PL-2 ' ;

BREVET NOM NBHVOL Référe nce

PL-4 Henri Alqui é
PL-3 Christian soutou

3400
1000

900
900

R6 SELECT pi l .brevet, pi l . nom, SELECT brevet, nom, n.bHVo l , titre
pi l . nbHVol , hv.titre FROM Pi l ote

FROM Pi l ote pi l , He uresvo l hv JOIN Heuresvo l ON n.bHVol
WHERE pil. nbHVo l DTwm DTwm basnb HVol .AJID hautnbHV ol ;
hv. basn.bHV ol UD hv. hautnbHV ol ;

BREVET NOM

PL- 1 Pi erre Lamot he
PL-2 Didier Linxe
PL-3 Christian SOutou
PL-4 He nri Alqui é

Joiltures externes

NBHVOL TITRE

450 Débutant
900 Initié

1000 Initié
3400 EXpert

Les jointures externes permettent d'ex traire des enregistrements qui ne répondent pas aux
critères de jointure. Lorsque deux tables sont en jointure externe, une table est • dominante •

© ÉdW/ons Eyroles

·.JZJ ..

par rapport à l'autre (qui est dite •subo rdonnée•). Ce sont les enregistrements de la table
dominante qui sont retournés (même si les valeurs des colonnes des tables subordonnées ne
satisfont pas aux conditions de jointure ou sont nulles).

Comme les jointures internes, les jointures externes sont généralement basées sur les clés
primaires et étrangères. On distingue les jointures unilatérales qui considèrent une table domi­
nante et une table subordonnée, et les jointures bilatérales pour lesquelles les tables jouent un
rôle symétrique (pas de dominant).

Jointures unilatérales

En considérant les tables suivantes, une jointure externe unilatérale permet d'extraire :

• la liste des compagnies et Jeurs pilotes, même les compagnies n'ayant pas de pilote
(requête R7). Sans une jointure externe, la compagnie 'CAST' ne peut être extraite ;

• la liste des pilotes et Jeurs qualifications, même les pilotes n'ayant pas encore de qualifica­
tion (requête R8).

La figure illustre les tables dominantes et subordonnées :

Compagnie

Rgure 4-14 JolntU1es externes unllatérs/es

oualifs

Écriture «relationnelle »

La directive de jointure externe• (+) • se place du côté de la table subordonnée.

Cette directive peut se placer à gauche ou à droite d'une clause de joinb.Jre, pas des deux côtés .

Une clause de joinb.Jre externe ne peut ni utiliser l'opérateur IN ni être associée à une autre
condition par l'opérateur OR.

© Éditions Eyrol/es 147 1

l r.111

1148

Écriture « S Q 1.2 »

Le sens de la directive de jointure externe LEFT ou RIGHT de la clause OUTER JOIN désigne la
table dominante.

Le tableau suivant détaille les requêtes de notre exemple, les clauses de jointures externes
uoilatérales sont grisées. Les tables dominantes sont notées en gras (Compagnie pour la
première requête et Pilote pour la deuxième).

Requête

R7

RB

Jolnlires reldonrelles

SELECT c pg . nomeomp, pi 1 . brevet,
pil.nom

FROM Pilote pil, COOllP&gnie cpg
WHERE cpg . comp = pil . compa C +) ;

--équiva l ent à
WHERE pil.compa(+) = cpg.comp;

Jolnllres SQL2

SELECT nomeomp, brevet, nom
FROM Coapagnie LEFT OUTER JOIN

Pilote ON comp = compa;
--équiva l ent à
SELECT nomeomp, brevet, nom

FROM Pilote RIGHT OUTER JOIN
Coaipagnie ON comp = compa;

NOMCOMP BREVET NOM

Air France
Air France
Air France
Si ngapo re AL
Casta.net AL

PL-4
PL-1
PL-2
PL-3

Henri Alquié
Pierre Lamothe
Didier Linxe
Christian SOutou

SELECT qua.type.Av, pil.brevet,
pil.nom

SELECT qua.typeAv, pil.brevet,
pil .nom

FROM Qualifs qua FROM Pilote pil, Qualifs qua
WHERE qua.brevet(+)=pil.brevet;

--équiva l ent à

RIGHT OUTER JOIN Pilote pil
ON pil.brevet = qua.brevet;

--équiva l ent à

WHERE pil.brevet=qua.brevet(+);
SELECT qua . typeAv,

pil .nom
FROM Pilote pil

LEFT OUTER JO IN
ON pil . brevet

TYPE BREVET NOM

A320 PL-4 Henri Alquié
A340 PL-4 Henri Alquié
A320 PL-2 Didier Linxe
A330 PL-3 Christian SOutou

PL-1 Pi e.r.re Lamothe

pil .brevet,

Qualifs qua
qua . brevet;

© ÉdW/ons Eyroles

Jointures bilatérales

Les deux tables jouent un rôle symétrique, il n'y a pas de table dominante. Ce type de jointure
permet d'extraire des enregistrements qui ne répondent pas aux critères de jointure des deux
côtés de la clause de jointure.

En considérant les tables suivantes, une jointure externe bilatérale permet d 'extraire par exemple :

• la liste des compagnies et Jeurs pilotes, incluant les compagnies n'ayant pas de pilote et les
pilotes rattachés à aucune compagnie (requête R9) ;

• la liste des pilotes et Jeurs qualifications, incluant les pilotes n'ayant pas encore d'expé­
rience et les qualifications associées à des pilotes inconnus (requête RIO).

Figure 4-15 Jointures externes blatéra/es

Qualifs

Compagnie

Écriture «relationnelle »

• ILJ La jointure externe bilatérale se programme en faisant l'union de deux jointures externes unila­
térales, en plaçant alternativement le symbole • (+) •.

• !ZJ

Écriture « SQI.2 »

La directive FULL OUTER JOIN permet d' ignorer l'ordre (et donc le sens de la jointure} des
tables dans la requête.

© Éditions Eyrottes 149 1

lr.111

1150

Le tableau suivant détaille les requêtes de notre exemple, les clauses de jointures externes
bilatérales sont surlignées. Les enregistrements qui ne respectent pas la condition de jointure
sont surlignés.

Requête

RIO

Jolnlires reldonrelles

SELECT c pg . nomeomp, pi 1 . brevet,
pil.nom

FROM Pilote pil, compagnie cpg
WHERE cpg.comp(+) = pil.compa

ONXON
SELECT cpg.nomeomp, pil.brevet,

pil.nom
FROM Pilote pil, compagnie cpg
WHERE cpg.comp = pil.compa(+);

Jolnllres SQL2

SELECT nomcomp, brevet, nom
FROM Pilote
FULL OUTER JOIN Compagnie

ON comp = compa;
--équiva l ent à
SELECT nomcomp, brevet, nom

FROM Compagnie
FULL OUTER JOIN Pilote

ON comp = compa;

NOMCOMP BREVET NOM

Air France
Air France
Air France
Si ngapo re AL

Castanet AL

PL-4
PL-1
PL-2
PL-3

Henri Alquié
Pierre Lamothe
Didier Linxe
Christian SOutou

PL-5 Michel castaings

SELECT qua.type.Av, pil.brevet,
pil.nom

FROM Pilote pil, Qualifs qua
WHERE qua.brevet(+)=pil.brevet

ONXON
SELECT qua.type.Av, pil.brevet,

pil.nom
FROM Pilote pil, Qualifs qua
WHERE qua.brevet=pil.brevet(+);

TYPE BREVET NOM

SELECT qua.typeAv, pil.brevet,
pil .nom

FROM Pilote pil
FULL OUTER JOIN Qualifs qua

ON pil.brevet =qua.brevet;
--équiva l ent à
SELECT qua.typeAv, pil.brevet,

pil .nom
FROM Qua li fs qua
FULL OUTER JOIN Pilote pil

ON pil.brevet =qua.brevet;

A320 PL-4 Henri Alquié
A320 PL-2 Didier Linxe
A330 PL-3 Christian SOutou
A380

PL-1 Pierre Lamothe
PL-5 Michel castaings

© ÉdW/ons Eyroles

1 Cllldt1n° 4

'

Joimures procédurales

Les jointures procédurales sont écrites par des requêtes qui contiennent des sous-interroga­
tions (SELECT imbriqué). Chaque clause FR0-1 ne contient qu'une seule table.

SELECT colonne sTablel

FROM nomTablel

l\TllERE colonne(s) 1 expre ss ion(s) (IN 1 = 1 opérateur

(SELECT colonne(s)delaTable2 FROM nomTable2

l\TllERE colonne(s) 1 expres s ion(s) (IN 1 = 1 opérateur}

(SELECT .•)

[AND (condition sTable2)]

[AND (condition sTablel)];

Cette forme d'écriture n'est pas la plus utilisée mais elle permet de mieux visualiser certaines
jointures. Elle est plus complexe à écrire, car l'ordre d'apparition des tables dans les clauses
FROM a son importance.

Seules les colonnes de la table qui se trouve au niveau du premier SELECT peuvent être extrai­
tes.

La sous-interr ogation doit être placée entre parenthèses. Elle ne doit pas comporter de clause
ORDER BY mais peut inclure GROUP BY et HAVING.

Le résultat d'une sous-interrogation est utilisé par la requête de niveau supériewr. Une sous­
interrogation est exécutée avant la requête de niveau supériewr.

Une sous-interr ogation peut ramener une ou plusieurs lignes. Les opérate urs =, >, <, >=, <=
permettent d'en extraire une, les opérateurs IN, ANY et ALL permettent d" en ramener plusieurs.

Sous-interrogations monolignes

Le tableau suivant détaille quelques sous-interrogations rnonolignes. Nous nous basons swr
certaines requêtes déjà étudiées (forme relationnelle et SQL2).

© Éditions Eyrol/es 151 1

llWlll

'
11s2

Opérateur

= pour les
équljolntures ou
autojolntures
(• teste une ligne)

> pour les
lnéquljolntures

Besoin

RI (Piiotes de la compagnie
de nom 'Air Franoe' ayant
plus de 500 heures de vol.)

R3 (Piiotes sous la
responsatfüé du pilote de
nom 'Alquié'.)

RS (Piiotes ayant plus
d·expérlenoeque le pilote de
brevet 'PL-2'.)

Requête

SELECT breve t, nom
FROM Pi l ote
WHERE compa =

(SELECT comp
FROM compagnie
WHERE nomcomp = 'Air France ')

AND nbHVol >500 ;

SELECT brevet, nom
FROM Pi l ote
WHERE c hefpil =

(SELECT brevet FROM Pilote
WHERE nom LIIŒ • tAlquiét .) ;

SELECT brevet, nom, nbHVo l
FROM Pi l ote
WHERE nbHVol >

(SELECT nbHVol FROM Pilote
WHERE brevet = ' PL-2 ');

Sous-inte" ogations multilignes (IN, AU et ANY)

Les opérateurs multilignes sont les suivants :

IN compare un élément à une donnée que lconque d'une liste ramenée par la sous-interro­
gation. Cet opérateur est utilisé pour les équijointures ou autojointures. L.:opérateur NOT IN
sera employé pour les joinb.Jres externes.

ANY compare l'élément à chaque donnée ramenée par la sous-interroga tion. !.:opérateur
• =ANY• équivaut à IN. !.:opérateur • <ANY • signifie • inférieur à au moins une des
valeurs • donc • inférieur au maximum •. L.:opérateur • >ANY • signifie • supérieur à au
moins une des valeurs• donc• supérieur au minimum •.

ALL compare l'élément à tous ceux ramenés par la sous-interrogation. L.:opérateur • <ALL •
signifie• inférieur au minimum• et• >ALL •signifie• supérieur au maximum• .

Le tableau suivant détaille quelques sous-interrogations multilignes. Le dernier exemple
programme une partie d'une jointure externe.

La directive NOT IN doit être utilisée avec prudence car elle retourne FALSE si un membre
ramené par la sous-interrogat ion est NULL.

© ÉdW/ons Eyroles

Opérllleur

IN

= etIN

NOT IN

R2. Coordonnées des
compagnies qui
embauchent des pilotes de
plus de 950 heures de vol.

R4. Somme des heures de
vol des pilotes placés sous
la responsabilité des chefs
pilotes de la compagnie de
nom 'Air France'.

Compagnies n'ayant pas de
pilote.

Requêlo

SELECT nomcomp, nrue , rue , vill e
FROM Compa gni e
WHERE comp I •

(SELECT compa FROM Pil ote
WH ERE nbHVol >950) ;

SELEC T SIJM (nbHV ol)

FROM Pil ote
WHERE c h ef Pil Dl

(SELECT breve t FROM Pil ote
WH ERE c ompa =

(SELECT c omp FROM Compagnie
WHERE nomcomp = 'Air France ')) ;

SELECT nomeomp, nru e , rue , vill e
FROM Compagni e
WHERE comp •OT Dt

(SELECT compa FROM Pil ot e
WHERE compa IS ll0'1' llOLL) ;

Pour illustrer les opérateurs ANY et ALL, considérons la table suivante . Nous avons indiqué en
gras les nombres d'heures minimal et maximal des A320, en grisé les nombres d'heures mini­
mal et maximal des avions de la compagnie 'AF.

Rgure 4-16 Table Avion

Avions

Le tableau suivant détaille quelques jointures procédurales utilisant les opérateurs ALL et ANY.

© Éditions Eyrol/es 153 1

llWtel

Opérateur

ANY

ALL

1154

Bet0ln

R11. Avions dont le nombre
d'heures de vol est Inférieur
à celui de n'importe quel
A320.

R12. Compagnies et leurs
avions dont le nombre
d'heures de vol est
supérieur à celui de
n'importe quel avion de la
compagnie de code 'SING'.

Requêle

SELECT immat, type Av, nbKVol
FROM Avi on
WHERE n.bHVol < U1'Y

(SELECT nbHVol FROM Avion
WHERE typeAv= ' A320 ') ;

IMMAT TYPE NBHVOL

A3
AS
A6

A320
A340
A330

sso
200
100

SELECT immat, type.Av, n.bHVol , compa
FROM Avi on
WHERE n.bHVol > U1'Y

(SELECT nbHVol FROM Avion
WHERE compa = ' SING ') ;

IMMAT TYPE NBHVOL COMP

Al
A2
A4

A320
A330
A340

1000 AF
lSOO AF
1800 SING

R13.Avlonsdo nt le nombre SELECT immat, typeAv, nbHVo l
d'heures de vol est Inférieur FROM Avi on
à tous les A320. WHERE nbHVol < ALL

R14. Compagnies et leurs
avions dont le nombre
d'heures de "' I est Sl4)érleur
à tous les avions de la
compagnie de code 'AP.

(SELECT nbHVol FROM Avion
WHERE typeAv= ' A320 ') ;

IMMAT TYPE NBHVOL

AS
A6

A340
A330

200
100

SELECT immat, type.Av, n.bHVol , compa
FROM Avi on
WHERE n.bHVol > ALL

(SELECT nbHVol FROM Avion
WHERE compa = ' AF ');

IMMAT TYPE NBHVOL COMP

A4 A340 1800 SING

© ÉdW/ons Eyroles

Joimures mixtes
Si vous avez besoin de combiner dans une requête des clauses de jointures de la forme rela­
tionnelle, des sous-interrogations dans le FRCM ou V.HERE, ou d'utiliser conjointement des
directives SQL2 (INNER J OIN, Ol1I'ER J OIN, etc.), vous écrivez une jointure dite mixte.

La requête suivante combine une jointure relationnelle (en gras) avec une jointure procédurale
(surlignée) pour extraire la somme des heures de vol des pilotes placés sous la responsabilité

des chefs pilotes de la compagnie Air France (requête R4).

SELECT SUM (p l. nbHVo l)

FR.CM Pi l ote p l, Pi l ote p 2

pl.chefPil •
AND p2 . cc:mpa = (SELECT cc:mp FR.CM Cc:mpagnie WHERE nanConp =

'Air France ') ;

Ce type d'écriture peut être intéressant s'il n'est pas nécessaire d'afficher des colonnes des
tables présentes dans les sous-interrogations ou si l'on désire appliquer des fonctions à des
regroupements.

sous-inle1Togali0ns svnchronisées
Une sous-interrogation est synchronisée si elle manipule des colonnes d'une table du niveau
supérieur (on parle de requête imbriquée).

Une sous-interrogation synchronisée est exécutée une fois pour chaque enregistrement extrait
par la requête de niveau supérieur. Cette technique peut être aussi utilisée dans les ordres
UPDATE et DELETE.

La forme générale d'une sous-interrogation synchronisée est la suivante. Les alias des tables
sont utiles pour pouvoir manipuler des colonnes de tables de différents niveaux.

SEL.BCT al1 a•l.c
FROM nomrableJ ali••l 4'
WHiRE colonne (s) op4rateur (SELECT alîas2. z- i

FROM nomTabl•2 •l1•112

WHER.2 al1 a •l. x opé:·aceuJ: al i a.e2. y)

Une sous-interrogation synchronisée peut ramener une ou plusieurs lignes. Différents opéra­
teurs peuvent être employés (=, >, <, >=, <=, EXIST S).

© Éditions Eyrol/es 155 1

lr.111

1156

Opérateur mathématique

Le tableau suivant détaille un exemple d'opérateur mathématique appliqué à une sous -interr o­
gation synchronisée.

Betoln Requête

R15. Avions dont le nombre d'heures de vol SELECT avi l . •
est supérieur au nombre d'heures de "' I
moyen des avions de leur compagnie (Ici
700 h pour 'AP et 1 11 5 h pour 'SING').

Opérateur EXISTS

FROM Avion avil
WHERE av il .n.bHVol >

(SELEC T AVG(avi2.nbHV ol) FROM Avi on avi2
WHERE avi2 compa = avil. compa);

IMMAT TYPE NBHVOL COMP

Al
A2
A4

A320
A330
A340

1000 AF
1500 AF
1800 SI NG

!.:opérateur EXrsrs permet d1nterrompre la sous-interrogation dès le premier enregistrement trouvé.
La valeur FALSE est retournée si aucun enregistrement n'est extrait par la sous-interrogation.

Utilisons la table suivante pour décrire l'utilisation de l'opérateur EXISTS:

Figure 4-17 UUKsaUon de EXISTS

Pilou i'

La sous -interr ogation synchronisée est surlignée dans Je scrip t suivant :

Betoln

R t6. Piiotes ayant au moins un pilote sous
leur responsatfüé.

Requête

SELECT pi ll .brevet, pi ll . nom, pi ll .compa
FROM Pi l ote pill
WHERE l:XISTS

(SELEC T pil2.• FROM Pilote pil2
WHERE pil2 chefPi l = pi11.br evet);

BREVET NOM COMP

PL-4 Henri Al quié AF

© ÉdW/ons Eyroles

Opérateur NOT EXISTS

!.:opérateur NOT EXISTS retourne la valeur TRUE si aucun enregistrement n'est extrait par la
sous-interrogation. Cet opérateur peut être utilisé pour écrire des jointures externes.

Betoln Requête

Liste des compagnies n'ayant SELECT cpg. *
pas de pilote. FROM compagnie cpg

WHERE NOT IXI BTS
(SELECT compa FROM Pil ote WHERE compa = cpg. comp);

COMP NRUE RUE VI LLE NOMCOMP

CAST 1 G. Brasse ns Bl agnac: Castanet AL

Autres di'eclives SQL2
Étudions enfin les autres options des jointures SQL2 (NA'IURAL JOIN, us1m et <ROSS JOIN).

Considérons Je schéma suivant (des colonnes portent Je même nom). La colonne t ypeAv dans
la table Nav igan t désigne Je type d'appareil sur lequel Je pilote est instructeur .

Figure 4-18 Deux tables à mettre en jointure n81U1e//e

Vol sContro l e

Opérateur NATURA L JOIN

La jointure naturelle est programmée par la clause NATURAL JOIN . La clause de jointure est automa­
tiquement construite sur la base de toutes les colonnes portant le mêrre nom entre les deux tables.

© Éditions Eyrol/es 157 1

lr.111

11ss

Les concepteurs doivent donc penser à nommer d' une manière semblable clés primaires et
clés étrangères . Ce principe n'est pas souvent appliqué aux schémas volumineux.

Le tableau suivant détaille deux écri rures possibles d'une jointure naturelle. La clause de jointure
est basée sur les colonnes (brevet, typeAv). Une clause WllERE aurait pu aussi être progammée.

Betoln

T- 4-45 JolH119S llnnles

JolnlJllll SQL.2

Navigants qualifiés sur un type d'awarel l
et Instructeurs sur œ même type.

SELECT brevet, nom, type.Av, va l idite
FROM Navigant NATURAL JOIN Vol scont.ro l e;

--équiva l ent à
SELECT brevet, nom, type.Av, validite

FROM vol scontro l e NATURAL JOIN Navigant;

BREVET NOM TYPEAV VALIDI TE

PL-2 Didier Linxe A320 04/04/06
PL-3 Henr i Alqui é A380 20/07/07

Opérateur USING

La directive USING(co11, co12._) de la clause JOIN programme une jointure naturelle restreinte
à un ensemble de colonnes. li ne faut pas utiliser d'alias de tables dans la liste des colonnes.

Dans notre exemple, on peut restreindre la jointure naturelle aux colonnes brevet ou typeAv.
Si on les positionnait (brevet, typeAv) dans la directive USING cela reviendrait à cons ­
truire un NATURAL JOIN. Le tableau suivant détaille deux écritures d'une jointure naturelle
restreinte :

Betoln Jolnllres SOL.2

Nom des navigants avec leurs quallflcallons SELECT nom, v. typeAv, v. validi te
et dates de validité. FROM Navigant

JOIN volscontrole v 11SlJIQ(brevet);

SELECT nom, v.typeAv, v.va l idite
FROM vol scont.ro l e v
JOIN Navigant USDJQ(brevet)

NOM

Pie.r re Lamothe
Didier Linxe
Didier Linxe
Henri Alqui é
Henri Alqui é

TYPEAV VALIDI TE

A320
A320
A330
A380
A320

2 4/06/05
04/04/06
1 3/05/06
20/07/07
1 2/03/05

© ÉdW/ons Eyroles

1 Cllldt1n° 4

•jZJ

DiVisioo

'

Opérateur CROSS JOIN

La directive CROSS JOIN programme un produit cartésien qu'on peut restreindre dans la
clause l\TllERE.

Le tableau suivant présente deux écritures d'un produit cartésien (seul! 'ordre d'affichage des
colonnes change) :

Besoin

Combinaison de toutes les lignes des deux
tables.

BREVET NOM

PL-1 Pie.r.re Lamothe
PL-2 Didier Linxe
PL-3 Henri Alquié
PL-1 Pierre Lamothe

JolntlftS SQL2

SELECT *
FROM Navigant CROSS JOIN Vol scontro l e;
--équiva l ent à
SELECT *
FROM vol scontro l e CROSS JOIN Navigant;

NBHVOL TYPEAV BREVET TYPEAV VALIDITE

--- ----- -- ------ ----- - --- ---
450 PL-1 Al20 24/06/05
900 A320 PL-1 A320 24/06/05

3400 A380 PL-1 Al20 24/06/05
450 PL-2 A320 04/04/06

... 15 ligne(s) sél ectionnée(s).

La division est un opérateur algébrique et non ensembliste. Cet opérateur est semblable, sur
Je principe, à l'opération qu'on apprend au CE2 et qu'on a oubliée en terminale à cause des
calculettes. La division est un opérateur binaire comme la jointure car il s'agit de diviser une
table (ou partie de) par une autre table (ou partie de). Il est possible d"opérer une division à
partir d'une seule table, en ce cas on divise deux parties de cette table (analogue aux auto­
jointures).

!.:opérateur de division n'est pas fourni par Orade (ni par ses concurrents d'a illeurs). li n'existe
donc malheureusement pas d'instruc tion DIVIDE.

Est-ce la complexité ou Je manque d'intérêt qui freinent les éditeurs de logiciels à progranimer
ce concept ? La question reste en suspens, alors si vous avez un avis à ce sujet, fuites-moi
signe!

© Éditions Eyrol/es 159 1

lr.111

1160

Cet opérateur permet de traduire le terme• pour tous les •des requêtes qu'on désire program­
mer en SOL.

On peut aussi dire que lorsque vous voulez comparer un ensemble avec un groupe de référence,
il faut programmer une division.

La division se traduit sous SOL par l'opérateur ensembliste MINUS et la fonction NOT EXISTS.

La figure suivante illustre l'opérateur de division dans sa plus simple expression (nous ne
parlons pas du contenu des tables bien sûr ...). Le schéma fait davantage apparaître Je
deuxième aspect révélateur énoncé ci-dessus, à savoir comparer un ensemble (la table Tl)
avec un ensemble de référence (la table 72).

Tl

DéfilÎtiOD

Figure 4-19 Division

T2 Quels i>Onl les cnrcgis1rcmcm> de Tl qui .cxu
à • ious les• enregistremems cle T2?

Rép<JrlSe · R = Tl /T2
i------

R

1 Chirac

La division de la table T1{a1, .. .,an,b1, .. .,bn] par la table T2{b1, .. .,bn] (la strucb.Jre de T2 est
incluse dans la structure de Tt) donne la table T3{a1, .. .,an] qui contient les enregistrements ti
vérifiant lie T3 (de structure {a1, .. .,an]) , tje T2(tjde structure {b1, .. .,bn]) et T1 (ti,tjde
structure {a1, .. .,an,b1, .. .,bn]).

CJassilieation
Considérons J' exemple suivant pour décrire la requête à construire. Il s'agit de répondre à la
question « Quels sont les avions affrétés par toutes les compagnies françaises?• L'ensemble
de référence (A) est constitué des codes des compagnies françaises. L'ensemble à comparer
(B) est constitué des codes des compagnies pour chaque avion.

Deux cas sont à envisager suivant la manière de comparer les deux ensembles :

• Division inexacte : un ensemble est seulement inclus dans un autre (A i11cl11s da11s B). La
question à programmer serait « Quels sont les avions affrétés par toutes les compagnies

© ÉdW/ons Eyroles

françaises ? » sans préciser si les avions ne doivent pas être aussi affrétés par des compa­
gnies étrangères. L'avi on (A3, Mercure) répondrait à cette question, que la dernière ligne
de la table Affrètements soit présente ou pas.

• Division exacte : les deux ensembles sont égaux (B=A). La question à programmer serait
« Quels sont les avions affrétés exactement (ou uniq uement) par toutes les compagnies
françaises?» L'avion (A3, Mercure) répondrait à cette question si la dernière ligne de la
table Affrètements est inexistante. Les lignes concernées dans les deux tables sont
grisées.

Affrètements

immat typeAv

Figure 4-20 Divisions à programmer

Compagnie

coq>a dateAff coirp nomComp

Résultat

A3
l typeAv

Mercure

pays

L'opérateur ensembliste MINUS combiné à la fonction EXI STS permet de programmer ces
deux comparaisons (un ensemble inclus dans un autre et une égalité d'ensembles). Il existe
d'autres solutions à base de regroupements et de sous-interrogations (synchronisées ou pas)
que nous n'étudierons pas, parce qu'elles semblent plus compliquées. Écrivons à présent ces
deux divisions à J'aide de requêtes SQL.

DivisiOn inexacte en SQl
Pour programmer Je fait qu'un ensemble est seulement inclus dans un autre (ici Ac B), il faut
qu'il n'existe pas d'élément dans l'ensemble {A-B). La différence se programme à J'aide de
J' opérateur MINJS, J' inexistence d'élément se programme à J'aide de la fonction NOT EXIST S

comme Je montre la requête suivante :

SELECT DISTINCT immat, typeAv
WHERE NOT BXISTS

/ Parcoun. de tous les avions

FROM Affrètemento al1a0Aff

(SELECT comp FROM Compagnie WHERE paya
MIN'CIS

Enscmhlc A de référence
•p•

SELECT compa FROM Affràtémenta WHERE,J_mm&t .. aliaaAff. inunat);

B à comparer

© Éditions Eyrol/es 161 1

l r.111

DivisiOn exacte en SQl
Pour programmer Je fait qu'un ensemble est strictement égal à un autre (ici A=B), il faut
qu'il n'existe ni d'élément dans l'ensemble {A-B) ni dans l'ensemble {B-A). La traduction
mathématique est la suivante : et B-A=0). Les opérateurs se programment
de la même manière que pour la requête précédente. Le « et » se programme avec un AND

(of corme).

_.,,,.Yarcour.. de tous les avion;,

SELECT DISTINCT 1mmac. cypeAv PROM Affrècemenco aliaaAff
WHERE NOT IXISTS

(SBLBCT comp FROM Compagnie WHERB payo • 'P'
MINOS
SRLSCT compa PROM WHER€ immat

NOTÊXISTS
PROM WHERE immat. al1asA!f.illllllat

6BLECT comp PROM WHBRE - ' P') 1

A-B

B-A

Requêtes hiérarchiQues

11 62

Les requêtes hiérarchiques extraient des données provenant d'une structure arborescente. Les
enregistrements d'une structure arborescente appartiennent, en général, à la même table et
sont reliés entre eux par une association réflexive à plusieurs niveaux.

L'exemple décrit un arbre qui comprend trois niveaux. La table Trajets décrit cet arbre. Des
deux colonnes qui assurent J 'association, il est facile de distinguer celle qui désigne J 'élément
supérieur (colo111ieS11p ici départ) de celle qui désigne un élément inférieur (col01uieillf ici
arrivée).

La syntaxe générale d'une requête hiérarchique est la suivante. La pseudo-colonne LEVEL

désigne Je niveau de J' arbre par rapport à une racine donnée.

SELEI:T [LIVBL, J colonn e , expre ssion. ..
FRCM nomTable
(WHERE condition)
(START Wl:TB condition)

CONNBCT BY PRIOR condition;

© ÉdW/ons Eyroles

1 Cllldt1n° 4

Figure 4-21 Arbre représenté par une table

LEVEL O ••••••••••••••••••••••••• !".a,_,.!"'ls_.,._"""''-'"

Pau Grenoble Ni mes

J ••••••• • •• • • • • • •••••••

Poinl de départ du parcours <SlllRT WllH>

IZJ Le point de départ est spécifié par la directive START Ce n'est pas forcément la racine
la plus haute de la hiérarchie.

'
Dans notre exemple, si on désire parcourir J' arbre en partant de la ville de Lyon, on utilisera
« START WITH départ= 'Lyon ' ».

Si la directive START WITH est omise, tous les enregistrements sont considérés comme des
racines et le résultat devra être interprété comme un ensemble d'arbres.

Parcours de l'arbre (COtlUCT BY PRIOID

Il faut indiquer dans la directive CONNECT BY la dause de connexion qui contient les colonnes
de jointure (co/onneSup et Celles-ci peuvent être composées. Le parcours de
l'arbre est le suivant:

du bas vers le haut avec la directive CONNECT BY PRIOR colonneSup=colonneinf;

du haut vers le bas avec la directive CONNECT BY PRIOR colonneinf=colonneSup.

© Éditions Eyrol/es 163 1

l r.111

1164

Nous verrons plus tard que la directive PRIOR permet également d'éliminer des arborescences

entières du parcours.

Le tableau suivant détaille les chemins dans les deux sens de notre arbre. Les requêtes contien­
nent des clauses hiérarchiques (en surligné) et des clauses de connexions (en gras).

Betoln

Parcours de l'arbre de bas en haut
en partant de la ville de Paris.

Parcours de l'arbre de haut en bas
en partant de la ville de Lyon.

Requête el résullal

SELECT LEVEL, arriv ée , départ , temp svol
FROM Trajet s
ST ART WITH départ = ' Pa ris '
CONNECT BY PRIOR d'part • a.rrivM;

LEVEL ARRIVÉE DÉPART TEMPSVOL

1 Blagnac Paris
1 Lyon Paris
1 Mars e ill e Paris

SELECT LEVEL, départ , arrivée, t empsvol
FROM Trajet s
ST ART WITH dépa r t ' Ly o n '
CONNECT BY PRIOR arriv•e •

1
,8
,9

LEVEL DÉPART ARRIVÉE TEMPSVOL

1 Ly on Gr eno ble , 3
2 Gr en obl e Gap , 35
1 Lyon va l en ce , 2
2 va l ence Ales , 25

Pour composer un état de sortie indenté (comme pour un programme dans lequel vous inden­
tez vos blocs dans un souci de lisibilité) en fonction du parcours de l'arbre, il faut utiliser

plusieurs mécanismes :

• la pseudo-colonne LEVEL qui retourne Je numéro du niveau courant de chaque
enregistrement ;

• la fonction LPAD insère à gauche une expression des caractères ;

• la directive COL\.lllN (mise en forme du nom et de la taille des colonnes dans J' interface
SQL*Plus) permet de substituer un libellé à une colonne, à l'affichage.

© ÉdW/ons Eyroles

La req uête suivante décale à gauche de quatre espaces les affichages pour chaque niveau (Je
premier niveau n'est pas décalé, Je deuxième J' est de quatre espaces, etc .). La concaténation de
ce décalage avec la colonne arrivée est renommée dans une variable (DepartPari s) , décla­
rée ici, de quinze caractères.

Bet61n
Paroours de l'arbre en entier de haut en bas
en partant de la ville de Paris.

Requ6to et résulllt IOUS SOL'Plus
COLUMN DepartParie FORMAT AlS

SELECT LPAD (' ' ,4* Lll:VZL- 4) 11 arrivée
oepartParis, tempsvo l

FROM Trajets
START WITH départ = ' Paris '
CONNECT BY PRIOR arriv .. •

DDAJ\TPJU\ I S T EMPSVOL

Bl agnac 1
Pau ,4

Lyon ,8
Grenobl e , 3

Gap , 35
val ence ,2

Ales , 25
Marsei ll e , 9

Frejus ,2
Toulo n , 15
Nimes , 35

éagage de l'arbre <WHEll et PRIOR>

Il existe deux possibilités (qui peuvent se combiner) d'affiner le parcours d'un arbre :

_. la clause l\TllERE permet d'éliminer des nœuds de l'arbre;

la clause PRIOR supprime des arborescences de l'arbre.

Le tableau suivant présente trois requêtes hiérarchiques. La première enlève un nœud, la
deuxième une arborescence, la troisième combine ces deux élagages en ôtan t à J' arbre un
nœud et J' arborescence rattachée.

© Éditions Eyrol/es 165 1

l lWte l

T-WO ÛIDIDld'llll'es

Bet0ln

Parcours de l'arbre en entier de haut en bas
en part ant de la ville de Paris sans prendre
en 0001>1e Lyon r» en départ ni en arrivée.

Requêlo el résullll IOUS SQL'Plus

SELECT LPAD(' ' ,4*LEVEL-4) l l arrivée
oepartParis, tempsvo l

FROM Trajets
wsm NOT (dépa.rt= ' Lyon ' OR a..rrivée = ' Lyon ')
START WITH départ = ' Paris '
CONNECT BY PRIOR arrivée ;; départ;

DEPARTPARI S T EMPSVOL

Bl agnac 1
Pau ,4

Gap , 35
A l es , 25

Marsei ll e , 9
Frej u s , 2
Toulo n , 15
Nimes , 35

Parcoursde l'arbreenentie r dehaut enbas SELECT LPAD(• • ,4*LEVEL-4) l l arrivée
en partant de la ville de Paris sans prendre oepartParis, tempsvo l
en co1T1>1e les trajets depuis Lyon. FROM Trajets

Parcours de l'arbre en entier de haut en bas
en partant de la ville de Paris sans prendre
en co1T1>1e Lyon et ses trajets.

START WITH départ = ' Paris '
CONNECT BY PRIOR arrivée = départ
l\ND NO'l' départ = •Lyon • ;

DEPARTPARI S T EMPSVOL

Bl agnac 1
Pau ,4

Lyon ,8
Marsei ll e , 9

Frej u s , 2
Toulo n , 15
Nimes , 35

SELECT LPAD(' ' ,4*LEVEL-4) l l arrivée
oepa.rtParis, tempsvo l

FROM Trajets
wsm NOT (arrivée= ' Lyon ')

START WITH départ = ' Paris '
CONNECT BY PRIOR arrivée = départ
l\ND NO'l' départ = •Lyon • ;

DEPARTPARI S T EMPSVOL

Bl agnac 1
Pau ,4

Marsei ll e , 9
Frej u s , 2
Toulo n , 15
Nimes , 35

1 166 © ÉdW/ons Eyroles

•,rz:J
Joimures

Les requêtes hiérarchiques supportent les jointures mais seules des équijointures devraient
être appliquées.

Si la dause l\TllERE contient une sous-interrogation Gointure procédurale), la jointure sera réali­
sée avant la clause CONNECT BY. Si la clause l\TllERE ne contient pas de sous-interrogation, le
parcours de l'arbre est réalisé par le CONNECT BY puis les conditions du IVHERE sont appliquées.

Dans Je cas de jointures relationnelles, il faut que chaque nœud à parcourir vérifie la condition
de jointure sous peine de perdre des éléments de l'arbre, non pas du fait du parcours mais de la
jointure.

Supposons que nous disposions de la table Aéroports ci-dessous. L''équijointure relation­
nelle permet d'afficher les fréquences des aéroports sur les parcours.

Table Aéroport

NOMAERO FREQUENCETWR
------ ---- ------------
Ales 120,3
Blagnac 118,1
Frejus 114 , 7
Gap 122,7
Grenob l e 115,6
Lyon 123,8
Marseille 118, 7
Nimes 126,2
Paris 123,4
Pau 117 ,9
Toulon 119 ,9
val ence 126,9

Ordonnancement

Requêlo el résullll IOUS SQL'Plus

SELECT LPAD(' ' ,4*LEVEL·4) l l arrivée
oepa.rtParis, tempsvo l , frequenceTWR

FROM Trajets, Aéroports
WHERE NOT (arrivée = ' Lyon ')
AND arrivée = nomAero
ST ART WITH départ= ' Paris '
CONNECT BY PRIOR arrivée départ
AND NOT départ = ' Lyon ' ;

DEPARTPARIS TEMPSVOL FREQUENCETWR

Blagnac 1
Pau ,4

Marsei ll e , 9
Frejus ,2
Nimes , 35
Toulon , 15

118,1
117,9
118, 7
114 , 7
126,2
119,9

L'utilisation des directives ORDER BY ou GROUP BY est incompatible avec Je parcours hiérar­
chique de J' arbre.

Pour classer des enregistrements d'une hiérarchie, il faut utiise r la directive ORDER SIBLINGS
BY.

©Éditions Eyrol/es 167 1

lr.111

1168

La requête suivante affiche tout J' arbre en triant sur les escales par ordre alphabétique inverse.

Requête Réslllat IOUI SQl "Plus

COLUMN DepartParis FORMAT Al5
SELECT LPAD (' ' , 4 *LEVEL-4) 1 1 arrivée

DEPARTPARIS TEMPSVOL

oepartParis, tempsvo l
FROM Trajets
ST ART WITH départ = ' Paris '
CONNEC'r BY PRIOR arrivée = départ
OROER SIBLillQB BY arrivée DESC ;

Exlraclion de chemiJs

Marseille ,9
Toulon '15
Nimes '35
Frejus ,2

Lyon ,8
valence ,2

Ales '25
Grenob l e ,3

Gap '35
Blagnac 1

Pau ,4

Disponible depuis la version IOg, la fonction SYS_CONNECT_BY_PATH extrait Je chemin (sous
la forme d'une chaîne VARCHAR2) à partir de la racine (ou des racines si aucune clause START
WITH n'est indiquée jusqu'aux feuilles terminales). La syntaxe de cette fonction est la
suivante:

1 SYS_CO NNBC T_BY_P A TH (colonne, caractère)

colonne et caractère sont de type CHAR, VARCHAR2, NCHAR, ou NVARCHl\R2. Le premier
paramètre la colonne de la table qui compose la hiérarchie définie par la clause
CCllNECT BY et qu'on désire afficher. Le second paramètre indique Je séparateur utilisé pour
J' affichage du chemin complet.

La requête suivante extrait tous les chemins complets partant de Paris.

COL chemin FORMAT A30 HEADING "Hé l as tout part de Paris ... "

SELECT LPAD (' ' , 2*LEVEL- l) 11 (arrivée, ' I ')

chemin, tempsvo l
FROM Trajets

START WITH depart = ' Paris '
CONNECT BY PRIOR arrivée = départ;

© ÉdW/ons Eyroles

1 1° 4 llll11TOD11loe des 1101116es 1

Hé las tout part de Pa.ris... TEMPSVOL

/B l agnac l
/Blagna c/Pa u , 4

/Lyo n , 8
/Lyo n/Grenob l e ,3

/Lyo n/Gren obl e/Gap ,35
/Lyo n/Va l ence , 2

/Lyo n/Va l e nce/A les ,25
/Marsei ll e , 9

/ Mars ei lle/Frej us , 2
/ Mars ei lle/Toulon , 1 5
/ Mars ei lle/Nimes , 35

Extraction d'un élément
Disponible depuis la version !Og, J'opérateur CONNECT_BY_ROOT étend la fonctionnalité de la
condition COmECT BY [PRIORJ en permettant de qualifier une colonne et de retourner non
seulement un enregistrement parent de l'enregistrement courant, mais également tous ses
ancêtres. Cet opérateur ne peut pas être utilisé dans une clause START WJ:TH ou CCllNECT BY.

La requête suivante extrait les chemins complets ayant deux escales. L'opérateur CONNECT_
BY_ROOT permet ici d'afficher la première escale.

a:JL chemin FORMAT 1\30 HEADING •chemi n ... •
SELECT arrivée •ne Paris à•, CC8DC'T_ BYJlOOT arrivée •ar.rivée•,

SYS_COONECT_BY_PA'IH (départ , '/ ') chemin
FROM Trajets LEVEL > 2
COONECT BY PRIOR arrivée = départ;

De Paris à arrivée Chemin ...

Gap Lyon / Paris /Lyon/Gr enob le
Ales Lyon / Paris /Lyon/V a lence

Natll'e d'un élément
Disponible depuis la version !Og, la pseudo-colonne CONNECT_BY_ISLEAF retourne la
valeur 1 si J 'enregistrement courant est une feuille de la hiérarchie désignée par la condition
dans la clause Q)NNECT BY. Dans Je cas inverse, cette pseudo-colonne vaut O. Cette informa­
tion permet de savoir si un enregistrement courant est un nœud ou une feuille de la hiérarchie.

La requête suivante extrait les chemins complets des trajets avec les destinations finales.
L'opérateur CONNECT_BY_ISLEAF permet ici d'afficher seulement les terminaisons de la
hiérarchie.

© Éditions Eyrol/es 169 1

l r.111

1110

COL chemin FORMAT A30 HFADI!iG "Chemin ... •

SELEl:T arrivée, CONNBC'l'_BY_ISLBAJ' "IsLeaf•, LEVEL,

SYS_a:JNNEx::T_BY_PATH(départ, ' / ') chemin

FRCM Traje ts CONNBC'l'_ BY_ ISLBAJ' = 1

START WITH départ= ' Par is '

a:JNNEx::T BY PRIŒ a=ivée = départ;

ARRIVÉE IsLeaf LEVEL Chemin ...

Pau 1 2 / Par is/Blagnac

Gap 1 3 / Par is/Lyon/Grenoble

Ales 1 3 / Par is/Lyon/Valence

Frejus 1 2 / Par is/Marse ille

Toulon 1 2 / Par is/Marseille

N îmes 1 2 / Par is/Marseille

La requête suivante extrait les chemins complets des trajets avec les destinations au bout de
deux escales non terminales.

COL chemin FORMAT A35 HFADI!iG "Chemin 2 escales non t erminales ... •

SELEl:T arrivée, SYS_COONECT_BY_PATH (dépar t , ' / ') chemin

FROM Traje ts

CONNBC'l'_ BY_ I SLBAJ' = 0 AND LEVEL = 2

STAR!' WITH de part = ' Paris '

COONECT BY PRIOR arrivée = départ;

ARRIVÉE Chemin 2 escales non t erminales ...

Grenoble / Par is/Lyon

Valence / Par is/Lyon

ÉViler un cvcle
Disponible depuis la version 1 Og, la pseudo-colonne CONNECT_BY_ISCYCLE retourne la
valeur 1 si J' enregistrement courant est associé à un enregistrement enfunt qui est également
son ancêtre dans la hiérarchie désignée par la condition dans la clause CONNECr BY. Dans Je cas
inverse, cette pseudo-colonne vaut O. Elle n'a de sens que si Je paramètre N::>CYCLE a été spéci­
fié dans la clause COmECT BY. Ce paramètre permet de retourner un résultat récursif qui
échouerait sans cette option. La syntaxe de la définition du parcours de la hiérarchie est la
suivante (elle est à placer après la condition VlllERE de la requête):

1
(START WITB cond i t ion)
CONNBC'l' BY (NOCYCLB) cond i t ion

© ÉdW/ons Eyroles

1 Cllldt1n° 4

Considérons la hiérarchie suivante qui inclut un cycle. Il sera nécessaire d'utiliser le paramètre
NOCYCLE et la pseudo-colonne COmECT_BY_ISCYCLE pour que le cycle n'entraîne pas
d'interférences dans les différentes requêtes qui parcourront la hiérarchie.

Figure 4-22 Hiérarchie s>ec un cycle

LEVEL

dép.ut .u-riv ée teapaVol
PIYIS 1
Psis Lvon 08
Pa1s Marseille 09

ac l'SU u•
Pans O!r.I

La requête suivante extrait les chemins complets des trajets avec les destinations finales et
intermédiaires. L'opérateur CONNECT_BY_ISCYCLE permet ici de trouver le cycle.

a:JL chemin FORMAT 1\30 HEADING •chemin ...•

SELECT arrivée •ne Paris à•, CONNECT_BY_ISCYCLE , LEVEL ,,

SYS_COONECT_BY_PA'IH (dépar t , '/') chemin

FROM Traje ts

STARI' WITH de part = ' Paris '
COONECT BY NOCYCLB PRIOR arrivée = départ;

De Par is à COONECT_BY_ISCTCLE LEI/EL Chemin ...

Blagnac 0 1 /Paris

Pau 0 2 /Paris/Blagnac

Paris 1 2 /Paris/Blagnac

Lyon 0 3 /Paris/Blagnac/Paris

Marsei ll e 0 3 /Paris/Blagnac/Paris

Lyon 0 1 /Paris

Marsei ll e 0 1 /Paris

La requête suivante extrait les chemins complets des trajets avec les destinations finales et
intermédiaires sans que le cycle n'interfère dans le résultat.

SELECT arrivée "De Paris à•, LEVEL, SYS_a::NNEX:T_BY_PATH(départ, '/') che­

min
FROM Traje ts

WHERE CONNBCT_BY_ISCYCLB = 0 AND LEI/EL < 3

STARI' WITH départ = ' Paris '
COONECT BY NOCYCLB PRIOR arrivée = départ;

© Éditions Eyrolles 171 1

llWlll

De Paris à LEVEL Chemin •••

Blagnac 1 / Paris
Pau 2 / Paris /Bl agnac
Lyon 1 / Paris
Marse ill e 1 / Paris

Mises à ïour comitionnées uusions>

'
1112

L'instruction MERGE extrait des enregistrements d'une table source afin de mettre à jour
(Ul?DATE) ou d'insérer (INSERT) des données dans une table cible. Cela évite d'écrire des
insertions ou des mises à jour multiples en plusieurs commandes.

Vous devez avoir reçu les privilèges INSERT et UPDATE sur la table cible et Je privilège
SELECT sur la table source.

Syntaxe <WIRGE
La syntaxe générale de J' instruction MERGE est la suivante :

MBRGE INI'O (schéma.) nomTableCible (alias)

USING (schéma.) { nomTableSource) nomVue) requllte) (alias)

ON (condition)

WHEN MATCHID THEN

UPDATE SEI' coll = { expressionl) DEFAULT)
(, col2 = { expression2) DEFADIJI')) ...

WHEN Nor MATCHID THEN

INSERI' (coll (, col2) ...) VALUES (expressionl (, expression2) ...) ;

Le choix entre la mise àjouret l'insertion dans la table cible est conditionné parla clause ON.
Pour chaque enregistrement de la table cible qui vérifie la condition, J' enregistrement corres­
pondant de la table source est modifié (UPDATE). Les données de la table cible qui ne vérifient
pas la condition, déclenchent une insertion dans la table cible, basée sur des valeurs d 'enregis­
trements de la table source.

Il n'est pas possible d'utiliser la directive DEFAULT en travaillant avec des vues.

L:instruction MERGE est déterministe : il n'est pas possible de mettre à jour plusieurs fois le
même enregistrement de la table cible en une seule instruction.

© ÉdW/ons Eyroles

Exem.-e
Supposons qu'on désire ajouter à la paye de chaque pilote un bonus. Si on en donne un à un
pilote n'ayant pas eu encore de prime, il faut ajouter ce pilote en affectant son bonus à son
salaire. La figure suivante illustre cet exemple qui, sans l'utilisation de l'instruction MERGE,

nécessite d'utiliser une instruction UPDATE et une instruction IIBERT (multiligne si plusieurs
pilotes n'étaient pas référencés dans la table Prime s).

Figure 4-23 Mises à j our condtfonnées

Vol sourc.
IŒRGB

HISBRT OP DATE

Primes cible
·rO (0

Le tableau suivant décrit l'instruction MERGE à utiliser et le résultat produit. L'utilisation de
l'alias p permet de parcourir la table Prime s et d'effectuer la jointure avec la table vol.

T- W3 fuslcie •• Mlllll

Requtle 1161ullll IOU1 SQl"Plus

DRGll: INI'O Primes p SQt.> SELECT * PROM Primes
USING (SELECT breve t , bonus FROM Vol) v

ON (p. bre v et • v . bre vet) BREVET NOM PAYE C<>IP
WHEN MATCHED THEN •••••• •••••••••••••••• •••••••• ••••

UPDATE: SET p.paye • p.pa y e + v .bonus PL .. 1 Auréli a En t e
WHEN NOT MATCHED THEN PL .. 2 Agnès Bida l

INSERT (breve t , p aye) PL .. J Sylvie Payriss at
VALUES (v.breve t , v.bonus) ; PL • 4

Sup .. essions dans la table Cible

150 AP
100 AP

4 0 SING
20

Depuis la version lOg, l'instruction MERGE permet les trois types d'opération (UPDATE,

DELETE, ou INS ERT). Cela évite d'écrire des insertions, mises à jour ou suppressions multi­
ples en plusieurs commandes. La nouvelle syntaxe de cette instruction est la suivante.

© Éditions Eyrol/es 173 1

llWlll

'
1114

MBRGE INI'O (schéma.) nomTableCible (alias)

USIN3 (schéma.) { nomTableSource) nomVue) requllte) (alias)

ON (condition)

(WHEN MATCHED 'IHEN

UPD.l\TE SEI' coll {expressionl DEFADIJI')

(,co12 = {expression2 DEFADIJI')) •••

(WBBRB condition)

(DELBTB WBBRB condition))

(WHEN l'O'l' MATCHED 'IHEN

INSERI' ((coll (, co12) •••)

VAWES ({expressionl (, expression2) ...) DEFADIJI'))

(WBZRB condition)) ;

Le choix de l'opération dans la table cible est toujours conditionné par la clause ON. Pour
chaque enregistrement de la table cible qui vérifie la condition, l'enregistrement correspon­
dant de la table source est modifié. Les données de la table cible qui ne vérifient pas la condi­
tion déclenchent une insertion dans la table cible, basée sur des valeurs d'enregistrements de
la table source.

La clause DELETE permet de vider des enregistrements de la table cible, tout en la remplissant
ou en la modifiant. Les seuls enregistrements affectés sont ceux qui sont concernés par la
fusion. Cette clause évalue seulement les valeurs mises à jour (pas les valeurs originales qui
sont évaluées par la directive UPDATE SET. . . \IHERE condition). Si un enregistrement
de la table cible satisfait à la condition du DELETE, mais n'est pas inclus dans la jointure défi­
nie par la directive ON, il ne sera pas détruit.

La clause V.HERE de l'instruction INSERT filtre les insertions par une condition sur la table
source.

Il n'est pas possible de modifier une colonne référencée dans la clause de jointure ON.

f.llemple
Supposons qu'on désire ajouter à la paye de chaque pilote de grade 'COB' un bonus. Si wn
bonus est donné à wn pilote n'ayant pas encore eu de prime, il faudra ajouter ce pilote en affec­
tant sa paye au bonus reçu. On désire aussi supprimer les primes des pilotes modifiés si la
valeur de leur paye est inférieure à 90. La figure suivante illustre cet exemple qui, sans l'utili­
sation de l'instruction MERGE, requiert l'utilisation d'une instruction UPDAT E, DELETE et
IIBERT (qui serait multiligne si plusieurs pilotes n'étaient pas référencés dans la table
Primes).

© ÉdW/ons Eyroles

Figure 4-24 Mises à jour conditionnées (à partir de 1 Og)

Vol. source

brevet daeeVol. b o nus
MERGE

PL-1 08- 10-2004
PL-2 13- 10-2004

50
40

XN GBRT
UPOATE

+s a
PL-3 18-10-2004 30

2004 20
Prime:J

Pl-4 18- 10-

brevet n om I g r a d• paye compa

PL- 1 Auré lie Ente I 100 AF
1-"L - L nôo Bidol l-'IL Hl

DBLETE - PL-3 s.tlvoe P evross El I B 20 SIN G
J.

1 r. 1 ·.1 .. 1·.tll /Il I JIJll

Le tableau suivant décrit l'instruction MERGE à utiliser et Je résultat procluit.

Requête Réllllal IOUI SQl "Plut

MZR.GJ: I NTO Primes p SQL> SEL.E:T * FROM Primes
USING (SELECT breve t , bonus FROM Vol) v

1

ON (p . breve t • v . breve t) BREVET NCM GRADE PAYE COMP
WHEN MATCHED THEN

UPDATE SET p .paye • p .paye +

v . bonus
WHERE grade = ' COB '

DELETE WHERE paye < 90

WHEN NOT MATCHED THEN

INS ERT (breve t , paye)

VALUES (v . breve t , v . bonus) ;

PL- 1
PL - 2
PL - 4

Auréli a Ent e COB
Jqnès Bida l PI L

150 AP
80 AP
20

Expressions régulières

Depuis la version IOg, Oracle gère les expressions régulières. Ces dernières ont un fort rapport
avec la notion de format de données ou de grammaire associée. Par exemple, un numéro de télé­
phone en France s'écrit sur JO chiffres, Je plus souvent indiqués par groupes de 2 entre tirets
(exemple : 05-62-74-75-70). Les deux premiers chiffres indiquent une région (05 indique Je
Sud-Ouest). Un autre exemple concerne les numéros d'immatriculation des véhicules compo­
sés d'une série de chiffres, de lettres et de chiffres représentant Je département d'appartenance.

Les expressions régulières sont manipulées sous SQL ou PUSQL par les opérateurs REIGEXP _

LIKE, REIGEXP_REPLA CE, REIGEXP_INSTR et REIGEXP_ SUBS'IR. Le tableau suivant décrit les
principaux éléments permettant de composer une expression régulière.

© Éditions Eyrol/es 175 1

lr.111

Élément

\

•

$

{m}

{m,}

{m,n}

[: :]

f==I

Dela1pllon

Le caractère backs/ssh (barre oblique ln110rse) permet d'annuler l'effet d'un caractère
significatif suivant (opérateur, par exemple).

Désigne aucune ou plusieurs oocurrences.

Désigne une ou plusieurs oocurrences .

Désigne au plus une oocurrence.

Opérateur spécWlant une alternatl110.

Désigne le début d'une ligne de caractères.

Désigne la fin d'une ligne de caractères.

Désigne tout caractère excepté la valeur NULL.

Désigne une liste devant vérifier une expression continue dans la liste. Une liste ne devant
pas vérifier une expression contenue dans la liste devra commencer par le caractère ' .

Désigne une expression groupée et traitée comme une simple sous..expresslon.

Signifie exactement m fols.

Signifie au moins m fols.

Signifie au moins m fols mals pas plus de n fols.

SpécWle la classe de caractères (précisée dans le tableau suivant).

SpécWle la classe d'équivalence (ex: • f =a= J • filtrera Il, â, à ...).

Le tableau suivant recence les classes d'équivalence disponibles.

Claste Expllc:allon

r : a lnwn: J Caractères

r : a l pha : J Caractères

r : bl ank: J Caractères d'espacement.

r : cn trl : J Caractères de contrôle.

r :digit: J Chiffres.

r :graph: J Caractères de la former :punct: 1. r :upper: J , r : l ower: J et r :digit: J.

r : l ower: J Caractères minuscules.

f : print: J Caractères Imprimables.

r : punct: J Caractères de ponctuation.

r : space: J Caractères espaces (non affichables).

r : upper: J Caractères majuscules.

r : xdigi t: J Caractères hexadécimaux.

1 176 © ÉdW/ons Eyroles

Quetwes exemples
Considérons les données suivantes décrivant des parcs Américains (issu de [GEN 03)).
La structure de la table Parcs est la suivante : endroit VARCHAR2 (7) , telephone
VARCHAR2 (15) , des cription VARCHAR2 (400) .

Figure 4-25 Jeu d 'essai

Parcs

endroit t•l•phon• deaetiption
P1 (231) 431).4100 Michigan's firsc sca e pal1< encompasses approx1ma1ely 1800 acres <:J

Macl<lnac Island The can1e1p1eca is l'on Macklnac. ru111 1n 1780 by che
Brillsh to procect the G<eŒ Lakes Fur Trade For 1nforma11on by phone, dlal
000-44-PARKS 0< 517-373-1214.

P2 (006) 289.4215 LOCS!ed almost et the very tip cl the Keewanaw Penninsula. l'on Wllkens 1s
a rescored army Ion bu111 dunng the copper rush Camping 1s avaolable For
Che modem campground. phone (800) 447-2757 For group.camp1ng, phone
9:>6 289.4215. l'or information on canœ. kayak, andolller boa! renias. cal
Che concession office ac 19061 289-4210

P3 (006) 863-9747 This scenic sqe 1s cenwed o:ound an 1mpresSNe waierfall A rus11c. p1cmc
<Yea with waceroumo 1s av .. atle.

t'4 1 \ "-">) ooo- =oo A 11-acre park 1ocated on the site or an old lumber tCMTI, ueer ..,ark
Showar and 101fec f acili11es <Ye available, as are co:nos•as wilh eleancicv

P5 (006) 885.5275 Michigan's 1argas1 scae park consiscs of some 60.000 acres of mosuy w91n
t1m1>er. Over 90 miles of trails are ava1lable 10 backpackers and h1kers.
Downhill sl<ling is available in wincer Ruslic cabins .:re available To reseive
a cabin call !906l 88S.5275

P6 NULL One of che 1ar9eS1 wacertalls easc ot che Moss1ss1pp1 1s found wqn1n 1t11s pa11<s
40,000+ acres Upper Falls is soma 50 feet high, 200 feet
across. and suppons a flow !ha! has been known to r&ach 50,000
oallons/second. The oark oh one 1s 906.492.3415.

FoncliOn llGEXP _UIŒ
La fonction booléenne REIGEXP_LIKE permet d'identifier des enregistrements vérifiant une
condition à propos d'une expression régulière. Cette fonction s'utilise majoritairement dans la
clause WHERE d'une requête. La syntaxe de cette fonction est la suivante :

1 REGEXP_LIKE (chaineSour ce, grammaire [.param ètre ...))

paramètre est un texte littéral qui permet de moduler l'expression régulière. Les valeurs de
ce paramètre peuvent être :

• ' i ' si on ne tient pas compte de la casse ;

• ' c ' si on tient compte de la casse ;

• •n' permet d'utiliser Je caractère . en tant que fin de ligne ;

• 'm' permet de traiter la chaîne source comme plusieurs lignes. Oracle interprète A et $
comme Je début et la fin de chaque sous-ligne.

© Éditions Eyrol/es 1 n 1

l r.111

11 18

Si aucun paramètre n'est utilisé, la sensibilité à la casse est définie par la valeur de NLS_
SORT, le caractère . ne termine pas une ligne et la chaîne est traitée comme une seule ligne.

Exemples pour l'extraction

Le tableau suivant illustre quelques utilisations de cette fonction manipulant des expressions
régulières. Le filtre porte sur la colonne descr i pt ion qui comporte plusieurs lignes. Nous

testons ici les différents fonnats des numéros de téléphone.

xxx-xxxx

Idem, x étant un
chWfre, élimine
par exemple
l'expression
"217-acre·.

Idem en
autorisant aussi
les nombres
séparés par des
points.

T- WJ llllsatoa Ill Il .,llCllcie llBIJP _1.11

Requête

SELECT end.roi t
FROM Parcs
WHERE llaal:XP_LIX& (description, •

SELECT end.roi t FROM Parcs
WHERE Raa&XP_LIJt& (description,
' [0 -9] [0 -9] [0 -9] - [0 -9] [0 -9] [0 -9] [0 -9] ');

ou
SELECT end.roi t FROM Parcs

WHERE RElGEXP_LIKE (description,
' [0-9]{3} -[0-9]{4, 4} ') ;

SELECT end.roi t FROM Parcs
WHERE llaal:XP_LIX& (description,

RésuHat SQL'Plus

ENDROIT

) ; Pl

P2
P4
PS

ENDROIT

Pl
P2
PS

ENDROIT

· ro-91 <3> r-. 1 ro-91 <4.4l ·>, Pl
P2
PS
P6

Le tableau suivant illustre quelques autres expressions regulières extraites du jeu d'essai décrit
ci-après.

Figure 4-26 Jeu d'essai

Test Test2

col col
bon10ur resume
Mallre resume
enfant résume
mallre resumé
mOble rasumé

•A-9f0 résume
zurock

© ÉdW/ons Eyroles

Chaînes

de 6 caractères
et plus en
minuscu les.

Chaînes

de 6 caractères
en minuscules.

Requêlo

SELECT col FROM T est
WHERE llZGIXP _LID (col, ' ([[:lo-.r:]]) {6} ');

SELECT col FROM T est
WHERE llZGIXP _LID (col, ' ([[:lo-.r:]]) {6)$ ');

Chaînes SELECT col FROM Test RElGEXP_LI !Œ(col,

de 6 caractères ' < r r :upper: J > {ll r r: lo-.r: J]{5)$ ')) ;
commença nt par
une majuscu le,
le reste en
minuscu les.

Classe
d'équivalence
du oc e • en
deuxième et
dernière positio n.

Classe
d'équivalence
de•a • etde
oc e •.

SELECT col FROM T est 2 WHERE

RZGIXP _LID (co l , •r[[=e=JJsum[[=e=JI •);

SELECT col FROM T est 2 WHERE
RZGIXP _LID (co l , •r[[=a=JJsum[[=e=JI •);

Définition d 'une contra inte

Réslllat SQL "Plus
COL

bonjour
en fa nt
maitre
!Mbilè
ptljaro
zurück

COL

en fa nt
maitre
mbbile
ptljaro
zurück

COL

Mait.ré

COL

resume
résumé
résume
resumé

COL

rasumé
ràsume

La fonction REGEXP_LIKE permet également de définir des contraintes au niveau des colonnes
de tables afin de s'ass urer du format des données. L'ajout de la contrainte suivante garantit que
la colonne te lephone contien t à présent des valeurs de la forme « (xxx) xx.x-xx.xx ».

ALTER TABLE Parcs
AID (O:JNS'IRAINI' ck_forma t _ t elephone

RBall:lCP_ LIKB (t elephone,

'A\ (((;digit; 1)(3) \) ((:digit: 1)(3) - ((:digit; 1)(4)$'))) ;

© Éditions Eyrol/es 179 1

l r.111

1180

Étudions à présent les fonctions par lesquelles on peut manipuler des chaînes de caractères
tout en utilisant des expressions régulières .

Fonction REGEKP _llPl.AŒ
La fonction REIGEXP _REPLA CE étend la fonction REPLACE en permettant de modifier une
chaîne de caractères à partir d'une expression régulière . Par défuut, la fonction remplace une
chaîne source par chaque occurrence d'une expression régulière donnée . Cette fonction
retourne un VARCHl\R2 si Je premier paramètre n'est pas une donnée de type WB. Dans Je cas
inverse, la fonction retourne une donnée de type Cl.OB. La syntaxe de cette fonction est la
suivante :

1
RBGBXP_ RBPLACB (source, modè l e (. rempla ce

[, posi t ion [, o ccurrence [, param ètr e]]]] }

• source indique la chaîne à examiner (une colonne de type CHAR, VARCHAR2, !'CHAR,

NVARO!AR2, Cl.OB, ou NCLOB) ;

• mod èl e désigne l'expression régulière (jusqu'à 512 octets) ;

• r empla ce décrit, sous la forme de références arrières (jusqu'à 500 expressions « \11 »

avec 11 chiffres de 1 à 9), de quelle manière la chaîne source va être transformée. Si Je para­
mètre rempla ce est un Cl.OB ou NCLOB, alors Oracle Je tronque à 32 Ko ;

• pos i tion est un entier indiquant la position de début de recherche (par défaut 1) ;

• occ urrence est un entier précisant Je remplacement (0 pour remplacer toutes les occur-
rences qui conviennent à J' expression régulière, 11 pour remplacer la 11ième) ;

• param ètr e a la même signification que dans! 'utilisation de la fonction REIGEXP_L IKE.

Le tableau suivant illustre quelques utilisations de cette fonction de remplacement. Le premier
exemple remplace chaque caractère non nul par son équivalent suivi d'un tiret. Le deuxième
remplace plusieurs espaces par un seul.

Dans Je troisième exemple, nous rendons homogène (à l'affichage) les différents formats des
numéros de téléphone de type « xxx•xxx•xxxx » (x étant un chiffre et • étant un tiret ou un

point) présents dans la colonne descriptio n parle format « (xxx) xxx-xxxx ».On remarque
que Je numéro de téléphone codé en partie à J'aide de lettres n'a pas été modifié car il ne
respecte pas l'expression régulière. Utilisée dans un UPDATE, cette fonction pourrait permettre
de modifier cette colonne en conséquence.

© ÉdW/ons Eyroles

T- W9 Ullsa1lcie dl li l•cl111 lllllllP _llPlAŒ

Requête

CREATE TABLE Te s t (co l VARCHAR2 (30));
I NSERT I NrO Te s t VALUES (' Cas tanet ');
I NSERT I Nro Test VALUES (' Blagnac ');
I NSERT I Nro Te s t VALUES (' Paris ') ;

SELECT UQDP_llDL M:& (c ol , ' (.) ' ' ' \ 1 - ')
FROM T es t ;

SELECT UQDP_JIDLM:& ('IUT , 1 Pl ace

G.Brassens, Bl agnac ' ,
' () (2,} ' ' ' ')) "Exe mpl e 2 " FROM DUAL;

SELECT UQDP..JIDL M:&(descripti on,

' ([[:digit: 11 (3)) [-. 1 ([[:digit: 11 (3))

[-. 1 ([[:digit: 11 (4)) ' ' ' (\ 1) \ 2- \ 3 ')
FROM Parc $ WHERE en d r oi t = ' Pl ' ;

FoncliOn llGEXP _INSm

Réslft at SOL •Plus

RElGEXP_,IŒPLACE (COL, ' (.) ' , ' \ 1 - ')

c-a- s -t-a- n-e-t­
B-1-a-g- n -a-c­
P-a- r - i -s-

Exemp l e 2

IUT, 1 Place G. Brass ens, Bl agnac

DESCRI PTI ON

Michigan •s f irst s tate p ark
encompass es approximate ly
1800 acre s of Mackinac I sland.
The centerpi ece is Fo r t Mackinac ,
buil t in 1780 by t h e Bri t ish
to protect t he Great Lakes Fur
Trade. For informat i on by phone ,
d i a l 800 - 44 - PARKS o r

(517) 373- 1 21 4 •

La fonction REIGEXP _INSTR étend la fonction INSTR en permettant de rechercher une chaîne
de caractères à partir d' une expression régulière. Cette fonction retourne un entier indiquant le
début (ou la fin) d'une sous-chaîne vérifiant l'expression régulière, ceci en fonction d'un para­
mètre de retour. Si aucune sous-chaîne ne convient, la fonction retourne O. La syntaxe de cette
fonction est la suivante :

1
RBGBXP_ INSTR (source, modè l e

[, posi t ion [, o ccurren ce [, op t ionR etour [, param ètr e]]]] }

• source indique la chaîne à examiner (une colonne de type CHAR, VARO!AR2, NCH!\R,
NVARCHAR2, CLOB ou NCLOB) ;

• mod è l e désigne l'expression régulière (jusqu'à 512 octets) ;

• p os i t i on est un entier positif indiquant la position de début de recherche (par défaut 1) ;

• occ urrence es t un entier positif précisan t quelle es t l'occurrence de l'expression recher­
chée (par défaut, 1 indiquan t que la première occurrence est à examiner, 11 pour examiner
la 11ième) ;

© Éditions Eyrol/es 181 1

lr.111

11s2

• optionRetourcodifie ce qui doit être retourné:

- 0 si la position du premier caractère de l'occurrence extraite doit être retournée (option
par défaut) ;

- 1 si la position du premier caractère suivant J' occurrence extraite doit être retournée ;

• paramètre a la même signification que dans l'utilisation des fonctions REIGEXP_LIKEet
REIGEXP _REPLACE.

Le tableau suivant illustre quelques utilisations de cette fonction de recherche.

Le premier exemple examine la chaîne décrivant une adresse, recherche les occurrences des
caractères non blancs en débutant au premier caractère et retourne la première position du
quatrième mot (15 correspond à la position qui débute avec l'expression « 31703 »).

Le deuxième exemple examine la chaîne et analyse les mots de sept lettres commençant pars,
r, ou p (casse indifférente). La recherche débute au troisième caractère et retourne la position
du premier caractère suivant la seconde occurrence du type de mot recherché (ici, 28 corres­
pond à la position du « S » de « Shores » ; « Parkway » et « Redwood » étant deux mots qui
respectent l'expression régulière).

Dans le troisième exemple, nous extrayons les endroits dont la description inclut une surface
(définis en acres mais hétérogènes au niveau de l'expression). Utilisées conjointement à
SUBSTR (qui extrait une sous-chaîne), les fonctions REIGEXP_INSTR permettent de délimiter
les différentes expressions décrivant une surface (1800 acres, 217-acre, 60,000 acres et
40,000+ acres). L'expression régulière est divisée par une barre verticale qui filtre à la fois les
mots « acres» et « acre». Les deuxième et troisième appels àREIGEXP_INSTRservent à déter­
miner la taille de J' expression.

T- 4-410 U•alloa dl li ICIKlloe lllUP _INSTll

Requête Résunat SQL'Plus

SELECT U:GDP _ nmTR ('IUT Dept GTR, 31703 Blagnac ' ,
'[']+', l, 4) FROM DUAL;

Exemp l e 1

15

SELECT RaaEXP DIS"l'R(' 500 orac l e Parkway,Redwood Shores, Exempl e 2
CA' , 'l slrlpJ((:alpha:)){6} ' , 3, 2, l, ' i ') ----------

"Exemple 2" FROM DUAL; 28

SELECT endroit, SUBSTR(description,
Raa&X.P_ INSTR(descriptio n,

ENDROIT SURFACE

'("]+ acres
Raa&X.P_ INSTR(descriptio n,

[' J+- acre ' ,l,l,O, ' i '),
Pl

'("]+ acres 1 (" 1+- acre ' ,l,l,l, ' i ') P4
- R&GIXP_ INSTR (descr iptio n, PS

'("]+ acres 1 (" 1+- acre ' ,l,l,O, ' i ')) P6
"SURFACE"
FROM Parcs
WHERE RElGEXP_LI KE(description,

'["' 1+ acres 1 ["' 1+-acre ' , ' i ');

1 800 acres
217-acre
60, 000 acres
40, 000+ acres

© ÉdW/ons Eyroles

FoncliOn llGEllP _SUBSTR
La fonction REIGEXP_SUBS'IR étend la fonction SUBSTR en permettant d'extraire une sous­
chaîne à partir d'une expression régulière. Le fonctionnement de cette fonction est similaire à
celui de REGEXP _IN3TR sauf qu'au lieu de retourner la position d'une sous-chaîne, REIGEXP _
SUBSTR retourne la sous-chaîne elle-même. La syntaxe de cette fonction est la suivante :

1
REGEXP_ SUBSTR (source, modèl e

[, posi t ion [, o ccurren ce [, param ètr e]]] }

• source indique la chaîne à examiner (une colonne de type CHAR, VARO!AR2, NCH!\R,
NVARCHAR2, CLOB ou NCLOB) ;

• modèl e désigne l'expression régulière (jusqu'à 512 octets) ;

• p os i t i on est un entier positif indiquant la position de début de recherche (par défaut 1) ;

• occ urren ce est un entier positif precisant quelle est l'occurrence de l'expression recher­
chée (par défaut, 1 indiquant que la première occurrence est à examiner, 11 pour examiner
la 11ième).

• param ètr e a la même signification que dans l'utilisation des fonctions REIGEXP_LIKEet
REIGEXP _REPLACE et REIGEXP _INSTSR.

Le tableau suivant illustre quelques utilisations de cette fonction d'extraction reposant sur les

exemples précédents . Le premier exemple retourne la chaîne corresponclant au quatrième mot.
Le deuxième exemple retourne la chaîne correspondant à la seconde occurrence d'un mot de
sept lettres commençant pars, r, ou p (casse indifférente) . Dans le troisième exemple, nous

simplifions l'extraction précédemment étudiée .

,...., 4-61 1111sa11oa 111 111GK11oe lllDP _sœm

Requête Résullat SQL "Plus

SELECT 'IUT Dept GTR, 31703 Bl ag nac ' '
'['] +', l, 4) FROM DUAL;

Ex. l

31703

SELECT Ex.2
na&XP_ StJBSTR(' 500 or acl e Parhia y , Red\\•ood Shor es, CA ' ,

'l slrlpl [[: a lpha:]]{6} '. l, 2, ' i ') Redwood
"Ex. 2 " F ROM DUAL;

COLUMN s urface format a1 3 heading "Ex. 3 "
SELECT end.roi t,

ENDROIT Ex. 3

Rm&XP_stJBSTR(desc r i pt i on, '("]+(- Jacres? ' ,l,l, ' i ') -
s ur face Pl

FROM Parc$ P4
WHERE RElGEXP_LIKE(desc r i p t i on,' [' J+[-] ac r es ?', ' i'); PS

P6

1800 ac res
21 7-ac r e
60,000 ac r es
40,000 + acres

© Éditions Eyrol/es 183 1

lr.111

1184

sous-expressions
Depuis la version llg, les fonctions de recherche de chaîne de caractères et d'extraction de
sous-chaîne de caractères à partir d'une expression régulière (RIDEKP_INSTR et RIDEKP_

SUBS'IR) sont enrichies d'une option supplémentaire qui permet de cibler une sous -expression
particulière de l'expression régulière à évaluer.

La nouvelle fonction REGEXP_COONI' vient en complément de RIDEKP_INSTR pour compter le
nombre d'occurrences d'une expression régulière dans une chaîne de caractères.

Recherche et extraction

Concernant la recherche, l'option supplémentaire est indiquée en gras dans la syntaxe suivante :

1
RBGEXP_ INSTR (source, modèle

[, position [, occurrence [, optionRetour

(, paramètre) [, •ou•8"pr 1))))

• L'option sousexpr est un entier (de 0 à 9) qui permet de rechercher une position d'une
sous-expression régulière (fragment d'expression entre parenthèses). Une sous-expression
peut être imbriquée et est numérotée dans l'ordre d'apparition en fonction des parenthèses.

- Si l'option souseJ<pr vaut zéro (valeur par défaut), la fonction se ramène à celle étudiée
à la section précédente.

- Si l'option sousexpr est différente de zéro, alors la position de la sous-chaîne (fragment)
qui correspond à l'ordre de la est retourné. Si aucune position n'est trouvée,
la fonction retourne zéro.

Par exemple, considérons la chaîne (IUT) (R(ei) (ms)). Elle comporte quatre fragments qui
sont respectivement (dans l'ordre des parenthèses) « Iur », «Reim s», « ei »et « ms». Ainsi,
la requête suivante détermine la position de la troisième sous-expression (ici « ei »)au sein de
la chaîne de caractères source (ici « IU'IReims »).

SELEl:T REGEXP_INS'IR(' IU'IReims ' , ' (IUT) (R(ei) (ms)) ' , 1, 1,0, ' i' ,3
"REGEXP_INS'IR" FRCM DUAL;

RIDEKP _INSTR

5

Concernant l'extraction, on retrouve la même nouvelle option dans la syntaxe suivante:

1
RBGEXP_ SUBSTR (source, modèle

[, position [, occurrence
(, paramètre) [, •ou•8"pr 1))))

• L'option souseJ<pr est un entier (de 0 à 9) qui permet d'extraire une sous-expression
régulière (fragment d'expression entre parenthèses). Si l'option sousexpr vaut zéro
(valeur par défaut), la fonction se ramène à celle étudiée à la section précédente.

© ÉdW/ons Eyroles

• Si aucune sous-expression n'est trouvée, la fonction retourne NULL.

Considérons l'exemple précédent, et extrayons la troisième sous-expression présente dans
J' expression régulière au sein de la chaîne de caractères source.

SELECT RIDEKP_SUBS 'IR (' IU'IRei ms ' , ' (IUT) (R (ei) (ms)) ' , 1, 1, ' i ' , 3)

"RIDEKP_SUBS 'IR • FRCM DUAL;

REGEXP _SUBSTR

ei

Comptage

La fonction REIGEXP_CO\Nr complète la fonction RIDEKP_IN STR en permettant de compter Je
nombre d'occurrences d'une expression régulière dans une chaîne de caractères. Si aucune
occurrence n'est trouvée, la fonction retourne zéro. La syntaxe de cette fonction est la suivante :

1 RBGEXP_COOHT (source, modè l e (, posi t ion (, param ètr e)))

• source indique la chaîne à examiner.

• mod è l e désigne l'expression régulière (jusqu'à 512 octets). Si des sous-expressions sont
présentes (fragments), elles seront ignorees et considérées comme un tout.

• p os i t i on est un entier indiquant la position de début de recherche (par défaut 1).

• param ètr e a la même signification que dans l'utilisation de la fonction REIGEXP_LIKE.

L'exemple suivant retourne Je nombre de fois où l'expression IUT est présente dans la chaîne
source.

SELECT RIDEKP_a:J UNT(' I t1r- BlagnacIUT ' , ' (IU)T ' , 1, ' i ')
REGEXP _COONI' FROM 001\L;

2

Exlraclions liverses

Étudions, pour terminer ce chapitre consacré au requêtage, d'autres fonctions disponibles
depuis la version IOg R2 avant de nous intéresser à celles proposées dans la version llg R2.

Directive WllH
La directive WITH nomRequ ête permet d'assigner un nom à une sous-requête de façon à
pouvoir l'utiliser à différents endroits et en particulier dans la requête finale (main q11ery).
Oracle optimise l'interrogation en considérant la sous-requête comme une vue ou comme une
table temporaire.

© Éditions Eyrol/es 185 1

llWlll

1186

Syntaxe

La syntaxe est la suivante :

1
WJ:TB nomRequlltel AS (requê teSQL)

(, nomRequllte2 AS (requllteSQL2)

SELEl:T ...

) ...

Le nom d'une sous-requête est visible au niveau de la requête finale et au sein de toutes les
autres sous-requêtes exceptée celle qui définie la sous-requête en question.

Chaque résultat d'une sous-requête est appelé CTE (Commo11 Table Expression).

Exemple

L'exemple suivant extrait Je nom des compagnies dont la masse salariale est inférieure à la
masse salariale moyenne par compagnie. Nous utilisons ici deux sous-requêtes nommées. La
première (conp_charges) construit un ensemble décrivant les compagnies avec leur masse
salariale. La seconde sous-requête (m:>y_charges) se sert de la première afin d'extraire la
moyenne de la masse salariale. Les deux sont utilisées par la suite par la requête finale.

WJ:TB cc:mp_charges AS (SELECT ncmConp, SUl>l(salaire) tot al_sal_cc:mp

FROM Pilote p, Conpagnie c

WHERE p. cc:mpa = c. cc:mp GROOP BY ncmConp).

iooy_charges AS (SELEl:T SUI>!(tota l_sal_conp) /a:JUNT(•) moyenne

FRCM cc:mp_charges)

SELEl:T • FRCM cc:mp_charges

WHERE tot al_sal_cc:mp < (SELEl:T iooyenne FRCM moy_charges)

ORDER BY nonCc:mp;

La figure suivante illustre cette directive à J'aide d'un exemple.

Rgure 4-27 Jeu d'exemple pour tes nommées

Compagnie Pilo te
.,_ nancanp b..- sa l aire coonpa
AF Nt France
SllG Sinruincre Al
CASf C8s1anel /JL

oornp_c harqes

tota l_ sa l_comp nomcornp
t 6900 A.W France

Pl·1
PL-2
PL-3
PL-4
PL-5
PL-6
PL-7
Pl -8

36050 Sirgapore AL l

3400 AF
4500 AF
9000 AF
10000 SING
10050 SING
16000 SING
10000 CAST
15000 CAST

1 -----

25983.34

1

moyenne J
-----­'--------------'

. 25000 cast.anet At 1

© ÉdW/ons Eyroles

1 Cllldt1n° 4

'

Le résultat de cette extraction est Je suivant :

Il n'est pas possible d'utiliser une clause WITH dans une requête ou une expression (la clause
WITH doit se trouver au plus haut niveau).

FoncliOn WIDTH_BUCIŒT
La fonction WIUI'H_BUC!ŒI' permet de définir des plages de valeurs à partir d'intervalles
calculés.

Syntaxe

La syntaxe est la suivante. Les paramètres sont explicités au tableau 4-16.

1 WIDTR_ BUCKET (expre ssion , val e urMin , val e urMax , nbrin tervall e}

Exemple

L'exemple suivant permet de répartir les pilotes suivant leur expérience (nombre d'heures de
vol). Considérons les données suivantes .

SQL> SELEl:T brevet , nom, nbhvo l FROM Pi l ote ORDER BY nbHVol

BRElfEI' NCM NBHVOL

PL-1 Henri Al qui é 400
PL-2 Pi erre Lam:lthe 500
PL-3 Didi er Linxe 900
PL-4 Christ i an Souto u 1000
PL-5 Gill es Laborde 1050
PL-6 Pi erre Séry 1600
PL-7 Mi che l castaings 1700
PL-9 Pat rick Baudry 3999
PL-8 J ules Ente 4000
PL-10 Dani e l Vi el 5000

La requête suivante définit JO plages de valeurs (heures de vol) entre les chiffres 600 et 4 000
(soit JO plages de 340 unités) . La première ira de 600 à 940 (non inclus) , la seconde de 940 à
1 280 (non inclus), etc. Si Je chiffre est inférieur à la borne minimale, la plage est valuée à
zéro, s'il est supérieur à la borne maximale, la plage est automatiquement calculée .

© Éditions Eyrol/es 187 1

l r.111

1188

WJ:DTB_BUC'lŒ'l' (nbHVol, 600, 4000, 10) 'Tranche EJ<périence '

1
SELEl:T brevet, nom, nbHVol ' Heures de vol',

FR.CM Pilote ORDER BY nbHVol ;

Le est Je suivant. Notez les deux premières lignes et les deux dernières qui sont hors
intervalle prédéfini.

BREVET IDM Heures de vol Tranche Expérience

PL- 1 Henri Alquié 400 0
PL-2 Pierre Lamothe 500 0

PL-3 Didier Linxe 900 1
PL-4 Chris t ian Sautou 1000

PL- 5 Gilles Laborde 1050

PL-6 Pierre Séry 1600 3

PL- 7 Miche l Castaings 1700 ' PL- 9 Patrick Baudry 3999 10
PL- 8 Ju l es Ente 4000 11

PL- 10 Danie l Vie l 5000 11

Récursivité avec WITH <CTU
Depuis la release 2 de la version l lg, l'opérateur WITH permet de programmer la récursivité
d'une manière plus efficace que la clause CONNECT BY. En effet, une sous-requête peut
désormais utiliser la requête principale. On parle d'une expression commune de table (CTE
pour Commo11 Table Expression). La syntaxe de cet opérateur permettant la récursivité est la
suivante:

Wl:TB

nomRequet e l ((alias_coll (,alias_co12) ...))
AS

(sousRequetel)
(SEARCH DEP'IH FmST BY alias_cl (,alias_c2) ...

[ASC 1 D&SC) [NULLS FIRST 1 NULLS U\ST)
BREAD'IH FmST BY alias_cl (,alias_c2) ...
(ASC 1 DESC) (NULLS FIRST 1 NULLS U\ST)

SEI' col_ordre)
(CYCLE alias_cl (,alias_c2) ...

SEr alias_col_cycle TO valeur_cycle

DEFADllI' valeur_non _cycle)
(,nomRequete2 ((alias_coll (,alias_co12) ...))

AS
(sousRequete2) ...

© ÉdW/ons Eyroles

1 Cllldt1n° 4

'

La sous-requête (sousRequetei) programmant la récursivité doit être composée de deux
requêtes : la première est dite anchor member et la seconde est appelée recursive member. La
première ne peut pas référencer la requête principale tandis que la seconde doit impérative­
ment la référencer, mais une seule fois. La première requête peut être composée de plusieurs
sous-requêtes reliées par des opérateurs ensemblistes (UNION ALL, UNION, INTERSECT ou
MINUS). Par ailleurs, vous devrez utiliser l'opérateur UNION ALL entre la requête anchor mem­
ber et la requête recursive member.

Premier exemple

Considérons J' exemple suivant décrivant la hiérarchie de quelques aéroports. Dans J' exemple,
la récursivité va parcourir les liaisons entre enregistrements fils et parents (Castelnaudary
dépend de Toulouse qui dépend d'Orly, lui-même sous Charles-de-Gaulle).

Contenu de la table

SQL> SELECT OACI, nomAe.ro , OAC I _re sp FROM Ae r opo.r t ;

OACI NOMAERO OAC I _,IŒ SP

LFPG Paris Ch arl es de Gaull e
LFPO Paris Orly LFPG

LFBO Toulouse Blagnac LF BD

LFBD Bordeaux Meri gnae LF PO

LFC I ALbi LFBO

LFCK cas tr es LF BO

LFMW Cas te lna udary LFBO

LFMT Mont pe lli er Frêgorgues LFMM

LFMM Marse ill e Marignane LF PO

Le nombre d'a lias de colonnes d'une requête principale doit être identique au nombre d'al ias
de colonnes des requêtes anchor memberet recursive member.

La requête recursive member ne doit pas contenir DISTINCT , GROUP BY, MODEL, fonctions
d'agrégat, sous-requêtes ou joinb.Jres externes avec la requête principale .

La requête suivante parcourt J' arbre des aéroports récursivement (la condition de liaison est
basée sur l'égalité des colonnes clés. Dans l'exemple, le point de départ est l'aéroport d'Orly
à partir duquel Oracle recherche tous ses subordonnés, pour chaque subordonné, Oracle
recherche tous ses subordonnés, etc.

© Éditions Eyrol/es 189 1

lr.111

Requêle

COL arbo FORMAT Al 5
WXTR

•ou• _.Parie _ Orly (OACI , OACI _resp, niveau)
AS (SELECT OACI , OACI _resp, 0 niveau

FROM Aéroport

WHERE OACI = ' LFPO '
UNI ON ALL
SELECT a.OACI , a.OACI _resp, niveau+l

FROM aoua_.Paria_Orly sp, Ae.roport a
WHERE sp.OAC I = a.OACI_ resp)

SELECT OAC I_resp,

LPAD(' ' ,2*niveau) 1 IOACI arbo, niveau
FROM sous _ Paris _orl y
WHERE ni veau>O
ORDER BY niveau, OACI ;

Constituer une liste des descendants

Résullal

OACIJŒSP ARBO

LFPO
LFPO

LFBD
LFMM
LFBO
LFBO
LFBO

LFBD
LFMM

LFBO
LFMT

LFC I
LFCK

LFMW

NI VEAU

1
1

2
2
3
3
3

La requête suivante parcourt l'arbre des aéroports récursivement en partant de J' aéroport
d'Orly. À chaque subordonné trouvé, la liste des descendants est complétée.

Requêle

COL OACI FORMAT AS
WXTR

sous _Paris _orl y
(OACI , OACI_ resp, niveau, aro_ liate)

AS (SELECT OACI , OACI_ resp, 0 niveau,
CAST (OAC I _ resp AS VARCHAR2(25))

FROM Aéroport

WHERE OACI = ' LFPO '
UNI ON ALL
SELECT a.OACI , a.OACI _resp, niveau+l,

CAST (aro_ li•te 11 ' , ' 11
a .OAC I _resp AS VARCHAR2 (25))

FROM sous _Paris _or l y sp, Aeroport a
WHERE sp.OAC I = a.OACI_ resp)

SELECT OACI , niveau, aro_ liate
FROM sous _Paris _orl y
ORDER BY niveau, OACI ;

1190

Résullal

OACI NI VEAU ARO_L I STE
------ ---- --------------------

LFPO 0 LFFG
LFBD 1 LFFG,LFPO

LFMM 1 LFFG,LFPO

LFBO 2 LFFG,LFPO,LFBD

LFMT 2 LFFG,LFPO,LFMM

LFC I 3 LFFG, LFPO, LFBD, LF80

LFCK 3 LFFG, LFPO, LFBD, LF80

LFMW 3 LFFG, LFPO, LFBD, LF80

© ÉdW/ons Eyroles

Ordonner les descendants

La clause SEARCH permet d'ordonnancer les lignes extraites lors du parcours. L'option
BREADTH FIRST BY retourne les lignes d'un même niveau (sibli11g rows) avant de descen­
dre dans l'arbre (child rows). L'option DEPTH FIRST BY réalise J'inverse. L'ordre est indi­
qué par la colonne citée dans l'opérateur BY et remonte au niveau de la requête principale à
J'aide d'une colonne fictive présente dans l'opérateur SET.

La requête suivante parcourt l'arbre des aéroports récursivement en profondeur d'abord, puis
en lrugeur en partant de l'aéroport d'Orly.

Requêle

T- 4-415 llsll lll'domil im llP1H lllSl IY

Résullll

COL OAC I FORMAT AS

WITH
sous _ Paris _ orly (OACI , OACI _resp, niveau)

AS
(SELECT OACI , OACI_ resp, 0 niveau

FROM Aeroport
WH ERE OAC I = ' LFPO '

UNION ALL
SELECT a.OAC I , a.OAC I_resp,

FROM sous _Paris _orly sp, Aeroport a
WHERE sp.OAC I = a.OAC I _resp)

S&ARCB DEPTB BY OACI_resp S&'T order l

SELECT OACI_ resp,
LPAD(' ' ,2*niveau) l IOACI arbo, niveau

FROM sous _Paris _orly
WHERE niveau>O
OROER BY orderl;

OAC I J ŒSP ARBO

------ ---- ----- ----- -----
LFPO LFBD

LFBD LFBO

LFBO LFC I

LFBO LFCK

LFBO LFMW

LFPO LFMM

LFMM LFMT

NI VEAU

---- ----- -
1
2
3
3
3
1
2

La requête suivante parcourt J' arbre des aéroports récursivement en largeur d'abord, puis en
profondeur en partant de J' aéroport d'Orly. Cela ne représente pas, dans notre exemple, J' arbre
modélisé mais cela peut résoudre certaines problématiques.

© Éditions Eyrol/es 191 1

lr.111

T- 4-66 Us• llldollil 1• lllllDTH lllSl IY

Requêle Résullal

COL OACI FORMAT AS

WITH OAC IJŒSP ARBO NIVEAU
sous _ Paris _ orly (OACI, OACI _resp, niveau)

AS LFPO LFMM 1
(SELECT OACI, OACI_resp, 0 niveau LFPO LFBD 1

FROM Ae.roport LFBD LFBO 2
WHERE OAC I = ' LFPO ' LFMM LFMT 2

UNION ALL LFBO LFMW 3
SELECT a.OACI, a.OACI_resp, LFBO LFCK 3

FROM sous_Paris _orly sp, Ae.roport a LFBO LFC I 3
WHERE sp.OAC I = a.OAC I_ resp)

SSARCB BR&A.D'l'll l'IRBT BY OACI_resp DT orde.r l
SELECT OAC I_resp,

LPAD (' ' , 2*niveau) l IOACI arbo, niveau
FROM sous _Paris _orly
WHERE niveau>O
ORDER BY ord.erl;

1192

Cycles de colonnes

La clause CYCLE permet de détecter les cycles de colonnes, une ligne compose un cycle lors­
que! 'une de ces lignes ancêtre (ascendant) a la même valeur pour une colonne donnée (celle
du cycle cherché). Attention, il ne s'agit pas de cycle de J' arbre, qui, s'il existe, devra être
considéré comme un graphe (voir la section qui suit).

1
CYCLE alias_cl (, alias_c2) ...

SEr alias_col_cycle TO valeur_cycle DEFAULT valeur_non_cycle

• Les alias suivant la clause CYCLE doivent faire référence aux colonnes de la requête princi­
pale.

• Les paramètres valeur_cycleet valeur_non_cycle doivent être des caractères de
taille 1.

• qu'un cycle est détecté, alors la colonne alias_col_cycleest initîalisée à la valeur
valeur_ cycle. La récursivité s'arrête sur cette ligne (aucune ligne descendante n'est
examinée) mais Je traitement se poursuit sur les lignes de même niveau (et Jeurs descen­
dantes).

• Si aucun cycle n'est trouvé, la colonne alias_col_cycle contiendra la valeur
valeur_non_cycle pour les lignes extraites. Cette colonne est d'ailleurs automatique­
ment ajoutée à la requête finale.

Ajoutons à l'exemple précédent la colonne année de création et cherchons les aéroports qui
ont un ancêtre construit la même année.

© ÉdW/ons Eyroles

Conllnu de la llble

SQL> SELECT OACI, nomAero, OACI _resp, anneecreation FROM Aeroport;

OACI NOMAERO OACI _JŒSP ANNEECREATION

---------- --------------------------------- ----- -- -- ----- ---- --
LFPG Paris Char l es de Gaull e 1978

LFPO Paris Orly LFPG 1967
LFBO Toul ouse Bl agnac LFBD 1968
LFBD Bordeaux Merignae LFPO 1972
LFCI ALbi LFBO 1967
LFCK castres LFBO 1980
LFMW Cast e lnaud.ary LFBO 1981
LFMT Montpellier Fregorg ues LFMM 1973
LFMM Marseille Marignane LFPO 1975

La requête suivante parcourt tout J' rubre récursivement et détecte un cycle sur J' année de création
entre Albi et Orly.

Raqu61o el résullll1

COL arbo FORMAT Al5
COL est_cyc l e FORMAT A9
WITH

sous_Paris _orly (OACI , OACI_resp, niveau, creation)
AS

(SELECT OACI , OACI_resp, 0 niveau, anneecreation
FROM Aeroport WHERE OACI = ' LFPO '

UNION ALL
SELECT a.OACI , a.OACI _resp, niveau+l, anneecreation

FROM sous _Paris _orly sp, Aeroport a
WHERE sp.OAC I = a.OACI_ resp)

SEARCH DEPl'H FIRST BY OACI_resp SET order l
CYCLS creatio n Br!' est_ cyc le 'l'O ' Y' DUAULT ' N '
SELECT OACI_resp, LPAD(' ' ,2*nivea u) 1 IOACI arbo,

niveau, creatio n , ••t _ cycle
FROM sous _Paris _orly OROER BY order l;

OACI _JŒSP ARBO

LFPG
LFPO
LFBD

LFBO
LFBO

LFBO

LFPO
LFMM

LFPO
LFBD

LFBO
LFCI
LFCK
LFMW

LFMM
LFMT

NIVEAU

0
1
2
3
3
3
1
2

CREATION

1967
1972
1968
1967
1980
1981
1975
1973

EST_ CYCLE

---- -----
N
N
N
y

N
N
N
N

© Éditions Eyrol/es 193 1

l r.111

1194

Parcours d 'un graphe orienté

L'exemple du graphe suivant est extrait du blog de Frédéric Brouard (alias SQLpro), consul­
tant expert SQLet spécialiste de SQL-Server. Je lui rends ici hommage, au regard de la foulti­
tude d'articles de qualité qu'il a produit à propos de SQL (http:llbfog.de.a/oppez.comlsqpro).
Bon, il n'aime pas trop Oracle, mais personne n'est parfait.

1
385

1

Rgure 4·28 Graphe autorootler

PARIS
1

1
420

1

1
410

1
Ml\N'l'ES CLERMONT FERIWiD LYON

1 1 1
1 1 335 305 1 320
1 ---------- -----------------

' 1 315 1 MONTP&LLIIR MllRSKILLlt
1 1 1

240 1

TOULOUSE NICE

La table Autoroutes permet d'implémenter cet état de fait. Nous allon:s progressivement
rechercher Je détail des trajets possible entre la capitale et Je Capitole.

Conteru de la table

SQL> SELECT vi ll e_de, vi ll e_ vers, km FROM Autoro utes ;

VILLE_l)E

PARIS

PARIS

PARIS

VILLE_ VERS

NANl'ES
CLERMONl'-FERRAND

LYON
CLERMONl'-FERRAND MONl'PELLIER

CLERMONl'-FERRAND TOULOUSE

LYON

LYON

MONTPELLIER

MARSEILLE

MONl'PELLIER

MARSEILLE

TOULOUSE

NICE

KM

385
420
470
335
315

305
320
240
205

© ÉdW/ons Eyroles

La req uête suivante parcourt Je graphe récursivement pour extraire Je nombre d'étapes des
différents trajets, entre Paris et la ville rose. On retrouve la jointure entre la table de référence
et celle construite récursivement.

Requête

WITH trajets (vill e_ vers, etape)
AS

(SELECT DISTINCT vi ll e_de, 0
FROM Autor outes
WHERE vi ll e _de = ' PARIS '

UNION ALL
SELECT a.vill e_ vers, t.etape + 1

FROM Autor o utes a, trajets t
WHERE t.ville _vere • a.ville _de)

SELECT vi ll e_ vers, etape
FROM trajets
WHERE vi lle_ vers = ' TOULOUSE ' ;

Résunat

VI LLE_ VERS ETAPE

T OULO USE

T OULO USE

T OULO USE

2
3
3

La requête suivante ajoute à la précédente la somme des kilométrages pour chaque ligne
extraite du graphe.

Requête

WITH trajets
(vill e_vers, etape, di•tance)

AS
(SELECT DISTINCT vi ll e _de, 0, 0

FROM Autor outes
WHERE vi ll e_de = ' PARIS '

UNION ALL
SELECT a.vi ll e_ vers,

t .etape • l , t .41•tlol!&e•a. lla
FROM Autor outes a, trajets t
WHERE t.vi ll e_vers = a.vill e_de)

SELECT vi ll e_vers, etape, dietanee
FROM trajets
WHERE vi lle_ vers = 'TOULOUSE' ;

Résullat

VI LLE_ VERS ETAPE DISTANCE

T OULOUSE 2 795

T OULOUSE 3 1 01 5

T OULOUSE 3 995

La requête suivante ajoute à la précédente la construction progressive cles chemins parcourus
(que j'estime à 50 caractères) et l'ordonnancement en fonction de la distance totale.

© Éditions Eyrol/es 195 1

l r.111

1196

Requête et résultall

WITH trajets (vi ll e_ vers, etape, distance, trajet)
AS

(SELECT DISTINCT ville _ de, 0, 0, CAST('PlUUS' 118 VlU\CRJU\(50))

FROM Autoro utes WHERE vi ll e_de = ' PARI S '
UNION ALL

SELECT a.vi ll e_ vers, t.etape + l, t.distance+a.km,
CAST(t.trajet l 1 •,• 11 a.ville _vere AS VlU\CRJU\2(50))

FROM Autoro utes a, trajets t
WHERE t.vi ll e_ vers = a.vi ll e_ de)

SELECT trajet, etape, distance
FROM trajets WHERE vi ll e_ vers ' TOULOUSE ' OllDD BY dietanee ;

TRAJET ETAPE DI STANCE

PARI S, CLERMONT-FERRAND, TOULOUSE 2 795
PARI S,CLERMONT-FERRAND,MONTPELL IER ,TOULOUSE 3 995
PARI S, LYON, MONTPELLIER, TOULOUSE 3 101 5

Qu'adviendrait-il si toutes les étapes inverses (exemple : NJ\m'ES, PARIS , 385) étaient également
stockées dans la même table ? Toutes ces requêtes s'y perdraient dans les cycles, renvoyant J' erreur
« ORA-32044 : cyc l e détecté l ors de 1 'exécution de 1' interrogaticn WI'IH
récursive ». Le paragraphe suivant décrit Je moyen d'éviter ces désagréments.

Parcours d 'un graphe non orienté

Ajoutons d'abord les étapes inverses à la table implémentant les trajets possibles.

Requête et résultats

SQL> I NSERT I NrO Autoro utes
SELECT vi ll e_vers,vi ll e_de, km FROM Autoro utes;

SQL> SELECT vi ll e_de, vi ll e_ vers, km
FROM Autoro utes ORDER BY vi ll e_de, vi ll e_ vers;

VI LLE_DE VI LLE_ VERS KM

CLSIUION'l'-l'SIU\AND MON'l'PllLLID
CLERMONT-FERRAND PARI S
CLERMONT-FERRAND TOULOUSE

LYON
LYON
LYON
MARSEI LLE
MARSEI LLE
MONTPSLLID

MARSEILLE
MONTPE LLI ER
PARI S
L YON
NI CE
CLDMONT-l'SIUU\ND

335
420
375
320
305
470
320
205
335

© ÉdW/ons Eyroles

Les requêtes précédentes ne conviennent pas à cette table car Oracle détecte des cycles sans
fin.

Il est possible de se débarrasser des cycles en comparant tout chemin courant avec la colonne
évaluée en question. Ce n'est toutefois pas suffisant, car Oracle ne vous fait pas confiance et
teste la requête avant d'exécuter cette condition. En conséquence, il fautt ajouter une condition
concernant un nombre maximal d'itération récursive.

La requête suivante teste la ville d'arrivée avec tout chemin construit récursivement et élimine
ainsi les cycles. Par ailleurs, la recherche dans Je graphe se limite à JO niveaux.

Requête et résU!ats

WITH trajets (vi ll e_ vers, etape, distance, trajet)
AS

(SELECT DISTINCT vil l e _de, 0, 0, CAST (' PARI S ' AS VARCHAR(50))
FROM Autoro utes WHERE vi ll e_de = ' PARI S '

UNION ALL
SELECT a.vi ll e_ vers, t.etape l ,

CAST(t.trajet l 1 ' , ' 11 a.vi ll e_ vers AS VARCHAR2(50))
FROM Autoro utes a, trajets t
WHERE t.vi ll e_ vers = a.vill e_de
AND t.trajet NOT LIU 1 %1 11 a.ville _ vere 11 1 % 1

AND t. etape <10)
SELECT trajet, etape, distance

FROM trajets
WHERE vi lle_ vers = ' TOULOUSE' OROER BY distance;

TRAJET ETAPE DISTANCE

PARI S,CLERMONI'-FERRANO,TOULOUSE 2 795
PARI S,CLERMONI'-FERRANO,MONI'PELLIER ,TOULOUSE 3 995
PARI S,LYON,MONI'PELLIER ,TOULOUSE 3 1 015
PARI S, LYON, MONI'PELLIER, CLERMONT-FERRAND, TOULOUSE 4 148 5

Une nouvelle route apparaît, puisque Montpellier est située sur Je chemin de Clermont et de
Lyon. Comme dit Frédéric Brouard, « c'est la plus longue, mais peut-être la plus belle» .

Pivots <PIVOTl
Depuis la version l lg, l'opérateur PI VOT permet, à J'aide de requêtes, de transformer des
lignes en colonnes tout en opérant une fonction d'agrégat à la volée (somme, moyenne, etc.).
La syntaxe de cet opérate ur est la suivante .

© Éditions Eyrol/es 197 1

lr.111

1198

table_ i nterrogée PIVOT (XIII.)

(fonction_agregat (expression) ((AS) alias)

(, fonction_agregat (expression) ((AS) alias)) ...

POR { colonne) (colonne (,colonne) ...))

IN ({ { { expression) (expression (, expression) ...)) ((AS)

alias)) ...

) requete_SELECT) ANY [, ANY) . . .)))

La dause PIVOT contient une ou plusieurs fonctions d'agrégat, la clause FCR liste une ou plu­
sieurs colonnes (à grouper puis à faire pivoter). La clause IN filtre les colonnes de la clause
FCR.

Le mécanisme du pivot est Je suivant : calcul de(s) agrégat(s) (sans GROUP BY devenu impli­
cite du fait de la directive IN) puis transposition de chaque valeur calculée à la colonne corres­

pondante.

Exemples

Considérons l'exemple suivant décrivant les vols d'une semaine.

T- •H5 lloll6es •rift Pivot•

Requête RésuHat

I D_ VOL JOUR,_I D NUMVOL NB_ PASSAGERS
CREATE TABLE vols -- ----- -----

id... vol NUMBER, 1 1 AF6143 10
j our_ id NUMBER, 2 1 BA234 20
nwnv ol VARCHAR2(6), 3 1 CF56 30
nb_pas sage.rs NUMBER) ; 4 2 AF6143 40

5 2 CF56 50
6 3 AF6143 60
7 3 BA234 70

8 3 CF56 80
9 3 0009 90
10 4 AF6143 100

Le tableau suivant présente deux requêtes utilisant l'opérateur PIVOT. La première requête
totalise Je nombre de passagers transportés par vol, la seconde opère deux agrégats (somme et
moyenne des passagers transportés Je lundi et Je mardi). Notez qu 'Oracle nomme les colonnes
en concaténant les noms des alias.

© ÉdW/ons Eyroles

Tolal des passagers .. 1111porlés par vol

SELECT * FROM
(SELECT numvol, n.b_passagers

FROM vol s)
PIVOT (SUM(nb_passagers) AS somme

FOR (nwnvo l)
IN (' AF6143 ' AS AF6143,

' BA234 ' AS BA234, ' CF56 ' AS CF5 6,
' D009 ' AS D009));

AF6 143_ SOMME BA234 _ SOMME CF56 _ SOMME D009 _ SOMME

21 0 90 1 60 90

Tolal el moyenne des passagers hn1porlés luncl el marcl

SELECT * FROM
(SELECT jour_ id, n.b_passagers

FROM vol s)
PIVOT (SUM(nb_passage.rs) AS somme,

AVG(nb_passagers) AS moy
FOR (jour _ id)
IN (1 AS Lundi, 2 AS Mardi));

LUNDI _ SOMME LUNOI _ MOY MAROI_ SOMME MARDI_,MOY

60 20 90 45

La requête suivante construit un modèle à deux dimensions qui permet d'extraire le nombre
total des passagers transportés par vol et par jour. La directive WITH permet de travailler
temporairement avec une partie de la table vol s (ici les vols du lundi, mardi et mercredi dont
le numéro ne commence pas par la lettre 'B'.).

Requête

WITH pivot _data AS
(SELEC T jou r _ id, nwnvol,

n.b_passagers FROM vol s)
SELECT * FROM pivot _ d.ata

PIVO'l' (SUM(nb_passagers)
FOR jour_ id
IN (1 AS Lundi, 2 AS Mardi,

3 AS Mercredi))
WHERE NOT (numvo l LI KE ' 8% ');

Résullal

NUMVOL LUNDI MARDI MERCREDI

CF56 30
AF6 143 1 0
D009

50
40

80
60
90

© Éditions Eyrol/es 199 1

llWlll

'
Il n'est pas possible de générer un nombre inconnu de valeurs pivot sans la clause XML.

Avec XML

1 200

Utilisé conjointement à l'opérateur PIVOT, la directive XML implique que le résultat de la
requête est une unique colonne contenant un document XML de racine Pi votset. Les lignes
sont représentés parles éléments item contenant autant d'éléments colwnnque de colonnes
extraites. Les valeurs calculées sont dans ces éléments terminaux.

Seule la directive XML permet d'utiliser une liste de valeurs, une sous-requête ou la clause ANY
(qui sélectionne toutes les valeurs des colonnes présentes dans la clause FOR pour pivot) dans
la clause IN.

Le tableau suivant présente deux requêtes avec J' option XML de l'opérateur PIVOT. La
première requête extrait la somme des passagers transportés par vol et pour tous les vols. La
seconde extrait le total et la moyenne du nombre de passagers en examinant tous les jours
(présents dans la table d'origine) avec AJ:lY.

11111111 4-18 1111116111 d1111Vot MC l'Cllllloe XML

Requête Résullat

NUMVOL_xML

SELECT * FROM ------------------------------------
(SELECT numvol , nb_passage.rs <Pivotset>

FROM vol s) < i tem>
PIVOT XML (SUM(nb_ passage.rs) AS pax <column name= "NUMVOL" >AF6143 </column >

roR (numvol)
IN SELECT DISTINCT numvol

FROM vols));

<column name= "PAX">21 0</co lumn>
</item>
< i tem>

<column name= "NUMVOL">BA234</co lumn>
<column name= "PAX">90</co lumn>

</item>
< i tem>

<column name= "NUMVOL">CFS6</co lumn>
<column name= "PAX">l 60</co lumn>

</item>
< i tem>

<column name= "NUMVOL">D009 </co lumn >
<column name= "PAX">90</co lumn>

</item>
</Pivotset>

© ÉdW/ons Eyroles

Requête Réslllat

<Pivotset>
SELECT * FROM <item>

• !ZJ

(SELECT jour_ id, nb_passagers
FROM vols)

PIVO'l' XML
(SUM(n.b_passage.rs) AS somme,
AVG(n.b_passage.rs) AS moy

FOR jour_id IN (ANY));

TraOSPOSiliOns rutl'IVOT)

<column name="JOUR,_ID" >l </co lumn>
<column name= "SOMME" >60</co lumn>
<column name="MOY" >20</co lumn>

</item>
<item>

<column name="JOUR,_ID" >2</co lumn>
<column name= " SOMME" >·90</ column>
<column name="MOY" >45</co lumn>

</ i tem>
<item>

<column name= "JOUR,_ID" >3</co lumn>
<column name="SOMME" >300</co lumn>
<column name= "MOY" >75</co lumn>

</item>
<item>

<column name="JOUR,_ID" >4</co lumn>
<column name= "SOMME" >lOO</co lumn>
<column name="MOY" >lOO</co lumn>

</ i tem>
</Pi votset>

Comme son nom J'indique, J' opérateur UNPIVOT réalise J' opération inverse de J' opérateur
PIVOT en convertisant des données disposées en colonnes sous la forme de lignes. On peut
parler de désagrégation (ou transposition). La syntaxe de l'opérateur UNPIVOT est la
suivante:

table_interrogée OHPIVOT ({ INCLUDE 1 EKCLUDE) NULLS 1
({ colonne) (colonn e (, colonne) . . .))
POR { colonn e) (colonn e (, colonne) ...))

IN ({ colonn e) (colonn e (, colonn e) . . .))

(AS { constante J (const ant e (, constante) ...))
(, { colonn e) (colonn e (, colonn e) ...))

(AS { constante) (const ant e (, constante) ...))

) .))

La dause UNPIVar nomme les colonnes qui vont accueillir des valeurs résultantes de la désa ­
grégation. Il est possible d'inclure ou non des valeurs nulles (par défaut on les exclut). La
clause Fœ corn pose les colonnes résultantes de la désagrégation. La clause IN liste les colon­
nes (pas les valeurs) à transformer en lignes.

© Éditions Eyrol/es 201 1

l r.111

1 202

Le mécanisme inverse du pivot est le suivant : parcours des colonnes puis transposition de
chaque valeur (en testant éventuellement sa nullité) calculée dans la colonne correspon­
dante. Considérons l'exemple suivant qui décrit les vols d'une semaine (en termes de
nombre de passagers transportés).

Conlenu de la table •0112

NUMVOL LUNDI MARDI MERCREDI JEUDI VENDREDI SAMEDI
------ --- ---------

BA234 20 70

CF56 30 50 80
AF6143 60 40 60 1 00 180
D009 90 1 0

Le tableau suivant présente l'opérateur UNPIVOT qui transforme les colonnes des différents
jours en lignes par l'apport de la colonne JOURS. Ici les valeurs nulles de la table d'origine ne
sont pas prises en compte.

Délall par vol el par joir du nombre de passagers
.. 1111porlés

SELECT * FROM vol s2
ONPIVOT (passagers

FOR jours
IN (Lundi, Mardi,

Mercredi, Jeudi,
vendredi, samedi>

);

Réslllat

NUMVOL JOURS PASSAGERS
--- --- ------ -- -- ----- -----
BA234 LUNDI 20
BA234 MERCREDI 70

CF56 LUNDI 30
CF56 MARDI 50
CF56 MERCREDI 80
AF6143 LUNDI 60
AF6 143 MARDI 40
AF6143 MERCREDI 60
AF6 143 JEUD I 100
AF6143 VENDREDI 180

0009 MERCREDI 90
D009 SAMEDI 1 0

L'option INCLUDE NULLS prend en compte les valeurs nulles. Dans notre exemple, pour trans­
poser les vols en se basant uniquement sur les valeurs nulles, il faut aussi tester la nullité dans
le l\TllERE de la requête globale.

© ÉdW/ons Eyroles

T- Wl 111Qu6!11Vec Ull'MIJ' Il ltCWll lllllS

Jours où les vols n'ont tranlpOrté aucm passager

SELECT * FROM vols2
ONPXVOT INCLOD& NOLLS
(passagers

FOR jou.rs
IN (Lundi, Mardi,

Mercredi, Jeudi,
vendredi, samedi)

WHERE passagers IS NULL;

Réslftat

NUMVOL JOURS

---- -- ------- -
BA234 MARDI
BA234 JEtJD I
BA234 VENDREDI

BA234 SAMEDI
CF56 JEtJD I
CF56 VENDREDI
CF56 SAMEDI
AF6143 SAMEDI
0009 LUNDI
0009 MARDI
0009 JEtJD I
0009 VENDREDI

PASSAGERS
--- ----- ---

Sans la restriction finale, la liste des vols par jour avec ou sans passagers aurait été retournée
(résultat de l'union des deux précédentes requêtes).

FoncliOn
Analogue au mécanisme de pivot, la fonction LISTAGG ordonne des données au sein de
chaque groupe cité par ORDER BY et concatène Je résultat décrit par Je premier paramètre sous
la forme d'une chaîne de caractères. La syntaxe de cette fonction est la suivante:

1
LISTJ>i3G (expression (, 'delimiteur '))

WI'IHIN GROUP (clause_ORDER_BY) (O\TER clause_partitionnement l

Cette fonction, qui appartient au domaine des fonctions analytiques du fait de l'existence de la
clause de partitionnement, ignore les valeurs N\JLL. Le tableau ci-contre présente une utilisa­
tion de cette fonction et extrait, pour chaque compagnie, J' identité des pilotes des moins expé­
rimentés aux plus expérimentés.

Si vous ne disposez pas de la version l lg, il vous est toutefois possible de programmer cette

fonction de plusieurs façons notamment à J'aide de la directive W!TI! ou en utilisan t conjointe­
ment ROW_NUMBER et SYS_CONNECT_BY_PATH (voir htlp:IM!ww.oracfe-base.comlwlicfeslmiscl
string-aggregation-techniques.php).

© Éditions Eyrol/es

l lWte l

1 204

lllllleaU 4-12 lltllCIGl IVIC IJSTIGG

Table Requêlo

SQL> SELECT * FROM Pi l ote; COL res FORMAT ASO HEADI NG "Du - au +
expérimenté "

BREVET PRENOM NOM NBHVOL COMP
------ ---- ---------- ---- ----- - SELEC T comp,

100 Steven King 24000 AF LIS'DIOO (prenanl 1 ' ' l lnan, - ')

101 Neena Kochhar 1 7000 AF WITHIN QROOP
102 Lex De Haan 1 7000 EJ (OllDER BY nbHVol ,nom) AS

103 Alexander Huno l d 9000 AF MIN (nbHVo l), MAX(nbHVol)

104 Bruce Ernst 6000 EJ FROM Pi l ote
105 David Austin 4800 AF GROUP BY comp;

106 Vall i Pataba lla 4800 EJ
107 Diana LOrentz 4200 TAT

108 Nancy Greenberg 1 2000 TAT

109 Danie l Faviet 9000 AF

COMP Du - a u + expérimenté

--
AF David Austin - Daniel Faviet - Alexander Hunol d -

Neena Kochhar - Steven King
EJ Valli Pataba lla - Bruce Ernst - Lex De Haan
TAT Diana LOrentz - Nancy Green.berg

MIN(NBHVOL)

---- ----- --
4800

4800
4200

MAX(NBHVOL)

-- ----- ----
24000

1 7000
1 2000

res,

© ÉdW/ons Eyroles

Exercices

Les objectifs de ces exercices sont :

• de créer des tables et Jeurs données ;

• d'écrire des requêtes monotables et multitables ;

• de réaliser des modifications synchronisées ;

• de composer des jointures et des divisions .

[l:!glîf!ijg 4.1 Création dynamique de tables

Écrivez le scr jl t c r éaDyn amiqu e . sql permettant de créer les tables Sof t s et PCSeuls suivantes
(en utilisant la dlrectl110 AS SELECT de la commande CREATE TABLE). Vous ne poserez aucune

contrainte sur ces tables.

Figure 4-29 Structures des nouveles tables

Softs
! nomSoft l vereion l prix

PCSeuls
! nP l nomP l seq ! ad ! t ypeP !salle

La table Sof t s sera construite sur la base de tous les enregistrements de la table Log i c i e l que
vous avez créée et alimentée préoédemment.

La table PCSeuls seulement contenir les enregistrements de la table Post e qui sont de type

'PCWS' ou 'PCNT'.

Vérifier :

SELECT • FROM Sof t s;

SELECT • FROM PCSeuls;

[l:!Jl]1[ffil 4.2 Requêtes monotables

© Éditions Eyrol/es

Écrivez le scr jl t r equê t es . sql , permettant d'extraire , à l'aide d'lnstructlorns SELECT, les données

suivantes :

Type du poste 'p8'.

2 Noms des logiciels Unix.

3 Nom, adresse 1 P. numéro de salle des postes de type 'Unix' ou 'PCWS'.

4 Même requête pour les postes du segment '130.120.80' triés par numéros de salles décroissants.

5 Numéros des logiciels Installés sur le poste 'p6'.

lr.111

6 Numéros des postes qui hébergent le logiciel 'log1 '.

7 Nom et adresse IP complète (ex : '130.120.80.01') des postes de type TX (utiliser l'opérateur de
concaténation).

n:rnii!W'I 4.3 Fonctions e1 groupements

8 Pour chaque poste, le nombre de logiciels Installés (en utilisant la table I nstaller).

9 Pour chaque salle, le nombre de postes (à partir de la table Post e).

1 O Pour chaque logiciel, le nombre d'installations sur des postes différents.

11 Moyenne des prix des logiciels 'Unix'.

12 Plus récente date d'achat d'un logiciel.

13 Numéros des postes hébergeant 2 logiciels.

14 Nombre de postes hébergeant 2 logiciels (utiliser la requête précédente en faisant un SELECT
dans la clause FROM).

n:@ift8fl 4.4 Requêtes multltables

Opémteurs ensembKstes

1 206

15 Types de postes non recensés dans le parc Informatique (utiliser la table Types).

16 Types existant à la fols comme types de postes et de logiciels.

17 Types de postes de travail n'étant pas des types de loglclel.

Jointures procédurales

18 Adresses IP des postes qui hébergent le loglclel 'log6'.

19 Adresses 1 P des postes qui hébergent le logiciel de nom 'Oracle 8'.

20 Noms des segments possédant exactement trois postes de travail de type 'TX'.

21 Noms des salles ou l'on peut trotNer au moins un poste hébergeant le logiciel 'Oracle 6'.

22 Nom du logiciel acheté le plus récent (utiliser la requête 12).

Jointures relsUomeles

Écrire les requêtes 18, 19, 20, 21 avec des jointures de la brme relationnelle. Numéroter ces notNelles
requêtes de 23 à 26.

27 Installations (nom segment, nom salle, adresse IP complète, nom loglclel, date d'installation) triées
par segment, salle et adresse IP.

Jointures SOL2

Écrire les requêtes 18, 19, 20, 21 a.ac des jointures SQL2 (JOIN, NATURAL JOIN, JOIN USING).

Numéroter oes nouvelles requêtes de 28 à 31.

© ÉdW/ons Eyroles

[3:131ïf!gg 4.5 ModHlcatlons synchronl!lées

Écrivez le script mod ifSynchronis ées. sql pour ajouter les lignes suivantes dans la table
I nstaller :

Figure 4-30 Ugnes à sjotAer

Installer
nl'o•t• nLog num.Ins dateins

...
p2 log6 sequ•nc• ... SYSDATE
pB log1 SYSDATE
p10 IOg1 SYSDATE

Écrivez les requêtes UPDATE synchronisées de la forme suivante:

UPDATE tabl e l aliasl
SET col o nne = (SELECT coum (•)

FROM tabl e2 alias2

del a i
. .
NULL
NULL
NULL

WHERE alias2. co lanneA = aliasl. colann eB. ..);

Pour mettre à jour automatiquement les oolonnes rajoutées :

nbSall e dans la table Se gme nt (nombre de salles tra11ersées par le segment);

nbPost e dans la table Se gme nt (nombre de postes du segment) ;

nbinstall dans la table Logici e l (nombre d'installations du logiciel) ;

nbLog dans la table Post e (nombre de logiciels Installés par poste).

Vérifier le contenu des tables modifiées (Se gment , Logici e l et Post e).

JJ:r1l1ITTim 4.6 Opérateurs existentiels

© Éd/Uons Eyrol/es

Ajoutez au script r e qu!lt e s. s q l , les Instructions SELECT pour extraire les données suivantes:

Sous-lnterrogaUon synchronisée

32 Noms des postes ayant au moins un logiciel commun au poste 'pS' (on doit trouver les postes p2,
pB etp10).

Divisions

33 Noms des postes ayant les mêmes logiciels que le poste 'p6' (les postes peuvent avoir plus de logi­
ciels que 'p6'). On doit trou11er les postes 'p2' et 'pB' (division Inexacte).

34 Noms des postes ayant exactement les mêmes logiciels que le poste 'p2' (division exacte), on doit
trouver 'pB'.

207 1

lr.111

n:@îlJ6fl 4.J Extractions dans la base Chantiers

1 208

Écrivez dans le scr jl t r eqchant i e r. sql les requêtes SOL permettant d'extral.re :

35 Numéro et nom des conducteurs qui étalent sur la route un jour donné (format jfmm/8888).

36 Numéro et nom des passagers qui ont un chantier un jour donné (format jhnmlsa8ti}.

37 En déduire le numéro et nom des employés qui n'ont pas bougés de chez eux le même jour.

38 Numéro des chantiers visités entre le 2 et le 3 du mols et d'une année donnés tNec le nombre de
visites pour chacun d'eux.

39 En déduire les chantiers les plus visités.

40 Nombre de de chaque employé (transporté ou conducteur) pour un mols donné.

41 Temps de de chaque conducteur d'un mols donné.

42 Numéro du conducteur qui a le plus de kilométrage dans l'année tNec le k ilométrage total.

43 Nom et qualification du conducteur autorisé à piloter tous les types de véhlcu le.

© ÉdW/ons Eyroles

Chapitre 5

Contrôle des données
Comme dans tout système multi-utilisateur, l'usager d'un SGBD sera toujours identifié avant
d'employer des ressources restreintes (à moins d'être !'administrateur principal : le compte
sys d'Oracle). aux données doit toujours être contrôlé à des fins de sécurité et de
confidentialité. La figure suivante illustre un groupe d'utilisateurs aux profils divers.

Figure 5-1 Conséquences de l'aspect multf-utfKsateur

Peut créer des pilotes
Peut supprimer
un vol

Cette section décrit l'utilisation de SQL pour contrôler l'accès aux données au travers des
mécanismes suivants :

• utilisateurs et espaces de stockage (rab/espaces) ;

• privilèges système et privilèges objet ;

• rôles, vues et synonymes ;

• dictionnaire des données.

Le dernier paragraphe « Le multitenant » est spécifique à la version 12c dont J'architecture
diffère radicalement des éditions précédentes et apporte un grand nombre de nouveautés
notamment au niveau des utilisateurs et du dictionnaire des données. Sans entrer dans les
détails, décrivons tout d'abord brièvement le concept de rab/espace qui concerne directement
les utilisateurs et les objets qu'ils possèdent.

© Éditions Eyrol/es

l r.111

Les tablespaces

1 210

Comme dans tout SGBD relationnel, l'indépendance entre le niveau physique (les fichiers et
répertoires dans Je système d'exploitation) et le niveau logique (ce qu'on présente à l'utilisa­
teur) est masqué.

logque!Phvsique
La figure 5-2 illustre les différents mécanismes mis en œuvre par Oracle.

Figure 5-2 Côrresponda.nces log/que-physique

Logiq\HI

Talilesetlnde x

DetebaM

Orac .. dlt•
bloek

Pl!ylliquo

.....
-....,._
· IAll · NFS
· llAI · Allll

., ..
• Le bloc de données (data block, aussi appelé page) est la partie la plus petite qu'Oracle est

capable de manipuler comme un tout, de la mémoire au disque (souvent 8 Ko par défaut).
Il contiendra principalement les données des tables et des index.

• Un extent est un ensemble de blocs contigus sur le disque (souvent 64 Ko par défaut, soit
8 blocs). Une table ou un index a donc au minimum une taille égale à celle d'un extent.

• Un segment (table ou index) regroupe plusieurs extents, pas forcément contigus (une table
peut être créée un moment, puis occuper de la place au fur et à mesure tandis qu'une autre

table ou un autre index réserve aussi des extents).

• Un tablespace regroupe des segments et les stocke sur le disque dans un ou plusieurs
fichiers du système d'exploitation (datafile).

Tablespaces déià lvrés
Le mécanisme des tablespaces présente beaucoup d'avantages pour l'administrateur : exporta­
tion et sauvegarde de parties de la base, déplacement des données d'un disque à l'autre, etc.
Les tablespaces qui préexistent dans votre base sont :

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

• SYSTEM et SYSAUX qui contiennent notamment Je dictionnaire des données, les procédures
cataloguées et les déclencheurs de tout Je monde;

• USERS proposé par défaut pour stocker vos données ;

• TEMP qui peut agir en complément de la mémoire pour vos tris et jointures ;

• UNDOTBSl qui permet la lecture consistante du mode transactionnel {rollbacksegment).

Le tableau 5-1 présente différentes interrogations du dictionnaire des données pour retrouver
certaines caractéristiques des composants des tablespaces présents.

Requêles el réslllels

SELECT tabl espace_name AS espace, bloc k_s ize,
initia l_extent, status, contents

FROM dba...tab l espaces
ORDER BY tabl espace_name;

ESPACE BLOCK_ SIZE INIT I AL_EXTENI' ST AT US
------ ---- ---------- -------------- ---------
SYSAUX 8192 65536 ONLINE
SYSTEM 8192 65536 ONLINE
TEMP 8192 1048576 ONLINE
UNDOTBSl 8192 65536 ONLINE
USERS 8192 65536 ONLINE

SELECT tabl espace_name AS espace, fi l e_name
FROM dba...data._fi l es;

ESPACE FI LE_ NAME

CONTENTS

PERMANENT
PERMANENT
TEMPORARY
UNDO

PERMANENT

USERS C:\APP\CSOUTOU\ORADATA\ORCL\USERSOl .OBF
UNDOTBSl C:\APP\CSOUTOU\ORADATA\ORCL\UNOOTBSOl .OBF
SYSAUX C:\APP\CSOUTOU\ORADATA\ORCL\SYSAUXOl .OBF
SYSTEM C:\APP\CSOUTOU\ORADATA\ORCL\SYSTEMOl .OBF

SELECT tabl espace_name AS espace,
bytes/ 1024/ 1024 AS "Taille en Mo ",
user_bytes / 1024/ 1024 AS "Disp o en Mo "

FROM dba...data._fi l es;

ESPACE Taille en Mo Dispo en Mo

USERS 5 4
UNDOTBSl 8 95 894
SYSAUX 9 80 979
SYSTEM 7 90 789

Ccmmenl....,.
La taille du bloc
de chaque espace est
de 8 Ko et de 64 Ko
pour le premier extent de
la plupart des espaces
Les données seront
par ailleurs permanentes
pour certains.

Localisation des fichiers
physiques de chaque
espace.

Taille oocupée
et dlsponllle
de chaque espace.

© Éditions Eyrol/es 211 1

lr.111

Création d'un tablespace

Selon les versions, un tablespace traditionnel (smaU.file) peut contenir au plus 1 024 datafiles.
Un tablespace de type big/ile (depuis la version IOg) ne contiendra qu'un seul datafile (dont la
taille n'a plus beaucoup de limites ...). La syntaxe très simplifiée de création d'un tablespace

(avec les options par défaut : local/.y ma11aged a11to et allocated rab/espace) est la suivante (K
désigne un Ko, Mun Mo, etc.).

CRBATB (BIGF ILE) SMl\LLFILE) TABLBSPACB nom_espace

DATAFILE ' nom_fi chier • S I ZE t aill e_ini t iall e K/M/G/T/ P /E REDSE)

At1I'OEXI'END {OFF) ON NEXl' val e ur_ext ension K/M/G/T/ P / E)

Ml\XSI ZE { UNLIMITID) t aill e_maxi K/M/G/T/ P / E) ;

Le tableau 5-2 présente la création d'un tablespace personnalisé.

Requête el réslllat Commenlllres

SQL> CREATE SMALLFI LE TABLESPACE t s_ e yroll es L.:espaoe ts_ eyrolles
DATAFILE est créé dans le fichier

' C : \ APP\CSOUTOU\ORADATA\ORCL\tblspc_ eyroll es .data ' t blsp c_eyroll es .
SI ZE 4 M REUSE data (4 Mo), situé à
AUTOEXTEND ON NEXT 1 M l'emplacement c : \ APP\
MAXSIZE 1 G; CSOUTOU\ORADATA\

ORCL. Chaque extension
Ta blespace c r éé. nécessaire demandera

1 Mo supplémentaire et le
fichier ne devra pas
dépasser 1 Go.

- 12' c
j.I F-. Si vous utilisez la version 12c avec l'option multitenant (voir la section• Le multitenant • en fin

.a-- de chapitre), vous devrez vous placer dans une base enfichable (ALTER SESSION SET
CONTAINER=.-) sous peine de créer un espace dans le container root.

Gestion des utilisateurs

1 212

Un utilisateur (11ser) sera identifié par son nom (11sername) et un mot de passe permettant de se
connecter, puis d'exécuter des instructions et d'accéder aux données sous réserve d'avoir reçu
des privilèges. Comme nous l'avons présenté dans l'introduction, un schéma consiste en une
collection d'objets (tables, séquences, index, procédures, etc.) dont Je propriétaire (owner) est

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

l'utilisateur. L'utilisateur et Je schéma ont Je même nom et seule l'instruction CRE.l\TE USER

permet de créer un utilisateur.

ClaSSilication
Les types d'utilisateurs, Jeurs fonctions et leur nombre peuvent varier d'une base à une autre.
Néanmoins, pour chaque base de données en activité, on peut classifier les utilisateurs de la
manière suivante.

• Le (ou les) DBA (DataBaseAdmi11istrator), les comptes livrés par Oracle après l'installa­
tion system et sys sont prévus pour cela De nombreuses tâches. leur seront confiées,
notamment:

- J' installation et la migration des bases ;

- la gestion du réseau, de J'espace disque et des utilisateurs;

- les sauvegardes et restaurations ;

- J' optimisation des performances (llmi11g).

• Les développeurs qui interagissent avec les DBA (droits, stockage, optimisation, sécurité,
etc.).

• Les utilisateurs finaux qui doivent se connecter via des applications ou des outils (généra­
tion de rapports, modifications de données, etc.).

Tous seront des utilisateurs (au sens Oracle) avec des privilèges différents.

Création d'un ullisateur <CREATE USEm
Pour pouvoir créer un utilisateur vous devez posséder Je privilège CREA'!l'E USER.

La syntaxe SQL de création d'un utilisateur est la suivante :

CREATB USER utilisateur IDENTIFIED

BY motdePasse) EKTERNALLY) GIDBALLY AS 'nomExterne ')
(DEFAULT TABLESPACE nomTablespace

[QUOTA { ent i e r [K) M 1) UNLIMITED) ON nomTablespace 1 1
(TEMPORARY TABLESPJ\CE nomTablespace

(QUOTA { entier (K) M)) UNLIMITED) ON nomTablespace) .)
(PROFILE nomProfil) (PAS8"œD EKPIRE) (l\CalUNT { LOCK) UNIDCK

) 1 ;

• IDENI'IFIED BY motdePasse permet d'affecter un mot de passe à un utilisateur local
(cas Je plus courant et Je plus simple).

• IDENI'IFIED BY EXTERNALLY permet de se servir de l'authenticité du système
d'exploitation pour s'identifier à Oracle (cas des compte OPS$ pour Unix).

© Éditions Eyrol/es 213 1

lr.111

1 214

• IDENI'IFIED BY GLOBALLY permet de se servir de l'authenticité d'un système
d'annuaire.

• DEFAULT TABLE SPACE nomTabl espace associe un espace disque de travail (appelé
rab/espace) à l'utilisateur.

• TEMPORARY TABLE S PACE nomTablespace associe un espace disque temporaire (dans
lequel certaines opérations se dérouleront) à J' utilisateur .

• QUOTA permet de limiter ou pas chaque espace alloué.

• PROFILE nornProfi l affecte un profil (caractéristiques système relatives au CPU et aux
connexions) à l'utilisateur.

