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Avant-propos

Cet ouvrage de la série « Exercices incontournables » traite de l’intégralité du nou-
veau programme d’informatique commune pour les deux années des différentes 
filières de classes préparatoires aux grandes écoles (sauf BCPST).

La première partie reprend la base de la programmation avec Python. Des rappels 
de cours et des exercices classiques vous permettront de vous familiariser avec la 
syntaxe Python.

Dans les exercices de certains chapitres (« Prise en main de Python », « Terminai-
son, correction, complexité », « Matrices de pixels et images, traitement d’images », 
« Dictionnnaire, pile, file, deque », « Graphes », « Intelligence artificielle et jeux à 
deux joueurs », « Bases de données »), vous trouverez un rappel de cours détaillé 
présentant le vocabulaire utilisé.

Pour chaque exercice classique, vous trouverez :

•• La méthode de résolution expliquée et commentée étape par étape.

•• Le corrigé rédigé détaillé.

•• Les astuces à retenir et les pièges à éviter.



Partie 1
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1Prise en main  
de Python

On considère la liste de nombres : L=[9, 10, 11, 20.5, 0, 12.0, -5, 
-8.3e1].

1.  Écrire une fonction rec_moy qui admet comme argument L une liste non 
vide de nombres et retourne la moyenne de L.
2.  Écrire une fonction rec_variance qui admet comme argument L une 
liste non vide de nombres et retourne la variance de la liste L.
3.  Écrire une fonction rec_ecart_type qui admet comme argument L une 
liste non vide de nombres et retourne l’écart-type de la liste L.
4.  Les en-têtes des fonctions peuvent être annotés pour préciser les types des 
paramètres et du résultat. Ainsi,

def uneFonction(n:int, X:[float], c:str, u) -> list:

signifie que la fonction uneFonction prend quatre paramètres n, X, c et u, 
où n est un entier, X une liste de nombres à virgule flottante et c une chaîne de 
caractères ; le type de u n’est pas précisé. Cette fonction renvoie une liste.
Écrire une fonction rec_moy2 qui admet comme argument L une liste non 
vide de nombres réels ou flottants et retourne la moyenne de la liste L. Annoter 
l’en-tête de la fonction pour préciser le type des données attendues en entrée et 
fournies en retour. Utiliser des assertions pour vérifier le type de L, le nombre 
d’éléments de L ainsi que le type des éléments de L.

Exercice 1.1 : �Assertion, moyenne, variance et écart-type d’une 
liste de nombres

Analyse du problème
On utilise une boucle for pour parcourir les différents éléments de la liste. On peut 
alors calculer la somme des éléments de la liste pour en déduire la valeur moyenne. 
Une assertion est une aide de détection de bugs dans les programmes. La levée 
d’une assertion entraîne l’arrêt du programme.
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Cours :
L’installation de Python 3 peut se faire avec Pyzo.

Un script Python est formé d’une suite d’instructions. Une instruction simple est contenue 
dans une seule ligne. Si une instruction est trop longue pour tenir sur une ligne ou si on sou-
haite améliorer la lisibilité du code, le symbole « \ » en fin de ligne permet de poursuivre 
l’écriture de l’instruction sur la ligne suivante (voir corrigé 4).

Une affectation se fait avec l’instruction n=3  : n prend la valeur 3 (voir exercice  1.4 
« Affectation, objet immuable, copie »).

On peut utiliser « _ » dans le nom des variables mais pas « - ».

Le typage des variables est dynamique : l’interpréteur détermine le type à la volée lors de 
l’exécution du code. Dans l’exemple précédent, le type de n est int.

Le symbole dièse permet d’ajouter des commentaires dans les programmes Python  : # 
commentaire sur le programme.

Le type d’une variable n s’obtient avec l’instruction : type(n).

Les types de base des variables dans Python sont :

•• Nombres entiers (positifs ou négatifs) : int
•• Nombres à virgule flottante (ou nombres flottants) : float

Exemple
a=-3.2e2 : -3,2 × 102 = -320

•• Booléens : bool
Les variables booléennes sont True (vrai) et False (faux).

Opérations de base sur les entiers (int) : +, -, *, //, **, %

n=28
n//10    : 2 = quotient de la division euclidienne de n par 10
n%10     : 8 = reste de la division euclidienne de n par 10
n**3     : n puissance 3

Opérations de base sur les nombres flottants (float) : +, -, *, /, **

a=1/3    : a vaut 0.3333333333333333
2.6**(a) : 2,6 puissance a

Comparaisons : 

a==b     : �cet opérateur compare a et b. Si a=b, Python retourne True, sinon 
False

a!=b     : a différent de b
a>b, a<b, a>=b, a<=b : �strictement supérieur, strictement inférieur, supérieur ou égal, 

inférieur ou égal

Opérations sur les booléens (bool) :

or       : ou
and      : et
not      : non
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rep1=True              # type bool. 2 valeurs possibles : True ou False
a=12
b=10
rep2=(a==12)and(b==20) # rep2=False pour le test : a=12 et b=20
rep3=not(a==13)        # rep3=True, on pourrait écrire : rep3 = a!=13
rep4=(a==12)or(b==20)  # True pour le test : a=12 ou b=20

Les types de base des conteneurs dans Python sont :

•• Chaînes de caractères : str
Structure indicée immuable. On ne peut pas modifier les éléments d’une chaîne de 
caractères.
s="C'est une phrase" : utilisation de guillemets "
s1='phrase' : utilisation d’apostrophes '
n=len(s)    : n=6 (nombre de caractères)
s1[0]       : le premier caractère de s1 a pour indice 0 : 'p'
s1[n-1]     : dernier caractère : 'e'
C1='ab'
C2=C1*3     : retourne 'abcabcabc', répétition de 'ab'
             La chaîne de caractères C1 est concaténée 3 fois avec elle-même.

•• Listes : list
Structure de données muable. On peut modifier les éléments d’une liste.
L=[]              : crée une liste vide
L.append(3)       : ajoute 3 à la fin de la liste L. On obtient L=[3]
L.append(2)       : ajoute 2 à la fin de la liste L. On obtient L=[3, 2]
x=L.pop()         : supprime le dernier élément (ici 2) de la liste L
                   On récupère cet élément dans la variable x
L3=['r', 3, 'te'] : �crée la liste L3 contenant des chaînes de caractères et des 

entiers
len(L3)           : affiche la longueur de la liste L3
Pour extraire des éléments d’une liste, voir exercice  1.6 «  Slicing, extraction de 
tranche ».
L=[2*i for i in range(5)] : �on obtient [0, 2, 4, 6, 8] (création par 

compréhension)
L=[2,3]*3         : répétition de la liste [2, 3]
                   On a alors L=[2, 3, 2, 3, 2, 3]
L=L+[5,8]         : concaténation : L=[2, 3, 2, 3, 2, 3, 5, 8]

Remarque :

Les indices des listes contenant n éléments sont numérotés de 0 à n–1 dans Python 
(idem pour les tuples et les deques). Pour obtenir le premier élément de la liste :

a=L[0]       # la variable a prend la valeur 2

•• Tuples : tuple
Les tuples sont des structures indicées immuables. Une fois le tuple créé, il ne peut pas 
être modifié. On peut créer un tuple avec ou sans parenthèses.
M=(2, 3, 8) : crée le tuple M
             Ne pas confondre avec les listes, où on met des crochets.
             On crée le même tuple si on omet les parenthèses
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n=len(M)    : n = nombre d’éléments du tuple M
M=2, 3, 9
x=M[0]      : récupère dans la variable x l’élément d’indice 0 du tuple M
a, b, c=M   : dépaquette un tuple
             On récupère dans chaque variable un élément du tuple.
             Il faut connaître à l’avance le nombre d’éléments du tuple.
M2=M+(2, 5) : concaténation de deux tuples : M2=(2, 3, 9, 2, 5)
M3=(2, 1)*3 : création avec répétition : M3=(2, 1, 2, 1, 2, 1)

•• Deques : deque
Une deque (se prononce « dèque ») est une structure de données muable qui généralise 
le fonctionnement des piles et des files (voir exercice 11.6 « Utilisation des deques » 
dans le chapitre « Dictionnaire, pile, file, deque »). On peut ajouter et supprimer des 
éléments aux deux extrémités. Pas d’extraction de tranche (ou slicing) avec les deques.
from collections import deque : module permettant d’utiliser les deques
D=deque()                : création d’une deque vide D
D.append(3)              : ajoute 3 à l’extrémité droite de D
D.appendleft(5)          : ajoute 5 à l’extrémité gauche de D
x=D.pop()                : supprime l’élément à l’extrémité droite de D
x=D.popleft()            : supprime l’élément à l’extrémité gauche de D
D1=deque([3, 8, 5])      : création de la deque D1

for elt in D1:     # affichage de tous les éléments de la deque D1
    print(elt)

•• Dictionnaires : dict
Pour l’utilisation des dictionnaires, voir les exercices 11.1 « Opérations de base sur les 
dictionnaires » et 11.2 « Comptage des éléments d’une liste à l’aide d’un dictionnaire » 
dans le chapitre « Dictionnaire, pile, file, deque ».

Remarque  : Pour le type None, voir la remarque de la question 2 dans l’exer-
cice 10.1 « Tri par insertion » dans le chapitre « Tris ». On ne l’utilisera pas dans 
les autres exercices.

Il existe deux catégories d’objets dans Python :

•• les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes, 
dictionnaires, deques (voir chapitre 11 « Dictionnaire, pile, file, deque »)… ;

•• les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chaînes de caractères, tuples…

Voir les exercices 1.4 « Affectation, objet immuable, copie » et 1.5 « Passage par référence 
pour les listes, effet de bord » pour les affectations et les arguments d’entrée des fonctions.

Quelques fonctions intrinsèques :

abs(x)   : renvoie la valeur absolue de x
int(x)   : convertit x en entier
float(x) : convertit x en flottant
str(x)   : convertit x en chaîne de caractères
bool(x)  : convertit x en booléen
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Première utilisation de la boucle for :

x=5                 # affecte 5 à la variable x
for i in range(n):  # boucle faisant varier i de 0 inclus à n exclu
                    # ne pas oublier ':' à la fin de la ligne
    x=x+i           # incrémente x de i à chaque passage dans la boucle
                    # attention à l’indentation

Deuxième utilisation de la boucle for :

for elt in L:       # elt prendra successivement les éléments de L
    print(elt)      �# L chaîne de caractères, liste, tuple, deque  

# ou dictionnaire

Boucle while :

i=0
while i<=10:        # ne pas oublier : à la fin de la ligne while
    print(i)        # affichage de i
    i=i+1           # on incrémente i de 1 à chaque étape

La variable i est initialisée à 0 et incrémentée de 1 à chaque étape de la boucle while. On 
l’appelle un compteur.

Si la variable i est incrémentée d’une valeur différente de 1 ou décrémentée, on l’appellera 
un accumulateur.

Remarque : On peut utiliser l’instruction suivante :

    i+=1            # la variable i est incrémentée de 1

L’instruction break fait sortir d’une boucle while ou for et passe à l’instruction sui-
vante (voir exercice 10.6 « Tri à bulles » dans le chapitre « Tris »). Lorsqu’il y a plusieurs 
boucles imbriquées, l’instruction break ne fait sortir que de la boucle la plus interne.

Définition d’une fonction :

def f(x):     # définition de la fonction f ayant pour argument d’entrée x
              # ne pas oublier ':' à la fin de la ligne
    y=x+3     # y est une variable locale : elle est créée à l’appel
              # de la fonction et est détruite à la fin de la fonction
              # voir exercice 1.3 "Variables locales, variables globales"
    return y  # fin de la fonction et retourne la valeur y
              # attention à l’indentation

L’instruction return quitte la fonction même en cours d’exécution d’une boucle for ou 
while.

Structure conditionnelle :

if x==3:             # teste si x = 3
    y=3*x
elif x>3 and x<=4:   # si le test précédent n’est pas vérifié,
                     # alors teste si x >3 et si x <=4
    y=x+2
elif x>4 and x <5:   # si le test précédent n’est pas vérifié,
                     # alors teste si x >4 et si x <5
    y=x-2
else:                # sinon (les tests précédents ne sont pas vérifiés)
    y=0
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Importation de modules

Des fonctions traitant d’un même domaine sont regroupées dans des modules (par exemple 
les fonctions mathématiques cos, sin, tan… sont regroupées dans le module math). 
Différents modules peuvent être regroupés dans une bibliothèque. On utilise l’instruction 
import module pour importer un module.

import math         # importation du module math

Le module math contient des fonctions et des variables : cos(), sin(), tan(), exp(), 
sqrt() (racine carrée), log() (logarithme népérien), log10() (logarithme décimal), 
pi (nombre p )…

Pour utiliser les fonctions et les variables du module math :

a=math.pi/4
b=math.cos(math.pi/4)
c=math.sin(math.pi)
print(b)            # affiche 0.7071067811865476
print(c)            # affiche 1.2246467991473532e-16

Les nombres flottants ne permettent pas un calcul exact à cause de la représentation des 
nombres à virgule sur des mots de taille fixe. Un test du type a==b n’a en général pas 
de sens si a et b sont des nombres à virgule flottante. On remplacera donc ce test par  : 
abs(a-b)<epsilon où epsilon est une valeur proche de zéro, choisie en fonction 
du problème à traiter et de l’ordre de grandeur des erreurs auxquelles on peut s’attendre 
sur a et b.

Ainsi, pour effectuer le test sin(x)==0, on n’utilisera pas l’instruction :

m.sin(x)==0        # si x=pi, ceci retourne pourtant False

mais les instructions suivantes :

eps=1**-8          # on choisit une valeur pour eps
abs(m.sin(x))<eps  # si x=pi, ceci retourne bien True

Lorsqu’on utilise l’instruction from math import *, il n’est plus nécessaire d’ajouter 
le nom du module pour utiliser ses fonctions :

from math import * # module math
a=pi/4

Certaines fonctions portent le même nom dans des bibliothèques différentes. Il est donc 
préférable de ne pas utiliser from math import * mais plutôt import math. On 
peut renommer le module math en m par exemple :

import math as m   # module math renommé m
a=m.pi/4

On peut importer des fonctions et des variables d’un module :

from math import cos, sin, tan, pi
a=cos(pi/4)

Voir exercice 1.4 « Affectation, objet immuable, copie » pour l’utilisation du module copy.
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On utilisera la bibliothèque PIL dans le chapitre 9 « Matrices de pixels et images, traite-
ment d’images ».

1. On considère une liste non vide L. On suppose que les éléments de la 
liste sont des nombres entiers ou flottants. On définit une variable S per-
mettant de calculer la somme des éléments de la liste.
def rec_moy(L):
    # la fonction retourne la moyenne de la liste L
    S=0                      # initialisation de S à 0
    n=len(L)                 # longueur de la liste L
    for i in range(n):       # i varie entre 0 inclus et n exclu
        S=S+L[i]             # on pourrait écrire S+=L[i]
    moyenne=S/n              # calcul de la moyenne
    return moyenne           # retourne la moyenne de L

Remarque :

La liste L=[9, 10, 11, 20.5, 0, 12.0, -5, -8.3e1] contient des 
entiers (9, 10, 11, 0, 5) ainsi que des nombres flottants (20.5, 12.0, -8.3e1).

12.0 est un nombre flottant (type float) alors que 12 est un nombre entier (type 
int).

-8.3e1 est un nombre flottant alors que 83 est un nombre entier.

Cours :
Soit une liste de valeurs X1, X2… XN. La moyenne des valeurs est définie par : ∑=

=

1

1

X
N

Xi
i

N

.  

La variance (ou écart quadratique moyen) est définie par  : var = −( )X X X2 2 avec 

∑=
=

X
N

Xi
i

N
12 2

1

. L’écart-type est défini par Xvar ( )∆ =X .

2.  
def rec_variance(L):
    # la fonction retourne la variance de la liste L
    S=0                    # initialisation de S à 0
    n=len(L)               # longueur de la liste L
    for i in range(n):     # i varie entre 0 inclus et n exclu
        S=S+L[i]**2        # on pourrait écrire S+=L[i]**2
    variance=S/n-rec_moy(L)**2
    return variance        # retourne la variance de L

3. 
def rec_ecart_type(L):
    #la fonction retourne l’écart-type(float) de la liste L
    import math as m       # module math renommé m
    return(m.sqrt(rec_variance(L)))

Cours :
Une assertion est une aide de détection de bugs dans les programmes.
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•• La fonction rec_moy peut être appelée si le type de L est list. On ajoute la ligne 
suivante dans la fonction def rec_moy2 :

assert type(L)==list

Le programme teste si type(L)==list. Si la condition est vérifiée, le programme 
continue à s’exécuter normalement.
Si la condition type(L)==list n’est pas vérifiée (on dit qu’on a une levée de l’as-
sertion), alors le programme Python s’arrête et affiche le message d’erreur :

      assert type(L)==list AssertionError

•• La fonction rec_moy peut être appelée si le nombre d’éléments de L est strictement 
positif. On ajoute la ligne suivante dans la fonction def rec_moy2 :

assert len(L)>0

Le programme teste si len(L)>0, sinon on aurait une division par 0 dans la fonction. 
Si la condition est vérifiée, le programme continue à s’exécuter normalement. Si la 
condition len(L)>0 n’est pas vérifiée (on dit qu’on a une levée de l’assertion), alors 
le programme Python s’arrête et affiche le message d’erreur :

      assert len(L)>0 AssertionError

On supprime les assertions dans la version finale du programme Python.

4. 
def rec_moy2(L:list)->float:
    # la fonction retourne la moyenne (float) des éléments
    # de la liste L
    # On pourrait écrire : def rec_moy2(L:[float])->float:
    # L est une liste de nombres flottants
    assert type(L)==list
    assert len(L)>0
    S=0                 # initialisation de S à 0
    n=len(L)            # longueur de la liste L
    for i in range(n):  # i varie entre 0 inclus et n exclu
        assert type(L[i])==float or type(L[i])==int
        S=S+L[i]        # on pourrait écrire S+=L[i]
    moyenne=S/n         # calcul de la moyenne
    return moyenne      # retourne la moyenne de L

Si on exécute l’instruction print('moyenne :',rec_moy2(3)), 
Python affiche :

      assert type(L)==list AssertionError

Si on exécute l’instruction print('moyenne :',rec_moy2([])), 
Python affiche :

      assert len(L)>0 AssertionError

Si on exécute l’instruction print('moyenne :',rec_moy2([3, 
4.0, 'a'])), Python affiche :
      �assert type(L[i])==float or type(L[i])==int 

AssertionError
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Remarques :

On peut ajouter une chaîne de caractères dans l’instruction assert :

    assert type(L)==list, 'Le type de L doit être une liste.'

Le programme teste si type(L)==list. Si la condition est vérifiée, le programme 
continue à s’exécuter normalement.

Si la condition type(L)==list n’est pas vérifiée (on dit qu’on a une levée de 
l’assertion), alors le programme Python s’arrête et affiche le message d’erreur :

     Le type de L doit être une liste.

Si une instruction est trop longue pour tenir sur une ligne ou si on souhaite amé-
liorer la lisibilité du code, on peut utiliser le symbole « \ » en fin de ligne et pour-
suivre l’écriture de l’instruction sur la ligne suivante. 

On peut écrire : 

assert type(L[i])==float or type(L[i])==int, "Type de L[i] non correct."

ou
assert type(L[i])==float or type(L[i])==int,\
         "Type de L[i] non correct."

On peut ajouter des commentaires dans les programmes Python avec le symbole 
dièse. Pour ajouter un commentaire qui s’étend sur plusieurs lignes, on peut le 
commencer avec ''' (trois apostrophes) ou """ (trois guillemets) et le terminer 
de la même façon :
'''
La fonction retourne la moyenne (float) des éléments de la liste L.
On pourrait écrire : def rec_moy2(L:[float])->float:
'''

Les assertions servent à tester des conditions critiques qui ne devraient jamais arri-
ver. Ce sont des aides au développement des programmes.

Si ces erreurs (liste vide, type de L incorrect, type de L[i] incorrect) sont suscep-
tibles d’arriver lors de l’exécution du programme final, alors il faut utiliser le test 
if len(L)==0 et gérer par programmation l’erreur.

On pourra utiliser L.reverse() qui permet d’inverser les éléments de la liste L.

1.  Soit l’entier n = 1 234. Quel est le quotient, noté q, de la division euclidienne 
de n par 10 ? Quel est le reste ? Que se passe-t-il si on recommence la division 
euclidienne par 10 à partir de q ?

Exercice 1.2 : Boucle, test, fonction (banque PT 2015)
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Analyse du problème
Cet exercice permet de s’entraîner à manipuler les fonctions, les boucles, les tests 
et les différents types rencontrés dans Python.

1. n = 1 234 = 123 × 10 + 4. Le reste vaut 4.
Si on recommence la division euclidienne de 123 par 10 : 123 = 12 × 10 + 3.  
Le reste vaut 3.
Si on recommence la division euclidienne de 12 par 10 : 12 = 1 × 10 + 2. 
Le reste vaut 2.
Si on recommence la division euclidienne de 1 par 10 : 1 = 0 × 10 + 1. Le 
reste vaut 1.
On obtient la décomposition en base 10 de n : 1, 2, 3, 4.

def calcul_base10(n):
    # la fonction renvoie une liste contenant les restes
    # des divisions euclidiennes successives
    assert type(n)==int
    L=[]   # création d’une liste vide
    while n>0:    # boucle tant que n > 0
        q=n//10   �  # quotient de la division euclidienne de n par 10
        r=n%10    # reste de la division euclidienne de n par 10
        L.append(r)   # on ajoute le reste dans la liste L
        n=q
    L.reverse()   # inverse l’ordre des éléments de la liste L
    return L      # retourne la liste L

# programme principal
n=int(input('Taper un entier strictement positif : '))
                  # conversion en entier du résultat de la saisie

Écrire une fonction calcul_base10 d’argument n, renvoyant une liste L 
contenant les restes des divisions euclidiennes successives.
La fonction vérifiera que n est un entier avec assert.
Écrire le programme principal demandant à l’utilisateur de saisir un entier n 
strictement positif et renvoyant la décomposition en base 10 de l’entier n.
2.  Écrire une fonction somcube, d’argument n, renvoyant la somme des 
cubes des chiffres du nombre entier n. On pourra utiliser la fonction calcul_
base10.
3.  Écrire une fonction permettant de trouver tous les nombres entiers stricte-
ment inférieurs à 1 000 et égaux à la somme des cubes de leurs chiffres.
4.  Écrire une fonction somcube2 qui convertit l’entier n en une chaîne de 
caractères permettant ainsi la récupération de ses chiffres sous forme de carac-
tères. Cette nouvelle fonction renvoie la chaîne de caractères ainsi que la 
somme des cubes des chiffres de l’entier n. On pourra utiliser la fonction str 
et manipuler les chaînes de caractères.
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print('Décomposition en base 10 : ',calcul_base10(n))

L’instruction assert expression de Python vérifie la véracité d’une 
expression booléenne et interrompt brutalement l’exécution du programme 
si ce n’est pas le cas.
2. 
def somcube(n):
    # la fonction renvoie la somme des cubes des chiffres
    # de l’entier n
    somme=0              # initialisation de la variable somme
    L=calcul_base10(n)   # récupère la liste donnant
                         # la décomposition en base 10 de n
    for i in range(len(L)):   # i varie entre 0 inclus 
                              # et len(L) exclu
        somme=somme+L[i]**3   # on ajoute L[i] à la puissance 3
                              # on peut écrire somme+=L[i]**3
    return somme

# programme principal
n=1234
print(somcube(n))             # affiche 100 pour n = 1234

3. 
def affiche_liste_entier_cube():   # pas d’argument d'entrée
    # la fonction renvoie tous les nombres entiers strictement
    # inférieurs à 1000 et égaux à la somme des cubes
    # de leurs chiffres
    L=[]                    # création d’une liste vide
    for i in range(1000):   # i varie entre 0 inclus et 1000 exclu
        if i==somcube(i):   # teste si i est égal à la somme
                            # des cubes de ses chiffres
            L.append(i)     # ajoute i dans la liste L
    return L   # fin de la fonction et renvoie la liste L

# programme principal
print(affiche_liste_entier_cube())  # affiche
                                    # [0, 1, 153, 370, 371, 407]

4. 
def somcube2(n):
    # la fonction convertit l’entier n en une chaîne de caractères
    # pour récupérer ses chiffres sous forme de caractères
    somme=0
    chaine=str(n)   # convertit n en une chaîne de caractères
    L=[]            # création d’une liste vide
    for elt in chaine:  # elt prend successivement
                        # les éléments de chaine
        L.append(elt)   # elt est un caractère que l’on ajoute
                        # dans L
        somme=somme+(int(elt))**3   # il faut convertir elt
                                    # en entier
    return L,somme      # on pourrait écrire return(L, somme)
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# programme principal
n=int(input('Taper un entier strictement positif : '))
L1,res=somcube2(n)   # L1 contient la liste des chiffres de n
                     # res = somme des cubes des chiffres de n

Remarque :

La fonction somcube2(n) renvoie un tuple contenant deux éléments. Pour récu-
pérer les éléments de ce tuple, on a plusieurs possibilités :

•• Dépaquetage d’un tuple :

La ligne return L, somme retourne un tuple : (L, somme).
Pour récupérer dans des variables séparées les éléments du tuple, on peut écrire :

L1, res=somcube2(25)

On obtient alors : L1=['2', '5'] et res=133.
•• On définit un tuple A :

A=somcube2(25)

Le tuple A vaut : (['2', '5'], 133).
Pour récupérer ['2', '5'], le premier élément du tuple : A[0].
Pour récupérer 133, le deuxième élément du tuple : A[1].

On considère le programme suivant :

def f() :
    global b
    print('d =', d)
    print('Premier print dans la fonction f : b =', b)
    a=3
    c=5
    b=b+c
    print('Deuxième print dans la fonction f : b =', b)
    print('Troisième print dans la fonction f : a =', a)
   return  # on pourrait supprimer cette ligne
               # ou écrire return None
    
a=2
b=2
d=3
print("Print avant l’appel de la fonction f : a =", a)
print("Print avant l’appel de la fonction f : b =", b)
f()
print("Print après l’appel de la fonction f : a =", a)
print("Print après l’appel de la fonction f : b =", b)

Qu’affiche Python lors de l’exécution du programme ? Analyser les différents 
affichages de print.

Exercice 1.3 : Variables locales, variables globales
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Analyse du problème
Ce programme permet de comprendre la différence entre les variables globales et 
les variables locales dans une fonction.

Cours :
Une variable locale est créée au début d’une fonction et est détruite lorsque la fonction est 
terminée. Elle existe uniquement dans le corps de la fonction.

Une variable globale est définie à l’extérieur d’une fonction. Le contenu de cette variable est 
visible à l’intérieur d’une fonction. L’instruction global b permet de définir la variable 
globale b dans la fonction f.

Le programme Python affiche :

  Print avant l’appel de la fonction f : a = 2
  Print avant l’appel de la fonction f : b = 2
  d = 3
  Premier print dans la fonction f : b = 2
  Deuxième print dans la fonction f : b = 7
  Troisième print dans la fonction f : a = 3
  Print après l’appel de la fonction f : a = 2
  Print après l’appel de la fonction f : b = 7

La variable a vaut toujours 2 après l’exécution de la fonction f.
Dans le corps de la fonction f, a est une variable locale qui n’a rien à voir 
avec la variable a définie dans le programme principal.
La variable b est modifiée par la fonction f car b est une variable globale 
(instruction global b). On retrouve 7 après l’appel de la fonction f.
La variable c est une variable locale. Elle n’est pas définie en dehors de la 
fonction. L’instruction print(c) en dehors de la fonction entraîne un 
message d’erreur de Python.
La variable d n’est pas définie dans la fonction f. Python cherche alors la 
valeur de d dans le programme principal. Python affiche alors : d = 3.

Remarque : L’instruction global i,j permet de désigner deux variables glo-
bales i et j dans une fonction.

La fonction deepcopy(L) du module copy permet de réaliser une copie pro-
fonde de la liste L.
1.  Qu’affiche Python lors de l’exécution du programme suivant ?
i=3
j=i
print('Avant modification de i : i, j =', i, j)
i=5
print('Après modification de i : i, j =', i, j)

Exercice 1.4 : Affectation, objet immuable, copie
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2.  Qu’affiche Python lors de l’exécution du programme suivant ?
L1=[1, 3, 5, 7]
L2=L1
print('Avant modification de L2 : L1, L2 =', L1, L2)
L2[3]=2
L2[3]=print('Après modification de L2 : L1, L2 =', L1, L2)

3.  Qu’affiche Python lors de l’exécution du programme suivant ?
L3=[1, 3, 5, 7]
import copy
L4=copy.copy(L3)
print('Avant modification de L4 : L3, L4 =', L3, L4)
L4[3]=2
print('Après modification de L4 : L3, L4 =', L3, L4)

4.  Qu’affiche Python lors de l’exécution du programme suivant ?
L1=[1, 2, [3, 4], 5]
L2=L1
L3=copy.copy(L1)
L4=copy.deepcopy(L1)
L1[0]=12
L1[2][0]=30
print('L1 =', L1)
print('L2 =', L2)
print('L3 =', L3)
print('L4 =', L4)

Analyse du problème
Ce programme permet de comprendre les problèmes rencontrés lors de copies de 
listes, deques et dictionnaires (voir chapitre 11 « Dictionnaire, pile, file, deque »).

Cours :
Il existe deux catégories d’objets dans Python :

•• les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes, 
dictionnaires, deques… ;

•• les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chaînes de caractères, tuples…

Objets muables – Partage de valeurs par plusieurs variables

L1=[1, 2, 3, 4]

Cette affectation (ou assignation) est une instruction qui réalise les opérations suivantes :

•• Création d’un objet muable (appelé obj1) de type list à une adresse mémoire. Cet 
objet possède un identifiant (adresse mémoire), un type et une valeur. La valeur de 
obj1 vaut : [1, 2, 3, 4].

•• Création de la variable L1.
•• Association de la variable L1 avec l’objet obj1 contenant la valeur [1, 2, 3, 4].
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La variable L1 ne contient pas [1, 2, 3, 4] mais uniquement la référence de 
l’objet obj1, c’est-à-dire l’adresse mémoire où est stocké obj1.

On peut modifier [1, 2, 3, 4] une fois que cet objet obj1 de type list est 
créé. Les listes sont modifiables (muables).

Cours :
Contrairement à d’autres langages de programmation (C ou Java), une affectation dans 
Python est une association d’une variable avec un objet contenant la valeur. C’est le choix 
des concepteurs du langage Python.

L2=L1

L’instruction L2=L1 n’affecte pas [1, 2, 3, 4] à L2 mais réalise les opérations sui-
vantes :

•• Création du nom de variable L2.
•• Affectation à la variable L2 de la référence (ou adresse mémoire) où est stocké [1, 
2, 3, 4].

L1 et L2 font donc référence au même objet [1, 2, 3, 4].

La copie est très rapide puisqu’on n’occupe pas deux fois plus de place mémoire.

Si on modifie [1, 2, 3, 4] via L1, alors cette modification sera également visible  
par L2.

L1[0]=10

On constate que L2[0] vaut 10 également. C’est tout à fait normal car L1 et L2 font réfé-
rence à la même adresse mémoire de [10, 2, 3, 4].

On ajoute un élément dans L1 avec la fonction append :

L1.append(12)

L’élément 12 est ajouté dans L1 et L2 puisque L1 et L2 font référence à la même liste 
modifiable (ou muable) : [10, 2, 3, 4, 12].

Comme dans les problèmes de concours, on utilise le langage suivant  : le terme 
« liste » appliqué à un objet Python signifie qu’il s’agit d’une variable de type list. 
Idem pour les autres types : int, float, bool, str, tuple, dict, deque…

Objets immuables (non modifiables)
a=10

Cette affectation réalise les opérations suivantes :

•• Création d’un objet immuable (appelé obj2) de type int à une adresse mémoire. 
Cet objet possède un identifiant (adresse mémoire), un type et une valeur. La valeur de 
obj2 vaut : 10.
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•• Création de la variable a.
•• Association de la variable a avec l’objet obj2 contenant la valeur 10.

La variable a ne contient pas 10 mais uniquement la référence de l’objet obj2, 
c’est-à-dire l’adresse mémoire où est stocké obj2.

On ne peut pas modifier 10 une fois que cet objet obj2 de type int est créé. Les 
entiers sont non modifiables (immuables).

Cours :
b=a

Cette instruction n’affecte pas 10 à la variable a mais affecte la référence (ou l’adresse 
mémoire) où est stocké 10.

a=11

Comme on ne peut pas modifier 10 (objet immuable), on crée un nouvel objet 11 avec 
une nouvelle adresse mémoire dans l’ordinateur. La variable a fait référence à l’adresse 
mémoire où est stocké 11.

Par contre, b fait toujours référence à l’adresse mémoire où est stocké 10.

print(b)    # b reste égal à 10

On retrouve le même résultat pour tous les objets immuables : entiers, nombres flottants, 
booléens, chaînes de caractères, tuples…

Deux cas peuvent se présenter après l’exécution de l’instruction L2=L1 :

•• L1 est un objet muable (mutable, en anglais, par exemple liste, dictionnaire, 
deque…) : si on modifie L1 dans la suite du programme, alors L2 est également 
modifié puisque L1 et L2 font référence à la même adresse mémoire.

•• L1 est un objet immuable (immutable, en anglais, par exemple entier, nombre 
flottant, booléen, chaîne de caractères, tuple…) : si on modifie L1 dans la suite 
du programme, alors L2 n’est pas modifié.

Cours :
On rencontre deux catégories de copies pour les objets muables (listes, dictionnaires, 
deques…) :

•• La fonction copy() réalise une copie superficielle. Les éléments sont copiés s’il 
n’y pas de structure imbriquée. Si les éléments sont des listes par exemple, alors 
l’adresse mémoire des listes est copiée.

•• La fonction deepcopy() réalise une copie profonde pour les structures imbri-
quées. Si les éléments sont des listes, alors la copie profonde copie bien les listes 
imbriquées.

import copy
L2=copy.copy(L1)



Chapitre 1 · Prise en main de Python 

19

Python exécute une copie superficielle de L1, c’est-à-dire qu’il crée une nouvelle 
liste L2 en copiant tous les éléments de L1 dans L2 puisqu’ils ne contiennent pas 
de structure imbriquée. Dans ce cas, L1 et L2 ne font plus référence à la même 
adresse mémoire.

La copie superficielle s’applique également aux dictionnaires et deques (voir cha-
pitre 11 « Dictionnaire, pile, file, deque »).

Remarque :

Avec certains langages (langage C++, Java par exemple), le typage des variables 
est statique, c’est-à-dire qu’il faut d’abord déclarer (ou définir) le nom et le type 
des variables et ensuite leur affecter (ou assigner) une valeur compatible avec le 
type déclaré.

Avec le langage Python, le typage des variables est dynamique  : l’interpréteur 
détermine automatiquement le type qui correspond au mieux à la valeur fournie 
lors de l’affectation.

1. Python affiche :
     Avant modification de i : i, j = 3 3
     Après modification de i : i, j = 5 3
Les résultats affichés dans Python sont tout à fait prévisibles. On va voir 
dans la question 2 que la même syntaxe appliquée aux listes donne des 
résultats surprenants !
2. Python affiche :
      Avant modification de L2 : L1,L2 = [1, 3, 5, 7]
                                   	  [1, 3, 5, 7]
      Après modification de L2 : L1,L2 = [1, 3, 5, 2]
                                     	 [1, 3, 5, 2]
Le programme de la question 2 est exactement le même que celui de la 
question 1 sauf qu’on manipule des listes au lieu de manipuler des entiers. 
Le comportement est complétement différent : la liste L1 a été modifiée !
L’instruction L2=L1 n’a pas effectué une copie de L1 dans L2 mais a 
copié uniquement la référence de la liste, c’est-à-dire l’adresse mémoire de 
la liste. L1 et L2 font donc référence à la même adresse mémoire de l’or-
dinateur. Si on modifie un élément de L2 alors L1 est également modifié.
3. Python affiche :
      Avant modification de L4 : L3,L4 = [1, 3, 5, 7]
                                   	 [1, 3, 5, 7]
      Après modification de L4 : L3,L4 = [1, 3, 5, 7]
                                  	 [1, 3, 5, 2]
L’instruction L4=copy.copy(L3) permet de réaliser une copie super-
ficielle de L3. Les listes L3 et L4 ont des adresses mémoire différentes. 
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La modification d’un élément de L4 n’a donc aucune conséquence sur L3 
puisque les éléments ne contiennent de structure imbriquée.
4. Python affiche :
     L1 = [12, 2, [30, 4], 5]
     L2 = [12, 2, [30, 4], 5]
     L3 = [1, 2, [30, 4], 5]
     L4 = [1, 2, [3, 4], 5]
L’affectation L2=L1 ne réalise pas une copie de L1. Si on modifie un 
élément de L1, alors cet élément est modifié dans L2 puisque L1 et L2 
pointent vers la même adresse mémoire.
L’instruction L3=copy.copy(L1) permet de réaliser une copie super-
ficielle de L1. Si on modifie un élément de L1 qui est une liste (exemple 
[30, 4]) alors cet élément est également modifié dans L3.
L’instruction L4=copy.deepcopy(L1) permet de réaliser une copie 
profonde de L3. Si on modifie un élément de L1 qui est une liste (exemple 
[30, 4]) alors cet élément n’est pas modifié dans L3.

On considère le programme suivant :
def f(a, b, L):
    a+=1
    print('Print dans la fonction : a =', a)
    b=b+1
    print('Print dans la fonction : b =', b)
    print('Print dans la fonction : d =', d)
    L.append(4)       # on ajoute un élément dans L
    print('Print dans la fonction : L =', L)
    return a

a=3
b=5
d=3
L=[1, 2, 3]
c=f(a, b, L)
print('Print après la fonction : a =', a)
print('Print après la fonction : b =', b)
print('Print après la fonction : c =', c)
print('Print après la fonction f : L =', L)

Qu’affiche Python lors de l’exécution du programme ? Analyser les différents 
affichages de print.

Exercice 1.5 : Passage par référence pour les listes, effet de bord

Analyse du problème
Ce programme permet de comprendre les problèmes rencontrés lors de l’utilisation 
de listes dans les arguments d’entrée des fonctions.
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Cours :
Les arguments d’entrée des fonctions sont tous passés par référence. On considère deux 
cas :

•• Objet muable (liste, dictionnaire, deque…)  : toute modification de cet objet dans la 
fonction est visible en dehors de la fonction. C’est « l’effet de bord » puisque la fonc-
tion modifie des données définies hors de sa portée locale.

•• Objet immuable  (entier, nombre flottant, booléen, chaîne de caractères, tuple…) : toute 
modification de cet objet dans la fonction n’est pas visible en dehors de la fonction. 
Pour simplifier, tout se passe comme si ces objets étaient passés par valeur.

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque…) dans 
une fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la 
fonction.

Python affiche :
      Print dans la fonction : a = 4
      Print dans la fonction : b = 6
      Print dans la fonction : d = 3
      Print dans la fonction : L = [1, 2, 3, 4]
      Print après la fonction : a = 3
      Print après la fonction : b = 5
      Print après la fonction : c = 4
      Print après la fonction f : L = [1, 2, 3, 4]
La fonction f retourne la valeur 4 qui est affectée dans la variable c.
Avant l’appel de la fonction f, la variable b fait référence à 5. La variable 
b est passée par référence dans la fonction f et fait toujours référence à 6. 
L’instruction b=b+1 dans la fonction f ne peut affecter 5 qui est immuable. 
La variable b dans la fonction f fait donc référence à une nouvelle valeur 6. 
La variable b du programme principal garde donc la même valeur 6.
Pour simplifier, cela revient à dire que les variables a et b sont passées par 
valeur : l’exécution de la fonction f évalue d’abord a et b puis exécute f 
avec les valeurs calculées a et b.
La variable L fait référence à la liste [1, 2, 3] qui est un objet muable. 
La liste L est passée par référence. Lorsqu’on modifie L dans la fonction f, 
on modifie la liste [1, 2, 3].
La variable L dans la fonction f fait référence à la même adresse mémoire 
que la variable L dans le programme principal.
Lorsqu’une expression fait référence à une variable à l’intérieur d’une fonc-
tion (variable d par exemple), Python cherche la valeur définie à l’intérieur 
de la fonction et à défaut la valeur dans l’espace global du programme.

Remarque  : Voir l’exercice précédent, « Affectation, objet immuable, copie », 
pour avoir une copie profonde avec la fonction deepcopy().
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On considère le programme suivant :

L1=[i for i in range(2, 7, 2)]   # création par compréhension
print('L1 =', L1)
print(L1[:-1])

Qu’affiche Python lors de l’exécution du programme ?

Exercice 1.6 : Slicing, extraction de tranche

Analyse du problème
La technique du slicing, ou extraction de tranche, permet d’extraire des éléments 
d’une liste.

Cours :
Lorsqu’on veut extraire des éléments d’une liste, d’un tuple ou d’une chaîne de caractères, 
on utilise la technique du slicing, ou extraction de tranche. Il suffit de mettre entre crochets 
les indices correspondant au début et à la fin de la « tranche ». On utilise la syntaxe :

L[start:stop]

start : indice de départ, inclus
stop – start : longueur de la liste extraite (avec un pas de 1 par défaut)
stop : indice final, exclu

Exemple pour L=[3, 5, 1, 8, 10] : L[1:4] renvoie [5, 1, 8].

L’indice de départ vaut 1 avec L[1] = 5.
L’indice final vaut 4 – 1 = 3 avec L[3] = 8.
On récupère bien 3 éléments : [5, 1, 8].

Il faut bien retenir l’instruction : L[start:stop].

Les indices sont compris entre start inclus et stop exclu.

On peut retenir facilement que le nombre d’éléments vaut stop – start avec 
un pas de 1 par défaut.

Cours :
On peut utiliser l’extraction de tranche avec un pas différent de 1. On utilise alors la syntaxe 
suivante :

L[start:stop:step]

start : indice de départ, inclus
stop : indice final, exclu
step : cette variable désigne le pas.

Exemple pour L=[3, 5, 1, 8, 10] : L[1:4:2] renvoie [5, 8].

L’indice de départ vaut 1 avec L[1] = 5.
L’indice final 4 est exclu.
On ne prend qu’un élément sur 2.
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On peut omettre n’importe lequel des arguments dans L[start:stop:step].

Par défaut : start = 0, stop = indice du dernier élément de la liste + 1, step = 1.

L[:3] renvoie tous les éléments dont les indices sont compris entre 0 inclus et 3 exclu. 
Python retourne [3, 5, 1].

L[1:] renvoie tous les éléments dont les indices sont compris entre 1 inclus et (indice du 
dernier élément de la liste + 1) exclu. Python retourne [5, 1, 8, 10].

On peut créer une liste par compréhension :

L1=[3*i for i in range(3)]

On obtient : L1=[0, 3, 6].

On peut également utiliser une boucle for :

L1=[]                   # création d’une liste vide
for i in range(3):      # i varie entre 0 inclus et 3 exclu
    L1.append(3*i):     # ajoute la valeur 3*i à la liste L1

On obtient : L1=[0, 3, 6].

Attention aux séparateurs dans l’extraction de tranche et dans la fonction range :
L[start:stop:step]        # mettre deux points entre start et stop
range(start, stop, step)  # mettre une virgule entre start et stop

Cours :
On utilise la même technique pour les tuples et les chaînes de caractères.

L=(3, 5, 8, -2)         # tuple
L2=L[0:3]               # L2=(3, 5, 8)
c="C’est un mot"        # chaîne de caractères
c2=c[0:3]               # c2="C’e"

Python affiche :
      L1 = [2, 4, 6]
      [2, 4]
Liste L1 : i varie entre 2 inclus et 7 exclu avec un pas de 2.
L1[:-1] extrait les éléments de L1 : le dernier élément de L1 est exclu.
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2Graphiques

On considère les fonctions f1 et f2 définies sur [0, 2] par :

( ) =
≤ <
≤ ≤







pour 0 1

1 pour 1 21f x
x x

x
 et ( ) ( )= + ,sin 0 12f x x .

Les fonctions suivantes permettent le tracé de fonctions :
import matplotlib.pyplot as plt  # module matplotlib.pyplot renommé plt
plt.figure()          �# nouvelle fenêtre graphique
plt.plot(x, y, color='r', linewidth=3, marker='o')
   # color : choix de la couleur
   # ('r' : red, 'g' : green, 'b' : blue, 'black' : black)
   # linewidth : épaisseur du trait
   # marker : différents symboles '+', '.', 'o', 'v'
   # linestyle : style de la ligne ('-' ligne continue,
   # '--' ligne discontinue, ':' ligne pointillée)
plt.plot(x, y, '*')   # points non reliés représentés par '*'
plt.grid()            # affichage de la grille
plt.title('Titre')    # ajout d’un titre
plt.xlabel('axe x')   # affiche 'axe x' en abscisse d’un graphique
plt.ylabel('axe y')   # affiche 'axe y' en ordonnée d’un graphique
plt.axis ([xmin, xmax, ymin, ymax])    # précise les bornes pour les
                                       # abscisses et les ordonnées
plt.legend(['courbe 1', 'courbe 2'])   # permet de légender les courbes
plt.show()            # affiche la figure à l’écran

Définir les deux fonctions f1 et f2 dans Python en utilisant le module 
math. Tracer les courbes représentatives des deux fonctions sur l’intervalle  
[0, 2] avec un pas de 0,05. Le graphique doit avoir les caractéristiques sui-
vantes :
•• Utilisation de listes.

•• Courbe représentative de f1 : épaisseur du trait égale à 3, couleur bleue.

•• Courbe représentative de f2  : points non reliés représentés par *, couleur 
rouge.

•• Légender les deux courbes.

•• Afficher 'x' pour l’axe des abscisses et 'y' pour l’axe des ordonnées.

•• Afficher le titre : 'Tracé de fonctions'.

•• Axe des x compris entre 0 et 2, axe des y compris entre 0 et 1,5.

Exercice 2.1 : Tracé d’une fonction avec matplotlib
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Analyse du problème
Il faut bien connaître les fonctions suivantes pour tracer une fonction :
import matplotlib.pyplot as plt   # module matplotlib.pyplot renommé plt
plt.figure()            # nouvelle fenêtre graphique
plt.plot(x, y)          # représentation graphique de y en fonction de x
plt.show()              # affiche la figure à l’écran

Cours :
Le module matplotlib.pyplot de la bibliothèque matplotlib permet d’afficher 
des graphiques. On l’importe à l’aide de la commande :

import matplotlib.pyplot as plt   # module matplotlib.pyplot renommé plt

Il faut connaître quelques fonctions du module matplotlib.pyplot :

•• plt.plot(x, y)
Arguments d’entrée : x liste d’abscisses de longueur n et y liste d’ordonnées de lon-
gueur n.
Description : fonction permettant de tracer un graphique de n points dont les abscisses 
sont contenues dans la liste x et les ordonnées dans la liste y. Cette fonction doit être 
suivie de la fonction plt.show() pour que le graphique soit affiché.

•• plt.xlabel(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en abscisse d’un gra-
phique.

•• plt.ylabel(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en ordonnée d’un gra-
phique.

•• plt.title(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en titre d’un graphique.

•• plt.show()
Description : fonction réalisant l’affichage d’un graphe préalablement créé par la com-
mande plt.plot(x, y). Elle doit être appelée après la fonction plt.plot et 
après les fonctions plt.xlabel, plt.ylabel et plt.title.

•• plt.axis([xmin, xmax, ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour l’axe des abscisses 
et celui des ordonnées.

•• plt.xlim([xmin, xmax])
Description : fonction permettant de définir les valeurs limites pour l’axe des abscisses.

•• plt.ylim([ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour l’axe des ordon-
nées.
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import matplotlib.pyplot as plt
  # module matplotlib.pyplot renommé plt
import math as m   # module math renommé m

def f1(x):         # définition de la fonction f1
                   # argument d’entrée : float x
    if x>=0 and x<1:
        return x
    elif x>=1 and x<=2:
        return 1
    else:
        return 0

def f2(x):         # définition de la fonction f2
                   # argument d’entrée : float x
    return m.sin(x)+0.1

xmin=0             # valeur minimale de x
xmax=2             # valeur maximale de x
pas=0.05
N=int(((xmax-xmin)/pas)+1)   # pas=(xmax-xmin)/(N-1)
     # le nombre de points doit être un entier
     # N=nombre de points et N-1=nombre d’intervalles

x=[]               # initialisation de la liste x 
y1=[]              # initialisation de la liste y1
y2=[]              # initialisation de la liste y2

for i in range(N):      # i varie entre 0 inclus et N exclu
    x.append(i*pas)     # ajout de l’élément x[i]
    y1.append(f1(x[i])) # ajout de l’élément f1(x[i])
    y2.append(f2(x[i])) # ajout de l’élément f2(x[i])

plt.figure()      # nouvelle fenêtre graphique
plt.plot(x, y1, linewidth=3, color='b')   # création de la
                                          # première courbe
plt.plot(x, y2, '*', color='r')  # création de la deuxième courbe
plt.legend(['f1(x)', 'f2(x)'])   # légende des deux courbes
plt.xlabel('x')   # affichage de 'x' en abscisse du graphique
plt.ylabel('y')   # affichage de 'y' en ordonnée du graphique
plt.title('Tracé de fonctions')  # affichage du titre du graphique
plt.axis([0, 2, 0, 1.5])         # [xmin,xmax,ymin,ymax]
plt.show()                       # affiche la figure à l'écran
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On considère la liste : L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9].
Les fonctions suivantes permettent le tracé d’histogrammes :
import matplotlib.pyplot as plt  # module matplotlib.pyplot renommé plt
plt.figure()                        # nouvelle fenêtre graphique
plt.hist(L, range=(5, 25), bins=10, color='red')
 # range=(5, 25) permet de préciser le minimum et le maximum des
 # valeurs représentées sur l’histogramme.
 # Par défaut : range=(min(L), max(L)), bins=10=nombre d’intervalles
 # ou bins=[5, 15, 20, 25, 40] permettant de préciser les limites
 # des intervalles. Les barres de l’histogramme ont dans cet
 # exemple des largeurs différentes.
 # color='red' permet de préciser la couleur des barres
plt.show()                       # affiche la figure à l’écran

Tracer l’histogramme de la liste L avec les caractéristiques suivantes :
•• Afficher 'Valeurs de L' pour l’axe des abscisses et 'Nombre d’oc-
currences' pour l’axe des ordonnées.

•• Afficher le titre : 'Histogramme de la liste L'.

•• 12 intervalles.

Exercice 2.2 : Tracé d’un histogramme avec matplotlib

Analyse du problème
Voir exercice précédent « Tracé d’une fonction avec matplotlib » pour l’affichage 
du titre, de l’axe des abscisses et de l’axe des ordonnées.

Il faut bien connaître les fonctions suivantes pour tracer un histogramme :
import matplotlib.pyplot as plt   # module matplotlib.pyplot renommé plt
plt.figure()                      # nouvelle fenêtre graphique
plt.hist(L)                       # tracé de l’histogramme
plt.show()                        # affiche la figure à l’écran

import matplotlib.pyplot as plt
  # module matplotlib.pyplot renommé plt
L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9]
plt.figure()          # nouvelle fenêtre graphique
plt.hist(L, bins=12)  # tracé de l’histogramme de la liste L
                      # avec 12 intervalles
plt.title('Histogramme de la liste L') # titre de l’histogramme
plt.xlabel('Valeurs de L')
plt.ylabel("Nombre d’occurrences")
plt.show()            # affiche la figure à l’écran
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3Terminaison,  
correction, complexité 

1.  Proposer une fonction egal(L1, L2) retournant un booléen permettant de 
savoir si deux listes L1 et L2 sont égales.
2.  Que peut-on dire de la complexité de cette fonction ?
3.  Préciser le type de retour de cette fonction.

Exercice 3.1 : Comparaison de deux listes (Mines Ponts 2017)

Analyse du problème
On se place dans le pire des cas avec deux listes égales. On calcule le nombre total 
d’opérations élémentaires pour déterminer la complexité de cette fonction.

Cours :
Terminaison d’un programme

Un programme itératif est constitué d’une boucle for ou while. On cherche à démontrer 
que cette boucle se termine.

On considère un variant de boucle, par exemple un entier naturel qui décroît à chaque ité-
ration de la boucle et qui atteindra 0 à un moment, ce qui permet de montrer que la boucle 
se termine.

On considère le programme suivant qui cherche un élément dans une liste non triée.

L=[3, 1, 6, 9, 19, -1,20]
def rec_pos(L, x):
    # la fonction renvoie True et i l’indice si x est dans la liste L,
    # False sinon
    i=0                   # initialisation de l’indice i
    n=len(L)
    while i<n:
        if x==L[i]:
            return True,i # return provoque un arrêt de boucle
                          # si x est dans L
        i=i+1
    return False, -1      # l’élément n’est pas trouvé
print(rec_pos(L,6))       # le programme affiche : (True, 2)

On appelle n le nombre d’éléments de la liste L. On considère le variant de boucle : n − i.
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•• Le variant de boucle vaut n à l’entrée de la boucle while.
•• Il décroît de 1 à chaque passage dans la boucle si l’élément x n’est pas dans L. Si l’élé-
ment est trouvé, on quitte la boucle.

•• En sortie de boucle, si l’élément n’est pas trouvé, le variant de boucle vaut n − n = 0.

Dans tous les cas, on a démontré la terminaison du programme.

Voir chapitre 6 « Récursivité » pour des exemples avec des fonctions récursives.

Correction d’un programme

Pour démontrer la correction d’un programme, il faut montrer que l’algorithme effectue 
bien la tâche souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

Rédaction pour un programme itératif

La propriété Pn (appelée invariant de boucle) doit avoir trois caractéristiques :

•• La propriété doit être vérifiée avant d’entrer dans la boucle.
•• Si la propriété est vérifiée avant une itération, elle doit être vérifiée après cette itération.
•• Si la propriété est vérifiée en fin de boucle, alors le programme est correct.

On considère le programme suivant qui calcule la factorielle d’un entier naturel.

def fact(n):
    # la fonction renvoie la factorielle de n (int)
    res=1                      # initialisation de res à 1
    for i in range(1,n+1):     # i varie entre 1 inclus et n+1 exclu
        res=res*i
    return res

print('Factorielle :',fact(4)) # affiche 24

On considère la propriété (appelée invariant de boucle) Pi : res = i!.

•• Avant d’entrer dans la boucle, i = 1 et on a bien res = 1!.
•• Si Pi est vraie, alors res = i!. Dans la boucle, le programme fait le calcul  : 

! !( ) ( ) ( )× + = × + = +res 1 1 1i i i i .
res prend alors la valeur !( )+ 1i . La propriété Pi+1 est donc vraie.

•• En fin de boucle, i vaut n et on a bien res = n!.

On a démontré que le programme est correct.

Rédaction pour un programme récursif

Voir chapitre 6 « Récursivité » pour la rédaction avec des fonctions récursives.

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’arrête.
•• La correction est totale si elle est partielle et si l’algorithme termine.

Complexité

On distingue complexité en temps et complexité en espace. La complexité en temps mesure 
la durée nécessaire à l’exécution du programme, alors que la complexité en espace mesure 
la taille mémoire nécessaire à l’exécution du programme. On étudiera par la suite la com-
plexité en temps.
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La complexité est une mesure du nombre d’opérations élémentaires que l’algorithme effec-
tue. Si on se place dans les conditions les plus favorables, on calculera la complexité dans 
le meilleur des cas. Si on se place dans les conditions les plus défavorables, on calculera la 
complexité dans le pire des cas.

On considère le programme suivant, qui cherche le maximum d’une liste non triée.

def rec_max(L):
    # la fonction renvoie le maximum des éléments de la liste L
    maxi=L[0]
    n=len(L)               # nombre d’éléments de L
    for i in range(1, n):  # i varie entre 1 inclus et n exclu
        if L[i]>maxi:
            maxi=L[i]
    return maxi

On cherche à évaluer la complexité de cette fonction dans le cas le moins favorable.

On appelle n le nombre d’éléments de la liste L. 

On cherche à calculer le nombre d’opérations élémentaires :

•• 2 opérations élémentaires : appel de l’élément L[0] et affectation de maxi.
•• 2 opérations élémentaires : appel du nombre d’éléments de L et affectation de n.
•• Pour chaque étape de la boucle for, on a 3 opérations élémentaires : appel de l’élément 
L[i], comparaison, affectation.

La boucle for est exécutée n − 1 fois dans le pire des cas (si la liste est triée dans l’ordre 
croissant).

Le nombre d’opérations élémentaires vaut : 4 + 3(n − 1) = 1 + 3n.

La complexité est linéaire en O(n) pour la fonction rec_max.

On rencontre les types suivants de complexité :

•• constante en O(1) (ne dépend pas de n),
•• logarithmique en O(log n),
•• linéaire en O(n),
•• quasi linéaire en O(n log n),
•• quadratique en O(n2),
•• polynomiale en O(np),
•• exponentielle en O(2n).

1.  
def egal(L1, L2):
    # la fonction renvoie True si les deux listes L1 et L2
    # sont égales, False sinon
    if len(L1)!=len(L2):        # listes de longueurs différentes
        return False
    else:
        for i in range(len(L1)):# parcourt tous les éléments de L1
            if L1[i]!=L2[i]:
                return False
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    return True

L1=[3, 2, 5, 8]
L2=[3, 2, 5, 8]
print(egal(L1, L2)              # retourne True

2. On se place dans le pire des cas avec deux listes égales. On appelle n la 
longueur de la liste L1.
On calcule le nombre d’opérations élémentaires de la fonction egal(L1, 
L2) :

•• 3 opérations élémentaires  : appel de la longueur de L1, appel de la 
longueur de L2, test.

•• À chaque appel de la boucle for : 3 opérations élémentaires (test et 
appel de L1[i], L2[i]).

On a donc 3 + 3n opérations élémentaires.
La complexité est linéaire en O(n).

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

3. Le type de retour de la fonction egal(L1, L2) est bool (booléen).

On s’intéresse à des mesures de niveau de la surface libre de la mer. La distri-
bution des hauteurs de vague lors de l’analyse vague par vague est réputée être 
gaussienne. On peut contrôler ceci par des tests de skewness (variable désignée 
par S) et de kurtosis (variable désignée par K) définis ci-après. Ces deux tests 
permettent de quantifier respectivement l’asymétrie et l’aplatissement de la dis-
tribution.
On appelle H  et σ 2 les estimateurs non biaisés de l’espérance et de la variance,  

n le nombre d’éléments , , ...,1 2H H Hn. On définit alors :
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On suppose disposer de la fonction ecartType qui permet de retourner la 
valeur de l’écart-type non biaisé σ .

Exercice 3.2 : �Amélioration de la complexité 
(Mines Ponts 2018)



Chapitre 3 · Terminaison, correction, complexité  

35

1.  Proposer une fonction moyenne prenant en argument une liste non vide L 
et retournant sa valeur moyenne.
2.  Un codage de la fonction skewness pour une liste ayant au moins 3 élé-
ments est donné ci-dessous. Le temps d’exécution est anormalement long. Pro-
poser une modification simple de la fonction pour diminuer le temps d’exécution 
(sans remettre en cause le codage des fonctions ecartType et moyenne).

def skewness (liste_hauteurs):
    n=len(liste_hauteurs)
    et3=(ecartType(liste_hauteurs))**3
    S=0
    for i in range(n):
        S+=(liste_hauteurs[i]-moyenne(liste_hauteurs))**3
        S=n/(n-1)/(n-2)*S/et3
    return S

3.  Doit-on s’attendre à une différence de type de la complexité entre une fonc-
tion évaluant S et une fonction évaluant K ?

Analyse du problème
On calcule le nombre total d’opérations élémentaires pour déterminer la complexité 
de cette fonction.

1.  
def moyenne(L):
    # la fonction renvoie la valeur moyenne de la liste L
    som=0                # initialisation de som à 0
    n=len(L)             # nombre d'éléments de L
    for i in range(n):   # i varie entre 0 inclus et n exclu
        som=som+L[i]
    return(som/n)

2. La boucle for de la fonction skewness est exécutée n fois. À chaque 
étape de cette boucle for, on calcule moyenne(liste_hauteurs) 
qui fait intervenir une autre boucle exécutée n fois.
On a donc une complexité quadratique en O(n2).
Pour améliorer la complexité de cette fonction, on calcule 
moyenne(liste_hauteurs) avant la boucle for. Dans ce cas, on a 
une complexité linéaire en O(n) :

def skewness (liste_hauteurs):
    # la fonction renvoie S pour la liste liste_hauteurs
    n=len(liste_hauteurs)
    et3=(ecartType(liste_hauteurs))**3
    moy=moyenne(liste_hauteurs)
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    S=0
    for i in range(n):
        S+=(liste_hauteurs[i]-moy)**3
        S=n/(n-1)/(n-2)*S/et3
    return S

3. On a une seule boucle pour calculer S et K. Il n’y a pas de différence de 
type de la complexité.

1.  Donner la décomposition binaire (en base 2) de l’entier 21.
2.  On considère la fonction mystere suivante :

def mystere(n, b):
    """Données: n > 0 un entier et b > 0 un entier
    Résultat: ......."""
    t=[]   # liste vide
    while n>0:
        c=n%b
        t.append(c)
        n=n//b
    return t

Pour k ∈ ℕ*, on note ck, tk et nk les valeurs prises par les variables c, t et n à 
la sortie de la k-ième itération de la boucle while. Quelle liste est renvoyée 
lorsque l’on exécute mystere(256,10) ?
On recopiera et complétera le tableau suivant, en ajoutant les éventuelles 
colonnes nécessaires pour tracer entièrement l’exécution.

k 1 2 …

ck …

tk …

nk …

3.  Soit n > 0 un entier. On exécute mystere(n,10). On pose n0 = n.
a. Justifier la terminaison de la boucle while.
b. On note p le nombre d’itérations lors de l’exécution de mystere(n,10). 

Justifier que, pour tout ,[ ]∈ 0k p , on a ≤
10

n
n

k k . En déduire une majoration de 

p en fonction de n.
4.  En s’aidant du script de la fonction mystere, écrire une fonction somme_
chiffres qui prend en argument un entier naturel et renvoie la somme de ses 
chiffres. Par exemple, somme_chiffres(256) devra renvoyer 13.
5.  Écrire une version récursive de la fonction somme_chiffres, on la nom-
mera somme_chiffres_rec.

Exercice 3.3 : �Décomposition en base b d’un entier  
(CCP MP Maths 2015)
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Analyse du problème
On étudie dans cet exercice, extrait du concours CCP MP Maths 2015, la décompo-
sition en base b d’un entier. La méthode est d’effectuer des divisions euclidiennes 
successives pour obtenir la liste des chiffres de la décomposition en base b d’un 
entier.

1. La décomposition binaire de l’entier 21 s’écrit : 21 = 10101b.
On a effet  : 21 = 24 + 22 + 1 = 1  + 2 × ( 0  + 2 × ( 1  + 2 × ( 0  +  
2 × ( 1 )))).

Remarque :

On peut effectuer les divisions euclidiennes suivantes :

a) Division euclidienne de l’entier 21 par 2 :

21//2 = 10 = quotient
21%2 = 1  = reste
Le premier reste fournit le premier chiffre du code binaire, c’est-à-dire 1010  1 b.

b) Division euclidienne du quotient précédent par 2 :

10//2 = 5
10%2 = 0
Le deuxième reste fournit le deuxième chiffre du code binaire, c’est-à-dire  
101 0 1b.

c) Division euclidienne du quotient précédent par 2 :

5//2 = 2
5%2 = 1

d) Division euclidienne du quotient précédent par 2 :

2//2 = 1
2%2 = 0

e) Division euclidienne du quotient précédent par 2 :

1//2 = 0
1%2 = 1

On en déduit que : 21 = 10101b = 24 + 22 + 1 = 1  + 2 × ( 0  + 2 × ( 1  + 2 × ( 0  + 
2 × ( 1 )))).

On peut envisager une boucle où on effectue les divisions euclidiennes successives. 
On termine la boucle dès que le quotient est nul.

Cet algorithme permet d’effectuer la division euclidienne de l’entier n par deux 
jusqu’à ce que le résultat soit nul. La suite des restes donne le code binaire en ordre 
inverse.
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2. 

k 1 2 3

ck 256%10 = 6 25%10 = 5 2%10 = 2

tk [6] [6, 5] [6, 5, 2]

nk 25 2 0

La fonction mystere(256,10) renvoie la liste [6,5,2].
Cette procédure donne la décomposition en base b de l’entier n.

Cours :
Un variant de boucle sert à démontrer qu’une boucle se termine.

On peut utiliser par exemple un entier naturel qui décroît strictement à chaque itération. Il 
finit par atteindre 0 à un moment, on est alors à la fin de la boucle.

3. 

a.	Le variant de boucle est n. On notera nk la liste des valeurs successives 
prises par n au cours des différentes itérations.

