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Avant-propos

Cet ouvrage de la série « Exercices incontournables » traite de I’intégralité du nou-
veau programme d’informatique commune pour les deux années des différentes
filieres de classes préparatoires aux grandes écoles (sauf BCPST).

La premiere partie reprend la base de la programmation avec Python. Des rappels
de cours et des exercices classiques vous permettront de vous familiariser avec la
syntaxe Python.

Dans les exercices de certains chapitres (« Prise en main de Python », « Terminai-
son, correction, complexité », « Matrices de pixels et images, traitement d’images »,
« Dictionnnaire, pile, file, deque », « Graphes », « Intelligence artificielle et jeux a
deux joueurs », « Bases de données »), vous trouverez un rappel de cours détaillé
présentant le vocabulaire utilisé.

Pour chaque exercice classique, vous trouverez :
* La méthode de résolution expliquée et commentée étape par étape.
* Le corrigé rédigé détaillé.

* Les astuces a retenir et les pieges a éviter.
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Prise en main
de Python

Exercice 1.1 : Assertion, moyenne, variance et écart-type d'une

liste de nombres

On considere la liste de nombres : =79, 10, 11, 20.5, 0, 12.0, -5,
-8.3el].

1. Ecrire une fonction rec_moy qui admet comme argument L une liste non
vide de nombres et retourne la moyenne de L.

2. Ecrire une fonction rec variance qui admet comme argument L une
liste non vide de nombres et retourne la variance de la liste L.

3. Ecrire une fonction rec_ecart type qui admet comme argument I, une
liste non vide de nombres et retourne 1’écart-type de la liste L.

4. Les en-tétes des fonctions peuvent étre annotés pour préciser les types des
parametres et du résultat. Ainsi,

| def uneFonction(n:int, X:[float], c:str, u) -> list:

signifie que la fonction uneFonction prend quatre parametres n, X, c et u,
ou n est un entier, X une liste de nombres a virgule flottante et c une chaine de
caracteres ; le type de u n’est pas précisé. Cette fonction renvoie une liste.

Ecrire une fonction rec moy2 qui admet comme argument L une liste non
vide de nombres réels ou flottants et retourne la moyenne de la liste L. Annoter
I’en-téte de la fonction pour préciser le type des données attendues en entrée et
fournies en retour. Utiliser des assertions pour vérifier le type de L, le nombre
d’éléments de L ainsi que le type des €léments de L.

Analyse du probléme

On utilise une boucle for pour parcourir les différents éléments de la liste. On peut
alors calculer la somme des éléments de la liste pour en déduire la valeur moyenne.
Une assertion est une aide de détection de bugs dans les programmes. La levée
d’une assertion entraine I’arrét du programme.
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Cours :
L’installation de Python 3 peut se faire avec Pyzo.

Un script Python est formé d’une suite d’instructions. Une instruction simple est contenue
dans une seule ligne. Si une instruction est trop longue pour tenir sur une ligne ou si on sou-
haite améliorer la lisibilité€ du code, le symbole « \ » en fin de ligne permet de poursuivre
I’écriture de I’instruction sur la ligne suivante (voir corrigé 4).

Une affectation se fait avec I’instruction n=3 : n prend la valeur 3 (voir exercice 1.4
« Affectation, objet immuable, copie »).

On peut utiliser « _ » dans le nom des variables mais pas « — ».

Le typage des variables est dynamique : I’interpréteur détermine le type a la volée lors de
I’exécution du code. Dans I’exemple précédent, le type de n est int.

Le symbole diese permet d’ajouter des commentaires dans les programmes Python : #
commentaire sur le programme.

Le type d’une variable n s’obtient avec I’instruction : type (n).
Les types de base des variables dans Python sont :

* Nombres entiers (positifs ou négatifs) : int
* Nombres & virgule flottante (ou nombres flottants) : float

Exemple
a=-3.2e2 :-32x10>=-320

¢ Booléens : bool
Les variables booléennes sont True (vrai) et False (faux).

[

Opérations de base sur les entiers (int): +, -, *, //, **, %

n=28

n//10 : 2 = quotient de la division euclidienne de n par 10
n%10 : 8 =reste de la division euclidienne de n par 10
n**3 : n puissance 3

Opérations de base sur les nombres flottants (f1loat) : +, -, *, /, **

a=1/3 : a vaut 0.3333333333333333
2.6** (a) :2,6 puissance a

Comparaisons :
a==b : cet opérateur compare a et b. Si a=b, Python retourne True, sinon
False
a'=b : a différent de b

a>b, a<b, a>=b, a<=b : strictement supérieur, strictement inférieur, supérieur ou égal,
inférieur ou égal

Opérations sur les booléens (bool) :

or . ou
and cet
not . non
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repl=True # type bool. 2 valeurs possibles : True ou False
a=12

b=10

rep2=(a==12)and (b==20) # rep2=False pour le test : a=12 et b=20
rep3=not (a==13) # rep3=True, on pourrait écrire : rep3 = al!=13
repd=(a==12)or (b==20) # True pour le test : a=12 ou b=20

Les types de base des conteneurs dans Python sont :

* Chaines de caracteres : str
Structure indicée immuable. On ne peut pas modifier les éléments d’une chaine de
caracteres.
s="C'est une phrase" : utilisation de guillemets "
sl="phrase' : utilisation d’apostrophes '

n=len(s) : n=6 (nombre de caracteres)

s1([0] : le premier caractére de s1 a pour indice O: 'p'
sl[n-1] : dernier caractére : 'e'

Cl='ab'

C2=C1*3 : retourne 'abcabcabc', répétition de 'ab'

La chaine de caracteres C1 est concaténée 3 fois avec elle-méme.

» Listes: 1ist
Structure de données muable. On peut modifier les éléments d’une liste.

L=1] : crée une liste vide

L.append (3) : ajoute 3 a la fin de la liste L. On obtient L=1[3]
L.append (2) : ajoute 2 a la fin de la liste L. On obtient L=[3, 2]
x=L.pop () : supprime le dernier élément (ici 2) de la liste L

On récupere cet élément dans la variable x
L3=['r', 3, 'te'] :créelaliste 1.3 contenant des chaines de caracteres et des

entiers
len (L3) : affiche la longueur de la liste 1.3
Pour extraire des éléments d’une liste, voir exercice 1.6 « Slicing, extraction de
tranche ».
L=[2*1 for i in range(5)] :onobtient [0, 2, 4, 6, 8] (créationpar
compréhension)
L=[2,3]1*3 : répétition de la liste [2, 3]
Onaalors L=[2, 3, 2, 3, 2, 3]
L=L+[5, 8] : concaténation : L=[2, 3, 2, 3, 2, 3, 5, 8]

Remarque :

Les indices des listes contenant n éléments sont numérotés de 0 a n—1 dans Python
(idem pour les tuples et les deques). Pour obtenir le premier élément de la liste :

| a=L[0] # la variable a prend la valeur 2

e Tuples : tuple
Les tuples sont des structures indicées immuables. Une fois le tuple créé, il ne peut pas
étre modifié. On peut créer un tuple avec ou sans parentheses.
M= (2, 3, 8) :créeletuple M
Ne pas confondre avec les listes, ou on met des crochets.
On crée le méme tuple si on omet les parentheses
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n=len (M) : n = nombre d’éléments du tuple M

M=2, 3, 9

x=M[0] : récupere dans la variable x 1’élément d’indice O du tuple M
a, b, c=M : dépaquette un tuple

On récupere dans chaque variable un élément du tuple.

11 faut connaitre a I’avance le nombre d’éléments du tuple.
M2=M+ (2, 5) :concaténation de deux tuples : M2=(2, 3, 9, 2, 5)
M3=(2, 1)*3 :créationavec répétition : M3=(2, 1, 2, 1, 2, 1)

* Deques : deque
Une deque (se prononce « deque ») est une structure de données muable qui généralise
le fonctionnement des piles et des files (voir exercice 11.6 « Utilisation des deques »
dans le chapitre « Dictionnaire, pile, file, deque »). On peut ajouter et supprimer des
éléments aux deux extrémités. Pas d’extraction de tranche (ou slicing) avec les deques.
from collections import deque :module permettant d’utiliser les deques

D=deque () : création d’une deque vide D
D.append (3) : ajoute 3 a I’extrémité droite de D
D.appendleft (5) : ajoute 5 a I’extrémité gauche de D
x=D.pop () : supprime 1’élément a 1’extrémité droite de D
x=D.popleft () : supprime 1’élément a 1’extrémité gauche de D
Dl=deque ([3, 8, 5]) : création de la deque D1

for elt in DI1: # affichage de tous les éléments de la deque D1
print (elt)

¢ Dictionnaires : dict
Pour I'utilisation des dictionnaires, voir les exercices 11.1 « Opérations de base sur les
dictionnaires » et 11.2 « Comptage des €léments d’une liste a I’aide d’un dictionnaire »
dans le chapitre « Dictionnaire, pile, file, deque ».

Remarque : Pour le type None, voir la remarque de la question 2 dans I’exer-
cice 10.1 « Tri par insertion » dans le chapitre « Tris ». On ne I’utilisera pas dans
les autres exercices.

Il existe deux catégories d’objets dans Python :

* les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes,
dictionnaires, deques (voir chapitre 11 « Dictionnaire, pile, file, deque »)... ;

* les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chalnes de caracteres, tuples...

Voir les exercices 1.4 « Affectation, objet immuable, copie » et 1.5 « Passage par référence
pour les listes, effet de bord » pour les affectations et les arguments d’entrée des fonctions.

Quelques fonctions intrinséques :

abs (x) : renvoie la valeur absolue de x
int (x) : convertit x en entier

float (x) :convertitx en flottant

str(x) : convertit x en chaine de caracteres

bool (x) :convertit x en booléen
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Premiére utilisation de la boucle for :

x=5
for i in range(n):

affecte 5 a la variable x
boucle faisant varier i de 0 inclus a n exclu

x=x+1

#

#

# ne pas oublier ':' & la fin de la ligne

# incrémente x de 1 a chaque passage dans la boucle
#

attention a 1’indentation

Deuxi¢me utilisation de la boucle for :

for elt in L: # elt prendra successivement les éléments de L
print (elt) # L chaine de caractéres, liste, tuple, deque
# ou dictionnaire

Boucle while :

i=0

while i<=10: # ne pas oublier : a la fin de la ligne while
print (i) # affichage de 1
i=i+1 # on incrémente i de 1 a chaque étape

La variable 1 est initialisée a O et incrémentée de 1 a chaque étape de la boucle while. On
I’appelle un compteur.

Si la variable i est incrémentée d’une valeur différente de 1 ou décrémentée, on 1’appellera
un accumulateur.

Remarque : On peut utiliser I’instruction suivante :
i+=1 # la variable i est incrémentée de 1

L’instruction break fait sortir d’une boucle while ou for et passe a I'instruction sui-
vante (voir exercice 10.6 « Tri a bulles » dans le chapitre « Tris »). Lorsqu’il y a plusieurs
boucles imbriquées, ’instruction break ne fait sortir que de la boucle la plus interne.

Définition d’une fonction :

def f(x): # définition de la fonction f ayant pour argument d’entrée x
# ne pas oublier ':' a la fin de la ligne
y=x+3 # y est une variable locale : elle est créée a 1l’appel
# de la fonction et est détruite a la fin de la fonction
# voir exercice 1.3 "Variables locales, variables globales"
return y # fin de la fonction et retourne la valeur y
# attention & 1’indentation

L’instruction return quitte la fonction méme en cours d’exécution d’une boucle for ou
while.

Structure conditionnelle :

if x==3: # teste si x = 3
y=3*x
elif x>3 and x<=4: # si le test précédent n’est pas vérifié,
# alors teste si x >3 et si x <=4
y=x+2
elif x>4 and x <5: # si le test précédent n’est pas vérifié,
# alors teste si x >4 et si x <5
y=x-2
else: # sinon (les tests précédents ne sont pas vérifiés)
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Importation de modules

Des fonctions traitant d’'un méme domaine sont regroupées dans des modules (par exemple
les fonctions mathématiques cos, sin, tan... sont regroupées dans le module math).
Différents modules peuvent étre regroupés dans une bibliotheque. On utilise 1’instruction
import module pour importer un module.

import math # importation du module math

Le module math contient des fonctions et des variables : cos (), sin (), tan(),exp(),
sqrt () (racine carrée), 1og () (logarithme népérien), 1ogl0 () (logarithme décimal),
pi (nombre p)...

Pour utiliser les fonctions et les variables du module math :

a=math.pi/4

b=math.cos (math.pi/4)

c=math.sin (math.pi)

print (b) # affiche 0.7071067811865476
print (c) # affiche 1.2246467991473532e-16

Les nombres flottants ne permettent pas un calcul exact a cause de la représentation des
nombres a virgule sur des mots de taille fixe. Un test du type a==b n’a en général pas
de sens si a et b sont des nombres a virgule flottante. On remplacera donc ce test par :
abs (a-b)<epsilon ol epsilon est une valeur proche de zéro, choisie en fonction
du probleme a traiter et de 1’ordre de grandeur des erreurs auxquelles on peut s’attendre
sur a et b.

Ainsi, pour effectuer le test sin (x) ==0, on n’utilisera pas I’instruction :
| m.sin (x)==0 # si x=pi, ceci retourne pourtant False

mais les instructions suivantes :

| eps=1**-8 # on choisit une valeur pour eps
abs(m.sin(x))<eps # si x=pi, ceci retourne bien True

Lorsqu’on utilise I’instruction from math import *,il n’est plus nécessaire d’ajouter
le nom du module pour utiliser ses fonctions :

from math import * # module math
a=pi/4

Certaines fonctions portent le méme nom dans des bibliotheques différentes. Il est donc
préférable de ne pas utiliser from math import * mais plutdt import math. On
peut renommer le module math en m par exemple :

import math as m # module math renommé m
a=m.pi/4

On peut importer des fonctions et des variables d’un module :

from math import cos, sin, tan, pi
a=cos (pi/4)

Voir exercice 1.4 « Affectation, objet immuable, copie » pour I’ utilisation du module copy.
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On utilisera la bibliotheque PIL dans le chapitre 9 « Matrices de pixels et images, traite-
ment d’images ».

2& 1. On considére une liste non vide L. On suppose que les éléments de la
liste sont des nombres entiers ou flottants. On définit une variable S per-

mettant de calculer la somme des éléments de la liste.

def rec moy (L) :

# la fonction retourne la moyenne de la liste L

S=0

n=len (L)

for i in range(n):
S=S+L[1i]

moyenne=S/n

return moyenne

Remarque :

La liste =79, 10, 11, 20.5, 0, 12.0, -5, -8.3el] contient des
entiers (9, 10, 11, 0, 5) ainsi que des nombres flottants (20.5, 12.0, -8.3el).

initialisation de S a 0

longueur de la liste L

i varie entre 0 inclus et n exclu
on pourrait écrire S+=L[1i]

calcul de la moyenne

HH = H = = H

retourne la moyenne de L

12 .0 est un nombre flottant (type £1oat) alors que 12 est un nombre entier (type
int).

-8.3el est un nombre flottant alors que 83 est un nombre entier.

Cours : N
Soit une liste de valeurs X,, X,... X,. Lamoyenne des valeurs est définie par : (X ) = z X;.

=

z|—

N~

La variance (ou écart quadratique moyen) est définie par : var (X)= <X2>—<X )" avec

<X2> = %iX?. L’écart-type est défini par AX =4/var(X).
i=1

2 2.
éy def rec variance(L):
# la fonction retourne la variance de la liste L
S=0 # initialisation de S a 0
n=len (L) # longueur de la liste L
for i in range(n): # 1 varie entre 0 inclus et n exclu
S=S+L[i]**2 # on pourrait écrire S+=L[i]**2
variance=S/n-rec_moy (L) **2
return variance # retourne la variance de L
3.
def rec ecart type(L):
#la fonction retourne 1’écart-type(float) de la liste L
import math as m # module math renommé m
return (m.sqgrt (rec_variance(L)))

Cours :
Une assertion est une aide de détection de bugs dans les programmes.
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* La fonction rec_moy peut étre appelée si le type de L est 1ist. On ajoute la ligne
suivante dans la fonction def rec moy2:

assert type(L)==1list

Le programme teste si type (L) ==11ist. Si la condition est vérifiée, le programme
continue a s’exécuter normalement.

Si la condition type (L) ==11ist n’est pas vérifie (on dit qu’on a une levée de 1’as-
sertion), alors le programme Python s’arréte et affiche le message d’erreur :

assert type(L)==list AssertionError

* La fonction rec_moy peut étre appelée si le nombre d’éléments de L est strictement
positif. On ajoute la ligne suivante dans la fonction def rec moy2:

assert len(L)>0

Le programme teste si Len (L) >0, sinon on aurait une division par 0 dans la fonction.
Si la condition est vérifiée, le programme continue a s’exécuter normalement. Si la
condition len (L) >0 n’est pas vérifiée (on dit qu’on a une levée de 1’assertion), alors
le programme Python s’arréte et affiche le message d’erreur :

assert len(L)>0 AssertionError

On supprime les assertions dans la version finale du programme Python.

%

4.

def rec moy2(L:list)->float:
# la fonction retourne la moyenne (float) des éléments
# de la liste L
# On pourrait écrire : def rec moy2(L:[float])->float:
# L est une liste de nombres flottants
assert type(L)==list
assert len(L)>0

S=0 # initialisation de S a 0
n=len (L) # longueur de la liste L
for i in range(n): # i varie entre 0 inclus et n exclu
assert type(L[i])==float or type(L[i])==int
S=S+L[1] # on pourrait écrire S+=L[i]
moyenne=S/n # calcul de la moyenne
return moyenne # retourne la moyenne de L
Si on exécute linstruction print ('moyenne :',rec moy2(3)),

Python affiche :
assert type(L)==1list AssertionError

Si on exécute linstruction print ('moyenne :',rec moy2([])),
Python affiche :
assert len(L)>0 AssertionError
Si on exécute linstruction print ('moyenne :',rec moy2([3,
4.0, 'a'l)), Python affiche :
assert type(L[i])==float or type(L[i])==int
AssertionError
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Remarques :
On peut ajouter une chaine de caracteres dans I’instruction assert :
assert type (L)==1list, 'Le type de L doit étre une liste.'

Le programme teste si type (L) ==11st. Sila condition est vérifiée, le programme
continue a s’exécuter normalement.

Si la condition type (L) ==1ist n’est pas vérifiée (on dit qu’on a une levée de
I’assertion), alors le programme Python s’arréte et affiche le message d’erreur :

Le type de L doit étre une liste.

Si une instruction est trop longue pour tenir sur une ligne ou si on souhaite amé-
liorer la lisibilité du code, on peut utiliser le symbole « \ » en fin de ligne et pour-
suivre I’écriture de I’instruction sur la ligne suivante.

On peut écrire :

assert type(L[i])==float or type(L[i])==int, "Type de L[i] non correct."
ou
assert type(L[i])==float or type(L[i])==int,\

"Type de L[i] non correct."

On peut ajouter des commentaires dans les programmes Python avec le symbole
diese. Pour ajouter un commentaire qui s’étend sur plusieurs lignes, on peut le
commencer avec ' ' ' (trois apostrophes) ou """ (trois guillemets) et le terminer
de la méme facon :

La fonction retourne la moyenne (float) des éléments de la liste L.

On pourrait écrire : def rec moy2(L:[float])->float:
T

Les assertions servent a tester des conditions critiques qui ne devraient jamais arri-
ver. Ce sont des aides au développement des programmes.

Si ces erreurs (liste vide, type de L incorrect, type de L [1] incorrect) sont suscep-
tibles d’arriver lors de I’exécution du programme final, alors il faut utiliser le test
if len(L)==0 et gérer par programmation I’erreur.

Exercice 1.2 : Boucle, test, fonction (banque PT 2015)

On pourra utiliser L. reverse () qui permet d’inverser les €léments de la liste L.

1. Soit ’entier n = 1 234. Quel est le quotient, noté ¢, de la division euclidienne
de n par 10 ? Quel est le reste ? Que se passe-t-il si on recommence la division
euclidienne par 10 a partir de g ?

1
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Ecrire une fonction calcul baselO d’argument n, renvoyant une liste L
contenant les restes des divisions euclidiennes successives.

La fonction vérifiera que n est un entier avec assert.

Ecrire le programme principal demandant a I’utilisateur de saisir un entier n
strictement positif et renvoyant la décomposition en base 10 de I’entier n.

2. Ecrire une fonction somcube, d’argument n, renvoyant la somme des
cubes des chiffres du nombre entier n. On pourra utiliser la fonction calcul
basel0.

3. Ecrire une fonction permettant de trouver tous les nombres entiers stricte-
ment inférieurs a 1 000 et égaux a la somme des cubes de leurs chiffres.

4. Ecrire une fonction somcube?2 qui convertit ’entier n en une chaine de
caracteres permettant ainsi la récupération de ses chiffres sous forme de carac-
teres. Cette nouvelle fonction renvoie la chalne de caractéres ainsi que la
somme des cubes des chiffres de I’entier n. On pourra utiliser la fonction str
et manipuler les chaines de caracteres.

Analyse du probleme

Cet exercice permet de s’entrainer & manipuler les fonctions, les boucles, les tests
et les différents types rencontrés dans Python.

¥

1.n=1234 =123 x 10 + 4. Le reste vaut 4.

Si on recommence la division euclidienne de 123 par 10: 123 =12 x 10+ 3.
Le reste vaut 3.

Si on recommence la division euclidienne de 12 par 10 : 12 =1 x 10 + 2.
Le reste vaut 2.

Si on recommence la division euclidienne de 1 par 10: 1 =0x 10 + 1. Le
reste vaut 1.

On obtient la décomposition en base 10de n: 1, 2, 3, 4.

def calcul baselO(n):
# la fonction renvoie une liste contenant les restes
# des divisions euclidiennes successives

assert type (n)==int
L=[] # création d’une liste vide
while n>0: # boucle tant que n > 0
g=n//10 # quotient de la division euclidienne de n par 10
r=n%10 # reste de la division euclidienne de n par 10
L.append(r) # on ajoute le reste dans la liste L
n=q
L.reverse () # inverse 1l’ordre des éléments de la liste L
return L # retourne la liste L

# programme principal
n=int (input ('Taper un entier strictement positif : "))
# conversion en entier du résultat de la saisie
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| print ('Décomposition en base 10 : ',calcul baselO(n))

Linstruction assert expression de Python vérifie la véracité d'une
expression booléenne et interrompt brutalement Uexécution du programme
si ce n'est pas le cas.

2.

def somcube (n) :
# la fonction renvoie la somme des cubes des chiffres
# de l’entier n

somme=0 # initialisation de la variable somme
L=calcul_basel0 (n) # récupere la liste donnant

# la décomposition en base 10 de n
for i in range(len(L)): # i varie entre 0 inclus

# et len(L) exclu
somme=somme+L[1]**3 # on ajoute L[i] & la puissance 3
# on peut écrire somme+=L[1]**3
return somme

# programme principal

n=1234

print (somcube (n)) # affiche 100 pour n 1234

3.

def affiche liste entier cube(): # pas d’argument d'entrée

# la fonction renvoie tous les nombres entiers strictement
# inférieurs a 1000 et égaux a la somme des cubes
# de leurs chiffres

L=[] # création d’une liste vide
for i in range (1000) : # 1 varie entre 0 inclus et 1000 exclu
if i==somcube (i) : # teste si i est égal a la somme
# des cubes de ses chiffres
L.append (i) # ajoute i dans la liste L
return L # fin de la fonction et renvoie la liste L

# programme principal
print (affiche liste entier cube()) # affiche
# [0, 1, 153, 370, 371, 407]

4.

def somcube2 (n) :
# la fonction convertit 1l’entier n en une chaine de caractéres
# pour récupérer ses chiffres sous forme de caracteres

somme=0
chaine=str (n) # convertit n en une chaine de caractéres
L=[] # création d’une liste vide
for elt in chaine: # elt prend successivement
# les éléments de chaine
L.append(elt) # elt est un caractere que 1l’on ajoute
# dans L

somme=somme+ (int (elt)) **3 # 11 faut convertir elt
# en entier
return L, somme # on pourrait écrire return(L, somme)

13
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# programme principal

n=int (input ('Taper un entier strictement positif : '))

L1, res=somcube?2 (n) # L1 contient la liste des chiffres de n
# res = somme des cubes des chiffres de n

Remarque :

La fonction somcube?2 (n) renvoie un tuple contenant deux éléments. Pour récu-
pérer les éléments de ce tuple, on a plusieurs possibilités :

* Dépaquetage d’un tuple :
Laligne return L, somme retourne untuple: (L, somme).
Pour récupérer dans des variables séparées les éléments du tuple, on peut écrire :
| L1, res=somcube2 (25)
On obtient alors : L1=["'2", '5'] etres=133.
* On définit un tuple A :
| A=somcube?2 (25)
Le tuple A vaut: (['2', '5'], 133).
Pour récupérer ['2', '5'], le premier élément du tuple : A[0].
Pour récupérer 133, le deuxieme élément du tuple : A[1].

Exercice 1.3 : Variables locales, variables globales

On considere le programme suivant :

def f()
global b
print('d =', d)
print ('Premier print dans la fonction £ : b =', b)
a=3
c=5
b=b+c
print ('Deuxiéme print dans la fonction £ : b =', b)
print ('Troisieme print dans la fonction f : a =', a)
return # on pourrait supprimer cette ligne
# ou écrire return None

a=2
b=2
d=3
print ("Print avant 1’appel de la fonction £ : a =", a)
print ("Print avant 1’appel de la fonction f : b =", b)
£0)
print ("Print apreés 1l’appel de la fonction £ : a =", a)
print ("Print apres 1l’appel de la fonction f : b =", Db)

Qu’affiche Python lors de I’exécution du programme ? Analyser les différents
affichages de print.

14
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Analyse du probléme

Ce programme permet de comprendre la différence entre les variables globales et
les variables locales dans une fonction.

Cours :
Une variable locale est créée au début d’une fonction et est détruite lorsque la fonction est
terminée. Elle existe uniquement dans le corps de la fonction.

Une variable globale est définie a I’extérieur d’une fonction. Le contenu de cette variable est
visible a I’intérieur d’une fonction. L’instruction global b permet de définir la variable
globale b dans la fonction £.

Le programme Python affiche :

Print avant 1’appel de la fonction £ : a = 2
Print avant 1’appel de la fonction £ : b = 2
d=3

Premier print dans la fonction f : b = 2
Deuxieme print dans la fonction £ : b =7
Troisiéme print dans la fonction f : a = 3
Print apres 1’appel de la fonction f : a = 2

Print apres 1’appel de la fonction f : b =7

La variable a vaut toujours 2 aprés l'exécution de la fonction f.

Dans le corps de la fonction f, a est une variable locale qui na rien a voir

avec la variable a définie dans le programme principal.

La variable b est modifiée par la fonction £ car b est une variable globale

(instruction global b). On retrouve 7 aprés l'appel de la fonction £.

La variable c est une variable locale. Elle n'est pas définie en dehors de la

fonction. Linstruction print (c) en dehors de la fonction entraine un

message d'erreur de Python.

La variable d nest pas définie dans la fonction f£. Python cherche alors la

valeur de d dans le programme principal. Python affiche alors : @ = 3.
Remarque : L’instruction global i, j permet de désigner deux variables glo-
bales i et j dans une fonction.

Exercice 1.4 : Affectation, objet immuable, copie

La fonction deepcopy (L) du module copy permet de réaliser une copie pro-
fonde de la liste I..

1. Qu’affiche Python lors de I’exécution du programme suivant ?

i=3
j=i
print ('Avant modification de i : i, 3 =', i, Jj)
i=5
print ('Apres modification de 1 : i, 3 =', i, 3J)

15
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2. Qu’affiche Python lors de I’exécution du programme suivant ?
L1=[1, 3, 5, 7]

L2=L1

print ('Avant modification de L2 : L1, L2 =', L1, L2)
L2[3]=2

L2 [3]=print ('Apres modification de L2 : L1, L2 =', L1, L2)

3. Qu’affiche Python lors de I’exécution du programme suivant ?
L3=[1, 3, 5, 7]

import copy

Li=copy.copy (L3)

print ('Avant modification de L4 : L3, L4 =', L3, L4)
L4[3]=2

print ('Aprés modification de L4 : L3, L4 =', L3, L4)

4. Qu’affiche Python lors de I’exécution du programme suivant ?
Ll=[1, 2, [3, 41, 5]
L2=L1
L3=copy.copy (L1)
L4=copy.deepcopy (L1)
L1[0]=12
L1[2][0]=30

print ('Ll ="', L1)
print ('L2 ="', L2)
print ('L3 =', L3)
print ('L4 ="', L4)

Analyse du probleme

Ce programme permet de comprendre les problémes rencontrés lors de copies de
listes, deques et dictionnaires (voir chapitre 11 « Dictionnaire, pile, file, deque »).

Cours :
Il existe deux catégories d’objets dans Python :

* les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes,
dictionnaires, deques... ;

* les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chaines de caracteres, tuples. ..

Objets muables — Partage de valeurs par plusieurs variables

Cette affectation (ou assignation) est une instruction qui réalise les opérations suivantes :

 Création d’un objet muable (appelé obj1) de type 1ist a une adresse mémoire. Cet
objet posseéde un identifiant (adresse mémoire), un type et une valeur. La valeur de
objlvaut: [1, 2, 3, 4].

* Création de la variable L1.

* Association de la variable L1 avec I’objet obj 1 contenant la valeur [1, 2, 3, 4].
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La variable L1 ne contientpas [1, 2, 3, 4] maisuniquement la référence de
I’objet obj 1, c’est-a-dire I’adresse mémoire ou est stocké obj 1.

On peut modifier [1, 2, 3, 4] une fois que cet objet obj1 detype 1ist est
créé. Les listes sont modifiables (muables).

Cours :

Contrairement a d’autres langages de programmation (C ou Java), une affectation dans
Python est une association d’une variable avec un objet contenant la valeur. C’est le choix
des concepteurs du langage Python.

L2=L1
L’instruction 1L.2=L1 n’affecte pas [1, 2, 3, 4] a L2 mais réalise les opérations sui-
vantes :

e Création du nom de variable L2.
e Affectation a la variable L2 de la référence (ou adresse mémoire) ou est stocké [1,
2, 3, 47.

L1 et L2 font donc référence au méme objet [1, 2, 3, 4].
La copie est tres rapide puisqu’on n’occupe pas deux fois plus de place mémoire.

Si on modifie [1, 2, 3, 4] viaLl, alors cette modification sera également visible
par L2.

L1[0]=10

On constate que L2 [ 0] vaut 10 également. C’est tout a fait normal car L1 et L2 font réfé-
rence a la méme adresse mémoire de [10, 2, 3, 4].

On ajoute un élément dans L1 avec la fonction append :
Ll.append(12)

L’élément 12 est ajouté dans L1 et L2 puisque L1 et L2 font référence a la méme liste
modifiable (ou muable) : {10, 2, 3, 4, 12].

Comme dans les problemes de concours, on utilise le langage suivant : le terme
« liste » appliqué a un objet Python signifie qu’il s’agit d’une variable de type 1ist.
Idem pour les autres types : int, float, bool, str, tuple, dict, deque...

Objets immuables (non modifiables)
a=10
Cette affectation réalise les opérations suivantes :

* Création d’un objet immuable (appelé obj2) de type int a une adresse mémoire.
Cet objet possede un identifiant (adresse mémoire), un type et une valeur. La valeur de
obj2 vaut: 10.

17
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* Création de la variable a.
* Association de la variable a avec 1’objet obj 2 contenant la valeur 10.

La variable a ne contient pas 10 mais uniquement la référence de I’objet obj 2,
c’est-a-dire 1’adresse mémoire ou est stocké obj 2.

On ne peut pas modifier 10 une fois que cet objet obj 2 de type int est créé. Les
entiers sont non modifiables (immuables).

Cours :
b=a

Cette instruction n’affecte pas 10 a la variable a mais affecte la référence (ou 1’adresse
mémoire) ou est stocké 10.

a=11

Comme on ne peut pas modifier 10 (objet immuable), on crée un nouvel objet 11 avec
une nouvelle adresse mémoire dans 1’ordinateur. La variable a fait référence a 1’adresse
mémoire ou est stocké 11.

Par contre, b fait toujours référence a 1’adresse mémoire ou est stocké 10.
print (b) # b reste égal a 10

On retrouve le méme résultat pour tous les objets immuables : entiers, nombres flottants,
booléens, chaines de caracteres, tuples...

Deux cas peuvent se présenter apres 1’exécution de ’instruction L2=L1 :

* L1 est un objet muable (mutable, en anglais, par exemple liste, dictionnaire,
deque...) : si on modifie L1 dans la suite du programme, alors L2 est également
modifié puisque L1 et L2 font référence a la méme adresse mémoire.

