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Avant-propos

Chere lectrice, cher lecteur,

Depuis quelques années, la maitrise des techniques n’est plus un attendu du
secondaire.

Pour autant, le programme du supérieur laisse peu de temps a la pratique d'exer-
cices techniques. Celle-ci reléve d'un travail implicite, dont on ne mesure pas tou-
jours I'ampleur. Dans I'ensemble des livres de classes préparatoires, la place faite
aux exercices techniques est infime. Or s'il est une évidence, c’est que la compé-
tence technique ne s'acquiert qu‘avec la pratique.

Je propose dans ce livre des fiches thématiques sur les techniques et les connais-
sances de base, pour travailler en autonomie, en amont d’exercices qui couvrent
un champ plus large, comme l'on peut trouver dans les livres de CPGE ou sur les
sites d'annales de concours.

Chaque fiche se décline en 3 temps :

* Letemps de |'appropriation des méthodes

La partie « Je vous montre comment » présente les méthodes travaillées dans
la fiche, chacune étant illustrée par un exemple détaillé. Cette partie n'est
évidemment pas exhaustive, et elle fait délibérément I'impasse sur toutes
les méthodes anecdotiques qui ne servent que dans I'exemple qui les illustre
ou dans de rares exercices !

* Letempsde la pratique

La partie « A vous!» propose d'enchainer des exercices avec une difficulté
croissante, sans sortir du cadre technique imposé par le théme. Ici encore, pas
de singularité ou de probléme qui nécessite une astuce. Lobjectif est la mai-
trise des bases, par la répétition. Le nécessaire, rien que le nécessaire !

* Letemps de la correction

Chaque exercice qui a été donné est corrigé en détail. Lobjectif n'est pas seu-
lement de comprendre la correction, mais de parvenir a refaire seul les exer-
cices. Alors, en cas d'erreur, méme si vous comprenez la correction, refaites
I'exercice !

Chacun sait qu’en mathématiques une grande partie de l'apprentissage reléve
de la pratique. C'est particulierement vrai en ce qui concerne la technique. Avec
ce livre, je vous propose un nombre important d'exercices pour acquérir et



consolider les notions de base, et vous mettre en situation de réussite tant en
mathématiques que dans les autres disciplines scientifiques. La maitrise des exer-
cices que je vous propose sera le ciment des connaissances que vous acquerrez
par ailleurs. Construisez sur du solide, vous n’en serez que plus efficace!

Pour conclure, je tiens a remercier Corinne Baud, des éditions Ellipses, pour la
confiance qu'elle m'a accordée, ainsi que mes amis relecteurs Sylvie, Gilles et Joa-

chim.

Je dédie ce livre a mes trois filles, pour leur soutien inconditionnel.



Table des matieres

B Fiches
n LOGIOIR suiosassississiisimsisssisamosesssssssissisiniimiisatsosisosionismmsnasissiscsimiiisivanatins 7
P INJRCHVItE — SUECHVIIE i s 19
B Sommes et produits iNAexés dans I ... nsees 29
n Résolution d'inéquations........cccerureee B —— 39
B Limites de fonctions réelles..........ocoevecemreeernene SRR 55
B DENVEES .ot S 73
n Equations dans I'ensemble des nombres complexes............o.ccccwerees 93
u TrgONOMETII ... sssssssssssiscsssnns .. NO— 107
n Fonctions Circulaires réCiProqUES.......omssemssmsmsssssssssssssssssssssssssnss 17
m Développement — lINEariSatioN...........ccuecueressesersssssesssensssssanssssesssesssess 139
m Polynomes — Décomposition en éléments simples........cccoo.oerervrenne. 147
m Systémes liNéaires.......ummsssssnnes T 163
m IVEISION A8 MATTICES i 177
m Calcul dINEEGIales.....uiviiieieiriisins s sssss s ssssssssssssass 189
m Equations différentielles linéaires................... S s 213
m Développements limités ..........coeerrrerereeenne. e T R SRER 241
Espaces vectoriels g RSSO S O S AR 269
m Applications linéaires.... T m——— 299
m Espaces préhilbertiens ........o.cveeererseesessennes I — 325
m TG TYEIIVETICIENES csriisisseimenssnsinssosiwsssv s SO AR 349

B Formulaires

RNBEIIBES ..uvuccososssnouieressssinisdiedssoss asssvess s i AR o484 PResRiasbosN e RosALGR bAoA oS 377
PHMINES ssiminssnimnasimi . 379
THIGONOMELIIE ... ss st sssassssessss s srs s s s ssss s ssess s s s s s ssssess s s e s snsa s sresnans 381
DL (0) des fonctions UsUelles ... i 383




Certaines notions de logique sont utilisées intuitivement des les premiers apprentis-
sages en mathématiques. Cette discipline n'est toutefois spécifiquement étudiée que
dans le supérieur.

L'objet de cette fiche est de travailler les régles de logique qui servent dans les
démonstrations, ainsi que de se familiariser avec le langage formel, omniprésent par
la suite.

Une assertion est une affirmation a laquelle on peut attacher une valeur de
vérité : soit vraie soit fausse.

B eounomeonnen

B Démontrer qu'une propriété
dépendant de plusieurs assertions est vraie

» A laide d'une table de vérité :

On envisage tous les cas pour les assertions (vraie ou fausse !), et on utilise les
régles sur les opérateurs logiques.

Les opérateurs logiques permettent de combiner des assertions pour en
obtenir de nouvelles :

« Négation : la négation d'une propriété P est notée |P
* Conjonction :' et’ notée N
* Disjonction inclusive :* ou ' notée \/

* Implication : notée =-

* Equivalence : notée =
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saalas

IlIs sont définis par la table de vérité :

P|la|lp| PrQ@ | PvQ | P=Q | P=Q
v|v]|F Vv v v Vv
v|F|F F Vv F F
Flv]v F v Vv F
Y F F v Vv

Selon le principe de non contradiction, (P A —’P) est une assertion toujours

fausse ; selon le principe du tiers exclu,

——

PV —|P) est une assertion toujours

vraie (appelée tautologie).

Exemple 1

P et Q désignent deux assertions. Montrer que : (P = Q)< ( -I Q= _I P) :

Réponse
Pl@| P=q | IP| la| la= 1p
VIV v F F Vv
¥ F F F \' i
FlV vV V F vV
FILE \ V \' V

On voit que les assertions (P = Q) et (-|Q = -|P) sont simultanément vraies et
simultanément fausses. Elles sont donc bien équivalentes.

Remarque: On dit que |'assertion (-|O = -lP) est la contraposée de |'assertion
(P= Q).

» En utilisant les lois de Morgan :

1. 1(PAQ)« 1PV Q) 3. PA(QVR)« (PAQ)V(PAR)
2. I(pv@)e(1ralq) 4. PV(QAR)s (PVQ)A(PVR)
Exemple 2

P et Q désignent deux assertions. Montrer que l'on a: ((P A —PO)V (PA O)) & P.

Remarque: Parfois, comme ici, un résultat a l'air « évident ». Bien sar, quand on
demande de démontrer un résultat de logique, on attend une argumentation
basée sur les théorémes du cours, pas la réponse : « c'est logique » !

8 | Je vous montre comment Fiche 1 m Logique




Réponse

((PA"IQ)V(PAQ)) & PA (0\/10) Al
3€oi de Morgan assertion toujours vraie

B Nier une phrase quantifiée

Concernant des éléments d'un ensemble, on définit trois opérateurs, appelés
quantificateurs:

* V/: se lit « quel que soit » ou « pour tout ».

» 3:selit « il existe au moins un ».

31: se lit « il existe un unique ».

Si P désigne une propriété dépendant des éléments x d'un ensemble E, alors :

(Vx € E,P) signifie « la propriété P est vérifiée pour tous les éléments de E ».

(Elx €EP ) signifie « la propriété P est vérifiée au moins pour un élément de E ».

(3!x € E,P) signifie « la propriété P est vérifiée pour un seul élément de E ».

A on peut permuter deux quantificateurs identiques, mais on ne peut pas per-
muter deux quantificateurs de nature différente.

Par exemple: (Vx eRIyeR,y= x2] est une assertion vraie (tout réel a un
carré), par contre (Elye R,VxeR,y :xz) est une assertion fausse (tous les

carrés de réels ne sont pas égaux).

P En utilisant les résultats suivants:

Si P désigne une propriété dépendant d'un élément x d'un ensemble E, alors :
- I(vxe€E,P)« (IxeE, 1P)

+ l(@xeEP)« (vxeE, 1P)

Exemple 3

Nier l'assertion: (Vx€ E, 3y € E,x.y =1).

- . * -
Remarque: Cette assertion est fausse pour £ — R , et vraie pour £ =R , mais ce
n'est pas la question !

Réponse
B (Vxe E, Ay E,x.y=1)¢ (Bx E E,—I(Hye E,x.y= I)) ¢ (Ix€EVy€eE,x.y =1),

Fiche 1 w Logique Je vous montre comment | 9



B Nier une implication

» En utilisant I'assertion : —|(P = O)@ (P/\ _|Q]

Exemple 4
Nier l'assertion: (Vxe E,(xe A= x ¢ B)).

Réponse
W(Vxe E(xe A= x¢B))e (Elxe E, l(xe A= x¢ B))
¢ (IxeE(xe ANXxEB))« (IxeE,xe ANB).

Remarque: On a aussi:(3x € E,xe ANB)<« (ANB=2).

B Traduire simplement une phrase quantifiée

Pour bien comprendre une phrase quantifiée, il ne suffit pas de la traduire
littéralement, mais il faut étre capable de I'exprimer simplement « en frangais ».

Exemple 5

Ecrire littéralement l'assertion suivante, puis la traduire par une phrase concise :
(Vxe A,x+=0).

Réponse

Lexpression littérale de cette phrase quantifiée est: « quel que soit x élément de
A, x n'est pas nul ».

On peut la traduire simplement en disant : « A ne contient pas 0 ».

Remarque: || existe bien str d'autres formulations, comme « 0 n'est pas un élé-
ment de A », ou « aucun des éléments de A n'est nul »... Lessentiel est de com-
prendre le sens de l'assertion, en se détachant du vocabulaire formel.

10 | Je vous montre comment Fiche 1 m Logique
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--------

On s'échauffe

Dans les exercices, f désigne une fonction définie sur R a valeurs réelles et

(un)

1. P, Q et Rdésignent des assertions. Montrer que les équivalences suivantes

sont vraies :

a. (P=Q)¢ (—| PV Q) (a l'aide d'une table de vérité)

b. I(P= Q)< (PA 1Q) (alaide d'une table de vérité)

¢ ((P=Q)A(Q= R)A(R=>P))<> (P<> Q<> R) (alaide d'une table de
vérité)

d. (PAl(@VR))« (PA Tan R)

e. ((PrTQ)aT(rRATIQ))e> (PATNQVR))

2. Traduire les assertions suivantes a I'aide d’'une phrase concise (comme dans

nel

. une suite réelle.

'exemple 5) :

a.
b.
C
d.
e

3. Traduire a l'aide de phrases quantifiées les assertions suivantes :

a.
b.
C
d.

VxeR,f(x)=0.
Vxe R,f(x)=0.
IxeR,f(x)=0.
IxeR,VyeR,f(x)<f(y)
5 ]

(v)

VxeR,JyeR,f(x) .
f ne prend que des valeurs entiéres.
f prend toutes les valeurs entiéres.
La suite (u, ), _,; est croissante.

f est strictement décroissante.

La suite (up ),y et majorée.

4, Donner la négation des assertions suivantes :

b.

Ja>0,d6>0,VneN,na<b.
V(a,b)e R?,(a>0,b>0)=(Ine N, na>b).

Fiche 1 w Logique
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———————
________

¢ V(xy)eR2VNe[0:1]F(Ax+(1=N)y)< M(x)+(1—= N )f(y).
d. V(x,y)eRz,(x.y:x):»(y:U.
e. (V(x,y)e R, f(x+y)=f(x)x f(y)):> (vxeR,f(x)>0).

5. Parce que I'on peut s'amuser avec la logique :
On consideére la tautologie (assertion toujours vraie) A suivante : « Quand je
suis en cours, mon téléphone portable est éteint ».

On note C l'assertion « je suis en cours », et P |'assertion « mon téléphone
portable est allumé ».

a. Donner un équivalent de A a l'aide de C, P et des opérateurs logiques.

b. On considére l'assertion S: « Mon téléphone portable sonne ». Si S est
vraie, écrire des assertions vraies a l'aide de P et C (hormis les tautolo-
gies Pv Petcv lc ).

¢. Exprimer a l'aide de P et C une assertion qui illustre : « Je suis mis a la
porte, car mon téléphone a sonné » Que peut-on en penser ?

d. Donner la contraposée de |'assertion A.

e. Donner la réciproque de |'assertion A.

On accélere

6. Traduire les assertions suivantes a I'aide de quantificateurs :

a. Certains réels sont strictement supérieurs a leur carré.
b. Lafonction fn'est pas strictement décroissante.

¢. Lafonction fn'est pas de signe constant.

d. Lafonction fn'admet pas d’extremum.

e. Lasuite (uy), _p, diverge vers +oo .

7. Aprésen avoir donné la signification, donner la négation des assertions sui-
vantes:

a. IMeR,VneNu,>M.
b. INeN,VneN,(n>N)= (u,>0).

12 | Avous! Fiche 1 m Logique
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¢ JacR\VxeR,(x>a)= (f(x)f(a)>0).
d. V(x.y)eR? (f(x)=f(y))= (x=y).
e. Ve>0,INEN,VneN, (n>N)=>(|u,|<e).

8. Apreésen avoirdonné la signification, donner la négation des assertions sui-
vantes:

a. ILeR,Ve>0,3AeR,VXER,(x>A)= ([f(x)-L|<e).
b. VaeR,Ve>0,3r>0,VxeR, (x—a|<r)= (f(x)—fla)<e).

9. Traduire les assertions suivantes a l'aide de quantificateurs :

a. Aucun entier n'est supérieur a tous les autres.
b. Lafonction fn'est pas monotone.

«. Lesfonctions fetg s'annulent simultanément.
d. Les fonctions fet g ont les mémes variations.

10. Soient £ un ensemble, A et B deux assertions dépendant des éléments x de E.
Compléter par le symbole =>, ou <= et justifier qu'il n'y a pas déquiva-
lence :

a. (Ix€E,AAB) - ((IxeE,A)A(Ix€E,B))
b. (Vx€E,AVB)-- ((VxeE,A)V (VXxEE,A))

Fiche 1 w Logique Avous! | 13
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> 1 plal psa|1p| Irva

vV |V v F v

vV | F F F F

F | v v v v

F | F v v v

b.

plaQ| P=q | lr=q| la|rPrla
v |V v F F F
v | F F v v v
F | v v F F F
F | F N F V F

¢. Lassertion P< Q& R estvraiesi, et seulementsi P, Q et R sont simultané-
ment vraies ou simultanément fausses.

P(Q|R|P=Q|Q=R|R=P| (P=Q A(Q=R A (R=P)
viv|v]| v % v v
VIVI[F| v F Vv F
vIiF[v] F Vv v F
VIF[F] F Vv v F
Flv|v]| v v F F
Flv| F]| v F Vv F
FlE|[Vv]| v v F F
FIF|F| v v v v

d. (PAlQVR) & (P/\(—|QA—|R))#(PA_|QA—|R).

2% loi de Morgan

e. ((PA—IQ)A_l(RA_IQ)) o ((P/\_]Q)A(—IRVQ))

1®loi de Morgan

& |(PaTanR)v(PaTlanq)| & (PATl(QVR)).

. — &
3%loi de Morgan assertion fausse 2%loi de Morgan

2. a. Lafonction fest nulle. (Cela sous-entend « partout ».)

b. Lafonction fne s'annule pas sur K.

14 | Corrigés Fiche 1 m Logique
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La fonction f s'annule sur R . (Cela sous-entend « au moins une fois ».)

La fonction fadmet un minimum.

La fonction f n'admet pas de maximum.

VxeR,f(x)eZ.

Vne Z,Ixe R, f(x)=n.

Vne N,u, < upyy.

V(x.y)e Rz,(x< y)=> (f(x)> f(y))-
dMeR,VneNu, <M.
VYa>0,vb>0,dneN,na>b.

I(a,b)e R?,(a>0,b>0)A(Vne N, na<b).

Avez-vous remarqué que les deux assertions précédentes sont la négation
I'une de l'autre ?!

I(x,y)e B2 AN €[01].F(Ax+(1=X)y)> M (x)+ (1= N)f(y) -
A(x,y)e R, (x.y=x)A(y=1).
(V(x,y)e R f(x+y)=F(x)x f(y))/\(ﬂxe R,f(x)<0).

A || s'agit ici de nier une implication. Contrairement au cas précédent,

V(x,y)e R? figure dans la premiére assertion, qui demeure la méme
dans la négation.

As (C = _|P).

S=>P;5= IC;S=PAIC;S=>PV IC;S=>CVP.

CA P ;l'assertion A étant une tautologie, |'assertion CA P est fausse.
P= IC: guand mon portable est allumé, je ne suis pas en cours.

lp=c: quand mon portable est éteint, je suis en cours.

IxecR,x> xz.

. & Lanégation de la décroissance n‘est pas la croissance !!!

Il s'agit ici de nier la stricte décroissance (vue dans |'exercice 3.d):
I(x,y)e R?,(x< y)A(F(x)< f(y)).

Fiche 1 w Logique Corrigés | 15



9, a.
bl

A(x,y)e R%f(x)f(y)<O0.

C'est la fagon la plus concise de I'écrire, mais on peut aussi séparer x et y:
(3xe R.f(x)>0)A(Iye R.f(y)<0).

VaeR,3(x,y)e R% f(x)< f(a)<f(y).

VMe R,ANge N,¥ne N,(n> Ng)= (u, > M).

La suite (up ), est minorée.
Sa négation: VMe R, dne N,u, <M.

La suite (u, )ﬂ est strictement positive a partir d'un certain rang.

el
Sa négation: YN N,3ne N,(n> N)A (u, <0).
La fonction f est de signe constant et ne s'annule pas au-dela d'un certain

réel (on peut aussi dire : f(x) est non nul et de signe constant pour x suf-
fisamment grand).

Sanégation: Ya€ R,Axe R,(x>a)A(f(x)f(a)<0).

La fonction f est injective, c'est-a-dire que deux réels distincts n‘ont pas la
méme image.

Sa négation: 3(x,y )€ R?, (f(x) = f(y))/\ (x=y).

La suite (u, )ney CONVerge vers 0.

N
Sanégation: Je>0,YNe N,3ne N (n> N)A (juy|>€).

La fonction f admet une limite finie en +00 .
Sanégation: VLe R,Ie >0,V A€ R,IAxeR,(x> A)A([f(x)—L|>¢).

La fonction fest continue sur E.
Sa négation: Ja€ R,3e > 0,Vr> 0,3x€ R, (|x— a|< r)A (|f(x)—f(a)|>€).

VneZ,AN€e€Z, n<N.

I(xy.2)e R (x< y<2)A((F(y)—f(x))(F(2)—f(v))<0).

Remarque : On peut aussi écrire
(30x.y) € R (x <y )A(F(x)<F(y)))A(3(x.y )€ R (x < y)A(F(x) > £(y))):

Il faut bien comprendre que le couple (x,y] de la premiere assertion n'est
pas le méme que celui de la seconde.

16 | Corrigés Fiche 1 m Logique



¢ VxeR,(f(x)=0)¢(g(x)=0).
& V(xy)e R2(F(x)—(y)a(x)-a(3))>o.

10. a. (Ix€E,AAB) = ((IxeE,A)A(IxEE,B)).

En effet, s'il existe x < E pour lequel A et B sont vérifiées, alors il existe
x € E pour lequel A est vérifiée, et il existe X< E (le méme en l'occur-
rence !) pour lequel B est vérifiée : c'est I'implication.

Avec E=R ,A=(x>0) et B=(x<0),onabien:
(3xeR,(x>0)A(x<0)) = ((Ixe R,x>0)A(IxeR,x<0)).

En effet la premiére assertion étant fausse, I'implication est vraie...

Remarque : Arrétons-nous sur ce qui peut sembler étre une bizarrerie :

Dans la table de vérité qui permet de définir les opérateurs logiques, on
a (P=> O) vraie lorsque P est fausse. C'est ce qui permet de montrer que

(P = O) S (—IP V O) ot l'on voit clairement que silona 1P, la deuxiéme as-
sertion est vraie et, par équivalence, la premiére assertion (I'implication) est vraie.

Retournons a notre contre-exemple...

L'assertion (Ix € R,x > 0)A (Ix€ R,x < 0) est vraie (il y a bien des réels
strictement positifs et des réels strictement négatifs), mais |'assertion

(3xe R,(x>0)A(x < 0)) est fausse.
Limplication ((3x€ E,A)A (3x€E,B))= (Ix€ E,AAB) estdonc fausse.

b. (VxeE,AVB)<«((VxeE,A)V(VxeE,B)).
En effet, considérons la contraposée :

l(vxeE,AvB)« (IxeE, 1A TB)
et |((VxeE,A)v (Vx€E,B))« |(VxeE A)A I(VxeE,B)

& (axe E,—|A)/\ (Bx € E,—|B).

S'il existe x € E pour lequel ni A ni B n'est vraie, alors il existe x € E pour
lequel A n'est pas vérifiée, et il existe x< E (le méme en l'occurrence !)
pour lequel B n'est pas vérifiée,

Onadonc: (IxcE, 1AA 73) = (ax € E,TA]A (ax € E,TB), d'ots 'impli-
cation (par contraposée).

Fiche 1 w Logique Corrigés | 17



Avec E=R, A=(x>0) et B=(x<1),0nabien:
(VxeR,x>0)V(VXxeR,x<1))= (VXER,(x>0)V (x< 1).

En effet la premiére assertion étant fausse, I'implication est donc vraie.

L'assertion (Vxe R,(x>0)V(x< 1)) est vraie (un réel est bien soit stricte-
ment positif, soit inférieur ou égal a 1, cette disjonction n'étant pas exclu-
sive), mais l'assertion (Vx € R,x > 0)V (Vx € R,x < 1) est fausse.

Limplication (Vx€ E,AV B) = ((Vxe EA)V(Vxe E,B)) est donc fausse.

18 | Corrigés Fiche 1 m Logique



Fiche 2

Injectivité — Surjectivité

La question de l'injectivité et de la surjectivité d'une application est celle du lien qu’elle
établit entre deux ensembles. La réponse est partiellement apportée avec les outils de ter-
minale pour les fonctions définies et a valeurs dans une partie de R. Cette fiche permet
de les récapituler, mais aussi d’explorer le cas plus théorique des applications non réelles.
E et F désignent des ensembles, f une application de E vers F.

Y e vesmontecomment

B Démontrer qu'une application f: E — F estinjective

festinjectivesi: V(a,b)e E%,(a=b)=> (f(a) = f(b)).

Remarque : Par définition d'une application, on a toujours V(a,b)e E2,
(a=b)= (f (a)=f (b)) dont la contraposée est la réciproque de I'implication
qui définit l'injectivité.

On peut donc également définir l'injectivité ainsi :

¥(a,b)e £ (a—b) <> (F(a)—F(v))

P SiEetFsontdes partiesde R :

On établit I'injectivité de fen étudiant ses variations.

Exemple 1

Une fonction f strictement croissante sur un intervalle / de R est injective.

Réponse

La fonction fest strictement croissante sur /, donc :
V(a,b)e ,(a=b)= ((a<b)v(a>b))=((f(a)<f(b))V (f(a)>f(b)))
= (f(a)=f(b)).

Remarque: Ce sont en réalité des équivalences, mais seule I'implication suffit.
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» En utilisant la contraposée de I'implication de définition :

On écrit pour a et b quelconques dans E: f(a)=f(b) et on montre par équiva-
lences que a=>b.

Remarque : On peut raisonner par implications car, comme rappelé précédem-
ment, I'implication (a=b)=> (f(a)=f(b)) est toujours vraie.

Exemple 2
R— C

Etablir I'injectivité de l'application f :
X X +ix

2"

Réponse
Soit (a,b)e R?.Ona:
(F(a)=f(b))¢> (a+ia> =b+ib?) > (a=b)A (a® =) > (a=b).

En effet, deux nombres complexes sont égaux si, et seulement s‘ils ont la méme
partie réelle et la méme partie imaginaire. fest donc injective.

B Démontrer qu’une application f:E — F est surjective

fest surjectivesi: Yye F,IxcE f(x)=y.

» SiEetFsontdes parties de R et si fest continue :

On établit la surjectivité en étudiant les variations de f et en appliquant le théo-
réme des valeurs intermédiaires.

Exemple 3

Déterminer le plus grand intervalle J de IR (au sens de I'inclusion) pour lequel I'ap-

R— £

plication f: est surjective.

x> x2+2x—1
Réponse

L'étude des variations de f conduit (sans difficulté !) au tableau suivant :

X — 00 1 400

+00 +o00

f \_2/

La fonction polynomiale f étant continue, le théoréme des valeurs intermédiaires
s'applique, et tout réel de l'intervalle [— 2,+c>o[ admet un antécédent dans R.

— 2 étant le minimum de la fonction f, les réels de I'intervalle ]— 00, — 2[ n‘ont pas
d'antécédent par f. On en déduit que J = [— 2,400 [
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» En utilisant la définition :

Pour y € F quelconque, on détermine x tel que f(x)=y.

Exemple 4

) C— [0,27|
Etablir la surjectivité de l'application f:

zarg(z)

A Sion ne précise pas que fest a valeurs dans [0, 2[ on ne définit pas une fonc-
tion car I'argument d'un nombre complexe est défini a 2«-prés.

Réponse

Soit y€[0,2x[.Ona f(e'y): y ; fest donc surjective.

H Démontrer qu’une application f: E — F est bijective

‘ f est bijective si f est injective et surjective.

» Soit on montre séparément que f est injective et f est surjective.

P Soitonmontreque: Vye F,3IxcE f(x)=y :

Exemple 5 R\{-1} — R\{1}
Etablir la bijectivité de l'application f: X

X » —
Réponse X+1

Soit yc R.Ona:

X
=—— & lIx(1—-y)=Vy])).
y=25 ((x0-5)-y)
» Si y=1, la deuxiéme assertion est fausse.
* Si y =1, la deuxiéme assertion équivaut a: x :%.
—¥

Dans chaque assertion on a nécessairement x = —1; ainsi tout réel de TR\{1}
admet un unique antécédent dans &\ { - 1} par f, qui est donc bijective.

Remarque: L'étude des variations de fdonne le tableau suivant :

X — 00 = +00

+00 L
1 — 00

f étant continue, le théoréme de bijection successivement appliqué aux in-
tervalles |-oc,— 1 et |~1,+00[donne que f établit une bijection entre

]—oo,*1[ et ]1,+oo[ et entre ]— ‘I,+oo[ et ]—oo,1[.
Les intervalles |- oc,1] et |1,4+00[ étant disjoints (d'intersection vide), on en

déduit que fest une bijection de R\{—1} dans R\{1}.
Mais c'est plus long !
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B Démontrer qu’une application f: E — F n’est pas injective

» En proposant un contre-exemple :

On détermine deux éléments distincts de E qui ont la méme image.

Exemple 6
R—R
Vérifier que l'application f: 5
XX

n'est pas injective.
Réponse

f(—1)=f(1), donc fn'est pas injective.
B Démontrer qu'une application f:E — F n’est pas surjective

P En proposant un contre-exemple :

On détermine un élément de F qui n'a pas d'antécédent par f.

Exemple 7
R—R
Vérifier que l'application f: 5
XX

n'est pas surjective.

Réponse
— 1 na pas d'antécédent par f qui nest donc pas surjective.

Remarque : Evidemment, aucun réel strictement négatif n'a d’antécédent, mais
un seul suffit pour nier la surjectivité.

A Une méme expression littérale pour f peut générer tous les cas possibles sui-
vant E et F, il faut donc préter une grande attention aux ensembles concernés.

Exemple 8

Déterminer les plus grands intervalles E et F de R possibles (au sens de l'inclusion)

E—F
pour lesquels f : 3
XX

tive et non surjective ; puis surjective et non injective ; puis bijective.

est successivement : ni injective, ni surjective ; puis injec-

Réponse

Il suffit d'examiner le tableau de variations de f pour se convaincre des résultats :
» Avec E=F =R, fn'est ni injective, ni surjective.

« Avec E=R" (ou E=R ™ )et F=R, fest injective, non surjective.
* Avec E=R et F=R™, fest surjective, non injective.

* Avec E=F=R",ouencore E=R~ et F=R™, fest bijective.
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Pour les exercices 1 a 12, étudier l'injectivité et la surjectivité de |'application f :

R— R
1 X _ =X
XHSh(X)Ze =
R—»[—],]]
2. ¥ X
X
T+||
C— R?
3 ¥
z>(Re(z),Im(z))
o oo
X t>sinx
R— C
5 F: ;
x> x(141)
6. f:C—bF
zZ>7Z
Rt
7 f:C ’
z 7|
8. 5 O o E(x) designela partie entiere duréel
i .XHX_E(X),OU (x) désigne la partie entiére du réel x.
C\{-1} — C
% I z
z B
142
I 2
10. f: * "
(x.y)=(x+y.x—y)
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2 2
Wl s E
(x.y)(xy.x+y)
C—-C
. f: 5
ZH>Z
On finit au top
N — N
] N— N : )
13. On consideére f: etg: n/2 si  n est pair
ne2n n

(n—1)/2 sin estimpair
a. Etudier I'injectivité et la surjectivité de fet g.
b. Etudier I'injectivité et la surjectivité de gof et fog.
1u C ([0,1],R) désigne I'ensemble des fonctions réelles continues sur [0,1], et

D([O,1],R) 'ensemble des fonctions réelles dérivables sur [0,1].
Etudier l'injectivité et la surjectivité de I'application :

c([o.1,®)~ D((0.1).R)
[0,]— R
L xa—)j;:f(t)dt

15. V désigne I'ensemble des vecteurs du plan muni d’'un repére orthonormé

(0.0 7).
Etudier l'injectivité et la surjectivité de I'application :
Vi R D _ e E
Filie. . . (ou u.v désigne le produit scalairede u et v .)
(u,v)Hu.v

24 | Avous! Fiche 2 m Injectivité — Surjectivite



L'étude des variations de f, le calcul de ses limites en —oo et +00 , et sa conti-
nuité permettent d'établir sa bijectivité, grace au théoréme de bijection.

L'étude des variations de f et le calcul de ses limites en —o00 et +0¢ donnent
f strictement croissante de R dans ]-1,1[ (ce qui justifie au passage que fa bien
ses images dans [-1,1] ), elle est donc injective mais non surjective, car 1 (par
exemple) n'a pas d'antécédent par f.

f est une bijection, car un nombre complexe est entierement déterminé par
ses parties réelles et imaginaires : ¥ (x,y)e R?,31z€ C,z=x+iy .

f(0)=f(w)=0 ;fn'est donc pas injective.

f(0)=0,f [§]=1 ; la fonction sinus étant continue, le théoréme des valeurs
intermédiaires donne f surjective.
Soit (x,y)e R?.Ona: (F(x)=f(y))e (x(1+i)=y(1+i)) & (x=y);fest

donc injective. Hi=0

x(H—:’) =1 équivauta x = T’ , qui n'est pas un nombre réel ; ainsi 1 n'a pas

d'antécédent par f, qui n‘est donc pas surjective.

Soit yc C.Ona: (f(z) = y)@ (E = y)<:-¢» (z = ;) ; fest donc bijective.
f(1)=f(i)=1;fn'est donc pas injective.

Soit ye R, f(y)=y, donc fest surjective.

On rappelle que pour tout x& R : E(x)< x <E(x)+1. Les images de f sont
donc bien dans [0,1[.

f(0)=f(1)=0 ; fn'est donc pas injective.
Soit y€[0,1. E(y)=0,d'ou f(y)=y ;fest donc surjective.

Soit (z,z")€ (fC\{— 1} )2 .Ona:

(f(z):f(z'))@[ E 2 ]@(z+zz':z'+zz')¢>(z:z');

H-z_H-z’

f est donc injective.
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On a: (f(z2)=1)«

-
1+z

& (z=1+2)« (0=1) ; la derniére assertion

étant fausse, il en est de méme de la premiére et 1 n'a pas d’antécédent par f,
qui n‘est donc pas surjective.

Remarque : Si le contre-exemple avec y —1 n‘apparait pas de facon évidente,
on le trouve, en cherchant a résoudre f (z) =y, poury quelconque dans C :
z
=Y

flz)=y)&
(- [
on a une assertion fausse... On tient donc notre contre-exemple.

& (z(1-y)=y). A ce stade, on voit que si y —1

10. Soit (a,b)e R%.Ona:

1
x+y:a X=5‘(a+b)

(f(x,y)=(a,b)) < ((x+y.x—y)=(ab))e X—y=b

yzéw—bf

(On obtient le dernier systéme en sommant puis en soustrayant les deux lignes
du systéme précédent.)

Onamontré: V(a,b)e R2,3 I(x,y)e Rz,f(x,y) =(a,b) ; fest donc bijective.

M. f(1,—1)=f(—11) ; fn'est donc pas injective.

xy=1 - IY“X

x+y=0 |_x?-1

On a: (f(x,y) = (1,0))4—-:» { ; le systéme n‘ayant pas de

solution dans &2, (1,0) n'a pas d'antécédent par f, qui n'est donc pas surjective.

Remarque : Soit (p,s)e R2. On a: (f(x,y):(p,s))ﬁ:» li:-;is ;x ety

sont donc les solutions de I'équation X?— sX+p=0 (c'est un résultat 2
connaitre !), dont on sait qu'elle nadmet pas toujours des solutions réelles.
Le contre-exemple donné est I'un des plus simples !

12. f(1)=f(—1)=1;fn’estdonc pas injective.

Soit Z=x+iyeC,(x,y)e R2. On cherche z=a+ib,(a,b)e R? tel que
f(z)=2.
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Remarque : L'existence de tels nombres complexes reléve du cours sur les
nombres complexes, mais nous allons le démontrer ici...

a?—bt=x ()

) :
Ona:(a+ib) =x+iy< .

D'autre part : |z|2 =|Z| & a’ +b% =\/x?+y? (3) (il fallaity penser!).
x—!—W]
S
Comme pour tout (x,y)e ‘Rz, |x| <4 x? +y2 , le systeme a des solutions.

On prend a:‘j%[x+\/x2+y2 ou az—J% x+\}x2 +y?

signe de b étant celui de a si y est positif, le signe contraire sinon, on en déduit

la valeur de b qui vaut : soit \E[\fxz +y2 — X |, soit —J% \fxz +y2 —X

Finalement, tout nombre complexe admet des racines carrées, et fest surjective.

2]
2

On a donc en sommant et en soustrayant (1) et (3) :

et,d'aprés (2)le

13. a. Soit (a,b)e N2.0On a: (f(a):f(b))ﬁ (2a=2b)<> (a=b) ; f est donc

injective.

Toutes les images par f sont des nombres pairs ; on en déduit que 1 (par
exemple) n'a pas d’antécédent par f qui n'est donc pas surjective.

9(2)=g(3)=1 ;g n'est donc pas injective.
Soit n€ N. g(2n)=n, g est donc surjective.
b. Pourtout ne N,gef(n)=g(2n)=n,donc g-f est clairement bijective.

n si n est pair
gt e Nyt gy = n—1 sinestimpair’

fog(2)=f-g(3); feg n'estdonc pas injective.
Si n est pair, feg(n)=n est pair, et si n est impair, fog(n)=n—1 est pair.

On en déduit que les entiers impairs n‘ont pas d’antécédent par fog, qui
n'est donc pas surjective.
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14. D'aprés le théoréeme fondamental d'intégration, I'application  associe a
toute fonction continue sur [0,1] son unique primitive (définie et dérivable sur
[0,1]) qui s'annule en 0.

Soit (u,v)e (C([0,1],]R))2, tel que @(u)=¢(v); u et v ont les mémes primi-
tives donc (en les dérivant), on obtientu =v et  estinjective.

Les images par ¢ sont des fonctions dérivables sur [0,1], s'annulant toutes en
0; ¢ n'est donc pas surjective.

15 F (l,I) =f (6,6) =0, donc fn'est pas injective.

Soit ke R. f(k?,?) =k, donc fest surjective.
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Fiche 3

Sommes et produits indexés dans N

La manipulation des sommes finies est la premiére étape vers la notion de série, étu-
diée au cours de la premiére année et développée en seconde année. Pour évoluer plus
aisément dans le contexte des sommes infinies que sont les séries, il faut déja maitriser
le cas fini ! C'est l'objectif de cette fiche.

o [

B Reconnaitre et utiliser les produits et sommes connues

1. VYneN’, H k =n! (Factorielle)
1<k<n
n
2. VneN, Z k= Liind) (Somme arithmétique)
k=0
n P {— an—n0+1
3. Vae C\{1},V(n,ng)e N% ,n>ny, 3 a*=a™ o ——
—a
k=ng
(Somme géomeétrique)
Exemple 1 a
Soit ne N . Calculer la somme des n premiers entiers impairs : Z (2k+1).
k=0
Réponse
n—1 n-1 n—1
n—1)n
> (2k+1)=2) k+ 1= 2.
k=0 k=0 k=0 2
n-1
A Quand le terme que I'on somme ne dépend pas de I'indice (comme ici Z 1),il
k=0

faut bien compter le nombre de termes présents dans la somme. Ici, la somme
commence a 0 et se termine an — 1, on somme donc n fois le nombre 1.
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B Changer l'indice de sommation ou de produit

n n

Pour (ng,n)€ N? avec ny < n, on considére S= Y~ uy et P= [T uy.
k:no kzno
n—a
Etantdonné a< Z telque ny—a>0,enprenant i=k—a,ona: S= z g
Ead i=ngp—a
et P= H Ujta-
i=ng—a
n

Exemple 2 1—[ (k+1)

Soit ne N,n> 2. Simplifier le quotient: Q = k:o—.
[Tk=1
k=2

Réponse

L'idée est de se ramener avec des facteurs identiques dans le produit du numéra-
teur et dans celui du dénominateur, afin de simplifier le quotient.

Dans le produit du dénominateur, on effectue le changement d'indice i =k—2 ;
on obtient :
n

n
[Tk+n  J[*k+D
_ k=0 _ k=0

- n n—2 ’
[Tk-1n JlG+D
k=2 i=0

La lettre de lindice importe peu. Ainsi, on constate que les facteurs des deux
produits sont les mémes, le produit du numérateur ayant deux facteurs supplé-
mentaires pour k=n—1 et k=n.Onadonc: Q=n(n+1).

Q

m Effectuer un télescopage

Soient ne N,ng €[0,n] et {uy.k€[ng ;n]]} une famille de nombres.

Sil existe une famille {ak,ke[[no;n+1]|} telle que, pour tout ke [ng,n],

n n
Uk =Ggq— g, alorsona: > U= Y (Ggyq— k)= dpsq— dng -
k=ng k=ngp

On parle de somme télescopique.
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Exemple 3

n
Soit ne N . Simplifier Z k —H , aprés avoir déterminé les réels a et b tels que
k=1
1 b

ourtout ke N" :
3 k(k+1) k k+17

Réponse

1 1 1 < o i
————— (c’est une écriture qu'il faut

Pour tout ke N, : =
il e k(k+‘|) k k41

connaitre !).

Pour ke N’ onpose:akz—%.Onaalors:
ik k1 3 :zn:(akﬂ_ak):anﬂ_a]:_ : 1+1= n1.
—k(k+1) — n+ n+

B Utiliser la formule du binome de Newton

ab"k oy P =n—!.
k) Ki(n—k)!

Lorsque, dans une somme, apparaissent les coefficients du binéme

n
V(a,b)e C2VneN,(a+b)" =S|
k=0

n
, il est fort
k] il est for

probable qu'il faille utiliser la formule du binéme de Newton pour la calculer!

Exemple 4
. — 2. (n k
Soit ne N.. Simplifier Z 2" .
k=0 k
Réponse

Z ]2" Z ]2"1"" (2+1)"=3".
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On s'échauffe
1. Calculer Z 2 avec A:{(i,j)eNz,f+j§3}.
(i,j)eA
k=] k
2. Soit ne N.Simplifier: Y e et > [ [e".
k=0 k=0k

3 1

n
» 1
3. Soit ne N . Simplifier: - ]

n
4. Soit ne N . Simplifier ZIn[H—l].

k=1 k
N (n P K
5. Soient ne N,x€ R.Simplifier: > | '|x*(1-x) .
k=0
LA
6. Soit ne N . Simplifier : k[ ]

7. Soit ne N’ . Déterminer le produit des n premiers entiers pairs non nuls :

[T (2). puis le produit des n premiers entiers impairs: [  (2k+1).
1<k<n 0<k<n—1

On accélere

8. SoitneN,n>2.

a. Déterminer trois réels a, b et c tels que pour tout xe R \{—1,1} :
1 a b c

3—_x x x—1 x+1
1
k> —k

n
b. En déduire une expression simplifiée de Z ,en fonction de n.
k=2

n—1
9. Soient ne N',(a,b)e R?. Montrer que: a" — b" =(a— b)Zakbn_l_k )
k=0
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2
k=2 k
2n
km
b. in|—
Zsm[ -
k=0
L 3
1. En calculant de deux facons différentes Z((k-H) —k3) (somme
k=0

télescopique et développement), montrer que pour tout ne N",

15 n(n+1)(2n+1)
kg?)k = : :

" N k
12. Soit ne N . Simplifier: ) > ]

i—0k—=i\!

2
n n
13. Soit ne N . Montrer que : [Zf] =Zi3.

i=1

14. Soit n€ N . Simplifier : Z 2T avec A:{(i,j)e N2,i+j< n}.
(i,j)eA

15. Soit ne N,n>2.Simplifier: " (i+)).
Ki<j<n
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A Dans une somme double, l'indice de la somme écrite en premier (dans
le sens de lecture) ne peut pas dépendre de l'indice de la somme écrite en
second.

3 2'“—222’“ 2 +2'+22+2 (4|2 +22+ 22
(i,)eA i=0j=0 ._0 11 J= 2 Ji j=0 j=1 j=2
i=0 i=1
+| 22 +23 |+] 2% |=49

= = =

=0 =) =0

—_— [

=2 i=3

Remarque : On a fait ici un calcul exhaustif. On aurait pu faire un raisonne-
ment général pour simplifier la somme double avant de la calculer (c’est
I'objet de I'exercice 14).

i . ¢ 1—emt
Y e = "(e) = (c'est une somme géométrique).
k=0 k=0 1—e
(N k (0 n—k 4 o
Z iF = Z |8 k1 [1+e) (on applique la formule du binéme du
k=0 k=0
Newton).

S i i L ‘

n+1+k k=1n+k n+1 n+k+1 n+k

— —
k=0 dansla ak+'| ak
premiére somme

.4 9.
n+1 2n4+1 n+1 2n+41.
N —’ —
an41 L

(S
télescopage

= In(n+1)—In(1)=In(n+1).
télescopage — ¥ T
n+1 A
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n
k

[ = et~

(avec a = x — x2 et b=1dans la formule du binéme de Newton).

n n n nl
6. Soit ne N.Onnote: S,, = k{ ]: k—,
) RX:E) k k; k!(n—k)!

Remarque : Ici, on ne peut manifestement pas utiliser la formule du bindbme
de Newton directement !

* 5i n=0, 55=0.

* Sin=0,leterme pourk =0 étantnulona:

s,,zzn: L = Zi,?(X(—F: ng[ ]

k—1(k‘1) (n— k)% vizg

] n~l 1 (1+1) 2n 1

_"_Z

(avec a=b =1 dans la formule du bindme de Newton).

Remarque : La formule du binbme de Newton donne, pour tout réel x, et tout

neN, (14+x)" = Zn:[:]x" .

k=0
En dérivant, on obtient : n(1+ x)" Z k[ }
! n-1
En prenant x — 1, on retrouve Z k[k] =n2" .

k=0

n

7. ﬁ(zk)=2"Hk=2”n! ;

k=1 k=1
n n—1 2n

[T(k) = J[@k+1) =][k=@n);
k=1 k=0 k=1

\_'V"_, = ‘-—-.—v-———l
lesn premlers pairs les n premiers impairs

d'ou: ]__[ (2k + (2n)
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. a. Pourtout xe R\{0;—%1},0na:
1 -1 1 1

¥—x X +2(x—1)+2(x+1)'

_li L_l]_ l_L]
B k+1 k) |k k=1

k=2 ! k) )
-+ ak
_ l[L_l _[l_]_l_ 1
wlarssagad a1 o) 2 4 2n(n+1)

an-41 a2

n-1 n-1 n-1
9. (a_b)zakbn—1—k = Zak+1bn—1—k . Z akbn—k
k=0 ondéveloppe k=0 k=0

n . . n-1
. zafbn—f . Z:akbn_k
i=1 k=0

i=k+1
n—1 . . n—1
Za,bn}'kﬂ_lﬁ?fi"'zakbnk]an_bn-
=1 i=n k=0 k=1
1) O (k) (k=)
10. a. Zin T—k—2]=2|nk—2
k=2 k=2
(
n
=>"|(In(k+1)—In(k))— (In(k)— In(k— 1))
=T A ay
= In(n +1)—In(n)~[g3=ln[n—+]-
télescopage a;l:-I ) 2n
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ik k
2n 2n L 2n L
b. sinf]—|= ) Im|e " |=Im
S sinf A7) - 3 > e
k=0 k=0 k=0
[
somme géomeétrique
(2n+1)x it
27i
1-e 1N 1—e“en
=Im =Im —|=Im(1)=0
i i
=" 1—ef

n
1. Lasomme télescopique donne: > |(k +1)3 - &3“ = (n+1)3.

L e ——
Le développement donne: =t oy K
n n
Z(k“ —k3) Z(3k2+3k+1) 3Zk2+32k+21
k=0 k=0 =0
=3Zk2+M+(n+1).
k=0 2
n
On en déduit: 3 k? +M+(ﬂ+1)=(n+l)3 d'ou:
k=0
Ekz n(n+1)(2n+1)
6 .
k o
w3l - 5 [ S5 [z e
i—0k=i _ o<i<k<n\' k=0i—0 k=0 =0 )
onvaintervert?rlessommes formuledubmamedeNewton

encomprenantcommentles
indices sontinterdépendants

o zn:zk =2n+1___1_

k=0
S —

somme
géomeétrique
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i=1 =1 j=1 i=1 <i< j<n i=1 J=21=1

Il

Zn:‘z +2i: [ljzl*'] —Zn:fz +2Z; 1(1

i=1 Jj=2 i=1 i=1
2 -2 2 -3 4 .2
=3 iF+Y —Z; =1 +Zf +Z; Z; —H—ZJ —ZJ
i=1 j=2 J= i = j=2 J=1
n n—i 1—n—i+1 0 )
1a. E St Zzz:ﬂ_z 5 Zz; sz Z(2n+1 :)
(i.j))eA i=0j=0 j i=0

i=0 i=0

15. On a, d’'une part:
ZZ“‘"”‘ZZ""ZZJ Zm+2n;—2n21—n (n+1) ;
i=1 j=1 i=tj=t j=1i=1 i=1 i=1
d‘autre part :

n n n
YD i+N= D (+N+D 2+ >, (i+))

=1 j=3 Ki<j<n i=1 I<j<i<n
=2 > (i+j)+n(n+1).
i< j<n

Onendéduitque: > U+ﬂ'=%(ﬂz(n+1)—n(n+1))= n(n+'2(n—1).

<i<j<n
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Fiche 4

Résolution d’inéquations

Cette fiche ne fait pas référence a un chapitre précis. Elle permet de travailler sur des
inégalités avec des valeurs absolues et des racines carrées, ce qui sera trés utile pour les
études de fonctions.

Elle propose également des résolutions d’'inéquations avec un paramétre, ce qui, au-
dela de la technique propre de leur résolution, permet de se familiariser avec le raison-
nement par disjonction de cas.

On notera systématiquement S I'ensemble des solutions de l'inéquation que l'on
résout.

B evounoneomnent

B Résoudre une inéquation avec une valeur absolue
» En utilisant I'équivalence :{V(x,a)e R2, (Ix|<a)e (a>0)A(—a< x< a).i
Exemple 1
Résoudre I'inéquation : [3x — 2| < 2.
Réponse

Ona: (|3x—2|§2)¢=>(—2§3x—25 2)<>|0< xgi .

3

Ainsi, S = 0,i
3

A |l arrive que l'on ne puisse pas résoudre simultanément les deux inéquations.
Il faut alors les résoudre séparément, et prendre |'intersection des ensembles
de solutions.

Exemple 2

Résoudre l'inéquation : |x2 +2x— 1| <2,
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Réponse
Ona: (|x2+2x—1'§ 2)¢> (—25 X2 4+2x—1< 2)

& (0< X +2x+1)A (¥ +2x—3< 0] (xe[-3,1]).

"
toujours vraie

Ainsi, S=[—3,1].

» En utilisant I'équivalence : -V (x.a)€ R2, ([x|§ |a|)<:> (x2 < az)“
Exemple 3 |
Résoudre I'inéquation : [2x +3|< |4 — x|.

Réponse
Ona: (|2x+3|<|4— x|) < ((2x+3)2 <(4- x)z)

1
—7;—] :
3

Remarque : On aurait également pu raisonner par disjonction de cas, pour
« lever » les valeurs absolues :

= (3x2+20x—7< 0)<:> [xe

Ainsi, S = —7:ll.
3

[2x +3| <4 —x|
& xg—%]h(—(2x+3)<(4—x)] v [—%934 /\(2x+3<4~x]]
V((x24)/\(2x+3<—{4—x))}
jamais vraie
|XE —7.—%”\/ xel—%,%“@ er—?,-%”

B Résoudre une inéquation avec une racine carrée

La premiére étape est I'étude du domaine de définition. Ensuite, on raisonne par
disjonction de cas suivant les signes des membres de |'inégalité, puis (quand les
deux membres sont de méme signe), on applique la fonction carrée.

Exemple 4

Résoudre l'inéquation : \]—x2 +2x+3>2x—1.
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Réponse
Pour que l'inéquation soit définie, il faut —3* +2x+3> 0, ce qui équivaut a
Xe [— 1;3]-

Ona: [\/—xz +2x+3>2x—1

& |(-1<x <3)A
domaine

- \J—xz +2x+3>2x—‘|]

‘_‘v_‘ . - ¥ g - -
membre dedroite  toujours vraie avecles conditions précédentes
strictementnégatif carunnombre positif est toujours strictement

supérieur aunnombre strictement négatif

]]
X<— A

V[(=1<x<3)A xgl] A (—xz +2x+3>(2x—])2)
—_— 2 i,
domaine

L — — 3
membre dedroite aveclesconditions précédentes, les deux membres
positif étant positifs, onpeut les élever aucarré sans

changerlesens del'inégalité

:
¢:;.[—1§x<E]v [%§x§3]/\(5x2—~6x—2<0)

<=>[—'I§X<l]\f
2

Ainsi, S=

_, 319
¥ 5 .

B Résoudre une inéquation avec un parametre

On fait apparaitre des disjonctions de cas, au fur et a mesure de la résolution, en
respectant les régles sur les inégalités.

Exemple 5
Résoudre l'inéquation : - > 3— x, en fonction de la valeur du paramétre
m—2
me R\{2}.
Réponse
g m—1)x+6—4m
Ona:[u>3—x]<:> ( ) > 0] ().
m-—2 m-—2
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*Sim—2>0: (1)« (m-1)x+6—4m>0) &
m>2>1

* Sim—2<0: (1)< ((m—1)x+6—4m<0) (2).

-Silem<2:(2)e|x<

4m—6
m—1

|

- Si m=1: (2) n'est jamais vérifiée.

4m—6
m—1

-8l m< s (2)@[x>

Sim<1oum>2,
Finalement: {Sim =1,

Sil< m< 2,
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5:

| m—1

— 00,

4m—6

S=g
4m—6

X >

4m—6]
m—11
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-------
-
-
-

Résoudre les inéquations suivantes, en discutant éventuellement en fonction
de la valeur du paramétre m :

On s'échauffe

1 2x|<[2+x|

2.

x2+3x+2‘§2

3. x+1<2—-x
4. Jx+1>2-x
5 \fx2+2x—3§x

6. J2x+2<[3x—1

7. J3—x—\/x+1>%

On accélere

8. [2—q<f—x

9, |3x2+x—2(g 3x+3

10. Jx+6—Jx+1>+2x—5

, XM e
m+42

Fiche 4 w Résolution d'inéquations Avous! | 43



-------
---
-

On finit au top
13. \/x+m<3m—x
14, 2x4+m> x+1

T
X—3 Xx+1
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-------

1. Ona:

(2]x|<[2+x]) (4x2§ (2+x)2)¢> (3x2—4x—4g O)ﬁ

Xec

4

Alnsi, szl—g,zl.
3
2. Ona:

(|x2+3x+2‘§ 2)@ (—25 X2 43x42< 2)

& |(0< X2 +3x+4)A (¥ +3x<0) | (xe[-3;0)).
‘-u_-_-_—.v_—_dl
toujours vraie

Ainsi, S =[-3,0].

3. llfaut x<2.
* Si x+1< 0, l'assertion (x+1§ Jz—x) est vraie.
*Six+1>0:

(x<2)A(x+1> 0)A (x+1< V2= x))> [(— 1< x< 2)/\((x+‘|)2§ 2- x)]

& _‘|<)¢'S._3-‘-_\/ﬁ I
2
Finalement, Sz‘—@o,iz\h_3 .

4, llfaut x>0.

Ona:

(Vx+1>2-Vx) e (x> 0)A
& (xzo)/\[v‘x2+x>l;-—x].
* Si %—x< 0, l'assertion [\/XZ-I—X >§— X

(Jm+&)2>4]

est vraie.
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. SiE—XZO:
2

[05 xg%}/\[\fx2+x>§—x]@[0§ X< %}/\

(o2

2
x2+x>[§—x]
2

<~

0L ¥< S
2

16

Finalement, S :Ii,+oo{.
16

5. llfaut: x € |—o0;—3]U[t+o0].
* Si x< 0, l'assertion [\)xz +2%—3 < x] est fausse.
* S X=0:
(1< x)A

\/mg X]]ﬁ ((1<_< x)/\(x2+2x— 3< xz))@ [15 xgi].

Finalement, S :11'2

6. Ilfaut x> —1.

Ona:
(\}2x+2 §|3X—1|)<=>(X2—1)A(2x+25(3x_1)2)

& (x>—1)A V(x>1)|<|xe

x<-—l
-9

~1,~%IU[1,+00[].

Ainsi, S :[— 1,—%IU[1,+00[.

7. llfaut: —1< x<3.

Ona:

[J3—x—Jx+1>%]¢> [J3—x >Jx+1+%

46 Corrigés Fiche 4 m Résolution d'inéquations



& (1< x<3)A 13— x>

2
\/x+1+%]

.

& (-1 x<3)A|x+1< —2—2;:

7 7
* Si P 2x <0, l'assertion [\/x+1 < Z_ 2x] est fausse.

-Siz—2x>0:
4
2
[—TS x<z-]/\[\/x+1<—7-—2x S —15;x<-7- A X+1<[1—2x]
8 4 8 4
& —1SX<§ A x<1—? % x>1+% ]

J31

—13=2,

Finalement, S =

8. Ici, en élevant les deux membres au carré, on obtient la recherche du signe d'un
polynéme non pair de degré 4, sans racine évidente... On va plutét faire une dis-
jonction de cas suivant le signe des nombres dont on prend la valeur absolue :

On adonc:

(|x2—1|§|2—x])@((x5—1)/\(:{2 —1§2—x))v (—1gx51)/\(1—x2 32—,\’)

4

toujours vraie

V((1§x§2)/\(x2 —152—)())\/ (2<x)A(x*-1<x-2)

toujour?, fausse
@[_]_T‘ﬁgxgq]v(qug)v 1<x S_H-TJE .
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9.

10.

_1- i3 —14473

Ainsi, S =

2 2

» Si 3x+4+3< 0, l'assertion (3x2+x—2|g 3x+3) est fausse.

* Si3x+3>0:

(|3x2+x——2’§3x+3]¢> [—15x5§]/\(~3x2 —x+2g3x+3)

\%

A(3x2 +x—2§3x+3)

ESX
3

ESXSE
3 3

@[—lgxgz v
3 3

Finalement, S = —l,é !
33

Il faut x >

[SERV,]

Ona:

(\/x+6—Jx+1>\/2x—5)¢:~[x2% A

/\[\/2){2— 3x—5<5—x
* Si 5— x< 0, l'assertion [\/2):2 —3x—5<5— x] est fausse.

*Si5—x>0:
A[\/2x2—3x—5<5—x

-g-g x< S]A(2x2—3x—5< (5- x)?‘)@ [gg X< 3].

x+6>(Jx+1+J2x—5)2]

= xzé
2

[nggs
2

A4

Finalement, S :’3,3 :

Remarque: Sur [— 1,400, \/x +6 — \/x+1> 0, donc on aurait également pu
écrire:

(Jx+6—\/x+1 > J2x— S)@ [ng

/\[(Jx+6 - Jx+1)2 SN~ S]@ (E).
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12.

Il faut m=—-2.

= 1 x(m+1)4+2m+1
Ona:[m<1+X@ ( ) >0/.
m+2 m+2
Sim=-1, 5=
. . 2m+1
Finalement: {Si —2<m< —1, S= r—
m+1
Sim<—-2oum>-1, S= I 2m+1 [

ons: 5 2o [fmtiet, o)

Il s'agit d'étudier le signe d'un quotient.

*Sim=1 :[;>0

x(x—1) @(xe]—oo,O[U]l,—}-oo[).

* Si m=1 :le numérateur (affine) s'annule pour x = , le dénominateur

(polyndme de degré 2), s'annule pour x & {O,T} . Il faut donc positionner

en fonction de 0 et 1, puis étudier les signes.

1—m
« Sim>1:
X il 0 1
1—m
|
(m—1)x+1 - 0 + - -
X(X—1) 4 4+ & - 8 4
(m—1)x+1
—=u Bl el
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*Sio<m<1:

" 0 1 T
1-m
[
(m—1)x+1 + + + 0 -
x(x—1) = B = & + -
(m—1)x+1
e i - - + 0 =
x(x—1) l
Remarque:Sim_O,1 - et 1 sont confondus.
*Sim<0:
X 0 1 1
1—m
|
(m—1)x+1 - + 0 - —~
x(x—1) + 0 - - 0 +
(m—1)x+1
T - - 0 + -
x(x—1) |
Sim>1, S=‘;,OlU]1,+oo[
1—m
Sim=1, S =]-00,0[U]Jt,+00|
Finalement: ;

Sio<m<1, 5=]_oo,o[ul1,L '
1-m

Sim<o, S=]—oo,0[U}—1-,1[
k 1-m

13. lifaut x> —m.
* Si 3m— x <0, 'assertion (\/x +m<3m— x) est fausse.

Pour avoir 3m— x> 0, la condition x> —m impose m> 0.
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14.

----------------
---------
-----------------
--------
-

*Sim>0:
(—m§x<3m}/\(~./x+m <3m—x)¢$(—m§x<3m)/\(x+m<(3m—x)2)
@(—m§x<3m)/\(x2—(6m+1)x+9m2—m>0).

Notons Py,(x)=x?— (6m+1)x+9m? —m.

L 6m+1+\/1+16m] L 6m+1—\1+16m
2

Comme m> 0, P,(x)= 5

La question qu'il reste a se poser est le positionnement des racines de P, par
rapporta —m et 3m.

P, (—m)=m? +(6m+1)m+9m2 —m=16m?>0, donc —m est a «|'exté-
rieur des racines » de B, (et négatif).

P, (3m)=9m? — 3m(6m +1)+9m? —m=—4m<0, donc 3m est a «l'inté-
rieur des racines » de P, .

6m—|—1+\/1+16m
2

De plus, > 0,onadonc:

X . 6m+1—~J1+16m . 6m-+1++J1+16m

2 2
| |
P (X) - # 0 = - 8 =
Sim<Q, S=0
Finalement : - I
S— 5| M1 Ji+16m|
2 l
Ilfautxzﬂ.
2

Remarque : Le cas x+1< 0 ne peut se présenter que si —1> i, ce qui
équivauta m> 2. =

*Sim>2:

— Si x+1< 0, l'assertion (\/2x+m > X+ I) est vraie.
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— Si x+1>0: (- 1< X)A(V2xFm > x+1) (1< x)A (m=1> £?).
Comme m>2, on a —Jm—1<—1, c'est donc équivalent a
xe]—l;\/m—‘i].

*Sim<2: (J2x+m2 x+1)4:> (m—Iz xz).

Comme m< 2, deux cas se présentent :

— Si m< 1, il n'y a pas de solution.

—Sim>1; [?S —Jm-1|& (mz > 4m—4)¢=> ((m—z)zzo).
La derniére assertion étant vraie, il en est de méme de la premiére, donc

xe{—dm—‘l:Jm—ﬂ.

Sim<1, S=0
Finalement: 1Si 1< m< 2, Szl—\/m—-‘l;\/m——q.
Sim>2, s:[_ﬂ; =1
2
15. Ona:[ m >—2 & x(m—2)+m+6
Xx—3" x+1 (x—3)(x+1)

* Sim=2,alors x€ |- o00;— U 3;+00].
5 par

* Si m=2 : toute la difficulté réside dans le positionnement de >
-m

rapporta — 1 et 3.
m+-6

— 1% cas: < —1.
2—m
Ona: [m+6<—1]¢b -L<O]@(m> 2).
2—m 2—m
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(x—3)(x+1)

(m—2)x+m+6

(m—2)x+m+6
(x—=3)(x+1)

m+6
2—m

Ona[fi£>3] {§EL>0%¢:nepzn

— 2%cas: >3.

X

(x—3)(x+1) o - 0 +

(m—2)x+m+6

(m—2)x+m+6
(x—3)(x+1)

— 3%cas: m<0.

(x—=3)(x+1)

(m—2)x+m+6

(m—2)x+m+6
(x—3)(x+1) |
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.........................
.....
...........
...............
-
......
-

Sim<0, 5= yam_1‘m+6[

Sio<m<2, S:]— —1[U]3 m+6
Finalement : —ml .

Sim=2, |- 00;— U 3400

Sim>2,

‘ﬂié—ﬂup+m[
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Fiche 5

Limites de fonctions réelles

Cette fiche permet de réactiver et de consolider les connaissances de terminale. Une
nouvelle notion abordée en premiére année permettra de simplifier les calculs de li-
mites. Il s‘agit des comparaisons de fonctions et des développements limités, qui font
l'objet d'une fiche ultérieure...

R désigne RU{—o00,+0}.

Soient / un intervalle de R, f une fonction définie sur /, et ac R un élément ou
une extrémité de /.

- [

B Calculer des limites de fonctions polynomiales
et de fonctions rationnelles

» SiPdésigne un polynéme de degré n et de coefficient dominant a, :

En factorisant, on obtient: lim P(x)= lim a,x".
X—too X—d o0
Exemple 1
Calculer: lim —3x>+x.
X—+00

Réponse

" . 1 :

lim —3x3+x= lim —3x3 1~—2 = lim —3x3=—o0o0.
X— 400 X— 400 3x X—+00
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» SiPdésigne un polynéme de degré n de coefficient dominant a,,, et Q dé-
signe un polynéme de degré m de coefficient dominant b, :

. . . P(x . "
En factorisant, on obtient: lim L = lim ——2—.
X—+o0 Q(X) X—+ oo bmxm
Exemple 2
2
Calculer: lim % .
X——00 X~ 4 X
Réponse
2
5 3|1+ 5
. 3x°+2 N 3x " 3x . 3
lim ——= lim ————*= |lm —= lim ==0.
X——00 X3+X2 X——00 X3 1+1 X——00 X3 Xx——o00 X
X
. : — o apx”
Remarque: Il ne faut évidemment pas oublier de simplifier le quotient
pour conclure ! by X

» Avecles notations précédentes, siaest uneracine de Q(c’est-a-dire Q(a) = 0),
et n'est pas une racine de P(P(a)=0):

Pour lever l'indéterminée de type « 1 sur 0» dans le calcul de la limite en a de
P(x)
Q(x)
cas ( limite a gauche et limite a droite), on obtient +o0 ou —oc .