• PASS-IORD EXPIRE pour obliger l'utilisateur à changer son mot de passe à la première
connexion (par défaut il est libre). Le DBA peut aussi changer ce mot de passe.

• ACCOlNI' pour verrouiller ou libérer J' accès à la base (par défuut UNLOCK).

Si vous ne renseignez pas l'espace par le tablespace SYSTEM pourra être associé à
l'utilisateur en tant qu'espace de travail (et même d'espace temporaire} 1 Utilisez donc toujours
explicitement soit les tablespaces prédéfinis (USERS et TEMP}, soit ceux que vous aurez créés
préalablement. Quantifiez également (quota} le volume d'espace prévisionnel pour chaque uti­
lisateur sur tous les espaces qu'il utilisera, mis à part les espaces temporaires.

La clause ALTER USER vous permettra de modifier un utilisateur pour changer notamment
J'espace par défaut et J'espace temporaire. Si aucun profil n'existe (voir la section suivante
« Profils»), Je profil DEFAULT sera affecté à l'utilisateur.

Le tableau suivant décrit la création de deux utilisateur s.

SOL

CR&AT& USD. devl

I DENI'I FI ED BY devl
DEFAULT TABLESPACE users
QUOTA l OM ON use.rs
QUOTA lM ON t s_eyrolles
TEMFORARY TABLESPACE t emp

PASSWORD EXP I RE;

CR&AT& USD. dev2

I DENI'I FI ED BY dev2
DEFAULT TABLESPACE users
QUOTA l OM ON use.rs
TEMFORARY TABLESPACE t emp

ACCOUNT LOCK;

Réslllat

devl pourra créer des objets dans les
espaoes USERS et TS_EYROLLES. Il devra changer
son mot de passe à la première connexion.

dev2 ne peut utlllserque 10 Mo
sur l'espace usERs. Son oompte est pour l'instant
bloqué.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Par défaut, les utilisateurs, une fois créés n'ont aucun droit sur la base de données sur laquelle
ils sont connectés. La section « Privilèges » étudie ces droits.

Selon les versions et les éditions, l'insta llation par défaut affecte des mots de passe (pour sys
c'est change _on_ install et pour system, il s'ag it de manager). Il est préférable que vous
utilisiez system à la place de sys (plutôt rése rvé à de lourdes tâches comme la création
d'une base, la sauvegarde, son a rrêt, etc.). L:affectation du rôle DBA (voir la sect ion • Rôles»)
est à réaliser avec précaution. De plus, il n'inclut pas les privilèges système SYSDBA et
SYSOPER.

Modification d'un Ulilisatell' WJm USEm
Pour pouvoir modifier les caractéristiques d'un utilisateur (autres que celle du mot de passe)
vous devez posséder Je privilège ALTER USER.

La syntaxe simplifiée SQL pour modifier un utilisateur est la suivante. Cette instruction
reprend les options étudiées lors de la création d'un utilisateur.

ALTER USBR utilisateur
IDENTIFIED { BY password (REPLACE old_password))

=mNALLY) GLOBJ\LLY AS •external_name •))
DEFAULT TABLES PACE nomTablespace

(QUarA { entier (K) M)) UNLIMITED) CN nomTablespace))
TEMPORARY TABLES PACE nomTablespace

(QUarA { entier (K) M)) UNLIMITED) CN nomTablespace) .)
PROFILE nomProfil)
DEFAULT ROLE { r81e1 (, r81e2) ...) ALL (EKCEPI' r81e1 (, r81e2) ...)

IDNE)

(PASSl>llRD EXPIRE) (ACCOUNI' { LOCK) UNIDCK)) ;

• PASSWCRD EXPIRE oblige l'utilisateur à changer son mot de passe à la prochaine
connexion.

• DEFAULT ROLE affecte à l'utilisateur des rôles qui sont en fait des ensembles de privilèges
(voir la section« Rôles»).

Chaque utilisateur peut changer son propre mot de passe à J'aide de cette instruction. Les
autres changements seront opérationnels aux prochaines sessions de! 'utilisateur mais pas à la
session courante (cas de l'utilisateur qui déclare un espace de travail alors qu'il est couram­
ment connecté à un autre).

© Éditions Eyrol/es 215 1

l r.111

1 216

Le tableau suivant décrit des modifications des utilisateurs créés auparavant:

SOL

ALTER USER dev l
IDENI'I FIED BY mdp_devl

QUOTA UNLIMITED ON ts_eyrolles;

ALTER USER

QUOTA 2M ON
ACCOUNI' UNLOCK;

dev2
ts_ eyrolles

Réslllat

devl change de mot de passe et son quota n'est
plus limité sur l'un des espaoes sur lesquels Il
pouvait accéder.

dev2 peut accéder à un autre espace dans la limite
de 2 Mo. Le compte est débloqué.

suœression d'un ulilsateur IDROP USEm
Pour pouvoir supprimer un utilisateur vous devez posséder Je privilège IROP USER Un utili­
sateur connecté ne peut pas être supprimé en direct avec cette commande. Pour forcer cette
suppression, il faut arrêter ses sessions par la commande ALTER SYSTEM et l'option KILL
SESSION. Si vous désirez effacer juste l'utilisateur en tant qu'entrée dans la base sans suppri­
mer ses objets, préférez Je retrait par REVOKE du privilège CREATE SESSICN.

La syntaxe SQL pour supprimer un utilisateur est la suivante:

1 DROP USER utilisateur (CASCADE) ;

Oracle ne supprime pas par défaut un utilisateur s'il possède des objets (tables, séquences,
index, déclencheurs, etc.). L'option CASCADE force la suppression et détruit tous les objets du
schéma de l'utilisateur.

Les contraintes d'intégrité d'autres schémas qui référençaient des tables du schéma à détruire
sont aussi supprimées.

Les vues, synonymes, procédures ou fonctions cataloguées définis à partir du schéma détruit
mais présents dans d'autres schémas ne sont pas supprimés mais invalidés.

Les rôles définis par l'utilisateur à supprimer ne sont pas détruits par l'instruction DROP USER

Protils
Un profil regroupe des caractéristiques système (ressources) qu'il est possible d'affecter à un
ou plusieurs utilisateurs. Un profil est identifié par son nom. Un profil est créé par CREATE

PROFILE, modifié par ALTER PROFILE et supprimé par DROP PROFILE. Il est affecté à un
utilisateur lors de sa création par CREATE USER ou après que l'utilisateur est créé par ALTER

USER Le profil DEFAULT est affecté par défaut à chaque utilisateur si aucun profil défini n'est
précisé.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Création d'un profil (CREATE PROFILE)

Pour pouvoir créer un profil vous devez posséder le privilège CREATE PROFILE. La syntaxe
SQL est la suivante :

CREATB PROFILE nomProfil LIMIT

ParamètreRessource ParamètreMotdePasse

(ParamètreRessource J ParamètreMotdePasse) ... ;

ParamètreRessource :

SESSIONS_PER_USER) CPU_P ER_SESSION) CPU_ PER_CALL

) CONNEx::T_TIME) IDLE_TIME) IDGICAL_REl\DS_PER_SESSICN

) LOGICAL_RFAOS_PER_CALL) a::MPOSITE_LIMIT) { ent i er) UNLIMITID)

DEFADLT)

) PRIVATE_SGA {ent i er[K)MJ) UNLIMITED) DEFAUlll'))

ParamètreMotdePasse :

FAILID_LOGIN_ATTEMPTS) PASS WORD_LIFE_TIME) PASS WORD_REUSE_TIME

PASSVllRD_REUSE_Ml\X) PASSWORD_LOCK_TIME) PASSVœD_GRACE_TIME)

{ expression) UNLIMITED) DEFAillll'))

Les options principales sont les suivantes :

• S ESSI ONS_PER_USER: nombre de sessions concurrentes autorisées.

• CP U_PER_S ESSION: temps CPU maximal pour une session en centièmes de secondes.

• CP U_PER_CALL : temps CPU autorisé pour un appel noyau en centièmes de secondes.

• CONNECT_T IME : temps total autorisé pour une session en (pratique pour les
examens de TP minutés).

• IDLE_TIME: temps d'inactivité autorisé, en minutes, au sein d'une même sessio n (pour les
étudiants qui ne clôturent jamais leurs sessions).

• P RIVAT E_SGI\: espace mémoire privé alloué dans laSGA (System GlobalArea).

• FAILED_LOGIN_ ATTEMPTS: nombre de tentatives de connexion avant de bloquer l'utilisa­
teur (pourlacarte bleue, c'est trois).

• PASS'WORD_LIFE_TIME : nombre de jours de validité du mot de passe (il expire s 'il n'est
pas changé au cours de cette période).

• PASS'WORD_REUS E_TIME : nombre de jours avant que le mot de passe puisse être utilisé à
nouveau. Si ce paramètre est initialisé à un entier, le paramètre PASS'WORD_REUS E_MAX

doit être passé à UNLIMITED.

• PASS'WORD_REUS E_MAX : nombre de modifications de mot de passe avant de pouvoir réuti­
liser le mot de passe courant. Si ce paramètre est initialisé à un entier, le paramètre
PASS'WORD_REUS E_TIME doit être passé à lNLIMITED.

© Éditions Eyrol/es 217 1

lr.111

1 218

• PASS'l'.ORD_LOCK_TIME : nombre de jours d'interdiction d'accès à un compte après que Je
nombre de tentatives de connexions a été atteint (pour la carte bleue, ça dépend de plein de
choses, de toute façon vous en recevrez une autre toute neuve mais toute chère ...).

• PASS'l'.ORD_GRACE_TIME : nombre de jours d'une période de grâce qui prolonge l'utilisa­
tion du mot de passe avant son changement (un message d'avertissement s'affiche lors des
connexions). Après cette période Je mot de passe expire.

Les limites des ressources qui ne sont pas spécifiées sont initialisées avec les valeurs du profil
DEFAULT. Par défaut toutes les limites du profil DEFAULT sont à UNLIMITED. Il est possible de
visualiser chaque paramètre de tout profil en interrogeant certaines vues clu dictionnaire des
données (voir Je chapitre suivant).

Exemple

Le tableau suivant décrit la création d'un profil et l'explication de ses options.

SOL

T- 5-5 Modllta1lae d'lllsat11n

Expllcdons

Cl\&AT& Pl\Ol'I LS
profil_E t udian t s LIMIT
SESSI ONS_PER_USER 3
C PU_PER_ CALL
CONNECT_TIME

3 000
45

LOGICAL_READS_PER_ CALL 1000
PRIVATE_SGA l SK
IDLE_TIME 40
FAILED_ LOGIN_ATTEMPTS 5
PASSl\'ClRD_LIFE_TIME 7 0

PASSWORD_REUSE_TIME 6 0
PASSl\'ClRD_REUSE_MAX UNLIMITED
PASSWORD_LOCK_TIME 1 /2 4
PASSl\'ClRD_GRACE_TIME 10;

• 3 sessions simultanées autorisées.
• Un appel système ne peut pas consommer plus
de 30 secondes de CPU.
• Chaque session ne peut excéder 45 minutes.
• Un appel système ne peut lire plus de 1 000 blocs
de données en mémoire et sur le disque.
• Chaque session ne peut allouer plus de 15 ko de
mémoire en SGA.
• f'l'.)ur chaque session, 40 minutes d'inactivité
maximum sont autorisées
• 5 tentatives de connexion avant blocage du
compte.
• Le mot de passe est valable pendant 70 jours et Il
faudra attendre 60 jours avant qu'il puisse être
utilisé à nouveau.
• 1 seul jour d'interdiction d'aooès après que les
5 tentatives de connexion ont été atteintes.
• La période de grâce qui prolo.nge l'utilisation du
mot de passe avant son changement est de
10 jours.

L'affectation de ce profil à l'utilisateur Paul est réalisée via l'instruction AL'IER USER suivante :

I ALTER USER Paul PROFILE profi l_Etudiants

© ÉdW/ons Eyroles

PriVilèges

Cllllll'iill des doll6es 1

Modification d 'un profil (ALTER PROFILE)

Pour pouvoir modifier un profil, vous devez posséder Je privilège ALTER PROFILE. La syntaxe
SQL est la suivante, elle utilise les options étudiées lors de la création d'un profil :

1
ALTER PROFILE nomProfil LIMIT
{ ParamètreRessource) ParamètreMotdePasse }

[ParamètreRessource) ParamètreMotdePasse] ... ;

Il est plus prudent de restreindre certaines valeurs du profil DEFAULT à J'aide de cette
commande (ALTER PROFILE DEFAULT LIMIT ...).

Suppression d 'un profil (DROP PROFILE)

Pour pouvoir supprimer un profil, vous devez posséder Je privilège IROP PROFILE. Le profil
DEFAULT ne peut pas être supprimé. La syntaxe SQL est la suivante :

1 DROP PROFILE nomProf il (CASCADE) ;

• CASCADE permet de supprimer Je profil même si des utilisateurs en sont pourvus (option
obligatoire dans ce cas) et affecte Je profil DEFAULT à ces derniers.

Depuis Je début du livre nous avons parlé de privilèges, il est temps à présent de préciser ce
que recouvre ce terme. Un privilège (sous-entendu utilisateur) est un droit d'exécuter une
certaine instruction SQL (on parle de privilège système), ou un droit d'accéder à un certain
objet d'un autre schéma (on parle de privilège objet). Les privilèges système clifîerent sensi ­
blement d'un SGBD à un autre. En revanche, les privilèges objets sont les mêmes et sont tous
pris en charge via les instructions GRAm' et REVOKE.

Les privilèges assortis de la mention AN'i donnent la possibilité au bénéficiaire de s'en servir
dans tout schéma (n'incluant pas par défaut celui de l'utilisateur SYS). Par exemple Je privi­
lège CREATE AN'i TIIBLE permet de créer des tables dans tout schéma alors que Je privilège
CREATE TABLE ne permet de créer des tables que dans son propre schéma.

Privilèges svsrème
Il existe une centaine de privilèges système. Citons par exemple la création d'utilisateurs (CREATE

USER), la création et la suppression de tables (CREATE/DROP TABLE), la création d'espaces
(CREATE TABLESPACE), Ja sauvegarde des tables (BACKUP AN'i TABLE), etc.

Nous indiquons ici quelques privilèges système relatifs aux notions étudiées jusqu'ici. La liste
complète de tous les privilèges (système et objets, ainsi que les rôles prédéfinis) se trouve dans
la documentation à la fin de la commande GRANr du livre électronique SQLRefere11ce.

© Éditions Eyrol/es 219 1

lr.111

1 220

Privilège ALTER CREATE DROP
I NDEX X QUERY (Index basés sur des fonctions)

ANY I NDEX X X X

TABLE X

ANY TABLE X X X BACKUP,I NSERT,DELETE,SELElCT,UPDATE

USER X X X BECOME (pour des Importations de bases)

PROFI LE X X X

SEQUENCE X

ANY SEQUENCE X X X SELECT (pour utiliser toute séquence)

ANY OBJElCT
PRI VI LEGE

pour manipuler tout objet

Attribution de privilèges système (GRANT)

La commande GRANr permet d'attribuer un ou plusieurs privilèges à un ou plusieurs bénéfi­
ciaires. Nous étudierons les rôles dans la section suivante . L'utilisateur qui exécute cette
commande doit avoir reçu lui-même Je droit de transmettre ces privilèges. Dans Je cas des

utili sateurs S!lS et S!lSTEM, la question ne se pose pas car ils ont tous les droits. La syntaxe
est la suivante :

GRANT { privilègeSystème) nomR8le) l\LL PRIVILIDES)

(, { privilègeSystème) nomR8le) l\LL PRIVILEGES)) ...

'1'0 { utilisateur) nomR8le) PUBLIC) (, { utilisateur) nomR8le)
PUBLIC)) ...

(IDENTIFIED BY motdePasse

(WI'IH AIMIN OPI'ION) ;

• pri vilègeSystèrne: description du privilège système (exemple CRE<\TE TABLE,

CREATE SESSION, etc .).

• ALL PRIVILEGES : tous les privilèges système.

• PUBLI C: pour attribuer Je(s) privilège(s) à tous les utilisateur s.

• IDENl'IFIED BY désigne un utilisateur encore inexistant dans la base. Cette option n'est
pas valide si Je bénéficiaire est un rôle ou est PUBLI C.

• WITH ADMJN OPTION: permet d'attribuer aux bénéficiaires Je droit de retransmettre Je(s)
privilège(s) reçu(s) à une tierce personne (utilisateur(s) ou rôle(s)).

Le tableau suivant décrit J 'affectation de quelques privilèges système en donnant les explica­
tions associées.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Adrrmlstrateur Expllcdons

GIU\NT CREATE SESSION, CREATE SEQUENCE, devl peut se connecter avec SOL.Plus. SOL
CREATE TABLE TO devl; Developer ou par le bals de tout programme sous

réser110 de disposer d'un pilote adéquat. Il peut
aussi créer des séquences et des tables dans
son schéma.

GIU\NT CREATE SESSION, CREATE ANY dev2 peut se connecter. Il peut également créer
TABLE, DROP ANY TABLE TO dev2; et détruire des tables de tout schéma (de la base

enfichable concernée si l'architecture multltenant
est mise en œuvre).

Révocation de privilèges système (REVOKE)

La révocation d'un ou de plusieurs privilèges est réalisée par l'instruction REVOIŒ Cette
commande permet d'annuler un privilège système ou un rôle d'un utilisateur ou d'un rôle.
Nous verrons aussi que cette commande est opérationnelle pour les privilèges objets. Pour
pouvoir révoquer un privilège ou un rôle, vous devez détenir au préalable ce privilège avec
l'option WITH AIMIN OPTION.

REVOll:B
{ privilègeSystème) nomR8le) ALL PRIVILEGES)

(, { privilègeSystème) nomR8le)) ...

P'ROM { utilisateur) nomR8le) PUBLIC) (, { utilisateur) nomR8le
)) ...

Les options sont les mêmes que pour la commande GRANr.

• ALL PRIVILEGES (valable si l'utilisateur ou le rôle ont tous les privilèges système).

• PUBLIC pour annuler le(s) privilège(s) à chaque utilisateur ayant reçuce(s) privilège(s) par
l'option PUBLIC.

Le tableau suivant décrit la révocation de certains privilèges acquis des utilisateurs de notre
exemple.

Adrrmlstrateur Expllcdons

RZVOJœ CREATE SESS I ON l'ROM devl, dev2; Les utillsateursdevl etdev2 nepeu110ntplus
aocéder à la base tout en conservant les privilèges
déjà acquis.

Privilèges obiets
Les privilèges objets sont relatifs aux données de la base et aux actions sur les objets (table,
vue, séquence, procédure). Chaque type d'objet a différents privilèges associés comme l' indi­
que le tableau suivant. Nous ne montrons ici que quelques-unes des possibilités de privilèges

© Éditions Eyrol/es 221 1

l r.111

1 222

objets. Il existe d'autres options de cette instruction concernant Je stockage de LOB, J' accès à
des répertoires (DIRECTORY) et aux ressources Java

Privilège Table \\le Séquence Prowamme PUSQL

ALTER X

DELETE X X

EXElCIJTE X

INDEX X

IN SERT X X

REFERENCES X

SELECT X X X

UPDATE X X

Attribution de privilèges objets (GRANT)

L'instruction GRANr permet d'attribuer un (ou plusieurs) privilège à un (ou plusieurs) objet
à un (ou des) bénéficiaire (ou plusieurs). L'utilisateur qui exécute cette commande doit avoir
reçu lui-même Je droit de transmettre ces privilèges (sauf s'il s'agit de ses propres objets
pour lesquels il possède automatiquement les privilèges avec l'option GRANI' OPTION).

GRANT { privilègeObjet) nomR8le) ALL PRIVILEGES) ((colonnel
(,colonne2) ...))

L { privilègeObjet) nomR8le) ALL PRIVILEGES)) ((colonnel
L colonne2) ...)) ...

ON { (schéma.)nomObjet) { DIREx::TORY nomRépertoire

) JAVA { SOORCE) RESOURCE) (schéma.)nomObjet)

TO { utilisateur) nomR8le) PUBLIC) (, { utilisateur) nomR8le)
PUBLIC)) ...

(WI'IH GRANI' OPI'ION)

• pri vilègeObjee: description du privilège objet (ex: SELECT, DELE'l'E, etc.).

• colonne précise la ou les colonnes sur lesquelles se porte Je privilège INSERT,

REFERENCES, ou UPDATE (exemple: UPDATE(typeAvi on) pour n'autoriser que la
modification de la colonne typeAvion).

• ALL PRIVILEGES donne tous les privilèges avec J' option GRANr OPTION) J 'objet en ques­
tion.

• PUBLIC: pour attribuer Je(s) privilège(s) à tous les utilisateurs.

• WITH GRANr OPTION : permet de donner aux bénéficiaires Je droit de retransmettre les
privilèges reçus à une tierce personne (utilisateur(s) ou rôle(s)).

© ÉdW/ons Eyroles

Le tableau suivant décrit un scénario d'affectation de quelques privilèges objets entre deux
utilisateurs.

,......, 5·10 AnlCllllolS dl •hllèDea •••

/au'8fltn•varro
.... Table Pilo t e

BRZVZ'l' NOM AGE VI LLE
---- ----- - --- ----- --

Pl sarda 46 Bal ma
P 2 Gi aconne 6 4 Toulous e
P 3 cal ac 53 cugnaux
P4 Gazagne 63 Toulous e

Affectation à l'utilisateur chrlslfm_soutou des
privilèges (1) de lecture sur la table Pil ot",
(2) de modification sur la colonne vill "
et (3) de référence à la clé br"v"t .

GRANT REFERENCES (bre vet),

UPDATE(vill "),
SELECT ON Pil ote

TO chri st i an_so utou;

cltt&tlan_sowou

.... Table Quali f

TYPEIQUALIF PI L

CPL P4
FI / A Pl
FI / A P2
IR P3
PL Pl
PPL P4

Modification d'une ville dans la table Pi l ot" du
schéma /aurentnavwro.

UPDATE l auren t_na v arro. Pil ote
SET v ill e= 'Cast anet '
WHERE brevet = ' P3 ' ;

Lecture de la table Pil ot" du schéma /surent
navwro.

SELECT brevet , nom, vill e
FROM l auren t_na v arro. Pil ote
WHERE v ill e 'Cast anet ' ;

BREVET NOM VILLE

P3 cal ac Cast anet

Déclaration d'une clé étrangère vers la table
Pil ot" du schéma /aurentnavwro.

ALTER TABLE Qua li f i cat i ons
ADD CONSTRAINI' dans _Fil ote_l aurent _
navar r o

FOREIGN !ŒY (pil)

REFEREN CES 1 auren t _
navar r o. Pil ote(brevet);

Le privilège REFEREN::ES permet de pouvoir déclarer et de bénéficier d''une contrainte d'inté­
grité interschérnas . Dans l'exemple précédent, les qualifications sont soumises à l'existence
des pilotes situés dans un autre schéma .

© Éditions Eyrottes

lr.111

1 224

Révocation de privilèges objets

Pour pouvoir révoquer un privilège objet, vous devez détenir au préalable cette peonission ou
avoir reçu Je privilège système AN'i OBJECT PRIVILEGE. Il n'est pas pos:sible d'annuler un
privilège objet qui a été accordé avec J' option WITH GRANr OPTICN.

REVOll:B { pri vilègeObjet) ALL PRIVILEGES) ((colonnel (, colonne2) ...))
(, { pri vilègeObjet) ALL PRIVILEGES)) ((colonnel (, colonne2) ...)) ...

ON { (schéma.)nomObjet) { DIREX:TORY nomRépertoire
) JAVA { SOORCE) RESOURCE) (schéma.)nomObjet))

rROM { utilisateur) nomR8le) PUBLIC) (, { utilisateur) nomR8le)
PUBLIC)) ...

(CASCADE CONS'IRAINl'S) (FORCE) ;

Certaines options sont similaires à celles de la commande GRANr. Les autres sont expliquées

• CASCADE CONS'IRAINI'S concerne les privilèges REFEREN'.:ES ou ALL PRIVILEGES.

Cette option permet de supprimer la contrainte référentielle entre deux tables de schémas
distincts.

• FORCE: concerne les privilèges EXECln'E sur les types (extensions SQL3). En ce cas, tous
les objets dépendants (types, tables ou vues) sont marqués INVALID et les index sont notés
UNUSABLE.

Le tableau suivant décrit la révocation des privilèges de l'utilisateur christia11_so111011:

ll&VOD UPDATE, SELECT
ON Pil ote l"ROll christian_soutou;

ll&VOD REFERENCES
ON Pil ote FROM christian_soutou
CASCADE CONSTRAINI'S;

Privlèues prédéfilÎS

Expllcdons

chl/stlan_soutou ne peut plus nl modifier ni lire la
table Pil ote du schéma /surent_navarro.

chl/stlan_soutou ne peut plus bénéficier de la table
Pil ote du schéma /aurenU18Wrro en tant que
référence (l'option CASCADE CONSTRAINT est
requise).

Oracle propose des privilèges prédéfinis pour faciliter la gestion des droits. Le tableau suivant
en décrit quelques-uns:

© ÉdWtons Eyroles

Rôles

Nom

GRANI' ANY PRIVILEGE

GRANI' ANY OBJECT
PRIVILEGE

Cllllll'iill des doll6es 1

Privilèges

Autorisation de donner tout privilège système.

Autorisation de donner tout privilège objet.

COMMENT ANY TABLE Commenter une table, vue ou colonne de tout schéma.

SELECT ANY DICTIONARY Interroger les objets du dlctlonnalre des données (schéma SYS).

SYSDBA ALTER DATABASE OPEN 1 MOUNT 1 BACKUP, CREATE DATABASE,

ARCHIVELOG , RECOVERY,CREATE SPFILE , RESTRICTED SESSION

SYSOPER Idem sauf CREATE DATABASE

Le code suivant donne puis reprend la possibilité d'autoriser tout privilège à l'utilisateur
christia11_so11to11. Non, il n'y a pas d'erreur, deux GRANr se suivent, et un GRANr suit un
REVOKE.

GRANT GRANT Mif'l OBJECT PRIVILEGE

GRANT Mif'l PRIVILIDE TO christian_soutou;

REVOKE GRANI' Mif'l OBJEX:T

GRANI' Mif'l PRIVILEGE FRCM christian_soutou;

Les privilèges système SYSDBA et SYSOPER sont nécessaires pour qu'un utilisateur puisse
démarrer (startllp) ou arrêter (sh11tdow11) la base de données. Pour une connexion avec le
privilège SYSDBA, vous êtes dans le schéma de SYS. Avec SYSOPER, vous êtes dans le schéma
PUBLIC. Les privilèges SYSOPER sont inclus dans ceux de SYSDBA.

Il est à noter qu'un utilisateur créé simplement (avec les rôles CONNECT et RESOURCE)
ne peut pas lancer la console. Pour ce faire, il faut lui attribuer le droit SELECT ANY
DICTIONARY. Sous SQL*Plus la manipulation à faire est la suivante :

Sous SYSou SYSTEMdansSQL*Plus:

1 GRANr SELECT ANY DICTIONARY TO utilisateur ;

Un rôle (rote) est un ensemble nommé de privilèges (système ou objets). Un rôle est accordé à
un ou plusieurs utilisateurs, voire à tous (utilisation de PUBLIC). Ce mécanisme facilite la
gestion des privilèges.

Un rôle peut être aussi attribué à un autre rôle pour transmettre davantage de droits comme
le montre la figure suivante. Le rôle president est constitué du privilège objet SELECT sur
la table vol s, et du privilège système DROP de tables de tout schéma. Il hérite aussi des

© Éditions Eyrol/es

llWlll

'
1 226

privilèges du rôle trésorier constitué du privilège système CREATE TABLE dans tout
schéma.

, 1

Figure 5-3 Rôles

r1Jlt1

La chronologie des actions à entreprendre pour travailler avec des rôles est la suivante :

• créer Je rôle (CREATE ROLE) ;

• J' alimenter de privilèges système ou objets par GRANr ;

• l'attribuer par GRANr à des utilisateurs (voire à tous avec PUBLIC), ou à d'autres rôles;

• lui ajouter éventuellement de nouveaux privilèges système ou objets par œANI'.

Création d'un rôle <CREJUE nom
Pour pouvoir créer un rôle vous devez posséder Je privilège CREATE ROLE. La syntaxe SQL
est la suivante :

(Nor IDENI'IFIED) IDENTI FI ID

1

CRBATB ROLB nomR8le

{ BY motdePasse) USil'G (schéma.)paquetage) GLOBJ\LLY
) 1 ;

• NOT IDENI'IFIED indique que l'utilisation de ce rôle est autorisée sans mot de passe.

• IDENI'IFIED signale que l'utilisateur doit être autorisé par une méthode (locale par un mot
de passe, applicative par un paquetage, externe à Oracle et globale par un service
d'annuaire) avant que Je rôle soit activé par SET ROLE (voir plus Join).

Il n'est pas possible de donner le privilège REFERENCES à un rôle.

La figure suivante décrit la mise en œuvre de trois rôles. voir_Base autorise l'accès en lecture
aux tables de deux schémas. Moclif_Pilotes autorise la modification de la table Pilote du

© ÉdWtons Eyroles

Cllllll'iill des doll6es 1

schéma /a11re11tJ1avarro pour la colonne ville. voir_et_Modifier hérite des deux rôles
précédents et est affecté à l'utilisateur president.

Figure 5-4 Rôles à définir

rôles

J!Jf.. presidmt

y

Qualifications lJJ
clrislian_soutou

Le tableau suivant décrit la chronologie à respecter pour créer, alimenter et affecter ces
rôles:

T- 5-13 CeslOI dl rilles

Adrrmstrateur

Cll&AT& ROL& voir Base
NOT IDEln'ÏFIED;

Cll&AT& !\OLS Modif_Pil otes
NOT IDE!n'IFIED;

Cll&AT& ROL& voir_et_Modifier
NOT IDE!n'IFIED;

GIU\NT SELEC T
ON l aurent _navarro.Pilote
TO voir_sase ;

GIU\NT SELEC T
ON christian_soutou.Qua li fications
TO voir_sase;

GIU\NT UPDATE(ville)
ON l aurent _navarro.Pilote
TO Modi f_Pi l otes ;

GRANT voir_sase, Modif_Pilotes
TO voir_et_Modifier;

GIU\NT Modif_Pilotes
TO christian_soutou;

GRANT voir_sase
TO christian_soutou,

l aurent_navarro;
GRANT voir_et_Modifier TO president;

Expllcdon

Création des trois rôles.

Alimentation des rôles par des privilèges.

Alimentation d'un rôle par deux autres rôles.

Affectation des trois rôles à des utilisateurs.

© Éditions Eyrottes

l r.111

1 228

Rôles prédéfinis
Selon la version, Oracle propose un certain nombre de rôles prédéfinis (qui sont tous attribués
par défaut aux utilisateurs SYSTEM et SYS). Ils sont générés lors de la création de la base
(scripts accessibles dans Je sous-répertoire RDBMS\ ADMIN). Vous pouvez utiliser ces rôles en
les affectant, par exemple, à des utilisateurs ou pour définir vos propres rôles. Le tableau 5-14
résume les caractéristiques des principaux rôles prédéfinis.

Nom du raie

CONNECT

RE SOURC E

DBA

Commentaires

Se connecter (CREATE SESSION) ,
créer des tables, vues et séquences.

Créer des procédures, déclencheurs.
tables et types.

Détenir tous les privilèges système
avec la possltfüé de les
retransmettre.

EXP_FULLJ)A TABASE et DATAPUMP_EX P_FULLJ)A TABASE Réaliser des exportations.

IMP_FULLJ)A TABASE et DATAPUMP_ IMP_FULLJ)A TABASE Réallserdes Importations

EM_EXPRESS_)!ASIC et EM_EXPRESS_ALL

OEM,_ADVISOR

SELECT _ CATALOG_llOLE

XDBADMIN

Utiliser la console d'administration
(...erslon 12c Express).

Régler des requêtes (voir le
12).

Aocéder à tous les cbjets de tout
schéma (en oonsu'.ltatlon).

Aocéder à XML DB (voir le
11).

Depuis des années, la documenta tion conseille de ne plus utiliser les rôles CONNECT,
RESOURCE et DBA. Ils sont toujours présents car beaucoup les ont utilisés dès le début . Il est
fort probable qu' ils soient toujours d isponibles dans les versions à venir.

Révocation d'un rôle
La révocation de privilèges d'un rôle existant se réalise à J'aide de la commande REVOKE
précédemment étudiée dans les sections « Privilèges». Pour pouvoir annuler un rôle, vous
devez détenir au préalable ce rôle avec J' option ADMIN OPTICN ou avoir reçu Je privilège
système GRAm' ANY ROLE.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

1
REVOll:B nomR8le (, nomR81e. ..)

P'ROM {utilisateur) nomR8le) PUBLIC) (, {utilisateur) nomR8le)
PUBLIC)) ... ;

Le tableau suivant présente trois révocations. La première retire un privilège à un rôle (et
affecte ainsi tous les utilisateurs qui bénéficiaient du rôle). La deuxième retire un rôle (ici
voir_Base) à un utilisateur particulier (ici, la11re11u1avarro. Enfin, la dernière retire un rôle
(ici, voir_Base) à un autre rôle voir_et_Modifier afin de restreindre davantage ce dernier.

T- 5·15 liwoeallols dl nlles Il dl •hlliDea

Adrnnlstrateur

RZVOJœ SELECT
ON c hris t i an_so utou .Quali f i catio ns
l"ROM voir_sase;

RZVOJ:& Voir_sase l"ROM laur ent_navar r o;

RZVOJœ voir_sase l'ROM

Activation d'un rôle <SET ROW

Explications

Révocation d'un privilège d'un rôle.

Révocation d'un rôle d'un utilisateur.

Révocation du rôle d'u.n rôle.

Quand un utilisateur se connecte, il détient par défaut tous les privilèges qui lui ont été attri­
bués soit directement soit via des rôles. Les rôles, une fois créés et alimentés, sont donc actifs
par défaut. Durant la session (SQL*Plus ou programme), des rôles peuvent être désactivés
puis réactivés par la commande SET ROLE. Le nombre de rôles qui peuvent être actifs en
même temps est limité par Je paramètre d'initialisation MAX_ENABLED_ROLES.

SET ROLE

{ nomR8le (IDENI'IFIED BY motd ePasse) (, nomR8le (IDENTIFIED BY motde­
Passe)) ...

) ALL (EXCEPT nomR8le (,nomR81e) ...)

) IDNE) ;

• IDENI'IFIED indique Je mot de passe du rôle si besoin est.

• ALL active tous les rôles (non identifiés) accordés à l'utilisateur qui exécute la commande.
Cette activation n'est valable que dans la session courante. La clause EXCEPT permet
d'exclure des rôles accordés à l'utilisateur (mais pas via d'autres rôles) de l'activation
globale.

• NONE désactive tous les rôles dans la session courante (rôle DEFAULT inclus).

© Éditions Eyrol/es

lr.111

1 230

Le tableau suivant décrit un scénario de désactivation et d'activation:

111111115·16 116vocallolls de nlles et d• llllVlèDIS

Expllcatlons

CREATE ROLE SUpprim e_Pil ote s
IDEllI'IFIED BY suppil;

GRANI' DELETE
ON laur ent_navarr o. Pil ote
TO SUpprim e_Pil otes;

GRAN!' Supprim e_Pil otes
TO chris t i an_s o utou;

Comexlons de dtrlstlan _soutou

Création d'un rôle Identifié.

Alimentation du rôle.

Attribution du rôle à un utilisateur.

-Possible car rôle actif par défaut -Désactivation de tous les rôles
DELETE FROM l aure n t_na var.r o. Pil ote ; Sl:T ROL& NONE;

-Désactivation -Activation
SZT ROLi: NONE; SZT ROLi:

SUpprime_Pil otes IDEllI'IFIED BY suppil ;
-Suwresslon plus permise car rôle Inactif
DELETE FROM l aure nt_na varr o. Pil ote ; -Possible car rôle actif de nouveau
D.Jl&'OJl à la ligne 1 : DELETE FROM laur e nt_nava.r.r o. Pil ote ;
Oll.A-009,2: Tabl e ou vue ine xis tante

Modlieation d'un rôle <ALnR nom
Nous traitons ici de la modification d'un rôle au niveau de l'identification. La modification du
oontenud'un rôle (ajout ou retrait de privilèges) se programme à J'aide des commandes GRANr
(pour ajouter un privilège) et REVOKE (pour enlever un privilège).

La commande ALTER ROLE permet de changer Je mode d'identification d'un rôle. Vous devez
être propriétaire du rôle ou J' avoir reçu avec J' option WTI'll ADMIN OPTION, ou détenir Je
privilège ALTER AN'i ROLE. Les paramètres de cette commande ont les mêmes significations
que dans Je cas de la création d'un rôle (ŒEATE ROLE).

1

ALTER ROLB nomR8le

(Nor IDENI'IFIED) IDENTI FI ED

{ BY motd e Passe) USING
(schéma.)paquetage) EKTERNALLY) GIDBALLY))

© ÉdW/ons Eyroles

vues

Cllllll'iill des doll6es 1

Le tableau suivant décrit Je fait que l'administrateur change Je mot de passe du rôle
Supprime_Pilotes sans prévenir! 'utilisateur (ça arrive) :

1111 ... 5-11 Modllcadoe d'• nlll

Adrrmlstrateur

-ModWlcation du rôle
ALTER ROLS SUpprime_Pil otes

IDEllI'IFIED BY ouille;

Sup .. ession d'un rôle IDROP ROlD

U.usateur clr'lstlan_sowou

-Désactivation de tous les rô les
SET ROLE NONE;

-Activation Invalide
SET ROLE
SUpprime_Pil otes IIENI'IFIED BY suppil;

DRZOR à l a ligne l :
ORA-01979: Ilot de pa••• abaent ou
errozW pour le rôle • SOPPll.DIE_PILOT&S'

Pour pouvoir supprimer un rôle vous devez en être propriétaire ou en bénéficier via l'option
WITH ADMIN OPTION. Le privilège œOP ANY ROLE vous donne Je droit de supprimer un rôle
dans tout schéma

La commande œOP ROLE supprime Je rôle et Je désaffecte en cascade aux bénéficiaires. Les
utilisateurs des sessions en cours ne sont pas affectés par cette suppression qui sera active dès
une nouvelle session. La syntaxe de cette commande est la suivante :

1 DROP ROLB nomR8le;

Outre Je contrôle de J 'accès aux données (privilèges), la confidentialité des informations est un
aspect important qu'un SGBD relationnel doit prendre en compte. La confidentialité est assu­
rée par l'utilisation de vues (views), qui agissent comme des fenêtres sur la base de données.
Ce chapitre décrit les différents types de vues qu'on peut rencontrer.

Les vues correspondent à ce qu'on appelle w 11ivea11 extenw qui reflète la partie visible de la
base de données pour chaque utilisateur . Seules les tables contiennent des données et pourtant,
pour l'utilisateur, une vue apparaît comme une table. En théorie, les utilisateurs ne devraient
accéder aux informations qu'en questionnant des vues. Ces dernières masquant la structure
des tables interrogées. En pratique, beaucoup d'applications se passent de ce concept en mani­
pulant directement les tables.

© Éditions Eyrol/es 231 1

lr.111

1 232

La figure suivante illustre œ qui a été dit en présentant trois utilisateur s. Ils travaillent chacun
sur un schéma contenant des vues qui proviennent de données de différente :s tables.

Figure 5-5 Les vues

NJvaau extoma

N!V98U physiqUB

Vue2

Vu&3 Tablo2

Une vue est considé rée comme une table virtuelle car elle ne nécessite aucune allocation en
mémoire pour contenir les données. Une vue n'a pas d'ex istence propre car seule sa strucb.Jre
est stockée dans le dictionnaire de données.

Une vue est créée à l'aide d'une instruction SELECT appelée • requête de défin ition•. Cette
requête interroge une ou plusieurs table(s), vue(s) ou cliché(s). Une vue se recharge chaque
fois qu'e lle est interrogée.

Outre Je fait d'assurer la confidentialité des informations, une vue est capable de réaliser des
contrôles de contraintes d'intégrité et de simplifier la formulation de requêtes complexes.
Même dans certains cas, la définition d'une vue temporaire est nécessaire pour écrire une
requête qu'il ne serait pas possible de construire à partir des tables seules. Utilisées conjoin­
tement avec des synonymes et attribuées comme des privilèges (œANI'), les vues améliorent la

sécurité des informations stockées.

Création d'une vue <OOEATE VIW)
Pour pouvoir créer une vue dans votre schéma vous devez posséder Je privilège CREATE VIEW.
Pour créer des vues dans d'autres schémas, Je privilège CREATE ANY V11:El'I est requis. La
syntaxe SQL simplifiée de création d'une vue est la suivante.

© ÉdW/ons Eyroles

1 Cllldt1n °5

'

CREATB (OR REPLACE) ((NO) FORCE) VJ:BW (schéma. JnomVue
(({ alias (ContrainteinLine (ContrainteinLine) ...))
ContrainteOUtLine }

[, { alias ContrainteinLine [ContrainteinLine] ...

ContrainteOUtLine)))

AS requêteSELECT (WI'IH { RFAD ONLY

Clllllliill des doll6es 1

CHEX:K OPI'ICN (a:NS'IRAINI' nomCantrainte))) ;

• OR REPLPCE remplace la vue par la nouvelle définition même si elle existait déjà (évite
d'avoir à détruire la vue avant de la recréer).

• FORCE pour créer la vue sans vérifier si les tables, vues ou clichés qui l'alimentent existent,
ou si les privilèges adéquats (SELECT, INSERT, UPIJATE, ou DELETE) sur ces objets sont
acquis par l' utilisateur qui crée la vue.

• NOFORCE (par défa ut) pour créer la vue en vérifiant au préalable si les tables, vues ou
clichés qui l'alimentent existent et q ue les privilèges sur ces objets sont acquis.

• alias désigne le nom de chaque colonne de la vue. Si l'alias n'est pas présent, la colonne
prend le nom de l'expression renvoyée par la requête de définition.

• ContrainteinLine indique une contrainte en ligne (exemple: nomPilote NOT NULL
avec ncmPilote l'alias et NOT NtJLL la contrainte en ligne). La syntaxe suivante décrit les
possibilités d'écri ture d' une telle contrainte. Seule l'option DISABL E NOVALIDATE est
disponible à ce jour.

(CCNSTRAINT nomContrainte)
{ (Nor) NULL) UNIÇUE) PRIMl\RY KEY

) REFEREN:'ES (schéma.)nomObjet ((coll (. co12 ...)))) DISABLE

IDVALID!>.TE

• ContrainteOUtLine indiq ue une contrainte (exemple: CONSTRAINI' id_piloteAF
PRIMARY KEY (brevet) DISAB LE NOVALIDATE). La syntaxe suivante décrit les possi ­
bilités d'écriture d' une telle contrainte:

CONS1RA!Nr nomContrainte
UNIQUE(coll (. co12) ...)) PRIMl\RY KEY(coll (. co12) ...

) FOREIGN KEY(coll (, co12 ...)) REFEREN:'ES (schéma.) nomObjet ((coll

(, co12 ...))))

DISABLE NO\IALIDATE

• requêteSELECT: requête de définition interrogean t une (ou des) table(s), vue(s),
cliché(s) pouvant contenir j usqu'à mille expressions dans la clause S ELECT.

La requête de dé finition ne peut indure des fonctions sur des séquences CURRVAL et
NEXTVAL ainsi qu'une clause ORDER BY.

©Éditions Eyrol/es

lr.111

1 234

Il est nécessa ire de mettre un alias, dans la requête , sur les pseudo-co lonnes ROWID,
ROlfflUM, et LEVEL.

Si la requête de défin ition sélectionne toutes les colonnes d'un objet source (SELECT •
FROM ...), et si des colonnes sont ajoutées par la suite à cet objet, la vue ne cont iendra pas
oes colonnes définies ultérieurement à elle. Il faudra recréer la vue pour prendre en compte
l'évolution strucb.Jrelle de l'objet source.

• WITH READ ONLY déclare la vue non modifiable par INSERT, UPDATE, ou DELETE.

• WITH CHECK OPI'I ON garantit que toute mise à jour de la vue par IN3ERT ou UPDATE
s'effectuera conformément au prédicat contenu dans la requête de définition. Il existe
toutefois des situations particulières et marginales qui n'assurent pas. ces mises à jour
(sous-interrogation de la vue dans la requête de définition ou mises à jour à partir de
déclencheurs INSTEAD OF).

• CONS'IRAINI' nomCon t rain te nomme la clause CHECK OPI'I ON sous la forme d'un nom
de contrainte. En J' absence de cette option, la clause porte un nom unique généré par
Oracle au niveau du dictionnaire des données (SYS_Cnnnn, 11 entier).

CJassilieation
On distingue les vues simples des vues complexes en fonction de la nature de la requête de
définition. Le tableau suivant résume ce que nous allons détailler au cours de cette section :

lllllelU5·18 C11Ssmcat01 des vues

Requête de déflnttlon Vue simple Vue complexe

Nombre de table 1 ou plusieurs

Fonction Non Oui

Regroupement Non Oui

Mises à jour possibles ? Oui Pas toujours

Une vue monotable est défin ie par une requête SELECT ne comportant qu'une seule table dans
sa dause FRôM.

Vues monolables
Les mécanismes présentés ci-après s'appliquent aussi, pour la plupart, aux vues multitables
(étudiées plus Join). Considérons les deux vues illustrées par la figure suivante et dérivées de
la table Pil o te. La vue Pil otesAF décrit les pilotes d'Air France à J'aide d'une restriction
(éléments du WHERE). La vue Etat_ c ivil est constituée par une projection de certaines
colonnes (éléments du SELECT).

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Figure 5-6 Deux vues d 'une table

Pilote
brevet n om nbHVol adr-esse COR1>a

Pl.•I Swtou ago C•tanet CAST

1 CREA.TE Vl.EW Pi Pl.·2 L• och• 500 MCl\t.aUbi111 CAST

AS SELF.CT • Pl.·3 L.-noltte 1200 R1monvill• Af
FRa-1 Pilote l'\.•4 Albano 500 Vltj1t•T<>1IOUH AF 1
llHERE compa • 'AF';

Pl.·5 Bodll 120 ASO

Pl.·8 L ... M 120 ... ASO

Pl.· 7 r.,zln 100 B-..M aico ASO

CREA.TE VIEW Etot_clvll
AS SE.LECT nom, nbHVol , odre.:1.:1e,
coq>• !'Ra1 Pilote ;

Une fois créée, une vue s 'interroge comme une table par tout utilisateur, sous réserve qu'il ait
obtenu Je privilège en lecture directement (GRANI' SELECT ON nomvue TO ...) ou via un rôle.
Le tableau suivant présente une interrogation des deux vues.

Betoln et requête Réslftat

Somme des heures de vol des pilotes d'Alr France. SUM (NBHVOL)
SELECT SUM(nbHVol) FROM PiloteeAJ'; -----------

1 700

Nombre de pilotes. COUNI' (*)

SELECT COUNT (*) FROM ftat _ civil;

7

À partir de cette table et de ces vues, nous allons étudier certaines autres options de l'instruc­
tion CREATE VIEi'/.

Alias

Les alias, s 'ils sont utilisés, désignent Je nom de chaque colonne de la vue. Ce mécanisme
permet de mieux contrôler les noms de colonnes . Quand un alias n'est pas présent la colonne
prend Je nom de l'expression renvoyée par la requête de définition . Ce mécanisme sert à
masquerles noms des colonnes de J' objet source.

Les vues suivantes sont créées avec des alias qui masquent Je nom des colonnes de la table
source . Les deux écritures sont équivalentes .

© Éditions Eyrol/es

lr.111

1 236

T-. 5·20 VIII IVIC lllls

Écrlllre 1

Cl\&AT& OR llZPLAC& VUlf

PilotesPasAF
(codepi l,nomPil,heuresPil,
adressePi l , société)

Écrilire 2

CR&AT& OR RZPLACZ VI:&W

Pi l otes PasAF
AS SELECT brevet codepi 1 , nom nomPi l ,
n.bHVol heuresPil, adresse adressePi l ,

AS SELECT * compa société
FROM Pi l ote FROM Pi l ote
WHERE NOT (compa = ' AF '); WHERE NOT (compa = ' AF ');

Contenu de la vue : CODEPI L NOMPIL HEURESPIL ADRESSEPIL SOCIÉTÉ
---- ----- - --- ----- ----- -

PL-1 SOutou 890 Castanet CAST
PL-2 La.roche 500 Montauba n CAST
PL-5 Bida l 120 Paris ASO
PL-6 Labat 120 Pau ASO
PL-7 Tauzin 100 Bas-Ma uco ASO

Vue d'une vue

L'objet source d'une vue est en général une table mais peut aussi être une vue ou un cliché. La
vue suivante est définie à partir de la vue PilotesPa sAF précédemment créée. Notez qu'il
aurait été possible d'utiliser des alias pour renommer à nouveau les colo 1U1es de la nouvelle
vue.

Créetlon Conlenu de la vue

Cl\&AT& OR llZPLAC& VUlf

EtatCivi l Pi l otesPas AF
NOMPI L

AS SELECT nomPi l ,heuresPi l ,adressePi l SOutou
FROM Pil otes PasAF; Laroc he

Vues en lecture seule

Bida l
Labat
Tauzin

HEURESPI L ADRESSEP I L

890 Castanet
5 OO Mo ntauban
1 20 Paris
1 20 Pau
1 00 Bas-Ma uco

L'option WITH READ ONLY déclare la vue non modifiable par INSERT, UPDATE, ou DELETE .

Redéfinissons la vue Pil otes PasAF à J'aide de cette option. Les messages d'erreur induits
par la clause de lecture seule, générés par Oracle ne sont pas très parlants.

© ÉdW/ons Eyroles

1 Cllldt1n°5

'

Clllllliill des doll6es 1

T-. 5·22 VIII• lecll19 1t1111

Création

Cll&AT& OR RZPLAC& VISW Pi l otesPasAF RO
AS SELECT *
FROM Pi l ote
WHERE NOT (compa ' AF ')

WITH READ ONLY;

Vues modifiables

Opérations Impossibles

INSERT I NrO Pi l otesPas AFRO VALUES
(' PL·8 ' , ' Ferry ' , s. ' Paris ' , ' ASO');

ORA-01733: l es col onnes virtue lles
ne sont pas autorisées i c i
OPDAT& Pi l otesPas AFRO

SET n.bHvol =nbHvol+2;
ORA-01733: l es col onnes virtue lles
ne sont pas autorisées ici
DZLBT& FROM Pi l otesPas AFRO ;
ORA-01752: Impossib l e de supprimer
de l a vue sans exacteme nt une tab l e
protégée par c l é

Lorsqu'il est possible d'exécuter des instructions INSERT, UPDATE ou DELETE sur une vue,
cette dernière est dite modifiable (updatable viewj. Vous pouvez créer une vue qui est modi·
fiable intrinsèquement Si elle ne l'est pas, il est possible de programmer un dédencheu r
INSTEAD OF (voir la partie 2) qui permet de rendre toute vue modifiable. Les mises à jour sont
automatiquement répercutées au niveau d'une ou de plusieurs tables.

Pour mettre à jour une vue, il doit exister une correspondance biunivoque entre les lignes de la
vue et celles de l'objet source. De plus certaines conditions doivent être remplies.

Pour qu'une vue simple soit modifiable, sa requête de définition doit respecter les critères
suivants :

pas de directive DISTINCT, de fonction (AVG, COUNT, MAX, MIN, STDDEV, S!Il1, ou VARIANCE),
d'expression ou de (ROl'iNUM, ROWID, LEVEL) dans le SELECT;

pas de GROUP BY' OROER BY' HAVING ou CONNECT BY.

Dans notre exemple, nous constatons qu'il ne sera pas possible d'ajouter un pilote à la vue
Etat_ci vil, car la clé primaire de la table source ne serait pas renseignée. Ceci est contradic­
toire avec la condition de correspondance biunivoque.

En revanche, il sera possible de modifier les colonnes de cette vue. On polllITa aussi ajouter,
modifier (sous réserve de respecter les éventuelles contraintes issues des colonnes de la table
source), ou supprimer des pilotes en passant par la vue Pil otes AF.

La dernière instruction est paradoxale car elle permet d'ajouter un pilote de la compagnie
'ASO' en passant par la vue des pilotes de la compagnie 'AF'. La directive WITH CHECK
OPTICN permet d'éviter ces effets de bord indésirables pour J' intégrité d e la base.

© Éditions Eyrol/es

lr.111

1 238

Opérations poulbles

T- 5-23 ftlses • Joll' dl llHS

Opérations 1n1>oulbles

Suwresslon des pilotes de ASO
DELETE FROM Etat_civi l

WHERE compa = ' ASO ' ;
Le pilote Lamothe double ses heures
UPDATE Etat civi l

SET ;lbttvol • nbHVol *2
WHERE n om = ' Lamot h e ' ;

Ajout d'un pilote
I N SERT I Nro Pi l otéSAF VALUES

(' PL-8 ' , ' Ferry ' , 5, ' Paris ' ,
' AF ');
Modification
UPDATE Pi l otéSAF

SET nbHVol = n.bHVol * 2;
suwresslon
DELETE FROM Pi l otesAF

WHERE nom = ' Ferry ' ;
Ajout d'un pilote qui n'est pas de 'AP 1
I NSERT I NrO Pi l otesAF VALUES

(' PL-9 ' , ' RAffarin ' , 10, ' Poitiers ' ,
' ASO');

Directive CHECK OPTION

Ajout d'un pl lote
I NSERT I NTO Etat_ci vi l

VALUES(' RAffarin ' '10, ' Poill:iers ' ' ' ASO');
OllA-01'00: impossib l e d ' insérer NULL
dans ("SOUTOU" . "PILOTE" . "BREVET")

Toute mise à jour qui ne respecterait pas les
oontralntes de la table Pilote

La directive WITH CHECK OPI'ION empêche un ajout ou une modification non conformes à la
définition de la vue.

Interdisons l'ajout (ou la modification de la colonne compa) d'un pilote au travers de la vue
PilotesAF, si le pilote n'appartient pas à la compagnie de code 'AF.

Il est nécessaire de redéfinir la vue PilotesAF. Le script suivant décrit la redéfinition de la
vue, l'ajout d'un pilote et les tentatives d'addition et de modification ne respectant pas les
caractéristiques de la vue :

Opérations poulbles

Recréation de la vue
CREATE OR REPLACE VI EW Pi l otesAF

AS SELECT * FROM pi l ote
WHERE compa = ' AF ' WXTR CJœCl<: OPTION;

Nouveau pilote
I NSERT I NrO Pi l otesAF VALUES
(' PL-11' , ' Teste ' , 900, ' Reve l' , 1 A7 1);

1 lign e créée.

Opérations 1n1>oulbles

Ajout d'un pl lote
I NSERT I NTO Pi l otesAF VALUES
(' PL- 10 ' , ' Juppé ' , 10, ' Bordeaux ' , 1 AS0 1);

OllA-01•02 : vue WITH CHECK OPTI ON -
viol ation de c l ause WHERE
Modification de pilotes
UPDATE Pi l otesAF SET compa= 1 AS0 1

OllA-01•02 : vue WITH CHECK OPTI ON -
viol ation de c l ause WHERE

© ÉdW/ons Eyroles

1 Cllldt1n°5

'

'

Clllllliill des doll6es 1

Vues avec contraintes

Comme il est indiqué dans la clause de création d'une vue, il est possible de définir au niveau
de chaque colonne une ou plusieurs contraintes (en ligne ou complète).

Oracle n'assure pas encore l'ac tivation de ces contraintes. Elles sont créées avec l'option
DI SABLE NOVALIDATE et ne peuvent être modifiées par la suite. Les cont raintes sur les vues
sont donc déc laratives (comme l'étaient les c lés étrangères de la version 6).

Les deux vues suivantes sont déclarées avec une contrainte de chaque type. Il sera possible
néanmoins d'y insérer des pilotes de même nom

C REATE OR REPLA CE VI EW CREATE OR REPLACE VI EW
Pil otes PasAF_ inLine (codep il, Pi l otesPasAF _ outLin e

n o mPil UNIQUE DISABLE NOVALIDATE' (codep il, n omPil, h e uresPil'
he uresPil, adresse Pil, société) adressePi l , société,

AS SELECT * FROM Pil ote CONSTRAINI' un_nanPil UNIQUE(nomPil)
WHERE NOT (compa = ' AF ') DISABLE NOVALIDATE)

WITH CHECK OPTION; AS SELECT * FROM Pil ote
WHERE NOl' (compa = ' AF ')
WITH CHECK OPTI ON;

Vues com111exes
Une vue complexe est caractérisée par le fait de contenir, dans sa définition, plusieurs tables
(jointures), et une fonction appliquée à des regroupements, ou des expressions. La mise à jour
de telles vues n'est pas toujours possible.

Les restrictions de création sont les suivantes :

Si la i'équêté dé définition contiént üné Mœ-intérrogation Gointuré procédura lé), éllé né doit
pas être synchronisée ou faire intervenir la table source.

Il n'est pas possible d'ut iliser les opérateurs ensemblistes (UNION [ALL], INTERSECT ou
MINUS).

La figure suivante présente deux vues complexes qui ne sont pas modifiables. La vue multi­
table Pilote s_multi_AF est créée à partir d'une jointure entre les tables Compagnie
et Pilote. La vue Moyenne_Heure s_Pil est créée à partir d'un regroupement de la
table Pilote.

© Éditions Eyrol/es

lr.111

1 240

Compagnie

AF 124
SING 7

Mises àjour

Figure 5-7 Vues complexes

CNlAft VI.lV Pilotea_multi M

AS tLtr.1 p.brev•t , p.nom.
p .nbHVol, c.vl ll" , c .nCflC.Qmp

fllOM Pilote p , c
WHF.Rt ('•COOlf.;1 • C.OCll'fl AND • ' Af ':

Il apparaît clairement qu'on ne peut pas insérer dans les deux wes car il manquerait les
primaires. Les messages d'erreurs générés par Oracle sont différents suivant la nature de la
we (monotable ou multitable).

v .. monollble \\le mllllllble

INSERT INrO Moyenne_He ures_ Pil INSERT INTO
VALUES(' TAT ' ,50); VALUES(' PL-4 ' ' ' Test ' ,400, ' Castanet ' '

ORA-01732: l es manipulations de don- ' Casta net Air Lines ');
nées sont interdites sur cette vue ORA-01776: Impossible de modifier plus

d ' une tabl e de base via une vue jointe

On pourrait croire qu'il en est de même pour les modifications et les suppressi ons. Il n'en est
rien. Alors que la we monotable Moyenne _Heure s_Pil n'est pas modifiable, ni par UPDATE
ni par DELETE (message d'erreur ORA-01732), la we multitable Pilot.e s _multi_AF est
transformable dans une certaine mesure, car la table Pilot.e (qui entre dans sa composition)
est dite « protégée par clé » (key preserved). Nous verrons dans Je prochain paragraphe la
signification de cette notion.

Modifions et supprimons des enregistrements à travers la we multitable PHote s _multi_AF.
Il est à noter que seules les colonnes de la we correspondant à la table protégée par clé
peuvent être modifiées (ici nbHVol peut être mise à jour, en revanche, vi lle ne peut pas

© ÉdWtons Eyroles

Cllllll'iill des doll6es 1

l'être). Les suppressions se répercutent aussi sur les enregistrements de la table protégée par
clé (Pilote).

Ille à jour

OPDAT& Pilotes_mul ti_AF
SET n.bHVol = n.bHVol * 2;

2 ligne(s) mise(s) à jour.

SQL> SELECT * FROM Pilotes_multi_AF;
BREVET NOM NBHVOL VI LLE NOMCOMP

PL-1 Amélie sulpice 900 Paris Air France
PL-2 Thomas sulpice 1800 Paris Air France

Da.rr& FROM Pilotes_mul ti_AF ; SQL> SELECT * FROM Pilote;
BREVET NOM NIBHVOL COMP

2 ligne(s) supprimée(s) . -- ---------- --- - ---- - ----
PL-3 Paul SOutou 1000 SING

SQL> SELECT * FROM Compagnie;

COMP NRUE RUE VI LLE NOMCOMP

SING 7 camparols Singapour singapore AL
AF 124 Port Roya l Paris Air France

Tables protégées (key preserved tables)

Une table est dite protégée par sa clé (key preserved) si sa clé primaire est préservée dans
la clause de joinb.Jre et se retrouve en tant que colonne de la vue multitable (peut jouer le rôle
de clé primaire de la vue).

En considérant les données initiales, pour la vue multitable Vue_Mul ti_Comp_Pil, la table
préservée est la table Pilote, car la colonne brevet identifie chaque enregistrement extrait
de la vue alors que la colonne comp ne Je fait pas.

T_, 5-28 VIII llddl•

Création de la vue RéMJllats

Cll&TS VHW Vue_Multi_Comp_Pil SQL> Sl!Ll!J:T * FRCl>I Vue_Multi _Comp_ Pil;
AS SELECT c. canp, c. nanComp,

p.brevet, p.nan, p.nbHVol COMP NOMCOMP BREVET N:IM NBHWL
FROM Pilote p, Canpagnie c ... _

WHERE p.canpa • c.comp; AF Air France PL .. 1 Amélie SUlpice 450
AF Air France PL .. 2 Thomas SUlpice 900
SING Singapore AL PL .. J Paul Soutou 1000

Cela ne veut pas dire que cette vue est modifiable de toute manière. Aucune insertion n'est
permise, seules les modifications des colonnes de la table Pilote sont autorisées. Les
suppressions se répercuteront sur la table Pilote.

© Éditions Eyrol/es 241 1

llWlll

'

1 242

Afin de savoir dans quelle mesure les colonnes d'une vue sont modifiables (en insertion ou
suppression), il faut interroger la vue USER_UPDATABLE_COLUMNS du dictionnaire des données
(aspect étudié dans le prochain chapitre).

L'interrogation suivante illustre ce principe. La fonction UPPER est utilisée pour convertir en
majuscules Je nom de la table (tout est codé en majuscules dans Je dictionnaire des données).
Les caractéristiques des colonnes apparaissent clairement.

Requête Résultat

SELECT COLUMN_NAME, I NSERTABLE, COLUMN_NAME I NS UPD DEL

UPDATABLE, DELETABLE -----------------
FROM OSZR_OPDATABLll _COLOMNS COMP NO NO NO
\'HERE TABLE_NAME = UPPER(•vue_Multi_Comp_Pil '); NOMCOMP NO NO NO

BREVET YES YES YES

NOM YES YES YES

NBHVOL YES YES YES

Étudions à présent les conditions qui régissent ces limitations.

Critères

Une vue multitable modifiable (11pdatable Join view ou modifiable Join view) est une vue qui
n'est pas définie avec l'option WITH READ ONLY et est telle que la req uête de définition
contient plusieurs tables dans la clause FROM.

Pour qu'une vue multitable soit modifiable, sa requête de définition doit respecter les critères
suivants :

La mise à jour (INSERT, UPDATE, DELETE) n'affecte qu'une seule table.

Seuls des enregistrements de la table protégée pewent être insérés. Si la clause WITH
CHECK OPTION est utilisée, aucune insertion n'est possible (message d'erreur : ORA- 01733:
les colonnes virt uelles ne sont pas autorisées ici).

Seules les colonnes de la table protégée peuvent être modifiées.

Seuls les enregistrements de la table protégée peuvent être supprimés.

Autres uliliSalions de wes
Les vues peuvent également servir pour renforcer la confidentialité, simplifier des requêtes
complexes et programmer une partie de J' intégrité référentielle.

© ÉdW/ons Eyroles

• !ZJ

Cllllll'iill des doll6es 1

Variables d 'environnement

Une requête de définition d'une we peut utiliser des fonctions SQL relatives aux variables
d'environnement d'Oracle. Le tableau suivant décrit ces variables:

Variable I Foncilon Slgnltlcatlon

USER Nom de l'utilisateur connecté.

UID Numéro d'ldentWlcatlon de l'utilisateur connecté.

USERENV(•paramètre') Fonction
utilisant un
des
paramètres
cl-contre.

SESS I ONID : numéro de la session.

TERMINAL: nom du terminal dans le système
hôte.

Elll'RYID : numéro chronologique de la commande SOL
dans la session.

LANGUAGE : langage utilisé.

La vue Soutou_Camparo l s_PiloteSAF restituera les pilotes de la compagnie 'AF' pour
l'utilisateur ou pour un utilisateur connecté au terminal Campa rots sous une version
Oracle française.

CRFATE VIEl>I Soutou_canparo l s_Pilotesl\F

AS SELEX:T • FR.CM Pi l ote WHERE ccmpa = ' l\F '

AND USBR = 'SOtm:XJ'

œ (USBRBRV ('TERMINAL') ' CAMPAROLS '
AND USBRBRV (' r.z>.IDUAGE') LIKE ' F'REN:H_FRl\N:'E%') ;

Contrôles d ' intégrité référentielle

En plus de contraintes de vérification (O!EC<), il est possible de contrôler l'intégrité réfé­
rentielle par des vues. Avant la version 7 d'Oracle, et en l'absence des clés étrangères,
c'était un moyen de programmer l'intégrité référentielle (une autre façon étant l'utilisation
des déclencheurs).

La cohérence référentielle entre deux tables t1 (table • père•} et t2 (table • fils •} se
programme :

du • père• vers le • fils• par l'utilisation d'une vue v1 de la table t1 définie avec la clause
NOT EXISTS;

du • fils • vers le• père• par l'utilisation d'une vue v2 de la table t2 définie avec la clause
WITH CHECK OPTION.

© Éditions Eyrol/es

lr.111

1 244

Considérons les tables Compagnie (« père »)et Pilote (« fils ») définies sans clés étrangères
et programmons la contrainte référentielle à J'aide des vues VueDesCompagnies et
VueDesPilotes. Le raisonnement fait ici sur deux tables peut se généraliser à une hiérarchie
d'associations.

Rgure 5../J \.ties qui simulent /'lntégrWé référenUe/le

compagnie

(.'Sl&J.TR VIE'lf VUeDesPUotea
AS SBLBC"T • PRC't<t Pilot•
XHBRB eoirpa IN

U:BLBCT eorrp FRClf C<.>mp.gnie)
OR C()lllf)a 11' NULL

lfITH CH• c g OPTION :

CRBATB VIRM VUeDe•Coq>ilgnie•
AS SELECT • FROM Corrpagni• c
WHlfllt MOT &XISTS

!SELECT Li-evet PROM Pilote
l(ffF:RB C'Qll!PA•C".C"OCl'p);

La vue VueDesCompagnies restitue les compagnies qui n'embauchent aucun pilote. La vue
VueDesPilotes restitue les pilotes dont la colonne ccrnpa est référencée dans la table
Ccrnpagnie, ou ceux n'ayant pas de compagnie attitrée (la condition IS NlJLL peut être
omise dans la définition de la vue si chaque pilote doit être obligatoirement rattaché à une
compagnie).

Les règles à respecter pour manipuler les objets côté • père » (table 11, vue v1) et côté• fils»
(table t2, vue v"' sont les suivantes :

côté• père» : modification, insertion et suppression via la vue v1, lecture de la table 11;

côté• fils» modification, insertion, suppression et lecture via la vue v2.

Manipulons à présent les vues de notre exemple.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

lllllllU 5-31 des iUIS •• l'llll61111li riMrllllllll

Cohérence

Insertion lnoorrecte (père absent):
INSERT INro Vue.DésPil o tes VALUES

(' PL- 4 ' , ' Jean ' , 1000, 'Ilien 1)

ORA- 0140 2 : vue WITH C HECK OPTION -
viol at i on de c l a use WHERE
Insertions correctes:
INSERT INro Vue.DésPil o tes VALUES

(' PL- 4 ' , ' P a ul s o utou ' , 1000,Ntl'LL);
INSERT INro Vue.DésPil o tes VALUES

(' PL-5 ' , ' Oliver Blan c ' , 500, 'SING');

ModWlcation Incorrecte (père absent) :
UPDATE Vue.DésPil o tes

SET compa = 'Toto'
WHERE bre vet = ' PL- 4 '

ORA- 0140 2 : vue WITH C HECK OPTION -
viol at i on de c l a use WHERE
ModWlcatlon oorrecte :
UPDATE Vue.DésPil o tes

SET compa = 'Al''
WHERE bre vet= ' PL- 4 ' ;

Toute suppression est possll le à travers la vue
vueDésPil otes.

Confidentialité

Cohérence pèrtHllls

Toute Insertion à travers la vue vueoesc ompagnies
est possible (sous résen1e de la validité des valeurs du
type des colonnes).
Insertion coirecte :
INSERT INro vueDésC o mpagnies VALUES

(' EASY' ,1, 'G. Bra ssens ' , ' Bl agnac ' ,
' Easy Jet ') ;

Modification lnoorrecte (fils présent) :
UPDATE vueoesc ompagnies

SET comp = ' AF2 ' WHERE comp
O ligne(•) al.a•(•) à jour .
Modifications correctes :
UPDATE vueoesc ompagnies SET

'A7';

vill e= ' Perpignan ' WHERE comp = ' EASY' ;
UPDATE vueoesc ompagnies SET

comp = ' EJET ' WHERE comp = ' EASY ' ;

Suppression Incorrecte (fils présent) :
DELETE F ROM vueoesc ompagnies

WHERE comp = 1 AP 1
;

O ligne(•) euppria .. (•) .
Suppression correcte :
DELETE FROM vueDésC ompagnies

WHERE comp = '&J&T' ;
1 lig ne s uppri mée.

La confidentialité est une des vocations premières des vues. Outre l'utilisation de variables
d'environnement, il est possible de restreindre l'accès à des tables en fonction de moments.

Les vues suivantes limitent temporellement les accès en lecture et en écriture à des tables.

Déll"'1lon de la vue
CREATE VI:&W vueoescompa gni esJo ursFér i és

AS SELECT * FROM Compagnie
WHERETO_CHAR (SYSDATE, ' DAY ') IN

(' SAMEDI ' , ' DIMANCHE') ;

Restriction, en lecture de la table compagni e, les
samedi et dimanche. Mises à jour possll les à tout
moment.

CREATE vuH vueDesPil otesJo urs ouvrab l es Restriction, en lecture et en écriture (à cause de
AS SELECT * FROM Pil ote WITH CHECK OPTION), de la table Pil ote les
WHERE TO_CHAR (SYSDATE, 'HH2 4 :MI ') joursouvrablesde8h30à 17h30.

BETWEEN ' 8 :30 ' AND ' 17 :30 '
AND TO_CHAR(SYSDATE, ' DAY')

NOT IN (' SAMEDI ' , ' DIMANCHE ')
WITH CHECK OPTION;

© Éditions Eyrol/es 245 1

l r.111

1 246

Notez qu'il est possible, en plus, de limiter l'accès à un utilisateur particulier en utilisant des
variables d'environnement précédemment étudiées (exemple: ajout de la condition AND

USER= ' S0\1I'OU' à la vue).

TransmiSsion de .-ois
Les mécanismes de transmission et de révocation de privilèges que nous avons étudiés s'appli­
quent également aux vues. Ainsi, si un utilisateur désire transmettre des droits sur une partie
d'une de ses tables, il utilisera une vue. Seules les données appartenant à la vue seront acces­
sibles aux bénéficiaires.

Les privilèges objets qu'il est possible d'attribuer sur une vue sont les mêmes que ceux appli­
cables sur les tables (SELECT, INSERT, UPDATE sur une ou plusieurs colonnes, DELETE).

At'1bullon du privilège SlgrM!cdon

QIU\N'l' SELECT ON Accès pour tous en lecture sur la vue
vueDescompagniesJoursFé.riés TO PUBLIC; vueoescompagniesJou.rsFériés.

QRANT INSERT ON Accès pour Pau/en sur la vue
vueDescompagniesJoursFé.riés TO Paul; vueDescompagniesJou.rsFériés.

Modlieation d'une we WJm VIW»

Pour pouvoir modifier une vue, vous devez en être propriétaire ou posséder Je privilège ALTER

ANY VIEW. La syntaxe SQL est la suivante:

ALTER Vl:BW (schéma.) nomVue

{ ADD Contra in teOUtL ine) IROP
{ C'ONS'IRAINI' nomContrainte) PRIMARY KEY) UNIÇUE(coll (, co12) ...))

CCMPILE;

Les modifications concernent l'ajout ou la suppression de contraintes qui ne sont pas encore
opérationnelles (voir la section« Vues avec contraintes»).

suœression d'une we IDROP VIEW>
Pour pouvoir supprimer une vue, vous devez en être propriétaire ou posséder Je privilège DROP
ANY VIEW. La suppression d'une vue n'entraîne pas la perte des données qui résident toujours
dans les tables. La syntaxe SQL est la suivante :

1 DROP Vl:BW (schéma.) nomVue (CASCADE CŒSTRAINTS) ;

© ÉdW/ons Eyroles

l c11111111n° 5 Clllllliill des doll6es 1

Les vues ou synonymes qui dépendent de la vue supprimée ne sont pas détruits, ils sont seule­
ment marqués comme invalides.

L'option CAS'.:ADE CONSTRAI N!'S est semblable à celle de la commande DROP TABLE et
concerne la suppression des clés primaires ou uniques pour lesquelles il faut répercuter la
suppression des clés étrangères associées.

svnoovmes

Un synonyme est un alias d'un objet (table, vue, séquence, procédure, fonction ou paquetage).
Les avantages d'utiliser des synonymes sont les suivants :

• simplifier l'accès aux objets en abrégeant les noms de tables, par exemple, ou en regrou­
pant dans un même alias les noms du schéma et de l'objet, pour les objets qui ne vous
appartiennent pas, mais dont vous avez accès ;

• masquer le vrai nom des objets ou la localisation des objets distants (réunis par liens de
base de données : database links) ;

• améliorer la maintenance des applications dans la mesure où la nature du synonyme peut
être modifiée sans mettre à jour tous les programmes qui l'utilisent (le synonyme garde le
même nom tout en référençant un nouvel objet).

Il est ainsi possible d'attribuer plusieurs noms à un même objet. Il est aussi permis de créer des
synonymes publics (en utilisant la directive PUBLI C) qui seront visibles et utilisables par tous.
Les autres synonymes (privés) ne seront pas accessibles par d'autres utilisateur s à moins de
donner les autorisations nécessaires (par GRANr).

Création d'111 svnonvme <ClllUE SYHONYMt
Pour pouvoir créer un synonyme dans votre schéma, il faut que vous ayez reçu le privilège
CREATE SYNONYM. Si vous avez le privilège CREATE AN'i SYNONYM, vous pouvez créer des
synonymes dans tout schéma. Enfin, pour pouvoir créer un synonyme public, il faut que vous
ayez reçu le privilège CREATE PUBLI C SYNONYM.

La syntaxe SQL est la suivante :

1
CREATB (OR REPLACE) (PUBLIC) SYNONYM (schéma.) nomSynonyme

POR (schéma.) nomObjet (@lienBaseDonnées) ;

• OR REPLACE recrée le synonyme même s'il en existe déjà un de ce nom (cela vous évite de
le détruire puis de le créer). Il existe une restriction pour les synonymes de types dont
dépend une table (extension objet non étudiée dans ce livre).

• PUBLI C crée un synonyme public, accessible par tous, sous réserve que les utilisateurs
aient les privilèges adéquats sur les objets concernés par le synonyme (par exemple Pa11l

© Éditions Eyrol/es 247 1

l r.111

1 248

déclare un synonyme public nommé Navigant:Publi c référençant sa table Pil o te Ce
synonyme est théoriquement accessible par l'utilisateur Jean. Pratiquement il faut que
Jeœ1 ait Je privilège de lecture sur la table soutou. Pil ote. Si la clause PUBLIC n'est pas
appliquée Je synonyme est privé et son nom doit être unique dans Je schéma.

• schéma : Je premier désigne Je schéma dans lequel va se trouver Je synonyme (s'il n'est
pas renseigné, vous Je créez dans votre schéma). Le deuxième désigne Je schéma dans
lequel se trouve l'objet à référencer (s'il n'est pas renseigné, vous référencez un objet de
votre schéma). Pour les synonymes publics les deux options ne doivent pas être utilisées.

• nom Syn onyme : nom du synonyme, alias qui va désigner J' objet référencé.

• nomOb jet: nom de l'objet référencé. Peuvent être concernés : tables, vues, séquences,
paquetages, procédures ou fonctions cataloguées, classes Java, types ou autres synonymes.

• Li enBas eDonnées: désigne un objet distant via un database link.

Considérons les tables et la vue suivantes appartenant au schéma et définissons
trois synonymes privés (Soc iete s , Navigantl et Navigant2) et un synonyme public
(Navigant3).

Figure 5-9 Synonymes de l'uU//sateur SotAou

So cie t es Navigu a nt l a vigu a n t 2

Soutou ['- _
Co mpa gnie

c omp nomComp

AF Air France

..... -.

Les instructions SQL sont les suivantes :

T_, 5-34 Cr6atOI dl sva_.

Utlllsaleur Sautou

CREATE SYNONYM Navi gan t! FOR Pil ôtê ;

CREATE SYNONYM Navig ant2
FOR s outou . Pil ote ;

CREATE PUBLIC SYNONYM Navig ant3
FOR Vue Pil ote ;

CREATE SYNONYM soc i ete s FOR Pil ote ;

CREATE OR llZPLAC& SYNONYM Soc i étés
FOR Compa gni e ;

SlgrM!cdon

Deux synonymes privés équlva1ents de la table
Pil ote.

Un synonyme public de la vue vuePil ote vision
de la table Pil ote.

Remplacement du synonyme privé soc i etes de
la table compa gni e à la place de la table Pil ote.

© ÉdW/ons Eyroles

1 Cllldt1n°5

'
Clllllliill des doll6es 1

Pour tout synonyme public créé qui référence une table, il n'est pas possible d'ajoute r un autre
objet du même nom dans le même schéma.

Il n'est pas non plus possible de créer un synonyme public du nom d'un schéma existant
(Soulou par exemple).

TransnûssiOn de droilS
La transmission et la révocation des privilèges objets (SELECT, INSERT, UPDl\TE sur une ou
plusieurs colonnes, DELETE) s'appliquent également aux synonymes.

Utllltaleur SoulDu

GRANT INSERT,SELECT ON Navigant2
TO d e vl;

GRANT SELECT ON Navigant3 TO d e vl;

Écriture lnooirecte car il manique le nom du schéma:
SELECT * FROM Navigan t 2;

Écritures correctes :
SELECT * FROM Soutou .Navigan t2 ;
INSERT INro Soutou .Navigan t2

VALUES (' PL- 2 ' , ' J e an Turca t ');

Écriture correcte car synonyme public :
SELECT * FROM Navigan t 3;

Sup .. ession d'un svnonvme IDROP SYNONYM)
Pour pouvoir supprimer un synonyme, il faut qu'il se trouve dans votre schéma ou que vous
ayez reçu Je privilège DROP AN'i SYNONYM. Pour pouvoir supprimer un synonyme public il
faut que vous ayez reçu Je privilège DROP PUBLI C SYNONYM.

La syntaxe SQL est la suivante :

I DROP (PUBLIC) SYNONYM (schéma.) nomSynonym e (FœCE) ;

• PUBLI C: pour détruire un synonyme public (en œ cas ne pas utiliser Je préfixe schéma
pour désigner Je synonyme).

• FORCE concerne les synonymes de types pour lesquels il existe des tables ou des types qui
en dépendent.

Dictionnaire des données

Le dictionnaire des données (data dictio11ary) est une partie majeure d'une base de données
Oracle qu'on peut assimiler à une structure centralisée. Le dictionnaire est constitué d'un
ensemble de tables système à partir desquelles sont définies environ six cents vues distinctes.
Celles-ci stockent toutes les informations décrivant tous les objets de la base de données.

© Éditions Eyrol/es 249 1

l r.111

1 250

conslitutiOn
Le dictionnaire des données contient :

• la définition des tables, vues, index, clusters, synonymes, séquences, procédures, fonc-
tions, paquetages, déclencheurs, etc. ;

• la description de l'espace disque alloué et occupé pour chaque objet;

• les valeurs par défaut des colonnes (DEFAUL'I') ;

• la description des contraintes de vérification et d'intégrité référentielle ;

• le nom des utilisateurs de la base ;

• les privilèges et rôles pour chaque utilisateur ;

• des informations d'audit (accès aux objets) et d'autre nature (commentaires par exemple).

Toutes les tables du dictionnaire des données sont accessibles en lecture seulement, elles
appartiennent à l'utilisateur SiS et sont situées dans l'espace de stockage (rab/espace)
SYSTEM. Ce sont plutôt les vues de ces tables qui sont intéressantes car bien structurées.
L'interrogation du dictionnaire des données ne peut se faire qu'au travers de requêtes SELECT.

Toutes les informations contenues dans les tables système du d ictionnaire des données et
access ibles au travers de vues sont codées en MAJUSCULES.

Le d ictionnaire des données est mis automa tiquement à jour après chaque instruc tion SOL du
LMO (INSERT, UPDATE, DELETE, LOCK TABLE, MERGE).

IJassilieation des vues
Soit la vue v. Trois classes de vues sont proposées par Oracle (le nom de la classe de vue
préfixe le nom de la vue du dictionnaire de données) :

• usm_v décrit les objets du schéma de l'utilisateur connecté (qui interroge le dictionnaire) ;

• ALL_v (extension de la précédente) décrit les objets du schéma de l'utilisateur connecté et
les objets sur lesquels il a reçu des privilèges ;

• DBA_v décrit les objets de tous les schémas (de plus il fuut préfixer le nom de la vue par
celui du propriétaire, ici SiS. DBA_v).

La structure de ces vues ne difîere que par les points suivants :

• les vues préfixées par USER_ ne comportent pas la colonne OWNER identifiant le propriétaire
de l'objet. Cette colonne est implicitement paramétrée par le nom de l'utilisateur
connecté;

• certaines vues préfixées par DBA_ ont des colonnes supplémentaires décrivant des aspects
système.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Démarche à suivre
La démarche à suivre afin d'interroger correctement Je dictionnaire des données à propos d'un
objet est la suivante :

• trouver Je nom de la vue ou des vues qui sont pertinentes à partir de la vue DICTICNARY

situé au niveau Je plus haut de la hiérarchie ;

• choisir les colonnes de la vue à sélectionner en affichant la structure de la vue (par la
commande DES::) ;

• interroger la vue en exécutant une requête SELECT contenant les colonnes intéressantes.

La première étape peut être omise si on connaît déjà Je nom de la vue (ce sera Je cas pour les
vues usuelles que vous aurez déjà utilisées à plusieurs reprises).

Recherche du nom d'une vue

L'extraction du nom des vues qui concernent un objet est rendue possible par J' interrogation
de la vue DICTICNARY (de synonyme DICT). Le tableau suivant décrit dans un premier temps
la structure de la vue DICTIONARY. La requête interroge cette vue pour extraire automatique­
ment Je nom des trois vues qui concernent les séquences (notez l'utilisation des majuscules
dans la condition).

,......, 5-36 lecllln:lll Ill•• des - du dlcdolllln des dallées Ill 1111111 d1 Tlllf_NHll

Conmande SOL

DESC DICTIONJU\Y

SELECT * FROM DICTION.ARY

WHERE tab l e_name
LIIŒ ' i SEQUENCE * ' ;

Réslllat

Nom NULL ? Type

TABLE_NAME VARCHAR2 (3 0)

COMMENI'S VARCHAR2 (4000)

TABLEjlAME COMMENTS

ALL_SEQUENCES Descr ipt i on of SEQUENCES
accessib l e to the user

DBA_SEQUENCES Des cript i on of a ll
SEQUENCES in t he database

USER_ SEQUENCES Description of t h e user ' s
own SEQUENCES

On aurait pu interroger la vue DICTIONARY à propos des tables (TABLE), index (INDEX), syno­
nymes (SYNONYM), contraintes (CONSTRAINI'), déclencheurs (TRIGGER), etc. Il est aussi possi­
ble de tester la colonne Q)MMENrS qui décrit, sous la forme d'une phrase, la vue. Ce principe
de recherche ramène plus de résultats que l'interrogation en testant Je nom de colonne TABLE_

NAME (notamment à cause des synonymes de vues, ici SEQ). Interrogeons de cette manière Je
dictionnaire, en s'intéressant aux séquences comme Je montre J 'exemple suivant.

© Éditions Eyrol/es 251 1

lr.111

Conmande SOL
SELECT * FROM DICTION.ARY

WHERE UPPER(comments)

LI!Œ '%SEQUENCE%';

Choisir les colonn es

Réslllat

TABLl\..NAME COMMENTS

ALL_ CATALOG All tables, views, synon:yms,

sequences accessible to the user

DBA_SEQIJEN:ES

All database Tables, Views,

Synonyme, Sequences

USER,,..AUDIT_ OBJECT Audi t t rail records for statements
concerning objecta, specifically:

table, cl us ter, ... , sequences

USER_CATAI.OG Tables, Views, Synonyme and

Seque nces owned by the user

USER,..SEQUP.NCES

SEQ

Le choix des colonnes d'une we du dictionnaire des données s'effec tue après avoir listé la
structure de cette vue (par DESC). Le nom de la colonne est en général assez parlant. Dans
notre exemple, la vue USER_SEiÇpENCES contient huit colonnes. La colonne SEQUENCE_NAME
désignera Je nom des séquences du schéma courant, MIN_ VALUE les valeurs minimales des
séq uences, etc.

Si vous avez du mal à interpréter la signification d'une colonne d'une vue du dictionnaire des
données, consultez la documentat ion Oatabase Referenœ , chapitre 2 Static Data Dictionary
Views.

r-. 5-38 CllGll des CGlclmes d'•• 11111 Ill dlclollllh des dolll6es

Conmande SOL Réslllat

DESC USER_SEQUENCES Nom NULL ? Type

SEQUENCE_NAME NOT NULL VARCHAR2 (30)

MIN_ VALUE NUMBER

MAX_ VALUE NUMBER

INCREMENT_ BY NOT NULL NUMBER

CYCLE_FLAG VARCHAR2 (1)

ORDER_FLAG VARCHAR2(1)

CACHE_S I ZE NOT NULL NUMBER

LAST_NUMBER NOT NULL NUMBER

1 252 © ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

lnte"oger la vue

L'interrogation de la vue sur la base des colonnes choisies est l'étape finale de la recherche de
données dans le dictionnaire. Il convient d'écrire une requête monotable ou multitable (jointu­
res) qui extrait des données contenues dans la vue. Ces données sont en fait renfermées dans
des tables système qui sont plus difficilement interrogeables du fait de la complexité de leur
struc ture. Supposons que notre schéma contienne les deux séquences suivantes (étudiées au

chapitre 2) :

CRBATE SEQUEHCE .. qA ff
MAXVALUE 10000
NOMINVALVE;

CRBAT6 SEQUENCE •eqPax
INC'R6MSHT BY 10
START WITH 100
HAXVALUE 100000
NOMINVALUE t

Affre ter

nwoAtf
1

Figure 5-10 Séquences

Passager

Interrogeons le dictionnaire des données à travers les quatre premières colonnes de la vue
USER_SEQUENCES pour retrouver les caractéristiques de ces deux séq uences . La valeur
courante de la séquence n'est pas stockée dans cette vue, elle est, en revanche, accessible via
la fonction CURRVAL.

Conmande SOL Réslllat

SELEX:T S!!QUP.NCE_NAIŒ, SEQUENCE_NAME MIN_VALUE MAX_llALUE INCRl!MENT_BY

MIN_ VALUE, MAX_ VALU!!, •••••••••••••••• ••••••••• •••••• ••• ••••••••••••

INCREIŒNT_BY
PROM USER_SEQUENCES ;

PriJciJales vues

SEQAFP
SEQPAX

10000
100000 10

Nous listons ici les principales vues qui concernent un utilisateur donné (prefixées par USER_),

pour s'intéresser aux objets sur lesquels on a reçu des privilèges. Il faut préfixer ces vues par
ALL_, le prefixe DBA_ permettra d'extraire les objets dans tout schéma Nous approfondirons
par la suite l'étude de certaines de ces vues.

© Éditions Eyrol/es

llWtel

Nat1n de l'o bjet

Objets (au sens général)

Tabies

Colonnes

Index

Contrain tes

Vues

Synonymes

Séquences

Commentaires

Uti i sateurs

Rôles

1 254

USER,_OBJECTS : objets !lflPar1enant à ruti i sateur (synonyme OBJ) .
USER,..ERRORS : erreurs après compilation des objets Pl fSQ L stod<és
(procédu res, !onc tions, paquetages, déclencheu rs).
USER,_STORED _ SETI' I NGS: paramèt res des objet s PUSQ L stod<és.
USER,_SOURCE : source des objets PL/SO L stocl<és.

USER,_TABLES :desaiptiondes tabies relationneües de i'utaisateur
(synonyme TABS).

USER,.,ALL _TABLES : desc'4>1ion des tables relationnelles e t objets de
rutilisateur.

USER,_TAB_COLUMNS :colonnes des tables et vues (synonyme COLS) .
USER,_UNUSEO _COL_TABS: colonnes éliminées des tables .

USER,_I NDEXES : desaiption des inde< (synonyme I ND).
USER,_I ND_EXPRESSI ONS: expressions fonc tiomellesdes index.
USER,_I ND_COLUMNS :colomesqui oomposent les index .

USER,_CONSTRA I NTS :défi nition des cont raintes de tables .
USER,_CONS _COLUMNS :composition des cont raintes (colonnes).

USER,_VI EWS :descf4> tiondes vues de ruti i sateur.

USER,_SYNONYMS: description des synonymes privés d'un u tilisateur
(synonyme SYN) .
DBA,..SYNONYMS et ALL_ SYNONYMS :desaiption de tous les synonymes
(privés et pubtics) .

Déjà étudié en début de section.

USER,_TAB _COMMENI'S :commentai res à prqx>S des tables ou des vues .
USER,_COL_COMMENI'S :commentai res à prqx>S descoloMes des tables et

vues.

USER,_USERS :carac téristiques de ruti i sateur courant.
DBA,..USERS et ALL_ USERS :carac téristiques de tous les uti i sateurs.

USER,_TAB_GRANI'S : lis te des autorisa tions sur les tables et les vues pour
lesqueles rutt i sateur est le propriétaire, ou ayant donné ou reçu rautorisation.
USER,_TAB_GRANTS_,MADE: i ste des autorisations sur les objets !lflPar1enant
à ruti i sateur.
USER,_COL_GRANTS : colonnes au torisées à raccès .
USER,_COL_GRANI'Sj!ADE: i ste des autorisat ions sur les coloMes des
tables ou des vues appar tenan t à l'u tilisateur.
USER,_COL_PRI VSJIADE: informations sur les colonnes pour lesquelles
rutilisa teur est propriétai re ou bénéfic iaire.
USER,_TAB_GRANTS_RECD: i stedes objet s pour lesquels l'u tilisateur a reçu
une autorisa tion.
USER,_COL_PRI VS_RECD: informations sur les colonnes pour lesquelles
rutilisa teur a reçu une au torisation.

DBA.JlOLES : tous les rôles existants .
DBA.JlOLE _PRI VS : rôles donnés aux utîi sateurs et aux autres rôles .
USER,_ROLE _ PR I VS: rôles donnés à ruti i sateur.
ROLE_llOLE _PRI VS: rôles doMés aux autres rôles.
ROLE_ SYS_ PRI VS : privilèges sys tème donnés aux rôles .
ROLE_TAB_ PRI VS: privilèges sur les tables donnés aux rôles.
SESSI ON_llOLES: rôles acti fs à un instant t.

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Interrogeons à présent quelques-unes de ces vues dans Je cadre d'exemples concrets.

Obiets d'un schéma
La requête suivante interroge la vue USER_OBJECTS et permet de retrouver tous les objets du
schéma courant (avec la date de création). L'instruction SQL*Plus COL précise Je nombre de
caractères à éditer pour une colonne à J' affichage.

COL OBJECT_NJ\ME FORMAT A30

SELECT OBJEx::T_Nl\ME, OBJECT_'IY PE, ŒFATED FRCM USBR _OBJBCTS;

OBJECT_NJ\ME OBJEx::T_TYPE CREATED

l\CCES_SECURI SE PACKAGE 03/09/03

l\CCES_SECURI SE PACKAGE BODY 03/09/03

APFIŒFAVICNS P ROCEWRE 03/09/03

Conpagni es JAVA CLASS 17 /08/03

EPFECTIFSHEDRE FUNCTION 16/09/03

ESPICNCONNEKION TRIGGER 16/09/03

PIIDTE TABLE 18/09/03

PK_PILOTE INDEK 18/09/03

VUEMULTICOMPPIL VIEW 14 /09/03

Struct•e d'une table
Il est aisé d'extraire Je nom des tables en ajoutant la condition « l'lllERE TABLE_NAME =

'TIIBLE' »à l'interrogation précédente. Une fois qu'on connaît Je nom d'une table, il est possi­
ble de retrouver sa structure (équivalent de ce que produit la commande SQL*Plus DESC) à
J'aide de la vue USER_TAB_CO LUMNS.

La requête suivante décrit en partie la table INSTALLER qui fait partie du schéma des exercices
de ce livre.

COL COLUMN_Nl\ME FORMAT AlS

COL D.l>.TA_'IYPE FORMAT 1130

SELEX:T COLUMN_Nl\ME, D.l>.TA_'IYPE, DATA_LEl'Ol'H, DATA_P REX:ISION

FROM USBR_TAB_COLOMllS TABLE_Nl\ME = 'INSTALLER' ;

COLUMN_Nl\ME D.l>.TA_TYPE D.l>.TA_LEN>'IH DATA_PREx:ISION

NPOSTE
NIDG

NUMINS

D.l>.TEINS

DELAI

VARCHl\R2
VARCHl\R2
NUMBER
D.l>.TE

INl'ER\IAL D.l>.Y (5) TO SECCND (2)

22

11

7
5

7
5

5

© Éditions Eyrol/es 255 1

l r.111

1 256

Recherche des contraines d'une table
La vue USER_CONS'l'RAINI'S décrit la nature des contraintes. Pour retrouver la liste des
contraintes d'une table, il faut utiliser les colonnes Q)NSTRAINI'_NAMEet CONSTRAINI'_TYPE
de la vue. Trois valeurs sont possibles au niveau de la colonne CCNSTRAINll'_TYPE (P
la clé primaire, R une clé étrangère et C une contrainte CHECK, UNIQUE ou NOT NJLL).
La requête suivante liste les contraintes de la table INSTALLER :

SELEl:T C'ONS'IRAINI'_NAME, CCNSTRAINT_TYPE
FRCM USBR_CONSTRAINTS TABLE...Nl\ME = ' INSTALLER' ;

CCNSTRAINT_Nl\ME C'ONS'IRAINI'_TYPE

PK... INSTALLER P
FK...INSTALLER,_NPOSTE_POSTE R
FK...INSTALLER,_NLOG_IDGICIEL R

composition des contraintes d'une table
La vue USER....CONS_COLUMNS décrit la composition des contraintes. Pour retrouver la
composition d'une clé primaire d'une table, il faut utiliser la colonne POSITION de la vue.
La requête suivante permet d'extraire la composition des contraintes et en particulier celle
de la clé primaire :

SELEl:T C'ONS'IRAINI'_NAME, POSITION, COLUMN_Nl\ME
FRCM USBR_CONS_COLtJMllS Tl\BLE_Nl\ME = ' INSTALLER' ;

POSITION C'OUJMN_Nl\ME

FK...INSTALLER,_NLOG_IDGICIEL
FK...INSTALLER,_NPOSTE_POSTE
PK... INSTALLER
PK... INSTALLER

Détails des contraintes référentielles

1 NLOG
1 NPOSTE
1 NPOSTE
2 NLOG

La vue USER_CONSTRAINI'S permet également de retrouver la nature de la référence pour
chaque clé étrangère. La colonne R_CONSTRAINI'_NAME (comme Remote CONSTRAINI'_NAME)
désigne le nom de la contrainte de la clé primaire cible. La requête suivante retrouve le nom de
la clé primaire des étrangères de la table INSTALLER:

SELEl:T C'ONS'IRAINI'_Nl\ME, C'ONSTRAINT_TYPE, R_CONSTRAINT_NAMB
FRCM USBR_CONSTRAINTS Tl\BLE_NJ\ME = ' INSTALLER' ;

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

O:JNS'IRAINI' _Nl\ME R_CONSTRAINT_NAMB

PK_ INSTALLER

PK_INSTALLER_NPOSTE_POSTE

PK_INSTALLER_NIDG_LOGICIEL

p

R

R

PK_ POSTE

PK_ LOGICIEL

Vous allez me dire qu'on ne voit pas clairement de quelle table et de quelle colonne cible il
s'agit. Vous avez raison, le nom de la contrainte peut ne pas être parlant. Afin d'extraire ces
éléments manquants, il faut faire une jointure avec la vue USER_CONS_COUJMNS. La requête
suivante extrait Je détail de chaque clé étrangère de la table IN3TALLER :

O:JL OBJECI' _Nl\ME FORMAT 1\3 0

SELECT OBJEx::T_NAME, OBJEx::T_TYPE, CREATID FROM USER_OBJECI'S;

O:JL O:JNS'IRAINI'_Nl\ME FORMAT A26 HEADING •clé étrangère•

O:JL R_CŒSTRAINT_NJ\ME FORMAT A17 HFADIN3 "Nom cible•

O:JL O:JUJMN_Nl\ME FORMAT AlS HEADING •clé cib le"

O:JL TABLE_NJ\ME FORMAT AlS HFADIN3 "Table cible•

SELECT ul.O:JNS'IRAINI'_Nl\ME , ul.R_CŒSTRAINT_NAME,

u2. TABLE_NAME, u2. O:JUJMN_Nl\ME

FROM USBR_CONSTRAINTS ul, USBR_CONS_COLOMllS u2

WHERE ul. TABLE_NJ\ME = 'INSTALLER'
AND ul.R_CŒSTRAINT_NJ\ME = u2.0:JNS'IRAINI'_Nl\ME

AND ul. 'R' ;

Clé étrangère Nom cib le

PK_INSTALLER_NPOSTE_POSTE PK_POSTE

PK_INSTALLER_NIDG_LOGICIEL PK_LOGICIEL

Table cible

POSTE

LOGICIEL

Recherche du code source d'un sous-programme

Clé cib le

NPOSTE

NLOG

La vue USER_SOURCE décrit la composition des sous-programmes PUSQL (procédures, fonc­
tions, paquetages et déclencheurs). La colonne NAME précise Je nom du sous-programme. La
requête suivante permet d'extraire Je code soun:e de la procédure de nom CHERCHEPIWTE :

SET LINESIZE 90

O:JL TElcr' FORMAT A7 0
SELEX:T LINE,'l'Elcr' FR.CM USBR_SOtmCB Nl\ME = 'CHEl1CHEPILOI'E ' ;

Ligne TEKT

1 PROCEWRE cherchePi l ote (p_breve t IN VARCHAR2) IS

2 var l

3 BIDIN

© Éditions Eyrol/es 257 1

l r.111

1 258

4 SELEx::T nbllvo l ! NID var l FRCM Pi l ote brevet
p_brevet;

5 I F var l <= 1000 THEN

6 RAISE_l\PPL ICATION_ERROR(- 20777, 'Déso l é , l e p ilote manque

d ' ' eJ<pér i ence •) ;

7 END I F;

8 œ MS_OUTPUT.Pt1r_LINE ('Ce p ilote a p l us de 1000 heures •) ;

9 EXCEPTICN

10 WHEN ID_D!>.TA_FOUND 'IHEN

11 DBMS_OurPUT. PUT_LINE (' Pas de p ilote avec ce numéro de
brevet ') ;

12 END cherchePi l ote;

Recherche des ullisateurs d'une base de données
La vue ALL_USERS liste les utilisateurs de la base avec la date de leur création :

SELEl:T * FRCM ALL_ USERS;

USERNAME USER_ID CRFATED

SYS 0 12/05/02

SYSTEM 5 12/05/02

SCOTT 59 12/05/02

SOUTOU 61 16/08/03

TESTE 63 17109/03

Rôles reçus
La vue USER_ROLE_PRIV S recense les rôles reçus pour un utilisateur. La colonne GRANI'ED_

ROLE contient Je nom du rôle attribué. La colonne ADMIN_OPTI ON précise la nature du rôle
(transmissible à d'autres ou pas). La requête suivante liste les rôles détenus par l'utilisateur
connecté (ici So11to11). Cet utilisateur possède trois rôles (dont Jesuperpuimmt DBA).

SELEX:T USERNl\ME, GRANI'ED_ROLE , ADMIN_OPTICN ma-! USBR_ROLB_PRIVS;

USERNAME

SOUTOU

SOUTOU

SOUTOU

GRANTED_ROLE

a:JNNEx::T

œA

RE SOURCE

NO

NO

NO

© ÉdW/ons Eyroles

1 Cllldt1n°5 Clllllliill des doll6es 1

Le mllltitenant

Depuis la version 12c, il est possible d'opter pour l'architecture multitenant (option payante et
disponible uniquement pour l'édition E11terprise). Le choix vous est donné à l'étape suivante.

Figure 5-11 Choix de /1nstslstfon en tmt que multftenmt

1 -, 11_
; ­
; -1"""--....
1-

_., ____,_

-- -
-------......... ________

Cette option permet qu'une instance héberge plusieurs bases de données distinctes. Jusqu'à la
version llg R2, instance et base de données étaient bien souvent confondues sous la forme
d'un ensemble contenant à la fois les données utilisateur et les données système. Avec le
multitenant, une instance est composée d'un unique COB (Co11tai11er DataBase) appelé
CDB$ROOT qui peut contenir plusieurs bases enfichables (PDB : Pl11ggable DataBase). Chaque
PDB pourra être dédiée à une application et contiendra à la fois les données utilisateur et les
programmes les manipulant. Le COB sera consacré à la gestion des données système. La base
PDB$SEED est également livrée ; elle vous permettra de créer rapidement votre base par
clonage.

© Éditions Eyrol/es

..........
""'"

Figure 5-12 Architecture multftenmt

LOGIQUE ' PHVSIQUE

...... CIO
J

.. ::

259 1

l lWll l

1 260

Ce type d'architecture vise à réduire les coûts, à consommer moins de ressources (RAM, CPU
et stockage) et à offrir davantage de souplesse dans l'administration (migration et mises à jour
au niveau POB). Ce type d'architecture impacte également les utilisateur s et leurs droits. On
distingue les utilisateur s au niveau COB (commo11 user.r dont le nom est préfixé par C## ou
cH) des utilisateur s locaux cantonnés à leur POB.

Rgure S.13 UtNls8leurs dans le multltensnt

ROOI (CD8$ROOT)

Utilisateurs locaux

drv2 sur
pdbwntH

dev2 sur
pdbpole

Enfin, depuis la version 12c, il est possible d'installer une instance non-COB pour rester à
l'ancienne architecture (une seule base de données éventuellement répartie au niveau des
tablespaœs). Avec le multitenant, chaque POB peut être associée à plusieurs tablespaces
applicatifs mais aussi système (le tablespace system est présent dans chaque POB mais n'est
pas identique entre deux POB).

L'atehitecture multitenant induit un niveau supplémentaire au dictionnaire des données : ils' agit des
vues statiques prefixées qui renseignent au niveau du container et peonet d'accéder à touœs
les POB. Des nouvelles vues dynamiques (V$) sont également fournies (V$pdl:s, par exemple).

Figure 5-14 Mveauxdu cfct/omalre des données avec le mukkenant

CDB_ Tous les obje ts d'un CDB et des PDB

DBA Tous les objets d'un COB ou d'un PDB

ALL_ Objets accessibles par l'utilisateur courant

1 USER Objets de l'utilisateur courant

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Dans la plupart des vues du plus haut niveau, la colonne con_id identifie le container (qui
peut être le COB ou une PDB). La valeurO est réservée au COB (c'est le cas pour les vues
d'une instance sans multitenant), la valeur 1 à la base CDB$ROOT, 2 à la base PDB$SEED.

Ensuite, chaque PDB se voit affecter séquentiellement un chiffre de 3 à 254. Le tableau
suivant présente quelques utilisations de cette colonne.

Interrogation du dldomalre

SQL> SELECT name, cdb, open_mode, con_id
FROM V$DATABASE;

NAME COB OPEN_MODE CON._ID

ORCL YES READ WR ITE

SQL> SELECT name, open_mode, con_id
FROM V$PDBS;

NAME OPEN_MODE CON._ID

PDB$SEED
PDBORCL

READ ONLY
READ WRITE

2
3

0

SQL> SELECT tabl e_name, owner, tabl espace_name
FROM CDB_ TABLSS
WHERE con,_id = (SELECT con,_id FROM V$PDBS

WHERE name= ' PDBORCL')
ORDER BY owner, tabl e_name;

TABLE_ NAME OWNER TABLESPACEjlAME

PILOTE EYROLLES USERS
BILLETS SOUTOU USERS
CARACTERESUN I CODE SOUTOU USERS

Commentaires

t:lnstance ORCL est multltenant (de
type container).

Deux PDB sont dlsponllles : la base
PDBORCL qui est ou110rte en écriture
et celle pour clonage.

Liste des tables (avec leur schéma
et leur tablespace) contenues dans
la base PDBORCL.

SQL> SELECT username, defau l t _ tab l espace, con,_id Liste des utilisateurs locaux (avec
FROM coa_oSDS leur tablespace par défaut) de la
WHERE con,_id = (SELECT con,_id FROM V$PDBS base PDBORCL.

WHERE name= ' PDBORCL')
AND defau l t _ tabl espace NOT IN

(' SYSTEM ' , ' SYSAUX ')
ORDER BY use.marne;

USERNAME DEFAULT_ TABLESPACE CON._ID

APEX_PUBLIC _ USER USERS
AUDSYS USERS
BI EXAMPLE
DEVl USERS
DEV2 USERS

3
3
3
3
3

© Éditions Eyrol/es 261 1

llWtel

Les consoles d'administration

1 262

Depuis Oracle 9i, chaque nouvelle version a apporté un nouvel outil graphique d'administra­
tion, notamment la console Enterprise Manager. Au début, il s'agissai t d'une interfuce Java qui
est devenue au fur et à mesure des versions une interface web de plus en plus sophistiquée.
Depuis la version 12c, deux consoles sont proposées : Enterprise Manager Database Express,
qui convient pour des architectures restreintes, et Enterprise Manager Cloud Control pour
centraliser la gestion de plusieurs serveurs.

Enterorise Manager Database EXPress
Cette console permet de gérer des bases non-COB, COB ou de type POB. Pour chacune de ces
bases, un port HrTPS unique doit être configuré (l'assistant OBCA réalise ces configurations
quand vous l'utilisez). La connexion à la console s'effectue à J'aide de l'URL suivante:
https: l /nom_serveur :port lem. En vous connectant à sys AS sys.dba, vous pouvez
retrouver avec la fonction gethttpsport du paquetage DBMS_XDB_CONFIG, le port assigné à
chacune de vos bases. La procédure sethttpsport vous permettra d'affecter un port s'il
n'était pas déjà configuré.

Conllguratlon de la leSSlon Commentaires

SQL> a l ter session set containe.r= CDB$ROOT; La oonnexion à la oonsole au ni1Jeau du
sessi on modifiée. COB s'effectue via

httpstllocalhost:5500/em.
SQL> SELECT DBMS_ XDB_CONFIG .gethttpsport ()

FROM DUAL;
DBMS_XDB_CONFIG. GETHTI'PSPOR T ()

5500

SQL> a l ter session set container= PDBORCL;
sessi on modifiée.

SQL> SELECT DBMS_ XDB_CONFI G .gethttpsport ()

FROM DUAL;

DBMS_XDB_CONFI G. GETHTI'PSPOR T ()

5501

La connexion à la oonso le au nhieau de la
PDB s'eHectue via
httpstllocalhost:5501/em.

Une fois connecté avec l'utilisateur system, vous retrouverez intuitivement Je moyen d'agir
sur la base (paramètres d'initialisation, espaces de stockage, utilisateurs, rôles, profils, etc.).

© ÉdW/ons Eyroles

l c11111111n° 5

Rgure 5-15 Console EM Database Express

ORACl...E

-· -- ltO-'I

Clllllliill des doll6es 1

-. .,._ . "' --- ., • ., • ., .. ., •K
....... ef-...rO-•-

Concernant un utilisateur local, J 'instruction CREATE USER précédemment étudiée sera géné­
rée en fonction de vos choix :

Figure 5-16 Cré8llon d'un uU//sateur

ORACLE Entorpl'lse Manager DIUl>asee.pr ... 12c

-• . ,..,... vfoWnl _.
Mol-... - .

...
...
to

•
•
•

•
- l!. .. t.:

L'onglet Stockage vous permettra de visualiser et de créer vos espaces de stockage.

© Éd!Uons Eyrol/es

l r.111

1 264

Figure 5-17 Vlsus/ls8llon des tablespaces

·--·-·­·­.. ,. .. ··-­.. _
·-

..,_. - --- ·­-·-
.....
- "'· " _ .. , .,

liiiiiiiiiiiiii - iiiiiiiiiiiiiii-· .1
I • l tt ·- .. " ·- au -- ·- - -

SQL Developer

- '• • ..
• ..
• ..
• ..
• ..
• ..
• ..
• ..

........... ---·-c.
, ·--, ·-·-, ·---

Depuis la version 4 (décembre 2013), l'outil SQL Developer est fourni avec une « vue» DBA.
En créant une connexion au container principal et une autre à la base enfichable (ici,
PœôRCL), vous pourrez gérer graphiquement vos espaces de stockage, utilisateur s, etc.

L'écran suivant présente deux connexions : sur Je COB et sur la base enfichable. Sur la
première, il est possible d'opérer sur l'état d'une PDB (ouverture, fermeture, déconnexion,
suppression ou clonage).

Figure 5-18 \.lie DBA de SOL Developer

0.-IQL Do? l'DI SVS.PllllCM!CL9'ys OACL

f"'- -...... 611"'- lio"9UI' lqu"'" - -..
!+ • lit

()-:i.
.. c;, ._de don"'- du oom­

., POllOllC.

. ..

. li St.eut ... bl• .. .,... . {li°"',,.,..
•

• (l:l P11nlbteur

• 14:) lltMAH

· la­·Ci----5Ql . i;i-•I•-• (j INll de donn6es
• CO 5'oCIJI ... boM .. don""9

!JI-·- '!-- ."""""' dolWlMs ,, .. -. ..
v-.

2 OON_lD

2 NAM.! PDBORCL
l OPEN_HOD! REAI> WRI'tl:

6 C:ON_U
1 GUID
1 CREA.Tl

29/11/1 4 12:09:3 4 ,638000000

une b>w de doMtt< l)IU990bl•­

'1onet ta"W bilse de donnHs pklggabl•­

Q«OM«tet ltt .,. .. de dOMffs P'U99•ble..

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

L'écran suivant présente l'affichage des utilisateurs locaux de la PDB. Une fois sur un utilisa­
teur, vous pourrez attribuer des privilèges, changer un mot de passe ou un profil, supprimer Je
schéma, créer un nouvel utilisateur, etc.

Figure S.19 Gestion des utfKsateurs avec SOL Deve/oper
14<-

.... " #··-­
. lJ.,.....
e n...-.-..a

.. .. 4 11*11t*'-'-•""'""'
4 .Oit!A,_,.,.. ,;Jl,_._ , .. ··-"''' .. " ··­. ,;a-

·-­>..,, .. "*a: v-r• ·--­._... .. , ...
t Cb'°' ·­......

H l1fY1

...O. CW..-T

DtPlUO ' LOCUDZl/C16/U •YtAllX TDlP
at•:uo • i..oc r.1:02t/0-6tt> Uall:M T O ..
EXP!Q:D ' t.OCUt> 2t/C6/ll $YJAUX TDI>
D PlUD' LOCUD21/0UU S'l'SAVX TDIP
tt•lttr:D l LOCUD 21/06/lS U'HU TDIP
ttP!Q:D ' t.OCU?> 2'101/H TDI>
OPClf 0 4/0t/lS IJHU TDIP
U:•lM:D ' i.oeuD 2t/H/U •YU..Wt TDIP
CU>IUD r. LOCUD 21/H/U CHAUX TDIP 31/0S/lS CJHM TDIP Jl/OS/U OHM TDIP

© Éditions Eyrol/es

lr.111

Exercices

1 266

Les objectifs de ces exercices sont :

• de créer des vues monotables et multitables ;

• d'insérer des enregistrements dans des vues ;

• d'effectuer une mise à jour conditionnée via une vue.

5.1 Vues monotables

\.lies swrs contraintes

Écrhiez le script vues. sql, permettant de créer :

La vue LogicielsUnix qui contient tous les logiciels de type 'Unix' (toutes les colonnes sont
conservées). Vérifier la structure et le contenu de la vue (DESC et SELECT).

La vue Poste _ O de structure (nPosO, nomPosteO, nSalleO, TypePos t eO, ind IP, adO) qui
contient tous les postes du rez-de-chaussée (etage=O au niveau de la table Segment). Faire
une jointure procédurale sinon la vue sera considérée comme une vue multltable. Vérifier la struc­
ture et le contenu de la vue.

Insérez deux nouveaux postes dans la vue, tels qu·un poste soit connecté au segment du rez-de­
chaussée et l'autre à un segment d'un autre étage. Vérifier le contenu de la vue et celui de la table.
Conclusion ?

Supprimez ces deux enregistrements de la table Poste.

Résoudre une complexe

Créez la vue SallePrix de structure (nSalle, nomSalle, nbPoste, prixLocation) qui
contient les salles et leur prix de location pour une journée (fonction du nombre de postes). Le montant
de la location d'une salle à la journée sera d'abord calculé sur la base de 1 OO € par poste. Servez­
vous de l'expression lOO•nbPoste dans la requête de définition.

VérWlez le contenu de la vue, puis afficher les salles dont le prix de location dépasse 150 €.

Ajoutez la colonne tarif de type NUMBER (3 l à la table Types. Mettez à jour ce tte table de manière
à Insérer les valeurs suivantes :

T-5-43 Tlllls des POSlll

Type du poste Tiuff en c
TX 50

PCWS 100

PCNI' 120

UNIX 200

NC 80

seos 400

© ÉdW/ons Eyroles

Cllllll'iill des doll6es 1

Créez la vue Salleintermédiaire de structure (nSalle, typePost e, nombre, tarif) , de
telle sorte que le oontenu de la vue reflète le tarW ajusté des salles en fonction du nombre et du type
des postes de travail. Il s'agit de grol4)er par salle, type et tarW (tout en faisant une jointure a110c la table
Types pour les tarifs), et de compter le nombre de postes pour avoir le résultat suivant :

NSALLE TYPEPOSTE NOMBRE TARIF

sOl

sOl
s02

TX

UNIX

2

1

2

50

2 00

100

À partlrde la vue Salleintermédiaire, créez la vue SallePrixTotal(nSalle, PrixRéel)
qui reflète le prix réel de chaque salle (par exemple la s01 sera facturée 2'SO + 1'200 . 300). VérWlez
le oontenu de cette vue.

Affichez les salles les plus éoonomlques à la location.

\.lies avec contraintes

Remplacez la vue PosteO en rajoutant l'option de oontrôle (CHECK OPTION). Tenter d'insérer un
poste appartenant à un étage différent du rez-de-chaussée.

Créez la vue InstallerO de structure (nPoste, nLog, num, da t eins) ne permettant de travailler
qu'a110c les postes du rez-de-chaussée, tout en Interdisant l'installation d'un logiciel de type 'PCNr .
Tentez d'insérer deux postes dans cette vue ne oorrespondant pas à ces deux oontralntes : un poste
d'un étage, puis un logiciel de type 'PCNT. Insérer l'enregistrement 'p6'. 'log2' qui doit passer à tra110rs
la vue.

(1:!31ïf!ijg 5.2 Vue multltable

© Éditions Eyrol/es

Créez la vue SallePoste de structure (nomSalle, nomPoste. adrIP, norrœypePoste)
permettant d'extraire toutes les Installations sous la forme suivante :

NOMSALLE NOMPOSTE ADRIP NOMTYPEPOSTE

Salle 1
Salle 1

Poste 1
Poste 2

130.120.80.01 Terminal X-Window
130.120.80.02 Système Unix

l r.111

n:@îlJ6fl 5.3 Mises à jour conditionnées

À partir de la table vol cl-dessous, définissez la vue v _Vols qui permettra, à l'aide d'une Instruction
de mettre correctement à jour la table Prime s.

Vol

0:!JjïlJ63 5.4 Vues de la base Chantiers

Rgure 5-20 Mises à four condtfomées

NBROB

INSBRT OPDATE
+150

.ao

Créez la vue chantier_passagers permettant d'extraire le détai l des visites des employés en tant
que passagers d'un mols donné sous la forme suivante (loi pour Avrll 2008) :

CHAN!'IER JOUR VEHICULE PASSJ\GER CONDUCTEUR TEMPS

CHl 01/04/08 Vl E7 El 2 , 5
CHl 01/04/08 Vl ES El 2 , 5
CHl 02/04/08 V2 El ElO 2

Créez la vue chantier_canducteur permettant d'extraire le temps passé sur la route par les
conducteurs des visites d 'un mols donné sous la forme suivante :

CHAN!'IER CONDUCTEUR JOUR TEMPS

CHl El 01/04/08 2,5

Créez la vue chantier_canducteur_passagers permettant d'extraire le temps passé sur la
route par les employés (conducteur ou passager) d 'un mols donné sous la forme suivante:

EMPLOYE Temp s passé

El 8,5
E2 4,875

1 268 © ÉdW/ons Eyroles

© Éditions Eyrol/es

Cllllll'iill des doll6es 1

En utilisant œs vues, écrivez la requête qui permet de facturer le temps passé par les employés sur
tous les chantiers. La formule à programmer est la suivante : pour tout chantier, le prix est égal au
nombre d'employés multiplié par le temps passé (sur la base de 30 euros de l'heure).

Un exemple est donné cl-après :

CHANTIER SUM (TEM PS) COUNT (EMPLOYE) P RIX

CHl 15, 5 7 3255

CH2 9 11 297 0

Panie Il

Pl/SQL

Chapitre &

Bases du PUSQl

Ce chapitre décrit les caractéristiques générales du langage PUSQL :

• structure d'un programme ;

• déclaration et affectation de variables ;

• structures de contrôle (si, ta11t q11e, répéter, po11r) ;

• mécanismes d'interaction avec la base ;

• programmation de transactions.

Généralités

Les structures de contrôle habituelles d'un langage (IF, WHILE ...) ne font pas partie intégrante
de la norme SQL. Elles apparaissent dans une sous-partie optionnelle de la norme (ISO/IEC
9075-5 : 1996. Flow-co11trolstateme11ts). Oracle les prend en compte dans PUSQL. Nombre de
concepts de PL/SQL proviennent du langage Ada

Le langage PUSQL (Proced11ral l.a11gage/Str11ctured Q11ery La11gage) est Je langage de prédi­
lection d'Oracle depuis la version 6. Ce langage est une extension de SQL car il permet de
faire cohabiter des structures de contrôle (si,po11ret ta111 q11e) avec des instructions SQL (prin­
cipalement SELECT, INSERT, UPDATE et DEI.ETE). PUSQL est aussi utilisé par des outils
d'Oracle (Forms, Report et Graphies).

Enviro111emen1 client-serveur
Dans un environnement client-serveur, chaque instruction SQL donne lieu à l'envoi d'un
message du client vers Je serveur suivi de la réponse du serveur vers Je client. Il est préférable
de travailler avec un bloc PUSQL plutôt qu'avec une suite d'instructions SQL susceptibles
d'encombrer Je trafic réseau. En effet, un bloc PUSQL donne lieu à un seul échange sur Je
réseau entre Je client et Je serveur. Les résultats intermédiaires sont côté serveur et seul
Je résultat final est retourné au client.

© Éditions Eyrol/es

lr.111

1 274

Figure 6-1 Différentes approches du clent-serveur

Client

Bloc

Avan1ages

Les principaux avantages de PL/SQL sont :

"""" SELECT .•

UPOA1E;

INSERT INTO.

"'"'

• La modularité (un bloc d'instruction peut être composé d'un autre, etc .): un bloc peut
être nommé pour devenir une procédure ou une fonction cataloguée, donc réutilisable.
Une procédure, ou fonction, cataloguée peut être incluse dans un paquetage (package)
pour mieux contrôler et réutiliser ces composants logiciels.

• La portabilité: un programme PUSQL est indépendant du système d'exploitation qui
héberge le serveur Oracle. En changeant de système, les applicatifs n'ont pas à être
modifiés.

• L'intégration avec les données des tables : on retrouvera avec PUSQL tous les types de
données et instructions disponibles sous SQL, et des mécanismes pour parcourir des
tats de requêtes (curseurs), pour traiter des erreurs (exceptions), pour manipuler des données
complexes (paquetages DBMS_xxx) et pour programmer des transactions (CG!MIT,

ROLLB.l\CK, SAVEPOINI').

Structure d'111 programme

Un programme PUSQLqui n'est pas nommé (aussi appelé bloc) est composé de trois sections
comme le montre la figure ci-contre :

• DECLARE (section optionnelle) déclare les variables, types, curseurs, exceptions, etc. ;

• BEGIN (section obligatoire) contient le code PUSQL incluant ou non des directives SQL
(jusqu'à l'instruction END;). Le caractère « I »termine un bloc pour son exécution dans
l'interfuce SQL*Plus. Nous n'indiquons pas ce signe dans nos exemples pour ne pas
surcharger le code, mais vous devrez l'inclure à la fin de vos blocs ;

© ÉdW/ons Eyroles

Blies 1111 PttSG I

• EXCEPTICN (section optionnelle) permet de traiter les erreurs retournées par Je SGBD à la
suite d'exécutions d'instructions SQL.

Figure 6-2 StrctUle d 'un bloc PL/SOL

DB CLARE
- - déclarations

......
..

·· des .c1--rcvrs

-- gestions des erreurs

END;
/

Porlée des obielS
Un bloc peut être imbriqué dans Je code d'un autre bloc (on parle de sous-bloc). Un sous-bloc
peut aussi se trouver dans la partie des exceptions. Un sous-bloc commence par BEGIN et se
termine par END.

La portée d'un objet (variable, type, curseur, exception, etc.) est la zone du prograrnrne qui
peut y accéder. Un bloc qui déclare qu'un objet peut y accéder, ainsi que les sous-blocs. En
revanche, un objet déclaré dans un sous-bloc n'est pas visible du bloc supérieur (principe des
accolades de Cet Java).

Figure 6-3 VlslbNlté des objets

DECLARE
V brevet VARCHAR2(6);

BEGIN
v brevet

END; v nocn in.•cc•••.ibl•

/

DICU.•I
v notn VARCHIJl2 UO);

l&<lIN
... V br.-v•t •C: V nc:m • 4o-•••Ul ..

IXC'IPTION
•• V br9Vet •t V nQm • OO-ff#ibl••
INO;

© Éditions Eyrol/es 275 1

l r.111

1 276

Jeu de caractères
Comme SQL, les progrrunmes PUSQL sont capables d'interpréter les caractères suivants :

• lettres A à Z et a à z ;

• chiffres de 0 à 9 ;

• symboles () + - * I < > = ! - " ; : . ' @ % , " # $ & _ 1 {) ? [] ;

• tabulations, espaces et retours-chariot.

Comme SQL, PUSQL n'est pas sensible à la casse (/101 case sensitive). Ainsi numéroBrevet
et NUméroBREVET désignent Je même identificateur (tout est traduit en majuscules au niveau
du dictionnaire des données). Les règles d'écriture concernant l'indentation et les espaces
entre variables, mots-clés et instructions doivent être respectées dans un souci de lisibilité.

Peu Uslble C'est mieux

IF x >y THEN max: =x; ELSE max: =y ; END IF; IF X > y THEN

max : = x;
ELSE

fdenlilicaleurs

max: = y;

END IF;

Avant de parler des différents types de variables PUSQL, décrivons comment il est possible de
nommer des objets PUSQL (variables, curseurs, exceptions, etc.).

Un identificateur commence par une lettre suivie (optionnel) de symboles (lettres, chiffres,$,
_, #). Un identificateur peut contenir jusqu'à trente caractères. Les autres signes pourtant
connus du langage sont interdits comme Je montre Je tableau suivant :

Aulorilés

X

t2
té l éphone #
c ode_br evet
codeBrevet
orac l e $nombre

,......, 6·2 lllllldl1catem

Interdits

moi &toi (symbole&)
debi t-c r e di t (symbole-)
on/off (symbole!)
code brevet (symbole espaoe)

© ÉdW/ons Eyroles

'
variables

Commentaires
PUSQL supporte deux types de commentaires:

• monolignes, commençant au symbole -- et finissant à la fin de la ligne ;

• multilignes, commençant par I * et finissant par * /.
Le tableau suivant décrit quelques exemples :

Sir une ligne Sur plusieurs lignes

Blies 1111 PttSG I

-- Lé<:ture de l a tabl e /* Léêture de l a tabl e Pilote * /
SELECT sal aire INrO v_sa l ai.re SELECT sal aire I NN> v_sal ai.re

FROM Pi l ote -- Extraction du salaire FROM Pi l ote
WHERE nom = 'Thi erry Alba.ri e ' ; /*Extraction d u salaire

v.,.bonus : = v_sal a i.re * 0. 15; -- ca l cul pour ca l culer l e bonus */
WHERE nom = ' Thi erry Albaric ' ;

v_bonus : = v_sal a i.re * 0. 15; /*Ca l cul* /

Il n'est pas possible d' imbri quer des commenta ires. Pour les programmes PL/SOL qui sont
utilisés par des précompilateurs , il faut emp loyer des commentai res multilignes .

Un programme PUSQLest capable de manipuler des variables et des constantes (dont la valeur
est invariable). Les variables et les constantes sont déclarées (et éventtlellement initialisées)
dans la section DECLARE. Ces objets permettent de transmettre des. valeurs à des sous­
prograrnmes via des paramètres, ou d'afficher des états de sortie sous l'inte rface SQL*Plus.

Plusieurs types de variables sont manipulés par un programme PUSQL :

• Variables PUSQL :

- scalaires recevant une seule valeur d'un type SQL (exemple : colonne d'une table) ;

- composites (%ROWTYPE, RECORD et TYPE) ;

- références (REF) ;

- LOB (locators).

• Variables non PUSQL : définies sous SQL*Plus (de substituti on et globales), variables
hôtes (déclarées dans des programmes précompilés).

© Éditions Eyrol/es 2n 1

1

'

1 278

Variables scalaires
La déclaration d'une variable scalaire est de la forme suivante:

1
ident ifi c a te ur (C'ONSTANI') t ypeDeDonnée (l'O'l' NULL) (: =) DEFAULT

expression] ;

• CONSTI\NI' précise qu'il s'agit d'une constante ;

• NOT NJLL pose une contrainte en ligne sur la variable ;

• DEFAULT permet d'initialiserla variable (équiva ut à l'affectation : =).

Le tableau suivant décrit quelques exemples :

Variables

DECLARE

v_d.ateNaissance DATE;
/* équivaut à

v_d.ateNa issan ce DATE: = NULL;

* /
v_capacité NUMBER(3) : = 999;
v_té l éphone CHAR(l4)

NOT NULL : = ' 06-76-85-14-89 ' ;
v_t.rouvé BOOLEAN NOT NULL : = TRUE;

BEGIN

Constantes et expressions

DECLARE

c_pi CONSTJ\N'l' NUMBER : = 3 .14159;
v_rayon NUMBER : = 1 .5;

v_a i.re NUMBER : = c_pi * v_ray on**2;

v_g.ro upesangui n CHAR (3) : = ' 0 '1- ' ;

/* équiva ut à
v_g.ro upesangui n CHAR(3) DUAULT '0 1- ' ;

* /
v_dateVa l eur DATE : = SYSDATE + 2;

BEGI N

Il n'est pas possible d'affecter une valeur nulle à une variable définie NOT NULL (l'erreur ren­
voyée est l'exception prédéfinie VALUE..ERROR).

La contrainte NOT NULL doit être suivie d'une dause d'initialisation.

Affectations
Il existe plusieurs possibilités pour affecter une valeur à une variable :

• l'affectation comme on la connaît dans les langages de programmation (variabl e : =
expression) ;

• par la directive DEFAULT ;

• parladirectiveINI'Od'unerequête(SELECT ... J:NTO varia bl e FROM ...).

Le tableau suivant décrit quelques exemples.

© ÉdW/ons Eyroles

'

Code PlJSQL

DECLARE
v_brevet VARCHAR2 (6);

v_brevet2 VARCHAR2 (6);

v_prime NUMBER(5,2);

v_naissance DATE;

v_tro uvé BOOLEAN NOT NULL
OEFAULT FALSE;

BEGIN
v_brevet : = ' PL-1 ';

v_brevet2 : = v_brevet;

v_prime : = 500.50;

Blies 1111 PttSG I

Conwnentalres

Déclarations de variables.

Affectation d'une chaîne de
caractères.

Affectation d'une variable.

Affectation d'un nombre.

v_naissance : = ' 04-07-2003 '; Affectation de dates.
v_naissance : = TO_DATE (' 04-07-2003 17 :30 ' ,

' OO:MM:YYYY HH24:MI ');

v_trouvé : = TRUE;

SELECT brevet INTO v_brevet
FROM Pi l ote WHERE nom= 'Gratie n Vie l' ;

Restrictions

Affectation d'un booléen.

Affectation d'une chaîne de
caractères par une requête.

Il est impossible d'utiliser un identificateur dans une expression s'il n'est pas déclaré au préa­
lable. k:i, la déclaration de la variable maxi est incorrecte :

DECLARE

maxi NUMBER . - 2 • mini ;

mini NUMBER .- 15;

À l'inverse de la plupart des langages récents, les déclarations multiples ne sont pas permises.
Celle qui suit est incorrecte :

DECLARE

i, j, k NUMBER;

Variables 011TYPE
La directive %TYPE déclare une variable selon la définition d'une colonne d'une table ou d'une
vue existante. Elle permet aussi de déclarer une variable conformément à une autre variable
précédemment déclarée.

© Éditions Eyrol/es

lr.111

1 280

Il faut fuire préfixer la directive %TYPE avec le nom de la table et celui de la colonne
(i den ti f icate ur nomTabl e . nomCo l onne%TYPE) ou avec le nom d'une variable existanœ
(iden t ifi cate ur2 iden t ifi c a teur1%TYPE). Le tableau suivant décrit cette syntaxe :

Code PLISQL Conmenlalres

DECLARE v_br evet prend le type de la colonne
v_brevet Pil ote. brevet *TYPI:; brevet de la table Pil ot·e .

v_prime NUMBER(5 , 2) : = 500 .50; v_prime_minprend letypedelavarlable
v_prime_min v_primeiTYPs : = v_prime *O . 9; v_prime et est à 450,45.

BEGIN

Variables O/oROWTYPE
La directive %ROWTYPE permet de travailler au niveau d'un enregistrement (record). Ce dernier
est composé d'un ensemble de colonnes. L'enregistrement peut contenir toutes les colonnes
d'une table ou seulement certaines.

Cette directive est très utile du point de vue de la maintenance des applicatifs. Utilisés à bon
escient, elle diminue les changements à apporter au code en cas de modification des types des
colonnes de la table. Il est aussi possible d'insérer dans une table ou de modifier une table en
utilisant une variable du type %ROWTYPE. Nous détaillerons, au chapitre 7, le mécanisme des
curseurs qui emploient beaucoup cette directive. Le tableau suivant décrit ces cas
d'utilisation :

Code PLISQL

DECLARE
rty.,.Pilote Pil ote * RONTYPI:;

v_brevet Pil ote. brevet* TYPE;

BEGIN

SELECT * INI' O rty _pilote
FROM Pil ote WHERE brevet = ' PL- 1';

v_brevet : = rty.,.Pilote . brevet ;

rty_pilote . brevet : = ' PL-9 ' ;
rty_pilote . nom : = 'Pie rre Bazex ' ;

Commentaires

La structure r t y _pil ote est composée de toutes
les colonnes de la table Pil ote.

Chargement de l'enregistrement r t y_pil ote
à partlrd·une ligne de la table Pil ote.
AccJ;s à des valeurs de 1·enreglstrement par la
notation pointée.

INSERT INTO Pil ote VALUES rty_pilote; Insertion dans la table Pil ote à partir d'un
enregistrement.

© ÉdW/ons Eyroles

'
Blies 1111 PttSG I

Les colonnes récupérées par la directive %ROWTYPE n'héritent pas des contraintes NOT NULL
qui seraient éventuellement déclarées au niveau de la table.

Variables RECORD
Alors que la directive %fl0Wl'YPE permet de déclarer une structure composée de colonnes de
tables, elle ne convient pas à des structures de données personnalisées. Le type de données
RECORD (disponible depuis la version 7) définit vos propres structures de données (1 'équivalent
du struct en C). Depuis la version 8, les types RECORD peuvent inclure des LOB (BLOB,

CLOB et BFILE) ou des extensions objets (REF, TABLE ou VARRAY).

La syntaxe générale pour déclarer un RECORD est la suivante :

1
TYPE nomRecord IS RECORD
(nomChamp typeDonnées ((NJT NULL) { : =
(, nomChamp typeDonnées ...) ...) ;

) DEFAULT) expression)

L'exemple suivant décrit l'utilisation d'un record:

Code PlJSQL

DECLARE

'l"YR avionAirbus _réC I ,S RaCORD
(nserie CHAR(lO), nomAvion CHAR(20),
usine CHAR(lù) := ' Blagnac ' ,
nbHVol NUMBER(7,2));

r_W1.A320 avionAirbus_réC;
r_FGLFS avionAirbus_réC;

BEGIN

r_unA320. nseri e : = ' Al ' ;
r_unA320.nomAvion : = ' A320-200 ' ;
r _ unA320.nbHVol : = 2500.60;
r_,FGLFS : = r _ unA320;

Commentaires

Déclaration du RECORD contenant quatre
champs ; du champ usine par
défaut.