•• Initialisation : n0 = n.
•• À l’étape k, le variant de boucle est nk. À l’étape k+1, on a nk+1 = nk//b. 
nk+1 est le quotient de la division euclidienne de nk par b. Il existe r 
tel que : nk = b nk+1 + r avec 0 ≤ r < b. On a nk+1 < nk. La suite est donc 
strictement décroissante.

•• En sortie de boucle, np est nul car b est un entier strictement positif et 
le quotient est nul dès que n est plus petit que b.

b.	Démonstration par récurrence : Propriété Pk : ≤n
n

10k k  

•• La propriété est vraie pour k = 0 puisque 100 = 1.
•• Supposons la propriété vraie pour le rang k. nk+1 = nk//10  : c’est le 
quotient de la division euclidienne de nk par 10. Il existe r tel que  : 

nk = 10 nk+1 + r avec 0 ≤ r < 10. D’où = ++
nk

n
r

k10 101 , soit ≤+n
n
10k

k
1 . Or 

≤n
n

10k k . On en déduit immédiatement que ≤+ +n
n

10k k1 1 . La propriété 

est donc vraie au rang k+1.
Pour la dernière itération de la boucle, on a np = 0. Pour l’itération précé-
dente, on a : 1 ≤ np−1 ≤ 9. On a donc np−1 ≥ 1.

On a vu que ≤− −n
n

10p p1 1 , soit ≤−

−

n
n

10p

p

1

1
. Comme np−1 ≥ 1, alors 10p−1 ≤ n,  

d’où p−1 ≤ log10(n). Finalement, on a :

p ≤ log10(n+1)
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4. On reprend le programme de la question 2. Les différents chiffres de 
l’entier n sont obtenus par les restes des divisions euclidiennes successives.
def somme_chiffres(n, b):
    """Données: n > 0 un entier et b > 0 un entier
    Résultat: ......."""
    somme=0         # initialisation de la somme
    while n>0:
        r=n%b       # calcul de reste de la division
                    # euclidienne de n par b
        somme+=r    # ajoute le reste r à somme
        n=n//b
    return somme

Cours :
Dans toute fonction récursive, l’instruction return doit être présente au moins deux fois : 
une fois pour la condition d’arrêt (premier return dans le programme) et une autre fois 
pour l’appel récursif (dernier return dans le programme)

5. 
def somme_chiffres_rec(n, b):
    """Données: n > 0 un entier et b > 0 un entier
    Résultat: ......."""
    if n==0: 
        return 0    # condition d’arrêt
    else:
        return n%b + somme_chiffres_rec(n//b,b)     # appel
                                                    # récursif

Remarque :

L’entier 37 s’écrit 100101b en binaire. On utilise une liste contenant les valeurs 
des différents bits. Il existe deux conventions pour repérer les bits dans une 
liste :

•• L = [1,0,0,1,0,1] : L[0] représente le bit de poids le plus fort et L[5] représente le 
bit de poids le plus faible.

•• L = [1,0,1,0,0,1] : L[0] représente le bit de poids le plus faible et L[5] représente 
le bit de poids le plus fort.

Il faut bien regarder si l’énoncé impose une convention. Sinon il faut bien la définir 
dans le programme pour éviter toute ambiguïté. La fonction mystere(37,2) 
retourne alors : [1, 0, 1, 0, 0, 1]. On utilise donc la deuxième convention 
dans tout l’exercice.

Soit un entier naturel n non nul et une liste L de longueur n dont les termes 
valent 0 ou 1. On cherche le nombre maximal de 0 contigus dans L (c’est-à-

Exercice 3.4 : �Recherche du nombre de zéros  
(banque PT 2015)
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dire figurant dans des cases consécutives). Par exemple, le nombre maximal de 
zéros contigus de la liste L1 suivante vaut 4 :

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
L1[i] 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0

1.  Écrire une fonction nombreZeros(L,i) qui admet pour argument une 
liste L de longueur n, un indice i compris entre 0 et n−1, et qui retourne :
•• 0, si L[i] = 1 ;

•• le nombre de zéros consécutifs dans L à partir de L[i] inclus, si L[i] = 0.

Par exemple, les appels nombreZeros(L1,4), nombreZeros(L1,1) et 
nombreZeros(L1,8) renvoient respectivement les valeurs 3, 0 et 1.
2.  Comment obtenir le nombre maximal de zéros contigus d’une liste L 
connaissant la liste des nombreZeros(L,i) pour 0 ≤ i ≤ n − 1 ?
En déduire une fonction nombreZerosMax(L), de paramètre L, renvoyant le 
nombre maximal de 0 contigus d’une liste L non vide. On utilisera la fonction 
nombreZeros.
3.  Évaluer la complexité de la fonction nombreZerosMax.
4.  Trouver un moyen simple, toujours en utilisant la fonction nombreZeros, 
d’obtenir un algorithme plus performant.

Analyse du problème
Dans cet exercice, on parcourt une liste pour déterminer le nombre maximal de 
zéros contigus dans celle-ci. On verra comment améliorer l’algorithme. Cet exer-
cice est extrait du sujet de concours 0 de la banque PT 2015.

1. 
def nombreZeros(L, i):
    # la fonction renvoie nbr_zeros pour la liste L
    # et un indice i (int)
    if L[i]==1:
        return 0
    else:
        nbr_zeros=0
        j=i
        while j<len(L) and L[j]==0:
            # il faut mettre j<len(L) avant L[j]
            # sinon message dʼerreur pour j=len(L)
            nbr_zeros+=1   # incrémente de 1
                           # le nombre de zéros
            j+=1
    return nbr_zeros
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2. On utilise la fonction nombreZeros pour définir une liste Z : chaque 
élément Z[i] de la liste Z contient le nombre de zéros consécutifs dans 
L à partir de L[i].
Il suffit ensuite de déterminer le maximum de la liste Z.

def nombreZerosMax(L):
    # la fonction renvoie le nombre maximal de 0 contigus
    # de la liste L
    Z=[]                           # initialisation de la liste
    for i in range(len(L)):
        Z.append(nombreZeros(L,i)) # stocke nombreZeros(L,i)
    max_Z=Z[0]                     # recherche du maximum
                                   # de la liste Z
    for i in range(1,len(Z)):      # i varie entre 1 inclus 
                                   # et len(Z) exclu
        if Z[i]>max_Z:
            max_Z=Z[i]
    return max_Z
print (nombreZeros(L1, 13))
print(nombreZerosMax(L1))

3. On appelle n la longueur de la liste L. On se place dans le pire des cas.
•• Première boucle for : i varie entre 0 et n−1. Pour chaque valeur de i 
on appelle la fonction nombreZeros (pour chaque valeur de j, il y a 
deux comparaisons, une incrémentation de la variable nbr_zeros et 
une incrémentation de la variable j qui varie entre i et n−1), soit 4(n−i) 
opérations élémentaires.

On a donc ∑ ∑( ) ( ) ( )− = × − = −
−

= +
=

−

=

−

n i n n i n
n n

n n4 4 4 4 4
1

2
2 2

i

n

i

n

0

1

0

1
2 2  

opérations élémentaires pour cette première boucle.
•• Deuxième boucle for : i varie entre 1 et n−1. Pour chaque valeur de i, 
on a 2 opérations élémentaires (une comparaison et une affectation).
On a 2(n−1) opérations élémentaires pour la deuxième boucle.

La complexité de la fonction nombreZerosMax est quadratique en 
O n( )2 .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

4. Pour un indice i de la liste L, on appelle valeur le nombre de zéros 
consécutifs dans L à partir de i en utilisant la fonction nombreZeros.
Si valeur est non nul, il est alors inutile d’appeler la fonction  
nombreZeros(L, i+1) mais on appelle nombreZeros(L, 
i+valeur+1). Entre i et i + valeur, la liste L ne contient que des 
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zéros et L[i+valeur+1] vaut nécessairement 1 puisque la fonction 
nombreZeros donne le nombre de zéros consécutifs, sauf si on est 
en fin de liste.
def nombreZerosMax2(L):
    # la fonction renvoie le nombre maximal de 0 contigus
    # de la liste L
    valeur_max=0
    while i<len(L):   # i ne doit pas dépasser len(L)-1
        valeur=nombreZeros(L,i)
        if valeur==0:
            i+=1
        else:
            i+=valeur+1
            if valeur>valeur_max:
                valeur_max=valeur
    return valeur_max

Remarque : On utilisera cette même technique d’optimisation dans l’exercice 4.3 
« Recherche d’un mot dans un texte, boucles imbriquées » dans le chapitre « Algo-
rithmes ».
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4Algorithmes

On considère la liste de nombres : L=[9, 10, 11, 56, 15, 16, 12, 
18, 20, 12, -5, -8].

1.  Écrire une fonction rec_min qui admet comme argument une liste non 
vide de nombres. Cette fonction retourne le minimum de cette liste. On n’utili-
sera pas la fonction min.
2.  Écrire une fonction rec_max qui admet comme argument une liste non 
vide de nombres. Cette fonction retourne le maximum de cette liste. On n’uti-
lisera pas la fonction max.
3.  Évaluer la complexité de ces deux fonctions dans le cas le moins favorable.

Exercice 4.1 : �Recherche du minimum et du maximum d’une 
liste de nombres, complexité

Analyse du problème
On considère une liste non vide. On définit une variable mini définie par le pre-
mier élément de la liste. On parcourt la liste en comparant chaque élément de la 
liste à la variable mini.

1. 
def rec_min(L):
    # la fonction retourne le minimum de la liste L
    mini=L[0]   # ne pas utiliser la variable min
       # cʼest une fonction Python pour avoir le minimum : min(L)
    for i in range(len(L)):
        if L[i]<mini:
            mini=L[i]
    return mini

Remarques :

•• Ne pas utiliser « − » mais « _ » dans les noms de variables et de fonctions.

•• La fonction min(L) de Python retourne le minimum d’une liste de valeurs.

2. 
def rec_max(L):
    # la fonction retourne le maximum de la liste L
    maxi=L[0]   # ne pas utiliser la variable max
                # cʼest une fonction Python pour avoir
                # le maximum : max(L)
    for i in range(len(L)):
        if L[i]>maxi:
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            maxi=L[i]
    return maxi

Remarque : La fonction max(L) de Python retourne le maximum d’une liste de 
valeurs.

3. On considère la fonction rec_min. On se place dans le pire des cas, 
c’est-à-dire une liste triée par ordre décroissant.

1 affectation pour maxi : 1 opération élémentaire.

On cherche à calculer le nombre d’opérations élémentaires à chaque itéra-
tion :

•• Un test : 1 opération élémentaire.
•• Une affectation : 1 opération élémentaire.

Le nombre d’opérations élémentaires vaut 2.

On a n itérations. Le nombre d’opérations élémentaires vaut 1+2n.
La complexité est linéaire en O n( ) pour la fonction rec_min.
On obtient la même complexité pour la fonction rec_max.

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

On considère la liste : L=[9, 10, 56, 28, -8].

1.  Écrire une fonction rec_max2 qui admet comme argument une liste L. 
Cette fonction retourne le maximum et le second maximum de cette liste. On 
n’utilisera pas la fonction max. Utiliser une assertion pour vérifier le nombre 
d’éléments de L.
2.  Écrire le programme principal permettant d’afficher le maximum et le 
second maximum de la liste L.

Exercice 4.2 : �Assertion. Recherche du maximum, du second 
maximum d’une liste

Analyse du problème
On considère une liste non vide contenant au moins 2 éléments. On définit une 
variable max1 définie par le premier élément de la liste ainsi que indmax1 l’indice 
du premier maximum. On parcourt une fois la liste en comparant chaque élément 
de la liste à la variable max1.

On parcourt une seconde fois la liste pour déterminer le second maximum en s’as-
surant que l’indice du second maximum est différent de indmax1.
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1.  
def rec_max2(L):
    # la fonction retourne le maximum et le second maximum
    # de la liste L
    n=len(L)              # nombre dʼéléments de la liste L
    assert n>=2
    # recherche du premier maximum
    indmax1=0
    max1=L[0]
    for i in range(1, n): # i varie entre 1 inclus et n exclu
        if L[i]>max1:
            max1=L[i]     # valeur du premier maximum
            indmax1=i     # indice du premier maximum
    # recherche du second maximum
    # lʼindice du 2nd maximum est différent du 1er maximum
    if indmax1==0:        # indice du premier maximum = 0
        max2=L[1]
    else:               # indice du premier maximum différent de 0
        max2=L[0]
    for i in range(1, n): # i varie entre 1 inclus et n exclu
        if L[i]>max2 and i!=indmax1:
            # lʼindice i doit être différent de indmax1
            max2=L[i]     # valeur du second maximum
    return max1, max2

Voir exercice 1.1 « Assertion, moyenne, variance et écart-type d’une liste de 
nombres » dans le chapitre « Prise en main de Python » pour l’utilisation de 
assert. Le nombre d’éléments de la liste doit être supérieur ou égal à 2.
2. 
L=[9, 10, 56, 28, -8]
max1, max2=rec_max2(L)
print('Maximum de L :', max1)
print('Second maximum de L :', max2)

1.  Écrire une fonction recherche_mot qui admet comme arguments texte 
une chaîne de caractères et mot une chaîne de caractères. Cette fonction 
retourne True si mot est présent dans texte, False sinon, ainsi que l’indice 
de la première lettre de mot s’il est présent dans texte.
2.  Écrire une fonction recherche_mot_occurence qui admet comme argu-
ments texte une chaîne de caractères et mot une chaîne de caractères. Cette 
fonction retourne le nombre d’occurrences où mot est présent dans texte ainsi 
que la liste des indices de la première lettre des occurrences de mot.
3.  Proposer une amélioration de la fonction précédente en optimisant la pre-
mière boucle.

Exercice 4.3 : Recherche d’un mot dans un texte, boucles imbriquées
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Analyse du problème
On parcourt la chaîne de caractères texte jusqu’à ce qu’on trouve le premier carac-
tère de mot. On parcourt ensuite successivement tous les caractères de mot pour savoir 
s’ils sont présents les uns à la suite des autres. On utilise deux boucles for imbriquées.

1. On considère la chaîne de caractères texte = 'mots chaîne de 
caractères' et mot = 'caractères'.
La longueur de texte vaut len(texte) = 25. La longueur de mot vaut 
len(mot) = 10.
On définit un indice i qui correspond à l’indice de la première lettre du mot 
s’il est présent dans texte.
Il est inutile de faire varier i entre 0 et 24 mais uniquement entre 0 et 
len(texte) – len(mot) = 15.
Lorsque i atteint 15, on a texte[i] = 'c' : c’est bien la première lettre 
du mot 'caractères'.
Ensuite, il faut une deuxième boucle en faisant varier j entre les valeurs 0 
et len(mot) – 1 pour tester tous les caractères du mot.
def recherche_mot(texte, mot):
    # la fonction retourne True si mot(str) est présent dans
    # texte(str), False sinon, ainsi que lʼindice de la première
    # lettre de mot sʼil est présent dans la chaîne
    rep=False
    position=0
    i=0    
    while i<=(len(texte)-len(mot)) and rep==False:
        j=0
        while j<=(len(mot)-1) and mot[j]==texte[i+j]:
            j+=1
        if j==len(mot):   # le mot est bien présent
            position=i
            rep=True
        i+=1
    return rep, position

2.  
def recherche_mot_occurrence(texte, mot):
    # la fonction retourne le nombre dʼoccurrences où mot(str)
    # est présent dans texte(str) ainsi que la liste des indices
    # de la première lettre des occurrences de mot
    nbr_rep=0
    i=0
    liste=[]
    while i<=(len(texte)-len(mot)):
        j=0
        while j<=(len(mot)-1) and mot[j]==texte[i+j]:
            j+=1
        if j==len(mot):   # le mot est bien présent
            nbr_rep+=1
            liste.append(i)
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        i+=1
    return nbr_rep, liste

3. On considère la chaîne de caractères texte = 'mots chaîne de 
caractères' et mot = 'caractères'. La longueur de texte vaut 
len(texte) = 25. La longueur de mot vaut len(mot) = 10. On définit 
un indice i qui correspond à l’indice de la première lettre de mot s’il est 
présent dans texte. On fait varier i entre 0 inclus et len(texte) – 
len(mot) = 15 inclus.
Ensuite, il faut une deuxième boucle en faisant varier j entre 0 inclus et 
len(mot) – 1 inclus pour tester tous les caractères de mot. Lorsque la 
boucle j est terminée, on a fait le test mot[j]==texte[i+j]. j a été 
incrémenté de 1. Si mot a été trouvé, on peut incrémenter i de j+1.
def recherche_mot_occurrence2(texte, mot):
    # la fonction retourne le nombre dʼoccurrences où mot(str)
    # est présent dans texte(str) ainsi que la liste des indices
    # de la première lettre des occurrences de mot
    nbr_rep=0
    i=0
    liste=[]
    while i<=(len(texte)-len(mot)):
        j=0
        while j<=(len(mot)-1) and mot[j]==texte[i+j]:
            j+=1
        if j==len(mot):   # le mot est bien présent
            nbr_rep+=1
            liste.append(i)
        if j>0:
            j-=j
        i=i+j+1
    return nbr_rep, liste
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5Algorithmes de 
dichotomie

On considère la liste : L=[16, 9, 11, 32, 15, 17, 18, 10, 25].

1.  Écrire une fonction rec_elt1 qui admet comme arguments une liste L non 
triée et un élément x. Cette fonction retourne True si x est dans la liste, False 
sinon.
2.  Évaluer la complexité de cet algorithme pour une liste de longueur n dans le 
cas le moins favorable.
3.  Écrire une fonction rec_elt2 qui admet comme arguments une liste et 
un élément à rechercher. Cette fonction retourne True si l’élément est présent 
dans la liste ainsi que l’indice de la première occurrence dans la liste. Si l’élé-
ment n’est pas présent, cette fonction retourne False et -1.

Exercice 5.1 : �Recherche d’un élément dans une liste  
non triée, algorithme naïf, complexité

Analyse du problème
On parcourt la liste en partant du premier élément jusqu’à ce qu’on trouve x. On 
étudiera dans l’exercice suivant la méthode dichotomique, qui ne s’applique qu’aux 
listes triées.

1. Dans Python, les booléens vrai et faux s’écrivent True et False.
def rec_elt1(L, x):
    # la fonction retourne True si x est dans la liste L,
    # False sinon
    n=len(L)             # nombre d'éléments de la liste
    for i in range(n):   # i varie entre 0 inclus et n exclu
        if x==L[i]:      # teste si x=L[i]
            return True
            # return provoque un arrêt de la boucle
            # et une sortie de la fonction
    return False

2. On appelle n le nombre d’éléments de la liste L. On note O(n) la com-
plexité de la fonction rec_elt1(L, x).
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On cherche à calculer le nombre d’opérations élémentaires :
•• 2 opérations élémentaires : appel du nombre d’éléments de L et affec-
tation de n.

•• Pour chaque étape de la boucle for, on a 2 opérations élémentaires : 
appel de l’élément L[i], comparaison.

La boucle for est exécutée n fois dans le pire des cas (si l’élément n’est 
pas présent dans la liste par exemple).
Le nombre d’opérations élémentaires vaut : 2 + 2n.
La complexité est linéaire en O(n) pour la fonction rec_elt1.

3. On pourrait utiliser une boucle for au lieu d’une boucle while.
On utilise un indice i pour repérer la position dans la liste. Les indices des 
éléments d’une liste commencent à 0 avec Python.

def rec_elt2(L, x):
    # la fonction retourne True, i si x est dans
    # la liste L à l’indice i, sinon retourne False, -1
    n=len(L)   # nombre d’éléments de la liste
    i=0
    while i<n:
        if L[i]==x:
            return True, i
            # return provoque un arrêt de la boucle
            # et une sortie de la fonction
        i+=1
    return False, -1

On considère la liste triée : L=[9, 10, 11, 15, 16, 17, 18, 25, 32].

1.  Écrire une fonction rec_dicho qui admet comme arguments une liste triée 
L et un élément x. Cette fonction retourne True si x est dans la liste, False 
sinon ainsi que l’indice de l’élément recherché s’il est présent dans la liste. On 
utilise la méthode dichotomique.
2.  Évaluer la complexité de cet algorithme pour une liste de longueur n >>  1 
dans le cas le moins favorable. On pourra considérer que l’entier n est une 
puissance de 2.
3.  Comparer la complexité de l’algorithme naïf (voir exercice précédent 
« Recherche d’un élément dans une liste non triée, algorithme naïf, complexité ») 
et de l’algorithme dichotomique.

Exercice 5.2 : Recherche dichotomique dans une liste triée, complexité
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Analyse du problème
La méthode dichotomique utilise le fait que la liste est triée. Elle consiste à compa-
rer l’élément recherché à l’élément se trouvant au milieu d’une liste triée. Comme 
la liste est triée, cela permet d’éliminer une moitié de la liste comme emplacement 
possible de l’élément, sauf si on l’a déjà trouvé. Ensuite, on prend la moitié de la 
liste qui reste et on recommence…

Voir exercice 6.5 « Recherche dichotomique dans une liste triée, version récur-
sive » dans le chapitre « Récursivité » pour une version récursive de ce programme.

Cours :
La méthode dichotomique divise le problème initial et élimine une partie des données.

On verra la méthode générale « diviser pour régner » qui profite de la subdivision pour 
effectuer moins de calculs  : voir l’exercice 6.2 «  Exponentiation naïve, exponentiation 
rapide » dans le chapitre « Récursivité », et les exercices 10.3 « Tri rapide » et 10.4 « Tri 
par partition-fusion » dans le chapitre «Tris ».

1.  
def rec_dicho(L, x):
    # la fonction retourne True si x est dans la liste L,
    # False sinon, et l’indice de l’élément recherché
    # s’il est présent dans la liste
    deb, fin=0, len(L)-1
    rep=False
    while fin>=deb and rep==False:
        milieu=(deb+fin)//2
        if x==L[milieu]:
            rep=True
        elif x>L[milieu]:   # x est dans la deuxième moitié
            deb=milieu+1
        else:               # x est dans la première moitié
            fin=milieu-1
    return rep, milieu

Exemple de fonctionnement de l’algorithme avec x = 9 :
•• 1re itération : deb = 0, fin = 8 et milieu = 4 = 8//2. On compare 
x avec L[4] = 16.

•• 2e itération : deb = 0 et fin = milieu – 1 = 3. Le milieu vaut 3//2 = 1. 
On compare x avec L[1] = 10.

•• 3e itération : deb = 0 et fin = milieu – 1 = 0. On a trouvé l’élément x.
Exemple de fonctionnement de l’algorithme avec x = 25,5 :

•• 1re itération : deb = 0, fin = 8 et milieu = 4 = 8//2. On compare 
x avec L[4] = 16.

•• 2e itération  : deb = 5 = milieu + 1 et fin = 8. Le milieu vaut 
(5+8)//2 = 6. On compare x avec L[6] = 18.

•• 3e itération  : deb = milieu – 1 = 7 et fin = 8. Le milieu vaut 
(7+8)//2 = 7. On compare x avec L[7] = 25.
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•• 4e itération : deb = 8 et fin = 8. Le milieu vaut 8. On compare x avec 
L[8] = 32. On a alors fin = 7.

•• On n’a plus d’itération car fin < deb.

2. On se place dans le cas le moins favorable pour évaluer la complexité, 
c’est-à-dire dans le cas où l’élément n’est pas présent dans la liste compor-
tant n éléments.
3 affectations, 1 calcul : 4 opérations élémentaires

a.	Calcul du nombre d’opérations élémentaires à chaque itération :
•• Trois comparaisons : 3 opérations élémentaires.
•• Calcul du milieu et une affectation : 2 opérations élémentaires.
•• Appel de l’élément L[milieu] et 1 test : 2 opérations élémentaires.
•• Une affectation : 1 opération élémentaire.

Le nombre d’opérations élémentaires vaut 10.

b.	On cherche à calculer le nombre d’itérations dans le pire des cas. Pour 
simplifier les calculs, on considère que l’entier n est une puissance de 2.

Pour chaque itération, on divise par deux la longueur de la liste.
Après une itération, la longueur de la liste est n/2. Après une deuxième 

itération, la longueur de la liste est 
n
22 .

Après k itérations, la longueur de la liste est 
n
2k . On arrive alors à une liste 

de longueur 1.

On a donc =n
2

1k , soit =n kln( ) ln(2). Finalement, on obtient :

= =k
n

n
ln( )
ln(2)

log ( )2

c.	Le nombre d’opérations élémentaires vaut donc 4 + 10k dans le cas le 
moins favorable. Il est donc proportionnel à nlog ( )2 .

La complexité est logarithmique en ( )O nlog ( )2 .

Remarque :

On peut noter également la complexité : O n( )log .

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

3. La complexité de l’algorithme naïf est linéaire alors que la complexité de 
l’algorithme dichotomique est logarithmique. On a une recherche d’un élé-
ment dans une liste beaucoup plus rapide avec l’algorithme dichotomique 
pour des listes comportant un grand nombre d’éléments.
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6Récursivité

On souhaite calculer la factorielle d’un entier naturel n.

1.  Écrire une fonction fact qui admet comme argument un entier naturel n et 
qui retourne la valeur de la factorielle de n en utilisant un programme itératif.
2.  Écrire une fonction fact_rec qui admet comme argument un entier natu-
rel n et qui retourne la valeur de la factorielle de n en utilisant un programme 
récursif.
3.  Démontrer la terminaison pour la fonction fact_rec.
4.  Représenter les différentes activations de la fonction récursive fact_
rec(3) sous la forme d’un arbre.
5.  Démontrer la correction de la fonction fact_rec.
6.  Évaluer la complexité de la fonction fact_rec.
7.  Que se passe-t-il si on exécute fact_rec(-3) ?

Exercice 6.1 : Factorielle d’un entier naturel

Analyse du problème
On va étudier la différence entre une fonction itérative et une fonction récursive. 
Les méthodes mises en place dans cet exercice seront utilisées dans de très nom-
breux exercices concernant les fonctions récursives.

Cours :
Une fonction est récursive lorsque le corps de cette fonction fait appel à cette même fonc-
tion (c’est une fonction qui s’appelle elle-même). Sinon, on dit que cette fonction est itéra-
tive (elle peut être constituée de boucles while ou for).

Il est essentiel de prévoir qu’une procédure récursive se termine ! L’instruction return 
doit être présente au moins deux fois :

•• une fois pour la condition d’arrêt (premier return dans le programme) ;
•• une autre fois pour l’appel récursif (dernier return dans le programme).

1. 
def fact (n):
    # la fonction renvoie la factorielle d’un entier naturel n
    # programme itératif
    res=1
    for i in range(1, n+1):  # i varie entre 1 inclus et n+1 exclu
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        res=res*i
    return res

2. 
def fact_rec(n):
    # la fonction renvoie la factorielle d’un entier naturel n
    # programme récursif
    if n==0:
        return (1)                 # condition d’arrêt
    else:
        return (n*fact_rec(n-1))   # rappel récursif

Cours :
Pour démontrer la terminaison d’un programme, on cherche une grandeur positive, que 
l’on appelle variant de boucle, qui décroît entre deux appels de la fonction récursive et qui 
converge vers une valeur d’un cas correspondant à un appel de la condition d’arrêt.

De façon générale, il faut montrer que l’on arrivera en un nombre fini d’étapes à un appel 
de la condition d’arrêt.

3. On considère le variant de boucle n. À chaque appel de la fonction récur-
sive, il décroît d’une unité et finit par atteindre la valeur 0 correspondant 
à une condition d’arrêt. Le programme se termine donc dans tous les cas 
si n 0≥ .
4. L’arbre ci-dessous représente les différents appels de la fonction fact_
rec(3).
Les différents appels de la fonction récursive sont stockés dans une pile : 
c’est la phase de descente. Quand on atteint la condition d’arrêt, on passe 
à la phase de remontée et les appels sont désempilés jusqu’à retourner à 
l’appel initial.

fact_rec(3)

fact_rec(2)

fact_rec(1)

1

1

2

main()

6

fact_rec(0)

Au dernier appel de la fonction récursive, n = 0. La condition d’arrêt est 
vérifiée. On passe à la phase de remontée.
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Remarque : Dans l’exercice 10.4 « Tri par partition-fusion » dans le chapitre « Tris », 
l’arbre des appels de la fonction récursive ressemble encore plus à un « arbre » !

Pour calculer la factorielle de 3, on a deux phases :
•• Phase de descente : On a des appels successifs de la fonction fact_
rec jusqu’à ce que l’on arrive au cas n = 0.

•• Phase de montée : Le programme retourne les valeurs des appels suc-
cessifs précédents. On remonte jusqu’à l’appel initial et le programme 
retourne le résultat.

Remarque :

Dans la phase de descente, les appels successifs sont stockés dans une pile.

Une fois que la condition d’arrêt est obtenue, les appels sont ensuite désempilés 
jusqu’à arriver à l’appel initial dans la phase de montée.

Le nombre d’appels récursifs est limité à 1 000 avec Python. Tout dépassement 
provoquera une erreur.

Pour calculer la factorielle de n, on applique la fonction fact_rec à plusieurs 
sous-problèmes. Cette méthode de décomposition/recomposition est appelée divi-
ser pour régner. On utilisera cette méthode dans les algorithmes de tri.

Cours :
Pour démontrer la correction d’un programme, il faut montrer que l’algorithme effectue 
bien la tâche souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

On établit une propriété (appelée invariant de boucle) Pn :

•• la propriété Pn doit être vraie pour n = 0 ;
•• si Pn est vraie, alors Pn+1 doit être vraie.

5. On considère la propriété (appelée invariant de boucle) Pn : « La fonc-
tion fact_rec(n) retourne n! ».

•• P0 est vraie puisque c’est la condition d’arrêt.
•• Supposons que la propriété Pn est vraie. La fonction fact_rec(n+1) 
réalise l’opération  : n n1 fact_rec( ) ( )+ × . Comme Pn est vraie, alors le 
programme retourne : n n n n n1 fact_rec 1 ! 1 !( ) ( ) ( ) ( )+ × = + = + . La pro-
priété Pn+1  est donc vraie.

On a démontré par récurrence que la propriété Pn est vraie pour tout entier 
naturel n. La correction de la fonction fact_rec est donc démontrée.

Remarque :

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’arrête.

•• La correction est totale si elle est partielle et si l’algorithme termine.
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Cours :
La complexité est une mesure du nombre d’opérations élémentaires que l’algorithme effec-
tue. On évalue la complexité d’une fonction récursive à partir d’une relation de récurrence.

6. On définit T n( ) la complexité de la fonction fact_rec(n).
À chaque appel de la fonction récursive, on a 2 opérations élémentaires :

•• un test pour savoir si n = 0 ;
•• un calcul : n*fact_rec(n-1).

On en déduit la relation de récurrence : T n T n 1 2( ) ( )= − +  avec T 0 1( ) = .
On a donc : T 0 1( ) = , T 1 1 2( ) = + , T 2 1 2 2( ) = + + , soit T n n1 2( ) = + .
La complexité de la fonction fact_rec(n) est linéaire en O(n).

Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

La complexité d’une fonction récursive est souvent beaucoup plus importante (voir 
exercice 6.7 « Suite des nombres de Fibonacci ») que la complexité de la fonction 
itérative.

On peut donc être amené à dérécursiver un programme, en faisant le contraire de 
ce que fait le programme récursif. Le programme itératif fact commence par la 
plus petite valeur 1 alors que le programme récursif fact_rec commence par la 
plus grande valeur n.

7. Si on exécute le programme suivant  : print(fact_rec(-3)), 
Python affiche le message d’erreur : Windows fatal exception: 
stack overflow.
On a vu dans la question 4 que les différents appels de la fonction récursive 
sont stockés dans une pile. Comme n < 0, on n’arrête pas d’appeler la fonc-
tion récursive. On arrive alors à un dépassement de la taille de la pile et le 
programme Python s’arrête et renvoie un message d’erreur.

On souhaite calculer la puissance entière d’un nombre réel.

1.  Écrire une fonction puiss qui admet comme arguments un nombre réel x, 
un entier strictement positif n et qui retourne xn en utilisant l’exponentiation 
« naïve », c’est-à-dire en multipliant n fois par lui-même x.
2.  Écrire une fonction puiss_rec qui admet comme arguments un nombre 
réel x, un entier strictement positif n et qui retourne xn en utilisant un pro-
gramme récursif. Écrire le programme principal qui demande à l’utilisateur de 
saisir au clavier x et n, et qui affiche xn.

Exercice 6.2 : Exponentiation naïve, exponentiation rapide
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3.  Démontrer la terminaison de la fonction puiss_rec.
4.  Démontrer la correction de la fonction puiss_rec.
5.  Évaluer la complexité de la fonction puiss_rec. On pourra considérer que 
l’entier n est une puissance de 2.
6.  On souhaite améliorer la complexité de la fonction puiss_rec en utilisant 

les propriétés : 10x =  ; 2 2
x xp p( )=  et 2 1 2

x x xp p( )=+ .

def puiss_rapide(x, n):
    if n==0:
        return 1 
    elif n%2==0:
        return (puiss_rapide(x, n//2)**2)
    else:
        return (x*(puiss_rapide(x, (n-1)//2))**2)

Évaluer la complexité de la fonction puiss_rapide.
7.  Écrire une fonction puiss_rapide2 permettant d’optimiser la fonction 
puiss_rapide avec un seul appel à la fonction récursive dans le corps de 
la fonction. Évaluer la complexité de la fonction puiss_rapide2. Pourquoi 
utilise-t-on le terme « exponentiation rapide » ? Pourquoi l’algorithme utilise la 
méthode « diviser pour régner » ?

Analyse du problème
Une fonction est récursive lorsque le corps de cette fonction fait appel à cette même 
fonction. On va étudier plusieurs améliorations pour calculer la puissance d’un 
nombre réel.

1.  
def puiss(x, n):
    # la fonction renvoie x**n avec x réel et n entier > 0
    res=1
    for i in range(n):  # i varie entre 0 inclus et n exclu
        res=res*x
    return res

2.  
def puiss_rec(x, n):
    # la fonction renvoie x**n avec x réel et n entier > 0
    # calcule x**n avec x réel et n>0
    if n==0:
        return 1  # condition d’arrêt avec x**0=1
    else:
        return (x*puiss_rec(x, n-1))  # appel récursif
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Remarque :

Il est essentiel de prévoir qu’une procédure récursive se termine  ! L’instruction 
return doit être présente au moins deux fois :

•• une fois pour la condition d’arrêt (premier return dans le programme),

•• une autre fois pour l’appel récursif (dernier return dans le programme).
x=float(input('Entrez un réel x : '))
n=int(input('Entrez un entier positif n : '))
print('Le résultat x**n = ', puiss_rec(x, n))

3. On considère le variant de boucle n. À chaque appel de la fonction récur-
sive puiss_rec, il décroît d’une unité et finit par atteindre la valeur 0 
correspondant à une condition d’arrêt. Le programme se termine donc dans 
tous les cas si n 0≥ .

Remarque : Le programme ne se termine pas si l’entier n est négatif !

4. On considère la propriété (appelée invariant de boucle) Pn : « La fonc-
tion puiss_rec(n) retourne n! ».

•• P0 est vraie puisque c’est la condition d’arrêt.
•• Supposons que la propriété Pn est vraie. La fonction puiss_rec(n+1) 
réalise l’opération : x npuiss_rec ( )× . Comme Pn est vraie, alors le pro-
gramme retourne  : x n xx xpuiss_rec n n 1( )× = = + . La propriété Pn+1 est 
donc vraie.

On a démontré par récurrence que la propriété Pn est vraie pour tout entier 
naturel n. La correction de la fonction puiss_rec est donc démontrée.

Remarque :

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’ar-
rête.

•• La correction est totale si elle est partielle et si l’algorithme termine.

5. On définit T n( ) le nombre d’opérations élémentaires de la fonction 
puiss_rec.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un calcul : x*puiss_rec(x, n-1).

On en déduit la relation de récurrence :

T n T n 1 2( ) ( )= − +  avec T 0 1( ) =

On a donc : T 0 1( ) = , T 1 1 2( ) = + , T 2 1 2 2( ) = + + , soit T n n1 2( ) = + .
La complexité de la fonction puiss_rec(n) est linéaire en O(n).
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Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

6. On définit T n( ) le nombre d’opérations élémentaires de la fonction 
puiss_rapide.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un test pour savoir si n est pair,
•• deux appels de la fonction récursive pour calculer le carré  : puiss_
rapide (x, n//2) * puiss_rapide (x, n//2),

•• une ou deux opérations élémentaires.
On se place dans le pire des cas. On en déduit la relation de récurrence :

T n T
n

2
2

4( ) = 



 +

Pour simplifier les calculs, on considère que l’entier n est une puissance 
de 2.
Il faut calculer le nombre de fois où on fait un appel de la fonction récur-
sive.

•• Après un appel de la fonction récursive, on l’appelle à nouveau avec n/2.
•• Après un deuxième appel de la fonction récursive, on l’appelle à nouveau 
avec (n/2)/2, soit n/(22).

•• Après k appels de la fonction récursive, on l’appelle à nouveau avec  
n/(2k).

On n’a plus d’appel de la fonction récursive quand 
n
2

1k = , soit n kln ln 2( ) ( )= .

Finalement, on obtient : 

k
n

n
ln
ln 2

log2
( )
( ) ( )= =

Par exemple pour n = 24, on a :

T T(2 ) 2 (2 ) 44 4 1= +−  ; T T(2 ) 2 (2 ) 43 2= +  ;

T T(2 ) 2 (2 ) 42 1= +  ; T T(2 ) 2 (2 ) 4 2 1 41 0= + = × +

On considère la suite définie par récurrence  : u au bk k 1= +−  avec a = 2,  

b = 4 et u0 = 1. On pose : r
b

a1
=

−
.

D’après l’énoncé, on a : 

T n u a u r r n2 2 1
4

1 2
4

1 2
5 4k

k
k k

0( ) ( )= = = − + = −
−





 +

−
= − .

La complexité est linéaire en O(n).
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Pour calculer puiss_rapide(x, n//2)**2, Python fait l’opération 
suivante : puiss_rapide(x, n//2)*puiss_rapide(x, n//2).
Il fait appel deux fois à la fonction récursive dans le corps de la fonction ! 
La fonction puiss_rapide n’a pas amélioré la complexité.

7. On peut optimiser la fonction puiss_rapide avec un seul appel à la 
fonction récursive :
def puiss_rapide2(x, n):
    # la fonction renvoie x**n avec x réel et n entier > 0
    if n==0:
        return 1       # condition d’arrêt
    else:
        res=puiss_rapide2(x, n//2)
        if n%2==0:     # n est pair
            return (res**2)
        else:          # n est impair
            return (x*(res**2))

On définit T n( ) le nombre d’opérations élémentaires de la fonction puiss_
rapide2.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un appel de la fonction récursive : puiss_rapide2,
•• un test pour savoir si n est pair,
•• un calcul : res**2 ou x*(res**2).

On se place dans le pire des cas. On en déduit la relation de récurrence :

T n T
n
2

4( ) = 



 +

Pour simplifier les calculs, on considère que l’entier n est une puissance 
de 2.
On a le même nombre d’appels k de la fonction récursive que dans la ques-
tion précédente :

k
n

n
ln
ln 2

log2
( )
( ) ( )= =

Par exemple pour 24, on a :

T T(2 ) (2 ) 44 4 1= +−  ; T T(2 ) (2 ) 43 2= +  ; 

T T(2 ) (2 ) 42 1= + ; T T(2 ) (2 ) 4 1 41 0= + = +

Finalement, on a : T T k(2 ) (2 ) 4 1k 4= = +  avec k = 4.
La complexité de la fonction puiss_rapide2 est logarithmique en 
O nlog2( )( ) .
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Explications du terme « exponentiation rapide » :
•• « exponentiation » : calcul de la puissance entière d’un nombre réel ;
•• «  rapide  »  : la fonction puiss_rapide2 est plus rapide pour des 
entiers n >> 1 que puiss, puiss_rec et puiss_rapide puisque 
la complexité est logarithmique pour puiss_rapide2 alors qu’elle 
est linéaire pour puiss, puiss_rec et puiss_rapide.

On utilise la méthode « diviser pour régner » qui se décompose en trois 
étapes :

•• Diviser (ou partitionner)  : on divise le problème initial en plusieurs 
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le 
problème de départ.

Remarques :

•• La méthode « diviser pour régner » profite de la subdivision pour effectuer moins 
de calculs (voir les exercices  10.3 «  Tri rapide  » et 10.4 «  Tri par partition- 
fusion » dans le chapitre «Tris »).

•• La méthode dichotomique divise uniquement le problème initial et élimine une 
partie des données (voir exercice 5.2 « Recherche dichotomique dans une liste 
triée, complexité » dans le chapitre « Algorithmes de dichotomie »).

On considère n disques de diamètre différent empilés par ordre décroissant 
sur une tour de départ (tour A sur la figure ci-dessous). Les deux autres 
tours n’ont pas de disque. L’objectif est de déplacer les disques de la tour 
A (tour de départ) vers la tour C (tour d’arrivée) en utilisant les deux règles 
suivantes :
•• on ne peut déplacer qu’un disque à la fois ;

•• on ne peut placer un disque que sur un disque de diamètre plus grand ou sur 
un emplacement vide.

On considère la suite définie par récurrence : 1u au bn n= ++ . On pose : 
1

r
b

a
=

−
.  

On admet que : 0u a u r rn
n ( )= − + .

On définit la liste tour : tour[0] est une liste représentant les disques de la 
tour A, tour[1] (respectivement tour[2]) représente les disques de la tour 
B (respectivement tour C).
Par exemple, pour n = 4, on a : tour = [[4, 3, 2, 1], [], []].

Exercice 6.3 : Tours de Hanoï
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tour A tour B tour C

1.  Montrer que l’on peut résoudre le problème avec 1 tour.
2.  On va utiliser un programme récursif pour résoudre le problème. On sup-
pose que l’on sait procéder pour n−1 tours. Montrer avec un schéma que l’on 
peut résoudre le problème avec n tours. On pourra prendre n = 4.
3.  Écrire une fonction récursive hanoi(tour, n, a, b, c) qui admet 
comme arguments tour la liste décrite précédemment, n le nombre de disques, 
a la tour de départ, b la tour intermédiaire et c la tour d’arrivée. Dans l’exemple 
précédent, la fonction hanoi(tour, 4, 0, 1, 2) doit retourner [[], 
[], [4, 3, 2, 1]]. Le programme affichera, étape par étape, la liste tour.
4.  Évaluer la complexité de la fonction hanoi.

Analyse du problème
L’utilisation d’une fonction récursive permet de résoudre facilement le problème 
de Hanoï. La question  2 permet de comprendre la fonction récursive hanoi. 
Les différents schémas montrent comment déplacer 4 tours sachant que l’on sait 
résoudre le problème pour 3 tours.

1. La résolution du problème est évidente pour n = 1 puisqu’il suffit de 
dépiler le disque de la tour A et de l’empiler dans la tour C.

tour A tour B tour C

2. On souhaite déplacer n disques de la tour A vers la tour C. On considère 
n = 4 dans l’exemple suivant.

tour A tour B tour C
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On considère n−1 = 3 disques. D’après l’énoncé, on sait déplacer les  
n−1 = 3 disques (en pointillés sur le schéma ci-dessus) de la tour A vers la 
tour B. On obtient alors la configuration suivante :

tour A tour B tour C

On déplace le disque restant de la tour A vers la tour C.
On obtient alors :

tour A tour B tour C

Il reste à déplacer les n−1 = 3 disques (en pointillés sur le schéma ci-des-
sus) de la tour B vers la tour C.
3. On met en place un programme récursif. On a vu dans la question 
précédente que l’on pouvait déplacer les 4 disques à condition de savoir 
déplacer 3 disques. Pour déplacer les 3 disques d’une tour vers une 
autre, on applique le programme récursif à 2 disques. Pour déplacer les 
2 disques, on applique le programme récursif à 1 disque que l’on sait 
déplacer.
def hanoi(tour, n, a, b, c):
    # a : tour de départ (a peut être égal à 0, 1 ou 2)
    # b : tour intermédiaire (b peut être égal à 0, 1 ou 2)
    # c : tour d’arrivée (c peut être égal à 0, 1 ou 2)

    # tour[i] = liste représentant les disques de la tour i
    if n==1:   # un seul disque à déplacer
        disque=tour[a].pop()     # dépile le disque de la tour a
        tour[c].append(disque)   # empile le disque dans la tour c
        print(tour)   # affichage de la liste tour étape par étape
    else:
        # déplacer n-1 disques de a vers b
        hanoi(tour, n-1, a, c, b)
            # tour de départ : a
            # tour intermédiaire : c
            # tour finale : b
        print(tour)   # affichage de la liste tour étape par étape
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        # déplacer le disque restant de a vers c
        disque=tour[a].pop()     # dépile le disque de la tour a
        tour[c].append(disque)   # empile le disque dans la tour c
        print(tour)   # affichage de la liste tour étape par étape
        # déplacer n-1 disques de b vers c
        hanoi(tour, n-1, b, a, c)
        print(tour)
            # tour de départ : b
            # tour intermédiaire : a
            # tour finale : c
    return  # inutile de retourner tour car passage par référence
            # pour les listes

tour=[[4, 3, 2, 1], [], []]
n=len(tour[0])            # nombre dʼéléments de la tour 0
print(tour)

hanoi(tour, n, 0, 1, 2)   # on veut déplacer les n disques
                          # de 0 vers 2
print(tour)

4. On définit T n( ) le nombre d’opérations élémentaires de la fonction 
hanoi. On se place dans le pire des cas.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 1 ;
•• un appel à la fonction hanoi avec n−1 ;
•• une opération élémentaire pour dépiler ;
•• une opération élémentaire pour empiler ;
•• un appel à la fonction hanoi avec n−1.

On en déduit la relation de récurrence :

T n T n2 1 3( ) ( )= − +  avec T 0 0( ) =

On considère la suite définie par récurrence : u au bn n1 = ++  avec a = 2 et b = 3.  

On pose r
b

a a1
3

1
3=

−
=

−
= − . D’après l’énoncé, on a : u a u r rn

n
0( )= − + .  

On en déduit que :

T n 2 0 3 3n( ) ( )= + −

La complexité de la fonction hanoi est exponentielle en O(2 )n .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.
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Cet exercice étudie deux algorithmes permettant le calcul du pgcd (plus grand 
commun diviseur) de deux entiers naturels.

1.  Pour calculer le pgcd de 3 705 et 513, on peut passer en revue tous les entiers 
1, 2, 3, ··· , 512, 513 puis renvoyer parmi ces entiers le dernier qui divise à la 
fois 3 705 et 513. Il sera alors le plus grand des diviseurs communs à 3 705 
et 513. Écrire une fonction gcd qui renvoie le pgcd de deux entiers naturels 
non nuls, selon la méthode décrite ci-dessus. On pourra éventuellement utili-
ser la fonction min(a, b), qui calcule le minimum de a et b. Par exemple 
gcd(3705, 513) renverra 57.
2.  Écrire une fonction euclide permettant de calculer le pgcd de deux entiers 
naturels selon l’algorithme d’Euclide :
•• Pour b = 0 : pgcd(a, 0) = a.

•• Pour b ≠ 0, on note r le reste de la division euclidienne de a par b, alors pgc-
d(a, b) = pgcd(b, r).

3.  Écrire une fonction récursive euclide_rec qui calcule le pgcd de deux 
entiers naturels selon l’algorithme d’Euclide.
4.  On note Fn n

( ) ∈

 la suite des nombres de Fibonacci définie par :

F0 = 0, F1 = 1, ∀n ∈ , Fn + 2 = Fn + 1 + Fn

a. Écrire les divisions euclidiennes successivement effectuées lorsque l’on cal-
cule le pgcd de F6 = 8 et F5 = 5 avec la fonction euclide.
b. Soit n ≥ 2 un entier. Quel est le reste de la division euclidienne de Fn+2 par 
Fn+1 ? On pourra utiliser librement le fait que la suite (Fn)n ∈  est strictement 
croissante à partir de n = 2. En déduire, sans démonstration, le nombre un de 
divisions euclidiennes effectuées lorsque l’on calcule le pgcd de Fn+2 et Fn+1 
avec la fonction euclide.
5.  Écrire une fonction fibo qui prend en argument un entier naturel n et ren-
voie le nombre de Fibonacci Fn. Par exemple, fibo(6) renverra 8.
6.  Écrire une fonction récursive fibo_rec qui permet de renvoyer le nombre 
de Fibonacci.
7.  En utilisant la fonction euclide, écrire une fonction gcd_trois qui ren-
voie le pgcd de trois entiers naturels. Par exemple, gcd_trois(18, 30, 
12) renverra 6.

Exercice 6.4 : Recherche du pgcd (CCP MP Maths 2016)
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Analyse du problème
On étudie dans cet exercice l’algorithme d’Euclide permettant de calculer le pgcd 
de deux entiers naturels. Cet exercice est extrait du concours CCP MP Maths 2016.

1. On parcourt tous les entiers i entre 1 et le minimum de a et b. On fait 
un test pour savoir si i est un diviseur de a et b. Le test peut se faire en 
calculant le reste. Si le reste est nul, i est un diviseur.
def gcd(a, b):
    # la fonction renvoie le pgcd de deux entiers naturels
    # non nuls a et b
    pgcd=1
    for i in range(1, min(a,b)+1):
        if a%i==0 and b%i==0:
            # si le reste est nul alors i est un
            # diviseur de a et b
            pgcd=i
    return pgcd

Remarque : Il est inutile de faire varier i entre 1 et le maximum de a et b.

2. 
def euclide(a, b):
    # la fonction renvoie le pgcd de deux entiers naturels
    # algorithme d’Euclide
    while b!=0: 
        r=a%b
        a,b=b,r
    return a

Cours :
Dans toute procédure récursive, l’instruction return doit être présente au moins deux 
fois : une fois pour la condition d’arrêt (premier return dans le programme) et une autre 
fois pour l’appel récursif (dernier return dans le programme).

3. 
def euclide_rec(a, b):
    # la fonction renvoie le pgcd de deux entiers naturels
    # algorithme d’Euclide
    if b==0:   # condition d’arrêt
        return a
    else:
        return euclide_rec(b,a%b)   # appel récursif

Remarque :

Les appels successifs d’une fonction récursive sont stockés dans une pile.

Prenons l’exemple suivant : pgcd(16,12).

    Appel de euclide_rec(12,4)

        Appel de euclide_rec(4,0)

        Retour de 4

    Retour de 4
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4. a.
•• 1er appel de la boucle : a = F6 = 8 et b = F5 = 5.
Le reste de la division euclidienne de 8 par 5 vaut 3. Le quotient vaut 1.  
On a F4 = 3.
a = 5 et b = 3.

•• 2e appel de la boucle : a = F5 = 5 et b = F4 = 3.
Le reste de la division euclidienne de 5 par 3 vaut 2. Le quotient vaut 1.  
On a F3 = 2.
a = 3 et b = 2.

•• 3e appel de la boucle : a = F4 = 3 et b = F3 = 2.
Le reste de la division euclidienne de 3 par 2 vaut 1. Le quotient vaut 1.  
On a F2 = 1.
a = 2 et b = 1.

•• 4e appel de la boucle : a = F3 = 2 et b = F2 = 1.
Le reste de la division euclidienne de 2 par 1 vaut 0.
a = 1 et b = 0.

On n’a plus d’appel de la boucle et le programme retourne 1.

b. La suite de Fibonacci est définie par : Fn+2 = Fn+1 + Fn et 0 ≤ Fn < Fn+1.
On en déduit que le reste de la division euclidienne de Fn+2 par Fn+1 est Fn.
D’après la question précédente :

•• 1er appel de la boucle : division euclidienne de Fn+2 par Fn+1.
•• 2e appel de la boucle : division euclidienne de Fn+2 par Fn.
•• …
•• Le dernier appel de la boucle correspond à la division euclidienne de F3 
par F2. Le reste est nul et l’algorithme retourne 1.

On obtient alors la suite de valeurs :
F0 = 0
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
Le nombre de divisions euclidiennes effectuées lorsqu’on calcule le pgcd de 
Fn+2 et Fn+1 est n.

5. a) Première version du programme, en utilisant une liste F pour stocker 
tous les résultats intermédiaires.
def fibo1(n):
    # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
    if n==0:
        return 0
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    elif n==1:
        return 1
    else:
        F=[]
        F.append(0)
        F.append(1)
        for i in range(2, n+1):
            F.append(F[i-1]+F[i-2])
        return F[i]

b) Deuxième version, sans utiliser de liste.
On utilise uniquement deux variables F_2 et F_1.
def fibo2(n):
    # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
    if n==0:
        return 0 
    elif n==1:
        return 1 
    else:
        F_2=0   # F[n-2]
        F_1=1   # F[n-1]
        somme=0
        for i in range(2, n+1):
            somme=F_2+F_1   # F[n]=F[n-1]+F[n-2]
            F_2=F_1
            F_1=somme
        return somme

c) Troisième version
On peut remplacer les trois lignes dans la boucle par une seule ligne : F_2, 
F_1=F_1, F_2+F_1.
def fibo3(n):
    # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
    if n==0:
        return 0
    elif n==1:
        return 1
    else:
        # F[n]=F[n-1]+F[n-2]
        F_2=0   # F[n-2]
        F_1=1   # F[n-1]
        for i in range(2, n+1):
            F_2, F_1=F_1, F_2+F_1
        return F_1

6. 
def fibo_rec(n):
    # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
    if n==0:
        return 0   # condition d’arrêt
    elif n==1:
        return 1   # condition d’arrêt
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    else:
        return (fibo_rec(n-1)+fibo_rec(n-2))
                   # appel récursif

Remarque : Ceci sera traité dans l’exercice 14.1 « Suite des nombres de Fibonacci, Top 
Down et Bottom Up » dans le chapitre « Programmation dynamique » pour une opti-
misation du programme récursif.

7. Le pgcd est associatif donc pgcd(a, b, c) = pgcd(pgcd(a, b), c).
def gcd_trois(a, b, c):
    return euclide(euclide(a, b), c)

On considère la liste triée : L=[9, 10, 11, 15, 16, 17, 18, 25, 32].

1.  Écrire une fonction récursive rec_dicho_recursive qui admet comme 
arguments une liste triée et un élément x. Cette fonction affiche « Elément pré-
sent » si x est dans la liste, « Elément non présent » sinon.
2.  Évaluer la complexité de la fonction rec_dicho_recursive. On pourra 
considérer que l’entier n est une puissance de 2.

Exercice 6.5 : �Recherche dichotomique dans une liste triée, 
version récursive

Analyse du problème
On a étudié une version itérative de ce programme (voir exercice 5.2 « Recherche 
dichotomique dans une liste triée, complexité » dans le chapitre « Algorithmes de 
dichotomie »).

La méthode dichotomique utilise le fait que la liste est triée. Elle consiste à compa-
rer l’élément recherché à l’élément se trouvant au milieu d’une liste triée. Comme 
la liste est triée, cela permet d’éliminer la moitié de la liste comme emplacement 
possible de l’élément, sauf si on l’a déjà trouvé. Ensuite, on prend la moitié de la 
liste qui reste et on recommence.

1.  
def rec_dicho_recursive(L, x):
    # la fonction affiche "Elément présent" si x est dans la
    # liste triée L, sinon affiche "Elément non présent"
    if L==[]:   # condition d’arrêt si liste vide
        return ("Elément non présent")
    else:
        # la liste est non vide
        milieu=len(L)//2   # calcul du milieu de la liste
        if x==L[milieu]:   # recherche si l’élément est au milieu
            return ("Elément présent")
        elif x>L[milieu]:
            # recherche entre milieu+1 et la fin de la liste
            return rec_dicho_recursive(L[milieu+1:], x)
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            # appel récursif
        else:
            # recherche entre début de liste et milieu-1
            return rec_dicho_recursive(L[:milieu], x)
            # appel récursif

L=[9, 10, 11, 15, 16, 17, 18, 25, 32]
x=32
print(rec_dicho_recursive(L,x))

2. On définit T n( ) le nombre d’opérations élémentaires de la fonction rec_
dicho_recursive.
Pour simplifier les calculs, on considère que l’entier n est une puissance 
de 2.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si la liste est vide ;
•• un calcul du milieu ;
•• un test pour savoir si l’élément est trouvé ;
•• un appel de la fonction récursive avec n/2.

On se place dans le pire des cas. On en déduit la relation de récurrence :

= 



 +T n T

n
( )

2
3 avec =T(1) 1

Il faut calculer le nombre de fois où on fait un appel de la fonction récur-
sive.

•• Après un appel de la fonction récursive, on l’appelle à nouveau avec n/2.
•• Après un deuxième appel de la fonction récursive, on l’appelle à nouveau 
avec n/(22).

•• Après k appels de la fonction récursive, on l’appelle à nouveau avec  
n/(2k).

Il ne reste plus qu’un seul appel de la fonction récursive quand =n
2

1k , soit 
( )=n kln( ) ln 2 .

Finalement, on obtient :

( )
( ) ( )= =k
n

n
ln
ln 2

log2

On appelle k + 1 fois la fonction récursive. On a donc = = + + = +T n k n( 2 ) 1 3( 1) 4 3log ( )k
2

= = + + = +T n k n( 2 ) 1 3( 1) 4 3log ( )k
2 .

La complexité est logarithmique en O(log2(n)).

Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

On a la même complexité que pour la version itérative.
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On utilise le module turtle pour le tracé de fractales. La tortue trace un trait 
le long du chemin parcouru.
from turtle import * : �fenêtre graphique turtle. La tortue est le triangle 

affiché au centre de la fenêtre de coordonnées (0,0)
reset()	 : efface l’écran
forward(150)	 : avance la tortue de 150 pixels
penup()	 : �lève le crayon et permet ensuite de déplacer la 

tortue (avec forward) sans tracer
pendown()	 : �pose le crayon et permet ensuite de déplacer la 

tortue (avec forward) avec un trait
goto(120,200)	 : déplace la tortue au point de coordonnées (120, 200)
left(60)	 : �fait tourner la tortue vers la gauche d’un angle de 

60° sans avancer
right(60)	 : �fait tourner la tortue vers la droite d’un angle de 

60° sans avancer
mainloop()	 : �laisse la fenêtre graphique turtle ouverte à la 

fin du programme

1.  Écrire une fonction triangle qui admet comme argument un entier natu-
rel a et qui trace un triangle équilatéral de côté a.

point de départ de la tortue

2.  Écrire une fonction polygone qui admet comme arguments deux entiers 
naturels n et a. Cette fonction trace un polygone régulier à n côtés de même 
longueur a.
3.  On souhaite tracer le segment de Koch de longueur a à l’ordre n.
•• On part d’un segment de longueur a à l’ordre 0.

•• À l’étape 1, on remplace le tiers du segment central par un triangle équilatéral 
sans base au-dessus.

•• On réitère le processus n fois.

ordre 0 ordre 1 ordre 2

Exercice 6.6: Dessins de fractales
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Écrire une fonction récursive koch qui admet comme arguments deux entiers 
naturels n et a. Cette fonction trace un segment de Koch de longueur a à l’ordre n.
4.  Pour tracer le flocon de neige, on part d’un triangle équilatéral et on applique 
la fonction koch à l’ordre n à chacun des côtés du triangle équilatéral de lon-
gueur a. La figure représente le flocon de Von Koch à l’ordre 2.

Écrire le programme principal permettant de tracer un flocon de Von Koch à 
l’ordre n.

Analyse du problème
Le module graphique turtle permet de piloter une tortue afin de tracer des figures 
géométriques.

Une figure fractale est un objet géométrique « infiniment morcelé » dont les détails 
sont observables à une échelle arbitrairement choisie. Le flocon de Von Koch est 
un exemple de courbe fractale. En zoomant sur une partie de la figure, on retrouve 
toute la figure : on dit qu’elle est autosimilaire. À chaque étape, la longueur de la 

base est multipliée par 
4
3

n




 . Le périmètre du flocon à l’étape n est : 3

4
3

a
n





  et 

tend vers l’infini si n tend vers l’infini. La courbe fractale n’admet de tangente en 
aucun point.

1. Pour tracer le triangle équilatéral de côté a :
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.

La tortue revient à sa position initiale avec le même angle.
from turtle import *  # bibliothèque pour la fenêtre graphique
                      # turtle
def triangle(a): # la fonction dessine un triangle équilatéral
                 # de côté a
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    forward(a)   # avance la tortue de a pixels
    right(120)   # tourne la tortue vers la droite de 120°
    forward(a)   # avance la tortue de a pixels
    right(120)   # tourne la tortue vers la droite de 120°
    forward(a)   # avance la tortue de a pixels
    right(120)   # tourne la tortue vers la droite de 120°
triangle(100)    # appel de la fonction triangle avec un côté
                 # de 100 pixels
mainloop()       # laisse la fenêtre graphique turtle ouverte
                 # à la fin du programme

On obtient la figure suivante : 

2.  
def polygone(n, a):    # la fonction dessine un polygone
                       # régulier à n côtés de longueur a
    for i in range(n): # i varie entre 0 inclus et n exclu
        forward(a)     # avance la tortue de a pixels
        left(360/n)    # tourne la tortue vers la gauche de
                       # 360/n degrés
polygone(10, 50) :     # 10 côtés de longueur 50
mainloop()             # laisse la fenêtre graphique turtle
                       # ouverte à la fin du programme

On obtient la figure suivante :

3. On considère un segment de Koch à l’ordre 0 de longueur a. On décom-
pose ce segment en trois segments de longueur a/3.

•• On avance de a/3.
•• On tourne la tortue vers la gauche de 60°, on avance de a/3.
•• On tourne la tortue vers la droite de 120°, on avance de a/3. 
•• On tourne la tortue vers la gauche de 60° et on avance de a/3.
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On obtient le segment de Koch à l’ordre 1 :

ordre 0 ordre 1

Pour tracer le segment de Koch de longueur a à l’ordre n :
•• On appelle la fonction koch(n-1, a/3) permettant de tracer le seg-
ment de Koch à l’ordre n−1 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction 
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre 
n−1 de longueur a/3.

•• On tourne la tortue vers la droite de 120°. On appelle la fonction 
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre 
n−1 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction 
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre 
n−1 de longueur a/3.

La fonction koch(n-1, a/3) trace le segment de Koch en faisant appel 
4 fois à la fonction koch à l’ordre n−2. Cette fonction koch à l’ordre n−2 
fait appel à la fonction koch à l’ordre n−3…
On peut construire le segment de Koch à l’ordre 1 à partir de quatre seg-
ments de Koch à l’ordre 0 :

•• On appelle la fonction koch(0, a/3) permettant de tracer le seg-
ment de Koch à l’ordre 0 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction 
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0 
de longueur a/3.

•• On tourne la tortue vers la droite de 120°. On appelle la fonction 
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0 
de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction 
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0 
de longueur a/3.

Il y a bien une condition d’arrêt à la fonction récursive. Si n = 0, on avance 
la tortue de a pixels pour la fonction koch(0, a).
def koch(n, a):        # la fonction dessine un segment de Koch
                       # à l’ordre n de longueur a
    if n==0:
        forward(a)     # condition d’arrêt - avance la tortue
                       # de a pixels
    else:              # partage le segment en trois
        # premier tiers : on appelle la fonction récursive
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        # à l’ordre n-1
        koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
        left(60)       # tourne la tortue vers la gauche de 60°
        # deuxième tiers : on appelle la fonction récursive
        # à l’ordre n-1
        koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
        right(120)     # tourne la tortue vers la droite de 120°
        # troisieme tiers : on appelle la fonction récursive
        # à l’ordre n-1
        koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
        left(60)       # tourne la tortue vers la gauche de 60°
        koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3

4. Il suffit d’appliquer la fonction koch à l’ordre n pour chaque côté du 
triangle équilatéral.
n=3         # flocon de Von Koch à l’ordre 3
a=300       # segment de longueur 300
koch(n, a)  # segment de Koch à l’ordre n
right(120)  # tourne la tortue vers la droite de 120°
koch(n, a)  # segment de Koch à l’ordre n
right(120)  # tourne la tortue vers la droite de 120°
koch(n, a)  # segment de Koch à l’ordre n
right(120)  # tourne la tortue vers la droite de 120°
mainloop()  # laisse la fenêtre graphique turtle ouverte
            # à la fin du programme

On obtient une courbe fermée :



Partie 4 · Récursivité

80

On note (Fn )n∈

 la suite des nombres de Fibonacci définie par : F0 = 0, F1 = 1, 
∀n ∈ , Fn+2 = Fn+1 + Fn.

1.  Écrire une fonction récursive fibo1 qui permet de renvoyer le nombre de 
Fibonacci Fn. L’algorithme utilise-t-il la méthode « diviser pour régner » ?
2.  Représenter l’arbre des appels de la fonction récursive fibo1(5). Com-
bien de fois est recalculé F2

 ? Quel est l’inconvénient ?