, on étudie le signe de Q et, en faisant éventuellement une disjonction de

Exemple 3
3 3
: X°—x
Calculer: lim - -
x—1x"—3x+2

Réponse
On pose: P(x)=x*— x> et Q(x)=x> —3x+2.

Remarque : Ici, P(1) = Q(1) = 0. On n'est donc pas exactement dans les condi-

tions énoncées. Mais il ne faut pas oublier que si P(a) = 0, alors on peut écrire
P —(X — a)P;. Nous allons donc factoriser les deux polynémes, pour simplifier
la fraction.

On a immédiatement : P(x) = x*(1— x).
On écrit: Q(x)=x>—3x+2=(x— 1)(:(2 +ax+b) ; par identification, on trouve :
Q(x)=x3-3x+2=(x— 1)(x2+x—2).
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On remarque que 1 est également racine du polynéme X% +X -2, on a finale-
ment : Q(x)=(x—1)2(x+2).

% P(x) —x?
Ainsi, 1,—2¢, = .
insi, pour x ¢ { } ) = )x72)
Ona:
X —2 0 1
2 I }
(x=1)(x+2) + 0 - - g %
e < + 4 _
(x—1)(x+2) I
D'ou: lim P(x):+oo et lim P(x):—oo.

x—1~ Q(x) x—1t Q(x)

B Lever une indéterminée avec des fonctions exponentielles, logarithmes,
et puissances

» En factorisant pour faire apparaitre des croissances comparées :

B Inx)®
Pour (u,ﬁ]e(]}&l) ona: lim ( 1) =0, lim xﬁ|lnx|“=0,
x—+o0  xt Xx—0
X .
lim —-=+o0c, lim xPe—X =0,
X— +00 xL X— 400
Exemple 4
’ e‘j’_‘—x
Calculer: lim
x—+00 /x — e¥
Réponse
Jx —Jx
e‘/;~x e i—xe _e\/;_,ﬂ—xe_‘/;

Jx—e* e (Vxe * 1) Jxe *_1

Par composition et croissances comparées, on a:

_ . 2 _ " _
lim xe ‘f;= lim (J;) e Vx = lim x2e X—=o0
X— 400 X— 400 x;::/;.x—-+oo
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et lim \/;e"‘:o,doncparsomme: lim (1—xe"/’_‘):1

X—+00 X— 400
: —x i R ; 1- xe_‘/;
et lim (\/;e - 1) =—1, puis par quotient: lim ——=-—1.
s 460 x—+00 {/xe ¥ —1
lim (Vx—x)= lim x|——-1=-—0c
X— +-.')o( ) X—+0c0o \/;
donc, par composition,  lim eVX—x_g
X—+00
—Jx
Enfin, par produit: lim e‘&_ ¥I-XE © 0.
X— 400 \/;e_ .

A Avant de se lancer dans une factorisation, il faut s‘assurer que la forme est
indéterminée ! Penser systématiquement « I'exponentielle I'emporte sur les
autres fonctions » n'est pas pertinent partout...

Exemple 5
X
e” +In(x
Calculer: lim —()
x—0 X
Réponse
Ona: lim (ex +|n(x)) =—00
x—0
Pour que le logarithme soit défini, il s'agit nécessairement d'une limite a droite, et
; 1
lim —=40c0.
x—0T X %
e +In(x
Donc, par produit: lim —() =—00.
Xx—0 X

B Lever une indéterminée du type « 0 sur 0 », pour une limite en un réel

On cherche lim M, avec u(a) = v(a) = 0. On suppose u et v dérivables au voisi-
nage de a. x—av(x)

. —— u .
En remarquant que, pour tout x dans le domaine de définition de —,six=a, on
v
u(x) u(x)—u(a) x—a . ) P
a: = X , on fait apparaitre des taux d'accroissement.

v(x) X—a v(x)—v(a)
u(x) u’(x)

On en déduit que, si elle existe, lim —— = lim ——=.
x—+aV(X) anv(x)

Remarque : Cette propriété est appelée « Regle de L'Hospital ». Elle n'est pas
explicitement au programme, mais peut étre redémontrée a chaque utilisation !
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Exemple 6

X

" —1
Calculer: lim e. )

Xx—0 SIinXx
Réponse

X X
-1 —1 1 1

lim —— = lim £ x«_i' —exp’(0)x — =exp(0)x =1.
x—0 sinx  x—o[ X  sinx sin’(0) cos(0)

B Montrer qu'une fonction n‘a pas de limite

P En utilisant la caractérisation séquentielle de la limite :

Si f. définie sur IC R, admet (<R pour limite en a< R, alors quelle que soit
la suite (x,,) de | convergeant vers g, la suite (f(x,,)) converge vers €.

Cette proposition, surtout utilisée pour les limites de suites, sert également a
montrer qu’une fonction nadmet pas de limite en a, en utilisant sa contraposée.

Exemple 7

Montrer que la fonction sinus n‘admet pas de limite en +oc .

Réponse
Considérons la suite (an)neN qui a pour limite 400 ;la suite (sin(zwn))nem (qui
est constante) converge vers 0.

qui a également pour limite

Considérons maintenant la suite [-T—T—+21tn
2 nelN

(qui est constante) converge vers 1.
nelN
Par contraposée de la proposition, on en déduit que la fonction sinus n‘admet pas
de limite en 400 .

E+2'11rn]
2

+00 ; la suite [sin
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Etudier la limiteen a< B des fonctions suivantes (on distinguera éventuelle-
ment limite a droite et a gauche).

On s'échauffe

3
) XH%H pour a€ {1,4+00,— 00} .
X =1
. K> -—“’;1;2 pour a€ {3,+00} .
1
3. XH(,/|X+]|—J|;|)EX pour a€ {0,+00,— 0 }.
X +cos(x)—1
4 x> g pour a€ {0,400} .
5. xr—)fx—_L pour a€ {0,400} .
In(1+x)
2
6. Xsz_-i-M pour a€ {0,1,—1,+00,— 00} .
x* =[x

vX+2-2

7. X pour a aux bornes du domaine de définition
VX2 +x4+3—2x+5
(ilyena4).
x* — |
8 x> (avec, pour x>0, x* =e*"™¥) pour a€ {2,400} .

(ch(x)—1)Arctan(x)

e xsh(x)

pour a€ {0,400,—00}.
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2
x° =1
10. XHﬁ pour aE{‘l,+OO,—OO}.
- —e
X sinx
mn x>»——— pour a=0,avec m=1et a=+o0, avec m=2.
m— cosx
(m+1)x2+3x ) o
12. x> s o pour a aux bornes du domaine de définition, en
x —

fonction du paramétre m.

In(cos(3x))
13. Xy ————s pour a=0.
sin® x
1 X
1B x— H--—] pour a€ {0;+00;—00} .
X
B XHL pour a=0.

J1—cosx
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2
x =2 (" "‘“‘2)("—‘) X2+ x+2
Pour tout x=1: = =

x> =1 (x2+x+1)(x—1) X2 x41

3
On en déduit : lim %”— lim Lx-l—i! 4.
x—1 x7—1 x—=1x%+x+1 3

Remarque : On pouvait également appliquer la regle de L'Hospital.

. x3+x—2 . X
s a=4o00 : |lim ———
x—too x°—1 X—too X

2. Pour x>—1etx=3,0na:

Jxio2 (Vx+1- )(\[’:H) X+1-4 1
x=3  (x-3)[Vx+142)  (x=3){x+1+2) Vx+1+2’

Remarque : Il est fréquent de recourir a une expression conjuguée pour lever
une indéterminée avec des racines carrées.

JX+1-2 " 1

] 1
* g=3: lim = lim ——--=—.
x—3 X—3 Xx—34x+14+2 4

: \/x+1—2 .
* a=+4+00 : |Im — I|m —
X—4+o00 X—3 X— 400 \/x+1+2

3. *« a=+o00 :0nécrit

— (e ) ey
L [ [N T PN )

Remarque : Comme dans l'exercice précédent, il fallait ici penser a l'expres-
sion conjuguée pour lever I'indéterminée.

lim (\/: J-) X!{T%J]::1|:L\/_

X——+o0

et llm (\/F \/_) lim x\ﬂx+1|1_l_+j_
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2
X

De plus, lim eX =1.

X— X o0

1
: - 3 -~
Finalement : X_I,lrfw(\ﬂx +1 \/M)e 0.
»a=0: lim (fx+1- fix])=1et,
a lim. x+1 \/@ e

1
par composition, lim eX =0, lim eX =+4o0.
x—0 x—0T

Remarque : L'expression conjuguée est ici inutile car la limite n'est pas « pro-

blématique ».
Parfois, mal utilisée, elle peut méme faire apparaitre une forme indétermi-

née que l'on n‘avait pas au départ !
En mathématiques, rien n'est systématique.

1
Onadonc: lim (J|x+1| — \/|;|)ex —0 et Iim+(,}|x+1] - \/M)e
x—0 x—0
4. « ag=0 :0nnoteulafonction x— x+cos(x)— 1.u(0) = 0; uest dérivable en
0, et u'(O): 1—sin(0)=1.
On calcule la limite d'un taux d'accroissement :
x+cos(x)—1

x| -

=400.

l =u'(0)=1
XTO X u( )
* a=+oc :0n écrit: s e it i cos(x)_l.
X X X
Pour tout x =0, gos{ X} < 0 ;o lim i=0, donc le théoréme des gen-
X |X X— 400 |X|
darmes donne: lim os{x) —0,dou: lim cos(x)
x—+oo| X X—+o0 X

Par somme, lim $¥costi)—1 =1,

X— oo X

5. + a=0:0n note u la fonction x+>e*—1 et v la fonction x> In(1+x).
u(0) = v(0) = 0.

u et v sont dérivables en 0, et u’(0)= e = T,V’(O) =——=1.
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On peut appliquer la régle de L'Hospital :

u(x)—u(0)

X e et e '
lim —=——1__ |im ¥ 4
x—0In(1+x) x—ov(x)—v(0) v'(0)
X
e”‘(e“]— e—(x+1))
. e¥— X+1
* a=+o0 :0nécrit: = % .
In(14x) X+1 In(x+1)
Par composition et croissances comparées, on a:
ex+‘l eX
lim = lim —=+400
Xx—+o0 X+1 X=x1X—+0
et lim ozl = lim X =~+00.
X— 400 In(x-H) X=x41X—+00 In(X)
De plus, lim (e_ L m—:-_(""'l))ze_1 >0.
X— 00
Finalement, par produit, lim e =] =400
¢ " x—+o0 In(14x) '
2
. On note fla fonction x> szlxl
x“—|x]
On remarque tout d'abord que pour tout x & {0;1,— 1},
(x)= |x[(|x|+1) ~ |x|+1‘
|x](|x|— 1) |x|—1
On constate également que f est une fonction paire.
*a=0: lim f(x)= lim Ji'ilz—
x—0 x—»0|x|—1
*a=1: lim f(x)= lim x—+1:+oo et lim f(x)= lim s - .
x—1t X—-v'l+x_1 x—1 x—T1 X1

* a=—1:Parparité, lim f(x)=—o0 et lim f(x)=+oc.
x——TF Xx——1

*a=xo00: lim f(x)= lim X _1,etparparité, lim f(x)=T1.
X—+00 X—+4o00 X X——00
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NX+2—2

7. On note fla fonction x — .
\/x2+x+3——\}2x+5
Elle est définie sur D =[—2,—1[U]-1,2[U]2,+o0].
En effet:
X+2>0)& (x>-2).

(x2 + X432 0) est toujours vraie.

2x+5>0)4s [x> — g] (I'inégalité est vraie dés lors que x> —2).
— \/x2+x+3¢\/2x+5]@ (x2+x+3¢2x+5)/\ xz——;]
5
& |(xg {=12})a XZ_E]]'
a=—2 : La fonction f est définie et continue en —2, donc
-2
lim F{x)=Ff(—2)=——.
Jimf(x)=F(~2)= ==
* a=—1:Pourtout x&€ D, ona
/ 2
m_z (q}X‘?"Z—Z)[ X“+x+34+J2x4+5

\/X2+X+3—m:[\/22+X+3—MJ[\/J‘2+X+3+M]
(M—Z)[Jx2+x+3+\/2x+5 (Jm-2){\/x2+x+3+\/2x+5

B (x2+x+3)—(2x+5) B pr

lim (\/x+2—2) \}x2+x+3+\/2x+5]=—

x——1
lim x2—x—2=0", lim x(—x—2-0"

Xx——1 X—>—1+

donc lim f(x)=—o0, et lim f(x)=4o00.
A, X—r—T+

*» a=2 :Le numérateur et le dénominateur s'annulent en 2, il faut donc utili-
ser deux expressions conjuguées. Pour tout x D, ona:
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VX+2—-2

\/x2+x+3— J2X+5

(ﬁ—z)(\/m +2)[\fx2+x+3 +2x+5
r [\/x2+x+3—\/2x+5 {\/x2+x+3+\/2x+5](\/x+2 +2)

(x+2)— )[\}x +x+3+2x+5 (x—2)[dx2+x+3+\/2x_+‘§]
((x +x+3)- 2x+5))(ﬁ+2) (¥ = x—2)(Vx+2+2)

_(x—?.)[\/x2+x+3+\/2x+5  JP e lE
(=) )(Vx+2+2) (x+n)(Vxr2+2)

On adonc lim f(x = lim [x®+x+3+\2x+5 -

X2 X2 (x+1)(\/;T+2) 2

* a=+4o0 :Pour x> 2,onécrit:
he2 2
x ~x

3.3 3.8
X xz X x2

JX+2—2 _ Vx

—Af2X+5

o2 2
x x
1 3 2 5
G e e A g
X x X x
Les régles usuelles sur les limites de sommes, produits et quotients donnent

lim f(x)=

X— 400

Vx?

i

8. * a=2 :0nnoteulafonction x— x*.u@2) =

= 4; u est dérivable sur ]0,+o0|
et pour tout x>0, u’(x)=(In(x)+1)x*

A Quand la variable est en exposant, il faut revenir a la notation expo-

. xIn(x S
nentielle (ici x™ =e n(x) ) et surtout ne pas dériver comme une fonc-
tion puissance !!!
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On calcule la limite d'un taux d’accroissement :

o XX —q
lim =
X—2 W 2

u'(2)=4(1+In2).

=4, =4 . .
e a=+o0 :Pour x>3,0na: > (par croissance de la fonction

exponentielle). X—=2  x=2
g x> —4 : x> : 2 ; ;
lim = lim —= lim x“=+4o00, donc par minoration:
x—+4+00 X—2 x—4o00 X x—+4o00
x¥—4

lim =400 .

x—+00 X—2

Remarque : On peut également utiliser les croissances comparées.
exln(x] ('I =" xln(x})

X

Pour x> 2, 0n écrit: ~—— — x In(x).
X2 xln(x)[1— E]
X
Ona: lim xln(x) =00 , donc par composition et croissances compa-
o exln(x) X
rées: lim = = lim =400 .

e
X—+00 XIn(X)X=‘;|nxX—-»+DC- X

Deplus, lim (1— 4e""""‘J)= 1, lim ———1et lim In(x)=-+oc.
X—~+0C X—+0c0 ? I X— 400
X
: . oo XE—4
Finalement, par produit: lim =400 .
X—4oo X— 2

(ch(x)—1)Arctan(x)

xsh(x)
* a=0 :0Onnote ulafonction x> ch(x)—1,vlafonction x> sh(x),etgla
Arctan(x)

9. On note fla fonction x>

fonction x>

X
u(0) = v(0) = 0 ; u et v sont dérivables sur R et pour tout xc R :
u'(x)=sh(x),v'(x)=ch(x).
h(0
En appliquant la régle de L'Hospital,ona: lim u_(x_) = S—(—)zo.
x—0v(x) ch(0)
La fonction Arctan est dérivable sur R, et pour tout xR,
1
Arctan’(x)= .
( ) 1+ x2
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g(x) est le taux d'accroissement de la fonction Arctan entre 0 et x, donc
lim g(x)=Arctan’(0)=1.
x—0

Par produit, lim f(x)=0.
x—0
Remarque : On aurait pu « regrouper » les fonctions différemment.

* a=+4oc :Pour x=0, ona:

X — X

e e

—s 1]Arctan(X) e* (1+e‘2"‘ —~ 2e_")Arctan(x)
%)= =
(x) or —g% xe"(l—eﬂzx)

& =B
2
(1+e_2" — 2e"")Arctan(x)
x(1—e_2x)

lim (1+e2*—2¢7¥)= lim (1—e" )1,
Fihea X——+00

et lim Arctan(x):g, donc par produit et quotient:  lim f(x)=0.

X—4-00 X— 400
* a=—o0 :Llafonction fétantimpaire, on a également lim f(x)=0.
X——00
10. + a=1:0n note u la fonction x> x> —1 et v la fonction x+se*~'_ e,

u(=v(1)=0;
u et v sont dérivables sur R, et pour tout xeR, u’(x)=2x et
v'(x)=2e2*"1_e*,

La regle de L'Hospital donne : lim —= = —-=
x—1v(x) v'(1)

L =1
* a=+oc :Pour x=1,0nécrit: — ———=

e x—l_ex

u) wl() 2

2
. ; . X : 1
Par croissances comparées, lim —X] =0 ;deplus, lim 1——=1et

lim e 1o ¥zl ¥Tole x—too x°
X— 400
x2—1
Par produit et quotient, |lim ——=0.
p q Zx—1
x—+oo X1 _ X
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e a=—o00 :0Ona (ezx_l—ex>0)¢>(ezx_1>ex]<:>(2x—1> x)<> (x> 1)

(par croissance de la fonction In). On en déduitque lim et g% g

X—»—00
x2—1

puis, par quotient: lim —————=—00.

a0 o201 _ ¥
Remarque : La forme indéterminée « ~ sur 0 » se léve uniquement avec une
étude de signes. On sait que la limite de la valeur absolue du quotient est +oc .

: X sinx A ;
1. « a=0 :0n note flafonction x s ———, ulafonction x> x sinx,etvla

T1—cosx
fonction x+—1—cosx.u(0) =v(0) =0;

u et v sont dérivables sur R et pour tout x€ R, u'(x)=sinx+xcosx et

v'(x)=sinx.
u'(x) sinx+xcosx XCOS X

Pourtout xe R\ | J {kr} ona: ,( )= + = 14—

et v'(x) sinx sinx

" . sinx .

On a par ailleurs lim —— =sin’(0)=cos(0)=1.

x—0 X
Ainsi, la régle de L'Hospital donne:
. . u(x . u'(x : X
lim f(x)= lim e _ lim ,( )_ lim |1+ cosx —— [=2.
x—0 x—0V(X) x—o0v'(x) x—0 sinx

. X —sinx W g
* a=+oc0 : On note la fonction x+— ———. Considérons la suite
2—CosXx

E+21m] qui a pour limite +o00 .
2 nel

Pour tout nc N, f[§+21tn]=§+1m, donc la suite [f[%+21m a

nel

pour limite +oc .

Considérons maintenant la suite (Zﬁn)net\, qui a également pour limite
+00 ; '

Pourtout n€ N, f(2nn)=0,donc la suite (f(Z‘lTn))n&N a pour limite 0.

La fonction f nadmet donc pas de limite en +o¢ (par contraposée de la
caractérisation séquentielle de la limite).
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2
m+1)x°+3x
12. On note fla fonction x;—>( )

:son domaine est R\ {%} ’

2x—1
s a==400 :
—Sim=—=1: lim f(x)= lim 3—X=E
x— 400 x—+oo2X 2
2
—Sim<—1: lim f(x)= lim frre lim (m+1)x:¢oo.
Xx—too X—+too 2x X—+oo
2
1
—Sim>—1: lim f(x)= lim i)l lim (m+)X=:|:oo.
X— 400 X—+oo 2 x— 400
1 3
. a:l: Pour tout x € R\{l},ona:f(x):((m+ prt )x
2 2 2x—1

: . ' e 1
Il faut déterminer le signe du quotient au voisinage de g

Ona: [(m+1)l+3> 0]@ (m>—7) ; on en déduit la disjonction de cas sui-
vante :

—3x(2x—1)

: z : 3
—Sim=-=7: lim f(x)= | = lim (—3x)=—=.
im im (x) tm1 = im ( x)

P X—— P
2 2 2

—Sim<-=7: (m+1)%+3<0 donc:
lim f( x) +00, lim f —00.
(3 (3]
—Sim>-7: (m+1)2+3>0 donc:
lim f(x)=—o0, Iim+f(x):+oo.
) (3]
2
13. On note u la fonction xa—>ln(cos(3x)), et v la fonction x> sin®x.
u(0) = v(0) =

u et v sont dérivables sur

u'(x)=

, a dérivées continues, et pour tout

—35in(3x)
cos(3x)

™ W

I

e et v'(x)=2sin(x)cos(x).
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Pour tout xe et x=0,0na:

e

u'(x) —3sin(3x) _ —3sin(2x)cos(x) — 3cos(2x)sin(x)

v'(x) 2cos(3x)sin(x)cos(x) 2cos(3x)sin(x)cos(x)

5 —65in(x)cos? (x)— 3cos(2x)sin(x) _,cos(x)  3cos(2x)
2cos(3x)sin(x)cos(x) cos(3x) 2cos(3x)cos(x)’

La régle de L'Hospital donne :

- M: fis M: - cos(x) 3cos(2x) 9
x—0v(x) x—ov'(x) x—o| cos(3x) 2cos(3x)cos(x) 2

Remarque : On aurait également pu appliquer la régle de L'Hospital pour dé-

, . sin(3x)
terminer lim — :
x—0 sin(x)
Ona: lim 5|.n(3x): lim Mzs puis, par produit,
x—0 sin(x) x—o0 cos(x)
u'(x) —3sin(3x) -9

i = i =—
¥o40 v'(x) xl—rjlchos(3x)sin(x)cos(x) 2

X xln[1+1]
Pour tout x € |—00,—1U]0,+0c], [1+—] —e xJ,
X
In(1+ X
Rappelons tout d'abord que lim (X )
X—0

croissement de la fonction x - In(1+x) en 0).

=1 (car c’est la limite du taux d'ac-

In(14+ X
* a=+o00 :0Ona lim xlIn 1+l] = lim ( )=1 donc, par compo-
x—too X ‘"1X—>0
T x
1 X xln{l-+~l
sition, lim [1+—| = lim e X]—e.
X—+t oo X X—+ 00

* a=0 : Pour que la fonction soit définie, il faut x € |—oo,— 1U]0,4+00| . La
limite en 0 est donc a droite.

Pour x> 0, xIn

1+l}:xln
X

XTH]:xIn(x +1)— xIn(x).
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lim xIn(x+1)=0 et, par croissances comparées, lim xIn(x)=0.
x—0 x—0

On adonc lim xIn
x—0

1 X xln[1+l]
lim [H——] = lim e X =1,
x—0 X X—0

T

= 0 puis, par composition :
X

sinx
15. On note fla fonction x> ———.
J1— cos x
Pour tout x€ R\ U {2kw}, on écrit:

keZ

Zsin-x cos X 2sin % cos X
2 2 2

2sin2 X J2[sinX
2 2
. X X
25iN—Cos— r
lim f(x)= lim —2—2— lim —v2cos==—/2;
Xx—0 x—0 _.Jisini x—0 2
2
. X X
2sin—cos — %
lim f(x)= lim —2 2 im J2cos>=42.
x—0" x—0T ﬁsjni x—0T 2
2

Remarque : On ne pouvait pas appliquer la regle de L'Hospital, car la fonc-

tion x+>+/1—-cosx n'est pas dérivable en 0. En effet, en utilisant la
méme formule de trigonométrie que précédemment, et la limite usuelle
. sinX
lim ——
X—0

=7llana:

X
Vi-—cosx —ﬁsm; 1 2

lim lim ——&x—=——;

x—0 X x—0" = 2 2 ’
2
X
A \Esinu
x—0T X ot X 2 2
2
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""""""""""""""""""""""""""""""""""""""""""""""""""" Fiche 6

Dérivées

Le calcul de dérivées est une étape indispensable dans I'étude de fonctions. Introduite
au lycée, la dérivation de fonctions composées se généralise dans le supérieur et sa
pratique s'enrichit des nouvelles fonctions étudiées.

Le calcul de dérivées n-iemes vient compléter les nouvelles compétences attendues.
Cette fiche permet de mettre en place les mécanismes de dérivation. Elle permet éga-
lement de distinguer les études globales des études locales, en s'intéressant a des pro-
blémes de dérivabilité aux bornes d’'un domaine.

o [

B Dériver une fonction composée

Si fest définie sur DC R a valeurs réelles, et g est définie sur f(D), toutes deux
dérivables sur leurs domaines respectifs, alors gof est dérivable sur D et

(gof)':(g'of)x f

Exemple 1

Dériver la fonction f: x — cos

)

Réponse
On a ici composé trois fonctions: f=weovou ou u:x> 1+ x%,vix>Jx, et
W:x > cos(x).

ra - - * - . .
u et w sont dérivables sur R , v est dérivable sur R, ou u a bien ses images.
Ainsi, f est dérivable sur R et f'=(wovou)=w'(vou)x(veu)
=w'e(veu)x viouxu’, c'est-a-dire:

pour tout x< R, f'(x):—sin[\}1+x2]x\/—x72-.
14+ x
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B Etablir la dérivabilité d’'une fonction en un réel particulier

Souvent, quand on doit faire une étude de dérivabilité en un réel, les résultats
généraux sur les opérations, ou la composition ne s'appliquent pas. Il faut faire
une étude locale spécifique.

» En utilisant la définition du nombre dérivé :

Exemple 2 5
x“In(x) six>0

0 si x=0

Montrer que fdéfinie sur R™ par: x> est dérivable en 0.

A Une erreur trés grossiére consiste a dire : « fest constante en 0, donc sa dérivée
est nulle en 0 ». Avec un raisonnement pareil, les dérivées seraient nulles par-
tout ! La dérivabilité est une notion locale, elle nous place au voisinage d'un
réel. Il ne faut pas perdre de vue qu'un nombre dérivé est une limite.

Réponse

On calcule le taux d'accroissement de f entre 0 et x: pour tout x>0,
fix)—f(O
fx)—-Ho) ):xln(x).

X

| , f(x)—f(0)
Par croissances comparees,ona: lim —4——~ = |im xln(x) =10,
x—0 X x—0

Donc fest dérivable en 0, et f'(0)=0.

» En appliquant le théoréme de prolongement de la dérivée :

Soit f une fonction continue sur [a,b] (a < b), dérivable sur |a,b|.

Si f' admet une limite finie en a (resp. en b), alors f est dérivable en a et
f'(a)= lim f'(x) (resp.fdérivableen bet f'(b)= Iimbf’(x)).
x—a X—

A Ce résultat donne une condition suffisante de dérivabilité. Si la limite en a (ou
en b) n'existe pas, la fonction peut pourtant étre dérivable en a (ou en b), par
contre la dérivée ne sera pas continue...

Exemple 3

Etudier la dérivabilité en 0 de la fonction f: x> Arcsin(1—— x3).

Remarque: La fonction Arcsin étant continue mais non dérivable en 1, la ques-
tion de la dérivabilité de fen 0 se pose, car on ne peut pas y appliquer le théo-
réme sur la dérivabilité d'une fonction composée.
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Réponse
La fonction Arcsin est continue sur [— 1,1] , dérivable sur ]— 1,1[.

La fonction w:x+>1— x> est définie et dérivable sur R, et on a:

(u(x)e-11)« (xe ]0%5[)

Ainsi fest dérivable sur ]0%5 [ , comme composée de fonctions dérivables, et on a
—3x2 - 3x2 —3Jx

J-—O—x3f"_Jx%2~xﬂ::J24x3.

=0, donc d'aprés le théoréme de prolongement de la dérivée, f est

pour tout x € ]03/5[ Fix)=

lim H_3_J;

Xx—04/7_ x3

dérivable en 0, et f’(0)=0.

B Calculer une dérivée n-ieme

P Aprés le calcul de plusieurs dérivées successives, en conjecturant la forme
générale de la dérivée n-iéme, puis en la démontrant par récurrence :

Exemple 4 .
R,—R

*
Soit n€ N . Calculer la dérivée n-iéme de f : ol a€R.

x> x®
Réponse

f, estune fonction puissance. Elle est donc de classe C™ sur R:_

Montrons  par récurrence que pour tout ne N, lassertion
A= (Vx eRLE P (x)=ala—D---(a—n+Dx*"") est vraie.

Initialisation : Pour tout x€ R, , f, (x)=ax®"", donc I'assertion est vraie pour
n=1.

Hérédité : Soit ne N ; on suppose A, vraie, c'est-a-dire pour tout xe R;
f“{”’(x) =ala—1--(e—n+Nx*"1,

Alors, pour tout x € IER; :
gmmuﬁ{gwﬁmzam—nmm-n+mu-@f“mi

Ap4q estdonc vraie.

. . - . . - *
Conclusion : Par principe de récurrence, l'assertion A, est vraie pour tout ne N .
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Remarque: Certaines dérivées sont a connaitre. Soit n€ N . Pourtout x< B, on

a:|(exp)™(x) = exp(x) , (sin)™(x) = sin et (cos)” (x) = cos

x4+nZ
2

x+nZ
2

» Sila fonction a dériver est un produit de fonctions, en utilisant la formule
de Leibniz:

Soient fet g deux fonctions n fois dérivables sur D (ne N ).

n
Alors : fg est n fois dérivable sur D et (fg)™ = 3, [n]f(k)g("*k} :

k=0 k
Exemple 5 R— R
Soit n€ N,n> 2. Calculer la dérivée n-ieme de f: 2 o
XI—)(X —H)e

Réponse

On constate toutd'abord que festde classe C™ sur R ,comme produit de fonctions

de classe C™ sur R.On note u la fonction x > x2 +1 et v la fonction x > e2¥ .

u est une fonction polynomiale. Ses dérivées sont toutes nulles a partir de la
dérivée 3-iéme.
La formule de Leibniz donne :

n.(n n(n—1
£(n) :(uv)(n] = Z ; u(k)v(n—k):uvtn)+nu-v(n—1)+ ( 5 )u"v(”_z}.
k=0

Montrons  par récurrence que pour tout nelN, [lassertion
A, = (Vx e RvIM(x)=2"e2¥ ) est vraie.

Initialisation : Pour tout x€ R, v(x)=e
pourn=_0.

X :ZOEZX, donc l'assertion est vérifiée

Hérédité: Soit nc N ; on suppose A, vraie, c'est-a-dire: pour tout xe R,
viD(x)=2"e?*,

Alors, pour tout xe& R.v(n+"{x):(v(”))'(x):2”x2e2x =2M1e2X A .. est
donc vraie.

Conclusion : Par principe de récurrence, I'assertion A, est vraie pour tout n€ N .

On a donc pour tout x€ R :

f(”)(x):ezx[(xz—}-T)Z”—i-nx 2xx 2" -|—£(nz;1)><2x2"_2]

:2”_292"(4.\’2 +4nx4+n®— n+4).
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On s'échauffe

1. Donner la fonction dérivée des fonctions f suivantes sur le domaine D pré-
cisé, aprés en avoir justifié la dérivabilité :

a. f:x|—>cos(2x)+cos(x2)+cosz(x) sur D=R.

b. f:xa—>ln(|x3—1|) sur D=R\{1}.
C. f:xn—>]n(ln(x)) sur D= 1,+00|.
d. f:xt>Arccos \}1—x2] sur D=]0,1[.
e. f:X|—>Arctan]+x sur D=R\{1}.
1—x
2
f. f:x—>3% sur D=R.

g. f:x—>In sur D=R.

2
14 sin? [e" ]

ra - ra Y - . * -
2. Calculer la dérivée n-ieme des fonctions suivantes (n€ N ) sur le domaine

D précisé :

a. fr:x>xP, peN sur D=R.
b. f:xn—>(1+x)"x2 sur D=R.
C f:xn—>cosz(x) sur D=R.

On accélere

3. Les fonctions f suivantes dépendent de deux variables. Les dériver sépa-
rément en fonction de chaque variable (c'est-a-dire, fixer une variable et
dériver par rapport a l'autre).

Remarque : On dit que l'on calcule les dérivées partielles de la fonction a
deux variables.

a. f:(x,y)— xcosy +x%y

. Pl
(x+y)2+1
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¢« f:xy)—e y

d. f:(x,y)n—>ln[x2+e"2]
e. f:(xy)— Arctan(xyz)

2y

X2y 42

—h

f:(x,y) Arcsin

*
4, Calculer la dérivée n-ieme des fonctions fsuivantes (n€ N ) surle domaine

D précisé :

a. f:)(l—)L sur D=ER\{1}.
1— x

b. f:x+>e¥cos(x) sur D=R.

¢ f:xr—ex”*IIn(x) sur D=]O,+oo[.

5. Donner la fonction dérivée des fonctions f suivantes sur le domaine D pré-
cisé, apres en avoir justifié la dérivabilité :

X
a f:xn—>[1+l] sur D:]0,+oo[.
X
b. f:xn—>(x2—1)Arcsin(x) sur D=[— 1,1].
1 112
. I3 D=|0,—|.
C X > — sur "
x2 sin[l Six=0
d f:x— X sur D=R.
0 si x=0
e. f:xn—n“x[g sur D=R.
f. f:x>.xArcsinx sur D:]— 1,0[U]0,1[.

Cette derniére fonction est-elle dérivable en 0 ?
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6. Calculer la dérivée n-ieme des fonctions suivantes (n€ N ) sur le domaine

D précisé :
1
a. f:xsx"lex sur D=R".
b. f:x— sur D=R\{-11}.

1— X
X

. 2 .
7. Montrer que la fonction f: x> {e X six =0 estdeclasse C™~ sur R.
0 six=0

Fiche 6 m Dérivées Je vous montre comment | 79



1. a. f estla somme de trois fonctions, elles-mémes composées de fonctions
dérivables sur R ;elle est donc dérivable sur R et pourtout x< R :

f'(x)=—2sin(2x)— 2xsin(x2)— 2cos(x)sin(x).

b. f estlacomposée des fonctions u: x X>—letvix In(]xD.
vest dérivable sur R ;U est dérivable sur .
Si xe R\ {1} ,alors u(x)e R".

Ainsi, par composition, fest dérivable sur R\ {1} ,etpourtout x e R\{1} :

3x2
f'ix)= .
( ) x3 -1

¢. f estlacomposée de lafonction u:x i In(x) avec elle-méme. u est déri-
vable sur |0,+o0].

Si x € [I,4+00[, alors In(x)€ 0,400 .
Ainsi, par composition, fest dérivable sur [1,+o00 [, etpourtout x € |1,+o00| :

Fix)= xlr:(x)'

d. f est la composée des fonctions u:xi>1—x2, vixi>Jx et
w: X > Arccos(x).

u est dérivable sur R ; v est dérivable sur ]0,+oo[ et w est dérivable sur

-1

si x€ 0,1, alors u(x)€ 0,1 et v(u(x))e j0.1.

Ainsi, par composition, f est dérivable sur |0,1], et pour tout x € 0,1 :
—2x

f'(x}— 2\}1—)(2

{7

Remarque: f' admet une limite a droite en 0. f admet donc une dérivée a
droite en 0.

_ X B 1
2 \/1— x? || x-;:{)\/]—xz

On remarque également que sur [0,1], les dérivées de f et de Arcsin coin-
cident. On en déduit que ces fonctions different d'une constante sur cet
intervalle.
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” 1+ x
f estla composée des fonctions u: x - 1L et v:x > Arctan(x).
—X

vest dérivable sur R ; u est dérivable sur R\ {1} .
Ainsi, par composition, fest dérivable sur R\ {1} ,etpourtout x € R\ {1} :

2
(1-x 1
14x) C14x
1—- x

f'(x)= 5

1+

Remarque : La dérivée de f et celle de Arctan coincident sur R\{1} . On
en déduit que ces fonctions différent d'une constante sur chacun des inter-

valles |—o0,1] et ], +o0].

A Comme on pourra le voir dans la fiche sur les fonctions circulaires
réciproques, ces constantes ne sont pas égales !

f. f estla composée des fonctions u: x> x% et v: x> 3X. uet vsont déri-

vables sur R..
Ainsi, par composition, f est dérivable sur R, et pour tout x< R :

2
f(x)=In(3)x2xx 3% .

A v nest pas une fonction puissance mais une fonction exponentielle !
. ’ P xIn(3
Pour éviter toute erreur, il est plus prudent de |'écrire v: x> e (3)

et de la dériver comme une fonction de la forme eY.

g. f estlacomposée des fonctions u: x x2, vixseX, wixe sin(x), a
nouveau u, et g: x > In(1+x).

u, v, et w sont dérivables sur R ;g est dérivable sur |- 1,+00] .

>0 donc:

2
Pourtout xc &, sinZ[e"

u(w(v(u(x))))e [0,+00[C |- 1,-;-00[ .
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Ainsi, par composition, f est dérivable sur R, et pour tout x€ R :

2

2
25in[ex cos

2 2 2
e ]erx 2xe* sin[Zex ]

2
e"']

Pour tout pe N, f, est de classe C™ sur R, car c'est une fonction poly-
nomiale.

f(x)=

- -
1+sin2[ex ] 14 sin?

Montrons par une récurrence (finie) que pour 0< n< p, l'assertion

|
A, =|Vx€eR, fp{")(x): P~ xP—n| estvraie.
(p—n)!

p!

( O)Ix'p_o; I'assertion
p—0)!

Initialisation : Pour tout x& R, f,{%(x)=xP =
est donc vraie pourn = 0.

Hérédité : Soit 0 < n< p ;on suppose |'assertion A, vraie, c'est-a-dire pour

I
tout xc R, fp(”}(x) =_P' b1

(p—n)!
Commen < p, pourtout xe R,ona:
! 1
£0E0 0 (£ (M) — p: Y p: xp—n—ll
p ) (p )( ) (p—n)!(p ) (p—n—"1)!

donc l'assertion A, est vraie.

Conclusion : Par principe de récurrence, |'assertion A, est vraie pour tout
o<n<p.

Lassertion A, donne pourtout x< R, fp{p)(x)zp!

On en déduit que pour tout n > p, pour tout x€ R, fp{")(x): 0.

n! e
si 0<p<n fPlx)= x"—P
Finalement, pour tout xR : (n—p)!

si p>n fP)(x)=0
On note u la fonction x > x2, et vla fonction x (1 +x)" 1

u et vsont des fonctions polynomiales, elles sont donc de classe C™ sur R.

Les dérivées successives de u sont nulles a partir de la troisieme.
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La formule de Leibniz donne:

F_ () = 3 [:

k=0
En utilisant le résultat démontré dans I'exercice précédent, on a pour tout
xeR:

nin—1
uKyn=k) _ () 4 0= -!-—( )u"v[""”.

fin) i) = x2nl4+nx2x xn!(1+x)+@x2x;—:(l+x)2

:-r;—!((n2 -l-3n-!—2)x2 +2n(n+1)x+n(n—1)

f estde classe C™ sur R, comme composée de fonctions de classe C™
sur R.

Pourtout xc R,ona: f(x):%(1+cos(2x)).
Montrons par récurrence que pour tout ne N', I'assertion

A, =|Vxe R, fM(x)=2""cos

n
2X+ —;]] est vraie.

I 1 .
Initialisation : Pour tout x€ R, f’(x):Ex 2cos|2x +§] ,donc 'assertion

est vérifiée pourn=1.

Hérédité : Soit n< N ; on suppose A, vraie, c'est-a-dire : pour tout x€ R,

M (x)=2"1cos .

Ay,
2

Alors, pour tout x< R,

FH) (%) = (f{”))'(x) =2x2""1 cos[Zx +n?“ + %] =2"cos

2x+@].

A, estdonc vraie.

Conclusion : Par principe de récurrence, I'assertion A, est vraie pour tout
*
neN .

* Soit y € R.Lafonction f, : x> xcosy + x? y estdérivable sur R comme
somme de fonctions dérivables, et pour tout x€ R : fy (x) =COSy+2xy.

* Soit xeR. La fonction f,:y+> xcosy+x’y est dérivable sur R
comme somme et produit de fonctions dérivables, et pour tout ye R :
fo'(y)=—xsiny +x%.
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Remarque: Pour (x,y)€ R?, on note fy'(x)zg(x,y) et f, '(y)=§—;(x,y).

b. « Soit y€ R.Lafonction f, : x +—>+ est dérivable sur B comme
(x+y) +1
quotient de fonctions dérivables, le dénominateur ne s'annulant pas, et

-
pourtout x€ R : %(x,y}:fy*(x)z X“+y +12 :
- ((x+y)2+‘t)
* Soit x€ R.Lafonction f, :yr—)+ est dérivable sur R comme
(x+y) +1

inverse d'une fonction dérivable ne s'annulant pas, et pour tout yc R :
of p —2x(x+y
(ey) =ty ()=~ 2]

5"

((x+y]2+1)
* 2
¢ +Soit yeR . La fonction f,:xi>e Y est dérivable sur R
comme composée de fonctions dérivables, et pour tout xR :
2. X
of §) —H T
—(x,y)=1f"(x)=|-2x+—|e
()= ()= |20
x4 X .
* Soit x€R. La fonction fy:yr>e Y est dérivable sur R
comme composée de fonctions dérivables, et pour tout ye R":
3
E ) =telr)=ge 7
adaid 4 y? '

d. « Soit yeR. La fonction f,:xi>In

2, .y :
x?+eY | est dérivable sur R

comme composée de fonctions dérivables, et pour tout xR :
of , 2x

a("fl’)ﬂy ("):—2 5

x*+ef

2
* Soit xe R. La fonction fx:y|—>ln[x2+ey ] est dérivable sur R
comme composée de fonctions dérivables, et pour tout ycR:
2
of ) 2yeY
oy K==

=
%y x* e’
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e. + Soit yeR. La fonction fy:xn—z»Arctan(xyz) est dérivable sur R

comme composée de fonctions dérivables, et pour tout xR :

of y?
—(x,¥)=Ff"(X)=———.
ax( y) y ( ) 1+X2y4
* Soit xe R. La fonction f,: yHArctan(xyz) est dérivable sur R

comme composée de fonctions dérivables, et pour tout ye R :

of 2yx

—xy)=K'Y)=—=5

dy( ) X( ) 1+X2y4

f. Lafonction Arcsin est dérivable sur |- 1,1].
Ona:
2y s 3 [ 2. .9 ]

— ¢ JeS0<Xx " +y"42-2lv||< |0< — 1) +x“+1]
< o<yt r2-2)e o< (v-)

La derniére assertion étant toujours vraie, il en est de méme de la premiere.

On en déduit que pour tout y € R, lafonction f, : x - Arcsin 5 2)/2
X“+y +2
est dérivable sur R, et pour tout xcR, la fonction
fy 1y — Arcsin % est également dérivable sur R . De plus :
X4y +2
—4
. V(x,y)e Rz,g—f(x,y): Xy : )
o . 3 2, .2 D
X“+y+2)i[x* +y°+2) —ay
2 2
. V(X,Y)GRZ,'g—f(X,Y)—_— 2X Zy +4 - .
oy ¥ o B - .
X“+y 24 [x +y +2) —4y

4. a. f estdeclasse C™ sur R\{1} , comme inverse d’'une fonction de classe
C™ sur R, ne sannulant pas sur ]R\{1} .

Montrons par récurrence que pour tout neN, [assertion

Ay =|vxe RA {1} FP0y = — T

est vraie.
(1 - x)ﬂ-l-'l
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Initialisation : Pour n = 0, c'est vérifié.

Hérédité : Soit n€ N ; on suppose l'assertion A, vraie, c'est-a-dire pour

1
tout xe R\ {1} : FMx)=— "1
{ } (.I_X)n+1

Ona, pourtout xc R :

f(ﬂ*l“'”(x) = (f{ﬂ)):(x) — = n'(n_'_])x(_]) | = (n—'_l)l

(1—X)n+2 (1—X)n+2 )
- 1) —ku' . ,
(On a utilisé : pour tout ke N, — | =57 ouune s'annule pas.)
u u

Lassertion A, est donc vraie.

Conclusion : Par principe de récurrence, l'assertion A, est vraie pour tout
neN.

f estdeclasse C™ sur R, comme produit de fonctions de classe C™ sur R.

Pourtout xR, f(x)=Re ex(l+j)).

Une  récurrence  immédiate donne: pour tout x<R,
#n) (x)= Re((]-H‘)n ex(1+f)).

ix n X+

On a: (1+i)"ex(1+f)= J2e 4 eXUH):(\E) 3

nmw
x+—]
, donc pour

tout xe R, f("](x)= (ﬁ)n eX cos

x4+
4
On note u la fonction x s x™! et vla fonction x > In(x).

uestde classe C~ sur R,etvestdeclasse C sur ]0,+oo[, donc f est
de classe C™ sur |0,+00[ par produit.

Pour appliquer la formule de Leibniz, on va déterminer I'expression de la
dérivée n-ieme de v.

Le calcul des premiéres dérivées permet de dégager une formule de récur-
rence.

* -
Montrons par récurrence que pour tout ne N , [assertion

= =7
A, = Vx€]0,+oo[,v(")(x)=( ) n(n ) est vraie.
X
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Initialisation : Pour tout x € ]0,+oo[ , VI(x)=—=2—L """ V'assertion est
X

; X
donc vraie pourn = 1.

*
Hérédité : Soit ne N ; on suppose l'assertion A, vraie, c’est-a-dire pour

n—1
tout x € ]0,+00], viM(x) = (=) n(n— 1)!.
X

On a pour tout x € 0,400,

xn-H xn+1

donc l'assertion A, ., estvraie.

S0~ (1) - (=1 (r=1)(=n) _(=1)"n!

Conclusion : Par principe de récurrence, |'assertion A,, est vraie pour tout
E 3

neN .

En utilisant le résultat démontré dans I'exercice 2.a, la formule de Leibniz

donne pour tout x € |0,+00] :

n
ni (k —k
f(n)(x):kz: ; u( }(x)v(" }(x)
=0
il —k—1
23n) (=1 e (S (k)

= )

u(")(x)=0k=0

k (n—1—k)! xn_k

_Mn—'l nl, n—k—l__(n—'l)! N (n ok
- "Z:;’k]( Ll X kgak]f‘( L kn]
:_(n;1)![(]+(_1))n_1]:(n;])!.

Chaque fonction intervenant dans I'expression de f (en composition ou en
produit) étant dérivable sur son domaine de définition, il en est de méme
de f et pour tout x € |0,+o00] :

1 X

14—
X

T
X

—1
f'(x)=]In[14—=|+xx X Tl X =[In

- +—
X

o
x+1
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b. « Par produit, fest dérivable sur |- 1,1, et pour tout x € |- 1,1 :
2 _

= 2xArcsin(x)—V1— xZ.

f'(x)=2xArcsin(x)+ e

\/1—x2

*Enlet—1:
lim 2xArcsin(x)—V1— x? =7 et lim 2xArcsin(x)—v1- x?=m=,
x——1 x—1

donc d'aprés le théoréme de prolongement de la dérivée, fest dérivable
en—1letenletf'(—1)=Ff(1)=mx.

¢. * Lafonction racine carrée est dérivable sur ]O.-I—oo[, la fonction cosinus
est dérivable sur R et l'inverse d'une fonction est dérivable ou la fonc-
tion est elle-méme dérivable et ne s'annule pas.

2
Ainsi, par composition, la fonction f est dérivable sur O,T , et pour tout
2
4

2\/_'5"1\/__ siny/x
(cosJ_) 2&((05\/;)2

f'(x)=

*« EnO:
) sin\/; 1 " sin\f;
lim ——,car lim

x_’OZx/;(cosJ;)z 2 x=0 x
1

ment de la dérivée donne fdérivable en 0, avec f'(0)= =

=1.Le théoréme de prolonge-

d. + Lafonction inverse est dérivable sur R , les fonctions sinus et carré sont
dérivables sur R donc par composition et produit, f est dérivable sur

]R*, et pour tout x R*
)‘1 ]
.

Remarque : On ne peut pas appliquer le théoréme de prolongement de la
dérivée, car la fonction cosinus n‘a pas de limite en l'infini.

Ce théoreme ne donnant qu’une condition suffisante, on ne peut pas non
plus conclure a la non dérivabilité. On revient donc a la définition du nombre
dérivé, avec le taux d'accroissement...

f'(x)=2xsin

g
—|—COSs
X

* EnO:
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——————
------

f(x)-f(0)

X

X

Pour tout x =0, = xsin et —x< xsin

l]g x, donc le
X

=0.

- . = Al
théoréme des gendarmes donne : lim xsin
x—0 X

Ainsi, fest dérivable en 0, et f'(0)=0.

e. + Lafonction cube est dérivable sur R, la fonction valeur absolue est déri-
vable sur R et la fonction racine carrée sur ]0,+oo [ Par composition, f
. *
est dérivablesur R ,etona:

%\/; six>0

~%J-x six<0

* En 0: Le théoreme de prolongement de la dérivée donne f dérivable en
0, avec f'(0)=0.

f'(x)=

f. « Lafonction Arcsin est dérivable sur ]— 1,1[ ; par produit, x — x Arcsinx
est dérivable sur ]— 1,1[, ou elle est positive, s'annulant en 0. La fonction
racine carrée est dérivable sur ]0,+oo [ dong, par composition, f est déri-
vable sur |- 1,0[U]o,1, et pour tout x € |-1,0{U]o,1[ :

Arcsinx 4+ \/Lz
f'(x)= =X

24/ xArcsinx

* En 0: Pour tout xe]—lj[, x=0,0na:

’Arcsinx 8 S0
f(x) VxArcsinx X

X X Arcsinx . .
— | si xX<0
%

. Arcsinx . g S
Comme lim —:Arcsm’(o):Lon endéduitque |lim —==1
Xx—0 X x—ot X
f(x
et lim Q
x—0 X

=—1 donc fn'est pas dérivable en 0.
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6. a. Pourtout ne N, lafonction f, estde classe C™ sur R", comme produit
d'un polynéme, et de la composée d’'une exponentielle avec la fonction

inverse, toutes de classe C™ sur leurs domaines.

* -
Montrons pas récurrence que pour tout neN , [assertion
1

A,=|Vxe R*,fn(")(x)=(— 1) eX | estvraie.

xn+1

1 1

i i PR * 1
Initialisation: On a: fy: x+>eX ;pourtout xe R, f’(x)=——eX, donc
A, est vraie. X

Hérédité : Soit ne N ; on suppose que A, est vraie, c'est-a-dire que pour
1

L ex,

XH-H

tout xe R, ﬂ,(")(x)z(— 1)
i)

Pour tout xe R, f,,4(x)=x"eX = xf,(x). On applique la formule de

Leibniz, les fonctions étant de classe C™ sur R’ . Pour tout x € R*, ona:

n+1
1

n+1
0

[ﬂ+1) (X) xfn(n+1) (X)+ fn(ﬂ) (X)

fi1

1

xn+2

On en déduit que 'assertion A, est vraie.

(=1 ex

Conclusion : Par principe de récurrence, 'assertion A, est vraie pour tout
*

nelN .

1

b. Pourtout xe R\{—11},0ona: f(x)ZE

1 1

T1—x 14+ x

On note u la fonction x— L ,etvlafonction x— L ;
1—x 1+ x
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On a déterminé dans l'exercice 4.a) la dérivée n-iéeme de u: pour tout

n!

xeR\{1}, uM(x)= .
{ } (1_ x)n+1

En remarquant que pour tout xe]R\{—Ll}, v(x):u(—x), on

a (avec une récurrence immeédiate) que pout tout xe& ]R\{—1},

(=1)"n!

v(”}(x):(—‘l)"u(n)(—x): et pour tout xeR\{-11},

(.l+x)n+1 i
! 1 (=1
£ (x) = ¥ .
2 (]_ x)!H—] (1+X)n+]

1 * —
¢ Ky— estdeclasse C™~ sur R et x> e X estdeclasse C™ sur R dong,
X

par composition, fest de classe C™ sur R .

* En 0: Montrons pas récurrence que pour tout n< N, lassertion
1

A, =|3P, e R[X].Vx€ R ") (x)= #e_ﬁ est vraie.
X

Initialisation : Par définition de f, A est vraie, avec P, = 1.

Hérédité : Soit n< N ; on suppose que A, est vraie, c'est-a-dire qu'il existe

1
Pn(x)e_;f_

un polynéme P, tel que pour tout xe R", f(")(x)z =
X

»
Pourtout xe R ,ona:

X3 x By (x)=3nx*""1p, (x)

50 X X

()=

1

X2Py"(X)— 3nx°P, (X)+ 2P, (x) 2
3(n+) .

X

Lassertion A,_; estdonc vraie, avec P, 1= X>P,'— 3nX*P, +2P, € R[X].
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Conclusion : Par principe de récurrence, l'assertion A, est vraie pour tout
neN.

Par croissances comparées, on a pour tout n€ N :
1
: . Palx) T2
lim f(")(x)= lim #e X =0,
x—0 x—0 x n

Ainsi, le théoréme de prolongement de la dérivée permet de conclure a la

dérivabilité de f("J en 0 pour tout n€ N, et par suite au caractére C~ de
fsur R.
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Fiche 7

Equations dans I'ensemble
des nombres complexes

L'introduction des racines carrées dans C, et plus généralement des racines n-iémes
d'un nombre complexe, ouvre de nouvelles perspectives dans la résolution des
équations.

Une question exclusivement technique, qui se maitrise par la pratique !

- [

B Déterminer les racines n-iemes d’'un nombre complexe (n € N ¥)

» En le mettant sous forme exponentielle, et en appliquant le résultat
suivant :

Pour tout n€ N', un nombre complexe non nul a=pe® (p>0) admet n
9 2=

el
racines n-iémes: z; =QJp e'" "

, keo;n—1].

En particulier, pour tout ne N, l'équation z" =1 posséde n solutions
2ik=

complexes: wy =e 7 ouke |[0;n — 1]], appelées racines n-iemes de l'unité.

Exemple 1

Résoudre I'équation : z° = 1.

Réponse
w | = 2km
) 10 s

i=e 2 :onadonc:(zszi)@ zele ,ke[[0;4]| .
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, T
I— I— —
Pour k=0,z=e10; pour k=1z=e 2 =j; pour k=2,z=e 10 ; pour

PLEL TS PLZC T L
k=3,z=e 10 =e 10 ;pourk=4,z=e 10 =¢ 10,

B Déterminer les racines carrées d’'un nombre complexe Z

» Sion peut mettre simplement Z sous forme exponentielle, en appliquant la
méthode précédente, avecn = 2:
Exemple 2

Déterminer les racines carrées de —4i .

Réponse

3w 3T T
i— i —i—
—4i=4e 2 ;lesracines carréessont 2e 4 =2(—1+i)et2e 4 =V2(1—i).

» Sinon, en résolvant un systéeme :

Etant donné Z =x+iy, (x,y)€ R?, on cherche z=a+ib, (a,b)e R?, tel que
z2=7.0na:

a’—b%=x (1
(22:2)-@(az-b2+2abf:x+iy)¢> 2ab=y (2).
2= ry? @)
L'égalité (1) vient de I'identification des parties réelles ;
L'égalité (2) vient de l'identification des parties imaginaires ;

L'égalité (3) vient de |'égalité des modules : {z|2 - |zz| =12].

Remarque: L'égalité (3) n'est pas nécessaire dans I'équivalence, mais elle permet
de calculer simplement a.

On détermine a? en sommant (1) et (3) (on obtient ainsi deux valeurs opposées
pour a), puis on détermine b avec (2).

Exemple 3

Déterminer les racines carréesde —3—4i.
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Réponse

Soit z=a+ib, (a,b)e R? tel que 72=—3—4i,ce qui équivaut a:
a?—b2=-3 ()
2ab=—4 (2).

a®+b2=94+16=5 (3)

(1) + (3) donne 2a® =2 donc ac {1—1} ;(2) donne b :;2.
a

On conclut : Les racines carréesde —3—4j sont 1—2j et —142i.

A Dans T, le symbole J naaucun sens. En effet, dans BT on a défini v/x
comme « le réel positif dont le carré est x ». Dans T, nous n‘avons pas établi
de relation d'ordre. Dés lors, comment faire le choix de I'une des deux racines

carrées qui pourrait étre notée avec le symbole Jd 1

B Résoudre une équation polynomiale dans C

P Sil'équation est du second degré, en utilisant les formules du cours :

Remarque: Si le discriminant n'est pas réel, on applique la méthode précédente
pour déterminer ses racines carrées.

Exemple 4

2

Résoudre dans C l'équation: z°— z+1+i=0.

Réponse
Le discriminant de I'équation est A =—3—4j.

Dans I'exemple précédent, on a montré que les racines carrées de A sont 1— 2j
et —142i.

Les solutions de I'équation sont: z;=1—i et z, =1i.

P Sil'équation est de degré au moins 3, en cherchant des racines « évidentes »
afin de factoriser le premier membre, et de se ramener au cas précédent
avec une équation produit :

Exemple 5
Résoudre dans C l'équation : z° +(2—- i}z2 +(5—2i)z—S5i=0.
Réponse

i est une racine « évidente » (dans C, il faut I'envisager comme tel !).
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On a donc: z3+(2-— ;‘)22+(5-2i)z~ 5i=(z— .")(z2 +az+b) : en identifiant,
onobtient: 2> +(2—i)z% +(5— 2i)z— 5i =(z— Jr')(z2 +Zz+5).

On en déduit que :

(z3+(2—i)zz+(5—2f)z— Sf:0)<=> (z:i)v(zz+22+5:0).

L'équation 22 +2z+5=0a pour discriminant A =—16 ;

—2+44i —~2—4

ses solutions sont z; = =—142i, et 2, = =—1—2

Finalement, I'ensemble des solutions de I'équation initiale est :
S={i—1+2i,—1-2i}.

B Donner la forme exponentielle de e +em',(9,9') eR?

» En utilisant la méthode de « I’arc moitié » avec les formules d’Euler :

[B+ﬁ f0-0 . H—B']

5 A &
o' e\ T g \ 2 :Zcosﬁe 2

e+e —=e

v(0,0eR? ;.

A5 A 5
e 2 —e 2 =

-e = 2jsin|——|e

Exemple 6

Donner la forme exponentielle du nombre complexe z = 1+e, ot 0 e ]—‘n,‘n[ "

Réponse

0 0
i— i—

e 2,

.0
N

19 e2 e 2+4e2|=2cos|—

1+e _e +e

Comme 0 € ]—1‘(,1‘\'[, cos L > 0, et on a bien la forme exponentielle de 14
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Dans I'ensemble des exercices, résoudre dans C |'équation proposée :

1. 25=J§+f

2. Z*4+1-i=0

3. 22 +9i=0

4 z*-3z2+6-2i=0

5. 4z°4(8—4i)z+6—8i=0
6. (2+i)z2—(5—i)z+2-2i=0

7. z2_2zcos0+1—=0,00 0ER,

On accélere

8. (z - 2)8 — 7% (on donnera les solutions sous forme exponentielle.)
9. z*4+4z2416=0

0. 2% —(5+i)z* +(9+4i)z—3(3+i)=0 (on montrera qu'il y a une solution
réelle.)

n 223+(—3+8i)22-(5+10f)z+3(1+i)=0 (on montrera qu'il y a une
solution réelle.)

2 2 (5 2
1. (2z —3z+2) +(z —3z+2) ~0

13. 2% =28+496i
u. 22=i+e", ou0e0,2n].

15. (z+f)n:(z—i)n,ou neN, n>2.
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On notera S I'ensemble des solutions des équations que I'on veut résoudre.

T

l_
Il s'agit de déterminer les racines cinquiémes de 3+i=2e6.
On adonc:

1 i'nr 1 “_131 1 I'_511 1 '_371{ 1 '_4911
S—125e 30,256 30 '25(:_. 6 ,259 30 '259 30

[i 3 j'n' 1 ,_13'5 1 ;_511 1 237 1 ’_Hw
=125¢ 30,258 30 ,258 6 ,258 30 ,258 30

l_
On cherche les racines quatriemes de — 1+ = ﬁe L8

Onadonc:

13 1 1 1 .19% 1 .27x

S—128e 16 28 16 28¢ 16 28¢ 16

(13% 1w 1 a3 15w
— 128016 28¢ 16 28 16 28e 16

3
"—.
On cherche les racines carrées de —9i—=9e 2

2

3V2

Onadonc: S=1{3e 4 3¢ 4= (—1+i).72(1—i) ;

Le discriminant de cette équation est A =—15+4-8i .
On cherche a+ib tel que (:::+ar'b)2 =—1548i, ce qui équivaut a:

at—-p2==1%
2ab—8

a’+b% =289 =17

On trouve a+ibe {144i,—1—4i} , puis: S={2+2i,1- 2i}.
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5.

Lediscriminant de cette équationest A = (8 ——4:!')2 —16(6—8i)=16(—3+4i).

Remarque : Il faut factoriser au maximum le discriminant pour simplifier la
recherche de ses racines carrées.

On cherche a+ib tel que (a+4r'b)2 —=—3+44i,ce qui équivaut a:
a*—b*=-3
2ab—4
a®+b2=5

On trouve a+ibe {142i,—1-2i} .

On en déduit que les racines carrées de A sont 4+8i et —4— 8i, puis:
1,3 3 1 }

wn
I

|

|

|

I

|

I

|

3w
l__
Le discriminant de cette équationest A =—2i=2e 2 .

2 A2 . 4 6—2i 4 2. ]
Onadonc A =(—1+4i) =(1—i) ,puis: S={——, ={———=i,1—i}.
(~¥H) =(1=i) P {4+2i 4+2:‘} {s 5 }

Le discriminant de cette équation est A = 4cos’0 —4=—4sin’0 . On en
déduit :

S:{em,e““’}.

8
z=0 n'est pas solution de I'équation, qui estdonc équivalente a: [Z_ | = L
z
o

Les racines huitiémes de l'unité sont: {w,=e 4 ,ke[0,7]}. Ona:

2\® 3 R i
[z_ ] 1]@ Fke[0.7].F=2=e 4 | |Tke[0,7]|1-e 4 |z=2|.

z z
2

Le cas k=0 estimpossible.Ona: S = ,-k“ ke [[1,7]l :

1—e 4
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e'3,1, 4
: [51\'] 7%
sin| —— sin

8 8

Remarque : Si on veut faire du zéle, on peut calculer les sinus avec les for-

mules de trigonométrie :

cos 2 = COS 21 =1—2sin2[1 , comme o 0,1 ,sin[1]> 0 d'ou:
8 8 8 8
T 1 T 1
sin|—|= [—|1— cos|— || =— 2—\5.
5 ab-=f3) 5
De pius,le 0,~|, donc t:c:s[1 > 0 etcos E]: 1—sin? [E]=l\f2+\/5.
8 2 8 8 8 2
On en déduit :
sinrs—“ —sian—E *cos[l —l 2+\E
| 8 (2 8) 2 '
{ {
sin Sx = sin 1r—3—ﬂ]:sin 3—ﬂ]=l 2+\E,
| 8 \ 8 8 2
( \ (
sin E— =sin 'n—lr-]—sin E-]—J— 2Hs/5
| 8 ) : 8 8) 2
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En posant Z = z2, on doit résoudre Z2+4Z+16=0.
Le discriminant de cette équation est A =—3x 16 ; les solutions sont donc
Z=-2+2i\3 et Z=—2-2i\3.

Il faut en déterminer les racines carrées pour résoudre I'équation initiale.
2T

‘_
On a: —2+2i\/§:4e 3 : les racines carrées de —2+2i\/§ sont donc

, T

:tze'gzi(wﬁi).

N A
Comme (22 =Z)<:> [(z) =Z], les racines carrées de —2— 2#;\/5 sont les

nombres conjugués des racines carrées de —2 + 2i\3.

Finalement : 5:{1+fJ§;1— WBi—14hB—1— w’i} .

x> —5x24+9x—9=0 ()

x € R est solution si, et seulement si :
—x?4+4x-3=0 (2)

Remarque: (1) et (2) sont obtenues enisolant |a partie réelle et la partie imagi-
naire de x> — (5+i)x2 +(9+4i)x—3(3+1i),sachantque xc R .
L'équation (2) a pour solutions 1 et 3, mais seul 3 est aussi solution de (1).