* L1 est un objet immuable (immutable, en anglais, par exemple entier, nombre
flottant, booléen, chaine de caracteres, tuple...) : si on modifie 1.1 dans la suite
du programme, alors L2 n’est pas modifié.

Cours :
On rencontre deux catégories de copies pour les objets muables (listes, dictionnaires,
deques...) :

» La fonction copy () réalise une copie superficielle. Les éléments sont copiés s’il
n’y pas de structure imbriquée. Si les éléments sont des listes par exemple, alors
I’adresse mémoire des listes est copiée.

* La fonction deepcopy () réalise une copie profonde pour les structures imbri-
quées. Si les éléments sont des listes, alors la copie profonde copie bien les listes
imbriquées.

import copy

L2=copy.copy (L1)
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Python exécute une copie superficielle de L1, c’est-a-dire qu’il crée une nouvelle
liste 1.2 en copiant tous les éléments de 1.1 dans L2 puisqu’ils ne contiennent pas
de structure imbriquée. Dans ce cas, L1 et L2 ne font plus référence a la méme
adresse mémoire.

La copie superficielle s’applique également aux dictionnaires et deques (voir cha-
pitre 11 « Dictionnaire, pile, file, deque »).

Remarque :

Avec certains langages (langage C++, Java par exemple), le typage des variables
est statique, c’est-a-dire qu’il faut d’abord déclarer (ou définir) le nom et le type
des variables et ensuite leur affecter (ou assigner) une valeur compatible avec le
type déclaré.

Avec le langage Python, le typage des variables est dynamique : I’interpréteur
détermine automatiquement le type qui correspond au mieux a la valeur fournie
lors de I’ affectation.

¥

1. Python affiche :
Avant modification de i : i, j = 3 3

Apres modification de i : i1, 7 = 5 3
Les résultats affichés dans Python sont tout a fait prévisibles. On va voir
dans la question 2 que la méme syntaxe appliquée aux listes donne des
résultats surprenants !

2. Python affiche :

Avant modification de L2 : L1,L2 = [1, 3, 5, 7]
(1, 3, 5, 7]
Apres modification de L2 : L1,L2 = [1, 3, 5, 2]

[1, 3, 5, 2]
Le programme de la question 2 est exactement le méme que celui de la
question 1 sauf qu’on manipule des listes au lieu de manipuler des entiers.
Le comportement est complétement différent : la liste .1 a été modifiée !
Linstruction 1.2=11 n’a pas effectué une copie de L1 dans L2 mais a
copié uniquement la référence de la liste, c'est-a-dire l'adresse mémoire de
la liste. 1.1 et 1.2 font donc référence a la méme adresse mémoire de lor-
dinateur. Si on modifie un élément de 1.2 alors L1 est également modifié.

3. Python affiche :

Avant modification de L4 : L3,1L4 = [1, 3, 5, 7]
[1, 3, 5, 71
Aprés modification de L4 : L3,L4 = [1, 3, 5, 7]
[1, 3, 5, 2]

L'instruction L4=copy.copy (L3) permet de réaliser une copie super-
ficielle de 1.3. Les listes 1.3 et 1.4 ont des adresses mémoire différentes.
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La modification d'un élément de 1.4 n'a donc aucune conséquence sur 1.3
puisque les éléments ne contiennent de structure imbriquée.

4. Python affiche :

L1l
L2
L3
L4

(12,
(12,
(1,
(1,

2,
2,
2,

2, [3,

(30,
(30,
[30,

41,
4],
41,

L'affectation L2=L1 ne réalise pas une copie de L1. Si on modifie un
élément de L1, alors cet élément est modifié dans L2 puisque L1 et L2
pointent vers la méme adresse mémoire.

5]

3]
5]

Linstruction L3=copy.copy (L1) permet de réaliser une copie super-
ficielle de L1. Si on modifie un élément de L1 qui est une liste (exemple
[30, 47) alors cet élément est également modifié dans 1.3.
Linstruction L4=copy.deepcopy (L1) permet de réaliser une copie
profonde de L.3. Si on modifie un élément de L1 qui est une liste (exemple
[30, 41]) alors cet élément n’est pas modifié dans L3.

Exercice 1.5 : Passage par référence pour les listes, effet de bord

def f(a,
at=1

print ('Print dans

b=b+1

print ('Print dans
print ('Print dans
L.append (4)
print ('Print dans

return a

2, 3]

c=f b, L)
print ('Print
print ('Print
print ('Print
print ('Print

(a,

apres
apres
apres
apres

Analyse du probleme
Ce programme permet de comprendre les problemes rencontrés lors de 1’utilisation
de listes dans les arguments d’entrée des fonctions.

la
la
la
la

On considere le programme suivant :
b, L):

la fonction :

la fonction :
la fonction :

# on ajoute

b
d

’

’

b)
d)

un élément dans L

la fonction :

fonction :
fonction
fonction :

a
Hil o)
€

fonction f :

=

L

v
v
v

=70

’

4

’

=0

’

a)
b)
c)

’

L)

L)

Qu’affiche Python lors de I’exécution du programme ? Analyser les différents
affichages de print.
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Les arguments d’entrée des fonctions sont tous passés par référence. On considere deux

cas :

* Objet muable (liste, dictionnaire, deque...) : toute modification de cet objet dans la
fonction est visible en dehors de la fonction. C’est « I’effet de bord » puisque la fonc-
tion modifie des données définies hors de sa portée locale.

* Objetimmuable (entier, nombre flottant, booléen, chaine de caracteres, tuple...) : toute
modification de cet objet dans la fonction n’est pas visible en dehors de la fonction.
Pour simplifier, tout se passe comme si ces objets €taient passés par valeur.

%

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque...) dans
une fonction alors on ne retrouve pas I’état initial de I’objet lorsqu’on quitte la
fonction.

Python affiche :
Print dans la fonction
Print dans la fonction
Print dans la fonction

H o o
Il

Print dans la fonction

1
Print apreés la fonction : a = 3
Print apres la fonction : b = 5

4

Print aprés la fonction : c =

Print apres la fonction f : L (1, 2, 3, 4]
La fonction £ retourne la valeur 4 qui est affectée dans la variable c.

Avant l'appel de la fonction £, la variable b fait référence a 5. La variable
b est passée par référence dans la fonction £ et fait toujours référence a 6.
Linstruction b=b+1 dans la fonction £ ne peut affecter 5 qui est immuable.
La variable b dans la fonction £ fait donc référence a une nouvelle valeur 6.
La variable b du programme principal garde donc la méme valeur 6.

Pour simplifier, cela revient a dire que les variables a et b sont passées par
valeur : l'exécution de la fonction £ évalue d’abord a et b puis exécute £
avec les valeurs calculées a et b.

La variable L fait référence a la liste [1, 2, 3] qui est un objet muable.
La liste L est passée par référence. Lorsqu’on modifie L. dans la fonction £,
on modifie la liste [1, 2, 3].

La variable L dans la fonction £ fait référence a la méme adresse mémoire
que la variable 1. dans le programme principal.

Lorsqu’une expression fait référence a une variable a l'intérieur d'une fonc-
tion (variable d par exemple), Python cherche la valeur définie a lintérieur
de la fonction et a défaut la valeur dans l'espace global du programme.

Remarque : Voir ’exercice précédent, « Affectation, objet immuable, copie »,
pour avoir une copie profonde avec la fonction deepcopy ().
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Exercice 1.6 : Slicing, extraction de tranche

On considere le programme suivant :

Ll=[1 for i1 in range(2, 7, 2)] # création par compréhension
print ('Ll ="', L1)
print (L1[:-11)

Qu’affiche Python lors de I’exécution du programme ?

Analyse du probléeme
La technique du slicing, ou extraction de tranche, permet d’extraire des éléments
d’une liste.

Cours :

Lorsqu’on veut extraire des éléments d’une liste, d’un tuple ou d’une chaine de caracteres,
on utilise la technique du slicing, ou extraction de tranche. Il suffit de mettre entre crochets
les indices correspondant au début et a la fin de la « tranche ». On utilise la syntaxe :

L[start:stop]

start : indice de départ, inclus
stop — start : longueur de la liste extraite (avec un pas de 1 par défaut)
stop : indice final, exclu

Exemple pour L=[3, 5, 1, 8, 10]:L[1:4] renvoie [5, 1, 8].
5.

L’indice de départ vaut 1 avec L[1] =
L’indice final vaut4 —1 =3 avec L[3] =8.
On récupere bien 3 éléments : [5, 1, 8].
Il faut bien retenir I’instruction : L [start:stop].
@ Les indices sont compris entre start inclus et stop exclu.
On peut retenir facilement que le nombre d’éléments vaut stop — start avec
un pas de 1 par défaut.

Cours :
On peut utiliser I’extraction de tranche avec un pas différent de 1. On utilise alors la syntaxe
suivante :

| Llstart:stop:step]

start : indice de départ, inclus
stop : indice final, exclu
step : cette variable désigne le pas.

Exemple pour L=[3, 5, 1, 8, 10]:L[1:4:2] renvoie [5, 8].

L’indice de départ vaut 1 avec L[1] =5.
L’indice final 4 est exclu.
On ne prend qu’un élément sur 2.
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On peut omettre n’importe lequel des arguments dans L [start:stop:step].
Par défaut : start =0, stop = indice du dernier élément de la liste + 1, step = 1.

L[ :3] renvoie tous les éléments dont les indices sont compris entre 0 inclus et 3 exclu.
Python retourne [3, 5, 1].

L[1:] renvoie tous les éléments dont les indices sont compris entre 1 inclus et (indice du
dernier élément de la liste + 1) exclu. Python retourne [5, 1, 8, 10].

On peut créer une liste par compréhension :
L1=[3*1i for i in range(3)]
On obtient : L1=[0, 3, 6].

On peut également utiliser une boucle for :

Ll=[] # création d’une liste vide
for i in range(3): # i varie entre 0 inclus et 3 exclu
L1l.append(3*i) : # ajoute la valeur 3*i a la liste L1

On obtient : L1=[0, 3, 6].

@ Attention aux séparateurs dans I’extraction de tranche et dans la fonction range :

L[start:stop:step] # mettre deux points entre start et stop
range (start, stop, step) # mettre une virgule entre start et stop

Cours :
On utilise la méme technique pour les tuples et les chaines de caracteres.

L=(3, 5, 8, -2) # tuple

L2=L[0:3] # L2=(3, 5, 8)
c="C’est un mot" # chaine de caractéres
c2=c[0:3] # c2="C’e"

Python affiche :
Ll = [2, 4, 6]
(2, 4]
Liste 1.1 : i varie entre 2 inclus et 7 exclu avec un pas de 2.
L1[:-1] extrait les éléments de L1 : le dernier élément de L1 est exclu.

¥







Graphiques

Exercice 2.1 : Tracé d'une fonction avec matplotlib

On considere les fonctions f; et f, définies sur [0, 2] par :

x pour 0<x<1
1 pourl1<x<2

fi(x)= et f, (x)=sin(x)+0,1.

Les fonctions suivantes permettent le tracé de fonctions :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure () # nouvelle fenétre graphique
plt.plot(x, y, color='r', linewidth=3, marker='o')

# color : choix de la couleur

# ('r' : red, 'g' : green, 'b' : blue, 'black' : black)

# linewidth : épaisseur du trait

# marker : différents symboles '+', '.', 'o', 'v'

# linestyle : style de la ligne ('-' ligne continue,

# '--' ligne discontinue, ':' ligne pointillée)
plt.plot(x, vy, '"*") # points non reliés représentés par '*'
plt.grid() # affichage de la grille
plt.title('Titre") # ajout d’un titre
plt.xlabel ('axe x') # affiche 'axe x' en abscisse d’un graphique
plt.ylabel ('axe y') # affiche 'axe y' en ordonnée d’un graphique
plt.axis ([xmin, xmax, ymin, ymax]) # précise les bornes pour les

# abscisses et les ordonnées

plt.legend(['courbe 1', 'courbe 2']) # permet de légender les courbes
plt.show() # affiche la figure a 1’écran

Définir les deux fonctions £1 et £2 dans Python en utilisant le module
math. Tracer les courbes représentatives des deux fonctions sur I’intervalle
[0, 2] avec un pas de 0,05. Le graphique doit avoir les caractéristiques sui-
vantes :

» Utilisation de listes.
» Courbe représentative de £1 : épaisseur du trait égale a 3, couleur bleue.

» Courbe représentative de £2 : points non reliés représentés par *, couleur
rouge.

» Légender les deux courbes.
 Afficher 'x' pour I’axe des abscisses et 'y ' pour ’axe des ordonnées.
 Afficher le titre : 'Tracé de fonctions'.

» Axe des x compris entre 0 et 2, axe des y compris entre 0 et 1,5.
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Analyse du probléme

Il faut bien connaitre les fonctions suivantes pour tracer une fonction :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt

plt.figure () # nouvelle fenétre graphique

plt.plot(x, y) # représentation graphique de y en fonction de x
plt.show() # affiche la figure a 1’écran

Cours :

Le module matplotlib.pyplot de la bibliotheque matplotlib permet d’afficher
des graphiques. On I’importe a I’aide de la commande :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt

11 faut connaitre quelques fonctions du module matplotlib.pyplot:

plt.plot(x, vy)

Arguments d’entrée : x liste d’abscisses de longueur n et y liste d’ordonnées de lon-
gueur n.

Description : fonction permettant de tracer un graphique de n points dont les abscisses
sont contenues dans la liste x et les ordonnées dans la liste y. Cette fonction doit &tre
suivie de la fonction p1t . show () pour que le graphique soit affiché.

plt.xlabel (nom)

Argument d’entrée : une chaine de caracteres.

Description : fonction permettant d’afficher le contenu de nom en abscisse d’un gra-
phique.

plt.ylabel (nom)

Argument d’entrée : une chaine de caracteres.

Description : fonction permettant d’afficher le contenu de nom en ordonnée d’un gra-
phique.

plt.title (nom)
Argument d’entrée : une chaine de caracteres.
Description : fonction permettant d’afficher le contenu de nom en titre d’un graphique.

plt.show ()

Description : fonction réalisant I’affichage d’un graphe préalablement créé par la com-
mande plt.plot (x, v). Elle doit étre appelée apres la fonction plt.plot et
apres les fonctions plt.xlabel,plt.ylabeletplt.title.

plt.axis([xmin, xmax, ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour I’axe des abscisses
et celui des ordonnées.

plt.xlim([xmin, xmax])
Description : fonction permettant de définir les valeurs limites pour 1’axe des abscisses.

plt.ylim([ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour 1’axe des ordon-
nées.



import matplotlib.pyplot as plt
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# module matplotlib.pyplot renommé plt
import math as m # module math

def

def

xmin=0
xmax=2
pas=
N=int ( ( (xmax-xmin) /pas)+1)

plt.
plt.

plt.
plt.
plt.
plt.
plt.
plt.
plt.

renommé m

fl(x): # définition de la fonction fl
# argument d’entrée : float x

if x>=0 and x<1:

return x
elif x>=1 and x<=2:
return 1
else:
return 0
£f2(x): # définition de la fonction f2

# argument d’entrée : float x

return m.sin(x)+0.1

0.05

# valeur minimale de x
# valeur maximale de x

# pas=(xmax-xmin) / (N-1)

# le nombre de points doit étre un entier

# N=nombre de points et N-1=

nombre d’intervalles

# initialisation de la liste x

# initialisation de la liste yl
# initialisation de la liste y2

i in range (N): # 1 varie entre 0 inclus et N exclu
x.append (i*pas) # ajout de 1’élément x[i]

yl.append (fl(x[i])) # ajout de 1’élément fl(x[i])
y2.append (f2 (x[1i])) # ajout de 1’élément f2(x[i])
figure () # nouvelle fenétre graphique

plot(x, yl, linewidth=3, color='b"'") # création de la

plot(x, y2, '*', color='r")
legend(['fl(x)"', '"f2(x)'])
xlabel ('x"'") # affichage de
ylabel ('y"') # affichage de
title('Tracé de fonctions')
axis ([0, 2, 0, 1.51)

show ()

# premiere courbe
# création de la deuxiéme courbe
# légende des deux courbes
'x' en abscisse du graphique
y' en ordonnée du graphique
# affichage du titre du graphique
# [xmin, xmax, ymin, ymax]
# affiche la figure a 1l'écran
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On considere la liste : L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9].
Les fonctions suivantes permettent le tracé d’histogrammes :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure () # nouvelle fenétre graphique
plt.hist (L, range=(5, 25), bins=10, color='red')

# range=(5, 25) permet de préciser le minimum et le maximum des
valeurs représentées sur l’histogramme.

Par défaut : range=(min(L), max (L)), bins=10=nombre d’intervalles
ou bins=[5, 15, 20, 25, 40] permettant de préciser les limites
des intervalles. Les barres de 1l’histogramme ont dans cet
exemple des largeurs différentes.

# color='red' permet de préciser la couleur des barres
plt.show() # affiche la figure a 1l’écran

H= H F= FH= H

Tracer I’histogramme de la liste L avec les caractéristiques suivantes :

» Afficher 'Valeurs de L' pour I’axe des abscisses et 'Nombre d’oc-
currences' pour I’axe des ordonnées.

 Afficher le titre : 'Histogramme de la liste L'.

¢ 12 intervalles.

Analyse du probleme

Voir exercice précédent « Tracé d’une fonction avec matplotlib » pour I’affichage
du titre, de 1’axe des abscisses et de I’axe des ordonnées.

Il faut bien connaitre les fonctions suivantes pour tracer un histogramme :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure () # nouvelle fenétre graphique

plt.hist (L) # tracé de 1l’histogramme
#

plt.show () affiche la figure a 1’écran

2 import matplotlib.pyplot as plt
éy # module matplotlib.pyplot renommé plt
L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9]
plt.figure () # nouvelle fenétre graphique
plt.hist (L, bins=12) # tracé de 1l’histogramme de la liste L
# avec 12 intervalles
plt.title('Histogramme de la liste L') # titre de 1’histogramme
plt.xlabel ('Valeurs de L'")
plt.ylabel ("Nombre d’occurrences")

plt.show() # affiche la figure a 1l’écran
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Terminaison,
correction, complexité

Exercice 3.1 : Comparaison de deux listes (Mines Ponts 2017)

1. Proposer une fonction egal (L1, L2) retournantun booléen permettant de
savoir si deux listes L1 et L2 sont égales.

2. Que peut-on dire de la complexité de cette fonction ?
3. Préciser le type de retour de cette fonction.

Analyse du probleme

On se place dans le pire des cas avec deux listes €gales. On calcule le nombre total
d’opérations élémentaires pour déterminer la complexité de cette fonction.

Cours :
Terminaison d’un programme

Un programme itératif est constitué d’une boucle for ou while. On cherche a démontrer
que cette boucle se termine.

On considere un variant de boucle, par exemple un entier naturel qui décroit a chaque ité-
ration de la boucle et qui atteindra 0 a un moment, ce qui permet de montrer que la boucle
se termine.

On considere le programme suivant qui cherche un élément dans une liste non triée.

L=[(3, 1, 6, 9, 19, -1,20]
def rec pos (L, x):

# la fonction renvoie True et i1 1’indice si x est dans la liste L,

# False sinon

i=0 # initialisation de 1’indice i

n=len (L)

while i<n:

if x==L[i]:
return True,i1 # return provoque un arrét de boucle
# si x est dans L

i=i+1
return False, -1 # 1’élément n’est pas trouvé
print (rec pos (L, 6)) # le programme affiche : (True, 2)

On appelle 7 le nombre d’éléments de la liste L. On considere le variant de boucle : n — i.
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¢ Le variant de boucle vaut n a I’entrée de la boucle while.

e Il décroit de 1 a chaque passage dans la boucle si I’élément x n’est pas dans L. Si 1’élé-
ment est trouvé, on quitte la boucle.

* En sortie de boucle, si I’élément n’est pas trouvé, le variant de boucle vaut n —n =0.

Dans tous les cas, on a démontré la terminaison du programme.
Voir chapitre 6 « Récursivité » pour des exemples avec des fonctions récursives.
Correction d’un programme

Pour démontrer la correction d’un programme, il faut montrer que 1’algorithme effectue
bien la tiche souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

Rédaction pour un programme itératif
La propriété€ P, (appelée invariant de boucle) doit avoir trois caractéristiques :

 La propriété doit étre vérifiée avant d’entrer dans la boucle.
* Si la propriété est vérifiée avant une itération, elle doit étre vérifiée apres cette itération.
* Si la propriété est vérifiée en fin de boucle, alors le programme est correct.

On considere le programme suivant qui calcule la factorielle d’un entier naturel.

def fact(n):
# la fonction renvoie la factorielle de n (int)
res=1 # initialisation de res a 1
for i in range(l,n+1): # 1 varie entre 1 inclus et n+l exclu

res=res*i
return res

print ('Factorielle :',fact(4)) # affiche 24
On considere la propriété (appelée invariant de boucle) P, : res = i!.

¢ Avant d’entrer dans la boucle, i =1 et on a bien res = 1!.

* Si P; est vraie, alors res = i!. Dans la boucle, le programme fait le calcul :
resx(i+l)=i!><(i+1)=(i+l)!.
res prend alors la valeur (i +1)!. La propriété P,, , est donc vraie.

¢ En fin de boucle, i vaut n et on a bien res = n!.

On a démontré que le programme est correct.

Rédaction pour un programme récursif

Voir chapitre 6 « Récursivité » pour la rédaction avec des fonctions récursives.
On distingue parfois correction partielle et correction totale :

 La correction est partielle quand le résultat est correct lorsque 1’algorithme s’arréte.
 La correction est totale si elle est partielle et si I’algorithme termine.

Complexité

On distingue complexité en temps et complexité en espace. La complexité en temps mesure
la durée nécessaire a I’exécution du programme, alors que la complexité en espace mesure
la taille mémoire nécessaire a I’exécution du programme. On étudiera par la suite la com-
plexité en temps.
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La complexité est une mesure du nombre d’opérations élémentaires que 1’algorithme effec-
tue. Si on se place dans les conditions les plus favorables, on calculera la complexité dans
le meilleur des cas. Si on se place dans les conditions les plus défavorables, on calculera la
complexité dans le pire des cas.

On considere le programme suivant, qui cherche le maximum d’une liste non triée.

def rec max (L) :
# la fonction renvoie le maximum des éléments de la liste L

maxi=L[0]
n=len (L) # nombre d’éléments de L
for i in range(l, n): # i varie entre 1 inclus et n exclu

if L[i]>maxi:
maxi=L[1]
return maxi

On cherche a évaluer la complexité de cette fonction dans le cas le moins favorable.
On appelle n le nombre d’éléments de la liste L.
On cherche a calculer le nombre d’opérations élémentaires :

* 2 opérations élémentaires : appel de I’élément L[ 0] et affectation de maxi.

* 2 opérations élémentaires : appel du nombre d’éléments de L et affectation de n.

* Pour chaque étape de la boucle for, on a 3 opérations élémentaires : appel de I’élément
L[i], comparaison, affectation.

La boucle for est exécutée n — 1 fois dans le pire des cas (si la liste est triée dans I’ordre
croissant).

Le nombre d’opérations élémentaires vaut : 4 + 3(n — 1) = 1 + 3n.
La complexité est linéaire en O(n) pour la fonction rec_max.
On rencontre les types suivants de complexité :

* constante en O(1) (ne dépend pas de n),
* logarithmique en O(log n),

e linéaire en O(n),

* quasi linéaire en O(n log n),

* quadratique en O(n?),

* polynomiale en O(nP),

* exponentielle en O(2").

2 1.
éy def egal(Ll, L2):
# la fonction renvoie True si les deux listes L1 et L2
# sont égales, False sinon
if len(L1l) !=len(L2): # listes de longueurs différentes
return False
else:
for i in range(len(Ll)) :# parcourt tous les éléments de L1
if L1[i]!=L2[i]:
return False
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return True

L1=[3, 2, 5, 8]
12=[3, 2, 5, 8]
print (egal (L1, L2) # retourne True
2. On se place dans le pire des cas avec deux listes égales. On appelle n la
longueur de la liste L.1.
On calcule le nombre d’'opérations élémentaires de la fonction egal (L1,
L2) :
e 3 opérations élémentaires : appel de la longueur de L1, appel de la
longueur de 1.2, test.
e A chaque appel de la boucle for : 3 opérations élémentaires (test et
appelde L1[1i], L2 [1]).
On a donc 3 + 3n opérations élémentaires.
La complexité est linéaire en 0(n).
Remarque : On peut accepter des petites différences dans 1’évaluation du nombre

total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fice.

Zp 3. Le type de retour de la fonction egal (L1, L2) est bool (booléen).

Exercice 3.2 : Amélioration de la complexité
(Mines Ponts 2018)

On s’intéresse a des mesures de niveau de la surface libre de la mer. La distri-
bution des hauteurs de vague lors de I’analyse vague par vague est réputée €tre
gaussienne. On peut controler ceci par des tests de skewness (variable désignée
par S) et de kurtosis (variable désignée par K) définis ci-apres. Ces deux tests
permettent de quantifier respectivement 1’asymétrie et 1’aplatissement de la dis-
tribution.

On appelle H et 6 les estimateurs non biaisés de I’espérance et de la variance,
n le nombre d’éléments H,H,,..., H . On définit alors :
n 1 ~ —\3
S=—"—=X| — [X H -H) et
R IR
n

1 N\ —\4 3(n—1)°
(n—l)(n—z>(n—s)X(F)X2(Hf‘H) “(n-2)(n-3)

i=1

K=

On suppose disposer de la fonction ecartType qui permet de retourner la
valeur de I’écart-type non biaisé .
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1. Proposer une fonction moyenne prenant en argument une liste non vide L
et retournant sa valeur moyenne.

2. Un codage de la fonction skewness pour une liste ayant au moins 3 élé-
ments est donné ci-dessous. Le temps d’exécution est anormalement long. Pro-
poser une modification simple de la fonction pour diminuer le temps d’exécution
(sans remettre en cause le codage des fonctions ecartType et moyenne).

def skewness (liste hauteurs) :

n=len (liste hauteurs)

et3=(ecartType (liste hauteurs)) **3

S=0

for i in range(n):
S+=(liste hauteurs[i]-moyenne (liste hauteurs)) **3
S=n/(n-1)/(n-2)*S/et3

return S

3. Doit-on s’attendre a une différence de type de la complexité entre une fonc-
tion évaluant S et une fonction évaluant K ?

Analyse du probléme

On calcule le nombre total d’opérations élémentaires pour déterminer la complexité
de cette fonction.

1.
Zéy def moyenne (L) :

# la fonction renvoie la valeur moyenne de la liste L

som=0 # initialisation de som a 0
n=len (L) # nombre d'éléments de L
for i in range(n): # 1 varie entre 0 inclus et n exclu

som=som+L[1]
return (som/n)

2. La boucle for de la fonction skewness est exécutée n fois. A chaque
étape de cette boucle for, on calcule moyenne (liste hauteurs)
qui fait intervenir une autre boucle exécutée n fois.

On a donc une complexité quadratique en 0(n?).

Pour améliorer la complexité de cette fonction, on calcule
moyenne (liste hauteurs) avant la boucle for. Dans ce cas, on a
une complexité linéaire en 0(n) :

def skewness (liste hauteurs):
# la fonction renvoie S pour la liste liste hauteurs
n=len(liste_ hauteurs)
et3=(ecartType (liste hauteurs))**3
moy=moyenne (liste hauteurs)
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S=0

for i in range(n):
S+=(liste hauteurs[i]-moy) **3
S=n/(n-1)/(n-2)*S/et3

return S

3. On a une seule boucle pour calculer S et K. Il n'y a pas de différence de
type de la complexité.

Exercice 3.3 : Décomposition en base b d'un entier

(CCP MP Maths 2015)

1. Donner la décomposition binaire (en base 2) de I’entier 21.
2. On considere la fonction mystere suivante :

def mystere(n, b):
"""Données: n > 0 un entier et b > 0 un entier
Résultat: ....... e
t=1[] # liste vide
while n>0:
c=n%b
t.append (c)
n=n//b
return t

Pour k € N, on note Cp 1, €t my les valeurs prises par les variables c, t et n a
la sortie de la k-ieme itération de la boucle while. Quelle liste est renvoyée
lorsque I’on exécute mystere (256, 10) ?

On recopiera et complétera le tableau suivant, en ajoutant les éventuelles
colonnes nécessaires pour tracer entierement 1’exécution.

k 1 2

3. Soit n > 0 un entier. On exécute mystere (n, 10). On pose n, = n.
a. Justifier la terminaison de la boucle while.
b. On note p le nombre d’itérations lors de I’exécution de mystere (n, 10).

Justifier que, pour tout k € [0, p], onan, < % En déduire une majoration de

p en fonction de n.

4. En s’aidant du script de la fonction mystere, écrire une fonction somme
chiffres qui prend en argument un entier naturel et renvoie la somme de ses
chiffres. Par exemple, somme chiffres (256) devrarenvoyer 13.

5. Ecrire une version récursive de la fonction somme chiffres, onlanom-
mera somme chiffres rec.
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Analyse du probléme

On étudie dans cet exercice, extrait du concours CCP MP Maths 2015, la décompo-
sition en base b d’un entier. La méthode est d’effectuer des divisions euclidiennes
successives pour obtenir la liste des chiffres de la décomposition en base b d’un
entier.

2@ 1. La décomposition binaire de l'entier 21 s'écrit : 21 = 10101,
Onaeffet : 21 =24+22+1=[1]+2x{0]+2x(1]+2x(0]+
2 x (@)

Remarque :

On peut effectuer les divisions euclidiennes suivantes :
a) Division euclidienne de I’entier 21 par 2 :
21//2 = 10 = quotient

21%2 =1 |=reste
Le premier reste fournit le premier chiffre du code binaire, c¢’est-a-dire 1010.
b) Division euclidienne du quotient précédent par 2 :

10//2 =5
10%2 =[0]
Le deuxiéme reste fournit le deuxieéme chiffre du code binaire, c’est-a-dire
101[0]1,,
¢) Division euclidienne du quotient précédent par 2 :
5/12=2
5%2 =
d) Division euclidienne du quotient précédent par 2 :
2/12=1

2%2=[0]

e) Division euclidienne du quotient précédent par 2 :

1/2=0

1%2 =
On en déduit que : 21 = 10101, =24+ 22+ 1 =[1]+ 2 x (0] + 2 x (1 ]+ 2 x (0] +
2x [@h)-

On peut envisager une boucle ou on effectue les divisions euclidiennes successives.
On termine la boucle dés que le quotient est nul.

Cet algorithme permet d’effectuer la division euclidienne de I’entier n par deux
jusqu’a ce que le résultat soit nul. La suite des restes donne le code binaire en ordre
inverse.
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%

Cours :

k 1 2 3

¢ | 256%10=6 | 25%10=5 | 2%10=2
f [6] [6, 51 [6, 5, 2]
n, 25 2 0

La fonction mystere (256, 10) renvoie la liste [6,5,2].
Cette procédure donne la décomposition en base b de lentier n.

Un variant de boucle sert a démontrer qu’une boucle se termine.

On peut utiliser par exemple un entier naturel qui décroit strictement a chaque itération. Il
finit par atteindre O 2 un moment, on est alors a la fin de la boucle.

¥

3.

a. Le variant de boucle est n. On notera n, la liste des valeurs successives
prises par n au cours des différentes itérations.

e Initialisation : n, =n.

* A l'étape k, le variant de boucle est n,. A 'étape k+1, on a n,,, = n//b.
n,,, est le quotient de la division euclidienne de n, par b. Il existe r
telque : n, =bn,,  +ravec0<r<b.Onan,, <n. La suite est donc
strictement décroissante.

e En sortie de boucle, n est nul car b est un entier strictement positif et
le quotient est nul dés que n est plus petit que b.

. . . o n
b. Démonstration par récurrence : Propriété P, :n, < —-
ke Tk = o

e La propriété est vraie pour k=0 puisque 10°=1.
® Supposons la propriété vraie pour le rang k. n,,, = n//10 : c'est le
quotient de la division euclidienne de n, par 10. Il existe r tel que :

nk r . n,
10 ="+t 10" soit n,,, < 10" Or

n, < % On en déduit immédiatement que n,,, < 10% La propriété

n,=10n,,, +ravec 0 <r<10. D'ou

est donc vraie au rang k+1.