Exercice 6.7 : Suite des nombres de Fibonacci

Analyse du problème
La méthode « diviser pour régner » permet de décomposer le problème initial en 
deux sous-problèmes.

Afin d’éviter de calculer plusieurs fois le même nombre de Fibonacci, on utilise la 
technique de mémoïsation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner  : on combine les différents sous-problèmes pour résoudre le problème de 
départ.

Cette méthode donne de très bons résultats dans de nombreux problèmes : dichotomie, tri 
par partition-fusion, tri rapide.

La méthode «  diviser pour régner  » a parfois des faiblesses avec des appels récursifs 
redondants. Les sous-problèmes ne sont pas toujours indépendants. On peut être amené à 
résoudre plusieurs fois le même sous-problème.

Une solution consiste à utiliser la technique de mémoïsation en stockant les résultats déjà 
calculés (voir chapitre 14 « Programmation dynamique »).

1. 
def fibo1(n):
    # la fonction renvoie le nombre de Fibonacci Fn
    # pour l’entier n
    if n==0:
        return 0 # condition d’arrêt
    elif n==1:
        return 1 # condition d’arrêt
    else:
        return (fibo1(n-1)+fibo1(n-2))
                 # appel récursif

L’algorithme est de type «  diviser pour régner  » puisqu’on décompose 
le problème (calcul de fibo1(n)) en deux sous-problèmes (calcul de 
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fibo1(n-1) et fibo1(n-2)). On calcule récursivement chacun des 
deux sous-problèmes.

2. L’arbre ci-dessous représente les différents appels de la fonction fibo1 
que l’on note fib.

fib(4)

fib(5)

fib(3)

2

3

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

2
1 1

1

1

1 1 0 1 0

main()

5

fib(1) fib(0)

1

0

F2 est recalculé 3 fois. F3 est recalculé 2 fois.
L’inconvénient est que l’on augmente considérablement la complexité 
puisqu’on recalcule plusieurs fois la même valeur Fn.
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7Algorithmes gloutons 
(sauf TSI et TPC)

On dispose des pièces entières suivantes : S = [1, 2, 5, 10, 20, 50, 100] = [S0, 
S1, …, Sn–1] où S[i] représente la valeur de la pièce d’indice i. On suppose 
que la liste S est triée par ordre croissant des valeurs. On cherche à rendre 
une certaine somme entière X en utilisant le moins de pièces, qui peuvent être 
identiques. 

1.  On utilise la méthode la plus intuitive qui consiste à commencer par rendre 
la plus grande pièce possible. Pour X = 11, on commence par rendre la pièce 
de 10.
On appelle L[x] le nombre de pièces nécessaires pour rendre la somme x. La 
récurrence (1) peut s’écrire : 
•• L[0] = 0

•• Si 1x ≥  : 1L x L x S i[ ] [ ]= + −  avec i le plus grand tel que S i x[ ] ≤ .

Écrire une fonction récursive rendu1 qui admet comme arguments une liste S 
et un entier X. La fonction retourne le nombre de pièces nécessaires pour rendre 
la somme X en utilisant la récurrence (1).
2.  L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette 
méthode est-elle appelée gloutonne ? Est-ce que rendu1([1, 4, 6], 8) 
retourne la solution optimale ?

Exercice 7.1 : Rendu de monnaie

Analyse du problème
On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La 
méthode « diviser pour régner » permet de décomposer le problème initial en deux 
sous-problèmes.

La programmation dynamique (voir chapitre 14 « Programmation dynamique ») 
permet d’obtenir une solution optimale. On verra la différence entre la méthode 
gloutonne et la programmation dynamique.
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1.  
def rendu1(S, X):
    # la fonction renvoie le nombre de pièces nécessaires pour
    # rendre la somme X en utilisant la liste S :
    # S[i]=valeur de la pièce d’indice i
    if X==0:  # condition d’arrêt
        return 0
    else:
        # recherche de i le plus grand tel que S[i] <= X
        i=len(S)-1
        while S[i]>X:
            i=i-1
        # ajoute 1 au nombre de pièces
        # puisqu’on utilise la pièce S[i]
        # il reste donc à rendre la monnaie à X - S[i]
        return 1+rendu1(S, X-S[i]) # appel récursif
S=[1, 4, 6]
X=8
print(rendu1(S, X))  # on obtient : 3

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner  : on combine les différents sous-problèmes pour résoudre le problème de 
départ.

Dans la méthode gloutonne (greedy, en anglais), on effectue une succession de choix, cha-
cun d’eux semble être le meilleur sur le moment. On résout alors le sous-problème mais on 
ne revient jamais sur le choix déjà effectué.

2. L’algorithme est de type « diviser pour régner » puisqu’on décompose le 
problème (calcul de L[X]) en un sous-problème (calcul de L X S i[ ][ ]−  avec i 
le plus grand tel que S i X[ ] ≤ ). On calcule récursivement le sous-problème.
À chaque étape de l’algorithme, on commence par rendre la plus grande 
pièce possible, c’est-à-dire la plus grande pièce dont la valeur est infé-
rieure à la somme à rendre. C’est la solution qui semble être la meilleure 
et la plus intuitive. On déduit alors de cette pièce la somme à rendre et on 
est ramené à un sous-problème avec une somme à rendre plus petite. On 
recommence jusqu’à obtenir une somme nulle.
Cet algorithme est très simple mais à chaque étape on n’étudie pas tous les 
cas possibles puisqu’on se contente de choisir la pièce la plus grande que 
l’on peut rendre.
Dans le cas où S = [1, 4, 6] et X = 8, on n’obtient pas la solution optimale. 
L’algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 pièce de 
6 et 2 pièces de 1) alors que la solution optimale est 2 (2 pièces de 4).
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On considère un sac à dos dont la masse maximale est notée M. On cherche à 
maximiser la valeur totale des objets insérés dans le sac à dos. On dispose de n 
objets modélisés par la liste de listes S :
•• S[i][0] désigne la valeur de l’objet d’indice i notée vi (i varie de 0 à n−1).

•• S[i][1] désigne la masse de l’objet d’indice i notée mi (i varie de 0 à n−1).

On suppose dans tout le problème que 
0

1

m Mi
i

n

∑ >
=

−

 et que les masses sont des 

entiers. Le premier objet de la liste S a pour indice 0. La liste S est triée par 
ordre décroissant du rapport valeur/masse.

1.  On utilise la méthode intuitive consistant à insérer au fur et à mesure les 
objets qui ont le plus grand rapport valeur/masse. 
Écrire une fonction itérative algo1 qui admet comme arguments une liste S et 
un entier M. La fonction retourne la valeur des objets que l’on peut insérer dans 
le sac à dos.
2.  Pourquoi cette méthode est-elle appelée gloutonne  ? Est-ce que algo1 
([[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]], 30) 
retourne la solution optimale ?

Exercice 7.2 : Problème du sac à dos

Analyse du problème
On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés 
dans un sac à dos. La programmation dynamique (voir chapitre 14 « Programma-
tion dynamique ») permet d’obtenir une solution optimale en utilisant deux tech-
niques : « Top Down » et « Bottom Up ». 

1.  
def algo1(S, M):
    # S est une liste de listes avec [valeur, masse].
    # Les objets sont triés par ordre décroissant valeur/masse.
    # La fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    v_total=0    # initialisation de la valeur totale des objets
    m_total=0    # initialisation de la masse totale des objets
    n=len(S)
    for i in range(n):
        if m_total+S[i][1]<=M: # teste si nouvelle masse totale<=M
            v_total+=S[i][0]   # calcule la nouvelle valeur totale
            m_total+=S[i][1]   # calcule la nouvelle masse totale
    return v_total  # retourne la valeur totale des objets

Avant d’insérer un objet, il faut tester que la nouvelle masse totale ne 
dépasse pas M.
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2. Cette méthode est appelée méthode gloutonne car elle consiste à faire le 
meilleur choix sur le moment, c’est-à-dire insérer l’objet qui a le plus grand 
rapport valeur/masse.

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]] # [valeur, masse]
print('ALGO1 :', algo1(S, M))                    # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient 
alors la liste suivante, qui est bien triée par ordre décroissant : [2.5, 2.4, 
2.0, 0.875, 0.5].

•• On insère le premier objet de valeur 15 et de masse 6.
•• On ne peut pas insérer le deuxième objet de masse 25 car la masse totale 
6+25 dépasse 30.

•• On insère le troisième objet de valeur 10.
•• On insère le quatrième objet de valeur 7.

On obtient une valeur totale 32 dans le sac à dos.
Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas 
particulier, algo1 renvoie 32 alors que la solution optimale est 70. On 
utilisera la programmation dynamique (voir chapitre 14 « Programmation 
dynamique ») pour trouver la solution optimale.

On cherche une solution au problème d’allocation d’une salle de spectacles. 
On définit une liste L contenant pour chaque spectacle d’indice ∈ − ���i n,0 1  
le couple d’entiers d fi i,( ) où di désigne l’heure de début et fi l’heure de fin : 

0 0 1 1 1 1L d f d f d fn n, , , , ..., ,=       − − . On suppose que les n-uplets de couples 

d fi i,( ) sont triés par date de fin fi croissante. On définit début l’heure de début 

du spectacle et fin l’heure de fin du spectacle. 

1.  On cherche à maximiser le nombre de spectacles dans la salle et non le 
temps d’occupation. On utilise la méthode intuitive consistant à choisir au fur et 
à mesure des spectacles dont l’intervalle est compatible avec celui du spectacle 
précédent et dont l’heure de fin est la plus petite. On suppose que la liste L est 
triée par ordre croissant des heures de fin.
Écrire une fonction itérative gestion qui admet comme arguments une liste 
L, un entier début (heure de début des spectacles) et un entier fin (heure de 
fin des spectacles). La fonction retourne le nombre maximum de spectacles que 
l’on peut organiser dans la salle ainsi que la liste des spectacles retenus.

Exercice 7.3 : Allocation de salle de spectacles
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2.  Pourquoi cette méthode est-elle appelée gloutonne ?
3.  On considère la liste L1=[[0, 2], [1, 3], [2, 4], [1, 5], [3, 
6], [4, 7], [5, 9], [6, 11], [9, 12]]. Écrire le programme 
principal permettant d’afficher le nombre maximum de spectacles et la liste des 
spectacles que l’on peut organiser dans cette salle entre début = 1 et fin = 12.

Analyse du problème
On utilise la méthode gloutonne, qui consiste à effectuer une succession de choix, 
chacun d’eux semblant être le meilleur sur le moment.

1.  
def gestion(L, début, fin):
    # retourne le nombre maximum de spectacles que l’on peut
    # organiser entre début(int) = heure de début et
    # fin(int) = heure de fin dans la salle ainsi que la liste
    # des spectacles retenus L = liste de listes
    # L[i]=[di, fi] = heure de début et de fin du spectacle i
    n=len(L)       # nombre de spectacles
    p=0            # initialisation du nb de spectacles organisés
    LISTE_CONF=[]  # initialisation de la liste des
                   # spectacles organisés
    for i in range(n): # i varie entre 0 inclus et n exclu
        if LISTE_CONF==[] and L[i][0]>=début and L[i][1]<=fin:
            p=p+1
            LISTE_CONF.append(i)   # indice du premier spectacle
                                   # ajouté
        elif p>=1: 
            indice=LISTE_CONF[p-1] # indice du dernier spectacle
                                   # ajouté
            if L[i][0]>=L[indice][1] and L[i][1]<=fin:
                p=p+1
                LISTE_CONF.append(i) # indice du spectacle ajouté
    return(p, LISTE_CONF)

2. On appelle la méthode gloutonne puisque, à chaque étape, on sélec-
tionne la possibilité qui semble être la meilleure sur le moment, c’est-à-dire 
qu’on choisit un spectacle qui finit le plus tôt.
On peut montrer que la méthode gloutonne donne ici la solution optimale, 
mais ce n’est pas toujours le cas, comme on peut le voir dans les exercices 
sur le rendu de monnaie et sur le sac à dos (exercices 7.1 et 7.2).
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3.  
L1=[[0, 2], [1, 3], [2, 4], [1, 5], [3, 6], [4, 7], [5, 9],\
  [6, 11], [9, 12]]
début=1     # heure de début des spectacles
fin=11      # heure de fin des spectacles
p1, LISTE_CONF1=gestion(L1, début, fin)
print('Nombre de spectacles :', p1)
print("Spectacles que l'on peut organiser :", LISTE_CONF1)

Le programme Python affiche :

  Nombre de spectacles : 3
  Spectacles que l’on peut organiser : [1, 4, 7]
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8Lecture et écriture 
de fichiers

Rappels pour la gestion des fichiers :
f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du 
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r' 
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readline() : lecture d'une ligne de l’objet fichier f

\n : caractère d’échappement : saut de ligne

c1.strip()  : renvoie une chaîne sans les espaces et les caractères 
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de 
caractères c1

c1.split(';')  : sépare une chaîne de caractères (c1) en une liste de 
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire un programme Python permettant de créer le fichier 'droite.txt' 
contenant les éléments suivants :

10 : nombre de points du fichier

25;10.9 : abscisse et ordonnée du premier point

20;9.3

15;8.2

12;7.5

9;6.2

6;5.8

3;4.2

Exercice 8.1 : �Lecture et écriture de fichiers, calculs 
statistiques
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0;3.9

-3;2.8

-6;2 : abscisse et ordonnée du dixième point

2.  Écrire un programme Python permettant d'ouvrir un fichier .txt (par exemple 
'droite.txt') et de récupérer les abscisses et les ordonnées dans deux listes.
3.  On cherche à modéliser les n points expérimentaux x y,( )1 1 , 2 2x y,( )…
x yn n,( ) par une fonction polynôme du premier ordre, de la forme : y ax b= + . 

1 1 1

2

1 1

2a

n x y x y

n x x

i i
i

n

i
i

n

i
i

n

i
i
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i
i

n

∑ ∑ ∑

∑ ∑
=

−




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

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−







= = =

= =

 et b y ax= −  en notant x  la moyenne des xi et y 

la moyenne des yi.
Écrire un programme Python permettant de calculer les coefficients a et b cor-
respondant aux points expérimentaux de la question 2.
4.  Écrire un programme Python permettant de représenter graphiquement la 
fonction modéliséy ax b= + .

Analyse du problème
Cet exercice utilise les fonctions d’écriture et de lecture de fichiers avec Python. 
Il faut convertir les entiers en chaînes de caractères avant d’utiliser f.write. 
Lors de la lecture du fichier, on parcourt les différentes lignes du fichier avec 
f.readline(). On enlève ensuite les caractères d’échappement (saut de ligne 
par exemple) et on sépare la chaîne de caractères obtenue en une liste de mots.

1.  
x=[25,20,15,12,9,6,3,0,-3,-6]
y=[10.9,9.3,8.2,7.5,6.2,5.8,4.2,3.9,2.8,2]
n=len(x)

f=open('droite.txt', 'w')   # création du fichier 'droite.txt'
                            # en écriture
f.write(str(n)+'\n') # première ligne avec la longueur de la liste
for i in range(n):   # i varie entre 0 inclus et n exclu
    f.write(str(x[i])+';'+str(y[i])+'\n')
f.close()            # fermeture du fichier

On convertit les entiers et les flottants en chaînes de caractères avant de 
les insérer dans le fichier. Il ne faut pas oublier le saut de ligne à la fin de 
chaque ligne du fichier.
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2. 
f=open('droite.txt', 'r')
n=int(f.readline())   # nombre de points
x=[]
y=[]
for i in range(n):    # i varie entre 0 inclus et n exclu
    ligne=f.readline()
    ligne2=ligne.strip()   # enlève les caractères d’échappement
    xchaine,ychaine=ligne2.split(';')
    x.append(float(xchaine))   # conversion de l’abscisse en  
                               # type float
            # xchaine est une chaîne de caractères qu’il faut
            # convertir en type float
    y.append(float(ychaine))   # conversion de l’ordonnée en  
                               # type float
f.close()   # fermeture du fichier

3. 
sumx=0
sumy=0
sumxy=0
moy_x=0
moy_y=0
sumx2=0
for i in range(n):
    sumx=sumx+x[i]
    sumy=sumy+y[i]
    sumxy=sumxy+x[i]*y[i]
    moy_x+=x[i]
    moy_y+=y[i]
    sumx2+=x[i]**2
moy_x=moy_x/n
moy_y=moy_y/n

a=(n*sumxy-sumx*sumy)/(n*sumx2-sumx**2)
b=moy_y-a*moy_x

Le programme Python fournit a = 0,29 et b = 3,75.

4. 
ymodelise=[a*elt+b for elt in x]
plt.plot(x,ymodelise)

La première variable dans plt.plot est la liste des abscisses des points. La 
deuxième variable est la liste des ordonnées des points.
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Rappels pour la gestion des fichiers :
f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du 
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r' 
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : transforme toutes les lignes de l’objet fichier f en une 
liste de chaînes de caractères

c1.strip()  : renvoie une chaîne sans les espaces et les caractères 
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de 
caractères c1

c1.split(';')  : sépare une chaîne de caractères (c1) en une liste de 
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

On cherche à calculer une valeur approchée de l’intégrale d’une fonction don-
née par des points dont les coordonnées sont situées dans un fichier.

1.  Le fichier «ex_001.txt» contient une quinzaine de lignes selon le modèle 
suivant :

0.0;0.0

0.111111111111;0.0122949573053

0.222222222222;0.0485751653206

Chaque ligne contient deux valeurs flottantes séparées par un point-virgule, 
représentant respectivement l’abscisse et l’ordonnée d’un point. Les points sont 
ordonnés dans l’ordre croissant de leurs abscisses.
Écrire un programme Python permettant d’ouvrir le fichier en lecture, de le lire 
et de construire la liste X des abscisses et la liste Y des ordonnées contenues 
dans ce fichier.
2.  Écrire un programme Python permettant de représenter les points sur une figure.
3.  Les points précédents sont situés sur la courbe représentative d’une fonction 
f. On souhaite déterminer une valeur approchée de l’intégrale I de cette fonction 
sur le segment où elle est définie.
Écrire une fonction trapeze, d’arguments deux listes Y et X de même lon-
gueur n, renvoyant :

X X
Y Y

i i
i i

i

n

21
1

1

1

∑( )−
+

−
−

=

−

trapeze(Y, X) renvoie donc une valeur approchée de l’intégrale I par la 
méthode des trapèzes.

Exercice 8.2 : Lecture de fichiers
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Analyse du problème
Cet exercice utilise les fonctions de lecture de fichiers avec Python. Dans l’exer-
cice précédent, on lit les lignes du fichier au fur et à mesure en utilisant la méthode 
f.readline(). Ici on récupère directement une liste de chaînes de caractères 
avec la méthode f.readlines(). Il faut alors parcourir cette liste pour récu-
pérer les différentes lignes du fichier. Pour chaque ligne, on enlève les caractères 
d’échappement (saut de ligne par exemple) et on sépare la chaîne de caractères 
obtenue en une liste de mots.

1. On récupère dans la variable data une liste de chaînes de caractères. 
Pour parcourir cette liste, on utilise l’instruction for chaine in data.
f=open("ex_001.txt", 'r')   # ouverture du fichier en lecture
data=f.readlines()   # data contient une liste de chaînes
                     # de caractères
    # chaque chaîne de caractères correspond à une ligne
    # du fichier
X, Y=[], []   # création des listes vides X et Y
for chaine in data:   �# on parcourt la liste de chaînes de  

# caractères
    chaine2=chaine.strip()   # enlève les caractères d’échappement
    abs,ord=chaine2.split(';')
    X.append(float(abs))   # conversion de l’abscisse en type  
                           # float
            # on ajoute cette abscisse dans la liste X
    Y.append(float(ord))   # conversion de l’ordonnée en type 
                           # float
            # on ajoute cette ordonnée dans la liste Y
f.close()   # fermeture du fichier

Cours :
Pour initialiser une liste, on utilise X=[].

Pour ajouter des éléments dans une liste, on utilise X.append(valeur).

Pour supprimer le dernier élément d’une liste, on utilise X.pop().

Il faut bien connaître les arguments de la fonction plt.plot(X, Y) : la première liste 
X représente l’abscisse des points, la deuxième liste Y représente l’ordonnée des points.

2. 
plt.figure()   # nouvelle fenêtre graphique
plt.plot(X, Y)
    # ou utilisation de la fonction ci-dessous, qui permet
    # de mettre  une croix pour les points expérimentaux
    # et de relier les points entre eux :
    # plt.plot(LX, LY, '+', linestyle="-")
plt.show()     # affiche la figure à l′écran
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Cours :
Il faut bien connaître la syntaxe de range :

for i in range(start, stop, step):

i varie entre start inclus et stop exclu avec un pas égal à step.

Lorsque step n’est pas indiqué, le pas vaut 1 par défaut.

3. 
def trapeze(Y, X):
    �# la fonction renvoie l’intégrale I par la méthode des  

# trapèzes
    n=len(X)   # nombre d’éléments de la liste
    I=0   # initialisation de la variable I
    for i in range(1, n):   # i varie entre 1 inclus et n exclu
        I+=(X[i]-X[i-1])*(Y[i]+Y[i-1])/2
    return I

print(trapeze(Y, X))

On pourrait écrire : 
I=I+(X[i]-X[i-1])*(Y[i]+Y[i-1])/2

au lieu de : 
I+=(X[i]-X[i-1])*(Y[i]+Y[i-1])/2
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9Matrices de pixels et 
images, traitement 
d’images

Les instructions suivantes permettent de récupérer dans la liste L l’ensemble 
des pixels d’une image en niveaux de gris. Cette liste contient à la suite les 
pixels de la première ligne de l’image, de la deuxième ligne… Les valeurs des 
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les 
listes de listes pour représenter les matrices dans Python.

from PIL import Image
img=Image.open('photo.png')   # stockage des pixels de l’image
                              # 'photo.png' dans la liste img
p, n=img.size                 # n = nombre de lignes   (hauteur)
                              # p = nombre de colonnes (largeur)
L=list(img.getdata())

1.  Écrire une fonction creation_mat qui admet comme argument l’image 
en niveaux de gris img. Cette fonction retourne la matrice M (liste de listes). 
La première sous-liste contient la première ligne de l’image, la deuxième sous-
liste contient la deuxième ligne de l’image…
2.  Écrire une fonction inv_contraste qui admet comme argument M la 
matrice représentant une image. Cette fonction retourne une nouvelle matrice 
représentant la moitié inférieure de l’image avec une inversion du contraste.
3.  Écrire une fonction trois_niveaux_gris qui admet comme argument M 
la matrice représentant une image. Cette fonction retourne une nouvelle matrice 
avec 3 niveaux de gris uniquement : les niveaux de gris entre 0 et 80 inclus sont 
remplacés par 60, les niveaux de gris entre 80 et 150 inclus sont remplacés par 
120 et les autres niveaux de gris sont remplacés par 220.
4.  Écrire une fonction reduction qui admet comme argument M la matrice 
représentant une image. Cette fonction retourne une nouvelle matrice en ne 
gardant qu’un pixel sur 3 de l’image pour la largeur et la hauteur.

Exercice 9.1 : Traitement d’images et filtrage passe-bas
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5.  On souhaite réaliser un filtre passe-bas qui adoucit les détails d’une image 
représentée par la matrice M. On considère la matrice A :

1/12 1/12 1/12

1/12 4/12 1/12

1/12 1/12 1/12

Le traitement suivant est appliqué à la matrice M. Pour calculer la nouvelle 
valeur du pixel de l’image traitée :

•• on multiplie son ancienne valeur M
i, j

 par la valeur centrale de la matrice A ;

•• on additionne les valeurs des pixels adjacents au pixel traité multipliées 
par les valeurs des éléments adjacents à l’élément central de la matrice A  : 
A M A M A M ...i j i j i j0,0 1, 1 1,0 , 1 2,0 1, 1× + × + × +− − − + −

La nouvelle valeur du pixel est égale à la valeur absolue de la somme précé-
dente.
Écrire une fonction filtrage qui admet comme argument M la matrice repré-
sentant une image. Cette fonction retourne une nouvelle matrice résultat du 
filtrage passe-bas de l’image.

Analyse du problème
On repère un pixel par (i,  j) où i désigne l’indice de la ligne et j l’indice de la 
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On 
obtient ainsi une matrice dont chaque valeur correspond au niveau de gris. On peut 
alors modifier facilement les valeurs de la matrice pour effectuer un traitement 
d’images.

Cours :
Manipulation des images avec Python

Une image est définie par le nombre de pixels. Par exemple, une image 800×600 contient 
800 pixels en largeur et 600 pixels en hauteur, soit 480 000 pixels. On peut la représenter 
par une matrice 600×800 contenant 600 lignes et 800 colonnes. Le point supérieur gauche 
de l’image a pour coordonnées [0, 0], le point inférieur droit [599, 799].

Utilisation d’une liste de listes

Matrice

On représente une matrice 2 × 3 par la liste L contenant 2 listes de longueur 3. Chacune de 

ces listes de longueur 3 représente une ligne de la matrice 










3 2 1
8 6 4

. 

L=[[3, 2, 1], [8, 6, 4]]
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Chaque élément de la liste est une liste. Pour extraire le premier élément de la liste L :

M=L[0]      # M vaut [3,2,1]

Pour récupérer le deuxième élément de M :

a=M[1]      # a vaut 2

On peut également écrire :

b=L[0][1]   # b vaut 2

Bibliothèque PIL

On utilise le module Image de la bibliothèque PIL. Les instructions permettant d’obtenir 
la liste L seraient rappelées dans un problème de concours :

from PIL import Image
img=Image.open('photo.png')   # stockage des pixels de l’image
                              # 'photo.png' dans la liste img
p, n=img.size                 # n=nombre de lignes   (hauteur)
                              # p=nombre de colonnes (largeur)
L=list(img.getdata())

La liste L est une simple liste contenant à la suite les pixels de la première ligne de l’image, 
les pixels de la deuxième ligne…

Images en niveaux de gris

Chaque élément de la liste L est caractérisé par un entier compris entre 0 (noir) et 255 
(blanc).

M est la matrice qui représente l’ensemble des pixels. La première sous-liste contient la 
première ligne de l’image. La deuxième sous-liste contient la deuxième ligne de l’image.

M=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
    for j in range(p):
        M[i][j]=L[i*p+j]

Pour récupérer le pixel à la ligne d’indice i et à la colonne d’indice j :

print(M[i][j])       # affiche par exemple 65 : niveau de gris

Pour créer une matrice correspondant à une image vide 800×600 en niveaux de gris :

M=[[0 for j in range(800)] for i in range(600)]

Images en couleurs

Chaque élément de la liste L est caractérisé par un tuple de 3 valeurs entières comprises 
entre 0 (intensité nulle) et 255 (intensité maximale) correspondant au codage RVB (rouge, 
vert, bleu) ou RGB (red, green, blue). On peut représenter 2563 couleurs différentes. On 
rencontre parfois une quatrième valeur correspondant à un coefficient de transparence.

M est la matrice qui représente l’ensemble des pixels. La première sous-liste contient la 
première ligne de l’image. La deuxième sous-liste contient la deuxième ligne de l’image. 
Chaque pixel de la matrice contient la liste des 3 valeurs entières correspondant au codage 
RVB.
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M=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
    for j in range(p):
        M[i][j]=list(L[i*p+j])   # conversion du tuple en liste

Pour récupérer le pixel à la ligne d’indice i et à la colonne d’indice j :

print(M[i][j])   # affiche par exemple [85, 80, 96] :
                 # R, V, B pour une image en couleurs

1. 
def creation_mat(img):
    # la fonction crée une matrice (liste de lignes)
    # à partir de img (image en niveaux de gris)
    p, n=img.size   # n = nombre de lignes   (hauteur)
                    # p = nombre de colonnes (largeur)
    L=list(img.getdata())
    M=[[0 for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
            M[i][j]=L[i*p+j]
    return M

2. 
def inv_contraste(M):
    # argument d’entrée : matrice M (liste de listes)
    # en niveaux de gris
    # la fonction retourne M2 la moitié inférieure de l’image M
    # avec inversion du contraste
    n=len(M)                  # n = nombre de lignes   (hauteur)
    n2=n//2
    p=len(M[0])               # p = nombre de colonnes (largeur)
    M2=[[0 for j in range(p)] for i in range(n2, n)]
    for i in range(n2, n):
        for j in range(p):
            M2[i-n2][j]=255-M[i][j]  # inversion du contraste
    return M2

3. 
def trois_niveaux_gris(M):
    # la fonction renvoie une matrice M2 (liste de listes)
    # avec 3 niveaux de gris uniquement
    # argument d’entrée : matrice M (liste de listes)
    # en niveaux de gris
    n=len(M)                  # n = nombre de lignes   (hauteur)
    p=len(M[0])               # p = nombre de colonnes (largeur)
    M2=[[0 for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
            if M[i][j]<=80:      # teste si le niveau de gris
                                 # est <= 80
                M2[i][j]=60
            elif M[i][j]<=150 :  # teste si le niveau de gris
                                 # est <= 150
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                M2[i][j]=120
            else:                # le niveau de gris est > 150
                M2[i][j]=220
    return M2

On pourrait écrire elif M[i][j]>80 and M[i][j]<=150. C’est inu-
tile car si la première condition est vérifiée, Python ne teste pas l’instruc-
tion après elif.

4. 
def reduction(M):
    # la fonction renvoie une matrice M2 (liste de listes)
    # avec 1 pixel sur 3 pour la largeur et la hauteur
    # argument d’entrée : matrice M (liste de listes)
    # en niveaux de gris
    n=len(M)                  # n = nombre de lignes   (hauteur)
    p=len(M[0])               # p = nombre de colonnes (largeur)
    M2=[[0 for j in range(0, p, 3)] for i in range(0, n, 3)]
    for i in range(0, n, 3):
        for j in range(0, p, 3):
            M2[i//3][j//3]=M[i][j]
    return M2

5. 
def somtab(A):                # somme de tous les éléments de
                              # la matrice A (liste de listes)
    n=len(A)                  # n = nombre de lignes   (hauteur)
    p=len(A[0])               # p = nombre de colonnes (largeur)
    som=0
    for i in range(n):
        for j in range(p):
            som=som+A[i][j]
    return int(abs(som))      # int pour obtenir un entier

def multipAB(A, B):
    # multiplication case par case de A et B
    # A et B sont des matrices (listes de listes)
    n=len(A)                  # n = nombre de lignes   (hauteur)
    p=len(A[0])               # p = nombre de colonnes (largeur)
    C=[[0 for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
           C[i][j]=A[i][j]*B[i][j]
    return C

def filtrage(M):
    # la fonction renvoie une matrice M2 (liste de listes)
    # filtrage passe-bas de la matrice M
    # argument d’entrée : matrice M (liste de listes)
    # en niveaux de gris
    n=len(M)                  # n = nombre de lignes   (hauteur)
    p=len(M[0])               # p = nombre de colonnes (largeur)
    M2=[[0 for j in range(p)] for i in range(n)]
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    A=[[1/12,1/12,1/12],[1/12,4/12,1/12],[1/12,1/12,1/12]]
    for i in range(1, n-1):
        for j in range(1, p-1):
            B=[[M[i1][j1] for j1 in range(j-1, j+2)]\
               for i1 in range(i-1, i+2)]
            C=multipAB(A, B)
            M2[i][j]=somtab(C)
    return M2

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des 
exemples d’images.

Les instructions suivantes permettent de récupérer dans la liste L l’ensemble 
des pixels d’une image en niveaux de gris. Cette liste contient à la suite les 
pixels de la première ligne de l’image, de la deuxième ligne… Les valeurs des 
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les 
listes de listes pour représenter les matrices dans Python.
from PIL import Image
img=Image.open('photo.png')   # stockage des pixels de l’image
                              # 'photo.png' dans la liste img
p, n=img.size                 # n = nombre de lignes   (hauteur)
                              # p = nombre de colonnes (largeur)
L=list(img.getdata())

1.  On souhaite réaliser un lissage de l’image représentée par la matrice M en 
niveaux de gris. On considère la matrice A :

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Le traitement suivant est appliqué à la matrice M. Pour calculer la nouvelle 
valeur du pixel de l’image traitée :

•• on multiplie son ancienne valeur M
i, j

 par la valeur centrale de la matrice A ;

•• on additionne les valeurs des pixels adjacents au pixel traité multipliées 
par les valeurs des éléments adjacents à l’élément central de la matrice A  : 
A M A M A M ...i j i j i j0,0 1, 1 1,0 , 1 2,0 1, 1× + × + × +− − − + −

La nouvelle valeur du pixel est égale à la valeur absolue de la somme précé-
dente.
Écrire une fonction filtre qui admet comme arguments M la matrice repré-
sentant une image et A une matrice 3×3. Cette fonction retourne une nouvelle 
matrice résultat du filtrage de l’image.

Exercice 9.2 : Filtrage d’images

https://dunod.com/EAN/9782100846238
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2.  La dérivée dans la direction horizontale peut être approchée par M Mi j i j, 1,− − . 
Proposer un filtre permettant de détecter le changement d’intensité d’une couleur 
selon la direction horizontale. On appelle M2 la matrice de l’image ainsi filtrée.
3.  Proposer un filtre permettant de détecter le contour selon la direction verti-
cale. On appelle M3 la matrice de l’image ainsi filtrée.
4.  Proposer un filtre permettant de détecter les contours dans les deux direc-

tions en utilisant pour chaque point de l’image M2 M3i j i j,
2

,
2( ) ( )+ .

Analyse du problème
On repère un pixel par (i,  j) où i désigne l’indice de la ligne et j l’indice de la 
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On uti-
lise deux boucles for pour décrire tous les pixels de l’image.

1. 
def somtab(A):                # somme de tous les éléments de
                              # la matrice A (liste de listes)
    n=len(A)                  # n = nombre de lignes   (hauteur)
    p=len(A[0])               # p = nombre de colonnes (largeur)
    som=0
    for i in range(n):
        for j in range(p):
            som=som+A[i][j]
    return int(abs(som))      # int pour obtenir un entier

def multipAB(A, B):
    # multiplication case par case de A et B
    # A et B sont des matrices (listes de listes)
    n=len(A)                  # n = nombre de lignes   (hauteur)
    p=len(A[0])               # p = nombre de colonnes (largeur)
    C=[[0 for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
           C[i][j]=A[i][j]*B[i][j]
    return C

def filtre(M, A):
    # la fonction renvoie une matrice M2 (liste de listes)
    # filtrage de la matrice M en utilisant la matrice A
    # argument d’entrée : matrice M (liste de listes)
    # en niveaux de gris
    n=len(M)                  # n = nombre de lignes   (hauteur)
    p=len(M[0])               # p = nombre de colonnes (largeur)
    M2=[[0 for j in range(p)] for i in range(n)]
    for i in range(1, n-1):
        for j in range(1, p-1):
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            B=[[M[i1][j1] for j1 in range(j-1, j+2)]\
               for i1 in range(i-1, i+2)]
            C=multipAB(A, B)
            M2[i][j]=somtab(C)
    return M2

2. La dérivée dans la direction horizontale peut être approchée par 
M M, 1,− −i j i j. La matrice A suivante permet de détecter le contour selon la 
direction horizontale :

0 0 0

−1 1 0

0 0 0

A=[[0, 0, 0], [-1, 1, 0], [0, 0, 0]]
M2=filtre(M, A)

3. La dérivée dans la direction verticale peut être approchée par M M ., 1,− −i j i j  
La matrice A suivante permet de détecter le contour selon la direction ver-
ticale :

0 −1 0

0 1 0

0 0 0

A=[[0,-1,0],[0,1,0],[0,0,0]]
M3=filtre(M, A)

4. 
def contour(M2, M3):
    import math as m
    n=len(M3)                 # n = nombre de lignes   (hauteur)
    p=len(M3[0])              # p = nombre de colonnes (largeur)
    M5=[[0 for j in range(p)] for i in range(n)]
    for i in range(n):
        for j in range(p):
            M5[i][j]=m.sqrt((M3[i][j])**2+(M3[i][j])**2)
    return M5

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des 
exemples d’images.

https://dunod.com/EAN/9782100846238
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10Tris

Le tri par insertion est souvent utilisé pour trier des cartes. Il consiste à insérer 
les éléments d’une partie de la liste non triée dans la liste triée.
Présentation du tri par insertion :

On considère la liste non triée  : L= 8 5 3 9 2  comprenant n = 5 éléments. 

Avec Python, on a : L 0 8[ ] =  … et L 1 2n[ ]− = . On parcourt la liste du deu-
xième au dernier élément. Lorsqu’on est à l’étape k (k variant de 1 à n–1, les 
éléments précédents L k[ ] sont déjà triés. Il faut donc insérer cet élément d’in-
dice k dans la liste triée.
Mise en place de l’algorithme :
On envisage deux boucles pour réaliser le tri par insertion :
•• Première boucle d’indice k (k variant de 1 à n–1). Quand on considère l’élé-
ment d’indice k, on considère que les éléments précédents sont déjà triés.

Par exemple, pour k = 2. On a la liste suivante : 5 8 3 9 2
↑

 avec L[2]=3.

Les éléments avant L[k] sont déjà triés : 5 8 .

On pose x = L[k] = 3.

•• Deuxième boucle d’indice i (i variant de k–1 à 0). Il faut trouver où l’élément 
x doit être inséré dans cette liste triée ( 5 8  dans l’exemple). On compare L i[ ] 
à x. Si L i x[ ] > , alors il faut décaler cet élément vers la droite : L 1 Li i[ ] [ ]+ = . 
Sinon, il suffit de mettre x dans la valeur du trou qui a été laissé.

Exemple :
Différentes étapes pour la boucle d’indice k :

•• liste non triée : 8 5 3 9 2

•• k = 1 : 8 5 3 9 2 5 8 3 9 2

1 1k k

→
↑

=
↑

=

•• k = 2 : 5 8 3 9 2 3 5 8 9 2

2 2k k

→
↑

=
↑

=

•• k = 3 : 3 5 8 9 2 3 5 8 9 2

3 3k k

→
↑

=
↑

=

Exercice 10.1 : Tri par insertion
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•• k = 4 : 3 5 8 9 2 2 3 5 8 9

4 4k k

→
↑

=
↑

=

On considère une liste non triée d’entiers ou de flottants.

1.  Écrire une fonction tri_insertion qui admet comme argument une liste 
L et permet de la trier par ordre croissant en utilisant la méthode du tri par 
insertion.
2.  Écrire le programme principal permettant de trier la liste L=[8, 5, 3, 
9, 2].
3.  Partant d’une liste de couples (entier, chaîne de caractères), on souhaite 
trier la liste L2 par ordre croissant de la population en millions d’habitants  : 
L2=[[67, 'France'], [40, 'Irak'], [47, 'Kenya'], [32, 
'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]. Écrire 
une fonction tri_insertion2 permettant de trier la liste L2 par ordre crois-
sant de la population.
4.  Donner les caractéristiques du tri par insertion.

Analyse du problème
On étudie dans cet exercice le tri par insertion qui est un tri en place car il n’utilise 
pas de liste auxiliaire. Sa complexité spatiale est faible.

1.  
def tri_insertion(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    for k in range(1, n): # k varie entre 1 inclus et n exclu
        i=k-1   # deuxième boucle démarre à k-1
        # les éléments entre 0 et k-1 sont triés
        x=L[k]  # mémorisation de la valeur de L[k]
        while i>=0 and L[i]>x:
            L[i+1]=L[i] # décale les éléments de la liste
            i=i-1       # décrémente de 1 la valeur de i
        L[i+1]=x        # met la valeur dans le trou
    # return L est inutile car L est passé en référence

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une 
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans 
le chapitre « Prise en main de Python »).

La variable L dans la fonction tri_insertion est une liste qui est un objet 
muable. Il est donc inutile de retourner la variable L dans cette fonction !
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2.  
L=[8, 5, 3, 9, 2]
print(L)
tri_insertion(L)
print(L)

Python affiche :
  [2, 3, 5, 8, 9]

Remarques :

Le programme principal suivant affiche None puisqu’il n’y a pas de return.
print(tri_insertion([5, 2, 3, 1, 4]))  # affiche None

def tri_insertion_test(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    for k in range(1, n): # k varie entre 1 inclus et n exclu
        i=k-1   # deuxième boucle démarre à k-1
        # les éléments entre 0 et k-1 sont triés
        x=L[k]  # mémorisation de la valeur de L[k]
        while i>=0 and L[i]>x:
            L[i+1]=L[i] # décale les éléments de la liste
            i=i-1       # décrémente de 1 la valeur de i
        L[i+1]=x        # met la valeur dans le trou
    return      # ne retourne pas de variable

Le programme principal suivant affiche None puisque return ne retourne pas de 
variable.

print(tri_insertion_test ([5, 2, 3, 1, 4]))  # affiche None

L’instruction return est inutile dans cette fonction.

3.  
def tri_insertion2(L):
    # la fonction trie par ordre croissant la liste L
    # L[i][0] valeur à trier
    # attention : une liste Python est une variable passée
    # par référence
    n=len(L)
    for k in range(1, n): # k varie entre 1 inclus et n exclu
        i=k-1             # deuxième boucle démarre à k-1
                          # les éléments entre 0 et k-1 sont triés
        x, pays=L[k]      # mémorisation de la valeur de L[k]
        while i>=0 and L[i][0]>x:
            L[i+1]=L[i]   # décale les éléments de la liste
            i=i-1         # décrémente de 1 la valeur de i
        L[i+1]=[x, pays]  # met la valeur dans le trou
    # return L est inutile car L est passé en référence
L2=[[67, 'France'], [40, 'Irak'],[47, 'Kenya'],\
  [32, 'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]
print(L2)
tri_insertion2(L2)
print(L2)
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Cours :
On cherche à trier un ensemble d’éléments, c’est-à-dire à les ordonner en fonction d’une 
relation d’ordre définie sur ces éléments.

•• Un tri comparatif est basé sur la comparaison des éléments entre eux.
•• Un tri itératif est basé sur un ou plusieurs parcours itératifs de la liste.
•• Un tri récursif est basé sur une procédure récursive.
•• Un tri en place n’utilise qu’un espace mémoire de taille constante en plus de l’espace 
servant à stocker les éléments à trier. Il n’utilise pas de liste auxiliaire.

•• Un tri stable conserve l’ordre initial des éléments de même clé. Deux éléments avec des 
clés égales apparaîtront dans le même ordre dans la liste triée et dans la liste non triée.

On rencontre différents algorithmes de tri :

•• Tri par insertion : tri comparatif, itératif, stable. Tri en place.
•• Tri par sélection : tri comparatif, itératif, instable. Tri en place.
•• Tri rapide : tri comparatif, récursif, instable. Tri en place.
•• Tri par partition-fusion : tri comparatif, récursif, stable. Le tri n’est pas en place
•• Tri par comptage : tri itératif. Le tri n’est pas comparatif. Le tri n’est pas en place. On 
n’étudie pas la stabilité pour le tri par comptage.

•• Tri à bulles : tri comparatif, itératif, stable. Tri en place.

4. Le tri par insertion est comparatif et itératif.
La liste initiale est triée par ordre alphabétique : [[67, 'France'], 
[40, 'Irak'], [47, 'Kenya'], [32, 'Pérou'], [66, 
'Royaume-Uni'], [66, 'Thaïlande']].
La liste triée par ordre croissant de la population est : [[32, 'Pérou'], 
[40, 'Irak'], [47, 'Kenya'], [66, 'Royaume-Uni'], 
[66, 'Thaïlande'], [67, 'France']].
Le tri par insertion est stable puisqu’on garde l’ordre alphabétique dans la 
liste triée pour les pays qui ont la même population.
Le tri par insertion est un tri en place car il n’utilise pas de liste auxiliaire.

On considère une liste L contenant n éléments. Le tri par sélection consiste à :
•• rechercher le plus petit élément de la liste et le placer en première position ;

•• rechercher le deuxième plus petit élément de la liste et le placer en deuxième 
position ;

•• répéter itérativement le processus tel que la liste soit entièrement triée.

Mise en place de l’algorithme :
On parcourt la liste L[i] en faisant varier i entre 0 inclus et n−2 inclus :
•• On cherche ind_mini l’indice correspondant à l’élément le plus petit de la 
liste L[i : n].

•• Si ind_mini est différent de i, alors on permute L[i] avec L[ind_mini].

Exercice 10.2 : Tri par sélection
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1.  Écrire une fonction tri_sélection qui admet comme argument une liste 
L et permet de la trier par ordre croissant en utilisant la méthode du tri par 
sélection. Écrire le programme principal permettant de trier la liste L=[8, 5, 
3, 9, 2].
2.  Partant d’une liste de couples (entier, chaîne de caractères), on souhaite 
trier la liste L2 par ordre croissant de la population en millions d’habitants  : 
L2=[[67, 'France'], [40, 'Irak'], [47, 'Kenya'], [32, 
'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]. Écrire 
une fonction tri_sélection2 permettant de trier la liste L2 par ordre crois-
sant de la population.
3.  Donner les caractéristiques du tri par sélection.
4.  Évaluer la complexité dans le pire des cas lors de l’appel de la fonction 
tri_sélection.

Analyse du problème
On étudie dans cet exercice le tri par sélection, qui est un tri en place car il n’utilise 
pas de liste auxiliaire. Le premier élément d’une liste L a pour indice 0 avec Python.

1.  
def tri_sélection(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    for i in range(0, n-1):
        # recherche du minimum de la liste L[i: n]
        mini=L[i]
        ind_mini=i
        for j in range(i+1, n):
            if L[j]<mini:
                ind_mini=j
                mini=L[j]
        # on permute L[i] et L[ind_mini] si on a trouvé
        # un nouveau minimum
        if ind_mini!=i: # ind_mini est différent de i
            L[i], L[ind_mini]=L[ind_mini], L[i]
        # return L est inutile car L est passé en référence

L=[8, 5, 3, 10, 2, 9]
tri_sélection(L)
print(L)

2.  
def tri_sélection2(L):
    # la fonction trie par ordre croissant la liste L
    # L[i][0] valeur à trier
    n=len(L)
    for i in range(0, n-1):
        # recherche du minimum de la liste L[i: n]
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        mini=L[i][0]
        ind_mini=i
        for j in range(i+1, n): # parcourt L[j] pour j>i
            if L[j][0]<mini:
                ind_mini=j
                mini=L[j][0]
        # on permute L[i] et L[ind_mini] si on a trouvé
        # un nouveau minimum
        if ind_mini!=i:         # ind_mini est différent de i
            L[i], L[ind_mini]=L[ind_mini], L[i]          
        # return L est inutile car L est passé en référence

3. Le tri par sélection est comparatif, instable et itératif. C’est un tri en 
place car il n’utilise pas de liste auxiliaire.
4. On cherche à calculer le nombre d’opérations élémentaires :

•• Ligne n = len(L) : 2 opérations élémentaires (appel de len(L) et 
affectation).

•• Boucle for i in range(n-1) :
OO 3 opérations élémentaires (appel de l’élément L[i], affectation de 
mini, affectation de ind_mini) ;
OO boucle for j in range(i+1, n) : on se place dans le pire des 
cas, on a 5 opérations élémentaires (appel de l’élément L[j], test, 
affectation, appel de l’élément L[j] et affectation) ;
OO dans le pire des cas, on a 6 opérations élémentaires (test, appel de 
l’élément L[i], appel de l’élément L[ind_mini] et 3 affecta-
tions).

Le nombre total d’opérations élémentaires vaut : 

n i
n

n2 3 5 1 1 6 2
3
2

5
2

i

n

0

2
2∑( )( )( ) ( )+ + − − + + = − + +

=

−

La complexité est quadratique en O n2( ).
Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

On peut montrer que la complexité est quadratique dans tous les cas.
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On considère la liste L = 10 3 9 6 8  non triée. On modifie la liste L en place. 
Lors des différents appels récursifs, on travaille sur une partie de la liste L. On 
repère les éléments d’une sous-liste par les pointeurs a et b.
Fonction pivot :
•• On choisit le dernier élément de la liste qui est appelé le pivot p (ici p = 8) : 

10 3 9 6 8
p

•• On réordonne la liste en plaçant tous les éléments inférieurs ou égaux au pivot 
à gauche de celui-ci et les éléments strictement supérieurs à droite du pivot. 
Le pivot p est alors à sa bonne place dans la liste à trier.

L’indice du pivot ind_p vaut 0 au début de la procédure.

•• On compare L[0] = 10 au pivot p = 8. Comme L[0] > p, pas de modifica-
tion : ind_p = 0. 10 3 9 6 8

↑
•• On compare L[1] = 3 au pivot p = 8. Comme L[1] <= p, on échange L[1] et 
L[ind_p] et on incrémente ind_p. On a alors : ind_p = 1. 3 10 9 6 8

↑

•• On compare L[2] = 9 au pivot p = 8. Comme L[2] > p, pas de changement : 
ind_p = 1. 3 10 9 6 8

↑

•• On compare L[3] = 6 au pivot p = 8. Comme L[3] <= p, on échange L[3] et 
L[ind_p] et on incrémente ind_p. On a alors : ind_p = 2. 3 6 9 10 8

↑
•• Pour cette dernière étape, on ne modifie pas ind_p mais on permute le der-
nier élément et L[ind_p]. 3 6 8 10 9

↑

On est sûr que le pivot est à la bonne place.

Algorithme principal :
Il reste à appliquer la procédure précédente aux deux sous-listes à gauche et à 
droite du pivot, c’est-à-dire 3 6  et 10 9 .
On a une procédure récursive puisqu’on applique la fonction pivot à deux 
sous-listes. On a des sous-listes de longueur de plus en plus petite. On arrive à 
une sous-liste comportant un seul élément, qui est donc triée (condition d’arrêt 
de la fonction récursive) !

1.  Écrire une fonction pivot qui admet comme arguments une liste L et deux 
indices a et b permettant de définir une sous-liste de L avec des indices compris 
entre a et b. Le dernier élément de la sous-liste est appelé le pivot. Cette fonction 
réordonne les éléments de la sous-liste en plaçant tous les éléments inférieurs ou 
égaux au pivot à gauche de celui-ci et les éléments strictement supérieurs au pivot 
à droite de celui-ci. Cette fonction retourne la position du pivot dans la liste.

Exercice 10.3 : Tri rapide (sauf TSI et TPC)
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2.  Écrire une fonction récursive tri_rapide permettant de trier une liste par 
ordre croissant en utilisant la fonction pivot.
3.  Écrire le programme principal permettant de trier la liste L=[10, 3, 9, 
6, 8]. Représenter l’arbre des appels de la fonction récursive tri_rapide.
4.  Donner les caractéristiques du tri rapide.

Analyse du problème
Le tri rapide s’appuie sur le principe «  diviser pour régner  » comme le tri par 
partition-fusion. On réalise un tri en place.

1.  
def pivot(L, a, b): # a = indice de début, et b = indice de fin
    # la fonction renvoie la position du pivot dans la liste
    # éléments inférieurs ou égaux sont à gauche du pivot
    # L[i][0] valeur à trier
    p=L[b] # valeur du pivot = dernier élément de la liste
    ind_p=a                    # indice du pivot
    for i in range(a, b):      # i varie entre a inclus et b exclu
        if L[i]<=p:
            L[i], L[ind_p]=L[ind_p], L[i] # on échange les
                                          # 2 éléments
            ind_p+=1
    L[b], L[ind_p]=L[ind_p], L[b] # échange les 2 éléments
        # inutile de retourner L car passage par référence
        # la valeur L[ind_p] est bien placée dans la liste à trier
    return ind_p

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une 
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans 
le chapitre « Prise en main de Python »). 

La variable L dans la fonction pivot est une liste qui est un objet muable. Il est 
donc inutile de retourner la variable L dans cette fonction !

2.  
def tri_rapide(L, a, b):
    # a = indice de début, et b = indice de fin
    # la fonction trie par ordre croissant la liste L
    if b>a:
        ind_p=pivot(L, a, b)
        tri_rapide(L, a, ind_p-1) # tri_rapide pour les indices
                                  # entre a et ind_p-1
        tri_rapide(L, ind_p+1, b) # tri rapide pour les indices
                                  # entre ind_p+1 et b
    # si a=b alors la sous-liste est triée : condition d’arrêt
    # si a>b pas de changement. Il faut bien considérer ce cas
    # comme condition d’arrêt
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3.  
L=[10, 3, 9, 6, 8]
n=len(L)
print(L)
tri_rapide(L, 0, n-1)  # la fonction retourne none
                       # puisque L est triée en place
print(L)

L’arbre ci-dessous représente les différents appels de la fonction tri_
rapide. La valeur du pivot est représentée avec une taille de police de 
caractères plus grande.

[3]

[10,3,9,6, ])8

[3,6, ,10,9])8

[3,6,8,9,10])

[3, ]6 [10, ]9

[9,10]
[3,6]

[3, ]6 [ ,10]9

[10]

[3,6] [9,10]

[3] [10]

pivot

pivot pivot

tri_rapide

tri_rapide

tri_rapide tri_rapide

Remarque :

Lorsqu’on applique la fonction tri_rapide à la sous-liste [10, 9] avec a = 3 et  
b = 4, il y a trois actions :

•• appel de la fonction pivot : le pivot vaut 9 et l’indice du pivot vaut ind_p = 3 
puisque 9 fait partie de la liste L = [3, 6, 8, 9, 10] ;

•• appel de la fonction tri_rapide à la sous-liste définie par a = 3 et ind_p − 
1 = 2. La fonction tri_rapide ne modifie rien : c’est une condition d’arrêt ;

•• appel de la fonction tri_rapide à la sous-liste définie par ind_p + 1 = 4 et 
b = 4. La fonction tri_rapide ne modifie rien puisque la sous-liste constituée 
d’un seul élément est déjà triée : c’est une condition d’arrêt.

La complexité du tri rapide est quasi linéaire en logO n n( ). Le tri rapide est plus 
efficace que le tri par insertion dont la complexité est quadratique en 2O n( ) dans le 
pire des cas.



Partie 7 · Tris

118

4. Les caractéristiques du tri rapide sont : comparatif, récursif et instable. 
Le tri rapide est en place.
On utilise la méthode « diviser pour régner » qui peut se décomposer en 
trois étapes :

•• Diviser (ou partitionner)  : on divise le problème initial en plusieurs 
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le 
problème de départ.

On considère une liste L non triée d’entiers ou de flottants. On cherche à trier 
cette liste par ordre croissant en utilisant la méthode du tri par partition-fusion.
Algorithme principal :
On partage la liste initiale L de longueur n en deux sous-listes L1 et L2 de 
longueurs n//2 et n–n//2. On trie de façon récursive les deux sous-listes puis on 
fusionne les deux sous-listes triées.
Fusion de deux sous-listes L1 et L2 triées :
On considère par exemple L1=[3, 5, 8] et L2=[4, 6].
On construit la nouvelle liste L en retirant le premier élément de la première 
liste ou de la deuxième liste.
•• Première étape : on considère le premier élément de chaque liste : 3 5 8

↑
 et 

4 6
↑

.

On cherche le minimum de 3 et 4 que l’on ajoute dans la nouvelle liste : 
L=[3].

Il reste alors L1=[5, 8] et L2=[4, 6].

•• Deuxième étape : on considère le premier élément de chaque liste : 5 8
↑

 et 
4 6
↑

.

On cherche le minimum de 5 et 4 que l’on ajoute dans la nouvelle liste : 
L=[3, 4].

Il reste alors L1=[5, 8] et L2=[6].

•• Étapes suivantes : 

L=[3, 4, 5] ; L1=[8] et L2=[6]

L=[3, 4, 5, 6] ; L1=[8] et L2=[]

L=[3, 4, 5, 6, 8] ; L1=[] et L2=[]

On obtient la liste L triée.

Exercice 10.4 : Tri par partition-fusion
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1.  Écrire une fonction itérative fusion qui admet comme arguments deux 
listes L1 et L2 triées et retourne la fusion triée des deux listes.
2.  Réécrire une version récursive de la fonction précédente que l’on appellera 
fusion_rec.
3.  Écrire une fonction récursive tri_fusion permettant de trier la liste L. On 
pourra partager la liste initiale L en deux sous-listes L1 et L2.
4.  Écrire le programme principal permettant de trier par ordre croissant la liste 
L=[8, 3, 5, 1, 9, 5, 12, 15]. La fonction tri_fusion comporte 
plusieurs appels récursifs. Représenter l’arbre des appels de la fonction tri_
fusion pour la liste L.
5.  Donner les caractéristiques du tri par partition-fusion.

Analyse du problème
Le tri par partition-fusion s’appuie sur le principe « diviser pour régner », c’est-
à-dire que l’on divise (partitionne) le problème en deux sous-problèmes que 
l’on sait résoudre. Il reste à utiliser les deux solutions pour résoudre le problème 
initial.

1.  
def fusion(L1, L2):
    # la fonction L retourne la fusion triée des deux listes
    # L1 et L2
    i1, i2=0, 0                # position du pointeur de chaque
                               # liste
    n1, n2=len(L1), len(L2)    # longueur des listes
    n=n1+n2                    # longueur de L1+L2
    L=[]
    while i1+i2<n:             # il faut parcourir tous les
                               # éléments de L1+L2
        if i1==n1:             # la liste L1 est parcourue
                               # entièrement
            return L+L2[i2:]   # il faut ajouter les éléments
                               # restants de L2
        elif i2==n2:           # la liste L2 est parcourue
                               # entièrement
            return L+L1[i1:]   # il faut ajouter les éléments
                               # restants de L1
        elif L1[i1]<L2[i2]:
            L=L+[L1[i1]]       # ajoute L1[i1]
            i1+=1              # incrémente de 1 le pointeur de L1
        else:                  # on a forcément L1[i1]>=L2[i2]
            L=L+[L2[i2]]
            i2+=1
    return L
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Il faut bien connaître le slicing ou extraction de tranche pour les listes : instruction 
L[start:stop] (voir exercice 1.6 « Slicing, extraction de tranche, » dans le 
chapitre « Prise en main de Python »).

•• start désigne l’indice de départ.

•• stop–start désigne la longueur de la liste extraite (lorsque le pas vaut 1). 
L’indice final vaut stop–1 !

Remarque : Il est préférable d’utiliser deux pointeurs i1 et i2 plutôt que d’en-
lever au fur et à mesure les éléments de L1 et L2 quand on construit la nouvelle 
liste L. On ne modifie pas les listes L1 et L2 en utilisant les pointeurs i1 et i2.

Cours :
Dans toute procédure récursive, l’instruction return doit être présente au moins deux 
fois : une fois pour la condition d’arrêt (premier return dans le programme) et une autre 
fois pour l’appel récursif (dernier return dans le programme).

2.  
def fusion_rec(L1, L2):
    # la fonction retourne la fusion triée des deux listes
    # L1 et L2
    if L1==[]:
        return L2   # condition d’arrêt
    elif L2==[]:
        return L1   # condition d’arrêt
    elif L1[0]<L2[0]:
        return ([L1[0]]+fusion_rec(L1[1:], L2))
    else:
        return ([L2[0]]+fusion_rec(L1, L2[1:]))

3.  
def tri_fusion(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    if n==1:
        return L    # condition d’arrêt
    else:
        L1=L[:n//2] # indices compris entre 0 inclus et n//2 exclu
                    # la longueur de L1 vaut n//2
        L2=L[n//2:] # indices compris entre n//2 inclus et n exclu
        return fusion_rec(tri_fusion(L1), tri_fusion(L2))

4.  
L=[8, 3, 5, 1, 9, 5, 12, 15]
L_tri=tri_fusion(L)
print(L_tri)

Remarque :

À chaque appel de la fonction récursive, on coupe la liste en deux. On arrive tou-
jours à une sous-liste comportant un seul élément, qui est donc triée (condition 
d’arrêt de la fonction récursive) !
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La complexité spatiale est très mauvaise puisqu’on utilise une fonction récursive 
qui appelle elle-même une fonction récursive. Le tri n’est pas en place comme avec 
le tri par insertion.

1er appel de la fonction tri_fusion  : L1=[8, 3, 5, 1] et L2= 
[9, 5, 12, 15]. Avant de fusionner L1 et L2, il faut les trier de façon 
récursive en appelant la fonction tri_fusion.
L’arbre ci-dessous représente les différents appels de la fonction tri_
fusion notée tri_f.

tri_f([8,3,5,1])

main()

tri_f([9,5,12,15])

[5,9,12,15]
[1,3,5,8]

tri_f([8,3]) tri_f([5,1]) tri_f([9,5]) tri_f([12,15])

tri_f([8]) tri_f([3]) tri_f([5]) tri_f([1]) tri_f([9]) tri_f([5]) tri_f([12]) tri_f([15])

[3,8]
[1,5] [5,9]

[12,15]

[8]

[3] [5] [1] [9] [12]
[15]

[5]

Remarque : La complexité du tri par partition-fusion est quasi linéaire en O n n( )log . 
Le tri par partition-fusion est plus efficace que le tri par insertion dont la complexité est 
quadratique en 2O n( )dans le pire des cas.

5. Les caractéristiques du tri par partition-fusion sont : comparatif, récur-
sif, stable. Le tri n’est pas en place.
On utilise la méthode « diviser pour régner », qui peut se décomposer en 
trois étapes :

•• Diviser (ou partitionner)  : on divise le problème initial en plusieurs 
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le 
problème de départ.
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Le tri par comptage est un algorithme de tri d’entiers. On considère des entiers 
de 0 à p dans une liste L contenant n éléments : L=[10, 20, 12, 12, 16, 
16, 12, 20, 15]. L’algorithme compte le nombre d’occurrences de chaque 
entier.
Les fonctions suivantes permettent le tracé d’histogrammes :

import matplotlib.pyplot as plt   # module matplotlib.pyplot renommé plt
plt.hist(L, bins=10)
    # bins = 10 = nombre d’intervalles

Mise en place de l’algorithme :
•• On définit une liste vide L_tri.

•• On définit une liste HISTO de p+1 valeurs initialisées à 0.

•• On parcourt la liste L, on compte le nombre fois qu’apparaît L[i] et on incré-
mente HISTO[L[i]] de 1 à chaque fois.

•• On parcourt la liste HISTO pour construire au fur et à mesure la liste triée 
L_tri.

1.  Écrire une fonction tri_comptage réalisant cette opération.
2.  Donner les caractéristiques du tri par comptage.
3.  Évaluer la complexité dans le pire des cas lors de l’appel de la fonction 
tri_comptage en fonction de n et p.
4.  Afficher graphiquement l’histogramme de la liste L. L’histogramme doit 
avoir les caractéristiques suivantes :
•• Afficher «  Valeurs de L  » pour l’axe des abscisses et «  Nombre d’occur-
rences » pour l’axe des ordonnées.

•• Afficher le titre : « Histogramme de la liste L ».

5.  Proposer une amélioration de la fonction tri_comptage en tenant compte 
du minimum et du maximum de la liste L.

Exercice 10.5 : Tri par comptage, histogramme

Analyse du problème
On étudie dans cet exercice le tri par comptage. On crée une liste HISTO qui repré-
sente l’histogramme (ou liste de comptage) des éléments de L. Voir exercice 2.2 
« Tracé d’un histogramme avec matplotlib » dans le chapitre « Graphiques ».

1.  
def tri_comptage(L):
    # la fonction retourne L_tri, qui est la liste L triée par
    # ordre croissant
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    n=len(L)              # nombre d’éléments de L
    L_tri=[]
    p=L[0]                # recherche du maximum de L noté p
    for i in range(n):
        if L[i]>p:
            p=L[i]        # nouvelle valeur du maximum
    HISTO==[0 for i in range(p+1)]  # liste contenant p+1 valeurs
                                    # nulles
    # on parcourt la liste L pour incrémenter HISTO
    for i in range(n):
        valeur=L[i] 
        HISTO[valeur]+=1  # incrémente HISTO[valeur] de 1
                          # on pourrait écrire : HISTO[L[i]]+=1
    # on parcourt la liste HISTO pour construire L_tri
    for i in range(p+1):
        if HISTO[i]>0:
            for j in range(int(HISTO[i])):
                L_tri.append(i)
    return L_tri

L=[10, 20, 12, 12, 16, 16, 12, 20, 15]
L1_tri=tri_comptage(L)
print(L1_tri)

La liste HISTO vaut : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 1, 2, 0, 0, 0, 2].
2. Le tri par comptage n’est pas comparatif (on ne compare pas les élé-
ments de la liste entre eux). Le tri est itératif. Le tri n’est pas en place 
puisqu’il utilise une liste auxiliaire HISTO.

Remarque :

Plusieurs éléments de la liste L sont représentés par un unique élément dans l’histo-
gramme. Le tri par comptage ne peut pas être appliqué pour des structures plus com-
plexes telles que [[67, 'France'], [40, 'Irak'], [47, 'Kenya'], 
[66, 'Royaume-Uni'], [66, 'Thaïlande'], [32, 'Pérou']]. On 
n’étudie donc pas la stabilité pour le tri par comptage.

Le tri par comptage est bien adapté pour des entiers relativement proches les uns 
des autres.

3. On cherche à calculer le nombre d’opérations élémentaires :
•• Ligne n=len(L)  : 2 opérations élémentaires (appel de len(L) et 
affectation).