On en déduit que c'est la solution réelle de I'équation initiale.

On a donc: z°— (S+i)22 +(9+4i)z—3(3+i)=(z— 3)(22 +a z+b) , avec
(a,b)e C?.

En identifiant, on obtient :

22— (5+i)2% +(9+4i)z— 3(3+1) = (2—3)(2% - (2+1)z+3+i).

L'équation T (2+f)z+ 3+i=0 apourdiscriminant A =—9 ;ses solutions
sont 14+2i et 1—i.

Finalement $={3,1+2i,1—i}.
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3_3x2_5z43=0 (1)

8x2—10x+3=0 (2)

x £ R est solution si, et seulement si : I

; : . 3 .3 . 1 ; ;
L'équation (2) admet pour solutions 3 et = mais seul - est aussi solution de

(1).

On en déduit que c'est la solution réelle de I'équation initiale.

Onadonc: 223 +[—3+8§)22 —(5 +10f]z+3(1+i)=2[z—%](22 +a z+b),
avec (a,b)e C2.

Remarque : Le coefficient dominant est 2, il ne faut pas oublier de le mettre
en facteur.

En identifiant, on obtient :
22 +(~3+81)2% — (5+101)2+3(1+i) = (22 1)(2* +( 1+ 4i)2— 3-3i).
L'équation z?‘+(—1+4i)z—3—3f:0 a pour discriminant A =—3+4j

(dont on a déterminé les racines carrées dans I'exercice 5: 1+2i et —1—2/);
ses solutions sont 1— i et — 3i.

Finalement, S = {%;1— ii— 3:'}.

Ona:

2 2 15 2
(2z —3z+2) +(z —3z+2) —0le

2 2
(222—32+2) :i2(22—3z+2) ]

Deux nombres ayant le méme carré sont soit égaux, soit opposés. On est
donc ramené a résoudre les deux équations : 272 —3z42=j (zz - 32+2) et
272 3742 = ~i(22 . 3z+2).

Considérons la premiére: 222—32+2=i(22—3z+2), qui équivaut a
(2—i)2% = 3(1—i)z+2(1—i)=0.

Le discriminant de cette équation est A =—8+6i .
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On cherche a+ib tel que (a+r’b)2 —=—8+6i, ce qui équivauta:

a’—b?>=-8
2ab—=6
a®+b%=10

Ontrouve a+ibe {1—!—3:’,— 1— 3i} , puis les solutions de la premiére équation
qui sont: i—|-3ifet 1—1i.
5 5

On peut bien str procéder de méme pour résoudre la deuxiéme équation,
mais on va étre plus malin !

En effet, I'équation initiale est a coefficients réels, ainsi si un nombre complexe
z est solution, il en est de méme de son conjugué. Les solutions de la seconde
équation sont donc les nombres conjugués des solutions de la premiére.

4 2. 4 2
Onendéduit: S=1—+—=i,———=i,1+i,1—i}.
{5+5 5 5 L }

On doit ici déterminer les racines quatriémes d'un nombre complexe dont on
ne connait pas une expression simple de I'argument...

On peut toujours utiliser les fonctions circulaires réciproques, mais la simplifi-
cation des solutions promet quelques difficultés !

Le plus simple est de considérer que les racines quatriemes d’'un nombre com-
plexe sont les racines carrées de ses racines carrées.

* Déterminons les racines carrées de 28+ 96j — 4(7+24i) :

On cherche a+ib tel que (a+ib)2:7+24i, ce qui équivaut a:
a®—b*=7

2ab=24 . Ontrouve a+ibe {4+3i,—4-3i} ;

a® +b% =25

On en déduit que les racines carrées de 28+ 96i sont: 8 +6iet —8— 6i .
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* Déterminons maintenant les racines carrées de 8 +6j :

a’—b?=8
Oncherche a+ib telque (a +fb)2 =84 6i ,cequiéquivauta: {2ab—6
a’ +b> =10

On trouve a+ibe {3+i,—3—i} .

* Pour déterminer les racines carrées de —8— 6i remarquons que, comme

i2 =—1, les racines carrées de —8— 6i sont obtenues en multipliant celles

de 8+ 6i par /.
Finalement, S={3+i,—3—i,—1+3i,1-3i} .

Pour déterminer les racines carrées de | JE—e'HI on va mettre ce nombre com-
plexe sous forme exponentielle, en utilisant I'arc moitié :

s v A ey
i+e —e2 4ol —o\4 2)[gl4 2) o 14 2 :2cos[——-—]e .

> 0, eton a bien la forme exponentielle de i+ e

* Sife :cosﬂ

0,3
2

Remarque : Cette précision est indispensable car on va prendre la racine car-
rée du module!

9% B

Qe swERN G|

Onadonc: S= 2cos

. Si 9:37“ ri+e =0,et s={0}.

g 0 ; g i
*Sife -323,2-:1 : cos[%— 5]< 0 ;laforme exponentielle de i+e' estdonc
I'[E—!—E-Hr] J[S—Tt—l—ﬂl
—2cos E—E]e 42 = 2C0s TE—[E—E-}E 42
4 2 4 2
(57 9]
i —4—
=2c0s 3—“+E]e i 3
4 2
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5 ‘.[5114_9]

3 : & A 3

—“+—]e 84 ,.|2€0s T
4 2 4

Onadonc: S= NZcos

n
- . g : . - s [Z
15. z=i n'est pas solution de I'équation qui est donc équivalente a [—] % I
z—i

2k
f—
Les racines n-iémes de I'unité sont: jwy=e " ,ke[0,n—1]}. Ona:

o n ( +i jzk_“
u] =1]¢> Fkefo,n—1) = =e n
== Z—1
j2k= j2k=
¢ |Jkefon—1]zle " —1|=ile " +1

Le cas k=0 estimpossible. Pour tout k € |[1,n— 1]] ona:

= L L |
i n je nlen n )
U 1 = e 2icos =2 cos k—“
o — — — n -—— n
T 2kw o kn( kmkm 9isi ke . (k=)
e N -1 afila Bl —@ n I'Sln? sm?
\ /
kw
cos| —
Finalement: S = ——n—,keﬂ1,n—1] :
(km
sin| —
n ]
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""""""""""""""""""""""""""""""""""""""""""""""""""" Fiche 8

Trigonometrie

La trigonométrie est omniprésente en mathématiques. On la retrouve en analyse, en
algebre comme en géométrie. Ne pas maitriser les techniques de base peut se révéler
trés pénalisant.

Cette fiche permet de mémoriser les formules et leurs utilisations a travers la résolution
d'équations.

Y e vvsmontecomment

B Résoudre des équations trigonométriques

P Sil'équation estde laforme acosx +bsinx=c, (a,b,c)e IRB,(a,b) =(0,0) :

. a b X c
On l'écrit: ———c0s X + ———5INX = ———.
Ja? +b? a® +b? va* +b?
On cherche 6 tel que cos —— 9 etsing= i .
a® +b° a® +b?

On a alors l'équivalence :

(acosx+bsinx :c)@ [cochosx+sin0 sinx =

C

\}a2+b2

> 1, I'équation n'a pas de solution ; sinon on conclut en utilisant le

¢ |cos(x—0)=

Si

c
Ja? +b2

résultat suivant:

V(x.y)e R? (cosx =cosy)<«> (Ik€ Z,(x =y +2kn )V (x =—y+2kn))
X,y)e R,

(sinx=siny) <> (Jk€ Z,(x =y +2kw )V (x =7 — y+2kx))
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Exemple 1
Résoudre I'équation: cosx +sinx=0.

Réponse

(cosx+sinx =0)<> [%cosx+%sinx = 0]@ cos

-3

@{Bke Zox— ==X 4 kx
4 2

@[3k€Z.x=3T“+qu

Lensemble des solutions est : {3%4— kw,k € Z} )

Remarque : Dans ce cas, on peut aussi écrire :

(cosx +sinx =0) <> (cos x =—sinx) <>

( i3
COS X = COS x+—]

\

& |k elZ, vV

X:X+'§'+2k1\‘

x:—[x+§]+2k1r

jamais vraie

S|IkeZ, 2x = —§+2k1r]<:>

HkEZ,x:—%Hm

A || ne faut pas oublier de diviser 2kw par 2 a la derniére étape (c'est pour éviter
ce type d’erreur que la notation avec une congruence est a éviter...).

» Sinon,en utilisant les formules de trigonométrie (rappelées dans le formulaire 3)
pour factoriser 'expression, et se ramener a des équations plus simples :

Exemple 2
Résoudre |'équation : cos(2x)+cos(4x)=2cos(x).

Réponse

(cos(2x)+cos(4x)=2cos(x))«> [2c05[2x:4x]c05[2x; 4x] =2cos(x)

& (2cos(3x)cos(x) - 2cos(x))<¢ (cos(x)(cos(3x)— 1): 0 )

& ((cos(x)zo)v (cos(3x)= 1))<:> JkeZ,

x:1+k11
2

V(3X=2k1t)].

Finalement I'ensemble des solutions est: S = {%+kw;k € Z}U[N{Tﬂ;k S Z} :
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Résoudre les équations suivantes :

On s’échauffe

1. cos(x)+sin(x)=—1

2. ﬁcos(x)—sin(x)=—1
3 cos(2x)+\/§sin(2x)
4. cos(3x)—sin(3x)= JZ

1

5. 4cosx+3sinx =6
6. sin(3x)+sin(5x)=2sin(4x)
7. cos(3x)— cos(5x)=sin(6x)+sin(2x)

On accélere

8. cos(x)+\f§sin(x)+ﬁcos(2x)~ﬁsin(Zx)zo
9, 2cos(2x):\/g(cos(x)— sin(x))
10. cos(x)— sin(2x)=cos(5x)+sin(4x)

1+cos(x)

, ———— —1 (Attention au domaine de définition !)
= cos(zx)

12 1+cos(2x)+cos(4x)= 0

sin(2x) _ cos(x)

e cos(2x) sin(x)

(Attention au domaine de définition !)

14. sin(2x)+sin(4x)+sin(6x)=0

15. cos(5x)+2cos(3x)+3cos(x)=0
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On notera S I'ensemble des solutions des équations que I'on veut résoudre.

(cos(x)+sin(x)=—1)«

%cos(x)+%sin(x):—%]

T 37
& |COS|  X— — |=COoS5|—
3ol
T 37 o 3n
& |FkeZ|X——=—+2knw |V x—-:——+2qu]
| = 4 4 =
& |Jke Z,(x:'lt+2k'rt)v x:—§-+2kﬂ]]

5:{1T+2kTE;kEZ}U{—%+2k‘ﬂ‘;kE Z} ;

1

(\Ecos(x)— sin(x)=— 1) & igcos(x)— —;—sin(x) =— 3]

<> | COS X+E]=COS 2—'“]]
\ 6 3
T 2% e 2%
S|IkeZ, | x+—=—+2kx V[X+—=——+2k‘n’]
6 3 6 3
& |1dke Z, X=%+2k1t \% X=—5?“+2k1r]

S:i§+2k1t:ke Z}U[—%ﬁ+2kﬂr,k€ Z] .

(cos(Zx)+J§sin(2x)=1)¢> %cos(Zx)+§sin(2x)=%]
- l3)
& |cos|2x — — |=cos|—
k 3 3
& | ke Z, 2x—3=1+2k1r V[ZX—E=—1+2kTE]
3 3 3 3
& |3kezZ, x=%+k¢r]v(x=k—m)

S={%+k‘u;k€ Z}U{k'n;ke Z} .
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4, (cos(3x)— sin(3x) =ﬁ)¢-¢~ [%cos(Bx)— %sin(h) = 1]

& cos[3x+% =cos(0) @[Elke Z,3x+§=2kn]
[akez x=—1+%
2kT
s=|-=+"Zikez
l 12+ 3 = }

(4cosx+3sinx=6)<>

4 - 6 6
—cosx+=sinx =— <> |cos(x—0)=—

5 5 5 5

. 4 . 3 4
ol 0 € R esttel que cosl =% et sinf = par exemple 0 = Arccosg.

6 . i .
Comme % > 1, I'équation n‘a pas de solution: S=2.

3x;5x]c05[3x; SX]: 2sin(4x)]

4> (sin(4x)cos(x)=sin(4x)) (sin(4x)(cos(x)— )= 0)

(sin(3x)+sin(5x) = 2sin(4x)) <> [Zsin

IEN ((sin(4x): 0)\/ (cos(x) - 1))% (er Z,(4x=k= )V (x = 2k1r)).
$= {%‘ k e Z}

Remarque: Le cas (x = Zk'n) est bien dans I'ensemble des solutions annoncé

car 2kw -SkT'n [

(cos(3x)— cos(5x) = sin(6x)+sin(2x))

o [_zsm ]

& (— 2sin(4x)sin(— x) = 2sin(4x)cos(2x)) > (sin(4x)(sin(x) — cos(2x))=0)

(
& (sin(4x)(sin(x)~— (1— 2sin? (x)) — 0)<:> (sin(4x)(2 sin? (x)+sin(x)— 1) - 0)

3x+5x]. [3x—5x 6x+2x 6Xx—2X
sin cos

= 2sin
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[Elk €Z,(4x =kx)V

5= {k“k z]U[ +2kwkeZ]U[ +2kwkeZ}U[6+2kwkeZI.

: (cos(} 3sin(x)++/2 cos(2x)— 2 sin(2x) = 0)
1 3 V2 V2

2 e N2 cos(2x)— Y sin(2x) =0
& 2C05(X)+ > sm{x)+ = cos( x) 5 snn( x)

® :0]
4

X= ‘T‘.’—E +2k1r]].
6

x~3+2k'rr]
6

x_3_“_|_2k,“]
2

2X+

+cos

< |COs| X
\

1
< |cos|—

& BkeZ,[%[Bx—— . e

. (2cos(2x) =6 cos(x)— sin(x)))
<:>(2C052( ) 2sin? (x)= \[E(COS(X) sin(x )
ﬁ((cos(x)—sin(x))(z(cos( )+ sin(x )) J€)=0)

f {
1 1 . 1 1 3

p= -—COSX————SII"IX=OV cos - sin

J5 <o)~ Jgin(x)=0] | Jreos(x)+ Jysin(x) - ]]
= cos[x+1]=0 V | cos x—1 :—‘5 ]

4 4] 2
olIkez|x+E=Ztkn v[x—3=3+2k»ﬁ V x—1:—3+2kw]].
4 2 4 6 4 6

5=E+kn;ke Z]Uﬁ—;-uk'n;ke Z]Ui%+2k1t:ke z} .
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10. (cos(x)— sin(2x) = cos(5x)+sin(4x))¢> (cos(x)— cos(5x) = sin(4x)+sin(2x))
. [x—Sx

4 (sin(3x)sin(2x) = sin(3x)cos(x))

X+5x 4x—2x

=)
ﬁ-(sm(3x)(2sm( cos(x)— cos(x )) ) sm (3x)cos(x )(25in(x)—1)=0)

)

3k€Z(3x k'n') [X=‘E+k‘ﬁ] X=E+2k1r] [x=5?ﬂ+2k1t] ;

=2sin 4%+ 2x oS

& [—Zsin

)
& [ sin(3x)=0)V (cos(x)=

S= {k: ke Z}U{%ﬂ-k‘ﬂ:ke Z}U{%-!-zkﬁ;kEZ]U[%-l-Zkﬁ;kE Z} )

11. Le domaine de définition est D =R\ U {kw} .
keZ

1+C05(X) =1l (xED,]+COS(X)=1“COS(2x))

1- cos(2x)

& (x €D, cos(x)=1— 2cos? (x))
(

& | xeD, 2c052(x)+ cos(x)—1= 0) & | xeD, [cos(x):

~ |V (cos(x)=~ 1)]

& |xeD3kez, V(x=m+2kx)| ;

T
X=—42k%
3

V[x:——gu+2k1r

(X =m+2k=) estincompatible avec (x € D).

S ={%+2k'ﬁ;k€ Z}U{—§+2k«;ke z] :

12. (1+cos(2x)+cos(4x)=0)«> (1 +cos(2x)42cos? (2x)— 1= 0)

& (cos(Zx)(1+2cos(2x)): O)ﬁ

(cos(2x)=0)V (cos(2x))=— %]

26—~ 2% 4 2k ]]
3

© kx T T
S= ke Z —+km:keZ ——+kn:keZ;}.
{4+2 }U[3+ne}U{ 3—I—*.=r€}

{EIkeZ

2x—3+k1r
2

v[2x=%"+2kn]v
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13. Le domaine de définitionest D=R\ U IE +E;kn|.
keZ 4 2

sin(2x)  cos(x) ¢ (x€D, sin(2x)sin(x)= cos(2x)cos(x))

cos(2x)  sin(x)

¢ (x €D, cos(2x)cos(x)— sin(2x)sin(x)=0)<«> (x €D, cos(3x)=0)

T  kx

& |xeD, ke Z, 3x:%+kw]<:> [xeD,Elke Z,ng-l-?].

* Sik=3n: x=%+mr€D :en effet:

S : k
— S'il existe des entiers n et k tels que 3-1-n1r =L + i ,alors 12n— 6k =1
et 6 divise 1, ce qui est impossible. 4

— S'il existe des entiers n et k tels que Tt nm=km, alors 6k—6n=1, et6
divise 1, ce qui est impossible.

* Sik=3n+1: x:gﬁ-nweD;eneﬁet:

—_ . k
— S'il existe des entiers n et k tels que el +nw = A +—’It ,alors 2k —4n=1
et 2 divise 1, ce qui est impossible.

— S'il existe des entiers n et k tels que T tnw=kx,alors 2k—2n=1, et 2
divise 1, ce qui est impossible.

s Sik=3n+2: x:s?“+mreD ren effet:

— S'ilexiste des entiers n etk tels que 5—“+ == +%ﬁ ,alors 6k—12n=7

et 6 divise 7, ce qui est impossible.

— S'il existe des entiers n et k tels que 5—“+ nt =k ,alors 6k—6n=5,et6
divise 5, ce qui est impossible.

Finalement, S = {% +%n;k “ Z] i

14. (sin(2x)+sin(4x)+sin(6x)=0)
& [25in[2x_;4x]cos

& (2sin(3x)cos(x)+2sin(3x)cos(3x) = 0) > (sin(3x)(cos(x)+cos(3x)):0)

2x—4

x]+sin(2>< 3x)=0]
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15.

X—3x L5
2

& ((sin(Bx) =0)V (cos(2x)=0)V (cos(x)= 0))

x=1+k1r]].
2

s={%“:ke Z}U{: +"'IT ke Z}U[; +kw;keZ} .

& [sin(Bx)Zcos

x+3x]cos

& [3ke Z,(3x=kn )V [2x—5+k'ﬁ

(cos(5x) + 2cos(3x) + 3cos(x) = 0)
= (cos(Sx) + cos(x) +2(cos(3x) + cos(x)) = 0)

3x+x 3x—x
cos =0
2 2

¢ (cos(3x)cos(2x)+2cos(2x)cos(x)=0)

5x—

& [2cos 5 X]+4cos

Sx+x]
cos

& (cos(Zx) cos(3x)+2cos(x )) 0)

¢

(cos(Zx) cos(2x)cos(x sm(2x)5|n(x)+2cos(x)):0)

¢

(cos(2x)cos( cos (2x)— 2sin? (x )+2)=0)

¢

(cos(zx)cos( 3—4sin? (x )) 0)

ﬁ[(cos(Zx)zo cos(x)=0)v 5|n(x):§ v

sin(x)——\/—f-]]

o l3kez, v x:%+2kw]v[x:2?“+2k1r]

2x——+k1t
2

x:—+k1r]v
2

V[x =2 ]y [x= 2k
3 3

S= {4+ keZlUl -i-k’n’kEZlU[ +kwkez}U{—§+k«keZ}
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Fiche 9

Fonctions circulaires
réciproques

La notion de bijectivité permet d'introduire de nouvelles fonctions comme réciproques
des fonctions circulaires sur certains intervalles. Un nouveau champ des possibles
s'ouvre sur I'étude des applications. Encore faut-il maitriser les notions de base concer-
nant ces nouvelles fonctions ! C’est I'objectif de cette fiche.

Y v monecommer

B Déterminer l'image d’un réel par une fonction circulaire réciproque

A Arcsin, Arccos et Artan sont des applications. Pour chacune d'elles, un réel de
leur domaine de définition a une et une seule image. Elles ne sont certaine-
ment pas définies «a 2w -prés » !l!

P Pour déterminer l'image de x& [—1,1] par la fonction Arccos on doit se
poser la question suivante : « quel angle de [O,T\‘] a pour cosinus x ? »

-

A si x¢[0,r],Arccos(cosx)= x I

Exemple 1

Déterminer Arccos|cos

— % ¢ [0,7], donc ce n'est pas la réponse !

L ['n
——|=cos|—
5] 5

cos cos

et % € [0,11 | donc Arccos

5
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» Pour déterminer lI'image de x¢ [— 1,1] par la fonction Arcsin on doit se

poser la question suivante : « quel angle de |— —,—

a pour sinus x ? »

Exemple 2
; ; a1
Déterminer Arc sm[sm[E]].

Réponse
A Six¢ —1;-;- JArcsin(sinx) = x !
% &|— T I |, donc ce nest pas la réponse !
12 2
. (7™ . 7w . |5x® 5w T T I 5w
sinf|— [=sin|®t — —|=sin|—| et —¢& |——,—|,donc Arcsin|sin|—||=—.
12 12 12 12 2 2 12 12

P Pour déterminer I'image de x€ R par la fonction Arctan on doit se poser

: : T W
la question suivante : « quel angle de |— —,—

a pour tangente x 7 »

Exemple 3

Déterminer Arctan[tan[g?“]].

Réponse

— 1,% ,Arctan(tanx)= x !

A six¢

T
y—

97 ; ;
?&’ , donc ce n'est pas la réponse !

tan[g—“]:tan 2%
8 8

M
2

™ ™
,—

, donc Arctan|tan

:tan[i] et Le
8] 8

)

B Représenter un graphe de fonction définie a l'aide de fonctions circu-
laires réciproques

On commence par étudier le domaine de définition, puis on cherche a réduire le
domaine d'étude en utilisant les propriétés des fonctions circulaires et circulaires
réciproques.

Exemple 4

Représenter la courbe de la fonction f: x+ Arc sin(sinx) dans un repére ortho-
normé (O,f, ;)
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Réponse

Pour tout x € R, sin(x) € [—1,1], donc la fonction f est définie sur R .

« La fonction sin étant 2« périodique, on peut étudier la fonction f sur [—w,n],

puis obtenir le reste de la courbe par des translations de vecteurs 2k« i keZ.

* Les fonctions sin et Arcsin étant impaires, la fonction f est impaire : pour tout
xeR, Arc sin(sin(— x]): Arcsin(—sinx)=—Arcsin(sinx).

* On peut étudier f sur [0,7| puis obtenir la courbe sur [—m, | par symétrie par
rapport a O.

» Pour tout xc R, Arcsin(sin(w— x))=Arc5in(s]nx). On peut donc étudier f

sur puis obtenir la courbe sur [O,ﬁ] par symétrie par rapport a la droite

0,~
2

d'équation x = % :

Pour tout x &

0,%1, Arc sin(sin(x)): x , on peut donc tracer le graphe de f:

=i

N N
N

B Simplifier des expressions avec des fonctions circulaires réciproques

P Alaide desformules de trigonométrie (méthode « algébrique ») :

Exemple 5

Simplifier : cos(2Arccosx) .

Réponse
Remarquons tout d’abord que I'expression n'est définie que pour x € [— 1,1].

Vx € [—1,1],cos(2Arccos x) = 2cos? (Arccosx)—1=2x% 1.
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» Alaide d’'une étude de fonction (méthode « analytique ») :
Exemple 5 bis
Simplifier : cos(zArccosx) :
Réponse
On considére la fonction f définie sur [—1,1] par f(x)= cos(2Arccosx) .
Par composition, f est dérivable sur |11 et pour tout xe|-11[:
f'(x)=—sin(2Arccos x )x e §
imx?
Comme pour tout a€ R, sin(2a)=2sin(a)cos(a), on a, pour tout x€ |- 1,1 :

N 4sin(Arccos x)cos(Arccos x) 41— x2 x x _

fr(x)_ \/]_xz . \/I_XZ —4x

2

Remarque: On a utilisé le résultat suivant : |Vx € [ 1,1],sin(Arccos x) = V1— x

On en déduit, par continuité de f sur [—11] que pour tout xe&[—11]:

f(x) —2x2 +f(0): 2x2 +cos(2ArccosO): 2x2 +cos =27 =1.

2><E
2

Remarque : Sur cet exemple, la méthode algébrique est plus « performante »,
car elle fait appel a une relation de trigonométrie trés simple. Ce n'est pas tou-
jours le cas, comme nous le verrons dans les exercices.

B Résoudre des équations avec des fonctions circulaires réciproques

Apres avoir donné le domaine de définition, on raisonne par analyse-synthése, en
appliquant une fonction trigonométrique pour simplifier I'¢quation.

A Onne peut pas raisonner par équivalences car les fonctions trigonométriques
ne sont pas bijectives sur R. Il faut impérativement faire la synthése apres
avoir fait I'analyse !

Exemple 6
Résoudre I'équation : Arctan(x)+ Arctan(2x)= %

Réponse

Remarquons tout d’abord que cette expression est définie pour tout x< R..

ANALYSE : on applique la fonction tangente, et on utilise (sous couvert d'exis-
tence) l'égalité :
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tana+tanb

tan(a4+b) =————  ; on obtient :
1— tanatanb

Arctan(x)+Arctan(2x):%]:> %:1 .
Ona:

s @(2x2+3x—1=0)<=> X€E _3+Jﬁ,_3_ﬁ :

1— xx (2x) 4 4
SYNTHESE: La fonction x> Arctan(x)+Arctan(2x) est continue, stric-
tement croissante sur R ; lim (Arctan(x)+Arctan(Zx)):—'rr et

X——00
lim (Arctan(x)+Arctan(2x)) =,
X— 400

D’aprés le théoréme des valeurs intermédiaires, I'équation n'admet donc qu'une
seule solution.

De plus, Vx < 0,Arctan(x)+ Arctan(2x)< 0, la solution de I'équation est donc un

réel positif.
Finalement, la solution de I'équation est _3+T i
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On s'échauffe

1. Déterminer les valeurs suivantes :
a. Arccos(0), Arcsin(0), Arccos(1), Arcsin(1), Arccos(—1), Arcsin(—1),

Arcsin ﬁ , Arccos|— \E , Arcsin| — \/_ , Arccos|— J_
2 2 2
Arcsin _TJ';’ , Arccos _f , Arcsin _\E] Arccos[_f A

Arcsin l] Arc co:=.[l
2 2

’ Arcsin[_?‘i], Arccos

£y
5 )
Arctan(0), Arctan(1), Arctan(—1), Arctan(ﬁ), Arctan[ L

)
-2

17% ]

cos

b. Arccos[cos ";i ] Arccos

Arccos|cos

o% ]] Arccos
5

COS[

Arcsin|sin —1] . Arcsin sin[4—ﬂ ., Arcsin sin[—lﬂ :
12 5 12

Arctan[tan[_sﬂ ]], Arctan[tan[%r]], Aracsin[ccas[a?’]T ]

Arcsin|cos —1] , Arccos sin[—1 , Arccos sin[B—W] :
12 12 5

2. Donner les domaines de définition des fonctions suivantes :

VX2 x+1

1+ x
1—x

. X aﬂkr‘:cos[%\/—x2 +3x +4]

3. Simplifier les expressions suivantes :

a. x> Arcsin

b. x— Arcsin

a. sin(2Arcsinx)
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b. cos>

1
—Arcsinx
2

¢. sin?(Arctanx)

d. cos(2Arctanx)

4. Représenter la courbe des fonctions suivantes, dans un repére orthonormé :

a. x> Arccos(cos(x))

b. x> Arc sin(cos(x))

5. Résoudre les équations suivantes :

a. Arccos(x)= Arcsin(2x)

b. Arcsin

5 |=Arctan(x)

14X

¢. Arcsin(x)=Arctan

On accélere

6. Simplifier les expressions suivantes :

x ]
1— x2

a. cos(Arctan(x))

1+ x

1— Xx

b. Arctan

7. Montrer que: Vx € |0;1], 2Arctan ,’1_—)( +Arcsin(2x — 1)
X

Remarque : Trois méthodes différentes sont proposées en correction... Essayez

d’en trouver au moins deux !

8. Soit f: x> Arccos

1
V1+x2 -

a. Déterminer le domaine de définition de f, et son domaine de dérivabilité.
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iy —
, et en déduire une

r

b. Exprimer simplement f (tan(u)) pour ue

expression simplifiée de f.

¢. Retrouver ce résultat par une méthode analytique.

9. Mémes questions qu'a lI'exercice précédent pour la fonction
1+ x

f:x Arcsin .
\/5 1+x2

10. a. Dans unrepére orthonormé, représenter graphiquement sur [— 'n','n'] la
fonction h définie par h(x):Arccos(sin(x)).

b. On considére la fonction f: x = Arccos

5|
1+ x
Donner le domaine de définition de f, ainsi que son domaine de déri-
vabilité.
T T

, et en déduire une

¢. Exprimer simplement f (tan(u)) pour ue

expression simplifiée de f.

d. Retrouver ce résultat par une méthode analytique.
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Remarque : Pour cet exercice, il faut IMPERATIVEMENT s’appuyer sur un cercle
trigonométrique.

a. Arccos(O):%, Arcsin(0)=0, Arccos(1)=0, Arcsin(1)=§,

Arccos(—1)=m, Arcsin(—1)=— %

Arcsin ﬁ :1. Arccos ﬁ 23. Arcsin E :E, Arccos ﬁ :1,
2 3 2 6 2 - 2 4
: r—\E T —\E 5T y —\E T
Arcsin|——|=——, Arccos|——|=—, Arcsin =——,
| 2 3 2 6 2 4

-—\/—2— 31

——— |=—, Arcsin
2 B

Arccos

1
—]21. Arccos l
2 6

’

Arc sin[_—1] . Arccos[-_—l] = 2—1t Arctan(0)=0,
2 6 2 3

T T 3 ’32 gy
Arctan(1)=—, Arctan(—1)=——, Arctan \/5 — Arctan / =—,
( ) 4 ( ) 4 ( ) [ 12 ] 3
Arctan{L]=Arctan 1’/2, =£.
V3 J3/2) 6
Arccos|cos 1] =E, Arccos cos[— 1] = Arccos cos{ll =1,
7 7 12 12 12
b
4 4
Arccos|cos 6—“ = Arccos|cos 21r—6—ﬁ = Arccos cos[—'H :—ﬂ,
5 5 5 5
17 17
Arccos|cos 2R =Arccos| cos i 27 {|= Arccos|cos = :1,
8 8 8 8
Arcsin|sin —1] =—l.
12 12
Arcsin|sin 4—“] = Arcsin|sin| ™ — ﬂ] = Arcsin sin[z] =3,
\ 5 5 5
Arcsin|sin —m = Arcsin|—sin Tﬂ = —Arcsin|sin m
2 12 12

o 11w i
=—Arcsin|sin|t ——||=——,
[ [ 12 ]] 12
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27

Arctan

2
a3

]_1

tan[_:w ]] = Arctan{tan[n - 3?“]] Arctan[tan

Arctan[tan[%]]=Arctan{tan[4?“— 'nj] Arctan[tan ]

Arcsin|cos 3—“] = Arcsin sin[E—B—“} = Arcsin sin[— —]
5 2 5 10

Arcsin| cos —3] =Arcsin sin[E—l] = Arcsin sin[ ]
12 2 12}

Arccos|sin -1] =Arccos| cos 1-I—i] = Arccos cos[7—“] =7—1t,
12 2 12 12 12
s B 3T = T T
Arccos|sin|— || = Arccos|cos| —— — || = Arccos|cos| — || = —.
5 5 2 10 10

2. Le domaine de définition des fonctions Arcsin et Arccos est [~ ‘I,‘I].

a. Pourtout xe R, x24x+1>0 (car le discriminant est strictement négatif).

Ona: [\)‘x2 +x+1 <_:1]¢>(x’- +x+1<1) & (x(x+1)<0) > (x€[-1,0]).
La fonction est donc définie sur [—1,0].

b. Ona:

1+x
1—x

<1|&

((x::1)/\(|1+x|g:|1~x;))¢>((1+x)2 g(]—x)z)@(xgo).

La fonction est donc définie sur ]— 00 ,0] :

¢ Ona:(~x2+3x+42O)ﬁ(xe[~1,4]).0nadonc:
[%JMQ & [(xe[— 1,4])/\[%(—)8 +3x+4)§1]]

& ((xe[-14])A(x€ |- 00,0]U[3,+0]))

& (xe[-1,0]U[3.4)).
La fonction est donc définie sur [—1,0]U([3,4].

3. a Pourtout xe[—11],0ona:
sin(2Arcsinx) = 25in(Arcsin(x))cos(Arcsin(x)): 2xv1— x2 .

(On a utilisé : pour tout t€ R, sin(2t)=2sin(t)cos(t).)
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b. Pourtout x€[—1,1],0ona:

14 cos(Arcsin x — x2
cos2 lArcsinx = s ( ):1+ Ll ]
2 2 2
14 cos(2t
(On a utilisé : pourtout tc R, cosz(t)z—z(-—) )
¢. Pourtout xcR,ona:
e D 2 1
sin” (Arctanx)=1— cos” (Arctanx)=1— 2
14 tan (Arctanx)
P I i
'H-x2 1—]—.‘(2 '
(On a utilisé : pour tout te R\ U T tknl, cosz(t):;.)
. 1+tan’ (t)
keZ
d. Pourtout xcR,ona:
cos(ZJﬁ\rctanx):2cc:s2 (Arctanx)— 1= 5 2 =1
1+ tan (Arctanx)
i _1_1—)«'2
1+x2 1+x2 '

4. a. Pourtout x€ R, cos(x)€[—1,1] donc la fonction f:xr—»Arccos(cos(x))
est définie sur R .

On va représenter sa courbe dans un repére orthonormé (O,i o) ) apres
avoir réduit le domaine d'étude :

La fonction cos étant 2= périodique, on peut étudier la fonction f sur
[—- 1".‘,1\'], puis obtenir le reste de la courbe par des translations de vecteurs
2kwi keZ.

La fonction cos étant paire, la fonction f est paire: pour tout xR,
Arc cos(cos(—x))z Arccos(cos x) ; on peut étudier fsur [0, ] puis obte-
nir la courbe sur [—m, 7| par symétrie par rapport a (Oy).
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Pour tout x& [0,11], Arccos(cos(x))z X, on peut donc tracer le graphe
def:

r4

N

w4

b. Pour tout xe R, cos(x)e [—1,1] donc la fonction f:xHArcsin(cos(x))
est définie sur R .

On va représenter sa courbe dans un repére orthonormé (OII) apres
avoir réduit le domaine d'étude :

La fonction cos étant 2« périodique, on peut étudier la fonction f sur
[— 11,1\'], puis obtenir le reste de la courbe par des translations de vecteurs
ki keZ.

La fonction cos étant paire, la fonction f est paire: pour tout x< R
Arc sin(cos(~x))= Arcsin(cos x) ; on peut étudier f sur [0,11] puis obtenir
la courbe sur [—, | par symétrie par rapport & (Oy).

Pour tout xe[(},'n], Arcsin(cos(x)):Arcsin[sin[%—x] zg—x, car

i

(xe[ox])< i

L
= lE
2

] ; on peut donc tracer le graphe de f:
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5. a. Le domaine de définition de I'équation est

— .
r

2 2

Remarque : Considérons la fonction f: x > Arcsin(2x)— Arccos(x) qui est

continue et strictement croissante sur
XH—Arccos(x) le sont.

—%;% , car x> Arcsin(2x) et

T _T_T -0, donc le théo-
2R

réme des valeurs intermédiaires assure I'existence et |'unicité d’une solution
de lI'équation f(x) — 0.

T™ 27 7T

—-]:————:—-—<o et f[l
6 2

1 . ; ) .
, si x est solution de [|équation

ANALYSE: Pour tout xe

Arccos(x)= Arcsin(2x), alors :

(sin(Arc cos(x)): sin(Arcsin(Zx))) & [ XE€

ollxe A(l—x2=4x2)

1
&S| x=—4]|.
%
SYNTHESE (inutile si on considére la remarque !) : Pour x = ﬁ ,ona:
2

0,1
2

sin(Arc cos(x)): sin(Arcsin(Zx)) et (Arc cos(x),Arc sin(Zx))E

0;1
]

d'ou Arccos(x)=Arcsin(2x).

. ] 1
Finalement I'ensemble des solutions est lﬁ] :
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b. &Il n‘existe pas de relation simple qui relie Arctan avec Arccos et Arcsin.

En particulier, meAinx) ::Arctan(x), elles n‘ont méme pas le méme
Arccos(x)
domaine de définition !!!
Ona:
2X 2 2 2
‘ s Sl]f:::’(z|x|g1+x )@(x -2|x|+120)¢:> [(I-|x|) 20]
T+x

assertion toujours vraie
Le domaine de définition de I'équation est donc R.

ANALYSE: Pour tout xR, si x est solution de I'équation

Arcsin > = Arctan(x), alors :
1+ x
i , . 2
sin“|Arcsin =sin“ (Arctan( x
2| (vetan(x)
2 2
& [ sz] =1—cos? (Arctan(x))| <> Lzﬂ—%
1+ x (sz) 1+ x

P (4x2 - (1+x2)((1+x2)— 1))@ (4)(2 = x2(1+x2)) & (x2 (xz L 3):0)
& (xe {O—ﬁ@})

SYNTHESE : On a bien Arcsin(0)= Arctan(0),

Arcsin[?] = % = Arctan(ﬁ) et Arc sin[— %] =— % = Arctan(— \/5)

(ce qui était prévisible car sin et Arcsin sont impaires !).

Finalement, I'ensemble des solutions est {0,—-\5,\/5} :
Le domaine de définition de I'équation est |-1,1.

™ T
—_——,—

ANALYSE : Pour tout x& ]— 1,1[, Arcsinx € , donc si x est solution

de I'équation Arcsin(x) = Arctan[z—xz] ,alors:

1—x
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[tan(Arcsm tan[Arctan[

)

X

& , . sm(Arcs:n X ) 2x
( =1 1[) cos(Arcsm(x)) 1— x2]
r X 2X
& |(xe]- 1,1[);«‘\/1_)(2 _1_x2]
@(xeLLMAx%-xﬂJh«z—ﬂzﬂ%¢ﬁ:0y

\

Remarque : Avant d'appliquer la fonction tangente, il faut toujours s‘assurer

que le réel auquel on I'applique n'est pas congru a % modulo = !

SYNTHESE : On a bien Arcsin(0)= Arctan(0).

Finalement, 'ensemble des solutions est {0} .

6. a. Pourtout xR, Arctan(x)e
déduit:

donc cos(Arctan(x))> 0 ;onen

1 1

cos(Arctan(x))z\/cos (Arctan(x)) =
\/Htan (Arctan(x)) J‘H—x

b. Pourtout xe R\{1},

tanz—i-tant 5
= Arctan 4 =Arctan[tan[—+t]].
x=tant L—mngtmn 4

T 3W

_].

2" 4

Arctan[1+x}

— X

Ona:

T T
2

"4

™ T

(x€ - oo U ti+oo| )¢ |te o

i ™ T
t+—€ |-—;

<~ §—
4 4'2

T = T T
Lorsque t-i— € |——;—|, Arctan|tan|t+ =t+4+—.
R T S 2[ [ [ 4]]

4
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1t31'(

Lorsque e 4 €

, Arc tan[tan

3

] Arctanx +%, six€ |-o0,]

T .
4 4

Finalement: Arctan

Arctanx — 37“, six € 1,400

7. On constate tout d'abord que le domaine de définition est bien ]0;1], car il
faut:

(x;:o)/\[l_sz 0]A(~ 1< 2x—1< 1) ce quiéquivaut a x € |0;1].

Méthode 1 (analytique) :
On considere la fonction définie sur |0;1] par:

f(x)= mrctan[1 P—_x
X

La fonction Arctan est dérivable sur R, la fonction racine carrée est dérivable
sur 0;+00/, et la fonction Arcsin est dérivable sur |- 1;1[, fest donc dérivable
sur |0;1], et pour tout x € |0;1] :

i

F(x) =2 2‘/1_\/
F] 1—(2x—1)

= &

X X

+Arcsin(2x—1).

-1

1
:J;JT—X +\/x(1—x) N

On en déduit que la fonction f est constante sur ]0 ; 1[ et, par continuité, sur
]0; 11.

Ainsi, pour tout x € ]0;1], f(x)=£(1)= g

132 | Corrigés Fiche 9 w Fonctions circulaires réciproques



-------------------------
--------------
------
--------

Méthode 2 (algébrique) :
Pour tout x & ]0;1] ,ona:

cos 2Arctan,w_—x =2cos?| Arctan Lint. & | TSN —1=2x—1et
X X '|_|_1__x
X
cos %— Arcsin(2x — 1)]= sin(Arcsin(2x —1))=2x—1.

2Arctan =COS

"I—X
X

De plus, pour tout x€|0;1], 2Arctan

Ainsi, pour tout x € ]0;1] : cos

%— Arcsin(2x — 1)

1—x
U X

%—Arcsin(zx—l)e[o;w], on en déduit que pour tout xe€]o;1],

= [0:11[ et

2Arctan[ Ll ] =% — Arc sin(2x = 1).
X

Méthode 3 (avec changement de variable) :

Pour x € ]0;1], on pose X =cos’t avec te 0;%

1— x
\' X
1—c052t

COSZ t

sinzt
— 2Arctan > -I—Arcsin(cosZt)
cos“t
sin[E—Zt]].
2

donc |tant|:tant et 2Arctan(tant)=2t ;

, et on note encore pour tout

x€10;1], f(x)=2Arctan +Arcsin(2x—1).

f(cos;2 t): 2Arctan +Arcsin(2c052t—1)

= 2Arctan(|tant|)+Arcsin

te '0;1
2

T W
.

de plus, s e donc Arcsin sin[zé Zt]
2 2 2

=Z_2t.
2

Finalement, pour tout te

0;%I, f(coszt):% donc pour tout x € ]0;1],
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8. a. Pourtout xe R, 0< <1, donc f est définie sur R, et I'égalité

T4 x2
1 =1 étant vérifiée si, et seulement si x =0, fest dérivable sur R" .
1+x2
b. On remarque que l'on peut effectuer le changement suggéré car la fonc-
tion tan est bijective de —1,1 dans R.
1
Pour tout u€ |——,~|, cosu> 0, donc 4/1+tan®(u) =—— ; on en
deduit: cos(u)
u siue 0%{
f(tan(u)) = Arccos(cos(u)) = ,
—u siue —E,OI
2
) Arctanx  six € [0,+o0|
puis: f(x)= _ :
—Arctanx  six € |-00,0]
¢. Pourtout xcR' :
1 :
; six€ 0,400
) =——5 ———= "2||:1+’; .
= 14+ X7 ||x - :
22 1——— ( ) —— SIX€E |[—00,0
(H—x ) \j 1+ x2 14 5% ] [

On en déduit qu'il existe deux constantes (C;,C,)e R? telles que
pour tout x€]0,4+00[, f(x)=Arctanx+C; et pour tout xe& |-o0,0],
f(x)=—Arctanx+C,.

La continuité de fen 0 permet de trouver f(0)=C;=C;, =0.

1+ x
\E\l1+x2

On en déduit que le domaine de définition de fest R ; I'égalité étant véri-
fiée si, et seulement si x =1, f est dérivable sur IR\{1} :

, N <1 @((1-}-){)252(1_'_}‘2))@(og(x_j)z)'
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b. Pourtout ue |——

e ,f(tan(u)):Arcsin

22

1+ tan(u) ]

ﬁ\/H—tanz (u)

3

1

s cos(u

g,donc 14 tan? (u)=

L2
2!

)
cos(u)+sin(u )

(ol

T g
—— e |ut=€
2 2” [ 4

u-[-E siue
4

et t’(tan(u)):Arc:;in[-L Arcsin[sin

T 3%

L

4' 4

d'ou: f(tan(u)):
—[u—I—E] sive £
4 4

Arctan(x)+=  six€|-o0,1]
On en déduit : f(x)= B : '
Tﬂ— Arctan(x) sixe [1:"1-00[
Pour tout x € R\ {1} :
x(x+1)
14x2 — 3
e V14 x? 1 e
V(14 \/1 (45 (1461

2(1+x2)

e six€ |-00,1]
+ X

sixe]‘l,-l-oo[.

1+ x2

On en déduit quil existe deux constantes (C;,C;)e R? telles que
pour tout x€ |—o00,1[, f(x)=Arctanx+C; et pour tout x€ |i,+oo],
f(x)=—Arctanx+GC, ;

La continuité de fen 1 permet de trouver: f(1)=§=%+c1 =—%+C2
s 3
d'ou: C]z— et Cz——“
4 4
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10. a. iPour tout xe[— 1,1], Arccosx+Arcsinx:%, donc pour tout xR,

h(x)= %h Arcsin(sin(x)).

Pour tout x<R, h(-n—x)zg——Arcsin(sin(ﬂ—x))zh(x), la courbe

représentative de h admet donc la droite d'équation x = = pour axe de
symétrie. 2

Pour tout xR, h(—7 — x)= %— Arcsin(sin(—'n - x))z h(x), la courbe

représentative de h admet donc la droite d'équation x = — i pour axe de
symeétrie. 2

De plus, pour tout x €

= g )

% , h(x)=——x.

| w=mi2 x=M2 )

Remarque : On aurait aussi pu voir que pour x € [—7:,1:]

: T W
X, SiXE|——;—
2082
e .|
Arcsm(sm(x)): T—X, SiXE|—;w ,
. N
—m—X, SIXE|—™;——
2
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b. Lafonction x>

i .
==X, ISIX:E
2

_3.1}
22

™
—T

d'ou: h(x):lxug, sixe

x+3—1‘, Six€E
2

™
———
;

X . .
P est définie et dérivable sur . La fonction Arccos
+ X

est définie sur [—1;1] dérivable sur |- 1;1[.
2x
+ x?
On en déduit que le domaine de définition de fest R .

<1

& (0< X2 = 2x|+1) [og (|x|—1)2]

L'égalité étant vérifiée si, et seulement si |x\:1, f est dérivable sur
R\ {-11}

Pour tout v e

T . .
>l f(tan(u))zArccos(sm(Zu)), (en utilisant les for-

mules de trigonométrie).

——3y, sigel—
2
Donc, daprés la question a: f(tan(u))= u-=, siue %g[
2u+3—“, siue ~E;—E’
2 2 4
%—ZArctan(x), six €[—1;1]
On en déduit : f(x):QArctan(x)—%, six €[t4oq] .
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2Arctan(x)+3—;,

si X € |—00;—1]
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d. Pourtout xe R\{-11},

—(2—2x2) . 2(x2—1) . 2(x2—1)

f'(x)=

2 2)1-2x2 4_(1+x2 |x2—1"
(1+X2)2\j1— 2:(2 (1+x )\h 2X°+X )
14+ x
2, sixe]-o0i~T[UJt+oc|
f'(x)=<1+x
=, sixel-11
L1+x2 ] [

On en déduit qu'il existe trois réels C, C, et C, tels que:
2Arctan(x)+Cy,  six€]-oo;—1

f(x)=1{2Arctan(x)+C,, six €|l +oq
—2Arctan(x)+C3, sixe|-11]

La continuité de f sur son domaine de définition (comme composée de
fonctions continues), permet de déterminer les constantes a l'aide des
valeursde fen —1et1:

fll} = 0 denne C2=_‘;' et Cs:%: f(—1)=m= donne CI=-? (et

confirme C3 zg).
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Fiche 10

Développement - linéarisation

Cette fiche a pour objectif de se familiariser avec les techniques de développement et
de linéarisation qui permettent de transformer des expressions trigonométriques (en
vue d'une intégration par exemple).

N e osnoeomment

® Pour neN , 0€R, développer cos(n0) et sin(nb), c'est-a-dire les expri-
mer comme sommes et produits de puissances de cosf et sinf

On applique la formule de Moivre :

V0 € R,Vne Z, cos(n ) +isin(nb ) = a8 =(e"H )n =(cost +fsin0)"'

suivie de la formule du binbme de Newton :
| V(a,b)e C2,VneN,(a+b)" = Zn:[n]akb”ﬁk
i i r k=0 k A

puis on identifie parties réelles et imaginaires.

Remarque: |l n'y a pas unicité du développement. Dans certains cas, on peut
ne conserver que des puissances de cosf ou que des puissances de sinf en

utilisant : cos? 0 +sin®0 =1.
Exemple 1
Développer: cos(30).
Réponse
cos(30)+isin(30)=(cos0 +isin0 )3
— 05> 0+ 3icos? 0 sind + 3% cosd sin 0 +i° sin> 0.

D'ot: cos(30)+isin(30) = cos>0 — 3cos0 sin? 0 +i(3cos? 0 sin0 — sin0)
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puis, par identification des parties réelles et imaginaires :
cos(3(i) —cos>0—3cosh sin?0=cos> ) — 3cosﬁ(1 s t)) —4cos>0—3cosh

sin(30) —3cos20 sin0—sin®0 = 3(1—sin:Z ())sin()—sin3 0= —4sin> 0+ 3sin0

Remarque: On a le développement de sin(BB) en prime!

® Pour (n,p]e(N* )2,BGR, linéariser cos” 6, sin” 0, cos”" 0sin® O c'est-a-
dire les exprimer comme somme (et pas produit !) de cos(k0) et sin(k0)
cosl) = l(e"‘ﬂ +e‘m
On applique les formules d'Euler: V0 € R, 3 . s puis la formule
sinf) = —_(lr-:‘fe —u~R )
2i
du binédme de Newton ; on regroupe ensuite les termes appropriés (de la forme

ik —ik8

e ete ) pour appliquer a nouveau les formules d’Euler.

Exemple 2

Linéariser : cos38 ;

Réponse
. SO S (7 . . ; :
c053(]zl3(e:e+e~m) :—3(e3‘“+3e2'ﬁe*'”+3e’”e”2'3+e’3’ﬁ)
2 2

‘| i _ai . i
:_3(e3m+e 3:9+3(em+e m))

2

1

=3 (2cos(30)+3x 2cos(0))= %cos(39)+%cos(0]_
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On s'échauffe

1.

Développer les expressions suivantes :

a.
b.
‘.

d.

cos(40) et sin(40)
cos(50) et sin(50)
sin(40)sin(0) (donner le résultat en fonction des puissances de cos6 .)

cos(BB )sin(zﬁ) (donner le résultat en fonction des puissances de sin6 .)

Linéariser les expressions suivantes :

a.
b’
C

d.

cos"B
sin°

2 ;
cos“f sinf

cos20 sin> 9

On accélere

3. Développer les expressions suivantes :

b.

(.

cos®(30) (donner le résultat en fonction des puissances de cos# .)

sin(39)cos2 (29) (donner le résultat en fonction des puissances de
sinf .)

sin(40)cos(20)sin(0) (donner le résultat en fonction des puissances
de cos6 .)

Linéariser les expressions suivantes :

sin4 (¢ co:;2 0

b. cos®(30)cos(0)

C

sin’ (30 )c*.':.-s.2 (20)

5. Linéariser: sin° (29)(:052 (20)+ sin° (30 ))
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Y cos(4ﬂ)—|—isin(49):(cosﬁ+isinﬁ)4

= (cos4 0 — 6cos?0sin®0 +sin? 0)+1F(4cos3 0 sin0 — 4cos0sin>0 ) .
En identifiant les parties réelles et imaginaires on obtient :
cos(40) = cos* 6 —6cos? Osin? 0+ sin® 0

—cos? 0 —6cos? 9(1 —cos? 9) + (1 — cos? 9)2

sin(40) = 4cos0 sinl—4cos0sin’ 0

—4c0s>0 sinh— 4cos{)sin0(1 — cos? 0)

cos(40) = 8cos? ) — 8cos20 +1
D'ou: "
sin(40) —8c0s>0 sin0 — 4cos0 sin0
b. COS(SG)-I-fSin(SB):(COSB-H'Sinﬂ)s
= (cos5 0 —10cos>0sin%0 +5cos0 sin? ())
+ t'(5c054 0 sind —10cos2 0sin> 0 +sin’ 0).
En identifiant les parties réelles et imaginaires on obtient :
cos(SB) — cos® 0—10cos> 0sin? 0 +5cos0sin? 0

—cos° 0—10cos’ 9(1 —cos? 9)-!- 5c059(1 ~cos? ())2

sin(50) = 5cos” 0 sin0—10cos? Osin® 0 +sin’ 0

- 5(1—sin2 0)2 sin{-)—10(1— sin? o)sin3 0+sin> 0

 |cos(50)=16cos>0 — 20cos> 0 +5cos0
D'ou: .
$in(50 )= 16sin>  — 20sin> 0 + 5sin0

¢. Ona montré dans l'exercice 1.a) que:

sin(4(l) —8cos>0 sinl — 4cos0sind ;onadonc:
sin(40)sin(0) = 8cos> 0 sin 0 — 4cos0sin20

—8cos>0) ('I— cos? 9)— 4cosl) (1— coszﬁ) ;
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Finalement, sin(40)sin(0)=—8cos 0 +12cos>0 — 4cos0 .

d. Onamontré dans I'exemple 1 que: cos(39) —~4c0s>0 — 3cosh ;
De plus, une formule classique de trigonométrie donne :
sin(20)=2cos0sin0

Remarque : Ce résultat peut se redémontrer avec la formule de Moivre !
Onadonc:
cos(30)sin(20 ) = 8cos” 0 sin — 6cos? 0 sind
2
=8(1—sin?0} sin — 6(1—sin? 0 )sin0 .

Finalement, cos(30)sin(260)=8sin> 0 — 10sin> 0 +2sin0 .

: ol
2 % cos49:l4(e'ﬂ+e_'9)
2

‘l s " Y . A A
_ 4( 40 | 30010 | 0020200 | 410,300 | 4;9)
2
1 1
=—cos(40)+—cos(20)+=
8 2
1 : _a\5
b. sin’0= 55(e'ﬁ—e 'H)
270
‘| . _ . 2 5 A i
:T(es‘ﬂ—Se‘“ﬁe 0 4 10e30e—210 _102i0a—30 | 5 i —4i0 _ 5;9)
27
=%(esm _ o5 _ 5(e3;9 e 3;9)+10(em o0 ))
25
=1l6(sin(50)— 5sin(30)+10sin(0)).

: =B . 2
¢ cos0 sinﬁziz(e'B -i-eP'H) l.(e"IH ~e_'ﬁ)
2 2i
1 ( 2’*’+e‘2’°+2)(e"9—e"'“)
23:
1

-1 ( o0 _ 0 8 39 +2eieFZe-iﬂ)=£(sin(30)+sin(0)).
2
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1 y a2
d. cos20sin’0 =-—2(e’ﬁ +e '9)
2
:%(ezfﬁ 4o 28 +2)(e3m _ 300 4 3010 _ e_3m)
2

. ;1(95f9 _ e 5i0 _ (e3f9 e 3:'9)_ 2(efa B eqa))
2i

=:_61(sin(50)— sin(30)— 2sin(0)).

3. a. Onamontré dans 'exemple 1 que: cos(SH): 4cos>0 — 3cosh .
Onadonc:

3
cos> (30)= (4 cos>0—3 cosB)
—64c0s’ 0—144cos’ 0 +108 cos® 0—27cos> 0.

b. Onamontré dans l'exemple 1 que : sin(30 )= —4sin> 0 4 3sin0 .
De plus, une formule classique de trigonométrie donne :

cos(20)=1— 2sin2(ﬂ).
Remarque : Ce résultat peut se redémontrer avec la formule de Moivre !

Onadonc:
sin(30)cos (29):(—451n 9+351n9)(1— 2sin (-])
— —16sin’ 0 +28sin° 0 — 16sin> 0 +3sin0 .

¢. Onamontré dans I'exercice 1.a) que : sin(40)= 8¢os> 0 sin—4cosOsin.
De plus, cos(20)=2cos?0—1.
Onadonc:

sin(40)cos(2())sin(£i ) = (8c053 0 sin® — 4cosh sinﬂ)(2 cos? 0 — 1)sin({))
= 16c055 0 sin2 0— 16cos3 0 sin2 0 +4cosh sin2 0
—16c0s” {}(1— cos? (-l)— 16cos> 0 (1— cos? 9)+4cosﬁ (1— cos? {))

— —16cos’ 0 +32c0s5 0 — 20cos>0 +4cos0 .
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212 (e o )2

( B0 _ 4,200 +6_4e—2m+e—4m)( e m+2)

( 61‘8+e—6i9__2(e4iﬁ+e—-4f{-l)___(82i9 +e-2fa)+4)

1 " g
4. a sin"ﬂcoszﬂz-—;—;(e'ﬁ—e '9)
21

(cos(60) 2cos(49)—cos(2(l)+2)

= 3—2-cos(68)— -11—6cos(48)— 3—L-cos(20)+1l6

i .
b. cos (39]:05(0) ( 3"9+e_3'9) %(e'9+e_'e)

53
_ 14( 91(—!+3e3;9+3e~3i9+e-9i9)(ejﬂ+e-iﬂ)
2
1 & - = . _ o 2 A % 9
_4(e'|0fﬂ+e 10i0 4 8if | o 8’H+3(e4’“ P 419)+3(e2m Sy 2;9))
2

= %(cosﬁ 00)+cos(80)+3cos(40)+3cos(20)).

. yS . 12
¢ sin®(30)cos?(20)= (es'ﬂ—e_m) -j-—(e2’a+e_2’9)

233 52

:—_51'(99:‘9 3639 4 30~ e—giﬂ)( 4:B+e—4ie_|_2)
U |

:%1(91359 _ o130 +2(e9m o e—gm)_ 3(e7ia B e—?fe)
2

450 _ o= 510 _ 6(9359 B e—3i9)+3(eiﬂ _ei® ))

-1 1 3 1 3 3
— —sin(130) ——sin(90) +— sin(70) — —sin(50) +=sin(30) —— sin(0).
16s.ln( ) 8s.m( )+1651n( ) 16sm( )+85|n( ) 1tssm( )
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5. sin®(20 )(c052 (20)+sin (30 )) = 23L&(em _ o200 )3 [L(ezfﬂ 420 )2
]

22
" 13
n 1 (9318_e—3rﬁ)]

233
—1/ 6i AR g o
=T(e6'ﬂ—3e2m 13620 _ g 619)(e4;6 Per. 4:9+2)
270
o iﬁ(esm e 5;&)(99:‘9 _ 3310 4 34300 _ e—9ja)
2

= ;—;sinﬁ 00)+%sin(66)+%sin(2ﬁ)— %cos(l 50)+%cos(1 1)

3 3 9 1 9
+?2cos(90)_ ~3—2cos(78)— -ﬁcos(SB)— Ecos(BB )—I-icos(ﬂ) !
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Fiche 11

Polynomes — Déecomposition
en éléments simples

La maitrise de la décomposition d'une fraction rationnelle en éléments simples est
indispensable, particulierement pour le calcul intégral. Il faut connaitre les différentes
techniques qui permettent d'étre efficace dans la réalisation. Cette fiche vise a les décli-
ner, et a les mettre en pratique.

K désigne R ou C.

- [

B Effectuer une division euclidienne de polynomes

Soient A et B deux éléments de K [X ] avec B=0.

Il existe un unique couple (C),a‘i’)E(K[XD2 avec deg (R) < deg (B) tel que :
A=BQ+R.

Une division euclidienne de polynémes se pose comme une division euclidienne
d’entiers, en écrivant les polyndmes dans le sens des degrés décroissants.

Exemple 1

Effectuer la division euclidienne de X3 +1 par X +1

6)(3 X+1 X3+'| X+1 X3+1 X+1
34+ X2 X2 X3+X2 X! X3+X2 X:_x_l_]
= X241 -x2+1 -x2+1

X+1
X+1

0

Réponse

Finalement, X3 +1:()(2 — X+1)(X+1)+0
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B Factoriser un polynome P (dans R ou C) lorsque I'on connait une racine a
On cherche la multiplicité m de la racine en calculant successivement
P(k)(a) jusqu'a en obtenir un non nul. Puis on cherche le polynéme Q tel que
P=(X—a)"Q:

* Soit en effectuant la division euclidienne de P par (X- a)m -

* Soit en écrivant formellement la factorisation et en identifiant les coefficients.
Exemple 2

Factoriser dans R[X] le polynéme P = — X7 X 42K -7,

Réponse

On constate que 1 est une racine simple de P (P(l) =0,P'(1)= 0). Ainsi,

— 234 X2 42X 1= (X 1)(-2X2 +aX +1).

Remarque : On peut toujours directement écrire le coefficient dominant et le
coefficient constant du polynéme Q a la lecture de ceux de P et de la racine a.

Par identification (du coefficient de X? par exemple) , on trouve o =—1. D'ou :
P:{X—ntax?—x+ﬂ.

Une recherche des racines du polynéme du second degré —2X A X4 permet
d'obtenir: P = (X —1)(X +1)(—2X +1).

B Décomposer une fraction rationnelle en éléments simples

1. On met la fraction sous forme irréductible : F = g eK (X) i

Il existe un unique couple (Q,R)E(K[XD?' avec deg (R) < deg (B) tel que :

R
F=Q+—.
B

Qest |a partie entiérede F; P = g est la partie fractionnaire de F.

2. A l'aide de la division euclidienne on détermine la partie entiére et la partie
fractionnaire.
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3. On factorise le dénominateur de la partie fractionnaire :

e Dans R : P= ; R .

m .
(!H(X— c,?,-)m"r[()(2 +nj-X+ﬁj)m"
= j=1

avec a€R’, (m,n)e (N')Z pour i€ |[1 n]l n € N*,a,- €R et, pour j& |[1,m]|,
m; € N*,((xj,ﬁ )e R? tels que o —4f;<0.
R

n
o H(X - a,-)n'
i=1

avec a€C’, neN" et pour i€ |[1,n]|,nf € N*,a,- eC.

* DansC : P=

4. On écrit la décomposition sous forme littérale :

eDans R : F= Q+Z z———}+z

<i<n(1€j<n; (X a) <Ki<m

3 ")

i<jem (X+aX+8;)

avec (ru,au,b )e R3.

*Dans C : F=Q+ Z Z

1<i<n(1<j<n X —aj

Tij .
cavec ;€ C.

Pour i€ |[1 n]] Z ———— s‘appelle la partie polaire de Frelative au pélea.
1<j<nj (X — ar

Remarque : Pour décomposer dans R(X ) on peut aussi effectuer d'abord la
décomposition dans rC(X ) puis « regrouper » les poles conjugués.

5. On calcule alors les coefficients par des méthodes diverses :

» Casd'un pélesimple (n; =1):
Soit XL la partie polaire de F relative au poéle simple a ; alors

- Rla)

X—a)F
c=(X-aF)@=72=.
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Exemple 3
1

Décomposer en éléments simples dans R(X) la fraction rationnelle F =

XX+
Réponse
p o 3
(o) t:F=2g F
n écri +X+1
On a : a=(XF)0)=——=1 et B=((X+1)F)—1)=—==—1, donc
0+1 -1
e
X X1

» Casd'un péle multiple d'ordre n:

1. Le coefficient de est donné par ((X - a)”F)(a) :

(X—a)"
2. Pour les autres, on peut :
— Utiliser la formule de Taylor :

Pour acK et PeK [X] P= Z

— Utiliser une éventuelle parité, et I'umaté de la décomposition.
— Multiplier F(x) par x et faire tendre ensuite x vers |'infini.
— Donnera X des valeurs et résoudre le systeme obtenu.

— Réduire au méme dénominateur et déterminer les coefficients par identi-
fication (en dernier recours !).

