Gilles Dowek

Jean-Pierre Archambault, Emmanuel Baccelli, Claudio Cimelli,
Albert Cohen, Christine Eisenbeis, Thierry Viéville et Benjamin Wack
Préface de Gérard Berry, professeur au Collége de France

Informatique
et sclemes du
numerique

Spécialite ISN en terminale $

Avec des exercices corrigés
et des idées de projets

EYROLLES

Informatique
et sclences du
numerique

Spedialite ISN en terminale $

Avec des exercices corrigés
et idées de projets

DANS LA COLLECTION NOIRE

P. CecieLskil. — Conception de systéemes d’exploitation. Le cas Limix.
NG 11479, 2¢ édition, 2004, 680 pages.

J. Exces. HTMLS ev CSS83. Cours et exercices corrigés.
N°13400, 2012. 550 pages.

G. Swinnin. Apprendre & programmer avec Python 3.
N®13434, 3 édition, 2012, 435 pages.

H. Bersini. La programmation orientée objet. Cours et exercices en
UML 2 avec Java 6, CH 4, C++, Python, PHP 5 et LinQ.
N12806, 5¢ édition, 2011, 644 pages.

E. SARRION, — jQuery et jQuery UL
N®12892, 2011, 132 pages.

A. Britrant. XML - Cours et exercices.
N°12691, 2° édition, 2010, 336 pages.

CHEZ LE MEME EDITEUR

Créer son site web avec un CMS

F.-X. et L. Bois. — WordPress 3 pour le blogueur efficace.
N°12829, 2011, 358 pages.

H. Cocriamont. Réussir son premier site Joomla! 2.5,
N°13425. 2012, 250 pages environ.

T. Parisor. — Réussir son blog professionnel.
N®12768, 2¢ édition, 2010, 322 pages.

V. Isaksin, T. Taroir. — Joomla 2.5 et Virtuemart 2. Réussir sa
boutique en ligne.
IN° 12804, 3¢ édition a paraitre, 2012, 350 pages environ.

Y. Brauwr, préface d"Edwy PreneL. — Concevoir et déployer ses sites
web avec Drupal 6 et 7.
N°®12780, 2¢ édition, 2010, 420 pages.

Développer soi-méme son site web avec HTML, CSS, PHP, JavaScript

R. Rk k. — HTMLS,
IN®12982. 2011. 600 pages.

F. DraLLARD. — Premiers pas en CSS et HTML.
N°13338, 2011. 464 pages.

R. Goerter. — CSS avancées. Vers HTMLS et CSS3.
IN®13405, 2¢ édition, 2012, 385 pages.

R. Goerter. — CS8S 2 : pratique du design web.
N°12461, 3¢ édition, 2009, 340 pages.

Développer pour le Web mobile

F. Daoust, D. HazatL-Massieux. — Bonnes pratiques pour le Web
mobile. Conception et développement.
N°12828, 2011, 300 pages.

T. Bargr, Créer son théme WordPress mobile en HTMLS et CS53.
N°13441.2012. 128 pages.

R. RivikLiE. — Mémento HTMLS.
N®13420,2012. 14 pages.

R. GoerTer. — Mémento CSS 3.

N®13281,2011, 14 pages.

E. Dasper et C. Prerre Di Gever. PHP 5 avancé.
N®13435, 6° édition, 2012, 870 pages.

C. Portexeuvve, — Bien développer pour le Web 2.0.
N°12391, 2° édition, 2008, 674 pages.

E. SArrION. — XHTML/CSS et JavaScript pour le Web mobile.
Developpement iPhone et Android avec et iU et XUL

N°12775, 2010, 274 pages.

E. SarriON. — jQuery Mobile.

N13388, 2012, 601 pages.

Ressources autour du Web : design, ergonomie, bonnes pratiques

A. Boucker. — Ergonomie web. Pour des sites web efficaces.
N?13215, 3 édition, 2011, 380 pages.

A. Bouctier. — Ergonomie web illustrée. 60 sites a la loupe.
N°12695, 2010, 302 pages (Design & Interface).

A. Bouctier. — Mémento Ergonomie web.
N712698, 2 édition, 2010, 14 pages.

Conception
«systémes
rexploitation

e ems

E. Stoim. — Mémento Sites web. Les bonnes pratiques.
N°12802, 3 édition, 2010, 18 pages.

Q. Anprieu. — Réussir son référencement web.
N°13396, 2012, 480 pages.

1. Caniver. — Bien rédiger pour le Web. Stratégie de contenu pour
améliorer son référencement.
N°12883, 2° édition, 2011, 540 pages.

Joomla WordPress
mobile

A, -

t VirtueMart

Gilles Dowek

Jean-Pierre Archambault, Emmanuel Baccelli, Claudio Cimelli,
Albert Cohen, Christine Eisenbeis, Thierry Viéville et Benjamin Wack
Préface de Gérard Berry, professeur au Colléege de France

Informatique
et SCI@NCES du
numerique

Spedialite ISN en terminale §

Avec des exercices corrigés
et idées de projets

EYROLLES
— —

EDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Ouvrage publié avec le concours
de I"association EPI — Enseignement Public et Informatique,
de la SIF — Société Informatique de France,
et de I’Institut public de recherche en sciences du numérique — Inria.

Remerciements a Anne Bougnoux (relecture) et Gaél Thomas (maguette),
ainsi gu’a Raphaél Hertzog, Pierre Néron, Christine Paulin, Grégoire Péan, Jonathan Protzenko
et Dominique Quatravaux pour leurs témoignages.

Merci a Randall Munroe du site XKCD pour les dessins d’ouverture de partie adaptés de Ianglais
ainsi qu’a Rémi Cieplicki de www.Dans TonChat.com pour nous aveir autorisés a utiliser leur logo.

Hlustrations de Camille Vorng (cactus, boites, arborescences),
Lauréne Gibaud et Bernard Sullerot (circuits logiques, opérations binaires, schémas, labyrinthes)

Photographies d’ouvertures de chapitres
Alan Turing (aimable autorisation de la Sherborne School, merci a Rachel Hassall),
John Backus (Plerre.Lescanne, CC-BY-8A-3.0), Grace Hopper (Jumes S. Davis, domaine public),
Gilles Kahn (marestephanegoldberg — Flickr), Gordon Plotkin (merci a lui d avoir accepté de nous fournir une photographie),
John McCarthy (null() — Flicky, CC BY 2.0)). Robin Milner (http://www.cl.cam.ac.ul/archive/rm135/),
Dana Scoit (Andrej Bauer - hitp://andrej.com/mathematicians), Claude Shannon (Tekniska museet — Flickr, CC BY-SA4 2.0),
Tim Berners-Lee (Paul Clarke, CC-BY-2.0), Ronald Rivest (carbackl, CC BY 2.0),
Adi Shamir (Ira Abramov de Even Yehuda, Israel, CC-BY-SA-2.0), Len Adleman (len adlmen, CC-BY-SA-3.0),
Frances Allen (Rama, CC-BY-SA-2.0-fr), John Von Neumann (LANL, domaine public),
Vinton Cerf et Robert Kahn (Paul Morse, domaine public), Ada Lovelace (Alfred Edward Chalon, domaine public),
Ivan Sutherland (Dick Lyon, CC-BY-SA-3.0), Donald Knuth (Jacob Appelbaum, CC-BY-SA-2.5),
Philippe Flajolet (Luc Devroye, CC-BY-SA-3.0), Joseph Sifakis (Rama, CC-BY-SA-2.0-fi),
Christopher Strachey (http.//vww.rutherfordjournal.org/article040101.html), Gottlob Frege (inconnu, domaine public),
Muhammad al-Khwarizmi et Samuel Morse (inconnu, domaine public),
Thomas Flowers (http://www.ithistory.org/honor_roll/fame-detail php?recordlD=444 — merci a l'équipe de IT History pour leur
aimable autorisation), Otto Schmitt (http://160.94.102.47/index.htm), Norbert Wiener (Konrad Jacobs, CC-BY-SA-2.0-de)

Autres images
Qui est-ce est un jeu développé par la société Theora Design (http://theoradesign.com)
et distribué en France par MB (Idées de projets)
La Joconde, tableau de Léonard de Vinci (chapitre 19) et L’ Annonciation, tableau de Sandro Botticelli (chapitre 19)
Robolab : par Mirke Tobias Schéfer (chapitre 17)
Thyroidectomie assistée par un robot : CHU de Nimes (http://www.chu-nimes.fi/espace-presse-galerie-photos.hitml) (chapitre 17)
Robot mOway : http://www.moway-robot.com, http://www.adrirobot.it/moway/moway_circuito.htm (chapitre 17)

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le présent ouvrage, sur quelque support que ce soit,
sans "autorisation de 1"Editeur ou du Centre Frangais dexpleitation du droit de copie, 20, rue des Grands Augusting, 75006 Pans.
© Groupe Eyrolles, 2012, ISBN : 978-2-212-13543-5

Preéface

Lannée 2012 voit 'entrée de I''nformatique en tant qu'enseignement de spé-
cialité en classe de Terminale scientifique. Cette entrée devenait urgente, car
I'informatique est désormais partout. Créée dans les années 1950 grice 4 une
collaboration entre électroniciens, mathématiciens et logiciens (ces derniers
en ayant posé les bases dés 1935), elle n'a cessé d’accélérer son mouvement
depuis, envahissant successivement l'industrie, les télécommunications, les
transports, le commerce, 'administration, la diffusion des connaissances, les
loisirs, et maintenant les sciences, la médecine et I'art, tout cela en créant de
nouvelles formes de communication et de relations sociales. Les objets infor-
matiques sont maintenant par milliards et de toutes tailles, allant du giga-
ordinateur équipé de centaines de milliers de processeurs aux micro-puces des
cartes bancaires ou des prothéses cardiaques et auditives, en passant par les
PC, les tablettes et smartphones, les appareils photos, ou encore les ordina-
teurs qui conduisent et controlent les trains, les avions et bientét les voitures.
Tous fonctionnent grice a la conjonction de puces électroniques et de logi-
ciels, objets immatériels qui décrivent trés précisément ce que vont faire ces
appareils électroniques. Au XXI° siécle, la maitrise du traitement de I'infor-
mation est devenue aussi importante que celle de I'énergie dans les siecles
précédents, et I'informatique au sens large est devenue un des plus grands
bassins d’emploi 4 travers le monde. Cela implique que de nombreux lycéens
actuels participeront a son essor dans I'avenir.

Ces jeunes lycéens sont bien sir trés familiers avec les appareils informatisés.
Mais ce n'est pas pour cela quils en comprennent le fonctionnement, méme

Informatique et sciences du numeérique

sur des plans élémentaires pour certains. Une opinion encore fort répandue est
quil ny a pas besoin de comprendre ce fonctionnement, et quil suffit
d'apprendre l'usage des appareils et logiciels. A I'analyse, cette opinion appa-
remment naturelle s'avére tout a fait simpliste, avec des conséquences néfastes
qu'il faut étudier de pres. Pour faire un paralléle avec une autre discipline, on
enseigne la physique car elle est indispensable 4 la compréhension de la nature
de facon générale, et aussi de fagon plus spécifique au travail de tout ingénieur
et de tout scientifique, c’est-a-dire aux débouchés naturels de beaucoup
déléves de terminale scientifique. Mais qui penserait quil suffit de passer le
permis de conduire pour comprendre la physique d'un moteur ou la méca-
nique une voiture ? Or, nous sommes tous autant confrontés 4 I'informatique
qua la physique, méme si elle ne représente pas un phénomene
naturel préexistant ; comme pour la physique, les ingénieurs et scientifiques
devront y étre au moins autant créateurs que consommateurs. Pour étre plus
précis, sous peine de ne rester que des consommateurs serviles de ce qui se crée
ailleurs, il est indispensable pour notre futur de former au coeur conceptuel et
technique de l'informatique tout éléve dont le travail technique sera relié a
l'utilisation avancée ou a la création de I'informatique du présent ou du futur. 11
est donc bien naturel que la nouvelle formation a I'informatique s'inaugure en
terminale scientifique. Mais elle devra immanquablement ensuite étre élargie
a d’autres classes, car tout éléve sera concerné en tant que futur citoyen.

Pour étre efficace, toute formation scolaire demande un support adéquat. Ce
premier livre va jouer ce réle pour I'informatique, en présentant de fagon
pédagogique les quatre composantes scientifiques et techniques centrales de
son ceeur scientifique et technique : langages de programmation, numérisa-
tion de I'information, machines et réseaux, et algorithmes. Il a été écrit par
des chercheurs et enseignants confirmés, tous profondément intéressés par
le fait que les éléves comprennent, assimilent et apprécient les concepts et
techniques présentées. Il insiste bien sur deux points essentiels : le fait que
ces quatre composantes sont tout a fait génériques, c'est-a-dire valables pour
tous les types dapplications, des méga-calculs nécessaires pour étudier I'évo-
lution du climat aux calculs légers et rapides a effectuer dans les micro-puces
enfouies partout, et le fait que les concepts associés resteront valables dans le
temps. En effet, si les applications de I'informatique évoluent trés vite, son
cceur conceptuel reste trés stable, au moins au niveau approprié pour la ter-
minale scientifique. Lenseigner de fagon adéquate est nécessaire autant a la
compréhension des bases qu'a tout approfondissement ultérieur. A n'en pas
douter, cet ouvrage y contribuera.

Gérard Berry, directeur de recherche Inria

Professeur au Collége de France,

Membre de I’Académie des sciences, de I'’Académie des technologies,
et de I’Academia Europaea

Vi

R T T ————— v
RN PRI s ot AR n o AR S S s 1
Structure de l'ouvrage « 2

Parcours possibles * 4
Remerciements * 4

PREMIERE PARTIE

L AN GAGES ..ueecernsasssnssnsnnsnnsssnsnsnssnsnssnnsnsnnnasnssnnnnn 5
1. LES INGREDIENTS DES PROGRAMMES ...eveeenrasnmsesnsnsnssensens 7
Un premier programme * 8
La description du programme * 9

. LES BOUCLES

SAVOIR-FAIRE Modifier un programme existant pour obtenir
un résultat différent » 11
Les ingrédients d’un programme = 12
SAVOIR-FAIRE Comprendre un programme et expliquer
ce qu'il fait * 14
SAVOIR-FAIRE Ecrire un programme * 15
SAVOIR-FAIRE Mettre un programme au point en le testant * 16
Les instructions et les expressions * 17
Les opérations * 18
Les accolades = 19
SAVOIR-FAIRE Indenter un programme * 21
Ai-je bien compris ? * 22

La boucle for = 24
SAVOIR-FAIRE Ecrire un programme utilisant une boucle for * 26
SAVOIR-FAIRE Imbriquer deux boucles » 26

La boucle while =28

matieres

SAVOIR-FAIRE Ecrire un programme utilisant une boucle while * 29
SAVOIR-FAIRE. Commenter un programme * 30

La non-terminaison * 31

La boucle for, cas particulier de la boucle while 31
SAVOIR-FAIRE Choisir entre une boucle for et 1a boucle while
pour écrire un programme * 33
Ai-je bien compris > * 34

T LB WVPES b st s i 35
Les types de base = 37
SaVOIR-FAIRE Différencier les types de base = 39
SAVOIR-FAIRE Changer le type d’une expression * 39
La portée et I'initialisation des variables * 41
SAVOIR-FAIRE Déclarer les variables avec des types
et des portées appropriés * 43
SAVOIR-FAIRE Initialiser les variables * 43
Les tableaux « 44
Savoir-FAIRE Utiliser un tableau dans un programme * 46
Les tableaux bidimensionnels * 48
Les chaines de caractéres * 50
SAVOIR-FAIRE Calculer avec des chaines de caractéres * 50
La mise au point des programmes * 52
SAVOIR-FAIRE Mettre au point un programme
en l'instrumentant * 52

Ai-je bien compris ? * 54

4. Les FONCTIONS (AVANCE) ..
Isoler une instruction * 56
Passer des arguments * 58
Récupérer une valeur * 59
SAVOIR-FAIRE Ecrire l'en-téte d'une fonction * 60

Vil

Informatique et sciences du numerique

SAVOIR-FAIRE Ecrire une fonction * 61
Le programme principal * 62
La portée des variables et les variables globales * 62
SAVOIR-FAIRE Identifier la portée des variables
dans un programme comportant des fonctions * 65
SAVOIR-FAIRE Choisir une portée adaptée aux différentes
variables d'un programme comportant des fonctions = 69
Le passage par valeur * 71
SAVOIR-FAIRE
Choisir entre un passage par valeur et une variable globale = 73
Le passage par valeur et les tableaux * 74
Ai-je bien compris ? » 76

5. LA RECURSIVITE (AVANCE) ...veverueerssesnssssasssneanseasssnnens 7
Des fonctions qui appellent des fonctions * 78
Des fonctions qui s'appellent elles-mémes * 79
SAVOIR-FAIRE Définir une fonction récursive = 81
Des images récursives * 83
Ai-je bien compris ? * 84

6. LA NOTION DE LANGAGE FORMEL (AVANCE)......ocsssersneer 85
Les langages informatiques et les langues naturelles * 86
Les ancétres des langages formels * 87
Les langages formels et les machines * 88
La grammaire * 89
La sémantique * 91
Redéfinir la sémantique = 92
Ai-je bien compris ? * 93

DEUXIEME PARTIE
INFORMATIONS .iviiiainmsicnsmamnsissniosiasvinvaisanns 99

7. REPRESENTER DES NOMBRES ENTIERS ET A VIRGULE........ 97

La représentation des entiers naturels * 99

La base cinq * 100
SAVOIR-FAIRE Trouver la représentation en base cingq
d'un entier naturel donné en base dix * 100
SAVOIR-FAIRE Trouver la représentation en base dix
d'un entier naturel donné en base cing * 101

La base deux = 102
SAVOIR-FAIRE Trouver la représentation en base deux
d’un entier naturel donné en base dix * 102
SAVOIR-FAIRE Trouver la représentation en base dix
d'un entier naturel donné en base deux » 102

Une base quelconque * 103

Vil

SAVOIR-FAIRE Trouver la représentation en base k
d'un entier naturel donné en base dix * 103
SAVOIR-FAIRE Trouver la représentation en base dix
d'un entier naturel donné en base k * 104
La représentation des entiers relatifs * 105
SAVOIR-FAIRE Trouver la représentation binaire sur n bits
d'un entier relatif donné en décimal » 106
SAVOIR-FAIRE Trouver la représentation décimale
d'un entier relatif donné en binaire sur n bits *+ 106
SAVOIR-FAIRE Calculer la représentation p’ de opposé
d'un entier relatif x 4 partir de sa représentation p,
pour une représentation des entiers relatifs sur huit bits * 106
La représentation des nombres a virgule * 108
SAVOIR-FAIRE Trouver la représentation en base dix
d'un nombre 4 virgule donné en binaire » 108
Ai-je compris ? * 110

8. REPRESENTER DES CARACTERES ET DES TEXTES .coouereesss 111
La représentation des caractéres = 112
La représentation des textes simples = 113
SAVOIR-FAIRE Trouver la représentation en ASCIT binaire
d'un texte * 113
SAVOIR-FAIRE Décoder un texte représenté en ASCII binaire » 114
La représentation des textes enrichis * 116
SAVOIR-FAIRE Ecrire une page en HTML « 118
Ai-je bien compris ? * 120

9. REPRESENTER DES IMAGES ET DES SONSccvssscrsansruses 121
La représentation des images * 122
La notion de format * 123
SAVOIR-FAIRE Identifier quelques formats d'images * 124
La représentation des images en niveaux de gris et en couleurs * 124
SAVOIR-FAIRE Numériser une image sous forme d'un fichier * 126
La représentation des sons * 128
La taille d'un texte, d'une image ou d'un son * 129
SAVOIR-FAIRE Comprendre les tailles des données et les ordres
de grandeurs * 130
SAVOIR-FAIRE Choisir un format approprié par rapport
a un usage ou un besoin, 4 une qualité, a des limites * 131
Ai-je bien compris ? * 131

10. LES FONCTIONS BOOLEENNESceseensssenseenssssenasssnnnns 133
L'expression des fonctions booléennes » 134
Les fonctions non, et, ou * 134
L'expression des fonctions booléennes

avec les fonctions non, et, ou * 135

SAVOIR-FAIRE Trouver une expression symbolique exprimant

une fonction 4 partir de sa table * 136
L'expression des fonctions booléennes

avec les fonctions non et ou® 137
Ai-je bien compris ? = 138

11. STRUCTURER L'INFORMATION (AVANCE) «.c.crreenmancenses 139

La persistance des données * 140

La notion de fichier = 141

Utiliser un fichier dans un programme * 141

Organiser des fichiers en une arborescence * 144
SAVOIR-FAIRE Classer des fichiers sous la forme
d'une arborescence * 145

Liens et hypertextes « 147

L'’hypermnésie = 148

Pourquoi l'information est-elle souvent gratuite ? * 149
Ai-je bien compris ? * 152

12. COMPRESSER, CORRIGER, CHIFFRER (AVANCE)............ 153
Compresser = 154
5AvoIR-FAIRE Utiliser un logiciel de compression = 156
Compresser avec perte * 157
Corriger* 158
Chiffrer* 160
Ai-je bien compris ? * 164

TROISIEME PARTIE

IVIACHINESeeemnnensnennnns e R 165
13. LES PORTES BOOLEENNES....cossess wee 167
Le circuit NON = 168
Le circuit OU = 169

Quelques autres portes booléennes = 170
Ai-je bien compris ? * 175

14. LE TEMPS ET LA MEMOIRE....cunsusmessssssmssnssnssasnsnsannsans 197
La mémoire* 178
L’horloge = 182
Ai-je bien compris > * 184

15. L'ORGANISATION D'UN ORDINATEUR v.eveveressssnsrsnneess 185
T'rois instructions * 187
Le langage machine = 188
SAVOIR-FAIRE Savoir dérouler I'exécution d'une séquence
d'instructions = 190
La compilation * 191

Table des matiéres

Les périphériques * 192
Le systéme d’exploitation * 192
Ai-je bien compris ? * 195

16. LES RESEAUX (AVANCE) +erronensnsssenserssssssnnsnssssmsssssssas 197

Les protocoles * 198

La communication bit par bit : les protocoles de la couche

physique = 200

Les réseaux locaux :

les protocoles de la couche lien = 201
SAVOIR-FAIRE Trouver les adresses MAC des cartes réseau
d'un ordinateur « 203

Le réseau global : les protocoles de la couche réseau * 204
SAVOIR-FAIRE Trouver Fadresse IP attribuée i un ordinateur « 204
SAVOIR-FAIRE Déterminer le chemin suivi par linformation * 207
SAVOIR-FAIRE Déterminer 'adresse IP du serveur par lequel
un ordinateur est connecté & Internet * 208

La régulation du réseau global : les protocoles de la couche

transport * 209

Programmes utilisant le réseau : la couche application * 211

Quelles lois sappliquent sur Internet 2 = 212

Qui gouverne Internet > * 213
Ai-je bien compris ? * 214

17. LES ROBOTS [AVANCE).....ciciviiicsiormssisviimnsinssusnsssasin 215

Les composants d’un robot * 216

La numérisation des grandeurs captées * 217

Le contréle de la vitesse : 1a méthode du contréle en boucle

fermée = 219

Programmer un robot : les actionneurs * 220

Programmer un robot : les capteurs * 222
SAVOIR-FAIRE Ecrire un programme pour commander un robot * 223
Ai-je bien compris ? * 225

QUATRIEME PARTIE

BRLGORITHIVIES ovossinenssssssnisionnsrinurssnssnsvnspisioine 227
18. AJOUTER DEUX NOMBRES EXPRIMES EN BASE DEUX..... 229
L'addition = 230

I’addition pour les nombres exprimés en base deux * 231
La démonstration de correction du programme * 235
Ai-je bien compris ? * 238

19. DESSINER TSRS o . 5 |

Dessiner dans une fenétre » 240

IX

Informatique et sciences du numeérique

SAVOIR-FAIRE Créer une image * 240 Mastermind * 289
Dessiner en trois dimensions * 242 Brin 'ARN - 289
Produire un fichier au format PPM » 245 Bataille navale * 289
Lire un fichier au format PPM » 247 Cent mille milliards de poémes = 289
Transformer les images * 248 Site de rencontres * 289
SAVOIR-FAIRE Transformer une image en couleurs Tracer la courbe représentative d'une fonction polynéme
en une image en niveaux de gris * 248 du second degré * 291
SAVOIR-FAIRE Augmenter le contraste d'une image Gérer le score au tennis * 291
en niveaux de gris * 249 Automatiser les calculs de chimie * 291
SAVOIR-FAIRE Modifier la luminance d'une image * 250 Tours de Hanoi * 291
SAVOIR-FAIRE Changer la taille d'une image * 250 Tortue Logo * 291
SAVOIR-FAIRE Fusionner deux images * 251 Dessins de plantes * 291
SAVOIR-FAIRE Lisser une image pour éliminer Langage CSS * 291
ses petits défauts et en garder les grands traits « 252 Caleul sur des entiers de taille arbitraire » 291
Ai-je bien compris ? * 254 Caleul en valeur exacte sur des fractions * 293
20. LA DICHOTOMIE (AVANCE) cvrcovsusesnssssssnnesscssessssssss 255 Repefsentation des daes et heures » 293
—— Transcrire dans 1 alphal-:»et latin * 293
La conversion analogique-numérique * 261 Corrcr:.tcur orthographique * 293
Trouver un zéro d'une fonction = 261 Dallfo.msme "293
Ai-je bien compris * 262 g * 233
Banc de registres * 293
21. TRIER (AVANCE) .eeoveernenamemrenrersns wan 203 Simuler le comportement du processeur * 295
Le tri par sélection * 264 Utilisation du logiciel Wireshark = 295
Le tri par fusion * 268 Algorithme de pledge = 295
L'efficacité des algorithmes * 272 Algorithme calculant le successeur d'un nombre entier
SAVOIR-FAIRE S'interroger sur 'efficacité d’un algorithme * 273 naturel » « 295
Lefficacité des algorithmes de tri par sélection et par fusion * 274 Le jeu de la vie * 295
Ai-je bien compris ? * 276 Une balle = 297
22. PARCOURIR UN GRAPHE (AVANCE).....coarmsasnssnsmncsnacs 277 G s el * 27

Détecteur de mouvement visuel * 297
Qui est-ce ? * 297

Un joueur de Tic-tac-toe * 297
Enveloppe convexe * 298

La liste des chemins 4 prolonger * 278
Eviter de tourner en rond * 280
La recherche en profondeur et la recherche en largeur * 282

Le paecoums dun graphe 78 Chemins les plus courts * 298
Ftats et transitions * 284 o i)
i " Utilisation des réseaux sociaux * 298
Ai-je bien compris ? » 287
INDEX...... dikean i 299
IDEES DE PROJETS ...oicensuiiassaninsimnssnssuisasmasisasnssnsnsnsn 289

Un générateur d’exercices de calcul mental » 289

Avant-propos

Il y a un siécle, il n'y avait pas d’ordinateurs ; aujourd’hui, il y en a plu-
sieurs milliards. Ces ordinateurs et autres machines numériques que sont
les réseaux, les téléphones, les télévisions, les baladeurs, les appareils
photos, les robots, etc. ont changé la maniére dont nous :

* concevons et fabriquons des objets,

* échangeons des informations entre personnes,

* gardons trace de notre passé,

¢ accédons a la connaissance,

« faisons de la science,

e créons et diffusons des ceuvres d’art,

* organisons les entreprises,

* administrons les états,

* ectc.
Si les ordinateurs ont tout transformé, c’est parce qu'ils sont polyvalents,
ils permettent de traiter des informations de maniéres trés diverses. Clest
en effet le méme objet qui permet d’utiliser des logiciels de conception
assistée par ordinateur, des machines 4 commande numérique, des logi-
ciels de modélisation et de simulation, des encyclopédies, des cours en
ligne, des bases de données, des blogs, des forums, des logiciels de cour-
rier €lectronique et de messagerie instantanée, des logiciels d’échange de
fichiers, des logiciels de lecture de vidéos et musique, des tables de
mixage numériques, des archives numériques, etc.

Cette polyvalence s'illustre aussi par le nombre d’outils que les ordina-
teurs ont remplacé : machines a écrire, téléphones, machines a calculer,
télévisions, appareils photos, électrophones, métiers 2 tisser...

En fait, les ordinateurs sont non seulement capables de traiter des infor-
mations de maniéres diverses, mais également de toutes les maniéres
possibles. Ce sont des machines universelles.

En 1936, soit quelgues années
avant la construction des premiers
ordinateurs, Alan Turing (1912-
1954) - et en méme temps que lui
Alonzo Church - a étudié les liens
entre les notions d'algorithme et
de raisonnement mathématique.
Cela I'a mené & imaginer un pro-
cédé de calcul, les machines de
Turing, et a suggérer que ce pro-
cédé de calcul puisse étre universel,
c'est-a-dire capable d’exécuter tous
les algorithmes possibles.

Informatique et sciences du numeérique

4 Traiter des informations

Traiter des informations signifie appliquer,
d'une maniére systématique, des opérations a des
symboles. La recherche d’'un mot dans un diction-
naire, le chiffrement et le déchiffrement d'un mes-
sage secret, I"addition et la multiplication de deux
nombres, la fabrication des emplois du temps des
éleves d'un lycée ou des pilotes d'une compagnie
aérienne, le calcul de I'aire d'une parcelle agricole
ou encore le compte des points des levées d'un
joueur au Tarot sont des exemples de traitements
d'informations.

ALERFUS L0l Des algorithmes aussi vieux
que I"écriture

Il y a quatre mille ans, les scribes et les arpen-
teurs, en Mésopotamie et en Egypte, mettaient
déja en ceuvre des algorithmes pour effectuer
des opérations comptables et des calculs d'aires
de parcelles agricoles. La conception d'algo-
rithmes de traitement de I'information semble
remonter aux origines mémes de I'écriture. Dés
I'apparition des premiers signes écrits, les
hommes ont imaginé des algorithmes pour les
transformer,

Un procédé systématique qui permet de traiter des informations s'appelle un
algorithme. Ainsi, on peut parler d’algorithmes de recherche d'un mot dans
un dictionnaire, d'algorithmes de chiffrement et de déchiffrement, d’algo-
rithmes pour faire des additions et des multiplications, etc. De maniére plus
générale, un algorithme est un procédé systématique qui permet de faire
quelque chose. Par exemple une recette de cuisine est un algorithme.

La notion d’algorithme est trés ancienne. Depuis la nuit des temps, les
hommes ont congu et appris des algorithmes, pour fabriquer des objets
en céramique, tisser des étoffes, nouer des cordages ou, simplement, pré-
parer des aliments.

Le bouleversement survenu au milieu du XX siécle tient 2 ce que les
hommes ont cessé d'utiliser exclusivement ces algorithmes 2 la main ; ils
ont commencé a les faire exécuter par des machines, les ordinateurs.
Pour y parvenir, il a fallu exprimer ces algorithmes dans des langages de
programmation, accessibles aux ordinateurs. Ces langages sont différents
des langues humaines en ce qu'ils permettent la communication non pas
entre étres humains, mais entre les étres humains et les machines.

Linformatique est donc née de la rencontre de quatre concepts trés anciens :
¢ machine,
¢ information,
¢ algorithme,

* langage.
Ces concepts existaient tous avant la naissance de I'informatique, mais l'infor-
matique les a profondément renouvelés et articulés en une science cohérente.

Structure de ’ouvrage

Lobjectif de ce cours est d’introduire les quatre concepts de machine,
d'information, d’algorithme et de langage, mais surtout de montrer la
maniére dont ils fonctionnent ensemble. Quand nous étudierons les
algorithmes fondamentaux, nous les exprimerons souvent dans un lan-
gage de programmation. Quand nous étudierons l'organisation des
machines, nous verrons comment elles permettent d’exécuter des pro-
grammes exprimés dans un langage de programmation. Quand nous
étudierons la notion d'information, nous verrons des algorithmes de
compression, de chiffrement, etc.

Ce livre est donc organisé en quatre parties regroupant vingt-deux chapi-
tres, dont certains d’'un niveau plus avancé (indiqués par un astérisque) :

Avant-propos

* Dans la premiére partie « Langages », nous apprendrons a écrire des
programmes. Pour cela, nous allons découvrir les ingrédients dont les
programmes sont constitués : P'affectation, la séquence et le test
(chapitre 1), les boucles (chapitre 2), les types (chapitre 3), les fonc-
tions (chapitre 4%) et les fonctions récursives (chapitre 5%). Pour finir,
nous nous pencherons sur la notion de langage formel (chapitre 6%).
Deés que I'on commence 4 maitriser ces concepts, il devient possible
de créer ses propres programmes.

* Dans la deuxieme partie, « Informations », nous abordons I'une des pro-
blématiques centrales de l'informatique : représenter les informations
que l'on veut communiquer, stocker et transformer. Nous apprendrons a
représenter les nombres entiers et les nombres 4 virgule (chapitre 7), les
caractéres et les textes (chapitre 8), les images et les sons (chapitre 9). La
notion de valeur booléenne, ou de bit, qui apparait dans ces trois chapi-
tres, nous ménera naturellement 4 la notion de fonction booléenne
(chapitre 10). Nous apprendrons ensuite 4 structurer de grandes quan-
tités d'informations (chapitre 11%), 2 optimiser la place occupée grice 2 1a
compression, corriger les erreurs qui peuvent se produire au moment de
la transmission et du stockage de ces informations, et 4 les protéger par le
chiffrement (chapitre 12%).

* Dans la troisiéme partie, « Machines », nous verrons que derriére les
informations, il y a toujours des objets matériels : ordinateurs, réseaux,
robots, etc. Les premiers ingrédients de ces machines sont des portes
booléennes (chapitre 13) qui réalisent les fonctions booléennes vues au
chapitre 10. Ces portes demandent 2 étre complétées par d’autres cir-
cuits, comme les mémoires et les horloges, qui introduisent une dimen-
sion temporelle (chapitre 14). Nous découvrirons comment
fonctionnent les machines que nous utilisons tous les jours (chapitre 15).
Nous verrons que les réseaux, comme les oignons, sorganisent en cou-
ches (chapitre 16%). Et nous découvrirons enfin les entrailles des robots,

que nous apprendrons 4 commander (chapitre 17%). Reuiscle Chapitres élémentaires

* Dans la quatriéme partie, « Algorithmes », nous apprendrons quel- et chapitres avancés*
ques-uns des savoir-faire les plus utiles au XXI¢ siecle : ajouter des Les chapitres avancés sont notés ici d'un asté-
nombres exprimés en base deux (chapitre 18), dessiner (chapitre 19), risque. Il s'agit des deux ou trois demniers chapi-
retrouver une information par dichotomie (chapitre 20%), trier des 395 :‘E chaque partie. lis sont signalés en début
informations (chapitre 21*) et parcourir un graphe (chapitre 22%). ESip

Chaque chapitre contient trois types de contenus :

* une partie de cours;

* des sections intitulées « Savoir-faire », qui permettent d'acquérir les ' Exercices difficiles
capacités essenticlles ;

* des exercices, avec leur corrigé lorsque nécessaire. L5 exercices Tiotes o i cactits sort d'Un niveai

plus difficile.

Informatique et sciences du numérique

Des encadrés « Aller plus loin » donnent des ouvertures vers des ques-
tions hors-programme. Chaque chapitre se conclut de trois questions de
cours sous forme d’encadré intitulé « Ai-je bien compris ? ».

Les propositions de projets sont regroupées en fin de manuel.

Parcours possibles

Cet ouvrage peut étre parcouru de plusieurs maniéres. Nous proposons
par exemple de commencer par les chapitres élémentaires de la partie
Informations (7, 8, 9 et 10), de poursuivre par ceux de la partie Lan-
gages (1, 2 et 3), de continuer par les chapitres avancés de la partie
Informations (11 et 12), les chapitres élémentaires de la partie Algo-
rithmes (18 et 19) et de la partie Machines (13, 14 et 15), et enfin de
passer aux chapitres avancés de la partie Machines (16 et 17), de la partie
Langages (4, 5 et 6) et de la partie Algorithmes (20, 21 et 22).

Il n’est pas nécessaire de lire ces chapitres au méme degré de dérails. A
chaque éleve de choisir les thématiques qu'il souhaite approfondir parmi
celles proposées, en particulier par le choix de ses projets.

La seule contrainte est d’acquérir assez tot les bases des langages de pro-
grammation, aux chapitres 1, 2 et 3, pour pouvoir écrire soi-méme des
programmes. Quand on apprend I'informatique, il est en effet important
non seulement d’écouter des cours et de lire des livres, mais aussi de
mettre en pratique les connaissances que l'on acquiert en écrivant soi-
méme des programmes, en se trompant et en corrigeant ses erreurs.

Remerciements

Les auteurs tiennent a remercier Ali Assaf, Olivier Billet, Manuel Bricard,
Stéphane Bortzmeyer, Alain Busser, David Cachera, Vint Cerf, Julien
Cervelle, Sébastion Chapuis, S. Barry Cooper, Ariane Delrocq, Lena
Domrose, Raffi Enficiaud, Monique Grandbastien, Guillaume Le Blanc,
Fabrice Le Fessant, Philippe Lucaud, Pierre-Etienne Moreau, Claudine
Noblet, Frangois Périnet, Gordon Plotkin, Francois Pottier, David Roche,
Laurent Sartre, Dana Scott, Adi Shamir et Joseph Sifakis pour leur aide
au cours de la rédaction de ce livre ainsi que I'équipe des éditions Eyrolles,
Anne Bougnoux, Lauréne Gibaud, Muriel Shan Sei Fan, Gaél Thomas et
Camille Vorng pour leur travail éditorial trés créatif.

Merci également a Christine Paulin, Raphaél Hertzog, Pierre Néron,
Grégoire Péan, Jonathan Protzenko et Dominique Quatravaux pour
leurs témoignages vivants.

Langages

Dans cette premiére partie, nous apprenons a écrire des
programmes. Pour cela, nous découvrons les ingrédients dont les
programmes sont constitués : l'affectation, la séquence et le test
(chapitre 1), les boucles (chapitre 2), les types (chapitre 3), les
fonctions (chapitre 4%) et les fonctions récursives (chapitre 5%). Pour
finir, nous nous penchons sur la notion de langage formel
(chapitre 6%).

Des que 'on commence a4 maitriser ces concepts, il devient possible
de créer ses propres programmes.

int getNombreAleatoire()
{

veturn 4; // Nombre choisi au dé (non truqué)
// Garanti 100% aléatoire.

Les ingrédients

des
programmes

Un ordinateur peut faire bien des choses,
mais il faut d’abord les lui expliguer.

Apprendre la programmation, ce n'est pas seulement savoir
écrire un programme, c’est aussi comprendre de quoi il est fait,
comment il est fait et ce qu’il fait. Un programme est
essentiellement constitué d’expressions et d'instructions.

Nous introduisons dans ce premier chapitre les trois premiéres
instructions fondamentales que sont I'affectation, la séquence
et le test. Pour mettre en évidence leur structure, nous
indentons les programmes et utilisons les accolades lorsque
I'écriture est ambigué. Nous étudions les instructions

en observant les transformations qu'elles opérent sur I'état

de 'exécution du programme, c’est-a-dire sur Uensemble

des boites pouvant contenir des valeurs, avec leur nom

et leur valeur, le cas échéant.

John Backus (1924-2007) est
l'auteur de l'un des premiers lan-
gages de programmation: le lan-
gage Fortran (1954). Il a par la suite
proposé, avec Peter Naur, la notation
de Backus et Naur qui permet de
décrire des grammaires, en particu-
lier celles des langages de program-
mation (voir le chapitre 6).

Grace Hopper (1906-1992) est, elle
aussi, l'auteur d'un des premiers lan-
gages de programmation: le lan-
gage Cobol (1959). Avant cela, elle a
été l'une des premiéres a pro-
grammer le Harvard Mark | de
Howard Aiken, I’'un des tous premiers
calculateurs electroniques.

Premiére partie — Langages

Un programme est un texte qui décrit un algorithme que I'on souhaite
faire exécuter par une machine. Ce texte est écrit dans un langage parti-
culier, appelé langage de programmation. 11 existe plusieurs milliers de
langages de programmation, parmi lesquels Java, C, Python, Caml, For-
tran, Cobol, etc. Il n'est cependant pas nécessaire d'apprendre ces lan-
gages les uns aprés les autres, car ils sont tous plus ou moins organisés
autour des mémes notions : déclaration, affectation, séquence, test,
boucle, fonction, etc. Ce sont ces notions qu'il importe de comprendre.
Dans ce livre, nous utilisons principalement le langage Java. Mais rien de
ce que nous disons ici n'est propre i ce langage et les éléves qui en utili-
sent un autre n‘auront aucun mal 4 transposer.

Nous verrons, au chapitre 3, comment faire pour exécuter un programme
sur un ordinateur. Dans ce chapitre et le suivant, nous parlons des pro-
grammes de maniére théorique, c'est-a-dire sans les exécuter. Bien
entendu, les lecteurs sont libres d’anticiper et de lire les premiéres pages du
chapitre 3, §ils souhaitent exécuter leurs programmes tout de suite.

Un premier programme

Voici un premier petit programme écrit en Java :

a = 4;
b= 73
System.out.printIn("A vous de jouer");
x = Isn.readInt();
y = Isn.readInt();
if (x = aé& y==>b) {
System.out.printin("Coulé");}
else {
if(x=a||y=0b){
System.out.printIn("En vue");}
else {
System.out.printIn("A 1'eau");}}

Quand on exécute ce programme, il affiche A vous de jouer puis attend
que 'on tape deux nombres au clavier. Si ces deux nombres sont 4 et 7, il
affiche Coulé ; si le premier est 4 ou le second 7, mais pas les deux, il
affiche En vue, sinon il affiche A 1'eau.

Ce programme permet de jouer a la bataille navale, dans une variante
simplifiée dans laquelle il n’y a qu'un seul bateau, toujours placé au
méme endroit et qui "occupe qu'une seule case de la grille. On considére

1 — Les ingrédients des programmes

qu'un bateau est « en vue » si la case proposée est sur la méme ligne ou la
méme colonne que le bateau.

Exercice 1.1

Modifier ce programme afin gu‘il affiche A toi de jouer et non A vous de
jouer.

Exercice 1.2
Moedifier ce programme afin que le bateau soit sur la case de coordonnées (6 ; 9).

La description
du programme

Commengons par observer ce programme pour essayer d’en comprendre
la signification. La premiére ligne contient l'instruction a = 4;. Pour
comprendre ce qu'il se passe quand on exécute cette instruction, il faut
imaginer que la mémoire de 'ordinateur que I'on utilise est composée
d’'une multitude de petites boites. Chacune de ces boites porte un nom et
peut contenir une valeur. Exécuter l'instruction a = 4; a pour effet de
mettre la valeur 4 dans la boite de nom a.

Aprés avoir exécuté cette instruction, on exécute b = 7;, ce qui a pour

effet de mettre la valeur 7 dans la boite de nom b.

On exécute ensuite l'instruction System.out.printin("A vous de
jouer");, ce qui a pour effet d’afficher 4 I'écran A vous de jouer.

On exécute ensuite l'instruction x = Isn.readInt();, ce qui a pour effet
d'interrompre le déroulement du programme jusqu'a ce que 'utilisateur
tape un nombre au clavier. Ce nombre est alors mis dans la boite de nom x.

DA D' AUTRES LANGAGES
Texas Instruments et Casio

Ce méme algorithme peut s’exprimer dans de
nombreux langages. A titre d'exemple, le void
exprimé dans le langage des calculatrices Texas
Instruments et Casio. Dans ces deux cas ["algo-
rithme utilisé est le méme qu'en Java. Les
seules différences sont dans la maniére
d'exprimer cet algorithme : la variable a affecter
est située a droite de la fleche pour les calcula-
trices, |'instruction de test est structurée par des
mots-dés supplémentaires, entre autres.

® Texas Instruments

PROCRAM: BATAILLE

14 A

7 -8

:Disp "A vous de jouer"
:Input X

Input Y

IfF X=AetY
:Then

:Disp "Coule”
:Else
IFX=AouY =28
:Then

:Disp "En wvue"
:Else

:Disp "A 1'eau”
:End

:End

* Casio

]
m|

4 A

7 B

“A vous de jouer"
7 =X

7 Y
IfFX=AAdY=2R
Then "Coulé”

Else
IFX=A0rY=28
Then "En vue"
Else "A 1'eau"
IfEnd

IfEnd

Premiére partie — Langages

10

De méme, exécuter I'instruction y = Isn.readInt(); a pour effet d'inter-
rompre le déroulement du programme jusqua ce que l'utilisateur tape un
nombre au clavier. Ce nombre est alors mis dans la boite de nom y. A ce
point du programme, les boites de nom a, b, x et y contiennent chacune un
nombre. Les nombres 4 et 7 pour les deux premiéres et les deux nombres
entrés au clavier par I'utilisateur pour les deux derniéres.

Lexécution du programme doit alors différer selon que les deux nombres
donnés par l'utilisateur sont 4 et 7 ou non. Si c’est le cas, on veut afficher
Coulé, si ce n'est pas le cas on veut faire autre chose. C'est ce que fait
I'instruction :

if (x =a & y=>0b) {
System.out.printin("Coulé");}
else {
if (x==a || ¥ ==b) {
System,out.printIin("En vue");}
else {
System.out.printIn("A 1'eau™);}}

Exécuter cette instruction a pour effet de calculer la valeur de I'expres-
sion booléenne x == a & y == b, oll le symbole && représente un et.
Cette valeur est true (vrai) quand x est égal a a et y est égal 4 b, ou false
(faux) quand ce nest pas le cas. En fonction de la valeur de cette expres-
sion, on exécute ou bien I'instruction System.out.printin("Coulé"); ou
bien I'instruction :

ifFx=a ||l y=01b){
System.out.printin("En vue");}
else {
System.out.printin("A 1'eau™);}

Cette instruction étant de la méme forme, son exécution a pour effet de
calculer la valeur de 'expression booléenne x — a || y == b, oli le sym-
bole || représente un ox, et en fonction de la valeur de cette expression
d’exécuter ou bien I'instruction System.out.printIn(”En vue"); ou bien
I'instruction System.out.printIn(”A 1'eau");.

1 — Les ingrédients des programmes

' Exercice 1.3
En C, le méme extrait de programme s*écrit ainsi :

a=4;
b =7;
printf("A vous de jouer\n");
scanf("%d" ,&x) ;
scanf("#d" ,&y);
if(x=2a8&y==0>0)1{
printf("Coulé\n");}
else {
iFix=a || v=0 %
printf("En vue\n");}
else {
printf("A 1'eau\n");}}

Quelles sont les ressemblances et les différences entre Java et C ?

Savoir-FAIRE Modifier un programme existant pour obtenir
un résultat différent

Lintérét de partir d'un programme existant est qu'il n'est pas toujours nécessaire d’en
comprendre le fonctionnement en détail pour 'adapter 4 un nouveau besoin.
Il importe avant tout :

¢ d'identifier les parties du programme qui doivent étre modifiées et celles qui
sont 4 CONserver,

¢ de les modifier en conséquence,

¢ éventuellement d’adapter les entrées et les sorties au nouveau programme,

= et, comme toujours, de le tester sur des exemples bien choisis.

Exercice 1.4 (avec corrigé)

Le programme suivant permet de calculer le prix toutes taxes comprises d'un
article, connaissant son prix hors taxes, dans le cas ou le taux de TVA est de
19,6 %.

System.out.printin(“Quel est le prix hors taxes 7");

ht = Isn.readDouble();

ttc = ht + ht * 19.6 / 100.0;

System.out.print(“Le prix toutes taxes comprises est ");
System.out.printin{ttc);

Adapter ce programme pour permettre a I'utilisateur de choisir le taux de TVA.

Méme si l'on n'est pas un expert en calcul de pourcentages, on identifie facile-
ment qu'il faut remplacer le 19.6 de la troisiéme ligne par un taux quelconque.
Pour que ce taux puisse étre choisi par I'utilisateur, il doit étre stocké dans une
nouvelle boite : appelons-la taux. Le contenu de cette boite doit étre saisi au

1

Premiére partie — Langages

+ Etat de I'exécution d'un programme

On appelle état de ['exécution d'un pro-
gramme le triplet formé par le nombre de boites
utilisées, le nom de chacune d'elles et la valeur
gu'elle contient.

12

davier. Il faut donc prévoir I'entrée correspondante. Voici donc le nouveau pro-
gramme avec, en gras, les éléments ajoutés ou modifiés

System.out.println("Quel est le prix hors taxes 7");

ht = Isn.readDouble();

System.out.printIn("Quel est le taux de TVA ?"):

taux = Isn.readDouble();

ttc = ht + ht * taux / 100.0;

System.out.print("Le prix toutes taxes comprises est ");
System.out.printin(ttc);

xercice 1.5

En général, a la bataille navale, un bateau n'est « en vue » que si la case tou-
chée est immédiatement voisine de celle du bateau. Modifier le premier pro-
gramme de ce chapitre pour tenir compte de cette régle. On pourra traiter le
cas ol les cases diagonalement adjacentes au bateau sont « en vue » et le cas
ou elles ne le sont pas.

Les ingrédients
d’un programme

Le programme de bataille navale utilise des instructions de différentes
formes :
* des affectations de la forme v = e; ol v est une variable et e une
expression,
s des instructions d'entrée de la forme v = Isn.readInt(); ol v est une
variable,
o des instructions de sortie de la forme System.out.printin(e); ol e est
une expression,
* des séquences de la forme p q (c'est-a-dire p suivi de q) o1 p et q sont
deux instructions,
* des fests de la forme if (e) p else g ol e est une expression et p et q
deux instructions.

La mémoire de 'ordinateur est constituée d’'une multitude de petites boites,
un programme n'utilise en général que quelques-unes de ces boites. Chaque
boite utilisée par le programme a un nom et contient une valeur, On appelle
état de l'exécution d'un programme, le triplet formé par le nombre de boites,
le nom de chacune d’elles et la valeur qu'elle contient.

1 — Les ingrédients des programmes

Exécuter une instruction a pour effet de transformer cet état.

* Exécuter l'affectation v = e; a pour effet de calculer la valeur de
I'expression e dans I'état courant et de modifier cet érat en mettant
cette valeur dans la boite de nom v. Par exemple, exécuter I'instruc-
tion x - 4; dansI'état @ produit I'état € (voir ci-contre). De méme,
exécuter l'instruction x = y + 3; dans I'état €) produit I’état €.

* Exécuter I'instruction d'entrée v - Isn.readInt(); ol v est une
variable a pour effet d'interrompre le déroulement du programme
jusqu'a ce que l'utilisateur tape un nombre au clavier. Ce nombre est
alors mis dans la boite de nom v. Des instructions similaires, v =
Isn.readDouble(); et v = Isn.readString(); permettent a I'utilisa-
teur de taper un nombre i virgule ou une chaine de caractéres.

¢ Exécuter I'instruction de sortie System.out.print(e); ol e est une
expression ne modifie pas I'état, mais a pour effet de calculer la valeur
de I'expression e dans I'état courant et d’afficher cette valeur a I'écran.
Exécuter 'instruction de sortie System.out.printin(e); affiche la
valeur de I'expression e puis passe a la ligne. Exécuter I'instruction de
sortie System.out.printIn(); n'affiche rien mais passe 4 la ligne.

* Exécuter la séquence p g ol p et g sont deux instructions a pour effet
d’exécuter p puis q dans I'état obtenu. Par exemple, exécuter

Tinstruction :
¥ = 8;
y =9;

: = . ! — i ConprenpRe. Une instruction
dans I'état) exécute l'instruction x = 8; ce qui produit I'état € puis composée mais unique

¥ - - . m
Iinstruction y = 9; ce qui produit I'état €). Ao Vstrictons

X = 8;

y=29;
est une unigue instruction, a savoir une
séquence de deux instructions plus petites :

X:=8;
et
y=29;

» Exécuterle test if (e) p else q ol e est une expression et p et g sont
deux instructions a pour effet de calculer la valeur de I'expression e,
puis d’exécuter I'instruction p ou I'instruction g, selon que la valeur de
e est true (vrai) ou false (faux). Par exemple, exécuter l'instruction :

Fx=) 1
System.out.printin("un peu");}
else {

System.out.printin("beaucoup");}

13

Premiere partie — Langages

7] (2]
(yJ

LxJ (xJ
R OO

dans I'état @ affiche un peu, car la valeur de 'expression x < 7 dans
cet état est true. En revanche, exécuter cette instruction dans I'état €)
affiche beaucoup.

Une variante du test est le test sams else : if (e) p ol e est une expres-
sion et p est une instruction. Exécuter cette instruction a pour cffet de
calculer la valeur de l'expression e, puis d’exécuter I'instruction p si la
valeur de e est true. Par exemple, exécuter 'instruction :

if (x<7) {
System.out.printin("un peu");}

dans I'état @ affiche un peu, alors quexécuter cette instruction dans
’état €) n'affiche rien.

Savoir-FAIRE Comprendre un programme et expliquer ce qu’il fait
Identifier le role de chacune des variables utilisées. Si nécessaire, dérouler 2 la main une

exécution du programme en notant I'état de 1

14

£ -

exécution du programme au fur et 2 mesure.

Exercice 1.6 (avec corrigé)
Que fait ce programme ?

= Isn.readInt();
Isn.readInt();
Isn.readInt();
.readInt();
fbh=0|]d=0) {
System.out.printin("Dénominateur nul +interdit !");}
else {
System.out.printin(a * c);
System.out.printin(b #* d);}

~anowm
o
'—1
W
=

Il y a ici quatre entrées a, b, c et d, et deux sorties qui correspondent aux pro-
duitsa * cetb * d. Le premier test indigue que ni b ni d ne doivent étre
nulles. De tous ces éléments, on déduit que les entrées représentent sans
doute les fractionsa / betc / d, que le programme calcule le produit de ces
deux fractions, lorsqu‘elles existent, et donne a nouveau le résultat sous la
forme d'une fraction. On notera gue ce qui peut rendre ce programme diffi-
cile a lire est, entre autres choses, les noms peu parlants choisis pour les varia-
bles. On gagnerait ainsi 8 renommer a en numerateurl, b en denominateurl,
c en numerateur?, et d en denominateur?2.

Exercice 1.7
Que fait ce programme ? Comment devrait-on renommer ses variables ?

a = Isn.readIntQ);
b = Isn.readInt();
c = Isn.readInt();

1 — Les ingrédients des programmes

d = Isn.readInt();

ifFib=0]]| d=0){
System.out.printin("Dénominateur nul interdit !");}

else {
System.out.printin(a * d + ¢ * b);
System.out.printin(b * d);}

Exercice 1.8

L'exécution de l'instruction :
x = 4;
y=X4+1;

x = 10;
System.ocut.printin(y);

produit-elle I'affichage de la valeur 5 ou de la valeur 11?7

Savoir-FAIRE Ecrire un programme

Identifier les entrées et les sorties du programme et, dans la mesure du possible, les varia-
bles intermédiaires dont on aura besoin. Si le programme doit « prendre une décision »,
une ou plusieurs instructions de tests sont nécessaires.

Exercice 1.9 (avec corrigé)

Ecrire un programme qui, étant donné une éguation du second degré, déter-
mine le nombre de ses solutions réelles et leurs valeurs éventuelles.

L'entrée est une éguation du second degré a x* + b x + ¢ = 0, fournie sous
la forme de ses coefficients a, b et c. La sortie sera ['affichage du nombre de
solutions réelles et de leurs valeurs. Le réle du discriminant A = b® - 4ac est ici
suffisamment important pour mériter une variable intermédiaire delta qui
stocke sa valeur.

Il faut distinguer trois cas sefon le signe du discriminant, ce qui se fait bien
entendu a l'aide de tests.

Isn.readDouble();
Isn.readbDouble();
Isn.readDouble();
delta =b *b - 4 ¥ a * ¢;
if (delta < 0.0) {
System.out.printIn("Pas de solution");}
else {
if (delta = 0.0) {
System.out.print("Une solution : ");
System.out.printin(- b / (2 * a));}
else {
System.out.print("Deux solutions : ");
System.out.print((- b - Math.sgrt(delta)) / (2 * a));
System.out.print(" et ");
System.out.printIln((- b + Math.sqrt(delta)) / (2 * a));}}

n ow
o n

15

Premiére partie — Langages

16

Exercice 1.10

Essayer le programme ci-dessus avec les entrées a = 1.0, b = 0.0, c = 1.0E-10 et
a =1.0, b =0.0, c =-1.0E-10. Montrer qu‘une infime variation sur I'un des
coefficients permet de franchir la ligne qui sépare les cas ol I'équation a des
solutions des cas ot elle n*en a pas.

Essayer le programme ci-dessus avec les entrées a=1.0, b=6.0, c =9.0 et
a=0.1, b=0.6, c =0.9. Expliquer les résultats.

SAVOIR-FAIRE Mettre un programme au point en le testant

Pour vérifier si un programme ne produit pas d’erreur au cours de son exécution et s'il
effectue réellement la tiche que I'on attend de lui, une premiére méthode consiste 2 exé-
cuter plusieurs fois ce programme, en lui fournissant des entrées, appelées tests, qui per-
mettent de détecter les erreurs éventuelles. Pour qulelles jouent leur réle, il faut choisir
ces entrées de sorte que :
« on sache quelle doit étre la sortie correcte du programme avec chacune de ces entrées,
* chaque cas distinct d’exécution du programme soit parcouru avec au moins un choix
d’entrées,
* les cas limites soient essayés : par exemple le nombre 0, la chaine vide ou a un seul
caractere.

Exercice 1.11 (avec corrigé)
Proposer un jeu de tests satisfaisant pour le programme de bataille navale.

Au minimum, il faut vérifier que le bateau est effectivement coulé si I'on
donne les bonnes coordonnées, mais non coulé si I'on en donne de mauvaises.
Par ailleurs, il faut tester si le programme affiche correctement En vue, et
donc tester au moins une case dans la méme colonne que le bateau et une
case dans la méme ligne. Ces deux derniers tests permettront également de
vérifier que les instructions conditionnelles du programme sont écrites correc-
tement, et que par exemple il ne suffit pas d'avoir trouvé la bonne lighe pour
couler le bateau. On testera donc le programme sur les entrées suivantes, par
exemple, avec les résultats attendus :

* (4;7):Coulé,

(1;2):A 1'eay,

(4;9):En vue (méme ligne),
(8;7):En vue (méme colonne).

On pourrait également tester ce qu'il se passe si I'on entre une coordonnée
décimale ou une coordonnée qui dépasse les limites du tableau de jeu.

Exercice 1.12

Proposer un jeu de tests satisfaisant pour le programme de calcul des solutions
réelles d'une équation du second degré ci-avant.

1 — Les ingrédients des programmes

Les instructions et les expressions

Laffectation x = y + 3; est une instruction. Elle est composée d’une
variable x et d’une expressiony + 3.

On attribue une walenr a chaque expression. Pour les expressions sans
variables, comme (2 + 5) * 3, dont la valeur est 21, la valeur s'obtient
simplement en effectuant les opérations présentes dans I'expression, dans
cet exemple une addition et une multiplication. La valeur d'une expression
qui contient des variables, par exemple (2 + x) * 3, se définit de la méme
maniére, mais dépend de I'état dans lequel on calcule cette valeur.

Par exemple, la valeur de I'expression (2 + x) * 3 dans I'état €) est 15,
alors que celle de cette méme expression dans I'état €) est 18.

Exercice 1.13

Les suites de symboles suivantes sont-elles des instructions ou des expressions ?
. X

¢ X =y;

* Xo= W+ 3y

= X+ 3;

* System.out.printin(x + 3);
e x = Isn.readInt();

- X == a
¢ X ==adf y==>0
Exercice 1.14

Déterminer la valeur des expressions suivantes dans I'état).
e v+ 3

. + 3
L] + Yy
. g
L]

G
e

Exercice 1.15

Déterminer dans chacun des cas suivants tous les états tels que :
e y - 2vautl,

s x * xvautd,

e x + yvautl,

» ces trois conditions a la fois.

ok ol N e T

4 Une expression

Une expression est un élément de programme

qui peut étre de différentes formes :

une variable, par exemple x, v ;

® une constante, par exemple, 3, 3.14,
6.02E23, true, "Coulé";

* une expression de la formee + e', e = e’,
e == e' formée d'une opération comme +,
*, == et d'une ou plusieurs expressions, par
exempley + 3.

17

Premiére partie — Langages

Math.
Math
Math.

pow

.sqrt

PI

' Math.

Math
Math.
IMath.
Math.
"Math
Math.
Math.
Math.

sin

. COS

exp
log

abs

.min

max
floor

random

Les opérations

Les expressions sont formées en utilisant les opérations suivantes :

. Addition entiére
| Soustraction entiére

" Multiplication entiére

Quotient de la division euclidienne. Attention
| cette division est inhabituelle pour les
nombres négatifs: -5 / 2vaut-2etnon |
| -3,et-5 / -2vaut2.

' Reste de la division euclidienne. Attention
| encore aux nombres négatifs : -5 % 2 vaut
| -let-5 % -2 aussi.

' Addition décimale

' Soustraction décimale
: MLIItijaJical_ion décimale
Division décimale
' Puissance
Racine
F
' Sinus
: Cosinus
: Exponentielle
Loga rithme nepérien
I Valeur absolue
Minimum

" Maximum
Partie entiére

| Nombre aléatoire décimal entre 0 et 1, selon '

la loi uniforme

18

Egal. S'applique aux valeurs numériques et
| booléennes, mais pas aux chaines de
caractéres ni aux tableaux.

; Différent. S"applique aux valeurs numériques
et booléennes, mais pas aux chaines de
‘ caractéres ni aux tableaux.

<=

<

>

=

' Isn.

: Isn.

| Isn

Isn.

Isn.

Isn.

| &
i|

stringEqual

stringAlph

.stringLength

stringNth

asciiString

stringCode

Inférieur ou égal.
Inférieur strictement.
-STpéﬁeur ou égal.
Supérieur strictement.

Prend en argument deux chaines de

caractéeres et renvoie la valeur true si ces
deux chaines sont égales et la valeur false
sinon.

 Prend en argument deux chaines de

caractéres et renvoie la valeur true sila
premiére chaine est avant la seconde dans
I'ordre alphabétique, et la valeur false
sinon.

Prend en argument une chaine de caractéres
et renvoie un entier qui est sa longueur.

 Prend en argument une chaine de caractéres

s et un entier n, compris entre 0 et la
longueur de la chaine moins 1, et renvoie la
chaine de caractéres formée d'un seul
caractére qui est le n-iéme de la chaine s.

' Prend en argument un entier n et retourne

une chaine de caractéres qui contient un
unique caractére dont le code ASCII (voir le
chapitre 8) est n.

Fonction inverse de la précédente, qui prend
en argument une chaine de caractéres s et
retourne le code ASCII du premier caractére
de cette chaine.

Concaténation. S'applique a deux chaines de
caractéres et construit une unique chaine
formée de la premiére, suivie de la deuxieme.

" Non.

Et (Variante : &&.)

' Ou (Variante 2| iT

ALLER PLUS LOIN Les opérations && et ||

1 - Les ingrédients des programmes

Lopération && est une variante de &, telle que la valeur de I'expression © Ainsi I'exécution de I'instruction :

&& u soit false quand la valeur de t est false, méme si la valeur de
I'expression u n'est pas définie.

De méme, l'opération | |est une variante de | telle que la valeur de
expressiont || u soit true quand lavaleur de t est true, méme si

la valeur de I'expression u n'est pas définie. affiche false.

' Exercice 1.16

Le but de cet exercice est d'écrire un programme qui demande a I“utilisateur
une date comprise entre le 1%" janvier 1901 et le 31 décembre 2099 et qui
indique le nombre de jours écoulés entre le premier janvier 1901 et cette date.

Une bonne approximation de ce nombre est (a ~ 1901) * 365 + (m - 1) *
30 + j - 1:.Mais il faut lui ajouter deux termes correctifs. Le premier est da
au fait que tous les mois ne font pas trente jours. On peut montrer que ce
terme correctif vaut m / 2 quand m est compris entre 1 et 2 etvaut (n + m /
8) / 2 - 2 quand m est compris entre 3 et 12. Le second est d0 aux années bis-
sextiles. On peut montrer que ce terme correctif vaut (a - 1900)/4 - 1sia
est un multiple de 4 et m est compris entre 1 et 2 et vaut (a2 - 1900) /4 sinon.
« Ecrire un programme qui demande a I'utilisateur trois nombres qui consti-
tuent une date comprise entre le premier janvier 1901 et le 31 décembre
2099, par exemple 20/ 12/ 1996, et qui indique le nombre de jours écoulés
entre le premier janvier 1901 et cette date.
s Ecrire un programme qui demande a ['utilisateur deux dates et indique le
nombre de jours écoulés entre ces deux dates.
= Sachant que le premier janvier 1901 était un mardi, écrire un programme
qui demande a l'utilisateur une date et indique le jour de la semaine cor-
respondant a cette date.

Exercice 1.17

En utilisant la fonction Math.random, écrire un programme qui simule la loi
uniforme sur I'intervalle [a ; b], ol a et b sont deux réels donnés.

En utilisant la fonction Math. random, écrire un programme qui affiche aléatoi-
rement pile ou face de facon équiprobable.

Les accolades

Llexpression x - y + z peut étre construite ou bien avec le signe + et les
deux expressions x - y et z, ou alors avec le signe - et les deux expres-
sions x et y + z. Comme en mathématiques, on léve cette ambiguité en
utilisant des parenthéses : on écrit la premiére expression (x - y) + zet

System.out.printin(x != 0 & 1/x > 2);
provoque une erreur, quand x est égal a 0, mais celle de I'instruction :
System.out.printin(x != 0 & 1/x > 2);

AiLER pLUs L0 Les ordinateurs et le hasard

Parmi les opérations de base, nous avons cité la
fonction Math.random, qui renvoie un
nombre aléatoire compris entre 0 et 1. Si I'on s'y
arréte quelques secondes, 'existence d'une telle
fonction est contradictoire avec la notion méme
d'algorithme : un processus suffisamment bien
décrit et détaillé pour étre exécuté sans erreur ni
initiative de la part d'une machine ne peut pas
mener a un résultat imprévisible et différent a
chaque exécution. Pourtant l'introduction de
hasard dans les programmes est indispensable,
par exemple pour créer des situations imprévues
dans les logiciels de jeux, mais aussi pour
résoudre certains problémes qui ne peuvent pas
€tre résolus sans une part de hasard, comme on
le verra au chapitre 16. La fonction
Math.random ne génére pas de nombres
réellement aléatoires, mais les résultats obtenus
sont suffisamment proches de tirages aléatoires
pour la plupart des applications qui utilisent ce
genre de nombres. L'exercice 2.8 donne un
exemple d'un tel générateur de nombres
pseudo-aléatoires.

19

Premiére partie — Langages

20

la seconde x - (v + z). Et, comme en mathématiques, on décide que,

q q
quand on n'utilise pas de parenthéses, 'expression x - y + z signifie (x
- y) + zetnonx - (y + z).

Un probléme similaire se pose avec les instructions : I'instruction if (x
= 0) y = 1; else y = 2; z = 4; peut étre construite ou bien comme la
séquence des instructions if (x == 0) y = 1; else y = 2; etz = 4; ou
alors comme le test formé de I'expression x — 0 et des instructions y -
1;ety=2; z= 4;

On léve cette ambiguité en utilisant, non des parenthéses, mais des acco-
lades, et on écrit {if (x = 0) y = 1; else y = 2;} z = 4; la premiére

instruction et if (x == 0) y = 1; else {y = 2; z = 4;} la seconde.

Comme dans le cas des expressions, on décide que, quand on n'utilise
p que, q

pas d’accolades, l'instruction if (x == 0) y = 1; else y = 2; z = 4;

signifie {if (x == 0) y = 1; else y = 2;} z = 4; etnon if (x = 0)
y = 1; else {y = 2; z = 4;}. Le test est prioritaire sur la séquence.
Dans un test if (b) p else g, la coutume est de mettre toujours les

expressions p et q entre accolades, afin de faciliter la lecture des
programmes :

if (x == 0) {
y =1;3
else {
Yy =2
Z =42}

Enfin, on peut aussi mettre des accolades autour de zéro instruction.
Linstruction obtenue, {}, signifie «ne mnen faire». On verra au
chapitre 17 une utilisation de cette instruction.

Quel est le résultat de I'exécution des instructions :

if (x = 4) {
y = 1;}
else {

1 — Les ingrédients des programmes

et
| if (x = 2 {
y = 1;}
else {
y = 2:}
zZ = 33
dans l'état ;
¥ o027 CzJ
Py, p——
aln]
Exercice 1.20

Le but de cet exercice est de montrer que si I'on exécute I'instruction {p g} r
dans un état e on obtient le méme résultat que si I'on exécute l'instruction p
{g r}. Soit e, I"'état obtenu en exécutant I'instruction p dans I'état e, e; |'état
obtenu en exécutant l'instruction ¢ dans |'état e, et e, I'état obtenu en exécu-
tant l'instruction r dans |'état e;.

€ Quel est I'état produit par I'exécution de l'instruction p q dans I'état e ?

€) Quel est I'état produit par I'exécution de I'instruction {p q} rdans|'étate ?
€ Quel est I'état produit par |'exécution de l'instruction q r dans I'état e, ?

£) Quel est I'état produit par I'exécution de I'instruction p {q r} dans I'état e ?

SAvoIR-FAIRE Indenter un programme

Indenter un programme, ¢’est-a-dire insérer des espaces blancs en début de ligne, est un
moyen de visualiser le niveau d'imbrication auquel une instruction se trouve. On insére
un espace blanc par accolade ouverte et non fermée située avant cette instruction dans le
programme. Dans certains langages, comme Python, I'indentation joue le role de
parenthéses, comme les accolades en Java. En Java, en revanche, I'indentation est une
aide 2 la lecture, mais ne change pas la signification des programmes.

Exercice 1.21 (avec corrigé)

Ecrire un programme qui affiche le tarif du timbre 3 poser sur une lettre en
fonction de son type et de son poids.

On trouve sur le site web de la Poste le tableau suivant (au 1" octobre 2011) :

Poids jusqu‘a Lettre verte Lettre prioritaire Ecopli
24¢ 0,57 € 0,60 € 055€
50g 09%5€ 1,00€ 078€
100g 140€ 1145 € 1,00€

21

Premiére partie — Langages

22

On peut par exemple considérer que les différentes gammes de poids sont des
sous-cas dans chaque type de lettre. Le programme est donc constitué de trois
tests correspondant aux différents types de lettres, I'instruction exécutée dans
chacun des cas étant elle-méme constituée de trois tests correspondant aux
differents poids. On décide de ne rien afficher quand les entrées type et
poids ne correspondent pas & une catégorie du tableau.

if (Isn.stringEqual (type, "verte")) {
if (poids <= 20) {
System.out.printin(0.57);:}
else {
if (poids <= 50) {
System.out.printin(0.95);}
else {
if (poids <= 100) {
System.out.printin(1.40):}}}}
else {
if (Isn.stringEqual(type,"prioritaire”)) {
if (poids <= 20) {
System.out.printin(0.60);}
else {
if (poids <= 50) {
System.out.printin(1.00);}
else {
if (poids <= 100) {
System.out.printin(l.45);11}}
else {
if (Isn.stringEqual(type,"ecopli™))
if (poids <= 20) {
System.out.printin(0.55);}
else {
if (poids <= 50) {
System.out.printin(0.78);}
else {
if (poids <= 100) {
System.out.printin(1.00);3111}}

Exercice 1.22

Indenter les programmes les suivants :
* if (x == 4) {y = 1;} else {y
*if (x = 4) {y = 1;} else {y

2; z = 3;}
2:} 2= B,

(]

Ai-je bien compris ?

* Quelles sont
construire un

les trois instructions présentées dans ce chapitre et qui permettent de
programme élémentaire ?

* Quelle est la différence entre une instruction et une expression ?
* Comment l'exécution d’'une instruction transforme-t-elle I'état de I'exécution du

programme ?

Les boucles

Un ordinateur est fait pour effectuer des calculs longs
et répétitifs.

Dans ce chapitre, nous introduisons une nouvelle instruction,
la boucle, qui permet d’exécuter une instruction plusieurs fois.
Nous en présentons deux variantes, la boucle for et la boucle
while. Nous expliquons comment manipuler le compteur d’'une
boucle for, dans quels cas plutot utiliser une boucle whi e,

et pourquoi il peut arriver que 'exécution d’une boucle ne
s'arréte jamais.

Gilles Kahn (1946-2006) et Gordon
Plotkin (1946-) ont proposé des
outils pour décrire la sémantigue des
langages de programmation, c'est-a-
dire ce qu'il se passe quand on exé-
cute un programme. Gilles Kahn est
aussi I'auteur, avec Gérard Huet, du
systeme Mentor, I'un des premiers
systémes qui permet de définir de
maniére complétement formelle des
langages de programmation. On doit
a Gordon Plotkin des contributions a
de nombreux domaines de I'informa-
tique, en particulier la démonstration
automatique et la théorie des sys-
téemes concurrents.

Premiére partie — Langages

EXevre Certaines instructions
sont exécutées plusieurs fois

Pour écrire un programme qui affiche le
calendrier :

1 janvier

2 janvier

3 janvier

4 janvier

5 janvier

6 janvier

7 janvier

8 janvier

9 janvier

10 janvier

11 janvier

12 janvier

13 janvier

14 janvier

15 janvier

16 janvier

17 janvier

18 janvier

19 janvier

20 janvier

21 janvier

22 janvier

23 janvier

24 janvier

25 janvier

26 janvier

27 janvier

28 janvier

29 janvier

30 janvier

31 janvier

nous ne voulons pas écrire, dans le programme,
l'instruction System.out.printin trente
et une fois, mais Ecrire cette instruction une
seule fois et faire en sorte qu'elle soit exécutée
trente et une fois au cours de I'exécution du
programme.

24

Au cours de I'exécution d'un programme construit avec les instructions
présentées au chapitre 1, chaque instruction du programme est exécutée
au plus une fois. Par exemple, au cours de I'exécution de I'instruction :

x = 13

if (k== 2) {
y = 3;}
else {

| ¥ =73}

Iinstruction y = 7; est exécutée une fois et 'instruction y = 3; n'est pas
exécutée, mais aucune instruction n'est exécutée plusieurs fois. Or, bien
souvent, nous voulons effectuer des calculs dans lesquels certaines ins-
tructions sont exécutées plusieurs fois (voir 'exemple ci-contre).

Permettre & une instruction d’étre exécutée plusieurs fois au cours de I'exé-
cution d'un programme est le but d’'une nouvelle instruction : la douce.

La boucle for

La premiére forme de boucle, présentée dans ce chapitre, est la boucle
for. C’est une instruction de la forme for (i = e; i <=e'; i =1 + 1)
p ol i est une variable, e et e’ sont des expressions et p est une instruc-
tion, appelée corps de cette boucle. Comme dans le cas des tests, la cou-
tume est de toujours mettre le corps d’'une boucle entre accolades.
Exécuter la boucle for (i = e; i <= e'; i =i + 1) pa pour effet
d’exécuter l'instruction p (# - 7 + 1) fois, ot m est la valeur de I'expres-
sion e et 7 celle de I'expression e, dans des états dans lesquels la valeur
de la variable i est successivement »z, m + 1, ..., .

Par exemple, exécuter la boucle :
for i =1; 1 <=10;i=1 1 {
System.out.print(*alle ");}
System.out.printin("t'es ol 7");
a pour effet d’afficher :
] allo alldé allo allo allo alle allo alldé allo allo t'es ot ?

Exécuter la boucle :

for (i =1; 1 <==10; i =1 + 1) {
System.out.printin(i);}

a pour effet d’afficher €.

Cette description de ce qu’il se passe quand on exécute une boucle nest
exacte que quand deux conditions sont vérifiées : d'une part, la variable i ne
doit pas étre affectée au cours de I'exécution du corps p de la boucle, d'autre
part, la valeur de I'expression e* ne doit pas changer au cours de cette exé-
cution. Par exemple, exécuter l'instruction :

for (3 =25 1 < 305 1 =1 + D¢
System.out.printin(i);}

affiche €), ce qui montre que le corps de la boucle est bien exécuté dix fois.

Mais exécuter I'instruction :

Fof (F=1: 4 <=10; =17 +1 {
System.out.printin(i);
i=1+ 1;}

ot1 la valeur de la variable i est augmentée de 1 i chaque fois que I'ins-
truction p est exécutée affiche €, ce qui montre que le corps de la boucle
n'est exécuté que cing fois.

Et, de méme, exécuter l'instruction :

¥:-= 005

for (I =1; 1 <=x;i=1+1){
System.out.print(i);
System.out.print(" ");
System.out.printin(x);
X =x - 1;}

ot la valeur de la variable x, qui apparait dans I'expression e’, est dimi-
nuée de 1 4 chaque fois que I'instruction p est exécutée affiche @, ce qui
montre que le corps de la boucle n’est exécuté que cinq fois également.

On retiendra de ces deux exemples, qu'il ne faut pas, dans le corps d’une
boucle, affecter la variable i ni aucune des variables qui apparaissent
dans l'expression e'. Quand on est tenté de le faire, cela est souvent le
signe qu'il aurait mieux valu utiliser une boucle while présentée ci-apres.

En utilisant une boucle for, on peut maintenant écrire une instruction
qui affiche le calendrier ci-avant :

for (jour = 1; jour <= 31; jour = jour + 1) {
System.out.print(jour);
System.out.printin(" janvier");}

2 - Les boucles

L
1
2
3
4
5
6
7
8
9
10
& 3]
1 110
3 29
5 38
7 47
9 56
DANS D' AUTRES LANGAGES

Texas Instruments et Casio

Dans le langage des calculatrices Texas Instru-
ments et Casio les boucles s'écrivent ainsi :
® Texas Instruments

PROGRAM: COMPTE

:For (1,1,10)

:Disp I

:End
* (Casio

===—==(OMPTE ===—=

For 1 —»1I to 10

1 4

Next

25

Premiére partie — Langages

26

Savoir-FaIRE Ecrire un programme utilisant une boucle for

Identifier si le compteur doit jouer un réle dans le corps de la boucle. Ecrire le corps de la
boucle. Prévoir une initialisation des variables en amont de la boucle et un post-traite-

ment en aval.

Exercice 2.1 (avec corrigé)

Ecrire un programme qui recueille au clavier les températures de 7 jours suc-
cessifs et calcule la température moyenne de la semaine.

Ici, le compteur de boucle jour ne représente que le numéro du jour dans la
semaine et n‘intervient pas dans les calculs. Dans le corps de la boucle, on se
contente donc de lire les températures au clavier dans une variable
temperature et de faire la somme des nombres entrés au fur et a mesure dans
une variable somme. Linstruction correspondante sera donc :

temperature = Isn.readDouble();
somme = somme + temperature;

Pour que la somme calculée soit correcte, il faut penser a initialiser la variable
somme a zéro avant la boucle. Enfin, une fois les 7 températures entrées, il faut
convertir cette somme en moyenne et ['afficher :

somme = 0;
for (jour = 1; jour <= 7; jour = jour + 1) {
temperature = Isn.readDouble();
somme = somme + temperature;}
System.out.printin(somme / 7.0);

Exercice 2.2

Modifier le programme précédent pour que |'utilisateur puisse préciser le
nombre de jours avant de donner les températures.

Exercice 2.3

Ecrire un programme qui calcule et affiche la liste des diviseurs d’'un nombre
entier naturel entré au clavier.

Savoir-FAIRE Imbriquer deux boucles

Quand I'instruction i exécuter a l'intérieur d’'une boucle est elle aussi répétitive, le corps de
cette boucle contient une seconde boucle et on dit que ces deux boucles sont imbriquées.
Les bornes de la boucle interne dépendent souvent du compteur de la boucle externe.

Exercice 2.4 (avec corrigé)
Ecrire un programme qui affiche un calendrier pour une année entiére.

Ce programme doit avoir une structure en boucles imbriquées : une année est
constituée de douze mois et chague mois est a son tour constitué de plusieurs

2 - Les boucles

jours. 5i tous les mois de I'année avaient trente jours, il suffirait d*écrire le pro-
gramme suivant :

for (mois = 1; mois <= 12; mois = mois + 1) {
for (jour = 1; jour <= 30; jour = jour + 1) {
System.out.print(jour);
System.out.print(" / “);
System.out.printin(mois);}}

Mais comme les mois ont un nombre de jours variable, il faut, pour chaque
mois, d’abord calculer le nombre de jours nbj du mois en fonction de mois,
puis utiliser une boucle dont I'indice jour varie de 1 a nbj :

for (mois = 1; mois <= 12; mois = mois + 1) {

if (mois == 2) {
nbj = 28;}

else {
nbj = 30 + (mois + mois / 8) % 2:}

for (jour = 1; jour <= nbj; jour = jour + 1) {
System.out.print(jour);
System.out.print(" / ™);
System.out.printin(mois);}}

Exercice 2.5

Combien de points affiche le programme suivant ?

for (i =1; 1 «<=100; i =i+ 1) {
System.out.print(".");}

for (3 =1; j < 100; 7 =3 + 1) {
System.out.print(".");}

System.out.printin();

Et celui-ci ?

for (i =1; 1 «<=100; i =1+ 1) {
for (3 =1; <=160; =7+ 1) {

System.out.print(".");}}

System.out.printin();

Exercice 2.6

Ecrire un programme qui affiche un calendrier pour une année mais en écri-
vant les mois « janvier », « février », etc. et non 1, 2, etc.

Exercice 2.7

Ecrire un programme qui affiche un calendrier qui va du 1er janvier 2001 au 31
décembre 3000. Attention les années multiples de quatre sont bissextiles, sauf
les années multiples de cent qui ne le sont pas, sauf les années multiples de
quatre cents qui le sont. Ainsi, 2100, 2200, 2300, 2500, 2600, 2700, 2900 et
3000 ne sont pas bissextiles mais 2400 et 2800 le sont.

Ajouter a ce calendrier le nombre de jours écoulés depuis le début du calendrier.

27

Premiére partie — Langages

4 Logarithme entier

On appelle logarithme entier elog(x) d'un
nombre réel x supérieur ou égal a 1, le nombre de
fois qu'il faut le diviser par deux pour obtenir un
nombre inférieur ou égal a 1. Par exemple, le loga-
rithme entier du nombre 60 000 est 16 car 60 000
1 2'6 = 0.915..., c'est-a-dire 60 000 divisé par 2
seize fois.