Déclaration de deux variables de type RECORD.

des champs d'un RECORD.

Affectation d'un RECORD.

Les types RECORD ne peuvent pas être stockés dans une table. En revanche, il est possible qu'un
champ d'un RECORD soit lui-même un RECœD, ou soit déclaré avec les directives %TYPE ou
%ROWTYPE. L'exemple suivant illustre Je RECORD r_vols déclaré avec ces trois possibilités:

DECLARE
TYPE avionAirbJs_rec I S RECORD

(nserie CHAR(lO), noml>.vian CHAR(20),

usine CHAR(lO) : = ' Blagnac', nbHVol NUMBER.(7,2));

© Éditions Eyrol/es 281 1

1

'

1 282

TYPE vols_r ec IS RECORD
(r_aéranef avian.Airbus_rec , dateVo l DATE,
rty_coPi l ote Pi l ote%ROWTYPB, affretéPar Ccmpagnie.ccmp%TYPB);

Les RECORD ne peuvent pas être comparés (nullité, égalité et inégalité), ainsi les tests suivants
sont incorrects :

vl avionAirbus_rec;
v2 vols _rec;

v3 vols _rec;

BEGIN

IF vl IS NULL THEN ·-

IF v2 > v3 TREN ·-

Variables lableaux Uype TAll.U
Les variables de type TABLE (tableaux associatifs: associative arrays) permettent de définir et
de manipuler des tableaux dynamiques (définis sans dimension initiale). Un tableau est
composé d'une clé primaire (de type BINARY_INI'EIGER, PLS_IN!'EIGER, ou chaîne de caractè­
res) pour accéder à chaque élément de type scalaire ou composé (RECORD ou ROWTYPE).

Syntaxe

La syntaxe générale pour déclarer un type de tableau et une variable tableau est la suivante :

TYPE ncm_type_tab l eau IS TABLE OP
{type_scalaire) variab l e%TYPE) ncm_REX:œD
nom_table.colonne%TYPE) nom_table.%ROWI'YPE) (Nor NOLL)

(INDEK BY {BINARY_INTEGER) PLS_INTEGER)) VARCHAR2 (taille)) ;

nom_tableau

L:option INDEX BY BINARY_INTEGER est facultative depuis la version 8 de PUSQL. Si elle est
omise, le type déclaré est considéré corn me une nested table (extension objet). Si elle est pré­
sente, l'indexation ne commence pas nécessairement à 1 et peut être même négative (l'intervalle
de valeurs du type BINARY_INTEGER va de -2 147 483 647 à 2 147 483 647).

L'exemple suivant décrit la déclaration de trois tableaux et J' affectation de valeurs à différents
indices (-1, -2 et 7 800). L'accès à des champs d'éléments complexes se fait à J'aide de la nota­
tion pointée (voir la dernière instruction).

© ÉdW/ons Eyroles

'

Code PlJSQL

DECLARE
TYPE brevet s _t y t ab IS TABLE O F VARCHAR2(6)

INDEX BY BINARY_ INI'ElGER;

TYPE nomPil otes _t yt ab IS TABLE OF Pil ote. nom%TYPE
INDEX BY BINARY. INI'EGER;

TYPE pil ote s_t ytab IS TABLE OF Pil ote %R<>WrYPE
INDEX BY BINARY_ INI'ElGER;

t ab_brevet s brevet s_t y t ab;
t ab_nomPil otes nomPilotes _t ytab;
t ab_pilote s pil otes _t y t ab;

BEGIN
t ab_b r evet s (-1) : = ' PL-1';
t ab_b r e vet s (- 2) : = ' PL- 2 ' ;
t ab_nomP il otes (7800) : = ' Bid a l ';
t ab_pilote s (O) . brevet : = ' PL-0 ' ;

END;

Fonctions pour les tableaux

Blies 1111 PttSG I

Commentaires

Type de tableaux de chaînes de six
caractères.

Type de tableaux de colonnes de
type nom de la table Pil ote.

Type de tableaux d'enregistrements
de type de la table Pil ote.

Déclaration des tableaux.

PUSQL propose un ensemble de fonctions qui permettent de manipuler des tableaux (égale­
ment disponibles pour les 11ested tables et v01rays). Ces fonctions sont les suivantes (les trois
dernières sont des procédures) :

Fonction

EXISTS (X)

COUNI'

FIRST / LAST

PRIOR (x) / NEXT (x)

DELETE
OELETE (x)

OELETE (x,y)

,......, 6·10 fCIKllolls ·- les

Dew'lptlon

Retourne TRUE si le du tableau existe.

Retourne le nombre d'éléments du tableau.

Retourne le premlerfdernler Indice du tableau (NULL si tableau vide).

Retourne l'élément avanVaprès le du tatileau.

un ou plusieurs éléments au tableau.

Il n'est pas possible actuellement d'appe ler une de ces fonctions dans une instructi on SOL
(SELECT, INSERT, UPDATE ou DELETE).

Les exemples suivants décrivent l'utilisation de ces fonctions.

© Éditions Eyrol/es

lr.111

1 284

T- 6-11 fœcdciDs PlJSQl peu les 1111111111

Code PLISQL

I F tab_pilotes.EX ISTS(O) THEN. ..

v_rtombre : = tab_brevets .COUNT;

v _premi er : = tab_brevet s. FIRST ;
v _de.rni er : = tab_brevet s. LAST;

v _avant : = tab_brevets.P RIOR (-1);

tab_brevets. DELETE;

RésolutiOn de noms

Commentaires

Renvoie• vrai • car il existe un élément à l'lndloe O.

La variable v_nombreoo ntlent 2.

La variable v_premieroo ntlent -2. v_dernier
contient -1.

La variable v _avant contient -2.
Sl4)presslon de tous les éléments de tab_brevets .

Lors des conflits potentiels de noms (variables ou colonnes) dans des instructions SQL
(principalement IIBERT, UPDl\TE, DELEl'E et SELECI'), le nom de la colonne de la table est
prioritairement interprété au détriment de la variable (de même nom).

Dans l'exemple suivant, l'instruction DELETE supprime tous les pilotes (et non pas seulemen t
le pilote 'Pierre Lamothe '), car Oracle considère les deux identificateurs comme la colonne de
la table et non pas comme deux variables différentes !

DEX:Ll\RE

nom CHAR(20) : = ' P ie=e Lamothe ' ;
BEXHN

DELETE FROM Pi l ote WHERE nc:m = nc:m

Pour se prémunir de tels effets de bord, deux solutions existent. La première consiste à
nommer toutes les variables explicitement et différemment des colonnes. La deuxième
consiste à utiliser une étiquette de bloc (block label) pour lever les ambigwtés. Le tableau
suivant illustre ces solutions concernant notre exemple :

Préfixer les variables

DECLARE

,....., 6-12 bit• les •lilllit6s

Éllquelle de bloc

<<principal >>
DECLARE Y_Mll CHAR (20) : = ' Pièrl'è La!ilôt hè ' ;

BEGIN nom CHAR (20) : = ' Pierre Lamothe ' ;
DELETE FROM Pi l ote WHERE nom = v_noa; BEGI N

END; DELETE FROM Pi l ote
WH ERE nom = principal . nom;

END;

DPéraleurs
Les opérateurs SQL étudiés au chapitre 4 (logiques, arithmétiques, concaténation ...) sont
disponibles aussi avec PUSQL. Les règles de priorité sont les mêmes que dans le cas de SQL.

© ÉdW/ons Eyroles

Blies 1111 PttSG I

!.:opérateur IS NULL permet de tester une expression avec la valeur NULL. Toute expression
arithmétique contenant une valeur nulle est évaluée à NULL.

Le tableau suivant illustre q uelq ues utili sations possibles d'opérateurs logiques :

Code PLJSQL

DECLARE
v_compte ur NUMBER(3) DEFAULT 0;
v_boo l éen BOOLEAN;
v _nombre NUMBER (3) ;

BEGIN

Commentaires

v_compte ur : = v_compte ur-1-l; lncrémentation, opérateur+

v_boo l éen : = (v_compte ur = v_nombre);

v_boo l éen : = (v_nombre I S NtJLL); v_boo l éen reçoi t TRUE car la oondltlon est vraie.

Variables de substitution
Il est possible de passer en paramètres d'entrée d'un bloc PUSQL des variables définies sous
SQL*Plus. Ces variables sont dites de substitution. On accède aux valeurs d'une telle variable
dans Je code PUSQL en faisan t préfixer Je nom de la variable du symbole « & » (avec ou sans
guillemets simples suivant qu'il s'agi t d'un nombre ou pas).

Le tableau suivant illustre un exemple de deux variables de substituti on. La directive AO::EPT

permet la saisie au clavier de variables dans l'interface SQL*Plus. Elle doit être utilisée
conjointement à la directive PROMPT toutes deux placées en amont d ' un bloc PUSQL qui
devra être exécuté via la commande START. Dans cet exemple on extrait Je nom et Je nombre
d'hewres de vol d'un pilote. Son numéro de brevet et la dwrée du vol sont Jus au clavier et la
durée est ajoutée au nombre d'heures de vol du pilote. Il est à noter qu'il ne faut pas déclarer
des variables de substituti on.

Code PLJSQL Sous SQL'Plus

ACCEPT s_brevet PROMPT ' Entrer code Brevet :
ACCEPT s_duréevo l PROMPT ' Entrer durée du vol Entrer code Brevet : PL-2

© Éditions Eyrol/es

DECLARE Entrer du rée du vol : 27
v_nom Pi l ote. nom%TYPE; Tota l heures vol : 927 de
v_nbHVo l Pi l ote.nb HVo l i TYPE; Didier Linxe

BEGI N
SELECT nom, nbHVol I Nro v_rtom, v_nbHVol Procédure PL/SQL terminée

FROM Pi l ote WHERE brevet = ' &s_brevet ' ; avêê succès.
v_nbHVol : = v_nbHVol ..- &s_duréevo l ;
DBMS_OUTPUT. PUT_LI NE

END;

(' Tota l h e ures vol : ' 11 v_nbHVo l 11
' de ' 1 1 v_nom);

1

'

1 286

Il faut exécuter le bloc à l'aide de la commande START et non pas par copier-coller d'un éditeur
de texte vers la fenêtre SQL'Plus (à cause des instructions d'entrée ACCEPT).

Variables de sessiOn
Il est possible de définir des variables de session (bi11d variables) déclarées sous SQL*Plus à
l'extérieur d'un programme PUSQL tout en pouvant être utilisées dans Je corps du programme.
La directive SQL*Plus à utiliser en début de bloc est VARIAB LE. Dans Je code PUSQL, il faut
fuire préfixer Je nom de la variable de session du symbole : . L'affichage de la variable sous

SQL *Plus est réalisé par la directive PRINI'.

Le tableau suivant illustre un exemple de variable de session:

,... ... 6-15 ... dl

Code PL/SQL Sous SOL' Plus

VARIABLE g_compte ur NUMBER;

DECLARE SQL> PRI NT g_compteur ;
v_compte ur NUMBER(3) := 99;

BEGIN
:g_compteur := v_compte ur-1-l;

END;

conventions recommandées

G_COMFTEUR

100

Adoptez les conventions d'écriture suivantes pour que vos programmes PUSQL soien t plus

fucilement lisibles et maintenables :

Objet Convention Exemple

Variable v_nomvari.able v_compte ur

Constante c_nomeons t4nte

Exception e_nomException e_pas Trouvé

Type RECORD no.m.Record_tyrec pi l ote._.tyrec

Variable RECORD v_nomvariable _ no.mRecord,_.rec V_pil_pilote_rec

Variable ROWI'YPE rty _no.mvariable r t y_pi l ote

Type-tableau nom7YP<>Tab1eau_ tytab pilotes _tytab

Variable tableau tab_no.mTableau tab_p ilotes

Curseur no.mcurseur_cur pi l otes _cur

Variable de substitution (SQL'Pl us) a_nomvari able s_brevet

Variable de session (glcbale) g_nomvari able g_brevet

© ÉdW/ons Eyroles

Blies 1111 PttSG I

TVPes de doonées PIJSQL

PL/SQL inclut tous les types de données SQL que nous avons étudiés aux chapitres 1 et 2
(Nll'IBER, CHAR, BOOLE.AN, VARCH!\R2, DATE, TlMESTAMP, INI'ERVAL, BLOB, RCX-IID ...). Nous
verrons ici les nouveaux types de données propres à PUSQL.

TVPes prédéliniS
Les types BINARY_INI'EIGER et PLS_INI'EIGER conviennent aux entie rs signés (domaine de
valeurs de -231à231, soit -2147483647 à +2147483647). Ces types requièrent moins d'espace
de stockage que Je type NJMBER.

Les types PLS_INI'EIGER et BINARY_INI'EIGER ne se comportent pas de la même manière lors
d'erreurs de dépassement (overflow). PLS_INI'EIGER déclenchera l'exception ORA- 01426 :
dépassement numérique. BINARY_INI'EIGER ne provoque aucune exception si Je résultat est
affecté à une variable NJMBER.

PLS_INI'EIGER est plus performant au niveau des opérations arithmétiques que les types
NUMBERet BINARY_INI'EIGERqui utilisent des librairies mathématiques.

sous-rvpes
Chaque type de données PUSQL prédéfini a ses caractéristiques (dom.aine de valeurs, fonc­
tions applicables ...). Les sous-types de données permettent de restreindre certaines de ces
caractéristiques à des données. Un sous-type n'introduit pas un nouveau type mais en restreint
un existant. Les sous-types servent principalement à rendre compatibles des applications à la
norme SQL ANSJ/ISO ou plus pertinentes certaines déclarations de variables.

PUSQL propose plusieurs sous-types prédéfinis et il est possible de définir des sous-types
personnalisés.

Prédéfinis

Le tableau suivant décrit les sous-types prédéfinis par PL/SQL.

T 6-11 SGus-twies lléd6llllls

Sou.iype Type restreint

C HARACTER C HAR Mêmes caractéristiques.

INI'ElGER NUMBER(38,0) Entiers sans décimales.

P LS_ INI'ElGER NUMBER Déjà étud]é.

BINARY. INI'ElGER NUMBER Déjà étud]é.

© Éditions Eyrol/es

l r.111

1 288

Sou9'1ype

NATURAL, POS ITIVE

NATURALN, POSITIVEN

SI GNI'YPE

DEC, DECIMAL, NUMERIC

DOUBLE PREC I SI ON, FLOAT,
REAL

I NTElGER, INT , SMALLINT

Personnalisés

Type restreint (llr·type) Caractéristiques

BINARY_ I NI'ElGER Non négatW.

Non négatW et non nul.

Domaine de valeurs {·1 , o. 1}.

NUllBER Décimaux, prédson de 38 d1iffres.

Flottants.

Entiers sur 38 chiffres.

Il est possible de définir un sous-type (dit « personnalisé» car n'existant que durant Je
programme) par la syntaxe suivante :

1 S'OBTYPB nomSous'.fype IS typeBase ((contrainte)) (Nor NULL) ;

• typeBaseest un type prédéfini ou personnalisé.

• contrainte s'appliq ue au type de base et concerne seulement la précision ou la taille
maximale.

Des exemples de déclarations de sous-types sont présentés dans Je tableau suivant.

,... ... 6·18 SGus·IJPIS Pt/SG.

Code PL/SQL

DECLARE
SUBTYP& da teNa i ss_sty I S DATE NOT NULL ;
SUBTYP& compte ur_sty I S NATURAL;
SUBTl(Pll: insee _sty I S NUMBER(13)
SUBTl(PS nombre_sty I S NUMBER(l,0);
TYPE r_tempsco urs e

I S RECORD (minutes NUMBER(2),
Sê<:Ondes I NI'EGER) ;

SUBTYP& f inishTim e I S r_tempscourse;
SUBTYP& brevet _sty I S Pi l ote.brevet* TYP&;

Commentaires

Directive NOT NULL.

Contraintes sur les tailles de NUMBER,
Ira de -9 à 9.

Sous-type d'un RECORD.
Sous-type d'un iTYPE.

Des exceptions sont levées lorsque les valeurs des variables ne respectent pas les contraintes
des sous-types. Par exemple, l'initialisation «vl nombre_sty: =lO; »déclencherai t une
exception ORA-06502 (voir plus haut).

le SOUS-IVPe SIMPl..E_IHJEGER
Le sous-type SDIPLE_INI'EGER dérive du type PLS_INTIDER. Bien que son domaine de valeurs
soit identique à celui de PLS_INI'IDER (-2 147 483 648 à 2 147 483 647), il est affecté d'une

© ÉdW/ons Eyroles

Blies 1111 PttSG I

contrainte NJl' NULL et cliftère de son prédécesseur du fuit de sa robustesse de capacité de dépas­
sement (oveiflow). En effet, l'erreur ORA-01426 : rrumeric overf l ow n'est plus levée en cas
de dépassement en positif ou en négatif d'une variable de type SDIPLE_INI'EGER.

les SOUS-IVPH nonanlS

Les sous-types SIMPJ..E_FIDAT et SIMPLE_roOBJ..E dérivent respectivement des types BINARY_
FLO!>.T et BINl\RY_DOUBLE (mêmes domaines de valeurs). Chacun difîere de son prédécesseur
du fuit de l'existence d'une contrainte Nor NULL.

Sans utiliser de ressources gérant la nullité, ces nouveaux sous-types sont plus performants,
lors d'opérations, que Jeurs prédécesseurs dans un mode opératoire par défaut (PLSQL_a:JDE_

'IYPE=' NATIVE').

Variable de tvPe séwence
Il est désormais possible d'utiliser les directives CURRVJ\L et NEK'IVAL au sein d'un bloc PU
SQL (qui ne sont donc plus limitées aux instructions SELECT, INSERTeU UPD.l\TE comme indi­
qué au chapitre 2). Les expressions s équen ce .CURRVJ\L et s équen ce . NElcr'\IAL peuvent être

présentes à tout endroit où une expression de type NUMBER peut apparaître.

En considérant J' exemple de séquence du chapitre 2, Je tableau suivant présente un bloc PU
SQL exploitant la séquence à J'aide de deux affectations.

llll ... 6·19 Vllllll• dl l.Jlll_

Code SQL et PLISQL

CREATE TABLE Aff reter
(numA ff NUMBER(5) , comp CHAR(4)'
i mmat CHAR(6)' date Aff DATE,
nbPa x NUMBER(3) , CONSTRAINI'
p k_Aff r eter PRIMARY KEY (numA ff));

C REATE SEQUENCE s eqAf f
MAXVALUE 10000
NOMINVALUE ;

© Éditions Eyrol/es

DECLARE
s eq_ va l e ur NUMBER;
BEGIN
seq_ va l eur : = seqAf f. COJtRVAL;
DBMS_OUTPUT . PUT_LINE (' Po ur l ' ' ins-

t ant , il y a ' l ITO_CHAR(seq_va l eur) 11 '
aff rètement s . ');

seq_ va l eur : = seqAff .NSXTVAL;
INSERT INTO Aff r ete r

VALUES (s eq_ va l e ur, 'AF ' ,

END;
/

' F - WOWri' ,SYSDATE -5 ,490);

Exécution IOUS SQl "Plus

SQL> INSERT INro A ffrete r VALUES
(s eqAff. NEXTVAL, ' AF ' ' ' F - Wl'SS ' ,SYS ­
DATE,8 5);
SQL> INSERT INro A ffrete r VALUES
(s eqAff. NEXTVAL, ' SING ' , ' F -GAFU ' , ' 05-
02-2 007 ' '155);

SQL> SELECT * FROM Aff r eter ;
NUMAFF COMP IMMAT DATEAFF NB PAX

1 AF F - Wl'SS 25/11/ 0 7 8 5
2 SING F -GAFU 05/0 2/0 7 1 55

exécut i on du bl oc i c i
Pour l ' ins t ant , il y a 2 aff rètement s .
Procédure PL/SQL term inée avec succès .

SQL> SELECT * FROM Aff r eter ;
NUMAFF COMP IMMAT DATEAFF NB PAX

1 AF F - Wl'SS 25/11/ 0 7 8 5
2 SING F -GAFU 05/0 2/0 7 1 55
3 AF 2 0 / 11/ 0 7 490

l r.111

conversions de IVPes
Comme pour SQL, les conversions de types PUSQL sont implicites ou explicites. Les
principales fonctions de conversion ont déjà été étudiées au chapitre 4, section « Conver­
sions».

L'exception levée en cas d'affectation incorrecte pour les sous-types de BINARY_INI'EIGER
est:ORA - 06502: PL/SQL: erreur numérique ou erreur sur une valeur.

L'exception qui est levée en cas d'affectation de la valeur nulle pour les sous-types NATURALN
etPOSITIVENest:PLS - 00218: une variable déclarée NOT NULL doit avoir une
affectation d'initialisation.

Structures de contrôles

1 290

En tant que langage procédural, PUSQL offre la possibilité de programmer:

• les structures conditionnelles si et cas (IF .. et CASE) ;

• les structures répétitives tant q11e, répéteretpo11r (WHILE, LOOP, FOR).

Structures condlionnelles
PUSQL propose deux structures pour programmer une action conditionnnelle : la structure IF
et la structure CASE.

Trois formes de IF

Suivant les tests à programmer, on peut distinguer trois formes de structure IF : IF-THEN
(si-alors) IF-THEN-ELSE (avec Je si11011 à programmer), et IF-THEN-ELSIF (imbrications de
conditions).

Le tableau suivant décrit l'écriture des différentes structures conditionnelles IF. Notez
« END IF» en fin de structure et non pas « ENDIF ».L'exemple affiche un message diffé­
rent selon la nature du numéro de téléphone contenu dans la variable v_téléphone. La
fonction Pl1I'_LINE du paquetage DBMS_Ol1I'Pl1I' permet d'afficher une chaîne de caractères
dans l'interface SQL*Plus. Nous étudierons plus Join les fonctions de ce paquetage.

© ÉdW/ons Eyroles

IF·THEN

Il' condition THl:N
instructions ;

111\ID Il';

DECLAR E

llll ... 6·20 Slnlellres 1

IF·THEN·ELSE

Il' condition TBDI'
instructions ;

llLSll
instructions ;

111\ID Il';

Blies 1111 PttSG I

IF·THEN·ELSIF

Il' cond1tionl THDil'
instructions ;

SLSII' c.ondition2 THl:N
instructions ;

llLSll

instructions ;
llND Il';

v_té l éphon e CHAR(l4) NOT NULL := ' 06·76·85· 14 ·89 ' ;
BEGIN

Il' S UBSTR(v_té l épho ne, l ,2) = ' 06 ' TBllN
DBMS_O UTPUT . PUT_ L INE (' C ' ' est un por tabl e !');

DBMS_O UTPUT . PUT_ L INE (' C ' ' est un f i xe ... ');
llND Il';

END;

Conditions booléennes

Les tableaux suivants préci sent Je résultat d'opérateurs logiques qua mettent en jeu des
variables booléennes pouvant prendre troi s valeurs (TRUE, FALSE, NllLL) . Il est à noter que
la négation de NlJLL (NOT NlJLL) renvoie une valeur nulle .

T- 6-21 OP6nt• 1111

AND TRUE FALSE HULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

T-6-22 OP6nt• 111

OR TRUE FALSE HULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

© Éditions Eyrol/es 291 1

lr.111

1 292

Structure CASE

Comme l'instruction IF, la structure CASE permet d'exécuter une séquence d'instructions en
fonction de différentes conditions . La structure CASE est utile lorsqu'il fuut évaluer une même
expression et proposer plusieurs traitements pour diverses conditions .

En fonction de la nature de l'expression et des conditions, une des deux écritures suivantes
peut être utilisée :

CASE

r <<t§ti q uette>> 1
CAS& va.riab l e

WHEN exprl THEN instructions! ;
WHEN expr2 THEN instructions2 ;

WHEN exprN THEN instructionsN ;
[ELSE instructionsN+1 ;)

llND CABS [t!t iquet te] ;

-rclted CASE

r 1
CASZ

WHEN condition! THEN instructions! ;
WHEN condition2 THEN instructions2 ;

WHEN condi ti ot'JN THEN instructionsN ;
[ELSE instructionsN+1 ; 1

llND CASZ [t!ti q uette];

Le tableau suivant décrit l'écriture avec IF d'une programmation qu'il est plus rationnel
d'effectuer avec une structure CASE (de type searched) :

IF CASE

DECLARE
v_ment i on CHAR (2);

v_note NUMBER (4 ,2) : = 9.8 ;

BEGIN

CASE
WHEN V_rlOtê >= 16

THEN

I F v_rtote >= 1 6 THEN
v_ment i on : = 'TB ' ;
ELSI F v_rtote >= 14
v_ment i on : = ' B ' ;

ELSI F v_rlôtê >= 1 2
v_rnên tion : = 'AB ' ;
ELSI F v_rtote >= 1 0
v_ment i on : = ' P ' ;

ELSE

WHEN V_rlOtê >= 14

v_men t i on : = 'R' ;
END I F ;

THEN

THEN

WHEN V_r\Otê

WHEN V_r\Otê

ELSE
E ND CASE;

>= 12
>= 10

THEN v_me.ntion : = ' TB ' ;
THEN v_me.ntion : = ' B ';
THEN v_men tion : = ' AB ' ;
THEN v_men tion : = ' P';

V.)llênti on : = 'R' ;

La clause ELSE est optionnelle . Si elle n'est pas présente, PUSQL ajoute par défaut l' instruc­
tion « EISE RAI SE CASE_NOT_FOUND; ». Celle-ci lève l'exception du même nom quand le
code exécuté passe par cette instruction.

© ÉdW/ons Eyroles

Blies 1111 PttSG I

Les trois structures répétitives tant q11e, répéter et po11r utilisent l'instruction l.OOP... END
LOOP.

Structure tant que

La structure ta11t q11e se programme à J'aide de la syntaxe suivante. Avant chaque itération (et
notamment avant la première), la condition est évaluée. Si elle est vraie, la séquence d' instruc­
tions est exécutée, puis la condition est réévaluée pour un éventuel nouveau passage dans la
boucle. Ce processus continue jusqu'à ce que la condition soit fausse pour passer en séquence
après le END LOOP. Quand la condition n'est jamais fausse, on dit que le programme boucle ..

1

WBILB cond i t i on LOOP
i nstruct i ons;

BNl> LOOP;

Le tableau suivant décrit la programmation de deux tant q11e. Le premier calcule la somme des
100 premiers entiers. Le second recherche le premier numéro 4 dans une chaîne de caractères.

lllllleaU 6-25 Slnlellres tmt 11111

Condhlon ""1>1e Conclllon COll'flOlée

DECLARE DECLARE
v_somme NUMBER(4) : = O; v_té l éphone CHAR(l4) : = ' 06-76-85- 14 -89 ' ;
v_entier NUMBER(3) : = 1 ; v_t.ro uvé BOOLEAN : = FALSE;

BEGIN v_indice NUMBER (2) : = l ;
WBIL& (v_entier <= 100) LOOP BEGI N

v_somme : = v_somme ... v_entier;
v_entier : = v_entier + 1 ;
Dm LOOP;
DBMS_OUTPUT. PIJT_LI NE
(' somme = ' 11 v_somme);

END;

Somme . s OSO

WBIL& (v_indice <= 14 AND NOT v_t.ro uvé) LOOP
I F SUBSTR(v _té l éphone,v _indice, l) = ' 4 ' THEN

v_trouvé : = TRUE;

ELSE
v_indi ce : = v_indice ..- 1 ;

END I F;
llND LOOP ;

I F v_trouvé THEN
DBMS_OUTPUT. PIJT_LI NE

('Trouvé 4 à l ' ' indi ce
END I F;

END;

Trouvé 4 à l'indice : 11

' 11 v_indice);

Cette structure est la plus puissante car elle permet de programmer aussi un répéter et un po11r.
Elle doit être utilisée quand il est nécessaire de tester une condition avant d'exécuter les
instructions contenues dans la boucle.

© Éditions Eyrol/es

lr.111

1 294

Structure répéter

La structure répéter se programme à J'aide de la syntaxe LOOP EXIT suivante :

1

LOOP

instructions;
EXIT (WBBll condition;)

END LOOP;

La particularité de cette structure est que la première itération est effectuée quelles que soient
les conditions initiales. La condition n'est évaluée qu'en fin de boucle.

• Si aucune condition n'est spécifiée (WHEN co11ditio11 absent), la sortie de la boucle est
immédiate dès la fin des instructions.

• Si la condition est fausse, la séquence d'instructions est de nouveau exécutée. Ce processus
continue jusqu'à ce que la condition soit vraie pour passer en séquence après le END IOOP.

• Quand la condition n'est jamais fausse, on dit aussi que le programme boucle ..

Le tableau suivant décrit la programmation de la somme des 100 premiers entiers et de la
recherche du premier numéro 4 dans une chaîne de caractères à J'aide de la structure répéter.

Condlton ""1>1e
DECLARE

v_somme
v_entie.r

BEGIN
LOOP

NUMBER(4) : = 0;

NUMBER(3) : = l;

v_somne : = v_somme ... v_entie.r;
v_entie.r : = v_entie.r + 1;
SXIT WHDil' v_entier > 100;
Dm LOOP
DBMS_OUTPIJT. PIJT_ LINE

(' SOmme = ' 11 v_somme) ;
END;

Concl1lon C0"1'0lée

DECLARE
v_té l éphone CHAR(l4)
v_t.rouvé
v_indice

BEGIN
LOOP

BOO LEAN
NUMBER(2)

: = ' 06-76-85- 14 -89 ' ;
: = FALSE;

: = l;

I F SUBSTR(v _té l éphone,v _indice, l) ' 4 ' THEN
v_trouvé : = TRUE;

ELSE
v_indice : = v_indice ..- 1;

END I F;
SXIT WDN (v_indice > 14 OR v_t:rouvé);
Dm LOOP;
I F v_trouvé THEN

DBMS_OUTPIJT. PIJT_I,INE
('Trouvé 4 à l' ' indice

END I F;
END;

' 1 1 v_indice);

Cette structure doit être utilisée quand il n'est pas nécessaire de tester la condition avec les
données initiales avant d'exécuter les instructions contenues dans la boucle.

© ÉdW/ons Eyroles

'

Blies 1111 PttSG I

Structure pour
Célèbre pour les parcours de vecteurs, tableaux et matrices en tout genre, la structure po11r se
caractérise par la connaissance a priori du nombre d'itérations que Je programmeur souhaite
faire effectuer à son algorithme.

La syntaxe générale de cette structure est la suivante :

1
IN (REVERSE) valeurinf .. valeurSup LOOP

instructions;
Biil> LOOP;

Le nombre d'itérations est calculé dès Je premier passage dans la condition et n'est jamais
réévalué par la suite quelles que soient les instructions contenues dans la boucle. À la première
itération Je compteur reçoit automatiquement la valeur initiale (vale11rbif). Après chaque passage
Je compteur est de fait incrémenté (ou décrémenté si J' option RE.VERSE a été choisie). La sortie
de la boucle est automatique après l'itération correspondant à la valeur finale du compteur
(vale11rS11p). La déclaration de la variable compte11r n'est pas obligatoire.

Il n'est pas possible de modifier le pas de la variable d'itération dans le corps d'une boucle
FOR ... LOOP.

Le tableau suivant décrit la programmation de la somme des 100 premiers entiers et de la
recherche du premier numéro 4 dans une chaîne de caractères à J'aide de la structure po11r.

DECLARE
v_somme

BEGIN
NUMBER (4) : = 0;

FOR v_ent i er IN 1 .. 100 LOOP
v_s omme : = v_s omme ... v_ent i er;

END LOOP;
DBMS_OUTPUT. PIJT_LINE

(' SOmme = ' 11 v_somme);
END;

Condition co111>osée

DECLARE
v_té léph one CHAR(l4) : = ' 06- 76-85-14-89 ' ;
v_t r ouvé BOOLEAN : = FALSE;
v_indic e NUMBER(2);
v_compteur NUMBER(2);

BEGIN
l'OR v_c ompteur IN 1 .. 14 LOOP

IF SUBSTR (v_té léph o n e ,v_compteur,l) = ' 4 ' AND
NOT v_t r ouvé THEN

v_t .rouvé : = TRUE;
v_indi ce : = v_compteur;

END IF;
BND LOOP;
IF v_t r ouvé THEN

DBMS_OUTPUT. PIJT_LINE
('Trouvé 4 à l ' ' indi ce

END IF;
END;

' 11 v_indic e);

Cette structure convient bien pour Je premier exemple car on sait a priori qu'il faut faire
100 itérations. Pour Je second, cette structure peut être utilisée mais est moins efficace car elle
impose de parcourir tous les éléments de la chaîne alors qu'on pourrait interrompre Je traitement

© Éditions Eyrol/es

1

1 296

dès Je numéro trouvé. De plus il est nécessaire de modifier Je test dans la boucle de manière à ne
gatder que Je premier numéro trouvé (et pas Je dernier si Je test n'était pas changé).

Boucles avec étiquettes
Comme les blocs de traitements, les boucles peuvent être étiquetées. L'étiquette est notée par
un identifiant qui apparaît après J 'instruction de fin de boucle par la syntaxe suivante :

1

<<etJquette >>

LOOP
ins t ruct ions;

END LOOP etiquette;

Ce mécanisme les deux avantages suivants :

• meilleure lisibilité du code ;

• sortie possible de plusieurs boucles imbriquées : de la boucle courante et de celle(s) qui
J'inclut(ent).

L'exemple suh'ant décrit la programmation de la recherche d'un code d'une carte bleue (ici 8595)
en considérant tous les codes possibles (en partant de 0000). Quatre boucles sont imbriquées et on
doit sortir du programme dès que Je code est trouvé pour ne pas examiner les autres combinaisons.

DECLARE
v_carteB l eu e NUMBER (4)
v_test NUMBER(4)
v_uni té NUMBER(2);
v_d iza ine NUMBER(3);
v_centaine NUMBER(4);
v_milli er NUMBER(5);

Code PUSQL

BEGIN
: = 8595 ; v_milli er : = O;
: = 0000; <<principal >>

LOOP
v_centaine : = O;
LOOP
v_d iza ine : = O;
LOOP
v_uni té : = O;
LOOP

EXIT principal WHEN v_tes t=v_carteBle ue ;
EXIT MIEN v_uni té = 11;
v_tes t : = v_tes t ..- 1;
v_uni té : = v_uni té + 1;

END LOOP;

v_d iza ine : = v_diz a ine + 10;
EXIT MIEN v_d iza ine = 100;
END LOOP;

v_centaine : = v_cen taine + 100;
EXIT MIEN v_centaine = 1000;
END LOOP;

v_milli e r : = v_milli er • 1000;
EXIT WHEN v_milli e r = 10000;

END LOOP prin cipa l;
DBMS_OUTPIJT. PIJT_LINE

(' l e code CB es t
END;

' 11 v_tes t);

© ÉdW/ons Eyroles

Blies 1111 PttSG I

L'étiquette <<principal>> marque la première boucle. La boucle la plus imbriquée possède
deux conditions de sortie: la nominale EXIT VHEN ... et la sortie forcée EXIT principa l
WHEN ..

la directive CONTINUE
La version l lg de PLJSQL propose la directive CONI'INUE. Comme pour Java, cette directive,
au sein d'une structure répétitive, interrompt l'itération en cours et revient au début de la struc­
ture (à la condition pour un à l'itération suivante pour un Fœ ou à l'instruction qui suit
le IOOP) pour éventuellement refaire une nouvelle itération (à l'inverse, la directive Ell:rr inter­
rompt à la fois l'itération mais aussi la structure répétitive).

La syntaxe revêt une forme inconditionnelle et une forme conditionnelle (avec WHEN).

1 a:JNI'INUE (etiqu ette) (cond i t i on) ;

Dans le bloc PLJSQL suivant, la directive a:JNI'INCJE déroute le programme après l'instruction
IOOP.

T_, 6-29 llreclve CONllUI

Bloc PLISQL

DECLARE
X NUMBER : = 0;

BEGIN
LOOP

-- on arrive i ci après CONI'INU E
DBMS_OUTP UT. PUT_LI NE

(' Dans l a bouc l e,x = ' l ITO_CHAR(x));
X : = X+ 1 ;
I F (X< 3) THEN

CON'l'INUZ;
END I F;
DBMS_OUTP UT. PUT_LI NE

(' Après CONTI NUE,x ' l ITO_CHAR(x));
EXIT WHEN (X = 5);

END LOOP;
DBMS_ OUTPUT. PUT_LI NE

(' Après l a structure, x = ' 11 Tô_ CHAR(x));
END;

/

Dans l a bouc l e, x = 0
Dans l a bouc l e, x = 1
Dans l a bouc l e, x = 2
Après OONI' I NUE, X = 3
Dans l a bouc l e, x = 3
Après OONI' I NUE, X = 4
Dans l a bouc l e, x = 4
Après OONI' I NUE, X = 5
Après l a structure, x = 5

Procéd ure PL/SQL terminée
avéC succès.

La forme conditionnelle de l'instruction COOTINUE permet de remplacer une structure IF

cond i t i on 'IHEN a:JNI'INCJE. Ainsi, en remplaçant la structure conditionnelle dans le bloc
précédent par l'instruction « COOTINUE x < 3; », on obtient le même résultat.

© Éditions Eyrol/es 297 1

1

'
Si vous utilisez la directive O:JNI'INCJE dans une boucle FOR manipulant un curseur (étudié au
chapitre 7), vous fermez automatiquement le curseur.

Interactions avec la base

1 298

Cette section décrit les mécanismes offerts par Oracle pour interfacer un pr<>gramme PL/SQL
avec une base de données .

blraire des données
La seule instruction capable d'extraire des données à partir d'un programme PL/SQL est
SELECT. Étudiée au chapitre 4 dans un contexte SQL, la particularité de cette instruction au
niveau de PUSQLest la directive INI'Ocomme Je montre la syntaxe suivante :

1
S ELEl:T li ste IN'l'O { nomVariabl ePLSQL (, nomVariabl ePLSQL] ...)

nomRECORD) FROM nomTabl e ... ;

La clause INTO est obligatoire et permet de préciser les noms des variables (PL/SOL, globales
ou hôtes) contenant les valeurs renvoyées par la requête (une variable par colonne ou une
expression sélectionnée en respectant l'ordre). A contrario, la clause INTO est interdite sous
SOL.

Le tableau suivant décrit l'extraction de différentes données dans diverses variables :

Code PL/SQL

VARIAB LE g_nom CHAR (20);

DECLARE

rt y_pi l ote Pi l ote* RowrYPE;
v_compa

BEG I N
SELECT * Il!l"l'O r t y_pilote

FROM Pil ote WHERE b r evet= ' PL- 1';

SELECT compa Il!l"l'O v_compa
FROM Pil ote WHERE b r evet= ' PL-2 ' ;

SELECT nom IlftO : g_nom
FROM Pi l ote WHERE brevet= ' PL-2 ' ;

END;

Commentaires

Extraction d'un enregistrement entier dans la
variable r ty_p ilote .

Extraction de la valeur d'une colonne dans la
variable v_compa.

Extraction de la valeur d'une colonne dans la
variable globale g_nom.

© ÉdW/ons Eyroles

'
Blies 1111 PttSG I

Une requête SELECT ... INTO doit renvoyer un seul enregistrement (conformément à la norme
ANSI du code SOL intégré).

Pour traiter des requêtes renvoyant plusieurs enregistrements, il faut utiliser des curseurs
(étudiés au chapitre suivant).

Une requête qui renvoie plusieurs enregistrements, ou qui n'en renvoie aucun, génère une
erreur PUSQLen déclenchant des exceptions (respectivement ORA- 01422 TCO_MANY_RCXr/S et
ORA- 01403 NO_DATA_FOUND). Le traitement des exceptions est détaillé dans le chapitre
suivant.

Le tableau décrit l'extraction de différentes données dans diverses variables. La
première requête ramène la liste des codes des compagnies qui ne peuvent pas être affectées
à la simple variable v_compa. La deuxième requête n'extrait aucun résultat car aucun pilote
n'a un tel code brevet.

Erreur TOO..MANYJlOWS

DECLARE
v_compa Pil ote.compa% TYPE;

BEGIN
SELECT compa Il!l'l'O v_compa

FROM Pil ote ;
END;

ORA- 014 22 : l' ex t ract i on ex acte
r amène plus que l e nombre de
lig nes dema ndé

Erreur NO _DATA,_FOUND

DECLARE
r t y_pil ote Pil otei ROWTYPE;

BEGIN
SELECT * Il!l"l'O rty_pil ote

FROM Pil ote WHERE brevet
END;

ORA- 0140 3 : Auc une donnée t r ouvée

' $ f * ' ;

Il va de soi que les fonctions SQL (mono et multilignes) étudiées au chapitre 4 sont également
disponibles sous PL/SQL à condition de les utiliser au sein d'une instruction SELECT. Deux
exemples sont décrits dans le tableau suivant :

DECLARE VARIAB LE g_plusGra.ndHV o l NUMBER;
v_nomEnMAJUSCULES Pil ote . nom%TYPE; DECLARE

BEGIN BEGIN
SELECT OPPER (nom) SELECT MAX(nbHVol) Ilft'O :g_plusGrandHV o l
Il!l'l'O v_n omEnMAJUSCULES
FROM Pil ote WHERE brevet

END;

FROM Pil ote ;
' PL-1'; END;

© Éditions Eyrol/es

lr.111

1 300

Mani111ler des données
Les seules instructions disponibles pour manipuler, sous PUSQL, les éléments d'une base de
données son t les mêmes que celles proposées par SQL : IIBERT, UPDATE, DELETE et MERGE.
Pour libérer les verrous au niveau d'un enregistrement (et des tables), il faudra ajouter les
instructions COMMIT ou ROLLBACK (aspects étudiés en fin de chapitre).

Insertions
Le tableau suivant décrit l'insertion de différents enregistrements sous plusieurs écritures (il
est aussi possible d'utiliser des variables de substituti on) :

Code PLISQL

DECLARE
rty_pilote Pilote%ROWI'YPE;
v_brevet Pi l ote.brevet* TYPE;

BEGIN
INSERT INI'O Pi l ote VALUES

(' PL-5 ' , ' José Bové ' , 500, ' AF ');

v_brevet : = ' PL-6 ' ;
INSERT INI'O Pi l ote VALUES (v_brevet,

' Richard Virenque ' , 100, ' AF ');

' PL-7 '; rty_pilote.brevet : =
rty_pilote.nom
rty_pilote.nbHVol : =

: = •serge Mirand a ' ;
1340. 90;

rty_pilote.compa : = 'AF ' ;
INSERT INI'O Pi l ote
(brevet, nom, nbHVol , compa)
VALUES (rty_pilote.brevet,

rty_pilote. nom, rty_pilote. nbHVol,
rty_pilote.compa);

Commentaires

Insertion d'un enregistrement dans la table
Pilote (toutes les colonnes sont
renseignées et les valeurs sont figées).

Insertion d'un enregistrement en utilisant
une variable (toutes les colonnes sont
renseignées).

Insertion d'un enregistre.ment en utilisant un
ROWTYPE et en spéol<larnt les colonnes.

Comme sous SQL, il fuut respecter les noms, types et domaines de valeurs des colonnes. De
même, les contraintes de vérification (O!ECK et NOT NULL) et d'intégrité {PRIMARY KEY et
F'CREIGN KEY) doivent être immédiatement valides (si elles ne sont pas différées).

Dans Je cas inverse, une exception qui précise la nature du problème est levée et peut être
interceptée dans la section EXCEPTI ON (voir chapitre suivant). Si une telle partie n'existe pas
dans Je bloc de code qui contient l'instruction INSERT, la première exception fera s'inter ­
rompre Je progranime.

© ÉdW/ons Eyroles

• fZJ

Blies 1111 PttSG I

Modifications

Concernant la mise à jour de colonnes par UPDATE, la clause SET peut être ambiguë dans le sens
où l'identificateur à gauche de l'opérateur d'affectation est toujours une colonne de base de
données, alors que celui à droite de l'opérateur peut correspondre à une colonne ou une variable.

UPDATB nomTabl e
SBT nomColonn e = { nomVariabl e PLSQL) expre ssion) nomColonn e)
(r e qui!te))

(, nomColonn e2 = ...)
(WHERE ...) ;

Si aucun enregistrement n'est modifié, aucune erreur ne se produit et aucune exception n'est
levée (contrairement à l'instruction SELECT).

Un curseur implicite permet de savoir combien d'enregistrements ont été modifiés (voir plus
loin SQL%ROWCOUNT).

Les affectations dans le oode PL/SOL utilisent obligatoirement l'opérateur : = tandis que les
comparaisons ou affectations SOL nécessitent l'opérateur =.

Le tableau suivant décrit la modification de différents enregistrements . (il est aussi possible
d'employer des variables de substitution).

Code PLJSQL

DECLARE
v_duréeV ol NUMBER(3 , 1) : = 4 . 8;

BEGIN
UPDATE Pil ote

SET nbHVo l = nbHVol • v_duréeV ol
WHERE brevet = ' PL-6 ' ;

UPDATE Pil ote
SET nbHVo l = nbHVol • 10
WHERE compa = ' AF ' ;

END;

Suppressions

Commentaires

Modl<lcatlon d'un enregistrement de la table
Pil ote en utilisant une variable.

Modl<lcatlon de plusieurs enregistrements de la
table Pi l ote en utilisant une oonstante.

La suppression par DELETE peut être ambiguë (même raison que pour l'instruction UPDl\TE)
au niveau de la clause W!IERE .

DBLBTB rROM nomTabl e
nomColonn e =

nomVariabl e PLSQL expre ssion) nomColonn e) (r e qui!te))

(,nomColonn e2 = ...) .. .;

© Éditions Eyrol/es 301 1

lr.111

1 302

Si aucun enregistrement n'est modifié, aucune erreur ne se produit et aucune exception n'est
levée.

Un curseur implicite permet de savoir combien d'enregistrements ont été modifiés.

Le tableau suivant décrit la modification de différents enregistrements (il est aussi possible
d'utiliser des variables de substitution).

Code PL/SQL

DECLARE
v_hVolMini NUMBER(4) : = 1000;

BEGIN
DELETE FROM Pil ote

WHERE nbHVol < v_hV olMini;

DELETE FROM Pil ote
WHERE brevet ' $ f * ' ;

END;

a.irseurs i111Plieiles

Commentaires

Sl4)prlme les enregistrements cle la table Pi l ote
dont le nombre d'heures de vol est Inférieur à
1 000.

Ne supprime aucun enregistrement de la table
Pil ote.

PUSQL utilise un curseur implicite pour chaque opération du LMD de SQL (INSERT, UPDATE

et DELETE). Ce curseur porte Je nom SQL et il est exploitable avoir exécuté J' instruction.
Lacommande qui suit Je LMD remplace l'ancien curseur par un nouveau.

Il existe aussi Je mécanisme des curseurs explicites (auxquels Je programmeur affecte un nom)
qui servent principalement à parcourir un ensemble d'enregistrements. Nlous étudierons œ
type de curseurs au chapitre suivant.

Les attributs de curseurs implicites permettent de connaître un certain nombre d'informations
qui ont été renvoyées après J' instruction du LMD et qui peuvent être utiles au programmeur.
Ces attributs peuvent être employés dans une section de traitement ou d'exception. Les princi­
paux attributs sont les suivants :

Tlllleau 6-36 llllluts d'm amu llldcll•

Al'1bUI Expllcallon

SQL%ROWCOUNI' Norrbre de lignes affectées par la dernière Instruction LMD.

SQL%FOUND Booléen valant TRUE si la dernière Instruction LMD affecte au moins un enregistrement.

SQL%NOTFOUND Booléen valant TRUE si la dernière Instruction LMD n'affecte aucun enregistrement.

Le tableau suivant décrit la suppression de plusieurs données et J' extraction du nombre d' enre­
gistrements supprimés par la commande LMD (ici DELETE).

© ÉdW/ons Eyroles

Code PLJSQL

VARIABLE g_p ilote sAFDétrui t s NUMBER
BEGIN

DSLl:T& FROM Pil ote WHERE compa = ' AF ' ;

:g_pilotesAFDétrui t s : = SQLUOllCOOll'l';
END;

/
PRIN!' g_pilotesAFDétrui t s

Pa111etage DllJIS_OUTPUT

Blies 1111 PttSG I

Commenlllres

Sl4)prlme les enregistrements de la table
Pil ote de la compagnie 'AP.

puis affiche la variable globale g_
pil ot e sAFDétrui ts qui contient le nombre
d'enregistrements supprimés.

Nous avons vu qu'il était possible d'afficher sous SQL*Plus des résultats calculés par un bloc
PUSQL avec des variables de session (globales). Une autre possibilité, plus riche, consiste à
utiliser des procédures du paquetage DBMS_Ol1I'Pl1I'. Ce paquetage assure la gestion des
entrées/sorties de blocs ou sous-programmes PUSQL (fonctions et procédures cataloguées,
paquetages ou déclencheurs).

Il existe par ailleurs plus de cent paquetages predéfinis à certaines tâches. Citons DBM3_l.OCK pour
gérer des verrous, IEMS_RANDCM pour générer des nombres aléatoires, IEM3_RCXrlID pour manipu­
ler des rowids, DB'!S_SQL pour construire statiquement ou dynamiquement des ordres SQL.

Le tableau suivant décrit les procédures du paquetage DBMS_Ol1I'Pl1I'. Au niveau des para­
mètres, la directive IN désigne un paramètre d'entrée alors que Our en désigne un en sortie. La
procédure que vous utiliserez Je plus est probablement PUI'_LINE (équivalent du println
Java) ; elle vous aidera à déboguer vos programmes.

Procédire

lllileall 6-38 Procécbes llsllClllllles dl DIMS_OurPlll'

Expllcdon

ENABLE (taille _ tampon IN
INI'EGER OEFAULT 200 0)

DI SABLE

PUT (ligne IN VARCHAR2 1 DATE
1 NUMBER);

NEW_ LINE (ligne OUT VARCHAR2 ,
statut OUT INI'ElGER)

PUT_ LINE (ligne IN VARCHAR2 1

DATE NUMBER) ;

GET_ LINE (ligne OUT VARCHAR2 ,
statut OUT INI'ElGER)

Activation du paquetage dans la session.

Désactivation du paquetage dans la session.

Mise dans le tampon d'un paramètre.

Écriture du caractère fin de ligne dans le tampon.

PUT puis NEW..LINE.

Affectation d'une chaîne du tampon dans une
variable.

GET_ LINES (tab OUT OBMS_OUTPUT . CHARARR, Affectation de chaînes du tampon dans un tableau.
nombreLignes IN OUT INTEGER) ;

CHARARR table de VARCHAR2 (255)

© Éditions Eyrol/es

lr.111

1 304

Sans parler de sorties sur l'écran, les procédures Pl1I' et Pl1I'_LINE disposent dans un tampon
des informations qui peuvent être lues par d'autres bloc, déclencheur, procédure, fonction ou
paquetage par les procédures GET_LINE ou GET_LINES.

Au niveau de l'interface SQL*Plus, le paquetage doit être activé au préalable dans la session
avec la commande SQL *Plus SET SERVER0l1I'Pl1I' ON. Une fois exécutée, cette option reste

valable durant toute la session SQL*Plus.

L'appel de toute procédure d'un paquetage se réalise avec l'instruction nomPaquetag e .
ncmPr océdure(param è tres). Dans notre exemple, l'appel de la procédure Pl1I'_LINE
s'écrira donc DBMS_Ol1I'Pl1I'. Pl1I'_LINE (text e) .

Gestion des sorties (PUT_LINE)

Le tableau suivant décrit l'affichage de différentes variables :

,......, &-39 1me111111111 r•nats

Code PLISQL

SET SERVEROUTPUT ON
DECLARE

v_nbrPil NUMBER;

BEGIN
DBMS_OUTPUT. ll:DllLI:;
DBMS_OUTPUT. PU'l'_Lnn: (' No us sommes l e : ' 1 1 SYSDATE) ;
DBMS_OUTPUT.PU'l' _Lnn: <' La r ac ine de 2 = ' 11 SQRT (2));
SELECT COUNI'(*) INTO v_nb rPil FROM Pil ote ;

DBMS_OUTPUT.PU'l' _Lnn:
('Il y a ' 11 v_nb rPil 11 ' pil otes d ans l a tab l e ');

END;

Conwnenlllres

Activation du
paquetage sous
SOL.Plus.

Activation du
paquetage sous PU
SOL
AHlchage.

No us sommes l e : 14/ 0 7/03 Rés.ultats.
La r ac ine de 2 = l, 414 213562373 095048 80168872 42 09698 07857
Il y a 4 pil otes dans l a table

Procédure PL/SQL terminée a vec succès .

Gestion des entrées (GET_U NE et GET _LINES)

Il est possible d'extraire une ou plusieurs lignes à partir du tampon (b11ffer). La procédure
GE!'_LINEpermet d'en retirer une seule (de type VARCHAR2 (255)). Cette ligne est la première
qui a été mise dans le tampon.

L'exemple suivant illustre un appel de GET_LINE(lign e CX1I' VARCHAR2, sta t u t Ol1I'
IN!'EIGER). Si l'exécution est correcte, le paramètre sta t u t reçoit O. S'il n'y a plus de lignes
dans le tampon, le paramètre sta t u t reçoit 1.

© ÉdW/ons Eyroles

llll ... &-40 u111sa11oe 111 cn_111E

Code PLJSQL

DECLARE
v_nbrPil NUMBER;
v_lig ne VARCHAR2 (255);
v_résul tat INI'EGER;

BEGIN
SELECT COUNT(*) INI'O v_nbrPil FROM Pil ote ;

DBMS_OUTPUT.PUT_LINE (' Premi è r e lign e ');
DBMS_OUTPUT. PUT_LINE ('Il y a ' 11 v_nbrPil
DBMS_OUTPUT.Gft _LillS (v_lig ne , v_résul tat);

END;

11 ' pil otes ') ;

Résultatdans v_li g ne ' Premi è re ligne' , v_ré sul tat 0

Blies 1111 PttSG I

Commenlllres

Deux lignes sont mises
dans le tampon.
GET_LINE dépi le la
lllgne du tampon.

La procédure GE'r_LINE S (t ab Our IEMS_ OUI'Pl1I'.CH!\RARR, nombreLign es IN CX1I'
INI'EIGER) permet d'extraire plusieurs lignes vers le tableau tab. Le deuxième panunètre indi­
que le nombre de lignes à retirer. Ces lignes sont les premières à y être mises.

L'exemple suivant illustre un appel de GE!'_LINE S. Ici nous extrayons les trois premières
lignes du tampon dans le tableau tab.

© Éditions Eyrol/es

Code PLJSQL

DECLARE
tab DBMS_OUTPUT. ClllUUUIR ;

v_res ultat INI'ElGER : = 3 ;
v_nbrPil NUMBER;

BEGIN
SELECT COUNT(*) INI'O v_nbrPil FROM Pil ote ;

DBMS_OUTPUT.PUT_LINE (' Premi è r e lign e ');
DBMS_OUTPUT.PUT_LINE (' De uxi ème li g ne ');
DBMS_OUTPUT.PUT_LINE ('Il y a ' 11 v_nb rPil 11 ' pil ote s ');
DBMS_OUTPUT. PUT_LINE (' Qua t ri ème lign e ') ;
DBMS_OUTPUT.Qft _LIDS (ta b, v_res ultat);

Résultat tab Premiè ré ligné
Deuxi è me ligne
Il y a 4 pil ot es

Commenlalres

Quatre lignes sont
mises dans le
tampon.
GET_LINES déplie
trois lignes du
tampon.

1

Transactions

1 306

Au sens SGBD du terme, une transaction est un bloc d'instructions LMD faisant passerla base
de données d'un état initial (cohérent) à un état intermédiaire ou final cohérent. Si un
problème logiciel ou matériel survient au cours d'une transaction, aucune des instructions de
la transaction n'est réellement effectuée, quel que soit l'endroit de la transaction où intervient
l'erreur. En invalidant toutes les opérations depuis Je début de la transaction, la base retourne à
un état initial cohérent (principe du tout ou rien).

Pour réaliser cela, Oracle dipose de plusieurs mécanismes : Je segment d 'annulation (ruulo

segment) qui contient les blocs modifiés mais pas validés, les journaux de transactions (redo
log) qui inscrivent les transactions validées, et Je mécanisme de verrouillage qui assure que
deux transactions ne modifient pas la même donnée sans donner la priorité à l'une ou l'autre.
Le segment d'annulation rend possible l'isolation des données au cours de la transaction. Les
langages plus évolués permettent également de programmer des transactions à travers leur API
(CG!MITest implémenté dans Je paquetage java.sql, par exemple).

Un exemple typique de transaction consiste au transfert d'une somme d'un compte éprugne
vers un compte courant. Imaginez qu'après une panne (logicielle ou matérielle) votre compte
épargne ait été débité sans que votre compte courant soit crédité du même montant ! Vous ne
seriez pas très content des services de votre banque (à moins que l'erreur ne soit intervenue
dans l'autre sens!). La réservation d'une place au théatre ne permet pas non plus que plusieurs
personnes partagent Je même siège (il est vrai que J 'exemple est mal choisi car Je surbooking
permet précisément de vendre Je même siège à plusieurs personnes sachant qu'une seule en
bénéficiera). Le mécanisme transactionnel empêche tout scénario fâcheux.

Risque de procéd.Jre fâcheuse

FJat be.nt '=4:::::::::::::...1...,·
TDIPS

UPOATE Cod4tvi (- 500€) 1

UPOATE Cotrf1t• Cbun.nt(-<-500 C) ,

END'

Etat t1r6Abtnl

caractériSliques
Une transaction assure les mécanismes ACID.

• Atomicité des instructions qui sont considérées comme une seule opération (principe du
tout ou rien).

• Cohérence (passage d'un état de la base cohérent à un autre état cohérent).

© ÉdW/ons Eyroles

Blies 1111 PttSG I

• Isolation des transactions entre elles (lecture consistante) .

• Durabilité (les transactions attendent tant que nécessaire pour assurer la cohérence de
J' ensemble) .

Une extraction (SELECT) génère un verrou partagé (S) sur tout ou partie de la table. Si une
écriture (UPDATE ou MERGE) concerne cette partie de table, un verrou exlusif (X) est posé, et il
sera impossible d'obten ir le verrou (S) tant que la modification n'est pas validée. S'il s'agissait
d'une autre lecture, la requête initiale pourra s'exécuter. L.:idée de base est qu'une lecture ne
doit pas en bloquer une autre, mais qu'une écriture peut bloquer une autre écriture (ou lecture),
et qu'une lecture peut bloquer une écriture.

Début et lin d'une transacliOn

• lZJ Il existe deux modes de gestion des transactions depuis la version SOL: 1999 de la norme.

Le mode implicite dans lequel la connexion à la base déma rre une transaction que l'on doit
finaliser par une validation ou annulation (COMMIT ou ROLLBACK) et qui redémarre une nou­
velle transaction après finalisation .

Le mode explicite qui implique de spécifier quand déma rre la transaction (éventuellement
avec BEGI N) etquand l'arrêter (avec COMMIT ou ROLLBACK).

Toute transaction se termine en échec à la fin anormale d'une session (forcée ou anomalie
logicielle ou matérielle) .

Oracle ne fonctionne pas nativement en mode araocommil, c'est-à-dire que chaque instruction
SQL du LMD doit être explicitement validée sinon elle risque d'être perdue.

Tout ordre SOL du Data Oefinition Language (CREATE, ALTER, DROP, COMMENT, RENAl1E,
TRUNCATE, GRANT et REVOKE) génère une fin normale de la transaction en cours. En d'autres
termes, si vous avez modifié des données et que vous décidez de créer une table, vos mises à
jour seront validées.

Si vous désirez maîtriser votre code et vous prémunir des incohérences dues à des
concurrents, vous devez programmer vos transactions explicitement à J'aide des primitives
décrites au tableau 6-42. Si vous voulez monitorer de Jongues transactions, il est préférable de
les nommer.

© Éditions Eyrol/es 307 1

lr.111

1 308

r-. 6-42 lasbUCllCIDs d1111111C1e des r1111acl111s

lnsructlons Conmentalres

SET TRANSACTI ON NAME ' transaction_no m' ; Début de la transaction (nommée ou pas).
[BEGIN]

COMMIT [WORK];

ROLLBACK [111QRK];

SAVEPOINI' nOJ?L.Savepoint ;

RO LLBACK TO nOJlL.Savepoint ;

contrôle des transactions

Termine avec suocès la transaction (validation).
Libération des verrous

Termine avec échec la transaction (Invalidation).
Libération des verrous

Déclare un point de validation au cours de la
transaction.

Invalide les Instructions réalisées depuis le point
de validation.

Il est intéressant de pouvoir découper une transaction en insérant des points de validation
(savepoi11ts) qui permettent d'annuler tout ou partie de la transaction. La figure 6-5 illustre une
transaction découpée en trois parties. L'annulation centrale permettra d'invalider les modifica­
tions (UPDl\TE et DELE'I'E) tout en laissant la possibilité de valider l'instruction INSERT (si un
CQllMIT suit).

Rgure 6-5 Points de vs/ldaUon

Tran..act.ton
INSBRT-

Po.1nc val1dac1on l
UPOATE...
UPDATE-

P<>ine vctl1da.tion 2
DELBTE -

î
Rt'\Lt.BACIC TO

l
l.OLL&ACI. TO

ROLLBACK

-7oiot val.td•tJ.o.o2 Po.tnt v•1.1d•t1onl

P1n Tran•act1oo

tiveaux d'isolation
La concurrence des accès aux données induit des problèmes inévitables. Prises isolément et
exécutées les unes après les autres, un ensemble de transactions modifiant des données en
commun ne générera aucune incohérence. Le problème est que cet ensemble de transactions
est susceptible de s'exécuter simultanément. La mise en place d'un niveau d'isolation pour

© ÉdW/ons Eyroles

Blies 1111 PttSG I

chaque transaction permet de gérer au mieux cet état de fait. Chaque niveau permet de résou­
dre un type d'anomalie. Trois types d'anomalies classiques sont recensés :

• la lecture sale de données (dirty reads) qui se produit lorsqu'une transaction accède à des
données qui sont modifiées par une autre transaction et qui n'ont pas été encore validées ;

• la lecture non répétable de données (!w11 repeatable reads) qui se produit quand deux
lectures successives d'une même donnée au sein d'une transaction ne génère pas le même
résultat parce qu'une autre transaction a modifié les données déjà lues entre temps ;

• la lecture de données fantômes (phalllom reads) qui intervient lorsque de nouvelles
données apparaissent au cours de lectures successives (insertion de données effectuées par
une autre transaction).

Il est possible de changer de niveau d'isolation en cours de traitement, y compris pendant la
transaction, mais cela ne constitue pas généralement une bonne pratique. Selon le mode
choisi, vous disposerez des fonctionnalités suivantes.

T- 6-43 1WJes dl llmlCdolls Clclf• SQU

NNuu d'llolatlon Lectures sales Lecllres non répétables Lectures tant6rnes

READ UNCOMM ITI'ED Possllle Possible Possible

READ COMMITTED Impossible Possible Possible

REPEATABLE READ Impossible lmpossllle Possible

SERIALIZABLE Impossible lmpossllle Impossible

L'exemple suivant correspond à la réservation de places pour un vol entre Toulouse et Paris.
Supposons qu'il reste 50 places et que deux transactions tentent de reserver simultanément
7 places pour l'une et 15 places pour l'autre. L'état idéal serait que ces deux transactions lais­
sent au final 28 places disponibles pour le vol..

Figure 6·6 Modification concurrente

T_vols

vol _ro111 \() l _datev ol vol _h_dep vol_h_arr

AF6108 28U- U -28 18:15:8e t9:4S:ee ,. TLS oav

Transacllon 1

La mise en place du niveau de transaction s'opère au niveau par l'instruction SET

TRANSACTION suivante :

© Éditions Eyrol/es

lr.111

1 310

1

SEI' TRl\NSACTICN (RFAD CNLY) RFAD)

(I SOLATICN LEVEL (SERIALIZE) RFAD a:JMMITED)

(USE ROLIBJ\CK SEGMENT 's egmen t_nom ')
[NAME ' t ransa ct ion_ nom'] ;

Le niveau d'isolation s'applique à la transaction concernée et vous ne devez pas raisonner par
rapport aux autres transactions (dont vous ne pouvez maîtriser le mode). Oracle ne fournit que
les niveaux READ COMMITrED et SERIALIZABLE (le mode le plus fort).

Par le mode READ COMMITTED est adopté ; il est le plus polyvalent et répond à la plu­
part des cas. Dans les deux modes, chaque requête ne verra que des données validées (par
les autres transactions) avant la requête (et pas avant la transaction) .

Le niveau READ COMMITTED repose sur un contrôle plutôt • optimiste• de la concurrence
alors que le mode SERIALIZABLE est davantage • pessimiste• du fait qu'aucune modifica­
tion, par une transaction extérieure, n'est possible sur des données mises à jour par la transac ­
tion et depu is son début (l'erreur détectée est ORA- 08 177 : impossible de sérialiser
l'a ccès pour cette transa cti on). Ce dern ier mode implémente l'illusion pour une tran­
saction qu'aucune autre session ne modifie les données. Le mode SERIALIZABLE convient
aux transactions courtes modifiant peu de lignes et où les modifications concurrentes sont
rares.

Il va de soi que, quel que soit le mode, chaque requête voit ses propres modifications même si
la validation n'est pas encore réalisée. Par ailleurs, la bête noire des deux modes sont les
modifications concurrentes (surtout en mode SERIALIZABLE).

Enfin, un mode en lecture seule est également fournit (READ ONLY) ; il équivaut à SERIALIZA­
BLE qui n'opère aucune modification .

Au niveau d'une session, il est également prévu de défin ir le niveau d'isolation qui concerne ra
toutes les transactions qui s'y déroulent (ALTER SESS ION SET I SOLATION_ LEVEL ._).

Lecture fantôme

La figure 6-7 présente une lecture fantôme. La transaction 1 compte Je nombre de vols d'un
passager et, dans l'intervalle, la transaction 2 ajoute un vol au passager en question . Quand la
transaction 1 débute avant la transaction 2 et se prolonge dans Je temps, Je nouveau vol peut

apparaître au cours du traitement ce qui ne reflètait pas l'état de la base au eîébut de la transac­
tion de lecture.

En se plaçant au niveau d'isolation READ COMMI'ITED, cette lecture fantôme apparaît. Le mode
SERIALIZABLEévitera ce comportement.

© ÉdW/ons Eyroles

Rgure 6-7 Lecture non consistante entre deux tmnssctlons en action

AF6149 2612-12-28 18:1S: ff
AF61M 2612-12·28 t9:SS: fle

vol_h_arr

19:•S:e9
2&:•S:a9

T_vols
aer _dep aotr _a rr

\IOl _nu.. \IOl _da te vol Cli_code p.a:x_prh:

D'autres niveaux d ' isolation

Blies 1111 PttSG I

Pourquoi faut-il sérialiser les transactions au lieu d'autoriser un mode entrelacé ? En s' inspi­
rant de l'exemple de Jim Gray (chercheur au sein de Microsoft et récompensé du prix Turing
en 1998), imaginons deux transactions : l'une changeant les pilotes en avions et l'autre les
avions en pilotes.

Figure 6../J Lectures de c/Fchés

F-MCGA A
Bro.ia.l"d p

BMJChU ·-· A
SOJtOtl p

En mode SERIALIZABLE, J' exécution revient à exécuter l'une, puis J' autre indifférement. À la
fin, Je monde ne sera peuplé que de pilotes seuls ou d'avions seuls (tout Je monde reste au sol
donc). En mode snapshot (proposé avec SQL Server), il est possible que les mises à jour soient
opérées simultanément. En conséquence, les pilotes sont devenus des avions et inversement
(les voyages peuvent reprendre en théorie ; c'est ça Je pur optimisme). Le mode
SERIALIZABLE permet de garder les pieds sur terre mais peut induire (comme Je mode READ
COMMITED d'ailleurs) une étreinte fatale (deadlock) lors qu'une transaction doit attendre
indéfiniment que l'autre ne relâche ses verrous (entrelacement des modifications).

Le problème du verrou mortel ûleadock)
Le phénomène de deadlock, aussi appelé « étreinte fatale » se produit lorsque deux transac­
tions qui ont posé des verrous sur des objets distincts tentent d'acquérir un nouveau verrou sur

© Éditions Eyrol/es 311 1

l r.111

un objet déjà verrouillé par l'autre transaction. En plus du fait que les verrous mortels nécessi­
tent d'être gérés comme des exceptions, ils sont gourmands en ressources CPU.

Le tableau 6-44 illustre deux transactions en interblocage (et ce, quel que soit Je niveau
d'isolation). En supposant que la transaction 1 (11) démarre avant la transaction 2 (12), Je vol
AF6140 est d'abord verrouillé par Il jusqu'à la validation, ce qui n'empêche pas Je
verrouillage du vol AF6144 par 12. Par la suite, 11 pose un verrou sur Je vol AF6144 qui sera
relâché à la fin de 12, qui a posé un verrou sur Je voJAF6140 qui sera quant à lui relâché à la
fin de 11. Tout Je monde attend ainsi l'autre.

l lhnsactlon 1 Transaction 2

BEGIN BEGIN
UPDATE T_ vols
SET vol_places _libr es=vo l _pl aces _libr es-7
WHERE vol_nwn = ' AF614 0 '
AND vol_ datevol = TO_DATE (' 20 1 21 228 ' ,

' YYYYMMDD');

UPDATE T_ vols
SET vol_places _ libr es=vo l _places_libr es- 15
WHERE vol_ num = 'AF6144 '
AND vol_ datevol TO_DATE(' 20121 228 ' ,

' YYYYMMDD');

-- pendant ce temps, d'autres réservations
arrivent DBMS_LOCK.SLEEP(lO); DBMS_LOC!C.SLEEP (10);

1 312

UPDATE T _ vols
SET vol_places _libres =vol _pl aces _libres-4
WHERE vol_nwn = ' AF6144 '
AND vol_ datevol = TO_DATE (' 20 1 21 228 ' ,

' YYYYMMDD');

UPDATE T_ vols
SET vol_places _ libres =vol _pl aces _libres-5
WHERE vol_ num 'AF6140 •
AND vol_ datevol TO_DATE(' 20121228 ' ,

' YYYYMMDD');

Quand un tel phénomène est identifié, il est mis fin à la transaction la moins coûteuse en
ressources (équivaut à ROLLBACK). Le message ORA-00060: détection d' interblocage
pendant l'attente d'une ressource est retourné au client malheureux tandis que
l'autre transaction continue.

Adoptez les règles suivantes pour limiter les risques de verrous mortels :

• normalisez correctement le modèle de données et soignez l'indexation des tables;

rédu isez la durée de votre code en limitant les entrées-sorties, extrayant les données (peut ­
être en utilisant des tableaux associat ifs) en un minimum de lecb.Jre , en verrouillant au plus
tard et libérant les verrous au plus tôt ;

limitez l'escalade potent ielle de verrous en gérant manue llement des ve rrous s i cela est
approprié.

© ÉdW/ons Eyroles

Blies 1111 PttSG I

Ve1Tolillage manuel
La gestion manuelle des verrous est possible mais plus complexe à mettre en œuvre et à main­
tenir. Elle peut poser plus de problèmes qu'elle n'en résoud.

• Le moniteur de verrouillage peut fuire de J'escalade afin de minimiser les ressources
(passer d'un verrou de ligne à un verrou de page ou de table, par exemple, lorsque différen­
tes lignes sont mises à jour dans une même transaction).

• Le verrouillage manuel implique que Je verrou devient statique, ce qui peut se révéler
inadéquat en fonction de la charge (modification de la volumétrie ou de la concurrence) ou
d'éventuelles modifications de la structure logique ou physique des données (création
d'index, par exemple).

• Oracle ne garantit pas J' application du verrou posé dans certaines circonstances.

• Le fuit de verrouiller manuellement ne permet pas de profiter des éventuelles évolutions et
peut s'avérernon portable d'une version à l'autre.

Pour effectuer un verrouillage manuel, une première possibilité utilise LOCI< TI\BLE qui
prévient des accès concurrents au niveau de la table (ou des tables associées si la commande
concerne une vue). Une autre possibilité, plus fine, consiste à verrouiller seulement une partie
des lignes avec l'option FOR UPDATE de la commande SELECT (voir au chapitre 7 un exemple
avec les curseurs). Ces verrous seront libérés à la fin de la transaction (suite à un COMMIT,
RO LLBACK ou une interruption involontaire).

Si vous désirez verrouiller une table, vous disposez des options suivantes.

1

IDCK TABLE (schema.) { table) vue)

IN {ROW SHl\RE) SHl\RE UPD.l\TE) RCM EXCWSIVE) SHl\RE SHl\RE

SHl\RE ROW EKCLUSIVE) EKCLUSIVE) MODE

(IDl>IArr) WAIT secondes) ;

• SHARE UPDATE (synonyme de ROW SHARE, ancienne dénomination) autorise les accès
concurrents mais interdit aux autres transactions de verrouiller exclwsivement.

• ROW EXCLUSIVE se comporte comme SHARE UPDATE en interdisant également Je
verrouillage partagé (ce sont ces types de verrous qui se posent automatiquement lors de
mises à jour SQL).

• SHARE SHl\RE autorise les lectures concurrentes mais interdit les mises à jour de la table.

• SHARE ROW EXCLUSIVE autorise les lectures concurrentes mais interdit Je verrouillage
partagé ou la mise à jour.

• EXCLUSIVE ne permet que les lectures concurrentes.

L'interblocage présenté précédemment serait résolu, par exemple, en disposant au début de
chaque transaction :

• soit un verrouillage au niveau de la table LOCI< TABLE T_vols IN SHARE ROW
EXCLUSIVE MODE WAIT 5 ;

© Éditions Eyrol/es 313 1

l r.111

1 314

• soit un verrouillage au niveau ligne par SELECT ..• INI'O ... FROM T_vols WHERE vol_
num= ... AND vol_datevol =. .. FOR UPDATE OF vol_places_libre s WAIT 5 en sélec­
tionnant en préventif le deuxième vol à mettre à jour.

Transactions imbriquées
Il est possible de programmer plusieurs transactions se déroulant dans des blocs imbriqués
comme l'illustre la figure 6-9. Les mécanismes d'atomicité, de cohérence, d'isolation et de
durabilité seront également respectés.

Rgure 6-9 TrMssctions Imbriquées

BEGIN

BEGIN

Où Placer les 1ransaclions ?
L'idée de manipuler des transactions depuis un code client (YB, Delphi, Java, C++ ...) est
séduisante mais peut entraîner un blocage du serveur du fait d'une non-libération des verrous
(si le client perd la connexion sans validation ou invalidation). Un autre problème concerne les
entrées-sorties qui peuvent devenir également bloquantes. La logique transactionnelle doit
donc se trouver au plus près du serveur et qui mieux que les procédures cataloguées (voir
chapitre 7) peuvent implémenter les transactions ?

Il est aussi possible d'utiliser des objets métier dédiés (EJB, par exemple, dans une architec­
ture J2EE), mais ces derniers posent à nouveau des problématiques de rormd-trips (latence du
fuit du réseau séparant les objets du serveur) pendant lequels les tables peuvent être bloquées.

D'une manière analogue, l'utilisation massive des ORM peut être très nocive d'un point de

we transactionnel du fait de l'empilement des couches logicielles qui masq111ent ou empêchent
d'utiliser les fonctionnalités natives du SGBD qui ont fait leurs preuves depuis de nombreuses
années. Si les ORM font gagner du temps lors du développement, le bénéfice en termes de
performances n'est pas souvent équivalent.

© ÉdW/ons Eyroles

Exercices

Blies 1111 PttSG I

L'objectif de ces exercices est d'écrire des blocs PUSQL puis des transactions PUSQL mani­
pulant des tables du schéma Parc /11formatiq11e.

6.1 Tableaux etstructures de contrôle

Écrivez le bloc PUSQL qui programme la fusion de deux tableaux (déjà triés par ordre croissant) en un
seul (utiliser des structures \'/HI LE ...). Il faudra afficher ce nou110au tableau (utiliser une structure
FOR ...) ainsi que le nombre d'éléments de ce dernier.

Figure 6-10 Fusion de deux tableaux

tab compPrance
IAERIS !Air Franco IA1r Lntoral 1 Rogoonal 1

tab compMonde
1 ALll ALIA 1 Oïîantas ISABENA

Hombre d' 614menta a 7
tab
IAERIS IALITALIA IA1r France IAor l ittoral iôïîantas)Reg1onal ISABENA

(l:rn1il1im 6.2 Bloc PL/SQL et variables %TYPE

Écrivez le bloc PUSQL qui affiche, à l'aide du paquetage OBMS_Ol11'Pl11', les détails de la dernière
Installation sous la brme suivante :

Derni è r e installation e n sall e : .DW11érodeS&ll•

Post e : nu.mérod•Po•t• Logici e l : nomcfu.Logici•l en date du dat•In.stalla­
tio.n

Vous utiliserez les directives 'l:TYPE pour extraire directement les types des colonnes et pour améliorer
ainsi la maintenance du bloc.

Ne tenez pas oompte, pour le moment, des erreurs qui pourraient éventuellement se produire (aucune
Installation de logiciel, poste ou logiciel non référencés dans la base, etc.).

6.3 Variables de substitution et globales

© Éditions Eyrol/es

Écrivez le bloc PUSOL qui un numéro de salle et un type de poste, et qui retourne un message
Indiquant les nombres de postes et d'installations de logiciels correspondantes sous la forme
suivante :

Numé ro de Sall e : numéro.,.S&ll•
Type de post e : typed&Po•t•

315 1

l r.111

G_NBPOSTE

G_NBINSTALL

Vous utiliserez des variables de substitution pour la saisie et des variables globales pour les résultats.
Vous exécuterez le bloc à l'aide de la commande start et non pas par copier-coller (à cause des
ordres ACCEPT). Ne tenez pas compte pour le moment d'éventuelles erreurs (aucun poste trouvé ou
aucune Installation réalisée, etc.).

n:@dtfill 6.4 Transaction

1 316

Écrl..az une transaction permettant d'insérer un nou..aau logiciel dans la base après avoir saisi toutes
ses caractéristiques (numéro, nom, ..arslon et type du La date d'achat doit être celle du jour.
Tracer a-ac PUT_LI NE l'insertion du logiciel (message Logici el Inséré dans la base).

Il faut ensuite procéder à l'installation de ce logiciel sur le poste de numéro 'p7' (utiliser une variable
pour poLNolr plus facilement modifier ce paramètre). L.:lnstallation doit se faire à la date du jour.

Pensez à actualiser correctement la colonne de lai qui mesure le délai (INTERVAL) entre l'achat et
l'installation. f'l'.)ur ne pas que ce délai soit nul (les deux Insertions se font dans la même seconde dans
cette transaction), placer une attente de 5 secondes entre les Insertions avec l'instruction DBMS_
LOCK. SLEEP(S);. Utiliser la fonction NUMTODSINTERVAL pour calculer ce délai. Tracer avec PUT_
LINE l'insertion de l'installation.

La trace suivante donne un exemple de ce que l.()US devez produire (les champs en gras sont ceux
saisis):

SQL> START exo3plsql

Numéro de logici e l : log15

Nom d u logici e l oracle Web ll(Jent

Vers ion du logici e l : 15.5
Type d u logici e l : 11nix

Prix d u logici e l (en euros) : 1soo ____ _,I AttentedeSseco .ndesàceniveau 1

Logici e l insér é dans la base
Date achat : 17 - 07 -2 003 13:48:08

Date installation : 17 - 07 -2003 13:48:13

Logici e l install é sur l e poste

Procédure PL/SQL termin ée avec s uccès.

VérWlez l'état des tables mises à jour après la transaction. Ne tenez pas compte pour le moment
d'éventuelles erreurs (numéro du logiciel déjà référencé, type du loglclel Incorrect, Installation déjà
réalisée, etc.).

© ÉdW/ons Eyroles

Chapitre 1

Programmation avancée

Sous-programmes

Les sous-programmes sont des blocs PL/SQL et capables d'inclure des paramètres en
entrée et en sortie. Il existe deux types de sous-programmes PUSQL qui sont les procédures et
les fonctions. Comme dans tous les langages de programmation, les procédures réalisent des
actions alors que les fonctions retournent un unique résultat. Seule la procédure peut avoir

plusieurs paramètres en sortie.

Les sous-programmes sont en général écrits en PUSQL (ce chapitre leur est consacré), mais
ils peuvent être en Java (voir chapitre 11) ou en C.

Généralilés
Dans Je vocabulaire des bases de données, on appelle les sous-programmes « fonctions» ou
« procédures cataloguées» (ou stockées), car ils sont compilés et dans la base de
données. Il est possible de retrouver leur code au niveau du dictionnaire des données. Le sous­
programme peut être ainsi partagé dans un contexte multi-utilisateur.

Lors d'un appel d'une fonction ou d'une procédure, Je noyau recompile Je programme si un
objet cité dans Je code a été modifié (ajout d'une colonne dans une table, modification de la
taille d'une colonne ...) et Je chatge en mémoire.

Les avantages des sous-programmes catalogués sont nombreux :

• sécurité : les droits d'accès ne portent plus sur des objets (table, vue, variable ...) mais sur
des programmes stockés. Ces droits sont (œANI' EXEOn'E ON NOMPROCÉDURE

T0 UTILISATEUR) ;

• intégrité : les traitements dépendants sont dans Je même bloc (transactions) ;

• performance : réduction du nombre d'appels à la base (utilisation d'un programme partagé) ;

• productivité : simplicité de la maintenance des programmes (modularité, extensibilité,
réutilisabilité) notamment par l'utilisation de paquetages.

© Éditions Eyrol/es 317 1

l r.111

1 318

Comme les blocs PUSQL, nous verrons que les sous-programmes ont une partie de déclara­
tion des variables, une autre contenant les instructions et éventuellement une dernière pour
gérer les exceptions (erreurs produites durant l'exécution).

Une procédure, comme une fonction, peut être appelée à l'aide de l'interfuce de commande
SQL *Plus (commande EXECl1I'E) ou par l'intermédiaire d'un outil d 'Oracle (Forms par exem­
ple), dans un programme externe (Java, C ...), par d'autres procédures ou fonctions ou dans le
corps d'un déclencheur. Les fonctions peuvent être appelées dans une instruction SQL
(SELECT, INSERT, et UPDATE).

Le cycle de vie d'un sous-programme est le suivant: création de la procédure ou fonction
(compilation et stockage dans la base), appels et éventuellement suppression du sous­
programme de la base. Il est à noter qu'un sous-programme se recompile automatiquement
dès que la structure d'un objet qu'il manipule est modifiée (tables, vues, séquences, index ...).
Dans certains cas de dépendances indirectes, il est prévu de pouvoir recompiler manuellement
un sous-programme (ALTER PROCEDURE 1 FUNCTION ... CG!PILE).

Procédwes cataloguées
La syntaxe de création d'une procédure cataloguée est la suivante. Pour créer une procédure
dans son propre schéma, le privilège ŒEATE PROCEDURE est requis (inclus dans le rôle
RESOURCE). Pour créer une procédure dans un autre schéma, il faut posséder le privilège
CREATE ANY PROCEDURE.

CRBATB (œ REPLACE) PROCBDO'RB (schéma.) nomProcédure

((paramètre (IN 1 our 1 IN OOT 1 (NOCOPY) typeSQL

({ : = J DEFAULT) expression)

(, paramètre (IN) OOT) IN our J (NX.'OPY) typeSQL

({ : =) DEFAULT) expression) ...)))

(At1I'HID { aJRRENT_USER) DEFINER))

{ IS) AS)

(PR1>13MA At1I'<NCMOOS_'IR1\NSACTION;)

{ corpsduSousProgrammePLISQL) 11\N'.lUAGE {

JAVA Nl\ME 'nomMéthodeJava ')

C (NAME nomSou=eC) LIBAARY nomLibrairie (MlENT IN (paramètre))

(WI'IH CCNI'Elcr') (PARAMEI'ERS (paramètres)))) ;

• IN désigne un paramètre d'entrée, out un paramètre de sortie et in out un paramètre
d'entrée et de sortie. Il est possible d'initialiser chaque paramètre par une valeur.

• NOCOPY permet de transmettre directement le paramètre. On l'utilise pour améliorer les
performances lors du passage de volumineux paramètres de sortie comme les record,

les tables index-by (les paramètres IN sont toujours passés en NOCOPY).

© ÉdW/ons Eyroles

• La clause Al1I'llID détermine si la procédure s'exécute avec les privilèges de son proprié­
taire (option par défuut, on parle de defi11er-righls proced11re) ou de l'utilisateur courant
(on parle de i11volœr-rights proced11re).

• PRAGMA Al1I'ONOMOUS_TRANSACTION déclare le sous-programme en tant que transaction
autonome (lancée par une autre transaction dite « principale»). Les transactions autono­
mes permettent de mettre en suspens la transaction principale puis de reprendre la transac­
tion principale (voir la figure suivante).

Rgure 7-t Trmssction autonome

Transaction principale (TP) Transaction autonome (TA)

PROCJ:DURI:'. proc 1 JS
ld 1"ne ER; _

..... _ id - 1183 r
-OébutTP l11SDT . -

a:LIOC'l
p.-oC'?,
mi.ra:
C0>1?"11'· FinTP,,

w.ocmws p roc2 ,.
AUI'CU •. .

dept_:a.d IAIH81:R.;
DEOlU

dept: _ld - 20 ,

""""'' -,.,._
Ul'1)ATZ

C'OUHl'J t

Z11JD1

-
Suspension TP

Début TA

Fin TA

Reprise TP

• c orpsduSousProgranunePL/SQLcontient la déclaration et les instructions de la procé­
dure, toutes deux écrites en PUSQL.

• JAVA NAME 'nomM éthodeJava ' , désignation de la méthode Java correspondante (voir
chapitre 11).

• C [NAME nomSour c eC] .. ., désignation du programme C correspondant (voir chapitre 8).

FoncliOns cataloguées
La syntaxe de création d'une fonction cataloguée est CREATE FUNCTION. Les prérogatives et
les options sont les mêmes que pour les procédures.

CREATB (OR REPLACE) FCNCTION (schéma.) nomFonction

((paramètre (IN 1 our 1 IN OOT 1 (NOCOPY) typeSQL

({ : = J DEFADIJI') expression)

(,paramètre (IN) Our) IN OOT) (NOCOPY) typeSQL

({ : = J DEFADIJI') expression) ...)))

RB'I'ORN typeSQL

(At1I'HID { DEFINER) CURRENT_USER))

{ IS) AS)

© Éditions Eyrol/es 319 1

lr.111

1 320

corpsduSousProgrammePLISQL

Ll\NGUJ>l3E {

JAVA Nl\ME 'nomMéthodeJava ')

C (NAME nomSourceC) LIBRARY nomLibrairie (1>13ENI' IN (paramètre))

(WI'IH CCN'I'Elcr') (PARAMEI'ERS (paramètres)))) ;

• cozpsduSousProgramnePL/SQLcontient la déclaration et les instructions de la fonction
(il doit se trouver une instruction REIURN dans Je code), toutes deux écrites en PLJSQL.

codage d'un sous-programme PIJSQL
Dans une procédure, comme dans une fonction, il n'existe pas de section DECLARE ; les
déclarations des variables, curseurs et exceptions suivent directement l'en-tête du programme
(après la directive IS ou AS). Nous verrons aussi qu'il est possible de définir un sous ­
prograrnme dans la section de déclaration d'un autre sous-programme . La figure suivante
illustre la structure d'une spécification et d'un corps d'un sous-programme PLJSQL.

Le bloc d'instructions doit contenir au moins une instruction PLJSQL (si vous désirez ne pas
en définir une utilisez l'instruction NULL;).

Exemples

Rgure 7-2 Structure d'un sous-programme

CRBATE PROCEDURE 1 nomSousProgrdTM>e (<,,,) l IS

1 1

Ë u•·progrommes lo<•ux W
BEGIN

Î•<9truceions PL/SQL;

BBClll

IBXCBPTIONI

l!NO;

CRXCBPTJON)

RNti) ;

Considérons la table Pilote. Nous allons écrire les sous -programmes suivants :

• la fonction EffectifsHeure(cornp,heures) retourne le nombre de pilotes d'une
compagnie donnée (premier paramètre) qui ont plus d'heures de vol que la valeur du
deuxième paramètre (si aucun pilote, retourne 0). Si aucune compagnie n'est passée en

© ÉdW/ons Eyroles

paramètre (mettre NJLL), Je calc ul inclut toutes les compagnies. Les éventuelles erreurs ne
sont pas encore traitées (compagnie de code inexistant par exemple).

• La procédure PlusE>q:>érimenté(comp,nom,heures) retourne le nom et Je nombre
d'heures de vol du pilote (par l'intermédiaire des deuxième et troisième paramètres) Je
plus expérimenté d'une compagnie donnée (premier paramètre). Si plusieurs pilotes ont la
même expérience, un message d'erreur est affiché. Si aucune compagnie n'est passée en
paramètre (mettre NllLL), la procédure retourne Je nom du plus expérimenté et Je code de
sa compagnie (par J' intermédiaire du premier paramètre).

Figure 7-3 Fonction et procédure

function procedure

Bffect1feHeure{comp, heu res) ; Pl uABxpfriment' (comp , nOC"*, heures);

' AF', ' Gille# t.a.borde' , 2 4 50)

(... ,. '

nom eomp

:i ·1 Gilles Laborde +
Pl·2 Frédéric 0 ' Aime a
Pl-3 Florence Périsse!
Pl-4 Thier Millan
Pl·S Christine Ro o
Pl-6 Aurélf'1 nie 2450

La création de la fonction est réalisée à J'aide du scrip t suivant (EffectifsHeure.sq l).
Notez les deux paramètres d'entrée définis par la directive IN et la clause RErURN en fin de
codage.

© Éditions Eyrol/es

ŒFATE OR REPLACE rtlRCTIOR

IS

EffectifsHeure (pco!!p IR VARCHAR2, pheuresVol IR NUMBER) RB'1'11RR

NUMBBR

résul t a t NUMBER : = O;

BEGIN
IF (pcc:mp IS NULL) THEN

SELEl:T OOUNT(*) INI'O résul t a t FROM Pi l ote

ELSE
nbHVol > pheuresVol

SELEl:T OOUNT(*) INI'O résul t a t FROM Pi l ote
nbHVol > pheuresVol

321 1

1

1 322

AND

END IF;

ccmp = pccmp;

RB'1'tJRR résultat;

END EffectifsHeure

La création de la procédure est réalisée à J'aide du script suivant (PlusExpérimenté. sql).
Notez les deux derniers paramètres de sortie définis par la directive CX1I' et Je premier servant
d'entrée ou de sortie avec la directive IN Our.

CREATE œ REPLACE PROCBDIJRB PlusE>cpérimenté

IS

(pCO!!p IR OUT VARCHAR2, pnomPil OUT VARCHAR2' pheuresVol OtJT NUM­

BER)

pl NUMBER;

BEl3IN

IF (pccmp IS NULL) THEN

SELECT COONl' (*) INTO pl FR.CM Pilo te

nbHVol = (SELECT MAX (nbHVol) FROM Pilote);

ELSE

SELECT COONl' (*) INTO pl FR.CM Pilo te

nbHVol = (SELEl:T MAX(nbHVol) FR.CM Pilote WHERE ccmp = PCO!!p)

AND CO!!p = pCO!!p;

END IF;

IF pl = 0 'IHEN

œMS_OUI'PUT.PUT_LINE(' Aucun pilote n " est le plus expérimenté ') ;

ELSIF pl > 1 THEN

œMS_OUI'PUT.PUT_LINE(' Plusieurs pilotes sont les plus

expérimentés •) ;

ELSE

IF (pccmp IS NULL) THEN

SEL.EX::T nom, nbHVol, ccmp !NIO pnomPil, pheuresVol, pccmp

FROM Pilo te

nbHVol = (SELEl:T MAX(nbHVol) FR.CM Pilo te);

ELSE

SELEl:T nom, nbHVol INTO pnomPil, pheuresVol FROM Pilote

WHERE nbHVol = (SELEl:T MAX(nbHVol) FR.CM Pilo te CO!!p =

PCO!!p)

AND ccmp = pccmp;

END IF;

END IF;

END PlusExpérimenté

© ÉdW/ons Eyroles

COIDIÎlation
Pour compiler ces sous-programmes à partir de l'interface SQL*Plus, il faut rajouter Je
symbole / en première colonne après chaque dernier ENil Si Je message suivant apparaît,
Averti ssement : Fonct i on/Procédur e créé e avec erreur s de compilati on, deux
techniques peuvent être utilisées pour visualiser les erreurs de compilation :

• faire SHOW ERRORS sous SQL*Plus ;

• interroger la vue USER_ERRORS (SELECT LINE, PCSITI ON, TEX'I' FROM USER_ERRORS

WHERE W\ME = 'nomFonct i onln omProcédure ' ;).

Une fois que Je message Fon ct i on/Procédure créé e. apparaît, Je sous-programme est
correctement compilé et stocké en base.

Aœels
Le propriétaire d'un sous-programme peut exécuter ce dernier à la demande et sans aucune
condition préalable. Pour exécuter un sous-programme d'un autre schéma les conditions
suivantes doivent être respectées :

• détenir Je privilège EXECUTE sur Je sous-programme en question ou EXECUTE N:fY

PROCEDURE ;

• mentionner Je nom du schéma contenant Je sous-programme à l'appel de ce dernier (exem­
ple de J' appel de la procédure Augment eCapac i t é du schéma jean . pour J' avion d' imma­
triculation 'F-GLFS ' jean.Augment eCapac ité (;).

Décrivons l'appel d'un sous-programme sous l'interface de commande SQL*Plus, dans un
programme PUSQL et dans une instruction SQL. Les chapitres suivants décriront comment
coder un tel appel dans un programme externe (Java et C).

Sous SQL*Plus

En phase de tests, il est intéressant de pouvoir appeler un sous-programme directement dans
J' interfuce de commande. La commande EXECUTE permet d'appeler une procédure ou une
fonction (qui peut aussi être appelée dans une instruction SQL, ici un SELECT).

Le tableau suivant décrit l'appel et Je résultat des deux sous-programmes.

© Éditions Eyrol/es

lr.111

1 324

llillleaU 1-1 llllJllS IOUS SQl"l'lus

Procéchn

VARI ABLE g_comp VARCHAR2 (4) ;
VARI ABLE g_nom VARCHAR2 (16);
VARI ABLE g_he uresvo l NUMBER;

BEGIN
:g_comp : = ' AF ' ;

END;
/
EXECUTE Plull&xp6ri-t6 (:g_comp,
:g_nom, :g_heuresvo l) ;

SQL> PRINI' g_nom;
G_)IOM

Gi lles Laborde

SQL> PRINI' g_he uresvo l

G.)IEIJRESVOL

2450

Dans un programme PUSQL

Fon don

VARI ABLE g_comp VARCHAR2(4);
VARI ABLE g_he uresvo l NUMBER;
VARI ABLE g_rés ultat NUMBER;
BEGI N

:g_comp : = ' AF ' ;
:g_heuresvol: = 300;

END;

/
EXactn'S :g_résultat :=
Effect i fs He ure(:g _comp, :g_heuresvo l) ;

SQL> PRI NT :g_résultat;
G_RÉSULTAT

2

SQL> SELECT coap,
FROM Pil ote GROUP BY coap ;
COMP EFFECT I FSHEURE (COMP, 300)

AF
CAST
SI NG

2
1
2

Nous appelons les deux sous-p rogrammes à présent dans un bloc PL/SQL. Le même principe
peut être adopté pourl'appel dans un sous-p rogramme PUSQL ou dans un déclencheur.

Procéchn

SET SERVEROUT ON
DECLARE

v_comp VARCHAR2(4) : =

v_nom VARCHAR2 (16);
v_heuresvo l NUMBER(7,2);

BEGIN
Plull&xp6r1-t6 (v_comp,

v_nom, v_heuresvo l);
DBMS_OUTPUT. PUT_LI NE

' AF ' ;

(' Nom, heures de vol ' 11 v_nom 11

END;

/

: ' 11 v_he uresvo l);

Fondon

SET SERVEROUT ON
DECLARE

v_comp
v_heuresvo l
v_rés ultat

VARCHAR2 (4) : =
NUMBER(7, 2) : =

NUMBER;

BEGI N
v_rés ultat : =

' AF ' ;
300;

ll:ffeatifOBeure (v_comp, v_heuresvo l);
DBMS_OUTPUT . PUT_ LI NE(• pour AF et

300h résu l tat : ' 11 v_rés ul tat) ;
END;

/

Nom, heures de vol Gi lles La.borde : 2450 Pour AF et 300h résu l tat : 2
Procéd u re PL/SQL termi née avec succès. Procédure PL/SQL terminée avec

succès.

© ÉdW/ons Eyroles

'

Types d'appel
L'appel d'un sous-progrrunme peut être positionne), nommé ou mixte (qui combine les deux precé­
dentes approches). Le tableau suivant décrit ces trois notations pour l'appel de la procédure :

Type d'appel Code PlJSQL

Nommé Plu s Expériment.é(pnomPil ==> v_no rn, pheur esvol ==> v_ll eur esvol, pcomp ==> v_comp } ;

Mixte Plu s Expériment.é(v _comp, pheure svol ::::> v_lurur esvol, pnomPi.l ==> v_nom } ;

Pour tous les appels mixtes, il faut que les notat ions positionnelles précèdent les notat ions
nommées.

À .. OPOS des paramètres
Le passage par valeur d'un paramètre se réalise par la directive IN. On peut assimiler le
passage d'un paramètre par référence à l'utilisation de la directive IN Ol1I'. La directive
NOCOPY restreint le champ d'un paramètre comme le montre l'exemple suivant.

Dans cet exemple, les deuxième et troisième paramètres (n2 et n3) passent en référence. Seul
n3 est déclaré. NOCOPY et son affectation à la valeur 30 dans la procédure répercutent la modi­
fication en local de n1 et n2, (à 30). Cependant n2 retrouve sa valeur affectée auparavant (20)
au retour de l'appel du fait du caractère N)C()py de n3.

Code PlJSQL

DECLARE
n NUMBER : = 10;

BEGIN

T-1-4 Pa11111 .._. 1111111' Il.._. ri!._

changeEtAffiche(n, n, n);
DBMS_OUTPUT . PUT_ LINE (n);

END;

/

C REATE PROCEDURE chan geEtAf f i che
(nl Ill NUMBER, n2 Ill 011'1' NUMBER, n3 Ill 011'1' llOCOPr NUMBER) IS
BEGIN

n2 : = 20;
DBMS_OUTPUT . PUT_ LINE (nl);
n3 : = 30;
DBMS_OUTPUT . PUT_LINE (nl);

END;

10
3 0
20
Procéd ure PL/SQL term inée avêê succè s .

Commentaires

Affiche 20.

Affiche 10.

Affiche 30.

Résultat obtenu.

© Éditions Eyrol/es

l r.111

1 326

Récursivité
La récursivité est permise dans PUSQL. Comme dans tout progrrunme récursif, il ne faut pas
oublier la condition de terminaison ! L'exemple suivant décrit la programmation à J'aide d'une
fonction récursive du calcul de la factorielle d'un entier positif. Nous appelons cette fonction,
ici, dans un SELECT.

Tllllleaa 1·5 lléCll'llvlli

Code PLISQL

CREATE FUNCTION factorielle(n POSITIVE) RETURN INI'ElGER IS

BEGIN
IFn = lTHEN

RETURN l;

ELSE
RETURN n * factorielle (n - 1);

END IF;

END facto rie ll e ;
/

SQL> SELECT factorielle(30) "Facto rie ll e 30" FROM DUAL;

Factori e ll e 30

sous-programmes imbriqués

Conwnenlalres

Condition de
terminaison.

Appoel récursW.

Appoel de la fonction.

Il est possible de créer un sous-progranime (11ested s11bprogram) dans la partie déclarative
d'un autre sous-progranime. C'est aussi valable pour les blocs PUSQL dont la section
D&:LARE:peut inclure un sous-progranime. Ces sous-progrrunmes imbriqués n'ont d'existence
que Je temps de l'exécution du sous-progranime qui l'inclut. Les sous-progrrunmes imbriqués
doivent être les derniers éléments de la section déclarative. Il n'est pas possible de déclarer,
derrière un 11ested sribprogram, une variable, un curseur ou une exception.

Le tableau suivant décrit la déclaration et J' appel du sous-programme imbriqué Mouchard
dans la procédure PlusExpérimenté. Ce sous-progranime insère une ligne dans une table
pour tracer) 'appel de la procédure en fonction de) 'utilisateur et du moment de) 'exécution.

Dans Je cas où plusieurs sous-progranimes imbriqués s'appellent entre eux, il est possible de
définir des références avant (forward declaratio11) pour éviter de respecter um ordre à la décla­
ration et pour se prémunir de tout problème de cohérence.

© ÉdW/ons Eyroles

Code PLJSQL

CREATE OR R&PLAC& PROCEDURE PlusEXpé.rimenté
(pcomp IN OUT VARCHAR2,

pnomPil OUT VARCHAR2,

pheuresvol OUT NUMBER)
I S

pl NUMBER;

PROCEDURE Mouchard IS
BEGIN

INSERT INTO Trace VALUES (USER 11
' a l ancé PlusExpérimenté l e ' 1 ISYSDATE);

END Mouchard;

BEGIN

Mouchard;

END PlusEXpé.rimenté;

Commentaires

Déclaration du sous­
program me.

Déclaration du sous­
program me Imbriqué.

Début du sous-programme.

Appel du sous-programme
Imbriqué.

Il suffit de noter la signature des sous-programmes (nom et paramètres} avant de les redéfinir
au niveau du codage. Le code suivant décrit un exemple de la procédure KGB qui appelle
Mouchard et qui est toutefois définie avant :

© Éditions Eyrol/es

Code PLJSQL

DECLARE

PROCEDURE llouchar4;

PROCEDURE KGB I S

BEGIN
Houchard.;

END KGB;

PROCEDURE llouchar4 IS

BEGIN
INSERT INrO T.rac e VALUES

<USER 11 ' a lan cé l e Bl oc ' 11 SYSDATE) ;
END llouchar4;

BEGIN
KGB;

END;

/

Commentaires

Signature (ré(érenoe avant).

Déclaration de la procédure KGB.

Déclaration de la procédure
Mouchard.

Codage du bloc.

1

'

Recompilalion d'un sous-programme
Oracle recompile automatiquement un sous-programme quand un objet qui en dépend directe­
ment (table, we, synonyme, séquence, etc.) aété modifié dans sa structure. w dépendances
peuvent aussi être indirectes (exemple de modification de la structure d'une table qui définit
une vue utilisée dans un sous-programme). En ce cas, il peut être nécessaire de recompiler
manuellement chaque sous-programme potentiellement affecté.

La recompilation manuelle d'un sous-programme s'exéc ute par la commande ALTER. Pour
pouvoir recompiler un sous-programme d'un autre schéma, vous devez c!étenir Je privilège
ALTER AN'i PROCEDURE. Les syntaxes suivantes permettent de recompiler manuellement une
procédure et une fonction :

1
ALTER PROCEWRE nomProcédure COMPILE;

ALTER FUNCTION nomFonction COMPILE;

Destruction d'un sous-.. ogramme
La syntaxe de suppressi on d'un sous-programme est la suivante. Pour supprimer une procé­
dure ou une fonction dans un autre schéma, Je privilège DROP AN'i PROCEDURE est requis.

1
DROP PROCEl>tl'RB (schéma.)nomProcédure;
DROP FCNCTION (schéma.)nomFonction;

Il ne faut pas utiliser cette commande pour enlever une procédure ou une fonct ion d'un paque­
tage (notion abordée à la section suivante). Pour cela, nous verrons qu' il faudra redéfinir la
spécification et le corps du nouveau paquetage en utilisant la d irective OR REPLACE.

Paquetages <packages)

1 328

Un paquetage (package) est un composant qui regroupe plusieurs objets (variables, excep­
tions, curseurs, fonctions, procédures, etc.) formant un ensemble de services homogènes.
C'est parce qu'un paquetage permet d'utiliser des objets publics ou privés qu'il s 'apparente au
concept de classe en programmation objet. L'avantage principal d'un paquetage est qu'il faci­
lite la maintenance de l'application (modularité, extensibilité, réutilisabilité).

Généralités
La figure suivante illustre les deux parties d'un paquetage. La spécification contient les signarures
des sous-programmes, la déclaration de variables, curseurs, d'exceptions, etc. I.:'irnplémentation (Je
corps) contient Je code des sous-programmes. Ici, la procédure pl n'est pas définie dans la spécifi­
cation et seuls les sous programmes du paquetage pourront y faire référence (ici p2 et fl).

© ÉdW/ons Eyroles

Figure 7-4 Structure d'un paquetage

CRES.TE PACKAG E nooi:P.aque c.3f!e AS

PROCIIDUR& p2(. ..);
FUtfCTtON CL C .. .) RETURN .;

Vaciab l ss
Bxc t!ptlc n.s
. . . Public

END : Spi cificatio11

<.'RE.ATE: PACK.\G E BODY etage M
PR·:>C!DUR.E pl(. ' .) 1$

SEGIN

11110 pl;
va1·Pri v e Priiii . . .

PR·:>CRDORE p2 •...• IS
BEClN

END p2;
FUNCT[ON f l(. . .) RE.TORN IS

BEOIN
. ..

END fl;
END (nornPaqu è!tag e J : JmplimenJaJ.ion

Spécification
Pour créer un paquetage dans son propre schéma, il fuut détenir Je privilège CRE.l\TE PROCEDURE.

Pour pouvoir créer un paquetage dans un autre schéma, Je privilège CREP.TE ANi PROCEDURE

doit être requis. La syntaxe simplifiée de la déclaration de la spécification d'un paquetage
(CREATE PACKAGE) est la suivante:

ŒFATE (œ REPLACE) PACRAGB nomPaquetage
(AUTHID (CURRENI'_USER) DEFINER)) (IS) AS)

(déclarationTypeRECORD ...) (déclarationSUBTYPE ...)
(déclarationCONSTANT ...) (déclarationEXCEPTION ...)

(déclarat ionRECORD ...) (déclarat ion Variabl e ...)
(déclarationCURSOR ...) (déclarationFonction ...)
[déclarationProcédure ...]

END (nomPaquetage) ;

Créons la spécification du paquetage GestionP ilotes qui inclut trois objets publics : la
fonction Effe ctifsHeure, la procédure PlusExpérimenté et la variable résultat.

© Éditions Eyrol/es

ŒFATE PACRAGB GestionPilotes AS

résu l tat NUMBER : = 0 ;

FUN:TICN EffectifsHeure(pccmp IN VARCHAR2, pheuresVol IN NUMBER)

l r.111

1 330

RE'IURN NUMBER;

PROCEDURE PlusE><périmenté(pccmp IN our VARCHAR2,
pncmPi 1 OOT VARCHAR2, pheuresVo l
OOT NUMBER) ;

END GestionPilotes

COmpilation
Pour compiler la spécification, comme l'implémentation du paquetage, à partir de l' interfuce
SQL*Plus, il faut procéder comme pour un sous-programme. En cas d'erreurs, il fuut exécuter
SHOW ERRORS sous SQL*Plus ou interroger la vue USER_ERRCRS. Une fois que les messages
Package créé puis Corps de package créé apparaissent, le paquetage est opérationnel.

nlllémentation
Pour implémenœr un paquetage, il fuut détenir le privilège ŒEATE PRC:CEWRE. Pour créer un
paquetage dans un autre schéma, le privilège ŒE<\TE N:fY PRC:CEIXJRE doit être requis. La syntaxe
simplifiée de l'implémentation d'un paquetage (CREATE PPCKAGE OODY) est la suivante :

CREATE (OR REPLACE) PACltll.GB BODY nomPaquetage {IS) AS)
(définition objets privés)
[définition sous-programmes privés]
(définition procédures publiques)
(définition fonctions publiques)

END (nomPaque tage) ;

Créons le corps du paquetage GestionPilotes en codant la fonction EffectifsHeure et la
procédure PlusExpérimenté :

CRFATE PACltll.GB BODY GestionPilotes AS

FUN:TICN Effec t ifsHeure (pconp IN VARClll\R2, pheuresVo l IN NœlBER)

RE'IURN NUMBER IS

BIDIN
IF (pccmp IS NULL) TllEN

SELECT COONl' (*) INTO résulta t FRCM Pilote nbHVol >

pheuresVo l ;

ELSE
SELECT COONl' (*) INTO résulta t FRCM Pilote

nbHVol > pheuresVo l AND ccmp = pcœnp;
END IF;
RE'IURN résulta t;

END Eff ectifsHeure;

© ÉdW/ons Eyroles

PROCEDURE PlusE><périmenté(pccmp IN Our VARCHAR2, pnomPil Our
VARCHAR2, pheuresVol Our NUMBER) IS

BEGIN
... voir section précédente

END PlusE><périmenté;

END GestionPilotes
/

Aœel
L'accès à un sous-progrrunme sp d'un paquetage paq s'écrit paq. sp. L'appel de ce sous­
programme suit les mêmes règles que celles étudiées dans les sections précédentes (procédures
et fonctions cataloguées). Les prérogatives d'exécution d'un sous-programme d'un paquetage
sont identiques à celles des sous-programmes classiques.

L'appel de la procédure PlusExpérimenté du paquetage GestionPilotes sera codé
GestionPilotes. PlusExpérimenté (...) dans un programme PUSQL, et la fonction
EffectifsHeure sera codée GestionPilotes. EffectifsHeure (....).

Surcharge
Il est possible de surchruger une fonction ou une méthode d'un paquetage. Les deux sous­
programmes doivent avoir Je même nom mais différents paramètres. La spécification du
paquetage liste tous les sous-programmes et contient un codage différent pour chacun.

RecompilaliOn
Pour recompiler la spécification ou Je corps d'un paquetage, il faut utiliser l'option OR

REPIJICE de la commande CREATE P.PCKAGE après avoir modifié une des deux parties (ou les
deux) et réexécuté l'une ou l'autre partie du paquetage.

DestrucliOn d'un paquetage
La syntaxe de suppression de la spécification et du corps d'un paquetage est la suivante: pour
supprimer une partie d'un paquetage d'un autre schéma, Je privilège DROP ANY PROCEDURE

est requis.

1
DROP PACKAGE BODY (schéma.) nomPaquetage;

DROP PACKAGE (schéma.) nomPaquetage;

© Éditions Eyrol/es 331 1

l r.111

comment retourner une table ?
Il es t intéressant d'utiliser lUle fonction au sein d'un paquetage pour retourner tout ou partie
d'une table. La fonction retournera un tableau, Je paquetage contiendra la description du tableau
et la déclaration de la table. La méthode la plus appropriée, depuis la version IOg, est celle du
b1dk colle et qui permet d'extraire sous la foone d'une collection un grand volume de données.

Le tableau suivant décrit d'une part la déclaration et Je codage du paquetage contenant la fonc ­
tion qui retourne les pilotes d' une compagnie dont le code passe en paramètre, et d'autre part,
l'appel de la fonction et Je résultat obten u sous la forme d'un tableau (dont on extrait seule ­
ment la colonne nom). Le jeu d'essai est dans Je script en téléchargement.

De9cripllon et codage du paquetage

CREATE PACKAGE PKG_ Pi l otes I S
TYPE P ilote _ tyt&b

I S TABLE OF Pilote%JlONTYP&
I NDEX BY BINARY_I NI'EGER;
FUNCTION f_pi l otes _compag nie

(v_ comp I N VARCHAR2)
RETURN Pilote _ tyt&b;

END PKG_ Pi l otes;
/

CREATE PACKAGE BODY PKG_ Pi l otes I S
FUNCTION f_pi l otes _compag nie

(v_comp I N VARCHAR2)

RETURN Pilote _ tytal>
I S

tab Pi l ote_ tytab;
BEGIN

SELECT * BULlt COLI.Ser

I NI'O tab FROM Pilote
WHERE compa=v_ comp;

RETURN tab;
END;

END PKG_ Pi l otes;
/

Appel de la london

DECLARE
tab_ sortie PKG_ Pi l otes. Pilote _ tytab;
nb_pil NUMBER;
i NUMBER;

BEGIN
tab_sortie : =

PKG_ Pilot es. f_pilot es_compag nie (' AF ') ;
nb_pi l : = tab_sortie.COUNI';
FOR i I N l .. nb_pi l LOOP

DBMS_OUTPIJT.PUT_LI NE(tab _sortie(i) . nom);
END LOOP;

END;

/

Henri Alquié
Pi erre Lamothe
Didier Linxe

Procéd ure PL/SQL terminée avec succès.

curseurs

1 332

Au chapitre précédent nous avons parlé des curseurs implicites, ici nous allons étudier les
curseurs explicites (que les programmeurs appellent curseurs tout simplement). Ils sont très utili­
sés, pour ne pas dire qu'ils sont présents, dans toute procédure d'une application importante. Le

concept analogue au niveau de JDBC est programmé à J'aide de la classe Resu l tset, et sous
ASP de Microsoft, à J'aide de la classe RecordSet (appelée Dataset avec .Net).

© ÉdW/ons Eyroles

Généralilés

Un curseur est une zone mémoire qui permet de traiter individuellement chaque ligne
renvoyée par un SELECT. Un programme PL/SQL peut travailler avec plusieurs curseurs
en même temps. Un curseur, durant son existence (de l'ouverture à la fermeture), contient en
permanence l'adresse de la ligne courante.

La figure suivante illustre la manipulation de base d'un curseur. Le curseur est décrit dans la
partie déclarative. Il est ouvert dans le code du programme, il s'évalue alors et va se charger en
extrayant les données de la base. Le programme peut parcourir tout le curseur en récupérant
les lignes une par une dans une variable locale. Le curseur est ensuite fermé.

Figure 7-5 Principes d'un curseur

PROCIDUR& J FUNCTION nomSou•Programme [(.••)) lS
v.t.r ...
CORSOR. zone IS SELECT brevet, nbhVol, comp

BEGIN

OPRN :on•;
FITCH zone ttrro var:

END
I

FROH Pilote WHERE comp • 'AF'

.. -
1 PL- 1
1 PL-2
1 PL-5

(Uf.\l'Uf

1 2450 1 AF 1
1 900 1 AF 1
1 200 1 AF 1

Il existe plusieurs manières de parcourir un curseur, comme il existe plusieurs types de
curseurs à parcourir. Nous allons aborder toutes ces notions par difficulté croissante.

lnstructiOns
Les instructions propres aux curseurs sont définies dans le tableau page suivante.

© Éditions Eyrol/es

lr.111

1 334

lllllelll Ml laslucdCIDs PO• les Clntlft

lnsructlon

COR.SOR nomcurseur IS

OPDI' nomeurseur ;

Pl:TCB no.mC1.u··seur INTO

l iste v.ari4bles
n o.mRECORD;

CLOS& no.mcurseur ;

nomeurseurt ISOPDI'

nomeurseuI't NO"lTOUND

nomeurseurt rotJND

nomeurseurt ROHCOON'r

Parcours d'un curseur

Commenlalres et exemples

Déclaration du curseur.
COJlSOR z onel IS SELECT brevet , n.bHVol, comp

FROM Pil ote WHERE co:mp = ' AF ' ;

OLNerture du curseur (chargement des lignes). Aucune exception
n'est levée si la requête ne ramène aucune ligne.

OPl:N z on el;

sur la ligne suivante et chargement de
l'enregistrement courant dans une ou plusieurs variables.

rrl'CB z o ne l INTO v arl,v ar2 ,var3 ;

Ferme le curseur. L.:exœptlon INVALID _CURSOR se déclenche si des
aocès au curseur sont opérés après sa fermeture.

CLOS& zonel;

Retourne TRUE si le curseur est ouvert, FALSE sinon.
I F z o ne l * ISOPDI' THEN ...

Retourne TRUE si le dernier FETCH n'a pas ren,.,yé de ligne (fin de

EXIT MIEN z on el,NOTrOOND;

Retourne TRUE si le dernier FETCH a ren,.,yé une ligne.
WHILE (z onelirotJND) LOOP

Retourne le nombre total de lignes traitées jusqu'à présent (pointeur
absolu).

Suivant Je traitement à effectuer sur Je curseur à parcourir, vous pouvez choisir d'utiliser une
structure répétitive talll qlle , répéter ou pollr. Étudions dans un premier temps les deux
premières solutions. Le paragraphe suivant traitera de la dernière (structure FOR).

Le tableau ci-après présente Je parcours d'un curseur à J'aide des deux techniques (tant q"e et
rép éter). Ici, il s'agit de faire la somme des heures de vol des pilotes de la compagnie de code
'AF.

Avant la première extraction, nomCurseur%NOTFOUND revoie toujours NULL. Si l'instruction
FETCH ne parvient jamais à s'exécuter correctement, la boucle répéter devient infinie. Il est
conseillé de programmer la sortie d'une structure répéter à l'aide de la condition composée:
EXIT WREN nomCurs eur%NOTFOUND OR .ao11Curaeur%HOTFOtlND IS Hm.L.

© ÉdW/ons Eyroles

Tanlque

DECLARE

lllllleauMO PsCGll'sd'mamu

Répéter

œitSOR zonel IS SELECT brevet, nbHVol, con:p
FROM Pilote WHERE cortp • 'AF';

varl Pilo te. brevet%TYPE;
var2 Pilo te. nbHVol%TY PE;
var3 Pilote. corr:p%TYPE;
tota lHeures NUMBER : • 0;

BEGIN
OPBN zonel;
PftCB zonel IWJ'O varl,var2,var3;
n:n.a (zonel,POœm) LOOP

tota lHeures :• tota lHeures + var2;
PZTCB zonel DPrO varl, var2, var3;

mm LOOP;
Cl.OSE zonel ;

BEGIN
OPBN zonel;
LOOP

nTCB zonel IN'l'O varl, var2, var3;

UIT - zonelWM'J'OUND;
total Heures : • tota lHeures + var2;

..., LOOP;
a.osz zonel;

Ulilsation de structures <%ROWTYPE
Accès par la notation pointée

Il est possible de définir un enregistrement en fonction de la liste des colonnes d'un curseur.
Cela évite de déclarer autant de variables que de colonnes contenues dans Je curseur.
aux valeurs des colonnes se fait par la notation pointée comme J'illustre J' exemple suivant qui
affiche Je nom des pilotes n'appartenant pas à la compagnie de code 'AF.

© Éditions Eyrol/es

T....., 1-11 Udlsato1 d'• v.i. llllellrél

Code PLJSQL

DECLARE
C'ORSOR zone 2 XS SELECT brevet, nom

PROM Pilote WHERE NOT (corr:p • 'AP');
enreg zone2%ROWl'YPS;

BEGIN
OPBN zone 2;
PftCB zone2 IWJ'O enreg ;
WHILB (zone2UOUNO) LQOP

DBMS_OUTPUT PUT_LINE('nan
('

PETCH zone 2 mTO enreg ;
END LQOP;

11 enreg.nom \ 1
11 enreg.brevet 1 •). ');

Cl.OSE zone2 ;
END;

I

nom Florence Périsse! (PL .. J)

nom Thierry Millan (Pt... 4)
nom Aurélia Ente (PL .. 6)

Procédure PL/SQL te rminée avec succès.

Commenlllres
Déclaration de la
structure .

Chargement de la
structure .

.Accès aux éléments de la
structure .

Résultat.

l r.111

1 336

Utilisation de la clause RETURN
La clause RETURN permet de préciser Je type de retour d'un curseur. Il est intéressant de
combiner l'utilisation de cette clause avec une structure de données %RCW!'YPE si Je curseur est
défini dans la spécification d'un paquetage. L'avantage de cette technique est de pouvoir
recompiler Je corps sans avoir à modifier la spécification.

Le tableau suivant décrit une spécification de curseur qui peut être implémentée de différentes

manières dans Je temps :

Code PLISQL

CREATE PACKAGE paquet_curs eur AS
CURSOR zone3 UTUIUI Pilote%ROWTYPE;
END paquet_curs e ur;

CREATE PACKAGE BODY paquet_curs eur AS

CURSOR zone3 RETURN Pilote%ROWTYPE IS
SELECT * FROM Pilote WHERE comp = ' AF ' ;

END paquet_curs e ur;

CREATE OR U:PLAC& PACKAGE BODY p aquet_curs eur AS
CURSOR zone3 RETURN PilotetROWTYPE IS
SELECT * FROM Pilote WHERE nbhVol > 500;

END paquet_curs e ur;

Boucle FOR <gesliOn semi-automatiwe)

Commentaires

Spécification du curseur.

Implémentation du curseur.

Autle Implémentation du curseur.

L'utilisation d'une boucle FOR de curseur facilite la programmation (évite les directives OPEN,
FETO! et CLC\SE). La boucle s'anête d'elle-même à la fin de J' extraction de la dernière ligne du
curseur. De plus, la variable de réception du curseur est aussi automatiquement déclatée
(%RCXrlTYPE du curseur). L' aux valeurs des colonnes se fait également par la notation pointée.

Les lignes suivantes affichent Je nom des pilotes qui n'appartiennent pas à la compagnie de
code 'AF' en utilisant une boucle FOR :

T-1-13 llllsatold'• boue111111

Code PLISQL Commentaires

DECLARE Déclaration du curseur.
CURSOR z one 3 IS SELECT bre vet , nom

FROM Pil ote WHERE NOT (comp= ' AF ');

BEGIN
roa enreg Dl zone3 LOOP Itération dans le curseur.

DBMS_OUTPUT. PUT..LINE < ' nom : ' 11 enreg . nom 11

END LOOP;
END;

/

' (' 11 enre g . bre vet 1 1 ') .') ;

© ÉdW/ons Eyroles

Pour ceux qui ne veulent pas perdre de temps à déclarer Je curseur, Oracle offre la possibilité
de Je manipuler tout en Je déclarant à l'intérieur de l'instruction FOR Ici, il ne sera pas possible
de réutiliser Je curseur puisqu'il n'a d'existence que dans la boucle. Il ne sera pas possible non
plus d'utiliser des paramètres de curseur. Le code suivant réalise la même action que Je bloc
précédent, en utilisant un curseur temporaire :

Code PLJSQL

BEG I N
POR en.reg Dt

(SELECT brevet, nom FROM Pilote WHERE
NOl' (comp = ' AF ')) LOOP

DBMS_OUTPUT. PUT..LI NE (' n om : ' 11 enreg . nom 11 •

END LOOP;

END;
/

(' 11 enreg.brevet 11 ') .');

Ulilsation de tableaux (type lllBlD

Conwnenlllres

Itération dans un curseur
temporaire.

Il est possible d'utiliser des tableaux PUSQL (étudiés au chapitre précédent) pour récupérer
tout ou partie du contenu d'un curseur. Ceci est bien sûr valable pour les curseurs qui renvoient
un nombre raisonnable de lignes.

Le bloc suivant décrit Je chargement du tableau tab_nomPilote à partir des noms de tous les
pilotes de la compagnie de code 'AF ',et l'accès direct au deuxième élément du tableau.

© Éditions Eyrol/es

Code PLJSQL

DECLARE
TYPE nomPilotes _tytab IS TABLE OF

Pilote.nom-TYPE INDEX BY BINARY_INI'ElGER;
tab_DOllPilot• nomPilotes _tytab;
CURSOR zone4 I S SELECT brevet, nom

FROM Pi l ote WHERE comp = ' AF ' ;
i NUMBER : = l ;

BEG I N
FOR en.rêg I N zone4 LOOP

t-i> _JOCaPilote(i) : = enreg.nom;
i: = i• l ;

END LOOP;

DBMS_OUTPUT. PUT_LI NE (' 2ème pilote : ' 11
t-1>_-pilote(2)) ;

END;

/

2ème pi l ote : Frédéric D' Almeyda

Procédure PL/SQL termi née avêê succès.

Conwnenlllres

Déo'laratlon du tableau.

Chargement du tableau.

Accès au deuxième
élément.

Rés.ultat du bloc.

l r.111

1 338

Ullisation de UWIT et BULi(COWCT
Les options LIMIT et BULK COLLECT de l'instruction FEI'CH permettent de traiter de grands
volumes de données sans pour autant pénaliser la mémoire centrale ou Je cache par Je fait de
ne pas monter toutes les lignes d'une table en une fois. Ainsi, afin de retourner tout ou partie
d'une table d'une potentielle grande volumétrie, la méthode la plus appropriée consiste à utili­
ser un tableau PUSQL qu'on chatgera dans une boucle en limitant Je nombre d'enregistre­

ment tout en parcourant toute la table.

Le tableau suivant décrit une bonne et une mauvaise manière de faire cette extraction. Le jeu
d'essai est dans Je script en téléchatgement.

• Dans la procédure correcte, par défaut, 100 enregistrements pilotes au plus sont dans Je
tableau, et pour chaque itération du curseur on réalise une boucle du nombre réel de pilotes
chatgés dans Je tableau. Supposons qu'il existe 2 343 pilotes, la boucle clu curseur s'exécu­
tera 24 fois, et à sa dernière itération, la boucle interne sera effectuée 43 fois.

• Dans la procédure incorrecte, par défaut, 100 enregistrements pilotes au plus sont dans Je
tableau, mais si moins de 100 pilotes (ou Je nombre indiqué dans la variable limite) sont
chatgés dans Je tableau, la boucle du curseur s'interrompt (EXIT WHEN pilotes_
cur%NOTFOUND). Pour les 2 343 pilotes, la boucle du curseur ne s'exécuteraque 23 fois,
donc les 43 derniers pilotes ne seront pas traités.

La bome manière La mauvalle manière

CREATE PROCEDURE p_ t rai te_ a ll_row s
(limi te IN PLS_ INI'ElGER DEFAULT 100)

IS
CURSOR pil otes _ c ur IS

SELECT * FROM Pil ote ;
TYPE Pil ote_ t yt ab IS

TABLE OF Pil ote% ROWI'YPE
INDEX BY BINARY_ INI'ElGER;

t "1>_pilote Pil ote_ t yt "1>;
BEGIN

OPEN pil otes_ c ur;
LOOP

FETCH pil otes _cur
BtlLI<: COLLllC'l'
INTO t "1>_pil ote LIMIT limi te ;

FOR i IN 1 .. t "1>_pilote.CO UNI'
LOOP

-- t rai t ement d e chaqu e lign e
END LOOP;

EXIT WHEN t ab_ pil ote. COON'r < limi te;
END LOOP;
CLOSE pil otes_ c ur;

END p_ t .ra i te_ a ll_row s;
/

CREATE PROCEDURE p_ t rai te_ bug_row s
(limi te IN PLS_INTElGER DEFAULT 100)

IS
CURSOR pil otes_ c ur IS

SELECT * FROM Pil ote ;
TYPE Pil ote_ t yt "1> IS

TABLE OF Pil ote%ROWTYPE
INDEX BY BINARY_INTElGER;

t "1>_pilote Pil ote_ t y t "1>;
BEGIN

OPEN pil ot es_ cur;
LOOP

FETCH pil otes_cur
BULK COLLECT INTO t ab_pilote
LIMIT limi te ;

EXIT WHEN pil ot es_ cur•NO'l'FOUND;
FOR i IN 1 .. t "1>_pil ote. COUNI'
LOOP

-- t rai t eme nt de chaqu e lign e
END LOOP;

END LOOP;
CLOSE pil ot es_ cur;

END p_ t r a i te_b ug_rows;
/

© ÉdW/ons Eyroles

Si vous chargez un tableau à l'a ide de BULK COLLECT dans vos instruct ions FETCH, méfiez ­
vous des directiv es %NOTFOUND et %FOUND dans les structures EXIT et IVHILE. Préférez la
méthode COUNT pour tester la taille réelle du tableau chargé par le curseu r.

Paramètres d'111 Cll'seur
Un curseur peut posséder des parrunètres d'entrée . Cette technique est très utile lorsqu'un
même curseur doit être utilisé plusieurs fois sous des critères différents . Il faudra en ce cas
fermer Je curseur s'il était déjà utilisé, avant de l'ouvrir à nouveau en lui passant des para­
mètres différents .

Le passage des paramètres peut se faire à l'ouverture du curseur (OPEN) ou dans la boucle FOR
(si Je curseur est utilisé en mode semi-automatique) . Comme les parrunètres d'un sous­
programrne, ceux d'un curseur ne doivent pas être restreints au niveau de la taille, seul Je type
est important.

Le tableau suivant décrit un bloc qui utilise deux fois Je même curseur en affichant d'abord les
pilotes de la compagnie de code 'AF puis ceux de la compagnie de code ''SING'. Nous utilisons
les deux écritures possibles pour passer les parrunètres .

© Éditions Eyrol/es

Code PLJSQL

DECLARE
CURSOR soneS (p_co4eccap Dl VARCBAR2) IS

SELECT breve t , nom
FROM Pil ote WHERE comp = p _cod ecomp;

e.nregbis zoneS* ROWTYPE;
BEGIN

FOR en.reg IN sone S('AI'') LOOP

DBMS_OUTPUT. PUT_LINE < ' AF, n om : ' 11 enreg . nom 11
' (' 11 enreg. brevet 1 1 ') • ') ;

END LOOP;

OPEN soneS (1 SDJQ 1) ;

FETCH z on eS INTO e nregb is
WHILE (z o neSiFO UNO) LOOP

OBMS_OUTPUT. PUT_LINE (' SING, nom : ' 11
enregbis. noml 1 ' (' 11 enregbi s . brevet 11 ') . •);

FETCH zones INI'O e.nr egbis ;
END LOOP;
CLOSE zones ;

END;

/

Conwnenlllres

Déo1aration du curseur avec
un paramètre.

Chargement et parcours du
curs.eur en passant le
paramètre 'AP.

Chargement et parcours du
ours.eur en passant le
paramètre 'SING'.

1

'

1 340

Accès concurrems <FOR UPOIUE et CORDENT Of)
Si vous voulez verrouiller les lignes d'une table interrogée par un curseur dans Je but de mettre
à jour la table, sans qu'un autre utilisateur ne la modifie en même temps, il faut utiliser la
clause FOR UPDATE . Elle s' utilise lors de la déclaration du curseur et verrouille les lignes
concernées lorsque Je curseur est ouvert . Les verrous sont à la fin de la transaction.

La déclaration d'un curseur FOR UPDATE, qu'on peut qualifier de « modifiable», est la
suivante:

SELEl:T ... FRCM { nomTable) nomVue) WHERE ...

1

CURSOR nomCurseur ((paramètres)) IS

POR UPDATB (OP ((schéma.) {nomTable) nomVue) .) colonne (, ...)

(IDWAIT) WAIT entier)

• La directive OF permet de connaître les colonnes à verrouiller. Sans elle, toutes les colonnes
issues de la requête seront verrouillées.

• NOWArr précise de ne pas faire attendre Je programme et de retourner un message d'erreur
si les lignes demandées sont verrouillées par une autre session.

• WAIT spécifie Je nombre de secondes à attendre au maximum avant que les lignes soient
déverrouillées par une autre session. Sans NOl'lAIT et WAIT, Je programme attend que les
lignes soient disponibles.

Une validation (COMMIT) avant la ferm eture d'un curseur FOR UPDATE déc lenchera une
erreur.

Il n'est pas possible de déc larer un curseu r FOR UPDATE en utilisant dans la requête les
directives DISTINCT ou GROUP BY, un opérateu r ensemb liste, ou une fonct ion d'agré­
gat.

Il est souvent intéressant de pouvoir modifier facilement la ligne courante d'un curseur
(UPDATE ou DELEl'E à répercuter au niveau de la table). La clause \'lllERE CT.iRRENI' OF, située
au niveau de J' instruction de mise à jour (UPDATE ou DELETE), permet de référencer la ligne
courante d'un curseur. Il est conseillé d'utiliser un curseur FOR UPDATE pour verrouiller les
lignes à actualiser.

© ÉdW/ons Eyroles

Le tableau suivant décrit un bloc qui utilise Je curseur FOR UPDATE pour :

• augmenter Je nombre d'heures de 100 pour les pilotes de la compagnie de code 'AF ;

• diminuer ce nombre de 100 pour les pilotes de la compagnie de code 'SING' ;

• supprimer les pilotes des autres compagnies.

Notez qu'il n'y a pas d'autre condition que WHERE OJRRENr OF dans les instructions de mise

à jour de la table.

Code PLJSQL

DECLARE
CURSOR 2onéModi f iable IS SELECT * FROM Pil ote

FOR 'CJPDAft OF nbHVol
BEGIN

FOR enreg IN zoneModi f i abl e LOOP
I F e n.reg. comp = 'AF ' THEN

OPDAT& Pil ote SET nbHVol = nbHVo l • 100
wm& CURREll'l' 01' z oneModifiable;

ELSI F en.r eg .comp = ' SING ' THEN
UPDATE Pil ote SET nbHVol = nbHVo l - 100

wm& CURREll'l' 01' z oneModifiable;
ELSE

DELETE F ROM Pil ote

END I F ;

END LOOP;
COMMIT;

END;

/

WllER& CUIUl&lft' 01' z oneModi f iable;

Variables curseurs m& CURSORl

Conwnenlalres

Déo'laratlon du curseur
modWlable.

Chargement et parcours du
curseur.

Mises à jour de la table
Pil ote par l'intermédiaire
du curseur.

Validation de la transaction.

Une variable curseur (REF CURSOR) définit un curseur dynamique qui n'est pas associé à
une requête donnée comme un curseur classique (statique). Une variable curseur permet au
curseur d'évoluer au cours du programme.