Pour la derniére itération de la boucle, on a n, = 0. Pour litération préce-
dente,ona: 1< n, < 9. On a donc n, ;2 1.

n . _ n
On avu que n,, < o T so0it 107! < — Comme n, 2 1, alors 1071 < p,
p-1

d’'od p—1 <log,,(n). Finalement, on a:

p=< loglo(n+1)
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4. On reprend le programme de la question 2. Les différents chiffres de
U'entier n sont obtenus par les restes des divisions euclidiennes successives.

def somme chiffres(n, b):

"""Données: n > 0 un entier et b > 0 un entier

Résultat: ....... e

somme=0 # initialisation de la somme

while n>0:
r=n%b # calcul de reste de la division

# euclidienne de n par b

somme+=r # ajoute le reste r a somme
n=n//b

return somme

Cours :

Dans toute fonction récursive, ’instruction return doit étre présente au moins deux fois :
une fois pour la condition d’arrét (premier return dans le programme) et une autre fois
pour I’appel récursif (dernier return dans le programme)

5.

def somme chiffres rec(n, b):
"""Données: n > 0 un entier et b > 0 un entier
Résultat: ....... mwn
if n==0:
return 0 # condition d’arrét
else:
return n%b + somme chiffres rec(n//b,b) # appel
# récursif

Remarque :

L’entier 37 s’écrit 100101 en binaire. On utilise une liste contenant les valeurs

des différents bits. Il existe deux conventions pour repérer les bits dans une

liste :

* L =[1,0,0,1,0,1] : L[O] représente le bit de poids le plus fort et L[5] représente le
bit de poids le plus faible.

* L =[1,0,1,0,0,1] : L[O] représente le bit de poids le plus faible et L[5] représente
le bit de poids le plus fort.

Il faut bien regarder si I’énoncé impose une convention. Sinon il faut bien la définir

dans le programme pour éviter toute ambiguité. La fonction mystere (37, 2)

retourne alors: [1, 0, 1, 0, 0, 1].On utilise donc la deuxi€éme convention

dans tout I’exercice.

Exercice 3.4 : Recherche du nombre de zéros

(banque PT 2015)

Soit un entier naturel n» non nul et une liste L de longueur n dont les termes
valent 0 ou 1. On cherche le nombre maximal de O contigus dans L (c’est-a-
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dire figurant dans des cases consécutives). Par exemple, le nombre maximal de
zéros contigus de la liste 1.1 suivante vaut 4 :

i o123 |4|5|6|7 8|9 |10(11]|12]13]|14

Lifijf 01 y1f1y0;0j0j1j0|1(1|0(0|0]O0

1. Ecrire une fonction nombreZeros (L, i) qui admet pour argument une
liste I de longueur n, un indice i compris entre 0 et n—1, et qui retourne :

e (0,siL[i] =1;

* le nombre de zéros consécutifs dans L a partirde L[i] inclus, si L[1i] =0.
Par exemple, les appels nombreZeros (L1,4), nombreZeros (L1,1) et
nombreZeros (L1, 8) renvoient respectivement les valeurs 3, O et 1.

2. Comment obtenir le nombre maximal de zéros contigus d’une liste L
connaissant la liste des nombreZeros (L, 1) pour0<i<n—17?

En déduire une fonction nombreZerosMax (L), de parametre L, renvoyant le
nombre maximal de O contigus d’une liste L non vide. On utilisera la fonction
nombreZeros.

3. Evaluer la complexité de la fonction nombreZerosMax.

4. Trouver un moyen simple, toujours en utilisant la fonction nombreZeros,
d’obtenir un algorithme plus performant.

Analyse du probleme

Dans cet exercice, on parcourt une liste pour déterminer le nombre maximal de
zéros contigus dans celle-ci. On verra comment améliorer I’algorithme. Cet exer-
cice est extrait du sujet de concours 0 de la banque PT 2015.

2 1.
éy def nombreZeros (L, 1i):
# la fonction renvoie nbr zeros pour la liste L
# et un indice 1 (int)
if L[i]l==1:
return 0
else:
nbr zeros=0

j=i

while j<len(L) and L[j]==0:
# i1 faut mettre j<len(L) avant L[7J]
# sinon message d’erreur pour j=len(L)
nbr zeros+=1 # incrémente de 1

# le nombre de zéros
J+=1
return nbr zeros
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2. On utilise la fonction nombreZeros pour définir une liste Z : chaque
élément Z[1] de la liste Z contient le nombre de zéros consécutifs dans
L apartirde L[1i].

Il suffit ensuite de déterminer le maximum de la liste Z.

def nombreZerosMax (L) :
# la fonction renvoie le nombre maximal de 0 contigus
# de la liste L
Z=[1] # initialisation de la liste
for i in range(len(L)):
Z .append (nombreZeros (L, 1))
max_ 7=2[0]

stocke nombreZeros (L, 1)
recherche du maximum
de la liste Z

for i in range(l,len(Z)): i varie entre 1 inclus

HH = H

et len(Z) exclu
if Z[i]l>max_Z:
max Z=7[1i]
return max 7
print (nombreZeros (L1, 13))
print (nombreZerosMax (L1))

3. On appelle n la longueur de la liste L. On se place dans le pire des cas.

® Premiére boucle for : i varie entre 0 et n—1. Pour chaque valeur de i
on appelle la fonction nombreZeros (pour chaque valeur de j, ily a
deux comparaisons, une incrémentation de la variable nbr zeros et
une incrémentation de la variable j qui varie entre i et n—1), soit 4(n—i)
opérations élémentaires.

n-1 n-1
On a donc Y 4(n—i)=(4n)xn—4 7‘=4n2—4M=2n2+2n
ZO (n—7)=(4n) ZO, 5
opérations élémentaires pour cette premiére boucle.
¢ Deuxiéme boucle for : i varie entre 1 et n—1. Pour chaque valeur de i,
on a 2 opérations élémentaires (une comparaison et une affectation).
On a 2(n—1) opérations élémentaires pour la deuxiéme boucle.
La complexité de la fonction nombreZerosMax est quadratique en

o(n®).

Remarque : On peut accepter des petites différences dans 1’évaluation du nombre
total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fide.

2& 4. Pour un indice 7 de la liste 1, on appelle valeur le nombre de zéros
consécutifs dans L a partir de 7 en utilisant la fonction nombreZeros.
Si valeur est non nul, il est alors inutile d’appeler la fonction
nombreZeros (L, i+1) mais on appelle nombreZeros (L,
i+valeur+1). Entreieti+ valeur, la liste L ne contient que des

a1



Partie 2 - Terminaison, correction, complexité

42

zéros et L[i+valeur+1] vaut nécessairement 1 puisque la fonction
nombreZeros donne le nombre de zéros consécutifs, sauf si on est
en fin de liste.

def nombreZerosMax2 (L) :
# la fonction renvoie le nombre maximal de 0 contigus
# de la liste L
valeur max=0
while i<len (L) : # 1 ne doit pas dépasser len(L)-1
valeur=nombreZeros (L, 1)
if valeur==0:
i+=1
else:
i+=valeur+l
if valeur>valeur max:
valeur max=valeur

return valeur max

Remarque : On utilisera cette méme technique d’optimisation dans I’exercice 4.3
« Recherche d’un mot dans un texte, boucles imbriquées » dans le chapitre « Algo-
rithmes ».
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Algorithmes

Exercice 4.1 : Recherche du minimum et du maximum d’une

liste de nombres, complexité

On considere la liste de nombres : 1=[9, 10, 11, 56, 15, 16, 12,
18, 20, 12, -5, -8].

1. Ecrire une fonction rec_min qui admet comme argument une liste non
vide de nombres. Cette fonction retourne le minimum de cette liste. On n’utili-
sera pas la fonction min.

2. Ecrire une fonction rec_max qui admet comme argument une liste non
vide de nombres. Cette fonction retourne le maximum de cette liste. On n’uti-
lisera pas la fonction max.

3. Evaluer la complexité de ces deux fonctions dans le cas le moins favorable.

Analyse du probleme

On considere une liste non vide. On définit une variable mini définie par le pre-
mier élément de la liste. On parcourt la liste en comparant chaque élément de la
liste a la variable mini.

z& 1.
def rec min(L):

# la fonction retourne le minimum de la liste L
mini=L[0] # ne pas utiliser la variable min

# c’est une fonction Python pour avoir le minimum : min (L)
for i in range(len(L)):

if L[i]l<mini:

mini=L[i]

return mini

Remarques :
* Ne pas utiliser « — » mais « _ » dans les noms de variables et de fonctions.

* La fonction min (L) de Python retourne le minimum d’une liste de valeurs.

2& 2.
def rec max (L) :

# la fonction retourne le maximum de la liste L
maxi=L[0] # ne pas utiliser la variable max
# c’est une fonction Python pour avoir
# le maximum : max (L)
for i in range(len(L)):
if L[i]l>maxi:
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maxi=L[1i]
return maxi

Remarque : La fonction max (L) de Python retourne le maximum d’une liste de
valeurs.

Z& 3. On considere la fonction rec min. On se place dans le pire des cas,
c'est-a-dire une liste triée par ordre décroissant.

1 affectation pour maxi : 1 opération élémentaire.

On cherche a calculer le nombre d’'opérations élémentaires a chaque itéra-
tion :

e Un test : 1 opération élémentaire.

¢ Une affectation : 1 opération élémentaire.

Le nombre d'opérations élémentaires vaut 2.

On a n itérations. Le nombre d'opérations élémentaires vaut 1+2n.
La complexité est linéaire en O(n) pour la fonction rec min.
On obtient la méme complexité pour la fonction rec_max.

Remarque : On peut accepter des petites différences dans I’évaluation du nombre
total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fide.

Exercice 4.2 : Assertion. Recherche du maximum, du second

maximum d’une liste

46

On considere la liste : L=[9, 10, 56, 28, -8].

1. Ecrire une fonction rec_max2 qui admet comme argument une liste L.
Cette fonction retourne le maximum et le second maximum de cette liste. On
n’utilisera pas la fonction max. Utiliser une assertion pour vérifier le nombre
d’éléments de L.

2. Ecrire le programme principal permettant d’afficher le maximum et le
second maximum de la liste L.

Analyse du probléme

On considére une liste non vide contenant au moins 2 éléments. On définit une
variable max1 définie par le premier élément de la liste ainsi que indmax1 I’indice
du premier maximum. On parcourt une fois la liste en comparant chaque élément
de la liste a la variable max1.

On parcourt une seconde fois la liste pour déterminer le second maximum en s’as-
surant que I’indice du second maximum est différent de indmax1.
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1.
Zéy def rec max2 (L) :

# la fonction retourne le maximum et le second maximum
# de la liste L

n=len (L) # nombre d’éléments de la liste L
assert n>=2

# recherche du premier maximum

indmax1=0
max1=L[0]
for i in range(l, n): # 1 varie entre 1 inclus et n exclu
if L[i]l>maxl:
maxl=L[1i] # valeur du premier maximum
indmaxl=1i # indice du premier maximum

# recherche du second maximum
# 1’indice du 2nd maximum est différent du ler maximum

if indmaxl==0: # indice du premier maximum = 0
max2=L[1]

else: # indice du premier maximum différent de 0
max2=L[0]

for i in range(l, n): # i varie entre 1 inclus et n exclu

if L[i]>max2 and 1i!=indmaxl:
# 1’indice i doit étre différent de indmaxl
max2=L[1] # valeur du second maximum
return maxl, max?2

Voir exercice 1.1 « Assertion, moyenne, variance et écart-type d'une liste de
nombres » dans le chapitre « Prise en main de Python » pour l'utilisation de
assert. Le nombre d'éléments de la liste doit &tre supérieur ou égal a 2.

2.

L=[9, 10, 56, 28, -8]

maxl, max2=rec max2 (L)

print ('Maximum de L :', maxl)

print ('Second maximum de L :', max2)

Exercice 4.3 : Recherche d’'un mot dans un texte, boucles imbriquées

1. Ecrire une fonction re cherche mot qui admet comme arguments texte
une chalne de caracteres et mot une chaine de caracteres. Cette fonction
retourne True si mot est présent dans texte, False sinon, ainsi que I’indice
de la premiere lettre de mot s’il est présent dans texte.

2. Ecrire une fonction recherche mot_occurence qui admet comme argu-
ments texte une chaine de caracteres et mot une chaine de caracteres. Cette
fonction retourne le nombre d’occurrences ou mot est présent dans texte ainsi
que la liste des indices de la premiere lettre des occurrences de mot.

3. Proposer une amélioration de la fonction précédente en optimisant la pre-
miere boucle.
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Analyse du probléme

On parcourt la chaine de caracteres texte jusqu’a ce qu’on trouve le premier carac-
tere de mot. On parcourt ensuite successivement tous les caracteres de mot pour savoir
s’ils sont présents les uns a la suite des autres. On utilise deux boucles for imbriquées.

1. On considére la chaine de caractéres texte = 'mots chaine de
caractéres' etmot = 'caracteres’.

La longueur de texte vaut len (texte) = 25. La longueur de mot vaut
len (mot) = 10.

On définit un indice 7 qui correspond a l'indice de la premiére lettre du mot
s'il est présent dans texte.

Il est inutile de faire varier i entre 0 et 24 mais uniquement entre 0 et
len (texte) - len (mot) = 15.

Lorsque 7 atteint 15, on a texte[1] = "¢ : c'est bien la premiére lettre
du mot 'caracteéres’'.

Ensuite, il faut une deuxiéme boucle en faisant varier j entre les valeurs 0
et len (mot) - 1 pour tester tous les caractéres du mot.

def recherche mot (texte, mot):
# la fonction retourne True si mot(str) est présent dans
# texte(str), False sinon, ainsi que 1’indice de la premiére
# lettre de mot s’il est présent dans la chaine
rep=False
position=0

i=0
while i<=(len (texte)-len(mot)) and rep==False:
J=0
while j<=(len(mot)-1) and mot[jl==texte[i+]]:
J+=1
if j==len (mot) : # le mot est bien présent

position=i
rep=True
i+=1
return rep, position

def recherche mot occurrence (texte, mot):
# la fonction retourne le nombre d’occurrences ou mot (str)
# est présent dans texte(str) ainsi que la liste des indices
# de la premiere lettre des occurrences de mot
nbr_ rep=0
i=0
liste=[]
while i<=(len(texte)-len (mot)):

j=0

while j<=(len(mot)-1) and mot[j]l==texte[i+]]:
J+=1

if j==len(mot) : # le mot est bien présent

nbr rep+=1
liste.append (i)
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i+=1

return nbr rep, liste

3. On considére la chaine de caractéres texte = 'mots chaine de
caractéres' etmot = 'caractéres'. La longueur de texte vaut
len (texte) = 25. La longueur de mot vaut 1len (mot) = 10. On définit
un indice i qui correspond a lindice de la premiére lettre de mot s'il est
présent dans texte. On fait varier i entre 0 inclus et len (texte) -
len (mot) = 15 inclus.

Ensuite, il faut une deuxiéme boucle en faisant varier j entre 0 inclus et
len (mot) - 1inclus pour tester tous les caractéres de mot. Lorsque la
boucle j est terminée, on a fait le test mot [j]==texte[i+]].J a été
incrémenté de 1. Si mot a été trouvé, on peut incrémenter i de j+1.
def recherche mot occurrence2(texte, mot):
# la fonction retourne le nombre d’occurrences ou mot (str)
# est présent dans texte(str) ainsi que la liste des indices
# de la premieére lettre des occurrences de mot
nbr rep=0
i=0
liste=][]
while i<=(len (texte)-len (mot)) :
=0
while j<=(len(mot)-1) and mot[j]==texte[i+]j]:
j+=1
if j==len (mot): # le mot est bien présent
nbr rep+=1
liste.append (i)
if 3>0:
5=
i=i+j+1
return nbr rep, liste
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Exercice 5.1 : Recherche d’'un élément dans une liste

non triée, algorithme naif, complexité

On considere la liste : .=[16, 9, 11, 32, 15, 17, 18, 10, 25].

1. Ecrire une fonction rec_eltl qui admet comme arguments une liste L non
tri€e et un €lément x. Cette fonction retourne True si x est dans la liste, False
sinon.

2. Evaluer la complexité de cet algorithme pour une liste de longueur n dans le
cas le moins favorable.

3. Ecrire une fonction re c_elt2 qui admet comme arguments une liste et
un élément a rechercher. Cette fonction retourne True si I’élément est présent
dans la liste ainsi que I’indice de la premiere occurrence dans la liste. Si 1’élé-
ment n’est pas présent, cette fonction retourne False et —1.

Analyse du probleme

On parcourt la liste en partant du premier €l€ément jusqu’a ce qu’on trouve x. On
étudiera dans I’exercice suivant la méthode dichotomique, qui ne s’applique qu’aux
listes triées.

2@ 1. Dans Python, les booléens vrai et faux s'écrivent True et False.

def rec eltl(L, x):
# la fonction retourne True si x est dans la liste L,

# False sinon

n=len (L) # nombre d'éléments de la liste
for i in range(n): # 1 varie entre 0 inclus et n exclu
if x==L[i]: # teste si x=L[1]

return True
# return provoque un arrét de la boucle
# et une sortie de la fonction

return False

2. On appelle n le nombre d'éléments de la liste L. On note O(n) la com-
plexité de la fonction rec_eltl (L, x).
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On cherche a calculer le nombre d’opérations élémentaires :

e 2 opérations élémentaires : appel du nombre d’éléments de L et affec-
tation de n.

® Pour chaque étape de la boucle for, on a 2 opérations élémentaires :
appel de l'élément L[i], comparaison.

La boucle for est exécutée n fois dans le pire des cas (si l'élément n'est
pas présent dans la liste par exemple).

Le nombre d'opérations élémentaires vaut : 2 + 2n.
La complexité est linéaire en O(n) pour la fonction rec _eltl.

3. On pourrait utiliser une boucle for au lieu d'une boucle while.

On utilise un indice 7 pour repérer la position dans la liste. Les indices des
éléments d'une liste commencent a 0 avec Python.

def rec elt2(L, x):
# la fonction retourne True, 1 si x est dans
# la liste L a 1’indice i, sinon retourne False, -1
n=len (L) # nombre d’éléments de la liste
i=0
while i<n:
if Lli]==x:
return True, i
# return provoque un arrét de la boucle
# et une sortie de la fonction
i+=1
return False, -1
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Exercice 5.2 : Recherche dichotomique dans une liste triée, complexité

On considere la liste triée : =9, 10, 11, 15, 16, 17, 18, 25, 32].

1. Ecrire une fonction rec_dicho qui admet comme arguments une liste triée
L et un élément x. Cette fonction retourne True si x est dans la liste, False
sinon ainsi que I’indice de I’élément recherché s’il est présent dans la liste. On
utilise la méthode dichotomique.

2. Evaluer la complexité de cet algorithme pour une liste de longueur n >> 1
dans le cas le moins favorable. On pourra considérer que I’entier n est une
puissance de 2.

3. Comparer la complexit¢ de 1’algorithme naif (voir exercice précédent
« Recherche d’un élément dans une liste non tri€e, algorithme naif, complexité »)
et de I’algorithme dichotomique.
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Analyse du probléme

La méthode dichotomique utilise le fait que la liste est triée. Elle consiste & compa-
rer I’élément recherché a I’élément se trouvant au milieu d’une liste triée. Comme
la liste est triée, cela permet d’éliminer une moitié€ de la liste comme emplacement
possible de I’élément, sauf si on 1’a déja trouvé. Ensuite, on prend la moitié de la
liste qui reste et on recommence. ..

Voir exercice 6.5 « Recherche dichotomique dans une liste triée, version récur-
sive » dans le chapitre « Récursivité » pour une version récursive de ce programme.

Cours :
La méthode dichotomique divise le probléme initial et €limine une partie des données.

On verra la méthode générale « diviser pour régner » qui profite de la subdivision pour
effectuer moins de calculs : voir I’exercice 6.2 « Exponentiation naive, exponentiation
rapide » dans le chapitre « Récursivité », et les exercices 10.3 « Tri rapide » et 10.4 « Tri
par partition-fusion » dans le chapitre «Tris ».

2 1.
éy def rec dicho(L, x):
# la fonction retourne True si x est dans la liste L,
# False sinon, et 1’indice de 1’élément recherché
# s’il est présent dans la liste
deb, fin=0, len(L)-1
rep=False
while fin>=deb and rep==False:
milieu=(deb+fin)//2
if x==L[milieu]:

rep=True

elif x>L[milieu]: # x est dans la deuxieme moitié
deb=milieu+1l

else: # x est dans la premiere moitié

fin=milieu-1

return rep, milieu

Exemple de fonctionnement de l'algorithme avec x =9 :

e 1" jtération : deb =0, fin =8 et milieu = 4 = 8//2. On compare
x avec L[4] = 16.

e 2¢itération: deb=0et fin=milieu - 1=3. Le milieu vaut 3//2 =1.
On compare x avec L[1] = 10.

® 3¢jtération: deb=0et fin=milieu-1=0.0n a trouvé ['élément x.

Exemple de fonctionnement de 'algorithme avec x = 25,5 :

e 1™ jtération : deb =0, fin=8 et milieu =4 =8//2. On compare
x avecL[4] =16.

® 2° jtération : deb =5 =milieu + 1 et fin = 8. Le milieu vaut
(5+8)//2 = 6. On compare x avec L[6] = 18.

® 3¢ jtération : deb = milieu - 1 =7 et £in = 8. Le milieu vaut
(7+8)//2 = 7. On compare x avec L[7] = 25.
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® 4® jtération : deb =8 et fin = 8. Le milieu vaut 8. On compare x avec
L[8] =32.0naalors fin=17.

¢ On n'a plus d'itération car £in < deb.
2. On se place dans le cas le moins favorable pour évaluer la complexité,

c'est-a-dire dans le cas ol l'élément nest pas présent dans la liste compor-
tant n éléments.

3 affectations, 1 calcul : 4 opérations élémentaires

a. Calcul du nombre d'opérations élémentaires a chaque itération :

® Trois comparaisons : 3 opérations élémentaires.

¢ Calcul du milieu et une affectation : 2 opérations élémentaires.

e Appel de l'élément L [milieu] et 1 test: 2 opérations élémentaires.
¢ Une affectation : 1 opération élémentaire.

Le nombre d'opérations élémentaires vaut 10.

b. On cherche a calculer le nombre d'itérations dans le pire des cas. Pour
simplifier les calculs, on considére que L'entier n est une puissance de 2.

Pour chaque itération, on divise par deux la longueur de la liste.
Aprés une itération, la longueur de la liste est n/2. Aprés une deuxiéme

itération, la longueur de la liste est 212

Apreés k itérations, la longueur de la liste est Zik On arrive alors a une liste
de longueur 1.

On a donc 2% =1, soit In(n) = kn(2). Finalement, on obtient :

¢. Le nombre d'opérations élémentaires vaut donc 4 + 10k dans le cas le
moins favorable. Il est donc proportionnel a log, (n).

La complexité est logarithmique en 0(log2(n)).

Remarque :
On peut noter également la complexité : O(log n).

On peut accepter des petites différences dans I’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de 1’algorithme ne sera pas modifiée.

2@ 3. La complexité de l'algorithme naif est linéaire alors que la complexité de

l'algorithme dichotomique est logarithmique. On a une recherche d'un élé-
ment dans une liste beaucoup plus rapide avec l'algorithme dichotomique
pour des listes comportant un grand nombre d’éléments.
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Récursivite

Exercice 6.1 : Factorielle d’'un entier naturel

On souhaite calculer la factorielle d’un entier naturel #.

1. Ecrire une fonction fact qui admet comme argument un entier naturel n et
qui retourne la valeur de la factorielle de n en utilisant un programme itératif.

2. Ecrire une fonction fact rec qui admet comme argument un entier natu-
rel n et qui retourne la valeur de la factorielle de n en utilisant un programme
récursif.

3. Démontrer la terminaison pour la fonction fact rec.

4. Représenter les différentes activations de la fonction récursive fact
rec (3) sous la forme d’un arbre.

5. Démontrer la correction de la fonction fact rec.
6. Evaluer la complexité de la fonction fact rec.
7. Que se passe-t-il si on exécute fact rec (-3) ?

Analyse du probleme

On va étudier la différence entre une fonction itérative et une fonction récursive.
Les méthodes mises en place dans cet exercice seront utilisées dans de trés nom-
breux exercices concernant les fonctions récursives.

Cours :

Une fonction est récursive lorsque le corps de cette fonction fait appel a cette méme fonc-
tion (c’est une fonction qui s’appelle elle-mé&me). Sinon, on dit que cette fonction est itéra-
tive (elle peut étre constituée de boucles while ou for).

I1 est essentiel de prévoir qu’une procédure récursive se termine ! L’instruction return
doit étre présente au moins deux fois :

* une fois pour la condition d’arrét (premier return dans le programme) ;
* une autre fois pour I’appel récursif (dernier return dans le programme).

1.

2éy def fact (n):

# la fonction renvoie la factorielle d’un entier naturel n

# programme itératif
res=1
for i in range(l, n+l): # 1 varie entre 1 inclus et n+l exclu
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res=res*i
return res

2.

def fact rec(n):
# la fonction renvoie la factorielle d’un entier naturel n
# programme récursif
if n==0:
return (1) # condition d’arrét
else:
return (n*fact rec(n-1)) # rappel récursif

Cours :

Pour démontrer la terminaison d’un programme, on cherche une grandeur positive, que
I’on appelle variant de boucle, qui décroit entre deux appels de la fonction récursive et qui
converge vers une valeur d’un cas correspondant a un appel de la condition d’arrét.

De fagon générale, il faut montrer que 1’on arrivera en un nombre fini d’étapes a un appel
de la condition d’arrét.

2@ 3. On considére le variant de boucle n. A chaque appel de la fonction récur-
sive, il décroit d'une unité et finit par atteindre la valeur O correspondant

a une condition d'arrét. Le programme se termine donc dans tous les cas

sin>0.

4. 'arbre ci-dessous représente les différents appels de la fonction fact

rec(3).

Les différents appels de la fonction récursive sont stockés dans une pile :

c'est la phase de descente. Quand on atteint la condition d’arrét, on passe

a la phase de remontée et les appels sont désempilés jusqua retourner a

l'appel initial.

Au dernier appel de la fonction récursive, n = 0. La condition d'arrét est
vérifiée. On passe a la phase de remontée.
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Remarque : Dans I’exercice 10.4 « Tri par partition-fusion » dans le chapitre « Tris »,
I’arbre des appels de la fonction récursive ressemble encore plus a un « arbre » !

Pour calculer la factorielle de 3, on a deux phases :
® Phase de descente : On a des appels successifs de la fonction fact
rec jusqu’a ce que l'on arrive au cas n=0.

® Phase de montée : Le programme retourne les valeurs des appels suc-
cessifs précédents. On remonte jusqu’a l'appel initial et le programme
retourne le résultat.

Remarque :
Dans la phase de descente, les appels successifs sont stockés dans une pile.

Une fois que la condition d’arrét est obtenue, les appels sont ensuite désempilés
jusqu’a arriver a 1’appel initial dans la phase de montée.

Le nombre d’appels récursifs est limité a 1 000 avec Python. Tout dépassement
provoquera une erreur.

Pour calculer la factorielle de n, on applique la fonction fact rec a plusieurs
sous-problemes. Cette méthode de décomposition/recomposition est appelée divi-
ser pour régner. On utilisera cette méthode dans les algorithmes de tri.

Cours :

Pour démontrer la correction d’un programme, il faut montrer que 1’algorithme effectue
bien la tache souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

On établit une propriét€ (appelée invariant de boucle) P, :

* la propriété P, doit étre vraie pour n =0 ;
* si P, est vraie, alors P, doit étre vraie.

2& 5. On considére la propriété (appelée invariant de boucle) P, : « La fonc-

tion fact rec(n) retourne n! ».

® P, est vraie puisque c'est la condition darrét.

® Supposons que la propriété P est vraie. La fonction fact rec(n+1)
réalise l'opération : (n+1)x fact_rec(n). Comme P, est vraie, alors le
programme retourne : (n+ 1) x fact_rec(n)=(n+1)n!=(n+1)". La pro-
priété P, ., est donc vraie.

On a démontré par récurrence que la propriété P est vraie pour tout entier

naturel n. La correction de la fonction fact rec est donc démontrée.

Remarque :
On distingue parfois correction partielle et correction totale :
* La correction est partielle quand le résultat est correct lorsque 1’algorithme s’arréte.

* La correction est totale si elle est partielle et si I’algorithme termine.
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Cours :
La complexité est une mesure du nombre d’opérations élémentaires que 1’algorithme effec-
tue. On évalue la complexité d’une fonction récursive a partir d’une relation de récurrence.

¥

6. On définit T(n) la complexité de la fonction fact rec(n).

A chaque appel de la fonction récursive, on a 2 opérations élémentaires :
® un test pour savoirsin=0;

® un calcul : n*fact _rec(n-1).

On en déduit la relation de récurrence : T(n)=T(n—1)+2 avec T(0) = 1.
Onadonc:7(0)=1,T(1)=1+2,T(2)=1+2+2, soitT(n)=1+2n.

La complexité de la fonction fact rec (n) est linaire en O(n).

Remarque :

On peut accepter des petites différences dans I’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de I’algorithme ne sera pas modifiée.

La complexité d’une fonction récursive est souvent beaucoup plus importante (voir
exercice 6.7 « Suite des nombres de Fibonacci ») que la complexité de la fonction
itérative.

On peut donc étre amené a dérécursiver un programme, en faisant le contraire de
ce que fait le programme récursif. Le programme itératif fact commence par la
plus petite valeur 1 alors que le programme récursif fact rec commence par la
plus grande valeur n.

2@ 7.Si on exécute le programme suivant : print (fact rec(-3)),
Python affiche le message d’erreur : Windows fatal exception:

stack overflow.

On a vu dans la question 4 que les différents appels de la fonction récursive

sont stockés dans une pile. Comme n < 0, on n‘arréte pas d’appeler la fonc-

tion récursive. On arrive alors a un dépassement de la taille de la pile et le

programme Python s’arréte et renvoie un message d’erreur.
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Exercice 6.2 : Exponentiation naive, exponentiation rapide

On souhaite calculer la puissance entiere d’un nombre réel.

1. Ecrire une fonction puiss qui admet comme arguments un nombre réel x,
un entier strictement positif n et qui retourne x” en utilisant 1’exponentiation
« naive », c’est-a-dire en multipliant » fois par lui-méme x.

2. Ecrire une fonction puiss rec qui admet comme arguments un nombre
réel x, un entier strictement positif n et qui retourne x” en utilisant un pro-
gramme récursif. Ecrire le programme principal qui demande 2 I’ utilisateur de
saisir au clavier x et n, et qui affiche x".
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3. Démontrer la terminaison de la fonction puiss rec.

4. Démontrer la correction de la fonction puiss rec.

5. Evaluer la complexité de la fonction puiss_rec. On pourra considérer que
I’entier n est une puissance de 2. -

6. On souhaite améliorer la complexité de la fonction puiss rec en utilisant

les propriétés : x° =1 ; x*% = (x” )2 et x7 = x(x” )2.
def puiss rapide(x, n):

if n==0:
return 1

elif n%2==0:
return (puiss rapide (x, n//2)**2)

else:
return (x* (puiss_ rapide(x, (n-1)//2))**2)

Evaluer la complexité de la fonction puiss rapide.

7. Ecrire une fonction puiss rapide2 permettant d’optimiser la fonction
puiss rapide avec un seul appel a la fonction récursive dans le corps de
la fonction. Evaluer la complexité de la fonction puiss rapide2. Pourquoi
utilise-t-on le terme « exponentiation rapide » ? Pourquoi I’algorithme utilise la
méthode « diviser pour régner » ?

Analyse du probleme

Une fonction est récursive lorsque le corps de cette fonction fait appel a cette méme
fonction. On va étudier plusieurs améliorations pour calculer la puissance d’un
nombre réel.

1.

2&7 def puiss(x, n):

# la fonction renvoie x**n avec x réel et n entier > 0

res=1

for i in range(n): # 1 varie entre 0 inclus et n exclu
res=res*x

return res

2.
def puiss_rec(x, n):
# la fonction renvoie x**n avec x réel et n entier > 0
# calcule x**n avec x réel et n>0
if n==0:
return 1 # condition d’arrét avec x**0=1
else:

return (x*puiss_rec(x, n-1)) # appel récursif
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Remarque :

Il est essentiel de prévoir qu’une procédure récursive se termine ! L’instruction
return doit étre présente au moins deux fois :

* une fois pour la condition d’arrét (premier return dans le programme),

* une autre fois pour I’appel récursif (dernier return dans le programme).

x=float (input ('Entrez un réel x : "))
n=int (input ('Entrez un entier positif n : "))

print ('Le résultat x**n = ', puiss rec(x, n))
2@ 3. On consideére le variant de boucle n. A chaque appel de la fonction récur-
sive puiss_rec, il décroit d’'une unité et finit par atteindre la valeur 0

correspondant a une condition d'arrét. Le programme se termine donc dans
tous les cas sin >0.