28

Ajouter a ce calendrier le jour de la semaine.

1 Tundi 1 janvier 2001
2 mardi 2 janvier 2001

365241 mardi 30 décembre 3000
365242 mercredi 31 décembre 3000

Exercice 2.8 Fabriquer des nombres pseudo-aléatoires

La suite de nombres définie par récurrence de la maniére suivante :
e ug=13

® Upyp = (16805 vy, + 1) % 32768

semble aléatoire.

€ Ecrire un programme qui affiche les 10 000 premiers termes de cette suite.

@) Pour simuler une suite de tirages a pile ou face, on observe le neuviéme bit
(voir le chapitre 7) de chaque élément de cette suite et on décréte, lors du
i-eme tirage, que la piéce est tombée du c6té pile si le neuvieme bit du
nombre u; est un 0, et qu'elle est tombée du coté face si c'est un 1. Ecrire
un programme qui affiche les 10 000 premiers tirages.

€ On teste la qualité de ce générateur d‘aléa en comptant le nombre de fois
que la piéce tombe d'un cété et de I'autre. Ecrire un programme qui simule
10 000 tirages et compte le nombre de fois que la piéce tombe du c6té pile.

) Qu'obtient-on si on observe le bit des unités au lieu d‘observer le neu-
viéme bit ? Expliquer pourquoi : montrer que si u,, est pair alors v, est
impair et que si uy, est impair alors u,,, 4 est pair.

€ Montrer que, loin d'étre réellement aléatoire, la suite u est en fait pério-
dique a partir d'un certain rang.

La boucle while

On veut écrire un programme qui prend en argument un nombre 4 vir-
gule x supérieur ou égal i 1 et qui calcule son logarithme entier. Ce pro-
gramme est formé d’une boucle qui divise x par 2 plusieurs fois, jusqu’a
obtenir un nombre inférieur ou égal 4 1, tout en ajoutant 1 2 un nombre
n & chaque division, pour les compter. Quand la boucle est terminée, la
variable n contient le nombre recherché. l.a nouveauté, avec cette
boucle, est que, tant que I'exécution du calcul n'est pas achevée, il n'y a
aucun moyen de savoir combien de fois le corps de cette boucle sera
répété, puisque ce nombre est précisément le nombre que 'on cherche 2
calculer : le logarithme entier de x. Il n'est donc pas possible d’écrire ce
programme avec une boucle for.

C’est pour cela que l'on a introduit, dans les langages de programmation,
une autre forme de boucle : la boucle whi 1e. Dans une telle boucle, le choix

2 - Les boucles

de continuer ou non a répéter le corps de la boucle n'est pas conditionné,
comme dans le cas d'une boucle for, par un nombre d'itérations fixé avant
le début de I'exécution de la boucle, mais il est fait dynamiquement : avant
chaque exécution du corps de la boucle, on teste une condition, si cette
condition est vérifiée, on exécute le corps de la boucle et on recommence, si
elle ne l'est pas, 'exécution de la boucle est achevée.

Une boucle while est une instruction de la forme while (e) p ol e est
une expression et p est une instruction, appelée corps de cette boucle.
Exécuter la boucle while (e) p a pour effet d’exécuter I'instruction p
plusieurs fois tant que la valeur de 'expression e est égale a true.

Ainsi, on peut programmer le calcul du logarithme entier d'un nombre x
de la maniére suivante :

n=0;

while (x > 1.0) {
X =x/ 2.0;
n=mn+1;}

Exercice 2.9

Montrer que si 27" <x<2", alors elog(x) = n. Montrer que le logarithme
entier d'un nombre est son logarithme binaire, défini par log; (x) = In(x) /
In(2), arrondi par excés.

Savoir-FaIRe Ecrire un programme utilisant une boucle while

DANS D' AUTRES LANGAGES
Texas Instruments et Casio

Dans le langage des calculatrices la boucle

whii 1e s"égrit de la maniére suivante :
* Texas Instruments

PROCRAM: ELOG

10 =N

:While X > 1

1XfZ X

N+1 =N

:End
* (Casio

0 =N
While X > 1
X/2 =X
N+l =N
WhileEnd

Identifier la condition. Ecrire le corps de la boucle. Prévoir une initialisation des varia-

bles en amont de la boucle et un post-traitement en aval.

Exercice 2.10 (avec corrigé)
Rechercher une sous-chaine dans une chaine de caractéres.

Comme la fonction Rechercher d‘'un logiciel de traitement de texte, on

cherche si une chaine de caractéres contient, par exemple, la sous-chaine

"oui". Pour ce faire on doit tester si les trois caractéres aux positionsn, n + 1
" " " " nsn

etn + 2 de la chaine s sont "o", "u" et "i" jusqu‘a ce qu'on trouve ces trois
caractéres, ou que ['on atteigne la fin de la chaine.

longueur = Isn.stringlength(s);
n=0;
while (n <= longueur - 3
&& !(Isn.stringEqual(Isn.stringNth(s,n),"0o")
&& Isn.stringEqual(Isn.stringNth(s,n+1),"u™)
&& Isn.stringEqual(Isn.stringhNth(s,n+2),"i"))) {
n=n-+1;}
if (n > longueur - 3) {
System.out.printin("pas de oui");}
else {
System.out.printin(n);}

29

Premiére partie — Langages

30

Exercice 2.11

On définit une suite u de la maniére suivante :

* ug=1000

* siu,=1, alors la suite est finie et u, est son dernier élément
* si uy, est pair, alors U, =u, /2

* siu, est impair et distinct de 1, alors U =3 U, + 1

Ecrire un programme qui affiche les termes de la suite wu.

Cette suite est-elle finie ?

Exercice 2.12

Ecrire un programme qui détermine le plus petit multiple commun 3 deux
nombres entiers entrés au clavier.

SaAvoir-FAIRE Commenter un programme

Des que l'on écrit un programme de plus d'une dizaine de lignes, il est indispensable
d’ajouter des commentaires dans ce programme, autrement dit des lignes écrites en langue
naturelle que la machine ne cherche pas 4 interpréter comme des instructions et qui
expliquent le réle des différentes parties du programme aux codéveloppeurs.

Ces commentaires permettent & un programmeur de comprendre un programme écrit
par un autre programmeur ou par lui-méme longtemps auparavant.

Pour préciser qu'une ligne est un commentaire, on la fait précéder d’un symbole particu-
lier. En Java, il s'agit de deux barres obliques //. Si I'on veut écrire un commentaire sur
plusieurs lignes, il faut faire précéder chacune d’entre elles de ce symbole.

Ces commentaires doivent donner des informations supplémentaires sur le sens du
programme. Inutile de commenter en disant, par exemple « ceci est une boucle », mais
expliquer le réle de cette boucle.

Exercice 2.13 (avec corrigé)

Reprendre le programme de I'exercice 1.9 qui calcule les solutions d'une équa-
tion du second degré et le compléter pour gu'il vérifie que les coefficients
entrés au clavier déterminent bien une équation du second degré, autrement
dit que a est non nul. Commenter le programme ainsi obtenu.

// Voici un programme qui reésout 1'équation du second degre
[/ ax\ +bx+¢c=20
a = Isn.readDouble();
b = Isn.readDouble();
c = Isn.readDouble();
// Test du coefficient dominant
if (a == 0.0) {
System.out.printin("Pas une équation du second degré");}
else {
// Calcul du discriminant
delta=b *b -4 * a * (;

2 — Les boucles

// Affichage des solutions
if (delta < 0.0){
System.out.printin("Pas de solution");}

else {
if (delta == 0.0) {
System.out.print("Une solution : ");
System.out.printin(- b / (2 * a));}
else {
System.out.print("Deux solutions : ");

System.out.print((- b - Math.sgrt(delta)) / (2 * a));
System.out.print(" et ");
System.out.printin((- b + Math.sgrt(delta)) / (2 * a));}1}}

Exercice 2.14
Commenter le programme de la bataille navale.

La non-terminaison

Avec la boucle while apparait un nouveau comportement possible pour les
programmes : la non-terminaison. 1l est possible d’écrire une instruction
while (e) p telle que la valeur de I'expression e soit toujours égale & true, si
bien que 'exécution de I'instruction p se répéte et se répéte, sans que jamais
Pexécution de la boucle ne se termine. Un exemple simple est le suivant :

while (true) {
System.out.print(allé ");}

qui affiche a116 a116 allo.. sans jamais s'arréter.

La boucle for, cas particulier
de la boucle while

La boucle while, qui permet de choisir dynamiquement si I'on continue
a répéter le corps de la boucle ou si I'on sarréte est un outil plus puissant
que la boucle for. En fait, la boucle for est un cas particulier de la
boucle while.

Llinstruction for (i = e; i <= e'; i = i + 1) p peut étre vue comme
une maniére plus simple d’écrire I'instruction :

31

Premiére partie — Langages

32

= 0 00 -~ YL B WM =

=

W o U =

1= e
while (i <= ¢e') {pi=1+ 1;}

Par exemple, I'instruction :

for (A =1; § <= 10; 1 =1 +1) {
System.out.print("allaé "):}

peut étre vue comme une maniére plus simple d’écrire I'instruction :

i=1;

while (i <= 10) {
System.out.print("alle ");
1=1d+ 1;%

et I'instruction :

for (i =1; i <=10; i =1 + 1) {
System.out.printin(i);}

peut étre vue comme une maniére plus simple d’écrire I'instruction :

i = 1

while (i <= 10) {
System.out.printin(i);
=1 4 133

qui affiche @ également.

Cette explication de ce qu'il se passe quand on exécute une boucle for
est aussi plus précise que celle que nous avons donnée avant d'introduire
la boucle while, car elle permet aussi d'expliquer I'exécution d'une
boucle dans le corps de laquelle on affecte le compteur i ou une variable
utilisée dans Pexpression e*.

Par exemple, l'instruction :

for (1 =1; 1 <=10; i =14 + 1) {
System.out.printin(i);
i=1+ 1}

peut étre vue comme une maniére plus simple d’écrire I'instruction :

1= 1;

while (i <= 10) {
System.out.printin(i);
T =9 % I3
i=d+ 133

Et on comprend donc pourquoi cette instruction affiche €.

ALLERPLUS LOW Savoir si un programme se termine ou non

Savoir si un programme se termine ou non n’est pas une
chose facile. Par exemple, quand on exécute l'instruction :
s =4;

p = false;

foritii= 1 di=s —A5i=1 +3) &
j=5-1;

Gy 2t =25 ¥ 1
p= true;}}

on énumere tous les couples d'entiers strictement posi-
tifs (i ; j) dont la somme vaut 4, c'est-a-dire les cou-
ples (1; 3), (2; 2), (3; 1), et on teste si I'un de ces couples
est une solution de I'équation : 1 * i == 25 * § * §,
Comme ce n'est le cas d’aucun de ces trois couples, I'ins-
truction p = true; n'est jamais exécutée et la valeur de
la variable p reste a false.

De méme, quand on exécute I'instruction :

Sl

p = false;

while (1p) {

for (1 =3id < s =19 =4+ 1
Ji= & =
if(i*i=25%3%3){
p = true;}}

s =15+ 1;}

2 - Les boudes

on énumere tous les couples dont la somme des éléments
vaut 2, puis tous les couples dont la somme des éléments
vaut 3, et ainsi de suite, puis on teste si I'un de ces couples
est une solution de I'équation:i * i == 25 * j # 1.
Quand on essaiera les couples dont la somme des élé-
ments vaut 6, on essaiera le couple (5; 1), qui est une
solution de I'équation, on exécutera l'instruction p =
true; et I'exécution de la boucle while se terminera.
Autrement dit, ce programme énumeére tous les couples
d'entiers strictement positifs (i ; j) et se termine quand
il trouve une solution de I'équation i * 1 == 25 * § * §.
Comme cette équation a une solution, le programme se
termine.

En revanche, si on remplace le nombre 25 par le nombre
2, le programme énumeére tous les couples d'entiers
strictement positifs (i ; j) et se termine guand il
trouve une solution de I'équation i * i == 2 # § * 1.
Comme cette équation n'a pas de solution, le pro-
gramme ne se termine pas.

Ces deux programmes sont donc trés similaires, puisque
I'un cherche les solutions entiéres de I'équation i * 1
—= 25 * i * j et l'autre celles de I"'équation i * 1 —
2 * j * i mais I'un se termine et I'autre non.

Savoir-FaiRe Choisir entre une boucle for et la boucle while

pour écrire un programme

Si on connait 4 'avance le nombre de répétitions a effectuer, la boucle for est toute indi-
quée. A l'inverse, si la décision d’arréter la boucle ne peut s'exprimer que par un test, c’est

la boucle while qu'il faut choisir.

Exercice 2.15 (avec corrigé)

Quelle boucle est adaptée a I'écriture de programmes traitant les problémes
suivants :

@) le calcul du total a payer a une caisse enregistreuse,
€ la recherche du jour le plus pluvieux d’une année,
@ le calcul du périmeétre d’un polygone,

€ le calcul de la durée d'une émission de radio, connaissant ses horaires de
début et de fin ?

&) Une boucle while: on ne sait pas combien il y aura d'articles, on ne
s'arréte que lorsque le tapis est vide.

€ Une boucle for : le corps de la boucle doit étre répété 365 fois exactement

33

Premiére partie — Langages

© Cela dépend : si le nombre de c6tés est connu, une boucle for, sinon, une
boucle while qui s’arréte lorsqu’on est revenu au sommet de depart

) Il n'y a pas besoin de boucle.
Exercice 2.16
Ecrire les programmes proposés dans I'exercice précédent.

Exercice 2.17

Ecrire un programme qui affiche un tableau de valeurs pour la fonction f : x
= x* - 2 x - 2. Llutilisateur choisit les bornes de I'intervalle sur lequel on
calcule ces valeurs, ainsi gque le pas entre deux valeurs.

' Exercice 2.18

Dans cet exercice on écrit plusieurs versions d’un programme qui joue a la
bataille navale, autrement dit qui cherche a couler un bateau. Comme dans le
premier exemple, on suppose qu‘il n"y a qu’un seul bateau d'une seule case,
dont la position est connue par l'utilisateur.

€) Programmer |‘algorithme naif qui consiste a essayer toutes les cases systé-
matiquement.
@ Améliorer cet algorithme pour qu’il s’arréte quand il a coulé le bateau.

€ Améliorer cet algorithme pour qu'il cherche le bateau intelligemment si
celui-ci est en vue, c'est-a-dire dans une case adjacente au dernier essai
effectuée.

) Peut-on encore améliorer cet algorithme pour minimiser le nombre
d'essais nécessaires ?

Ai-je bien compris ?
A quoi sert une boucle ?
* Quelle est la différence entre une boucle for et une boucle while ?

* Que signifie qu'un programme se termine ?

34

Les types

Une boite ne sait pas comment elle sappelle.
Cest a nous de lui donner un nom et une forme.

Dans ce chapitre, nous introduisons une nouvelle instruction,
la déclaration, qui permet d’ajouter une boite a un état,
et nous voyons qu'il y a différents types de boites.

Chagque boite, en fonction de son type, peut contenir un nombre
entier, un nombre 2 virgule, un booléen, une chaine

de caractéres... ou plusieurs, dans le cas d’un tableau.

Une boite associée a une variable peut n'exister que pendant
I'exécution de certaines parties du programme — on parle de
portée de la variable. Une instruction qui manipule une variable
doit donc se trouver dans la portée de celle-ci, et il est important
de comprendre cette notion pour éviter les erreurs. Munis de tous
ces ingrédients, nous pouvons enfin exécuter nos programmes.

Robin Milner (1934-2010) est
l'auteur de l'un des premiers lan-
gages de programmation avec des
types polymorphes et implicites: le
langage ML. Ce langage est I'ancétre
de nombreux langages contempo-
rains en particulier des langages
Caml et Haskell. Par la suite il a déve-
loppé I'un des premiers langages per-
mettant de décrire des systémes
concurrents, c'est-a-dire formés de
plusieurs processus qui s‘exécutent en
paralléle. Dans son discours de récep-
tion du prix Turing, il a insisté sur
I'autonomie de linformatique, qui
n‘est une partie d'aucune autre
science.

Premiére partie — Langages

COMPLEMENTS

» hitp:/mww.editions-eyrolles.com/Livre/
9782212135435/informatique-et-sciences-
du-numerique

Déclaration

La déclaration T v; p,ol T estun type, v une
variable et p une instruction a pour effet d'ajouter
une boite de nom v et de type T a I'état, exécuter p
dans I'état obtenu et supprimer la boite de nom v.

36

Pour exécuter le programme donné en début de chapitre 1, il faut d’abord
le taper dans un fichier, appelé par exemple BatailleNavale. java.

Certains programmes présentés dans ce livre utilisent une extension de
Java appelée 1sn. I est donc également nécessaire de récupérer le fichier
Isn.java sur le site de I'éditeur de ce livre et de le mettre dans le méme
répertoire que ses programmes.

I1 faut ensuite compiler ce programme, c’est-a-dire le traduire dans le
langage propre de l'ordinateur (voir le chapitre 15), avec la commande
javac BatailleNavale.java. Le programme traduit, qui se trouve alors
dans le fichier BatailleNavale.class, peut étre exécuté par la com-
mande java BatailleNavale.

Toutefois, pour que ce programme produise le résultat attendu, il faut
'accompagner de quelques instructions supplémentaires :

class BatailleNavale {
public static void main (String [] args) {
int a;
int b;
int x;
int y;
a=4;
b= T
System.out.printin(”A vous de jouer");
X = Isn.readInt();
y = Isn.readInt();
if(x=—a && y=0>0b) {
System.out.printin(“Coulé");}
else {
if(x=a ||l y=0b){
System.out.printin("En vue");}
else {
System.out.printin("A 1'eau");3}31}}

On a ajouté six lignes en début de programme et fermé a la fin du pro-
gramme les accolades ouvertes plus haut.

On a vu que ce programme utilise quatre boites de noms 2, b, x et y. Ces
boites ne sont pas associées de maniére permanente 2 ces noms, mais
cette association est créée par les instructions int a; int b; int x; int
y;, qui s'appellent des déclarations. Pour abréger le programme et le
rendre plus lisible, on peut remplacer les quatre déclarations par une
seule int a,b,x,y;.

Les deux premiéres lignes, quant 2 elles, constituent un en-téte qui
indique que I'on va écrire un programme.

class BatailleNavale {
public static void main (String []1 args) {

3 — Les types

Exercice 3.1 4 Type d'une variable
Egrre":e programme ci-dessus dans un éditeur. Compiler et exécuter ce pro- le type d une variable indiue la nabure des don-
e S nées que cette variable contient : nombre entier,
Exercice 3.2 nombre a virgule, chaine de caractéres, etc.

Quuvrir le fichier BatailleNavale.class dans un éditeur.

Exécuter 'instruction :

int y;
X = 33
y = 4;

System.out.printin(x + v);

dans I'état € ajoute a I'état une boite de nom y, ce qui produit I'état @
puis exécute I'instruction :

X = 3;
y = 43
System.out.printin(x + v);

ce qui produit I'état @ et affiche 7, et enfin supprime la boite de nom vy,
ce qui produit I'état €.

Les types de base B

En Java, comme dans la plupart des langages de programmation, les
expressions sont classées en fonction de leur type :
* les expressions, comme 1 + 2, dont la valeur est un nombre entier,
comme 3, sont de type int (integer : nombre entier),
¢ cclles comme 1.5 + 1.64, dont la valeur est un nombre i virgule,
comme 3,14, sont de type double, ce nom fait référence au fait que les
nombres 2 virgules exprimés sur 32 bits sont appelés nombres a vir-
gule en simple précision et ceux exprimés sur 64 bit sont appelés nom-
bres a virgule en double précision (voir le chapitre 7),
¢ celles comme 0 < 2, dont la valeur est un booléen, false (faux) ou
true (vrai), sont de type boolean, dans les langages de programma-
tion, on écrit en général les booléens false et true et non 0 et 1 pour
éviter les confusions avec les nombres,
¢ celles, comme "Cou" + "1é", dont la valeur est une chaine de carac-
teres, comme "Coulé”, sont de type String.

37

Premiére partie — Langages

Une valeur de type int est exprimée sur 32 bits, selon la méthode vue au
chapitre 7, c’est donc un nombre entier relatif compris entre - 2147483648
et 2147483647. Les valeurs de type double sont exprimées sur 64 bits selon
la méthode vue au chapitre 7 : 1 bit de signe, 11 bits d'exposant, 52 bits de
mantisse. Un booléen est simplement un bit: true est une autre notation
pour le bit 1, et false une autre notation pour le bit 0. Dans une valeur de
type String, chaque caractére est exprimé en Unicode, selon la méthode
vue au chapitre 8.

Donner un type 4 chaque expression a plusieurs avantages : d’une part, cela
permet de préciser la maniére dont les données doivent étre exprimées,
puisque le nombre entier 7 et le nombre & virgule 7,0 sont exprimés d’une
maniére trés différente (voir le chapitre 7). D’autre part, les types permettent
d’éviter un certain nombre d’erreurs : par exemple 'instruction :

if (3 + 4) {
System.out.printin(x);}
else {

System.out.printin(y);}

contient une erreur puisque I'expression attendue apres le i f doit étre de
type boolean et non de type int. Les types jouent ici un réle comparable
a celui des dimensions en physique o1 I'équation F'= 7 g7 est non seule-
ment fausse, mais de plus mal formée, car le membre de gauche est
exprimé en g m s~ alors que celui de droite est exprimé en kg m? 5.

On peut changer le type d’une expression en la préfixant par le nom d’un
type, par exemple, si la valeur de l'expression e est le nombre entier 7,
alors celle de 'expression (double) e est le nombre a virgule 7,0. Si la
valeur de 'expression e est le nombre a virgule 4,0, alors celle de I'expres-
sion (int) e est le nombre entier 4.

Si la valeur de I'expression e est un nombre a virgule, comme 3,4, qui ne
correspond pas a4 un nombre entier, alors la valeur de I'expression (int)
e est la partic entiere de la valeur de e, dans cet exemple 3. Attention,
cette partie enticre est inhabituelle pour les nombres négatifs : si la
valeur de 'expression e est -3,4, alors celle de (int) e est-3 et non -4. 11
vaut donc mieux systématiquement utiliser d’abord la fonction
Math.floor qui, 2 chaque nombre 2 virgule x, associe un autre nombre a
virgule qui est la partie entiére de x, avant de changer le type d'une
expression. Ainsi, si la valeur de de I'expression e est -3,4, alors celle de
I'expression Math.floor(e) est -4,0 et celle de l'expression (int)
Math.floor(e) est le nombre entier -4.

38

3 — Les types

Savoir-FaIRe Différencier les types de base

Plusieurs facteurs peuvent déterminer le type a donner 4 une variable.
* Que représente-t-elle ?
* Au cours de I'exécution de 'algorithme, quelles valeurs peut-elle prendre ?
= Quelles opérations réalise-t-on avec cette variable ?

Exercice 3.3 (avec corrigé)

Quel est le type approprié pour les variables suivantes :
&) une variable qui contient le prénom de I'utilisateur,
€3 une variable qui sert de compteur dans une boucle for,

€ une variable qui stocke au fur et a mesure le plus grand des nombres qu‘un
utilisateur tape au clavier,

€ une variable qui sert a calculer le nombre d'atomes dans I'Univers,

€ une variable qui permet de traiter différemment un nombre selon qu'il est
pair ou impair.

€ On cheirche ici & stocker une suite de lettres : c'est une variable de type
String.

3 Le corps de la boucle est évidemment exécutée un nombre entier de fois :
un compteur de boucle est toujours de type int.

€ On ne sait pas a priori quels types de nombres seront tapés par l'utilisateur
et on ne le maitrise pas : il vaut donc mieux prévoir une variable de type
double. Cependant, si le programme est concu de maniére a n'accepter
que des nombres entiers en entrées, on donne le type int a cette variable.

€% A premiére vue on parle ici d’'un nombre entier, mais le type int ne con-
viendra pas : sa valeur maximale est 2147483647 et il y a de I'ordre de 10%°
atomes dans I"'Univers. Il faut donc utiliser plutét une variable de type
double. Le nombre calculé sera peu précis, mais il s'agit, de toute facon,
d‘une estimation.

) Une variable de type boolean : on ne s'intéresse pas ici au nombre lui-
méme mais uniquement a sa parité. On prendra donc par exemple true
pour « pair » et false pour « impair ».

Savoir-FaIRe Changer le type d’une expression

Les seuls types pour lesquels la conversion a réellement un sens sont int et double.
* Certaines opérations, par exemple le sinus Math.sin, n'acceptent que des nombres de
type double.

* Certaines opérations ont une signification différente sclon le type de leurs arguments,
par exemple la division de deux entiers est la division euclidienne, alors que la division
de deux nombres a virgules est la division décimale.

Exercice 3.4 (avec corrigé)

Quelle est la valeur de I'expression ((double) 5 / (double) 2) ? Et celle de
I"'expression (double) (5 / 2)7?

39

Premiére partie — Langages

40

Dans le premier cas les nombres a diviser sont convertis en nombres a virgule
avant la division : il s’agit donc de la division décimale 5,0 / 2,0, dont le résultat
est 2,5.

Dans le second cas la division 5 | 2 est une division euclidienne, et son résultat
est donc 2. Ce nombre est ensuite converti en un nombre a virgule ce qui
donne le nombre 2,0.

Exercice 3.5

En utilisant la fonction Math. random, écrire un programme qui génére de facon
équiprobable des nombres entiers entre 1 et n, ol n est un entier donné.
Exercice 3.6

Modifier le programme de bataille navale pour que la position du bateau soit
choisie au hasard a chague exécution.

Exercice 3.7 (avec corrigé)

Arrondir la valeur de la variable x au milliéme prés,

La fonction Math.floor ne garde que la partie entiére du nombre a virgule
donné. Pour garder les trois premiéres décimales, il faut donc les faire passer
temporairement dans la partie entiére. Le nombre Math.floor(x * 1000.0)
a donc les chiffres recherchés mais il est 1000 fois trop grand.

Pour retrouver I'arrondi recherché, il faut donc effectuer sa division décimale par
1000. L'expression recherchée est donc Math. floor(x * 1000.0) / 1000.0.

Exercice 3.8 (avec corrigé)

Le programme suivant devrait permettre de trouver la mesure principale d'un
angle en radians, mais il contient une erreur. Identifier cette erreur et pro-
poser une correction.

double alpha,principale;
alpha = Isn.readDouble();
principale = alpha % (2 * Math.PI);
if (principale > Math.PI) {
principale = principale - 2 * Math.PI;}
System.out.printin(principale);

L'erreur est ici d'utiliser I'opération % qui est le reste de la division euclidienne
avec des nombres de type double. On est ici obligé de simuler le calcul du
reste en utilisant une partie entiére : si le quotient 0./ 2r a pour partie entiére
n, alors o.— 2nm correspond au « reste » que ['on cherche.

double alpha,principale,n;
alpha = Isn.readDouble();
n = Math.floor(alpha / (2 * Math.PI));
principale = alpha - 2 * n * Math.PI;
if (principale > Math.PI) {

principale = principale - 2 * Math.PI;}
System.out.printin(principale);

La portée et l'initialisation
des variables

Si 'on exécute l'instruction :

int z;

{
z =17
System.out.printin(z);}

dans 'état € on commence par ajouter une boite z 4 I'état @ puis on
met la valeur 7 dans cette boite (€) on affiche son contenu : 7 et on sup-
prime la boite z (€)). En revanche, si dans ce méme état €) on exécute
I'instruction :

z= 73
System.out.printin(z);

on déclenche une erreur : au moment ol 'on cherche a remplir la boite
z, on s'apercoit qu'il n’y a pas de boite z dans I'état. En fait, cette erreur
est méme détectée avant I'exécution du programme, puisque I'on peut
voir simplement en observant le programme que la variable z est utilisée,
alors qu'elle n'est pas déclarée.

Une erreur similaire se produit si 'on cherche 4 exécuter, dans ce méme
état, I'instruction :

{

int z;

z =7}
System.out.printin(z);

Cette instruction est, en effet, une séquence formée de I'instruction :

{
int z;
7 =Tk

et de I'instruction :
System.out.printin(z);

Lexécution de la premiére de ces instructions ajoute une boite z a I'état,
remplit cette boite avec la valeur 7 et supprime cette boite de I'état. On
se retrouve alors dans I'état initial € pour exécuter la seconde instruction
qui tente d’afficher le contenu de la boite z et échoue, puisqu'il n'y a plus

Premiére partie — Langages

4 Portée d’une variable

La portée d'une variable z est I'ensemble des ins-
tructions au cours de |'exécution desquelles la

boite z est présente dans ['état.

42

de boite z dans I'état 2 ce moment. Dans une instruction de Ia forme int
z; p, on ne peut utiliser la variable z que dans I'instruction p : avant la
boite n'a pas encore été ajoutée, apreés elle a déja été supprimée.

Enfin, si on omet les accolades, 'instruction :

int z;
zZ=7;
System.out.printin(z);

est, par convention, une autre notation pour :

int z;

{
Z =
System.out.printin(z);}

qui s’exécute donc, comme ci-dessus. De maniére plus générale, une ins-
truction de la forme T x; p g est une autre notation pour T x; {p q} et
non pour {T x; p} g.

Si maintenant, on cherche a exécuter I'instruction :

int z;
System.out.printin(z);

dans I'état € on commence par ajouter une boite z a I'état ce qui donne
I’état @ puis on cherche a afficher le contenu de cette boite, mais elle est
vide. Lerreur n'est pas ici due au fait que la boite n'existe pas, mais au
fait qu'elle est vide : la variable z a bien été déclarée, mais elle n'a pas été
affectée. Contrairement au cas précédent, I'exécution d'un tel pro-
gramme varie grandement d’un langage et d’un compilateur (voir le cha-
pitre 15) 4 'autre. Dans certains cas, une erreur se produit au moment ot
l'on exécute le programme: au moment d'exécuter I'instruction
System.out.printin(z);, on se rend compte que la boite est vide. Dans
d’autres cas, I'erreur est détectée avant 'exécution du programme : une
analyse, plus difficile que la simple analyse de portée, permet de vérifier
que toutes les variables sont initialisées avant d’étre utilisées. Dans
d’autres cas encore, aucune erreur ne se produit : la déclaration de la
variable remplit la boite z ou bien avec une valeur par défaut, en général
0, ou bien avec une valeur aléatoire.

3 - Les types

Savoir-rFaIRe Déclarer les variables avec des types
et des portées appropriés

Le choix des types des variables est toujours dicté par les mémes raisons (voir le savoir-faire,
page 39, « Différencier les types de base »). La déclaration des variables doit donner 2
chaque variable une portée suffisante pour englober tous les endroits ol elle est utilisée.

Exercice 3,9 (avec corrigé)

Compléter le programme suivant afin que chaque variable soit correctement
déclarée.

n = Isn.readInt();

epsilon = Math.pow(10,-n);

racine = 1.0;

racineprec = 2.0;

while (Math.abs(racine - racineprec) > epsilon) {
racineprec = racine;
racine = 1.0 / (2.0 + racineprec);}

System.out.printin{racine + 1.0);

On dénombre quatre variables dans ce programme.
= ['affectation initiale de n impose directement gu’elle soit de type int.

= [a fonction Math.pow renvoie un double, c’est donc le type de epsilon,
qui de plus sera égal a 10°".

* Lesvariables racine et racineprec sont initialisées par des valeurs de type
double, elles sont donc de type double.

Aucune variable n'est strictement locale & la boucle while. On ajoutera donc
toutes les déclarations correspondantes en debut de programme, juste avant
Vinstructionn = Isn.readInt();.

Ce programme calcule une valeur approchée a 107" pres de la racine carrée de 2.

Savoir-rFaire Initialiser les variables

Identifier la premiére ligne du programme ot1 une variable est utilisée, hormis les déclara-
tions. Lorsque I"algorithme comporte des tests, il peut y avoir plusieurs telles lignes pour la
méme variable, en fonction du résultat du test. Vérifier que cette premiére ligne est tou-
jours une initialisation. Une initialisation peut étre rendue difficile a repérer parce qu'elle
est 4 I'intérieur d'une instruction for ou parce qu'elle demande une saisie au clavier. Enfin,
si une initialisation est manquante, il faut déterminer une valeur d'initialisation cohérente
avec la suite du programme et ajouter l'instruction correspondante avant la premiére utili-
sation de la variable.

43

Premiére partie — Langages

4 Tableau

Une bolte pouvant contenir plusieurs valeurs du
méme type s'appelle un tableau.

a0 aaEREBB

Exercice 3.10 (avec corrigé)

Quel probléme peut se poser avec le programme suivant ? Le corriger.

inE B, 9,

n = Isn.readInt();

for (1 =1; 1 <==n; 1 =1 +1) {
f=Ff=1;}

System.out.printin(f);

La variable ¥, qui sert & calculer la factorielle de n, n'est pas initialisée et le
résultat sera donc faussé par la valeur qu’elle contient par défaut. Les opéra-
tions qui sont effectuées sur T sont toutes des multiplications. Pour que la
valeur initiale de f n'ait pas d'influence sur ces calculs, il faut que ce soit 1. On
ajoutera donc la ligne ¥ = 1; aprés les declarations des variables. Cette initia-
lisation est d’ailleurs cohérente avec la convention selon laquelle 0 ! = 1.

Les tableaux

Jusqu'a présent, on a écrit des programmes qui utilisent les types int,
double et boolean. Une boite d’'un tel type contient une valeur formée
d’'un unique nombre ou d’'un unique booléen. Dans de nombreuses
situations, on a besoin d’utiliser des valeurs qui, comme les textes, les
images ou les sons, sont formées de plusieurs nombres ou de plusieurs
booléens. Ces valeurs sont dites de type composite. On a commencé a voir
un exemple d'un tel type, puisqu'une valeur de type String est une
chaine formée de plusieurs caractéres. Dans cette section on va plus loin,
en introduisant de nouveaux types composites : les types de tableaux.

Si on veut utiliser une boite qui contient dix nombres entiers, par
exemple, les dix premiéres décimales du nombre n € on commence par
déclarer une variable t de type tableau d'entiers: int []. Toutefois,
déclarer une telle variable ajoute a I'état, non pas une grande boite 4 dix
cases comme §), mais une petite boite qui a une unique case €.

1 2]
W,

Pour ajouter a l'état une grande boite, on utlise une nouvelle
construction : 'allocation d’un tableau new T [e] ol T est un type et e
une expression de type int. Evaluer cette expression a pour effet

d’ajouter a I’état une boite dont le nombre de cases est la valeur de
I'expression e, chaque case pouvant contenir une valeur de type T.

Par exemple, évaluer 'expression new int [10] ajoute 4 I'état un tableau
de dix cases, chaque case pouvant contenir un nombre entier (€).

(3

Lallocation est, avec la déclaration d'une variable, I'une des deux cons-
tructions qui permettent d’ajouter une boite a I'état.

La valeur de 'expression new T [e] est la référence du tableau ajouté a
I'état. On peut ensuite utiliser une affectation pour mettre cette valeur
dans une boite de type int [] avec I'affectation t = new int [101; ().

L4

Avec cette notion d’allocation d’un tableau apparaissent donc les nouvelles
notions de référence d'une boite et de boite contenant la référence d'une
autre boite, ce qui est symbolisée par la fleche dans le dessin ci-dessus.

Les deux derniéres constructions qui permettent d’utiliser les tableaux
sont Uaffectation d’'une case d’un tableau et I'accés 2 une case d’un tableau.
Si t est le nom d’'une boite, dont le contenu est la référence d’un tableau
i cases, e est une expression dont la valeur est un nombre entier p com-
pris entre 0 et # — 1 et e’ une expression, alors 'exécution de I'instruc-
tion tfe] = e'; a pour effet de remplir la case numéro p de ce tableau
avec la valeur de I'expression e'. Par exemple, exécuter I'instruction t[1]
= 4; produit I'état @ et exécuter 'instruction t[3 - 2] = 2 + 2; produit
naturellement ce méme état.

[t

©

£

a5

Premiére partie — Langages

Enfin, on accéde 4 une case d’un tableau avec 'expression t[e]. Si t est
le nom d’une boite, dont le contenu est la référence d’'un tableau a #
cases et e est une expression dont la valeur est un nombre entier p com-
pris entre O et # — 1, alors la valeur de I'expression t[e] est la valeur con-
tenue dans la case numéro p de ce tableau. Par exemple, la valeur de
Pexpression t[1] dans I'état € est 4.
Les quatre constructions qu’il est nécessaire de maitriser pour utiliser les
tableaux sont donc :

* la construction d’un type tableau T [], par exemple int [],

* l'allocation d’un tableau new T [e], par exemple new int [10],

» l'affectation d’'une case d’un tableau t[e] = e', par exemple t[1] = 4;

* P'acces a une case d’un tableau t[e], par exemple t[1].

Savoir-FAIRE Utiliser un tableau dans un programme

1 Déclarer une variable de type tableau.

2 Allouer le tableau, en lui donnant une taille » adéquate.

3 Veiller 4 ce que chacune des cases du tableau soit initialisée avant d’étre utilisée.

4 Utiliser les affectations t[e] = e'; et les acces t[e] en veillant A ce que la valeur de
Pexpression e soit bien comprise entre les bornes 0 et 7 — 1.

Exercice 3.11 (avec corrige)
Construire un répertoire associant des numéros de téléphone a des noms.

On utilise deux tableaux I'un contenant les noms et l'autre les numéros de
téléphone, tels que le numéro tel [i] soit le numéro de téléphone de la per-
sonne dont le nom est nom[i]. Retrouver le numéro associé au nom s, consiste
a parcourir le tableau nom, jusqu'a trouver un indice i tel que s soit égal a
nom[i], puis a afficher le numero correspondant a cet indice.

String [] nom, tel;
int i;

String s;

nom = new String [10];
tel = new String [10];
// Remplissage du répertoire
nom[0] = “"Alice";
tel1[0] = "0606060606™;
nom[{1] = "Bob";

tel[l] = "0606060607";
nom[2] = "Charles";
tel[2] = "0606060608";
nom[3] = "Djamel";
tel[3] = "0606060609";

nom[4] = "Etienne";
tel[4] = "0606060610";
nom[5] = "Frédérique";
tel[5] = "0606060611";
nom[6] = "Cuillaume";
tel[6] = "0606060612";
nom[7] = "Hector";

tel[7] = "0606060613";

nom[8] = "Isabelle";

tel[8] = "0606060614";
nom[9] = "Jérome";

tel[9] = "0606060615";

// Recherche du numéro associé au nom s
s = Isn.readString();

1= 03

while (i < 10 && !Isn.stringEqual(s,nom[i])) {
=1 + 1:}

if (i < 10) {
System.out.printin(tel[i]);}

else {

System.out.printin("Inconnu");}

Exercice 3.12

Ecrire un programme qui lit au clavier une chaine de caractéres et la traduit en
Morse, par exemple la chaine « sos » se traduiten « .../ ———/ ... » .

Exercice 3.13

Ecrire un programme qui compte le nombre d*éléments supérieurs & 10 dans
un tableau d'entiers.

Exercice 3.14

Ecrire un programme qui trouve I'élément maximal dans un tableau d'entiers.

Exercice 3.15

On se donne un tableau d'entiers. Ecrire un programme qui range les élé-
ments de ce tableau dans un autre tableau, en mettant les éléments pairs a
gauche et les éléments impairs a droite. Méme exercice en utilisant un seul
tableau.

Exercice 3.16
Qu'affiche le programme suivant ?

int [] t;

t = new int [10];

t1] = 4;
System.out.printin(t[1]);

Et le programme suivant ?
2 1> o [=4

t[1] = 4;
System.out.printin(t[11);

47

Premiére partie — Langages

o "
120 |145 |87
12 ia'r 89
o [z |8

(2]
z oo caria

Les tableaux
bidimensionnels

Pour représenter une table 4 double entrée, par exemple la table €, une
possibilité est d'utiliser un tableau de neuf cases (@) mais cette maniére
de faire est malcommode.

On préfere donc, en général, représenter une telle table par un tableau de
trois éléments dont chaque élément est la représentation d’une colonne,
c'est-a-dire lui-méme un tableau de trois nombres. Ainsi une table de
nombre 4 double entrée est un tableau de tableaux de nombres : un objet

de type int [1[].

Si t est une variable d’'un tel type, la valeur de la case d’abscisse x et
d’ordonnée y, c'est-a-dire de la case de la colonne x et de la ligne y, est sim-
plement désignée par I'expression t[x][y]. Affecter une case du tableau t
se fait simplement par linstruction t[x][y] = e; ou e est une expression
de type int. Seule lallocation d'un tableau se fait d’'une maniere
particuliére : en principe, il faudrait allover le tableau t, puis allouer un
tableau pour chacune des colonnes. Cependant, une nouvelle expression
permet d’allouer tout d’un coup: new T[e][e'] ou T est un typeete cte'
deux expressions de type int. Evaluer cette expression a comme effet
d’ajouter 4 I'état un tableau bidimensionnel dont le nombre de colonnes est
la valeur de I'expression e, et le nombre de lignes est la valeur de 'expression
e', chaque case pouvant contenir une valeur de type 7. Par exemple, évaluer
Iexpression new int [3][3] ajoute & I'état un tableau de trois colonnes sur
trois lignes, chaque case contenant une valeur de type int.

Exercice 3.17

Ecrire un programme qui, a I'aide de la formule de Pascal, calcule les premiers

coefficients binomiaux.

) On lira au clavier un entier n, puis on remplira un tableau bidimensionnel
de double coeffs_bin de sorte que la case coeffs_bin[i][j] contienne

le coefficient binomial G) pour tout i < n et pour tout j <1i. Les

cases pour lesquelles j > i contiendront la valeur 0.

© A partir de quelle valeur de n les nombres calculés dépassent-ils la capacité
de la mantisse du type double ?
Les coefficients binomiaux calculés pour une valeur de n supérieure a celle-
ci sont-ils exacts ? Sinon, de quel ordre est I'approximation réalisée ?

€ A partir de quelle valeur de n les nombres calculés dépassent-ils la capacité
du type double ?
Que peut-on penser des coefficients binomiaux calculés pour une valeur de
n supérieure a cette derniére ?

ALLER pLUS Lol Qu'est-ce que le calcul formel ?

Comment calculer avec la fonction polynéme x — 2 x> +
8 x2 + 7 x + 3 2 Une possibilité est d’en faire une expres-
sion de son programme. Cela permet, par exemple, de
calculer sa valeur en 5.

int x, y;

X =35;

y=2R X A B Fa T s T x4 35

System,out.printin(y);
ce qui donne, bien entendu, le résultat 488.
Mais, il est aussi possible de représenter une fonction
polynéme du troisieme degré par le quadruplet de ses
coefficients, c’est-a-dire par un tableau

double [] t;
On peut alors définir la fonction polynéme x + 2 x> + 8
X2 +7 x + 3 ainsi

t = new double [4];

t[3] =23
t[2] = 8;
t(1] = 7;
tf0] = 3;

Calculer la valeur de cette fonction en 5 demande un
programme un peu plus complexe
e X Ve Gy €

M= 5z
y = 0;
=1
for (i=0;1<=3;i=1+1D{

y=y + t[i] * ¢;
cC=0C % x:}
System.out.printin(y);
ou la variable ¢ contient les valeurs des puissances suc-
cessives de x.

3 - Les types

Mais représenter cette fonction ainsi permet de faire de
nombreuses nouvelles choses, par exemple I'afficher
for (i =0; 1 <=3; i=14+1 {
System.out.print(t[i]);
System.out.print(" ");
if @G =0 {
System.out.print(“x");
it =14
System.out.print("A");
System.out.print(i);}}
i G =3) {
System.out.print(" + ");1}
System.out.printin();
ce qui donne le résultat
3.0 + 7.0 x + 8.0 xA2 + 2.0 xA3
et méme calculer sa dérivée, en utilisant le fait que la
dérivée de x"* est (n + 1) X"

for (i =0; i<=2;1=14+1){
uli] = t[A+1] * (i + 1);}
uf3] = 0;:

que I'on peut a son tour afficher

7.0 + 16.0 x + 6.0 xA2 + 0.0 xA3
et on obtient que la fonction x +» 6 X2 + 16 x + 7 est la
dérivée de la fonction x > 2 x3 + 8 X2 + 7 x + 3. Cette procé-
dure est bien str valable quelle que soit la fonction poly-
nome du troisieme degré représentée dans le tableau t.
Les programmes peuvent donc calculer avec des objets
trés divers : des nombres et des chaines de caractéres
bien entendu, mais aussi des expressions symboliques
commexr x> +8x%+ 7 x+3.

' Exercice 3.18

On souhaite écrire un programme qui détermine les bornes de I'intervalle de
fluctuation au seuil de 95 % d'une loi binomiale de paramétres n et p qu'on
lira au clavier.

& Ecrire une version de ce programme qui calcule la loi de probabilité bino-
miale dans son intégralité puis détermine et affiche l'intervalle de con-
fiance.

@ Ecrire une version de ce programme qui détermine et affiche I'intervalle de
confiance en ne calculant la loi de probabilité que jusqu‘a atteindre la
borne supérieure de I'intervalle de confiance. Quels calculs économise-t-on
de cette facon ?

€ Si p est proche de 1, que peut-on dire du programme écrit a la question 2 ?
Proposer une troisieme version pour rendre le programme plus efficace
dans ce cas particulier.

49

Premiére partie — Langages

) Comment décider s'il vaut mieux utiliser le programme écrit a la question 2
ou celui écrit a la question 3 ? Ecrire un programme qui fait ce choix auto-
matiquement.

) En utilisant la méthode détaillée au chapitre 21, déterminer si la partie du
programme qui prend le plus de temps est celle ot I'on calcule les coeffi-
cients binomiaux ou bien celle ot I'on détermine l'intervalle de fluctuation.

) En déduire si les différentes versions écrites dans les questions 1 a 4 modi-
fient significativement le temps d’exécution de I'algorithme. En admettant
qgue I'on n"ait jamais a utiliser cet algorithme pour des valeurs de n supé-
rieures a@ 1000, comment peut-on le rendre plus efficace ?

Les chaines de caracteres

Jusqu'a présent, on a défini et manipulé le type String comme si ¢'était un
type de base, alors qu'il est en fait composite : une chaine de caractéres est
formée de plusieurs valeurs simples que sont ses différents caractéres.

Savoir-FaiRe Calculer avec des chaines de caracteres

* Pour comparer des chaines de caractéres, on utilise impérativement les fonctions
Isn.stringEqual et Isn.stringAlph. Attention en particulier 2 'opération = qui ne
produira pas d’erreur i la compilation mais ne donnera pas les résultats attendus.

* Lorsque I'on doit parcourir une chaine de caractéres élément par élément, on peut
utiliser une boucle for, le nombre d’exécutions du corps de la boucle étant donné par
la fonction Isn.stringlength.

« Pour modifier une chaine existante, on en extrait les parties appropriées a I'aide de la
fonction Isn.stringhth, on reconstitue une nouvelle chaine 4 I'aide de 'opération de
concaténation +, et on 'affiche ou on la stocke dans une variable.

Exercice 3.19 (avec corrige)

Ecrire un programme qui demande 2 I'utilisateur de taper son prénom et son
nom, puis affiche les initiales correspondantes.

Si le prénom et le nhom sont entrés dans deux chaines différentes, il suffit
d‘afficher le premier caractére de chacune de ces chaines

String prenom, nom;

prenom = Isn.readString(Q);

nom = Isn.readString();
System.out.print(Isn.stringNth(prenocm,0));
System.out.printin(Isn.stringNth(nom,0));

50

3 — Les types

Mais ce programme ne permet pas de traiter des prénoms composés ou des
noms multiples. 5i le prénom et le nom sont entrés dans une seule chaine, les
initiales sont les premiéres lettres des mots, c'est-a-dire le premier caractére de
la chaine et ceux qui suivent immeédiatement un espace. Il faut donc parcourir
cette chaine caractére par caractére en recherchant les espaces, et afficher le
caractére suivant dés que I'on en trouve un. On ne va en réalité que jusqu‘a
I'avant-dernier caractére de la chaine, car méme si le dernier caractére est un
espace, il ne peut pas étre suivi d'une lettre.

String nom;

int 1i;

nom = Isn.readString();

System.out.print(Isn.stringNth(nom,0));

for (i = 0; i <= Isn.stringlength(nom) - 2; i =1 + 1) {
if (Isn.stringEqual(" “,Isn.stringNth(nom, i))) {

System.out.print(Isn.stringNth(nom,i + 1));}}
System.out.printin();

Cette version est plus générale mais aussi plus sensible aux entrées mal
formées : un espace mal placé ou un tiret utilisé pour séparer des prénoms
fausse le résultat.

Ecrire un programme qui lit une chaine de caracteres et :
@) compte le nombre d'espaces,
€) compte le nombre de voyelles,

© caleule le score marqué au Scrabble avec cette chaine, en comptant 0 point
pour les espaces et les signes de ponctuation,
) détermine la lettre la plus fréquente.

Exercice 3.21

Ecrire un programme qui lit une chaine de caractéres et la réécrit en revenant
ala ligne entre chaque caractére.

Exercice 3.22

Chercher sur le Web ce qu'est la méthode de chiffrement ROT13 et écrire un
programme qui lit une chaine de caractéres et la chiffre ou la déchiffre selon
cette méthode.

Exercice 3.23

Ecrire un programme qui lit une chaine de caractéres et :
€ la réécrit tout en majuscules,

€ la réécrit tout en minuscules,

€ la réécrit en inversant majuscules et minuscules.

Exercice 3.24

Chercher sur le Web ce qu'est I'écriture « leet speak » et écrire un programme
qui lit une chaine de caractéres et la réécrit en leet speak.

51

Premiére partie — Langages

52

La mise au point
des programmes

Les programmes sont souvent des objets complexes formés de plusieurs
milliers, voire plusieurs millions de lignes et il est peu probable, quand
on écrit un programme qui dépasse quelques dizaines de lignes, de ne
pas faire d’erreur. Une erreur dans un programme peut avoir des consé-
quences dramatiques si ce programme est par exemple utilisé dans le
régulateur de vitesse d’une voiture, une centrale nucléaire ou un robot
chirurgical. Cest pourquoi il existe de nombreuses méthodes pour éviter
les erreurs dans les programmes. La premiére, déja évoquée au chapitre
1, est de tester les programmes que 'on écrit.

Quand on teste un programme et qu'il ne fait pas ce que I'on espére, il
faut déterminer 'endroit ol une erreur s'est produite. Pour cela on doit
instrumenter son programme, c'est-a-dire ajouter des instructions de
sortie dans le programme, qui permettent de visualiser ce quil se passe
au cours de son exécution. On repére ainsi le moment de 'exécution du
programme, ol une variable prend, pour la premiére fois, une valeur ina-
déquate.

Savoir-FaIRE Mettre au point un programme en I’'instrumentant

1 Identifier les variables critiques, dont la valeur peut radicalement influencer le com-
portement du programme. En particulier, la variable i dans une instruction de la
forme for (i = e; i <= e'; i =i + 1) p etles variables intervenant dans 'expres-
sion e d’une instruction de la forme while (e) p sont particuliérement importantes
puisqu’elles conditionnent le nombre de fois que le corps de cette boucle est exécuté.

2 Identifier pour chacune de ces variables les endroits clés du programme qui la
concernent : par exemple lorsque 'on lui affecte une valeur, en début ou en fin de
boucle.

3 Insérer un affichage a I'écran de chaque variable critique aux endroits appropriés, en
n'oubliant pas de préciser de quelle variable on affiche la valeur.

3 — Les types

Exercice 3.25 (avec corrigé)

Le programme suivant est censé calculer la somme des carrés des n premiers
entiers.

int i, n, somme;
n = Isn.readInt();

somme = 0;
for G =1;1<=n:1i=19+1){
i =4 * g3

somme = somme + i; }
System.out.printin(somme);

Montrer que ce programme est erroné a |'aide d'un test bien choisi.
Instrumenter ce programme pour détecter I'erreur et la corriger.

En testant le programme pour n = 0, T ou 2, on observe que le reésultat affiché
est correct. En revanche, pourn= 3, on devrait trouver 1 x 1 +2x2+3x 3=
14, or le programme affiche 5.

La variable critique est ici le compteur de boucle 1, qui sert également dans les
calculs. On affichera sa valeur a la fin du corps de la boucle for. Pour cela on
insére a cet endroit les lignes :

System.out.print("i vaut ");
System.out.printin(i);

On constate alors que i contient 1 3 la fin de la premiére itération, mais 434 la
fin de la deuxiéme itération et 25 a la fin de la troisiéme. Il y a donc une ins-
truction dans le corps de la boucle qui modifie la valeur de 1, ce qu'il ne faut
pas faire dans une boucle for. Une fois ceci constaté, il n'est pas difficile
d'incriminer la lignei = i * 1;.

Outre le test et l'instrumentation, il existe de nombreuses autres
méthodes de mise au point des programmes. Dans certains langages, les
types permettent de détecter des erreurs de fagon beaucoup plus poussée
quen Java. On peut aussi démontrer qu'un programme vérifie certaines
propriétés (voir le chapitre 18), ce qui évite en particulier d’avoir a cher-
cher les erreurs i titons.

ALLER PLUS LOIN
Pour de gros programmes

Une telle méthode est utilisable sur des pro-
grammes de petite taille, mais peut rapidement
devenir lourde & mettre en place pour de gros
programmes : il faut décider des variables a
observer et des points du programme ot cela a
un intérét, puis modifier le programme et le
recompiler, et enfin supprimer les affichages du
programme lorsque I'on a identifié le probléme.
Dans de nombreux environnements de dévelop-
pement logidiel, il existe des outils spécialisés, les
débogueurs, pour obtenir des informations sur
ce qu'il se passe en mémoire durant I'exécution
d'un programme, ou bien exécuter un pro-
gramme pas a pas.

53

Premiéere partie — Langages

Augs rus Low Un langage de programmation petit, mais complet

Maintenant que nous avons introduit la notion de déclaration, nous
pouvons construire un petit de langage de programmation qui contient
« |a déclaration de variables,
= |'affectation,
= |a séquence,
le test
= et la boucle while.
Ce langage de programmation, bien qu’il soit trés petit, est complet, ce
qui signifie que tous les programmes que |'on peut imaginer peuvent
étre exprimés dans ce langage.
Nous avons vu que l'instruction :

for (i =e; i<=e';i=1i+1)p
pouvait étre traduite en l'instruction :

i=e;

while (i <=e') {pi1=1+1;}
qui ne contient que des affectations, des séquences et une boucle
while. La boucle for n'est donc qu'une maniére plus confortable
d'écrire des programmes qui pourraient s'exprimer dans ce petit lan-
gage. De méme, les instructions qui utilisent les fonctions et la récursi-
vité que nous introduirons aux chapitres 4 et 5, pourraient, en théorie,
étre traduites dans ce petit langage, méme si ces traductions sont beau-
coup plus complexes que celle de la boucle for.
De méme que tous les objets qui nous entourent sont formés de trois
types de particules : les protons, les neutrons et les électrons, que tous
les textes que nous lisons sont formés de vingt-six lettres, et de quelques
signes de ponctuation, que toutes les piéces de musiques que nous
entendons sont formées de douze notes, tous les programmes que nous
utilisons peuvent ultimement étre exprimés avec ces cing instructions :
la déclaration, I'affectation, la séquence, le test et la boucle.

Ai-je bien compris ?
¢ Comment la déclaration d’une variable transforme-t-elle ’état de I'exécution d’un
programme ?
* Quels sont les différents types possibles pour une variable ?
¢ Qu'est-ce que la portée d’une variable ?

54

Les fonctions

CHAPITRE AVANCE

Pour avoir du style, il faut éviter les redites.

Dans ce chapitre, nous introduisons une nouvelle
construction : la définition de fonction, qui permet d’isoler une
instruction qui revient plusieurs fois dans un programme.

Une fonction est définie par un nom, par ses arguments
qui porteront les valeurs communiquées par le programme
principal a la fonction au moment de son appel et
éventuellement une valeur de retour communiquée

au programme par la fonction en fin d’exécution.

Nous revenons dans ce chapitre sur la question de la portée
des variables dans le cas des programmes qui comportent
des fonctions. Nous introduisons aussi des variables globales
dont la portée est le programme tout entier.

John McCarthy (1927 -2011) est
I'auteur du langage Lisp (1958), dont
la principale construction est la défi-
nition de fonctions. Il est aussi I'un
des inventeurs de la notion de temps
partagé, qui permet a plusieurs per-
sonnes d’utiliser un méme ordinateur
en méme temps. Il a éait 'un des
premiers programmes jouant aux
échecs et inventé pour cela un algo-
rithme, /a méthode alpha-béla, qui
permet de jouer non seulement aux
échecs, mais aussi a de nombreux
autres jeux. Il a aussi été un défen-
seur de l'idée de progrés et de
limportance des mathématiques
dans |"éducation.

Premiéere partie — Langages

Fonction

Dans les langages de programmation, une fonc-
tion est une instruction isolée du reste du pro-
gramme, qui posséde un nom, et qui peut étre
appelée par ce nom & n'importe quel endroit du
programme et autant de fois que I'on veut.

56

Isoler une instruction

Au cours des chapitres précédents, il nous est arrivé d’écrire des pro-
grammes dans lesquels certaines instructions revenaient plusieurs fois,
parce que nous voulions faire plusieurs fois la méme chose. Un exemple

de programme présentant des répétitions est le suivant :

System.
System.
System.
System.
System.
System.
System.

System.
System.
System.
System.
System.
System.
System.

System.
System.
System.
System.
System.
System.
System.

est répétée trois fois. Au lieu de répéter la totalité de cette instruction, on
peut lui donner un nom, par exemple tirerUnTrait, puis la remplacer par
ce nom dans le programme principal 2 chaque fois qu'elle est utilisée.

Pour définir la fonction tirerUnTrait, on procéde de la fagon suivante :

out

out

out.
out.
out.
.print("9h30");
out.
out.
out.

out

out.
out.
out.
.print("9h45");
out.
out.
.printin();

out

out

.print("Le vol en direction de ");
out.
out.
.print("9h00™);
out.
out.
out.

print("Tokyo™);
print(" décollera a ");

printin();
printin(M-—-—-mmm e
printinQ);

print(“Le vol en direction de ");
print("Sydney");
print(" décollera a “);

printin();
o e e e A R R B S R R
printin();

print("Le vol en direction de ");
print("Toulouse");
print(" décollera a ");

printin();
praintin("-----— e

dans lequel I'instruction

System.out.printin();
Systenout printp - s s
System.out.printin();

static void tirerUnTrait {
System.out.printin();
System.out. printIn(== e e
System.out.printinQ;}

et on utilise ensuite cette fonction dans le programme principal, comme

si C'était une instruction du langage :

K

"3

B H

5 ¥

4 — Les fonctions

System.out.print("Le vol en direction de ");
System.out.print("Tokyo");
System.out.print(" décollera a ");
System.out.print("9h00");

tirerUnTrait();

System.out.print("Le vol en direction de ");
System.out.print("Sydney™);
System.out.print(" décollera a ");
System.out.print("9h30");

tirerUnTrait();

System.out.print("Le vol en direction de ");
System.out.print("Toulouse");
System.out.print(" décollera a ");
System.out.print("9h45");

tirerUnTrait();

Cette définition de fonction se place avant le programme principal, si
bien que I'organisation générale du programme est la suivante :

class Horaire {

static void tirerUnTrait () {
System.out.printin();
System.out.println("---—-—-—---———--—m ") ¢
System.out.printin();}

public static void main (String [] args) {

System.out.print("Le vol en direction de ");
System.out.print("Tokyo");
System.out.print(" décollera & ");
System.out.print("9h00");

tirerUnTrait();

System.out.print("Le vol en direction de ");
System.out.print("Sydney");
System.out.print(" décollera a ");
System.out.print("9h30");

tirerUnTrait();

System.out.print("Le vol en direction de ");
System.out.print("Toulouse™);
System.out.print(" decollera a ");
System.out.print("9h45");

tirerUnTrait() ;}}

Utiliser des fonctions évite les répétitions dans les programmes et rend
donc ces derniers plus courts et, surtout, plus faciles a lire et 2a
comprendre : pour comprendre le programme ci-dessus, il nest pas
nécessaire de savoir comment la fonction tirerUnTrait est définie, il suffit
de savoir ce qu'elle fait. Utiliser des fonctions permet aussi d’organiser le

/4 Corps d'une fonction

Linstruction
System.out.printin();
System.out.printIn("----...---=");
System.out.printin();
que l'on isole par la définition de la fonction
tirerUnTrait s'appelle le corps de cette fonc-
tion.

Appel d'une fonction

Linstruction tirerUnTrait(); s'appelle un
appel de la fonction tirerUnTrait. Exécuter cette
instruction a pour effet d'exécuter le corps de la
fonction.

57

Premiéere partie — Langages

4 Argument d'une fonction

On appelle argument d'une fonction une variable
particuliére, utilisée dans le corps de la fonction, et
dont la valeur est donnée dans le programme prin-
cipal au moment oil la fonction est appelée.

58

travail de développement : on peut décider d’écrire le programme prin-
cipal un jour et d’écrire la fonction tirerunTrait le lendemain. On peut
aussi décider de confier 'écriture du programme principal 4 un program-
meur et I'écriture de la fonction tirerUnTrait a un autre. Enfin, si 'on
veut modifier la longueur du trait a tirer ou le nombre de lignes sautées
au-dessus et en-dessous de ce trait, il suffit de modifier le corps de la
fonction et non le programme principal 4 chacun des endroits concernés.

Passer des arguments

Le programme ci-précédent est formé de trois blocs qui annoncent
chacun I'horaire d'un vol. On peut vouloir aller plus loin dans I'organisa-
tion de ce programme et écrire une fonction annoncertnvol, qu'il suffirait
d’appeler trois fois dans le programme principal. Cependant, contraire-
ment 4 I'exemple de la fonction tirerUnTrait, ces trois blocs ne sont pas
absolument identiques : la destination et I'horaire du vol différent d'un
cas 2 l'autre. Il faut donc paramétrer I'instruction que I'on isole pour pou-
voir choisir la destination et I'horaire du vol.

Dans notre exemple, les arguments doivent représenter la destination,
que 'on nomme destination, et I'horaire de vol, que 'on nomme horaire.
On définit alors cette fonction de la maniére suivante ;

static void annoncerUnVel (String destination, String horaire) {
System.out.print(“Le vol en direction de ");
System.out.print(destination);
System.out.print(" décollera a ");
System.out.print(horaire);
System.out.printin();
System_out_print]n("_ e e e e e e T e e e _“):
System.out.printin();}

Et le programme principal devient :

annoncerUnVol ("Tokye" ,"9h00") ;
annoncerUnVol ("Sydney", "9h30");
annoncerUnVol ("Toulouse", "9h45");

Exécuter une instruction de la forme annoncerinvol(e,e'); a pour effet

"évaluer les deux expressions e et e* et de fabriquer un nouvel état dans
lequel deux boites de noms destination et horaire contiennent respecti-
vement la valeur de 'expression e et celle de I'expression e', d’exécuter le
corps de la fonction dans cet état, puis de revenir 4 I'état initial. Dans

I'exemple ci-avant, au moment ol I'on exécute pour la premiére fois
I'instruction System.out.print(destination); du corps de la fonction, la
valeur de I'expression destination est "Tokyo". Lors du deuxieéme appel, la
valeur de I'expression destination est "Sydney". Et lors du troisieme, elle
est "Toulouse".

Récupérer une valeur

Le passage d’arguments permet donc de communiquer des informations
depuis le programme principal vers une fonction. On veut aussi souvent
communiquer des informations dans I'autre sens : depuis une fonction,
vers le programme principal. Par exemple, si 'on veut isoler, dans une
fonction, l'instruction suivante qui calcule le nombre n de fois que le
caractére a apparait dans une chaine s :

int i, n;
n=0;
for (i = 0; i <= Isn.stringlength(s) - 1; 1 =1 + 1) {
if (Isn.stringEqual (Isn.stringNth(s,i), "a")) {
n=n+ 1:}}

On veut non seulement que le programme principal puisse communi-
quer la chaine de caractéres s a la fonction, mais aussi que la fonction
puisse communiquer le nombre n au programme principal. Cela méne a
écrire la fonction suivante :

static int nombreDea (5tring s) {
int i, n;
n =0;
for (i = 0; i <= Isn.stringlength(s) - 1; i =1 + 1) {
if (Isn.stringEqual(Isn.stringNth(s,i), "a")) {
n=mn+1;131
return n;}

Lexécution de I'instruction return n; a pour effet d'interrompre I'exécu-
tion du corps de la fonction et de renvoyer la valeur de I'expression n au
programme principal.

Comme la fonction nonbrebea renvoie une valeur, I'appel
nombreDea("abracadabra"), dans le programme principal, n'est pas une ins-
truction, mais une expression, qui a la valeur 5. On peut Putiliser, par
exemple, dans une affectation x = nombreDea("abracadabra”) ;.

4 — Les fonctions

4 Valeur de retour

La valeur produite par une fonction é_parﬁr;ie ses
arguments, s'il en existe une, est appelée valeur
de retour.

59

Premiére partie — Langages

+4 En-téte d'une fonction

On appelle en-téte d'une fonction la premiére

ligne de sa définition, qui comporte dans 'ordre :

® le mot-dé static,

@ e type de la valeur de retour de la fonction, ou
void le cas échéant,

® |e nom de la fonction,

® la liste de ses arguments entre parenthéses,
chaque argument étant précédé de son type.

Si une fonction ne renvoie pas de valeur, par exemple si elle ne fait
quafficher des messages a 'écran, on fait précéder sa définition du mot-
clé void, sinon, on la fait précéder du type de sa valeur de retour.

Dans Ven—téte static void annoncerUnVol (String destination, String
horaire) on trouve le nom annoncerUnVol et les deux arguments
destination et horaire, I'un et I'autre de type String. Enfin, le mot-clé
void indique que cette fonction ne renvoie pas de valeur.

Savoir-FaRe Ecrire I’en-téte d’une fonction

1 Choisir un nom qui indique clairement ce que fait la fonction.

2 Identifier les arguments qui varient lors des différents appels de la fonction dans le
programme principal. Donner un nom a chacun de ces arguments.

3 Identifier un type approprié pour chacun de ces arguments.

4 Identifier si la fonction renvoie une valeur et, si oui, le type de cette valeur.

Alerpus Lol L'ordre des arguments

Lordre des arguments n'a pas d'importance
pour la définition de la fonction : les en-tétes
static void annmoncerUnVol (String
destination, String horaire) et
static void annoncerUnVol (String
heraire, String destination) permet-
tent de définir la méme fonction.

En revanche, lors d'un appel a cette fonction,
l'ordre des arguments doit étre respecté :
annoncerUnvol ("Tokyo","9h00"); est
correct vis-a-vis du premier en-téte, mais
annoncerUnVoel ("9h00", "Tokyo™); n'est
correct que vis-a-vis du second.

60

Exercice 4.1 (avec corrigé)

Ecrire I'en-téte d'une fonction qui calcule la vitesse moyenne d'un mobile con-
naissant son temps de parcours et la distance parcourue.

£) La fonction peut, par exemple, s'appeler vitesse.

£) Les arguments sont tout indiqués : on les appelle, par exemple, temps et
distance.

€) Selon les unités choisies, les arguments pourraient étre de type int ou
double. Cependant, on sait qu'il faut effectuer une division décimale pour
calculer la vitesse et que cette opération requiert des nombres de type
double.

€) Enfin, la fonction doit renvoyer une valeur, la vitesse, qui est elle aussi de
type double a cause de la division.

L'en-téte de la fonction est donc static double vitesse (double temps,
double distance).

Exercice 4.2

Ecrire I"en-téte des fonctions suivantes :

) Une fonction qui indique s'il est possible de construire un triangle avec
trois segments de mesures données.

@ Une fonction qui calcule le plus grand diviseur commun (PGCD) de deux
nombres entiers.

€ Une fonction qui trace a I'écran un segment entre deux points.

) Une fonction qui écrit a I'écran les initiales d'une personne dont on donne
le nom complet.

4 — Les fonctions

Savoir-ralRe Ecrire une fonction
1 Ecrire I'en-téte de la fonction.

2 Ecrire le corps de la fonction comme si les arguments étaient déja remplis par des

3 Ne pas oublier I'instruction return, le cas échéant.

4 Prévoir une exécution correcte de la fonction quelle que soit la valeur donnée & chacun
des arguments, y compris dans des cas que I'on n'a pas forcément anticipés dans le cours

normal du programme principal.
Exercice 4.3 (avec corrigé)

Ecrire une fonction qui effectue la division décimale de deux nombres entiers.

ments doivent étre de type int; on va les appeler dividende et diviseur.
La fonction renvoie une valeur qui ne peut étre que de type double car
c'est le résultat d’une division décimale. Son en-téte est donc :
static double divisionDecimale (int dividende, int diviseur).

€3 Il faut prévoir une variable de type double pour noter le quotient de la divi-
sion et le renvoyer. En outre, I'intérét de définir une telle fonction est
qgu'elle prend systématiquement en charge la conversion de type de ses
arguments, de fagon transparente pour l'utilisateur. Le corps de la fonction
doit donc comporter notamment les lignes suivantes :

double quotient:
quotient = ((double) dividende) / ((double) diviseur);

€ On termine cette fonction par I'instruction return guotient;.

) Si I'on veut une fonction qui prévoit tous les cas, notamment lorsque le
diviseur fourni est nul, il faut également renvayer une valeur, choisie arbi-
trairement mais de type conforme a celui prévu dans I'en-téte. La fonction
peut donc se présenter ainsi :

static double divisionDecimale (int dividende, int diviseur) {
double quotient;
if (diviseur = 0) {
quotient = Double.POSITIVE INFINITY;}
else {
quotient = ((double) dividende) / ((double) diviseur);}
return quotient;}

Le choix est fait ici de renvoyer le double spécial +- (voir le chapitre 7) si le
diviseur est nul, par analogie avec la limite de la fonction inverse lorsque
x tend vers 0 par valeurs positives. Ce choix est discutable, d'une part car une
division par zéro ne se produit pas forcément lorsque I'on recherche une
limite, d'autre part car —e est une autre limite possible pour un quotient dont
le dénominateur tend vers 0, par exemple la fonction inverse lorsque x tend
vers 0 par valeurs négatives.

Définition d'une fonction

Au bout du compte, la définition d'une fonction est
formée de son en-téte, puis du corps de la fonc-
tion, entre accolades.

61

Premiéere partie — Langages

62

Cette fonction doit donc étre accompagnée d'une documentation qui précise
ce qui se passe dans ce genre de cas. On aurait pu également faire le choix
d'afficher un message, par exemple System.out.printIn("Erreur : division
par 0 interdite."); mais ce dernier risquerait d’'interférer avec les autres sor-
ties du programme, et si la fonction est appelée plusieurs fois au cours du pro-
gramme, il ne serait pas directement possible de savoir & quel appel I'erreur
s'est produite.

Exercice 4.4

Ecrire les fonctions suivantes.
€) Une fonction qui renvoie la plus grande de deux valeurs de type int.
@ Une fonction qui répéte un méme mot un certain nombre de fois au choix.

€) Une fonction, construite a partir de la fonction Math.random, qui tire au
sort un nombre entier entre deux bornes données en arguments.

) Une fonction qui décide s'il est possible de construire un triangle avec trois
segments de mesures données.

Exercice 4.5

Ecrire une fonction qui prend en argument une chaine de caractéres s et deux
entiers 1 et j, et renvoie la sous-chaine de s comprise entre le caractére
numéro i inclus et le caractére numéro j exclu.

Le programme principal

En Java, il a été choisi de faire du programme principal une fonction
particuliere qui porte un nom spécial : main.

La portée des variables
et les variables globales

Isoler I'instruction x - 0; dans le programme suivant :

public static void main (String [] args) {
int x;

o 3:

= 52

0;

= 7;

0;

41

] L}

MMM oM e ox
|

4 — Les fonctions

meénerait A écrire une fonction :

static void reinitialise () {
x = 0;}

et le programme principal :

public static void main (String [] args) {

int x;

X =3

X = Su

reinitialise();

= 71

reinitialise();

%= 43F

Cependant, ce programme n'est pas correct. En effet, si I'état dans lequel
on exécute instruction reinitialise(); dans le programme principal est
formé d’'une boite de nom x qui contient, par exemple, la valeur 5, I'état
dans lequel le corps de cette fonction est exécuté ne contient en revanche
aucune boite, si bien que quand on exécute I'instruction x = 0; il n'y a
pas de boite de nom x.

Une autre maniére de voir le probléme est qu'en déplagant I'instruction
x = 0; du programme principal vers le corps de la fonction, on a sorti
I'affectation de la variable x de la portée de cette variable. Or, la
variable x ne peut étre utilisée que dans la partie en gras du programme :

static void reinitialise () {

X = 03}
public static void main (String [] args) {

int x;

X = 3;

Xo= 53

reinitialise();

Xx=17;

reinitialise();

x = 4}

Variable globale ou locale

Une maniére de résoudre ce probléme est de déclarer la variable x de

o P . . Une variable globale est une variable déclarée
maniére 2 ce que sa portée soit le programme entier.

en début de programme, en dehors du programme
principal et de toute fonction. Sa portée est le pro-
gramme entier. En Java, la dédaration d'une
variable globale est précédée du mot-clé static.
Par opposition, une variable locale est déclarée
a l'intérieur d'une fonction ou du programme prin-
cipal, qui est une fonction particuliére. Elle n'est
pas utilisable depuis les autres fonctions.

static int x;

static void reinitialise () {
x= 0;}

public static void main (String [] args) {
= 32
X= 53

63

Premiére partie — Langages

reinitialise();
¥=3
reinitialise();
x =4;}

Ainsi, dans cet exemple, le corps de chaque fonction est exécuté dans un
environnement qui contient une boite x.

Dans un programme qui, comme celui-ci, contient des variables glo-
bales, 'appel d’'une fonction a comme effet I'exécution du corps de la
fonction, dans un état qui contient d'une part des boites qui ont comme
noms les arguments de la fonction, d'autre part des boites qui ont
comme noms les variables globales. Quand I'exécution du corps de la
fonction est achevée, on supprime les boites qui correspondent aux argu-
ments de la fonction, on garde celles qui correspondent aux variables
globales et on remet celles qui correspondent aux variables du pro-
gramme principal.

Par exemple, dans le programme suivant :

static int a;

static void f (int x) {
System.out.printin(2 * x);
a2 % x5}

public static void main (S5tring [] args) {
int n;
a-=3;
n=4g;

fla + n);}

1 On exécute le programme principal dans 'état € qui contient la
variable globale a.

2 Au cours de l'exécution du programme principal, on déclare une
autre variable n. On affecte la valeur 3 2 la variable a et la valeur 4 4 1a
variable n (€)).

3 Au moment de l'appel f(a + n); de la fonction f, on supprime la
boite de nom n de I'état, car n est une variable locale au programme
principal, mais on garde la boite de nom a car a est une variable glo-
bale, et on ajoute une boite de nom x, qui contient la valeur 7 de
lexpression a + n (€)).

4 On exécute alors le corps de la fonction, ce qui a pour effet
d’afficher 14 et d’affecter cette valeur 2 la variable a (€)).

5 En quittant la fonction pour revenir au programme principal, on sup-
prime la boite de nom x et on remet la boite de nom n avec le contenu
qu'elle possédait avant I'appel de la fonction (@).

4 — Les fonctions

Savoir-FAIRe Identifier la portée des variables dans un programme
comportant des fonctions

* Si une variable est déclarée en dehors de toute fonction, alors elle est globale.

¢ Si une variable est déclarée a I'intérieur d’une fonction, y compris le programme prin-
cipal main, alors sa portée est limitée & cette fonction.

* Si une variable fait partie des arguments d’'une fonction, alors sa portée est limitée a
cette fonction.

« Si deux variables de méme nom sont déclarées dans deux fonctions différentes, alors
elles représentent en réalité deux boites distinctes et la portée de chacune est limitée a la
fonction correspondante. Dans ce cas, elles peuvent méme avoir des types différents.

« 1l faut éviter d’utiliser le méme nom pour une variable globale et une variable locale.
Cependant, si cela se produit, 4 I'intérieur de la portée de la variable locale, c’est celle-
ci qui est visible et non plus la variable globale, qui ne sera 2 nouveau accessible que
quand on sera sorti de la portée de la variable locale.

Exercice 4.6 (avec corrigé)

Le programme ci-aprés devrait réaliser un générateur de nombres pseudo-
aléatoires tel que celui présenté au chapitre 1.

& Une fonction n'a pas I'effet voulu : laquelle et pourquoi ?
@ Quel probléme cela posera-t-il pour I'utilisation de ce programme ?
€ Comment résoudre ce probléme ?

class Cenerateur {

static int valeur;
static int periode;
// Cette fonction initialise le générateur
static void origine(int valeur) {
int valeurTronquee;
valeurTronguee = valeur % periode;
valeur = valeurTronguee;}
// Cette fonction crée et renvoie un nombre pseudo-aléatoire compris entre 0 et (periode - 1)
static int hasard() {
valeur = (15 * valeur + 3) % periode;
return valeur;}
// Cette fonction affiche periode valeurs pseudo-aléatoires
public static void main(String[] args) {
int i3
periode = 7;
origine(8);
for (i =1; i <= periode; i =1 + 1) {
System.out.printin(hasard());}}}

& Tel que le programme est écrit, la fonction origine n‘a aucun effet : les
deux variables valeur et valeurTronquee qu'elle manipule sont locales a
cette fonction et les valeurs qui leur sont affectées sont donc effacées de
I'état dés la fin de I'exécution de la fonction origine.

65

Premiéere partie — Langages

€3 La fonction origine devrait servir a initialiser le générateur avec la valeur

donnee en argument mais, comme on I'a v, elle ne fait rien en réalité. La

variable globale valeur, qui est utilisée dans la fonction hasard, n‘est donc

jamais initialisée. Le programme peut alors avoir plusieurs comportements

possibles (voir le chapitre 3), notamment en fonction du compilateur utilisé :

= La variable valeur vaut toujours 0 en début de programme et les nom-
bres engendrés perdent alors leur aspect aléatoire.

* La valeur initiale de la variable valeur est imprévisible et on ne peut
pas maitriser le générateur de nombres pseudo-aléatoires.

= Une erreur peut se produire lors du premier appel a la fonction hasard.
€ On I'a w, le probléme vient de la coexistence d’une variable globale

valeur et d’une variable valeur locale a la fonction origine. La variable

globale est ici indispensable vue la facon dont la fonction hasard est pro-

grammée. Il faut donc réécrire la fonction origine, en utilisant un autre

nom que le nom valeur, par exemple le nom graine, comme argument :

static void origine(int graine) {
int graineTronquee;
graineTronquee = graine % periode;
valeur = grainelronquee;}

Exercice 4.7 (avec corrigé)

Le programme ci-aprés est exécuté par un site web pour vérifier gue le pseudo-

nyme qu‘un utilisateur vient de choisir n'est formé que de lettres minuscules.

) Déterminer la portée des différentes variables utilisées dans ce pro-
gramme.

) Expliquer pourquoi cela ne pose pas de probléme d'utiliser le méme comp-
teur de boucle i dans chacune des deux boucles for, alors que la fonction
appartient est appelée dans le corps de la premiére boucle.

class Pseudo {

// Dans cette fonction, "lettre" est censée ne contenir
// qu'un seul caractére
// On vérifie si ce caractére apparait dans la chaine "mot”

static boolean appartient(String lettre, String mot) {
int i;
boolean resultat;

resultat = false;
for (i = 0; i <« Isn.stringlength(mot) - 1; i =i + 1) {
if (Isn.stringEqual(Isn.stringhth(mot, i), Tettre)) {
resultat = true;}}
return resultat;}

public static void main(String[] args) {
String autorises, pseudo;
boolean pseudoOk;
int i;

4 — Les fonctions

autorises = “"abcdefghijkimnopgrstuvwxyz”;
pseudoQk = false;
// On redemande un pseudo tant qu'il n'est pas correct
while (!pseudoOk) {
System.out.printin(“Entrez votre pseudo :");
pseudo = Isn.readString();
pseudoOk = true;
// On vérifie que chaque caractére du pseudo est autorisé
for (i = 0; i <= Isn.stringlength(pseudo) - 1; i =1 + 1) {
if (lappartient(Isn.stringNth(pseudo,i),autorises)) {
pseudoOk = false;}}1}}

£) Les variables autorises, pseudo et pseudoOk sont locales & la fonction main.
La variable resultat est locale a la fonction appartient. Les variables mot et
lettre, en tant qu'arguments, sont egalement locales & la fonction
appartient. Il y a deux variables i, une dans chaque fonction, et chacune
est locale a la fonction dans laquelle elle est déclarée.

£) Comme il y a en realité deux variables i, chacune locale & une fonction, le
programme se comporte exactement comme si les deux compteurs de
boucle avaient des noms différents. Le compteur de la boucle externe n’est
donc pas modifié par la boucle interne. Cela justifie la coutume d'utiliser
souvent les variables 1, j ou k comme compteurs de boucle quand il n'y a
pas de nécessité de leur donner un nom plus explicite.

Exercice 4.8 (avec corrigé)

Déterminer la portée de chaque variable dans le programme suivant. L'utilisa-
tion qui est faite de ces variables est-elle cohérente avec cette portée ? Si non,
comment corriger ce programme ?

class Portee {
static int z, y;

static void v (double x) {

double u;
VEEE B
z = (int)x;}

public static void main (String [] args) {

double t;

y =4

t = 1.0 / (double)y;
v(t);

System.out.printin(u);1}}

Il y a cing variables dans ce programme : t, u, %, y et z. v n’est pas une variable,
mais une fonction. Les variables z et y sont déclarées avant les fonctions. Elles
sont globales et peuvent donc étre utilisées partout.

La variable x est un argument de la fonction v : sa portée est donc limitée au
corps de cette fonction et elle n'est effectivement utilisée que I3.

La variable u est locale a la fonction v puisqu’elle est déclarée dans le corps de
cette fonction, mais elle est utilisee dans le programme principal main : le pro-
gramme est donc incorrect.

67

Premiére partie — Langages

Enfin, la variable t est locale au programme principal main puisqu'elle est
déclarée dans le corps de cette fonction. Elle n'est effectivement utilisée que 3.