Une variable curseur est déclarée en deux étapes : déclaration du type et de la variable du type.
Une variable REF CURSOR peut être définie dans un bloc ou un sous-programme PUSQL par
les instructions suivantes :

1
TYPB nom'IYP eCUrs eurDynamiqu e IS RD CO'RSOR (RE'IURN t ypeR etourSQL) ;

nomCurs e urDynamiqu e nom7}p eCUrs e urDynamiqu e ;

© Éditions Eyrol/es 341 1

lr.111

1 342

Le type de retour représente en général la structure d'un enregistrement d'une table. Le
curseur dynamique est dit « typé» (stro11g) s'il inclut un type de retour. Dans le cas inverse, il
est non typé (weak) et permet une grande flexibilité car toute requête peut y être associée.
L'ouverture d'un curseur dynamique est commandée par l'instruction OPEN FOR requête.
La lecture du curseur s'opère toujours avec l'instruction FETCH

Curseurs non typés

Le tableau suivant décrit un bloc qui utilise le curseur dynamique non typé zone6. Ce curseur
sert à afficher dans un premier temps les numéros de brevet et noms des pilotes qui ne sont pas
de la compagnie de code 'AF'. Dans un second temps, le curseur est rechargé afin d'extraire les
numéros de brevet et le nombre d'heures de vol de tous les pilotes de la compagnie de code 'AF.

Code PL/SQL

DECLARE
TD& re f _ zone6 IS RD' CURSOR;
zone6 re f_zone6;
varl Pi l ote.brevet% TYPE;
var2 Pi l ote. nom%TYPE;
var3 Pi l ote. nbHVol %TYPE;

BEGIN
OPSm zone6 FOR SELECT brevet, nom

FROM Pilote WHERE NOT (comp = ' J>.F ');
FETCH zone6 INI'O var l , var2;
WH I LE (zone6U'OUND) LOOP

DBMS_OUTPUT . PUT_ LI NE (' nom 11 var2 11
' (' 11 varl 11 '). ');

FETCH zone6 I NTO varl , var2;
END LOOP;
CLOSE zone 6;

OPSm zone6 FOR SELECT brevet, nbHVol
FROM Pilote WHERE comp = ' AF ' ;

FETCH zone6 INI'O var l , var3;

CLOSE zone 6;
END;

/

Commentaires

Déclaration du curseur
dynamique et des variables
de réception.

Chargement et paroours du
curseur dynamique.

Autre chargement du
curseur dynamique.

© ÉdW/ons Eyroles

Curseurs typés

Le tableau suivant décrit un bloc qui utilise Je curseur dynamique typé z one?. Celui-ci sert à
extraire toutes les colonnes de la table Pilo te. Dans un premier temps Je curseur dynamique
est chatgé avec les pilotes qui ne sont pas de la compagnie de code 'AF. Ensuite, Je curseur est
rechargé avec les pilotes qui sont de la compagnie de code 'AF.

T-1-10 Cin• 11116

Code PLJSQL

DECLARE
TYR .re f_zone7 IS Ra' CURSOR

RSTOIUI Pil ote,ROWI"lPE;
zone7 .re f_zone7;
en.reg zone7* ROWI'YPE;

BEGIN
OPl:lt z one7 l"OR SELECT * FROM Pil ote

WHERE NOT (comp = ' J>.F ');
FETCH z on e7 INTO e nrêg;
WHIL E (z o ne7,FO UND) LOOP

DBMS_OUTPUT . PUT..LINE (' n om : ' 11 e nreg. n om
Il < ' ll enreg.comp Il') . ');

FETCH z one7 INro en.reg ;
END LOOP;
CLOSE zone7 ;

OPl:lt z one7 l"OR SELECT * FROM Pil ote
WHERE comp = ' J>.F ' ;

FETCH zone7 INTO enreg;

CLOSE zone7 ;
END;

/

FoncliOns lable IÎPeliled

Conwnenlllres

Déo'laratlon du curseur
dynamique et de la
structure de réception.

Chargement et paroours du
curs.eur dynamique.

Autre chargement du
curs.eur dynamique.

Les fonctions table pipeli11ed font jouer à PUSQL Je rôle de source de données. La fonction
appelée Je plus souvent dans la clause FROM d'une requête (du fait que Je retour de cette fonc­
tion est une table, il fuudra utiliser J 'opérateur TABLE qui convertit une collection en table). Il
est, dans certains cas, possible de l'invoquer dans une clause SELEŒ'.

Ces fonctions peuvent accepter en paramètre une collection d'enregistrements : table PUSQL,
VARRAY (extension objet). L'exécution d'une telle fonction se voit ainsi « parallélisée» du fait
que chaque ligne est retournée à l'appelant (directive PIPE ROW) sans attendre la fin de la
fonction. Ainsi ne vous préoccupez pas de placer un RETURN, il ne peut pas être présent. Une
telle fonction est déclarée à J'aide de l'option PIPELINED.

© Éditions Eyrol/es

1

'
Le type de collection retourné par une fonction table pipe/ined est une table PL/SOL (sans
l'option INDEX BY BINARY_INTEGER), une nested table ou un vaffay. Dans le code de la fonc­
tion, vous devez retourner des éléments de la collection en quest ion (les types de données
supportés sont les types SOL NUMBER et VARCHAR2. N'utilisez pas les types de données PUSOL,
tels que PLS_INTEGER ou BOOLEAN.

L'exemple suivant réalise la même fonctionnalité q ue celle é tudiée dans Je paragraphe
«Comment retourner une table ? »La fonction table pipeli11ed retourne à chaq ue itération du
curseur un des pilotes d'une compagnie dont Je code passe en paramètre. L'appel de la fonc­
tion se réalise dans la requête (dont on extrait les colonnes brevet, nom et sal aire). Le jeu
d'essai est dans Je script en téléchatgernent.

T-1-21 fCIKlloe •11 lllPlll.i

1 Des<:tlptlon et codage du paquetage

REATE PACKAGE PKG_Pi l otes I S
TYPE Pilote _tytab

I S TABLE or Pi l ote% ROWI'YPE;
FUNCTI ON f_pi l otes _comp_pipe l ined
(v_ comp I N VARCHAR2)
ll&TtJIUI Pi l ote_ tytab PIPBLINl:D ;

END PKG_Pi l otes;
/
CREATE PACKAGE BODY PKG_ Pi l otes I S

FUNCTI ON f_pi l otes _comp_pipe l ined
(v_ comp I N VARCHAR2)

ll&TtJIUI Pi l ote_ tytab PIPBLINl:D I S
CURSOR Pi l ote_comp_cu.r

I S SELECT * FROM Pi l ote
WHERE compa=v _comp;

rty_pi l ote Pi l otet ROWTYPE;
BEGI N

OPEN Pi l ote_comp_cur;
FETCH Pi l ote_comp_cu.r INI' O rty _pi l ote;
WHILE (Pil ote_comp_c ur%FOUND) LOOP

PtPZ ROll(rty_pi l oté) ;
FETCH Pi l ote_comp_cur I NI'Cl rty_pi l ote;

END LOOP;
CLOSE Pi l ote_comp_cur;
RETURN;

END;

END PKG_Pi l otes;
/

1 344

Appel de la lonc11on table plpellned

SELECT brevet,nom,sa l aire FROM TABLE
(PKG_ Pi l otes.f _pi l otes _comp_pipe l i­
ned(' SI NG '));

BREVET NOM SALA I RE

PL-4 Christia n SOutou 10000
PL-5 Gi lles Laborde 10050
PL-6 Pierre Séry 16000

© ÉdW/ons Eyroles

Exceptïoos

Afin d'éviter qu'un programme s'arrête à la première erreur (requête ne retournant aucune
ligne, valeur incorrecte à écrire dans la base, conflit de clés primaires, division par zéro, etc.),
il est indispensable de prévoir tous les cas potentiels d'erreurs et d'associer à chacun de ces cas
la programmation d'une exception PUSQL. Dans Je vocabulaire des programmeurs on dit
qu'on garde la main pendant l'exécution du programme. Le mécanisme des exceptions
(ha11dli11g errors) est largement utilisé par tous les programmeurs car il est prépondérant dans
la mise en œuvre des transactions.

Les exceptions peuvent se programmer dans un bloc PUSQL, un sous-programme (fonction
ou procédure cataloguée), dans un paquetage ou un déclencheur.

Généralilés
Une exception PUSQL correspond à une condition d'erreur et est associée à un identificateur.
Une exception est détectée (aussi dite « levée») au cours de J'exéCt1tion d'une partie de
programme (entre un BEGIN et un END). Une fois levée, l'exception termine Je corps principal
des instructions et renvoie au bloc EXCEPTI ON du programme en question.

La figure suivante illustre les deux mécanismes qui peuvent déclencher une exception :

• Une erreur Oracle se produit, l'exception associée est déclenchée automatiquement (exem­
ple du SELECI' ne ramenant aucune ligne, ce qui déclenche l'exception ORA-01403 d'iden­
tificateur NO_DATA_FOUND).

© Éditions Eyrol/es

Rgure 7-6 Prlncj:Je généra/ des exceptions

B&OOIN

IF l .•.) THEN RAIS& PILOTE TROP JEtlNE :

SELEC:T • . • nrro ... flROM ••

'.' NOT POUND
llCIPTI ON

WlllN llO DATA f'OUNO TMlll

1 Instructions • A (

WRl.N ZERO OivtOE THlll

l In•c:rucc:1on• - B

WHIB PILOTE TROP JEUNE THIN

In•truct.ions - C

Wll&N OTlllU THIN

1 In•tructJ OM - D

EllO:

345 1

l r.111

1 346

• Le programmeur désire dérouter volontairement (par l'intermédiaire de l'instruction
RAISE) son programme dans Je bloc des exceptions sous certaines conditions. L'exception
est ici manuellement déclenchée et peut appartenir à l'utilisateur (ici la condition PlliOTE_

TROP_JElJNE) ou être prédéfinie au niveau d'Oracle (division par zéro d'identificateur
ZERO_DIVIDE qui sera automatiquement déclenchée).

Si aucune erreur ne se produit, Je bloc est ignoré et Je traitement se termine (ou retourne à son
appelant s'il s'agit d'un sous-programme).

La syntaxe générale d'un bloc d'exceptions est la suivante. Il est possible de grouper plusieurs
exceptions pour programmer Je même traitement. La dernière entrée (OTHERS) doit être
éventuellement toujours placée en fin du bloc d'erreurs.

EXCEPTION
WBBN exceptionl (œ exception2 ...) TllBll

ins truct ions;
(WBBN exception3 (œ exception4 ...) TllBll

ins truct ions;]
(WBBll Cll'HERS TllBll

ins truct ions;

Si une anomalie se produit, Je bloc EXCEPTI ON s'exécute.

• Si Je programme prend en compte J' erreur dans une entrée V.t!EN .. , les instructions de cette
entrée sont exécutées et Je programme se termine.

• Si J' exception n'est pas prise en compte dans Je bloc EXCEPTI ON :

- il existe une section OTHERS où des instructions s'exécutent;

- il n'existe pas une section OT!IERS et J' exception sera propagée au programme appelant
(une section traite de la propagation des exceptions).

Étudions à présent les trois types d'exceptions qui existent sous PUSQL, en programmant des
procédures simples interrogeant la table Pilote illustrée à la figure 7-3.

© ÉdW/ons Eyroles

Exception inleme prédéfilÎe
Les exceptions prédéfinies sont celles qui se produisent Je plus souvent. Oracle affecte un nom
de manière à les traiter plus fucilement dans Je bloc EXCEPTICN. Le tableau suivant les décrit :

Nom de l'excepllon Niméro Commentaires

ACCESS_I NI'O_)IULL ORA-06530 Affectation d'une valeur à u.n cbjet non

CASE_)IOT_F'OUND ORA-06592 Aucun des choix de la structure CASE sans ELSE
n'est effectué.

COLLECTI ON_I S_)IULL ORA-06531 Utilisation d'une méthode autre que EXISTS sur
une collection (nesred table ou vsrran non
Initialisée.

CURSOR_ALREADY_OPEN ORA-06511 Ouverture d'un curseur déjà ou110rt.

DUP_VAL_ON_I NDEX ORA-00001 Insertion d'une ligne en dooblon (clé primaire).

I NVALI D_CURSOR ORA-01001 Ouverture Interdite sur un curseur.

I NVALI D_NUMBER ORA-01722 Échec d'une conversion d'LJne chaîne de
caractères en NUMBER.

LOGIN_DENI ED ORA-01017 Connexion Incorrecte.

NO_DATA_F'OUND ORA-01403 Requête ne retournant aucun résultat.

NOT_LOGGED_ON ORA-01012 Connexion Inexistante.

PROGRAM,..ERROR ORA-06501 Problème PUSQL Interne (Invitation au contact du
support ...).

ROWI'YPE_MISMATCH ORA-06504 Incompatibilité de types entre une variable externe
et une variable PUSOL.

SELF _I S_)IULL ORA-30625 Appel d'une méthode d'un type sur un objet NULL
(extension objet).

STORAGE_ERROR ORA-06500 Dépassement de capacité mémoire.

SUBSCRIPT.)!EYOND_COUNT ORA-06533 Référence à un Indice Incorrect d'une collection

SUBSCRIPT_OUTSIDE_LI MIT ORA-06532
(nesred table ou varmn ou variables de type
TABLE.

SYS_I NVALI D_ROWI D ORA-0141 0 Échec d'une conversion d'LJne chaîne de
caractères en ROWID.

TIMEOUT_ON_RESOURCE ORA-00051 Dépassement du délai allooé à une ressource.

TOO_MANY_ROWS ORA-01422 Requête retournant plusleu.rs lignes.

VALUE_ERROR ORA-06502 Erreur (conversion, troncature, taille)
d'un NUMBER.

ZERO_DI VIDE ORA-01476 Division par zéro.

© Éditions Eyrol/es 347 1

lr.111

1 348

Le code d'erreur (SQLCODE) qui peut être récupéré par un programme d'application (Java par
exemple sous JDBC), est inclus dans le numéro interne de l'erreur (pour la deuxième excep­
tion, il s'agit de -6 592).

Concernant l'erreur NO_DATA_FOUND, rappel ez-vous qu'e lle n'est opérationne lle qu'avec l'ins­
truction SELECT. Une mise à jour ou une suppression (UPDATE et DELETE) d'un enreg istre­
ment inexistant ne déc lenche pas l'exception . Pour gérer ces cas d'erreurs, il faut utiliser un

curseur implicite et une exception uti lisateur (voir la section •Utilisation du curseur
implicite•) .

Si vous désirez programmer une erreur qui n'apparaît pas dans cette liste (exemple :
erreur référentielle pour une suppression d'un enregistrement d'une table identifiée par
une clé étrangère), il faudra programmer une exception non prédéfinie (voir la section
suivante) .

Plusieurs e"eurs

Le tableau suivant décrit une procédure qui gère deux erreurs : aucun pilote n'est associé à la
compagnie de code passé en paramètre (NO_DATA_FOUND) et plusieurs pilotes le sont (TOO_
Ml\NY_ROWS). Le programme se termine correctement si la requête retourne une seule ligne
(cas de la compagnie de code 'CAST') .

Code PLISQL Commentaires

CREATE PROCEDURE procExcept i onl (p_comp IN VARCHAR2) IS Requête déclenchant
varl Pil ote. nomi TYPE; potentle'.llement deux

BEGIN exceptions prévues.
SELECT nom INro varl FROM Pil ote --= ====--..

WHERE comp = p_comp;
DBMS_OUTPUT. PUT_LINE (' Le pi l ote de l a compa gni e

11 p_comp 11 ' est ' 11 varl) ;

DCDTIOll
wm:• NO_DATA,_F'OUND TDll

DBMS_OUTPUT. PUT..LINE (' La compag nie ' 11
p_comp 11 ' n " a aucun pil ote ! ');

wm:• TOO_MANY_ROWS TDll
DBMS_OUTPUT. PUT_LINE (' La compag nie ' 11

p_comp 11 ' a plus i eurs pil ot es ! ') ;
END;

La trace de l'exécution de cette procédure est la suivante :

1 S QL> ElCEl:UTE p r ocExcept i onl (• l\F ') ;

Aucun résultat renvoyé.

Plusieurs résultats
renvoyés.

© ÉdW/ons Eyroles

la ccmpagnie AF a p l usieurs pi l otes !

Procédure PL/ SQL terminée avec succès.

SQL> EXECUTE procExceptian l ('R IEN') ;

la ccmpagnie RIEN n ' a aucun pi l ote !

Procédure PL/ SQL terminée avec succès.

SQL> EXECUTE procExcept i an l ('CAST') ;

Le p ilote de l a conpagnie CAST est Thierry Millan

Procédure PL/ SQL terminée avec succès.

Si une autre erreur se produit, en l'absence de la directive OT!IERS dans le bloc d'exceptions,
le programme se tennine anormalement en renvoyant J' erreur en question. Dans notre exemple,
seule une erreur interne pourrait éventuellement se produire (PROGRAM_ERROR, S'IORAGE_

ERROR, TIMECX1I'_ON_RESOURCE).

Même erreur sur différentes instructions

Le tableau 7-24 décrit une procédure qui gère deux fois l'erreur non trouvée (NO_Dl\TA_
FOUND) sur deux requêtes distinctes. La première requête extrait le nom du pilote de code
passé en paramètre. La deuxième extrait le nom du pilote ayant un nombre d'heures de vol
égal à celui passé en paramètre. Le programme se termine correctement si les deux requêtes ne
retournent qu'un seul enregistrement.

La directive ôTHERS permet d'afficher en clair une autre erreur déclenchée par une des deux
requêtes (ici notarnrnent TOO_MANY_ROWS qui n'est pas prise en compte). Notez ici l'utilisa­
tion des deux variables d'Oracle : SQLERRM qui contient le message en clair de l'erreur et
SQLCODE le code associé.

La trace de l'exécution de cette procédure est la suivante :

SQL> EXECUTE procExcept i an2 (' PL- 1', 1000) ;

Le p ilote de PL- 1 est Gilles Laborde

Le p ilote ayant 1000 heures est Fl orence Pér i sse !

Procédure PL/ SQL terminée avec succès.

SQL> EXECUTE procExcept i an2 (' PL-0', 2450) ;

Pas de p ilote de brevet : PL-0

Procédure PL/ SQL terminée avec succès.

Dans cette procédure, une erreur sur la première requête fait sortir le prograrnrne avoir
traité l'exception) et de ce fait la deuxième requête n'est pas évaluée. Pour cela, il est intéres­
sant d'utiliser des blocs imbriqués pour poursuivre le traitement avoir traité une ou
plusieurs exceptions.

© Éditions Eyrol/es 349 1

lr.111

1 350

Code PLISQL

CREATE PROCEDURE procException2
(p_brevet I N VARCHAR2, p.)leures I N NUMBER) I S

varl Pil ote. n om%TYPE;
requete NUMBER : = 1;

BEGIN
SELECT nom I NrO var1 FROM Pil ote

WHERE brevet = p _brevet;
DBMS_OUTPUT. PUT_LI NE (' Le pi l ote de ' 11

p_brevet 11 ' est ' 11 varl);

requete : = 2;
SELECT nom I Nro varl FROM Pil ote

WHERE nbHVo l = p.)leures;
DBMS_OUTPUT. PUT_LI NE (' Le pi l ote ayant ' 11

p.)leures 11 ' he ures est ' 11 varl);

DCDTIOll
wm:• NO_DATA,_F'OUND TDll

I F requete = 1 THEN
DBMS_OUTPUT. PUT_LI NE(' Pas de pi l ote de brevet

11 p_brevet) ;
ELSE

DBMS_OUTPUT . PUT_LI NE(' Pas de pi l ote ayant ce

nombre d ' ' he ures de vol : ' 11 p.)leures) ;
END I F;

wm:• OTHERS TDll
DBMS_OUTPUT. PUT_LI NE(' Erreur d ' •orac l e ' 11

SQLDR M 11 ' (' 11 SQLCODll: 11 ') ') ;
END;

Imbrication de blocs d'e"eurs

Commentaires

Requêtes déclenchant
potentle'.llement une
exception prévue.

Aucun résultat.
Traitement pour savoir
quelle requête a déclenché
1·exœptlon.

Autre erreur.

Le tableau suivant décrit une procédure qui inclut un bloc d'exceptions imbriqué au code prin­
cipal. Ce mécanisme permet de poursuivre l'exécution après qu'Oracle a levé une exception.
Dans cette procédure, les deux requêtes sont évaluées indépendamment du résultat retourné
par chacune d'elles.

L'exécution suivante de cette procédure déclenche les deux exceptions. Le message d'erreur
est contrôlé par Je dernier cas d'exception, il ne s'agit pas d'une interruption anormale du
programme.

1

SQL> ElCEl:UTE procExcept i on3 (• PL-0 •, 2450) ;

Pas de p ilote de breve t : PL- 0

E=eur d 'Orac le ORA-01422 : l'extract i on exacte ramène p lus que le nonbre
de lignes demandé (- 1422)

© ÉdW/ons Eyroles

lllllelll 1-25 lloc d'ucepdoas lllllllQi

Code PL/SQL

CREATE PROCEDURE procException3
(p_brevet I N VARCHAR2, p.)leures I N NUMBER) I S

varl Pi l ote. nom%TYPE;
BEGIN

SELECT nom I NrO var1 FROM Pilote
WHERE brevet = p_brevet ·•,----­

DBMS_OUTPUT. PUT_LI NE(' Le pilote de • 11 p_brevet
11 ' est • 11 varl);

DCSPTIOll
wm:m NO_ DATA.._FOUND Tllm

DBMS_OUTPUT .PUT_LI NE(' Pas de pi l ote de brevet

11 p_brevet);
wm:m OTHERS TllD

DBMS_OUTPUT.PUT_LI NE(' Erreur d ' •orac l e • 11
SOLDNI Il. (' Il SOLCODS Il') ');

END;

SELECT nom I NrO varl FROM Pi l ote
WHERE nbHVo l = p.)leures

DBMS_OUTPUT.PUT_LI NE(' Le pilote ayant • 11 p.)leures 11
• heures est • 11 varl);

ll:XC&PTIOll

wm:m NO_DATA....FOUND TllD
DBMS_OUTPUT.PUT_LI NE(' Pas de pi l ote aya nt ce nombre

d " heures de vol : • 11 p.)leures);
wm:m OTHERS TllD

DBMS_OUTPUT.PUT..LI NE(' Erreur d ' •orac l e • 11
SQLSIUUI 11 • (• 11 SQLCODS 1 1 •) •) ;

END;

Exception ullisateur

Commentaires

Bloc Imbriqué.

Gestion des exceptions
de la première requête.

Suite du

Gestion des exceptions
de la deuxième
requête.

Il est possible de définir ses propres exceptions. Cela pour bénéficier des blocs de traitements
d'erreurs et aborner une erreur applicative comme une erreur renvoyée par la base. Cela
améliore et facilite la maintenance et l'évolution des programmes car les erreurs applicatives
peuvent très facilement être propagées aux programmes appelants.

Déclaration

La déclaration du nom de l'exception doit se trouver dans la section déclarative du sous­
prograrnrne.

1 nomException BXCBPTION;

© Éditions Eyrol/es 351 1

lr.111

1 352

Déclenchement

Une exception utilisateur ne sera pas levée de la même manière qu'une exception interne . Le
programme doit explicitement dérouter Je traitement vers Je bloc des exceptions par la direc­
tive RAI SE. L'instruction RAI SE permet également de déclencher des exceptions prédéfinies.

Dans notre exemple, programmons les deux exceptions suivantes :

• erreur_piloteTropJeune qui va interdire l'insertion des pilotes. ayant moins de
200 heures de vol ;

• erreur_piloteTropExpérimenté qui va interdire l'insertion des pilotes ayant plus de
20 000 heures de vol.

Le tableau suivant décrit cette procédure qui intercepte ces deux erreurs applicatives :

Code PLISQL

CREATE PROCEDURE sa i s i ePilote
(p_brevet I N VARCHAR2 ,p_nom I N VARCHAR2,
p_nbHVol I N NUMBER, p _comp I N VARCHAR2) I S

erreur_pi l oteTropJeW\e EXC&PTIC81
erreur_pi l oteTropExpérimenté EXC&PTIC81

BEGI N
INSERT INI'O Pilote (brevet, nom, n.bHVol, comp)

VALUES (p_brevet,p_nom,p_nb HVol, p _comp);
I F p_nbHVol < 200 THEN RAISS er.reur_pi l oteT.ropJeune;
END I F;

I F p_nbHVol > 20000 THEN
RAI.SS erreur_pi l oteTropExpérimenté;

END I F;
COMMIT;

EXCEPTI ON
WHEN erreur_pi loteTropJeune THEN

ROLLBACK;

DBMS_OUTPUT . PUT_I,I NE (' Désolé, l e pilote manque
d ' ' expérie nce ');

WIŒN erreur_piloteTropExp6ri.1Hnt6 THEN

ROLLBACK;

DBMS_OUTPIJT . PIJT_LI NE (' Désolé, l e pilote a
trop d ' ' expérie nce ');

WHEN OTHERS THEN
ROLLBACK;

DBMS_OUTPUT . PUT_LI NE(' Erreur d ' •orac l e ' 11 SQLE RRM
11 ' (' 11 SQLCODE 11 ') ') ;

END;

Commentaires

Déclaration
de 1·exœptlon.

Corps du traitement
(validation).

Gestion de l'exception.

Gestion des autres
exceptions.

La trace de l'exécution de cette procédure où l'on passe des valeurs en paramètres qui déclen­
chent les deux exceptions est la suivante.

© ÉdW/ons Eyroles

SQL> EXECUTE sais i ePilote (' PL-9', "l\.t ffery Michel•, 199, ' AF ') ;
Déso l é , l e p ilote manque d 'e.xpér i ence

Procédure PL/ SQL terminée avec succès.

SQL> EXECUTE sais i ePilote (' PL-9', ''l\.t ffery Michel•, 20001, ' AF ') ;
Déso l é , l e p ilote a trop d 'e.xpér i ence

Procédure PL/ SQL terminée avec succès.

Ulilsation du cursell' iRIPICite
Étudiés dans Je chapitre 6, les curseurs implicites permettent ici de pallier Je fait qu'Oracle ne
lève pas J' exception NO_DATA_FOUND pour les instructions UPDATE et DELETE. Ce qui est en
théorie valable (aucune action sur la base peut ne pas être considérée comme une erreur), en
pratique il est utile de connaître Je code retour de l'instruction de mise à jour.

Considérons à nouveau la procédure àétruit Compagnie en prenant en compte l'erreur
applicative erreur_ compagnieinexi s tante qui intercepte une suppression non réalisée.
Le test du curseur implicite de cette instruction déclenche! 'exception utilisateur associée.

T- 1-21 Udlsa1lcie 1111 Clntll' llllllcftl

Code PLJSQL

CREATE OR RZPLACll: PROCEDURE dét rui tCompag nie
(p_comp IN VARCHAR2) IS

e.rreur _ilRes t eUnPil ote EXCSPTIC8;
PRAalA DCSPTiœ _DaT(erreur _ilRes t eUnPil ote . -2292);
e.rreur _c ompagnieinexis t ant e EXCSPTIC8;

BEGIN
DELETE FROM Compag nie WHERE comp = p_comp ;

I F THEN

RAISS erreur _compagnieinexis tant e;
END I F ;

COMMIT;

DEMS_OUTRJT. RJT..,LINE (' Canpa gni e 'l lp_comp l 1 ' détzui te. ');

EXCEPTION
WBl:lt e.rreur _ilRes t eUnPil ote TRSN

DBMS_OUTPUT. PUT_LINE (' Déso l é , il r este en cor e un
pil ote à l a compag nie ' 11 p _comp) ;

WBDI erreur _compagnieine-xis t a.nt e TllDI'
DBMS_OUTPUT. PUT_LINE (' La compag nie ' 11 p _comp 11

' n ' ' e xiste pas dans l a base !');

- OTHERS TDN
DBMS_OUTPUT. PUT_LINE (' Erre ur d ' •o r ac l e ' 11 SQLERRM 11

' (' 11 SQLCODE 11 ') ') ;
END;

Canmenlalres

Déclaration
des exceptions.

Corps du traitement
(validation).

Gestion
des exceptions.

Gestion des autres
exceptions.

L'exécution de cette procédure où J' on passe un code compagnie inexistant fuit maintenant
dérouler la section des exceptions.

© Éditions Eyrol/es

lr.111

1 354

1
SQL> ElCEl:UTE détruitCcmpagnie(' rien ') ;

La con:pagnie rien n 'existe pas dans l a base!

ExcepliOn interne non prédéfiiîe
Pour intercepter une erreur Oracle qui n'a pas été prédéfinie (pour laquelle Oracle n'a pas
associé de nom), et être ainsi plus précis qu'avec la clause OTHERS, il faut utiliser la directive
PRAGMA EXCEPTI ON_INIT. Celle-ci indique au compilateur d'associer un nom d'exception,
que vous aurez choisi, à un code d'erreur Oracle existant. La directive PRJICMA (appelée aussi
pseudo-instruction) est un mot-clé signifiant que l'instruction est destinée au compilateur (elle
n'est pas traitée au moment de l'exécution).

Déclaration

Deux commandes sont nécessaires dans la section déclarative à la mise en œuvre de ce
mécanisme : déclarer le nom de l'exception et associer cet identificateur à l'erreur Oracle.

1
nomException EXCEPTION;
PRAGKA BXCBPTION_INIT (nomExcept ion , numéroErreurOracle);

Pour connaître le numéro de l'erreur qui vous intéresse, consultez la liste des erreurs dans la
documentat ion d'O racle (Error Messages qui est dassée par numéros croissants et non pas
par fonctionnal ités). Cherchez par exemple les entrées correspondant à foreign key dans le
chapitre des erreursORA-0 2100 to ORA-04099.

Vous pouvez aussi écrire un bloc PL/SOL qui programme volontairement l'erreur pour voir sous
SQL'Plus le numéro qu'Oracle renvoie.

Déclenchement

Une exception non prédéfinie sera levée de la même manière qu'une exception prédéfinie, à
savoir suite à une instruction SQL pour laquelle le serveur aura renvoyé une erreur.

Considérons les deux tables suivantes. La colonne ccrnp de la table Pilote est clé étrangère
vers la table Compagnie. Programmons une procédure qui supprime une compagnie de code

passé en paramètre.

Compagni e

comp vill e

AF Paris
SING Sinni:i.rvlur
CAST Blaanac
EJET Dublin

â détruire

Rgure 7-7 Deux tables

Pilote

nornComp brevet nom
Air France PL·l Gilles Labôrde
SinaaoorQ AL PL·2 Frédéric D'Almovda
casianetAL PL·3 Ftorence Pérîssel
Easv Jet PL·4 Thlenv Millan

PL·5 Christine Rovo
PL·6 Aurélia Ente

rù:>HVol comp
2450 AF
900 AF
1000 SING
2450 CAST
200 AF
2450 SING

© ÉdW/ons Eyroles

Le tableau suivant décrit la procédure détruit Compagnie qui intercepte l'erreur ORA-
02292: enregi s trement fil s existant . Il s'agit de contrôler Je programme si la
compagnie à détruire possède encore des pilotes référencés dans la table Pilo te.

Code PLJSQL Ccmmenlalres

CREATE PROCEDURE détrui tCompagnie(p_comp IN VARCHAR2) IS Déclaration
e.rreur _ilResteUnPil ote DCSPTiœ; de l'exoeption.
PllAGlll. EXCSPTiœ_DIIT(e.rreur _ilResteUnPil ote. -2292);

BEGIN Corps du traitement
DELETE FROM compag nie WHERE comp = p_comp; (validation).
COMMIT;
DBMS_OUTPUT. PUT_LINE (•compag nie ' 11 p_comp 11

' détrui te. ');

EXCEPTION

WHEN erreur _ilP.e•teUDPilote THEN
DBMS_OUTPUT. PUT_LINE (' Déso l é , il r este en cor e un

pil ote à l a compa gni e ' 11 p_c omp);

Gestion de l'exception.

Wl!EN OTHERS THEii

DBMS_OUTPUT. PUT_LINE (' Erre ur d ' •o r ac l e ' 11 SQLERRM
Il ' (' Il SQLCODE Il ') ');

END;

Gestion des autres
exceptions.

La trace de J' exécution de cette procédure est la suivante. Notez que si on applique cette procé­
dure à une compagnie inexistante, Je programme se termine normalement sans passer dans la
section des exceptions.

SQL> EXECUTE détru i t Conpagnie (' AF ') ;

Déso l é , il reste encore \ID p ilote à l a ccmpagn i e AF

Procédure PL/ SQL terminée avec succès.

SQL> EXECUTE détru i t Conpagnie (' EJET ') ;

Conpagnie EJEI' détru i te.

Procédure PL/ SQL terminée avec succès.

PropagaliOn d'une exception

Nous avons vu jusqu'à présent que Jorsqu 'un bloc EXCEPTI ON traite correctement une excep­
tion (car il existe soit une entrée dans Je bloc correspondant à l'exception, soit l'entrée
OTHERS), l'exécution du traitement se poursuit en séquences après l'instruction END du bloc
EXCEPTI ON.

© Éditions Eyrol/es 355 1

l r.111

1 356

Mécanisme général

Si une exception se déclenche mais qu'aucune entree n'est prévue dans Je bloc EXCEPTI ON(et
qu'il n'existe pas J' entrée OTHERS), J' exception se propage successivement au niveau des
blocs EXCEPTION contenus dans Je code appelant (ou englobant), jusqu'à ce qu'une entrée
corresponde (ou l'entrée OTHERS). Si aucun des blocs d'erreurs ne peut traiter l'exception, Je
programme principal se termine anormalement en renvoyant une erreur. La figure suivante

illustre ce processus :

Figure 7../J Propag8llon des exceptions

BEGIN

BEGIN

RAlSE . . . 011

SQI., 1.

KXCIPTION

WHEN - THEN i 2. Rec/lercltc de
WHEN - THEN

lllD ;

3. Exceplion lrom •ée

- 4. Va en .îéquence

4bis. Red1nd1e de
l'exreption

Notez que lorsque l'exception se propage à un bloc englobant, les actions exécutables restantes
de ce bloc sont ignorées. Un des avantages de ce mécanisme est de pouvoir gérer des excep­
tions spécifiques dans leur propre bloc, tout en laissant Je bloc englobant gérer les exceptions

plus générales.

Exceptions reroutées (reraise)

Il est, dans certains cas, intéressant d'exécuter plusieurs blocs d'erreurs po111r la même excep­
tion. On déclenche plusieurs fois l'exception (exception reraised). Le principe consiste à
utiliser la directive RAISE sans spécifier Je nom de l'exception à traiter de nouveau (voir la
figure suivante dans laquelle l'exception avionTropvieux est reroutée). Si l'exception ne
peut être traitée dans Je bloc englobant, alors elle est propagée à J' environnement appelant ou
englobant (voir section précédente).

© ÉdWFons Eyroles

Figure 7-9 Exception reroutée

av1onTropV1eux EXCEPTION;
BBOill

BEGIN

IP .. . THEN
RAIS! avionTropVieux ;---._

END IP; /
EXCIPTI OH ... "-------

WME.N av1onTropVieux THEH

RAISI ;
er-m;

E.XCBPTIOH
ïr.1tCN av1onTropV1eux THBH

WHEH - THEH
END;

Procédure MISE_AfPUClUION ElllOR

Excep1i011
reroulle

La procédure RAISE_APPLICATICN_ERROR permet de définir ses propres messages et codes
d'erreurs. Cette procédure évite Je renvoi d'exceptions non traitées car Je numéro d'erreur
(inclus dans RAISE_APPLICATICN_ERROR) sera communiqué à l'environnement appelant.

1 RAISB _APPLICATION _BRROR(numéroErreur, message (. {'IROE) Fl\LSE))) ;

• numéroErreur: valeur définie par l'utilisateur pour l'exception, comprise entre -20 000
et -20 999.

• message: chaîne de caractères (max 2 048 octets) décrivant l'erreur.

• TRUE 11'7\LSE: booléen facultatif. TRUE pour positionne l'erreur dans une pile si plusieurs
exceptions doivent être propagées en cascade., FALSE par défuut remplace toutes les
erreurs précédentes dans la pile.

La procédure RAISE_APPLICATION_ERROR peut être utilisée dans Je code ou dans la section
de traitement des exceptions d'un programme PUSQL. L'appel à la procédure RAISE_
APPLICATION_ERROR interrompt Je programme et retowme Je numéro et Je message d'erreur
qui peuvent être récupérés par l'environnement englobant (variables SQLCODE et SQLERRM).
La figure suivante illustre ce mécanisme qui est aussi programmable dans Je cas des déclen­
clieurs.

©Éditions Eyrol/es 357 1

l r.111

Rgure 7-10 UUKsaUon de RAISE_APPUCATION_ERROR

erre1.1rPereonnal1efe EXCEPTloti;
PRAGMA EXCEPrlON llflT f H·r•ur P•r•onn•l1•4• ' -20777):

&&OUI

Appel d14 sous -ptogramme

&XCEPTlON
WKBN •rr-eur P•UOM•li •'• THBN

WKBN .. , TIIEN
BEO[N

""'" I F ,,. 'niE lf

J. Appel du sous -programme

Z. Rttt>Hr nwl'
SQLCODBI -20777)
SOL&RRM f Df•oU Ç'• ••rC'he pai• 1)

RAUi APPLICAT-XON auoa (.20'J'r7. ' Df.01• rch• p.a• 1 •):

&XCl!PTION
WHBN ... THf!tf

... o,

Déclencheurs

1 358

w déclencheurs (triggers) existent depuis la version 6 d'Oracle. Ils sont compilables depuis
la version 7 .3 (auparavant, ils étaient évalués lors de l'exécution). Depuis la version 8, il existe
un nouveau type de déclencheur (INSTEAD OF) qui permet la mise à jour de vues multitables.

La plupart des déclencheurs peuvent être vus comme des programmes résidents associés à un
événement particulier (insertion, modification d'une ou de plusieurs colonnes, suppression)
sur une table (ou une vue). Une table (ou une vue) peut « héberger» plusieurs déclencheurs ou
aucun. Nous verrons qu'il existe d'autres types de déclencheurs que ceux associés à une table
(ou à une vue) afin de répondre à des événements qui ne concernent pas les données.

À la différence des sous-programmes, l'exécution d'un déclencheur n'est pas explicitement
opérée par une commande ou dans un programme, c'est l'événement de mise àjourde la table
(ou de la vue) qui exécute automatiquement le code programmé dans le déclencheur. On dit
que Je déclencheur « se déclenche» (l'anglais Je traduit mieux :fired 11'igge.r).

La majorité des déclencheurs sont programmés en PUSQL (langage très bien adapté à la manipu­
lation des objets Oracle), mais il est possible d'utiliser un autre langage (Cou Java par exemple).

À quoi sen un déclencheur ?
Un déclencheur permet de :

• Programmer toutes les règles de gestion qui n'ont pas pu être mises. en place par des
contraintes au niveau des tables. Par exemple, la condition : rme compag11ie ne fait voler rm
pilote q11e s 'il a totalisé pl11s de 60 he11res de vol dans les 2 derniers mois s11r le type

© ÉdW/ons Eyroles

d'appareil d11 WJl e11 q11estio11, ne pourra pas être progrrunmée par une contrainte et néces­
sitera l'utilisation d'un déclencheur.

• Déporter des contraintes au niveau du serveur et alléger ainsi la programmation client.

• Renforcer des aspects de sécurité et d'audit.

• Programmer l'intégrité référentielle et la réplication dans des architectures distribuées avec
l'utilisation de liens de bases de données (database links).

Généralilés
Les événements déclencheurs peuvent être :

• une instruction INSERT, UPDATE, ou DELETE sur une table (ou une vue). On parle de
déclencheurs LMD ;

• une instruction concernant des structures (ŒEATE, ALTER, DROP) et les prérogatives
(œAN!'et RFJOKE) sur un objet (table, index, séquence, etc.). On parle de déclencheurs LOD ;

• le démarrage ou l'arrêt de la base (startup ou shutdow11), une erreur spécifique (NO_DATA_
FOUND, DUP_ VAL_ON_INDEX, etc.), une connexion ou une déconnexion d'un utilisateur. On
parle de déclencheurs d'instances.

MécaniSme général
La figure suivante illustre les étapes à suivre pour mettre en œuvre un déclencheur. Il faut
d'abord le coder (comme un sous-programme), puis le compiler (il sera stocké ainsi en base).
Par la suite, au cours du temps, et si le déclencheur est actif (nous verrons qu'il est possible de
désactiver un déclencheur même s'il est compilé), chaque événement (qui caractérise le

déclencheur) aura pour conséquence son exécution.

© Éditions Eyrol/es

Rgure 7-11 Mécmlsme des déclencheurs

1. Oédamtroo

a.&ATE TR..IOG.ER t.d.9:1
f IRPOU 1 JlFTD 1 fNSTV.I> OP l
n.atu.re d e l '*v-4n-nt • 1

Bloc PUSOI. ou
AJ'fl'l'• lllllOllS-pR)grammt

2. Ccmpllatroo

359 1

1

1 360

svntaxe
Pour pouvoir créer un déclencheur dans votre schéma, vous devez disposer du privilège
CREATE TRIGGER (qui est inclus dans Je rôle RESOURCE mais pas dans CONNECT). Pour créer
un déclencheur dans un autre schéma, Je privilège CREATE ANY TRIGGERest requis. En plus
de ces conditions, pour fubriquer un déclencheur d'instances, il faut détenir Je privilège
A!MINISTER DATABASE TRIOOER.

Un déclencheur est composé de trois parties: la description de l'événement traqué, une éven­
tuelle restriction (condition) et la description de l'action à réaliser lorsque l'événement se
produit. La syntaxe de création d'un déclencheur est la suivante:

CRBATB (œ REPLACE) TRIGGBR (schéma.) nomDéclencheur

{ BEFORE) AFTER) INSTEAD OF)
{ { DELEI'E) INSERI') UPDATE (OF coll (, co12) ...))

1

(œ { DELEI'E) INSERI') UPDATE (OF coll (, co12) ...))) ...
ON { (schéma.) nomTable) nomVue)
(REFEREN:ING

{ OID (AS) nomVieux) NEiol (AS) nomNew) PARENI' (AS) nomParent)
(OID (AS) nomVieux) NElq (AS) noi:rNew) PARENI' (AS) nc:mParent) ...)

(FOR FAOl RCX>I))

{ événementBase [OR événementBase] ...

actionStructureBase [CR actionStructureBase] ...
Œ { (schéma.) SCHEMA) DATABASE))

(cond i tion))

Bloc PL/SQL (DEX:LARE variables BEGIN ins truct ions END
CALL nomSousProgramme(paramètres}

Les options de cette commande sont les suivantes :

• BEFORE 1 AFI'ER 1 INSTEAD OF précise la chronologie entre J' action à réaliser par Je
déclencheur LMD et la réalisation de l'événement (exemple BEFORE INSERT program­
mera l'exécution du déclencheur avant de réaliser l'insertion).

• DELETE 1 INSERT 1 UPDATE précise la nature de l'événement pour les déclencheurs LMD.

• ON { [schérra.) norrtrable 1 nomVue) spécifie la table, ou la vue, associée au déclencheur
LMD.

• REFERENCING permet de renommer des variables.

• FOR El\CH ROW différencie les déclencheurs LMD au niveau ligne ou au niveau état.

• événementBase identifie la nature d'un déclencheur d'instance (STARTUP ou Sllt1l'oo-m
pour exécuter Je déclencheur au démarrage ou à l'arrêt de la base), d'un déclencheur

© ÉdW/ons Eyroles

'

d'erreurs (S ERVERERROR ou SUS PEND pour exécuter Je déclencheur dans Je cas d'une
erreur particulière ou quand une transaction est suspendue) ou d'un déclencheur de
connexion (LCGON ou LOQ)FF pour exécuter Je déclencheur lors de la connexion ou de la
déconnexion à la base).

• act i onS t ruct ureBa se spécifie la nature d'un déclencheur WD (CREATE, ALTER,
DROP, etc. pour exécuter par exemple Je déclencheur lors de la création, la modification ou
la suppression d'un objet de la base).

• ON { (schéma.]SCHEMA 1 DATABASE}} précise Je champ d'application du déclencheur
(de type WD, erreur ou connexion). Utilisez Ill\TABASE pour les déclencheurs qui
s'exécutent pour quiconque commence J' événement, ou SCHEMA pour les déclencheurs qui
ne doivent s'exécuterque dans Je schéma courant.

• WHEN conditionne J' exécution du déclencheur.

Il est conse illé de limiter la taille (part ie instruc tions} d'un déc lencheur à soixante lignes de
code PL/SOL (la taille d'un déc lencheur ne peut excéder 32 ko}. Pour contou rner cette limita­
tion, appeler des sous-p rogrammes dans le code du déc lencheur.

Un déc lencheur ne peut valider aucune transac tion, ainsi les instructions suivantes sont
interdites: COMMIT, ROLLBACK, SAVEPOINT, et SET CONSTRAINT.

Attention à ne pas créer de déc lencheurs récursifs (exemple d'un déc lencheu r qui exécute une
instruction lançant elle-même le dédencheu r ou deux déc lencheurs s'appe lant en cascade
jusqu'à l'occupat ion de toute la mémo ire réservée} .

Étudions à présent plus précisément les caractéristiques de chaque type de déclencheur qu'il
est possible de programmer.

Pour ce type de déclencheurs, J' événement à déterminer est une mise à jour particulière de la
base (ajout, modification ou suppression dans une table ou une vue). L'exécution est dépen­
dante ou non du nombre de lignes concernées par J 'événement. On programme un déclencheur
de lignes (row trigger) quand on désire exécuter autant de fois Je déclencheur qu'il y a de
lignes concernées par une mise à jour. Si on désire exécuter une seule fois Je déclencheur quel
que soit Je nombre de lignes concernées, on utilisera un déclencheur d'état (stateme11t trigger).
La directive FOR EAO! ROW distingue ces deux familles de déclencheurs.

Dans J' exemple d'une table tl ayant cinq enregistrements, si on programme un déclencheur de
niveau ligne avec l'événement AFTER DELETE, et qu'on lance DELETE FROM tl, Je déclen­
cheur exécutera cinq fois ses instructions (une fois chaque suppression). Le tableau
suivant explique ce mécanisme .

© Éditions Eyrol/es 361 1

l r.111

1 362

Nat1nde
l'événement

T-1-29 Ell6cudciDs des_...rs IMD

État (statement lrlgglll)
sans FOR EACH ROW

Ligne (111w trfgger)
avec FOR EACH ROW'

BE FORE Exécution une fols avant la mise à jour. Exécution avant chaque ligne mise à jour.

AFTER Exécution une fols après la mise à jour. Exécution chaque ligne mise à jour.

Déclencheurs de lignes (row triggers)

Un déclencheur de lignes est déclaré avec la directive FOR EACH ROW. Ce n'est que dans ce
type de déclencheur qu'on a accès aux anciennes valeurs et aux nouvelles valeurs des colonnes
de la ligne affectée par la mise à jour prévue par J' événement.

Quan d utiliser la directive :NEW ?

Considérons l'exemple suivant, et programmons la règle de gestion 10111 pilote ne pe11t erre
q11alifié s11r pl11s de trois types d 'appareils. Ici, il s'agit d'assurer la cohérence entre la valeur
de la colonne nbQualif de la table Pilote et les lignes de la table Qualifications.

Programmons Je déclencheur TriginsQualif qui surveille les insertions arrivant sur la
table Qualifications et incrémente de 1 la colonne nbQualif pour Je pilote concerné, ou
refuse l'insertion pour Je pilote ayant déjà trois qualifications (cas du pilote de code 'PL-!'
dans la figure suivante).

Rgure 7-12 Prlncj:Je du déclencheur TrlglnsOusKf

Pilot•
BaSVET NON 18NOL COHP NBQUAJ..IP

PL·l J.MMl•&t•hi
PL-2 Thierry G\llb4irt
PL- l Michel TUUery

Typ.Avion
TYPA NOMTYP&

AJ20 8ir6ac:t•ur Alrbu• 320
AllO Btr•acteur Airbu• llO
Al40 Ou11drir6act•ur Alrbu•) 40
AJIO 8l9-QuAdrlr6ac:teur leO

450 AI'
)400).p

900 SlNll

Ou•lif1c11tton •
BRIVIT TYPA tXPIR&

PL-1 Al40 22/0,/05
PL-1 AllO 05/02/05

1 Al20 1'/01/0'
PL-2 Al20 11/01/0 i&
PL-3 A.llO 22/01/0'

2

L'événement déclencheur est ici BEFORE INSERT car il faudra s'assurer, avant de faire
l'insertion, que Je pilote n'est pas déjà qualifié sur trois types d'appareils. On utilise
un déclencheur FOR EACH ROW car on désire qu'il s'exécute autant de fois qu'il y a de
lignes concernées par l'événement déclencheur. S'il se produit une insertion multiple
de type INSERT INI'O Qualifications SELECT .. ., on préfère lancer plusieurs fois Je
déclencheur.

© ÉdW/ons Eyroles

Chaque enregistrement qui tente d'être ajouté dans la table Qualifications est désigné par
:NEW au niveau du code du déclencheur. L'accès aux colonnes de ce pse udo-enregistrement

dans Je corps du déclencheur se fai t par la notation pointée.

Le code minimal de ce déclencheur (on ne prend pas en compte l'éventuelle erreur du SELECT

ne renvoyant aucun pilote) est décrit dans Je tableau suivant :

Code PLJSQL

Cll&ATI: TRIQQER Tri gins Quali f
ll&ll'OR& DISERT Oii Quali fications
FOR UCB ROif

DECLARE

v_compte ur Pi l ote. nbHVol *TYPE;
v_nom Pi l ote. nom%TYPE;

BEGIN
SELECT nbQuali f, nom INTO v_compte ur, v_nom

FROM Pi l ote WHERE brevet = :llSW.brevet;
I F v _compte ur < 3 THEN

UPDATE Pi l ote SET nbQua l if = nbQua l if • l
WHERE brevet = :S&W.brevet;

ELSE
RAISE_APPLICATION_ERROR (-20 1 00, ' Le pi l ote

11 v_nom 11 ' a déjà 3 qua l ifications !');
END I F;

END;

/

Conmenlllres

Déo1aration de l'événement
déclencheur.

Déo1aratlon des variables
locales

Corps du déclencheur.
Extraction et mise à jour
du pilote concerné par
la qualWlcation.

Renvoi d'une erreur
utilisateur.

Le test de ce déclencheur peut être réalisé sous SQL*Plus comme Je montre la trace suivante .
On retrouve l'erreur utilisateur qui est levée en premier.

© Éditions Eyrol/es

T-.1-31 T•t 1111 '*11111:11•

SQL> INSZRT I NI'Cl Quali f i catio ns
VALUES ('PL-2', 'A380 ' ,

'20-06-2006 ');

SQL> INSZRT I NI'Cl Quali f i catio ns
VALUES ('PL-1', 'A380 ' ,

'20-06-2006 ');

Sortie SOL "Plus

l lign e créée.
SQL> SELECT * FROM Pi l oté;

BREVET NOM NBHVOL COMP NBQUALI F

PL- 1 J.M Misz te l a 450 AF
PL-2 Thierry Guibert 34 OO AF
PL-3 Mich e l Tuffery 900 SI NG

ERREUR à l a l igne l :

3
2
l

ORA-20100: Le pilote J. M Misz te l a a déjà 3
qua li fications !
ORA-06512: à "SOUTOU. TRIGINSQUALIF", lign e 9
ORA-04088: erreur l ors d ' exécution du
déc l enc heur ' SOUTOU. TRIGI NSQUALI F '

lr.111

1 364

Comme l'instruction RAISE, la procédure RAISE_APPLICATION_ERROR passe par la section
EXCEPTION (s'il en existe une} avant de terminer le déclencheur. En conséquence, si vous uti­
lisez aussi une section exception dans le même bloc, il faut forcer la sortie du déclencheur par
la directive RAI SE pour ne pas perdre le message d'erreur et surtout ne pas réaliser la mise à
jour de la base.

Afin d'illustrer cette importante remarque, ajoutons une section EXCEPTION au précédent
exemple. Cette section vérifiera !'existence du pilote.

T-1·32 D6cllllclllur IVIC Ul:ellloDS

Code PLISQL

Cll&M'll: TIUQQll:R Trig insQualif
BSl"OR& DISERT cm Quali fications
lP'OR UCB ROif

DECLARE
v_compteur Pi l ote.n.b HVol %TYPE;
v_rtom Pi l ote. nom%TYPE;

BEGIN
SELECT nbQua l if, nom INro v_compteur, v_rtom

FROM Pi l ote WHERE brevet = :NEW.brevet;
I F v_compte ur < 3 THEN

UPDATE Pi l ote SET nbQua l if = nbQua l if • l
WHERE brevet = :NEW.brevet;

ELSE
JUUSl:_APPLICATIOll_ll:RROR - 100, ' Le pilote ' 11

:NEW.brevet 11 ' a déjà 3 qualifications !');
END I F;

EXCEPTION
WIŒN NO_DATA,.FOUND THEN

JUUSl:_APPLICATIOll _DROR (-20 10 1 , ' Pas de pilote
de code brevet ' 11 :NEW .brevet);

WIŒN OTHERS THEN

END;

/

JUUSI: ;

Commenlalres

Déclaration de l'événement
déclencheur.

Déclaration des variables
locales.

Corps du déclencheur.
Extraction et mise à jour
du pilote concerné par la
qualWlcatlon.

Renvoie une erreur
utilisateur et annule
les mises à jour.

SI erreur au SELECT.

Retour de l'erreur courante.

Le test d'erreur de œ déclencheur sous SQL*Plus est illustré dans le tableau suivant :

Événement déclencheur

SQL> INSSRT I NTO Qua l ifications
VALUES ('Qui? ' , ' A380 ' ,

' 20-06-2006 ');

Sortie SOL "Plus

ERREUR à l a lign e l :
ORA-20101: Pas de pilote de code brevet Qui?
ORA-065 1 2: à "SOUTOU.TRIGINSQUALI F", l igne
13
ORA-04088: erre ur l ors d 'exéc utio n du
déc l enc heur ' SOUTOU.TRI GINSQUALI F '

© ÉdW/ons Eyroles

Pour que la cohérence soit plus complète, il faudrait aussi programmer le déclencheur qui
décrémente la valeur de la colonne nbQualif pour chaque pilote concerné par une suppres­
sion de lignes dans la table Qualifications. Il faut raisonner ici sur la directive :OLD.

Quand utiliser la directi ve :OLD?

Chaque enregistrement qui tente d'être supprimé d'une table qui inclut un déclencheur de type
DELETE FOR El\CH ROW, est désigné par :OLD au niveau du code du déclencheur. L'accès aux
colonnes de ce pseudo-enregistrement dans le corps du déclencheur se fait par la notation
pointée.

Programmons le déclencheur qui surveille les suppressions de la table
Qualifications et décrémente de 1 la colonne nJ:Qualif pour le pilote concerné par la
suppression de sa qualification.

L'événement déclencheur est ici AFI'ER DELETE car il faudra s'assurer que la suppression n'est
pas entravée par d'éventuelles contraintes référentielles. On utilise un déclencheur
FOR EACH ROW, car s'il se produit une suppression de toute la table (DELETE FROM
Qualifications;) on exécutera autant de fois le déclencheur qu'il y a de lignes supprimées.

Le code minimal de ce déclencheur (on ne prend pas en compte le fait qu'il n'existe plus de
pilote de ce code brevet) est décrit dans le tableau suivant :

T-1-34 llil:mll••rès

Code PLJSQL

Cll&ATll: TRIQQER TrigDel Quali f
Arl'ER DSLSTS cm Qualifications
FOR UCll ROW

BEGIN

UPDATE Pilote SET nbQualif = nbQualif - l
WHERE brevet = :OLD .brevet;

END;

/

Conmenlalres

Déo1aratlon de l'événement
déclencheur.

Corps du déclencheur.
Mise à jour du pilote
concerné par la
suppression.

En considérant les données initiales des tables, le test de ce déclencheur sous SQL *Plus est le
suivant:

© Éditions Eyrol/es

Sortie SOL "Plus

2 ligne(s) supprimée(s).
SQL> Da.rr& FROM Qua li fications SQL> SELECT * FROM Pilote;

WHERE typa = ' A320 ' ; BREVET NOM NBHVOL COMP NBQUALI F
------ ----- ----

PL-1 J.M Misztela
PL-2 Thierry Guibert
PL-3 Michel Tuffery

----- -
450

3400
900

AF

AF

SING

2
0
l

1

' 1 366

Pour tester Je fait que J' instruction UPDATE n'affecte aucune ligne, il faudrait utiliser un
curseur implicite (SQL%FOUND) et une erreur utilisateur (voir Je paragraphe « Utilisation du
curseur implicite » dans la section « Exceptions »).

Quand utiliser à la fois les d irectives :NEW et :OLD ?

Seuls les déclencheurs de type UPDATE FOR EACH ROW permettent de manipuler à la fois les
directives :NEW et :OID. En effet, la mise à jour d'une ligne dans une table fait intervenir une
nouvelle donnée qui en remplace une ancienne. L'accès aux anciennes \fileurs. se fera par la nota­
tion pointée du :OID. L'accès aux nouvelles valeurs se fera par :NEW.

La figure suivante illustre ce mécanisme dans Je cas de la modification de la colonne brevet du
dernier enregistrement de la table Qualifications. Le déclencheur doit programmer deux
mises à jour dans la table Pilote.

Figure 7-13 Prlncj)e du déc/enchetKTrigUpdQu a li f

PLlote
IRIVl:T N<04 lfellVOL COMP NBOUAI..1 P

PL· 1 J'. M Mi•ltelll 450 ...
83 PL• a 'nli•rry OUib•rt)400 ,,, •l

PL-l Nich.•l Tut:r•ry ••• SING · 1

2
Ou-•lifiç•tion •

<NEW S.ftlVIT TrPA IXPIR.C

PL-2 ------ ---- --------
PL·l Al f.0 ZZ/Oi/05

UPDATI PL-1 AllO 05/02/05
PL-1 AJ20 1,/01/04
p ·2 AJ20 11/01/04

.ow PL· 1 AJ)O 22/01/0'

L'événement déclencheur est ici AFI'ER UPDATE car il faudra s'assurer que la suppression
n'est pas entravée par d'éventuelles contraintes référentielles. Le code minimal de ce déclen­
cheur (on ne prend pas en compte Je fuit qu'un pilote n'ait pas pu être mis à jour) est décrit
dans Je tableau 7-33.

En considérant les données présentées à la figure précédente, Je test de ce déclencheur sous

SQL*Plus est présenté dans le tableau 7-34.

Synthèse à propos de :NEW et :OLD

Le tableau 7-35 résume les valeurs contenues dans les pseudo-enregistrements :OID et :NEW
pour les déclencheurs FOR El\CH ROW. Retenez que seuls les déclencheur s UPDATE peuvent
manipuler à bon escient les deux types de directives.

Attention, Oracle ne vous prévient pas à la compilation que vous utilisez une variable :OLD dans
un dédencheur INSERT (ou : NEW dans un déclencheur DELETE), et qui sera toujours nulle.

© ÉdW/ons Eyroles

Code PLJSQL

Cll&ATll: TRIQQER Tri gUpdQua l if
Arl'ER OPDATS or brevet cm Qua li fications
FOR EACH ROW

DECLARE

v_compteur Pi l ote.n.b HVol *TYPE;
v_nom Pi l ote. nom*TYPE;

BEGIN
SELECT n.bQual if, nom I NrO v_compteur, v_nom

FROM Pi l ote WHERE brevet = :NEW.brevet;
I F v_compte ur < 3 THEN

UPOATE Pi l ote SET nbQua l if = nbQua l if • 1
WHERE brevet = :NEW.brevet;

UPOATE Pi l ote SET nbQua l if = nbQua l if - 1
WHERE brevet = :OLD.brevet;

ELSE
RAISJ:.)IPPLICATIOll_DROR (-20 100, ' Le pilote ' 11

:NEW.brevet 11 ' a déjà 3 qua l ifications !');
END I F;

EXCEPTION
WIŒN Nô_DATA_FOUNO THEN

RAISl:_APPLICATIOll_DROR (-20 101 , ' Pas de pi l ote
de code brevet ' 11 :NEW .brevet);

WIŒN OTHERS THEN
RAISI: ;

END;

/

T-Hl T•tllll '*'-Il•

Sortie SOL "Plus

1 l igne mise à jour.

Conmenlalres

Déo1aratlon de l'événement
déclencheur.

Déo1aration des variables
locales

Corps du déclencheur.

Mise à jour des pilotes
concernés par la
modWlcatlon de la
quai lflcatlon.

Renvoi d'une erreur
utilisateur.

Renvoi d'une erreur
utilisateur.

Retour de l'erreur courante.

SQL> UPDATE Qua l ifications SQL> SELECT * FROM Pi l ote;
SET brevet
WHERE brevet
AND typa

'PL-2'
'PL-3'
'A330 • ;

BREVET NOM NBHVOL COMP NBQUALI F

PL-1
PL-2
PL-3

J.M Misz te l a
Thi erry Guibert
Miche l Tuffery

450 AF 3
3400 AF

900 SI NG
2
0

Condition dans un déclencheur (WHEN)

Il est possible de restreindre l'exécution d'un déclencheur en amont du code de ce dernier. La
clause WHEN, placée avant Je corps du déclencheur, permet de programmer cette condition. Si
celle-ci est réalisée pour J' enregistrement concerné par J' événement, Je déclencheurs' exécute.
Dans Je cas inverse, Je déclencheur n'a aucun effet.

© Éditions Eyrol/es

1

'

1 368

T-.1-38 VIiiuis Ill ,11.D Il ,NEW

Nallre de
l'événement : OLD. colortrte :NEW.cololllle

INSERT NULL Nouvelle valeur.

UPDATE Ancienne valeur. Nouvelle valeur.

DEL ETE Ancienne valeur. NULL

La condition contenue dans la clause WllEN doit être une expression SOL, et ne peut inclure de
requêtes ni de fonctions PL/SOL.

Restreignons par exemple la règle de gestion que nous avons programmée jusqu'à présent -
10111 pilote ne pe11t erre q11alifié s11r pl11s de trois types d 'appareils - aux appareils de type
'A320', 'A330' ou 'A340'. Il suffira de modifier les en-têtes des trois déclencheurs de la manière
suivante (exemple pour Je déclencheur d'insertion). Notez que dans la condition WHEN, les
« pseudo-enregistrements » NEW et OLD s'écrivent sans Je symbole ..

Code PL/SQL

CREATE OR REPLACE TRIGGER TriginsQua l if
BEFORE I NSERT ON Quali f i catio ns
FOR EACH ROW

WBD (NEW. typa = ' A320 ' OR NEW. typa
OR NEW.typa = ' A330 ')

DECLARE

BEGIN

END;

/

' A340 '

Comme:ntalres

Déclaration de l'événement
déclencheur.

Condition de
déclenchement.

Corps du déclencheur.

Le tableau suivant présente un jeu de test pour ce déclencheur.

T-.Ho Test

Événement déclencheur Événement non déclenche1r

I NSERT I NTO Quali ficat i ons I NSERT I NTO Qua l ifications
VALUES (' PL-2 ' , 'A3 '0 ', ' 20-06-2006 '); VALUES (' PL-2 ' , 'A380', ' 20-06-2006 ');

Corrélation de noms (REFERENCJNG)

La clause REFERENCIN3 permet de mettre en corrélation les noms des pseudo-enregistrements
(:OLD et : NEW) avec des noms de variables. La directive PARENI' concerne les déclencheurs

© ÉdW/ons Eyroles

portant sur des collections 11ested tables (extension objet). La condition écrite dans la directive
WHENpeut utiliserles noms de variables corrélées.

Utilisons cette clause sur le précédent déclencheur pour renommer le pseudo-enregistrement
: NEW par la variable nouveau. Cet enregistrement est opérationnel dans la clause WllEN et dans
le corps du déclencheur.

T-.1-41 CC11Tilato1 Ill -

Code PLJSQL

CREATE OR REPLACE TRIGGER Trig insQua li f
BEFORE INSERT ON Qua li f i cat i ons
RSl'DDJCDJQ NEW AB nouveau
FOR EACH ROW
WHEN (nouveau .t ypa = 'A32 0 ' OR

nouveau .typa= ' A340 ' OR nouveau .typa= 'A330 ')
DECLARE

DECLARE

BEGIN

... WHERE bre vet :nouveau . brevet ;

END;

Regroupements d'événements

Commentaires

Événement déclencheur.
Renomme :NEW en nouveau.

Corps du déclencheur.

Des événements (INSERT, UPDATE ou DELETE) peuvent être regroupés au sein d'un même
déclencheur s'ils sont de même type (BEFORE ou AFI'EI\). Ainsi, un seul déclencheur est à
coder et des instructions dans le corps du déclencheur permettent de retrouver la nature de
l'événement déclencheur :

• IF (INSERTING) THEN .. exécute un bloc dans le cas d'une inserti on ;

• IF (UPDATING (' co l onne ')) THEN .. exécute un bloc dans le cas de la modification
d'une colonne ;

• IF (DELE!'ING) THEN .. exécute un bloc en cas d'une suppression.

Utilisons cette fonctionnalité pour regrouper les déclencheurs de type AFI'ER que nous avons
prograrnrnés.

Si vous regroupez ainsi plusieurs dédencheurs en un déclencheur multi­
événements, pensez à supprimer les déclencheurs mono-événements (DROP TRIGGER. ..)
pour ne pas programmer involontairement plusieurs fois la même action par l'intermédiaire des
différents déclencheurs existants.

© Éditions Eyrol/es

lr.111

1 370

Code PLISQL

CREATE OR REPLACE TRIGGER TrigD e lUpdQuali f
Arl'SR DSL&TS OR OPDATS or brevet cm Quali fications
FOR EACH ROW

DECLARE

BEGIN
I F (DSLSTIJIQ) THEN

ELSI F ('CJPDM'IJIQ (' brevet ')) THEN

END I F;
END;

Déclencheurs d'état (statem ent triggers)

Commenlalres

Regrol4)ement de deux
événem.ents déclencheurs.

Bloc exécuté en cas de
DELETE.

Bloc exécuté en cas de
UPDATE de la colonne
brevet.

Un déclencheur d'état est déclaré sans la directive FOR E.l\CH ROW. Il n'est pas possible
d'avoir accès aux valeurs des lignes mises à jour par l'événement. Le raisonnement de tels
déclencheurs porte donc sur la globalité de la table et non sur chaque enregistrement parti­
culier.

Dans le cadre de notre exemple, programmons le déclencheur périodeOKQualifs qui inter­
dit toute mise à jour sur la table Qualifications pendant les week-ends. Quel que soit le
nombre de lignes concernées par un événement, le déclencheur s'exéc utera une seule fois
avant chaque événement sur la table Qualifications.

Code PLISQL

CREATE TRIGGER périodeOKQualifs
BEFORE DELETE OR UPDATE

OR I NSERT ON Qualifications

BEGIN
I F TO_CHAR(SYSDATE, ' DAY') IN

(' SAMEDI' , ' DIMANCHE') THEN
RAISE_,APPLICATION_ERROR(-20102, ' Dés olé pas

de mises à jour des qualifs l e week-end. ');
END I F

END;
/

Commenlalres

Déclaration des
événem.ents déclencheurs.

Bloc exécuté avant chaque
mise à jour de la tlt>le
Quallflcations.

Pour chaque actualisation de la table, le déclencheur renvoie le résultat suivant sous SQL*Plus
(ça tombe bien, j'ai écrit ce code un dimanche ...).

© ÉdW/ons Eyroles

'

ERREUR à l a lig n e 1
UPDATE Qua l ificatio ns SET ... OllA-20102 : Désol é pas de mises à jour des

qua l ifs l e week-end.
I NSERT I NTO Qua l if i catio ns VALUES ... ORA-0 6512: à "SOUTOU. PÉRI OOEOKQUALIFS"'

lig ne 3
DELETE FROM Qual ifications... ORA-04088: erre ur l ors d ' exéc ution du

déc l en c he ur ' SOUTOU. PÉRI OOEOKQUALIFS '

Déclencheurs INSTEAD OF

Un déclencheur INSTEAD OF permet de mettre à jour une we multitable qui ne pouvait être
modifiée directement par INSERT, UPDATE ou DELETE (voir chapitre 5). Nous verrons que
seulement certaines vues multitables peuvent être modifiables par l'intermédiaire de ce type
de déclencheur. L'expression i11stead of est explicite : Je déclencheur programmera des actions
a11 lie11 d'insérer, de modifier ou de supprimer une vue.

La version 7 d'Oracle n'offrait pas cette possibilité. Ce mécanisme intéresse particulièrement
les bases de données réparties par liens (database links). Il est désormais plus facile de modi­
fier des informations provenant de différentes tables par ce type de déclencheur.

Caractéristiques

Les déclencheurs INSTEAD OF :

• font intervenir la clause FCR EACH ROW;

• ne s' utilisent que sur des vues ;

• ne font pas intervenir les options BEFCRE et AFTER.

!.:option de cont rôle (WITH CHECK OPTION) d'une vue n'est pas vérifiée lors d'un événement
(ajout , modification ou suppression) si un dédencheu r INSTEAD OF est programmé sur cet
événement. Le corps du déc lencheur doit donc explicitement prendre en compte la cont rainte.

Il n'est pas possible de spécifier une liste de colonnes dans un dédencheu r INSTEAD OF
UPDATE, le déc lencheur s'exécute ra que lle que soit la colonne modifiée.

Il n'est pas possible d'ut iliser la dause WHEN dans un déc lencheur INSTEAD OF.

Exe mple

Considérons la we VueMul tiCompPil résultant d'une jointure entre les tables Compagnie et
Pil ote. Nous avons vu au chapitre 5 que cette we n'était pas modifi.able sous SQL. Nous
allons programmer un déclencheur INSTEAD OF qui va permettre de la changer de manière
transparente.

© Éditions Eyrol/es 371 1

1

1 372

COl'lpagnie

1 ccmp lnrue I
1 AF 1 124 1 Pon PVJ'Val
1 SIN-- 1 7 1 caml"lill,,.,..

Figure 7-14 Vue multftable à modf/er

Pilote

br•v•t n.,.
Pl- 1
Pl-2 Aurélia Eole
t'L-3

lv11l• nOl9Cc.np

1 Paris AJrFranoe

CR&ATI VlEW Vl.l.tt'ult1Coq>Pil

nbKVol C<Wp.t

450 AF
900 AF
1000

u= A$ $81.EC'T c: .c:omp,c: . nc:mCoap,p.brevet,p.nom,p. nbHVol

AP Air Pnnctt
M Air rnniee
eu..-. Singo;ipor• M.

FROM Pilote p, OOlllpagni• c
WHD:I p. c:oq>a • e. coq>;

aRS\ll:f UOM

Pt. l Agnf.• lidAl
PL-2 Auttl1a Ent•
PL- l f>lorll'nr-w HT-1., ... 1

t<O ...
1000

Le déclencheur qui gère les insertions dans la vue est chargé d'insérer, à chaque nouvel ajout,
un enregistrement dans chacune des deux tables.

Code PLISQL

CREATE TRIGGER TrigAuli euins ererv ue
IJISTUD 01' IJISDT o• VueMUltiCompPil
FOR EACH ROW

DECLARE
v_comp NUMBER := 0;
v_pil NUMBER := 0;

Commenlalres

Déclaration de la
substitution de l'événement
déclencheur.

BEGIN Corps du déclencheur.
SELECT COUNT(*) INTO v_pi l FROM Pi l ote

WHERE brevet= :NEW.brevet;
SELECT COUNT(*) I NrO v_comp FROM Compag nie

WHERE comp = :NEW.comp;
I F v_pi l > 0 AND v_comp > 0 THEN

RAISE_,APPLI CATION_ERROR(-20 102, ' Le pi l ote
et l a compagnie existe nt dêjà ! ');

ELSE
I F v_comp 0 TH EN

I NSERT INTO Compagnie VALUES
(:NEW.comp,NULL,NULL,NULL, :NEW.nomcomp);

END I F;
I F v_pil = 0 THEN

I NSERT I Nro Pi l ote VALUES
(:NEW.brevet, :NEW . nom, :NEW. n.bHVo l , :NEW.comp);

END I F;
END I F;

END;

/

Cas d'erreur.

Ajout dans la table
compagnie .

Ajout dans la table Pilote.

© ÉdW/ons Eyroles

Pour chaque mise à jour de la vue, le déclencheur insérera un pilote, une compagnie ou les
deux, suivant l'existence du pilote et de la compagnie. L'erreur programmée dans le déclen­
cheur concerne le cas pour lequel le pilote et la compagnie existent déjà dans la base. Le
tableau suivant décrit une trace de test de ce déclencheur :

I NSERT I NTO VueMu l tiCompP il
VALUES (' AERI ' ' ' Aéris
Toulo use ' , ' PL-4 ' , ' Pasca l
Larrazet ' , 5600) ;

1 lign e créée.

Vérillcatlon IOUI SQL'Plus

SQL> SELECT * FROM Pi l ote;
BREVET NOM

PL- 1 Agnès Bida l

PL-4 Pascal Larrazet

SQL> SELECT * FROM Compagnie;

NBHVOL COMP

450 AF

5600 AERI

COMP NRUE RUE VI LLE NOMCOMP

SING 7 campa.ro l s Singapour Singapore AL
AF 1 24 Port Roya l Paris Air France
AERI Aéris Toul ouse

SQL> SELECT * FROM VueMultiCompPi l ;
COMP NOMCOMP BREVET NOM NBHVOL

---- ----- ----- - ------------------- ----- ---
AF Air France PL- 1 Agnès Bida l 450
AF Air France PL-2 Auréli a Ente 900
SI NG singapore AL PL-3 Fl ore nce Périsse l 1 000
AERI Aéris Toulouse PL-4 Pascal Larrazet 5600

Transactions auronomes
Un déclencheur peut former une transaction (utilisation possible de COMMIT, ROLLBACK et
SAVER) INI') si la directive PRAGMA Al1I'ONQllOUS_TRANSJ>Cl' I ON est employée dans la partie
déclarative (voir figure 7-1). Une fois démarrée, une telle transaction est autonome et indépen­
dante (voir le début de ce chapitre). Elle ne partage aucun verrou ou ressource, et ne dépend
d'aucune transaction principale. Ces déclencheurs autonomes peuvent en outre exécuter des
instructions du LOD (CREATE, DROP ou ALTER) en utilisant des fonctions natives de PUSQL
pour le SQL dynamique (voir la section suivante).

Les modifications faites lors d'une transaction autonome deviennent visibles par les autres
transactions quand la transaction autonome se termine. Une transaction autonome doit se
terminer explicitement par une validation ou une invalidation. Si une exception n'est pas trai­
tée en sortie, la transaction est invalidée.

© Éditions Eyrol/es

l r.111

1 374

Déclencheurs lDD
Étudions à les déclencheurs gérant les événements à la modification de la structure
de la base et non plus à la modification des données de la base. Les options. BEFORE et AFI'ER
sont disponibles comme Je montre la syntaxe générale suivante . La directive DATABASE
précise que Je déclencheur peut s'exécuter pour quiconque lance l'événement. La directive
SO!EMA indique que Je déclencheur ne peut s'exécuter que dans Je schéma courant.

CREATE (OR REPLACE) TRIGGER (s chéma.) nomDéc len ch eur
BEFORE) AFTER { act.ionStructure.S••• (œ act.ionStructure.S•••) ...

ON { (•chéma.) SCHEMA) DATABASB))

Blo c PL/SQL (variabl e s BEl3IN ins t ructions END ;)

) CALL nomS ousProgramm e (param ètr e s))

Les principales actions sur la structure de la base prise en compte sont :

• ALTER pour déclencher en cas de modification d'un objet du dictionnaire (table, index,
séquence, etc.).

• COMMENI' pour déclencher en cas d'ajout d'un commentaire.

• CREATE pour déclencher en cas d'ajout d'un objet du dictionnaire.

• DROP pour déclencher en cas de suppression d'un objet du dictionnaire.

• GRANr pour déclencher en cas d'affectation de privilège à un autre utilisateur ou rôle.

• RENAME pour déclencher en cas de changement de nom d'un objet du dictionnaire.

• REVOKE pour déclencher en cas de révocation de privilège d'un autre utilisateur ou rôle.
Le déclencheur suivant interdit toute suppression d'objet, dans Je schéma s o11to11, se produi­
sant un lundi ou un vendredi.

1111111111-41 llil:mll•llll

Code PLISQL

CREATE TRIGGER s urve ill eDROPSOutou
BSl'OR& DROP o• s outou.SCJllllA

BEGIN
I F TO_C HAR(SYSDATE, ' DAY') IN

(' LUNDI ' , ' VENDREDI ') THEN
RAISE_AP PLI CATION_ERROR(-2 0104, ' Désol é pas

de dest ruct i on ce jour .. ') ;
END I F

END;

/

Déclencheurs d'ilstances

Commenlalres

Événem.ent déclencheur
LOD.

Corps du déclencheur.

Retour d'une erreur.

Le démarrage ou l'arrêt de la base (sta1111p ou .sh11tdow11), une erreur spécifique (NO_DATA_
F'CUND, DUP_VAL_ ON_INDEX, etc.), une connexion ou une déconnexion d'un utilisateur

© ÉdW/ons Eyroles

'

peuvent être autant d'événements pris en compte par un déclencheur d'ïnstances. Les événe­
ments précités sont programmés à J'aide des mots-clés STARI'UP, SHl1l'DOWN, SUSPEND,

SERVERERROR, LOGON, LOGOFF, dans la syntaxe suivante :

ŒFATE (œ REPLACE) 'IRIGGER (schéma.) nomDéclencheur
BEFORE) AFTER { événementBa•• (œ événementBase) ...
CN { (schéma.) SCHEMA) DATl\BJ\SE))

Bloc PL/SQL (var iab les BIDIN i nstructions END ;)
) CALL nomSousProgramme(paramètres))

Les restrictions régissant ces déclencheurs sont les suivantes :

Seule l'option AFTER est valable pour LOGON, STARTUP, SERVERERROR, et SUSPEND.

Seule l'option BEFORE est valable pour LOGOFF et SHUTDOWN.

Les options AFTER STARTUP et BEFORE SHUTDOWN s'appliquent seulement sur les déclen­
cheurs de type DATABASE.

Les erreurs ORA-01 403, œA-01 422, ORA-0142 3, ORA-0103 4 et ORA-0 4030 ne sont pas
prises en compte par l'événement SERVERERROR

Le déclencheur suivant insère une ligne dans une table qui indique l'utilisateur et l'heure de
déconnexion (sous SQL*Plus, via un programme d'application, etc.). On suppose la table
Trace(événement VARCHAR2 (100)) créée.

Code PlJSQL

CREATE TRIGGER espi onoéc onnexi on
urou LOQOl'I' <111 DA'l'ABABZ

BEGIN

I NSERT I NTO Trace VALUES (USER 11
' déconnexion l e ' 11

END;

/

TO_CHAR(SYSDATE, ' DD-MM-YYYY HH24:M I :SS '));

Aœels de sous-programmes

Comnenlalres

Événement déclencheur.

Corps du déclencheur
exécuté à chaque
déconnexion.

Un déclencheur peut appeler directement par CALL (ou dans son corps) un sous-programme
PUSQL ou une procédure externe écrite en C, C++ ou Java. Le tableau suivant décrit quelques
appels de sous-programmes qu'il est possible de coder dans un déclencheur (quel que soit son
type). On suppose la procédure PUSQL suivante existante.

1 ŒFATE PROCEWRE sousProgDéclencheur(param IN VARCHAR2) IS

© Éditions Eyrol/es 375 1

lr.111

BEXHN

INSERl' INTO Trace Vl\IJJES (' sousProgDéc l encheur (' 11 param 11 ')') ;
END sousPro gDéc l encheur;

Code PLISQL

CREATE TRIGGER espionconnex i on
AFTER LOGON ON DATABASE
CALL soutou .sous ProgDéc l en cheur (SYSDATE)

/

CREATE TRIGGER TrigDe l Trace
AFI'ER SERVERERR O R ON soutou . SCHEMA

BEGIN
s ousProgDé<:lencheur ('Une erreur

END;

/

s ' •es t produi t e ');

CREATE TRIGGER Ex_trig_Java
AFTER DELETE ON Compag nie FOR EACH ROW

BEGIN
DeuxièmeExemple _a ff i c he (:OLD.nomcomp);

END;

/

Gestion des déclenchell's

Commenlalres

Appe l direct d'une
procédure PUSQL

Appe l dans le oorps du
déclencheur d'une
procédure PUSQL

Appe l dans le oorps du
déclencheur d'un sous­
program me Java (voir
chapitre 11).

Un déclencheur est actif, comme une contrainte, sa création . Il est possible de Je désactiver,
de Je supprimer ou de Je réactiver à la demande grâce aux instructions ALTER TRIGGER (pour
agir sur un déclencheur en particulier) ou ALTER TABLE (pour agir sur tous les déclencheurs
d'une table en même temps) . Le tableau suivant résume les commandes SQL nécessaires à la
gestion des déclencheurs :

SOL Commentaires

ALTO TIUOOD. nomD<!clencheur COMPILE; Reoompllatlon d'un déclencheur.

ALTO TIUOOD. nomD<!clencheur DISABLS; Désactivation d'un déclencheur.

ALTO TABLS nomTable DISABLll: ALL TJUGQll:llS; Désactivation de tous les déclencheurs
d'une table.

ALTO TIUGGll:R nomD<!clencheur llNABLll:; Réactivation d'un déclencheur.

ALTO TABLS nomTable ll:NAJILll: ALL TJUOOll:RS; Réactivation de tous les déclencheurs
d'une table.

DROP TRIOOll:R nomDéclencheur ; Suppression d'un déclencheur.

1 376 © ÉdW/ons Eyroles

Oiü'e d'exécution
La séquence d'exécution des déclencheurs est théoriquement la suivante. En pratique certaines
exécutions peuvent ne pas suivre cet ordre !

• tous les déclencheurs d'état BEFORE;

• analyse de toutes les lignes affectées par l'instruction SQL ;

• tous les déclencheurs de lignes BEF'OOE ;

• verrouillage, modification et vérification des contraintes d'intégrité ;

• tous les déclencheurs de lignes AFI'ER ;

• vérification des contraintes différées ;

• tous les déclencheurs d'état AFI'ER

Tables mutanres
Il est, en principe, interdit de manipuler la table sur laquelle se porte Je déclencheur dans Je
corps du déclencheur lui-même. Oracle parle de m111ati11g tables (erreur : ORA- 04091: table
... en mutati on, déclencheur / f onc tion ne peut la vo ir).

Cette restriction concerne les déclencheurs de lignes (FOR El\CH RCX-1), et les déclencheurs
d'état qui sont exécutés via la directive DELETE CASCADE. Les vues modifiables par des
déclencheurs INSTE.l\D OF ne sont pas considérées comme des tables mutantes.

L'exemple suivant décrit la programmation d'un déclencheur qui compte les lignes d'une table
après chaque nouvelle insertion. L'erreur n'est pas soulignée à la compilation mais est levée
dès la première insertion.

Code PLJSQL

T- Nil O..._ 11111111.nmtll

Ttac:e SOL' Plus

CREATE OR REPLACE TRIGGER Trig Mut ant 1 INSERT INro Trace VALUES (' Ins ert i o n

AFTER INSERT ON Trace FOR EACH ROW l e ' 11 TO_CHAR(SYSDATE, ' 00- MM- YYYY

© Éditions Eyrol/es

DECLARE HH24:MI:SS '));
v_nombr e NUMBER;

BEGIN

SELECT COUNI'(*) INI' O v_nombre
FROM Trace;

OBMS_OUTPUT. PIJT_LINE

END;

/

(' Nombr e de t r ace s
11 v_nombre);

ERREUR à l a lig ne 1 :
ORA-0,091: table SOUTOU.TRACE en
mutati on, déclencheur /fo ncti on ne
peut la voir
ORA- 065 12 : à "SOUTOU. TRIGMUTANTl",
li g ne 4
ORA- 040 88 : e rreur l ors d ' ex écut i on du
déc l enc heur ' SOUTOU. TRIGMUTANI'l '

an 1

l r.111

1 378

Une solution consiste, dans ce cas, à progrrunmer Je même code dans un déclencheur d'état (il
suffit d'enlever la clause FOR EACH ROW). Pour des cas plus complexes, il fallait programmer
(avant la version l lg) plusieurs déclencheurs dont Je code et les variables sont définis dans un
paquetage à part.

Activation et désactivation
Bien qu'il soit possible de désactiver ou réactiver un déclencheur par ALTER TRIGGER ou
ALTER TABLE, tout déclencheur créé était de fait actif (e11able) avant la version l lg. Depuis la
version 12, un déclencheur peut être désactivé dès sa création. En l'absence de la directive
DI SABLE ou en présence de la directive ENABLE (qui est appliquée par défaut), tout déclen­
cheur sera actif sa création. La syntaxe simplifiée qui permet la déclaration d'un tel
déclencheur est la suivante :

CREATE (œ REPLACE) TRIGGER (schéma.) nomTrigger
. . . { DIABLE J DISABLB)

BIDIN

END;

/

Ordre d'exécution <FOllOWS>
Bien qu 'Oracle permette que plusieurs déclencheurs soient progrrunmés pour Je même événe­
ment, il n'était pas possible de connaître l'ordre dans lequel les déclencheurs s'exécutaient.
Depuis la version J Jg, la directive FOLIDl>IS précise cet ordre. La syntaxe simplifiée qui permet
la déclaration d'un tel déclencheur est la suivante :

CREATE (œ REPLACE) TRIGGER (schéma.) nomTrigger
POLLOWS (schéma.) nomTriggerQuiSexecuteAvant

BIDIN

END;

/

L'exemple suivant déclare deux déclencheurs portant sur Je même événement (avant chaque
insertion de la table TypeAvian).

CREATE œ REPLACE TRIGGER Trig_follows_l

BEFŒE INSERI' ON 'fypeAvion FOR F.Aœ RCX-1

BIDIN
DBMS_OOTPur .put_line(' Trig_follows_l en exécution •);

END;

/

© ÉdW/ons Eyroles

ŒFATE OR REPLACE 'IRIGGER Trig_follows_2

BEFORE INSERT CN TypeAvian Fœ El\CH ROW

BEGIN
œMS_OurPUT. put_ li ne (• Trig_follows_2 en exécution •) ;

END;

/

Si on désire que Je premier déclencheur se lance toujours après Je deuxième, il fuut recompiler
ce dernier de la manière suivante (il n'est pas possible de faire une référence avant, à savoir
déclarer un déclencheur référençant un déclencheur inexistant) :

ŒFATE OR REPLACE 'IRIGGER Trig_follows_l

BEFORE INSERT CN TypeAvian Fœ El\CH ROW

POLLOWS
BEGIN

œMS_OurPUT. put_ li ne (• Trig_follows_l en exécution •) ;

END;

/

Déclencbell' compasé
Un déclencheur composé (compormd trigger) permet de programmer plusieurs blocs pour
différents événements. Cette technique est particulièrement utile pour pallier le problème des
tables mutantes.

Le corps d'un déclencheur composé est constitué d'une éventuelle section de variables globales
et d'au moins un (jusqu'à quatre) blocs PUSQL correspondant à la chronologie des événe­
ments au niveau de la ligne ou de l'état. Les blocs peuvent contenir des variables locales.
Chaque section peut utiliser les directives INSERI'ING, UPD!>.TIN3 et DELETING. La syntaxe
simplifiée qui permet la déclaration d'un tel déclencheur est la suivante :

© Éditions Eyrol/es

ŒFATE (OR REPLACE) 'IRIGGER (schéma.) nomTr igger
POR { DELETE) INSERT) UPD!>.TE

(OF coll (, col2) ...))

(Œ { DELEI'E) INSERI') UIDATE (OF coll (, co12) ... J J ...
ON { (schéma.) nomTable) (schéma.) nomVue)

COMPOtml> TRIGGBR

-- Variables globales

BEFORE STATEMENI' IS

BEGIN

END BEFORE STATEMENI';

AFTER STATEMENT IS

BEGIN

1

1 380

END AFTER STATEMENI';

BEFŒE FAœ Rm IS

BIDIN

END BEFŒE FAœ Raq;

AFTER EACH ROW IS

BIDIN

END AFTER EACH ROW;

END nomTrigger;

/

Le déclencheur suivant traque les ajouts et les suppressions dans la table TypeAvianBis. Un
tableau fait office de variable globale et permet de tracer le code après une insertion multiple
et une suppression collective.

CREATE 'IRIGGER TrigConpose POR DELETE OR INSERI' ON 'fypeAvionBis

COMPOOND TRIGGER
TYPE typav_tyt ab IS TABLE OF VARœAR2(30) INDEX BY BINARY_INTEGER;

tab typav_tyt ab;

i NUMBER := O;

BEFŒE STATEMENT IS

BIDIN
i : = i+l;

CASE

WHEN INSERI'ING 'IHEN t ab(i) := ' Avant insertion STATEMENT' ;

WHEN DELETIN3 THEN tab(i) : = ' Avant suppression STATEMENI' ' ;

END CASE;

END BEFŒE STATEMENT;

AFTER STATEMENI' IS

BIDIN
i : = i+l;
t ab(i) := ' Après STATEMENT' ;

FOR i IN 1 .. t ab.las t IOOP
œMS_OurPUT.PUT_LINE(t ab(i));

END LOOP;

END AFTER STATEMENI';

BEFŒE FAœ Rm IS

BIDIN
i : = i+l;
tab(i} : = 'Avant événemen t niveau ligne ' ;

END BEFŒE FAœ Raq;

AFTER EACH ROW IS

© ÉdW/ons Eyroles

'

BEGIN
i := i+l;

CASE

INSERTI!iG THEN tab(i) := :NElq.typa)) ' inséré';

DELEI'ING 'IHEN tab(i) := :NEW.typa)) ' supprimé';

END CASE;

END AFl'ER FAQl Rel•/;

END TrigConpose;

En considérant les tables et les données suivantes :

ŒFATE TABLE TypeAvion (typa VARCHAR2 (5), nomtype VARCHAR2 (30));

ŒFATE TABLE TypeAvionBis (typa VARCHAR2 (5), nomtype VARCHAR2 (30));

INSERI' INI'O TYPeAvion VAUJES (' A320', 'Biré acteur Airb.ls 320');

INSERI' INI'O TYPeAvion VAUJES (' A340', 'Quadriréacteur Airb.ls 340');

La trace de l'insertion multiple dans la table concernée par Je déclencheur décrit la chrono­
logie des actions.

SQL> INSERT INTO TypeAvionBis SELECT • FROM TYPeAVion;

Avant insertion srATEMENT

Avant événanent niveau ligne

A320 inséré

Avant événanent niveau ligne

A340 inséré

Après STATEMENT

2 ligne(s) créée(s) .

Les principales restrictions régissant ce type de dédencheurs sont les suivantes :

Seuls les déclencheurs LMD peuvent être composés.

Il n'est possible de dédarer un bloc d'exceptions que dans une section particulière (aucune
exception globale n'est permise).

Seule la section BEFORE EACH ROW peut modifier une valeur de type NEW.

Résolution au problème des tables mutanles

Le déclencheur composé convient parfuitement pour Je problème des tables mutantes.
Les sections BEFŒE STATEMENTet AFTERSTATEMENI' permettent de manipuler la table concer­
née par Je déclencheur comme Je montre J' exemple de la section précédente et sur les données

©Éditions Eyrol/es 381 1

lr.111

courantes. L'événement déclencheur à progrrunmer était AFTER INSERI' qui se traduit avec Je
déclencheur composé de type FOR INSERT contenant les sections BEFŒE STATEMENI' pour
interroger la table et AFTER FAœ ROW pour définir J' action.

Code PLISQL Trace SOL "Plus

CREATE OR REPLACE TRIGGER Trig Mutant l SQL>I NSERT I NTO Trace SELECT nomtype

POR INSERT ON Trace
COMPOUND TRIOOER

V _nombre NUMBER;

BEFORE STATEMENI' I S

BEGIN
SELECT COUNI' (*) I NrO V _nombre

FROM Trace;

END BEFORE STATEMENI';

AFTER EACH ROW I S

BEGIN
DBMS_OUTPUT. PUT_LI NE

(' Nombre de traces : 'l l v_nombre);
END AFTER EACH ROW;

END;

/

FROM Type.A v ion;

Nombre de traces : O
Nombre de traces : O
2 lig ne(s) créée(s).

SQL>I NSERT I NTO Trace VALUES

('I nsertio n l e 'l I TO_CHAR (SYSOATE, ' 00-
MM- YYYY HH2 4:MI:SS '));

Nombre de traces : 2
1 lig ne créée.

SQL>SELECT * FROM Trace;
EVENEMENT

Biréacteur Airbus 320
Quadriréacteur Airbus 340
Insertion l e 23- 11 -2007 17:52:27

SOL dvnami1111e

1 382

PUSQL inclut un aspect dynamique : en plus des directives SQL (LMD, LIO), il est possible
de construire automatiquement des instructions SQL du LOD et du LCD (CREATE, DROP,

GRANr et R.E\.()KE) ainsi que des instructions relatives aux sessions (ALTER SESSION, SET

ROLE, etc.).

L'utilisation de SQL dynamique dans un sous-programme PUSQL permet de paramétrer des
instructions SQL au niveau de l'organisation même de la commande. Par exemple, il sera
possible de créer une table dont Je nom passera en paramètre et ayant un nombre variable de
colonnes. Il sera aussi permis de construire automatiquement une requête SQLen fonction des
choix d'un utili sateur. En plus des ordres simples, on pourra également paramétrer une suite
d'instructions dans un bloc PUSQL ou l'appel d'un sous-progrrunme .

Une instruction SQL dynamique est stockée en tant que chaîne de caractères qui sera évaluée
à l'exécution et non à la compilation (en opposition aux instructions SQL statiq ues qui
peuplent la majorité des sous-programmes).

© ÉdW/ons Eyroles

'
Les instructions suivantes ne peuvent pas être prises en compte par un ordre SOL dynamique :
CLOSE, DECLARE, DESCRIBE, EXECUTE, FETCH, OPEN, PREPARE, SET, WHENEVER.

Comme il n'y a pas de phase préalable de compilation, il n'y a pas de vénification des privilèges
sur les objets avant l'exécution des instructions SOL qui sont construites dynamiquement.

ClaSSilication
Les ordres SQL dynamiques peuvent être en quatre familles :

• instructions SQL (sauf les requêtes) sans variables hôtes ;

• instructions SQL, (saufles requêtes) avec un nombre connu de variables hôtes ;

• instructions SQL (et requêtes) avec un nombre connu de colonnes (dans Je SELECT) et de
variables hôtes ;

• instructions SQL (et requêtes) avec un nombre inconnu de colonnes (dans Je SELECT) et de
variables hôtes.

Ces familles d'instructions s' incluent entre elles : la famille 2 comprend la famille 1 ; la
famille 3 comprend la famille 2 ; la famille 4 comprend la famille 3. Le tableau suivant décrit
des exemples d'instructions en classifiant ces dernières.

T-1·53 IUlllcloDS SQ. 11r.-.. 1ous PlJSQl

tnstruc11on

' DELETE FROM Avi on WHERE nbHVol > 1000 '
'GRANT SELECT ON Avi o n TO teste , soutou '

Famille

1. Utlllsatlon de EXElCIJTE IMMEDIATE.

'INSERT INTO Av i o n 2. Utlllsatlon de EXECUTE IMMEDIATE avec
VALUES (:var.table, : v•r1able, ...) ' USING.

' DELETE FROM Avi on WHERE i mmat = :var.table

1 SELBCT comp, MAX (n.bHVol) FROM Pil ote

GROUP BY comp '
'SllLllCT brevet, nbHVol FROM Pil ote

WHERE comp = : variable

'INSERT INI'O Avi on (Inconnu
VALUES (Inconnu) '

' SELECT Inconnu FROM Pil ote
WHERE comp = : variable

3. Utlllsatlon de EXECUTE IMMEDIATE avec
USING et INTO.

4. Utlllsatlon d'un curseur variable avec
OPEN, FETCH, et CLO SE.

© Éditions Eyrol/es

lr.111

1 384

Utilisez au maximum les variables hôtes (bind variables) pour vous prémunir d'éventue lles
injections de code SOL et ne pas dég rader les performances (dues à la régénération systéma ­
tique de plans d'exécu tion pour différentes valeurs en paramètres).

Il existe deux méthodes pour construire des instructions : Je paquetage DBMS_SQL et la
méthode native (EXECUr E IMMEDIATE). Avec ces deux approches, vous pourrez utiliser tout
type de donnée, même les collections et les objets (11ser defo1e). Depuis la version llg, les
ordres SQL peuvent être construits à J'aide de CLOB (jusqu'à 32 Ko).

Ullisation de EXECUTE IMMEDllUE
La syntaxe de J' instruction PUSQL EXECl1I'E J:MllEDIATE, qui permet d'exécuter des ordres
SQL dynamiques des trois premières classifications, est la suivante.

ZXBC"O'TB IMMBDIATB chaîneCaractères
(IN'ID { variabl e L variabl e) ...) typeRecord)
(USING (IN) OOT) IN Our) param ètr e

(, (IN) OOT) IN Our) param ètr e) ...)
({REI'URNI N3) REI'URN) INI'O param ètr e (,param ètr e) ...) ;

Le tableau ci-après décrit des exemples d'utilisations réunis dans un bloc PLJSQL :

T- Ni4 llllsatoa 111 IJŒCUlt IMElll'I

Code PL/SQL

DECLARE
ordreSQLdynamique VARCHAR2 (200);
pi l ote_record Pi l otet ROWI'YPE;
bl oc PLSQL VARCHAR2 (500) ;
v_immat VARCHAR2(6) := ' F-wrss • ;
v_immat2 VARCHAR2(6) := ' F-wrFG ' ;
v_typeAv CHAR(8) := 'Concorde ' ;
v_nb HVol 3650. 70;

v_comp
p_immat
v_brevet

BEGIN

' AF ' ;
' F-wrss • ;
' PL-2 ' ;

EXECUTE IMMEDIATE ' DELETE FROM Avi o n
WHERE nbHVol > 1000 ' ;

EXECUTE IMMEDIATE ' CREATE TABLE Av i onchasse
(imma t VARCHAR2 (6) , prixEuros NUMBER) ' ;

Commentaires

Déclaration des variables.

Famille 1.
Sans paramètre.

© ÉdW/ons Eyroles

T_, 1-54 llllsatoa Ill IXlCUTt IMllDUll'I (suite)

Code PL/SQL

ordreSQLdynami q ue : = 'INSERT INro Avi on
VAL UES (:1, :2, :3, : &) ' ;

EXECUTE IMMEDIATE ordreSQLdynami q ue
USING v _imaat, v _typeAv, v_nbHVol, v _cca.p;

blocP LSQL : = ' BEGIN s o usPr og(:pl); END; ' ;

EXECUTE IMMEDIATE blocP LSQL USING v _imaat;

ordreSQLdynami q ue : = ' SELECT * FROM
Pil ote WHERE brevet = :vl';

EXECUTE IMMEDIATE ordreSQLdynami q ue INTO
pil ote_reco r d USING v_brevet;

END;

/

Conwnenlalres

Famille2.
Insertion paramétrée.

Appoel du sous-programme
s ousPr og.

Famille3.
Extraction monollgne
paramétrée.

Il est bien sûr possible d'utiliser EXECl1l'E IMMEDIATE dans un sous-progrrunme ou dans
un programme d'application (C, C++, Java) en utilisant !'API du langage traduisant cette
instruction. Par ailleurs, il est possible d'employer une section exception pour récupérer des
éventuelles erreurs d'exécution.

Ulilsation d'une variable curseur
Les variables curseurs (REF CURSOR), décrites dans ce chapitre, permettent de progrrunmer
les instructions SQL dynamiques les plus complexes (extraction paramétrée renvoyant
plusieurs lignes par exemple). On va retrouver l'utilisation des directives OPEN, FEI'CH et
CLOSE pour manipuler Je curseur. La directive OPEN d'une variable curseur permettant de
construire une instruction SQL est la suivante :

1
OPEN {variabl eCUrs eur) :variabl eCUrs eurH8te)

J'OR c haîn eCaractèr e s
(USING param ètr e (, param ètr e) ...) ;

Le tableau ci-après décrit la construction automatique d'une requête qui extrait plusieurs
lignes. L'ouverture de la variable curseur déclenche Je passage des paramètres au niveau du
SELECT et dans la clause Wl!ERE.

Le bloc suivant affiche Je nom des pilotes de la compagnie de code 'AF.

© Éditions Eyrol/es

lr.111

Code PLISQL

DECLARE

TYPE pilotecurs _type I S REF CURSOR;
refcursPilote pilotecurs _type;
ordreSQLdynamique VARCHAR2 (200);
v_l CHAR(6) : = ' brevet ' ;
v_2 C HAR(3) : = •nom ' ;
v_3 C HAR(6) : = ' nbHVol';
v_4 C HAR(2) : = ' AF ' ;
v_brevet VARCHAR2(6);
v_nom VARCHAR(20);
v_nbHVol NUMBER(7,2);

BEGI N
ordreSQLdynamique : = ' SELECT
OPEN refcursPilote FOR ordreSQLdynamique

11 v_l 11 ' , ' 11 v ..2 11 ' , ' 1 1 v_3 11
' FROM Pilote WHERE comp = :v•' USING v_•;

LOOP
FETCH refcursPilote

INTO v_brevet,v _nom,v_nbHVol;
EXIT WHEN refcursPilote%NOTFOUND;
DBMS_OUTPIJT.PIJT _LI NE (' Pilote : ' l l v _nom);

END LOOP;

CLOSE refcursPilote ;
END;

/

Nouveautés de la version 12c

Commentaires

Déclaration de la variable
curseur et des autres
variables.

Famille 4, requête
multillgne paramétrée.
Passage du paramètre.

Parcours du curseur.

Retourner des jeux de résultats (implict statement results)

Avant la version 12c, PUSQL ne permettait pas de retourner simplement un jeu de résultats
avec des entrées variables sans l'écriture d'une requête, puis d'itérer en utilisant DBMS_
OUI'Pl1I'. Pl1I'_LINE pour afficherle résultat dans l'interface SQL*Plus.

- 12' c lt' L Depuis la version 12<; la procédure RETURN_RESULT du paquetage DBMS_SQL permet de

1 386

s'affranchir d'un paramètre de sortie de type REF CURSOR. La procédure GET_NEXT_RESULT
du même paquetage sert à parcourir plusieurs jeux de résultats produits par RETURN_RESULT.

Le tableau 7-56 présente une procédure qui compose deux jeux de résultats à retourner.
L'appel de cette procédure dans l'interface SQL*Plus est également décrit.

© ÉdW/ons Eyroles

Procéchre

T....., Ni& lletcu dl 1111111111111 JllDI dl r•nats

Appel dans SQL'Plus

CREATE OR REPLA CE PROCEDURE lis te_ adh (
pl I N adhere nt.civi li te%TYPE,

SQL> EXEC lis te_ adh(' Mr. ' , 1 2);
Procédure PL/SQL termi n ée avêê succès.

p 2 I N pratique.spidiTYPE) I S
v_cursor SYS.JlEFCURSOR; Ensemble de résultats tl
BEGIN PRENOM NOM

OPEN v_c urs or FOR SELEC T prenom, nom
FROM adhere n t
WHERE c ivili té = pl ORDER BY nom;

DEMS_ SQL. RETURNJŒSULT (v_ c urs or);
OPEN v_c urs or FOR SELEC T a.prenom,a. nom

FROM pratique p, adherent a
WHERE p.adhid = a.adhid

AND p. spid = p2;

YVES RENOUF
THIBAULT JO UANNE
CLAUDE MARIE

Ensemble de résultats t 2
PRENOM NOM

DEMS_ SQL. RETURNJŒSULT (v_ c urs or);
END li ste_ adh; ROMUALD BELLI N
/ STEPHANE DESLOGES

GUY SPITZA

Pour présenter la procédure GET _NEXT _ RESULT, considérons le bloc suivant qui appelle la
procédure et dépile les deux jeux de résultats à l'aide d'une boucle.

T- Nil Udlsa1lcie dl cn_IDT_llSUŒ

Bloc

DECLARE
v_c ur PLS_ I NI'EGER;
v_refc ur SYS_ REFCURSOR;
v_ret PLS_ I NI'ElGER;
v_ coll VARCHAR2 (30);
v_ co l 2 VARCHAR2 (30);

BEGIN

Appel dans SOL 'Plus

- jeu de résu l tats -
l e dernier MARC ZUNI GA

- jeu de résu l tats -
l e dernier JESS I CA TILLAUT

v cur : = DBMS_ SQL. OPEJILCU RSOR Procédure PL/SQL termi née avec
(ttreat _as_c l ient _for_res ul ts => TRUE); s uccès.

DBMS_ SQL.P ARSE (C => v_ c ur,
statement => ' BEGIN l iste_ adh(' ' Mr. ' ' , 1 2); END; ' ,

l anguage _ flag => DBMS_ SQL.NAT I VE);
v_ret := DBMS_ SQL.EXECUTE(v _ c ur);
LOOP

BEGI N
OllMS_SQL .GET_NEXT_ RESULT(v_c ur, v_r efc ur);

EXCEPT I ON
WHEN NO_DATA,_FOUND THEN EXIT;

END;
DBMS_OUTPUT . PUT_LI NE(' - jeu de resu l tats - ');

LOOP
F ETCH v_refc ur I NrO v _ coll , v_ col 2;
EXIT WHEN v_refc ur,NOTFO UND;

END LOOP;
DBMS_ OUTPUT . PUT_L I NE(' l e dernier ' 11 v_ coll 11

' 11 v_ co l 2);
CLOSE v_refc ur;
END LOOP;

END;

/

© Éditions Eyrol/es

lr.111

Accessibilité

Depuis la version 12c, un sous -programme n'est pas forcément access ible par un objet du
même schéma (fonction, procédure , déc lencheur ou paquetage) . Ainsi, la clause ACCESS IBLE
BY qui peut être ajoutée à un objet ou à un type const ib.Je une liste d'auto risation.

Pour présenter œ mécanisme, considérons la procédure suivante qui ne peut être invoquée que
par une fonction ou une procédure . L'appel direct provoque une erreur, mais en passant par
une unité de programme autorisée, l'appel est valide .

lllllelll Nil llllsalloe

Déclaration de la liste blandle

SQL> CREATE OR REPLACE PROCEOURE p_ t e l _ adh
(pl I N adhere n t.adhidi TYPE)

2 ACCESSI BLE BY (P ROCEDURE p _ te l , FIJNCTION f_ te l)
3 I S
4 result VARCHAR2 (20);
5 BEGIN
6 SELECT te l INTO resu l t FROM adhere nt WHERE adhid = pl;
7 DBMS_ OUTPUT. PUT_LI NE(' Te l : ' 11 resu l t);
8 EXCEPTI ON
9 WHEN NO_,DATAJ'OUND THEN

10 DBMS_ OUTPUT . PUT_LI NE(' Non tro uvé ');

11 END;
12 /

Procédure créée.

SQL> EXEC p _ te l _ adh(27 486) ;
ORA-06550: L i g ne l, col onne 7 :PLS-00904: privilàge
in•uffieant pour acc•d•r à l'objet P_TEL_ADH

Appel conect

SQL> CREATE OR REPLACE
PROCEDURE

p_ te l (pl I N adh ere nt.
adh idiTYPE) I S

2 BEGIN
3 p_ te l _ adh (pl);
4 END;
5 /

Procédure créée.

SQL> EXElC p_ te l (27 486);
Non tro uvé.

Procédure PL/SQL termi née
avéC succès.

Pour les paquetages, la liste blanche s'appliq ue au niveau de la spécification (et pas au niveau
d'une procédure, fonction ou d'un type de paquetage)

1

CREATE PACKI>llE nom.._paq

ACCBSSIBLB BY (PROCEWRE nc:m._proc , ...) AS

END;

1 388 © ÉdW/ons Eyroles

Exercices

L'objectif de ces exercices est d'écrire des déclencheurs et des sous-programmes PUSQL
manipulant des curseurs et gérant des exceptions sur les bases de données Parc Ïliformatiq11e
et Chanti ers.

1.1 Cur11eur

On désire connaître, pour chaque logiciel Installé, le temps (nombre de jours) passé entre l'achat et
l'installation. Ce calcul devra renseigner la colonne del ai de la table Ins ta1 l e r pour l'instant nulle.
Les résultats devront être affichés (par DBMS_Ol11'Pl11' . PUT_LINE) ainsi que les Incohérences (date
d'installation antérieure à la date d'achat, date d'installation ou date d'achat Inconnue).

Écrivez la procédure calc ul Temp s pour programmer ce processus. Un exemple d'état de sortie est
présenté cl-après :

Log i c i e l Orac l e 6 sur Post e 2 , attent e 2924 jour {s).
Log i ci e l Orac l e 8 sur Post e 2 , attent e 1463 jour {s).
Date d' achat inconnue p our l e l og i c i e l SQL•Net sur Post e 2
Pas de dat e d' i nstallati on pour l e l og i c i e l Wi nDev s ur Post e 4

Log i c i e l I . I . S . ins tall é sur Pos t e 7 11 jour (s) avant a che t é!

o:mîl'IB3 1.2 Transaction

Écrivez la procédure transactionnelle ins tallL ogSeg permettant d'effectuer une Installation grou­
pée sur tous les postes d'un même segment d'un nouveau logiciel. La transaction enregistrer dans
un premier temps le nouveau logiciel puis, les différentes Installations sur tous les postes du segment
de même type que celui du logiciel acheté. t:lnstallatlon se fera à la date du jour.

Ne pas encore tenir oompte des éventuelles exceptions et tracer les Insertions. Utiliser les paramètres
suivants pour tester votre procédure :

SQL> EXECUTE ins tallL ogSeg(' 13 0 .12 0 .80', ' l og99 ', 'Blas t er', '05-09-
2003 ', ' 9.9 ', ' PCWS', 999.9)

Blas t e r s t ocké d ans la tabl e Log i c i e l
Ins tallati on sur Post e 4 d ans Sall e 2
Ins tallati on sur Post e 5 d ans Sall e 2

Procéd ure PL/SQL t erminée avec s uccès .

O:t wl1B3 1.3 exceptions

© Éditions Eyrol/es

Modifiez la procédure i ns tallLo gSeg afin de prendre en oompte les exceptions potentielles

numéro de segment Inconnu (erreur prédéfinie NO_DATA_FOUND);

lr.111

numéro de logiciel déjà présent (erreur prédéfinie DUP_ VAL_ON_INDEX) ;

date d'achat plus grande que celle du jour (erreur utilisateur date_fau sse) ;

type de logiciel Inconnu (erreur non prédéfinie de ccde Oracle -229 1) ;

aucune Installation réalisée, car pas de poste de travail de ce type (erreur utilisateur pas_
i nstall_p oss ible).

Testez chacun de ces cas 11Nec les valeurs suivantes :

--Mauvais segment
EXECUTE i nstallLo gSeg(' 130.120 .87 .' ...)
--L og i ci e l déj à présen t
EXECUTE i nstallLo gSeg(' 130 .12 0 . 80', ' log6 ',)
- -date > jour

EXECUTE i nstallLo gSeg(' 130 .12 0 . 80', ' l og66', 'Tes t ', ' 05-09-3000 ', ...)
- -Type de l ogi c i e l i nconn u
EXECUTE i nstallLo gSeg(' 130 .12 0 . 80', ' l og66', 'Tes t ','0 5-09-2 003 ', ' 9.9 ',
' APPL', ...)
--Auc une ins tall
EXECUTE i nstallLo gSeg(' 130.120.81 ', ' l og55 ', '. .. ', '. .. ', ·pcws·, ...)
--Bonne i nstallati on
EXECUTE i nstallLo gSeg(' 130 .12 0 . 80', ' l og66','E udora6', ' 1 0- 09-2 003 ',
'6 . 0', ' PCWS', 66)

n:@ïftefl J.4 Déclencheurs

1 390

Mises à jour de cclomes

Éahiez le déclencheur Tr i g_Après_DI_I nstall er sur la table Ins tall er permettant de faire la
mise à jour automatique des oolonnes nbL og de la table Post e, et nbins tall de la table U>gic iel.
Pré,., Ir les cas de déslnstallatlon d'un logiciel sur un poste, et d'installation d'un logiciel sur un autre.

Écrhiez le déclencheur Trig_Après_DI_Post e sur la table Post e permettamt de mettre à jour la
cclonne nbPost e de la table Salle à chaque ajout ou suppression d'un nouveau poste.

Écrivez ledéclencheurTrig_Après_u_Sall e sur la table Sall e qui met à jour automatiquement la
cclonne nbPost e de la table Segment après la modification de la cc lonne nbPos t e.

Ces deux derniers déclencheurs vont s'enchaîner: l'ajout ou la suppression d'un poste entraînera
l'actualisation de la cclonne nbPost e de la table Sall e qui ccndulra à la mise à jour de la oolonne
nbPost e de la table Segment. Ajouter un poste pour vérifier le rafraîchissement des deux tables
(Salle et Segment). Supprimer ce poste puis vérifier à nouveau la cchérence des deux tables

Programmation de contraintes

Écrivez le déclencheur Tr i g_Avant_UI_Install er sur la table Ins tal.l er permettant de
ccntrôler, à chaque Installation d'un logiciel sur un poste, que le type du logiciel correspond au type du
poste, et que la date d'installation est sclt nulle postérieure à la date d'achat.

© ÉdW/ons Eyroles

[3:131ïf!gg 1.5 Transaction de la base ChantletS

Écrivez la procédure f inAnnee permettant de rajouter à chaque véhicu le les kilométrages faits lors
des visites de l'année. Vous utiliserez un seul curseur pour parcourir tous les véhicu les. Il faudra
ensuite Sl4)prlmer toutes les missions de l'année (visites et détai ls des trajets des employés trans­
portés).

[3:rn Œ tITTl 1.6 Déclencheurs de la base Chantiers

© Éditions Eyrolles

Déclencheur Kgne

Écrivez le déclencheur TrigPassag e rConduct e ur sur la table transporter permettant de
vérifier qu'à chaque nouveau transport, le passager déclaré n'est pas déjà enregistré en tant que
conducteur le même jour.

Déclencheur corrposé

Écrivez le déclencheur composé Trigcapaci t eVeh icul e sur la table transporter permettant
de contrôler, qu'à chaque nouveau transport, la capacité du véhicule n'est pas dépassée.

Vous éviterez le prcblème des tables mutantes en :

déclarant dans la zone de définition commune un tableau recensant le nombre de personnes
transportées par visite ;

déclarant dans cette même zone un curseur qui va parcourir toutes les visites ;

chargeant le tableau dans la section BEFORE STATEMENI' ;

examinant le tableau dans la section BEFORE EACH et en le comparant avec les données à
Insérer.

Les messages à afficher pour tracer et rendre plus llsll le ce déclencheur sent :

dans la section BEFORE EACH ROW : "Enregistrement du transport de ncm· puis é110ntuellement

• Premier trajet de la visite" ;

dans la section AFTER EACH ROW : "Transport de nom bien enregistré" puis "Il ne reste plus que
x plaœ(s) dlsponlble(s)" ;

dans la section AFTER STATEMENT: "Nombre de trajet(s) tralté(s) : nombre·;
Les messages d'erreur à produire le cas échéant sont les suivants :

"Capacité max atteinte n pour la visite chmtferdu date, pour le véhicu le v" ;

"BASE 1 NCORRECTE : Capacité dépassée n pour la visite chantier du date, pour le véhicu le v".

391 1

Panie 111

SQL avancé

Chapitre 8

le précompilateur Pro*C/C++

Oracle fournit plusieurs précompilateurs permettant d'inclure des instructions SQL au sein de
programmes écrits dans des langages procéduraux (Cobol, Fortran, PUI, C et C++). Les pré­
compilateurs s'appellent ainsi : Pro*COBOL, Pro*FORTRAN, Pro*PUI et Pro*C/C++ que
nous étudions dans ce chapitre. Nous employons seulement une syntaxe C, mais les méca­
nismes décrits dans ce chapitre valent également dans Je cas d'une syntaxe C++. Il existe un
autre mécanisme d'intedaçage (que nous n'étudierons pas) qui consiste à utiliser des primitives
de bas niveau OC! (Oracle Cali Interface).

Il est possible d'intégrer Je précompilateur Pro*C/C++ dans Microsoft Visu al C++, de manière
à précompiler, à compiler et à exécuter dans Je même environnement de développement. La
dernière section de ce chapitre traite de la configuration à mettre en œuvre.

Pour tester ces exemples, il faudra installer Pro*C/C++ qui n'est pas inclus dans la version
Personal Edition. Il faut exécuter une installation personnalisée et choisir d'installer
Orac le Call Interface.

Généralités

La précompilation est une technique qui permet d'incorporer dans un programme procédural
(dit « hôte») des commandes SQL dont la syntaxe est presque identiQU!e à celle de la forme
interactive. Le préprocesseur traduit ces commandes automatiquement en appels OC!.

Rgure B·t PrécompNalfon

l •xemplel .pc 1 Q l axemplel.cpp 1 l •xécut•ble

Compilation (Cou C++) d
J>io*C/C++ 1.-'d1tion de hens

Oiü'es SQL intégrés
Les o!dres SQL sont dits « intégres » car ils apparaissent au même niveau que des instructions du
langage (dont la syntaxe n'a rien à voir avec Oracle). Ces ordres sont déclaratifs ou exécutables.

© Éditions Eyrol/es

1

1 396

SQllv.é l

Les ordres déclaratifs permettent de déclarer des objets (au sens Oracle, variables, curseurs,
types, etc .) et des zones de communication (nommées SQLCA) entre le programme et la base.
Le tableau suivant décrit les instructions qui appartiennent àce type d'ordres :

Code Pro'C

BEGIN DECLARE SECTION

END DECLARE SECTI ON

DECLARE

INCLUOE

WHENEVER ...

Commentaires

Déclaration des variables hôtes (scalaires ou
tableaux).

Déclaration d'objets.

Inclusion de fichiers.

capture des exceptions.

]

Les ordres exécutables SQL sont, d'une part, les instructions interactives qu'on connaît
(CREATE, SELECT, INSERT ...). D'autre part, il existe aussi des ordres non interactifs dont
quelques-uns sont résumés dans le tableau suivant :

r-. 8·2 Ordres SQl llll6aléa 101 llllncdls

Code Pro'C Commentaires

CLOSE ... Fermeture d'un curseur.

CONNECT Connexion à une base.

FETCH ... Lecture dans un curseur.

OPEN ... Ou110rture d'un curseur.

Pour inclure tout ordre SOL (dit• intég ré•) dans un programme hôte , il faut le faire précéder
de la directive EXEC SQL.

Variables
Les variables hôtes (scalaires ou tableaux) permettent d'interagir avec la base. Elles peuvent se
trouver en paramètre d'un ordre SQL ou en tant que zone de réception d'une extraction
(SELECT ou FETO!). Dans tout o!dre SQL intégré, une variable hôte est préfixée du symbole :
comme le montre le tableau suivant.

© ÉdW/ons Eyroles

Code Pro'C

EXElC SQL BEGIN DECLARE SECTION;
f l oat nbReu.re•Vol;
int budget Max;
VARCHAR codeco1111>[20];
VARCHAR tabNooacaç [15] [20];

EXElC SQL END DECLARE SECTION;

EXElC SQL SELECT nbHVo 1, comp
I Nro : nblleureaVol, : codeccap
FROM Avi o n WHERE immat = ' F-WI'SS ' ;

EXEC SQL DECLARE CURSOR curs FOR
SELECT nomc omp FROM Compag ni e

WHERE budget < : budgetllax ;

EXEC SQL FETCH c urs I NrO :tablkaccap;

Variable indicatriee

111.._,lnlllr Pro'CIC++ 1

Commentaires

Déclaration de quatre variables (trois
scalaires et un tableau).

Extraction de données dans deux zones
de réception.

Curseur paramétré.

Chargement d'une partie du tableau
(détafl plus loin).

Il est possible d'associer à touœ variable un indicateur (de type srra llint), bien utile pour tester Je
bon fonctionnement du transfert de données entre la base et Je langage hôte. Dans Je cas d'une
requête, sa valeur permet de détecter une erreur : 0, tout va bien ; -1, aucune valeur n'a été
renvoyée ; >O, la valeur renvoyée a été tronquée, J' indicateur contient la longueur de la chaîne avant
l'opération. Dans Je cas d'une mise à jour, J'indicaœur permet d'attribue r la valeur nulle à une
colonne (valeur de l'indicateur de la variable correspondan t à la colonne positionnée à -1). Tout indi­
caœur est préfixé du symbole : dans un ordre SQL intégré, comme Je montre Je tableau suivant :

lllllleaU 8-4 ladlcallllr Ill 11111111111

Code Pro'C Commentaires

EXElC SQL BEGI N DECLARE SECTION;
float nbHe uresvo l ; Déclaration de l'lndlcateurd'une variable.
smallin t in41cmh11Vol;
int budgetMax;
VARCHAR codecomp [20];

EXElC SQL END DECLARE SECT I ON;

EXElC SQL SELECT nbHVol , comp Extraction de l'lnd lcateur de la colonne
I NrO : nbHeu.resv o l :indicmbBVol, :codéeomp n.bHVol.

FROM Avion WHERE immat = ' F-WI'SS ' ;
if (:indicnbHVo l == - 1)

/* l a col onne n.bHVol est NULL * /

in41cmh11Vol = - 1 ;
EXEC SQL I NSERT I NrO Avion

VALUES (' F-GLOX', ' DR400',
: nbHeuresv ol : in4icnbBVol , ' AF ');

Insertion d'une valeur NULL dans la
colonne nbHV o l de la table Avion.

© Éditions Eyrol/es 397 1

1

1 398

SQllv.é l

cas du VARœAR
VARCHAR est considéré comme un « pseudo-type » au niveau du précompilateur, car il inter­
vient au même niveau que les types primitifs int, float, char, etc. Chaque variable
VARCHAR déclarée (aussi valable pour les tableaux de chaînes) doit être manipulée à J'aide de
la structure (struct) C/C++ automatiquement générée à la précompilation. Souvenez-vous
de l'antislash zéro, des fonctions de chaînes strcpy, etc. Héritages de la pénible gestion des
entrées-sorties de ces langages (Java a heureusement simplifié la situation).

Le tableau suivant décrit comment manipuler une variable VARCHAR par s.a structure C/C++
dans Je programme :

Code Pro'C Commentaire

VARCHAR no111Cc:apa(20 1; struct

{ uns ign ed short l en;
uns igned char arr[20J; } n-=c:apa;

EXElC SQL SELECT n-=aap I NTO : ncaccapa Chargement de la structure.
FROM Compag nie WHERE comp = ' AF ' ;

n-=o- .arr rn-=c:apa. l en 1 =' \0 ' ; de la fin de chaîne.
printf("Compagnie: is •, n-=o- .arr); Affichage de la chaîne.

Penser à rajouter un caractère dans la déclaration à chaque variable hôte correspondant à une
colonne VARCHAR, VARCHAR2 ou CHAR de la base (pour pouvoir stocker le "\0 •).

zone de commuiîcalion CSQLCID
Il est indispensable d'inclure la zone de communication SQLCA (SQL Comm.1micatio11 Area),
comme on inclut une bibliothèque, à J'aide de l'instruction SQL intégrée INCLUDE. La
syntaxe à composer est la suivante : « EXEC SQL INCLUDE sql ca . h ; •.

À chaque ordre SQL intégré exécuté, cette zone est mise à jour et il est possible ainsi de tester
Je code retour d'Oracle pour chaque instruction. On retrouve les variables sql code et
sqlernn étudiées avec PUSQL. La variable est une struc ture composée de deux champs :

1
struc t { 1msigned shor t sqlernnl;

char sqlernnc (70) ;) aqlerzm ;

Le champ sql ernnl indique Je nombre de caractères du message d'erreur : Je champ
sql ernnc contient Je message d'erreur lui-même.

© ÉdW/ons Eyroles

111.._,lnlllr Pro'CIC++ 1

ConnexiOn à une base
La connexion à une base Oracle se réalise par J' ordre SQL intégré Q)NNEJCT qui comporte trois
variables hôtes de type VARCH!\R (nom d'utilisateur, mot de passe et Je descripteur de la
connexion). La syntaxe est la suivante :

1 EKEC SQL CONNBCT :utilisat e ur IDBllTIJ'IBl> BY :pwd USING :descript e ur;

Gestion des exceptions
Il existe deux mécanismes pour gérer les erreurs :

• l'exploitation de la zone SQLCA après chaque instruction SQL intégrée (test de la variable
sqlca.sqlcodeet affichage de la variable sqlca.sqlernn.sqlernnc) ;

• l'utilisation de la directiveWHENEVERqui met en œuvre des étiquettes pour dérouter Je trai­
tement en fonction de la nature de J' exception. Ce type de programmation est plus rigou­
reux et facilite la maintenance.

Notons que ces mécanismes peuvent cohabiter (voir Je premier exemple). Les tableaux
suivants décrivent les possibilités de J' instruction :

1 BXBC SQL WBBllBVBR é vénem ent act ion;

Événement

S QLERR OR

S QLWARNING

NOT FOUND

Action

STOP

COIITINUE

GOTO <!ti quette

Corrrnenllllres

Toute exception.

Anomalie (warnlng) signalée par Oracle.

Donnée non trouvée (oRA-01403).

Corrrnenllllres

Arrêt du programme (annulation de la transaction en cours).

Forœ le programme à continuer en séquences malgré l'erreur
retournée par Oracle.

Branchement à l'étiquette Indiquée par son ldentWlcateur.

oo fonctio n ([parameters J > Appel de la fonction C!C++ en passant d'éventuels paramètres.

La portée de l'instruction WHENEVERest dictée par sa position (si elle se trouve dans Je mai11
elle reste valable dans tout Je bloc principal). L'action spécifiée reste valable jusqu'à la fin
du bloc ou jusqu'à l'exécution d'une autre instruction WHENEVER portant surie même événe­

ment.

© Éditions Eyrol/es

1 SQllv.é l

Transactions
Il est tout à fait possible de progrrunmer des transactions comme Je montrent les instructions
SQL intégrées du tableau suivant :

Action

EXEC SQL COMMIT WORK
[RELEASE];

EXEC SQL ROLLBACK WORK
[RELEASE];

EXEC SQL SAVEFOINT
nomPoint ;

EXEC SQL ROLLBACK TO
SAVEPOINI' nomPoint ;

Conmentalres

Validation de la transaction. L.:qition RELEASE libère les éventuels
verrous.

Invalidation de la transaction. Idem pour RELEASE.

Pose d'un point de validation.

Invalidation d'une partie de la transaction.

Extraction d'un enregistrement

1 400

L'exemple suivant (proCl.pc) extrait d'un enregistrement de la table Avi on à partir du
schéma sco tt/tiger et du descripteur de connexion CXBDSCX1I'OU. Si aucune donnée n'est
trouvée, Je traitement se déroute vers J'étiquette pas Trouve. Dans Je cas d' une autre erreur, Je
traitement se déroute vers J'étiquette probleme où est testée la possibilité que la requête
ramène plusieurs enregistrements.

,... ... 8-9 [lll'llClloe d'll --·--

Code Pro'C

#inc lude <std i o. h>
#inc lude <ctype. h>
linclude <st ring. h>
voi d aff i che Erreur (voi d);

EXEC SQL BEGIN DECLARE SECTION;
VARCHAR u t ili sate ur[30];
VAR CHAR pwd [l 0] ;
VARCHAR des c ripteur[lOJ;
VARCHAR i mma t [6] ;
VARCHAR t ypeav [15];
in t capac i te;
VARCHAR codecomp [4];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUOE sqlca . h;

Conmenlalres

Inclusion des bibliothèques C.
Déclaration de la fonction qui affiche
les messages d'erreur.

Déclaration des variables hôtes.

lnduslon de la zome de communication.

© ÉdW/ons Eyroles

111.._,lnlllr Pro'CIC++ 1

,... ... 8-9 blrlclloe d'l1 •elllsr..i (suite)

Code Pro'C

void main()
{ strcpy((char *) ut ilisa teur .arr, "SCOTr");

uti lisa teur . l e n =
(in t) strlen((char *) uti lis ateur .arr);

strcpy((char *)pwd. arr, "TIGER");
pwd.len = (int) str len ((char*) pwd.arr);
strcpy((char *) descripteur.arr, "CXBDSOUTOU");
descripteur.len =

(i nt) strlen((char *)descripteur.arr);
EXElC SQL WHENEVER SQLERROR GOTO probleme;

EXEC SQL CONNECT :utilisateur
IDENI'I FIED BY :pwd USING :descripteur;

EXEC SQL WHENEVER NOT FOUND GOTO pasTrouve;
EXEC SQL SELECT typeAvion, cap, comp

INTO :typeav, :capacite, :codecomp
FROM Avion WHERE iamat = ' F-WI'SS ' ;

typeav.arr [typeav. l en) ' \0 ' ;
codecomp.arr [cod<>eomp. l e nJ = ' \0 ' ;

printf("Détai l s de l' avio n : is id is\ n",
typeav.arr, capacite, codecomp.arr);

retu.rn;

probleme:
if (eqlca.eqlcode == -2112)

printf ("Trop de l ignes ramenées ! ");
e l se

af fic heErre ur () ;
retu.rn;

pasT.rouve:
p.rintf ("Aucun avio n de ce code ... \ n");

Commenlllres

des paramètres de
connexion à la base.

Préparation du déroutement en cas
d'erreur.
Connexion à la base.

Gestion de 1·exoeptlon.
Extraction d·un enregistrement.

Ajout du caractère \0 en fin de
chaînes.

Affichage des résultats.

Gestion des erreurs.

void affic h eErre ur () Affichage des messages d'erreur.
{prin tf< "*s <*d)\ n", aqlca.•qlerr a. aqlerrmc ,

-aqlc a . •qlcod e);}

Dans les exemples qui suivent, nous ne réécrivons pas les parties d'inclusion (des bibliothèques
et de la zone de communication) de la connexion à la base, et la fonction (affiche Erreur)
d'affichage des messages d'erreur.

© Éditions Eyrol/es 401 1

1 SQllv.é l

Mises à ïour

L'exemple suivant (proC2 . pc) insère un enregistrement dans la table Compagnie.

T_,8-10 W111•Jo•d1llbls1

Code Pro'C

void main()
{

EXElC SQL WHENEVER SQLERROR GOTO sortie;

EXEC SQL CONNECT :uti li sateur
IDENI'I FI ED BY :pwd USING :descripteur;

EXElC SQL WHENEVER SQLERROR GOTO prob l eme;

use SOL IJISDT lift() Compagnie

VALUSS (' BAW' , ' British Airways ');
EXEC SQL COMMIT WORK;

retu.rn;

sortie:
printf ("Prob l ème de connexi on !");
affic heErre ur();

return;

prob l eme:
affic heErre ur();

}

EXElC SQL WHENEVER SQLERROR CONTINUE;

EXElC SQL ROLLBACK WORK;

Conmenlllres

lnltlallsatlon.

Connexion.

Insertion.

Validation.

d'une erreur à la
connexion.

d'une erreur lors de
l'insertion avec lmvalldation de la
transaction.

Utilïsation de curseurs

1 402

Dès qu'une requête retourne plusieurs enregistrements, il faut utiliser un curseur pour traiter
les résultats extraits. Le mécanisme des curseurs s'apparente à celui étudié au chapitre 7. Il
comporte quatre étapes chronologiques : déclaration, ouverture, parcours et ferme ture.

Par ailleurs, à J'inverse de PUSQL qui ne supporte que des variables scalaires (ou RECORD)
dans Je type de retour, Je précompilateur Pro*C/C++ permet de récupérer un ensemble de
lignes résultats dans un tableau (par paquets de données de la taille du tableau). Étudions à
présent oes deux techniques.

Variables scalaires
L'exemple suivant (proC3 . pc) programme un curseur qui alimente des variables scalaires. Il
s'agit d'afficher les caractéristiques des avions appartenant à une compagnie de nom saisi au

clavier (via la fonction C saisieChaine qui convient mieux que scanf).

© ÉdW/ons Eyroles

Code Pro'C

int saisiechaine(char *,char*);

void main()
{ ...

111.._,lnlllr Pro'CIC++ 1

Commenlalres

Déclaration de la fonction.

EXEC SQL DECLARE aura CURSOR roa Déclaration du curseur.
sm.&CT a.iamat, a.typé.Avion, a.cap
n.œ compagnie c, Avion a
wms c.comp = a.comp AND nomcomp = :nomcomplu;

nomcomplu . l en = saisiéChaine
f "Nan dé la compagn i e fou f in) : •,nomcomplu .arr);
nomcomplu .arr [nomcomplu . l en] =' \0 ' ;

EXEC SQL WHENEVER SQLERROR GOTO erreur;
EXEC SQL OPDI aura;
EXEC SQL WHENEVER NOT FOUND GOTO finBo uc l e;

printf ("\nFl otte de *s\ n" ,nomcomp lu .arr);
whilefl)

{ EXEC SQL RTC'B cura
DITO :iamat, :typeav, :capacite;

immat.arr [immat. l enJ = ' \0 ' ;
typêav.arr [typeav. l en] = ' \0 ' ;
printf("*s *s *d\ n", immat.arr, typeav.arr,

capacite); }

f inB ouc l e:
EXEC SQL CLOS& aura;
return;

Saisie du nom de la compag nie.

Gestion de l'ouverture du curseur.

Parcours du curseur.