•• Ligne L_tri=[] : 1 opération élémentaire.
•• Boucle for i in range(n) : à chaque étape, 4 opérations élémentaires 
(appel de l’élément L[i], test, appel de l’élément L[i] et affectation.
On a donc 4n opérations élémentaires.

•• Ligne HISTO=[0 for i in range(p+1)] : p+1 opérations élé-
mentaires.
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•• Boucle for i in range(n)  : à chaque étape, 4 opérations élé-
mentaires (appel de l’élément L[i], affectation, appel de l’élément  
HISTO[valeur], incrément de 1).
On a donc 4n opérations élémentaires.

•• Boucle for i in range(p+1) : à chaque étape, on a un test avec 
2 opérations élémentaires (appel de l’élément HISTO[i] et test).
L’ajout d’un élément dans L_tri se fait au maximum n fois lorsque toutes 
les étapes de la boucle for i in range(p+1) ont été effectuées. 
Lorsqu’on ajoute un élément dans L_tri, on a 3 opérations élémentaires 
(appel de l’élément HISTO[i], fonction int, ajout de i dans L_tri).
On a donc 2(p+1) + 3n opérations élémentaires pour la boucle for i 
in range(p+1).

Le nombre total d’opérations élémentaires est : n p n p n2 1 4 1 4 2( 1) 3( )+ + + + + + + +
n p n p n2 1 4 1 4 2( 1) 3( )+ + + + + + + + .

La complexité est linéaire en O n p( )+ .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modifiée.

4.  
import matplotlib.pyplot as plt
  # module matplotlib.pyplot renommé plt
plt.figure()                        # nouvelle fenêtre graphique
plt.hist(L, range=(10, 20), bins=10)
                                    # tracé de l’histogramme
                                    # minimum = 10 et maximum = 20
                                    # avec 10 intervalles
plt.title('Histogramme de la liste L') # titre de l’histogramme
plt.xlabel('Valeurs de L')
plt.ylabel("Nombre d’occurrences")
plt.show()                          # affiche la figure à l’écran

5. On peut réduire le nombre d’éléments de la liste HISTO en calculant le 
minimum et le maximum de L, notés respectivement mini et maxi. La 
liste HISTO contient alors maxi–mini+1 éléments au lieu de maxi+1 
éléments dans la question 2. 
def tri_comptage2(L):
    # la fonction retourne L_tri, qui est la liste L triée par
    # ordre croissant
    n=len(L)                   # nombre d’éléments de L
    L_tri=[]
    mini, maxi=L[0], L[0]      # recherche du minimum
                               # et du maximum de L
    for i in range(n):
        if L[i]<mini:          # nouvelle valeur du minimum
            mini=L[i]
        if L[i]>maxi:
            maxi=L[i]          # nouvelle valeur du maximum
        HISTO=[0 for i in range(maxi-mini+1)]   # liste contenant
                                                # p+1 valeurs nulles
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    # on parcourt la liste L pour incrémenter HISTO
    for i in range(n):
        HISTO[L[i]-mini]+=1    # incrémente HISTO[L[i]-mini] de 1
    # on parcourt la liste HISTO pour créer L_tri
    for i in range(maxi+1-mini):
        if HISTO[i]>0:
            for j in range(int(HISTO[i])):
                L_tri.append(i+mini)
    return L_tri

L=[10, 20, 12, 12, 16, 16, 12, 20, 15]
L2_tri=tri_comptage2(L)
print(L2_tri)

On considère la liste L=[8, 4, 2, 22, 6] composée de n éléments.
Le tri à bulles consiste à comparer les deux premiers éléments d’une liste L et à 
les échanger s’ils ne sont pas triés par ordre croissant. On recommence ensuite 
avec le deuxième et le troisième élément de la liste, et ainsi de suite… Au cours 
d’une passe de la liste, les plus grands éléments remontent de proche en proche 
vers la droite comme des bulles vers la surface.
On réitère l’opération précédente en s’arrêtant à l’élément d’indice n−2 puis à 
l’élément d’indice n−3…
1.  Écrire une fonction tri_bulles réalisant cette opération.
2.  Donner les caractéristiques du tri à bulles.
3.  �Évaluer la complexité dans le pire des cas lors de l’appel de la fonction 

tri_bulles.
4.  �Proposer une amélioration de la fonction tri_bulles en tenant compte 

qu’aucun élément n’est échangé lors d’un parcours d’une liste triée.

Exercice 10.6 : Tri à bulles (sauf TSI et TPC)

Analyse du problème
On étudie dans cet exercice le tri à bulles. On parcourt la liste L en comparant les 
éléments consécutifs deux à deux et en faisant remonter vers la fin de la liste les 
plus grands éléments. Au bout du premier parcours, l’élément le plus grand est 
remonté comme une bulle, d’où le nom « tri à bulles ».

1. On considère la boucle :
for i in range(n-1, 0, -1):  # i varie entre n-1 inclus
                             # et 0 exclu avec pas=-1

•• Première étape : i = n−1 = 4
On a une deuxième boucle for j in range(1, i+1), dans laquelle 
j varie entre 1 inclus et 5 exclu, qui permet de comparer deux éléments 
consécutifs de L et de les échanger s’ils sont mal triés.
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L’élément 8 va remonter comme une bulle jusqu’à l’indice 2 de la liste. 
L’élément 22 remonte comme une bulle jusqu’à l’indice n−1 de la liste. On 
obtient : L=[4, 2, 8, 6, 22]. L’élément 22 est donc bien placé.

•• Deuxième étape : i = 3
On considère uniquement les éléments : 4, 2, 8, 6 puisque la deuxième 
boucle fait varier j de 1 inclus à 4 exclu (ou 3 inclus). On obtient  : 
L=[2, 4, 6, 8, 22].

•• …
•• Dernière étape : i = 1. On obtient : L=[2, 4, 6, 8, 22].

def tri_bulles(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    for i in range(n-1, 0, -1): # i varie entre n-1 inclus
                                # et 0 exclu avec pas=-1
        for j in range(1, i+1): # j varie entre 1 inclus
                                # et i+1 exclu
            if L[j-1]>L[j]:
                L[j-1], L[j]=L[j], L[j-1] # échange de L[j-1]
                                          # et L[j]
L=[8, 4, 2, 22, 6]
print(L)
tri_bulles(L)
print(L)

Remarque : On peut parcourir la liste à trier à l’envers. On compare deux éléments 
consécutifs deux à deux et on fait remonter vers le début de la liste les plus petits 
éléments.

2. Le tri à bulles est comparatif et itératif.
La liste initiale est triée par ordre alphabétique : [[67, 'France'], 
[40, 'Irak'], [47, 'Kenya'], [32, 'Pérou'], [66, 
'Royaume-Uni'], [66, 'Thaïlande']].
La liste triée par ordre croissant de la population est : [[32, 'Pérou'], 
[40, 'Irak'], [47, 'Kenya'], [66, 'Royaume-Uni'], 
[66, 'Thaïlande'], [67, 'France']].
Pour trier la liste précédente, il suffit de remplacer la ligne if L[j-
1]>L[j] par if L[j-1][0]>L[j][0].
Le tri à bulles est donc stable puisqu’on garde l’ordre alphabétique dans la 
liste triée pour les pays qui ont la même population.

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une 
fonction, alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans 
le chapitre « Prise en main de Python »). 

La variable L dans la fonction tri_bulles est une liste, qui est un objet 
muable. Il est donc inutile de retourner la variable L dans cette fonction !
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Le tri à bulles est un tri en place car il n’utilise pas de liste auxiliaire.
3. On cherche à calculer le nombre d’opérations élémentaires :

•• Ligne n=len(L)  : 2 opérations élémentaires (appel de len(L) et 
affectation).

•• Boucle for i in range(n-1, 0, -1) :
OO Boucle for j in range(1, i+1) : on se place dans le pire des 
cas. On a 7 opérations élémentaires (appel de l’élément L[j], appel 
de l’élément L[j-1], test, appel de l’élément L[j], appel de l’élé-
ment L[j-1], 2 affectations).

Le nombre total d’opérations élémentaires vaut : i n n2 7
7
2

7
2

2
i

n

1

1
2∑+ = − +

=

−

.

La complexité est quadratique en O n( )2 .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

4. Si aucun élément n’est échangé lors d’un parcours d’indice i, alors la liste 
est bien triée.
On ajoute une variable liste_triée qui passe à False si des éléments 
de la liste sont échangés. Dans ce cas, la liste n’est pas encore triée pour 
ce parcours d’indice i. 
def tri_bulles2(L):
    # la fonction trie par ordre croissant la liste L
    n=len(L)
    for i in range(n-1, 0, -1): # i varie entre n-1 inclus
                                # et 0 exclu avec pas=-1
        liste_triée=True
        for j in range(1, i+1): # j varie entre 1 inclus
                                # et i+1 exclu
            if L[j-1]>L[j]:
                L[j-1], L[j]=L[j], L[j-1] # échange de L[j-1]
                                          # et L[j]
                liste_triée=False
        if liste_triée==True:
            break  # sort de la boucle for i in range(n-1, 0, -1)
    # return L est inutile car L est passé en référence

Remarque : L’instruction break fait sortir de la boucle for i in range(n-1, 
0, -1) et passe à l’instruction suivante (# return L est inutile car L 
est passé en référence). Comme il n’y a pas d’instruction après ce com-
mentaire, on sort de la fonction tri_bulles2.

L’instruction break fait sortir d’une boucle while ou for et passe à l’instruc-
tion suivante alors que l’instruction return quitte la fonction.
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11Dictionnaire, pile,  
file, deque

On considère des opérations de base sur les dictionnaires.
1.  Écrire une fonction dico_vide qui renvoie un dictionnaire vide.
2.  Écrire une fonction ajout_cle qui admet comme arguments un diction-
naire, une clé et une valeur. Cette fonction ajoute le couple (clé, valeur) au 
dictionnaire.
3.  Écrire une fonction supp_cle qui admet comme arguments un diction-
naire et une clé. Cette fonction supprime le couple (clé, valeur) correspon-
dant à clé.

Exercice 11.1 : Opérations de base sur les dictionnaires

Analyse du problème
Les dictionnaires sont très souvent utilisés en informatique. Chaque élément du 
dictionnaire a une clé unique. Les éléments du dictionnaire ne sont pas ordonnés.

Cours :
Rappels sur les listes et les tuples

Les éléments d’une liste ou d’un tuple sont ordonnés. Pour récupérer un élément, on utilise 
un indice.

L1=["MPSI", "PTSI"] # liste (objet modifiable) contenant 2 éléments
print(L1[1])        # affiche "PTSI", d’indice 1 dans la liste L1
L2=(48, 46)         # tuple (objet non modifiable) contenant 2 éléments
print(L2[0])        # affiche 48, d’indice 0 dans la liste L2

Dictionnaires

Une table de hachage est une structure de données permettant de stocker des couples 
(clé, valeur). Elle permet de retrouver une clé très rapidement. Les tables de hachage 
sont appelées dictionnaires avec Python. Dans un dictionnaire, on associe une valeur à 
une clé.

Le type de la clé peut être un entier, un nombre flottant, une chaîne de carac-
tères… mais pas une liste.

Le type de la valeur associée à la clé peut être quelconque.
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Les éléments d’un dictionnaire ne sont pas ordonnés. On ne peut pas utiliser un indice 
comme pour les listes pour accéder à un élément.

Chaque élément du dictionnaire est identifié par une clé unique.

On utilise la clé pour rechercher la valeur correspondante du couple (clé, valeur).

On définit un élément du dictionnaire dans Python en précisant la clé, suivie de « : » et de 
la valeur associée.

d1={"MPSI":48}      # dictionnaire dico1 constitué d’un seul élément
print(d1)           # affiche {'MPSI': 48}. On visualise la clé
                    # et la valeur
print(type(d1))     # affiche le type de d1 : dict (type dictionnaire)

d1 est un objet de type dict.

On crée le dictionnaire d2 constitué de deux éléments :

d2={"MPSI":48,"PTSI":46}

Les éléments sont délimités par des accolades.

Création d’un dictionnaire vide

d={}                # dictionnaire vide avec les accolades {}

Ajout d’un élément dans le dictionnaire

d["MPSI"]=48        # ajoute "MPSI" : 48
d["MP"]=46          # ajoute "MP" : 46
print(d)            # affiche {'MPSI': 48, 'MP': 46}

La clé est unique dans un dictionnaire. On ne peut pas ajouter "MPSI" : 45 dans d.

Par contre, on peut modifier une valeur :

d["MPSI"]=45
print(d)            # {'MPSI': 45, 'MP': 46}

Suppression d’un élément

del d["MPSI"]
print (d)           # {'MP': 46}
d["MPSI"]=48
d["PCSI"]=48
d["PTSI"]=46
print (d)           # {'MP': 46, 'MPSI': 48, 'PCSI': 48, 'PTSI': 46}

Teste si une clé est dans un dictionnaire

print("PCSI" in d)  # affiche True

Nombre d’éléments d’un dictionnaire

print("Nombre d’éléments de d :", len(d))
    # Python affiche : Nombre d’éléments de d : 4
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Les clés d’un dictionnaire ne sont pas obligatoirement des chaînes de caractères. On va voir 
plusieurs méthodes pour parcourir un dictionnaire.

Parcours des clés d’un dictionnaire

dico={3:5, 8:5}    # les clés du dictionnaire doivent être différentes
for clé in dico:   # on parcourt les clés de dico
    print(clé)

On obtient alors :

      3

      8

On peut utiliser également .keys() :

for clé in dico.keys():   # on parcourt les clés de dico
    print(clé)   

Parcours des clés et valeurs d’un dictionnaire avec .items()

for elt in dico_classe.items():          # elt est un tuple
    print("Elément du dictionnaire : ", elt)
    a=elt[0]                             # récupère la clé
    b=elt[1]                             # récupère la valeur

On peut utiliser .items() avec clé, valeur pour dépaqueter le tuple.

for clé, valeur in dico_classe.items():
    print("clé :",clé,"valeur :",valeur)

On ne peut pas utiliser un indice pour accéder à un élément du dictionnaire alors 
que L[i] permet d’obtenir l’élément d’indice i de la liste L.

On peut récupérer une liste contenant les clés du dictionnaire :

L1=dico.keys()

Copie d’un dictionnaire

La fonction copy() du module copy est à connaître.

import copy               # module copy
d2=d
d3=copy.copy(d)           # copie superficielle de d
d['MP']=48
print(d['MP'])            # la valeur vaut 48
print(d2['MP'])           # la valeur vaut 48
print(d3['MP'])           # la valeur vaut 46

L’instruction d2=d n’a pas réalisé une copie de d puisque d2 et d pointent vers la même 
adresse mémoire.

Si on modifie un élément du dictionnaire d, alors cet élément est modifié dans d2.

Par contre, la modification n’apparaît pas dans d3 puisque d et d3 pointent vers des 
adresses mémoire différentes.

Les dictionnaires sont des objets muables (voir exercice 1.4 « Affectation, objet immuable, 
copie » dans le chapitre « Prise en main de Python »).
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Remarque : On rencontre deux catégories de copies pour les objets muables (listes, 
dictionnaires, deques…) :

•• La fonction copy() réalise une copie superficielle. Les valeurs des clés sont bien 
copiées s’il n’y a pas de structure imbriquée (liste par exemple). Si les valeurs 
d’un dictionnaire sont des listes, alors l’adresse mémoire des listes est copiée.

•• La fonction deepcopy() réalise une copie profonde pour les structures imbri-
quées. Si les valeurs sont des listes, alors la copie profonde copie bien les listes 
imbriquées.

1.  
def dico_vide():   # la fonction renvoie un dictionnaire vide
    return {}

2.  
def ajout_cle(dico, clé, valeur):
    # la fonction ajoute le couple (clé, valeur) à dico
    dico[clé]=valeur

3.  
def supp_cle(dico, clé):
    # la fonction supprime le couple (clé, valeur)
    # correspondant à clé pour dico
    del dico[clé]

Remarque :

Le programme suivant permet de tester les fonctions précédentes :
d={}
print(d)
ajout_cle(d,"MPSI",48)
ajout_cle(d,"MP",46)
ajout_cle(d,"PCSI1",48)
ajout_cle(d,"PCSI2",48)
print(d)
print()
supp_cle(d,"MPSI")
print(d)

On considère la liste : L=[10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2].

1.  Écrire une fonction comptagedico qui admet comme argument une liste. 
Cette fonction renvoie un dictionnaire permettant de connaître le nombre d’oc-
currences de chaque élément de la liste.
2.  Écrire le programme principal permettant d’afficher le nombre d’occur-
rences de chaque élément de la liste L.

Exercice 11.2 : �Comptage des éléments d'une liste à l’aide d’un 
dictionnaire
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Analyse du problème
Les éléments du dictionnaire ne sont pas ordonnés. Chaque élément du dictionnaire 
a une clé unique. La valeur de la clé est égale au nombre d’occurrences de la clé 
dans la liste.

1.  
def comptagedico(L):
    # la fonction renvoie un dictionnaire permettant de connaître
    # le nombre d’occurrences de chaque élément de la liste
    d={}                    # création d’un dictionnaire vide
    for elt in L:
        if elt in d:
            d[elt]=d[elt]+1 # incrémente de 1 la valeur
                            # de la clé elt
        else:
            d[elt]=1        # ajoute clé elt au dictionnaire
                            # elt apparaît la première fois dans d
                            # la valeur de la clé elt vaut 1
    return d

2.  
L=[10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2]
d=comptagedico(L)
print(d)                    # affichage du dictionnaire

Le programme Python affiche  : {10.0: 3, 12.0: 2, 8.0: 1, 
6.0: 1, -5.0: 1, 8.2: 2}.
Cette fonction peut s’appliquer également à une chaîne de caractères.
mot="C’est un mot"
d=comptagedico(mot)
print(d)

Le programme Python affiche : {'C': 1, "'": 1, 'e': 1, 's': 
1, 't': 2, ' ': 2, 'u': 1, 'n': 1, 'm': 1, 'o': 1}.
L’avantage d’utiliser un dictionnaire pour stocker le nombre d’occurrences 
est qu’il n’est pas nécessaire de connaître à l’avance les éléments de mot. 
On n’utilise de la place mémoire que pour les caractères qui apparaissent 
réellement dans mot.



Partie 8 · Dictionnaire, pile, file, deque

136

On considère trois opérations de base sur les piles. On modélise une pile avec 
une liste P dont on ne peut ajouter et supprimer un élément qu’à une extrémité 
appelée sommet de pile (ou tête de pile). On utilise P=[] pour créer une pile 
vide.

1.  Écrire une fonction empiler qui admet comme arguments une pile P et un 
élément x. Cette fonction ajoute l’élément x au sommet de la pile P.
2.  Écrire une fonction depiler qui admet comme argument une pile P non 
vide. Cette fonction supprime le dernier élément entré dans la pile et retourne 
cet élément.
3.  Écrire une fonction pile_vide qui admet comme argument une pile P. 
Cette fonction retourne True si la pile est vide et False sinon.

Exercice 11.3 : Opérations de base sur les piles

Analyse du problème
Les piles sont très souvent utilisées en informatique (voir chapitre 12 « Graphes »). 
On étudie dans ce chapitre une modélisation des piles avec des listes. Toutes les 
opérations sur la pile sont effectuées sur la même extrémité : on utilise le principe 
LIFO (Last In, First Out). 

Cours :
Une pile est une structure de données qui utilise le principe LIFO (Last In, First Out : « der-
nier entré, premier sorti »). On peut comprendre le fonctionnement d’une pile en considé-
rant une pile d’assiettes.

•• La fonction empiler consiste à ajouter une assiette sur le sommet de la pile (ou tête 
de la pile).
Soit une pile P contenant 3 éléments : 3, 5 et 8.

3

5

8

pile P
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On souhaite empiler l’élément 10 à la pile P. On obtient alors la pile suivante : 

3

5

8

10

pile P

Si on empile l’élément 2, on obtient :

3

5

8

10

2

pile P

•• La fonction depiler consiste à supprimer un élément de la pile. L’élément à suppri-
mer est toujours situé au sommet de la pile. On a bien une structure LIFO puisque le 
dernier élément rentré est le premier sorti.
On obtient alors la pile :

3

5

8

10

pile P

La fonction « Undo » (Annulation de la frappe) des traitements de texte utilise une pile.

Remarque : L’ajout et la suppression d’un élément en fin de liste Python est très 
rapide. L’utilisation des listes Python pour gérer des piles est très efficace.

1. 
def empiler(P,x):
    # la fonction ajoute l’élément x au sommet de la pile P
    P.append(x)   # on ajoute l’ élément x à la liste P
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Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une 
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans 
le chapitre « Prise en main de Python »).

La liste P dans la fonction empiler est un objet muable. Il est donc inutile de 
retourner P dans cette fonction !

2. 
def depiler(P):
    # la fonction supprime le dernier élément entré dans la pile P
    # et retourne cet élément
    x=P.pop()   # supprime le dernier élément de la liste P
    return x    # retourne la valeur du dernier élément
                # de la liste P

3. 
def pile_vide(P):
    # la fonction retourne True si la pile P est vide
    # et False sinon
    if P==[]:   # on pourrait écrire : if len(P)==0:
        return True
    else:
        return False

Remarque :

Le programme suivant permet de visualiser les étapes du rappel de cours précédent :
P1=[]   # création d’une liste vide
print(pile_vide(P1))
empiler(P1,3)
empiler(P1,5)
empiler(P1,8)
empiler(P1,10)
empiler(P1,2)
print(P1)
y=depiler(P1)
print(y)
print(P1)
print(pile_vide(P1))
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On cherche à vérifier si une chaîne de caractères L est bien parenthésée, c’est-à-
dire si le nombre ainsi que l’ordre des parenthèses ouvrantes et fermantes sont 
corrects. On note « ( » la parenthèse ouvrante et « ) » la parenthèse fermante.
On utilisera exclusivement les trois fonctions décrites dans l’exercice  11.3 
« Opérations de base sur les piles » : empiler, depiler et pile_vide ainsi 
que P=[] pour créer une pile P.
Écrire une fonction parenthesage qui admet comme argument une chaîne 
de caractères L. Cette fonction retourne True si la chaîne de caractères est bien 
parenthésée, False sinon.
Exemples :
•• L='(2+8)/(5+9)'

parenthesage(L) doit retourner True.

•• L='(2+8)/((5+9)'

parenthesage(L) doit retourner False.

Exercice 11.4 : Parenthésage

Analyse du problème
La structure de piles est parfaitement adaptée à la résolution de cet exercice. On par-
court les différents caractères de la chaîne L. On empile les parenthèses ouvrantes 
et on dépile dès qu’on a une parenthèse fermante.

On définit une pile P initialement vide. On parcourt tous les caractères de 
la chaîne L.
Dès qu’on rencontre une parenthèse ouvrante, on empile le caractère « ( » 
dans P.
Quand on rencontre une parenthèse fermante, plusieurs cas interviennent :

•• Si la pile P est vide, alors la fonction parenthesage retourne False 
puisqu’il manque une parenthèse ouvrante avant la parenthèse fermante.

•• Sinon, on dépile la parenthèse ouvrante de P.
Lorsqu’on a parcouru tous les caractères de L, on doit avoir rencontré 
autant de parenthèses ouvrantes que fermantes. La pile P est nécessaire-
ment vide. Si ce n’est pas le cas, la fonction parenthesage retourne 
False.
def parenthesage(L):
    P=[]   # initialisation de la pile
    for elt in L:
        # on parcourt tous les caractères de L
        if elt=="(":   # parenthèse ouvrante empilée dans P
            empiler(P,elt)
        elif elt==")":   # parenthèse fermante
            if pile_vide(P)==True:
                # la pile ne doit pas être vide
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                # il manque une parenthèse ouvrante
                return(False)
            else:
                depiler(P)
                # on dépile la parenthèse ouvrante

    if pile_vide(P)==True:
        return True
    else:
        return False

On considère trois opérations de base sur les files. On modélise une file avec 
une liste F dont on ne peut ajouter un élément qu’à une extrémité et supprimer 
un élément qu’à l’autre extrémité. On rappelle que F.pop(0) permet de sup-
primer F[0] dans la liste F.

1.  Écrire une fonction enfiler qui admet comme arguments une file F, un 
élément x. Cette fonction ajoute l’élément x en queue de file.
2.  Écrire une fonction défiler qui admet comme argument une file F non 
vide. Cette fonction supprime le premier élément entré dans la file et retourne 
cet élément.
3.  Écrire une fonction file_vide qui admet come argument une file F. Cette 
fonction retourne True si la file est vide et False sinon.
4.  On considère le programme suivant :
F=[3, 5, 8]
enfiler(F, 10)
print(F)
enfiler(F, 2)
print(F)
x=défiler(F)
print('F :', F, 'x :',x)
print(file_vide(F))

Qu’affiche la console Python lors de l’exécution de ce programme ?

Exercice 11.5 : Opérations de base sur les files

Analyse du problème
Les files sont très souvent utilisées en informatique (voir chapitre 12 « Graphes »). 
On étudie une modélisation des files avec des listes. On utilise le principe FIFO 
(First In, First Out).
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Cours :
Une file (queue en anglais) est une structure de données qui utilise le principe FIFO (First 
In, First Out : « premier entré, premier sorti »).

Dans une file d’attente à un distributeur de billets, les personnes font la queue les unes der-
rière les autres. Le premier arrivé dans la queue est le premier sorti (c’est-à-dire le premier 
servi pour obtenir les billets).

•• La fonction enfiler (enqueue) consiste à ajouter un élément à la queue de la file (on 
dit aussi à l’arrière de la file d’attente).
Soit une file d’attente F contenant 3 éléments :

853

tête queue

front of queue rear of queue

distributeur
de billets

ENFILER
(enqueue)

DEFILER
(dequeue)

On enfile l’élément 10 à la file F. On obtient alors :

10853

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

On enfile l’élément 2, on obtient :

210853

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

On modélise la file d’attente par une liste Python : F = [3, 5, 8, 10, 2]. On 
dit que 3 est à la tête de la file F et 2 est à la queue de la file F.

•• La fonction défiler (dequeue) consiste à supprimer l’élément situé à la tête de la 
file (on dit aussi au début de la file d’attente). On a bien une structure FIFO puisque le 
premier élément rentré est le premier sorti.
On obtient alors la file :

21085

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

La liste F s’écrit : F = [5, 8, 10, 2].



Partie 8 · Dictionnaire, pile, file, deque

142

Remarque  : La suppression d’un élément en tête de liste Python n’est pas très 
rapide puisque tous les autres éléments doivent être décalés d’une position. On uti-
lisera dans l’exercice suivant, « Utilisation des deques », la classe collections.
deque qui est conçue pour ajouter et supprimer rapidement des éléments aux deux 
extrémités.

1.  
def enfiler(F, x):   # F est une liste Python
    F.append(x)      # ajoute x à la queue de la file ou à la fin
                     # de la liste F

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une 
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans 
le chapitre « Prise en main de Python »).

La liste F dans la fonction enfiler est un objet muable. Il est donc inutile de 
retourner F dans cette fonction !

2.  
def défiler(F):  # F est une liste Python
    x=F.pop(0)   # supprime l’élément situé à la tête de la file F
                 # c’est le premier élément de la liste F
    return x     # retourne x

3.  
def file_vide(F): # F est une liste Python
                  # la fonction retourne True si la file F est vide
                  # et False sinon
    return F==[]

4.  Le programme Python affiche :
  [3, 5, 8, 10]
  [3, 5, 8, 10, 2]
  F : [5, 8, 10, 2] x : 3
  False

L’instruction from collections import deque permet de manipuler 
des deques.
D=deque()      : permet de créer une deque vide 
len(D)==0      : retourne True si la deque est vide, False sinon
On utilise les fonctions  : D.append(), D.appendleft(), D.pop() et 
D.popleft() pour manipuler les deques.

Exercice 11.6 : Utilisation des deques
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1.  Écrire une fonction insere_gauche_deque d’arguments une deque D et 
un élément x permettant d’ajouter x à l’extrémité gauche de la deque.
2.  Écrire une fonction insere_droite_deque d’arguments une deque D et 
un élément x permettant d’ajouter x à l’extrémité droite de la deque.
3.  On considère le programme suivant :
L1=[8, 3, 5]
D=deque()
for elt in L1:
    insere_gauche_deque(D, elt)
print(D)
L2=[10, 13, 1]
for elt in L2:
    insere_droite_deque(D, elt)
print(D)
E=deque([3, 2])
print(len(E)==0)

Qu’affiche la console Python lors de l’exécution de ce programme ?

Analyse du problème
On considère les deques (double-ended queue), qui sont une généralisation des piles 
et des files. Les deques permettent d’ajouter et de supprimer très rapidement des 
éléments aux deux extrémités. On utilisera les deques dans le parcours des graphes.

Cours :
Une deque (se prononce « dèque ») est une structure de données qui généralise le fonction-
nement des piles et des files. On peut ajouter et supprimer des éléments aux deux extrémités.

from collections import deque    # module permettant d’utiliser
                                 # les deques

Pour créer une deque vide :

D=deque()        # création d’une deque vide

On peut ajouter des éléments aux extrémités droite et gauche de la deque.

D.append(3)      # ajoute un élément à l’extrémité droite de D
D.append(5)      # ajoute un élément à l’extrémité droite de D
D.appendleft(8)  # ajoute un élément à l’extrémité gauche de D
D.appendleft(10) # ajoute un élément à l’extrémité gauche de D

On obtient alors la deque suivante :

10 8 3 5
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On a un nouveau type : deque. Ne pas confondre avec le type list.

print(type(D))   # le type de D est : deque

On peut supprimer des éléments à l’extrémité gauche ou droite de la deque.

x=D.pop()     # supprime et renvoie 5, l’élément à l’extrémité droite
              # de la deque
y=D.popleft() # supprime et renvoie 10, l’élément à l’extrémité gauche
              # de la deque

On obtient alors la deque suivante :

8 3

print('Teste si D est vide : ', len(D)==0) # teste si la deque est vide

On obtient sur l’afficheur : False

F=deque()     # création d’une deque vide
print('Teste si F est vide : ', len(F)==0) # teste si la deque est vide

On obtient sur l’afficheur : True

Dans Python, les deques (comme les listes et les dictionnaires) sont des objets muables.

E=D

Si on modifie E, alors D est également modifié puisque D et E font référence à la même 
adresse mémoire (voir exercice 1.4 « Affectation, objet immuable, copie » dans le chapitre 
« Prise en main de Python »).

E.pop() # supprime l’élément à l'extrémité droite de la deque E
        # mais aussi de D puisque D et E pointent vers la même
        # adresse mémoire
print('Teste si D = E :', D==E)  # affiche True

Pour réaliser une copie superficielle de D, il ne faut pas écrire E=D mais utiliser la fonction 
copy.
import copy
E=copy.copy(D)  # copie superficielle de D
E.pop()         # supprime l’élément à l’extrémité droite de la deque E
# D n'est pas modifié puisque D ne pointe pas vers la même
# adresse mémoire que E

1.  
def insere_gauche_deque(D, x):
    D.appendleft(x) # ajoute x à l’extrémité gauche de la deque D

2.  
def insere_droite_deque(D, x):
    D.append(x)     # ajoute x à l’extrémité droite de la deque D
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3. Le programme Python affiche :
  deque([5, 3, 8])
  deque([5, 3, 8, 10, 13, 1])
  False
La deque E vaut : 3, 2. L’afficheur retourne False puisque la deque E n’est 
pas vide.

Remarques :

L’instruction D=deque(3) n’est pas correcte et renvoie un message d’erreur.

D=deque([3]) définit la deque valant 3.

D=deque('ijk') définit la deque valant 'i', 'j', 'k'.

D=deque(['ijk']) définit la deque valant 'ijk'.

D=deque([['abc'], ['ijk']]) définit la deque valant ['abc'], ['ijk'].

x=D.popleft() permet de supprimer ['abc'] et d’obtenir x = ['abc'].
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12Graphes

On considère le graphe G S A( )= ,  non orienté, où le nombre situé sur l’arête 
joignant deux sommets est leur distance, supposée entière :

4

2

0

4

8
7

3 2

9

3

1 1

On utilise les listes de listes pour représenter les matrices dans Python.
1.  Construire la matrice d’adjacence ( )

≤ ≤
M , 0 4i j i j,

 (appelée également matrice 
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les sommets i et j, ou 
encore la longueur de l’arête reliant les sommets i et j.
On convient que, lorsque les sommets ne sont pas reliés, cette distance vaut 
l’infini. On définit la variable inf=1e10 qui représente une distance infinie. 
Écrire la matrice M.
2.  Écrire une fonction voisins, d’arguments une matrice d’adjacence M, un 
sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degré, d’arguments une matrice d’adjacence M, un 
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre 
d’arêtes issues de i.
4.  Écrire une fonction longueur, d’arguments une matrice d’adjacence M, 
une liste L de sommets de G, renvoyant la longueur du trajet décrit par la liste L,  
c’est-à-dire la somme des longueurs des arêtes empruntées. Si le trajet n’est pas 
possible, la fonction renverra -1.

Exercice 12.1 : Matrice d’adjacence

Analyse du problème
On définit une matrice d’adjacence contenant les distances entre les différents som-
mets. Si deux sommets i et j ne sont pas reliés, alors M[i][j] = inf. Cet exercice est 
extrait du concours banque PT 2015 Sujet 0. Comme le graphe n’est pas orienté, la 
matrice est symétrique : M[i][j] = M[j][i].
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Cours :
Un graphe G est un schéma contenant des points appelés sommets (ou nœuds ou points), 
reliés ou non par des arêtes (ou segments ou liens ou lignes).

On utilise la notation suivante : G = (S, A) est un couple d’ensemble finis, dont :

•• S est l’ensemble des sommets de G ;
•• A est l’ensemble des arêtes de G.

Si une arête relie les sommets s et s’, on dit que les sommets s et s’ sont voisins ou 
adjacents.

L’ordre d’un graphe est le nombre total de sommets.

Un graphe est orienté si les arêtes sont orientées, c’est-à-dire si on ne peut les parcourir que 
dans un sens.

Pour les graphes non orientés :

•• Deux sommets sont adjacents lorsqu’ils sont reliés par une arête.
•• La taille d’un graphe non orienté est le nombre total d’arêtes.
•• Le degré d’un sommet s, noté d(s) est égal au nombre d’arêtes dont ce sommet est une 
extrémité. Une boucle est une arête reliant un sommet à lui-même. Les boucles sont 
comptées deux fois.

2

0

4

3

1

5

Le degré du sommet 2 vaut 4. Le degré du sommet 1 vaut 5. Le degré du sommet 5 
vaut 0 : d ( ) =5 0.
On n’étudiera par la suite que des graphes sans boucle.

•• Une chaîne reliant un sommet s à un sommet s’ est une suite d’arêtes consécutives 
permettant de se rendre de s à s’.

•• La longueur d’une chaîne est le nombre d’arêtes de la chaîne, ou la somme des poids 
des arêtes qui le constituent.

•• La distance dist s s( ), '  entre deux sommets s et s’ est la longueur d’une plus courte chaîne 
reliant s à s’. S’il n’existe pas de chaîne entre s et s’, alors dist s s( ) = ∞, ' , notée inf.

•• Une chaîne est simple si toutes les arêtes de la chaîne sont différentes.
•• Une chaîne est élémentaire si tous les sommets sont différents sauf pour le sommet 
d’arrivée, qui peut être confondu avec le sommet de départ (dans le cas des cycles).

•• Un cycle est une chaîne simple telle que le sommet d’arrivée est le même que le som-
met de départ.

•• Un sommet s’ est accessible à partir d’un sommet s s’il existe une chaîne reliant s à s’.
•• Un graphe non orienté est connexe (ou simplement connexe) si tous les sommets de G 
sont accessibles entre eux, c'est-à-dire que, pour toute paire de sommets s et s’, il existe 
une chaîne reliant s à s’. Il n’y a pas de sommet isolé.
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Simplification de vocabulaire : Par la suite, on emploiera le terme de chemin 
au lieu de chaîne.

Pour les graphes orientés :

•• Pour un graphe orienté, les arêtes sont orientées. On les appelle des arcs. Si on note s 
l’origine de l’arc et s’ son extrémité, on dit aussi que s’ est le successeur de s et s le 
prédécesseur de s’.

•• La taille d’un graphe orienté est le nombre total d’arcs.
•• Le degré sortant d’un sommet s, noté d s( )+  est le nombre d’arcs dont s est le point de 
départ.

•• Le degré entrant d’un sommet s, noté d s( )−  est le nombre d’arcs dont s est le point 
d’arrivée.

•• Le degré du sommet s est : d s d s d s( ) ( ) ( )= ++ −
•• Un chemin reliant un sommet s à un sommet s’ est une suite d’arcs consécutifs permet-
tant de se rendre de s à s’.

•• La longueur d’un chemin est le nombre d’arcs du chemin, ou la somme des poids des 
arcs qui le constituent.

•• La distance dist s s( ), '  entre deux sommets s et s’ est la longueur d’un plus court chemin 
reliant s à s’. S’il n’existe pas de chemin entre s et s’, alors dist s s( ) = ∞, ' , notée inf.

•• Un chemin est simple si tous les arcs du chemin sont différents.
•• Un chemin est élémentaire si tous les sommets sont différents sauf pour le sommet 
d’arrivée, qui peut être confondu avec le sommet de départ (dans le cas des circuits).

•• Un circuit est un chemin simple tel que le sommet d’arrivée est le même que le sommet 
de départ.

•• Un sommet s’ est accessible à partir d’un sommet s s’il existe un chemin reliant s à s’.
•• Un graphe orienté est fortement connexe si tous les sommets de G sont accessibles 
entre eux, c’est-à-dire que, pour toute paire de sommets s et s’, il existe un chemin 
reliant de s à s’ et aussi un chemin de s’ à s. Il n’y a pas de sommet isolé.

•• Le poids des arcs peut être négatif. Un cycle de poids négatif (ou absorbant) est un circuit 
pour lequel le poids est négatif, c’est-à-dire que la somme des poids des arcs est négative.

Simplification de vocabulaire : Par la suite, on emploiera le terme de cycle au 
lieu de circuit.

Remarque : Des arêtes reliant la même paire de sommets sont des arêtes multiples. 
Un graphe est simple s’il ne contient ni boucle ni arête multiple. Conformément au 
programme, on n’étudiera par la suite que des graphes simples.
On appelle graphe pondéré un graphe dont les arêtes sont affectées d’un nombre appelé 
poids (ou coût). Le poids d’un arc peut représenter la distance entre deux sommets voisins 
pour un réseau routier. Dans certains graphes, le poids des arcs peut être négatif.

On peut implémenter un graphe par une matrice d’adjacence ou une liste d’adjacence.

Matrice d’adjacence :

On utilise une liste de listes. Par exemple la matrice 










3 2
8 6

 est représentée par la liste M 

contenant deux listes de longueur 2 : M=[[3, 2], [8, 6]]. Chacune de ces listes de 
longueur 2 représente une ligne de la matrice.
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Dans une matrice d’adjacence n × n, n désigne le nombre de sommets du graphe (ordre du 
graphe). On peut savoir pour chaque paire de sommets s’ils sont voisins ou non. On ren-
contre plusieurs cas :

1) �Graphe non pondéré  :

•• Graphe non orienté : Si deux sommets différents i et j sont reliés par une arête, alors  
M[i][j] = M[j][i] = 1 sinon M[i][j] = M[j][i] = 0.

•• Graphe orienté : S’il existe un arc allant de i vers j, alors M[i][j] = 1, sinon M[i][j] = 0.
2) �Graphe pondéré  :

•• Graphe non orienté : Si deux sommets différents i et j sont reliés par une arête, alors 
M[i][j] = M[j][i] = distance entre les sommets i et j, sinon M[i][j] = M[j][i] = inf.

•• Graphe orienté : S’il existe un arc allant de i vers j, alors M[i][j] = distance entre les 
sommets d’origine i et d’extrémité j, sinon cette distance vaut l’infini : M[i][j] = inf. Le 
poids des arcs peut être négatif (voir exercice 14.4 « Algorithme de Floyd-Warshall » 
dans le chapitre « Programmation dynamique »).

Liste d’adjacence :

On a plusieurs possibilités pour représenter une liste d’adjacence dans Python :

1) Dictionnaire :

•• Graphe non orienté : La clé associée à chaque sommet représente la liste des sommets 
adjacents.

•• Graphe orienté : La clé associée à chaque sommet représente la liste des successeurs.

2) Liste :

•• Graphe non orienté : Chaque élément de la liste contient un sommet et la liste des som-
mets adjacents.

•• Graphe orienté : Chaque élément de la liste contient un sommet et la liste des successeurs.

Algorithmes de parcours de graphe :

On va étudier plusieurs algorithmes de parcours de graphe : parcours en largeur (avec une 
file FIFO − First In, First Out : « premier entré, premier sorti »), parcours en profondeur 
(avec une pile LIFO − Last In, First Out : « dernier entré, premier sorti »).

Un graphe non orienté, connexe et acyclique est un arbre.

Chaque élément de l’arbre est appelé un nœud. Au niveau élevé, on trouve le nœud racine.

Au niveau juste en dessous, on trouve les nœuds fils (ou descendants). Un nœud n’ayant 
aucun fils est appelé feuille.

Le nombre de niveaux de l’arbre est appelé hauteur.

On peut construire un graphe à partir d’un autre. Un sous-graphe G’ d’un graphe G est 
composé de certains des sommets de G et de certaines des arêtes de G.

Un graphe H est un arbre couvrant du graphe G si H est un arbre que l’on peut obtenir en 
supprimant des arêtes de G.

Remarque : On peut définir une matrice d’incidence n × p où n désigne le nombre 
de sommets du graphe et p le nombre d’arêtes (ou d’arcs).
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Les exemples suivants peuvent être modélisés par des graphes :

•• Site web : chaque page est un sommet du graphe. Un lien hypertexte est une arête entre 
deux sommets.

•• Réseau ferroviaire : chaque gare est un sommet. Les voies entre deux gares sont des arêtes.
•• Réseau routier : chaque ville est un sommet. Les routes entre deux villes sont des arêtes.
•• Réseau social : les sommets sont des personnes. Deux personnes sont adjacentes lorsqu’elles 
sont amies. Le graphe est orienté si l’amitié n’est pas réciproque entre deux personnes.

1. La matrice d’adjacence est : =

∞
∞

∞ ∞
∞ ∞





















M

0 9 3 7
9 0 1 8
3 1 0 4 2

8 4 0
7 2 0

.

Remarque :

Tous les éléments de la diagonale sont nuls puisque la distance entre les sommets 
i et i est nulle : M[i][j] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque la distance entre 
les sommets i et j est la même qu’entre les sommets j et i : M[i][j] = M[j][i].

On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux 
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

M=[[0,9,3,inf,7],[9,0,1,8,inf],[3,1,0,4,2],\
   [inf,8,4,0,inf],[7,inf,2,inf,0]]

2.  
def voisins(M, i):
    # la fonction renvoie la liste des voisins du sommet i
    # pour la matrice M
    n=len(M)            # nb de lignes de la matrice d’adjacence
    L=[]                # initialisation de la liste L
    for j in range(n):  # j varie entre 0 inclus et n exclu
        if   M[i][j]>0 and M[i][j]<inf:
            L.append(j) # si 0 < distance < inf, on ajoute le
                        # sommet dans L
    return (L)

On obtient par exemple voisins(M, 4) = [0,2].
3.  
def degré(M, i):
    # la fonction renvoie le nombre de voisins du sommet i
    # pour la matrice M
    n=len(M)           # nb de lignes de la matrice d’adjacence
    somme=0            # le nombre d'arêtes vaut 0
    for j in range(n): # j varie entre 0 inclus et n exclu
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        if M[i][j]>0 and M[i][j]<inf:
            somme+=1   # incrémente de 1 le nombre d’arêtes
                       # si distance > 0
    return somme

On obtient par exemple degré(2) = 4. On écrit alors : d(2) = 4.
4.  
def longueur(M, L):
    # la fonction renvoie la longueur du trajet décrit par
    # la liste L pour la matrice M
    somme=0
    n=len(L)
    for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
        if M[L[i]][L[i+1]]>=0:
            somme+=M[L[i]][L[i+1]]
        else:
            somme=-1
            return somme # la fonction s’arrête et retourne -1
    return somme  

On obtient par exemple : longueur(M, [0,1,3,2]) = 21.

On considère le graphe G S A( )= ,  non orienté, où le nombre situé sur l’arête 
joignant deux sommets est leur distance, supposée entière :

4

2

0

4

8
7

3 2

9

3

1 1

1.  Définir un dictionnaire représentant le graphe G. Chaque clé est associée à un 
sommet. La valeur de la clé représente le dictionnaire des sommets adjacents, 
dont la valeur de la clé est la distance entre les deux sommets.
2.  Écrire une fonction voisins_dict, d’arguments un dictionnaire dico, 
un sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degre_dict, d’arguments un dictionnaire dico, un 
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre 
d’arêtes issues de i.

Exercice 12.2 : �Graphe avec liste d’adjacence. Dictionnaire  
des sommets adjacents
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4.  Écrire une fonction longueur_dict, d’arguments un dictionnaire dico, 
une liste L de sommets de G, renvoyant la longueur du trajet décrit par cette 
liste L, c’est-à-dire la somme des longueurs des arêtes empruntées. Si le trajet 
n’est pas possible, la fonction renvoie -1.

Analyse du problème
On définit un dictionnaire où chaque clé représente un sommet. Pour un sommet 
donné, la valeur de la clé est un dictionnaire qui contient l’ensemble des sommets 
adjacents avec les distances entre les deux sommets.

1. Le dictionnaire est :
dico={0:{1:9, 2:3, 4:7},\
      1:{0:9, 2:1, 3:8},\
      2:{0:3, 1:1, 3:4, 4:2},\
      3:{1:8, 2:4},\
      4:{0:7, 2:2} }

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour l’utilisation des dictionnaires.
On peut écrire également :
dico=dict()
dico[0]={1:9, 2:3, 4:7}      # ajoute la clé 0 dans dico
dico[1]={0:9, 2:1, 3:8}      # ajoute la clé 1 dans dico
dico[2]={0:3, 1:1, 3:4, 4:2} # ajoute la clé 2 dans dico
dico[3]={1:8, 2:4}           # ajoute la clé 3 dans dico
dico[4]={0:7, 2:2}           # ajoute la clé 4 dans dico

2.  
def voisins_dict(dico, i):
    # la fonction renvoie la liste des voisins du sommet i
    # pour le dictionnaire dico
    L=[] # initialisation de la liste L
    if i in dico:  # teste si la clé i est dans le diction. dico
        for clé, valeur in dico[i].items():
                   # parcourt les couples (clé, valeur) de dico[i]
            L.append(clé)
    return L

On obtient par exemple voisins_dict(dico, 4) = [0, 2].
3.  
def degre_dict(dico, i):
    # la fonction renvoie le nombre de voisins du sommet i
    # pour le dictionnaire dico
    somme=0
    if i in dico:  # teste si la clé i est dans le diction. dico
        for clé, valeur in dico[i].items():
                   # parcourt les couples (clé, valeur) de dico[i]
            somme+=1
    return somme
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On obtient par exemple degre_dict(dico, 2) = 4. On écrit alors : 
d(2) = 4.
4.  
def longueur_dict(dico, L):
    # la fonction renvoie la longueur du trajet décrit
    # par la liste L pour le dictionnaire dico
    somme=0
    n=len(L)
    for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
        if L[i] in dico: # teste si la clé L[i] est dans dico
            dico2=dico[L[i]]
            if L[i+1] in dico2:
                somme+=dico2[L[i+1]]
            else:
                somme=-1
                return somme # la fonction s'arrête et retourne -1
        else:
            somme=-1
            return somme     # la fonction s'arrête et retourne -1
    return somme

On obtient par exemple : longueur_dict(dico, [0, 1, 3, 2]) 
= 21.

On considère le graphe G S A( )= ,  non orienté :

2

0

4

3

1

1.  Définir un dictionnaire représentant le graphe G. Chaque clé est associée à 
un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction voisins_dict, d’arguments un dictionnaire dico, 
un sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degre_dict, d’arguments un dictionnaire dico, un 
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre 
d’arêtes issues de i.

Exercice 12.3 : �Graphe avec liste d’adjacence. Liste des 
sommets adjacents
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Analyse du problème
On définit un dictionnaire où chaque clé représente un sommet. Pour un som-
met donné, la valeur de la clé est une liste qui contient l’ensemble des sommets 
adjacents.

1. Pour chaque sommet, on écrit la liste des sommets accessibles.
Le dictionnaire est :

dico_liste={0:[1, 2, 4],\
            1:[0, 2, 3],\
            2:[0, 1, 3, 4],\
            3:[1, 2],\
            4:[0, 2]}

Le sommet 0 est relié aux sommets 1, 2 et 4. La valeur de la clé 0 est la 
liste des sommets adjacents [1, 2, 4].
Voir exercice  11.1 «  Opérations de base sur les dictionnaires  » dans le 
chapitre « Dictionnaire, pile, file, deque » pour l’utilisation des diction-
naires.
2.  
def voisins_dict_liste(dico, i):
    # la fonction renvoie la liste des voisins du sommet i
    # pour le dictionnaire dico
    L=[]           # initialisation de la liste L
    if i in dico:  # teste si la clé i est dans le diction. dico
        for elt in dico[i]:
            L.append(elt)
    return L

On obtient par exemple voisins_dict(dico, "4") = [0, 2].
3.  
def degre_dict_liste(dico, i):
    # la fonction renvoie le nombre de voisins du sommet i
    # pour le dictionnaire dico
    somme=0
    if i in dico:  # teste si la clé i est dans le diction. dico
        for elt in dico[i]:
            somme+=1
    return somme

On obtient par exemple degre_dict(dico, 2) = 4. On écrit alors : 
d(2) = 4.

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9. 
On considère l’arbre G S A( )= ,  représentant la structure du site web.

Exercice 12.4 : Parcours en largeur d’un arbre en utilisant une file
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1

2 3 4

5 6

7

8

9

On utilisera les deux opérations de base sur les files : defiler pour la sup-
pression d’un élément et enfiler pour l’ajout d’un élément. On rappelle que 
F.pop(0) permet de supprimer F[0] dans la liste F.
On cherche à parcourir en largeur tous les sommets de cet arbre G (toutes les 
pages web de ce site).
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
•• Ajouter le sommet de départ dans la file F initialement vide.

•• Tant que la file F n’est pas vide, supprimer l’élément x à la tête de la file. 
Ajouter les fils de x dans la file.

1.  Définir un dictionnaire dico représentant l’arbre G. Chaque clé est associée 
à un sommet x. La valeur de la clé représente la liste des fils du sommet x.
2.  Écrire une fonction parcourslargeur qui admet comme arguments un 
dictionnaire dico et un sommet de départ début permettant de parcourir en 
largeur un arbre.
3.  Dans quel ordre sont parcourus les sommets dans la fonction 
parcourslargeur(dico, 1) ?

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer 
un par un.

L’implémentation repose sur une file F dans laquelle on place le premier sommet à 
la queue de F et les sommets adjacents non explorés à la queue de F. On utilise le 
principe FIFO (First In, First Out : « premier entré, premier sorti »).

Voir exercice  11.5 «  Opérations de base sur les files  » dans le chapitre  
« Dictionnaire, pile, file, deque » pour l’implémentation des files par les listes de 
Python en utilisant le principe FIFO.

Cours :
Un graphe non orienté connexe et acyclique est un arbre. Chaque élément de l’arbre est 
appelé un nœud.
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Au niveau élevé, on trouve le nœud racine (1). Au niveau juste en dessous, on a trois nœuds 
fils (2, 3 et 4). Un nœud n’ayant aucun fils est appelé feuille. Les nœuds 3, 5, 7, 8 et 9 sont 
des feuilles.

Le nombre total de niveaux de l’arbre est appelé hauteur. La hauteur de l’arbre G vaut 4.

G est un arbre ternaire puisque chaque nœud comporte au plus trois fils au niveau inférieur. 
Du point de vue d’un fils, le nœud dont il est issu au niveau supérieur est appelé père.

On utilise une liste F pour modéliser une file. Par exemple F=[10, 3, 5, 8].

85310

tête

enfilerdéfiler

queue

Si on ajoute l’élément 2 (ou si on enfile l’élément 2), on obtient F=[10, 3, 5, 8, 2].

Enfiler un élément à une file consiste à ajouter un élément à la queue de la file.

Défiler un élément d’une file consiste à enlever l’élément situé à la tête de la file.

85310 2

tête queue

enfilerdéfiler

1. Le premier niveau de l’arbre contient un sommet : 1.
Le deuxième niveau contient trois sommets : 2, 3 et 4.
Le troisième niveau contient trois sommets : 5, 6 et 8.
Le quatrième niveau contient deux sommets : 7 et 9.

dico={1:[2, 3, 4], 2:[5, 6], 3:[],4:[8],\
  5:[], 6:[7, 9], 7:[], 8:[],9:[]}

Le sommet 2 a deux fils : 5 et 6. La valeur de la clé 2 est la liste des fils : 
[5, 6].
2. On utilise dans Python les listes pour manipuler les files.
F.pop(0) permet de supprimer F[0] dans la liste F, c'est-à-dire l’élé-
ment situé à la tête de F.

Remarque : Ne pas confondre avec F.pop(), qui permet de supprimer le dernier 
élément de la liste F.

def enfiler(F, x):
    F.append(x)   # ajoute x à la queue de la file
                  # ou à la fin de la liste F

def defiler(F):
    x=F.pop(0)    # supprime l’élément situé à la tête de F : F[0]
    return x      # retourne x

def parcourslargeur(dico, début):
    # fonction permettant un parcours en largeur du dictionnaire
    # dico en partant de début
    F=[début]         # modélisation d’une file avec la liste F
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    while F!=[]:
        x=defiler(F)         # supprime l’élément à la tête de
                             # la file F : F[0]
        for elt in dico[x]: 
            enfiler(F, elt)  # ajoute les fils du sommet x
                             # à la queue de la file F

Remarque :

dico[x] contient les fils du sommet x. G ne contient pas de cycle par définition 
d’un arbre. Tous les fils sont nécessairement non explorés. On peut donc tous les 
ajouter dans la file F.

On étudiera un graphe dans l’exercice suivant « Parcours en largeur d’un graphe 
avec une deque » : il faudra tester si les sommets adjacents ont déjà été explorés.

3. F=[1] au début de l’algorithme.
•• On enlève 1 de la file F et on explore ce sommet. Les fils de « 1 » sont ajou-
tés au fur et à mesure à la queue de F. La file F vaut alors : [2, 3, 4].

•• On enlève 2, le premier élément de F (élément situé à la tête de la file). 
On explore le sommet 2. Les fils de « 2 » sont ajoutés à la queue de F. 
La file F vaut alors : [3, 4, 5, 6].

•• On enlève 3, le premier élément de F (élément situé à la tête de la file). On 
explore le sommet 3. Il n’y a pas de fils. La file F vaut alors : [4, 5, 6].

•• On enlève 4, le premier élément de F (élément situé à la tête de la file). 
On explore le sommet 4. Les fils de « 4 » sont ajoutés à la queue de F. 
La file F vaut alors : [5, 6, 8].

•• On enlève 5, le premier élément de F (élément situé à la tête de la file). 
On explore le sommet 5.

•• …
Finalement, on a exploré les sommets dans l’ordre :

•• 1,
•• 2, 3, 4,
•• 5, 6, 8,
•• 7, 9.

Les flèches sur le graphe représentent le sens de parcours niveau par niveau 
et de gauche à droite. On a bien exploré les sommets en largeur.

1

2 3 4

5 6

7

8

9
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On va étudier une amélioration du parcours en largeur pour un graphe non 
orienté, connexe et possédant des cycles dans l’exercice suivant « Parcours 
en largeur d’un graphe avec une deque ».

Remarques :

L’ordre de parcours des sommets pour un niveau donné n’a pas d’importance. Ici, 
on les parcourt dans le sens croissant, soit de gauche à droite.

Le dictionnaire dico2 ci-dessous contient tous les sommets adjacents à un som-
met donné. La fonction parcourslargeur(G) ne se termine jamais puisque la 
boucle for ajoute tous les sommets adjacents. Dans l’exercice suivant « Parcours 
en largeur d’un graphe avec une deque », on va résoudre ce problème en ne consi-
dérant que les sommets adjacents non explorés.

dico2={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6],\
  4:[1, 6, 8], 5:[2], 6:[2, 7, 9], 7:[6],\
  8:[4], 9:[6]}

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9.  
On considère le graphe non orienté ( )= ,G S A  représentant la structure du  
site web.

1

2 3 4

5 6

7

8

9

On cherche à parcourir en largeur tous les sommets de ce graphe (toutes les 
pages web de ce site). On utilise la liste VISITED représentant les sommets 
déjà explorés.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
•• Ajouter le sommet de départ dans la deque D initialement vide.

•• Tant que D n’est pas vide, supprimer le sommet x à l’extrémité gauche de 
D. Ajouter à l’extrémité droite de D les sommets non explorés adjacents au 
sommet x.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à 
chaque sommet représente la liste des sommets adjacents.

Exercice 12.5 : Parcours en largeur d’un graphe avec une deque
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2.  Écrire une fonction parcourslargeur2 qui admet comme arguments un 
dictionnaire dico et un sommet de départ début permettant de parcourir en 
largeur un graphe non orienté, connexe.
3.  Dans la fonction parcourslargeur2(dico, 1), dans quel ordre sont 
parcourus les sommets ?
4.  Calculer la complexité de cet algorithme dans le pire des cas.

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer 
un par un.

L’implémentation repose sur une deque D dans laquelle on place le premier sommet 
à l’extrémité droite de D initialement vide et les sommets adjacents non explorés à 
l’extrémité droite de D. On utilise le principe FIFO (First In, First Out : « premier 
entré, premier sorti »). Voir exercice 11.6 « Utilisation des deques » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour la manipulation des deques.

Le graphe contient des cycles. Pour ne pas explorer plusieurs fois un même som-
met, on marque les sommets déjà explorés.

1.  
dico={1:[2, 3, 4], 2:[1, 5, 6],3:[1, 6], 4:[1, 6, 8],\
  5:[2], 6:[2, 7, 9],7:[6], 8:[4],9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la 
liste des sommets adjacents [1, 5, 6].
2. Les sommets déjà visités sont marqués pour éviter d’explorer plusieurs 
fois un même sommet. La liste VISITED contient les sommets visités.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
Initialisation de l’algorithme :

•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet x à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets non 
explorés adjacents au sommet x.

def parcourslargeur2(dico, début):
    # fonction permettant un parcours en largeur du dictionnaire
    # dico en partant de début et retournant
    # VISITED la liste des sommets visités
    from collections import deque # module permettant d’utiliser
                                  # les deques
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    D=deque()         # deque vide
    D.append(début)   # ajoute le sommet de départ
    VISITED=[début]
    while len(D)!=0:
        x=D.popleft() # supprime le sommet x à l’extrémité
                      # gauche de D
        L=dico[x]     # liste contenant les sommets adjacents à x
        for elt in L: # parcourt les éléments de L
            if elt not in VISITED:  # teste si le sommet n'a pas
                                    # déjà été exploré
                D.append(elt)       # ajoute le sommet elt à 
                                    # l’extrémité droite de D
                VISITED.append(elt) # le sommet elt a été exploré

Remarque :

dico[x] contient les sommets adjacents au sommet x. G peut contenir des cycles 
puisqu’on ne considère pas d’arbre dans cet exercice. Il faut tester si les sommets 
adjacents ont déjà été explorés.

Dans l’exercice précédent « Parcours en largeur d’un arbre en utilisant une file », 
on n’avait pas besoin de tester si les fils étaient déjà explorés puisqu’on considérait 
un arbre, sans cycle par définition.

3. La deque D vaut [1] au début de l’algorithme.
•• On supprime l’élément à l’extrémité gauche de D. On explore ce sommet. 
Les sommets adjacents à 1 non explorés sont ajoutés à l’extrémité droite 
de D. La deque D vaut alors : [2, 3, 4].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 2.  
Les sommets adjacents à 2 non explorés sont ajoutés à l’extrémité droite 
de D. La deque D vaut alors : [3, 4, 5, 6].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 3.  
Le sommet 6 a déjà été exploré. On ne l’ajoute pas. La deque D vaut 
alors : [4, 5, 6].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 4.  
Les sommets adjacents à 4 non explorés sont ajoutés à l’extrémité droite 
de D. La deque D vaut alors : [5, 6, 8].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 5.  
Pas de nouveau sommet non exploré. La deque D vaut alors : [6, 8].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 6.  
La deque D vaut alors : [8, 7, 9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 8.  
Pas de nouveau sommet non exploré. La deque D vaut alors : [7, 9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 7.  
Pas de nouveau sommet non exploré. La deque D vaut alors : [9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 9.  
Pas de nouveau sommet non exploré. La deque D est vide.
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Avec la fonction parcourslargeur2(dico, 1), on explore les som-
mets suivants : VISITED = [1, 2, 3, 4, 5, 6, 8, 7, 9].
4. Soit n le nombre de sommets et m le nombre d’arêtes.
À chaque passage dans la boucle while len(D)!=0, on enlève un som-
met à l’extrémité gauche de la deque D. Cette boucle sera donc exécutée 
au plus n fois.
À chaque fois que l’on supprime un sommet à l’extrémité gauche de la 
deque D, la boucle for elt in L parcourt tous les sommets adjacents 
au sommet supprimé. Comme il y a m arêtes, les lignes D.append(elt) 
et VISITED.append(elt) seront exécutées au plus une fois pour 
chaque arête, soit au plus m fois.
La complexité dans le pire des cas pour un graphe représenté par une liste 
d’adjacence est linéaire en O(n + m).

On considère le graphe non orienté ( )= ,G S A  :

2

0

4

3

1

On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi, j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1 sinon M[i][j] = 0.
2.  Écrire une fonction parcourslargeur_mat d’arguments une matrice 
d’adjacence M et un sommet de départ début permettant de parcourir en lar-
geur le graphe. On utilise une deque pour parcourir en largeur le graphe. La 
fonction affiche la liste des sommets explorés.
3.  Dans quel ordre sont parcourus les sommets dans la fonction 
parcourslargeur_mat(M, 0) ?
4.  Calculer la complexité de cet algorithme dans le pire des cas.

Exercice 12.6 : �Parcours en largeur d’un graphe avec une 
matrice d’adjacence

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) permet 
de traiter les sommets adjacents à un sommet donné pour ensuite les explorer un par 
un. Il utilise une deque D dans laquelle il place le premier sommet à l’extrémité droite 
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de D initialement vide et les sommets adjacents non explorés à l’extrémité droite de D.  
On utilise le principe FIFO (First In, First Out : « premier entré, premier sorti »).

1.  La matrice d’adjacence est : =





















M

0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
0 1 1 0 0
1 0 1 0 0

.

M=[[0,1,1,0,1],[1,0,1,1,0],[1,1,0,1,1],\
   [0,1,1,0,0],[1,0,1,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice 
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est 
pas orienté : M[i][j] = M[j][i]. 

On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux 
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

2. Les étapes de l’algorithme de parcours en largeur sont les suivantes :
Initialisation de l’algorithme :

•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet i à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets j non 
explorés adjacents au sommet i.

def parcourslargeur_mat(M, début):
    # fonction permettant un parcours en largeur de la matrice M
    # en partant de début et retournant VISITED la liste des
    # sommets visités
    from collections import deque # module permettant d’utiliser
                                  # les deques
    D=deque()                     # deque vide
    D.append(début)               # ajoute le sommet de départ
    VISITED=[début]               # liste des sommets explorés
    while len(D)!=0:
        i=D.popleft()             # supprime le sommet i à
                                  # l’extrémité gauche de D
        for j in range(len(M[i])):
            if M[i][j]==1 and (j not in VISITED):
                D.append(j)       # ajoute le sommet j à
                                  # l’extrémité droite de D
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                VISITED.append(j) # le sommet j a été exploré
        print(D, VISITED)
    print('Sommets explorés :',VISITED)

3. La deque D vaut [0] au début de l’algorithme.
•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 0.  
Les sommets adjacents à 0 non explorés sont ajoutés à l’extrémité droite 
de D. La deque D vaut alors : [1, 2, 4]. La liste VISITED vaut : [0, 1, 
2, 4].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 
1. Les sommets adjacents à 1 et non explorés sont ajoutés à l’extrémité 
droite de D. La deque D vaut alors : [2, 4, 3]. La liste VISITED vaut : 
[0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 2.  
Pas de sommet non exploré adjacent à 2. La deque D vaut alors  :  
[4, 3]. La liste VISITED vaut : [0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. Pas de sommet non 
exploré voisin de 4. La deque D vaut alors : [3]. La liste VISITED vaut : 
[0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. Pas de sommet non 
exploré voisin de 3. La deque D vaut alors : [ ]. La liste VISITED vaut : 
[0, 1, 2, 4, 3].