La derniére ligne du programme affiche la valeur de u. Pour pouvoir le faire

tout en respectant la portée des variables, plusieurs solutions existent :

* rendre u globale : c'est peu recommandé, car on essaye de n’utiliser des
variables globales que lorsque cela est réellement indispensable ;

e déplacer I'affichage de u a l'intérieur de la fonction v : cela n'est envisa-
geable que si on est certain qu‘a chague appel de la fonction v, on voudra
afficher la valeur de u a l'écran ;

* modifier la fonction v pour qu'elle renvoie la valeur de u : c'est la solution
que I'on privilégiera ici puisqu’elle ne modifie pas le comportement intrin-
séque de v. Cependant, cette solution ne serait pas utilisable si v avait déja
une autre valeur de retour.

class Portee {
static int z, y;

static double v (double x) {
double u;
=% # %35
z = (int)x;
return u;}

public static void main (String [] args) {
double t;
y = 4;
t =1/ (double)y;
System.out.printIn{v(t));}}

Exercice 4.9

Déterminer la portée de chaque variable dans le programme suivant.

class Portee? {
static double b;

static boolean f (int a) {
int e;
e = Isn.readInt();
return (e == a);}

static double g (double c) {
double d;
d = Math.sin (c);
return d;}

public static void main (String [] args) {
b = Isn.readDouble();
if (F(0)) {
g(b);}
else {
g(-b) ;111

4 — Les fonctions

Trouver les erreurs de portée dans le programme suivant.

class Portee3 {
static int i;

static int h (int §) {
int k;
j=i+1
System.out.printin(i);
System.out.printin(j);

k=3+1;
m=m-1;
i=5;

return k;}

public static void main (String [] args) {
int m, n;
m=1;
i = 103
System.out.printin(m);
n = h(m);
System.out.printin(m);
System.out.printin(k);
System.out.printin(i + j);}1}

Savoir-FaIRe Choisir une portée adaptée aux différentes variables
d’un programme comportant des fonctions
Pour chacune de ces variables :

« si elle est utilisée dans plusieurs fonctions, alors elle doit étre globale,

* si elle nest utilisée que dans une fonction, pour des calculs intermédiaires par
exemple, on préfere qu'elle soit locale a cette fonction.

Exercice 4.11 (avec corrigé)

Ou faut-il placer les déclarations des différentes variables dans le programme
suivant ?

class Repertoire {

static void inmitialisation () {
nb = 10;
nom = new String [10];
tel = new String [10];

nom[0] = "Alice";
tel[0] = "0606060606";
nom[1] = "Bob";

tel[1] = "0606060607";

69

Premiére partie — Langages

70

nom[2] = “Charles";
tel[2] = "0606060608";
nom[3] = "Djamel";
tel[3] = "0606060609";
nom[4] = "Etienne";
tel[4] = "0606060610";
nom[5] = "Frédérique";
tel[5] = "0606060611";
nom[6] = "Guillaume";
tel[6] = "0606060612";
nom[7] = “Hector";
tel[7] = "0606060613";
nom[8] = "Isabelle";
tel[8] = "0606060614";
nom[9] = "Jérdme";
tel[9] = "0606060615";}
static String recherche (String s) {

1i=10s
while (i < nb & !Isn.stringEqual(s,nom[i])) {

i=14 1}
if (3 < nb) {

r = tellil;}
else {

r = "Inconnu™;}
return r;}

public static void main (String [] args) {
initialisation ();
n = Isn.readString();

System.out.printin(recherche(n));}}

Les variables i et r ne sont utilisées que dans la fonction recherche ; elles peu-
vent donc étre locales & cette fonction. La variable s est un argument de cette
fonction ; elle est donc déclarée comme argument. La variable n n'est utilisée
que dans le programme principal ; elle peut donc étre locale a cette fonction.
Les variables nb, nom et tel qui contiennent l'information sur le répertoire doi-
vent en revanche étre globales. On notera que la fonction initialisation n’a
pas besoin d’arguments puisqu’elle n‘utilise que des variables globales.

class Repertoire {

static String [] nom, tel;
static int nb;

static void initialisation () {
nb = 10;
nom = new String [10];
tel = new String [10];
nom[0] = "Alice";

tel[0] = “0606060606";
nom[1] = "Bob";
tel[1] = "0606060607";

4 — Les fonctions

nom[2] = "Charles";
tel[2] = "0606060608";
nom[3] = "Djamel";
tel1[3] = "0606060609";
nom[4] = “Etienne";
tel[4] = "0606060610";
nom[5] = "Frédérique";
tel[5] = "0606060611";
nom[6] = "Guillaume";
tel[6] = “0606060612";
nom[7] = "Hector";
tel[7] = "0606060613";
nom[8] = "Isabelle";
tel[8] = "0606060614";
nom[9] = "Jérome";
tel[9] = "0606060615";}
static String recherche (String s) {

int i;
String r;
i=0;
while (i < nb & !Isn.stringEqual(s,nom[i])) {

i=1+1;}
if (3 <nb) {

r = tel[i];}
else {

r = "Inconnu”;}

return r;}

public static void main (String [] args) {
String n;
initialisation Q;
n = Isn.readString();
System.out.printin(recherche(n));}}

Le passage par valeur

Dans le programme suivant :
static int a,b;

public static void main (String [] args) {

int c;
a=4;
b= 72
€= A
a=bhb;

n

Premiére partie — Langages

b =€
System.out.print(a);
System.out.print(" ");
System.out.printin(b);}

I'exécution de I'instruction :

C da;
b;

c;

nonou

a
b

a pour effet d’échanger le contenu des boites a et b. Le contenu initial de
la boite a est 4 et celui de la boite b 7 ; aprés I'exécution de cette instruc-
tion, le contenu de la boite a est 7 et celui de la boite b 4. Ainsi le pro-
gramme affiche :

7 4

Cette opération d’échange du contenu de deux boites étant souvent uti-
lisée, on peut vouloir I'isoler dans une fonction.

static int a,b;

static void echange (int x, int y) {

int z;
Z = X;
X =Y
y =z}
public static void main (String [] args) {
a=4;
bi=7;

echange(a,b);
System.out.print(a);
System.out.print(" ");
System.out.printin(b);}

Toutefois, contrairement au précédent, ce programme affiche :

| 4 7
et non
| 7 4

En effet, 'appel de la fonction echange(a,b); dans I'état € crée I'état @),
crée une boite z, échange le contenu des boites x ety en utilisant la
boite z (€) et supprime la boite z, puis les boites x et y (€)).

Le contenu des boites a et b n’a donc pas changé.

4 — Les fonctions

Il faut donc se souvenir que, dans un appel echange(e,e');, on ne passe
jamais les expressions e et e’ a la fonction echange ; on ne passe que la
valeur de ces expressions. Ces valeurs sont mises dans de nouvelles boites
de noms x et y, qui n'existent que le temps de I'exécution du corps de la
fonction. Quand les expressions e et e’ sont des variables a et b, cela
revient & recopier le contenu des boites de noms a et b dans les boites de
noms x et y.

SAVOIR-FAIRE

Choisir entre un passage par valeur et une variable globale

Si une fonction doit utiliser une variable a du programme principal, deux cas sont 2
distinguer :

« Si la fonction n'utilise que la valeur contenue dans a sans jamais la modifier, alors cette
valeur peut étre passée en argument 2 la fonction et la variable a peut étre locale au pro-
gramme principal.

« Si la fonction doit modifier la valeur contenue dans 2, alors la variable a doit étre globale.

Exercice 4.12 (avec corrigé)

Dans le programme suivant, quelles sont les expressions passées par valeur ?
Qu'affiche ce programme lorsqu'on I'exécute ?

class ParValeur {
static int i;

static int h (int j) {
int k;
j=i+ 1
System.out.printin(i);
System.out.printin{j);

k =3+ 1;
i = 5
return k;}

public static void main (String [] args) {
int m, n;
m=1;
i = 10;
System.out.printin(m);
n = h(m);
System.out.printin(m);
System.out.printin(n);
System.out.printin(i);}}

Lors de I'appel h(m), la valeur 1, contenue & ce moment dans la boite m, est
passée a la fonction h via I'argument j. La variable m n'est pas modifiée, méme
par l'instruction j = j + 1; et elle conserve sa valeur 1 jusqu’a la fin du pro-
gramme principal.

73

Premiere partie — Langages

Ce programme affiche donc :

[1 ! valeurinitiale de m
10 La variable globale i a été initialisée & 10 dans le programme principal.
® | j prend la valeur 1 de m lors de I"appel @ h, puis on lui ajoute 1.

1 |mn'est pas modifiée par h.

12 | ncontient la valeur de retour de h, qui a éte donnee par I'expression
j + i, dans laquelle j valait 2 et i valait 10.

S | On a affecté la valeur 5 & la variable globale i dans la fonction h.

Exercice 4.13
Pour programmer les fonctions ci-dessous, faut-il plutét utiliser un passage par
valeur ou des variables globales ?

€) Une fonction qui trace a I"écran un segment connaissant les coordonnées
de ses extrémités.

@ Une fonction qui remplace un nombre par sa valeur absolue.

€ Une fonction qui calcule le logarithme entier d’'un nombre.

) Une fonction qui met en majuscules toutes les lettres d'une chaine de
caractéres.

) Une fonction qui affiche a I'écran en notation scientifigue un nombre
donné de type double.

Le passage par valeur
et les tableaux

Contrairement a celui dE 13, section récédente, 16 Pro; mime suivant,
P ard
qui utilise dCS tablcaux, aﬁichc bien7 4.

static int [] a,b;

static void echange (int [] x, int [1 y) {
int z;
z = x[0];
x[0] = y[0];
y[0] = z;}

public static void main (String [] args) {
a = new int [2];
b = new int [2];
af0] = 4;
b[0] = 7;

74

4 — Les fonctions

echange(a,b);
System.out.print(a[0]);
System.out.print(" ");
System.out.printin(b[0]);}

En effet, comme on I'a vu au chapitre 3, la déclaration des variables glo-

bales a et b, qu'on écrit static int [] a,b; ajoute deux boites de noms a
et b a 'état €. Puis, 'allocation des deux tableaux : -, (87

a = new int [2];
b = new int [2];

crée deux nouvelles boites (€)). Laffectation qui suit :

afo]
b[0]

43
7

Won

}-
l-

Autrement dit, le contenu des boites de noms a et b est bien recopié dans

les boites de noms x et y au moment de 'appel. Néanmoins, les tableaux -
eux-mémes ne sont pas recopiés, car les contenus des boites de noms a /
et b ne sont pas des tableaux mais des références de tableaux.

&QJ l-l l-
B en® 6o®

' Exercice 4.14
Reprendre |'explication précédente dans le cas ol les deux variables a et b sont
locales au programme principal.

remplit les cases 0 de ces deux tableaux avec les valeurs 4 et 7 (). Ensuite,
I'appel de la fonction echange (a,b) ; crée deux boites x et y et les remplit avec
la valeur des expressions a et b. Or, comme on I'a vu au chapitre 3, la valeur
de l'expression a est une référence vers la boite a deux cases située 4 gauche
sur la figure et celle de 'expression b est une référence vers la boite a deux
cases située a droite sur la figure. Ainsi, I'état construit est €. Lexécution du
corps de la fonction échange le contenu des cases x[0] et y[0], ce qui produit
I'état @. Et quand, 2 la fin de I'exécution du corps de la fonction, les boites
de noms x ety sont supprimées, 'état @ est produit. La valeur de I'exp
sion a[0] est donc 7 et celle de 'expression b[0] est 4.

75

Premiere partie — Langages

Ausrpuws Lo Les licences logicielles : logiciel libre versus logiciel propriétaire

Quand on écrit un programme qui est utilisé par d'autres
personnes gue soi, on doit préciser ses conditions d'utili-
sation par un contrat qui s’appelle une licence logicielle.

Les programmes ont certains points communs avec
d'autres biens non rivaux (voir le chapitre 11), comme les
inventions et les « ceuvres de |'esprit ». Cela explique que
le droit des licences ait certains points communs avec le
droit des brevets et le droit d’auteur. Le droit des brevets
et le droit d'auteur donnent aux inventeurs et aux
auteurs le monopole de ["exploitation de leur création et
les autorisent a vendre ce droit d'exploitation. lls favori-
sent donc la création, en permettant aux créateurs de
gagner de |'argent. Cependant, ils la freinent également,
car ils interdisent a d'autres d’utiliser ces créations et de
poursuivre le travail de leurs auteurs. C'est pour cela que
ce monopole d’'exploitation est toujours limité dans le
temps et que, dans le droit des brevets, I'inventeur est
souvent tenu de rendre a terme son invention publique.
Il y a principalement deux formes de licences logicielles :
les licences propriétaires (ou privatrices) et les licences
libres. Avec une licence propriétaire, |"auteur donne sim-
plement un droit d’utilisation de son programme. La plu-
part du temps, il diffuse le code compilé de son
programme, mais en garde le code source (voir le
chapitre 15) secret. Avec une licence libre, en revanche, il
donne le droit a ses utilisateurs non seulement d’utiliser

Ai-je bien compris ?

* A quoi sert une fonction ?

son programme, mais aussi d’en étudier le fonctionne-
ment et de le modifier. Il diffuse donc a la fois le code
compilé et le code source.

Parmi les licences libres, il y a encore deux types de
licences. Les licences contaminantes, comme la General
Public Licence (GPL), imposent, dans le cas de la diffusion
du programme modifié, de le diffuser avec la méme
licence, afin de faire bénéficier les autres des mémes
libertés que celles dont on a soi-méme bénéficie.
D'autres licences, comme la licence Berkeley Software Dis-
tribution (BSD), donnent la liberté de modifier le pro-
gramme et de diffuser la version modifiée sous une
licence propriétaire.

Les licences libres ont permis un nouveau mode de déve-
loppement des logiciels, par une démarche qui a un cer-
tain nombre de points communs avec la recherche
scientifique : coopération internationale, publication,
validation par les pairs, liberté de critiquer et de modi-
fier, etc., alors que, dans les temps anciens, Pythagore,
par exemple, interdisait a ses disciples de divulguer leurs
théorémes et leurs démonstrations. Au-dela des pro-
grammes, cette nouvelle maniére de produire et de dif-
fuser des objets industriels préfigure peut-étre une
évolution plus globale de l'industrie, dans un monde
dans lequel de plus en plus de biens industriels sont com-
plexes et immatériels.

* De quels éléments la définition d’une fonction est-elle composée ?

* Comment utilise-t-on une fonction dans un programme ?

76

La recursivite

CHAPITRE AVANCE

Une définition récursive est une définition récursive.

Dans ce chapitre, nous voyons qu'une fonction peut s’appeler
elle-méme. Cette construction, alternative 4 celle de boucle,
permet d’écrire des programmes courts et élégants.

Christopher Strachey (1916-1975)
et Dana Scott (1932-) ont donné
une sémantique aux définitions
récursives : la définition f= G(f) n'est
pas circulaire, mais une définition
de f comme point fixe de G. Christo-
pher Strachey est aussi I'auteur d'un
des premiers programmes jouant aux
dames et de l'un des premiers pro-
grammes d'informatique musicale.
Avec Michael Rabin, Dana Scott a
étudié les systéemes a états et transi-
tions (voir le chapitre 22) non déter-
ministes, c'est-a-dire dans lesquels
plusieurs transitions sont possibles a
partir d'un méme état.

Premiere partie — Langages

Des fonctions qui
appellent des fonctions

Au chapitre 4, nous avons vu que les fonctions permettaient d’isoler une
instruction du programme principal. Par exemple, au lieu d’écrire le
programme :

static public veid main (String [] args) {
System.out.print(“Le vol en direction de ");
System.out.print("Tokyo");
System.out.print(" décollera a ™);
System.out.print("9h00");
System.out.printin();
System.out.printin("--—---- e e S -
System.out.printin();

System.out.print("Le vol en direction de ");
System.out.print("Sydney");

System.out.print(" décollera a ");

System.out.print("9h30");

System.out.printin();

Sysrem. ot printInl —-——rr e e e "
System.out.printin();

System.out.print("Le vol en direction de ");
System.out.print("Toulouse");

System.out.print(" décollera a ");

System.out.print("“9h45");

System.out.printin();

System.out PriM TN e et e I
System.out.printin();}

il est possible d'écrire le programme :

static void annoncerUnVol (String destination, String horaire) {
System.out.print("Le vol en direction de ");
System.out.print(destination);
System.out.print(" décollera a ");
System.out.print(horaire);
System.out.printin();
Systemoutiprint In (e s e s e s ¥
System.out.printin();}

static public void main (String [] args) {
annoncerUnVol ("Tokyo", "9h00") ;
annencerUnVol ("Sydney", "9h30");
annoncerUnVol ("Toulouse”,"9h45") ; }

78

5 — La récursivite

I1 est aussi possible d’isoler I'instruction :

System.out.printin();
System. out. print (M s "y
System.out.printin();

de la fonction annoncertnVol et d’écrire ce programme ainsi :

static void tirerUnTrait () {
System.out.printin();
System.out.println("-—————————————mmmm ")
System.out.printIn();}

static void annoncerUnVol (String destination, String horaire) {
System.out.print("Le vol en direction de ");
System.out.print(destination);
System.out.print(" décollera a ");
System.out.print(horaire);
tirerUnTrait ();}

static public void main (String [] args) {
annoncerUnVol("Tokyo","9h00") ;
annoncerUnVol ("Sydney","9h30");
annoncerUnVol ("Toulouse","9h45") ;}

ot la fonction tirerUnTrait est appelée, non depuis le programme prin-
cipal, mais depuis le corps de la fonction annoncerunvol.

Des fonctions qui
s’appellent elles-mémes

Il est méme possible d’aller plus loin et d’appeler une fonction f, non
depuis le corps d’'une fonction g, mais depuis le corps de la fonction f
elle-méme. Cest, par exemple, le cas de la fonction suivante :

static int puissance (int exposant) {
if (exposant == 0) {
return 1;}
else {

return (2 * puissance(exposant - 1));}} 4 Fonction récursive

Une fonction récursive est une fonction qui

Le cas le plus simple est celui de I'appel puissance(0) qui retourne la c'appelle elleméme

valeur 1 sans avoir besoin de refaire un appel 4 la fonction puissance.

79

Premiere partie — Langages

ATTENTION Prévoir un cas de base

Dans la définition d'une fonction récursive, il
faut toujours prévoir au moins un cas de base,
comme le cas exposant == 0 dans la défini-
tion ci-avant, dans lequel la fonction ne
s'appelle pas elle-méme ; sinon elle s'appellera
elle-méme indéfiniment,

80

On peut alors comprendre la valeur retournée par 'appel puissance(1) :
quand on exécute le corps de la fonction dans un état dans lequel la boite
de nom exposant contient la valeur1l, on évalue I'expression
2 * puissance(exposant - 1). Comme la valeur de l’expression exposant
est 1, celle de l'expression exposant - 1 est 0 et celle de I'expression
puissance(exposant - 1) est, comme on l'a vu, 1. Celle de I'expression
2 # puissance(exposant - 1) est donc2. Llappel puissance(1) retourne
donc la valeur 2.

De méme, I'appel puissance(2) retourne la valeur 4, I'appel puissance(3)
retourne la valeur 8, et ainsi de suite.

Plus généralement, la valeur retournée par I'appel de la fonction
puissance avec l'argument £+ 1 est le double de celle retournée par
I'appel de la fonction puissance avec I'argument 4. La valeur retournée
par 'appel de la fonction puissance avec I'argument £ est donc at

Cette fonction calcule donc la méme chose que la fonction :

static int puissance (int exposant) {
int i,resultat;
resultat = 1;
for (1 = 1; 1 <= exposant; i =1+ 1) {
resultat = 2 * resultat;}
l return resultat;}

Toutefois, elle utilise cette possibilité pour une fonction de s'appeler elle-
méme, au lieu d’utiliser une boucle.

On note que dans la définition récursive de la fonction puissance, la
valeur de I'argument exposant diminue a chaque appel de la fonction et le
test effectué au début du corps de la fonction assure que la fonction
puissance ne sappelle pas elle-méme au cours de son exécution dans un
état dans lequel la boite de nom exposant contient la valeur 0. Cette
observation fournit la garantie que tout appel a la fonction puissance avec
un argument qui est un nombre entier positif exposant se termine apreés
exposant appels. Les fonctions récursives et celles utilisant des boucles
partagent ainsi la méme préoccupation de terminaison.

5 — La récursivite

Savoir-FAIRE Définir une fonction récursive

1 Ecrite len-téte de la fonction (voir le savoir-faire, page 60, « Ecrire l'en-téte d’une
fonction »).

2 Vérifier tout d'abord que la fonction est adaptée a une définition récursive, autrement
dit que 'on sait calculer une valeur a partir d’'un appel plus simple 4 la méme fonction.

3 Prévoir le ou les cas de base, qui ne nécessitent pas d'appel récursif de la fonction.

4 Dans tous les appels récursifs, s'assurer que les arguments sont plus simples que ceux avec les-
quels la fonction a été appelée : nombres plus petits, chaines de caractéres plus courtes, etc.

5 Reconstituer correctement la valeur de retour de la fonction a partir du résultat du ou
des appel(s) récursif(s).

Exercice 5.1 (avec corrigé)

Ecrire une fonction récursive qui calcule le quotient de la division euclidienne
d’'un nombre entier naturel par un autre, bien entendu sans utiliser
I'opération / du langage.

) Le dividende et le diviseur sont les deux arguments et la valeur de retour
est le guotient. On a donc l'en-téte :

| static int quotient (int dividende, int diviseur)

@ Une définition récursive est possible : on diminue le dividende & chaque
appel récursif jusqu’a avoir compté combien de fois il contient le diviseur.

€) Le cas de base est celui ot le dividende est inférieur au diviseur : le quo-
tient est alors nul. La fonction commence donc par le test :

if (dividende < diviseur) {
return 0;}

) Dans les autres cas, le dividende est supérieur au diviseur, on retranche le
diviseur au dividende et I'argument ainsi modifié reste positif. Le diviseur
n'est pas modifié. La fonction se termine toujours car le dividende, qui est
un entier positif, ne peut pas diminuer indéfiniment.

& A chaque appel récursif, on compte une fois le diviseur dans le dividende,
le quotient doit donc augmenter de 1. La fonction s’écrit donc :

static int quotient (int dividende, int diviseur) {
if (dividende < diviseur) {
return 0;}
else {
return 1 + quotient (dividende - diviseur, diviseur);}}

Exercice 5.2

Modifier le programme ci-avant pour qu'il calcule, non le quotient, mais le
reste d'une division euclidienne.

81

Premiere partie — Langages

Exercice 5.3

Ecrire une fonction récursive qui calcule le logarithme entier d'un nombre
(voir le chapitre 2).

Exercice 5.4

Ecrire une fonction récursive qui calcule la factorielle d'un nombre
Mz=1x2x..x(n-1)xn.

Exercice 5.5

Ecrire une fonction récursive qui calcule le plus grand diviseur commun (PGCD)
de deux nombres entiers, en utilisant I'algorithme d'Euclide. Dans ce pro-
gramme, en quoi les arguments de I'appel récursif sont-ils plus simples que
ceux avec lesquels la fonction est appelée ?

Exercice 5.6

Programmer récursivement le calcul du terme de rang n de la suite de Fibo-
nacci définie par :

@ ywp=u;=1

0 Uns2 = Up + Upyq

Qu'y a-t-il de particulier dans cette fonction récursive ? Que se passe-t-il si on
exécute ce programme pour de « grandes » valeurs de n, a partir de 35 ou 45
selon la machine utilisée ? Par ailleurs, indépendamment de la machine uti-
lisée, a partir de n =46, les valeurs données par ce programme deviennent

incorrectes. Expliquer ces deux phénomeénes.

Alerpis Lo L'efficacité des fonctions récursives

Comme on a pu le voir sur I"'exemple de la suite de Fibo-
nacci, si les définitions récursives rendent parfois trés
pratiques I'écriture d'un programme, elles peuvent aussi
avoir des conséquences trés néfastes sur leur efficacité.
Ainsi, dans notre exemple, pour calculer uyg, il faut cal-
culer ug et ug, mais comme ug est calculé récursivement,
pour l‘obtenir il faut calculer ug et uy. Le calcul de ug est
donc fait deux fois. On peut montrer de méme que uy est
calculé trois fois, ug cing fois, etc.

Cela n'est pas un probléme inhérent aux fonctions récur-
sives, c'est juste un piége dans lequel on peut facilement
tomber quand on en écrit une. Il faut dans un tel cas se
demander si certains calculs ne sont pas faits plusieurs
fois, et si c'est le cas comment I'éviter. Les solutions habi-
tuelles sont de mémoriser, d’'une fagon ou d'une autre,
les calculs déja effectués et qui serviront a nouveau. Dans
le cas de la suite de Fibonacdi, il suffit de calculer les

82

termes de la suite dans I'ordre en se souvenant des deux
derniéres valeurs calculées. Avec les fonctions récursives,
on appelle accumulateurs les arguments qui propagent
ces deux valeurs d'un appel de la fonction au suivant.

static int fib (int n, int ul, int ul) {
ifF(n>1) {
return fib{n - 1,ul + uO,ul):}
else {
if(n=1) {
return ul;}
else {
return u0;}}}
Cette fonction permet en réalité de calculer le n-éme
terme de toute suite vérifiant la méme relation de récur-
rence que la suite de Fibonacci, en spécifiant les valeurs
de ug et uy. Pour le n-8me terme de la suite de Fibonacci
elle-méme, il suffit d’appeler fib(n,1,1).

5 — La récursivite

Des images récursives

La récursivité est un outil utile en géométrie algorithmique et en syn-
these d'images. Observons, par exemple, le dessin ci-contre.
Une maniére de le décrire est de dire qu'il est formé :
¢ d’un cercle, en rouge sur la figure ci-contre,
¢ en haut et 4 droite de ce cercle, de deux cercles tangents de rayon
moitié moindre, en vert sur la figure,
¢ en haut et a droite de chacun de ces cercles, de deux cercles tangents
de rayon moitié moindre, en bleu sur la figure,
* en haut et 2 droite de chacun de ces cercles, de deux cercles tangents
de rayon moitié moindre,

= efc.

Toutefois, une autre manicre de le décrire est de dire qu'il est formé d’'un
) q

cercle, en rouge sur la figure ci-contre et de deux copies moitié plus
petites du dessin lui-méme, en vert et en bleu sur la figure.

Cela nous montre comment écrire une fonction récursive qui dessine
cette figure : pour dessiner une figure dont le plus grand cercle a le
centre (x ; y) et le rayon rayon, on trace d’abord ce cercle, puis on
appelle récursivement deux fois la fonction dessiner en centrant le .
grand cercle en (x + 3 * rayon / 2 ; y) eten (x ; y - 3 * rayon / 2) et
en lui donnant le rayon rayon / 2. |

static void dessiner (int x, int y, int rayon) {
Isn.drawCircle(x,y,rayen,0,0,0);
if (rayon > 1) {
dessiner(x + 3 * rayon / 2,y,rayon / 2);
dessiner(x,y - 3 # rayon / 2,rayon / 2);}}

Il ne reste plus qu'a appeler dans le programme principal la fonction
dessiner(200,200,64);.

Exercice 5.7

Quel est I'argument qui assure que cette fonction ne s'appelle elle-méme
qu‘un nombre fini de fois ? Avec I'appel initial proposé, combien d‘appels
récursifs auront lieu ?

Un dessin plus joli est obtenu en entourant chaque cercle, non pas de
deux, mais de trois dessins plus petits dans des directions qui dépendent de
sa position : il est lui méme a droite d’un cercle plus grand, par exemple,
alors il est formé d'un cercle et de trois dessins situés en haut, en bas et a
droite, mais pas a gauche, de ce cercle. Pour cela, on fait correspondre un
nombre 4 chaque direction et on ajoute un argument a la fonction.

83

Premiere partie — Langages

// Définition des directions
static int gauche = 0;

static int droite = 1
static int haut = 2;
static int bas = 3;
static int aucun 4;

// Dessin
static void dessiner (int x, int y, int rayon, int v) {
Isn.drawCircle(x,y,rayon,0,0,0);
if (rayon > 1) {
if (v != droite) {
dessiner(x + 3 *
if (v != gauche) {
dessiner(x - 3 *
if (v != haut) {
dessiner(x,y - 3 * rayon / 2,rayon / 2,bas);}
if (v 1= bas) {
dessiner(x,y + 3 * rayon / 2,rayon / 2,haut);}}}

rayon / 2,y,rayon / 2,gauche);}

rayon / 2,y,rayon / 2,droite);}

Exercice 5.8

Que représente le nouvel argument v dans cette fonction ? Quel nom serait
plus explicite pour cet argument ?

‘ Exercice 5.9

Comment utiliser, sans la modifier, cette derniére fonction pour obtenir le
dessin complet ou le cercle central est entouré de quatre motifs identiques en
haut, en bas, a droite et a gauche ?

Ai-je bien compris ?
* Qu'est-ce qu'une fonction récursive ?
* Quelle autre construction la récursivité permet-elle souvent de remplacer ?

* Que faut-il toujours prévoir dans la définition d’une fonction récursive, si on veut que
cette fonction se termine ?

84

La notion
de langage
formel

CHAPITRE AVANCE

Les langages informatiques sont presque comme
les langues naturelles. Mais pas tout a fait.

Dans ce chapitre, hors programme a I'exception de la section
« Redéfinir la sémantique », nous introduisons la notion

de langage formel, au-dela des langages de programmation,
et nous comparons ces langages aux langues naturelles.
Nous prenons 'exemple du langage HTML, présenté

au chapitre 8. Ceci nous permet de présenter les notions

de grammaire et de sémantique.

La grammaire définit quelles sont les chaines de caractéres,
par exemple les programmes, qui sont correctement formés.

La sémantique définit ce qui se passe quand on utilise un texte,
par exemple quand on exécute un programme.

Lidéographie de Gottlob Frege
(1848 - 1925) est le premier langage
formel proposé pour exprimer
I'ensemble des mathématiques. Ce
langage a été aujourd'hui aban-
donné, mais il est a I'origine de la
théorie des ensembles, de la logique
des prédicats et, en grande partie,
des langages formels utilisés en infor-
matique, en particulier des langages
de programmation. L'origine com-
mune des mots «langage »,
« logique » et « logiciel » nous rap-
pelle les liens entre la logique —
I'étude du langage mathématique —
et I'informatique.

Premiere partie — Langages

ALLER PLUS LOIN
La grammaire des langues naturelles

La grammaire des langues naturelles est beau-
coup plus complexe que celle des langages for-
mels, en particulier parce qu'elle tient compte
de nombreuses exceptions : homonymie, syno-
nymie, etc. Ainsi, en francais, la phrase «les
poules du couvent couvent » est correcte.

86

Aux chapitres 1 4 5, 15, 8 et 11, nous avons vu plusieurs langages : des
langages de programmation tout d'abord, mais aussi, plus briévement,
des langages de description de pages web et des langages d'interrogation
de bases de données. Ces langages informatiques ont un certain nombre
de points communs avec les langues naturelles comme le frangais ou le
japonais : ils servent a exprimer et 2 communiquer des idées. Cependant,
ils ont aussi un certain nombre de différences.

Les langages informatiques
et les langues naturelles

Nous avons vu qu'un langage de programmation, comme Java, permet
d’exprimer tous les algorithmes. Toutefois, il ne permet d'exprimer que
des algorithmes. On ne peut pas l'utiliser pour écrire un roman, un con-
trat ou une carte postale. C'est donc un langage spécialisé. Une langue
naturelle, en revanche, peut étre utilisée non seulement pour exprimer
des algorithmes, méme si c’est souvent de maniére imprécise, mais aussi
pour écrire des cartes postales, des contrats et des romans : les langues
naturelles sont universelles.

Le vocabulaire d'une langue naturelle contient plusieurs milliers de mots.
Celui d'un langage informatique, par exemple un langage de programma-
tion, n'en contient que quelques dizaines : par exemple if, while, for et
int. En revanche, le vocabulaire d’'un langage informatique est souvent
extensible : en définissant une fonction tirerUnTrait, ou en déclarant une
variable x, on ajoute un nouveau mot au langage, souvent avec une portée
limitée, ce que I'on ne peut pas faire dans une langue naturelle.

La grammaire des langages informatiques est plus simple, mais plus pré-
cise, que celle des langues naturelles : un point-virgule oublié dans un pro-
gramme et celui-ci n'est plus correct, alors qu'il est difficile de trouver une
phrase en frangais qui serait incompréhensible 4 cause d’un signe de ponc-
tuation oublié. De plus, la frontiére entre les phrases correctes et les
phrases incorrectes dans une langue naturelle n'est pas si bien définie.
Ainsi, la phrase « Nous, on y est pas allé, mon frére et moi, au cinéma. »
manifeste une moins grande maitrise de la langue que la phrase « Ni mon
frére ni moi ne sommes allés au cinéma. », mais elle reste compréhensible.
En revanche, il n'y a aucune discussion possible sur le fait qu'un pro-

6 — La notion de langage formel

gramme soit grammaticalement correct ou non, car la correction gramma-
ticale, dans un langage de programmation, est définie par un algorithme.

Enfin, ces langages informatiques appartiennent exclusivement au
domaine de I'écrit : une piéce de théatre est écrite pour étre dite 4 haute
VOIX, pas un programme.

Les ancétres des langages
formels

Pour les distinguer des langues naturelles, on appelle langages formels ces
langages artificiels 4 la grammaire simple, mais précise. L'apparition,
avec I'informatique, de ces langages est une étape importante de 'his-
toire du langage. Certains la comparent méme a I'invention de 'écriture
ou de l'alphabet. Cependant, une fois que 'on a pris conscience de la
spécificité de ces langages, on peut se demander si certains de leurs traits
n'étaient pas déja présents dans des langages spécialisés plus anciens, en
particulier dans ceux utilisés en sciences, en droit et en musique.

Tour d’abord, sans cesser d’étre une langue naturelle, la langue scienti-
fique présente quelques aspects qui rappellent les langages informati-
ques. Par exemple, elle donne la possibilité d'introduire de nouveaux
mots par des définitions. S'il n'est pas possible dans la langue courante
de dire « On appellera épagneul breton un steak saignant. », puis « Je vou-
drais manger un épagneul breton. », on peut, dans la langue scientifique,
donner une définition : « On appellera fravail d’une force, son produit
scalaire avec le déplacement de son point d’application. », puis utiliser le
mot défini : « Le travail d’une force orthogonale au déplacement de son
point d'application est nul. » Une fois défini, le mot « travail » a une
portée illimitée, mais ce n'est pas le cas du mot x si on I'introduit dans
une démonstration mathématique par la définition x =y + 4. Une fois
cette démonstration achevée, il n'est plus possible d'utiliser le mot x pour
désigner la valeur y + 4. De méme, dans le langage juridique, on débute
le texte d'un contrat en donnant I'identité des contractants et en indi-
quant un mot par lequel ils seront désignés dans la suite du contrat. Par
exemple, « Contrat de location entre les sous-signés, Monsieur Dupond,
demeurant 1, rue Durand, 4 Grenoble, ci-aprés désigné le loueur et
Monsieur Durand, demeurant 1, rue Dupond, a Grenoble, ci-apres
désigné le locataire ... ». Bien entendu, cette maniére de désigner Mon-

87

Premiere partie — Langages

Auerpus oW Mélanger langages formels
et langues naturelles

Souvent, dans un texte scientifique, on mélange
des passages écits dans des langages formels,
comme le langage algébrique, et des passages
écits en langue naturelle : « Supposons qu'il
existe deux nombres entiers non nuls et pre-
miers entre eux tels que x? = 2 y2. Le nombre x?
est pair et, d'aprés le lemme 1, le nombre x
également : il existe donc un nombre x* tel que
x=2x". On en déduit 2x)2=2 yz c'est-a-
dire 4x2 =2y dot on tire y* =2x2 Le
nombre y? est donc pair et, en utilisant le
lemme 1 & nouveau, le nombrey également.
Les nombres x et y sont tous les deux pairs, ce
qui est en contradiction avec I'hypothése ».

88

sieur Dupond et Monsieur Durand comme «le loueur» et «le
locataire » a une portée limitée au texte de ce contrat.

Cependant, il y a aussi des situations ot 'on s'éloigne davantage des lan-
gues naturelles et crée de véritables langages formels, au vocabulaire limité
et a la grammaire simple mais précise. Par exemple, la nomenclature des
composés chimiques, la notation musicale et le langage algébrique. Ainsi,
dans la nomenclature des composés chimiques, il y a un chlorure
d’aminométhylpyrimidinylhydroxyéthylméthythiazolium, mais pas de
chlorure d’épagneul breton : seul un nombre restreint de mots peut étre
employé dans ce langage. Comme la nomenclature des composés chimi-
ques, la notation musicale utilise un vocabulaire restreint et une grammaire
simple, mais précise : elle autorise 4 mettre six croches dans une mesure
binaire 4 trois temps, mais pas quatre noires. De méme, le langage algé-
brique permet d’appliquer la relation < 4 deux expressions, mais pas a la
relation < elle-méme : on peut écrire & < 4, mais pas &° < <.

Ces langages formels sont relativement récents : la notation musicale date
du XIII® siecle, la notation algébrique du XVI® siécle et la nomenclature
des composés chimiques du XIX® siécle. Avant I'invention de la notation
algébrique, on écrivait les équations en langue naturelle, par exemple
I'équation 2 +3 2% =20 sécrivait: un cube et trois carrés font vingt.
Néanmoins, ces langages sont tous les trois antérieurs a 'informatique.

La rangon de l'universalité des langues naturelles semble donc étre leur
incapacité a exprimer précisément les choses, dés que I'on s'intéresse a
un domaine précis comme les sciences, le droit ou la musique. Raison
pour laquelle les scientifiques, les juristes ou les musiciens se sont éloi-
gnés des langues naturelles, parfois par de petits écarts, parfois en créant
de véritables langages formels. U'apparition et la généralisation, avec
I'informatique, des langages formels étaient donc préparées par le déve-
loppement de ces langages spécialisés, plus ou moins formels.

Les langages formels
et les machines

Les langages de programmation, et plus généralement les langages
informatiques, sont soumis 4 une double contrainte. Ils doivent étre uti-
lisables par les étres humains qui écrivent les programmes, mais aussi par
les machines qui les exécutent. Cette seconde contrainte explique en

6 — La notion de langage formel

partie que ce soient des langages formels. Au début de I'informatique,
cette seconde contrainte était prépondérante et seuls existaient les lan-
gages machine, comme celui décrit au chapitre 15, ce qui rendait I'écri-
ture de ces programmes difficile pour les étres humains, mais d'une
exécution relativement facile pour les machines. L'histoire des langages
de programmation est celle des efforts entrepris pour rendre ces langages
plus faciles 4 utiliser par les étres humains, tout en gardant la possibilité
de les traduire en langage machine, et donc de les faire exécuter par des
machines.

Une tendance dans I'évolution des langages de programmation est de se rap-
procher des langues naturelles. Par exemple, les langages machine n'utilisent
que des chiffres, mais les langages évolués également des lettres. Toutefois,
les langues naturelles ne sont pas nécessairement les bons outils pour
exprimer les algorithmes. Ainsi, la maniére d’écrire les équations en algebre,
s'est €loignée des langues naturelles, bien avant que I'on ait des machines,
simplement parce que le langage algébrique est plus facile 4 utiliser que les
langues naturelles pour exprimer des équations et les résoudre. De méme,
certains langages formels sont peut-étre plus faciles a utiliser que les langues
naturelles pour exprimer des algorithmes. La nécessité de rendre les pro-
grammes exécutables par des machines n'est donc pas I'unique raison pour

laquelle les langages de programmation sont des langages formels.

La grammaire

La premiére chose 2 définir quand on congoit un langage formel, que ce
soit un langage de programmation, un langage de description de pages
web ou un langage d’interrogation de bases de données, est sa gram-
matre. La grammaire d'un langage est un algorithme qui indique si une
chaine de caractéres appartient 2 ce langage ou non. Par exemple, la
grammaire des instructions du langage Java indique que la chaine de
caractéres x = 1; est une instruction, mais pas la chaine de caractéres
1 = x;. On ne cherche pas ici a définir ce qui se passe quand on exécute
cette instruction, mais uniquement si elle est grammaticalement correcte
ou non.

Pour définir une grammaire, on utilise un langage qui contient :

¢ des symboles pour les lettres du langage, a, 4, etc.

e des symboles pour des langages, c'est-a-dire des ensembles de
chaines de caractéres, 4, B, L, etc.

¢ les symboles = (égal), | (ou) et £ (chaine vide).

89

Premiere partie — Langages

On commence par un exemple simple : le langage L ne contient que
deux chaines de caractéres aab et abab. 1.a grammaire de ce langage se
définit ainsi :

L = aab | abab

Un autre exemple de langage est celui qui contient toutes les chaines de
caractéres qui ne sont formées que de a : la chaine vide ¢, 4, aa, aaa, etc.
Sa grammaire se définit ainsi :

L=¢ |alL

Cette définition signifie qu'un élément de L est, ou bien la chaine vide g,
£

ou bien la lettre g, suivie d’'un autre élément de L. En effet, les chaines

de caracteres, non vides, formées uniquement de # commencent toutes

par un 4, suivi d’'une autre chaine formée uniquement de .

On peut, de méme, définir le langage des chaines de caractéres formées
d’un certain nombre de 4, suivis d'un certain nombre de 4. Par exemple
la chaine aaabbbbb fait partie de ce langage mais pas la chaine aaabbbab.
Pour cela, on définit d’'abord un langage A4 qui contient toutes les chaines
qui ne sont formées que de @, puis un langage B qui contient toutes les
chaines qui ne sont formées que de 4, et enfin le langage dont les élé-
ments sont formés d'une chaine de A4 suivie d’une chaine de B.

A=t |ad
B=¢ | B
L-AB

On peut de méme définir ainsi la grammaire des instructions simples en
Java. On suppose que 'on a déja défini le langage 7" des types de Java, le
langage V' des noms de variables et le langage E des expressions. Le
langage I des instructions se définit alors ainsi :

I-TV=E;I|V=E; | Il|if (E) Ielse I | while (E) I | {I}

Une instruction est en effet :
e une déclaration: TV=E; I,
* une affectation : V- E;,
* une séquence : I I,
s untest:if (E) Ielsel,
e une boucle : while (F) I,
* une instruction entre accolades : {I}.

90

On peut également définir la grammaire du langage HTML, ou plus
exactement de la partie de ce langage introduite au chapitre 8. On
définit d’abord un langage qui contient les diverses lettres de 'alphabet.

lC.—a|b|c|d|...

en excluant les symboles < et >.

Le langage formé des suites de tels symboles se définit ainsi :
|L-¢|CL

Cependant, un texte en HTML n'est pas une simple suite de tels sym-
boles, puisqu’il peut aussi contenir des expressions comme un
passage important</bs.

On définit alors le langage des textes en HTML ainsi :

| L-¢)cL) EL
E - <bsL | <i sL</i> | <p>L</p> | <h1sL</h1> | <h2>L</h2>
| L

ol le langage A, qui reste a définir, est celui des adresses web.

Ainsi, dans le langage E, on introduit les symboles < et > et les diffé-
rentes balises existantes, mais on assure également au passage que les
balises sont utilisées correctement : toute balise ouverte est refermée par
la suite et les balises sont correctement imbriquées, c'est-a-dire refer-
mées dans I'ordre correspondant a leur ouverture. Par exemple, cette
grammaire exclut une suite de caractéres comme <i>erreur</i>.

La sémantique

La grammaire d'un langage de programmation définit quand une suite
de symboles est un programme bien formé dans ce langage ou non, mais
pas ce qui se passe quand on exécute ce programme. Ce second volet de
la définition d’'un langage de programmation est appelée sa sémantigue.
Par exemple, le fait que quand on exécute I'instruction x = 1; on trans-
forme I'état en mettant la valeur 1 dans la boite de nom x fait partie de la
sémantique, et non de la grammaire, du langage Java.

De méme, la sémantique du langage HTML définit la maniére dont un
texte écrit en HTML s'affiche dans un navigateur.

6 — La notion de langage formel

Auerpusion Langages et formats

La notion de langage n'est pas trés éloignée de
la notion de format introduite au chapitre 9.
Dans un cas comme dans |"autre, on définit un
ensemble de régles qui permettent d'exprimer
un texte, une image, etc. D'ailleurs, on dit par-
fois « le langage HTML » et parfois « le format
HTML ».

On a cependant tendance a réserver le mot /an-
gage aux suites de symboles exprimées dans
un alphabet riche et avec une grammaire relati-
vement complexe. Ainsi le langage HTML utilise
tous les symboles de I'alphabet, qui peuvent
eux-mémes étre exprimés dans un format:
ASCll ou latin-1, alors que le format latin-1 uti-
lise un alphabet qui se limite aux symboles 0
et 1. De méme, toutes les suites de huit bits sont
bien formées en latin-1, si bien que la gram-
maire du format latin-1 est trés simple et n'a
que peu d'intérét.

91

Premiere partie — Langages

92

Un titre

Un sous-titre

Lin bien

1 n passage imperiunt

Redéfinir la sémantique

En HTML (voir le chapitre 8), les balises <h1> et </h1> délimitent un
titre et les balises <a> et délimitent un lien. Concrétement, cela
signifie que, dans un navigateur, un passage délimité par les balises <h1>
et </h1> est écrit en gros caractéres et un passage délimité par les balises
<a> et est écrit en bleu et souligné.

Cela dit, il est possible de modifier cette sémantique et de décider, par
exemple, que les titres doivent étre non seulement en grosses lettres,
mais aussi en rouge et centrés et que les liens doivent étre en vert et sur-
lignés. Cela est possible car la sémantique de HHITML est elle-méme
définie dans un langage formel : le langage CSS. Par exemple, la défini-
tion CSS suivante :

hl {Font-Size: 24pt; Color: Red; Text-Align: Center;}
a {Color: Green; Text-Decoration: Overline;}

indique que les titres doivent étre en 24 points, en rouge et centrés, et les
liens en vert et surlignés.

Si on écrit cette définition dans un fichier exemple.css et si 'on ajoute 2
I'en-téte du fichier HTML, présenté au chapitre 8, la commande :

<link rel="stylesheet" href="example.css" type="text/css">
</Tink>

alors ce texte sera affiché dans un navigateur, non sous la forme € mais

sous la forme €).
L1 2]

Un titre

Un sous-titre

L n hen

1'n passage important

I

On peut aussi définir en CSS de nouvelles balises <ceuvres et </oeuvres :

oeuvre {Font-Style: Italic}

6 — La notion de langage formel

Le texte :

<oeuvre>L'ile mystérieuse</oeuvre> est a la fois la suite de
<oeuvre>Vingt mille lieues sous les mers</oeuvres et des
l <oeuvre>Enfants du capitaine Grant</oeuvre>.

s'affiche alors dans un navigateur :

L'ile mystéricuse est a la fois la suite de Vingt mille lieues sous les mers et
des Enfants du capitaine Grant.

exactement comme ['aurait fait le texte :

<i>L'ile mystérieuse</i> est a la fois la suite de <i>Vingt
mille Tieues sous les mers</i> et des <i>Enfants du capitaine
| Crant</1i>.

La différence est que, si 'on décide aprés coup de souligner les noms des
ceuvres au lieu de les mettre en italique, il suffit de changer la séman-
rique des balises <ceuvres et </oeuvres :

l oeuvre {Text-Decoration: Underline;}
pour que le texte s'affiche :

Lile mystérieuse est a la fois la suite de Vingt mille lieues sous les mers
et des Enfants du capitaine Grant.

les autres italiques du texte restant des italiques.

Cela permet de dissocier le fond (le texte, dans lequel on indique simple-
ment que « Lile mystérieuse » est le titre d'une ceuvre) de la forme (la
sémantique du langage HTML, dans laquelle on indique que les titres
des ceuvres doivent étre en italique ou soulignés). La mise en page des
textes peut étre ainsi changée ad libitum.

Exercice 6.1

Reprendre I'une des pages HTML écrites au chapitre 8 et lui adjoindre un
fichier CSS pour modifier son aspect.

Ai-je bien compris ?

* Quelles sont les principales différences entre un langage formel et une langue
naturelle ?

= Quelle est la différence entre la grammaire et la sémantique d’un langage ?
+ A quoi sert le langage CSS ?

93

pyrignt © Zuls Eyroies.

Informations

Dans cette deuxieéme partie, nous abordons 'une des problématiques
centrales de I'informatique : représenter les informations que l'on veut
communiquer, stocker et transformer. Nous apprenons a représenter
les nombres entiers et les nombres a virgule (chapitre 7), les caractéres
et les textes (chapitre 8), et les images et les sons (chapitre 9). La
notion de valeur booléenne, ou de bit, qui apparait dans ces trois
chapitres, nous mene naturellement a la notion de fonction booléenne
(chapitre 10).

Nous apprenons ensuite a structurer de grandes quantités
d'informations (chapitre 11%), a optimiser la place occupée grice a la
compression, corriger les erreurs qui peuvent se produire au moment
de la transmission et du stockage de ces informations et 2 les
protéger par le chiffrement (chapitre 12¥).

-=00 0~ _O~0~0==00=000~~
QO0~0=0 =0 = 0==00 =000~ —=
- Q=000 ~000=—e—===00
~0=0 =0 ~-000~" == ==~00~=0O
O=--00-00 0= = = === C0~=0 ===
O0=000 ~= = = = 00 -=0w===00a.
000 === e 0O == ===Q0=0=0
————e e 00 = =0 ===00~=_0=-0~
——, QO =0 === 00 == =0 =0~-00 ~
CO==Q=w==00=-QuQudD~00~= ==
~0===00-0=-0-0~00~-~=000
-=00 == w0=0~00c = —-0000 ~ ~
0-0~-0=~0~00 - n=0000= ===
- Q0= 00 e e =000 - = e- O -
O=00w « =«=QOO0O0 = cee == Qe o=
O====0000 - =~ === OQ=====0°
-=0000 e = = = Qe===-=000-0
Q00 = = = o == (- —— 00Q0=0=- 0~
——— 0'!‘"'000'0'0'0'0
-==On = 000~ =0 ~-0_0~--0
Qe====000~-0=0~-0~O~-=00~-0

Representer des
nombres entiers

et a virgule

Au commencement étaient le O et le 1, puis nous
créames les nombres, les textes, les images et les sons.

Dans ce chapitre, nous voyons comment les nombres
sont représentés dans les ordinateurs avec des 0 et des 1.

Nous introduisons la notion de base, en partant de la notation
décimale que nous utilisons ordinairement pour écrire

les nombres entiers. Nous passons par la base cinq puis
décrivons la base deux, aussi appelée représentation binaire.
Nous généralisons ensuite aux nombres relatifs en utilisant

la notation en complément a deux, puis aux nombres a virgule,
représentés par leur signe, leur mantisse et leur exposant.

7 A o
S22 Muxaumin
S anb ey

Le livre de I'addition et de la sous-
traction d’aprés le calcul indien de
Muhammad al-Khwarizmi (783 ? -
8507), qui présente la numération
décimale a position et des algo-
rithmes permettant d'effectuer les
opérations sur les nombres exprimeés
dans ce systéme, a été le vecteur de la
diffusion de ce systéme de numéra-
tion dans le bassin méditerranéen. Le
mot algorithme est dérivé du nom
d’al-Khwarizmi et le mot algebre (al-
Jabr) du titre d’un autre de ses livres.

Deuxieme partie — Informations

98

Vus de 'extérieur, les ordinateurs et les programmes que nous utilisons
tous les jours permettent de mémoriser, de transmettre et de transformer
des nombres, des textes, des images, des sons, etc.

Pourtant, quand on les observe a une plus petite échelle, ces ordinateurs
ne manipulent que des objets beaucoup plus simples : des O et des 1.
Mémoriser, transmettre et transformer des nombres, des textes, des
images ou des sons demande donc d’abord de les représenter comme des
suites de 0 et de 1.

La mémoire des ordinateurs est constituée d'une multitude de petits cir-
cuits électroniques qui ne peuvent étre, chacun, que dans deux états (voir
le chapitre 14). Comme il fallait donner un nom 2 ces états, on a décidé
de les appeler O et 1, mais on aurait pu tout aussi bien les appeler 4 et B,
froid et chaud ou faux et vrai. Une telle valeur, 0 ou 1, s'appelle un oo~
léen, un chiffre binaire ou encore un kit (binary digif). Un tel circuit 2
deux états s'appelle un circuit mémoire un bit et se décrit donc par le
symbole 0 ou par le symbole 1.

L’état d’un circuit, composé de plusieurs de ces circuits mémoire un bit,
se décrit par une suite finie de 0 et de 1, que I'on appelle un mor. Par
exemple, le mot 100 décrit I'état d’un circuit composé de trois circuits
mémoire un bit, respectivement dans I'état 1, 0 et 0.

Exercice 7.1

On imagine un ordinateur dont la mémoire est constituée de quatre circuits
mémoire un bit. Quel est le nombre d'états possibles de la mémoire de cet
ordinateur ? Méme question pour un ordinateur dont la mémoire est consti-
tuée de dix circuits mémoire un bit. Et pour un ordinateur dont la mémoire est
constituée de 34 milliards de tels circuits.

Exercice 7.2

On veut représenter chacune des sept couleurs de |'arc-en-ciel par un mot, les
sept mots devant étre distincts et de méme longueur. Quelle est la longueur
minimale de ces mots ?

Exercice 7.3

Trouvez trois informations de la vie courante qui peuvent étre exprimées par
un booléen.

Exercice 7.4

On considére une «box internet » avec une diode électroluminescente,
éteinte ou allumée selon un motif de 0 et de 1 qui change a chaque demi-
seconde. Lorsque la box est éteinte, la diode aussi, le motif est 0000000000...
Lorsque la box est allumée et fonctionne, la diode est allumée en continu, le
motif vaut donc 1111111111... Lorsque la box est en panne, le fournisseur
d’accés souhaite que la diode clignote selon différents motifs en fonction du
type de panne : pas de réseau, réseau saturé, facture non payée, etc. On parle
ainsi de clignotement rapide pour le motif 0101010101.

@) Proposer deux motifs qui pourraient correspondre aux descriptions
« clignotement lent » et « clignotement trés lent ».

€ Comment peut-on décrire les motifs suivants, répétés indéfiniment:
0000100000 et 0101010000 ?

€ Comment faut-il procéder pour qu'un motif donné ne s'affiche que toutes
les dix secondes ?

) Dans une situation ou il y aurait deux types de panne en méme temps,
comment pourrait-on procéder pour afficher les motifs correspondant aux
deux messages d'erreurs différents ?

La représentation
des entiers naturels

Depuis le Moyen Age, on écrit les nombres entiers naturels en nofation
décimale a position. Cela 51gmﬁe que, pour écrire le nombre entier
naturcl n, on commence pa.r 1mag1ncr ﬂOb}ﬁtS qllﬁ lon BTOUPE par
paquets de dix, puis on groupe ces paquets de dix objets en paquets de
dix paquets, etc. A la fin, il reste entre zéro et neuf objets isolés, entre
zéro et neuf paquets isolés de dix objets, entre zéro et neuf paquets isolés
de cent, etc. Et on écrit cet entier naturel en notant, de droite a gauche,
le nombre d’objets isolés, le nombre de paquets de dix, le nombre de
paquets de cent, le nombre de paquets de mille, etc. Chacun de ces nom-
bres étant compris entre zéro et neuf, seuls dix chiffres sont nécessaires :
0,1,2,3,4,5, 6, 7, 8 et 9. Par exemple, I'écriture 2359 exprime un
entier naturel formé de 9 unités, 5 dizaines, 3 centaines et 2 milliers.

Le choix de faire des paquets de dix est peut-étre di au fait que I'on a dix
doigts, mais on aurait pu tout aussi bien décider de faire des paquets de
deux, de cing, de douze, de vingt, de soixante, etc. On écrirait alors les
nombres entiers naturels en notation a position en base deux, cing,
douze, vingt ou soixante. La notation décimale 4 position sappelle donc
aussi la notation a position en base dix.

En notation binaire, c’est-a-dire en notation a position en base deux, le
nombre treize s'écrit 1101 : de droite 4 gauche, 1 unité, 0 deuzaine,
1 quatraine et 1 huitaine. Lécriture d’un entier naturel en binaire est en
moyenne 3,2 fois plus longue que son écriture en base dix, mais elle ne
demande d’utiliser que deux chiffres : 0 et 1.

7 — Représenter des nombres entiers et a virgule

Indiquer la base

Dans ce livre, quand une suite de chiffres exprime
un nombre dans une base différente de dix, on
indigue la base entre parenthéses, par exemple :
1101 (en base deux). On souligne aussi parfois un
mot pour indiquer qu'il exprime un nombre en
base deux: 1101. Enfin, on rassemble parfois les
bits par groupe de quatre ou de huit dans les mots

trés longs pour quils soient plus faciles a lire:

1111111101 est écrit 1111111101, Comme en
base dix, ces groupes sont formés de droite a
gauche.

Deuxieme partie — Informations

100

Exercice 7.5

Un horloger excentrique a eu I'idée de fabriquer une montre sur laguelle
I'heure est indiquée par 10 diodes électroluminescentes appelées 1 h, 2 h, 4 h,
8 h, 1 min, 2 min, 4 min, 8 min, 16 min et 32 min. Pour connaitre |'heure, il
suffit d’ajouter la valeur de toutes les diodes allumées.

Quelle heure est-il quand sont allumées les diodes 1h, 2 h, 4 h, 1 min, 2 min,
8 min, 16 min et 32 min ? Quelles sont les diodes allumées a 5 h 55 ? Est-il pos-
sible de représenter toutes les heures ? Toutes les configurations sont-elles la
représentation d'une heure ?

Comme la mémoire des ordinateurs est constituée de circuits qui ne
peuvent étre chacun que dans deux états, on peut utiliser chaque circuit
de la mémoire pour représenter un chiffre binaire, en identifiant 'un de
ces états avec le chiffre binaire 0 et 'autre avec le chiffre binaire 1 — on
comprend a posteriori pourquoi on a choisi d’appeler ces états eux-
mémes O etl. Le nombre 13 =1101 est donc représenté dans la
mémoire d'un ordinateur par le mot 1101, c'est-a-dire par quatre circuits
respectivement dans les états 1,0, 1 et 1.

La base cinq

Pour comprendre comment transformer un entier naturel, écrit en base
dix, dans une autre base, on commence par la base cinq, moins particu-
liere que la base deux, sur laquelle on reviendra plus tard.

Savoir-FAIRE Trouver la représentation en base cinq d’un entier naturel
donné en base dix

Pour écrire les entiers naturels en base cing, on a besoin de cinq chiffres : 0, 1, 2, 3, 4.
Quand on a 7 objets, on les groupe par paquets de cing, qu'on groupe ensuite en paquets
de cinq paquets, etc. Autrement dit, on fait une succession de divisions par 5, jusqu’a
obtenir un quotient égal 2 0.

Exercice 7.6 (avec corrigé)

Trouver la représentation en base cing de 47.

47 objets se regroupent en 9 paquets et 2 unités, puis les 9 paquets se regrou-
pent en 1 paquet de paguets et 4 paguets.

47 = 9x542 = (1 x5+4)x5+2 = (1 x5%) +(4x5") + (2 x59
Donc 47 = 142 (en base cing).

7 — Représenter des nombres entiers et a virgule

o

Exercice 7.7 (avec corrigé)

Trouver la représentation en base cing du nombre 944.

On obtient 944 = 12234 (en base cing).

Exercice 7.8
Trouver la représentation en base cing du nombre 289.

Savoir-rFAIRE Trouver la représentation en base dix d’un entier naturel
donné en base cinq

Pour trouver la représenration en base dix d'un entier naturel donné en base cing, on uti-
lise le fait qu'en base cing, le chiffre le plus a droite represente les unités, le précédent les
paquets de 5 le précédent les paquets de 5 x § = 5% = 25, le précédent de
5x5x5=5=125, et ainsi de suite.

Exercice 7.9 (avec corrigé)
Trouver la représentation en base dix du nombre 401302 (en base cing).

401302 (en base cing) = (2 x 59 + (0 x 5") + (3 x 52) + (1 x 5%) + (0 x 5%) + @ x 5°)
= 12702.

Exercice 7.10

Trouver la représentation en base dix des nombres 2341 (en base cinq) et 444
(en base cing).

101

Deuxieme partie — Informations

102

La base deux

Les nombres exprimés en base deux sont plus difficiles a lire, car il n'y a
que deux chiffres, O et 1, mais le principe de la numération en base deux
est en tout point similaire 4 celui de la numération en base cing.

Savoir-FAIRE Trouver la représentation en base deux
d’un entier naturel donné en base dix

Pour écrire les nombres en base deux, on a besoin de deux chiffres : 0 et 1. Quand on a » objets,

on les groupe par paquets de deux, qu'on regroupe eux-mémes en paquets de deux paquets, etc.

Autrement dit, on fait une succession de divisions par 2, jusqua obtenir un quotient égal a 0.
Exercice 7.11 (avec corrigé)

Trouver la représentation en base deux du nombre 11.

On obtient 11 =1011.
11] 2 5|2 2. 12 1]2
e~ Tl e o

Exercice 7.12
Trouver la représentation en base deux du nombre 1000.
Exercice 7.13

Chercher sur le Web la date de la mort de Charlemagne. Trouver la représenta-
tion en base deux de ce nombre.

' Exercice 7.14

Donner les représentations en base deux des nombres 1, 3, 7, 15, 31 et 63.
Expliquer le résultat.

SavoIR-FAIRE Trouver la représentation en base dix d’un entier naturel
donné en base deux
Pour trouver la représentation en base dix d’un entier naturel donné en base deux, on utilise

le fait qu'en base deusx, le chiffre le plus droite représente les unités, le précédent les paquets
de 2, le précédent les paquets de 2 x 2 = 2% = 4, le précédent de 2 x 2 x 2 =23 = 8, etc.

Exercice 7.15 (avec corrigé)

Trouver la représentation en base dix du nombre 11111111,

11111117 = (1 %29 + (1 x2T) + (1%x22) + (1 x 29) + (1 x 2%) + (1 x 2) + (1 x 25)
+(1x27) = 255.
Exercice 7.16

Trouver la représentation en base dix du nombre 10010110.

Exercice 7.17

C'est en 11110010000 qu'a été démontré le théoréme fondamental de l'infor-
matique. Exprimer ce nombre en base dix.

Exercice 7.18

Montrer qu‘avec un mot de n bits on peut représenter les nombres de 0 a 2"-1.

Exercice 7.19

Pour multiplier par dix un entier naturel exprimé en base dix, il suffit d’ajouter
un 0 a sa droite, par exemple, 12 x 10 = 120. Quelle est I'opération équiva-
lente pour les entiers naturels exprimés en base deux ? Exprimer en base deux
les nombres 3, 6 et 12 pour illustrer cette remarque.

Exercice 7.20

Quelle est la représentation binaire du nombre 57 ? Et celle du nombre 198 ?
Soit m un mot de 8 bits, n I'entier naturel représenté en binaire par le mot m,
m*le mot obtenu en remplagant dans m chaque 0 par un 1 et chaque 1 par
un 0 et n" I'entier naturel représenté en binaire par le mot m’, Exprimer n et n*
comme une somme de puissances de 2, montrer que n + n’ = 255. Montrer que
la représentation binaire du nombre 255 - n est obtenue en remplacant dans
celle de n chaque 0 par un 1 et chaque 1 par un 0.

Une base quelconque

On peut généraliser & une base quelconque les méthodes vues pour la
base cinq et la base deux.

.

7 — Représenter des nombres entiers et a virgule

4 Les octets

Dans la mémoire des ordinateurs les circuits
mémoire un bit sont souvent groupés par huit : les
octets. On utilise souvent des nombres exprimés
en notation binaire, c'est-a-dire en base deux, sur
un, deux, quatre ou huit octets, soit 8, 16, 32 ou
64 bits. Ceci permet de représenter les nombres de
0 a 11111111=255 sur un octet, de 0 a
1111.1111.1111 1111 = 65 535 sur deux octets, de
0 a 11111117 1117119111 1111 1111 1111 1111
=4294967 295 sur quatre octets et de 0 &
1111 11111911 19111 19111 1199 1111 1191 1111
MMM I I UM 1M1l =

18 446 744 073 709 551 615 sur huit octets.

Savoir-FaIRe Trouver la représentation en base 4 d’un entier naturel

donné en base dix

Pour écrire les entiers naturels en base £, on a besoin de £ chiffres. Quand on a = objets, on
les groupe par paquets de £, qu'on regroupe i leur tour en paquets de % paquets, etc. Autre-
ment dit, on fait une succession de divisions par £, jusqu'a obtenir un quotient égal 4 0.

103

Deuxieme partie — Informations

Exercice 7.21 (avec corrigé)

4 Base 16 Trouver la représentation en base seize du nombre 965.

En it Seiews -0 Besoin 0e 16 it 0. 1, 2. Réponse : 965 = 3¢5 (en base seize)

3,4,5,6,7, 8,9, puis a (dix), b (onze), c (douze),

d (treize), e (quatorze) et f (quinze). 965 | 16 60 |16 3 16
e~ = o= & o

Exercice 7.22

Trouver la représentation en base seize des nombres 6725 et 18 379.

Savoir-FaIRe Trouver la représentation en base dix d’un entier naturel
donné en base &

Pour trouver la représentation en base dix d’un entier naturel donné en base £, on utilise
le fait qu'en base £, le chiffre le plus a droite représente les unités, le précédent les
paquets de 4, le précédent les paquets de £ x £ = e précédent les paquets de
kxkxhk=B, etc.

Trouver la représentation en base dix du nombre 4e2c (en base seize).

de2c (en base seize) = (12 x 16%) + (2 x 167) + (14 x 162) + (4 x 16°) = 20 012.
Exercice 7.24

Trouver la représentation en base dix des nombres abcd (en base seize) et
281ef (en base seize).

‘ Exercice 7.25

Chercher sur le Web ce qu'est le systéme de numération Shadok. Est-ce un sys-
téme de numération a position ? Si oui, en quelle base et avec quels chiffres ?

104

7 — Représenter des nombres entiers et a virgule

La représentation
des entiers relatifs

Pour représenter les entiers relatifs en notation binaire, on doit étendre
la représentation aux nombres négatifs. Une solution est de réserver un
bit pour le signe de I'entier 2 représenter et d'utiliser les autres pour
représenter sa valeur absolue. Ainsi, avec des mots de 16 bits, en utilisant
1 bit pour le signe et 15 bits pour la valeur absolue, on spourrait repré-
senter les entiers relatifs de ~-111 1111 1111 1111 = -2 - 1) = -32 767
a 11111111111 1111 = 2 - 1 = 32 767. Cependant, cette méthode a
plusieurs inconvénients, 'un d’eux étant qu’il y a deux zéros, I'un positif
et 'autre négatf.

On a donc préféré une autre méthode, qui consiste a représenter un entier
relatif par un entier naturel. Si on utilise des mots de 16 bits, on peut repré-
senter les entiers relatifs compris entre -32 768 et 32 767 : on représente un
entier relatif x positif ou nul comme l'entier naturel x, et un entier relatif x
strictement négatif comme l'entier naturel x+210 = x4+ 65 536, qui est
compris entre 32 768 et 65 535. Ainsi, les entiers naturels de 0 4 32 767
servent a représenter les entiers relatifs positifs ou nuls, en vert sur la figure,
et les entiers naturels de 32 768 4 65 535 décrivent les entiers relatifs stric-
tement négatifs, en rouge sur la figure.

6

Lentier relatif -1 est représenté comme l'entier naturel 65 535, c'est-a-

dire parle mot 1111 1111 1111 1111.

Cette maniére de représenter les entiers relatifs s'appelle la notation en
complément & deux.

Avec des mots de seize bits, on écrit les entiers relatifs compris entre
215 = -32 768 et 21° - 1 = 32 767. Plus généralement, avec des mots de
n bits, on écrit les entiers relatifs compris entre 2" lepgml_1q.

* un entier relatif x positif ou nul compris entre 0 et 2”71 - 1 est repré-
senté par Pentier naturel x compris entre 0 et 277 -1 ;

¢ un entier relatif x strictement négatif compris entre —2" 1 er—1 est
représenté par I'entier naturel x + 2" compris entre 2”'1 et 27 - 1.
Exercice 7.26

Quels entiers relatifs peut-on représenter avec des mots de 8 bits ? Combien
sont-ils ? Méme question avec des mots de 32 bits et 64 bits.

105

Deuxieme partie — Informations

Savoir-rFAIRE Trouver la représentation binaire sur 7 bits d’un entier
relatif donné en décimal
On avu que :

« Sil'entier relatif x est positif ou nul, on le représente comme U'entier naturel x.

* S'il est strictement négatif, on le représente comme I’entier naturel x + 2".

Exercice 7.27 (avec corrigé)
Trouver la représentation binaire sur huit bits des entiers relatifs 0 et -128.

L'entier relatif 0 est représenté comme l'entier naturel 0 : 0000 0000.

'entier relatif-128 est représenté comme I'entier naturel -128 + 28 = -128
+ 256 = 128 : 1000 0000.

Exercice 7.28
Trouver la représentation binaire sur huit bits des entiers relatif 127 et -127.

Savoir-FAIRE Trouver la représentation décimale d’un entier relatif
donné en binaire sur 7 bits

Si cet entier relatif est donné par le mot 2, on commence par calculer P'entier naturel p
représenté par ce mot. Si p est strictement inférieur 2 2", C'est 'entier relatif représenté,
s'il est supérieur ou égal a 271 Tentier relatif représenté est p - 2.

Exercice 7.29 (avec corrigé)

Trouver la représentation décimale des entiers relatifs dont la représentation
binaire sur huit bits est 0000 0000 et 1000 0000.

Le mot 0000 0000 représente I‘'entier naturel 0 et donc I'entier relatif 0. Le mot
1000 0000 représente I'entier naturel 128 =27 et donc I'entier relatif 128 -
28 =128-256 =-128.

Exercice 7.30

Trouver la représentation décimale des entiers relatifs dont la représentation
binaire sur huit bits est 0111 1111 et 1000 0001.

Savoir-FAIRE Calculer la représentation p’de I'opposé d’un entier
relatif x a partir de sa représentation p, pour une représentation des
entiers relatifs sur huit bits

Si l'entier relatif x est compris entre O et 127, alors il est représenté sur huit bits par 'entier
naturel p = x et son opposé -xestmpréscntéparl’enﬁernaﬂu‘elp'=—x+28 =-x+256=

256 - p. Si lentier relatif x est compris entre 127 et -1, alors il est représenté par l'entier
naturel p = x+28 = x+ 256 et son opposé -x est représenté par 'entier naturel p’= -x = 256 - p.

106

7 — Représenter des nombres entiers et a virgule

Donc, sauf quand x = -128, dont 'opposé n'est pas représentable sur 8 bits, si un entier
relatif x est représenté par 'entier naturel p, son opposé -x est représenté par 'entier

naturel p’'= 256 - p= (255 - p) + 1.

Calculer 255 - p = 1111 1111 - p est facile, puisqu'il suffit, dans la représentation binaire
de p, de remplacer chaque 0 par un 1 et chaque 1 par un 0 (voir 'exercice 7.20). 11 suffit

ensuite d’ajouter 1 au nombre obtenu.

Exercice 7.31 (avec corrigé)

Calculer la représentation binaire sur huit bits de I'entier relatif 4, puis celle de
son opposé.

L'entier relatif 4 est représenté comme I‘entier naturel 4 = 0000 0100.

Pour calculer la représentation de son opposé, on remplace les 0 par des 1 et
les 1 par des0, ce qui donne 11111011. Puis on ajoute 1, ce qui donne
1111 1100. On peut vérifier que ce nombre est bien la représentation de
Fentier relatif -4, c'est-a-dire de I'entier naturel -4 + 256 = 252.

Exercice 7.32

Calculer la représentation binaire sur huit bits de I'entier relatif -16, puis de
son oppose.

Exercice 7.33

Montrer que le bit le plus a gauche vaut 1 pour les entiers relatifs strictement
négatifs et 0 pour les entiers relatifs positifs ou nuls.

Exercice 7.34

On considére des entiers relatifs sur 3 bits. Dessiner le cercle rouge-vert ci-
avant en placant les 8 nombres: 0, 1, 2, 3, -1, -2, -3, -4 a leur place. Relier les
nombres opposés : 1et-1, 2 et -2, etc. Quelle est I'interprétation géométrique
de la fonction qui a chague nombre associe son opposé ?

Représenter les entiers relatifs 96 et 48 en binaire sur huit bits. Ajouter les
deux nombres binaires obtenus en utilisant I'algorithme de |"addition binaire
du chapitre 18. Quel est I'entier relatif obtenu ? Pourquoi est-il négatif ?

Exercice 7.36

Expliquer comment faire une soustraction de deux nombres binaires sur huit
bits a partir du calcul de lI'opposé et de l'algorithme de I'addition du
chapitre 18. Calculer ainsi 15- 7.

107

Deuxieme partie — Informations

AugrpUs Lo Valeurs exceptionnelles

Ce codage prend en compte des valeurs

exceptionnelles : 4c0, - et MNaN (not a

number) qui est une valeur indéfinie. Ces

valeurs non numériques sont représentées res-

pectivement par les mots de 64 bits suivants :

® 011111111111 00000000000000000000000
00000000000000000000000000000

< 111111111111 0OOOOO0O0000000000O000000
00000000000000000000000000000

* TIMTITINMIIMIMIIIInIInTnInn
mnminnnmnmnImm

Ce codage permet également de représenter des

valeurs infinitésimales qui, sans étre nulles, sont

trop petites pour que I'on puisse calculer avec

elles.

La représentation
des nombres a virgule

Comme la notation décimale, la notation binaire permet aussi de repré-
senter des nombres a virgule. En notation décimale, les chiffres a gauche de
la virgule représentent des unités, des dizaines, des centaines, etc. et ceux i
droite de la virgule, des dixiemes, des centiémes, des milliémes, etc. De
méme, en binaire, les chiffres 4 droite de la virgule représentent des demis,
des quarts, des huitiemes, des seiziemes, etc. On peut ainsi représenter, par
exemple, le nombre un et un quart : 1.01. Toutefois, cette maniére de faire
ne permet pas de représenter des nombres trés grands ou trés petits comme
le nombre d’Avogadro ou la constante de Planck. On utilise donc une autre
représentation similaire 2 la « notation scientifique » des calculatrices, sauf
qu'elle est en base deux et non en base dix. Un nombre est représenté sous
la forme s 2" ol s est le signe du nombre, # son exposant et 7 sa man-
tisse. Le signe est + ou -, 'exposant est un entier relatif et la mantisse est un
nombre a virgule, compris entre 1 inclus et 2 exclu.

Par exemple, quand on utilise 64 bits pour représenter un nombre 2 vir-
gule, on utilise 1 bit pour le signe, 11 bits pour 'exposant et 52 bits pour la
mantisse. Le signe + est représenté par 0 et le signe - par 1. L'exposant 7
est un entier relatif compris entre -1022 et 1023 ; on le représente
comme l'entier naturel # + 1023, qui est compris entre 1 et 2 046. Les
deux entiers naturels 0 et 2 047 sont réservés pour des situations excep-
tionnelles (+¢<, -e=, NaN, etc.). La mantisse 7 est un nombre binaire a vir-
gule compris entre 1 inclus et 2 exclu, comprenant 52 chiffres apres la
virgule. Comme cette mantisse est comprise entre 1 et 2, elle a toujours un
seul chiffre avant la virgule et ce chiffre est toujours un 1 ; il est donc inu-
tile de le représenter et on utilise les 52 bits pour représenter les 52 chiffres

apres la virgule.

Savoir-FAIRE Trouver la représentation en base dix d’'un nombre
a virgule donné en binaire
On identifie le signe, la mantisse et I'exposant.

108

Exercice 7.37 (avec corrigé)

Trouver le nombre a virgule représenté par le mot
1100010001101001001111000011100000000000000000000000000000000000

7 — Représenter des nombres entiers et a virgule

Le signe est représenté par 1.

L'exposant est représenté par 10001000110. La mantisse est représentée par
100100111100001 1700000000000 000000000000000000000000.

Le signe du nombre est donc -. Le nombre 1000100 0110 est égal a 1 094 et
l'exposant du nombre est n = 1094 - 1023 = 71. Sa mantisse est :

1.1001 0011 1100 0011 1000 0000 0000 0000 0000 0000 Q000 0000 0000
1+ 1/2 + 1/2% + 1727 4 1728 « 1/2% & 1/210 4 17215 4 17216 4 17207
QY 428 4280 2B e 5 B s 7 4+ 225 24D J 2V

| = 206727/131072.

m

]

Le nombre représenté est donc -206 7271131 072 x 271 =-3.724... x 10?1,

Exercice 7.38
Trouver le nombre a virgule représenté par le mot :
0001000000111101001110010101100000000000000000000000000000000000.

Comment est représenté le nombre a virgule 271922 (qui est égal a
2,225... x 103%) 7

Exercice 7.40

Comment est représenté le nombre entier 7 ? Et le nombre a virgule 7,0 ?

Exercice 7.41

A combien de décimales environ correspondent 52 chiffres binaires apreés la
virgule ?

Exercice 7.42

Quel est le plus grand nombre a virgule que I'on peut représenter en binaire ?
Quel est le plus petit nombre a virgule, donc négatif, que I'on peut repré-
senter en binaire ? Quel est le plus petit nombre & virgule strictement positif
que I'on peut représenter en binaire ?

Exercice 7.43

Quelle précision perd-on si on divise par deux un nombre a virgule avant de le
remultiplier par deux ?

Exercice 7.44

A chaque multiplication de deux nombres & virgule, on arrondit le calcul en ne
gardant que 52 chiffres_binaires aprés la virgule, ce qui introduit une erreur
relative de |"ordre de 2°2. Quelle est la valeur de cette erreur en base dix ? Si
on fait plusieurs multiplications, ces erreurs s'accumulent. Quelle est I'erreur
relative d'un calcul qui est formé d'un million de multiplications, qui dure
quelques millisecondes sur un ordinateur usuel ?

109

Deuxieme partie — Informations

‘ Exercice 7.45
On considére le programme suivant :

double x, y;

X = 1.0;

y = x + 1.0;

while (y - x == 1.0) {

€D Si I'on calculait sur des nombres rationnels exacts, que se passerait-il lors de
I‘exécution de ce programme ?
€) Ecrire ce programme et |'exécuter. Que constate-t-on ?

€ Modifier le programme de facon a déterminer au bout de combien d’exé-
cutions du corps de la boucle il s"arréte, ainsi que la valeur de x a la fin de
cette exécution.

) Comment est représentée cette derniére valeur de x ? Etcelledey ?
) Proposer une explication de ce comportement.

' Exercice 7.46

On considére le programme suivant :

double a;

int n;

a =0.0;

forn=1; iy i=n+ 1) 1
a=a+0.1;
System.out.printin(a);}

€} SiI'on calculait sur des nombres rationnels exacts, que se passerait-il lors de
I'exécution de ce programme ?

€) Ecrire ce programme et |‘exécuter. Que constate-t-on ?

) Verifier que la représentation binaire de 0,1 est
0011111110111001100110011001100110011001100110011001100110011010.

€ Quel nombre décimal cette représentation désigne-t-elle en réalité ?

€ En déduire les représentations binaires de 0,2, 0,3 et les nombres décimaux
que cette représentation désigne en réalité.

{ Expliquer le résultat obtenu.

Ai-je bien compris ?

¢ En quelle base représente-t-on le plus souvent les nombres en informatique ?
Pourquoi ?

* Comment représente-t-on les nombres négatifs ?

¢ Comment représente-t-on les nombres 2 virgule ?

110

Repreésenter
des caracteres
et des textes

Les lettres 2 Toutes des nombres !

Dans ce chapitre, nous voyons comment sont représentés
les caracteres et les textes de toutes les langues du monde.

Nous expliquons pourquoi il existe plusicurs codes tels ASCII,
latin-1, latin-2, UTF-32, UTF-8. Nous présentons ensuite
les formats enrichis qui permettent de décrire la forme

des caracteéres et des textes, comme le font les logiciels

de traitement de texte.

Un exemple de format enrichi est le langage HTML.

Samuel Morse (1791-1872) est
I'inventeur d'un code, dans lequel
chaque lettre est exprimée par une
alternance de sons brefs symbolisés
par«.» et longs «—», utilisé pour
télégraphier des textes. La lettre « a »
y est exprimée par les sons « . —», la
lettre « b » par les sons «— ... », etc.
Artiste peintre, Samuel Morse s'est
intéressé aux telecommunications
aprés qu'en 1925, un message |ui
annongant que sa femme était
malade ne lui est pas parvenu a
temps. Comme nous le verrons au
chapitre 12, le code morse est a réfé-
rences de longueurs variables, mais
ce n'est pas un code préfixe.

Deuxieme partie — Informations

112

Nous nous intéressons, dans ce chapitre, 4 la représentation des textes,
c'est-a-dire des suites de caractéres, éventuellement enrichies d'informa-

tions typographiques.

La représentation
des caracteres

Puisqu'un texte est une suite de caractéres, nous commengons par nous
intéresser a la représentation des caracteres, c'est-a-dire entre autres choses
aux lettres minuscules et majuscules, aux chiffres, aux signes de ponctua-
tion et aux symboles mathématiques. Pour représenter ces caractéres, on
attribue un nombre a chacun.

Le code ASCII, par exemple, attribue le nombre 65 4 la lettre « A », le nombre
66 2 la lettre « B », le nombre 97 4 la lettre « a » et le nombre 98 a la lettre
«b». Il représente 95 caractéres : les 26 lettres minuscules, les 26 lettres
majuscules, les 10 chiffres, les 32 symboles ! "#$§% &’ () *+,—./:;<=>?
@ [\]~_"{|}~et1signe d'espace. Il représente aussi 33 autres symboles de
mise en page, par exemple le retour chariot qui signale la fin de la ligne et le
saut de page qui signale le passage a la page suivante. Le code ASCII repré-
sente donc 95 + 33 = 128 = 27 caractéres, par des nombres qui peuvent eux-
mémes étre représentés en binaire par des mots de sept bits. Ils sont en fait
représentés par des mots de huit bits, le premier étant toujours un zéro.