Affichage de l'enregistrement
courant.

Fin de curseur.

erre ur: Gestion des erreurs.
affic h eErre ur ();
return;

sortie:
printf ("Pr obl eme à l a connexi o n ! ");
affic h eErre ur ();

int saisiechaine(char texte [] , char variab l e [])
{prin tf (texte);
ffl ush (stdo ut);
retu.rn (gets (var i abl e)

(char *)0? EOF: str l e n (var iabl e));

Variables tableaux

Fonction de saisie d'une chaîne.

L'utilisation de tableaux comme types de retour d'un curseur évite de nombreux échanges de
données entre la base et Je programme. En effet, alors qu'il fallait wie lecture (FETCH) du
curseur pour chaque enregistrement extrait (voir l'exemple précédent), la lecture d'un curseur
dans wi tableau chatgera wi paquet d'enregistrements (d'wi nombre égal à la taille du
tableau). Notons qu'il est aussi possible d'insérer par paquets (tableaux C initialisés qu'on
utilise comme paramètres d'une instruction SQL intégrée IIBERT).

© Éditions Eyrol/es 403 1

1

1 404

SQllv.é l

La variable sqlerrd[2] de la zone SQLCA contient après chaque lecture dans le curseur
(exécution de FETCH), le nombre cumulé de lignes extraites.

L'exemple suivant (proC 4 .pc) met en œuvre un curseur qui charge à chaque lecture quatre
tableaux de trois enregistrements. Il s'agi t d'afficher les caractéristiques de tous les avions.
Dès q ue la fin de curseur est atteinte, Je prograrnrne se déroute à J'étiquette finBoucle. S'il
reste des lignes à traiter (moins de trois enregistrements ont été extraits), Je calcul du nombre
de lignes à traiter permet d'afficher Je reste des tableaux. Par exemple, supposons que 7 enre­
gistrements soient à extraire et que la taille des tableaux est 3. Deux tours de boucle chargent
6 enregistrements, Je dernier est traité par J' intermédiaire de J'étiquette.

T- 8-12 lXlnlCdCle dm des t-1

Code Pro'C

4define TAILLE
void affiche (int.};

EXEC SQL BIDIN DECLARE SECTION;

VARCHAR cabitnmat.
VARCHAR cabt.ypeav
int. cabcapacit.e
VARCHAR cabnomcomp
int. nbpa quet.s ;

(3) (7);
(3) (1 6);
(3);
(3) (26);

int. ligne_rescant.e;
EXEC SQL END DECLARE SECTION;

void main(}
(-

EXEC SQL DECLARE cura CURSOR FOR
SELBC'l' a. inrnat., a. t.ypeAvion, a .cap, c. nomcomp
FROM Compagnie c, Avion a
WHERE c.cornp = a.comp;

EXEC SQL WHENEVER SQLERROR OOTO probleme;
EXEC SQL OPEN curs;
EXEC SQL WHENEVER NOI' FOUND Garo f inBoucle;

nbpaquet.s = 0;
print.f
while(ll

(EXEC SQL Pn'CB cur• Dft'O : ca.binrna.t., :cabt.ypeav
: t.abcapacit.e, : cabnomcomp;

affiche(TAILLE};
nbpaquet.s ++;)

finB oucle :
ligne_rest.ant.e =

aqlca.sql•rrdUJ - (nbpaquet.s • TAILLE};
affiche (ligne_rescant.e} ;
print.f (•\n-- --- ---- ------ \n•} ; ;
EXEC SQL CLOSE curs;
ret.urn;

probleme:
affiche.Erreur (};
ret.urn;

sort.ie :
print.f (•Pro b leme à la connexion!•};
affiche.Erreur (};

Corrrnenlalres

Dédaration de la

Oédaration des tab'eaux.

Oédaration du a.us 8U'.

Oédaration du a.us 8U'.
Affichage du paquet.

Affichage du reste.

© ÉdW/ons Eyroles

Code Pro'C

void affiche (int. n }
(int. i;

print.f (•\n---------------•) ;
f or (i =O; i<n; i+-+ }
(cabinrnat. (i).arr (ca.bintnat. (i).len) = '\0 ' ;

cabt.ypeav (i).arr (cabt.ypeav (i) .len) = '\0 ' ;
tabn001comp(iJ .arr (t abnomcomp(iJ.lenJ • •\0 ' :
prin t.f (•\n,s\ t.'s \t. \:d\t. \:s •, cabinrna t. (i) .arr,

cabt.ypeav (i) .arr, cabcapacit.e (i),
cabnomcomp (i) .arr } ;)

Le résultat de ce progrrunme est Je suivant :

111.._,lnlllr Pro'CIC++ 1

Commenlalres

Affichage du tatlea.i
cha-gé par le curseur.

Figure 8-2 Résultats à l'écran

Utilïsalïon de Microsott Visual C++

Afin de travailler avec Microsoft Visual C++, vous devez éventuellement avoir installé Je
précompilateur Pro*C/C++ en lançant à nouveau une installation à partir des extensions
d'Oracle. La documentation à consulter est Pro*C/C ++ Precompiler Geni11g Started for
Wi11dows, chapitre « Integrating Pro*C/C++ into Microsoft Visual C++ ». Elle est assez claire,
et plusieurs étapes sont à respecter, nous les résumons ici pour Oracle9i :

• Spécifier la localisation des exécutables (en général C: \orac le\ora92\bin).

• Spécifier la localisation des sources à précompiler (en général C: \orac le\ora92\
precomp\public).

• Ajouter les sources (extensions .pc) à précompiler dans Je projet.

• Ajouterla librairie Pro*C/C++ (C: \orac le\ora92\precomp\ lib\msv c) au projet.

© Éditions Eyrol/es 405 1

1

1 406

SQllv.é l

• Spécifier les options de compilation .

• Ajouter l'entrée vers Pro*C/C++ à la barre de menu, pour lancer une précompilation (C: \
orac le\ora92 \bin\ procui. exe) à partir de l'environnement.

Une fois tout mis en place, vous pouvez précompiler, compiler, créer des liaisons et exécuter
un programme C ou C++ à travers J' interfuce suivante :

Rgure 6-3 Déve/cyipement sous MS Vlsua/ C++

QMCl!lft .. -· •: t)lt'fO ,.

M#'J2

.ElEC 5QL lNCl.tlDE .,qlc. h ,

YOi.d MiO()

1

lRCH.\R pcNT ' -0 • J'

• I

.- .tJ X

.r=

© ÉdW/ons Eyroles

Chapitre 9

l'interface JDBC

La technologie JDBC (Java DaJaBase C01uiectivity), conçue initialement par Sun Micro­
systems et propriété d'Oracle depuis 2009, permet à des applications Java d'accéder à des
sources de données compatibles SQL (tables relationnelles en général, mais aussi données
issues d'un fichier texte ou d'un classeur Excel, par exemple).

Cette spécification est considérée comme une API virtuelle ; tout éditeur de logiciels peut
donc l'implémenter et proposer un pilote (driver) afin de permettre Je dialogue avec du code
Java. C'est Je cas de tous les SGBD qui disposent d'un ou de plusieurs. pilotes JDBC. Inclus
dans Je JDK depuis 19'17, le paquetage java. sql regroupe les fonctionnalités principales qui
sont détaillées dans ce chapitre. Certains aspects du paquetage j avax. sql, apparu avec
JDBC 2, seront aussi étudiés (Datasource et ROWSet).

Depuis JDK 1.5, la version de JDBC est la 4.0. La prochaine version 4.1 devrait apparaître
avec la version 7 du langage Java Il y a relativement peu d'apports depuis JDBC 3, apparu
avec JDK 1.4: citons la prise en compte de XML, du type ROWID, des Natio11a1 Character
(NCHAR, NVARO!AR ...) et plus de possibilités pour les BLOB.

Généralités

La technologie JDBC est conforme au niveau d'entrée de la norme ANSI SQL2 (e11try level) et
de la spécification SQLX/OPEN CL! (Cali Level /111erface), compatible ODBC (Microsoft) et
avec d'autres API propriétaires. JDBC supporte la programmation mllltithread. La communi­
cation est réalisée en mode client-serveur déconnecté et s'effectue en plusieurs étapes:

• connexion à la base de données ;

• émissions d'instructions SQL et exploitation des résultats provenant de la base de données ;

• déconnexion de la base.

Le spectre de JDBC est large, car l'application Java connectée à la base peut être une classe ou
une applet, une servlet, un EJB (E11terprise Java Bea11s) ou une procédure cataloguée. Par
ailleurs, tous les outils de mappi11g objet-relationnels génèrent en interne du code JDBC.

© Éditions Eyrol/es 407 1

1

1 408

SQllv.é l

IJassilieation des plotes (drivers)
Un pilote (driver) JDBC est la couche logicielle qui est chargée d'assurer la liaison entre
l'application Java cliente et le SGBD serveur. On parle de midd/.ware. Il est disponible sur le
site des éditeurs, le plus souvent gratuitement, sous la forme d'un fichier {en général, . jar,
. zip, . tar ou . gz). Vous devrez placer ce fichier, après décompression, dans le classpath de
votre environnement de compilation.

On distingue quatre types de pilotes JDBC.

• Les pilotes de type 1 (JDBC -ODBC Bridge) utilisent la couche logicielle de Microsoft
appelée ODBC (Open DataBase Comiectivity). Le client est dit « épais »puisque le pilote
JDBC convertit les appels Java en appels ODBC avant de les exécuter. Cette approche
convient bien pour des sources de données Windows ou si l'interface cliente est écrite dans
un langage natif de Microsoft.

• Les pilotes de type 2 (Native -API Parti.y-Java Driver) utilisent un pilote fourni par le
constructeur de la base de données (natif). Le pilote n'étant pas développé en Java, le client
est aussi dit « épais » pour cette approche. En effet, les commandes JDBC sont toutes
converties en appels natifs au SGBD considéré. Cette approche convient pour les appli­
cations qui manipulent des sources de données uniques (tout Oracle ou IBM, etc .).

• Les pilotes de type 3 (Net ProtocolAU -Java Driver) utilisent un pilote générique natif écrit
en Java. Le client est plus « léger» car les appels JDBC sont transformés par un protocole
indépendant du SGBD. Cette approche convient pour des sources de données hétérogènes.

• Les pilotes de type 4 (Native Protocol Ali-Java Driver) sont écrits en Java. Le client est
léger car il ne nécessite d'aucune autre couche logicielle supplémentaire. Les appels JDBC
sont traduits en sockets exploités par le SGBD. Cette approche est la plus simple mais pas
forcément la plus puissante, elle convient pour tous types d' architecture:s.

La figure suivante schématise Je principe mis en œuvre au travers des quatre types de pilote JDBC :

Figure 9-t Types de {ilotes JDBC

type3 type4

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Le choix du pilote n'a pas d'influence majeure sur la programmation. Seules les phases de
chatgement du pilote et de connexion aux bases son t spécifiques, les autres instructions sont
indépendantes du pilote. En d'autres termes, si vous avez une application déjà écrite et que
vous décidez de changer le type du pilote - soit que la source de données migre d' Access à
Oracle ou à SQL Server par exemple, soit que vous optie z pour un autre pilote en conservan t
votre source de données-, seules quelques instructions devront être réécrites.

Les paquetages
Les différentes spécifications JDBC se composent d'interfaces, classes, énumérations et
exceptions situées dans le paquetage java.sql. Selon la version de JDBC, il existe aussi des
paquetages additionnels de type javax. sql. rCMSet. Oracle propose des API propriétaires
qui implémentent les API de référence de Sun (qui désormais lui appartiennent).

Le paquetage oracle. jdbc .driver devra être importé pour utiliser un pilote de connexion
d'Oracle. Le paquetage oracle. sql devra être importé pour pouvoir manipuler des types
spécifiques à Oracle (BFILE, ROWID, extensions objets, etc.).

Le tableau suivant présente les éléments principaux du paquetage java.sql de !'API JDBC
(versions 3 et ultérieures).

© Éditions Eyrol/es

Claslellnlortac:e

T_,9-1 Û611111S1rlll:IJJIU1d11'11'1-

Dela1pllon

java.sq l .Driver
java.sq l .co nnéCt i on

java.sq l .Stateme nt
java.sq l .Preparedstateme nt
java.sq l .ca llabl estatement

java.sq l . ResultSet

java.sq l .Dr iverManager

java.sq l .SQLExceptio n

java. sql . Da ta.bas eMetaoata
java.sq l . ResultSet Metaoata

java.sq l .savePoi nt

Pilotes JDBC pour les connexions aW< sources de données
SOL

Construction d'ordres SOL.

Gestion des résultats des requêtes SOL.

Gestion des pilotes de connexion.

Gestion des erreurs SOL.

Gestion des méta-Informations (descrjl tlon de la base de
données, des tables ...).

Gestion des transactions et sous-transactions.

409 1

1

1 410

SQllv.é l

Les pilotes d'Oracle supportent historiquement différentes versions de JDBC. Depuis la
version l lg R2, les pilotes sont compatibles avec JDBC 4.0. Les implémentations sont four­
nies au travers des paquetages oracle.j dbc (gestion des accès à la base) et oracle. s ql
(types et manipulations), compatibles avec les JDK récents (1.5 et 1.6).

Le tableau suivant présente les éléments principaux du paquetage orac le. s ql.

Claslellnlorlace

T-. 9·2 ÛélMllS prllcipallx dl 1'11'1 - C.llCll

Delcttpllon

or ac l e. s ql .orac l e Driv e r
or ac l e.sq l .orac l econnect i on

or ac l e.sq l .orac l e s tate ment
or ac l e. s ql .orac l e Prepa reds tateme nt
or ac l e.sq l .orac l eca llables tateme nt

or ac l e. s ql .orac l e Resul t Set

or ac l e.sq l .orac l e Driv e rMa.nager

or ac l e. s ql .orac l eSQLExcept i on

or ac l e.sq l .orac l esavePoint

Connexions aux bases de don nées (pilotes JDBC
OCI et léger).

Construction d'ordres SOL

Gestion des résultats des requêtes SOL.

Gestion des pilotes de oonnex:lon.

Gestion des erreurs SOL

Gestion des transactions et des sous­
transactions.

Les exemples de ce chapitre utilisent le pilote Oracle pour assurer la connexion
(orac le. jdbc) et !'API de référence (java. s ql).

Structure d'111 programme
La structure d'un programme Java utilisant JDBC pour Oracle comprend successivement les
phases :

• d'importation de paquetages ;

• de chrugement d'un pilote ;

• de création d'une ou plusieurs connexions ;

• de création d'un ou de plusieurs états ;

• d'émission d'instructions SQL sur ces états ;

• de fermeture des objets créés.

Le code suivant (JDBCI'es t. java) décrit la syntaxe du plus simple programme JDBC. Nous
inscrivons toutes les phases dans un même bloc mais elles peuvent se trouver dans différents
blocs ou dans plusieurs méthodes de diverses classes.

© ÉdW/ons Eyroles

T- 9-3 Proa- -

Code Java

import java. sql . *;

import orac l e. jdbc .driver.*;

c l ass JDBCTest
{ public static void main (Str ing args [])

t hrows SQLException
{ try {

DriverMan.ager.registerDriver
(new orac l e.jdbc.driver.orac l eDriver());

connéêtion conn = DriverManager.getconnéêtion
("jdb c:orac l e:thin:@cAMPAROLS: l 52l:BD SOutou •,
"scott ", "tiger ");

Statement stmt = conn.createstateme nt();

//Ordres SQL, voir p lus l oin

catc h (SQLExceptio n ex) {
System.err.print ln ("Erreur : "-1-·ex);} } }

l'llWllCelJIC 1

Conwnenlllres

Importation de paquetages.

Classe ayant une méthode
main.

Chargement d'un pilote
JDS.C Oracle et création
d'une connexion.

Création d'un état de
connexion et exécutions
d'instructions SOL.

Gestion des erreurs.

Le dernier bloc permet de récupérer les erreurs renvoyées par Je SGBD. Nous détaillerons en
fin de chapitre Je traitement des exceptions.

Variables d'environnemenr
L'environnement JDBC sous Oracle nécessite la configuration d'un certain nombre de variables.

• La variable PATH doit contenir Je chemin où se trouvent les exécutables j avac. exe et
java. exe (généralement C: \Program Files \Java\ version_jd!k\bin).

• La variable CLASSPA'IH doit inclure Je paquetage Oracle à utiliser en fonction du pilote
JDBC choisi (suivant, généralement, un chemin de la forme Oracle_Home\jdbc\lib\
paquetage). Le tableau ci-après rappelle la configuration à mettre en œuvre.

?.111111119-4 Pllll•IDll Ol'llCll IJBC

Version du JDK ullllé Paquetage JDBC

JDK 1.1 c l asses ! 11 . jar (1 038 135 cctets).

JDK 1.2 et JDK 1.3 c l asses 12.jar (1 202 911 cctets).

JDK 1.4 ojdbc l4. jar (1 181 679 cctets).

JDK 1.5 ojdbcS.jar (2 030 460 cctets).

JDK 1.6 ojdbc6.jar (2 152 137 cctets).

© Éditions Eyrol/es 411 1

1 SQllv.é l

Tesl de voire conlig11ration
Vous pouvez tester votre environnement en utilisant Je fichier JœCTest.j .ava. Si vous utili­
sez l'outil]Creator, configurez la variable CLASSPATH de la manière suivante : Configure/
Options/JDK Profiles, clic sur la version du JDK, puis Edit, onglet Classes, fuire
Ad:J. Archive et choisir Je paquetage adéquat (par exemple, ojdbc6. jar pour une version
llg XE), situé dans mon environnement : C:\oraclexe\app\oracle\product\
11.2.0\server\jdbc\ l ib.

Figure Interface JCreator

1ë &I Ei!1 •

l""

•
<;µlw• ..

< r.

.1.-sio:s-t. lCLYe aql •

.........
'.t ... ""

latlOl"t. ot'K1• Jdbc dn ... r •

4 cl.ss JDECTest
(

. ;o .. ., ,,. r. CliJ Ci)

public •t.•t1c wo1d .. ,n (Stnn9 •l"9• ()) tltrcM·•
(
try(
DnMrlCeaeger r991atnDrt...,.{M9 orecl•)dbc dn..,- Oncl•l>n.,..r())

0 •uger'),
St•t ... nt •t • t " cona CT-t.St•t nl (J

4 ,... ... hS.t l'Mt • •ut .UC\H. . .0.ry ($YSDATlt FROX OllJU.)
Whtl• (r .. t IWXl ())

...Jlll.l!l
.JtJ2ll

Sy•t ea out pnntln -·- le 'o·s:et getStnn9 (1)) c-·- _ , .. ,.,l'\OI"' --· • _i • \

329dkl 4 0 Delaulu---------

Cet exemple décrit Je code nécessaire à la connexion à votre base (il faudra modifier Je nom de
la base, Je nom et Je mot de passe de l'utilisateur dans l'instruction surlignée de la figure précé­
dente) et doit renvoyer les messages suivants :

1
Nous sonmes l e : 2003 -07- 27 13:49 :55 . 0 (dateetheuredel'exécution)
JœC correctement configuré

Coonexïon à une base

1 412

La connexion à une base de données est rendue possible par l'utilisation de la classe
Dri verManager et de J' interface Connection .

© ÉdW/ons Eyroles

l'llWllCel JIC 1

Deux étapes sont nécessa ires pour qu'un programme se connecte à une base :

Le chargement du pilote par l'appe l de la méthode java . l ang . Cl ass. fo rName pour les
pilotes de type 1 ou la création d'un objet de la classe DriverManager pour les autres
types de pilotes Oracle.

L:établissement de la connexion en appe lant un objet (ici ex} de l'interface Conne etion par
l'instruction suivante :
ex = DriverManager .getConne etion (eha îneConnexion, l ogin, password);

Depuis la version 4 de JDBC, Je pilote java. sql .Dri ver se charge automatiquement. Il est
alors inutile d'invoquer Class . for Narne ; la première étape devient alors optionnelle.

Le paramètre chain eConnexion représente une variable de type •pr otoco l e :
sousProtoco l e :infoConn exion • permettant de désigner Je protocole du pilote et
d'identifier la base de données cible.

• protoco l e prend la valeur « j dbc » pour une connexion JDBC.

• sousProtoco l e indique la nature du pilote (« odbc » pour un pilote de type 1,
« oracl e : thin » pour un pilote Oracle de type 4, « orac l e : oci » pour un pilote
Oracle de type 2).

• infoConnex ion donne les paramètres qui localisent et identifient la base de données cible.

BaseAccess
Étudions brièvement l'établissement de la connexion d'un pilote de type 1 pour se mettre en
rapport avec une base Access via une source de données ODBC. La figure suivante illustre les
parties du panneau de configuration Windows qui permettent de désigner une base Access.
Dans notre exemple, la source (BaseGTRMDB) est située dans Je répertoire D: \ ... \ SQL­

Orac le9 i \Java et désignée par Je DSN (Data So11rce Name) sourcebaseGTR

Rgure 9-3 Source
de données ODBC

© Éditions Eyrol/es

..tl.!!l
1 r ... ,. 1 1

1 Mutesœcbw>tt

,

lttfüH§5.J.J r;; ;:om:rn
r1...,- -.,.-MG=1R,..------- .._ __ ,. _ __.!

Oe• tPGi

b_de....,_,
ie-Acceu CIWW'IG_TR ____

l•iedtdoror• ID \

1 c-.-. •ft 1
....

413 1

1

1 414

SQllv.é l

Le code suivant (TestJDBCODBC. java) charge Je pilote de type 1 et se connecte à la source
ODBC précitée (base Access, donc inutile de préciser Je nom et Je mot de passe de l'utilisa­
teur). Le DSN est noté en gras dans Je script.

Code Java

import java.sq l .*;

c l ass TêStJDBCODBC
{ publ ic static void main (Stri ng args [])

throws SQLException

{ try { Cl ass. forName (•sun .jdbc .odbc .JdbcOdbcDriv.,r•);}
catc h (Cl assNotFO W'ldExceptio n ex)

{ System.out .pri n t ln ("Prob l ème au chargement "); }
try {connéCtion conn = oriverMa.n.ager.getconnéCtion

("jdb c:odbC:llOl1 rceba.-i'R", "", "");

catc h (SQLExc.,pt i on "x){ ... } } }

Base Oracle

Commenlalres

Importation.

Classe ayant une méthode
main.

Chargement d'un pilote
JDBCIODBC.
Connexion à la base
Aocess.

Gestion des erreurs.

Seules les phases de chargement de pilote et de création de la connexion changent. Afin de
charger un pilote Oracle, il faut utiliser la classe DriverManager de J' API Oracle comme Je
montre Je code suivant. Nous étudierons ensuite les différentes connexions qu'il est possible
d'établir. La connexion s'effec tue par la méthode getConnection de l'interface
Dri verManager.

Code Java

import java.sq l .*;
import orac l e.jdbc.driver.*;

publi c c l ass testorac l eSimpl e
{ publ ic static void main (Stri ng args [J)

t hrows SQLException
{ try { DriverMa.n.ager.registerDriver(new

orac l e.jdbc.driver.orac l eDriver());
CoM ectio n conn = DriverMa.nager.getConnéêtion(...);

catc h (SQLExc.,pt i on "x) { ... } } }

Commenlllres

Importation.

Classe ayant une
méthode main.
Chargement d'un pilote
Oracle.
Déclaration d'une
connexion.

Gestion des erreurs.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Oracle fournit en standard deux types de pilotes: les pilotes OCI (Orade Call /111erface) qui
sont de type 2 selon la classification étudiée précédemment, et les pilotes légers (thi11) de
type 4.

Connexions OCI

Ces types de connexions conviennent pour les applications utilisant des fonctionnalités du
middleware OracleNet (couches 5-6-7 ISO), pour des besoins de grandes architecrures faisant
intervenir des bases de données réparties ou répliquées.

L'exemple suivant (JDBCOCI. java) réalise la connexion OCI de l'utilisateur scott à une
base de données identifiée par Je descripteur de connexion CXBDSCX1I'OU (entrée du fichier
tnsnames. ora, voir « Introduction »).

Code Java Conmenlllres

String chaineex = "jdbc:oracle:oci:@cXBDSOUTOU";
t ry{

Descr!Jtlon de la oonnexlon.

Driv e rMa.nager . r egisterDriv er
(new or ac l e. jdbc .driv e r .orac l eDriv er ());

Chargement d'un pilote
OracleOCI.

connéCtion conn = Déo'laratlon d'une
oriverMa.n.ager .get:eonnéêtion(chaineOc, "scott", "tiger"); oonnexlon.

} cat ch (SQLExcept i on ex) { ... } } } Gestion des erreurs.

Il est possible d'établir une connexion en utilisant une autre forme de la méthode
getConnection (avec un seul paramètre).

l
li...SD = •jdJ:x::oracle:oci:scott/tiger@cXBDSOOTOU";

Connection conn = DriverManager.getConnection(lienBD);

Connexion thin

Ces types de connexions conviennent pour les applications qui n'ont pas besoin, côté client, de
fonctionnalités du middleware OracleNet. C'est la solution qui nécessite Je moins de configu­

ration sur les postes clients.

Si vous avez noté, lors de l'installation, Je port UDP d'écoute du listener (en général 1521), Je
nom du service (nom de votre base), et si vous connaissez Je nom du serveur, vous pouvez
vous connecter sans problème a priori.

Le code suivant (JD!C'I'hin.java) présente les quatre écritures possibles d'une connexion de
type 4, pour l'utilisateur soutou, à la base de données BDSoutou localisée sur Je serveur
CAMPAROLS sur Je port 1521.

© Éditions Eyrol/es 415 1

1

1 416

Code Java

Stri n g li<N>BD
"jdbc:orac l e:thin: @cAMPAROLS: 152 1:BDS outou";
connê<:t i on cxl, cx2, cx3, cx4;

t.ry { Driver Ma.nager. registerDri ver
(new oracl e.jdbc.driver.o racl eDriver());

cxl = Drive.rMa.nage.r.getc onnéêti on
("jdb c:orac l e:thin:@CAMPAROLS: l 52l:BD SOutou • ,
"soutou", "iu t ");

cx2 Drive.rMan.age.r .getconnéêtion(li enm, "soutou", "iu t ");

SQllv.é l

Conwnenlalres

Définition de
4 oornnexlons.

Chargement du pilote
Oracle.
Connexion explicite.

Connexion Implicite.

cx3 oriv e.rMa.nage.r.getco nnê<:tio n Connexion tri1ee
("jdbc :oracle:thin:@192.168.,.118: 1521 :BDSOutou•, adresse IP.
"soutou". "iu t ");

cx4 Drive.rMa.nage.r.getc onnecti on
("jdb c:orac l e:thin:@ ca11parola:1 521:BDSOutou ",
"soutou". "iu t ");

catc h (SQLExceptio n ex) { ... } } }

BaseMvSQL

Connexion 1Nee nom
du serveur.

Gestion des erreurs.

Les pilotes de MySQL sont disponibles sur Je site de l'éditeur (http:lldev.mysql.com!dCM1nfow:Js/
comectorljl). Vous y trouverez Comiector/J, pilote JDBC de type 4.

Le code suivant (JDBCMySQL.java) présente une connexion à la base MySQL BDsou t ou,
hébergée sur la machine cliente pour l'utilisateur soutou. Suivant la version de votre pilote, Je
premier try est optionnel.

Code Java

try
{ Cl ass.fo rName("com.mysq l .jdbc. Driv e.r") . newinstance();

catc h (Cl ass NotFOW\d.Exceptio n ex)
{ System.out.println("!>rob l l!me au chargeme n t" • ex.toStri n g());)

try
{ connectio n ex = Driv erMa.nage.r.getco nnectio n

("jdbc:mysql: // l oca lhost/ bds outou?us e.r=soutou&pas­
sword =iut") ;

catc h (SQLExceptio n ex)
{ ... }

Commenlllres
Chargement du
pilote MySQL.

Déclaration de
la connexion.

Gestion
des erreurs.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

DéconnexiOn

• fZJ Appliquez la méthode close () à tous les objets Connection owerts avant de terminer vos
programmes .

Interface Connection
Le tableau suivant présente les principales méthodes disponibles de J' interface Connec tien.
Nous détaillerons l'invocation de certaines de ces méthodes à J'aide des exemples des sections
suivantes .

lllllJeau 9·10 M .. odes dl l'llltllfa Co-UO.

Uéthode Delcrlpllon

c r eatestateme n t < > Création d'un objet destiné à rece,.,lr un ordre SOL statique
non paramétré.

preparestatement (Str ing) Précompile un ordre SOL acceptant des paramètres et pouvant
être exécuté plusieurs fols.

prepareca ll (Str ing) ARJel d'une procédure cataloguée (certains pilotes attendent
exec u te ou ne supportent pas prepareca ll).

void setA utocomm i t (boo l ean) ou non le commW automatique.

void commit() Valide la transaction.

void r ollback() Invalide la transaction.

void c l ose() Ferme laoonnexlon.

sources de données
Apparue avec JDBC 3, l'interface javax. sql .Data Source permet de créer une connexion
sans charger dynamiquement un pilote (et donc, sans utiliser l'interface DriverManager).
Oracle implémente cette interface à travers la classe Orac l eDataSource, située dans Je
paquetage orac l e. jdbc. pool.

Il est préférable d'utiliser ce mécanisme de connexion, car il est plus souple de modifier les
propriétés d'une source de données une fois créée (par exemple, Je nom de la base, son empla­
cement physique ou encore Je type du pilote). De plus, les instances de J' interface
Connection, selon J' implémentation fournie par des DataSource, permettent de nouvelles
fonctionnalités telles qu'un pool de connexion ou une transaction distribuée. Enfin, la
connexion à un annuaire de type JNDI (Java Nami11g and Directory /111erface) est facilitée.

Sans traiter de ces aspects avancés, intéressons-nous à J' implémentation basique d'une source
de données. Le code suivant (Data SourceExenple.java) décrit l'initialisation de chacun
des six éléments constituant une connexion.

© Éditions Eyrol/es 417 1

1 SQllv.é l

,....., 9-11 camu1ae • r11111 d'•• •- 111 do

Code Java

try {

orac l e.jdbc.poo l .orac l eDatasource ds;
ds = new orac l e.jdbc.poo l .orac l e.Dataso urce();
ds .setDrive.rType("thin");
ds. setse.rverName("caaiparol•");
ds. setNetworkProtocol (" tep");
ds.setoatabaseName(" bd10gR2");
ds.setPortNumber(1 521);
ds.setuser(" aoutou");
ds.setPassword("iut");
connect i on conn = ds.getconnection();
... }

catc h (SQLExceptio n ex) { ... }

Commentalfes

Création de la source.

lnltiallsatlon des éléments.

Création de la connexion.

Gestion des erreurs.

Notez l'existence de la méthode setuRL("jdbc:ora c l e:thin:@//camparo l s:l521/
bdlOgR2 ") qui permet de regrouper certains éléments. Par ailleurs, il est possible d'utiliser la
méthode getConnection ("soutou" , "iu t ") sur J' objet source de données avant de créer la

connexion.

États d'une coonexion

1 418

Une fois la connexion établie, il est nécessaire de définir des états qui pennettr<>nt J'encapsulation
d'instructions SQL dans du code Java Un état penne! de fuire passer plusieurs instructions SQL

surie On peut affecter à un état une (ou plusieurs) instruction SQL. Si on désire exécuter
plusieurs fois la même instruction, il est intéressant de reserver l'utilisation d'un état à cet effet.

Figure 1).4 Connexion et ét8ls

JDBC

dsponibles
Différentes interfaces sont prévues à cet effet :

• Statenent pour les ordres SQL statiques. Ces états sont construits par la méthode
createstatement appliquée à la connexion.

• PreparedStatement pour les ordres SQL paramétrés. Ces états sont construits par la
méthode prepare s tatement appliquée à la connexion.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

• Callablestatement pour les procédures ou fonctions cataloguées (PUSQL, C, Java,
etc.). Ces états sont construits par la méthode prepareCall appliquée à la connexion.

S'il ne doit plus être utilisé dans la suiœ du code Java, chaque objet de type Statenent,

PreparedStatenent ou callableStatenent devra être fermé à J'aide de la méthode close.

Méthodes génériques pour les paramètres
Une fois qu'un état est créé, il est possible de lui passer des paramètres par des méthodes géné­
riques (étudiées plus en détail par la suite) :

• setxxx où XXX désigne Je type de la variable (exemple : setString ou setint) du sens
Java vers Oracle (setter methods). Il s'agit ici de paramétrer un ordre SQL (instruction ou
appel d'un sous-programme) ;

• getxxx (exemple : getString ou get:J:nt) du sens Oracle vers Java. Il s'agit ici d'extraire
des données de la base dans des variables hôtes Ja\'a via un curseur Jaw (getter methods) ;

• updatexxx (exemple : updateString ou upadateint) du sens. Java vers Oracle. Il
s'agit ici de mettre à jour des données de la base via un curseur Java (11pdater methods).
Ces méthodes sont disponibles seulement depuis la version 2 de JDBC (SDK 1.2).

États simples <inerface Statemenu
Nous décrivons ici l'utilisation d'un état simple (interface Statement }. Nous étudierons par
la suite les instructions paramétrées (interface PreparedStatement) et appels de sous­
programmes (interface Callable Statement). Le tableau suivant décrit les principales
méthodes de J' interface Statement.

Uéthode Delcttpllon

Resul t s et Exécute une requête et retourne un ensemble de lignes (cbjet
e xecut éQuery (St ring) Resul t Set).

int ex ecute trpda te(St ring) Exécute une Instruction SOL et retourne le nombre de lignes
(INSERT , trPDATE ou DELETE) ou O pour les lnstructlons

ne retournant aucun résultat (LOD).

b ool ean ex ecute(s t ring) Exécute une Instruction SOL et renlo()le t rue si c·est une
Instruction SELECT, fa ls e sinon (lnstructlons LMD ou plusieurs
résultats Resul t s et).

Connec t i on g etco nnect i on () Retourne l'objet de la oonnexlon.

v oid s etMaxRows < int) la limite du nombre d"enreglstrements à extraire par
toute requête Issue de cet état.

int ge ttrpda teco unt < > Nombre de lignes traitées par l'instruction SOL (-1 si c·est une
requête ou si l'instruction n·attecte aucune ligne).

v oid c l os e() Ferme l'état.

© Éditions Eyrol/es 419 1

1

1 420

SQllv.é l

Le code suivant (Etats.java) présente quelques exemples d'utilisation de ces méthodes sur
un état (objet etatSi.rnp l e). Nous supposons qu'un pilote JDBC est chargé et que la
connexion ex a été créée. Nous verrons en fin de chapitre comment traiter proprement les
exceptions.

Coda Java

Statement etatSimp l e = cx. createStatement ();

etatSimp l e. exeaute ("CREATE TABLE Compag nie(comp
VARCHAR (4) ' nomc omp VARCHAR (30) ' CONSTRAINI' p k_Compag ni e
PRIMARY KEY(comp)) ");

int j = etatSimp l e. exeau.teUpdate ("CREATE TABLE Avi o n
(imma t VARCHAR(6), typeAv i o n VARCHAR(l 5), cap NUMBER(3),
compa VARCHAR(4), CONSTRAINT pk_Avion PRIMARY
KEY (immat) , CONSTRAINI' fk_Av i on_comp _Compagn i e FOREIGN
KEY(compa) REFERENCES Compag nie(comp)) ");

Commen1ans
Créatlorn de l'état.

Ordre LOD.

Ordre LOD (autre écriture),/
contient O (aucune ligne
n·est concernée).

int k = etatSimp l e. execniteUpdat• ("INSERT I NIO Compag ni e Ordre LMD, kcontlent 1
VALUES < • AF ' , •Air France • >• >; (une llgrne est concernée).

etatSimp l e. exeaute ("INSERT I NTO Avi on VALUES
(' F-wrss • , •concorde ' ,90, ' AF ') ");

etatSimp l e. exeaute ("INSERT I NTO Avi on VALUES
(' F-FGFB ' , ' A320 ' , 148, ' AF ') ");

etatsimp l e ... t-wa (10);

Resul tSet c urs eurJava =
etatSimp l e. exeauteQum:y ("SELECT * FROM

Avi on");

etatSimp l e.exéê u te (" DELETE FROM Avi on");
int 1 = etatSimp l e. getUpdateeowit ();

Méthodes à uliliser

Ordres LMD (autres
écritures).

Pas plus de 10 lignes
retournées.

Chargement d'un curseur
Java.

Ordre LMD, 1 contient 2
(avions Sl4)prlmés).

Le tableau suivant indique la méthode préférentielle à utiliser sur l'état courant (objet
Statement) en fonction de l'instruction SQL à émettre :

SOL Méthode Type de retour

CREATE ALTER DROP exec uteUpdate int

I NSERT UPDATE DELETE exec uteUpdate int

SELECT exec utêQ ue_ry Resul tSet

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Correspolllances de tvPes

Les échanges de données entre variables Java et colonnes des tables Oracle impliquent de
prévoir des conversions de types. Les tableaux suivants présentent les principales correspon­
dances existantes :

Types SOL TypesJDBC Types Java standards des types
java. sql. Types Javaorac le.sql

CHAR CHAR l ang. String CHAR

VARCHAR2 VARCHAR l ang. String CHAR

LONG LONGVARCHAR l ang. String CHAR

NUMBER NUMERIC math.BigDE>Cima l NUMBER

NUMBER DECIMAL math.BigDE>Cima l NUMBER

NUMBER BIT bool ean NUMBER

NUMBER TINYINT byte NUMBER

NUMBER SMALLINT short NUMBER

NUMBER INTElGER int NUMBER

NUMBER BIG INT l ong NUMBER

NUMBER REAL float NUMBER

NUMBER FLO AT doub l e NUMBER

NUMBER DOUBLE doub l e NUMBER

RAW BINARY byte RAW

RAW VARBINARY byte RAW

LONGRAW LONGVARBINARY byte RAW

DATE DATE java.sq l .Date DATE

DATE TIME java. sql . Time DATE

DATE TIMESTAMP java.sq l .Timestamp DATE

Types SOL TypesJDBC Types Java standards Extensions o.- des types
java. sql. Types Jaw orac le. sql

BLOB BLOB java. sql.B l ob orac l e.sq l .BLOB

CLOS CLOS java. sql.C l ob orac l e.sq l .CI.OB

Type objet STRUCT java.sq l .Struct orac l e.sq l .STRUCT

Référenoe REF java. sql.Ref orac l e.sq l .REF

Collection ARRAY java. sql .A.rray orac l e.sq l .ARRAY

© Éditions Eyrol/es 421 1

1 SQllv.é l

TypesJDBC TypesJa'8 El1enslons Oracle des types Java
oracle. jdbc Slandards oracle .jbdc.

Types SOL

BFILE or ac leTyp es . BFILE Néant BFILE

ROWID or ac leTyp es . ROWID Néant ROWID

REF CURSOR or ac leTyp es . CURSOR Resul t Set or ac l e. jdbc .or ac l eResul t Set

Interactions avec la base

1 422

Détaillons à présent les différents scénarios que l'on peut rencontrer lors d'une manipu­
lation de la base de données par un programme Java. Les tableaux suivants répertorient
les conséquences les plus fréquentes. Les autres cas (relatifs aux contraintes référen­
tielles et aux problèmes de syntaxe) seront étudiés dans la section « Traitement des
exceptions ».

suœression de domées

Code Java

T-9-18 llnlils'-ISUm.tsdmllt•

Réslllal

etat .ex êêuteUpdate("DELETE FROM Avi on");

j = etat.e x ecuteUpdate("DELETE FROM Avi on");

T- 9-19 AUca1emllls'-ldllS11 t•
Code Java

etat .ex êêuteUpdate("DELETE FROM Avi on");

j = etat.e x ecuteUpdate("DELETE FROM Avi on");

Fait la suwresslon et passe
en séquence.

Fait la suppression, affecte
à j le nombre
d'enregistrements
suwrlmés et passe en
séquence.

Réslllal

Aucune action sur la base
et passe en séquence.

Aucune action sur la base,
affecte à j la valeur o et
passe en séquence.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

AiOut d'ell'euistrements

Code Java Résultat

etat. execut etrpda te ("INSERT INI'Cl c ompagni e VALUES 1·1nsertlon et passe en
('TAF' , 'Toulouse Air Free ')"); séquence.

int j = etat .ex ecutetrpdate ("INSERT INTO compagni e VALUES l'insertion, affecte à j
(' TAF' , ' Toulouse Air Free ')"); le nombre 1 et passe en

séquence.

Modification d'enregistrements

Code Java Résultat

etat.e xecutetrpdate("trPDATE compagnie SET nomeomp = 'Air
France compagny ' WHERE comp = ' AF ' "); en séquence. SI aucun

enregistrement n·est
concerné , aucune
exoeptlon n·est levée.

int j = etat .ex ec utetrpdate("trPDATE Avi on SET la (les) modWlcatlon(s),
capac i te=capac i te*l. 2 "); affecteà j le nombre

d·enreglstrements modifiés
et passe en séquence (O si
aucun enregistrement n·est
modWlé).

Exlraclion de données

•jZJ
Étudions ici la gestion des résultats d'une instruction SELECT.

Le résu ltat d'une requête est affecté dans un objet de l'interface Result Set qui s'apparente à
un curseu r Java.

Le tableau suivant présente les principales méthodes disponibles de l'interface Res ultSet.
Les méthodes relatives aux curseurs navigables seront étudiées par la suite. Le parcours de ce
curseur s'opère par la méthode next. Initialement (après création et chargement du curseur),
on est positionné avant la première ligne. Bien qu'un objet del' interface Res ul t se t soit auto­
matiquement fermé quand son état est fermé ou recréé, il est préférable de le fermer explicite­
ment par la méthode c l ose s'il ne doit pas être réutilisé.

© Éditions Eyrol/es 423 1

1

1 424

SQllv.é l

Uéthode

T-. 9·22 Millllldes llllcllllles dl l'llWla lleslllSet

Delcripllon

bool ean next ()

void c l ose()

get=<int)

upda texxx(...)

ResultSet Metaoata
getMetaoata ()

Charge l'enregistrement suivant en retournant t rue, retourne
fa lse lorsqu'il n'y a plus d'enregistrement suivant.

Ferme le curseur.

Récupère, au nhieau de l'enregistrement, la valeur de la
oolonne numérotée de type xxx. Exemple : getrnt(1),
9etstrin9(1), getoate(1), etc. pour récupérer la valeur
de la première oolonne.

ModWle, au nhieaude l'enregistrement, la valeur de laoolonne
numérotée de type xxx. Exemple: upda teint(1,I),
upda testri ng(1 ,nom), etc.

Retourne un objet Resul tset Metaoata correspondant au
curseur.

Distinguons l'instruction SELECT qui génère un curseur statique (objet Resu ltset utilisé
sans option particulière) de celle qui produit un curseur navigable ou modifiable (objet
Resu ltset employé avec des options disponibles depuis la version 2 de JDBC).

a.irseurs statiques
Le code suivant (SELECTstatiq..ie.java) extrait les avions de la compagnie 'Air France' par
l'intermédiaire du curseur curseurJava. Notez l'utilisation des différentes méthodes get
pour récupérer des valeurs issues de colonnes.

Code Java

try { ...
Statement etatSimp l e = cx.createstateme nt();

Resul tSet curseurJava =
etatSimp l e.exeauteQuery ("SELECT immat, cap FROM Avi on

WHERE comp = (SELECT comp FROM Compag nie WHERE
nomComp='Air France ')");

f l oat moyennecapacité =O;
int n.bAvions = O;
whi l e (curseurJava. next ())

{sys t Em.out .pri n t ("Immat : "-1-curseurJava.getstring(l));
System.out.print ln("Capacité : "-1-curseurJava.getlnt(2));
moyennéCapac i té += c urs eurJava.get int(2);
n.bAvions ++; }

moyennêCapacité /= n.bAvions;
System.out.print ln ("Capac i té moy : "+moye nnéCapacité);
curseurJava.clo .. ();

} catc h (SQLExcept ion ex) { ... }

Conmenlalres

Création de l'état.

Création et chargement
du curseur.

Paroours du curseur.
Extraction de colonnes.

Fermeture du curseur.

Gestion des erreurs.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Cll'seurs navigables
Un curseur Res ultSet déclaré sans option n'est ni navigable ni modifiable. Seul un déplace­
ment du début vers la fin (par la méthode next) est permis. Il est possible de rendre un curseur
navigable en permettant de Je parcourir en avant ou en arrière, et en rendant possible J' accès
direct à un enregistrement d'une manière absolue (en partant du début ou de la fin du curseur)

ou relative (en partant de la position courante du curseur). Il est aussi possible de rendre un

curseur modifiable (la base pourra être changée par l'intermédiaire du curseur).

Dès J' instant où on déclare un curseur navigable, il faut aussi statuer sur Je fait qu'il soit modi­
fiable ou pas (section suivante). La nature du curseur est explicitée à J'aide d'options de la
méthode create s tatement :

1 Stat ement createStatement (int t ypeCUrs e ur , int modifCUrse ur}

Constantes

Les valeurs permises du premier paramètre (t ypeCurseur), et qui concernent Je sens de
parcours, sont présentées dans Je tableau suivant :

Constanle

Resul t Set. TYPE_FORWARD_ONLY

Resul t Set. TYPE_SCROLL_INSENSITIVE

Resul t Set. TYPE_SCROLL_SENSITIVE

Explication

Le paroours du curseur s'opère Invariablement
du début à la fin (non navigable).

Le curseur est navigable mals pas sensll le
aux modWlcatlons.

Le curseur est navigable et sensll le aux
modifications

Un curseur est sensible dès que des mises à jour de la table sont automatiquement répercu­
tées au niveau du curseur durant la transaction. Lorsque le curseur est déclaré insensible, les
modifications de la table ne sont pas répercutées dans le curseur.

Méthodes

Les principales méthodes que l'on peut appliquer à un curseur navigable sont les suivantes.
Les deux premières sont aussi des méthodes de J 'interface Statement qui affectent et préci­
sent Je sens de parcours pour tous les curseurs de J' état donné.

© Éditions Eyrol/es 425 1

1

'
1 426

llll ... 9·25 Milllodes dl lllilDallae dm H m•r

Méthode Fonc11on

void setFetchDir<>etion (int) Affecte la direction du paroours :
Resul tSet .FETCH..FORWARD (1000),
Resul tSet .FETCH..,IŒVERSE (1001) OU
Resul tSet .FETCH..UNKNOWN (1002).

SQllv.é l

in t getFetchoirec tion < > Extrait la direction oourante (une des trois valeurs cl-dessus).

boolean isBeforeFirst < > Indique si le curseur est positionné avant le premier enregistrement
(fa l se si aucun enregistrement n'existe).

void beforeFirst < > f'l'.)sltionne le curseur avant le premier enregistrement (aucun effet
si le curseur est vide).

bool ean isFirst < > Indique si le curseur est positionné sur le premier enregistrement
(fa l se si aucun enregistrement n'existe).

bool ean isLast < > Indique si le curseur est positionné sur le dernier enregistrement
(fa l se si aucun enregistrement n'existe).

bool ean isAf terLast < > Indique si le curseur est positionné après le dernier enregistrement
(fa l se si aucun enregistrement n'existe).

void afterLast < > f'l'.)sltionne le curseur après le dernier enregistrement (aucun effet
si le curseur est vide).

bool ean fi rs t < > f'l'.)sltionne le curseur sur le premier enregistrement (fa l se si
aucun enregistrement n'existe).

bool ean previ ous < > f'l'.)sltionne le curseur sur l'enregistrement précédent (fa l se si
aucun enregistrement ne précède).

bool ean l ast () f'l'.)sltionne le curseur sur le dernier enregistrement (fa l s e si
aucun enregistrement n'existe).

bool ean abso lute(int) f'l'.)sltionne le curseur sur le n-lèmeenreglstrement (en partant du
début sin ou de la fin sin négatif, fa l se si aucun
enregistrement n'existe à œt Indice).

bool ean r el ative< int > f'l'.)sltionne le curseur sur le n-lème enregistrement en partant de la
position oourante (en avant si n positif, ou en arrière si n négatW,
fa l sesl aucun enregistrement n'existe àœt lmdlœ).

Oracle ne permet pas encore de changer le sens de parcours d'un curseur au niveau de l'état
et du curseur lui-même (seu le la constante ResultSet .FETCH_FOR\'IARD est interpr étée).
Aucune erreur n'a lieu à l' exécut ion si vous modifiez le sens de parcours d'un curseur, la
direction restera simpl ement inchangée.

Ainsi, pour parcourir un curseur à l'envers, il fuuclra utiliser des indices négatifs (dans les
méthodes absolu te et relative) ou la méthode previous en partant de la fin du curseur.

Parcours

Le code suivant (SELECrna vigab l e.java) présente une utilisation du curseur navigable
curseurNavi J ava. Le deuxième test renvoie false, car, après l'ouverture, Je curseur n'est

© ÉdW/ons Eyroles

l'llWllCelJIC 1

pas positionné sur Je premier enregistrement, et la méthode next Je place selon Je sens du
parcours du curseur.

Code Java

try { ...
Statement etats impl e =createstateme n t
(Resul tSet. TYPl:.JIOOU. _DllmlSITIVJ:, Resul tSet .CONCIJR..READ_ONLY);

Resul tSet curaeurNaviJava = etatS impl e.exêê ute­
Query("SELECT immat,typeAvion,cap FROM Avi on");

if (curseurNaviJava.ia Beforel'irat ())
System.out.print ln ("curs e ur posit i onné a u début");

if (curseurNaviJava.ia l'irat ())
System.out.print ln ("Curs e ur positionné sur l e 1 er déjà");

whi l e(curseurNaviJava. next ())
{i f (curseurNaviJava.i• l'irat ())

System.out.print ln ("ler avi on : ");
i f (curseurNaviJava.i• La•t ())

System.out.print ln ("De.rnier avio n : ");
System.out.print(" I mmat: "+curs eurN avi Java.getStr ing (l));
System.out.print ln (" type : "+c urs e urNavi Java.getStrittg(2));}

Commenlllres

Création de l'état.

Création et
chargement du
curseur.

Test renvoyant t rue.

Test renvoyant fa l se.

Paroours du curseur en
affichant les premier et
dernier
enregistrements.

i f (curseurNaviJava. idft.erLaat ()) Systœi. out .pri n t ln ("curseur Test renvoyant t rue.
positionné après l a fin");

i f (curseurNaviJava. previoua ())
if (curseurNaviJava. previoua ()

{Sys tem.o ut.pri nln ("Avan.t dernier av i on
curs e urNavi Java.getStri ng (l));}

i f curseurNaviJava. firat ())

"•

{Sys tem. out .pri n t ln ("First avio n : "+
curs eurN avi Java.getStr ing (l));}

if (curseurNaviJava.l aat ())
{Sys tem.o ut.pri n t ln ("Last av i on : "+

curs eurN avi Java.getStri ng (l));}

eursê urNaviJava.e losê();

} catc h (SQLExceptio n ex) { ... }

Affiche l'avant-dernier
enregistrement.

Affiche le premier
enregistrement.

Affiche le dernier
enregistrement.

Ferme le curseur.

Gestion des erreurs.

Créez des curseurs non navigables quand vous voulez rapatrier de très gros volumes de
données (taille du cache limitative côté client). Fragmentez vos requêtes quand vous voulez
manipuler des curseurs navigables. Les prochaines versions d'Oracle verront une gestion côté
serveur des curseurs navigables.

© Éditions Eyrol/es 427 1

1

1 428

SQl lv.é l

Positionnements
Des méthodes assurent J' accès direct à un curseur navigable. Notez que absolu te (1) équivaut
à first () ,de même absolute (- 1) équivaut à last (). Concernant la méthode relative,
il faut l'utiliser dans un test pour s'assurer qu'elle s'applique à un enregistrement existant, par
ailleurs relative (O) n'a aucun effet. Considérons la table suivante qui est interrogée au niveau
des trois premières colonnes par Je curseur navigable rurseurPos.:rava

Rgure 9-5 Curseur navigable

Avion

1-t t ypeAvion cap comp

• . .•
"

abeOlUt.e(•l)

cureeuzPo. J•••

Le code suivant (SELECTPositions.java) présente les méthodes qui permettent d'accéder
directement à des enregistrements de ce curseur :

Code Java

try { ...
Statement etatSimp l e =createstatement

(Resu l tSet. TYP&JIC.llOLL_DISEllSITIVS.
ResultSet .CONCUR_READ_ONI..Y);

Resul tSet c urs eurPosJava =
etatS impl e.exê<: utéQuery("SELECT immat,typê.Avion,cap

FROM Avi on") ;

curseurPosJava. ah80lute(1);

i f (curseurPosJava.relative(2))
System.out.println("relative(2): "+

c urs e urPosJava.getStri ng (l));
e l se

System.out .pri nt ln ("Pas de 3ème avio n ! ");

i f (curseurPosJava.relative(-2))
system.out.print ln ("re l ative(-2) :

curs eurPosJava.getStri ng (l));
e l se

system.out .print ln ("Pas retour -2 possib l e ! ");

i f (curseurPosJava.ah80lute(-2)
system.out.print ln ("absolute(-2) :

curs e urPosJava.getStri ng (l));
e l se

system.out.print ln ("Pas d 'avant dernier avion");

Commentaires

Créatiorn de l'état a110c
curseurs Insensibles et non
modifiables.

Créatlorn et chargement du
curseur.

Curseur sur le premier
avion.

Acœs au troisième avion.

Retour au premier avion.

Acœs à l'avant-dernier
enreglstt ernent.

© ÉdW/ons Eyroles

'

Code Java

curseurP osJava. aftezLaat ();
whil e(cu.rseu.rP osJava.previoua()) { ... }

curseurPosJa va.c l ose();

} catc h (SQLExcep t i on ex) { ... }

Pour définir un curseur navigable :

Une requête ne doit pas contenir de jointure.

l'llWllCelJIC 1

Conwnenlalres

Paroours du curseur en
sens Inverse.

Ferme le curseur.

Gestion des erreurs.

Écrivez (maisévitez)•SELECT a.* FROM tabl e a .. •à laplacede• SELECT • FROM tabl e .. • .

curseurs modifiables

'

Un curseur modifiable permet de mettre à jour la base de données : modification de colonnes,
suppressions et insertions d'enregistrements .

Les valeurs permi ses du deuxième paramètre (modifCurseur) de la méthode
creates tatement, définie à la section précédente, sont dans Je tableau suivant :

lllllJeau 9·28 CclllStmtes dl •llllllcatlcle d'• amu

Constante Explication

Resul t Set.CONCUR_READ_ONLY Le curseur ne peut être modifié.

Resul t Set.CO NCUR_UPDATABLE Le curseur peut être modWlé.

Le caractère modifiable d'un curseur est indépendant de sa navigabilité . Néanmoins, il est
courant qu'un curseur modifiable soit également navigable (pour pouvoir se positionner à la
demande sur un enregistrement avant d'effectuer sa mise à jour) .

La gestion des accès concurrents n'est pas totalement assurée par les pilotes JDBC : aucune
pose de verrou n'est automatiquement opérée à l'ouverture d'un curseur (il n'est pas possible
de définir un curseur par une requête de type SELECT ... FOR UPDATE).

Pour composer un curseur de nature CONCUR_UPDATABLE :

Une requête ne doit pas contenir de jointure ni de regroupement.

Écrivez (mais évitez) • SELECT a. • FROM tabl e a .. • à la place de • SELECT • FROM
t able ... • .

Une requête doit seulement extraire des colonnes (les fonctions monolignes et multilignes
sont interdites).

© Éditions Eyrol/es 429 1

1

1 430

SQllv.é l

Les principales méthodes relatives aux curseurs modifiables sont les suivantes :

Uéthode Fonction

in t get Resul tset T ype < > Renvoie le caractère navigable des curseurs d'un état donné
(Resu l tSet . TYPE_F'ORWARD_ONLY ...).

in t getResu l tsetco nc ur rency () Renvoie le caractère modifiable des curseLJrs d'un état donné
(Resu l tSet .CONCUR,.,READ_ONLY OU

int get Type()

int getco ncur.rency()

void de l eteRow()

void upda teRow()

void cance lRowUpdates ()

void moveToinsertRow()

void insertRow()

void moveTOCur.rentRow()

Resul tSet .CONCUR,,.UPDATABLE).

Renvoie le caractère navigable d'un curseur donné.

Renvoie le caractère modifiable d'un curseur donné.

l'enregistrement courant.

Modifie la table avec l'enregistrement courant.

Annule les modWlcatlons faites sur l'enregistrement courant.

Déplace le curseur vers un nouvel enregistrement.

Insère dans la table l'enregistrement courant.

Retour vers l'enregistrement courant (à utiliser éventuellement
après moveToinsertRow).

Les opérations de modification et d'insertion (UPDATE et INSERT) à travers un curseur se réali­
sent en deux temps : mise à jour du curseur puis propagation à la table de la. base de données.
Il suffit ainsi de ne pas exécuter la deuxième étape pour ne pas opérer la mise à jour de la base.

La suppression d'enregistrements (DELETE) à travers un curseur s'opère en une seule instruo­
tion qui n'est pas forcément validée par la suite: il faudra programmer explic,itement le COMMIT
ou laisser le paramètre d'autocommit à true (par défaut).

La figure suivante illustre les modifications opérées sur la table Avion par l'intermédiaire du
curseur ô..trseurModifJava utilisé par les trois programmes Java suivants :

Figure g.6 Mises à jour d'un curseur

Avion

updataJtov()

in••rtRov()

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Sup .. essions
Le code suivant (ResultDELETE.java) supprime Je troisième enregistrement du curse ur et
répercute la mise à jour au niveau de la table Avion du schéma connecté. Nous déclarons ici
ce curseur « navigable » :

Code Java Conmenlllres

try {... Création de l'état et
statement etatsimp l e = désactivation de la validation

ex .createstatement (Resu l tset. TYPE_sc.ROLL_INSENSI TIVE, automatique.
Resul tSet. COUCOR....OPDATABL&);

cx.setA utOCotrl'rlit(fal ..);

Resul tSet curs e urMod i fJava = etatS impl e.exê<: utéQuery
("SELECT immat,typeAvion,cap FROM Avi on");

i f (curseurModifJava.absolute(3))
{ curse urModifJava .deleteRow();

ex.comm i t(); }
e l se

System.out .pri n t ln ("Pas de 3ème avio n!");

curs e urMod i fJava.c l ose();

} catc h (SQLExceptio n ex) { ... }

Création du curseur.

Accès direct au troisième
avlo.n, suppression de
l'enregistrement.

Ferme le curseur.

Gestion des erreurs.

Le code suivant (ResultDELEl'E2.java) supprime Je même enregistrement en supp osant son
indice a priori inconnu. Nous déclarons ici ce curse ur « non navigable» . Notez! 'utilisation de
la méthode equals pour comparer deux chaînes de caractères :

© Éditions Eyrol/es

T- 9-31 Slal'lllloe d'H •elllsr..i

Code Java

try { ...
Statement etatsimp l e =

cx.createStatement(Res ul tSet TYPE_FORWARD_ONLY,
Res ul tSet .C<BCtJR...OPDATULS);

cx.setA utOCotrl'rlit(fa lse);

Resul tSet curs e urMod i fJava = etatS impl e.exec uteQuery
("SELECT immat, type Avi on, cap FROM Avi on") ;

String p_iamat = •r-GLJ's• ;
whi l e(c urs eurModifJava. next())

{i f (curs e urModifJava.getStr ing (l) .equa l s(p_immat))
{ curs eurModi fJ ava . del•t•Row () ;
ex.commit(); }

curs e urMod i fJava.c l ose();

} catc h (SQLExceptio n ex) { ... }

Conmenlllres

Création de l'état et
désactivation de la
validation automatique.

Création du curseur.

Accès à l'enregistrement et
suppression.

Ferme le curseur.

Gestion des erreurs.

431 1

1

1 432

SQllv.é l

Modlieations
La modification de colonnes d'un enregistrement au niveau de la base de données s'opère en
deux étapes : mise à jour du curseur par les méthodes updatexxx (11pdater methods) puis
propagation des mises à jour dans la table par la méthode updateRow ().

Les méthodes updatexxx ont chacune deux signat ures . Par exemple, la méthode de modifica­
tion d'une chaîne de caractères (valable pour les colonnes CHAR, VARCHARet VARCHAR2) est
disponible en raisonnant en fonction soit de la position soit du nom de la colonne du curseur:

1
void updateString (int positionColonne, St ring chaîne)

void updateString (String nomColonne, St ring chaîne)

Le code suivant (Resul tuPDAT E.j ava) modifie, au niveau de la table Avicn, deux colonnes du
cinquième enregistrement du curseur. Nous déclarons ici ce curseur «sensible» pour pouvoir
éventuellement visualiser la modification réalisée dans Je même prograrnrne.

Code Java Commentaires

try { ... Créatlorn de l'état et
statement etatsimp l e = désactivation de

ex. cœatestatement (Resultset. T'iPE_ SCROLL_ SENSITIVE, la validation automatique.
Resul tSet.) ;

ex. setAutOComnit (fa lse);

Resul tSet c urs eurModi fJava = etatSimp l e.exec utêQuery
("SELECT immat, type.Av i on, cap FROM Avi on");

if (curs eurModifJava.abso lute(S))
{ curseurModifJava. up4at.striJl41 (2, "A380 ") ;

curseurModifJava. up4ataint (3,350);

curseurModifJava. updateRow ();
ex .comm i t(); }

e l se
system.out.print ln ("Pas de Sème avion !");

c urs eurModi fJava.c l ose ();

} catc h (SQLExcept ion ex) { ... }

Créatiorn du curseur.

Acœs à l'enregistrement.
Première étape.

Deuxième étape.
Validation.

Ferme le curseur.

Gestion des erreurs.

L'inserti on d'un enregistrement au niveau de la base de données s'opère en trois étapes:
préparation à J 'insertion dans Je curseur par la méthode moveToinsertRow, mise à jour du
curseur par les méthodes updatexxx, puis propagation des mises à jour dans la table par la

© ÉdW/ons Eyroles

'

l'llWllCelJIC 1

méthode insertRow. L'éventuel retour à J' enregistrement courant se programme à J'aide de la
méthode moveToCurrentRow.

Le code suivant (Resul tINSERT. java) insère un nouvel enregistrement au niveau de la table
Avion. La quatrième colonne de la table n'est pas indiquée dans Je curseur, elle est donc
passée à NlJLL au niveau de la table en J' absence de valeur par défaut dé:finie dans la colonne.

Code Java

try { ...
Statement etatsimp l e =

ex . cœatestatement (Resultset. TYPE_SCROLL_SENsrrIVE,
Res ultSet .COl!lctm_tJPDATABL&);

cx.setA utocommit(fa lse);

Resul tSet curs e urModifJava = etatS impl e.exêê utêQuery
("SELECT immat, type Avi on, cap FROM Avi on") ;

curseurModifJava moveToins ertRow();

curseurModifJava. upda test.ring(l, "F-LUTE");
curseur ModifJava. upda teString(2, "TB20 ") ;
curseurModifJava. upda teint (3, 4);

curseurModifJava. inse.rtRow();
ex.comm i t ();

curs e urModifJava.c l ose();

} catc h (SQLExceptio n ex) { ... }

Restrictions
Les limitations d'Oracle sont, pour l'heure, les suivantes :

Conwnenlalres

Création de l'état et
désactivation de la
validation automatique.

Création du curseur.

Première étape.

Deuxième

Troisième étape.
Validation.

Ferme le curseur.

Gestion des erreurs.

En travaillant avec des curseurs navigables, il n'est pas possible de se positionner sur un enre­
gistrement avec les méthodes beforeFirst ou afterLast avant de supprimer, modifier ou
d'insérer un enregistrement.

On ne peut avoir accès en lecture à un nowel enregistrement inséré au sein du même pro­
gramme Java (que le curseur soit sensible ou pas).

© Éditions Eyrol/es 433 1

1 SQllv.é l

Ensembles de lignes <RoWSeD

1 434

Introduit avec JDBC 2.0, Je concept de RowSet est natif dans JDK 5. Un RowSet est un objet
qui encapsule un ensemble de lignes (de type ResllltSet ou d'une source de données tabulaire),
qui permet un mode de développement s'apparentan t aux Java Beans, incluant un ensemble de
propriétés et un mécanisme de notifications. Un RowSet peut être mis à jour et tout mouve­
ment d'un curseur est permis (même si la base de données ou Je pilote ne fournit pas native­
ment ces fonctionnalités).

• L'interface ROWSet (qui hérite de Resu l tSet) du paquetage j avax. sql autorise la confi­
guration d'un ensemble de lignes (nom de l'utilisateur, URL de la connexion ou instruc­
tion SQL), grâce à des méthodes de type setxXX. Il n'est donc plus nécessaire
d'implémenter explicitement une Connection ou un Statement.

• L'interface ROV.SetListener permet la gestion des événements relatifs aux RowSets.

Deux catégories de RowSets se distinguent.

• Les RowSets connectés. Ils fonctionnent de la même manière que les ResllltSets et gardent
une connexion au SGBD durant leur cycle de vie.

• Les RowSets déconnecté s. Ils sont capables d'interrompre la connexion à la base, d'opérer
des modifications, puis de se reconnecter en transmettant les mises à jour, tout en gérant
d'éventuels conflits.

Présentes dans Je paquetage j avax. sql . rowset, les interfaces suivantes héritent toutes de
RowSet, mais elles implémentent chacune un type différent de RowSets.

• CachedRowSet: RowSet déconnecté particulièrement adapté aux clients légers (PDA ou
smartphones) et à un volume restreint de données. Pour contourner cette limitation, opœz pour
J'inœdace Orac leCa checlRCMSet présenœ dans Je paquetage orac le. jdbc. rCMSet.

• WebRCMSet : RowSet dérivé du CachedROWSet particulièrement adapté aux applications
Web et aux flux de données XML. L'interfuce implémentée par Oracle est
Orac l eCachedRowset (paquetage orac l e. jdbc. rowset).

• Filt eredROWSet: RowSet dérivé du WebRCMSet. Il permet de filtrer des données grâce à
J'interfuce Preclicate . Pour ceux qui ne savent pas écrire des conditions SQL.

• JoinROWSet : RowSet dérivé du Wel:ROWSet. Il est adapté aux jointures de plusieurs
RowSets. Pour ceux qui ne savent pas écrire des jointures SQL.

• JdbcRowSet: RowSet connecté. Il simule un Resu ltSet sous la forme d'un Java Bea11.

Avant de manipuler un RowSet, il faut suivre trois étapes.

1. La première implémente une des interfaces pour obtenir une instance du RowSet.

2. Par la suite, vous devrez spécifier les propriétés de cette instance.

3. Enfin, il faudra peupler ce RowSet par les données désirées.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Rowset sans connexion
Le code suivant (ROWSetl.java) illustre plusieurs avantages d'un RowSet : il n'est plus
nécessaire de créer explicitement une connexion et un état (Statenent). De plus, une instruc­
tion peut être paramétrée (à la manière d'un PreparedStatement).

Vous devrez importer Je paquetage orac l e. jdbc. rowset. Orac l eCacheclROWSet.

Code Java

orac l ecac hedRowset rowset = new orac l êCac hedRowset();

rowset. aetUrl ("jdbc: orac l e:thin:@ //so utou-PC-W 7: 152 1/XE");
rowset. aetUaerna ... ("s outou");
rowset . aetPaesword ("iut ");
rowset. aetComu.nd ("SELECT immat,cap,typeavion

FROM Avi on WHERE comp= ?") ;
rowset. aetString (l , "AERI");
rowset. aetType (Resul tSet. TYPE_SCROLL_ I NSENSITI VE);
rowset. aetConcu.rrency (Resul tSet.CONCUR_ UPDATABLE);

rowset.execute();
whi l e (.rowset . next ())

System.out.print ln (rowset.getst.ri ng (l)+
"-"+r owset.get int(2) +"-"+r owset.getst.ri ng (3));

Rowset avec ResdtSel

Commenlalres

Création du R<1NSet.

Spécification des
propriétés du R<1NSet.

Manipulation
du R<7NSet.

Le code suivant (ROWSet2. java) présente un autre avantage d'un RowSet : pouvoir manipu­
ler les données extraites d'un ResllltSet après que la connexion soit fermée. Notez la méthode
popu late qui initialise un RowSet à partir d'un Res11/Set.

lllllJeau 9-35 IOlllSet Il lllllli •• • llesllllSet

Code Java

orac l e.jdbc.poo l .orac l e.Dataso urce ds;
ds = new oracl e . jdlx: . pool . orac l eDatasource();
ds .set URL(" jdbc: orac l e: t hin:@ //so utou-PC-W7: 1521/XE ");
connectio n ex ds.getconnection("soutou", "iu t ");
Statement stmt = cx.createstateme nt();
Resul tSet rset = stmt.executéQue_ry

("SELECT immat,cap,typeavion,comp FROM Avi o n");

orac l ecac hedRowset rowset = new orac l êCac hedRowset();
rowset.setType(Resu l tSet. TYPE_SCROLL_ I NSENSITI VE);
rowset.setconcurrency(Resu l tset.CONCUR_UPDATABLE);

rowset. populate (rset);

© Éditions Eyrol/es

Commentaires

Création de la
oonnexlon, de l'état
et d'un ResuftSet

Création et spécl<lcatlon
des propriétés
du RowSet.

Chargement
du RowSet.

435 1

1

1 436

SQllv.é l

T-9-35 llowSet d6cGllK!i et 11111111li • • B•nset (suite)

Code Java

ex .c l ose();
rowset.afterLast();
if (rowset.p revio us ())

System.out.println(rowset.getstring(l)+
"-"+r owset.get int(2) +"-"+r owset.getStri n g(3));

RoWSet pour XML

Ccmmentalres

Après fermeture ,
lecture de la dernière
ligne du R<1NSet.

J

Le code suivant (ROV.Set3. java) présente la génération d'un fichier XML par l'intermédiaire
d'un RowSet de type WebROWSet. On suppose la connexion et l'état créés. Notez l'utilisation
de la méthode wri texml qui génère en une passe le document XML.

,......, 9-36 llowSet 1111 IMl

Code Java Commentaires

Resul tset rset = stmt. exec u teQuery Création du ResuftSet.
("SELECT immat,cap,typeavion,comp FROM Avi on");

orac l êWebRowSet wset = nêW orac l êWebRowSet (); Création et chargement du
wset .populate(rset); Rt:NISet
try
{ Filewriter out = new Filewriterf •avio ns-bas e. xml"); Génération du fichier XML

wset.writexm l (out);

catc h (IOExceptio n exc)
{ System.out.print ln ("Probl ème avec Fi l eWriter ");,}

Le fichier XML généré contient les données sous l'élément data. Les premières balises
(propertiese t metadata) renseignent, d'une part, la connexion et, d'autre part, la structure
du résultat .

·---­.. - ... ··- PJt
•:7!-. -<- >

....

... .

<(.ltUlf'el'dtow• ,......,._
......

<c:aiwm\I ... ll<k:O!MmV
cc.Dlu!mVConc.Oflle<Jtoàl#rtH ... >

«*""" ,., <Jto\.rn!IV >

<i:tcU!ftolldtow>

Rgure 9-7 Rchier XML
généré

© ÉdW/ons Eyroles

l'llWllCelJIC 1

À J'inverse, la méthode reacl.Xml charge un nouveau RowSet à partir d'un document XML
passé en paramètre (sous réserve qu'il vérifie la grammaire attendue).

Mises à iour d'un Rowse1
Un RowSet n'est pas continuellement connecté à la source (à part les JDBC RowSets), sa mise
à jour nécessite donc l'appel de la méthode acceptChange s qui transmet les modifications à
la source. La méthode cornmi test également nécessaire si on n'est pas en mode aut ocommit.

Il est à noter que la connexion (ou reconnexion) à la source s'opère d'une manière transparente
à l'invocation des méthodes execute ou acceptChange s (sous réserve que les propriétés
user, passwo rd et URL soient correctement initialisées).

Le code suivant (Row5et4. java) présente deux mises à jour de la table Avi on (une modifica­
tion et un ajout) par l'intermédiaire d'un RowSet de type cachedROWSet. On suppose ce
RowSet créé d'une manière identique au premier exemple (ROWSetl. java).

Code Java Commentaires

r owset .setcomma.nd("SELECT i mmat, cap, t ypeavi on, comp FROM Avi on"); Création
r owset . setT ype (Resul t Set. TYPE_ SCROLL_ INSENSITIVE) ; du RowSet.
r ows et. s etco ncurrency (Resul t s et.CONCUR_UPDATABLE);

r owset.exec ute();

i f (r owset.f irs t())
{ r ows et . upda teint (2 , 92) ; r ows et. update Row () ;

r ows et.move Toins ertRow();
r ows et . update s t ring("IMMAT", "F-GVF P");
r ows et. update St ring("TYPEAVION", "ATùl");
r ows et . update int ("CAP", 1 6);

r ows et . update s t ring("COMP", "AF");
r owset. ins e rt Row();

r ows et. acceptChangee ();
r ows et . comait ();

Chargement
du RowSet .

Modl<lcatlon
d'une oolonne.

Ajout
d'une ligne.

Validation.

Notilieations pour un Rowse1
Il est possible d'intervenir lors de toutes les mises à jour d'un R owSet par un processus
d'écoute implémenté par l'interface ROWSetLis tener , disponible dans le paquetage
j avax. s ql. En implémentant cette interface à J'aide des méthodes suivantes.

© Éditions Eyrol/es 437 1

1

1 438

SQllv.é l

Code Java Nolltlcatlons

void curs orMoved(RowSetEvent eve nt) Dès que le curseur est en m.oLNement.

void rowchanged(RowSetEvent even t) Dès qu'une ligne du curseur est modifiée.

void rowsetChanged(RowSetEvent event) Dès que le curseur est modttlé.

Le code suivan t (EcouteROWSet. java) implémente J' interfuce et permettra de tracer les
événements vécus par Je RowSet .

Code Java

import javax.sq l .*;
publ ic c l ass EcouteRowSet impl ements RowSetListe ner
{publi c void curs orMoved(RowsetEvent event)

{ System.out.print ln ("Le curs eur bouge"); }
publ ic void event)

{ System.out.print ln ("Une l igne du curs eur change ");
publ ic void rowsetchanged(RowSetEvent eve nt)

{ System.out.print ln ("Le curs eur change "); } }

Ccmmentalres

Création d'une classe.

Surcharge des trois
méthodes.

Le code suivant (ROWSet5 .java) attache ce processus d'écoute à un RowSet par la méthode
acklROWSetListener. On suppose ce RowSet créé et initialisé d'une manière identique au
précédent exemple (ROWSet4. java). Pour détacher un processus d'écoute, vous devrez utili­

ser par analogie la méthode removeROV.SetListener.

Code Java

fi idem début de RowSet 4 .java

EcouteRowSet ecoute = new EcouteRowSet();
rowset. addl\oWS.tL11tener (ecoute);
if (rowset.first())

... rowset.update int(...)

rowset.moveTo insertRow();

Commentaires

Création du RowSet.

Affectation au RowSet d'un processus
d'écoute.

ModWlcatlons du R<1NSet .

Les mises à jour produisent Je résultat suivant. Deux lignes du RowSet sont bien mises à jour
(la première concerne deux modifications, la seconde une insertion). La validation entraîne la
mise à jour du RowSet dans son intégralité.

© ÉdW/ons Eyroles

Figure 9../J 1i'sce des notff/cSllons d 'un RowSet

le CU%"SO\ll" bouge
nf liJur e t 1on <Defaul t >

Une h.gne du curseur change
Une l 19ne du C\trseu.r ehonge
Le c-..rseur c h.8n9 e

rroeess eoapl e ted

l'llWllCelJIC 1

Interface ResullSetMetaData

L'interface Resu ltSetMetaData est utile pour retrouver dynamiquement des propriétés des
tables qui sont manipulées par des curseurs Resu ltset. Cette interface est intéressante pour
programmer dynamiquement des requêtes ou d'autres instructions SQL. Ces fonctions vont
extraire de manière transparente des informations par J' intermédiaire du dictionnaire des
données.

Une fois un curseur Resu ltSet programmé, il suffit de lui appliquer la méthode
getMetaData () pour disposer d'un objet Resu l tSetMetaData. Le tableau suivant
présente les principales méthodes disponibles de l'interface Resu ltSetMetaData

© Éditions Eyrol/es

Méthode

T_, 9-41 Mé9Gdes •lll:IJJlles dl J'llllllfa llesd1Se1Melllla11

Dela1pllon

int getco lumncount()

String getco lumn.Name(int)

int getCo lumnTyp e(int)

Retourne le nombre de colonnes du curseur.

Retourne le nom de la colonne d'un Indice donné du curseur.

Retourne le code du type (selon la classlflcatlon de
java. sq l . Types) de la colonne d'un Indice donné du
curseur.

string getco lumnTyp eNametint) Retourne le nom du type SOL de la colonne d'un Indice donné
du curseur.

int isNullabl e(int)

int getPrecision(int)

int getsca l e(int)

String getschemaName(int)

S t ring getT abl eName(int)

Indique si la colonne d'un Indice donné du curseur peut être
nulle (constantes retournées :
Resul t SetMetaData.co lumnNoNulls ,
Resul t SetMetaoata. col umnNullabl e ou
Resul t s etMetaoata. col umnNullabl eunknown).

Nombre de chWfres avant la virgule de la colonne désignée.

Nombre de décimales de la colonne désignée.

Nom du schéma propriétaire de la colo.nne.

Nom de la table de la colonne.

439 1

1

'
SQllv.é l

Oracle n'emploie pas encore les méthodes getSchemaName() et getTableNameQ.

Le code suivant (Res ulSetMeta.java) utili se des méthodes de l'interface
Resu ltSe tMetaData sur la base de la requête extrayant trois colonnes dans la table
Avion.

CodoJaw

t ry { ...
Resul tSet curseurJava aetatS imple. executeQuery

(•SELECT irr:mat, type Avion, cap PROM Avion •);

ResultSetMeta.Data rsm.d •
curseurJava.get ... ta.Data();

int nbCol • rsmd. getCo lumnCoun t ();

String nom2emeCol • rsmd. getCo lumnName(2);

String type2e meCol • rsm.d. getCo lumnTypeName(2);

int codeType2eneCol • rsmd. getCo lWIDlType (2);

if (rsmd.isNull able(l) ••
ResultSetMetaData columnNoNulls)

curseurJava. close();

) catc h(SQLExc ept ion ex) { ...)

Commontalrn

Création du curseur .

Création d'un objet Result •
SetMetaData.

nbCol contient 3 .

nom2emeCol oontient
TYP!!AVW N.

type2e meCol con tient
VARCHAa2.

codeType2emeCol con tien t
1 2 (code pour VARCHAR2).

Test renvoyant vrai
(la prerrièrecolonne est
la clé primaire) .

Ferme le œrseur .

Ges tion des erreurs .

Interface DatabaseMetaData

1 440

L'interface DatabaseMetaData est utile pour connaître des aspects plus généraux de la base
de données cible (version, éditeur, si les transactions sont supportées ...) ou des informations
sur la structure de la base (structures des tables et vues, prérogatives ...).

Plus de quarante méthodes sont proposées par l'interfuce DatabaseMetaData. Le tableau
suivant en présente quelques-unes. Consultez la documentation du JDK pour en savoir plus.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Méthode

T-. 9-43 Millllldes Jlllcllllles dl J'lllllfa llesllllSelMellllat1

Dela1pllon

Resul tset getco lumns(String,
String, String, String)

Descr jltio n de toutes les colonnes d'une table d'un
schéma donné.

String getoatabaseProductName() Nom de l'éditeur de la base de données utilisée.

string getoatabaseProductversion () Numéro de la version de la base utilisée.

Resul tSet getTab l es(Stri ng,
String, String, String [])

Descr!Jtion des tables d'un schém a donné.

String getUserName() Nom de l'utilisateur connecté (schéma courant).

bool ean supportssavepoints() Renvoie t rue si la base suworte les points de
validation.

bool ean supportsTransactions() Renvoie t rue si la base suworte les transactions.

Le code suivant (MetaData. java) utilise ces méthodes pour extraire des infoonations à
propos de la base cible et des objets (tables, vues, séquences ...) du schéma courant.

Code Java

try {

DatabaseMetaData infoBase = cx.get MetaData() ;

Resul tSet toutesLes Tabl es = infoBase.getTablea("",
infoBase.pt'CJ..,,_(), null, null);

whi l e (toutesLes Tabl es. next())
{ system.out.print("Nom de l' objet: "+

toutesLes Tabl es.getStri ng (3)) ;
system. out .prin t ln ("Type : "-1-

toutesLes Ta bles .getStri ng (4));

System.out.print ln ("Nom base : "+
infoBase.ptDlltaba..eroduc.- ());

System.out.print ln ("Vers i on base: "+

© Éditions Eyrol/es

infoBMé. Q'6tDatahaHPro.!llet: VaHio11 ()) ;

i f (infoBase. •upport•Tranaactiona ())
System.out.print ln ("SUppor te l es Trans actio ns");

toutesLes Tabl es.c l ose();

} catc h (SQLExceptio n ex) { ... }

Conwnenlllres

Création d'un objet
oat.abaseMetaoata .

Création d'un objet
Resu l t set contenant les
caractéristiques du schéma
courant.

Paroours du curseur en
affic hant quelques
caractéristiques.

Affic he le nom de la base.

Affic he la version de la
base.
Transactions suwortées ou
pas.

Ferme le curseur.

Gestion des erreurs.

441 1

1 SQllv.é l

La trace de ce progrrunme est la suivante (dans notre jeu d'exemple) :

Objets du schéma SOtm:XJ
Ncm de l' objet: AVICN Type : TABLE
Ncm de 1' objet: CGIPAGNIE Type : TABLE

Ncm base : Orac l e
Version base : Persona! Oracle 9i Release 9 .2. 0 .3. 0 - Production With the
Parti tianing, OIAP and Orac l e Data Mining options JSeI.Ver Rel ease

9 .2. 0 .3. 0 - Production
Supporte l es Transactions

1ns1ruc1ions paramétrées <PreparedSlatemenD

1 442

L'interface PreparedStatement hérite de J' interface Statement, et la spécialise en permet­
tant de paramétrer des objets (états préparés) représentant des instructions SQL précompilées. Ces
états sont créés par la méthode preparestatement de l'interface Connection décrite ci­
après. La chaîne de caractères contient l'ordre SQL dont les paramètres, s'il en possède,
doivent être indiqués par Je symbole « ? ».

1 PreparedStatement prepareStatement(String)

Une fois créés, ces objets peuvent être aisément réutilisés pour exécuter à la demande
l'instruction SQL, en modifiant éventuellement les valeurs des paramètres d'entrée à J'aide
des méthodes setxxx (setter methods). Le tableau suivant décrit les principales méthodes de
J' interface PreparedStatement

Méthode

T....., 9-45 Milllodes Ill l'lllllfa PncmlllSta•eat

Delcrlpllon

Re sul t Set ex ê<:uteQue.ry ()

in t ex ecuteUpdate()

bool ean execute()

void s etNull (int , int)

vo id c l os e ()

Exécute la requête et retourne un curseur ni navigable, ni
modifiable par défaut.

Exécute une Instruction LMD (INSERT ' UPDATE ou DELETE) et
retourne le nombre de lignes ou O pour les Instructions
SOL ne retournant aucun résultat (LOD).

Exécute une Instruction SOL et ren,.,le t ru", si c'est une
Instruction SELECT, fa ls" sinon.

Affecte la valeur NULL au paramètre de numéro et de type
(classlflcatlon j a va. sql . Typ" s) spécifiés.

Ferme l'état.

Décrivons à présent un exemple d'appel pour chaque méthode de compilation d'un ordre
paramétré. On suppose la connexion ex créée :

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Extraction de données <execuleQuery)
Le code suivant (Prepare SELECT.java) illustre l'utilisation de la méthode exeruteQuery
pour extraire les enregistrements de la table Avion.

,... ... 9-46 EllllClol dl domies ,_ H lll'tlrt Pnon

Code Java

try { ...
String ordreSQL

"SELECT immat, type.Av i on, cap FROM Avi on";
Prepa.redstatement étatPréparé =

cx. prepareStat ... nt (ordreSQL);

Resul tSet curs e urJava =étatPréparé. exeauteQuery ();

whi l e(c urs eurJava. next())
{ ... }

curs e urJava.c l ose();

étatPréparé.clo .. ();

} catc h (SQLExceptio n ex) { ... }

Mises à iour <executeDPdate)

Conmenlllres

Création d"un état préparé.

Création du curseur
résultant de la oompllatlon
de l"état.
Paroours du curseur.

Ferme le curseur.

Fermeture de l'état.

Gestion des erreurs.

Le code suivant (PrepareINSERT. java) illustre l'utilisation de la méthode executeUpdate
pour insérer l'enregistrement (F-NEW, A319, 178, AF) dans la table Avion composée de quatre
colonnes : CHAR(6), VARCHAR2 (15) ,NUMBER(3) et VARCHAR2 (4) :

© Éditions Eyrol/es

Code Java

try { ...
String ordreSQL

"IN SERT I NrO Avi o n VALUES (?, ? , ? , ?) ";

Preparedstatement étatPréparé =
cx. prepar.stat....nt (ordreSQL);

étatPréparé ... tStrÜ>g (i, "F-NE.w");
étatPréparé ... tStrÜ>g (2, "A319");
étatPréparé ... tint (3, 178);
étatPréparé ... tStrÜ>g (4 , "AF ") ;

System.out.print ln (état Préparé.exeauteUpdate()
..- " avion inséré.");

étatPréparé.clo .. ();

} catc h (SQLExceptio n ex) { ... }

Conmenlllres

Création d"un état préparé.

Passage des paramètres.

Exécution de 1·1nstructlon.

Fermeture de l'état.

Gestion des erreurs.

443 1

1

'

SQllv.é l

lDD <execute)
Le code suivant (PrepareDELETE.java) illustre l'utilisation de la méthode exerute pour
supprimer un avion dont l'immatriculation passe en paramètre :

T-H8 Slllinsslcied'm_llla'HllftlrtP._.

Code Java
t ry { ...

St ring ordr eSQL
"DELETE FROM Avi on WHERE imma t = ?";

Preparedstatement étatPréparé =
cx.prepareStat-ent(ordreSQL);

étatPréparé ... t9tri1>9(l, "F-NEW •) ;

if (! état Préparé.ex.eut•())
{ sys t em.out.prin t ln ("Enregis t reme nt supprim é ");

ex .commit (); }

étatPréparé.elo .. ();

} catc h (SQLExcep t i on e x) { ... }

Comme:ntalm

Créatiorn d'un état préparé.

Passage du paramètre.

Exécution de l'instruction.

Fermeture de l'état.

Gestion des erreurs.

Il n'est pas possible de paramétrer des instructions SOL du LOD (CREATiE, ALTER ...). Pour
résoudre ce problème, il faut construire dynam iquement la chaîne (String) qui contient l'ins­
truction à l'aide de l'opérateur de concaténat ion Java (+).Cette chaîne sera ensuite l'unique
paramètre de la méthode prepareStatement.

Appels de sous-programmes

1 444

L'interface Callable Statement permet d'appeler des sous-programmes (fonctions ou
procédures cataloguées écrites en PUSQL, Java ...), en passant d'éventuels paramètres en
entrée et en en récupérant en sortie. L'interface callableStatement spécialise l'interface
PreparedStatenent . Les paramètres d'entrée sont affectés par les méthodes setxxx. Les
paramètres de sortie (définis Ol1I' au niveau du sous-programme) sont extraits à J'aide des
méthodes getxxx.

Ces états qui permettent d'appeler des sous-progranimes sont créés par la méthode
prepareCall de l'interface Connection, décrite

1 Cal l abl eStatement prepareCa ll (String)

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Le tableau suivant décrit Je panunètre de cette méthode (deux écritures sont possibles).
Chaque paramètre est indiqué par un symbole ? :

Type du IOUl-programme

Fonction { ? • ca l! nomFoncti on((? , ? , ...))

Procédure {call nomPro"édure((?, ?, ...)) }

Une fois l'état créé, il faut répertorier Je type des paramètres de sortie (méthode
regi s terOutParameter), passer les valeurs des paramètres d'en trée, appeler Je sous­
prograrnme et analyser les résultats. Le tableau suivant décrit les principales méthodes de
J' interface Callable Sta tement :

Uéthode Delcttpllon

Resul t Set e xecutêQue.r y () Idem Prep ared.Stateme nt .

int ex ê<:ute trpd.ate() Idem Prep ared s tateme nt .

bool ean ex ecute() Idem Prep ared.Stateme nt .

v oi d r egist e.rout Paramete.r Transfère un paramètre de sortie à un inciœ dc>nné d'un cype Java
(int , int) (classification java. sq l. Types).

bool ean wasNull () Déermine s i le dernier paramètr& de sortie extrait est à NtJLL . Ceue
méthode doit être seulement inYoquée après une méthode de 1)1>9 getxx:x.

Aœel d'une fonction
Le programme JDBC suivant (CallableFOn c tion.java) décrit l'appel de la fonction
LeNonCompagnieE s t qui renvoie Je nom de la compagnie d'un avion dont l'immatriculation
passe en paramètre :

© Éditions Eyrol/es

ŒFATE FUNCTION LeNol!Ccmpagn i eEst (p_ :i.Imœlt IN VARCHAR) RE'IURN VARCHAR I S

résu l tat Ccmpagn i e .ncmConp%TYPE;

BEGIN

SELECT ncmConp I NI'O r é sul tat

FR.CM Ccmpagn i e ccmp = (SELEl:T COI!p FROM Avi on :i.Imœlt = p_

:i.Imœlt) ;

RE'IURN rés ul tat;

EKCEPTION
NO_DATA_FOUND 'IHEN REl'URN NULL;

END;

445 1

1

1 446

SQllv.é l

Nous appelons cette fonction pour l'avion d'immatriculation 'F-GLFS'.

T- Hl llPI d'•1 ICIKlloe

Code Java

t ry { ...
Strin g ord reSQL

• {? = call LeNomCompagnieEst(?))•;
callablestatement étatAppelable =

cx.prepare<:all (ordreSQL);

étatAppelable.regiater<>utParameter
(1, java. sql.Types. VARCHAR);

étatAppelable ... tStri1041(2,"F-GLFS");

étatAppelable.exeauta();

System .out. print("Compagni e de F-GLFS : "+

étatAppelable.gatStri104J(l));

étatAppelable.clo .. ();

} catc h (SQLExcept i on e x) { ... }

APPel d'111e procédure

Conmenlalres

Création d'un état appelable.

Déclaration du paramètre de
sortie.

Passage du paramètre d'entrée.

Exécution de la fonction.

Extraction du résultat.

Fermeture de l'état.

Gestion des erreurs.

Le programme JDBC suivant (CallablePr ocedure.java) décrit l'appel de la procédure
Augment eCapacité (ayant deux paramètres) qui augmente la capacité d'un avion dont
l'immatriculation passe en paramètre.

CREATE PROCEDURE l\ugmenteCapacité (p_ imm>t IN VAROil\R ,

p _n IN NUMBER) IS

BEl3IN

UPD.l\TE Avion SEI' cap = cap + p _n i nmat = p _ imm>t;

END;

Nous augmentons la capacité de l'avion 'F-GLFS' de 50 places :

Code Java

t ry { ...
St ring ordr eSQL = •(call Augmentecapacité(?,?)}";
callablestatement é t atAppelable =

cx.preparacall(ordreSQL);

étatAppelable ... tStri104J(l,"F-GLFS");
étatAppelable ... tint (2,50);

étatAppelable.exeauta();

étatAppelable.clo .. ();

} catc h (SQLExcept i on e x) { ... }

Commentaires

Créatiorn d'un état
appelab'.le.

Passage des paramètres
d'entrée.

Exécution de la procédure.

Fermeture de l'état.

Gestion des erreurs.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Transactïons

•jZJ

JDBC supporte Je mode transactionnel qui consiste à valider tout ou une partie d'un ensemble
d'instructions . Nous avons déjà décrit à la section « Interface Connection »les méthodes qui
permettent à un programme Java de coder des transactions (setAu t.oCcrnmit, commit et
r o lll:a ck).

Par défaut, chaque instruction SQL est validée (on parle d 'auJocommit). Lorsque ce mode est
désactivé, il faut gérer manuellement les transactions avec commit ou rollba ck.

Quand le mode autocommitestdésactivé:

La déconnex ion d'un objet Connection (par la méthode close) valide implicitement la
transaction (même si comnit n'a pas été invoqué avant la déconnex ion).

Chaque instruction du LOD (CREATE, ALTER, DROP) valide implicitement la transaction .

Poims de vall!ation
Depuis la version 3.0 de JDBC (JDK 1.4), on peut inclure des points de validation et affiner
ainsi la programmation des transactions. Les interfaces Connec tion et Savep oint rendent
possible cette programmation.

Interfa ce Connection

Le tableau suivant présente les méthodes de J' interface Connec tion qui sont relatives au prin­
cipe des points de validation :

Méthode Desulptlon

s a vepo int s etsa v epoin t < > Positionne un point de validation anonyme et retourne un
objet savep oint .

s a vepo int s etsa v epoin t (St ring) Positionne un point de validation nommé et retourne un
objet savep oint .

v oid r e l eas esavepoint (savepoint) Supprime le point de validation de la transaction courante.

v oid r ollba ck(savepoint) Invalide la transaction à partir du point de validation.

' C>oclo"' """""' "'" Io m•hodo

© Éditions Eyrol/es 447 1

1

1 448

SQllv.é l

Interface Savepoint

Les points de validation sont anonymes (identifiés toutefois par un entie r) ou nommés . Le
tableau suivant présente les deux seules méthodes de J' interface Sa vepo int:

Uéthode

T- 9-54 M .. Gdes Ill l'llllllfa SIVlllCllll

Delcrlpllon

int getsavepoi n t i d() Retourne l'identifiant du point de validation de l'objet savepoint.

String getsavepoi ntName() Retourne le nom du point de validation de l'objet savepoi n t .

Le code suivant (Transaction2. java) illustre une transaction découpée en deux phases par
deux points de validation. Dans notre exemple, nous validons seulement la première partie. On
su pp ose la conne xi on ex créée.

Code Java

try { ...
cx.set AutOCommit (fa l se);
String ordreSQL =

"INSERT I NTO Avi on VALUES (?, ?, ?, ?)";
Prepa.redstatement étatPréparé =

cx.preparestateme nt(ordreSQL);

Savepoint pl = ex. ••tSavepoint ("Pl");

étatPréparé .setstri n g (1, " F-NEW2");

i f (! étatPrépa.ré.exec ute())
system. out .print ln (" F-NEW2 ins éré ");

Savepoint p2 = ex . ••tSavepoint ("P2 ") ;

étatPréparé .setstr ing (1 , "F-NEW3");

if (! étatPréparé.exec ute())
System.out.print ln ("F-NEW3 ins éré ");

cx. ro11back(p2);

ex.commit ();

ex.c l ose();

} catc h (SQLExcept ion ex) { ... }

Commenlalres

Désactivation die I' sutocommW.
Création d'un état

Création du polmt de validation P1.

Passage de paramètres et première
Insertion.

Création du polmt de validation P2.

Passage de paramètres et
deuxième lnsertilon.

Annulation de la deuxième partie.

Validation de la première partie.

Fermeture de la oonnexlon.

Gestion des erreurs.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

Traitement des exceptïons

Les exceptions qui ne sont pas traitées dans les sous-progrrunmes appelés, ou celles que les
sous-programmes ou déclencheurs peuvent retourner doivent être prises en compte au niveau
du code Java (dans un bloc try ... catch ...). Le bloc d'exceptions permet de programmer des
traitements en fonction des codes d'erreur renvoyés par la base Oracle. Plusieurs blocs
d'exceptions peuvent être imbriqués dans un progrrunme JDBC.

Afin de gérer les erreurs renvoyées par Je SGBD, JDBC propose la classe SQLException qui
hérite de la classe Exception. Chaque objet (automatiquement créé la première erreur) de
cette classe dispose des méthodes suivantes :

Méthode

String getMessage()

String getSQLState()

int getErrorcode ()

T_, H& Millllldes dl Il CllSll SQlflcepdoe

Dela1pllon

Message décrivant l'erreur.

Code erreur SOL Standard (XOPEN ou SOL99).

Code erreur SOL de la base.

SQLException getNextException(> Chaînage à l'exception suivante (si U1ne erreur renvoie
plusieurs messages).

Amchage des e1Teurs
Le code suivant illustre une manière d'afficher explicitement toutes les erreurs sans effectuer
d'autres instructions :

© Éditions Eyrol/es

Code Java

impor t java. sql . *;

import orac l e.jdbc.driver. *;

c l ass Exceptions l
{publi c static void main(String args [])

th.rows SQLException
{ try {

DriverMa.nager.registerDriver(...);
connect i on ex = DriverMa.nager.getconnê<:tion(...);
... }

catch(SQLException ex)
{Sys tem.err.pri nt ln ("Erre ur");
whi l e ((ex != null))

{Sys tem.err.pri n t ln ("Statut : "+ e>c.getSQLState());
System.err.print ln ("Méssag e : "+ E!>C.ptlllla8&p());

System.err.print ln ("axle base : "• eoc.ptErroreo4e());
ex = ex. get»ext&xception () ; }

} }

Conmenlllres

Classe prlncjla le.

1 nstructlons.

Gestion des erreurs.

449 1

1

1 450

SQllv.é l

Trailemenl des errell's
Il est possible d'associer des traitements à chaque erreur répertoriée avant l'exécution du
programme . On peut appeler des méthodes de la classe principale ou code r directement dans
Je bloc des exceptions .

Le code suivant (Exception s 2. java) insère un enregistrement dans la table Avi on en
gérant un certain nombre d'exceptions possibles. Le premier bloc des exceptions permet
d'afficher un message personnalisé pour chaque type d'erreur préalablement répertorié (dupli­
cation de clé primaire, mauvais nombre ou type de colonnes ...). Si l'avion à insérer n'est pas
rattaché à une compagnie existante (contrainte référentielle), on décide de créer la compagnie
et J' avion à nouveau à J'aide de J' exception 2291 (touche parent introuvable). Le
dernier bloc d'exceptions affiche l'éventuelle erreur qui pourrait se produire lors de ces deux
insertions.

Code SOU Commenlalres

s t ring or dreSQL = Importation des
"INSERT INTO Avi on VALUES (' F-A0 ' , ' A319 ' , 148, ' NEW')"; paquetages.
t ry

{ Driv e rMa.nager. r egisterDriver
(new orac l e.j dbc.driv er.o rac l e Driv e r ());

connect i on ex = Driv e rMa.nager.getco nnect i on (.. _ ..);
c x . s etAutOCommi t (fa ls e);
Prepa.r eds tateme n t état Prép aré =

c x .prepare s tateme nt(o rdreSQL);
Sys tem.o ut. prin t ln (état Pré pa.ré.ex ê<:uteUpdate()

" avion ins éré. ");
e x .commi t ();
e x .c l o s e(); }

Validation.

© ÉdW/ons Eyroles

l'llWllCelJIC 1

T_, 9-58 Tnll..i des ucepdoa (suite)

Code SQLJ Conmenlalres

catch(SQLException ex) Gestion des erreurs.
{ if (ex.getErrorcode() == 1)

System.out.println("Avion déjà existant ! ");
e lse if (ex .getErrorcode() == 913)

System.out.println("Trop de valeurs ! ");
e lse if (ex .getErrorcode() == 942)

System.out.println("Nom de tabl e inconnue ! ");
e lse if (ex .getErrorcode() == 947)

System. out .print ln ("Manque de valeurs ! ");
e lse if (ex .getErrorcode() == 1401)

System.out.println("Valeur trop l ongue ! ");
e lse if (ex .getErrorcode() == 1438)

System. out .print ln ("Va l eur trop importante ! ");
e l se if (ex. getEr rorcode () == 22 91) Clé étrangère absente.

try {Connect1o n ex =
Dri verManager .getco nnectio n (·-··>;
cx.setA utOCommit(fa lse);
string ordreSQL2 = "INSERT INI'Cl compag nie Insertion d'une compagnie.

VALUES (' NEW' , ' Nouvelle Compagnie ')";
Preparedstatement étatPréparé2 =

cx.prepa.restatement(ordreSQL2);
System.out .pri n t ln(étatPréparé2. exec utetrpdate() +

" compagnie insérée.");
étatPréparé2 = cx.preparestatement (ordreSQL); Insertion d'un avion.
SystEm. out .pri n t ln(étatPrépa.ré2. exec utetrpdate () +

" avio n inséré.");
ex.commit(); Validation.
ex.c l ose(); }

catc h (SQLExceptio n e)
{Sys tem.err.pri nt ln ("Erreur " • e); } Gestion des erreurs.

À l'aide de la méthode getErrorCode (en testant sur le numéro de l'erreur Oracle ou applica­
tive), il est possible de récupérer des exceptions retournées par un sous-programme ou par un
déclencheur.

© Éditions Eyrol/es 451 1

1

Exercices

SQllv.é l

L'objectif de ces exercices est de développer des méthodes de la classe Java ExoJDB: pour
extraire et mettre à jour certaines de vos tables.

9.1 Curseur statique

Écrire les méthodes :

ArrayList g e tSall e s () qui retourne sous la forme d'une liste les enregistrements de la
table Sall e.

main qui se connecte à la base, appelle la méthode g e tSall e s et affiche les résultats (exemple
donné oklessous) :

nSall e namSall e

s Ol
s 02

Sall e 1
Sall e 2

nbPost e indIP

3

2

13 0 .12 0 . 80

13 0 .12 0 . 80

Ajoutez une nou110ile salle dans la table Sall e sous SQL'Plus, validez et lancez à nouveau le
programme pour vérWler.

[J:rn1if!ml 9 .2 Curseur modlllable

Écrire la méthode void de l e t eSall e(int) qui suwrlme de la table Sall e l'enregistrement de
rang passé en paramètre. Vous utiliserez la méthode d e l e t eRow appliquée à urn curseur modifiable.

Appeler cette méthode pour supprimer l'enregistrement de la table Sall e que vous tNez ajouté précé­
demment.

9.3 Appel d'un sou•programme

1 452

Compiler dans votre schéma la fonction PUSQL suppr iJneSall e (VARCHAR2 l qui se trouve sur le
Web et qui supprime une salle dont le numéro est passé en paramètre. La fonction retourne:

O si la Sl4)presslon s'est déroulée correctement;

-1 si le code de la salle est Inconnu ;

-2 si la Sl4)presslon est Impossible (contraintes référentielles).

Écrire la méthode int d e l e t e Sall e PL (String) qui appelle la fonction supprimeSall e . Ajou­
ter une notNelle salle dans la table Sall e sous SQL'Plus, valider. Appeler la méthode d e l e t eSal­

l e PL dans le main pour supprimer la dernière salle créée. Essayer les différents cas d'erreurs en
awelant cette méthode a110c un numéro de salle référencé par un poste de travail et un numéro de
salle Inexistant.

© ÉdW/ons Eyroles

Chapitre 10

Oracle et PHP
Ce chapitre détaille les moyens de faire interagir un progrrunme PHP avec une base Oracle en
présentant les principales des API OC8 et POO. Vous trouverez dans les complé­
ments (disponibles à J'adresse www.edlions-eyroles.com, sur la fiche de J'ouvrage) d'autres méca­
nismes un peu plus datés ; ils' agit de PUSQL Web Toolldt et de PL/SQL Server Pages.

Contïguration adoptée

De nombreuses configurations sont possibles en fonction des versions PHP, Apache et Oracle
que vous utiliserez. Si votre machine héberge plusieurs instances, la mise en place PHP et
Apache nécessite un environnement béton (fichiers de configuration, variables d'environne­
ment et chemins vers les répertoires). Évitez autant que possible d'utiliser Windows en version
64 bits, car il n'existe pas, pour l'heure, de version PHP adéquate et vous ajouterez une diffi­
culté à la mise en œuvre de votre maquette (vous devrez installer un instant dient Oracle et
faire, par la suite, de nombreuses manipulations).

La configuration adoptée ici est Apache 2.2/PHP 5.2 avec une base IOg R2. À l'époque
d'Oracle9i, Apache était inclus et il fallait simplement modifier les fichiers de configuration.
Je décris ici une procédure minimale sans plus d'explications, car vous trouverez sur Je Web
de nombreuses ressources à ce sujet (http:l!www.oracle.comllechne""°rkllopicslphp/).

Les lo!lieiels
Téléchargez la dernière version stable d'Apache disponible sur htlp:!Altlpd.apache.or(J'dt:Mtn­
/oad.cgl Pour Wmdows, optez pour Je fichier apache_x. x . X><-win32 - x86 - no_
ssl.msi ; pour Linux, choisissez httpd - 2.2.xx.tar. bz2. Après l' installation, testez Je
service dans un navigateur (http: l l l ocalhos t dans la plupart des cas, http: 11
campar o l s dans mon cas).

Téléchargez la dernière version thread safe de PHP au format archive : pour Windows, exten­
sion . zip (http:f!windows.php.ne//downtoad) ; pour Linux, au format tar. bz2 ou tar. gz
(http:l!www.php.net/dt:Mtn/oads.php). Si vous utilisez Apache, optez pour la version VC6 (les
versions VŒ étant dédiées à llS). Décompressez J'archive dans un de vos répertoires (C: \ PllP

dans mon cas).

© Éditions Eyrol/es 453 1

1

1 454

SQllv.é l

Les fiehiers de confiQuraliOn
Concernant Apache, éditez Je fichier httpd.conf (situé par défaut sous Windows dans C: \
Program File s\Apache Software Foundation\Apache2.2), puis ajoutez les
lignes suivantes(# désigne un commentaire). Notez que les chemins de repertoires Windows
doivent être écrits avec Je symbole I et non Je \.

écoute sur le port 9999

Listen 9999

Load.llodule php5 _module
AddBandler application/x-httpd-php .php
PBPiniDir "C:/pbp•

répertoires des sources pbp (pas d'accent dans le nom du répertoire}
DocumentRoo t •c: /Donn.eea/dev/PBP-Oracle•

This should be changed to whatever you set DocwœntRoot to. ..
<Direc tory •c:/Donneea/dev/PBP-Oracle •>

dans la section <IfModule mime_module>
Add'I'ype application/x-httpd-php .php

Concernant PHP, renommez Je fichier php. ini-development en php. ini, puis éditez-Je
pour:

• modifier la ligne extension_dir en indiquant Je répertoire contenant les extensions de
PHP (et, notamment, la librairie php_oci8. dll), dans mon cas : extension_
dir="C:/php/ext";

• décommenter la ligne extension=php_oci8. dll.

Les librairies Windows php_oci8. dll et php_pdo_oci. dll conviennent aux bases !Og,
tandis que l'utilisation de bases l lg nécessite php_oci8_11g. dll.

Test d'AJJache et de PHP
Écrire Je programme suivant (index. php) et disposez Je dans Je répertoire contenant les
sources PHP (D: /dev/PHP-Orac le dans mon cas).

html> <head> <t i t le> test Apache et PHP</title> </head>
<boqy> Tes t de la configuration Apache - PHP
<?p}w

p)winfo ();

?>

</body> </html>

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Pour tester votre serveur, redémarrez Je service Apache et inscrivez dans Je navigateur
J'adresse du serveur (http: // l oca l host:9999/index.php, dans mon cas). En fonc­
tion de la configuration choisie, vous devrez voir Je message «Test de la configuration
Apache - PHP », suivi de la configuration actuelle de PHP (résultat de la fonction phpinfo).

Tes1 d'AJJache, de Pit» el d'Oracle
Vérifiez que les services liste11er et l'instance Oracle sont démarrés. Le programme suivant
(cxl .php) doit se trouver dans Je répertoire contenant les sources PHP (dans mon cas, C: \
Donnees\dev\PHP--Orac le). Renseignez Je nom d' utilisateur, Je mot de passe et la
description de l'instance (consultez Je fichier tnsnames. ora situé dans ORACLE_HOME\
product\xx.x.x\server\network\ADMIN; dans la dernière version d'Oracle Express,
ORACLE_HOME référence C: \orac lexe \app\orac le).

Notez que \OUS pouvez aussi travailler sur votre base locale (installée par cléfuut) sans utiliser la
description du service et en utilisant J' instruction: $ex= oci_connect ($ut:ilisa teur, $mdp).

<?php

$service = • (DESŒIPTICN = (ADIRESS = (PRO'l"OCOL = TCP) (HOST =
localhos t) (PORI' = 1521)) (CCNNECT_DATA = (SERVER = DEDICATED)

(SERVICE_NJ\ME = bdcslOg))) •;

$utilisa teur = •sou tou •;
$mdp = •iu t •;

print •Avan t la connexion
•;

$ex = oci_ connect ($ut ilisa teur ,$m:1p, $set.Vice };

print •La connexion passe avec la description ccmplète du
set.Vice! • ;

oci_ close ($ex);

?>

Tester votre programme dans Je navigateur (http://carrparols:9999/cxl.php dans
mon cas). Vous devez obtenir Je résultat suivant.

Figure 10-1 Test d'une connexion

·!j http: . /campar ols:9999 / cKl. php - Microsoft Internet EKplorer
-- -

Eichier li,dition &fFichage Q.W!s

Al!resse Ili http:/lcamparols:9999/cx l.php ËI moK
Avant la connexion
Le connexion passe avec la description complète du service!

© Éditions Eyrol/es 455 1

1 SQllv.é l

API de PHP pour Oracle COCD

1 456

Les extensions Oracle (fonctions préfixées par ora) sont désormais obsolètes (elles étaient
valables avec des bases 7 et 8.0 et concernaient les premières versions de PHP). À partir de
la version Si sont apparues des fonctions PHP dont les noms étaient préfixés par oci8. Ces
fonctions ont permis la gestion des LOB, descripteurs de fichiers, objets, collections et
ROWID. Par ailleurs, la manipulation des métadonnées (vues du dictionnaire des données)
était possible.

Depuis PHP 5, certaines de ces fonctions se sont standardisées ; Je préfixe a été modifié en
oci_. Ainsi, OCILogin et OCIPar se sont devenus, respectivement, oci_connect et
oci_parse, etc. Notez que, bien que les anciens noms demeurent en tant qu 'alias, il est plus
prudent de ne plus les utiliser. Vous trouverez dans Je livre gratuit The U11dergro1111d PHP a11d
Oracle MaJmal (http:llWWw.oracle.collllfechnetworkAopicslptplurr:JergrouncJ.php-oracle-maœa/-

toutes ces correspondances.

Les principales API pour accéder à Oracle via un programme PHP sont désormais OCl8 (Oracle

Cali /111erface) et POO (PHP Data Objects). Ces extensions sont écrites en Cet sont inclues en
tant que librairie de PHP (présente avec Wmdows dans php_oci8. dll et php_pclo. dll). Si
vous désirez rendre votre code davantage portable (vers une autre base qu'Oracle), vous devez
adopter POO. Les extensions OCl8 vous permettront davantage de fonctionnalités (options de
connexion, LOB, etc.) et continueront à faire partie du langage PHP.

Avant de présenter la technologie POO, étudions les principales fonctions OC! qui s'intègrent
à un programme PHP.

connexions
La fonction oci_connect retourne un identifiant de connexion utilisé par la majorité des
appels à la base (oci calls). Cette fonction ne rétablit pas une nouvelle connexion si une autre
avait été ouverte auparavant avec les mêmes paramètres. Dans ce cas, oci_connect retourne
l'identifiant de la précédente connexion ouverte. Il n'est donc pas possible d'utiliser cette
fonction pour programmer des transactions séparées. Il faudra utiliser à cet effet la fonction
oci_new_connect (ayant même signature que oci_connect).

Pour les bases Oracle d'une version supérieure à 9.2, il est possible d'utiliser un paramètre
désignant Je jeu de caractère à considérer lors de la connexion. oci_connect et
oci_new_connect retournent FALSE si une erreur survient. La fonction oci_c l ose
retourne TRUE en cas de succès, FALSE en cas d'erreur. Ces genres de connexions se
ferment implicitement en fin de programme PHP même si elle n'ont pas été cloturées avec
oci_c l ose.

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Nom de la loncilon

oc i _ connéCt (s t ring uti l i sa teur , s t ring passwo r d r.
s t ring bd[, s t ring c harset JJ)

Utilisateur, mot de passe, nom de
la base locale ou descrjltlon du
service (en l'absence de œ
paramètre PHPS utilise la variable

Le dernier
paramètredéslgneé11011tuellement
le jeu de caractères à oonsdérer.

oc i_c l os e($conne xion) Ferme la connexion dont
l'ldentlflant passe en paramètre.

Les connexions persistantes sont des liens qui ne se ferment implicitement pas à la fin du
programme PHP. Quand une connexion persistante est invoquée, PHP vérifie son existence ou
en créé une nouvelle (identique au niveau du serveur, de l'utilisateur et du mot de passe) en cas
d'absence. Cela permet de passer en paramètre un identifiant de connexion entre plusieurs
programmes PHP.

Ce ne sont pas ce type de connexions que J' on peut assimiler à des sessions. Les connexions persis­
tantes n'offrent pas de fonctionalités additionnelles en terme de transaction que les connexions non
persistantes. La fonction oci_pcoonect retourne un identifiant persistant de connexion.

,....., 10·2 fœcdoe ocl_Damect

Nom de la loncilon Paramètes

oc i_pco nnect(s tring uti l isateur , s tring password Mêmes paramètres que oc i _
[, s t ring bd[, s t rin g charset J J) conn<>et.

constantes prédéfinies
Les constantes suivantes permettent de positionner des indicateurs jouant Je rôle de paramètres
systèmes (modes d'exécution) au sein d'instructionSQL. Nous verrons au long de nos exemples
l'utilisation de certaines de ces constantes.

Constanlo

OCI_,l)EFAULT

OCI_COMMIT_ ON..,SUC'CESS

OCI_,FETCHSTATEMElll'_BY_COLUMN

OCI_,FETCHST ATEMElll'_BY J.Clri

Commentaires

Mode par défaut d'exécution des ordres SOL
(pas de validation automatique).

Validation automatique (après appel à oc i _execute).

Mode par défaut de l'instruction oc i_fetch_a ll.

Mode alternatW de l'instruction oc i _ fetch_a ll.

© Éditions Eyrol/es 457 1

1

Constante

OCI _ASSOC

OCi jlUM

OCI _l!OT H

OCI _JŒTURNJIULLS

SQllv.é l

T_, 10-3 Co1•1111es •id611111es (suite)

Commentaires

Utilisé par oc i _ fetch_a ll et oci_ fetch_array
afin d'extraire un sssoclsUve srrsy oomme résultat.

Utilisé par oc i _ fetch_a ll et oc i _ f etch_array
afin d'extraire un enumerSled srrsy oomme résultat.

Utilisé par oei_fêteh_a ll et oei_ fêteh_array
afin d'extraire un srrsy suwortant à la fols le mode
assoolatW et le mode numérique en lndloes.

Utilisé par oci_ fetch_array afin d'extraire des
lignes même si des oolonnes sont valuées à NULL.

Interactions avec la base

1 458

La majorité des traitements SQL, lorsqu'ils incluent des paramètres, s'effect uent comme suit :
connexion (c01uiect), préparation de l'ordre (parse), association des paramètres à l'ordre SQL
(bind), exécution dudit ordre (exewte), lecture des lignes (pour les SELECT, fetch) et
libération des ressources (free et dose) après validation ou annulation de la transaction
courante (commit et rollback).

La fontion oci_parse prépare l'ordre SQL puis retourne un identifiant d'état qui peut
être utilisé notamment par les fonctions oci_bind_by_name et oci_execute. La
fonction oci_parse retourne FALSE dans Je cas d'une erreur mais ne valide ni sémanti ­
quement ni syntaxiquement l'ordre SQL. Il faudra attendre pour cela son exécution par
oci_execute.

La fonction oci_execute exécute un ordre SQL préparé. Le mode par défaut est ocr_
COiMIT_ON_SUO::ESS (auJo-commil). Pour la programmation de transactions, préférez Je
mode OCI_DEFAULT puis validez explicitement par oci_cornmi t . La fonction oci_
execute retourne TRUE en cas de succès, FALSE sinon.

•1111110-4 f.uaas··-·11•·'*''°'
Nom de la lonctlon

ressource oci_parse(resso urce
connexion, string ordreSQL)

bool ean oci_ exê<:ute(resso urce
ordreSQL r. int mode])

Le premier paramètre désigne l'lde.ntlflant de la
connexion. Le second oontlent l'ordre SOL à analyser
(SELECT, I NSERT, UPOATE, OELETE, CREATE. ..)

Le premier paramètre désigne l'ordre SOL à exécuter.
Le deuxième paramètre est optionnel, Il définit le mode
de validation à l'aide d'une constante prédéfinie.

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Mises àjour

Les fonctions oci_cornmit et oci rollback peonettent de gérer des transactions, elles
retournent TRUE en cas de succès, sinon FALSE.

Nom de li fC111çton

bool ean oci _coaait (re ssource
cotulex ion)

bool ean oci_rollbaek (ressource
cotulex ion)

Valide la transaction de la connexion en cours.

Annule la transaction de la oon.nexlon en cours.

Le code suivant (partie du programme insertl.php) décrit l'insertion d'une nouvelle
compagnie (en supposant qu'aucune erreur n'est retournée de la part de la base). Notez que les
lignes d'exécution et de validation auraient pu être remplacées par J' instruction « oci_
exerute($ordre, OCI_COJltlIT_ON_SU::CE SS) » . Ce mode de programmation est
également valable pour les modifications de colonnes (UPDATE) et suppression d'enregistre­
ments (DELETE). Nous étudierons plus Join comment récupérer au niveau de PHP les erreurs
renvoyées par Oracle.

Code PHP

$ins er t l = "INSERT INTO Compagni e
VALUES (' AL ' , ' Air Lib ')";

$ ordre = oc i _par s e($c x, $ins ertl);
oc i_ex êêute ($ordre);
oc i_commit($cx);
oc i_ f r ee_s tat eme nt($ordre);
oc i _ c l os e($ cx);

Commentaires

Création de l'lnstructlon.
Prépare l'insertion.

Exécute l'insertion.
Validation.
Lllère les ressources.

Si vous souhaitez connaître Je nombre de lignes affectées par l'ordre SQL, utilisez « oci_
nlllll._rowa ($or dre) » (voir la section« Métadonnées »).

Extractions sinples
Les fonctions suivantes permettent d'extraire des données via un curseur que la documentation
de PHP appelle tableau. Il est à noter qu 'Oracle retourne les noms de colonnes toujours en
majuscules. Cette remarque intéressera les habitués des tableaux à accès associatifs (exemple :
$tab ['PRENOM' J, PRENOM étant une colonne extraite d'une table).

© Éditions Eyrol/es 459 1

1

1 460

SQllv.é l

T-10-1 fœcdoas d'IXlnlCllcie

Nom de la loncilon

int oci _fetcb_all (resso urce
ordreSQL, a.rray &tableau [, int saut
[, int maxrows [, int param J J J)

array oci_ fetch_array (resso urce
ordreSQL [, int param J)

array oci_ fetch_a•aoc (resso urce
ordreSQL)

object oci_fetch_objeet (resso urce
ordreSQL)

array oci_ fetch_row (resso urce
ordreSQL)

bool ean oci_ aet_prefetch (resso urce
ordreSQL [, int nbLignes])

bool ean oci_ cancel (resso urce
ordreSQL)

bool ean oci_ fr .. _ atatement (res­
source ordreSQL)

Paramètres

Extrait les lignes dans un tableau. !Retourne le nombre
de lignes ou FALSE en cas d'erreur.
saut désigne le norrbrede lignes 0).
maxrows désigne le nombre de lignes à lire (par
défaut -1 qui signifie toutes les lignes) en démarrant
de l'lndlce saut .
param peut être une combinaison de :
e OCI _F ETCHSTATEMENI' _B Y_ROW

• OCI _F ETCHSTATEMENI' _B Y_ COL UMN (par défaut)
e OCi jllJM

e OCI _ASSOC

Retourne un tableau qui contient la ligne du curseur
suivante ou FALSE en cas d'erreur ou en fin de
curseur. Le tableau est accessible de manière
associative ou numérique suivant le paramètre param
qui peut être une combinaison de :
• OCI _BCTH (par défaut, Identique à OCI _ ASSOC +

OCIJIUM).

• OCI _ASSOC pour un tableau à aocès associatif
(comme oci_ fetch_assoc) -

• OCIJIUM pour un tableau à aocès numérique
(comme oci_ fetch_row).

• OCIJŒTURNJIULLS prend en compte les
valeurs NtJLL retournées par Oracle.

Retourne la ligne du curseur suivante dans un tableau
associatif ou FALSE en casd'er reurou en fin de
curseur.

Retourne la ligne du curseur suivante dans un objet
PHP ou FALSE en cas d'erreur ou en fin de curseur.

Retourne la ligne du curseur suivante dans un tableau
numérique ou FALSE en cas d'erreur ou en fin de
curseur.

le nombre de lignes à extral re à la suite d'un
appel à oci _exec ute. Par défaut le deuxième
parumètre vaut 1. Retourne TRUE .en cas de suocès,
FALSE dans le cas lm.erse.

Invalide le curseur libérant les ressources. Retourne
TRUE en cas de suocès, FALSE sinon.

Libère les ressources associées aux curseurs
occupées après oci_parse. Retourne TRUE en cas
de suocès, FALSE dans le cas Inverse.

illustrons à partir d'exemples certaines utilisati ons de quelques-unes de ces fonctions.

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Le code suivant (partie du programme selectl .php) décrit l'extraction des avions de la
compagnie de code 'AF avec la fonction oci_fetch_array. On suppose ici et dans les
programmes suivants que la connexion à la base est réalisée et se nomme $ex. Le curseur
obtenu est nommé ligne, il prend en compte les valeurs nulles éventuelles. La fonction oci_
num_fields renvoie Je nombre de colonnes de la requête et sa signature est détaillée à la
section « Mét adonnées ».

Code PHP

$requ ete = "SELECT immat , t ypeavion,
capa c i te , compa FROM Avi on

Conmentalres

Création de la requête.

WHERE compa = 'AF ' " ;
$ordre = oc i _par s e($c x, $requ ete);
oc i_ex êêute ($ordre);

Exécution de la requête.
Obtention du nombre de colonnes.
Exécution.

$ncols = oc i _num_f i e lds ($ordre); Obtention.

prin t "Avi ons de la compagni e
prin t "<TABLE BORDER= l > ";

' AF ' •; Chargement et parcours du curseur.
Parcours des colonnes.

whil e ($lign e = oci_fetch,_array ($ordre ,
OCI..)IUM • OCI_RETURN_NULLS))

Chargement.

{prin t " <TR> ";

for ($i =O;$i < $ncols; $i••>
{prin t " <TD> $lign e f $il

prin t "</TR> "; }

prin t "</TABLE>

Parcours.
< / TD> • ; l Affichage.

Le résultat est Je suivant (en supposant que la compagnie 'AF' dispose de 4 avions dont un est
affecté d'une capacité nulle).

Rgure tf>.2 Exemple 8'1/ec oct_fetch_srrsy

I! - IDIŒJ
Eichier Affichage Fayons Qutis l 41'"

Altesse jt) nttp: l/camparols:9999/select l .php
-

..:J moK 1 Uens

-Avions de la compagnie 'AF'

IF-WTSS fa"" [Af
IF-GLFS IA320 ji70[Af

jA320 [i60[Af
l[F-woww iA'.380 fAf

1 :::.J

© Éditions Eyrol/es 461 1

1

1 462

SQllv.é l

Le code suivant (partie du programme sel ect2 .php) décrit l'extraction de tous les avions à
l'exception des deux premiers (grâce au troisième paramètre de la fonction oci_fetch_
a ll). Le curseur obten u est nommé tabresu l ts. L'instructi on PHP reset replace Je poin­
teur au premier élément de la ligne courante du curseur. L'instructi on PHP each retourne la
paire (clé, valeur) et avance Je curseur d'une ligne.

T_, 111-9 flllctol od_letta_ll

Code PHP

$requete = "SELECT immat, typeavio n, capacite FROM
Avi on";

$ordre = oc i _parse ($ex, $requete);
oc i _exec ute ($ordre);
$nblignes = oci_fetch,_all ($ordre, $tabresu l ts, 2);
if ($nb l ignes > 0) {

print " <tab l e border =l >\n";
print"<tr>\n";
for ($i = O; $i < $nblignes; $i••> {

reset($tabresu l ts);

}
e l se

print "<tr>\ n";
whi l e ($co l = eac h ($tabres ul ts))

$donnée = $col[' value ' J ;
print "<td>$do nnée [$il</td>\n";}

print "</tr>\ n"; }
print "</tab l e>\ n";

print "Pas de données
\ n";

Commemtalres

Création de la requête.

Exécution de la requête.
Obtention du nombre
de lignes et chargement.

Parcours du curseur.

Parcours des colonnes.
Affichage des colonnes.

Le résultat est Je suivant (en supp osant toujours que la base ne stocke que 4 avions).

Rgure 10-3 Exempte 8'1/ecocl_fetch_sll

1

IAJ20jiOOJ
IA380:_j

© ÉdWtons Eyroles

OrllCll et Pll' 1

Passage de paramèlres
Les fonctions oci_define_by _name et oci_bind_by _name permettent d'associer à des
colonnes Oracle (toujours notées en majuscules) des variables PHP, et inversement. Ces fonc­
tions retournent TRUE en cas de succès, sinon FALSE.

Afin de vous prémunir d'éventuelles attaques par injection de code SQL, évitez de construire
dynamiquement une requête et préférez l'utilisation de paramètres de liens (bilui variables).

T-10-10 ltJllCdolls dl PISSllll dl Dnmilm

Nom de la loncilon

bool ean oci _define_by_name (ress ource
ordre SQL, s tring no.mcol onne , mixed
&variab l e r' int type 1)

bool ean oci_bind._by _n ... (r essource
ordre SQL, s tring ":co l orac l e •, mixe d
&variab l e [, int l ongueur [, int type] J

Paramètres

Définition d'une variable PHP de réception pour
la colonne. Le paramètre optionnel type
concerne la gestion des LOBs par des
descr!Jteurs.

Association d'une varlab le PHP à une colonne
Orade dans une Instruction de man!Julatlon de
données de SOL (INSERT ' UPOATE et DELETE).
Le paramètre l ongueu r ajuste la taille en octets
de la valeur passée en paramètre. SI il vaut -1 ,
oc i _bin d,_by_ name lltlllsera la taille courante
de la variable. Même slg.nlflcatlon pour le
paramètre optionnel type que précédemment.

Le code suivant (partie du programme s elec t3 .php) extrait l'immatriculation et Je type
de tous les avions en utilisant la fonction oc i_define_by_name pour sélectionner les
colonnes.

Les deux variables PHP sont définies avant d'exécuter l'ordre.

Code PHP Commenlllres

$requ ete = "SELECT i mmat, t ypeavion, capac i te FROM Avi on•; Création de la requête.
$ordre = oc i _par se f$cx, $requ ete);

oci_defineJ>y_Jl ... f$ordre, "IMMAT", $immatri culat i on);
oci_define _by_na- f$ordre, "TYPEAVI ON", $t ypav);
oc i_ex êêute ($ordre);

prin t "Liste des avions ";
prin t "<TABLE BORDER= l > ";
whil e foc i _ fetc h_arr ay f$ordre))

{prin t "<TR > <TD > $imma t ri c ulat i on </TD>"
prin t " <TD> $t ypav </TD> </TR>

prin t "</TABLE>

Déflrnltion des variables PHP.

Exécution de la requête.

Chargement et parcours
du curseur.
Affichage des colonnes.

© Éditions Eyrol/es 463 1

1

1 464

SQllv.é l

Le code suivant (partie du programme inser t2 .php) décrit l'insertion paramétrée d'une
nouvelle compagnie. La fonction oci_bind_by _name permet de fuire passer deux paramè­
tres à J 'instruction SQL.

,....., 10-12 fœcdcie ocl_llllld_lll __

Code PHP

$codecomp = "CAST";
$nomcomp = "Castanet Air";
$insert2 "INSERT I NTO Compag nie VALUES (:vl , :v2)
$ordre = oci_parse ($ex, $insert2);

ociJ>indJ>y _ name ($ordre, ":vl", $codecomp, - 1);

ociJ>indJ>y _ name ($ordre, ":v2", $nomcomp, - 1);

oc i _exec ute($ordre);
oc i _ commit ($ex);

Trailements des erre•s

Commentaires

Affectation des variables
PHP.
Définition de l'ordre
paramétré.

Association tNec les
variables PHP.

Exécution de l'ordre.

Les fonctions oci_error et oci_intema l_debug permettent de gérer les erreurs
retournées par Oracle. Le tableau associatif retourné par oci_error contient Je code erreur
Oracle (colonne code), Je libellé du message (colonne message), Je texte de l'instruction
(colonne sql text) et Je déplacement (débutant à J'indice 0) dans Je texte de l'instruc­
tion indiquant J' erreur (colonne offset).

lllllleaU 10-13 fœcdciDs •• Il gesdoe des , lnl:ll

Nom de la lonctlon Paraml*es

a.rray oci_error (r ressource source]) Dans la plupart des cas le param_ètre source dési­
gne l'ordre SOL Pour les erreurs de connexion
(oci _corutê<:t, oc i_nêW_connect ou oci _
pconnect), 11 ne <aut pas Indiquer de paramètre.

void oci_ internal _debug (int valeur) Active ou désactive le deboggage Interne par le
paramètre valeur (0 pour le désacti11er, 1 pour
l'activer). Par défaut le déboggage est désactivé.

Il faudra utiliser Je préfixe @ devant la fonction pour laquelle vous souhaiter lever une éven­
tuelle exception. Ce préfixe entraîne l'annulation du rapport d'erreur de cette expression tout
en conservant les messages d'erreur dues aux erreurs d'analyse.

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Le code suivant (progrrunme erreurl .php) décrit l'affichage d'une erreur de connexion en
utilisant la fonction oci_err or sans paramètre. Dans cet exemple, la connexion ne se déroule
pas correctement du fait d'un nom erroné du serveur.

Code PHP

<html > <head> <tit l e>Erre ur connexio n </tit l e> </
head>
<body>
< ?php
$service = " (DESCR IFT ION = (ADDRESS = (PROTOCOL =
TCP) (HOST = toto) (PORT = 1 521)) (CONNECT_J)ATA =
(SERVER = DEDI CATED) (SERV I CEJIAME = bdcs l Og))) ";
$uti l isateur = "soutou";
$mdp = "iut ";
$ex = @oci _ connect($ u ti l isateur ,$mdp, $service);
if (! $ex)

{prin t "L' uti l isateur $uti l isateur n 'a pu se
coruiecter à l a base
";

$taberr = oci_ error () ;
print "Message: " . $taberr r• ... eeage');
print "
Code : " . $taberr ['cod.e'] ;
}

e l se
{
Il début de l a transactio n

oci_ c l ose($ex);
}
? >
</body> </html >

Le résultat est le suivant.

Commemtalres

Début du oode PHP.

Connexion.
Connexion.

Récupération de l'erreur.
Affichage
de l'erreur.

Codage de la transaction.
Fermerure de la connexion.

Rgure 11>4 Problt!me de comexlon décelé à raide de oc/_error

A!!resse lt'J http://camparols:9999/err..,r l .php ...:.J

']Erreur conne>e1on - Microsoft Internet E>cplorer

L'utilis ateur sou-fou n'a pu se connecter à la base
Messa;e: ORA-12545: Connec t failed because targe t hos t or object does not exist
Code : 12545

© Éditions Eyrol/es 465 1

1

1 466

SQllv.é l

Le code suivant (progrrunme erreur2 .php) décrit l'affichage détaillé d'une erreur au sein
d'une instruction SQL en utilisant la fonction oci_error avec un paramètre. La position de
l'erreur est donnée pas la valeur du déplacement (offset) dans J' instruction (ici J' erreur est
située en ge position).

llillleaU 10·15 fœcdcie ocl_lllW !MC Dnmilnl

Code PHP

$requetePB = "SELECT ! FROM Avi o n";

$ordre= oc i _parse($cx,$req uetePB);
if (!@oci_exec ute ($ordre))
{

print "Prob l ème sur : " . $requetePB . "< BR>";
$taberr = oci_ error ($ordre);
print "Message: " . $taberr [' message ');
print "
Code " . $taberr [' code '];
print "
sq l text " $taberr r• sq l text '];
print "
offset : " . $taberr r• offset ');}

Le résultat est le suivant.

Commenlllres

Analyse et exécution de
l'ordre (erroné).

Récupération de l'erreur.
Affichage détaillé
du tableau associatif
contenant le résultat
de l'erreur.

Rgure tt>-5 ErreUI de syntaxe SOL décelé à raide oct_error

l Erreur SELECT - M1crosort EKplorr:r

Eichier /lffichage Fay_oris Qutils 1

Agresse le'.J

Problème sur : SD.ECT ! FROM Avion
Messo;e : ORA-00936: missing expressio n
Code : 936
sqltext : SELECT 1 FROM Avion
ofiSet : 7

En activant le déboggage interne (appel à la fonction oci_intema l_debug), on obtient la
séquence suivante .

I " ac t ive le deboggage
oci_ internal _ debug (l);

$ex= @oci_cannec t ($ut ilisa t eur ,$m:1p, $set.Vi ce};

© ÉdWtons Eyroles

OrllCll et Pll' 1

Le résultat détaille les différents appels aux fonctions OC/ d'Oracle.