Remarque : Le programme ne se termine pas si 1’entier n est négatif !
prog p g

2 4. On considére la propriété (appelée invariant de boucle) P, : « La fonc-
4 tion puiss_ rec (n) retourne n! ».

® P, est vraie puisque c'est la condition darrét.

® Supposons que la propriété P est vraie. La fonction puiss rec (n+1)
réalise l'opération : x x puiss_rec(n). Comme P, est vraie, alors le pro-
gramme retourne : x X puiss_rec(n) = xx" = X" La propriété P, est
donc vraie.

On a démontré par récurrence que la propriété P, est vraie pour tout entier
naturel n. La correction de la fonction puiss rec est donc démontrée.

Remarque :
On distingue parfois correction partielle et correction totale :

* La correction est partielle quand le résultat est correct lorsque 1’algorithme s’ar-
réte.

* La correction est totale si elle est partielle et si I’algorithme termine.

2@ 5. Qn définit T(n) le nombre d’opérations élémentaires de la fonction
puiss_rec.

A chaque appel de la fonction récursive, on a :

® un test pour savoirsin =0,

e un calcul : x*puiss rec(x, n-1).

On en déduit la relation de récurrence :

T(n)=T(n-1)+2 avecT(0)=1

Onadonc:7(0)=1,T(1)=1+2,T(2)=1+2+2, soitT(n)=1+2n.
La complexité de la fonction puiss rec (n) est linéaire en O(n).
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Remarque : On peut accepter des petites différences dans 1’évaluation du nombre
total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fie.

2@ 6. Qn définit .T(n) le nombre d'opérations élémentaires de la fonction

puiss rapide.

A chaque appel de la fonction récursive, on a :

® un test pour savoirsin =0,

® un test pour savoir si n est pair,

* deux appels de la fonction récursive pour calculer le carré : puiss
rapide (x, n//2) * puiss rapide (x, n//2),

® une ou deux opérations élémentaires.

On se place dans le pire des cas. On en déduit la relation de récurrence :

T(n)=2T(g)+4

Pour simplifier les calculs, on considére que l'entier n est une puissance
de 2.

Il faut calculer le nombre de fois ot on fait un appel de la fonction récur-
sive.

e Aprés un appel de la fonction récursive, on 'appelle a nouveau avec n/2.

e Aprés un deuxiéme appel de la fonction récursive, on l'appelle a nouveau
avec (n/2)/2, soit n/(2?).

. Apré: k appels de la fonction récursive, on lappelle a nouveau avec
n/(2%).

On n‘a plus d'appel de la fonction récursive quand zik =1, soitln(n) = k Ln(2).

Finalement, on obtient :
k = )~ log, (n)

Par exemple pour n =24 on a:
TRY=2T@ ) +4;T(@2)=2T(2)+4;
T(22)=2T(2") +4;T(2") = 2T(°)+4=2x1+4
On considere la suite définie par récurrence : u, = au,_, +b avec a = 2,
b
b=detuy=1.0 r=——.
et u, npose:r=_—
D'aprés l'énoncé, on a :
ok ok ok 4 4 oo
T(n_z )—uk_a (ug—r)+r=2 (1 1_2)+1_2—5n 4.

La complexité est linéaire en 0(n).
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Pour calculer puiss rapide (x, n//2)**2, Python fait l'opération
suivante : puiss rapide(x, n//2)*puiss rapide(x, n//2).
Il fait appel deux fois a la fonction récursive dans le corps de la fonction !
La fonction puiss rapide n'a pas amélioré la complexité.

7. On peut optimiser la fonction puiss rapide avec un seul appel a la
fonction récursive :
def puiss_rapide2(x, n):
# la fonction renvoie x**n avec x réel et n entier > 0
if n==0:
return 1 # condition d’arrét
else:
res=puiss rapide2(x, n//2)
if n%2==0: # n est pair
return (res**2)
else: # n est impair
return (x* (res**2))

On définit T(n) le nombre d’opérations élémentaires de la fonction puiss
rapide?2.

A chaque appel de la fonction récursive, on a :

® un test pour savoirsin =0,

* un appel de la fonction récursive : puiss rapide2,

® un test pour savoir si n est pair,

o un calcul : res**2 ou x* (res**2).

On se place dans le pire des cas. On en déduit la relation de récurrence :

Tonzr(g)+4

Pour simplifier les calculs, on considére que l'entier n est une puissance
de 2.

On a le méme nombre d'appels k de la fonction récursive que dans la ques-
tion précédente :

in(z) ~°% (")
Par exemple pour 24, on a :
TR =T N+4;T@)=T@)+4;
T)=T@)+4T@)=T@)+4=1+4

Finalement, on a : T(2“) = T(2*) = 4k + 1 avec k = 4.
La complexité de la fonction puiss rapide2 est logarithmique en

0(log2 (n))
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Explications du terme « exponentiation rapide » :

® « exponentiation » : calcul de la puissance entiére d'un nombre réel ;

® « rapide » : la fonction puiss rapide2 est plus rapide pour des
entiers n >> 1 que puiss, puis_s_rec et puiss rapide puisque
la complexité est logarithmique pour puiss rapide2 alors qu'elle
est linéaire pour puiss, puiss rec et puiss rapide.

On utilise la méthode « diviser pour régner » qui se décompose en trois

étapes :

e Diviser (ou partitionner) : on divise le probléme initial en plusieurs
sous-problémes.

e Régner : on traite récursivement chacun des sous-problémes.

e Combiner : on combine les différents sous-problémes pour résoudre le
probléme de départ.

Remarques :
* La méthode « diviser pour régner » profite de la subdivision pour effectuer moins

de calculs (voir les exercices 10.3 « Tri rapide » et 10.4 « Tri par partition-
fusion » dans le chapitre «Tris »).

* La méthode dichotomique divise uniquement le probleme initial et élimine une
partie des données (voir exercice 5.2 « Recherche dichotomique dans une liste
triée, complexité » dans le chapitre « Algorithmes de dichotomie »).

Exercice 6.3 : Tours de Hanoi

On considere n disques de diametre différent empilés par ordre décroissant
sur une tour de départ (tour A sur la figure ci-dessous). Les deux autres
tours n’ont pas de disque. L’objectif est de déplacer les disques de la tour
A (tour de départ) vers la tour C (tour d’arrivée) en utilisant les deux regles
suivantes :

* on ne peut déplacer qu’un disque a la fois ;

* on ne peut placer un disque que sur un disque de diametre plus grand ou sur

un emplacement vide.

B4 R c b
On considere la suite définie par récurrence : u,,, = au, +b. On pose : r = T
—a
On admet que : u, = a" (”o - r)+ r.
On définit la liste tour : tour [0] est une liste représentant les disques de la

tour A, tour [1] (respectivement tour [2]) représente les disques de la tour
B (respectivement tour C).

Par exemple, pourn=4,ona: tour=[[4, 3, 2, 11, [1, [1].
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I
=
[
[T—
[—

tour A tour B tour C

1. Montrer que 1’on peut résoudre le probleme avec 1 tour.

2. On va utiliser un programme récursif pour résoudre le probleme. On sup-
pose que 1’on sait procéder pour n—1 tours. Montrer avec un schéma que I’on
peut résoudre le probleme avec n tours. On pourra prendre n = 4.

3. Ecrire une fonction récursive hanoi (tour, n, a, b, c) qui admet
comme arguments tour la liste décrite précédemment, n le nombre de disques,
a la tour de départ, b la tour intermédiaire et c la tour d’arrivée. Dans I’exemple
précédent, la fonction hanoi (tour, 4, 0, 1, 2) doitretourner [[],
[1, [4, 3, 2, 1]].Leprogramme affichera, étape par étape, la liste tour.

4. Evaluer la complexité de la fonction hanoi.

Analyse du probléme

L’utilisation d’une fonction récursive permet de résoudre facilement le probleme
de Hanoi. La question 2 permet de comprendre la fonction récursive hanoi.
Les différents schémas montrent comment déplacer 4 tours sachant que I’on sait
résoudre le probleme pour 3 tours.

2 1. La résolution du probléme est évidente pour n =1 puisqu’il suffit de
ﬁ dépiler le disque de la tour A et de l'empiler dans la tour C.

tour A tour B tour C

2. On souhaite déplacer n disques de la tour A vers la tour C. On considére
n =4 dans l'exemple suivant.

tour A tour B tour C
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On considére n—1 = 3 disques. D'aprés l'énoncé, on sait déplacer les
n—1 =13 disques (en pointillés sur le schéma ci-dessus) de la tour A vers la
tour B. On obtient alors la configuration suivante :

— ]

tour A tour B tour C

On déplace le disque restant de la tour A vers la tour C.
On obtient alors :

tour A tour B tour C

Il reste a déplacer les n—1 =3 disques (en pointillés sur le schéma ci-des-
sus) de la tour B vers la tour C.

3. On met en place un programme récursif. On a vu dans la question
précédente que l'on pouvait déplacer les 4 disques a condition de savoir
déplacer 3 disques. Pour déplacer les 3 disques d'une tour vers une
autre, on applique le programme récursif a 2 disques. Pour déplacer les
2 disques, on applique le programme récursif a 1 disque que l'on sait
déplacer.

def hanoi (tour, n, a, b, c):

# a : tour de départ (a peut étre égal a 0, 1 ou 2)

# b : tour intermédiaire (b peut étre égal a 0, 1 ou 2)

# c : tour d’arrivée (c peut étre égal a 0, 1 ou 2)

# tour[i] = liste représentant les disques de la tour 1

if n==1: # un seul disque a déplacer
disque=tour([a].pop () # dépile le disque de la tour a
tour[c].append (disque) # empile le disque dans la tour c
print (tour) # affichage de la liste tour étape par étape

else:

# déplacer n-1 disques de a vers b
hanoi (tour, n-1, a, c, b)
# tour de départ : a
# tour intermédiaire : c
# tour finale : b
print (tour) # affichage de la liste tour étape par étape
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# déplacer le disque restant de a vers c

disque=tour([a] .pop () # dépile le disque de la tour a
tour[c] .append(disque) # empile le disque dans la tour c
print (tour) # affichage de la liste tour étape par étape

# déplacer n-1 disques de b vers c
hanoi (tour, n-1, b, a, c)
print (tour)
# tour de départ : b
tour intermédiaire : a
tour finale : ¢
return inutile de retourner tour car passage par référence
pour les listes

HH H H

tour=[[4, 3, 2, 11, [1, [1]
n=len (tour[0]) # nombre d’éléments de la tour 0
print (tour)

hanoi (tour, n, 0, 1, 2) # on veut déplacer les n disques
# de 0 vers 2

print (tour)

4. 0n définit T(n) le nombre d'opérations élémentaires de la fonction
hanoi. On se place dans le pire des cas.

A chaque appel de la fonction récursive, on a :
® un test pour savoirsin=1;

e un appel a la fonction hanoi avec n-1 ;

® une opération élémentaire pour dépiler ;

® une opération élémentaire pour empiler ;

¢ un appel a la fonction hanoi avec n-1.
On en déduit la relation de récurrence :

T(n)=2T(n—1)+3avecT(0)=0
On considére la suite définie par récurrence : u,,, = au, + baveca=2etb=3.
b 3 s e . Co_n
On pose r = T-s-1-a- —3. D'aprés l'énoncé, ona:u, =a (u0 —r)+r.
On en déduit que :
T(n)=2"(0+3)-3

La complexité de la fonction hanoi est exponentielle en 0(2").

Remarque : On peut accepter des petites différences dans I’évaluation du nombre

total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fide.



Chapitre 6 - Récursivité

Exercice 6.4 : Recherche du pgcd (CCP MP Maths 2016)

Cet exercice €tudie deux algorithmes permettant le calcul du pged (plus grand
commun diviseur) de deux entiers naturels.

1. Pour calculer le pged de 3 705 et 513, on peut passer en revue tous les entiers
1, 2, 3, -+, 512, 513 puis renvoyer parmi ces entiers le dernier qui divise a la
fois 3 705 et 513. Il sera alors le plus grand des diviseurs communs a 3 705
et 513. Ecrire une fonction gcd qui renvoie le pged de deux entiers naturels
non nuls, selon la méthode décrite ci-dessus. On pourra éventuellement utili-
ser la fonction min (a, b), qui calcule le minimum de a et b. Par exemple
gcd (3705, 513) renverra 57.

2. Ecrire une fonction euclide permettant de calculer le pged de deux entiers
naturels selon 1’algorithme d’Euclide :

* Pour b =0 : pged(a, 0) =a.

* Pour b # 0, on note r le reste de la division euclidienne de a par b, alors pge-
d(a, b) = pged(b, 7).

3. Ecrire une fonction récursive euclide rec qui calcule le pged de deux
entiers naturels selon 1’algorithme d’Euclide.

4. On note (Fn )neN la suite des nombres de Fibonacci définie par :

Fy=0,F,=1,Yne N,F, ,=F, ,+F,

n n

a. Ecrire les divisions euclidiennes successivement effectuées lorsque I’on cal-
cule le pged de Fg =8 et Fiy =5 avec la fonction euclide.

b. Soit n > 2 un entier. Quel est le reste de la division euclidienne de F, ,, par
F, ., ? On pourra utiliser librement le fait que la suite (F,)n € N est strictement
croissante a partir de n = 2. En déduire, sans démonstration, le nombre u, de
divisions euclidiennes effectuées lorsque I’on calcule le pged de F,_, et F,

avec la fonction euclide.

5. Ecrire une fonction fibo qui prend en argument un entier naturel n et ren-
voie le nombre de Fibonacci F),. Par exemple, fibo (6) renverra 8.

6. Ecrire une fonction récursive £ ibo_rec qui permet de renvoyer le nombre
de Fibonacci.

7. En utilisant la fonction euclide, écrire une fonction gcd trois quiren-
voie le pged de trois entiers naturels. Par exemple, gcd trois (18, 30,
12) renverra 6.
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Analyse du probléme

On étudie dans cet exercice 1’algorithme d’Euclide permettant de calculer le pged
de deux entiers naturels. Cet exercice est extrait du concours CCP MP Maths 2016.

ZQ 1. On parcourt tous les entiers i entre 1 et le minimum de a et b. On fait

un test pour savoir si i est un diviseur de a et b. Le test peut se faire en
calculant le reste. Si le reste est nul, 7 est un diviseur.
def gcd(a, b):

# la fonction renvoie le pgcd de deux entiers naturels

# non nuls a et b

pgcd=1

for i in range(l, min(a,b)+1):

if a%i==0 and b%i==0:

# si le reste est nul alors i est un
# diviseur de a et b
pgcd=i

return pgcd

Remarque : 1l est inutile de faire varier i entre 1 et le maximum de a et b.

2 2.
éy def euclide(a, b):
# la fonction renvoie le pgcd de deux entiers naturels
# algorithme d’Euclide
while b!=0:
r=a%b
a,b=b,r
return a

Cours :

Dans toute procédure récursive, I'instruction return doit étre présente au moins deux
fois : une fois pour la condition d’arrét (premier return dans le programme) et une autre
fois pour I’appel récursif (dernier return dans le programme).

3.

Zéy def euclide rec(a, b):

# la fonction renvoie le pgcd de deux entiers naturels
# algorithme d’Euclide

if b==0: # condition d’arrét

return a
else:

o

return euclide rec(b,a%b) # appel récursif
Remarque :
Les appels successifs d’une fonction récursive sont stockés dans une pile.
Prenons I’exemple suivant : pged(16,12).
Appel de euclide rec(12,4)
Appel de euclide rec(4,0)
Retour de 4
Retour de 4
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4. a.
® 1* appel de la boucle : a=F,=8 et b=F; =5.
Le reste de la division euclidienne de 8 par 5 vaut 3. Le quotient vaut 1.
OnaF,=3.
a=5etb=3.
e 2¢ appel de la boucle: a=F;=5etb=F,=3.
Le reste de la division euclidienne de 5 par 3 vaut 2. Le quotient vaut 1.
OnaFy;=2.
a=3etb=2.
® 3¢appel de la boucle: a=F,=3etb=F,=2.
Le reste de la division euclidienne de 3 par 2 vaut 1. Le quotient vaut 1.
Onar,=1.
a=2etb=1.
® 4% appel de la boucle: a=F;=2etb=F,=1.
Le reste de la division euclidienne de 2 par 1 vaut 0.
a=1etb=0.
On n’a plus d'appel de la boucle et le programme retourne 1.
b. La suite de Fibonacci est définie par: F, ,=F,,+F, et0<F <F ..
On en déduit que le reste de la division euclidienne de F, , par F,,, est F .
D'aprés la question précédente :
® 1¢ appel de la boucle : division euclidienne de F, , par F_,.
e 2¢ appel de la boucle : division euclidienne de F, , par F,.
o cee
® Le dernier appel de la boucle correspond a la division euclidienne de F;
par F,. Le reste est nul et l'algorithme retourne 1.
On obtient alors la suite de valeurs :

Fy=0
Fi=1
Fy,=1
Fy=2
F,=3
Fs=5
Fy=8

Le nombre de divisions euclidiennes effectuées lorsqu’on calcule le pgcd de
F, ,etF,  estn.

5. a) Premiére version du programme, en utilisant une liste F pour stocker
tous les résultats intermédiaires.
def fibol (n):
# renvoie le nombre de Fibonacci Fn pour 1l’entier naturel n
if n==0:
return 0
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elif n==1:
return 1
else:
F=[]
F.append (0)
F.append (1)
for i in range(2, n+l):
F.append(F[i-1]1+F[1i-2])
return F[i]

b) Deuxiéme version, sans utiliser de liste.
On utilise uniquement deux variables ¥ 2 et F 1.
def fibo2(n):
# renvoie le nombre de Fibonacci Fn pour l’entier naturel n
if n==0:
return 0
elif n==1:
return 1
else:
F 2=0 # F[n-2]
F 1=1 # F[n-1]
somme=0
for i in range (2, n+l):
somme=F 2+F 1 # F[(n]=F[n-1]+F[n-2]
F 2=F 1
F_l=somme

return somme

c) Troisieme version
On peut remplacer les trois lignes dans la boucle par une seule ligne: F 2,
F 1=F 1, F 2+F 1.
def fibo3(n):
# renvoie le nombre de Fibonacci Fn pour 1l’entier naturel n
if n==0:
return 0
elif n==1:
return 1
else:
# F[n]=F[n-1]+F[n-2]
F 2=0 # F[n-2]
F 1=1 # F[n-1]
for i in range (2, n+l):
F 2, F1=F 1, F 2+F 1
return F 1

def fibo rec(n):
# renvoie le nombre de Fibonacci Fn pour 1l’entier naturel n
if n==0:
return 0 # condition d’arrét
elif n==1:
return 1 # condition d’arrét
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return (fibo rec(n-1)+fibo rec(n-2))

‘ else:
# appel récursif

Remarque : Ceci seratraité dans’exercice 14.1 « Suite des nombres de Fibonacci, Top
Down et Bottom Up » dans le chapitre « Programmation dynamique » pour une opti-
misation du programme récursif.

Z 7. Le pgcd est associatif donc pged(a, b, c) = pged(pgcd(a, b), c).
éy | def gcd trois(a, b, c):
return euclide (euclide(a, b), c)

Exercice 6.5 : Recherche dichotomique dans une liste triée,

version récursive

On considere la liste triée : 1=[9, 10, 11, 15, 16, 17, 18, 25, 32].

1. Ecrire une fonction récursive rec_dicho recursive qui admet comme
arguments une liste tri€e et un élément x. Cette fonction affiche « Elément pré-
sent » si x est dans la liste, « Elément non présent » sinon.

2. Evaluer la complexité de la fonction rec_dicho recursive. On pourra
considérer que I’entier n est une puissance de 2.

Analyse du probleme

On a étudié une version itérative de ce programme (voir exercice 5.2 « Recherche
dichotomique dans une liste triée, complexité » dans le chapitre « Algorithmes de
dichotomie »).

La méthode dichotomique utilise le fait que la liste est triée. Elle consiste a compa-
rer 1’élément recherché a I’élément se trouvant au milieu d’une liste triée. Comme
la liste est triée, cela permet d’éliminer la moitié de la liste comme emplacement
possible de I’élément, sauf si on I’a déja trouvé. Ensuite, on prend la moitié€ de la
liste qui reste et on recommence.

Z 1.
éy def rec dicho recursive (L, x):
# la fonction affiche "Elément présent" si x est dans la
# liste triée L, sinon affiche "Elément non présent"
if L==[]: # condition d’arrét si liste vide
return ("Elément non présent")
else:
# la liste est non vide
milieu=len(L)//2 # calcul du milieu de la liste
if x==L[milieu]: # recherche si 1’élément est au milieu
return ("Elément présent")
elif x>L[milieu]:
# recherche entre milieu+l et la fin de la liste
return rec dicho recursive(L[milieu+l:], x)
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# appel récursif
else:
# recherche entre début de liste et milieu-1
return rec _dicho recursive(L[:milieu], x)
# appel récursif

L=[(9, 10, 11, 15, 16, 17, 18, 25, 32]
x=32
print (rec_dicho_recursive(L,x))

2. On définit T(n) le nombre d'opérations élémentaires de la fonction rec
dicho recursive.

Pour simplifier les calculs, on considére que l'entier n est une puissance
de 2.

A chaque appel de la fonction récursive, on a :
® un test pour savoir si la liste est vide ;
un calcul du milieu ;

® un test pour savoir si l'élément est trouvé ;

un appel de la fonction récursive avec n/2.
On se place dans le pire des cas. On en déduit la relation de récurrence :

T(n)= T(g)+ 3avecT(1)=1

Il faut calculer le nombre de fois ot on fait un appel de la fonction récur-
sive.

e Aprés un appel de la fonction récursive, on lappelle a nouveau avec n/2.

e Aprés un deuxiéme appel de la fonction récursive, on l'appelle a nouveau
avec n/(2%).

e Aprés k appels de la fonction récursive, on lappelle a nouveau avec
nl(25).

Il ne reste plus qu'un seul appel de la fonction récursive quand ik =1, soit

In(n) = k Ln(2). 2

Finalement, on obtient :

_ In(n) _

“Tnz) %)

On appelle k + 1 fois la fonction récursive. On a doncT(n = 2*) =1+ 3(k +1)

=4 +3log,(n).

La complexité est logarithmique en O(log,(n)).

k

Remarque :

On peut accepter des petites différences dans I’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de 1’algorithme ne sera pas modifiée.

On a la méme complexité que pour la version itérative.
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Exercice 6.6: Dessins de fractales

On utilise le module turtle pour le tracé de fractales. La tortue trace un trait

le long du chemin parcouru.

from turtle import * :fenétre graphique turtle. La tortue est le triangle
affich€ au centre de la fenétre de coordonnées (0,0)

reset () : efface 1’écran

forward (150) : avance la tortue de 150 pixels

penup () : leve le crayon et permet ensuite de déplacer la
tortue (avec forward) sans tracer

pendown () : pose le crayon et permet ensuite de déplacer la
tortue (avec forward) avec un trait

goto (120,200) : déplace la tortue au point de coordonnées (120, 200)

left (60) : fait tourner la tortue vers la gauche d’un angle de
60° sans avancer

right (60) : fait tourner la tortue vers la droite d’un angle de
60° sans avancer

mainloop () : laisse la fenétre graphique turtle ouverte a la

fin du programme

1. Ecrire une fonction triangle qui admet comme argument un entier natu-
rel a et qui trace un triangle équilatéral de coté a.

point de départ de la tortue

y

2. Ecrire une fonction polygone qui admet comme arguments deux entiers
naturels n et a. Cette fonction trace un polygone régulier a n coté€s de méme
longueur a.

3. On souhaite tracer le segment de Koch de longueur a a 1’ordre 7.
* On part d’'un segment de longueur a a I’ordre 0.

* A I’étape 1, on remplace le tiers du segment central par un triangle équilatéral

sans base au-dessus.

ordre 0 ordre 1 ordre 2

* On réitere le processus n fois.
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Ecrire une fonction récursive koch qui admet comme arguments deux entiers
naturels n et a. Cette fonction trace un segment de Koch de longueur a a 1’ordre n.

4. Pour tracer le flocon de neige, on part d’un triangle équilatéral et on applique
la fonction koch a I’ordre n a chacun des cotés du triangle équilatéral de lon-
gueur a. La figure représente le flocon de Von Koch a I’ordre 2.

Ecrire le programme principal permettant de tracer un flocon de Von Koch a
I’ordre n.

Analyse du probleme

Le module graphique turtle permet de piloter une tortue afin de tracer des figures
géométriques.

Une figure fractale est un objet géométrique « infiniment morcelé » dont les détails
sont observables a une échelle arbitrairement choisie. Le flocon de Von Koch est
un exemple de courbe fractale. En zoomant sur une partie de la figure, on retrouve
toute la figure : on dit qu’elle est autosimilaire. A chaque étape, la longueur de la
g 4Y (s s g X
base est multipliée par (5) . Le périmetre du flocon a I’étape n est : Sa(g) et
tend vers I’infini si n tend vers I’infini. La courbe fractale n’admet de tangente en
aucun point.

2@ 1. Pour tracer le triangle équilatéral de coté a :
® On avance de a/3.

¢ On tourne la tortue vers la droite de 120°.

¢ On avance de a/3.

e On tourne la tortue vers la droite de 120°.

¢ On avance de a/3.

e On tourne la tortue vers la droite de 120°.

La tortue revient a sa position initiale avec le méme angle.
from turtle import * # bibliotheque pour la fenétre graphique
# turtle
def triangle(a): # la fonction dessine un triangle équilatéral
# de coté a




forward (a)
right (120)
forward (a)
right (120)
forward(a)
right (120)
triangle (100)

mainloop ()

HH H = FH H H o FH H

avance
tourne
avance
tourne
avance
tourne

la
la
la
la
la
la

tortue
tortue
tortue
tortue
tortue
tortue

de a
vers
de a
vers
de a
vers
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pixels
la droite de
pixels
la droite de
pixels
la droite de

appel de la fonction triangle avec
de 100 pixels
laisse la fenétre graphique turtle
a la fin du programme

On obtient la figure suivante :

2.
def polygone(n, a):

for i in range(n):

forward (a)
left (360/n)

polygone (10, 50)
mainloop ()

HH H= H o FH H H

120°

120°

120°
un coté

ouverte

la fonction dessine un polygone
régulier a n cétés de longueur a

i varie entre 0 inclus et n exclu
avance la tortue de a pixels
tourne la tortue vers la gauche de
360/n degrés
10 cbétés de longueur 50
laisse la fenétre graphique turtle

ouverte a la fin du programme

On obtient la figure suivante :

3. On considére un segment de Koch a l'ordre 0 de longueur a. On décom-
pose ce segment en trois segments de longueur a/3.

¢ On avance de a/3.

® On tourne la tortue vers la gauche de 60°, on avance de a/3.
® On tourne la tortue vers la droite de 120°, on avance de a/3.
e On tourne la tortue vers la gauche de 60° et on avance de a/3.
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On obtient le segment de Koch a lordre 1 :

ordre 0 ordre 1

Pour tracer le segment de Koch de longueur a a Uordre n :

e On appelle la fonction koch (n-1, a/3) permettant de tracer le seg-
ment de Koch a l'ordre n-1 de longueur a/3.

e On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch (n-1, a/3) permettant de tracer le segment de Koch a lordre
n-1 de longueur a/3.

e On tourne la tortue vers la droite de 120°. On appelle la fonction
koch (n-1, a/3) permettant de tracer le segment de Koch a lordre
n-1 de longueur a/3.

® On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch (n-1, a/3) permettant de tracer le segment de Koch a l'ordre
n-1 de longueur a/3.

La fonction koch (n-1, a/3) trace le segment de Koch en faisant appel

4 fois a la fonction koch a Uordre n-2. Cette fonction koch a l'ordre n-2

fait appel a la fonction koch a lUordre n-3...

On peut construire le segment de Koch a lordre 1 a partir de quatre seg-

ments de Koch a l'ordre 0 :

® On appelle la fonction koch (0, a/3) permettant de tracer le seg-
ment de Koch a Uordre 0 de longueur a/3.

e On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch (0, a/3) permettant de tracer le segment de Koch a l'ordre 0
de longueur a/3.

¢ On tourne la tortue vers la droite de 120°. On appelle la fonction
koch (0, a/3) permettant de tracer le segment de Koch a lordre 0
de longueur a/3.

® On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch (0, a/3) permettant de tracer le segment de Koch a lordre 0
de longueur a/3.

Ily a bien une condition d’arrét a la fonction récursive. Si n =0, on avance

la tortue de a pixels pour la fonction koch (0, a).

def koch(n, a): # la fonction dessine un segment de Koch
# a 1l’ordre n de longueur a
if n==0:
forward (a) # condition d’arrét - avance la tortue
# de a pixels
else: # partage le segment en trois
# premier tiers : on appelle la fonction récursive
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# a 1’ordre n-1

koch(n-1, a/3) # appel récursif ordre n-1
left (60) # tourne la tortue vers la
# deuxieéme tiers : on appelle la fonction
# a 1l’ordre n-1

koch (n-1, a/3) # appel récursif ordre n-1
right (120) # tourne la tortue vers la
# troisieme tiers : on appelle la fonctio
# a 1’ordre n-1

koch (n-1, a/3) # appel récursif ordre n-1
left (60) # tourne la tortue vers la
koch(n-1, a/3) # appel récursif ordre n-1

hapitre 6 + Récursivité

et longueur a/3
gauche de 60°
récursive

et longueur a/3
droite de 120°
n récursive

et longueur a/3
gauche de 60°
et longueur a/3

4. Il suffit d'appliquer la fonction koch a Uordre n pour chaque cété du

triangle équilatéral.

n=3 # flocon de Von Koch a 1’ordre 3

a=300 # segment de longueur 300

koch(n, a) # segment de Koch a 1’ordre n

right (120) # tourne la tortue vers la droite de

koch(n, a) # segment de Koch a 1l’ordre n

right (120) # tourne la tortue vers la droite de

koch(n, a) # segment de Koch a 1l’ordre n

right (120) # tourne la tortue vers la droite de

mainloop() # laisse la fenétre graphique turtle
#

a la fin du programme

On obtient une courbe fermée :

120°

120°
ouverte
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Exercice 6.7 : Suite des nombres de Fibonacci

On note (F,), .y la suite des nombres de Fibonacci définie par : F;=0, F, =1,
Vne N,F, ,=F, ,+F,

n+1
1. Ecrire une fonction récursive fibol qui permet de renvoyer le nombre de
Fibonacci F,. L’algorithme utilise-t-il la méthode « diviser pour régner » ?

2. Représenter I’arbre des appels de la fonction récursive £ibol (5). Com-
bien de fois est recalculé F, ? Quel est I’'inconvénient ?

Analyse du probleme

La méthode « diviser pour régner » permet de décomposer le probleme initial en
deux sous-probleémes.

Afin d’éviter de calculer plusieurs fois le méme nombre de Fibonacci, on utilise la
technique de mémoisation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

* Diviser : on divise le probléme initial en plusieurs sous-problemes.

* Régner : on traite récursivement chacun des sous-problémes.

e Combiner : on combine les différents sous-problemes pour résoudre le probleme de
départ.

Cette méthode donne de tres bons résultats dans de nombreux problémes : dichotomie, tri
par partition-fusion, tri rapide.

La méthode « diviser pour régner » a parfois des faiblesses avec des appels récursifs
redondants. Les sous-problemes ne sont pas toujours indépendants. On peut étre amené a
résoudre plusieurs fois le méme sous-probleme.

Une solution consiste a utiliser la technique de mémoisation en stockant les résultats déja
calculés (voir chapitre 14 « Programmation dynamique »).

R
def fibol (n):
# la fonction renvoie le nombre de Fibonacci Fn
# pour l’entier n
if n==0:

return 0 # condition d’arrét
elif n==1:
return 1 # condition d’arrét
else:
return (fibol (n-1)+fibol (n-2))
# appel récursif

L'algorithme est de type « diviser pour régner » puisqu’on décompose
le probléme (calcul de fibol (n)) en deux sous-problémes (calcul de
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fibol (n-1) et fibol (n-2)). On calcule récursivement chacun des
deux sous-problémes.

2. L'arbre ci-dessous représente les différents appels de la fonction fibol
que l'on note fib.

F, est recalculé 3 fois. F; est recalculé 2 fois.

Linconvénient est que lon augmente considérablement la complexité
puisqu’on recalcule plusieurs fois la méme valeur F,.
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Algorithmes gloutons
(sauf TSI et TPC)

Exercice 7.1 : Rendu de monnaie

On dispose des pieces entieres suivantes : S =[1, 2, 5, 10, 20, 50, 100] = [S,,,
Sy, ..., S, ;1 ou S[i] représente la valeur de la piece d’indice i. On suppose
que la liste S est tri€e par ordre croissant des valeurs. On cherche a rendre
une certaine somme entiere X en utilisant le moins de pieces, qui peuvent étre
identiques.