La boucle while est terminée lorsque D est vide. Avec la fonction  
parcourslargeur_mat, on explore les sommets suivants : VISITED 
= [0, 1, 2, 4, 3]. On a bien réalisé un parcours en largeur.
4. Soit n le nombre de sommets.
À chaque passage dans la boucle while len(D)!=0, on supprime un 
sommet à l’extrémité gauche de la deque D. Cette boucle sera donc exécu-
tée au plus n fois.
À chaque itération de la boucle while, la boucle for j in range est 
exécuté au maximum n fois.
La complexité dans le pire des cas pour un graphe représenté par une 
matrice d’adjacence est quadratique en ( )2O n .
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On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9.  
On considère le graphe non orienté ( )= ,G S A  représentant la structure du  
site web.

1

2 3 4

5 6

7

8

9

On considère une pile P et une liste PARCOURS qui contient la liste des som-
mets explorés. On pose début=1 le sommet de départ.
Les étapes de l’algorithme de parcours en profondeur sont les suivantes :
Initialisation de l’algorithme :
La pile P contient le sommet de départ : P=[début].
La liste PARCOURS contient le sommet de départ : PARCOURS=[début].
Boucle tant que la pile P n’est pas vide :
•• S’il existe un sommet elt non exploré adjacent au sommet x (situé en haut de 
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile elt dans P et 
on ajoute elt dans la liste PARCOURS.

•• Si le sommet x (situé en haut de la pile P) ne possède pas de voisin non 
exploré, alors on dépile cet élément de la pile.

On utilisera un flag trouve (de valeur True ou False) qui permet de savoir 
si le sommet x possède un voisin non exploré.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction itérative parcoursprofondeur qui admet comme 
arguments un dictionnaire dico et un sommet de départ début. La fonction 
retourne la liste PARCOURS.
3.  Que retourne parcoursprofondeur(dico, 1) ?

Exercice 12.7 : Parcours en profondeur d’un graphe

Analyse du problème
L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais) 
explore une branche en profondeur depuis un sommet avant de passer à la suivante. 
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On va le plus profond possible pour chaque branche. On utilise le principe LIFO 
(Last In, First Out : « dernier entré, premier sorti »).

1. 

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1], 4:[1, 8],\
  5:[2], 6:[2, 7, 9], 7:[6], 8:[4], 9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la 
liste des sommets adjacents [1, 5, 6].
2. Comparaison entre les algorithmes de parcours en largeur et en pro-
fondeur :

•• Parcours en largeur (BFS, Breadth First Search, en anglais) : voir exer-
cice 12.5 « Parcours en largeur d’un graphe avec une deque ». On utilise 
le principe FIFO (First In, First Out : « premier entré, premier sorti »). 
Tous les sommets non explorés adjacents au sommet traité sont ajou-
tés dans la liste VISITED. 

•• Parcours en profondeur ou DFS : on utilise le principe LIFO (Last In, First 
Out  : « dernier entré, premier sorti »). On parcourt tous les sommets 
adjacents au sommet traité avec une boucle while i<len(L) and 
trouve==False.
Dès qu’on trouve un sommet non exploré, le flag trouve passe à 
True, on ajoute ce sommet dans la liste PARCOURS et dans la pile P,  
on quitte la boucle while i<len(L) and trouve==False. 
On ne dépile pas ce sommet ajouté et on continue l’exploration en  
profondeur en repartant au début de la boucle while len(P)!=0.

Remarque : On empile dans P uniquement un voisin non exploré dans le parcours 
en profondeur alors qu’on ajoute dans D tous les voisins non explorés dans le par-
cours en largeur.

def parcoursprofondeur(dico, début):
    # fonction permettant un parcours en profondeur du
    # dictionnaire dico en partant de début et retournant
    # PARCOURS la liste des sommets visités
    P=[début]
    PARCOURS=[début]
    while len(P)!=0:
        x=P.pop()    # dépile pour récupérer l’élément en haut
                     # de la pile
        P.append(x)  # empile x car il ne faut pas dépiler x
                     # à ce stade
        L=dico[x]    # L = liste des sommets adjacents à x
        trouve=False
        i=0
        while i<len(L) and trouve==False:
            if L[i] not in PARCOURS:  # cherche dans L un voisin
                                      # non exploré
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                trouve=True    # on a trouvé un voisin non exploré
                P.append(L[i]) # ajoute ce sommet en haut de
                               # la pile
                PARCOURS.append(L[i]) # marque ce voisin exploré
            i+=1
        if trouve==False:
            P.pop()  # dépile le haut de la pile
    return PARCOURS

print("Parcours en profondeur d'un graphe")
PARCOURS=parcoursprofondeur(dico, 1)
print(PARCOURS)

On utilise très souvent trois opérations de base avec les piles : « empiler », 
« dépiler » et « tester si la pile est vide ». Voir exercice 11.3 « Opérations 
de base sur les piles » dans le chapitre « Dictionnaire, pile, file, deque ». 
Les lignes suivantes permettent de récupérer le sommet x en haut de la pile 
pour obtenir la liste des sommets adjacents.

x=P.pop()     # dépile pour récupérer l’élément en haut de la pile
P.append(x)   # empile x
L=dico[x]     # x est l’élément en haut de la pile

Remarque  : Au début de la boucle while len(P)!=0, il faut récupérer le 
numéro du sommet en haut de la pile. Lorsqu’on utilise des piles, on ne peut utili-
ser que « empiler » et « dépiler » pour récupérer le numéro du sommet en haut de la 
pile. Il ne faut surtout pas dépiler ce sommet à cette étape du programme puisqu’il 
peut rester des sommets non explorés adjacents à ce sommet.

PARCOURS.append(L[i]) permet de marquer le sommet que l’on a 
découvert lors de l’exploration.
3.  
Initialisation de l’algorithme :

•• La pile P contient le sommet de départ : P = [1].
•• La liste PARCOURS contient le sommet de départ : PARCOURS = [1].

Étapes de la boucle while :
•• Le haut de la pile P (sommet 1) possède un voisin non exploré : 2 car il n’est 
pas dans la liste PARCOURS. On ajoute alors 2 dans la liste PARCOURS  
et dans la pile P. On obtient : P = [1, 2] ; PARCOURS = [1, 2].

••  Le haut de la pile P (sommet 2) possède un voisin non exploré : 5 car 
il n’est pas dans la liste PARCOURS. On ajoute alors 5 dans la liste 
PARCOURS et dans la pile P. On obtient : P = [1, 2, 5] ; PARCOURS 
= [1, 2, 5].
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•• Le haut de la pile P (sommet 5) n’a pas de voisin non exploré. On dépile 5  
de la pile P. On obtient : P = [1, 2] ; PARCOURS = [1, 2, 5]. On remonte 
au sommet précédent et on continue l’exploration du sommet 2. On réa-
lise un parcours en profondeur puisqu’on va le plus loin possible. On est 
bloqué au sommet 5. On remonte en arrière et on explore le sommet 2 
en explorant en profondeur ce sommet.

•• Le haut de la pile (sommet 2) possède un voisin non exploré  : 6. On 
ajoute alors 6 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6].

•• Le haut de la pile (sommet 6) possède un voisin non exploré  : 7. On 
ajoute alors 7 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 2, 6, 7] ; PARCOURS = [1, 2, 5, 6, 7].

•• Le haut de la pile P (sommet 7) n’a pas de voisin non exploré. On dépile 7  
de la pile P. P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6, 7]. On remonte au 
sommet précédent et on continue l’exploration du sommet 6.

•• Le haut de la pile (sommet 6) possède un voisin non exploré  : 9. On 
ajoute alors 9 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 2, 6, 9] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• Le haut de la pile P (sommet 9) n’a pas de voisin non exploré. On dépile 9  
de la pile P. On obtient : P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• On remonte au sommet précédent et on continue l’exploration du  
sommet 6.

•• Le sommet 6 n’a plus de sommet non exploré. On remonte au sommet 2  
qui n’a plus de sommet non exploré. On remonte au sommet 1. On 
obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• Le haut de la pile (sommet 1) possède un voisin non exploré  : 3. On 
ajoute alors 3 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 3] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3].

•• Le haut de la pile P (sommet 3) n’a pas de voisin non exploré. On dépile 3  
de la pile P. On obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3].  
On remonte au sommet précédent et on continue l’exploration du  
sommet 1.

•• Le haut de la pile (sommet 1) possède un voisin non exploré  : 4. On 
ajoute alors 4 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 4] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3, 4].

•• Le haut de la pile (sommet 4) possède un voisin non exploré  : 8. On 
ajoute alors 8 dans la liste PARCOURS et dans la pile P. On obtient :  
P = [1, 4, 8] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3, 4, 8].

•• Le haut de la pile P (sommet 8) n’a pas de voisin non exploré. On dépile 8  
de la pile P. On obtient : P = [1, 4] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3, 
4, 8]. On remonte au sommet précédent et on continue l’exploration du 
sommet 4.
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•• Le haut de la pile P (sommet 4) n’a pas de voisin non exploré. On  
dépile 4 de la pile P. On obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7, 
9, 3, 4, 8]. On remonte au sommet précédent et on continue l’explora-
tion du sommet 1.

•• Le haut de la pile P (sommet 1) n’a pas de voisin non exploré. On  
dépile 1 de la pile P. On obtient : P = [ ] ; PARCOURS = [1, 2, 5, 6, 7, 
9, 3, 4, 8].

L’algorithme est terminé puisque la pile P est vide.

Remarques :

Dans l’algorithme du parcours en profondeur, on peut choisir d’autres parcours 
d’exploration :

•• Le sommet 1 a trois sommets adjacents.

•• On a commencé par explorer en profondeur 2 et 5 mais on aurait pu explorer un 
autre parcours, par exemple 4 et 8.

On considère le graphe non orienté ( )= ,G S A  :

2

0

4

3

1

On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi, j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1 sinon M[i][j] = 0.
2.  Écrire une fonction testgrapheconnexe_profondeur qui admet 
comme argument une matrice d’adjacence M et retourne True si le graphe est 
connexe et False sinon en utilisant le parcours en profondeur. 
3.  Écrire une fonction arbrecouvrant_profondeur qui admet comme 
arguments une matrice d’adjacence M et un sommet de départ début permet-
tant de récupérer une matrice d’adjacence représentant l’arbre couvrant corres-
pondant au parcours en profondeur pour un graphe non orienté et connexe.
On considère deux listes (PERE, PARCOURS) et une pile P. La liste PARCOURS 
contient la liste des sommets explorés. PERE[k] représente le père de 
PARCOURS[k].

Exercice 12.8 : �Test de connexité d’un graphe – Parcours en 
profondeur – Arbre couvrant
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Les étapes de l’algorithme sont les suivantes :
Initialisation de l’algorithme :
•• La pile P contient le sommet de départ.

•• La liste PARCOURS contient le sommet de départ.

•• La liste PERE contient -1.

Boucle tant que la pile P n’est pas vide :
•• S’il existe un sommet i non exploré adjacent au sommet x (situé en haut de 
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile i dans P, on 
ajoute i dans la liste PARCOURS et on ajoute x dans la liste PERE.

•• Si le sommet x (situé en haut de la pile P) ne possède pas de voisin non 
exploré, alors on dépile cet élément de la pile.

4.  Représenter l’arbre couvrant du graphe G.

Analyse du problème
Un graphe non orienté est connexe (ou simplement connexe) si on peut relier, 
directement ou non, n’importe quel sommet à n’importe quel autre sommet du 
graphe par un chemin. Il n’y a pas de sommet isolé.

On utilise le parcours en profondeur pour construire un arbre inclus dans le graphe 
G et qui relie tous les sommets de ce graphe (voir exercice précédent « Parcours en 
profondeur d’un graphe »).

Pour construire l’arbre couvrant, on définit deux listes : PARCOURS et PERE. La 
liste PERE contient la liste des pères pour chaque sommet de PARCOURS. Il faut 
en effet connaître la liste des sommets parcourus et savoir comment on a atteint ce 
sommet.

1. La matrice d’adjacence est : =





















M

0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
0 1 1 0 0
1 0 1 0 0

.

M=[[0,1,1,0,1],[1,0,1,1,0],[1,1,0,1,1],\
   [0,1,1,0,0],[1,0,1,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice 
d’adjacence : M[i] [i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est 
pas orienté : M[i][j] = M[j][i].
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On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux 
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

2. Pour savoir si le graphe G est connexe, on récupère la liste des sommets 
explorés avec l’algorithme de parcours en profondeur. Si tous les sommets 
du graphe G sont dans cette liste, alors G est connexe.
On appelle début le sommet de départ. On pose par exemple début = 0.  
On aurait pu prendre un autre sommet de G.

def testgrapheconnexe_profondeur(M):
    # la fonction retourne True si le graphe est connexe
    # et False sinon pour la matrice d’adjacence M
    n=len(M)
    début=0  # on prend un sommet quelconque, par exemple 0
    P=[début]
    PARCOURS=[début]
    while len(P)!=0:
        x=P.pop()    # dépile pour récupérer l’élément en haut
                     # de la pile
        P.append(x)  # empile x car il ne faut pas dépiler x
                     # à ce stade
        trouve=False 
        i=0
        while i<n and trouve==False:
            if M[x,i]>0 and i not in PARCOURS: # cherche un sommet
                                               # non exploré
                trouve=True    # on a trouvé un sommet non exploré
                P.append(i)
                PARCOURS.append(i) # marque ce sommet exploré
            i+=1
        if trouve==False:
            P.pop()  # dépile le haut de la pile
    if len(PARCOURS)==n:
        return True  # le graphe est connexe
    else:
        return False # le graphe n’est pas connexe

Dans la fonction testgrapheconnexe_profondeur, la liste  
PARCOURS donne la liste de tous les sommets explorés avec l’algorithme 
en profondeur.
n=len(M) retourne le nombre de lignes de la matrice M.
Il suffit de tester si la longueur de la liste PARCOURS est égale au nombre 
de lignes de la matrice M pour savoir si on a bien exploré tous les sommets 
du graphe.
3. L’arbre couvrant d’un graphe non orienté et connexe est un arbre inclus 
dans le graphe et qui relie tous les sommets du graphe G.
Pour construire l’arbre couvrant, il suffit de parcourir les listes PARCOURS 
et PERE en commençant à PARCOURS[1]. Le père de PARCOURS[k] 
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est PERE[k]. On peut ainsi remplir la matrice d’adjacence de l’arbre cou-
vrant.

def arbrecouvrant_profondeur(M, début):
    # la fonction retourne l’arbre couvrant de la matrice M
    # en partant du sommet début (entier)
    # le graphe est non orienté et connexe
    n=len(M)
    P=[début]
    PARCOURS=[début]
    PERE=[-1]   # on n’utilise pas le premier élément de PERE
    while len(P)!=0:
        x=P.pop()    # dépile pour récupérer l'élément en haut
                     # de la pile
        P.append(x)  # empile x car il ne faut pas dépiler x
                     # à ce stade
        trouve=False 
        i=0
        while i<n and trouve==False:
            if M[x][i]>0 and i not in PARCOURS: # cherche un sommet
                                                # non exploré
                trouve=True    # on a trouvé un sommet non exploré
                PERE.append(x)     # ajoute le père du sommet i
                P.append(i)
                PARCOURS.append(i) # marque ce sommet i exploré
            i+=1
        if trouve==False:
            P.pop()  # dépile le haut de la pile

    print('Parcours :',PARCOURS)
    print('Pere :',PERE)
    
    # Construction de l’arbre couvrant
    mat=[[0 for j in range(n)] for i in range(n)]
    for k in range(1, len(PARCOURS)):    # k varie entre 1 inclus
                     # et len(PARCOURS) exclu.
                     # PARCOURS[0] n'a pas de père.
        indice_pere=PERE[k]
        indice_fils=PARCOURS[k]
        mat[indice_pere][indice_fils]=1
        mat[indice_fils][indice_pere]=1  # la matrice est
                     # symétrique car le graphe n'est pas orienté
    return mat

On n’utilise pas PERE[0]. On aurait pu écrire PERE=[None] au lieu de 
PERE=[-1].

Remarque :

On utilise très souvent trois opérations de base avec les piles : « empiler », « dépi-
ler » et « tester si la pile est vide ». Voir exercice 11.5 « Opérations de base sur 
les piles » dans le chapitre « Dictionnaire, pile, file, deque ». Les lignes suivantes 
permettent de récupérer le sommet x du haut de la pile.
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x=P.pop()   # on dépile pour récupérer l'élément en haut de la pile
P.append(x) # on rempile x

4. La liste PARCOURS vaut : [0, 1, 2, 3, 4].
La liste PERE vaut : [-1, 0, 1, 2, 2].
On obtient la matrice d’adjacence représentant l’arbre couvrant  : 





















0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0

.

Le graphe de départ est :

2

0

4

3

1

On obtient l’arbre couvrant :

0

1

2

3 4   

2

0

4

3

1

On a réalisé un parcours en profondeur en explorant le plus loin possible : 
0 – 1 – 2 – 3. On arrive à 3. On est bloqué. On remonte à 2 et on redescend 
vers 4.



Partie 9 · Graphes

176

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1  
à 9. On considère le graphe non orienté G S A( )= ,  représentant la structure du  
site web.

1

2 3 4

5 6

7

8

9

La liste PARCOURS contient la liste des sommets parcourus par l’algorithme. 
On ajoute le sommet de départ début dans la liste PARCOURS initialement 
vide et dans la deque D initialement vide.
Principe de l’algorithme récursif :
•• On supprime le sommet x à l’extrémité gauche de D. On ajoute tous les som-
mets non explorés adjacents à x, dans la liste PARCOURS et à l’extrémité 
droite de D.

•• On appelle la fonction récursive avec la deque D et la liste PARCOURS.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction récursive BFS_rec qui admet comme arguments un 
dictionnaire dico, une deque D et une liste PARCOURS.
3.  Le sommet de départ vaut 1. Que vaut PARCOURS après l’appel de la fonc-
tion BFS_rec(dico, D, PARCOURS) ?

Exercice 12.9 : Algorithme récursif du parcours en largeur

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer 
un par un. L’implémentation repose sur une deque D dans laquelle on place le pre-
mier sommet à l’extrémité droite de D initialement vide et les sommets adjacents 
non explorés à l’extrémité droite de D. On utilise le principe FIFO (First In, First 
Out : « premier entré, premier sorti »).
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1.  

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6], 4:[1, 6, 8],\
  5:[2], 6:[2, 7, 9], 7:[6], 8:[4],9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la 
liste des sommets adjacents [1, 5, 6].
2.  

•• La condition d’arrêt de la fonction récursive est que la deque D est vide.
•• On supprime le sommet x à l’extrémité gauche de D et L=dico[x] 
contient tous les sommets adjacents à x. La boucle for permet de par-
courir tous les sommets adjacents à x. Tous les sommets adjacents non 
explorés sont ajoutés dans PARCOURS et à l’extrémité droite de D. Si  
x = 1, on ajoute les sommets 2, 3 et 4. On a bien un parcours en largeur.

•• On appelle à nouveau la fonction récursive avec la deque D et la liste 
PARCOURS modifiées précédemment.

Les listes et les deques sont passées par référence et non par valeur dans 
les fonctions. On considère donc la même liste PARCOURS et la même 
deque D lors des différents appels récursifs.

def BFS_rec(dico, D, PARCOURS):
    # la fonction permet un parcours en largeur du dictionnaire
    # dico en partant de début et permettant d’obtenir
    # PARCOURS la liste des sommets visités
    if len(D)==0:
        return ()  # condition d’arrêt
    else:
        x=D.popleft()  # supprime le sommet à l’extrémité
                       # gauche de D
        L=dico[x]      # liste contenant les sommets adjacents à x
        for elt in L:  # parcourt les éléments de L
            if elt not in PARCOURS:
                D.append(elt)      # ajoute elt à l’extrémité
                                   # droite de D
                PARCOURS.append(elt)
        BFS_rec(dico, D, PARCOURS) # appel récursif

from collections import deque # module permettant d’utiliser
                              # les deques
D=deque()    # deque vide
début=1
D.append(début)
PARCOURS=[début]
BFS_rec(dico, D, PARCOURS)
print('Algorithme parcours en largeur récursif - Parcours :',\
      PARCOURS)

3. On obtient : PARCOURS = [1, 2, 3, 4, 5, 6, 8, 7, 9].
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On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 
à 9. On considère le graphe non orienté ( )= ,G S A  représentant la structure du  
site web.

1

2 3 4

5 6

7

8

9

On définit la liste PARCOURS qui contient la liste des sommets parcourus par 
l’algorithme. La liste PARCOURS est initialement vide.
Principe de l’algorithme récursif :
•• On ajoute le sommet s dans la liste PARCOURS.

•• On appelle la fonction récursive pour le premier sommet non exploré 
adjacent à s.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction récursive profondeur_rec qui admet comme argu-
ments un dictionnaire dico, un sommet de départ s et une liste PARCOURS.
3.  Qu’affiche le programme suivant ?

profondeur_rec(dico, 1, [])
print(PARCOURS)

Représenter l’arbre des appels de la fonction récursive profondeur_rec 
(dico, 1).

Exercice 12.10 : Algorithme récursif du parcours en profondeur

Analyse du problème
L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais) 
explore une branche en profondeur depuis un sommet avant de passer à la suivante. 
On va le plus profond possible pour chaque branche.

1.  

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6], 4:[1, 6, 8],\
  5:[2], 6:[2, 7, 9], 7:[6], 8:[4],9:[6]}
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Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la 
liste des sommets adjacents [1, 5, 6].
2.  

def profondeur_rec(dico, s, PARCOURS):
    # la fonction permet un parcours en profondeur du dictionnaire
    # dico en partant de s et permettant d’obtenir
    # PARCOURS la liste des sommets visités
    PARCOURS.append(s) # ajoute le sommet s dans liste PARCOURS
    L=dico[s]          # liste des sommets adjacents
    for elt in L:
        if elt not in PARCOURS:
            profondeur_rec(dico, elt, PARCOURS) # appel récursif
    # condition d’arrêt si tous les éléments de L ont été explorés
    # On n’a pas besoin de return car on ajoute
    # les sommets explorés au fur et à mesure dans PARCOURS

3. On considère le programme principal suivant :
profondeur_rec(dico, 1, [])
print(PARCOURS)

Le programme Python affiche : [1, 2, 5, 6, 7, 9, 3, 4, 8].
La fonction récursive est notée f. Pour une meilleure lisibilité, on écrit 
f(1) au lieu de profondeur_rec(dico, 1, PARCOURS). La liste 
PARCOURS est notée P.

•• On appelle f(1). Le sommet 1 est en cours d’exploration. On l’ajoute 
dans la liste P. La liste L contient les sommets adjacents à 1 : L = [2, 
3, 4]. On considère le premier sommet de la liste. Le sommet 2 n’a pas 
encore été exploré. On a un appel récursif f(2).

•• Le sommet 2 est en cours d’exploration. On l’ajoute dans la liste P. La 
liste L contient les sommets adjacents à 2 : L = [1, 5, 6]. On considère 
le premier sommet de la liste non exploré. Le sommet 5 n’a pas encore 
été exploré. On a un appel récursif f(5).

•• Le sommet 5 est en cours d’exploration. On l’ajoute dans la liste P. La 
liste L contient les sommets adjacents à 5 : L = [2]. Aucun élément de 
L est non exploré. On est dans la condition d’arrêt de la fonction récur-
sive. Phase de remontée avec P = [1, 2, 5].

•• On revient au sommet 2. 
On explore le sommet 6 
puis appel récursif pour 
le sommet 7. Phase de 
remontée avec P = [1, 2, 
5, 6, 7].

L’arbre ci-contre représente 
les différents appels de la 
fonction profondeur_
rec que l’on note f.

f(1)

f(2)

f(3)

f(4)

f(5) f(6)

f(7)

f(8)

f(9)

P=[1,2,5,6,7,9]

P=[1,2,5]

P=[1,2,5,6,7,9]

P=[1,2,5,6,7]

P=[1,2,5,6,7,9]

P=[1,2,5,6,7,9,3,4,8]

P=[1,2,5,6,7,9,3]

P=[1,2,5,6,7,9,3,4,8]



Partie 9 · Graphes

180

On considère le graphe connexe et non orienté ( )= ,G S A  :

1

2 3 4

5 0

On utilise la liste couleur pour mémoriser la couleur des sommets. Un som-
met est blanc lorsqu’il n’a pas été traité. Lorsqu’on commence à traiter un som-
met i, il est gris. Après avoir traité en largeur tous les sommets adjacents au 
sommet i, le sommet i est noir.
On utilise la liste PERE : PERE[i] désigne le père du sommet i lors du par-
cours du graphe en largeur.
On utilise une deque D pour gérer la file d’attente (FIFO : First In First Out). 
On supprime le sommet grisé à l’extrémité gauche de D qui devient noir. Tous 
les sommets adjacents à ce sommet sont ajoutés à l’extrémité droite de D et 
deviennent grisés.
On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi,j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1, sinon M[i][j] = 0.
2.  Écrire une fonction cycle_som qui admet comme arguments une matrice 
d’adjacence M et un sommet début. Cette fonction parcourt en largeur le graphe 
G. La fonction retourne True lorsqu’un sommet i adjacent à un sommet x n’est 
pas blanc et que le père de x n’est pas i. La fonction retourne False sinon.
3.  Écrire le programme principal permettant d’afficher si un graphe connexe et 
non orienté possède au moins un cycle. On pourra appeler la fonction cycle_
som à un sommet quelconque du graphe.
4.  Écrire le programme principal permettant d’afficher si un graphe non orienté 
possède au moins un cycle. On pourra appeler la fonction cycle_som à chaque 
sommet du graphe.

Exercice 12.11 : �Recherche d’un cycle, graphe non orienté, 
parcours en largeur

Analyse du problème
On utilise le parcours en largeur du graphe.

Un chemin est simple si toutes les arêtes du chemin sont différentes. Un cycle est 
un chemin simple tel que le sommet d’arrivée est le même que le sommet de départ.
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L’énoncé n’impose pas de trouver un cycle passant par le sommet de départ.

1. La matrice d’adjacence est : =























M

0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

.

M=[[0,0,1,1,1,0], [0,0,1,1,1,0], [1,1,0,0,0,1],\
   [1,1,0,0,0,0], [1,1,0,0,0,0], [0,0,1,0,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice 
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est 
pas orienté : M[i][j] = M[j][i].

2. Il y a des différences dans la recherche de cycle pour les graphes orien-
tés et pour les graphes non orientés :

•• Pour un graphe orienté, il suffit de tester que le successeur de x est le 
sommet de départ. Par exemple : 1→2→1 peut représenter un cycle. La 
condition pour trouver un cycle est : if M[x][i]>0 and i==début.
Un chemin doit exister entre x et i. Il faut également que i soit le som-
met de départ début. Dans cet exercice, on impose de trouver un cycle 
passant par début.

•• Pour un graphe non orienté, 1-2-1 ne représente pas un cycle.
La condition pour trouver un cycle est : if M[x][i]>0 and couleur 
[i]!="blanc" and PERE[x]!=i.
Un chemin doit exister entre x et i. Le sommet i doit déjà être visité et le 
père de x ne doit pas être i (on évite ainsi de considérer i - x - i comme 
un cycle). Dans cet exercice, on n’impose pas de trouver un cycle passant 
par le sommet de départ début.

def cycle_som(M, début):
    # la fonction retourne False si la matrice M ne possède pas
    # de cycle en partant de l’entier début
    from collections import deque  # module permettant d’utiliser
                                   # les deques
    n=len(M)                       # nombre de sommets du graphe
    PERE=[-1 for i in range(n)]
    couleur=["blanc" for i in range(n)]
            # les sommets non traités sont blancs
    D=deque()             # création d’une deque vide
    D.append(début)       # ajoute début à l’extrémité droite de D
    couleur[début]="gris" # sommet début en cours de traitement
    while len(D)!=0:
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        x=D.popleft()     # supprime le sommet x à l’extrémité
                          # gauche de D
        couleur[x]="noir" # le sommet x a été traité
        for i in range(n):
            if M[x][i]>0 and couleur[i]!="blanc" and PERE[x]!=i:
                    # on a trouvé un chemin de x vers i
                    # i a déjà été visité
                    # on teste que le père de x n’est pas i
                return True
            elif M[x][i]>0 and couleur[i]=="blanc":
                D.append(i)       # ajoute le sommet i à  
                                  # l’extrémité
                                  # droite de D
                PERE[i]=x         # le père de i est x
                couleur[i]="gris" # sommet à traiter
    return False    # pas de cycle en partant de début

3. On considère un sommet quelconque pour le graphe connexe et non 
orienté.

début=0
if cycle_som(M, début)==True:
    print('Le graphe connexe et non orienté possède au moins'\
          ' un cycle.')
else:
    print('Le graphe connexe et non orienté ne possède pas de'\
          ' cycle en partant du sommet ',début)

4. On applique la fonction cycle_som à chaque sommet du graphe.

def rec_cycle_larg(M):
    # la fonction retourne False si la matrice M ne possède
    # pas de cycle
    n=len(M)            # nombre de sommets du graphe
    for i in range(n):  # i varie entre 0 inclus et n exclu
        if cycle_som(M, i)==True:
            return True # quitte la fonction si un cycle trouvé
    return False

if rec_cycle_larg(M)==True:
    print('Le graphe possède au moins un cycle.')
else:
    print('Le graphe ne possède pas de cycle.')
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13Recherche d’un plus  
court chemin  
(sauf TSI et TPC)

On considère le graphe orienté G S A( )= ,  :

1

2 3 4

5 6

7

8

9

L.reverse() permet d’inverser les éléments de la liste L.
On considère dans l’algorithme une liste PARCOURS et un dictionnaire PERE :
•• La liste PARCOURS contient la liste des sommets d’un plus court chemin du 
sommet de départ début jusqu’au sommet d’arrivée fin différent de début.

•• PERE[i] représente le père du sommet i lors du parcours en largeur du 
graphe depuis le sommet de départ début.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à 
chaque sommet représente la liste des successeurs.
2.  Écrire une fonction itérative BFS qui admet comme arguments un diction-
naire dico et un sommet de départ début. La fonction retourne un diction-
naire PERE en utilisant l’algorithme de parcours en largeur.
3.  La liste PARCOURS est initialement vide.
Principe de l’algorithme d’un plus court chemin :
Pour obtenir les sommets d’un plus court chemin de début jusqu’à fin, il 
faut remonter dans l’arborescence du dictionnaire PERE depuis le sommet fin 
jusqu’à la racine début.
Écrire une fonction récursive pluscourtchemin qui admet comme arguments 
un sommet de départ début, un sommet d’arrivée fin, un dictionnaire PERE et une 
liste PARCOURS permettant d’obtenir un plus court chemin de début jusqu’à fin.
4.  Écrire le programme principal permettant d’afficher un plus court chemin 
entre le sommet de départ début et le sommet d’arrivée fin. Qu’obtient-on 
pour début = 1 et fin = 8 ?

Exercice 13.1 : Recherche d’un plus court chemin, graphe orienté
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Analyse du problème
Un plus court chemin de début jusqu’à fin est le chemin comportant le moins 
d’arcs. On utilise l’algorithme de parcours en largeur (BFS, Breadth First Search, 
en anglais) permettant de traiter les sommets adjacents à un sommet donné pour 
ensuite les explorer un par un. Voir exercice 12.5 « Parcours en largeur d’un graphe 
avec une deque » dans le chapitre « Graphes ».

1. 
dico={1:[3], 2:[1, 5], 3:[6],\
      4:[1, 8], 5:[], 6:[2, 4, 9],\
      7:[6], 8:[1, 9], 9:[]}

Le sommet 2 a deux successeurs : 1 et 5. La valeur de la clé 2 est la liste 
des successeurs [1, 5]. Le sommet 6 n’est pas le successeur du sommet 4.
2. Les sommets déjà visités sont marqués pour éviter d’explorer plusieurs 
fois un même sommet. La liste VISITED contient les sommets visités.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :

Initialisation de l’algorithme :
•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED = 
[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet x à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets non 
explorés adjacents au sommet x.

def BFS(dico, début):
    # la fonction renvoie le dictionnaire PERE avec un parcours
    # en largeur pour le dictionnaire dico
    from collections import deque   # module permettant d’utiliser
                                    # les deques
    D=deque()         # deque vide
    D.append(début)   # ajoute le sommet de départ
    PERE={ }          # dictionnaire vide
    VISITED=[début]
    while len(D)!=0:
        x=D.popleft() # supprime le sommet x à l’extrémité
                      # gauche de D
        L=dico[x]     # liste contenant les sommets adjacents à x
        for elt in L:    # parcourt les éléments de L
            if elt not in VISITED:  # teste si le sommet n’a pas
                                    # déjà été exploré
                D.append(elt) # ajoute le sommet elt à l’extrémité
                              # droite de D
                VISITED.append(elt) # le sommet elt a été exploré
                PERE[elt]=x # ajoute clé, valeur dans le dico PERE
    return PERE

La ligne PERE[elt]=x permet d’ajouter elt (clé) et x (valeur de la clé) 
dans le dictionnaire dico.
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3.  
def pluscourtchemin(début, fin, PERE, PARCOURS):
    # la fonction permet d’avoir un plus court chemin
    # de début (int) à fin (int) dans la liste PARCOURS
    # à partir du dictionnaire PERE
    if début==fin:
        PARCOURS.append(fin)
        return()              # condition d’arrêt
    elif PERE[fin]=='':
        PARCOURS=[]
        return ()             # condition d’arrêt
    else:
        PARCOURS.append(fin)  # on ajoute le sommet fin dans
                              # la liste PARCOURS
        pluscourtchemin(début, PERE[fin], PERE, PARCOURS)
                              # appel récursif

4.  
début, fin=1, 8
PERE=BFS(dico, début)
if fin not in PERE:     # teste si le sommet fin est dans
                        # le dictionnaire PERE
    print("Il n’y a pas de chemin entre", début, "et", fin,".")
else: 
    PARCOURS=[]
    pluscourtchemin(début, fin, PERE, PARCOURS)
    PARCOURS.reverse()  # inverse les éléments de la liste
    print('Un plus court chemin :', PARCOURS)

Si le sommet fin n’est pas dans le dictionnaire PERE, alors il n’y a pas de 
chemin entre début et fin.
Le programme Python affiche :

  Parcours : [1, 3, 6, 4, 8]

On considère le graphe non orienté ( )=G S A, , où le nombre situé sur l’arête 
joignant deux villes (ou sommets) est leur distance :

4

2

0

4

8
7

3 2

9

3

1 1

Exercice 13.2 : Algorithme de Dijkstra
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On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence (Mi, j)0≤i,j≤n−1 (appelée également matrice 
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les villes d’origine i 
et d’extrémité j.
Lorsque les villes ne sont pas reliées, cette distance vaut l’infini. On définit la 
variable inf=1e10 qui représente une distance infinie.
2.  On cherche à déterminer un plus court chemin pour aller d’une ville de 
départ notée départ à une ville d’arrivée notée arrivée en utilisant l’algo-
rithme de Dijkstra :
On définit la liste VILLES contenant les informations suivantes pour chaque 
ville  : [ville précédente sur le chemin, distance parcourue depuis la ville de 
départ, ville sélectionnée ou non (booléen vrai ou faux)].
a) Initialisation de l’algorithme :
Toutes les villes sont non sélectionnées sauf la ville de départ. Pour cette ville, 
la distance parcourue vaut 0.
Pour les villes non sélectionnées, les distances parcourues depuis la ville de 
départ sont initialisées à l’infini.
On définit une variable position qui correspond à la ville pour laquelle  
l’algorithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée, répé-
ter les opérations suivantes pour toutes les villes i non sélectionnées :
•• Calculer la variable somme = distance entre la ville départ et la ville 
position + distance entre la ville position et la ville i.

•• Si la variable somme est inférieure à la distance entre la ville départ et la 
ville i, alors remplacer cette distance par somme. La ville précédente sur le 
chemin est alors position.

Chercher la ville (parmi les villes non sélectionnées) pour laquelle la distance 
entre celle-ci et la ville départ est la plus petite. Cette ville définit alors la 
nouvelle valeur de la variable position et cette ville devient sélectionnée.
Écrire une fonction dijkstra qui admet comme arguments d’entrée la matrice 
d’adjacence M, la ville départ et la ville arrivée. Cette fonction retourne 
le chemin suivi ainsi que la distance parcourue entre départ et arrivée en 
utilisant l’algorithme de Dijkstra.
Écrire le programme principal permettant de déterminer un plus court chemin 
entre la ville de départ 3 et la ville d’arrivée 0. Le programme affichera le che-
min suivi ainsi que la distance parcourue.
3.  Pourquoi cet algorithme est appelé algorithme glouton ?
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4.  Calculer la complexité de cet algorithme dans le pire des cas.
5.  On considère le graphe suivant :

18

0

2 4

1 3

4

3

10

8

2

1

Écrire le programme permettant de déterminer un plus court chemin entre la 
ville de départ 0 et la ville d’arrivée 2. Le programme affichera le chemin suivi 
ainsi que la distance parcourue.

Analyse du problème
On étudie l’algorithme de Dijkstra, qui un algorithme de plus court chemin. On 
définit la matrice d’adjacence qui contient l’ensemble des distances entres les villes. 
La longueur d’un chemin est la somme des poids des arêtes qui le constituent. 

1. La matrice d’adjacence est : =

∞
∞

∞ ∞
∞ ∞





















M

0 9 3 7
9 0 1 8
3 1 0 4 2

8 4 0
7 2 0

.

Remarque : On peut se reporter à l’exercice 12.1 « Matrice d’adjacence » dans 
le chapitre « Graphes » pour avoir plus d’explications sur la construction de cette 
matrice.

2.  
•• Dans l’algorithme de Dijkstra, on calcule la distance de départ à 
toutes les villes i non sélectionnés en passant par la ville position. 
On cherche ensuite le minimum des distances pour les villes non sélec-
tionnées. Ce minimum permet de déclarer une ville sélectionnée. Cette 
distance est définitive.
On définit un sous-graphe G’. Dans l’état initial, G’ contient 
uniquement la ville départ. À chaque étape de la boucle 
while(position!=arrivée), on ajoute la ville position  
dans G’. Toutes les distances des villes de G’ sont définitives.
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•• Dans l’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de 
Floyd-Warshall » dans le chapitre « Programmation dynamique »), on 
peut trouver ultérieurement une distance encore plus petite en passant 
par d’autres sommets avec des arêtes de poids négatif. Il faut recalculer 
toutes les distances à l’étape suivante.

On définit une liste VILLES qui contient pour chaque ville i :
•• VILLES[i][0] : ville précédente.
•• VILLES[i][1] : g i( ) = distance entre la ville départ et la ville i.
•• VILLES[i][2] : True si la ville i est sélectionnée, sinon False.

a) Initialisation de l’algorithme :
Toutes les villes sont non sélectionnées (VILLES[i][2] = False) 
sauf la ville de départ. Pour cette ville, la distance parcourue vaut 0. Pour 
les villes non sélectionnées, les distances parcourues depuis la ville de 
départ sont initialisées à l’infini : VILLES[i][1] = inf. La variable 
position prend initialement la valeur départ.
b) On définit une boucle while (position!=arrivée) tant que la 
variable position (sommet appartenant à la frontière entre les villes 
sélectionnées et les villes non sélectionnées) n’est pas égale à la variable 
arrivée.

•• La boucle for i in range(n) avec le test if VILLES [i]
[2]==False permet de parcourir toutes les villes non sélectionnées. 
On calcule somme = VILLES[position][1] + M[position][i] 
(= distance entre départ et position + distance entre position 
et i). Si la nouvelle distance somme est inférieure à VILLES[i][1], 
alors VILLES[i][1] = somme et la ville position est la ville 
précédente de i : VILLES[i][0] = position.

•• On cherche la ville indice (parmi les villes non sélectionnées) pour 
laquelle la distance VILLES[indice][1] est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable 
position et cette ville devient sélectionnée.

•• Si indice = position, on ne peut pas atteindre la ville d’arrivée.

inf=1e10        # variable représentant l’infini

def init(départ, nb_villes):
    # la fonction initialise la liste VILLES
    # à partir de départ (int)
    # nb_villes est le nombre de villes dans le graphe
    VILLES=[]   # initialisation de la liste VILLES
    for i in range(nb_villes):
        if i==départ:
            VILLES.append([-1, 0, True])
           # la valeur -1 n’est pas utilisée car ville de départ
           # True : uniquement la ville de départ est sélectionnée
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        else:
            VILLES.append([-1, inf, False])
           # la valeur -1 n'est pas utilisée car distance infinie
           # False : ville non sélectionnée
return VILLES

def dijkstra(M, départ, arrivée):
    # la fonction permet d’avoir un plus court chemin
    # de départ (int) à arrivée (int) dans la liste L à partir
    # de la matrice d’adjacence M. On récupère la liste VILLES
    nb_villes=len(M)         # nb de villes = nb de lignes de M
    VILLES=init(départ, nb_villes)   # initialisation de la
                                     # liste VILLES
    # l’algorithme est appliqué pour la ville position
    position=départ
    while (position!=arrivée):
        indice=position
        for i in range(nb_villes):   # i décrit toutes les villes
            if VILLES[i][2]==False : # ville non sélectionnée
                somme=VILLES[position][1]+M[position][i]
                if somme<VILLES[i][1]:
                    VILLES[i][1]=somme
                       # nouvelle valeur de la distance à
                       # la ville de départ
                    VILLES[i][0]=position # nouvelle ville
                                     # précédente sur le chemin
        # recherche du minimum des distances pour les villes
        # non sélectionnées
        val_min=inf
        for i in range(nb_villes):
            if VILLES[i][2]==False and VILLES[i][1]<val_min:
                indice=i
                val_min=VILLES[i][1]
        if indice==position:
            return [],inf            # on n’atteint pas arrivée
        else:
            VILLES[indice][2]=True   # cette ville est sélectionnée
            position=indice  # nouvelle valeur de la variable
                             # position
 
    # liste des villes parcourues
    i=arrivée
    L=[arrivée]  # L = liste des villes parcourues en sens inverse
    while (i!=départ):
        i=VILLES[i][0]
        L.append(i)
    L.reverse()  # il faut inverser la liste L pour obtenir la
                 # liste des villes parcourues dans le sens direct
    return L, VILLES[arrivée][1]

# initialisation du programme
M=[[0, 9, 3, inf, 7], [9, 0, 1, 8, inf], [3, 1, 0, 4, 2],\
   [inf, 8, 4, 0, inf], [7, inf, 2, inf, 0]]
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départ, arrivée=3, 0  # ville de départ et ville d’arrivée
L, dist=dijkstra(M, départ, arrivée)
print("Algorithme de Dijkstra - Chemin suivi : ", L) # liste des
                                                     # villes
print ("Distance parcourue = ", dist)

Le programme Python affiche :
  Chemin suivi : [3, 2, 0]
  Distance parcourue = 7

Remarque :

On considère l’exemple suivant pour expliquer l’algorithme de Dijkstra.

Étape d’initialisation

•• Ville de départ = départ = 3 et ville d’arrivée = arrivée = 0. 

•• On définit une liste VILLES contenant les informations suivantes pour chaque 
ville : ville précédente sur le chemin, distance parcourue depuis la ville de départ, 
ville sélectionnée ou non (booléen True ou False).

•• On a alors : VILLES=[[−1,inf,False],[−1, inf,False],[−1, inf,False],[−1,0,True], 
[−1,inf,False]]. Les valeurs −1 ne sont pas significatives puisque la distance est 
infinie ou la ville est départ.

Algorithme

•• On définit la variable position, qui est la ville atteinte avec un plus court chemin 
depuis la ville de départ. Pour toutes les villes i non sélectionnées et différentes 
de position, on compare somme (distance entre ville de départ et position + 
distance entre position et i = VILLES[position][1] + M[position]
[i]) et la distance depuis la ville de départ (VILLES[i][1]).

•• Chercher pour toutes les villes X précédentes celle où la variable « distance depuis 
la ville de départ » est minimale. Cette ville définit alors la nouvelle valeur de la 
variable position et la variable « ville sélectionnée » passe à True.

1re itération : position = 3

•• On parcourt les villes X non sélectionnées : 0, 1, 2 et 4.

On obtient alors  : VILLES=[[-1,inf,False],[3,8,False],[3,4,False],[−1,0,True], 
[−1,inf,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la 
variable « distance depuis la ville de départ » est minimale. C’est la ville 2.

On obtient alors  : position = 2 et VILLES=[[−1,inf,False],[3,8,False], 
[3,4,True],[−1,0,True],[−1,inf,False]].
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2e itération : position = 2

•• On parcourt les villes X non sélectionnées : 0, 1, 4.

On obtient alors  : VILLES=[[2,7,False],[2,5,False],[3,4,True],[−1,0,True], 
[2,6,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la 
variable « distance depuis la ville de départ » est minimale. C’est la ville 1.

On obtient alors : position = 1 et VILLES=[[2,7,False],[2,5,True],[3,4,True], 
[−1,0,True],[2,6,False]].

3e itération : position = 1

•• On parcourt les villes X non sélectionnées : 0, 4.

On obtient alors  : VILLES=[[2,7,False],[2,5,True],[3,4,True],[−1,0,True], 
[2,6,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la 
variable « distance depuis la ville de départ » est minimale. C’est la ville 4.

On obtient alors : position = 4 et VILLES=[[2,7,False],[2,5,True],[3,4,True], 
[−1,0,True],[2,6,True]].

4e itération : position = 4

•• On parcourt les villes X non sélectionnées : 0.

On obtient alors  : VILLES=[[2,7,False],[2,5,True],[3,4,True],[−1,0,True], 
[2,6,True]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la 
variable « distance depuis la ville de départ » est minimal. C’est la ville 0.

On obtient alors : position = 0 et VILLES = [[2,7,True], [2,5,True], [3,4,True], 
[−1,0,True], [2,6,True]].

Pour obtenir le trajet, on part de la ville d’arrivée, la distance minimale entre la ville 
de départ et la ville d’arrivée est obtenue par VILLES[arrivée][1] = 7. Pour 
obtenir le trajet, on obtient la ville précédente avec VILLES[arrivée][0] = 2 
et, de proche en proche, on remonte à la ville de départ.

3. L’algorithme glouton (greedy en anglais) repose sur l’utilisation de 
sous-problèmes. Lorsqu’on est rendu à la ville position, on fait un choix 
local qui paraît être le meilleur en choisissant, dans la liste des villes non 
sélectionnées, la ville suivante indice dont la distance entre départ 
et indice est la plus petite. Ce choix n’est pas remis en cause ultérieu-
rement.
4. Soit n le nombre de villes.
Initialisation de la liste VILLES : 1 opération et, pour chaque valeur de 
i : 1 comparaison et 1 affectation. La boucle for est parcourue n fois. On 
a donc 2n+1 opérations élémentaires.
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Dans le pire des cas, on a (n-1) itérations dans la boucle while. Pour 
chaque valeur de position, on a :

•• 1 comparaison, 1 calcul de somme, 1 test et deux affectations pour 
chaque valeur de i : 5n opérations élémentaires.

•• 1 affectation : 1 opération élémentaire.
•• Recherche du minimum : trois comparaisons et deux affectations pour 
chaque valeur de i : 5n opérations élémentaires.

•• 2 affectations : 2 opérations élémentaires.
On a donc n n n n n n n( ) ( ) ( ) ( )( )+ + − × + + + = + + − +2 1 1 5 1 5 2 2 1 1 10 3  opé-
rations élémentaires.
La complexité dans le pire des cas est quadratique en O(n2).

Remarque : On peut accepter des petites différences dans l’évaluation du nombre 
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas  
modifiée.

5. La matrice d’adjacence est : =

∞

∞ ∞
∞ ∞

∞





















M

0 8 18 3
8 0 4 1 10

18 4 0
1 0 2

3 10 2 0

2 .

M2=[[0, 8, 18, inf, 3], [8, 0, 4, 1, 10], [18, 4, 0, inf, inf],\
    [inf, 1, inf, 0,2], [3, 10, inf, 2,0]]
départ2, arrivée2=0, 2       # ville de départ et ville d'arrivée
L2, dist2=dijkstra(M2, départ2, arrivée2)
print("Trajet suivi : ", L2) # affichage de la liste des villes
print ("Distance parcourue = ", dist2)

Le programme Python affiche :
  Trajet suivi : [0, 4, 3, 1, 2]
  Distance parcourue = 10
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On considère le graphe orienté ( )=G S A,  qui représente le réseau routier d’un 
département en prenant en compte le sens de la circulation. Une route à sens 
unique est représentée par un arc dont le poids est la distance en kilomètres entre 
deux sommets (ou deux villes). Les distances indiquées dans les rectangles sur 
le graphe ci-dessous représentent les distances à vol d’oiseau entre les sommets 
et le sommet d’arrivée 5.

0

2 4

1 3

4

3

2

5
2

5
4

2

2
2

2

3

33

2

3.2

5

1.5

1

0

Une heuristique est un algorithme qui calcule rapidement une solution pouvant 
être approximative. On utilise la distance euclidienne (ou distance à vol 
d’oiseau) pour estimer le coût restant ( )h i  permettant d’atteindre le sommet 
arrivée à partir du sommet i.
On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence (Mi, j)0≤i,j≤n−1 (appelée également matrice 
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les sommets d’origine 
i et d’extrémité j.
Lorsque les sommets ne sont pas reliés, cette distance vaut l’infini. On définit la 
variable inf=1e10 qui représente une distance infinie.
2.  L’algorithme A* est une variante de l’algorithme de Dijkstra. On dispose 
pour chaque sommet i d’une estimation du coût restant pour atteindre le som-
met arrivée à partir du sommet i : h i( ) = distance euclidienne (ou distance à 
vol d’oiseau) entre le sommet i et le sommet arrivée. On définit la fonction 
d’évaluation f telle que : f i g i h i( ) ( ) ( )= + .
•• g i( ) est le coût réel du chemin optimal entre le sommet départ et le sommet 
i dans la partie déjà explorée ;

•• h i( ) est le coût estimé du chemin qui reste à parcourir entre i et arrivée.

On définit la liste SOMMETS contenant les informations suivantes pour chaque 
sommet :
[sommet précédent sur le chemin, distance parcourue depuis le sommet de départ,

Exercice 13.3 : Algorithme A*
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sommet sélectionné ou non (booléen vrai ou faux), distance évaluée entre 
départ et arrivée]
a) Initialisation de l’algorithme A* :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce 
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les 
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On 
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour 
lequel la distance f (indice) entre départ et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position 
et ce sommet devient sélectionné.

On définit la liste H=[5, 2, 3.2, 1.5, 1, 0] telle que H[i] = distance 
euclidienne entre le sommet i et le sommet arrivée = 5.
Écrire une fonction algoA qui admet comme arguments d’entrée la matrice 
d’adjacence M, la liste H, le sommet départ et le sommet arrivée. Cette 
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ 
et arrivée en utilisant l’algorithme A*.
3.  Écrire le programme principal permettant de déterminer un plus court che-
min entre le sommet de départ 0 et le sommet d’arrivée 5. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue.

Analyse du problème
La fonction h est une fonction heuristique telle que ( )h i  est le coût estimé du che-
min qui reste à parcourir entre le sommet i et le sommet arrivée. On utilise 
la distance à vol d’oiseau dans ce problème alors que, dans l’exercice suivant 
« Variantes de l’algorithme A* − Distance de Manhattan », on utilise la distance de 
Manhattan. L’idée est de choisir un sommet qui semble être le plus prêt du sommet 
d’arrivée.

La fonction d’évaluation permet de déterminer quel sommet est sélectionné en 
premier, c’est-à-dire retiré de la frontière entre les sommets sélectionnés et les 
sommets non sélectionnés : ( ) ( ) ( )= +f i g i h i  renvoie une estimation de la distance 
entre le sommet de départ et le sommet d’arrivée en passant par le sommet i du 
graphe. On considère un graphe orienté dont le poids des arcs est un réel positif.
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1. La matrice d’adjacence est : =

∞ ∞ ∞
∞ ∞
∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ ∞























M

0 3 2
0 3 3 2
3 0 5 4

0 2
4 2 0

2 2 0

.

Comme le graphe est orienté, la matrice n’est pas nécessairement symé-
trique.
2. On définit une liste SOMMETS qui contient pour chaque sommet i :

•• SOMMETS[i][0] : sommet précédent ;
•• SOMMETS[i][1]  : g i( ) = distance entre le sommet départ et le 
sommet i ;

•• SOMMETS[i][2] : True si le sommet i est sélectionné, sinon False ;
•• SOMMETS[i][3]  : f i( ) = distance entre le sommet départ et le 
sommet arrivée.

La méthode gloutonne repose sur l’utilisation de sous-problèmes. Lorsqu’on est 
rendu au sommet position, on fait un choix local qui paraît être le meilleur 
en choisissant, dans la liste des sommets non sélectionnés, le sommet suivant 
indice dont la distance f(indice) entre départ et arrivée est la plus 
petite. Ce choix n’est pas remis en cause ultérieurement. On privilégie les 
sommets « qui semblent » nous rapprocher de la destination.
a) Initialisation de l’algorithme :
Tous les sommets sont non sélectionnés (SOMMETS[i][2]=False) 
sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut 
0. Pour les sommets non sélectionnés, les distances parcourues depuis le 
sommet de départ sont initialisées à l’infini : SOMMETS[i][1]=inf et 
SOMMETS[i][3]=inf. La variable position prend initialement la 
valeur départ.
b) On définit une boucle while(position!=arrivée) : tant que la 
variable position (sommet appartenant à la frontière entre les sommets 
sélectionnés et les sommets non sélectionnés) n’est pas égale à la variable 
arrivée.

•• La boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélectionnés. 
On calcule g_i=SOMMETS[position][1]+M[position][i] (= 
distance entre départ et position + distance entre position et i)  
et f_i=g_i+H[i].

•• Si la nouvelle distance f_i entre départ et arrivée est inférieure 
à SOMMETS[i][3], alors SOMMETS [i][3]=f_i. On met à 
jour également la distance entre le sommet départ et le sommet 
i  : SOMMETS[i][1]=g_i. Le sommet position est le sommet 
précédent de i : SOMMETS[i][0]=position.
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•• On cherche le sommet indice (parmi les sommets non sélectionnés) 
pour lequel la distance f (indice) entre départ et arrivée est la 
plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable 
position et ce sommet devient sélectionné.

•• Si indice = position, on ne peut pas atteindre le sommet d’arrivée.

inf=1e10      # variable représentant l’infini

def init3(départ, n):  # n = nombre de sommets dans le graphe
    �# la fonction initialise la liste SOMMETS à partir de départ  

# (int)
    SOMMETS=[]         # initialisation de la liste SOMMETS
    for i in range(n): # i varie entre 0 inclus et n exclu
        if i==départ:
            SOMMETS.append([-1, 0, True, 0])
                # la valeur -1 n’est pas utilisée
                �# True : uniquement le sommet de départ est  

# sélectionné
        else:
            SOMMETS.append([-1, inf, False, inf])
                �# la valeur -1 n’est pas utilisée car distance  

# infinie
                # False : sommet non sélectionné
    return SOMMETS

def algoA(M, H, départ, arrivée):
    # la fonction permet d’avoir un plus court chemin
    # de départ (int) à arrivée (int) dans la liste L à partir
    # de la matrice d'adjacence M. On récupère la liste SOMMETS
    n=len(M)           # nombre de sommets = nombre de lignes de M
    SOMMETS=init3(départ, n) # initialisation de la liste SOMMETS
    position=départ
    while (position!=arrivée):
        indice=position
        for i in range(n):   # i décrit tous les sommets
            if SOMMETS[i][2]==False: # sommet non sélectionné
                g_i=SOMMETS[position][1]+M[position, i]
                             # g(i) = coût réel entre départ et i
                h_i=H[i]     # coût estimé entre i et arrivée
                f_i=g_i+h_i  
                if f_i<SOMMETS[i][3]:
                    SOMMETS[i][1]=g_i # distance départ->i = g(i)
                    SOMMETS[i][3]=f_i
                                 # distance départ->arrivée = f(i)
                    SOMMETS[i][0]=position
                                 # sommet précédent sur le chemin
        # recherche du minimum des distances départ->arrivée
        # pour les sommets non sélectionnés
        val_min=inf         # initialisation de val_min à +infini
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        for i in range(n):  # i varie entre 0 inclus et n exclu
            if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
                indice=i
                val_min=SOMMETS[i][3]  # f(i)
        if indice==position:
            return [],inf   # on n’atteint pas le sommet arrivée
        else:
            SOMMETS[indice][2]=True  # ce sommet est sélectionné
            position=indice          # nouvelle valeur de position
 
    # liste des sommets parcourus
    i=arrivée
    L=[arrivée]  # L = liste des sommets parcourus en sens inverse
    while (i!=départ):
        i=SOMMETS[i][0]
        L.append(i)
    L.reverse()  # il faut inverser la liste L pour obtenir
                 �# la liste des sommets parcourus dans le sens  

# direct
    return L, SOMMETS[arrivée][1]

3.  
inf=float("inf")
M=[[0,3,2,inf,inf,inf],[inf,0,3,3,2,inf],\
   [inf,3,0,5,4,inf],[inf,inf,inf,0,inf,2],\
   [inf,inf,4,2,0,inf],[inf,inf,inf,2,2,0]]
départ, arrivée=0, 5
H=[5, 2, 3.2, 1.5, 1, 0]
L2, dist2=algoA(M, H, départ, arrivée)
print('Algo A* chemin :',L2,'; distance',dist2)

Le programme Python affiche :
  Algo A* chemin : [0, 1, 3, 5]
  distance = 8

Remarque :

L’algorithme A* utilise une heuristique dont le coût évalué (distance à vol d’oi-
seau) est toujours inférieur au coût réel. On dit que cette heuristique est admissible. 
On peut montrer que cet algorithme retourne toujours une solution optimale si elle 
existe. L’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd-
Warshall » dans le chapitre « Programmation dynamique ») permet de traiter des 
arcs dont le poids est négatif.
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On considère le graphe orienté ( )=G S A,  qui représente le quartier de Manhat-
tan. Les routes sont à double sens et certaines sont bloquées à cause de travaux 
(rectangles avec des briques). Les n sommets du graphe sont les intersections 
des routes : le sommet 11 représente l’intersection de la 5e avenue avec la 66e 
rue. On considère que la distance entre deux sommets adjacents vaut 1. On 
suppose que le nombre d’avenues est égal au nombre de rues.

Position des 25 sommets : 

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Les sommets barrés ne sont pas acces-
sibles à cause de travaux.
Une heuristique est un algorithme qui 
calcule rapidement une solution pou-
vant être approximative. On utilise la 
distance de Manhattan pour estimer 
le coût restant ( ( )h i  = nombre d’ave-
nues et de rues entre le sommet i et le 
sommet arrivée) permettant d’at-
teindre le sommet arrivée à partir 
du sommet i. On définit la variable inf=1e10 qui représente une distance  
infinie.
On définit la liste SOMMETS contenant les informations suivantes pour chaque 
sommet :
[sommet précédent sur le chemin, distance parcourue depuis le sommet de 
départ, sommet sélectionné ou non (booléen vrai ou faux), distance évaluée 
entre départ et arrivée]
L.reverse() permet d’inverser les éléments de la liste L.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à 
chaque sommet représente la liste des sommets adjacents.
2.  Écrire une fonction listeH qui admet comme arguments d’entrée le som-
met arrivée et le nombre de sommets n. Cette fonction retourne la liste 

( ) ( ) ( ) ( )= − 0 1 1H h h h i h n, , ..., , ...,  telle que ( )h i  = distance de Manhattan 
entre le sommet i et le sommet arrivée.

2e3e4e5e6e
64e

65e

66e

67e

68e

Avenues

Rues

Exercice 13.4 : �Variantes de l’algorithme A*, distance  
de Manhattan
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3.  L’algorithme glouton BFS (Best First Search : meilleure première recherche) 
permet de déterminer un plus court chemin entre le sommet départ et le som-
met arrivée.
a) Initialisation de l’algorithme BFS :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce 
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les 
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On 
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour 
lequel la distance ( )indiceh  entre indice et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position 
et ce sommet devient sélectionné.

Écrire une fonction BFS qui admet comme arguments d’entrée un dictionnaire 
dico, le sommet départ et le sommet arrivée. Cette fonction retourne le 
chemin suivi ainsi que la distance parcourue entre départ et arrivée en 
utilisant l’algorithme BFS. 
4.  On dispose pour chaque sommet i d’une estimation du coût restant pour 
atteindre le sommet arrivée à partir du sommet i : ( )h i  = distance de Manhat-
tan entre le sommet i et le sommet arrivée. On pose w un réel compris entre 0 
et 1. On définit la fonction d’évaluation f telle que : ( ) ( ) ( ) ( )= − ⋅ + ⋅1f i w g i w h i .
•• ( )g i  est le coût réel du chemin optimal entre départ et i dans la partie déjà 
explorée ;

•• ( )h i  est le coût estimé du chemin qui reste à parcourir entre i et arrivée. 
a) Initialisation de l’algorithme :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce 
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les 
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On 
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ. 
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour 
lequel la distance f (indice) entre départ et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position 
et ce sommet devient sélectionné.
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Écrire une fonction MANHATTAN qui admet comme arguments d’entrée un dic-
tionnaire dico, le sommet départ, le sommet arrivée et le réel w. Cette 
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ 
et arrivée en utilisant l’algorithme décrit précédemment.
Écrire le programme principal permettant de déterminer un plus court chemin 
entre le sommet de départ 10 et le sommet d’arrivée 13. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue pour w = 0, w = 0.5 et  
w = 1.
5.  Comment appelle-t-on les algorithmes lorsque w = 0, w = 0.5 et w = 1 ?

Analyse du problème
La fonction h est une fonction heuristique telle que ( )h i  est le coût estimé du che-
min qui reste à parcourir entre le sommet i et le sommet arrivée. On utilise la 
distance de Manhattan alors que dans l’exercice précédent « Algorithme A* » on 
utilise la distance euclidienne (ou distance à vol d’oiseau).

On considère différentes fonctions d’évaluation dans ce problème pour sélection-
ner un sommet :

•• Algorithme glouton BFS (question 3) : la fonction d’estimation ( ) ( )=f i h i  ren-
voie la distance de Manhattan entre le sommet i et le sommet arrivée.

•• Algorithme de la question 4 : la fonction d’évaluation ( ) ( ) ( ) ( )= − ⋅ + ⋅1f i w g i w h i
renvoie une estimation de la distance entre le sommet de départ et le sommet 
d’arrivée en passant par un sommet i.

1.  
dico={0:[1,5], 1 :[0,2,6], 2 :[1,3], 3 :[2,4], 4 :[3,9],\
  5 :[0,6,10], 6 :[1,5,11], 7 :[], 8 :[], 9 :[4,14],\
  10 :[5,11,15], 11 :[6,10], 12 :[], 13 :[14, 18],\
  14 :[9,13,19], 15 :[10,20], 16 :[], 17 :[],\
  18 :[13, 19, 23], 19 :[14,18, 24], 20 :[15,21],\
  21 :[20,22], 22 :[21,23], 23 :[18, 22,24], 24 :[19,23]}

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le chapitre 
« Dictionnaire, pile, file, deque » pour l’utilisation des dictionnaires.
Le sommet 6 est relié aux sommets 1, 5 et 11. La valeur de la clé 6 est la 
liste des sommets adjacents [1, 5, 11].
Le nombre d’éléments du dictionnaire correspond au nombre n de sommets 
du graphe. On définit nb_rues le nombre de rues. Comme le nombre 
d’avenues est égal au nombre de rues, alors :

import math as m        # module math renommé m
nb_rues=int(m.sqrt(n))  # n = nombre de sommets
                        # = nombre de rues * nombre d’avenues
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2. La distance de Manhattan entre un sommet A (de coordonnées xA, yA) et 
un sommet B (de coordonnées xB, yB) vaut x x y yB A B A− + − . Elle corres-
pond au nombre d’avenues et de rues entre le sommet A et le sommet B.  
Les abscisses correspondent aux lignes et les ordonnées correspondent aux 
colonnes. Le sommet 0 a pour coordonnées 0, 0. Le sommet 13 a pour 
coordonnées 2, 3.

inf=1e10                   # variable représentant l’infini

def listeH(arrivée, n):
    import math as m       # module math renommé m
    # la fonction retourne la liste H telle que H[i] = distance
    # de Manhattan entre le sommet i et le sommet arrivée (int)
    nb_rues=int(m.sqrt(n)) # n = nombre de sommets
                            # = nombre de rues * nombre d'avenues
             # on suppose que nombre d’avenues = nombre de rues
    xB, yB= arrivée//nb_rues, arrivée%nb_rues
             # abscisse et ordonnée du sommet d’arrivée
             # quotient et reste de la division euclidienne
    H=[]     # initialisation de la liste H
    for i in range(0, n) :  # i varie entre 0 inclus et n exclu
        xA, yA=i//nb_rues, i%nb_rues  # abscisse et ordonnée
                                      # du sommet i
             # quotient et reste de la division euclidienne
        y=abs(yB-yA)+abs(xB-xA) # distance de Manhattan pour
                                      # le sommet i
        H.append(y)
    return H

3. On définit une liste SOMMETS qui contient pour chaque sommet i :
•• SOMMETS[i][0] : sommet précédent ;
•• SOMMETS[i][1]  : g i( ) = distance entre le sommet départ et le 
sommet i ;

•• SOMMETS[i][2] : True si le sommet i est sélectionné, sinon False ;
•• SOMMETS[i][3]  : f i( ) = distance entre le sommet départ et le 
sommet arrivée.