Exemple 4 "
Décomposer en éléments simples dans tC(X) la fraction rationnelle F = 5
(X—1)
Réponse
Soit P=X? ;la formule de Taylor donne: P =i? +2i(X — i)+§(X— iy
~ 12— X —iF -3 2i 1
Onadonc: F= 3 = —F —=-* 5
(X—1i) (X—i)> X—iy* X—I
Autre méthode :
Onidciits Fa—2ip—b 5 - q 5.
X=i (X—=i* (X—i)
2
Ona: ~ :((x— :')3F)(f):'—:—1 a= lim (xF(x))=1, et F(0)=0 donc
8 =2i 1 ) X—+00
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On retrouve F = ] - 2 + =

X—i (X—i X—=iy

Exemple 5 3
Décomposer en éléments simples dans R(X) la fraction rationnelle F = Exzx—_H)j
Réponse
Gndetty F= B t0 O A
X241 (X241
F étant impaire, on a immédiatement b=d =0 ; de plus, a= ) IiTm (xF(x))=1.
X X

Enfin, F(1):—1» donne ¢ =—1. Finalement, F = — ;
= X241 R
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On s'échauffe

1. Effectuer la division euclidienne du polynéme P par le polynédme Q dans
les cas suivants :

a. P=X34+X’4X+letQ=X-2

b P=—3X 420 =3 -1 L Q=254 X4
¢ P=2X*+7X3+11X%+9X—2 et Q=X?+2X+3
d. P=XSetQ=X2+X

e. P=2X>—X?+1etQ=3X%2+X+1

2. Donner une factorisation en produit de polynémes irréductibles des poly-
némes P suivants :

a. P=X3>—Xx242 dans R[X], puis dans C[X].
b. P=X*45x34+9x2 47X 42 dans R[X].

¢ P=X®—1dans R[X].

d. P=X%+1dans C[X], puis dans R[X].

e. P=X*+X%+1dans R[X].

3. Décomposer en éléments simples dans R(X ) les fractions rationnelles F

suivantes :
X2 —-5X+4
% F== "7~
X—2
3
b F= 2X
X2—-4
L. F= :
x(x=1)(x+2)
o po X202 X 41
x(x2+1)
X —2x342
e. :'-':—4
X4 -1
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On accélere

4, Décomposer en éléments simples dans R(X ) les fractions rationnelles F

suivantes :
X3
| Pt
e
b Fo X2
ix—1
B 4X% 41
¢ F_xz(x2+1)(2x2+1)
B 2X3+X
RTINS
" F:zx“-4x3+5x2-x+1
X2 (x—-1f
- i
C e
X
" ey

5. Soit ne N,n> 3. Décomposer en éléments simples dans IR(X ) les frac-
tions rationnelles suivantes :

b.

Xn
(x—1)°
=1
i, n 21 .
X XX+1) XX+10(X+2)
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n!

XX +DX+2)..(X+n)
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1.

Dans cet exercice, il faut poser les divisions euclidiennes comme montré dans
'exemple 1.

Les seules erreurs que l'on peut commettre sont des erreurs de calcul. Il faut
les recommencer jusqu'a avoir le bon résultat ! Plus on pratique, moins on fait
d'erreurs de calcul...

b.

X+ X2 X+1= (X2 43X +7)(X - 2)+15.

—2X* X% = 3X% 4 X 1= (= 2X2 43X — 4)( X2+ X +1)+2X +3.
2X* 4753 +11X° 49X —2=(2X7 +3X - 1)(x2+2x+3)+2x+1.
X =(x* #x3+x2#x+1)(x2+x)h X

2X5— X2 +1:{3)(3~3x2~ix—z](3x2+x+1)+§x+%.
37 797 T 277 @ 81" ' 81

— 1 est une racine « évidente » et P‘(— 1) =0, elle est donc simple.
Par une division euclidienne de X3 — X2 42 par X +1 (ou par une identi-
fication), on trouve : X>— X2 +2= (X +1)(X2 —2X +2).

Le polynéme X 2 _2X +2 estirréductible dans R[X ] (le discriminant est
strictement négatif).

On adonc lafactorisation dans R[X] : %243 = (X+1)(X2 —2X +2).
La recherche des racines du polynéme X2 — 2X 42 dans C permet d'ob-
tenir lafactorisation dans C[X] : X — X2 +2=(X +1)(X —1—i)(X —1+i).
— 1 est une racine « évidente » ; on trouve : P(—1)=P'(—1)=P"(—1)=0
et P3)(—1)0.

—1 estdonc racine triple, etlon a: P= (X +1)* (X +2).

Remarque : Le coefficient dominant et la constante du polynéme Q tel que

P:(X +1)3O s'obtiennent immédiatement par identification du coeffi-

cient dominant et de la constante de P.

G

On a: P=(X3)2— 1=(X3— 1)(X3+1], en utilisant une identité remar-

quable bien connue...
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1 est une racine évidente de X>—1, et l'on a: X3 — 1:(X—-1)(X2+X+1)
que l'on ne peut plus factoriser dans 'R[X ]

— 1 est une racine évidente de X>+1,etlona: X>+1 :(X +T)()¢’2 — X-H)
que l'on ne peut plus factoriser dans R[X].

Finalement, X®—1= (X— 1)()(2 +X +1)(X +1)(X2 — X -H)
Remarque : On aurait également pu factoriser P dans C‘X ] , en remarquant
que ses racines complexes sont les racines sixiemes de |'unité, puis obtenir

la factorisation dans ]E[X ] , en regroupant les racines conjuguées.

d. Les racines complexes du polynéme X°+1 sont les racines sixiemes de

— 1 asavoir:
A T k']T
'["r+2 ]
L retost) (Lt By LB

Ainsi, dans C|[X] :

X+———i}.

X8 +1=(X—i)(X +i) 5

x_ii_l%x+!§+lf
2 2 2 2

V3 1.]

X*é-#lf]
.

En regroupant les racines conjuguées, on a dans R[X ] :

X6+1:(x2+1)(x2— J§X+1)(x2 +\/§X+1).

e. Onva se placer dans C[X].
2
Remarquons tout d'abord que : Nt 4= (Xz) + X241,
Une étude classique des équations du second degré donne :

2T 2T
I

_._.'_

X24X+1=|X—e 3 ||[X—e 3 )

2T 2T

d'otl'on déduit: X+ X2 +1=[x?—e 3 |[X?—e 3
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2T : -['“ ]
i j pnt Il —+m
Les racines carrées (dans C) de e 3 sont:e 3 et e 3 ; celles de
_j2® . i[iﬂr]
e 3 sont:e 3ete
T AT K 2T

i— f— i
Onadonc: X*+X241=[X—e3||x—e 3 ||xX—e 3|x—e 3

Enfin, en regroupant les racines conjuguées, on obtient la factorisation

dans R[X] : X*+X2 +1=(X2 = X+1)(X2 +X+1).
3. Avant chaque décomposition en éléments simples, on regarde si le degré du
polynéme du numérateur est supérieur a celui de dénominateur. Si c’est le

cas, il ne faut pas oublier de faire une division euclidienne pour déterminer la
partie entiére et la partie fractionnaire...

a. Ladivision euclidienne de X% —5X +4 par X— 2 donne:
X2 —5X+4=(X-3)(X-2)-2.

2 _
On obtient donc directement : w =X—-3— L
X—2 X—2
b. Ladivision euclidienne de X> par X% — 4 donne: X> = )(()(2 - 4)+4X.
3
Ot = e g T
X2_4 X—=2 X+2

Tous les poles sont simples.On a:

a=((X—2)F)(2)=2b=((X+2)F)(-2)=2.
2 2
Final - F=X "
inalement +X—2+X+2
1 a b c d

. Onécrit: F= =— .
¢. Onécrit: F X(X2—1)(X+2) X+X—1+X+1+X+2

Tous les poles sont simples.On a:

ie=((X+NF)=1)=5;

a=(XF)(0)=—ib=((X~)F)(1)=

d:((x+2)F)(—2):—%.

1 1 1 1
2X Ts(x—1) "2(X+1) 6(X+2)

g L}
6 2

Finalement, F =—
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d. Ladivision euclidienne de X* +2X2 + X +1 par X3+ X donne:

X% 422 +X+1:X(X3+X)+X2+X+1.

4 2 2
Onécrit:F:X +2X2 +X+‘I:)(—!—%z)(+E %
x(x +1) x(x +1) X X241
2
1
On a: a=(XF)(0)=t%a+b= lim xﬂ:‘l, donc b=0, et

X—+00 x(x2 +1)

F(1)=«§=1+a+§,donc c=1.

Finalement, F = X+l+ s

X X211

Remarque : On pouvait également décomposer dans C(X ) avec
X2 41= (X —i)(X+i) ; on navait alors que des péles simples. ..

e. Ladivision euclidienne de x> —2x3+2 par Xx*—1 donne:

x5—2x3+2:x(x4—1)—2x3+x+2.

On écrit :
5 yv3 _ay3
F:X iX +2:X+ 2X° +X+2 _ X a " b +cX2+d'
x* -1 (x_1)(x+1)(x2+1) X=1 X+1 x241
Ona:
1 3
a:((X—1)F)(1):Z:b:((x+‘l)F)(—1):“Z;
3
a+b+c= lim wa—z.doncc:—z;
X—+00 X1 2

enfin, F(0)=—2=—a+b+d,donc d=—1.

1 3 3X+2
Finalement, F = X + — — +

A1) a0 2xi)
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X _aX+b+ cX+d

4. a. Onécrit: F= 5= 5
() X1 (x24)

3
Festimpaire,doncb=d=0;a= lim —r 2=1;F(1)=l=_+_,
X—+00 2 4 -
donc c=—1. (x +1)
Finalement, F = 2X — A =
X~ 41 (XZ_H)
. X242 a b ¢ d
b. Onécrit: F=————m—=—+—+—+———.
X*(x=1) X x* x* X1
Ona:
2
d=((x*T)F)(1)=3:C=(X3F)(0)=~2:a+d= im x— 2 _p

X— +00 X3(X— 1) '

donc a=—-3, et F(—1):%:—a+b—c—g,donc b=—

Finalement, F—ui-i— - +~—§—~.

X x2 x3 Xx-1
4X% 41 ~a b  X+d eX+f

A xz(x2+1)(2x2+1) _?+F+ X241 2X% 41

Festpairedonca:c:e:();b=(X2F) ;

f 5 5 d f

b+d+—= lim x°F(x)=0; F(l)=—=b+—+—.

* +2 X—+00 () () 6 2 3
it 2d+f=-2 e Feo s d=-3
nadonc: , ce qui équivaut a:

3d+2f=-1 L f=4
2
Finalement, F = L ol L I 4 4

xz(x’-+1)(2x2+1) X2 X241 2x241

d. A Il ne faut pas oublier de mettre la fraction sous forme irréductible !!
Ona:

3 2
o~ . x(zx +1) .

F=X2(X2+1)(2x2+1)2 XZ(X2+1)(2X2+1)2 X(XZH)PX?H)'
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bX4+c dX+e

On écrit: /= (X2+1)(2X2+1) Y X2+1+2X2+1

F, estimpairedoncc=e=0;

d 3 1 b d
a=(XR)0)=Ta+b+—= lim xR(x)=0R(1)=—=a+—+—.
(XR)(0) 2= lim (x)=0R() =g =at2+]
2b+d=-2 o =1
Onadonc: , Ceé qui équivaut a: ;
Finalement,F:l+ 2X — 42X ‘
X“+1 2X°+1

e. Ladivision euclidienne de 2X* — 4X3+5X2 — X +1 par X?(X — 1) donne:
Xt pen® =2t (-1 - x4,
On écrit:

:2x4-4x3+5x2—x+1:2+3x2—x+1
2 (x— 1)? PR
b d

=iy = 5 + :
X x2 X—1 (X—1)2

Ona:

F

b=(X*F)(0)=td= ((x- 1)? F)(1): Ba+c= lim x2X =X+

et F(— 1):?:2—a+b—§+%.0nadonc: [2

L [a:1
CEC{UI equwauta 1 .
C=—

Finalement, F =24 — : +i— 1 2

X x? X—1+(x—1)2'

f. One’crit:F:;: cX+d eX+f

4.2
)(2(x2+2)2 XXt x42 (x2+z)2'

F est pairedonc a=c=e=0;
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b= (X?F)(0)=ib+d= lim x*——— 0, donc d=—-, et

2
R )4'2(x2 +2)
F(‘I):%:b+%+£,donc fz—%.

Finalement, F = 1 _ 1 = 1

ax? 4(X2+2) 2(x2+2)2'

g. Onécrit:

£ X 2=Xa 4 b 2+xc1+ d 2+e)g+f+ gX+h2.
(x4—1) —To(x=7 AL (x4t X4 (x2+1)

F est impaire, donc a=c¢,b=—d,f =h=0.

Onadonc:

fo_ X __a@ b a b eX gX

(X4—‘[)2 X—1+(X_1)2+X+1~(X+1)2+X2+1+(X2+1)2'

N po¥os Voo Hos ol _1.
De plus, b—((X—T) F)(1)—16, gf—[(X +1) F](f)—4,donc g_4 :

. 2 a b 2 2
2 = | =0, t Fl2)]=——= b i oty
e X—!mex4_1 % Fe) 225 o +3 9+5+25
donce=—2aeta=—l.
8
Finalement,
e . ¥ 4 4 . ¥ . &
8(X=1) “16(x—1)* B(X+N) 16(x+1)?  4(x?+1) 4(x2+1)2
I
5. a. Pour ke [0,n], la dérivée k-ieme de X" est ﬁx”—".
La formule de Taylor donne : .
n(n-‘l) 2 n n! k
X =1ealX—N+2—2{X—1 .
T e

2
nadonc: X’ = (1)) _ k-3, nn—1) n 1
o =y e o) g e
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Dans C, les racines (simples) de X — 1 sont les racines n-iémes de l'unité :

12k
wg=e " ke[o,n—1]t.

F=

On a :

X
1

P 1

— = , avec pour tout ke|[0,n—1],
Q Z X L:Jk ; [[ ]I
P(uk) N
Qka) nwk -
Pour obtenir la décomposition dans R(X ) il faut regrouper les racines
conjuguées.

Pour tout k€[[0,n—1], wy =w,_ ; il apparait donc une disjonction de

cas, suivant la parité de n:

Yk (car wg =1).
n

ay —

* Sinestimpair,ennotantn=2p + 1:

—Z

Wn_k
X_ Wn—k

F=
( X L.Uk
\_v_l
k=0

2Cos

-2

2km
n

1 I
zn(x-1)+Hz

k=1| X2 —

n

2cos| — | X +1

* Sinestpair,ennotantn = 2p:

1 -1 | ne Wk Wn_k ]
F= + = =
\n(X—1)‘ p(X+11 nk=1[X—wk X-—wn_k
k=0 k=p
2k
B § . +lp_1 ZCOSTX—2
n(X—=1) n(X+1) ni X2-2cos{2k“]x+1
n )
¢. Onnote:
1 ! ! !
LN - il : .
X X(X-H) X(X+1D)(X+2) XX +0)(X+2)..(X+n)
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n
L'écriture formelle de la décomposition est : F = Z 9k , avec pour tout
— X+k
kefo,n] : k=0
ax = ((X+k)F)(—k)
k! (k+1)!
= + +
—k.(—k+k—=1)  —k..(—k+k—=1)(—k+k+1)
n!
¥ —K...(—k+k —=1)(—k +k +1)...(—k +n)
ok (k+))! kK (k+
ZZTZ =~ Z[ k ]
j=o(=1)"k!j! j=o
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Fiche 12

Systemes linéaires

Avec la méthode du pivot de Gauss, on dispose d'une méthode infaillible pour la réso-
lution de systémes linéaires. Encore faut-il maitriser le calcul mental... Pour cela, un
seul moyen : la répétition d'exercices ! C'est I'objectif de cette fiche.

K désigne R ou C.

Notations:

+ S désigne le systeme linéaire de n équations a p inconnues :
ayXq 012X+ HapX, = by

|G +aXp + .+ aypXp =b,

AmX1+0apaXy +.tappXp = by
ou les coefficients aj; et b; (15 i<ni<j< p) sont dans K.

c A= (af-j )15,-5,, désigne la matrice du systeme S.
<j<p

. (A|B). avec B="'(b; - by),désigne la matrice augmentée du systéme S.
* Pour les opérations élémentaires :
Lj < L; désigne la permutation des lignes L, et L;

L; < \L; désigne le produit de la ligne L, par X € K" ;
L < Lj+X\L; désigne I'addition a la ligne L, de la ligne L, multipliée par Ne K .
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B Reconnaitre des matrices échelonnées (réduites)

J, soit la (i+1)-ieme ligne est entiérement nulle, soit son premier coefficient

Une matrice échelonnée en lignes vérifie les conditions suivantes :
Si une ligne est entierement nulle, toutes les lignes suivantes le sont aussi ;

Si le premier coefficient non nul de la i-éme ligne (appelé pivot) est en position

non nul est en positionk > j.

Une matrice échelonnée réduite est une matrice échelonnée dont tous les
pivots sont égaux a 1 et sont les seuls éléments non nuls de leur colonne.

Exemple 1

Parmi les matrices suivantes, quelles sont celles qui sont échelonnées, et celles qui
sont échelonnées réduites ?

1 38 2 , 1 =1 3
¥ 0 100 0
A10°1'1A g o ilgk=lo 1 & odla=l" % *
o6 0 3% 5 " le o 1
0 0 1 00 0 1
000 0 0 00
0100
1320 =1 0010 A A . 5§
Ac=|l0 0 1 1[]A=/0 0 0 1],A = = _
g A A71001A3[001]
001 0 0 0 0
000 0
Réponse

A, et A, sont échelonnées, A,, A et A sont échelonnées réduites.

B
1.

Echelonner un systéme linéaire par l'algorithme de Gauss

On se raméne a un systéme équivalent tel que a;; =0, en permutant éven-

tuellement L, avec une autre ligne, puis on divise L, (la nouvelle!) par a;; (le
nouveau !).

Pour tout i € [[2,n], on effectue les opérations : L; < L; — aj;L; (on élimine ainsi
I'inconnue x, dans toutes les équations a partir de L,).

On considere désormais le systeme de (n — 1) équations formé des lignesL,a L .

* Si tous les coefficients sont nuls, l'algorithme est achevé ;
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* Sinon, on applique les deux étapes précédentes au sous-systéme de (n — 1)
équations formé des lignes L, a L , en éliminant éventuellement les premiéres
colonnes entiérement nulles.

Exemple 2 2x+y=1
Déterminer un systeme échelonné équivalenta {x—2y =3 .
Réponse Ax—2y=1

On considere les matrices augmentées (cela évite de recopier les inconnues !) :

Ly« L2k
2 1|1, 232020500 -2 3
(AB)=|1 =2i3] ~ |2 11| ~ [0 5|-5].

4 =21 L 4 —21 X 0 6|—11

Remarque : A ce stade, on voit que les lignes L, et L, sont incompatibles... Mais
ce n'est pas l'objet de la question, et on doit poursuivre I'échelonnement...

1
(AB) ~ [0 1|=1] ~ “fo 1[-1].

‘ 0 6 |—11 ‘ 0 0|-5
X—2y=3
Le systéme de départ est donc équivalenta: jy =—1
0=-5

B Résoudre un systéme linéaire par la méthode du pivot de Gauss
On considere un systeme linéaire S de n équations a p inconnues.

On se raméne au cas ou le systéme est échelonné et, quitte a changer l'ordre
des inconnues, on suppose que le nombre de 0 qui commencent chaque ligne
augmente de 1 a chaque ligne.

On note A:(a,-j) la matrice échelonnée associée au systéme, (b;) la matrice
colonne du second membire, et r le rang du systéme (qui est le nombre de pivots
du systéme échelonné).

P Sir=n=p:
1 ap ain | by
; £ o 1 ayn|b2
La matrice augmentée s'écrit :
(0) 11|b,
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Le systéme admet une unique solution quel que soit le second membre (on dit
qu'il est de Cramer).

Pour la déterminer, on réduit la matrice A.

Exemple 3
X—y+2z2=0
Résoudre le systéme {x+y+z=1
X—2y+3z=3
Réponse
Ly—Ly—L
1 -1 20',_;_1%_41 -1 20L2H_L31 -1 2{0
(AB)=[{1 1 1 - 02 - o 1 —1-3
1 -2 3|3 0O -1 13 0O 2 -—-11
etg-a|t —1 2|0
= o 1 —1-3j.
o 0 1|7

La matrice est échelonnée. On la réduit en « remontant » les lignes :

Ly—Ly+Ll3 — - -
2o 2hR(r -1 o-14), (1 0 010
(AlB) - |0 1 94 - o194
0 0 17 00 17

La solution du systéme est donnée par la colonne « second membre »: (—10,4,7).

P Sir=n<p:
1 oap - ay - Yplb
0 (T v O9plb
La matrice augmentée s'écrit : . e i
(0) 1 Anp b,

Le systéme admet une infinité de solutions, quel que soit le second membre.

On réduit la matrice, et on exprime les inconnues xy,..,x, (appelées inconnues
principales) al'aide des inconnues X, 4,.., X, (appeléesinconnues secondaires,
ou parametres).

Exemple 4
X+y—z=2

Résoudre le systéme
x+z=4
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Réponse

l'.'|<——L]-H'.2
(4le) 11 —12)—b-bf1 1 —2)—L (10 1|4
“lro 114) 1 |0-1 22} ¢ |01 =2-2f
o . X+z=4 X=4—2z
Revenons a I'écriture du systéme : = .
y—2z=-—2 y=—2+42z

Remarque : A terme, cette étape n'est pas utile, on peut «lire » les solutions
directement sur la matrice augmentée.

On en déduit 'ensemble des solutions: S = {(4 == +22,z),z € K} .

P Sir=p<n: 1 ap - ap| b
0 1 - ayl b2
La matrice augmentée s'écrit : 1 bp
0 0 (bpn
0 - - 0]lb,

* Si, pour i€ [[p + l,n]], les équations 0 = b, (appelées équations de compatibi-
lité) sont la tautologie (0 = 0), le systéme admet une unique solution, déter-
minée en réduisant la matrice.

* Sinon, le systeme n‘a pas de solution, il est dit incompatible.

Exemple 5

X+2y=4
Résoudre le systeme {2x—3y —=1.

3x—y=5
Réponse

L3—13—-L
Ly—Ly—2L 1
1 24L3_L3_3[] 1 2|4 L24——;L21 24L;+—L1-2L21 0|2

(AB)=|2 -3)1| ~ |0 -7-7| ~ |o 11| ~ “|o 1)1}

3 =15 : O =7-7 : 0 0|0 ' 0 0|0

La solution du systéme est (2,1).
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P Sir<petr<n:

1 ap ay Gp | b
0 1 @Qr 2p b,
La matrice augmentée s'écrit : 1 ap b,
B s == s a0 br 41
0 o e e 0 by,

* Si les équations de compatibilité sont la tautologie (0 = 0), le systéme admet
une infinité de solutions ; elles sont obtenues en réduisant la matrice, et en ex-
plicitant les inconnues principales xy,..,x, a l'aide des inconnues secondaires

Xl'+1""‘ xP-

« Sinon, le systéme n'a pas de solution.

Exemple 6

2x+3y—5z=1
) . X—Z=2
Résoudre le systéeme
y+z=0
X+y—z=4
Réponse
2 3 —5|1 10 =112, 1, o1 0 =12
(4l8)~ 10 —12jb-k2f2 3 —5/1{4—L-bL|o 3 —3-3
o1 1fof L o1 10 L 01 1
11 14 11 —14 01 0|2
10 =T2 s py (10 =12 10 -1 2
L—lalo 1 0|2 |la—la3L2(0 1 of2 |4—lat33l10 1 0] 2
t 63 1]0 L 00 1}-2 L 00 1|2}
0 3 —3-3 00 —3-9 00 0[|-15

Le systéme n'a pas de solution.
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On s’échauffe

Résoudre les systémes suivants :
(x+y+z=0

1. {2x+y—-2z=-1
|2x+3y—z=1
[x— y+3z=1

2. i5x—2y+8z=5
2X+y—z=2
[x+2y—z=7

3. {3x—4y+3z=0
3x+y=2

i 1 1
3X——=y+—2=1
4y 2

*Th 2
—X—22=——
2 3
(6x—y—2z=3

1 1
5. {—=x+-y+2z=0
3

y—4z=1

3x+2y+z=4
2X—y+z=3

X+iy—2z=-1
7. (dans C) {ix+2y+z=1+3i

X—y—2Z=—I

3x+2y+z=4
2x+3y+z=3
2x+y+3z=8
X+2y+3z=7
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[—x+2y—3z=4
2x+22=3
3x—2y+5z=—1
3x+2y+2z=10

2y +32=—1
—X+2y—z2=-2
|2x—2y+52z=3
x+4z=-1

10.

2X+y—z+t=1
X+3y+2z—-2t=13
—X+y—24+4t=-2
X+y—z+2t=0

Résoudre les systémes suivants, en fonction des valeurs du paramétre X :

1.

X+y+z=X\
12. 2x—y+z=2
3x+2z=1

x4+ Xy +(1+X\)z=2
B. {(1+X)x+y+z=2X\
X+(24N)y+(14+X)z=-2

(1-X\)x+y+z=0
W {x+(1—-N)y+z=0
x+y+(1-X)z=0
Ax+(XN—1)y+z=2X
15. iX+y+Xrz=2\

M H(1+N )y +z=2)
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5.

Fiche 12 w Systemes linéaires

Remarque : Les solutions ne sont pas détaillées pour les exercices 1 a 11, car
la méthode est toujours la méme ; on peut éventuellement faire des choix
différents d'échanges ou de combinaisons de lignes, mais toutes les opéra-
tions élémentaires conduisent a la méme matrice échelonnée, et donc au
méme résultat.

Les erreurs de calcul sont tres fréquentes dans ce genre d'exercices. En se
relisant, on peut ne pas voir une erreur de calcul, mais on refait rarement
la méme donc, en cas d'erreur, plutét que de relire ce que I'on a fait, il vaut
mieux refaire les calculs jusqu’a obtenir le bon résultat !

s={(-110)}.

5= [1— Ez,-7-z,z
3 3

Remarque : Lorsqu'il y a une infinité de solutions, la méthode du pivot de
Gauss conduit « naturellement » a exprimer les solutions avec pour incon-
nues secondaires les derniéres inconnues (dans le sens d'écriture). Mais on
peut aussi exprimer les solutions avec d'autres inconnues secondaires.

Ici, par exemple, on a aussi :

Szl[x,z—zx,—%—éx X E R]={[1—§y,y,;y].ye R] )

,ZER].

20020 )
S=&.
4
S:{ ——3—+4z,—20+502,z ,ZE IF&]
s %,1,0] |
l3
5= E—éz,—l-!-lz,z ,ZERYL.
L7 7 7 7
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9, 5= 2—z —4-Z, z] zeRi.
2 -+
10. S=9.
n. s={(1+t.2-t3+2tt)teR}.
Pour résoudre les systémes avec paramétre(s), on procéde comme dans le cas
de coefficients connus, et on fait apparaitre des discussions lorsque nécessaire.
A On ne divise qu'en dernier recours par une expression qui dépend du
paramétre, et jamais sans étudier séparément le cas ou elle s'annule !
Ly—15—2L
LRI P reombr) L B
12. (AB)=|2 -1 12 - |0 -3 —12-2
3 0 21 0 —3 —11-3X\
Eis—E5ia 1 1 1 A

~ 0 —3 —172-2)\|.
‘ 0 0 O|-1—=X

* Si X\ =—1:le systeme est incompatible.

¢ Six=—
11 1—1L2+u_§121 1 1] =4
(A|B)-L~0 -3 —14| ~ |01 1/3-4/3
0 0 0|0 00 O0f O
het-|1 0 273 1/3
~ |0 1 1/3]—4/3|.
“loo of o
Sih=—1 S=0
Finalement: { 1 2 1 :
SiA=—1 S=[[§—§ ———=2,Z ,ZER}
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1 % 1 2 el N\ HX |2
3+ 13—14 2 2
B. (AB)=[1+x 1 1 [2x - 0 =X =X+1 —N"=2)\|-2
P 243 1432 . 0 2 0 |-4
QH%@1 \ +\ |2
- |0 1 0 [-2
0 —XZ—X+1 —\2-2)\|"2
L3H13+(>\7-+x—1)L2 D S E™ § 2

~ 0 1 0 —2

: 2 2

0 0 —X“—2X\|-2X"=2)\
Une disjonction de cas apparait pour A2 42X\ =0 :

* Si A =—2 :le systéme est incompatible.

10 1|2
*Six=0:(AB)-|0 1 0]-2|.
“lo o oo
* Si x¢{-2,0} :
BBl N N2
(AB) -~ o1 o0 -2
. 0 0 1 [2(14+XN)/(2+))
ety 1T 0 920N/ (24+X))
~ 010 -2
; 0 0 12(1+XN)/(2+X)
Six=—2, S=2
Finalement: {Si\ =0, S=1{(2—2z,—-2,2).z¢€ R}

r r
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Li—L3
1. (AB)=[ 1 1-x 10 =11 =& %o
1 1 1=X\|o =X 1 100
Ly—I—1 - -
L3*~—L3~—('|——)\)f_]1 1 =X L34—L3+L21 L 1-X |0
" 0 =X X |0 ) g~ X |o].
0 X 2x—x}0 0 0 3x—-1%°

Une disjonction de cas apparait pour 3\ — A\2=0:

11 1o
* Six=0:(AB)~|0 0 o0[0|.
“lo 0 oo
o« Sl%=d
1
1 1 —2l0)p——a6(1 1 =20 1 0 —1o
-3k Li—b-L
(A|B)-L-0 -3 3l0] — o1 —1oj ~ 10 1 —io|.
0 0 o0fo 00 00 00 0f0
Lf——;f.
Al R
Le——-~1p 1 1 1=)|0
« Six¢g{0,3} : (AB) n 0 1 —1/0].
00 110

La matrice est de rang 3, donc le systéme est de Cramer. Comme il est
homogeéne, la seule solution est (0,0,0).

[six o0, s={(-y-zy.2)(v.2)e R?}
Finalement: {Si \ =3, s={(z.z.z).zeR}
l5i x¢ {03}, s={(0,0,0)}
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X A—1 12)\1 1 1 A2N
102

5. (AB)=|1 1 \2X i LR 22
N ONHT 12X NN+ 12X
L—L-\4{1 1 X o5

L3—13—X\0L4
~ |0 =1 =X2(=X)

0 1 1=-22A(1-X)

¥ IR X
L33+ -
~ o =1 1=x% [22(1-))].

i 2(1—>\2)4)*(1—>\)

L

Une disjonction de cas apparait pour 1— X\2=0:

* Si A =—1:le systéme est incompatible.

T Rt O 2
* Sih= (A|B) —1 0o/~ “lo —1 oo|.
o o oo 0 0 00

*Sixg{-11}:

L~ -1l

l3e——F——=l3

’ 2(1 )\2) TN 22
(AB) - N —12x(Z-1)

0 1
00 1 |2Xx/(M+1)

Ly« Lz—()&z—])l.g

fo il 11 02x/(X\+1) pbi-ts]® 1O 02X /(N +1)
= 010 O = 010 0 :
0 0 12Xx/(A+1) 0 0 12)x/(\+1)
Six=— S=o
Finalement: {Si\ =1, S$= {(2 z,0,2) ZGR}
sing{-11}, s=
g, [>\+1 x+1}
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Inversion de matrices

Dans un premier temps, pour savoir si une matrice est inversible il faut chercher son
éventuel inverse. Par la suite, on dispose d'un outil (le déterminant) qui permet de sa-
voir si la matrice est inversible ; ce méme déterminant permet de calculer les coeffi-
cients de la matrice inverse.

Cette fiche permet de s'exercer a l'inversion de matrices sans déterminant, a l'aide de
méthodes reposant sur le pivot de Gauss.

K désigne R ou C, neN' .

- [

B Inverser une matrice en résolvant un systéeme linéaire

A est inversible si, et seulement si pour YGM_,.,J(K) quelconque le systeme

AX =Y d'inconnue X eM,,(K) admet une unique solution. On cherche donc a
le résoudre. Ce faisant :

« Soit X s'exprime de facon unique en fonction de Y (on aalors X =A" ) etlon
en déduit A~ .

* Soit le systéme n'est pas de Cramer (il est incompatible ou admet une infinité de
solutions), et I'on en déduit que A n'est pas inversible.

Exemple 1
1T 0 2
Montrer que la matrice A=[2 3 —1| estinversible, et déterminer son inverse.
0 —1 2
Réponse
X1 Y1 X1+2X3 =Y,
Onnote X=[x;|letY=|y,|.0na: AX=Y & {2x;+3x;—x3=Y; .
X3 V3 —X9+2X3=Y3

Il s'agit d'exprimer xq,x, et x3 enfonctionde y;,y, et y3.

Fiche 13 m Inversion de matrices Je vous montre comment | 177



Pour simplifier 'écriture, on consideére la matrice augmentée :

1o 20y, p aft 0 2| n eyt 0 2] n
g ~1 2|y 0O -1 2 Y3 0 3 —S5|y,—2y
Ly—Ly+2L
l3—l3-3,| 1 O 2 Y Zo25 1 0 0 Sy1—2y;—6y3
I o1 -2 —¥3 *L- 0 1 0—4y1+2}’2 +5y3 4
0 0 1(=2y1+y>+3y3 0 0 1 —=2y1+y2+3y3

X1=3Y1— 2y, —6y3
Onadonc: {x; =—4y,+2y,+5y3 .
X3 ==2y1+Y+3y3
5 -2 -6
On en déduit que A est inversible,et A~ '=|—4 2
-2 1 3

Remarque : La recherche de l'inverse d’'une matrice est un exercice qui reléve
essentiellement du calcul mental, et les erreurs de calcul sont fréquentes.

Il est trés simple de vérifier que I'on ne s'est pas trompé : il suffit de multiplier la
matrice de départ par celle que l'on a trouvée, pour s'assurer que |'on obtient
bien la matrice identité. Une vérification dont il ne faut jamais se priver!

Exemple 2 1 1 -1
Montrer que la matrice M=|—2 1 —4| n'est pas inversible.
4 0 4
Réponse 11 =1y
Considérons le systeme de matrice augmentée (MIY): -2 1 —4ly,|.
4 0 4|y,
Ly+—L+2L -
L3—13—4L 1 L L 4
(m]y) -0 3 -6 2n+y
0 -4 8 |-4yty;
L3<—L3+gf_2 1T 1 =1 y-l
I 0 3 -6 2}/1+Y2

Le systéme n'est pas de Cramer, la matrice n'est donc pas inversible.
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B Inverser une matrice en utilisant des matrices équivalentes

Une matrice est inversible si, et seulement si elle est équivalente a la matrice unité.
On peut donc passer de I'une a l'autre en une succession d'opérations élémen-
taires.

En faisant simultanément ces opérations sur la matrice a inverser et sur la matrice
unité, on obtient l'inverse.

Exemple 3

Inverser la matrice A de 'exemple 1, avec la méthode des matrices équivalentes.

Réponse
1 06 2|t 0 T 2(1 0O
2 3 -—-10 1 ~ 0 3 —-5-2 10
L
0 -1 2|0 O 0O -1 2|0 0 1
L2<—>—L31 0 2|1 0 0 L34—L3—3L21 0 2|1 @ ©
~ 101 =210 0 -1 ~ 0O 1 —-2010 0 -1
L L
0 3 -5-2 1 0 o0 1-2 1 3

a2t ooy —2 -8
~ 0 1 0—4 2 5

‘ 0 0 1-2 1 3

5 =2 -6

Onretrouve A~ '=|—4 2 5
-2 1 3

Remarque : Les deux méthodes nécessitent exactement les mémes opérations
élémentaires. Le choix de la méthode est en réalité un choix de présentation !
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On s'échauffe

Pour chacune des matrices suivantes dire si elle est inversible, et si elle |'est, en
donner l'inverse :

i 3
y 3
-3 4
1 2
2
24]
-3 2
3.
2 =32
1 2 -1
4 |1 0 3
=4 =1 3
2 1 =
5. 1—2 0 2
g 1 1
¥ ¥ 37
& |3 —1 -2
2 0 D0
11 2 2
r A9 7 ~32
3
2 =2 1
¥ 0 -
g |3 -4 12
1 =2 5

On accélere

Dans les cas suivants, déterminer pour quelle(s) valeur(s) du paramétre X\ la
matrice est inversible, et lorsqu’elle I'est, déterminer son inverse :
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10.

1

12.

13.

- O » o > =

________________________
---------------
-------
--------

o » O
N

Dans les cas suivants, déterminer pour quelle(s) valeur(s) des paramétres la
matrice est inversible, et lorsqu’elle I'est, déterminer son inverse :

14.

15.

\

a
b

a
G

b
a

J

Fiche 13 m Inversion de matrices

Avous!

181

- -
-------
-
-
-



4
3

-2
1

L
10

|

La matrice n'est pas inversible.

|

-1 =1
-1 —3/2

|

-3/4
1
1/4

1/4
0
1/4

—-3/2
1
1/2

5. Lamatrice n‘est pas inversible.

0
2
=i}

0
1
=1

1/2)
1/2
_‘|J

, C'est laméme!

L
3

8. Lamatrice n‘est pas inversible

.

* Si 1= X\? =0, la matrice n'est pas inversible.

1\
0 1-\2

1
N

N
1

1
0

0
1

Ly—Ly— Xl 1

-\

0
.

L

¢ Si1— X220, ennotant 6=

—,0na:

1—)2
1 AN 1ooolledt(1 N 1 o)b=bL-M2(1 ol § —N&
0 1=X2F=N 1} ¢t |0 1-x8 § L O -8 & |

—N\
1

1
Linverse est donc: [ \ ] )

1— 22
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- =X 6 |1 o=l 1 2=\0 1
U1 2=%0 1} L II=x @6 |1 ©
sz—l_z—“—)\)[q']

L 0 (1+X)(4—X)

2— X 1 0

1T A=1

* Si\e {— 1,4} , la matrice n'est pas inversible.

1
* Six¢&{—14} ,ennotant d=
#1{ J (14+XN)(4—X)
Ly—bly

,ona:

0 1
1T XN=1

1 2—X
0 1

1 2— X\
0 (1+X)(4—2X)
Ly—L—(2-X\)Lp

L

L

0o 1

6 d(x—1)
10
0 1

(A—=2)6 6
o d(N—1)

.

Linverse est donc : . i : :
(XN)4=XN)[ 1 X—1

1 -1 01 0 0}

2
LU P 1 10 1 0
0O 1+X 310 0 1

VSV N B [
~ 0O 1+X 1-Xx 1 0}.
O 1+X 310 0 1
* Si X =—1, la matrice n'est pas inversible.

*Six=—1,0na:

1 -1 01 00 , 1 -1 01 0 o0

33 H2

0 14X =X 1.0/ ~ "o 14X =X 1 0
L

0 14+X 30 01 0 0 2fx —11

L2(—L2—-]—L3 1 —1 0 o
2 3 3 1
i IR E RN E

N 2 2
2 % —1 1

Fiche 13 m Inversion de matrices
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1
Ly———0L
A 1 0 0
l3—=L3 |1 —-1 0
2 3\ 3 1
= 0 1 o -
T - 2004X) 2(1+X))  2(1+X)
A - L
k 2 2 2
{ 2= 3 o
2046X0)  2(14X)  2(1+X)
10 0
L]‘-L‘|+L2 3)\ 3 ]
~ lo 1 ol - .
N 2(14+X) 2(14+X)  2(14+)N)
A N 1
\ g 2 B
; 2% 3 —]
Linverse est donc: — 3N 3 —1
2(1+X)
N(+HX) =(14X) 1+
0
1 X Ol1 0O J T 1 0 ©
2./ o 110 1 0 > 0 —X* 1|-x 1 @
L
0 1 346 @ 1 o 1 X9 &3
1 N 0 1N 0
lyesl3 LI | T X L
-L-o1>\2001zo1>\2001
0 =22 1I-x 10 0 @ XM 1 &°

On constate a ce stade que la matrice sera inversible quel que soit \ .

_ 1
En notant d = Z:ona
B
1T N 0 1 % 0
1.0 0} & 1 0 0
01 X2 |lo o 1 > 8 1 X3 o 0 1
0 6 1+%%=x 1 2 O & V=38 5 %%

1 0 0
12(__!_2_}\2131 A 0
~ 0 1 o0)3% =x% &

L
0 0 T_xg & N
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13.

o N3 —\&
bedaip]] 9 9 ;
= 0 1 0|N% 2% &
L
0 0 T_xs & 2%
1 X =X
Linverse est donc : 3 %Y =%* i
1+ X 2
=% T %
X 0 11 00,1 0 xo o1
13
0 X 20 10f ~|0 X 20010
10 Moo 1l P Ix o 1100
etzay|! @ X [0 0
= OoXN 2101 o
i
0 133 @ =&

\ /

* Si X €{—11,0}, la matrice n'est pas inversible.

-SiX&’{—1,1,0},ennotantﬁz—z,ona:
1—X
1o Xxfoo 1], (10 xoo
0 X\ 2 10 1 0 ~ 0O X 20 1
L
5 o dosdl B =) 00 16 0
[ye—Lr—2L 1 N
fol2s(1 0 o-X8 0 b )L lu|1 0 0
I 0 X 0O—26 1 26 ~ 0
0O 0 1 o 0 —X\o 0 0
2% P
Linverse estdonc:;z -2 1-)?
>\(1—,x )
X 0

Fiche 13 m Inversion de matrices
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1

0
—\0

ol—=

1
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14. « Sia = 0 et b= 0, la matrice est nulle donc non inversible !

186 | Corrigés

ook Gl 2
, b1 o\l=l2(b oo 1)% 521 o 3
*Sia=0etb=0,0na: ~ ~ .
b 00 1/ r |0 bj]1T O L 0110
b
0 1
Linverse est donc l .
bl1 0
* Sig=0,0na:
1 b 1
[a b|1 o]L‘ I LR PR PR 2 R, g T
2 32
baOTLbao1 L Oa—b_é.l
a a
— Si a® — b% =0, la matrice n'est pas inversible.
—Siaz—b2¢0,ennotant6=+,ona:
_ b2
a
bl 1
= [l bs—l7—=
T 2lg Olpeatyy 81 17421 ol ad —bb
~ al a ~ i o *
g L2 g ¢ ol VWSS
adb|l a
) a -b
Linverse est donc = 2[ ]
a’—b*|-b a
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15. + Sia = 0 et b = 0, la matrice n'est pas inversible.

* Sia = 0 etc =0, la matrice n'est pas inversible.

*Sia=0,b-0,c=0,0na:

L-p—%.l'..]
1 1
Lye——L =
[o b‘i 0]11H12[c dlo 1]2 b2|1 9|0 ¢
~ ~ c
c do 1] . (0 b1 O L 0 ll 0
b
d 1
Ly+— Lq——L e TSP
1 lc21 0 b ¢
oo
b
" 1(—d b
Linverse est alors : — .
cbl c O
* Sia=0,0na:
1 b 1
Lye——L = s
[a b‘1 0]1 a1 o1 oot 7 | &
c do 1 dlo 1 L 0 ad—bc‘_c
a

— Si ad — bc =0, la matrice n'est pas inversible.

— Si ad — bc+=0, ennotant 6 =

,ona
ad — bc
b| 1 b
=| = : Ly—L—=L
1 a a 0L2<—ah12-| 2 l o 1 1 02
1| ¢ 1 o s L
0 —|—— 1 0 1|-cd abd
ad| a
d -b
Linverse est donc: 1 y
ad—bcl—c a

On peut synthétiser I'ensemble de ces résultats ainsi :

La matrice estinversible si, et seulement si ad — bc = 0, et son inverse est alors

1 d -b
ad—bcl—c a |

Fiche 13 m Inversion de matrices
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Fiche 14

Calcul d’intégrales

Les techniques de calcul d'intégrales s'enrichissent de deux nouveaux théorémes : celui
de l'intégration par parties et celui du changement de variable. Face aux nouveaux
problémes qu'ils permettent de résoudre se pose désormais la question du choix de la
méthode. Pour y répondre efficacement, il faut avoir été confronté a de nombreuses
situations. C'est l'objectif de cette fiche.

N cumoe ot

B Effectuer uneintégration par parties

Théoréeme d’intégration par parties :

Si u et v sont deux fonctions de classe C' sur [a; b], alors

b . _ b .b ;
J, utew'ede =[uewe)],~ [ uewiede.

Remarque : Avant d'appliquer le théoreme d'intégration par parties, il faut

bien préciser quelles sont les fonctions mises en jeu, et leur caractere C 1
(c’est la seule hypothése du théoréme !).

Exemple 1
L1}

Calculer: j tcost dt.
0

Réponse

On pose: u(t)=t,v(t)=sint ; u et v sont de classe ¢! sur [0,x], donc le théo-
réme d'intégration par parties s'applique et l'on a:

™ 5 13 !
j;} tcost dt:{tsmrE—L SintdI’:[COSt]g ——2.

Remarque : Lorsque l'on intégre un produit de fonctions dont une est poly-
nomiale, il est fréquent (comme dans I'exemple précédent) d’appliquer le
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théoréme d'intégration par parties en prenant pour u la fonction polyno-
miale, afin de diminuer son degré en la dérivant. Mais attention a ne pas en
faire un cas général ! Parfois, on intégre la fonction polynomiale (en particu-
lier si 'autre fonction est un logarithme).

Exemple 2
Calculer: f2tlnrdt
: :
Réponse
On pose: u(t):Int.v(t):%r

donc le théoréme d'intégration par parties s'applique et I'on a:

4 ; u et v sont des fonctions de classe ¢! sur [1,2]

2 2
2 2 2
] tintdt =22 Int —f ltledthIn2—lf tdt=2In2— 112
:2In2—i.
4

A Avant de se lancer dans une intégration par parties, il faut s'assurer que le pro-
duit que l'on intégre n'est pas la dérivée d'une fonction composée !

Exemple 3
2|nt
Calculer: —dt.
55

Réponse
2|nt 1 1
J;—dt_j Intx—dt—

B Effectuer un changement de variable

2

(Inr)

1 2
=—(In2)".
=3(m2)

Théoréme de changement de variable :

Soient («;f)e R?, ¢ :[a;3]— R de classe C' sur [u;ﬁ], et f une fonction
continue sur un segment contenant lp([n;HD, avaleursdans R ou C. Alors:

3 #(3)
[ fote e = [ Metyde

p(c

WL

En pratique:
b
» Si on veut calculer f f(t)dt :
on pose t = gp(x),onacherche o et B telsque a=p(a) et b=p(B ), on vérifie
que o est de classe C' sur [o;B], puis on « remplace » f(t) par f(da(x)) et dt
par ¢’(x)dx.
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3
« Si on veut calculer fl flp(x))e'(x)dx :
(X
on pose t=(x), on calcule a=¢(a) et b=p(B), on vérifie que  est de
classe C' sur [a,b], puis on « remplace » f(¢(x)) par f(t) et ¢’(x)dx par dt.
Exemple 4
1
Calculer: [ 1—t3dt.
alculer fo

Réponse

On effectue un changement de variable en posant t =sinx, la fonction sin étant

i1

declasse C' sur R ;avec sin(O):O, sin —1, dt =cos xdx , on obtient :

T

™ T
W] »— — i
.]0 1-t2dt = jOZ V1—sin® x cos x dx = jo2 Veos®xcosx dx = 102 cos® x dx

cosx=>0

sur 0,--"
2

N

0

21-24__1+cos(2x) = x+lsin(2x)
0 P 2

2

Remarque : Cet exemple est un grand classique, il faut le retenir, et penser a ce

changement de variable t =sinx lorsque l'ona y1— .
Dans le méme registre, il faut songer au changement de variable t = sh x

lorsque 'on a y1+t2 car y/1+sh’x = Vch®x = ch x (la fonction ch

2. 2.
étant positive sur R ). clighe e

B Intégrer le produit d’'une exponentielle et d’un cosinus ou d’un sinus

On se place dans C en écrivant le cosinus ou le sinus comme la partie réelle ou
imaginaire d'une exponentielle complexe. On est alors ramené a intégrer une
exponentielle.

Exemple 5
Calculer: .Eezrcos 3t)dt.
[z ¥ cos(3)

Réponse

™ ™
]02 ezrcos(?,t)dt —Re JOZ e2ledityt |
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Ona:
3=

™
x B eeit]s gmg'2 _q (—ie™—1)(2—30)
' ' =
J 2e2re3rrdt:f2e(2+3f)rdt: e o e"e . 8 .
0 0 243i A 243 13
o 3e™ — 2
Finalement, j 2 eZtcos(3t)dt e a3
0 13

B Intégrer un produit de fonctions trigonométriques de la forme
ti>sinP tcos?t,(p,q) e N?

» Sipou g estimpair (par exemple p) :
p—1 p-1
On écrit: sinP tcos?t = sint‘(sin2 t) 2 cost= sint(1— cos? t) 2 cos?t, puis on

effectue un changement de variable, en posant x = cost.

Exemple 6

™

Calculer: 104 sintcos’ tdt .

Réponse

Pour tout t & ,ona:

gl
4

sintcos’ t = sinr(]— cos? l‘)cos5 = (c055 t— cos’ t)sint ]

On effectue un changement de variable, en posant x = cost, la fonction cos étant

declasse C' sur R ;avec cos(O):l et cos % :%, dx = —sintdt, on obtient:
T ™ V2
[4sin3tcosstdt: ]‘4(c055t—cos7t)sintdt:j; 2 (xs—x7)(—1)dx
V2
B _x6 x8|2 - n
6 8| 384

Remarque: Dans cet exemple les deux exposants sont impairs. On aurait égale-
ment pu écrire :

2
sinal*cc:s5 t= sin3 t('l— sin? t) cost = (sin3 t— Zsin5 t+ sin’ r)cost

puis effectuer un changement de variable en posant x =sint.
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» Sipetgsont pairs:
On linéarise I'expression.

Exemple 7

(0

Calculer: f(}Esinztcos4tdt.

Réponse
On linéarise sin’tcos*t :
) oA oy
It =t it —it
sintcos? t =| & .e il e
2i 2
:—_;(e?.ft_2+e—2ir)(e4:'r+462ft+6_|_4e~2it_|_e—4ir)
2
:_—;(eﬁﬂ+4e4”+6em+4+e*2”*2e4"~8e2"~12~8e_2”
2
—29_4”4—92“—|—4+6e_2'-r+4e_4jr—|—e_6“)
—1
= —(cos(6t)+2cos(4t)—cos(2t)-2).
2
On en déduit :
x T
2¢inftcocttdt= 2= = -
L sin“tcos” tdt o33 (cos(6t)+2cos(4t) cos(2t) Z)dr

sin(6t ) i sin(4t) |! sin(2t) 2 x

-2t =—.
6 2 0 32

=i
55

B Intégrer une fonction rationnelle

On décompose la fraction rationnelle en éléments simples, puis on primitive
chaque terme.

Pour les éléments simples de la forme 5 ax+b , on fait apparaitre la dérivée
X+ ax+3
d'un logarithme, et celle d'une Arctangente :
b ac
ax+b _a, . 2+« % )
2toax+B 2 x2+ox+B  x2+ox+P
L
9. 2X +x + p)
2 x24ax+8 2 o2
T [x+%] —%4—[&
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Le premier terme est la dérivée d'un logarithme; pour intégrer le second
terme, on met le dénominateur sous forme canonique, on fait un change-

: o . - . .
ment de variable affine en posant t = x+—, puis on utilise le résultat suivant:

VeeR' f S :1Arctan{5]+c‘e?,
+t c c |

Exemple 8
2P 1842
Calculer:f 2+2 i dt.
L . (r +t+‘|)
Réponse
. : £+ 4142
La décomposition en éléments simples de =7 est:
t (t +t+1)
5 3
t2+; +t+2=t-1-1+32+2L,
t (r +r+1) t P P
Onéerit: 0= =2+ 1
tHt+1 Tt 1", 3
L R
Ona: ‘
2
f t—1—l+i+ﬂ dt=lr?‘—t—ln(|t|)——+ln(|r2+t+1|) =—+I ]
1 E ¢ ae 2 6

e . »2 1
Considérons malntenantj —_—dt :

1 ¥ 3
2 T O
2] "4

On effectue un changement de variable, en posant x =t+—, la fonction affine
étant de classe C' sur R ;avec dx =dt, on obtient :

5
2 2x |2
‘]; dt—j3 E = ﬁArCtan[ﬁ]a
t pe L e
[ +2] + " :
- 5 5v3
= —|Arctan|—=|—Arctan —|Arctan !
\/5[ [\/5 [\/_]] [ 3 ] 3]
Finalement, f s _!-H_zdt‘:EJrIn(Z]—ﬁﬁ\r{:’a‘anlsxE +2\/§ﬂ.
(t +t+1) 2 3 9
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On s'échauffe

1. Calculer les intégrales suivantes, en déterminant une primitive :

a. fi%dt

0 (142t)
1
w 2t ~dt
“fee)
1t
C. dt
‘L’ 1+ 2

d. f: e3rsin(5t)dt

1 2
e. fre dt
0

t

0
A —_dt
f—‘t2+2t+2

2. Calculer les intégrales suivantes, a l'aide d'une (ou plusieurs) intégration(s)
par parties :

a. | %tsin(zt)dt

b ["sintdt
ff':—;dr

d. f;(t2+t)e2rdt

e. [“"Intdt,nen.

f ﬁe(lnt)zdt
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3. Calculer les intégrales suivantes, a I'aide d’'un changement de variable :

1
d. f %df
=3t 42t+5

T

b. ELS“Zdt
0 14sin“t
u

¢ f 1_dt,ucR.
0 14¢f

u 2t
d. f € _dt,ucR.
0 14¢f

« Pl

t+t(Int)*

e
f. ‘L sin(Int)dt

4, Calculer les intégrales suivantes :

T
a. fOZ cos’ tdt

i1
f 4“ cos’ tsintdt
4

=

. fogcoszts'mzrdr

1
i 3]

dt
0 ¢t4_1

t3

- JO (t2+1)(r+1)

1 t
f — —df
1t 4t -1

dt

=-h
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On accélere

5. Calculer les intégrales suivantes :
2 3
a. f 1—[1—t|) dt
Z1-fi—t)
=
b. 4 tantdt
Js

™
C. f04 t2sin’tdt

1 $2

d. f? dt
I
1 2

e. f - dt
0 J14+¢2
= 1

f. [4 : —dt
0 sin“t43cos“t

z 1
g. 6 —dt
0 sin?t— cos’t

2
h. L“sin3(3t)cos(5t)dt
2 1
i —dt
ﬁ t++/t—1

6. Calculer les intégrales suivantes :

-

) 1

_ T 14cost
2

dt

b. f_“l‘h_ costdt
2
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o

dt

= 2
(1+t2)

15\/1+t—4\/1+tdr

0 J1+t+¥1+t

—h

8 1
————=dt
f1 Vet

2 5
: j3rx —t? 4+ 3t—2dt
2

< 1
h. dt
j” (t41)Vt? +2t 42
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=2

-~
H

o

®

™

N =

fz(l_t) ﬁ
7]

1+t
- (3+si)e || 5(e3™ 41
f“emsin(Sr)dt=Im[fﬁe(3+5')rdt]=lm € —| |= ( )
0 0 3+5i 34
0
1
f1te'2dt= R =l{e—1).
0 o 2
f" : t dt:fol 22t+2 B 12 it
—1t°+2t4-2 N2 4242 (e41) 4
0
il lln(t2+2r+2)— Arctan(t+1)] n2 =
- 2 4

-1
On pose u(t) =t,v(t)=— %cos(ﬂ) ; u et v sont des fonctions de classe C!

sur , donc le théoréme d'intégration par parties s'applique et I'on a:

™

2 —j?[—%cos(Zt)]dt

0

™

jg tsin(2t)dt = [—%t cos(2t)

T

%sin(Zt); :%.

5.1
4 2

On pose u(t):tz,v(t):—cost : u et v sont des fonctions de classe C’
sur [0, n], donc le théoreme d'intégration par parties s'applique et 'on a:

™
f t2 sintdt:’— 2
0

11' ™ 1
— —2tcostdt=m2+2 tcostdt .
=k 2
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On a montré dans l'exemple 1 que j:tcostdt =—2.

L% [ 2
Onadonc:j; t“sintdt=n“—4.

¢. On pose u(i‘)zlnr,v(t):_T‘I . u et v sont de classe C! sur [1,2], donc le

théoréme d'intégration par parties s'applique etl'on a:

2 2
2
1 tz

21 1
Ldt=——In(2
th B t 2n( )+

1

Int 1
=——=In(2)4+—.
2 n( ) 2

t

-1
t

1

2

d. Onpose u(t)= t? +t,v(t)= %e *.uetvsontde classe C'sur [0,2], donc

le théoreme d'intégration par parties s'applique et l'on a:

2
f (tz +t)e2‘dt 4 lez‘(t2 +r)
0 2 .

_ah VP2 o #2050
=3e 2J;Je dt fote dt.

2

—%f:(ZtH)ez‘dr

2t

W 1
Dans la derniére intégrale, on pose w(t)= t,v(t)zie ; W etv sont de

classe € sur [0,2]. donc le théoréeme d'intégration par parties s'applique,

12 2t
—— | e“dt.
2-1;)

2
Finalement, j; (tz + t)eztdt =2e?.

2
t
0

2 1
etl'ona:fotezrdt= —te?

(N1
e. Onpose u(t)=Int,v(t)= v

-uetvsontde classe C' sur [1,e], donc le

théoréme d'intégration par parties s'applique etl'on a:

e e
" N1 g n1 n+1
f " Int dt =|*—Int —Lf A g e 1]t
1 n—+1 n+1J1 t n+1 n+1 n+11
ne™ 41
(n+‘l)2

f. Onpose u(t)=(Int)’,v(t)=t ; uetvsont de classe C' sur [1,¢], donc le
théoréme d'intégration par parties s'applique et 'on a:
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j;e(lnt)2 dt:lt(lnt)2

= e—2[t|nt—t]$ —e—2.

e e e
—f 2Intx1xtdr=e—2j Intdt
1 0 t 0

Remarque : t—>tint— t est une primitive connue de la fonction In; pour
la retrouver on applique le théoréme d'intégration par parties avec
u(t)=Int,v(t)=t.

3. a IJB%dt:f_la(;dt.

t+1)° +4
On effectue un changement de variable, en posant x =t+1, la fonction
affine étant de classe C' sur R ;avec dt=dx,on obtient:

1 1 2 i
f_3~—-2 dt=f_2 g =2
t2 42t +5 X2 +4

2

X
Arctan
2

2
b. On effectue un changement de variable, en posant x =sint, la fonction

sin étant de classe C' sur R ;avec sin(0)=0, sin %]:1 et dx =costdt,

1
on obtient : Z%X costdr:[ !
0 14sin“t vO 1+ x

¢. On effectue un changement de variable, en posant x =e", c'est-a-dire
t=Inx, la fonction In étant de classe C' sur |0,4-00| ; avec In(1)=0,

3 dx = [Arctanx]l, =% .

t

In(e”)z u et dt :ldx ,on obtient :

X
Laltt u
fu : dt = . —1wx~1—dx:fe LA dx
0 14ef 1 14+x x T {x x+1
z{ln(|x|)—ln([x+1|)]:'u :u—ln(1+e”)+in(2).

d. On effectue un changement de variable, en posant x =e', c’est-a-dire

t=Inx, la fonction In étant de classe C' sur ]0,+oo[ ; avec In(1)=0,

1 y
In(e”): u et dt = —dx, on obtient :
X
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.eu
dr:j LIS . ——dx [1——
t T 14+x x 1 14X 1

eU
= {x—ln(|1+ x|)}l —e" —In(1+e“)—l+ln(2).
e. On effectue un changement de variable, en posant x =Int, c’est-a-dire
t =e*, la fonction exp étant de classe C' sur [1,e] ;avec =1, e'=eet
dt = e*dx, on obtient :

e 1 1 1 T 1 1
—  dt=| ————xe¥dx= dx =|Arctanx]|. =—
‘[; 1‘+l’(lnt)2 °ex(1+x2) ‘I;’Prxz | ]O

f. On effectue un changement de variable, en posant x=Int, c'est-a-dire

t =e*, la fonction exp étant de classe ¢! sur [1,e] ;avec e2=1, e'=e et
dt =e*dx , on obtient :

(V+i)x y

e . . q... Mg,
j; sm(lnt)dt—j‘;smxxe dx =Im

foleﬂﬁ]xdx]zlm -

:%(1~ecos(1)+esin(‘l)).

1+i

i ™ iy
e e (O I e . 2.)2
f02cos tdt:j;Z (cos t) costdt:‘f;Z (1—5|n t) costdt,
On effectue un changement de variable, en posant x =sint, la fonc-

. i T
tion sinus étant de classe C' sur 0,;

dx = costdt, on obtient :

; avec sin(0)=0, sin[%]zl et

> s = 2. \? 1 2\?
2 cos tdt=f2(1—sin t) costdt:f (1—x ) dx
0 0 0
: 1
:f( —2X +1)dx_
0

x5 2x

= +x
5 3
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b. f““ cos3tsin2tdt:f4ﬂ (1— sinzt)sinzrcostdt.

4 4
On effectue un changement de variable, en posant x =sint, la fonction si-
nus étant de classe C' sur|——,~| ; avec sin —E]:—%, sin E]:%
et dx =costdt, on obtient:
= L
f“ﬂcothsinz tdt = 2f4(1—sin2t)sin2tcostdt
“a |la fonction
est paire
V2
V2 3 <513
5. o 2
=2f2(‘|_x2)x2dx:2 X _X :ﬂ.
0 3 5 60
0
; 1., 1| 1—cos(4t .
¢ Ona: smztcoszt:Zsmz(Zt)zz # (avec les formules de tri-

gonométries usuelles, mais on peut également trouver ce résultat en utili-
sant les formules d’Euler !).

Onadonc:
1';
™ ™ forren
c P T T 3. 3. B
f03cos tsin tdt—§f03 (1—cos(4t))dt—Elt—zsm(m)o —E+a.
d. La décomposition en éléments simples de i, donne:
1 1 1 1 t" —
1A A o)
Onadonc:
= 9 = 1 1 1
2 dt=1( 2 == - dt
0 41 0 [4(t—1) 4(t+1) 2(r2+1)
1
= lIn(]l‘—1|)—lln(|t‘+1|)—1Arctant‘ g
4 4 2 A

|
:—-rl(f-)-—lArctan[l].
4 2 2
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e. Ladécomposition en éléments simples de ————— donne:
(22 +1)(e+1)

e 1+t
(t2+1)(t+1)_ 2(t+1) 2(t2+1)'

1+t 1 2t 1
P31 2 241 241
Onadonc:

On écrit

S & e T
Y e e e v

1

:[t—lln(|t+1|)—lln(t2 +1)—1Arctant
2 4 2 o

3 T
=1—=In(2}——.
4 n( ) 8

1 N
. [ ——— :—-f e’ ——f — —_ dr.
g% gy gy +3
2 4
Dans la deuxieme intégrale, on effectue un changement de variable,
en posant x =t— %, la fonction affine est de classe C’ sur[— 1,1] ; avec
dx =dt, on obtient :

1
11 0 g2 2x |2
f"—3dt_‘[ ﬁdx—\/§ Arctan[Ji]I_

2 3
1 -2 = 3
s T .
2 1 3 2 [ ®) B3
=—|Arctan|—|—Arctan| —=||=—F=| =+ = |=——.
Ji[ Ji] [Ji]] Ji[s 3] 3
Finalement,
1 N 1
[ty e [ e
~P - 2 it - 2 —T[ 1] 3
t—| +=
2 4
1 In(3
. 1n(|—t2+t—1|)] _3m_In(3) VBw
2 1 6 2 6
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5. a. Onapplique la relation de Chasles pour « enlever » les valeurs absolues :

1 2
2 1 2 t4 21 1
fo (1—[1—t|)3dt=ﬁ]t3dt+f; (2—t)3dt= . —(—4)—- =
1
% 2 sint =
fo tantdrz‘]; adt_[—lnucostma’r =Eln(2).
f4t sin tdt—f4t {1_c°5 2¢) ]d f4t2dt foztzcos(Zt)dt.

™

Considérons j;zrz cos(2t)dt :

On pose u(t):tz,v(t):%sin(Zt) ; u et v sont de classe C' sur 10% ;

donc le théoréme d'intégration par parties sapplique et l'on a:

a0

— ™
=D L N T
fo‘it cos(2t)dt =|—t s:n(zt)o L"rsm(zt)dt.