Figure 10·6 Déboggsge Interne à raide de oc/_lnternsLdebug

Erreur de conneX1on avec deboggage • Moz1lla F1refox C-lrDfXI
Eichler &itlttl llfficruoe tllstcrlq..e CMJI• 1

• • (! .., c\ ___ '•· >
) (rreu- de CON>eXIOn 111/e •••

OClll DEBUCI: OC!NhEoivir .. •nct• VwblcOcl •• (c.rtloci8\oci8.c:J067) OClll DEBUCI: OCIEnvNIJCrult ••
(c.rtloci8\oci8.c:l2lJ) OCl8 DEBUO: OClfundlcAJloc at (c.rtloci8\oci8.c:l2l2) OCl8 DEBUO: OCIStrvcrAtt1eh
at (c.rtloci8\oci8.c:1261) OClll DEllUO: OCŒn-orO<t •t {c.rtloci8\oci8.c:92l) OClll DEBUO: OClH1ncllcFrcc 11
(cxt\oci8\oci8.c :l'4J) OCIB DEBUO: OCllb ndlcFrcc 1t (ut\oci8\oci8.c: 1'47) L\rtîlântcur 1outou n'a pu se
councctcr i la bHc:
OClll DEBUCI: OCŒn-orOct at (c.rtloci8\oci8.c:922) Mmace : ORA·Ul4l : Coouuion impou iblc car l'hôte ou
l'objcl cible n'uiste pH -
Cod• : 12'4l0Clll DEBUO: OCffiancllcFrcc al (cxt\oci8\oci8.c:461) OCJS DEBUO: OCUlandkFrcc at (utloci8
lociS.o:-166)

Procédures cataloguées
Comme dans tout autre langage hôte, PHP permet d'invoquer des procédures cataloguées
situées côté serveur. Supposons que nous disposions de la procédure suivante qui
augmente la capacité (premier paramètre) des avions d'une compagnie donnée (deuxième
paramètre).

ŒFATE PROCEWRE augmenteCap (nbre IN NUMBER, ccmpag IN CHAR) AS

BEGIN

/

UPDA.TE Avion SET capacite = capacite + nbre WHERE corrpa = canpag;

CCMMIT;

END;

Le code suivant (programme t:>rocédureCat.t:>hi'.>) décrit l'appel .de la procédure qui
augmente la capacité des avions de la compagnie de code 'AF d'une valeur de 50 places.
Notez l'utilisation de deux espaces lors de l'initialisation de la variable PHP $comp car la
colonne compa de la table Avion est dimensionnée en CHAR (4). L'utilisation de « • l » lors
des büui indique que c'est la longueur des variables PHP qui sera considérée dans la procédure
cataloguée.

© Éditions Eyrol/es 467 1

1

1 468

SQllv.é l

Code PHP Conmemlalres

$procedure = "BDJIN augment.Cap (:n.bre, :compag); DID ; ";
$ordre = oci_parse($cx, $procedure);

Déclaration et analyse de la
procédure.

$nb = 50;
$comp = ' AF

lnltlallsatlon des variables
de liens PHP.

oci_bincJ...by_ name ($ordre, ":nbr e • $nb, -1);
oci_bincJ...by_ name ($ordre, ": compag•, $comp, -1);

Liaison des variables PHP
à l'instruction Oracle.

oci_exec ute($ordre); Appel de la procédure.
print "Procéd ure réalisée correcteme nt. ";
oci_free_statement ($ordre);
oci_c l ose($cx);

Métadonnées
w fonctions suivantes permettent d'extraire des informations en provenance du dictionnaire
des données.

Nom de la lonctlon

string oci_aerver _veraion (resso urce
cotulexi on)

bool ean oci_ field _ia_null (resso urce
ordreSQL, mixed colonne)

int oci_nwa_fielda (resso urce
ordreSQL)

string oci_field_naae (resso urce
ordreSQL, int pos)

in t oc1_f1el4_prec111oD (r esso urce
ordreSQL, int pos)

int oci _field_ac ale (resso urce
ordreSQL, int pos)

int oci _field_aize (resso urce
ordreSQL, mixed field)

Paramètres

Retourne une chaîne décrivant la version du noyau
Oracle utilisé par la connexion passée en paramètre.
La <onction retourne FALSE en cas d'erreur.

Retourne TRUE si la colonne désignée (paramètre
colonne noté en majuscules) est NULL. La <onction
retourne FALSE sinon.

Retourne le nombre de oolonnes du resultat de
l'ordre SOL.

Retourne le nom de la colonne de l'ordre SOL
correspondant à la position pos (débutant à 1 pour la
première colonne).

Retourne la précision de la oolonme de l'ordre SOL
correspondant à la position pos. Pour les FLOAT, la
preclslon vaut -127. SI la préclslom est égale à 0, Il
s'agit d'un NUMBER. Sinon Il de la précision
d'une colonne NUMBER (precision, scale) .

Retourne l'echelle (norrbre de décimales) de la oolonne
de l'ordre SOL correspondant à la position pos. Même
règle que pour oci _fie l cJ...prec ision. SI aurune
échelle n'existe, la valeur FALSE est retournée.

Retourne la taille de la colonne de l'ordre SOL
correspondant à la position field ou au nom• field ..

© ÉdW/ons Eyroles

OrllCll et Pll' 1

T-10-11 fCIKllols POii' DilW les llilado1116es (suite)

Nom de la london

string oci_ etat•ment _ type (ressource
o.rdreSQL)

Retourne le type de l'ordre SOL provenant de oci _
parse (1 pour SELECT, 2 pour UPDATE, 3 pour
DELETE, 4 pour INSERT , 5 pour CREATE, 6 pour
DROP, 7 pour ALTER, 8 pour BEGIN, 9 pour DECLARE,
10 pour UNKNOWN).

mixed oci_field_type (ressource
o.rdreSQL, int pos)

Retourne le type de la oolonne de l'ordre SOL
correspondant à la pos.

int oci_nwa_rowa (ressource ordreSQL) Retourne le nombre de lignes affectées par un ordre
SOL (LMD ou LCD). Cette fonction ne ramène pas le
nombre de lignes ex1raltes par un SELECT. f'l'.)ur œla
utilisez COUNT.

boolean oci_ paesword_change
(ressource cotulexion, string utili­
sateur, string ancienMDP, string
nouveauMDP)

Change le mot de passe de l'utilisateur passé en
paramètre. Retourne TRUE si changment est
effectW, FALSE sinon.

illustrons à partir d'exemples certaines de ces fonctions.

Le code suivant (progrrunme metal .php) décrit l'extraction des avion:s de capacité nulle en
utilisant la fonction oci_field_is_null.

Le résultat est Je suivant.

T-10·18 AlftClllDI dl Il venlcle et •t dl

Code PHP

$ex = oci_connectf$ uti lisa teur ,$mdp, $service);
print "
User : $uti lisateur se connecte à l a
base version :
";
print oci_ aerver _veraion ($cx);

$requete = "SELECT * FROM Avion";
$ordre = oci_parse f$cx, $requete);
oci_define _ by_namef$ordre, "IMMAT", $immatriculation);
oci_define _ by_namef$ordre, "TYPEAVI ON", $typav);
oei_define _ by_name($ordre, "CAPACITE", $eap);
oci_exêê ute ($ordre);
print "
Liste des avions de capacité NULLE";
print "<TABLE BORDER= l > ";
while (oci _ fetc h_array($ordre))
{i f (oci_ fiel4,_ie _null ($ordre, "CAPACITE"))
{prin t "<TR > <TD > $immatriculation </TD>";
print " <TD> $typav </TD> </TR> " ;}

}
print "</TABLE>

Commenlalres

Affichage de la version
de la base utilisée.

Test de la de
la colonne capac i te.
Affichage des données

© Éditions Eyrol/es 469 1

1

1 470

SQllv.é l

Figure 10-7 Aff/ch8(Je de la version de la base et test de nul/té d'une colome

E"'- e/f"'- ._,,.,.
°"

Usn ••-.•• u connectt i ta bue wrtt0n
P•uonalOtacleO.c.&bu• lOgR.eJH,.10 l 0.20- Producbon Wdbth• Pwuonan.g. OLAP enOOM Mwngopt.aon1
Llrttto •-lie l'llJLLE

Le code suivant (progrrunme meta2 .php) décrit l'extraction de la structure complète (en
termes de colonnes) d'une table en utilisant les fonctions oci_num_fie l às, oci_fie l d_
name, oci_fie l d_type et oci_fie l d_size.

T-10-19 Eltll'ICdCle d1li11JUC1Jn d'•1 t•
Code PHP

$o rdre = oc i _parse($cx, "SELECT * FROM
Avi on");

oci_exec ute($ordr e) ;

print "St ructure de l a tabl e Avi on ";
print " <tab l e border= l >";
print " <tr><t h >Nom</t h >";
print " <th >Type</th >";
print " <th >Tai lle</t h></tr> ";
$ncol s = oci_nWl\.,fielde ($ordre);

fo r ($i = l; $i <= $ncol s; $i••>
{$col _nom • oci_field,_name ($ordr e, $i)
$col _type = oci_field,_type ($ordr e, $i)
$col _size = oci_field,_eize ($ordr e, $i)
print "<tr><td> $col _nom</td> ";
print "<td> $col _type</td> ";
print "<td> $col _size</td></tr>";

}
print " </tab l e>\ n";

Commentaires

Extraction des avions de la base.

Extraction du nombre de colonnes.

Nom, type et taille de la colonne extraite.

Affichage des Informations

© ÉdW/ons Eyroles

OrllCll et Pll' 1

Le résultat est Je suivant.

Rgure tf>,8 Extmction de ta structure d 'une table

I! 1;m111·1111111:;1111·H·111m1111111zm1.111• lor:E]
Eichier !;.dtion &!'fichage Fayoris r 1 :r

Agresse lfl http://camparols:9999/meta2.php .:J ;] OK 1 Liens

Structure de la table Avion -
1 Nom 1 Type 11Taille
llMMAT in
[TYPEA VION ËHAR llï5J
lcAPACJTE IE:UMBER @_21 -

'.:..l

API Objet PHP pour Oracle <POO)

POO (PHP Data Objects) est une API objet qui permet de traduire et de transmettre les
instructions SQL au SGBO. Indépendante de l'éditeur, la couche POO est dite « abstraite»,
car elle permet de séparer les traitements de la base de données et s'adapte tout aussi bien à
Oracle qu'à MySQL, PostgreSQL, etc. Comme pour la technologie JDBC, chaque éditeur de
SGBO dispose d'un ou plusieurs pilotes POO qu'il faudra inclure dans les librairies de PHP. Il
existe aussi des pilotes en provenance de la communauté PHP.

Le fait d'utiliser POO ne rend pas vos requêtes compatibles avec n'importe quelle base de
données, mais assure que les fonctions d'accès seront universelles (mises à jour, parcours d'un
résultat, etc.), sous réserve que Je code SQL soit Je plus standard possible. Ainsi, Je jour où
vous décidez de migrer vers une autre base de données, il suffira en principe de modifier Je
fichier de configuration de la connexion sans avoir à réécrire totalement votre code. La docu­
mentation officielle se trouve sur Je site hl.tp:l!Www.ptp.netlmanuaflfribook.pdo.php.

Au préalable, vous devrez décommenter les lignes extension=php_pdo_oci8. dll et
extension=php_pclo.dll du fichier php. ini, puis relancer Je service d'Apache. Pour
des bases l lg, vous devrez agir sur la ligne concernant php_oci8_11g. dll.

ConnexiOns
Une connexion s'établit à la création d'une instance de la classe PDO. Le constructeur accepte
plusieurs paramètres. Le premier est appelé « OSN » (DaJa So11rce Name), les autres correspon-

© Éditions Eyrottes 471 1

1

1 472

SQllv.é l

dent à J'utilisaœur, au mot de passe et à d'é,entuelles options de connexion. Comme avec Java, il
est possible de router toute erreur par J'inteonédiaire d'un objet PDOExœption.

Le code suivant (programme pdol. php) décrit la connexion à une base. La déconnexion
s'opère par la suppression de J' objet (affectation à null de la référence).

T-10·20 cam.-1111Kœl0o1

Code PHP

$servi ce = " (DESCRIPTI ON = (ADDRESS = (PROTOCOL = TCP)

(HOST = camparo ls) (PORT = 1 521))

(CONNECT_ DATA = (SERVER = DEDICATED)

(SERVICE_ NAME = bdl0gR2)))";
$dsn = 'oc i:dbnam e= ' . $servi ce;
$ut ilis ateur = "soutou";
$mdp = "soutou";
t ry
{$ex = new PDO($dsn,$u t ilisa teur,$mdp);

/ / t r a i t ement ...
$ex = null;

}

c at ch (PDOExcept i on $ e)
{ prin t "Problèm e connexion: " . $e - >getMe ssage(); }

Commenialres

Connexion.

Déconnexion.

Gestion des erreurs.

Afin de créér une connexion persistante (c'est-à-dire qui n'est pas fermée à la fin du script,
mais mise en cache et réutilisable), il suffit d'ajouter Je paramètre array(PDO: :A'ITR_
PERSISTENI' => true) en quatrième position du constructeur de la connexion.

Mises à iDll'
Le code suivant (programme pdo-insertl.php) décrit une transaction insérant une ligne
dans la table Avion.

• La méthode setAttribute permet de gérer les exceptions dues à une erreur côté serveur
lors de la transaction.

• L'instruction paramétrée utilise les place holders (symbole?) qu'il faudra associer à une
variable (ou valeur) par J'indice à J'aide de la méthode bindValue. Les constantes prédé­
finies du type POO: : PARAM_xxx renseignent Je type de la colonne. Les méthodes
prepare et execute sont classiques dans ce genre de programmation.

• La validation et l'invalidation d'une transaction s'opère traditionnellement à J'aide des
méthodes cornmi t et rollBack.

Si vous souhaitez connaître Je nombre de lignes affectées par l'instruction SQL, utilisez la
méthode rowCount au niveau de l'état prep->rowCount () .

© ÉdW/ons Eyroles

Code PHP

try
{

$ex = n<>w PDO($dsn,$utilisateur,$mdp);
$cx->aetAttribute(PDO: :ATI'R_ERRMODE, POO: :ERRMODE_EXCEPT I ON);

$CX->beginTrane aetion ();
$insertl "INSERT INrO Avi on VALUES (?,?,?,?)
$prep = $cx->prepare($insertl);

$prep->bindVa lue(l, ' F-HAAB' ,
$prep->bindVa lue(2, ' AT01 ' ,
$prep->bindVa lue(3, lO,
$prep->bindVa lue(4, ' SI NG ' ,

$pr ep- >execut • () ;
$cx->caait ();
$ex = null;

catch (PDOExceptio n $e)
{

$cx->r o11 Back();

PDO: : PARAM_ STR) ;
PDO:: PARAM_ STR);
PDO: : PARAM_ INI') ;
PDO:: PARAM_ STR);

print "Pr obl ème: " .$e->get Message();
}

OrllCll et Pll' 1

Corrrnentalres

Création de la
connexion.

Début de la
transaction.
Préparation de
l'instruction.

Passage des
paramètres.

Exécution et
validation.

Gestlondes
erreurs et
Invalidation.

Le code suivant (progranune pdo-upclatel. php) décrit une transaction modifiant tous les
avions (augmentati on de la capacité, premier paramètre) d'une compagnie de code (dont la valeur
passe en deuxième paramètre). La phase de connexion n'est pas décriœ pour alléger Je code.

La méthode binclParam affecte à un place ho/der (ici, :vl et : v2) une variable. Avant
d'exécuter l'instruction, il convient d'affecter une valeur à chaque variable définissant un
paramètre (ici, $vl et $v2).

T_, 10-22 IDSIJUCdoe MC lilllh'•

Code PHP

$cx->bêginTransacti on ();
$update l "UPDATE Avi on SET capacite=capacite'I- :vl

WHERE compa= :v2";
$prep $cx->prepare($update l);

$prep->bi nd.Para a(' : v l' , $v l);
$prep-> billdParaa (' :v2 ' ,$v2);

$vl =60;
$v2 = ' AF
$prep->exê<:ute();

Commentaires

Début de la
transaction
et préparation
de l'instruction.

Mise en place
des paramètres.

Affectation
des paramètres
et exécution.

$cx->c ommit (); Validation
print "Mises à jour OK. " .$prep->rowco unt() . " lign e(s) modifiée(s) "; et fermeture
$ex = null; de laoonnexlon.

© Éditions Eyrol/es 473 1

1 SQllv.é l

blraclions
Le code suivant (programme pdo-se l ectl.php) extrait les avions d'une compagnie de
code passant en paramètre. La phase de connexion n'est pas décrite pour alléger Je code.

La phase de préparation, passage des paramètres, est similaire à J' exemple précédent. La
méthode fetch d'un obje t de la classe PDOStatement permet d'extraire une ligne ramenée
par la requête à chaque itération de la boucle. Chaque ligne est un tableau associatif qu'il suffit

de parcourir en utilisan t le nom des colonnes.

Code PHP

$se l éet l = "SELECT immat,typêavion,capacite FROM Avi on WHERE compa= :vl" ;
$prep = $cx->prepare($se l <>etl);
$prep->bindParam(' :vl ' ,$vl);

$vl = ' AF
if ($prep->ex<>e ute())

{prin t "<tab l e border =l >";
print "<tr><th> IMMAT</th ><th >TYPEAVION</t h></thr> ";
whi l e ($row = $prep->f etch ())

{ print "<tr><td> " .$row r' IMMAT' 1 . "</td><td> " .
$row [' TYPEAVION' 1 . "</td></tr> " ;

print "</tab l e> ";
}

e l se print "Aucune l igne ... ";

$ex = null;

Le résultat obten u est Je suivant.

Figure 10-9 Extraction avec PDO

Commentaires

Préparation de
l'instruction.

Mise en place du
paramètre et exécution.

Parcours du résultat.

Ferm.eture de la
connexion.

SELECT p.uimetre ivec POO· Moz1ll1 F1refox '- D ·x
6,ff<l>ogt f:jt'.._ l

0 - c:) ,.

1 474 © ÉdW/ons Eyroles

OrllCll et Pll' 1

Procédures cataloguées
POO permet J' appel de procédures cataloguées. Considérons la procédure suivante qui dispose
de trois paramètres. Le premier correspond au nombre de places ajoutées pour un avion, le
deuxième permet de désigner un code compagnie, et le dernier paramètre (de retour) renvoie
une chaîne de caractères .

ŒFATE OR REPLACE PROCEDURE augmenteCap 2

(nbre I N NUMBER, conpag I N CHAR, retour Our VARCHAR)

AS

BEGI N

UIDATE Avi on SET capac i te = capac i te + nbre

conpa = conpag;

CCMMIT ;

retour : = ' OK ' ;

END;

Le code suivant (programme pclo- procl. php) augmente d'une valeur de 20 places la capa­
cité des avions de la compagnie 'SING'. Le code retour est affiché (La procédure a
retourné : OK).

Notez l'utilisation du paramètre PARAM_xxx 1 POO: : PARAM_INPl1I'_Ol1I'Pl1I' PARAM pour
typer le paramètre et désigner qu'il s'agit d'un paramètre d'entrée ou de sortie. La taille
(dernier paramètre de bindParam) est également requise.

Code PHP

$pr oc = "BEGIN augmentecap 2(?,?,?); END;";
$stmt = $cx-> prepa r e($proc);

$stmt-> bindP a ram (l,$vl,PDO::PARAM _INI'IPDO::PARAM_INPUT_OUTPUT,1000);
$stmt-> bindP a r am(2 ,$v2 ,PDO::PARAM_STRIPDO::PARAM_INPUT_OUTPUT,4);
$stmt-> bindP a ram (3 ,$v3 ,PDO::PARAM_STRIPDO::PARAM_INPUT_OUTPUT,2);

$vl = 20;
$v2 = ' SING' ;
$stmt->e xecute();

prin t "La procéd ure a r etourné ". $v3 ;
$ex = null;

© Éditions Eyrol/es

Conmenlalres

Préparation de
l'appel.

Mise en place des
paramètres.

AHectatlon des
valeurs et appel de
la procédure.

Affichage d'un
retour et fermeture
de la connexion.

475 1

Chapitre 11

Oracle XML DB

Généralités

XML DB est Je nom de la technologie d'Oracle qui permet de gérer du contenu XML (stoc­
kage, mises à jour et extractions). Alors que certains systèmes ne permettent que la persis­
tance, XML DB offre Je contrôle des transactions, l'intégrité, la réplication, l'indexation, la
sauvegarde, l'exportation, etc.

Il existe des alternatives à XML DB pour gérer du contenu XML ; citons Je XDK (XMLDeve ­
lopmelll Kit) pour C, C++ et Java Ces techniques permettent d'analyser Je document
(parsi11g), les documents XML à J' extérieur de la base et de les stocker dans des types conven­
tionnels (CLOB, BLOB, BFILE, ou VARCHAR2). En faisant cela, vous ne pourrez pas bénéficier
de toutes les fonctionnalités précitées.

HislDriQue
XML a été pris en compte il y a une dizaine d'années par Oracle Si avec l'apparition de
plusieurs paquetages PUSQL (dont DBMS_XMLSAVE et IEMS_XMLQUERY qui composaient
J'offre XSU : XML SQL Utility). Depuis la Release 1 de la version 9i, Je type de donnée
XMLType est dédié à la gestion de contenus XML. Avec la version 9i R2, il est possible d'y
associer des grammaires XML Schema et de travailler avec XML ReposiJory. La version 1 Og a
fait évoluer les grammaires XML Schema. La version l lg a introduit Je mode de stockage
binary XML, un accès par Web Services. Depuis la version 12c, XML DB est inclus native­
ment dans la base, Je langage XQuery est adopté pour les mises à jour, des fonctionnalités
d'indexation textuelles apparaissent et Je type CLOB a été abandonné en tant que mode de stoc­
kage.

Beaucoup (trop) de choses ont évolué depuis le début de cette techno logie complexe: fonc­
tions d'ex tractions, mode de stockage , options par défaut, préconisations , etc. Espérons que
les versions à venir ne compromett ront pas trop les fonctionnalités présentes.

© Éditions Eyrol/es 4n 1

1

1 478

SQllv.é l

Pour contrôler la présence de l'environnement XML DB, vérifiez que votre instance est bien
associée à un service (dans Je système d'exploitation, la commande l snrct l status doit
retourner « Le service" ... XDB" comporte 1 instanœ(s) .. ».

Ce chapitre présente les principales fonctionnalités de XML DB, qui est documenté dans la
section « Application Development »du livre Oracle XML DB Devewper's Grlide.

Architecture générale
Les deux principales caractéristiques de XML DB sont, d'une part, l'interopérabilité entre
SQL et XML (documents et grammaires) et, d'autre part, la gestion de ressources XML dans
un contexte multi-utilisateur avec XML Reposilory.

Figure 11-1 Architecture de XML DB (© doc. Oracle)

1=::1
t - JOtlC °V::P "p --

t t t t
1=:1 §] - •

1 !+@ I l
........ --.............. -..........
• Oracle XML De

............. -.... -... , . . .
·--

flMrilfMIGIMf*
• Xia. Valc!ildion XML 1Jt1nt
• XMLTypeAPls
• >OA. Sd*"I • SOL
• Create TatJIM • P\JSOl
• IMett. Deleet. UpmM • C na.r.,,..._ • c-

· -

XMLSffvkiff

• AQ. s.c..tty ·-,........,. , Q.,..,.19 XML
U9lft9 fMIOutt9 API•
• SOL
• P\.ISOL

XML DB est en principe opérationnel si vous avez choisi les options par défaut lors de
J' installation. Dans Je doute, vous pouvez interroger Je dictionnaire des données pour constater

© ÉdW/ons Eyroles

OrllCll IMl œ I

la présence de l'utilisateur XDB (le compte doit être déverrouillé) ou de la vue RESOURCE_

VIEW.

Ré1Jer10ire logiwe
Si vous n'utilisez pas l'environnement XML DB Repository, la création d 'un répertoire logique
associé à celui qui contiendra vos documents XML est nécessaire. Pensez également à posi­
tionner certaines variables d'environnement dans SQL*Plus (SET LONG 10000 et SET

PAGESIZE 100) pour ne pas tronquer VOS résultats.

1 ŒFATE DIREx::TORY repxm l AS 'C: \ dev\XML ' ;

Les modes de stockage

Suivant la nature du contenu XML que vous aurez à stocker, il vous faut choisir un mode de
stockage . Vous devez statuer sur la nature de vos documents XML entre :

• orienté « données » (data-centric) où la structure des données est relativement régulière à
granularité fine (la plus petite information est située au niveau d'un élément terminal ou
d'un attribut) et ne contenant peu ou pas du tout de contenus mixtes. Le mode préconisé est
object-relatio11al (et son indexation B-tree conventionnelle) ;

• orienté « document » (doc1l!nent-ce11tric), structure moins régulière des données avec une
granularité importante et des contenus mixtes et un ordre des éléments très significatif
(page HTML, par exemple). Le mode préconisé est bi11ary XML (et son indexation spécifi­
que).

u .. c..o

ryp1ca1 °""'
Stcwage-

lncloûng

© Éditions Eyrol/es

Figure 11-2 Préconls8llons du mode de stockt1ge (© doc. Oracle)

-
Olt>Ceintrie

n LJ
WL ___ woth

lrtti. end"" llruttu'lf

E"'4l'OyM rlCOld

Ol>ioc•·--(SlN<lllred

8-trw 1nde1t

-0
-.Ctfl tric

Va.rtable free-bm<lala. with Vanftbte, lre.iorm data
a.ome llx«t embedded

r ecnn•cal a.rtielt. W"tl'l lùtMf
oate. and 11ti. t...as

&na.ry XML

DG.Indell inoe..: W'th ltn.ictuted • Da.Iad- 1ndtx Wl'1
êlf'ld ._..._ red_
XML Full Te ,.;t · XMLFul·TPI index

479 1

1

1 480

SQllv.é l

Selon le mode de stockage choisi, vous disposerez des mêmes fonctions d'extraction mais de
mécanismes de validation, de mises à jour et d'indexation différents.

Depuis la version 12<; le type CLOB est abandonné en tant que mode de stockage; il convenait
auparavant pour les contenus XML non strucb.Jrés.

Le tableau 11-1 résume les points forts de chaque mode de stockage. Choisissez le mode
bi11ary XML si le contenu XML ne doit pas être associé à une grammaire.

T- 11-1 CcillpnUI des lllldes dl SloellDI

Blnary XUL

Extraction ++ (Index 8 -tree) +

Mises à jour ++ +

Esp.ace disque ++ +

des données - (conformité à une grammaire) +

des grammaires XML Schema - (une seule grammaire) ++ (une ou plusieurs grammaires)

Validation après Insertion Partielle +Totale (si grammaire)

Partitionnement + (colonne virtue lle)

Compression ++ +

Le 1VPe XfllTVPe
Le type de données XMLType fournit de nombreuses fonctionnalités, la plupart relatives à
XML (validation de schéma XML et transformation XSL), ainsi que d'autres qui concernent
SQL :

• définition d'une colonne d'une table (jouant le rôle d'un type de donnée) ;

• définition d'une table (jouant le rôle d'un type d'objet) ;

• déclaration de variables PUSQL ;

• appel de méthodes (procédures PUSQL).

Le mode de stockage se choisit à l'aide de la clause XMLTYPE résumée dans la syntaxe
suivante :

XllLTYPB (STORE AS

{ OBJEx::T RELATICNAL) B INARY XML)

((XMLSCHEMA nomXMLSchema)

ELEMENl' { é lément) nomXMLSch ema # é l é men t ...))

(Vm 'IUAL COLUMNS (c olonn e l AS (expre ssionl), ...))) ;

© ÉdW/ons Eyroles

• lZJ

OrllCll IMl œ I

• La clause OBJECT RELATICNAL devra être associée à J 'option XMLSCHEMA pour associer
une grammakeXMLSchema .

• La clause VIRTUAL COLUMNS est réservée au mode BINARY XML pour construire des index
ou des contraintes (définies avec ALTER TABLE).

• En l'absence de clause STORE AS, Je mode de stockage par défaut était object-relati o11al
jusqu'à la version l lgR2, depuis c'est devenu bi11ary XML.

Le tableau 11-2 présente différentes utilisations de types XML en mode bi11ary XML.

Utlllsa ... n

Table

Colonne

Variable PUSQL

lllllelll 11-2 T•. CGloml Il llll'lllill IMllYPI • ..ie Dilml Hl

Code SOL

CREATE TABLE t _doc umen ts_xm l OF X>Dlrype

lCMilrYPll: STORE AS BINARY XML;

CREATE TABLE t _col _xml
(nom,_doc VARCHAR2(3 0)PRIMARY KEY,
col _xml XMLType)

XMLTYP& col _xml STORE AS BINARY XML;

DECLARE
var_xm l XMLTYP&;
-- par défa ut : Bina ry depui s ll9 R2

BEGIN ...

Un type XMLType peut contenir tout contenu XML à condition qu' il soit bien formé (sinon on
obtient les erreurs ORA-64464: Erreur d 'év énement XML et ORA-ll 9202: Une erreur
s'est produite l ors du traitement la fonction XML.-).

Le contenu peut être contraint selon une grammaire XML Schema avec les avantages sui­
vants.

Le SGBD s'assure de la validité du document XML avant de le stocker dans une ligne (ou
colonne) d'une table.

Comme le contenu d'une table (ou colonne) est conforme à une structure bien connue, XML
DB peut optimiser les requêtes et mises à jour.

Insertion d'un documenl
Le document XML non contraint par une grammaire qui sera stocké (compagni es . xml) est Je
suivant :

© Éditions Eyrol/es 481 1

1

1 482

Rgure 11-3 Document XML non contraint

ni"' 1 1 "'1 11'\J "'UTF-S""r
compagnie date_crea="2010.08-30'"•

comp AB 'COO'lP
pilotes

polote brev11t="PL· I"

pilote

prenom Be1101t prenom
nom Sarda nom
salaire 4000 20 salaire

polote brev11t="PL·T

pilote
pilotes

prenom Romane preiiom
nom Senech· nom
sala,re 5000 40 salaire

nomComp AJr Blagnac nomComp
compagnie

SQllv.é l

Le tableau 11-3 différentes insertions de ce même document (que vous aurez disposé
dans Je répertoire associé au répertoire logique précédemment créé) avec le constructeur qui
convient au paramètre BFILE. Notez l'utilisation des majuscules pour Je répertoire
logique dans la fonction BFILENAME (comme tout objet de schéma au niveau du dictionnaire
des données).

Utlllsdon

Table

Colonne

Variable PUSQL

T-11-3 ••lo1d'•CG1l-HI lllle lllllli

CodeSQL

I NSERT I NTO t _ documents _ xml VALUES
(XMLType

(xml.Data => BFI LENAME(' REPXML' , ' compagn i e. xml '),
csid => NLS_ C HARSET_ ID (. AL32UTF8 .)));

I NSERT I NTO t _ col _xml (n °"_doc,co l _xml) VALUES
(•compag nie.xml' ,

(XIG/rype

(xml .Da ta => BFI LENAME (' REPXML' , ' compag nie. xml') ,
csid => NLS_ CHARSET_ ID (. AL32UTF8 .))));

DECLARE
va.r_J(lfl l XMLTYPE;

BEGI N
(XMLType va.r_J(lfll : =

(xml .Data =>
csid

BFI LENAME (' REPXML' , ' compagn i e. xml') ,
=> NLS_ C HARSET_ ID (' AL32UTF8 ')));

© ÉdW/ons Eyroles

OrllCll IMl œ I

Grammaire XML Schema

Voyons à présent comment valider un contenu XML à J'aide d'une grammaire qui sera enre­
gistrée au préalable dans l'environnement XML DB Reposi-tory. Considérons une simple gram­
maire (corrpagnies. xsd) au document XML précédent (compagnies. xml).

Rgure 11-4 Exempte de grammaire XML Schems

·10· - 'VTF-8 ..

nlFomOolllJlt='CJM'hc1' 1
xs.:"ttlp lhwNf Scti«ne'

1l5 complexT'11)9 .. _.
elemerit IWe::".G string" nem•-=-comp"

•S el"""*1t name - -plo t.-S"
n ton'lllexType

'lrS et"'fflenc nel1l"'-="pltii ... • l'fllflWOco.n="500· rninOco.n=-cr .. _.
Jtt elèmèrt
n •lemenl s1r11·10·
JC.S e""'1lenl floal"

'kS 561V'!ftC•
xs am tue \itr1n!:f'

"G compt&'(î\ll)e
:WS StQUtl"IC•

...,.complOJ<Tl'Pf
.......... rt
n tletnM ftPé=-"n !tttlng"

_, S«IU(lnc•
xs acnb.lé l'jt)t ::"'rS dMe" fte'nt;:"d.a_u ..

"""""""'Î\'l)O
:d èlêl'Ml't

d,cl'lema

EnregiStremenr de la grammaire
Pour enregistrer votre grammaire en base (dans Je repository), vous devez utiliser la procédure
registerschema du paquetage DBM>_XMLSCHEMA Si la grammaire existe déjà, la procédure
deleteschema se chargera de la supprimer .

© Éditions Eyrottes

BEGIN

II!MS_XMLSCHEMA.deleteachema (
schenaurl => ' http://www.actnp.fr/conpagnies. xsd ' ,
delete_option => DBMS_XMI.SŒEMA. DELETE_Cl\SCADE_FœŒ);

483 1

1

1 484

DBMS_XMLSCHEMA.regiaterachema (

END;

/

schemaurl => ' http://www.actmp.fr/ccmpagnies.xsd ' ,

schemadoc => BFILENAME(' REPXML' , • conpagnies .xsd •),

local => 'IRUE,

gentypes => FA.ISE,

gentables => FALSE,

options => œMS_XMLSCHEMA.RIDISTER_BINl\RYXML,

csid => NLS_CHl\RSET_ID (' AL32UTF8 '));

• scherraurl spécifie une URI identifiant votre grrunmaire.

SQllv.é l

• delete_option choisit la politique de suppression (ici, les types, tables et instances
conformes au schéma sont éventuellement détruits).

• scherradoc référence le fichier grammaire (extension . xsd).

• local précise que la grammaire est locale (enregistrement dans le répertoire /sys/
scherras/usenJame/ ... de XML DB Repository). Dans le cas contraire, la grammaire
serait globale et se trouverait dans le répertoire /sys/schemas/PUB LIC/ ...

• gentypes génère des types objet.

• gentables génère une table associée.

• options précise la nature de la grrunmaire (ici, l'encodage des contenus sera identique à
celui de leur grammaire).

• csid indique le jeu de caractères (AL32UTF8 convient au type de donnée XMLType et
équivaut au standard UTF-8).

Le mode de stockage binary XML associé à une grammaire fournit une validation complète (full

ValidaliOn 1ota1e
Pour bénéficier de cette validation, il faut créer une table contenant une colonne de type
XMLType en mode bi11ary XML avec l'option XMLSO!EMAet en indiquant l'élément concerné
(ici, la racine).

© ÉdW/ons Eyroles

Utlllsa ... n

Table

Colonne

T- 11-4 T-. 1111'11111• Il nldalloe dl Sdlilll

Code SOL

CREATE TABLE t _documents_xml OF XMLTyp e
XMLTYPE STORE AS BINAR Y XML

OrllCll IMl œ I

XMLSCHSMA "http:// www.actmp.f r /compag nies.xsd "
l:LDIDIT "compag nie ";

CREATE TABLE t _ col _xml
(noll_dOC VARCHAR2(30) PRIMARY KEY, col _xml XMLTypê)

XMLTYPE col _xml STORE AS BINARY XML
XMLSCJIDIA "http:// www .actmp.f r /compagn ies .xsd "

l:LDIDIT "compag nie ";

Tout contenu XML non conforme à la grammaire indiquée lors de la création de la table sera
rejeté (ORA-31000: La ressource ... n'est pas un document de schéma XDB).

Contrai nies
Bien que les grammaires XMLSchema permettent de contraindre du contenu XML considéré
individuellement, une contrainte SQL étend une restriction à plusieurs documents (table ou
colonne XMl..Type). De même, la technologie XML Schema n'est pas capable d'assurer
l'unicité d'une valeur parmi plusieurs documents ou l'existence d'une référence à l'extérieur
du document XML.

Si vous désirez bénéficier de contraintes SOL (UNIQUE, PRIMARY KEY, FOREIGN KEY ou
CHECK), il est nécessaire de définir une ou plusieurs colonnes virb.Jelles. Une colonne virtuelle
est basée sur une expression XPath (qui retourne une valeur scalaire provenant d'un élément
ou d'un attribut). Des dédencheurs peuvent être programmés pour les règles de gestion plus
complexes.

Attention, il n'est pas possible de définir une colonne virtuelle a posteriori à l'aide de l'instruc­
tion ALTER TABLE.

Par ailleurs, ces mécanismes ne sont pas disponibles pour le stockage en mode CLOB.

Le tableau 11-5 définit trois colonnes virtuelles (sur le code, le nom et la date de création de la
compagnie). Notez l'utilisation du caractère @ pour désigner un attribut et le nom de la
colonne (cloc_:xml) dans la seconde table à l'opposé de OBJECT_VALUE pour la table
XMLType.

© Éditions Eyrol/es 485 1

1

1 486

Utlllsdon

Table

Colonne

T- 11-5 Tllllles D• li lllllllllOI dl 11:116111 MC CGlomes lllnulles

CodeSQL

CREATE TAB LE t _ documents_xm l OF XMLType
XMLTYPE STORE AS BINARY XML
XMLSCHEMA "http://www.actmp.fr/compagnies.xsd "

ELEMElll' " compagnie "
Vl:l\ TOAL COLUMNS

(c_ comp AS (XMLCast(XMLQuery(' /compagnie/comp '
PASSING OBJSCT _ VALUZ RETURNING CONI'Elll')

AS VARCHAR2(6))),

SQllv.é l

c_nomcomp AS (XMLCast (XMLQuery(' /compagnie/nomcomp •
PASSING OBJSCT _ VALUZ RETURNING CONI'Elll')

AS VARCHAR2 (30))) ,
c_d.ate_ crea AS (XMLCast(XMLQuery(' /compagnie/@date _crea '

PASSING OBJSCT _ VALUZRETURNING CONI'Elll')
AS DATE)));

CREATE TAB LE t _ col _ :xml
(nom_doc VARCHAR2 (30) PRIMARY KEY' col _xml XMLType)
XMLTYPE col _xml STORE AS BINARY XML
XMLSCHEMA "http://www.actmp.fr/compagnies.xsd "

ELEMElll' " compagnie "
Vl:l\ TOAL COLUMNS

(c_ comp AS (XMLCast(XMLQuery(' /compagnie/comp '
PASSING col._xml RETURNING CONl'Elll')

AS VARCHAR2(6))),
c_ nomcomp AS (XMLCast(XMLQuery(' /compagnie/nomcomp '

PASSING col._-1. RETURNING COlll'EN T)
AS VARCHAR2 (30))) ,
c_d.ate_ crea AS (XMLCast(XMLQuery(' /compagnie/@date _crea '

PASSING col _xm l RETURNING CONTElll')
AS DATE)));

Le tableau 11-6 présente toutes les contraintes qu'il est possible de programmer sur une
colonne ou sur une table XMLType en mode bi11ary XML

Contralntos

Unicité du nom de la oompagnle

Clé primaire sur le oode oompagnle

SOL

ALTER TABLE t _ col _xml
ADD CONSTRAINT un_nomcomp_ col _bin

om:QUZ (c_nomcomp);

ALTER TABLE
ADD CONSTRAINT p k_t _documents_xm l

PIUMJU\Y DY (c_ comp);

© ÉdW/ons Eyroles

OrllCll IMl œ I

lllllelll 1H Dicln1loe Ill celllnlllles SQ. (suite)

ConlralnleS

Vérification de valeurs

Intégrité ré(érentlelle vers une table classique qui
oontlent une clé tNec un oode analogue

lnstru"'°ns SQL

ALTER TABLE t _ col _xm l

ADD CONSTllAINT ck_d.ate _cr êa
CJmcJt (c_date_c réa <

TO_DATE (' 01 / 01 /2015 ' , ' 00 / MM/ YY'i'i ')
AND c_d.ate_cr êa IS NOT NULL);

ALTER TABLE t _ col _xm l
AOD COOSTRAJ:NT fk_comp2

POll&IGN lœY (c_ comp)
RD'DZNC&S tabl e_ref (comp_ r ef) ;

Tout contenu XML non conforme aux contraintes sera rejeté. En général, c'est l'erreur ORA-
31000: La ressource ... n'es t pas un doo.unent de schéma XDBquiestretournée.

Stockage en mode obïect-relalional

Le mode objed -re/ationa/ convient pour les documents XML fortement strucb.Jrés qu' il sera
possib le de contraindre avec SOL. Vous devrez associe r une grammaire XML Schema à votre
table (ou colonne) de type XMLType pour ne pas obtenir l'e rreur ORA- 19002: URL Xl1LS­
chema absent .

Amotation de la grammaire
Il est intéressant d'annoter la grammaire pour mieux fuire correspondre le modèle de docu­
ment XML (éléments et attributs) avec les colonnes du SGBD (nom et type) :

• spécifier les tables qui stockeront le contenu XML ;

• surcharger le mappi11g entre les types XMLSchema et les types SQL ;

• nommer les colonnes qui seront générées.

par xdb (indiquant l'espace de nom imposé par Oracle http:llxmlns.oracle.com!Xcb), de
nombreux attributs permettent d'enrichir la grammaire . La figure 11-5 les principaux
attributs.

© Éditions Eyrol/es 487 1

1

1 488

SQl lv.é l

Rgure 11-5 Attrbuts d 'snnot8llon

xdb:defaul tTable Nom de la table par défaut générée automatiquement
et exploitable avec XML DB Repository.

xdb:defaultTableSchema Nom du schéma Oracle.

xdb: SQLName Nom d'une colonne donné à un élément
ou un attribut XML

xdb: SQLType Nom du type Oracle.

xdb: SQLCollType Nom du type de la collection.

xdb : storevarrayAsTable true par défaut; la collection est stockée comme un
ensemble de lignes d'une table (ordered collection table :
ocn. Si talse, la collection est sérialoM!e et stockée
dans une colonne LOB.

xdb: columnProps Précise les caractéristiques des colonnes de la table
par défaut Utile pour déclarer une clé primaire.
une clé étrangère ou une contrainte de vérification.

xdb: tableProps Indique les caractéristiques de stockage de la table
par défaut.

Par défaut, l'enregistrement de la grammaire génère une table pour chaque élément global du
XML Schema (pour empêcher cela : xdb: defaul tTable= " ").

Cette technique d'annotation peut aussi être utilisée avec le mode de stockage binary XML
mais elle permet moins de fonctionnalités.

Considérons les annotations suivantes :

• les types et colonnes sont notés en majuscules pour mieux les différencier des éléments et
attributs XML, mais aussi car c'est ainsi qu'Oracle les stocke en interne ;

• les éléments code et nom de la compagnie sont obligatoires (minOccurs= " l ") ;

• si une collection de pilotes existe, elle n'est pas vide ; notez l'utilisation de l'attribut
SQLColl Type.

L'élément de la collection est décrit par la figure J J. 7, et les types de données des éléments
inclus sont précisés ainsi que Je type de l'attribut (ici, Je numéro de brevet sur 4 caractères au
maximum).

Enfin, les tailles des colonnes sont précisées dans la grammaire (voir figure 11-8). Ici, Je code
de la compagnie ne dépasse pas 6 caractères, son nom 40 caractères, les prénom et nom seront
limités à 30 caractères et Je salaire sera codé en NUMBER (9, 2).

© ÉdW/ons Eyroles

© Éditions Eyrol/es

OrllCll IMl œ I

Figure 11·6 Exemple de grammaire annotée

·10- • .,,.r
.ChlmeY1"'0t1 : ' l ll"-..C •''111p-wlCtgl200tl)<"'-Scheml' i;;;:; ,dl): '!!:p-SCf-C°""'<t> :J

""',.._r,,,. ..,,. . -,_..r,,,.· ..., SOL Typ•='u:M'A.;NE_ l'!l'E"

l:Sd elemerC neme:"p!Qt•1• xdb SOl...N8me.=."Pt.OTES"
,.l(J-n1WTit » nomCOOll"l'IPt"'ll01T'CorrllTlllt"rnnOcC11\'T >llDSCl.l'llmt• r«:f11_eot.f>"

""'Glb"8 ... ad sa.- •'OATE_C>lEA" d> SOL T\'l»>'t>ATE"

... (-Î'IP'I "Pd-.to\TlPO"..., SOL r,,,. •"PLOTES_ l'!l'E.

lCSd "8merC n.-n•: "'plott" mnOcan : "1"
>db SOLNaTio:'PLOTE" dl SOLCofT,,,..'PLOTE_ VPY _TYPE" ...,_,

.SdCOl'l'Pll->TlPO

wir la sutte plus loon ••

wsdsc'*""8

Figure 11·7 Suite de la grammaire amotée

d-•
11SC1 tlitmlt'lfWl'lilll'-="netn'" SOl.>W!'IF"N:1M' xdt>SCl. 1)1Pts"VAA<'HAR2'
-.sel elemlirl """": "ula1re· rnin()çcùf1i:"O" 1fltj SCt..NlrN="SAL.Af'E9 d SOL ---· 111<1 d sa. î)'t)t s-VA?CHAAT

.ddmlllttiglh'tlllW• '1'
llSdnWid..engltlwlue..1•4

:.sdtifl1PltÎYP9
id

'4-T'IOt

- la 5'1te plis IOllL.

Figure 1HJ SuWe et fin de la grammaire mnôlée

xsd slmpleType name•"compType"
xsd resulcbon bese="xsd sulng"

xsd 1111nLeng1twa1ue="1"'
xsd maxLength va1ue="6"'

'XSd resiricoon
IXSd simple Type
xsd simple Type name•"nomCompType"

xsd resuicuon bese="xsd suing"
xsd 1111nlength value="1"1
xsd maxl ength value•"40"1

'XSd resirlcoon
-Jxsd simple Type

•xsd simple Type name: "nomType">
xsd reslrlcbon base•"xsd slring"

xsd m1nl englh velue•" 1 "I
xsd maxLeng1h value•"30"

IXSd restncboo
IXsd simple Type
xsd simple Type name•"sa1eireType"

xsd res1ricoon base="xsd d9(1mel"
xsd 101a1Digi1s velue="7"1
xsd fracbonD1g1ts value•"2"'

IXSd reslncooo
IXsd simple Type

489 1

1

1 490

SQllv.é l

Vous devrez enregistrer cette grammaire avec un nouvel URI (schemaurl) et sans utiliser Je
paramètre options qui pourrait désigner une grammaire bi11ary XML. Notez ici l'utilisation
du paramètre gentype s pour générer les types objet qui sont nommés dans la grammaire.

BEl3IN

DBMS_ XMI.SŒEMA.DELETESCHEMA (

schemaurl => ' h ttp: //www.actmp.fr / ccmpagn iesarmote.xsd ',

dele t e_op t ioo =:> llllMS_XMLSCHEMA. DELEI'E_CASCl\DE_FORCE);

DBMS_ XMI.SŒEMA.REGISTERSCHEMA (

END;

/

schanaurl => 'h ttp: //Wi11W.actmp.fr/ ccmpagn iesarmote.xsd •,
schanadoc => BFILENAME(' REPXML', ' corrpagniesannote.xsd '),

l ocal => '!RUE,
gentypea => '!RUE ,

gentables => FALSE,
csi d => NLS_CHARSET_ID (' l\L32UTF8'));

En général, chaque collection (élément XML disposant d'un attribut maxOccurs > 1} est sériali·
sée et donc mal adaptée pour les modifications de contenu. La clause VARRAY (voir plus loin}
définira une table de stockage pour chaque collection afin de faciliter les mises à jour.

Création d'une table <ou colonne) obiect-relaliOnal
Le tableau 11-7 les deux possibilités pour stocker du contenu XML en mode object ­
relatio11al.

Utlllsa ... n

Table

Colonne

T- 11-1 Mudes dl SloellDI Glileel-nla1lciall

CodeSQl

C REATE TABLE t _docume nts_xm l OF XML.Type
XMLTYPE STORE AS OBJSC'l' RZLATIONAL
XMLSCHEMA •http://www.actmp.fr/compag niesannote.xsd •

ELEMElll' • compag ni e " ;

C REATE TABLE t _ col _xm l
(nô!l_dOC VARCHAR2 (30) PRIMARY KEY. col _xml XMLType)

XMLTYPE col _xm l STORE AS OBJSCT RILATIONAL
XMLSCHEMA "http://www.actmp.fr/compag ni esannote.xsd "

ELEMElll' • compag ni e " ;

© ÉdW/ons Eyroles

OrllCll IMl œ I

Valdation partielle
Par défaut, Je mode de stockage object-relalio11a1 n'offre qu'une validation partielle même si
la grammaire associée est enrichie.

Dans notre exemple, il sera possible d'insérer un document dans la table (ou la colonne) conte­
nant une compagnie sans pilote, sans nom ou code. Par ailleurs, J' ordre des éléments dans la
séquence ne sera pas respecté (le prénom peut se trouver après Je salaire et Je nom précéder Je
prénom). De plus, le salaire n'est même pas obligatoire, ce qui est en opposition avec la gram­
maire enregistrée ! En revanche, vous ne pourrez pas insérer du contenu XML contenant des
éléments ou attributs supplémentaires (qui ne sont pas prévus dans la grammaire) ou dont
l'élément racine n'est pas celui de la grammaire (ici, compagnie) .

Les erreur s retournées seront les mêmes que pour la validation totale du mode bi11ary XML, à
savoir ORA-31000 : La ressource ... n' es t pas un document de schéma XDB. Pour
les incohérences dues aux types de données (taille d'une chaîne, précision d'un numérique ou
format de date), les messages peuvent être plus clairs (voir Je tableau 11-8) .

Fragment XUL concerné

< ?xml vers i on="l .0 " e ncoding="UTF-8 "?> ORA-018 47: l e jour d u mois doit être
<compag nie d.ate_ c rea= "2010-08-35" > compris entre 1 et l é derni er jour du

<comp> AB</ comp> ... moi s.

< ?xml vers i on="l .0 " e ncoding="UTF-8 "?> ORA-3095 1 : L'é l ément o u l 'attr ibut
<compa gni e date_ c r ea= "2010-08-30 "> (Xpath ABC-FTRG) dépasse l a l ong ue ur

<comp> ABC- PTRO< /comp> maximal e.

Valdation IOlale

Pour que la validation soit totale comme en mode binary XML (full complianf), vous devrez
ajouter à une table (ou colonne} XMLType en question soit une contrainte CHECK avec la fonc­
tion XMLISVALID, soit un déclencheur BEFORE INSERT.

Assurez-vous que la table ne contienne pas des enregistrements ne respectant pas la gram­
maire sinon Oracle retournera l'erreur ORA-022 93 : i.nposs i b l e de valider (. ..) -
v i olati on d'un e contr aint e de contrôle

Le tableau 11-9 décrit la mise en place de la validation totale pour une table ou une colonne
XMLType avec un mode de stockage objet.

© Éditions Eyrol/es 491 1

1

1 492

Aunhuulable

ALTER TABLE t _ tdoc umen ts_xm l
ADD CONSTRAINI' va l ide_ comp_ t
CHECK (lCMLieValid (OBJE CT_ VAL UE)

SQllv.é l

ALTER TABLE t _ col _xml
ADD CONSTRAINI' valide_ comp_ col

1); CHECK (XMLI•Valid (col _xm l) = 1);

Une fois œtte contrainte activée, seuls les documents confonnes à la grammaire pourront être
stockés . L'erreur retournée, Je cas échéant, sera invariablement ORA-02290 : v i o lati on de
ccntr aint es (...) de vér ifi cati on.

Si vous optez pour un déclencheur BEFORE INSERT, vous devrez utiliser la fonction
SO!EMAVALIDATE qui retournera une exception en cas de contenu non conforme .

Aunhuulable Au ni- colome

CREATE TRIGGER trig _valide_comp_ t
B EFORE I N SERT OR UPDATE ON t _doc umen ts_

xml
FOR EACH ROW

BEGI N
I F (:NEW.OBJECT _ VALUE I S NOT NULL) TH EN

:NEW.OBJECT _ VALUE. Sch--.Validate () ;
END I F ;

END;

/

CREATE TRIGGER trig_ va l ide_ comp_ col
BEFORE I NS ERT OR UPDATE ON t _ col _xm l
FOR EACH ROW

BEGI N
I F (:NEW.co l _xml I S NOT NULL) THEN

:NEW.co l _xml . Sche...:Validate () ;
END I F ;

END;

/

En général, Je déclencheur aura J'avantage de renseigner davantage les erreur s comme J' illus­
tre Je code suivant dans lequel se trouve un problème d'ordonnancement entre les éléments
composant la balise pil o t e.

llillleaU 11-11 IDHllloe dl CGl .. l IOI CGI.,._

Fragment XUL concerné l
<?xml vers i on="l. 0" e ncoding="UTF-8 "?> ORA-311 54 : docume nt XML non valide
<compag nie d.ate_ cr ea= "2010 -08-3 O" >

<comp>AB</ comp>
<pilotes>

<pi l ote brevet ="PL- 1" >
<noa>SArd.a</ naa>
<sa l a i re> 4000.20</sa l a i re>
<pr enom>Benoi t</p r enom>

</pilote> ...

ORA-19202: une er r eur s'est p r odui te
l o r s d u tra i temen t de l a fo nct i o n XML
(LSX-002 13: seulemen t 0 occ urrences de
l 'é l ément "p r en om" ; minimum: 1) ...
ORA-04088: erre ur l or s de l 'exéc ution
d u déc l en cheu r ' OXM . TRIG_ VALIDE_COMP_T '

© ÉdW/ons Eyroles

OrllCll IMl œ I

Contrai nies

Deux mécanismes pewent être mis en œwre pour définir une contrainte SOL. La pseudo­
colonne XMLDATA qui indique un chemin dans une arborescence permettra de contraindre un
élément (ou un attribut). Pour disposer des contraintes sur des éléments (ou attributs) présents
dans une collection, vous devrez utiliser la table de stockage définie dans la directive VARRAY
(voir plus loin).

Éléments et attributs hors collection

Le tableau 11-12 présente toutes les contraintes qu'il est possible de programmer sur une
colonne ou sur une table XMLType en mode objet.

ConlralnloS

Unicité du nom de la compagnie

Clé primaire sur le code compagnie

Vérl<lcatlon de valeurs

Intégrité ré!érentlelle vers une table classique
qui contient une clé a110c un code analogue

lnstrucilons SQL

ALTER TABLE t _documents_xm l
AOD CONSTRAINT Wl_rlOmcomp _ bin

om:ooz (JCMLDATA. "NOM,_COMP");

ALTER TABLE t _ col _xm l
AOD CONSTRAJ:N'l' un_nomcomp _ col _ bin

ONXQOZ(col._xml .lCMLDATA. "NOM,_COMP");

ALTER TABLE t _documents_xml
AOD CONSTRAINT pk_t _ docwnents _ xml

PIUMlU\Y DY (JCMLDATA. " COMP");

ALTER TABLE t _documents_xml
AOD CONSTRAINT ck_d.ate_ crea

CJmCIC (XMLDATA. "DATE_ CREA" <

TO_ DATE(' 01/01/2015 ' , ' 00/ MM/ YYYY')
AND lCMLDATA. "DATE_ CREA" I S NOT NULL);

ALTER TABLE t _ col _xm l
AOD CONSTRAINT c k_col _date_ c rea

CJmCIC (col._xal.XMLDAT A . "DATE _CREA" <
TO_DATE (' 01/01/201.5 ' , ' 00 / MM/ YY'i'i ')

AND col._xml. JCMLDATA. "DATE_ C REA"
I S NOT NULL) ;

ALTER TABLE t _documents_xm l
AOD CONSTRAJ:N'l' fk_comp l

POll&IGN DY (JCMLDATA. " COMP")
RD'DZNC&S (comp_ r ef) ;

ALTER TABLE t _ col _xml.
AOD CONSTRAJ:N'l' fk_comp2

POll&IGN DY (col._ Xllll.. XllLDATA . "COMP")

RD'DZNC&S (comp_ r ef) ;

© Éditions Eyrol/es 493 1

1

1 494

SQllv.é l

Tout contenu XML non conforme aux contraintes sera rejeté avec des messages d'erreur plus
parlants que ceux du mode de stockage bi11ary XML (qui retourne le plus souvent ORA-

31000 :). Le tableau 11-13 présente les messages d'erreur potentiels (ici, oxmest le nom de
l'utilisateur).

ConlralnleS

Unicité du nom de la compagnie

Clé primaire sur le code compagnie

Vérification de valeurs

Intégrité référentielle

Eneur Oracle

ORA- 00001: vi o l at i on de cont r a inte
uniq ue (OXM. UN_)IOMCOMP_E! IN)

ORA- 00001: vi o l at i on de cont r a inte
uniq ue (OXM. PK_T_J)OCUMENTS..)CML)

ORA- 02290: vi o l at i on de cont r a intes
(OXM .CK_COL_l)A TE_CREA) de vérif i ca­
t i on
ORA- 02291: vi o l at i on de cont r a inte
d 'in tégri té (OXM. FK_COMP2) - c l é
pare nt in t r ouvabl e

Éléments et attributs dans un e collection

Pour manipuler efficacement des éléments (ou attributs) se trouvant dans uoe collection XML,
vous devrez créer une table associée (appelée varray). Cette table imbriquée va stocker l'union
de toutes les collections des contenus XML. Pour contrôler le nom des types générés pour
cette collection, vous pouvez annoter la grammaire (voir l'attribut xdb:SQLC o llType dans
l'exemple précédent).

Le nom de la table de stockage est défini dans la clause STORE AS de la directive VARRAY. En
interne et au niveau de chaque contenu XML, la colonne NESTED_TABLE _ ID est l'identifiant de
la table de stockage. Avec le nom de la table stockage, il est possible de définir des contraintes
SOL sur des éléments (ou attributs) de la collection.

Le tableau 11-14 présente la création de tables imbriquées visant à manipuler des collections
d'éléments XML. La syntaxe est présentée pour une table XMLType et une colonne XMCType
de mode objet. Notez que chaque table imbriquée est nommée pour pouvoir définir par la suite
des contraintes.

© ÉdW/ons Eyroles

Utlllsdon

Table

Colonne

T- 11-14 StoellDI dl cellcdCIDs llU Il mœ111111ect·nll1IHll

CodeSQl

C REATE TABLE t _documents_xm l OF XMLType

XMLTYPE STORE AS OBJECT RELATIONAL

OrllCll IMl œ I

XMLSCHEMA "http://www.actmp.f r /compag niesa.nn ote.xsd "
ELEMElll' • compag ni e "

VlUUIAY "XMLDATA" . "PI LOTES " . "PILOTE "

STOll& AS TAJILI
((PRIMARY KEY (NES TED_TABLE_ ID,

SYS..)IC _ARRAY_ INDEX$))) ;

C REATE TABLE t _ col _xm l
(nôa_dOC VARCHAR2 (30) PRIMARY KEY, col _xml XMLType)

XMLTYPE col _xm l STORE AS OBJECT RELATIONAL
XMLSCHEMA "http://www.actmp.fr/compagniesa.nnote.xsd "

ELEMElll' • compag ni e "

VlUU\AY co l _xml . "XMLDATA" . " PI LOTES " . " PI LOTE "
STOR& AS TABLI pi l ote_ col _ tabl e
((PRIMARY KEY (NES TED_T ABLE_ ID,

SYS..)IC_ARRAY_ I NDEX$)));

Il existe d'aut res moyens de définir des collections par annotat ion (xdb: store VarrayAsTa ­
bles et xdb: maintainOr der) ou par indicateu r lors de l'enreg istremellt de la gramma ire (par
exemp le, REGISTER_NT_AS_ IOT dans le paramèt re options). Cependant , les valeurs par
défaut de ces paramèt res ollt déjà évolué avec les versions d'Oracle.

Contralntos

T-11-15 Cr6ato1 dl cœb'llllles SCll IW • CGllclH

CodeSQl

Unicité du code d'un brevet pour
chaque compagnie

ALTER TABLE pi l ote_ tabl e
ADD CONSTllAINT un_pi l ote_tabl e_doc _brevet

ONXQUI (NISTID _ TABLl_ ID, " BREVET");

ALTER TABLE pi l ote_col _tabl e
ADD CONSTllAINT un_pi l co l _ t8b l e_doc_brevet

ONXQOl (NISTID _ TABLl _ ID, " BREVET ");

Unicité du code d'un brevet pour toutes ALTER TABLE pilote _ tabl e
les compagnies (tous les contenus XML ADD CONSTllAINT un_pilot e_ t8b l e_docs _ brevet
seront concernés) om:oo1 (brevet);

ALTER TABLE pi l ote_col _tabl e
ADD CONSTllAINT un_pi l col _tabl e_docs_brevet

ONXQUI (brevet);

© Éditions Eyrol/es 495 1

1 SQllv.é l

ConlralnloS

11111111111-15 Cràlloe d1 CGlllnll .. SQl mr •• CGlecdoe (suite)

Code SOL

Vérification de valeurs (Ici, sur le salaire ALTER TABLE pilote _ col _ tabl e
et le prénom). Même syntaxe pour la AOD CONSTllAINT ck_pil col _ tab l e _ salaire
table XMLType CHZCI<: ((sa lair e I S NULL OR salaire > 600)

Intégrité ré(érentlelle

AND
prenom = UPPER (prenom)) ;

Pas possib l e : ORA-30730: contrai nte référen­
tie lle interdite sur une co l onne de tabl e
imbriquée

Tout contenu XML non conforme à oes nouvelles contraintes sera rejeté avec des messages
d'erreur correspondants aux exceptions. Le tableau 11-16 présente les messages d'erreur
potentiels.

T- 11-16 Virllll:alloe des CGllllll!es SQl mr •• CGlecdoe

ConlralnloS

Unicité du oode d'un brevet pour chaque
compagnie

Unicité du oode d'un brevet pour toutes les
compagnies

Vérification de valeurs

ORA-00001: viol ation de conttra inte W'lique
(O XM .UN_ PI LCOL_TABLE_DOC_BREVET)

ORA-0000 1 : viol ation de conttra inte W'lique
(O XM .UN_ PI LCOL_TABLE_DOCS_BREVET)

ORA-02290: viol ation de con trai n tes
(O XM .CK_ PI LCOL_TABLE_ SALAIRE) de

vérification

Extractions

1 496

Oracle fournit différentes fonctions SQL pour XML qui manipulent ou retournent des frag­
ments XML. Les paramètres de ces fonctions ne sont pas définis dans les normes SQL ANSJ/
ISO/IEC mais sont explicités dans des spécifications du W3C (notamment celles concernant
XPa!h, XQuery et les 11amespaces).

© ÉdW/ons Eyroles

1 Cllldln 1° 11

APPEND011! OXM!
DElfTEXM!

mw

Figure 11-9 Fonctions SOL pour XML

SYS OBURJGEN l!MLAl6i
SYS XMI AGG lafilAST
SYS XMI GEN XMI COA!A

XML.PATCH
XMIJ?.I
)(MIOUERY

OrllCll IMl œ I

EX!SJSNQQE
EXTRAO ()(Mbl
fXTRACTYAl VE
INSfRTQj!! QXML

!NSfRTQj!lDXMLAfIER
INSfRTQj!l.DXMLBEfOR.E
INSERTXMLAEIER
!NSERJ)(MI !!EfOBE
eAitl

UPDAIEXMI XMLCOLAUVAL
XMLCOMMENT
XM(CONCAJ

lU:ll.DJff
)(Ml.ElfMENT

)(Ml EXISTS

J<MlfOREST
)(MUSVAUD

XMLeAB.Sf

XMLB.QQI
XML.SfQUENŒ
)(Ml Si;BIAI l/f

XMl.IAlll.f
XHLTRANSFORM

Sans entrer dans les détails de tous les paramètres de chaque fonction, vous aurez besoin de
connaître XMLQUERY, XMLTABLE, XMLEXIST S , et XMLCAST pour interroger efficacement vos
contenus XML. Les requêtes utilisant ces fonctions devront s'organiser de la manière
suivante.

Figure 11-10 Architecture générale d'une Orsc/e SOUXML

SELECT ._- Chemin Xpath ou c/auu FLOWR
XMLCAST CDILÇUERY C •eçre.t.11on_ xouery •

PAS.SlNG BY VALUE expres.tlon (AS ident:l.fier l
UTUP..NINOCOMTENT (HULL ON tKPTY))

A! type_SQI.} AS •l1a1 (, -)
FROM

WH&RB XMLE.x:IS'l'S (•expre.tdon __ xQttery • &lJou jointure avec

PASSING BY VALVE expre••ion [A!I Jdent.i.fie.r] (#' - 1) ;

XXL'IABIZ

C cl •use, J
Chaque /lgn. d'une slquence XQuety •expression _ XOUl!ry•

IPASSI NG BY VALUE expres.ticn (AS .identifier) (,_ J 1

(RETURNINIJ SEQUE.Net 8Y Mt)

(COLtnOfS XHL_t•bJe_coJ uan [, XHL_t•.t>l•_coJ tnnJ ... J)

Ces fonctions respectent les normes SQUXML :2011 et permettent :

• de générer du contenu XML à partir de tables/vues conventionnelles . ;

• d'extraire des lignes (relatio11al data) à partir de contenu XML.

© Éditions Eyrottes 497 1

1

'

1 498

SQllv.é l

Pour éviter que les résultats de vos requêtes soient tronqués dans la console SQL*Plus (SQL
Developer est beaucoup moins stable pour cela), positionnez la variable d'environnement
LCNG à un chiffre suffisamment important (par exemple, SET LONG 10000).

Les fonctions EXTRACT et EXTRACTVALUE sont déclarées obsolètes depuis la version 11gR2.

La fonction XMLQuerv
La fonction XMLQuery retourne une séquence d'instances XMLType (ou l'ULL) et sa syntaxe
simplifiée est la suivante :

1

n;:;;:sion_XQuery
(PASSING (BY VAUJE) expression (AS identifiant) ...)
RE'IURNING O:JNI'ENT (NULL CN EMP'IY)))

• PASSING désigne une ou plusieurs expressions (colonnes, bi11d variable ou PL/SQL).
Chacune de ces expressions doit retourner un type XMI.:rype ou un type SQL (qui ne doit
être ni objet ni collection). Le terme OBJECT_VAllJE (dénoté dans certaines versions SYS_

NC_RCM:NF0$) permet d'adresser une table XMLType.

• NlJLL ON EMPTY (par défuut) retourne NlJLL si aucun résultat ne peut être extrait.

Le tableau 11-17 présente quelques extractions avec la fonction XMLQuery ; trois documents
XML ont été insérés dans les tables présentées précédemment (t_docurrents_:xml et t_col_
xml.), et peu importe Je mode de stockage, qu'il soit bi11ary XML ou objet et qu'une grammaire
XMLSchema soit associée ou pas. En remplaçant col_xml par OBJECT_VALUE dans la clause
PASSING BY VALUE, vous obtiendrez l'expression XQuery pour la table XMI.:rype
t_documents_:xml.

© ÉdW/ons Eyroles

OrllCll IMl œ I

T- 11-11 llllsa1ICle dl li lllKllcie IM.QUllY

CodeSQl

- - un é l ément
SELECT nom,_doc,

XMLQuery(' /compag ni e/comp '
PASSING BY VALUE col _xml
RETURNING CONTENI')

AS • /compagn i e/comp •
FROM t _col _xml;

-- Plusi eurs é l éments
SELECT XMLQuery(' /compagnie/p il otes '

PASSING BY VALUE col _xml
RETURNING CONTENI')

AS " /compagn i e/pi l otes •
FROM t _col _xml
WHERE nôa_doc = •compagn i e3.xm l ' ;

- - un attrib ut
SELECT nom,_doc,

XMLQuery(' /compagn i e/@date _cr ea '
PASSING BY VALUE col _xml
RETURNING CONI'Eln')

AS "/compagnie/@date _cr ea •
FROM t _col _xml;

-- prédicat XPat h
SELECT nôa_ doc,

XMLQuery (' /compag nie/pi l otes/p il ote
[sa l aire<5000J/nom '

PASSING BY VALUE col _Janl
RETURNING CONI'ENT)

AS "plus de 5000 "
FROM t _col _xml;

La fonction XMl.Casl

Réslftall

NOM.. DOC /compag nie/comp

compagnie.xm l <comp> AB</comp>
compag nie2.xm l <comp>AC</comp>
compagniel.xm l <comp>TA</comp>

<pi l otes>
<pi l ote brevet= "PL-25 " >

<pr en om>Jean- Phi </pr enom
<nom>Ferrage</ n om>
<sa l aire>SOOO</sa l aire>

</pi l ote>
<pilote brevet ="PL-62 " >

<pr en om>Joel </p r enom>
<n om>Hartman</nom>
<sa l aire>SOOO</sa l aire>

</pi l ote>
</pilotes>

NOM_DOC /compag nie/@date _c r ea

compagnie.xm l 201 0-08-30
compag nie2.xm l 201 2-09-0 1
compagnie3.xm l 201 3-04-0 1

NOM..DOC plus de 5000

compagnie.xm l <n om>SArda</ n om>
compag nie2.xm l <nom>Giaccone</ nom>

<nom>Cal ac</ nom>
compag nie3.xm l

La fonction XMLCast transforme une expression en un type SQL (NJMBER, VARCHAR2, CHAR,
CLOB, BLOB, REF XMLTYPE ou Ill\TE). Il n'est pas possible de transformer un type XML en un
autre type XML, ou un type SQL en un type XML. La syntaxe simplifiée de cette fonction est
la suivante :

1
SELECT XllLCaat (XMLÇUERY(...) AS type_SQL)

FRCM ...

© Éditions Eyrol/es 499 1

1

1 500

SQllv.é l

Le tableau 11-18 présente quelques extractions avec la fonction XMLCast. En remplaçant
col_:xml par OBJECI'_VALUE dans la clause PASSING, vous obtiendre z l'expression XQuery
pour la table XMI.:rype t_documents_ :xml.

T_, 11-18 llllsalloe dl Il ICIKlloe IMl.Cast

CodeSQL

-- un é l o!ment
SELEC T nom._ doc,

XMLCAST (

XMLQUERY(' /compagnie/ nomcomp'
PASSI NG col _xml RETURNING CONTENT)

AS VlU\CJl.IU\2 (30)) AS nOll_COmp
FROM t _col _xml ;

-- un attri but
SELEC T nom._ doc,

XMLCAST (

XMLQUERY(' /compag nie/@date _crea '
PASSI NG col _xml RETURNING CONTENT)

AS DATI:) AS date_crea
FROM t _col _xml ;

-- prédicat XPat h
SELEC T nom._ doc,

XMLCAST (

XMLQUERY(' /compagnie/p ilotes/pi l ote
[@brevet ="PL-25 "] / nom'

PASSI NG col _xml RETURNING CONTENT)

AS VlU\CJl.IU\2 (20)) AS nom
FROM t _col _xml ;

-- plusieurs i tems retournés
SELEC T XMLCAST (XMLQUERY (

' /compagn i e/pilotes/p ilote/ nom'
PASSI NG col _xml RETURNING CONTENT)

AS VARCHAR2(80)) AS resu l tat
FROM t _col _xml
WHERE nom,_doc = •compag nie2.xml ' ;

-- é l ément non termi nal
SELEC T XMLCAST (

Résullats

NOMJ)OC

compagnie.xm l
compagnie2.xm l
compagnie3 .xml

NOMJ)OC

compagnie.xm l
compagnie2 .xml
compagnie3.xm l

NOMJ)OC

compagnie.xm l
compagnie2.xm l
compagnie3.xm l

RESULTAT

Giacco nêCa l ac

RESULTAT

NOM,_COMP

Air Bl agnac
Air ca stanet
Toulouse Air

DATE_CREA

30/08/ 10
01/09/ 12
01/04/ 13

NOM

Ferrage

XMLQUERY (' /compagnie/p ilotes ' -- -------------------- ---------- -
PASSING col _JOnl RETURNING CONI'Em') AimêGi acco ne 4200Pierr eca l ac3000

AS VARCHAR2(80)) AS resu l tat
FROM t _col _xml
WHERE nom,_doc = •compag nie2.xml ' ;

Cette fonction convient pour l'extraction de valeurs scalaires (éléments terminaux ou attributs).
Si l'élément est complexe, le résultat est la sérialisation de tout son contenu. Si plusieurs items
sont retournés, vous devrez utiliser conjointement la fonction XMLTABLE.

© ÉdW/ons Eyroles

OrllCll IMl œ I

La fonction X'11Jable
La fonction XML.Table transforme une expression en un type SQL (NUMBER, VARCHAR2, CHAR,
CLOB,BLOBou Ill\TE). Il n'est pas possible de transformer un type XML en un autre type XML
ou un type SQL en un type XML. La syntaxe simplifiée de cette fonction est la suivante :

SELECT aliasl. col) alias 2 . col) alias 2 .COLUMN_ VAWE .•.

FRCM nom_tabl e aliasl , XllLTABLB

(expr e ssion _ XQuery
(Pl\SS I N3 expr e ssion (AS ident ifian t)
(COLUMNS c olumn (PA'IH s t ring) (, ...)) alias 2

• express i on indique Je nom colonne XMI.:rype (ou OBJECT_VALUE pour une table
XMLType).

• COLUMN_VALUE devra être utilisé si aucune colonne n'est décrite dans la directive
COLUMNS.

Le tableau 11-19 présente quelques extractions avec la fonction XML.Table. En remplaçant
col_:xml par OBJECT_VALUE dans la clause PASSING, vous obtiendrez: l'expression XQuery
pour la table XMLType t_doa.unent s_:xml .

CodeSQl Réslftall

-- Plu s i eurs é l éments non terminaux

SELECT a2. COLUMN_VALUZ AS pil ote
FROM t _col _J(lfll al,

XMLTABLZ(
' /compag ni e/pil otes/ pil ote '
PASSING a l .col _ xml) a2

WHERE a l . nom,_ doc = ' compa gni e2. xml ' ;

-- Plu s i eurs é l éments term inaux

SELECT a l . n om_doc ,
a2 .COLUMN_VALU'& AS n om

FROM t _ col _JOnl a l,
XMLTABLZ(

' /compag nie/pil otes/ pil ote/ nom'
PASSING a l .col _xml) a2 ;

© Éditions Eyrol/es

PILOTE

<pil ote brevet ="PL- 9" >
<prenom>Aime</pre nom>
<n om>Gi acco ne</ nom>
<sa l a ire>4200</sa lair e>

</pil ote>
<pil ote brevet ="PL-6 " >

<prenom>Pier r e</prenom>
<n om>Cal ac</ nom>
<sa l a ire>3000 </sa lair e>

</pil ote>

NOM_. DOC NOM

compagni e.:xml <nom>SArda</ nom>
compagnie.:xml <nom>Ben ech</ nom>
compagni e2. :xml <nom>Gi acco ne</ nom>
compagnie2.:xml <nom>Cal ac</ nom>
compagni e3. :xml <nom>Gaz agnes</ nom>
compagnie3.:xml <nom>Fer r age</ nom>
compagni e3 . :xml <nom>Hartma.n</ nom>

501 1

1 SQllv.é l

T_, 11-19 Ulllsalloe 11111 .,llClloe Hl'Dlllll (suite)

Code SOL

-- I dem avec COLUMNS
SELECT al . nom,_doc,a2. brevet p , a2. nomp
FROM t _ col _xm l a l ,

XMLTABLB(
' /compag n ie/pil otes/p ilote '
PASSING a1 .col _xml
COLUMNS nomp VARCHAR2(20) PATH ' nom ' ,

brevetp VARCHAR2(10)
PATH ' @brevet ') a2

ORIDER BY a2. nomp;

-- Plus i e urs XMLTABLE avêê « joint ure »

SELECT al . nom,_ doc, a2. nome,
SUM(TO_ NUMBER(al.sa l)) AS sa l aires

FROM t _ col _ :xml a l ,
XMLTABLB(' /compagn i e ' PASS I NG a l. col _xml

COLUMNS n ome VARCHAR2 (20) PATH
' nomcomp' ,

pi l s XMLType PATH ' p ilotes/pi l ote ') a2,
XMLTABLB(' p ilote ' PASSING a2.p il s

COLUMNS sal NUMBER PATH ' sal aire ') a3
GROUP BY al . nom,_doc, a2 . nome ;

La fonction KMLExists

Résultats

NOM,..DOC

compagnie. :xml
compagn i e2 .xml
compagn i el .xml
compag nie3 .xml
compagn i e2 .xml
compag nie3 .xml
compagn i e. xml

NOM,..DOC

BREVETP NOMP

PL-2 Ben ech
PL-6 ca l ac
PL-25 Fer r age
PL-1 5 Gazagnes
PL-9 Gi acco ne
PL-62 Hartman
PL-1 sarda

NOMC SALAIRE S

compagn i e3.xm l Toulo use Air 17200
compag nie.xm l Air Bl agn ac 9000.6
compagn i e2.xm l Air Cast anet 7200

La fonction XMLExis t s teste une expression XQuery et retourne TRUE si un fragment est non
vide (sinon FALSE). La syntaxe simplifiée de cette fonction est la suivante :

1
DILExists (expr essian_XQuery

(PASSING expr ession (AS i dent i f i ant)))

'
!.:utilisation de la fonction XMLExists est limitée au IVllERE et au CASE.

Par ailleurs, la fonction antérieure existsN ode est obsolète depuis la version 11gR2,

1 502

Le tableau 11-20 présente quelques extractions avec la fonction XMLExis t:s. En rempla çant
col_:xml par OBJECI'_VALUE dans la clause PASSING, vous obtiendrez l'expression XQuery
pour la table XMI.:rype t_document s_:xml.

Vous découvrirez qu'il est souvent nécessaire d'utiliser conjointement la fonction XML.Table.
En effet, bien que les expressions XQuery qui vont se trouver dans le SELECT et dans le
WllERE utilisent le même paramètre (dans PASSING), elles restent toutefois décorrélées.

© ÉdW/ons Eyroles

T- 11-20 llllsa1ICle dl li lllKllcie IMlllâts

CodeSQl

-- Test sur une date

SELECT XMLCAST (
XMLQUERY(' /compagnie/nomeomp •

PASSI NG col _xml RETURNI NG CONI'ENI')

AS VARCHAR2 (30)) AS nOll_Comp
FROM t _ col _xml
WHERE XHLl:xISTS (' /compagnie

[@date _ crea=xs :date(" 2013-04-0 1") J '
PASSI NG col _xml);

Prédicats XPAth à 2 endroits

SELECT XMLCAST (
XMLQUERY(' /compagnie

[nomComp="Air castanet " J/comp '
PASSI NG col _ xml RETURNI NG CONI'ENT)
AS VARCHAR2 (6)) AS comp

FROM t _ col _xml
WHERE XHLS XISTS (' /compagnie

[@date_ crea=xs:date("2012-09-0 1") J '
PASSI NG col _xm l);

-- Ne convient pas (décorré l ation)
SELECT XMLCAST (

NOM_.COMP

Toul o use Air

COMP

AC

RESULTAT

OrllCll IMl œ I

XMLQUERY(
' /compagnie/pilotes/pilote/nom '
PASSI NG col _xml RETURNI NG CONI'ENI')

AS VARCHAR2 (30)) AS resu l tat

GazagnesFerrage Hartman

FROM t _ col _xml
WHERE XHLl:xISTS (

' /compagnie/pi l otes/pi l ote
[@brevet= " PL-25 "] ' PASSI NG col _xml)

AND XMLIXISTS (

' /compagnie/pi l otes/pi l ote/sa l aire
[number () = 5000] ' PASSI NG col _ xml) ;

SELECT a3 .nomp
FROM t _ col _J(lfll a l , NOMP

XMLTABLE(' /compagnie ' PASSI NG al.co l _xml ---------------
COLUMNS nome VARCHAR2(20) PATH •nomcomp' , Ferrage

pi l s XMLType PATH ' pi l otes/pi l ote ')
a2,

XMLTABLE(' pi l ote ' PASSI NG a2.pi l s
COLUMNS brev VARCHAR2 (6) PATH ' @brevet ' ,

nomp VARCHAR2(20) PATH •nom ' '
sa l NUMBER PATH ' sa l aire ') a3

WHERE a3.sa l 5000
AND a3 .brev = ' PL-25 ' ;

© Éditions Eyrol/es 503 1

1 SQllv.é l

CodeSQL

La fonction iSSchemaValid
La méthode isScherravalid est associée à un type XMLType et permet de statuer sur la vali­
dation d'un document par rapport à une grammaire enregistrée. La syntaxe de cette fonction
est la suivante :

1
FUNcrION iaSchemaValid (schurl IN VARCHAR2 : = NULL,

elem IN VARCHAR2 : = NULL) RE'IURN NUMBER

Cette fonction retourne 1 si l'objet est valide par rapport à sa grammaire, sinon O. Le tableau
11-21 presente un cas d'utilisation de cette fonction en supposant que la table contient du
contenu XML non contraint par une grammaire. La requête permet de vérifier parmi les docu­
ments stockés lesquels sont valides par rapport à la grammaire dont l'URL est passée en paramè­
tre. En remplaçant col_xml par OBJECT_VALUE dans la clause SELECT, vous trouverez
aisément les moyens d'appliquer ce raisonnement pour la table XMLType t_<iocuments_:xml.

Résultat

SELECT t. nom_doc,
t.co l _xml . ieSch ... Valid (

NOM,..DOC VALIDATI ON

schur l => 'http://www.actmp.f r /compag nies.xsd ' ,
e l em => •compagnie ') AS validation

FROM t _ col _JOnl t ;

compagnie.xm l 1
compag nie2. xml 1
compagnie3. xml 1
voll .xm l 0
vo l 2 .xm l 0

Mises à ïour

- 12' c: /"' Depuis la version 12<; XML DB supporte et préconise l'utilisation de la syntaxe XQuery

1 504

,,.__ Update. Ainsi, les fonctions XML précédentes de mise à jour sont déclarées obsolètes, notam­
ment UPDATEXML, INSERTCHILDXML, INSERTXMLBEFORE, APPENDCHILDXML et DELETEXML.

Vous trouverez la syntaxe complète de XQuery Update sur le site du W'3C (http1Mww. w3.orgt
TRJ>aµery-update-10/). Nous allons étudier l'insertion, la suppression et la modification de frag­
ments XML grâce à quelques exemples.

d'111 fragment
Il s'agit ici d'ajouter un élément mail à un pilote en particulier.

© ÉdW/ons Eyroles

Figure 11-11 Fragment XML à Insérer

" m 'rtlfSIOn "1 O'' t1ncv<.l1PQ-"UTF-8" ?>

compagnie date_crea="2010-08-30">
comp AB comp
pilotes

pilote brevet="PL-1">
Ptlote brevet="PL-2",

prenom-Romane< prenom
-nom' Benech nom>
<salaire-5000

4p1lote> ""---
pilotes mail
nomComp Air Blagnac nomComp

compagnie

OrllCll IMl œ I

Le tableau suivant présente les deux écritures possibles pour cette mise à jour. En remplaçant
col_:xml par OBJECI'_VALUE dans les clauses PASSINGet SEI', vous pourrez aisément trans­
poser ces instructions à la table XMLType t_doa.unents_:xml.

11111111111-22 llSll!loe •.• ,,_,

Foncilon SOL (ablOlèle)

UPDATE t _ col _xml
SET col _xm l =

APPDIDC'JIILDXML (
col _xml,

' /compagni e/pil ote s / pil ote
[@br e v et= "PL- 2 "] ' ,

XMLType(
'<mail >r . benech@actmp .fr</mail >'))

WHERE nom_ d oc = ' compagnie. :xml ' ;

XOulf'f Updale

UPDATE t _ col _xm l
SET col _xm l =

XMLQu•ry (' copy $tmp : = . modi f y
(for $i in
$tmp /com pagni e/pil otes / pil ote
whe r e $1 / @bre vet = '' PL- 2 ''
ret u.rn 1 naert nod.e
<mail>r . benê<:h@act mp.fr </mail>
as las t into $il

return $tmp '
PASSING col _xml RETURNING CONTEm')

WHERE nom,_d oc = •compagni e. xml ' ;

Une autre possibilité consiste à insérer un fragment avant ou après une expression XPath
donnée. Dans cet exemple, il faudra remplacer as last par before ou after Je cas échéant.

Sup .. ession d'un fragment
Dans cet exemple, nous voulons supprimer un élément pilote en particulier (ici, Je deuxième).

© Éditions Eyrol/es 505 1

1

1 506

Rgure 11-12 Fmgment XML à supprimer

le? m vers1on="1 O" er >

date_ crea="20 12-09-01" >

<comp>AC<lcomp>
<pilotes>

<pilole brevel="PL-9",
-prenom>A1me - prenom­
<nom, G1accone</nom>
-salaire-4200- salaire>

pilOIE!_ brevet="PL-6"
<prenom,P1erre,,1prenom>
<nom>Calac<,nom>
·salaire 3000 salaire

•/

<lp1lotes-
<nomComp, A1r Castanet<lnomComp>

< compagrne-

SQllv.é l

Le tableau 11-23 les deux écritures possibles pour cette suppression. En remplaçant
col_:xml par OBJECT_VAUJE dans les clauses PASSING et SEI', vous pourrez aisément trans­
poser ces instructions à la table XMI.:rype t_clocuments_:xml..

T- 11-23 Sliaessloe d'w frltllllll

Foncilon SQl (ablOlèle)

UPDATE t _ col _xml
SET col _xml =

DSI.ftl:XML (

col _xml,

' /compagn i e/pil otes/p ilote
[position() =21 •)

WH ERE n ôa_doc = • compagn i e2 . xml • ;

Modlieation d'un fragmenl

XQuery Update

UPDATE t _ col _xml
SET col _xml =

XMLQu•ry (• cop y $tmp : = . modif y
(for $i in
$tmp /compag nie/pi l otes/pi l ote

[position() =2 1
retu.rn delete node $i)

r eturn $tmp '
PASSING col _xm l RETURNING CONI'ENI')

WH ERE n ôa_doc = • compagnie2 . xml • ;

Il s 'agit de modifier un élément d'un pilote en particulier (ici, Je salaire). Le remplacement
d'un fragment (ici, Je premier pilote) sera également étudié.

© ÉdW/ons Eyroles

OrllCll IMl œ I

Figure 11-13 Fragment XML à modifier

<?m vers1on="1 O" encodmg="UTF-8"?>

<compagnie date_crea="2013-04-01"> <p i lot • br • vê t: "PL -62" >
<comp>TA<lcomp> te::" <pr eno11>Ar naud</preno11 >
' P.![Q!.f: - - - - - - - - - - --, <no11>Saya9</nom >

1
pilote brevet="PL-15" <salair • >8000</salair • >

1
prenom ·Jean<lprenom> </pilote>

1
nom Gazagnes /nom

1
salaire> 7200</salaire. 1 L...:le!!_O\!._ _______ ...J

pilote brevet="PL-25"

./pilote

prenom Jean-Phi lprenom
nom Ferrage 1nom

salaire 7500.60

Le tableau 11-24 les deux écritures possibles pour la première modification. En
remplaçant col_:xml par OBJECT_VALUE dans les clauses PASSINGet SET, vous pourrez faci­
lement transposer ces instructions à la table XML:rype t_document s _:xml.

lllllleau 11-24 ModftcadCle d'm r_.i

Fonc11on SOL (obsolète)

UPDATE t _col _xml
SET col _xml =

OPDATl:XML(col _xml,
' /com pagni e/pil otes / pil ote
[@brevet="PL- 25 " J /sa l a ire/tex t () • ,
' 7500 .60 ')

WH ERE n om_ doc = ' compagnie3 . xml ' ;

XQuery

UPDATE t _ col _ xml
SET col _ Janl =

XMLQuery (• copy $ttmp : = . modif y
(fo r $i in
$t mp/compagni e/pil otes / pil ote
[@brevet ="PL- 25 "] / sa l a ire/tex t()
return replace value of node $1
wi t h • • 7500 . 60 • •)

retu.rn $t mp'
PASSING col _xml RETURNING CONTEm')

WHERE nom..,doc = ' c ompa9ni e3 . xml ' ;

Le code qui permet de remplacer un fragment plus complexe est dans Je tableau 11-25.
Par la même occasion, vous découvrirez l'utilisation de deux expressions dans la clause
PASSING. La première désigne Je document XML à modifier, la seconde Je nouveau fragment.

© Éditions Eyrol/es 507 1

1 SQllv.é l

T-11-25 l1111J11e1m111 d'w frlllllll

XQuery Update

DECLARE
var_J(lfll XMLTYPE;

BEGIN
var_J(lfll : =XMLType(' <pi l ote brevet ="PL-62 " >

<prenom>Arna ud</prenom>
< nom>Sayag</ nom>
<sa l aire>SOOO</sa l aire>

</pilote> ');
UPDATE t _ col _xml
SET col _ xml =

XMLQuery (•copy $tmp : = $pl modify
(for $j in $tmp/compagnie/pil otes/pil ote
where $j/@brevet = • ' PL-15 ' •
return replace nod.e $j with $p2)

return $tmp '
PASSING col _ xml AS "pl", var_xml AS "p2 "
RETURNI NG CONI'ENI')

WHERE nôa_doc = •compagnie3.xm l ' ;
END;

Commentaires

Variable PL qui contient le
nouveau fragment.

Remplacement du fragment
oourant (désigné par Sj) par le
nouveau.

Indexation

Suivant Je mode de stockage choisi, vous avez plusieurs possibilités d'indexation :

• mode de stockage bi11ary XML : XMUndex (domai11 index), index textuels et index B-tree
(sur des colonnes virtuelles) ;

• mode de stockage objet : index textuels et index B-tree (sur toute colonne ou expression).

- 12' c:
/"' Depuis la version 12c, les index basés sur la fonction extractValue (function based indeX)

1 508

,..__ ne doivent plus être utilisés (CREATE INDEX ... ON nom_table (extractValue (._)).

La figure 11-14 (http:llfr.slideshare.net!MGralike) résume les possibilités d'indexation de conten u
XML disponibles depuis la version l lgR2 d'Oracle XML DB.

© ÉdW/ons Eyroles

OrllCll IMl œ I

Figure 11-14 Modes dlndexsUon XML

Index B-tree
Pour indexer les éléments du premier niveau comp, nomComp et J' attribut date_crea, trois
index seront nécessaires. Pour J' élément brevet et J' attribut nom, qui sont tous deux du
deuxième niveau (celui de la collection nommée pilotes), deux index seront nécessaires.

Figure 11-15 Exemple d1ndexsUon

1 1 - "1 O" 'UTF-8"?>
crW ="20f2.()9.01"

pilotes
p1lo1e brevet = "PL-9'

pilote

,pri>nnm Aime p<enom
nom nom
salaire 4 200 salaire

pilota brevet=·PL.6"
prenom Piarre prenom
nom ·Calac nom
salaire 3000 .salaire

p1lo1e
pilotes

© Éd!Uons Eyrol/es 509 1

1

1 510

SQllv.é l

Le tableau 11-26 présente la création de ces index, que ce soit pour une table XMLType ou
une colonne XMLType.

Syntaxe SOL

CREATE UNIQUE INDl:X idx_comp_xm l _ col

ON t _doeumênts _ ""'l
(CAST ("XMLDATA" . "COMP" AS VARCHAR2 (6)));

CREATE UNIQUE INDl:X idx_comp_xm l
ON t _ col _xml
(CAST (col _xml. "XMLDATA" . " COMP" AS VARCHAR2(6)));

CREATE INDEX idx_d.ate _ crêa_:>anl ON t _documents_xm l
(CAST ("XMLDATA" . "DATE_CREA" AS DATE));

CREATE INDl:X idx_date _ crea_xm l _ col ON t _ co l _xml
(CAST (col _xml. "XMLDATA" . "DATE_C REA" AS DATE));

CREATE UNIQUE INDl:X idx_nomcomp _ xml
ON t _ documents _ :xml

(XMLC'••t (
XMLQuer y (• /compag nie/nomc omp •
PASS I NG OBJECT _VALUE RETURNING CONI'ENT)

AS VARCHAR2 (20)));

CREATE UNIQUE INDl:X idx_nomcomp _ xml _ col
ON t _ col _xml

(XMLC'••t (
XMLQuer y (• /compag nie/nomcomp •
PASS I NG col _ xml RETURNING CONI'ENT)

AS VARCHAR2 (20)));

CREATE I NDEX idx_co ll_ brevet_xm l
ON pi l ote_ col _ tabl e p
(p. "BREVET", p. NSSTSD _ TABL&_ ID);

CREATE I NDEX idx_co ll_ nompil_xml
ON pi l ote_ col _ tabl e p

(p. "NOM", p.NESTED_TABLE_ ID);

Corrrnentalrell

SI vous tNez annoté la
grammaire, respectez la casse
des noms des colonnes.

Même écriture, que ce soit un
attrllut ou un élément, respectez
la casse des noms des colonnes
de la grammaïre.

Autre type d"écrlture (depuis la
version 11 qui n"utlllse pas les
colonnes annotées).

Utilisation du nom de la table de
stockage.

Les index des informations de premier niveau seront définis en interne FUNCTION-BASED
NORMAL. Ceux concernan t les données d'une collection Je seront en interne NORMAL.

© ÉdW/ons Eyroles

OrllCll IMl œ I

Mode non structuré runstructured XMUndeJI)
Le type d'index présenté ici (domai11 index) convient au mode de stockage bi11ary XML et aux
contenus XML qui sont orientés document (figure 11-2). Un seul index de cette nature peut
être défini sur une table (ou une colonne) XMLType bi11ary XML.

Le tableau 11-T/ décrit la création d'un XML!ndex non structuré sur une colonne XMLType.
Ce type d'index génère une table (path table) et des index sur cette table qui auront pour but
de référencer les différentes parties des documents XML et les valeurs terminales (éléments et
attributs).

llllleaa 11-21 cnadoe d'llll• IMllJlll IOl llnlClld

Syntaxe SOL

CREATE INDSX compagnie_xmlindex ON t _ col _ xml (col _xm l)

INDEXTYPE IS XDB.XMLINDSX
PARAMETERS

(' PATH TABLE compagnie_path_tab l e
(TABLESPACE USERS)

PATH ID INDEX compagnie _ idx
(TABLESPACE USERS)

OROER KEY INDEX compagnie _ ok_idx
(TABLESPACE USERS)

VALUE INDEX compagnie _ value _ idx
(TABLESPACE USERS) ');

SQL> SELECT index_name, index_t ype, tabl e_name
FROM user _indexes;

Commentaires

La path table répertorie les
chemins.
Le path Index ldentWle des
fragments.
t:order Index recense la
position hiérarchique des
nœuds.
Le value Index adresse les
valeurs des éléments
terminaux et des attributs.

INDEX_NAME INDEX_ TYPE TABLE_)IAME

COMPAGNIE_J{MLINDEX FIJNCTION-BASED DOMAIN T_ COL_xML

COMPAGNIE_ VALUE_ IDX NORMAL COMPAGNIE_ PATH_ TABLE
COMPAGNIE_ OK_IDX NORMAL COMPAGNIE_ PATH_ TABLE
COMPAGNIE_ IDX NORMAL COMPAGNIE_ PATH_ TABLE

Des index secondaires additionnels (conventionnels,jimctio11 -based ou textuels) peuvent être
ajoutés à la path table : CREATE INDEX ... ON nom_path_ table_. Comme pour les tables
de stockage des collections, il n'est pas possible d'exécuter une requête directement sur ce
type de table.

La clause PARAME!'ERS peut contenir 1 000 caractères au plus. Au-delà, vous devrez utiliser
les procédures registerPararreter et modifyParameter du paquetage IEMS_XMLINDEX.
Grâce à cette clause ou à ces procédures, vous pouvez préciser les fragments à privilégier ou à
exclure avec ALTER INDEX ... INCLUDE ou EXCUJDE. .. avec ADD ou REMO\/E.

© Éditions Eyrol/es 511 1

1

1 512

SQllv.é l

Mode s1ructuré <Structured KMl})dex>
Depuis la version llgR2, il est possible de composer un nouveau type d'index clestiné à du contenu
XML qui est principalement de type« orienté document », mais dont une partie est touœfois forte­
ment structwée. Un seul index de cette nature peut être défini sur une table (ou une colonne)
XMLType bi11ary XML. La clause GROUP dans PARAME!'ERS peonet de définir un tel index.

Le tableau 11-28 décrit la création d'un XML!ndex structuré sur une colonne XMLType. Ici,
on indexe la collection et on retrouve les directives COLUMNS et PATH de la fonction XML.Table

précédemment étudiée. Plusieurs groupes peuvent exister dans un même index mais une seule
colonne VIR'IUAL est utilisée (pour une seule collection). Enfin, il est possible d'ajouter des
groupes ou d'en enlever avec ALTER INDEX. •• et ADD_GROUP ou DROP _ŒOUP. Ce type d'index
génère autant de tables que nécessaire et d'index qui auront pour but de référencer les différen­
tes parties des documents XML et les valeurs terminales (éléments et anrib111ts).

llllleaa 11-28 Crilllol d'llllU IM.IWJI - llJICllrt

Syntaxe SOL Conmenll/lres

Cl\&AT& INDl:X compagnie_xm lindex ON t _ col _xml (co l _xml)
INDEXTYP E I S XDB.XMLINDl:x
PAJWlftDS

('GROOP grp_pi l ote
XMLTable tab_ compa_xm l
(TABLESPACE USERS COMPRESS FOR OLTP)
' ' /compagnie ' '
COLUMNS lineitem XMLType

PATH '' pilotes/pilote '' VIRTUAL
XMLTable tab_ comp_ pi l ote_xm l
(TABLESPACE USERS COMPRESS FOR OLTP)

'' /pilote '' PASSING lineitem
COLUMNS numpil VARCHAR2 (6) PATH '' @brevet ' ' ,

sa l NUMBER(9) PATH '' sa l aire '' ,
nompil VARCHAR2 (20) PATH ' ' nom ' ' ') ;

ALTO INDEX compagnie _ xml index
PARAMrrDS ('ADD _ GROUP QROOP grp_ compagnie

XMLTable tab_ comp_ :xml ' ' /compagnie ''

Le premier grol4)e est destiné
aux éléme.nts présents dans
la oollectlon.

Le second groupe est destiné
aux éléme.nts (et l'attribut) de
premier niveau du document.

COLUMNS d.ate_ crea DATE PATH '' @date_crea ' ' ,
comp VARCHAR2(6) PATH '' comp ' ' '

nome VARCHAR2 (3 O) PATH " nomcomp " ') ;

SQL> SELECT index_name, index_type, tabl e_ name
FROM use.r_indexes;

INDEXjlAME INDEX_ TYPE

COMPAGNI E_,XMLINDEX FUNCTI ON-BASED DOMAIN
SYS93644 _ 93645_,KEY _ IDX NORMAL
SYS93644 _ 93645_,R ID_ IDX NORMAL
SYS93644 _ 93648_,R ID_ IDX NORMAL
SYS93644 _ 93648 _ PKY_ IDX NORMAL
SYS93644 _ 9365 1_,RID_ IDX NORMAL

TABLE_NAME

T_COL_,XML
TAB_COMPA_XML
TAB_COMPA_XML
TAB_COMP_ PILOTE_,XML
TAB_COMP_ PILOTE_,XML
TAB_COMP_J{ML

© ÉdW/ons Eyroles

OrllCll IMl œ I

Mode mixle
Depuis la version l lgR2, il est possible de mixer un index XML!ndex avec des composants
structurés et un autre non structuré (un au maximum). Pour supprimer ce dernier, il faut agir au
niveau de l'index par ALTER INDEX. .. PARAMETERS('DROP PATH TABLE') . Pardéfuut, tous
les fragments indexés inclus dans la partie structurée de l'index sont awssi indexés dans celle
non structurée. Pour exclure des fragments de la partie non structurée, il fuut utiliser l'option

PATHS... EXCLUDE dans la clause PARAME.'I'ERS.

Le tableau 11-29 décrit la création d'un XMUndex mixte sur une colonne XMLType. Tout
d'abord, la collection est exclue de l'indexation (de même que le nom d e la compagnie). Puis
des éléments de la collection sont ajoutés à l'index.

T- 11-29 Cl6a1ICle d'lldu .. •11!1

Syntaxe SOL

CREATE INDEX compagn i e_xmlind ex
ON t _ col _ xml (col _xm l)

INDEXTYPE I S XDB.XMLINDEX
PARAMETERS (' PATH TABLE compagn i e_path_tab l e

PATHS (l:xCLUDS (

/compag ni e/pi l otes
/compagn i e/nomcomp)) ');

BEGIN
DBMS_JCMLINDSX.regi•t•rPar ... ter
(•paraJl_compagnie ' ,

'ADD_GROOP QROUP g.rp_pi l ote

END;

/

XMLTabl e tab_ compa_xm l '' /compag nie ''
COLUMNS lin ei tem XMLType

PATH '' pilotes/pilote '' VIRTUAL
XMLTabl e ta b_ comp_pi l otes _ xml '' /pi l ote ''
PASSING l ineitem
COLUMNS numpil VARCHAR2 (6) PATH '' @brevet '' ,

nompil VARCHAR2 (20) PATH ' ' nom ' ' ') ;

ALTER INDEX compagnie_xmlindex
PJUU\Mrra\8 (' PARAM paraJl_compagnie ');

Commentaires

Création de l'index non structuré qui
exclut deux fragments (dont la
oollectlon).

Création d'un grol4)e pour Inclure
dans l'index deux éléments de la
oollectlon.

Ajout de œ groupe structuré à
l'index non structuré.

Génération de contenus

Plusieurs mécanismes permettent de générer du contenu XML à partir de données provenant
de tables relationnelles.

© Éditions Eyrol/es 513 1

1

1 514

SQllv.é l

• Des fonctions SQL/XML (ANSJ/ISO). Citons principalement XMLELEMENI' (pour créer un
élément), XMLA'ITRIBl1l'E S (pour ajouter un attribut à un élément), XML.FOREST (pour créer
un fragment), XMLAOO (pour peupler une collection) et XMLCGIMENr (pour ajouter un
commentaire).

• Des fonctions Oracle. XMLROOT (pour générer un prologue), XMLCOLA'1ITVAL (pour géné­
rer un triplet {élément, attribut, valeur)), XMLCIJATA (pour générer une section à ne pas

parser) et XMLSerialize pour la mise en forme.

• Le paquetage DBMS_XMLGEN qui fournit des fonctions et procédures pour convertir des
requêtes SQL en contenu XML préformaté (voir la section « Les paquetages pour PU
SQL»).

Afin de présenter ces différentes fonctionnalités, considérons les données issues des trois

tables suivantes.

Figure 11-16 Données relaUomeles

ml COMPAGNIE_R Cl AVJON_R

CODECI NOM_COMP 1 NA TYPAV CAPAOTEI PROPRJOj
AF Air France F-GODF A320 170AB
EJ Easy Jet F-PROG A318 140AF
AB Air Blagnac F-HGFT A319 120AF

F-WOWW A380 490EJ
II!J AFFll.ETER_R

NA 1 CO DEC OATE,.A NB_PASSAGERS

F-GODF EJ 12/08/14 120
F-GOOF AF 12/08/14 150
F-PROG AF 12/08/14 130
F-PROG AF 12/09/14 110
F- WOWW AB 12/09/14 450

Les fonclions SQUXML
Le code suivant décrit la génération d'une arborescence décrivant les affrètements de la
compagnie 'AF' ordonnés par capacité décroissante. Notez la possibilité de trier un agrégat
d'éléments construit avec XMLAGG. Le résultat brut (figure 11-17) ne contient pas encore de
mise en forme (utilisation conjointe de XMLSeria lize, voir plus Join).

© ÉdW/ons Eyroles

CodeSQl

SELECT XMLl:lement (NAME " f l otte ",

XMLAttribut•• (C .Codé<: AS "comp "),
XML&l ... ent (NAME "nomcomp ", c. nom_comp),
XML&l ... ent (NAME " avi ons",

(SELECT XMLAgg (

XMLS1ement (NAME "av i on",
XMLAttributee (av. na AS "imma t "),
XMLl'oreet (av. typav AS "type_ avi",

av.capac i te AS "n.b_pax"))
OROER BY av.capacité DESC)

FROM avi on_R av
WHERE av.proprio= c.codec))

)

FROM compagnie_R c
WHERE c.codec = ' AF ' ;

Rgure 11-17 Sortie brute

OrllCll IMl œ I

Commentaires

Création d'un élément
flott.eoo ntenant un attribut
comp, puis composé de deux

avi ons).

Peuplement de la oollectlon à
l'aide d'une jointure.

XHLELE.HENT(NAHE"FLOTTE", XHL.ATTRIBUTES(C, COOECAS" COHP"), XHLE.LEHENT(NRHE" NOHCOHP",

<flott • ço•p; ··AF"'><no•c:·o•p >Air Franc:• </no•c:omip>< • v ion• ><evion iuat ; "'f · PROG'0 ><ty
pt_e vi >A318</ typt_evi ><nb_pex > 1 i Het • ··r-HCFT" >< typt_ev
i >A319</ typt _ evi ><nb _pex > 128< /nb _pex ></avion ></ evi ono ></ flot t • >

Le résultat remis en forme est présenté à la figure 11-18 ; il ne contient pas encore de prologue
(XMLROO'I'), ni de commentaires (utilisation conjointe de XMLCOMMENr).

Rgure 11-18 Contenu XML mis en forme

Hotte comp="AF"

- flotte>

nomcomp Air France momcomp
avions

avion 1mmat="F-PROG"

• avton>

type_avi A318 type_avi
nb_pax-140 rnb_pax

<avion 1mmat="F-HGFT'>

•nb_pax>120- nb_pax>
< avton>

- avtons-

© Éditions Eyrol/es 515 1

1

1 516

SQllv.é l

Une autre possibilité est d'utiliser un type objet à qui on donne la structure de l'élément
souhaité . Notez l'utilisation de la fonction XMLAGGcar plusieurs lignes seron t produites, et des
doubles guillemets sur les colonnes du type objet pour préserver la casse des noms d'éléments
et d'attributs (si le caractère@ est mis en préfixe). Le résultat produit n'est pas ordonné et subit
l'ordre des lignes et des blocs de la table relationnelle.

Tmleall 11-31 llill6rato1 dl CGlll-1111. d'• IYPI

Code SOL

CREATE OR REPLACE TYP& ai.rc raf_t AS OBJECT

("@immat " VARCHAR2 (6) ,

"type_ av" VARCHAR2 (6),

"nb_ p • NUMBER (3),

•comp" VARCHAR2 (6));

/

SELECT XMLEl ement (NAME "avi ons",
(SELECT JOO.Agg(

XMLForest(

aircraf _ t(na, typav,capacite,propr i o)
AS "avio n")

)

FROM avi on_R av))

FROM DUAL;

Figure 11-19 Sortie brute

Corrrnenlalres

Création d'un type composé de
quatre champs, le premier étant
prédestiné à devenir un attribut, les
trois autres des éléments.

Utilisation du constructeur (nom du
type) pour lnstanoler à chaque ligne
retournée par la table des avions un
élément préstructuré.

MLELEMENT(''AUIONS''. (SELECTXMLRGG(XMLFOREST(RIRCRRF _T(NR, TYPAU, CAPACITE ,PROPRIO)

<evion o><evion i •••t ' .. F-GOOF" >< type_ev >A329</ type_ev ><nb_p >1 79</nb_p ><co•p >RB</c
o•p ></ovion><evion h•et • .. F- PROG .. >< t ypo_av>A3t 8</ typ o_ov><nb_p> 1

</com.p></evion ><evion i•••t • .. F·HCFT" >< typ• _av>A319</typ o_ev><nb_p> 129</nb_p ><co
• P >RF< /co•p > </ ov ion> <evi on i ... t • .. F-1101111" >< typo _ev>R380</ type _ev> < nb _p /nb _p
><co• p>EJ</co•p ></ovion></ ovions >

Le résultat remis en forme est présenté à la figure 11-20 ; il ne contient ni prologue ni
commentaires.

Pour trier des éléments en amont, vous devrez utiliser l'ordonnancement au niveau de XMLAgg
et non du SELECT de la table. Ici, vous devrez adopter une écriture de ce type : XMLAgg (XML­
Forest (...) ORDER BY ...) .

© ÉdW/ons Eyroles

Rgure 11-20 Contenu XML mis en forme

>

<avion 1mmat="F-GODF"

c avions

ConversiOns et analyse

S'Ii On

type_av A320< type_av•
·nb ..Jl 170 nb _p-
comp-AB comp

avion 1mmat="F-PROG"
type_av A318 \ype_av
nb..JJ 140 nb_p
comp AF comp

S'Ii On

avion 1mmat="F-HGFr'

S'Ii On

type_av A319 \ype_av
nb..JJ 120 'nb_p
comp AF comp

avion 1mmat="F-WOWW'
type_av A380 \ype_av
nb..JJ 490</nb_p
comp EJ comp

S'llOn >

OrllCll IMl œ I

La possibilité de convertir des caractères en contenu XML, et inversement, est intéressante
pour la mise en forme de Nous allons étudier la fonction XMLSerialize qui trans­
forme du contenu XML en CLOB, BLOB ou chaîne, et la fonction XMLParse qui analyse une
chaîne pour retourner une instance XMLType.

Les options de la fonction XMLSer ialize sont les suivantes :

XllLSBRIALIZB

({ IXlCUMENl' J CCNTENl') express ion (AS type_SQL)

(ENCODI N3 xml_encoding _sp ec)
(VERSION chaine)
(ID INDENT) { INDENI' (SIZE = nombre)))

({ HIDE) SHOW) DEFAULTS))

© Éditions Eyrol/es 517 1

1

1 518

SQllv.é l

• L'option DôCUMENI' impose que Je contenu de J' expression soit un document XML bien
formé. Avec CONI'ENI', Je conten u XML peut ne pas avoir de racine unique, mais il doit être
par ailleurs bien formé.

• Le type SQLconceme les caractères (VARCHAR2 ou VARCHARmais pas NVARCHAR2) ou les
binaires (BLOB et CLOB, qui est Je type par défaut). Pour les BLOB, la clause El'CODING
permet d'enrichir Je prologue (encoding = " ... ").

• La clause VERSION concerne le prologue (<?:xml version= " ••• " ••• ?>).

• L'indentati on entre les éléments est déterminée par l'option IIDENI' SIZE = n. Si la
clause I NDENT est présente sans Je paramètre SIZE, l'indentation est fixée à 2. SIZE =O
entraîne une séparation de tous les éléments (un par ligne et sans indentation).

• HIDE DEFAULTS et SHOW DEFAULTS s'appliq uent seulement à des documents basés sur
des grammaires XMLschema et concernent les éventuelles erreurs.

Le code suivant décrit deux sérialisations. La première extrait une ligne d'une table à partir
d'un type et la transforme en chaîne de caractères pour l'état de sortie du document indenté.
La seconde extrait une instance XMLType à partir d'une colonne d'une table et la transforme
en CLOB pour déterminer la taille en nombre de caractères du document après J' indentation
par défaut.

Code SOL

SELECT XMLSeriali ze(
DOCUMENI' XMLElement(NAME "avio ns",
(SELECT XMLAgg(

XMLForest(aircraf _t(
na, typav,capac i te,proprio)

AS "avio n"))
FROM avion_R WHERE capacite > 300))

AS VARCHAR2 (400)
I NDENT SI ZE=l) AS resu l tat

FROM DUAL;

DECLARE
var_ CLOB CLOB;

tai ll e NUMBER;

BEGI N
SELECT XMLSerial ize(

DOCUMENT col _xml AS CLOS)
I Nro var_ CLOB
FROM t _ co l _xml
WHERE XMLEXISTS (

' /compag nie/comp [text () = "AC" J '
PASS I NG BY VALUE co l _xml);

tai lle: = DBMS_LOB.GETLENGT H(var _CLOB);
DBMS_OUTPUT.PUT _ LI NE(' tai ll e CLOS

11 taill e);
END;

RésuHat

RESULTAT

<avio ns>
<avi on immat ="F-WOWW">

<type _ av>A380</type _ av>
<nb_p> 490 </nb_p>
<comp>EJ</comp>

</avio n>
</av i ons>

taill e CLOS :420

Procédure PL/SQL te.rm inée avéC
succès.

© ÉdW/ons Eyroles

OrllCll IMl œ I

Les options de la fonction XMLParse sont les suivantes :

1 XllLPARSB ({DOCUMENT) O:JNI'ENT) e xpre ssion (WELLF'ORMED))

• Les options DôCUMENI' et CONI'ENI' ont la même signification que pour XMLSerialize.

• L'option WELLFORMED évite de vérifier la validité du document XML en la garantissant en
amont.

Le code suivant décrit trois analyses (parsing). La première est correcte du fait d'éléments
bien formés. La deuxième retourne une erreur car des éléments sont mal formés . Et la dernière
réutilise la mauvaise expression mais évite le contrôle d'Oracle . La fonction ge t ClobVal
transforme une instance XMLType en CLOB.

T-11-33 lllllrseslllcœ•u

leodeSQL
SELEC T XMLParse (CONI'Elfl'

' <vehi c ul e i mmat= "508- BAX-31" />
<lan>234567</lan><ve h icule/> ') AS f r agment
FROM DUAL;

SELEC T XMLParse (CONI'Elfl'

Résultat

FRAGMENT

<veh icul e i mmat= "508- BAX-3 1" />
<km>234567</km><ve hic ule/>

ORA-31011 : ÉchE>C d'ana lyse XML
' AF<vehic ule i mmat= "508- BAX-3l" ><km>24564 7</km><ve hicule> ') ORA-192 13: une e r reur s'est
FROM DUAL; produi te l o r s du t r aiteme n t

XML aux l ign es 1

DECLARE
var_ str i n g VARCHAR2(300) :=

' AF<ve.hic ul e immat= "508- BAX-31 " >
<km>2456 47</km><ve hicul e> ' ;

var_ xml XMLTYPE;
BEGIN

SELECT XMLPars e (
CONI'Em' var_st .rin g WELLFORMED)
INI'O var_""'1 F ROM OUAL;

DBMS_OUTPUT. PUT_LI NE (

END;

• contenu ma l for mé ... ');
DBMS_OUTPUT. PUT_ LINE (

var_xm l .getC l obVal ());

Les fonctiOns d'Oracle

LPX-00225: l a balise de fi n
d'é l ément "DuimryFr agment " ne
concorde pas avec bal ise de
début d'é l émen t "veh icule "

contenu ma l formé ...
AF<veh icule i mmat= "508- BAX-
31 " >
<km>2 45647</km><ve hic ule>

Procédure PL/SQL termi n ée avec
s u ccès.

Le tableau 11-34 présente les trois fonctions natives qui complètent les fonctions précédentes
en enrichissant du contenu XML.

© Éditions Eyrol/es 519 1

1 SQllv.é l

• XMLRCOT pour générer Je prologue ;

• XMLCOLA'ITVAL pour générer des triplets (élément, attribut, valeur) ;

• XMLCI:il\TA pour générer une section à ne pas analyser par Je parser.

lllllleaU 11-34 fœcdciDs Hl 1111111191 • OrllCll

CodeSQl

SELECT XMLRoot (XMLEl emen t (NAME " avi o ns",
(SELECT XMLAgg(XMLForest

(aircraf _ t(na,typav,capacite,proprio)
AS "avion ")
OROER BY capacité DESC)

FROM avion_R WHERE typav = ' A320 ')) ,
VZllSION NO VALUZ, STANDALONS YSS)

FROM DUAL;

SELECT XMLSeria l ize(DOCUMElfl'
(SELECT XMLEl ement(NAME " a ircraft " ,

XMLAttributes (na AS " immat ") ,
XMLColAt tVal (

typav AS "type_ aircraft " ,
capaci te AS "pax_num " ,
proprio AS • compagnie "))

FROM avi on_R WHERE typav = ' A3 1 8 ')
AS CLOB I NDENI') AS "doc_xm l"

FROM DUAL;

SELECT XMLSeria l ize(DOCUMElfl'
(SELEC T XMLELEME!n'(NAME • compag nies • '

XMLAGG (

XMLELEMElll' ("compagnie " ,
XMLFOREST (codec AS "comp" ,

XHLCDATA(nol!Lcomp 11 ' -> '
11 ' père & fi l s. ') AS " no•l\..C°"'P "))

)

) AS res ul tat
FROM compagnie _ R WHERE codec LI IŒ ' Ai ')

AS CLOB I NDENI') AS "doc_xm l"
FROM DUAL;

Les vues

Résullal

<?:xml version= "l .0 " standa l one="yes "? >
<avi ons >

<avi o n immat= "F-GODF">
<type _av>A320</type _av>
<nb_p> l 70</ nb_p>
<comp>AB</comp>

</avio n>
</avio ns>

doc_xm l

<aire.raft immat= " F-PROG ">
<column name="type_aircraft ">A318 </co l umn>
<column name="pax_num ">l4 0</co lumn>
<column name="compag nie ">AF</co lumn >

</aire.raft>

RESULTAT

<compag nies>
<compagn i e>

<comp>AB</comp>
<nom,_comp><! [CDATA[Air Bl agnac­

>père & fi l s.11></nom,_comp>
</compag ni e>
<compagnie>

<comp>AF</comp>
<nom,_comp><! [CDATA[Air France->

père & f ils . J J ></ nôa_comp>
</compag ni e>

</compagnies>

Plusieurs types de vues peuvent être utilisés dans un contexte de manipulation de documents
XML.

1 520 © ÉdW/ons Eyroles

OrllCll IMl œ I

• Les wes relationnelles fournissent un accès classique (tabulaire) à du contenu qui est
stocké en base sous la forme XML.

• Les vues XMI.:rype fournissent un contenu XML à des données conventionnelles stockées
dans des tables relationnelles ou à des données plus structurées (tables objet-relationnel­
les). Ces wes XMLType peuvent être contraintes par une grammaire (enregistrée au préa­
lable).

• Les wes matérialisées (voir Je chapitre J2) qui rendent persistant Je résultat d'une requête
(sans jointure) manipulant une table (ou colonne) XMLType.

De plus, il est possible de bénéficier du mécanisme d'indexation sur les vues relationnelles qui
concernent un mode de stockage bi11ary XML et sur les vues matérialisées.

Vues relationnelles
Le mécanisme de we relationnelle permet de présenter sous une forme tabulaire du contenu
XML le plus souvent stocké en base (ou provenant de fichiers externes). La requête de défini­
tion de ce type de we fait intervenir la fonction XML.Table utilisée conjointement à la clause
COLUMlS pour définir une correspondance entre les colonnes de la vue et les éléments (ou
attributs) des documents XML. La syntaxe simplifiée d'une telle vue est la suivante. Il s'agit
d'extraire une ligne par document XML ou d' « aplatir» les collections à l'aide de jointures.

ŒFATE (œ REPLACE) Vl:BW (nom_schema.)nom_ vue((alias_col L alias_
col) ...))
AS SELEl:T • • • FR.CM • • • ,

XllLTABLB ('/ ... / ... ' PASSING

COLOMllS col type_SQL PATB 'chemin ' , ...) alias,. ..

Le code suivant déclare une vue tabulaire qui extrait une partie de trois. documents XML qui
modélisent chacun une compagnie. En remplaçant col_:xml par OBJECT_VALUE dans la
clause PASSING, vous obtiendrez l'expression XQuery qui convient pour interroger la table
XMLType t_documents_:xml via la vue.

CodeSQL

T- 11-35 VIII rdallo Ill CGlll- Hl

Réllltat

CREATE VI EW comp_maste.r _vue AS

SELECT a.* SQL> SELECT * FROM! comp_maste.r _vue;
FROM t _ col _ xml ,

XllL'1'al>le (' /compag nie '
PASSING col _xml
COLUMNS code_ c VARCHAR2 (6)

PATH ' comp ' ,
nOJl\..C VARCHAR2(30)

PATH ' nomcomp ' ,
da te_c DATE

PAT H ' @date_crea ') a;

CODE_C NOM_.C

AB

AC

TA

Air Bl agnac
Air Castanet
Toulouse Ai .r

DATE_ C

30/08/10
01/09/12
01/04/13

© Éditions Eyrol/es 521 1

1

1 522

SQllv.é l

Le code suh'allt crée la vue qui est déduite de la collection. La clause FR0-1 référence trois soutces :
la première concerne les documents XML, la deuxième (virtuelle) compose les colonnes du
premier niveau (code de chaque compagnie), la troisième (virtuelle) définit les eléments de chaque
collection (piloœs). Une fois ces deux vues créées, les développeurs SQL seront capables d'extraire
classiquement tout renseignement issu de ces données désormais normalisées.

Code SOL

CREATE VI EW comp_detai l _ vue AS
SELECT a.comp, b. *
FROM t _ col _xml ,

Réslllat

SQL> ALTER SESSION SET
= "., ,

XMLTABLE(' /compagnie '
PASSING col _xm l

SQL> SELECT * FROM comp_ detai l _ vue ;

COLUMNS comp VARCHAR2 (6)

PATH ' comp' ,
pils XMLType

COMP BREVET NOMPI L SALAIRE

PATH ' pilotes/pilote ') a,
XMLTABLE(' pilote '

PASSING a.pils

AB PL-1

AB PL-2

AC PL-9

AC PL-6

----- ----- -- ------- ---
sarda 4000.2
Benê<:h 5000 .4
Giaccone 4200
cal ac 3000

COLUMNS brevet VARCHAR2(6)
PATH ' @brevet ' ,
nompil VARCHAR2 (20)

PATH ' nom' ,

TA PL-15 Gazagnes 7200

TA PL-25 Fer.rage 5000
TA PL-62 Hartman 5000

sal aire NUMBER
PATH ' sa l aire ') b;

Pour bénéficier du mécanisme d'indexation, il faut que le mode de stockage des documents
soit bi11ary XML. Les deux étapes suivantes sont nécessaires: vous enregistrez tout d'abord la
définition de la vue au niveau d'un paramètre d'un index XMLlndex (domai11 index) structuré,
puis vous créez l'index sur la table (ou la colonne) XMLType. Le tableau 11-37 décrit
l'indexation qui bénéficiera à la vue des compagnies.

T- tHJ Cr6atOI d'• 1--.. POlll •11111 t

Code SOL

BEGI N
DBMS_xMLINDEX.registerParamete.r(

•param,_vue _ comp_maste.r ' ,
OBMS_XMLSTORAGE_,MANAGE.getSIOXDefFromview(

' COMP_,MASTER.._VUE'));
END;

/
CREATE INDEX idx_comp on t _ col _xml

(col _xm l) INDl:lCTlfPll: IS XDB. lCMLindex
PARAMETERS (' PARAM param_vue _ comp_maste.r ');

Commenlalres

Enregistrement du paramètre pour
l'index XMLType structuré.

Création de l'index avec le
paramètre de la de la vue.

© ÉdW/ons Eyroles

OrllCll IMl œ I

Vues Xftl.JVpe
Les vues XMLType simulent la gestion de conten u XML de données qui sont stockées dans
des tables relationnelles (ou objet -relati onnelles). Par ailleurs, il est possible d'associer une
grammaire enregistrée à votre vue pour la contraindre davantage. Enfin, comme pour les vues
objet, un OID (identifiant chaque ligne de la vue) peut être créé.

Sans grammaire (non-schema based)

Le tableau 11-38 présente la création d'une vue XMLType qui fusionne des données des trois
tables relationnelles précédentes. La vue inclut un identifiant objet (ici basé sur le code de la
compagnie, par exemple).

Créetlon de la vue

C REATE OR REPLA CE VI EW compag ni e_ vue_JC]fll 01' XMLType
WITH OBJECT IDENTI FI ER

(XMLCast(XMLQuery(' /compag nie/@comp '
PASSING OBJECT_VALUE RETURNING CONI'ENT)

AS VARCHAR2 (6)))

AS SELECT XMLRoot (
XMLElemen t
(NAME "compagnie ", XMLAttr ibu tes(c.codec AS "comp "),
XMLFores t (c . nom_comp AS "nom_comp"),

XMLElement("vol s",

),

(SELECT XMLAGG(XMLElemen t ("vo l" ,
XMLForest (TO_CHAR (af .d.ate _ a, ' DD-MM-YYYY ·)

AS "d.ate_ vol" ,
av. typav AS "avi on",

af. n.b_passagers AS "pass agers ")))
FROM affreter_R af, avion_R av
WHERE af .Codé<: C .Codé<:
AND av.na af.na))

VERSION NO VALUE, STANDALONE YES)
FROM compagnie_ R c
WHERE e .eôdêC = ' AF ' ;

Commentaires

Dé<lnltlonde
l'ldentl<lant.

Construction de
l'arbre des
éléments et des
attributs.

Jointure pour
oompose rla
oollectlon.

© Éditions Eyrol/es 523 1

1

1 524

Figure 11-21 Vue XMLJYpe

<,..,. Ml vers1on:="1 O" standalone-''Yes"·'>
<compagnie comp="AF•,

·-nom_comp>Air France< nom_comp;
<VOIS-

\/ois
1compagn1e

Avec grammaire (schema based)

dace_vol 12-08-2014 ·date_vol
avion A32Q avion
passagers 150 passagers

dale_vol 12-08-2014 dale_vol •
SV1on A318 'avion
passagers 130 passagers

da<e_vol 12-09-2014 da1e_vo1
SV1on A318 ·avion
passagers 110 passagers

SQllv.é l

Afin d'associer une grammaire à une vue XMLType, il faut au préalable enregistrer ladite
grarnrnaire (sans forcément J' annoter). Considérons la simple grammaire caractérisant
J' élément avioncomp et définissons une vue XMLType qui sera peuplée à partir de tous les
avions de la table relationnelle.

Rgure 11-22 Ligne de ta vue XMLType

SV1oncomp
noNamespaceSchemalocauoo•"http /lwww actmp rrtavioncomp xs.d•

J1mmat=0·1EiJ• lmmatnculatlon

iicmlns xs1="tmp //www W3 org/2001/XMLSchema-1nslilOCe· •
l'IP•av typeav ry,,. .viot1

cepec11e lm cepec11e .,,...,,.
compav

CO"l' m ·comp cod• compagn.•
nomcomp nomcomp

compav nom
compagnie

© ÉdWtons Eyroles

OrllCll IMl œ I

Le code suivant présente l'enregistrement d'une grrunmaire qui décrit cette structure de docu­
ment. Notez l'utilisation du fichier source dans l'instruction (sans passer parle chargement de
celui-ci par BFILENAME). N'oubliez pas non plus les espaces de noms qui n'induisent des
problèmes que lors d'extractions (et non à la création de la vue).

CodeSQL

BEGIN
OBMS_,XMLSCHEMA. DELETESCHEMA (

schemaurl => 'http://www.actmp.fr/avio ncomp.xsd ' ,
delete _ optio n => DBMS_ XMLSCHEMA. DELETE_CASCADE_ FORCE);

OBMS_,XMLSCHEMA. REGI STERSCHEMA
(sc hemaurl => 'http://www.actmp.fr/avio ncomp.xsd ' ,
schemadoc =>
' <?xml version ="l .0 " encodi n g="UTF-8"?>

Commentalnlll

suwresslon de la
grammaire si elle
existait avant.

URI de la grammaire.

<sc hema xmlns ="http://www.w3.org/200 1 /XMLSchema • Descrjltlon du XML
version ="l .O " xmlns:xdb ="http://xm lns .orac l e.com/xdb "> Schema .

<elemen t name="avio ncomp">
<compl exType>

<sequence>
<element name= "typeav " type= "string" />
<element name="capac i te " type= "in t "/>
<element name= "compav">

<compl exType>
<seq uence>

<elemen t name="comp" type= "strin g"/>
<e lement name= "nomcomp" type= "string" />

</seque nce>
</comp l exTyp e>

</e lemen t>
</seq uence>
<attrib ute name="immat " type= "strin g "/>

</comp l exType>
</e leme nt>

</sc hema> ' ,
l oca l => TRUE,
gentypes => FALSE) ;

END;

Grammaire locale et
sans génération de
types.

Le code suivant décrit la création de la vue. Notez l'utilisation des directives XMLSCHEMA et
ELEMENI' qui identifient la grammaire et sa racine. L'extraction d'une ligne de la vue est
présentée (et mise en forme à la main pour l'occasion). Si vous désirez formater ce résultat,
vous devrez utiliser la fonction XMLSerialize.

© Éditions Eyrol/es 525 1

1 SQllv.é l

T- tHO VIII IMDJ11111soc161 •a••--*'

Code SOL

CREATE V I EW avicomp _ vue_xml OF XMLType
XMLSCBDIA "htttp://www.actmp.fr/avioncomp.xsd"
SLDISNT "avio ncomp"

WITH OBJECT I DENT I FI ER
(XMLCast(XMLQ uery(' /avio ncomp/@immat '

PASSING OBJECT _ VALUE RETURNING CONTENT)

AS VARCHAR2(6)))

AS
SELECT XMLElement(NAME "avio ncomp",

XMLAttributes(
' http://www.w3.org/200 1/ XMLSc hema-i nsta nce '

AS "xmlns: xsi",
' http://WWW".actmp.fr/av i o ncomp.xsd '
AS "xsi: noNamespacesc hemaLocat i on",
av. na AS "immat") ,

XMLForest(av.typav AS "typeav ",
av.capac i te AS "capac i te"),

XMLElement(NJ.U.Œ "compav ",
XMLForestt (c. codec AS "comp",

c. n°"_comp AS •nomcomp")))
FROM avion_R av, compagnie_R c
WHERE av.proprio= c.codec;

lnlan'ogdon de la vue

SQL> SELECT OBJSCT _ VAL OZ

2 FROM avicomp _ vue_xml
3 WHERE XMLEXISTS (

4

s
' /avi o ncomp [@immat= "F -GODF" J '

PASS I NG OBJSC'l' _ VALOZ) ;

OBJECT _ VALUE

<avio ncomp
:xmlns :xsi =
"http://www. w3 .org/200 1/ XMLSc hema- ins tance •
xsi:noNamespaceschemat.ocation =
"http:/ /www.actmp.fr/av i oncomp.xsd "
immat =" F-GODF" >
<typeav>A320</typeav>
<capacite> l 70</capac i te>
<compav>

< comp> AB</ c omp>
<nomcomp>Air Blagnac</nomcomp>

</compav>
</av i oncomp>

Enfin, il est possible de créer des vues XMLType basées sur une grrunmai.re en utilisant des
types objet (ou des vues objet). Le processus consiste à :

• créer Je type qui décrira la structure du document final ;

• créer et annoter une grammaire associée pour fuire mieux correspondre les noms et types
de colonnes souhaités ;

• enregistrer la grammaire (depuis la version 12c, la génération automatique n'est plus
permise) ;

• créer la we XMLType dont la requête qui interroge des tables utilisera Je constructeur du
type pour peupler les documents.

Les paquetages pour Pl/SOL

1 526

Plusieurs paquetages PUSQL sont disponibles (voir Je tableau 11-41) pour prendre en compte
les spécificités de XML DB (pour Je type XMLType, pour les grammaires et pour Je repository
étudié à la section suivante).

© ÉdW/ons Eyroles

OrllCll IMl œ I

T- 1H1 l'ltldlllllll lllllHlllll• PllSQl POii' IMl Dl

Paquetage Fonctlonralltés

OBMS_ XMLGEN Générer du contenu XML.

OBMS_ XMLSTORE Mapper du contenu XML

OBMS_ PARSER Analyser du contenu XML

OBMS_ XSLPROCESSOR Transformer du contenu XML tNec un programme XSLT.

Manjluler du contenu XML

OBMS_ XMLSCHEMA Enregistrer et gérer des grammaires XML Schema.
oBMS_ XMLSCHEMA,_ANNOTATE Gérer des annotations opérées après l'enregistre ment de la grammaire.
oBMS_ XMLSTORAGE_MANAGE Gérer du stockage après l'enregistrement de la grammaire.
oBMS_ XDB_R EPOS Gérer des accès et des ressources dans le reposWory.
oBMS_ xos_coNFIG Configurer le repos/tory.

le paquetage DBMS_JlMl.GEN
Ce paquetage offre des méthodes pour générer du contenu XML (retourné ClDBou XML.Type) à partir
de requêœs SQL. Bien qu'il offre certaines fonctionnalités analogues à celles du paquetage IEM>_

XMIQUERY, il est touœfois problématique dans la construction d'attributs et se limite aux éléments.

Le code suivant présente les principales méthodes de œ paquetage . La procédure
set r CMSettag définit Je nom de la racine (par défuut, ROWSEI') et la procédure set r <:Mtag
fixe Je nom de l'élément qui détermine chaque ligne extraite de la requête (par défaut, RCM).
Les sous-éléments sont construits dans la requête à J'aide d'alias de colonnes . Ici, tous les vols
sont parcourus et un calcul est effectué pour chacun .

T- 1H2 llllsa1ICle da 111111111.111 DIMS_IMl81N

jeodeSQL
DECLARE

v_ :xml type XMLTYPE;
v_ ctx DBMS_ JCMLaDl.etxhandle;

BEGI N
v_ ctx : = DBllS_JCMLaDl.newcontext (

' SELECT af. na AS "immat ", af.codêê AS "comp" ,
TO_C HAR(af.d.ate _ a, ' ' DD- MM- YYYY ' ')AS "d.ate_ vol" ,

(av.capac i te - af. n.b_passagers) AS "n.b_pl aces "
FROM affreter_R af, avion_R av
WHERE af. na = av. na
ORDER BY "d.ate_ vol" , "immat "');

DBMS_JCMLaDl.aetrowaettag (v_ ctx, ' vol s ');
DBMS_JCMLaDI. aetrowtag (v_ ctx, ' vol');

v_ :xml type : = DBMS_ JCMLGSN.getXlalType (v_ ctx)
DBMS_OUTPUT. PUT_LI NE(' nbre lignes : '11

DBMS_ JCMLCD:N.getnwarowaproceeaed (v_ ctx));

DBMS_JCMLaSN.cloaeContext (v_ ctx);
OBMS_OUTPIJT. PIJT_LI NE(v_xml type.getC l o bVal);

END;

© Éditions Eyrol/es

Commenlalres

Var lable de contexte.