La méthode gloutonne repose sur l’utilisation de sous-problèmes. Lorsqu’on 
est rendu au sommet position, on fait un choix local qui paraît être 
le meilleur en choisissant, dans la liste des sommets non sélectionnés, le 
sommet suivant indice dont la distance de Manhattan entre indice et 
arrivée est la plus petite. Ce choix n’est pas remis en cause ultérieu-
rement. On privilégie les sommets « qui semblent » nous rapprocher de la 
destination.
a) Initialisation de l’algorithme :
On définit la liste H en utilisant la fonction listeH définie dans la ques-
tion 2.
Tous les sommets sont non sélectionnés (SOMMETS[i][2]=False) 
sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut 0.  
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Pour les sommets non sélectionnés, les distances parcourues depuis le 
sommet de départ sont initialisées à l’infini : SOMMETS[i][1]=inf et 
SOMMETS[i][3]=inf. La variable position prend initialement la 
valeur départ.
b) On définit une boucle while(position!=arrivée) tant que la 
variable position (sommet appartenant à la frontière entre les sommets 
sélectionnés et les sommets non sélectionnés) n’est pas égale à la variable 
arrivée.

•• La boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélection-
nés. On calcule g_i=SOMMETS[position][1]+1 (= distance entre 
départ et position + distance entre position et i) et f_i=H[i].

•• Si la nouvelle distance f_i entre départ et arrivée est inférieure 
à SOMMETS[i][3], alors SOMMETS[i][3] = f_i. On met à 
jour également la distance entre le sommet départ et le sommet i : 
SOMMETS[i][1] = g_i. Le sommet position est le sommet 
précédent de i : SOMMETS[i][0] = position.

•• On cherche le sommet indice (parmi les sommets non sélectionnés) 
pour lequel la distance f (indice) entre départ et arrivée est la 
plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable 
position et ce sommet devient sélectionné.

•• Si indice = position, on ne peut pas atteindre le sommet d’arrivée.

def init4(départ, n):  # n = nombre de sommets dans le graphe
    # la fonction initialise la liste SOMMETS à partir
    # de départ (int)
    SOMMETS=[]         # initialisation de la liste SOMMETS
    for i in range(n): # i varie entre 0 inclus et n exclu
        if i==départ:
            SOMMETS.append([-1, 0, True, 0])
           # la valeur -1 n’est pas utilisée
           # True : uniquement le sommet de départ est sélectionné
        else:
            SOMMETS.append([-1, inf, False, inf]) 
           # la valeur -1 n’est pas utilisée car distance infinie
           # False : sommet non sélectionné
    return SOMMETS
def BFS(dico, départ, arrivée):
    # la fonction permet d’avoir un plus court chemin
    # de départ (int) à arrivée (int) dans la liste L
    # à partir du dictionnaire dico.
    # On récupère la liste SOMMETS
    n=len(dico)               # nombre de sommets
    H=listeH(arrivée, n)
    inf=1e10                  # variable représentant l’infini
    SOMMETS=init4(départ, n)  # initialisation de la liste SOMMETS
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    position=départ
    while (position!=arrivée):
        indice=position
        for i in range(n):    # i décrit tous les sommets
            if SOMMETS[i][2]==False: # sommet non sélectionné
                L=dico[position]
                if i in L:    # position et i sont adjacents
                    g_i=SOMMETS[position][1]+1
                              # g(i) = coût réel entre départ et i
                    f_i=H[i]  # coût estimé entre i et arrivée
                    if f_i<SOMMETS[i][3]:
                        SOMMETS[i][1]=g_i
                              # distance départ->i = g(i)
                        SOMMETS[i][3]=f_i
                              # fonction d’évaluation f(i) = H[i]
                        SOMMETS[i][0]=position
                              # sommet précédent sur le chemin
        # recherche du minimum des valeurs de f(i) = H[i]
        # pour les sommets non sélectionnés
        val_min=inf         # initialisation de val_min à +infini
        for i in range(n):  # i varie entre 0 inclus et n exclu
            if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
                indice=i
                val_min=SOMMETS[i][3]  # f(i)
        if indice==position:
            return [],inf   # on n’atteint pas le sommet arrivée
        else:
            SOMMETS[indice][2]=True  # ce sommet est sélectionné
            position=indice          # nouvelle valeur de position
 
    # liste des sommets parcourus
    i=arrivée
    L=[arrivée]  # L = liste des sommets parcourus en sens inverse
    while (i!=départ):
        i=SOMMETS[i][0]
        L.append(i)
    L.reverse()  # il faut inverser la liste L pour obtenir la
                 # liste des sommets parcourus dans le sens direct
    return L, SOMMETS[arrivée][1]

4. C’est le même algorithme que précédemment. On change la fonction 
d’évaluation  : f_i = (1-w)*g_i+w*h_i au lieu de f_i = h_i pour 
sélectionner le sommet suivant lorsqu’on est rendu au sommet position. 
On retrouve l’algorithme de la question 2 avec w = 1.

def MANHATTAN (dico, départ, arrivée, w):
    # la fonction permet d’avoir un plus court chemin
    # de départ (int) à arrivée (int) dans la liste L
    # à partir du dictionnaire dico.
    # w est compris entre 0 et 1.
    # On récupère la liste SOMMETS
    n=len(dico)              # nombre de sommets
    H=listeH(arrivée, n)
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    inf=1e10                 # variable représentant l’infini
    SOMMETS=init4(départ, n) # initialisation de la liste SOMMETS
    position=départ
    while (position!=arrivée):
        indice=position
        for i in range(n):   # i décrit tous les sommets
            if SOMMETS[i][2]==False: # sommet non sélectionné
                L=dico[position]
                if i in L:   # position et i sont adjacents
                    g_i=SOMMETS[position][1]+1
                              # g(i) = coût réel entre départ et i
                    h_i=H[i]  # coût estimé entre i et arrivée
                    # w=0:Dijkstra, w=0.5:algorithme A*, w=1:BFS
                    f_i=(1-w)*g_i+w*h_i
                    if f_i<SOMMETS[i][3]:
                        SOMMETS[i][1]=g_i
                            # distance départ->sommet i = g(i)
                        SOMMETS[i][3]=f_i
                            # distance départ->arrivée = f(i)
                        SOMMETS[i][0]=position
                            # sommet précédent sur le chemin
        # recherche du minimum des valeurs de f(i)
        # = distance départ->arrivée
        # pour les sommets non sélectionnés
        val_min=inf
        for i in range(n):
            if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
                indice=i
                val_min=SOMMETS[i][3]  # f(i)
        if indice==position:
            return [],inf   # on n’atteint pas le sommet arrivée
        else:
            SOMMETS[indice][2]=True  # ce sommet est sélectionné
            position=indice          # nouvelle valeur de position
 
    # liste des sommets parcourus
    i=arrivée
    L=[arrivée]  # L = liste des sommets parcourus en sens inverse
    while (i!=départ):
        i=SOMMETS[i][0]
        L.append(i)
    L.reverse()  # il faut inverser la liste L pour obtenir la
                 # liste des sommets parcourus dans le sens direct
    return L, SOMMETS[arrivée][1]

# initialisation du programme
départ, arrivée=10, 13  # sommet de départ et sommet d'arrivée
L2, dist2=BFS(dico, départ, arrivée)
print('Algo BFS : chemin :', L2, '; distance', dist2)
w=0
for i in range(3):
    L2, dist2=MANHATTAN(dico, départ, arrivée, w)
    print('w =',w, '; chemin :', L2, '; distance', dist2)
    w=w+0.5
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5. On retrouve plusieurs cas particuliers :
•• w = 0 : algorithme de Dijkstra. L’algorithme devient une recherche en 
largeur sans stratégie d’exploration des sommets ;

•• w = 0.5 : algorithme A* ;
•• w = 1 : algorithme glouton BFS.

Si on souhaite aller de Bordeaux à Lyon, l’algorithme A* va plutôt explorer 
les sommets vers l’est qui ont une distance plus faible que les autres som-
mets alors que l’algorithme de Dijkstra fait une recherche en largeur sans 
stratégie d’exploration des sommets.
Le programme Python affiche les résultats suivants pour départ = 10 et 
arrivée = 13 :

•• w = 0 ; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance = 7 ;
•• w = 0.5 ; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance = 7 ;
•• w = 1 ; chemin : [10, 11, 6, 1, 2, 3, 4, 9, 14, 13] ; distance = 9.

L’algorithme BFS (w = 1) ne donne pas la solution optimale : il privilégie 
le chemin passant par 11 qui semble plus près de 13 mais qui nécessite un 
long contournement pour atteindre effectivement 13.
Les algorithmes de Dijkstra et A* utilisent une heuristique dont le coût 
évalué (distance de Manhattan) est toujours inférieur ou égal au coût réel. 
On dit que ces heuristiques sont admissibles. On peut montrer que ces deux 
algorithmes retournent toujours une solution optimale si elle existe. Il peut 
y avoir plusieurs solutions optimales de même coût.
Dans la méthode gloutonne, on ne revient pas sur un choix local optimal 
alors que, avec la programmation dynamique, on peut revenir sur les choix 
précédents. L’algorithme est glouton pour toutes les valeurs de w.
L’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd- 
Warshall » dans le chapitre « Programmation dynamique ») permet de trai-
ter des arcs dont le poids est négatif.





Partie 11

Programmation 
dynamique



Plan

14. Programmation dynamique (Spé) (sauf TSI et TPC)� 211
14.1 : Suite des nombres de Fibonacci, Top Down et Bottom Up� 211
14.2 : Rendu de monnaie� 214
14.3 : Problème du sac à dos� 223
14.4 : Algorithme de Floyd-Warshall� 231



211

14Programmation 
dynamique (Spé)  
(sauf TSI et TPC)

On note ∈( )


Fn n  la suite des nombres de Fibonacci définie par : = =0, 1,0 1F F  
∀ ∈ = ++ +, 2 1n F F Fn n n.

1.  Écrire une fonction récursive fibo1 qui permet de renvoyer le nombre de 
Fibonacci Fn. L’algorithme utilise-t-il la méthode « diviser pour régner » ?
2.  Représenter l’arbre des appels de la fonction récursive fibo1(5). Combien 
de fois est recalculé F2

 ? Quel est l’inconvénient ?
Pour pallier cet inconvénient, on utilise deux techniques : technique récursive 
« Top Down » (de haut en bas) de mémoïsation et technique itérative « Bottom 
Up » (de bas en haut).
3.  La technique de mémoïsation consiste à stocker les valeurs de Fn dans une 
liste au fur et à mesure qu’elles sont calculées. Utiliser un dictionnaire pour 
implémenter la mémoïsation. Écrire une fonction « récursive » fibo2 renvoyant 
le nombre de Fibonacci Fn en utilisant la technique « Top Down ».
4.  Écrire une fonction itérative fibo3 qui prend en argument un entier naturel 
n et renvoie le nombre de Fibonacci Fn en utilisant la technique « Bottom Up ».

Exercice 14.1 : �Suite des nombres de Fibonacci, Top Down  
et Bottom Up

Analyse du problème
La méthode « diviser pour régner » permet de décomposer le problème initial en 
deux sous-problèmes. 

Afin d’éviter de calculer plusieurs fois le même nombre de Fibonacci, on utilise la 
technique de mémoïsation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes : 

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner  : on combine les différents sous-problèmes pour résoudre le problème de 
départ.
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Cette méthode donne de très bons résultats dans de nombreux problèmes : dichotomie, tri 
par partition-fusion, tri rapide. 

La méthode «  diviser pour régner  » a parfois des faiblesses avec des appels récursifs 
redondants. Les sous-problèmes ne sont pas toujours indépendants. On peut être amené à 
résoudre plusieurs fois le même sous-problème.

Une solution consiste à utiliser la technique de mémoïsation en stockant les résultats déjà 
calculés. On rencontre deux techniques :

•• Technique récursive « Top Down » (de haut en bas) de mémoïsation. Lors d’un appel 
récursif, on regarde dans une liste intermédiaire si le sous-problème est déjà traité.
Top Down : on résout dans le sens des données de grande taille vers les données de 
petite taille.

•• Technique itérative « Bottom Up » (de bas en haut) : on résout dans le sens des données 
de petite taille vers les données de grande taille (c’est l’ordre inverse de « Top Down »).  
On stocke également les résultats obtenus dans une liste intermédiaire.

L’algorithme « Bottom Up » résout tous les sous-problèmes de taille inférieure alors que l’al-
gorithme « Top Down » ne résout que les sous-problèmes de taille inférieure dont il a besoin.

1. 
def fibo1(n):
    # la fonction renvoie le nombre de Fibonacci Fn
    # pour l’entier n
    if n==0:
        return 0 # condition d’arrêt
    elif n==1:
        return 1 # condition d’arrêt
    else:
        return (fibo1(n-1)+fibo1(n-2))
                 # appel récursif

L’algorithme est de type «  diviser pour régner  » puisqu’on décompose 
le problème (calcul de fibo1(n)) en deux sous-problèmes (calcul de 
fibo1(n-1) et fibo1(n-2)). On calcule récursivement chacun des deux 
sous-problèmes.
2. L’arbre ci-dessous représente les différents appels de la fonction fibo1 
que l’on note fib.

fib(4)

fib(5)

fib(3)

2
3

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

2
1 1

1

1

1 1 0 1 0

main()

5

fib(1) fib(0)

1

0
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F2 est recalculé 3 fois. F3 est recalculé 2 fois.
L’inconvénient est que l’on augmente considérablement la complexité 
puisqu’on recalcule plusieurs la même valeur Fn.
3. On utilise un dictionnaire contenant les termes de la suite déjà calculés. 
Pour chaque élément du dictionnaire dico, on précise la clé et la valeur 
associée. La clé est l’entier n et la valeur est Fn. On dit que l’on a un che-
vauchement de sous-problèmes.
def fibo2(n, dico):
    # la fonction renvoie le nombre de Fibonacci F[n]
    # pour l’entier n
    if n in dico:               # teste si n est dans dico
        return dico[n]          # condition d’arrêt
                                # retourne F[n]
    else:
        if n==0:
            dico[n]=0           # calcul de F[0]
            return 0            # condition d’arrêt
        elif n==1:
            dico[n]=1           # calcul de F[1]
            return 1            # condition d’arrêt
        else:
            a=fibo2(n-1, dico)  # appel récursif
            if n-1 not in dico: # teste si la clé n-1
                                # est dans dico
                dico[n-1]=a     # stockage de F[n-1] dans dico
            b=fibo2(n-2, dico)  # appel récursif
            if n-2 not in dico: # teste si la clé n-2
                                # est dans dico
                dico[n-2]=b     # stockage de F[n-2] dans dico
            return (a+b)

dico={}
n=15
print('fibo2 =', fibo2(n, dico))

4. La relation de récurrence s’écrit pour n ≥ 2 : Fn = Fn−1 + Fn−2.
def fibo3(n):
    # la fonction renvoie le nombre de Fibonacci Fn
    # pour l’entier n
    # on remplit dans une liste les valeurs de F[n]
    if n==0:
        return 0
    elif n==1:
        return 1
    else:
        F=[0, 1]                # initialisation de la liste F
        for i in range(2, n+1): #i varie entre 2 inclus
                                # et n+1 exclu
            F.append(F[i-1]+F[i-2])
        return F[i]
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On dispose des pièces entières suivantes : S = [1, 2, 5, 10, 20, 50, 100] = [S0, S1, 
…, Sn-1] où S[i] représente la valeur de la pièce d’indice i. On cherche à rendre 
une certaine somme entière X en utilisant le moins de pièces, qui peuvent être 
identiques.

1.  On utilise la méthode la plus intuitive qui consiste à commencer par rendre 
la plus grande pièce possible. Pour X = 11, on commence par rendre la pièce 
de 10.
On appelle L[x] le nombre de pièces nécessaires pour rendre la somme x. La 
récurrence (1) peut s’écrire :
•• L[0] = 0 ;

•• si ≥x 1 : [ ][ ]= + −L x L x S i[ ] 1  avec i le plus grand tel que [ ] ≤S i x.

On suppose que la liste S est triée par ordre croissant des valeurs. Écrire une 
fonction récursive rendu1 qui admet comme arguments une liste S et un entier 
X. La fonction retourne le nombre de pièces nécessaires pour rendre la somme 
X en utilisant la récurrence (1).
L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette 
méthode est-elle appelée gloutonne ? Est-ce que rendu1([1, 4, 6], 8) 
retourne la solution optimale ?
2.  Pour trouver la solution optimale au rendu de monnaie, on utilise la récur-
rence (2) :
•• L[0] = 0 ;

•• si ≥x 1 : = + − 
≤ ≤ −
≤

[ ] 1 min
0 1

L x L x S
i n

S x

i

i

.

Écrire une fonction récursive rendu2 qui admet comme arguments une liste 
S et un entier X. La fonction retourne le nombre minimal de pièces nécessaires 
pour rendre la somme X.
L’algorithme utilise-t-il la méthode « diviser pour régner » ?
Représenter l’arbre des appels de la fonction récursive rendu2([1, 2, 5], 
4). Quel est l’inconvénient ?
3.  Écrire une fonction récursive rendu3 qui admet comme arguments une 
liste S, un entier X et une liste L servant à stocker les résultats intermédiaires. 
La fonction retourne le nombre minimal de pièces nécessaires pour rendre la 
somme X en utilisant la programmation dynamique avec la récurrence (2).
Représenter l’arbre des appels de la fonction récursive rendu3([1, 2, 5], 
4, L).
Utilise-t-on la technique « Top Down » (de haut en bas) ou « Bottom Up » (de 
bas en haut) dans la fonction rendu3 ?

Exercice 14.2 : Rendu de monnaie
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4.  Écrire une fonction itérative rendu4 qui admet comme arguments une liste 
S, un entier X et une liste L. La fonction retourne le nombre minimal de pièces 
nécessaires pour rendre la somme X. On part de la plus petite somme possible 
à rendre et on calcule les éléments suivants de L en utilisant la récurrence (2).
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
5.  On souhaite reconstruire la solution optimale à partir de l’information calcu-
lée, c’est-à-dire obtenir la liste des pièces utilisées. On définit la liste T :
•• T[x] > 0 si on a utilisé la pièce d’indice T[x] pour rendre la somme x dans la 
récurrence (2) ;

•• T[x] = 0 sinon.

On définit une liste PIECES initialement vide. On considère une boucle while 
en partant de x = X :
•• T[x] désigne l’indice de la pièce utilisée pour rendre la somme x dans la récur-
rence (2) ;

•• ajouter dans la liste PIECES la valeur de la pièce utilisée ;

•• retrancher cette valeur à x.

Modifier la fonction rendu3 qui utilise la technique « Top Down » pour obte-
nir la liste des pièces utilisées.
6.  Modifier la fonction rendu4 qui utilise la technique « Bottom Up » pour 
obtenir la liste des pièces utilisées.

Analyse du problème
On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La 
méthode « diviser pour régner » permet de décomposer le problème initial en deux 
sous-problèmes. La programmation dynamique permet d’obtenir une solution opti-
male en utilisant deux techniques : « Top Down » et « Bottom Up ».

On verra la différence entre la méthode gloutonne et la programmation dynamique.

1. On suppose que la liste S est triée par ordre croissant des valeurs. 
def rendu1(S, X):
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i] = valeur de la pièce d’indice i
    if X==0:  # condition d’arrêt
        return 0
    else:
              # recherche de i le plus grand tel que S[i] <= X
        i=len(S)-1
        while S[i]>X:
            i=i-1
              # ajoute 1 au nombre de pièces ;



Partie 11 · Programmation dynamique

216

              # puisqu’on utilise la pièce S[i]
              # il reste donc à rendre la monnaie à X - S[i]
        return 1+rendu1(S, X-S[i]) # appel récursif

S=[1, 4, 6]
X=8
print(rendu1(S, X))                # on obtient : 3

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner  : on combine les différents sous-problèmes pour résoudre le problème de 
départ.

Dans la méthode gloutonne (greedy en anglais), on effectue une succession de choix, cha-
cun d’eux semble être le meilleur sur le moment. On résout alors le sous-problème mais on 
ne revient jamais sur le choix déjà effectué.

L’algorithme est de type « diviser pour régner » puisqu’on décompose le 
problème (calcul de L[X]) en un sous-problème (calcul de L[X − S[i]] avec i 
le plus grand tel que S[i] ≤ X). On calcule récursivement le sous-problème.
À chaque étape de l’algorithme, on commence par rendre la plus grande 
pièce possible, c’est-à-dire la plus grande pièce dont la valeur est infé-
rieure à la somme à rendre. C’est la solution qui semble être la meilleure 
et la plus intuitive. On déduit alors de cette pièce la somme à rendre et on 
est ramené à un sous-problème avec une somme à rendre plus petite. On 
recommence jusqu’à obtenir une somme nulle.
Cet algorithme est très simple mais à chaque étape on n’étudie pas tous les 
cas possibles puisqu’on se contente de choisir la pièce la plus grande que 
l’on peut rendre.
Dans le cas où S = [1, 4 , 6] et X = 8, on n’obtient pas la solution optimale. 
L’algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 pièce de 
6 et 2 pièces de 1) alors que la solution optimale est 2 (2 pièces de 4).
2. 
def rendu2(S, X):
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i] = valeur de la pièce d’indice i
    if X==0:         # condition d’arrêt
        return 0
    else:
        mini=X       # recherche du minimum de X-S[i]
        for i in range(len(S)):  # i varie entre 0 inclus
                                 # et len(S) exclu
            if S[i]<=X:          # il faut que Si <= X
                res=rendu2(S, X-S[i])
                                 # appel récursif pour
                                 # rendre la monnaie à X-S[i]
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                if res<mini:
                    mini=res
        return 1+mini            # ajoute 1 au nombre de pièces

S=[1, 4, 6]
X=8
print(rendu2(S, X))  # on obtient 2, c’est-à-dire la solution
                     # optimale alors que rendu1(S, X)
                     # retourne 3

L’algorithme est de type « diviser pour régner » puisqu’on décompose le 
problème (calcul de L[X]) en plusieurs sous-problèmes (calcul de L[X–S[0]], 
L[X–S[1]],…, L[X–S[n-1]]). On combine les différents sous-problèmes pour 
résoudre le problème de départ.
L’arbre ci-dessous représente les différents appels de la fonction 
rendu2([1, 2, 5], 4) qui retourne 2.

3

2

1

0

4

0

1

0

1 0

2

0

On appelle rendu2 pour X = 4.
•• On appelle rendu2 pour X–S[i] = 4 – 1 = 3 avec i = 0 (de la boucle 
for).

•• On appelle rendu2 pour 3 – 1 = 2 avec i = 0 (de la boucle for).
•• On appelle rendu2 pour 2 – 1 = 1 avec i = 0 (de la boucle for). On 
appelle rendu2 pour 1 – 1 = 0 avec i = 0. On arrive à la condition 
d’arrêt.

•• On dépile et on revient à l’appel pour X = 2 avec i = 1 (de la boucle for). 
On appelle rendu2 pour 2 – 2 = 0. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 3 avec i = 1 (de la boucle for). 
On appelle rendu2 pour 3 – 2 = 1. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 4 avec i = 2 (de la boucle for). 
On appelle rendu2 pour 4 – 2 = 2.

•• …
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On constate que l’on calcule plusieurs fois le nombre de pièces à rendre 
pour X = 2. Les sous-problèmes ne sont pas indépendants. On est amené à 
résoudre plusieurs fois le même sous-problème. On dit que l’on a un che-
vauchement de sous-problèmes.
3. Pour éviter de calculer plusieurs fois le nombre de pièces à rendre pour 
une valeur de X, on garde en mémoire le résultat dans la liste L. La liste L 
doit contenir les valeurs suivantes : 0, 1, 2, …, X.
def rendu3(S, X, L): # programmation dynamique –
                     # technique Top Down
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i] = valeur de la pièce d’indice i
    # stockage des résultats intermédaires dans L :
    # L[i] = nombre de pièces nécessaires pour
    # rendre la somme i
    if X==0:         # condition d’arrêt
        return 0
    elif L[X]>0:     # valeur déjà calculée
        return L[X]  # retourne le nombre de pièces nécessaires
                     # pour rendre la somme X
    else:
        mini=X       # recherche du minimum de X-S[i]
        for i in range(len(S)):  # i varie entre 0 inclus
                                 # et len(S) exclu
            if S[i]<=X:          # il faut que Si <= X
                res=rendu3(S, X-S[i], L)
                                 # appel récursif pour
                                 # rendre la monnaie à X-S[i]
                if res<mini:
                    mini=res
        L[X]=1+mini              # technique de mémoïsation
        return 1+mini            # ajoute 1 au nombre de pièces

L=[0 for i in range(X+1)]        # initialisation - liste L
                                 # avec des valeurs nulles
print(rendu3(S, X, L))           # on obtient 2

Remarque  : On peut utiliser un dictionnaire au lieu de la liste L. Pour chaque 
élément du dictionnaire dico, on précise la clé et la valeur associée. La clé est 
l’entier i et la valeur est dico[i] = nombre de pièces nécessaires pour rendre la 
somme i.

def rendu3_dico(S, X, dico): # programmation dynamique –
                             # technique Top Down
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i] = valeur de la pièce d’indice i
    # stockage des résultats intermédaires dans dico :
    # dico[i] = nombre de pièces nécessaires pour
    # rendre la somme i
    if X==0:             # condition d’arrêt
        return 0
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    elif X in dico:      # valeur déjà calculée
        return dico[X]   # retourne le nombre de pièces
                         # nécessaires pour rendre la somme X
    else:
        mini=X           # recherche du minimum de X-S[i]
        for i in range(len(S)):  # i varie entre 0 inclus
                                 # et len(S) exclu
            if S[i]<=X:          # il faut que Si <= X
                res=rendu3_dico(S, X-S[i], dico)
                                 # appel récursif pour
                                 # rendre la monnaie à X-S[i]
                if res<mini:
                    mini=res
        dico[X]=1+mini           # technique de mémoïsation
        return 1+mini            # ajoute 1 au nombre de pièces

dico={}
S=[1, 4, 6]
X=8
print(rendu3_dico(S, X, dico))

Cours :
La programmation dynamique est souvent utilisée pour résoudre des problèmes d’optimi-
sation. Elle comprend différentes étapes :

•• Recherche d’une récurrence pour déterminer la valeur d’une solution optimale.
•• Utilisation de la technique Top Down ou Bottom Up.

La programmation dynamique et la méthode gloutonne reposent sur l’utilisation de 
sous-problèmes. Il y a une différence importante :

•• Dans la programmation dynamique, on calcule toutes les solutions des sous-problèmes 
que l’on combine pour obtenir une solution optimale.

•• Dans la méthode gloutonne, on choisit une solution qui semble être la meilleure et on 
résout le sous-problème qui en résulte.

On rencontre deux techniques dans la programmation dynamique :

•• Technique récursive « Top Down » de mémoïsation : on résout dans le sens des don-
nées de grande taille vers les données de petite taille. Lors d’un appel récursif, on 
regarde dans une liste intermédiaire si le sous-problème est déjà traité. 

•• Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille 
vers les données de grande taille (c’est l’ordre inverse de « Top Down »). On stocke 
également les résultats obtenus dans une liste intermédiaire.

L’arbre ci-dessous représente les différents appels de la fonction 
rendu3([1, 2, 5], 4).
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On appelle rendu3 pour X = 4.
•• On appelle rendu3 pour X–S[i] = 4 – 1 = 3 avec i = 0 (de la boucle 
for).

•• On appelle rendu3 pour 3 – 1 = 2 avec i = 0 (de la boucle for).
•• On appelle rendu3 pour 2 – 1 = 1 avec i = 0 (de la boucle for). On 
appelle rendu3 pour 1 – 1 = 0 avec i = 0. On arrive à la condition 
d’arrêt.

•• On dépile et on revient à l’appel pour X = 2 avec i = 1 (de la boucle for). 
On appelle rendu3 pour 2 – 2 = 0. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 3 avec i = 1 (de la boucle for). 
On appelle rendu3 pour 3 – 2 = 1. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 4 avec i = 2 (de la boucle for). 
On appelle rendu3 pour 4 – 2 = 2. On arrive à la condition d’arrêt 
puisque L[2] a déjà été calculé.

On ne calcule pas plusieurs fois le nombre de pièces à rendre pour X = 2.
La fonction rendu3 utilise la programmation dynamique avec la tech-
nique « Top Down » (de mémoïsation) et permet d’obtenir une solution 
optimale sans résoudre plusieurs fois le même sous-problème.
4. On a deux boucles for imbriquées. Il faut remplir toute la liste L avant 
d’obtenir la valeur optimale (x = X). On remarque que la récurrence (2) s’écrit 
avec x (pour la fonction rendu4) et non X (pour la fonction rendu3).
def rendu4(S, X, L):   # programmation dynamique –
                       # technique Bottom Up
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i] = valeur de la pièce d’indice i
    # stockage des résultats intermédaires dans L : 
    # L[i] = nombre de pièces nécessaires pour
    # rendre la somme i
    for x in range(1, X+1):      # x varie entre 1 inclus
                                 # et X+1 exclu
        mini=X
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        for i in range(len(S)):  # i varie entre 0 inclus
                                 # et len(S) exclu
            if S[i]<=x and L[x-S[i]]<mini:
                mini=L[x-S[i]]
        L[x]=1+mini
    return L[X]

L=[0 for i in range(X+1)]        # initialisation - liste L
                                 # avec des valeurs nulles
print(rendu4(S, X, L))           # on obtient 2

L’algorithme rendu4 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la même formule de récurrence mais on 
part de la plus petite valeur à rendre au lieu de partir de la plus grande 
valeur à rendre (technique « Top Down »).
Dans la fonction rendu4, on incrémente X de 1 inclus à X inclus (ou X+1 
exclu).

•• Dans la technique « Top Down », on ne traite que les sous-problèmes 
nécessaires. On n’a pas besoin de remplir entièrement la liste L pour 
obtenir la solution optimale au problème.

•• Dans la technique «  Bottom Up  », on traite tous les sous-problèmes 
(deux boucles for imbriquées). Il faut d’abord remplir entièrement la 
liste L avant de retourner la solution optimale au problème.

5. En dessous de la ligne L[X]=1+mini, on ajoute la ligne T[X]= 
indice afin de préciser l’indice de la pièce utilisée pour rendre la somme X.  
La variable indice est définie lors du test if res>mini:.
def rendu3_piece(S, X, L, T):   # programmation dynamique –
                                # technique Top Down
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X en utilisant la liste S :
    # S[i]=valeur de la pièce d’indice i
    # stockage des résultats intermédaires dans L :
    # L[i]=nombre de pièces nécessaires pour
    # rendre la somme i
    # T[x] > 0 si on a utilisé la pièce d’indice T[x]
    # pour rendre la somme x
    if X==0:             # condition d’arrêt
        return 0
    elif L[X]>0:         # valeur déjà calculée
        return L[X]      �# retourne le nombre de pièces  

# nécessaires pour rendre
                         # la somme X
    else:
        mini=X           # recherche du minimum de X-S[i]
        for i in range(len(S)):  # i varie entre 0 inclus
                                 # et len(S) exclu
            if S[i]<=X:          # il faut que Si <= X
                res=rendu3_piece(S, X-S[i], L, T)
                                 # appel récursif pour
                                 # rendre la monnaie à X-S[i]
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                if res<mini:
                    mini=res
                    indice=i
        L[X]=1+mini              # technique de mémoïsation
        T[X]=indice              # indice de la pièce utilisée
                                 # pour rendre la somme X
        return 1+mini            # ajoute 1 au nombre de pièces

S=[1, 2, 5]
X=4
L=[0 for i in range(X+1)]        # initialisation - liste L
                                 # avec des valeurs nulles
T=[0 for i in range(X+1)]        # initialisation - liste T
                                 # avec des valeurs nulles
print(rendu3_piece(S, X, L, T))

PIECES=[]
x=X
while x>0:
    PIECES.append(S[T[x]])
       # T[x] = indice de la pièce utilisée pour
       # rendre la somme x
       # S[T[x]] = valeur de la pièce d’indice T[x]
    x=x-S[T[x]]
       # on retranche la valeur S[T[x]] à x pour
       # chercher les autres pièces
print(PIECES)

Le programme Python affiche :
      2
      [4, 4]

6. En dessous de la ligne L[x]=1+mini, on ajoute la ligne T[x]= 
indice afin de préciser l’indice de la pièce utilisée pour rendre la somme 
x. La variable indice est définie lors du test if S[i]<=x and 
L[x-S[i]]<mini:.
On remarque que l’on utilise x (rendu4_piece) et non X (rendu3_
piece).
def rendu4_piece(S, X, L, T):   # programmation dynamique –
                                # technique Bottom Up
    # la fonction renvoie le nombre de pièces nécessaires
    # pour rendre la somme X ainsi que la liste des pièces
    # en utilisant la liste S
    # stockage des résultats intermédaires dans L :
    # L[i] = nombre de pièces nécessaires pour
    # rendre la somme i
    # T[x] > 0 si on a utilisé la pièce d’indice T[x]
    # pour rendre la somme x
    for x in range(1, X+1):      # x varie entre 1 inclus
                                 # et X+1 exclu
        mini=X
        indice=-1
        for i in range(len(S)):  # i varie entre 0 inclus
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                                 # et len(S) exclu
            if S[i]<=x and L[x-S[i]]<mini:
                mini=L[x-S[i]]
                indice=i         # indice de la pièce
        L[x]=1+mini
        T[x]=indice              # indice de la pièce utilisée
                                 # pour rendre la somme x
    # création de la liste des pièces utilisées
    # pour rendre la monnaie
    PIECES=[]
    x=X
    while x>0:
        PIECES.append(S[T[x]])
           # T[x] = indice de la pièce utilisée pour
           # rendre la somme x
           # S[T[x]] = valeur de la pièce d’indice T[x]
        x=x-S[T[x]] 
           # on retranche la valeur S[T[x]] à x pour
           # chercher les autres pièces
    return L[X], PIECES

S=[1, 2, 5]
X=4
L=[0 for i in range(X+1)]        # initialisation - liste L
                                 # avec des valeurs nulles
T=[0 for i in range(X+1)]        # initialisation - liste T
                                 # avec des valeurs nulles
print(rendu4_piece(S, X, L, T))

Le programme Python affiche :
      2
      [4, 4]

On considère un sac à dos dont la masse maximale est notée M. On cherche à 
maximiser la valeur totale des objets insérés dans le sac à dos. On dispose de n 
objets modélisés par la liste de listes S :
•• S[i][0] désigne la valeur de l’objet d’indice i notée vi (i varie de 0 à n–1).

•• S[i][1] désigne la masse de l’objet d’indice i notée mi (i varie de 0 à n–1).

On suppose dans tout le problème que ∑ >
=

−

m Mi
i

n

0

1

et que les masses sont des 

entiers. Le premier objet de la liste S a pour indice 0. 

1.  On utilise la méthode intuitive consistant à insérer au fur et à mesure les 
objets qui ont le plus grand rapport valeur/masse. On suppose que la liste S est 
triée par ordre décroissant du rapport valeur/masse. Écrire une fonction itéra-
tive algo1 qui admet comme arguments une liste S et un entier M. La fonction 
retourne la valeur des objets que l’on peut insérer dans le sac à dos.

Exercice 14.3 : Problème du sac à dos
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Pourquoi cette méthode est-elle appelée gloutonne  ? Est-ce que algo1 
([[15,6], [60,25], [10,5], [7,8], [10,20]], 30) retourne la 
solution optimale ?
2.  On considère L la liste telle que L[m][i] désigne la valeur maximale des 
objets que l’on peut insérer dans le sac à dos de masse maximale m en ne consi-
dérant que les i premiers objets de la liste S (indices des objets S compris entre 
0 et i–1).
Pour trouver la solution optimale au problème du sac à dos, on utilise la récur-
rence suivante (1) :
•• L[m][0] = 0.

•• L[m][i] = L[m][i–1] si S[i-1][1] > m et i > 0.

•• L[m][i] = max(L[m][i-1], S[i-1][0]+L[m-S[i-1][1],i-1]) 
si S[i-1][1] ≤ m et i > 0.

Écrire une fonction récursive algo2 qui admet comme arguments une liste S, 
un entier M et un entier i (on ne considère que les i premiers objets de la liste 
S). On n’utilisera pas dans cette question la liste L pour stocker les résultats 
intermédiaires. La fonction retourne la valeur maximale des objets que l’on 
peut insérer dans le sac à dos.
Démontrer la terminaison de la fonction algo2. L’algorithme utilise-t-il la 
méthode « diviser pour régner »  ? Quel est le principal inconvénient de cet 
algorithme ? 
3.  Écrire une fonction récursive algo3 qui admet comme arguments une liste 
S, un entier M, un entier i (on ne considère que les i premiers objets de la liste 
S) et une liste L (stockage des résultats intermédiaires). La fonction retourne la 
valeur maximale des objets que l’on peut insérer dans le sac à dos en utilisant 
la programmation dynamique. Utilise-t-on la technique « Top Down » (de haut 
en bas) ou « Bottom Up » (de bas en haut) ?
4.  Écrire une fonction itérative algo4 qui admet comme arguments une liste 
S, un entier M et une liste L (stockage des résultats intermédiaires). La fonction 
retourne la valeur maximale des objets que l’on peut insérer dans le sac à dos 
en utilisant la programmation dynamique avec la récurrence (1). Les résultats 
intermédiaires sont stockés dans la liste L.
On calcule les éléments de L en partant de la plus petite valeur de i et de la plus 
petite valeur de m.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
Quelle est la principale différence entre ces deux techniques en comparant les 
listes L obtenues par les deux algorithmes précédents ?
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5.  On souhaite reconstruire la solution optimale à partir de l’information cal-
culée, c’est-à-dire connaître la liste des objets insérés dans le sac. On définit la 
liste T :
•• T[m][i] = 1 si on a inséré le ième objet (indice i–1 dans S) dans le sac à dos 
de masse maximale m ;

•• T[m][i] = 0 sinon.

On définit une liste OBJETS initialement vide. On pose m = M. On considère 
une boucle for en partant de i = n :
•• Si T[m][i] = 1, alors on a inséré le ième objet (indice i–1 dans S) dans le sac 
à dos. Ajouter cet objet dans la liste OBJETS et retrancher la masse de cet 
objet à la masse m.

Modifier la fonction algo3 qui utilise la technique « Top Down » pour qu’elle 
retourne la valeur maximale ainsi que la liste des objets insérés.
6.  Modifier la fonction algo4 qui utilise la technique « Bottom Up » pour 
qu’elle retourne la valeur maximale ainsi que la liste des objets insérés.

Analyse du problème
On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés 
dans un sac à dos. La programmation dynamique permet d’obtenir une solution 
optimale en utilisant deux techniques : « Top Down » et « Bottom Up ». Une liste 
temporaire permet de stocker les résultats des sous-problèmes. On verra la diffé-
rence entre les deux techniques concernant le nombre de sous-problèmes à traiter.

1. 
def algo1(S, M):   # S liste de listes avec [valeur, masse]
    # les objets sont triés par ordre décroissant valeur/masse
    # la fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    v_total=0  # initialisation de la valeur totale des objets
    m_total=0  # initialisation de la masse totale des objets
    n=len(S)
    for i in range(n):
        if m_total+S[i][1]<=M: # teste si nouvelle
                               # masse totale <= M
            v_total+=S[i][0]   # calcule la nouvelle
                               # valeur totale
            m_total+=S[i][1]   # calcule la nouvelle
                               # masse totale
    return v_total             # retourne la valeur totale
                               # des objets

Avant d’insérer un objet, il faut tester que la nouvelle masse totale ne 
dépasse pas M.
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Cette méthode est appelée méthode gloutonne car elle consiste à faire le 
meilleur choix sur le moment, c’est-à-dire insérer l’objet qui a le plus grand 
rapport valeur/masse.
M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
    # [valeur, masse]
print('ALGO1 :', algo1(S, M))  # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient 
alors la liste suivante qui est bien triée par ordre décroissant  : [2.5, 
2.4, 2.0, 0.875, 0.5].

•• On insère le premier objet, de valeur 15 et de masse 6.
•• On ne peut pas insérer le deuxième objet, de masse 25, car la masse 
totale 6+25 dépasse 30.

•• On insère le troisième objet, de valeur 10.
•• On insère le quatrième objet, de valeur 7.

On obtient une valeur totale 32 dans le sac à dos.
Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas parti-
culier, algo1 renvoie 32 alors que la solution optimale est 70.
2. On cherche à insérer le ième  objet. On ne fait plus le même test que 
dans la question précédente (nouvelle masse totale ≤ M) mais on teste si la 
masse S[i-1][1] du ième objet (indice i–1) est inférieure à M puisqu’on 
traite le cas d’un sac à dos de masse maximale M-S[i-1][1].
On définit la fonction récursive algo2 :

•• algo2(S, M, i) retourne la valeur maximale des objets dans le sac 
à dos de masse maximale M en ne considérant que les i premiers objets 
de la liste S (indices compris entre 0 et i–1).

•• algo2(S, M, i-1) : valeur maximale dans le sac à dos de masse 
maximale M en ne considérant que les i–1 premiers objets.

•• algo2(S, M-S[i-1][1], i-1): valeur maximale dans le sac à 
dos de masse maximale M-S[i-1][1] en ne considérant que les i–1 
premiers objets.

On considère deux cas :
•• Si l’objet d’indice i–1 a une masse supérieure à M, alors on ne peut pas 
l’insérer et le programme retourne algo2(S, M, i-1) puisqu’il suffit 
de considérer les i–1 premiers objets.

•• Sinon, on cherche le maximum de deux nombres :
OO algo2(S, M, i-1) en n’insérant pas l’objet d’indice i–1 ;
OO valeur de l’objet d’indice (i-1) + algo2(S, M-S[i-1][1], 
i-1) en insérant l’objet d’indice i–1. Il faut en effet considérer la 
valeur maximale dans le sac à dos de masse M-S[i-1][1] avec les 
i–1 premiers objets. En faisant la somme des deux valeurs, la masse 
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maximale du sac à dos vaut toujours S[i-1][1]+(M-S[i-1]
[1])=M.

def algo2(S, M, i):
    # la fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    # et S liste de listes avec [valeur, masse]
    # on ne considère que les i premiers objets de la liste S
    if i==0:          # condition d’arrêt
        return 0      # pas d’objet à insérer dans le sac à dos
    elif S[i-1][1]>M: # l’objet d’indice i-1 est de masse > M
                      # on ne peut pas l’insérer
        return algo2(S, M, i-1)  # appel récursif
    else:
        return max(algo2(S, M, i-1),\
                   S[i-1][0]+algo2(S, M-S[i-1][1], i-1))
                      # appel récursif

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
    # [valeur, masse]
print('ALGO2 :', algo2(S, M, len(S)))

Le programme Python retourne 70, qui est la solution optimale.
On considère le variant de boucle i. À chaque appel de la fonction récursive, 
il décroît d’une unité et finit par atteindre la valeur 0 correspondant à la 
condition d’arrêt. Le programme se termine donc dans tous les cas si i ≥ 0.
L’algorithme est de type « diviser pour régner » puisqu’on décompose le 
problème (algo2(S, M, i)) en plusieurs sous-problèmes (algo2(S, 
M, i-1) et algo2(S, M-mi, i-1)). On combine les différents 
sous-problèmes pour résoudre le problème de départ.
Le principal inconvénient est que l’on calcule plusieurs la même valeur 
totale. On dit que l’on a un chevauchement de sous-problèmes. On va uti-
liser dans la question suivante la technique de mémoïsation qui consiste à 
stocker dans une liste les valeurs déjà calculées.
3. Pour éviter de calculer plusieurs fois la même valeur totale, on garde 
en mémoire le résultat dans la liste L : L[m ][i] contient la valeur maxi-
male des objets dans le sac à dos de masse maximale m en ne considérant 
que les i premiers objets.
La liste L doit contenir M+1 lignes et len(S)+1 colonnes.
def algo3(S, M, i, L):
    # la fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    # et S liste de listes avec [valeur, masse]
    # on ne considère que les i premiers objets de la liste S
    # stockage des résultats intermédaires dans la liste L 
    if L[M][i]>0:      # le sous-problème a déjà été traité
        return L[M][i] # retourne la valeur déjà calculée
    elif i==0:         # condition d’arrêt



Partie 11 · Programmation dynamique

228

        return 0       # pas d’objet à insérer dans
                       # le sac à dos
    elif S[i-1][1]>M:
        total=algo3(S, M, i-1, L)  # appel récursif
        L[M][i]=total  # l’objet d’indice i-1 est de masse > M
                       # on ne peut pas l’insérer
        return total
    else:
        total=max(algo3(S, M, i-1, L),\
                  S[i-1][0]+algo3(S,M-S[i-1][1], i-1, L))
                       # appel récursif
        L[M][i]=total
        return total

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
    # [valeur, masse]
L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('ALGO3 :', algo3(S, M, len(S), L))

La fonction algo3 utilise la programmation dynamique avec la technique 
« Top Down » (de mémoïsation) et permet d’obtenir une solution optimale 
sans résoudre plusieurs fois le même sous-problème.
4. On a deux boucles for imbriquées.
La boucle for i commence à i = 1 puisqu’on considère i–1 dans la récur-
rence (1).
La boucle for m commence à m = 0 et se termine à M inclus. Il faut remplir 
toute la liste L avant d’obtenir la valeur optimale (i = len(S) et m = M).
On remarque que la récurrence (1) s’écrit avec m (algo4) et non M 
(algo3).
def algo4(S, M, L):
    # la fonction retourne la valeur des objets que l’on peut 
    # insérer avec une masse maximale M
    # et S liste de listes avec [valeur, masse]
    # stockage des résultats intermédaires dans la liste L
    for i in range(1, len(S)+1):  # i varie entre 1 inclus
                                  # et len(S)+1 exclu
        for m in range(M+1):      # m varie entre 0 inclus
                                  # et M+1 exclu
            if S[i-1][1]>m:       # on considère l’objet
                                  # d’indice i-1
                L[m][i]=L[m][i-1] # l’objet d’indice i-1 est
                                  # de masse > m
                                  # on ne peut pas l’insérer
            else:
                L[m][i]=max(L[m][i-1],\
                            S[i-1][0]+L[m-S[i-1][1]][i-1])
    return L[M][len(S)]

La fonction algo4 utilise la programmation dynamique avec la technique 
« Bottom Up » : on utilise la même formule de récurrence que dans algo2 



Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC) 

229

et algo3 mais on part du plus petit nombre d’objets à insérer au lieu de 
partir du plus grand nombre d’objets à insérer (technique « Top Down »).
Il faut deux boucles for imbriquées pour faire varier le nombre d’objets à 
insérer et la masse maximale du sac à dos.

•• Dans la technique « Top Down », on ne traite que les sous-problèmes 
nécessaires. On n’a pas besoin de remplir entièrement la liste L pour 
obtenir la solution optimale au problème.

•• Dans la technique «  Bottom Up  », on traite tous les sous-problèmes 
(deux boucles for imbriquées). Il faut d’abord remplir entièrement la 
liste L avant de retourner la solution optimale au problème.

L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('ALGO4 :', algo4(S, M, L))

5. Lors de la recherche du maximum dans algo3, il faut savoir si l’objet 
d’indice i–1 a été inséré ou non. Si on insère l’objet d’indice i–1, alors 
T[M][i] = 1.
def algo3_objets(S, M, i, L, T):
    # la fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    # et S liste de listes avec [valeur, masse]
    # on ne considère que les i premiers objets de la liste S
    # stockage des résultats intermédaires dans la liste L
    # T[m][i] = 1 si on a inséré le ième objet
    # (indice i–1 dans S) dans le sac à dos
    # de masse maximale m
    if L[M][i]>0: # le sous-problème a déjà été traité
        return L[M][i] # retourne la valeur déjà calculée
    elif i==0:         # condition d’arrêt
        return 0       # pas d’objet à insérer dans
                       # le sac à dos
    elif S[i-1][1]>M:
        total=algo3_objets(S, M, i-1, L, T)  # appel récursif
        L[M][i]=total  # l’objet d’indice i-1 est de masse > M
                       # on ne peut pas l’insérer
        return total
    else:
        a=algo3_objets(S, M, i-1, L, T)
        b=S[i-1][0]+algo3_objets(S, M-S[i-1][1], i-1, L, T)
        if a > b:
            L[M][i]=a  # on n’a pas inséré l’objet d’indice i-1
            total=a
        else:
            L[M][i]=b
            T[M][i]=1  # on a inséré le ième objet dans le
                       # sac à dos de masse M
            total=b
        return total

M=30                   # entier
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
    # [valeur, masse]
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L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
T=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('algo3_objets :', algo3_objets(S, M, len(S), L, T))
OBJETS=[]
m=M
for i in range(len(S), 0, -1):  # i varie entre len(S) inclus
                                # et 0 exclu avec pas = -1
    if T[m][i]==1:    # i désigne le ième objet
        OBJETS.append(S[i-1])   # on a inséré le ième objet
                                # d’indice i-1
        m=m-S[i-1][1] # retranche à m la masse de l’objet inséré
print(OBJETS)

Pour obtenir la liste des objets insérés, il faut créer une liste OBJETS 
vide et considérer une boucle for en partant de len(S). Si le ième objet 
d’indice i–1 a été inséré, on l’ajoute dans la liste OBJETS. Il faut ensuite 
retrancher à m la masse de cet objet inséré et tester T[m][i] avec la 
nouvelle masse et le nouvel indice.
Le programme principal affiche : 

      70                   # valeur totale du sac à dos
      [[10, 5], [60, 25]]  # on a ajouté 1 objet de valeur 10
                           # et une autre de valeur 60

6. Lors de la recherche du maximum dans algo4, il faut savoir si l’objet 
d’indice i–1 a été inséré ou non. Si on insère l’objet d’indice i–1, alors 
T[m][i] =1.
Il s’agit bien de T[m][i] et non de T[M ][i] puisqu’on remplit la liste 
pour toutes les valeurs de m et de i.

def algo4_objets(S, M, L, T):
    # la fonction retourne la valeur des objets que l’on peut
    # insérer avec une masse maximale M
    # et S liste de listes avec [valeur, masse]
    # stockage des résultats intermédaires dans la liste L
    # T[m][i] = 1 si on a inséré le ième objet
    # (indice i–1 dans S) dans le sac à dos
    # de masse maximale m
    for i in range(1, len(S)+1):   # i varie entre 1 inclus
                                   # et len(S)+1 exclu
        for m in range(M+1):       # m varie entre 0 inclus
                                   # et M+1 exclu
            if S[i-1][1]>m:        # on considère l’objet
                                   # d’indice i-1
                L[m][i]=L[m][i-1]  # l’objet d’indice i-1 est
                                   # de masse > m
                                   # on ne peut pas l’insérer
            else:
                a=L[m][i-1]
                b=S[i-1][0]+L[m-S[i-1][1]][i-1]
                if a > b:
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                    L[m][i]=a      # on n’a pas inséré l’objet
                                   # d’indice i-1
                else:
                    L[m][i]=b
                    T[m][i]=1      # on a inséré le ième objet
                                   # dans le sac à dos
                                   # de masse m
    # création de la liste des objets insérés dans le sac à dos
    OBJETS=[]
    m=M
    for i in range(len(S), 0, -1): #i désigne le ième objet
        if T[m][i]==1:
            OBJETS.append(S[i-1])  # on a inséré le ième objet
                                   # d’indice i-1
            m=m-S[i-1][1]          # on retranche à m la masse
                                   # de l’objet inséré
    return L[M][len(S)], OBJETS

M=30                               # entier
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
    # [valeur, masse]
L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
T=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('algo4_objets :', algo4_objets(S, M, L, T))

Le programme Python affiche :
      70
      [[10, 5], [60, 25]]

On considère le graphe orienté )(=G S A,  constitué de n sommets. Les arêtes 
sont orientées et le poids des arcs peut être négatif. On suppose que le graphe 

n’a pas de cycle de poids négatif. On définit la matrice d’adjacence , 0 , 1( ) ≤ ≤ −i j i j n
M  

du graphe. L’algorithme de Floyd-Warshall définit )(d i jk ,  la distance minimale 
d’un chemin du sommet i au sommet j en empruntant des sommets intermé-
diaires d’indice strictement inférieur à k.
•• Si k = n, alors )(d i jn ,  est la plus courte distance entre i et j.

•• Un chemin qui emprunte des sommets intermédiaires d’indice stricte-
ment inférieur à 0 ne peut emprunter aucun sommet intermédiaire, donc 

,0 ( ) [ ][ ]=d i j i jM .

•• On considère un chemin optimal de i à j qui emprunte des sommets intermé-
diaires d’indice strictement inférieur à k. On a deux possibilités :

•• soit ce chemin ne passe jamais par le sommet k–1 ;
•• soit ce chemin passe exactement une fois par le sommet k–1.

)() ) )( ( ()(= − + −− − −d i j d i j d i k d k jk k k k, min , , , 1 1,1 1 1

Exercice 14.4 : Algorithme de Floyd-Warshall
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On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence , 0 , 1( ) ≤ ≤ −i j i j n
M  du graphe G, définie par :

Pour tous les indices i, j, Mi, j représente le poids de l’arc d’origine i et 
d’extrémité j.
Lorsque les sommets ne sont pas reliés, le poids de l’arc vaut l’infini. On définit 
la variable inf=1e10 qui représente un poids infini.
2.  Écrire une fonction récursive Floyd1 qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet de départ i, le sommet d’arrivée j et 
l’entier k. Cette fonction retourne )(d i jk ,  avec la programmation dynamique.
Écrire le programme principal permettant d’afficher la plus petite distance par-
courue entre le sommet de départ 0 et le sommet d’arrivée 1 en utilisant la 
fonction Floyd1.
L’algorithme utilise-t-il la méthode « diviser pour régner » ?
3.  Pour éviter de calculer plusieurs fois )(d i jk , , on définit une liste DIST 
telle que [ ] )([ ][ ] =i j k d i jkDIST , . L’indice k varie entre 0 et n inclus. Lorsque 

[ ][ ][ ]i j kDIST  n’a pas été calculé, [ ][ ][ ] = −∞i j kDIST . Écrire une fonction 
récursive Floyd2 qui admet comme arguments d’entrée la matrice d’adjacence 
M, le sommet de départ i, le sommet d’arrivée j, l’entier k et la liste DIST ser-
vant à stocker les résultats intermédiaires. Cette fonction retourne )(d i jk ,  avec 
la programmation dynamique.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
4.  Écrire une fonction itérative Floyd3 qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet départ et le sommet arrivée. 
Cette fonction retourne la distance d’un plus court chemin entre départ et 
arrivée en utilisant l’algorithme de Floyd-Warshall avec la programmation 
dynamique.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
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5.  On souhaite afficher le chemin suivi en utilisant la liste DIST. On définit la 
liste PRECEDENT :
•• Toutes les valeurs de PRECEDENT sont initialisées à –1. 

•• Si ≠i j et si −∞ < DIST[i][j][k] < ∞, alors [ ][ ][ ]i j kPRECEDENT  est le som-
met précédent j sur un chemin optimal de i à j qui emprunte des sommets 
intermédiaires d’indice strictement inférieur à k.

•• [ ][ ][ ] =i j iPRECEDENT 0  si ≠i j  et [ ][ ] < ∞i jM .

•• La valeur de [ ][ ][ ]i j kPRECEDENT  lorsque i = j ou [ ][ ][ ] = ∞i j kDIST  ou 
[ ][ ][ ] = −∞i j kDIST  n’a aucune importance. On peut la prendre égale à –1.

•• [ ] [ ][ ] [ ][ ] [ ]= −i j k i j kPRECEDENT PRECEDENT 1  si ) )( (= −d i j d i jk k, ,1 .

•• [ ] [ ][ ] [ ] [ ][ ] = − −i j k k j kPRECEDENT PRECEDENT 1 1  si

) )( ()(= − + −− −d i j d i k d k jk k k, , 1 1,1 1  et )( ≠ ∞d i jk ,   
et [ ][ ] [ ]− − ≠ −k j kPRECEDENT 1 1 1

Écrire le programme principal permettant d’afficher le chemin suivi entre les 
sommets départ et arrivée.

Analyse du problème
On considère des graphes orientés contenant des arêtes de poids négatif et n’ayant 
pas de cycle de poids négatif. Le graphe n’est pas nécessairement fortement 
connexe.

L’algorithme de Floyd-Warshall définit )(d i jk ,  la distance minimale d’un chemin 
du sommet i au sommet j en empruntant des sommets intermédiaires d’indice stric-
tement inférieur à k.

1. La matrice d’adjacence est : =

∞ ∞
∞ ∞

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ −





















M

0 18 3
8 0 4

0
1 0
2 1 0

. 

Comme le graphe est orienté, la matrice n’est pas nécessairement symé-
trique.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner :  on combine les différents sous-problèmes pour résoudre le problème de 
départ.
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2. L’algorithme est de type « diviser pour régner » puisqu’on décompose 
le problème (calcul de ( )d i jk , ) en plusieurs sous-problèmes (calcul de 

( ) ( )( ) − −− − −d i j d i k d k jk k k, , , 1 , 1,1 1 1 ). On combine les différents sous-pro-
blèmes pour résoudre le problème de départ.
Dans la programmation dynamique, on calcule toutes les solutions des 
sous-problèmes, que l’on combine pour obtenir une solution optimale.
def Floyd1 (M, i, j, k):
    # la fonction retourne d_k(i,j) pour la
    # matrice d’adjacence M
    if k==0:                   # condition d’arrêt
        return M[i][j]
    else:
        a=Floyd1(M, i, j, k-1) # appel récursif
        b=Floyd1(M, i, k-1, k-1)+Floyd1(M, k-1, j, k-1)
        return (min(a,b))

inf=1e10                       # variable représentant l’infini
M= [[0, inf, 18, inf, 3],
   [8, 0, 4, inf, inf],
   [inf, inf, 0, inf, inf],
   [inf, 1, inf, 0, inf],
   [inf, 2, inf, -1, 0]]
n=len(M)                      # nombre de lignes de M
départ=0                      # sommet de départ
arrivée=1                     # sommet d’arrivée
distance1=Floyd1(M, départ, arrivée, n)
print("Distance parcourue Floyd1 :", distance1)

Cours :
On rencontre deux techniques dans la programmation dynamique :

•• Technique récursive « Top Down » (de mémoïsation). Lors d’un appel récursif, on 
regarde dans une liste intermédiaire si le sous-problème est déjà traité.
Top Down : on résout dans le sens des données de grande taille vers les données de 
petite taille.

•• Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille 
vers les données de grande taille (c’est l’ordre inverse de « Top Down »). On stocke 
également les résultats obtenus dans une liste intermédiaire.

3. La fonction Floyd2 utilise la programmation dynamique avec la tech-
nique « Top Down » (de mémoïsation) et permet d’obtenir une solution 
optimale sans résoudre plusieurs fois le même sous-problème.
Dans le programme principal, on part de la plus grande valeur de k (ici 
n) : distance2=Floyd2(M, départ, arrivée, n, DIST). On 
décompose le problème (calcul ( )d i jk ,  en plusieurs sous-problèmes (calcul 
de ( ) ( )( ) − −− − −d i j d i k d k jk k k, , , 1 , 1,1 1 1 ).
Pour éviter de calculer plusieurs fois ( )d i jk , , on garde en mémoire le résul-
tat dans la liste DIST  : [ ] ( )[ ] [ ] =i j k d i jkDIST , . La liste doit contenir 
( ) ( ) ( )+n n n 1  valeurs.

•• i et j varient de 0 inclus à n exclu.
•• k varie de 0 inclus à n inclus.
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Lorsque [ ][ ] [ ]i j kDIST  n’a pas été calculé, [ ][ ] [ ] = −∞i j kDIST .
def Floyd2(M, i, j, k, DIST):
    # la fonction retourne d_k(i,j) pour la
    # matrice d’adjacence M
    # la liste DIST est telle que DIST[i][j][k]=d_k(i,j)
    if k==0:                         # condition d’arrêt
        return M[i][j]
    elif DIST[i][j][k]!=-inf:        # condition d’arrêt
        return DIST[i][j][k]
    else:
        a=Floyd2(M, i, j, k-1, DIST) # appel récursif
        b=Floyd2(M, i, k-1, k-1, DIST)\
          +Floyd2(M, k-1, j, k-1, DIST)
        DIST[i][j][k]=min(a,b)
        return DIST[i][j][k]

DIST=[[[-inf for k in range(n+1)] for j in range(n)]\
      for i in range(n)]
    # toutes les distances valent -inf
départ=0                             # sommet de départ
arrivée=1                            # sommet d’arrivée
distance2=Floyd2(M, départ, arrivée, n, DIST)
print("Distance parcourue Floyd2 :", distance2)

4. L’algorithme Floyd3 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la même formule de récurrence mais on 
part de la plus petite valeur de k au lieu de partir de la plus grande valeur 
de k (k = n, technique « Top Down »).
Il faut trois boucles for imbriquées pour faire varier i, j et k.

•• Dans la technique « Top Down », on ne traite que les sous-problèmes 
nécessaires. On n’a pas besoin de remplir entièrement la liste DIST pour 
obtenir la solution optimale au problème.

•• Dans la technique «  Bottom Up  », on traite tous les sous-problèmes 
(trois boucles for imbriquées). Il faut d’abord remplir entièrement la 
liste DIST avant de retourner la solution optimale au problème.

def Floyd3(M, départ, arrivée, DIST):
    # la fonction retourne DIST[départ ][arrivée ][n]
    # n = nombre de sommets
    n=len(M)                         # nombre de lignes de M
    for k in range (n+1):            # k varie entre 0 inclus
                                     # et n+1 exclu
        for i in range(n):           # i varie entre 0 inclus
                                     # et n exclu
            for j in range(n):       # j varie entre 0 inclus
                                     # et n exclu
                if k==0:
                    DIST[i][j][k]=M[i][j]
                else:
                    a=DIST[i][j][k-1]
                    b=DIST[i][k-1][k-1]+DIST[k-1][j][k-1]
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                    DIST[i][j][k]=min(a,b) 
    return DIST[départ][arrivée][n]

DIST=[[[-inf for k in range(n+1)] for j in range(n)]\
       for i in range(n)]
    # toutes les distances valent -inf
départ=0                             # sommet de départ
arrivée=1                            # sommet d’arrivée
distance3=Floyd3(M, départ, arrivée, DIST)
print("Distance parcourue Floyd3 :", distance3)

5. On utilise l’algorithme Floyd3 avec la technique « Bottom Up » pour 
obtenir la liste DIST entièrement remplie.
Pour k = 0, on considère deux boucles for imbriquées pour calculer 

[ ]i jPRECEDENT , ,0  :
•• [ ] [ ] [ ] =i j iPRECEDENT 0  si ≠i j et M[i][ j] < ∞.