1. On utilise la méthode la plus intuitive qui consiste a commencer par rendre
la plus grande piece possible. Pour X = 11, on commence par rendre la piece
de 10.

On appelle L[x] le nombre de pieces nécessaires pour rendre la somme x. La
récurrence (1) peut s’écrire :

* [[0]=0
* Six>1:L[x]=1+L[x—S[i]]avecile plus grand tel que S[i] < x.

Ecrire une fonction récursive rendul qui admet comme arguments une liste S
et un entier X. La fonction retourne le nombre de pieces nécessaires pour rendre
la somme X en utilisant la récurrence (1).

2. L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette
méthode est-elle appelée gloutonne ? Est-ce que rendul ([1, 4, 6], 8)
retourne la solution optimale ?

Analyse du probléme

On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La
méthode « diviser pour régner » permet de décomposer le probléme initial en deux
sous-problemes.

La programmation dynamique (voir chapitre 14 « Programmation dynamique »)
permet d’obtenir une solution optimale. On verra la différence entre la méthode
gloutonne et la programmation dynamique.
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Cours :

1.

def rendul (S, X):
# la fonction renvoie le nombre de pieces nécessaires pour
# rendre la somme X en utilisant la liste S
# S[i]=valeur de la piece d’indice i

if X==0: # condition d’arrét
return 0
else:
# recherche de 1 le plus grand tel que S[i] <= X
i=len(S)-1
while S[i]>X:
i=i-1

# ajoute 1 au nombre de piéces
# puisqu’on utilise la piece S[i]
# il reste donc a rendre la monnaie a X - S[i]
return l+rendul (S, X-S[i]) # appel récursif
sS=[1, 4, 6]
X=8
print (rendul (S, X)) # on obtient : 3

La méthode « diviser pour régner » peut se décomposer en trois étapes :

* Diviser : on divise le probléme initial en plusieurs sous-probleémes.
* Régner : on traite récursivement chacun des sous-probleémes.
e Combiner : on combine les différents sous-problemes pour résoudre le probleme de

départ.

Dans la méthode gloutonne (greedy, en anglais), on effectue une succession de choix, cha-
cun d’eux semble étre le meilleur sur le moment. On résout alors le sous-probléme mais on
ne revient jamais sur le choix déja effectué.

%

2. L'algorithme est de type « diviser pour régner » puisqu’'on décompose le
probléme (calcul de L[X]) en un sous-probléme (calcul de L[X — S[7]] avec i
le plus grand tel que S[7] < X). On calcule récursivement le sous-probléme.

A chaque étape de l'algorithme, on commence par rendre la plus grande
piéce possible, c'est-a-dire la plus grande piéce dont la valeur est infé-
rieure a la somme a rendre. C'est la solution qui semble étre la meilleure
et la plus intuitive. On déduit alors de cette piéce la somme a rendre et on
est ramené a un sous-probléme avec une somme a rendre plus petite. On
recommence jusqu’a obtenir une somme nulle.

Cet algorithme est trés simple mais a chaque étape on n’étudie pas tous les
cas possibles puisqu’on se contente de choisir la piece la plus grande que
l'on peut rendre.

Dans le cas ol S =[1, 4, 6] et X =8, on n'obtient pas la solution optimale.
L'algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 piéce de
6 et 2 piéces de 1) alors que la solution optimale est 2 (2 piéces de 4).
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Exercice 7.2 : Probléme du sac a dos

On considere un sac a dos dont la masse maximale est notée M. On cherche a

maximiser la valeur totale des objets insérés dans le sac a dos. On dispose de n

objets modélisés par la liste de listes S :

* S[i] [0] désigne la valeur de I’objet d’indice i notée v, (i varie de 0 a n—1).

e S[i] [1] désigne la masse de I’objet d’indice i notée m; (i varie de 0 a n—1).
n—1

On suppose dans tout le probleme que Zmi > M et que les masses sont des
i=0

entiers. Le premier objet de la liste S a pour indice 0. La liste S est tri€e par

ordre décroissant du rapport valeur/masse.

1. On utilise la méthode intuitive consistant a insérer au fur et a mesure les
objets qui ont le plus grand rapport valeur/masse.

Ecrire une fonction itérative algol qui admet comme arguments une liste S et
un entier M. La fonction retourne la valeur des objets que 1’on peut insérer dans
le sac a dos.

2. Pourquoi cette méthode est-elle appelée gloutonne ? Est-ce que algol
(fris, 61, 1[60, 251, 1[10, 51, [7, 81, [10, 2011, 30)
retourne la solution optimale ?

Analyse du probléme

On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés
dans un sac a dos. La programmation dynamique (voir chapitre 14 « Programma-
tion dynamique ») permet d’obtenir une solution optimale en utilisant deux tech-
niques : « Top Down » et « Bottom Up ».

2 1.
p def algol (S, M):
# S est une liste de listes avec [valeur, masse].

# Les objets sont triés par ordre décroissant valeur/masse.
# La fonction retourne la valeur des objets que 1’on peut
# insérer avec une masse maximale M

v_total=0 # initialisation de la valeur totale des objets
m_total=0 # initialisation de la masse totale des objets
n=len (S)

for i in range(n):
if m total+S[i][1]<=M: # teste si nouvelle masse totale<=M
v_total+=S[i]
m total+=S[i][1] # calcule la nouvelle masse totale
return v_total # retourne la valeur totale des objets

[0] # calcule la nouvelle valeur totale

Avant d’insérer un objet, il faut tester que la nouvelle masse totale ne
dépasse pas M.
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2. Cette méthode est appelée méthode gloutonne car elle consiste a faire le
meilleur choix sur le moment, c'est-a-dire insérer l'objet qui a le plus grand
rapport valeur/masse.

M=30
s=[[15, 6], [60, 251, [10, 51, [7, 81, [10, 20]1] # [valeur, masse]
print ('ALGO1l :', algol(S, M)) # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient
alors la liste suivante, qui est bien triée par ordre décroissant : [2.5, 2.4,
2.0, 0.875, 0.5].

® On insere le premier objet de valeur 15 et de masse 6.

® On ne peut pas insérer le deuxiéme objet de masse 25 car la masse totale
6+25 dépasse 30.

e On inseére le troisiéme objet de valeur 10.
® On insére le quatriéme objet de valeur 7.
On obtient une valeur totale 32 dans le sac a dos.

Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas
particulier, algol renvoie 32 alors que la solution optimale est 70. On
utilisera la programmation dynamique (voir chapitre 14 « Programmation
dynamique ») pour trouver la solution optimale.

Exercice 7.3 : Allocation de salle de spectacles

88

On cherche une solution au probleme d’allocation d’une salle de spectacles.
On définit une liste L contenant pour chaque spectacle d’indice i € [[O,n—l]]
le couple d’entiers (dl., ﬁ) ou d; désigne I’heure de début et f; I’heure de fin :

L= [[do’ﬁ)]’[dl’ﬁ]v-~’[dn—1’ﬁ1—1 ]] On suppose que les n-uplets de couples
(di, f,) sont tri€s par date de fin f; croissante. On définit début I’heure de début
du spectacle et £in I’heure de fin du spectacle.

1. On cherche a maximiser le nombre de spectacles dans la salle et non le
temps d’occupation. On utilise la méthode intuitive consistant a choisir au fur et
a mesure des spectacles dont I’intervalle est compatible avec celui du spectacle
précédent et dont I’heure de fin est la plus petite. On suppose que la liste L est
tri€e par ordre croissant des heures de fin.

Ecrire une fonction itérative gestion qui admet comme arguments une liste
L, un entier début (heure de début des spectacles) et un entier £in (heure de
fin des spectacles). La fonction retourne le nombre maximum de spectacles que
I’on peut organiser dans la salle ainsi que la liste des spectacles retenus.
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2. Pourquoi cette méthode est-elle appelée gloutonne ?

3. On considere la liste L1=[ [0, 21, [1, 31, [2, 4], [1, 5], [3,
61, [4, 71, [5, 91, [6, 111, [9, 121]. Ecrire le programme
principal permettant d’afficher le nombre maximum de spectacles et la liste des
spectacles que 1’on peut organiser dans cette salle entre début =1 et £in=12.

Analyse du probleme

On utilise la méthode gloutonne, qui consiste a effectuer une succession de choix,
chacun d’eux semblant étre le meilleur sur le moment.

1.

2éy def gestion (L, début, fin):
# retourne le nombre maximum de spectacles que 1’on peut
# organiser entre début (int) = heure de début et
# fin(int) = heure de fin dans la salle ainsi que la liste
# des spectacles retenus L = liste de listes
# L[i]=[di, fi] = heure de début et de fin du spectacle i
n=len (L) # nombre de spectacles
p=0 # initialisation du nb de spectacles organisés
LISTE CONF=[] # initialisation de la liste des
# spectacles organisés
for i in range(n): # i varie entre 0 inclus et n exclu
if LISTE CONF==[] and L[i] [0]>=début and L[i] [1]<=fin:
p=p+l
LISTE CONF.append (i) # indice du premier spectacle
# ajouté
elif p>=1:
indice=LISTE CONF[p-1] # indice du dernier spectacle
# ajouté
if L[i][0]>=L[indice][1] and L[i][1l]<=fin:
p=p+1
LISTE CONF.append(i) # indice du spectacle ajouté

return (p, LISTE_CONF)

2. On appelle la méthode gloutonne puisque, a chaque étape, on sélec-
tionne la possibilité qui semble étre la meilleure sur le moment, c'est-a-dire
qu’on choisit un spectacle qui finit le plus tot.

On peut montrer que la méthode gloutonne donne ici la solution optimale,
mais ce n'est pas toujours le cas, comme on peut le voir dans les exercices
sur le rendu de monnaie et sur le sac a dos (exercices 7.1 et 7.2).
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3.

Li=([(o, 21, 1, 31, (2, 41, [1, 51, (3, 61, [4, 71, [5, 91,\
[6, 111, [9, 12]]

début=1 # heure de début des spectacles

fin=11 # heure de fin des spectacles

pl, LISTE CONFl=gestion(Ll, début, fin)

print ('Nombre de spectacles :', pl)

print ("Spectacles que 1l'on peut organiser :", LISTE CONF1)

Le programme Python affiche :

Nombre de spectacles : 3
Spectacles que 1’on peut organiser : [1, 4,
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Exercice 8.1 : Lecture et écriture de fichiers, calculs

statistiques

Rappels pour la gestion des fichiers :
f=open ('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut étre 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readline () : lecture d'une ligne de I’objet fichier £
\n : caractere d’échappement : saut de ligne

cl.strip() : renvoie une chaine sans les espaces et les caracteres
d’échappement (saut de ligne par exemple) en début et fin de la chaine de
caracteres c1

cl.split(';"') : sépare une chaine de caracteres (c1l) en une liste de
mots avec le séparateur ' ; '

f.write ('exemple') : écrit dans I’objet fichier £ la chaine de carac-
téres 'exemple'

f.close () : ferme le fichier

1. Ecrire un programme Python permettant de créer le fichier 'droite.txt"
contenant les €léments suivants :

10 : nombre de points du fichier

25;10.9 : abscisse et ordonnée du premier point
20;9.3

15;8.2

12;7.5

9062

6;5.8

3;4.2
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03,9
-3;2.8
-6; 2 : abscisse et ordonnée du dixiéme point

2. Ecrire un programme Python permettant d'ouvrir un fichier .txt (par exemple
'droite.txt")etderécupérer les abscisses et les ordonnées dans deux listes.

3. On cherche a modéliser les n points expérimentaux (xl,yl), (xz,yz)...

(xn, yn) par une fonction polyndéme du premier ordre, de la forme : y = ax+b.

n n n
”Z XY~ in 2 Yi
i=1 i=1 i=1
a=

- - > et b=y —ax en notant X la moyenne des x; et y
2
5= X%,
i=1 i=1

la moyenne des y,.

Ecrire un programme Python permettant de calculer les coefficients a et b cor-
respondant aux points expérimentaux de la question 2.

4. Ecrire un programme Python permettant de représenter graphiquement la
fonction y_ 14« = ax+b.

Analyse du probleme

Cet exercice utilise les fonctions d’écriture et de lecture de fichiers avec Python.
I faut convertir les entiers en chaines de caracteres avant d’utiliser £.write.
Lors de la lecture du fichier, on parcourt les différentes lignes du fichier avec
f.readline (). On enléve ensuite les caracteres d’échappement (saut de ligne
par exemple) et on sépare la chalne de caracteres obtenue en une liste de mots.

z& 1.
x=[25,20,15,12,9,6,3,0,-3,-6]
y=[10.9,9.3,8.2,7.5,6.2,5.8,4.2,3.9,2.8,2]
n=len (x)
f=open ('droite.txt', 'w') # création du fichier 'droite.txt'
# en écriture
f.write(str(n)+'\n') # premiere ligne avec la longueur de la liste
for i in range(n): # 1 varie entre 0 inclus et n exclu
f.write(str(x[i])+"'; "+str(y[i])+"'\n")
f.close () # fermeture du fichier

On convertit les entiers et les flottants en chaines de caractéres avant de
les insérer dans le fichier. Il ne faut pas oublier le saut de ligne a la fin de
chaque ligne du fichier.
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2.
f=open ('droite.txt', 'r')
n=int (f.readline()) # nombre de points
x=[]
y=1[]
for i in range(n): # 1 varie entre 0 inclus et n exclu
ligne=f.readline ()
ligne2=ligne.strip() # enleve les caracteres d’échappement
xchaine, ychaine=ligne2.split(';")
x.append (float (xchaine)) # conversion de 1’abscisse en
# type float
# xchaine est une chaine de caracteres qu’il faut
# convertir en type float
y.append (float (ychaine)) # conversion de 1’ordonnée en
# type float
f.close() # fermeture du fichier
3.
sumx=0
sumy=0
sumxy=0
moy x=0
moy y=0
sumx2=0
for i in range(n):
sumx=sumx+x [1i]
sumy=sumy+y [1]
sumxy=sumxy+x[i]*y[i]
moy x+=x[1i]
moy_y+=y[i]
sumx2+=x[1]**2
moy_x=moy_x/n
moy y=moy y/n
a= (n*sumxy-sumx*sumy) / (n*sumx2-sumx**2)
b=moy y-a*moy x

Le programme Python fournit a =0,29 et b =3,75.
4.

ymodelise=[a*elt+b for elt in x]
plt.plot (x, ymodelise)

La premiere variable dans plt.plot est la liste des abscisses des points. La
deuxieme variable est la liste des ordonnées des points.
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Exercice 8.2 : Lecture de fichiers

96

Rappels pour la gestion des fichiers :
f=open ('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut étre 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines () : transforme toutes les lignes de I’objet fichier £ en une
liste de chalnes de caracteres

cl.strip() : renvoie une chaine sans les espaces et les caracteres
d’échappement (saut de ligne par exemple) en début et fin de la chaine de
caracteres c1

cl.split(';"') : sépare une chaine de caracteres (c1l) en une liste de
mots avec le séparateur ' ; '

f.write ('exemple') : écrit dans I’objet fichier £ la chalne de carac-
téres 'exemple'

f.close () :ferme le fichier

On cherche a calculer une valeur approchée de I’intégrale d’une fonction don-
née par des points dont les coordonnées sont situées dans un fichier.

1. Le fichier «ex 001.txt» contient une quinzaine de lignes selon le modele
suivant :
0.0;0.0

0.111111111111;0.0122949573053
0.222222222222;0.0485751653206

Chaque ligne contient deux valeurs flottantes séparées par un point-virgule,
représentant respectivement 1’abscisse et I’ordonnée d’un point. Les points sont
ordonnés dans 1’ordre croissant de leurs abscisses.

Ecrire un programme Python permettant d’ouvrir le fichier en lecture, de le lire
et de construire la liste X des abscisses et la liste Y des ordonnées contenues
dans ce fichier.

2. Ecrire un programme Python permettant de représenter les points sur une figure.
3. Les points précédents sont situés sur la courbe représentative d’une fonction
f. On souhaite déterminer une valeur approchée de I’intégrale I de cette fonction
sur le segment ou elle est définie.

Ecrire une fonction trapeze, d’arguments deux listes Y et X de mé€me lon-

gueur n, renvoyant :
n—1 Y +Y.
2 (Xi — X ) ITH

i=1
trapeze (Y, X) renvoie donc une valeur approchée de I’intégrale / par la
méthode des trapezes.
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Analyse du probléme

Cet exercice utilise les fonctions de lecture de fichiers avec Python. Dans I’exer-
cice précédent, on lit les lignes du fichier au fur et a mesure en utilisant la méthode
f.readline (). Ici on récupere directement une liste de chaines de caracteres
avec la méthode f.readlines (). Il faut alors parcourir cette liste pour récu-
pérer les différentes lignes du fichier. Pour chaque ligne, on enléve les caracteres
d’échappement (saut de ligne par exemple) et on sépare la chaine de caractéres
obtenue en une liste de mots.

2 1. On récupére dans la variable data une liste de chaines de caractéres.
& Pour parcourir cette liste, on utilise l'instruction for chaine in data.

f=open("ex 001.txt", 'r'") # ouverture du fichier en lecture
data=f.readlines () # data contient une liste de chaines
# de caractéres
# chaque chaine de caractéres correspond a une ligne
# du fichier

X, Y=[1, [] # création des listes vides X et Y
for chaine in data: # on parcourt la liste de chaines de
# caractéres
chaine2=chaine.strip() # enleve les caractéres d’échappement
abs,ord=chaine2.split(';")
X.append (float (abs)) # conversion de 1l’abscisse en type
# float
# on ajoute cette abscisse dans la liste X
Y.append (float (ord)) # conversion de 1l’ordonnée en type
# float

# on ajoute cette ordonnée dans la liste Y
f.close () # fermeture du fichier

Cours :
Pour initialiser une liste, on utilise X=[1].

Pour ajouter des éléments dans une liste, on utilise X . append (valeur).
Pour supprimer le dernier élément d’une liste, on utilise X.pop ().

11 faut bien connaitre les arguments de la fonction plt.plot (X, Y) :la premiere liste
X représente 1’abscisse des points, la deuxiéme liste Y représente 1’ordonnée des points.

2.

Zéy plt.figure () # nouvelle fenétre graphique
plt.plot (X, Y)
# ou utilisation de la fonction ci-dessous, qui permet
# de mettre une croix pour les points expérimentaux
# et de relier les points entre eux
# plt.plot(LX, LY, '+', linestyle="-")
plt.show() # affiche la figure a 1l'écran
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Cours :
11 faut bien connaitre la syntaxe de range :

| for i in range(start, stop, step):

i varie entre start inclus et stop exclu avec un pas égal a step.

Lorsque step n’est pas indiqué, le pas vaut 1 par défaut.

2& 3.

def trapeze(Y, X):

# la fonction renvoie 1’intégrale I par la méthode des
# trapézes

n=len (X) # nombre d’éléments de la liste
I=0 # initialisation de la variable I
for i in range(l, n): # 1 varie entre 1 inclus et n exclu

T+=(X[1]-X[1-11)*(Y[i]+Y[i-11)/2
return I

print (trapeze (Y, X))

On pourrait écrire :
| I=T+ (X[1]-X[1-1])*(Y[i]+Y[i-1])/2

au lieu de :
| T+=(X[1]-X[i-1])*(Y[i]+Y[i-1])/2



Matrices de pixels et
images, traitement
d'images

Exercice 9.1 : Traitement d'images et filtrage passe-bas

Les instructions suivantes permettent de récupérer dans la liste I I’ensemble
des pixels d’une image en niveaux de gris. Cette liste contient a la suite les
pixels de la premiere ligne de I’image, de la deuxieme ligne... Les valeurs des
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les
listes de listes pour représenter les matrices dans Python.

from PIL import Image

img=Image.open ('photo.png"') # stockage des pixels de 1’image
# 'photo.png' dans la liste img
p, n=img.size # n = nombre de lignes (hauteur)

# p = nombre de colonnes (largeur)
L=1ist (img.getdata())

1. Ecrire une fonction creation mat qui admet comme argument I’image
en niveaux de gris img. Cette fonction retourne la matrice M (liste de listes).
La premiere sous-liste contient la premiere ligne de I’'image, la deuxieme sous-
liste contient la deuxieme ligne de I’image. ..

2. Ecrire une fonction inv_ contraste qui admet comme argument M la
matrice représentant une image. Cette fonction retourne une nouvelle matrice
représentant la moiti€ inférieure de 1’image avec une inversion du contraste.

3. Ecrire une fonction troi s _niveaux gris quiadmetcomme argumentM
la matrice représentant une image. Cette fonction retourne une nouvelle matrice
avec 3 niveaux de gris uniquement : les niveaux de gris entre 0 et 80 inclus sont
remplacés par 60, les niveaux de gris entre 80 et 150 inclus sont remplacés par
120 et les autres niveaux de gris sont remplacés par 220.

4. Ecrire une fonction reduction qui admet comme argument M la matrice
représentant une image. Cette fonction retourne une nouvelle matrice en ne
gardant qu’un pixel sur 3 de I’image pour la largeur et la hauteur.
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5. On souhaite réaliser un filtre passe-bas qui adoucit les détails d’une image
représentée par la matrice M. On considere la matrice A :

1/12 1/12 1/12
1/12 4/12 1/12
1/12 1/12 1/12

Le traitement suivant est appliqué a la matrice M. Pour calculer la nouvelle
valeur du pixel de I’image traitée :

* on multiplie son ancienne valeur Ml.j par la valeur centrale de la matrice A ;

* on additionne les valeurs des pixels adjacents au pixel trait€é multipli€es
par les valeurs des €léments adjacents a 1’élément central de la matrice A :

AO’0 X Ml._l,j_l + AL0 X Ml.’j_1 + Az,0 X M

S
La nouvelle valeur du pixel est égale a la valeur absolue de la somme précé-

dente.

Ecrire une fonction £i1ltrage qui admet comme argument M la matrice repré-
sentant une image. Cette fonction retourne une nouvelle matrice résultat du
filtrage passe-bas de I’image.

Analyse du probléme

On repere un pixel par (i, j) ou i désigne I'indice de la ligne et j ’indice de la
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On
obtient ainsi une matrice dont chaque valeur correspond au niveau de gris. On peut
alors modifier facilement les valeurs de la matrice pour effectuer un traitement
d’images.

Cours :
Manipulation des images avec Python

Une image est définie par le nombre de pixels. Par exemple, une image 800x600 contient
800 pixels en largeur et 600 pixels en hauteur, soit 480 000 pixels. On peut la représenter
par une matrice 600x800 contenant 600 lignes et 800 colonnes. Le point supérieur gauche
de I’image a pour coordonnées [0, 0], le point inférieur droit [599, 799].

Utilisation d’une liste de listes
Matrice

On représente une matrice 2x 3 par la liste L contenant 2 listes de longueur 3. Chacune de

ces listes de longueur 3 représente une ligne de la matrice [ 3 é ‘1‘ )
8
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Chaque €élément de la liste est une liste. Pour extraire le premier élément de la liste L :
M=L[0] # M vaut [3,2,1]

Pour récupérer le deuxieme élément de M :

a=M[1] # a vaut 2

On peut également écrire :

b=L[0][1] # b vaut 2

Bibliothéque PIL

On utilise le module Image de la bibliotheque PIL. Les instructions permettant d’obtenir
la liste L seraient rappelées dans un probléme de concours :

from PIL import Image

img=Image.open ('photo.png"') stockage des pixels de 1’image
'photo.png' dans la liste img
n=nombre de lignes (hauteur)

p=nombre de colonnes (largeur)

p, n=img.size

HH H H I

L=1ist (img.getdata())

La liste L est une simple liste contenant a la suite les pixels de la premiere ligne de 1’image,
les pixels de la deuxieme ligne...

Images en niveaux de gris

Chaque élément de la liste L est caractérisé par un entier compris entre 0 (noir) et 255
(blanc).

M est la matrice qui représente 1’ensemble des pixels. La premiere sous-liste contient la
premiere ligne de I’'image. La deuxieme sous-liste contient la deuxieme ligne de I’image.
M=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
for j in range(p):
MIi] [J1=L[i*p+]]

Pour récupérer le pixel a la ligne d’indice i et a la colonne d’indice j :

print (M[1i]1[3]) # affiche par exemple 65 : niveau de gris

Pour créer une matrice correspondant a une image vide 800x600 en niveaux de gris :
M=[[0 for j in range(800)] for i in range(600)]

Images en couleurs

Chaque élément de la liste L est caractérisé par un tuple de 3 valeurs entieéres comprises
entre O (intensité nulle) et 255 (intensité maximale) correspondant au codage RVB (rouge,
vert, bleu) ou RGB (red, green, blue). On peut représenter 256° couleurs différentes. On
rencontre parfois une quatrieme valeur correspondant a un coefficient de transparence.

M est la matrice qui représente 1’ensemble des pixels. La premiere sous-liste contient la
premiere ligne de I’image. La deuxieéme sous-liste contient la deuxieme ligne de 1’image.
Chaque pixel de la matrice contient la liste des 3 valeurs entieres correspondant au codage
RVB.
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M=[[0 for j in range(p)] for i in range(n)]

for i in range(n):

for j in range(p):
M[1i][J]=1list(L[i*p+j]) # conversion du tuple en liste

Pour récupérer le pixel a la ligne d’indice i et a la colonne d’indice j :

| print (M[1i][3]1) # affiche par exemple [85, 80, 96]
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1.
def

2.
def

3.
def

# R, V, B pour une image en couleurs

creation mat (img) :

# la fonction crée une matrice (liste de lignes)

# a partir de img (image en niveaux de gris)
nombre de lignes (hauteur)

p, n=img.size # n
# p = nombre de colonnes (largeur)

L=1ist (img.getdata())

M=[[0 for j in range(p)] for i in range(n)]

for i in range(n):

for j in range(p):
M[i] [J]=L[i*p+]]
return M

inv_contraste (M) :
# argument d’entrée : matrice M (liste de listes)
# en niveaux de gris

# la fonction retourne M2 la moitié inférieure de 1’image M

# avec inversion du contraste

n=len (M) # n = nombre de lignes (hauteur)
n2=n//2
p=len (M[0]) # p = nombre de colonnes (largeur)
M2=[[0 for j in range(p)] for i in range(n2, n)]
for i in range(n2, n):
for j in range(p):
M2[1i-n2][j]1=255-M[1][j] # inversion du contraste

return M2

trois niveaux gris (M) :

# la fonction renvoie une matrice M2 (liste de listes)

# avec 3 niveaux de gris uniquement
# argument d’entrée : matrice M (liste de listes)
# en niveaux de gris

n=len (M) # n = nombre de lignes (hauteur)
p=len(M[0]) # p = nombre de colonnes (largeur)
M2=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
for j in range(p):
if M[i][31<=80: # teste si le niveau de gris
# est <= 80
M2[1i][]j]1=60
elif M[1][J]1<=150 : # teste si le niveau de gris

# est <= 150
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M2[i][§]1=120
else: # le niveau de gris est > 150
M2[1i][j]1=220
return M2

On pourrait écrire elif M[i][3]1>80 and M[i] [j]1<=150. Cestinu-
tile car si la premiére condition est vérifiée, Python ne teste pas linstruc-
tion aprés elif.

4,

def

5.
def

def

def

reduction (M) :
# la fonction renvoie une matrice M2 (liste de listes)
# avec 1 pixel sur 3 pour la largeur et la hauteur
# argument d’entrée : matrice M (liste de listes)
# en niveaux de gris
n=len (M) # n = nombre de lignes (hauteur)
p=len(M[0]) # p = nombre de colonnes (largeur)
M2=[[0 for j in range(0, p, 3)] for i in range(0, n, 3)]
for i in range (0, n, 3):
for j in range (0, p, 3):
M2[i//31[3//31=M[i][]]
return M2
somtab (A) : # somme de tous les éléments de
# la matrice A (liste de listes)
n=len (A) # n = nombre de lignes (hauteur)
p=len(A[0]) # p = nombre de colonnes (largeur)
som=0
for i in range(n):
for j in range (p):
som=som+A[1] []]
return int (abs (som)) # int pour obtenir un entier
multipAB (A, B):

# multiplication case par case de A et B
# A et B sont des matrices (listes de listes)

n=len (A) # n = nombre de lignes (hauteur)
p=len(A[0]) # p = nombre de colonnes (largeur)
C=[[0 for j in range(p)] for i in range(n)]

for i in range(n):
for j in range(p):
Clil[3]=A[i][31*B[1][]]
return C

filtrage (M) :

# la fonction renvoie une matrice M2 (liste de listes)

# filtrage passe-bas de la matrice M

# argument d’entrée : matrice M (liste de listes)

# en niveaux de gris

n=len (M) # n = nombre de lignes (hauteur)
p=len(M[0]) # p = nombre de colonnes (largeur)
M2=[[0 for j in range(p)] for i in range(n)]
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A=[[1/12,1/12,1/121,[1/12,4/12,1/12],(1/12,1/12,1/12]]
for i in range(l, n-1):
for j in range(l, p-1):
B=[[M[i1][j1] for jl in range(j-1, j+2)1\
for il in range(i-1, i+2)]

C=multipAB (A, B)

M2[i] [j]l=somtab (C)
return M2

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des
exemples d’images.

Exercice 9.2 : Filtrage d'images

Les instructions suivantes permettent de récupérer dans la liste I I’ensemble
des pixels d’une image en niveaux de gris. Cette liste contient a la suite les
pixels de la premiére ligne de I’image, de la deuxieme ligne... Les valeurs des
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les
listes de listes pour représenter les matrices dans Python.

from PIL import Image

img=Image.open ('photo.png') # stockage des pixels de 1’image
# 'photo.png' dans la liste img

p, n=img.size # n = nombre de lignes (hauteur)
# p = nombre de colonnes (largeur)

L=1list (img.getdata())

1. On souhaite réaliser un lissage de I’image représentée par la matrice M en
niveaux de gris. On considere la matrice A :

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Le traitement suivant est appliqué a la matrice M. Pour calculer la nouvelle
valeur du pixel de I’'image traitée :

» on multiplie son ancienne valeur Mij par la valeur centrale de la matrice A ;

* on additionne les valeurs des pixels adjacents au pixel trait€¢ multipliées
par les valeurs des €léments adjacents a 1’élément central de la matrice A :

Ao,o X Mi—l,j—l + AI,O X Ml.,]._1 + A2,0 XM

i1, j1 T

La nouvelle valeur du pixel est égale a la valeur absolue de la somme précé-
dente.

Ecrire une fonction filtre qui admet comme arguments M la matrice repré-
sentant une image et A une matrice 3x3. Cette fonction retourne une nouvelle

matrice résultat du filtrage de I’image.
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2. Ladérivée dans la direction horizontale peut &tre approchée par M, , —-M,, ..
Proposer un filtre permettant de détecter le changement d’intensité d’une couleur

selon la direction horizontale. On appelle M2 la matrice de 1’image ainsi filtrée.

3. Proposer un filtre permettant de détecter le contour selon la direction verti-
cale. On appelle M3 la matrice de I’'image ainsi filtrée.

4. Proposer un filtre permettant de détecter les contours dans les deux direc-

2 2
tions en utilisant pour chaque point de I’image \/ (Mzi’j) +(M3i,j) .

Analyse du probleme

On repere un pixel par (i, j) ou i désigne I'indice de la ligne et j ’indice de la
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On uti-
lise deux boucles for pour décrire tous les pixels de I’image.

1.