Le code ASCII était a I'origine congu pour des textes écrits en anglais,
comme l'indique son nom, American Standard Code for Information Inter-
change. 11 n'est pas adapté pour représenter des textes écrits dans d'autres
langues, méme celles qui, comme le francais, utilisent I'alphabet latin, car
ces langues utilisent des accents, des cédilles et autres signes diacritiques.
Cest pourquoi on a tout d'abord congu une extension du code ASCII, le
code /latin-1, qui contient 191 caractéres. Aux 128 caractéres du code
ASCII, qui sont représentés comme en ASCII, s'ajoutent les lettres « é »,
« }:: », « &», « C», « & », «fin «O» etc. qui permettent de représenter les
textes écrits dans la plupart des langues d’Europe de 'Ouest, méme si, pour
le frangais, le « ce » a été oublié. Il manque toutefois des lettres utilisées par
les langues d'Europe de I'Est, si bien qu'un autre format, le code /afin-2, a
été proposé pour ces langues. Ensuite, pour représenter les textes écrits en
grec, russe, chinois, japonais, coréen, etc., il a fallu proposer un format
universel : Unicode. Unicode recense pres de 110 000 caractéres et associe
un nom et un numéro a chacun. A priori, ce numéro se code sur 32 bits.

Cependant, Unicode existe en plusieurs déclinaisons, parmi lesquelles
UTF-32, dans laquelle chaque caractere est ainsi exprimé sur 32 bits, et
UTF-8, dans laquelle les caractéres les plus courants sont exprimés sur
8 bits et les moins courants sur 16, 32 ou 64 bits, utilisant une idée discutée
en détail au chapitre 12 & propos de la notion de compression.

Le format UTF-8 a vocation a devenir le standard, mais il ne l'est pas
encore : malgré les efforts des comités de normalisation, 'humanité n'a
pas encore réussi a se doter d’'un formart universellement accepté, si bien
qu'il est parfois nécessaire de traduire un texte d'UTF-8 en latin-1 ou de
latin-2 en UTF-8. Quand cette traduction n'est pas bien faite, les carac-
téres accentués sont remplacés par des caractéres bizarres.

Cependant, tous ces formats reposent sur une méme idée : associer un
nombre, c'est-a-dire un mot binaire, a chaque caractére. Tous ces for-
mats sont accessibles sur le Web.

La représentation
des textes simples

Un texte étant une suite de caractéres, on peut le représenter en écrivant
les caractéres les uns apres les autres.

Savoir-raire Trouver la représentation en ASCII binaire d’un texte

8 — Représenter des caractéres et des textes

En utilisant une table, on cherche le code ASCII de chaque caractére. Puis on traduit

chacun de ces nombres en représentation binaire.

Exercice 8.1 (avec corrigé)

Trouver la représentation binaire en ASCII du texte « Je pense, donc je suis. »

On cherche la table des codes ASCII sur le Web de maniére a traduire le texte,
caractére par caractére : 74, 101, 32, 112, 101, 110, 115, 101, 44, 32, 100, 111,
110, 99, 32, 106, 101, 32, 115, 117, 105, 115, 46. On exprime ensuite chacun de
ces nombres en binaire sur huit bits :

Q1001010 01100101 00100000 01110000 01100101 01101711001110011
011001017 00101700 00100000 0711007000171071111 01101771001100011
00100000 01101070 017001017 00100000 01110011 01110701 011071001
01110011 00101110.

Exercice 8.2

Trouver la représentation binaire en ASCII du texte « Cet exercice est un peu
fastidieux. »

113

Deuxieme partie — Informations

<

—

i

Savoir-rFalRE Décoder un texte représenté en ASCII binaire

On découpe la suite de bits en octets, on traduit chaque octet en décimal, puis on
cherche en utilisant une table, le caractére exprimé par chacun de ces nombres.

c

9

e

£

S

Exercice 8.3 (avec corrigé)

Trouver le texte représenté en ASCIl binaire par la suite de bits
01000011001001110110010101110011011101000010000001100110011000010
1100011011010010110110001100101.

On commence par découper la suite de bits en octets : 01000011 00100711
01100101 017170011 Q1110100 007100000 0711007110 01100001 01100011
01107001 077101100 01100101. Chaque octet représente un nombre entier - 67,
39, 101, 115, 116, 32, 102, 97, 99, 105, 108, 101. On cherche ensuite Ia table des
codes ASCII en ligne de maniére & traduire chacun de ces nombres en une
lettre : « C'est facile ».

Exercice 8.4

Trouver le texte représenté en ASCI binaire par la suite de bits
001100000111010001100101011101000111010000110001.

Exercice 8.5

Traduire en ASCII binaire votre phrase préférée, par exemple : « Le commence-
ment de toutes les sciences, c'est I"étonnement. » en oubliant les accents. Tra-
duire ensuite cette phrase en UTF-8 avec les accents.

Exercice 8.6

Traduire une phrase en ASCIl binaire, puis la passer a son voisin qui la décode.

—

Exercice 8.7
On suppose que les seize lettres qui suivent sont codées ainsi :

| @2 gvsd JO 9o

0000 0001 0010 0011 0100 0101

114

0110 0111 1000 1001 | 1010 1011 1100 1101 1110 | 1111

Décoder le message suivant : 1011 1100 1001 1111 0000 1010 1111 0111 1101
0110 0101 1111 0110 1100 1011 1110 1000, puis en se faisant éventuellement
aider d'une personne qui lit I'arabe ou en utilisant le mécanisme de traduction
de Google, déterminer s'il correspond a la phrase « tout en code binaire » ou
« les lettres deviennent des nombres ».

Exercice 8.8

On considére I'alphabet de 32 signes constitué des 26 lettres de I'alphabet, de
I'espace et de cing symboles de ponctuation : la virgule, le point, le point-virgule,
le point d'interrogation et le point d'exclamation. On représente les caractéres de
cet alphabet par un code binaire de cing bits présenté dans le tableau suivant. Sur
la derniére ligne, on a fait figurer la traduction décimale de chague code binaire.

8 — Représenter des caractéres et des textes

AB CDE'F GHI J KL MNDOZPMQRS TV VWX'Y 2 S o, il Al
0o fofofo|olofofofo][ofo]olfofolfo [t v o [v o [1 o ¢ 0 [t]t]e vt [t]
0 |0 |00 [0(0 (001 1T | |2 (¥ (1 |0v]|¥ |00 |0 (CG|010 (001 [T (T [T |0 (1T |1 |1
0 [0 {0 (0|1 |1 (1|1 (0|0 |0 {0 |1 (1]1 |10 |0 |0 (0 (1 |1 {1 |1 |00 |0 (0 |1 |1 [1 |1
0|0 (1|1 |0(0 (1 |1 |00 1 |8 O |O|T |7 |O|O|1 |7 |00 (1 |1 [0 (0|1 |1 |O 0|1 |1
e v |61 et (o1 (61 e |y e T e |1 [0 o1 (BT |0 Y O [T |8 |1 D |1 |8 |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

€ Quel est le troisieme bit du code de la lettre « P » ?

€ Décoder le message suivant : 00001011100110101001011101010010001.
€) Ecrire son prénom avec ce code.

£} Quels sont les caractéres qui commencent par deux 17

) Pourquoi n'y a t-il pas de caractéres en minuscule dans cet alphabet ?

() On considére I'opération qui consiste a transformer les 0 en 1 et vice-versa

dans chaque caractére. Recopier et remplir le tableau ci-aprés qui, a
chaque caractére, associe le caractére obtenu par cette transformation.

A B CDETFGHI1I J) KL MNOPI G QR STWUV WIXYZ o v, Eebip2NTE

| 2

£) On considére I'opération qui consiste a échanger le premier bit avec le dernier,
et le deuxiéme bit avec |'avant-dernier ; recopier et remplir le tableau ci-aprés
qui, a chaque caractére, associe le caractére obtenu par cette transformation.

A B CDEIFGHI J KL MNOEP QRIS T UV WXTYZ N O T
A Q '

Armenmion. Utiliser un code standard

Pour les exercices 8.7 et 8.8, nous avons inventé un code valable exclusi-
vement pour la durée de |'exercice. Pour partager des informations, il ne
faut jamais faire cela, mais utiliser un code standard, connu de tous.
Sauf, bien sar, si on veut garder le texte secret (voir le chapitre 12).

Exercice 8.9

Selon Pierre Lecomte du Noly, 01001100 01100101 00100000 01100010
01110101 01110100 00100000 01100100 01100101 00100000 01101100
01100001 00100000 01110011 01100011 01101001 01100101 01101110
01100011 01100101 00100000 01100101 01110011 01110100 00100000
01100100 01100101 00100000 01110000 01110010 01100101 01110110
01101111 01101001 01110010 00101100 ©0O0100000 00100000 01101110
01101111 01101110 00100000 01100100 01100101 00100000 01100011
01101111 01101101 01110000 01110010 01100101 01101110 01100100
01110010 01100101. Etes-vous d'accord avec lui ?

115

Deuxieme partie — Informations

La représentation
des textes enrichis

Les textes en ASCII ou en Unicode sont simplement des suites de
caracteres. Les éditeurs de texte sont les logiciels qui manipulent ces suites
de caractéres. Toutefois, quand on écrit un texte, on peut souhaiter lui
donner une forme spéciale, plus jolie, plus lisible, comme le fait un
imprimeur. On peut jouer sur la police de caractéres — Times, Courier,
etc. —, sur la taille des caractéres — 11 points, 12 points, etc. —, sur leur
forme — romain, italique, etc. —, leur graisse — maigre, gras, etc. On peut
aussi souhaiter découper un texte en chapitres et mettre en valeur les
titres des chapitres, etc. Or, les seules caractéristiques que I'on puisse
exprimer avec un code comme I’ASCII, par exemple, sont la casse d'une
lettre — minuscule ou majuscule — et le découpage en paragraphes, grace
au symbole retour chariot. Les traitements de texte sont les logiciels qui
permettent ces mises en pages plus élaborées.

Ceci a amené a enrichir ces formats, de maniére a :

1 qualifier certaines parties du texte, par exemple en mettant certaines
parties en gras ou en italique,

2 structurer le texte en divisions : un texte n'est pas uniquement une
suite de paragraphes, mais est hiérarchisé en parties, chapitres, sec-
tions, sous-sections...,

3 présenter certaines informations sous forme de listes et de tables,

4 permettre de faire référence a d’autres textes,

5 donner des informations sur le texte : son titre, son ou ses auteur(s),
sa date de création, sa langue, des mots-clés utilisés pour le recher-
cher parmi plusieurs textes, etc. Ces informations sur le texte, et non
du texte, sont appelées des méta-données.

Toutes ces considérations sont, bien entendu, valables aussi bien pour les
textes manuscrits ou imprimés que pour les textes traités par les ordinateurs.

Lun de ces formats enrichis, qui est utilisé en particulier pour écrire des
pages web est appelé le format HTML. En HTML, pour mettre un
passage en gras, on le délimite par les balises et et pour le mettre
en italique, on le délimite par les balises <i> et </i>. Ainsi le texte :

Ma <i>premiére</i> page web

s'affiche dans un navigateur :

116

8 — Représenter des caractéeres et des textes

I Ma premiére page web

Comme les parenthéses, les balises vont par deux : on ouvre le passage a
mettre en gras avec la balise et on le ferme avec la balise .

Une division du texte est délimitée par les balises <div> et </divs, ainsi le
texte :

<div>=Ma premiére page web

<div> comporte une premiére sous-division pour dire « Bonjour tout le
monde ! »</divs

<div> et une seconde qui finit par « A bientdt | »</divs

</div>

s'affichera dans le navigateur en rendant ces divisions explicites.

Comme les parenthéses, les balises peuvent s'emboiter les unes dans les
autres, mais pas se chevaucher.

On indique qu'un passage est un titre en le délimitant par les balises <h1>
et </hl> et que c'est un sous-titre en le délimitant par les balises <h2> et
</h2s.

De méme, les autres structurations du texte comme les énumérations ou
les tableaux sont exprimées par d’autres balises.

Quand on écrit un texte, il est fréquent de mentionner d’autres textes :
par exemple, de parler dans une lettre d'un livre que I'on a lu. Dans le cas
d’un texte manuscrit ou imprimé, on donne en général une référence du
texte cité, par exemple le titre du livre et son auteur, afin que le lecteur
puisse s'y référer s'il le souhaite. Quand on veut exprimer, dans une page
web, une référence 4 une autre page, on peut faire mieux que simplement
indiquer I'adresse de la page web en question (par exemple I'adresse
http:/Hr.wikipedia.org/wikifHypertext_Markup_Language) ; on peut changer 'appa-
rence du passage ou I'on fait la référence, pour indiquer au lecteur que s'il
clique sur ce passage, le navigateur affichera la page demandée. On uti-
lise pour cela les balises <a> et : on encadre la partie du texte 4 quali-
fier par ces deux balises et on indique a lintérieur de la balise <a>
I'adresse de la page référencée. Par exemple le texte :

Pour les détails sur le langage HTML, on pourra consulter <a href =

“http: //fr.wikipedia.org/wiki /Hypertext _Markup_lLanguage">la page
<isHypertext Markup Language de Wikipadia</i>.

qui affiche dans un navigateur :

Pour les détails sur le langage HTML, on pourra consulter la page
H ypertext Markuplanguage de Wikipédia.

117

Deuxieme partie — Informations

Sil'on clique sur le passage en bleu et souligné, le navigateur affiche la page
dont I'adresse est htip://frwikipedia.org/wikifHypertext_Markup Language. Un tel
passage sur lequel on peut cliquer pour accéder a une autre page s'appelle

un Jien, et un texte qui contient au moins un lien est un Aypertexte.

Les balises <body> et </body> délimitent le texte 4 afficher dans le naviga-
teur. On indique avant ces informations les méta-données relatives a la
page : son titre, le format utilisé pour les lettres accentuées, etc.

Voici, au bout du compte, un exemple de texte au format HTML :

<html>

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</meta>
<titlesUn exemple</title>

</heads

<body>
<hl>Un titre</hl>
<h2>Un sous-titre</h2>
<divsUn Tien</div>
<diveUn passage important</div>
</body>
</html>

Len-téte situé entre les deux balises <head> et </head> indique d’'une part
que le texte est exprimé en UTF-8, c’est 'objet de la ligne :

g | <meta http-equiv="content-type" content="text/html; charset=UTF-8">
Un titre B ——

Un sous-titre et d"autre part que le titre de la page est Un exemple.

Le contenu est situé entre les balises <body> et </body>. On y retrouve les
balises , , <i>, </i>, <hl>, </hl>, <h2>, </h2>, <div>, </div>, <a> et
 que l'on a décrites. Dans un navigateur, le texte s'affiche de la
maniére ci-contre.

Lin fien

L n passage important

Savoir-FaiRe Ecrire une page en HTML

Ecrire le texte contenu dans cette page. Structurer ce texte en divisions. Identifier les
titres de parties, les passages 2 mettre en gras, en italique, etc. et les références vers
d’autres pages. Ajouter les balises <body> et </body> autour du corps du texte, I'en-téte qui
contient les méta-données et terminer avec les balises <html> et </htmls.

Exercice 8.10 (avec corrigé)

Ecrire une page HTML qui présente les différents projets informatiques des
éléves d'une classe.

118

8 — Représenter des caractéres et des textes

<html>

<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8"></meta>
<title>Projets Ada Lovelace</title>

</head>

<body>

<hl>Les projets de la classe de TS1 du Lycée Ada Lovelace</hl>

<div>

Un programme qui joue
aux Backgammon

</div>

<div>

Un programme qui
compresse des images

</divs

<div>Un programme qui
calcule des intégrales sans peine

</div>
</body>
</html>

Exercice 8.11

Ecrire une page HTML qui présente la liste des concerts et des spectacles pré-
sentés dans un théatre,

Exercice 8.12

Changer le texte HTML Ma <i>premiére</i> page web pour que le mot
« premiére » apparaisse non en italique, mais en gras.

Exercice 8.13
Ce texte HTML est incorrect. Comment le corriger ?

I1 faut <i>comprendre/i> le codage des objets numériques pour les
maitriser.

Exercice 8.14

Dans ce texte, vers quel site web pointe le lien ?
| Votre compte bancaire présente une anomalie. Cliquer ici pour avoir de 1'aide.

Comment ce texte s'affiche-t-il dans un navigateur ? Quel est l'intérét de
regarder le source HTML de cette page avant de cliquer ?

Exercice 8.15

Donner le source HTML du texte suivant sachant que le texte en bleu et sou-
ligné est un lien vers la page http://vvww.monlivre.fripage? :

On pourra consulter la page suivante.

119

i e — Mionnat

Repreésenter
des images
et des sons

Pour décrire une image, commence par comprendre
comment ton eil la voit.

C’est encore avec des 0 et des 1 que I'on représente les images
et les sons, mais en grand nombre.

Pour décrire une image, on peut utiliser une représentation
vectorielle en déerivant des formes géométriques : un cercle,
une droite, etc., ou une représentation bitmap en quadrillant
I'image et en décrivant chaque case (pixe/). Noir et blanc,
niveaux de gris ou couleurs sont déerits par différents codages.

Les sons aussi sont échantillonnés en découpant le temps
durant lequel le son est émis.

Les images et les sons sont de trés longues suites de 0 et de 1,
nous introduisons dans ce chapitre les unités pour mesurer
la taille des fichiers.

k 4

Claude Shannon (1916 - 2001), a
montré en 1949, en s‘appuyant sur
des travaux antérieurs de Harry
Nyquist, que la fréquence d'échan-
tillonnage d'un son, et plus générale-
ment d’un signal, doit étre au moins
le double de la fréquence maximale
contenue dans ce son, pour que le
son puisse étre restitué a partir de
I'échantillen. Il a également montré
comment décrire les circuits électro-
niques par des fonctions booléennes
(voir le chapitre 13) et comment
exprimer toutes les fonctions boo-
léennes et arithmétiques a I'aide des
fonctions booléennes élémentaires
(voir le chapitre 10).

Deuxieme partie — Informations

O

®

\§

77

(

— |

~_1 1

I

122

La représentation
des images

Pour décrire I'image @, une possibilité est de dire : « cette image est
formée d'un cercle ». On peut méme étre plus précis et indiquer les coor-
données du centre du cercle et son rayon. Et, a partir de cette descrip-
tion, n'importe qui pourrait reconstituer le dessin.

On peut donc représenter cette image par trois nombres : deux pour les
coordonnées du centre et un pour le rayon. Une image formée de plu-
sieurs cercles serait de méme décrite par trois nombres pour chacun
d’eux. On peut représenter d'une maniére similaire un dessin formé de
cercles et de rectangles, en représentant chaque figure par une lettre,
« ¢ » pour un cercle, « r » pour un rectangle, suivi d’une suite de nombres
qui définissent les parametres de la figure. On parle alors de représenta-
tion symbolique, ou parfois de représentation vectorielle, d’'une image.

Néanmoins, cette méthode est peu pratique pour représenter I'image €.

Une autre méthode, qui a I'avantage de pouvoir étre utilisée sur n'importe
quelle image, consiste a superposer un quadrillage a I'image €.

Chacune des cases de ce quadrillage sappelle un pixel (picture element).
On noircit ensuite les pixels qui contiennent une portion de trait (€)).

Puis, il suffit d'indiquer la couleur de chacun des pixels, en les lisant de
gauche a droite et de haut en bas, comme un texte. Ce dessin se décrit donc
par une suite de mots « blanc » ou « noir ». Comme seuls les mots « noir »
ou « blanc » sont utilisés, on peut étre plus économe et remplacer chacun de
ces mots par un bit, par exemple 1 pour « noir » et 0 pour « blanc ».

Le dessin ci-avant, avec une grille de 10 x 10, se décrit alors par la suite
de 100 bits suivante :

| 0000000000001111110001100001100100000010010000001001000000100100000010
011000011000111111000000000000

Cette description est assez approximative, mais on peut la rendre plus pré-
cise en utilisant un quadrillage, non plus de 10 x 10 pixels, mais de
100 x 100 pixels. A partir de quelques millions de pixels, notre ceil n'est
plus capable de faire la différence entre les deux images. Cette maniére de
représenter une image sous la forme d'une suite de pixels, chacun exprimés
sur un bit, s'appelle une bitmap. C'est une méthode approximative, mais
universelle : n'importe quelle image en noir et blanc peut se décrire ainsi.

9 — Représenter des images et des sons

La notion de format

Nous verrons au chapitre 11 que quand on stocke un texte, une image,
un son, etc. par exemple sur un disque, on le stocke dans un fichier. Pour
le moment, nous avons juste besoin de savoir qu'un fichier est un mot,
c’est-a-dire une suite de 0 et de 1, auquel on a attribué un nom.

Si on trouve un fichier qui contient la suite de bits

000000000000111111000110000110010000001001000000100100000
0100100000010011000011000111111000000000000

il n'est pas a priori évident que cette suite exprime une image de
10 x 10 pixels. Il pourrait aussi s'agir par exemple d’un texte en ASCII,
ou de la représentation d’'un nombre 4 virgule. Pour cette raison, au lieu
d’appeler le fichier simplement cercle, on l'appelle cercle.pbm. Cette
extension pbm du nom indique que ce fichier est exprimé dans le format
PBM (Portable BitMap). Ce format est 'un des plus simples pour
exprimer des images. Un fichier au format PBM est un fichier en ASCII
qui se compose comme suit :

* les caractéres P1, suivis d'un retour i la ligne ou d'un espace,

¢ la largeur de I'image, en base 10, suivie d'un retour i la ligne ou d’'un

e ‘i ier Fichier PBl 1
1= . . » % ” Mon premier micnier M : cercle
* la hauteur de I'image, en base 10, suivie d’un retour a la ligne ou d’un 10 10

espace, 0000000000
« la liste des pixels, ligne par ligne, de haut en bas et de gauche a droite "
BREENEI 0y "SRC/PEE SRR e 82 : 0110000110
— les retours 2 la ligne et les espaces sont ignorés dans cette partie. 0100000010
En outre, aucune ligne ne doit dépasser 70 caractéres et toutes les lignes giggggggig
commengant par le caractére # sont des commentaires ignorés (voir le 0100000010
chapitre 3). Ainsi, le code ci-contre est un fichier au format PBM. Bien 0110000110
entenduy, le format PBM n’est que I'un des multiples formats de fichiers 0011111100

d'images. D'autres exemples sont PGM, PPM, PNG, JPEG, GIF, PS, PRG0N0
PICT, TIFF, etc.

123

Deuxieme partie — Informations

Savoir-FAIRE Identifier quelques formats d’images

Les différents formats qui permettent d’exprimer des images se distinguent les uns des
autres par :
« le type d'image : noir et blanc, en niveaux de gris, en couleurs, etc. ;
* la maniére d’exprimer ces images : sous forme vectorielle ou de bitmap ;
* le fait que ces images soient compressées ou non ;
¢ le fait que le format soit public ou secret : certains formats sont publics, d’autres sont
gardés secrets par leurs concepteurs, de maniére a contraindre les utilisateurs a utiliser
leurs logiciels pour traiter ces images ;
* le fait que ces formats soient propriétaires ou libres : pour utiliser certains formats, il
est nécessaire de payer des droits a leurs concepteurs, alors que pour d’autres non.

Exercice 9.1 (avec corrigé)

Chercher sur le Web les caractéristiques du format PBM.

C'est un format noir et blanc, bitmap, non compressé, public et libre.

Exercice 9.2
Chercher sur le Web les caractéristiques des formats GIF et PNG.

La représentation des images en niveaux
de gris et en couleurs

Certaines images, par exemple les photos en noir et blanc, utilisent, en
plus du noir et du blanc, diverses nuances de gris. On les appelle les
images en niveaux de gris. Un format, parmi d’autres, pour exprimer ces
images est le format PGM (Portable GreyMap). Pour exprimer une
image dans le format PGM, on choisit une valeur maximale, par
exemple 255, pour exprimer les niveaux de gris et on associe 4 chaque
pixel un nombre compris entre 0 et 255, 0 indiquant que le pixel est noir
et 255 qu'il est blanc. Les valeurs de 1 4254 expriment différentes
teintes de gris, de la plus foncée a la plus claire. Un fichier au format
PGM, ressemble beaucoup a un fichier au format PBM, c’est un fichier
en ASCII qui se compose comme suit :

¢ les caractéres P2, suivis d’un retour a la ligne ou d’'un espace,
* la largeur de I'image, suivie d’'un retour 4 la ligne ou d’un espace,
* la hauteur de I'image, suivie d’un retour i la ligne ou d’un espace,

124

9 — Représenter des images et des sons

¢ la valeur maximale utilisée pour exprimer les niveaux de gris, suivie
d’un retour a la ligne ou d’un espace,

* la liste des couleurs des pixels, ligne par ligne, de haut en bas et de
gauche a droite, séparées par des retours i la ligne ou des espaces.

Comme en PBM, aucune ligne ne doit dépasser 70 caractéres et toutes
les lignes commengant par le caractére # sont ignorées.

Pour comprendre comment représenter les images en couleurs, il faut
d’'abord s'intéresser 4 la maniére dont notre ceil les percoit. Notre ceil con-
tient des cellules, les cdnes, qui sont sensibles a la couleur, cest-a-dire a la
longueur d’onde de la lumiére qu'ils regoivent. Ces cones sont de trois sortes,
dont le maximum de sensibilité est respectivement dans le rouge (560 nm),
le vert (530 nm) et le bleu (424 nm). Quand notre ceil regoit une lumiére
monochrome émise par une ampoule jaune, les cones sensibles au rouge et
au vert réagissent beaucoup et ceux sensibles au bleu un tout petit peu, exac-
tement comme sil recevait un mélange de lumicres émises par deux
ampoules rouge et verte. Ainsi, en mélangeant de la lumiére produite par
une ampoule rouge et une ampoule verte, on peut donner a I'ceil la méme
sensation que sl recevait une lumiére jaune. Plus généralement, quelle que
soit la lumiére qu'il regoit, notre ceil ne communique a notre cerveau qu'une
information partielle : l'intensité de la réaction des cones sensibles au rouge,
au vert et au bleu. Et deux lumiéres qui stimulent ces trois types de cones de
maniére identique sont indiscernables pour I'ceil.

Ainsi, sur I'écran d'un ordinateur, chaque pixel est composé non pas
d’une, mais de trois sources de lumiére, rouge, verte et bleue ; en faisant
varier I'intensité de chacune de ces sources, on peut simuler n'importe
quelle couleur.

Par exemple, en mélangeant de la lumiére verte et de la lumiére bleue on
obtient de la lumiére cyan. En mélangeant de la lumiére rouge et de la
lumiére bleue on obtient de la lumiére magenta. Et en mélangeant de la
lumiére rouge et de la lumiére verte on obtient de la lumiére jaune.
« Cyan » est le nom savant d’un bleu turquoise et « magenta » celui d’'un
rouge tirant un peu sur le violet.

Ce procédé de représentation des couleurs dépend donc i la fois de la phy-
sique de la lumiére et de la biologie de la vision: si, comme certains
oiseaux, nous avions quatre types de cones, la physique de la lumiére serait
la méme, mais nous devrions cependant concevoir des écrans dans lesquels
chaque pixel contient, non pas trois, mais quatre sources lumineuses.

Un format, parmi d’autres, pour exprimer ces images est le format PPM
(Portable PixMap). Pour exprimer une image dans ce format, on choisit
une valeur maximale, par exemple 255, pour exprimer l'intensité des
couleurs et on associe a chaque pixel trois nombres, I'intensité en rouge,

125

Deuxieme partie — Informations

P3

100 100
255

237 127 16
237 127 16
237 127 16
237 127 16

P1

Un carré
10 10
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111
1111111111

126

Mon premier fichier PPM : orange

en vert et en bleu, chaque nombre étant compris entre 0 et 255. Un
fichier au format PPM, ressemble beaucoup 4 un fichier au format PBM
ou PGM ; cest un fichier ASCII qui se compose comme suit :
* les caractéres P3, suivis d’un retour 2 la ligne ou d’'un espace,
* la largeur de I'image, suivie d'un retour 2 la ligne ou d'un espace,
* la hauteur de I'image, suivie d’un retour a la ligne ou d’un espace,
* la valeur maximale utilisée pour exprimer 'intensité des couleurs,
* la liste des valeurs des couleurs, trois par pixel, dans I'ordre rouge,
vert, bleu, ligne par ligne, de haut en bas et de gauche a droite, sépa-
rées par des retours a la ligne ou des espaces.

Comme en PBM et en PGM, aucune ligne ne doit dépasser 70 caractéres
et toutes les lignes commengant par le caractére # sont ignorées.

Par exemple, en mélangeant du rouge et du vert en quantités égales, on
obtient du jaune. En augmentant la quantité de rouge, par exemple
rouge = 237, vert = 127, bleu = 16, on obtient du orange. On peut alors
écrire un fichier PPM qui représente un carré orange de 100 pixels sur
100 pixels, le triplet 237 127 16 devant étre répété dix mille fois, puisque
I'image est formée de dix mille pixels (voir ci-contre).

Cet exemple aide a comprendre pourquoi il y a des formats d'images
plus complexes que le format PPM : il y a de nombreux moyens d’éviter
de recopier dix mille fois le méme triplet de nombres. C'est ce que I'on
appelle compresser un fichier (voir le chapitre 12).

Savoir-FAIRE Numeériser une image sous forme d’un fichier

1 Identifier le type d'image & numériser (noir et blanc, en niveaux de gris ou en couleurs)
et choisir un format approprié.

2 Identifier la valeur de chaque pixel.

3 Identifier les autres informations que contient le fichier : taille de I'image, commen-
taires, etc. et la maniére dont ces informations sont exprimées dans ce format.

noir

Exercice 9.3 (avec corrigé)

) Lequel des formats PBM, PGM et PPM est adapté pour représenter un carré
noir de 10 pixels sur 10 pixels ?

€ Méme question pour un carré rouge de méme taille.

€) Comparer les tailles des fichiers obtenus.

&) Pour un carré noir, le format PBM suffit, puisqu’il n'y a ni niveaux de gris ni
couleurs, et le fichier est le suivant (voir ci-contre §)).

£) Pour un carré rouge, il faut obligatoirement recourir au format PPM, seul
capable de représenter de la couleur. Le rouge se représente par les trois
nombres 255 0 0 : intensité maximale pour le rouge et nulle pour le vert
et le bleu. On obtient le fichier €.

£} Le fichier représentant la seconde image est significativement plus gros
que celui représentant la premiére, puisqu’il faut indiquer trois octets par
pixel, au lieu d’un bit dans le cas du fichier PBM.

Exercice 9.4

Ecrire les fichiers de I’exercice 9.3 dans un éditeur de texte et les ouvrir avec un
logiciel de traitement d'images, par exemple Gimp. Attention, certains dessins
sont petits, il peut étre nécessaire de zoomer pour bien les voir.

9 — Représenter des images et des sons

Rechercher des informations sur la structure des fichiers GIF.

(2]
P3
Un carre rouge
| 10 10
255
25500
i 25500
25500
(100 Nignes identiques)

€) Combien de bits occupe la représentation d’un pixel dans ce format ?

£) Quelle information particulierement importante pour l'affichage de
I'image le fichier doit-il contenir et qui n‘était pas présente dans les for-

mats PEM, PGM et PPM ?

Depuis Georges Seurat et Paul Signac, a la fin du XIX® siécle,
les artistes exploitent cette possibilité surprenante
de suggérer des images, avec des taches monochromes. Ici un Mario
en carrelage, photographié rue au Platre, a Paris, en juillet 2011.

Auspus ol La synthése soustractive

Les imprimantes également simulent toutes les couleurs
en meélangeant trois types d'encre. Pourtant ces trois
encres ne sont pas rouge, vert et bleu, mais cyan,
magenta et jaune. Cela est di au fait que, contraire-
ment a un écran qui émet de la lumiére, une feuille de
papier ne fait que recevoir de la lumiére blanche (c’est-
a-dire un mélange de lumiéres de toutes les couleurs),
absorber certaines couleurs et refléter les autres. L'encre
rouge, par exemple, absorbe le vert et le bleu et refléte
le rouge. De méme, I'encre verte absorbe le rouge et le
bleu et refléte le vert. Si on mélange de I'encre rouge et
de I'encre verte, on obtient une encre qui absorbe le

Logo de DansTonChat.com en pixel art

rouge, le vert et le bleu et qui ne refléte rien : une encre

noire, et non jaune. C'est pour cela qu’en synthése sous-

tractive, on doit utiliser trois encres telles que :

= La premiére absorbe le rouge et refléte le vert et le
bleu : I'encre cyan.

* La deuxiéme absorbe le vert et refléte le rouge et le
bleu : I'encre magenta.

= La troisieme absorbe le bleu et refléte le rouge et le
vert : I'encre jaune.

Ce méme principe de synthése soustractive est celui

gu'emploient les peintres pour obtenir toutes les cou-

leurs en mélangeant, sur leur palette, trois couleurs pri-

maires.

127

Deuxieme partie — Informations

AUERFLUS L0 La représentation
des sons et la notation musicale

Cette maniére de représenter les sons par échan-
tillonnage se distingue de la notation musicale
utilisée depuis le XIII® siécle, qui permet de repré-
senter la durée, la fréquence et I'intensité des
notes de musique, chacune représentée par un
symbole sur une portée. Des systémes intermé-
diaires entre |'échantillonnage et la notation
musicale existent aussi, comme le format MIDI
(Musical Instrument Digital Interface) uti-
lisé pour représenter les sons produits par les ins-
truments de musique électroniques.

128

La représentation des sons

Un son est une variation de la pression de 'air au cours du temps. Une
maniére simple de représenter un son consiste a I'dchantillonner, c'est-a-
dire mesurer la pression 2 intervalles réguliers et le représenter comme la
suite des mesures obtenues. [’échantillonnage d’un son est une méthode
assez similaire au découpage d’'une image en pixels, sauf que le décou-
page s'effectue, non dans I'espace, mais dans le temps. Par exemple, si on
échantillonne 4 44 000 Hz, c’est-a-dire en faisant 44 000 mesures par
seconde, une sinusoide de fréquence 440 Hz, on fait cent mesures par
période et on obtient I'échantillon suivant :

P Al T
p ..Q' e,

En revanche, s1 'on échantillonne 4 300 Hz cette méme sinusoide, on
fait une mesure toutes les périodes et demie environ, et on obtient
I'échantillon suivant :

On comprend qu'il est possible de reconstituer la sinusoide dans le pre-
mier cas, mais pas dans le second. De maniére plus générale, on montre
que quand on échantillonne un son, il faut, pour que la reconstitution
soit possible, une fréquence d’échantillonnage au moins double de la fré-
quence la plus élevée contenue dans ce son.

En général, on échantillonne les sons 4 44 000 Hz, car le son sinusoidal le
plus aigu que notre oreille peut entendre est de 22 000 Hz environ, ce qui
implique que notre oreille ne peut pas distinguer deux sons qui donnent le
méme échantillon 4 44 000 Hz. Cette fréquence est relativement élevée ;
c’est pourquoi il faut plusieurs millions de bits pour représenter une minute
de son et les fichiers audio sont souvent compressés (voir le chapitre 12).

Cette méthode de représentation d’un son par échantillonnage est uti-
lisée dans de nombreux formats. Les plus simples sont RAW, WAV et
BWE, mais il existe de nombreux autres formats plus sophistiqués :
MP3, WMA, AAC, etc. Comme pour les images, ces formats se distin-
guent les uns des autres par la maniére dont le son est représenté, par le
fait qu'il soit compressé ou non, que le format soit public ou secret et
propriétaire ou libre.

La taille d’un texte,
d’une image ou d’un son

La taille d’une suite de O et de 1, que cette suite représente un texte, une
image ou un son, S exprime soit en Aifs, soit en ocfets, un octet étant égal

a 8 bits. Par exemple, la suite 0111 0001 00100111 a une taille de
16 bits, ou encore de 2 octets.

Comme les textes, les images et les sons sont souvent de longues suites ;
on peut exprimer leurs tailles en kilooctets, mégaoctets, gigaoctets ou
téraoctets. Comme en physique, un kilo (k) est un millier (10%), un
méga (M) un million (10%), un giga (G) un milliard (10?) et un téra (T)
mille milliards (10'%). Ainsi, une image d’'un mégaoctet est formée de
huit millions de bits. On utilise cependant souvent des préfixes similaires
qui expriment des nombres ronds, non en décimal, mais en binaire :

» un kilo (binaire) est 1 024 (219),

* un méga (binaire) 1 048 576 (220),

* un giga (binaire) 1 073 741 824 (2%),

« un téra (binaire) 1 099 511 627 776 (2*7).

9 — Représenter des images et des sons

Ausgpwsion La notation musicale
et la musique contemporaine

La comparaison des différentes méthodes de
représentation des sons permet de prendre cons-
dence de leurs spécificités. La notation musicale
présente |'avantage, sur les formats RAW ou
MP3, de pouvoir &re lue par un musicien. En
revanche, elle ne permet pas de représenter tous
les sons. Il est par exemple impossible de repré-
senter le bruit d’'une locomotive ou d'une porte
qui grince en duo avec un flexaton. Si les musi-
diens baroques ne pouvaient utiliser le bruit d'une
locomotive, ou méme le barrissement d'un élé-
phant, dans I'une de leurs compositions, les
magnétophones, puis les instruments électroni-
ques, ont permis aux compositeurs contempo-
rains de composer des Nocturne aux chemins
de fer et des Variations pour une porte et
un soupir, qui mettent en évidence certaines
limites de la notation musicale.

A puss Lo Préfixes

Pour distinguer ces préfixes des préfixes déd-
maux, certains ont proposé d'utiliser plutét les
préfixes kibi (Ki), mébi (M), gibi (Gi) et tébi (Ti).
Ainsi un mégaoctet (Mo) serait 1 000 000 octets
et un mébioctet (Mio) 1 048 576 octets. Ces pré-
fixes sont malheureusement peu souvent utilisés.

129

Deuxieme partie — Informations

Savoir-FAIRE Comprendre les tailles des données et les ordres
de grandeurs

Trois quantités peuvent entrer en jeu dans la taille d’un fichier de données :
1 le nombre de bits utilisé pour représenter une « unité » de donnée : pixel, caractére
alphanumérique, échantillon sonore, etc. ;
2 éventuellement, selon le format, la fréquence d’échantillonnage : nombre d’échan-
tillons par seconde, de pixels par centimétre, ete. ;
3 la taille de I'objet dans une unité concréte : durée du son en secondes, surface de
I'image en centimétres carrés, etc.

Exercice 9.6 (avec corrigé)

On enregistre un son pendant 10 min avec 10 000 échantillons par seconde et
16 bits pour chaque échantillon, sans compresser les données. Quelle est la
taille du fichier ?

La taille du fichier est 10 x 60 x 10 000 x 16 bits = 96 000 000 bits, soit
91,55 mégabits (binaire) environ.

Exercice 9.7

On enregistre une image 10cm x 10cm, avec 100 pixels par centimétre,
chaque pixel étant représenté par trois nombres entiers, chacun codé sur un
octet. Quelle est la taille du fichier ?

Exercice 9.8

Exprimer les capacités des exercices précédents en mégabits décimaux. Que
constate-t-on ? Ces presque 5 % de marge entre les capacités exprimées en
décimal et en binaire permettent a quelques constructeurs de gonfler un peu
les capacités des disques ou des mémoires gu’ils vendent. Voila une raison de
plus d'étre vigilant quand on lit les données techniques des produits que |'on
achéte.

Prendre une photo avec un petit appareil numérique, comme celui intégré a
un téléphone. Observer la taille du fichier obtenu. Calculer la taille de I'image
aprés s'étre renseigné sur le nombre de pixels de I"appareil et en supposant
qu’un pixel est exprimé sur trois octets. Comparer a la taille du fichier. En
déduire le taux de compression.

Recommencer avec dix photos en prenant soin de prendre a la fois des vues
tres riches, avec beaucoup de petits détails, et des vues sans rien : une feuille
blanche ou une photo sans flash dans le noir. Comparer les taux de compres-
sion obtenus.

130

Savoir-FaiRe Choisir un format approprié par rapport a un usage

ou un besoin, a une qualité, a des limites

Identifier les points suivants.

9 — Représenter des images et des sons

1 Les données doivent-elles étre stockées avec précision ou un certain taux de perte

est-il acceptable ?
2 Quelle taille est acceptable pour le fichier ainsi créé ?
2 Quels logiciels devront pouvoir accéder au fichier ?

Exercice 9.10 (avec corrigeé)

Pour une photographie de vacances, peut-on accepter un format avec perte ? Si
on doit envoyer cette photo dans un courrier électronique, quelle est la taille
maximale du fichier ? Quels logiciels utiliseront les récepteurs de cette image ?

Pour une photographie de vacances, on peut accepter une légére perte. Si le
fichier doit transiter par courrier, sa taille est limitée a quelques mégaoctets
chez la plupart des fournisseurs d’adresses et il faut en général rechercher une
taille moindre pour que le récepteur du fichier puisse y accéder en un temps
raisonnable. A priori, on ne sait pas quels logiciels seront utilises, il faut donc
employer un format lisible par le plus grand nombre de logiciels différents,
par exemple un format libre.

Exercice 9.11

Pour une courbe représentant les résultats d’'un TP de physigue que I'on sou-
haite présenter dans un exposé, peut-on accepter un format avec perte ?
Quelle est la taille maximale du fichier ? Quels logiciels utilise-t-on pour lire
cette image ?

Exercice 9.12

Ouvrir un logiciel de traitement d'images tel que Gimp et y charger une photo.
Observer dans le logiciel sa taille en mémoire en choisissant la fonction Pro-
priété de I'image dans le menu lmage. Cette taille en mémoire est le produit du
nombre de pixels et de la taille des pixels. En déduire la taille, en octets, de
chaque pixel. Pour une photo en couleurs, le résultat devrait étre 3 octets. Tou-
tefois, si le format de I'image n'est pas PPM, le résultat peut étre différent.

Enregistrer cette image sous différents formats et a différents niveaux de com-
pression (voir le chapitre 12). Comparer visuellement les résultats obtenus.
Observer si le taux de compression proposé correspond bien au rapport des
tailles des fichiers.

Ai-je bien compris ?

* Quelles sont les deux principales maniéres de représenter une image ?

+ Comment teprésente—t—on un son ?

« En quelle unité se mesure typiquement la taille d’un son ou d’une image ?

131

pyrignt © Zuls Eyroies.

Les fonctions
booléennes

Pour un oui... ou pour un non ¢ Oui ou non 2

Les fonctions booléennes sont utilisées partout : dans les
langages de programmation, en architecture des ordinateurs,
dans certains algorithmes cryptographiques...

Elles peuvent étre décrites par des tables ou de maniére
symbolique et nous montrons comment passer d’une
représentation a une autre.

Nous nous concentrons dans ce chapitre sur les fonctions 7on,
ef et ou qui permettent d’exprimer toutes les autres.

10

Dans le Manoir de Bletchey Park,
quartier général des services de ren-
seignement britanniques, Thomas
Flowers (1905-1998) a construit
pendant la seconde guerre mondiale
la machine Colossus, premier calcula-
teur électronique a utiliser le systéme
binaire. Si cette machine n‘était pas
encore un ordinateur, elle a cassé les
codes secrets (voir le chapitre 12) uti-
lisés par I'armée allemande et a été
un élément essentiel dans la victoire
alliée. Plusieurs milliers de personnes
ont travaillé a Bletchey Park, en parti-
culier Alan Turing.

Deuxieme partie — Informations

non(x)

x nonix)

0o 1

1 0

etlxy) ou(x.y)

x y ety x y oulxy)
0 0 0 0(o |0
01 0o g1 |1
10 0 170 |1
i T -

Notation

De méme que I'on ctit x + y e nombre q_ue-i'on
devrait, en toute rigueur, écrire +(x,y), on écrit
souvent x et y le booléen que I'on devrait écrire

etix.y).

134

Nous nous intéressons, dans ce chapitre, aux fonctions booléennes, qui
associent un booléen, 0 ou 1, 2 un ou plusieurs booléen(s).

L’expression
des fonctions booléennes

Comme les fonctions d'une variable réelle, les fonctions booléennes peu-
vent sexprimer de maniére symbolique: Iexpression
(non(x) et y) ou (x et z) est batie sur le méme modele que I'expression
(sin(x) x y) + (x % z), sauf que les variables x, y et z y représentent des
booléens et non des nombres réels.

En revanche, contrairement aux fonctions d’une variable réelle, ces fonc-
tions ne peuvent pas s'exprimer par des courbes. Néanmoins, elles peu-
vent s'exprimer d'une nouvelle maniére: par des tables car, a la
différence des nombres réels, les booléens sont en nombre fini.

Les fonctions rnon, et, ou

Les fonctions zon, et et ou sont définies par les tables ci-contre.

Le nom de ces fonctions vient de la convention de lire 0 comme « faux »
et 1 comme « vrai ».
* Ainsi, la fonction non transforme faux en vrai et vrai en faux : le boo-
léen non(x) est donc égal a 1 si et seulement si x n'est pas égal a 1.
* De méme, le booléen x et y est égal & 1 si et seulement si x est égal i 1
et yest égala 1.
* Le booléen x ou y est égal a 1 si et seulement si au moins x ou y est
égal 2 1.
On remarquera que, quand x et y sont tous les deux égaux 4 1, x ox y est
égal a 1. Ce ou est donc inclusif'; c’est le o qui apparait dans la phrase
« Je viendrai s'il y a un bus ou un métro. » et non le ou exclusif qui appa-
rait dans la phrase « Tu dois choisir: aller a la mer ou aller 4 la
montagne. » Pour le distinguer du précédent, ce ou exclusif sera noté oux.

L’expression des fonctions
booléennes avec
les fonctions non, et, ou

On peut exprimer de maniére symbolique toutes les fonctions boo-
léennes avec les seules fonctions #on, et et ou.

Avant de voir comment le faire dans le cas général, on commence par
exprimer cinq fonctions particuliéres, qui seront utilisées dans la suite.

La premiére est la fonction multiplexeur, mux. Cette fonction de {0,133
dans {0,1} est telle que si x vaut 0, alors mux(x,3,z) vaut y et si x vaut 1,

alors mux(x,y,z) vaut z. Elle est définie par la table ci-contre. Elle ;
sexprime avec les fonctions non, et et ou, par 'expression symbolique LBl
mux(x,y,z) = (non(x) et _y) ou (x et z). A
Pour le montrer, on calcule ligne a ligne la table de la fonction qui a «, y ﬂ_)
et z associe (non(x) et y) ou (x ef z) en ajoutant des colonnes cotrrespon- 0
dant aux calculs intermédiaires et on vérifie, ligne a ligne, que cette table 1
est celle de la fonction mux : r
x y z non(x) non(x)ety xetz (non(x)ety)ou(xetz) :
9 |00 |1 0 0 0 Pt
0 |01 |1 |0 0 0
[0 (1 [0 |1 [g |1
ERENE 1 0 1
[1 [0]o 0 0 o [0
BERERE 0 EE
1 [1ofo o oo
M EHERE 0 EE

Les quatre autres cas particuliers sont les quatre fonctions de {0,1} dans
{0,1}:

¢ la fonction constante égale 2 0 (€)) exprimée, de maniére symbolique, 1)
par A(x) = x ef non(x), x hix)

* la fonction constante égale a 1 (€)) exprimée par A(x) = x ou non(x), 0 0

¢ I' « identité » (@) exprimée par i(x) = x, sans utiliser aucune fonction, 1 0

¢ et la fonction non,

qui peuvent donc toutes les quatre étre exprimées avec des fonctions 7oz,
et et ou.

10 - Les fonctions booléennes

mux(x.y,z)
y z muxlxy2)
0 (0 |0
0 /1 o -
1 [0 |1
1 E
[0 o [o
o [1 |1
T o (@
T
(2] ©
kx) x i
E 0 0
1 |1 i

135

Deuxieme partie — Informations

On peut maintenant voir comment exprimer toutes les fonctions de
{0,1}" dans {0,1} avec les fonctions non, ef et ou. On proceéde par récur-
rence sur 7.

Dans le cas » = 1, la fonction a exprimer est I'une des fonctions 4, £, 7 et
non, qui peuvent toutes s'exprimer avec les fonctions non, ef et ou.

On suppose maintenant que l'on sait exprimer toutes les fonctions de
{0,1}" dans {0,1} avec les fonctions #non, ef et ou et on se donne une
fonction f de (0,11 dans {0,1}. On définit les fonctions getg de
{0,1}" dans {0,1} par :

9(31. ——y xn) = f(.k’]_,.,., an[-})
g [Xyan X)) = BXysas ¥al)

et on remarque que la fonction f peut s’'exprimer de maniére symbolique
avec les fonctions g, g’ et mux :

| FCXyrms Xpy Xpp1) = MUXCXpeqe GCX7 0 X))o @ (X0 X))

car, quand x,,1 vaut 0, le membre de gauche et le membre de droite sont
tous les deux égaux a g(xy,..., x,) et, quand x,,,q vaut 1, les deux mem-
bres sont égaux a g{xy,..., ,,).

Par hypothése de récurrence, on sait exprimer les deux fonctions get g'de
maniére symbolique avec les fonctions non, et et ou, et comme on sait aussi
exprimer la fonction mux, on peut exprimer la fonction fen remplagant les
fonctions mux, g et g’ par leur expression en termes de 7on, ef et ou.

Savoir-FAIRE Trouver une expression symbolique exprimant

une fonction a partir de sa table

On identifie le nombre d’arguments de la fonction f. On extrait de la table de la
fonction f les tables des fonctions g et g définies par :

f(xy,..y %X,,0)
f(xl,..‘. Xn,l)

g(k'l, = Xﬂ)
o I 6, € pt e o |
On trouve les expressions symboliques de ces deux fonctions et on construit celle de la
fonction f 4 partir de ces deux expressions symboliques et de celle de la fonction multi-
plexeur.

136

10 - Les fonctions booléennes

Exercice 10.1 (avec corrigé)

Trouver une expression symbolique exprimant une fonction ou exclusif (oux)
définie par la table ci-contre.

Le booléen x oux y est égal a 1 si et seulement si x est égal 3 1 ou y est égal
a 1, mais pas les deux.

Soit g la fonction définie par g(x) =xoux0 et g' la fonction définie par
g'(x) = x oux 1. La table de la fonction g est € et celle de la fonction g' est €.

On reconnait les tables de la fonction identité et de la fonction non. Donc
a(x) = x et g'(x) = non(x), d’ou on tire I'expression de la fonction oux :

* xoux y=mux(yxnon{x)) = fnon(y) et x) ou (y et non(x))

Exercice 10.2

Trouver I"expression symbolique de la fonction de « si et seulement si » définie
par la table ci-contre.

Lexpression des fonctions
booléennes avec
les fonctions non et ou

On veut maintenant montrer qu'il est possible de se passer de la fonction ez
et que toutes les fonctions booléennes peuvent s'exprimer avec les fonc-
tions zon et ou. Pour cela, il suffit de montrer que la fonction e elle-méme
peut sexprimer ainsi. Cette fonction s’exprime de la maniére suivante :

* x ety = non (non(x) ou non(y))
En effet, la table de la fonction qui 4 x et y associe non (non(x) ou non(y))

se calcule ligne 4 ligne (voir ci-contre) et on reconnait la table de la
fonction ez.

Exercice 10.3
Montrer que :
* xouy=non (non(x) et non(y))

En déduire que toutes les fonctions booléennes peuvent s'exprimer avec les
fonctions non et et.

- o o X

-

- O - O -

iy xeecy

0 0 |0

RE |'1

10 |1
EERE

1] (2]
9(x) x gk
0 01
1 10
X y xssiy
010 |1

01 0

1 '0_|_0_
HENE

non (non(x) ou non(y))
0

0

0

137

Deuxieme partie — Informations

138

x y S(xy
0 0 1
o1 |1
10]1
R

Exercice 10.4

La fonction de Sheffer exprime I'incompatibilité de deux valeurs booléennes.
Elle est définie par la table ci-contre.

Montrer que S(x, y) = non(x et y).

Montrer, réciproguement, gue non(x) = S{x,x) et x ou y = S(5(x.x),5(y.)). En
déduire que toutes les fonctions booléennes peuvent s‘exprimer avec la fonc-
tion de Sheffer uniquement.

Le choix d’exprimer les fonctions avec les fonctions non et ou n’est donc qu‘un
choix parmi d'autres.

Exercice 10.5

Quand deux interrupteurs sont en paralléle, la lumiére s"allume quand I'un
d’eux est fermé. Quand ils sont en série, la lumiére s'allume quand les deux
sont fermés. Quand ils sont en va-et-vient la lumiére s"allume quand les deux
sont fermés ou les deux sont ouverts. Donner la table de la fonction boo-
Iéenne dans ces trois cas et exprimer ces trois fonctions booléennes avec les
fonctions non et ou.

Exercice 10.6

Montrer que x et y = y et x. Est-ce la méme chose pour ou ? Calculer x et 7 et
x et 0. On appelle élément neutre d'une fonction binaire f, un élément n tel
que pour tout x, f(x,n) = f(n,x) = x et élément absorbant un élément a tel que
pour tout x, f(x,a) = f(a,x) = a. La fonction et a-t-elle un &lément neutre ? Et un
élément absorbant ? La fonction ou a-t-elle un élément neutre ? Et un élé-
ment absorbant ?

Exercice 10.7

Med est content si Bob et Jon sont tous les deux 13, mais sans Rut, ou si Rut est
la soit avec Bob, soit avec Jon. Construire une table avec en entrée la présence
de Rut, Bob et Jon et en sortie le booléen qui vaut 1 si Med est content.
Exprimer le choix de Med par une phrase plus simple.

Exercice 10.8

Soit f une fonction qui s'exprime de maniére symbolique avec la fonction ou
uniquement. Montrer que (0,0, ...,0) = 0. Montrer que la fonction non ne peut
pas s'exprimer avec la fonction ou uniquement.

Ai-je bien compris ?
* Quelles sont les deux principales maniéres de représenter une fonction booléenne ?
* Quelle est Ia table de la fonction non ? Celle de la fonction et ? Celle de la fonction ou ?

* Quelles sont les fonctions de base a partir desquelles il est possible de construire
toutes les autres fonctions ?

Structurer
’information

CHAPITRE AVANCE

Comment trouver son chemin dans une jungle
d’informations 2

Dans ce chapitre, nous voyons comment les informations
s'effacent, se conservent, s'organisent, selon les usages que
nous voulons en faire, de la notion de fichier en arborescence
et de liens a celle de base de données.

Nous insistons ici sur la notion de persistance des données
avec le danger de '’hypermnésie et discutons les enjeux autour
de la « gratuité » de la copie ou diffusion de l'information.

11

En 1989, Tim Berners-Lee (1955-) a
proposé un outil aux nombreux cher-
cheurs de I'Organisation euro-
péenne pour la recherche nucléaire
(CERN) pour partager de grandes
quantités d‘informations: insérer
dans des textes des liens vers d'autres
textes, situés sur d’autres ordinateurs,
auxquels on accéde a travers le
réseau Internet. Cette toile d'arai-
gnée de liens a vite trouvé un nom:
le Web. Tim Berners Lee est I'auteur
du langage HTML et du premier
navigateur : Nexus.

Deuxieme partie — Informations

La persistance des données

Reprenons l'idée de créer, comme au chapitre 3, un programme de ges-
tion d'un répertoire. Cependant, au lieu d'étre décidés une fois pour
toutes au moment de I'écriture du programme, les noms et les numéros
de téléphone de ce répertoire sont entrés par I'utilisateur du programme.

Par exemple :

a Alice 060606060606 « On ajoute un numéro.
Contact ajouté '

a Bob 0606060607 1 |0a'|ajouteunau!renumém.
Contact ajoute

i Alice q ‘Oﬂinteuoge le répertoire.
60606060606

q 4 On quitte le programme.

Le point qui nous intéresse ici est que, quand on tape la commande g, le
programme se termine et les données entrées sont perdues. Si on exécute
a nouveau ce programme, on doit 2 nouveau entrer tous les contacts, ce
qui n'est pas en général ce que l'on souhaite faire quand on utilise un
répertoire : on souhaite que les données soient persistantes, c’est-a-dire
qu'elles demeurent a un endroit accessible quand le programme se ter-
mine et méme quand on éteint 'ordinateur sur lequel ce programme est
exécuté, voire quand on remplace cet ordinateur par un autre.

Cette question de la persistance des données se pose 4 deux niveaux.
C’est d’abord une question de matériel : les valeurs stockées dans les
variables d’'un programme sont physiquement stockées dans la mémoire
de l'ordinateur (voir le chapitre 14) et ces données sont perdues quand
l'ordinateur est éteint et que la mémoire cesse d’étre alimentée en cou-
rant électrique. Cela a mené a concevoir des périphériques, comme les
disques, ou les clés de mémoire flash aussi appelées clés USB, qui peuvent
stocker des données de maniére persistante. La persistance des données
est ensuite une question de programmation, puisqu'il faut étre capable,
dans un programme, de stocker des données sur un tel périphérique et
d'utiliser de telles données.

140

11 — Structurer I'information

La notion de fichier

Un texte en ASCII ou en HTML, une image au format PBM, PGM ou
PPM, un son au format RAW ou MP3, un programme en Java ou en C,
sont des exemples de données que I'on souhaite faire persister, par
exemple en les stockant sur un disque.

Un disque stocke simplement une suite de bits, une suite de 0 et de 1. Le
nombre de bits qu'un disque peut stocker est appelé sa capacité: par
exemple un disque d’un téraoctet (binaire) peut stocker 2% mots de 8 bits,
soit un peu plus de huit mille milliards de bits. On peut donc facilement
stocker un texte, une image, un son ou un programme sur un tel disque.
Cependant, comme on souhaite souvent stocker sur un disque plusieurs
images, textes, etc., il faut diviser les huit mille milliards de bits dont le
disque est constitué en plusieurs espaces plus petits, que 'on appelle des
Sichiers. Un fichier est simplement une suite de 0 et de 1, 4 laquelle on
associe un nom. Par exemple, nous avons vu que le texte « Je pense, donc je
suis. » se représente en ASCII comme la suite de 184 bits suivante :

010010100110010100100000011100000110010101101110011100110110010
100101100001000000110010001101111011011100110001100100000011010
1001100101001000000111001101110101011010010111001100101110

I1 est possible de stocker cette suite de bits sur un disque en lui donnant
le nom cogito.txt, l'extension txt indiquant que cette suite de bits
exprime un texte en ASCIL.

Utiliser un fichier
dans un programme

Pour revenir 4 I'exemple du répertoire, on commence par stocker les
contacts dans un fichier repertoire.txt qui peut avoir été écrit a la
main, en utilisant un éditeur de texte ou un logiciel de traitement de
texte, ou été produit par un autre programme. Il a la forme suivante :

Alice
0606060606
Bob
0606060607

141

Deuxieme partie — Informations

142

Charles
0606060608
Djamel
0606060609
Etienne
0606060610
Frédérique
0606060611
Guillaume
0606060612
Hector
0606060613
Isabelle
0606060614
Jérome
0606060615

Le programme d'interrogation du répertoire est semblable & celui du
chapitre 3, a la différence prés que, au lieu de remplir les cases des
tableaux nom et tel avec des constantes, on transfére ces informations
depuis le fichier repertoire. txt dans les tableaux nom et tel. Pour cela,
on utilise une nouvelle fonction Isn.readStringFromFile (lire une
chaine de caractéres dans un fichier) en tout point semblable 4 la fonc-
tion Isn.readString que I'on a déja employée, sauf qu'au lieu d'attendre
qu'une chaine de caractéres soit tapée au clavier, elle la lit dans un fichier.
Avant de pouvoir lire dans un fichier, il faut établir un canal de commu-
nication avec lui ; c’est ce que I'on appelle ouwrir le fichier. Cela se fait
avec la fonction Isn.openIn qui prend en argument une chaine de carac-
teres, le nom du fichier, et qui retourne le canal de communication lui-
méme. Ensuite, la fonction Isn. readStringFromFile prend en argument
ce canal de communication et retourne la chaine de caractéres lue.
Quand la lecture est achevée, il faut fermer le canal de communication
avec I'instruction Isn.closeln. Le canal de communication lui-méme a
le type java.util.Scanner.

En résumé, le programme commence par allouer deux tableaux nom et
tel, ouvre un canal de communication f avec le fichier repertoire.txt,
lit les dix noms et les dix numéros de téléphone sur ce canal de commu-
nication, puis ferme ce canal.

nom = new String [10];

tel = new String [10];

f = Isn.openIn("repertoire.txt");

for (1 =0; 1 <= 9; 1 =1 %1) {
nom[i] = Isn.readStringFromFile(f);
tel[i] = Isn.readStringFromFile(f);}

Isn.closeIn(f);

11 — Structurer I'information

La suite du programme est similaire a celui du chapitre 3. On demande
un nom 2 l'utilisateur, au clavier cette fois-ci, on recherche ce nom dans
le tableau nom 4 I'aide d’une boucle while et quand on I'a trouvé, on
affiche le numéro de téléphone correspondant.

s = Isn.readString();

i-= 03

while (i < 10 && !Isn.stringEqual(s,nom[i])) {
i=1 4+ 1:}

if (0 < 10) {
System.out.printin(tel[i]);}

else {

System.out.printin("Inconnu™);}

On peut alors utiliser ce programme comme celui du chapitre 3 :

| Hector
0606060613

Exercice 11.1

Que se passe-t-il si I'on ouvre et ferme le fichier a chaque lecture ?

Exercice 11.2

Ecrire un programme de répertoire inversé, qui demande a I'utilisateur un
numéro de téléphone et recherche le nom associé.

Ecrire dans un fichier se fait de maniére similaire : on ouvre le fichier
avec l'instruction Isn.openOut qui prend en argument une chaine de
caractéres et qui retourne un canal de communication. On écrit dans le
fichier avec les instructions Isn.printToFile et Isn.printinToFile qui
prennent en argument un canal de communication et un objet a écrire,
chaine de caractéres, nombre entier ou nombre a virgule, et on ferme le
canal de communication avec l'instruction Isn.closeOut. Un canal de
communication qui permet, non de lire, mais d’écrire dans un fichier a le
type java.io.OutputStreanwriter,

Exercice 11.3

Adapter le programme, ci-avant, pour qu'il puisse enregistrer de nouveaux
numéros. Le fichier sera entiérement lu et réécrit a chaque modification.

143

Deuxieme partie — Informations

144

Organiser des fichiers
en une arborescence

Quand un disque, ou une clé de mémoire flash, contient plusieurs
fichiers, il est possible d’en afficher la liste. La maniére la plus courante
de le faire est de représenter chaque fichier par une icone dans une
fenétre, la forme de I'icone variant en fonction du format du fichier.

DISQUE - Navigateur de fichiers =T
Fichier Edition Affichage Allera Signets Aide
Précedent v i1 C A m v
Aller 3 : |/DISQUE |
= e
Isnjava joconde ppm repertoire.txt
| | =
ReperEu?e'.;ava vincijava
I — - o — -
5 elements, espace libre : 13,4 Gio

On peut aussi simplement afficher la liste des fichiers par ordre alphabé-
tique avec, dans une fenétre terminal, une commande qui s"appelle 1s ou
dir selon le systéme d’cxploitation.

Is
Isn.java joconde.ppm Repertoire.java repertoire.txt Vinci.java

Découper un disque en fichiers n'est toutefois pas suffisant, car il est
probable que ce disque contiendra rapidement plusieurs milliers de
fichiers : des fichiers professionnels, comme les programmes que I'on est
en train ou que l'on a terminé de développer, des fichiers personnels,
comme des photos de vacances, etc. Il est donc nécessaire d’organiser ces
fichiers. Une maniére de le faire est de regrouper ces derniers dans des
dossiers ; par exemple, tous les fichiers professionnels dans un dossier Pro
et tous les fichiers personnels dans un dossier Perso. A l'intérieur du dos-
sier Pro, on peut encore regrouper tous les fichiers qui concernent ce
cours dans un dossier Informatique, tous les fichiers qui concernent le
cours de physique dans un dossier Physique, etc. A l'intérieur du dossier

11 - Structurer I'information

Informatique, on peut regrouper tous les fichiers qui concernent le projet
d’écrire un programme de gestion de répertoire dans un dossier Réper-
toire, etc. Si bien que le disque contient un dossier Pro, qui contient un
dossier Informatique, qui contient un dossier Répertoire, qui contient
enfin le fichier Repertoire. java, et d'autres. On appelle une telle orga-
nisation des fichiers une organisation arborescente, car on peut la visua-
liser sous la forme d'un arbre.

Repericire java reperiowe txt Vinci java

Dans cet arbre, le chemin d’un fichier est la liste des noms des nacuds de
la branche qui va de la racine de I'arbre au fichier en question. Par
exemple, le chemin du fichier Repertoire.java est /DISQUE/Pro/
Informatique/Répertoire/Repertoire.java.

Savoir-raire Classer des fichiers sous la forme d’une arborescence

Faire la liste des fichiers a classer, les regrouper en catégories homogenes, donner un
nom significatif 2 chacune de ces catégories. Eventuellement les regrouper elles-mémes
en catégories homogénes. Créer les dossiers correspondant a chacune de ces catégories.
Mettre chaque fichier dans le dossier approprié.

145

Deuxieme partie — Informations

146

Exercice 11.4 (avec corrigé)

Classer, sous la forme d'une arborescence, les fichiers suivants :

» des photos de vacances,

* des photos de sa classe,

s une page de tableur présentant ses notes du trimestre,

* des pages de Wikipédia présentant des informations utiles pour son TPE,

* des copies de mails personnels,

= un fichier texte contenant les notes prises dans une réunion préparatoire
au conseil de classe,
des fichiers de musique pour son baladeur,

* des fichiers de musique téléchargés en préparation de son TPE.

On commence par donner un nom a chacune de ces catégories : photos de
vacances, photos de classe, etc. On peut regrouper les dossiers contenant les
photos de vacances, les mails personnels et les fichiers pour son baladeur, dans
un dossier Perso, les photos de la classe et les notes prises en réunion dans un
dossier Délégué, puisque ces différentes informations sont liées a cette fonc-
tion, les pages de Wikipédia et la musique téléchargée pour le TPE peuvent
étre rassemblées dans un dossier TPE, enfin on peut regrouper le dossier
Délégué, le dossier TPE et les notes du trimestre dans un dossier Pro. On
obtient alors I'arborescence suivante.

Exercice 11.5

Classer, sous la forme d’une arborescence, les fichiers qui trainent dans son
répertoire personnel sur les ordinateurs du lycée.

Liens et hypertextes

Lorganisation arborescente des fichiers n'est pas le seul moyen de struc-
turer l'information : elle est en concurrence avec d’autres méthodes,
parmi lesquelles 'utilisation de liens Aypertextes, notion qui n'a pas été
inventée pour structurer I'information, mais pour simplifier la notion de
référence dans une page web (voir le chapitre 8).

Ainsi, une page web, écrite au format HTML,

Le programme <a href =
“File:///DISQUE/Pro/Informatique/Répertoire/
Repertoire.java">Repertoire.java permet de rechercher un
nom dans un répertoire, exprimé sous forme d'un fichier texte,
comme le Fichier

<a href =

"file:///DISQUE/Pro/Informatique/Répertoire/
repertoire.txt">repertoire. txt.

visualisée dans un navigateur, apparait de la maniére suivante :

Le programme Repertoire.java permet de rechercher un nom dans un

répertoire, exprimé sous forme d’un fichier texte, comme le fichier

repertoire.txt.

Et en cliquant sur I'un des mots en bleu et soulignés, on accede directe-
ment au fichier Repertoire.java ou au fichier repertoire.txt. Il est
donc possible d’accéder a un fichier sans savoir précisément ou il se
trouve dans I'arborescence, simplement en cliquant sur un lien.

Cette remarque mene a une autre maniere d’organiser les fichiers sur un
disque, o1 la place du fichier dans I'arborescence est moins importante que
la maniére d'y accéder en cliquant sur un lien qui apparait dans une page.
Par exemple, au lieu de classer ses photos dans plusieurs dossiers, Anniver-
saire, Londres, etc. on laisse ses photos en vrac dans un dossier et on crée
une page web pour accéder 2 ses photos d’anniversaire, une autre pour
accéder aux photos de son voyage 4 Londres, etc. et une page web qui
permet d’accéder a chacune de ces pages. Cette idée est 4 la base du Web,
des logiciels de gestion de photos ou de fichiers son et des réseaux sociaux.

11 — Structurer I'information

EN savom us Structure d'arbre
et structure de graphe

Cette méthode permet aussi de dépasser facile-
ment les limites d'un disque unique et de réfé-
rencer des fichiers qui se trouvent ailleurs sur le
réseau. En outre, dans une structure arbores-
cente, si le dossier B est un élément du
dossier A, le dossier A ne peut pas a son tour
étre un élément du dossier B. En revanche, avec
des liens hypertexies, rien n‘empéche une
page A de contenir un lien vers une page B, qui
contient elle-méme un lien vers la page A. A
une structure d'arbre se substitue donc une
structure de graphe (voir le chapitre 22).

147

Deuxieme partie — Informations

SWETD'EXPosE Loi du 6 janvier 1978

Rechercher le texte de la loi du 6 janvier 1978
afin d'en présenter les idées principales.

148

Lhypermnésie

La persistance des données, qui est souvent souhaitée, a aussi quelques
effets indésirables. Par exemple, quand un ordinateur hors d’usage est
mis au grenier, son disque continue a contenir des milliers de textes,
courriers, photos, etc. et il est possible que cent ans plus tard, ces infor-
mations soient encore accessibles. Les ordinateurs sont hypermnésiques :
ils n'oublient rien. Souhaite-t-on réellement que ses petits enfants puis-
sent accéder a toutes ses photos, la liste des sites web que I'on a visités,
aux conversations que l'on a eues sur le chat, aux mails que I'on a

échangés, etc. ?

Bien entendu, ce phénoméne d’hypermnésie existait avant les
ordinateurs : dans le méme grenier, un album de photos ou une liasse de
lettres manuscrites pouvaient aussi voyager dans le temps. La différence
est qu'un album de photos ou une liasse de lettres se voit et contient peu
d'informations. Un disque de un téraoctet (binaire) peut stocker
20 caractéres, soit un million de livres de cing cents pages, sans que 'on
voie, au premier abord, ce qu'il contient.

Si 'on n'y prend garde, on ira peut-étre vers un monde dans lequel rien
ne s'oubliera : chaque geste laissera une trace dans tout état postérieur du
monde.

Cette hypermnésie des ordinateurs serait un probléme facile 4 résoudre
s1 les ordinateurs n'étaient pas connectés en réseau : chacun devrait sim-
plement trier les informations qu'il souhaite garder et celles qu'il sou-
haite détruire sur le disque de son ordinateur. Néanmoins, comme les
ordinateurs sont connectés en réseaux, les courriers échangés peuvent
aussi étre conservés par les fournisseurs de services de courrier. Il en va
de méme avec la liste des produits que I'on achéte et les magasins en
ligne, ou ceux dans lesquels on a une carte de fidélité, les images filmées
par les caméras de surveillance et les entreprises qui installent et gérent
ces caméras, efc.

Ces problémes, qui sont nouveaux, ont déja regu des solutions partielles,
mais bien des solutions sont encore 4 inventer. Parmi elles, certaines sont
individuelles : quand on met une photo en ligne, on peut la protéger par
un mot de passe ou en restreindre l'accés 4 un petit nombre de
personnes ; ainsi ¢lle ne sera pas archivée par les moteurs de recherche.
D’autres sont collectives: par exemple, l'article6 de la loi du
6 janvier 1978 (modifiée plusieurs fois) indique que des données 2 carac-
tére personnel ne peuvent étre conservées sous une forme permettant
I'identification des personnes concernées au-dela de la durée nécessaire
aux finalités pour lesquelles elles ont été collectées.

Alors que, dans les derniers millénaires, 'humanité a beaucoup cherché a
laisser des traces de ses actions, elle commence juste 4 prendre conscience
de I'importance qu'il y a aussi a parfois effacer certaines de ces traces.

Exercice 11.6

Chercher sur le Web la définition du « droit a I'oubli » que certains cherchent
a promouvoir comme un droit fondamental.

Pourquoi I’information
est-elle souvent gratuite ?

Si l'on achéte une pomme et si on la mange, cette pomme ne peut pas
aussi étre mangée par quelquun d'autre. De méme, si on achéte un sac
d& charbon pour Challﬂ-ﬂr sa maison, Ce sac dC Charbon nc pcut pas aussi
chauffer la maison de quelqu’un d’autre. Et si 'on achéte les services
d'un jardinier pour tondre sa pelouse, ce jardinier ne peut pas en méme
temps tondre la pelouse de quelquun d’autre. Une pomme, un sac de
charbon ou les services d’'un jardinier sont des biens dont la consomma-
tion par une personne exclut la consommation par une autre. On dit que
de tels biens sont rivaux. Jusqu'au XX siécle, presque tous les biens pro-
duits par 'agriculture et I'industrie étaient rivaux et notre économie, en
particulier notre notion de propriété, est construite pour la production,
I’échange et la consommation de tels biens.

Un fichier qui contient un texte, un morceau de musique, une image,
une vidéo ou un programme est, en revanche, un bien non rival. Reco-
pier un tel fichier ou le diffuser sur un réseau ne cotite pratiquement
rien, si bien que le fait qu'une personne écoute un morceau de musique
n'empéche nullement une autre personne d’écouter le méme morceau.
Linformation est, par nature, un bien non rival. Un livre, un CD, une
photo, un DVD, un CD-ROM sont des biens rivaux, mais non un texte,
une piéce de musique, une image, une vidéo ou un programme.

Si une mine produit un sac de charbon et le vend a une personne qui l'uti-
lise pour chauffer sa maison et quune seconde personne souhaite aussi
acheter un sac de charbon pour chauffer la sienne, la mine doit produire
un second sac de charbon, ce qui lui cotite de I'argent. De ce fait, la mine
n'a pas d’'autre choix que celui de vendre ce sac de charbon 2 la seconde
personne. En revanche, si une entreprise produit une vidéo pour une per-
sonne et quune seconde personne souhaite aussi regarder cette vidéo,

11 — Structurer I'information

Suero'expost La CNIL

Présenter la Commission nationale de I'informa-
tique et des libertés.

149

Deuxieme partie — Informations

150

'entreprise peut, en théorie, donner cette vidéo gratuitement a la seconde
personne, car, une vidéo étant un bien non rival, cela ne cotite rien de plus
a I'entreprise de laisser une seconde personne en profiter également.

Ce raisonnement méne cependant 4 un paradoxe : pourquoi le premier
client paierait-il la vidéo, il sait qu'il lui suffit d'attendre que quelqu’un
d’autre la paie pour étre le second ? Au cours de I'histoire, les producteurs
de biens non rivaux ont imaginé différentes maniéres de répondre a cette
question.

¢ Imiter le marché des biens rivaux, c’est-a-dire empécher les per-
sonnes qui ne le paient pas de consommer un bien, méme si cela ne
cofiterait rien de plus de les laisser le consommer. Ainsi I'accés a cer-
taines chaines de télévision est interdit aux personnes qui ne paient
pas un abonnement, méme si laisser ces personnes regarder ces
chaines ne cotterait rien de plus.

* Faire payer a chacun ce qu'il est prét & payer pour ce bien. Clest par
exemple le cas de logiciels qui sont payants pour les entreprises, mais
beaucoup moins chers pour les particuliers, voire gratuits pour les
étudiants.

* Faire payer a chacun ce qu'il souhaite payer. Clest le cas de certaines
radios dans le monde, qui sont gratuites mais rappellent fréquem-
ment 4 I'antenne que, si on ne leur envoie pas un chéque de temps en
temps, elles finiront par fermer.

. Echanger ce bien, non contre de 'argent, mais contre un bien dont
tout le monde dispose : du temps et de P'attention. Cest la réponse
des chaines de télévision ou des sites web qui sont gratuits, mais qui
« demandent » a leurs consommateurs d’accorder un peu de temps et
d’attention i des publicités.

* Distribuer un bien gratuitement, car cela crée de la demande pour un
autre bien, rival cette fois-ci. Ainsi, certaines entreprises distribuent
un logiciel gratuitement, mais font payer les cours pour apprendre a

. -
s'en servir.

» Faire payer tout le monde, consommateur ou non, c’est par exemple
le cas des chaines de télévision publiques, qui sont payées par un
impot spécial. Clest également le cas du service des pompiers qui est
payé par les impdts.

* Une derniére réponse est celles d’'entreprises qui développent un logiciel
pour leur besoins propres et qui ensuite laissent tout le monde en pro-
fiter et aussi... améliorer ce logiciel, ce dont elles bénéficient en retour.

Plusieurs de ces réponses ménent donc a distribuer gratuitement des
biens non rivaux, en particulier de I'information, ce quil est impossible
de faire avec des pommes, des sacs de charbons ou les services d'un jardi-
nier qui, avant d’avoir un prix, ont un coit.

ALerps Lol Les bases de données

Pour gérer de grandes quantités de données, par
exemple I'ensemble des réservations de billets de train
ou d'avion que doit gérer une compagnie ferroviaire ou
aérienne, il n"est pas possible d’utiliser une simple struc-
ture arborescente ou a base de liens hypertextes. On
doit utiliser des outils plus sophistiqués : un systéme de
gestion de bases de données et un langage de manipula-
tion de données, comme le langage SQL.

Le répertoire que nous avons construit ci-avant peut
étre défini comme un ensemble fini de couples formés
d‘un nom et d'un numéro de téléphone

R = {(nom = Alice ; tel = 0606060606),
(nom = Bob ; tel = 0606060607),
(nom = Charles ; tel = 0606060608),

(nom = Djamel ; tel = 0606060609),

(nom = Etienne ; tel = 0606060610),

(nom = Frédérique ; tel = 0606060611),

(nom = Guillaume ; tel = 0606060612),

(nom = Hector ; tel = 0606060613),

(nom = Isabelle ; tel = 0606060614),

(nom = Jérome ; tel = 0606060615)}
Un tel ensemble de couples, de triplets ou, plus généra-
lement, de n-uplets, s‘appelle une relation et un
ensemble de relations s'appelle une base de données.
Par exemple, si Alice, Bob, Charles, Djamel, Etienne, Frédé-
rique, Guillaume, Hector, Isabelle et Jéréme sont musi-
ciens, outre la relation ci-avant qui indique le numéro de
téléphone de chacun, on peut définir une autre relation
qui indique les instruments dont chacun joue.

I = {(nom = Alice ; instrument = alto),

(nom = Bob ; instrument = contrebasse),

(nom = Charles ; instrument = cor),

(nom = Charles ; instrument = trompette),
(nom = Djamel ; instrument = piano),

(nom = Etienne ; instrument = xylophone),
(nom = Frédérique ; instrument = harpe),
(nom = Guillaume ; instrument = basson),
(nom = Hector ; instrument = basson),

(nom = Hector ; instrument = contrebasson),
(nom = Isabelle ; instrument = hautbois),
(nom = Isabelle ; instrument = clarinette),
(nom = Jérdme ; instrument = violon)}

11 — Structurer I'information

et une autre qui indique la famille de chaque instrument
F = {(instrument = violon ; famille = cordes),
(instrument = hautbois ; famille = bois),
(instrument = clarinette ; famille = bois),
(instrument = xylophone ; famille = percussions), ..}
L'ensemble de ces trois relations constitue une base de
données.
Un systéme de gestion de bases de données est un systéme
qui permet de créer de telles relations, d'ajouter ou de
retirer des n-uplets dans une relation et de rechercher
des n-uplets. Pour cela, on formule des requétes dans un
langage de gestion de données.
Par exemple, on peut formuler la requéte de chercher
les instruments dont joue Hector, en cherchant les cou-
ples de la relation I dont la composante nom est Hector :
(nom = Hector ; instrument = basson)
(nom = Hector ; instrument = contrebasson)
On peut de méme chercher les joueurs de basson, en cher-
chant les couples de la relation I dont la composante ins-
trument est basson. On trouvera alors deux couples
(nom = Guillaume ; instrument = basson)
(nom = Hector ; instrument = basson)
On peut aussi fabriquer, a partir des relations R et 1, une
nouvelle relation qui est un ensemble de triplets formés
d’un nom, d'un numéro de téléphone et d'un instru-
ment. On appelle cela la jointure des relations R et I et il
est possible de chercher dedans comme dans les rela-
tions simples ; par exemple, on peut chercher ceux des
triplets de cette jointure dont la composante instrument
est basson. On obtiendra ainsi deux triplets
(nom = Cuillaume ; tel = 0606060612 ; instrument = basson)
(nom = Hector ; tel = 0606060613 ; instrument = basson)
ce qui est I'information dont on a besoin quand on
cherche a remplacer un bassoniste.
Quand on utilise un systéme de gestion de bases de don-
nées, on exprime donc, dans un langage de haut niveau,
des requétes dont I'exécution consulte et modifie des
fichiers. Toutefois, il n'est plus nécessaire de connaitre la
forme exacte de ces fichiers, car on n’y accéde plus que par
I'intermédiaire du systéme de gestion de bases de données.

151

Deuxieme partie — Informations

152

Auten pus Lo Transformer, stocker et transmettre des informations

L'algorithme de I'addition en base deux (voir le chapitre 18} illustre une
maniére d’utiliser les ordinateurs pour transformer des informations :
les informations 10 et 11 sont transformées en 101. Ce chapitre illustre
quant a lui une autre maniére d’utiliser des ordinateurs, non pour trans-
former des informations, mais pour les stocker et les retrouver plus tard.
Une troisieme utilisation des ordinateurs consiste a transmettre des
informations d'un endroit a un autre.

Les ordinateurs ont essentiellement été inventés pour transformer des
informations. Le stockage et la transmission sont venus plus tard et ont
apporté avec eux de nouveaux problémes et de nouveaux algorithmes,
par exemple pour interroger les bases de données ou pour mettre a jour
des tables de routage (voir le chapitre 16).

Ai-je bien compris ?
* Quelle est la différence entre une donnée persistante et une donnée non persistante ?
* Quels sont les différents moyens d’organiser les informations ?
* Que signifie le mot « hypermnésie » ?

Compresser,
corriger,
chiffrer

CHAPITRE AVANCE

« Lhgm, zmgm, zmfm. » (Jules César, 47 av. J.-C.)

Nous voyons maintenant comment modifier 'expression

des données dans le but d’économiser de 'espace, de corriger
des erreurs ou de les protéger. Pour cela, nous utilisons

des formats beaucoup plus sophistiqués que ceux vus

aux chapitres 8 et 9.