On utilise trois boucles for imbriquées pour calculer [ ][ ] [ ]i j kPRECEDENT  :
•• [ ] [ ][ ] [ ] [ ] [ ]= −i j k i j kPRECEDENT PRECEDENT 1  si ( ) ( )= −d i j d i jk k, ,1 .
•• [ ] [ ] [ ][ ] [ ] [ ]= − −i j k k j kPRECEDENT PRECEDENT 1 1  si

( ) ( )( ) = − + −− −d i j d i k d k jk k k, , 1 1,1 1  et ( ) ≠ ∞d i jk ,   
et [ ] [ ][ ]− − ≠ −k j kPRECEDENT 1 1 1

PRECEDENT=[[[-1 for k in range(n+1)] for j in range(n)]\
            for i in range(n)]
    # tous les éléments valent -1
for i in range(n):
    for j in range(n):
        if i!=j and M[i][j]<inf:
            PRECEDENT[i][j][0]=i
for k in range(1, n+1):
    for i in range(n):
        for j in range(n):
            if DIST[i][j][k]==DIST[i][j][k-1]:
                PRECEDENT[i][j][k]=PRECEDENT[i][j][k-1]
            if DIST[i][j][k]==DIST[i][k-1][k-1]\
                              +DIST[k-1][j][k-1]\
                and DIST[i][j][k]!=inf\
                and PRECEDENT[k-1][j][k-1]!=-1:
                PRECEDENT[i][j][k]=PRECEDENT[k-1][j][k-1]

# recherche du chemin suivi entre les sommets départ et arrivée
indice_boucle=0
i=arrivée
chemin=[arrivée]   # initialisation de la liste des sommets
                   # parcourus en sens inverse
while (i!=départ) and indice_boucle<n:
    i=int(PRECEDENT[départ][i][n])
    chemin.append(i)
    indice_boucle=indice_boucle+1
# on obtient la liste des sommets en sens inverse
chemin.reverse()   # il faut inverser la liste chemin
print(chemin)
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On considère un jeu de données « fic.csv » contenant n lignes. Chaque ligne 
contient les caractéristiques d’un iris : longueur des pétales (en cm), largeur des 
pétales (en cm) et désignation de l’espèce de l’iris (0 pour setosa, 1 pour ver-
sicolor et 2 pour virginica). Les données sont séparées avec le séparateur « ; ». 
On utilise les listes de listes pour représenter les matrices dans Python.
L’instruction A.sort() permet de trier en place une liste de listes A en fonc-
tion du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :

f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du 
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r' 
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : récupération de l’ensemble des données du fichier dans 
une liste

\n : caractère d’échappement : saut de ligne

c1.strip()  : renvoie une chaîne sans les espaces et les caractères 
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de 
caractères c1

c1.split(';')  : sépare une chaîne de caractères (c1) en une liste de 
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire une fonction fic_data qui admet comme argument un nom de fichier 
et retourne une matrice à n lignes et trois colonnes : longueur des pétales de l’iris, 
largeur des pétales de l’iris et désignation de l’espèce de l’iris (0, 1 ou 2).

Exercice 15.1 : Algorithme des k plus proches voisins
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2.  Écrire une fonction calc_dist qui admet comme arguments deux 
listes ptA et ptB. La fonction retourne la distance euclidienne entre le 
point A de coordonnées )(longueurA, largeurA  et le point B de coordonnées 

)(longueurB, largeurB .
3.  Écrire une fonction algoknn qui admet comme arguments une matrice 
data (n lignes et 3 colonnes), une liste pt_search et un entier k. La fonc-
tion retourne une prédiction de l’espèce de l’iris (noté iris2) caractérisé par 
pt_search (liste de deux valeurs : longueur et largeur des pétales).
Les étapes de l’algorithme des k plus proches voisins sont les suivantes :
•• Pour chaque iris (noté iris1) de data, on calcule la distance euclidienne 
entre iris1 et iris2.

•• On définit une matrice mat_dist (n lignes et deux colonnes). Chaque ligne 
contient la distance euclidienne entre iris1 et iris2 ainsi que la désigna-
tion de l’espèce de iris1.

•• On trie la liste de listes mat_dist dans l’ordre croissant des distances eucli-
diennes entre iris1 et iris2.

•• On en déduit une prédiction de l’espèce de iris2 en cherchant la désigna-
tion majoritaire parmi les k plus proches voisins de iris2.

4.  Écrire le programme principal permettant d’afficher le nuage de points des 
données du fichier « fic.csv » ainsi que le point recherché pt_search et d’af-
ficher une prédiction de l’espèce de iris2 caractérisé par pt_search=[5, 
1.7] avec k = 5.
Le graphique doit avoir les caractéristiques suivantes :
•• affichage de « longueur des pétales » pour l’axe des abscisses et « largeur des 
pétales » pour l’axe des ordonnées ;

•• affichage en bleu avec marqueur « v » pour les iris setosa ;

•• affichage en rouge avec marqueur « . » pour les iris versicolor ;

•• affichage en vert avec marqueur « + » pour les iris virginica ;

•• affichage de la légende « iris setosa », « iris versicolor » et « iris virginica » ;

•• affichage en noir avec linewidth=8 pour l’iris pt_search.

On pourra se servir de la fonction plt.scatter() pour représenter un nuage 
de points en utilisant le module matplotlib.pyplot que l’on renomme plt. 
Les arguments d’entrée sont les mêmes que pour la fonction plt.plot().

Analyse du problème
En intelligence artificielle, l’algorithme des k plus proches voisins est une méthode 
d’apprentissage supervisé alors que l’algorithme des k-moyennes (voir exer-
cice 15.3 « Algorithme des k-moyennes ») est une méthode d’apprentissage non 
supervisé.
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L’objectif est de prédire la classe (ou la classification) d’un échantillon à partir 
d’exemples connus. On pourrait chercher le plus proche voisin de l’échantillon. 
L’inconvénient est que cette méthode du plus proche voisin est très sensible aux 
bruits. Une amélioration consiste à utiliser les k observations les plus proches. On 
cherche la classe majoritaire parmi les k plus proches voisins.

1. 
def fic_data(fichier):
    # la fonction retourne une matrice :
    # n lignes et trois colonnes
    # n = nombre de lignes du fichier
    f=open(fichier, 'r')    # ouverture de fichier (str)
                            # en lecture
    f_données=f.readlines() # récupère toutes les lignes du
                            # fichier dans la liste f_données
    n=len(f_données)        # nombre de lignes du fichier
    data=[[0 for j in range(3)] for i in range(n)]
        # matrice : n lignes et 3 colonnes
        # longueur, largeur et numéro de l’espèce
    for i in range(0, n):   # i varie entre 0 inclus et n exclu
        ligne=f_données[i].strip().split(";")
        # split(';') permet de séparer la ligne en une liste
        # de mots avec le séparateur ";"
        # strip() permet d’enlever les caractères d’échappement
        # (ici saut de ligne)
        data[i][0], data[i][1]=float(ligne[0]), float(ligne[1])
        if (ligne[2]=="setosa"):
            data[i][2]=0    # numéro 0 désigne setosa
        elif (ligne[2]=="versicolor"):
            data[i][2]=1    # numéro 1 désigne versicolor
        else:               # virginica
            data[i][2]=2    # numéro 2 désigne virginica
    f.close()
    return data

2. 
def calc_dist(ptA, ptB):
    # distance euclidienne entre ptA et ptB
    # ptA est une liste [longueurA, largeurA]
    # ptB est une liste [longueurB, largeurB]
    return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

Remarque :

On peut envisager plusieurs définitions de la distance entre )(A x yA A,  et )(B x yB B,  :

•• distance euclidienne : ) )( (= − + −x x y yB A B Adistance
2 2

•• distance de Manhattan : = − + −x x y yB A B Adistance

•• distance de Tchebychev : )(= − −x x y yB A B Adistance max ,
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3. Pour une valeur de k fixée, on calcule la distance d’un point à tous les 
points du fichier de données. On cherche l’espèce majoritaire parmi les k 
plus proches voisins.
def algoknn(data, pt_search, k):
    # calcul de la distance de pt_search à tous les points
    # de data
    # la fonction retourne une prédiction de l’espèce de l’iris
    # algorithme des k(int) plus proches voisins
    # pt_search : liste de deux valeurs :
    # longueur et largeur des pétales
    n=len(data)                    # nombre de lignes de data
    tab_dist=[[0 for j in range(2)] for i in range(n)]
        # matrice avec distance et numéro espèce
    for i in range(len(data)):     # i varie entre 0 inclus
                                   # et len(data) exclu
        iris1=[data[i][0],data[i][1]]
        mat_dist[i][0]=calc_dist(pt_search,iris1)
        tab_dist[i][1]=data[i][2]
            # on récupère la distance et la désignation
            # de l’espèce
    tab_dist.sort()                # tri par ordre croissant
                                   # des distances
    # on récupère la liste des distances triées par ordre
    # croissant
    # choix de l’espèce
    list_nb_espece=[[0, i] for i in range(3)]
        # liste de listes : (total, numéro de l’espèce)
    for i in range(k):             # i varie entre 0 inclus
                                   # et k exclu
        indice=int(tab_dist[i][1]) # tab_dist[i][1] :
                                   # numéro de l’espèce
        list_nb_espece[indice][0]+=1
    list_nb_espece.sort() # tri de list_nb_espece par ordre
                          # croissant de total

    predict=list_nb_espece[2][1]  # le dernier élément est
                                  # celui qui apparaît le plus
    return predict

4. 
import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt
data=fic_data("fic.csv")
nb_espece=3          # on a trois espèces d’iris
    # setosa (0), versicolor (1) et virginica (2)
pt_search=[5, 1.7]   # longueur, largeur
k=5                  # nombre de k plus proches voisins
x1, y1, x2, y2, x3, y3=[],[],[],[],[],[]
for i in range(len(data)):
    if data[i][2]==0:
        x1.append(data[i][0])
        y1.append(data[i][1])
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    elif data[i][2]==1:
        x2.append(data[i][0])
        y2.append(data[i][1])
    else:
        x3.append(data[i][0])
        y3.append(data[i][1])
plt.figure()
plt.xlabel("longueur des pétales")
plt.ylabel("largeur des pétales")
plt.scatter(x1, y1, color='blue', marker='v')
plt.scatter(x2, y2, color='red', marker='.')
plt.scatter(x3, y3, color='green', marker='+')
plt.scatter(pt_search[0], pt_search[1], color='black',\
            linewidth=8)
plt.legend(['iris setosa', 'iris versicolor',\
            'iris virginica'])
plt.show()

predict=algoknn(data, pt_search, k)
if predict==0:
    print(predict, 'setosa')
elif predict==1:
    print(predict, 'versicolor')
else:
    print(predict, 'virginica')

On obtient le graphique suivant avec le fichier « fic.csv » (voir le site Dunod 
pour télécharger le fichier de données).
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On applique l’algorithme des k plus proches voisins à pt_search=[5, 
1.7] avec k = 5.
À la fin de l’exécution de la fonction algoknn, la liste list_nb_espece 
vaut : [[0, 0], [2, 1], [3, 2]].

https://dunod.com/EAN/9782100846238
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Parmi les 5 plus proches voisins, on 3 voisins virginica, 2 voisins versicolor 
et aucun setosa.
Le programme Python renvoie  : 2 virginica. L’iris recherché (gros 
cercle noir sur le graphique ci-dessus) est plus près des iris virginica que 
des iris versicolor et setosa.

Remarque :

L’algorithme des k plus proches voisins est basé sur un algorithme d’apprentissage 
à partir d’observations étiquetées. Le modèle prédictif est utilisé dans plusieurs cas :

•• Régression : le résultat est un réel. Le résultat est la moyenne des valeurs des k 
plus proches voisins.

Exemples : prédiction de la solubilité d’une molécule dans l’eau en mg/mL.
•• Classification : le résultat obtenu est une classe d’appartenance (0, 1, 2, …, C–1) 
si on considère C classes possibles. Dans l’exemple précédent, on a C = 3 classes 
(0 pour setosa, 1 pour versicolor et 2 pour virginica).

•• Classification binaire : le résultat obtenu est 0 ou 1. Exemples : l’e-mail reçu 
est-il un spam ? La photo est-elle celle d’un chat ? On utilise un nombre impair 
de voisins pour ne pas avoir d’ex-aequo.

On considère les jeux de données « fic01.csv » (fichier d’apprentissage pour 
l’algorithme des k plus proches voisins) et « fic02.csv » (fichier de test). Chaque 
ligne contient les caractéristiques d’un iris : longueur des pétales (en cm), lar-
geur des pétales (en cm) et désignation de l’espèce de l’iris (0 pour setosa, 1 
pour versicolor et 2 pour virginica). Les données sont séparées avec le sépa-
rateur «  ;  ». On utilise les listes de listes pour représenter les matrices dans 
Python. L’instruction A.sort() permet de trier en place une liste de listes A 
en fonction du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :

f=open('fichier.txt', 'w') : 'fichier.txt' désigne le nom 
du fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r' 
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : récupération de l’ensemble des données du fichier dans 
une liste

\n : caractère d’échappement : saut de ligne

c1.strip()  : renvoie une chaîne sans les espaces et les caractères 
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de 
caractères c1

Exercice 15.2 : �Matrice de confusion, valeur optimale des k 
plus proches voisins
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c1.split(';')  : sépare une chaîne de caractères (c1) en une liste de 
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire une fonction fic_data qui admet comme argument un nom de 
fichier et retourne une matrice à n lignes et trois colonnes : longueur des pétales 
de l’iris, largeur des pétales de l’iris et désignation de l’espèce de l’iris (0, 1 ou 
2).
2.  Écrire une fonction algoknn qui admet comme arguments une matrice 
data (n lignes et 3 colonnes), une liste pt_search et un entier k. La fonc-
tion retourne une prédiction de l’espèce d’un iris inconnu caractérisé par pt_
search (liste de deux valeurs : longueur et largeur des pétales). On utilisera 
l’algorithme des k plus proches voisins.
3.  Écrire une fonction evalKNN qui admet comme arguments data1 (liste 
d’apprentissage), data2 (liste de test) et un entier k. La fonction retourne la 
matrice suivante à 3 lignes et 3 colonnes :

Classe réelle
setosa versicolor virginica

Classe 
prédite

setosa … … …

versicolor … … …

virginica … … …

mat[0][2] représente le nombre de fois où l’algorithme prédit l’iris setosa 
alors qu’il est en réalité virginica.
4.  On définit la matrice de confusion matconf pour l’iris versicolor avec k = 2 :

Classe réelle
versicolor non versicolor

Classe 
prédite

versicolor True Positives (TP) False Positives (FP)

non versicolor False Negatives (FN) True Negatives (TN)

matconf [0][1] représente le nombre de faux positifs (FP) dans le jeu de 
test.
Que représentent les indicateurs suivants ?

•• rappel = +
TP

TP FN



Partie 12 · Intelligence artificielle et jeux

246

•• spécificité = 
+

TN
TN FP

•• précision = 
+

TP
TP FP

Écrire une fonction matconf_indicateurs qui admet comme arguments 
data1 (liste d’apprentissage) et data2 (liste de test). La fonction 
retourne la matrice de confusion pour l’iris versicolor avec k = 2, rappel,  
spécificité et précision.
5.  Écrire une fonction predict_k qui admet comme arguments data1 (liste 
d’apprentissage) et data2 (liste de test). La fonction retourne la valeur opti-
male de k en utilisant les étapes suivantes :
•• Pour toutes les valeurs de k possibles, on applique l’algorithme des k plus 
proches voisins à toutes les espèces du fichier de test.

•• On calcule pour chaque valeur de k le pourcentage d’espèces mal prédites du 
fichier de test.

•• On en déduit la valeur optimale de k correspondant au pourcentage d’espèces 
mal prédites le plus faible.

Analyse du problème
L’objectif de l’algorithme des k plus proches voisins est de prédire la classe (clas-
sification) ou la valeur (régression) d’un échantillon à partir d’exemples connus. 
On sépare les données en un jeu d’entraînement (fichier d’apprentissage : « fic01.
csv ») et un jeu de test (fichier de test : « fic02.csv »). La répartition des données 
entre le jeu d’entraînement et le jeu de test peut être 80 %-20 %, 70 %-30 % ou 
même 50 %-50 %. Le jeu d’entraînement sert à apprendre le modèle (algorithme 
des k plus proches voisins). Le jeu de test sert à estimer l’erreur de généralisation 
du modèle.

1. Les deux premières questions reprennent les fonctions définies dans 
l’exercice précédent « Algorithme des k plus proches voisins ».
def fic_data(fichier):
    # la fonction retourne une matrice :
    # n lignes et trois colonnes
    # n = nombre de lignes du fichier
    f=open(fichier, 'r')    # ouverture de fichier (str)
                            # en lecture
    f_données=f.readlines() # récupère toutes les lignes du
                            # fichier dans la liste f_données
    n=len(f_données)        # nombre de lignes du fichier
    data=[[0 for j in range(3)] for i in range(n)]
        # matrice : n lignes et 3 colonnes
        # longueur, largeur et numéro de l’espèce
    for i in range(0, n):   # i varie entre 0 inclus et n exclu
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        ligne=f_données[i].strip().split(";")
        # split(';') permet de séparer la ligne en une liste
        # de mots avec le séparateur ';'
        # strip() permet d’enlever les caractères d’échappement
        # (ici saut de ligne)
        data[i][0], data[i][1]=float(ligne[0]), float(ligne[1])
        if (ligne[2]=="setosa"):
            data[i][2]=0    # numéro 0 désigne setosa
        elif (ligne[2]=="versicolor"):
            data[i][2]=1    # numéro 1 désigne versicolor
        else:               # virginica
            data[i][2]=2    # numéro 2 désigne virginica
    f.close()
    return data

2. 
def calc_dist(ptA, ptB):
    # distance euclidienne entre ptA et ptB
    # ptA est une liste [longueurA, largeurA]
    # ptB est une liste [longueurB, largeurB]
    return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

def algoknn(data, pt_search, k):
    # calcul de la distance de pt_search à tous les points
    # de data
    # la fonction retourne une prédiction de l’espèce de l’iris
    # algorithme des k(int) plus proches voisins
    # pt_search : liste de deux valeurs :
    # longueur et largeur des pétales
    n=len(data)                    # nombre de lignes de data
    tab_dist=[[0 for j in range(2)] for i in range(n)]
        # matrice avec distance et numéro espèce
    for i in range(len(data)):     # i varie entre 0 inclus
                                   # et len(data) exclu
        tab_dist[i][0]=calc_dist(pt_search,\
                                [data[i][0],data[i][1]])
        tab_dist[i][1]=data[i][2]
            # on récupère la distance et la désignation
            # de l’espèce
    tab_dist.sort()                # tri par ordre croissant
                                   # des distances
    # on récupère la liste des distances triées par ordre
    # croissant
    # choix de l’espèce
    list_nb_espece=[[0, i] for i in range(nb_espece)]
        # liste de listes : (total, numéro de l’espèce)
    for i in range(k):             # i varie entre 0 inclus
                                   # et k exclu
        indice=tab_dist[i][1]      # tab_dist[i][1] :
                                   # numéro de l’espèce
        list_nb_espece[indice][0]+=1
    list_nb_espece.sort() # tri de list_nb_espece par ordre
                          # croissant de total
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    predict=list_nb_espece[2][1]  # le dernier élément est
                                  # celui qui apparaît le plus
    return predict

3. 
def evalKNN (data1, data2, k):
    # data1 = liste d’apprentissage et data2 = liste de test
    # la fonction retourne la matrice mat
    n2=len(data2)       # nombre de données de la liste de test
    mat=[[0 for j in range(3)] for i in range(3)]
    for i in range(n2): # i varie entre 0 inclus et n2 exclu
        predict=algoknn(data1, [data2[i][0],data2[i][1]], k)
        mat[predict][data2[i][2]]+=1
    return mat

4. On a plusieurs façons d’évaluer les données de test :

•• Rappel =
+
TP

TP FN
 = proportion des iris bien prédits (classe versicolor) 

parmi tous les iris versicolor dans le fichier de test. Le rappel définit la 
capacité du modèle à détecter la classe versicolor parmi les iris versicolor 
dans le jeu de test. On l’appelle également sensibilité.

•• Spécificité = 
+
TN

TN FP
 = proportion des iris bien prédits (classe non-

versicolor) parmi les iris qui ne sont pas de classe versicolor dans le 
fichier de test. La spécificité définit la capacité du modèle à détecter les 
iris qui ne sont pas de classe versicolor parmi les iris qui ne sont pas de 
classe versicolor dans le jeu de test.

•• Précision = 
+
TP

TP FP
 = proportion des iris bien prédits (classe versicolor) 

parmi tous les iris dans le fichier de test. La précision définit la capacité 
du modèle à détecter la classe versicolor parmi toutes les classes dans 
le jeu de test.

True Positives (TP) :

Classe réelle
setosa versicolor virginica

Classe 
prédite

setosa … … …

versicolor … … …

virginica … … …

True Negatives (TN) :

Classe réelle
setosa versicolor virginica

Classe  
prédite

setosa … … …

versicolor … … …

virginica … … …
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False Negatives (FN) :

Classe réelle
setosa versicolor virginica

Classe 
prédite

setosa … … …

versicolor … … …

virginica … … …

False Positives (FP) :

Classe réelle
setosa versicolor virginica

Classe 
prédite

setosa … … …

versicolor … … …

virginica … … …

def matconf_indicateurs (data1, data2):
    # data1 : liste d’apprentissage ; data2 : liste de test
    # la fonction retourne la matrice de confusion pour
    # l’iris versicolor (k = 2)
    # rappel (float), spécificité(float) et précision(float)
    k=2   # k = 2 pour l’algorithme des k plus proches voisins
    mat=evalKNN (data1, data2, k) 
    matconf=[[0 for j in range(2)] for i in range(2)]
    matconf[0][0]=mat[1][1]           # True Positives (TP)
    matconf[1][1]=mat[0][0]+mat[0][2]+mat[2][0]+mat[2][2]
                                      # True Negatives (TN)
    matconf[1][0]=mat[0][1]+mat[2][1] # False Negatives (FN)
    matconf[0][1]=mat[1][0]+mat[1][2] # False Positives (FP)
    TP=matconf[0][0]                  # True Positives (TP)
    FP=matconf[0][1]                  # False Positives (FP)
    FN=matconf[1][0]                  # False Negatives (FN)
    TN=matconf[1][1]                  # True Negatives (TN)
    rappel=TP/(TP+FN)
    spécificité=TN/(TN+FP)
    précision=TP/(TP+FP)
    return matconf, rappel, spécificité, précision

Remarque : On peut avoir des faux négatifs ou des faux positifs avec les tests pour 
la Covid.

5. On sépare le fichier de l’exercice précédent «  Algorithme des k plus 
proches voisins  » en deux fichiers  : fichier1 (fichier d’apprentissage 
correspondant au jeu d’entraînement) et fichier2 (fichier de test cor-
respondant au jeu de test).
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Pour chaque donnée du fichier de test, on exécute l’algorithme des k plus 
proches voisins et on calcule le pourcentage d’espèces mal prédites. On 
peut ainsi choisir la valeur de k permettant d’avoir le plus faible pourcen-
tage d’espèces mal prédites.
def predict_k(data1, data2):
    # data1 : liste d’apprentissage
    # data2 : liste de test
    # la fonction retourne la valeur optimale de k
    n1=len(data1)            # nombre de données de la liste
                             # d’apprentissage
    n2=len(data2)            # nombre de données de la liste
                             # de test
    tab_pred=[[0 for j in range(2)] for i in range(n1)]
    for k in range(1, n1):   # k varie entre 1 inclus
                             # et n1 exclu
        nb_erreur=0
        for i in range(n2):  # i varie entre 0 inclus
                             # et n2 exclu
            predict=algoknn(data1,\
                            [data2[i][0],data2[i][1]], k)
            if predict!=data2[i][2]:
                nb_erreur+=1
        tab_pred[k][0]=nb_erreur
        tab_pred[k][1]=k
    tab_pred.sort()
    return tab_pred,tab_pred[1][1]

On applique les fonctions avec les fichiers « fic01.csv » et « fic02.csv » (voir 
le site Dunod pour télécharger les fichiers de données).
tab_pred, val_k_optimisee=predict_k(data1, data2)
print("Valeur optimisée pour k = ", val_k_optimisee)

Le programme Python affiche : Valeur optimisée pour k=6.

L’algorithme des k-moyennes permet de trouver des groupes (appelés clusters) 
parmi un nuage de points. On utilise deux listes X et Y : chaque point i est carac-
térisé par son abscisse X[i] et son ordonnée Y[i]. Le but est de regrouper les 
éléments qui se « ressemblent » dans K clusters. On utilise les listes de listes 
pour représenter les matrices dans Python.
On pourra se servir de la fonction plt.scatter() pour représenter un nuage 
de points en utilisant le module matplotlib.pyplot que l’on renomme plt. 
Les arguments d’entrée sont les mêmes que pour la fonction plt.plot().
Rappels pour la génération de nombres aléatoires :
import random as rd  # module random renommé rd
rd.random()          # nombre flottant aléatoire M tel que 0 <= M < 1
rd.randint(a, b)      # renvoie un entier aléatoire M tel que a <= M <= b

On définit la variable inf=1e10 qui représente une distance infinie.

Exercice 15.3 : Algorithme des k-moyennes

https://dunod.com/EAN/9782100846238
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1.  On étudie dans cette question un nuage de 12 points que l’on représentera 
sur feuille afin de comprendre le début de l’algorithme itératif.
On considère deux listes X et Y représentant les abscisses et les ordonnées de 
3 groupes de 4 points générés dont les coordonnées sont comprises dans les 
intervalles [ ]± ±3 0.6,1 0.6 , [ ]± ±8 1,2 1  et [ ]± ±4 0.8,5 0.8  pour chaque groupe. 
Représenter sur feuille un nuage de points.
•• Initialisation des centres des clusters : On choisit aléatoirement 3 points parmi 
les 12 points. Représenter sur feuille le nuage de points en mettant en évi-
dence les 3 clusters.

•• On réalise une première partition des données en associant chacun des autres 
points au cluster le plus proche. On calcule alors les centres des nouveaux 
clusters. Représenter sur feuille le nuage de points en mettant en évidence les 
3 nouveaux clusters.

2.  Écrire une fonction initpoints qui admet comme argument un entier 
pts_groupe et retourne deux listes X et Y contenant chacune N = 3×pts_
groupe valeurs. Les listes X et Y représentent les coordonnées des N points. 
Chaque groupe est constitué de pts_groupe points. Les 3 groupes contiennent 
des points de coordonnées comprises dans les intervalles [ ]± ±3 2.6,1 2.6 , 
[ ]± ±8 2.5,2 2.5  et [ ]± ±4 2.8,5 2.8 .
3.  Écrire une fonction distance qui admet comme arguments deux listes 
ptA et ptB. La fonction retourne la distance euclidienne entre le point A de 
coordonnées ( )[ ] [ ]ptA 0 , ptA 1  et le point B de coordonnées ( )[ ] [ ]ptB 0 , ptB 1 .
4.  Écrire une fonction initcluster qui admet comme arguments un entier 
K et deux listes X, Y. Cette fonction retourne une liste de listes contenant les 
coordonnées de K points différents tirés aléatoirement parmi le nuage de points.
5. 
Algorithme des k-moyennes
Initialisation :
On choisit au hasard K centres des clusters parmi le nuage de points. Chaque 
centre est caractérisé par une abscisse et une ordonnée.
Boucle tant que les points changent de cluster :
•• Placer chaque point dans le cluster k qui lui est le plus proche.

•• Recalculer les centres des clusters (appelés également centroïdes). On utili-
sera la moyenne des abscisses et des ordonnées des points appartenant à un 
cluster.

Écrire une fonction algokm qui admet comme arguments un entier K et deux 
listes X, Y. Cette fonction retourne une liste de listes contenant les coordonnées 
des centres des K clusters et la liste A telle que A[i] désigne le numéro du clus-
ter du point [X[i],Y[i]]. Quels sont les défauts de cet algorithme ?
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6.  Écrire le programme principal permettant :
•• de générer aléatoirement deux listes X et Y représentant les abscisses et les 
ordonnées de 3 groupes de 100 points dont les coordonnées sont comprises 
dans les intervalles [ ]± ±3 2.6,1 2.6 , [ ]± ±8 2.5,2 2.5  et [ ]± ±4 2.8,5 2.8  pour 
chaque groupe ;

•• d’afficher graphiquement le nuage de points (affecter des couleurs différentes 
pour les points appartenant à des clusters différents) et les centres des 3 clusters.

7.  Écrire une fonction predict d’arguments d’entrée L (liste de listes conte-
nant les coordonnées des clusters) et une liste pt_search (abscisse et ordon-
née du point). Cette fonction retourne le numéro et les coordonnées du cluster 
le plus proche de pt_search.

Analyse du problème
Dans l’apprentissage non supervisé, l’objectif est de comprendre la structure des 
données. Contrairement à l’apprentissage supervisé (voir exercice  15.1 «  Algo-
rithme des k plus proches voisins » avec la prédiction de la classe d’un échantillon à 
partir d’exemples connus), on ne connaît pas les clusters. En pratique, on regroupe 
les données proches entre elles, on leur attribue des clusters qu’il faut interpréter 
ensuite.

Exemple : regrouper des clients qui ont des profils similaires, regrouper les docu-
ments d’un corpus par thème (les thèmes émergeant de cet algorithme ne sont pas 
connus). C’est une méthode d’apprentissage non supervisé puisqu’on ne connaît 
pas les clusters à l’avance.

1. On considère un nuage de 12 points.

x

y

3

2

3

4

5

1

4 5 6 7 8

5

x

3 Clusters

y

3

2

3

4

1

4 5 6 7 8
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•• Étape d’initialisation : on choisit aléatoirement 3 centres parmi le nuage 
de 12 points.

x

3 Clusters

y

3

2

3

4

5

1

4 5 6 7 8

•• Première partition : on affecte à chaque point du jeu de données le clus-
ter le plus proche. On met à jour les nouveaux centres des clusters. On 
obtient trois nouveaux clusters représentés ci-dessous.

5

x

3 Clusters

y

3

2

3

4

1

4 5 6 7 8

Remarque : Les nouveaux clusters n’appartiennent plus nécessairement au jeu de 
données comme dans l’étape d’initialisation. On affecte à chaque point le cluster 
le plus proche. On met à jour les centres des clusters. Ces opérations sont réitérées 
tant que les points changent de cluster.



Partie 12 · Intelligence artificielle et jeux

254

2. 
import random as rd         # module random renommé rd

def initpoints(pts_groupe):
    # la fonction retourne deux listes X et Y
    # contenant 3 groupes
    # le nombre de valeurs aléatoire pour chaque groupe
    # est pts_groupe
    N=pts_groupe*3 #   N = nombre total de points
    X=[0 for i in range(N)] # liste des abscisses pour
                            # les N points
    Y=[0 for i in range(N)] # liste des ordonnées pour
                            # les N points
    for k in range(3):      # k varie entre 0 inclus et 3 exclu
        if k==0:
            xcentre=3       # abscisse du centre du premier
                            # groupe (ex.3)
            ycentre=1       # ordonnée du centre du premier
                            # groupe (ex. 1)
            delta=2.6       # 2.6 ou 0.6
        elif k==1:
            xcentre=8       # abscisse du centre du deuxième
                            # groupe (ex. 8)
            ycentre=2       # ordonnée du centre du premier
                            # groupe (ex. 2)
            delta=2.5       # 2.5 ou 1
        else:
            xcentre=4       # abscisse du centre du troisième
                            # groupe (ex. 4)
            ycentre=5       # ordonnée du centre du troisième
                            # groupe (ex. 5)
            delta=2.8       # 2.8 ou 0.8
        for i in range(pts_groupe):  # i varie entre 0 inclus
                                     # et pts_groupe exclu
            x=xcentre+delta*(2*rd.random()-1)
                # x compris entre xcentre-delta et xcentre+delta
            y=ycentre+delta*(2*rd.random()-1)
                # y compris entre ycentre-delta et ycentre+delta
            X[i+k*pts_groupe]=x
            Y[i+k*pts_groupe]=y
    return X, Y

3. 
def distance(ptA, ptB):
    # distance euclidienne entre ptA et ptB
    # ptA est une liste [xA, yA] désignant l’abscisse
    # et l’ordonnée de A
    # ptB est une liste [xB, yB] désignant l’abscisse
    # et l’ordonnée de B
    return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

4. On choisit aléatoirement K points différents parmi le nuage de points. 
Il ne faut pas utiliser la boucle for avec K étapes puisqu’on peut obtenir 
deux indices identiques avec la fonction rd.randint(0, n-1).
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def initcluster(K, X, Y):
    # la fonction retourne une liste de listes contenant les
    # coordonnées des centres des K clusters tirés aléatoirement
    # parmi le nuage de points
    # arguments d’entrée : entier K et deux listes X et Y
    n=len(X)
    L=[]                        # liste de listes :
                                # coordonnées des clusters
    liste_indice=[]
    while len(L)!=K:
        i=rd.randint(0, n-1)    # indice aléatoire compris
                                # entre 0 inclus et n-1 inclus
        if i not in liste_indice:
            liste_indice.append(i)
            L.append([X[i],Y[i]])  # ajoute l’abscisse et
                                   # l’ordonnée d’un point
    return L                       # liste des K clusters

Remarque  : Les points choisis aléatoirement dans cette étape d’initialisation 
doivent appartenir au nuage de points.

5. 
def algokm (K, X, Y):
    # la fonction retourne une liste de listes contenant les
    # coordonnées des centres des K clusters avec l’algorithme
    # des k-moyennes
    # A liste d’affectation des points i à un cluster
    # arguments d’entrée : entier K = nombre de clusters,
    # X et Y deux listes représentant les abscisses et
    # ordonnées des points
    # X[i] = abscisse du point d’indice i et Y[i] = ordonnée
    # du point d’indice i

    # initialisation des K centres des clusters
    L=initcluster(K, X, Y)  
    A=[0 for i in range(N)] # liste pour affecter les points
                            # à un cluster
                            # A[i] numéro du cluster pour le
                            # point X[i],Y[i]
    flag_stable=False       # flag à False si on affecte un
                            # point à un autre cluster

    while flag_stable==False:
        flag_stable=True    # flag initialisé à True
                            # il passe à False si le point i
                            # change de cluster
        # on place chaque point dans le cluster k
        # le plus proche
        for i in range(N):  # i varie entre 0 inclus et N exclu
            val_min=inf     # initialisation de val_min
                            # à infini
            ind_min=0       # indice du cluster correspondant
                            # au minimum
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            for k in range(K):  # k varie entre 0 inclus
                                # et K exclu
                if distance([X[i], Y[i]], L[k])<val_min:
                    val_min=distance([X[i],Y[i]],L[k])
                    ind_min=k
            if A[i]!=ind_min:
                A[i]=ind_min
                flag_stable=False  # le point i a changé
                                   # de cluster

        if flag_stable==False or K==1:  # teste si on affecte
                                        # un point à un autre
                                        # cluster
            # on recalcule les centres de chaque cluster
            som_x=[0 for i in range(K)]
            som_y=[0 for i in range(K)]
            nb_el=[0 for i in range(K)]
            for i in range(N):
                k=int(A[i])      # le point i appartient au
                                 # cluster k
                som_x[k]=som_x[k]+X[i]
                som_y[k]=som_y[k]+Y[i]
                nb_el[k]+=1      # on ajoute un point de plus
                                 # à ce cluster
            for k in range(K):
                if nb_el[k]==0:  # teste si aucun point dans
                                 # le cluster k
                    abscisse=0
                    ordonnée=0
                else:
                    abscisse=som_x[k]/nb_el[k]
                    ordonnée=som_y[k]/nb_el[k]
                L[k]=[abscisse, ordonnée]
    return L, A

Cet algorithme a plusieurs défauts :
•• Il faut fixer à l’avance la valeur du nombre total de clusters K.
•• Le résultat dépend fortement du choix des centres initiaux.
•• On n’obtient pas nécessairement le résultat optimum.
•• On peut obtenir un minimum local qui dépend des centres initiaux.

6. 
import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt
pts_groupe=100                  # nombre de points pour chaque
                                # groupe
N=pts_groupe*3                  # nombre total de points
X, Y=initpoints(pts_groupe)
inf=1e10                        # variable représentant
                                # l’infini
K=3
L3, A=algokm (K, X, Y)
plt.figure()                    # nouvelle fenêtre graphique
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plt.scatter(X,Y,color='black')
plt.scatter(L3[0][0],L3[0][1],color='red')
plt.scatter(L3[1][0],L3[1][1],color='blue')
plt.scatter(L3[2][0],L3[2][1],color='green')
plt.xlabel('x')
plt.ylabel('y')
plt.title('3 clusters')
plt.show()                      # affiche la figure à l’écran
print(L3)                       # affichage des coordonnées
                                # des clusters

3 clusters
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y
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0 2 4 6

x
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2

8

Les coordonnées des 3 clusters sont : [[7.96, 1.76], [2.62, 0.94], [4.20, 
4.87]].
Les centres correspondent bien aux 3 groupes centrés sur [[8, 2], [3, 1], 
[4, 5]].

Remarque : En pratique, on utilise cet algorithme pour former des groupes incon-
nus à l’avance mais qu’il faut interpréter ensuite.

7. 
def predict(L,pt_search):
    # cette fonction retourne l’indice du numéro du cluster
    # le plus proche de pt_search
    # arguments d’entrée : L = liste des coordonnées des
    # centres des clusters, pt_search = liste contenant
    # l’abscisse et l’ordonnée de pt_search
    # L[i] = liste contenant l’abscisse et l’ordonnée
    # du cluster d’indice i
    dist_cluster=inf        # distance du pt_search à un centre
                            # du cluster
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    ind_cluster=0           # indice du numéro du cluster
    for k in range(len(L)): # k varie entre 0 inclus
                            # et len(L) exclu
        if distance(L[k], pt_search)<dist_cluster:
            dist_cluster=distance(L[k],pt_search)
            ind_cluster=k
    return ind_cluster ,L[ind_cluster]

On considère le jeu de morpion avec une grille 3×3. Les joueurs ajoutent au 
fur et à mesure un pion sur la grille en commençant par un pion noir. Les pions 
noirs sont représentés par « X » et les pions blancs par « O ». Les cases vides 
sont représentées par « . ». Le but est d’aligner 3 pions sur la grille.
On utilise la liste jeu pour représenter le plateau de jeu avec Python. Le pla-
teau de jeu suivant est représenté par la liste : jeu=['.', '.', '.', 'O', 
'.', 'X', '.', 'X', '.']. On repère une case par son indice. Par 
exemple l’indice 3 correspond à la case avec un pion blanc (« O »).

. . .

O .

. X .

X

1.  Mise en place du jeu
•• Écrire une fonction init qui retourne une liste jeu correspondant à un pla-
teau vide.

•• Écrire une fonction affiche qui admet comme argument une liste jeu et 
qui permet d’afficher le plateau de jeu sur 3 lignes.

•• Écrire une fonction choixjoueur qui admet comme argument une liste 
jeu et qui retourne le joueur (« O » ou « X ») devant jouer.

•• Écrire une fonction listecoups qui admet comme argument une liste jeu 
et qui retourne une liste contenant les indices des cases vides.

•• Écrire une fonction gain qui admet comme argument une liste jeu et qui 
retourne « 1 » si les noirs ont gagné, « –1 » si les blancs ont gagné et 0 si 
aucun joueur n’a gagné même si la partie n’est pas terminée.

2.  Écrire une fonction jouercoup qui admet comme arguments une liste jeu 
et un entier coup. Cette fonction retourne une nouvelle liste jeu2 sans modi-
fier la liste jeu en ajoutant un pion à l’indice coup de la liste jeu. On pourra 
utiliser la fonction choixjoueur pour déterminer quel joueur ajoute le pion 
à l’indice coup.

Exercice 15.4 : �Jeu de morpion, algorithme min-max
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3.  Principe de l’algorithme min-max :
•• Écrire une fonction valMax qui admet comme argument une liste jeu. Cette 
fonction est appelée lorsque le joueur « X » veut choisir le meilleur coup afin 
de maximiser le gain sachant que le joueur « O » va le minimiser (on cherche 
le maximum des gains de valMin(jeu) sur tous les coups possibles). Cette 
fonction retourne la valeur du maximum du gain et l’indice de la case à jouer 
(entier compris entre 0 et 9).

•• Écrire une fonction valMin qui admet comme argument une liste jeu. Cette 
fonction est appelée lorsque le joueur « O » veut choisir le meilleur coup afin 
de minimiser le gain sachant que le joueur « X » va le maximiser (on cherche 
le minimum des gains de valMin(jeu) sur tous les coups possibles). Cette 
fonction retourne la valeur du minimum du gain et l’indice de la case jouée 
(entier compris entre 0 et 9).

Détail de l’algorithme valMax(jeu) :
•• Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMax 
retourne gain(jeu), -1.

•• Sinon :

	 ¢ � On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMin et on calcule le maximum de tous les gains.

	 ¢ � La fonction retourne le gain maximum et l’indice du coup à jouer corres-
pondant à ce gain.

Détail de l’algorithme valMin(jeu) :
•• Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMin 
retourne gain(jeu), -1.

•• Sinon :

	 ¢ � On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMax et on calcule le minimum de tous les gains.

	 ¢ � La fonction retourne le gain minimum et l’indice du coup à jouer corres-
pondant à ce gain.

4.  Écrire une fonction jouerminmax qui admet comme argument une liste 
jeu. Cette fonction affiche les plateaux de jeu à chaque étape du jeu de mor-
pion. L’ordinateur (pions noirs) joue contre l’ordinateur (pions blancs). Tant 
qu’un des joueurs n’a pas gagné et qu’il reste des coups à jouer, on utilise l’al-
gorithme min-max pour choisir le coup suivant.
5.  Écrire une fonction jouercontreIA qui admet comme argument une liste 
jeu. Cette fonction affiche les plateaux de jeu à chaque étape du jeu de morpion. 
L’ordinateur (ou IA = Intelligence Artificielle) a les pions noirs et l’humain a 
les pions blancs. Tant qu’un des joueurs n’a pas gagné et qu’il reste des coups à 
jouer, on utilise l’algorithme min-max pour choisir le coup suivant lorsque l’IA 
joue. L’humain tape au clavier l’indice de la case où il pose un pion blanc.
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Analyse du problème
L’algorithme min-max est un algorithme très utilisé dans les jeux à somme nulle 
et à nombre fini de stratégies. On explore toutes les possibilités. On définit un gain 
pour chaque joueur. À chaque coup, les joueurs cherchent à maximiser leur gain 
minimum et donc à minimiser le gain maximum de l’adversaire.

Cours
L’intelligence artificielle est « l’ensemble des théories et des techniques mises en œuvre en 
vue de réaliser des machines capables de simuler l’intelligence ».

Principe de l’algorithme min-max pour le jeu de morpion

Le morpion est un jeu à somme nulle (les gains d’un joueur sont l’opposé des gains de 
l’autre joueur) et avec un nombre fini de stratégies. Le meilleur gain possible pour le joueur 
1 est +1 (victoire pour le joueur 1 et défaite pour le joueur 2) et le meilleur gain pour le 
joueur 2 est –1 (défaite pour le joueur 1 et victoire pour le joueur 2).

•• Le joueur 1, que l’on appellera MAX, pose les pions noirs.
•• Le joueur 2, que l’on appellera MIN, pose les pions blancs.

Le joueur 2 cherche à minimiser ses gains alors que le joueur 1 cherche à maximiser ses 
gains.

L’algorithme min-max est utilisé dans de nombreux jeux : Othello, échecs…

Principe de l’algorithme min-max dans le cas général

On considère le cas général d’un jeu à deux joueurs à somme nulle et avec un nombre fini 
de stratégies.

À un moment donné du jeu, c’est au joueur 1 (MAX) de jouer. On suppose qu’il a trois 
possibilités. On représente sur l’arbre de jeu ci-dessous les trois possibilités. Ensuite c’est 
au joueur 2 (MIN) de jouer. On suppose qu’il a également trois possibilités. On représente 
sur le graphe ci-dessous la valeur du gain quand MAX et MIN ont joué.

Chaque nœud correspond à une position de jeu.

46 2 91 6 58 9

MAX joue

MIN joue

Le nœud du niveau supérieur est appelé racine.

Les feuilles sont les nœuds terminaux pour lesquels ne partent aucune branche et corres-
pondent souvent à une fin de partie. La hauteur de l’arbre ci-dessus est 3. Pour les jeux, on 
parle plutôt de profondeur de jeu que de hauteur. La profondeur pouvant être très impor-
tante pour arriver à une fin de partie, on limite souvent la profondeur d’étude (voir exercice 
suivant « Jeu de morpion, algorithme min-max et profondeur »). Dans ce cas, on ne sait pas 
si les feuilles correspondent à une victoire ou à une défaite. On définit alors une fonction 
d’évaluation appelée GAIN qui évalue le gain pour chaque nœud. Comme on considère un 
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jeu à somme nulle, le joueur 1 (MAX) cherche à maximiser ses gains alors que le joueur 2 
(MIN) cherche à les minimiser à chaque coup.

Le joueur MAX a trois possibilités pour jouer et choisit le coup qui va maximiser ses gains. 
Lorsque le joueur MAX a joué, le joueur MIN va jouer en cherchant à minimiser ses gains.  

On parcourt en profondeur cet arbre en utilisant la fonction GAIN pour déterminer le meil-
leur coup à jouer pour MAX.

On considère les feuilles : 6, 4 et 2. On remonte dans l’arbre. C’est à MIN de jouer.

46 2

MIN joue

Il choisit le coup qui minimise le gain. Il choisit alors le coup avec un gain égal à 2.

46 2

MIN joue 2

On complète l’arbre de jeu avec le minimum des gains.

46 2 91 6 58 9

MIN joue 2 1 5

On remonte dans l’arbre et on se pose la question  : Quel coup choisir pour le joueur1 
(MAX) ?

MAX joue

2 1 5

Le joueur1 (MAX) cherche à maximiser ses gains. Il va donc choisir le coup avec un gain 
égal à 5.

MAX joue

2 1 5

5
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On obtient alors l’arbre de jeu :

46 2 91 6 58 9

MAX joue

MIN joue 2 5

5

1

Plus la profondeur est grande, plus le coup choisi sera de meilleure qualité.

1. 
def init():         # début de partie
                    # la fonction retourne une liste jeu avec
                    # un plateau vide
                    # les cases vides sont représentées par '.'
    L=9*['.']       # 9 cases avec '.'
    return L

def affiche(jeu):
                    # la fonction affiche le plateau de jeu
                    # jeu = liste de 9 éléments
    print(jeu[0:3]) # 1re ligne du plateau de jeu
    print(jeu[3:6]) # 2e ligne du plateau de jeu
    print(jeu[6:9]) # 3e ligne du plateau de jeu

def choixjoueur(jeu):
    # la fonction retourne le joueur 'O' ou 'X' devant jouer
    # pour la liste jeu
    som1=0  # initialisation du nombre de cases noires
    som2=0  # initialisation du nombre de cases blanches
    for i in range(9):
        if jeu[i]=='X':
            som1=som1+1   # nombre de cases noires
        elif jeu[i]=='O':
            som2=som2+1   # nombre de cases blanches
    if som1==som2:        # si autant de pions noirs que de
                          # pions blancs
        return 'X'        # c’est à X de jouer
    else:
        return 'O'        # c’est à O de jouer

def listecoups(jeu):
    # la fonction retourne la liste L des indices des cases
    # vides pour la liste jeu
    L=[]
    for i in range (9):
        if jeu[i]=='.':
            L.append(i)   # ajoute les cases sans pion
    return L
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def gain(jeu):
    # la fonction retourne 1 si les noirs ont gagné,
    # -1 si les blancs ont gagné et 0 sinon pour la liste jeu
    liste1=['X', 'X', 'X']
    liste2=['O', 'O', 'O']
    if jeu[0:3]==liste1 or jeu[3:6]==liste1 or jeu[6:9]==liste1\
        or [jeu[0], jeu[3], jeu[6]]==liste1\
        or [jeu[1], jeu[4], jeu[7]]==liste1\
        or [jeu[2], jeu[5], jeu[8]]==liste1\
        or [jeu[0], jeu[4], jeu[8]]==liste1\
        or [jeu[2], jeu[4], jeu[6]]==liste1:
        return 1          # 3 pions noirs alignés
    elif jeu[0:3]==liste2 or jeu[3:6]==liste2 or jeu[6:9]==liste2\
        or [jeu[0], jeu[3], jeu[6]]==liste2\
        or [jeu[1], jeu[4], jeu[7]]==liste2\
        or [jeu[2], jeu[5], jeu[8]]==liste2\
        or [jeu[0], jeu[4], jeu[8]]==liste2\
        or [jeu[2], jeu[4], jeu[6]]==liste2:
        return -1         # 3 pions blancs alignés
    else:
        return 0

2. On ne peut pas écrire : jeu2=jeu pour réaliser une copie de la liste 
jeu. Si on modifie un élément de jeu, alors jeu2 aura la même modi-
fication puisque les deux listes jeu et jeu2 font référence à la même 
adresse mémoire.
On utilise le module copy (voir exercice 1.4 « Affectation, objet immuable, 
copie » dans le chapitre « Prise en main de Python ») pour réaliser une 
copie superficielle de jeu.
def jouercoup(jeu, coup):
    # la fonction retourne une nouvelle liste jeu2
    # en ajoutant un pion à l’indice coup de la liste jeu
    import copy          # module copy
    jeu2=copy.copy(jeu)  # copie superficielle de jeu
                         # si on modifie jeu2, la liste jeu
                         # est inchangée
    pion=choixjoueur(jeu)
    if coup in listecoups(jeu):
        jeu2[coup]=pion
    return jeu2

3. 
def valMax(jeu):
    # retourne la valeur du maximum du gain et l’indice
    # de la case à jouer pour la liste jeu
    L=listecoups(jeu)
    if len(L)==0 or gain(jeu)!=0:
        # condition d’arrêt de la fonction récursive
        # partie finie car plus de coups à jouer
        # un des joueurs a gagné avec trois pions alignés
        return gain(jeu), -1  # la partie est finie
    else:
        calculmax=-2          # maximum de tous les coups
                              # possibles



Partie 12 · Intelligence artificielle et jeux

264

        ind_coup=-1           # initialisation de l’indice
                              # du coup à jouer
        for coup in L:        # parcourt tous les coups
                              # possibles
            jeu2=jouercoup(jeu,coup)
            calcul,indice= valMin(jeu2)
            if calcul>calculmax:
                calculmax=calcul    # maximum de tous les coups
                                    # possibles
                ind_coup=coup       # indice du coup à jouer
        return calculmax, ind_coup  # maximum du coup à jouer

def valMin(jeu):
    # retourne la valeur du minimum du gain et l’indice
    # de la case à jouer pour la liste jeu
    L=listecoups(jeu)
    if len(L)==0 or gain(jeu)!=0:
        # condition d’arrêt de la fonction récursive
        # partie finie car plus de coups à jouer
        # un des joueurs a gagné avec trois pions alignés
        return gain(jeu), -1  # la partie est finie
    else:
        calculmin=2           # minimum de tous les coups
                              # possibles
        ind_coup=-1           # initialisation de l’indice
                              # du coup à jouer
        for coup in L:        # parcourt tous les coups
                              # possibles
            jeu2=jouercoup(jeu,coup)
            calcul, indice=valMax(jeu2)
            if calcul<calculmin:
                calculmin=calcul    # minimum de tous les coups
                                    # possibles
                ind_coup=coup       # indice du coup à jouer
        return calculmin, ind_coup  # minimum du coup à jouer

4. 
def jouerminmax(jeu):
    # cette fonction affiche les plateaux de jeu à chaque étape
    # la liste jeu est modifiée à chaque étape
    while gain(jeu)==0 and len(listecoups(jeu))!=0:
        # la partie n’est pas terminée et il reste des coups
        # à jouer
        nomjoueur=choixjoueur(jeu)
        if nomjoueur=='X':       # les noirs jouent
            calcul, ind_coup=valMax(jeu)
            # récupère l’indice du coup à jouer pour les noirs
            jeu=jouercoup(jeu, ind_coup)
            # on passe à l’étape suivante du jeu
        else:
            calcul, ind_coup=valMin(jeu)
            # récupère l’indice du coup à jouer pour les blancs
            jeu=jouercoup(jeu, ind_coup)
            # passe à l’étape suivante du jeu
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        print("Joueur qui pose les pions :", nomjoueur)
        affiche(jeu)

    if gain(jeu)==1:
        print("Le joueur X a gagné.")
    elif gain(jeu)==-1:
        print("Le joueur O a gagné.")
    else:
        print("Partie nulle")

Le programme principal permettant de visualiser les étapes du jeu de mor-
pion est le suivant :
jeu=init()          # début de partie avec cases '.'
jouerminmax(jeu)

5. 
def jouercontreIA(jeu):
    # cette fonction affiche les plateaux de jeu à chaque étape
    # la liste jeu est modifiée à chaque étape
    # ordinateur ou IA : pions noirs ; l’humain : pions blancs
    while gain(jeu)==0 and len(listecoups(jeu))!=0:
        # la partie n’est pas terminée et il reste des coups
        # à jouer
        nomjoueur=choixjoueur(jeu)
        if nomjoueur=='X':      # les noirs jouent
            calcul, ind_coup=valMax(jeu)
            # on récupère l’indice du coup à jouer
            jeu=jouercoup(jeu, ind_coup)
            # passe à l’étape suivante du jeu
            print("Joueur qui pose les pions :", nomjoueur)
            affiche(jeu)
        else:
            ind_coup=int(input("Tapez l’indice de la case : "))
            # on récupère l’indice du coup à jouer
            jeu=jouercoup(jeu, ind_coup)
            # passe à l’étape suivante du jeu

    if gain(jeu)==1:
        print("L’ordinateur (joueur X) a gagné.")
    elif gain(jeu)==-1:
        print("Vous avez gagné (joueur O).")
    else:
        print("Partie nulle")

Le programme principal permettant de jouer contre l’ordinateur est le sui-
vant :
jeu=init()          # début de partie avec cases '.'
jouercontreIA(jeu)
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Cet exercice est la suite de l’exercice précédent « Jeu de morpion, algorithme 
min-max ». On pourra utiliser les fonctions init, affiche, choixjoueur, 
listecoups, gain et jouercoup.

1.  L’arbre de jeu peut devenir très grand et les appels récursifs peuvent être 
coûteux en mémoire. On définit un entier profondeurmaxi qui détermine 
la profondeur maximale explorée dans l’arbre de jeu. Écrire deux nouvelles 
fonctions récursives valMax2 et valMin2 qui admettent comme arguments 
une liste jeu et un entier profondeur. Le paramètre profondeurmaxi 
détermine le nombre de coups calculés à l’avance par l’algorithme.
2.  Écrire une fonction jouercontreIA2 qui admet comme arguments une 
liste jeu et un entier profondeurmaxi. Cette fonction permet à un humain 
de jouer contre l’ordinateur en choisissant la couleur des pions et un niveau de 
difficulté (l’entier profondeurmaxi). Par exemple : 2 pour un niveau débu-
tant, 6 pour un niveau intermédiaire et 10 pour un niveau expert.

Exercice 15.5 : �Jeu de morpion, algorithme min-max  
et profondeur

Analyse du problème
L’algorithme min-max peut nécessiter un temps de calcul très important pour par-
courir toutes les branches en profondeur. Dans cet exercice, on limite la profondeur 
d’étude dans l’arbre de jeu. On peut ainsi déterminer un niveau de difficulté du jeu.

1. 
def valMax2(jeu, profondeur): 
    # retourne la valeur du maximum du gain et l’indice
    # de la case à jouer pour la liste jeu
    # profondeurmaxi = nombre de coups calculés à l’avance
    # par l’algorithme
    L=listecoups(jeu)
    if len(L)==0 or gain(jeu)!=0 or profondeur ==0:
        # condition d’arrêt de la fonction récursive :
        # partie finie car plus de coups à jouer,
        # ou un des joueurs a gagné avec trois pions alignés,
        # ou profondeur nulle (on n’explore pas plus en
        # profondeur l’arbre)
        return gain(jeu), -1  # la partie est finie
    else:
        calculmax=-2          # maximum de tous les coups
                              # possibles
        ind_coup=-1           # initialisation de l’indice
                              # du coup à jouer
        for coup in L:        # parcourt tous les coups
                              # possibles
            jeu2=jouercoup(jeu, coup)
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            calcul, indice= valMin2(jeu2, profondeur-1)
            if calcul>calculmax:
                calculmax=calcul    # maximum de tous les coups
                                    # possibles
                ind_coup=coup       # indice du coup à jouer
        return calculmax, ind_coup  # maximum du coup à jouer

def valMin2(jeu, profondeur):
    # retourne la valeur du minimum du gain et l’indice
    # de la case à jouer pour la liste jeu
    # profondeurmaxi = nombre de coups calculés à l’avance
    # par l’algorithme
    L=listecoups(jeu)
    if len(L)==0 or gain(jeu)!=0 or profondeur ==0:
        # condition d’arrêt de la fonction récursive :
        # partie finie car plus de coups à jouer,
        # ou un des joueurs a gagné avec trois pions alignés,
        # ou profondeur nulle (on n’explore pas plus en
        # profondeur l’arbre)
        return gain(jeu), -1  # la partie est finie
    else:
        calculmin=2           # minimum de tous les coups
                              # possibles
        ind_coup=-1           # initialisation de l’indice
                              # du coup à jouer
        for coup in L:        # parcourt tous les coups
                              # possibles
            jeu2=jouercoup(jeu, coup)
            calcul, indice=valMax2(jeu2, profondeur-1)
            if calcul<calculmin:
                calculmin=calcul    # minimum de tous les coups
                                    # possibles
                ind_coup=coup       # indice du coup à jouer
        return calculmin, ind_coup  # minimum du coup à jouer

2. 
def jouercontreIA2(jeu, profondeurmaxi):
    # cette fonction affiche les plateaux de jeu à chaque étape
    # la liste jeu est modifiée à chaque étape
    # ordinateur ou IA : pions noirs ; l’humain : pions blancs
    # profondeurmaxi = nombre de coups calculés à l’avance par
    # l’algorithme
    while gain(jeu)==0 and len(listecoups(jeu))!=0:
        # la partie n’est pas terminée et il reste des coups
        # à jouer
        nomjoueur=choixjoueur(jeu)
        if nomjoueur=='X': # les noirs jouent
            calcul, ind_coup=valMax2(jeu, profondeurmaxi)
            # récupère l’indice du coup à jouer
            jeu=jouercoup(jeu, ind_coup)
            # passe à l’étape suivante du jeu
            print("Joueur qui pose les pions : ", nomjoueur)
            affiche(jeu)
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        else:
            ind_coup=int(input("Tapez l’indice de la case : "))

            # récupère l’indice du coup à jouer
            jeu=jouercoup(jeu, ind_coup)
            # passe à l’étape suivante du jeu

    if gain(jeu)==1:
        print("L’ordinateur (joueur X) a gagné.")
    elif gain(jeu)==-1:
        print("Vous avez gagné (joueur O).")
    else:
        print("Partie nulle")

Le programme principal permettant de jouer contre l’ordinateur en choisis-
sant le niveau de difficulté et la couleur des pions est :
jeu=init()          # début de partie avec cases '.'
profondeurmaxi=10   # 2 : niveau débutant, 6 : intermédiaire,
                    # 10 : expert
jouercontreIA2(jeu, profondeurmaxi)
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16Bases de données  
(Spé)

On considère la base de données TENNIS pour gérer les joueurs de tennis.
La table joueurs contient les colonnes :

•	id_joueur, de type entier, identifie chaque joueur ;

•	nom, de type chaîne de caractères, désigne le nom du joueur ;

•	annee, de type entier, désigne l’année de naissance ;

•	nationalite, de type chaîne de caractères, désigne la nationalité du joueur.

1 MURRAY 1987 britannique

2 GULBIS 1988 letton

3 FEDERER 1981 suisse

4 DJOKOVIC 1987 serbe

5 BERDYCH 1985 tchèque

6 NADAL 1986 espagnole

7 THIEM 1993 autrichienne

8 NISHIKORI 1989 japonaise

9 TSONGA 1985 française

10 WAWRINKA 1985 suisse

11 MONFILS 1986 française

12 SIMON 1984 française

1.  Écrire une requête SQL qui renvoie toutes les informations de tous les joueurs.
2.  Écrire une requête qui renvoie le nom de tous les joueurs français.
3.  Écrire une requête qui renvoie la liste des nationalités des joueurs de tennis.
4.  Écrire une requête qui renvoie la moyenne des années de naissance des 
joueurs français.
5.  Écrire une requête qui renvoie la nationalité, l’année de naissance et le 
nom des joueurs dont l’année de naissance est supérieure ou égale à 1988. On 
renommera les colonnes nationalité et année.

Exercice 16.1 : Joueurs de tennis
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6.  Écrire une requête qui renvoie l’année de naissance et le nom des joueurs 
dont l’année de naissance est strictement supérieure à 1980 et de nationalité 
suisse.
7.  Écrire une requête qui renvoie le nombre de joueurs ayant la même année de 
naissance. Les années sont affichées par ordre croissant.
8.  Écrire une requête qui renvoie les identifiants et les noms des 3 premiers 
joueurs sans le tout premier de la table.

Analyse du problème
Dans cet exercice, on n’utilise qu’une seule table. Pour lire les données d’une base 
de données, on utilise la commande SELECT qui retourne les enregistrements 
sélectionnés dans un tableau.

Cours :
La requête de base pour rechercher des données est la commande SELECT :

SELECT *
FROM table
WHERE condition;

* permet de retourner toutes les colonnes.

On n’utilise pas d’accent ni de blanc pour désigner les colonnes (que l’on peut appeler 
attributs). Le type des colonnes peut être entier (INTEGER), flottant (FLOAT) ou chaîne 
(TEXT).

La casse (c’est-à-dire minuscule ou majuscule) n’a pas d’importance pour la désignation 
des objets.

Le caractère point-virgule est un terminateur d’instruction. Il n’est pas obligatoire de 
l’écrire.

On peut ajouter des opérateurs AND, OR, NOT dans la condition WHERE.

Les opérateurs de comparaison sont :

> < >= <= = <>

Strictement 
supérieur à

Strictement 
inférieur à

Supérieur ou 
égal à

Inférieur ou 
égal à

Égal à Différent de

SELECT *
FROM table
WHERE condition1 AND condition2;

On peut ajouter DISTINCT après SELECT pour éviter d’afficher des lignes en double.

SELECT DISTINCT colonne
FROM table ;
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Dans certains cas, on veut éviter d’avoir plusieurs fois la même ligne. On utilise alors la 
commande GROUP BY qui permet de regrouper les lignes en une seule. La commande 
COUNT(*) compte alors le nombre de lignes concernées.

SELECT *
FROM table
WHERE condition
GROUP BY expression;

On peut utiliser d’autres fonctions statistiques : MAX (maximum), MIN (minimum), SUM 
(somme), AVG (moyenne).

AS permet de renommer une colonne ou une table. On utilisera la requête suivante :

SELECT table.colonne1 AS 'nouvellecolonne1', colonne2 AS 'nouvellecolonne2'
FROM table AS t;

On peut omettre AS :

FROM table t

On peut écrire t.colonne1 au lieu de table.colonne1.

On peut écrire FROM table t au lieu de FROM table AS t.

La commande LIMIT 3 permet de sélectionner les trois premiers résultats.

SELECT colonne1, colonne2
FROM table
LIMIT 3;

La commande LIMIT 3 permet de sélectionner les trois premiers résultats sans utiliser les 
deux premiers de table.

SELECT colonne1, colonne2
FROM table
LIMIT 3 OFFSET 2;

Voir exercice 16.4 « Imprimantes (Mines Ponts 2015) » pour une requête imbriquée.

Remarque : On pourra tester les requêtes SQL en utilisant SQLite Database Brow-
ser (https://sqlitebrowser.org).

1. 
SELECT * FROM joueurs;

* permet de retourner toutes les colonnes.
2. 
SELECT nom
FROM joueurs
WHERE nationalite='française';

On obtient alors : TSONGA, MONFILS, SIMON.
3. On ajoute DISTINCT pour éviter d’afficher plusieurs fois la même 
nationalité.
SELECT DISTINCT nationalite
FROM joueurs;
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Cours :
Les fonctions d’agrégation permettent de réaliser des opérations statistiques.

SELECT COUNT(*)
FROM joueurs;

La commande COUNT(*) compte alors le nombre de lignes. On obtient : 12.

On utilise souvent les fonctions statistiques  : MAX (maximum), MIN (minimum), SUM 
(somme) et AVG (moyenne).

SELECT MAX(annee)
FROM joueurs;

On obtient : 1993.

4. 
SELECT AVG(annee)
FROM joueurs
WHERE nationalite='française';

5. 
SELECT nationalite AS 'nationalité', annee AS 'année', nom
FROM joueurs
WHERE annee >=1988;

On obtient alors : 1988 GULBIS, 1989 NISHIKORI et 1993 THIEM.
6. 
SELECT annee, nom
FROM joueurs 
WHERE annee >1980 AND nationalite='suisse';

Remarque :

On peut écrire également :
SELECT annee, nom
FROM joueurs 
WHERE (annee >1980 AND nationalite='suisse');

Cours :
La commande GROUP BY évite d’avoir plusieurs fois la même ligne. On regroupe les 
lignes d’un même joueur en une seule.

La commande COUNT(*) compte alors le nombre de lignes concernées.

La commande ORDER BY annee permet de trier les lignes par année. Par défaut, le tri 
est par ordre croissant (ou ascendant).

Les fonctions d’agrégation SUM(nom_col), AVG(nom_col), MAX(nom_col), 
MIN(nom_col), COUNT(nom_col), COUNT(*) calculent respectivement la somme, 
la moyenne arithmétique, le maximum, le minimum, le nombre de valeurs non nulles de la 
colonne nom_col et le nombre de lignes pour chaque groupe de lignes défini par la clause 
GROUP BY. Si la requête ne comporte pas de clause GROUP BY, le calcul est effectué pour 
l’ensemble des lignes sélectionnées par la requête.
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7. 
SELECT annee, COUNT(*)
FROM joueurs
GROUP BY annee
ORDER BY annee;

8. 
SELECT id_joueur, nom
FROM joueurs 
LIMIT 3 OFFSET 1;

La commande LIMIT 3 OFFSET 1 permet d’afficher les trois premiers 
résultats sans utiliser le premier résultat de la table joueurs. On obtient 
les lignes 2, 3 et 4.