Création du contexte.

du nom de la racine.
du nom de chaque élément.

Génère le document XML et retourne
un XMLType.
Nombre de lignes

Fermeture du contexte.

527 1

1 SQllv.é l

T-11-42 Ulllsalloe 1111 llllllletlDI •S_llllllN (suite)

Code SQL Conmentalres

1 528

nbre lig nes 5
<vo l s>

<vol >
<immat>F-GO DF</ i mmat>
<comp>EJ</comp>

<date _vol >12-0S-2ô 14</date _vol >
<nb_pl aces>SO</ n.b_p l aces>

</vo l >
<vol >

<immat>F-GO DF</ i mmat>
<comp>AF</comp>
<d.ate _ vol >l 2-08-20 14</d.ate _ vo l >
<nb_places>20</ n.b_p l aces>

</vo l >

</vo l s>

le paquetage DBMS_Xft.STORE
Ce paquetage succède à DBMS_XML SAVE et permet de stocker et de manipuler du contenu
XML dans des tables conventionnelles en faisant correspondre chaque sous-élément à une
ligne d'une table. Les sources de données proviennent de différents types (VARCHAR2, CLOB
ou XML.Type). Le mappi11g est similaire à celui de DBMS_XMLGEN . Le paquetage DBMS_

XMLSTORE est aussi limité à la construction d'éléments et ignore les éventuels attributs .

Le code suivant présente J' insertion de quelques lignes dans la table pil s créée à cet effet. La
procédure setupdat eCo lunn ajoute une colonne à la liste de correspondance . Dans Je cas
d'une insertion, toutes les colonnes de la table seront par défaut mises à jour (attention aux
éventuelles contraintes NOT NlJLL qui pourraient exister) . Notez enfin J 'importance de la casse
au niveau du nom des balises (le premier sous-élément est ignoré de la correspondance) .

1 CREATE TABLE p ils (nUill NUMBER(4) , nom VARCHAR2 (20) , date_nais D.l\TE) ;

© ÉdW/ons Eyroles

OrllCll IMl œ I

lllllleaU 11-43 Ullsa1lcie 1111 llllUlllDI DIMS_Jll.$11111

leodeSQL
DECLARE

v_ insctx DBMS_ JCMLSTOU.ctxType;
v_rows NUMBER;

v _JClfl l CLOB : = ' < ROWSET>

NUM>

BEGIN

< ROW>
<num>101 </num><nom>Roche</ nom>

<date_nais>l l -12- 1986</date_nais>
</ ROW>

< ROW>
<NUM>401 </NUM><NOM>Alqui e</NOM>

</ ROW>

< ROW>
<NUM mai l ="asayag @orang e.f r" >801</

<NOM>SAyag</NO M>
<DATEjlAIS>3 0-12- 1 988< / DATEjlAIS >

</ ROW>

< ROW>
<NUM>90 1</NUM>
<NOM>Levade</NO M>
<DATE_NAIS></ DATE_NAIS>

</ ROW>

< / ROWSET > ' ;

Commentaires

Création du contexte.

Document XML à faire correspondre.

du nom de la table. v_ insctx : = DBMS_xMLSTOU.newContext (' pi l s ');
DBllS_JœlLSTOU.aetUpdateColwan (v_ insctx, ' NUM');
DBllS_JœlLSTOU.aetUpd.ateColwan. (v_ insctx, ' NOM');
DBllS_JœlLSTOU.aetUpdateColwan (v_ insctx, ' DATE_

de l'ordre des co lonnes et des sous­
éléments.

NAI S ');
v_rows : = DBMS_,lCMLS'roll&. inHrtllML (v_ insctx, v_xm l); Insertion via le document XML. Retourne le
DBMS_OUTPUT . PUT_LI NE(' Lignes insérées : ' 11 v_ nombre de lignes traitées.

r ows) ;
DBllS_JœlLSTOU.cloaeContext (v_ insctx);

END;
Fermeture du contexte.

SQL> SELECT ROWNUM, num, nom, date_nais FROM pi l s;

ROWNUM NUM NOM DATEjlAIS

------ ---- ---------- ----------------------- ----- --
1
2 401 Alqui e

3 801 SAyag 30- 12-1988

4 901 Levade

© Éditions Eyrol/es 529 1

1

1 530

SQllv.é l

Avec ce paquetage, il est également possible de modifier (avec updatexML) ou de supprimer
(avec deletexML) des lignes dans la table relationnelle à J'aide de la correspondance avec Je
document XML fournit et Je contenu de la table.

le paquetage DBMS_Xflll'ARSER

Ce paquetage permet d'analyser différentes sources de données (caractères ou LOB principa­
lement) dans Je but de créer un contenu XML (au sens DOM du terme et qui sera traité plus
Join avec Je paquetage IEMS_XMLDOM).

Le code suivant présente une procédure qui a pour but de lire un LOB contenu dans une table
relationnelle et d'analyser (avec parseClob) ce dernier pour déterminer s'il s'agit d'un docu­
ment XML bien formé. Dans Je cas contraire, une exception est relevée. Dans cet exemple, un
document Word et un document XML sont dans une table et sont tous deux

T- 11-44 Udlsalloe 1111 lllllUlllDI •S_DlllllSUI

CodeSQl

CREATE PROCEDURE parse _ c l ob(p l I N NUMBER) AS
v_ c l ob CLOB;
v _ nomfic VARCHAR2 (40);
v_ pa.rser DBMS_XMLPARSER.paraer;
v_ domdoc DBMS_xMLDOM .DOMDocument;
v_ node DBMS_xMLDOM.DOMNode;
mauvais _ format_xML EXCEPTI ON;
PRAGMA EXCEPTION_ I NIT (mauvais _ format _ XML,-3 1 011);

BEGIN
SELECT texte, f i c INI'O v_c l ob,v_nomf i c

FROM tabl e_CLOB WHERE num = p l ;
v_pa.rser : = DBMS_JCMLPARSD..newParaer ;
DBllS_JCMLPARSD. .pa.raeClob (p => v_pa.rser , doc => v_ c l ob);
v_domdoc : = DBMS_JCMLPARSD..getDocument (v_parser);
v_ n ode : = DBMS_xMLDOM.makeNode(v _domdoc);

DBllS_JCMLPARSD..fr .. Paraer (p = > v_parser);

DBMS_OUTPUT .PUT_I, I NE(' Format XML correct 11 v_ nomfic);
EXCEPT I ON

WHEN mauvais _ format_XML THEN
DBMS_OUTPUT . PUT_ LI NE (' Prob l eme format XML ' 11

v_nomfic);
END;

Figure 11-23 Résultats ... _ ... "' ..,..

Conmenll/lres

Déclaration d'un objet parser.

Création d ·un objet parser.
Analyse du document LOB.

Abandon d'un cbjet parser.

de l'erreur
(document non XML).

o·
•I 6;t 11 > 6 o

SOL> EXXC p• r•• c:lob (U o
roraat. nu. corr ë c:t. : cos,p aqn1 e . • al

SOL> tx:! C p• rse_clob 12>;
Pc:obl._.. tor:aat. XML : cv2 .doc

© ÉdW/ons Eyroles

OrllCll IMl œ I

le paquetage DBMS_XMlDOM
Ce paquetage permet de manipuler des documents XML avec la méthode DOM à partir de
différentes sources de données (requête SQL, CLOB ou XML.Type). Plus avancé que Je construc­
teur XMLType et Je paquetage DBMS_XMLGEN, Je paquetage DB!oS_XMLDOM est très complet en
termes de fonctionnalités et d'exceptions pour ajouter (appencl.Child, makeNode et
c reateElement), supprimer et renommer des éléments ou des attributs (s etAttribute) au
sein d'un contenu XML.
Le code suivant construit un document à partir d'une jointure des tables des compagnies et des vols.

lllllleaU 11-45 llllsa1ICle da 111111111.111 DIMS_IMIDll'I

CodeSQL

DECLARE
v_xml type XMLTYPE;
v _domdoc DBMS_xMLDOM . DOMDocume n t ;
v_root_node DBMS_)(MLDOM. DOMNode ;
v_vol s _e l ement DBMS_xMLDOM. DOMElement ;
v_vol s_node DBMS_xMLDOM. DOMNode ;
v _ vol _ e l eme nt DBMS_xMLDOM . DOMElemen t ;

V vol node DBMS_xMLDOM . DOMNode ;
v_i mmat_e l emen t DBMS_ XMLDOM. DOMElemen t ;
v_ i mmat_node DBMS_xML DOM. DOMNode ;
v _ i mmat _ tex t DBMS_xML DOM. DOMTe x t ;
v_i mmat_text node DBMS_xMLDOM. DOMNode ;

BEGIN
v_domdoc : =
v_root_node : =
v_vol s _e l ement
v_vol s_node

DBllS_ JCMLDOll. newt>om.Docwaent;
DBMS_lCMLDOM.lll<eNode(v_domdoc);

: = DBllS_JCMLDOll.create&l ... nt (v_domdoc , ' vol s ') ;
: = DBMS_lCMLDOM.appe<>dChild (v_root_node ,

DBMS_ XMLDOM.makeNode (v_ v o l s_ e l emen t));
(SELEC T c. codé<:, c . nom,_comp, af . na , FOR c_ en.reg IN

af.d.ate _a , af. n.b_passagers
FROM compa gni e_R c , aff r ete.r_R af
WHERE c .codec = af. codec)

LOOP

v_ v ol _ e l emen t : = DBMS_ XMLDOM.cr eateE l emen t (v_domdoc , ' vol');
DBMS_lDILDOll.HtAttribute (v_ vol _ê l ruMn t , •eomp• ,

c_ enreg. nom,_comp);
v_ v ol _node : = DBMS_xMLDOM.appen dChild (v_ vo l s_node ,

DBMS_xMLDOM.make Node(v _ vol _ e l emen t));
v_ i mmat_ e l eme nt : = DBMS_xMLDOM.c r eate Eleme nt(

v_domdoc , ' i mmat ');
v_ i mmat_ node : = DBMS_,XMLDOM.appendChild(v_vo l _node ,

DBMS_xMLDOM.makeNode(
v_ i mmat _ e l emen t));

v_ i mmat_ tex t : = DBllS_JCMLDOll.createText:Nod.e (
v_domdoc , c_ enreg. n a);

Conmenlllres

Document vide.

Racine.
Nœud racine.

Requête SOL à
traiter ligne par
ligne.

Pour chaque
ligne, ajout d'un
élément
complexe.

© Éditions Eyrol/es 531 1

1 SQllv.é l

T 11-45 u111sa11oe 1111 lllllUlllDI •s_mooM (suite)

t eodeSQL Commentaires

v_ immat _ t extn ode : = DBMS_xMLDOM. appendChild (
v_ immat_node,
DBMS_ XMLDOM.makêNode(v _ immat _ text)) ;

DBMS_xMLDOM.set Attri bute(v_vol_e l ement, ' d.ate _vol ' ,
TO_CHAR(c_ enreg.date _a, ' YYYY-MM-DD ') 11'T'11
TO_CHAR(c_ enreg .date _a, 'HH24:M I :SS '));

DBMS_xMLDOM.set Attr ibute(v_vol_e l ement,
•passagers •,c_e nreg. n.b_passagers) ;

END LOOP;
v_ xmltype := DBMS_xMLDOM.getxm lType(v_domdoc);
DBMS_xMLDOM. f r eeDoc ume nt (v_ domdoc);
DBMS_OUTPIJT. PIJT_LI NE(v_xmltype.getClobVal());

END;

Figure 11-24 Document résuh8l

<omp8.E1Sy Jer d1te_ 12T14 30;00" passage<s•·120· > l
rnmll F·GODF 'rnrnà

""' vol ·-·Air F,.,ce• 45:00" pus1gen ••150-
rnmll F-GODF 'rnrnà

<Nol>

vol ·-·Air F 45:00" PHS1gen ••1s0"
rnmll F·PROG o1mm1t

Ilot
<Yol ·-·Air F,.,,ce· dote_vol• .2014-09-12T16"30110" O">

rnmll F-PROG o1mmll

""' vol dlle _YOl-.2014-0&-12T16·30 OO" pass10gen•"450"
rnmll F·WOWW -1mmot

• '1ol
Ilots

XML DB RePOSitorv

1 532

XML DB Repository est un environnement partagé de contenus (XML ou CLOB) basé sur Je
concept de système de gestion de fichiers (répertoires). L'environnement est compatible avec
la norme DAY (Distrib111ed A11thori11g and Versio11i11g), extension du protocole HTIP qui
permet un accès multi-utilisateur au contenu d'un dossier. Toutes les informations de cet envi­
ronnement sont stockées dans Je schéma de! 'utilisateur XDB (à maintenir verrouillé). Toute la
documentation se trouve dans la partie V ou VI (suivant la version de votre base) du livre
Oracle XML DB Repository.

© ÉdW/ons Eyroles

Les moyens d'accéder avec XML DB Reposi-tory sont les suivants :

• protocoles FTP, WebDAV et HTTP(S) ;

OrllCll IMl œ I

e avec PUSQL et l'utilisation des paquetages DBM>_XDB_ADMIN, DBM>_XDB_CONFIG,
DBMS_XDB_REPOSetDBML_XDERESOURCE ;

e avec SQL par les vues RESOURCE_VIE.'W et PATH_VIEW;

• par !'API Java (XML DB API).

Alborescence
La figure 11-25 décrit l'arborescence qu'Oracle préconise pour travailler avec Je système de
gestion de fichiers de XML DB Repository.

Figure 11-25 Arborescence du sysréme de gesUon de fichiers /----....,. _______ _._ _ _./lys

•*"==.+:::"'----- · ,........

-'

Pa111etages DllVIS_XBD_REPOS

o..
.... oe --

{r!Oll>CIOll••IJ

Le paquetage DBMS_XDB_REPOS propose de nombreuses fonctions pour manipuler Je système
de gestion de fichiers, notamment la création d'un répertoire (createfolder), la suppression
d'une ressource document ou répertoire (deleteresource) ou la vérification de présence
d'une ressource (existsresource).

© Éd!Uons Eyrol/es 533 1

1 SQllv.é l

Le code du tableau 11-46 crée, d'une part, deux répertoires (/home/OXM et /home/O XM/
genera l) et supprime, d'autre part, le répertoire /home/OXM (et son conten u). Notez l'utilisa­
tion du commit pour valider la mise à jour. La fonction createfo l der retourne vrai si Je
répertoire a été correctement créé.

Créellon de répertoinlll

lllllelll 11-46 llesdoe ... rilllltllhs

Suppression de répeflolnlll

DECLARE
v_resu l tat BOOLEAN;

BEGI N
v_resu l tat :=

DBMS_ XDB_l\ZPOS.createfolder (' / home/O XM ');
I F v_resu l tatt THEN

DBMS_OUTPIJT . PIJT_ L I NE (' / home/O XM OK. ') ;

v_resu l ttat : =
DBllS_ XDB_RZPOS.ereatefolder (

' / home/O XM/gen era l ') ;
I F v_res ultat THEN

DBMS_ OUTPUT . PUT _LI NE (

' / home/O XM/ge nera l OK. ');

COMMIT;

ELSE
DBMS_OUTPUT. PUT_LI NE (

' bug creat i on / home/O XM/genera l ');
END I F;

ELSE
DBMS_OUTPUT .PUT_LI NE(

END I F;
END;

' bu g creat i on / h ome/O XM ');

DECLARE
v_resu l tat BOOLEAN;

BEGI N
I F (DBMS_XDB_RZPOS.exietereaouree (

' / h ome/O XM ')) THEN
DBMS_XDB_ RZPOS.deletereeource (

' / h ome/O XM ' ,
DllMS_lCDB_JIZPOS.DSLll:T&_l\zctlllSXVJ:_roRC&);

COMMIT;
END I F;

END;

I

Le code du tableau 11-47 crée une ressource (avec createresource) sous la forme d'un
document XML situé dans un répertoire du système d'exploitation et déposé dans Je répertoire
/home/OXM/genera l du repository. Le commit valide la mise à jour et la fonction qui crée la
ressource retourne vrai en cas de succès.

1 534

Par ailleurs, l'extraction sous forme d'un LOB du document précédemment stocké est présen­
tée (getContentC l ob). La conversion au format XMLType est rendu possible par la méthode
createxML qui crée une instance qu'on interroge à la fin par une requête SQUXML.

© ÉdW/ons Eyroles

OrllCll IMl œ I

t1111eaa 1w1 cnauoe •·•1 ress011a

Chargement d'un document

DECLARE
v_resultat BOOLEAN;

BEGIN
I F NOT (DBMS_xDB_REPOS . exietareaource (

• / h0<ne/O XM/9enera l /compa9 nie.xm l •)) THEN

v_resultat :=
DBMS_xDB_REPOS.er eatereaouree (

absp.at h =>
' / home/O XM/gen era l /compag nie.xm l' ,

data =>
BFI LENAME (' REPXML' , ' compagnie.xm l'),

csid => NLS_CHARSET_ I D(. AL32UTF8 .));

I F v_resu l tat THEN
COMMIT;
DBMS_OUTPUT. PUT_LI NE (' dé pot OK. ') ;

ELSE
DBMS_OUTPUT. PUT_LI NE(' bug dépot ... ');

END I F;
END I F;

END;

I

Elhdon IOUS la tonne d'un CLOB

DECLARE
v_nom VARCHAR2 (15);
v_xml XMLTYPE;

v_ c l ob CLOB;
v_path VARCHAR2(40) :=

•/ home/O XM/genera l /compagn i e.xm l • ;
BEGIN

v_ c l ob :=
DBMS_ X DB_JlZPOS.getContentClob (v_pat h);

DBMS_OUTPUT. PUT_L I NE(' Ta ill e CLOS: • 11
DBMS_LOB.GETLENGTH(v_ c l ob));

v_xm l := XMLTYPE.createXML(
:xml Data=>v _ c l ob);

SELECT XMLCAST(XMLQUERY (
• /compag nie/pilot-es/p ilote

[@brevet="PL-2"]/nom •
PASS I NG v_ Janl RETURNING CONI'ENT)

AS VARCHAR2 (15)) I NTO v_nom
FROM DUAL;
DBMS_OUTPUT.PUT_LI NE(•n om pilote PL-2

11 v_nom);
END;

I
T ai ll e CLOS : 4 26
nom pi l ote PL-2 : Benêêh

SQL Developer permet d'accéder à ces ressources ; ici, Je document déposé apparaît dans son
répertoire.

c--...

+ . • T
1.t1t Edlbons

t tè Sch4!mas XML
Rtft< 111 XML Dl
ii)

• MOS'IS

• ""0E
!il .la)O XM

"'ilmll

© Éditions Eyrol/es

Rgure 1 h26 Accés par SOL Deve/oper

Ji -. 1!9-ol

,, • • ..

J FILF compaqnie.xml 496 31/12/1 4 08 : 37 : 54, 082000000

535 1

1

1 536

SQllv.é l

Les grammaires XML Schema
L'enregistrement d'une grammaire avec la procédure registerschena dw paquetage DBMS_

XMLSCHEMA, décrite en début de chapitre, a pour conséquence le stockage de ladite grammaire
dans le répertoire /sys/schenas/nom_utilisateur si la grammaire est locale (sinon,
/sys/schemas/PUB LIC). Le paramètre l oca l (par défaut à TRUE) peut être positionné à
FALSE pour enregistrer une grammaire globale qui pourra être utilisée par tout utilisateur .
Vous devez détenir le privilège XDBAfi!IN pour enregistrer une grammaire globale.

SQL Developer penne! d'accéder aux grammaires, ici les grammaires locales précédemment
enregistrées.

Figure 11-27 ACC<!s aux grammaires par SOL Deve/oper

RlSOURCE_TYP(RESOURŒ_NAME Q RESOURŒ_SEZE 1 PILE evionC-OlllP -X•d 0
• IWlmogies 2 FIL.t x•d 0,_ _....,.., _ l Flt.E coœpagnieaannote. x•d O

.. _
·•log _.
il l!liltcbtmas

• ""0E , _
-' r::::l!lm

W &PUIUC

Accès par SQL
Deux vues permettent d'accéder aux ressources de XML DB Repository: RESOURCE_VIEWet
PATH_VIEW. Toutes deux possèdent une colonne virtuelle RES (de type XMLType) qui rend
possible l'accès à du contenu par la notation pointée (alias SQL). Chaque ligne de la vue
RESOURCE_VIEWconcerne un unique chemin dans l'arborescence, tandis que chaque ligne de
la vue PATH_VIEW concerne une unique ressource.

Vue RESOURCE_VIEW

Cette vue est composée de trois colonnes :

• RES (XML.Type) décrit une ressource d'un répertoire;

• ANY_PATH (VARCHl\R2) indique un chemin (absolu) d'une ressource;

• RESID (RAW) contient l'identifiant d'une ressource.

La grammaire de la colonne RES (XDBResource. xsd) de la vue RESOURCE_VIEW se situe
dans l'arborescence I sys/ schemas /PUBLIC/xmlns. orac l e. com/xdb/. En considérant

© ÉdW/ons Eyroles

OrllCll IMl œ I

certains éléments de cette grammaire, des requêtes peuvent être composées pour extraire tout
ou partie du contenu stocké dans les ressources. Le tableau 11-48 décrit les principaux
éléments définis dans la grammaire XDBResource . xsd

,._, 11-48 Plllles dl 11 .-11n dl 111111 llSœllŒ_WW

Requêtes SOL Conmentalres

<Resource
xmlns = • http: / /xmlns. orac l e. com/xdb/ XDBReso urce. xsd • Répertoire ou fichier.

contai ... r = • ... • ... > Dates de création et de modification de la
<Creat1onDate > </C.reationoate> resso uroe.
<Hodif1cation.Date > </Modi ficationoate>

<Di•playNaae > </Displ ayName> Nom du fichier.

<Language >

<Charact erSet >
<Content Type >

</La.nguage>
</Characte.rset>
</Co ntentType

Langage, jeu de caractères et type du contenu.

<ACL>

<Owner >
<Creator >

<Laetllodifier >

<Scb....slement >

<Conte.nt s>
< text >

</Resource>

</ ACL>

</owne.r>
</Creator>
</Last Modifie.r>

</Sc hemaElement>

</text> </Co nten ts>

Autorisations (Acces Controf Usts).

Compte Oracle propriétaire de la ressource,
créateur et dernier utilisateur ayant modifié la
ressouroe.

Élément de la ressource.

Contenu de la ressource.

Plusieurs fonctions SQL sont adaptées à ces vues, à savoir:

Requêtes SOL

• equa l s_path qui teste l'existence d'une ressource ;

• under_path qui parcourt les répertoires ;

• path et depth qui retournent respectivement Je chemin et la profondeur d'une ressource,
et qui fonctionnent en corrélation avec les fonctions précédentes.

Le tableau 11-49 présente quelques extractions avec cette vue. Notez l'utilisation de
XMLNAMESPACES pour définir J'espace de noms de la grammaire concernée (ici,
XDBResource. xsd).

T- 11-49 llWl8DllloDS MC li M llSœllŒ_!i'IEW

Commenlalres et résunats

SELECT r.RES.getC l obVal () Contenu du document compag nie. xml
dans / home/O XM/genera l. Ce contenu est
encapsulé au sein d'un élément Resource.

FROM R&SOOJla _vxsw r
WHERE eqoale_path (r. RES,

' / home/O XM/ge nera l /compagn i e.xm l ') l ;

© Éditions Eyrottes 537 1

1 SQllv.é l

,. ... 11-49 lllllmlDldoa IVIC Il v• llSOlllCE_WW (suite)

Requêtes SQL

SELECT COUNI' (*) AS
"Nombre grammaires www.actmp.fr"

FROM U:SOORC& _ vx:sw rv
WHERE und.er_path (rv.RES,

' /sys/sc hemas/O XM/www.actmp.fr ') l;

Conmentalres et résullats

Nombre de ressources dans U1n répertoire donné.
Nombre grammaires www.actmp.fr

3

SELECT a. nom AS "Date créatio n" Date de création d'une ressoU1roe.
FROM U:SOORC& _ vx:sw rv,

XML TABLE(Date créat i o n

XllLNAMZSP ACZS (--------------------
' h ttp://xm lns.orac l e.com/xdb/ XDBResource.xsd ' 2014 - 1 2-31T08:37:54

AS " e "),
' /e: Resource ' PASS I NG rv . RES
COLUMNS nom VARCHAR2 (20)
PATH ' e:creationoate ') a

WHERE equala _ path (rv . RES,
' / h ome/O XM/ge nera l /compagnie.xm l') l ;

SELECT ANY_,PATR
FROM U:SOORC& _ vx:sw rv,

Chemin des fichiers XML qui sont la propriété de
l'utilisateur OXM.

XML TABLE(
XMLNAMZSPACZS (

' http://xm lns.orac l e.com/xdb/ XOBResource.xsd '
AS "e "),

' /e: Resource ' PASSING rv.RES
COLUMNS n om VARCHAR2 (20) PATH ' e: Displ ayName ' '

proprio VARCHAR2 (30) PATH ' e:owner ') a
WHERE a. nom L I KE ' *. xml '
AND a.propr i o = ' OXM ' ;

SELECT a. brev AS brevet, a. nom
FROM U:SOORCl: _ VI:SW rv,

XML TABLE (
XllLNAMZSPACZ S (

' http://xm lns.orac l e.com/xd b/ XDBResource.xsd '
AS "r"),

' / r:Resource/r:co nten ts/compagn i e/pi l otes/pi l ote '
PASSING rv. RES

COLUMNS nom VARCHAR2(1 5) PATH •n om' '
brev VARCHAR2 (6) PATH ' @brevet ') a

WHERE equala_path (rv. RES,
• / home/O XM/gen era l /compag ni e.xml') = l;

Vite PATH_ VIEW

Cette vue est composée de quatre colonnes :

ANY_PATH

/ h ome/O XM/ge nera l /compag nie.xml

Bre11et et noms des pilotes contenus dans le
document compag nie. xml s.ltué dans / h ome/
OXM/gen era l / .

BREVET NOM

PL-1
PL-2

sarda
Benech

• PATH (VARCHAR2) indique un chemin (absolu) d'une ressource ;

• RES (XML.Type) présente une ressource du répertoire décrit dans PATH;

• LINK (XML.Type) décrit un lien vers la ressource ;

• RESID (RAl'I) contient l'identifiant d'une ressource.

1 538 © ÉdW/ons Eyroles

1 Requête SOL

SELEC T path (l)

OrllCll IMl œ I

Le tableau 11-50 propose deux extractions de cette we. La première parcourt les deux niveaux
sous Je répertoire / horre / OXM (la profondeur maximale est donnée par Je deuxième paramètre
de under_path, ici 3) ; la seconde examine deux répertoires.

T-11-50 •wl8Dlllcle Ill 1111111 111H_VIW

Réslftat

pat h (l) dep t h (1)
AS "path (1) ",
depth (l) gen era l 1
AS "dept h (l)" gen era l /compa gni e.xm l 2

FROM PATR_VIZW
WHERE Ullder_;path (RES, 3 ,

' / home/ OXM' , 1) =l;

SELEC T PATR, PATH dep t h (l) dep t h (2)
dep t h (l) AS "dep t h (1) ",

dep t h (2) AS "dep t h (2)" /s y s/sc h emas/O XM/ www.actmp.f r 1
FROM PATR_ VI:ZW /sys/sc hemas/O XM/ www.actmp.f r /compagni es . xsd 2
WHERE (Ullder_;path (RES, 3 ,

' /s ys/sc hemas/O XM ' , 1) =l
OR und.er _ path (RES, 3 ,

' / h ome/O XM ' , 2) =ll;

/s ys/sc h emas/O XM/ www.actmp.f r /compa gni esa.nnote. xsd 2
/sys/sc hemas/O XM/ www.actmp.f r /avi oncomp. xsd 2
/ home/O XM/gen era l 1
/ home/O XM/gen era l /compag nie. xml 2

Les Access Control usrs <ACU
Le mécanisme des ACL d'Oracle est identique à celui utilisé par Java, Microsoft, etc. Dans
XML DB Repository, chaque ressource est protégée par une ACLexprimée sous la forme d'un
document XML qui respecte la granimaire /sys/sc hemas / PUBLIC/xml.ns .orac le. com/
xdb / acl.x s d

Compositio n

Dans cette granimaire, l'élément racine est ac l et la liste des privilèges d'accès est décrite
dans chaque sous-élément ace (pour access co11trol e11try) :

• l'élément grant autorise (avec true) ou interdit (avec fa1se) une liste de privilèges ;

• J' élément prin c ipal décrit Je bénéficiaire . (ou une liste de bénéficiaires dans un contexte
LDAP) . Précédé de l'élément invert, l'élément prin c ipal désigne tout autre bénéfi­
ciaire que celui indiqué ;

• J' élément pri vileg e contient un ou plusieurs droits ;

• les attributs s tar t_dat e et end_dat e servent à borner dans Je temps une éventuelle
période de validité .

Par défaut, les utilisateurs disposant des rôles XDBADMIN et IEA ont un total aux ressowces .
Les utilisateurs basiques (avec Je rôle roNNECr) peuvent lire et parcourir to111s les répertoires .

© Éditions Eyrol/es 539 1

1

RequêleSQL

SQllv.é l

Les ACL système se situent dans I sys I ac l s . \bus y trouverez :

• boo t s trap_a c l. xml : lecture pour tout Je monde et tous privilèges awx rôles XIEADMIN
et DBA ;

• all_all_a c l. xml. : tous privilèges à tous ;

• all_o.ner_a c l. xml. : tous privilèges au propriétaire (owner) ;

• r o_all_a c l . xml : lecture à tout Je monde.

Interrogation

Enfin, les ACL étant elles-mêmes des ressources, elles sont régies par la grammaire commune
à toute ressource, soit xœResource. xsd Notez l'utilisation de la fonction
getACLDocument du paquetage DBMS_XDB_REPOS pour retrouver J'ACL d'un document
donné. Ici, il s'agit de boo t s trap_a c l .xml, appliquée par défaut.

,....., 11-51 llllll!Ollllol des ICI

Réslllat

SELECT r . RES .getC l obVa l ()
F ROM R&SOURC&_ Vl:&W r
WHERE equa1a_path (r . RES,

'/•ya/acla/ro _a1i_acl.xal 1) =l;

SELECT
DllMS_)CDJl_ lRZPOS .getACLDoc,,....t (

' / home/OXM /gen e r a l /compag nie. xml ')
FROM DUAL;

1 540

<Conten ts>
<ac l desc rip t i on="Read- only:R eadab l e by a ll and

wr i teab l e by none " xmln s= "http: //xm lns .or ac l e.com/
xdb /ac l . xsd" xmlns:x s i = "http: //www.w3.or g/2 001 /
XMLSchema- ins t ance " xs i:s chemaLocat i on="http: //
xmlns .or ac l e.com/ xdb/ac l . xsd
http: // xmlns .or ac l e.com/ xdb/ac l . xsd" shar ed= "t rue ">

<ace>
<gran.t>true</grant>
<principal>POBLIC</principal>
<privilege>

<read.-propertiea/>
<read.-contenta/>
<read.-acl/>
<reaolve/>

</privilege>
</ace>

</ac l >
</co nten t s >

</Resource>

<ac l des c rip t i on ="Protê<:ted :Read.ab l e by PUBLI C and a ll
pri vileges to ... >

<ace>
<gr a nt>true</g rant>
<prin c ipal >d.av:owne r </prin c ipa l >
<pri vilege>

<all />
</privil ege>

</ace>

</ac l >

© ÉdW/ons Eyroles

OrllCll IMl œ I

Affectation

Pour affecter une ACL à une ressource, vous devez utiliser la fonction setACL du paquetage
DBMS_XDB_REPOS. Dans le code suivant,!' ACL système qui permet à tout le monde l'accès en
lecture est appliquée au document conpagnie. xml. Notez la validation qui doit s'en suivre.

CodeSQl La nouvelle Aa. du doament

<ac l description ="Read-o nly:R eadab l e by all
and writeable by none " ... >

BEGIN <ace>
DBMS_){DB _ REFOS • aet.ACL (

res_path => ' / home/OXM/ge nera l /compagn i e.xm l ' ,
ac l _pat h => ' /sys/ac ls /ro_all_ac l .xml ');

COMMIT;

<grant>t rue</grant>
<pri n cipa l >PUBLIC</pr incipa l >
<privi l ege>

END;
<read-properties/>
<read-co ntents/>
<read-ac l />
<reso lve/>

/

</pri vilege>
</ace>

</ac l >

Pour supprimer une ACL, vous devrez modifier toutes les ressources qui en dépendent avec
DBMS_XDB_REPOS. setACL, puis supprimer la ressource en quest ion avec DBMS_XDB_
REPOS_REPOS.deleteResource.

Gestion des privilèges

Pour construire vos propres ACL, vous utiliserez nécessairement des privilèges atomiques ou
agrégés et deux espaces de noms (xmlns = "http: / / xmln s . oracle. com/xclb/ ac l . xsd" et
xmlns:da v= "DAV: "). Vous trouverez le détail de tous ces privilèges dans le chapitre
« Repository Access Control »du livre XML DB Developer's Gllide.

Dans le code suivant, la fonction changePri vileges du paquetage DBMS_XDB_REPOS ajoute
une entrée qui précise que l'utilisateur OXM2 aura tous les droits sur le document en question.
Notez la nécessité de positionner l'élément racine dans l'espace de noms d'Oracle et de décla­
rer les autres espaces. La validation finale doit s'en suivre.

© Éditions Eyrol/es 541 1

1 SQllv.é l

,....., 11-53 llolll d'• llllVliDI

CodeSQl

DECLARE

r
v_ace
v_char

BEGIN
v_char

P LS_ INTElGER;

XMLTyp e;
VARCHAR2 (2000);

: =
'<ace xaln•••http://xal.ne.oracle.coa/xdl:>/acl.xad.•
xalne:xai•Mhttp://www.w3.org/2001/ XMLSch -inetance•
x•i:acbea&Location••http://xalne.oracle.cOlll/xdb/acl.xad.
bttp: //xa1n• .oracle .cOlll/xdb/acl .xad.
DAV:http://xalne.oracle.COlll/xdl:>/d.av.xad.•>

<principal>OXM2</principal>
<grant>true</grant>
<priv11ege><all/></privilege>

</ace>';
v_ace := XMLType.createXML(v _ ch.ar);
r := DBMS_ XDB_JlZPOS.ch&ngePrivilegee (

res_path => ' /home/O XM/genera l /compag ni e.xml ' ,

COMMIT;

END;

ace => v_ace);

La nouvelle ACL du do...nent

<ac l ... >
<ace>
<grant>true</gra nt>

<pri n cipa l >PUBLIC</pri ncipa l >
<priv ilege>

<read-properties/>
<read-contents/>
<read-ac l />
<reso l ve/>

</pri vi l ege>
</ace>
<ace>

<gra nt>tr ue</grant>
<pri ncipa l >OXM2</pri ncipa l >
<pri vi l ege>

<all />
</privi l ege>

</ace>
</ac l >

Dans Je code suivant, lUle nouvelle AQ (acl_axm2. xml.) est créée et déposée dans Je repertoire I
home/OXM/ac l s (qui devra être préalablement créé). Cette ACL autorise l'utilisateur OXM2 à
accéder en lecture à toute ressource et à pouvoir verrouiller ou déverrouiller toute ressoun:e.

1 542 © ÉdW/ons Eyroles

CodeSQl

DECLARE
v_re sul tat BOOLEAN;

BEGIN

T-11-54 Cr6ato1 d'• ICI.

v_resul tat : = DBMS_x DB_REPOS. createReaource (
abspa t h => ' / home/OXM/ac ls /ac l_oxm2 . xml ' ,
data => ' <ac l des crip t i on="exempl e ac l"

xmlns ="http: // xmlns .or ac l e.com/ xdb/ac l . xsd"
:xmlns: d.av= "DAV:"
xmlns:xsi = "http: //www.w3 .org/2 001/ XMLSchema-ins tance"
xsi:s chemaLOcat i on=

"http: // xmlns .or ac l e.com/ xdb/ac l . xsd
http: // xmlns .or ac l e.com/ xdb/ac l . xsd" >

<ace>
<gran t>true</gra nt>
<prin c ipal >OXM2</prin c ipal >
<privil ege>
<r ead- content s />
<d.av:l ock/>
<d.av: unl ock/>
</privil ege>

</ace>
</ac l > ' ,
s chemaurl => ' http: // xmlns .or ac l e.com/ xdb/ac l . xsd ' ,
e lem => •ac l ');
IF v_ r esul tat THEN

DBMS_OUTPIJT. PIJT_LINE (' d épot ACL OK. ') ;
COMMIT;

ELSE
DBMS_OUTPIJT. PIJT_LINE (' Problèm e a u d ép ot ACL ... •);

END IF;
END;

OrllCll IMl œ I

Conwnenlllres

Création d'une ressource.

Dé<lnltlon de l'entrée.

Cho1x de l'espace de noms.

Vérification du dépôt.

Une fois cette ACL créée, vous pourrez l'affecter à une ressource en particulier avec la
méthode se t ACL précédemment étudiée.

Dictionnaire des données

Le dictionnaire des données prend en compte toutes les spécificités relatives à XML DB,
notamment au niveau d'un utilisateur :

• les tables et vues XMLType avec les vues USER_XML_TABLE S et USER_XML_TAB_ OJL S ;

• les grammaires avec la vue USER_XML_SCHEMAS ;

• la colonne XMLSCHEMA de cette vue contient Je code complet de la grammaire ;

• les vues XMLType avec USER_XML_VIEW S.

© Éditions Eyrol/es 543 1

1

1 544

SQllv.é l

Le code suivant présente quelques extractions de ces vues.

111111111 tHi5 111t11111Dllloe du dlcdolllln •• 1111. Dl

Code SOL el résulllls

SQL> SELECT tabl e_name, storage _ type FROM USER_JCML_TABL&S;

TABLE.JI AME STORAGE_ TYPE

T_ DOCUMENI'S_ XML BINARY
avio ncomp651_TAB CLOB

SQL> SELECT tabl e_name, xml schema, e l ement_name FROM usa,_xm. _TA:m.&S;

TABLE.)IAME XMLSCHEMA ELEMENI'.)IAME

T_ DOCUMENI'S_ XML
avioncomp65 1_TAB h ttp://www.actmp.fr/avio ncomp .xsd

SQL> SELECT col umn_name, e l ement_name, storage _ type
FROM USD,_XHL _TAB_COLS ;

COLUMN_NAME ELEMENT.)IAME STORAGE_ TYPE

COL_XML BINARY
SYS.)IC _ ROWINFO$ avioncomp CLOB

SQL> SELECT schema _ url, l oca l , binary FROM USD._XHL _ SCJIDIAS ;

SCHEMA_ URL LOC BI N

h ttp://www.actmp.fr/compagnies.xsd YES YES
http://www.actmp.fr/compag niesa.nn ote.xsd YES NO
http://www.actmp.fr/av i oncomp.xsd YES NO

SQL> SELECT view_ name, xml schema, e l ement _ name FROM usa_JCML _v -x:sws;

VI EW.)IAME XMLSCHEMA ELEMENI'.)IAME

COMPAGNI E_ VUE_XML
AVICOMP_VUE_ XML http://www.actmp.fr/avio ncomp.xsd

© ÉdW/ons Eyroles

Chapitre 12

Optimisations
Ce chapitre traite d'optimisations des requêtes et des schémas relationnels. Plusieurs aspects
sont étudiés ; tout d'abord, le fonctionnement de l'optimiseur et l'utilisation de statistiques.
Par la suite, quelques outils de mesure de performances sont présentés. Enfin, nous ouvrons la
boîte à outils qui servira à optimiser vos applications (contraintes, index, clllsters, tables orga­
nisées en index, partitionnement, vues matérialisées et principes de dénormalisation).

L'optimisation des applications et des serveurs est un domaine de métiers à part entière. En
conséquence, vous ne découvrirez pas dans ce chapitre la solution à votre problème parti­
culier. D'abord parce qu'un ouvrage dédié à cela n'y suffirait pas, ensuite parce que chaque
problématique est unique et qu'il n'existe pas de recette miracle à adopter en tout cas.

En revanche, vous trouverez une synthèse des mécanismes que vous pouvez mettre en œuvre
pour améliorer vos performances. Ne sont pas étudiés ici les aspects système de l'optimi­
sation, tels que les fichiers de trace ou d'alerte, les paramètres d'initialisation (dans
init. ora ou dans les fichiers spfile), les tables et vues dynamiques renseignant l'état de la
mémoire (sessions, requêtes, transactions, etc.). La bibliographie référence des ouvrages plus
complets à ce sujet.

Cadre général

Commençons par un postulat : si une application ralentit les processus métier, elle doit être
optimisée. La problématique des performances concerne toute application et il est normal d'y
consacrer du temps même si Oracle peut résoudre seul la majorité des problèmes avec les
outils de la l lg.

Il y a une dizaine d'années, le développeur écrivait une requête tout en laissant le soin au DBA
de la rendre performante. Depuis, les mentalités ont changé, ce qui ne veut pas dire que les
rapports entre les personnels représentant ces deux métiers se soient arrangés ..

La réalité apporte son lot de désillusions ; bien souvent, par soucis d''économie, le chef de
projet réduit les délais ou affecte moins de ressources humaines que prévu, la documentation
est rédigée et l'optimisation réfléchie après la mise en production.

Des experts estiment à 60 % le gain potentiel de perfortnances rien que sur l'écriture du code SQL
et PUSQL. Sachant que pour certaines applications, pour des raisons de pseudo-portabilité,
l'utilisation de PUSQL est proscrite ! Tout devant être codé dans les applications.. vous

© Éditions Eyrol/es 545 1

1

1 546

SQllv.é l

imaginez que la marge de manœuvre est réduite. Par ailleurs, bon nombre de problèmes
proviennent du modèle de données (qui n'est pas toujours suffisarnent normalisé) et il est
souvent trop tard pour modifier fortement la structure des tables.

Les performances ne peuvent être considérées sans un contexte : le disque, la mémoire, les
processeurs et le réseau sont autant d'éléments qui entrent en compte lors de mesures. Ainsi, la
performance n'a souvent de sens qu'associée à une action (on parle alors de benchmark) telle
qu'une migration vers une version supérieure, migration de données d'un tablespace à l'autre,
après ajout de RAM, changement de disque, etc.

Jusqu'à présent, vous avez fait confiance à Oracle (et vous avez bien fait) pour qu'il élabore la
meilleure stratégie d'accès à vos données. Dès qu'une requête ou qu'un traitement (qui
contient des instructions dont une ou plusieurs requêtes problématiques) va poser problème,
votre confiance va s'effriter et vous allez mettre en œuvre des mécanismes pour chercher à les
rendre plus efficaces.

Cette dépendance provient du fuit que SQL est un langage déclaratif (et non procédural
comme les structures de contrôle de PUSQL) ; le programmeur exprime toujours dans une
requête ce qu'il souhaite et non pas le moyen de l'obtenir. Oracle va utiliser son optimiseur afin
de produire l'algorithme le plus efficace, selon les données dont il dispose (les statistiques),
pour extraire l'information recherchée.

Les aclln•s
Plusieurs acteurs influent sur les performances.

• Le concepteur se doit de fournir un modèle conceptuel de qualité, une an:hitecture logicielle
raisonnée et une programmation modulaire.

• Le développeur vérifie en principe le modèle relationnel (normalisation et dénormalisation
raisonnée), écrit les instructions et requêtes d'une manière concise. Il programme ses
transactions en utilisant le plus de procédures cataloguées.

• L'administrateur surveille l'exécution des sessions, organise au mieux les espaces logiques
et physiques des bases de données. Il dimensionne la mémoire pour les données et
traitements.

• L'utilisateur final qui se fuit toujours connaître quand une attente est trop importante. Il
convient de le sensibiliser en amont pour éviter parfois des conflits inutiles.

con1ex1e el olleclifs
Idéalement, l'optimisation doit faire partie du cycle de développement et se réaliser ainsi avant
la mise en production. Ce n'est pas toujours le cas et cela entlllÎne un certain nombre de freins.

• De quels droits dispose-t-on pour diagnostiquer et identifier le problème (par exemple, si
vous n'avez pas accès aux vues v$ ou aux fichiers de trace, votre premier diagnostic ne
peut pas être précis) ?

© ÉdW/ons Eyroles

-. .. 1sa11o111

• Est-il possible de modifier Je schéma relationnel, Je code SQL ou PUSQL, Je code applicatif,
J' organisation des données (index, types de table, etc.), la configuration de J' instance, du

réseau et du matériel ?

L'organisation des données peut ne pas nécessiter de recompilation (aj out d'index ou d'une

index orga11ised table). La solution de changer de prime abord Je matériel est souvent une fuite
en avant qui peut s'avérer plus pénalisante avec une machine plus puissante.

L'objectif de toute optlmîsatlon doit être précis et mesurable (exemple : 90 ms pour extraire la
liste des produits d'une commande). En effet, un objectif flou ne sera jamais satisfait et c'est
une garantie contre la tentation d'optimisation excessive et contreproductive.

Utiliser un jeu de tests (comparable aux données en production) permet de mesurer objective­
ment les performances. Se pose Je problème de J' accès aux données réelles.

Plus tôt l'optimisation est prise en compte, moins elle va coûter.

Les différents SGBD du marché ne se comportent pas de la même manière (une solution valable
pour un SGBD peut se révéler peu performante pour un autre). Cela se vérifie également pour
deux versions ou re/easesdifférentes d'Orade.

Une solution convenable en mode mono-utilisateur peut s'avérer non opérationnelle en mode
multi-utilisateur.

Les causes principales d'une mauvaise optimisation des instructions SQL sont :

• Les statistiques destinées à J' optimiseur sont obsolètes ou non représentatives.

• Des structures d'accès sont inexistantes (index, vues matérialisées ou partitions).

• La sélection de plans d'exécution est non optimale (certains éléments de l'instruction SQL
sont mal évalués, par exemple son coût, sa cardinalité ou la sélectivi té de son prédicat).

• Les instructions SQL sont mal construites (conditions de jointure manquantes, mauvais
prédicats ou opérateurs, etc.).

Des performances médiocres peuvent également être causées par des problèmes matériels
(mémoire, entrées-sorties, CPU, disque, etc.).

Présentation du ieu d'exemple
Dans ce jeu d'essai, créé initialement par F. Brouard, des adhérents p ratiquent des sports.
Deux tables de référence (Aclherent et Sport) et une table d'association (Pratique) sont
mises en œuvre. Les index seront décrits ultérieurement.

La volumétrie initiale de ces tables est la suivante : 24 033 adhérents, 12 sports et 27 011 lignes
dans la table Participe. Dans plusieurs sections (notamment /11dexati.<J11, Cl11ster, Partition -

© Éditions Eyrol/es 547 1

1

1 548

SQllv.é l

nemellt et \/iœs matérialisées), Je nombre de participants est porté à plus d' un million (tables
Pratiquebi s et Adherentbi s) afin d'obtenir des résultats plus démonstratifs.

Tables du jeu d'essai

CREATE TABLE spor t

(spid NUMBER (5) NOT NULL, splib e lle VARCHAR (20) NOT NULL) ;

CREATE TABLE Adhe .ren t
(adhid NUMBER (S) NOT NULL,

pren om VAR CHAR (30) NOT NULL,

n om VAR CHAR (25) NOT NULL,

c ivili te VARCHAR (l 2) NOT NULL, date_na is DATE NOT NULL,

te l VARCHAR (l 5));

CREATE TABLE PRAT I QUE

(adhid NUMBER (S) NOT NULL, spid NUMBER (S) NOT NULL);

ALTER TABLE spor t AOD CONSTRA I NT p k_spo r t PRI MARY KEY (s p i d) ;

ALTER TABLE Adher en t AOD CONSTRA I NT p k_Adher en t PRI MARY KEY (adhid) ;

ALTER TABLE Prat ique AOD CONSTRA I NT p k_Prat ique PRI MARY KEY (adhid, spid);

ALTER TABLE Prat ique

AOD CONSTRA I NT f k_Prat ique _ spor t

FOREI GN KEY (spid) REFERENCES Spor t (spid) ;

ALTER TABLE Prat ique

AOD CONSTRA I NT f k_Prat ique_Adhe r en t

FOREI GN KEY (adhid) REFERENCES Adher e n t (adhid);

Les assistanlS d'oracle
Avant de présenter quelq ues mécanismes basiques de contrôle de performances (section 011tils
de mes11re de performances) qui sont basés sur les fichiers de trace SQL et les vues de perfor ­
mances, résumons J'offre des outils de t1mi11g d'Oracle qui inclut de nombre uses fonctionnali ­
tés q ue ce chapitre ne peut pas détailler.

Depuis la version !Og, le référentiel AWR (A111omatic WorkkJad Repository) permet de collec ­
ter et analyser les statistiques (successeur de Statspack). La version l lg automatise davantage
Je trmi11g, en identifiant les instructions SQL problématiques et en exéc utant la fonction de
conseil STA (SQL Trmi11g Advisor) sur ces instructions. Le moniteur ADDM (A11tomatic Da!a­
base Diag11ostic Monitor) analyse en permanence les informations de performances collec ­
tées. Il identifie automatiquement les goulets d'étranglement dans la base et fournit des
recommandations sur les options permettant de résoudre ces problèmes.

© ÉdW/ons Eyroles

-. .. 1sa11o111

• La fonction de conseil, SQL Access Advisor, analyse une instruction SQL et donne des
conseils sur les wes matérialisées, les index, les journaux des wes matérialisées et les
partitions.

• La fonction d'analyse des performances, SQL Performance A11a/.yler, automatise l'évalua­
tion de l'impact des modifications (mise à niveau d'une base, ajout d'index), sur la charge
globale SQL en identifiant les écarts de performances pour chaque instruction.

• La fonction de surveillance, SQL Mo11itoriJ1g, permet de surveiller les performances des
instructions SQL pendant leur exécution.

• La fonction de gestion du plan, SQL Plan Ma11ageme11t, sert à contrôler l'évolution du plan
d'exécution.

les OPlinisell'S
Dans la version 6, les premières versions de J'optimiseur étaient basées sur les règles (RBO,
Rrde-Based Opri.mit.er). Avec cette technique, un rang était affecté à chaque opération (de 1
pour un accès direct par rowid à 15 pour Je parcours séquentiel entier d'une table). Ainsi, toute
requête était analysée syntaxiquement et pour les différents chemins d'accès aux données,
Oracle choisissait celui dont la somme des rangs était minimale.

En version 7, J'optimiseur CBO (Cost-Based Optimizer) est apparu et depuis la version IOg,
seulcelui-ci bénéficie du support d 'Oracle. Il estime chaque chemin d'accès des tables concer­
nées en fonction des statistiques (situées dans Je dictionnaire des données) disponibles.
Collecter correctement ces statistiques est donc fondamental (en principe, cela fuit partie de la
tâche du DBA).

Fonctionnement de CBO

L' optimiseur d'instructions est composé :

• Du transformateur qui dispose en entrée d'une requête parsée et la transforme de manière
optimale (notamment par expansions). Un jeu de plans potentiels est généré en fonction
des chemins d'accès disponibles.

• De !'estimateur qui calcule Je coût de chaque plan en fonction des statistiques du dictionnaire
de données, pour les caractéristiques des tables en matière de répartition et de stockage des
données, ainsi que des index auxquels accède J' instruction SQL.

• Le générateur de plan qui compare les différents plans et sélectionne celui dont Je coût est
Je plus faible.

Parce que la recherche du meilleur plan d'exécution possible pour une interrogation est
complexe, J' objectif de J' optimiseur est de trouver un bon plan, généralement appelé « plan au
meilleur coût». L'optimiseur adapte son plan d'exécution si les statistiques changent. À titre
d'exemple, si d'après les statistiques il résulte que 80 % des pilotes sont des hommes, Je
balayage complet de table (frdl table scCll1) afin d'extraire les pilotes masculins constituera
probablement une meilleure solution que! 'utilisation d'un index.

© Éditions Eyrol/es 549 1

1

1 550

Expansions

Figure 12·1 Mécmlsmes de rop1FmlseU1 (@ doc. Orsc/e)

lF'l<SeO Oueiy

Oue<y
Tran1fonner

Tran&tonned query

°'*Y • Mllmo•••

-.. -· OUoty pt_,
(IO Row Source 0....ratOI)

D1ta
Dlctlonwy

SQllv.é l

En fonction des index existants, vues matérialisées, partitions et statistiq ues, et avant d'effectuer
un calcul de coût, J' optimiseur peut décider de transformer une requête en une autre équivalente
avant de calculer Je coût de cette dernière et de l'exécuter. Le principal objectif du transfor­
mateur est de déterminer s'il est avantageux de modifier J 'instruction afin qu'elle permette la
génération du meilleur plan.

Le transformateur utilise plusieurs techniques telles que la transitivité, la fusion de vues,
l'inclusion automatique de prédicats, l'extraction de sous-interrogation, la réécriture de requête,
la transformation en étoile et J' expansion de J' opérateur OR Le tableau suivant présente quelques
équivalences classiques.

© ÉdWFons Eyroles

Expansion Requête Initiale

Opérateur OR SELECT adhid, nom, te l
FROM Adhe.rent

Sous­
lnterrogatlon

Fusion de vues

WHERE civilite = ' Mlle. '
OR nom = ' LEBLANC ' ;

SELECT adhid
FROM Pratique
WHERE spid I N
(SELECT spid FROM sport
WHERE splibe ll e = ' Tennis ') ;

CREATE VIEW Adhe.rent_miss AS
SELECT adhid,prenom,

nom,tel,date_nais
FROM Adhe.rent
WHERE civilite = ' Mlle. ' ;

SELECT prenom,nom,te l
FROM Adherent_miss
WHERE adhid > 7800;

-. .. 1sa11o111

Requête .. .,,.formée

SELECT adhid, nom, te l FROM Adherent
WHERE nom = ' LEBLANC '

UNION ALL
SELECT adhid, nom, te l FROM Adhe.rent

WHERE civilite = ' Mlle. '
AND nom <> ' LEBLANC ' ;

SELECT Pratique.adhid
FROM Pratique, Sport

WHERE Pr&tique.•pid • Sport.•pid
AND sport.sp l ibe ll e = ' Tennis ' ;

SELECT prenom,nom,te l
FROM Adherent
WHERE civilite • 'Mlle. 1

l\ND adhid > 7800;

Transitivité SELECT p.adhid,s.sp l ibe ll e SELECT p.adhid,s.sp l ibe ll e

L'estimate•

FROM Pratique p, sport s
WHERE p.spid = s.spid
AND s.spid = 12;

FROM Pratique p, sport s
WHERE p.spid = s.spid
AND s.spid = 12
AND p.8pid • 12;

L'estimateur gère trois types de mesures liées entre elles: la sélectivité, la cardinalité et le
coût. La cardinalité est dérivée de la sélectivité, et le coût dépend souvent de la cardinalité.

La sélectivité est une estimation de la proportion des lignes d'un ensemble qui est extraite par
un prédicat donné ou une combinaison de prédicats. Le calcul de la sélectivité est basé sur les
statistiques. En l'absence de ces dernières, l' optirniseur utilise un mécanisme d'échantillonnage
dynamique (paramètre d'initialisation OPTIMIZffi._DYNJIMIC_SllMPLING).

La cardinalité d'une opération du plan d'exécution d'une requête représente l'estimation du
nombre de lignes extraites par oene opération. Généralement, la source est une table, une we,
ou le résultat d'une jointure ou d'un opérateur GROUP BY. Cette valeur est essentielle pour
déterminer le coût des opérations de jointure, de filtre et de tri. Pour chaque colonne, on trouve
la relation: cardi11alité = sélectivité X 11bre_total_lig11es. Considérons à titre d'exemple la
requête suivante :

1 SELECT adhid, nom FRCM Adherent prencm = ' CELINE ' ;

© Éditions Eyrol/es 551 1

1

1 552

SQllv.é l

Étant donné que la table contient 24 033 lignes incluant 3 040 prénoms distincts, les indicateurs
que l' optimiseur consultera sont les suivants :

1
sélectivité = 1/3040 => 0,00032
card inali té = 24033 X 1/3040 => 7, 9

Trailemenl d'111e inslruelion
L'exécution d'une instruction SQL se décompose en différentes phases. Un curseur interne est
ouvert (open), puis fermé à l'issue du traitement (dose). Entre ces étapes, les trois phases
majeures sont :

• L'analyse syntaxique et sémantique de l'instruction (parse), qui vérifie les droits de l'utili­
sateur, recherche puis élabore éventuellement le plan d'exécution (ensemble d'étapes),
charge le plan en mémoire (pour des utilisations ultérieures). L'optimisation est réalisée
durant cette phase.

• L'exécution proprement dite del' instruction (execute). Durant cette phase, Oracle applique
les étapes du plan précédemment établi.

• L'extraction (fetch) d'une (ou de plusieurs) ligne(s).

Pour certaines requêtes de faible ampleur, la phase de parse consomme davantage de temps
que les deux autres phases. Par ailleurs, si un plan existe déjà en mémoire, il n'est pas regénéré
et l'instruction déclenche un soft parse. Le cas contraire entraîne un ha rd parse plus coûteux.
C'est pour cela qu'exécuter deux fois de suite la même requête entraîne en général un coût
inférieur à la seconde exécution.

Deux requêtes identiques (mot à mot) évaluant des valeurs différentes (exemple age=l8 pour
la première et age=20 pour la seconde) peuvent générer deux plans d'exécution distincts. Pour
éviter ceci, une variable de lien peut être utilisée dans vos programmes (age= : v _age ou
age=v _age suivant le contexte de programmation) ; voir la section Variables de lien. Il est
aussi possible d'agir sur le paramètre CURSOR_SHARING.

Il est toujours préférable de retourner plusieurs lignes par fetch. Pour cela, consulter la section
Comment réaliser des fetchs mutlilignes.

COnfiQuraliOn de l'OPliniseur Oes bills)
Un conseil (hilll) se place dans une instruction sous la forme d'un commentaire (qui n'enest
pas un) et impose à l'optimiseur la sélection d'un certain plan d'exécution, en fonction de
critères spécifiques.

La séquence de caractères I * + indicateur * I indique à l' optimiseur que le commentaire
doit être interprété en tant que conseil. Le symbole+ doit suivre immédiatement le délimiteur
de commentaire sans être précédé d'un espace. La plupart des paramètres des hi11ts sont
composés du nom des tables (ou alias), de colonnes et d'index.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Le tableau suivant présente l'utilisation de deux hints ; Je premier (FULL) force Je balayage
entier de la table et Je second (INDEX) impose l'utilisation de l'index associée à la clé primaire
(colonne adhid). Dans les deux cas, J' optimiseur avait choisi de lui-même la meilleure stratégie
d'accès aux données.

OpMalkln clloltlê Op6ul6n tol'tte

SELECT a . nom, a .te l
FROM Adhe r ent bis a
WHERE a.adhid = 2004 5 ;

Index clé primaire. SELECT / *+ INDl:X (a Plt..,ADllZllDll'rBIS) • /

SELECT a.adhid, a. nom, a.te l Parooursentlerde
FROM Adhe r en t bis a la table (fui scan).
WHERE a.te l LIKE ' +33* ' ;

a.adhid, a. nom, a.te l
FROM Adher ent bis a
WHERE a.te l LIKE ' +33* ' ;

SELECT / *+ l'O'LL(a) * / a. nom, a.te l
FROM Adher ent bis a
WHERE a.adhid = 2004 5 ;

Il existe un grand nombre de hints, décrits dans Je livre SQL La11g11age Reference de la docu­
mentation officielle. Citons les hints qui privilégient Je temps d'exécution, soit global (ALL_
RO\llS, par défaut), soit au profit des 1, JO, 100 ou 1 000 premières lignes (FIRST_ ROWS_n).

Vous devez utiliser les conseils avec parcimonie et uniquement après avoir collecté les statisti­
ques et évalué le plan de l'optimiseur sans conseils. Les modifications apportées à la base
(structurelles et sur les données) et l'amélioration de performances peuvent les rendre moins
pertinents (voire non valides).

Les s1a1isti1111es destinées à l'OPlimïseur

Les statistiques qui sont créées par Oracle pour J' optimisation des instructions sont stockées
dans Je dictionnaire de données (USER_TAB_COLUMNS, USER_TABLE S, USER_INDEXE S, etc .).
Ces statistiques ne doivent pas être colÛondues avec les statistiques de performances qui se
trouvent dans les vues V$.

Les statistiques consignent diverses informations concernant Je système (utilisation de la CPU
et des entrées-sorties), les tables (volumétrie, taille moyenne des lignes, blocs, etc.), les index
(clés, nombre de blocs feuilles, etc.), les colonnes (nombre de valeurs distinctes, nombre de
NlJLL, taille moyenne) et les données de la table (valeurs minimale, maximale et distribution
des valeurs).

© Éditions Eyrol/es 553 1

1

1 554

SQllv.é l

Toutes ces informations vont servir à Oracle pour décider des algorithmes à utiliser pour générer
chaque plan d'exécution. L'optimiseur choisira, pour une requête donnée, Je plan d'exécution
Je moins coûteux.

La commande ANALYSE est désormais obsolète et l'utilisation du paquetage DBMS_STATS est
préconisé pour personnaliser vos collectes. Depuis la version 1 Og, la collecte des statistiques
est automatique (par défaut un batch est exécuté entre 22 heures et 6 heures tous les jours).

L'optimiseur considère par défaut que les données de toute colonne sont réparties de façon
uniforme (hypothèse de distribution uniforme des valeurs). Ce comportement peut entraîner la
génération de plans d'exécution non optimaux en cas de répartition inégale des données. Les
statistiques se doivent donc de refléter au mieux Je contenu des tables. Si un histogramme est
disponible sur une colonne, J 'optimiseur ! 'utilise à la place du nombre de valeurs distinctes.

Les hiSlogrammes
Le mécanisme des histogrammes permet de pallier au mieux Je problème de répartition non
homogène des données. Le fait de disposer d'histogrammes sur des colonnes contenant des
données inégalement réparties (ou des valeurs de grandes variations dans Je nombre
de doublons) aide J'optimiseur d'instructions à générer de bonnes estimations de sélectivité et
à prendre de meilleures décisions concernant l'utilisation des index, les ordres de jointure, les
méthodes de jointure, etc.

Les caractéristiques de tous les histogrammes sont stockées dans Je dictionnaire des données
(DBA_TAB_HISTCGRAMS, DBA_PART_HISTOGRAMS et DBA_SUBPART_HISTOGRAMS). La
génération des histogrammes est l'opération la plus consommatrice de ressources lors de la
collecte de statistiques.

Pour chaque colonne d'une table, en fonction du nombre de valeurs distinctes, Oracle peut
créer deux types d'histogrammes.

• L'histogramme de fréquence où Je nombre de valeurs distinctes d'une colonne est inférieur
ou égal au nombre d'intervalles. Ce type d'histogramme sera créé si les données comportent
moins de 254 valeurs distinctes et que le nombre d'intervalles n'est pas précisé.

• l'histogramme équilibré en hauteur où Je nombre d'intervalles est inférieur au nombre de
valeurs distinctes d'une colonne.

Les histogrammes ne sont pas utiles pour les colonnes qui n'apparaissent pas dans les
dauses l\TllERE ou JOIN et celles dédarées avec une contrainte UNIQUE.

Les histogrammes sur les colonnes de type chaînes de caractères sont évalués sur les 32 pre­
miers octets de chaque valeur.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Considérons la table suivante contenant 1 000 lignes. Si Oracle collecte trois valeurs distinctes
pour la colonne compa (on suppose qu'il n'existe que trois compagnies), alors les plans
d'exécution générés considéreront cette répartition (pour la recherche des pilotes d'une
compagnie donnée, Oracle s'attend à monter l'équivalent de 333 lignes en mémoire).
Lorsqu'une colonne est distribuée de manière homogène, l'histogramme se présente sous la
forme d'éléments de même hauteur. À l'inverse, lorsque la distribution est hétérogène, la
colonne (ou l'index) est déséquilibrée en l'absence d'histogrammes statistiques.

En revanche, puisque le salaire se répartit inégalement (la plupart des pilotes gagne entre
5 000 et 16 000 €),Oracle générera un histogramme plus précis pour que l'optimiseur ne se
base pas sur une répartition homogène et prévoit moins de pilotes à extraire pour des faibles ou
des hauts salaires.

Rgure 12-2 Réparmon des données dans une colome

Pilote

brevet .::iolalr• compo 1

PL·1 3400 AF
1. PL-2 4500 SING

._PL.J
PL-4 - _ 9000

10000
AF i-l
SING •

PL.S 10050 SING--1
PL-6 115000 AF :
PL·7 10060 CAST 1

PL-6 15000 1:
...
PL-1000 CAST 1.

S11l11irts
0 SO-OO 1600-0 200-00

Collecte

La procédure Gl\THER_TABLE_STAT S du paquetage DBMS_$TAT S co llecte les statistiques
sur une table. Les paramètres à renseigner obligatoirement sont le nom du schéma et celui de
la table. Plusieurs autres paramètres sont intéressants à préciser :

• METHOD_OPT qui permet de prévoir les histogrammes soit par un nombre d'intervalles de
l'histogramme (entre 1 et 254), soit par distribution en fonction des valeurs des données de
la table.

• CASCADE collecte également des statistiques sur les index avoir examiné la table.

• ESTIMATE_PER CENI' indique le pourcentage estimé de lignes utilisées pour calculer les
statistiques (N\JLL ou par défaut signifie toutes les lignes). Sa valeur peut être comprise
entre 0,000001et100.

• STALE_PER CENI' sert à déterminer le seuil à partir duquel les statistiques d'un objet sont
considérées comme obsolètes.

© Éditions Eyrol/es 555 1

1

1 556

SQllv.é l

Le tableau suivant détaille la collecte des statistiq ues sur la table Adherent du schéma
soutou. En fonction de la version d'Oracle, Je paramètre METHOD_OPTn 'a pas la même valeur
par défaut (en 8i et 9i, il vaut FOR ALL COLUMNS SIZE 1; à partir de !Og, c'est FOR ALL
COLUMNS SI ZE Al11'0).

Cette procédure est utile pour les traitements manipulant des tables temporaires que les statis­
tiques automatiques ignorent et qui sont privées d'index.

T- 12·4 Ccilecl1 des •allslllues Sii' a• t•
Calcul de stdstlqœs

BEGIN
OBMS_ STATS. GATD R,_TABL&_ STATS (

OWNNAME = > ' SOUTOU' ,

TABNAME = > ' ADHERENT ' ,

METHOD_ OPT => ' FOR ALL COLUMNS S I ZE AUTO

FOR COLUMNS te l SI ZE 254 ' ,
CASCADE = > true);

END;

Conmenlalres

Toutes les colonnes de la table seront
analysées pour produire des
histogrammes qui oonvlennent le mieux.
L.:hlstogramme associé à la colonne te l
est Ici fixé art>araJrement à
254 Intervalles.

Après avoir lancé cette procédure, il est possible d'examiner les résultats dans Je dictionnaire
des données.

Visualisation des statistiques

Les tableaux suivants présentent Je détail des statistiques concernant la table des adhérents. La
première requête concerne les valeurs des données de toutes les colonnes. On y trouve Je
nombre de valeurs distinctes et l'intervalle de ces valeurs (en hexadécimal).

Requête et réslllets

SELECT COLUMNJIAME,NUM_DISTINCT ,LOW_VALUE, HIGH_VALUE

FROM USER,_TAB_COLUMNS
WHERE TABLEjlAME = ' ADHERENT ' ;

COLUMN_NAM NUM_DISTINCT LOW_VALUE HIGH_VALUE

24033 Cl 02 C3033E l 7
10738 41414241444C49 5A5953534D4 14E

3040 41204041524945 C94C4F444945
3 44722E 4D722E

16570 776904140 1 01 0 1 78 60071A0 1 01 01

ADHID

NOM
PRENOM

CI VI LITE
OATE..)IAIS

TEL 23286 302 02020 20202 02020 20 30392038302030362030

© ÉdW/ons Eyroles

-. .. 1sa11o111

La requête suivante illustre que la colonne te l dispose de valeurs NULL. On y trouve également
la taille moyenne en octets pour chaque colonne.

Requête el réslllats

SELECT COLUMNJIAME, NIJMjlULLS, AVG_COL_LEN, SAMPLE_ SI ZE

FROM USER_TAB_ COLUMNS
WHERE TABLEjlAME = ' ADHERENT' ;

COLUMNjlAM NUM,_NULLS AVG_ COL_LEN SAMPLE_ SI ZE
------ ---- ---------- ---- ----- -- ------- ----
ADHID 0 5 24033
NOM 0 9 5750

PRENOM 0 8 5750

C I VI LITE 0 5 5750

DATEjlA I S 0 8 24033
T EL 765 1 5 5566

La requête suivante renseigne, pour chaque colonne, la densité, le type d'histogranime et la
date de dernière analyse. Aucun histogranirne n'est généré pour les colonnes adhid (clé
primaire) et date_nais du fait de leur très forte sélectivité.

Requête el réslllats

SELECT COLUMNJIAME,DENS ITY ,NUM,_BUCKETS,LAST_ANALYZED, HISTOGRAM
FROM USER_TAB_ COLUMNS
WHERE TABLEjlAME= ' ADHERENT' ;

COLUMNjlAM DENSITY NUM,_BUCKETS LAST_ANA HISTOGRAM
------ ---- ---------- ---- ----- -- ------- - --- ----- ----- --
ADHID • 00004 1 609 1 06/05/ 1 0 NONE
NOM • 0004 72367 254 06/05/ 1 0 HEI GHT BALANCED
PRENOM • 0020408 1 6 254 06/05/ 1 0 HEIGHT BALANCED
C I VI LITE '000020666 3 06/05/ 1 0 FREQUENCY

DATEjlA I S • 00006035 1 06/05/ 1 0 NONE
T EL • 0000508 1 3 254 06/05/ 1 0 HEIGHT BALANCED

La densité est calculée à partir de la formule suivante : J/11ombre de valellrs distinctes 11011
1U1Ues. La colonne DENSITY exprime la sélectivité que l'optimiseur évalue pour toute équi­
jointure (a.adhid=p.adhid) et prédicat d'égalité (a.adhid=6). Les valeurs possibles sont
situées dans l'intervalle de 0 à 1 (0 si aucune ligne n'est sélectionnée, 1 si toutes le sont). Plus
une colonne est sélective, moins l' optimiseur envisage de retourner des lignes à l'évaluation du

prédicat. La sélectivité forme une partie importante de l'équation décidant du meilleur chemin.

© Éditions Eyrol/es 557 1

1

1 558

SQllv.é l

La colonne NUM_IUCKETS exprime Je nombre d'intervalles de valeurs (avec un maximum
de 254). Par défaut Oracle a considéré 254 intervalles pour répartir les données des colonnes
non, prenom. Concernant la colonne civilite, 3 valeurs sont possibles ('Mr.', 'Ml.le.'
ou 'Mme. '), donc 3 intervalles suffisent à modéliser l'histogramme associé.

La colonne HISTOGRAMrenseigne à propos du type d'histogramme :

• HEIG!T BALANCED, les valeurs des colonnes sont divisées dans des. intervalles d'une
manière homogène (concerne les colonnes nom, prenom et tel) . On peut constater que
Je prénom compose la colonne la moins sélective, les plus sélectives étant Je numéro
d'adhérent et Je téléphone.

• FREQUENCY, chaque intervalle contient Je nombre d' occurences de cette valeur. Ce type
d'histogramme est créé lorsque Je nombre de valeurs distinctes est plus petit que Je nombre
d'intervalles de l'histogramme demandé (ici pourla colonne civilite).

Quand mettre à jour les statistiques ?

La meilleure fréquence d'actualisation des statistiques est dès q11e nécessaire ! Ce sont
souvent des opérations coûteuses, et il n'est pas envisageable d'actualiserles statistiques à
chaque modification des tables. Par ailleurs, les statistiques deviennent obsolètes après de
nombreuses mises à jour. Des statistiques perimées nuisent au plan d'exécution et peuvent
provoquer de réels écarts de performances. Il est courant de les calculer toutes les semaines
pour des bases en production voire toutes les nuits lorsque de forts mouvements peuvent avoir
lieux au cours d'une journée.

Dans tous les cas, l'acb.Jalisation des statistiques s'impose après des modifications fréquentes
et significatives au cours de la journée, une migration, une importation conséquente ou une
modification du modèle physique (changement d'un paramètre de stockage, création d'index,
partitionnement, réorganisation, etc.).

D'autres procédures jouent un rôle similaire ; citons Gl\THER_INDEX__$TATS, Gl\THER_
DATABASE_STATS et GATHER_SCHEMA_STATS du paquetage DBMS_STA'!l'S qui permettent
de récolter les statistiques au niveau d'une base, d'un schéma et des index. Le module DBMS_
SO!EDULER peut aussi être configuré pour exécuter J' action GATHER_STATS_J OB qui

collectera des statistiques en mode batch.

Si les statistiques ne sont pas utilisées, Oracle collecte des statistiques partielles en fonction du
paramètre OPTIMIZER_DYNAMIC_SAMPLING. Ce mécanisme est intéressant pour des tables
à la forte volatilité.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Outils de mesure de performances

Cette section les principales méthodes basiques qui vous permettront de mesurer les
performances de vos requêtes et évaluer différents scénarios.

• La visualisation des plans d'exécution dans une session SQL*Plus à J'aide de la
commande Al1I'OTRACE, de J' instruction EXPLllIN PLAN, de J' événement 10046 ou par
l'utilitaire tkprof.

• L'analyse de certaines vues du dictionnaire des données, principalement V$SQLAREA qui
fournit des statistiques sur chaque instruction SQL en memoire, parsée et prête à l'exécu­
tion. Depuis la version 9i, les vues V$SQLSTATS et V$SQL_PLAN décrivent les plans
d'exécution. Chaque ha rd parse met à jour ces vues et les mécanismes de mo11itori11g sont
majoritairement sur ces vues.

• L'utilisation du paquetage DB'!S_APPLICATION_INFOqui peut être utile aux développeurs
pour tracer et mieux contrôler Jeurs transactions.

• L'utilitaire runstats de Thomas Kyte (créateur et animateur du célèbre site http:ll

asktom.oracle.com) permet de comparer deux implémentations.

Nous n'étudierons pas les paramètres d'initialisation de la base qui sont modifiés par ALTER
SESSION (tâche du développeur) ou par ALTER SYSTEM (tâche du OBA). Ces paramètres
conditionnent Je plan d'exécution de toute requête. Vous devrez veiller à ce que vos environne­
ments de test et de production soient comparables de ce point de vue.

ViSualisation des plans d'exécution
Un pland'exécutionest Je résultat de J'actiondel'optimiseurqui au moteur d'exécution
les opérations qu'il doit effectuer de la manière la plus efficace. Chaque plan est décrit sous la
forme d'un arbre contenant les informations suivantes:

• J' ordre des tables auxquelles J' instruction fait référence ;

• une méthode d'accès pour chaque table mentionnée dans J' instruction ;

• une méthode de jointure pour chaque table affectée ;

• des opérations sur les données (filtrage, tri ou agrégation).

Les sources

Plusieurs sources peuvent être utilisées afin d'extraire un plan d'exécution :

• La table PIAN_TABLE (utilisée avec Al1I'OTRACE ou EXPLAIN PLAN sous SQL*Plus).

• Des vues du dictionnaire de données VSQL_PLAN, VSQL_PLAN_MONITOR (à partir de la
version llg), DBA_HIST_SQL_PLAN (référentiel A WR), STATS$SQL_PLAN (outil Stats­
pack).

© Éditions Eyrol/es 559 1

1

1 560

SQllv.é l

• La base de gestion SMB (SQL Management Base) qui stocke Je journal des instructions,
les historiques de plan, les SQL Plan Baselùies, ainsi que les profils SQL.

• Des fichiers de trace de J' événement 10053 par un dump de l'état des processus et ceux
générés par DBMS_MONITOR

Bien que les commandes SET Al1I'OTRACE et EXPLAIN PLAN affichent un plan d'exécution que
l'optimiseur est susceptible d'utiliser, la vue V$SQL_PLAN contient le plan réellement employé.

l:infrastrucb.Jre du référentiel AWR et les rapports Statspack contiennent les plans des instruc­
tions les plus coûteuses en ressources.

L'affichage

Le package DBMS_XPLAN fournit cinq tables fonction.

• DISPIAY qui met en forme et affiche Je contenu d'une table PLAN_TIIBLE.

• DISPIAY_AWR qui met en forme et affiche Je contenu du plan d'exécution d'une instruction
SQL stockée dans Je référentiel A WR.

• DISPIAY_CURSORqui met en forme et affiche Je contenu du plan d'exécution d'un curseur
chargé.

• DISPIAY_SQL_PLAN_BASELINE qui affiche un ou plusieurs plans d'exécution pour
J' instruction SQL indiquée.

• DISPLAY_SQLSET qui met en forme et affiche Je conœnu du plan d'exécution des instructions
stockées dans un ensemble SQL Timing Set (STS).

L'arbre

Le plan d'exécution reflète une structure d'arbre dont chaque étape compose un nœud (ou une
feuille) et dont la première étape à exécuter se trouve au niveau Je plus bas et Je plus à gauche
(ou en haut suivant l'inspiration du dessinateur de l'arbre). À chaque étape est associé un coût
qui contient Je coût de toutes les étapes descendantes.

L'exemple suivant présente un plan d'exécution prévisionnel d'une jointure entre trois tables
(extraction de l'identité des pratiquants de handball nés en 1995). Outre la visualisation de
J' arbre, Je plan peut éventuellement contenir des informations concernant Je partitionnement et
l'exécution en mode parallèle.

© ÉdW/ons Eyroles

Requête el plan d'exécution

SELECT a.adhid, a.prenom, a.nom
FROM Adherent a, Pratique p, sport s
WHERE TO_CHAR(DATE_ NAI S, ' YYYY ') = 'l 995 ' AND a.adhid • p.adhid
AND e.epid • p.epid AND s.sp l ibe lle = 'Hand-ba ll'
OROER BY nom;

-. .. 1sa11o111

1 I d 1 Ope.ration 1 Name 1 Rows 1 Bytes 1 cost !*CPU) 1

1 0 1 SELECT STATEMENI' 3 1 1 2511 73 (3) 1

1 1 1 SORT OROER BY 3 1 1 2511 73 (3) 1

1 2 1 NESTED LOOPS 3 1 1 2511 72 (2) 1

1 3 1 MERGE JOI N CARTESI AN I 240 1 13200 72 (2) 1

I * 4 1 TABLE ACCESS FULL 1 SPORT 1 1 25 3 (0) 1

1 5 1 BUFFER SORT 1 240 1 7200 69 (2) 1

I * 6 1 TABLE ACCESS FULL 1 ADHERENI' 240 1 7200 69 (2) 1

I * 7 1 I NDEX UNIQUE SCAN 1 PK_ PRATI QUE 1 1 26 0 (0) 1

--

La mise en œuvre prévisionnelle de cette jointure fait intervenir deux algorithmes distincts:
un tri fusion (sort puis merge) et une boucle imbriqué (!1ested /.oops). La figure 12-8 illustre
J' arbre associé à ce plan d'exécution. Les nombres sur les liens correspondent aux lignes trai­
tées. L'ordre des opérations est Je suivant : 4, 6, 5, 3, 7, 2, 1 puis O. Le coût principal (69)
correspond au parcours entier de la table Adherent réalisé lors de la deuxième étape. À ce
coût, on ajoute 3 pour l'extraction du code du sport correspondan t au handball. Ainsi Je coût
de la troisième étape est égal à la somme des deux premières, etc.

La commande SET AUTOTRACE

La commande SQL*Plus SET Al1IOTRACE existe depuis la version 7.3 ; elle permet d'obtenir
après l'exécution d'une instruction, le plan d'exécution ainsi que des statistiques SQL.

© Éditions Eyrol/es 561 1

1

1 562

SQllv.é l

Figure 12-3 Plan d'exécution

1
SPORT'

: - :

240 240

fi-
C IAN -fJ

l 240 31 31 SQL ..
ADHERENT

... • stkIB.f!!Nr

PK
PRATIOUE

Les statistiques fournies par cette commande sont extraites de la vue V$SESSTAT.

La syntaxe de cette commande est la suivante. Si les deux dernières options sont omises, les
statistiques et plans sont affichés par défaut.

1 SET Al1I'OT(RACE] {OFF 1 ON 1 TRACE[ONLY]) [EXP[LAINJ] [STAT[ISTICSJ]

• OFF : désactive le suivi d'exécution automatique.

• ON: active le suivi d'exécution automatique.

• TRACEONLY : active le suivi d'exécution automatique des instructions SQL en occultant le
résultat des instructions mais en exécutant toutefois la requête.

• EXPLAIN: affiche les plans d'exécution mais pas les statistiques.

• STATISTICS: affiche les statistiques mais pas les plans d'exécution.

Sous Oracle9i, vous devrez créer au préalable la table PLAN_TABLE via le script
utlxplan.sql situé dans le répertoire ORACLE_HOME/rdhns/admin. Dans les autres cas,
vous n'avez qu'à affecterle mie plus trace à l'utilisateur qui désire bénéficier de l'autotraçage.
Si ce rôle est absent, créez-le (sous SYS AS SYSDBA) à l'aide du script plustrce. sql situé
dans le répertoire ORACLE_HOMEI sqlp l us I ad:nin.

Pour vous connectez sous SQL'Plus : connect SYS/mot_de_passe AS SYSDBA puis
start ? \sqlp l us \admin \plustrce. sql (le symbole ? sera automatique ment subs titué par
le chemin ORACLE_HOME).

Le tableau suivant présente le résultat et le plan d'exécution prévisionnel de la requête retour­
nant le numéro, prénom et nom des femmes nées en mai 1995. Le numéro du plan d'exécution
(hash val11e) est indiqué avant son détail.

© ÉdWtons Eyroles

Requête et plan d'exécution

srr AOTO'l'llAC& ON
SELECT adhid, prenom, nom FROM Adherent

WHERE TO_ CHAR(OATE_ NAI S, ' YYYY ')= '1 995 '
AND TO_ CHAR(OATE_ NAIS, ' MM ') = ' 05 '
AND civi li te = ' Mme. '
OROER BY Mm;

ADHID PRENOM

2 1 311 CHANl' AL
1 9600 DENISE

Plan

Plan hash value: 1854364040

NOM

FOULON
LANI ESSE

-. .. 1sa11o111

1 I d 1 Operation 1 Name 1 Rows 1 Bytes 1 <*CPU) 1 Time

1

I *

0 1 SELECT STATEMENT 1
1 1 SORT OROER BY 1

2 1 TABLE ACCESS FULL I ADHERENT

1 1
1 1

1 1

35 1
35 1

35 1

70
70
69

(3) 1 00:00:0
(3) 1 00:00:0
(2) 1 00:00:0

Predicate Informat i on (identified by operat i on id) :

2 - f il ter("CIVILITE" = ' Mme. ' AND
TO_CHAR(INI'ERNAL_ FUNCTION("OATE _ NAIS"), ' YYYY') = '1995 ' AND
TO_CHAR (INI'ERNAL_ FUNCTION("OATE_ NAIS"), ' MM ') = ' 05 ')

Le plan est présenté sous forme d'étapes (colonne Operation) imbriquées. Chaque étape
retourne un ensemble de lignes (prévisionnel) qui sont utilisées à l'étape suivante jusqu'à
l'extraction finale. Un ensemble de lignes peut provenir d'une table, d'une vue ou du résultat
d'une jointure ou d'un regroupement. Le nom de la table (ou vues, colonne Name) est disposé
en regard de la méthode d'accès (jointure, filtre, tri ou fonction d'agrégat). Les éventuels
prédicats de chaque opération sont précisés par la suite. Le temps prévu (Time) est indiqué au
format llll:MI: ss. Le coût prévu (Cost) est détaillé par étape.

Le plan d'exécution présenté peut ne pas être le plan utilisé. Les causes de cette différence
sont principalement la présence de variables de lien (bind variables) dans l'instruction et l'obso­
lescence des statistiques. En revanche, les statistiques chiffrées de AC1I'Ol'RACE reflètent la
réalité de l'instruction.

© Éditions Eyrol/es 563 1

1 SQllv.é l

Le tableau suivant détaille les statistiques générées lors de l'exécution de la requête.

T-12-10 Dilllls des stallsdQues Ils- dl Sil MllOTMCE

S1abtlques Corrrnentalres

Stat is t i q ues

60 3

0

34 6

19 6

0

78 5

41 6

2

3 1

0

8

1 564

recu.rs i ve calls Nombre d'instructions Internes.

db block get s Nombre de blocs en mémoire pour u.ne modWlcatlon.

Nombre de blocs extraits de la mémoire. cons i stent get s

physi ca l reads Nombre de blocs extraits du disque.

redo s ize Taille (en octets) utilisée dans le butter r edo l og.

Nombre d'octets envoyés au serveur. by tes s ent via SQL*Net to c li ent

by tes r êêe ived vi a SQL*Net f rom c li en t Nombre d'octets retournés au client.

SQL*Net r oundtrips to/f rom c li en t Nombre d'allers-retours entre le client et le serveur.

Nombre d'qiératlons de tri en s orts (memory)

s or ts (di sk) Nombre d'qiératlons de tri sur disque.

rows process ed Nombre de lignes

Quelques informations complémentaires à propos de ces indicateurs :

• Les appels internes, recur s i ve call s , incluent la construction du plan lui-même, les
exécutions des déclencheurs, des allocations mémoire pour les tris, des recherches et mises à
jour du dictionnaire des données, etc. Ce nombre passe généralement à 0 à la prochaine
exécution de la même requête (Je plan d'exécution est utilisé et il n'a pas à être reconstruit).

• redo s izeest nul en principe pour un SELECT qui ne concerne pas les fichiers de journa­
lisation, redo log, concernés par toute mise à jour, et utilisés au cours d'une restauration
(recovery).

• db block gets concerne les blocs Jus en mode ClJRRENr et non pas en mode lecture
consistante. Les instructions UPDl\TE et DELETE ont besoin d'y accéder pour effectuer les

mises à jour.

• cons i s tent gets concerne les blocs en mode lecture consistante ; les instructions
SELECT sont concernées de même que les blocs d'annulation (roUbacks egments).

• phys ical reads inclut aussi les lectures dans Je cache du système de gestion de fichiers
du système d'exploitation.

Il faut additionne r db block gets et cons i s tent gets pour obten ir le nombre de bu/fers lus
logiquement .

Les tris doivent de préfé rence être effectués dans la mémo ire plutôt que sur d isque .

© ÉdW/ons Eyroles

-. .. 1sa11o111

Instruction EXPLAIN PLAN

L'instruction EXPLAIN PLAN peonet de générerun plan prévisionnel sans exécuter l'instruction . En
fonction des divers paramétrages (de session, de l'instance) et du moment, l'exécution réelle de la
requête pourra toutefois s 'effectuer suh'allt un plan différent de celui hypothétiquement calculé .

Vous devez disposer d'une table qui contiendra le résultat des plans générés . Créez la table
PLAN_TABLE en exécutant le script utlxplan. sql situé dans ORACLE_HOME/rdbrns /
admin Vous pouvez utiliser à présent EXPLAIN PLAN avec la syntaxe suivante .

1

BXPLAIN PLAN
(SEI' S'l2\TEMENI'_ID = chain e_caracter e)
(INI'O (s chema.) t abl e (@dblink))
FCR ins t ruct ion_SQL ;

• SET STATEMENI'_ID désigne l'identifiant du plan dans la table plan table (par défaut le
plan de la dernière requête exécutée sera considéré).

• INI'O désigne la table plan table (par défaut celle générée par le script d'Oracle : PLAN_
TABLE) .

• i nstruct i o n_SQLdésigne l'instruction à évaluer .

Afin d'obtenir Je plan d'exécution de la jointure précédente, il convient de l ancer le script sui\'allt.
Pour visualiser ce plan d'exécution, vous devez écrire une requête ou utiliser la procédure DI SPLAY
du paquetage DHllS_XPLAN (recommandé pour obtenir l'indentation du résultat qui permet d'inter­
préter Je plan, car les étapes ne s'exécutent pas indépendamment les unes des autres) .

lllllelll 12·11 lll•lo• d'uiculloe

Plan d'exécution d'..,e requête

llXPLll N PLAN

SET STATEMElfl'_ ID = ' exemple l' FOR
SELECT a.adhid , a.prenom, a. nom

FROM Adheren t a , Prat ique p, spo r t s
WHERE TO_CHAR(DATEjlAI S , ' YYYY ') = '1995 '
AND a.adhid = p .adhid AND s.spid = p .spid
AND s.splib e ll e = 'Ha nd-ba ll' OROER BY nom;

SELECT * FROM TABLE
(DBMS_XPLAN.DISPLAY (' PLAN._TABLE ' , ' ex empl e l', ' TYPI CAL' , NULL));

Vous devrez vérifier que le nombre de lignes (Rows) soit en adéquation avec le nombre réel de
lignes ramenées car il s'agit d'une estimation basée sur les statistiques.
La commande EXPLAIN PLAN ne gère pas les conversions implicites de variables attachées
de type DATE et peut afficher des plans différents que ceux réellement exécutés du fait de l'uti­
lisation de variables de lien (bind variables).

© Éditions Eyrol/es 565 1

1

1 566

SQllv.é l

Les consoles

Selon la version d'Oracle, les consoles d'administration peuvent disposer d'un onglet (dans la
version l lg, il se nomme Scherra / Feui ll e de c alcul SQL. ..) pour visualiser les plans
d'exécution. Pensez à donner à l'utilisateur les prérogatives nécessaires (par exemple, SELECT

ANY DICTICNARY). L'outil SQL Developer fournit depuis longtemps un aperçu graphique
d'un plan d'exécution :

Figure 12-4 Plan d'exécution avec SOL Deve/oper

OJim'pdt><xd

tJ. li éi Il 0,23 soa>ndes

Plan
SELECT a . adhid , a . prenom , a . nom

FRON Adherent a , Pratique p , sport s
WHERE TO_CHAR(DATE_NAIS ,
AND a .adhid = p.adhid
AND s.spid = p.spid
AND s.spliballe = 'Hand-ball' OROER BY

I> RHultat clê , ... • .. F't6n d'ellécution •

OPEAATIOH 08JECT Jt,t,ME

W e SELECT STATEMEllT
19 t SORT (OROER IN)

.. M liASH JOUI

'il cr .. Ac<ess Predlcotes
li A AtlO

A.AOHIO:P.AOHIO
S.SPIO=P.SPIO

_,. bd Mf:RC':I= lOIN fC"AATf:c;lANl

L'outil llQJrof

CARl>lllAUTY COST

33
33
33

87
87
87

"

L'outil tkprof n'est pas une commande SQL ou SQL*Plus mais un exécutable du système
d'exploitation. Il utilise les fichiers de trace d'Oracle et fournit des infonnations détaillées (sous
forme de fichiers texte) à propos des sessions. Les informations extraites concernent les temps
des opérationsparse, execu!e etfetch, Je nombre de lignes traitées et les plans d'exécution réels.

La procédure à suivre pour l'utilisation de cet outil est la suivante :

• positionnement d'un certain nombre de paramètres affectant Je traçage (statistiques et
localisation du fichier de trace) ;

• activation du traçage de la session (ALTER SESS ION. . ou DBM>_SESSION. SE!'_SQL_

TRACE ...) ;

• exécution de la session dont les instructions sont désormais tracées ;

© ÉdW/ons Eyroles

• désactivation du traçage (ALTER SESSION .. ou IEMS_SESSI ON. SESSI ON_TRACE_
DISABLE ...) ;

• exécution de l'utilitaire tkprof afin de produire un rapport basé sur Je fichier des traces.

Positionnement des paramètres

Le paramètre TIMED_STATISTICS doit être positionné à vrai au niveau de J' instance (fichiers de
configuration ou par le biais de la commande ALTER SYSTEM). Au niveau d'une session seule
)'instruction ALTER SESSI ON SET TIMED_STI\TISTICS = TRUE; peut suffire.

Assu rez-vous de d ispose r d'une taille suffisante lors de la création du fichie r de trace (exemp le
pour 1 Mo :ALTER SESSI ON SET MAX_DUMP_FILE_SIZE = 1000000 ;).

L'emplacement du répertoire USER_DUMP_DESTest déterminé au niveau de l'instance dans Je
fichier d'initialisation et il ne peut être modifié que parle DBA et ce, pour toute l'instance. La
recherche du nom du fichier de trace (de la forme nom_ins tan ce-_ ORA_numer o . trc)
associé à la session en cours ne peut s'effectuer qu'en interrogeant des vues dynamiques du
dictionnaire des données.

lllllleaU 12·12 lllClllRlll da rilllltclh 11 da•• 1111 ne1111r ll'llCe

E"'11ctlon du nom du ficher trace de la leSSlon couranle

SQL> SELECT value AS "Fi chier t r ace "
FROM v$di ag_in fo
WHERE name = ' Defaul t Trace Fil e ' ;

Fi chie r t r ace

C : \ APP\CSOUTOU\d i ag\ rdbms \or c l \or c l \tr ace\o r c l _or a...4464 .tr c

Activation et désactivation du traçage

Vous devrez disposez de la prérogative ALTER SESSION pour activer Je traçage dans une

session. Le tableau suivant présente les instructions à exécuter dans une session SQL*Plus.
La deuxième écriture présente J'avantage de pouvoir se trouver à l'intérieur d'une procédure
cataloguée.

Avant 10g

ALTER SES SI ON

lllllleaU 12·13 lellvato11111 ll'IÇaDI 10111 SŒ '1'1111

Après 10g

BEGIN
srr aqi_ tr&ce•TRUI:; DBMS_ S&SSION.srr _ SQL_TRACZ (sq l _ trace => t ru e);

END;

© Éditions Eyrol/es 567 1

1

1 568

SQllv.é l

En plaçant, de la même manière, à FALSE le paramètre sql_tra ce, la session n'est plus
tracée. Vous devez ensuite choisir au niveau de la session d'inclure ou non les attentes et les
variables de lien. L'instruction PUSQL suivante positionne à vrai ces deux paramètres :
DHllS_SESSI ON.SESSI ON_TRJ>CE_ENABLE(v.aits => true, binds => true) ;

Exécution de tkprof

Une fois vos requêtes ou vos procédures exécutées et la trace désactivée, vous pouvez faire
appel à tkprof en précisant principalement le nom du fichier résultat et le chemin vers le fichier
de trace d'Oracle. Beaucoup de paramètres sont disponibles ; nous ne les détaillerons pas.
Dans l'exemple suivant, tkprof crée le fichier matrace. txt dans le répertoire C : \Tenp. Les
options choisies ici sont s ys=no qui évite de tracer les instructions internes et wai t s =yes qui
prend en compte les attentes.

1
tkprof C: \ app\ soutou \ d i ag\ rdl:ms \ bdcs llgr2\bdcs llgr2\ trace \BDCS11GR2_
ORA_5928 . trc C: \Temp \ Iœl_ trace.txt sys=no wai ts=yes

Le tableau suivant présente la première partie du fichier de résultat (reformaté pour l'alléger)
qui correspond à la trace de la requête qui extrait, par ordre alphabétique, l'identité des adeptes
féminines du golf nées entre 1955 et 1994 et disposant d'un numéro de téléphone portable.

T- 12-14 116sdlat 11121 Ill 1Ur01

Première partie du fichier de IOrtie

TKPROF: Rel ease 11. 2 . 0 .1. 0 - Deve l opmen t on Lun. Mai 10 12 : 08 : 50 2010
Cop yri g ht (c) 1982 , 2009 , Orac l e and/or its affi liates . All r i ghts r eserved .

Trace fi l e : c : \app\so uto u\diag\ rdl:ms\bdcsllg r 2\bdcsllg r 2\trace\ BOCS11GR2_0 RA_5928 trc
s or t opt i ons : defa. ul t
*** SESSICN ID: (29. 847) 2010-05- 10 12 : 04: 08 . 343

SELE:T a. . adh i d , a. .pr enom, a .nom FROM Adher ent a., P-ra.ti que p , Spor t s
WHERE TO_NUMBER(TO_OIAR(DATE_NAIS, ' YYY'i ')) < 199 5
AND TO_NUMBER(TO_CHAR(DAT<;_NAIS, ' YYY'i ')) > 1954
AND NOT (CIVILITE = ' Mr. ') AND SUBSTR (TEL, 1, 2) = ' 06 '
AND a . adh i d = p . a dhid AND s . spi d = p. spi d AND s . splibell e = ' Gol f '
OROER BY nom

call count cpu e l apsed d i sk query current ro ws
---------- ---------- ---------- ---------- ----------

Parse 0 .01 0 . 00 0 0 0 0
Execute 1 0 .00 0 . 00 0 0 0 0
Fetch 8 0 .06 0 . 08 0 250 0 104

---------- ---------- ---------- ---------- ----------
total 10 0 .07 0 . 09 0 250 0 104

Alors que EXPLAIN PLAN présentait des valeurs estimées (prédictives), cette trace indique par
exemple que la requête a effectivement dUiée 9 centièmes de secondes. La signification de ces
données est la suivante :

© ÉdW/ons Eyroles

-. .. 1sa11o111

• count: nombre d'appels d'une phase (parse, execule etfetch) ; ici 8 opérationsfetch ont
été nécessaires pour extraire 104 lignes contenues dans 250 blocs.

• cpu: temps processeur (en secondes); s'il est à zéro, vous n'avez pas dû positionner à
TRUE le paramètre TIMED_ SATISTI CS.

• elapsed: temps incluant les attentes qui ne sont ni CPU, ni entrée-sorties (verrouillages
par exemple) ; s'il est à à zéro, voir l'item cp.i ..

• disk : nombre de lectures physiques (ici aucune car la requête avait déjà été exécutée,
donc le résultat monté en SGA).

• query: nombre de blocs (lecture consistante, équivalent à ccnsistent gets de
EXPLAIN PLAN).

• current: nombre de blocs en mode CURRENr (équivalent à db block gets de EXPLAIN

PLAN).

• rows: nombre de lignes traitées (n'inclut pas les sous-requêtes); pour les extractions, ce
nombre se trouve dans la ligne Fetch ; pour les mises à jour, il se situe dans la ligne
Execute.

Plutôt que de focaliser sur cpu et elapsed, surveillez disk et cp..iery. En effet, trouver systé­
matiquement un grand nombre de lecb.Jres physiques pour la même extraction peut être inquié­
tant et peut mener à un travail sur la mémoire (tuning). De même, trouver un très grand nombre
de blocs manipulés pour un faible nombre de lignes retournées peut irmposer de réorganiser
les données (index, c/uster, etc.).

Plus le temps cpu d'une requête diffère du temps d'exécution avec attentes (elap sed), plus il
est probable que certaines contentions du système d'exploitation existent (CPU trop sollicitée,
beaucoup d'ent rée-sort ies, répartition physique mal adaptée, verouillages , etc.).

Le nombre de blocs lus (query+current) est le facteur influençant les autres, notamment
rows; il n'est pas anormal que ce dern ier soit égal à 1 (fa si 1os blocs sont également lus. En
revanche, vous dev rez peut être agir si l'extraction lit 1os blocs pour ne ramener que que lques
lignes.

Tous ces facteurs sont à d iviser par le nombre de fois où la requête a été exécutée (count).
Traiter un million de blocs en un appel est bien plus performant que de les traiter en
10 000 appels.

© Éditions Eyrol/es 569 1

1 SQllv.é l

La seconde partie du fichier de sortie concerne Je plan d'exécuti on et les attent es.

T-12·15 161111111 12121 Ill 1Ur81

Seconde parle du flchler de 1«'8

Rows Row source Operat i on

1 04 SORT ORDER BY (cr=250 pr=O pw=O time =O us cost=777 size =2892720 card =42540)
1 04 HASH JOI N (cr=250 pr=O pw=O time =71760 1 us cost=89 s i ze=2892720 card =42540)

1 TABLE ACCESS FULL SPORT (cr=7 pr=O pw=O time =O us c ost=3 size =1144 card =1 04)
3281 HASH JOI N (cr =243 pr=O pw=O t ime=l 23756 us cost =85 s i ze=279756 card =4908)
3195 TABLE ACCESS FULL ADHERENI' (cr=l 90 pr=O pw=O time =35517 us cost =69 size =l 56555

card =3195)
27011 TABLE ACCESS FULL PRATIQUE (cr =53 pr=O pw=O time =74659 us c ost=l S size =216088

card =270 11)

El apsed t i mes i nc lude wait ing on f oll owi ng
Eve nt wait:ed on

events:
Times Max. Wait Tota l wai ted

SQL*Net message t o c l ient
Dis k fi l e operat i ons I /O
asy nch descript or resize
SQL*Net message from c l ient

Waited
8
1
2
8

0.00
0.0 1
0.00
0. 11

0.00
0.0 1
0.00
0.77

1 570

La signification de chaque ligne (row so11n:e) du plan d'exécuti on est la suivante . Afin d' obte­
nir ces détails, la trace de la session doit ê tre désactivée avant d'exécuter Je rapport (cr dési­
gne les lectures consistantes, r les lectures physiques et w les écritures physiques). On retrouve
à chaque étape, Je temps d'exécuti on en microsecondes (t ime), Je coût (coot qui engl oble Je
coût des étapes précédentes), la taille en octets (s ize) et Je nombre de lignes traitées (card).
Concernant cette requê te, on peut dire que Je coût principal est Je tri final de la j ointure qui
concerne 250 blocs.

Bilan

Ne tenez pas compte uniquement des plans d'exécuti on lors de l'analy se d'une trace tkprof.

!.:étude du nombre de blocs est primordiale ; à ceux qui déda rent • Le select met 50 secondes
à répondre, pourtant il n'y a pas d'access full /•, on peut répond re qu'un access full ne rime
pas avec requête mal écrite. Au contraire, que l que soit le volume d'une table, Orade se d is­
pense en fait souvent des index (à plus forte raison quand le volume de la tab le est faible).

Un index doit être examiné de près (à créér s'il n'existe pas) et modifié s i le nombre de blocs
traités est important par rapport aux lignes retounées . Plus le ratio (query+current)/rows est

plus il faut surveille r l'instruction SOL.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Assurez-vous que vos configurations de tests et de production soient identiques sinon les plans
d'exécution seront différents. De même, si vous tracez un programme, créez un index, puis
analysez Je rapport ; les explai11s peuvent utiliser cet index et vous ne serez pas dans les mêmes
conditions.

Enfin, il est possible d'exécuter tkpr o f même si l'application n'est pas terminée. Bien que
certaines données concernant les lignes, blocs et temps n'apparaissent pas, les plans d'exécution
sont disponibles.

Pa111etage DllJIS_APPUCATION_INFO
Disponible depuis la version 9i release 2, Je paquetage DBMS_APPLI CATION_INFO sert à enre­
gistrer des informations de surveillance utiles. Ces infoonations sont stockées dans les vues
V$SESSI ON et V$SQLAREA. Ce paquetage permet de répondre aux problématiques ou scéna­
rios suivants :

• Quelle est J' application qui exécute la session, quelle est la partie du code exécutée ou
encore combien reste-t-il de temps avant de terminer J 'opération en cours ?

• Une procédure s'exécute et il est nécessaire d'éviter des exécutions simultanées (une
procédure doit être en mesure de savoir si une autre est déjàen cours d'exécution).

• Plusieurs procédures effectuent des mises à jour qui peuvent entraîner des erreurs dues aux
verrous (ORA- 00054 - resourc e busy ou ORA- 00060 - deadlo c k dete c ted).

Initialisation des informations

Afin d'informer d'autres applicatifs, votre application peut initialiser :

• Je nom du module (en général Je nom de l'application, de la procédure, du déclencheur,
etc.) à J'aide de la procédure SET_MODULE ;

• Je nom de l'action (en général Je nom de la transaction, la valeur d'un compteur, etc.) à
J'aide de la procédure SET_ACTICN ;

• des informations à propos du client (de toute nature) à J'aide cle la procédure SET_
CLIENI'_INFO.

Le tableau suivant décrit une procédure (qui ajoute une ligne à la table Sport et compte
ensuite Je nombre de sports) et informe de son exécution en utilisant Je paquetage IEMS_
APPLI CATION_INFO. L'extraction des informations est réalisée en interrogeant la vue
V$SESSI ON en précisant qu'il s'agit de la session en cours. Pour cela, il faut utiliser la vue
V$MYSI'AT qui concerne les statistiques de la session en cours et tester Je contexte d'exécution
à J'aide de J' identifiant de la session auditée (auds id).

© Éditions Eyrol/es 571 1

1

1 572

SQllv.é l

T- 12·16 Udlsalloe dl œMS_ll'fllCll'lllf_NO

Procéchn lnhlallsanl les Informations

CREATE PROCEDURE ajoute_sport
(v_spid NUMBER, v_splibelle VARCHAR) AS
v_nbrsport NUMBER : = O;

BEG I N
DJIMS_ APPLICATION_ INPO.SZT _CLISNT_ INJ!'O

(c li ent _ info => ' c li ent web ');
DJIMS_ APPLICATION_ INPO.SZTJIODOLS

(mcdule _n ... => ' ajoute _ sport ' ,
action_n.,.. => NULL);

Transa ct i on
I NSERT INTO sport (spid, spl ibe lle)

VALUES (v_spid, v_ spl ibe lle);
COMMIT;

SELECT COUNI'(*) INrO v_nbrsport
FROM sport;

DJIMS_ APPLICATION_ INPO.SZT_ACTION
(action_naae => 'Nombre de sports

11 v_nbrsport);
END;

-- résul tat de l a requ ête
SID SERIAL# MODULE ACTION

lnlen'ogdon du clctlonnalre

SELECT sid, se.ria l-# , modul e,
action, c li ent _ info

FROM V$SESSION

WHERE sid
(SELECT DISTINCT s id

FROM V$M'lSTAT)

AND audsid
SYS_CONI'EXT(• user e nv ' ,

• sessionid ') ;

CLI ENT_ I NFO

19 111 ajoute_sport Nombre de sports : 13 c lient Web

En principe, il faut réinitialiser Je nom du module, de J' action et les informations du client à la
fin de la transaction de sorte que ces données ne caractérisent pas toutes les transactions
suivantes de la session. L'appel aux procédures suivantes : SET_MOIXJLE (N\JLL, N\JLL) et
SET_CLIENI'_INFO (N\JLL) du paquetage IEMS_APP LICATION_INFO doivent donc précéder
le END final.

Lecture des infonnations

Il est possible d'extraire Je nom du module, de l'action et les éventuelles informations du
client à J'aide de READ_MODULE, READ_ACTION et READ_CLIENI'_INFO dw paquetage DBMS_

APPLICATION_INFO. Le tableau suivant décrit un bloc qui extrait les informations de la
session en cours.

© ÉdW/ons Eyroles

-. .. 1sa11o111

llllleaa 12-11 Ellll'ICdCle d'llll-atoDS MC •S_ll'fllCll'llll_NO

Procédire qui ettall les lnlormdons Réslllat

DECLARE
v_c li ent _info VARCHAR2 (64);

v_module VARCHAR2 (48);

v_act i on VARCHAR2 (32);

a j o ute_ s por t/Nombr e
de spor t s :
13/c li en t web

BEGIN

DBMS_ APPLICATION_ INl'O.R&AD_llODOL&(v_module ,v_ act i on);
DBMS_ APPLICATION_ INl'O.R&AD_CLIDrr _ INPO (v_ c li en t _ info);
DBMS_ OUTPUT . PUT_LINE

(v_modul e l I ' I ' l lv_ act i onl I ' I ' l lv_ c lien t _info);
END;

Contrôle de la concurrence

Les informations du DBMS_APPLICATION_INFO permettent aussi de contrôler la concurrence
des procédures cataloguées. En effet, au lieu de coder l'exclusivité des processus par des
verrous ou par une valeur dans une table (ce qui posera toujours problème si une session est
tuée ou finit anormalement), il suffit de consulter la vue V$SESSION pour constater si une
procédure donnée est en cours ou terminée.

Le tableau suivant décrit la fonction qui s'assure de l'exécution exclusive des procédures pl et
p2. Le raisonnement vaut également si pl et p2 ne font qu'une (on interdit alors à la procédure
d'être multisession).

T-12·18 Cllalriill Ill la -- d'uicllto1

Foncilon el les deux procédires

CREATE FUNCTION v eri f i e_exec (v_module IN VARCHAR2) RETURN BOOLEAN IS
v_nbr e INI'ElGER;

BEG IN

SELECT l INTO v_nbr e FROM V$SESSI ON

WHERE modul e = v_module AND ROWNUM = 1;
RETURN (FALSE);

EXCEPTI ON

WllEN NOJ)ATA,..FOUND THEN
RETURN (TRUE);

END;

CREATE PROCEDURE pl IS

BEG IN
IF NOT veri f i e_e xec (' p 2 ') THEN

DBMS_ OUTPUT . PUT_LINE

CREATE PROCEDURE p 2 IS

BEGIN
IF NOT ve ri f i e _ ex êê ('pl ') THEN

DBMS_ O UTPUT . PUT_ LINE
(' p2 es t en cours d ' ' e xecut i on .. . ');

RETURN;

('pl es t en cours d ' ' execut i on ... ');
RETURN;

END IF; END IF;

© Éditions Eyrol/es 573 1

1 SQllv.é l

1 574

11111111112-18 Collb'Gll d1 li CGl-ce d'u6cudoe (suite)

Foncilon el les deux proc:Mlres

DBMS_AP PLI CATION_I NFO.SET_MODULE DBMS_ APPLI CATION_INFO. SET_l<IODULE
(' pl ' , ' ajout adhe r en t ');

-- t.ra nsact i on ajout adherent ...
('p2 ' , ' ajo ut adhe.ren t ex teri eur ');

-- t ransact i on ajout adher ent ex terieur
DBMS_APPLI CATION_INFO. SET_MODULE DBMS_AP PLI CATION_I NFO.SET_MODULE

(NULL , NULL) ; (NULL, NULL) ;
END; END;

l'utiltaire runstats de Tom Kvte
Célèbre gourou Oracle et fondateur du site hltpt lasktom.oracte.com, Thomas Kyte est aussi
l'auteur du paquetage runstats (run s tats_pkg) disponible sur http:llappsdba.comltechinfol
runstats.htm. Il permet de comparer deux solutions d'implémentation différentes (requête,
instruction, procédure, etc.) en se basant sur un certain type de verrous d'Oracle : les /atches.

Ces verrous sont des mécanismes de sérialisation de bas niveau qui protègent les structures de
mémoire partagée dans la SGA . Les latches préservent la mémoire accédée par plusieurs tran­
sactions concurrentes, en interdisant la modification de la zone mémoire en question par
plusieurs process .

Le paquetage de Tom Kyte réalise un calcul différentiel des statistiques cumulatives contenues
dans les vues V$SYSSTAT et V$SESSTAT. En comparaison avec les autres u tilitaires, runstats
permet de prévoir la solution qui conviendra Je mieux en cas de montée en charge du volume
des données .

Il est préférable d'ut iliser ce paquetage en travaillant seul sur la base de sorte à ce que les
mesures ne soient pas pertubées par d'aut res transactions. Dans un mode mono-utilisateur,
vous devrez privilégier la solution minimisant le temps d'exécut ion. En revanche, dans un mode
multi-utilisateur, vous devrez préférer la solution minimisant les /aiches.

Préalables

Sous SYS AS SYSDBA, attribuez à l'utilisateur qui désire exécuter Je paquetage runstats Je
droit CREATE VIE\'/ et SELECT sur les vues SYS .V_ $TIMER, SYS .V_ $MYSTAT, SYS .V_

$IATCH et SYS . v _ $STATNAME. Exécutez ensuite Je script runs tats . sql qui définit et implé­
mente Je paquetage dans votre schéma .

Exemple

Le tableau suivant décrit deux implémentations de la mise à jour du solde de tous les adhé­
rents . La première solution est la pire qui soit car elle vérouille la table, utilise un curseur
parcourant toutes les lignes de la table puis accède individuellement à chaque enregistrement
par son rowid La seconde réalise la mise à jour globale en une seule instruction .

© ÉdW/ons Eyroles

llles à jour par llératlons

CREATE PROCEDURE test_p l s ql AS
BEGIN

LOCK TABLE Adheren t IN EXCLUSIVE MOŒ;

FOR r ec IN
(S ELECT Adheren t . *' ROWID AS rid FROM Adheren t)

LOOP

UPDATE Adheren t SET solde = solde * 1.1
WHERE r owid = r ec . rid;

END LOOP;
COMMIT;

END test_p l s ql;

Principe d'utilisation

-. .. 1sa11o111

Ille à jour glcbale

CREATE PROCEDURE test _ s ql AS

BEGIN

UPDA1E Adheren t

SET oolde solde * 1.1;
COMMrr;

END test _ s ql;

Le principe est d'appeler Je paquetage au début de la comparaison, d'exécuter la première
implémentation, d'appeler Je paquetage, d'exécuter la seconde implémentation puis d'invo­
quer une dernière fois Je paquetage afin d'obtenir les résultats.

Le seul paramètre concerne la procédure r s_s top qui attend une valeur seuil (p_
differen ce_thre sho ld) déterminant l'affichage des résultats (ici Je seuil est fixé à 50). Les
résultats basés sur les statistiques et les latches seront donc, pour chaque test, triés par ordre
croissant si la différence des chiffres obtenus (en valeur absolue) excède la valeur 50.

lilllelU 12·20 llllsalollll IUISlllS

Exécution el réslllats

BEGIN
runstat s_pkg. rs _start ;
tes t _pls ql;
runs tat s_pkg. r s_mi dd l e ;
tes t _ sql;
runstat s_pkg. rs _stop (50);

Awels au paquetage runstats entre l'exécution des deux
solutions d'implémentation à comparer.

END;

Runl ran in 101 hs"cs
Run2 ran in 25 hsecs
run 1 ran in 404* of t he t ime
Name Runl Run2 Diff
STAT ... r ê<:urs ive cpu usage 8 6 24 ·62
STAT ... Elapsed Time 10 3 26 -77
STAT ... CPU used by t his s e s s i o 10 5 23 · 82
STAT ... cons is ten t get s f r om ca 47 4 558 84
STAT ... t abl e s can blocks gotte 419 507 88
LATCH.simul ator hash l atc h 2 , 33 9 2 ,432 93

© Éditions Eyrol/es 575 1

1

1 576

SQllv.é l

T_, 12-20 u•a11oe 11111111tats (suite)

Exécution et réslftall

STAT . .. s es s i on uga memory max
STAT ... undo change vecto r s ize
STAT ... redo s ize

123 , 452 0
2 ,11 7 , 576 3 , 525 ,000
5 , 985 , 752 10, 173 , 9 56

- 123 '452
l, 407 '424
4, 188 ' 204

Runl l atc hes tota l versus runs -- di f fer ence and pet
Runl Run2 Di ff Pet
178, 215 198, 7 94 20, 579 89 .65*

La seconde implémentation est plus rapide d'un facteur 4 par rapport à la première mais
nécessite un peu plus de ressources concernant les /arches. On notera aussi que la mise à jour
globale implique deux fois plus de volume à la zone redo.

Bilan
L'article de Shirish Joshi (http:llWWw.devx.comldbzone!Article/4077811954) compare ces mécanis­
mes. Le premier tableau liste les caractéristiques des outils en fonction de leur capacité à répon­
dre à des informations.

llllleaa 12-21 C.llCllrlldllHS dis 111111.llres

Explaln plan Autotrace R..,stats

Temps d 'exécution X X

Déts//s du SOL X
Entrées-sorties logiques X

Montée en chsrge/18/ching X
Evénements d'attente

Le second tableau compare les outils en fonction d'autres paramètres d'utilisation .

T_,12-22 Ilet•• 11111111111111 udllllres

Explaln plan Autolrace R111a111a

Affecté par ta mise en cache Non Oui Oui

EsUmé ou réalisé Estimé Estimé Réalisé

FoUlni par Oracle Oui Oui Non

Fbst-processlng Non Non Non
Facl/M de compsralson DWfloile Oui Oui

© ÉdWFons Eyroles

-. .. 1sa11o111

Explai11 Plan etA11totroce sont des solutions simples à mettre en œuvre, mais elles ne peuvent
désigner que des plans prévisionnels. Enfin, les résultats de rimstats peuvent fluctuer forte­
ment en fonction du cache, de la version et du paramétrage du serveur.

Orgalisation des données

Cette section décrit les composants de la boîte à outils qui vous servira à optimiser vos appli­
cations. Plusieurs mécanismes peuvent être mis en œuvre de manière conjointe : les contrain­
tes, les index, Je cache, Je partitionnement, les vues matérialisées et la dénormalisation.

Des contraintes au plus ll'ès des données
Vous devez définir, sur vos colonnes, Je maximum de contraintes d'intégrité afin de renseigner
au mieux J' optimiseur. Bien que la contrainte CHEX::K ne soit pas encore utilisée par J' optimiseur,
il est possible que dans Je temps cette fonctionnalité soit présente.

Les colonnes NOT NUU

Le fait de déclarer des contraintes NOT NlJLL ne vous empêche pas de réaliser aussi des tests
du côté de l'application. En effet, il peut être utile de vérifier qu'une valeur est présente dans
un champ de saisie d'un formulaire plutôt que d'attendre d'envoyer un grand nombre d'octets
au serveur qui renverra une erreur du fait d'un NOT NlJLL.

En supposant que la table Sport dispose de la colonne federation (dont les valeurs actuelles
sont non nulles), Je tableau suivant présente deux déclarations de contrainte NOT NlJLL.

11111111112· 23 Dicln1loe dl NllJ 11111

Déclaration 8WC CHECK Déclara..,n en Ugre (/n /lnej

ALTER TABLE spor t ALTER TABLE Spor t
ADD CONSTRAINI' ck_federat i on
CHECK (federat i on IS NO'l' Ntl'LL) ;

MODIFY fede.rat i on NOT NOLL;

Définissez NOT Nl1LL sur le plus de colonnes possibles pour renseigner l'optimiseur.

Préférez toujours la seconde écriture (in fine constrainO, pour que l'optimiseur puisse intégrer
cette information, alors qu'il ignorera la contrainte déclarée avec CHECK.

© Éditions Eyrol/es sn 1

1

1 578

SQllv.é l

Les colonnes UNIQUE

Pour toute contrainte UNIÇPE, un index (unique) est créé. Une contrainte lliIQUE difîere
d'une contrainte PRIMARY KEY par Je fait que les valeurs NlJLL sont autorisées ; elle n'a donc
pas vocation à identifier toute ligne.

Définissez UNIQUE sur les colonnes potentiellement uniques de sorte que l'optimiseur puisse
bénéficiér d'un indéx ruppléméntaii'é (la désactivation d'üné contrainté UNIQUE provoqœ la
suppression de l'index).

Le tableau suivant présente la déclaration d'une contrainte UNIQUE (création implicite d'un
index de nom un_nom_prenom_tel.) et sa désactivation (suppression implicite d'un index).
Comme il existe des homonymes au sein des adhérents, la contrainte UNIQUE minimale à
mettre en œuvre est composée du nom, prénom et numéro de téléphone.

11111111112-24 Dicln1loe dl UllQll

Déclaration de la conhlnle Désachallon

ALTER TABLE Adher ent ALTER TABLE Adher e nt
ADD CONSTRAINI' un_n om,_pr e nom,_t e l DI SABLE CONSTRAINI' un_nom,_ pren om,_te l;
ONIQUZ (nom,pr e nom, te l);

!.:index multicolonnes (nom+prenom+tel) sera bénéfique pour les extractions dont un prédi­
cat est basé sur le nom, le prénom et le numé ro, et sur un accès aux trois colonnes s imul­
tané.

Les différents types d'index ont été brièvement présentés au chapitre 1. Sans index, toute
recherche s'apparente à un parcours séquentiel de toute la table. Ainsi pour n lignes, Je nombre
moyen de lectures est égal 11/2, œ qui est très pénalisant dès que Je volume de données devient
important. De plus, ce nombre d'accès croît proportionnellement avec Je nombre de lignes
(100 fois plus de lignes implique un temps d'accès 100 fois plus long).

Étudions les cas d'utilisation des index d'Oracle de sorte à rendre une requête plus optimale.

Index B-tree

Les index B -tree (B comme Bala11ced) sont constitués comme des arbres dont les noeuds
aiguillent vers des sous-noeuds (suivant la valeur recherchée) jusqu'aux blocs feuille (leaf
blocks) qui contiennent toutes les valeurs de l'index et les adresses de ligne (rowid) identifiant

© ÉdW/ons Eyroles

-. .. 1sa11o111

Je segment de données associé. Les blocs feuilles sont doublement chaînés de sorte que J' index
puisse être parcouru dans les deux sens sans passer par la racine.

Ce mécanisme est bien plus performant qu'un accès séquentiel car pour 11 lignes, Je nombre
moyen de lectures n'est plus proportionnel à11 mais à log(!1). La taille maximale d'une entrée
d'index est environ égale à la moitié de la taille des blocs de données (soit de l'ordre de
4 000 pointeurs pour une taille de bloc de 8 Ko).

Figure 12-5 Index 8-tree (© doc. Oracle)

-----------.

·-
Un index B-tree est conçu automatiquement lors de la création de la clé primaire d'une table et
d'une contrainte UNIQUE. Les arbres B-tree présentent de nombreux avantages :

• Malgré les mises à jour de la table, ils restent équilibrés (les blocs feuilles sont au même
niveau). En conséquence, quelle que soit la valeur cherchée, Je temps. de parcours est sensi­
blement identique. Les blocs intermédiares sont remplis, en moyenne, aux trois-quarts de

leur capacité.

• Les performances d'extraction, répondant à la majorité des prédicats des requêtes, sont
excellentes, notamment les comparaisons d'égalité et d'intervalles.

• Les répercussions des mises à jour sont efficaces et ne se dégradent pas en fonction d'une
forte augmentation de la taille des tables.

Nous ne traiterons pas ici des caractéristiques physiques des index (partitions, compression,
pourcentages des tailles de blocs, etc.).

Les principales opérations que J'optimiseur réalise sur un index sont les suivantes :

© Éditions Eyro/Jes 579 1

1

1 580

SQllv.é l

• index 1miq11e scan passe par la racine de l' arl>re ; généralement toutes les colonnes de l'index
sont concernées par une égalité dans le prédicat WHERE. Il s'agit en principe de la manière
la plus optimale, mais qui n'est pas toujours utilisée par l'optimiseur au profit de range
scan.

• index range scœ1 passe par la racine de l'arbre et accède séquentiellement aux blocs feuille
(doublement chaînées). Opération très utilisée par l'optimiseur, notamment lorsque une
colonne de l'index est concernée par une inégalité dans le prédicat WHERE, et que l'index
n'est pas unique. Dans tous ces cas, l'optimiseur juge qu'il est plus rapide de parcourirles
feuilles de l'index plutôt que l'index lui-même.

Figure 12-6 Acc<ls drect et par parcours par lntllfval/es d'un Index B-tree

Jm).:.x umqm: :>C'111 f rtd..!.\' l'0'1g.! SùUI

• index fidl scœ1 et index fast filll scœ1 sont une alternative au parcours filll table scœ1 quand
l'index contient toutes les colonnes necéssaires à la requête et qu'au moins une de ces
colonnes est N)T NJLL Il ne peut pas être utilisé sur un index bitmap ; le parcours de l'index
entier est plus rapide car il se réalise en mode lecture multibloc et peut être parallélisé.

• index sld.p scan (concerne les index multicolonnes) utilise l'index alors que la (ou les)
première(s) colonne(s) de l'index n'est (ne sont) pas dans le prédicatWHERE.

Figure 12-7 Parcours séquenUel et par saut d 'un Index 8 -tree

/nJ.,x lfusl) /111/ S<·un

© ÉdW/ons Eyroles

-. .. 1sa11o111

afin d' isoler le stockage physique des index, on utilise un tablespacedéd'té (qui
peut se trouver sur un autre disque que celui des données) . Il est auss i d'usage de créer un
index pour chaque clé étrangère afin de rendre plus efficace les joinb.Jres.

Le tableau suivant présente d'une part la création de J'espace de stock.age pour héberger les
index et, d'autre part, la création d'index affectés à cet espace (une clé primaire et une clé
étrangère non unique) .

Création de l'etp11C8

CREATE TABLESPACE tbs _ i n dex
DATAFILE ' t bs _ i ndex.d.at '
SIZE SOOM REUSE
AUTOEXTEND ON
NEXT SOOK MAXSIZE 2000 M;

Ctée..,n d'index

--co l onne "c l é primaire "
ALTER TABLE Adh eren t

ADD CONSTRAI NT p k,_Adheren t PRIMARY KEY
(adhid)

OSING INDEX TABL&SPAC& tbe_ ind.ex;

--co l onne "c l é étrangère "
CREATE INDEX i dx_Prat ique _ a dhi d

ON Prati que (adhid) TABLSSPAC& tl>e _ illdex;

Pour se convaincre de l'utilité des index, exécutez la requête avec et sans index (il s 'agit d'une
division) qui extrait les adhérents inscrits à tous les sports. L'adhérente la plus sportive est,
sans conteste, Céline Larrazet et il faut 36 secondes sans indexage pour découvrir J 'identité de
la chrunpionne alors que la réponse est quasi instantanée en présence d'index sur les clés
étrangères . Les chiffres sont éloquents même pour une volumétrie réduite (24 000 adhérents
dans 1 800 blocs) : sans index, on recense 20 fois plus d'accès aux blocs et de nombreux tris.

11111111112·26 Ptlf-ces d'•• UIJ'IClloe MC et ms lllllu

Avec Index Sanslndm

SELECT a.c i vili te, a.pren om, a. nom, a.te l FROM Adherent a
WHERE NOT EXI STS

(SELECT s pid FROM Spor t

MINUS SELECT s pid FROM Pratique WHERE a dhid = a.adh id)

AND NOT EXIST S
(SEL ECT s p id F ROM Pratiq ue WHERE a dhid a.adhid
MINUS SELECT s pid FROM Spor t) ;

C IVILITE PRENOM NOM TEL

Mme. CEL INE LARRAZET 05-62- 18-0 4 -76

© Éditions Eyrol/es

3 cent i èmes de s ê<:ondes
114 recursive call s
7273 4 cons i stent gets
0 sor ts (memory)

36 seco ndes
533 r ê<:urs i ve call s
144 271 9 cons i stent gets
4 8080 sor ts (memo ry)

581 1

1

1 582

SQllv.é l

Bien que les index 8 -treesoient majoritairement employés, ils ne conviennent pas aux condi­
tions suivantes :

Données de fable cardinalité : on considère qu'une colonne disposant de moins de 200 valeurs
disctinctes n'est pas une bonne candidate à un index 8 -tree (par exemple, la civilité qui ne
comporte que 3 valeurs). Les index bitmap sont une alternative à cette limitation.

Quand l'accès aux données s'effectue par une fonction SOL (built-in function), l'index 8 -tree
n'est pas utilisé (par exemple V.HERE UPPER (prenom) = 'PAUL ' n'emploiera pas l'index sur

Le fait de créér un index sur cette fonction est une alternative à coette limitation.

Index et expressions (buüt-infunction)

Si vous utilisez des fonctions caractères (UPPER, SUBS'IR, RTRIM, etc.) ou des fonctions numé­
riques (MOD, ROUND, TRUNC, etc.) dans Je prédicat de vos requêtes, n'espérez pas utiliser vos
index.

Le tableau 12-27 présente les resultats de différentes requêtes selon deux stratégies d'indexage.
La volumétrie de la table Adherentbis est de plus d'un million d'adhérents (88 Mo de donn­
nées occupant près de 90 000 blocs). Pour chaque requête, sont donnés : Je type de parcours de
l'index (table accessf11ll: l'index n'est pas utilisé), Je nombre de blocs Jus (b) et Je coût (c).

T-12-2'1 uea11oe d'lllllu 1·1191 ••del Q1resslo11111 cei-s

Index existants

CREATE INDEX idx,_nom
ON Adhe.rentbis (nom.)

TABLESPACE tbs_index;

CREATE INDEX idx,_s ol de
ON Adhe.rentbis (solde)
TABLESPACE tbs_index;

Prédicats et résultats

WHERE noa- 1 DOCLOS 1

AND civi li te= ' Mr. '
AND te l LIKE ' +33* '

Index range scan
(578 b -11 0 c)

WHERE
UPPER(DOa)= ' DUCLOS'

AND c ivilite = ' Mr. '
AND te l LIKE ' +33* '

Table access full
(10236 b - 2797 c)

WHERE ROUND(aolde,1) =9030.8 WHERE aolde•9030.75

Table access fui
(10235 b - 2802 c)

Index range scan
(3b - 3c)

CREATE INDEX idx_UPPERn om WHERE nom.: ' DUCLOS ' WHERE
OPPD.(noa)•'DOCLOS 1

AND c ivilite = ' Mr. '
AND te l LIKE ' +33* '

ON Adhe.rentbis
(OPPER(DOa))

TABLESPACE tbs_index;

CREATE INDEX
idx_ROUNDsol de

ON Adhe.rentbis
(ROOND(aolde,1))

TABLESPACE tbs_index;

AND civi li te= ' Mr. '
AND te l LIKE ' +33* '

Table access fui
(10229 b - 2795 c) Index range scan

(578 b - 107 c)

WHERE ROOND(aolde,1)•9030.8 WHERE aolde =9030.75

Index range scan
(3b - 3c)

Table access full
(10229 b - 2795 c)

© ÉdW/ons Eyroles

-. .. 1sa11o111

Les remarques que J' on peut déduire à propos de la première stratégie d'indexage sont les
suivantes :

• Les fonctions ROUID et UPPER rendent inopérants les index définis pourtant sur les colonnes
concernées.

• Les index sur les colonnes numériques sont plus performants que les index sur les colonnes
chaînes de caractères.

Concernant la deuxième stratégie d'indexage, les fonctions ROUND et UPPER rendent opéra­
tionnels les index, mais les conditions simples sur les colonnes entraînent un parcours entier
de la table.

Index et NULL

Le principe de fonctionnement des index B-tree ne permet pas une recherche directe (1111iq11e
sca11) sur une absence de valeur (N\JLL) ; en conséquence, si un index existe sur une colonne
non nulle, il ne sera pas utilisé au mieux lors de la recherche des NlJLL (prédicat I S NlJLL ou
I S N0r N\JLL).

Pour indexer efficacement une colonne qui peut contenir des NlJLL, plusieurs solutions
s'offrent à vous :

• index basé sur une fonction déterministe qui retourne un entier quand la colonne vaut
NlJLL .

• index composé par une colonne qui n'est jamais NlJLL ;

• index basé sur une fonction adéquate comme NVL2 (chaine, valeur_si_NOT_NULL,
valeur_si_NULL) .

Appliquez ces différentes solutions à votre base de sorte à déterminer la plus performante. Le
tableau suivant présente quelques résultats d'après la recherche du nombre d'adhérents en
fonction de leur numéro de téléphone donné (N\JLL, valeur, N'.YI' NULL). Concernant les
données, 37 485 adhérents n'ont pas de numéro de téléphone (soit 3 % de la population). Pour
chaque type d'indexage, sont donnés la taille de J' index en Mo, le type de parcours de J' index,
le nombre de blocs lus (b) et le coût (c).

T-12·28 llllsato1 d'llldu l-1191 mr •• CGIGI• Mii des 111111111111111

SELElCT COUNT(nom) tel = ' 06-81-94 -
FROM Adhe.rent WHERE. ..

Sans Index

Index: 8 -tree (taille : 38 Mo)
CR&AT& INDS X idx_ tel._ btr ..

ON Adherent (tel);

© Éditions Eyrol/es

Concltlon sur la ruUllé

te l IS NULL

1àb/e access full
(10228 b - 2793 c)

te l IS NULL

1àb/e access full
(10228 b - 2793 c)

44-31 ' tel IS NOT NULL

Table sccess full Table access full
(10228 b - 2796 c) (10228 b - 2793 c)

Index range scan Index fast full scan
(4b - Sc) (4756 b -1 293 c)

583 1

1 SQllv.é l

1 584

T 12-28 uea11oe d'llll• 1-1111• •• •• n• del vllllm NW (suite)

SELECT COUNI' (nom) tel = ' 06-81-94-

FROM Adhe.rent WHERE ..• Condhlon 11r la rullllé 44-31 ' tel IS NOT NULL

Index <onction (taille : 0,68 Mo) f _ te l _ null (te l) = l Sans objet
CREATE FUNCTION f _t•i_null Index fast full scan Table access full
(p _ te l Adhe.rent bis .te l* t ype) (28 b - 84 c) (10228 b - 2796 c)
RETURN NUMBER DftDMJ:NISTIC AS

BEGIN
IF p _ t .e l IS NULL

THEN RETURN l;
ELSE RETURN NULL;

END IF;
END f _ t .e l _null;

CR&AT& INDl:X idx,_ tel.J>tr-
ON Adherent (f_ tel._null (tel));

Index composé : 41 Mo) te l IS NULL
CR&AT& INDl:X idx,_ tel.J>tr- Index range scan Index range scan Index fast full scan

ON Ad!heren t (tel,0);
(166 b - 76 c) (4b - 5c) (5150 b -1 399 c)

Index <onction NVL2 (taille : 0,62 Mo) NVL2 (te l,NU LL, 0) =0 Sans objet
CREATE INDEX i dx_te l _ b t r ee Index fast full scan Table access full

ON Adh.e.ren t (NVL2 (te l.NULL, 0)); (74 b - 21 c) (10228 b - 2796 c)

Index unique (taille : 37 Mo) te l IS NULL
CR&AT& ONIQUI INDl:X idx,_tel_l>tree Table access fui Index unique scan Index fast full scan
ON Adhe.rentbi• (tel);

(10228 b - 2793 c) (4b - 3c) (4599 b -1 250 c)

w index les plus performants sont :

• Pour répondre au prédicat I S NlJLL, ceux qui utilisent une fonction (déterministe pour l'un
et NVL2 pour J' autre).