Dans la deuxiéme intégrale, on pose w(t):t,z(t):—%cos(Zt) iwetz

sont de classe C' sur , donc le théoréme d'intégration par parties

sappliqueetlona:

® x x L]
j4tsin(2t)dr= —ltcos(Zr) i +lj 4c0s(21‘)d1‘=0-1—l lsin(21‘) Vet
0 2 o 2Y0 2(2 0o 4
™
L 3|2 2 3 2
s B s 14 1 1 1
Finalement, f4t25|n2tdt=— N . . T i
0 2|3 o 2132 4 384 64 8

On effectue un changement de variable, en posant t = sinx, lafonction sin

étant de classe C' sur R : avec sin(o):o, sin[-'ri]zi et dt = cos xdx,
on obtient : 6 2

T
f dt—f sin” x —_cosXdx = Tl Xcosxdx

\i Sln X cosx>0 0 cosx
SUFID'E]
6

—1—cos(2x
—fﬁ = X ——sin(2x) .. -}
5 T2 8
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e. On effectue un changement de variable, en posant t =shx , la fonction sh

étant de classe C' sur R ;avec sh(0)=0, sh(a)=1 (on calculera o plus
loin.. ) et dt =chxdx,on obtient:

f fﬂ ch xdx = fumch xdx
et J1+sh 2y et ® et (x)

B a9 s Ch(Zf}—1

= L sh (x)dx-j; [—;—]dr

ch x>0

1.| (&3

1 1
= Esh(Zt)m —Zsh(ZQ)—Ea.

0

(X —
—e : '
Ona: sh(a):T —=1,donc a est tel que e est la solution posi-

tive de x2—2x—1=0. onadonc: « =ln(1+\5).
Dautre part, sh(2a)=2sh(a)ch(a)=2sh(a ) I+sh2((x) =2\2.
N In(1+\5)

Final t f‘ t dt
Inalement, —— =
0 ire? 2 2

il 3 ® 3
L 2 4 5 3 dt= | 4 dt.
0 sin“t+3cos“t 0 coszt(tan2t+3

On effectue un changement de variable, en posant x =tant, la fonc-
£
—]:T et
4

tion tan étant de classe C' sur
dx:

0,~
4

: avec tan(O):O, tan

dt, on obtient:

COSzt

™
2 1 1 11

f4 Tons sl dt:fz—dx:
0 tan“t+3 cos“t 0 x< 43

l['n]_'ﬁ\ﬁ
J3 18
T ™

0 sin’t— cos’t 0 coszt(tanzt—l)

1

ot

6
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On effectue un changement de variable, en posant x =tant, la fonc-

tion tan étant de classe C' sur 0, z : avec tan [ ] J—
= > dt, on obtient:
cos“t
LA 1 ¥3 1
6 X dt= dx dx
0 tan’t—1 cos’t ‘fo f 1 2(x+1)

J3
1 2 3-43
zi[lnux—‘I|)—In(}x+1j)]03 [3 J—]_ I( \/_)
h. Lafonction t+> sin3(3t)cos(5t) est 27 - périodique et impaire, on adonc :

fzwsin3(3t)cos(51‘)dt=f1t sin3(3r)cos(5t)dt:0_

0 —T

Remarque : |l est parfois inutile de faire de longs calculs !

i. On effectue un changement de variable, en posant x =</t — 1, c'est-a-dire
t=x%+ 1, la fonction carrée étant de classe C Tsur B ; avec dt = 2xdx,

on obtient :
2

f 1 f I S - .. f 2x +1 . 1 ]dx
1 t+\/r— 0x? 114 x x? +x+1 X“+x+1

1
e
0 YO x“4x+1

1 dx du
=In(3)- [, g 5 1|n(3)_f3 —
[x+5] + umx 2 Wy
3
=In(3)— %Arctan 2—\/’;]? —In(3)—$.
2

6. Remarque: Dans les deux premiers calculs, on va utiliser les formules de trigo-
nométrie :

t b - . r
1+ cost = 2cos? 5 et 1— cost = 2sin’ - (qu'il faut toujours avoir en téte ).
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IE ! dt:fi—dt =tan1 % =g,
~® 14cost B t] 2)| =

2 2 2cos 3
f \J1— cost dt—f ’2sm dt—J_j .ﬁsm ]

A N'oubliez pas que pour tout x< R, Vx? = x| ; il faut ensuite « enle-
ver » les valeurs absolues en utilisant la relation de Chasles :

fjlzr\“—m“df:‘/i —ijsin % dt+f:sin[%]dt

2

0
4

| [
2
¢. Meéthode 1 (avec une intégration par parties) :

_\3|-

—2cos

- ]1T —4\2-2.

—2cos[—
E 0
0,31.
4

£
2

On pose u(t):t,v(t):—-—-1—- ; u et v sont de classe C' sur

2(1+ t2)
donc le théoreme d'intégration par parties s'applique et l'on a :
1

(= 1 1M
‘];(thrdt_ —mxro+—fo1+—tdt

1.1 % 1A
=——+—|Arctant}, =———.
4 2[ o 8 4

Méthode 2 (a l'aide d'un changement de variable)

On effectue un changement de variable, en posant t=tanx, la fonc-

tion tan étant de classe C' sur [0,—| ; avec tan(0)=0, tan i]zI et
2 ; 4
dt:(H-tan x)dx,on obtient :
2 m tanz(x)(1+tan2(x))
1t =
fo Fdt= [ 4 " dx
(1+t2) (1+tan2(x))

I tan® x)
- f dx = 4
0 14tan? (x) 0

dx
1+tan )]
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1

1
4 T
0 — e —

! X —%sin(Zx)

Remarque : Ce changement de variable peut paraitre surprenant, mais il

n
est assez fréquent quand on a (1+t2) au dénominateur d’une fraction.

La dérivée qui donne dt = (1—!—tan2 (x)]dx , et la formule de trigonométrie
1

14+ tan? (x)
tions trigonométriques.

— cos? (x) permettent de se ramener & des polynémes de fonc-

dans R, ce chan-

b1
_—,—

De plus, la fonction tangente étant bijective de

gement de variable peut se faire quel que soit l'intervalle d'intégration.

d. On effectue un changement de variable, en posant t =tanx , la fonction

tan étant de classe C' sur ——,—|; avectan —E]:—‘I. tan[%]:1 et
dt:(H—tan2 x)dx,on obtient :
| 2 T
f1 1 dt—fz 1+tan” x dx=fz LT
= 3\ wl 3 AP T 14tan® x
(1+f ) 4(1+tan X) 4
-E 2 % 14-cos(2x)
:j cos xdx:f — N Zdx
¥ = 2
4 4
¥l
1 1. 4 T 1
=—|X+—=sin(2x =
2 2 ( )_ 4 2

4

e. On effectue un changement de variable, en posant x =1+t , c'est-a-
dire t=x*—1, la fonction polynomiale étant de classe C Usur R ; avec

dt = 4x3dx , on obtient :
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_4 3
f15\j1+t \/1+ f, % ax3dx — 4 2 x4 X~ dx

0 J1+r+$/1+t X2+ x 1 X+1

:4f [x3—2x2+2x—2+i dx
1 X+1
4 2
=4 X——L+x —2x+2In(|x+1)
4 3
1
=l+81n[g].
3 2

On effectue un changement de variable, en posant x = 3t , clest-a-dire
t=x>, la fonction « cube » étant de classe C' sur R ; avec dt=3x%dx,

2
on obtient : f \/-+\/— f‘j; XJ;erdx f J_+1

On effectue un changement de variable, en posant u=+/x , c'est-a-dire

¢ et uz, la fonction « carré » étant de classe C'sur R ;avec dx =2udu, on
obtient:

2 3){ \/_311 - \/5 2 1
f \/_+‘| _\[I x2udu —GL [U —U+1—u—-l_1 du
V2
U3 Uz
=6 ?——+U—In(|1+U|)l

:10~E—11+6In[ ]—10\/_—11+6In(2\/_ 2).

+42

2 5 2 |1 3\ 2t 2
[3txd—t243t—2dt = [3ex [ —|t—2| dt= [3oxy1-(2t—3)dl.
2 5 14 L = 22
On effectue un changement de variable, en posant x =2t — 3, la fonction

affine étant de classe C! sur R ;avec dx=2dt, on obtient:

12 f_ _atge 1 PR48 L 3.1
ngtx 1—(2t 3)dt~2L > T—i xzdx

1 M1 2 1 2
=— XN1—x“dx+3 1—x“dx
8 fo = fo

calculé dansl'exemple 4
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3

2 2
1f3 1*><1/1—(21‘—3)2d1*=l —1(1—;:2)2 +3x 2 =i+3_'“
2de 8|l 3 4| 24 32

f; ] :;Ir:f1 : dt .

(t+1WE2 42t +2 °(t+1)J(t+1)2+1
On effectue un changement de variable, en posant x =t+1, la fonction
affine étant de classe C' sur R ; avec dx =dt, on obtient :

i 1 de= T — e di

°(t+1)\/(1+t)2+1 ' oxyx? +1
On effectue un changement de variable, en posant x =sh u, la fonction

sh étant de classe C! sur R : avec sh(u):1 (o a été déterminé dans

I'exercice 5.e), sh(3)=2 (on calculera 3 plus loin...) etdx =chudu, on
obtient :

B 1
xchudu= ["—xchudu - ——du.
f sh uv'shzu+1 f sh uych®u ch'J>oL shu

3 & B u
Ona: f Ldu=f #du=f a5 du.
o shu o eu_e_u 4 ezu_'|

On effectue un changement de variable, en posant v=e", la fonction exp
étant de classe C' sur R ;avec dv=e"du, on obtient:
3 5
B2 e’ 2 e’( 1 1
f eldu= [ dv:fu —————|dv
a 2l _q e™ 2 _1 e (v=1 v+1

(i =) =i+ )

On a montré dans I'exercice 5.e. que e® =1++/2.

B_oB
3 est tel que %:2, donc e°

est la solution positive de
x2—4x—1=0,dot e” =2+4/5.
Finalement,

[ ‘ dt =In(1++5)— In(3+5)— In(v2)+In(2++2).

O (412 +2t+2
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Fiche 15

Equations différentielles linéaires

La résolution des équations différentielles linéaires du premier ordre et des équations
différentielles linéaires du second ordre a coefficients constants fait l'objet du pro-
gramme de mathématiques en premiére année et se révéle indispensable aux autres
disciplines scientifiques. C'est un sujet incontournable.

Avant de faire cette fiche, il faut maitriser celle du calcul d'intégrales.

K désigne R ou C, /désigne un intervalle.

Y o comment

B Résoudre une équation différentielle homogéne du premier ordre

Soit (H):ay'+by =0, une équation différentielle linéaire homogeéne (a et b
étant des fonctions continues de / dans K, a ne s'annulant par sur /). Alors
b

I'ensemble est solutions de (H) sur/est:Sy =1¢:/— K, x> Ce 'a,ceKlou

& b G
f — désigne une primitive de —.
a a

Pour résoudre (H), on est donc ramené a la recherche d’une primitive de —.
a

Exemple 1

Résoudre dans R I'équation différentielle (H): y'+xy =0.

Réponse 2
2 =2
Ona:—fxdx:—x?+K,Ke]R,donc Sy=19:R—=R,x—>Ce 2 ,CeR}.
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B Résoudre une équation différentielle du premier ordre

Soient (L): ay'+by=c une équation différentielle linéaire, (a, b et ¢ étant
des fonctions continues de /dans K, a ne s'annulant par sur un intervalle /), et
(H):ay'+by =0 l'équation homogene associée.

Si y,, est une solution particuliere de (L) I'ensemble des solutions de (L) est:
S = {@:J—» K,x— h(x)+yp(x),h GSH}, ou S, est 'ensemble des solutions
de (H).

Lorsqu'il n"apparait aucune solution évidente, on dispose d'une méthode systé-
matique pour trouver une solution particuliére appelée méthode de variation de
la constante:

Apres avoir résolu I'équation différentielle homogene (H), on cherche une solution
de (L) sous la forme yp, = zh ou zest une fonction dérivable sur/, et h est une solu-
tion non nulle de (H) (on prend celle pour laquelle la constante Cvaut 1).

Onaalors:
(yp S SL)¢¢» (a(z'h+zh")+bzh=c)<> |az'h+z(ah'+bh)=c |« ==
G it ah
0
car he Sy

Remarque : On peut diviser par ah, car on a supposé que a ne s'annule pas sur
I, et h étant une solution (non nulle !) de (H), c’est une fonction de la forme e"
qui ne sannule pas.

N— " — c
On raméne donc le probléme a la recherche d'une primitive de e
a

Exemple 2

Résoudre dans R I'équation différentielle (L): y'+2y = s il

Réponse
Onnote (H): y'+2y =0, I'équation homogéne.
Ona: —j.2dx:—2x+K,Ke R, donc Sy :{ap:IR—+ R,x+>Ce~%*,Ce R} :

On cherche une solution de (L) sous la forme Yp =zh avec, pour tout xc R,
h(x)=e 2%,

Remarque: || est préférable dans un premier temps de garder la notation h plu-
tét que de la remplacer par sa forme explicite, car 'expression se simplifie du

214 | Je vous montre comment Fiche 15 m Equations différentielles linéaires



fait de I'appartenance de h a S, et dériver réellement h apporte une source
d'erreur inutile !

(yp eSL) & (z'h+zh'+ 2zh = x%e %X ) < |z'h+z(h'+2h)=x%e
0

car heSy

J¢_3
ZZ?—I—C,CGR

<:>(z‘=x2)¢¢

Remarque: On a ici usé d'un abus de notation.

Au lieu d'écrire :

(yp € SL)@ (Vx € R,z'(x)h(x)+z(x)h’(x)+22(x)h(x)= xe 2"),
on a écrit : (yp € SL)<:> (z'h +2zh'4+2zh=x%e™ 2").

On tolére un tel abus, sans quoi les expressions seraient difficiles a lire.

A Onveut Yp= zh ,on a déterminé z, il ne faut pas oublier de la multiplier par h!

3

S, ={¢:R— Rxr>e 2¥ c+"? ,CeRL,

Remarque : La méthode de variation de la constante est trés performante (a
condition de savoir calculer des primitives !). Mais il ne faut pas oublier que l'on
cherche une solution particuliére de I'équation différentielle, et que parfois il
peut y en avoir une qui apparait clairement, parfois sans calcul !

Exemple 3
Résoudre dans R I'équation différentielle (L): (1+x2)y'— y=1,

Réponse

On note (H): (1+x2)y'— y =0, I'équation homogéne.

Ona: —1.1;:2 dx :Arctan(x)+K,K€ R,

eArctan(x)

donc SH:{L{DZR—)R,XI—)C ,CeR}.

Ypix>—1est clairement solution de (L).

Onadonc: §; :{n,o:R—r R,XHCeAma"(x)— 1Ce R}.
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B Résoudre une équation différentielle homogéne du deuxiéme ordre

Soit (H):y"+ay'+by=0, ou (a,b)e K? une équation différentielle homo-
géne du deuxiéme ordre.

On note (EC): r? +ar+b—0 son équation caractéristique.
P Résolution dans C :
» Sil'équation caractéristique admet deux solutions distinctes r, et r; , alors:
Sy={9:R— C,xi->Ae* +Be2,(4,8)e C?} .
* Sil'équation caractéristique admet une solution double r,, alors:
Sy = {a.p :R— C,x+>(Ax+B)e0¥,(A,B)e C"‘} .
P Résolutiondans R :

« Si I'équation caractéristique a une ou deux solutions réelles, 'ensemble des
solutions est le méme que dans le cas complexe (avec (A,B)e R2).

* Si I'équation caractéristique a deux solutions distinctes complexes (conju-
guées) o +i3 et a— i3, alors:

Sy = {tp :R— R,x+>e"*(Acos(Bx)+Bsin(Bx)),(A,B)e Rz} .

Exemple 4
Résoudre dans C, puis dans R, I'équation différentielle (H): 2y"—2y'+y =0.
Réponse

L'équation caractéristique est (EC): 2r? — 2r+1=0.

Remarque : Pour obtenir la forme de I'encadré, il faut diviser les deux membres
de (H) par 2 ; toutefois les équations 22 —2r+1=0et rP—r -l—%: 0 étant

équivalentes, on privilégie la premiére pour éviter des écritures fractionnaires.

: i1 11, ,
Les solutions de (EC) sont: n=—+—i et r,=———i. On en déduit I'ensemble
des solutions : 22 2 2

1 ix ix
Dans C : Sy=1{9p:R— C,x>e2 |Ae2 +Be 2 ,(A,B)EC2 ;
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—X
Dans R : Sy={p:R— R,x>e? [Acos

%]—I—Bsin[%]],(A,B)e R2|.

B Résoudre une équation différentielle du deuxiéme ordre

Soient (L):y"+ay'+by=c, une équation différentielle homogéne du
deuxiéme ordre ((a,b)e K?,cec® (1LK)), et (H):y"+ay'+by =0 I'équation
homogéne associée.

Si ypest une solution particuliére de (L) I'ensemble des solutions de (L) est:
St :{gp (=K, x> yp(x)+h(x),heSH}, ol Sy est I'ensemble des solutions
de (H).

» Si(L):y"+ay+by=P(x),avec PeK[X], dedegrén:
* Si b=0, (L) admet pour solution une fonction polynomiale de degré n.
Exemple 5
Résoudre dans R I'équation différentielle (L):y"+y'— 2y =2x% —3x41.
Réponse
On note (H) y"+y'— 2y =0, I'équation homogeéne associée a (L).
L'équation caractéristique est (EC) .12 +r—2=0,dont les solutions sont 1 et — 2.
Onadonc: Sy ={@:R— R,xr> Ae* +Be 2% (4,8)e R?}.
On cherche une solution particuliére sous la forme y,: x - ax? +8x+~.
(vpes)e (Vxe R, 20 +20x+B — 2(ax2+ﬁx+w): 252 — 3x+1)

& ((—20=2)A(2a—28=—-3)A2a+B—-2y=1))

1 5
Vx €R, —x2 Ly 2
X €R,yp(x)=—x +2x .

<r

.

Finalement, S; = {kp :R— R, x> —x? +%x— %+Aex +Be™ %X ,(A,B)e H&zl.

*si b=0 et a=0, (L) admet pour solution une fonction polynomiale de degré
n + 1 et de valuation 1 (c’est-a-dire dont le terme constant est nul).
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Exemple 6

Résoudre dans R I'équation différentielle (L):y"+2y’=3x2.

Réponse

Onnote (H):y"+2y’'=0, I'équation homogeéne associée a (L).

L'équation caractéristique est (EC ): r? +2r =0, dont les solutions sont 0 et —2.
Onadonc: Sy = {up :R—=R,x— A+Be_2”,(A,B)€ Rz} .

On cherche une solution particuliére sous la forme : YpiXt> ax3 +ﬂx2 +X.

(vpe sL) {:}(Vx eR,60x +26+2(3(1x2 +20x +'1) = 3x2)
& (60 =3)A (60 +4B=0)A(28+27=0))

¢:>[Vx €R, yp(x):%x3 —%xz +%x].

Finalement, §; = {Lp ‘R— R, x l——)%x3 — %xz +%X+A+Be_2”,(A,B)e ]Rz}.

» Si(L):y"+ay+by=e"™*P(x),avec meK et PEK[X], dedegrén:
* si m nest pas solution de I'équation caractéristique, alors (L) admet une solution
de la forme y,:x > e™*Q(x), ol Q est un polynéme de degré n.
Exemple 7
Résoudre dans R I'équation différentielle (L):y"+y = xe*.
Réponse
On note (H): y"+y =0, l'équation homogéne associée a (L).
L'équation caractéristique est (EC ):r2 +1=0, dont les solutions sont i et —i.
Onadonc:
Sy = {\p :R— R,x+>Acos(x)+Bsin(x),(AB)e R2} :
On cherche une solution particuliére sous la forme y,: x - (nx-i-ﬁ )ex.

Pour tout xe R, on a: y,'(x)=(ax+a« +B)e” et Yp"(X)=(ax+2a +8)e¥.
Alors,

(,Vp ESL)@(VX ER,(GX + 2 +ﬁ+fxx+ﬁ)e" - xe")

& (2a=1)A(20+28=0))«

Vx€R,yp(x) =%(x~‘l)ex].
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Finalement, S; = {Lp :R— R, x H%(x— 1)e* +Acos(x)+Bsin(x),(AB)e Rzl.

* si m est solution simple de I'équation caractéristique, alors (L) admet une solu-
tion de la forme y:x - emxe(x) ,ou Q estun polynéme de degré n.
Exemple 8
Résoudre dans R l'équation différentielle (L):y"— y =(x+2)e™ .
Réponse
Onnote (H):y"— y =0, l'équation homogeéne associée a (L).
L'équation caractéristique est (EC): r? —1=0, dont les solutions sont 1 et — 1.
Onadonc: Sy = {@ :R— R, x> Ae* +Be ¥ ,(A,B)e Rz} :
On cherche une solution particuliére sous la forme :
Yp x> (ax+B )xe X = ((xax2 +ﬁx)e_x i
Pourtout xe R,ona: y,’(x) :(—ouur2 +(20—B)x +B)e_x
et y,"(x)= ((‘sz +(B— 4o )x+20— 23]e_" .
Alors,
(yp € S,_) & (Vx eR,(—4ax+2a—2B)e * =(x+ 2)e_")
& ((~4a=1)Aa-28=2))

N

VXER,y,(x)= —&(,\2 +5x)e*X].

Finalement, S; = [Lp :R— R, x 1—)[— %xz —%x+B]e_x +Ae*,(A,B)e Rz}.

* si m est solution double de l'équation caractéristique, alors (L) admet une solu-
tion de la forme yp,:x - eMX 2 Q(x), ol Qest un polynéme de degré n.

Exemple 9

Résoudre dans R I'équation différentielle (L):y"+2y'+y=e *.

Réponse

On note (H):y"+2y'+y =0, 'équation homogéne associée a (L).

L'équation caractéristique est (EC): r2 +2r+1=0, dont l'unique solution est —1.
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Onadonc:
Sy={@:R— Rxr>(Ax+B)e ™ (4B)e R?].
On cherche une solution particuliére sous la forme y, : x - ax?e X,

Pourtout xe R,ona:

yp‘(x):(—ux2+2mx)e“x et yp"(x)z(:1x2—4nx +2u)e"x.

2

Alors, (yPESL)ﬁ (VXER,Zme_x :e_x)@ Vx e IEI;,y‘!,(x):X?e-_"r !

2

Finalement, §; =j{¢:R— R, x> %+Ax +Ble ¥, (AB)e R?

.

220 | Je vous montre comment Fiche 15 m Equations différentielles linéaires



On s'échauffe

1. Déterminer les solutions dans R des équations différentielles suivantes :

a.
b.

‘.

f.

y"—2y'+y=xe*
y"—3y'+2y=e*
y'—5y'+6y =1+x2
y'+4y'+13y=e ¥
y'—4y'+3y = xe*
2y"+y'=x%+1

y'— 22y +4y = x +eV?

2. Déterminer les solutions des équations différentielles suivantes, sur |'inter-
valle /:

b.

=
-

e ¥ _ 52 4
y-s=x".1 [0, 400].

(1+ex)y'+exy:1+ex, I=R.
y’+2xy=xe"’2 =R,
y'+2y=x2,1=R.

(1= x)y+y=x,I=]i+o0].
x(1+x2)y'+2x2y:1, I=]0,+00].

(1+x2)y‘— Xy = 1+x?,I=R.

3. Résoudre les problemes de Cauchy suivants :

y'+y=0
y(0)=—1

"y"+6yt+9y:(x+-l)e'-3x
1y(0)=0
y'(0)=1
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———————
________

y'—5y'=e>*
y(0)=0
y'(0)=1

(1—x)y'+y=1
y(2)=0

~
.

£

(ex— 1)y'—|—exy:1
(y(1)=0

i ] x[l+(ln(x))2

y(e)=1

On accélere

4, Déterminer les solutions dans K des équations différentielles suivantes :
a. 5y"—4y'—y=xch(x), K=R.

y'+2In(x)y =1

b. y"+2y+2y=sin(x), K=R.

¢ y'+y=xsin(x), K=R.

d. y"+iy=sin(x), K=C.

e. y'+y'+(—1+3i)y=e"sin(x), K=C.

5. Déterminer les solutions des équations différentielles suivantes, sur l'inter-
valle /:

a. (x=1)y+xy=sin(x), I=1,4o00].

b. (1+c052 (x))y'— sin(2x)y =cos(x), I=R.

¢ cos®(x)y+y=tan(x), = [

I

N A
N A

d. (1+x2)y'+2xy= 14+x2, I=R.

e. tan(x)y'—y=cos(x), I= 0,% :
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S X
6. Résoudre le systeme différentiel suivant: n=h-2yptae 3

Yo =—YytX
c'est-a-dire déterminer les fonctions y; et y, définies et dérivables sur R,

vérifiant les deux égalités.
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On notera (L) I'équation différentielle, (H) I'équation différentielle homogéne
associée, S, I'ensemble des solutions de (H), et 5, 'ensemble des solutions de (L).

a. L‘équation caractéristique est (EC ): r? —2r+1=0, dont I'unique solution

est 1.0Onadonc:
Sy = {Lp:R—> R, x> (Ax+B)e*,(A,B)e Rz} .

On cherche une solution particuliére sous laforme y,, : x = (ox +ﬁ)x2e".

(yp € SL) & (Vx eR,(6ax+23)e” :xe")ﬁ [Vxe R,yp(X) :%x?’ex

Finalement, S; :‘tp:]R—r R,x— %x3+Ax+B

e*,(AB)e Rzl.
L'équation caractéristique est (EC): r* — 3r+2 =0, dont les solutions sont
1et2.Onadonc: Sy = {Lp:lR—> R, x> Ae* +Be”™,(A,B)e ]Rz} ,

On cherche une solution particuliére sous la forme y, : x > axeX.

(ype SL)«:::» (Vxe R,— e =e")¢> (a=—1)¢ (VXE R,yp(x)=—xe").
Finalement, S; :{&p :R— R,x+>(—x+A)e* +Be?*,(AB)e RZ} ;

L'équation caractéristique est (EC ):r2 —5r+6=0, dont les solutions sont
2et3.0nadonc: Sy = {Lp:R—» R, x - Ae?X +Be3x,(A,B)6 Rz} .

On cherche une solution particuliére sous laforme y,, : x ax? +Bx+ N -
(yp ESL)<:>(VxeR,Z(x—S(Z(xx+ﬁ)+6((xx2 +Bx +'~{):1+x2)

& (60 =1)A(=10a+6B=0)A(20.— 53+ 6~ =1))

1 5. 8 37
S| VxeR, X)==X"4+—x+——|.
Yp(X) 6 18" 108
Finalement,
S ={p:R— IR,)(l—)lxz+ix+i+Ae2"+a‘.&’e3",(.4ll,a':3')e]I%.2 :
6 18 108

L'équation caractéristique est (EC):r2 +4r+13=0, dont les solutions
sont —243iet —2—3i.0Onadonc:

Sy= {kp :R— R,x>e **(Acos(3x)+Bsin(3x)),(A.B)e Rz} :
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2x

On cherche une solution particuliére sous la forme y, : xi—> ae”

A 2 n'est pas solution de (EC)...

(vp€S) & (VxER (4a—Ba+130)e > =e72¥)

1
=la=—|<=
-3

Vx€eR,yp(x)= %e"zx ]

Finalement,

§)i== lap:[&—» R,x—>e % [—;~+Acos(3x)+ Bsin(3x)

(A.B)e R2].

L'équation caractéristique est (EC) :r? — 4r+3=0, dont les solutions sont
Tet3.0Onadonc:

Sy = {&,p :R— R, x> Ae* +Be* (AB)e RZ} ;
On cherche une solution particuliére sous la forme Yp X ((1x+6 )xe’lr .

Yp €5, )< [VxeR,(—4ox 420 —28)e* = xe*
( p L) ( ( ) )

<~

.

VxeR,y,(x)= —%(Jr2 +x)ex

Finalement,
S = ‘tp:]R—? R,XI—-)[—%XZ - %x-i-A]ex +Be?,(AB)e Rzl.

L'équation caractéristique est (EC): 2r? +r =0, dont les solutions sont 0
X

et —%.Onadonc: SH=1{¢p:R— IR,xn—>A+Be_5,(A,B)e R2}.

On cherche une solution particuliére sous la forme :
Yp: X o +ﬁx2 + .

(vp ESL)@(VXER,BMZ +(120+28)x +4B+=x7 +1)

>

VxeR,yp(x):%x?’ —2x% 49x

Finalement,
X

SL= tP:R—>R,x'—>%X3 _2X2+9X+A+Be_5-(A-3)ER2 :
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g. Léquation caractéristique est (EC): r? —2J2r+4 =0, dont les solutions

sont \5—!—\5:' et ﬁ—ﬁi.Onadonc:

Sy = {Lp :R— R, x> e‘E"(Acos(x/fx)+Bsin(\/5x)),(A,B)e Rz} ;

Remarque : Le « second membre » est une somme de fonctions. On va appli-
quer le principe de superposition des solutions.

* On cherche une solution particuliere de l'équation différentielle
(L4):y"— 2J2y'+4y = x sous laforme YpiX> ax+0.
(ym €5, ) & (Vx €R,40x +43—212a = x)

@[VXER'-\% (x):&x—i-g

.

* On cherche une solution particuliere de l'équation différentielle

(Ly):y"— Zﬁy'+4y:e‘5x sous la forme y,, x> aeV2X,

(‘VPZ GSLz ) & (Vx ER,(lu— 4o+ 4(&)6‘5’( o= eﬁx)

Finalement,

S, = |tp ‘R—R,x I—);‘-X +~J8—5+eﬁ" [;— +Acos(ﬁx)+85in(ﬁx)

.(A,B)eRz}.

2. a. Résolvons I'équation homogeéne (H): y’—£=0.
X
1
0 —dx =1 K.KeR,
na fx X nﬂx|)+ €

donc Sy = {Lp:]o,-i-oo[—» R, x—HCx,Ce R} ]

In(x) =2

Remarque: |Vx € |0,+00[,e
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On cherche une solution de (L) sous la forme y,=zh avec, pour tout
x€0,400[, h(x)=x.

(-Vp ESL)‘I"[Z'h+zl’l'—£)‘—T = xZ]@ z'h +z[h’—ﬁ] =x2
X : X
car heSy )

¢$(z'=x)@[z:%x2+(_',C€C].
Finalement, S; = {up:]o,+oo[—» R, x H%X3+CX,CE R].

b. Résolvons I'équation homogene (H): (1 +e¥ ) y'+e*y=o0.

Ona: _f1f_:x dx=—|n(1+e")+K,KeR,

1+e”'CER}.

donc 5H=[‘P:R—’ R,x+—

In(x) _ 1

Remarque: |Vx € |0,+00[,e" =

On cherche une solution de (L) sous la forme y, = zh avec, pour tout x € R,

1
h(x)= .
() eX +1

(yp Esi)ﬁ ((H—ex)(z'h +zh')+e*zh =1 +e")

( 3

& (1+e")z'h+z((1+e")h'+e"h]:(1+e")

\ J
~

0
car heSy

@(z'=l+e")ﬁ(z=x+e"‘+C,Ce€).

Finalement, 5; ={¢:R— R,x—

X
C_i_x—_i_e'CeR :
1+e*
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¢. Résolvons I'équation homogeéne (H): y'+2xy =0.
Ona: —fodx=—x2+K,Ke R,

2
donc Sﬁz{gp:]R—» Rx>Ce X ,Ce R].

On cherche une solution de (L) sous la forme yp:zh avec, pour tout
2
xeR, h(x):e_" .
Il ' X2 ] ¥ Xz
(ypesi)@ z'h+zh'+2xzh = xe™ |« |z'h+z(h'+2xh)= xe
0
car heSy

2 2
4:#[2'=xe2" ]@b[z =%e2" +C,CGR].

2 2
Finalement, S; :‘ap:R—r R,x+>Ce * +%ex Ce€ R}.

d. Résolvons I'équation homogene (H): y'+2y =0.
Ona: —fzdx=—2x+K,KeE£§,
donc SH:{@:R—> R,x>Ce~ 2 Ce R}.

Les coefficients nous incitent a chercher une solution de (L) sous la forme
Yp L X > o’ +Bx+~.

(Yp ESL)‘::} (VXE R,20X + B+ 20x2 +2Bx 42y = XZ)

& ((2a=1)A(2a+28=0)A(3+2v=0))

VxeR,yp(x)=%x2—%x+%].

~

Finalement, S; =<l{p:]R—> R,XHCe_2”+%x2—%x+%,Ce Rl.

Remarque : Si on ne sait pas prévoir la forme d'une solution particuliére, on
peut toujours recourir a la méthode de variation de la constante :

On cherche une solution de (L) sous la forme Yp= zh avec, pourtout x € R,
h(x)=e 2*.
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(yp65,_)#(2'h+zh'+22h=x2)ﬁ z'h+z(h'+2h)= X @(z'zxzez").
0

car heSy

Une double intégration par parties (en dérivant a chaque fois la fonction poly-
nomiale et primitivant I'exponentielle, toutes deux de classe C " sur R ) donne:

e —fxez"dx;lxzez"—lxe2x+lfe2”dx
2 P 2 2

1 1 1
= 2etX_ yetX X C CeR,
2 2 4

En multipliant par h, on retrouve la solution déterminée précédemment.
e. Résolvons I'équation homogene (H): (1— x)y'+y =0.
1
Ona: — | —dx=In([1-x|)]+K,KER,

donc Sy ={p:Jl+oo[— Rx>C(x—1),CeR}.
A || ne faut pas oublier les valeurs absolues car sur ]1,+o-o [,1— x < 0.

On cherche une solution de (L) sous la forme y,=zh avec, pour tout
x €[l +oo[, h(x)=x—1.

(}’pESL)@((T—X)(z'h+zh')+zh:x)@ (1—x)z'h+z((1—x)h’+h):x

0
car heSy
oz =—%
(1-x)?
Ona:
—X 1—x 1 1
Z= dx = - dx=—In{[1—x|)———+C,CeR.
fﬁ—*)z f[(’—*’)z (Hf)z] b= &

Finalement, S; :{L.p Jl+oo[— R,x> (x=1)(C—In(x—1))+1,Ce R}.
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f. Résolvons I'équation homogene (H): x(1+x2)y'+2x2y =0,

2 .
Ona: —fﬁdx:—j%dx:—In(‘l+x2)+K,KER.

donc Sy = { :]0,400[— Rx>—— ¢ _cerl.
14 x°

On cherche une solution de (L) sous la forme y, = zh avec, pour tout x€ R,
h(x)=

1+x2
(.Vp ESL)ﬁ (x(1+x2)(z'h+zh')+2xzzh :1)

&> x(1+x2)z'h+z(x(1+xz)h'+2x2h)=1

0
car heSH

&|2'=— {:»(z =In(|x|)+C,CeR).

Finalement, S, = |\p :]0,+oo[—> R,Xi—}iLn() Ce IR]
45

g. Résolvons I'équation homogeéne (H): (1+x2) y'—xy=0.

Ona: f

donc SH:{LP:R—) R,x—>C 1+x2,CeR}.

:—ln(1+x )+K,KER,
14 x2

1
—In(x
Remarque: Vx € [0,4+0c[,e2 = Jx.

On cherche une solution de (L) sous la forme y, = zh avec, pour tout x € R,

h(x)=v1+x2.

(1+x2)(z'h +zh')—xzh =1+ xz]

(yp GSL)@
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& (1+x2)z‘h+z((1+xz)h'—xh)= 1+x?

4

L

0
car heSy

(

r

&l 2i=
1+ x

2 @(z =Arctan(x)+C,C ER).

Finalement, S, = {Lp :R— R, x> y1+x? (C+Arctan(x)).C € R}.

3. Remarque : Dans cet exercice, je ne détaillerai pas la recherche des solutions
des équations différentielles. Les méthodes ont été largement explicitées
dans les exercices précédents.

On notera S; I'ensemble des solutions de I'€quation différentielle, et S la solu-
tion du probleme de Cauchy.

o G= {@ :R— R, x> Acos(x)+Bsin(x),(A,B)e ]Rz}.

l&p(OJ=1@ 'A=1

e'(0)=1 [B=1
Ainsi, S:{ap:]R—> R,xr—>cos(x)+sin(x)}.
b. 5 = lup:]R—» R,X}——)[%X3+%X2+AX+B

lﬂo):o@[B:o

p'(0)=1 |A=3B=1

e %, (AB)e ]Rz}.

Ainsi, S=[Lp ‘R— R, x> %x3+%x2+x]e'3"l.

¢« 5 :‘@:R—» R,x—> A+

1
=%+ B
5

e>*,(A,B)e Rz}.

1

 [A+B=0
4 :
@(0)=1" |sB+2=0

Ainsi, S = @:qu,xa—)i+[1x—i el 3
25 (57 25
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d. Léquation différentielle se résout sur I'un des intervalles: ]—00,1[ ou
]T,+oo[.

Compte tenu de la condition initiale, on doit se placer sur ]‘l,+oo [ '
51 = {Lp:]1,—|—oo[—+ R,x>1+C(x—1),Ce R} :

(¢(2)=0)& (C=-1).

Ainsi, S = {L.p:]'|,+00[~> R,x—2— x} .

e. L‘équation différentielle se résout sur I'un des intervalles: ]—00,0[ ou
]0,+oo[.
Compte tenu de la condition initiale, on doit se placer sur ]0,+oo [

C+x

eX¥ —1

$L=l¢:]0.+00[~+ Rx— ,CER}.
(¢(1)=0)« (C=-1).

Ainsi, S:[Lp:]o,+00[—> R, x> 2] ]
e =l

C+In(x)
H—(In(x))2

Remarque : Pour déterminer les solutions de I'équation homogéne, on effec-
tue un changement de variable, en posant t =In(x).

f. S ={¢:]0,+00[— R,x> ,CeR}.

1+In(x) .

1+(In(x))2

Ainsi, S =19 :]0,400[— R, x>

Remarque : Dans cet exercice, je ne détaillerai pas la recherche des solutions de
I'équation homogene, dont I'ensemble des solutions sera noté S,..

1
—=X
a. Sy={9:R—R,x>Ae*+Be 5 (AB)cR?|.
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X, —X
Pourtout xe R, ch(x) - e ,doncpourdéterminerunesolutionpar-

ticuliére, on résout les équations différentielles (L;):5y"— 4y'— y = %xex

et (Lz):Sy”— 4y'—y :%xe"x, puis on somme les solutions pour avoir
une solution particuliere de (L).

* Pour (L) on cherche une solution particuliere sous la forme
X (uxz +Bx)e" (car 1 est une solution simple de |'équation ca-

Yy
ractéristique).

1
L iM]e".
24 72

* Pour (L) on cherche une solution particuliere sous la forme

On trouve Yp, i X

Ypy 1 X (ax+B)e”* (car —1 n'est pas solution de I'équation carac-
téristique).
On trouve yp, :Xi—)[—T'X-i-l‘]E_x.
16 64
Finalement,
Si=1¢:R—R, x> %x +é]e_x 4 2—Lx2—%x+A]ex

+Be 5 (AB)eR2).

Sy ={@:R— R,x+>e *(Acos(x)+Bsin(x)),(4,8) R?}.
Pour déterminer une solution particuliére, on va se placer dans C en re-

marquant que sinx =Im(e”‘).

Soit (Lc):y"+2y'+2y = e . On va chercher une solution particuliére de
(L) sous la forme y,, :x+> ae™ (car i n‘est pas solution de I'équation ca-
ractéristique), puis on prendra sa partie imaginaire.
1—2i ]ef,]_
5

cos(x)-l-[Be_x -f-%]sin(x),(A,B)e Rz} ;

VXER,yp, (%)=

(}’pc €5y, )ﬁ (Vxe R,a(I-z-zi)e"" =e'*)<¢

Finalement,

S;_:‘tp:]R—»R,Xl—-)[Ae—X—é
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¢ Sy= {Lp :R— R, x> Acos(x)+Bsin(x),(AB)e Rz} b

Pour déterminer une solution particuliére, on va comme précédemment
se placer dans C.

Soit (Lc ): y'+4= xe™ . On cherche une solution particuliere sous la forme
Ype i X (mxz +Bx)e"" (car i est une solution simple de I'équation carac-

téristique).

(ypc €5y, ) RN (Vx €R,(4aix +28i +2(1)efx = xefx)
ef”].

sin(x),(A,B)e Rzl.

LI SIS
4 4

& VxeR,ypc(x):

Finalement,

i = ltp:R—> R.XI—)[A—%Xz cos(x)+

B+lx
4
d.

Remarque : Pour résoudre I'équation caractéristique, on doit déterminer les
racines carréesde —i.Ona:

13
s 53_"‘ l[—“+-n]

2 4

r‘'=e 2 |&|lr=e 4 |V|r=e

X(~2+2i X(V2—+2i
Sy=19p:R— R,XHAez( = 2f)+392( . 21],(A,3)€R2 .

Remarque : Comme ici les coefficients sont complexes, on ne peut pas utili-
ser la partie imaginaire de e pour le sinus. On utilise la formule d’Euler:

sin(x) :%(efx — e‘”‘) .

- x g E _-1_ fx_ —ix
Onadonc(L).erfy—zf(e e )

On résout séparément les équations différentielles (LT):y”+fy:%eix et

"oy _1 —ix !
L):y"+iy=—e .
( 2) ¥y iy 5
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* On cherche une solution particuliére de (L;) sous la forme Ypy 1 X ae
(car I nest pas solution de I'équation caractéristique).

On trouve Ypy X e

* On cherche une solution particuliére de (L, ) sous laforme y,, : x> (3e™ ™
(car —i n'est pas solution de I'équation caractéristique).

. T—d i
On trouve Yp, .XF—-)TE
Finalement,
X X

SOV R T T AN S 1) B N - SN -7

S ={p:R=>R, x> 1] iy 11 i e2( ]+Bez( ]
4 4
(AB)eR?}.

e.

Remarque : Pour résoudre I'équation caractéristique, on doit déterminer les
racines carréesde 5—12/.0na:

a’—b*=5
((a+fb)2 =5—12i)¢:> 2ab=—12 <« (a+ibe{3—2i,—3+2i}).
a®+b%=13

= {Lp ‘R— R, x> A 4 gel=2+)X (4 )e Rz} :

Comme dans l'exercice précédent, on écrit

(L):y"+y'+(—1+3i)y=e* %(e"Jr - e“f").
On résout séparément les équations différentielles

(L'I):y""l" y'+(‘—'1+31)y :%e(1+f]x et (f_z)yr:+y:+(_' ]+3f)y = ;_j]e(“—‘l.)x.

* Oncherche une solution particuliére de (L) sous laforme Yp i X el
(car 14 n'est pas solution de I'équation caractéristique).
=1 (i)
On trouve X —e .
da 12
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* Onchercheunesolutionparticulierede (Lz ) souslaforme Yp, X Bxe(H Jx
(car 1—i est solution simple de I'équation caractenstique)

—243i ]xegw)x _

On trouve Ypy X

Finalement,
8= @ R—R, x> —elHix | A+[—2+3:]X (i) ga(-2+i)x
12 26
(AB)eR?!.
X
5. a. Ona: —fx f[1+—] ——x—ln(|x—1|)+K,Ke R, donc

SH —[xp [l +00[— R,x

On cherche une solution de (L) sous la forme y,=zh avec, pour tout
—X

x € [l +00], h(x)= e
(Yp €sy)« (z': sin(x)e")@[z' :lm(e(1+i)x)]

& [z = %ex (sin(x)—cos(x))+C,C ER]

==, i e
Finalement, S; —‘up:]1,+oo[—> R, x> Ce” " +sin(x) cos(x)'Ce 18
2(x—1)
b. Ona:
~po—sin(2x) fZSin(x)cos(x)dx
14 cos?( 14cos?(x)
= - 2r2dt:—ln(1+t2)+K,K€R,
t=cos(x) 1+t
dt=—sin(x)dx
&
donc SH =19 R— R, x l—)—Z,CE Rt.
1+cos”(x)
On cherche une solution de (L) sous la forme y,=zh avec, pour tout
1
xeR, h(x)=

1+cosz(x) 3
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(yp = SL)@ (z'=cos(x))«> (z=sin(x)+C,CeR).

Finalement, §; ={p:R— R,x I—-)CL"]Z(X)—,CER ;
1+ cos”(x)

dx
Ona:— ——tan(x)+K,K€ R, donc
fcosz(x) ()

Sy = [@ : ‘— %%I-» R,x1>Ce 2" ce R] .

On cherche une solution de (L) sous la forme y,=zh avec, pour tout

pel® _[ :e—tan(x).
,  ftan(x etan(x)
(,,pest)@[z L{)]
tan(x)
fﬂile—dx = [te'dr = [te] [eldt=te’ -
€03 (x) t=tan(x) KPR
P u—rr
coszfx) y=e

=tan(x)eta"(x)— tan(x ]+C CeR.

LI B ce—tan(x) +tan(x)—1Ce ]Rl.

Finalement, S; = {Lp :

Ona:—f £ dx:—In(1+x2)+K,KeR,

LZ,C o R} :
1+ x
On cherche une solution de (L) sous la forme y,=2zh avec, pour tout

XeR, h(x):1 ]
+x

(ypESL)'::} [z’:m ;

donc Sy = [Lp:]l{—» R,x—

3
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BBy 1oy dinar)rc.cer
2 2 '3

|| faut maintenant revenir a la variable x:

La fonction sh est bijective de R dans R, on peut expliciter sa bijection
réciproque (Argsh) a l'aide des fonctions usuelles :

el—e! t —t 2t t
T:x @(e —2x—e :0)4:)(19 — 2xe —1:0).

e! est donc la solution positive de X% —2xX—1=0, cest-a-dire

el =x+ 14 x2 ,dou: t=In|x+ 1+x2].
De plus, sh(2t)=2sh(t)ch(i‘)=2x~\/1+x2 i
Finalement,
In|{x + 1+x2] .
S5i=1¢:R—= R, x> + + L eRE.

2\)1+x2

14 x2 z(1+x2)

Ona:—f i, dx:ln(|sin(x)|)+K,KeiR,

tan(x)
donc Sy = [&p: 0,% — R, x> Csin(x),Ce R].
On cherche une solution de (L) sous la forme y,=zh avec, pour tout
Xe 0,% , h(x)=sin(x).
( 2
cos”(x) 1
€S |&|Z2'= o A -1
(y’o L) sin? (x) sin’(x) ]
& z=—c?s(x)—x+C,Ce]R
L sin(x)
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on effec-

Remarque : Si on ne connait pas de primitive de

sin® x
tue un changement de variable pour se ramener a 5—- On a:
cos” x
©dx dt — COS X
‘I dz = —f —=—tan(t)+C= COSX 1 C,avec CeR.
sin“x ¢ cos“t sinx
=
dx=—dt

Finalement, S, = ln,o : IO,% — R, x> sin(x)(C— x)— cos(x),C e R}.

Nous allons raisonner par analyse-synthése.

ANALYSE : Si le systéme admet des solutions y; et y, dérivables sur R alors,

puisque y;'=y,— 2y, +xe* et y,'=—y,;+x, on en déduit que y,’ et y,'’

sont également dérivables sur R .

On dérive les deux membres de la deuxiéme égalité, on obtient : y," = —y;"+1

d'ol y,"=1—y,".

Dans la premiére égalité, cela donne: 1— y," = x— y,'— 2y, + xe*.

On en déduit que y, est solution de [|équation différentielle:

y'—y'—2y=1—x— xe*,

Les solutions de cette équation sont :

Yy : x> Ae ¥ 4 Be? PRI, lx+l]e"’, avec (A,B)e R?,
2 4 |2 4

En utilisant la deuxiéme égalité, on a :

= 1 1 3
=x—y,'=Ae" ¥ —2Be?*  x— ——[—x—i—-]e".
N Y2 > 127 %
SYNTHESE : les applications y: x> Ae ¥ — 2Be?* 4 x— %— [%x+%]ex et
1

Ex+%]e" avec (A,B)e R2, vérifient bien

Yo iXE> Ae_x+8e2"+%x—%+

les deux égalités du systéme.
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Développements limités

Lorsque I'on commence a faire des développements limités, on commet de nombreuses
erreurs de calculs, soit parce que I'on ne maitrise pas bien le calcul mental, soit parce
que l'on n'est pas suffisamment rigoureux.

Pour progresser, il faut faire une grande quantité d'exercices.

fet g désignent des fonctions définies sur un intervalle /de R non réduit a un point.

ac R désigne un élément ou une extrémité de J, finie ou infinie.

o ccunoe ot

H Trouver un équivalent simple d’une fonction au voisinage de a

Equivalents usuels :
Si P=a,X"+.. +anX™ avec n>m, a,=0,a,,=0,alors:

P(x) ~ apx" et P(x) ~ amx™.
X— 00 x—0 2
. X
e¥—1 ~ x; In(1+x) ~ x; sinx ~ x; 1-cosx ~ —
Xx—0 X—0 X—0 x—0 2

tanx ~ x; (1+x)" =1 ~ ax, acR .
X—0 x—0

» Silafonction admet un DL (a):
On utilise le premier terme non nul de la partie réguliére.
» Silafonction est le produit ou le quotient de fonctions dont on connait des
équivalents simples :

On utilise le résultat suivant :

(%) ~ m(x)ett(x) ~ ga(x)alosh{x)f(x) ~ gi(x)ga(x] etlorsque

e i 1
fig, ne s'annule pas au voisinage de a (sauf éventuellementena) : ~ .
fi(x) x—agy(x)
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» Sila fonction est composée :

On utilise le résultat suivant :

Soient h une fonction réelle définie sur un intervalle J tel que h(J)Cf,
et b un élément ou une extrémité de J tel que lim h(x)=a. Alors:

f(x) - a(x)=> F(h(x)) ~ g(h(x)) i

A On ne peut pas composer a gauche simplement.

On peut parexempleavoirauvoisinagedea: f(x) ~ g(x) et ¥ . eg(x),

X—a x—a
ou encore In(f(x)) ~ In(g(x)).
X—a
Par exemple :
X+1
Auvoisinagede +~: x+1 ~ x mais el . o (car lim = =e).
X—00 X¥—+400 X—+o00 e

Au voisinage de 0: 1+x -~ 1+x2 mais In(1+x) ~ ln(1+x2) (car

x—0 x—0
In(1+ x2)

im ——£=0),
xl_rpo In(1+x) )

Exemple 1
\/1 +2x2

Donner un équivalent simple au voisinage de 0 de : x> v
In(l- X )

Réponse

lim \}1+2x2 =1, donc \J1+2x2 ~

1;
x—0 x—0

In(14+x) ~ x,donc en composant & droite par x> —x2 (qui s'annule en 0)
X—0

In(l— xz) ~ —x2
x—0
\1+2x2 1

ln(l— xz)x—*ﬂ -

A |a relation ‘' n'est pas compatible avec l'addition, en particulier si on a
a
f(x) ~ u(x)et g(x) ~ —u(x) onnapas f(x)+g(x) ~ O (saufsi f+g
X—a X—a X—a

Enfin, par quotient :

est nulle au voisinage de a, mais il y a peu de chances !).

Pour trouver un équivalent simple de f + g, on pourra étre amené a « pousser »
l'ordre des développements limités de f et g, jusqu’a obtenir un terme non nul
dans la somme de leurs parties réguliéres.
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Exemple 2
Donner un équivalent simple au voisinage de 0 de : x> e* — (cosx +sinx).

Réponse
Ona:

x 2 2 ¥ 2
ex:1+x+7+ox_,0(x ); sinx:x+ox_;0(x )etcosx:i—?wtox_*o(x )

Donc e* — (cos x +sinx ) = x* +ox_,0(x2) d'ou:
eX —(cosx+sinx) ~ x?,
x—0
A Quand on effectue plusieurs développements limités dans une somme, il faut
avoir le méme ordre pour chacune des fonctions sommées, sous peine de
grossiéres erreurs.

B Obtenirle DL (0) d’un produit

On écritles DL (0) des deux fonctions. On fait le produit de leurs parties réguliéres,
que l'on tronque au degré n.

Exemple 3
cos X

Donner le DLS(O) de: x> 1— :
- X

Remarque: || faut bien voir cette fonction comme un produit (celui de x > cos x

1
avec X+ ——).
1— x

Réponse
2 a4

x= X
Ona: cosx:1——+—+ox_,0(x5)
21 4l

1

et1—:1+x+x2+x3+x4+x5+ox,__,0(x5).
= X

. SO A (x*)
T

, . €COSX
D'ou:

: (1+x+x2+x3+x4+x5+ox_,0(x5))
— X

1 2 1.3 13 4 13 5 ( 5)
=14+ X4+—X"4+=—X"4+—X" +—X" +0 xR
+ +2 +2 +24 +24 +0x_.0
Remarque : Lorsque la partie réguliere de I'un des développements limités a
pour valuation k > 0 (c'est-a-dire que le monéme de plus bas degré a pour
degré k), il suffit d'écrire le développement limité de I'autre fonction a l'ordre

i
n — k (car, | x¥ x ox_,o(x"‘k]zox_,o(x")p.
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Exemple 4 )

sinx
Donner le DL,(0) de x T

— X
Réponse
3 5
Ona:sinx:x—x—+x—+o (xs)
3§l

et %:1+x+x2+x3+x4+oxﬁ0(x4) 3
=X

Dioti: — = x—x—+x—+o,,_$0(x5) (1+x+x2+x3+x4+ox_,0(x4))
—X 6 120
2.% 3 5 3 101 5 (s)
=X+X"+—X"4+—X"+—X"F+0,;_nlX" )
6 6 120 X0

B Obtenirun DL (0), en primitivant

Soient fadmettantun DL (0) de partie réguliére P, F une primitive de f et Q la primi-
tive de P telle que Q(0) = F(0). Alors Fadmet un DL, , 1(0) de partie réguliére Q.

Exemple 5

Donner le DL,,,,1(0) de la fonction Arctan, ne N.

Réponse
Pour tout x€ R,ona: Arctan’(x)=

5 ;on sait que:
1+ x

.
1—:1+x+...+x” +oxﬁ,o(x”) )
— X

En remplacant x par — x? (avec x> —x? qui sannule en 0), on obtient :

1 by n _2n 2n

1 5=1—Xx"+..+(=1) x +ox_,0(x )
+Xx
En primitivant on obtient :

3 2N+

X n 2n+1
Arctan(x )= Arctan(0)4+ x ——+...4+(—1 +o0,._, (x )
(x) (0) 5 (=1) oo Fox—0
3 2n+1
X nX 2n+1
=X——t.+(—1 +o0,_, (x )
3 (=) el

W Obtenirle DL (0) d’'une fonction composée hof

Soient /et Jdes intervalles de R contenant 0, fdéfinie sur /admettant un DL (0)
de partie réguliére P, et h définie sur Jadmettant un DL (0) de partie réguliére Q.

Si f(I)c J et f(0) = 0, alors hof admet un DL (0) dont la partie réguliére est
obtenue en « tronquant » Q¢ P au degré n.
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P Sil'on peut utiliser les DL (0) des fonctions usuelles :
1. On s'assure que la partie réguliére P du DL (0) de fs'annule en 0.
2. Onremplace x par P(x) dans la partie réguliére Q du DL (0) de g.

3. On développe, puis on tronque au degré n.

Exemple 6
Donner le DL,(0) de x > 1+ sinx .
Réponse
x3 i
. 3 : 3
On a: 5|nx:x——+ox_,0(x ) avec lim x——+ox_,0(x ) =0, et
6 x—0 6
x x2 X
\fl+x:1+—-—+—+ox__.0(x3);onendéduitdonc:
2 8 16
2 3
- 1 x> 1 x> 1 3 3
JI+sinxy =14+—|x ——|—=|x——| +—|x—— —i—oxﬁ_g(x)
2 6| 8 6 16 6
X X2 X3 3
:1+_____+Ox_40(x ).
2 8 48

3
, : X A :
Remarque : On constate que l'on aurait pu tronquer x — = dés le carré de la par-

tie réguliere du développement de x — +/1+ x , le monéme de degré 3 géné-
rant au minimum du degré 4 en développant le carré (dans le double produit),
et du degré 5 en développant le cube (avec la formule du binbme de Newton).
Il vaut toutefois mieux tout écrire tant que I'on ne maitrise pas bien la tech-
nique, pour ne pas prendre le risque d’oublier des termes.

Il faut garder en téte qu'écrire trop de termes n'est pas une erreur (ils finissent
dans le petit 0), mais en oublier conduit systématiquement a un résultat faux.

A || faut bien s'assurer que la partie réguliére du DL (0) de f s'annule en 0. Si ce
n'est pas le cas, il faut s’y ramener.

Exemple7
Donner le DL,(0) de x> +J14+cCosx.

Réponse
2 4
Ona: cosx:1—x—+x—+ox_,g(x4)
24
Xz X4 4
donc /1+cosx = 1+1—7+§+ox__,0(x )
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2 4
R ;
A |l ne faut surtout pas remplacer x par 1— 7—&-? +0y_,0 (x“) dans la partie

2 .4
réguliere du DL (0)de x> +/1+x car lim 1‘%"‘5‘*‘%—»0( 4) =120,
x—0
On factorise :
2 2z 4
X X 4 X X 4
Jihcosx =i [2— =440y, ( ):ﬁJl——+—+o_, (x )
‘j A T R 4 4 70
2 .4
Avec cette fois : lim |—2—+2—+ x—-o( 4) =0.
x—0| 4 48

2
De plus, 414 x :l-i-%—%-i-ox_,o(xz).

Remarque : On voit qu'il est inutile d'écrire le développement limité de

X 14+ x jusqu'a l'ordre 4, car en composant les deux parties réguliéres, le

mondme de plus bas degré issu du degré 3 du développement de x — 1+ x
sera au minimum de degré 6 (et celui issu du degré 4 sera au minimum de
degré 8) !

On a dong, en tenant compte de cette remarque et de celle de 'exemple précédent :

2
Jfcosx =2 1+—

3 4
ool

X

4

&
8

——+
4 48

_(_£X2+ﬁx4+ox—»0( 4)_

» Dans le cas d’une fonction de la forme e

Si u(0) = o, on note e =e"e" avec f(0) = 0, puis on effectue le DL, (0) de f,
que l'on compose avec la partie réguliére de la fonction exponentielle qui est:

1+ X+ X2 X
2 n!
Exemple 8
Donner le DL,(0) de x > e“%*X.
Réponse 2 4
3 A PN N 4
—0[X
On a: cosx = 1—%4-;4_{_0)(_40( 4) donc eS%X _aye 2 24 X ( )

=0.

X2 X4 a4
avec lim ——-+—+ox_,0( )
x—0| 2 24
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Onadonc:
Xz X4

4
——+——+ox..40[x )
eOX _axe 2 24 —e|1+

x , x*

__+__
2 24

COSX

. e e
Finalement, e e—5x2+gx4+ox_,0(x4).

P Dans le cas d'une fonction de la forme Inu :

A |l faut u(0)=« > 0 (sinon la fonction n'admet pas de DL (0) ).

En factorisant,on seraméne a Inu = In(a ) +In(1+f) avec f(0) = 0, puis on effectue
le DL, (0) de f, que I'on compose avec la partie réguliére de x — In(1+x) qui est:

n—1
x--‘-x2+...+£"—1)—
2 n

X",

Exemple 9
Donner le DL,(0) de x > In(1+e").
Réponse
X2 X3
Ona:e* :1+x+7+?+ox_,0(x3) donc
2 3
In(1+e"):ln 2+x+%+%+ox__0(x3)]

2 3
—In|2 1+5+x—+x—+oho(x3)
2 4 12
2 3
X X . K
=In2+In 1+—+—+—»+ox_,0(x3) ;
2 4 12
2 3
avec lim i+x—-{-x—+0x_,0(x3) =0 ;onadonc:
X—0 4 12
2 .3 ' 2\ 3
¥ X . % X % .. X 1 % 3
In(1+e ):ln2+ =i s e | e = +ox_,0(x ]
2 4 12) 2|12 4 312

Remarque : On a tronqué les polynédmes au fur et a mesure du calcul, suppri-
mant les mondmes qui générent des degrés supérieurs a 3 dans le développe-
ment... mais attention a ne pas en oublier!
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Apres développement et troncature, on obtient :

1 1
In(1+e"): In2+5x+§x2+ox__o(x3).

Remarque: Le coefficient du monéme de degré 3 de la partie réguliére est nul. Il
ne faut surtout pas baisser pour autant le degré dans le petito!

» Sil'on ne peut pas appliquer les DL (0) usuels :

On dérive, on faitle DL, _, (0) de la fonction dérivée, puis on le primitive.

Exemple 10
Donner le DL4(0) de f:x HArctan(e").

Réponse

Remarque : Le probléme réside ici dans le fait que la fonction Arctan est com-
posée avec une fonction qui ne prend pas la valeur 0 en 0. On ne peut donc
pas appliquer le développement limité de la fonction Arctan en 0. De plus,
son développement limité en 1 n'‘est pas (encore !) connu.

On dérive f(composée de fonctions dérivables sur R, donc dérivable sur R ) :

eX

1+e2X

Pourtout xe R, f'(x)=

Remarque : On veut le DL, (0) de f, on cherche donc le DL ,(0) de f".

2 .3
On sait que : e* :1+x+%+%+ox_+0(x3)

1
ot —=1—= x+x2—x3+ox_,o(x3).
1+ x

En composant on obtient :

1 1 1 1
=

2x 4 2
1+e l+1+2x+2x2+§x3+ox _,0(x3) 2 !+x+x2+§x3+ox_,o(x3)

1 2 2 3 ¥ 1.1
:5[1—[x+x2+§x3]+(x+x2) —(x) +ox__}0(x3)]=5—~2—x+~6—x3+ox__,0(x3).
Par produit, on obtient :

eX

1+e

X

1+x+lx2 +—1-X3+0x—>0(x3)][‘1_‘1x+lx3+0x-—>0(x3)]
2 6 2 2 6
1

1.9 3
S (x )
2 4 x—0
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En primitivant, on obtient :
1

f(x):f(0)+%x—ix3+ox_,o(x4):1+—x—ix3+ox_,o(x4).

12 4 2 12

A || ne faut pas oublier f(0) quand on primitive !

B Obtenir un développement limité en dehors de 0

» En effectuant un changement de variable :

Exemple 11

Donner le DL4[%] de la fonction sinus.

Réponse
T ) . [ 2
Onpose x = - +h ;alors sin(x)=sin 5+h

On revient a la variable x:
2
+

1 __4

24" 2

sin(x)z‘l—-%[x—g

4
T

x-_._.
2]

X——
2

h
=cos(h)=1-—+—+0p_,
cos(h) 55 Oh 0

#}

A 0On ne développe surtout pas les expressions (x-— a)k ; elles doivent figurer

dans la forme définitive du DL (a) !!!

» En appliquant la formule de Taylor Young :

Si fadmet une dérivée n-ieme en q, alors fadmet un DL (a) qui s'écrit:

f(ﬂ)(a)

f(x)=Ffla)+f'(a)x—a)+-+ i

(x—a)" +ox_,a((x— a)”).

Exemple 12

Donner le DL4(1) de la fonction Arctan.
Réponse

La fonction Arctan estde classe C™ sur R.Pourtout xc¢ R,ona:

2
Arctan'(x):;z,Arctan”(x):—_zx > ,Arctan(B)(x): 6x —23'
1+ x (1+X2) (1-|-X2)
3
Arctan(#) (x) = 22X 124X
[1+2)
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On applique la formule de Taylor, et on obtient :
w 1 1 2 1 3 4
Arctan(x)=—4+—(x—1)——(x—1)" +—(x—1) 40, _. (x~1 )
(0)=2 42 (x=1)= 3 (x= P +-2(x =1 +0, ()
A Noubliez pas les factorielles dans la formule de Taylor, c’'est une erreur fré-
quente !

Remarque : Maintenant que nous disposons du DL,(1) de Arctan, revenons a
I'exemple 10.