Pour la compression, nous expliquons comment définir un
dictionnaire des mots utilisés et les coder selon leur fréquence.
Pour détecter et corriger les erreurs, nous expliquons comment
utiliser la redondance d’informations et exploiter des bits de
contréle de cohérence. Pour le chiffrement, nous expliquons
les méthodes a clé et introduisons la notion de ¢/ publique — cl¢
privee.

Ronald Rivest (1947-), Adi Shamir
(1952-) et Len Adleman (1945-) ont
congu, en 1978, une méthode de chif-
frement, la méthode RSA, fondée sur
I'utilisation de deux clés: une clé
privée et une clé publique. La
méthode la plus rapide connue a ce
jour pour retrouver la clé privée a
partir de la clé publique est la décom-
position d‘un nombre entier en un
produit de facteurs premiers, calcul
qui demande un temps trés long,
quand le nombre a factoriser dépasse
quelques milliers de chiffres binaires.

Deuxieme partie — Informations

4 Compresser des informations

On appelle compresser des informations le fait
de les exprimer sous la forme d'une suite de bits,
avec un code choisi pour rendre cette suite aussi
courte que possible.

ALLER PLUS LOIN
Joindre le dictionnaire au message

Un dictionnaire étant construit sur mesure pour
chaque message, il faut I'adjoindre au message
pour rendre la lecture de ce demier possible. Ce
colit est cependant vite amorti quand le mes-
sage est long.

154

Pour représenter des informations, par exemple un texte, sous la forme
d’une suite de O et de 1, nous avons présenté les formats standards,
comme ASCII ou UTF-8 (voir le chapitre 8). Il est également possible
d'utiliser un format particulier pour rendre la suite de bits exprimant ces
informations moins volumineuse, ou intelligible méme en cas d’erreurs
de transmissions, ou au contraire inintelligible, sauf pour son destina-
taire. Un tel format s"appelle un code.

Compresser

La phrase « je pense, donc je suis. » peut se représenter en ASCII par la
suite 106, 101, 32, 112, 101, 110, 115, 101, 44, 32, 100, 111, 110, 99,
32, 106, 101, 32, 115, 117, 105, 115, 46 (voir le chapitre 8). Chacun de
ces nombres est exprimé sur 8 bits. Il faur donc 23 x 8 = 184 bits pour
représenter cette phrase en entier.

Toutefois, seuls 13 symboles sont utilisés dans cette phrase : le « c», le
«dnlecen,lecinlecjr,le«n» leconle«pr, le«sn lecun,
I'espace, la virgule et le point. On peut donc modifier le code, en repré-
sentant chaque symbole sur 4bits et il ne faut alors plus que
23 x 4 = 92 bits pour représenter cette phrase.

On peut faire encore mieux. Le mot « je » suivi d'un espace est répété
deux fois dans la phrase ; on peut donc représenter chaque symbole sur
4 bits, en convenant, de plus, que le mot entier « je » suivi d'un espace
est représenté également par une suite de 4 bits. Il suffit désormais de
19 x 4 = 76 bits.

Cette idée est 2 la base des méthodes de compression par dictionnaire. Un
dictionnaire est une fonction qui associe des suites de bits non pas a des
symboles isolés, mais a des suites de symboles. La suite de bits associée
par un dictionnaire a une suite de symboles est appelée sa référence. Rem-
placer, dans un texte, chaque suite de symboles par sa référence exprime
donc ce texte en binaire, et remplacer chaque référence par la suite a
laquelle elle est associée permet de retrouver le texte original. En asso-
ciant une référence aux suites longues et répétées dans le texte original,
on obtient une suite de bits plus courte que si on avait exprimé le texte
en binaire, caractére par caractére.

On peut encore améliorer le résultat en tirant parti des différences de fré-
quence d’apparition des symboles et suites de symboles. En effet, dans la
phrase « je pense, donc je suis. », le « s » est utilisé 3 fois, le « n », 'espace, le

12 — Compresser, corriger, chiffrer

« e » et la séquence de symboles « je » sont utilisés 2 fois chacun, tandis que
le«c», le «d»,le«i»,le«o»,le «p» le«u»,lavirglﬂe etlepointsont
utilisés 1 fois seulement. On peut donc réduire encore la taille du message
en utilisant des références plus courtes pour les suites les plus fréquentes et
plus longues pour les suites les plus rares, par exemple :

«s»: 000
«c»: 00100
«d»:00101
«i»: 00110
«0»:00111
«e»:010
«je »:011
«p »: 1000
«u»: 1001
«,»:1010
«.»:1011
«n»:110
« »:111

Ainsi, la phrase « je pense, donc je suis. » se représente par la suite de
69 bits suivante : 0111000010110000010101011100101001111100010
01110110001001001100001011. Un code qui utilise ainsi des références
de longueurs différentes est appelé un code de Huffman.

Quand une suite de bits représente un texte en ASCII, la découper en
symboles est facile, puisque chaque symbole est représenté sur huit bits.
En revanche, quand les symboles sont représentés par des références de
longueurs différentes, la tiche est plus ardue. Par exemple, en Morse, ou
la lettre « e » se code par « . » et]a lettre « i » par « .. », la suite « .. » peut
ou bien représenter le message « i » ou bien le message « ee ». On dit que
le code de la lettre « e » est un préfixe de celui de la lettre « i », car c’est le
début du code de la lettre « i ». Le code Morse est donc ambigu et il est
nécessaire d'utiliser un séparateur pour lever cette ambiguité : « .. » pour
«i», et«./.»pour «ee », ce qui a 'inconvénient d’allonger la représen-
tation du texte, alors qu'on cherche précisément 2 la raccourcir.

Cependant, avec le code ci-avant, on peut se passer de séparateurs, car
aucun symbole n’a pour référence un préfixe de la référence d’'un autre
symbole. Ainsi, quand on décode la suite 0111000010110000
01010101110010100111110001001110110001001001100001011 par
exemple, aucun symbole nayant pour référence 0, 01, 0111 ou 01110, le

155

Deuxieme partie — Informations

156

premier symbole codé ne peut étre que « je » dont la référence est 011.
Une fois ce premier symbole décodé, on peut enlever sa référence de la
suite de bits & décoder et décoder le symbole suivant : aucun symbole
n‘ayant pour référence 1, 10, 100 ou 10000, le deuxiéme symbole ne peut
étre que « p », dont la référence est 1000, et ainsi de suite.

Exercice 12.1

Un indicatif téléphonigue international est un indicatif que I'on doit ajouter
devant un numéro de téléphone, quand on appelle ce numéro depuis un
autre pays. L'indicatif de la France est 33, celui de la Chine est 86, celui des
Etats-Unis 1, celui de Monaco 377, etc. Expliquer pourquoi le code d'un pays
n'est jamais un préfixe du code d'un autre pays.

Lutilisation de dictionnaires et de références de longueurs différentes
sont les deux idées a la base des algorithmes de compression les plus cou-
rants, comme ZIP utilisé par le logiciel gzip.

Savoir-FAIRE Utiliser un logiciel de compression

Il est judicieux de compresser un fichier quand :
e ce fichier est de taille importante,
* il n'est pas déja dans un format compressé, comme MP3,
¢ il comporte beaucoup de répétitions, comme une image avec de grandes zones unies,
= on n'a pas besoin d'y accéder souvent,
« on doit stocker ce fichier dans un espace limit€ ou le transmettre 2 travers un réseau a
faible débit.
On peut, par exemple, utiliser le logiciel gzip, distribué avec Linux. On compresse un
fichier fichier.txt avec la commande gzip fichier.txt ;le fichier fichier.txt est
remplacé par le fichier fichier.txt.gz, que l'on décompresse avec la commande
gunzip fichier.txt.gz.

Exercice 12.2 (avec corrigé)

Créer un fichier a. txt formé de la lettre « a » répétée mille fois et un fichier
alea.txt formé de mille lettres minuscules tirées au hasard. Compresser ces
deux fichiers avec le programme gz ip. Comparer les tailles des fichiers.

Le programme suivant affiche mille lettres tirées au hasard.

| for (i = 1; i <= 1000; i =1 + D {
System.out.print(Isn.asciiString ((int)
Math.floor(Math.random() * 26 + 97))):1

1s -1 a.txt

- 1001 ..

1s -1 alea.txt
-~ 1001 ..

12 — Compresser, corriger, chiffrer

gzip a.txt
gzip alea.txt

1s -1 a.txt.gz
.
| 1s -1 alea.txt.gz
I P

Les deux fichiers a.txt et alea.txt ont la méme taille: 1001 octets. En
revanche, le premier se compresse en un fichier de 36 octets et le second en un
fichier de 652 octets.

Exercice 12.3

Créer deux fichiers PGM, contenant des images de méme taille, I'une unie et
I'autre aléatoire. Compresser ces deux fichiers avec le programme gzip et
comparer les tailles des fichiers.

Exercice 12.4
On veut déterminer le type de fichiers textes sur lequel la méthode ZIP est la
plus efficace.
€) La compression ZIP est-elle importante ou non sur un fichier contenant :
= un texte littéraire,
= un extrait d'annuaire téléphonique,
* des caractéres tapés au hasard,
= |a liste des publicités diffusées sur une chaine de télévision pendant une
journée,
= un fichier trés court : quelques caractéres seulement.

€ Créer ou récupérer sur le Web de tels fichiers et tester ses prédictions a
I'aide d'un logiciel de compression, par exemple gzip.

Compresser avec perte

Les techniques de compression des informations présentées ci-avant
sont sans perte d'informations : en décompressant les informations com-
pressées, on retrouve exactement les informations originales. Il existe
d'autres techniques de compression dites avec perte d'informations : au
prix d’une infime différence entre les informations originales et les infor-
mations compressées puis décompressées, on arrive 4 un codage moins
volumineux encore.

Un exemple simple est celui d'une image entiérement blanche, a l'excep-
tion d’un pixel noir. Cette image peut étre approximée par une image
entitrement blanche: a I'eeil nu, la différence est invisible et cette

157

Deuxieme partie — Informations

158

seconde image se laisse beaucoup mieux compresser. Cette idée est uti-
lisée dans les algorithmes de compression usuels comme JPG pour les
images ou MP3 pour les sons.

Exercice 12.5

En utilisant le logiciel Gimp, ouvrir une image au format PNG, puis I'enregis-
trer au format JPG en qualité de 40% (avec Enregistrer sous). Ouvrir les deux
images et les comparer a I'ceil nu. Voit-on des différences ? Quvrir ensuite en
tant que calques les deux images au format JPG et PNG. Dans le mode de cal-
ques, par défaut réglé a Normal, choisir maintenant le mode Différence, qui
compare les deux images en affichant la valeur absolue de la différence de la
valeur de chaque pixel d'une image et de I'autre. Qu'observe-t-on ? Sachant
que PNG est un format de compression d‘image sans perte et que JPG est un
format de compression avec perte, que peut-on en déduire ? Effectuer la
méme manipulation en comparant I'image au format PNG et l'image au
format JPG avec une qualité 20, puis une qualité 90. Observer comment la
taille du fichier JPG varie et comment la différence avec I'image au format
PNG augmente ou diminue.

Exercice 12.6

Un exemple courant de compression des informations est |'utilisation de la
moyenne pour compresser la suite de notes d'un éléve au cours d’un trimestre.
Cette compression est-elle avec ou sans perte ? Quels sont les avantages et
inconvénients de cette méthode ? Proposer des méthodes de compression
alternatives qui atténuent ces inconvénients.

Corriger

Les réseaux transportent de grandes quantités d'informations (des cen-
taines de téraoctets par seconde) et les mémoires, DVD, BluRay, dis-
ques, mémoire flash, permettent souvent de stocker des téraoctets. Avec
de telles quantités d’'informations, il est inévitable que se produisent
quelques erreurs dues au bruit sur la ligne de transmission, a des rayures
d'usure sur un disque ou 4 des composants électroniques défaillants.
C'est pourquoi des algorithmes pour détecter et corriger ces erreurs ont
été inventés.

Une méthode simple pour détecter et corriger une erreur dans une suite de
bits est d'y introduire une forme de redondance, en répétant chacun des bits
plusieurs fois. Ainsi, au lieu de transmettre sur un réseau la suite de bits
10110110, on transmet la suite de bits 111000111111000111111000, oix
chaque bit est répété trois fois. Pour retrouver le message onginal, il suffit
de lire les bits recus trois par trois, en remplagant les triplets 000 par des 0
et les triplets 111 par des 1. Si 'un des triplets requ n'est ni 111 ni 000, par
exemple si c’est 010 ou 001, on peut étre certain qu'une erreur s'est glissée.

On peut méme corriger l'erreur : les 0 étant majoritaires, le triplet original
était sans doute 000, et 'on peut interpréter le triplet 010 ou 001 par 0. Ce
code permet donc de détecter et corriger toutes les erreurs, a condition
qu'il y ait au plus une erreur par triplet. En revanche, si plusieurs erreurs
sont commises sur le méme triplet, elles peuvent passer inapergues ou étre
mal corrigées. Cette méthode fonctionne done bien, mais elle est cotiteuse
car la longueur du message est triplée.

Dans certains cas, détecter les erreurs sans les corriger est suffisant. Par
exemple, quand on transmet un message sur un réseau, la machine qui
regoit le message a souvent la possibilité de le redemander a celle qui I'a
envoyé, sil est erroné. Une maniére peu colteuse pour détecter des
erreurs dans une suite de bits transmise est d’ajouter un bif de contrile
tous les 100 bits transmis, indiquant si le nombre de 1 dans ce paquet de
100 bits est pair (0) ou impair (1). La longueur des messages est ainsi
augmentée de 1% seulement. Si une erreur se produit lors de la trans-
mission des 101 bits, c’est-a-dire si un O est remplacé par un 1, ou un 1
par un 0, la parité du nombre de 1 est changée et I'erreur est détectée.
En revanche, si deux erreurs se produisent dans la méme suite de
101 bits, elles passeront inapercues.

Dans d’autres cas, il est nécessaire de corriger les erreurs. Par exemple,
quand on lit un DVD et que I'on détecte une erreur, on veut pouvoir la
corriger au vol et non demander au spectateur d’aller acheter un autre
DVD pour voir la fin du film. Une méthode de correction des erreurs
moins colteuse que le triplement des bits décrit ci~avant consiste a ajouter
seulement 20 bits de contrdle tous les 100 bits, de la maniére suivante : on
organise le paquet de 100 bits en un tableau de 10 lignes sur 10 colonnes
et on ajoute un bit de contrdle par ligne et un bit de contréle par colonne,
soit 20 bits au total. Ce bit indique simplement si le nombre de 1 dans la
ligne ou la colonne est pair ou impair. Quand on regoit le message, si on
détecte une erreur dans la ligne / et une erreur dans la colonne ¢, on sait
que le bit erroné est celui qui se trouve dans le tableau 4 la ligne /et 4 la
colonne c; il suffit, pour corriger le message, de remplacer ce bit par un 1
si c’'est un 0 ou par un 0 si cest un 1. Si on détecte une erreur dans une
ligne, mais aucune erreur dans les colonnes, ou le contraire, cest que
Perreur porte sur le bit de contrdle lui-méme et il n'y a donc rien 4 corriger
dans le message. Cette méthode demande donc d'allonger le message de
20 % et elle permet de corriger toutes les erreurs 2 condition qu'une erreur
au plus se produise dans chaque suite de 120 bits.

12 — Compresser, corriger, chiffrer

Code correcteur d'erreurs

On appelle code correcteur d’erreurs un code
qui permet de retrouver les informations codées
méme en cas d'erreurs de transimission, de lecture
ou d'écriture.

AlgResion Longueur des suites

Plutét que des suites de 100 bits, on peut uti-
liser des suites de 10 bits ou de 1 000 bits. Plus
la suite est longue, plus la méthode est éco-
nome, mais plus la probabilité de voir deux
erreurs se produire dans la méme suite, et donc
passer inapergues, est élevée.

159

Deuxieme partie — Informations

4 Sdreté et sécurité

Dans la section précédente, nous avons présenté
des méthodes qui permettent de protéger les infor-
mations contre des erreurs accidentelles. Cela
s'appelle augmenter la sdreté des informa-
tions, c'est-a-dire la protéger des erreurs involon-
taires, telles les emeurs de transmission. A
I'inverse, on cherche dans cette section & aug-
menter la sécurité des informations, C'est-a-
dire a la protéger contre l'action de personnes
malveillantes.

4 Chiffrer

On appelle chiffrer des informations le fait de les
exprimer sous la forme d'une suite de bits, avec un
code choisi pour rendre cette suite aussi inintelli-
gible que possible, sauf pour son destinataire.

160

Exercice 12.7

On utilise la méthode décrite précédemment pour transmettre 16 bits. Par
exemple, pour transmettre le message 0011010111010111 on construit le
tableau :

T T
| Colonne de controle

lofo]1]1]0
[o]1]o]1]o0
| 11012
' lo[1[1[1]1
Ligne de controle E! il [o]o]

et on transmet la suite 0011010111010111 0011 1100.
De combien de bits de controle a-t-on besoin ?

Montrer que si on recoit le message 00710?0111010?11 00121100, o les « ? »
représentent des bits inintelligibles, il est possible de reconstituer entiérement
les données qui ont été envoyées, y compris les bits de controle.

Est-il possible de reconstituer le message original si on regoit la ségquence
suivante : 0?210?0111010?1100171100 ?

Montrer que le message suivant : 101001111001001000010100, transmis sui-
vant la méme méthode, est incohérent. Expliquer cette incohérence. Comment
y remédier ?

Chiffrer

Une méthode pour protéger les informations contre les actions d'une
personne malveillante qui veut y accéder alors quelles ne lui sont pas
destinées consiste 2 les chiffrer.

Cette idée de chiffrement est ancienne puisquion sait que Jules César
avait déja mis au point un algorithme pour transmettre des ordres a ses
armées de maniere secréte. Pour cela, il utilisait le code de César, qui con-
sistait 2 remplacer chaque lettre d’un message par celle située trois lettres
plus loin dans I'alphabet : les « a » étaient replacés par des « d », les « b »
par des « e », etc. Ainsi « Veni, vidi, vici » se chiffrait en « Zhgm, zmgm,
zmfm » — attention, il 'y a pas de « j », de « u », ni de « w» en latin.

Cette méthode n'est en fait pas trés bonne. D'une part, une fois qu’on la
connait, on peut déchiffrer tous les messages trés simplement. D’autre
part, méme si on ne connait pas la correspondance entre les lettres, celle-
ci est facile a deviner, car la fréquence des lettres, dans une langue
donnée, est 2 peu prés constante d’un texte 4 un autre. Ainsi, si le mes-

sage est en frangais, il suffit de remarquer que la lettre « h » est la plus
fréquente dans les messages chiffrés pour deviner que cette lettre est le
code de la lettre « e », lettre la plus fréquente en frangais.

Des méthodes plus robustes ont donc été développées. Une d'elles est /a
méthode du masque jetable, dans laquelle les deux interlocuteurs se mettent
d’accord, avant d’échanger un message, sur une o qui définit les bits du
message que U'expéditeur laissera identiques et ceux qu'il inversera, c'est-a-
dire remplacera par un1 si cest un 0 ou par un 0O si cest un 1. Par
exemple, pour échanger un message long de huit bits, les interlocuteurs se
mettent d’accord sur le fait que 'expéditeur le chiffrera en inversant le pre-
mier, le deuxiéme, le troisiéme, le septieme et le huitieme bit et en laissant
les autres inchangés. Ainsi le message 01101101 sera chiffré en 10001110.
Le récepteur du message, connaissant lui aussi la clé, n'aura qu'a inverser
les mémes bits pour retrouver le message original : 01101101,

La clé qui indique quels bits laisser en I'état et quels bits inverser est elle-
méme exprimée par une suite de bits: O signifiant quon laisse le bit
inchangé et 1 indiquant qu'on I'inverse. Ainsi, la clé ci-avant s’exprime par
la suite de bits : 11100011. Une clé, dans cette méthode, sappelle aussi un
masque. Chiffrer le message consiste 2 effectuer un ou exclusif, bit 2 bit,
entre le message et le masque. En effet, effectuer un ou exclusif entre un
bit du message et un 0 du masque laisse ce bit inchangé (0 oux 0 =0,
1 oux 0 = 1) et effectuer un ou exclusif entre un bit du message et un 1 du
masque inverse ce bit (Ooux1=1, 1 0ux 1 =0). Cette méme opération
permet de retrouver le message original 4 partir du message chiffré.

Cette méthode a été employée par les diplomates et les services secrets
depuis le début du XX siécle, mais elle présente plusieurs inconvénients.
Le premier est que le masque doit avoir la méme longueur que le message
lui-méme, il doit étre complétement aléatoire et il ne doit jamais étre réuti-
lis¢, d'ott le nom de masque jetable. Cette méthode demande donc de fabri-
quer des masques aléatoires de trés grande taille, ce qui est plus difficile qu'il
n’y parait. Un second probléme est que ce masque doit étre secrétement
échangé entre les interlocuteurs, avant la transmission du message, ce qui
est difficile. Si une personne malveillante arrive 4 intercepter un masque au
cours de cet échange, elle pourra déchiffrer les messages échangés.

Cela a mené i la conception de méthodes alternatives qui ne reposent
pas sur 'échange préalable d’une clé secréte entre les interlocuteurs : les
méthodes a clé publique — clé privée.

Une métaphore aide a saisir le principe de ces méthodes : deux per-
sonnes, Uexpéditeur et le destinataire, souhaitent échanger un message
confidentiel, mais elles n'ont pas la possibilité de se mettre d’accord au
préalable sur une clé secréte. Une possibilité est que le destinataire
envoie par poste a 'expéditeur un cadenas ouvert dont il garde la clé.

12 — Compresser, corriger, chiffrer

161

Deuxieme partie — Informations

162

Lexpéditeur met son message dans une boite, qu'il ferme avec le cadenas
requ, et envoie cette boite au destinataire, qui n'a plus qu'a ouvrir le
cadenas avec la clé qu'il a gardée. A aucun moment, il ne s'est séparé de
la clé, si bien que ni le facteur, ni personne a I'exception du destinataire,
n’a le moyen d’ouvrir la boite. Le message reste donc confidentiel, si 'on
est certain que le cadenas utilisé est bien celui du destinataire.

Le fait de pouvoir fermer un cadenas sans avoir la clé qui permet de 'ouvrir
est ce qui permet a cette méthode de fonctionner. Les méthodes a clé
publique — clé privée reposent sur un mécanisme similaire : la possibilité de
chiffrer un message sans disposer de la clé qui permet de le déchiffrer.

Une telle méthode recourt 4 deux clés : une o/ publique, diffusée a tous
par le destinataire pour le chiffrement des messages, et une c/é privée,
qu’il garde secréte, permettant de les déchiffrer. On peut schématiser ce
mécanisme ainsi :

Le destinataire : L'expéditeur :
envoie la dé publique —
chiffre son message avec cette clé publique
— envoie le message chiffré
reqoit le message chiffré
et le déchiffre avec la clé privée

La méthode a clé publique —clé privée la plus utilisée est la méthode
RSA, qui doit son nom a celui de ses inventeurs : Rivest, Shamir et
Adleman. Dans cette méthode, la clé privée est formées de trois nom-
bres, d, e et z tels que pour tout entier w inférieur a n, (w’ % n)d% n=w,
ol 'opération % est le reste de la division euclidienne. La clé publique
correspondante est formée des nombres ¢ et # uniquement.

Un message 4 transmettre est d"abord exprimé sous la forme d’une suite
de bits, que I'on interpréte comme un nombre entier w, inférieur a .
Lexpéditeur le chiffre en w’= w® % », puis envoie ce message chiffré w’
au destinataire, qui le déchiffre en calculant w'?% n, qui est donc égal a
(9% n)? % n, Cest-a-dire 2 w, le message original. Pour chiffrer un
message, I'expéditeur n'a pas besoin de connaitre la clé privée, car le
nombre 4 nest utilisé que dans la phase de déchiffrement.

Si une personne malveillante a accés aux nombres e et 77 et 2 un message
chiffré w) elle peut essayer de déduire 4 de ¢ et 7 ou directerment trouver un
nombre w tel que @ % n=w. Lun et 'autre de ces calculs sont possibles,
mais ils sont trés longs, pour peu que ¢ et # soient assez grands. Les méthodes
les plus rapides que I'on connaisse aujourd’hui demandent plusieurs années

de calcul, quand 7 est de ordre de quelques milliers de chiffres binaires.

12 — Compresser, corriger, chiffrer

Les méthodes a clé publique — clé privée sont donc, en théorie, d'un niveau
de sécurité inférieur aux méthodes i clés secrétes : quand on connait la
méthode de chiffrement et un message chiffré w, on peut, en théorie,
essayer de chiffrer tous les messages w possibles, jusqua en trouver un qui
se code en w' Toutefois, cela demande en pratique un temps de caleul
énorme. Clest donc un inconvénient négligeable 4 coté de I'avantage que
présente le fait de ne pas avoir besoin d’échanger secrétement une clé.

Auerpus om Construire une clé RSA

Pour construire une clé RSA, il suffit de choisir deux
nombres premiers et distincts p etg, par exemple
p = 3017642249 et g = 6644055791. On choisit ensuite un
nombre d premier avec (p-1)(g-1), par exemple
d = 2596516757 et un nombree tel que (ed) % ((p-
1) (g - 1)) = 1, par exemple e = 35661169403325998333.
On pose ensuite n=pg, dans cet exemple
n = 20049383459634713959. La clé privée est formée des
nombres, d, e et n et la clé publique des nombres e et n
unigquement.
On démontre alors que pour tout entier w inférieur a n,
(w® % n)nr % n = w. Pour cela, on montre que —w est
un multiple dep, en utilisant le petit théoréeme de
Fermat : si p est un nombre premier et w un nombre qui
n‘est pas un multiple dep alors W' %p=1. La
démonstration ne demande que quelques lignes. On
montre de méme que w*9-w est un multiple de g.
Comme p et g sont deux nombres premiers et différents,
w _w est un multiple de n=pq. Donc % n=w,
c’est-a-dire (We % n)9 % n = w.
La méthode connue la plus rapide pour déchiffrer un
message, quand on ne connait pas la clé privée, consiste
a la déduire de la clé publique en factorisant le
nombre n en un produit de deux nombres premiers, on
obtient ainsi p et g, donc (p- 1) (g - 1), puis en connais-
sant (p-1)(g-1) ete, on peut retrouver d. Toutefois,
factoriser un nombre de quelques milliers de chiffres
binaires demande plusieurs années de calcul.

Ausmpiis om Authentifier

Les méthodes a clé publique - clé privée permettent
aussi & une autorité d'authentifier un utilisateur, c'est-a-
dire de vérifier son identité. Pour cela, il lui suffit de
détenir la clé publigue de la personne a authentifier et
de vérifier qu'elle détient bien sa clé privée en lui fai-
sant décoder un message.

L'utilisateur : Lautorité :

détient la clé privée ; détient la clé publique ;

demande a étre —

authentifié ;
fabrique un message ;
chiffre ce message
avec la clé publique ;

« envoie le message ;

déchiffre le message

avec la dlé privée ;

envoie le message — vérifie si le message de test

de test décodé ; a été déchiffré.

On voit donc ici que seul un utilisateur qui détient la clé
privée peut déchiffrer le message de test, ce qui garantit
I'authentification, si on fait I'hypothése que la clé
publique utilisée est bien celle de I'utilisateur, et non
celle d'un imposteur.

163

Deuxieme partie — Informations

164

Exercice 12.8

Utiliser la méthode du masque jetable pour transmettre un nombre a
4 chiffres a son voisin.

Que se passerait-il si on découvrait un algorithme rapide pour factoriser un
nombre entier en un produit de nombres premiers ?

Exercice 12.10

Pour retirer de I'argent avec une carte de retrait, on doit entrer un code secret
compris entre 0000 et 9999 et la carte est avalée au bout de trois erreurs:
quelle est la probabilité de réussir a utiliser une carte sans en avoir le code ? Et
si on pouvait, au bout de deux essais, aller essayer la carte dans un autre
distributeur ?

Exercice 12.11

Pour retirer de I'argent avec une carte de retrait, on doit entrer un code secret
compris entre 0000 et 9999. On suppose que |'on peut essayer autant de codes
que I'on veut, mais avec un délai de 1 s entre le premier et le deuxiéme essai,
10 s entre le deuxiéme et le troisieme, 100 s entre le troisiéme et le quatrieme,
etc. Au bout de combien de temps est-on sir de pouvoir trouver le code ?
Quel est le temps moyen pour le trouver ? Cette méthode est utilisée pour
protéger les serveurs contre les attaques par des logiciels qui testent tous les
mots de passe possibles pour s‘authentifier.

Exercice 12.12

Expliquer la méthode d'authentification présentée dans |'encadré, avec la
métaphore du cadenas, qui fait office de clé publique, et sa clé privée.

Exercice 12.13

Dans un univers imaginaire, Aicha est la seule personne a savoir factoriser
I'expression x? + a x + b, mais tout le monde sait développer I'expression (x -
u) (x - v). Imaginer une méthode qui permet a Aicha de recevoir d'une autre
personne des messages chiffrés. Cette méthode permet-elle a Aicha d'envoyer
des messages chiffrés ? Permet-elle |'authentification d'Aicha ou des autres
personnes de ce monde imaginaire ?

Ai-je bien compris ?
* Qulest-ce que compresser des informations ?
» Qu'est-ce qu'un code correcteur d’erreurs ?
* Qu'est-ce que chiffrer des informations ?

Machines

Dans cette troisieme partie, nous voyons que derriére les
informations, il y a toujours des objets matériels : ordinateurs,
réseaux, robots, etc. Les premiers ingrédients de ces machines sont
des portes booléennes (chapitre 13) qui réalisent les fonctions
booléennes vues au chapitre 10. Ces portes demandent a étre
complétées par d’autres circuits, comme les mémoires et les
horloges, qui introduisent une dimension temporelle (chapitre 14).
Nous découvrons comment fonctionnent ces machines que nous
utilisons tous les jours (chapitre 15). Nous verrons que les réseaux,
comme les oignons, s'organisent en couches (chapitre 16*). Et nous
découvrons enfin les entrailles des robots, que nous apprenons a
commander (chapitre 17%).

SaLut ! Au Farm, JE SAKS PAS, ILS

TU AS UN APPEL NONT PAS LAISSE
DES ANNEES 1970. DE MESSAGE.
AH BON ? w
lLs VOULAIENT %

Quol ?
\\l

-2

Les portes
booléennes

Au commencement était le transistor,
puis nous crédmes les portes booléennes
et, a la fin de la journée, les ordinateurs.

Dans ce chapitre, nous voyons de quoi sont faits les ordinateurs
a I'échelle microscopique. Nous partons du transistor et
construisons successivement des circuits zon et ox qui vont
nous permettre ensuite de construire les circuits de toutes les
fonctions booléennes, comme nous I'avons vu au chapitre 10.

Frances Allen (1932-) est une pion-
niére de la parallélisation automa-
tique des programmes, C'est-a-dire de
la transformation de programmes
destinés a étre exécutés sur un ordi-
nateur séquentiel — contenant un
unique processeur — en des pro-
grammes destinés a étre utilisés sur
un ordinateur paralléle — contenant
plusieurs processeurs. Elle est aussi a
l'origine de nouvelles méthodes, fon-
dées sur la théorie des graphes, pour
optimiser les programmes. Elle a recu
le prix Turing en 2006 pour ces tra-
vaux.

Troisieme partie — Machines

ALLER PLUS LOIN
Les circuits CMOS

Dans ce livre nous utilisons un seul type de tran-
sistors appelés N-Mos. On construit aujourd'hui
plus souvent des circuits qui utilisent deux types
de transistors N-Mos et P-Mos, afin de mini-
miser la consommation d'électricité et la pro-
duction de chaleur.

: drain
A gn!lel
source

168

Nous connaissons des algorithmes depuis plus de quatre mille ans, pour-
tant nous n'avons pas cherché a les exprimer dans des langages de pro-
grammation avant le milieu du XX siecle. C'est en effet seulement a ce
moment que les progrés de I'électronique nous ont permis de construire
les premiers ordinateurs. La construction de ces machines a donc eu un
effet important sur la maniére dont nous concevons aujourd’hui les
notions d’algorithme, de langage et d’'information.

Le circuit NON

Comme beaucoup de systémes complexes, un ordinateur peut se décrire
a de nombreuses échelles. A I'échelle la plus petite, un ordinateur est un
assemblage de transistors. Un transistor est un circuit électronique 2 trois
fils appelés /e drain, la source et la grille. La résistance entre le drain et la
source est ou bien trés petite ou bien trés grande en fonction de la ten-
sion appliquée entre la grille et la source. Quand cette tension est infé-
rieure 4 un certain seuil, cette résistance est trés grande, on dit que le
transistor est blogué ; quand la tension est supérieure 2 ce seuil, la résis-
tance est trés petite, on dit que le transistor est passans. Avec un tran-
sistor, une résistance et un générateur dont la tension est supérieure au
seuil de basculement du transistor, on peut construire le circuit €).

Si on applique entre le point A4 et le point O une tension inférieure au seuil
de basculement du transistor, celui-ci est bloqué et le circuit est équivalent
au circuit €, si bien que la tension entre les points B et O est égale a la
tension d’alimentation. Elle est donc supérieure au seuil de basculement.
Si, en revanche, on applique entre les points A4 et O une tension supérieure
au seuil de basculement du transistor, celui-ci est passant et le circuit est
équivalent au circuit €, si bien que la tension entre les points B et O est
nulle. Elle est donc inférieure au seuil de basculement.

2/

13 — Les portes booléennes

Si on décide qu'une tension inférieure au seuil de basculement représente
le bit 0 et qu'une tension supérieure a ce seuil représente le bit 1, les deux
remarques précédentes se reformulent ainsi : si on donne au circuit le
bit 0 en 4, il donne le bit 1 en B ; si on lui donne le bit 1 en 4, il donne
le bit 0 en B. Autrement dit, ce circuit calcule une fonction booléenne :
la fonction non.

Le circuit OU

Le circuit € est construit selon les mémes principes, mais il a deux
entrées A et B.

1
1
L)

Si on donne aux deux entrées A et B le bit 0, les deux transistors dans la
partie gauche du circuit sont bloqués, si bien que la tension entre les
points C et O est égale a la tension d’alimentation, supérieure au seuil de
basculement. Le transistor de droite est donc passant et la tension entre
les points D et O est nulle ; autrement dit le point D est dans I'état 0.

Si on donne 4 l'une ou l'autre des entrées A et B le bit 1, au moins 'un
des deux transistors dans la partie gauche du circuit est passant, si bien
que la tension entre les points C et O est nulle. Le transistor de droite est
donc bloqué et la tension entre D et O est égale a la tension d'alimenta-
tion. Le point D est par conséquent dans I'état 1.

La table de ce circuit est donc la suivante (voir ci-contre) ot 'on recon-
nait la table de la fonction on.

On peut schématiser ces circuits de maniére plus succincte en rempla-
¢ant le morceau de dessin représentant le transistor et la résistance enca-
drés dans la figure @ par un simple rectangle (@) et en remplagant de
méme le morceau de dessin représentant les trois transistors et les deux
résistances encadrés dans la figure € par un rectangle (©).

- - 0 o p
—_ e - clw
— | |- o

169

Troisieme partie — Machines

5] (6]
e [:] 2 e non e
7. 7o
(7] L8]

B
A

On arrive ainsi 4 une représentation, 4 un autre niveau, du méme circuit.

Quelques autres portes
booléennes

Les circuits non et ou s'appellent des portes booléennes ou parfois des portes
logiques.
Dans ce chapitre et le suivant, on constitue petit a petit une boite 4 outils

de circuits réutilisables pour concevoir des circuits plus sophistiqués. Les
portes zon et ou sont les deux premiers éléments de cette boite 2 outils.

Bien souvent, quand on représente un circuit, on ne dessine pas le
générateur : il est implicite que chaque porte est alimentée. On obtient
alors une troisieme maniére de représenter les circuits ot le circuit € est
représenté comme sur le schéma ().

170

13 — Les portes booléennes

o ®
A—1 non l A—1 non '—I_
— N ou non |=C ou non f—C
B—1 non -._l E B—J non ._r_
Exercice 13.1 (avec corrigé)
Quelle est la table du circuit suivant ?
8 c
— Y
Si on donne a l'une ou I'autre des entrées A et B le bit 1, au moins I'un des
deux transistors dans la partie gauche du circuit est passant, si bien que le A B C
point C est dans I'état 0. Sinon le point C est dans I'état 1. ¢ o |1
La table de ce circuit est donc la suivante (voir ci-contre). o |1 |o
Il s’agit de la table de la fonction booléenne qui 4 A et B associe non (A ou B). 1 (o |0
1|1 o

Exercice 13.2 (avec corrigé)

Quelle est la table du circuit suivant ? Est-ce la table d'une fonction booléenne
connue ?

A_mn_L
Bp

m

Troisieme partie — Machines

La table de ce circuit est :

-0 - ol
- O O OlIn

C'est celle de la fonction booléenne et.

Exercice 13.3

Construire un circuit réalisant la fonction booléenne ou exclusif, vue au
chapitre 10.

En plus des portes o et non, on a désormais dans sa boite a outils les
portes e/ et oux :

— —
—_— -

Exercice 13.4 (avec corrigé)

Construire un circuit réalisant la fonction multiplexeur vue au chapitre 10.

La fonction multiplexeur peut se définir par mux (A, B, C) = (non (A) et B)
ou (A et C). Un cireuit, parmi d‘autres, réalisant cette fonction est donc :

A non e
o Nt

et

el |

On peut désormais utiliser directement le circuit suivant, dont l'unique sortie
transmet la valeur de B ou de C selon la valeur de A :

172

13 — Les portes booléennes

Exercice 13.5 (avec corrigé)

Construire le circuit réalisant le calcul de la fonction Cout définie par la table :

A B Cin Cout

0 0 0 0

0 0 1 0

0 E 0 10

0 1 E I

1 0 0 \0

1 0 E E

1 1 0 L
1 i1 = 7 \'1

Quelle est cette fonction ?

On utilise la méthode de décomposition par multiplexage (voir le chapitre 10).
La fonction Cout (Cin, A, B) sécrit mux (Cin, g (A, B), g’ (A, B)), avecg (A, B) et
g' (A, B) définies par les tables ci-contre :

On reconnait les tables des fonctions et et ou, respectivement. Si bien que
Cout (A, B, Cin) = mux (Cin, A et B, AouB).

Un circuit calculant cette fonction est donc :

Cin

et

mux pr—

hirs

Cette fonction est la fonction chiffre des deuzaines de A + B + Cin, qui sert au
calcul de la retenue dans I'algorithme de I'addition (voir le chapitre 18). Ce cir-
cuit porte le nom de Carry out (retenue sortante).

Exercice 13.6

Construire un circuit réalisant les opérations calculant la fonction chiffre des
unités de A + B + Cin (voir le chapitre 18). Construire un circuit additionneur
un bit qui prend en entrée deux nombres de un bit et donne en sortie leur
somme, sur deux bits.

Construire un circuit a quatre entrées et trois sorties, qui ajoute deux nombres
exprimés sur deux bits.

Construire un circuit a seize entrées et neuf sorties qui ajoute deux nombres
binaires de huit bits.

g (A B) g' (A B)

A B g A B ¢
'o_'c_"c_' [o [0 |0
ot o] Jo[v |3

1 (0|0 [1 o |1
HEAEE EN RER

173

Troisieme partie — Machines

Exercice 13.7

Construire un circuit a 9 entrées Ay ... A; et D et 8 sorties By ... B telles que :
€) lorsque D = 0, B; = A; pour i compris entre 0 et 7,

@ lorsque D =1, B; = A4 pour i compris entre 1 et 7 et By = 0.

Quand D = 1, ce circuit réalise un décalage & gauche d'un nombre exprimé en
binaire sur huit bits, ce qui correspond a la multiplication par 2 de ce nombre.

Dans cette multiplication, le chiffre le plus a gauche, A, est oublié afin de
faire tenir le résultat sur huit bits.

Exercice 13.8

Construire un circuit a 11 entrées Ag ... Ay et Dy ... D, et 8 sorties By ... By
telles que Bj= A4 pourientredet 7 et B;=0 pourientre Oet (d - 1), ot d est
le nombre entre 0 et 7 représenté en binaire par Dy ... D;. Ce circuit réalise un
décalage a gauche de d bits d'un nombre binaire de huit bits, ce qui corres-
pond a la multiplication par 2°. Ce circuit est un composant important d’un cir-
cuit réalisant une multiplication binaire.

A Tissue de ce chapitre, on dispose donc, parmi d’autres, des circuits

booléens suivants dans sa boite a outils :

* les portes booléennes non, ou, ef et oux,

* le multiplexeur mux,

¢ des additionneurs de nombres de différentes tailles,

¢ des multiplieurs par 2 et par 29,

ALLERPLUS Lo Penser les systémes complexes

Au cours de ce chapitre, nous sommes partis d'une
maniére de décrire des circuits formés de transistors et
de résistances pour, peu a peu, faire émerger une autre
maniére de décrire certains de ces circuits, sous la forme
d'assemblages de portes booléennes. Comme chaque
porte est constituée de plusieurs composants électroni-
ques, cette description sous la forme d’un assemblage
de portes booléennes est une description a plus grande
échelle que celle sous forme de transistors et de résis-
tances. Une question se pose alors : peut-on concevoir
des circuits en assemblant des portes booléennes et en
ignorant complétement la maniére dont ces portes sont
réalisées avec des transistors ?

Cette question demande une réponse nuancée: com-
prendre a la fois I'échelle des portes booléennes et celle
des transistors permet parfois de réaliser des circuits plus
petits, donc moins chers et plus rapides. Par exemple, si
on veut construire un circuit qui réalise I'opération boo-
léenne qui a A et B associe non (A ou B) et si I'on sait uni-
quement associer des portes booléennes, on construira
le circuit suivant

174

ou non |

—
—

qui, in fine, utilise quatre transistors, trois pour la porte
ou et un pour la porte non. Si, en revanche, on sait aussi
comment ces portes sont construites avec des transis-
tors, on peut remarquer que le circuit

qui ne comporte que deux transistors, convient. Rai-
sonner a une petite échelle permet donc d'économiser
deux transistors. |l est souvent utile, guand on raisonne
a une échelle donnée, de faire une incursion a I'échelle
inférieure ou a I'échelle supérieure.

Cela dit, il y a aussi des avantages a construire des cir-
cuits avec des portes booléennes en ignorant, ou en fei-
gnant d'ignorer, les échelles inférieures. Par exemple, les
portes booléennes sont aujourd’hui fabriquées avec des
transistors, mais par le passé, elles ont été fabriquées
avec d'autres composants : des relais, des tubes a vide,
etc. et il est possible que, dans le futur, elles soient réali-
sées avec d’'autres composants, aujourd’hui non encore
inventés. Raisonner a I'échelle des portes booléennes,
sans prendre en compte la maniére dont elles sont fabri-
quées, permet de conserver la méme organisation des
circuits a I"échelle des portes, méme quand la maniére
dont ces portes sont fabriquées change.

ALERPLSLON Qui a inventé l'ordinateur ?

Contrairement a la pénicilline, il est trés difficile de dire
qui a inventé I'ordinateur.

Sans remonter aux machines a calculer du XVII® siecle de
Wilhelm Schickard, Blaise Pascal, Gottfried Wilhelm
Leibniz, etc., ou a la machine analytique imaginée au
XIX€ siecle par Charles Babbage, I"apparition de |'ordi-
nateur a été préparée par une grande créativité dans le
domaine de la construction de machines a la fin du
XIXE siecle et au début du XX siécle, avec, par exemple,
la machine a recensement de Herman Hollerith cons-
truite en 1889 ou l'analyseur différentiel de Harold
Locke Hazen et Vannevar Bush construit entre 1928 et
1931, qui étaient déja des machines polyvalentes.

La notion d'universalité a été définie mathématique-
ment en 1936 par Alonzo Church et Alan Turing et il
semble que la premiére machine universelle ait été le
Z3, construite en 1941 par Konrad Zuse, méme si on ne
s‘en est rendu compte qu'a posteriori. La premiére

Ai-je bien compris ?

* Comment réaliser une porte non avec des transistors ?

» Comment réaliser une porte ou avec des transistors ?

13 — Les portes booléennes

De plus, il est illusoire d’espérer penser simultanément
un systéme aussi complexe qu'un ordinateur a toutes les
échelles. S'il est donc, bien entendu, utile d'avoir une
culture générale qui donne une idée de la maniére dont
un ordinateur se décrit a toutes les échelles, il est aussi
souvent nécessaire de savoir penser a une échelle
unique, en ignorant, ou en feignant d‘ignorer, la
maniére dont les composants que I'on assemble sont
fabriqués. Ainsi, aux chapitres 14 et 15, on construira
des circuits de plus en plus élaborés en réutilisant les cir-
cuits précédents comme de nouveaux composants.

machine électronique a utiliser le binaire semble avoir
été la machine Colossus, construite par Thomas Flowers
au cours de la seconde guerre mondiale, mais cette
machine n'était pas universelle. La premiére machine
concue pour étre universelle fut sans doute I'ENIAC,
construite en 1946 par John Mauchly, Presper Eckert et
John Von Neumann. Pour certains néanmoins, ce n'était
pas encore un ordinateur, son programme n'étant pas
enregistré dans la mémoire. La premiére machine a pro-
gramme enregistré a sans doute été la machine Baby,
construite 3 Manchester en 1948 par Frederic Williams,
Tom Kilburn et Geoff Tootill.

Il semble donc difficile d'attribuer I'invention de I'ordi-
nateur a un inventeur unigue. Il y a plutét eu un foison-
nement d'innovations de la fin des années trente au
début des années cinquante qui, chacune a sa maniére,
ont contribué a l'invention de l'ordinateur.

= Est-il nécessaire de savoir réaliser une porte non et une porte ou avec des transistors

pour les assembler en des circuits plus complexes ?

175

pyrignt © Zuls Eyroies.

Le temps
et la mémoire

Le temps est ce qui permet d éviter de tout faire
en méme temps.

Dans ce chapitre, nous voyons comment les circuits
électroniques prennent le temps en compte. Nous voyons
d’abord comment fabriquer un circuit mémoire. Puis,
comment un circuit particulier, I'horloge, permet

de synchroniser tous les autres.

Otto Schmitt (1913-1998) est un
pionnier du génie biomédical. En
1934, en étudiant la propagation de
I'influx nerveux dans les nerfs des cal-
mars, il a compris qu'un circuit en
boucle fermée positive — c'est-a-dire
dans lequel la sortie est connectée a
I'entrée, sans inversion de valeur -
avait deux états stables et pouvait
donc étre utilisé pour mémoriser une
grandeur. En électronique, une bas-
cule de Schmitt est une forme de cir-
cuit bistable, qui utilise cette idée de
boucle fermée positive.

Troisieme partie — Machines

Les circuits que nous avons vus au chapitre 13, par exemple le circuit)
illustré ci-contre, ont des entrées (deux a gauche sur la figure) et des sor-
ties (une a droite sur la figure) et I'état des sorties est déterminé par celui
des entrées. Dans cet exemple, la sortie est dans 'état 1 quand les deux
=3 oo }—{ 7on | entrées sont dans I'état 1 et elle est dans I'état 0 quand au moins I'une
—[non] des entrées est dans I'état 0. L'état des sorties a un instant donné dépend
de I'état des entrées a ce méme instant, mais pas de 'état des entrées une
seconde ou une minute plus t6t. Un tel circuit, qui ignore le temps,
sappelle un circuit combinatoire. 11 y a, autour de nous, beaucoup de cir-
cuits combinatoires. Par exemple, une lampe est allumée quand son
interrupteur est fermé et elle est éteinte quand cet interrupteur est
ouvert ; I'état de la lampe dépend de la position de I'interrupteur, mais

pas de la position de I'interrupteur une seconde ou une minute plus tot.

Cependant, il y a aussi autour de nous des circuits moins amnésiques,
dont I'état a un instant donné dépend non seulement de I'état de ses
entrées a4 cet instant, mais aussi de leur état passé. Par exemple, quand
nous appuyons sur la touche 1 d’une calculatrice, le chiffre 1 apparait sur
I'écran, mais quand nous relichons cette touche, le chiffre 1 ne disparait
pas : I'état de I'écran 4 un instant donné dépend donc non seulement de
I'état du clavier & ce méme instant, mais aussi de toute I’histoire du cla-
vier. Un tel circuit s'appelle un circuit séquentiel. Les ordinateurs sont,
bien entendu, des circuits séquentiels car, comme nous I'avons vu au
chapitre 1, I'exécution d’un programme modifie un état, qui est une des-
cription abstraite de I'état de 'ordinateur et dépend donc de toutes les
instructions exécutées dans le passé.

La mémoire

Le circuit séquentiel le plus simple est /e circuit mémoire un bit qui permet
de mémoriser un 0 ou un 1. Construire un tel circuit n'est pas difficile,
mais il faut procéder en plusieurs étapes. La premiére est de construire un
crcuit qui a deux états stables, par exemple celui de la figure ci-contre.

non B Ce circuit a deux états stables car :

¢ Si la sortie 4 de la premiére porte non est dans I'état 0, alors 'entrée
de la seconde porte non, qui est 4 également, est aussi dans U'état 0 ;
par conséquent, sa sortie B est dans I'état 1, donc I'entrée de la pre-
micre porte, qui est B également, est dans I'état 1, ce qui participe 2
perpétuer le fait que sa sortie A4 soit dans I'état 0.

178

AUERPLSLOW La rupture de symétrie

Il est difficile de prédire I'état dans lequel se retrouve un
circuit mémoire un bit quand on le met sous tension. Il
se trouve d'abord, pendant une courte durée, dans un
état instable dans lequel les deux sorties A et B sont
dans I'état 0. L'entrée des deux portes non est alors dans
I'état 0. Rapidement, I"'une d'elles produit un état 1 en
sortie, un peu avant 'autre, si bien que l'autre, ayant
désormais son entrée dans |'état 1, garde sa sortie dans
I'état 0. C'est donc une différence de vitesse entre les
portes non qui détermine |'état du circuit quand on le
met sous tension. Cette différence de vitesse est elle-
méme due a une infime différence de température, de
longueur de fil, de pureté des matériaux utilisés pour
construire les transistors, etc. Ce phénoméne est un

14 — Le temps et la mémoire

exemple de rupture de symétrie. Dans le circuit, les points
A et B sont parfaitement symétriques, mais pour arriver
a un état ou a un autre, il faut que cette symétrie soit
rompue. Les ruptures de symétrie sont fréquentes en
physique. Par exemple, si on pose une balle de ping-
pong sur le sommet du filet, de maniére parfaitement
symétrique, elle ne peut pas tomber d'un coté ou de
I"autre sans briser cette symétrie. Pourtant il est trés rare
qu’elle reste en équilibre au sommet du filet : elle finit
en général par tomber d'un c6té ou de l'autre. Ici
encore, un souffle de vent, une petite secousse, ou une
imperfection dans la construction de la balle suffit a
décider de quel coté elle tombera.

* Si, en revanche, la sortie 4 de la premiére porte non est dans I'état 1,
alors l'entrée de la seconde porte non, qui est 4 également, est aussi
dans I'état 1; par conséquent, sa sortie B est dans I'état 0, donc
I'entrée de la premiére porte, qui est B également, est dans I'état 0, ce
qui participe 4 perpétuer le fait que sa sortie 4 soit dans I'état 1.

Autrement dit, les deux états stables de ce circuit sont :
e A=0etB=1,
e A=1etB=0.

En supprimant la sortie B et en ne gardant que la sortie 4 () on
obtient un circuit qui a deux états stables. La sortie 4 vaut 0 dans le pre-
mier et 1 dans le second. On peut donc dire que ce circuit mémorise la
valeur O dans le premier cas et la valeur 1 dans le second. Ce circuit est
donc un circuit mémoire.

Toutefois, ce circuit ayant une sortie, mais pas d’entrée, il n'est pas pos-
sible de changer son état et donc la valeur mémorisée.

Pour ce faire, il faut construire un circuit €), un peu plus complexe, en
ajoutant deux portes ow.

X | ou ¢ non JA

Ycou - nonjﬂ

Tant que les entrées X et Y sont dans I'état 0, tout se passe comme dans
le circuit précédent. En effet, si la sortie 4 de la premiére porte non est

(1)
non A
non |8

179

Troisieme partie — Machines

180

dans I'état 0, alors le point D a l'entrée de la seconde est dans I'état O
également, car 0 ou 0 = 0. Et si la sortie 4 est dans I'état 1, le point D est
dans I'état 1 également, car 1020 =1. Le point D est donc dans le
méme état que la sortie 4 dans les deux cas. De méme, le point C a
'entrée de la premiére porte non est dans le méme état que B. Tout se
passe donc comme si les deux portes on n’étaient pas la.

En revanche, si pendant une courte durée on met 'entrée X dans l'état 1
tout en laissant Uentrée Y dans I'état 0, alors le point C passe dans I'état 1
quelle que soit la valeur de B car 1o#0=1 et 1ou1=1; la sortic 4
passe donc dans I'état 0, le point D également et le point B passe dans
I'état 1. On force donc le circuit a se mettre dans I'état /=0 et B=1,
c'est-a-dire 2 mémoriser la valeur 0. Et quand I'entrée X sera revenue 2
la valeur 0, le circuit restera dans cet état.

Au cours d’étapes qui s'enchainent trés vite, I'état des points C, D, A et B
devient :

>

C D A B

.._.
ccic'cc-c
::'c|t:

|
1
[Tt o [1]o
ENCRERE
De méme, si pendant une courte durée, on met 'entrée Y dans I'état 1 tout
en laissant P'entrée X dans I'état O, on force le circuit # mémoriser la valeur 1.
Ce circuit mémorise donc une valeur 0 ou 1 et, en stimulant 'entrée X ou
I'entrée ¥, on peut changer la valeur mémorisée. Ce circuit sappelle une
bascule RS (Reset-Set) et on peut le représenter comme ci-contre.

A 1a boite 2 outils de circuits commencée au chapitre 13, on peut donc
ajouter un premier circuit séquentiel : la bascule RS.

On peut aller un peu plus loin et construire un troisiéme circuit qui
mémorise une valeur ¥’ qu'on lui fournit lorsquon stimule I'entrée S.

Exercice 14.1 (avec corrigé)

€) Construire un circuit combinatoire a deux entrées Vet S et a deux sorties X
et Y tel que, si I'entrée S est dans I'état 0, alors X et Y sont dans ['état 0 et
si § est dans I'état 1, alors X est dans |'état non V et Y est dans |'état V.
€ Connecter ce circuit combinatoire avec la bascule RS ci-avant pour obtenir
un circuit qui :
e quand Sest dans |'état 0, ne change pas d'état et produit la valeur
mémorisée sur la sortie A,
* quand S est dans I'état 1 et V dans I'état 0, mémorise la valeur 0 et met
la sortie A dans I'état 0,

14 — Le temps et la mémoire

= quand S est dans I'état 1 et V/ dans I'état 1, mémorise la valeur 1 et met
la sortie A dans I'état 1.

£} Les tables des fonctions booléennes X et Y sont les suivantes :

‘-‘-"'*QC)UI
- ol = o
Q‘"‘-‘QQ*
‘*|‘*DQ“

- o
~|o o of=

EBE

ot on reconnait les fonctions S et non (V) et S et V. Il suffit donc de cons-
truire les circuits correspondants.

€3 On relie la sortie du circuit S et (non V) a I'entrée X de la bascule RS et la
sortie du circuit S etV a I'entrée Y de la bascule RS

s et
v non |

et

RS p—A

Ainsi, quand S est dans I'état 0, le circuit ne change pas d'état et quand S est
dans I’état 1, il mémorise la valeur V. On a donc enfin un véritable circuit
mémoire contrélable : mettre I'entrée S dans I'état 1 provoque la mémorisa-
tion de la valeur de I'entrée V. Cette valeur peut étre lue par la suite sur la
sortie A, jusqu'a ce que I'on provoque la mémorisation d’une nouvelle valeur.
Ce circuit s"appelle un verrou D (D pour Donnée ou Data).

Exercice 14.2

Quand on utilise plusieurs composants identiques dans un méme circuit, on
peut différencier leurs entrées et sorties en leur donnant un numéro : ainsi, si
I'on a plusieurs verrous D, on appellera V4 I'entrée V du premier, A; la sortie
du deuxiéme, etc.

On définit un circuit séquentiel appelé bascule D en reliant la sortie Ay d'un
premier verrouD avec |'entrée V; d'un second verrouD, et en reliant
I'entrée S; du premier a une porte non dont la sortie est raccordée a
I'entrée S, du second.

Si I'on considére ce circuit dans son intégralité, ses entrées sont donc I'entrée V,
du premier verrou D et une entrée S unique qui alimente a la fois 5; directe-
ment et 5, via la porte non. Sa sortie est la sortie A; du second verrou D.

Dessiner ce circuit.

Montrer que quand 5 est dans I'état 0, le second verrou met sa valeur a jour,
mais pas le premier, et quand S est dans |'état 1, le premier verrou met sa
valeur a jour, mais pas le second.

Ce circuit s"appelle une bascule D.

Verrou D

| verrou D }——A

Bascule D

s bascule D —A

181

Troisieme partie — Machines

Son intérét est que la valeur mémorisée n'est mise a jour qu‘a I'instant précis
ol I'entrée S passe de I'état 1 a I'état 0, alors qu'un simple verrou D laisse
passer les valeurs de V vers A tant que S reste a 1. Il est ainsi plus facile de com-
mander |'évolution de ce circuit dans le temps.

‘ Exercice 14.3

On utilise un additionneur un bit (voir le chapitre 13) avec deux entrées A et B
et deux sorties S et C, qui sont respectivement le chiffre des unités et le chiffre
des deuzaines de A + B. On relie la sortie S de I'additionneur a |'entrée V4
d’'une premiére bascule D, la sortie Ay de cette bascule étant elle-méme reliée
a I'entrée A de I'additionneur. On relie également la sortie C de I'additionneur
a I'entrée V; d'une deuxiéme bascule D. Enfin, on relie ensemble les entrées 5,
et 5; des deux bascules et on les alimente avec une entrée commune S.

Dessiner ce circuit.

A chaque fois que I'entrée S des bascules passe dans I'état 1 puis revient a
I'état 0, les valeurs mémorisées par les bascules D sont mises a jour. Montrer
que le nouvel état de la premiére bascule est le chiffre des unités de la somme
de son ancien état et de I'entrée B. Montrer que le nouvel état de la seconde
bascule est le chiffre des deuzaines de cette somme.

‘ Exercice 14.4

En utilisant huit copies du circuit construit a I'exercice précédent, construire un
compteur 8 bits comportant une entrée |, tel que I'entier 8 bits mémorisé par
compteur soit augmenté d'une unité a chaque fois que I'entrée / passe dans
|'état 1 puis revient a |'état 0.

' Exercice 14.5

Modifier le circuit de I'exercice précédent de maniére a ajouter une entrée R
telle que le nombre mémorisé par ce compteur soit initialisé a 0 quand
I'entrée R est mise dans |'état 1.

Lhorloge

Quand on assemble des circuits séquentiels qui interagissent les uns avec
les autres, on obtient un circuit asynchrone : I'état de chacun des circuits
évolue dans le temps, en fonction de I'état des arcuits auxquels il est
connecté, mais de manicre relativement désordonnée.

Beaucoup d’interactions que nous avons avec les autres sont asynchrones :
dans un grand magasin, par exemple, chaque client fait ses courses relati-
vement indépendamment des autres. Et quand plusieurs clients veulent
payer leurs courses en méme temps, il se forme une file d’attente. De ce
fait, chaque client est a peu prés sir qu'il finira par payer et sortir, mais il
na pas de garantie a priori sur le temps que cela prendra. A Pinverse, un
petit nombre de nos interactions doivent étre synchrones : jouer dans un
orchestre demande non seulement de jouer toutes les notes de la partition

182

dans un certain ordre, mais également de les jouer 4 un moment donné.
Les clients d'un magasin peuvent faire leurs courses chacun a son rythme,
mais les musiciens d'un orchestre, les danseurs d'une chorégraphie ou les
soldats qui marchent au pas, doivent agir dans une méme temporalité.
Une maniere d’obtenir cette synchronie est de confier a I'un des musi-
ciens, le chef d’orchestre, le réle de battre la mesure.

En informatique, les machines de grande taille, par exemple les réscaux,
sont des machines asynchrones. Chaque utilisateur va a son rythme et le
réseau finit par répondre 2 tout le monde, mais sans garantie du temps
que cela prendra. En revanche, les machines de petite taille, telles que les
processeurs, sont des machines synchrones. Cest pour cela qu'il y a dans
les ordinateurs un circuit, /horloge, dont le réle est de battre la mesure
pour les autres circuits. Une horloge est simplement un circuit qui émet
sur sa sortie un signal périodique, par exemple le signal suivant.

Chaque fléche sur la figure marque le début d'un cycle. Avec ce type
d’horloge, la sortie est 2 1 pendant la premiére moitié du cycle et a0
pendant la seconde.

Chacun des circuits, en particulier les circuits mémoires, se synchronise
sur un signal d’horloge. Par exemple, si on connecte la sortie de 'horloge
sur I'entrée § d’'une bascule D, on obtient un circuit qui enregistre la
valeur de I'entrée ¥ a chaque cycle.

Exercice 14.6

Construire un circuit comportant un additionneur 8 bits, a 16 entrées et
9 sorties, dont chaque entrée est reliée a la sortie A d'un verrou D différent,
chaque sortie est reliée a I'entrée V d'un verrou D différent, et dont toutes les
entrées S de ces 25 verrous sont reliées a une horloge unique.

Etablir un lien entre la fréquence de I'horloge et le temps de propagation des
signaux électriques portant les retenues des 8 additionneurs un bit composant
I'additionneur 8 bits.

Estimer le temps de propagation maximal par porte booléenne, supposé cons-
tant et uniforme, compatible avec une fréquence de 1 GHz.

Exercice 14.7

Lorsque |'on relie I'entrée S d'une bascule D a une horloge, montrer que la
sortie A se comporte comme |'entrée V, mais avec un cycle d’horloge de retard.

14 — Le temps et la mémoire

+ Fréquence d'horloge

La fréquence d'horloge, qui est souvent indi-
quée dans les caractéristiques techniques des ordi-
nateurs, est le nombre de cydes par seconde. Par
exemple, quand la fréquence d'horloge est 1 GHz,
la période de I'horloge, c'est-a-dire la longueur
d'un cycle, est de 1 nanoseconde, un milliardieme
de seconde.

183

Troisieme partie — Machines

ALER PLS LOW La réversibilité

Le fonctionnement dun circuit séquentiel est
dynamique : il se décrit dans le temps. Comme a chaque
fois que I'on observe un phénoméne dynamique, on
peut s'interroger sur sa réversibilité.

Par exemple, si on connait la position x et la vitesse v, a un
instant t, d'un point en mouvement rectiligne uniforme,
on peut prédire sa position et sa vitesse a un instant t’ du
futur : sa position sera x'=x + v (t'- t) et sa vitesse sera
v' = v. Réciproquement, si on connait sa position x* et la
vitesse v' & l'instant t*, on peut aussi « rétro-prédire » sa
position et sa vitesse a un instant t du passé : sa position
était x =x"- ' (t'- t) et sa vitesse était v=\". La variation
de position et de vitesse d'un point en mouvement recti-
ligne uniforme est un phénoméne dit réversible.

En revanche, quand on mélange un litre de gaz a la
température T, avec un litre de gaz a la température T5,
on obtient deux litres de gaz a la température
T'=2Ty T/ (T1 + T3). Si on connait les températures T,
etT,, on peut donc prédire la température T'. En
revanche, si on connait la température T, il est impos-
sible de rétro-prédire les températures T; et 7, : deux
litres de gaz a 300 K peuvent avoir été obtenus en
mélangeant un litre a 290 K et un litre a 310,7 K, mais il
peuvent aussi avoir été obtenus en mélangeant un litre
a 280 K et un litre a 323 K. Mélanger des gaz de tempé-

AR ps Low Transformation d'énergie et production de chaleur

Un processeur consomme de I'électricité et la trans-
forme essentiellement en chaleur. L'électricité con-
sommée et la chaleur produite sont des facteurs
physiques limitant les performances des processeurs.

Le coit énergétique d'un calcul a beaucoup diminué avec
le temps puisqu‘on est passé d’une production de calculs
d'environ 400 calculs par kWh pour I'ENIAC, en 1946, a
environ 1 million de milliards de calculs par kWh pour un
processeur actuel. Dans cette estimation, « un calcul » est
par exemple |'addition de deux nombres entiers. Cepen-
dant, comme on fait beaucoup plus de calculs qu‘en
1946, la quantité d'électricité consommée pour ce faire a

Ai-je bien compris ?

ratures différentes est donc un phénomeéne dit irréver-
sible. Non seulement il est impossible de rejouer le film
en arriére et d'obtenir les deux litres de gaz aux tempé-
ratures T; et T,, mais il est de plus impossible de définir
ce que ces températures T; et T, doivent étre, puisqu’il y
a plusieurs solutions a I'équation 2 Ty T, /(T + To) =T
Les evolutions des états des circuits vues dans ce chapitre
sont des évolutions irréversibles, comme le mélange de
deux volumes de gaz de températures différentes. Si
I'entrée V d’un circuit mémoire est a 0, au moment ot I'on
met son entrée § a 1, ce circuit enregistre la valeur 0. La
valeur préecédemment mémorisée est irreméediablement
détruite. Il est donc impossible de rejouer le film a I'envers
pour retrouver |'état initial du circuit, car les deux états
initiaux possibles ménent au méme état final.

La physique statistique et la théorie de I'information per-
mettent de mesurer le degré d'irréversibilité de ces deux
phénoménes : la croissance de I'entropie, ou la perte
d'information, lors de la destruction d'un bit d'informa-
tion est de 9,5 10724 J/K et celle lors du mélange d'un litre
d'un gaz parfait monoatomique a 10° Pa et 290 K avec un
litre de ce méme gaz a cette méme pression et 310,7 K est
de 9,9 107 J/K, soit en comptant cette perte d'informa-
tion, non en J/K, mais en bits, 10%° bits.

beaucoup augmenté pour arriver, en 2007, a environ 1 %
de la production mondiale d'électricité. Cette estimation
ne tient compte que de I'énergie transformée pour effec-
tuer les calculs et non de celle transformée pour fabri-
quer, transporter et recycler les machines utilisées.

Les gros centres de serveurs de calcul ou de données ont
des besoins énormes en électricité et cherchent souvent a
se rapprocher géographiquement des centrales électri-
ques. lls requiérent de méme des systémes de climatisa-
tion de plus en plus sophistiqués, par exemple des
systémes de refroidissement qui utilisent de I'eau de mer.

* Quelle est la différence entre un circuit combinatoire et un circuit séquentiel ?

* Qu'est-ce qu'une bascule RS ?

* Quelle est la différence entre un circuit synchrone et un circuit asynchrone ?

184

L’'organisation
d’un ordinateur

Pour fabriguer un ordinateur,
il suffit d’un fer a souder (ou presque...).

Dans ce chapitre, nous voyons de quoi sont faits les ordinateurs
a une échelle plus proche de la nétre et comment architecture
et langages sont liés. Nous décrivons la maniére dont sont
assemblés le processeur de caleul, 'organisation de la mémoire
et les bus permettant la circulation des données. Nous voyons
comment programmer le processeur au moyen d’un langage
machine simple et expliquons comment dérouler une séquence
d’instructions. Nous adjoignons enfin les périphériques

pour obtenir un ordinateur.

Dans les années 1940, a I'Université
de Pennsylvanie, John von Neu-
mann (1903-1957) a concu, avec
Presper Eckert et John Mauchly, deux
des premiers ordinateurs: F'ENIAC,
puis I'EDVAC. Ces ordinateurs étaient
organisés selon I'architecture de von
Neumann, utilisée dans la quasi-tota-
lité des ordinateurs con¢us depuis:
séparation du processeur et de la
mémoire, reliés par un bus de com-
munication. L'ENIAC pesait vingt-sept
tonnes.

Troisieme partie — Machines

ALLER PLUS LOIN
Taille de la mémoire

En général, on indique |a taille de la mémoire en
précisant le nombre d'octets, c'est-a-dire de
mots de huit bits, qui peuvent étre mémorisés.
Ainsi, une mémoire de 4 gigaoctets (binaires),
contient 4 x 2°0 x 8 =34 359 738 368 dircuiits
mémoires un bit. Si la mémoire est organisée en
mots de soixante-quatre bits, ces circuits sont
répartis en 536 870912 cases permettant de
mémeoriser un mot chacune.

ALLER PLUS LOIN
Les processeurs 32 et 64 bits

Lorsque I'on parle de processeurs 32 bits ou
64 bits, on fait référence a la taille de ces regis-
tres.

186

Apres avoir décrit le fonctionnement d'un ordinateur a I’échelle du tran-
sistor puis de la porte booléenne, nous abordons, dans ce chapitre, une
troisieme échelle de description, qui est celle qui va nous permettre de
véritablement en comprendre les principes d’organisation. Un ordina-
teur est principalement composé de deux grands circuits : le processeur et
la mémoire. Ces deux circuits sont reliés entre eux par des fils qui consti-
tuent un ou plusieurs bus de communication, parmi lesquels un bus de don-
nées et un bus d'adresses. Le processeur est composé de deux unités.
Lunité de contréle lit en mémoire un programme et donne a U'unité de
calcul la séquence des instructions a effectuer. Le processeur dispose par
ailleurs de bus d'entrées et de sorties permettant d’'accéder aux autres par-
ties de I'ordinateur, que 'on nomme les périphérigues. Cette organisation
générale, Varchitecture de von Neumann, est étonnamment stable depuis
les années quarante.

Bus de communication e U
. Memoire

-

L[]
i Unité de controle ;
[]

La mémoire est composée de plusieurs milliards de circuits mémoires un
bit. Ces circuits sont organisés en agrégats de huit, seize, trente-deux,
soixante-quatre bits, et parfois davantage, que I'on appelle des cases
mémoires et qui peuvent donc mémoriser des mots de huit, seize, trente-
deux, soixante-quatre bits, etc. Le nombre de ces cases définit la taille de
la mémoire de 'ordinateur. Comme il faut distinguer ces cases les unes
des autres, on donne a chacune un numéro : son adresse. La mémoire
contient les données sur lesquelles on calcule et le programme qui décrit le
calcul effectué, donné sous la forme d’une séquence d'instructions.

Le processeur, de son c6té, n'a quun tres petit nombre de cases
mémoires, que l'on appelle des registres. On peut imaginer, par exemple,
qu’il ne contient que deux registres, appelés 4 et B. Les registres peuvent
contenir des données, mais aussi des adresses de cases mémoires.

Trois instructions

Pour échanger des données avec la mémoire, le processeur utilise deux
procédés qui permettent I'un de transférer I'état d'un registre dans une case
mémoire et I'autre de transférer I'état d'une case mémoire dans un registre.

Pour transférer le contenu du registte 4 dans la case mémoire
d’adresse n, le processeur met les différents fils qui composent le bus
d’adresses dans un état qui correspond 4 I'expression en base deux du
nombre 7 et il met les différents fils qui composent le bus de données
dans un état qui correspond au contenu du registre. Au signal d’horloge,
chaque case de la mémoire compare son propre numéro au numéro
arrivé sur le bus d’adresse ; seule la case numéro # se reconnait et elle
met alors ses différentes entrées § (voir le chapitre 14) dans I'état 1, de
maniére a enregistrer le mot arrivant sur le bus de données. Le procédé
symétrique permet au processeur de récupérer une valeur précédemment
enregistrée : les informations circulent toujours du processeur vers la
mémoire sur le bus d’adresses, mais elles circulent dans I'autre sens sur le
bus de données : c’est la case n qui connecte sa sortie au bus de données
et C'est le registre qui met ses entrées S 2 1 de maniére i enregistrer le
mot qui arrive sur le bus de données.

Ces deux opérations s’appellent le stockage (S74) et le chargement (LDA)
du contenu d’une case mémoire dans le registre 4 (ST pour §7vre, LD
pour LoaD). 11 y a bien entendu des opérations similaires pour le
registre B (STE et LDB).

Une autre opération que peut exécuter le processeur est 'addition des
contenus des registres A4 et B. Le résultat de 'opération peut étre stocké
aussi bien dans le registre 4 (ADD A) que dans le registre B (a0 8). De
méme, DEC A décrémente la valeur contenue dans le registre 4, c’est-a-dire
soustrait 1 a la valeur contenue dans le registre A et stocke la valeur ainsi
obtenue dans le registre A et DEC B réalise le méme calcul sur la valeur
contenue dans le registre B.

Si, par exemple, le processeur effectue successivement les opérations ci-contre
et si, dans I'état initial, la case 7 de la mémoire contient le nombre 42, la
case 8 le nombre 68, la case 9 le nombre 47 et la case 10 le nombre 33,
'exécution des huit opérations a comme effet de :

LDA 7 charger le contenu de la case 7, soit 42, dans le registre 4,
* LDB 8 charger le contenu de la case 8, soit 68, dans le registre B,

* ADD A additionner les contenus des registres A4 et B et mettre le
résultat, 110, dans le registre 4,

LDE 9 charger le contenu de la case 9, soit 47, dans le registre B,

LDA
LDB
ADD
LDB
ADD
LDB
ADD
STA

15 — L'organisation d'un ordinateur

DWW o~

i1

187

Troisieme partie — Machines

188

valeur

100 | 101

0

7

* ADD A additionner les contenus des registres A4 et B et mettre le
résultat, 157, dans le registre 4,

* LDB 10 charger le contenu de la case 10, soit 33, dans le registre B,

¢ ADD A additionner les contenus des registres A4 et B et mettre le
résultat, 190, dans le registre 4,

* STA 11 stocker le contenu du registre 4, soit 190, dans la case 11.

Au bout du compte, cette séquence d’opérations additionne les quatre
nombres stockés dans les cases 7, 8, 9 et 10 de la mémoire et stocke le
résultat dans la case 11.

Le langage machine

Un ordinateur doit étre capable d’exécuter un programme. Il faut donc
un moyen d’'indiquer au processeur la séquence des instructions qu'il doit
exécuter ; par exemple, la séquence LDA 7, LDB 8, ADD A, LDB 9, ADD A,
LDB 10, ADD A, STA 11. Dans les premiéres machines, des cartes perforées
ou un ruban perforé situé a 'extérieur de la machine indiquaient les opé-
rations i effectuer, comme les cartes d'un orgue de Barbarie indiquent
les notes a jouer I'une aprés 'autre. Puis cette idée a été abandonnée au
profit d'une autre : celle d’enregistrer le programme dans la mémoire
avec les données. Ainsi, on peut exprimer le programme précédent en
binaire en décidant par exemple que 4 s’écrit 0, B s'écrit 1 et les instruc-
tions LDA, LDE, STA, STB, ADD et DEC s'écrivent respectivement 0, 1, 2, 3, 4
et 5. Le programme de notre exemple sécrit alors 0,7, 1,8, 4,0, 1,9,
4,0, 1,10, 4,0, 2,11, ce qui commence a devenir assez difficile a lire,
méme sl est facile de passer d’'une représentation a I'autre. On peut
ensuite stocker ce programme dans la mémoire, en commengant, par
exemple, a la case 100 :

102 /103 104 105 106 107 108 109 110 111 112 113 114 115

1

2[4 [0 [1T |9 |4 |o (7 [f0]4 [0 [2 [

I1 suffit maintenant d’ajouter au processeur un nouveau registre qui
débute a 100, le compteur de programme ou PC (program counter), et a
chaque étape, le processeur :
* charge le contenu des cases mémoires d’adresses PCet PC + 1,
¢ décode le premier de ces nombres en une instruction (0 devient LDA,
1 LDB, etc.),

* exécute I'instruction en question,
* et ajoute 2 au registre PC.

Enregistrer les programmes en mémoire permet de faire trés simplement
des boucles et des tests. On ajoute aux instructions précédentes une ins-
truction JMP (jump) telle que JMP n charge simplement le nombre n, ou
plutot le nombre n - 2 qui sera augmenté de 2 immédiatement apres 'exé-
cution du 1MP, dans le registre PC pour détourner le programme de sa
route et le forcer 4 continuer son exécution a 'adresse n. De méme, l'ins-
truction IMPZ (jump if zero), qui effectue un saut si le contenu du registre 4
est 0, permet de faire des tests. On ajoute enfin I'instruction END, qui ter-
mine le programme. En langage machine, on suppose que 1P, JMPZ et END
s'écrivent respectivement 6, 7 et 8 et que END prend 0 comme argument
puisqu’il en faut un. Mais cet argument n'est pas utilisé.

Pour construire une boucle ou un test avec ces nouvelles instructions, il
faut tout d’abord trouver une fagon de traduire la condition du test ou la
condition d’arrét de la boucle par un test d'égalité 4 zéro. Par exemple,
pour effectuer un test comme x == 2, on peut placer la valeur de x dans
le registre A, exécuter deux fois I'instruction DEC A et enfin tester si le
registre 4 contient 0. Ensuite, on écrit les séquences d'instructions qui
correspondent aux différentes branches du test ou au corps de la boucle,
et on utilise JMPZ et IVMP pour diriger I'exécution du programme dans
'une ou I'autre de ces séquences. Par exemple, un programme qui lit une
valeur x dans la case mémoire d’adresse 11, puis recopie la case mémoire
d’adresse 12 dans la case mémoire d’adresse 20 si x vaut 2, ou la case
mémoire d’adresse 13 dans la case mémoire d’adresse 30 dans le cas con-
traire, peut s’écrire :

100 |0 LDA 11 1m0 |3 STB 30
101 11 1 |30

102 |5 | DEC A 12 |6 "IMP 118
03 |0 113|118

04 |5 |DECA 114 |1 |LioB 12
105 |0 ' s |12

106 |7 IMPZ 114 116 |3 STB 20
107 114 1720

7108 |1 LDB 13 18 |8 END
109 (13 19 |0

15 — L'organisation d'un ordinateur

ALLER PLUS LOIN
Pourquoi séparer A et B pour ADD
et DEC mais pas pour LD et ST?

Dans le langage machine que nous venons
d'inventer, pour que le compteur de programme
fonctionne comrectement, chaque instruction uti-
lise exactement deux cases mémoire : une pour
50N nom et une pour son argument. L'argument
des instructions ADD et DEC est le nom d‘un
registre. En revanche, comme les instructions de
chargement ont déja un argument (I'adresse
mémoire ol aller chercher la donnée a charger),
elle ne peuvent pas en avoir un second pour
indiquer le registre utilisé. C'est pour cela que
I'on a deux instructions LDA et LDB et de méme
deux instructions STA et STB.

ALLER pLUS LOW
Calcul sur des structures de données
plus complexes

Les instructions que nous venons de présenter
ne permettent d'accéder qu'a un nombre limité
de cases mémoire, dont les adresses sont les
constantes entiéres qui servent d"arguments aux
instructions LDA, STA, LDB et STB. Le calcul sur
des structures de données plus complexes,
comme des tableaux, nécessite d'autres instruc-
tions pour accéder a une case mémoire dont
I'adresse est elle-méme une donnée, en particu-
lier le résultat d'un calcul. Les processeurs ont
bien d'autres instructions encore : des opéra-
tions booléennes, des opérations sur les nom-
bres entiers, des opérations sur les nombres
flottants, etc.

189

Troisieme partie — Machines

LDA
LDB
ADD
ADD
ADD
ADD
STA

10

)

b

11

valeur

adresse
valeur

‘valeur

190

.X+X
X+X+X
-X+X+X+X
X+X+X+X+EX
XEXEX+EXAEX
[10 T11
| X |
[10 11
x |5x
10 11
x |y

Savoir-FAIRE Savoir dérouler I’exécution d’une séquence d’instructions

Le principe est de suivre, instruction par instruction, 'évolution du programme en
observant les effets sur les valeurs contenues dans les registres, y compris le compteur de
programme PC, et les valeurs contenues dans la mémoire, un peu comme on le ferait
pour I'état de I'exécution d’'un programme écrit en Java.

e N O I

I 07 1125 o [|6 104 3

Exercice 15.1 (avec corrigé)

Ecrire une séquence d'instructions qui multiplie par 5 le nombre contenu dans
la case mémoire d’'adresse 10 et stocke le résultat dans la case mémoire
d'adresse 11.

Pour multiplier par’5, on fait 4 additions, en accumulant le resultat dans le
registre A. On note x le nombre rangé a I'adresse 10.

| Charger dans A le nombre range a a I'adresse mémoire 10

| Charger dans B le nombre rangé a ladresse mémoire 10

| Additionner A et B, résultat dans A o
Additionner A et B, résultat dans A
Additionner A et B, résultat dans A

i Additionner A et B, résultat dans A

: Stocker le nombre contenu dans A a I'adresse mémoire 11

La séquence LDA 10, LDB 10, ADD A, ADD A, ADD A, ADD A, STA 11, s'écrit en
langage machine 0,10, 1,10, 4,0, 4,0, 4,0, 4,0, 2, 11. On la stocke par
exemnple a partir de I'adresse 100 de la mémoire.

Etat de la mémoire avant l'exécution du programme :

100|IOI 102 103|?04|105 3‘06|J'O7 (108 [109 [110 [111 (112|113 |..

0

0 1 TO |4 0 4 0 (4 |0 2 o |2 11

Etat de la mémoire aprés I'exécution du programme :

[100 [101 [102 103 104 | 105 | 106 | 107 [108 | 109 HO|1H 1112 [113

0

:01_1040404040211

Exercice 15.2

Expliquer ce que fait le programme suivant, écrit en langage machine, en sup-
posant que le nombre x contenu dans la case mémoire d'adresse 10 est stricte-
ment positif.

100 101|102 1103 104 105 106 107 108 109 110 111 112‘113 114 115 ..

118?

15 — L'organisation d'un ordinateur

Exercice 15.3

Ecrire un programme qui lit deux valeurs x et y contenues respectivement dans
les cases mémoires 11 et 12, calcule la différence y - x et stocke le résultat a
I'adresse 13. On suppose que ces deux valeurs sont des nombres entiers positifs.

Compléter ce programme pour qu'il stocke la valeur 0 a |'adresse 15 si x est
égal a y, ou la valeur x sinon.

Exercice 15.4

Ecrire un programme qui multiplie la valeur contenue a la case mémoire 12
par celle contenue dans la case mémoire 13 et stocke le résultat a I'adresse 14.
On suppose que ces valeurs sont des nombres entiers positifs.