On reprend la base de données TENNIS définie dans l’exercice précédent, 
mais qu’on appellera ici joueurs. On ajoute une autre table tournois qui 
contient les colonnes :
•• id_tournoi, de type entier, identifie chaque tournoi ;

•• nom, de type chaîne de caractères, désigne le nom du tournoi ;

•• annee, de type entier, désigne l’année où a lieu le tournoi ;

•• num_finaliste1, de type entier, identifie le vainqueur du tournoi ;

•• num_finaliste2, de type entier, identifie le perdant de la finale du tournoi ;

•• num_joueur3, de type entier, identifie le troisième joueur en demi-finale ;

•• num_joueur4, de type entier, identifie le quatrième joueur en demi-finale ;

•• gain, de type entier, désigne la somme gagnée par le vainqueur.

1 ROLAND-GARROS 2016 4 1 7 10 2000000

2 ROLAND-GARROS 2015 10 4 9 1 1800000

3 ROLAND-GARROS 2014 6 4 1 2 1650000

4 OPEN AUSTRALIE 2016 4 8 9 12 2390000

5 OPEN AUSTRALIE 2015 4 1 5 10 2100000

6 OPEN AUSTRALIE 2014 10 6 3 5 2050000

1.  Qu’appelle-t-on une clé primaire ? Qu’appelle-t-on une clé étrangère ?
2.  Écrire une requête SQL qui renvoie le nom du vainqueur de Roland-Garros 
en 2016.
3.  Écrire une requête qui renvoie pour chaque joueur l’année et le nom des 
tournois gagnés par celui-ci. Les noms des joueurs sont triés par ordre croissant.

Exercice 16.2 : Tournois et joueurs de tennis
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4.  Écrire une requête qui renvoie le nombre de victoires pour chaque joueur.
5.  Écrire une requête qui renvoie le total des gains pour chaque joueur.
6.  Écrire une requête qui renvoie le gain moyen de chaque joueur d’origine serbe.
7.  Écrire une requête qui renvoie le gain moyen de chaque tournoi. Les noms 
des tournois sont triés par ordre croissant.
8.  Écrire une requête qui renvoie la liste des joueurs ayant gagné au moins 
deux tournois et nés après 1986. On affichera également le nombre de tournois 
gagnés.
9.  Écrire une requête qui renvoie le joueur ayant gagné le plus de tournois.
10.  Écrire une requête qui renvoie pour chaque joueur le nombre de partici-
pations à une demi-finale d’un tournoi. On renommera les tables joueurs et 
tournois respectivement j et t. Les joueurs sont affichés par ordre croissant.
11.  Représenter le schéma relationnel de la base de données.

Analyse du problème
On utilise dans cet exercice deux tables : joueurs et tournois. On cherche à 
les mettre en relation en utilisant plusieurs clés (joueurs en demi-finale). On pourra 
utiliser JOIN… ON… pour réaliser une jointure. La commande HAVING permet de 
réaliser des fonctions d’agrégation comme COUNT.

Cours :
Les jointures permettent de mettre en relation plusieurs tables. Dans la plupart des cas, on 
impose l’égalité des valeurs d’une colonne d’une table à celles d’une colonne d’une autre 
table.

SELECT *
FROM joueurs
JOIN tournois;

Cette requête réalise le produit cartésien des deux tables joueurs et tournois. À 
chaque ligne de la table tournois, il accole l’ensemble des lignes de la table joueurs. 
Le nombre de lignes affichées vaut 12×6=72. On a réalisé une jointure entre les deux tables.

id_

joueur
nom annee nationalite

id_

tournoi
nom annee (1) (2) (3) (4) gain

1 MURRAY 1987 britannique 1
ROLAND- 

GARROS
2016 4 1 7 10 2000000

1 MURRAY 1987 britannique 2
ROLAND- 

GARROS
2015 10 4 9 1 1800000

(1) num_finaliste1 ;   (2) num_finaliste2 ;   (3) num_joueur3 ;   (4) num_joueur4

On peut préciser une condition de jointure avec le mot-clé ON.

SELECT *
FROM joueurs
JOIN tournois ON id_joueur=num_finaliste1;
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La requête SQL n’affiche pas les 72 lignes mais uniquement celles dont la condition id_
joueur=num_finaliste1 est vérifiée. On a réalisé une jointure interne. On aurait pu 
écrire INNER JOIN au lieu de JOIN.

GROUP BY permet de regrouper les lignes en une seule. HAVING fait quasiment la même 
chose que WHERE mais permet d’utiliser des fonctions d’agrégation comme COUNT pour 
compter le nombre d’éléments.

La requête est alors la suivante :

SELECT *
FROM table1
JOIN table2 ON table1.colonne1=table2.colonne2
WHERE condition
GROUP BY expression HAVING COUNT(*)>=1
ORDER BY colonne1
LIMIT 3 OFFSET 2;

On rencontre parfois des jointures d’une table sur elle-même. On parle d’autojointure (voir 
exercice 16.3 « Numéros de sécurité sociale »).

1. Une clé primaire sert à identifier une ligne de manière unique. Chaque 
joueur est désigné par un numéro d’identifiant id_joueur. Chaque tour-
noi est désigné par un numéro d’identifiant id_tournoi.
Une clé étrangère permet de lier des relations (ou tables) entre elles. La 
clé num_finaliste1 permet d’avoir le numéro d’identifiant du joueur 
qui a gagné la finale du tournoi. Les clés num_finaliste1, num_ 
finaliste2, num_joueur3 et num_joueur4 sont des clés étrangères.
2. Il faut réaliser une jointure entre les tables tournois et joueurs. La 
colonne nom peut prêter à confusion puisqu’elle est utilisée dans les deux 
tables. Le nom du joueur est alors désigné par joueurs.nom.
SELECT joueurs.nom
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016;

On obtient alors : DJOKOVIC.
Remarque :

On peut écrire également :
SELECT joueurs.nom
FROM joueurs, tournois
WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016
AND num_finaliste1=id_joueur;

Par la suite, on utilisera la commande JOIN… ON…

3. 
SELECT joueurs.nom, tournois.nom, tournois.annee
FROM joueurs 
JOIN tournois ON num_finaliste1=id_joueur
ORDER BY joueurs.nom;
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On obtient alors  : DJOKOVIC Roland-Garros 2016, DJOKOVIC Open d’Aus-
tralie 2061, DJOKOVIC Open d’Australie 2015, NADAL Roland-Garros 2014, 
WAWRINKA Roland-Garros 2015, WAWRINKA Open d’Australie 2014.

Cours :
On peut ajouter ASC pour préciser que le tri se fait par ordre croissant. Ce n’est pas obliga-
toire puisque le tri se fait par défaut par ordre croissant.

ORDER BY joueurs.nom ASC : tri des noms par ordre croissant.

ORDER BY joueurs.nom DESC : tri des noms par ordre décroissant.

Cours :
SELECT AVG(gain)
FROM tournois;

On obtient : 1998333.33.

On peut utiliser des fonctions d’agrégation avec la commande GROUP BY.

SELECT nom, AVG(gain)
FROM tournois
GROUP BY nom;

La commande GROUP BY évite d’avoir plusieurs fois la même ligne. Il faut donc regrouper 
les lignes d’un même tournoi.

La commande AVG(gain) donne la moyenne des gains pour chaque tournoi.

On obtient :

OPEN AUSTRALIE 2180000.0

ROLAND-GARROS 1816666.67

4. 
SELECT joueurs.nom, COUNT(*)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur
GROUP BY joueurs.nom;

On regroupe les lignes d’un même joueur en une seule. La commande 
COUNT(*) compte alors le nombre de lignes concernées.
On obtient alors : DJOKOVIC 3, NADAL 1, WAWRINKA 2.
5. 
SELECT joueurs.nom, SUM(tournois.gain)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur
GROUP BY joueurs.nom;

On obtient alors  : DJOKOVIC 6490000, NADAL 1650000, WAWRINKA 
3850000.
6. 
SELECT joueurs.nom, AVG(tournois.gain)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur AND nationalite='serbe'
GROUP BY joueurs.nom;
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7. 
SELECT nom, AVG(tournois.gain)
FROM tournois
GROUP BY nom
ORDER BY nom;

8. 
SELECT joueurs.nom, COUNT(joueurs.nom)
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
WHERE joueurs.annee>1986
GROUP BY joueurs.nom
HAVING COUNT(joueurs.nom)>=2;

9. 
SELECT joueurs.nom, COUNT(joueurs.nom)
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
GROUP BY joueurs.nom
ORDER BY COUNT(joueurs.nom) DESC
LIMIT 1;

Cours :
LIMIT 1 permet d’afficher le premier résultat.

10. 
SELECT j.nom, COUNT(j.nom)
FROM joueurs AS j
JOIN tournois as t ON num_finaliste1=id_joueur OR num_
finaliste2=id_joueur OR num_joueur3=id_joueur OR num_joueur4=id_
joueur
GROUP BY j.nom
ORDER BY j.nom;

11. 

id_joueur INTEGER

nom TEXT

annee INTEGER

nationalite TEXT

joueurs

id_tournoi INTEGER

nom TEXT

annee INTEGER

num_finaliste1 INTEGER

num_finaliste2 INTEGER

num_joueur3 INTEGER

num_joueur4 INTEGER

gain INTEGER

tournois

4

0..*
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Un joueur peut être lié à aucun tournoi ou à plusieurs tournois. On écrit 
alors la multiplicité 0..*.
Un tournoi est lié à exactement quatre joueurs. On écrit alors la multiplicité 
4..4, que l’on note 4.

Cours :
Une association est un lien entre deux ou plusieurs entités.

Multiplicité Abréviation Cardinalité
0..0 0 Aucune ligne

0..1 Aucune ou une seule ligne

1..1 1 Une seule ligne

0..* * Aucune, une ou plusieurs lignes (pas de limite)

1..* Au moins une ligne (pas de limite)

x..x x Exactement x ligne(s)

m..n Au moins m et au plus n lignes

On considère la base de données SECURITE_SOCIALE pour gérer les numéros 
de sécurité sociale des assurés. Pour chaque région, on a une table qui contient 
les attributs :
•• id_personne, de type entier, identifie chaque personne ;

•• nom, de type chaîne de caractères, désigne le nom de la personne ;

•• prénom, de type chaîne de caractères, désigne le prénom de la personne ;

•• annee, de type entier, désigne l’année de naissance ;

•• numsecu, de type flottant, désigne le numéro de sécurité sociale ;

•• id_personne2, de type entier, identifie le mari ou la femme ;

•• rembour, de type flottant, désigne la somme à rembourser à id_personne.

tab_bretagne

1 DURAND Alfred 1980 1801223255521 3 50.5

2 DUPONT Thomas 1985 1851056568848 100.8

3 MAUREL Juliette 1985 1750950504544 1 350

4 DJOKOVIC Anne 1970 1701584545321

5 BERDYCH Bertrand 1989 2892502545458 6 10

6 CHEMIN Marie 1989 2825084584848 5 18

Exercice 16.3 : Numéros de sécurité sociale
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tab_aquitaine

1 BOULEAU Patrick 1975 1755258458181 2 100

2 BOULEAU Marie 1978 2508584545451 1 80

3 CHASSAT Paul 1980 1803355484812 18

4 FALQUIER Anne 1985 2885884788882 5 400.5

5 DUPE Bertrand 1986 1865254848482 4 500

6 CHEMIN Marie 1983 2825358874851 29

1.  Écrire une requête SQL qui renvoie le nom, le prénom, le numéro de sécu-
rité sociale et l’année de naissance des assurés dont l’année de naissance est 
supérieure ou égale à 1980 pour la Bretagne et 1985 pour la Nouvelle-Aqui-
taine. Les noms des assurés sont affichés par ordre croissant.
2.  Écrire une requête qui renvoie la liste des couples de Bretagne. Chaque ligne 
contiendra le nom et le prénom de l’assuré ainsi que le nom et le prénom de son 
mari ou de sa femme.
3.  Écrire une requête qui renvoie le nom et le prénom des assurés qui ont les 
mêmes noms et prénoms en Bretagne et Nouvelle-Aquitaine.
4.  Écrire une requête qui renvoie le nom et le prénom des assurés de Bretagne 
sauf ceux qui ont même nom et même prénom en Bretagne et Nouvelle-Aquitaine.
5.  Écrire une requête qui renvoie les deux plus grands remboursements des 
couples de Nouvelle-Aquitaine. Chaque ligne contiendra le nom, le prénom et 
le remboursement.
6.  Écrire une requête qui renvoie la moyenne des remboursements par année de 
naissance des assurés de Bretagne. Le minimum du remboursement des assurés 
pour chaque année de naissance doit être supérieur ou égal à 50. Les années 
sont affichées par ordre décroissant.

Analyse du problème
On utilise dans cet exercice des opérateurs ensemblistes : UNION, INTERSECT et 
EXCEPT. Ils permettent de combiner dans un résultat unique des lignes provenant 
de deux requêtes SELECT.

Cours :
La commande UNION permet d’obtenir la réunion des enregistrements de deux requêtes 
SELECT. Pour chaque requête SELECT, on doit avoir le même nombre de colonnes et 
le  même type pour chaque colonne. Les enregistrements identiques sont affichés une 
seule fois.

SELECT nom, prenom FROM tab_bretagne
UNION
SELECT nom, prenom FROM tab_aquitaine
ORDER BY nom;
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On obtient :

BERDYCH Bertrand

BOULEAU Marie

BOULEAU Patrick

CHASSAT Paul

CHEMIN Marie

DJOKOVIC Anne

DUPE Bertrand

DUPONT Thomas

DURAND Alfred

FALQUIER Anne

MAUREL Juliette

1. 
SELECT nom, prenom, numsecu, annee FROM tab_bretagne WHERE 
annee>=1980
UNION
SELECT nom, prenom, numsecu, annee FROM tab_aquitaine WHERE 
annee>=1985
ORDER BY nom;

Cours :
Une autojointure consiste à joindre une table à elle-même. On peut afficher sur une même 
ligne une personne ou son mari ou sa femme. On renomme les deux tables pour éviter toute 
confusion.

SELECT t1.nom,t1.prenom, t2.nom, t2.prenom
FROM tab_bretagne AS t1
JOIN tab_bretagne AS t2
ON t1.id_personne2=t2.id_personne;

Cette requête affiche des doublons. On obtient :

DURAND Alfred MAUREL Juliette

MAUREL Juliette DURAND Alfred

BERDYCH Bertrand CHEMIN Marie

CHEMIN Marie BERDYCH Bertrand

2. 
SELECT t1.nom,t1.prenom, t2.nom, t2.prenom
FROM tab_bretagne AS t1
JOIN tab_bretagne AS t2
ON t1.id_personne2=t2.id_personne
WHERE t1.id_personne2>t1.id_personne;
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On obtient : 

DURAND Alfred MAUREL Juliette

BERDYCH Bertrand CHEMIN Marie

Cours :
La commande INTERSECT permet d’obtenir l’intersection de deux requêtes SELECT, 
c’est-à-dire les enregistrements communs aux deux requêtes.

3. 
SELECT nom, prenom FROM tab_bretagne
INTERSECT
SELECT nom, prenom FROM tab_aquitaine;

Cours :
La commande EXCEPT permet de récupérer les enregistrements de la première requête 
SELECT sans inclure les résultats de la deuxième requête SELECT.

4. 
SELECT nom, prenom FROM tab_bretagne
EXCEPT
SELECT nom, prenom FROM tab_aquitaine
ORDER BY nom;

On obtient :

BERDYCH Bertrand

DJOKOVIC Anne

DUPONT Thomas

DURAND Alfred

MAUREL Juliette

5. 
SELECT t1.nom, t1.prenom, t2.nom, t2.prenom, t1.rembour+t2.rembour
FROM tab_aquitaine AS t1
JOIN tab_aquitaine AS t2
ON t1.id_personne2=t2.id_personne
ORDER BY t1.rembour+t2.rembour DESC
LIMIT 2;

Remarque :

On peut écrire :
SELECT t1.nom, t1.prenom, t2.nom, t2.prenom, t1.rembour+t2.rembour
FROM tab_aquitaine t1
JOIN tab_aquitaine t2
ON t1.id_personne2=t2.id_personne
ORDER BY t1.rembour+t2.rembour DESC
LIMIT 2;
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On obtient :

FALQUIER Anne DUPE Bertrand 900

DUPE Bertrand FALQUIER Anne 900

6. 
SELECT annee, AVG(rembour)
FROM tab_bretagne
GROUP BY annee
HAVING MIN(rembour)>=50
ORDER BY annee DESC;

On obtient :

1985 225.0

1980 50.0

Une représentation simplifiée de deux tables de la base de données  
imprimantes est donnée ci-dessous :
•• table testfin :

nSerie dateTest … Imoy Iec … fichierMes
230-588ZX2547 2012-04-22 14-25-45 0.45 0.11 mesure31025.csv

230-588ZX2548 2012-04-22 14-26-57 0.43 0.12 mesure41026.csv

•• table production :

Num nSerie dateProd type
20 230-588ZX2547 2012-04-22 15-52-12 JETDESK-1050

21 230-588ZX2549 2012-04-22 15-53-24 JETDESK-3050

Après son assemblage et avant les différents tests de validation, un numéro 
de série unique est attribué à chaque imprimante. À la fin des tests de chaque 
imprimante, les résultats d’analyse ainsi que le fichier contenant l’ensemble des 
mesures réalisées sur l’imprimante sont rangés dans la table testfin. Lors-
qu’une imprimante satisfait les critères de validation, elle est enregistrée dans 
la table production avec son numéro de série, la date et l’heure de sortie de 
production ainsi que son type.

1.  Écrire une requête SQL permettant d’obtenir les numéros de série des impri-
mantes ayant une valeur de Imoy comprise strictement entre deux bornes Imin 
et Imax.

Exercice 16.4 : Imprimantes (Mines Ponts 2015)
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2.  Écrire une requête permettant d’obtenir les numéros de série, la valeur de 
l’écart type (Iec) et le fichier de mesures des imprimantes ayant une valeur de 
Iec strictement inférieure à la valeur moyenne de la colonne Iec.
3.  Écrire une requête permettant d’extraire à partir de la table testfin le 
numéro de série et le fichier de mesures correspondant aux imprimantes qui 
n’ont pas été validées en sortie de production.

Analyse du problème
Cet exercice est extrait de l’épreuve d’informatique du concours Mines Ponts 2015.

On utilise une rubrique imbriquée. Le résultat d’une requête imbriquée en SQL 
peut retourner un champ (question 2) ou une colonne (question 3).

1. 
SELECT nSerie
FROM testfin
WHERE Imoy>Imin and Imoy<Imax;

2. 
SELECT nSerie,Iec,fichierMes
FROM testfin 
WHERE Iec<(SELECT AVG(Iec) FROM testfin);

Cours :
La requête imbriquée (SELECT AVG(Iec) FROM testfin) retourne un champ : la 
valeur moyenne de la colonne Iec.

3. 
SELECT nSerie,fichierMes
FROM testfin
WHERE nSerie NOT IN (SELECT nSerie from production);

La requête imbriquée (SELECT nSerie from production) retourne 
une colonne : les numéros de série de la table production.

Remarque :

La requête suivante permet de tester si le numéro de série de la table testfin est 
également dans la table production.
SELECT nSerie, fichierMes
FROM testfin
WHERE nSerie IN (SELECT nSerie from production);
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Pour suivre la propagation des épidémies, de nombreuses données sont recueil-
lies par les institutions internationales comme l’O.M.S. Par exemple, pour le 
paludisme, on dispose de deux tables :
•• La table palu recense le nombre de nouveaux cas confirmés et le nombre 
de décès liés au paludisme ; certaines lignes de cette table sont données en 
exemple (on précise que iso est un identifiant unique pour chaque pays) :

nom iso annee cas deces
Brésil BR 2009 309316 85

Brésil BR 2010 334667 76

Kenya KE 2010 898531 26017

Mali ML 2011 307035 2128

Ouganda UG 2010 1581160 8431

•• La table demographie recense la population totale de chaque pays ; cer-
taines lignes de cette table sont données en exemple :

pays periode pop
BR 2009 193020000

BR 2010 194946000

KE 2010 40909000

ML 2011 14417000

UG 2010 33987000

1.  Au vu des données présentées dans la table palu, parmi les attributs nom, 
iso et annee, quels attributs peuvent servir de clé primaire ? Un couple d’at-
tributs pourrait-il servir de clé primaire  ? (on considère qu’une clé primaire 
peut posséder plusieurs attributs). Si oui, en préciser un.
2.  Écrire une requête SQL qui récupère depuis la table palu toutes les données 
de l’année 2010 qui correspondent à des pays où le nombre de décès dus au 
paludisme est supérieur ou égal à 1 000.
3.  On appelle taux d’incidence d’une épidémie le rapport du nombre de nou-
veaux cas pendant une période donnée sur la taille de la population-cible pen-
dant la même période. Il s’exprime généralement en « nombre de nouveaux 
cas pour 100  000 personnes par année  ». Il s’agit d’un des critères les plus 
importants pour évaluer la fréquence et la vitesse d’apparition d’une épidémie.

Écrire une requête qui détermine le taux d’incidence du paludisme en 2011 
pour les différents pays de la table palu.

Exercice 16.5 : Paludisme (Mines Ponts 2016)
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4.  Écrire une requête permettant d’afficher le nombre de nouveaux cas de palu-
disme en 2010 pour les différents pays de la table palu.
5.  Écrire une requête permettant d’afficher le maximum de nouveaux cas de 
paludisme en 2010.
6.  Écrire une requête permettant d’afficher le nom du pays ayant le plus grand 
nombre de nouveaux cas de paludisme en 2010 (on pourra supposer qu’il n’y a 
pas de pays ex aequo pour les nombres de cas).
7.  Écrire une requête permettant de déterminer le nom du pays ayant eu le deu-
xième plus grand nombre de nouveaux cas de paludisme en 2010
8.  On considère la requête R, qui s’écrit dans le langage de l’algèbre relation-
nelle :

π σ )( )(=R palunom,deces annee=2010

On suppose que le résultat de cette requête a été converti en une table 
deces2010 constituée de couples (chaîne, entier).
Écrire une requête SQL permettant de trier la liste deces2010 par ordre crois-
sant du nombre de décès dus au paludisme en 2010.

Analyse du problème
Cet exercice est extrait de l’épreuve d’informatique du concours Mines Ponts 2016. 
On utilise une rubrique imbriquée. Le résultat d’une requête imbriquée en SQL ne 
fournit qu’un champ dans cet exercice (maximum du nombre de nouveaux cas de 
paludisme en 2010).

Cours :
La sélection σ ( )paluannee=2010  s’applique à la table palu et permet d’extraire de celle-ci les 
éléments qui satisfont un critère de sélection ( )annee=2010 .

La projection π ( )'nom,deces R  s’applique à une relation R’ et ne garde que les colonnes nom, 
deces. Contrairement à la sélection, la projection ne supprime pas des lignes mais des 
colonnes.

1. Une clé primaire sert à identifier une ligne de manière unique. Aucune 
colonne dans la table palu n’est une clé primaire.
Le couple (iso, annee) est une clé primaire.
2. 
SELECT *
FROM palu
WHERE annee=2010
AND deces>=1000;
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3. 
SELECT nom, cas/pop*100000 AS 'taux incidence'
FROM palu
JOIN demographie ON iso=pays AND periode=annee
WHERE annee=2011;

4. 
SELECT nom, cas
FROM palu
WHERE annee=2010;

On obtient : Brésil 334667 ; Kenya 898531 ; Ouganda 1581160.
5. 
SELECT max(cas)
FROM palu
WHERE annee=2010;

6. 
SELECT nom, cas
FROM palu
WHERE annee=2010 AND cas =(SELECT max(cas) FROM palu WHERE 
annee=2010);

On utilise une rubrique imbriquée qui donne le maximum de nouveaux cas 
de paludisme en 2010.
7. Il faut créer deux rubriques imbriquées.
SELECT nom, cas
FROM palu
WHERE annee=2010 AND cas =
(SELECT max(cas) FROM palu WHERE annee=2010 AND
cas <(SELECT max(cas) FROM palu WHERE annee=2010));

8. On obtient alors une table deces2010 contenant deux colonnes :
•• nom, de type chaîne de caractères, désigne le nom du pays ;
•• deces, de type entier, désigne le nombre de nouveaux cas de palu-
disme en 2010.

SELECT nom,deces 
FROM deces2010 
ORDER BY deces;
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On considère l’équation différentielle : τ= −y
t

E yd
d

 avec E et τ  des constantes. 

La réponse )(y t  recherchée sur l’intervalle  ,0 maxt t  sera obtenue par la méthode 

d’Euler. Le pas de calcul, noté h, sera choisi constant. L’intervalle de temps dis-

crétisé est représenté par la liste = = −, ,...,0 1 1 maxT t t t tN . Pour chaque instant 
ti, une valeur approchée yi de la solution )(y ti  de l’équation différentielle est 
recherchée. L’ensemble des yi est représenté par la liste Y.
1.  Écrire une relation de récurrence permettant de calculer +yi 1 en fonction de 
y E hi , ,  et τ.
2.  Écrire une fonction Euler(y0, t0, h, N, E, tau) qui admet comme 
arguments y0 )(= y 0 , t0 le temps initial de calcul, h le pas de calcul, N le 
nombre de points, E une constante et tau une constante. Cette fonction ren-
verra les listes T et Y.
3.  Écrire le programme principal permettant d’afficher graphiquement y en 
fonction du temps t avec les conditions suivantes  : t0 = 0, )( =y 0 0, E = 10, 
h = 0,2 ms, τ  = 30 ms et N = 1 000. Le graphique doit avoir les caractéristiques 
suivantes :
•• affichage de « t » pour l’axe des abscisses,

•• affichage de « y » pour l’axe des ordonnées,

•• affichage du titre : « Méthode d’Euler ».

4.  Commenter la courbe obtenue avec h = 59 ms, les autres conditions précé-
dentes demeurant inchangées.

17

Exercice 17.1 : �Équation différentielle du premier ordre
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Méthode d'Euler

Analyse du problème
On utilise la méthode d’Euler pour résoudre numériquement une équation différen-
tielle du premier ordre. On étudie l’influence du pas sur la qualité de la solution.

Cours :
On cherche à résoudre numériquement l’équation différentielle : ( )( )=d

d
,

u
t

F u t t
t

.

La fonction u(t) est une fonction continue du temps (qui est également continu). On réalise 
la discrétisation du signal en récupérant les valeurs de la tension u à intervalles de temps 
réguliers h. On appelle h le pas de calcul et N le nombre d’échantillons. On obtient deux 
suites de nombres :

•• { =t ihi , i variant de 0 à 1−N },
•• { ( )= =u u t ihi , i variant de 0 à 1−N }.

Avec Python, on définit deux listes T et U telles que 
[ ]
[ ]

=
=




T i t

U i u
i

i

.

On a alors :

•• { [ ] = =T i t ihi , i variant de 0 à 1−N },
•• { ( )[ ] = = =U i u u t ihi , i variant de 0 à 1−N }.

On considère un point d’abscisse ti. On applique la formule de Taylor au premier ordre au 
voisinage de ti :

( ) ( ) ( )= + − 

 


 ++ +

d
d

...1 1u t u t t t
u
ti i i i

ti
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On pose =t ihi  et ( )= + = ++ 11t i h t hi i . On peut écrire la formule de Taylor sous la forme :

( ) ( )= + 

 


 ++

d
d

...1u t u t h
u
ti i

ti

( ) ( ) ( ) [ ] [ ]

 


 ≈ ∆

∆
=

−
=

−
=

+ −+ +d
d

U i 1 U i1 1u
t

u
t

u t u t

h

u u

h ht t

i i i i

i i

La méthode d’Euler est une méthode du premier ordre.

•• La méthode d’Euler explicite consiste à évaluer 


 


d

d
u
t ti

 en utilisant la valeur de la déri-

vée à l’ancienne position, c’est-à-dire à l’instant ti : ( )

 


 =d

d
,

u
t

F u t
t

i i
i

. On a un schéma 

explicite puisqu’on calcule chaque point en fonction du point précédent. La relation de 

récurrence s’écrit : ( )−
=+ ,1u u

h
F u ti i

i i .

•• La méthode d’Euler implicite consiste à évaluer 


 


d

d
u
t ti

 en utilisant la valeur de la déri-

vée à la nouvelle position, c’est-à-dire à l’instant +1ti  : ( )

 


 = + +

d
d

,1 1
u
t

F u t
t

i i
i

. La relation 

de récurrence s’écrit : ( )−
=+ ,1u u

h
F u ti i

i i .

Sauf indication contraire, on utilisera la méthode d’Euler explicite dans les exercices.

1. La méthode d’Euler explicite permet d’écrire : 
τ







 ≈ − = −+y

t
y y

h
E y

t

i i i

i

d
d

.1  

On en déduit la relation de récurrence : 
τ

= + −
+y y h

E y
i i

i
1 .

Remarque : Sans indication contraire de l’énoncé, on utilise la méthode d’Euler 
explicite.

2. 
def Euler(y0, t0, h, N, E, tau):
    T=[t0]                # 1er élément de la liste T
    Y=[y0]                # 1er élément de la liste Y
    for i in range(N-1):  # i varie entre 0 inclus et N-1 exclu
        T.append(T[i]+h)  # ajout d’un élément à la liste T
        Y.append(Y[i]+h*(E-Y[i])/tau)  # ajout d’un élément
                                       # à la liste Y
    return T, Y

3. 
import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt

N=1000       # nombre de points
h=0.2e-3     # intervalle entre deux instants consécutifs
t0=0
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y0=0
E=10
tau=30e-3
T, Y=Euler(y0, t0, h, N, E, tau)

plt.figure()                     # nouvelle fenêtre graphique
plt.plot(T, Y)                   # Y en fonction de T
plt.title("Méthode d’Euler")     # titre
plt.xlabel("t")                  # axe des abscisses
plt.ylabel("y")                  # axe des ordonnées
plt.show()                       # affiche le graphique
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t

Méthode d'Euler

4. La solution obtenue avec la méthode d’Euler ne correspond pas du tout 
à la solution de l’équation différentielle étudiée. La qualité de la solution 
obtenue dépend du pas.

Remarque : Si on considère l’équation différentielle : λ=y
t

y
d
d

. On peut écrire que 

λ λ)(= + = ++y y h y y hi i i i 11 . Pour que la méthode soit stable, il faut que λ+ <h1 1. 
On peut en déduire un critère de stabilité sur le pas.
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On cherche à résoudre numériquement l’équation différentielle du deuxième 

ordre : + + =u
t

b
u
t

cu
d
d

d
d

0
2

2  (1).

On pose ) )( (=g t
u t

t
d

d
 et Y tel que ( )

( )
( )

=








Y t

u t

g t
. On cherche à mettre l’équation 

différentielle (1) sous la forme du problème de Cauchy : )( )(=Y
t

F Y t t
d
d

, . On 

pose ( )
( )
( )

= =








0

0

00Y Y
u

g
.

La réponse )(u t  recherchée sur l’intervalle  0, maxt  sera obtenue par la méthode 
d’Euler explicite. Le pas de calcul, noté h, sera choisi constant. L’intervalle de 
temps discrétisé est alors représenté par la liste = = = −0, ,...0 1 1 maxT t t t tN . Pour 

chaque instant ti, une valeur approchée Yi de la solution )(Y ti  de l’équation 
différentielle est recherchée. On utilisera 3 listes T, U et G comportant chacune 
N éléments.

1.  Déterminer la fonction )( )(F Y t t, .
2.  Donner la relation de récurrence qui lie +Yi 1 à )(Y F t Yi i i, ,  et au pas de calcul h.
3.  Écrire une fonction F(Yi, ti) qui admet comme arguments Yi la valeur 
du vecteur Y au temps discrétisé ti, ti la valeur du temps discrétisé, et qui 
retourne la valeur de )( )(F Y t ti i i, .
4.  Écrire une fonction Euler(Yini, h, tmax, F) qui prend comme argu-
ments Yini une liste contenant Y0 la condition initiale, h le pas de calcul, tmax 
le temps final de calcul et F la fonction du problème de Cauchy. Cette fonction 
retourne les listes T, U et G.
Écrire le programme principal permettant de résoudre l’équation différentielle 
(1) avec b = 0,75, c = 36, tmax = 10 s, h = 0,6 ms, )( =u 0 2 et )( =g 0 0. Repré-
senter graphiquement u en fonction de t.

Exercice 17.2 : �Équation différentielle du deuxième ordre

Analyse du problème
On cherche à résoudre numériquement une équation différentielle du deuxième 
ordre, on se ramène à deux équations différentielles du premier ordre. On utilise la 
méthode d’Euler explicite étudiée dans l’exercice précédent.
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1. On pose ( ) =g t
u
t

d
d

. L’équation différentielle (1) s’écrit alors sous la 

forme : + + =g
t

bg cu
d
d

0, soit = − −g
t

cu bg
d
d

. On transforme alors l’équation 

différentielle (1) en un système de deux équations différentielles du pre-

mier ordre : 
( )

( ) ( )

















=
− −











u
t
g
t

g t

cu t bg t

d
d
d
d

. 

On a donc ( )( )=Y
t

F Y t t
d
d

,  avec ( )
( )
( )

=








Y t

u t

g t
 et ( )( ) =F Y t t,  

( )
( ) ( )− −











g t

cu t bg t
.

À l’instant ti, on a : ( )( ) =
− −









F Y t t

g

cu bgi i i
i

i i

, . Il faut donc retourner la 
liste : [ ]− −g cu bgi i i, .

2. Pour évaluer numériquement 








Y
t ti

d
d

à l’instant ti, on utilise la méthode 
d’Euler explicite :

( ) ( )





 ≈

−+Y
t

Y t Y t

ht

i i

i

d
d

1

On a alors : ( )( ) ( ) ( )−
=+Y t Y t

h
F Y t ti i

i i,1 . La relation de récurrence s’écrit 
donc :

( )( )= ++Y Y h F Y ti i i i,1 , soit 
( )

= +
= + − −






+

+

u u hg

g g h cu bg
i i i

i i i i

1

1

 

Remarques :

•• La relation de récurrence s’écrit : )( )(= ++Y Y h F Y ti i i i,1 . On a un schéma explicite 
puisqu’on calcule le point suivant en fonction du point précédent.

•• Dans un schéma implicite, on a )( )(= ++ + +Y Y h F Y ti i i i,1 1 1 , soit 
−

=+1Y Y
h

i i  

( )+ +,1 1F Y ti i . Dans ce cas, la nouvelle valeur +Yi 1 est calculée en utilisant la valeur 

de la dérivée à la nouvelle position.

3. On a vu que ( )( )
( )

( ) ( )
=

− −









F Y t t

g t

cu t bg t
,  et ( )

( )
( )

=








Y t

u t

g t
.

À l’instant ti, on a : ( )( ) =
− −









F Y t t

g

cu bgi i i
i

i i

, . Il faut donc retourner la 
liste : [ ]− −g cu bgi i i, .
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•• On récupère ui avec le premier élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit [ ]=u Yi i 0 .

•• On récupère gi avec le deuxième élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit [ ]=g Yi i 1 .

import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt

def F(Yi, ti):
    # Yi[0] représente U[i] et Yi[1] représente G[i]
    return Yi[1], -c*Yi[0]-b*Yi[1]

4. Il faut bien définir le nombre de points. Comme ( )= −t N h1max , alors 

= +






N

t
h

int 1 max . Il faut prendre la valeur entière sinon il y a un problème 

de type pour la syntaxe : for i in range(N-1).
def Euler(Yini, h, tmax, F):
    N=int(1+tmax/h)  # nombre de points de discrétisation
    T=[0]            # 1er élément de la liste T
    U=[Yini[0]]      # 1er élément de la liste U
    G=[Yini[1]]      # 1er élément de la liste G
    for i in range(N-1):
        Y=[U[i], G[i]]
        resF=F(Y, T[i])           # résultat de l’appel de F
        U.append(U[i]+h*resF[0])  # ajout d’un élément
                                  # à la liste U
        G.append(G[i]+h*resF[1])  # ajout d’un élément
                                  # à la liste G
        T.append(T[i]+h)          # on incrémente de h
                                  # à chaque boucle
    return T, U, G

# initialisation des variables
Yini=[2, 0]
b=0.75
c=36
tmax=10
h=0.6e-3
N=int(1+tmax/h)                   # on a : tmax=(N-1)h
T, U, H=Euler(Yini, h, tmax, F)

plt.figure()
plt.plot(T, U)                    # représentation graphique
                                  # de U en fonction de T
plt.xlabel('t')
plt.ylabel('u(t)')
plt.title("Oscillateur harmonique amorti")
plt.show()
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On obtient le graphe :
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Oscillateur harmonique amorti

On étudie un moteur thermique constitué de quatre pistons. Depuis l’intégration 
des calculateurs dans l’automobile, les principaux paramètres de commande 
du moteur à allumage commandé tels que l’ouverture du papillon, la durée 
d’injection, l’avance à l’allumage, etc. sont contrôlés numériquement par des 
cartographies et/ou des boucles d’asservissement.
La quantité de carburant injecté est directement corrélée à la durée d’ouver-
ture des injecteurs que l’on note durée d’injection. Dans les conditions de 
fonctionnement stabilisé, le dosage de base est le résultat d’une interpolation 
cartographique calculée à partir de la vitesse et de la charge du moteur. Toutes 
les cartographies et tous les programmes du moteur sont stockés sous forme 
de fichiers dans la mémoire morte du calculateur (ROM), qui dispose de 32 ko 
d’espace. Au démarrage du véhicule, le programme de gestion du moteur et 
certaines données seront chargés dans la mémoire vive (RAM), qui dispose de 
3 ko d’espace.
On s’intéresse au traitement de la cartographie qui permet de déterminer la 
durée d’injection. Le tableau 1 représente l’affichage d’une cartographie des 
durées d’injection pour un moteur 4 temps.

Exercice 17.3 : �Résolution d’un système linéaire par  
la méthode de Gauss
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Pression au collecteur P en bar
0,295 0,39 0,48 0,565 0,645 0,72 0,79

Vitesse de 
rotation ω  
en tr/min

900 2,702 3,776 4,852 5,9 6,962 8,004 9,036

1 300 3,064 4,162 5,248 6,33 7,734 8,774 9,766

1 700 3,27 4,412 5,552 6,644 7,734 8,774 9,766

2 200 3,462 4,63 5,804 6,952 8,062 9,126 10,154

2 700 3,498 4,71 5,916 7,09 8,23 9,334 10,39

Tableau 1 : cartographie des durées d’injection en ms.

La cartographie est alors chargée en mémoire sous la forme suivante :
•• La première ligne (0,295 ; 0,39 ; 0,48…), qui contient M valeurs de pression 

à l’admission en bar, est stockée dans une liste de valeurs : =   ≤ ≤ −0 1
P Pj j M

.

•• La première colonne (900  ; 1  300  ; 1  700 …), qui contient N valeurs de 
vitesse de rotation du moteur en tr/min, est stockée dans une liste de valeurs : 

OMEGA OMEGAi Ni0 1
=   ≤ ≤ −

.

•• Les durées d’injection sont stockées sous forme d’une liste de listes T. On 
peut lire pour chaque couple de valeurs de pression et de rotation moteur la 
valeur de la durée d’injection correspondante T[i][j] en ms.

Le capteur de pression au collecteur d’admission mesure une valeur de pression 
notée Pcol. La vitesse de rotation du moteur mesurée est notée OMEGAmot. 
Pour un couple de valeurs pression-vitesse de rotation (Pcol, OMEGAmot) 
quelconque, le calculateur doit alors déterminer les valeurs de la durée d’in-
jection en réalisant une interpolation à partir des valeurs de la liste de listes T.

Étape 1 :
Le calculateur doit déterminer les indices i et j tels que +1[ ][ ] ≤ ≤P j Pcol P j  
et 1[ ][ ] ≤ ≤ +OMEGA i OMEGAmot OMEGA i .

1.  Écrire une fonction indice(A, val) qui prend pour arguments une liste 
notée A et un réel noté val. La liste A est triée par ordre croissant. La fonction 
doit retourner un entier id tel que : 1[ ] [ ]≤ ≤ +A id val A id . On supposera que 
id existe toujours.
Le calculateur doit ensuite lire dans la liste de listes T les durées d’injection 
correspondant aux indices i et j précédemment déterminés.
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2.  Écrire une fonction extraire(T, P, OMEGA, i, j) qui prend pour 
arguments la liste de listes T, les listes P et OMEGA, et deux entiers i et j. La 
fonction doit retourner une liste de listes ST :

[ ]
[ ]

[ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ]= + 

+ + + + + 

, , , 1 , , ,

1, , 1, 1 , 1 , 1

ST T i j T i j P j OMEGA i

T i j T i j P j OMEGA i

3.  Écrire la suite d’instructions qui, à partir des variables OMEGAmot, Pcol, 
des listes P et OMEGA et de la liste de listes T, permet de déterminer la liste de 
listes ST telle que définie à la question précédente.

Étape 2 :
Une fois les quatre valeurs de durée d’injection déterminées, il est nécessaire de 
calculer une durée d’injection t à partir d’une interpolation bilinéaire. L’inter-
polation bilinéaire de la fonction de deux variables )(t x y,  s’écrit comme suit :

)( [ ] [ ]= + + + ∈ ∈t x y b b x b y b xy x y, ; 0,1 et 0,10 1 2 3

où b0, b1,b2 et b3 sont les inconnues du problème.
La détermination des coefficients [ ]∈bi,i 0,3  est un problème linéaire qui doit être 
résolu à chaque pas de temps et pour chaque cartographie sous la forme :

et 1= = −PQ R Q P R

P est une matrice carrée de dimension n×n ; Q et R sont des matrices colonnes 
de dimension n.
On envisage dans un premier temps l’utilisation de la méthode de Gauss 
avec recherche du pivot partiel pour résoudre le système linéaire et obtenir la 
matrice Q.
4.  Écrire l’algorithme du pivot de Gauss permettant d’obtenir la matrice Q. On 
admettra que les termes diagonaux sont tous non nuls.
5.  Quelle est la complexité du pivot de Gauss en fonction de la dimension de la 
matrice ? Justifier votre réponse.

On posera par la suite : 
[ ]

[ ] [ ]=
−

+ −
x

Pcol P j
P j P j1

 et [ ]
[ ]
[ ]= −

+ −
y

OMEGAmot OMEGA i
OMEGA i OMEGA i1

.

On connaît les valeurs de )(t x y,  pour quatre couples de valeurs )(x y,  par lec-
ture de la cartographie :

( ) ( )
( ) ( )

[ ] [ ]
[ ] [ ]

= = = = = =

= = = = = =













0, 0 0,0 1, 0 0,1

0, 1 1,0 1, 1 1,1

t x y ST t x y ST

t x y ST t x y ST
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6.  Montrer que le problème à résoudre devient :

[ ]
[ ]
[ ]
[ ]





































=



















1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

0,0

0,1

1,0

1,1

0

1

2

3

b

b

b

b

ST

ST

ST

ST

7.  Montrer que la résolution par substitution s’écrit :

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ] [ ]

=
= −
= −
= − − +

b ST

b ST ST

b ST ST

b ST ST ST ST

0,0

0,1 0,0

1,0 0,0

1,1 0,1 1,0 0,0

0

1

2

3

8.  Comparer la complexité de cet algorithme à celui présenté à la question 5.
9.  Écrire une fonction interpol(ST, Pcol, OMEGAmot) qui retourne 
une valeur de la durée d’injection obtenue par une interpolation bilinéaire des 
éléments de la table.

Analyse du problème
On utilise la méthode de Gauss avec recherche partielle du pivot pour résoudre un 
système linéaire d’ordre n.

Cours :
Un système linéaire est de Cramer d’ordre n si c’est un système de n équations linéaires à 
n inconnues et s’il admet une solution unique.

On cherche à résoudre le système =PQ R. On prend par exemple  : =
















2 4 2
1 4 2
2 9 3

P   ; 

=

















0

1

2

Q

q

q

q

 et =

















1

1

1

R .

Le système s’écrit alors : 

































=
+ +

+ +
+ +

















=

















2 4 2
1 4 2
2 9 3

2 4 2

4 2

2 9 3

1

1

1

0

1

2

0 1 2

0 1 2

0 1 2

q

q

q

q q q

q q q

q q q

.

Avant de décrire l’algorithme, on pose = =
















'
2 4 2
1 4 2
2 9 3

P P  et = =

















'

1

1

1

R R .
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On considère n étapes successives. L’étape p (avec p compris entre 0 et n–1) se décompose 
de la façon suivante :

•• Recherche du pivot partiel (élément maximum en valeur absolue dans la colonne p) = 
' ,P i p tel que ≥i p.

•• Permutation des lignes i et p pour P' et R' afin que le pivot soit sur la diagonale.
•• Division de la ligne p par le pivot pour P' et R'. On obtient alors ' ,P p p = 1.
•• Remplacement pour P' et R' des lignes ≠i p par la combinaison linéaire de la ligne i et 
de la ligne p : ( )( ) ( )← − 'ligne ligne ligne,i i P pi p . On obtient alors ' ,P i p = 0 avec ≠i p.

Étape p = 0 :

=



















'

2 4 2

1 4 2
2 9 3

P . Le pivot est = =' 0, 0P i p  = 2 avec ≥i p. Les étapes 1 et 2 sont inutiles. On 

divise la ligne 0 par le pivot. On obtient : =
















'
1 2 1
1 4 2
2 9 3

P  et =

















'

0,5

1

1

R .

Combinaison linéaire ≠i p :

•• i = 1  : = == ='valeur 11, 0P i p . D’où  : ( ) ( ) ( )= ← = − × =ligne 1 ligne 1 valeur ligne 0 .i i p   

On a alors : =
















'
1 2 1
0 2 1
2 9 3

P  et =

















'

0,5

0,5

1

R .

•• i = 2 : = == ='valeur 22, 0P i p . D’où : ( ) ( ) ( )= ← = − × =ligne 1 ligne 2 valeur ligne 0 .i i p  On 

a alors : =
















'
1 2 1
0 2 1
0 5 1

P  et =

















'

0,5

0,5

0

R .

Étape p = 1 :

=

















'
1 2 1
0 2 1

0 5 1

P .

Le pivot est = =' 2, 1P i p  = 5 avec ≥i p. On permute les lignes i et p. On obtient alors  : 

=

















'

1 2 1

0 5 1

0 2 1

P  et =

















'

0,5

0

0,5

R .

On divise la ligne p = 1 par le pivot. On obtient alors = =' 1, 1P p p = 1 et =
















'
1 2 1
0 1 1 / 5
0 2 1

P  

et =

















'

0,5

0

0,5

R .
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Combinaison linéaire ≠i p :

•• i = 0 : = == ='valeur 20, 1P i p . D’où : ( ) ( ) ( )= ← = − × =ligne 0 ligne 0 valeur ligne 1i i p . 

On a alors : =
















'
1 0 3 / 5
0 1 1 / 5
0 2 1

P  et =

















'

0,5

0

0,5

R .

•• i = 2  : = == ='valeur 22, 1P i p . D’où  : ( ) ( ) ( )= ← = − × =ligne 2 ligne 2 valeur ligne 1i i p . 

On a alors : =
















'
1 0 3 / 5
0 1 1 / 5
0 0 3 / 5

P  et =

















'

0,5

0

0,5

R .

Étape p = 2 :

=

















'
1 0 3 / 5
0 1 1 / 5

0 0 3 / 5

P . Le pivot est == ='
3
52, 2P i p  avec ≥ = 2i p . Les étapes 1 et 2 sont inu-

tiles. On divise la ligne p = 2 par le pivot. On obtient : =
















'
1 0 3 / 5
0 1 1 / 5
0 0 1

P  et =

















'

0,5

0

5 / 6

R .

Combinaison linéaire ≠i p :

•• i = 0 : = == ='valeur
3
50, 2P i p . D’où : ( ) ( ) ( )= ← = − × =ligne 0 ligne 0 valeur ligne 2i i p . 

On a alors : =
















'
1 0 0
0 1 1 / 5
0 0 1

P  et =

− ×

















=

















'

1
2

3
5

5
6

0

5 / 6

0

0

5 / 6

R .

•• i = 1 : = == ='valeur
1
51, 2P i p . D’où  : ( ) ( ) ( )= ← = − × =ligne 1 ligne 1 valeur ligne 2i i p . 

On a alors : =
















'
1 0 0
0 1 0
0 0 1

P  et = −

















'

0

1 / 6

5 / 6

R .

On a alors = =
















−

















= −

















' '
1 0 0
0 1 0
0 0 1

0

1 / 6

5 / 6

0

1 / 6

5 / 6

Q P R .

On peut vérifier facilement que = −

















0

1 / 6

5 / 6

Q  est solution du système de départ :

=
















=

















2 4 2
1 4 2
2 9 3

1

1

1

PQ Q
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1. 
def indice(A, val):
    id=0
    while A[id] > val or val > =A[id+1]:
        id+=1
    return id
    # suppose que id existe toujours
    # sinon la boucle pourrait ne pas se terminer

Autre possibilité pour la fonction indice :
def indice(A, val):
    id=0
    n=len(A)
    for id in range(n-1):  # id varie entre 0 inclus
                           # et n-1 exclu
        if A[id]<=val and val<A[id+1]:
            return id      # on quitte la boucle for

2. 
def extraire(T, P, OMEGA, i, j):
    ST=[]                  # création d’une liste vide
    ST.append([T[i][j],T[i][j+1],P[j],OMEGA[i]])
    ST.append([T[i+1][j],T[i+1][j+1],P[j+1],OMEGA[i+1]])
    return ST 

3. 
j=indice(P, Pcol)
i=indice(OMEGA, OMEGAmot)
ST2=extraire2(T2, P, OMEGA, i, j)   # liste de listes

On obtient ST = [[6.644, 7.734, 0.565, 1700], [6.952, 8.062, 0.645, 
2200]].
4. 
import copy

def rec_pivot(A, p):
    n=len(A)
    i, pivot=p, A[p][p]
    for k in range(p, n):          # k varie entre p inclus
                                   # et n exclu
        if A[k][p]>pivot:
            i, pivot=k, A[k][p]
    return i, pivot

def permut_ligne(A, i, p):
    n=len(A)
    for k in range(n):
        val=A[i][k]
        A[i][k]=A[p][k]
        A[p][k]=val



Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

305

def gauss(P, R):
    Pc=copy.deepcopy(P)            # on ne modifie pas P
    Rc=copy.deepcopy(R)            # on ne modifie pas R
    n=len(Pc) 
    for p in range(0, n):          # p varie entre 0 inclus
                                   # et n-1 exclu
        i, pivot=rec_pivot(Pc, p)  # recherche du pivot
        if i>p:                    # permutation des lignes i
                                   # et p si i > p
            permut_ligne(Pc, i, p)
            Rc[i], Rc[p]=Rc[p], Rc[i]
        # division de la ligne p par le pivot
        for j in range(n):         # j varie entre 0 inclus
                                   # et n exclu
            Pc[p][j]=Pc[p][j]/pivot
        Rc[p]=Rc[p]/pivot
        # combinaison linéaire
        for i in range(n):
            if i!=p:
                coeff=Pc[i][p]
                for j in range(n): # j varie entre 0 inclus
                                   # et n exclu
                    Pc[i][j]=Pc[i][j]-coeff*Pc[p][j]
                Rc[i]=Rc[i]-coeff*Rc[p]
    # solution Q
    Q=[Pc[i][i]*Rc[i] for i in range(n)]
    return Q

P=[[2, 4, 2], [1, 4, 2], [2, 9, 3]]
R=[1, 1, 1]
Q=gauss(P, R)

5. On se place dans le pire des cas pour calculer la complexité.
On fait varier p entre 0 et n–1. Pour chaque valeur de p :

•• Recherche du pivot : ( )+ − − × = −n p n p4 1 4 4 4  opérations élémentaires.
•• Permutation des lignes i et p : 3+3n opérations élémentaires.
•• Division de la ligne p par le pivot : 3n+3 opérations élémentaires.
•• Combinaison linéaire : ( )× + + = +n n n n2 4 4 6 4 2 opérations élémentaires.

Solution Q : 4n opérations élémentaires.

On a donc ∑( )− + + + + + + + = + +
=

−

n p n n n n n n n n
p

n

4 4 3 3 3 3 6 4 4 4 14 82

0

1
3 2  

opérations élémentaires.
La complexité est en ( )O n3 .
6. On pose : ( ) [ ] [ ]= + + + ∈ ∈t x y b b x b y b xy x y, ; 0,1 et 0,10 1 2 3 .
On en déduit que  : ( ) =t b0,0 0  ; ( ) = +t b b1,0 0 1  ; ( ) = +t b b y0,1 0 2  et 
( ) = + + +t x y b b b b, 0 1 2 3.
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On a bien 

( )
( )
( )
( )

[ ]
[ ]
[ ]
[ ]





































=
+
+
+ + +



















=





















=



















b

b

b

b

b

b b

b b

b b b b

t

t

t

t

ST

ST

ST

ST

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

0,0

1,0

0,1

1,1

0,0

0,1

1,0

1,1

.

0

1

2

3

0

0 1

0 2

0 1 2 3

7. On résout directement ce système :
[ ]=b ST 0,00   ; [ ] [ ] [ ]= − = −b ST b ST ST0,1 0,1 0,01 0   ; [ ]= − =b ST b1,02 0

[ ] [ ]−ST ST1,0 0,0 .

( )[ ] [ ] [ ] [ ] [ ]= − − − = − − − −b ST b b b ST ST ST ST1,1 1,1 0,0 0,1 0,03 0 1 2

( )[ ] [ ]−ST ST1,0 0,0  
Après simplification, on a : [ ] [ ] [ ] [ ]= + − −b ST ST ST ST1,1 0,0 0,1 1,03 .
On obtient finalement :

[ ]
[ ] [ ]
[ ] [ ]
[ ] [ ] [ ] [ ]

=
= −
= −
= − − +

b ST

b ST ST

b ST ST

b ST ST ST ST

0,0

0,1 0,0

1,0 0,0

1,1 0,1 1,0 0,0

0

1

2

3

8. Pour cette matrice triangulaire inférieure, on peut très facilement cal-
culer les coefficients bi.
La première ligne permet de calculer b0. La deuxième ligne permet d’en 
déduire b1 et ainsi de suite pour tous les coefficients bi.
On se place dans le pire des cas. On fait varier i entre 0 entre n–1. Pour 
chaque étape i, on a au maximum i+1 opérations élémentaires.

Le nombre d’opérations élémentaires vaut donc : ∑( ) ( )+ =
−

+
=

−

i
n n

n
i

n

1
1

2
0

1

.

La complexité est quadratique en ( )O n2 . Elle est plus faible qu’à la ques-
tion 5 puisqu’on a une matrice triangulaire.
9. 
def interpol(ST, Pcol, OMEGAmot):
    P=[[1,0,0,0], [1,1,0,0], [1,0,1,0], [1,1,1,1]]
    R=[ST[0][0], ST[0][1], ST[1][0], ST[1][1]] 
    Q=gauss(P, R)
    x=(Pcol-ST[0][2])/(ST[1][2]-ST[0][2])
    y=(OMEGAmot-ST[0][3])/(ST[1][3]-ST[0][3])
    t=Q[0]+Q[1]*x+Q[2]*y+Q[3]*x*y
    return t

Remarque :

Voici un exemple de programme principal :
P=[0.295, 0.39, 0.48, 0.565, 0.645, 0.72, 0.79]
OMEGA=[900, 1300, 1700, 2200, 2700]
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T=[[2.702, 3.776, 4.852, 5.9, 6.962, 8.004, 9.036],
[3.064, 4.162, 5.248, 6.33, 7.734, 8.774, 9.766],
[3.27, 4.412, 5.552, 6.644, 7.734, 8.774, 9.766],
[3.462, 4.63, 5.804, 6.952, 8.062, 9.126, 10.154],
[3.498, 4.71, 5.916, 7.09, 8.23, 9.334, 10.39]]
Pcol=0.60 
OMEGAmot=1750
j=indice(P, Pcol)
i=indice(OMEGA, OMEGAmot)
ST=extraire(T, P, OMEGA, i, j)
t=interpol(ST, Pcol, OMEGAmot)
print("durée d’injection = ", t)

On considère une fonction f définie par )( =
+

∈f x
x

x
1

1
,2 . On cherche 

à représenter graphiquement la fonction f et le polynôme d’interpolation de 
degré n par rapport aux n+1 points équidistants dans l’intervalle [ ]−5,5 . On note 

( )= ∈, 0,� �f f x i ni i . Les abscisses xi et les ordonnées fi  sont stockées respecti-
vement dans les listes xs et ys.

1.  Écrire une fonction lagrange qui admet comme arguments un entier i, un 

réel x et un entier n. La fonction retourne ∏( ) =
−

−
∈

=
≠

L x
x x
x x

i n, 0,i
j

i jj
j i

n

0

�
��
�
��.

2.  Écrire une fonction poly qui admet comme arguments un réel x et un entier 

n. La fonction retourne ∑( ) ( )= ∈
=

p x f L x x,i i
i

n

0

.

3.  Écrire le programme principal permettant de représenter graphiquement la 
fonction f et le polynôme d’interpolation de Lagrange dans l’intervalle [–5, 5] 
pour n = 4. Que se passe-t-il pour n = 10 et n = 14 ?

Exercice 17.4 : �Interpolation polynomiale de Lagrange 

Analyse du problème
On détermine les n+1 composantes du polynôme d’interpolation qui passe par les 
n+1 points imposés. Le phénomène de Runge apparaît lorsque n est trop grand.

1. 
def lagrange(i, x, n):
    # i entier
    # x réel, n entier
    Li=1
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    for j in range(n+1): # j varie entre 0 inclus et n+1 exclu
        if j!=i:
            Li*=(x-xs[j])/(xs[i]-xs[j])
    return Li

2. 
def poly(x, n):
    # x réel, n entier
    som=0
    for i in range(n+1): # i varie entre 0 inclus et n+1 exclu
        som+=ys[i]*lagrange(i, x, n)
    return som

3. 
import math as m
    # module math renommé m
import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt

def f(x):
    return 1/(1+x**2)
a=-5
b=5

# interpolation d’ordre n
# le nombre de points vaut n+1
n=4
h=(b-a)/n
xs=[a+i*h for i in range(n+1)]    # liste des abscisses
ys=[f(xs[i]) for i in range(n+1)] # liste des ordonnées

# listes X et Y pour la représentation graphique de f
N=200                             # N+1 nombre de points
H=(b-a)/N
X=[a+k*H for k in range(N+1)]     # liste des abscisses
Y=[f(X[k]) for k in range(N+1)]   # liste des ordonnées
YL=[poly(X[k], n) for k in range(N+1)]

# représentation graphique
plt.figure()                      # nouvelle fenêtre graphique
plt.plot(X, Y)                    # graphe Y en fonction de X
plt.plot(X, YL)                   # graphe YL en fonction de X
plt.show()                        # affiche le graphique
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Un phénomène d’oscillations apparaît et s’amplifie lorsque n augmente. Le 
phénomène de Runge peut être atténué en considérant une interpolation 
par morceaux (voir exercice suivant « Interpolation par morceaux »).

On considère une fonction f définie par =
+

f x
x

( )
1

1 2 , x ∈ . On cherche à repré-

senter graphiquement la fonction f, le polynôme d’interpolation de degré n ainsi 
que l’interpolation linéaire par morceaux par rapport aux n+1 points équidistants 
dans l’intervalle [ ] [ ]= −a b, 5,5 . On définit une partition de [ ]a b,  en n sous-inter-

valles = ∈ −+ � �[ , ], 0, 11I x x i ni i i , de longueur = −
h

b a
n

 avec = + ∈, 0,� �x a ih i ni . 

On note = ∈( ), 0,� �f f x i ni i . Pour ∈ −0, 1� �i n , on définit p i1, le polynôme d’in-
terpolation linéaire de Lagrange aux nœuds ( ) ( )+ +x f x fi i i i, , ,1 1 . Le polynôme 

d’interpolation par morceaux ph
1  est défini, pour tout ∈ −0, 1� �i n , par :

( ) ( )= ∀ ∈p x p x x Ih
i i,1 1,

Le polynôme p i1,  est un polynôme de degré 1, pour tout ∈ −0, 1� �i n .
Les abscisses xi et les ordonnées fi  sont stockées respectivement dans les listes 
xs et ys.
1.  Donner l’expression de p i1,  sur chaque intervalle Ii, pour ∈ −0, 1� �i n .
2.  Écrire une fonction interpol qui admet comme argument x et retourne 

[ ]( ) ∈p x x a bh , ,1 .
Écrire le programme principal permettant de représenter graphiquement la fonc-

tion f, le polynôme d’interpolation de degré n = 6 ( ∑( ) ( )= ∈
=

p x f L x xi i

i

n

,
0

 

avec ∏( ) =
−
−

∈
=
≠

L x
x x

x x
i ni

j

i jj
j i

n

� �, 0,
0

) et une interpolation linéaire par morceaux 

pour n = 6 dans l’intervalle [ ]a b, .

Exercice 17.5 : Interpolation par morceaux

Analyse du problème

Pour résoudre le problème d’oscillations qui apparaît lorsque n est trop grand, on 
utilise une interpolation par morceaux.

1. On considère une loi affine entre deux points successifs. Soit ∈ −i n0, 1 ,� �
[ ]∀ ∈ +x x xi i, 1  : ( )= + − −

−
+

+
y y x x

y y
x xi i

i i

i i

1

1

. Pour l’intervalle Ii, on en déduit 

la fonction polynôme définie par ( )( ) = + − −
−

+

+
p x y x x

y y
x xi i i

i i

i i
1,

1

1

.
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2. On pose = −
h

b a
n

 et = + ∈x a ih i ni , 0,� �.

Soit [ ]∈x a b, . On cherche un entier i tel que x appartienne au sous- 
intervalle [ ]= ∈ −+I x x i ni i i, , 0, 11 � �.
Avec Python, on obtient i en calculant 

−







x x
h

int 0 .

•• Si = +x x
h3
20 , alors 

−





 =







 =x x

h
int int

3
2

10 , x est bien dans l’intervalle 

[ ]=I x x,1 1 2 .

•• Si =x xn, alors 
−






 =x x

h
nnint 0 . Dans ce cas, la fonction retourne direc-

tement yn car l’intervalle [ ]+x xn n, 1  n’est pas défini.
import math as m
    # module math renommé m
import matplotlib.pyplot as plt
    # module matplotlib.pyplot renommé plt

def f(x):
    return 1/(1+x**2)
a=-5
b=5

# interpolation d’ordre n
# le nombre de points vaut n+1
n=6
h=(b-a)/n
xs=[a+i*h for i in range(n+1)]    # liste des abscisses
ys=[f(xs[i]) for i in range(n+1)] # liste des ordonnées

def lagrange(i, x, n):
    # i entier
    # x réel, n entier
    Li=1
    for j in range(n+1):          # j varie entre 0 inclus
                                  # et n+1 exclu
        if j!=i:
            Li*=(x-xs[j])/(xs[i]-xs[j])
    return Li

def poly(x, n):
    # x réel, n entier
    som=0
    for i in range(n+1):          # i varie entre 0 inclus
                                  # et n+1 exclu
        som+=ys[i]*lagrange(i, x, n)
    return som

def interpol(x):                  # x compris entre a et b
    i=int((x-xs[0])/h)
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    if x!=xs[n]:
        # x est dans l’intervalle Ii=[xi, xi+1]
        return ys[i]+(x-xs[i])*(ys[i+1]-ys[i])/(xs[i+1]-xs[i])
    else:
        # l’intervalle [xn, xn+1] n’est pas défini
        return ys[n]

# listes X et Y pour la représentation graphique de f
# polynôme d’interpolation de Lagrange
N=200                            # N+1 nombre de points
H=(b-a)/N
X=[a+k*H for k in range(N+1)]    # liste des abscisses
Y=[f(X[k]) for k in range(N+1)]  # liste des ordonnées
YL=[poly(X[k], n) for k in range(N+1)]

# liste Ym pour la représentation graphique de f
# interpolation linéaire par morceaux
Y=[f(X[k]) for k in range(N+1)]   # liste des ordonnées
Ym=[interpol(X[k]) for k in range(N+1)]

# représentation graphique
plt.figure()                      # nouvelle fenêtre graphique
plt.plot(X, Y)                    # graphe Y en fonction de X
plt.plot(X, YL)                   # graphe YL en fonction de X
plt.plot(X, Ym)                   # graphe Ym en fonction de X
plt.show()                        # affiche le graphique
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On observe des oscillations avec l’interpolation polynomiale de Lagrange 
de degré n = 6 : c’est le phénomène de Runge, qui peut être atténué en 
considérant une interpolation par morceaux.
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