2&7 def somtab (A) : # somme de tous les éléments de
# la matrice A (liste de listes)
n=len (A) # n = nombre de lignes (hauteur)
p=len(A[0]) # p = nombre de colonnes (largeur)
som=0
for i in range(n):
for j in range(p):
som=som+A[1] []]
return int (abs(som)) # int pour obtenir un entier

def multipAB (A, B):
# multiplication case par case de A et B
# A et B sont des matrices (listes de listes)

n=len (A) # n = nombre de lignes (hauteur)
p=len(A[0]) # p = nombre de colonnes (largeur)
C=[[0 for j in range(p)] for i in range(n)]

for i in range(n):
for j in range(p):
Clil [J1=A[i] [31*B[i][]]
return C

def filtre(M, A):
# la fonction renvoie une matrice M2 (liste de listes)
# filtrage de la matrice M en utilisant la matrice A
# argument d’entrée : matrice M (liste de listes)
# en niveaux de gris
n=len (M) # n = nombre de lignes (hauteur)
p=len(M[0]) # p = nombre de colonnes (largeur)
M2=[[0 for j in range(p)] for i in range(n)]
for i in range(l, n-1):
for j in range(l, p-1):
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B=[[M[i1][j1] for Jjl in range(j-1, j+2)1\
for il in range(i-1, i+2)]
C=multipAB (A, B)
M2[i] [j]=somtab (C)
return M2

2. La dérivée dans la direction horizontale peut étre approchée par

M; ; —M,_, ;. La matrice A suivante permet de détecter le contour selon la
direction horizontale :

0 0 0

-1 1 0

0 0 0

A=[[O, O, O], [-1, 1, O], [O, O, O]]
M2=filtre (M, A)

3. La dérivée dans la direction verticale peut étre approchée parM; ; —M,_; ;.
La matrice A suivante permet de détecter le contour selon la direction ver-
ticale :

0 -1 0
0 1 0
0 0 0

A=[[0O,-1,0],[0,1,0],[0,0,0]]
M3=filtre (M, A)
4,

def contour (M2, M3):
import math as m

n=len (M3) # n = nombre de lignes (hauteur)
p=len(M3[01]) # p = nombre de colonnes (largeur)
M5=[[0 for j in range(p)] for i in range(n)]

for i in range(n):
for j in range(p):
M5([1] [J]=m.sqrt ((M3[i][J])**2+ M3[1][]])**2)
return M5

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des
exemples d’images.
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Tris

Exercice 10.1 : Tri par insertion

Le tri par insertion est souvent utilisé pour trier des cartes. Il consiste a insérer
les éléments d’une partie de la liste non triée dans la liste triée.

Présentation du tri par insertion :

On considere la liste non triée : L=E| comprenant n = 5 éléments.

Avec Python, on a : L[0]=8 ... et L[n—1]=2. On parcourt la liste du deu-

xieme au dernier élément. Lorsqu’on est a 1’étape k (k variant de 1 a n—1, les

éléments précédents L[ k] sont déja triés. 11 faut donc insérer cet élément d’in-

dice k dans la liste triée.

Mise en place de I’algorithme :

On envisage deux boucles pour réaliser le tri par insertion :

* Premiere boucle d’indice k (k variant de 1 4 n—1). Quand on considére 1’élé-
ment d’indice k, on considere que les éléments précédents sont déja triés.

Par exemple, pour k = 2. On a la liste suivante : @ avec L[2]=3.
T

Les €léments avant L[k] sont déja triés : .
On pose x = L[k] =
* Deuxieme boucle d’indice i (i variant de k—1 a 0). Il faut trouver ot 1’élément
x doit étre inséré dans cette liste triée ( dans I’exemple). On compare L|i]
ax. SiL[i]> x, alors il faut décaler cet élément vers la droite : Li +1]=L[i].
Sinon, il suffit de mettre x dans la valeur du trou qui a été laissé.

Exemple :
Différentes étapes pour la boucle d’indice & :

e liste non triée : ...@.
%—llll@lﬁlll@l

“ k= 2UUIUU+UUIUU
“k= 3lll@l+lll@l
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ck=4: @ %T@
k=4 =

On considere une liste non triée d’entiers ou de flottants.

1. Ecrire une fonction tri insertion qui admet comme argument une liste
L et permet de la trier par ordre croissant en utilisant la méthode du tri par
insertion.

2. Ecrire le programme principal permettant de trier la liste L=[8, 5, 3,
9, 2].

3. Partant d’une liste de couples (entier, chaine de caracteres), on souhaite
trier la liste L2 par ordre croissant de la population en millions d’habitants :
L2=[[67, 'France'], 1[40, 'Irak'], [47, 'Kenya'], [32,
'"Pérou'], [66, 'Royaume-Uni'], [66, 'Thailande']]. Ecrire
une fonction tri insertion2 permettant de trier la liste L2 par ordre crois-
sant de la population.

4. Donner les caractéristiques du tri par insertion.

Analyse du probleme

On étudie dans cet exercice le tri par insertion qui est un tri en place car il n’utilise
pas de liste auxiliaire. Sa complexité spatiale est faible.

2 1.
éy def tri insertion(L):
# la fonction trie par ordre croissant la liste L
n=len (L)
for k in range(l, n): # k varie entre 1 inclus et n exclu
i=k-1 # deuxieme boucle démarre a k-1

# les éléments entre 0 et k-1 sont triés
x=L[k] # mémorisation de la valeur de L[k]
while i>=0 and L[i]>x:
L[i+1]=L[i] # décale les éléments de la liste
i=i-1 # décrémente de 1 la valeur de i
Lli+l]=x # met la valeur dans le trou
# return L est inutile car L est passé en référence

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas 1’état initial de 1’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction tri insertion est une liste qui est un objet
muable. Il est donc inutile de retourner la variable L dans cette fonction !
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2

L=[8, 5, 3, 9, 2]
print (L)
tri insertion (L)

print (L)
Python affiche :
(2, 3, 5, 8, 9]
Remarques :

Le programme principal suivant affiche None puisqu’il n’y a pas de return.

print (tri insertion([5, 2, 3, 1, 4])) # affiche None

def tri insertion test(L):
# la fonction trie par ordre croissant la liste L

n=len (L)
for k in range(l, n): # k varie entre 1 inclus et n exclu
i=k-1 # deuxieme boucle démarre a k-1

# les éléments entre 0 et k-1 sont triés
x=L[k] # mémorisation de la valeur de L[k]
while i>=0 and L[i]>x:
L[i+1]=L[i] # décale les éléments de la liste

i=i-1 # décrémente de 1 la valeur de i
L[i+1]=x # met la valeur dans le trou
return # ne retourne pas de variable

Le programme principal suivant affiche None puisque return ne retourne pas de

variable.
| print(tri insertion test ([5, 2, 3, 1, 4])) # affiche None

L’instruction return est inutile dans cette fonction.

2 3.

éy def tri insertion2(L):

# la fonction trie par ordre croissant la liste L

# L[1]1[0] valeur a trier

# attention : une liste Python est une variable passée

# par référence

# return L est inutile car L est passé en référence
L2=[[67, 'France'l, [40, 'Irak'l,[47, 'Kenvya'l,\
[32, 'Pérou'], [66, 'Royaume-Uni'], [66, 'Thailande']]
print (L2)
tri insertion2 (L2)
print (L2)

n=len (L)
for k in range(l, n): # k varie entre 1 inclus et n exclu
i=k-1 # deuxieme boucle démarre a k-1
# les éléments entre 0 et k-1 sont triés
x, pays=L[k] # mémorisation de la valeur de L[k]
while i>=0 and L[1][0]>x:
Lli+1]=L[1i] # décale les éléments de la liste
i=i-1 # décrémente de 1 la valeur de i
L[i+1l]=[x, pays] # met la valeur dans le trou
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Cours :
On cherche a trier un ensemble d’éléments, c’est-a-dire a les ordonner en fonction d’une
relation d’ordre définie sur ces éléments.

* Un tri comparatif est basé sur la comparaison des éléments entre eux.

* Un tri itératif est basé sur un ou plusieurs parcours itératifs de la liste.

e Un tri récursif est basé sur une procédure récursive.

* Un tri en place n’utilise qu’un espace mémoire de taille constante en plus de 1’espace
servant a stocker les éléments a trier. Il n’utilise pas de liste auxiliaire.

* Un tri stable conserve I’ordre initial des éléments de méme clé. Deux éléments avec des
clés égales apparaitront dans le méme ordre dans la liste triée et dans la liste non triée.

On rencontre différents algorithmes de tri :

e Tri par insertion : tri comparatif, itératif, stable. Tri en place.

e Tri par sélection : tri comparatif, itératif, instable. Tri en place.

e Tri rapide : tri comparatif, récursif, instable. Tri en place.

e Tri par partition-fusion : tri comparatif, récursif, stable. Le tri n’est pas en place

* Tri par comptage : tri itératif. Le tri n’est pas comparatif. Le tri n’est pas en place. On
n’étudie pas la stabilité pour le tri par comptage.

e Tri a bulles : tri comparatif, itératif, stable. Tri en place.

Zﬁ 4. Le tri par insertion est comparatif et itératif.

La liste initiale est triée par ordre alphabétique : [[67, 'France'],
[40, 'Irak'l, [47, 'Kenya'], [32, 'Pérou'l], 1[66,
'Royaume-Uni'], [66, 'Thailande']].
La liste triée par ordre croissant de la populationest: [ [32, 'Pérou'],
[40, 'Irak']l, [47, 'Kenya'l, [66, 'Royaume-Uni'],
[66, 'Thailande'], [67, 'France']].
Le tri par insertion est stable puisqu’on garde l'ordre alphabétique dans la
liste triée pour les pays qui ont la méme population.
Le tri par insertion est un tri en place car il n‘utilise pas de liste auxiliaire.

Exercice 10.2 : Tri par sélection

112

On considere une liste I contenant 7 éléments. Le tri par sélection consiste a :

* rechercher le plus petit élément de la liste et le placer en premiere position ;

* rechercher le deuxieme plus petit élément de la liste et le placer en deuxieme
position ;

* répéter itérativement le processus tel que la liste soit enticrement triée.

Mise en place de 1’algorithme :

On parcourt la liste L. [1] en faisant varier i entre 0 inclus et n—2 inclus :

* On cherche ind mini I’indice correspondant a I’élément le plus petit de la
liste L[1 : n].

* Siind mini estdifférent de 7, alors on permute L[1] avec L [ind mini].



Chapitre 10 « Tris

1. Ecrire une fonction tri sélection qui admet comme argument une liste
L et permet de la trier par ordre croissant en utilisant la méthode du tri par
sélection. Ecrire le programme principal permettant de trier la liste L=[8, 5,
3, 9, 21.

2. Partant d’une liste de couples (entier, chaine de caracteres), on souhaite
trier la liste 1.2 par ordre croissant de la population en millions d’habitants :
L2=[[67, 'France'], 1[40, 'Irak'], [47, 'Kenya']l, [32,
'Pérou'], [66, 'Royaume-Uni'], [66, 'Thailande']]. Ecrire
une fonction tri sélection?2 permettant de trier la liste L2 par ordre crois-
sant de la population.

3. Donner les caractéristiques du tri par sélection.

4. Evaluer la complexité dans le pire des cas lors de 1’appel de la fonction
tri sélection.

Analyse du probleme

On étudie dans cet exercice le tri par sélection, qui est un tri en place car il n’utilise
pas de liste auxiliaire. Le premier élément d’une liste L a pour indice 0 avec Python.

2 1.

éy def tri sélection(L):

# la fonction trie par ordre croissant la liste L
n=len (L)

for i in range (0, n-1):

# recherche du minimum de la liste L[i: n]
mini=L[i]
ind mini=i
for j in range(i+l, n):
if L[jl<mini:
ind mini=j
mini=L[7]
# on permute L[i] et L[ind mini] si on a trouvé
# un nouveau minimum
if ind minil!=i: # ind mini est différent de i
L[i], L[ind minil]=L[ind mini], L[i]
# return L est inutile car L est passé en référence

L=[(8, 5, 3, 10, 2, 9]
tri sélection (L)
print (L)

2.

def tri sélection2(L):
# la fonction trie par ordre croissant la liste L
# L[1i][0] valeur a trier
n=len (L)
for i in range (0, n-1):

# recherche du minimum de la liste L[i: n]
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mini=L[1i][0]
ind mini=i
for j in range(i+l, n): # parcourt L[Jj] pour j>i
if L[j][0]<mini:
ind mini=j
mini=L[3][0]
# on permute L[i] et L[ind mini] si on a trouvé
# un nouveau minimum
if ind minil!=i: # ind mini est différent de i
L[(i], L[ind mini]=L[{ind mini], L[i]

# return L est inutile car L est passé en référence

3. Le tri par sélection est comparatif, instable et itératif. C'est un tri en

place car il n’utilise pas de liste auxiliaire.

4. On cherche a calculer le nombre d'opérations élémentaires :

® lignen = len (L) : 2 opérations élémentaires (appel de 1len (L) et
affectation).

® Boucle for i in range(n-1) :

o 3 opérations élémentaires (appel de l'élément L.[1], affectation de
mini, affectation de ind mini);

o boucle for j in range (i+1, n) :on se place dans le pire des
cas, on a 5 opérations élémentaires (appel de l'élément L[j], test,
affectation, appel de Uélément .[j] et affectation) ;

o dans le pire des cas, on a 6 opérations élémentaires (test, appel de
Uélément L[1i], appel de l'élément L[ind mini] et 3 affecta-
tions).

Le nombre total d’opérations élémentaires vaut :

2+§;(3+5((n—1)—(i+1))+6)=—2+37n+%n2

La complexité est quadratique en O(nz).

Remarque :

On peut accepter des petites différences dans I’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de I’algorithme ne sera pas modifiée.

On peut montrer que la complexité est quadratique dans tous les cas.
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Exercice 10.3 : Tri rapide (sauf TSI et TPC)

On considere la liste L = @@ non triée. On modifie la liste L en place.
Lors des différents appels récursifs, on travaille sur une partie de la liste L. On
repere les éléments d’une sous-liste par les pointeurs a et b.

Fonction pivot :
* On choisit le dernier élément de la liste qui est appelé le pivot p (ici p = 8) :

Lol[3]o]s]fe]

* On réordonne la liste en placant tous les éléments inférieurs ou égaux au pivot
a gauche de celui-ci et les éléments strictement supérieurs a droite du pivot.
Le pivot p est alors a sa bonne place dans la liste a trier.

L’indice du pivot ind p vaut O au début de la procédure.

* On compare L [0] = 10 au pivot p = 8. Comme L[0] > p, pas de modifica-
tion: ind p=0. @@
7
* Oncompare L.[1] =3 aupivotp=8. Comme L[1] <=p, onéchange L.[1] et
L[ind p] etonincrémente ind p.Onaalors: ind p=1. @@
7

* On compare L[2] =9 au pivot p=8. Comme L [2] > p, pas de changement :

ind_p=1.3 Il@@l

* On compare L [3] =6aupivotp=8. Comme L [3] <=p, on échange .[3] et
L[ind p] etonincrémente ind p.Onaalors: ind p=2. @@
7

* Pour cette derniere étape, on ne modifie pas ind p mais on permute le der-
nier élément et L[ind p]. @ @
7

On est siir que le pivot est a la bonne place.
Algorithme principal :
Il reste a appliquer la procédure précédente aux deux sous-listes a gauche et a

droite du pivot, ¢’est-a-dire @ et @

On a une procédure récursive puisqu’on applique la fonction pivot a deux
sous-listes. On a des sous-listes de longueur de plus en plus petite. On arrive a
une sous-liste comportant un seul élément, qui est donc triée (condition d’arrét
de la fonction récursive) !

1. Ecrire une fonction pivot qui admet comme arguments une liste I et deux
indices a et b permettant de définir une sous-liste de L avec des indices compris
entre a et b. Le dernier élément de la sous-liste est appel€ le pivot. Cette fonction
réordonne les éléments de la sous-liste en placant tous les éléments inférieurs ou
égaux au pivot a gauche de celui-ci et les €léments strictement supérieurs au pivot
a droite de celui-ci. Cette fonction retourne la position du pivot dans la liste.
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2. Ecrire une fonction récursive tri rapide permettant de trier une liste par
ordre croissant en utilisant la fonction pivot.

3. Ecrire le programme principal permettant de trier la liste L=[10, 3, 9,
6, 8].Représenter I’arbre des appels de la fonction récursive tri_ rapide.

4. Donner les caractéristiques du tri rapide.

Analyse du probleme

Le tri rapide s’appuie sur le principe « diviser pour régner » comme le tri par
partition-fusion. On réalise un tri en place.

2 1.

éy def pivot(L, a, b): # a = indice de début, et b = indice de fin
# la fonction renvoie la position du pivot dans la liste

# éléments inférieurs ou égaux sont a gauche du pivot

# L[1]1[0] valeur a trier

p=L[b] # valeur du pivot = dernier élément de la liste

ind p=a # indice du pivot
for i in range(a, b): # 1 varie entre a inclus et b exclu
if L[i]<=p:
L[i], L[ind p]=L[ind p], L[i] # on échange les
# 2 éléments
ind p+=1
L[b], L[ind p]=L[ind p], L[b] # échange les 2 éléments
# inutile de retourner L car passage par référence
# la valeur L[ind p] est bien placée dans la liste a trier

return ind p

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas 1’état initial de 1’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction pivot est une liste qui est un objet muable. Il est
donc inutile de retourner la variable L dans cette fonction !

2.

Zéy def tri rapide(L, a, b):
# a = indice de début, et b = indice de fin
# la fonction trie par ordre croissant la liste L
if b>a:

ind p=pivot(L, a, b)
tri rapide(L, a, ind p-1) # tri rapide pour les indices
# entre a et ind p-1
tri rapide(L, ind p+l, b) # tri rapide pour les indices
# entre ind p+l et b
# si a=b alors la sous-liste est triée : condition d’arrét
# si a>b pas de changement. Il faut bien considérer ce cas

# comme condition d’arrét
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3.
L=[10, 3, 9, 6, 8]
n=len (L)
print (L)
tri rapide(L, 0, n-1) # la fonction retourne none
# puisque L est triée en place
print (L)

L'arbre ci-dessous représente les différents appels de la fonction tri
rapide. La valeur du pivot est représentée avec une taille de police de
caractéres plus grande.

[10.3,9.6,81)k..
pivot  1[3,6.8,9,10])

Remarque :

Lorsqu’on applique la fonction tri rapide a la sous-liste [10, 9] avec a = 3 et
b=4,ily atrois actions :

* appel de la fonction pivot : le pivot vaut 9 et I’indice du pivot vaut ind p =3
puisque 9 fait partie de la liste L=[3, 6, 8, 9, 10] ;

* appel de la fonction tri rapide a la sous-liste définie par a = 3 et ind _p —
1 =2. Lafonction tri rapide ne modifie rien : ¢’est une condition d’arrét ;

* appel de la fonction tri rapide a la sous-liste définie par ind p + 1 =4 et
b=4.Lafonction tri rapide ne modifie rien puisque la sous-liste constituée
d’un seul élément est déja triée : c’est une condition d’arrét.

La complexité du tri rapide est quasi linéaire en O(nlogn). Le tri rapide est plus
efficace que le tri par insertion dont la complexité est quadratique en O(n*) dans le
pire des cas.
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2 4. Les caractéristiques du tri rapide sont : comparatif, récursif et instable.
& Le tri rapide est en place.

On utilise la méthode « diviser pour régner » qui peut se décomposer en

trois étapes :

e Diviser (ou partitionner) : on divise le probléme initial en plusieurs
sous-problémes.

e Régner : on traite récursivement chacun des sous-problémes.

e Combiner : on combine les différents sous-problémes pour résoudre le
probléme de départ.

118

Exercice 10.4 : Tri par partition-fusion

On considere une liste I non triée d’entiers ou de flottants. On cherche a trier
cette liste par ordre croissant en utilisant la méthode du tri par partition-fusion.
Algorithme principal :

On partage la liste initiale L de longueur n en deux sous-listes L1 et L2 de
longueurs n//2 et n—n//2. On trie de facon récursive les deux sous-listes puis on
fusionne les deux sous-listes triées.

Fusion de deux sous-listes L1 et L2 triées :

On considere par exemple L1=[3, 5, 8] etL2=[4, 6].

On construit la nouvelle liste L en retirant le premier €lément de la premiecre
liste ou de la deuxieéme liste.

. Premlere étape : on considere le premier élément de chaque liste : l.l et

On cherche le minimum de 3 et 4 que 1’on ajoute dans la nouvelle liste :
L=[3].

Il reste alors L1=[5, 8] etL2=[4, 6].
* Deuxieme étape : on considere le premier élément de chaque liste : .. et

[4](6].

On cherche le minimum de 5 et 4 que 1’on ajoute dans la nouvelle liste :
L=[3, 4].

Il reste alors L1=[5, 8] etL2=[6].

« Etapes suivantes :
L=[3, 4, 5] ;L1=[8] etL2=[6]
L=[3, 4, 5, 6] ;L1=[8] etL2=][]
L=[3, 4, 5, 6, 8] ;Ll=[]etL2=][]

On obtient la liste L triée.
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1. Ecrire une fonction itérative fusion qui admet comme arguments deux
listes L1 et L2 tri€es et retourne la fusion triée des deux listes.

2. Réécrire une version récursive de la fonction précédente que 1I’on appellera
fusion rec.

3. Ecrire une fonction récursive tri fusion permettant de trier la liste L. On
pourra partager la liste initiale L en deux sous-listes L1 et L.2.

4. Ecrire le programme principal permettant de trier par ordre croissant la liste
=8, 3, 5, 1, 9, 5, 12, 15].Lafonction tri fusion comporte
plusieurs appels récursifs. Représenter 1’arbre des appels de la fonction tri
fusion pour la liste L.

5. Donner les caractéristiques du tri par partition-fusion.

Analyse du probléeme

Le tri par partition-fusion s’appuie sur le principe « diviser pour régner », c’est-
a-dire que 1’on divise (partitionne) le probléme en deux sous-problemes que
I’on sait résoudre. Il reste a utiliser les deux solutions pour résoudre le probléme
initial.

1.
def fusion(Ll, L2):

# la fonction L retourne la fusion triée des deux listes
# L1 et L2
i1, i2=0, O # position du pointeur de chaque
# liste
nl, n2=len(Ll), len(L2) # longueur des listes
n=nl+n2 # longueur de L1+L2
L=[]
while i1il1+i2<n: # 11 faut parcourir tous les
# éléments de L1+L2
if il==nl: # la liste L1 est parcourue
# entiérement
return L+L2[12:] # i1 faut ajouter les éléments
# restants de L2
elif i2==n2: # la liste L2 est parcourue
# entiérement
return L+L1[1il:] # i1 faut ajouter les éléments
# restants de L1
elif L1[il]<L2[i2]:
L=L+[L1[i1]] # ajoute L1[il]
il+=1 # incrémente de 1 le pointeur de L1
else: # on a forcément L1[il]>=L2[i2]
L=L+[L2[i2]]
i2+=1
return L
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Il faut bien connaitre le slicing ou extraction de tranche pour les listes : instruction

L[start:stop] (voir exercice 1.6 « Slicing, extraction de tranche, » dans le

chapitre « Prise en main de Python »).

* start désigne I’indice de départ.

* stop—start désigne la longueur de la liste extraite (lorsque le pas vaut 1).
L’indice final vaut stop-1 !

Remarque : Il est préférable d’utiliser deux pointeurs i1 et 12 plutot que d’en-
lever au fur et & mesure les éléments de L1 et L2 quand on construit la nouvelle
liste L. On ne modifie pas les listes L1 et L2 en utilisant les pointeurs 11 et 12.

Cours :

Dans toute procédure récursive, I’instruction return doit étre présente au moins deux
fois : une fois pour la condition d’arrét (premier return dans le programme) et une autre
fois pour 1’appel récursif (dernier return dans le programme).

2@ 2.
def fusion rec(Ll, L2):
# la fonction retourne la fusion triée des deux listes
# L1 et L2
if Ll==[]:
return L2 # condition d’arrét
elif L2==[]:
return L1 # condition d’arrét

elif L1[0]<L2[0]:

return ([L1[0]]+fusion rec(L1[1:], L2))
else:

return ([L2[0]]+fusion rec(Ll, L2[1:]))

def tri fusion(L):
# la fonction trie par ordre croissant la liste L
n=len (L)
if n==1:
return L # condition d’arrét
else:
L1=L[:n//2] # indices compris entre 0 inclus et n//2 exclu
# la longueur de L1 vaut n//2
L2=L[n//2:] # indices compris entre n//2 inclus et n exclu
return fusion rec(tri fusion(Ll), tri fusion(L2))
4.,
=[8, 3, 5, 1, 9, 5, 12, 15]
L tri=tri fusion(L)
print (L_tri)

Remarque :

A chaque appel de la fonction récursive, on coupe la liste en deux. On arrive tou-
jours a une sous-liste comportant un seul élément, qui est donc triée (condition
d’arrét de la fonction récursive) !
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La complexité spatiale est tres mauvaise puisqu’on utilise une fonction récursive
qui appelle elle-méme une fonction récursive. Le tri n’est pas en place comme avec
le tri par insertion.

%

1¢" appel de la fonction tri fusion : L1=[8, 3, 5, 1] etL2=
[9, 5, 12, 15].Avantde fusionner L1 et 1.2, il faut les trier de facon
récursive en appelant la fonction tri fusion.

L'arbre ci-dessous représente les différents appels de la fonction tri
fusion notée tri f.

Remarque : La complexité du tri par partition-fusion est quasi linéaire en O (n log n)
Le tri par partition-fusion est plus efficace que le tri par insertion dont la complexité est
quadratique en O(n* )dans le pire des cas.

%

5. Les caractéristiques du tri par partition-fusion sont : comparatif, récur-

sif, stable. Le tri n‘est pas en place.

On utilise la méthode « diviser pour régner », qui peut se décomposer en

trois étapes :

e Diviser (ou partitionner) : on divise le probléme initial en plusieurs
sous-problémes.

® Régner : on traite récursivement chacun des sous-problémes.

e Combiner : on combine les différents sous-problémes pour résoudre le
probléme de départ.
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Exercice 10.5 : Tri par comptage, histogramme

122

Le tri par comptage est un algorithme de tri d’entiers. On considere des entiers
de 0 a p dans une liste L. contenant n €léments : L=[10, 20, 12, 12, 16,
16, 12, 20, 15].L’algorithme compte le nombre d’occurrences de chaque
entier.

Les fonctions suivantes permettent le tracé d’histogrammes :
import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.hist (L, bins=10)
# bins = 10 = nombre d’intervalles
Mise en place de I’algorithme :
* On définit une liste vide L tri.

* On définit une liste HISTO de p+1 valeurs initialisées a 0.

* On parcourt la liste L, on compte le nombre fois qu’apparait L. [i] et on incré-
mente HISTO[L[1] ] de 1 a chaque fois.

* On parcourt la liste HISTO pour construire au fur et a mesure la liste triée
L tri.

1. Ecrire une fonction tri comptage réalisant cette opération.

2. Donner les caractéristiques du tri par comptage.

3. Evaluer la complexité dans le pire des cas lors de 1’appel de la fonction
tri comptage en fonction de n et p.

4. Afficher graphiquement 1’histogramme de la liste L. L’histogramme doit

avoir les caractéristiques suivantes :

» Afficher « Valeurs de L » pour 1’axe des abscisses et « Nombre d’occur-
rences » pour 1’axe des ordonnées.

* Afficher le titre : « Histogramme de la liste L ».

5. Proposer une amélioration de la fonction tri comptage en tenant compte
du minimum et du maximum de la liste L.

Analyse du probléme

On étudie dans cet exercice le tri par comptage. On crée une liste HISTO qui repré-
sente 1’histogramme (ou liste de comptage) des éléments de L. Voir exercice 2.2
« Tracé d’un histogramme avec matplotlib » dans le chapitre « Graphiques ».

A5

def tri comptage(L):
# la fonction retourne L tri, qui est la liste L triée par
# ordre croissant
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n=len (L) # nombre d’éléments de L
L tri=[]
p=L[0] # recherche du maximum de L noté p
for i in range(n):
if L[i]>p:
p=L[1i] # nouvelle valeur du maximum
HISTO==[0 for i in range(p+l)] # liste contenant p+l valeurs
# nulles

# on parcourt la liste L pour incrémenter HISTO
for i in range(n):

valeur=L[1i]

HISTO[valeur]+=1 # incrémente HISTO[valeur] de 1

# on pourrait écrire : HISTO[L[i]]+=1

# on parcourt la liste HISTO pour construire L tri
for i in range(p+l):

if HISTO[i]>0:

for j in range (int (HISTO[i])):
L tri.append(i)

return L tri

L=[10, 20, 12, 12, 16, 16, 12, 20, 15]
L1l tri=tri comptage (L)
print (L1 _tri)

La liste HISTO vaut: [0,0,0,0,0,0,0,0,0,0,1,0,3,0,0,1,2,0,0,0, 2].
2. Le tri par comptage n’est pas comparatif (on ne compare pas les élé-
ments de la liste entre eux). Le tri est itératif. Le tri n'est pas en place
puisqu’il utilise une liste auxiliaire HISTO.

Remarque :

Plusieurs éléments de la liste L sont représentés par un unique élément dans I’ histo-
gramme. Le tri par comptage ne peut pas étre appliqué pour des structures plus com-
plexes telles que [[67, 'France']l, [40, 'Irak']l, [47, 'Kenya'l,
[66, 'Royaume-Uni'], [66, 'Thailande'], [32, 'Pérou']].On
n’étudie donc pas la stabilité pour le tri par comptage.

Le tri par comptage est bien adapté pour des entiers relativement proches les uns
des autres.

2@ 3. On cherche a calculer le nombre d’opérations élémentaires :
® Ligne n=len (L) : 2 opérations élémentaires (appel de len (L) et
affectation).

® Lligne L. tri=[] : 1 opération élémentaire.
® Boucle for 1 in range (n) :a chaque étape, 4 opérations élémentaires
(appel de l'élément T.[i], test, appel de l'élément T.[1] et affectation.

On a donc 4n opérations élémentaires.
® ligne HISTO=[0 for i in range(p+1)] : p+1 opérations élé-
mentaires.
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® Boucle for 1 in range (n) : a chaque étape, 4 opérations élé-
mentaires (appel de lélément L[i], affectation, appel de l'‘élément
HISTO[valeur], incrément de 1).

On a donc 4n opérations élémentaires.

® Boucle for i in range (p+1) :a chaque étape, on a un test avec
2 opérations élémentaires (appel de l'élément HISTO[1i] et test).
L'ajout d'un élément dans L_tri se fait au maximum n fois lorsque toutes
les étapes de la boucle for i in range (p+1) ont été effectuées.
Lorsqu’on ajoute un élément dans L _tri, on a 3 opérations élémentaires
(appel de 'élément HISTO[1], fonction int, ajout de 7dans L_tri).
On a donc 2(p+1) + 3n opérations élémentaires pour la boucle for i
in range (p+1).

Le nombre total d'opérations élémentaires est : 2+1+4n+(p+1)+4n+

2(p+1)+3n.

La complexité est linéaire en 0(n+ p).

Remarque : On peut accepter des petites différences dans I’évaluation du nombre
total d’opérations élémentaires. La complexité de I’algorithme ne sera pas modifiée.

%

4.

import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt
plt.figure () # nouvelle fenétre graphique
plt.hist (L, range=(10, 20), bins=10)
# tracé de 1’histogramme
# minimum = 10 et maximum = 20
# avec 10 intervalles
plt.title('Histogramme de la liste L') # titre de 1’histogramme
plt.xlabel ('Valeurs de L")
plt.ylabel ("Nombre d’occurrences")
plt.show () # affiche la figure a 1’écran

5. On peut réduire le nombre d’éléments de la liste HISTO en calculant le
minimum et le maximum de L, notés respectivement mini et maxi. La
liste HISTO contient alors maxi-mini+1 éléments au lieu de maxi+1
éléments dans la question 2.

def tri comptage2 (L) :
# la fonction retourne L tri, qui est la liste L triée par
# ordre croissant

n=len (L) # nombre d’éléments de L
L tri=[]
mini, maxi=L[0], L[O0] # recherche du minimum

# et du maximum de L
for i in range(n):

if L[i]l<mini: # nouvelle valeur du minimum

mini=L[1i]
if L[i]>maxi:

maxi=L[1] # nouvelle valeur du maximum
HISTO=[0 for i1 in range (maxi-mini+1)] # liste contenant

# p+l valeurs nulles
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# on parcourt la liste L pour incrémenter HISTO
for i in range(n):

HISTO[L[i]-mini]+=1 # incrémente HISTO[L[i]-mini] de 1
# on parcourt la liste HISTO pour créer L tri
for i in range (maxi+l-mini):

if HISTO[1]>0:

for j in range (int (HISTO[i])):
L tri.append(i+mini)

return L tri

L=[(10, 20, 12, 12, 16, 16, 12, 20, 15]
L2 tri=tri comptage2 (L)
print (L2 tri)

Exercice 10.6 : Tri a bulles (sauf TSI et TPC)

On considere la liste L=[8, 4, 2, 22, 6] composée de n éléments.

Le tri a bulles consiste a comparer les deux premiers €léments d’une liste L et a
les échanger s’ils ne sont pas triés par ordre croissant. On recommence ensuite
avec le deuxieme et le troisieme élément de la liste, et ainsi de suite... Au cours
d’une passe de la liste, les plus grands éléments remontent de proche en proche
vers la droite comme des bulles vers la surface.

On réitere 1’opération précédente en s’arrétant a I’élément d’indice n—2 puis a

I’élément d’indice n—3...

1. Ecrire une fonction tri_bulles réalisant cette opération.

2. Donner les caractéristiques du tri a bulles.

3. Evaluer la complexité dans le pire des cas lors de 1’appel de la fonction
tri bulles.

4. Proposer une amélioration de la fonction tri bulles en tenant compte
qu’aucun élément n’est échangé lors d’un parcours d’une liste triée.