Quel probléme I'écriture de ce programme pose-t-elle ? Quelle modification
du processeur permettrait de contourner ce probléme et donc de simplifier le
programme ?

La compilation

Les premiers programmeurs écrivaient des programmes en langage
machine qui ressemblaient 2 LDA 7, LDB 8, ADD A, LDB 9, ADD A, LDB 10,
ADD A, STA 11, ou plus exactement20,7,1,8,4,0,1,9,4,0, 1, 10, 4, 0,
2, 11, ce qui était trés fastidieux et offrait de nombreuses possibilités de
se tromper. On a alors cherché 4 concevoir des langages dans lesquels ce
programme pouvait s'écrire :

e=a+b+c+d;

ce qui a permis de développer des programmes de maniére plus rapide et
plus stre. Néanmoins, aujourd’hui encore, les ordinateurs ne compren-
nent que les programmes de la forme 0,7, 1,8, 4,0, 1,9, 4,0, 1, 10,
4,0, 2, 11. Clest pourquoi quand on écrit :

le=a+b+c+d;

on doit ensuite utiliser un programme qui transforme les programmes écrits
en langage évolué en des programmes écrits en langage machine : un com-
pilateur. Un programme existe donc toujours sous deux formes : le code
source écrit en Java, C, etc. et le code compilé écrit en langage machine.

Le compilateur est un traducteur d’'un langage évolué vers un langage
machine. Une maniére simple de compiler un programme est de traduire
les instructions une 4 une. Cependant, comme pour les circuits vus au
chapitre 13, le compilateur peut construire des programmes en langage
machine plus efficaces en se plagant aussi 4 I'échelle du langage machine.
Par exemple, le temps d’accés 2 une donnée en mémoire peut étre une
centaine de fois supéricur au temps d’accés 4 un registre. Conserver une

191

Troisieme partie — Machines

192

valeur dans un registre entre deux instructions au lieu de la stocker pour
la recharger ensuite peut donc faire gagner beaucoup de temps de calcul.

Les périphériques

Outre un processeur, une mémoire, une horloge et des bus reliant le pro-
cesseur 2 la mémoire, un ordinateur est également constitué de
périphérigues : écrans, claviers, souris, disques, haut-parleurs, imprimantes,
scanners, cartes réseau, clés de mémoire flash, etc. qui permettent au pro-
cesseur d’échanger des informations avec I'extérieur : des étres humains, a
travers par exemple I'écran et le clavier, d’autres ordinateurs, a travers la
carte réseau, et des outils de stockage, par exemple des disques. On peut
grossierement classer les périphériques en périphériques d'entrée, qui per-
mettent au processeur de recevoir des informations de l'extérieur, et péri-
phériques de sortie, qui lui permettent d’émettre des informations vers
I'extérieur. Toutefois, beaucoup de périphériques sont a la fois des périphé-
riques d'entrée et de sortie. Ainsi, un écran est a priori un périphérique de
sortie, mais un écran tactile est aussi un périphérique d’entrée.

Pour échanger des informations avec les périphériques, le processeur pro-
céde d’'une maniére trés similaire a celle qu'il utilise pour échanger des
informations avec la mémoire. Par exemple, on peut donner une adresse a
chaque pixel d'un écran noir et blanc, exactement comme on donne une
adresse a chaque case de la mémoire ; stocker une valeur comprise entre 0
et 255 a cette adresse, avec I'instruction STA par exemple, aura pour effet
d'allumer ce pixel a I'écran avec le niveau de gris correspondant. De méme
I'instruction LDA permet de recevoir des informations d’un périphérique de
sortie, par exemple la position de la souris. Selon les processeurs, ce sont les
instructions STA et LDA elles-mémes qui sont utilisées, ou des instructions
voisines, spécialisées pour la communication avec les périphériques.

Le systeme d’exploitation

La description des ordinateurs que l'on a donnée dans ce chapitre différe
quelque peu de 'expérience pratique qu'ont tous ceux qui ont déja utilisé un
ordinateur. Tout d’abord, on sapergoit que si on bouge la souris, le curseur
de souris bouge sur I'écran, il semble donc y avoir un programme qui inter-
roge en permanence la souris pour connaitre sa position et dessine un cur-

15 — L'organisation d'un ordinateur

seur de souris 4 'endroit correspondant de I'écran. De méme, il est possible
d'utiliser simultanément plusieurs programmes, alors que dans la descrip-
tion que nous avons donnée, le processeur n'en exécute qu'un seul a la fois.

Cela est dii au fait que dés qu'on allume un ordinateur, un programme
spécial est lancé : le systéme d'exploitation. Ce programme, souvent gigan-
tesque, a plusieurs fonctions :

¢ Il permet I'exécution simultanée de plusieurs programmes, selon le sys-
teme du temps partagé : le systéme d'exploitation exécute chacun des pro-
grammes 2 tour de role et pendant une courte durée, garantissant
chacun que ses données ne seront pas modifiées par les autres — ainsi,
méme si un programme croit utiliser les cases mémoire 1, 2 et 3, il se peut
qu’il utilise en fait les cases 4097, 4098 et 4099, car le systéme d’exploita-
tion a réservé les véritables cases 1, 2 et 3 pour un autre programme.

* Il gére les périphériques ; ainsi, pour imprimer un caractére sur I'écran,
il n'est pas nécessaire d’allumer chaque pixel 'un aprés 'autre, mais on
peut demander au systtme d’exploitation d’afficher un « A » et celui-ci
traduira cette instruction en une suite d'instructions qui afficheront un
« A » pixel par pixel. La partie du systéme d’exploitation qui gére un
périphérique sappelle un pilote.

* En particulier, il gére le disque, son découpage en fichiers, I'attribu-
tion d'un nom a chaque fichier et leur organisation arborescente (voir
le chapitre 11).

ALLER PLUS LO
Plusieurs systémes d'exploitation

Il existe plusieurs systemes d’exploitation : Unix,
Linux ou GNU/Minux, Windows, Mac0S, etc.
Toutefois, le développement d'un systéme
d'exploitation est une tache si colteuse en
temps, qu'il n’existe guére plus d’une dizaine de
systémes d'exploitation réellement utilisés.

» Il gére aussi I'écran, c'est-a-dire son découpage en fenétres, 'ouver-
ture et la fermeture des fenétres.

e Dans certains systtmes utilisés par plusieurs personnes, il gére
l'authentification de chaque utilisateur et les droits, en particulier de
lecture et d’écriture des fichiers, associés a chacun d’eux.

AlERpLS LN Les ordinateurs paralléles

Une maniére de fabriquer des ordinateurs plus rapides
est de mettre dans un ordinateur plusieurs processeurs
qui calculent en paralléle, c'est-a-dire en méme temps.
Les ordinateurs qui ont plusieurs processeurs paralléles
sont appelés ordinateurs paralléles ou multicceurs. Cer-
tains algorithmes sont trés faciles a paralléliser: par
exemple pour augmenter la luminosité d’une image en
niveaux de gris, il faut ajouter une constante a chaque
pixel. Chaque pixel peut étre traité indépendamment
des autres et utiliser deux processeurs au lieu d'un divise
le temps de calcul par deux. Toutefois, d'autres algo-
rithmes sont plus difficiles a paralléliser.

La programmation des processeurs paralléles est plus
difficile car, en plus d'écrire des instructions, il faut pré-
voir sur quel processeur elles vont s’exécuter.

Les processeurs peuvent se partager une mémoire ou
plusieurs. Si deux processeurs partagent la méme
mémoire et doivent se communiquer des données, il
faut s'assurer que le premier ait bien fini de les calculer
et de les stocker en mémoire avant que le second ne les
lise. On dit que les deux processeurs doivent se synchro-
niser. lls peuvent aussi avoir des mémoires différentes et
communiguer par un bus. Les processeurs peuvent fonc-
tionner sur la méme horloge ; on dit alors qu'ils sont
synchrones. Ou bien chaque processeur peut avoir sa
propre horloge ; on dit qu‘ils sont asynchrones. Le paral-
lélisme existe aussi a I'intérieur des processeurs, entre les
instructions du langage machine. Cette forme de paral-
|1élisme s'appelle le parallélisme d’instructions.

193

Troisieme partie — Machines

ALERPLS Lo La hiérarchie mémoire

Il y a une évidente ressemblance entre les notions de
case de la mémoire d'un ordinateur et de boite associeée
a une variable dans un état de |'exécution d'un pro-
gramme. Toutefois, ces deux notions ne sont pas absolu-
ment identiques. Un programmeur peut faire comme si
une valeur stockée dans une boite de nom x était
stockée au méme endroit de la mémoire d’'un bout a
I'autre de I'exécution du programme. Cependant, cette
valeur peut en réalité changer de place. Elle peut étre
en mémoire, mais comme le systéme d'exploitation gere
plusieurs programmes en temps partage, il peut trés
bien attribuer a la boite de nom x d’abord une case de
la mémoire, puis une autre plus tard. Ce que le systéme
d‘exploitation garantit est que, quoi qu‘il se passe en
réalité, tout se passera de maniére transparente pour le
programmeur, qui peut donc faire comme si le contenu
de cette boite était toujours stocké dans la méme case.
Si on utilise des processeurs paralléles pour faire un
calcul, la valeur de la boite x peut étre dans la mémoire
d'un processeur ou d'un autre, voire dans plusieurs
meémoires en méme temps. On a vu aussi que la valeur
peut étre dans un registre au moment ou elle est utilisée

AlEg s Lol La distribution du code source d'un logiciel

Certains auteurs et éditeurs de programmes ne donnent
a leurs utilisateurs que le code compilé de leurs pro-
grammes. lls peuvent ainsi garder leurs secrets de fabrica-
tion. Les usagers peuvent utiliser ces programmes, mais
ne peuvent pas comprendre comment ils fonctionnent.

D'autres, a l'inverse, donnent a leurs utilisateurs a la fois
le code compilé et le code source. Cela permet aux utili-
sateurs qui le souhaitent de comprendre comment le
programme est concu, de |'adapter a leurs propres
besoins si le programme n’y répond qu‘imparfaitement,
ou de vérifier que le programme ne fait rien d'indési-
rable, par exemple qu'il ne contient pas d'espion qui
communique a son insu des informations sur I"utilisateur
a l'auteur du programme. Cela permet aussi aux utilisa-
teurs de contribuer a I'amélioration du programme, en

194

pour un calcul ou bien elle méme calculée si elle est le
résultat d'un autre calcul.

La réalité est encore un peu plus complexe car les pro-
cesseurs disposent de mémoires caches ou antémémoires.
Ce sont les mémoires L7 et L2 indiquées dans les caracté-
ristiques techniques des processeurs. Ces mémoires sont
d’accés plus rapides que la mémoire ordinaire, mais
beaucoup moins grandes. Généralement, |'accés a une
memoire cache ne prend que quelques cycles d'horloge,
mais sa capacité est limitée a quelques kilooctets ou
meégaoctets. Pendant le calcul, la valeur de la boite x
peut aussi se trouver dans une de ces mémoires caches.
Un mécanisme matériel gére automatiquement ces deux
mémoires et les instructions du langage machine ne per-
mettent méme pas de choisir d’utiliser I'une ou |'autre.
Toutefois, le principe a retenir est que toute donnée
récemment utilisée a de fortes chances d'étre encore
dans un des caches. Donc éviter de trop éloigner les uti-
lisations d'une méme variable dans un programme peut
faire gagner beaucoup de temps de calcul.

On a ici un nouvel exemple de la description d‘une
méme réalité a différents niveaux d'abstraction.

signalant des erreurs, en les corrigeant ou en ajoutant
des composants aux programmes.

Les partisans de la distribution du code source des logi-
ciels articulent leurs arguments sur deux plans : un plan
éthique et philosophique et un plan scientifique et tech-
nique. Certains insistent sur I'impératif moral de distri-
buer le code source de ses programmes, avec |‘objectif
de diffuser a tous des connaissances et de leur per-
mettre de se les approprier. D'autres insistent sur le fait
que permettre aux utilisateurs de contribuer aux logi-
ciels développés en améliore la qualité. De fait, certains
logiciels tels les systémes d'exploitation GNU/Linux sont
aujourd’hui développés par des milliers de contributeurs
de par le monde, ce qui serait impossible si le code
source n'était pas publié.

AuErpLIS L0 Des programmes auto-modifiants aux virus

Stocker le programme a exécuter dans la mémoire, avec
le reste des données, a permis de prendre conscience de
la possibilité pour un programme de se modifier lui-
méme, par une simple instruction STA, dans la partie de
la mémoire consacrée au stockage du programme. Si
cette possibilité disparait dans les langages de program-
mation évolués, elle est bien présente dans les pro-
grammes directement écrits en langage machine.

Cette possibilité de se dupliquer et de se transformer est
en particulier utilisée par les virus informatiques. Un virus

Ai-je bien compris ?
* Quels sont les principaux circuits d’'un ordinateur ?
* Qu'est-ce que le Jangage machine ?

* Qu'est-ce que compiler un programme ?

15 — L'organisation d'un ordinateur

est un programme qui est congu pour se dupliquer et se
propager d'ordinateur en ordinateur a l'insu de leurs
utilisateurs, par le réseau, ou tout autre support permet-
tant de transmettre de l'information : clé de mémoire
flash, CD-ROM, etc. Une fois installé sur un ordinateur,
un virus peut espionner ses utilisateurs et communiquer
les informations collectées par le réseau. |l peut aussi
simplement utiliser la capacité de calcul de I'ordinateur
hote, par exemple pour envoyer des courriers en tres
grand nombre.

195

MAINTENANT, LOUCHEZ UN
PBJ POUR QUE LE<< (4 » ET
LE <« H >> SE SUPERPOSENT,

?

MANTEVEZ VOTRE REGARD
m&z’srmezwaw
AUHDESIUS DE VOTRE TETE.

)

Les réeseaux

CHAPITRE AVANCE

Les ordinateurs parlent aux ordinateurs.

Dans ce chapitre, nous voyons comment les ordinateurs
communiquent entre eux, et comment ces communications
se composent pour faire fonctionner le réseau Internet.
Ces mécanismes de communication de machine 4 machine
s'appellent des protocoles.

Les protocoles de la couche physique connectent les bus

des ordinateurs. Les protocoles de la couche lien organisent
un réseau local autour d’un serveur et repérent les ordinateurs
par I'adresse MAC de leur carte réseau. Les protocoles

de la couche réseau organisent les réseaux locaux de proche
en proche et repérent les ordinateurs par leur adresse IP.

Nous expliquons comment les informations sont acheminées
au travers du réseau 2 I'aide de routeurs.

16

Vinton Cerf (1943-) et Robert Kahn
(1938-) ont inventé, au début des
années 1970, le protocole de trans-
mission de paquets de données IP
(Internet Protocol) et le protocole de
contréle de flux de données TCP
(Transmission Control Protocol). |
s'agit des deux principaux protocoles
du réseau Internet. lls donnent a ce
réseau sa fiabilité, sa robustesse en
cas de pannes ou de modifications et
sa capacité a évoluer. Cela a valu a
leurs auteurs le surnom de « péres
d'Internet. »

Troisieme partie — Machines

4 Réseau

Un réseau est un ensemble d'ordinateurs et de
connexions qui permettent a chaque ordinateur de
communiquer avec tous les autres, éventuellement
en passant par des intermédiaires.

Protocole

Un protocole est un ensemble de régles qui
régissent la transmission d'informations sur un
réseau. Il existe de nombreux protocoles, chacun
spécialisé dans une tache bien précise.

Couche

Une couche est un ensemble de protocoles qui
effectuent des taches de méme niveau. On dis-
tingue cing couches appelées couche applica-
tion, couche transport, couche réseau,
couche lien et couche physique.

198

Nous avons vu qu'un ordinateur pouvait se décrire a différentes échelles :
les transistors s'assemblent en portes booléennes, qui s'assemblent 4 leur
tour en composants — processeurs, mémoires, etc. — qui s'assemblent a
leur tour en ordinateurs. Et nous pouvons continuer, car les ordinateurs
s'assemblent 2 leur tour en réseaux de différentes tailles : des réseaux les
plus simples, formés de deux ordinateurs reliés par un cible ou par radio,
aux réseaux locaux connectant quelques ordinateurs entre eux — les ordi-
nateurs d'un lycée par exemple —, qui sassemblent a leur tour pour
former le plus grand des réseaux : Internet, lequel relie presque tous les
ordinateurs du monde.

Les protocoles

Si un programme Py, par exemple un logiciel de courrier électronique, exé-
cuté sur un ordinateur /4, veut communiquer des informations 4 un autre
programme Pp, exécuté sur un ordinateur B, il sous-traite cette tiche 4 un
programme spécialisé O 4, exécuté sur l'ordinateur 4, qui met en ceuvre un
protocole. Ce programme Q4 dialogue, suivant les spéaifications de ce pro-
tocole, avec un programme homologue Qp exécuté sur I'ordinateur B, ce
qui permet ainsi la communication entre les programmes P4 et Pp.

En fait, le programme Q4 sous-traite, 4 son tour, certaines tiches moins
sophistiquées a d'autres programmes mettant en ceuvre d’autres protocoles,
qui sous-traitent, de méme, certaines tiches encore plus élémentaires a
d'autres protocoles, etc. On peut ainsi classer les protocoles en couches hié-
rarchiques, par le niveau de sophistication des tiches qu'ils exécutent.

Ainsi, les informations envoyées par le programme de courrier électro-
nique sont d’abord confiées a un protocole de la couche application, qui
les confie 4 un protocole de la couche transport, qui les confie 4 un pro-
tocole de la couche réseau, qui les confie 4 un protocole de la couche
lien, qui les confie 4 un protocole de la couche physique, qui les transmet
effectivement vers 'ordinateur B.

Quand on confie une lettre 4 un facteur, on doit la mettre dans une enve-
loppe et ajouter sur I'enveloppe des informations supplémentaires :
I'adresse du destinataire, sa propre adresse, une preuve de paiement, etc.
De méme, quand un protocole de la couche £+1 confie des informations
a un protocole de la couche £, celui-ci ajoute 4 ces informations un en-
téte Hy, qui contient des informations, comme l'adresse de I'ordinateur
destinataire, utilisées par le protocole de la couche £ On appelle cela
Vencapsulation des informations. Quand les informations I confiées par la

16 — Les réseaux

Ordinateur A Ordinateur B 5

SZn

Transport

Application

Systéme en couches,
piles de protocoles. Encapsulation
et décapsulation des informations.

couche application 2 la couche transport arrivent a un protocole de la
couche physique, plusieurs en-tétes FHy, 3, H,, Hy leur ont été ajoutés.
Ces en-tétes sont supprimés a la réception : la couche £ analyse puis
supprime [, avant de passer I'information a la couche £+7. On appelle
cela la décapsulation des informations.

ALLER PLUS O Les normes

Des normes régissent les roles de chaque couche, leurs interactions et les
spécifications de chaque protocole. Ces normes permettent au réseau
Iinternet de fonctionner a I'échelle mondiale et assurent la modularité du
systéme : il est possible de modifier les protocoles a I'ceuvre au sein d*une
couche, sans modifier les protocoles des autres couches, et le systéme con-
tinue a fonctionner dans son ensemble. Cette modularité est analogue au
fait de pouvoir changer un composant matériel d’'un ordinateur, par
exemple sa carte graphique, sans devoir rien changer d’autre. Cette
modularité est essentielle pour permettre au systéme d'évoluer.

199

Troisieme partie — Machines

La communication bit par bit :
les protocoles de la couche physique

Transmission point & point

Flashcode exprimant le nombre
5412082001000261

200

Commengons la présentation de ces protocoles par ceux de la couche
physique. Un protocole de la couche physique doit réaliser une tache
extrémement simple : communiquer des bits entre deux ordinateurs
reliés par un céble ou par radio.

Pour relier deux ordinateurs par un cible, et donc réaliser le réseau le
plus simple qui soit, on pourrait prolonger le bus de I'un des ordinateurs,
afin de le connecter au bus de l'autre. Ainsi, le processeur du premier
ordinateur pourrait écrire, avec l'instruction STA, non seulement dans sa
propre mémoire, mais aussi dans celle du second. Le processeur du
second ordinateur pourrait alors charger, avec linstruction LDA, la
valeur écrite par celui du premier.

La technique utilisée en réalité n'est pas beaucoup plus compliquée : le
processeur du premier ordinateur envoie des informations par le bus vers
l'un de ses périphériques, /a carte réseau, qui les transmet par un cible — ou
par un autre support physique, par exemple par radio — a la carte réseau du
second ordinateur qui les transmet, par le bus, a son processeur.

Interface 1

Support physique (cable)

F

La transmission d’une carte réseau a l'autre met en ceuvre un protocole,
appelé protocole physique. Un exemple de protocole physique est la com-
munication par codes-barres 4 deux dimensions, comme les picto-
grammes Flashcode utilisés par les téléphones, ot chaque bit est exprimé
par un carré noir ou blanc.

Les protocoles physiques qui permettent a deux ordinateurs de commu-
niquer par cible ou par radio ne sont pas trés différents. Cependant, au
lieu d’'utiliser des carrés noirs et blancs, ils représentent les informations
par des signaux électromagnétiques, par exemple des variations de lon-
gueur d’onde, de phase ou d'intensité d’une onde.

Exercice 16.1

On utilise un lien physique peu fiable : a chaque fois que I’on transmet un 0 ou
un 1, la probabilité que ce bit ne soit pas reconnaissable a |'arrivée est 3/10.
Pour pallier ce manque de fiabilité, on utilise une forme de redondance (voir
le chapitre 12) : quand l'ordinateur émetteur demande a sa carte réseau
d’envoyer un 0, cette derniére envoie |la suite de bits 0, 1, 0, 0, 1, qui est inter-
prétée par la carte réseau de |'ordinateur récepteur comme un 0. De méme,
quand 'ordinateur émetteur demande a sa carte réseau d'envoyer un 1, elle
envoie la suite de bits 1, 0, 1, 1, 0 qui est interprétée par la carte réseau de
I"ordinateur récepteur comme un 1.

£} A partir de combien de bits erronés la suite de cing bits envoyée n'est-elle
plus discernable de |I'autre suite ?

) En déduire la probabilité qu'une suite de cing bits envoyée ne soit pas
reconnaissable a l'arrivée.

€ Quels sont les avantages et inconvénients de cette méthode ?

Les réseaux locaux :

16 — Les réseaux

Suero'erost Protocoles et codages

Chercher sur le Web quels sont les protocoles
utilisés dans les liaisons RS-232 d'une part, et
dans les liaisons USB d'autre part. Quels sont les
avantages d'USE par rapport & RS-232 ? Cher-
cher de méme ce que sont les codages Man-
chester d'une part et NRZI d'autre part. Quels
sont les avantages du codage Manchester par
rapport au codage NRZI ?

les protocoles de la couche lien

Létape suivante consiste a construire un réseau local, c'est-a-dire formé
de quelques machines connectées, par un protocole physique, 2 un ordi-
nateur central : un serveur. Pour envoyer des informations 4 un autre
ordinateur, chaque ordinateur passe par le serveur.

De méme qu'il était nécessaire de distinguer les différentes cases de la
mémoire d’'un ordinateur en donnant 4 chacune un nom, son adresse, il
est nécessaire de distinguer les différents ordinateurs d'un réseau local en
donnant 4 chacun un nom : son adresse MAC (Medzium Access Controf).
Une adresse MAC est un mot de 48 bits que l'on écrit comme un sextu-
plet de nombres de deux chiffres en base seize, les seize chiffres s'écri-
vant 0, 1, 2, 3, 4, 5,6, 7,8, 9,8 b, g d, e f: par exemple
10:93:€9:0a:42:ac. Une adresse MAC unique est attribuée 4 chaque carte
réseau au moment de sa fabrication. L'adresse MAC d’une carte réseau,
périphérique d'un ordinateur, identifie ce dernier sur le réseau local.

201

Troisieme partie — Machines

Réseau local

4 Paquet

Un paquet est une suite de bits structurés selon
un certain format, destinée a étre échangée sur le
réseau.

202

Ordinateur 1 Ordinateur 2 Ordinateur 3 Ordinateur 4

Les protocoles grice auxquels différents ordinateurs, connectés au méme
serveur, échangent des informations entre eux sont appelés des protocoles
de la couche lien. Un protocole simple consiste, pour le serveur, a échanger
des informations successivement avec chaque ordinateur du réseau.
Ainsi, chaque ordinateur a un créneau de temps pré-établi qui lui est
dédié périodiquement pour communiquer avec le serveur, durant lequel
le protocole physique épelle bit a bit I'information 4 transmettre.

Toutefois, les protocoles lien les plus utilisés, par exemple Ethernet et
WiFi, utilisent un autre mécanisme qui autorise chaque ordinateur
envoyer des informations au serveur a nimporte quel moment — toujours
via un protocole physique. Ce mécanisme évite de réserver un créneau
pour un ordinateur qui na peut-étre rien a commuNiquer au serveur.
Cependant, quand plusieurs ordinateurs envoient des informations en
méme temps, les messages se brouillent — on dit qu'il y a une collision entre
les messages — et le serveur n'en regoit aucun. Pour résoudre ce probléme, on
utilise une forme de redondance : quand le serveur recoit les informations
envoyées par un ordinateur, il en accuse réception et tant qu'un ordinateur
n'a pas recu d'accusé de réception, il renvoie son message périodiquement.
Pour minimiser les risques de nouvelles collisions, ce message est en
général renvoyé apres un délai de longueur aléatoire. Ce protocole est un
exemple d'algorithme qui ne peut fonctionner sans aléa.

Le réle des protocoles de la couche lien est également de définir le
format des messages échangés : de méme qu’un fichier PGM (voir le
chapitre 9) n'est pas simplement une suite de pixels, mais contient aussi
d’autres informations — la largeur et la hauteur de I'image, le nombre de
niveaux de gris, etc. — et est structuré selon un certain format standard,

les messages qui circulent sur les réseaux, les paguets, ne sont pas simple-
ment formés des bits transmis, mais contiennent des informations addi-
tionnelles et sont structurés selon un format standard.

Exercice 16.2

Un pictogramme n'est pas simplement une suite de carrés blancs et noirs, mais
il contient aussi des informations qui permettent au téléphone d'en trouver
les bords et I'orientation. Quelle est la partie du format de chacun de ces pic-
togrammes qui joue ce role ?

Combien de pictogrammes différents existe-t-il dans chacun de ces formats ?
Comment ce nombre se compare-t-il au nombre de pages existant sur le Web ?

Savoir-raiRe Trouver les adresses MAC des cartes réseau d’un ordinateur

Ouvrir une fenétre ferminal. Utiliser la commande i fconfig sous Linux, ou ipconfig /all

sous Windows.

Exercice 16.3 (avec corrigé)

Trouver les adresses MAC des cartes réseau de son ordinateur.

Lorsqu’on tape la commande ifconfig ou ipconfig /all, différentes infor-
mations s‘affichent, relatives a la connexion de son ordinateur au réseau. Ces
informations sont généralement organisées en paragraphes qui correspon-
dent a différentes cartes réseaux : par exemple un paragraphe qui correspond
a la carte Ethernet qui gére la connexion par cable et un autre qui correspond
a la carte WiFi qui gére la connexion par radio. On reconnait dans chacun de
ces paragraphes une adresse de la forme 10:93:e9:0a:42:ac : un sextuplet de
nombres de deux chiffres en base seize. Il s'agit de 'adresse MAC de chacune
de ces cartes.

Noter I'adresse MAC d’une carte réseau de son ordinateur. De quelle con-
nexion réseau s'agit-il précisement ? WiFi ? Ethernet ? Autre ? Eteindre, puis
rallumer I'ordinateur. L'adresse a-t-elle changé ?

16 — Les réseaux

203

Troisieme partie — Machines

Le réseau global : les protocoles
de la couche réseau

POUR ALLER pLUS LOW D"IPv4 a IPV6

Une adresse étant un mot de 32 bits, il ny a que
232 adresses IPv4 possibles, soit un peu plus de
quatre milliards : c'est peu quand on sait que le
réseau Internet contient déja trois milliards
d’ordinateurs. Cette pénurie en adresses IP, due
a l'imprévoyance des pionniers d'Internet, qui
cherchaient seulement a connecter quelques
dizaines d'ordinateurs sans anticiper le succés
de leur réseau, explique que l'on cherche
aujourd’hui a les remplacer par des adresses de
128 bits (IPv6).

Utliser un ordinateur central est possible pour un réseau de petite taille,
mais cette méthode ne peut pas s'appliquer 4 un réseau formé de plu-
sieurs milliards d’ordinateurs, comme Internet : d'une part, 'ordinateur
central serait vite surchargé, d’autre part s'il tombait en panne, ou s'il
était détruit, les communications sur la Terre entiére seraient interrom-
pues. C'est pour cela que l'on a inventé d'autres protocoles pour les
réseaux de grande taille, appelés les protocoles réseau, qui féderent les
réseaux locaux de proche en proche et utilisent les protocoles lien pour
assurer les communications locales. Le plus utilisé des protocoles réseau
est le protocole IP (Internet protocol).

Avec le protocole IP, chaque machine a une adresse, appelée son adresse
IP. Contrairement a l'adresse MAC, celle-ci n'est pas associée de
maniére durable a un ordinateur : quand un ordinateur est remplacé par
un autre, le nouveau peut hériter de 'adresse IP de I'ancien. A l'inverse,
s1 un ordinateur est déplacé d’un lieu & un autre, il change d’adresse IP.
Les adresses IP classiques (IPv4) sont des mots de 32 bits écrits sous
forme d'un quadruplet de nombres compris entre O et 255, par exemple

216.239.59.104.

Savoir-rFAIRE Trouver I’adresse IP attribuée a un ordinateur

Ouvrir une fenétre zerminal. Utiliser la commande i fconfig sous Linux ou ipconfig /
a11 sous Windows.

204

Exercice 16.5 (avec corrigé)

Trouver les adresses IPv4 attribuées a son ordinateur.

Lorsqu’on tape la commande ifconfig ou ipconfig /all, différentes infor-
mations s'affichent, relatives a la connexion de son ordinateur au réseau. On
reconnait parmi ces informations des adresses de la forme 216.239.59.104 : un
guadruplet de nombres compris entre 0 et 255. Il s’agit des adresses IPv4 attri-
buees a chacune des cartes réseaux de I'ordinateur.

Exercice 16.6

Noter les adresses IP attribuées aux cartes réseau de son ordinateur. Eteindre,
puis rallumer cet ordinateur. Ces adresses ont-elle changé ?

xercice 16.7

Soit un réseau connectant cing ordinateurs: A, B, C, D et E. Est-il possible
d'identifier chaque ordinateur de maniére unique avec des adresses de 3 bits ?
Décrire un tel plan d'adressage : attribuer une adresse a chaque ordinateur.
Est-il également possible d'identifier chaque ordinateur de maniére unique
avec des adresses de 2 bits ?

Exercice 16.8

Combien y a-t-il d'adresses IPv4 ? Combien y a-t-il d’adresses IPv6 ? Combien y
a-t-il de numéros de téléphone en France ?

Avec les protocoles réseau, la notion de serveur est remplacée par celle de
routeur. Pour envoyer des informations 2 une machine dont I'adresse IP
est X, un ordinateur commence par les envoyer au routeur auquel il est
connecté. En fonction de 'adresse X, celui-ci I'envoie a un autre routeur,
puis A un autre, ctc. jusqu’a ce que les informations arrivent a destina-
tion. On appelle ce procédé le routage.

Les routeurs n'ayant pour fonction que de relayer les paquets en direc-
tion de leur destination, ils ne mettent en ceuvre que des protocoles des
couches physique, lien et réseau, contrairement aux hétes qui, eux, met-
tent en ceuvre des protocoles de toutes les couches.

== (e
L VATAVETE VA

/\/\/\/\/\/
\/

. Réseau global
[I 1 1 | | Hote
B Reéseau
local Routeur

La figure suivante illustre le routage d'informations d’un héte a un autre,
en passant par deux routeurs et trois cibles: en chemin, sur chaque
machine les traitant, les informations transmises sont successivement
encapsulées quand elles passent d’'une couche i la couche inférieure, puis

décapsulées quand elles passent d'une couche a une couche supéricure.

16 — Les réseaux

4 Routeur

Un routeur est un ordinateur dont la seule fonc-
tion est d'acheminer des informations sur le
réseau. Pour les distinguer des routeurs, on appelle
les autres ordinateurs du réseau des hotes.

Réseau global. Routage de A a B en passant
par les routeurs R1, R2, R3, R4, RS, R6, R7 et
R8.

205

Troisieme partie — Machines

Les protocoles a |'ceuvre lors du routage.
Chemin suivi par l'information travers les
couches sur chaque machine.

206

Hote1 | | Hote 2
Couche | ;;L Couche
Application Application |
Couche Couche
Transport Routeur 1 Routeur 2 Transport
Couche N Couche 4 Couche Couche
Réseau Réseau " Réseau | Réseau
Couche Couche Couche , Couche
Lien Lien Lien . Lien
Couche I - Couche . Couche . Couche
Physique = | Physique :Physique{ - Physique)
v | y | v |
Cable 1 Cable 2 Cable 3

On peut comparer le routage au systéme du courrier postal. Si, 2 Sydney,
un Australien expédie une lettre a I'adresse « 2004, route des Lucioles,
Valbonne, France », le facteur australien n'apporte pas cette lettre directe-
ment i son destinataire, contrairement a ce que faisaient les « facteurs » au
XVII¢ siecle : il la met dans un avion en direction de Hong-Kong ou de
Los Angeles, oti un autre facteur la met dans un avion en direction de
Francfort ou de Paris, oli un autre facteur la met dans un avion en direc-
tion de Nice, ot un facteur I'apporte finalement en camionnette, au 2004
de la route des Lucioles, 2 Valbonne.

Un routeur, qui regoit des informations 4 envoyer a une adresse IP X, doit
choisir le routeur suivant, en direction de X. De méme que le facteur aus-
tralien sait qu'une lettre pour Valbonne, ou plus généralement pour la
France, peut passer par Hong-Kong, le routeur a un répertoire, appelé
table de routage, qui indique que la premiére étape d'un chemin vers
I'adresse X est le routeur dont I'adresse IP est B, auquel il est directement
connecté. Il envoie donc ces informations vers le routeur B, qui consulte 4
son tour sa propre table de routage, et ainsi de suite jusqu’a arriver a I'ordi-
nateur dont 'adresse est X. Comme dans un jeu de piste, on ne connait
pas le chemin 4 I'avance, mais, a chaque étape, on découvre la suivante.

Pour construire et maintenir a jour leurs tables de routage, les routeurs
utilisent un algorithme de routage, par exemple l'algorithme de Bellman-
Ford : outre acheminer des informations d'un point a un autre, chaque
routeur envoie périodiquement 2 chaque routeur auquel il est connecté
directement par un protocole lien, la liste des adresses IP vers lesquelles
il connait un chemin, dont bien entendu sa propre adresse, et la longueur

16 — Les réseaux

de ce chemin. Grace a cet algorithme et au fur et 2 mesure quil regoit
des listes, chaque routeur découvre peu a peu I'état du réseau et, ce fai-
sant, les chemins les plus courts pour atteindre les destinations présentes
dans le réseau. Ainsi, un routeur qui regoit du routeur B I'information
que B a regu du routeur C I'information que C est directement connecté
a l'ordinateur X, met 2 jour sa table de routage en mémorisant qu'un
chemin pour accéder a l'ordinateur X, en passant par deux intermé-
diaires, commence par le routeur B.

Cette mise a jour dynamique des tables de routage est ce qui donne sa sou-
plesse au réseau Internet. Si par exemple le cible entre les routeurs B et Cest
détruit, les tables de routage se mettent graduellement 4 jour en découvrant
d'autres chemins pour acheminer les informations vers la machine X. A
l'origine, cette idée servait 2 donner une robustesse au réseau en temps de
guerre : tant que deux points restaient connectés par un chemin dans le
graphe des routeurs, il leur était possible de communiquer. Par la suite, on
s'est rendu compte que cette souplesse était de toutes fagons nécessaire dans
un réseau de trois milliards d’ordinateurs, ot il est inévitable que des ordina-

teurs soient en permanence ajoutés ou supprimés du résean.

Si les protocoles réseau sont trés souples, ils sont en revanche peu
fiables : quand un routeur est saturé par trop d'informations 4 trans-
mettre, il en détruit tout simplement une partie. En outre, quand des
informations ont été envoyées d’un routeur a un autre trop longtemps
sans arriver a destination, elles sont également détruites.

Savoir-rFAIRE Déterminer le chemin suivi par I'information

Dans une fenétre terminal, la commande ping suivie d'un nom de domaine affiche
I'adresse IP associée 2 ce nom de domaine. L.a commande traceroute sous Linux ou
tracert sous Windows, suivie d'une adresse 1P, affiche les routeurs d'un chemin menant
de son ordinateur 4 celui dont P'adresse IP est indiquée.

Exercice 16.9 (avec corrigé)

Trouver un chemin entre son ordinateur et |'ordinateur associé au nom de
domaine www.google.fr.

Dans une fenétre terminal, on tape la commande ping www.google.fr et une
adresse IP s'affiche, par exemple 173.194.34.55. C'est I'adresse d'un ordinateur
de Google. On tape ensuite la commande traceroute 173.194.34.55 ou
tracert 173.194.34.55 et une liste s'affiche des routeurs qui forment un
chemin entre sa machine et celle de Google.

207

Troisieme partie — Machines

208

Savoir-FAIRE Déterminer I'adresse IP du serveur par lequel un
ordinateur est connecté a Internet

Dans une fenétre terminal, la commande netstat -r sous Linux ou ipconfig /all sous
Windows affiche différentes informations relatives a la connexion de son ordinateur au
réseau, en particulier la passerelle par défaut (default gateway) qui est le routeur par lequel

cet ordinateur est connecté a Internet.

Exercice 16.10 (avec corrigé)

Déterminer I'adresse IP du routeur par lequel son ordinateur est connecté a
Internet.

On tape la commande netstat -r ou ipconfig /all. Dans les informations
affichées, on recherche la passerelle par défaut (default gateway) indiguee,
qui est le routeur. Ce dernier est identifié soit directerment par son adresse IR
soit par un nom de la forme gw.adalovelace. fr ; dans ce second cas, on peut
trouver Fadresse IP associée a ce nom avec la commande ping.

Exercice 16.11

Un algorithme de routage. On attribue a chaque éléve une nouvelle adresse
mail, par exemple anonymel@adalovelace.fr, anonyme2@adalovelace.fr,
etc. Chaque éléve garde cette adresse secréte et il la marque sur une feuille de
papier. Ces feuilles sont mélangées dans un chapeau et chacun tire une
adresse en s'assurant qu‘il ne tire pas la sienne propre. Chaque éléve a unique-
ment le droit d'envoyer des courriers a I'adresse qu'il a tirée dans le chapeau
et de répondre a I'envoyeur de tout courrier qu'il recoit a son adresse .

Chaque éléve envaie un courrier a I'adresse qu’il a tirée, dans lequel il indique
son propre nom. Par exemple, Alice enverrait :

sujet : Hello
corps du message :
Alice (par -)

Chaque éléve construit une table de routage qui indique, pour chaque éléve
dont il a entendu parler, I'adresse de la personne par qui il en a entendu parler
pour la premiére fois. Par exemple, |a table de routage d’Alice peut avoir cette
forme :

Alice (par -)

Djamel (par anonymeZ@adalovelace.fr)
Frédérique (par anonyme2@adalovelace.fr)
Hector (par anonyme7@adalovelace.fr)

A chaque fois qu‘'un éléve recoit un message, il le lit, met a jour sa table de
routage et y répond en copiant, dans le corps du message |'état de sa table de
routage mise a jour. Alice enverrait par exemple :

sujet : Helle
corps du message :
Alice (par -)

16 — Les réseaux

' Djamel (par anonyme2@adalovelace.fr)
Frédérique (par anonyme2@adalovelace.fr)
Hector (par anonyme7@adalovelace.fr)

Au bout d'une dizaine de minutes, on arréte d’envoyer et de répondre aux
messages.

On passe alors a |la seconde phase de |'exercice : un éléve essaie d‘envoyer un
véritable message a un autre éléve. Pour cela, il envoie son message a |’adresse
correspondant au nom de son destinataire dans sa table de routage.

Par exemple :
Alice envoie a |'adresse anonyme2@adalovelace. fr le message suivant :

| Ssujet : message pour Frédérique
Corps du message : N'oublie pas de me rapporter 1'exemplaire de

Madame Bovary que je t'ai prété il y a six mois. Merci. Alice.
i

Si un éléve autre que son destinataire recoit ce message, il le renvoie a
I'adresse correspondant au nom de son destinataire dans sa propre table de
routage, et ainsi de suite jusqu'a ce que le message arrive a destination.

A quelle condition un message arrive-t-il bien a son destinataire ?

La régulation du réseau global :
les protocoles de la couche transport

Les programmes que I'on utilise tous les jours, par exemple les navigateurs
web ou les programmes de gestion du courrier électronique, ne peuvent
pas directement utiliser le protocole IP, principalement pour deux raisons :
d'une part, le protocole IP ne permet de transférer d'un ordinateur a un
autre que des informations de taille limitée : en général, des paquets de
1500 octets au maximum. D’autre part, comme on I'a vu, IP est un proto-
cole peu fiable : dés qu'un serveur est surchargg, il détruit des informations
qui n'arrivent donc pas a leur destinataire. On utilise donc un type supplé-
mentaire de protocole : les protocoles de transport, dont le plus utilisé est le
protocole TCP (Transmission Control Protocol). Les protocoles de trans-
port utilisent les protocoles réseau pour acheminer des informations con-
tenues dans des paquets IP, d’'un bout 2 I'autre du réseau, et assurent que
tout paquet IP envoyé est arrivé 4 bon port.

Pour poursuivre la comparaison avec le service postal, si on attache une
importance particuliere a une lettre, on I'envoie en recommandé et on
attend un accusé de réception, qui permet de savoir que sa lettre a bien
été regue. La couche transport sassure que la communication a bien lieu
de bout en bout, comme prévu.

209

Troisieme partie — Machines

AUERPWUSLOM Le port

Comme plusieurs programmes peuvent utiliser
TCP en méme temps et sur la méme machine,
TCP attribue & chacun d'eux un numéro: un
port. Un numéro de port permet a TCP de distin-
guer les paguets correspondant aux différents
programmes qui communiquent en méme temps.

210

Comme les protocoles de la couche lien, TCP utilise une forme de redon-
dance pour fiabiliser les communications. Il utilise les protocoles réseaux
pour envoyer des paquets IP d’un ordinateur 4 un autre et pour envoyer un
accusé de réception du destinataire 4 I'expéditeur. Tant que I'accusé de
réception narrive pas, le méme paquet est renvoyé périodiquement. Si trop
d’accusés de réception n'arrivent pas, T'CP ralentit la cadence d’envoi des
paquets pour s'adapter 2 une congestion éventuelle du réseau global, puis
ré-accélére la cadence quand les accusés de réception arrivent.

Une autre fonction de TCP est de découper les informations 2 transmettre
en paquets de 1 500 octets. Par exemple, pour envoyer une page web de
10 000 octets, TCP découpe ces 10 000 octets en paquets plus petits,
chacun de taille standard, et les envoie I'un aprés I'autre. A I'autre bout du
réseau, quand tous ces paquets standards sont arrivés, TCP les remet dans
I'ordre et ré-assemble leurs contenus pour reconstruire la page web.

Exercice 16.12

Taper la commande ping www.google.fr dans une fenétre terminal et
observer ce qui se passe. En déduire la valeur d'un temps d'attente adéquat
aprés lequel TCP devrait considérer que I'accusé de réception d'un paquet
envoyé a www.google. fr est perdu. Quelle serait la conséquence d'utiliser un
temps d'attente plus court ? Quelle serait la conséquence d’utiliser un temps
d’attente plus long ?

Exercice 16.13

On suppose que la durée a attendre entre |I'envoi d'un paquet et la réception

d‘un accusé de réception pour ce paquet est 1 seconde en moyenne, et que les

paquets peuvent chacun contenir jusqu‘a 1 500 octets de données. On consi-

déere les deux configurations suivantes pour TCP.

e Configuration A. TCP est configuré pour n‘envoyer un nouveau paquet
qu'apreés avoir recu |'accusé de réception du paquet précédent.

= Configuration B. TCP est autorisé a envoyer des grappes de 20 paquets a la
suite et a accuser réception avec un seul accusé de réception pour toute la
grappe, au lieu d'un accusé de réception pour chaque paquet. En consé-
guence, un paquet perdu entraine |'absence d’accusé de réception pour la
grappe a laquelle il appartient, et donc demande de renvoyer la grappe
entiere au lieu du seul paquet perdu.

) Combien de temps faut-il au minimum pour envoyer 1 Mo a destination
avec la configuration A ? Avec la configuration B ? Pour simplifier, on sup-
pose que le temps passé a envoyer 20 paquets a |a suite est négligeable par
rapport a 1 seconde.

@ On suppose maintenant qu‘en moyenne, 1% des paquets envoyeés vers une
destination se perdent en chemin. En moyenne, combien de paquets
faudra-t-il faire transiter sur le réseau pour transférer le fichier de 1 Mo a
destination avec la configuration A ? Avec la configuration B ? Pour simpli-
fier, on considére qu'a la deuxiéme fois quon envoie un paquet, il arrive a
destination a coup sdr, et qu‘un accusé de réception envoyé arrive égale-
ment a coup sdr.

&) Quels sont les avantages et inconvénients de la configuration B par rap-
port a la configuration A ?

Exercice 16.14

Considérons un protocole de transport qui identifie chaque paquet envoyé par
un numéro de séquence exprimé sur 4 octets, et admettons que chaque paquet
envoyé peut contenir jusqu’a 1500 octets de données a transmettre. Quelle est la
taille minimale de fichier a transmettre a partir de laquelle on devrait réutiliser
un numéro de séquence déja utilisé au début de I'envoi de ce méme fichier ?
Méme question si on déduit des 1500 octets les informations de contrdle néces-
saires au fonctionnement des couches au-dessus de la couche Lien, a savoir 20
octets den-téte pour le protocole de transport, et 20 octets d'en-téte IP ?

Exercice 16.15

Chercher sur le Web ce qu'est le protocole UDP. Quelles sont les différences
entre UDP et TCP ? Quels sont les principaux avantages et inconvénients de
chacun de ces protocoles ? Citer des exemples de programmes qui utilisent
UDP, d'autres qui utilisent TCP, et expliquer ces choix.

16 — Les réseaux

Programmes utilisant le réseau :

la couche application

Les protocoles des couches physique, lien, réseau et transport fournis-
sent le socle d'Internet : ils permettent de transmettre de maniére fiable
des fichiers de toutes tailles, d'une machine a nimporte quelle autre
machine connectée a Internet. En plus de ce socle, on distingue néan-
moins un dernier type de protocoles, qui utilisent les services de la
couche transport pour le compte de certains programmes que 'on utilise
tous les jours, comme les navigateurs web ou les logiciels de courrier
électronique. Il s’agit des profocoles d'application.

Les logiciels de courrier électronique utilisent par exemple le protocole
d'application SMTP (Simple Mail Transfer Protocol), les navigateurs web
utilisent le protocole d’application HTTP (HyperText Transfer Protocol)
etc. Un autre protocole d’application important est DNS (Domain Name
System) qui, aux adresses IP, associe des noms de domaines comme
www.moi.fr.

Quand un navigateur cherche 4 accéder a une page web située sur un
autre ordinateur, il utilise DNS pour trouver I'adresse IP de I'ordinateur
héte sur lequel cette page web se trouve, puis le protocole HT'TP pour
demander cette page 4 l'ordinateur hote. Si cette page est par exemple la
page d'accueil d'un annuaire électronique, elle contiendra des champs a
remplir, et c'est & nouveau le protocole HT'TP qui acheminera les infor-

Suerp'erost DNS
Présenter les principes de base de DNS.

211

Troisieme partie — Machines

Suer 0'Expost
L'affaire LICRA contre Yahoo!

Qu'est-ce que |article R.645-1 du Code Pénal
francais ? Qu'est-ce que le premier amende-
ment de la Constitution des Etats-Unis 7 En quoi
sont-ils contradictoires ? Chercher des docu-
ments sur l'affaire de la LICRA contre
Yahoo!, relative & la vente aux enchéres
d'objets nazis sur Intemet (de I'ordonnance du
Tribunal de Grande Instance de Paris du
20 novembre 2000, jusqu'a la décision de la
Cour Supréme des Etats-Unis du 30 mai 2006).
Montrer en quoi cette affaire illustre le pro-
bleme de I'application de législations différentes
selon les pays pour la vente sur Internet.

212

mations renseignées vers I'ordinateur hote, qui, en fonction de ces infor-
mations, renverra en général une autre page avec la réponse 2 la requéte.

Au bout du compte, pour transférer une page web d’'un ordinateur 2 un
autre, HTTP confie cette page web au protocole TCP, qui la découpe en
paquets et confie chaque paquet au protocole IP, qui choisit un lien a
utiliser en direction de la destination, puis confie chaque paquet au pro-
tocole de lien en vigueur sur ce dernier, par exemple WiFi, qui le confie
enfin au protocole physique, qui gére 'acheminement des bits codant ces
paquets a travers ce lien. Chaque protocole, a son niveau, contribue a la
communication. Chaque protocole est simple ; c’est de leur interaction
qui nait la complexité.

Quelles lois s’appliquent
sur Internet ?

Jusqu'au milieu du XX siécle, quand un livre ou un journal était publié,
il I'était dans un pays particulier et sa publication était régie par les lois
de ce pays. Quand un objet était vendu, il I'était dans un pays particulier
et cette vente était régie par les lois de ce pays. Ainsi, la publication de
certains textes ou la vente de certains objets était autorisée dans certains
pays, mais interdite dans d'autres.

Parce que c’est un résean mondial, Internet permet de publier, dans un
pays, des textes qui peuvent étre lus dans le monde entier et, de méme,
de vendre des objets qui peuvent étre achetés dans le monde entier. Dés
lors, quelle loi appliquer > A cette question, qui est nouvelle, plusieurs
réponses ont été imaginées, sans que personne ne sache encore laquelle
s'imposera sur le long terme :
* T'application des lois du pays dans lequel le texte est publié ou I'objet
mis en vente,
¢ T'application des lois du pays dans lequel le texte peut étre lu ou
'objet acheté — ce qui obligerait, par exemple, un hébergeur de site
web i bloquer I'accés 4 certains sites depuis certains pays,
* ouI'’émergence d’'un minimum de régles universelles.

16 — Les réseaux

Qui gouverne Internet ?

Quelques regles d'organisation d’Internet doivent étre universellement
acceptées. Par exemple, pour que les ordinateurs du monde enter puissent
communiquer, il est nécessaire qu'ils utilisent les mémes protocoles et pour
qu'il n'y ait pas de confusion entre les adresses IP, il faut que deux ordinateurs
distincts naient jamais la méme adresse. Internet n'est done pas entiérement

2 S L S 2 = . D'EXPOSE
décentralisé : un petit nombre de décisions doivent étre prises en commun. SuETDECes Que sont
* |'internet Engineering Task Force (IETF),

i, plusieurs ‘organisation § e 3 1 sans ; : :
Ici, plusieurs modes d’organisation sont en concurrence, nouveau san & tlternet Corporation for. Asigned

que personne ne sache lequel s'imposera sur le long terme : Names and Numbers (ICANN),
* I'émergence d'organisations internationales régies par des traités entre Etats, * linternet Society (I500),
i 5 i : < 4 o * |e World Wide Web Consortium (W3(),
* I'émergence dorganisations internationales informelles, dont la légiti- o le WhatWe
mité vient uniquement de la confiance qui leur est accordée, e et lUnion Intermationale des: Télécoms
(uimy ?

* I'émergence d'organisations propres aux pays ot Internet est le plus
développé (cette derniére solution ayant I'inconvénient d’augmenter les
différences de développement d'Internet entre les pays).

Quel est le role et quel est le statut de chacune
de ces organisations 7

Auerpls on Caleuler dans les nuages (cloud computing)

Au cours de I'histoire de I'informatique, des modes cen-
tralisatrices et décentralisatrices se sont succédées. Ainsi,
jusqu’aux années 1970, les entreprises n"avaient qu'un
seul ordinateur, auquel étaient connectés de nombreux
terminaux, par exemple formés d'un clavier et d'un
écran, qui permettaient a différentes personnes d'effec-
tuer des calculs sur cet ordinateur. A partir des années
1980, ces terminaux ont été remplacés par des micro-
ordinateurs, connectés par un réseau a un serveur. Les
calculs n'étaient alors plus effectués par un ordinateur
central, mais par chacun de ces micro-ordinateurs.

Depuis le milieu des années 2000, on voit apparaitre un
retour de la centralisation. Des entreprises, qui ven-
daient naguére des programmes a des clients qui les uti-
lisaient pour effectuer des calculs sur leurs ordinateurs,
proposent désormais a ces mémes clients d’effectuer
elles-mémes ces calculs a leur place. Les clients ont juste
besoin de communiquer leurs données a ces entreprises,
qui font les calculs sur leurs propres ordinateurs et
envoient le résultat de ces calculs a leurs clients. C'est ce
qu‘on appelle le calcul dans les nuages (cloud computing).
Par exemple, au lieu d'installer un logiciel de courrier
électronique sur son ordinateur et de l'utiliser pour
envoyer des courriers, on peut, a chaque fois que |'on
souhaite envoyer un courrier, se connecter a un ordina-
teur distant, en général au moyen d'une page web, et
communiquer le texte de son courrier a cet ordinateur,

qui se chargera de I'envoyer ; c’est I'idée du Webmail. De
méme, au lieu d'acheter un logiciel de comptabilité et
de I‘utiliser, une entreprise peut se connecter, a chaque
fois gu'elle souhaite effectuer une opération comp-
table, a une machine distante qui effectue cette opéra-
tion pour l'entreprise. L'ordinateur local ne sert plus
qu'a communiquer des informations a cette machine
distante, comme jadis les terminaux.

Utiliser des programmes sur une machine distante sim-
plifie beaucoup de choses. Il n'est plus nécessaire d'ins-
taller des logiciels sur son ordinateur, de les mettre a jour
de temps en temps, etc. De plus, il devient possible
d’envoyer un courrier depuis n‘importe quel ordinateur :
d‘un web café de Bogota ou de Caracas, comme de son
bureau. Pour une entreprise, cela permet de diminuer la
taille du service informatique, puisqu’il lui suffit désor-
mais d'avoir quelques ordinateurs reliés au réseau.
Cependant, cette évolution présente aussi un risque de
dépossession des utilisateurs de leur pouvoir: au lieu
d'avoir ses programmes, ses courriers, ses photos, sa
comptabilité, etc. sur son ordinateur, on préfére les con-
fier a des entreprises et des ordinateurs distants. En
outre, on a parfois une garantie assez faible de leur con-
servation sur le long terme, de son pouvoir de les
effacer ou de son controéle sur les usages que ces entre-
prises peuvent faire de ces données.

213

Troisieme partie — Machines

Ai-je bien compris ?
* Qu'est-ce qu'un protocole ? Quest-ce qu'une couche ?
* Quelles sont les cing couches de protocoles dont sont composés les réseaux ?

* Comment fabriquer un protocole fiable en utilisant un protocole peu fiable ?

214

Les robots

CHAPITRE AVANCE

Un robot 2 Cest un ordinateur a deux roues.

Dans ce chapitre, nous introduisons de nouveaux objets :

les robots, qui sont essentiellement des ordinateurs munis

de capteurs et d’actionneurs. Nous voyons comment

les grandeurs captées sont numérisées et comment le principe
de la boucle fermée permet de contréler une action.

Enfin, nous voyons comment programmer un robot

a I'aide d’une boucle infinie dans laquelle les capteurs

sont interrogés et les actionneurs activés.

17

Norbert Wiener (1894-1964) est le
fondateur, a la fin des années 1940, de
la science du pilotage ou cyberné-
tique. Entouré d'un groupe interdisci-
plinaire de mathématiciens, logiciens,
anthropologues, psychologues, éco-
nomistes..., il a cherché a comprendre
les processus de commande et de
communication chez les étres vivants,
dans les machines et dans les sociétés.
Le concept central de la cybernétique
est celui de causalité circulaire ou con-
tréle en boucle fermée (feedback).

Troisieme partie — Machines

S

“'-?/'

o

Les composants
d’un robot

Comme un ordinateur ou un téléphone, un robot est formé d’un proces-
seur, d’'une mémoire et de périphériques. Ces derniers se divisent en
périphériques de sortie, ou actionnenrs, qui permettent au robot de se
mouvoir et d’agir sur son environnement, et ses périphériques d’entrée,
ou capteurs, qui lui permettent d’analyser cet environnement.

Dans ce chapitre, nous utilisons le robot mOway, mais les connaissances
que nous présentons ne sont pas propres i ce robot et peuvent facilement
se transposer a d’autres.

Les actionneurs du robot mOway sont deux moteurs qui font tourner ses
roues et diverses diodes électroluminescentes que I'on peut allumer ou
éteindre. Quand on fait tourner les deux roues du robot a la méme
vitesse, il avance en ligne droite. Quand on ralentit ou accélére une roue
par rapport a 'autre, il tourne.

Les capteurs du robot mOway sont les suivants :

* Quatre détecteurs d’'obstacles € qui émettent régulierement de
bréves impulsions de lumiére infrarouge. Quand le robot est proche
d’un obstacle, cette lumiére est réfléchie par 'obstacle et détectée par
le robot.

* Un capteur de luminosité @), qui identifie la direction et l'intensité
d'une source lumineuse.

* Deux capteurs de couleur de sol €, qui analysent la réflexion d'une
lumiére infrarouge sur le sol et permettent, par exemple, d'y repérer
une ligne.

* Un capteur dont la résistance électrique varie avec la température.

* Un microphone qui détecte la présence ou 'absence d’un son dont la
fréquence est comprise entre 100 Hz et 20 kHz, et aussi I'intensité de
ce son.

* Un accélérometre qui mesure 'accélération linéaire du robot et la gra-
vité. C’est le méme composant que sur les manettes de jeux et cer-
tains téléphones : une accélération déforme deux plaques souples
d’un condensateur, ce qui fait varier sa capacité. Cet accéléromeétre
indique la direction verticale, ce qui permet, par exemple, de savoir si
le robot s’est retourné.

11 est possible d'ajouter d’autres périphériques €), grice a des bus simi-
laires & ceux que nous avons décrits au chapitre 15.

Le robot contient une batterie rechargeable qui le rend autonome, mais
il peut dialoguer avec un ordinateur par radio ou par un réseau WiFi
(voir le chapitre 16).

Tous les capteurs et actionneurs sont raccordés a deux micro-contréleurs.
Un micro-contréleur est un circuit qui contient plusieurs composants, ¢n
particulier un processeur et de la mémoire (voir le chapitre 15). Le
micro-controleur principal, appelé PIC18F86]50 sur la figure ci-aprés,
exécute un programme chargé dans sa mémoire. Nous reviendrons plus
tard sur le role du micro-contréleur secondaire.

17 — Les robots

La numérisation des grandeurs captées

Les capteurs mesurent des grandeurs physiques: intensité lumineusc,
intensité sonore, etc. et expriment en général ces grandeurs sous la forme
d'une tension électrique. Pour que ces grandeurs puissent étre utilisées par
un processeur, cette tension doit, 4 son tour, étre exprimée par un nombre
représenté en binaire, comme le sont le niveau de gris d'un pixel quand on
numérise une image ou la pression quand on numérise un son (voir le
chapitre 9). Pour cela, deux composants sont utilisés : un échantillonneur-
blogueur et un convertisseur analogigue-numérigue. Le premier bloque la
tension a une valeur stable, pendant que le second mesure cette valeur et
produit un nombre, représenté en binaire, qui est la valeur de cette tension.

Par exemple quand la valeur analogique est comprise entre 0 et 5 Vetla
valeur numerlque comprise entre 0 et 1 023 (c'est-a-dire représentée sur

10 bits), la tension est mesurée par pas de 5/ 1023 = 4,88 mV. Cette

217

Troisieme partie — Machines

Une infinité de valeurs L

4 e

_«—— Signal analogique, matérialisé
TN o la tension d'entrée de
' - "échantilionneur-bloqueur

Signal échantilloné, materialisé par la
tensiond'entree du convertisseur
analogique numeérique. Le temps de
conversion doit étre inférieur a Te.

Un échantillonneur-bloqueur préléve
1 > periodiquement des valeurs et les
bloque.
Ce sont ces valeurs qui sont
> présentées au convertisseur

analogique numerique
\ Commande de I'échantillonneur-bloqueur pour et':‘e nu':-,u-,mm

Période Te, Fréquence Fe = 1/Te.

.

valeur est appelée la résolution du convertisseur. Pour trouver la valeur
numérique d’une tension, un convertisseur analogique-numérique n'uti-
lise que des comparaisons entre cette tension et des multiples entiers de
la résolution en procédant par dichotomie (voir le chapitre 20).

Exercice 17.1

Si un convertisseur analogique-numérique transforme une tension comprise
entre 0 et 5V en un nombre compris entre 0 et 1 023, a quelles valeurs analo-
giques correspondent les valeurs numériques 512, 256 et 768 ?

Exercice 17.2

Si un convertisseur analogique-numérique transforme une tension comprise
entre 0 et 5 V en un nombre compris entre 0 et 1 023, en procédant par dicho-
tomie, combien de comparaisons sont nécessaires pour déterminer la valeur
numeérique correspondante ?

Exercice 17.3

Si on numérise une tension comprise entre 0 et 5 V, définie avec une précision
de 20 mV, par un nombre compris entre 0 et 1 023, tous les bits de la valeur
numeérique ont-ils une signification ? Sur combien de bits suffirait-il de numé-
riser cette valeur ?

218

17 — Les robots

Le controle de la vitesse : la méthode
du controle en boucle fermée

Pour faire tourner un moteur i une vitesse déterminée, il ne suffit pas de fixer
la tension d’alimentation du moteur, car la vitesse dépend aussi de la masse du
robot, de la nature du terrain sur lequel le robot se déplace, des conditions cli-
matiques si le robot est a 'extérieur, etc. La méthode appelée contréle en boucle
fermée utilise un capteur pour mesurer la vitesse du moteur, compare cette
demniére 2 la vitesse souhaitée et réajuste la commande du moteur en fonction
de I'écart constaté : si cette vitesse est inférieure 2 la vitesse souhaitée, on aug-
mente la tension d’alimentation du moteur, si elle est supérieure, on la
diminue. Mesurer en permanence la vitesse des moteurs et adapter leur ten-
sion d’alimentation en fonction de I'écart, par rapport a la consigne, est le role
du micro-contréleur secondaire, appelé PIC16F687 sur la figure.

Pour mesurer la vitesse de la roue du robot, on utilise un capteur de vitesse
formé d’'un disque qui alterne des zones opaques et transparentes, fixé sur
I'axe du moteur et éclairé par une source de lumiére. On calcule la vitesse
du moteur en comptant le nombre de fois que la lumiére est occultée par
unité de temps. La fréquence de ce clignotement est proportionnelle a la
vitesse. On utilise donc un circuit qui convertit cette fréquence en valeur
de vitesse, de fagon a pouvoir la controler.

£

Capteur(s)
de lumiére

Pour le contréleur de vitesse que I'on vient de décrire, quelle est la vitesse de
la roue en fonction de la fréequence de clignotement, du nombre d'encoches
sur la roue et du rayon de la roue ? Pour une roue de 2 cm de rayon et conte-
nant 64 encoches, quelle vitesse correspond a la fréquence 128 Hz ? Quelle
fréquence correspond a la vitesse 0,4 m/s? Expliquer comment on peut
exprimer la vitesse sous forme numérique, en utilisant un compteur nume-
rique qui augmente d'une unité a chaque impulsion lumineuse.

219

Troisieme partie — Machines

AUERAUSLON Un programme sans fin

Contrairement & beaucoup de programmes qui
calculent un résultat et se terminent, un pro-
gramme commandant un robot, un téléphone,
un réseau et, plus généralement, un objet qui
interagit avec son environnement, doit ne
jamais se terminer, car le robot ou le téléphone
ne cessent jamais d'interagir avec leur environ-
nement. Quand un tel programme se termine,
on dit que le robot ou le téléphone est en
panne, car il ne répond plus aux sollicitations
de son environnement et, bien souvent, on
relance ce programme.

220

Programmer un robot :
les actionneurs

On programme le robot mOway en chargeant dans sa mémoire un pro-
gramme, depuis un ordinateur ordinaire. Comme on I'a vu, ce pro-
gramme est ensuite exécuté par le microcontréleur principal. Ce
programme doit étre écrit, non en Java, mais en C. Cependant, le frag-
ment de C, utilisé dans ce chapitre, est trés similaire 4 Java.

On commence donc par écrire un programme et le compiler. On utilise
pour cela U'environnement de développement MPLAB. On le transmet
ensuite au robot 4 'aide d’un cible USB et du programme mOwayGUI
(mOway Graphic User Interface).

Pour écrire un programme, on utilise des fonctions qui interrogent les
capteurs et commandent les actionneurs. Ces fonctions ne font pas
partie du langage C lui-méme, mais d'une extension de C fournie par le
fabricant du robot. On indique que 'on utilise cette extension en ajou-
tant au début de son programme les commandes :

#include "1ib_mot_moway.h"
#include "1ib sen moway.h"

Pour faire avancer le robot, on utilise la fonction MOT_STR. Par exemple, I'ins-
truction MOT_STR(50,FWD, TIME,100); fait avancer le robot a la vitesse 50, en
marche avant, pendant 10 secondes (100 dixi¢mes de seconde).

Le premier argument de cette fonction est la vitesse a laquelle on fait
avancer le robot. Il est compris entre 0 et 100 ; O correspond a 0 cm/s, 25 a
11 em/s, 50 2 13 em/s, 75 24 15 em/s et 100 & 17 em/s. Le deuxiéme, FuD
ou BACK, définit le sens de la marche : avant ou arriére. Le troisiéme argu-
ment indique si 'on souhaite spécifier une durée ou une distance. Dans ce
chapitre, nous spécifierons toujours une durée et cet argument sera TINE,
Le quatrieme argument, compris entre 0 et 255, est la durée du mouve-
ment exprimée en dixi¢tmes de secondes. On peut aussi faire avancer le
robot pendant un temps infini en donnant, conventionnellement, la
valeur 0 comme durée.

De méme, pour faire tourner le robot, on utilise la fonction M0T_ROT. Par
exemple, I'instruction MOT_ROT (25, FwD, CENTER, LEFT,ANGLE, 50) ; fait tourner
le robot a gauche, a la vitesse angulaire 25, d'un angle de 180 degrés
(50 centiemes de tour).

Le premier argument de cette fonction est la vitesse angulaire 2 laquelle
on fait tourner le robot. Il est compris entre 0 et 100 ; O correspond 2

0 tour/s, 25 a 0,52 tour/s, 50 a 0,62 tour/s, 75 a 0,73 tour/s et 100 a
0,80 tour/s. Les deux arguments suivants permettent de choisir si I'on
fait tourner le robot autour de son centre ou autour de I'une de ses roues.
Dans ce chapitre, nous le ferons toujours tourner autour de son centre et
ces arguments seront toujours FWD et CENTER. Le quatriéme argument,
LEFT ou RIGHT, définit le sens de rotation du robot : vers la gauche ou vers
la droite. Le cinquiéme argument peut prendre deux valeurs, ANGLE ou
TIME ; il indique si I'on souhaite spécifier 'angle de rotation ou la durée
de la rotation. Le sixiéme argument est, en fonction de la valeur du cin-
quiéme, l'angle de la rotation exprimé en centiémes de tour ou sa durée
exprimée en dixiémes de secondes. Il est compris entre 0 et 100 dans le
premier cas et entre 0 et 255 dans le second. A nouveau, on peut aussi
faire tourner le robot pendant un temps infini, en donnant, convention-
nellement, la valeur 0 comme durée.

Quand on exécute une telle instruction MOT_STR ou MOT_ROT, on initie un
mouvement, puis on passe a I'instruction suivante. Le robot continue
alors son mouvement jusqu'a la fin, 2 moins que ce mouvement ne soit
interrompu par l'initiation d’un autre mouvement.

En effet, si la poursuite de I'exécution du programme initie un second
» po progea

mouvement, alors le premier mouvement est interrompu. Par exemple,

quand on exécute I'instruction :

| MOT_STR(S0, FwD, TIME,100) ;
MOT_ROT(25, FWD, CENTER, LEFT ,ANGLE, 50) ;

on commence par exécuter I'instruction MOT_STR(50, FWD, TIME, 100) ; qui initie
un mouvement rectiligne de 10's, puis on exécute tout de suite la seconde
instruction MOT_ROT (25, FWD, CENTER, LEFT,ANGLE, 50) ; qui interrompt le mou-
vement en cours et initie un mouvement de rotation dun angle de
180 degrés. Le mouvement rectiligne est interrompu quelques fractions de
secondes seulement aprés avoir été initié. Il nest donc pas effectué.

Si on souhaite effectuer le mouvement rectiligne en entier, avant de
passer 2 la rotation, on doit utiliser la variable MOT END qui prend la
valeur 0 (équivalent de false en C) quand le robot est en mouvement et
la valeur 1 (équivalent de true en C) quand le robot est immobile. Ainsi,
quand on exécute I'instruction :

MOT_STR(S0, FwD, TIME,100);
while(!MOT_END){}
| MOT_ROT(25,, FWD, CENTER,, LEFT ANGLE., 50);

on initie un mouvement rectiligne de 10 s, on attend que le robot rede-
vienne immobile, c’est-a-dire que le mouvement rectiligne soit achevé,
puis on initie le mouvement de rotation.

17 — Les robots

221

Troisieme partie — Machines

Pour allumer et éteindre la diode électroluminescente, située a I'avant du
robot, on utilise les instructions LED FRONT ON(); et LED FRONT OFF();.
Pour faire clignoter la diode électroluminescente verte, située sur le
robot, on utilise 'instruction LED TOP_GREEN ON OFF(); Ia, le fait d’allumer
une diode n'interrompt pas le mouvement du robot, les deux actions sont
effectuées en méme temps.

Pour attendre quelques secondes entre deux instructions, on utilise la
fonction Delayl10KTCYx, par exemple I'instruction Delay10KTCYx(200) ; inter-
rompt I'exécution du programme pendant 2 s. Dargument de cette fonc-
tion est le temps du délai exprimé en centiémes de seconde.

Enfin, il faut exécuter au début de chaque programme les instructions
SEN_CONFICQ); et MOT_CONFIG(); pour configurer les capteurs et les moteurs.

Par exemple, le programme :

main () {
SEN_CONFIGQ);
MOT_CONFIGQ);
DelaylOKTCYx(200);
LED_TOP_CREEN_ON_OFF();
MOT_STR(50,FwD, TIME,100);
while(!MOT_END) {}
MOT_ROT (25, FWD, CENTER, LEFT ,ANCLE, 50) ;
while(1) {}}

attend 2 s avant de commencer, fait clignoter la diode verte, fait avancer
le robot pendant 10, le fait tourner de 180 degrés et boucle a I'infini,
afin que le programme ne se termine pas. Dans ce cas, la non-termi-
naison est un peu artificielle et sert surtout a éviter, comme on l'a

expliqué, que le programme soit relancé.
Exercice 17.5

Ecrire un programme qui fait avancer le robot en marche avant a la vitesse 100
pendant 5 s, puis le fait reculer a la vitesse 15 pendant 2 s.

Programmer un robot :
les capteurs

D'autres fonctions interrogent les capteurs. Par exemple, l'expression
SEN_OBS_DIG(0BS_CENTER L) prend la valeur 1 (true) quand le capteur avant
gauche détecte un obstacle, et la valeur 0 sinon. De méme, les expressions

222

SEN_OBS_DIG(OBS_CENTER_R), SEN 0BS_DIG(OBS SIDE L) et SEN OBS DIG(OBS SIDE R)
renvoient des valeurs similaires pour les capteurs avant droit, coté gauche et
coté droit respectivement.

De méme, I'expression SEN LINE DIG(LINE L) prend la valeur O si le cap-
teur de couleur de sol situé sur la gauche du robot capte une couleur
claire et 1 s'il capte une couleur sombre. Le fonctionnement est le méme
pour le capteur de couleur de sol, situé sur la droite du robot, avec
'expression SEN_LINE_DIG(LINE_R).

A la différence des actionneurs que I'on commande quand on le sou-
haite, il faut interroger les capteurs de maniére réguliére, afin d’étre pré-
venu de tous les événements qu'ils détectent. Une méthode pour ce faire
est d’organiser le programme sous la forme d’une grande boucle qui, a
chaque tour, interroge les capteurs et commande les actionneurs.

Le programme suivant par exemple fait clignoter la diode verte, puis initie
un mouvement du robot en marche avant pour un temps infini. Si jamais
le robot détecte un obstacle, on allume la diode située a 'avant du robot,
on initie un mouvement de rotation de 180 degrés, ce qui interrompt le
mouvement rectiligne, puis quand le mouvement de rotation est achevé,
on relance le robot en marche avant pour un temps infini. Sinon, on éteint
la diode située a I'avant du robot, si jamais elle est allumée.

| void main() {
SEN_CONFICQ) ;
MOT_CONFIGQ);
LED _TOP GREEN_ON_OFF();
MOT_STR(50, FwD, TIME,0);
while (1) {
if (SEN_OBS_DIG(OBS_CENTER_L)){
LED_FRONT_ON();
MOT_ROT(25S, FWD, CENTER, LEFT,ANGLE, 50)
while(!MOT_END){}
MOT STR(50, FwD, TIME,0);}
else{
LED_FRONT_OFF(); 13}

Savoir-FAIRE Ecrire un programme pour commander un robot

» Identifier les actionneurs et les capteurs a utiliser.

» Ecrire les tests sur les valeurs des capteurs et les instructions initiant les actions dans

une grande boucle infinie.

¢ Insérer les temporisations permettant aux actions de s’effectuer complétement si cela

est nécessaire.
* Initialiser les capteurs et les actionneurs avant le début de la boucle.

17 — Les robots

223

Troisieme partie — Machines

224

Exercice 17.6 (avec corrigé)

Ecrire un programme qui pilote un robot le long d‘une ligne sombre dessinée
sur un sol clair.

Les actionneurs utilisés sont, bien entendu, les moteurs que I'on commande
avec instructions MOT_STR et MOT_ROT. Les capteurs utilisés sont les capteurs de
couleur de sol que I'on interroge avec les instructions SEN_LINE DIG(LINE L) et
SEN_LINE DIG(LINE_R).

On cherche a ce que le robot suive le c6té gauche de la ligne, c’est-a-dire que son
capteur gauche soit 3 I'extérieur de la ligne et son capteur droit a l'intérieur. €)

Tant que cela est le cas, le robot avance tout droit. En revanche, si les deux
capteurs sont hors de la ligne, cela signifie que le robot est trop a gauche : il
doit tourner a droite. 5i les deux capteurs sont sur la ligne, le robot est trop a
droite : il doit tourner & gauche. Si le capteur gauche est a l'intérieur de la
ligne et le capteur droit a I'extérieur, cela signifie que le robot est dans le mau-
vais sens, il doit faire demi-tour. On utilise ici la méme méthode que pour le
contréle de la vitesse du moteur : la méthode de contréle en boucle fermée,

Il est important de placer le robot sur le bord de la ligne au moment ot on le
lance, sinon il ne fera que tourner sur lui-méme.

void main) {
DelaylOKTCYx(200);
SEN_CONFIG();
MOT_CONFIGQ);
while(1) {
if (SEN_LINE DIG(LINE L)==0 &8 SEN_LINE DIC(LINE_R)==1) {
MOT_STR(80, FwD, TIME,0) ; }
else {
if (SEN_LINE DIG(LINE L)==0 && SEN LINE DIG(LINE R)==0) {
MOT_ROT(50, FWD,CENTER ,RICHT, TIME,0) ; }
else {
if (SEN_LINE DIG(LINE L)==1 && SEN LINE DIG(LINE R)==1) {
MOT_ROT (50, FwD, CENTER, LEFT, TIME,0);}
else {
MOT_ROT (50, FWD, CENTER, RICHT , TIME,0) ;31113

Exercice 17.7

Mettre le robot dans une enceinte avec un mur carré de 50 cm de c6té, ot il
n'y a pas d'autres obstacles que les murs. Utiliser le détecteur d'obstacles pour
le faire aller vers |I'un des murs, puis tourner sans fin dans le sens des aiguilles
d'une montre.

Exercice 17.8

Dans un espace sans limite avec deux robots face a face, écrire un programme qui
fait danser ensemble les robots en les faisant tourner I'un autour de |'autre.

Exercice 17.9

On imagine un robot aspirateur dans une enceinte avec un mur carré de 50 cm
de coté, ou il n'y a pas d'autres obstacles que les murs. Ecrire un programme
pour que le robot passe l'aspirateur sur tout le sol. Essayer différentes
méthodes : par des allers-retours, en spirale, etc. Essayer ces programmes.

ALERPLUS LOIN Les interruptions

Organiser un programme en une grande boucle qui teste
les capteurs en permanence est possible, mais souvent
malcommode. On a donc introduit dans les langages de
programmation des outils qui permettent d’exprimer la
méme chose de maniére plus simple. Le programme
décrit d'une part ce qu’il faut faire quand tout se passe
normalement, par exemple avancer tout droit, et d'autre
part des conditions qui définissent des interruptions, par
exemple le fait qu'un détecteur signale un obstacle, et
des instructions a exécuter en cas d'interruption, par
exemple faire tourner le robot. Ces différentes instruc-
tions sont ensuite traduites automatiquement en un pro-
gramme qui, de maniére répétée, interroge les capteurs
et, selon qu‘une interruption est déclenchée ou non, exé-
cute une instruction ou une autre.

Cette maniére réactive de programmer, permet de
mieux prendre en compte les aléas de I'environnement :
d'une exécution d'un programme a une autre, un robot
rencontre rarement deux fois la méme situation et il
doit s'adapter s'il rencontre une tache d'huile sur le sol,
des obstacles nouveaux, etc.

Auerpson Les mots « robot » et « robotique »

Le mot «robot», dérivé d'un mot qui signifie
« esclave », a été créé par l'écrivain Tcheque Karel Capek
en 1920 et le mot « robotique » par un autre écrivain,
Isaac Asimov, en 1942. L'origine littéraire de ces deux
mots n'est pas due au hasard. Le fait que les ordinateurs
imitent certaines facultés humaines, comme effectuer
des multiplications ou jouer aux échec, a suscité le réve
de machines intelligentes. Mais la conception de robots,
c'est-a-dire d’ordinateurs mobiles et autonomes, rejoint,
de plus, une figure littéraire ancienne, qui du Golem a
Pinocchio et du monstre de Frankenstein a WALL-E, pose
la question de la frontiére entre I"animé et l'inanimé.

Ai-je bien compris ?
* Quels sont les composants d’un robot ?

* Qu'est-ce que le principe de la boucle fermée ?

17 - Les robots

AuERpWSLON Les robots sont partout

Dans l'industrie, les robots sont utilisés dans les chaines
de montage de nombreuses usines. En médecine, ils sont
utilisés pour effectuer des opérations chirurgicales
micro-invasives, pour effectuer des analyses, pour rem-
placer des membres paralysés, pour assister des per-
sonnes dépendantes, etc. lls sont aussi utilisés dans
I'exploration spatiale et sous-marine ou pour intervenir
dans les zones inaccessibles, par exemple de centrales
nucléaires. Des robots sont aussi utilisés dans des taches
plus quotidiennes comme passer |‘aspirateur, nettoyer
une piscine ou garer une voiture.

Le robot industriel Robolab recopiant la Bible

» Comment organise-t-on un programme pour que les capteurs soient interrogés

périodiquement ?

225

pyrgnt © Zuls Eyroles.

Algorithmes

Dans cette quatrieme partie, nous apprenons quelques-uns des
savoir-faire les plus utiles au XXI® siecle : ajouter des nombres
exprimés en base deux (chapitre 18), dessiner (chapitre 19),
retrouver une information par dichotomie (chapitre 20%), trier des
informations (chapitre 21*) et parcourir un graphe (chapitre 22%).

ET LA, CE SONT LES GARDIENS DU LABYRINTHE.
L'UN DEUX MENT TOUJOURS, UN AUTRE DIT TOUJOURS
LA VERITE, ET LE DERNIER FOUDROIE TOUS CEUX

QUI POSENT DES QUESTIONS TROP SUBTILES.

Puissances pe UN

UNE AUTRE VISION DU MONDE.

Ajouter deux

nombres exprimes

en base deux

Pour faire une addition, l'ordinateur fait comme on
lui a appris sur les bancs de ['école.

Dans ce chapitre, nous détaillons I'algorithme de I'addition
en base deux, ce qui est surtout un prétexte pour comprendre
comment démontrer qu'un algorithme est correct.

Lalgorithme est le méme que celui que nous utilisons
couramment lorsque nous effectuons une addition ordinaire,
c’est-a-dire en base dix. Nous démontrons ensuite

que I'algorithme que nous avons programmé calcule bien

la somme de deux nombres. Pour cela, nous utilisons la notion
importante d'invariant de boucle qui est une propriété vraie

a chaque tour de boucle. Nous montrons une telle propriété
par récurrence sur le numéro du tour de boucle.

18

Ada Lovelace (1815-1852) est
I'auteur du premier algorithme des-
tiné a étre exécuté par une machine.
Cet algorithme, qui permettait de
calculer une suite de nombres de Ber-
nouilli, devait étre exécuté sur la
machine analytique congue par
Charles Babbage. Malheureusement,
Babbage n'a jamais réussi a terminer
sa machine. Ada Lovelace est parfois
considérée comme le premier pro-
grammeur de ['histoire. Le langage
de programmation Ada est ainsi
nommeé en son honneur.

Quatrieme partie — Algorithmes

Nous revenons dans ce chapitre sur I'un des premiers algorithmes que
nous ayons appris a 'école, celui qui permet d’ajouter deux nombres
entiers, pour nous poser deux questions: comment adapter cet algo-
rithme aux nombres exprimés en base deux ? Et pourquoi cet algorithme
calcule-t-il bien la somme des deux nombres ?