X2 x> x4 4
Arctan(e"):Arctan 1+x+—+—+—+o,,_,0(x ) ,
2 6 24
. X2 X3 X4 4
avec lim 1+x+—+——+-—+ox_,o(x ) =1
x—0 2 6 24
Onadonc: , ;
Arc'can(e")—3+1 x+ﬁ+£+£ — x+x_2+£ +l +ﬁ
4 2 2 6 24| 4 2 6 12 2

+OX—)0 (X4 ).
Apres développement et troncature, on retrouve :

Arctan(e") sl +ox_,0(x4).
4 2 12
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On s'échauffe

1. Donner un équivalent simple au voisinage de a des fonctions suivantes :

xsinx
a. X —, a=0.
1— cosx
b. XHLS(ZX)' a=0.
x2
sin(\/;)
. X—>—=x, 8=0
In(14 x)
f 2
d. XI—)M, a==0.
In(1+x)
|
o xinlcos(3x)) _—
sin3(x)
| F xn—n/;—dsinx, a=0.
g a T -
xln(x)
cos('nx) 1
ho ] _—.
xn—~>1_ - a >
. %1 =
I Xl—)m, =
1 1 2
b xp——— a=0,puisa=1.

X xy1— x? '

2. Donner les DL, (0) des fonctions suivantes :

a. x—eXsinx, n=4.
1
b. x> ; n—==4
J1—x
C. XHlnH—x, n=24.
1—x
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d xrxet 95K n=4
e. xr>In(cosx), n=6.
f. Xx>+Jcosx, n=4.
g. xn—)e‘h"'_x, n=3.
h. xn—>|n[5i¥], n==4

i. x>In(cos(x)+cos(2x)), n=5.

Arcsinx

i ox—,
V1— x?

3. Calculer les limites suivantes :

(x2 —3x —I-2)sin('rrx)

a. lim
X—1 In(x2 - 2x+2)

b lim YEOsX 1

= 2
=0 x° _4

. e\/1+smx —_e
¢ lim
x—0 tanx

1

1+x)x —e
d. lim&
x—0 X
2 X
: X“+2x—3
e. lim S e
x—+oo| x°—x+41
X
f. lim i

x"'ln(x)ln[1+ x2— 1]
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: 1 1
g. lim —p——
x—0x tan“ x
1 K
h. lim |xsin|—
X——+00 X

lim (In(cosx)+ tan x)

f

-------------------------
--------------
------
--------

4. Donner les DL (a) des fonctions suivantes :

a. x—V1+e*,

b. x—>tanx,

In(1+2x)
¢ x>exp|l———
1+ x
e .. 4
sinx X
eX —cosx— x
e. X
x—In(1+x)

g. Xt> Arctan{#],
1—x

h. x— x%,

i. x> Arctan(2sinx),

5. Donner le DL (0) de x> (shx— :-'.inx)2 (tanx — th x)3.

a=0,n=3.
a=0.n=25.
a=0,n=3
a=0.n=3
a=40n=2
a=1,n=2
a=0,n=4
a=2Z,p=2
T
a:—'n:
6

P "
6. Donner le DLsp(O)de xr—>(sinx—x+x3+x4) ,ou peN .

7. Donner un équivalent simple au voisinage de 0 de

f(x)= (14 sinx)* — (14x)"™* .
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; X .
1. a. On a: xsinx ~ x> et 1—-cosx ~ — ; dongc, par quotient:
x—0 x—0 2
xsinx
—_— ~ 2,
1—cosx x—0
2
X . 3
b. Ona:1-cosx ~ — ;encomposant a droite par x> 2x, on obtient:
x—0
) 1—cos(2x
1—cos(2x) ~ 2x? ; donc, parquotlent:# ~ 2.
x—0 X x—0

¢. On a: sinx ~ x; en composant a droite par Xf—)\/;, on obtient:
x—0

sin(&)xloﬁ.

Deplus, In(1+x) ~ x.
x—0

sin(x/;) 1

Finalement, par quotient :

In(14x) x—0~/x
d Ona:14+x—1 ~ %x : en composant a droite par x > x2, on obtient :
x—0
Vit =] = =
X—0
Deplus, In(1+x) ~ x.
X—0

\/1+x2 -1 X

Finalement, par quotient : ~ -
P In(14x) x—02

e. Ona: cosx=1- %xz +ox_,0(x2) ; en composant a droite par x> 3x,

on obtient : cos(3x)=1— gxz +ox_,0(x2).
Comme In(14x)= x40, _,o(X), en composant les développements limi-
tés, on obtient :

In(cos(3x))=1In :——;x2+ox_,0(x2).

1— gxz +ox_,0(x2)

Remarque : On a recours ici aux développements limités car la composition a

gauche ne conserve pas toujours la relation d'équivalence. Ici par exemple,

cos(3x) ~ 1, mais In(cos(3x)) nest pas nul au voisinage de 0, donc pas
x—0

équivalent a In(1) !!
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De plus : sin’(x) LK
X—¥

I 3
Finalement, par quotient : M ~ —i.
sin (x) x—0 2X

f. Ona:
3

sinx=x—x?+o,,_*o(x3) et J1+x =1+%x+ox_,0(x) ;

en composant, on obtient :

N B |

On en déduit que : Jx —fsinx ~ ixi.

x—01
sin(nx)  sin(w+wh) —sin(h)
. =1 h. — = _
9 OnposeX=T+h Sin(x) (1+h)n(1+h) (1+h)n(1+h)
Ona: —sin(wh) ~ —=h,In(1+h) ~ h et1+h ~ 1.
Par quotient, on a donc: —sin{wh) ~ —7 dou: sinjx ~ — 7.
(1+h)In(14+h)h—o0 xIn(x) x—1
COS[E+‘T\‘h]
1 cos(mx) 2 —sin(wh)
h. O =—4h, e = .
TPOSEE=S 1—=w2x 1=4f1+2h 1=4/1+2h
Ona: —sin(wh) ~ —whet1-y14+2h ~ —h(car1+x—-1 ~ lJI().
h—0 h—0 x—02
Parquotient,onadonc:M ~ 7 d' ,:cos('rrx) ~ m.
1—/14+2h h—0 1-2x , 1
2
x2—1 h? +2h h? +2h

i. Onposex=1+h. = = ;
e2X—1_oX  gh2h _gWh eh(eh . 1)

Ona: h®+2h ~ 2h,e" ~ 1ete—1 ~ h donc, par produit et quo-
h—0 h—o0 h—0
h?+2 2_ -
tient : h+hh ~ z,d'oi!:Z:{T‘lx ~ 2e 1.
exe (e _1)h—poe e2X—1_ Xy
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1 N PRV,

1
] X\/T—Xz - xw/1—x2 -

X % .
Ona y1+x—1 ~ o ; en composant a droite par x> —x
x—0

Pour tout x€ 0,1, on a:

2, on ob-

tient: T—x2—1 ~ —%xz.

Xx—0

D'autre part, x\1— x> ~ x.

x—0

\l1—x2—1 X

Finalement, par quotient: ——— ~ "
3 th__xz Xx—0 2
« Enl:

1 1 1
Pourtout x€ |0,1,ona: —— ———=—
X xJ1—-x% X

On en déduit que 1 ] =

X i 32 x> 12— X |

1

)

2. a. Parproduit:
3

' -
e sinx = 1+2x+2x2+§x3+oxﬁ0(x3) x—%+ox_,0(x4)]

= x+2x° +%x3 +x° +ox_,0(x4).

Remarque: Le DL4(0) du sinus n‘ayant pas de terme constant, on s'est conten-
té d'un DL,(0) pour x > e,
1

b. Pour tout x<1, =(1—x) 2 ; on va appliquer le DL,(0) de

1—x

x> (1+x)™, avec :—%.

Remarque : On pourrait également considérer la fonction comme la compo-

1 - :
séede x> o avec x - +/x mais c'est bien plus long !
— X
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i 35 5 5 385 a g
=T —nd s —n® x40, (x ).
2" '8 16 128 x4

¢. On se place dans un voisinage de O surlequelona:1+x>0et1 —x> 0.
1

]—X =In(1+x)—In(1— x).
—X

Connaissant le DL,(0) de x + In(1+x), on en déduit :

On peut alors écrire : In

1—x 2 3 4
2 3 4
—X —X —X
&) (=x) )+ox_’0(x4)
2 3 B
2
:2x+§x3+ox_,o(x4).
2 4
d. Ona:]—cosx=x7—:—4+ox_,o(x4).
2 4
X X
_ 1T 0y_ 0| X B Xz X4
donc el COSX=e 2 24 g ( )aVEC lim ——_+ox_;0(x4) =0.

Remarque : La valuation de la partie réguliére du DL,(0) de x> 1- cosx est
2. On peut donc se contenter du DL (0) de I'exponentielle pour obtenir un
DL,(0) de la composée.

En composant, on obtient :

2
2 4 2
ehcosx __q |X X +lx_ +°x—>0(x4)
2 24| 2|2
1
:1+5x2+1—x4+0x_,o(x4)
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2 4 6
s A
e. Ona: cosx=1——+———+ox_,0(x6),

2 24 720
2 4 6
donc In(cosx)=In|1- x—-l-x——x—-i-ox_,o(xﬁ)
2 24 720
2 4 6
; - . 6
avec lim|-—+———+o0,_, (x ) =0,
x—o| 2 24 720 *7° ]

En composant, on obtient:

= o Pt A x42 1 x23 6
In(cosx)=|——+————|—=|-——+=—]| +=|-—= +oxﬂo(x)
2 24 720 2 2 24 3 2
Bl ol P
2 12 45 O/
2 4
f. Ona: cosx=1—x—+x—+ox_,0(x4) donc
2 24
2 4
dcosx:\li—x—+x—+ox_,o(x4)
2 24
2 .4
- X X 4
avec lim|—-——+—+o0,_, (x ) =0.
xﬁo{ 3 24 re
De plus, 1+ x :1+%x—%x2+ox_,0(x2).
En composant, on obtient :
2
1} 2 2*] 1] »*
veosx =14 —=——+—|-=|——]| +0 (x4)
2| 2 24| 8| 2 R
1 2 1 4 4
=1—=X"——X 40y, (x )
4" 9 s
x x2 X 3
g. Ona:\/‘l+x:1+-———+—+ox_,0(x ),donc:
2 8 16
3 .3 2 3
X X X 3 LTS 3
VX _ s +16+°""°(x ):exe2 8+16+°"_’°(x ]

avec lim i~x—2~lr£+¢:3 (x3) =0
x—0l2 & 16 X9 '
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En composant, on obtient :

2 3 2 3
Nax X X X 1NX X 1 x
eV —e|14| = ——+—|+=|=——| += —] +oxﬂ0(x3)
2 8 16| 2|2 8 6|2
X X3 3
=e 1+E+— +ox_,0(x )
2 4
sinx X X 4
Ona: —=1—-—4—+0,_, (x )donc:
X 6 1200 * 0
Wi P SR (x4)
X 6 120 <+
2 4
avec lim —X—+X—+o,,_,0(x4) =0,
x—0 6 120
En composant, on obtient :
2
sinx ¥ x* 1 x2 4
M ELEATI E e o8 N <} BN 2}
X 6 120 2 6
__x X L0 (x4)
6 180 U )
x2 x4 - N 5
On a: cos(x)+cos(2x)=|1—"—+"— +[1—2x +=x ]+ox_,0(x )
. 2 24 3

5 5 17 4 5
In(cos(x)+cos(2x))=In[2[1—zx +28 " +ox_,0(x )]]
5 17
=In(2)+ln[‘|~2x2+-4—8~x4+ox_,0(x5)]

: 5 5. IF a 5
avec lim [——x“4+—x"+o0,_, (x ) =0.
zsOl 4 48 = ]

En composant, on obtient:

1

In(cos(x)+ cos(zx)) = In(:£)+[—E x2 417 4 :

4 48

) 2 41 4 5
=In(2)—=x*——x" 40 (x )
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D’autre part, pour tout x e ]- 1,1[, Arcsin’x =;, donc en primiti-
vant, on obtient : T i

N Aot 13,8 .5 5
Arcsm(x)—Arcsm(O)+x+6x ok +oo(x )

13,35 ( 5)
=X+—X"+—x"+o0 Xk
+5 X+ 5% +0x0

Par produit, on obtient :

Arcsinx

1+%x2 41%;(4 404 (x“)

1 3
kb= —x" +o,,_,0(x5)
6 40

l—x2

x4+ 858 +ox_,0(x5).
3 15

3. a. Siellesexistent,ona:
(x2 —3x+ Z)Sin(nx) (hz - h)(~ sin(wh))
lim = |im :

x—1 In(x2—2x+2) x=1+hh—0 In(1+h2)

Ona:h—h® ~ h,sin(xh) ~ whetin(1+h?] - h?,

h—0 h—0 h—0
donc par produit et quotient :
(h—hz)sin(ﬂh) xh? (x2—3x+2)sin('rrx)
> # d'ou: lim 2 =7
In(1+h ) h—0 h x—1 In(x —2x+2)
X?‘ 2 X2 %
b. Ona:+Jcosx —1= 1—?+ox_,0(x )—1=—T+ox_,0(x )
— %
Par quotient, on en déduit que : CO;X_1 ;‘ .

x_.l Xx—0 x

e
puis Iimm— 1
i Y- g
x—0 X 1 4
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¢ Ona:l+sinx =[1+x+0, o(x) :1+§+ox_,o(x)

X
~+oy_.0(x)

donc:eVHsiNX _e_exle2 -1 =e[§+ox-+o(x)].

sinx
COSX x—0
Jitsi ex 3
tsinx _ o 5

Par quotient, on obtient : ~ ,
tanx x—0 X

De plus, tanx =

. . e\,‘1+sinx_e e
puis lim —M—— =—.
Xx—0 tanx 2
2
1 X 2
1 —| X ——0 X X
1 Jinlx) X772 ""0( ) 1- ~+oy—,0(X)
d. Ona:(1+x)x=ex —e —e 2 .

1
Onadonc: (14 x)x —e:e[l— %"‘Ox,__,o()f)—l

e
= —5X+Ox__,0(X).

Remarque : il faut effectuer un DL,(0) de x = In(1 4 x), sans quoi on ne peut
pas trouver d'équivalent correct du numérateur.

1

14+x)x —e
Finalement, lim Li—)x— =—3.

x—0 X 2 1
2 i 2\h
. . . X“+4+2x—3 g 14+2h—3h
e. Siellesexistent,ona: Ilm |——— = lm [————
x—+oo| X“—x+1 “1h—ot| 1—h+h
Ona: X=—
h
1+2h—3h%
il ot i 5 =(142h+o0p_ o (h))(1+h+0ph_0(h))=1+3h+o0p_o(h),
1—h+h
donc:
E 1§ 1
2), 1 1
14+2h—3h7 |h _ _pin(H3hrono(h) _ ;(h+on—olh) _ siop_,o(1)
1— h+h?
2 4 ox—3)
Finalement, lim % =e3.
X—+oo| X*—x+1

Fiche 16 w Développements limiteés Corrigés | 261



f. Siellesexistent,ona:

X (1+h)((1+;h)h 1)

X
= lim

—X
1+x2 - ] —hHh"’oIn 1+h)in
Ona: In1+h tn[1+\/2h+h2] ~ hx\2h

h +oh_,,o(h2]
—e

lim
J"'”In( In

1+\/2h+h2]

ot (1+h)hﬁ1=ehln(1+h) o) S - h2 +0h_,0(h2),

(-h)|(1+0) 1) 2
donc, par quotient : =5
n(1+h)ln[1+\f2h+h2 ]""'Ohx V2h
X — X

Finalement, lim

*Tin(x In[1+\/X7~]

3

g. Sachantque tan(x)=Xx+>—+0y .o (x3) (c’est I'objet d'un exercice ulté-
rieur),ona: 2
1 1 1 1

2
X tan“x x x2{1+§x2+ox_,0(x2)

1 2.9 2
L T, N B (x )
X2{ [ 3 x—0

]=§+oxﬂo(1).

1 2
Finalement, lim L— — :5.

x—0 x2 tan2 X

Remarque: En écrivant :
1 1 :tan 2(x ) x> (tan(x) x)(tan(x)+x)

x2 tan’x  x’tan (x) X tanz(x) '
il vient :
X DX
(tan(x)—x)(tan(x)+x) - 3 ,etonretrouve lim i— ! =E.
xztanz(x) x—0 x2 x x? x—0x? tan’x 3
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2 1

X
» . ’ = ¥ h 2
h. Siellesexistent,ona: Ilim xsm—] [S'n "‘
X— 400 X ]h—>0
2 “h
sinh h 2
Ona: —=1—-—+o0p_, (h ),donc
2 2
i 2 —In 1wh +op_, h? —1~-h—+o > h2 1
[sinh]hz h? [ g " 0( ) I 0( ) — 5 Foh—o()
- —e —e ;
h
1 <1
Finalement, lim xsin—] —e 6,
X—+400 X
i. Siellesexistent,ona:
lim (In(cosx)+tanx) = lim In(smh)+L
['rr]_ x h—ot tanh
X—l— x=——h
2
Ona:!n(sinh) ~ Inh et tanh ~ h,donc tanhxln(sinh) ~ hinh,avec
h—0 h—o0 h—0
lim hinh=0.
h—0
1 1 1
On en déduit : In(sinh)4+ ——= tanhxIn(sinh)+1) ~ —.
( ) tanh tanh( ( ) )h—,oh

Finalement, lim (In(cosx)+tanx):+oo.
(3]
2
2 X 3
4. a. V1+e¥ = 1+1+x+7+?+ox_,o(x)

2 3
£ X K 3
= e o_,(x)
\/ 2 772 Tox—0

2
\/— 1fx  x2 x31xx221x3 3
=21+ =|=+—+—=|—=|=+—| +—|=| +0x_0(x
212 4 12| 82 4] "1el2 "0()
\
—\/_‘|'£ 3\/_ 7€X3+0x—r0(x3).
Al nefautpasapplsquerleDL (0O)de x> 1+ x a X, car lime* 20,

x—0
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Remarque : |l est utile de retenir (ou de savoir rapidement retrouver) les deux
premiers termes de ce développement limité.

¢. Ona:
In(1+42x 2 3
M: 2x_4i+8i+ox_’o(x3) (1—X+x2+ox_.0(x2))
14+ x 2 3

—2x—4x? -i—Exs +o,,_,0(x3).
3

En composant, on obtient :

2 3

20
In(1+2x)| 2x-4x"+—_x ‘|‘°x—+0(-"3)

1+ x

20 3

:1+[2x—4x2+?x :

2
+E(2x —4x2) +%(2x)3 +0y_0 (xs)

=142x—2x2 +0y_,0 (x3).

d. Ona:
i 1 e 1
T 3 5 x 2 4
sinx X X 5 X X X 4
bt o(x®) T 1=+ to, o(x)
5 120 0 6 120 ~7%
1 . 22 .
=—|1—|——+—|+|-=| +ox- (x )
X 6 120 6 =
1 1 1 7
d'ol: ,———:—x+—x3+ox_,0(x3).
sinx x 6 360
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e. Remarque:La valuation des parties réguliéres des développements limi-
tés du numérateur et du dénominateur est 2 ; pour avoir un développe-
ment limité d'ordre 2 du quotient, il faut donc faire au numérateur et au
dénominateur des développements limités d'ordre 4.

3
X
Ona:e*—cosx— x=x2+?+ox_$0(x4)
2 3 .4

et x— fn(1+x)=%— %+%+oxqo(x4).

Par quotient, on obtient :

X
2 1+6+0,r_+0(x2)

e¥ —cosx—x

x—In(1+x) a x2 5
— 1——+ +OX-—*U( )
2
2 2
X 2 2x X 2X 2
=2|1+=+0,_, (x ) T AP 0 +[—— +040( )
[ 6 x—0 [ 3 2 3 x—0
=2+§x+%x2+ox_,o(x2].
: 1 lin(n)
f. Onposex=1+h: xX1=(14+h)p =eh .Ona:
1 h h 2 5
—In(1+h l—+—+0op_,g|h 2
ehn( ]=e 2 3 [ )=e1+ —g+% +%[—g —i—oh_,o(hz)

T, . 1.2 5
[1—2h+2 b +0p_o(h )]
-
Donc xX-1=e

= x4 1a(x —1)2-1-0,,_,]((:(—1)2)].

g. Pourx =1,0n pose f(x)=Arctan =
—X

A f(0)= Arctan(1),on ne peutdonc pas utiliser le DL, (0) de'Arctangente !

Remarque : On a déterminé le DL (1) de I'Arctangente dans I'exemple 12. On
peut l'utiliser et faire une composition. Mais ce n'est pas un résultat que l'on

est sensé connaitre. On va donc dériver la fonction f: x+— Arctan| ——
effectuer son DL,(0) , puis primitiver. 1—x

'
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Pour tout x =1, f’(x): !

P Bpa®
1 1 1
2 3% 2
2—-2x+x 1_x+x_
2
=—[1— —x+x—2 + ——x+x—2 %) +o (x3)
2 2 2 L
1 x x2 3
= +2+ - +o,_ o)
2 2 4 KXW
T . X Xz X3 4
En primitivant, on obtient : f(x)=f(0)+;+T+E+ox_,0(x ) d'ou:
1 x x x2 X3 4
Arctan| —— =—+—+—+—+ox_,0(x )
1—x 4 2 4 12

h. Onposex=2+h:

h
X" = (2 4 h)2+h _ e(2+h)ln(2+h] _ e[2'|'h)[ln(.?!)+|n[1-|.5]] |

Ona:

(2 +h)[ln(2)+ln[1+g]] =(2+h)

In(2)+g—§+oh_,o(h2)]

- 2In(2)+(1+|n(2))h—|—%h2 +op_o ()

En composant, on obtient:

(2+h][ln(2}+ln[1+g]

2In(2]+(1+|n(2)).l‘l+41:'12 +oh_,0(h2]

e =e

=2n() [1+[(1+In(2))h+%h2

+%((1 +in(2))h)” +0p_g (0 )]
:4[1+(1+In(2))h+[%+%(1+In(2))2]h2 Ok 0 (h2 )]
Finalement,

x* =4+4(1+In(2))(x— 2)+[1+2(1+In(2))2](x— 3 4052 ((x— 2)2).
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i. Laméthode la plus courte est |'utilisation de la formule de Taylor Young.

On note f: x> Arctan(2sinx) qui est de classe C™ sur R comme com-

posée de fonctions de classe C™ .

Pourtout xeR,ona:

f(x) = 2cos(x) r(x) =

— 2sin(x)(5+ 4cos? (x))

1+4sin2 (X) (1+4sin2(x))2
(avec un peu de trigonométrie !).

La formule de Taylor Young donne :

f(x)= f[%]+f’[%]

d'ol:

N
6

y— Tl el
6 7 4 6

2
Arctan(Zsmx —-+—[x—H]—[ ~g] +o0

3

6

Ona: shx— sinx:x?+ox_,0(x3) dou: (shx— sinx)2 :%+ox_,0(x6).

D’autre part,ona:

% 3
_th_x-l- 6 +ox_*0(x )
chx x2 3

14 +oxﬂo(x )

[1_

On en déduit que tanx —th x = %)«'3 +ox_,0(x3),

th x

3

X 3 X

2

’ 8
puis (tanx— thx)’ = Exg +ox_,0(x9).

Par produit, on obtient :

M, v 3.8 15 15
— - =—nx"+o, _
(shx—sinx)”(tanx — th x) x~+o ,o(x )

243
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P
6. (sinx~x+x3+x4) - %x +x4+ox_,0(x4)

p
. E] 3P
6

6 p
1+§x+oxﬂ0(x)]

6

51 3 3
= —] X p+ox_,0(x p).

7. Pour avoir un terme non nul dans la partie réguliére du développement limité
de x> (1 + sinx)x — (1+ x)smx au voisinage de 0, il faut aller a l'ordre 5 !!!

Remarque : Ce n'est pas prévisible, c’est en le faisant que I'on s'en apercoit !

xxIn
. X
Ontrouve: (1+4sinx)" =e

3
1+x—%+ox_+0(x4)]

x3 X x32 X; 23 X 4
=g 5|+ 300" +xonolx’]
=e
3 4 5
2 o 2" % 5
:ex o+ ]2+0x_.0(x)
2
B s P 3 i P (x*)
276 12| 2 2 el
13,24 7 5 5
=14+ x2 - +Zx*—=x"+o0 — (X )
A T %

3
x—%+o,,_,o[x4)

¥ 3 x4 4
- i =33 4}0""0(’()
Et: (H_x)smx :e5|nxxln[l+x)

3 .4 .5

2_X" X X 5
2
3 4 5 3
=14 xz_x__.|._x__x_ _|_l x‘z_x_ +OX—+O(X5)
2 6 6 2
1 2
:1+x2——x3+3x4——x5+ox_,o(x5).
2 3 3
X sinx XS
Finalement: (1+4sinx)" — (14 x) "
x—012
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Espaces vectoriels

L'introduction des espaces vectoriels est la premiére étape dans l'étude de l'algébre
linéaire. Comprendre la structure de ces ensembles, dans lesquels une grande partie
des nouvelles notions d'algébre abordées en premiére et deuxiéme année va se situer,
est l'assurance d'un meilleur apprentissage futur.

K désigne R ou C.

B evoumoneomment

W Etablir si F est un sous-espace vectoriel d’un espace vectoriel (E ,+,-)

F est un sous-espace vectoriel de (E,+,-) si, et seulement si:
i OE eF.
ii. V(x,y)eF2,YNEK \-x+y€EF.

P SiFestun sous-espace vectorielde (E,+,-) :

On montre qu'il vérifie les deux propriétés caractéristiques.

Exemple 1

Soit F = {(x,y,z) - R3,x +y+z= 0} .Montrer que F est un sous-espace vectoriel
de (R3,+.-).

Réponse

. 0R3€F car0+0+0=0.

« Soient (u,v)e F2,\ € R. On note u =(x,y,2) et v=(a,b,c).
Alors u+Xv=(x+X\a,y+Xb,z+X\c).
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Ona: (x+Xa)+(y+Xb)+(z+Xc)=(x+y+2z)+X(a+b+c)=0,

-

—0 -0
carucF car veF
donc u+AveEeF.

Ainsi, F est un sous-espace vectoriel de (R3+)

» SiFn'est pas un sous-espace vectoriel :

On montre que l'une des propriétés caractéristiques n'est pas vérifiée (a l'aide d'un
contre-exemple pour ii).

Exemple 2
Soit F:{(x,y)e Rz,x+y-—1}. F muni des lois usuelles sur B2 est-il un

R -espace vectoriel ?

Réponse

Non!0_, =(0,0)¢ F car 0+0=1.

B Montrer qu’une partie Fde R" (n€N,n>2) définie par une ou plusieurs
équations caractéristiques est un sous-espace vectoriel de R", et en dé-
terminer une base

On montre que tout élément de F s'écrit comme une combinaison linéaire de
vecteurs fixés de R, et que ces vecteurs forment une famille libre.

Exemple 3

Soit F= {(x,y,z)e R3,x :2y} . Montrer que F est un sous-espace vectoriel de

(R3,+,-) , et en donner un base.

Réponse

Ona:((x,y.z)eF< (x,y.2)=(2y.y.2)=y(2.1,0)+2(0,0,1)).

Ainsi F est I'ensemble des combinaisons linéaires de (2,1,0) et (0,0,1), donc

F = Vect{ (2,1,0),(0,0,1)} est un sous-espace vectoriel de R3.

De plus (2,1,0) et (0,0,1) ne sont pas colinéaires (car les coordonnées ne sont pas
proportionnelles).

lls forment donc une base de F.

Remarque : Avec cette méthode, on démontre que F est un sous-espace vec-
toriel en méme temps que l'on détermine une base. Il est inutile de vérifier
séparément les propriétés caractéristiques d’'un sous-espace vectoriel.
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B Etablir si une famille de vecteurs est libre

On écrit formellement une combinaison linéaire nulle de vecteurs de la famille,
et I'on cherche a déterminer si elle est triviale (c'est-a-dire si tous les scalaires sont
nécessairement nuls).

« Sjc'est le cas, la famille est libre.

* Sinon, on exhibe une combinaison linéaire nulle non triviale de vecteurs de la
famille, et on conclut a leur dépendance.

Exemple 4

On se place dans l'espace R~ des fonctions réelles définies dans R , muni des lois
usuelles.

Soient f;: x > cos(2x),f : x> cos® (x),f3 : x> 1.
Les familles { .} et {f,f.f;} sont-elles libres ?
Réponse
* Soit (A1, X,)€ R? tel que Mfy+Xofy =0_g.
Ona: ()\J] +X2h=0_g )@ (Vxe R,)\1;;JS(2X)+)\2 cos®(x)= 0).
De la deuxiéme assert-i;m, avec x :% on obtient \;=0, puis avec x=0 on

obtient X1+ X\, =0.0n en déduit que X=X\, =0, puis que la famille {f,f,}
est libre.

* Pour tout réel x,ona: cos(2x)=2cos?(x)—1 donc f;—2f, +f; = 0 ®-
La famille {f,,f,,f3} estliée. a

Remarque: En dimension finie, les méthodes peuvent varier.

Exemple 5

Soient u=(1,0,—2),v=(3,2,—1),w=(—11-5),5=(0,4,10) des vecteurs de
R3.

Les familles {u,v,w,s} {u,v,w} {u,v,s} sont-elles libres ?
Réponse

« La famille {u.v.w.s} est de cardinal 4 dans un espace vectoriel de dimension 3,
elle est donc liée.

Remarque : On a ici utilisé le résultat suivant :

- - . * . 3
Dans un espace vectoriel de dimension ne N , toute famille de cardinal
strictement supérieur a n est liée.
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* Pour la famille {u,v,w}, en utilisant la définition :

Soit (A1, X2, X3)€ R3 tel que Nqu+Xv+Agw=0_3.0na:
(>\1I‘J+>\2V -+ >\3W = ORB ) = ((>\.1 + 3)\2 —)\3,2)\2 + )\3,—2>\1 = )\.2 —5)\3) = (0,0,0))

Mok ks =He=0 A +3%)—A3=0
120 +X3=0 N 2X;+X3=0
=Ny =Sz =031 |5), 73 =0
A +3N—X3=0
& 120+ X3=0  &(\=X\=X\;3=0).
L3—13+7L3 193, =0

La seule combinaison linéaire nulle des vecteurs u, v et w est triviale, la famille
{u,v.w} estdonclibre.

Remarque : En dimension finie, pour étudier la liberté d'une famille de vec-
teurs, on est ramené a déterminer le rang d'un systeme linaire homogeéne. Le
rang du systéme est égal au rang de la famille de vecteurs. En particulier, sile
rang est égal au nombre de vecteurs dans la famille, alors le systéme est de
Cramer ; la seule solution est la solution triviale et la famille est libre.

Une autre rédaction peut donc étre la suivante :

IR L3 L3420 173 =1 L3« 5Ly—2L3 18 =1

Ona:| 0 2 1 ~ 0 2 1 ~ 0 2 1
L L

-2 —1 —5 0 5 —7 0 0 19

Le rang de la matrice est 3, donc le rang de la famille {u,v,w} est 3; elle est
libre.

Remarque : Dans les corrections des exercices, je fais le choix d'utiliser les sys-

témes, car cette méthode permet de mémoriser la définition d’'une famille
libre.

« s=2v—6u,lafamille {u,v,s} estdoncliée.

Remarque : Comme dans le cas précédent, on peut raisonner sur le rang de la
famille.

1 3 0 L3—13+2L 1.3 -1 l3—213—515 13 -1
Ona:{ 0 2 4 ~ 0 2 4 ~ 0 2 1
L L
—2 1 10 0 5 10 0 0 O

Le rang de la matrice est 2, donc le rang de la famille {u,v,s} est2;elle n'est
pas libre.
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B Montrer qu’une famille est une base en dimension finie

On montre qu'elle est libre, et que son cardinal est égal a la dimension de I'espace.

A Méme sile lien est étroit, ne pas confondre le mot cardinal (qui est le nombre
d'éléments d'une famille finie) avec le mot dimension (qui est le cardinal des
bases d'un espace vectoriel).

Exemple 6
Soient P, = X2 —1,P, = X2 4+2X,P; = X . Montrer que (Pi.Py,P3) est une base de
R,[X].
Réponse
Montrons que la famille est libre :
Soit (A, X2, \3)€ R tel que X\ iR +XoPs +X3P; = Og,[x|-Ona:
(MNP NPy + X3P = 0)‘*((*17”*2 ) X%+ (20 +23) X =)\ :0)

AN+ =0

S +X3=0 (N =Xy =73 =0).
A =0

La famille { P,P,,P;} estdonc libre, de cardinal 3 qui est la dimension de R, [X] ;
on en déduit que (P,P;,P;) estune base de R, [X].

Remarque : On distingue la famille (non ordonnée) {P,P,,P;} de la base
(ordonnée) (P1,P2,P3), par I'emploi des accolades pour la premiére et des
parenthéses pour la seconde.

B Déterminer une base de Vect{F}, ou ¥ est une famille finie de vecteurs
d’un espace vectoriel

Remarque: D'apres le théoréme de la base extraite, on sait que I'on peut extraire
une base de toute famille génératrice d'un espace vectoriel.

1. On choisit un vecteur (non nul!) de .
- Sitous les autres vecteurs de F lui sont colinéaires, il constitue une base.
« Sinon, on choisit un autre vecteur de ¥ non colinéaire au premier.

2. On cherche un troisieme vecteur de F qui forme avec les deux précédents une
famille libre.

« S'il n'en existe pas, les deux vecteurs précédemment choisis constituent une
base.
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« Sinon on prend un tel vecteur et on recommence avec un quatrieme...
Ainsi de suite, jusqu’a ce que l'on ait testé tous les vecteurs ou que l'on ait
obtenu une famille dont le cardinal est la dimension de l'espace (car on sait
que toute famille de cardinal strictement supérieur a la dimension de l'es-
pace est liée).

3. La plus grande sous-famille libre ainsi constituée est une base de Vect{¥}.

Exemple 7
Soient u=(2,0,1),v=(1,3,—2),w=(5,3,0),s=(0,6,—5).
Déterminer une base de Vect{ u,v,w,s} :

Réponse

* u et v ne sont clairement pas colinéaires (car les coordonnées ne sont pas pro-
portionnelles).

* w=2u-+v donc {u,v,w} est liée.

e s=2v—u donc {u,v,s} est liée.

Finalement une base de Vect{u,v,w,s} est (u,v).

Remarque: |l n'y a évidemment pas unicité. La seule constante est le nombre de
vecteurs dans la base (qui est la dimension de I'espace engendré).

B Déterminer l'intersection de deux sous-espaces vectoriels Fet Gde Een
dimension finie

On écrit un vecteur de E comme combinaison linéaire des vecteurs d’une base de
F et comme combinaison linéaire des vecteurs d'une base de G. On exprime les
scalaires de I'une des combinaisons linéaires a l'aide des scalaires de l'autre, puis
on établit une relation qui donne la forme générale d'un vecteur de l'intersection.

Exemple 8
Soient  fi=(1,0,2),f, =(0,1,1),9;=(0,1.3),g,=(111), F=Vect{fi,,} et
G =Vect{g;,g,} . Déterminer FNG.

Réponse

Remarque : dim(F) + dim(G) > 3,donc F(1G = {0R3 } , comme en atteste la for-
mule de Grassman :

Si F et G sont deux sous-espaces vectoriels d'un K-espace vectoriel (E,+,)
de dimension finie, alors : dim(F +G)=dim(F)+dim(G)— dim(FNG).
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Soit x€ FG.

xe F,doncil existe (\q,X\;)€ R?, tel que x =X\ fj+X\,f =N X220+ X,)

x€ G, doncil existe (juq,p5)€ R?, tel que

X =1G1+1292 = (aig i3 +py).
A=y A=) N1=H2

Ona: {hy=p1+p, S ANy =p1+p, ANy =1+, .
20N =3ty 3y =3t =Ry

On en déduit que x =119y +j119> =p4(1,2,4), puis que FNG = Vect{(1,2,4)}.

Remarque : On aurait également pu exprimer X\, a l'aide de X\ ce qui donne:
X =Nfi+2x\H =X2(1,2,4).

B Montrer que deux sous-espaces vectoriels F et G sont supplémentaires
dansE

» En montrant que F(1G ={0g}, et que tout élément de E s'écrit comme la
somme d'un élément de F et d'un élément de G:

Exemple 9

On se place dans I'ensemble R~ des fonctions réelles définies sur R, muni des
lois usuelles.

Montrer que |'ensemble F des fonctions paires de R™, et 'ensemble F, des fonc-
tions impaires de R~ sont des sous-espaces vectoriels supplémentaires dans R~".

Réponse

* Soit feF,MF. Pour tout xcR, on a: f(x) = f(—x) = —f(x), donc
f(x)=0. feFp feF
On a montré que F,(F; = {ORR }

« Soit fune fonction définie sur R . Pourtout x< R,ona:

f(x)= f(x)+2f(—x) " f(x)—zf(_x) |

f(x)+f(—x)

X === est une fonction paire, et x+—

est une fonction

f(x)—f(=x)
2

impaire ; on a donc écrit f comme la somme d’un élément de F, et d'un élément
deF.
I
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On a donc.montré que RRc Fp +F;, donc que RrE =F, +F; (puisque l'on a:
Fp+F C R¥).

Ainsi, on a montré que F_et F, sont supplémentaires dans R™,

» Endimension finie, en montrant que F et G vérifient les deux assertions sui-
vantes :

i. FNG={0g}
ii. dim(F) + dim(G) = dim(E)

Exemple 10
Montrer que F=Vect{(1,2,3);(0,2,—3)} et G=Vect{(0,1,—4)} sont supplé-

mentaires dans R> .

Réponse

* Pour montrer que F(\G= {OR3} , le plus simple est de montrer que la famille
{(1.2:3);(0,2,—3);(0,1,—4)} estlibre.

En effet, si la famille est libre, quel que soit \ € R,

X(0,1,—4)¢ Vect{(1,2,3);(0,2,—3)} , donc FNG = {0R3} :

Soit (A1, X2, X3)€ R? tel que %(1,2,3)+X,(0,2,—3)+X3(0,1,—4)=0
Ona:

R¥
(M(123)+22(0,2,-3)+X3(0,1,—4) =(0,0,0)) ¢ {20 +2X, + X3 =0
3%1 —3>\2 ‘—4>\3 ={
ﬁ 2>\2+>\3:0¢>(>\]:>\2:)\3:0).
L3+L3+4Ly 5)\2 —0
Ainsi, la famille {(1,2,3);(0,2,—3);(0,1,—4)} estlibre, et FNG = {OIR-"} :

 card(F) = 2, car les vecteurs (1, 2, 3) et (0, 2, -3) ne sont clairement pas colinéaires.
On a donc : dim(F) + dim(G) = dim(R>).

En conclusion, F et G sont supplémentaires dans R
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B Déterminer un supplémentaire d’'un sous-espace vectoriel F dans un
espace vectoriel Ede dimension finie

Si (E,+,") est un K-espace vectoriel de dimension finie, alors tout sous-espace
vectoriel admet au moins un supplémentaire (dans E).

On compléte une base de F avec des vecteurs d’'une base de E jusqu’a obtenir une
famille libre de cardinal dim(E).

L'espace engendré par ces vecteurs est un supplémentaire de F.

Exemple 11

Déterminer un supplémentaire de F = Vect{(l,o,— 2);(3,0,2)} dans R3.
Réponse

(10— 2) et (3,0,2) ne sont clairement pas colinéaires, donc dim(F) = 2.
Comme dim(lE{i3 ) = 3, les supplémentaires de F dans B3 sont de dimension 1.
Montrons que {(1.0,ﬂ 2);(3,0,2);(0,1,0)} est une famille libre :

Soit (A1,\2,x3)€ R? tel que X;(1,0,—2)+X,(3,0,2)+ X3(0,1,0)=0_3.

Ona: (X(1,0-2)4X;(3,0,2)+X3(0,1,0)=(0,0,0)) > { X3 =0
—2>\1+2>\2 =0

43?()\1 =)\2 — >\3 :0')
La famille {(1,0,—2);(3,0,2);(0,1,0]} est libre, de cardinal 3.
Onadonc: F& Vect{(0,1,0)} =R>.

Remarque : Le premier vecteur de la base canonique de R3 est dans F, on ne
pouvait donc pas compléter la base de F avec lui!
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On s'échauffe

1. Les ensembles F suivants sont-ils des sous-espaces vectoriels d'espaces
vectoriels usuels ?

Si oui, en déterminer une base, et un supplémentaire.

a Fz{(x,y,z)e R3,x—y—2z=0}

b. F:{(x,y,z)e R3,x2—y—2z:0}

¢ F:{(x,y,z,t)e R4,x-2y+3z+t:0}
d. F:{(x,y,z,t)e R4,x+2y—z=0}

e. F= {(x,y,z)e R (x+y=0)A(x+y+z= 0)} (on rappelle que le
symbole A signifie « et ».)
f F= {(x,y,z)e R (x+y= O)V (x+y+z= 0)} (on rappelle que le

symbole V' signifie « ou ».)

g F= {(x,y,z)e R3, x? +y? =0}

h. F= {xy, 2)eR? (x+y+2) (2x+y—z)2=0}
. Fz{xy, eR3, (x+y+2) =(2x+y— 2)2}
j. F:{xy E]Rz,xy«'fo]

k. F={PeR;[X],P(1)=0}

L F={PeR,y[X],(P(0)=0)A(P(1)=1)}

m. F={PeR,[X],P(1)=P(-1)=0}

n. F={PeR;[X].P(1 :P(—1):o}

o. F={PeR,[X].P(2)=P(2)=0}

p. F={PeR,[X],P(1)=0}
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2.

Les familles suivantes sont-elles libres ?

a. Dans R*:{ee,,e;} telleque:
e;=(1,—10,1),e; =(0,2,— 1,1),e3 =(—2,1,—2,0).

b. Dans R*:{eje,e;} telleque:
e;=(1,—10,1),e,=(0,2,—1,1),e3=(1,—5,2,—1).

¢. Dans R[X]: {x°,x,x(x2—1)} .

d. Dans R[X]: {X—1x+1x>-1}.

e. Dans R :{f,f} telleque f;:x> cos(x).f, : x> sin(x).

f. Dans R™: {fi.fr} telle que f: x> sin(x).f : X > sin? (x).

g. Dans R™ : {f,f,,f;} telle que

ﬁ|:XI—-)|n(1+X2),f2 :xr—>ln(1+x+x2),f3:x»—>ln[1+ 2 2].
T+ x

h. Dans R : {£,6,f;} telle que fi: x> ch(x),f: x> sh(x),f: x> e,

i. DansR™:{f,6.f] telleque f;: x> ch(x).f, : x> sh(x).fy : x> e

j. Dans R¥ : {f,.f,f} telle que

x| x—1.6: x> |x=2.K: x> |x—3|.

rd B3
On accélere

3.

Fiche 17 m Espaces vectoriels

Dans les cas suivants, (R2,+,—) (ou + est |a loi usuelle sur R2 ) est-il un K-

espace vectoriel ?
a. K =R etlaloi externe est définie par:

V(N (x.y))€ Rx B2 X (x,y)=((1— N)x,(14+X)y).
b. K=C etlaloi externe est définie par:
V(a+ib,(x,y))€ Cx R? (a+ib)-(x,y)=(ax— by,ay +bx).

Soit F:{(x,y,z)e K3,(x—y+2) +(x+y+32) = o}.
a. Fest-il un K-espace vectoriel si K=R ?

b. Méme questionsi K=C.
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5. Sachant que {e1,ez,e3} est une famille libre, les familles suivantes le sont-
elles?

a. {e+eye+ese,+es}
b. {ej+ey+e;3.e+ey,2e1+e;—e3}
¢ {ej+ey+eset+eyete,—es}

6. Dans R3 , soient
u=(21-1)v=(011)w=(-213),5s=(-415),t=(10,-2),
F=Vect{u,v},G=Vect{w,s} H=Vect{s,t}.

a. Montrer que F = G.
b. Déterminer FH.

7. Dans R3, soient u=(2,—1,1),v=(1,0,—1),s=(1,11),t =(0,2,— 1)
F=Vect{u,v},G=Vect{s,t}.Déterminer une base de FNG.
8. Dans R?, soient u =(11,0,—1),v= (1,0,0,— 1),w=(1,0,—10),
F=Vect{uyv,w}, G= {(x,y,z,t)e R x+y—z42t= 0} ;
a. Montrer que G est un sous-espace vectoriel de R*.

b. DéterminerunebasedeF, G, F[\G etF + G.

9. Dans les cas suivants, montrer que F et G sont des sous-espaces vectoriels
supplémentaires dans E:

a. E:CO([O,‘I],R), lefe E,j:f(t)dt:()], et G est I'ensemble des
fonctions constantes sur [0,1].

b. E=C'(RR), F={f€E,f(0)=f(0)=0}, et G est I'ensemble des
fonctions affines.

¢ E=R"(neN,n>2), F=Vect{(11..1)},
et G= {(x,,xz,...,xn)e R, X1+ X3+t X =0} :

10. Dans R? montrer que la famille F = {fa <X |—~>|x— a|,ae R} est libre.
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1. a. Ona:((x,y.2)eF)e ((x,y.2)=(y+22,y.2)=y(1,1.0)+2(2,0,1)).
Ainsi, F= Vect{(1,1,0),(2,0,1)} est un sous-espace vectoriel de =3, dont

((11,0),(2,0,1)) est une base (car les deux vecteurs ne sont clairement pas
colinéaires).
De plus, B®* =Fa Vect{(?,o,o)} :

En effet, dim(F) = 2, et dim(23) = 3, on cherche donc un supplémentaire
de dimension 1.

Vérifions que la famille {(1,0,0),(1,1,0),(2,0,1)} est libre:
Soit (A, X2, x3)€ R tel que X;(1,0,0)4+ X5 (1,1,0)+X3(2,0,1)=0_5..
Ona:
M+N+2X3=0
(M(1,0,0)+X;(1.1,0)+X3(2,0,1)=(0,0,0)) <> {X, =0
A3=0

& (M=X=X3=0).
La famille est donc libre.
Ainsi, Vect{(1,0,0)} est bien un supplémentaire de F dans R3.
Ona: (1,1,0)€ F car ¥ —1—0=0, mais 2-(1,1,0)¢ F car 2> —2—0+0.
F nest pas stable par combinaisons linéaires, donc ce n'est pas un sous-
espace vectoriel de R3.

Remarque : Pour trouver un contre-exemple, il faut comprendre pourquoi on
n'a pas un sous-espace vectoriel. Ici, c'est en raison du carré sur x. Le produit
par un scalaire ne peut pas conserver la propriété qui n’est pas « linéaire ».

G

Ona:
(x.y.z.t)eF)<> ((x.y.2,t)=(2y—3z—t,y,2,t)
=y(2,1,0,0)+2(—3,0,1,0)+t(—1,0,0,1)).

Ainsi, F = Vect{(2,1,0,0),(~3,0,1,0),(—1,0,0,1)} est un sous-espace vec-
toriel de R*.
Montrons que {(2,1,0,0),(~ 3,0,1,0),(— 1,0,0,1)} est une famille libre :

Soit (A1, x5, X3 )€ R tel que
\1(2,1,0,0)4+X2(=3,0,1,0)+X3(~1,0,0,1)=0_4..
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On aimmédiatement: Xy =X, =X3=0.

La famille est donc libre, et ((2,1,0,0),(—3,0,1,0),(—1,0,0,1)) est une base
deF.

De plus, B* = Fe& Vect{(1,0,0,0)} .

En effet, dim(F) = 3, et dim(R*) = 4, on cherche donc un supplémentaire
de dimension 1.

Vérifions que la famille {(1,0,0,0),(2,1,0,0),(~3,0,1,0),(—1,0,0,1)} est
libre:

Soit (A1, X2.X3, 34 )€ R? tel que
1(1,0,0,0)+X5(2,1,0,0)+X3(=3,0,1,0)+X4(~1,0,0,1)=0_.
On aimmédiatement: \; =X, = X3 =X, =0. La famille est donc libre.

Ainsi, Vect{(1,0,0,0)} est bien un supplémentaire de F dans R4,

d. A La coordonnée t napparait pas dans |'équation caractéristique de F,

mais on est dans R* !
(x.y.z.t)eF)es ((x.y.2.t)=(=2y +2,y.2.1t)
=y(-210,0)+2(1,0,1,0)+1t(0,0,0,1))

Ainsi, F= Vect{(—2,1,0,0),(1,0,1,0),(0,0,0,1)} est un sous-espace vecto-
riel de R*.

Montrons que {(—2,1,0,0),(1,0,1,0),(0,0,0,1)} est une famille libre:

Soit (A, X.23)€ R tel que
X1(=2,1,0,0)+X,(1,0,1,0)+ X3(0,0,0,1)=0
On aimmédiatement \; =X, =X3=0.

La famille est donc libre, et ((— 2,1,0,0),(1,0,1,0),(0,0,0,1)) est une base
de F.

De plus, RY*=Fg Vect{(],o,o,o)} .

En effet, dim(F) = 3, et dim(R?) = 4, on cherche donc un supplémentaire
de dimension 1.

Vérifions que la famille {(1,0,0,0),(— 2,1,0,0),(1,0,1,0),(0,0,0,1)} est libre :

Soit (A1, 22,33, 2 4)€ R? tel que
21(1,0,0,0)+X5(—2,1,0,0)4+X3(1,0,1,0)+X4(0,0,0,1)=0_,4.

his ]

e
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On aimmédiatement: Ay =X, =X3=X4=0.
La famille est donc libre.
Ainsi, Vect{(1,0,0,0)} est bien un supplémentaire de F dans R%.
e. Remarquons tout d'abord que:
(x+y=0)A(x+y+2=0))e ((y=—x)A(z2=0)).
Onadonc: ((x,y.2)€ F)< ((x,y.2)=(x,—x,0)=x(1,—1,0)).
Ainsi, F= Vect{(I,—Lo)} est un sous-espace vectoriel de B>, de base
((1-10)).
Deplus, B> =F® Vect{(0,1,0),(0,0,1}} .

En effet, dim(F) = 1, et dim(R3) = 3, on cherche donc un supplémentaire
de dimension 2.

(1,—1,0)+(0,1,0)=(1,0,0), donc les trois vecteurs de la base canonique
de R3 appartiennent a :

Vect{(1,—1,0),(0,1,0),(0,0,1)} = F +Vect{(0,1,0),(0,0,1)} d'ot

R* =F +Vect{(0,1,0),(0,0,1)} .

Ainsi, Vect{(0,1,0),(0,0,1)} est un supplémentaire de F dans R>.

Remarque : Ici, il était rapide de montrer que R* =F +Vect{(0,1,0),(0,0,1)},
mais on aurait également pu montrer la liberté de la famille

{(1-10),(0,1,0),(0,0,1)} .

f. Remarque: F, = {(x,y,z)e R3, x+y= 0} et

F= {(x,y,z]e R3, x+ y+z= 0] sont des sous-espaces vectoriels de

3. Vérifier I'une ou l'autre des équations caractéristiques signifie appar-
tenir a I'un ou l'autre des sous-espaces vectoriels, on peut donc écrire

Pour montrer que F n'est pas un sous-espace vectoriel, on va choisir un
vecteur de F, (qui est donc dans F) qui n'est pas dans F, et un vecteur de
F, (également dans F) qui n'est pas dans F,, et vérifier que leur somme
n'est pas dans F.

(L—11)€efR car 1 — 1 =0, donc (L,—11)eF (mais (1,—11)¢F, car
1-1+120);
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(—=1,0,1)€F, car —1+0+1=0, donc (—1,0,1)€ F (mais (—1,0,1)¢ F, car
—14+0:20),
Or (1= 1,1)4+(—10,1)=(0,—1,2)¢ F car 0—1=0 et 0—1+2+#0.

Ainsi, F n'est pas stable par combinaisons linéaires, ce n'est donc pas un
sous-espace vectoriel de R3.

. Remarquons tout d'abord que dans R : (xz +y?= 0)<=> (x=y=0).
Onadonc: ((x,y,2)€ F)< ((x,y,2)=(0,0,2)=2(0,0,1)).

Ainsi, F :Vect{(o,o,l)} est un sous-espace vectoriel de R3, de base
((0,0,1)).

De plus, R*=F@& Vect{(L0,0),(O,LO)} (on a reconstitué la base cano-
nique de R3).

Ainsi, Vect{(L0,0),(O,LO)} est un supplémentaire de F dans R3.

. Remarquons tout d'abord que dans R :

2 2 x+y+z=0
XA+Y4+Z) +{24y—2 :0)<:>
(( 4 ) ( 4 ) [2x+y—z=0
X+y+z=0 |x=2z
& "
y+3z=0 y=-3z

Ly—2l-1
Onadonc: ((x,y,z)e F)<:> ((x,y,z): (22,—32,z)=z(2,—3,‘|)).

Ainsi, F=Vect{(2,—3,1)} est un sous-espace vectoriel de R?, de base
((2-3.1)).

Deplus, R =Fa® Vect{(T,0,0),(O,LO)} :

En effet, dim(F) = 1, et dim(R>) = 3, on cherche donc un supplémentaire
de dimension 2.

(2—3,1)—2(1,0,0)+3(0,1,0)=(0,0,1), donc les trois vecteurs de la base
canonique de R3 appartiennent a :
Vect{(2,—3,1),(1,0,0),(0,1,0)} = F + Vect{(1,0,0),(0,1,0)} d'ou

B> =F+Vect{(1,0,0),(0,1,0)} .
Ainsi, Vect{(1,0,0),(0,1,0)} est bien un supplémentaire de F dans R>.
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i. Remarque:

((x+y+z)2=(2x+y—z]2)

|| x+y+z=2x+y—z|VIx+y+z=—(2x+y—-2)||.
() (2)

On va choisir un vecteur dont les coordonnées vérifient I'‘égalité (1) et un
autre dont les coordonnées vérifient I'égalité (2). Chacun de ces vecteurs
sera dans F, mais pas leur somme.

(2,0,1)€F, car (24041 =(4+0-1;

(2,-3.,0)€ F car (2—3+0)* =(4—3+0)’.

Mais (2,0,1)+(2,—3,0)=(4,—3,1)¢ F, car (4—3+1)° = (8—3—1)°.

F n'est pas stable par combinaisons linéaires, donc ce n'est pas un sous-espace

vectoriel de R3 ;

j- Remarque: xy < 0 signifie que les coordonnées sont de signes contraires.
On va chercher a contredire la stabilité par somme en prenant deux vec-
teurs ayant chacun des coordonnées de signes contraires, mais dont la
somme aura deux coordonnées de méme signe.

(L—1)€eF,car 1x(—-1)<0; -2,% €F,car —2x%§ 0.

1

Mais (T,~1)+[—2,5]: ¢F,car-1x-_?1>0.

L
2

F n’est pas stable par combinaisons linéaires, donc ce nest pas un sous-espace
vectoriel de R?.

k. Remarquons tout d'abord que P(1) = 0 signifie que 1 est une racine de P.
Onadonc:
(PEF)& (H(a,b)e R%,P=(X—1)(aX +b)=aX(X—1)+b(X - 1))_

Ainsi, F=Vect{X(X—1),X—1} est un sous-espace vectoriel de R;[X],

de base (X(X— 1),X— 1) (les deux vecteurs n'étant clairement pas coli-
néaires).

De plus, By [X]=F& Vect{XO} .
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En effet, dim(F) = 2, et dim(R,[X]) = 3, on cherche donc un supplémen-
taire de dimension 1.

{XO,X - 1,X(X - 1)} est une famille de polyndmes a degrés échelonnés,

elle est donc libre.

Ainsi, Vect{Xo} est bien un supplémentaire de F dans R, [X].

X ORZ[X] & F,donc F n'est pas un sous-espace vectoriel de R, [X]

(Il ne faut pas oublier les arguments les plus simples !)

m. Remarquons tout d'abord que P(1)=P(—1)=0 signifie que 1 et — 1 sont
des racines de P.

Onadonc: (PeF)«> (JacR,P=a(X—1)(X+1)).

Ainsi, F = Vect{(X —1)(X+1)} estun sous-espace vectoriel de R,[X], de
base ((X— )(X+ 1))

De plus, Ry[X|=F& Vect{XO,X} :

En effet, dim(F) = 1, et dim(Rz[X]) = 3, on cherche donc un supplémen-
taire de dimension 2.

{XO,X,(X— ‘I)(X+1)} est une famille de polynémes & degrés échelon-
nés, elle est donc libre.

Ainsi, Vect{XO,X} est bien un supplémentaire de F dans R, [X].

n. & Cette fois, on se place dans R3[X] !
(PeF)« (I(ab)e B2, P=(X—1)(X+1)(aX +b)
= aX(X=1)(X+1)+b(X—1)(X+1)).
Ainsi, F = Vect{ X(X —1)(X+1),(X —1)(X+1)} est un sous-espace vecto-

riel de R3[X], de base (X(X —1)(X+1),(X—1)(X +1)) (les deux vecteurs
n'étant clairement pas colinéaires).

De plus, B3[X]=Fe Vect{X®,x} .

En effet, dim(F) = 2, et dim(R3[X]) = 4, on cherche donc un supplémen-
taire de dimension 2.
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{XO,X,(X—1)(X+1),X(X—1)(X+1)} est une famille de polynémes a

degrés échelonnés, elle est donc libre.

Ainsi, Vect{XD,X} est bien un supplémentaire de F dans R3[X].

Remarquons tout d'abord que P(2)=P'(2)=0 signifie que 2 est une
racine double de P.

Onadonc: (PeF)<« (Elae R,P=a(X— 2)2) :

Ainsi, F = Vect{ (X — 2)2} est un sous-espace vectoriel de R, [X|, de base
((x- 2)2).

De plus, Ry [X]|=F& Vect{Xo,X} :

En effet, dim(F) = 1, et dim(R,[X|) = 3, on cherche donc un supplémen-
taire de dimension 2.

{ XO,X,(X - 2)2} est une famille de polynémes a degrés échelonnés, elle
est donc libre.

Ainsi, Vect{Xo,X} est bien un supplémentaire de F dans R, [X].
p. Ona:(Pef)& (_:l(a,b)e R2,P —a+b(X— 1)2)

Remarque : On a utilisé la formule de Taylor pour un polynéme de degré au

plus2: P=P(1)+P'(1)(X — 1)+%(1)(X = 1)2 :

Ainsi, F = Vect{ Xo,(X— 1)2} est un sous-espace vectoriel de R, [X] de

base (X 0,(X — 1}2) (les deux vecteurs n'étant clairement pas colinéaires).
De plus, R;[X]|=F® Vect{X} .

En effet, dim(F) = 2, et dim(R,[X]) = 3, on cherche donc un supplémen-
taire de dimension 1.

{XO,X,(X - 1)2} est une famille de polynémes a degrés échelonnés, elle

est donc libre.
Ainsi, Vect{ X} est bien un supplémentaire de F dans R, [X].
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Soit (\.22,x3)€ R tel que \je+X e, +X3e3=0_4.Ona:
(M(1=10,1)+X(0,2,—1,1)+X3(-2,1,-2,0)=(0,0,0,0))
N—2X3=0

o o)

Xj+Xs =0

La famille est donc libre.

e3 = e;— 2e,. Lafamille est donc liée.

{X"",X,X(X2 - 1)] est une famille de polynéomes a degrés échelonnés ;
elle est donc libre.
Soit (A1, \2,x3)€ R tel que Xy(X—1)+Xo(X+1)+X3(X*~1)=o0.
Ona:
)\3 :0
(x,(x—1)+x2(x+1)+x3(x2—1)=o)¢¢ N+ Xy =0
—M+X—X3=0
<:>()\1 =Xy :)\3:0).
La famille est donc libre.
Soit ()\1,)\2)6 RZ tel que )\1fl =+ >\2f2 =0_%R
Ona: ()\If, +Xyfy = ORR)@) (Vx€R,\jcos(x)+X;sin(x)=0).
De la deuxiéme assertion, avec x =0 on obtient \;=0, et avec x :%
on obtient X\, =0.

La famille est donc libre.

Soit (A1, X, )€ R? tel que M+ Xofy =0_g-

Ona: (X,f] +Xof5 = ?3)4:;" (Vx € R, \ysin(x)+ \ysin? (x) = 0).

De la deuxieme assertion, avec x =% on obtient A1+ X, =0, et avec

x:—-g- on obtient —X\;+ X, =0.0n en déduit que \q=X, =0, puis

que la famille est libre.
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14+ x2 + x
T+ x 1+ x?
d'ou f; =f, —f;. La famille est donc liée.

g. Pourtout xe R, In|1+ =In =In(1+x+x2)-ln(1+x2)

2

h. Pourtout xe R, ¥ =ch(x)+sh(x), donc f; =f +f, etlafamille est lice.

i, Soit (A, X2, X3)€ R? tel que Mfy+Xyf + M 5f3 =0_g.

(Mfi+Xafy +25fs =0_3 )

& (Ve R, (N +0g)eX +(\ =) ¥ +223e> =0
& (Vxe R 2™ +(\+27)e? +(A— ) =0)
& (WeRL2DuP +(0+2)y2 +(0—Xz)=0).

y=eX

Ainsi, le polynome 2X3X> +(X;4+X3)X2+(X;—X;)a une infinité de
racines, il est donc nul.

On en déduit que X3=X\{+X,=X\;—X,=0, et par suite que
>\1ZX2=)\3=0

La famille est donc libre.
j- Soit (A, x2.x3)€ R? tel que \ifi+X5f +sf; =0 & -

De la deuxiéme assertion, avec x =1 on obtient X\, +2X3 =0,avec x=2
on obtient X1+ X3 =0, etavec x =3 onobtient 2\;+ X, =0.

Ay+2X3=0
M+X3=0 > (N\;=X;=X3=0).

La famille est donc libre.

3. a. 1:(1,1)=(0,2)=(1,1) ; une propriété caractéristique de la loi externe n'est
pas vérifiée donc (E,+,-) n'est pas un K-espace vectoriel.

b. On vérifie toutes les propriétés caractéristiques d'un espace vectoriel (c'est
un peu fastidieux, mais on n‘a pas le choix!) :
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. (R2.+) est un groupe abélien.

« V(a+ib\+ip)e CV((x,y).(uv))e (R2)2 i

) 1-(x,y)=(x—0y,y+0x)=(x,y).

i) (a+ib+X+in)-(x,y)=((a+X)x—(b+p)y.(a+X)y+(b+p)x)
=(ax—by,ay +bx)+ (M —py. Ny +px) = (a+ib)-(x,y)+ (N +ip)-(x, y).

iii) (a+ib)-((x,y)+(uv))=(a+ib)-(x+u,y+v)
=(a(x+u)—b(y+v).a(y+v)+b(x+u))
= (ax— by,ay +bx)+(au— bv,av+bu)
=(a+ib)-(x,y)+(a+ib)-(u,v).

iv) (G+ib)-(()\ +ip.).(x,y))=(a+fb)-()\x—p.y,)syﬂmx)
=(a(zx—py)—b(ry+px),a(xy +px)+b(Ax—py))
=((a)\—bu)x—(au +bX\)y,(ax—bp)y+(ap +b>\)x)
=((G)\—bll)+f(all +b)\))-(x,y)=((a+ib)()\ +ip.))-(x,y).

On en déduit que (R2,+,-) est un C -espace vectoriel.

4. a. Remarquons tout d'abord que dans R :

((x—y-l—z)2 4—(x+,v-1-3.7.)2 :0)<:>((x—y+zZO)A(x+y+3z:0))
&((x==22)A(y=-2)).

On adonc: ((x,y,z)e FYe ((x.y.2)=(—2z,~2,2)=2(-2,—11)).
Ainsi, F :Vect{(_z,—1,1)} est un sous-espace vectoriel du R -espace
vectoriel R3.

b. DansC, ((x—erz)z+(x+y+3z)2 =0)<=>(x—y +z=+i(x+y+32)).

(1i,0)e F et (i,1,0)€ F, mais (1,i,0)+(i,1,0)=(14i,1+i,0)¢ F.
F n'est pas stable par combinaisons linéaires, donc ce n'est pas un C -es-
pace vectoriel.
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5. a. Soit (A, Xy, x3)€R? tel que \q(e;+€;)+ N5 (e;+e3)+X3(ey+e3)=0.
Ona:

(M(er+e)+ Xz (e +e3)+X3(e; +e5)=0)
& ((M+X2)e +(M+X3)ey +(Ay +X3)e3 =0).