Analyse du probleme

On étudie dans cet exercice le tri a bulles. On parcourt la liste L en comparant les
éléments consécutifs deux a deux et en faisant remonter vers la fin de la liste les
plus grands éléments. Au bout du premier parcours, I’élément le plus grand est
remonté comme une bulle, d’ou le nom « tri a bulles ».

2@ 1. On consideére la boucle :
|for i in range(n-1, 0, -1): # 1 varie entre n-1 inclus
# et 0 exclu avec pas=-1

® Premiére étape :i=n-1=4
On a une deuxiéme boucle for j in range (1, i+1), dans laquelle
j varie entre 1 inclus et 5 exclu, qui permet de comparer deux éléments
consécutifs de I et de les échanger s'ils sont mal triés.
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L'élément 8 va remonter comme une bulle jusqu'a lindice 2 de la liste.
L'élément 22 remonte comme une bulle jusqu'a lindice n-1 de la liste. On
obtient: 1.=[4, 2, 8, 6, 22].Lélément 22 est donc bien placé.

® Deuxiéme étape : i =3
On considére uniquement les éléments : 4, 2, 8, 6 puisque la deuxiéme
boucle fait varier j de 1 inclus a 4 exclu (ou 3 inclus). On obtient :
L=[2, 4, 6, 8, 22].

o cee

e Derniére étape: 1 = 1.0n obtient: 1=[2, 4, 6, 8, 22].

def tri bulles(L):
# la fonction trie par ordre croissant la liste L

n=len (L)
for i in range(n-1, 0, -1): # i varie entre n-1 inclus
# et 0 exclu avec pas=-1
for j in range(l, i+l): # J varie entre 1 inclus

# et i+l exclu
if L[J-11>L[7]:
L[j-1], L[3j1=LI[3j], L[j-1] # échange de L[j-1]

# et L[]]
1=[8, 4, 2, 22, 6]
print (L)
tri bulles (L)
print (L)

Remarque : On peut parcourir la liste a trier a I’envers. On compare deux éléments
consécutifs deux a deux et on fait remonter vers le début de la liste les plus petits
éléments.

¥

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction, alors on ne retrouve pas 1’état initial de 1’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction tri bulles est une liste, qui est un objet
muable. Il est donc inutile de retourner la variable L dans cette fonction !

2. Le tri a bulles est comparatif et itératif.

La liste initiale est triée par ordre alphabétique : [[67, 'France'],
[40, 'Irak']l, [47, 'Kenya'l, [32, 'Pérou'], [66,
'Royaume-Uni'], [66, 'Thailande']].

La liste triée par ordre croissant de la populationest: [ [32, 'Pérou'],
[40, 'Irak'], [47, 'Kenya'l, [66, 'Royaume-Uni'],
[66, 'Thailande'], [67, 'France']].

Pour trier la liste précédente, il suffit de remplacer la ligne if L[j-
11>L[j] parif L([3-1]1([0]>L[Jj]I[0].

Le tri a bulles est donc stable puisqu’on garde lordre alphabétique dans la
liste triée pour les pays qui ont la méme population.
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Le tri @ bulles est un tri en place car il n’utilise pas de liste auxiliaire.
3. On cherche a calculer le nombre d’'opérations élémentaires :

® Ligne n=len (L) : 2 opérations élémentaires (appel de len (L) et
affectation).

® Boucle for i in range(n-1, 0, -1):

o Boucle for j in range (1, i+1) :on se place dans le pire des
cas. On a 7 opérations élémentaires (appel de l'élément L[j], appel
de lélément L.[j-11, test, appel de lélément I.[ 5], appel de 'élé-
ment L[3-1], 2 affectations).

n-1
Le nombre total d'opérations élémentaires vaut : 2 + 271‘ = %nz - %n +2.

i=1
La complexité est quadratique en 0(n%).

Remarque : On peut accepter des petites différences dans I’évaluation du nombre
total d’opérations élémentaires. La complexité de 1’algorithme ne sera pas modi-
fide.

2 4. Siaucun élément n’est échangé lors d'un parcours d'indice 7, alors la liste
@ est bien triée.

On ajoute une variable 1iste triée quipasse a False sides éléments
de la liste sont échangés. Dans ce cas, la liste n'est pas encore triée pour
ce parcours d'indice i.

def tri bulles2(L):
# la fonction trie par ordre croissant la liste L
n=len (L)
for i in range(n-1, 0, -1): # i varie entre n-1 inclus
# et 0 exclu avec pas=-1
liste_triée=True
for j in range(l, i+l): # j varie entre 1 inclus
# et i+l exclu
if L[j-11>L[§]:
L[j-11, L[31=L[j], L[j-1]1 # échange de L[j-1]
# et L[J]
liste triée=False
if liste triée==True:
break # sort de la boucle for i in range(n-1, 0, -1)
# return L est inutile car L est passé en référence

Remarque : L’instruction break fait sortir de laboucle for i in range (n-1,
0, -1) etpasse al’instruction suivante (# return L est inutile car L
est passé en référence). Comme il n’y a pas d’instruction apres ce com-
mentaire, on sort de la fonction tri bulles2.

L’instruction break fait sortir d’une boucle while ou for et passe a l’instruc-
tion suivante alors que I’instruction return quitte la fonction.
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Dictionnaire, pile,
file, deque

Exercice 11.1 : Opérations de base sur les dictionnaires

On considere des opérations de base sur les dictionnaires.
1. Ecrire une fonction dico vide qui renvoie un dictionnaire vide.

2. Ecrire une fonction a7 out cle qui admet comme arguments un diction-
naire, une clé et une valeur. Cette fonction ajoute le couple (c1é, valeur) au
dictionnaire.

3. Ecrire une fonction supp cle qui admet comme arguments un diction-
naire et une clé. Cette fonction supprime le couple (c1é, valeur) correspon-
danta clé.

Analyse du probleme

Les dictionnaires sont tres souvent utilisés en informatique. Chaque élément du
dictionnaire a une clé unique. Les éléments du dictionnaire ne sont pas ordonnés.

Cours :
Rappels sur les listes et les tuples

Les éléments d’une liste ou d’un tuple sont ordonnés. Pour récupérer un élément, on utilise
un indice.

L1=["MPSI", "PTSI"] # liste (objet modifiable) contenant 2 éléments
print (L1[11]) # affiche "PTSI", d’indice 1 dans la liste L1
L2=(48, 46) # tuple (objet non modifiable) contenant 2 éléments
print (L2([01]) # affiche 48, d’indice 0 dans la liste L2
Dictionnaires

Une table de hachage est une structure de données permettant de stocker des couples
(clé, valeur). Elle permet de retrouver une clé tres rapidement. Les tables de hachage
sont appelées dictionnaires avec Python. Dans un dictionnaire, on associe une valeur a
une clé.

Le type de la clé peut étre un entier, un nombre flottant, une chaine de carac-
teres... mais pas une liste.

Le type de la valeur associée a la cl€ peut étre quelconque.
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Les éléments d’un dictionnaire ne sont pas ordonnés. On ne peut pas utiliser un indice
comme pour les listes pour accéder a un élément.

Chaque €élément du dictionnaire est identifi€ par une clé unique.
On utilise la clé pour rechercher la valeur correspondante du couple (c1é, valeur).

On définit un élément du dictionnaire dans Python en précisant la clé, suivie de « : » et de
la valeur associée.

dl={"MPSI":48}
print (dl)

dictionnaire dicol constitué d’un seul élément
affiche {'MPSI': 48}. On visualise la clé
et la valeur

#
#
#
print (type(dl)) # affiche le type de dl : dict (type dictionnaire)
d1 est un objet de type dict.
On crée le dictionnaire d2 constitué de deux éléments :
d2={"MPSI":48,"PTSI":46}
Les €léments sont délimités par des accolades.
Création d’un dictionnaire vide

d={} # dictionnaire vide avec les accolades {}

Ajout d’un élément dans le dictionnaire

d["MPSI"]=48 # ajoute "MPSI" : 48
d["MP"]=46 # ajoute "MP" : 46
print (d) # affiche {'MPSI': 48, 'MP': 46}

La cl€ est unique dans un dictionnaire. On ne peut pas ajouter "MPSI" : 45 dans d.

Par contre, on peut modifier une valeur :
d["MPSI"]=45

print (d) # {'MPSI': 45, 'MP': 46}
Suppression d’un élément

del d["MPSI"]

print (d) # {'MP': 46}

d["MPSI"]=48

d["PCSI"]=48

d["PTSI"]=46

print (d) # {'MP': 46, 'MPSI': 48, 'PCSI': 48, 'PTSI': 46}

Teste si une clé est dans un dictionnaire
print ("PCSI" in d) # affiche True

Nombre d’éléments d’un dictionnaire

print ("Nombre d’éléments de d :", len(d))
# Python affiche : Nombre d’éléments de d : 4
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Les clés d’un dictionnaire ne sont pas obligatoirement des chaines de caracteres. On va voir
plusieurs méthodes pour parcourir un dictionnaire.

Parcours des clés d’un dictionnaire
dico={3:5, 8:5} # les clés du dictionnaire doivent étre différentes
for clé in dico: # on parcourt les clés de dico
print (clé)

On obtient alors :

3

8
On peut utiliser également . keys () :

for clé in dico.keys(): # on parcourt les clés de dico
print (clé)
Parcours des clés et valeurs d’un dictionnaire avec . items ()

for elt in dico_classe.items() : # elt est un tuple
print ("Elément du dictionnaire : ", elt)
a=elt[0] # récupere la clé
b=elt[1] # récupere la valeur

On peut utiliser . 1tems () avec c1é, valeur pour dépaqueter le tuple.

for clé, valeur in dico classe.items() :
4 p—
print("clé :",clé,"valeur :",valeur)

On ne peut pas utiliser un indice pour accéder a un élément du dictionnaire alors
que L [1] permet d’obtenir I’élément d’indice i de la liste L.

On peut récupérer une liste contenant les clés du dictionnaire :
Ll=dico.keys ()

Copie d’un dictionnaire

La fonction copy () du module copy est a connaitre.

import copy # module copy

d2=d

d3=copy.copy (d) # copie superficielle de d
d['MP']=48

print (d['MP']) # la valeur vaut 48

print (d2['MP']) # la valeur vaut 48

print (d3['MP']) # la valeur vaut 46

L’instruction d2=d n’a pas réalisé une copie de d puisque d2 et d pointent vers la méme
adresse mémoire.

Si on modifie un élément du dictionnaire d, alors cet élément est modifié dans d2.

Par contre, la modification n’apparait pas dans d3 puisque d et d3 pointent vers des
adresses mémoire différentes.

Les dictionnaires sont des objets muables (voir exercice 1.4 « Affectation, objet immuable,
copie » dans le chapitre « Prise en main de Python »).
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Remarque : On rencontre deux catégories de copies pour les objets muables (listes,
dictionnaires, deques...) :

* Lafonction copy () réalise une copie superficielle. Les valeurs des clés sont bien
copiées s’il n’y a pas de structure imbriquée (liste par exemple). Si les valeurs
d’un dictionnaire sont des listes, alors I’adresse mémoire des listes est copiée.

* La fonction deepcopy () réalise une copie profonde pour les structures imbri-
quées. Si les valeurs sont des listes, alors la copie profonde copie bien les listes
imbriquées.

L -
|def dico vide(): # la fonction renvoie un dictionnaire vide
return {}
2.

def ajout cle(dico, clé, valeur):
# la fonction ajoute le couple (clé, valeur) a dico
dico[clé]=valeur

def supp_cle(dico, clé):
# la fonction supprime le couple (clé, valeur)
# correspondant a clé pour dico
del dico[clé]

Remarque :

Le programme suivant permet de tester les fonctions précédentes :

d={}

print (d)

ajout _cle(d, "MPSI", 48)
ajout_cle(d, "MP",46)
ajout cle(d,"PCSI1",648)
ajout cle(d, "PCSI2",48)
print (d)

print ()

supp_cle(d, "MPSI")
print (d)

Exercice 11.2 : Comptage des éléments d'une liste a l'aide d'un

dictionnaire

134

On considere la liste : =10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2].

1. Ecrire une fonction comptagedico qui admet comme argument une liste.
Cette fonction renvoie un dictionnaire permettant de connaitre le nombre d’oc-
currences de chaque élément de la liste.

2. Ecrire le programme principal permettant d’afficher le nombre d’occur-
rences de chaque élément de la liste L.
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Analyse du probléme

Les éléments du dictionnaire ne sont pas ordonnés. Chaque élément du dictionnaire
a une clé unique. La valeur de la cl€ est égale au nombre d’occurrences de la clé
dans la liste.

1.
def comptagedico (L) :

# la fonction renvoie un dictionnaire permettant de connaitre

# le nombre d’occurrences de chaque élément de la liste

d={} # création d’un dictionnaire vide

for elt in L:

if elt in d:
dlelt]=d[elt]+]1 # incrémente de 1 la valeur
# de la clé elt

else:
dlelt]=1 # ajoute clé elt au dictionnaire
# elt apparait la premiere fois dans d
# la valeur de la clé elt vaut 1
return d

2.

L=[(10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2]
d=comptagedico (L)

print (d) # affichage du dictionnaire

Le programme Python affiche : {10.0: 3, 12.0: 2, 8.0: 1,
6.0: 1, -5.0: 1, 8.2: 2}.
Cette fonction peut s'appliquer également a une chaine de caracteres.

mot="C’est un mot"
d=comptagedico (mot)

print (d)
Le programme Python affiche : {'C': 1, "'": 1, 'e': 1, 's':
1, 'tt: 2, "'+ 2, 'u':1, 'n':'1, 'm': 1, 'o': 1}.

L'avantage d'utiliser un dictionnaire pour stocker le nombre d'occurrences
est qu’il n'est pas nécessaire de connaitre a l'avance les éléments de mot.
On n’utilise de la place mémoire que pour les caractéres qui apparaissent
réellement dans mot.
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Exercice 11.3 : Opérations de base sur les piles
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On considere trois opérations de base sur les piles. On modélise une pile avec
une liste P dont on ne peut ajouter et supprimer un €l€ément qu’a une extrémité
appelée sommet de pile (ou téte de pile). On utilise P=[] pour créer une pile
vide.

1. Ecrire une fonction empiler qui admet comme arguments une pile P et un
élément x. Cette fonction ajoute 1’élément x au sommet de la pile P.

2. Ecrire une fonction depiler qui admet comme argument une pile P non
vide. Cette fonction supprime le dernier élément entré dans la pile et retourne
cet élément.

3. Ecrire une fonction pi le vide qui admet comme argument une pile P.
Cette fonction retourne True si la pile est vide et False sinon.

Analyse du probleme

Les piles sont tres souvent utilisées en informatique (voir chapitre 12 « Graphes »).
On étudie dans ce chapitre une modélisation des piles avec des listes. Toutes les
opérations sur la pile sont effectuées sur la méme extrémité : on utilise le principe
LIFO (Last In, First Out).

Cours :

Une pile est une structure de données qui utilise le principe LIFO (Last In, First Out : « der-
nier entré, premier sorti »). On peut comprendre le fonctionnement d’une pile en considé-
rant une pile d’assiettes.

» La fonction empiler consiste a ajouter une assiette sur le sommet de la pile (ou téte
de la pile).
Soit une pile P contenant 3 éléments : 3, 5 et 8.

pile P
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On souhaite empiler I’élément 10 a la pile P. On obtient alors la pile suivante :

10

pile P

Si on empile I’élément 2, on obtient :

10

5

3

pile P

» La fonction depiler consiste a supprimer un élément de la pile. L’élément a suppri-
mer est toujours situé au sommet de la pile. On a bien une structure LIFO puisque le
dernier élément rentré est le premier sorti.

On obtient alors la pile :

10

8

5

3

pile P

La fonction « Undo » (Annulation de la frappe) des traitements de texte utilise une pile.

Remarque : L’ajout et la suppression d’un élément en fin de liste Python est tres
rapide. L’utilisation des listes Python pour gérer des piles est trés efficace.

2 1.

éy def empiler (P, x):
# la fonction ajoute 1’élément x au sommet de la pile P
P.append (x) # on ajoute 1’/ élément x a la liste P
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Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas 1’état initial de 1’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La liste P dans la fonction empiler est un objet muable. Il est donc inutile de
retourner P dans cette fonction !

|2

def depiler (P):
# la fonction supprime le dernier élément entré dans la pile P
# et retourne cet élément

x=P.pop () # supprime le dernier élément de la liste P
return x # retourne la valeur du dernier élément
# de la liste P

3.
def pile vide(P):
# la fonction retourne True si la pile P est vide
# et False sinon
if P==[]: # on pourrait écrire : if len(P)==
return True
else:
return False

Remarque :

Le programme suivant permet de visualiser les étapes du rappel de cours précédent :

Pl=[] # création d’une liste vide
print (pile vide (P1)
empiler (P1, 3)
empiler (P1,5)
empiler (P1,8)
empiler (P1,10)
empiler (P1,2)

print (P1)

y=depiler (P1)
print(y)

print (P1)

print (pile vide (P1)
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Exercice 11.4 : Parenthésage

On cherche a vérifier si une chaine de caracteres L est bien parenthésée, c’est-a-
dire si le nombre ainsi que 1’ordre des parentheses ouvrantes et fermantes sont
corrects. On note « ( » la parenthése ouvrante et « ) » la parenthese fermante.
On utilisera exclusivement les trois fonctions décrites dans I’exercice 11.3
« Opérations de base sur les piles » : empiler, depileretpile vide ainsi
que P=[] pour créer une pile P.

Ecrire une fonction parenthesage qui admet comme argument une chaine
de caracteres L. Cette fonction retourne True si la chaine de caracteres est bien
parenthésée, False sinon.

Exemples :

« L="(2+8) / (5+9) '

parenthesage (L) doit retourner True.

« L="(2+8) / ((5+9) "

parenthesage (L) doit retourner False.

Analyse du probléme

La structure de piles est parfaitement adaptée a la résolution de cet exercice. On par-
court les différents caracteres de la chaine L. On empile les parentheéses ouvrantes
et on dépile dés qu’on a une parentheése fermante.

%

On définit une pile P initialement vide. On parcourt tous les caractéres de
la chaine L.

Dés qu’on rencontre une parenthése ouvrante, on empile le caractére « ( »
dans P.

Quand on rencontre une parenthése fermante, plusieurs cas interviennent :

¢ Si la pile P est vide, alors la fonction parenthesage retourne False
puisqu’il manque une parenthése ouvrante avant la parenthése fermante.

¢ Sinon, on dépile la parenthése ouvrante de P.

Lorsqu’on a parcouru tous les caractéres de I, on doit avoir rencontré
autant de parenthéses ouvrantes que fermantes. La pile P est nécessaire-
ment vide. Si ce n‘est pas le cas, la fonction parenthesage retourne
False.

def parenthesage (L) :
P=[] # initialisation de la pile
for elt in L:
# on parcourt tous les caracteres de L

if elt=="(": # parenthese ouvrante empilée dans P
empiler (P,elt)
elif elt==")": # parenthese fermante

if pile vide (P)==True:
# la pile ne doit pas étre vide
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# i1 manque une parenthése ouvrante
return (False)
else:
depiler (P)
# on dépile la parenthése ouvrante

if pile vide (P)==True:
return True

else:
return False

Exercice 11.5 : Opérations de base sur les files
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On considere trois opérations de base sur les files. On modélise une file avec
une liste F dont on ne peut ajouter un élément qu’a une extrémité et supprimer
un élément qu’a I’autre extrémité. On rappelle que F.pop (0) permet de sup-
primer F [0] dans la liste F.

1. Ecrire une fonction enfiler qui admet comme arguments une file ¥, un
élément x. Cette fonction ajoute 1’élément x en queue de file.

2. Ecrire une fonction défiler qui admet comme argument une file F non
vide. Cette fonction supprime le premier élément entré dans la file et retourne
cet élément.

3. Ecrire une fonction fi le vide qui admet come argument une file F. Cette
fonction retourne True si la file est vide et False sinon.

4. On considere le programme suivant :
F=[3, 5, 8]

enfiler (F, 10)

print (F)

enfiler (F, 2)

print (F)

x=défiler (F)

print('F ', F, 'x :',x)
print (file vide (F))

Qu’affiche la console Python lors de 1’exécution de ce programme ?

Analyse du probléme

Les files sont trés souvent utilisées en informatique (voir chapitre 12 « Graphes »).
On étudie une modélisation des files avec des listes. On utilise le principe FIFO
(First In, First Out).
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Une file (queue en anglais) est une structure de données qui utilise le principe FIFO (First
In, First Out : « premier entré, premier sorti »).

Dans une file d’attente a un distributeur de billets, les personnes font la queue les unes der-
riere les autres. Le premier arrivé dans la queue est le premier sorti (c’est-a-dire le premier

servi pour obtenir les billets).

» La fonction enfiler (enqueue) consiste a ajouter un €lément a la queue de la file (on
dit aussi a I’arriere de la file d’attente).
Soit une file d’attente F contenant 3 éléments :

distributeur
de billets

DEFILER
(dequeue)

<—

ENFILER

(enqueue)
3[5]8]| €—
téte queue

front of queue

On enfile I’élément 10 a la file F. On obtient alors :

rear of queue

DEFILER ENFILER

(dequeue) (enqueue)

€— |3]|5]|8]10] €—

téte queue
On enfile I’élément 2, on obtient :
DEFILER ENFILER
(dequeue) (enqueue)
€&— |3]|5]|8]10]2]| €—
téte queue

On modélise la file d’attente par une liste Python : F

= [31 5/ 8’

dit que 3 est a la téte de la file F et 2 est a la queue de la file F.
* La fonction défiler (dequeue) consiste a supprimer 1’élément situé a la téte de la
file (on dit aussi au début de la file d’attente). On a bien une structure FIFO puisque le
premier élément rentré est le premier sorti.

On obtient alors la file :

DEFILER
(dequeue)

€—

Laliste F s’écrit : F = [5,

ENFILER
(enqueue)
5|18|10| 2 | €—
téte queue
8, 10, 2]

10,

27.

On
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Remarque : La suppression d’un élément en té€te de liste Python n’est pas tres
rapide puisque tous les autres éléments doivent &tre décalés d’une position. On uti-
lisera dans I’exercice suivant, « Utilisation des deques », la classe collections.
deque qui est congue pour ajouter et supprimer rapidement des éléments aux deux

extrémités.
L -
def enfiler(F, x): # F est une liste Python

F.append (x) # ajoute x a la queue de la file ou a la fin
# de la liste F

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas 1’état initial de 1’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La liste F dans la fonction enfiler est un objet muable. Il est donc inutile de
retourner F dans cette fonction !

2.

2é7 def défiler(F): # F est une liste Python
x=F.pop (0) # supprime 1’élément situé a la téte de la file F
# c’est le premier élément de la liste F
return x # retourne x
3.

def file vide(F): # F est une liste Python
# la fonction retourne True si la file F est vide
# et False sinon

return F==[]

4. Le programme Python affiche :
[3, 5, 8, 10]
[3, 5, 8, 10, 2]
F : [5, 8, 10, 2] x ¢ 3
False

Exercice 11.6 : Utilisation des deques

L’instruction from collections import deque permet de manipuler

des deques.
D=deque () : permet de créer une deque vide
len (D) == : retourne True si la deque est vide, False sinon

On utilise les fonctions : D.append (), D.appendleft (), D.pop () et
D.popleft () pour manipuler les deques.
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1. Ecrire une fonction insere_gauche deque d’arguments une deque D et
un €lément x permettant d’ajouter x a I’extrémité gauche de la deque.

2. Ecrire une fonction insere droite deque d’arguments une deque D et
un élément x permettant d’ajouter x a I’extrémité droite de la deque.

3. On considere le programme suivant :

L1=[8, 3, 5]
D=deque ()
for elt in L1:

insere gauche deque (D, elt)
print (D)
L2=[10, 13, 1]
for elt in L2:

insere droite deque (D, elt)
print (D)
E=deque ([3, 2])
print (len (E)==0)

Qu’affiche la console Python lors de I’exécution de ce programme ?

Analyse du probleme

On considere les deques (double-ended queue), qui sont une généralisation des piles
et des files. Les deques permettent d’ajouter et de supprimer trés rapidement des
éléments aux deux extrémités. On utilisera les deques dans le parcours des graphes.

Cours :
Une deque (se prononce « déque ») est une structure de données qui généralise le fonction-
nement des piles et des files. On peut ajouter et supprimer des éléments aux deux extrémités.

from collections import deque # module permettant d’utiliser
# les deques

Pour créer une deque vide :
D=deque () # création d’une deque vide

On peut ajouter des éléments aux extrémités droite et gauche de la deque.

D.append (3) # ajoute un élément a l’extrémité droite de
D.append (5) # ajoute un élément a 1l’extrémité droite de
D.appendleft (8) # ajoute un élément a
D. # a

D

D

1’extrémité gauche de D

appendleft (10) D

ajoute un élément 1’extrémité gauche de

On obtient alors la deque suivante :

10 8 3 5

143



Partie 8 - Dictionnaire, pile, file, deque

@ On a un nouveau type : deque. Ne pas confondre avec le type 1ist.

print (type (D)) # le type de D est : deque

On peut supprimer des éléments a I’extrémité gauche ou droite de la deque.

x=D.pop () # supprime et renvoie 5, 1’7élément a 1l’extrémité droite
# de la deque

y=D.popleft () # supprime et renvoie 10, 1’élément a 1l’extrémité gauche
# de la deque

On obtient alors la deque suivante :

8 3
| print ('Teste si D est vide : ', len(D)==0) # teste si la deque est vide
On obtient sur I’afficheur : False
F=deque () # création d’une deque vide
print ('Teste si F est vide : ', len(F)==0) # teste si la deque est vide

On obtient sur I’afficheur : True

Dans Python, les deques (comme les listes et les dictionnaires) sont des objets muables.
| E=D

Si on modifie E, alors D est également modifi€ puisque D et E font référence a la méme
adresse mémoire (voir exercice 1.4 « Affectation, objet immuable, copie » dans le chapitre
« Prise en main de Python »).

E.pop() # supprime 1’élément a l'extrémité droite de la deque E
# mais aussi de D puisque D et E pointent vers la méme
# adresse mémoire

print ('Teste si D = E :', D==E) # affiche True

Pour réaliser une copie superficielle de D, il ne faut pas écrire E=D mais utiliser la fonction
copy.

import copy

E=copy.copy (D) # copie superficielle de D

E.pop () # supprime 1’élément a 1’extrémité droite de la deque E

# D n'est pas modifié puisque D ne pointe pas vers la méme

# adresse mémoire que E

-
def insere gauche deque (D, x):
D.appendleft (x) # ajoute x a 1l’extrémité gauche de la deque D

2.

def insere droite deque (D, x):
D.append (x) # ajoute x a l’extrémité droite de la deque D
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3. Le programme Python affiche :
deque ([5, 3, 81)
deque ([5, 3, 8, 10, 13, 11)
False

La deque E vaut : 3, 2. L'afficheur retourne False puisque la deque E n'est
pas vide.

Remarques :

L’instruction D=deque (3) n’est pas correcte et renvoie un message d’erreur.
D=deque ([3]) définit la deque valant 3.

D=deque ('ijk") définit la deque valant ', 'j', 'k'.

D=deque (['i1jk']) définit la deque valant 'jjk'.

D=deque ([['abc'], ['ijk']]) définit la deque valant ['abc'], ['ijk'].
x=D.popleft () permet de supprimer ['abc'] et d’obtenir x = ['abc'].
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Graphes

Exercice 12.1 : Matrice d'adjacence

On considere le graphe G = (S,A) non orienté, ou le nombre situé€ sur 1I’aréte
joignant deux sommets est leur distance, supposée entiere :

On utilise les listes de listes pour représenter les matrices dans Python.

1. Construire la matrice d’adjacence (Mi,j )0<i » (appelée également matrice
de distance) du graphe G, définie par : =

Pour tous les indices i, j, M; j représente la distance entre les sommets i et j, ou
encore la longueur de 1’aréte reliant les sommets i et j.

On convient que, lorsque les sommets ne sont pas reliés, cette distance vaut
I’infini. On définit la variable inf=1e10 qui représente une distance infinie.
Ecrire la matrice M.

2. Ecrire une fonction voisins, d’arguments une matrice d’adjacence M, un
sommet i, renvoyant la liste des voisins du sommet i.

3. Ecrire une fonction degré, d’arguments une matrice d’adjacence M, un
sommet i, renvoyant le nombre de voisins du sommet i, ¢’est-a-dire le nombre
d’arétes issues de 1.

4. Ecrire une fonction longueur, d’arguments une matrice d’adjacence M
une liste L de sommets de G, renvoyant la longueur du trajet décrit par la liste L,
c’est-a-dire la somme des longueurs des arétes empruntées. Si le trajet n’est pas
possible, la fonction renverra —1.

Analyse du probléme
On définit une matrice d’adjacence contenant les distances entre les différents som-
mets. Si deux sommets i et j ne sont pas reli€s, alors M[i][j] = inf. Cet exercice est
extrait du concours banque PT 2015 Sujet 0. Comme le graphe n’est pas orienté, la
matrice est symétrique : M[i][j] = M[j][].
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Cours :
Un graphe G est un schéma contenant des points appelés sommets (ou neuds ou points),
reliés ou non par des arétes (ou segments ou liens ou lignes).

On utilise la notation suivante : G = (S, A) est un couple d’ensemble finis, dont :

¢ Sest’ensemble des sommets de G ;
¢ A est I’ensemble des arétes de G.

Si une aréte relie les sommets s et s’, on dit que les sommets s et s’ sont voisins ou
adjacents.

L’ordre d’un graphe est le nombre total de sommets.

Un graphe est orient€ si les arétes sont orientées, ¢’est-a-dire si on ne peut les parcourir que
dans un sens.

Pour les graphes non orientés :

* Deux sommets sont adjacents lorsqu’ils sont reliés par une aréte.

* La taille d’un graphe non orienté est le nombre total d’arétes.

* Le degré d’un sommet s, noté d(s) est égal au nombre d’arétes dont ce sommet est une
extrémité. Une boucle est une aréte reliant un sommet a lui-méme. Les boucles sont
comptées deux fois.

Le degré du sommet 2 vaut 4. Le degré du sommet 1 vaut 5. Le degré du sommet 5
vaut 0:d(5)=0.
On n’étudiera par la suite que des graphes sans boucle.

* Une chaine reliant un sommet s & un sommet s’ est une suite d’arétes consécutives
permettant de se rendre de s a s’

* La longueur d’une chaine est le nombre d’arétes de la chaine, ou la somme des poids
des arétes qui le constituent.

« La distance dist(s,s') entre deux sommets s et s’ est la longueur d’une plus courte chaine
reliant s a s”. S’il n’existe pas de chaine entre s et s’, alors dist(s, s') = oo, notée inf.

* Une chaine est simple si toutes les arétes de la chaine sont différentes.

* Une chaine est élémentaire si tous les sommets sont différents sauf pour le sommet
d’arrivée, qui peut étre confondu avec le sommet de départ (dans le cas des cycles).

* Un cycle est une chaine simple telle que le sommet d’arrivée est le méme que le som-
met de départ.

* Un sommet s’ est accessible a partir d’un sommet s s’il existe une chaine reliant s a s’

* Un graphe non orienté est connexe (ou simplement connexe) si tous les sommets de G
sont accessibles entre eux, c'est-a-dire que, pour toute paire de sommets s et s, il existe
une chaine reliant s a s’. Il n’y a pas de sommet isolé.
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Simplification de vocabulaire : Par la suite, on emploiera le terme de chemin
au lieu de chaine.

Pour les graphes orientés :

* Pour un graphe orienté, les arétes sont orientées. On les appelle des arcs. Si on note s

I’origine de I’arc et s’ son extrémité, on dit aussi que s’ est le successeur de s et s le

prédécesseur de s°.

La taille d’un graphe orienté est le nombre total d’arcs.

* Le degré sortant d’un sommet s, noté d, () est le nombre d’arcs dont s est le point de
départ.

¢ Le degré entrant d’un sommet s, noté d_ (s) est le nombre d’arcs dont s est le point
d’arrivée.

* Le degré du sommet sest: d(s)=d, (s)+d_(s)

* Un chemin reliant un sommet s 2 un sommet s’ est une suite d’arcs consécutifs permet-
tant de se rendre de s a 5.

* La longueur d’un chemin est le nombre d’arcs du chemin, ou la somme des poids des

arcs qui le constituent.

La distance dist s, s') entre deux sommets s et s’ est la longueur d’un plus court chemin

reliant s & s”. S’il n’existe pas de chemin entre s et s’, alors dist (s, s') = =, notée inf.