’addition

Commengons par rappeler cet algorithme sur un exemple. On veut
ajouter les nombres 728 et 456.

rtotLo
728
456
1184

On commence par ajouter les chiffres des unités, 8 et 6. La table de
I'addition indique que la somme de ces deux chiffres est 14 ; on pose le
chiffre des unités, 4, et on retient le chiffre des dizaines, 1. On ajoute
ensuite les chiffres des dizaines et cette retenue, 2, 5 et 1. La table de
I'addition indique que la somme de ces trois chiffres est 8 ; on pose le
chiffre des unités, 8, et on retient le chiffre des dizaines, 0. On ajoute
ensuite les chiffres des centaines et cette retenue, 7, 4 et 0. La table de
I'addition indique que la somme de ces trois chiffres est 11 ; on pose le
chiffre des unités, 1, et on retient le chiffre des dizaines, 1. Finalement,
on pose cette retenue dans la colonne des milliers.

Unre irrégularité de cette méthode est que, lors de la premiére itération,
on ajoute deux chiffres, alors qu'en régime permanent, on en ajoute trois.
On peut corriger cela en commengant par poser la retenue égale 4 0. La
premiére itération se formule alors de la maniére suivante: on com-
mence par ajouter les chiffres des unités et la retenue, 8, 6 et 0, etc.
Ainsi, cet algorithme n'utilise qu'une seule table, qui indique la somme
de chacun des triplets (a3 4;¢) ol a, & et ¢ sont des chiffres compris
entre 0 et 9, table qu'en général on connait par cceur.

230

18 — Ajouter deux nombres exprimeés en base deux

’addition pour les nombres
exprimés en base deux

Voyons maintenant comment on ajoute des nombres exprimés en base
deux, par exemple 101 et 111, c’est-a-dire 5 et 7.

1110
101
111

1100

On commence, comme en base dix, par ajouter les chiffres des unités et
la retenue, 1, 1 et 0. La table de 'addition indique que la somme de ces
trois chiffres est 10; on pose le chiffre des unités, 0, et on retient le
chiffre des deuzaines, 1. On ajoute ensuite les chiffres des deuzaines et
cette retenue, 0, 1 et 1. La table de l'addition indique que la somme de
ces trois chiffres est 10 ; on pose le chiffre des unités, 0, et on retient le
chiffre des deuzaines, 1. On ajoute ensuite les chiffres des quatraines et
cette retenue, 1, 1 et 1. La table de I"addition indique que la somme de
ces trois chiffres est 11 ; on pose le chiffre des unités, 1, et on retient le
chiffre des deuzaines, 1. Finalement, on pose cette retenue dans la
colorine des huitaines. Le résultat est done 1100, ¢’est-a-dire 12.

Cette méthode utilise une table qui indique la somme de ¢hacun des tri-
plets (@5 45 ¢) ol a, & ct ¢ sont des chiffres compris entre 0 et 1. Cette
table ne contient done que huit lignes

a b ¢ a+b+c
0|00
olol1]
0
0
1

| = = e

1]0

ERERET

olo|1
1o 1|
(111 (0 | 1D
ERENET

231

Quatrieme partie — Algorithmes

232

En fait, cette méthode se formule mieux en utilisant deux tables. La pre-
miére indique le chiffre des unitésde a + 4 + ¢

a b ¢ Unitésdea+b+c
000 O
olo[1]1
o101
o110
1 [o]e]1
1 (o1 o
1{1]0]0
BERERE

La seconde indique le chiffre des deuzainesde a + 4 + ¢ :

Deuzainesdea+b + ¢

- =loc owm
Te[=[=

—-—-Ir::r::

Il s’agit 1a des tables de deux fonctions booléennes i trois arguments.
Comme toutes les fonctions booléennes, elles peuvent s'exprimer avec

les fonctions non, et et ou (voir le chapitre 10). Une maniére, parmi
d'autres, de les exprimer est la suivante :

‘ unités(a,b,c)
= (a et non(b) et non(c)) ou (non(a) et b et non(c))
} ou (non(a) et non(b) et ¢) ou (a et b et c)

deuzaines(a,b,c) = (a et b) ou (b et ¢) ou (a et ©)

Pour se convaincre de la correction de ces expressions, il suffit de vérifier
qu’elles donnent bien les chiffres des unités et des deuzaines de a + 4 + ¢
dans chacun des huit cas des tables précédentes. Par exemple, dans le cas
a=0,b=1etc=1,expression a et non(b) et non(c) prend la valeur 0, les
expressions non(a) et b et non(c), non(a) et non(b) et c et aetbetc pren-
nent elles aussi la valeur 0 et donc I'expression (a et non(b) et non(c)) ou
(non(a) et b et non(c)) ou (non(a) et non(b) etc) ou (aetbetc) prend la

18 — Ajouter deux nombres exprimés en base deux

valeur 0 également, ce qui est bien le chiffre des unités de a + & + ¢. De
méme, les expressions a ef b, b ef ¢ et aef ¢ prennent respectivement les
valeurs 0, 1 et 0 et donc l'expression (a e b) ou (b et ¢) ou (a et ¢) prend la
valeur 1, ce qui est bien le chiffre des deuzaines de @ + 4 + .

On peut, par exemple, programmer cette méthode pour ajouter deux
nombres de dix chiffres binaires. Le résultat sera donc un nombre de
onze chiffres. On choisit de représenter les nombres & ajouter x et y par
deux tableaux de booléens de dix cases n et p, et le résultat par un tableau
de booléens r de 11 cases. On choisit le booléen true pour le chiffre 1 et
le booléen false pour le chiffre 0. La case 0 d’'un tableau contient le
chiffre des unités du nombre représenté, la case 1 le chiffre des deu-
zaines... et la case 9, le chiffre des cinq-cent-douzaines. Le résultat r qui
a un chiffre de plus a aussi une case 10 pour les mille-vingt-quatraines.

La retenue c est d’abord initialisée 4 O (). Puis on calcule les chiffres du
résultat 'un aprés 'autre par une boucle dont I'indice i variede 02 9. A
chaque étape, on définit le chiffrea comme le i-éme chiffre du
nombre n () et b comme le i-éme chiffre du nombre p (€), puis on
affecte la case i du tableau r (€3) avec le chiffre des unités de a + b + c.
Enfin, on affecte la retenuec avec le chiffre des deuzaines de
a +b +c(@)- Et une fois la boucle terminée, on affecte la case 10 du
tableau r avec la derniére des retenues (€)).

| c = false; @
for (i =0; 1 <=9; i =1+1) {
a=nlil;@
b =plil;®
r(i] = (a & !b & !c) || (la & b & !c) || (la && !b && ©)
[] (@ & b & c); ©)
(@&b) || b&&c) || (a & ;1@

c =
r{10] L adrs

Exercice 18.1

On utilise ce programme pour ajouter les nombres x=1011001101 et
y=1101101011. Exécuter linstruction c - false; [initialisation de la
variable i et le tour 0 de la boucle revient a exécuter la séquence d'affecta-
tions suivante :

c = false;

i=0;

a = n[0];

b = p[0];

rf0] = (a & 'b & !c) || (la & b && Ic) || (la && !b && C)
|| (@ & b && c);

c=(a&b) || (b&&) || (a &&);

i=1+1;

Si on exécute cette séquence dans I'état €), la premiére affectation
c = false; donne I'état €.

233

Quatriéme partie — Algorithmes

(1]
e
r
[n
(2]

BEmEZIEETRaEESERS RS RE
T

s i é &
Dessiner les états successifs produits par I'exécution de chacune de ces affecta-
tions. Quel est I'état final produit par I'exécution du tour 0 de la boucle ?

Montrer que dans cet état :
(rf0] x 29 + c x 2* = (n[0] x 2% + (p[0] x 2°)

exécuter le tour 1 de la boucle revient a exécuter la séquence d'affectations

suivante :

a = n[1];

b = p[1];

r[1] = (2 && !'b & !c) || (la & b && !c) || (la && 'b & ©)
|| (a & b && ©);

c=(aéd&b) || (b&& c) || (a&&c);

i=1+1;

Quel est I'état produit par I'exécution de ce tour de boucle ?

18 — Ajouter deux nombres exprimés en base deux

Montrer que dans cet état :

(ri0o] x 29 + r[1] x 21 + € x 22 = (n[0] x 29 + n[1] x 21) + (p[0] x 29 + p[1] x 21)

La démonstration de
correction du programme

Quand on congoit un tel programme, une question se pose
naturellement : comment sait-on qu'il calcule la somme des deux nom-
bres entiers ?

Une premiére maniére de s'assurer qu'un programme fait bien ce qu'on
attend de lui est de le tester (voir le chapitre 1). Il faut essayer différentes
valeurs pour les nombres x et y et vérifier que le programme affiche bien la
valeur x + y dans tous les cas. On estime, en général, que le cofit du test
d’un programme est du méme ordre de grandeur que celui de son dévelop-
pement. Cependant, le test présente deux limites importantes : la premiére
est que I'on ne peut pas tester le programme sur toutes les valeurs d'entrée
possibles, qui sont souvent trés nombreuses, voire en nombre infini. La
seconde est que pour tester un programme, il faut savoir ce que I'on attend
de lui. Or, ce n'est pas le cas quand on écrit, par exemple, un programme
qui calcule la millieme décimale du nombre m, ou la position de la Lune
dans mille ans, car la raison pour laquelle on écrit un tel programme est
précisément que l'on ignore la milliéme décimale du nombre 7 ou la posi-
tion de la Lune dans mille ans. De ce fait, comment le tester ?

Une autre manié¢re de sassurer qu'un programme fait bien ce qu'on
attend de lui est de le démontrer. Par exemple, on peut démontrer que le
programme précédent calcule bien la somme des nombres x et y. Plus
précisément, on veut démontrer que si, au moment o I'on exécute ce
programme, les tableaux n et p contiennent la représentation binaire de
deux entiers de dix chiffres, c’est-a-dire si :

' x=n[0] ><20+n[1] ><21+...+n[8] x28+n[9] x 27

et:

| y=p001 x 20 ¢ p[1] x 2 + ... + p[8] x 28 + p[o] x 27

235

Quatrieme partie — Algorithmes

4 Invariant

Un invariant d'une boucle est une propriété qui
est vérifiee a chaque exécution du corps de cette
boucle. En général, pour la derniére exécution,
cette propriété traduit le fait que la boucle réalise
bien la tache souhaitée. On montre qu'une pro-
priété est un invariant d'une boucle par un raison-
nement par récurrence :

® on montre que la propriété est vérifiée a la pre-
miere exécution du corps de la boucle,

* on montre que si l'invariant est vérifié 4 une
exécution donnée du corps de la boudle, il est
encore vérifié a I'exécution suivante.

Linvariant est alors vérifié a la fin de boucle, qui

fournit donc le résultat attendu,

236

alors a la fin de I'exécution de ce programme, le tableau r contient un
nombre de onze chiffres qui est la représentation binaire de x + y, C’est-
a-dire que :

x+y=r[0] x 20 4 r[1] x2 e ..+ r[9] x27+ r[10] x arn

Le programme qui ajoute deux nombres exprimés en binaire est formé
d’une boucle, dans laquelle on calcule d’abord le chiffre des unités, puis
les chiffres des deuzaines, des quatraines, etc. du résultat. Aprés avoir
achevé les tours 0..., i - 1 et au moment de commencer le tour i, on a
donc calculé la somme des deux nombres formés des i - 1 premiers
chiffres, en partant de la droite, des nombres x et y. Clest I'invariant que
P'on va montrer par récurrence. A la fin de la boucle, I'invariant indiquera
que 'algorithme a effectué I'addition souhaitée.

Par exemple, si au cours de laddition de x=1011001101 et
y=1101101011 (€) on s'arréte aprés avoir effectué les tours O et 1 de la
boucle et avant de commencer le tour 2, on a déja calculé la somme des
nombres 01 et 11, cest-a-dire 1 et 3 @. Le résultat de cette addition
n'est pas exactement le nombre représenté par les deux chiffres déja
posés 00, car il faut tenir compte de la retenue. La propriété exacte est
que si on pose la retenue dans la colonne i, ce qui donne dans cet
exemple le nombre 100 c’est-a-dire 4, on obtient la somme des deux
nombres formés des i - 1 premiers chiffres des nombres x et .

@ 13
TL11o001111 1L
1011001101 1011001 1{01
1101101011 11011010[11
11000111000 M

Autrement dit, au moment de commencer le tour i de la boucle, I'état
vérifie la propriété :

(rrol x204 ..+ r[i-1] x2i_1_)+c x 2 _
=(n[01x2%+ ... + n[i-1] x 2"} + (pro] x 20 + ... + p[i-1] x 2"'})

On démontre maintenant cette propriété.

Ala premiére exécution, i = 0, la somme (r[0] x 204 ...+ r[i-1] x 25‘]) ne
contient aucun terme ; elle vaut donc 0. I1 en est de méme pour les sommes
(01 x 20+ ... +nli-11x27Y) et (pro1 x 20+ ... +pli-1] x 27N,
Comme par ailleurs, la retenue ¢ vaut 0, les deux membres de I'égalité sont
nuls.

18 — Ajouter deux nombres exprimés en base deux

On suppose maintenant que cette propriété est vérifiée dans I'état dans lequel
sexécute le tour i de la boucle et on veut montrer quelle est encore vérifiée
dans I'état dans lequel sexécute le tour suivant. Au début du tour i, on a:

(rfo1 x 2%+ ... + rLi-17 >~:2H_)+cx2i _
=(n[01 x 2%+ ... + n[i-11 x 2) + (pro1 x 20+ ... + pri-1] x 2°Y)

et donc en ajoutant n[i] x 2" + p[i] x 2" dans les deux membres de
Iégalité on obtient que, au début du tour i de la boucle :

| (r001 x 2%+ ...+ r[i-11 x 270) + (0[] + plil +) x 2
| = (0001 x 20+ ... + n[i1 x 2) + (pL0] + ... + p[[i] x2)

Au cours de ce tour de la boucle, on ajoute les trois chiffres n[i1, p[i]
et c, et le résultat de cette addition a pour chiffre des unités r[i] et pour
chiffre des deuzaines la nouvelle valeur de c, si bien que, dans I'état
atteint i la fin de ce tour de la boucle :

(r[D]x20+.-.+r[1'—1]x2_i_l)+(r[ij+2xc)x2i _
=(n[0] x 20+ ...+ n[i1 x 2) + (pr0] x 20+ ... + p[i1 x 2))

c'est-a-dire :

(rro1 x 20 + ...+ r[i] x2') + ¢ x 2*1 ,
=(n(01 x 2%+ ... + n[i1 x 2) + (pL0] x 20 + ... + p[i] x 27)

Au début du tour suivant, la variable i a été augmentée de 1, si bien que :

| (rr01 %20+ .o+ rLi-20 x 27D 4 o x 2 _
=(n[0] x 20+ ... + n[i-1] x 2°Y) + (pf0] x 20+ ... + p[i-1] x 2'"1)

La propriété est donc encore vérifiée au début du tour suivant. Elle est
donc vérifiée 2 chacun des tours de boucles : c’est un invariant de la boucle.
A la fin du dernier tour, i est égal 4 10 et donc :
1 (rro] = ol Y r[9] = 29) +cx 210

=(n[01 x 20+ ... + n[91 x 27) + (p[01 x 20 + ... + p[9] x 29)
S

On affecte alors la case 10 du tableau r avec la retenue si bien que, quand
'exécution est terminée :

210

I r(0] 2%+ ... + r[10] x =x+y

Clest ce qu'il fallait démontrer : le tableau r contient la représentation
binaire du nombre x + y.

237

Quatrieme partie — Algorithmes

AuERpLS L0 L'autonomie de la notion d'algorithme

Dans ce chapitre, nous avons étudié un programme,
écrit en Java, qui additionne deux nombres écrits en
base deux. Il est possible d'écrire des programmes trés
similaires dans d'autres langages de programmation. La
méthode pour ajouter deux nombres en base deux est
indépendante d'un langage de programmation
particulier : c'est une méthode abstraite qui peut
s'exprimer dans divers langages. Une telle méthode sys-
tématique qui permet de résoudre un probléme
s'appelle un algorithme. Il est important de distinguer
un algorithme, méthode indépendante de tout langage,
d‘un programme, qui est l'incarnation d'un algorithme
dans un langage particulier.

AL puis ol Définitions algorithmigques et non algorithmiques

L'apprentissage des mathématiques commence par
I'apprentissage d'algorithmes qui permettent d'effec-
tuer des additions, des soustractions, etc.

Méme au-dela de ces mathématiques élémentaires,
beaucoup de définitions mathématiques sont algorith-
miques. Par exemple, la définition du nombre n-m
comme |le nombre obtenu en mettant n cailloux dans un
sac, en en 6tant m et en comptant ceux qui restent est
algorithmique. Mais la définition du nombre n-m
comme le nombre p tel que p + m = n ne l'est pas : con-
trairement a la premiére, cette définition ne dit pas ce
que l'on doit faire pour connaitre le nombre n-m
quand on connait les nombres n et m.

Ai-je bien compris ?

Cette distinction entre les notions d’algorithme et de
programme doit également son importance au fait que
nous ayons utilisé des algorithmes pour faire des addi-
tions dans diverses bases depuis des millénaires, bien
avant que nous ayons pensé a exprimer cet algorithme
dans un langage de programmation. Nous avons méme
utilisé des algorithmes, transmis de génération en géné-
ration par observation et imitation, pour fabriquer des
objets en céramique, tisser des étoffes, nouer des cor-
dages, préparer les aliments, etc. avant l'invention de
I"écriture.

De méme, la définition selon laquelle deux vecteurs non
nuls du plan, donnés par leurs coordonnées (x; ; y;) et
(x;;y;) dans une base, sont colinéaires quand
X1Ya=xayy est algorithmique, mais pas celle selon
laquelle ces deux vecteurs sont colinéaires s'il existe un
facteur de proportion k tel que x; =k x; et y; =k y5. Si
deux vecteurs sont donnés par leurs coordonnées dans
une base, par exemple (4;10) et (6; 15), la premiére
définition donne une méthode pour déterminer s'ils
sont colinéaires, puisqu'il suffit de calculer 4 x 15 et
10 x 6 et de vérifier que I'on obtient bien le méme
nombre dans les deux cas, mais pas la seconde, qui
demande de trouver le facteur de proportion, sans indi-
quer de méthode pour le faire.

= En quelles bases I'algorithme de I'addition peut-il étre utilisé ?
* Que veut-on dire lorsqu’on affirme que l'algorithme de I'addition est correct ?

* Qu’est-ce qu'un invariant ?

238

Dessiner

Ou comment devenir Botticelli sans se tacher
les doi g1s.

Dans ce chapitre, nous voyons comment programmer un
ordinateur pour dessiner ou modifier une image... sans utiliser
un logiciel de retouche photo ! Nous voyons comment ouvrir
une fenétre graphique, créer une image, dessiner en trois
dimensions, lire et produire des fichiers contenant des images,
transformer des images.

Ivan Sutherland (1938-) est un des
pionniers de [linformatique gra-
phique. Il est I'auteur du logiciel Sket-
chpad (1963) qui est I'un des premiers
logiciels de conception assistée par
ordinateur. lvan Sutherland a aussi
été a l'origine de |'un des premiers
systémes de réalité virtuelle muni
d'un visiocasque. Il est I'un des pion-
niers des architectures d'ordinateurs
spécialisées pour le temps réel et le
graphisme.

Quatrieme partie — Algorithmes

Arienmion Axe vertical

De méme que les Anglais roulent a gauche,
I'axe vertical, en géométrie algorithmique, est
orienté vers le bas.

Dessiner dans une fenétre

Deux instructions permettent d’ouvrir une fenétre graphique (c'est-a-dire
une fenétre dans laquelle on peut dessiner) et d’y dessiner un pixel.

Exécuter I'instruction Isn.initDrawing("Mon premier dessin",x,y,largeur,
hauteur) ; a pour effet d’ouvrir une fenétre de 1argeur pixels de large, sur
hauteur pixels de haut, qui porte le nom Mon premier dessin et dont le
coin en haut a gauche est au pixel de coordonnées (x ; y) de I'écran.

Exécuter I'instruction Isn.drawPixel (x,y,rouge,vert,bleu); a pour effet de
dessiner un pixel dans la x-éme colonne et la y-éme ligne de cette fenétre,
dont la couleur est décrite par les nombres rouge, vert et bleu (voir le
chapitre 9). La coordonnée x varie entre 0 et largeur - 1 et la coordonnée y
entre 0 et hauteur - 1. Les nombres rouge, vert et bleu varient entre 0 et 255.

Savoir-FAIRE Créer une image

1 Etablir une condition sur les coordonnées d’'un pixel qui permette de décider s'il
appartient ou non 2 la figure a tracer.

2 Ecrire une instruction qui balaye la fenétre graphique, au moyen de deux boucles
imbriquées, I'une sur les abscisses et I'autre sur les ordonnées.

3 Dans le corps de la boucle la plus interne, affecter la couleur appropriée a chaque pixel,
selon qu'il appartient ou non 2 la figure.

FE CafreTouge -

240

Exercice 19.1 (avec corrigé)

Dans une fenétre de 400 pixels sur 400 pixels, dessiner un carré rouge formé
des points dont I'abscisse est comprise entre 100 et 250 et I'ordonnée comprise
entre 50 et 200.

Un pixel de coordonnées (x;y) appartient a ce carré si et seulement si
100 <= x && x <=250 & 50 <=y && y <= 200. On obtient donc le
programme :

Isn.initDrawing("Carré rouge",10,10,400,400);
for (x = 0; x <= 399; x = x + 1) {
for (y =0; y <= 399; y=y + 1) {
if (100 <= x &% x <= 250 && 50 <= y && y <= 200) {
Isn.drawPixel(x,y,255,0,0);1}}

Dans ce cas, il n'est cependant pas nécessaire de balayer toute la fenétre gra-
phigue et un autre programme possible est :

Isn.initDrawing("Carré rouge",10,10,400,400);
for (x = 100; x <= 250; x =x+1) {
for (y = 50; y <= 200; y =y + 1) {
Isn.drawPixel (x,y,255,0,0);:}}

19 — Dessiner

Exercice 19.2

Ecrire un programme qui dessine ce méme carré mais sans le remplir.

Exercice 19.3

Ecrire un programme qui dessine un disque de centre (a ; b) et de rayon r .

Exercice 19.4

Tracer un segment pixel par pixel est facile quand ce segment est horizontal

ou vertical, mais cela est un peu plus difficile quand il est oblique. Pour tracer

un segment qui va du point (x; y) au point (x*; y) quand |y’ - Y] <]x’ - x|, c'est-

a-dire quand le segment est plutét horizontal, on cherche a dessiner un pixel

dans chaque colonne d'abscisse comprise entre x et x”.

&) Déterminer une équation cartésienne de la droite passant par les points de
coordonnées (x; y) et (x"; y).

€) En supposant gue x <x’, montrer que le point de la droite d'abscisse X a
pour ordonnée y + (X-x)(y'-y)/ (x' - x). Dans la pratique, pour dessiner
effectivement le pixel, ce nombre sera arrondi a I'entier le plus proche,

© Ecrire un programme qui trace ainsi un segment de type « plutét
horizontal ». On prendra soin de prévoir le cas ol x’ <x.

€) De méme, quand le segment est plutét vertical, c'est-a-dire quand |x’-
x| <|¥’- ¥, on cherche a dessiner un pixel dans chaque ligne d'ordonnée
comprise entre y et y’. Déterminer |'abscisse du point de la droite dont
I'ordonnée est y et compléter |‘algorithme pour le cas des segments plutét
verticaux.

& Rechercher sur le Web ce qu'est I'algorithme de Bresenham et comment il
améliore celui que I'on vient de construire.

Exercice 19.5

Tracer un cercle de centre (a ; b) et de rayon r en balayant les abscisses x de a-r a
a+r et en calculant les valeurs de y a partir de I'équation (x - a2 +(y-b2=ri
Méme question en balayant les ordonnées. Comment éviter les discontinuités ?

Exercice 19.6

Tracer, pour t variant de 0 & 10000, la courbe définie par
x(t) = 256 + 250 cos(0,0015 t) et y(t) = 256 + 250 sin(kt), avec k =0,0045, ceci
dans une fenétre de 512 pixels sur 512 pixels. C'est une courbe de Lissajous.
Faire varier k de 0,0015 a 0,0090 et explorer les différentes courbes obtenues.

D'autres instructions dessinent des segments, des cercles et des disques, sans
avoir a le faire pixel par pixel.

Linstruction Isn.drawline(x1,yl,x2,y2,rouge,vert,bleu); trace un seg-
ment, de couleur rouge, vert, bleu, qui va du point (x1;yl) au point
(x2 H y2)-

Linstruction Isn.drawCircle(x,y, rho,rouge,vert,bleu); trace un cercle, de
couleur rouge, vert, bleu, de centre (x ; y) et de rayon rho.

Linstruction Isn.paintCircle(x,y,rho,rouge,vert,bleu); trace un disque,
de couleur rouge, vert, bleu, de centre (x ; y) et de rayon rho.

241

Quatriéme partie — Algorithmes

Auer s Lo Taille du tableau

La taille du tableau est déterminée par la partie de I'espace que I'on
veut représenter. Si I'on décide, par exemple, que x et y varient entre -1
et 1 et zentre 1 et l'infini, alors les coordonnées sur le tableau varient
entre -1 et 1: un cbjet peut étre a I'extérieur du tableau parce qu‘il est
trop a gauche, trop a droite, trop en haut, trop en bas ou trop prés, mais
pas parce qu'il est trop loin. Cela est souvent rappelé dans les tableaux
de la Renaissance : quand le peintre représente une scéne qui se passe
dans une piéce, il laisse souvent une porte ou une fenétre ouverte sur
une petite scéne beaucoup plus loin. C'est, par exemple, le cas de cette
Annonciation de Botticelli.

242

Dessiner en trois
dimensions

Les méthodes que I'on utilise aujourd’hui pour dessiner des images en
trois dimensions remontent a la Renaissance quand, bien avant que les
ordinateurs existent, les peintres ont commencé a mettre au point diffé-
rentes méthodes de représentation de I'espace en perspective et a les uti-
liser dans leurs tableaux. Ces peintres sont finalement arrivés a une
conclusion qui, en langage moderne, s'exprime assez simplement : un
point de l'espace de coordonnées (x ; y ; 2) oli Paxe des x va de gauche 2
droite, I'axe des y de bas en haut et celui des z de proche 2 loin, doit étre
représenté sur un tableau par un point de coordonnées X =x/ zetY=y/
z. Par exemple, le point de coordonnées (0 ; 1 ; 2) est représenté sur le
tableau par le point de coordonnées (0 ; 1/2). Dans ce systéme de repré-
sentation, la coordonnée z doit toujours étre strictement positive : les
points dont la coordonnée z est négative correspondent aux points de
'espace qui sont dans le dos du peintre et qu'il ne représente donc pas.

Les points de coordonnées (0;0;1) et (0;1;1), qui sont & une
distance 1 dans I'espace, sont représentés par deux points (0; 0) et (0; 1),
qui sont aussi a une distance 1 sur le tableau. En revanche, les points de
coordonnées (0;0;2) et (0;1;2) qui sont aussi 2 une distance 1 dans
I'espace, sont représentés par deux points (0; 0) et (0; 1/2), qui sont 2
une distance 1/2 sur le tableau : plus un objet est loin, plus sa représenta-
tion sur le tableau est petite.

Si I'on veut maintenant représenter un tableau ot les points sont repérés
par des coordonnées (X;Y) qui varient entre -1 et 1 dans une fenétre

graphique ol les points sont repérés par des coordonnées (7;7) qui
varient entre 0 et 399, il faut faire un changement de repére et repré-
senter le point du tableau de coordonnées (X'; ¥) par le pixel de coor-
données 7 = 200 + 200 X et ; = 200 - 200 Y. Le signe - est di au fait que
l'axe vertical est orienté vers le haut dans le tableau et vers le bas dans la
fenétre graphique. Au bout du compte, le point de I'espace de coordon-
nées (x;y;2) est représenté par le pixel de coordonnées
i=200+200x/zet;=200-200y/z

Par exemple, on dessine le cube dont une face ABCD est dans le plan
z = 2 et une autre face A'B’C’D’ est plus loin, dans le plan z=4:

e A=(-1;-1;2),B=(-1;1;2),C=(1;1;2), D={(1;-1;2);

o A'=(-1;-1;4),B'=(-1;1;4),C=(1;1;4),D'=(1;-1;4).
On commence par calculer les coordonnées des pixels représentant
chacun de ces points en utilisant les formules 7=200 + 200 x/ z et
J=200-200y/z:

o A:(100; 300), B : (100 ; 100), C - (300 ; 100), D : (300; 300) ;

« A’:(150; 250), B’': (150 ; 150), C’: (250 ; 150), D’: (250 ; 250).

11 ne reste plus qu'a tracer les quatre segments de la premiere face ([4B],
[BC], [CD] et [DA]), les quatre de la seconde ([4'B], [B'C], [C'D] et
[DA7) et les quatre qui relient chaque sommet d’'une face au sommet
homologue de 'autre ([447], [BB'], [CC’], [DD').

//{ Face avant
Isn.drawline(100,300,100,100,0,
Isn.drawline(100,100,300,100,0
Isn.drawLine(300,100,300,300,0

,0

o,
0
0,
Isn.drawLine(300,300,100,300,0,0

// Face arriere

Isn.drawline(150,250,150,150,0,
Isn.drawline(150,150,250,150,0,
Isn.drawline(250,150,250,250,0,0,
Isn.drawlLine(250,250,150,250,0,

OCJOC:

// Arétes fuyantes

Isn.drawlLine(100,300,150,250,0
Isn.drawlLine(100,100,150,150,0
Isn.drawline(300,100,250,150,0
Isn.drawline(300,300,250,250,0,

On obtient alors I'image €) ot la face du cube la plus proche est repré-
sentée par le grand carré, la face la plus lointaine par le petit carré et les
quatre autres par des trapézes. Dans ce dessin, on suppose que la face
antérieure du cube est transparente, si bien que 'on voit I'intérieur du
cube. Si on l'avait supposée opaque, il aurait fallu ne pas dessiner la
partie du dessin cachée par cette face.

19 — Dessiner

243

Quatrieme partie — Algorithmes

Renarque Carrelages et perspective

Les peintres de la Renaissance peignaient sou-
vent des carrelages, comme Botticelli dans son
Annonciation, car les carrelages sont faciles a
représenter et ils soulignent la perspective,

244

On peut imaginer que ce cube représente une piéce : la face inférieure est
le sol, la face supérieure est le plafond et les trois faces verticales, repré-
sentées par les deux trapézes latéraux et le petit carré sont les murs. Le
quatriéme mur est supposé ouvert, ou transparent, ou derriére le peintre,
afin que I'on puisse voir l'intérieur de la piece.

On peint maintenant chacune de ces faces. On peut commencer par
peindre les murs latéraux en ambre jaune (r = 240, v = 195, 4= 0). Il faut
pour cela colorier tous les pixels contenus a l'intérieur du trapéze : I'écri-
ture des deux boucles imbriquées est alors un peu plus complexe que
pour le carré rouge précédent, car toutes les colonnes du trapéze n'ont
pas la méme hauteur. Pour traduire cela, les bornes entre lesquelles
I'ordonnée ; des pixels 4 colorier varie dépendront de I'abscisse i : on
retrouve ici les équations, 7 = 7 et 7 = 400 — 7, des droites qui représentent
les arétes fuyantes du cube.

| for (i =100; i <= 150; i =i + 1) {
| for(G=4;ij<=400-49; j=3+1) {
Isn.drawPixel (7,7,240,195,0);1}

for (i =250; i <= 300: i =1 +1) {
for (j=400-14; =11 =+ {
Isn.drawPixel(i,j,240,195,0);}}

On peint de méme le plafond en jaune bouton d’or (r= 246, v = 220,
b=18). Cette fois, le trapéze a ses bases horizontales. C'est donc
I'ordonnée j qui est choisie en premier dans la boucle externe, et les
bornes de I'abscisse 7 qui dépendent de ; :

| for (§ = 100; j <= 150; j =3 + 1) {
for (i=3;1<40-3:i=1+1){
1 Isn.drawPixel (i,7j,246,220,18);}}

On obtient ainsi I'image €.

On peut dessiner un carrelage sur le sol de la piece que I'on vient de des-
siner, c'est-a-dire la face inférieure du cube. Un point de coordonnées
(x; -1 ; 2) de cette face inférieure est représenté par un pixel de la fenétre
graphique de coordonnées i = 200 + 200 x / z et j = 200 + 200 / =

Réciproquement, le pixel de coordonnées (i;7) représente le point de
coordonnées x = (i - 200) / (j - 200), y = -1, z = 200 / (5 - 200).

La coordonnée x varie entre -1 et 1 et la coordonnée z entre 2 et 4. Si on
'on découpe ce rectangle en 400 dalles carrées de 0,1 de coté, le point de
coordonnées (7 ; 7) appartient a la dalle située dans la colonne [10 ((i -
200) / (7-200) + 1)], ou [x]est la partie entiere dex, cest-a-dire
[10 (1 +7-400) / (7-200)], et dans la ligne [10 (200 / (7 -200) - 2)],
c’est-a-dire [10 (600 - 2 7) / (7 - 200)].

Pour construire un carrelage en damier, il suffit de choisir une couleur pour
les dalles dont la somme des numéros de ligne et de colonne est paire et une
autre pour celles dont la somme est impaire. Il faut donc dessiner le pixel
(1;7) dune couleur si [10 (z+7-400)/ (7-200)] + [10 (600-2) /(5 -

200)] est pair et d’une autre couleur quand ce nombre est impair :

for (3 = 250; j <= 300; j =3 +1) {
for (1 =400 - J; i<=3;i=1+1){
if (10 * (i + 3 -400) / (3 - 200) + 10 * (600 - 2%3)
/ G - 200))%2 == 0) {
Isn.drawPixel(i,j,167,103,38);:}
else {
Isn.drawPixel(i,j,255,255,0);11}

En alternant des dalles alezan (r=167, v=103, 4=38) et jaunes
(r=255, ©=255, $=0), on obtient I'image €. Il ne reste plus qua
peindre le mur du fond en beurre frais (r = 255, v= 244, b =141), en
laissant, comme les peintres de la Renaissance, une fenétre ouverte sur le
ciel bleu ciel (r=119, v =181, b= 254) :

| for (G =150; i <=250; i =i +1) {
for (§ =150; § =250; 1 =3+ 1) {
if (160 <= 1 &% 1 <= 210 &8 160 <= j && j <« 220) {
Isn.drawPixel(i,j,119,181,254);}
else {
Isn.drawPixel(i,]j,255,244,141);}1}

pour terminer I'image et obtenir €).

Exercice 19.7

On considére un repére (O; i; j; k) tel que I'ceil du peintre soit en O et le
tableau soit dans le plan z=1. Soit un point A de coordonnées (x; y; 2).
Trouver une représentation paramétrique de la droite (AO) support du rayon
lumineux qui va du point A a I'ceil du peintre. On représente ce point A sur le
tableau par le point A’ intersection de cette droite avec le plan du tableau
z = 1. Montrer que les coordonnées du point A'sont (x/z,y/z, 1).

Produire un fichier
au format PPM

Si au lieu de dessiner cette image dans une fenétre graphique, on veut
Penregistrer dans un fichier, par exemple au format PPM (voir le
chapitre 9), afin de pouvoir 'inclure dans une page web ou l'attacher a un

19 - Dessiner

©
S
(4

245

Quatrieme partie — Algorithmes

Un fichier PPM

P3

#

400

400

255
rouge[0][0]
vert[0][0]
bleu[0][0]
rouge[1][0]
vert[1][0]
bleu[1][0]

246

courrier, on doit d’abord représenter cette image dans un tableau, au sens
que I'on a donné 4 ce mot au chapitre 3, puis produire un fichier au format
PPM a partir de ce tableau. Pour représenter une image en niveaux de gris,
il suffit d’utiliser un tableau bidimensionnel t, dont la case t[i]1[j] con-
tient la valeur du pixel de coordonnées (i ; j). Pour représenter une image
en couleurs, on utilise trois tableaux bidimensionnels rouge, vert et bleu,
les cases rouge[i]1[j], vert[i][j] et bleu[i][j] contenant les trois compo-
santes de la couleur du pixel de coordonnées (i ; 3).

On peut alors transformer le programme précédent en remplagant toutes
les instructions Isn.drawPixel(i,j,r,v,b); par

rouge[i1[3] = r;
vert[il[j] = v;
bleu[i]1[i] = b;

Par exemple, le dessin du carrelage s’écrit désormais :

for (j=250; j <=300; 3=3+1)1{
for 0 =400 -3j:i<=3;i=71+1{
if ((10 * (3 + j - 400) / (j - 200) + 10 * (600 - 2%j)
/ (3 - 200))%2 == 0) {
rouge[i][j] = 167;

vert[i][j] = 103;
bleu[i][3] = 38;}
else {

rouge[i][j] = 255;
vert[i][j] = 255;
bleu[i][3] = 05111

Une fois le dessin terminé, on peut 'enregistrer au format PPM, qui est
un fichier texte de la forme ci-contre.

La premiére ligne contient les caractéres P3 pour indiquer que c'est un fichier
au format PPV, la deuxiéme est un commentaire, la troisieme la largeur de
I'image, la quatriéeme sa hauteur, la cinquiéme la valeur 255 pour indiquer
que les valeurs des pixels vont de 0 2 255, puis sur les lignes suivantes les trois
valeurs rouge, vert et bleu en énumérant les pixels de gauche a droite et de
haut en bas. Le programme qui crée un tel fichier s'écrit :

fichier = Isn.openQut("botticelli.ppm");
Isn.printinToFile(fichier,"P3");
Isn.printinToFile(fichier,"#");
Isn.printinToFile(fichier,400);
Isn,printinToFile(fichier,400);
Isn.printinToFile(fichier,255);

for (1 =0; j<=399; j=3+1){

for (i =0; 1 <399;i=1+1{

Isn.printinToFile(fichier,rouge[i][j]);

19 — Dessiner

Isn.printinToFile(fichier,vert[i1[j1);
Isn.printinToFile(fichier,bleu[i]1[31);1}}
Isn.closeQut(fichier);

Lire un fichier au format
PPM

Inversement, on peut écrire un programme qui lit un fichier au format
PGM ou PPM dans un tableau ou dans trois, selon que I'image est en
niveaux de gris ou en couleurs.

La seule difficulté, pour lire un tel fichier, est due au fait qu'il est possible P2

d'insérer des commentaires dans un fichier au format PGM ou PPM, # une photo prise au Louvre
clest-a-dire des lignes qui commencent par le caractére # et qui doivent ;?;

étre ignorées. En pratique cependant, les fichiers au format PGM et 255

PPM n’ont généralement qu'un seul commentaire, 4 la deuxiéme ligne. 86

On se limite donc a des fichiers de cette forme si bien que les fichiers 233

PGM que 'on lit sont de la forme suivante :

¢ deux lignes qui peuvent étre ignorées,

¢ la largeur de I'image, suivie d'un retour 4 la ligne ou d’un espace,

¢ la hauteur de I'image, suivie d’un retour 2 la ligne ou d’un espace,

¢ la valeur maximale utilisée pour exprimer les niveaux de gris, suivie
d’un retour 2 la ligne ou d’un espace,

« la liste des pixels, ligne par ligne, de haut en bas et de gauche a droite,
séparés par des retours a la ligne ou des espaces.

On peut lire un tel fichier avec le programme suivant :

fichier = Isn.openIn("maison.pgm™);

s = Isn.readStringFromFile(fichier);

s = Isn.readStringFromFile(fichier);

largeur = Isn.readIntFromFile(fichier);

hauteur = Isn.readIntFromFile(fichier);

max = Isn.readIntFromFile(fichier);

gris = new int [largeur][hauteur];

for (3 =0; j < hauteur - 1; j =3 +1) {
for (i =0; i <=largeur - 1; i =9 +1) {

gris[i][j] = Isn.readIntFromFile(fichier);}}
Isn.closeln(fichier);

247

Quatriéme partie — Algorithmes

et ensuite afficher cette image dans une fenétre :

Isn.initDrawing("Pgm",10,10,Targeur, hauteur);
for (i =0; i <= largeur - 1; i =1 +1) {
for (j =0; j <= hauteur - 1; j =3 + 1) {
valeurgris = gris[i][j] * 255 / max;
Isn.drawPixel(i,]j,valeurgris,valeurgris,valeurgris);}}

La lecture et I'affichage d’'une image en couleurs, au format PPM sont
similaires, sauf qu'il faut lire trois nombres pour chaque pixel et les
stocker dans trois tableaux : rouge, vert et bleu.

. Transformer les images

Une fois une image représentée dans un tableau, il est facile de la trans-
: former. Par exemple, on peut inverser la quantité de chaque couleur :
Y for (j =0; j <= hauteur - 1; j =3 + 1) {
for (i =0; 7 < Targeur - 1; 1 =1 + 1) {
rougebis[i]1[j] = max - rouge[i]1[j];
vertbis[i]1[j] = max - vert[i][]j1;
- bleubis[i][j] = max - bleu[i][j];}}

£

g
~

ce qui transforme I'image €) en I'image €.

SAVOIR-FAIRE Transformer une image en couleurs en une image
en niveaux de gris

On remplace chaque pixel de couleur #, v, 4 par un pixel dont le niveau de gris est la
moyenne des nombres 7, v et 4.

Exercice 19.8 (avec corrigé)

Ecrire un programme qui transforme une image en couleurs en une image en
niveaux de gris.

for (i =0; i <=largeur - 1; i =1 +1) {
for (j =0; J <= hauteur - 1; j=3+1) {
gris[i]1[j] = (rouge[i1[j] + bleu[i][j] + vert[i]1[j1)/3;}}

248

19 — Dessiner

Exercice 19.9

Ecrire un programme qui transforme une image en couleurs en une image en
niveaux de gris, non pas en faisant la moyenne, mais en gardant un seul des
trois nombres r, v et b et en ignorant les autres. Comparer le résultat obtenu
avec le résultat de |"exercice 19.8.

Savoir-FAIRE Augmenter le contraste d’une image en niveaux de gris

On fixe un seuil et on remplace tous les pixels plus clairs que ce seuil par un pixel blanc et
tous les pixels plus sombres que ce seuil par un pixel noir.

Exercice 19,10 (avec corrigé)

Ecrire un programme qui augmente le contraste d'une image en se fixant
comme seuil la valeur max /5.

| for G = 0; i <= largeur - 1; i =
for (= 0; j < hauteur - 1; j
if (gris[il[j] <= max/5) {
grisbis[i][j] = 0;}
else {
grisbis[i][j] = max;}}}

Exercice 19.11

Ecrire un programme qui augmente le contraste d'une image en se fixant
comme seuil la valeur 4 max /5. Ce programme est-il bien adapté pour les |
images claires ou les images sombres ?

. 1_

Exercic

L 14
A partir d'une image en niveaux de gris, produire les images suivantes.

249

Quatrieme partie — Algorithmes

Savoir-rFalRe Modifier la luminance d’une image

On ajoute ou on retranche une constante 2 la valeur de chacun des pixels.

Exercice 19.13 (avec corrigé)

Ecrire un programme qui ajoute max /4 & tous les pixels d'une image en
niveaux de gris, en remplacant les valeurs qui dépassent la valeur maximale
par la valeur maximale elle-méme.

diff = max / 4;
for (x = 0; x <= largeur - 1; x =x + 1) {
for (¥ = 0; y <= hauteur - 1; y =y + 1) {
grisbis[x][y] = Math.min(gris{x][y] + diff,max);}}

Exercice 19.14

Ecrire un programme qui augmente la luminance d’une image en couleurs.

Exercice 19.15

Ecrire un programme qui multiplie toutes les valeurs des pixels de I'image par
un nombre g positif en remplacant les valeurs qui dépassent la valeur maxi-
male par la valeur maximale elle-méme. Ce programme modifie-t-il la lumi-
nance ou le contraste de |I'image ? Que se passe-t-il quand le coefficient
multiplicateur g est trés petit ? Et quand il est trés grand ? Au lieu de trans-
former la valeur v en g * v, la transformer en 128 + g * (v - 128), toujours
en gardant la méme valeur maximale et en remplagant les valeurs qui la
dépassent par la valeur maximale elle-méme, et celles qui dépassent 0 par 0.
Que se passe-t-il quand g est trés grand ?

Exercice 19.16

Prendre une photo sombre, par exemple avec un téléphone, et utiliser la
transformation qui av associe 255.0 * Math.pow(v / 255.0, gamma) avec
0 < gamna < 1. Que se passe-t-il ? A quoi peut servir cette transformation ?

Savoir-FaIRe Changer la taille d’'une image
On calcule la nouvelle image pixel par pixel.

250

Exercice 19.17 (avec corrigé)

Ecrire un programme qui double la taille d'une image en niveaux de gris, en
remplagant chaque pixel par un carré de deux pixels sur deux pixels du méme
niveau de gris.

largeurbis = 2*largeur;
hauteurbis = 2*hauteur;
grisbis = new int [largeurbis][hauteurbis];
for (i = 0; i <= largeurbis - 1; i =i + 1) {
for (j = 0; j <= hauteurbis - 1; j =3 + 1) {
grisbis[i1[j] = gris[i/2]1[j/2];}}

19 — Dessiner

Exercice 19.18

Ecrire un programme qui divise la taille d'une image par deux, en remplacant
chaque carré de deux pixels sur deux pixels par un pixel dont la couleur est la
moyenne de celles des quatre pixels qu'il remplace.

Savoir-FAIRE Fusionner deux images

On calcule la nouvelle image pixel par pixel, la valeur de chaque pixel étant le maximum
des valeurs des pixels correspondant dans chacune des images a fusionner.

Exercice 19.19 (avec corrigé)

Ecrire un programme qui fusionne deux images en niveaux de gris. Attention
au cas oul les images n'ont pas la méme taille ou n’utilisent pas la méme valeur
maximale pour exprimer les niveaux de gris.

// Calcul des dimensions maximales des deux images
if (largeurl >= largeur2) {
largeur3 = largeurl;}
else {
largeur3 = largeur2;} =

if (hauteurl >= hauteur?) {
hauteur3 = hauteurl;}

else {
hauteur3 = hauteur2;}

// Calcul du niveau de gris maximal
if (maxl >= max2) {

max3 = max1;}
else {

max3 = max2;}

— 0000000000
oooooooooo

// Caleul de 1'image fusionnee

gris3 = new int [largeur3] [hauteur3];
for (j = 0; j <= hauteur3 - 1; j = j + 1) {
for (i =0; i <= largeur3 - 1; i =1 +1) {
// 51 un pixel est en dehors d'une image on lui affecte
// 1a valeur maximale
if (i < largeurl & j < hauteurl) {
valeurl = max3 * grisi[i][j] / max1;}

— 00o0oooooo
00ooo0ooooo

else {
valeurl = max3;} >
if (i < largeur2 && j < hauteur2) {]
valeur2 = max3 * gris2[i][j] / max2;}
else {

valeur2 = max3;}
if (valeurl < valeur2) {
gris3[i]l[j] = valeurl;}
else {
gris3[i][j] = valeur2;}}}

251

Quatrieme partie — Algorithmes

252

Exercice 19.20

A quoi peut correspondre la soustraction de deux images en niveaux de gris,
c'est-a-dire I'image obtenue en soustrayant a la valeur de chaque pixel de la
premiére image la valeur du pixel correspondant de la seconde ? On s'inspi-
rera du schéma ci-aprés. Prendre deux photos d’un objet sur une table en bou-
geant un peu l'objet entre les deux photos et calculer la valeur absolue de la
différence pixel a pixel. Quelle peut étre une application de cet algorithme ?

SAVOIR-FAIRE Lisser une image pour éliminer ses petits défauts
et en garder les grands traits

La valeur d'un pixel de la nouvelle image est la moyenne des valeurs de ce pixel et des
pixels qui U'entourent (i gauche, 4 droite, au-dessus et en-dessous).

Exercice 19.21 (avec corrigé)

Ecrire un programme qui lisse une image. Attention au fait que les pixels sur le
bord gauche de I'image n'ont pas de pixel a leur gauche, ceux du bord droit,
pas de pixel a leur droite, etc.

for (x = 0; x <= largeur - 1; x = x + 1) {
for (y = 0; ¥ <= hauteur - 1; y =y + 1) {
grisbis[x][y] = (gris[x][y]
+ gris[Math.max(x - 1,0)1[y]
+ gris[Math.min(x + 1,largeur - 1)][y]
+ gris[x][Math.max(y - 1,0)]
+ gris[x] [Math.min(y + 1,hauteur - 1)1)/5;}}

Et si on répéte 'opération plusieurs fois, I'image sera de plus en plus lisse mais
aussi plus floue, comme illustré ici avec Fimage initiale 8 gauche et l'image
lissée & droite en appliquant l'opération précédente 20 fois.

i [9
’ ‘

L T

19 — Dessiner

Il existe des algorithmes plus complexes qui, pour une image couleur, font la
moyenne sur les petites variations pour gommer les détails les moins impor-
tants, mais pas sur les plus grands traits, permettant ainsi de bien les faire res-
sortir, on obtient alors de meilleurs résultats.

2=

.
Exercice 19.22
Considérer I'image qui suit avec des valeurs de pixels entre 0 et 9. Remplacer la
valeur de chaque pixel par la moyenne des valeurs des pixels a sa gauche et a 0000000000
sa droite. On arrondit a la valeur entiére la plus proche a chaque fois. On 0088888800
prendra 0 au bord de I'image. 0880000880
5 . 2 % 0800000080
Dessiner le résultat obtenu. On économisera beaucoup de calculs en tenant 0800000080
compte des symétries. 0800000080
. 0800000080
Exercice 19.23 0880000880
Reprendre |'exercice précédent, mais en recommencgant encore deux fois. 0088888800
Commenter le résultat obtenu. Que se passe-t-il si on recommence 0000000000

indéfiniment ?
Exercice 19.24

Ecrire un programme qui extrait les contours d'une image gris en niveaux de
gris. Pour cela, on fixe un seuil et on construit une image dont le pixel (i ; j) est
noir si I‘intensité varie fortement autour du pixel (i ; j) de gris, c'est-a-dire si
Math.abs(gris[i+11[j] - gris[i1[j1) + Math.abs(gris[11[j+1]1 - gris[i1[iD)
est supérieur au seuil fixé, et blanc si ce n"est pas le cas.

Exercice 19.25

Dessiner une image d'au moins 200 pixels par 200 pixels, ot la valeur de chaque
pixel est aléatoire. Observer le résultat obtenu: ny a-t-il pas quelques
régularités ? Elles sont évidemment dues au hasard : il faut se méfier de surinter-
préter un phénoméne aléatoire dans lequel on croit apercevoir des régularités.

253

Quatriéme partie — Algorithmes

254

Augr As Lol Comment sont dessinées nos maisons ?

Les algorithmes géométriques que I'on a vus dans ce chapitre sont, bien
entendu, utilisés par I'industrie du dessin animé, mais ils sont également
utilisés dans beaucoup d'autres secteurs de I'industrie, pour la conception
assistée par ordinateur de voitures, de bateaux, d'avions, de batiments, etc.
Il y a encore quelques dizaines d'années, les architectes dessinaient a la
main les plans des batiments qu'ils concevaient a la planche a dessin sur
du papier calque. Effacer un trait demandait alors de gratter le papier
avec une lame de rasoir : il valait donc mieux éviter de se tromper deux
fois. Les planches a dessin ont été remplacées par des logiciels de concep-
tion assistée par ordinateur, qui permettent de dessiner des plans avec
une précision beaucoup plus grande et surtout de les modifier ad libitum.
Ils ont par la suite été complétés par des logiciels de dessin en trois dimen-
sions, qui représentent les batiments sous forme de magquettes virtuelles,
beaucoup plus lisibles que des plans, surtout pour les non spécialistes.

Les ingénieurs dessinaient ensuite d'autres plans et faisaient des notes de
calcul a la main ou en utilisant une calculatrice. lls utilisent aujourd’hui,
pour ces calculs, des logiciels fondés sur la méthode des éléments finis, qui
décomposent les batiments en des milliers de petits morceaux et calculent
les forces exercées sur chacun de ces morceaux.

Des évolutions récentes vont vers |'utilisation d'un format unique de des-
cription des batiments, utilisé a la fois par les architectes, les ingénieurs de
conception et les ingénieurs qui organisent le travail sur les chantiers.

Ces transformations ont permis de concevoir et de calculer des batiments
beaucoup plus complexes que par le passé, comme le musée Guggenheim
de Bilbao. Ainsi, on comprend rétrospectivement que la raison pour
laguelle beaucoup de batiments étaient, par le passé, de simples parallé-
Iépipédes, est que les parallélépipédes sont faciles a dessiner et a calculer.
Ces méthodes ont aussi permis une présentation plus lisible des batiments
dans lesquels il est désormais possible de se promener avant méme qu'ils
ne soient construits. Enfin, elles favorisent une meilleure communication
entre les différents corps de métier. Par exemple, quand un batiment
demande la découpe d'une piéce sur mesure, le fichier de commande de
la machine numérique qui découpe cette piéce peut étre produit directe-
ment a partir des logiciels de conception assistée par ordinateur.

Ai-je bien compris ?
* De quelles instructions a-t-on besoin pour dessiner a I'écran ?
* Quel est le principe du dessin en trois dimensions ?

* Quelles sont les principales transformations d’une image ?

La dichotomie 20

CHAPITRE AVANCE

Ou diviser pour végner.

Dans ce chapitre, nous voyons une méthode algorithmique
générale qui permet, entre autres choses, de trouver
rapidement un mot dans un dictionnaire : ouvrir

le dictionnaire au milieu et s'interroger : « la premiére lettre
du mot cherché est-elle avant ou aprés ? ».

Cette méthode fonctionne plus généralement dés que nous
cherchons a retrouver un élément dans un tableau ordonné
selon une relation d’ordre total, notion que nous définissons.
Cette méthode est rapide et s’applique 2 de nombreux
problémes : la recherche d’un élément dans une table
ordonnée, la conversion d’une valeur analogique en une valeur
numérique, la recherche d’un zéro d’une fonction continue

et stnctement monotone, etc.

Donald Knuth (1938-) est un des
fondateurs de [‘algorithmique, la
partie de l'informatique qui étudie
les propriétés des algorithmes, indé-
pendamment de leur expression dans
un langage de programmation parti-
culier. Le troisitme volume de son
livre The art of computer program-
ming, intitulé Sorting and searching
est entierement consacré aux algo-
rithmes de tri et de recherche en
table. Pour écrire ce livre, il a d'abord
écrit un logiciel de traitement de
texte: TeX, dont le nom est formé
des trois premiéres lettres du mot
techné, qui signifie a la fois « art » et
« technique ».

Quatrieme partie — Algorithmes

256

La recherche en table

Au chapitre 3, nous avons écrit un programme qui gére un répertoire
constitué de deux tableaux, contenant I'un des noms et l'autre des
numéros de téléphone. Ce programme attend en entrée un nom et
indique le numéro de téléphone correspondant, ou bien indique que ce
nom n'appartient pas au répertoire.

Ce probléme est un exemple d'un probléme important en algorithmique : Ia
recherche en table. En effet, beaucoup de systémes informatiques, tels les dic-
tionnaires, les moteurs de recherche, les systémes d'information des banques
et des administrations, servent essentiellement, comme ce répertoire, a
stocker des informations et les restituer quand on les interroge. Le pro-
gramme que nous avons écrit au chapitre 3 est le suivant :

s = Isn.readString();

1 =6

while (i < 10 && !Isn.stringEqual(s,nom[i])) {
i=19+1;}

if (G <10) {
System.out.printIn(tel[i]);}

else {
System.out.println("Inconnu");}

Ce programme recherche, dans le tableau nom, I'indice de la chaine s
entrée par l'utilisateur, en comparant cette chaine successivement a tous
les éléments du tableau. Il suffit ensuite d’afficher 'élément de méme
indice du tableau tel. On peut instrumenter ce programme en ajoutant

une mnstruction System.out.print("."); dans la boucle afin de visualiser
le nombre de comparaisons effectuées.

| s = Isn.readStringQ);
i=0;

while (i < 10 && !Isn.stringEqual(s,nom[i])) {
System.out.print(".");

[}

1i=1+1:}
System.out.printin(".");
if (3 < 10) {
System.out.printin(tel[i]);}
else {

System.out.printin("Inconnu");}

On obtient alors trois points ... quand on cherche le numéro de télé-
phone de Charles, qui est plutot au début du tableau, mais dix
POINES o vaissiose quand on cherche celui de Jéréme, qui est 4 la fin.

Si on utilisait cette méthode pour chercher un mot dans un dictionnaire,
on ouvrirait celui-ci a la premiére page et on comparerait le mot
recherché au premier mot du dictionnaire, puis au deuxieéme, puis au

troisieme, etc. jusqu'a trouver le mot recherché, ou arriver au dernier mot
du dictionnaire. Un dictionnaire courant contenant 60 000 mots et une
comparaison prenant une demi-seconde, il faudrait, dans le pire des cas,
30 000 secondes, soit huit heures et vingt minutes, pour trouver le mot
recherché ou se convaincre qu'il n"appartient pas au dictionnaire.

Bien entendu, ce n'est pas ainsi que 'on procéde : on ouvre le diction-
naire au milieu, on compare le mot recherché au mot médian. Si le mot
recherché est avant le mot médian dans I'ordre alphabétique, on élimine
la seconde moitié du dictionnaire, sans méme la regarder ; 'il est aprés le
mot médian, on élimine la premiére moitié. En recommengant avec le
demi-dictionnaire restant, on élimine ensuite un demi-demi-diction-
naire et on continue jusqu'a trouver le mot en question ou obtenir
I'ensemble vide, auquel cas le mot recherché nest pas dans le diction-
naire. Cette algorithme de recherche d'un élément dans une table
s'appelle la recherche par dichotomie (tomia, couper, dikha, en deux).

Si on cherche un terme dans un dictionnaire de 60 000 mots :

20 - La dichotomie

*» Aprés 1 comparaison, on le cherche dans un ensemble d’au plus 30 000 mots.

¢ Apres 2 comparaisons, on le cherche dans un ensemble d’au plus 15 000 mots.

» Aprés 3 comparaisons, on le cherche dans un ensemble d’au plus 7 500 mots.

* Aprés 4 comparaisons, on le cherche dans un ensemble d’au plus 3 750 mots.

* Aprés 5 comparaisons, on le cherche dans un ensemble d’au plus 1 875 mots.

* Apres 6 comparaisons, on le cherche dans un ensemble d’au plus 937 mots.

* Aprés 7 comparaisons, on le cherche dans un ensemble d’au plus 468 mots.

* Aprés 8 comparaisons, on le cherche dans un ensemble d’au plus 234 mots.

* Aprés 9 comparaisons, on le cherche dans un ensemble d’au plus 117 mots.

* Apres 10 comparaisons, on le cherche dans un ensemble d’au plus 58 mots.

* Aprés 11 comparaisons, on le cherche dans un ensemble d’au plus 29 mots.

e Aprés 12 comparaisons, on le cherche dans un ensemble d’au plus 14 mots.

» Aprés 13 comparaisons, on le cherche dans un ensemble d’au plus 7 mots.
* Aprés 14 comparaisons, on le cherche dans un ensemble d’au plus 3 mots.
* Aprés 15 comparaisons, on le cherche dans un ensemble d’au plus 1 mot.

Au bout de 16 comparaisons seulement, on a trouvé le mot dans le dic-
tionnaire, ou on sait qu'il n'y est pas : 8 secondes suffisent donc, contre
8 heures et 20 minutes, soit un temps de recherche divisé par 3 750.

Au cours d'une recherche par dichotomie, soit on tombe sur le résultat,
soit on divise par deux la taille de 'ensemble dans lequel on recherche le
mot, ceci a chaque comparaison. De ce fait, le nombre de comparaisons
nécessaires pour trouver un élément dans une table est, dans le pire des
cas, le logarithme entier de la taille de la table.

4 Logarithme entier

On rappelle que le logarithme entier elog(x)
d'un nombre x supérieur ou égal a 1 est le nombre
de fois qu'il faut le diviser par deux pour obtenir
un nombre inférieur ou égal a 1.

257

Quatrieme partie — Algorithmes

n
Logarithme entier de n

258

Le gain qui consiste a passer d'un nombre de comparaisons proportionnel au
nombre d’éléments 4 un nombre de comparaison proportionnel 4 son loga-
rithme entier est immense. Quand le nombre d’éléments atteint quelques
millions ou quelques milliards, son logarithme entier ne vaut que 20 ou 30 :

8 16 - 256 - 1024 - Million . Milliard
4 « |8 « (10 . 20 « |30

La dichotomie permet, par exemple, de rechercher en un maximum de
26 étapes, le nom de quelqu'un dans I'annuaire des 60 millions de Frangais.

Bien entendu, cet algorithme de recherche par dichotomie ne fonctionne
que parce que, dans un dictionnaire, les mots sont ordonnés par ordre alpha-
bétique. Si les mots avaient été dans le désordre, il aurait fallu tout fouiller.
De maniére générale, il faut que I'on ait défini, sur le type des éléments de la
table, une relation d'ordre total, c’est-a-dire une relation < qui soit :
¢ réflexive : un élément x est avant lui-méme, au sens large x <x
* anti-symétrique : s1 x est avant y alors y n'est pas avant x, sauf ¢’ils sont
égaux six<yety<xalorsx=y
* transitive: si x est avant y et y avant z, alors x est avant z si x<y et
y<z alors x <z

* et totale : de deux éléments, I'un est toujours avant 'autre, x <y ou
y<x.

La relation d’ordre habituelle sur les nombres entiers et l'ordre alphabé-
tique sur les chaines de caractéres sont deux exemples de relations
d’ordre totales.

11 faut, par ailleurs, que la table soit ordonnée relativement a cette rela-
tion, c’est-a-dire que si x est avant y dans la table, alors x <.

On peut alors écrire un programme qui exprime I'algorithme de recherche
par dichotomie. Deux variables i et j définissent I'intervalle du tableau nom,
auquel I'indice de la chaine de caractéres s recherchée appartient, si jamais
cette chaine est dans la table. Tant que cet intervalle contient au moins
deux éléments, c’est-a-dire tant que i < j, on calcule 'élément médian k de
I'intervalle et on compare les chaines de caractéres s et nom[k]. Si ces deux
chaines de caractéres sont identiques, on réduit l'intervalle au singleton
[k, k], de maniére 2 provoquer la fin du calcul. Si s est avant nom[k] dans
‘ordre alphabétique, on réduit lintervalle 4 [i, k - 1] et si s est aprés
nom [k] dans 'ordre alphabétique, on réduit l'intervalle a [k + 1, §].

On s'arréte quand l'intervalle contient moins de deux éléments. Comme
on va le voir, l'intervalle [1,] est alors ou bien de la forme [1, 1], qui est
un singleton, ou bien de la forme [i,i - 1], qui est vide puisque i est plus
grand que i - 1. Et i est toujours compris entre 0 et 9. Si la chaine de

20 - La dichotomie

caractéres nom[i] est identique 2 s, on a trouvé l'indice de la chaine s dans
le tableau nom ; si ce n'est pas le cas, la chaine s n'est pas dans la table.

s = Isn.readString();
1=0;
i=9;
while (i <) {
k=Ci+3) /2
if (Isn.stringEqual(s,nom[k])) {
1 = k;
= kil
else {
if (Isn.stringAlph(s,nom[k])) {
i = k-1;}
else {
i = k+1;}}}
if (Isn.stringEqual(s,nom[i])) {
System.out.printin(tel[i]);}
else {
System.out.printin("Inconnu");}

On doit se convaincre de deux choses : d’'une part que l'algorithme se
termine aprés un certain nombre d'itérations, d'autre part que la réponse
donnée par I'algorithme est correcte.

Le fait que la boucle se termine est dii au fait que le nombre j-i +1
d’éléments dans l'intervalle [, j] est au moins divisé par deux a chaque
itération. Aprés un nombre d’itérations inférieur au logarithme entier du
nombre d’éléments dans la table, ce nombre est inférieur ou égal a 1 et la
boucle se termine. En instrumentant le programme précédent pour
compter le nombre de comparaisons, on s'apergoit que ce nombre est
toujours inférieur ou égal a 4, qui est le logarithme entier de 10.

Ensuite, pour démontrer que la réponse donnée par I'algorithme est cor-
recte, on commence par montrer que si la chaine de caractéres s est dans la
table, alors son indice appartient toujours a l'intervalle [i, j]. Cette pro-
priété est un invariant de la boucle, c’est-a-dire une propriété qui reste
vraie A chaque exécution du corps de la boucle. Ici, quand on réduit I'inter-
valle [1, i] & l'intervalle [, k - 1] par exemple, c’est parce que I'on sait
que la chaine s est avant la chaine nom[k] dans l'ordre alphabétique et
donc que 'indice de la chaine s, s'il existe, n'est pas dans l'intervalle [k, j].
La propriété reste donc vraie jusqu’a la fin de I'exécution de la boucle.

Enfin, on montre que quand on sort de la boucle, I'intervalle [i, j] est soit
le singleton [7, i], soit 'intervalle vide [i, i - 1]. Dans les deux cas, i est
compris entre les valeurs minimale et maximale de départ, ic1 0 et 9. Pour
cela, on montre un autre invariant de la boucle : si I'intervalle [, i] nlest
pas vide, alors ses bornes i et j sont comprises entre les valeurs minimale
et maximale de départ, et sil est vide, alors sa borne inférieure i est com-
prise entre les valeurs minimale et maximale de départ.

259

Quatriéme partie — Algorithmes

ALLERPWS L0 Ajouter un élément
en temps logarithmique

Cet algorithme de recherche par dichotomie
permet donc la recherche rapide d'un élément
dans une table, puisque le nombre de comparai-
sons, et par conséquent le temps d'exécution du
programme, est proportionnel au logarithme de la
taille de la table et non 2 la taille de la table elle-
méme. En revanche, ajouter ou supprimer un élé-
ment de la table demande un temps de calcul pro-
portionnel & la taille de la table, et non a son
logarithme, puisque quand on ajoute ou supprime
un élément au début du tableau, il faut décaler
tous les autres éléments. Ce n'est pas trés grave
quand la table change peu, comme un diction-
naire, mais cela peut devenir un probléme si elle
change souvent. C'est pour cela qu'il existe
d'autres maniéres, plus complexes, de pro-
grammer la recherche en table, qui rendent loga-
rithmiques aussi bien la recherche, que I'ajout et
la suppression d'un élément de la table. Bien que
plus complexes, ces méthodes sont fondées sur
les mémes idées que celles que nous avons vues
dans cet exemple.

260

¢ Si l'intervalle [4, j] contient au moins trois points, c'est-a-dire si
i+2<j, il nest pas difficile de montrer que les nombres k -1 et
k+1, ot k = (i + j)/2, sont tous les deux compris entre i et j au
sens large. Le nouvel intervalle [k, k], [i, k - 1] ou [k + 1,] est con-
tenu dans [1, i] et donc ses bornes sont comprises entre les valeurs
minimale et maximale de départ.

e Si l'intervalle [i, j] contient deux points, c’est-a-dire si j =i + 1, alors
k =(i +7)/2estégal ai. Le nombre k + 1 est égal 4 j : il est compris
entre i et j au sens large. En revanche, le nombre k - 1 est égala i - 1.
Dans ce cas, le nouvel intervalle est [, 1] ou [4,] dont les bornes sont
comprises entre les valeurs minimale et maximale de départ, ou I'inter-
valle vide [i, i - 1] dont la borne inférieure i est comprise entre les
valeurs minimale et maximale de départ.

On sort de 1a boucle quand I'intervalle [, j] contient zéro ou un point.
Dans un cas comme dans I'autre, I'indice i est compris entre les valeurs
minimale et maximale de départ. Si la chaine de caractéres nom[i] est
identique a s, on a trouvé l'indice de la chaine s dans le tableau nom ; si ce
n'est pas le cas, la chaine s n'est pas dans la table.

Exercice 20.1

On suppose que l'on a un annuaire qui contient les sept milliards d'étres
humains dans I'ordre alphabétique de leurs nom, prénom, lieu de naissance et
date de naissance. Combien de comparaisons sont nécessaires pour retrouver
une personne dans cet annuaire ?

Exercice 20.2

Programmer l‘algorithme de recherche en table par dichotomie de fagon
récursive.

Exercice 20.3

Ecrire un programme qui joue au jeu du « plus petit - plus grand » c'est-a-dire
qui propose a un utilisateur de deviner un nombre entre 0 et 100 en lui indi-
quant a chaque tentative si le nombre proposé par l'utilisateur est plus petit
ou plus grand que le nombre a deviner. En combien d'étapes au plus peut-on
deviner le nombre si on connait le principe de la dichotomie ? Ecrire un autre
programme qui cherche a deviner le nombre.

Exercice 20.4

On suppose gue I‘on a un dictionnaire qui contient n mots en vrac, sans aucun ordre.

€) Peut-on trouver une méthode plus rapide que la comparaison avec chacun
des mots du dictionnaire ?

€ On suppose que I'on cherche au hasard dans ce dictionnaire un mot donné,
sans noter les mots déja essayés. Quelle est la probabilité de trouver le mot
du premier coup ? Quelle est la probabilité de trouver le mot au k-éme coup,
c'est-a-dire d'échouer aux k - 1 premiers coups et de réussir au k-éme ?

€ Quelle est la probabilité de ne pas encore avoir trouvé le mot aprés k coups ?
A partir de combien de coups cette probabilité devient-elle inférieure & 1/2 ?

@ Rechercher sur le Web des informations sur la loi géométrique et sur son
espérance et en déduire le nombre moyen de coups nécessaires pour
trouver le mot dans le dictionnaire, s'il y est. Le résultat est surprenant : il
faut en moyenne n coups.

€ Que se passe-t-il si on cherche au hasard le mot, sans noter les mots déja
essayés, et qu'il n'est pas dans la boite ?

La conversion analogique-
numérique

Nous nous intéressons maintenant 2 un tout autre probléme : celui de la
conversion analogique-numérique, par exemple d’une tension (voir le
chapitre 17).

I1 rlest pas difficile de réaliser un circuit qui compare deux tensions et
indique laquelle est la plus grande. Il nest pas non plus trop difficile de
réaliser un circuit de conversion numérique-analogique, qui produit une
tension donnée par un nombre exprimé en binaire. Beaucoup de conver-
tisseurs analogique-numérique proceédent alors en comparant la tension
a numériser successivement a plusieurs valeurs de référence pour, de
proche en proche, cerner la valeur de la tension. Ici encore, ces convertis-
seurs procedent par dichotomie, en divisant l'espace de recherche par
deux a chaque mesure. Cela permet d’atteindre trés rapidement une
bonne précision, le milliéme en 10 étapes, le millioniéme en 20, etc.

Trouver un zeéro
d’une fonction

Voici encore un autre probléme : trouver un zéro d’une fonction f'con-
tinue et strictement monotone dans un intervalle [a, b], cest-a-dire
résoudre une équation de la forme f(x) = 0, a <x <b.

Une méthode consiste 4 comparer le signe de £ (a) et £ (b). Si ces deux
signes sont identiques, alors la fonction f étant strictement monotone,
elle ne sannule pas sur l'intervalle [a, b]. Sinon, elle s"annule une fois

20 - La dichotomie

261

Quatrieme partie — Algorithmes

262

exactement sur cet intervalle. Clest le cas par exemple de la fonction
sinus qui s"annule sur 'intervalle [2,4].

Ici encore, une recherche par dichotomie permet de trouver une valeur
approchée de ce zéro. On cherche une valeur approchée i e = 107 prés.

e = 1E-5;
a=2.0;
b = 4.0;

m=(Ca+b) / 2;
while (b - a > e && Math.abs(Math.sin(m)) > e) {
if (Math.sin(a) * Math.sin(m) <= Q) {

b =m}
else {
a=m;}

m=C+b)/ 2}
Ce programme donne la valeur m = 3,1416015625.

Exercice 20.5

Montrer que ce programme se termine. Montrer que, quand on sort de la
boucle, le nombre m est soit une approximation en x de la solution, c’est-a-dire
un nombre m tel qu'il existe un nombre z tel que f(z) = 0 et |m - 2| <, soit une
approximation en y de la solution, c'est-a-dire un nombre n tel que |[f(m)] <e.

Exercice 20.6

L'exercice 20.5 suppose que le calcul de la fonction f sur des nombres a virgule
soit exact. Or, on a vu gque c’est rarement le cas : les calculs sur les nombres a
virgule sont presque toujours des calculs approchés. Donner un exemple dans
lequel cet algorithme ne fonctionne pas & cause des approximations sur le
calcul de la fonction f. Montrer que si I'erreur sur le calcul de la fonction f est
toujours strictement inférieure a e, alors cet algorithme fonctionne toujours.

Exercice 20.7

Si la fonction n'est pas monotone, I'algorithme continue-t-il de se terminer ou
risque-t-il de boucler indéfiniment ?

Exercice 20.8

Soit1 =b - a la taille de l'intervalle initial. Montrer que, aprés n itérations,
I'intervalle de recherche est de taille L /2". En déduire que le nombre d'itéra-
tions nécessaires pour trouver une approximation de la solution est inférieur
au logarithme entierde 1 / e.

Exercice 20.9

Programmer cet algorithme de recherche du zéro d'une fonction de maniére
récursive.

Ai-je bien compris ?
* Que signifie le mot dichotomie ?
* Combien de comparaisons faut-il faire pour trouver un mot dans un dictionnaire ?
* Quelles sont les autres applications du principe de dichotomie présentées dans ce chapitre ?

Trier

CHAPITRE AVANCE

Dans une tres grande bibliotheéque, il faut classer
les livres pour les retrouver.

Dans ce chapitre, nous voyons deux algorithmes de tri, ce qui
est surtout un prétexte pour nous interroger sur la complexité
des algorithmes.

Nous présentons le tri par sélection et le tri par fusion et nous
nous interrogeons sur l'efficacité de ces deux algorithmes,
en évaluant leur temps d’exécution.

Philippe Flajolet (1948-2011) est un
des pionniers de I'analyse de la com-
plexité des algorithmes, c'est-a-dire
du temps que dure leur exécution et
de la quantité de mémoire gu'elle
demande. Il a montré I'utilité, dans
ce domaine, de plusieurs théories
mathématiques : la combinatoire et
le dénombrement, la théorie des pro-
babilités et la théorie des fonctions
d'une variable complexe. Il a aussi eu
conscience trés t6t de l'apport des
logiciels de calcul formel pour effec-
tuer les calculs, parfois fastidieux,
que cette analyse demande.

Quatrieme partie — Algorithmes

Auerps o Lantisymétrie

On ne suppose pas la relation < nécessairement
antisymétrique, c'est-a-dire que I'on suppose
possible d'avoir a la fois x <y ety <x, sans que
x ety soient identiques. Cela permet par
exemple de trier des points du plan par abscisse
croissante. En effet, la relation « avoir une abs-
cisse inférieure ou égale a » est réflexive, transi-
tive et totale, mais elle n'est pas
antisymétrique ; par exemple, (1 ; 2) a une abs-
cisse inférieure ou égale a (1;3) et (1; 3) a une
abscisse inférieure ou égale a (1 ; 2), mais ces
deux points sont distincts. Quand on trie par
exemple les points (1; 2), (2;0), (0; 2) et (1 ; 3)
par abscisse croissante, deux résultats sont
possibles: (0;2), (1;2),(1;3).(2: 0 et (0; 2),
(1;3).01;2),2;0.

264

Nous avons vu que la recherche d'un élément dans une table est plus
rapide quand celle-ci est ordonnée. C'est une chose que nous savons
depuis qu'il existe des bibliothéques et des bibliothécaires : méme si cela
est long et fatigant, il vaut mieux ranger les livres d'une bibliothéque une
fois pour toutes, par exemple dans I'ordre alphabétique, plutot que les
laisser en vrac et arpenter des kilométres de rayonnages a chaque fois que
I'on cherche un volume. Cela méne naturellement 2 un nouveau
probléme : comment ordonner une table ?

Ce probléme est un cas particulier d'un probléme plus général : si I'on se
donne 7 objets, par exemple, » nombres, # chaines de caractéres, etc. et
une relation <réflexive, transitive et totale (voir le chapitre 20), comment
trier ces 2 objets, c'est-a-dire les disposer dans un certain ordre de fagon a
ce que si un élément 4 est avant un élément 4 dans la table alors a < 4?

Limportance de ce probleme fait que plusieurs dizaines d’algorithmes
différents ont été proposés pour trier des objets. Ce chapitre est consacré
a deux d’entre eux : le i par sélection et le tri par fusion. Comme nous
allons le voir, ces deux algorithmes sont d’une efficacité tres différente.

Par souci de simplicité, nous supposerons dans tout ce chapitre que les
objets 4 trier sont des nombres entiers et qu'ils sont donnés dans un tableau.
Le but d'un algorithme de tri est donc de calculer un nouveau tableau, ou
de modifier le tableau initial, de maniére a ce qu’il contienne les mémes
nombres que le tableau initial, mais que ces éléments soient ordonnés.

Le tri par sélection

Lalgorithme de tri par sélection est volontiers utilisé pour trier des
objets, comme des cartes a jouer, des livres, etc. a la main. On commence
par chercher, parmi les objets a trier, un élément plus petit que tous les
autres. Cet élément sera le premier du tableau trié. On cherche ensuite,
parmi ceux qui restent, un élément plus petit que tous les autres, qui sera
le deuxiéme du tableau trié, etc.

Par exemple, pour trier ainsi le tableau €, on sélectionne d'abord le plus
petit é€lément, 11, que I'on met au début du tableau résultat et que I'on sup-
prime du tableau a trier (€). On cherche ensuite le plus petit parmi ceux qui
restent, 14, on le met dans le tableau résultat et on le supprime du tableau a
trier (@) et on continue ainsi jusqu’a avoir épuisé le tableau 2 trier.

21 — Trier

42| 163, 132 1141 5epJ69 1 51 117119 184 }1 35 F22| o3| 111 167|136

42 163 13211 141 581469, 51 117)119 |84]} 35 122 | {93 1X|167] 136

42] 1631321 X |1 56169, 54 117,119 184 135 22| 193{ I X |1 67| 136

Quand on programme cet algorithme, il faut définir comment exprimer
le fait que les cases 3 et 13 du tableau a trier sont désormais vides. Une
solution parmi d’autres est d’y mettre les deux derniers éléments, 36
et 67, ou les deux premiers, 42 et 63, de maniére a garder les éléments a
trier contigus, si bien qu'il suffit de se souvenir des deux extrémités du
segment du tableau on se trouvent les éléments a trier.

a2) |63, 1321163} 56 foo. | 51117, 1o\ Iaay | 35 122] Jo3| k2| 67| 6.

Pour se souvenir que les éléments 2 trier sont maintenant dans les cases 2
a 15, et non 0 4 15, du tableau initial, il suffit d’utiliser une variable i qui
vaut 2 et qui indique 2 la fois le nombre d’éléments déja triés et I'indice
du tableau oti commencent ceux qui restent trier.

Comme les deux premiéres cases du tableau initial ne servent plus 2 rien,
on peut les utiliser pour stocker le début du tableau déja tri€, si bien que
I'on évite le recours 4 un tableau auxiliaire.

11114162 163|158 le9j{ 51| 117\ 119 {84]} 35 122|193} k2| 167| 136

Si l'on doit trier 16 éléments, rangés dans un tableau dont 'indice varie
entre 0 et 15, le tri par sélection se programme de la maniére suivante :

for (0 =05 1 <=14; 1 =1 4+ 1) {
k =13;

265

Quatrieme partie — Algorithmes

266

for (=1 +1; J <315; J=3+1{
if (tab[j] <= tab[k]) {

k= 3jil}
z = tab[i];
tab[i] = tab[k];
tablk] = z;}

Llindice i de la boucle principale varie entre 0 et 14. Pour chaque valeur
de i, on cherche, dans la partie du tableau comprise entre i et 15,
I'indice k d'un élément minimal :

K= i3

for (=1 +1; j<=15; j=3+1){
if (tab[j] <= tab[k]) {

k =3;}}
puis on échange dans le tableau I'édlément d'indice i avec celui
"indice k :
z = tab[i];
tab[i] = tab[k];
tab[k] = z;

Quand la boucle est achevée, quinze éléments ont été sélectionnés dans
"ordre croissant et placés dans les quinze premiéres cases du tableau. Le
seizieme élément qui reste est plus grand que tous les autres. Le tableau
est donc trié.

Exercice 21.1

Effectuer a la main un tri par sélection des tableaux :
(6 J15 a3 g2y
‘BEBO0B8 0 dD

5711 & 14126 la1) os | 3

' Exercice 21.2

Dans un tableau tab déja trié, on souhaite insérer un nouvel élément e de

sorte que le nouveau tableau soit également trié.

& Proposer un algorithme qui détermine la position a laquelle il faut insérer
ce nouvel élément.

@ si I'on souhaite conserver les éléments triés dans le méme tableau tab, que
faudra-t-il faire avant de pouvoir insérer e a sa place ? Dans quel cas cette
opération demandera-t-elle beaucoup de temps ?

Exercice 21.3

Si I'on interrompt I'exécution de l'algorithme du tri par sélection aprés
k étapes, on obtient un tableau qui contient les k premiers éléments du
tableau final calculé par I'algorithme. Cet algorithme procéde en calculant
successivement le premier élément du tableau final, puis les deux premiers élé-
ments du tableau final, puis les trois premiers, etc. Un autre algorithme, le tri
par insertion, trie d'abord le premier élément du tableau initial, puis les deux
premiers, puis les trois premiers, etc. Si I'on interrompt I'exécution de I'algo-
rithme du tri par insertion aprés k étapes, on obtient un tableau qui contient,
non les k premiers éléments du tableau final, mais un tableau ordonné qui
contient les k premiers éléments du tableau initial.

Chercher sur le Web une description précise de cet algorithme et le pro-
grammer.

Exercice 21.4

L'algorithme du tri 4 bulles consiste a trier un tableau en ne s'autorisant qu‘a
échanger deux éléments consécutifs de ce tableau. On peut démontrer que
I"algerithme suivant :

1 chercher deux éléments consécutifs rangés dans le désordre,
2 sideux tels éléments existent, les échanger et recommencer,
3 sinon arréter,

trie n'importe quel tableau.