>\1+>\2=0
Or {e,e;,e3} est une famille libre donc {X\;+X3=0, qui équivaut a

La famille est donc libre.

. Soit (A, N3, 2\3)€ R tel que

Ni(ej+e;+e3)+ Xy (e1+ey)+N3(2¢+e,—e3)=0.0na:

(M(er+ex+e3)+ 7y (e +ey)+N3(2e+e, —e3)=0)

S (MM +2x3)e +(M+Xy+X3)ey + (M —X3)e3 =0).
N+ Xy +203 =0

Or {ey,ey,e3} estune famille libre donc {X\q+X2+X3=0 , ce qui équi-

vauta (\;=Xy=X3=0). AM—X3=0

La famille est donc libre.

¢ Soit (A\;. Xy, \3)€ R tel que

N(ey+ey+e3)+X;(e+ey)+N3(e;+e;—e3)=0,
Ona:

()q(e]-i-ez +e3)+ X (e+e;)+N3(e+e, —93):0)

S ((M+N+X3)e+(M+X+X3)ey +(M—X3)e; =0).
N+Xy+X3=0

Or {ey,e;,e3} est une famille libre donc

Le systéme n’est pas de Cramer, la famille est donc liée.
Remarque : On aurait aussi pu remarquer que

1
e+ =5((91+ez +e3)+(e+e;— 93))-
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6. Remarquons que F, G et H sont des sous-espaces vectoriels de B> de dimen-
sion 2, car u et v ne sont clairement pas colinéaires, de méme que w et s, ainsi
quesett.

a. Ona:w=2v—uets=3v—2u. Onendéduitque GCF.
De plus, dim(G) = dim(F) = 2.Onadonc G = F.

b. On a montré dans la question précédente que s< F, donc scFH.
Montrons que {u,v,t} estlibre:

Soit (A1, X2, \3)€ B> tel que \qu+Xv+ N3t =0_3.
Ona: h
2N +X3=0
(M(21,=1)+2(0,11)+X3(1,0,—2)=(0,0,0)) <> i\ + X, =0
“M+X—223=0
& (M=X=X3=0).

On en déduit que F+H=R3 (puisque F + H contient une famille libre de
trois éléments).

On a donc, d'apres la formule de Grassman :
dim(FNH)=dim(F)+dim(H)—dim(F +H)=1.
Finalement, FNH = Vect{s} .
7. Soit xe FNG.
x€F,doncil existe (A, X\, )€ R?, tel que :
X=XNU+XV=2N1+ X2, A, M= X;,).
x€ G, doncil existe (jiq,p5)€ R?, tel que::
X =S+t = (g +24 2,09 — p)-
2N+ N =y N === 210
Onadonc: {—X\y=pq1+2p, ,cequiéquivauta: {X; =3u1+4p,
A= Ny =p1— 3 —4p— 6Ly =P — o
On en déduit que juy=—py, puis que x =pq(s—t)=pq(1,—12).

Finalement, FNG = Vect{(l,-— 1,2)} )
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8. a. Ona:
(x.y.z.t)€ G)«> ((x.y.2.t)=y(=11,0,0)+2(1,0,1,0)+t(—2,0,0,1)),
donc G= Vect{(— 1,1,0,0),(1,0,1,0),(—2,0,0,1)} est un sous-espace vec-
toriel de R*.
b. = Soit (A, Nz, x3)€ R tel que Myu+XNov+X3w=0_,.
Ona:
A+ Xy +A3=0

A
()\1U+ X2V+>\3W:(0,0,0,0))<:> ¢-}(>\1 :)\2:>\3:—0)

La famille {u, v, w} est donc libre, et (u, v, w) est une base de F.
* On a déterminé dans la question précédente que

G = Vect{(—11,0,0),(1,0,1,0),(-2,0,0,1)} .

Soit (A1, X2, x3)€ R tel que

X\(=110,0)+ x2(1,0,1,0)+>\3(—2,0,0,1):034 :

Ona:

(M(=11,0,0)+X,(1,0,1,0)+X3(-2,0,0,1)=(0,0,0,0))

& (X =Xy =h3=0),

On en déduit que ((— 1,1,0,0),(1,0,1,0),(— 2,0,0,1)) est une base de G.
* Soit x€ FNG.

x€F ,doncil existe (A1, N5, 23)€ R, tel que:

x=(N+X2+X3. X1, =X3,= X1 =X\3).

x € G, doncil existe (juq,juy,13)€ R3, tel que:

X=(—pytna—2n34002.03)-

MANyHX3 ==ty — 203

A1=u
On adonc: 1=
—N3=}1)

—N—Ay=p3
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rIl.--|=k-|
— B2 =—XN3
ce qui équivauta: | !
|L3:_)\1_>\2

Onendéduitque x =X\u+X\3(2v+w).

Finalement, FNG =Vect{u,2v+w} )

Les vecteurs u et 2v+w n'étant clairement pas colinéaires, (u,2v+w) est
une base de F(G.

* D'apres la formule de Grassman :
dim(F+G)=dim(F)+dim(G)— dim(FNG)=4.

On en déduitque F+G =R*.
9. a. * Montrons que F est un sous-espace vectoriel de E:
S
. F, dt=0.
I Og € carjoo t=0
ii. Soit (\,f,g)€ RxF2.0na:
1 1 1
L(M(r)+g(r))dt:x\f(}f(r)dr‘+fog(r)df:0,donc Nf+geF.
-0 =0

carfeF cargeF
F est donc un sous-espace vectoriel de E.

* Montrons que G est un sous-espace vectoriel de E:
i. O € G car x> 0 est une fonction constante.

ii. Soit (X\,f,g)€ Rx G? ; f et g sont des fonctions constantes donc
\f 4+ g estune fonction constante, elle appartient a G.

G est donc un sous-espace vectoriel de E.

* Soit fe FNG.

fe F donc j:f(t)dt =0, et f€ G donc c’est une application constante
sur [0,1] (égale a f(0)). On en déduit que f;f(t)dt =f(0)(1—0)=0 donc
f:OE et FnG={OE} .

294 | Corrigés Fiche 17 m Espaces vectoriels



» Soit f< E. f étant continue sur [0,1], elle y admet des primitives et

f—f;f(t)dt]Jrf;f(t)dr.

1
c:xHLf(t)dt est une fonction constante sur [0,1} et

.
J:«; f(t)dt estbien définie. On écrit: f =

1
x> f(x)— fof(t)dt est une fonction continue sur [0,1] telle que:

‘f(Jl@(t)dt:‘[:f(t)dt— f;f(r)dt

Ainsi, f=9p+ce F+G,donc E=F+G.

x(1—0)=0.

Remarque : On a montré E C F+G, l'autre inclusion estimmédiate car FC E
etGCE.

Finalement: E=F&G.

b. + Montrons que F est un sous-espace vectoriel de E:

i OE eF.

ii. Soit (\,f,g)e RxF%, X\ f(0) + g(0) =0 et X f'(0) + g’(0) =0,
= =0 T
carfeF cargeF carfeF cargeF

donc Nf+geF.

F est donc un sous-espace vectoriel de E.

* Montrons que G est un sous-espace vectoriel de E:

i. O € G car x> 0 estune fonction affine.

ii. Soit ()\,f,g)e RxG? ; f et g sont des fonctions affines c'est-a-dire
qu'il existe (a,b,a,3)e R? tel que pour tout xe R, f(x)=ax+b et
g(x):(xx +0.

Pour tout x< B, on adonc: \f(x)+g(x)

(Na+a)x+Xb+p ;ainsi
AM+geG.

G est donc un sous-espace vectoriel de E.
Soit fe FG.

f € Gdonc il existe (a,b)e R? tel que pour tout x< R, f(x)=ax+b ;
de plus, fe F donc f(0)=f'(0)=0, ce qui donne: b=a=0, puis
fZOE et FﬂGz{OE} 4
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» Soit f€ E . fest dérivable sur R . On écrit :

f =(f—f(0)—f'(0)x)+f(0)+f'(0)x.
g:x—f(0)+f'(0)x est une fonction affine et
@: x> f(x)—f(0)—f'(0)x estde classe C' sur R (comme somme de
fonctions de classe C' sur R) et vérifie :
¢(0)=f(0)—f(0)=0 et p'(0)=Ff'(0)—f'(0)=0.
Ainsi, f=p+g€F+G,donc E=F+G.

Finalement:E=F&G.

¢. + Parconstruction, F est un sous-espace vectoriel de E.

* Montrons que G est un sous-espace vectoriel de E:

n
. 0peG,car Y 0=0.
i= .

ii. Soit (X,x,y)€ RxG2. On note X =(X3,Xp,...Xp), avec > x; =0 et
i=1

n
Y= (,prz,...,yn), avec Zy’. =0.
i=1

Alors: Ax+y = ()\X1 + Y1 XX + Y2, XX+ Y ).

n n n
avec > (\x;+Yyi)=XY_xj+> yi=0.
j=1 =1

i=1

On en déduitque A\x+y € G.
G est donc un sous-espace vectoriel de E.

* Soit xe F(G.
x € Fdonc il existe ae R, tel que: x = (a,a,...,a) ; de plus, f G, donc

n
Y ~a=na=0 ce quidonne a=0,donc x=0g et FNG={0g}.
i=1

» Soit xe E.
On va effectuer un raisonnement par analyse-synthése pour trouver la
décompositionde xdans F+ G:

ANALYSE : On écrit X = (X9, X3, Xp ) =X (11 1)+ (Y1, Y2 0a Y ) (CESE-2-
dire pour tout i € [1,n], y; =x;— X\ ).
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On choisit

on a: ((ynyarYn)€G)&

Zy,—o] Z DB

n
donc X =lef .
=
SYNTHESE : x = (X7, X2, Xp ) =X (W1 1) +(Y1. Y204 Y
n n
avec Zyj:Zx;—n)u =0,donc x€ F+G puis E=F+G.
i=1 i=1
Finalement: E=F&®G.

10. Soient ne N', {a,-,ie |[1.n]|} une famille de réels deux a deux distincts, et

n
(MisXp)€ R tel que Y "\f, =0.

i=1
Sil existe ig € [1,n] tel que X\;; =0, alors fp, =—— Z Nifa; -
*‘0 i=1
l:t:lo

Orpourtout i € [1,n],si i =1y, alors fo; estdérivable en g; ) donc, parsomme,
n
f, =—LZ \if, estdérivableen g; ,ce quiest faux
a,-o % ; Iaj g’ q .
i0 i=1
i=ig
On en déduit que pour tout iy< [1n], Njp =0, donc que la famille
{fai€[Ln]} estlibre.

Toute sous-famille finie de F est libre, donc F est libre.
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Applications linéaires

Les espaces vectoriels étant définis, on s'intéresse aux applications qui les relient. Mon-
trer qu'une application est linéaire et en déterminer les caractéristiques sont les pre-
miéres étapes d'une étude plus spécifique de certaines d'entre elles, largement déve-
loppée en deuxiéme année.

Dan:s cette fiche on travaille essentiellement en dimension finie.

K désigne R ou C. E et F désignent des K-espaces vectoriels, f une application
définie sur E, a valeurs dans F.

Y o comment

®m Etablir si une application entre deux espaces vectoriels est linéaire

‘(f e £(E,F)) @(V()\,x,y)e KxE2f(\-x+y)= )\-f(x)+f(.V))

P Sifestbien linéaire:

On montre qu'elle vérifie la propriété caractéristique.

Exemple 1
R?— R?
est linéaire.

Montrer que f:
(x,y) P (2x—y.y = 3x)

Réponse

Soit (X,(x,y).(a,b))€ Rx (Rz)z ,ona:

f(N(x.y)+(a,b))=F(Mx+a\y+b)
=(2(+a)—(\+b) Ny +b—-3(\x+a))
=(N(2x—y)+2a—b\(y—3x)+b—3a)
=X\(2x—y,y—3x)+(2a—b,b—3a)=Nf(x,y)+f(a,b).

fest donc une application linéaire.
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» Sielle n'est pas linéaire, on cherche un contrexemple :
o Soit f(OE)IO;: :

Exemple 2

RZ— R , o
n'est pas lmealre.

Montrer que f:
(x,y) Xx+y+1

Réponse

f((0,0))=1=0, donc fn'est pas linéaire.

o Soit on trouve (X,x,y)€ K xE?, tel que f(N-x+y)=X-f(x)+f(y).

Exemple 3
R°— R2
Montrer que f: R n'est pas linéaire.
(x.y) P (x+y.xy)
Réponse

2x f((11))=(4.2) et £((2,2))=(4.4) ; ainsi, 2x f((1,1))= f((2.2)) donc fn'est pas
une application linéaire.

B Passer d’'une forme explicite a une matrice d'application linéaire, et vice-
versa

Si on connait la forme explicite d'une application linéaire f en dimension finie :

Pour obtenir la matrice de frelativement aux bases B¢, B, on écrit en colonnes
les coordonnées dans la base % des images des vecteurs de la base % .

Exemple 4
R2— R3
Donner la matrice de l'application linéaire f: relati-
(x.y) = (x+y.3x—2y,y)

vement aux bases canoniques de R? et R3 (appelée matrice canoniquement
associée af).

Réponse

La base canonique de R?, est: 6, =((1,0),(0,1)) ; celle de B>, est:
€3 =((1,0,0),(0,1,0),(0,0,1)).

Ona: f((1,0))=(1,3,0) et f((0,1))=(1,—2,1).

1 1
On en déduit : Matq, ¢, (f)=[3 —2|.
o 1
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P Sion connait lamatrice Matg . g3 (f) de frelativementaux bases %, B
On obtient la matrice dans B¢ de l'image d'un vecteur u de E par f, en multipliant
Matg . g (f) par Matg (u).

Exemple 5

Donner la forme explicite de I'application linéaire f:R®3 — R?, dont la matrice

A
dans les bases canoniques est: A= [ 1] (on dit que f est canoniquement

associée a A). =10

Réponse X . 5
a 1 2 +2z —

Soit (x,y,z)€ R3. [ ] y :[y ,donc f: ® ;
-1 0 1 b —x+z (x,y,z)P>(y+2z,—x+2)

W Déterminer Ker(f)={x Efpf(x)=0}:f_1({°!=})

» Sifestdonnée avec une forme explicite :
On résout l'équation : f(x)=0f .

Exemple 6
R?— R’
Déterminer le noyau de I'application linéaire f:

(x,y)P (x+y.x—y.2x)

Réponse Xx+y=0
Soit (x,y)e R?.Ona: (f((x.y)): (0,0,0))@ x—y=0¢ ((x,y)=(0,0));
2x=0

donc Ker(f) = {(0,0)}.
Remarque : Déterminer le noyau de f permet d'établir I'injectivité de f. Ici, f est

injective car son noyau est réduit a {0?2 } {

» Si on connait la matrice M de f relativement aux bases B, B, (avec
dim(E) = n, etdim(F) =p):

On résout |'équation matricielle MX :OM‘,J(K)'OU XeM, (K).
Exemple7

Déterminer le noyau de I'application linéaire f:Rz[X]—> RZ[X], dont la matrice

1 2 -1
dans la base canonique €5 :(XO,X,Xz) de Ry[X]est:|3 1 2
0 2 -2
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Réponse
Soit (a,b,c)e R*.Ona:

1 2 —1)a) (0 a+2b—c=0 a+2b—c=0
a=-—¢
3 1 2 {bl=|0{e1{3a+b+2c=0 & —5b+5c=0<:>[b ;
. =g
0o 2 —2llc] lo b—2c=0 273hl o0

Onadonc: P:a+bX+cX2€Ker(f] si, et seulement si P:c(—1+X+X2).
Ainsi, Ker(f):Vect{—1+X+X2}.

W Déterminer Im(f)=f(E)= {y €F,3x eE,f(x):y} (en dimension finie)

» Sifestdonnée explicitement:
Im(f) = Vect{f(e;),ic 1}, ou (e )ic) €stune base de E.

Exemple 8

R*— R’
Soit f: . Déterminer une base de Im( f).
(x,y)P(2x—y.x+2y,x—y)

Réponse

Im(f) = Vect{£((1,0)).f((0.1))} = Vect{(2,11).(~ 1.2~ 1)} .

Les vecteurs (2, 1, 1) et (— 1, 2, — 1) n'étant clairement pas colinéaires, ils forment
une base de Im (f).

P Sion connait la matrice M de f relativement aux bases B¢, B :

Les vecteurs colonnes de M donnent les coordonnées dans B¢ d'une famille
génératrice de Im (f).

fle) - le) - flen
g9 - G o Oy
& (|90 aj Ain
“p||9p1 apj pn
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Exemple 9

Déterminer I'image de l'application linéaire f:R,[X]|— R,[X], dont la matrice

1 2 -1
dans la base canonique €5 = (XO,X,XZ) de Ry[X]est:[3 1 2
0 2 -2

Réponse

im(f) = Vect{1+3X,2+ X +2X%, — 1+2x - 2x?}

Etudions la liberté de la famille génératrice obtenue :

Ona: —1+2X —2X2 =(143X)— (2+X + 2X2), la famille est donc liée.
1+3X et 2+ X +2X?2 ne sont clairement pas colinéaires.

On en déduit qu'une base de Im fest: (1+3X,2+X +2X2).

Remarque : On a vu dans I'exemple 7 que dim(Ker(f)) = 1.

Il est normal de trouver dim(Im(f)) = 2, d'apres le théoreme du rang :

Si E est de dimension finie, dim(E)=rg(f)-+dim(Ker(f)).

B Effectuer un changement de base

Lorsque I'on connait la matrice M d'un endomorphisme frelativement a la base €,
et que I'on veut exprimer la matrice de frelativement a la base % :

1. On détermine la matrice de passage P =Py de la base ‘€ dans la base % en
écrivant en colonne les coordonnées, dans la base ‘€, des vecteurs de 3.

2. Oncalcule P71,

3. On effectue le produit matriciel P~ MP, et I'on obtient la matrice de fdans la
base %.

Exemple 10

1 2
Soitf € E(Rz) dontlamatrice dans la base canonique €, = (e;,e, ) est M = [1 0].

Soient E1Z—E1+e2 et L] :291+e2.

Aprés avoir justifié que %= (z;,e; ) est une base de R?, déterminer la matrice de
fdans cette base.

Réponse
Les vecteurs =, et =, ne sont clairement pas colinéaires ; ils forment donc une

base de R?, qui est de dimension 2.
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La matrice de passage de la base €, alabase 28 est P= 19 3
: 3 [~1/3 2/3
son inverseest P "= .
/3 1/3

—-1/3 2/3}§1 2|(—1 2 -1 0
La matrice de fdans labase B est P~ 'MP — = 1
1/3 1/3)11 o)l 1 1 0 2
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On s'échauffe

1. Les applications suivantes sont-elles linéaires ? Pour celles qui le sont, don-
ner la matrice canoniquement associée, et déterminer le noyau et une base
de I'image.

(.

Rz_) R3
(x,y)P(x+y,2x—3y,0)

R* —» R?
(x.y,2)P (x+y+zxy2)
R’ — R
(x.y.2)P(x+y.2.y)

R’ - R
(x.y.2)P(x+y,x—y,z+2)

R — pR3
(x,y,2)P (2x+y—2,3x+2y— z,x+Y)

(x,y,2)P(x+y,x—y+2,2+2x)

R* - R*
(x,y,z,t)P(x—y+2.2x—y,t+2,x+t)

[Ra[X]— Ry [X]

P P XP

Ry[X]— Ry[X]
P X2 4P(1)X+P(2)X2

[Ra[X]— R2[X]

P BPX°+P(1)X?
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P 2P0)X°+P(1)X+P(2)X?

R3[X]— Ry[X]

b " P(0)X°+P(1)X +P(2)X2

2. Pour chacune des matrices suivantes, expliciter I'application linéaire f de
ff(IFE",Rp) canoniquement associée, puis déterminer son noyau et une

base de son image.

1 -2 4
8 k-1 <2 @
0 0 o0
1 =2 4
b.
-1 -2 0
-
C -2 =2
4 0
1 1 =i
d -3 =3 3
-2 -2 2

On accélere

3. Soient E=R> le R -espace vectoriel muni de sa base canonique
€, = (e)e,.e3), et fe £L(E) défini par:
F((x.y.2))=(—x+3y—z,—x+3y—z,x— y+2).

a. Déterminer la matrice de fdans la base G,.

b. Déterminer une base de Ker(f) et une base de Im(f).

¢ Soient e/'=e +ey.e,'=—e +e3e3'=e+e,+e3. Montrer que
B = (e)'e;',e3") est une base de E, et déterminer la matrice de frelati-
vement a la base 8.
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4. Soient E=R3 le R -espace vectoriel muni de sa base canonique
@, = (ey,e5,e3), et f € £(E) canoniquement associé a la matrice :

1 =10
=% o 2.
i =i

a. Soient e;'=e;+e3,6,"'=e,—e,,63'=¢;+e€,+e3.

Montrer que & = (e;',e,",e3’) est une base de E et déterminer la ma-
trice de frelativement a la base .

b. Sans calcul, justifier que f n'est pas un endomorphisme bijectif.

5. Soient E un R -espace vectoriel de dimension 3, B = (e;,e,,e3) une base
de E, et f € £(E)défini par:

f(E’1J = 581 +3E3
f(ez):—ﬁe]—ez — 393 i
f(es) — —691 o 493

a. Déterminer Ker(f) et Im(f).
b. Soient e;"=e;+ey,e,"=e,+e3,e3"'=2e,+e;3.
Montrer que %’ = (e;',e,",e3") est une base de E, puis déterminer la

matrice de frelativement a &',

6. Mémes questions avec:

f(e-|):e-| +92 +93
fle;)=e;+e3 et e'=e;+e,+e3e,’=—e+e,—e3,e3'=e)+e3.
fles)=—e;—e;3

7. Soient E=R;|[X] et f € L(E) défini par:
(P)=P(0)(1— X?)+P'(0)X (1— X)+P(1)X>.

a. Montrer que B = (1— X2,X(1— X),X2) est une base de E, et détermi-
ner la matrice de frelativement a la base %B. Que peut-on en déduire ?

b. Retrouver le résultat précédent en explicitant fla + bX + cX?).
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8. Soient E=R,[X],6,= (XO,X,Xz) labase canoniquede R, [X],et f € £(E)
défini par: £(P)=P(0)(X —1)(X = 2)+P(1)X (X —2)+P(2)X (X —1).
a. Montrer que B = ((X— )(X—2),X(X—2),X(X- 1)) est une base de

E, et déterminer la matrice de frelativement a la base 8.

b. Déterminer la matrice de f relativement a la base ‘€, de deux fagons
différentes.

—R[{X
9. Montrer que f: ]R[X] [ ]

3, est un endomorphisme injectif
P B(Q2+X)P+XP"

de R[X].

10. Soient Eun R -espace vectoriel de dimensionn, et f € 5£(E) tel que f" =0
et 120,
Soit x< E tel que f"_l(x)x 0.

a. Montrer que (x,f(x),...,f"" (x)) est une base de E.
b. Déterminer la matrice de frelativement a cette base.

¢. Endéduire 'image et le noyau de f.

1. Soient E=C°(R), et T définie sur E par :
X
VfeEVxe R,T(f)(x)= fo tF(t)dt .
a. Montrer que T est un endomorphisme injectif de E.

b. Test-il surjectif?
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| P Soit(x,(x,y),(a,b))GRx(Rz)z.

f(N(x.y)+(a.b))=f(Mx+a)\y+b)
=(M+a+N+b,2(M+a)—3(\y +b),0)
=(N(x+y)+a+b,x(2x—3y)+(2a—3b),0)
=X\(x+y,2x—3y,0)+(a+b,2a—3b,0)
=X (x,y)+f(a,b).

f est donc une application linéaire.

* On note €, la base canonique et R? et ‘€3 la base canonique et R3 ;
11

f((1'0)):(1'2‘0)'f((0'1)):(1:—3,0) donc: Mah(;z'z@B (f): 2 —3

0 0
Soit (x,y)€ R?.0Ona:

()=o) [ 7€ < (x=y=0).

Ainsi, Ker(f) = {0?2} A

Remarque: fest injective.

e Im(f) = Vect{(l,2,0),(1,—3,0)}. Les deux vecteurs n‘étant clairement
pas colinéaires, ils forment une base de Im(f).

b. 2xf((1,1,1)=2x(3,1)=(6,2):f((2.2.2))=(6,8). 2xf((1.1,1))=f((2.2.2))
donc f n'est pas linéaire.

¢« Soit (\,(x,y,2),(ab.c))e RX(RB)Z.

f(N(x.y.2)+(a,b.c))=f(M+a \y+bxrz+c)
=(M+a+\y+bXz+c\y+b)
=(>\(x+y)+a+b,)\z+c,)\y—}-b)
=N\(x+y.z,y)+(a+b,c,b)
=M (x,y,z)+f(a,b,c).

f est donc une application linéaire.
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» £((1,0,0))=(1,0,0),f((0,1,0))=(1,0,1),f((0,0,1))=(0,1,0) donc:

0
1]
0

L =

1
Mattgg (f) = i}
0

110
0 1 0];elleestclairementderang 3.

0O 0 1
On en déduit que fest un endomorphisme surjectif, donc bijectif.

Ainsi, Ker(f) = {oﬁ_,,} etim(f) = R3.

* Ona: Mat<g3 (f).E

d.  £((0,0,0))=(0,0,2)(0,0,0), donc f n'est pas une application linéaire.

e. + Soit (k,(x,y,z),(a,b,c))e RX(R3)2.

f(x(x,y,z)+(a,b,c))=f()\x+a,)\y+b,)\z+c)

=(2(z\x+a)+\y +b—(Xz+¢),3(Ax+a)+2(\y+b)— (Xz+c),
Ax+a+X\y+b)

=(N2x+y—-2z)+2a+b—c,\(3x+2y—2z)+3a+2b—c,
X(x+y)+a+b)

= kf((x,y,z))+f((a,b,c)).

f est donc une application linéaire.

« £((1,0,0))=(2,3,1),f((0,1,0))=(1,2,1),f((0,0,1))=(—1,—1,0) donc :

2 1 -1
Matg, (f)=|3 2 -1|.
1 1 0
* Soit (x,y,z)€ R3.Ona:
2x+y—2z=0 —y—2z=0
(f({x,y,z)):(o,o,o))@ 3x+2y—z=0 <& {-y—-z=0
Ly—Ly—3l3
x+y=0 li—t—205 (X+y=0
2=y
V. Z)=yl—11,-1))
ol __,e(r2)=y(-11-1)

Ainsi, Ker(f) = Vect{(1,— 1,1)} .
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* Le théoreme du rang donne : rg(f )= dim(R3)— dim(Ker(f))=3—1=2.
(2,3,1) et (1,2,1) ne sont clairement pas colinéaires ; ils forment donc
une base de Im(f).

Im(f) = Vect{(2,3,1),(1.2,1)} .

Remarque: Le théoréme du rang évite d'étudier la liberté de la famille génératrice
de Im(f) donnée par les images des vecteurs de la base canonique. Connaissant

le rang de f, on sait ici que la famille {](2,3,1),(1,2,1),(— 1,—1,0)}est lice et qui
faut en extraire deux vecteurs non colinéaires pour avoir une base.

f. 2xf((11))=(2.2).f((2.2))=(4,4). 2xf((1,1))=f((2.2)), donc f n'est pas
linéaire.
g. * Soit (\,(x,y,2),(a.b,c))e Rx (R?)
f(N(x.y.2)+(a,b,c))=f(A\x+a,\y+b,xz+c)
=()\x+a+)\y+b,>\x+a— (\y+b)+ >\z+c,)\z-{—c+2()\x+a))

2

=(N(x+y)+a+bX\(x—y+z)+a—b+c,\(z+2x)+c+2a)
=Nf((x,y,2))+f((a.b.c)).
f est donc une application linéaire.

« £((1.0,0))=(1,1,2).f((0,1,0))=(1—10),f((0,0,1))=(0,1,1), donc :

1 1 0
Mate, (f)=[1 —1 1|.
2 0 1
« Soit (x,y,z)e R>.Ona:
X+y=0 Xx+y=0
(f((x..2))=(0,0,0)) > {x—y+2z=0 <« 1-2y+z=0

Ly—L5—L
z+2x=0 [ > 3l |-2y+2=0

x=—y
@{z 5 & ((xy.2)=y(-112)).
Ainsi, Ker(f) = Vect{(— 1,1,2)} "
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* Le théoréme du rang donne : rg(f) = dim(Rg)— dim(Ker(f)) =3—-1=2.

(1,—1,0) et (0,1,7) ne sont clairement pas colinéaires ; ils forment donc
une base de Im(f).

Im(f) = Vect{(1,—1,0),(0,1,1)} .

2

h. « Soit (\,(x,y.2,t),(a,b,c.d))e Rx(R") :
f(k(x,y,z,t)+(a,b,c,d))=f()\x+a,)~y+b,kz+c,)\t+d)
=(N\x+a—(Ay+b)+Xz+c¢,2(Ax+a)— (\y+b),\t+d + X z+c,

Ax+a+\t+d)
=(N(x—y+2z)+a—b+c,\(2x—y)+2a—b\(t+2)+c+d,
N(x+t)+a+d)
=M ((x,y.2,t))+f((a.b,c.d)).
f est donc une application linéaire.

« £((1,0,0,0))=(1.2,0,1),£((0,1,0,0))= (- 1,— 1,0,0),

S

f((0,0,1,0))=(1,0,1,0),£((0,0,0,1))=(0,0,1,1),
1 -110
donc : Matg,, (f)= e !
4 0 0 11
1 2 48 1
* Soit (x,y,z,t)e R*.Ona:
X—y+z=0
2x—y=0
(f((x.y.2.t))=(0.,0,0,0)) ¢ g
Xx+t=0
X=—t
elz=—t &(xy.zt)=t(-1,-2,-11).
y=—2t

Ainsi, Ker() = Vect{(1,21,—1)} .
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* Lethéoreme durangdonne: rg(f)= dim(R“)— dim(Ker(f)): 4—1=3.
Pour déterminer une base de Im(f), il faut extraire une famille libre de
trois vecteurs de {(1,2,0,1),(—1,—1,0,0),(1,0,1,0),(0,0,1,1)} .

Soit (A, X2, x3)€ R?.Ona:

(M(1,2,0,1)+X5(=1,-1,0,0)+X3(1,0,1,0)=(0,0,0,0))
>\] = )\2 G )\3 =0

1 @(XI:)\‘z:}\B:O).

Donc la famille {(1,2,0,1),(— 1,—1,0,0),(1,0,1,0)} est libre, elle constitue
une base de Im(f).

i. Onnote €, :(XO,X,Xz) la base canonique de R,[X].
+ Soit (X,P,Q)€ Rx (R, [X]).

f()\P+Q)= AP +Q— X()\P+Q)'= )\(P— XP’)+Q— XQ'= )\f(P)H’(Q)
(par linéarité de l'opérateur de dérivation.)

f est donc une application linéaire.

" f(XO):XO,f(x)zo,f(Xz)=—X2. donc: Mat<g3 (f)=

o o =
o O O
o o

« A la lecture de la matrice de f on a: Im(f) = Vect{XO,XZ} et
Ker(f) = Vect{X}.

jo fl0o)= x© ::nglxl,donc fn'est pas linéaire.
k. - Soit (\,P,Q)e Rx(R,[X])".
f(AP+Q)=(NP+Q)(1)+(X\P+Q)(1)X* = Xf(P)+f(Q).

fest donc une application linéaire.

. f(xo):Xo,f(X):1+X2,f(X2):1+2X2,dOFIC:Matcg3 (f)=

O O =
- O -
N ©O —
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* Soit PE R,[X].Ona:
(f(P)=0)<> (P(1)=P'(1)=0)<> (aae R,P=a(X— 1)2).

En effet, si P(1)=P’(1)=0, alors 1 est une racine de P de multiplicité au
moins 2.

Ainsi, Ker(f) = Vect{1—2X+ X2}
* Le théoréeme du rang donne:

rg(f)=dim(R [X])— dim(Ker(f))=3—1=2.

X% et 1+ X2 ne sont clairement pas colinéaires ; ils forment donc une
base de Im(f).

Im(f) = Vect{X°,1+X2}.

L+ Soit (\,P,Q)e Rx(R,[X])".
f(NP+Q)=\P(0)+Q(0)+(N\P(1)+Q(1))X +(\P(2)+Q(2))X*
=N (P)+f(Q).
f est donc une application linéaire.
* F(XO) =14 X4 X2 F(X) = X+2X7 F(X? )= X +4X?, donc:
100
Matrg3(f):1 1 14
12 4
* Soit P€ R,[X].Ona: (f(P)=0)< (P(0)=P(1)=P(2)=0)« (P=0).

En effet, un polyndme de degré au plus 2 admettant au moins 3 racines
est nécessairement nul.

Ainsi, Ker(f) = {05—_"32[)‘]} ‘

» festun endomorphisme injectif de R,[X] (de dimension fini). Il est donc
surjectif, et Im(f) = R,[X].
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Remarque : On pouvait également écrire

10 0] (1 00 (100
Mat:@3(f)=111~L—011IO11;
12 4/ {0 2 4/ {0 0 2

la matrice étant de rang 3, I'endomorphisme est bijectif.

m. * L'étude précédente donne la linéarité de f.

o F(XO) =14 X4 X2 ()= X+2X2 (X2 )= X +4x7£(X3) = X +8X2,
1000
donc: Mate, (f)=[1 1 1 1|
12 4 8
* Soit Pe R3[X].Ona:
(F(P)=0)< (P(0)=P(1)=P(2)=0)<> (Jac R,P=aX (X —1)(X —2)).
Ainsi, Ker(f) = Vect{2X —3x? + x>} .

* Le théoréeme du rang donne :
rg(f)=dim(R3[X])— dim(Ker(f))=4—1=3.
fest avaleurs dans R;[X] qui est de dimension 3, donc Im(f) = R, X].

2. a. Auregard des dimensions de la matrice,ona f:R3 — R3.
1 —2 4)(x) (x—2y+4z
* Soit (x,y,z)e]R3. -1 —2 0Ojlyl=| —x—2y |donc:
0 0 0Jlz 0
R — R3
(x,y,2)>(x—2y+4z,—x—2y,0)

« Soit (x,y,z)€ R*.Ona:
B x—2y+4z=0 |[x=-2y
(f((x,y,z))ﬁ(o,o,o))@[_X_Zyzo @[zzy

& ((xy.2)=y(-211)).
Ainsi, Ker(f)=\lect{(~2,1,1) ;
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* Le théoreme du rang donne : rg(f )= dim(R3)— dim(Ker(f))=3—1=2.

(1,—1,0) et (1,0,0) n'étant clairement pas colinéaires, ils forment une
base de Im(f).

Remarque : Le second vecteur proposé dans la base est colinéaire au troi-
sieme vecteur colonne de la matrice.

b. Onaf:R3— R2.

« Soit (x,y,z)e R>. [

—1—20y
z

R3 . R2

f: .
(x,y.2)P>(x—2y+4z,—x—2y)

* Soit (x,y,z)€ R>.Ona:

(((x.2)(00) |

& ((x.y.2)=y(-2.11)).
Ainsi, Ker(f) = Vect{(- 2,1,1)} .

x—2y+4z=0 =—
y+4z - X 2y
—X—=2y=0 zZ=Yy

* Le théoréme du rang donne:
rg(f) = dim(R*|— dim(Ker ()= 3—1~2~dim(R?).

On en déduit que Im(f)=R?.

Remarque : fest surjective, non injective.

¢ Onaf:R>—R3.
¥ =1 X—y
X
* Soit (x,y)eRz. -2 -2[ ]: —2x—2y|,donc
4 oY 4x
R?— R

& 3
(x,y)P(x—y,—2x—2y,4x)
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* Soit (x,y)e R?.Ona:
x—y=0
(f((x.y))=(0,0,0))¢> {—2x—2y =04 (x=y =0).
4x =0

Ainsi, Ker(f) = {0@2} .

* (1,—2,4) et (—1,—2,0) n'étant clairement pas colinéaires, ils forment
une base de Im(f).

Remarque: f est injective, non surjective.

d. Onaf:R®*— R,
11 —1)(x X+y—z
+ Soit (x,y,z)eR3. -3 -3 3 |lyl=|-3x—3y+3z|,donc
—2 =2 2\z) \—2x—2y+22
R} — R3
f-(x,y,z)f—)(x+y—z,—3x—3y+3z,—2x—2y+22)'

* On constate immédiatement que les trois colonnes de la matrice sont
proportionnelles.

Ainsi, rg(f) = 1 et Im(f) = Vect{(1,—3,—2)} .

* Soit (x,y,z)€ R3.0na:
(f({x,y,z)) = (0,0,0)) & (x+y—z=0)<((x,y.2)=x(10,1)+y(0,1,1)).
Ainsi, Ker(f) = Vect{(1,0,1),(0,1,1)} .

1 3 1
3 Mat(@(f)= -1 3 -1.
1 -1 1

b. Soit (x,y,z)e R*.Ona:

(f((x,y,z)) = (0,0,0)) @[

& ((x,y.2)=x(1,0,-1)).
Ainsi, Ker(f) = Vect{(l,o,— l)} }

—Xx+3y—z=0 |z=—x
&
Xx—y+z=0 y=0
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Le théoréme du rang donne: rg(f)= dim(R3)- dim(Ker(f))=3-1=2.

(—1,—11) et (3,3,— 1) n‘étant clairement pas colinéaires, ils forment une

base de Im(f).
1 =11
¢. SoitP=|1 0 1{lamatrice descoordonnées, dans €, des vecteurs de 5.
o 1 1

A On ne peut pas appeler P « matrice de passage » tant que I'on n‘a pas
justifié que % est une base (c'est-a-dire que la matrice est inversible) !

-1 2 =1
Aprés calculs, on trouve P inversible et P t=l—-1 1 0|
1T =1 1
2 0 0
% est donc une base R?, et Matg (f)=P~ 1Matcg(f)P: 0 00
g & 19

Remarque : On retrouve que e,’ engendre Ker(f) !

1 1 9
4, a. Soit P=|0 —1 1|lamatrice descoordonnées, dans ‘€, des vecteurs de 7B.

T 9 1] =7 =1 2

Aprés calculs, on trouve P inversible, et il o =1
1 T —1

1 0 0
B est donc une base de B>, et Matgy (f) =P~ 1I\\/'latq;(f)P =(0 2 0f.
0 0O

b. La matrice de f dans la base & donne immédiatement rg(f)=2 (et
Ker(f) = Vect{ e’} ). fn'est donc pas bijectif.

5.  Remarque: On ne connait pas explicitement E, il faut donc exprimer les vec-
teurs de E a l'aide des vecteurs de la base qui est donnée.

a. Soit (x,y,z)€ R>.Ona:
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(f(xe;+ yey +2ze3) =0
< (xF(€1)+yf (e2)+2f (e3) = x(Se1 +3e3 ) + y (—6e; —e; —3e3)
+z(—6e,—4e3)=0f)
< ((5x—6y —62)e;— ye, +(3x—3y —4z)e3 =0 )
5x—6y—6z=0
& —y=0 & (x=y=2z=0).

G
& est une base 3x—3y—4z=0

Ainsi, Ker(f) = {0¢} .

fest un endomorphisme injectif de E, il est donc bijectif et Im(f) = E.

5 —6 -6
b. Ona:Matg(f)=|0 —1 0
3 -3 —4
% 2
Soit P=|1 0 0| lamatrice descoordonnées, dans 2B, des vecteurs de A"
o 1 1 0 1 0
Apreés calculs, on trouve P inversible, et pl=|-1 1 2
1 -1 =1
-1 0 O
B’ est donc une base de E, et Matgy (f)=P~ Matg (f)P=[0 -1 0f.
0O o0 2

Remarque : La matrice de fdans la base %3’ est diagonale, sans zéro sur la dia-
gonale, elle est donc inversible. On retrouve que f bijectif.

6. a. « Soit (x,y,z)eR3.0na:
(f(xe1+ye, +ze3) =0 )« ((x+y —2)e; + xep +(x +y —z)e3 =0 )

At-a=0s [y e & ((x,y.2)=y(0,11)).

&~
% est une base | X =0 x=0

Ainsi, Ker(f) = Vect{e, +e;} .

Remarque : On ne connait pas explicitement E. |l faut donc exprimer une base
de Ker(f) a l'aide des vecteurs qui sont donnés.
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* Lethéoréme durang donne:: rg(f) = dim(E) Ll dim(Ker(f)) — 8=
fle) =e, +e,+ e, etfle) =e, + e, nétant clairement pas colinéaires, ils
forment une base de Im(f).

5 i
Ona: Matg(f)=[1 0 o0 [.
1 1 ==

1 -1 0
Soit P=|1 1 1| lamatrice des coordonnées, dans 9B, des vecteurs de 7B’
1 -1 1
1 12 =112
Apres calculs, on trouve P inversible, et Pl-lo 12 —1/2].
-1 0 1
1 0 0
%' est donc une base de E, et Mat%-(f)zP"Mat%(f)P: 0 —1 of.
0 0 O

Remarque : On retrouve que e, — e, + e, engendre Ker(f).

7. a. Onnote A=1—X2,P, = X(1—X),P;=X2.

Pour montrer que B est une base, plusieurs méthodes s'offrent a nous :

* On peut montrer que la matrice des coordonnées des vecteurs de %3
dans la base canonique € :(XO,X,XZ) de R,[X] estinversible :

1 0 O
Matq, (B)=| 0 1 0] est triangulaire sans 0 sur la diagonale, elle
=1 =1 1

est donc inversible.
* On peut montrer que % est une famille libre :
Soit (A1, X2, \3)€R*.Ona:
(5P 93 H 0P :o)«ly(x1 FhaXa=h=dat)Rl = o)
@()\1 = )\2 :)\3 :0}

La famille 8 est donc une famille libre de cardinal 3 dans un espace vec-
toriel de dimension 3, c'en est une base.
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* On peut montrer que 7B est une famille génératrice :

Ona: X%= P+P,X=P+ P3,X2 = P;. Lesvecteursdelabase canonique
de R, [X] sontdoncdans Vect{P,, P,, P.}, donc R, [X]C Vect{R,P,,P3} ;

2!
l'autre inclusion étant triviale, on a R, [X]=Vect{ R, PP} .

Pour déterminer la matrice de fdans la base 78, on exprime les images des
vecteurs de B dans la base 7B (ce qui est relativement immédiat compte
tenu de la facon dont f est explicitée) :

Pour tout P€ R, [X], f(P)=P(0)P,+P'(0)P, +P(1)Ps
A(0)=1,R'(0)=0,A(1)=0, donc f(A) =P
P,(0)=0,P,'(0)=1,P,(1)=0,donc f(Py)=P; ;
P3(0)=0,P;'(0)=0,Py(1)=1,donc f(P3)=P;5.
On en déduit que Matg (f)= I3, donc que fest I'identité sur R,[X] !
b. f(a+bX+cX2)=a(1— X2)+bX(1— X)+(a+b+c)X2 =a+bX +cX2.

On retrouve l'identité !

8. a. Onnote P=(X—1)(X—-2),P=X(X—2),P3=X(X—-1).
Soit (A1, X2, X3)€ R>.Ona:
(NP +XoPy + X3P =0)
& (20 + (=3 =20 =) X (A +hg)X2 =0)

= —3)\1—2)\2—>\3 :Oﬁ(k-l:)\z :k3 :0).
>\1+>\2+>\3=0

La famille 73 est donc une famille libre de cardinal 3 dans un espace vecto-
riel de dimension 3, c’en est une base.

Pour tout P€ R, [X], f(P)=P(0)P+P(1)P, +P(2)P;
f(P)=2P,f(Py)=—P,.f(P;)=2P; ; on en déduit que

2 00
Matg (f)=|0 —1 0.
0 0 2
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Premiére méthode :

On exprime dans la base canonique €, les images par fdes vecteurs de €..

Ontrouve: f(X®) =2 6X+3X2 f(X)=—4X+3X2,f(X?| == 6X +5x2.

2 0 0
Onadonc Matg(f)=[-6 -4 —6|.
3 3 5
Deuxiéme méthode :
2 0O 0
Soit P=|—3 —2 —1| lamatrice de passage de la base ‘¢, a la base .
1 1 1
w2 0 ©
Aprés calculs, on trouve il <1 —1 -1,
1/2 1 2

A |ci, on connait la matrice de I'endomorphisme dans la « nouvelle »
base. On utilise donc I'égalité : Mat, (f)=PMatg (Fp~.

2 0 O
On retrouve : Matq, (f)=|-6 —4 —6|.
3 3 5

9. Soit (\,P,Q)e Rx (R[X]).

f(NP+Q)=(2+X)(A\P+Q)+X>(A\P+Q)"=Xf(P)+f(Q), par linéarité de
I'opérateur de dérivation. fest donc un endomorphisme de R[X].

Soit P€ R[X].Ona: (f(P)=0)¢> ((2+X)P+X°P"=0).

Considérons le degré dde P:

Sid<2,P"=0etona: (f(P)=0)« (P=0).

Si d > 2, 0on note ay le coefficient dominant de P.

Le coefficient dominant de (2+X )P+ X3P est (1+d(d—1))ay.
Oray=0,et d? — d+1 ne sannule pasdans R, donc f(P) = 0 est impossible.

Finalement I'unique polynéme P vérifiant f(P) = 0 est le polynéme nul, et f est
injective.
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10. a. Soit (A1, X3, Xp)€ R". 0N suppose : X X + X of (X) 4.4+ X pf " (x)=0.

mn

On applique ™ qui est linéaire :

£ (v X () e 0 (1)) = M0 () 4 M () -
£ 2 x)=""(0)=0

f" =0 donc, f étant linéaire, pour tout k€ N, "k —0 ; I'égalité donne

donc: \f"(x)=0.

Comme f"~!(x)= 0, on en déduit que \;=0.

Soit k € [1,n—1]. On suppose que pour tout i€ [1,k],\; =0. Onadonc:

Nt () Mg )+ 0 7™ V(x) =0,

F1=1k qui est linéaire :

On applique
PR (e () 4+ N2l T (0) 200" (1)

=Agtf T () X2l " (%) A 222K (x) ="K (0)=0.
Le méme argument que précédemment donne: Xy, =0.

Ainsi, par récurrence finie, pour tout k € [1,n], Xy =0.

La famille B = (x,f(x),...,f"_1 (x)) est une famille libre de cardinal n, c'est

donc une base de E.

0 0 0 0

1 0 0 0
Par construction de %, on obtient : Matg (f)=|0 1 0 0f.

0 0 10

A la lecture de la matrice, il vient :

Im(f)= ‘\/ect{f()«'),l"2 (X}, f 2 (x)} Ker(f)= Vect{f”“1(x)} .

T est bien définie sur £ a valeurs dans E, car si f < E, 'application t+— tf(t)
est continue sur R, elle admet donc des primitives (T(f) existe), elles-
mémes continues sur R (car dérivables !).
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Soit (\,f,g)e Rx E%.Pourtout xe R, ona:

T(\f+g)(x)= f:t()\f +g)(t)dt =X\T(f)(x)+T(g)(x), par linéarité de
I'intégrale.
T est donc linéaire, de E dans E, c’est un endomorphisme.

Remarque : Pour montrer que fest un endomorphisme, il ne fallait pas oublier
de montrer que Im(f)C E.

Soit f € E. On note g = T(f). D'aprés le théoréme fondamental d'intégra-
tion, l'application t - tf(t) étant continue sur R, g est dérivable sur R et

pour tout x€ R, g'(x)=xf(x).

Ainsi,on a:
(9=0)=(9'=0)= (VX €R,xF (x)=0) = (vx R’ f(x) = 0]
=  (f=0).

=t
fcontinue en 0
T est donc injectif.
b. Comme dit précédemment, les images par T des fonctions continues sur
R sont des fonctions dérivables sur R . La fonction « valeur absolue » est

continue sur B (elle est donc dans E), mais elle n'est pas dérivable en 0. Elle
n‘admet donc pas d'antécédent par T, qui n‘est donc pas surjectif.
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Espaces préhilbertiens

Dans le plan et dans I'espace usuels, on définit le produit scalaire de deux vecteurs dés
le lycée. Il caractérise I'orthogonalité, introduite trés tot de facon géométrique.

Dans le supérieur, on définit le produit scalaire dans un espace vectoriel.
L'orthogonalité est alors introduite d'un point de vue algébrique permettant, entre
autre, de construire des bases orthonormées d’espaces vectoriels.

Cette fiche vise deux objectifs : se familiariser avec la notion de produit scalaire en
dimension quelconque, et comprendre 'orthogonalité.

E désigne un R -espace vectoriel.

Jutiliserai le sigle b.o.n. pour base orthonormée.

B eounomeonnen

B Montrer qu'une application @ est un produit scalaire
On vérifie que :

1. Lapplication est bien définie sur E? et a valeurs dans R.

Remarque : Cela peut sembler évident, mais il ne faut pas oublier cette étape!

2. Elle est symétrique : (V(u,v)e E2,o(u,v)= Lp(v,u)).

3. Elle est linéaire par rapport a l'une de ses variables (la symétrie assurant
I'autre linéarité donc la bilinéarité) : Pour o € E quelconque, u+— tp(m,u) (ou
u> @(u,)) est linéaire.

4. Elle est définie positive :
Pourtout uc £, ¢(u,u)>0 et ((np(u,u)zo):>(u =t 0))

Remarque: Si o est bilinéaire, ona ¢(0,0)=0.
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Exemple 1

Soit ne N',(ag,.ap )€ R des réels deux a deux distincts.

Pour (P,Q)€ (R n[X]) on définit: ¢(P,Q)= ZP (ax)Q

Montrer que ¢ est un produit scalaire sur RH[X] :
Réponse
* ¢ estbien définie sur (R [X]) avaleursdans R.

* Soit (P,Q)E(Rn[X]) .Ona: ¢(P,Q)=¢(Q,P), car le produit P(aj)Q(ay) est
commutatif (dans R ), donc  est symétrique.

* Soit P€ R,[X]. Pour tout (X, QS)GRX( [X]) ona:

n

Lp(P,)\Q -I-S): Z P(ak)(XO+S)(ak)= )\Z P(ak)Q(ak)+ En:P(ak)S(ak)

k=0 k=0 k=0
=X¢(P.Q)+¢(P.S);
p est linéaire par rapport a sa deuxiéme variable donc, par symétrie, bilinéaire.

n
- Soit Pe Rp[X]. ¢(P.P)=3" (P(ax)) > 0.
k=0
Si ¢(P,P)=0, alors pour tout ke [[0,n], P(ay)=0 ; P est alors un polynéme
de degré au plus n, admettant au moins n + 1 racines distinctes, c’est donc le
polynéme nul.

¢ est définie positive.
En conclusion, ¢ est bien un produit scalaire sur R, [X].

B Orthonormaliser une famille finie, par le procédé de Gram-Schmidt

Pour toute famille libre (finie) {91,...,ep

il existe une famille orthonormée {ul,...,up} telle que pour tout ke |[1,p]| :
Vect{ey,...ex } = Vect{uy,...uy} .

} d'un espace préhilbertien (E(|))

« Pourk=1,0n prend u; =4

Al

« Pour ke[1,p—1], si la famille {uy,..ux} est construite, on détermine

Vi1 = k41— 2 (€k+1ui )uj . puis on prend uy g = Vet
= Vi
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Exemple 2

On munit Rz[X] du produit scalaire défini dans I'exemple précédent avec
ag=0,a,=1a, =2, c'est-a-dire :

V(P,Q)€ R;[X],(P|Q)=P(0)Q(0)+P(1)Q(1)+P(2)Q(2).

Orthonormaliser (pour ce produit scalaire) la base canonique (XO,X,X?‘).

Réponse

On note (Py,P,,P,) la base recherchée.

1
. x°|x°):3,on rend donc Py = —X°.
| g =5

» On trouve un vecteur de Vect{XO,X} orthogonal a Ry en prenant:

1

e | v Mols®Y 0y Foayl 4
Q= X—(X|R )Py =X B(X‘X )x X—3x3X°=x-1.

Remarque: Quand il n'y a pas d'ambiguité, on notera a le polynéme aX® (a S R) :
(01101): 2,0n prend donc P, = L(X- 1).
V2
* On trouve un vecteur de Vect{XO,X,XZ} orthogonal a Ry eta P, en prenant:
Q= X2 (X2 )P0 — (X2|R)R =X %(xz‘xo)x" = %(x?- x—1)(x-1)

:x2—1x5x°—1x4(){—1):x2—2X+l.
3 2 3

(02[02)—— on prend donc P, —\E[,\(2 —2X+%],

1 3( 1
La famille —--X[J X-1 ,\Hx2—2x+—
[\F T* ;3 3

produit scalaire considéré.

est une b.o.n.de R, [X] pourle

B Déterminer l'orthogonal d’'un sous-espace vectoriel

P Dans R3 -

On assimile les triplets a des coordonnées de vecteurs de l'espace muni d’une base
orthonormée ; on dispose alors du produit vectoriel de deux vecteurs qui permet
d’obtenir un vecteur orthogonal aux deux autres.
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Exemple 3

Dans B> muni de son produit scalaire canonique, déterminer I'orthogonal des
sous-espaces vectoriels F:Vect{(l,— 1,0),(2,—3,1)} et G= Vect{(m,— 1)} .
Réponse

On est en dimension finie ; un sous-espace vectoriel et son orthogonal sont donc
supplémentaires. Pour F~ on cherche un sous-espace vectoriel de dimension 1,
pour G* on cherche un sous-espace vectoriel de dimension 2.

Onnote U, v et w les vecteurs de I'espace de coordonnées respectives (1,—1,0),
(2,—3,1) et (1,1,— 1) dans une base orthonormée.

« Le vecteur uA v, de coordonnées (—1,—1,—1), est orthogonal a u eta v ;
on a donc (—1,—1—1)e F-. Comme dim(F* ) = 1, il forme une base. Ainsi:
Ft= Vect{(1,1,1)} .

« Le vecteur U est clairement orthogonal @ w car leur produit scalaire est nul ; on
adonc (1,—1,0)e G*.

Le vecteur uAw, de coordonnées (1,1,2), est orthogonal & w ; on a donc
(11.2)eG".

Les deux vecteurs déterminés ne sont pas colinéaires, ainsi :

G =Vect{(1,-10),(11.2)} .

» Si on connait une famille génératrice d'un sous-espace vectoriel dont on
veut I'orthogonal :

On cherche |'expression des vecteurs orthogonaux a tous les vecteurs de la famille
génératrice, en résolvant des équations.

Exemple 4

On munit Rz[X] du produit scalaire usuel. Déterminer |'orthogonal de
F:Vect{1+X,X+X2},

Réponse
Soit P=a+bX+cX?€R,[X].Ona:

(PeFl)ﬁ[((P[1+X)=0)/\((P|X+X2)=0)]@((a+b=0)/\(b+c=0))
e (P=b(-1+x-x2))

Onadonc: F* :Vect{l—X+X2} .
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B Expliciter une projection orthogonale sur un sous-espace vectoriel

» Si on connait une base du sous-espace vectoriel F de dimension finie sur
lequel on projette :

Sila base n'est pas orthonormée, on l'orthonormalise. On note % = (91.--.,9
b.o.n.de F. 2

p
On applique ensuite le résultat suivant : Vx € E,pg (x) = Z(x|ef)e; L
i=1

p) une

Exemple 5

Dans R* muni du produit scalaire canonique, déterminer la matrice dans
la base canonique €, de la projection orthogonale sur F:Vect{u,v}, ou

u=(1-1-11)v=(1111).
Réponse

(u|v) =0 ; la famille {u, v} est orthogonale, il suffit de la normer pour avoir une
b.o.n.de F.

On note u; =%(1,— 1,—11) et v; = %(1,1,1,1), les vecteurs normés.
Pour tout X =(x,y,z,t)e R%, ona:

1 1
pr (X)=(X|up)uy + (X1 )vyq :E(X_ y— z+t)u1+§(x+y+z+t)v1.

D'ou: pF((x,y,z,t)) = %(2){ +2t,2y+22,2y +22,2x 4 2t),

172 0 0 1/2
o 12 /2 ®
0o 1/2 1/2 0
172 0 0 1/2

puis : Mate, (pr)=

» SiEestde dimension finie, et si dim(Fi )< dim(F) :
Ondétermine la projection PpL sur F* , puison utilise larelation ::pFL + pr =idg.
Exemple 6

Dans R, [X] muni du produit scalaire canonique, expliciter la projection orthogo-

nale sur F:Vect{1+X,X+X2}.

Réponse

On a montré dans l'exemple 4 que F = Vect{1— X+ XZ} .
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H1— X +X2H = \/5 donc une base (ortho)normée de F- est

Q%ﬁ—X+Xﬂ}
Pour tout P=a+bX +cX? € R,[X],ona:

Pt (P) =3 (P X+ )1~ X+X2):%(1ﬁ X+X).

On en déduit :

Q{P};a+bx+fX2—E:£i£(

1—x+xﬂ

r Za+3b—c +a+23b+cX+—a+:'+2c 2.

B Calculer une distance

La distance d'un vecteur de E a un sous-espace vectoriel F de dimension finie est

donnée par le résultat suivant : Vx € E,(d (x,F))" =[x - |pe (x)"2

Calculer une distance revient donc a déterminer un projeté orthogonal.

Exemple7

On reprend les données de |'exemple 5. Déterminer la distance des vecteurs de la
base canonique de RY aF

Réponse

On note €4 = (e;,e,,e5,e4) la base canonique de R*.

Les images des vecteurs de la base canonique par p, sont données par les colonnes
de la matrice que l'on a déterminée.

On voit qu’elles ont toutes la méme norme: Vie [[1,4]],

pr (6=

5

Remarque : Si E est de dimension finie et si dim(F“I )< dim(F), il est plus

On en déduit que pour tout i € [1,4], d(e;,F)= \/”e,- H2 —lpe (e )”2 1

rapide de déterminer le projeté orthogonal p_| sur F + , et de faire le calcul ;

d(x.F)=lp,. (x)

Exemple 8
Dans B> munidu produit scalaire canonique, soit F = Vect{(LO,— 1),(— 1,2,2)} 1

Calculer la distance de x = (1,1,1) afF
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Réponse

En dimension 3, l'orthogonal de F (qui est de dimension 2) est un sous-espace
vectoriel de dimension 1.On détermine un vecteur unitaire ude F~ en normant le
produit vectoriel des vecteurs de coordonnées (1,0,— 1) et (—1,2,2).On obtient :

Ft :Vecti %—%,%”
Onadonc: d(x,F):HpF_L (x)“:"(x’u)u" = l(x|u)|:1.

u unitaire
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________

On s'échauffe

1. Montrer que les applications suivantes sont des produits scalaires sur |'es-
pace vectoriel E précisé.

E2—R
. E=R|X|:
’ e (P,Q)HJZP(X)O(x)dx
E°—R
b. E=Rp[X].¢: (.0} zn:P(k){O)O(k}(O) (avec ne N')
k=0
. E2-R
. E=C7([-11|.R),e:
c (=11R) (f,g)n—)fj1\('?—x2f(x)g(x)dx
E2SR

d. E=C'([01R): (f,g)|—>f(o)g(0)+‘]:f'(")9'(")dx

2. Dans B> munideson produit scalaire canonique, déterminer l'orthogonal
des sous-espaces vectoriels suivants :

a. F=Vect{(1,0,1),(1—10)}
b. F,=Vect{(—2,11)}
¢ K= {(x,y,z)e R3, x+y-2z :0]

d. F= {(x,y,z)e R,(x+y—22=0)A(z= 0)}

3. Dans B4 munideson produit scalaire canonique, déterminer l'orthogonal
des sous-espaces vectoriels suivants :

a. F=Vect{(110,0),(0,0,—1,1),(~1,2,0,— 1)}
b. F,=Vect{(10,1,—1),(2,1—10)}

« K :{(x,y,z,t)e R x+y—z—t :0}

d K= {(x,y,z,t)e R x=y zo}
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4. Dans R, |[X] onconsidére les sous-espaces vectoriels F :Vect{X 1+X 2}
F,={PeR,[X].P(0)=P(1)=0} et F;={Pe R,y[X],P( )=0}.

Déterminer I'orthogonal de chacun de ces sous-espaces vectorlels pour
les produits scalaires suivants :

a. Le produit scalaire canonique.
b. Le produit scalaire défini par:

v (P.Q)€ (B[X])(PQ) = P(~)Q(~ 1)+P(0)Q(0)+P(1)Q(1).
¢. Le produit scalaire défini par:

v(P.Q)e(R 2[x]) (PlQ)=P(0)Q(0)+P'(0)Q’(0)+P"(0)Q"(0).

5. Dans R* munidu produit scalaire canonique, orthonormaliser les familles
suivantes :

a. A={(1111),11,2,0)}
b. F={(1-10,0),(0,1-10),(0,0,1,—1)}
¢ F={(12-20),110,-1),(0,0,0,)}

6. Orthonormaliser la base canonique de Rz{X ] pour les produits scalaires
suivants:

a. V(P,Q)e (Ry[X]’ (PlQ)=P(-1)Q(~1)+P(0)Q(0)+P(1)Q(1)
b. V(P.Q)e(Ry[X]f.(PQ)= f; P(x)Q(x)dx
¢ V(P.Q)e(Ry[X]).(PlQ)=P(0)(0)+P(0)Q(0)+P"(0)Q"(0)

7. On munit R[X] du produit scalaire défini par :

1
v(P,Q)e (R[X].(PlQ)= fo P(x)Q(x)dx.
Déterminer la projection orthogonale de X3 sur R, [X] et en déduire la
distance de X3 a R,[X].

8. On munit R;[X] du produit scalaire défini par :
v(P.Q)€ (R,[X])"(PlQ)=P(0)(0)+P(1Q(1)+P(2)Q(2).
Calculer la distance de X% a Ry[X].
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On accélere

9. On se place dans M, (R).On considére le sous-espace vectoriel

e

0 -1
a. Montrer que lapplication ¢  définie sur (MZ(]R))Z par

up(M,N): tr( rMN) (ou tr désigne la trace) est un produit scalaire.

10
b. Déterminer le projeté orthogonal de M = [1 0] surF.
«. Déterminerl'orthogonal de F; en déduire, sans calcul, le projeté ortho-

gonalde N = sur F.

10. Dans M,(R) muni du produit scalaire usuel (donné dans l'exercice

0 1 0 1
précédent), on considére les matrices: M1:[0 ] M2:[ ] et

0 1 0
(1 o
=l =4
a. Montrer que B=(M;,M,,M3) est une base de F =Ker(tr), et I'ortho-
normaliser.

b. Expliciter le projeté orthogonal sur F d'une matrice Me M, (R)

¢. Veérifierque |, € F, et retrouver le résultat précédent.

1. Dans B* muni de son produit scalaire canonique, calculer la distance de
u=(1111) 8 6={(x.y,2t)e R* (x—y +2=0)A (x +y+z—t =0)}.

12. On se place dans E:CO([OJ],R) muni de son produit scalaire usuel:
1
V(f.g9)€ E%(flg)= fo f(t)g(t)dt .

a. Pourie {0,1,2} ,onnote f;: x> x' . Déterminer le projeté orthogonal
de f,sur F = Vect {fy,f,} .
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1

b. Endéduire inf f(xz—ax—b)zdx.

(ab)e R2“0

13. Montrer que I'application

o loR) - =
(f.Q) Hf(0)9(1)+f 1

scalaire sur C! ([0,1],3).

1 est un produit
+f ! "(x)dx

14. On se placedans E = C'([O 1] R) muni du produit scalaire défini par :

V(f.g)c E2(flg)= +f
(On a montré qu'il s'agit bien d'un produit scalaire dans |'exercice 1).
Soient F=Vect{f,:[0,]]— R,x>1} et G=Vect{f € E,f(0)=0}.

Montrer que F- =G et Gt =F.
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. Lesfonctions polynémiales sont continues sur R, donc ¢ est bien définie
2 .
sur (]R[X]) etavaleursdans R.

« Soit (P,Q)€ (R[X]). ¢(P.Q)=¢(Q,P) donc o est symétrique.

 Soit P R[X].Pourtout (X,Q,5)€ Rx (R[] ona:
(P XQ+5)=Xp(P,Q)+¢(P.S), par linéarité de I'intégrale.