• Pour répondre au prédicat col=valeur, l'index classique, unique ou composé, qui offre
les mêmes résultats.

• Pour répondre au prédicat I S NOT NlJLL, l'index unique.

Index bitmap

Un index bitmap est organisé comme un index B-tree dont chaque feuille permet de pointer
vers plusieurs lignes. Chaque en-tête de bitmap contient un rowid de début et de fin. À partir
de ces valeurs, un algorithme met les bitmaps en correspondance avec des rowid. Chaque posi­
tion de bitmap correspond à une ligne potentielle de la table, même si cette ligne n'existe pas.
Le contenu de cette position, pour une valeur particulière, indique si la ligne contient ou non
(1 ou 0) cette valeur dans les colonnes du bitmap.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Figure 12·8 ACC<!s direct et par pa.rcoU1s pa.r lntervs/le d'un Index 8 -tree

Index 8-trtt

10 . 0 . 3 ,

10 . 0. 3,

Table
.................

12 . e . 3, <l» oo10000 010000000
12 . 8 . 3, 000101000 000000000

8IOC:12

0 100 1céo:;..

100100000>
10 . 0. 3, 12 . 8 . 3, 010000000 001 100000
10 . 0. 3, 12 . 8 . 3, 00 1000000 100000000 00 1000010>

Cli ROWIO ROWIO Bltmop
de dibut de fin

Les index bitmap sont très répandus dans les environnements OLAP (011Li11e A11al)ûcal
Processi11g) caractérisés par d'importants volumes de données et par J' absence de mises à jour.
En effet, Je verouillage d'un index bitmap entraîne aussi Je verouillage de nombreuses lignes
de la table concernée.

L'indexation bitmap est idéale pour des colonnes de faible cardinalité sur des tables volurni·
neuses (quand Je nombre de valeurs distinctes est très nettement inférieur au nombre de lignes
de la table, de l'ordre de 1 %).

Les index bitmap sont performants pour les requêtes où chaque critère retourne beaucoup de
lignes et la sélec tivité de l'ense mble des critères est forte.

Il est déconse illé de créer des index bitmap sur des tables très fortement actualisées car il est
très coûteux de reconst ruire l'index à chaque mise à jour.

Les index bHmap sont de ta ille rédu ite et acceptent de gére r les NlJLL.

Le principe du bitmap consiste à créer pour chaque ligne de la table un mot binaire comportant
autant de bits q ue de possibilités de valeurs de l'index. Lors d'wne recherche, wn simple AND
binaire valide ou non les correspondances entre les colonnes testées.

Dans l'exemple, les valeurs possibles de la colonne civilite sont : ' Mr. •, 'Mme. • et
•Melle. •. Chaque ligne de la table sera potentiellement associée à un des mots de 3 bits
suivants : 000 pour NlJLL, 001 pour 'Melle.', 010 pour 'Mme. • ou 100 pour ' Mr. '. Le

© Éditions Eyrol/es 585 1

1 SQllv.é l

tableau suivant présente quelques résultats de recherche du nombre d'adhérents en fonction de
leur civilité. L'index Je plus performant concernant la colonne civilite est sans conteste Je
bitmap.

T-12·29 u•a11oe d'llldu sw • ce1om1 Ill, csdlllli

SELECT COUNT (n om) civilite='Mr. ' civilite IN NiOT (civi-
FROM Adherent WHERE.. ('Mlle. ' , ' Mme. ') li te• ' Mr .' >

Sans Index Table access fui Table sccess full Table sccess full
(10235 b - 2793 c) (10235 b - 2795 c) (10235 b - 2793 c)

Index bitmap (taille : 0,43 Mo) Bitmap Index single Bitmap Index single Bitmap Index fast full
CREATE BITMAP I NDEX idx_civi l ite_bitmap

ON (civi li te)
vak.ie
(20 b -14 c)

vs/ue scan
(38 b - 29 c) (53 b -42 c)

TABLESPACE tbs_ index;

1 ndex B-tree (taille : 21 Mo) Index âst full scan Index fast fui scan Index fast fui scan
CREATE INDEX idx_civi l ite_ btree

ON (civi li te)
TABLESPACE tbs_ index;

(2602 b - 712 c) (2602 b - 741 c) (2602 b - 712 c)

1 586

L:utilisation optimale d'un index bitmap conce rne les égal ités col =va l eur, les compa ra isons à
des ensemb les col IN (vl,v2 ...) que l'optimiseur traduit en col =vl OR col =v2 .. ., et les
inéga lités NOT (col=valeur) que l'optimiseu r traduit en col<>va l eur.

Index multicolonnes

Un index peut être composé de plusieurs colonnes (on parle aussi d'index multicolonnes ou
concaténé). Les colonnes de J 'index ne doivent pas nécessairement être adjacentes.

Le nombre maximal de colonnes est fixé à 32 pour un index 8-treeet 30 pour un index bitmap.

Les colonnes LONG et LONG RAW ne peuvent pas être indexées.

Les index multicolonnes offrent J'avantage de pouvoir combiner des colonnes (ou expres­
sions) présentant une faible sélectivité pour former un index dont la sélectivité est plus élevée.
Par ailleurs, si toutes les colonnes concernées par une interrogation se trouvent dans un index
composé, J à J' index suffira (pas de nécessité d'accéder à la table).

Un index composé est utile principalement lorsque vos clauses WllERE font souvent référence
à l'ensemble, ou à la partie de tête, des colonnes de l'index. La version IOg a introduit la
recherche index sldp sca11 pour utiliser un index composé en s'affranchisant d'une partie de
J'en-tête de cet index (ses premières colonnes).

© ÉdW/ons Eyroles

Type d'index

-. .. 1sa11o111

Bien que l'ordre des colonnes d'un index composé ait moins d'importance qu'avant la version 9i
(les statistiques de la version 11 g permettent de représenter la distribution relative de données
entre plusieurs colonnes), choissisez les colonnes les plus fréquemment utilisées pour constib.Jer
la tête de l'index.

L:optimiseur n'utilisera l'algorithme index skîp scanque si la cardinalité de la (des) première(s)
colonne(s) de l'index est relativement faible (selon ses statistiques).

illustrons cet aspect des choses avec deux index sur la table Adherentbi s . Le premier est
composé du nom, prénom et civilité, le second de la civilité, du nom et du prénom Soumettons
à ces deux index plusieurs requêtes comportant dans la clause WHERE des prédicats basés sur
des colonnes appartenant ou non aux index.

Requêtes et résullats

Index sur nom+prénom+olvlllté
Taille : 42 Mo

WHERE nom= ' ... '
AND pre nom=' ... '

WHERE pren om= ' ... '
AND c ivi ­
li te= ' ... '

WHERE prenom= ' ... '
AND c ivi -

CREATE INDEX i dx_nonu> r e_ c i v ili te
ON Adhe r entbis

(noa,prenoa,civilite)
TABLESPA CE t bs_ index;

Index sur olvlllté+nom+prénom
Taille : 42 Mo
CREATE INDEX i dx_c ivili te_nonu> r e

ON Adhe r entbis
(civilite,nca.,prenca.)

TABLESPACE t bs_ index;

AND c i v ili te= ' ... '

Index range scan
(57 b -4 c)

WHERE nom= ' ... '
AND pre nom='
AND c i v ili te= ' ... '

Index range scan
(56 b -4 c)

WHERE nom= ' ... '
AND pre nom='

Index sklp scan
(73b - 6c)

Index fast full scan
(5244 b -1 388 c)

WHERE pren om= ' ... '
AND c ivi ­
li te= ' ... '

Index fast full scan
(5245 b -14 73 c)

li te= ' ... '
AND tel = ' ... '

Tsble sccess full
(10229 b - 2795 c)

WHERE prenom= ' ... '
AND c ivi -
li te= ' ... '
AND tel = ' ... '

Index range scan
(6830 b - 26 c)

Lorsque la colonne nom (de grande cardinalité) est en tête de l'index, aucun saut d'index n'est
réalisé et toute requête n'utilisant pas cette colonne dans la clause WHERE est peu performante
(aœès/11/l).

Lorsque la colonne civilite (de très faible cardinalité) est en tête de l'index, des sauts
d'index peuvent se produire et améliorer très notablement les performances.

Si deux colonnes sont fréquemment utilisées simultanément, il vaut mieux employer un index
composite que deux index monocolonnes.

Lors de la création d'index multicolonnes, ordonnez de préférence les colonnes de la plus faible
à la plus forte sélectivité.

© Éditions Eyrol/es 587 1

1 SQllv.é l

Index et expressions

Il est importmt de dissocier un index concernant une colonne et l'utilisation de cette colonne
dans une requête via une expression .

Le fait d' indexer une colonne n'indique pas à l'optimiseur de mettre en œuvre l'index lorsque la
comparaison concerne une expression sur la colonne et non la colonne elle-même. Vous
devrez alors défin ir un index équivalent à l'expression.

illustrons ce point avec deux index créés sur la table Adherentbi s. Le premier est défini à
partir de la date de naissance, Je second sur une fonction qui formate cette date . Soumettons
à ces deux index plusieurs requêtes comportant dans la clause WHERE diffé rents prédicats . Le
tableau suivant présente les résultats.

Type d'index

Index sur la date de naissance
Tallle : 25 Mo
CREA'IE INDEX idx_date n ais

ON Mhe r entbis
(date _n.a.ia)
TABIESPACE tbs_ inde x;

Index sur une expression
Tallle : 25 Mo

CREA'IE INDEX
i dx_to _ c har_ da.t ena.i s
ON h:lh e r entbis

(TO_ CIWl(d&te _ naia,

'DD/1111/YYYY'))
TABIESPACE tbs_ index;

T-12-31 -. llasés 111' • uinsslae

Requêtes et résullats

SELECT
COUNT(nom)

FROM Adher entbis
WllERE TO_CHAR

(d&te..)l&ia,

' 00/ J.D.l/ YYYY ')

=' 17 /01 / 1980 ' ;

Index fast full scan
(3135 b - 886 c)

Même requête

Index range scan
(7 b - 3 q

SELECT

COUNT(OISTDI CT n an) '
TO_CHAR (da.te _ na.i s,

' 00/ MM/YYYY ')

FROM Adherentbis
GROUP BY date _n.a.ia;

Table access lu#
(10243 b - 2845 q
Même requê1e

Table access lu#
(10243 b - 2845 q

Le premier index (qui n'est pas basé sur l'expression) :

SELECT a.1. tel, a l .nom,
a.1 . da.te_nais
FROM Adhe r entb i s a.1,

Adhe rentbi s a.2
WHERE NOT (al . nom=a.2 . nom)
AND al .date _n.a.ia=

a2 .date _n.a.i•
AND TO_CHAR

(a.1. da.te_.na. i s ,
' 00/ MM/YYYY ')

= '17 /01 / 1980 ' ; '

Table access tu#
(20470 b - 5621 q
Même requê1e

Index range scan
(10291 b - 2872 q

• Est utilisé dms la première requête bien qu'il ne soit pas déclaré sur la fonction TO_CHAR

1 588

• N'est pas utilisé dms la seconde requête malgré Je fuit qu'il ne soit pas déclaré sur la
colonne date_nai s (un regroupement ne justifie pas Je parcours de l'index).

© ÉdW/ons Eyro#es

-. .. 1sa11o111

• N'est pas utilisé dans la troisième requête malgré Je fait que Je prédicat porte sur une
égalité des colonnes indexées (l'optimiseur juge qu'il est plus intéressant de parcourir les
deux tables).

Le deuxième index (basé sur l'expression) :

• Est utilisé de façon optimale dans la première requête car il est déclaré sur la fonction TO_
CHAR.

• N'est pas utilisé dans la seconde requête du fait qu'aucun prédicat ne Je concerne.

• Est utilisé dans la troisième requête (et divise par2 Je coût) car un prédicat Je concerne.

Choix d ' indexage

Quelques règles relatives à la gestion des Index

Créez les index après l'insertion des données dans la table. Les données sont souvent char­
gées via SQL' Loader ou un utilitaire d'importation et il est plus efficace d'insérer les données
avant d'y associer des index.

Créez un index si vous désirez extraire souvent moins de 15 % des lignes d'une table volumi­
neuse.

Il est important de connaître le nombre de blocsconcemés par un balayage de l'index en compa­
raison d'un parcours entier de la table. Si une table contient un million de lignes dans 5 000 blocs,
et que les valeurs d'une des colonnes soient réparties sur plus de 4 000 blocs, il ne sera pas
optimal de créer un index.

Pour améliorer les jointures, indexez les clés étrangères.

Les tables de faible volumétrie ne nécessitent pas d'index.

Les colonnes potentiellement indexables présentent les caractéristiques suivantes :

Il existe une grande plage de valeurs qui sont relativement uniques dans la colonne (index
8 -tree).

Il existe une petite plage de valeurs (index bitmap).

Elles contiennent de nombreux NULL, mais les extractions concernent très souvent les
lignes dont la valeur est non nulle.

Taille d'un index

La procédure CREATE_INDEX_ COS'l' du paquetage DBMS_SPACE (dédié à l'évolution des
segments et espaces pour les tables et index) permet de déterminer Je coût de création d'un
index. Avant d'utiliser cette procédure, vous devez vous assurer que la table existe et que les
statistiques sont collectées .

© Éditions Eyrol/es 589 1

1

1 590

SQllv.é l

Le script suivant décrit) 'appel de cette procédure qui retourne la taille du futur index unique
(42 Mo) sur les colonnes nom, prenom et tel du volume occupé (62 Mo) dans Je segment du
rab/espace tbs_index.

Appel de la procédire et résunats

SQL> VARIABLE v_octets _index NUMBER
SQL> VARIABLE v_octets _s egment NUMBER
SQL> VARIABLE v_ s q l CHAR(100)

SQL> EXElC : v_ sql: =' CREATE UNIQUE INDEX i dx_noau> r e_ te l
ON Adhe rentbis (nom, pre nom, te l) TABLESPACE t bs_index '

Procédure PL/SQL terminée a vec succès .

SQL> EXEC DBMS_BPACZ.CllD.T& _ INDSlC_COST (:v_sql, :v_ oct.et.s _ index, :v_ oct.ees _ segment.}

Procédure PL/SQL terminée a vec succès .

SQL> PRIN!' :v_octet s_ index
V_ OCTETS_ INDEX

4 23942 1 2
SQL> PRIN!' :v_octet s_s egmen t
V_ OCTETS_ SElGMEln'

62914 560

Réglage des index

Les quatre principaux facteurs qui guident J' optimiseur à choisir ou non un index sont la sélec­
tivité des données, la taille des blocs, la taille moyenne des lignes et la cardinalité.

En fonction de ces facteurs, J'optimiseur étudie Je cl11steri11g factor qui indique la synchroni­
sation entre J' o!dre des rowid dans les feuilles de J' index et ceux de la table. Cette information se
trouve dans la colonne CLUSTERlNG_FACTOR de la vue DBA_IIDEXES pour chaque index.
Plus ce nombre se rapproche du nombre de blocs du segment de la table, plus J' index est optimal.
En revanche, plus il se rapproche du nombre de lignes de la table, moins l'index est optimal.

Un index sera utilisé de façon optimale pour les recherches de données sélectives s'il est
caractérisé par un faible c/ustering factor.

Bien qu'indexant des données sélectives, un index de fort c/ustering factor manipulant des lignes
de taille moyenne réduite ne sera généralement pas employé, au profit d'un parcours de la table.

La taille des blocs influence également la stratégie d 'Oracle. Les index soumis à de nombreuses
opérations range scœ1 oufastf11llscœ1 (par lecture multibloc) seront d'autant plus performants
en disposant d'une taille de blocs la plus grande (jusqu'à 32 Ko).

© ÉdW/ons Eyroles

-. .. 1sa11o111

Reconstruction des index

Selon la fréquence de mise à jour et Je volume de données modifiées d'une table, vous devrez
reconstruire les indexB -1n1e du fait de leur fragmentation. Plus la densité des blocs feuilles est
élevée, meilleur est l'index. À J'inverse, il est souhaitable de reconstruire l'index lorsqu'il
contient de nombreux blocs peu peuplés. Depuis la version llg, l'outil segment advisor est
capable de détecter les index défaillant et de les reconstruire automatiquement.

Vous devrez choisir entre deux stratégies : la reconstruction (clause IŒBUILD de ALTER
INDEX) et la fusion (clause COALES:::E de ALTER INDEX). Alors que REBUIID permet de
déplacer un index vers un autre rab/espace (ou de modifier des caractéristiques physiques), la
fusion se focalise sur des branches de l'index. La reconstruction d'un index existant offre de
meilleures performances que la destruction de J' index puis sa recréation.

Utilisation des index par l 'optimiseur

Plusieurs autres facteurs influencent J'optimiseur sur la façon d'utilisenm index ou non :

• Le volume des tables où relativement peu de lignes vérifiant une condition ne nécessitent
pas un parcours indexé, ou au contraire, un grand nombre de blocs où Je parcours de la
table sera choisi.

• Un conseil (hilll) incompatible comme /*+ NO_INDEX (...) * /.

• Le partitionnement de la table et l'absence d'index global (ou un non partitionnement et
des index locaux).

• L'utilisation de variables de session (bi11d variables). L' optimiseur établit un plan d'exécution
sans connaître a priori la valeur de ces variables. Une section est consacrée aux variables
de session.

Joimures
Les jointures ont été étudiées au chapitre 4. Ainsi, plusieurs écritures sont possibles pour
répondre à toute interrogation menant en relation plusieurs tables (généralement basées sur
l'égalité entre une colonne clé étrangère et clé primaire ou unique). Dans toute jointure entre
deux tables, une ligne d'une table est appelée imier, l'autre 011ter. Pour choisir un plan
d'exécution, J' optimiseur décide de la stratégie en fonction de plusieurs facteurs :

• Le chemin d'accès afin d'extraire les données de chaque table lors de la jointure.

• La méthode de jointure pour chaque paire de lignes jointes ; l'opération adoptée est soit un
11ested loop, soit un sort mergejoi11, soit un cartesia11 Join, ou hashjoi11.

• L'ordre dans lequel les jointures doivent se réaliser lorsqu'il y a plus de 2 tables en relation.
La deuxième jointure s'opère après la première, etc.

© Éditions Eyrol/es 591 1

1

1 592

SQllv.é l

Ne vous souciez pas trop du style d'écriture de votre jointure (relationnel, SQL2, procédural ou
mixte), ni de l'ordre des tables dans la clause FROM. l:optimiseur d'Oracle se chargera de réé­
crire, dans la majorité des cas, votre requête de la manière optimale et choisira le meilleur plan
d'exécution (sous réserve d'une collecte des statistiques).

L'optimiseur détermine d'abord si la jointure retourne au final au moins une ligne. Cette
réponse est basée sur les contraintes UNIQUE et PRIMARY KEY des tables. Si ces contraintes
existent, l'optimiseur traite ces tables en premier puis rend optimale la suite des opérations en
minimisant les coûts (via les statistiq ues) :

• des 11ested wops en se basant sur le coût des lectures en mémoire de chaque ligne de la
table 011teret chaque correspondance avec les lignes de la table imier ;

• des hash joi11 en s'appuyant principalement sur le coût de construction d'une table de
hachage ;

• des sort merge joi11 en utilisant principalement le coût des lectures en mémoire de toutes
les données et des tris.

Il existe aussi l'index bitmap joi11 qui combine l'avantage du bitmap à celui d'un prédicat de
jointure. Ce type d'indexage convient davantage aux très gros volumes de données (dataware­
ho11ses).

Nested loops

Une opération nested loop se déroule en trois temps. D'abord l'optimiseur choisit la table sur
laquelle conduire l'itération (outer table) et désigne l'autre table en tant que inner. Ensuite, pour
chaque ligne de la table outer, Orade accède à toutes les lignes de la table inner.

Les jointures programmées avec l'opérateur 11ested wop sont très performantes lorsqu'un
fuible nombre de données de la première table (011ter) est mis en jointure et que la condition de
jointure accède efficacement à la deuxième table (iluier). Si le chemin d'accès à la table imier
est indépendant de la table 011ter, alors des mêmes lignes sont extraites à chaque itération de la
table outer (cela dégrade les performances et l 'optimiseur choisira une opération hash joi11).

Dans un plan d'exécution, l'itération se présente par le mot-clé NESI'ED LOOPS, la table 011Jer
apparaît avant la table imier. Dans l'exemple suivant, le hint USE_NL force l'opération sinon
un hash joi11 plus performant serait utilisé par l'optimiseur. Selon les versions et rtdeases
d'Oracle, vous trouverez différentes implémentations de l'opération 11ested l,oop. Pour cette
requête, 2 904 blocs sont lus pour un coût de 142.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Requêlo Plan d'exécullon

1 I d 1 Operat i on 1 Name 1 Rows
SELECT / *+ OS&_NL(a p e) * /

a.adhid, a. nom, a.te l 1 0 SELECT STATEMENT 1 4138
FROM Adhe.ren t a, sport s, Prat ique p

WHERE s.sp l ibe lle
I N (' Escrime ' , ' Ping-p ong ')

AND a.adhid = p.adhid
AND s.spid = p.spid;

1 1 NSSTll:D LOOPS 1 4138

1 2 NSSTll:D LOOPS 1 48066

1 * 3 TABLE ACCESS FULLI SPORT 2

1 4 TABLE ACCESS FULLI ADHE:RENT 24 033

1 * 5 INDEX UNIQUE SCAN 1 PK_.PRATI QUE 1

Predicate Informatio n (identif ied by ope.rat i on id):

3 - fi l te.r("S". "SPLIBELLE"= ' Escrime ' OR
•s •. "SPLIBELLE"=' Ping-pong ')

5 - access ("A" . "ADHID" =" P" . "ADHID" AND

"S". "SPID" ="P". "SPID")
Stat is tiques (partielles)

290 4 consis tent gets
590 rows processed ...

Comme J'illustre J' arbre suivant, la première itération met en jeu la table Sport (011ter car elle
ne filtre que 2 lignes) qui est combinée à la table Adherent (Ïlmer avec 24 033 lignes). Le
chemin d'accès à la table imier est complètement indépendant de la table 0111er, car il n'existe

pas de colonne commune (aucune ligne extraite ne sera donc identique pour chaque itération).
Le résultat de cette jointure retourne 48 066 lignes. La deuxième itération combine ce résultat
(table 011ter) avec la table d'association Pratique en utilisant son index. Des colonnes (adhid
et spid) sont communes et la jointure de ces deux tables restitue finalement 4 138 lignes qui,
après élimination de certains doublons, donnera 590 adhérents.

© Éditions Eyrol/es

Figure 12-9 Jointures par boucles Imbriquées

SPORT 2

1

.m
PK

PRATIOUE

41 38
p

SQL

s.fÂ%.l?NT

593 1

1

j Requête

SQllv.é l

Le hintNO_USE_NL (alia s l ...) interdit à l'optimiseur l'utilisation de boudes imbriquées pour
programmer les joinb.Jres.

Hashjoins

w join tures progrrunmées avec J' opérate ur hash joi11 sont très performantes Jorsqu' il s'agit
de joindre d'importants volumes de données. L'optimiseur utilisera la table de plus faible
volumétrie pour construire en mémoire une table de hachage sur la clé de jointure. Ensuite, un
parcours de la table la plus volumineuse est réalisée, en vérifiant Je prédicall par hachage pour
extraire les lignes jointes.

L:opération de hash join est majoritairement utilisée pour les équijoinb.Jres et quand un grand
volume de données doit être joint ou une importante fraction d'une table de faible taille doit être
jointe.

Dans un plan d'exécution, la jointure se présente par Je mot-clé HASH JOIN, la table ouJer
apparaît avant la table imier. L'exemple suivant illustre une jointure sur 3 tables (c'es t la même
requête que la précédente écrite sous la forme SQL2). Le plan d'exécution est plus performant
que Je plan 11ested /.oop, seulement 348 blocs sont Jus (gain de 88 %) pour um coût de 88 (gain
de 38 %). En écrivant ces jointures sous la forme relationnelle, Je plan obte nu serait identique.

T-12-34 IOIHI" 11111 • œuv" IVIC 1111• loll

Plan d'exécullon

SELECT a.adhid, a.nom, a.te l
FROM Adhe.rent a

1 I d 1 Operation 1 Name 1 Rows

INND JOIN Pratique p
ON p.adhid = a.ad hid

INNal JOIN sport s
ON s.spid = p.spid

WHERE s.sp l ibe ll e
I N (' Esc rime ' , ' Ping-pong ') ;

1 594

1 0 SELECT STATEMENI' 4138

1 * 1 RASH JOIN 4138

1 * 2 RASH JOIN 4138

1 * 3 TABLE ACCESS FULL I SPORT 2

1 4 TABLE ACCESS FULL I PRATIQUE 248 29

1 5 TABLE ACCESS FULL 1 ADHERENI' 24033

Predicate Informat i o n (ident i f ied by operatio n id) :

1 - access (" P". "ADHID" = "A" . "ADHID'")
2 - access (" S". "SPID" = "P" . "SPID")
3 - f il te.r("S" . "SPLIBELLE" = ' Escrime '

OR "S" . "SPLIBELLE" = ' Ping-pong •)
Statistiques (part i e lles)

348 consis tent gets
590 rows processed

© ÉdW/ons Eyroles

• !ZJ

-. .. 1sa11o111

Comme J'illustre l'arbre suivant, la première jointure met enjeu la table Sport (ouJer car elle
ne filtre que 2 lignes) qui est combinée à la table d'association Pratique (imier avec
24 829 lignes). Le résultat de cette jointure par hachage retourne 4 138 lignes. La deuxième
jointure combine ce résultat (table outer) avec la table Adherent sans utiliser son index. La
colonne adhid est commune et le résultat final après élimination de certains doublons donnera
590 adhérents.

F/g!Ne 12· 10 JolntJJres par table de hachage

SPORT 2
: 7
:.f{lc):

2• 829 : ·:
4 1311

1 • 1311 SQl
24 033 : •!

PRATIQUE

t•]
AOHFRFNT

Les hints ŒE_HASH (aliasl ...) etNO_USE_HASH (alia s l ...) permettent respectivement de
forcer ou d'empêcher l'optimiseur à utiliser la jointure par hachage.

Sort merge joins

Bien que l'algorithme hashjoi11 soit souvent preféré aux autres (ce qui explique que la majorité
des jointures soient mises en œuvre ainsi), l'opération sort merge joi11 (tri-fusion) peut offrir de
meilleures performances lorsque les lignes à joindre sont déjà triées ou qu'un tri doit être effectué.

Dans un sort merge pin, il n'y a pas de table qui pilote une autre, mais deux étapes successives :
le sortjoin , où les deux tables sont triées sur la clé de jointure, puis merge joinqu i fusionne les
listes triées. Si les tables à joindre sont déjà triées, seule la deuxième étape est réalisée.

!.:opération sort merge join peut être choisie pour les inéquijoinb.Jres (<, <=, >, ou >=) où elle
offre de meilleur résultats que les algorithmes nested /oop et hash join pour d'importants volu­
mes de données.

Dans un plan d'exécution, la jointure tri-fusion se présente par les mots-clés SORT JOIN puis
MERGE JOIN ; la table 0 111er apparaît avant la table Ïlui er.

L'exemple suivant illustre une inéquijointure sur 3 tables. On recherche les adhérents de code
supérieur à ceux qui pratiquent un sport de code est inférieur au plus petit des codes de rugby
et de moto. Dans le jeu de test, du fait qu'aucun adhérent ne soit adepte de moto et que le code
du rugby est le plus grand (823), tous les sports sont sélectionnés. Cette inéquijointure effectue
deux tris sur des volumes approchant un méga-octets, puis fusionne (25 Go). Les statistiques

© Éditions Eyrol/es 595 1

1

1 Requêlo

SQllv.é l

indiquent que Je nombre de blocs Jus n'est pas important mais Je transfert réseau, les tris et la
fusion expliquent Je temps de réponse (25 minutes d'attente dans mon environnement).

llllleaa 12-35 llilllllcilllhn llllst • IH\fl MC 111n Ja11

Statistiques
SBLBCT a .adbid, a. nom, a. te l 303 consistent gets

FROM Adheren t a, Sport s, Pratique p
s.splibelle IN ('Rugby' .'Moto'I

21474946008 bytes sent via SQL'Net to client
424319179 bytes received via SQL'Net fran client
38574435 SQL*Nêt roundtrips to/from client AND a . adhid > p • adhid

AND •. spid > p. spid.; 4 sorts (mé':!lory)
0 sorts (disk l

578616501 rows processed

1 I d 1 Operation 1 Name 1 Rows 1 Bytes ITempSpcl cost (lCPUI 1 Time

1 0
1

1

1
1 4
1· 5
1 6

1 •
1

1 •
1 10

1 596

SELECT ST ATl!MENr 1

ICSRGS .rom 1

SORT .rom 1

ICSROS .rom 1

SORT .rom 1

TABLE ACCBSS BY INDEX RŒIID 1 SPORT
INDEX FULL SCAN 1 PK,_SPORT

SORT .rom 1

TABLE ACCBSS FULL 1 PRATIQUE
SORT .rom 1

TABLE ACCBSS FULL 1 ADHERENT

544MI
544MI

45328 1
45328 1

2 1

2 1
12 1

24829 1
24829 1
24033 1
24033 1

2sc1
25G 1

929K 1
929K 1
26 1

26 1

1
193K 1
193KI
680K 1
680KI

1

1
2856KI

1

1

1

1

1

1
1896KI

1

3272
3272
315

19
2
2

17
15

262
68

(83 11 00:00:40
(83 1 1 00:00:40
(2 1 1 00:00:04

(11 1 1 00:00:01
(01 1 00:00:01
(Oi i 00:00:01
(Oi i 00:00:01

(12 1 1 00:00:01
(O i i 00:00:01
(l i 1 00:00:04
(O i i 00:00:01

Comme J'illustre l'arbre suivant, le premier tri-fusion met enjeu la table Sport (011/ercarelle
ne filtre que 2 lignes) et la table d'association Pratique (ümer avec 24 829 lignes) du fait de
leur colonne commune (spid). Le résultat de ce tri-fusion retourne 45 328 lignes. Le
deuxième tri-fusion combine ce résultat (table outer) avec la table Adherent sans utiliser
d'index poui restituer au final près de 590 millions de lignes.

PK
SPORT

12 - j
SPORT

PRATIOUE

Figure 12-11 Jointures par tri-fusion

•5328

ï:f.. 50 866 SQl :-:-
2• 033 sfj.'W!fi>rT

1
ADHERE>IT

© ÉdWlons Eyroles

-. .. 1sa11o111

Les hints USE_MEOOE (alia s l ...) et NO_USE_MERGE (alia s l ...) permettent respectivement
de forcer ou d'empêcher l'optimiseur d'utiliser la jointure par tri-fusion.

Algorithmes de jointure

D'autres algorithmes de jointure sont mis en œuvre par Oracle, citons :

• Les produits cartésiens (absence de clause de jointure dans la requête). Dans Je plan
d'exécution, vous trouverez J' opération MEOOE JOIN CARI'ESIAN. L' optimiseur peut aussi
décider d'utiliser cet algorithme pour joindre deux tables à faible volumétrie à une autre
table de volume plus important.

• Les jointures externes unilatérales ou bilatérales (extractions de lignes ne correspondant
pas aux critères de jointure). Dans Je plan d'exécution, vous trouverez généralement les
opérations NESTED IOOPS Ol1I'ER, HASH JOIN Ol1I'ER et HASH JOIN FULL 0l1l'ER.

Requêt es imbriquées

L'optimiseur traduit les requêtes imbriquées par des semi-jointures (semi joi11S) ou des anti­
jointures (a11ti joins).

Les semi-jointures sont des jointures qui ont la particularité de ne pas parcourir la table inner
complètement mais de stopper le parcours dès une certaine occurrence trouvée. Sont notam­
ment concernées les requêtes utilisant les opérateurs EXISTS et IN (les jointures procédurales
font donc partie de cette programmation).

Les antijoinb.Jres sont des jointures qui ont la particularité d'extraire des lignes ne correspondant
pas au prédicat de la requête imbriquée. Les requêtes qui sont concernées sont notamment
celles qui utilisent l'opérateur NOT EXISTS et NOT IN.

Suivant la volumétrie des tables, la distribution des données et l'existence d'index, les plans
d'exécution de vos semi-jointures utiliseront diverses opérations : HASH JOIN RIG!IT SEMI,
HASH JOIN SEMI ou NESTED LOOPS SEMI (1' opérateur historique par défaut). Concernant les
antijointures, les opérateurs équivalents sont les suivants : HASH JOIN Am'I, HASH JOIN
RIG!IT ANI'I et NESTED LOOPS ANI'I.

Le tableau suivant décrit les opérateurs qui programment des antijointu:res par requête imbri­
quée. La volumétrie importante de la table Adherentbi s explique que l' optimiseur choisisse
J' algorithme hash joi11 au détriment de 11ested wop (stratégie également choisie si on
programme la requête avec NOT IN).

© Éditions Eyrol/es 597 1

1

1 598

SQllv.é l

Requête Opé<ateur

SELECT s. spid, s. splibelle FROM Sport s NESTEO LOOPS ANI'I
WHERE NOT l:XISTS

(SELECT p.adhid FROM Pratique p WHERE p.spid =s.spid);

SELECT s. spid, s. splibelle FROM Sport s NESTEO LOOPS ANI'I
WHERE s .spid Y0'1" fN

(SELECT p.adhid FROM Pratique p);

SELECT a.adhid, a. nom, a.te l FROM Adheren tbis a HASH JOI N RIGHT
WHERE NOT l:XISTS ANI'I

(SELECT p.adhid FROM Pratique p WHERE p.adhid =a.adhid);

Le tableau suivan t décrit les opérateurs qui progranunent des semi-jointures par requêœ imbriquée.
Comme pour les antijointures, J' optimiseur choisit l'algorithme hash joi11 au détriment du 11ested 1,oop
du fuit de la volwnétrie (stratégie également choisie si on progllUlllDe la requête avec IN). La dernière

requêœ écriœ à la forme procédurale est celle étudiée aux sections Hash joins et Nested loops.

Requête

SELECT s.spid,s.sp l ibe ll e FROM Sport s
WHER& &XISTS

(SELECT p.adhid FROM Pratique p WHERE p.spid =s.spid);

SELECT s.spid,s.sp libell e FROM Sport s
WHERE s . spid IN

(SELECT p.adhid FROM Pratique p);

SELECT a.ad hid, a. nom, a.te l FROM Adheren tbis a
WHERE EXISTS

(SELECT p.adhid FROM Pratique p WHERE p.adhid =a.adh id);

SELECT a.adh id, a. nom, a.te l
FROM Adhe.rent a WHERE a .adhid I N

(SELECT p.adhid FROM Pratique p WHERE p.spid I N
(SELECT s. spid FROM Sport s

WHERE s.sp libell e I N (' Escrime ' , ' Ping-pong ')));

Opé<ateur

NESTEO LOOPS SEMI

NESTEO LOOPS SEMI

HASH JOI N RIGHT
SEMI

HASH JOI N RIGHT
SEMI

L'arbre suivan t illustre la dernière jointure qui est programmée d'abord par une table de
hachage puis par une semi-jointure. Elle offre des performances similaires à celle progranunée
exclusivement avec des algorithmes hashjoi11s.

© ÉdW/ons Eyroles

-. .. 1sa11o111

1
SPORr 2

24829

1
PRATIQUE

: "Ô
:-If#
: -:

Figure 12-12 Semi-Jointures

4 138

vw
NS0-

1 -
4138

: El El
4138 SQL

24 033
siliWifl:TNT

1
ADHERENT

Le hint NO_UNNEST (à d ispose r dans la requête imbriquée} force l'optimiseu r à n'utiliser ni
sem i-jointures ni ant ijointures. !.:opérateu r FILTER sera préféré (chaque ligne de la table outer
examinera systémat iquement plusieurs lignes de la tab le inn81).

Autres algorithmes

D'autres algorithmes (cette liste n'est pas exhaustive) sont utilisés par J' optimiseur:

• BUFFER SORT qui utilise une table temporaire ou une zone de tri en mémoire pour stocker
des données intermédiaires ; ces données ne sont pas nécessairement triées.

• INLIST ITERA'IOR qui est utilisé soit pour les clauses IN avec des valeurs, ou suite à des
prédicats d'égalité par OR

• VIEW qui gère un ensemble variable de données.

• COUNI' S'IOPKEY qui programme une restriction définie via ROWNUM.

• FIRST RCXrl qui est déclenché par les opérateurs MIN et MAX.

• FILTER qui sert à éliminer une partie des lignes renvoyées par une autre étape (sous­
interrogations et prédicats sur une seule table).

• CONCATENl\TION qui concatène plusieurs ensembles de lignes (suite à UNION ALL et des
transformations de l'opérateur CR).

Variables de lien
L'utilisation des variables de lien est indispensable pour améliorer les performances d'une
application OLTP (c'est moins vrai pour des applications OLAP et des traitements batch). En
effet, chaque nouvelle instruction se traduit par ha rd parse souvent coûteux (surtout en mode
multi-utilisateur) du fait de la pose de verrous internes.

© Éditions Eyrol/es 599 1

1

'
1 600

SQllv.é l

Oracle assigne une valeur (hash vaill e) à chaque nouvelle exécution d'une instruction SQL
(cette valeur est visible au début du plan d'exécution). Toute modification du code de cette
instruction (par exemple Je nom d'un alias a.nom et b.nom ou d'une valeur adhid=l et
adhid =2) donnera lieu à une nouvelle valeur hash générant à nouveau un ha rd parse.

L'optimiseur traite plusieurs écritures en tant que bi11d variable : les variables de session
(substitution), les variables PL/SQL, les variables SQL dynamique (avec la directive ŒING).
Les variables des instructions de toute API du marché (ODBC, ADO, JDBC, etc.) sont aussi
considérées bi11d variables. Dans Je cas de Java, il s'agit par exemple de la classe Prepared ­

Statement . Le tableau suivant illustre quelques instructions contenant des bi11d variables.

Contex1e

SOL.Plus

Code PUSOL

SOL dynamique

T-12-38 lllfntes 1ai1611111tatoas Ill blllll vlll*ll

Codage

VAJUABLB g_nom VARCHAR2 (25)

BEGIN
: g_nom : = ' LARRAZET ' ;

END;
SELECT prenom, t.e l FROM Adher entbis WHERB nom • : g_ nora

AND c ivili te = ' Mme. ' AND te l LIKE ' 05 i ' ;

DECLARE
v_nora Adhe.rent bis . nom%TYPE;
v_p Adhe.ren t bis .pren om%TYPE;
v_ t Adhe.ren t bis . te l%TYPE;

BEGIN
v _nom : = ' LARRAZET ' ;
SELECT prenom, te l INrO v_p , v_ t FROM Adhe.re n t bis

WHERB nom • v _nora AND civilit. e = 'ttne . • AND t.e l LIIŒ ' 05\: ' ;

END;

EXECUTE IMMEDIATE
' SELECT prenom, t.el FROM Adherent.bis WHERE nom. 1• :v_n.ora

AND c ivili te = '' Mme. '' AND te l LIKE ' ' 05i ' ' '
INro v_p , v_ t USING v_nora;

Attention 1 Ne confondez pas une instruction construite dynamiquement dans le code et une
instruction intégrant des bind variables. En conséquence, n'utilisez pas de signe concaténation
(11} dans vos instructions au profit du SOL dynamique.

Pour vous en convaincre, exécutez Je script en téléchargement qui compare l'extraction des
250 000 premiers adhérents. Le premier bloc utilise Je curseur suivant (qui ne fait pas usage de

variables de lien) OPEN curseur FOR ' SELECT nom FROM Adherentbis WHERE

adhid = ' 11 i. La seconde solution utilise une variable de lien : OPEN curseur FOR 'SELECT

© ÉdW/ons Eyroles

-. .. 1sa11o111

non FROM Adherentbi s WllERE adhid= : v _ad' US ING i. Vous constaterez que la seconde
solution s'exécute bien plus rapidement (de l'ordre de 85 % de gain).

Lorsque l'optimiseur prend en compte le premier plan d'exécut ion généré avec des bind varia­
bles, on parle de bind peeking. Depuis la version 11 g, Orade peut constru ire plusieurs plans
d'exécut ion pour une même requête (avec des valeurs d ifférentes pour les bind variables
associées} : il s'agit de l 'adaptive cursor sharing.

comment réaliser des tetchs munmunes ?
Il est toujours préférable de retourner plusieurs lignes par fetch, on parle de array fetch.
Plusieurs solutions existent ; citons la commande SET ARRAYS IZE sous SQL*Plus et l'option
BULK COLLECT de l'instruction FETCH dans un bloc PUSQL (consulter la section Utilisation
de LJMIT et BULK COILECT du chapitre 7).

Le tableau suivant présente une comparaison sous SQL*Plus de ces deux modes d'exécution .
La requête pratiquant le fet ch monoligne s'exécute en 30 secondes pour extraire plus d'un
million d'adhérents . Lefetch multiligne réduit ce temps à 3 secondes . Le nombre de blocs lus
sur disque est identique ; en revanche, le nombre de blocs manipulés en mémoire et
sur le est minimisé par la lecture multiligne .

llllleaa 12-39 lelell -- vs

j 1 191• par ilillclt (par défauQ 100 iq,es par "'ch

SQL> SET ARRAYS IZE 1
SQL> SET AUTOTRACE TRACEONLY
SQL> SELECT a.adhid,a. nom,a.te l ,a.date_nais

FROM Adheren t bis a ;

11776 1 8 ligne(s) sél ectio nnée(s) .

Ecoul é : OO :OO : 30.,6

Statistiques

59'028 cons i sten t gets
1022 .fo phys i ca l reads

12'308135 bytes sen t via SQL*Net to c li ent
6'7730.fo bytes received vi a SQL*Net f r om

c l ien t
588810 SQL*Net r oW'ldtrips to/f r om c li ent

© Éditions Eyrol/es

SQL> SET ARRAYS IZE 100
SQL> SET AUTOTRACE TRACEONLY
SQL> SELECT a.adhid,a. nom,a.te l ,a.d.ate _nais

FROM Adherentbis a ;

11776 1 8 lign e(s) sél ect i onnée(s) .

Ecoul é : OO :OO :03.2 1

Statisti ques

21911 consiste n t gets
1022 , physica l reads

, 929'367 bytes sen t via SQL*Net to c l ient
129952 bytes received vi a SQL*Net f r om

c l ien t
11778 SQL*Net r oW'ldtrips to/f r om c l ient

601 1

1 SQllv.é l

Sous SQL*Plus, la valeur de ARRAYSIZE peut être comprise entre 1 et :5 000. L'efficacité
dépend aussi de la configuration middle ware et des capacités du réseau. Une valeur excessive
de ce paramètre peut nuire aux performances.

Le nombre de lignes à extraire par lecture doit être positionné entre 100 et 200 (cette valeur
devrait convenir à la majorité des applications).

Gestion du cache

1 602

Depuis la version l lg, Oracle dispose d'un cache de résultat, fuisant partie de J'espace
mémoire qu'il gère (laSGA), et dont les requêtes SQLet les fonctions PUSQL peuvent béné­
ficier. Il est très intéressant pour des requêtes coûteuses et répétitives qui nécessitent d'être
exécutées à chaque appel, même si Je plan d'exécution est préétabli et les. blocs de données
sont tous en mémoire. Il va sans dire qu'après toute mise à jour d'une donnée dans Je cache,
celui-ci est invalidé avant de se reconstruire à J 'interrogation suivante.

Rgure 12-13 Cache SOL et Pl/SOL (© doc. Oracle)

---1= 11 = 11 = 1
l'::'.:' 11 '=' 11 = 11 - 1

SMredPool

EJ --11

Les paramètres de votre cache disponible sont visibles à J'aide de la requête suivante :

© ÉdW/ons Eyroles

SQL> SELEX:T name, val ue FRCM v $parameter

name LIKE •result_cache% ' ;

Nl\ME VALUE

resu l t _cache_mode
resu l t _cache_max_si ze

Ml\NUAL

4292608
5
0

-. .. 1sa11o111

La taille ici est de 4 Mo et Je pourcentage du cache utilisable pour un résultat est de 5 % (par
défaut). Le cache est modifiable par ALTER SESSION SET RESULT_CACHE_MODE = {FORCE

1 MANUAL} ou ALTER SYSTEM. La valeur MANUAL est celle adoptée par défaut, la valeur FORCE
J'active pour la session ou pour les sessions à venir. Cette dernière n'est pas recommandée
puisqu'elle aurait pour conséquence la mise en cache de toutes les requêtes, même celles qui
sont non déterministes (dont Je résultat peut changer avec les mêmes paramètres en entrée).
Les autres paramètres sont également modifiables au niveau du système seulement (pas de la
session).

Pour VOS tests, sachez que ALTER SYSTEM FLŒll SHARED_POOL vicie la SGA mais pas Je
cache, tandis que ALTER SYSTEM FLUSH BUFFER_CACHE vide seulement Je cache.

Cache pour les requêtes
L'activation et la désactivation du cache au niveau d'une requête peut se programmer à J'aide
de hints : /*+RESULT_CACHE* I fuit passer Je paramètre RESULT_CACHE_MODE à FORCE et
/*+NO_RESULT_CAO!E* I fait passer Je même paramètre à MANJAL.

Si vous avez déjà mis en place le cache avec ALTER SESSION ou ALTiER SYSTEM et qu'une
requête utilise un des hints précités, le hint l'emporte.

Comme les résultats du cache doivent être non aléatoires, vous ne devez pas utiliser des
requêtes avec des tables temporaires, séquences, ou express ions avec une
date variable (SYSDATE par exemple}.

Le tableau 12-40 présente les deux écritures de la même requête qui dispose le résultat en
cache. Vous devrez peut-être exécuter plusieurs fois de suite la requête pour bénéficier du
cache. Dans Je plan d'exécution, vous retrouverez la preuve de l'utilisation du cache et la
requête associée à J'aide de la vue v$resu l t_cache_obj ects.

© Éditions Eyrol/es

1 SQllv.é l

Avec un hint Avec le paramètre d'lnttlallsa..,n

SQL> SELECT a.adh id,a.civ ili te ... ALTER SESSI ON SET ll&SULT_CACHEJIODS = FORCE;
SELECT ..• FROM adher.e n t a ...

ADHID CIVI L PRENOM NOM Plan d'exéc ution

27000 Mlle. JENI FER
Ecoulé: OO :OO :37.7 1

THIRIET 1 I d 1 Operatio n 1 Name 1 R

1 2
SQL> SELEC T /* + ll&SULT _ CAC'HS * /

a.adhid,a .<:ivi li te ...

0 1 SELEC T STA TEMENT

1 1 ll&SUL'1' CACHE 1 a8c0 hndk7y0wb56 uuzgm4ctay u

FROM adher.e n t a ... SQL> SELECT id, type, creation_timestamp, stat us, name
FROM v$res ul t _cac he_objê<:ts

SQL> SELEC T /* + ll&SULT _ CAC'HS * / WHERE cac he_id = ' a8c0 hndk7y0wb56 uuzgm4cta yu ' ;
ID TYPE CREATION STATUS NAME

ADHID CIVI L PRENOM NOM 4 Resul t 1 2/07/ 14 Publi s hed

27000 Mll e. JENI FER
Ecoulé: OO :OO :OO.OO

THIRIET
SELECT a.adhid,a.c i vi l ite,a.prenom,a.nom
FROM adhere n t a WHERE NOT EXISTS •..

1 604

cache POID' les fonctions PIJSQL
Avant la version l lg, la zone de cache (en PGA) qui était utilisée par les tableaux associatifs
dans les paquetages (package level collections, voir l'exemple de la section « Comment
retourner une table »du chapitre 6) était spécifiq ue à chaque session. Il pouvait se produire des
problèmes en cas de montée en charge . Depuis la version l lg, une fonction peut retourner des
résultats mis en cache disponibles pour d'autres sessions ; il s'agit de la fonction resrllt cache.

Disposée au niveau de la création d'une fonction PL/SOL, l'option RESULT_ CACHE permet de
bénéficier d'une zone de cache pour stocker les résultats à chaque appel avec de noweaux
paramètres. !.:option RELIES _ON (implicite depuis la version 11gR2) assure que toute mise à
jour de données qui pourrait invalider le cache de entre deux appe ls identiques,
dédenche une invalidation dudit résultat et une réévaluation.

Il est recommandé que votre fonction ait le moins possible d'effets de bord (modification d'une
table, écriture d'une trace DBMS_OUTPUT ou envoi d'un e-mail, par exemple). De plus, méfiez­
vous des fonctions utilisant des données dont le format peut dépend re des paramétrages d'une
session (NLS_ DATE_ FORMAT ou TIME ZONE, par exemple).

Le tableau 12-41 présente une fonction qui retourne la concaténation du nom et du téléphone
d'un adhérent dont le numéro passe en paramètre . Cette fonction est appelée 101 fois dans le
bloc (100 fois avec le même numéro) et une fois avec un autre numéro . Le résultat est que
seuls deux appels à la fonction sont opérés et 99 aocès aux caches sont effectués ..

© ÉdW/ons Eyroles

-. .. 1sa11o111

T-12-41 Udlsato11111 caclll dl risdlat llOlll •1 lllKllcil Pl/SQ.

Fonc11on result c:ache 101 appels de la tonc11on

CREATE FUNCTION f_ adhlu_ cac he SQL> DECLARE
(pl IN adhere nt.ad hidiTYPE)

RETURN VARCHAR2

adhid,_in adher ent.adhi diTYPE : = 273 42 ;
3 v_.re s VARCHAR2 (100);

RESULT _ CACHE
U:LI:&S_ ON(adhere nt)

4 BEGIN
5 FOR i IN 1 .. 100

IS 6 LOOP
r e sul t VARCHAR2 (100);
BEGIN

7 v_ r es : = f_adhl u_cac he(adhi d,_in);
8 END LOOP;

SELECT noml 1 ' - '11 te l INI'O r esul t
FROM adher en t WHERE adhid = pl;

compteur . increme nte();

9
10 v_.re s : = f _adhl u_cac he(275 04);
11 DBMS_OUTPIJT. PIJT_LINE(' Compte ur 'l l compte ur .affic he());
1 2 END; RETURN resu l tt ;

END f_adhlu_cac he ;
/

'
1 3 /

Compteur 2

Plusieurs restrictions concernent les fonctions result cache:

elle ne doit pas être pipelined;

elle ne peut disposer de paramètres de retour (OUT ou IN OUT) ;

les paramètres d'entrée sont simples (pas de BLOB, CLOB, NCLOB, REF CURSOR, collections,
objets ou recorrf) ;

le type de retour est simple (pas de BLOB, CLOB, NCLOB, REF CURSOR, objets). Les collec­
tions ou record ne doivent pas contenir un type précité.

cache pour les tables
Depuis la version llgR2, le cache de peut être aussi utilisé au niveau d'une table
(instructions concernées : CREATE TABLE et ALTER TABLE). L'option RESULT_ CACHE (JIODE

{FORCE 1 DEFAULT)) sert à activer ou le cache pour tout accès à la table. Une
autre possibilité lors de la création d'une table consiste à employer les directives CACHE ou
NOCAŒ!E.

Dans la première écriture, DEFAULT caractérise le comportement par défaut d'une table (à
savoir pas de mise en cache si ce n'est les blocs de données qui montent en mémoire naturel­
lement lors de toute extraction). Cette option diffère toute décision de l'utilisation du cache
par un paramètre système, de session, ou finalement un hint sur une requête particulière. Dans
le second type d'écriture, NOCACHE exprime le même état de fait.

© Éditions Eyrol/es

1 SQllv.é l

Pour mettre en cache une joinb.Jre, vous devrez effectuer ce procédé pour toutes les tables
concernées. Il indique que les blocs extraits de ces tables sont placés en bonne place au
niveau de la liste LRU (Least Recently Used} dans le butter cache. Pour les tables de taille
réduite qui ne sont pas mises à jour très c'est très efficace.

Le tableau 12-42 présente la mise en cache de deux tables existantes et la création d'une
nouvelle table mise en cache dès Je début. La colonne resul t_cache du dictionnaire de
données renseigne l'état de chaque table. En traçant vos requêtes, vous constaterez que J'utili­
Slltion du cache, à partir du deuxième appel, fait passer Je nombre de gets à zéro.

T-12-42 llllsato11111 cac111 d1 t•
En modification

SQL> ALTER TABLE s por t RESULT_ CACHE (MODE FORCE) ;
SQL> ALTER TABL E prat ique ll&SULT _CACllB (MODB PORCS); SQL> CREATE TABLE adhe.ren t:es

SQL> SELECT tabl e_ name, r esul t _cac he
2 FROM user _ t abl es
3 WHERE tabl e_ name IN

(' PRATI QUE ' , ' SPORT ' , ' ADHERENI' ');

TABLEjlAME RESULT _ CACHE

PRATI QUE P'ORC&
ADHERENI' DEFAULT
SPORT P'ORC&

Rgure 12-14 Trace d'une j ointure

SOL> SET AUTOTRACE TRACEONLY
SOL> SELECT 1 .s pll bo ll o , p . odh i d

2 FROK p• otiqut p . spo• t &
3 YHERE p . adhîd • 711

AND p .s p l d•p .sp l d :

lan d' •x8 cution

1 Id 1 Op.,o ti on

· i ssnpm5 • 20fd51 1

I • 3 1 INDEX RANGE SCAN 1 IDX_PRATIOUE_ADHID
1 1 8UFl'E R SORT 1
1 5 1 TABLE ACCES$ FULL 1 SPORT

2 RESULT_ CACHE (MODE FORCE)

3 AS SELECT *
4 FROM adher e nt
5 WHERE c ivili te IN (' Mme .', ' Mll e .');

Tabl e c r éée.

Figure 12-15 Trace d 'un sccés full

""s.OL) SET AUTOTRACE TAACEONl..V
Ql > SELECT no• . pr•n09

2 F'ROH .cll'l...-•ntH
J WHEAE Mlhid < 777;

tan d · Hkutlon

1 Id 1 Op+ration 1 Haa•

1 1 $lfr §ê 1 3yr"3qf MtuTcyd91uwjj3vff2j 1 1 • 1 1
, .. 2 1 T t SS r uu.1 AOHEA€HTES 1

'
Le cache n'est pas possible pour les tables organisées en index (IOT).

1 606 © ÉdW/ons Eyroles

-. .. 1sa11o111

Tables organisées en index

Évoquée au chapitre 1, une table organisée en index (IOT, i11dex-orga11ized table) est stockée
physiquement dans une structure d'index B-tree. Chaque entrée d'index (blocs feuilles)
contient alors les lignes entières de la table, au lieu de comporterROWID dans Je cas d'un index
classique accédant à une table classique (en heap). La clé primaire d'une table ror peut être
composée de plusieurs colonnes.

Les tables ror sont particulièrement intéressantes à utiliser si on désire rapprocher physique­
ment des données ou les disposer dans un ordre particulier (base de données spatiales et
multidimensionnelles). Ce mécanisme existe aussi avec IBM DB2 et se nomme cl11stered
index avec Microsoft SQL-Server. Depuis la version 9i d'Oracle, il est également possible de
créer des index additionnels (sur des colonnes qui ne sont pas des clés). Le besoin de stoc­
kage est en théorie réduit, car les colonnes clés ne sont pas dupliquées dans une table et dans
un index.

Table en heap

Figure 12-16 Tables organisées en Index

Table/OT
Accès

O'

IZJ Il est impératif de spécWier une dé primaire à la création d'une table organisée en index. La
contrainte ne doit pas être dédarée DEFERRABLE.

Par construction, les tables 101 offrent un acx::ès rapide pour les extractions basées sur une
égalité de la clé primaire. Les recherches par inégalité ou intervalle sur la. clé ne sont pas péna­
lisantes pour autant.

Comparatif
Le tableau suivant compare les caractéristiques des tables classiques (h eap-orga11ized) et des
tables ror.

© Éditions Eyrol/es 607 1

1

1 608

SQllv.é l

Caractéristique Tables en ,,..,, Tables IOT

ldentWlcatlon Le r<mld identWle toute ligne. Une clé La clé primaire doit être déclarée pour
primaire peut être déclarée. Identifier toute ligne.

R<mld et. Indexage La pseudo-colonne ROWID (adresse La pseudo-colonne ROWID (adresse
secondaire physique) permet. un Indexage logique) permet un Indexage secondaire.

secondaire.

Acœsdirect Toute ligne peut être accessible Toute ligne est aocess.lble Indirectement
directement par son rowld. par la clé primaire.

Parcours entier full scan table ret.ourne toutes les index full scan ou fast full
lignes dans un certain ordre. index scan ret.ournent toutes les lignes

dans un ordre similaire.

Clusters Peut être stockée dans un c/uster 11Nec Pas de clisrerpossllle.
d'autres tables.

Colonnes Peut contenir des colonnes LONG et. Peut contenir des colo.nnes LOB mals pas
multimédia LOB. deSLONG.

Colonnes virtuelles Autorisé. Interdit.

Une table organisée en index peut être utilisée pour des tables de référence, des tables d'asso ­
ciation ou des tables auxquelles on acx::ède toujours via leur dé primaire.

Les tables ayant peu de colonnes qui ne sont pas des dés et de taille relativement restreinte
peuvent également être de bonnes candidates.

Les débordemenlS
Si les lignes de la table Jar sont volumineuses, vous devrez gérer les segments de débordement
(overjlow segments). Ce problème ne se pose pas pour les tables associées à des index B-tree
car la taille de chaque entrée d'index est relativement réduite (valeur de la clé et rowid

associés).

Lorsqu'une zone de débordement est définie (directive OVERFLOW), chaque ligne de la table
Jar est divisée en deux parties :

• L'index qui contient les colonnes clé primaire, un rowid qui référence Je reste de la ligne
dans la zone de débordement et, éventuellement, quelques colonnes qui ne sont pas des
clés. Tout ceci est stocké dans Je segment d'index.

• Le reste des colonnes de la ligne est stocké dans Je segment de débordement.

Ce mécanisme présente un inconvénient majeur lorsque la majorité des aux données
s'effec tue dans les segments de débordement ; J' efficacité de la table organisée en index est
alors considérablement réduite.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Création d'une IOT
La directive ORGANIZATI ON IIDEX de)'instruction CREATE TABLE permet de définir une
table (une clé primaire doit aussi être déclarée). Il existe plusieurs options :

• OVERFLOW préserve la densité de J 'index permettant Je stockage de colonnes non-clés dans
un segment séparé (de débordement).

• PCTI'HRESHOLD (valeur comprise entre 1 et 50, 50 par défaut) précise Je pourcentage
d'espace libre réservé dans un bloc d'index pour chaque ligne. La colonne non-clé (et les
suivantes) qui dépasseront cette taille seron t stockées dans Je segment de débordement.

• INCLUDim indique Je nom d'une colonne non-clé à partir de laquelle sera effectuée la
séparation entre Je segmen t d'index (privilégiant ainsi les accès à cette colonne et aux
précédentes) et Je segment de débordement.

• COMPRESS ne concerne que les tables ror dont la clé primaire est composée de plusieurs
colonnes ; J' index est alors compressé en fonction de valeurs communes de certains
préfixes.

ComparaiSon avec une table en beap
Afin de comparer avec la table en heap Opérateurs et son index B-tree sur la clé primaire
(colonne opeid), définissons la table organisée en index Operateurs_iot de la manière
suivante.

llllleaa 12-44 cnauoe d'u• t• lllT

CodeSQl

CREATE TABLE Operateurs _iot
(opeid CHAR (4) NOT NULL,

nomope VARCHAR(25) NOT NULL,

CONSTRAI NT pk_Operateurs _ iot
PRIMARY KEY (ope id))

01\GANXZ.ATION INDl:X
TABLESPACE tbs _ index
INCLUDI?«J creaope
PC'1"1'1111&SHOLD 20

OVZRPLOH TABLESPACE use.rs;

Conmenlalres

Colonnes de la table.

Dé<lnltlon de la clé primaire.
Le segment d'index se trouvera dans le tab/espace
tbs_ index.
Les 3 premières colonnes seront dans le segment
d'index.
SI la taille d'une ligne dépasse 20 % de la taille d'un
bloc, alors la colonnes et les suivantes seront
stockées dans le tablespace us ers .

En analysant la requête qui extrait Je code et Je nom d'une dizaine d'opérateurs (prédicat
WHERE ope id IN (' SFR' , ' Orange ' , 'M6T' , ...)), il apparaît que 3 fois moins de blocs sont
extraits da la table ror que de la table en heap.

© Éditions Eyrol/es

1

'

SQllv.é l

lin iles

Une table IOT ne peut ni conten ir plus de 1 000 colonnes, ni définir une clé primaire de plus de
32 colonnes.

Sans dause de le nombre de colonnes contenues dans le segment d' index est
limité à 255.

Partilionnemem

1 610

Le partitionnement permet de décomposer une table volwnineuse (et ses index) en parties de
taille plus réduite: les partitions. Chaque partition est un objet (au sens Oracle, table ou index)
nommé, composé de la même structure (colonnes et contraintes) et dispos.an! de ses propres
caractéristiques de stockage (rab/espace, options de blocs, etc.).

L'accès aux partitions est transparent; si vous adoptez Je partitionnement en évolution d'une
implémentation classique, vous ne devrez pas réécrire Je code. La stratégie de partitionnement
pour une table comme pour un index présente de nombreux autres avantages :

• maintenance et administration plus précise (ajout, suppression, fusion, division, modification
d'une partition);

• disponibilité accrue: Je fait qu'une partition soit indisponible n'implique pas l'indisponi­
bilité de la partition entière. L'optimiseur supprime automatiquement d u plan d'accès les
partitions indisponibles ;

• réduction des contentions sur des ressources partagées (bases OLTP) et amélioration des
requêtes sur des datawareho11ses (bases OLAP).

La clé de partition
La clé de partition est composée d'une ou de plusieurs colonnes qui déterminent la partition
d'accueil de la ligne en question. Chaque ligne est affectée à une seule partition.

Les stratégies basiques de partitionnement (single leveJ. partitio11i11g) sont apparues progressi­
vement : par intervalle (ra11ge partitio11i11g en version 8.0), par hachage (hash partitio11i11g en
version 8.1) et par liste de valeurs (List partitio11i11g en version 9.0). La figure suivante illustre
les types de partitions possibles: la liste conduit à répartir les données selon les noms des
légions, l'intervalle à un classement de manière temporelle (ici tous les deux mois) et Je hachage
à une présentation homogène en utilisant un algorithme interne.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Figure 12-17 Stmtégles basiques de partitionnement (© doc. Omcle)

List
Partltlonlng

East S.IH ReglLCJ
NewYorl<
Virginia
Florida

WHI sa1 .. R-ott:Jon
Cal'omla
Oregon
Hawaii

CenlrolS.IHReglv llinols
Texas

Range
Partltlonlng

Mon;h ""r----1

r--î

Juty ;.d r--î

Les tables qui sont de très bonnes candidates au partitionnement:

Sont de taille supérieure à 2 Go.

Hash
Partltlonlng

h2
h3
h4

Contiennent des données historiques pour lesquelles des informations récentes s'ajoutent à
une nowelle partition . Par exemple, une table contenant des données modifiables sur le
mois en cours et où les information concernant les mois précédents sont en lecture seule.

Sont celles qui nécessitent d ifférentes unités de stockage.

Le partitionnement ne peut pas s'appliquer à une table en c/usterou à une table contenant une
colonne de type LONG ou LONG RAI'/.

Intéressons-nous à présent à l'application de ces différentes techniques de partitionnement
dans le but d'améliorer les pedormanœs des requêtes. Nous étudierons ensuite l'utilisation
des index partitionnés locaux et globaux.

Partitions par intervale
La directive PARTITICN BY RANGE de l'instruction CREATE TABLE précise les colonnes de
partition et définit les intervalles.

Avec le partionnement par intervalle, les lignes de la table sont réparties en fonction des
valeurs de la clé de partitionnement. La directive VALUES LESS THAN indique la limite supé­
rieure (sans l'indu re) de chaque partition . Toute ligne dont la colonne clé de la partition est
égale ou supérieure à cette limite sera d isposée automatiquement dans une des partitions sui-

© Éditions Eyrol/es 611 1

1

1 612

SQllv.é l

vantes. Toutes les partitions, à l'except ion de la première, d isposent implicitement d'une limite
basse (limite haute de la partition qui précède).

Le MAXVALUE est utilisé dans la dern ière partition.

En se basant sur la table Adherentbis qui contient des adhérents nées entre le 1/1/1920 et le
31/12/2005, comparons les deux implémentations (avec et sans partition). La table partition­
née en intervalles Aelherent_parti tion_range est créée de la manière suivante : trois parti­
tions sont définies, chacune dans un rab/espace distinct. La première partition (retraite s)
contiendra les adhérents nés avant le l" janvier 1945, la deuxième (actif s) contiendra les
adhérents nés entre le 1er janvier 1945 et le 1er janvier 1993 et la derniè re (mineur s) sera
peuplée des adhérents nés après le 1er janvier 1993.

Code SOL

CREATE TABLE Adhe r ent _ pa.r t i t i on_ ra.nge
(adhid NUMBER (l0) NOT NtJLL,

n om VARC HAR(25) NOT NUL L ,

pren om VARC HAR (3 0) NOT NUL L ,

c ivili te VARC HAR (l 2) NOT NUL L ,

d.ate_ na is DATE NOT NULL,
te l VARC HAR2 (20), s o l de NUMBER (8, 2))

PARTITI ON BY RANGE (date_na is)

(PARTITION retr a i tes VALOl:S L&SS TRAN

(TO_J)ATE (' 01 / 01 / 1945 ' , ' 00 / MM/ YYYY '))

TABL ESPACE t b s_par tl,

PARTITION act i f s VALOl:S L&SS TBAN
(TO_J)ATE (' 01 / 01 / 1993 ' , ' 00 / MM/ YYYY '))

TABLESPA CE t bs_part2 ,
PARTITION mineurs VALOSS L&SS TRAN (MAXVALOI:)

TABLESPA CE t bs_part3);

Corrrnenlalres

Colonnes de la table.

Dé<lnltlon de la clé de partition.
La première partition se trouvera
dans le tab/espace t bs_partl , etc.

Afin de comparer les deux implémentations, considérons une requête qui extrait l'identité des
adhérents selon la date de naissance (prédicat du type WHERE TO_CHl\R (a. d.ate_nais, · DD/
MM/YYYY') >= '01 / 01 / 1920' AND TO_CHAR(a.date_nai s , 'DD/MM/ YYYY') < '01 /
01/ 1945 ').Sans aborder l'indexation, un gain de l'ordre de 40 % apparaît déjà au niveau des
lectures physiques.

automatiwes
Que faire lorsque vous désirez créer des partitions d'intervalles portant sur des étendues de
valeurs identiques sans connaître le nombre de partitions dont vous disposerez, la clé de partition
pouvant évoluer dans le temps ? Dans ce cas, utilisez les partitions à intervalles automatiques.

© ÉdW/ons Eyroles

leodeSOL

-. .. 1sa11o111

Le INI'ERVAL permet de gérer automatiquement les partitions range (en fixant une
étendue de valeurs} sans devoir lister exhaustivement les intervalles. L.:inconvénient est qu' il
est impossible de disposer ces partitions dans des espaces prédéfinis car leur nombre est, a
priori, inconnu.

Une partition initiale doit être définie, fixant le premier intervalle.

« Partionnons » la table des adhérents selon le solde (valeur comprise entre 0 et 30 000) en
considérant des tranches de salaires de 8 000 euros. La première partition (pl) contiendra les
adhérents dont le solde est inférieur à 8 OO 1 euros . Les autres partitions seront créées automa­
tiquement lors de l'insertion de lignes et selon la valeur de la colonne solde. Le nom des
partitions peut varier d'une session à l'autre .

T- 12·46 Cl6a1loe d'•1 •11 lllllldomil • llWlllllll Ml.,mUQues

CREATE TABLE Adherent_pa.rt_range _ inter­
val

SELECT pa.rt i t i on.pame , higl_v alue

FRCM USER,..TAB_ PARTITI ONS
(adhid
tel
sol de

NUMBER(l 0) NOT NULL,
VARCHAR2 (20) ,
NUMBER(8 , 2))

WHERE tabl e_name = ' ADllERENI'_ PARTJ!AN GE;..INTERVAL '
ORŒR BY part i tion.pame ;

PARTITION BY RANG:& (solde)
IN'l'<VAL (8000)

PARTITI ON..)IAME HIGH_VALUE

(PAllTIT XON pl VALOIS Lli.SS '1'llAN (800 1)) ; Pl 800 1

'

SYS_ P35 1600 1
SYS_ P36 3200 1
SYS_ P37 24001

Sans considérer l'indexation, l'optimiseur n'accédera qu'à une seule partition (économie sur
les blocs lus) pour les prédicats filtrant un solde particulier (ou un intervalle contenu dans une
partition). L'accès à une seule partition est décelé dans un plan d'exécution par la présence de
l'opérateur PARTITI ON RANGE S INGLE, l'accès à plusieurs par PARTI'll'I ON RANGE INLI ST

et l'accès à toutes par PARI'ITI ON RANGE ALL .

La clé d'un partitionnement par intervalle ne peut pas être du type ROWID, LONG, LOB,
XML.Type, OU TIMESTAMP WTI'll TIME ZONE.

Partitions par hachage
La directive PARTITICN BY HASH de l'instruction CREATE TI\BLE précise les colonnes de
partition, dénombre les partitions et indique les tablespac es.

© Éditions Eyrol/es 613 1

1

1 614

SQllv.é l

Avec un partitionnement par hachage , les lignes de la table sont réparties selon un algorihme
interne en fonction des valeurs de la clé de partitionnement. La répartition est homogène entre
les partitions qui sont de tailles à peu près identiques. Ce mécanisme conv ient parfaitement
lorsque aucune sémantique n' intervient dans la clé de partionnement.

Divisons la table des adhérents en quatre partitions par hachage sur Je prénom . La table parti­
tionnée Adherent_parti tion_hash est créée de la manière suivante. Si le nombre d' espa­
ces défini est inférieur au chiffre indiqué dans PARI'ITION S, Oracle gère les partitions d'une
manière cyclique (pour 5 partitions et 3 rab/espaces, la quatrième partition ira dans le premier
rab/espace et la dernière partition se trouvera dans le deuxième rab/espace).

T- 12-41 cnadoe d'•1 t• •ldcll161 • lllclllll•

Code SOL Commentaires

CREATE TABLE Adhe rent _ pa.rt i t i on_ hash Colonnes de la table.
(adhid NUMBER(l0) NOT NtJLL,

nom VARC HAR(25) NOT NULL,
pren o m VARC HAR (3 0) NOT NULL,
c ivili te VARC HAR(l 2) NOT NULL,
date_ na is DATE NOT NtJLL, Définition de la clé de partition
te l VARC HAR2 < 20 > , s olde NUMBER <a, 2)) et du nombre de partitions.

PARTITION BY RASR (pre nom) La première partition se
PARTITIONS 4 trou110ra dans le tablespace

STOR& IN (t bs_pa rtl, t bs_pa r t2 , t bs_pa r t 3, t bs_pa rt4); t bs_ partl , etc.

Dans ce type de partitionnement, n'espérez pas des gains de performances pour toutes vos
requêtes. Néanmoins, sans index, l'optimiseur n'accédera qu'à une seule partition (économie
de 75 % sur les blocs lus) pour les prédicats filtrant un prénom particulier, deux partitions au
plus pour les prédicats filtrant deux prénoms (gain de 50 %), etc. Les opérateurs que vous
verrez apparaître dans vos plans d'exécution sont PARTITION HASH S INGLE (pour une égalité
sur un prénom), PARI'ITION HASH INLIST (pour une comparaison avec un ensemble de
prénoms) ou PARI'ITION HASH ALL (parcours de toutes les partitions).

Partitions par liSle
La directive PARTITION BY LIST de l'instruction CREATE TABLE précise les colonnes de
partition et liste les valeurs de la clé.

Le partitionnement par liste, répartit les lignes de la table selon les valeurs de la dé de parti­
tionnement L:avantage de ce mécanisme est qu' il permet de faire interven ir une sémant ique
dans la clé de partionnement (pas de notion d'o rdre comme pour les intervalles).

© ÉdW/ons Eyroles

-. .. 1sa11o111

La partition DEFAULT permet d'év iter de lister exhaustivement toutes les valeurs possibles de
la clé de partitionnement en ainsi d'indu re toutes les lignes de la table d'une manière exclusive
par rapport à leur partition d'accueil.

Fragmentons les adhédents en trois partitions par liste suivant leur sexe. La table partitionnée
Adherent_partition_list est créée de la manière suivante.

CodeSQl Commentaires

CREATE TABLE Adhe.rent_pa.rt i t i on_list Colonnes de la table.
(adhid NUMBER(l0) NOT NULL,
nom VAR CHAR (25) NOT NULL,
prenom VAR CHAR (30) NOT NULL,
c i vili te VARCHAR(12) NOT NULL,
d.ate_nais DATE NOT NULL,

te l VARCHAR2 (20) ,
sol de NUMBER(8,2))

PJU\TITION BY LIST (civilite) de la clé de partition.
(PJU\TITION femmes VALUES <' Melle. • , •Mme. • > La première partition se troLNera

TABLESPACE tbs_partl, dans le tab'espace tbs_partl, etc.
PARTITION hommes VALUES ('Mr. ')

TABLESPACE tbs_part2,
PARTITION autres VALUES (DD'AOLT)

TABLESPACE tbs_part3);

L'optimiseurn'accéderaqu'à une seule partition (économie de 50 % sur les blocs Jus) pour les
prédicats filtrant un sexe particulier. Les opérateurs que vous verrez apparaître dans vos plans
d'exécution sont PARTITICN LISI' SIN:;LE (pour une comparaison d'égalité), PARTITICN
LISI' INLISI' (pour une comparaison avec un ensemble de sexes) ou PARTITI ON LISI' ALL
(parcours de toutes les partitions).

Partitions par référence
Si la table à partitionner est une table de référence (des clés étrangères d' autres tables pointent
vers elle), il est possible de partitionner les tables enfants (refere11ce-partitio11ed table) de la
même manière que la table parent. Ce mécanisme n'est pas limité à une table enfant avec sa
table parent mais peut être utilisé en cascade.

Ce dispositif offre plusieurs avantages car il rapproche physiquement des lignes qui étaient
déjà reliées logiquement. Des jointures peuvent être plus performantes si des index locaux
sont aussi créés. De plus, toute gestion d'une partition affectera des lignes de différentes tables
mais d'une manière cohérente et homogène.

La directive PARTITI ON BY REFERENCE de J' instruction CREATE TABLE spécifie Je nom de
la contrainte de clé étrangère entre la table enfant et la table de référence. Cette contrainte doit
être vérifiée et active.

© Éditions Eyrol/es 615 1

1 SQllv.é l

Fragmentons la table des opérateurs selon l'année de création en trois partitions disposées
dans des rab/espaces distincts. En décidant de partitionner les adhérents (qui sont rattachés à
un opérate ur) de la même manière, vous devez créér les tables de la manière suivante.

Table parent

CREATE TABLE Operateurs_pa..rtition_ref
(opeid CHAR(4) Nor NULL,

nomope VARCHAR(25) NOT NULL,

creaope
siegesocial
nbc l ie.nt s
CONSTRAINT

DATE NOT NtJLL,

VARCHAR(l S) NOT NULL,

NUMBER (7) NOT NULL,

pk_Ope_parti t ion,_ref
PRIHARY KEY (opeid))

PAii TITI ON BY RANJB (creaope)

(PARTITION P_l 999_2003 VALUES LESS 'lHAN

(TO_ DATE(' 01 -01 -2004 ' , ' DD-MM-YYYY '))

TABLESPACE t bs_par t l ,
PARTITION P_.2004_2007 VALUES LESS THAN

(TO_ DATE(' 01 -01 -2008 ' , ' DD-MM-YYYY '))

TABLESPACE t bs_par t2 ,

PARTITION P_apres _.2008 VALUES LESS 'lHAN
(MAXVALUE) TABLESPN:E t bs_par t3) ;

sous-partitions

Table entant

CRE'ATE TABLE Adhere.nt_pa.rt i t ion_ref
(adhid NtlMBER(lO) NOT NULL,

nom VARCHAR(25) NOT NULL,

pre.nom
civi li t e

dat e_nais

te l

so l de
ope id

VARCHAR(30) NOT NULL,

VARCHAR(l 2) NOT NULL,

DATE NOT NULL,
VARCHAR2 (20),

Nl.1MBER(8, 2),

CHAR (4) NOT NUIL,

CONSTRAINT fk_adll_part_ref_ ope
FOREIGN KEY (opeid)

REFERENCES Opera t eurs_par t i t ion_ref (opeid)

PAii TITI ON BY RBFUBNC B (

Si ces mécanismes de partitionnement ne sont pas assez precis, rien ne vous empêche d'utiliser le
sous-partitionnement (compositepa1fitio11i11g) en divisant chaque partition. Dans la figure suivante,
la première table, déjà partitionnée par intervalle de dates, est sous-partitionnée par hachage. La
deuxième table, déjà partitionnée par intervalle de dates, est sous-partitionnée par liste de légions.

1 616

Rgure 12-18 Sous-parmonnements (© doc. Oracle)

Composite Porlltlonlng Composite P•rlltlonlng
Range- Us1

© ÉdW/ons Eyroles

-. .. 1sa11o111

En combinant un partitionnement sur l'âge des adhérents (rang e) avec un sous-partitionnement
sur Je sexe (List), il vient la table Aclherent_rang e_li s t . La directive SUBPARTITI ON définit
chaque sous-partition ; l'option TEMPIATE permet d'adopter Je même sous-partitionnement
pour chaque partition.

Code SOL

CREATE TABLE Adhere nt_ra nge_ list
(adhid NUMBER (10) NOl' NULL, n om VARCHAR (25) NOT NULL,

pren om VARCHAR (30) NOl' NULL, c i v ili té VARC HAR (l 2) NOT NUL L ,

date_na i s DATE NOT NUL L , te l VARCHAR2 (20). sol de NUMBER (8. 2))

PAJ\TITION BY 1\.1\NQ& (date_na i s)

SUBPAJ\TITION BY LIST (civilite)

SOBPARTITION TDIPLAT&
(SUBPA.RTITION fe e VALUl:S ('Melle. ', 'll:ae. '),

SUBPA.RTITI ON bo e VALOI: S (1 Mr. 1) ,

SUBPA.RTITION autree VALUl:S (DSPAULT))
(PA.RTITXON retr a i tes

VALUES LESS THAN (T OJ)ATE (' 01 / 01 / 1945 ' , ' 00/ MM/ YYYY '))

TABL ESPACE t b s_par tl,

PA.RTITXON act i fs
VALUES LESS THAN (T OJ)ATE (' 01 / 01 / 1993 ' , ' 00/ MM/ YYYY '))

TABLESPA CE t bs_part2 ,

PA.RTITXON mineurs
VALUES LESS THAN (MAXVALUE) TABLESPACE t bs_part3);

Index partitionné

Comrnenlllret

Colonnes de la table.

Définition de la clé de partition.
Définition de la clé de sous­
partitionnement.
Définition des sous-partitions.

La première partition se trou110ra
dans le tablespace t b s_par tl ,

etc.

Un index peut être partitionné de sorte à rendre Je meilleur à une table malgré les diffé­
rentes stratégies de partitionnement. Comme pour les tables, Je partitionnement d'index faci­
lite la gestion et l'évolution, tout en améliorant la disponibilité et les performances.

Il existe deux types d'index :

• les index partitionnés locaux (directive LOCAL de CREATE INDEX) sont partitionnés sur les
mêmes colonnes que la table. Chaque partition d'index adresse une seule partition de la
table. Les avantages de rapprocher données et index sont nombreux. En particulier, ils' agit
d'éviter de reconstruire tout l'index si une des partitions des données venait àêtre modifiée,
supprimée ou rendue indisponible suite à une action de maintenance ;

• les index partitionnés globaux (directive GLOBAL de CREATE INDEX) sont partitionnés
indépendamment de la méthode de partitionnement de la table. L'avantage est d'optimiser
un accès à toutes les partitions en les considérant comme une table unique.

© Éditions Eyrol/es 617 1

1

1 618

Rgure 12-19 Jndexpartftfomés/ocauxetglobaux

Local Index ParUUon pl Local Index Putltlon p2

Gtoblil Index
,.,.i1ionp3

partiliOnné local

Index local partltlo nné

Stgm1n td'lnd1x r)S!C"
GIOO.I tndta l{iiiJ
Pertillon p2

Index global partitionné

SQllv.é l

Un index partitionné local est un index B-tree dont les colonnes de l'index: sont les colonnes
clés de partitionnement de la table. Un index partitionné local peut adopter tout type de parti­
tionnement (intervalle, hachage, liste et composite). De même, J' index et la table disposent du
même nombre de partitions. Il est possible de créer un index local bitmap sur des tables parti­
tionnées.

Tout index partitionné local concerné est automatiquement reconstruit suite aux modifications
de partitions de la table. L'ajout d'une partition à un index local ne peut s'effectuerque suite à
l'ajout d'une partition à la table associée. De même, la suppression d'une partition d'un index
local s'opère seulement si la partition associée de la table est supprimée.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Index partitionné global
Un index partitionné global est un index B-tree qui est partitionné indépendamment du parti­
tionnement de la table associée. Des feuilles d'un tel index peuvent adresser toute partition de
la table. Un index global ne peut être partitionné qu'en intervalle ou par hachage.

Les index partitionnés globaux sont limités à 32 colonnes qui doivent correspondre à un
préfixe des colonnes de l'index (feft prefix). Par exemple, si l'index est défini sur les colonnes
(nom, prenom, te l), alors les colonnes de partitionnement peuvent être (nom, prenom, tel),
(nom, prenofl!) ou (DOIT\ te l). Les combinaisons (prenom, te l), (tel) et (prenom, nom)
seront invalides.

'
Il est imposs ible d'ut iliser la technique du bitmap sur un index partitionné global.

Une colonne clé de partitionnement d'un index partitionné global ne peut pas ê tre du type
ROWIIl

Le tableau suivant présente quelques index qu'il serait intéressant d'appliquer aux tables parti­
tionnées des exemples précédents.

T- 12-51 Cr6ato1 d'lldu IJllllllom6s

Index

CREATE I NDEX Adh_par t_date_ nais _ l oc_idx
ON Adheren t_partition_range

(TO_CHAR (date_nais' ' DD/MM/YYYY'))
LOCAL ;

CREATE I NDEX Adh_par t_ n°"_l oc_idx
ON Adheren t_partition_llas h (nom)

S'roRZ IN (tbs_partl, tbs_part3) ;

CREATE I NDEX Adh_par t_ n°"_pre _g l ob_idx
ON Adheren t_partition_range(nom,pre nom)
GOOBAL
TA:BLESPACE tbs_ index;

CREATE I NDEX Adh_par t_ sol de_g l ob_idx
ON Adheren t_partition_range (sol de)
GOOBAL PARTITION BY IU\NQ& (sol de)

(PARTITION p l VALUES LESS THAN (1 0000),

PARTITION p2 VALUES LESS THAN (25000),

PARTITION p3 VALUES LESS THAN (MAXVALUE))

TA:BLESPACE tbs_ index;

© Éditions Eyrottes

Commentaires

LJndex local accédera optima lement à chaque
partition d'adhérents en <onction de la date de
naissance.

LJndex local accédera optima lement à chaque
partition d'adhérent en <onction de son nom. Les
deux partitions de l'index se trotNent dans deux
tablespaces distincts.

LJndex global aocédera optlmalement,
Indépendamment des partitions d'adhérents
(partitionnés sur la date de naissance), en fonction
des noms et prénoms. La partition de l'index se
trou110 dans le tablespace dédié aux Index.

LJndex global aocédera optlmalement
Indépendamment des partitions d'adhérents
(partitionnés sur la date de naissance) en fonction
du montant du solde. Les 3 partitions de l'index se
trou110nt dans le tablespace dédié aux Index.

619 1

1

1 620

SQllv.é l

1. Si les colonnes de partitionnement sont induses dans les colonnes de l'index à mettre en
œuvre, optez pour un index local. Sinon, passez à l'étape 2.

2. Si l'index est unique et n'indut pas les colonnes de partitionnement, optez pour un index glo­
bal. Sinon, passez à l'étape 3.

3. Si vous donnez priorité à la facilité de gestion, optez pour un index local. Sinon, passez à
l'étape 4.

4. Si vous privilégiez les temps de réponse (applications OLTP), optez pour un index global.
Dans un contexte OLAP, optez pour un index local.

OpéraliOns Sii' les partitions et index
L'évolution des caractéristiques des tables et index partitionnés est possible. Ainsi, plusieurs
opérations sont disponibles ; concernant les tables, il fuudra agir à J'aide de J' instruction
ALTER TABLE:

• ajout/suppression d'une partition via la clause ADD/DROP/TRUNCAT E PARTITION ;

• union de partitions via la clause COALES:::E PARTITICN ;

• transformation/fusion de partitions via la clause EXO!ANGE/MERGE PARTITION ;

• modification de partitions via la clause MODIFY DEFAULT ATTRJlll1I' ES FOR

PARTITION ;

• déplacement/éclatement de partitions via la clause MOVE/SPLIT PARI'ITION ;

• changement du nom/d'une partition via la clause RENAME PARTITION.

Dans la majorité des cas et à moins que vous n'utilisiez conjointement la clause UPDATE

IIDEXES, vous devrez reconstruire vos index partitionnés qui seront notifiés UNUSABLE.

Partiliomemenl des tables m
En version Si, les tables organisées en index pouvaient aussi être partitionnées mais seulement
en intervalle. La version 9i permettait Je partitionnement par hachage. Depuis la version IOg,

tout type de partitionnement est autorisé (range, list ou hash) avec les caractéristiques
suivantes :

• les colonnes de partition sont incluses (tout ou partie) dans la clé primaire ;

• l'indexation en bitmap est possible et les index secondaires peuvent être locaux ou
globaux ;

• la directive PARTITION peut inclure J' option OVERFLOW pour préciser Je segment de débor­
dement au niveau de chaque partition.

© ÉdW/ons Eyroles

-. .. 1sa11o111

La table suivante organisée en index est pardonnée selon la date des contrats (avant 2000,
entre 2000 et 2010, et après).

lilllelll 1Ni2 Cl6alloe d'1• t• MIT Dlllllo1161

Code SOL

CREATE TABLE Historiqu e_part i t i on_i ot

(op e i d CHAR (4) NOT NULL,

a.dhid NUMBER (10) NOT NULL,

date_ cont .rat DATE NOT NUL L ,

catego ri e VARCHAR (1 5) NOT NULL,

r e liq uat NUMBER (7) NOT NUL L ,

CONSTRAINT p k _)lis toriqu e_part i t i on_i ot
PRIMARY KEY (op e i d , adhid,date _ con t r at))

ORGANIZATI ON INDEX
TABLESPACE t bs_ index
INCLUDING d.ate _cont r at

OVERF LOW TABLESPA CE use.rs
PARTITION BY RANQ& (d&te _ contrat)

(PARTITION a va.n t _ 2000 VALUES L ESS THAN

(TO_DATE (' 01 / 01 /2000 ' , ' DD/ MM/ YYYY '))

TABLESPA CE t bs_par tl,
PARTITION de_ 2 ooo_ a _ 2010 VALUES L ESS THAN

(TO_DATE (' 01 / 01 /2011 ' , ' DD/ MM/ YYYY '))

TABL ESPACE t b s_part2 ,
PARTITION apre s VALUES L ESS THAN (MAXVALUE)

TABL ESPACE t b s_part3);

vues matérialisées

Commenlllres

Colonnes de la table.

Définition de la clé primaire.
Le segment d'index se trou110ra dans le
tablespace t bs_ index.

Les 3 premières colonnes seront dans
le segment d'index, le débordement
dans le tablespaceus ers.
Le partitionnement est défini sur la date
du contrat et chaque partition se trotNe
dans un tablespace distinct.

Les vues (dématérialisées) étudiées au chapitre 5 permettent de simplifier J' écriture de certaines
requêtes particulièrement complexes mais ne garantissent rien en regard des performances.
Dans Je pire des cas, une vue peut être consommatrice de ressources si d'autres vues sont
impliquées en cascade dans la requête.

Les vues matérialisées (mat eriali zed views, anciennement s1Ulpshots) sont formées à partir de
requêtes dont Je résultat est stocké (comme les lignes d'une table). Une requête composant une
vue matérialisée peut concerner des tables, vues et vues matérialisées. Dans un contexte de
réplication, l'utilisation première de ces vues, une vue matérialisée s''appelle mast er table .
Dans un contexte de data wareho11se, une vue matérialisée est nommée detail table .

© Éditions Eyrol/es 621 1

1

1 622

Rgure 12-20 Vues matérlsKsées (© doc. Oracle)

Local
Ouery

Materialîzed View

·,

Materlallzed
Vîew

Data base

Remote Update

Repllcate Table Data

Refresh

Master Table

·,

Master
Data base

SQllv.é l

Sans aborder les avantages de ces vues dans une architecture répartie ou d'entrepôts de
données, à propos des performances, les vues matérialisées répondent parfaitement à
l'amélioration des jointures du fait du stockage de lignes précalculées et de la possibilité de
réécriture de requêtes (q11ery rewrite). De plus, Je partitionnement et l'indexation sont
possibles.

Réécriture de requêtes
La réécriture de requêtes est une technique d'optimisation qui transforme une requête
complexe émise sur une table volumineuse en une requête sémantiquement équivalente
interrogeant la vue matérialisée. Dès qu'il est plus intéressant d'utiliser la vue matérialisée
parce qu'elle contient des résultats déjà calculés (agrégats et jointures), toute requête est
réécrite (d'une manière transparente pour l'utilisateur) et utilise la vue à la place de la table.
Aucun code n'est à ajouter dans l'instruction SQL qui ne référence que la (ou les) tables
interrogées.

© ÉdWlons Eyroles

Le ratraîchiSsemenl

-. .. 1sa11o111

Rgure 12-21 Réécriture de

Génér1uon
du pltn

---------.
Genttation

...... dupl•n

Comparaison des coûts
et choix du rMUleur pan

t
'
' '

Du fait du stockage redondant des données (dans les tables et dans la vue matérialisée), des
méthodes de synchronisation (refresh) sont disponibles. La méthode de rafraîchissement peut
être incrémentale (fast refresh) ou complète (complete refresh).

Le rafraîchissement incrémental évite de reconstruire entièrement la vue matérialisée. Cepen­
dant, ce mécanisme doit s'opérer relativement rapidement (à la demande ou périodiquement)
pour garantir J' intégrité des données. Chaque table est associée à un journal d'opérations
(!naterialized view log) qui recense toutes les modifications effectuées sur la table.

Le rafraîchissement complet se produit à la création de la vue matérialisée (définie avec EUILD

IMMEDIATE). Bien que ce procédé puisse être coûteux si les volumes de données manipulés
sont importants, les requêtes interrogeant ces tables seront bien plus performantes.

Exem.-es
Dans un contexte de réplication, les vues matérialisées permettent de maintenir sur une base
locale des copies de données distantes. Ces copies peuvent être modifiables sous réserve
d'utiliser l'option Adva11ced Replicatio11. En général, ces vues sont basées sur la clé primaire
des tables (ou les rowid). Dans un contexte d'entrepôts de données, les vues matérialisées
composent généralement des regroupements (agrégations) et des jointures.

Utilisons une vue matérialisée pour préparer les extractions d'adeptes de J' escrime et du tennis
de table et comparons quelques extractions avec une solution classique.

© Éditions Eyrol/es

1 SQllv.é l

T- 12·53 Cl6a1ICle d'm11111 mat6llllsél

CodeSQL Commentaires

Cll&AT& MATD.IALIZ.ZO VI:&W adh_escrime_pingpong
TABLESPACE t bs_ c lus te.r

Création de la vue matérialisée située dans le
tablespaoe tbs _c luste.r.

1 624

BOILD DelZDIATll:

llD'l\ll:SH COllPLll:Tll:

llNABLll: QUll:RY Rll:WIUTll:
AS SELECT a.adhid, s.spid, s.sp l ibe lle,

a. nom, a.pr e nom, a.te l , a.date_nais, a.so l de
FROM Adhere ntbis a, sport s, Pratiquebis p
WHERE s.sp l ibe lle I N (' Escrime • , ' Ping-pong ')
AND a.adhid = p.adhid
AND s.spid = p.spid
OROER BY a.adhid,a. nom;

La constructlon est Immédiate et la vue est
éllgll le à la de requête (ENABLE

QUERY REWRITE).

w requêtes de jointure entre adhérents et l'escrime ou Je tennis de table utiliseront la we à la
place des tables d'une manière bien plus efficace. L'opérateur que vous verrez apparaître dans
vos plans d'exécution est MAT_VIEI1/ REWRITE JICCESS FULL.

Le rafraîchissement automatique nécessite de créer un journal d'opérations par table interrogée.
w exemples suivants décrivent des vues matérialisées qui seront mises à jour automatiquement.
La première sera actualisée dès la modification de la table Sport. La deuxième Je sera tous les
lundis à 15 h OO.

Code SOL

CRU.Tl: MATll:RIALIZZD VIll:lf LOG
ON sport WITR PllDIAJlY D'Y, ROHID ;

CJl&AT& MATl:ll.IALIZ.ZO VI:&W cata l ogue_sports
llD'l\ll: SB PAST
ON COlelIT

WITR PRIMARY lœY
AS SELECT spid, spl ibe lle FROM

sport;

CREATE MATERIALIZED VI E.W LOG
ON Adhe.ren tbis
WITR PRIMARY lœY, ROWID

PURGll: REPEAT I NTERVAL ' 5 ' DAY;

CJl&AT& MATDIALIZSD VI&W Adheren t_llommes
REFRESH FAST
ST ART WITR ROUND (SYSDATE • 1) • 11/2 4

NEXTJ)AY(TRUNC(SYSOATE)/ LUNDI ')• 1 5/2 4

WITR PIUMARY l<:ll:Y
AS SELECT a.ad hid, a . nom, a.pre nom,

a.te l , a.d.ate _ na is, a.so l de
FROM Adherentbis a
WHERE a.civ ili te = ' Mr . ' ;

Commenlalres

Création du journal des opérations.
Création de la vue matérialisée avec une
contrainte prlmary l<ey (oolonne clé primaire de
la table).
Rafraîchissement Incrémental après
modl(lcatlons sur la table.

Création du journal des opérations qui sera
vidé tous les 5 jours.

Création de la vue matérialisée avec une
contrainte prlmary key (oolonne clé primaire
de la table).
Rafraîchissement Incrémental, première
actualisation : le lendemain à 11 h puis tous
les lundis à 15 h.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Dénormalisalïon

• ,rzJ

La dénormalisation suppose que vos tables soient d'abord en forme normale (au moins la troi­
sième forme).

La majorité des problèmes de performances des applications en production survient à la
montée en chruge au niveau du volume des données . En d'autres termes, manipuler des tables
mal conçues s'avère pénalisant seulement quand elles deviennent volumineuses et ne tiennent
plus en RAM. Des experts étudient alors Je code pour se rendre compte que les tables ne sont
pas normalisées et il est souvent un peu trop tard. Partez sur de bonnes bases (c'est Je cas de Je
dire) : normalisez au maximum en amont !

Si vos tables sont normalisées (au minimum en troisième forme normale), que toutes vos
colonnes clés étrangères disposent d'un index associé, que ni les clllsters, Je partitionnement
ou les vues matérialisées ne peuvent répondre à vos problématiques de temps de réponse, vous
pouvez tenter de dénonnaliser quelques-unes de vos tables .

Vous pouvez dénormaliser une table en y ajoutant des nouvelles colonnes qui permettront de
stocker soit des colonnes calculées (qui éviteront des calculs), soit des données redondantes
(mais plus accessibles) ou des clés primaires (de taille plus réduite, comme une séquence) ou
étrangères (qui diminueront les jointures). Dans bien des cas, vous devrez programmer des
déclencheurs afin de maintenir l'intégrité dans le temps de votre nouvelle base.

La dénormalisation sera profitable si votre application effectue de nombreuses lecb.Jres et peu
de mises à jour. Si beaucoup de mises à jour sont réalisées, la dénormalisation dégradera sen­
siblement certaines performances. En revanche, si votre application effectue peu de lecb.Jres,
dénormaliser ne sert à rien (a fortiori lorsqu'il existe beaucoup de mises à jour).

Colomes calculées
Dans l'exemple suivant, l'ajout des colonnes t o taljp (nombre de jours. à facturer) et t otalj

(nombre de jours de formation dans J' année) évitera tout calcul impliquant des jointures avec
la table Inscripticn s.

© Éditions Eyrol/es

1

1 626

SQllv.é l

Figure 12-22 Dénorma//saUon pa.r colonnes calculées

Cour a

Inscripl.ions
Client

nco nc.I tDOis lieu
VMO 2 ,,- t--p.----
-UMO 3 11 p.- numCi identi te soeiete t o tal j

L aurent RObert TOTAL - 3 -
UJE , 12 Na 2 Estelle Allemand Airbus 2

UTR 3 02 Pa 3 Michel BetM Airbus 9
>'Al 3 U4 Ly

Le revers de la médaille consiste en la nécessité de programmer plusieurs déclencheurs sur la
table Inscription s qui mettront à jour ces deux colonnes à chaque inscription et à toute
désinscription. Une ou plusieurs vues matérialisées peuvent être également utilisées.

DWlication de co10111es
Dans l'exemple suivant, l'ajout des colonnes identite2 (nom du client) et s te2 (société du
client) évitera toute jointure avec la table Client pour lister les détails des inscriptions. Ici on
régresse de la troisième à la première forme normale.

Figure 12-23 DénormaKsaUon par ajout de colonnes

ncour• nbJ TP
UMO UMt. 2.0. conceptJon de bases de domêes 2 1
PAT 2 05
we Moclêliw""" -•-JEE avec UMI. 2 O 3 15
UTR UMl. 2 0, "°"'le temps réel 5 25

Inscriptions Client

nun<:i

Lauren Robert TOTAL 3

Mtchcl Sêh1 Airbus

Les inconvénients de ce mécanisme sont d'une part l'espace utilisé et d'autre part le risque
d'incohérences si le nom d'un client (ou le nom de sa société) vient à changer. La solution
consiste à utiliser un déclencheur sur la table Client ou une vue matérialisée (contenant entre
autres ces colonnes additionnelles).

© ÉdW/ons Eyroles

-. .. 1sa11o111

AiOut de clés étrangères
Dans l'exemple suivant, l'ajout de la colonne nseg (numéro de segment) évitera toute jointure
avec la table Salle s pour relier des postes à leur segment. Ici on régresse de la troisième à la
deuxième forme normale .

Rgure 12-24 Dénorma/ls8llon par tJjotA de clé

i dl> typOS AAM lP n• nseg
P1-S1 XP 2 01 S1 192.167.10
P2-S1 Vis ta 1 02 S1 192.167.10
P3-S1 XP 2.5 03 S1 192.167.10
P1-S2 Unux 1.5 01 S2 192.167.20

Salles Sogmonts

nsall• etage nbp nseg - -nseq debit type
S1 12 12 192.167.10 192.167.10 10 paire blindée
S2 12 10 192.167.20 192.167.20 1000 fibreV2
S3 16 14
S4 10 8 192.167.10

192.167.25 100 fibre

On retrouve les mêmes inconvénients que précédemment (espace perdu et redondances). Pour
y remédier, il faudra programmer un déclencheur ou passer par une vue matérialisée.

Exem.-e de stratégie
Dénormaliser constituera une action forte sur la base car la structure des tables sera altérée,
des redondances apparaîtront et des déclencheurs devront être mis en œuvre. En conséquence,
cette technique doit être la dernière solution à un problème de temps de réponse en exploita­
tion et en aucun cas justifiée par l'intérêt du programmeur.

Normalisez au maximum avant de mett re en exploitation puis auditer régu lièrement quelques
semaines, mois ou années suivants la montée en charge.

Appliquez les requêtes les plus pénalisantes à une base dénormalisée mais équivalente en
termes de données . Comparez les temps de réponse entre les deux bases . Si ce dern ier est
inférieur de plus de 30 %, il devient vraiment intéressant de dénormaliser.

Derniers consels

Pour en terminer avec tous ces mécanismes d'optimisation, vous trouverez quelques conseils
d'ordre général à propos de vos requêtes et de l'utilisation d'un SGBD.

© Éditions Eyrol/es

1

1 628

SQllv.é l

Les bases de données sont comme bien des situations dans la vie. Les avantages s' accompa­
gnent inéluctablement d'inconvénients, et chaque problème a sa solution. En d'autres termes,
une solution d'optimisation peut vous faire gagner du temps et de l'rugent à un endroit et vous
pénaliser ailleurs. Vous devrez toujours peser le pour et le contre de toute optimisation et déci­
der finalement en connaissance de causes. Bonne chance.

Requêtes ilemcaces
Le tableau suivant présente quelques erreurs classiques et les moyens d'y remédier.

Requête lnefflcace

SELElCT COUNI' (*)
FROM produ its p
WHERE prod _list_price <
1 . 1 5 * (SELECT avg(uni t _cost)

FROM couts c
WHERE c.prod,_id • p.prod,_id)

SELElCT *
FROM job_llistory jh, empl oyes e
WHERE S11BSTR(TO_CJIJU\(ê.êmp l oye_ id),2) =

S11BSTR(TO_CJIJU\ (j h .emp l oye_ id), 2)

SELECT cde_d.ate
FROM commandes
WHERE cd.e_ id_char • 1205

SELEJCT emp_ id, emp_name
FROM empl oyes
WHERE TO_CRAJl(aalaire) :sa l

SELElCT ... FROM avio ns_AF
UNION
SELECT ... FROM avi o ns_B RITAIR

Commentaires

On cherche le nombre de produits pour lesquels l'écart
entre le prix catalogue et le coOt moyen est Inférieur à
15 Le calcul de la moyenne s"exécute pour chaque
produit. li est préférable d"écrlre :
SELECT COUNI'(*) FROM produits p,

(SELECT prod_id, AVG(unit _ cost) ac
FROM couts GROUP BY p.rod _ id) c

WHERE p .prod _ id = c .prod....id
AND p.prod_ li st_price < 1 . 1 5 * c.ac

N"utlllsez plus jamais • 1
La requête applique des expressloms aux colonnes de
jointure. Afin de bénéficier d'index, Il faudra définir deux
Index basés sur !"expression en question.

Le prédicat effectue une oon110rslon Implicite de type.
Alors que la colonne est de type caractère, la
constante, est numérique. SI l'index est déclaré,
comparez la colonne à TO_ CHAR(1 205) ou à • 1205 •.

La oon110rslon de type (TO_CHARl est appliquée à la
valeur de colonne plutôt qu"à la constante et est
appelée pour chaque ligne de la table. Modifiez le
prédicat: sa l aire =TOjlUMBER(: sa l) pour
bénéficier d'un Index et éviter de rru ltlples calculs.

Contrairement à UNioN ALL, l'opérateur tJNi oN évite
les doublons mals nécessite de réa11ser un tri unique.
SI vous sa110z qu·a priori, Il n·existe pas de lignes
communes aux deux extractions, préférez UNION ALL.

Pensez à la nécessité de modifier ultérieurement vos requêtes. Toute modification devrait mini­
miser le besoin de redéployer des modules. L:utilisationde procédures cataloguées peut répon­
dre à ce besoin de maintenance.

© ÉdW/ons Eyroles

-. .. 1sa11o111

Les 10 commandemems de F. Brouard
Paru en 2008 sur Je blog de F. Brouard (hnp:/lblog.developpez.com/sqlpro), l'article Les
JO meille11res prati.q11es po11r développer avec rm SGBDR cite un certain nombre de postulats
qui sont ici résumés.

1. Une base de données relationnelle doit gérer des relations et non des fichiers.

Assurez-vous que vos tables ne contiennent pas un nombre trop important de colonnes.
Respectez la normalisation introduite par Je modèle relationnel. Contrairement à une idée
reçue, dans votre base, plus Je nombre de tables ayant peu de colonnes est élevé, meilleures
sont les performances de vos requêtes.

2. Une clé primaire artificielle est préférable à une clé métier (sémantique).

En choissisant Je numéro d'immatriculation d'une voiture, qui vous dit qu'à la création de
l'enregistrement l'information sera connue ou que cette valeur n''évoluera pas dans Je
temps (entraînant des effets de bord très coûteux) ? La clé métier est en général plus volu­
mineuse qu'une simple colonne NUMBER. L'idéal est de définir une clé primaire artificielle
et de disposer aussi d'une clé métier (contrainte UNIQUE).

3. Ne codez jamais (à part dans vos tests ou démonstrations), une requête du type SELECT *
ceci pour ces 3 principales raisons :

- Moins de données circulent sur Je réseau, plus les temps de réponse sont courts. Il est
donc préférable d'indiquer dans la liste des colonnes uniquement celles qui sont néces­
saires.

- Allégez la chruge du transformateur de requêtes en lui évitant de rechercher les infor­
mations dans les tables système pour déduire la liste de toutes les colonnes et les privi­
lèges associés.

- Allez-vous interdire implicitement que vos tables évoluent en terme de structure ?
Ajouter ou supprimer une colonne risque de rendre Je code inopérant à tout endroit où
cette instruction se trouvera.

4. Évitez si possible d'utiliser des curseurs dans vos transactions.

Les curseurs imposent une programmation itérative (où les données sont traitées ligne par
ligne comme avec un simple fichier) et non ensembliste. Un SGBD est optimisé pour traiter
de manière ensembliste les données avec SQL. Depuis la version SQL 1999, la récursivité
est supportée et SQL devient un langage complet (au sens de la machine de Turing) où tout
traitement peut être théoriquement programmé à J'aide de requêtes.

5. Écourtez la durée de vos transactions et programmez côté serveur (procédures catalo­
guées).

© Éditions Eyrol/es

Une transaction nécessite d'accéder souvent exclusivement aux données et des verrous
sont automatiquement mis en œuvre. Ces derniers induisent des temps d'attente pour les
utilisateurs concurrents. Si votre code n'est pas optimisé ou s'il s'exécute du côté du client,
la contention devient inévitable.

1

1 630

SQllv.é l

6. Utilisez Je SQL dynamique pour écrire des requêtes simples.

Le fuit d'écrire une instruction avec du SQL dynamique évite au transformateur de requê­
tes un certain nombre de tâches et permet la réutilisation du plan d'exécution.

7. Paramétrez la bonne collation.

Une collation sert à gérer la manière dont les chaînes de caractères, constituant les données
de la base, vont se comporter face aux opérateurs de comparaison et à J' ordonnancement
des données (tri). La gestion des majuscules/minuscules, accents, ligatures (comme dans
cœur), etc., doit être prévue. Consultez la section A propos des accents et jeux de caractè­
res de J' introduction.

8. N'utilisez jamais une requête du type SELECT MAX(...) +1 ... pour générer une clé
primaire.

Ce mode de calcul est à proscrire car il peut conduire, un jour ou l'autre, au mieux à un
télescopage de clé, au pire à un blocage total. En effet tant que la nouvelle ligne pourvue de
cette nouvelle clé n'est pas encore insérée dans la base, toute autre transaction peut effec­
tuer Je calcul générant la même valeur. Afin de rendre cohérent ce mécanisme, il fuudrait
programmer une transaction intégrant Je calcul de max+ 1 et J' ordre d'insertion avec la
nouvelle clé (ce qui n'est pas si simple qu'il y paraît). Préférez Je mécanisme d'auto-incré­
ment de votre SGBD qui pour Oracle est la séquence.

9. Utilisez avec parcimonie les tables temporaires.

Chaque objet temporaire créé au sein d'un SGBDR déclenche une écriture coûteuse au
journal de transactions et dans Je dictionnaire des données. Si de nombreuses transactions
sont effectuées en parallèle et qu'elles génèrent de nombreux objets temporaires, des
points de contention peuvent apparaître. Préférez l'utilisation de requêtes contenant des
fonctions table ou des CTE.

JO. Utilisez des index mais à bon escient.

Jusqu'à 5 index, une table d'une base OLTP est dans une moyenne habituelle. Au-delà, il
faut analyser les raisons qui ont motivé une telle indexation (qui peuvent être justifiables).
Indexez vos clés étrangères et ne vous trompez pas dans Je mode d' indexage (B-tree,
bitmap ou IOT). Si une table IOT convient à une séquence, elle peut mener à des perfor­
mances désastreuses pour une clé sémantique alphanumérique de taille variable.

© ÉdW/ons Eyroles

%FOUND 334
%ISOPEN334
%N01FOUND 334
%ROWCOUNT 334
%ROWTYPE280
%TYPE279
(+) 147
:NEW362
:OLD 365
? 562

A
ABS 119
absolute 426
ACCEPT285
acœptChanges 437
ACCESSIBLE BY 3 88
ACL539
ACOS 119
adaptive cu.rsor sharing 601
AOD CONSTRAINT84
ADD_MONTHS 124
ADDM (Al!ltomatic Database Diagnostic Monitor) 548
addRowSeilistener 438
AD MIN_ OPTION 258
ADMINISTER DATABASE TRIGGER 360
AFTER362
afterLast 426
alias

colonne 105
table 105
vue 235

ALL152
ALL_USERS 254, 258
ALTER PROFILE219
ALTER ROLE230
ALTER SEQUENCE57

© Éditions Eyrol/es

ALTERTABLE
ADD78
AOD CONSTRAINT 84
DISABLE CONSTRAINT 87
DROP COWMN 80
DROP CONSTRAINT 85
ENABLE CONSTRAINT 89
MODIFY79
MODIFY CONSTRAINT 96
RENAME COLUMN79
SET UNUSED COLUMN 80

ALTER TRIGGER 376
ALTER VIEW 246
ANALYSE554
AND 113
anti joins 597
ANY 152
ANY_pA1H 536
Apache453
appendChild 531
APPENDCHILDXML 504
AS SELECT 110
ASC 107
ASCII 116
ATAN119
audsid 571
AUTIIlD 319
autojoinrure 144
AVG 128

Index

A WR (Automatic Workload Reposi tory) 548

B
BEfORE362
beforeFirst 4 26
BEGIN274
BE1WEEN 114
BFILE 30, 50, 482

631 1

1 SQl llOlll OrllCll

BFILENAME50
BIN_TO_NUM 125
binary XML479
BINARY_INTEGER 287
bind peeking 601
bind variables 286, 591
bindParam 473
bindValue 472
bitmap join 592
BLOB 30
bloc 210
block label 284
BREADTH FlRSTBY 191
B-tree 578
BUFFER SORT 599
BULK COLLECT 338
bulk collect 332

c
cache 602
CachedRowSet 434
CallableStatement 444
cancelRowUpdates 430
cardinalité551
CASCADE 86, 87, 216, 219
CASCADECONSTRAINTS 38, 224
CASE292
CAST125
CBO (Cost-Based Optimizer) 549
CDB259
CEIL 119
changePrivileges 541
CHARACTER 287
CHARARR303
CHARTOROWID 126
CHR 116
clé

candidate 3
étrangère 3
primaire 3

clustering factor 590
colonne2
COWMN164

1 632

COMMENT31
COMMENT ANYTABLE225
commentaire

PUSQL277
SQL22

COMPOSE126
COMPRESS 609
con_id261
CONCAT116
concaténation 107
CONNECT15
CONNECTBY 163
CONNECT_TIME217
Connection 417
ConnectorfJ 416
consistent gets 564
CONSTANT278
CONSTRAINT_TYPE 256
CONTINUE297, 399
contrainte 23

in-line 23
out-of-line 24
référentielle 6 8

conversions 125
CONVERT126
cos 119
COSH 119
COUNT 128
COUNT STOPIŒY 599
CPU_pER_CALL217
CPU_pER_SESSION 217
CREATEDIRECTORY 479
CREATEFUNCTION 319
CREATE MATERIALIZED VIEW 624
CREATEPACKAGE329
CREATEPACKAGEBODY330
CREATEPROCEDURE318
CREATE PROFILE 217
CREATE ROLE 226
CREATESEQUENCE51
CREATESYNONYM 247
CREATETABLE21
CREATETABLESPACE212
CREATE TRIGGER 360

© ÉdW/ons Eyroles

.....
CREATE USER 213 DBMS_XMLSA VE477
CREATE VIEW 233 DBMS_XMLSCHEMA483
CREATE_INDEX_COST 589 DBMS_XMLSTORE 529
createElement 531 DBMS_XPLAN 565
createfolder 533 DBTIMEZONE 48
createresou.rce 534 deadlock 311
createStaternent 417 DEC288
CROSS JOJN 159 DECIMAL288
csid 484 DECLARE274
CTE 188 DECLARE SECTION 396
CURRENT_DATE48, 124 déclencheur 358
CURRVAL54 DECODE 108, 126

curseur DEFAULT44
explicite 332 DEFAULT ROLE 215
implicite 302, 353 DEFAULTTABLESPACE 214

CURSOR334 DEFERRABLE 92
CYCLE52, 192 DEFERRED93

DELETEQ283

0 deleteresource 533
deleteRow 430

data dictiomary 249 deleteschema 483
Data Modeler 33 DELETEXML 504
DatabaseMetaData 440 DELETING 369
DataSource 417 densité 557
DATE30,46 DENSITY557
DAV532 depth 537
db block gets 564 DEPTH FIRST BY 191
DBA228 DESC 31, 107
DBA_ROLE_pRIVS 254 DICT251
DBA_ROLES 254 DICTIONARY251
DBMS_APPUCATION_INFO 571 dictionnaire des données 249
DB MS_ OUTPUT 303 dirty read 309
DBMS_RANDOM 303 DJSABLEALL TRIGGERS 376
DBMS_ROWID 303 DJSABLE CONSTRAJNT 87
DBMS_SPACE589 DJSPLAY565
DBMS_SQL 303 division 159
DBMS_STATS 554 D0399
DBMS_XDB_CONFIG 262 DOUBLE PRECISION 288
DBMS_XDB_REPOS 533 DriverManager 412
DBMS_XMLDOM 531 DROP COWMN 80
DBMS_XMLGEN 527 DROP CONSTRAINT 85
DBMS_XMUNDEX 522 DROP FONCTION 328
DBMS_XMLPARSER 530 DROP INDEX 87
DBMS_XMLQUERY 477 DROP PACKAGE331

© Éditions Eyrol/es 633 1

1 SQl llOlll OrllCll

DROP PACKAGE BODY 331
DROP PROCEDURE 328
DROP PROFIIE 219
DROPROLE231
DROPSEQUENCE58
DROPTABLE38
DROPTRIGGER 376

DROP UNUSED COWMNS 81
DROP USER 216
DROP VIEW 246
DUAL102

E
ECH016
elapsed 569
ENABIB ALL TRIGGERS 376
ENABIB CONSTRAINT 89
ENABIB QUERY REWRITE 624
ENTRYID243
equals_path 537
équijointure 142
ESTIMATE_pERCENT 555
étiquette 284, 399
étreinte fatale 311
EXCEPTION275
exception

JDBC449
PUSQL345

EXCEPTIONS INTO 90
EXECUTE323
execute 419, 442, 445
EXECUTE IMMEDIATE 384
executeQuery 419, 445

executeUpdate 419, 442, 445
EXISTS 156
EXISTSQ283
existsN ode 502
existsresource 533
EXIT294
EXP 119
EXPIRE214
EXPLAIN PLAN 565
expression

régulière 175

1 634

extent210
EXTRACT 65, 124, 498

EXTRACTV ALUE 498

F
FAILED_LOGIN_ATTEMPTS217
FETCH 110, 334

FILTER599
FilteredRowSet 434
FIRST283
first 426
FIRSTROW 599
flashback 38
FLOAT288
FLOOR 119
FOLLOWS 378
FOR295
FOR EACH ROW 361
FOR UPDATE 340
FORCE 224, 233
forward engineering 3 3
FROM 104
FULL553
FULL OUTER JOIN 149

G
GA 1HER_DATABASE_STATS 558
GA 1HER_INDEX_STATS 558
GA1HER_SCHEMA_STATS 558
GA1HER_TABIB_STATS 555
GENERATED ALW A YS 81
gentables 4 84
gentypes 484
GET15
GET_LINFS 303
GET_NEXT_RFSULT386
getACLDocument 540
get0obVal519
getColumnCount 439
getColumnName 439
getColumns 441
getColumnType 439
getColumnTypeName 439

© ÉdW/ons Eyroles

.....
getConcurrency 430 hash partitioning 610
getConnection 419 HAVING 127
getContentClob 534 hint 552
getDatabaseProductName441 HJSTOGRAM 558
getDatabaseProductVersion 441 histogramme 554
getErrorCode 449 HOSTlO
getFetchDirection 426
gethttpsport 262
getMessage 449
getMetaData 424 IDENTIFIED 226

getNextException449 IDENTIFIED BY213

getPrecision 439 IDLE_TIME217

getResultSetConcurrency 430 IF290

getResultSetType 430 IMMEDIATE93

getSavepointld 448 IN 114, 152

getSavepointName 448 INOUT322

getScale 439 INCREMFNT BY 52

getSchemaName 439 INDEX

getSIDXDefFrom View 522 hint 553

getSQLState449 index

ge<rableName439 fast full scan 580

ge<rables 441 full scan 580

getter methods 419 organized table 607

ge(fype430 partitionné 617

getUpdateCount419 range scan 580

getUserName 441 skip scan 580, 586

GOTO 399 INDEX BY BINARY_INTEGER 282

grammaire XML Schema 483 index-organized table 607

GRANT 220, 222 inéquijointure 145

GRANT ANY OBJECT PRIVILEGE 225 INITCAP 116

GRANT ANY PRNILEGE 225 INITIALLY 92

GRANTED_ROLE 258 INLIST ITERATOR 599

graphe 194 INNER JOIN 143

GREATEST 126 INSERT43

GROUPBY 127 INSERTCHILDXML 504
INSERTING 369

H insertRow 430
INSERTXMLBEFORE 504

hatd parse 552 INSTEAD OF 371
HASHJOIN 594 INSTR 116
hash join 5 94 INT288
HASH JOIN ANTI 597 INTEGER 287, 288
HASH JOIN FULL OUTER 597 intégrité réferentielle 68
HASH JOIN OUTER 597 INTERSECT 133
HASH JOIN SEMI 597 INTERVAL613

© Éditions Eyrol/es 635 1

1 SQl llOlll OrllCll

INTER V AL DA Y TO SECOND 30, 48
INTERVAL YEAR TO MON1H 30, 48
INT0298
IOT (lndex-Organized Table) 6fY7
IS NUlL 114, 285
isA fterLast 4 26
isBeforeFirst 426
isFirst 426
isLast426
isNullable 439
isSchemaValid 504
item 200

J
JDBC407
JdbcRowSet 434
JOIN 143
JoinRowSet 434
jointure 140

K

equi join 142
externe 146
inner join 14 2
naturelle 157
outer join 146
procédurale 151
relationnelle 141
self join 144
SQL2141

KEEP INDEX 87
key preserved 241
KILLSESSION 216

l
LANGUAGE243
LAST283
last426
LAST_DAY 124
LEAST 126
lecture fantôme 309
lecture non répétable 309

1 636

lecture sale 309
LENGTH 116
LEVEL 164
LIIŒ 114
LIMIT338
LINESIZE 16
LINK538
list partitioning 610
LISTAGG203
LN 119
LOB2,50
local484
LOCALTIMESTAMP48
LOCKTABLE313
LOG 119
LOGOFF375
LOGON375
LONG498
LONGRAW30
LOOP294
LOWER 116
LPAD 117, 164
LTRIM 117

M
makeNode 531
materialized view 621
MAX 128
MAXVALUE612
MERGE 172, 173

JOIN 595
JOIN CARTESIAN 597

MErHOD_OPT 555
MIN 128
MINUS 134
MOD 119
MODIFY79
MODIFY CONSTRAINT 96
MONTHS_BE1WEEN 124
moveToCurrentRow 430
moveTolnsertRow 430
mutating tables 377

© ÉdW/ons Eyroles

.....
N 0
NA1URAL288 OBJECTRELATIONAL481
NA1URALJOJN 157 OBJECT_vALUE498

NA 1URALN 288 oci 415

nested loop 592 oci_bind_by _name 463

NESTED LOOPS 592 oci_cancel 460

NESTED LOOPS ANTI 597 oci_close 456

NESTED LOOPS OUTER 597 oci_commit 459

NESTED LOOPS SEMI 597 oci_connect 456

nested s ubprogram 326 oci_default 457

NESTED_TABLE_ID494 oci_define_by_name463

NEW_UNE303 oci_error 464

NEW _TIME 124 oci_execute 458

NEXT283 oci_fetch_all 460

nextO 424 oci_fetch_army 460

NEXT_DA Y 124 oci_fetch_assoc 460

NEXTVAL54
oci_fetch_ object 460

NLS_DATABASE_pARAMETERS 17
oci_fetch_row 460

NLS_SESSION_pARAMEfERS 17
oci_fetchstatement_by _row 457

NO_UNNEST599
oci_field_is_null 468

NO_USE_HASH 594, 595
oci_field_name 468

NO_USE_MERGE597
oci_field_precision 468
oci_field_ scale 468

NOCOPY318 oci_field_ size 468
NOCYCLE52 oci_field_type 469
NOFORCE233 oci_free_statement 460
NOMINV ALUE 52 oci_internal_debug 464
non repeatable read 309 oci_new _connect 456
NOT112 oci_num 458
NOT EXISTS 157 oci_num_fields 461, 468
NOT IDENTIFIED 226 oci_num_row s 469
NOT IN 152 oci_parse45 8
NOVALIDATE95 oci_password_change 469
NOWAIT340 oci_pconnect 457
NULLIF127 oci_rerurn_nulls 458
NULLS FIRST 107 oci_rollback 459
NULLS LASf 107 oci_server_ version 468
NUM_BUCIŒTS 558 oci_set_prefetch 460
NUMBER27 oci_statement_type 469
NUMERIC288 oci8456
NUMTODSINTERV AL 63, 65 OLAP (OnLine Analytical Processing) 585
NUMTOYMINTERVAL65 ON DELETE CASCADE 72
NVL127 ON DELETESETNULL 72

© Éditions Eyrol/es 637 1

1 SQl llOlll OrllCll

OPEN334
OPENfOR342
OPTIMIZER_DYNAMIC_SAMPLING 551
OR 113
OR REPLACE 233
ORA-00001 347
ORA-00051 347
ORA-00054 571
ORA-00060 312, 571
ORA-01001 347
ORA-01012 347
ORA-01017 347
ORA-01402 245
ORA-01403 299, 347
ORA-01410 347
ORA-01422 299, 347
ORA-01426 287, 289
ORA-01476 347
ORA-01722 347
ORA-01732 240
ORA-01733 237, 242
ORA-01752 237
ORA-01776 240
ORA-01847 491
ORA-02273 86
ORA-02290 492
ORA-02293 491
ORA-02297 87
ORA-04091 377
ORA-06500 347
ORA-06501 347
ORA-06502 290, 347
ORA-06504 347
ORA-06511 347
ORA-06530 347
ORA-06531 347
ORA-06532 347
ORA-06533 347
ORA-06592 347
ORA-08177 310
ORA-19002487
ORA-19202 481, 492
ORA-30625 347
ORA-30730 496

1 638

ORA-30951 491
ORA-31000 485, 491
ORA-31154 492
ORA-32044 196
ORA-32795 59
ORA-64464 481
ORDERBY 107
ORGANIZA TION INDEX 609
ORM314
OTHERS346
OUIBR JOIN 148
OVERFLOW 608

p
p_difference_threshold 575
PAGESIZE16
paquetage 328
parseClob 5 30
PARTITION

BY HASH 613, 614
BYLIST614
BYRANGE611, 612
BYREFERENCE615
HASHALL614
HASHINLIST614
LIST SINGLE615
RANGE ALL 613
RANGE JNUST 613
RANGE SINGLE 613

PARTITION HASH SINGLE614
PARTITION LIS ALL615
PARTITION LIST JNUST615
partitionnement 610

hachage 614
intervalles 612
liste614
par référence 615

PASSWORD_GRACE_TIME218
PASSWORD _LIFE_TIME 217
PASSWORD_LOCK_TIME218
PASSWORD_REUSE_MAX 217
PASSWORD _REUSE_TIME 217
PATH538

© ÉdW/ons Eyroles

path 537
PATH_ VIEW 536, 538
PD0471
POO Exception 472
PDOStatement 474
phantom re ad 309
physical reads 564
PIPEROW343
PIPELINED 343
PIVOT 197
PivotSet 200
PUSQL273

curseurs 332
exceptions 345
fonction cataloguée 317
paquetage 328
procédure cataloguée 317
sous-programme 317
variable curseur 341

plan d'exécution 559
PLAN_TABLE565
PLS_INTEGER 287
PLS-00218 290
plustrace 562
populate 435
POSffiON256
POSmYE288
POSmYEN288
POWER 119
PRAGMA AUTONOMOUS_TRANSACTION 319
PRAGMA EXCEPTION_INIT 354
prepareCall 417
PreparedStatement 442
prepareStatement 41 7
previous 426
PRJNT286
PRIOR 164, 283
PRIVATE_SGA217
privilège 219

objet221
système 219

Pro*CIC++-395
produit cartrésien 136, 159
PUBUC 220, 221

© Éditions Eyrol/es

PURGE38
PUT303
PUT_LINE 303

Q
QUOTA214
qu oted identifier 3 2

R
R_CONSTRAJNT_NAME 256
RAISE352
RAISE_APPLICATION_ERROR 357
range partitioning 610
RAW30
RBO (Rule-Based Optimizer) 549
READ COMMITTED 310
READ_ACTION 572
READ_CUENT_INFO 572
READ_MODULE 572
readXml 437
REAL288
RECORD281
recursive calls 564
récursivité 188, 326
recycle bin 38
redo size 564
REFCURSOR 341, 385
REFERENC!NG 368
REGEXP _COUNT 185
registerOutParameter 445
registerParameter 522
registerschema 48 3
relative426
RELEASE16
releaseSavepoint 447
removeRowSetListener 43 8
RENAME77
RENAME COLUMN79
RENAMET077
REPLACE117
requête 101

hiérarchique 162

.....

1 SQl llOlll OrllCll

imbriquée 155
récursive 188

reraise 356
RES 536
RESID 536, 538
RESOURCE228, 318
RESOURCE_ VlEW 536
RESULT_CACHE_MODE 603
ResultSet 423
ResultSetMetaData 439
RETURN321, 336
RETURN_RESULT 386
REVERSE295
REVOIŒ221, 224, 229
rôle 225
ROIB_ROLE_pRIVS 254
ROIB_SYS_pRIVS 254
ROIB_TAB_PRIVS 254
ROUND 119, 124
row2
row source 570
row trigger 361
rowid 108
ROWIDTOCHAR 126
ROWNUM 109, 139
RowSet434
RowSetListener 437
RPAD 117
RTRIM 117

s
SAVE 15
Savepoint 447

JDBC447
sa vepoint 308
SCHEMA374
schemadoc 484
schemaurl 484
SCHEMAVALIDATE492
SFARCH 191
segment 210
SELECT 102

fonctions 115

1 640

FOR UPDATE313
SEIBCT ANY DICTIONAR Y 225
SEIBCT ... JNTO 298
sélectivité551, 557
semi joins 597
SEQUELl
SERIALIZABLE 310
SERVERERROR 375
SERVEROUT 16
SESSION_ROLES 254
SESSION_TRAŒ_ENABIB 568
SESSIONID 243
SESSIONS_pER_USER 217
SESSIONTIMEZDNE 48
SET AUT01RACE561
SET CONSTRAJNT 94
SET CONSTRAJNTS 94
SETROIB229
SET TRANSACTION 310
SET UNUSED COLUMN 80
SET_SQL_ 1RACE 567
setACL541
setAttribute 472, 531
setAutoCommit 417
setFetchDirection 426
sethttpsport 262
setMaxRow s 419
setNull 442
setrowsettag 527
setrowtag 527
setSavepoint 447
setter methods 41 9
setUpdateColumn 528
SHOW ERRORS 323
SHUIDOWN 375
SIBLINGS 107, 167
SIGN 119
SIGNTYPE 288
SIMPLE_DOUBLE 289
SIMPLE_FLOAT289
SIMPLE_INTEGER288
SIN 119
SINH 119
SMALLINT 288

© ÉdW/ons Eyroles

.....
SMB (SQLManagement Base) 560 SYSDBA225
snapshot 621 SYSOPER225
soft parse 552 SYSTIMEST AMP 48
SORT JOIN 595
sort merge join 595 T
SOUNDEX 117
sous-interrogation 151 table 2, 21

synchronisée 155 dominante 146
SPOOL 15 fils 68
SQL dynamique 382 heap-organized 607
SQL%FOUND 302 index-organized 607
SQL%NOTFOUND 302

key preserved 241
SQL%ROWCOUNT 302
sql_trace 567 père68

SQL2 l reference-partitioned 615

SQL3 1 subordonnée 147

SQLCA398 tableau

SQLCODE348 associatif 282
sqlerrd 404 Pro*C/C++ 403
SQLERRM349 tablespace 210
sqlerrml 398 TABS254
SQLException 449 TAN 119
SQRT119 TANH119
STALE_PERCENT555

TEMPLATE617
START 15

TEMPORAR Y T ABLESPACE 214
STARTWITH 163
STARTUP 375 TERMINAL 243

Statement 419 TERMOUT 16

statement trigger 370 TIME 16

STDDEV 128 TIMED_STA TISTICS 567

STOP399 TIMESTAMP 30, 47
STS (SQL Tuning Set) 560 tkprof 566
SUBPARnTION 617 TO_CHAR 64, 126
substirution 285 TO_DATE 63, 64
SUBSTR 118 TO_DSJNTERVAL 126
SUBTYPE288 TO_NUMBER 126
SUM 128 TO_ YMJNTERV AL 126
supportsSa vepoints 441
supportsTransactions 441

transaction 306

SUSPEND 375 TRANSLATE 118

SYN254 TRJM 118

synonyme 247 TRUNC 120, 124

SYS_NC_ROWJNFO$) 498 TRUNCATE67
SYSDA TE 62, 124 runing548

© Éditions Eyrol/es 641 1

1 SQl llOlll OrllCll

u
UID243
under_path 5 37
UNION 134
UNION ALL 134
UNIQUE578
unique scan 580
UNISTR 49, 126
UNPIVOT201
UPDATE60
updater methods 419
updateRow 430
UPDA TEXML 504
UPDA TING 369
UPPER ll8
USE_HASH 595
USE_MERGE 597
USE_NL592
USER 16,243
USER_ALL_TABLES 254
USER_COL_COMMENTS 254
USER_COL_GRANTS 254
USER_COL_GRANTS_MADE 254
USER_COL_PRIVS_MADE 254
USER_COL_PRIVS_RECD 254
USER_CONS_COLUMNS 254
USER_CONSTRAINTS 254, 256
USER_ERRORS 254, 323
USER_IND_OOWMNS 254
USER_IND _EXPRESSIONS 254
USER_INDEXES 254
USER_OBJECTS 254, 255
USER_ROLE_pRIVS 254, 258
USER_SEQUFNCES 252
USER_SOURCE254, 257
USER_STORED_SETTINGS 254
USER_SYNONYMS 254
USER_TAB_COWMNS254, 255
USER_T AB _COMMENTS 254
USER_T AB _ORANTS 254
USER_TAB_GRANTS_MADE254
USER_TAB_GRANTS_RECD 254
USER_TABLES 254

1 642

USER_UNUSED_COL_TABS 254
USER_UPDATABLE_COLUMNS 242
USER_ USERS 254
USER_ VIEWS 254
USER_XML_SCHEMAS 543
USER_XML_TAB_COLS 543
USER_XML_TABLES 543
USER_XML_ VlEWS 543
USING 158

V
V$MYSTAT 571
v$result_cache_objects 603
V$SESSTAT562
V$SQL_PLAN 559
V$SQLAREA 559
V$SQLSTATS 559
VAUDATE94
VAWE_ERROR 278
VARIABLE 286
variable curseur 341
VARIANCE 128
VARRAY494
VIRTUAL81
VIRTUALCOLUMNS481
vue 232

w

matérialisée 621
mono table 234
XMLType521

WAIT340
wasNull445
WebRowSet 434
WHEN367
WHENEVER 399
WIDLE293
WID1H_BUCIŒT 120, 187
WITH 185
WITH ADMIN OPTION220
WITH CHECK OPTION234
WITH GRANT OPTION 222

© ÉdW/ons Eyroles

WITH READ ONLY 234, 236
WITH TlES 110
writeXml 436

X
XDB479
XMLDB477
XML DB Repository 532
XMLAGG 514
XMLATTRIBUTES 514
XMLCAsr499
XMLCDATA520
XMLCOLATTVAL520
XMLCOMMENT514

© Éditions Eyrol/es

XMLDATA493
XMLEIBMENT514
XMLEXISTS 502
XMLFOREST 514
XMLISVALID491
XMLNAMESPACES 537
XMLPARSE519

XMLQUERY 498
XMLROOT520
XMLSCHEMA 481
XMLSERIALIZE 517
XMLTABIB501
XMLType480
XQuery Update504

.....