€ Effectuer a la main un tri a bulles du tableau :

Tl 1z e llelhe

€ Quel est le temps d'exécution du tri @ bulles sur un tableau ordonné ?
Etait-ce le cas pour le tri par sélection ?

€ Les tableaux sur lesquels le tri a bulles est le moins efficace sont ceux qui
sont rangés dans |'ordre décroissant, par exemple :

nxzxm

Si I'on commence par essayer de placer le nombre n a la position correcte,
combien de permutations sont nécessaires pour y arriver ?
Ensuite, combien de permutations sont nécessaires pour placer n-1 au
bon endroit ? Et le nombren-2?
Emettre une conjecture sur le nombre total de permutations nécessaires
pour trier un tableau de taille n rangé initialement en ordre décroissant.
Démontrer cette conjecture par récurrence.

€% Proposer une description plus précise de cet algorithme : |"étape « chercher
deux éléments consécutifs rangés dans le désordre » pouvant étre traitée
de fagons assez variées. Programmer cet algorithme.

21 — Trier

267

Quatrieme partie — Algorithmes

268

Le tri par fusion

Comme nous le verrons plus loin, les algorithmes de tri par sélection, par
insertion ou a bulles sont trés lents. Lalgorithme de #ri par fusion fait la

méme chose que ces trois algorithmes, mais beaucoup plus rapidement.

11 est plus simple de présenter cet algorithme avec un tableau dont la
taille est une puissance de 2, comme 8, 16, 32, etc. Cela n'est pas réelle-
ment une limitation, car si I'on veut trier 25 éléments par exemple, il
suffit d’ajouter 7 éléments avec une trés grande valeur dans le tableau a
trier, puis de supprimer les 7 derniers éléments du tableau trié.

Le ceeur de I'algorithme est un autre algorithme qui permet de fusionner
deux tableaux triés. Par exemple, si le tableau tab1 contient les éléments
5,9, 11 et 17, dans cet ordre, et si le tableau tab2 contient les éléments 3,
4,11 et 13, alors leur fusion est un tableau qui contient ces huit éléments
dans l'ordre, c’est-a-dire 3, 4, 5, 9, 11, 11, 13 et 17. Pour fusionner deux
tels tableaux, le principe général est de transférer les différents éléments
dans un troisiéme tableau dans 'ordre croissant, I'élément suivant étant
toujours forcément situé au début d'un des deux tableaux initiaux. On
peut pour cela utiliser le programme suivant :

X =03
y = 0;
for (i =0; 1 <=7;1=14+1) {
if ((x <= 3 &R y <= 3 && tabl[x] <= tab2[y]) || (v == 4)) {
tab3[i] = tabl[x];
X=X+ 1;}
else {
tab3[i] = tab2[y];
y =Yy + 1;}}

Ce programme est essentiellement constitué d’une boucle qui détermine
I'un apres 'autre les éléments du tableau résultat tab3. Lindice i désigne
la prochaine case a remplir dans ce tableau. Au départ, tab3 est vide et
I'indice i vaut 0. Les indices x ety désignent le prochain élément des
tableaux tabl et tab2 non encore recopiés.

(8bf) [x7) Lyj

%6 @6

Au cours du premier tour de boucle, on compare I'élément x du tableau
tabl 4 I'élément y du tableau tab2. Clest ce second élément qui est plus
petit. On le recopie dans la case i du tableau tab3 et on augmente de 1 la
valeur des indices y et 1.

i

Clest encore I'élément y du tableau tab2 qui est le plus petit ; C'est encore
lui qu'on recopie dans le tableau tab3 au tour suivant de la boucle.

o L)

¥ ¥ i

C’est désormais I'élément x du tableau tabl qm est le plus petit ; c'est lui
qu'on recopie dans le tableau tab3 au tour suivant de la boucle.

Et on continue ainsi jusqu’au septiéme tour de la boucle, ol I'on recopie
le dernier élément du tableau tab2 dans le tableau tab3. Il n'est alors plus
nécessaire de comparer les éléments plus petits et non encore recopiés
des deux tableaux. C'est dans le premier qu'on prendra désormais tous

les éléments a recopier.

o

ﬂElEllIlIiE Eﬂmﬂ'}i EHEIIIE]

269

Quatrieme partie — Algorithmes

270

Au huitieme tour de boucle, on recopie le dernier élément du tableau tabi.

8 __ 6 @e

Eﬂﬂl- ElﬂmiB

et la construction du tableau tab3 est achevée.

Exercice 21.5

Modifier ce programme pour fusionner trois tableaux, chacun étant de
taille 4.

Au lieu d’utiliser deux tableaux tab1 et tab2, on peut aussi utiliser deux
segments du méme tableau tab par exemple, le segment qui va de la
case 0 4 la case 3 et le segment qui va de la case 4 4 la case 7.

ol iﬁ

AR CEPTEEDE

(X

¥ L ¥
Le programme s’écrit alors de la maniére suivante :

Wi g

y = 4;

for (0 =0 T<=T; 1 =1+1) 1
if ((x <= 3 && y <= 7 && tab[x] <= tab[y]) || (y == 8)) {
tab3[i1] = tab[x];
X=%x+1:}
else {

tab3[1] blyl:

= ta
+1:3)
Maintenant, comment utiliser cet algorithme de fusion pour trier un
tableau > On commence avec un tableau non trié, dont le nombre d’élé-
ments est une puissance de deux, par exemple 16. Chaque case du tableau
est un mini-segment formé d’une case unique. Puisqu'il ne comporte qu'une
case, chacun de ces mini-segments est ordonné. On les regroupe alors deux
par deux et on fusionne, 'une apreés l'autre, ces huit paires de segments.

On obtient alors huit segments ordonnés de deux cases. On les regroupe
deux par deux et on fusionne 'une aprés I'autre ces quatre paires de seg-
ments de deux éléments.

On obtient alors quatre segments ordonnés de quatre cases. On les
regroupe deux par deux et on fusionne I'une aprés I'autre ces deux paires
de segments de quatre éléments.

On obtient alors deux segments ordonnés de huit cases et on fusionne
cette paire de segments de huit éléments.

et on obtient le tableau ordonné.

Exercice 21.6

Effectuer a la main un tri par fusion des tableaux :

(847 (6 5 a3z 1 B0AdEREAADD
Le programme s’écrit ainsi :

5
whil 5 «= 15) {

ODA

wn Hl"hl-l

Ll

E
b
X
¥
for (i =0; 1 <=15; i =1 +1) {

if ((x <b+s&y<b+2*s & tab[x] < tab[y])
[| (y ==b + 2 * s)) {

tabl[i] = tab[x];
¥ =X & 133

271

Quatrieme partie — Algorithmes

272

else {
tabl[i] =t
y =y + 1}
ifF(x=b+s&y==>b+2*s) {
b=b+ 2%s;
x = b;
y =b + s;}}
for (1 =0; 1 <==15; i =1 +1) {
tab[i] = tabl[il;}
| 5 =15 % 2%}

ab[yl;

o

Dans la boucle qui va des lignes 6 a 16, on parcourt le tableau tab et on
fusionne des petits segments de taille s en segments de taille 2 s. On
commence par poser b = 0 et par fusionner les segments [b, b + s - 1]
et [b + s,b+ 2s-1], cest-a-dire [0, s - 1] et [s, 2 s - 1], en choisis-
sant, comme précédemment, les éléments alternativement dans un seg-
ment et dans 'autre, en augmentant d’'une unité la variable x ou bien la
variable y, selon le segment choisi, jusqu'a ce que x soit égala b + s et
y ab + 2s. A ce moment, on a fini de fusionner les deux premiers seg-
ments, on pose b = 2 s et on continue, dans la méme boucle, a fusionner
les deux segments suivants : [b,b + s - 1] et[b +s,b + 25 - 1], est-
a-dire [2s,35s - 1] et[3 5,45 - 1], etc.

Quand cette boucle est achevée, le tableau tabl est formé de segments
triés de taille 2 s. On le recopie dans le tableau tab, on multiplie s par 2
et on recommence a fusionner les segments de taille supérieure : c'est le
role de la boucle while la plus externe.

Exercice 21.7
Modifier le programme donné pour pouvoir effectuer un tri par fusion

€) d'un tableau dont la taille est une puissance de 2 quelconque,

#) d'un tableau de taille quelcongue en utilisant la méthode proposée au début
de cette section pour se ramener a une taille qui est une puissance de 2.

L efficacité des algorithmes

Comme on I'a déja vu plusieurs fois, pour traiter un méme probléme, il
existe souvent plusieurs algorithmes. Par exemple, on peut trier un tableau
par sélection, par fusion, etc. Quand on doit choisir parmi plusieurs algo-
rithmes, I'un des critéres est celui du temps d’exécution. Pour un logiciel
interactif, par exemple, un temps de réponse court est un élément essentiel
du confort de l'utilisateur. De méme, certains programmes industriels doi-
vent étre utilisés un grand nombre de fois dans un délai trés court et méme

un programme qui n'est exécuté qu'une seule fois, par exemple un pro-
gramme de simulation écrit pour tester une hypothése de recherche, est
inutilisable s'il demande des mois ou des années de caleul.

En général, on cherche a déterminer comment le temps d'exécution d'un
algorithme varie en fonction de la taille des données. Le temps d’exécution
d'une recherche en table dépend de la taille de cette table. Comme on I'a
vu, selon l'algorithme, ce temps peut étre proportionnel a la taille de la table
ou au logarithme de cette taille. De méme, quand on s'interroge sur 'effica-
cité d'un algorithme de tri, on cherche a2 comprendre comment le temps
d’exécution de cet algorithme varie en fonction du nombre d’objets 4 trier.

L'évaluation du temps mis par un algorithme pour s'exécuter est un
domaine de recherche 2 part entiére, car elle se révele quelquefois trés
difficile. Néanmoins, dans de nombreux cas, cette évaluation peut se
faire en appliquant quelques régles simples.

Savoir-FAIRE S’interroger sur I’efficacité d’un algorithme

* Une affectation ou I'évaluation d'une expression ont un temps d’exécution petit.
Cette durée constitue souvent 'unité de base dans laquelle on mesure le temps d’exé-
cution d'un algorithme.

Le temps pris pour effectuer une séquence p q est la somme des temps pris pour exé-
cuter les instructions p puis q.

Le temps pris pour exécuter un test if (b) p else g est inférieur ou égal au
maximum des temps pris pour exécuter les instructions p et g, plus une unité qui cor-
respond au temps d’évaluation de I'expression b.

Le temps pris pour exécuter une boucle for (i = 1; i <=m; i =i + 1) p estm fois
le temps pris pour exécuter I'instruction p si ce temps ne dépend pas de la valeur de i.
En particulier, quand deux boucles sont imbriquées, le corps de la boucle interne est
répété a cause de cette boucle, mais aussi parce qu'elle-méme est répétée dans son inté-
gralité. Ainsi, si les deux boucles sont répétées respectivement m et m’ fois, alors le corps
de la boucle interne est exécuté m x m’ fois en tout. Quand le temps d’exécution du
corps de la boucle dépend de la valeur de I'indice i, le temps total d'exécution de la
boucle est la somme des temps d’exécution du corps de la boucle pour chaque valeur de
1. Quand le nombre de répétitions d’une boucle ne dépend pas des entrées de I'algo-
rithme, le temps pris pour exécuter cette boucle est une constante.

Le cas des boucles while est plus complexe 2 traiter puisque le nombre de répétitions
n'est en général pas connu a priori.

21 - Trier

273

Quatrieme partie — Algorithmes

Exercice 21.8 (avec corrigé)

Comment le temps d‘exécution des algorithmes exprimés par les programmes
suivants varie-t-il en fonctionde n ?

n = Isn.readInt();
for (1 =0; 1 <= 10; i =1 +1) {
System.out.printIn(i * n);}

Cet algorithme affiche la table de multiplication de n. La boucle est toujours
exécutée 10 fois, quel que soit n, et donc le temps d'exécution ne dépend pas
de I'entrée n.

n = Isn.readInt();
for (1 =1; i «<=n; i=1i4+1){
System.out.printin(i * i);}

Cet algorithme affiche la suite des carrés des nombres entiers jusqu'a n°. La
boucle est exécutée n fois et le temps d'exécution est donc proportionnel & n

n = Isn.readInt();
for'{i=1; 9 <=n; 1 =14 1) {
for (3 =1; J«=n; j=3+1){
System.out.printin(i * j);}}

Cet algorithme construit une table de multiplication pour tous les entiers de 1
a n en donnant tous leurs multiples jusqu'au n-ieme. Il comprend deux boucles
imbriquées, chacune effectuant n répétitions de son corps. Le temps d'exécu-
tion total est donc proportionnel & n’.

Exercice 21.9

Comment le temps d'exécution de |'algorithme exprimé par le programme sui-
vant varie-t-il en fonction de n ?

n = Isn.readInt();

for (i = 1; 1T <=n; 1 =79 + 1) {
System.out.printin(i * 2);}

for (j =1; J<=n; j=7+ 1 {
System.out.printin(3 * j);}

Lefficacité des algorithmes de tri
par sélection et par fusion

274

Pour évaluer le temps que demande 'algorithme de tri par sélection pour
trier un tableau, on compte le nombre de fois qu'est exécuté le corps de
la boucle la plus interne :

if (tab[j] <= tab[k]l) {
k =735}

Cette instruction est exécutée 15 fois la premiére fois que la boucle interne
est exécutée, puis 14 fois, puis 13 fois, ..., puis 1 fois. Au total, cette ins-
truction est exécutée 15 + 14 + ... + 1 = 120 fois.

Plus généralement, quand on trie un tableau de #» éléments, cette instruc-
tion est exécutée (n-1)+(n-2)+ ...+ 1 fois, cest-a-dire n(n-1)/
2=(1/2)#>-(1/2)n fois. Dans cette évaluation, le terme (1/2) n
devient beaucoup plus petit que (1/2) 7* quand » devient grand et on
peut donc le négliger. De méme, on peut négliger le temps pris pour
échanger les éléments d’indices i et k du tableau, car cette opération est
répétée n fois et elle prend donc un temps proportionnel 2 », ce qui peut
étre négligé devant (1/2) #%. Au bout du compte, Pinformation qu’il est
important de retenir est que le temps d’exécution de cet algorithme est
quasiment proportionnel au carré du nombre d’éléments du tableau a trier.

Lalgorithme de tri par fusion est lui aussi composé de deux boucles
imbriquées. On pourrait donc s'attendre a ce que le temps d’exécution de
cet algorithme soit proportionnel au carré du nombre d’éléments a trier.
Et de fait, la boucle for la plus interne, qui fusionne tous les segments de
taille s en des segments de taille 2 s, demande un temps proportionnel
au nombre » d’éléments a trier puisqu'elle est exécutée # fois, son indice
variant de 0 4 15 dans notre exemple et de 0 4 » - 1 dans le cas général.
Cependant, la boucle while la plus externe est exécutée un nombre de
fois qui est proportionnel, non au nombre # d'éléments 2 trier, mais au
logarithme entier de ce nombre car, 4 chaque fois, on double la taille s
des segments fusionnés. Ainsi, dans notre exemple, s vaut successive-
ment 1, 2, 4 et § et la boucle est exécutée 4 fois, ce qui est le logarithme
entier de 16. Ainsi, le temps nécessaire pour trier un tableau de taille 7
est proportionnel, non pas au carré de », mais au produit de » par son
logarithme entier : # x elog 7.

Prenons un exemple : pour trier un tableau d'un million d’éléments,
I'algorithme de tri par sélection demande un temps de l'ordre de
7% = (1092 = 10'2, mille milliards. Le logarithme entier de 10° est 20
puisque 10°/ 229 = 0,953... Le temps demandé par Palgorithme de tri
par fusion est donc de I'ordre de 10° x 20, vingt millions. Le tri par
fusion est plus rapide que le tri par sélection d’un facteur de I'ordre de
50 000 dans cet exemple. Si un ordinateur exécute le corps de la boucle
interne en une milliseconde, un algorithme mettra un temps de l'ordre
de vingt secondes et l'autre d’un million de secondes, soit un peu plus de
dix jours, pour trier ce tableau.

21 — Trier

275

Quatrieme partie — Algorithmes

AugR s LOW Le tri par fusion programmé récursivement

Comme de nombreux autres algorithmes, le tri par fusion peut se pro-
grammer de maniére récursive. |l peut se décrire simplement en disant
que pour trier un segment d'un tableau de plus de deux éléments, il
faut trier la premiére moitié, trier la seconde, puis fusionner les deux
segments obtenus. Cela méne a la fonction suivante, qui trie le segment
du tableau tab, allantdenap:
static void tri (int [] tab, int n, int p) {
int k,i:
int [] tabl;
if (n<p) {
k=(n+ p)/2;
tri(tab,n,k);
tri(tab,k+1,p);
tabl = new int [p+l];
fusion(tab,n,k,k+1,p,tabl,n);
for Gi=n;i<=p;i=1+1 {
tab[i] = tabl[i];1}}
OQutre les deux appels récursifs a la fonction tri elle-méme, ce pro-
gramme utilise un appel a la fonction fusion qui fusionne deux seg-
ments du tableau tab, allant de n & m et de p a g en mettant le résultat
dans le tableau tabl, a partir de l'indice i. Cette fonction peut elle-
méme se programmer avec une boucle, ou alors récursivement :
static void fusion (int [] tab,int x,int n,int y,int p,int tabl
[Jsint 1) {
if (x <=n& (y>p || tablx] < tably])) {
tabl[i] = tab[x];
fusion(tab,x+1,n,y,p,tabl,i+1);}
else if (y <= p) {
tabl[i] = tab[y];
fusion(tab,x,n,y+1,p,tabl,i+1);}}
Dans le pregramme principal, il ne reste plus qu'a remplir le tableau tab
avec les nombres a trier et appeler la fonction tri :
tri(tab,0,15);
Ces deux maniéres de programmer I'algorithme de tri par fusion illus-
trent, a nouveau, la différence entre algorithme et programme, dis-
cutée au chapitre 18. Méme en restant dans le méme langage de
programmation, |"algorithme de tri par fusion peut s'incarner dans des
programmes trés différents, selon que I'on utilise des boucles ou la
récursivité pour lI'exprimer.

Ai-je bien compris ?
* Quels sont les princpaux algorithmes de tri présentés dans ce chapitre ?
* Qu'est-ce que la complexité d'un algorithme ?
* Quel est I'algorithme de tri le plus rapide parmi ceux présentés dans ce chapitre ?

276

Parcourir
un graphe

CHAPITRE AVANCE

Oir on trouve enfin la sortie du labyrinthe.

Dans ce dernier chapitre, nous voyons un algorithme

de parcours de graphe qui permet par exemple, de chercher
la sortie d’un labyrinthe, en évitant de tourner en rond en
conservant a chaque étape une liste des chemins a prolonger.

Diverses variantes de cette méthode permettent de parcourir
le graphe en profondeur ou en largeur.

Partant de I'exemple des labyrinthes, nous définissons la
notion de graphe. Cette notion est importante car les graphes
permettent de modéliser nombre de problémes, par exemple
de nombreux jeux, o1 les sommets représentent les états
possibles du jeu et les arétes représentent les coups possibles.

P9

Joseph Sifakis (1946-) est un cher-
cheur francais d'origine grecque qui
a recu le prix Turing en 2007, avec
Edmund Clarke et Allen Emerson,
pour la méthode d'énumération et
de vérification des modéles. Cette
méthode se fonde sur une descrip-
tion des systémes informatiques par
des systémes a états et transitions et
sur une analyse des états accessibles
dans ces systémes, qui s'inspire des
algorithmes de parcours de graphes.
Il est le premier scientifique francais a
avoir recu ce prix.

Quatrieme partie — Algorithmes

Un algorithme de parcours de graphe est, 4 peu de choses prés, un algo-
rithme qui permet de trouver la sortie d’un labyrinthe. Si la systématisa-
tion et I'étude de ces algorithmes est récente, la notion de graphe elle-
méme est trés ancienne, puisquon a retrouvé des labyrinthes dessinés
dans des tombes datant de la préhistoire.

La liste des chemins a prolonger

A8 C D E =
] —
o |1 ,
il }

278

Commengons par un exemple.

On entre dans ce labyrinthe par le point 4 en haut i gauche, on avance de
carrefour en carrefour, et on cherche la sortie Z, en bas 2 droite.

En partant de 'entrée 4, on n’a guére d’autre choix que d’avancer droit
devant soi jusquau carrefour B, ol deux possibilités se présentent:
tourner a droite ou continuer tout droit. Si on continue tout droit, vers le
carrefour C, et que cela se révéle un mauvais choix, il faudra plus tard
explorer I'autre possibilité : revenir en B et prendre la galerie qui méne
au carrefour M. Tout le temps que dure I'exploration de la premiére pos-
sibilité, on doit donc garder en mémoire que la seconde reste a explorer.
Au carrefour C se pose a nouveau le choix entre deux galeries qui
meénent I'une au carrefour D et l'autre au carrefour K. Si on prend la
galerie qui méne au carrefour D, on doit garder en mémoire que, en plus
du chemin 4-B-C-D, il y a désormais deux autres chemins dont on doit

explorer les prolongements : A-B-M et A-B-C-K.

A chaque étape de son exploration, il faut donc se souvenir d’une /iste de
chemins & prolonger. On peut se représenter cette liste comme les cailloux
du Petit Poucet ou le fil d’Ariane qui, en marquant le chemin parcouru,
mettent en évidence ceux qui restent a explorer lorsqu'il faudra revenir
sur ses pas. Au départ, la liste contient un chemin unique, formé d'un
carrefour unique, qui est l'entrée du labyrinthe :

] A

Cette liste des chemins a prolonger devient ensuite :
| A-8

puis

-B-C
B-M

22 — Parcourir un graphe

On choisit alors un chemin ou I'autre et on le prolonge. Si on choisit le
premier, cette liste devient :

Si on choisit encore de prolonger le premier chemin 4-B-C-D-E-F, on
rencontre une situation nouvelle, car le carrefour F est une impasse. On
supprime donc simplement le chemin 4-B-C-D-E-F de la liste des che-
mins a prolonger, qui devient donc :

et on entame alors I'exploration d'un autre chemin de cette liste, par
exemple 4-B-C-D-E-G.

De maniére générale, a chaque étape, on transforme la liste de chemins a
prolonger en choisissant un chemin ¢, par exemple le premier de la liste,
et en le remplagant par tous les chemins obtenus en ajoutant a ¢ un carre-
four accessible depuis son dernier carrefour. Un cas particulier est celui
ot ce dernier carrefour est une impasse. Dans ce cas, on remplace le
chemin ¢ par zéro chemin, c’est-a-dire qu'on le supprime de la liste des
chemins 2 prolonger.

I1y a cependant deux exceptions. Si le dernier carrefour du chemin ¢ est la
sortie du labyrinthe, 'algorithme s'arréte et retourne le chemin ¢ qui va de
I'entrée a la sortie du labyrinthe. Si la liste des chemins 4 prolonger est vide,
I'algorithme s'arréte également : tous les chemins ont été explorés sans
succes : il n'y en a aucun qui conduise de 'entrée 2 la sortie.

279

Quatrieme partie — Algorithmes

A e e e

280

Eviter de tourner en rond

Cette méthode fonctionne pour certains labyrinthes, mais pas pour tous.
Dans le cas de notre exemple précédent, par exemple, elle peut échouer, ou
plus précisément se lancer dans des calculs infinis, sans jamais trouver le
chemin A-B-M-Z qui méne de l'entrée i la sortie. Au carrefour C, en
effet, on peut continuer vers le carrefour D, puis prendre 4 droite vers le
carrefour K et encore a droite, ce qui raméne au carrefour C. On peut alors
a nouveau prendre 4 droite vers le carrefour D, et ainsi de suite 4 'infini :
ce labyrinthe comporte un cycle. En appliquant la méthode décrite, on
peut remplacer le chemin 4-B-C-D, par des chemins parmi lesquels figure
A-B-C-D-K, que I'on remplace 4 son tour par des chemins parmi lesquels
figure A-B-C-D-K-C, que I'on remplace 4 son tour par des chemins parmi
lesquels figure A-B-C-D-K-C-D, et ainsi de suite a l'infini.

Pour trouver la sortie d’un labyrinthe, il faut donc certes explorer systéma-
tiquement tous les chemins possibles, mais aussi éviter de tourner en rond.

En fait, il n'est méme pas nécessaire que le labyrinthe comporte un cycle
pour que la méthode décrite se lance dans un calcul infini. On a dit que,
arrivé au carrefour C, on a deux possibilités : continuer tout droit vers le
carrefour D ou tourner a droite vers le carrefour K. Stricto sensu, il y a
une troisieme possibilité : faire demi-tour et aller vers B. Si on inclut
cette possibilité, la méthode peut se lancer dans un calcul infini, en allant
de Ba C, puis de Ca B, etc.

11y a plusieurs maniéres d'éviter que cette méthode tourne ainsi en rond. La
plus simple consiste a ne pas ajouter 2 la liste les chemins obtenus en ajou-
tant un carrefour déja inclus dans le chemin ¢ et qui forment donc un cycle.

Cette méthode est correcte, mais il est possible de faire mieux. En effet,
comme on I'a vu, quand on arrive au carrefour D, la liste des chemins 2
prolonger est :

-B-C-D
-B-C-K
-B-

> > n

C
M
Lexploration du chemin 4-B-C-D est longue puisqu'il faut parcourir
toute la partie du labyrinthe en vert sur la figure.

Cependant, cette longue exploration ne méne qu'a des impasses, si bien

que la liste des chemins a prolonger devient finalement :

A-B-C-K
A-B-M

A partir de K, on ne peut pas aller en C, car ce carrefour appartient au
chemin A-B-C-K, mais rien n'empéche d’aller en D ou en L, si bien
u'on doi orer 4 nouveau toute artie du labyrinthe en vert, alors
qu'on doit expl toute la partie du labyrinth ert, al
v'en arrivant en K, on pourrait se rendre compte que 'on est déja passé
qu’ ten K, on p t d pte que I’ t déja p
par la et qu'il n'est pas nécessaire de continuer.

Pour éviter 4 la fois de tourner en rond et d’explorer plusieurs fois les
mémes parties du labyrinthe, une solution consiste a marquer les carre-
fours que l'on visite pour ne jamais repasser par eux. Lalgorithme auquel
on aboutit ainsi utilise donc, d’une part, une liste des chemins a pro-
longer et, d"autre part, une /iste des carrefours déja visités.

Ainsi, au départ, la liste des chemins a prolonger contient un seul chemin
formé d'un seul carrefour, qui est le point d’entrée du labyrinthe :

A

et la liste des carrefours déja visités est vide. Puis, a chaque étape, on
transforme la liste de chemins 2 explorer de la maniére suivante : on
choisit un chemin ¢ dans la liste des chemins 4 prolonger. Si le dernier
carrefour x de ce chemin appartient a la liste des carrefours déja visités,
on supprime simplement le chemin ¢. Sinon, on le remplace par les che-
mins obtenus en ajoutant i ¢ un carrefour accessible depuis x et on

ajoute x 2 la liste des carrefours déja visités.

Ainsi, dans notre exemple, quand on a fini l'exploration du chemin 4-B-
C-D, la liste des chemins 4 prolonger devient :

A-B-C-K
A-B-M

et la liste des carrefours déja visités contient 4, B, C, D, E, F, G, H, I,],
Ket L.

Kest dans la liste des carrefours déja visités ; il est donc inutile d’y
retourner et la liste des chemins a prolonger devient :

A-B-M

I1 est facile de montrer que cet algorithme se termine, car le nombre de
carrefours déja visités augmente a chaque étape et il ne peut pas aug-
menter au-dela du nombre total de carrefours du labyrinthe.

Il est, en revanche, plus délicat de montrer que cet algorithme trouve tou-
jours un chemin vers la sortie quand un tel chemin existe, car il faut montrer
quen évitant ainsi l'exploration de nombreux chemins, on n'oublie pas

‘explorer celui qui méne de l'entrée 2 la sortie. On montre, pour cela, que
s'il existe au départ, dans la liste des chemins a prolonger, un chemin prolon-
geable vers la sortie, alors cette propriété est préservée i chaque étape de I'exé-

22 — Parcourir un graphe

:ﬁ:ﬁ,_ —r
| e o xY
LX H
It o
S e
x| X X
|l ¥ o
LX ””
M ~Z

281

Quatrieme partie — Algorithmes

cution de I'algorithme : c’est un invariant. Un chemin est dit prolongeable
wvers la sortie §'il se termine par un carrefour y et il existe un chemin formé
de carrefours distincts et non encore visités, qui méne de y a la sortie.
Létape élémentaire de I'algorithme consiste & transformer la liste des chemins
a prolonger en remplagant un chemin ¢ par tous les chemins obtenus en lui
ajoutant un carrefour accessible depuis son demnier carrefour x. On ajoute
alors x a la liste des carrefours visités. Si le chemin ¢ est lui-méme prolon-
geable vers la sortie, alors il y a évidemment, parmi les nouveaux chemins, un
qui est prolongeable vers la sortie. Si, en revanche, ¢ nest pas prolongeable
vers la sortie, alors un autre chemin ¢’ de la liste l'est. I1 faut montrer que ce
chemin reste prolongeable vers la sortie, bien qu’a cette étape on ajoute xala
liste des carrefours déja visités. Cela est di au fait que, comme il ny a pas de
chemin formé de carrefours distincts et non encore visités qui méne du
carrefour x 4 la sortie, le carrefour x ne peut appartenir a aucun chemin formé
de carrefours distincts et non encore visités qui méne du dernier carrefour
de ¢’a la sortie. Le chemin ¢’ reste donc prolongeable vers la sortie bien que
I'on ajoute x 4 la liste des carrefours visités.

La recherche en profondeur
et la recherche en largeur

La méthode décrite au paragraphe précédent est encore incomplete, car elle
nindique pas dans quel ordre on doit traiter les chemins 4 prolonger. Or,
selon I'ordre que I'on choisit, on aboutit a différents algorithmes. La maniére
la plus simple de procéder est celle que nous avons employée dans les
exemnples : on choisit toujours de traiter le premier chemin de la liste et,
quand on le remplace par les chemins obtenus en lui ajoutant un carrefour
accessible depuis son dernier carrefour, on met ces chemins au début de la
liste également. Par exemple, quand on avait la liste de chemins 4 prolonger :
-C

A-B
A-B-M

on a choisi le premier de la liste, 4-B-C, et on I'a prolongé en deux chemins 4-
B-C-D et A-B-C-K que l'on a placés au début de Ia liste :

puis on a choisi 2 nouveau le premier de la liste : 4-B-C-D.

282

Cet algorithme s'appelle I'algorithme de parcours en profondeur ou dfs (depth-

[irst search), car on explore d’abord en profondeur les prolongements possi-
bles du chemin 4-B-C, avant de commencer 4 explorer ceux du second, 4-
B-M, si jamais la premiére exploration échoue. Cette maniére de faire est la
plus naturelle : c'est a la fois la plus simple 4 programmer et celle que I'on
utilise spontanément quand on est perdu dans un labyrinthe.

Une autre maniére de faire est de traiter les chemins plus équitablement :
pour cela, on choisit toujours le chemin le plus court. Ainsi, quand on a
remplacé le chemin A-B-C par les deux chemins A-B-C-D et A-B-C-K, on
choisit, non 'un de ces deux-1a, mais le chemin 4-B-M qui est plus court.
Une maniére simple de faire cela est de mettre les deux chemins 4-B-C-D
et A-B-C-K 2 la fin, et non au début, de la liste des chemins 2 prolonger :

=

-B-
-B-C-D
-B-C-K

D> >
oo

puis d’explorer le premier chemin de la liste : 4-B-M et de mettre les
deux chemins obtenus la fin de la liste des chemins a prolonger :

Cet algorithme, qui s'appelle I'algorithme de parcours en largeur ou bfs
(breadth-first search), a I'avantage de trouver le chemin le plus court qui
va de I'entrée a la sortie du labyrinthe, ou I'un parmi les plus courts s'il y
en a plusieurs.

Le parcours d’un graphe

Ces algorithmes sont bien entendu utilisés pour résoudre de nombreux pro-
blémes autres que la recherche de la sortie d'un labyrinthe. De maniére
générale, ils servent pour parcourir des graphes. Un graphe est simplement
un ensemble d’objets, que I'on appelle des sommets, et un ensemble d’arétes,
chaque aréte reliant deux sommets entre eux. Dans le cas d’un labyrinthe, les
sommets sont les carrefours et les arétes les galeries qui relient les carrefours.

D’autres exemples de graphes sont les cartes routiéres ou ferroviaires : les
programmes qui trouvent un chemin allant d'une ville a une autre, ou

22 — Parcourir un graphe

Aueresiom Le chemin de poids minimal

On peut aussi prendre en compte la longueur
des galeries. On obtient alors un troisieme algo-
rithme qui cherche un chemin vers la sortie de
poids minimal, le poids étant une grandeur
abstraite associée a chaque galerie, par exemple
sa longueur. Il suffit pour cela de toujours traiter
en premier, dans la liste des chemins a pro-
longer, celui dont le poids est le plus petit.

283

Quatriéme partie — Algorithmes

284

d’une gare a une autre, utilisent des algorithmes de parcours de graphe,
cherchant en général des chemins de poids minimaux.

Les labyrinthes que I'on a parcourus sont des graphes non orientés, c'est-
a-dire que la méme aréte relie le sommet 4 au sommet B et le sommet B
au sommet 4. Dans d'autres graphes, dits orientés, une aréte relie soit 4
a B, soit B a A, et st on veut relier 4 la fois 4 2 B et B a 4, il faut utiliser
deux arétes. On aurait, par exemple, di utiliser un graphe orienté, s'il y
avait eu des sens uniques dans les labyrinthes dont on cherchait la sortie.
Les algorithmes étudiés précédemment s'étendent sans difficulté aux
graphes orientés.

Etats et transitions

Beaucoup d’objets peuvent se modéliser comme des graphes, en particulier,
toutes les situations qui peuvent se décrire 4 I'aide d'un ensemble d’états et
d’un ensemble de transitions entre ces états. C'est le cas de nombreux jeux,
comme le Solitaire ou le Tic-tac-toe. La figure ci-contre représente un
tout petit bout du graphe ot le joueur bleu a deux choix pour placer un
rond, I'un des deux le conduisant 4 perdre la partie.

Un état du plateau indique quelle piéce se trouve sur quelle case et les
régles du jeu définissent des fransitions possibles d’un état 4 un autre. On
peut alors définir un graphe dont les sommets sont les états du plateau et
les arétes les coups possibles. Un simple parcours de graphe permet de
trouver une solution au jeu du Solitaire, par exemple. Les régles des jeux
a plusieurs joueurs, comme le Tic-tac-toe, les échecs ou le Monopoly,
peuvent aussi se définir comme des transitions entre états. Comme il y a
plusieurs joueurs, et parfois du hasard, trouver une stratégie pour ces jeux
demande des algorithmes plus complexes qu'un simple parcours de gra-
phes, mais ces algorithmes reposent sur des idées similaires.

DeviNeTTE Le chou, la chévre et le loup

Une devinette raconte I'histoire d'un berger qui posséde
un chou, une chévre et un loup. En sa présence, la
chévre n‘ose pas manger le chou, pas plus que le loup
n‘ose manger la chévre, mais ils n'hésiteraient pas a
satisfaire leurs appétits si I'homme tournait le dos. Ce
berger doit traverser une riviére avec sa petite troupe et
il ne dispose que d’une barque, dans laquelle il peut
naviguer avec un seul de ses compagnons. Comment
doit-il s’y prendre ?

Ce probléme peut lui aussi se modéliser comme un par-
cours de graphe. Tout d'abord, chacun des quatre prota-
gonistes pouvant se trouver sur une rive ou l‘autre, il y a
seize états possibles :

rive de départ rive d'arrivée
0 |- chou, chévre, loup, berger
1 | chou chévre, loup, berger
2 | chévre chou, loup, berger
3 | chou, chévre loup, berger
4 | loup J chou, chévre, berger
5 | chou, loup | chévre, berger
6 | chévre, loup chou, berger
7 | chou, chévre, loup berger
B [beger [hou, chevre loup
9 | chou, berger id‘n‘em, loup
10 | chévre, berger , chou, loup
11 | chou, chevre, berger | loup
12 | loup, berger chou, chévre
13 | chou, loup, berger chéwre
14 | chévre, loup, berger chou

15 | chou, chévre, loup, berger -

Les états 3, 6, 7, 8, 9 et 12 doivent étre éliminés, car dans
chacun d'eux le loup et la chévre, ou la chévre et le
chou, sont sur une rive sans le berger. Il reste donc dix
états que I'on peut nommer en fonction des protago-
nistes présents sur la rive de départ :

22 — Parcourir un graphe

chou

chévre

Toup

chou, Toup

chévre, berger

chou, chevre, berger

chou, loup, berger

chévre, loup, berger

chou, chévre, loup, berger

Définissons les transitions entre états: on ne peut pas
passer directement de I'état chou, chévre, loup, berger a
I'état - car cela signifierait que le berger emporte a la
fois le chou, la chévre et le loup sur sa barque. En
revanche, on peut passer de |'état chévre, loup, berger a
I'état chévre, car cela signifie que le berger emmeéne le
loup sur sa barque de la rive de départ a la rive d'arrivée.
On peut de méme passer de |'état chévre a I'état chévre,
loup, berger, car cela signifie que le berger raméne le
loup sur sa barque de la rive d'arrivée a la rive de départ.
De maniére générale, on peut passer d'un état qui con-
tient le berger a un état dans lequel il n"est plus, ainsi
gu’un ou zéro de ses compagnons, et vice-versa.

Sur ces bases, on définit le graphe (£3) dont les sommets
sont les dix états possibles et les arétes les transitions
entre ces états. |l ne reste plus qu'a utiliser un algo-
rithme de parcours de graphe pour chercher un chemin
qui méne de la configuration initiale chou, chévre, loup,
berger, a la configuration finale - (£3).

&
chou
b chou chévre loup loup
chou chévre ch;)u dxx..- che;m
chévre loup loup chévre berger
B pome e

285

Quatrieme partie — Algorithmes

& Le chemin le plus court comporte sept arétes, ce qui
oblige le berger a faire quatre allers et trois retours :
_ chati e loup Cb.,hf « Il emmene d'abord la chévre sur I'autre rive, ce qui
" 5 A 4 . correspond a l'aréte qui va du sommet chou, chévre,
loup, berger au sommet chou, loup.
= Il revient seul.
= |l emmeéne le loup sur I'autre rive.
= Il revient avec la chévre.
= Il emméne le chou.
./ 0 o . sl « Il revient seul.
chévre loup loup chevre berger = Il emmeéne enfin la chévre une seconde fois.
foup berger berger berger
berger Bref, I'algorithme a « deviné » que la solution consiste a

faire revenir la chevre avec le berger pour ne jamais la
laisser ni avec le loup ni avec le chou.

Exercice 22.1

Chercher sur le Web qui était Léonard Euler et décrire le probléme des ponts
de Kénigsberg, premier probléme explicitement exprimé avec un graphe dans
I'histoire des sciences.

Exercice 22.2

Décrire les objets suivants comme des graphes :

€) un réseau d'ordinateurs,

€ des maisons avec des boites aux lettres,

© le métro parisien,

€ une ville, dans laquelle il n'y a plus ni radio ni télé, et dans laquelle se pro-
page par SMS I'information de I'arrivée d'un tsunami,

{ une population au sein de laguelle se propage une épidémie.

Que sont les sommets ? Que sont les arétes ? A quoi correspond la longueur
du plus court chemin entre deux points ? Trouver d’autres exemples.

Décrire un réseau social comme un graphe. Que sont les sommets ? Que sont
les arétes ?

Exercice 22.4

Imaginer un réseau social ol ne sont en lien que les filles et les fréres et
sceurs : quel est le chemin minimal pour que deux garcons, qui ne sont pas de
la méme famille se passent un message a travers les arétes ?

Exercice 22.5

Imaginer un autre réseau ol chaque personne a dix amis. Combien de per-
sonnes au maximum un message diffusé aux amis des amis des amis, etc. peut-
il atteindre en une heure, si le délai entre la réception et le rediffusion d'un
message est de cing minutes ? Que nous apprend ce résultat sur le risque de
propagation dune rumeur sur un réseau social ?

286

22 — Parcourir un graphe

Exercice 22.6

Sur le plus grand réseau social du monde, il y a environ un milliard de per-
sonnes connectées chacune a cent autres personnes environ. Un chemin de
deux arétes - ami d'ami - connecte donc une personne a environ
100 x 100 = 10 000 autres personnes, si on néglige les amis communs et,
disons, a environ 100 x 50 = 5 000 si I'on tient compte des amis communs. Un
chemin de trois arétes —ami d'ami d‘ami — connecte une personne a environ
100 x 50 x 50 = 250 000 autres personnes. En supposant grossiérement qu‘on
ne gagne ainsi que la moitié de nouveaux contacts a chaque aréte, a combien
de personnes environ est-on connecté avec un chemin de six arétes ? Dans un
tel réseau social, quelle est la distance maximale entre deux personnes ? |l se
trouve que ce calcul approximatif donne un résultat trés proche de la réalité.

AL piUS LON - Qu'est-ce qu'un algorithme fondamental ?

Beaucoup de probléemes peuvent se formuler comme des problémes de
tri; de méme, on a vu dans ce chapitre que beaucoup de problémes
peuvent se ramener a des problémes de graphes. Cela fait des algo-
rithmes de tris et ceux de parcours de graphes des algorithmes fonda-
mentaux. D'autres exemples d’algorithmes fondamentaux, que |'on peut
rechercher sur le Web, sont ceux de multiplication de matrices, de réso-
lution d'équations booléennes, d'unification... Quand on essaie de
résoudre un probléme, une bonne attitude consiste souvent a chercher
a quel probléme connu on peut se ramener et quel algorithme fonda-
mental on peut utiliser.

Ai-je bien compris ?
* Que faut-il éviter quand on cherche la sortie d’un labyrinthe ?
* Quel est I'avantage de chercher la sortie d’un labyrinthe en largeur d’abord ?
* Quels objets peut-on décrire comme des graphes ?

287

Tewoignace Jonathan, 24 ans

« J'ai commencé la programmation avec une (mawvaise) réplique de Mastermind qui permettait
de jouer contre l'ordinateur. Aprés quelques essais manqués, quelques programmes ici et la, je
découvre le Web : cest le coup de foudre — je n'ai jamais décroché depuis. D'abord des sites web en
PHE puis le monde de Mozilla Firefox. De cette rencontre, nait un livre paru chez Eyrolles,
rédigé pendant mon temps libre en terminale. Quelgques années plus tard, je reprends l'informa-
tigue & I'Ecole Normale Supérieure en section informatique : 'y découvre le lambda calcul et la
programmation fonctionnelle. Je suis maintenant en thése a Inria, dans I'équipe qui congoit le
langage OCaml, et je continue d'améliorer le code de Firefox et de Thunderbird sur mon temps
libre au sein de la communauté Mozilla. »

TBM0IGiAGE Grégoire, 27 ans

« Tombé dans la marmite de l'électromique et de la « bidouille », grace a son papa, Grégoire passe
rapidement a l'informatique et décide d apprendre le C. S'ensuit une vraie passion pour les technolo-
gies dites nouvelles, et pour le lien intime et complexe entre matériel et logiciel. Math-sup, math-spé
(pour faire plaisir & maman !), puis une formation d'tngénicur, et un réve américain, concrétisé lors
d'un stage dans la Silicon Valley a travailler sur une puce d'encodage vidéo. Grégoire revient ensuite
en France et, a Paris, met sa créatioité a profit pour inventer la « set~top box » de dgmaz'rf, qut tient
au creux de la main et propose une ex;be?‘imre wisuelle digne des derniers jeux vidéos. A titre per-
sonnel, il songe a des maniéres de jimpfg'ﬁm‘ / 'inﬁmmis'gue et la ng‘mmnmjian. mais sans me’rf le
lien avec le matériel, et développe secrétement le concept de « Sofiware Atoms ».

Convaincu que la valeur et l'innovation sont portés par ceux qui créent (les programmeurs et les pas-
sionnés), il milite pour le développement de hiérarchies d entreprise moins verticales, pour la revalori-
sation du développement logiciel en France et de la créativité technologique. »

Idéees de projets

Un générateur d’exercices de calcul mental

Programmer un générateur d’exercices de calcul mental :
le programme choisit aléatoirement une opération et deux
nombres, et vérifie la réponse de l'utilisateur. On peut
ensuite poser une série de questions et compter le score
total. On pourra enfin prévoir plusieurs niveaux de diffi-
culté selon les opérations proposées ou la taille des nom-
bres a calculer, et laisser 'utilisateur choisir son niveau de
difficulté ou attribuer des scores variables aux réponses.

Mastermind

Ecrire un programme qui lit deux tableaux de quatre
éléments au clavier et indiquc le nombre d’éléments en
commun dans ces deux tableaux. Ecrire un programme
qui joue au Mastermind : tire au hasard la combinaison
secréte et répond aux propositions de 'autre joueur.

Brin ’ARN
Chercher sur le Web ce qu'est un brin d'f'—'}RN messager

et comment il code pour une protéine. Ecrire un pro-
gramme qui détermine la protéine pour laquelle un brin

d’ARN messager code.

Bataille navale

Ecrire un programme de bataille navale avec plusieurs
bateaux.

Cent mille milliards de poémes

Chercher sur le Web, ou dans une bibliothéque, ce
qu'est le recueil Cent mille milliards de poémes de Ray-
mond Queneau. Ecrire un programme qui affiche ces
cent mille milliards de poémes.

Site de rencontres

Programmer le moteur d’'un site de rencontres, sur le
principe suivant :

* Chaque personne inscrite sur le site répond 4 un
questionnaire de personnalité dont les réponses sont
des entiers entre 1 et 10.

* On stocke les réponses dans un tableau a2 double
entrée : la case de la ligne i et de la colonne j contient
la réponse de l'inscrit numéro i a la question numéro j.

* Pour mettre en relation un nouvel inscrit avec une per-
sonne déja inscrite, on parcourt ce tableau en recher-
chant la ligne qui contient les réponses les plus
proches de celles données par le nouvel inscrit. Pour
déterminer si des réponses sont proches, on pourra par
exemple compter le nombre de réponses identiques ou
calculer le total des différences.

¢ On pourra enfin, a partir d’'un tableau déja rempli,
chercher a former autant de couples que possible.

Tewoionace Christine

« Quand j'étais adolescente, il n'y avait d'ordinateurs ni a l'école, ni & la maison. Pourtant nos
cours comportatent de nombreuses activités lices a l'tnformatique : représenter la méme informa-
tion dans plusieurs formats, élaborer différentes méthodes pour réaliser le méme objectif (je me sou-
wiens de cartes perforées et d'aiguilles a tricoter pour trier) ou encore raisonner et calculer a partir
d'un ensemble donné de régles.

Ma premiére calculatrice 2 Je ne l'ai eue quiaprés le baccalauréat et, si elle était programmable,
c'était a partir d’un jeu d'instructions tves élémentaire. Cela n'en était qu'un défi plus intéressant.
Face a une serie de problémes a vésoudre, élaborer la bonne séquence d'instructions qui permettra
d'obtentr toutes les solutions sans effort est gratifiant, et aussi distrayant que de résoudre un casse-
téte. Contrairement a un jeu tout fait, le champ des possibles est immense : les moyens de calcul, de
communication, et les données, sont a notre portée pour pouvoir les explorer.

Ecrire soi-méme un programme qui marche requiert connaissances, expérience, el imagination.
La satisfaction est immense d’avoir créé un nouvel objet.

Ce plaisir que j'ai eu a transformer les probléemes en programmes est encore intact aprés 25 ans de
carriére de chercheuse au CNRS puis de professeur a luniversité. J'ai choist l'informatique comme
métier (assez tardivement) grice a un professeur qui m'a fait découvrir tout ce que cette discipline
nowvelle offrait d'opportunités en termes de métier et d'activité. J'y a1 trouvé une vote qui répon-
dait a mes goits et compétences. Aujourd hut, j'essaie de donner aux étudiantes et étudiants les clés
théariques et pratiques du monde numérique qu'ils « consomment » chaque jour, pour qucils sachent
l'adapter a leurs besoins et contribuent a l'enrichir. »

Tracer la courbe représentative
d’une fonction polynome du second degré

Ecrire un programme qui, étant donné une fonction
polynéme du second degré, trace sa courbe représenta-
tive a 'écran en adaptant automatiquement la fenétre
pour faire apparaitre le sommet de la parabole et les
éventuels zéros. On pourra faire réaliser les calculs
intermédiaires dans des fonctions séparées.

Gérer le score au tennis

Ecrire un programme qui gére automatiquement le
score au tennis :

1 A quelles conditions un joueur gagne-t-il un jeu?

2 Définir une fonction qui compte les points au cours
d’'un jeu. En entrée, on demande répétitivement
quel joueur, 1 ou 2, gagne le point; au fur et a
mesure, on calcule et on affiche le score. Le pro-
gramme s'arréte dés qu'un joueur gagne le jeu, aprés
avoir affiché le nom du vainqueur.

3 Pour faciliter les tests, écrire une seconde version de
cette fonction avec pour seule entrée une chaine de
caractéres qui contient les numéros successifs des
joueurs marquant les points; la fonction lit cette
chaine caractére par caractére pour compter les
points. Ainsi, lentrée 211222 sera comprise
comme : le joueur 2 gagne un point, puis le joueur 1
en gagne deux, puis le joueur 2 en gagne trois et le
joueur 2 gagne donc le jeu.

4 Ecrire une deuxi¢me fonction qui compte les jeux au
cours d’un set et sarréte lorsqu’un joueur gagne le
set. Cette fonction fera appel 4 la précédente pour
savoir qui gagne les jeux. On n'oubliera pas de pré-
voir le cas particulier du jeu décisif.

5 Ecrire une troisieme fonction qui compte les sets et
sarréte lorsqu'un joueur gagne le match. On pourra,
avant de commencer le match, demander en com-
bien de sets gagnants il est joué.

Idées de projets

Automatiser les calculs de chimie

Programmer une boite 4 outils pour automatiser les dif-
férents calculs que I'on a I'occasion de faire en chimie :
durée d’une réaction, pH d’une solution, masses et con-
centrations, équilibre d'une équation-bilan simple...

Tours de Hanoi

Chercher sur le Web ce que sont les tours de Hanoi et
écrire un programme qui trouve une solution a ce jeu.

Tortue Logo

Chercher sur le Web ce qu'est une tortue Logo. Pro-
grammez ses principales fonctionnalités. Chercher sur
le Web ce qu’cst le flocon de Von Koch et dessiner ce
flocon 4 'aide de cette tortue.

Dessins de plantes

Programmer des dessins de plantes suivant un modéele
récursif, par exemple une fougére. On pourra introduire un
élément aléatoire dans I'algonithme, afin de varier les résul-
tats obtenus. On pourra utiliser une tortue Logo pro-
grammée par soi-méme ou par un camarade, ou fournie
dans une bibliothéque du langage de programmation utilisé.

Langage CSS

Rechercher sur le Web comment le langage CSS
permet de donner une présentation différente a des
informations, selon qu'elles sont lues sur un ordinateur
ou sur I'écran d'un téléphone. Construire un site Web
sur le sujet de son choix qui peut ainsi étre consulté sur
un écran ou un autre.

Calcul sur des entiers de taille arbitraire

En représentant chaque nombre par un tableau qui
contient la suite de ses chiffres, écrire une bibliothéque
de fonctions calculant sur des entiers de taille arbitraire,
sans les dépassements de capacité qu'engendre l'utilisa-
tion du type int.

291

Tenoiiace Raphaél, 35 ans

« L'informatique, je suis tombé dedans trés jeune, et mon premier programme en BASIC, qui affi-
chait une carte de France, ma fait découvrir le plaisir de dominer I'ordinateur. Avec un peu
d'attention, on peut lui faire faire ce que l'on veut. Aprés avoir découvert Windows, je suis
devenu un grand fan de Bill Gates. Mats alors que j'étais au lycée, Internet est arvivé et grice a
lui, j'ai redécouvert I'informatique sous un nouvel angle. Je suis entré dans un nouvel univers,
celui du logiciel libre. Finis les bricolages : 1l élait désormais possible de diagnostiquer tous les pro-
blémes, voire de les corriger grace a l'accés au code source. Lorsque cela dépassait mes compétences,
Je pouwvais contacter l'auteur du logiciel et obtenir un correctif en l'espace de quelques jours.

Tres rapidement, jai vessenti le besoin de m'impliquer dans cette communauté pour apporter ma
prerre a l'édifice. Clest ainsi que je suis devenu développeur Debian, distribution GNU/Linux,
alors que j'entrais a I'INSA de Lyon. Deux ans aprés avoir obtenu mon diplome d'ingénieur en
informatique, jécrivais le premier livre frangais sur Debian et je langais ma propre sociéte,
Freexian, pour fatre de ma passion, mon activité principale. »

Calcul en valeur exacte sur des fractions

Proposer un type représentant une fraction en valeur
exacte. Ecrire une bibliothéque de fonctions pour effectuer
des calculs en valeur exacte sur des fractions. Rechercher
sur le Web ce qulest la méthode de Héron pour calculer
une valeur approchée d’une racine carrée et la programmer
en utilisant la bibliothéque de calcul sur les fractions.

Représentation des dates et heures

Les systémes numériques passent automatiquement a
I'heure d'été et détectent quand on change de fuseau
horaire. Chercher sur le Web des informations sur la
représentation des dates et heures : la norme 1SO 8601
et le Network Time Protocol. Ecrire un programme qui
donne I'heure dans différents pays.

Transcrire dans I’alphabet latin

Choisir une langue qui utilise un autre alphabet que
I'alphabet latin (par exemple le chinois, I'arabe, le japo-
nais, I'hébreu ou le grec) et une trentaine de mots écrits
dans cette langue. Associer a chaque syllabe de I'un de
ces mots une transcription phonétique éerite dans
Palphabet latin. Ecrire un programme d’apprentissage
qui tire au hasard des mots dans cette liste, les affiche a
I’écran et demande a I'utilisateur de les lire, c’est-a-dire
de les transcrire dans 'alphabet latin.

Correcteur orthographique

Réaliser un correcteur orthographique. Un tel pro-
gramme prend en entrée un fichier texte, le découpe en
mots, cherche chaque mot dans un dictionnaire et
donne la liste des mots qui ne s’y trouvent pas.

Daltonisme

Rechercher sur le Web ce qu'est le daltonisme et quelles
en sont les différentes formes. Ecrire un programme qui
lit une image dans un fichier au format PPM et
l'affiche a l'écran comme la verrait une personne
atteinte de chacune des formes de daltonisme.

Idées de projets

Systéme audio par syllabe

Enregistrer un fichier audio par syllabe «ba», «be »,
«bi», «bo», «bu» «bou» «bon» etc. Utiliser ces
fichiers pour écrire un programme qui envoie une
séquence de ces grains sonores au systéme audio, en fonc-
tion d'un texte écrit phonétiquement «bon», «jou»,
« 1€ », « 1%, « lé », « ne », « ve », « re ». Comparer le résultat
avec un systéme professionnel de synthése vocale et mettre
en lumiére les difficultés d’un tel mécanisme.

Déchiffrer automatiquement un message codé
selon la méthode de César

Ecrire un programme qui déchiffre automatiquement
un message codé selon la méthode de César sans con-
naitre a priori la valeur du décalage. Rechercher ce
qu'est le chiffre de Vigenére et écrire un programme qui
code un message selon ce principe. Rechercher une
méthode pour décoder un message codé selon ce prin-
cipe sans connaitre la clé utilisée, et écrire un pro-
gramme qui effectue ce décodage.

Logisim

Pour construire et simuler des circuits, on peut utiliser
logiciel Logisim disponible a I’adresse :
http:/fozark.hendrix.edu/~burch/logisim/

Ce logiciel libre fonctionne sur la plupart des ordinateurs.
Il nest pas encore traduit en frangais, mais il est trés bien
documenté : on peut commencer sa lecture par le tutoriel.
En utilisant ce logiciel, on peut par exemple construire le
multiplexeur et les crcuits de décalage définis au
chapitre 13 et le compteur huit bits défini au chapitre 14.

Banc de registres

Rechercher sur le Web ce qu'est un banc de registres,
ainsi que les notions de port de lecture et de port d’écri-
ture sur un banc de registres. A I'aide de I'horloge et des
circuits vus aux chapitres 13 et 14, réaliser un banc de
8 registres 8 bits et dessiner le circuit correspondant.

293

TEwicuce Pierre, 24 ans

« [étais en sixiéme, lorsque mon premier ordinateur est arrivé a la maison, mais je dois recon-
naitre que pendant bien longtemps, 1l wavait d'utilité pour moi que comme simple console de jeux.
C'est en classes préparatoires, sur les conseils de mon professeur de mathématiques de I'époque, que
J ai choisi de prendre l'option Informatique plutét que Sciences Industrielles. Je n'avais aucune
idée encore de ce que pouvait étve un langage de programmation ni méme de la maniére dont fonc-
tionnait un ordinateur en général. Se lancer dans une matiére totalement inconnue alors quon a
un emplot du temps déja chargé n'est pas un choix aisé. Il s'est cependant révélé judicieusx : j'étais
alors porté sur les mathématiques mais j'ai retrouvé dans l'enseignement de l'informatique cer-
tains concepts (ensemibles, Jonctions. ..), tout en évitant le calcul (et les erveurs qui vont avec) que
Je détestais. Cest en école d'ingénieur que mon choix de spécialisation s'est définitivement porté
sur informatique. Au fil de mes lectures diverses je me faisais (enfin) une idée de ce que je vou-
drais faire « plus tard » : de la logique, comprendre comment sont construits le raisonnement et les
objets des mathématiques. J'ai donc commencé ma quéte dans le département de mathématiques ou
F'on m'a expliqué que ces aspect étaient plutét étudiés dans le laboratotre d'a coté... La, jai
retrouvé un professeur qui mavait impressionné l'année précédente en présentant les modifica-
tions des cases mémoires d’'un ordinateur, a l'aide de boites a chaussures. Aprés un master de
recherche en informatique, j'ai commencé ma thése dans le cadre d'un partenariat entre Inria et la
NASA. Je développe un algorithme pour améliorer la précision des calculs sur les ordinateurs. »

Simuler le comportement d’un processeur

Ecrire un programme simulant le comportement du
processeur lorsqu'il doit exécuter un des programmes
écrits en langage machine décrits au chapitre 15. Ce
programme lira dans un fichier le contenu de la
mémoire, qui contient également le programme a exé-
cuter. Il affichera I'état de la mémoire et des registres au
fur et 2 mesure de 'exécution.

Effectuer des calculs sur les adresses
de cases mémoires

Le langage machine décrit au chapitre 15 ne permet
d'accéder qua un ensemble fini de cases mémoires,
dont les adresses sont fournies dans le code des instruc-
tions LDA, STA, etc. Pour effectuer des calculs com-
plexes, et notamment pour manipuler des tableaux, on
doit pouvoir effectuer des calculs sur les adresses de
cases mémoires elles-mémes. Proposer une extension
du langage machine pour effectuer de tels calculs, en
définissant la syntaxe des nouvelles instructions, en
choisissant leur code machine (binaire) et en expliquant
leur fonctionnement. Programmer des boucles simples
réalisant des calculs sur des tableaux, par exemple : la
somme des éléments d’un tableau, le compteur du
nombre d’éléments positifs, etc.

Utilisation du logiciel Wireshark

Installer et lancer le logiciel Wireshark. Capturer des
paquets Ethernet ou WiFi depuis la carte réseau et affi-
cher leur contenu a I'écran. Quelles sont les adresses
MAC utilisées pour la destination et la source de
chaque paquet ? Quels ordinateurs sont identifiés par
ces adresses ? Quelle est la taille de chaque paquet ?

Algorithme de pledge

Chercher sur le site web intersticesinfo ce qu'est 'algo-
rithme de pledge. Programmer cet algorithme. Expli-
quer son utilité et en quoi il se distingue de I'algorithme
de sortie d'un labyrinthe du chapitre 22.

Idées de projets

Algorithme calculant le successeur
d’un nombre entier naturel »

On consideére un algorithme qui calcule le successeur d'un
nombre entier naturel #, c'est-a-dire le nombre 7 + 1. Cet
algorithme est similaire 4 celui de laddition, mais il
s'applique 4 un unique nombre : il proceéde de la droite
vers la gauche en posant un chiffre et en propageant une
retenue a chaque étape. Identifier les fonctions boo-
léennes qui 2 un chiffre binaire et une retenue associent le
chiffre & poser et la retenue a propager. Programmer cet
algorithme et démontrer sa correction en suivant les
lignes de la démonstration de correction de I'algorithme
de I'addition (voir le chapitre 18). Pour aller plus loin :
dessiner un crcuit booléen (voir le chapitre 13) qui
ajoute 1 2 un nombre binaire de quatre bits.

Le jeu de la vie

Sur un damier carré, on dispose des créatures de
maniére aléatoire. La population évolue d'un état au
suivant selon les régles suivantes :

¢ Une créature survit si elle a 2 ou 3 voisines dans les
8 cases adjacentes et elle meurt a cause de son isole-
ment ou de la surpopulation sinon.

¢ Une créature nait dans une case vide s'il y a exacte-
ment 3 créatures dans les 8 cases voisines, et rien ne
se passe dans cette case sinon.

Par exemple, en partant de I'état initial), la popula-
tion évolue a 'état €, puis a I'état €), etc.

1 2] ©

. - Ll sew
.0 Ll ." -

L3 -
LL L L L

Ecrire un programme qui simule le développement
d’une population.

295

Temoiciace Dominique, 36 ans
« Je suis artisan de profession ; mon métier consiste a programmer des ordinateurs.

Javais 9 ans lorsque mon pere, professeur de mathématiques, rapporta une calculatrice TI-57 a la
maison. Jle me souviens encore de mon tout premier programme, expliqué dans le manuel avec des
organigrammes dessinés sous la forme de petites voies ferrées que la locomotive-microprocesseur
parcourt : [LRN] ("Learn” - Passer en mode programmation), [+], [1], [=], [RST] (revenir au
début), [LRN], [RST], [R/S] (Run / Stop). Et cest parti, la calculatrice compte 1, 2, 3, 4...
Llexercice survant — programmer le jeu de « devine un nombre » — me vit mettre en eyvre toute
mon habileté et mon astuce pour tenir dans les 40 pas de programme disponibles dans l'apparerl.
Jétais pris au jeu ! Et de MO-5 en Atari ST, et puis de Loga en Turbo Pascal, j'at appris a pro-
grammer. Le temps a passé, et matériels et logiciels ont progressé a pas de géant.

Vous qui apprenez l'informatique aujourd hui, vous vous moquerez peut-étre gentiment de la TI-
57. Vous auriez tort, car programmer le jeu de « devine un nombre » dans le langage de votre
choix est le genre de question qu'on pourrait vous poser lors d'un entretien téléphonique pour une
embauche chez. Google (oi je travaille depuis fin 2007). Les admirables fondements mathémati-
ques de la dz'sn'}bﬁne 710145 m.res;g?zmt que les ordinateurs se ressemblent tous ; mais pas les humains
qui s'en servent ou qui les programment. Ces derniers se distinguent des premiers parce qu'avec
lignorance disparait la peur de l'instrument qui révolutionne nos vies ; et les programmeurs se
distinguent entre eux par leurs centres d'intérét parmi les nombreuses spécialités de I'informa-
tique, leurs langages et styles de programmation préférés, et le but qu'ils poursuivent a titve per-
sonnel ou professionnel. Mais tous les programmeurs, ou presque, partageons le goit d’apprendre,
l'attention au travail bien fait et l'esprit de géométrie, cher a Blaise Pascal.

Que vous soubaitiez ou non en faire votre métier, je ne saurais trop vous recommander d'aborder la
programmation comme j'ai abordé la guitare (et non le violon) : en commengant par vous amuser,
puis en continuant par vous perfectionner, comme un forgeron qui cent fois sur son enclume remet son
ouvrage. La perfection existe en informatique ; c'est méme une jote inépuisable que de se mettre a sa
quéte, en parcourant un terrifoire immense et encore si largement inexploré ! »

Une balle

Dessiner une balle qui rebondit sur les parois de la fenétre
graphique. Ecrire pour cela une fonction qui dessine une
balle sphérique 4 un endroit donné de I'image, une autre
fonction qui calcule si cette balle touche le bord de la
fenétre ou non, une troisiéme qui calcule sa position sui-
vante selon qu'elle rebondit sur le bord ou non. On pourra
prendre en compte la gravité, le ralentissement de la balle
a cause des frottements, etc. Produire une suite de quel-
ques centaines d'images et agglomérer cette suite sous la
forme d'un film en utilisant un logiciel de création de
vidéos ou de GIF animés.

Générateur d’ccuvres aléatoires

Trouver des tableaux sur le site web d'un musée.
Choisir aléatoirement un petit détail d'un de ces
tableaux et agrandir ce détail en un nouveau tableau.
Changer les couleurs, le contraste, mélanger des détails
issus de deux tableaux différents, etc. Vérifier la licence
de ces images et comprendre s'il est possible de publier
ses résultats ou non.

Détecteur de mouvement visuel

A 'aide d’une webcam, prendre deux photos successives
avec un délai minimal entre les deux, soustraire pixel a
pixel ces deux photos et stocker I'image obtenue. Ecrire
un programme qui utilise un seuil pour détecter dans
cette image un mouvement non négligeable et qui
donne la taille en pixels de la tache de mouvement
obtenue. Tester ce procédé en situation réelle. Quelles
en sont les possibilités et les limites ? Appliquer ce pro-
cédé a un objet qui « donne un coup de boule » 2 la
caméra, c'est-a-dire qui s'en approche a vitesse cons-
tante le long de son axe optique. Avec un modele géo-
métrique trés simple, ot 'on considére I'objet comme
un rectangle plat paralléle 4 la caméra, calculer le temps
restant avant la collision avec la caméra. Vérifier expéri-
mentalement les résultats obtenus.

Idées de projets

Qui est-ce ?

Créer une version numérique et graphique du jeu de
société « Qui est-ce ? ». Quelle est 'utilité de la notion
de dichotomie pour jouer 2 ce jeu ?

Un joueur de Tic-tac-toe

Le Tic-tac-toe est un jeu ot1 deux joueurs placent a tour
de role I'un des ronds O et l'autre des croix X sur un
plateau de trois cases sur trois cases, jusqu'a ce que 'un
des joueurs ait aligné trois symboles ou que les neuf
cases soient remplies. C’est le joueur O qui commence.
Décrire ce jeu sous forme d'un ensemble d’états et d'un
ensemble de transitions. Combien y a-t-il d’états
possibles ? Un état du jeu peut étre gagnant pour O,
gagnant pour X, match nul ou en cours de jeu.
Exprimer chacun des 37 états 4 I'aide d’'un nombre
entier. Construire un tableau qui, pour chacun de ces
états, indique s'il est gagnant pour 'un des joueurs, nul
ou en cours de jeu et, dans ce cas, les transitions possi-
bles pour chacun des joueurs. Calculer ensuite, de
proche en proche, les états dans lesquels :

* le joueur O est certain de gagner,

* le joueur X est certain de gagner,

* le joueur O est certain de gagner ou de faire match nul,

* le joueur X est certain de gagner ou de faire match nul.

Ecrire un programme qui joue contre un joueur
humain.

297

Informatique et sciences du numérique

Enveloppe convexe

Ecrire un programme qui dessine 'enveloppe convexe
d’un ensemble fini de points du plan.

Une maniére de faire consiste a trier ces points par
angle polaire croissant (€)), a relier entre eux les points
consécutifs (@), puis a supprimer l'un apres l'autre les
angles rentrants (€)).

2 ©

/ RH-\'

Chemins les plus courts

Lalgorithme de parcours d’un graphe en largeur d’abord
permet de déterminer s'il existe un chemin entre deux som-
mets d’'un graphe et de calculer un plus court chemin, si ces
deux sommets sont effectivement reliés. Lalgorithme de
Roy-Warshall-Floyd va plus loin en déterminant une fois
pour toutes sl existe un chemin entre toutes les paires de
sommets d'un graphe et en calculant un plus court chemin
pour chaque paire de sommets effectivement reliés.

Plus précisément, cet algorithme calcule deux tableaux :
* un tableau L tel que L[x][y] soit la longueur du plus
court chemin reliant le sommet x au sommet y si ces
deux sommets sont effectivement reliés et eo sinon,
* un tableau R tel que R[x][y] soit le premier sommet
apres x sur un plus court chemin reliant x a y, si ces
deux sommets sont effectivement reliés, et si le plus
court chemin les reliant n'est pas de longueur nulle,
c'est-a-dire si x est différent de y.

Comme dans un jeu de pistes, on peut retrouver I'inté-
gralité de ce chemin en partant de x, en allant en
R[x,y], puis en R[R[x,y],y], etc. jusqu’a arriver en y.

298

Pour calculer ces deux tableaux, on commence par ini-
tialiser le tableau L en mettant dans la case L[x][y] la
valeur O si x est égal 4 y, la valeur 1 si x est différent de y
et s'il y a une aréte qui relie x a y, et la valeur e sinon.
On initialise de méme le tableau R en mettant dans la
case R[x1[y] la valeur v.

Ensuite, on imbrique trois boucles :
* pour tous les sommets intermédiaires z,
e pour tous les sommets de départ x,
* pour tous les sommets d’arrivée y,

si L[x][z] + L[z][y] < L[x1[y], Cest-a-dire si aller de
x 4y en passant par z est strictement plus court que le
plus court chemin connu, on remplace L[x][y] par
L{x]1[z] + L[z][y] et R[x][y] par R[x][z].

Il nest pas difficile de montrer que, aprés avoir effectué les
tours de la boucle la plus externe correspondant aux som-
mets zj, ..., g la case L[x]1[y] du tableau L contient la
longueur du plus court chemin qui relie x ay en passant
possiblement par les sommets zy, ..., z,, mais pas par les
autres sommets du graphe et que la case R[x][y] du
tableau R contient le premier sommet de ce chemin, si un
tel chemin existe et s'il n'est pas de longueur nulle.

Programmer cet algorithme et I'appliquer 2 un réseau de
métro ou de bus.

Utilisation des réseaux sociaux

En utilisant le réseau social le plus répandu dans sa classe,
et avec I'accord des personnes concernées, construire le
graphe qui a pour sommets les éléves de sa classe et pour
arétes la relation «est I'ami de ». Au fur et 2 mesure de
I'analyse, on pourra raffiner ses données en considérant des
sommets collectifs, par exemple la participation 4 un club.
Entrer ces données dans un tableau bidimensionnel dont
chaque ligne et colonne correspond 2 un sommet et
chaque case 4 une aréte et calculer les composantes con-
nexes de ce graphe, c’est-a-dire les sous-ensembles maxi-
maux de sommets connectés. Déterminer le nombre de
composantes connexes. Ce projet doit étre réalisé en res-
pectant 'anonymat des personnes.

&& 19
A

accolades 19
Ada 229
addition 230
en base 2 231
adresse 1P 204, 208
adresse MAC (Medium Access
Control) 201
affectation 12, 17
Alan Turing 133
algorithme 97, 238, 263
bfs (breadth-first search) 283
dfs (depth-first search) 283
efficacité 272, 274
fondamental 287
méthode alpha-béta 55
Roy-Warshall-Floyd 298
algorithmique 255
Allen Emerson 277
arborescence 144, 147
architecture de von Neumann 186
argument de fonction 58

ASCII (American Standard Code for
Information Interchange) 112,

123-124, 154
authentifier 163

bascule de Schmitt 177
base de données 151

Index

base des nombres 99, 102—-103
Bernouilli 229
bit 98
boucle 24
cas de base 80
for 24
while 28
bus de communication 186

C
C 8,11
Caml 8, 35
CAO (Cnncepti{m assistéc par
ordinateur) 254
caractére 112
CERN 139
chaine de caractéres 113
chaine de caratéres 50
Charles Babbage 229
chiffrement
RSA 153
chiffrer 160
authentifier 163
clé 161
masque jetable 161
RSA 162-163
circuit
mémoire un bit 178
clé
privée 153
publique 153
cloud computing 213

Cobol 7
code 111, 154

ASCII {American Standard Code for

Information

Interchange) 116, 126

auto-modifiant 195
compilé 194
distribution 194
secret 133
source 194
Unicode 112
Colossus 133
commenter 30
compilation 191
compresser
avee perte 157
sans perte 154
compression 154

conception assistée par ordinateur 254

constante 17

conversion analogique-numérique 261

correction d'un programme 235
corriger les erreurs 158
couche de protocoles 198

application 211

lien 201

norme 199

physique 200

réseau 204

transport 209
cybernétique 215

299

Informatique et sciences du numérique

D
décapsulation des informations 199
déclaration 36
dessiner 240
perspective 242
trois dimensions 242
dichotomie 257
dictionnaire 154
DNS (Domain Name System) 211

E

échantillonnage 128

Edmund Clarke 277

encapsulation des informations 198
entier naturel 99

entier relatif 105

état de T'exéeution d'un programme 12
expression 17

F
feedback 215
fenétre graphique 240
fichier 141
fonction 56, 78
argument 58, 71
booléenne 134
cas de base 80
constante égale 4 0 135
constante égale 3 1 135
en-téte 60
et 134, 137
identité 135
multiplexeur 135
mux 135
non 134
ou 134
passage par valeur 71, 73-74
récursive 79
valeur de retour 58
format 91
format de fichier 123, 131
GIF (Grphics Interchange
Format) 123
HTML (HyperText Markup
Language) 116
JPEG (Joint Photographic Experts
Group) 123
MIDI (Musical Instrument Digital
Interface) 128
PBM (Portable BitMap) 123
PGM (Portable GreyMap) 123-124,

300

247
PICT 123
PNG (Portable Network
Graphics) 123
PPM (Portable PixMap) 123, 125,

245, 247
PS (Post Scripr) 123
TIFF (Tagged Image File
Format) 123
Fortran 7
G

génie biomédical 177

Gérard Huet 23

graphe 147, 283
chemin a prolonger 278
état 284
orienté / non orienté 284
parcours 283
parcours bfs 283
parcours dfs 283
parcours cn largeur 283
parcours en profondeur 283
recherche en largeur 282
recherche en profondeur 282
transition 284

H

hasard 19

Haskell 35

horloge 182

fréquence 183

héte (ordinateur) 205

HTML (HyperText Markup
Language) 118, 139

HTTP (HyperText Transfer
Protocol) 211

hypermnésie 148

|

idéographie 85

image 122
augmenter le contraste 249
couleur 124
fusion de deux images 251
lissage 252
luminance 250
niveau de gris 124
numériser 126
représentation bitmap 122
représentation vectorielle 122
synthése soustractive 127

taille 129, 250

transformation 248
imbrication 26
indentation 21
initialisation

variable 43
instruction 17

d'entrée 12

de sortie 12
instructions 186
Internet

lois 212
invariant 236

IP (Intemet Protocol) 197, 204, 208

J
Java 8

L

langage de programmation 8

langage formel 86—88
grammaire 89
sémantique 91

langage machine 187-188

langue naturelle 86

licence logicielle 76

lien hypertexte 118, 147

Lisp 55

logarithme entier 257

M

main 62

mémoire 9, 178, 186, 194
Mentor 23

Michael Rabin 77

ML 35

mOway 216

N
Nexus 139
nombre i virgule 108

non-terminaison 31

0

opérations 18

ordinateur héte 205
ordinateurs paralléles 193

P

paquet de données 203
périphérique 186, 192
persistance des données 140, 148

Index

pixel 122
port 210
porte booléenne
additionneur un bit 173
multiplieur 174
non 168
ou 169
TCP (Transmission Control
Protocol) 210
préfixe des unités 129
prix Turing 35, 167, 277
processeur 186
unité de calcul 186
unité de contréle 186
programme
main 62
mettre au point 52
principal 62
programime correct 235
protocole 197-198
DNS (Domain Name System) 211
HTTP (HyperText Transfer
Protocol) 211
IP (Internet Protocol) 197, 204, 208
SMTT (Simple Mail Transfer
Protocol) 211
TCP (Transmission Control
Protocol) 197

Python 8
R

réalité virtuelle 239
recherche en table 256
récursivité 79
registres 186
représentation
caractere 112
entier naturel 99
entier relatif 105
image 122

nombre 4 virgule 108
son 128
texte enrichi 116
texte simple 113
reseau 198
couche de protocoles 198
protocole 198
rivalité de l'information 149
robot 216
actionneur 216, 220
capteur 216-217, 222
controle en boucle fermée 219
micro-controleur 217
micro-controleur 219
routage
table de 206
routage des informations 205
routeur 205
RSA 153

S

séeurité 160

sémantique 23

séquence 12

Sketchpad 239

SMTP (Simple Mail Transfer

Protocol) 211

son 128
¢chantillonner 128
notation musicale 129
taille 129

stireté 160

systéme d'exploitation 192

T
table de routage 206
tableau 74
bidimensionnel 48
TCP (Transmission Control Protocol) 197
test 12

TeX 255
texte
taille 129
texte enrichi 116
texte simple 113
tri
a bulles 267
par fusion 268, 274
par insertion 267
par sélection 264, 274
type 35, 37
boolean 37
changer 39
double 37
int 37
string 37
tableau 44, 48

U

Unicode 116
unité de calcul 186
UTF-8 154

Vv

valeur 17

variable 17
globale 62-63, 73
initialiser 43
locale 62
portée 41, 62, 65, 69
type 37

variable 17

virus 195

w
web 139

r'4

zéro d'une fonction 261

301

Gilles Dowek est chercheur Inrig, ses travaux portent sur les liens entre le colcul et le raisonnement. Il est lovréat du Grand prix de philosophie de
I"Académie francaise pour son livre Les Métamorphoses du Calcul,

Jean-Pierre Archambault est professeur agrége de mathématiques et président de I'association Enseignement public et informatique (EPI). Claudio
Cimelli est inspecteur d’académie, inspecteur pédagogique régional en Sciences et techniques industrielles (STI) et conseiller TICE (technologies de I'information
et de la communication pour I"enseignement) du recteur de Créteil. Benjamin Wack est doctevr en informatique et professeur agrégé de mathématiques.
Emmanvel Baceelli, Albert Cohen, Christine Eisenbeis et Thierry Viéville sont docteurs en informatique et chercheurs Inria. Leurs travaux
respectifs portent sur les réseaux, la construction de programmes effectuant des milliers de calculs en paralléle, les limites physiques du calcul et la simulation
du cerveau.

Suffit-il d'apprendre a utiliser les appareils dont on est entouré ? N'a-t-on pas envie d'en comprendre le fonctionnement ?
Ne préfére-t-on pas se former au cosur conceptuel et technique de I'informatique, plutét que de rester les consommateurs serviles de ce qui se crée illeurs ?

L'objectif de ce cours est d'introduire les quatre concepts de machine, d'information, d'algorithme et de langage qui sont au ceeur de I'informo-
fique, et de montrer comment ils fonctionnent ensemble. Dans la premiére partie, nous apprendrons & écrire des programmes, en découvrant
les ingrédients dont les programmes sont constitués : |'affectation, la séquence et le test, les boudles, les types, les fonctions et les fondions
récursives. Dans la deuxiéme partie, nous apprendrons d représenter les informations que I'on veut communiquer, les stocker et les transfor-
mer — fextes, nombres, images et sons. Nous apprendrons également d structurer et compresser de grandes quantités d'informations et a les
protéger par le chiffrement. Dans la troisiéme partie, nous verrons que derriére les informations, il y a foujours des objets matériels : ordina-
teurs, réseaux, robots, etc. Nous découvrons comment fonclionnent toutes ces machines que nous utilisons tous les jours. Dans la quatriéme
partie, nous apprendrons quelques-uns des sovoir-faire les plus utiles au XXI® siéce : jouter des nombres exprimés en base deux, dessiner,
retrouver une information par dichotomie, trier des informations et parcourir des graphes.

Ce cours comporte des chapitres élémentaires et avancés. Chacun contient une partie de cours, des sections de savoir-faire qui permettent
d'acquérir les capacités essentielles, ef des exercices, notés difficiles pour certains, avec corrigés lorsque nécessaire. Avec des compléments
disponibles en ligne.

A qui s’ adresse ce livre ?

(e manuel de cours destiné aux éléves de terminale S ayant choisi la spécialité Informatique et sciences du numérique sera également lu avec
profit par tous les professionnels de I'informatique, qu'ils soient autodidactes ou non, et tous ceux qui veulent apprendre I'informatique.

Av sommaire

LANGAGES « Les ingrédients des programmes « Modifier, comprendre, écrire et tester un programme « Instructions et expressions »
Opérations » Accolades « Indenter un programme « Boucless « Boudles for ef while « Imbriquer deux boucles « Non-terminaison « Commenter un pro-
gramme = Types = Types de base « Déclaration, portée et initialisation des variables « Tableaux « Chaines de caractéres « Les fonctions e Isoler
une instrucfion « Passer des arguments » Récupérer une valeur » La récursivité « Fonctions qui appellent des fonctions « Foncfions qui s'appellent
elles-mémes « La notion de langage formel « Grammaire et sémantique « REPRESENTER L'INFORMATION « Nombres entiers et @ vir-

ule « Compter en base n « Caractéres et textes « ASCIl binaire « Ecrire une page en HTML » Images et sons « Numériser une image « Notion

e format « Tailles de fichier « Fonctions booléennes Fonctions non, et, ou « Structurer I'information « Persistance des données « Notion de
fichier « Organiser des fichiers en une arborescence « Liens et hyperfextes « Revers de I'hypermnésie » Compresser, corriger, chiffrer «
MACHINES « Portes booléennes « Temps et mémoire « Organisation d"un ordinateur « Réseaux e Protocoles « Couches « Trouver les
adresses MAC et IP » Déterminer e chemin suivi par |'information « Régulation du réseau global « Robots « Composants d’un robot « Programmer
un robot » ALGORITHMES « Ajouter deux nombres exprimés en base deux « Dessiner « Formats d'images « Transformer les images »
Dichotomie » Recherche en table » Conversion analogique-numeérique « Trouver le zéro d'une fonction « Trier « Tri por sélection et par fusion «
Efficacité des algorithmes « Parcourir un graphe « Etats et transitions « Idées de projets.

Code article ; 613543
ISBN : 978-2-212-13543-5

-~

hz"a____ Ouvrage publié avec le concours de I'EP, la SIF et Inria ::"':'0] www.editions-eyrolles.com

e oo TR N