¢ est linéaire par rapport a sa deuxieme variable donc, par symétrie,
bilinéaire.

1 2
* Soit PER|X|. ¢(P,P)= dx>0.
oit PER[X]. ¢(P.P)= [ (P(x)) dx>
XI—)(P(X))Z est une fonction continue et positive sur R, donc si

Lp(P,P):j:(P(X))ZdXZO, pour tout x&[0,1], P(x)=0 ; P est alors

un polynéme qui admet une infinité de racines, c’est donc le polynéme
nul. ¢ est définie positive.

En conclusion, ¢ est bien un produit scalaire sur IR[X ]

Les fonctions polynémiales sont de classe C™ sur R, donc ¢ est bien
=5 > S
définie sur (R, [X])" etavaleurs dans R.

« Soit (P,Q)€ (RH[X])z. ¢(P.Q)=¢(Q,P),donc ¢ est symétrique.

- Soit  PER,[X]. Pour tout (\QS)eRx(R,[X]’, on a:
(P XQ+S)=X¢(P.Q)+¢(P.S), par linéarité de l'opérateur de déri-
vation.
¢ est linéaire par rapport a sa deuxiéme variable donc, par symétrie,
bilinéaire.

L 2
.+ Soit PE R,y [X]. ¢(P.P)= Z(P( ](o)) >0.
k=0
Si @(P,P)=0, alors pour tout k< [0,n], P(k)(0)=0 ; 0 est donc une
racine de P de multiplicité supérieure a n + 1; P, de degré au plus n, est
donc le polynéme nul. ¢ est définie positive.

En conclusion, ¢ est bien un produit scalaire sur R n[X ] :
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Sifet g sontdes fonctions continues sur [—1,1],alors x > V1— x*f(x)g(x)

est continue sur [—1,1], donc ¢ est bien définie sur (CO (- 1,1],R))2 eta

valeurs dans R.

« Soit (f,g)€ (CO([— 1,1],R))2. ¢(f.g)=(9.f), donc ¢ estsymétrique.

* Soit fe CO([— 1,1],R). Pour tout (X\,g,h)e RX(CO([— 1,1],R))2, on a:
¢(f.xg+h)=Xe(f,g)+¢(f,h), par linéarité de l'intégrale. ¢ est li-

néaire par rapport a sa deuxiéme variable donc, par symétrie, bilinéaire.
+ soit fe CO(=11LR). o(f.f)= [ 12 (f(x)f dx>o0.
x> V1— x? (f(x))2 est une fonction continue et positive sur [—1,1],
1 P 2
donc si Lp(f,f):f 1\/1—){ (f(x))"dx =0, alors pour tout xe&[—11],

V1— x2 (f(x))2 =0, donc pour tout x€ |-1,1[, f(x)=0 (car V1— x?
sannuleen — 1 et en 1). Or fest continue sur [— 1,1], donc par prolonge-

ment on a : pour tout xe[— 1,1], f(x)=0. p est définie positive.

En conclusion, ¢ est bien un produit scalaire sur e ([— 1,1],ER).

. Sifet g sont des fonctions de classe C' sur [0,1] , alors leurs dérivées sont

1 2
continues sur [0,1] donc ¢ est bien définie sur (C ([0,1],R)) et a valeurs
dans R.
* Soit (f,g)e (C'([O,]],R))z. ¢(f.g)=9(g.f), donc ¢ est symétrique.

* Soit feC1([0,1],]R). Pour tout ().,g,h)e]l?.x(C‘([O,l],]?i))z, on a:

¢(f.xg+h)=X\¢(f,g)+¢(f.h), par linéarité de 'opérateur de dériva-

tion, et de l'intégrale.
¢ est linéaire par rapport a sa deuxiéme variable donc, par symétrie,
bilinéaire.

+ soit fe C'([0.1].R). @(f.f) = (f(0)] + [ ((x)] dx>o.

Fiche 19 w Espaces préhilbertiens Corrigés | 337



xn—a( ) est une fonction continue et positive sur [0, 1] donc

si. ¢(f,f)= +f dx 0, alors f(0)=0, et pour tout
xelo], f (x}—o ;ona donc.pourtout x€[0,1], f(x)=f(0)=0.

 est définie positive.

En conclusion, ¢ est bien un produit scalaire sur ¢! ([0,1],R).

7 ¥ dim(!—}l ):1.Un produit vectoriel donne : ;- = Vect{(1,1,—1)}.

b. Onnoteu= (—2,11).
dim(le ) — 2. Le vecteurv = (0,1,— 1) est clairement orthogonal a u car

leur produit scalaire est nul, il est donc dans F2J' . Pour trouver un autre
vecteur de F2l non colinéaire a v, on effectue un produit vectoriel, qui
donne :(—2,—2,-2).
On obtient : - = Vect{(O,L— 1).(1,1,1)} :

¢. F,estun plan vectoriel (de dimension 2). Son supplémentaire orthogonal
est de dimension 1.

Considérons le vecteur u = (1,1, - 2) .Ona:

(x.y.z)eR)e (((x,y,z)|u) = 0].

On en déduit que F; = u, puis que F3J' = Vect{u} , car nous sommes en
dimension finie.

Remarque : On retrouve la notion géométrique de vecteur normal a un plan,
dont les coordonnées en base orthonormée sont données par les coeffi-
cients devant x, y et z dans |'équation du plan.

d. F, est l'intersection de deux plans, c'est donc une droite vectorielle (de
dimension 1). Son supplémentaire orthogonal est un plan vectoriel (de
dimension 2).

Considérons les vecteurs u = (1,1,—2) et v=(0,0,1).Ona:
(x.y.z)eFy)e (((x,y,z)[u) =0A((x.y.2)Vv)= 0) .De plus, u et v ne sont
pas colinéaires.

On en déduit que F, :{u,v]J', puis que F,,*L =Vect{u,v} , car nous
sommes en dimension finie.
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. Onnote u=(1,1,0,0),v=(0,0,—1,1) et w=(—1,2,0,—1).On a:
(X :(x,y,z,t)eﬁl)<:>(((X|u)zO)/\((X|v):0)A((X|w):0))

X+y=0
ei-z+t=0  &(X=x(1,-1,-3,-3)).
—X+2y—t=0

Onadonc: A~ = Vect{(1,—1-3,-3)}.

. Sur le méme principe que le cas précédent :

X+z—t=0

(("fyfz't)Ele)@ 2x+y—2=0

((xy,2,t)=x(1,-2,0,1)+2(0,1,1,1)).
Onadonc: " =Vect{(1-2,0,1),(0,11,1)} .

Remarquons tout d'abord que F, est un hyperplan de R?4, carclestle noyau de

laforme linéaire: (x,y,z,t)- x+y— z—t . Son supplémentaire orthogonal
est donc de dimension 1. Considérons le vecteur u = (1,1,— 1.— 1) .Ona:

(X=(x.y,z.t)eF)e ((X[u) = 0) ;

On en déduit que F; = i, puis que ,'-'3l = Vect{u} , €ar nous sommes en
dimension finie.

Fs = Vect{(0,0,1,0),(0,0,0,1)} ,donc F - = Vect{(1,0,0,0),(0,1,0,0)} , car
la base canonique est orthonormée pour le produit scalaire canonique !

+ (Pmat+bX+oxeRt)e (((P|X):°)A(P‘1+X2):O)

@lbzo ﬁ(P:a(1—X2)).
a+c=0

Onadonc: A* :Vect{‘l— Xz}.
» K =Vect{X(1-X)}.Ona:

(P=a+bX+cx? erl)@((P|X—X2):O)<¢(b—c:0)
e (P=a+b(x+x?))

Onadonc: Ft — Vect{x°,x+x2} .
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R :Vect{Xz} ;onadonc: .F3l = Vect{XO,X} , car la base canonique

est orthonormée pour le produit scalaire canonique.
b. « Soit P=a+bX+cX? € Ry[X].
P(-1)=a—b+c,P(0)=a,P(1)=a+b+c. Ona:
(a—b+c)+(a+b+c)=0
2(a—b+c)+a+2(a+b+c)=0

b=0
¢>l @[P=a 1—2)(2]].
5a+4c=0 4

Onadonc: A =Vect{4—5x}.

* |ci, plutét que d'utiliser la famille génératrice de F, mise en évidence
dans le cas préce’dent il est plus judicieux de remarquer que pour tout
(Q.P)e K xRy[X], Q|P? —1)P(=1), avec Q(—1)=0 si Q n'est
pas le polynéme nul cari est e degré au plus 2, et a déja deux racines
(autres que —1).

Ona:
(PeR) e (P(-1)=0)

& (3(ab)eR?,P=(14X)(a+bX)=a(1+X)+bX (1+X)).

(P a+bx+cx2eF,) l

Onadonc: F™" :Vect{T+X,X+X2}.
* On utiliseici F =Vect{X2} .Ona:
(P:a+bX+CX2EF3l)ﬁ((a—b+C)+(a+b+C):0)
& (P=a(1-x2)+bX).
Onadonc: F3l :Vect{X,1—X2}.
¢. +Soit P=a+bX+cX?€R,[X]. P(0)=a,P'(0)=b,P"(0)=2c.
Ona:(P=a+bX+cx’eft|e [z:ZCZO@(ch(*sz)).

Onadonc: f* :Vect{-4+X2}.

340 | Corrigés Fiche 19 m Espaces préhilbertiens



-------------------------
--------------
------
--------

* K =Vect{X(1-X)}.
Ona: (P=a+bX+cX? €Fy' ) (b—dc=0)¢> (P=atc(ax+X2)).

Onadonc: f- = Vect{X°,4X+X2} .

* Ici, plutét que d'utiliser la famille génératrice de F; mise en évidence
dans le premier cas, il est plus judicieux de remarquer que pour tout
(Q.P)e xR, [X], (Q|P)=Q"(0)P"(0), avec Q"(0)=0 si Q n'est pas
le polynéme nul, car il est de degré au plus 2, et 0 est déja racine de
multiplicité 2.

Ona: (Pef" )¢ (P7(0)=0)¢> (I(ab)e B?,P=a-+bX).
Onadonc: f* = Vect{Xo,X}.

5. a. Onnote e;=(1,1,1,1),e; =(1,1,2,0) et {ty,u;} lafamille recherchée.
L
22272
On trouve un vecteur de Vect{e,e,} orthogonal a u; en pre-

||91||= 2, 0on prend donc u; =

nant: v, =e,—(ey|u)u;=(0,01—1); [vo]=+v2, on prend donc

u, =

1 1
0,0,—=,——F=|.
o
b. On note e;=(1,—1,0,0),e; =(0,1,—1,0),e3=(0,0,1,—1) et {uy,up,u3} la
famille recherchée.

e =+, on prend donc u; = %(1,— 1,0,0).

On trouve un vecteur de Vect{e,e,} orthogonal & u; en pre-

nant: Vo=e3— (ez ‘UI)U] = [%,%,— 1,0] - |l'|{2|| = E, on prend donc

”2:715“(

On trouve un vecteur de Vect{e;e,,e3} orthogonal a u;et u, en pre-

1.1,—2,0).

1 2
§'_1]; [va|=—=. on

1
glgr \/3 ’

nant: v;=e;— (e3 |u1)u] = (93 |u2)u2 =[

prend donc u3 :?(Lm,— 3).
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¢. Surle méme principe que précédemment on trouve :

1 1 2

Uy = 5(1,2,_ 2,0),uy = m(z,mz,— 3),u3 = ?(2,1,2,3) :

6. a. Onnote (Py,P,,P,) labase recherchée.

1
. X°X0)=3,on rend donc Py = —X©.
( | P 0= 73
1
. XXO):(J; X|X)=2,onprenddonc L=—X.
( ' ( | ) P 1 NG

* On trouve un vecteur de Vect{XO,X,Xz} orthogonal a By eta P, en

prenant:
1 1
Q=X —(X|R )P —(X2|A )R = X* —§(x2’x°)xo _5(125@}(
_x2_2,
3

2 3{.5 2
Q,|Qy )=—,0on prend donc :J:X —-].
(02]0z) =3 on prend conc £, =32 2
b. Onnote (R, P, P,) labase recherchée.
. (X°|X0):'[.on prend donc PO:XO.

* On trouve un vecteur de Vect{XU,X} orthogonal a Ry en prenant:

01:X—(X|P0)P0=X—%.

1, 1) pf, 1
X‘E‘X”E]_fo["‘i

on prend donc P, =+/3(2X —1).

* On trouve un vecteur de Vect{Xo,X,Xz} orthogonal &8 Ry eta A en
prenant: Q, =X2—(X2|P0)P0—(X2|P1)P|.

. x2ip Y= [a2ap Tl 5 s s\ 53

On a: (X |P0)—Lx dx—g et (X |P1)—\/§f0(2x X )dx—?.

donc Q, :XZ—X+%.
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4 3, % .2 1 1
X =2X =X —=X4—
3 3 36

2

X —x+ dx

dxfo1

(02|02)=j:

=#, on prend donc P, =\/§(6X2— 6X +1).

¢. Labase canonique est orthogonale pour ce produit scalaire ! Les deux pre-
miers vecteurs sont normés ; il suffit de normer le troisiéme. On prend :

Po=X2,A=X,P, :%xz.

7. Dans l'exercice précédent, on a vu que pour ce produit scalaire,
(XO,\E(ZX - 1),«/5(6X2 - 6X+1)) est une base orthonormée de R, [X].
On en déduit que
3\ _[v3]y0)y0 By -
Pa,[x(X )_(x ‘x )x +3(x32x —1)(2x 1)

+5(x3|6x2 _6X +l)(6X2 G +1)

1 2 —(2X=1)+ 1(6x2—6x+1)=§x2_EX+i

3720 4 2" 57 20
e Jiled3 31 N2 V7
puis: d{ X 'Rzl"])—\jﬂx [l =136°

8. Dans lexemple 2, on a vu que pour ce produit scalaire,

[—~x° — 1),\F[x2 A
2 3

[J‘ J—( E(R1[X])2=\E

Si on se place dans R, [X], et si on considére F=R;[X] comme un sous

est une base orthonormée de R;[X].

X2—2X+%]e R,[X].

espace vectoriel de R,[X], le vecteur P =\E[x2 - 2X+n;:] est un vecteur
normé qui dirige F* .

P normé

-3

On en déduit que : d(XZ'F):HpFJ. (Xz)” = “(X2 |P)P

Remarque : On peut également procéder comme dans |'exercice précédent,
mais c'est plus long !
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9. a. ¢ estbien définie sur (M2 (R))2 avaleursdans R.
- Soit (M,N)e (M, (R))".

o (NM)=tr( ") tr('(rNM))ztr('MN)zxp(M,N),

tr( "Ah)_d:tr(A)

donc ¢ est symétrique.

» Soit Me My(R). Pour tout (X, N,P)€ Rx (M (R))’, ona:
©(MAN+P)=Xp(M,N)+¢(M,P), par linéarité de la trace.
¢ estlinéaire par rapport a sa deuxiéme variable donc, par symétrie, bili-
néaire.

' a b

* Soit Me M, (R). On note M:[c d]'
On a: ¢(MM)=a’+b>+c*+d*>0, et si ¢(M,M)=0, alors
a=b=c=d=0,donc M=0. ¢ estdéfinie positive.

En conclusion, ¢ est bien un produit scalaire sur M, (R)

On notera désormais (M|N) = (M,N).

1 0 0 1
etA2= .
0 -1 1 0

Orthonormalisons la base (A, A)) de F:

b. Onnote A=

0o 1
(A]Ay)=tr —0 ; la famille est donc orthogonale, il suffit de la
-1 0

normer.

1
Al

0

1
0

0 1 ©
1]=2,cmprenddoncB,zi[ ]

J2lo0 —1

0 0 1
1]:2,onprenddonc 32:"]“[ ]

J211 o

LU
;onadonc: pg(M)=(M|8,)B,+(M|B,)B, :%[1 B 1] :

4] =t

10
M=
b 5

¢. Ona:

e s

N

o ()=o) (1))
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10.

------------------------
--------------
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--------

e

ﬁ»((a—d:0)A(c+b=0))¢}[M=a[; 0]+b[ 0 1]]

1 -1 0
1 0]10 1
Donc F = Vect ; 2
0 1)J|-1 0

On remarque que N est la somme des deux vecteurs qui engendrent FL,
c'est donc un vecteur de F~ ; on en déduit (sans calcul) que pr (N) ={Q.

. Onatr(M) = tr(M,)) = tr(M,) = 0, donc A est une famille de Ker(tr).

Dans M,(R), l'application linéaire «trace » est une forme linéaire (a va-
leurs dans &) non nulle. Son rang est donc 1 et, d'apres le théoreme du
rang, son noyau est un hyperplan de M,, (R)

Dans M,(R), Ker(tr) est donc un sous-espace vectoriel de dimension 3.
Pour montrer que la famille 28 (de cardinal 3) est une base, il suffit donc de
montrer qu’elle est libre.

Soit (A, X2, 23)€ R3.

[A3;=0
A+Xy;=0
X, =0
—XA3=0

La famille 9B est donc bien une famille libre, de cardinal 3, c'est une base
de Ker(tr).

Le procédé d’orthonormalisation de Gram-Schmidt donne:

0 1 0 0 1 0
B, = By = ,BB:L :
0 0 10 J2lo =1

On sait que pour tout Me M, (R),

()\]M]+>\2M2 +)\3M3=0M2(R))<=>* <=>(>\|=>\2=)\3=0).

[a b
En notant M = ,ona:
¢ d
0 Olfa b 0 0
(M[By) = (By|M) = tr ol all=Tl, blIF8
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(V) (o)~ []

1(1 Ojfa b 1la b a—d
g °J 3ol 7
a;d b
On obtient: pg (M)= . d-a
2

¢. Soit NeF. (L|N)= tr('l2N)= tr(N)=0 (car F = Kerftr)). Donc I, € F " et,
compte tenu des dimensions, F- = Vect{/,} .
10
||Iz]|2 = tr[O l]: 2, donc une base orthonormée de F* est [%12] ;

On en déduit que pour tout Me M, (R),

pr(M)=Id(M)— PpL (M)=M— %(Iz M1y =M~ tr(zM) l,, ce qui corres-

pond au résultat obtenu a la question précédente.

1. Ona: ((x,y,z,t)e G)ﬁ ((x,y,z,r) =x(1,0,— 1,0)+y(0,1,1,2)), donc

12.

G = Vect{(1,0,—1,0),(0,11,2)} .

Par le procédé d'orthonormalisation de Gram-Schmidt, on obtient une b.o.n.

151 4 8 416
1,0,—1,0),[—|=.1=.2
JE( )\/;[2 2 ] ]

deG: s o n
Finalement, on obtient : d((T.LL]),G): ZJ‘% .

, puis pg ((1,1,1,1))=

T CEEE

a. Onorthonormalise la famille {f, f} par le procédé de Gram-Schmidt.
On obtient :

go: X > 1,9y x> /3(2x—1), que I'on peut écrire : gy =fy,9 =3 (2f;—fy) .

j'1x2dx fo +3[f1x2 (2x— 1)dx](2f1 —fo)=f— %fo .

b. f — b| dx= f |f fi—bfy|” =(d(f5,F)) .
S S —ax—b) = gl ol = (d(.F))
J5

=[all e (&) =2

On en déduit: pg(f)) =
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13. fet g étant des fonctions de classe C ! sur [0,1], leurs dérivées sont continues

sur [0,1] donc ¢ est bien définie sur (C1([0,1],R))2 et a valeurs dans R .

* Soit (f,g)e (C*([O,i],R))z. ¢(f.g)=(g.f) donc o est symétrique.
* Soit fEC'([OJ],R). Pour tout (X\,g,h)e Rx(@([OJ],R))z,on &

¢(f.xg+h)=X\p(f.g)+¢(f.h), par linéarité de 'opérateur de dérivation
et de l'intégrale. ; est linéaire par rapport a sa deuxiéme variable donc, par
symétrie, bilinéaire.

. Cni 1 : B Voo
Soit f € C'([0,1],R). w(F.)=2f(0)f (1)+ [ (F(x))"dx.
Remarque : On veut montrer que pour tout f& C ! ([0,1],1[&),

fol(f ’(>«'))2 dx+2f(0)f(1)>0.

Une inégalité faisant intervenir l'intégrale d'une fonction au carré doit faire
penser a l'inégalité de Cauchy-Schwarz.

Dans C° ([0,1], R) muni du produit scalaire usuel, pour tout g € C° ([0,1],1&),
I'inégalité de Cauchy-Schwarz donne :

U:g(x)xldx - S[ﬂ(g(x))zdx][j:12dx
= JREENE

; C'est-a-dire :

vge C® ([0,1],&),[j:g(x)dx

feC'([0,1,R) donc f'e €°([0,1],R) ; on applique I'inégalité pour g=f",

foif'(x)dx 2 < L](f'(x))z dx .

.
Le théoreme fondamental d'intégration donne: f f'(x)dx =f(1)—f(0).
On en déduit : 9

ona:

(F()- (o) < J (F(x)) ax

0

donc (F(1)f* +(F(0))’ — 2f (0)f (1)< [

0
1

etenfin: 0< (F(1))" +(f(0)) < o(f' x))’ dx +2f (0)F(1), donc (F,f)> 0.

(F(x)) .
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Lesinégalités 0 < (r’(1))2 +(f(0))2 < fi

5 (f'("))z dx+2f(0)f(1),donnent:
(o(f.f)=0)=

=>(Vxe[0;1],f(x)=o)_
y est définie positive.

En conclusion,  est bien un produit scalaire sur C1([0,1],R).
14. Ona: (fe Ft )@ ((f|fo)=0)<:> (f(0)=0),donc F* =G.
Remarque : On a toujours FC F L maisonna pas toujours |'‘égalité...
Soit g€ G- et soit h—=g— g9(0)fy.

Remarque : On veut montrer que G~ = Vect{f,} , il n'est donc pas trés sur-
prenant de s'intéresser a ce vecteur h.

Ona: h(0)=0,donc he G.On en déduit que (h|g) =0, soit encore :

||9|12—9( 0)( folg)= +f 0))2:f;(g‘(x))2dx:0.
Ainsi, pour tout xe[O,l],g( )—0 dou: g_g( JloEF.

On avait FC F-+ =G', on vient de montrer que G C F, on a donc bien
G- =F.
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Series numériques

En premiére année, I'étude des séries numériques vient compléter celle des suites, mais
les exercices sont de nature différente. La recherche de convergence de séries permet de
mettre en ceuvre l'analyse asymptotique, et le calcul de sommes nécessite parfois une
certaine agilité dans le calcul algébrique.

Les techniques utilisées sont assez peu variées, et la répétition d’exercices permet de les
maitriser relativement vite. C'est l'objectif de cette fiche.

Pour la filiére PTSI-PT, I'absolue convergence est au programme de deuxiéme année.

Y o monecammen

B Utiliser correctement la limite du terme général d’'une série

Si la série ) "uj, converge, alors lim u,=0.
n—+o0o

Ce critére sert a montrer qu'une série diverge :

Sile terme général n'admet pas 0 pour limite, on dit que la série diverge grossie-
rement.

Exemple 1

— cos(

Montrer que la série Ze n) diverge.

Réponse

Pour tout n€ N, —1< —cos(n) dong, par croissance de la fonction exponen-

tielle, e~ 1< e~ 0s(M)

On en déduit que le terme général de la série nadmet pas 0 pour limite, donc que
la série diverge grossiérement.

A |im u, =0est une condition nécessaire non suffisante pour avoir la
n—+o00

convergence de la série Zun . Ce critére ne sert donc JAMAIS pour montrer
la convergence d'une série.
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Exemple 2

Montrer que la série Z L) diverge (bien que lim i 0)

n>0 n—+oco N

Remarque: |l existe de nombreuses démonstrations de ce résultat. En voici une.

Réponse

Onnote (S, ), la suite des sommes partielles.
SoitpCN*°S S.= % 1>p>< ] car0<n<2p:>1> .
= ' 2p p n:p+1n <l 2p ' ey — 2p .

— * L ‘ :
Ainsi, pour tout pe N, 5,,— 5, > re Si la suite (S,) _.* convergeait vers un

nel

réel L, il en serait de méme de la suite extraite (S2n)neh’* ce qui est impossible

d'apres l'inégalité démontré. On en déduit que la suite des sommes partielles

diverge, et donc que la série Z L diverge.

n>0n

M Utiliser les critéres de comparaison pour déterminer la nature d'une série

A

» En montrant que le terme général u, est équivalent en I'infini au terme
général d'une série POSITIVE dont on connait la nature :

Exemple 3
- i 0 . 1
Donner la nature des séries Zsm[—] et Z sin —]
n n2
n>0 n>0
Réponse
, : 1 . 1
Ona:sinx ~ x donc sin|— ~ — et sin|l— ~  —.
x—0 nJ)n—+4oc N n? Jn—+o00 n2

1 ik 1 2 " :
Pourtout n> 0, —> 0, et la série Z — est une série de Riemann divergente.

R ﬂ>0n

1 :
u] estdivergente.

Par comparaison de séries positives, on en déduit que la série Z sin
n

n>0

1 5 2 1 G .
Pourtout n>0, — >0 et la série Z — estune série de Riemann convergente.

n n>0N

Par comparaison de séries positives, on en déduit que la série Zsm[—] est

2
convergente. n>0 n
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Remarque : On sait que deux fonctions équivalentes en a< R sont de méme
signe au voisinage de a. Il n'est donc pas nécessaire d'étudier le signe du terme
général de la série, celui de I'équivalent nous le donne, pour n assez grand.

» En majorant a partir d'un certain rang |un| par le terme général d'une série
convergente :

On obtient alors I'absolue convergence de la série Zun , donc sa convergence.

Exemple 4
sin(n)

2

Donner la nature de la série —_—
n“+n+2

Réponse

. sin(n 1 1 ; "
Pourtout ne N 2# < —5 - Z 5 est une série de Riemann convergente.
n“+n+2[ n° ,oon

sin(n
Par comparaison de séries positives, on en déduit que la série Z #
2
n“+n+2
, ) , sin(n)
converge, c'est-a-dire que la série ———— est absolument convergente,
donc convergente. n“+n+2

B Appliquer le « critére de Riemann » pour déterminer la nature d’une série
A
P Sionsaittrouverunréel a>1telque lim n"u,=0:
nN—-+o00

Alors on a: u,=0,_, .., |—| et par comparaison a une série de Riemann

convergente, Zun converge absolument, donc converge.

Exemple 5

Donner la nature de la série ere_" :

Réponse

2 n n

Par croissances comparées, lim n“xne " =0.Ainsi, ne " =o0,_,

n—+0c0

g
nz-

1 i ; . .
Z — est une série de Riemann convergente donc, par comparaison, Zne

n>0"
est une série convergente.

n
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» Sionsaittrouverunréel a <1telque lim n"u,=+occ :
n—+00

1 . . L
Alors, pour n suffisamment grand, u, > — et par comparaison a une série de

Riemann divergente, > "u,, diverge.

Exemple 6
g 1
Donner la nature de la série Z ;
noVninn
Réponse
P 1 /4
= = 3 3/4 T . N e
Par croissances comparées, |lim n>""x = lim —— =400 . Ainsi, a
n—s 400 Jnlnn  n—+oc Inn

partir d'un certain rang,

1 1 1 i .
T 2 =g > 0. > —77 st une série de Riemann
ninn ~ n Sl

1
nlinn

divergente donc, par comparaison, z est une série divergente.

n>0

B Montrer la convergence d’une série de la forme E(—1)ﬂ u,,avecu,>0

On note (S,) la suite des sommes partielles. Si la suite (u,,) est décroissante, de
limite nulle, on montre que les suites extraites (S,,) et (S,p.1) sont adjacentes.

Le théoreme des suites adjacentes permet de conclure a la convergence des suites
(S2n) et (Syns1) vers une méme limite donc, d'aprés le théoréme sur les suites
extraites, a la convergence de la suite (S, ), c'est-a-dire la convergence de la série

Z (" 1)n Up -
Exemple 7 ﬂ |

Donner la nature de la série z
n

i n>0
Réponse

1

n

On note (S, )., la suite des sommes partielles de la série )
n>0
Montrons que les suites (S, )n>0 et (52,,_,_1 )n20 sont adjacentes :

-1 1 -1

- 0,d I i
2n+l+2n+2 (2n+1)(2n+2)< , donc la suite

* Soit n>0. Szn+2—52n:

(San ),y ©st décroissante.

1 1

2n+2 2n+3  (2n+2)(2n+3)
suite (52n+1 )n> o estcroissante.

* Soit n>0. Syniz—Sopp= >0, donc la
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: : —1
* |im (S —-5,]= lim =0
n—~+:x.( 2n+1 2n) nesoo JR4T

Les suites (S,),_, et (S2n +1)n2 o sontdonc adjacentes. On déduit du théoréme

des suites adjacentes qu’elles admettent une méme limite réelle, donc que la suite
(Sn )ﬂ> o converge, d’aprés le théoréme sur les suites extraites.

Par définition, la convergence de la suite (S,)

)

n>0 h

e ASsure la convergence de la série

Remarque : Cet exemple montre qu'une série convergente peut ne pas conver-

: (|
ger absolument, puisque Z — diverge.
n>0

2. s n
A Les séries de la forme > (=1)"u, avec u,>0 ne sont pas toutes conver-
gentes.

Exemple 8
-— . L. 1. . 1 .
Qn cqnmdere la suite (uj, ]n>0 définie par: u, = - sin est pair, et u, =— sinest
impair. n
Montrer que la série S~ (—1)"u,, diverge.

) n>0
Réponse

On note (S, )n> o la suite des sommes partielles.
n—1 1

n
1 :
Pourtout n>0,0na:S,, = EE_ 3 (en séparant dans la somme

.
25K =o(2k+1)
finie les termes d'indice pair et ceux d'indice impair).

;2 ~ Lz ,donc par comparaison a une série de Riemann convergente,
(2k +1)° k—+ 4k

» 1 oo ; :
la série Z—z converge, c'est-a-dire que la suite de ses sommes partielles
(2k+1)
converge.

- 1 a2 : 5 ;
La série Z — diverge, donc la suite de ses sommes partielles diverge.

k>0
Par somme, on en conclut que lasuite (S, _ , diverge, doncque lasuite (Sp,) _ o

diverge, c'est-a-dire que la série > (—1)"u, diverge.
n>0
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Remarque: De fagon générale, il y a convergence de la série Z (— 1)" u, lorsque la

suite (u,) décroit vers 0. Ce résultat fait I'objet d'un théoréme étudié en deuxieme
année dans les filieres MP et PC, appelé critére spécial des séries alternées.

B Calculer la somme d’une série convergente

A La nature d’une série ne dépend pas de ses premiers termes, mais pour le
calcul de sa somme, le changement d'un seul terme modifie le résultat, il faut
donc bien préter attention au premier terme.

Remarque : A ce stade de I'apprentissage, on connait peu de sommes de séries.
Lorsque l'on demande de calculer une somme, on doit se ramener a une
somme connue.

Pour cela, sauf cas particuliers (nous en verrons deux dans les exercices), deux
possibilités :

» En reconnaissant une série géométrique :

*
La série géométrique » g" (o1 ge C , ny < N) converge si, et seulement si

n=ng
+00 qno
lg| < 1, et dans ce cas, sasomme vaut: ) g" =
n=nq

-4

Exemple 9
- ch(n
Montrer que la série Z —g——l converge, et calculer sa somme.
n=0 3
Réponse

ch(n) e"4+e "

Pour tout ne N, —1-
3" 2x 3" 2

n
il
i

1 n
e e . i . e
0< §<1 et 0< T<1, donc les deux séries géométriques Z[g] et

n
o1

> |—| convergent.

B & b " ch(n)
Par combinaison linéaire, on en déduit que la série Z"—ﬁ_" converge, et que
l'ona: 3

n
‘i:x'ch(n)_l f e”+§' e—‘] 3, _3[ i, ]
n 2 3 3 I 2 1| 2|3— -1
n=0 3 2| p=o\3 n—o| 3 i 1_2 2 2{3-e 3-e
3
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» En reconnaissant une série télescopique:

Une série télescopique est de la forme > (Upyr—up) (0 (uy, )HZHo est une
suite numerique). n>ng
Elle converge si, et seulement si la suite (up,) — converge, et dans ce cas, sa
+00
somme vaut: > (Upiq—Uy)= n—IETx Up — Upy -
n=ng '
Exemple 10
L. 1
Montrer que la série Z o converge, et calculer sa somme.
o)
Réponse
1 1 1
Pourtoutn>0, ——=————,
n(n+1) n  n+1
S e 1
La série s'écrit donc )~ (u,4q— Uy, ) avec, pour tout n> 0, U, =——.
n
n=>0

On reconnait une série télescopique.

o0
lim u,=0,donclasérie converge, etona: " ————= lim u,—u;=1.
p=v<Lion — n(n+1) n—+tox
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On s'échauffe

1. Donner la nature des séries numériques suivantes :

a. ZlArctan %]

n>0"
Inn
b. —_—
n>0n3/2
3
(«/5 +1)
‘ ———
n=0 (n+1)2n

d > ¥n
. n>0\/n3 +1— (\/H+1)3

e. > (cos(n+1)— cos(n))

n=0
1
f. Z cos —]—1]
n>0 R
g. Ee_‘/’_’
n=0
ik
h. Z—e n
n>o0"
. 1 1)
i Z —cosz—n
n=0
- 1 13
oY —Inj1+—
n>0n \/H
1. (.1
k. }:—m2+—]
n>0n n
0
—cos|—
| n L
n=>0
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On accélere

2. Montrer que les séries suivantes convergent, et calculer leurs sommes :

5~ 3h(n)

n
n>o0 4

1
2 n(n+1)(n+2)

n=0
Z e 2”ch(n)
n=0
1—2n
2 2
n>2 n (1—- n)
1
In[1— —]
L s
n>2 n—1
Z In[1+ 2
porg n(n+3)
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3. Donner la nature des séries numériques suivantes :
sinn

3/2
nEOn +cosn

i
b. ZE+;]

n=>0
n n2
« |-
a0 n+1

n=0

©%

n>2 Inn
1

g. Z(-l)”cos—

n>0 n
1¢0

h. ——dt
rg) -ﬁ) 1+t

. sinn+cosn

Wy
n>0 n’

) |sinn|+|cosn|
ooy ——
n>0 n
(Inn)n
k. Z Inn
n>2 N
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4, Donner la nature des séries suivantes, en discutant suivant la valeur du (ou
des) parameétre(s) :

a. Za"’ﬁ,a>0.
n>0
aﬂ
b. —.,a>0.
,E,HGZ"
3
C. Ze‘m "'b",(a,b)eRz.
n=0
d. Z[%/n3+an—\/n2+3,aelﬁ.
n>0

n
e. Z AR a",a>0.
n=0

5. Soit ) "ay, une série convergente a termes positifs.

- - q ;
a. Déterminer la nature des séries » H_” et 3 sin®(a,).
an

b. On note (”ﬂ)neN la suite définie par upe R" et pour tout ne N :

1 [ 4 2
un+1=z[un+ up,” +ap ]

Montrer que (up ), _; converge.

5 i o a ; 2
6. Déterminer la nature de la série Zln[cos[—n]] en fonction du réel
n=0 2
T T

, et lorsqu'elle converge, déterminer sa somme.

)

n

ac

7. Calculer la somme de la série Z
n>0
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1
~ — ; donc par comparaison a une série de Rie-

1 1
1. a. Ona: —Arctan|—

n nJn—+oc n?
; 1 1
mann convergente, la série Z —Arctan|— | converge.
n>0n B
Remarque : Les séries de Riemann, de la forme Z— avec € R, sont
n
n>0

positives. Il est donc inutile de préciser que I'on applique un critére de com-
paraison pour des séries positives (c'est induit !).

. : . Inn . Inn
b. Par croissances comparées, on a: lim n5’43—/2: I —577 =9
n— +oo n n—+oo n
e Inn 1
on en déduit que 37 = Op—s 400 pe
5
= > 1, donc la série de Riemann z 5}4 converge et, par comparaison,
4 n>0"
la série Z —ﬁ converge.
n>0
(\/_ +1)

¢. Ona: donc par comparaison a une série de Rie-

(n+1) anJr'l'O 2 '

(J5+1)3

n=>0 (ﬁ+1)2 n

d. Ilfautici préter attention au dénominateur :

g
\/rTH—(\/HH)S:nE :

mann convergente, la série converge.

+—

1/2 3
_[1 +L]
n? Jn

7

n 1
= . anl3
n3_[_ (\/_+1) n—-+oo 3N
§< 1, donc par comparaison a une série de Riemann divergente, la série
> In
n>0\n® +1—(Vn+1)

1 1
=n2 [1+_3+0n—>+m 3]

3
14+—=+4o0,_,
2n n \f_ nee

3
B +0n— 100

|

Par quotient, on obtient :

= diverge.
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f.

On reconnait une série télescopique. Montrons par I'absurde que la suite
(cos(n)) diverge. Si (cos(n)) converge vers un réel L, alors :

Comme pour tout n€ N ,cos(2n)=2c052 (n)—1, par passage a la limite,
ona:2l2—-L—-1=0.

De plus, pourtout n€ N, cos(n)cos(n+1)= -;—(cos(2n+1)+cos(1)), donc
par passage a la limite,on a: 2L? — L — cos(1) = 0.

Or cos(1)==1; on a donc une contradiction, et la suite (cos(n)) diverge.

On en déduit que la série télescopique > (cos(n+1)— cos(n)) diverge.

n=0
1 1 ; 53 .
On a: cos|—|—1 =~ —— (de signe constant) ; la série de Riemann
n n—+o00 2n
1 2 1 .
Y — converge, donc la série )~ —— converge et, par comparaison,
n>oN n>0 2N
g 1
la série E[cos[—]—1 converge.
n
n>0 3
Par croissances comparées, lim (\/r—?) e_‘fH =4, donc
n— 400
e_‘/E =0 L Par comparaison a une série de Riemann conver-
~On—too | 377 | P
e S a0
gente, la série ) "e converge.
n>0
B 1 ; 5 ; .
Ona: —e " ~ — ;donc par comparaison a une série de Riemann
n n—+oco N

1
; L5
divergente, Y " —e 1 diverge.
n>0

2]

2
1 1 1 1 1 1 3

On a: ‘I—cos[— ~ —x[— ¥ [— =— et Z— est une sé-
2" Jn—+02 (2" 2’} A 4"

rie géométrique positive convergente, donc la série positive E
22n+1

1—cos l
n

converge et, par comparaison, E
2

n=0

converge.
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1 . . i ,
~ =5 donc, par comparaison a une série de Rie-
n—+oo n

Jn

o 1 1
mann convergente, la série -ln[1+——- converge.

n>o" Jn

In(2)

~ —— dong, par comparaison a une série de Rie-

k. Ona:lln[2+l
n—+4oo N

n n

1 1
mann divergente, la série Z —In 2+—] diverge.
n

n>0"

n

— COS|
I. Ona:n

1 ; 5 - .
~ -_ donc par comparaison a une serie de Riemann
n—+oo N

[1
— COS| —
n

divergente, Zn ] diverge.

n>0

4 n n 4 n
L42 - %,dbl:l lim L‘;zz‘]
- ol +(2n)" n—+o0 2 n—+oo 22N +(2n)

n* 44"

m. Ona:

La série Z ———— est grossiérement divergente.
5" +n’ s S
—_— —— dou ——

2
n>02°"+(2n)

_ B 2]" .

32" 4 5" ps 400 327 32" 45Ny iol9)

par comparaison a une série géométrique positive convergente, la série

n. Ona:

5" 4’
E ———— converge.
32n+5n
Zsin(n )—1| 25|n(n )+1
< <

3 .
n’ n’ n?

o. Pourtoutn>0,ona:

par comparaison a une série de Riemann convergente, la série
Zsin(nz)—l
3

ch(n h L "
(n) - J-xe_ ; €51 donc la série géométrique positive
2" n—+4oo 2 2" 2

est absolument convergente, donc convergente.

3

n>0

p. On a:

e ch(n)
E[—] diverge donc, par comparaison, la série >~ —— diverge.
2 g 2

362 | Corrigés Fiche 20 w Séries numériques



2,

n
sh(n) 1|(e)" =
a. Pour tout neN, on a: ( ):— Lol 0 . M ; 0<E<1 et
4" 2|14 i 4
g e” e N
0 < —— < 1,doncles sériesgéométriques Z — et Z —— convergent.
4 4" 4"
n=0 n=0
sh(n
Par combinaison linéaire, Z # converge etlona:
n>0

+§sh(n)_1 1 1 ]:2[1 1]]_

s 4" 2l1—e/4 1_eV4) l4-e 4

Une décomposition en éléments simples donne pour tout n>0:
1 1 1 1 2 1t . 1 1 1 1

n(ni(n+2) 2n n+l 2n+2) 2

n+2 n+1) 2ln+1 nJ
Ainsi la série est une série télescopique de la forme
gjn(nﬂ)(wz) P
i 1 (A 1
> (upy1—up) avec pour tout n>0 : up =— ———].
550 2{n+1 n
; 1 1 1 = ;
lim —|————{=0 donc la série converge, etlona:
n—+oo 2\N+1 n
+0o0
— n(n+1)(n+2) 4

- | A= - =
Pour tout neN, on a: e 2"ch(n):5(e "te 3"); 0<e <1

et 0<e 2<1, donc les séries géométriques Y e " et Ze_sn

n> n>0
convergent. 20 -

Par combinaison linéaire, » " e~ 2ch(n) converge etl'ona:
n=0

+00 1
Y e 2"c:h(n) =—
n=0 -

i i
—1+ —3]'
1—e ! 1-e

Une décomposition en éléments simples donne, pour tout n>2:
1—2n 1 1

n?(1-ny® n? (n—1)2.

Fiche 20 w Séries numeriques Corrigés | 363



-------------------------
-------------
----------------
---------
------
-

- , 1—2n s -
Ainsi la série 2—2 est une série télescopique de la forme
nzzn (T—H)
1
> (upy1— up) avec, pour tout n>2 : u, = =
n>2 (n—1)

1

lim = 0 donc la série converge, etlon a:
n—+o0 (n— 1)
+00
1—2n
—_—=0—u=—1.
2 2
n—2n“(1-n)

e. Pourtoutn>2,ona:

In l—lz]zln w =(In(n+1)=In(n))— (In(n)—In(n—1)).

n n

est une série télescopique de la forme

;-

Ainsi la série Zln

n>2 L
> (Upy1—up ) avec, pour tout n> 2 : up =In(n)—In(n—1).
n=2
lim In(n)—In(n—1)= lim In|——|=0 donc la série converge, et
n——+00 n—+o0c (N—1
400 1
lona: > In[l— n—2]= 0—u, =—In2.

n=2

f. Pourtoutn>2,ona:

(= 1"In :T*:]:( 1) (in(n-+1)=In(n)— (= 1" (In(n)— In(n—1)).

Ainsi la série Z(— 1)nln __n+; est une série télescopique de la forme
n_.
n=2
Z (Upsr— un) avec, pour tout n> 2 : u, =(— 1)n4(ln(n)— In(n— 1))

n>2

Remarque : Ici, pour faire apparaitre la différence de deux termes
consécutifs d'une suite on ne pouvait pas se contenter d'écrire:

(1) In{::——_!_:] — (= In{n+1)— (= )"in(n—1).

|| fallait faire intervenir un terme intermédiaire.
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lim (- 1)"_1(In(n)— In(n—1))= lim (- 1)"_1In L]zo donc la
n——+oo n— +oo =
série converge, etl'ona: -f (= 1)” In L | 8 0—uy; =In2.
n—1

n=2

Remarque : Voici un nouvel exemple du fait que la convergence d'une série
n'implique pas l'absolue convergence. En effet :

”_"“]=|n a2
n—1

2 : ; y :
= donc par comparaison a une série de Rie-
n—

n—+oc N

(1) In[:—i

In

mann divergente, la série
n>2

| diverge.

g. Pourtoutn>0,ona:
2 (n+1)(n+2)

1+n(n—i—3) n(n+3)

In

=(~In(n+3)+In(n+1))—(=In(n+2)+In(n)).

2
Ainsi la série In[1+ est une série télescopique de la forme
LTS
> (upy1—up) avec, pour tout n> 0 : u, =—In(n+2)+In(n).

n>0

Remarque : |ci aussi, il faut bien s’assurer que l'on écrit la différence de deux
termes consécutifs d'une suite. Pour tout n > 0,0n a:

1+ - (— In(n+3)+In(n+2))— (~In(n+1)+ In(n)), mais la dif-

n(n+3)
férence mise en évidence ici ne s'écrit pas sous la forme v, ;—up,.

lim —In(n+2)+In(n)= lim In
n—+oo n—+oo

+o0
etlona: Z In
n=1

=0 donc la série converge,

n+2

1+ =0—u;=In3.

n(n+3)

Fiche 20 w Séries numeriques Corrigés | 365



-------------------------
-------------
----------------
---------
------
-

sinn 1

<

3. a. Pourtoutn>2,ona: < .
n2 +cosn‘ 2 _1
1 1 ) < y X
=7 575 donc par comparaison a une série de Riemann
nwe— 1n~++f>o n
1 .
convergente, la série Z =n converge et, par comparaison encore,

n>2n 1

sinn
la série est absolument convergente, donc convergente.
32,
nsoh” “+cosn

b. Pourtoutn>0,o0na:

1T 2 1
1 1Y nln{ ] +! H= ]] ﬂ[iﬂ{i]+ }]'+0n_++o<,-[;]']”
[—+—] —e —e —e
2 n
1
nlni +24+0p— 4 o0(1) 1 1) 5
=@ d'ou | —+— ~ e"xX—.
2 n) n-+oo i

Par comparaison a une série géométrique positive convergente, la série

1, 1Y
B

converge.
n>0

Remarque : Le passage a la forme exponentielle est ici indispensable pour
trouver un équivalent correct.

¢. Pourtoutn>0,ona:

) 2 2 n2|n[L} _n2|n|1+1]
[ =e Hll_e HVN)_g !
n+1
n2 ! L +0, 1 !
—a 2n —e2 '
n n* )
dou |- ~ e2xe ",
n+1) n—+oo

Remarque: On rappelle que l'on ne peut pas composer simplement a gauche
avec la relation "~". Ici, il faut « pousser » le DL (0) du logarithme jusqu'a

I'ordre 2 pour av0|r un équivalent correct du terme général de la série.
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0< e '< 1 donc la série géométrique positive > e " converge.
2

n
. - n
Par comparaison, la série Z -—1] converge.
n>o\nt
1 1
-3 —2|nﬂ
Pourtout n>0,0na: n" —1=eN —1; par croissances comparées,
1
. Inn o Inn
lim —2:0 donc n"2—1 e
n—+oo n n——+o0o n
; i % 3/2_ Inn
Par croissances comparées, on a: lim n ><—2=0, donc
n— +-o00 n

Inn {
—5 =% —+o0| 377
i 372

; par comparaison a une série de Riemann conver-

. Inn . . -
gente, la série Z - converge et, par comparaison de séries positives, la
n>0 n
1

. ]
série » " [n"" —1| converge.
n>0

e. A Laforme du terme général peut faire penser a une série télescopique,

f. Considérons la suite des sommes partielles (S,,)

mais ce n‘en est pas une!
Pourtout n>2,0na:

1 B 1 :l
\[nz—1 \/nz-H n

1 __[_;

1
n{2n?
. 1 1 1
u: — —~ —3
\/nz—l \/n2+1”—’+°°”

Par comparaison a une série de Riemann convergente, la série

1 1
rgz Jn2—1 \/n2+1

d'o

converge.

n>2 :

pourtout n>2, S —Zn:(_Uk
Ly 2On— .
P Ink
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Montrons que les suites (S,,) e €t (52n+1)n> , sont adjacentes :

>1
I
In(2n+2) In(2n+1)

est croissante) donc la suite (S, )n,}] est décroissante.

< 0 (car la fonction In

* Soit nZ] S2ﬂ+2—52n:

. =} 1 s
* Soit nz1'52"+3_52"+1:In(2n+3)+ln(2n+2)>0' donc la suite

(S2n+1 )ﬂ21 est croissante.

-
o i S -5 lim ———=0
anm( 201 2n) n—s 400 |n(2n+'|)

Les suites (S5 )., et (Sans1 )n21 sont donc adjacentes. On déduit du théo-
réeme des suites adjacentes qu'elles admettent une méme limite réelle, donc
que la suite (S,) 5 Converge, d'aprés le théoréme sur les suites extraites.

Par définition, la convergence de la suite (Sp)

n
de la série Z(_ U .

n>2 Inn

n>2 assure la convergence

Remarque : Cet exercice permet de présenter deux séries de nature différente,
dont les termes généraux sont équivalents.
n
(=)

On a montré dans I'exemple 7 que la série converge dong, par

n
1 1 0
somme, > (- 1) [ +-| converge. "~
Inn
n=2
On a également montré dans I'exemple 2 que la série Z diverge ; donc,
1) n>0
par somme, Z ] — | diverge.
n=a| Inn n
Vérifions que les termes généraux sont équivalents :
1
it
Inn n n+Iinn - 1
(=)0 +1 n+(—1)"Innn—-+ec
Inn n

On voit donc bien que le critére de comparaison par équivalence ne s'ap-
plique pas pour les séries dont le terme général n'est pas de signe constant !
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1
lim cos H] =1, donc le terme général ne tend pas vers 0.
n—+o00 n
i 1 - .
Lasérie S~ (—1)"cos|—| est grossierement divergente.
n>0

Remarque: || ne faut pas oublier les critéres les plus simples !

h.

1 ¢h
Pour n> 0, 0n pose: u, =jo—dr.

1+t
n n

Soit ne N . Pour tout te[0,1],ona: t—~2 L,donc U2 —F—=>0
T+t 2 2(n+1)

Par comparaison a une série de Riemann divergente, la série

Z f;%dt} diverge.

n>0
sinn+cosn| _ 2 ,
Pour tout n>0, on a: + < = donc, par comparaison a une
n n
aia - o sinn+cosn
série de Riemann convergente, la série ;2 est absolument

n>0 n
convergente, donc convergente.

Pourtout n>0,0na: |sinn|§ 1 et |cosn\§ 1; on en déduit que pour tout
n>0,0<sin’n< |sinn| et 0< cos’n< |cosn| d'ou:

sinn|+|cosn| _ 1

[sinnj+eosnl L 1_ o
n n

Par comparaison a une série de Riemann divergente, la série
[sinn|+|cosn|

Y ———— diverge.

n>0

Pourtout n>2,ona:

n[ln(lnn)_ (E"nL)Z +InTn

(Inn)" _ e.nlrp[lrm)—(Inn)"‘—}—lr‘m =

s Inn
n

, donc par crois-

Inn)”
sances comparées, lim nx (—I—)— =400 .
n——+oc n'"n
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Inn
On en déduit que, a partir d'un certain rang, ( ) > L > 0. Par comparaison

pinn n

Inn

a une série de Riemann divergente, la série Z
n>2 n

est divergente.

4. a. *Sia>1,lasérie ) aV est grossiérement divergente.

n>0
* Si0<a<1lona:lIna< 0,donc parcroissances comparées,
im n2a" = lim n2¥"Ma_o. oOn en déduit que
n—+o00 n—+o0
I , . .
a" =0h 40|53 donc, par comparaison a une série de Riemann
n
convergente, la série ) avn converge.
n=0 aﬂ 1

b. Pourtout n€ N, on pose: u, = = :
Ha®® a3
*Si0<a<tlona:u, -~ a" . Ainsi par comparaison & une série géo-
n—+00
métrique positive convergente (0 <a< 1), la série Zun converge.

« Sia> 1, ona: Un s — . Ainsi par comparalson a une serie geome-
n—+4oo q

trique positive convergente

1 g
0< = < 1], la série E u, converge.
* Sia =1, la série diverge grossierement.

2
¢. *Sia>0,lasérie » e +bn ot grossierement divergente.
n=0
b n

* Si a =0, la série géométrique Z (e converge si, et seulement si

n=0

e? < 1 donc si, et seulement si b < 0.
2
*Si a <0, par croissances comparées lim n%e" +b"=0, donc
n— 400
an®+bn 1 ; ; g
e =Op— 400 |5 | i PAr cOMparaison a une série de Riemann
n
- an’+bn
convergente, la série Z e converge.

n=0
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d. Pourtout ne N,ona:

( a 1/3 3 72
In3 +an—Jn?+3=n [1+—2—] —[1+—2
n n
—n(1+ # [1+ 2 ]+o 1]
3n:Z 2n2 e n3 '

1fa 3 1
d’ou:3n3+an— WE3=rl——e +op,_, —|
! I nl3 2) "2

'Siaig.%/n3+an—\/n2+3 o o g_g]
e
=0

2 n—+oo N
de signe constant

: ; 1 . .
La série de Riemann E — est divergente, donc par comparaison (le
n
n>0

terme général étantde signe constant), la série Z %/ n®+an— \/nz +3

n>0

diverge.

* Si azg, %fn3+an—\/n2+3=on_,+m

1 »
—2] ; donc par comparaison
n

§/n3+an - \/n2+3]

a une série de Riemann convergente, la série z
n=0

converge absolument, donc converge.
(—1)" : . ) B s i
e. Onremarque que: 2 =2 sinestpair, et 2 :5 si nest impair.
a” 1\
Pour tout ne N, onadonc: 75 =0 gn < 2a" (cara > 0).

On en déduit :

n
* Si0<a<1,lencadrement 0< 2(_ 1) a" < 2a" donne la convergence
n
de la série Z 2(_ " a" , par comparaison a une série géométrique posi-
n>0
tive convergente.

n n
* Si a>1, linégalité %5 2{_1) a" donne la divergence de la série

N
Z 2( ! a" , par comparaison a une série géométrique positive diver-

n=0
gente.
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5. a. Lasérie Za converge, on en déduitque |lim a,=0.

n— 400

* Comme lim a,=0,0na: ~ Qs
n—+c0 1+ann—++oo

La série Zan est convergente, a termes positifs donc, par comparaison, la

, a
série » —I— converge.
1+a,
« Comme lim a,=0,ona: sin’(a,) ~ a,°.On aaussi a partir
n—-+oo n—+oo
2

d’'un certainrang: 0 < a,” < a, < 1. Ainsi, par comparaison de séries po-

sitives, la série Zanz converge donc, par comparaison encore, la série

Z:sin2 (an) converge.

b. Remarque : Compte tenu des données de I'énoncé, il faut se ramener a
la série Zan . Lidée consiste donc a considérer la série télescopique

> "(Up41 - up), dont on sait que la convergence équivaut a la conver-

gence de la suite (u,,).
Pourtout n€ N,ona:

1 [
*':5 '-"ﬂ2 +c’nz Un

expression conjuguée).

: 1 [
Ug >0 ;sipour n>0,u,>0,alors up, ;= E{UH + uﬂz—}-an2

récurrence rapide montre la positivité de la suite (up,), d'oti I'on déduit:
1 c:r,,.‘,2
n— 5

2

Up41— Un (en utilisant une

2 \/un e o

> 0. Cette

pourtout ne N, 0<up,1—u

2 =3
u,”+a,” +u,
Finalement, par comparaison de séries positives, la série télescopique

> ~(Un41— up) converge, donc la suite (u,) converge.

« Sia= 0, lasérie a pourterme général 0, elle est donc convergente, de somme

* Sia=0,In

nulle.

2

+0p_s 400 donc

=In 1—1 L3
2| "

cos a
2” 22""{‘1
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2
a 1 a : 3 vy
In| cos| — ~ ——X—  ; par comparaison a une série géomé-
2" J)In—+o00 2 4"
| S
de signe constant
X . w a
trique de signe constant convergente, la série Z In[cos| — || converge.
2
n>=0

. | = =
Pour calculer la somme, il faut remarquer que pour tout x € =33

\{o},

cos(x):M.
2sin(x)
Soit a& —%,% \{0} .Pourtout n>0,0na:
a )
In| cos —]]zln sin|——
N

ool

Soit N> 0. Par télescopage, on obtient :
N a) .
> In —-|[=—In|sin

n=1 2
2 a
n=0): Y _In|cos 2_”]

n=0
Enfin, comme 2N sin
a
cos|—
[2"]

n
7. On amontré dans 'exemple 7 que la série E (—) converge.

n>0 A
Il existe plusieurs facons de déterminer cette somme. Nous en verrons deux.

2n—l

cos
2N

+In(sin(a))— Nin(2), puis (en ajoutant le cas

7))

a, on obtient, pour tout a&

sz

=In(cos(a))+In(sin(a))— In| 2" sin

™ &
2N N—+o0 B

\{0} :

+o00
> In

n=0

:In(cos(a))—[—ln(sin(a))—In(a):ln 5

Premiére méthode : En reconnaissant un développement de Taylor.

Les sommes partielles de cette série ne sont pas sans rappeler le DL (0) de la
n (_ 1)k+1
fonction x - In(14x) quiest: In(14x)=> k

T (x”).
k=1
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Rappelons l'inégalité de Taylor-Lagrange pour toute fonction fde classe C B

sur [a,b] :

flk

n ) a
(o) 3 le-af |<

( b— a)n+1

sup

\9—a) £n+1) _
(n+1)! x€|a,b] (X)

Considérons f: x - In(1+ x). Cette fonction est de classe C™ sur [0,1].
(=0 (k1)
(1+x)"

Montrons par récurrence que : Yke N',Vx € [0,1],f(k)(x)=

1 (=)=

Initialisation : Pour tout x € [0,1],f’(x)= = ( )] -, donc la pro-
X 1+ x

priété est vérifiée pourk = 1.

Hérédité : Soit ke N' .On suppose que pour tout x € [0,1] "
k—1
f(k)(x)___ (_ l) (k_l)l
p .
(1+x)

Alors, pour tout x € [0,1],
k—1 k
) () :(f(kJ)-(x): —kx (1) (k=1 (=K
(14 x)<" (i)™
La propriété est donc héréditaire.

. - * ' . # » - '
Conclusion : Par principe de récurrence, la propriété est vraie pour tout ke N .

On applique la formule de Taylor-Lagrange a f, aveca = 0 et b= 1, et on ob-

tient :
n (_ k=1 _
f(‘)*'”(‘)ﬁz( D —
k=1 k! (”+1)!xe[0,1] (1+x)""
G P
dou: [In(2)+ <
@) kZ=| k (n+7)
&
On en déduit que )~ ~——=—In2.
n=1 R
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Deuxiéme méthode : En remarquant que pour tout n> 0, — f " dt (il fal-

lait y penser !).

Soit n> 0.0n a (par linéarité de l'intégrale) :

5 (=)
k k-1 I
—— t le = dt
> f Z = Z
11— (=) _an
- () g — 1Ldr+ L
0 1—(—t) 01+t 0 1+t
In2
t)" 1(—t)" 1
Pour tout t € [0,1], E< 7, donc fﬂdtgft"dtzL.
1+t 0 1+t 0 n+1
On en déduit que pourtout n> 0 : iﬂHnZ(—
N =k T n+
+O\'J 1)"
Soit encore : Z =—In2.
n=1 B
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Dérivées

B Dérivées de fonctions usuelles

Fonction f Dérivable sur Fonction f’
x>k
R X—=0
keR oukeC
n A * n—1
X—> X', neZ Rsin>0,R si n<o0 X = nx
x> x%, aeRr 10,400 x> ax® ]
X * X
x—>a*, aeR, R x+>In(a)a
X > COS X R X —sinx
X sinx R X > CosX
T w 2
X tanx — —+kn;—+k=|, keZ| x> 14+tan“x= =
2 2 COs“ X
| i XI—)l
X n(|x|) R -
x> e* R x> eX
A -1 e
X > Arccos x =41
\/1—x2
Arcsi ] [ X !
X > Arcsinx _x
\H—xz
1
X+ Arctanx R XH 5
1+ x

Formulaire 1 m Dérivées
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X — shx

X— chx

X — chx

X — shx

378 |
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Primitives

B Primitives de fonctions usuelles

Formulaire 2

Fonction f Intervalle Une primitive de f
sur /
x> x" Rsi n>0 |—o0,0| XN+
X
ne Z\{-1} ou [0,4oc[,si n<—2 n+1
x(x-l-l
x> x*, aeR\{-1} J0, 400 X
o +1
x;—a»l ]—00,0[ ou ]0,+oo[ xn—>ln(|x|)
X
x> eX R X > e¥
X+ sinx R X —CcosX
X > COs X R X > sinx
2 T w
X 1+tan® x =—7 ——+kw,—+kx|, ke Z X > tanx
Ccos“ x 2 2
X — Arcsinx
X
1—- x?2 ]—-1,1[ ou
X+ —Arccosx
1
X 5 R X+ Arctanx
X +1
1 ® 1 X
X>———>,a€R R X — —Arctan|—
X" 4+a

a

Formulaire 2 m Primitives

S
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x> shx x> chx
x—chx x—shx
1
X —— x> thx
X
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Formulaire 3

Trigonométrie

B Formules d’addition

cos(a+b) = cosacosb — sinasinb sin(a+b) = sinacosb+cosasinb
cos(a— b) = cosacosb +sinasinb sin(a— b) = sinacosb— cosasinb

tan(a+b) = M sia, beta+ bsontdifférents de Xl + kw (k < Z.)
1— tanatanb 2
tana—tanb s T

tan(a— b)=———— sia,beta-bsontdifférentsde —+kn (ke Z)
1+tanatanb 2

B Formules de duplication

cosZa:cosza— sinza sin2a = 2sinacosa

2 14 cos2a . 2 1—cos2a
cos“ q=———— sin —T

B Transformation de produits en sommes

cos(a+b)+cos(a—b)

cosa cosb = 5
P cos(a— b}; cos(a+b)
— sm(a-l—b)-;sm(a~ b)

B Transformation de sommes en produits

a+b] a—b a+b
- cos

cosa+cosb = 2cos

] cosa— cosb:—Zsin[

]

a—b [a—l—b]
cos -

sina+ sinb = Zsin[a:b]cos

a;b] sina— sinb = 2sin
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B Liens entre sinus et cosinus

cos(—x)=cos(x), sin(—x)= —sin(x)
T 3 < T
cos x-i-z = —sin(x), sin X+E — cos(x)
by L
cos 5~ X |=sin(x), sin E~ X | = cos(x)

cos(x +mw)=—cos(x), sin(x+x)=—sin(x)

cos(m— x)=—cos(x), sin(mw— x)=sin(x)
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Formulaire 4

DLn(O) des fonctions usuelles

xz n

W my X o K X n
- —1+11+ 5 it n! +0y_,0(x")

2 x2n

X
Ch(x):1+E+‘"+W+ox—r0(x2n)

3 2n+1
sh(x)= x+x—+...+ =

2n+1
40y ,ox )
3! (n+1)r *°

2 4 P ,2p
cosx:1——+x—...+( X

2l 4l 2p)!
3 5 _ P 2p+1
sinx = x— x—+x—...+%+ox_,o(x2p+')
3l 5l 2p+1)!

ﬁ=1+x+xz +...+xn+0x_,,0(xn)

2 n
In(1+4x)=x— %+...+(— 1)"_1%+0x_,0(x”)

(que I'on retrouve en primitivant la précédente et remplacant x par —x )

(14 x)" :1+%x+“(“_1))(2_|_m_!_&(m—1)...(q—n+1)

n n T
oy r X +ox_,0(x ), VaeR
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SUP

Vous qui entrez en classes préparatoires et qui devez faire un choix parmi
une multitude de livres de cours et d'exercices, pourquoi choisir celui-ci
en premier ?

Parce que ce livre part d'une réalité, s’est construit sur une expérience,
et répond a un réel besoin.

Depuis plusieurs années, la maitrise des techniques nest plus un attendu
du lycée, et de nombreux étudiants qui entrent en classes préparatoires
rencontrentde grandes difficultés dés qu'il s'agit de mener un calcul, tant
en mathématiques qu’en sciences physiques ou en sciences industrielles.

Les techniques non acquises pésent sur les apprentissages.

Avec ce livre, nous vous proposons de travailler les techniques et exercices
de base, afin d'assurer un socle solide qui vous évitera de perdre pied dés
gue vous serez confronté a un calcul.

Du méme auteur

« 12 FICHES TECHNIQUES

ET EXERCICES DE BASE i
MP-PC-PSI-PT =l
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