* Un chemin est simple si tous les arcs du chemin sont différents.

* Un chemin est élémentaire si tous les sommets sont différents sauf pour le sommet
d’arrivée, qui peut étre confondu avec le sommet de départ (dans le cas des circuits).

* Un circuit est un chemin simple tel que le sommet d’arrivée est le méme que le sommet
de départ.

* Un sommet s’ est accessible a partir d’un sommet s s’il existe un chemin reliant s a s’

* Un graphe orienté est fortement connexe si tous les sommets de G sont accessibles
entre eux, c’est-a-dire que, pour toute paire de sommets s et s’, il existe un chemin
reliant de s a s’ et aussi un chemin de s’ a s. Il n’y a pas de sommet isol€.

* Le poids des arcs peut étre négatif. Un cycle de poids négatif (ou absorbant) est un circuit
pour lequel le poids est négatif, c’est-a-dire que la somme des poids des arcs est négative.

Simplification de vocabulaire : Par la suite, on emploiera le terme de cycle au
lieu de circuit.

Remarque : Des arétes reliant la méme paire de sommets sont des arétes multiples.
Un graphe est simple s’il ne contient ni boucle ni aréte multiple. Conformément au
programme, on n’étudiera par la suite que des graphes simples.

On appelle graphe pondéré un graphe dont les arétes sont affectées d’un nombre appelé
poids (ou cofit). Le poids d’un arc peut représenter la distance entre deux sommets voisins
pour un réseau routier. Dans certains graphes, le poids des arcs peut étre négatif.

On peut implémenter un graphe par une matrice d’adjacence ou une liste d’adjacence.
Matrice d’adjacence :

On utilise une liste de listes. Par exemple la matrice

32 |est représentée par la liste M
8 6

contenant deux listes de longueur 2 : M=[[3, 2], [8, 6]].Chacune de ces listes de
longueur 2 représente une ligne de la matrice. 151
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Dans une matrice d’adjacence n x n, n désigne le nombre de sommets du graphe (ordre du
graphe). On peut savoir pour chaque paire de sommets s’ils sont voisins ou non. On ren-
contre plusieurs cas :

1) Graphe non pondéré :

¢ Graphe non orienté : Si deux sommets différents i et j sont reliés par une aréte, alors
MIiI[j] = M[jli] = 1 sinon Mi][j] = MIjl[i] = 0.

* Graphe orienté : S’il existe un arc allant de i vers j, alors M[7][j] = 1, sinon M[{][j] = 0.

2) Graphe pondéré :

* Graphe non orienté : Si deux sommets différents i et j sont reliés par une aréte, alors
M[i][j] = M[j][i] = distance entre les sommets i et j, sinon M[{][j] = M[j][{] = inf.

* Graphe orienté : S’il existe un arc allant de i vers j, alors M[i][j] = distance entre les
sommets d’origine i et d’extrémité j, sinon cette distance vaut I’infini : M[7][j] = inf. Le
poids des arcs peut étre négatif (voir exercice 14.4 « Algorithme de Floyd-Warshall »
dans le chapitre « Programmation dynamique »).

Liste d’adjacence :
On a plusieurs possibilités pour représenter une liste d’adjacence dans Python :
1) Dictionnaire :

* Graphe non orienté : La clé associ€e a chaque sommet représente la liste des sommets
adjacents.
* Graphe orienté : La clé associée a chaque sommet représente la liste des successeurs.

2) Liste :

* Graphe non orienté : Chaque élément de la liste contient un sommet et la liste des som-
mets adjacents.
* Graphe orienté : Chaque élément de la liste contient un sommet et la liste des successeurs.

Algorithmes de parcours de graphe :

On va étudier plusieurs algorithmes de parcours de graphe : parcours en largeur (avec une
file FIFO — First In, First Out : « premier entré, premier sorti »), parcours en profondeur
(avec une pile LIFO — Last In, First Out : « dernier entré, premier sorti »).

Un graphe non orienté, connexe et acyclique est un arbre.
Chaque €élément de ’arbre est appelé un nceud. Au niveau élevé, on trouve le nceud racine.

Au niveau juste en dessous, on trouve les nceuds fils (ou descendants). Un nceud n’ayant
aucun fils est appelé feuille.

Le nombre de niveaux de 1’arbre est appelé hauteur.

On peut construire un graphe a partir d’un autre. Un sous-graphe G’ d’un graphe G est
composé de certains des sommets de G et de certaines des arétes de G.

Un graphe H est un arbre couvrant du graphe G si H est un arbre que I’on peut obtenir en
supprimant des arétes de G.

Remarque : On peut définir une matrice d’incidence n X p ol n désigne le nombre
de sommets du graphe et p le nombre d’arétes (ou d’arcs).
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Les exemples suivants peuvent étre modélisés par des graphes :

* Site web : chaque page est un sommet du graphe. Un lien hypertexte est une aréte entre
deux sommets.

» Réseau ferroviaire : chaque gare est un sommet. Les voies entre deux gares sont des arétes.

» Réseau routier : chaque ville est un sommet. Les routes entre deux villes sont des arétes.

» Réseau social : les sommets sont des personnes. Deux personnes sont adjacentes lorsqu’elles
sont amies. Le graphe est orienté si I’amitié€ n’est pas réciproque entre deux personnes.

%

Remarque :

1. La matrice d’adjacence est : M =

< 8 W o o
§ 0o — O ©
N A O = W
§ © h oo §
[N S I AN

Tous les éléments de la diagonale sont nuls puisque la distance entre les sommets
i etiestnulle : M[i][j] =0.

Les éléments sont symétriques par rapport a la diagonale puisque la distance entre
les sommets i et j est la méme qu’entre les sommets j et i : M[i][j] = M[;][{].

On peut déduire de la deuxieme ligne de la matrice que le sommet 1 est reli€ aux
sommets : 0, 2 et 3.

Pour la troisieéme ligne, le sommet 2 est reli€ aux sommets : 0, 1, 3 et 4.

%

M=[[0,9,3,inf,7],(9,0,1,8,inf], [3,1,0,4,2],\

[inf,8,4,0,inf], [7,inf,2,inf, 0]]

def voisins (M, 1i):

# la fonction renvoie la liste des voisins du sommet i
# pour la matrice M

n=len (M) # nb de lignes de la matrice d’adjacence
L=1[] # initialisation de la liste L
for j in range(n): # j varie entre 0 inclus et n exclu

if M[1]1[31>0 and M[i][j]<inf:
L.append(j) # si 0 < distance < inf, on ajoute le
# sommet dans L
return (L)

On obtient par exemple voisins (M, 4) =]0,2].

def degré (M, 1i):

# la fonction renvoie le nombre de voisins du sommet i
# pour la matrice M

n=len (M) # nb de lignes de la matrice d’adjacence
somme=0 # le nombre d'arétes vaut 0
for j in range(n): # j varie entre 0 inclus et n exclu
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if M[i][j]1>0 and M[i][j]l<inf:
somme+=1 # incrémente de 1 le nombre d’arétes
# si distance > 0
return somme

On obtient par exemple degré (2) = 4. On écrit alors : d(2) = 4.
4,
def longueur (M, L):

# la fonction renvoie la longueur du trajet décrit par
# la liste L pour la matrice M

somme=0
n=len (L)
for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
if M[L[i]][L[i+1]]1>=0:
somme+=M[L[i]][L[i+1]]
else:
somme=-1

return somme # la fonction s’arréte et retourne -1

return somme

On obtient par exemple : longueur (M, [0,1,3,2]) =21.

Exercice 12.2 : Graphe avec liste d’adjacence. Dictionnaire
des sommets adjacents

On considere le graphe G = (S, A) non orienté, ol le nombre situé sur 1’aréte
joignant deux sommets est leur distance, supposée entiere :

1. Définir un dictionnaire représentant le graphe G. Chaque cl€ est associée a un
sommet. La valeur de la clé représente le dictionnaire des sommets adjacents,
dont la valeur de la clé est la distance entre les deux sommets.

2. Ecrire une fonction voisins dict, d’arguments un dictionnaire dico,
un sommet i, renvoyant la liste des voisins du sommet i.

3. Ecrire une fonction degre dict, d’arguments un dictionnaire dico, un
sommet i, renvoyant le nombre de voisins du sommet i, c’est-a-dire le nombre
d’arétes issues de 1.
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4. Ecrire une fonction longueur dict, d’arguments un dictionnaire di co,
une liste L de sommets de G, renvoyant la longueur du trajet décrit par cette
liste L, c’est-a-dire la somme des longueurs des arétes empruntées. Si le trajet

n’est pas possible, la fonction renvoie —1.

Analyse du probleme

On définit un dictionnaire ot chaque clé représente un sommet. Pour un sommet
donné, la valeur de la clé est un dictionnaire qui contient I’ensemble des sommets

adjacents avec les distances entre les deux sommets.

¥

1. Le dictionnaire est :

dico={0:{1:9, 2:3, 4:7},\
1:{0:9, 2:1, 3:8},\
2:{0:3, 1:1, 3:4, 4:2},\
3:{1:8, 2:4},\

4:{0:7, 2:2} }

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour 'utilisation des dictionnaires.

On peut écrire également :
dico=dict ()

dico[0]={1:9, 2:3, 4:7} # ajoute la clé 0
dico[1l]={0:9, 2:1, 3:8} # ajoute la clé 1
dico[2]={0:3, 1:1, 3:4, 4:2} # ajoute la clé 2
dico[3]={1:8, 2:4} # ajoute la clé 3
dico[4]={0:7, 2:2} # ajoute la clé 4
2.

def voisins dict(dico, 1i):
# la fonction renvoie la liste des voisins
# pour le dictionnaire dico
L=[] # initialisation de la liste L
if 1 in dico:
valeur in dico[i].items{() :
# parcourt les couples
L.append (clé)
return L

for clé,

On obtient par exemple voisins dict (dico,
3.

def degre dict (dico,
# la fonction renvoie le nombre de voisins
# pour le dictionnaire dico
somme=0

i)

if i in dico:
valeur in dico[i].items{():
# parcourt les couples
somme+=1
return somme

for clé,

(clé,

(clé,

dans dico

dans dico
dans dico
dans dico

dans dico

du sommet i

# teste si la clé i est dans le diction.

valeur) de

4) =10, 2].

du sommet i

# teste si la clé i est dans le diction.

valeur) de

dico

dico[i]

dico

dico[i]
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On obtient par exemple degre dict (dico, 2) = 4. On écrit alors :
d(2) = 4.
4,
def longueur dict(dico, L):
# la fonction renvoie la longueur du trajet décrit
# par la liste L pour le dictionnaire dico
somme=0
n=len (L)
for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
if L[i] in dico: # teste si la clé L[i] est dans dico
dico2=dico[L[i]]
if L[i+1] in dico2:
somme+=dico2 [L[1i+1]]
else:
somme=-1
return somme # la fonction s'arréte et retourne -1
else:
somme=-1
return somme # la fonction s'arréte et retourne -1

return somme

On obtient par exemple : longueur dict (dico, [0, 1, 3, 2])
=21.

Exercice 12.3 : Graphe avec liste d’adjacence. Liste des
sommets adjacents

On considere le graphe G = (S, A) non orienté :

1. Définir un dictionnaire représentant le graphe G. Chaque clé est associée a
un sommet. La valeur de la clé représente la liste des sommets adjacents.

2. Ecrire une fonction voisins dict, d’arguments un dictionnaire dico,
un sommet i, renvoyant la liste des voisins du sommet i.

3. Ecrire une fonction degre dict, d’arguments un dictionnaire dico, un
sommet i, renvoyant le nombre de voisins du sommet i, ¢’est-a-dire le nombre
d’arétes issues de 1.
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Analyse du probléme

On définit un dictionnaire ou chaque clé représente un sommet. Pour un som-
met donné, la valeur de la clé est une liste qui contient I’ensemble des sommets
adjacents.

2@ 1. Pour chaque sommet, on écrit la liste des sommets accessibles.
Le dictionnaire est :
dico liste={0:[1, 2, 4],\
1: [Ol 2’ 3] l\
2:00, 1, 3, 41,\
3:01, 21,\
4:00, 21}

’

Le sommet O est relié aux sommets 1, 2 et 4. La valeur de la clé 0 est la
liste des sommets adjacents [1, 2, 4].

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le
chapitre « Dictionnaire, pile, file, deque » pour l'utilisation des diction-
naires.

2.
def voisins dict liste(dico, 1i):
# la fonction renvoie la liste des voisins du sommet i
# pour le dictionnaire dico
L=1[] # initialisation de la liste L
if 1 in dico: # teste si la clé i est dans le diction. dico
for elt in dico[i]:
L.append (elt)
return L

On obtient par exemple voisins dict (dico, "4") =[O0, 2].
3.
def degre dict liste(dico, 1i):
# la fonction renvoie le nombre de voisins du sommet i
# pour le dictionnaire dico
somme=0
if 1 in dico: # teste si la clé i est dans le diction. dico
for elt in dico[i]:
somme+=1
return somme

On obtient par exemple degre dict (dico, 2) = 4. On écrit alors :
d(2) = 4.

Exercice 12.4 : Parcours en largeur d'un arbre en utilisant une file

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder a d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 2 9.
On considere I’arbre G = (S, A) représentant la structure du site web.
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On utilisera les deux opérations de base sur les files : defiler pour la sup-
pression d’un élément et enfiler pour I’ajout d’un élément. On rappelle que
F.pop (0) permet de supprimer F [0] dans la liste F.

On cherche a parcourir en largeur tous les sommets de cet arbre G (toutes les
pages web de ce site).

Les étapes de I’algorithme de parcours en largeur sont les suivantes :
* Ajouter le sommet de départ dans la file F initialement vide.

* Tant que la file F n’est pas vide, supprimer 1’élément x a la téte de la file.
Ajouter les fils de x dans la file.

1. Définir un dictionnaire di co représentant I’arbre G. Chaque clé€ est associée
a un sommet x. La valeur de la clé représente la liste des fils du sommet x.

2. Ecrire une fonction parcourslargeur qui admet comme arguments un
dictionnaire dico et un sommet de départ début permettant de parcourir en
largeur un arbre.

3. Dans quel ordre sont parcourus les sommets dans la fonction
parcourslargeur (dico, 1) ?

Analyse du probléme

L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents a un sommet donné pour ensuite les explorer
un par un.

L’implémentation repose sur une file F dans laquelle on place le premier sommet &
la queue de F et les sommets adjacents non explorés a la queue de F. On utilise le
principe FIFO (First In, First Out : « premier entré, premier sorti »).

Voir exercice 11.5 « Opérations de base sur les files » dans le chapitre
« Dictionnaire, pile, file, deque » pour I’implémentation des files par les listes de
Python en utilisant le principe FIFO.

Cours :
Un graphe non orienté connexe et acyclique est un arbre. Chaque élément de 1’arbre est
appelé un nceud.
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Au niveau €levé, on trouve le nceud racine (1). Au niveau juste en dessous, on a trois nceuds
fils (2, 3 et 4). Un nceud n’ayant aucun fils est appelé feuille. Les noeuds 3, 5, 7, 8 et 9 sont
des feuilles.

Le nombre total de niveaux de I’arbre est appelé€ hauteur. La hauteur de I’arbre G vaut 4.

G est un arbre ternaire puisque chaque nceud comporte au plus trois fils au niveau inférieur.
Du point de vue d’un fils, le nceud dont il est issu au niveau supérieur est appelé pere.

On utilise une liste F pour modéliser une file. Par exemple ¥=[{10, 3, 5, 8].

défiler enfiler
<« 10] 3 5 8 <—

téte queuc

Si on ajoute I’élément 2 (ou si on enfile I’élément 2), on obtient F=[10, 3, 5, 8, 2].
Enfiler un élément a une file consiste a ajouter un élément a la queue de la file.

Défiler un élément d’une file consiste a enlever 1’élément situé a la téte de la file.

défiler enfiler

€— J10|3]5]|8]| 2| ¢<—

téte queue

2@ 1. Le premier niveau de l'arbre contient un sommet : 1.
Le deuxiéme niveau contient trois sommets : 2, 3 et 4.

Le troisiéme niveau contient trois sommets : 5, 6 et 8.

Le quatriéme niveau contient deux sommets : 7 et 9.

|dico:{1

:[2, 3, 41, 2:[5, 6], 3:01,4:1[8],\
5:[1, 6 9:

:17, 91, 7:01, 8:01,9:[1}

Le sommet 2 a deux fils : 5 et 6. La valeur de la clé 2 est la liste des fils :
[5, 6].

2. On utilise dans Python les listes pour manipuler les files.

F.pop (0) permet de supprimer F[0] dans la liste F, c'est-a-dire 'élé-
ment situé a la téte de F.

Remarque : Ne pas confondre avec F. pop (), qui permet de supprimer le dernier
élément de la liste F.

def enfiler(F, x):
2&7 F.append (x) # ajoute x a la queue de la file
# ou a la fin de la liste F

def defiler (F):
x=F.pop (0) # supprime 1’élément situé a la téte de F : F[O0]
return x # retourne x

def parcourslargeur (dico, début):
# fonction permettant un parcours en largeur du dictionnaire
# dico en partant de début
F=[début] # modélisation d’une file avec la liste F
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while F!=[]:
x=defiler (F) # supprime 1’élément a la téte de
# la file F : F[O0]
for elt in dico[x]:
enfiler (F, elt) # ajoute les fils du sommet x
# a4 la queue de la file F

Remarque :

dico[x] contient les fils du sommet x. G ne contient pas de cycle par définition
d’un arbre. Tous les fils sont nécessairement non explorés. On peut donc tous les
ajouter dans la file F.

On étudiera un graphe dans I’exercice suivant « Parcours en largeur d’un graphe

s\ 2

avec une deque » : il faudra tester si les sommets adjacents ont déja été explorés.

¥

3. F=[1] au début de l'algorithme.

e On enléve 1 de la file F et on explore ce sommet. Les fils de « 1 » sont ajou-
tés au fur et a mesure a la queue de F. La file Fvautalors: [2, 3, 4].

® On enléve 2, le premier élément de F (élément situé a la téte de la file).
On explore le sommet 2. Les fils de « 2 » sont ajoutés a la queue de F.
La file F vaut alors : [3, 4, 5, 6].

¢ On enléve 3, le premier élément de F (élément situé a la téte de la file). On
explore le sommet 3. Il n'y a pas de fils. La file F vautalors: [4, 5, 6].

® On enléve 4, le premier élément de F (élément situé a la téte de la file).
On explore le sommet 4. Les fils de « 4 » sont ajoutés a la queue de F.
La file F vaut alors : [5, 6, 8].

® On enléve 5, le premier élément de F (élément situé a la téte de la file).
On explore le sommet 5.

o cee

Finalement, on a exploré les sommets dans Lordre :

o1,

® 2, 3,4,

®5,6,38,

7, 0.

Les fleches sur le graphe représentent le sens de parcours niveau par niveau

et de gauche a droite. On a bien exploré les sommets en largeur.
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On va étudier une amélioration du parcours en largeur pour un graphe non
orienté, connexe et possédant des cycles dans l'exercice suivant « Parcours
en largeur d'un graphe avec une deque ».

Remarques :

L’ordre de parcours des sommets pour un niveau donné n’a pas d’importance. Ici,
on les parcourt dans le sens croissant, soit de gauche a droite.

Le dictionnaire dico2 ci-dessous contient tous les sommets adjacents a un som-
met donné. La fonction parcourslargeur (G) ne se termine jamais puisque la
boucle for ajoute tous les sommets adjacents. Dans I’exercice suivant « Parcours
en largeur d’un graphe avec une deque », on va résoudre ce probléme en ne consi-
dérant que les sommets adjacents non explorés.

%

dico2={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 61,\
4:[1, 6, 8], 5:[2], 6:[2, 7, 91, 7:[6],\
8:[4], 9:[6]}

Exercice 12.5 : Parcours en largeur d’'un graphe avec une deque

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder a d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 2 9.
On considere le graphe non orienté G =(S, A) représentant la structure du
site web.

On cherche a parcourir en largeur tous les sommets de ce graphe (toutes les
pages web de ce site). On utilise la liste VISITED représentant les sommets
déja explorés.

Les étapes de I’algorithme de parcours en largeur sont les suivantes :

* Ajouter le sommet de départ dans la deque D initialement vide.

» Tant que D n’est pas vide, supprimer le sommet x a I’extrémité gauche de

D. Ajouter a I’extrémité droite de D les sommets non explorés adjacents au
sommet x.

1. Définir un dictionnaire dico représentant le graphe G. La clé associée a
chaque sommet représente la liste des sommets adjacents.
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2. Ecrire une fonction parcourslargeur2 qui admet comme arguments un
dictionnaire dico et un sommet de départ début permettant de parcourir en

largeur un graphe non orienté, connexe.

3. Dans la fonction parcourslargeur2 (dico, 1), dans quel ordre sont
parcourus les sommets ?

4. Calculer la complexité de cet algorithme dans le pire des cas.

Analyse du probleme

L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents a un sommet donné pour ensuite les explorer
un par un.

L’implémentation repose sur une deque D dans laquelle on place le premier sommet
a ’extrémité droite de D initialement vide et les sommets adjacents non explorés a
I’extrémité droite de D. On utilise le principe FIFO (First In, First Out : « premier
entré, premier sorti »). Voir exercice 11.6 « Utilisation des deques » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour la manipulation des deques.

Le graphe contient des cycles. Pour ne pas explorer plusieurs fois un méme som-
met, on marque les sommets déja explorés.

%

1.
|dico={1:[2, 3, 41, 2
5:[21, 6:[2, 7, 9]

1, 5, 61,3:[1, 6], 4:[1, 6, 8],\
:[6], 8:[4],9:[6]}

[

7

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la

liste des sommets adjacents [1, 5, 6].

2. Les sommets déja visités sont marqués pour éviter d'explorer plusieurs

fois un méme sommet. La liste VISITED contient les sommets visités.

Les étapes de l'algorithme de parcours en largeur sont les suivantes :

Initialisation de l'algorithme :

e Mettre le sommet de départ dans la deque D initialement vide.

e Laliste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :

e Supprimer le sommet x a l'extrémité gauche de D.

¢ Ajouter dans VISITED et a lextrémité droite de D les sommets non
explorés adjacents au sommet x.

def parcourslargeur?2 (dico, début):
# fonction permettant un parcours en largeur du dictionnaire
# dico en partant de début et retournant
# VISITED la liste des sommets visités
from collections import deque # module permettant d’utiliser
# les deques
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D=deque () # deque vide
D.append (début) # ajoute le sommet de départ
VISITED=[début]
while len (D) !=0:
x=D.popleft () # supprime le sommet x a 1l’extrémité
# gauche de D
L=dico[x] # liste contenant les sommets adjacents a x
for elt in L: # parcourt les éléments de L
if elt not in VISITED: # teste si le sommet n'a pas
# déja été exploré
D.append (elt) # ajoute le sommet elt a
# 1l’extrémité droite de D
#

VISITED.append(elt) le sommet elt a été exploré

Remarque :

dico[x] contient les sommets adjacents au sommet x. G peut contenir des cycles
puisqu’on ne considere pas d’arbre dans cet exercice. Il faut tester si les sommets

z:N 2z

adjacents ont déja été explorés.

Dans I’exercice précédent « Parcours en largeur d’un arbre en utilisant une file »,
on n’avait pas besoin de tester si les fils étaient déja explorés puisqu’on considérait
un arbre, sans cycle par définition.

%

3. La deque D vaut [1] au début de l'algorithme.

® On supprime l'élément a l'extrémité gauche de D. On explore ce sommet.
Les sommets adjacents a 1 non explorés sont ajoutés a U'extrémité droite
de D. La deque D vaut alors : [2, 3, 4].

® On supprime ['élément a l'extrémité gauche de D. On explore le sommet 2.
Les sommets adjacents a 2 non explorés sont ajoutés a l'extrémité droite
de D. La deque D vaut alors : [3, 4, 5, 6].

® On supprime l'élément a U'extrémité gauche de D. On explore le sommet 3.
Le sommet 6 a déja été exploré. On ne l'ajoute pas. La deque D vaut
alors : [4, 5, 6].

® On supprime l'élément a l'extrémité gauche de D. On explore le sommet 4.
Les sommets adjacents a 4 non explorés sont ajoutés a U'extrémité droite
de D. La deque D vaut alors : [5, 6, 8].

® On supprime l'élément a U'extrémité gauche de D. On explore le sommet 5.
Pas de nouveau sommet non exploré. La deque D vaut alors : [6, 8].

® On supprime 'élément a U'extrémité gauche de D. On explore le sommet 6.
La deque D vaut alors : [8, 7, 9].

® On supprime l'élément a 'extrémité gauche de D. On explore le sommet 8.
Pas de nouveau sommet non exploré. La deque D vaut alors : [7, 9].

® On supprime 'élément a l'extrémité gauche de D. On explore le sommet 7.
Pas de nouveau sommet non exploré. La deque D vaut alors : [9].

® On supprime l'élément a 'extrémité gauche de D. On explore le sommet 9.
Pas de nouveau sommet non exploré. La deque D est vide.
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Avec la fonction parcourslargeur?2 (dico, 1), on explore les som-
mets suivants : VISITED = [1, 2, 3, 4, 5, 6, 8, 7, 9].
4. Soit n le nombre de sommets et m le nombre d'arétes.

A chaque passage dans la boucle while len (D) !=0, on enléve un som-
met a U'extrémité gauche de la deque D. Cette boucle sera donc exécutée
au plus n fois.

A chaque fois que l'on supprime un sommet a Uextrémité gauche de la
deque D, la boucle for elt in L parcourt tous les sommets adjacents
au sommet supprimé. Comme il y a m arétes, les lignes D.append (elt)
et VISITED.append (elt) seront exécutées au plus une fois pour
chaque aréte, soit au plus m fois.

La complexité dans le pire des cas pour un graphe représenté par une liste
d’adjacence est linéaire en O(n + m).

Exercice 12.6 : Parcours en largeur d’un graphe avec une
matrice d'adjacence

On considere le graphe non orienté G = (S, A) :

AN

On utilise les listes de listes pour représenter les matrices dans Python.

1. Construire la matrice d’adjacence M, ; du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une aréte, alors M[{][j] = 1 sinon M[i][j] = 0.

2. Ecrire une fonction parcours largeur mat d’arguments une matrice
d’adjacence M et un sommet de départ début permettant de parcourir en lar-
geur le graphe. On utilise une deque pour parcourir en largeur le graphe. La
fonction affiche la liste des sommets explorés.

3. Dans quel ordre sont parcourus les sommets dans la fonction
parcourslargeur mat (M, 0) ?

4. Calculer la complexité de cet algorithme dans le pire des cas.

Analyse du probleme

L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) permet
de traiter les sommets adjacents a un sommet donné pour ensuite les explorer un par
un. I utilise une deque D dans laquelle il place le premier sommet a I’extrémité droite
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de D initialement vide et les sommets adjacents non explorés a I’extrémité droite de D.
On utilise le principe FIFO (First In, First Out : « premier entré, premier sorti »).

%

1. La matrice d'adjacence est : M =

—_— O = = O
S = = O
—_—— O = =
S O = = O
S O = O =

|M:[[O,l,l,O,l],[1,0,1,1,0],[1,1,0,1,1],\
to,1,1,09,0J,(01,0,1,0,0]1]
Remarque :

Tous les €léments de la diagonale sont nuls d’aprés la définition de la matrice
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport a la diagonale puisque le graphe n’est
pas orienté : M[i][j] = M[j][i].

On peut déduire de la deuxieme ligne de la matrice que le sommet 1 est reli¢ aux
sommets : 0, 2 et 3.

Pour la troisieéme ligne, le sommet 2 est reli€ aux sommets : 0, 1, 3 et 4.

2& 2. Les étapes de l'algorithme de parcours en largeur sont les suivantes :
Initialisation de l'algorithme :

e Mettre le sommet de départ dans la deque D initialement vide.

® la liste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :

e Supprimer le sommet 7 a U'extrémité gauche de D.

e Ajouter dans VISITED et a Uextrémité droite de D les sommets j non
explorés adjacents au sommet i.

def parcourslargeur mat (M, début):
# fonction permettant un parcours en largeur de la matrice M
# en partant de début et retournant VISITED la liste des
# sommets visités
from collections import deque # module permettant d’utiliser
# les deques
D=deque () # deque vide
D.append (début) # ajoute le sommet de départ
VISITED=[début] # liste des sommets explorés
while len (D) !=0:
i=D.popleft () # supprime le sommet i a
# l’extrémité gauche de D
for j in range(len(M[i])):
if M[i][j]==1 and (j not in VISITED) :
D.append(J) # ajoute le sommet j a
# l’extrémité droite de D
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VISITED.append(j) # le sommet j a été exploré
print (D, VISITED)
print ('Sommets explorés :',VISITED)

3. La deque D vaut [0] au début de l'algorithme.

® On supprime l'élément a U'extrémité gauche de D. On explore le sommet 0.
Les sommets adjacents a 0 non explorés sont ajoutés a U'extrémité droite
de D. La deque D vaut alors : [1, 2, 4]. La liste VISITED vaut : [0, 1,
2, 4].

® On supprime 'élément a l'extrémité gauche de D. On explore le sommet
1. Les sommets adjacents a 1 et non explorés sont ajoutés a l'extrémité
droite de D. La deque D vaut alors : [2, 4, 3]. La liste VISITED vaut :
[0, 1,2, 4,3].

® On supprime l'élément a l'extrémité gauche de D. On explore le sommet 2.
Pas de sommet non exploré adjacent a 2. La deque D vaut alors :
[4, 3]. La liste VISITED vaut : [0, 1, 2, 4, 3].

® On supprime lélément a Uextrémité gauche de D. Pas de sommet non
exploré voisin de 4. La deque D vaut alors : [3]. La liste VISITED vaut :
[0, 1, 2, 4, 3].

® On supprime lélément a l'extrémité gauche de D. Pas de sommet non
exploré voisin de 3. La deque D vaut alors : [ ]. La liste VISITED vaut :
[0, 1, 2, 4, 3].

La boucle while est terminée lorsque D est vide. Avec la fonction

parcourslargeur mat, on explore les sommets suivants : VISITED

=[0, 1, 2, 4, 3]. On a bien réalisé un parcours en largeur.

4. Soit n le nombre de sommets.

A chaque passage dans la boucle while len (D) !=0, on supprime un
sommet a l'extrémité gauche de la deque D. Cette boucle sera donc exécu-
tée au plus n fois.

A chaque itération de la boucle while, la boucle for j§ in range est
exécuté au maximum n fois.

La complexité dans le pire des cas pour un graphe représenté par une
matrice d’adjacence est quadratique en O(n?).
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Exercice 12.7 : Parcours en profondeur d’un graphe

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder a d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 a 9.
On considere le graphe non orienté G =(S, A) représentant la structure du
site web.

On considere une pile P et une liste PARCOURS qui contient la liste des som-
mets explorés. On pose début=1 le sommet de départ.

Les étapes de 1’algorithme de parcours en profondeur sont les suivantes :
Initialisation de I’algorithme :

La pile P contient le sommet de départ : P=[début].

La liste PARCOURS contient le sommet de départ : PARCOURS=[début].
Boucle tant que la pile P n’est pas vide :

* S’il existe un sommet elt non exploré adjacent au sommet x (situ€ en haut de
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile elt dans P et
on ajoute elt dans la liste PARCOURS.

* Si le sommet x (situé en haut de la pile P) ne possede pas de voisin non
exploré, alors on dépile cet élément de la pile.

On utilisera un flag trouve (de valeur True ou False) qui permet de savoir
si le sommet x possede un voisin non exploré.

1. Définir un dictionnaire di co représentant le graphe G. Chaque clé est asso-
ciée a un sommet. La valeur de la clé représente la liste des sommets adjacents.

2. Ecrire une fonction itérative parcoursprofondeur qui admet comme
arguments un dictionnaire dico et un sommet de départ début. La fonction
retourne la liste PARCOURS.

3. Que retourne parcoursprofondeur (dico, 1) ?

Analyse du probléme

L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais)
explore une branche en profondeur depuis un sommet avant de passer a la suivante.
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On va le plus profond possible pour chaque branche. On utilise le principe LIFO
(Last In, First Out : « dernier entré, premier sorti »).

¥

1.

dico={1:(2, 3, 4], 2:[1, 5, 6], 3:[11, 4:[1, 8],\
5:[021, 6:[(2, 7, 91, 7:[6], 8:[4], 9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].

2. Comparaison entre les algorithmes de parcours en largeur et en pro-
fondeur :

® Parcours en largeur (BFS, Breadth First Search, en anglais) : voir exer-
cice 12.5 « Parcours en largeur d'un graphe avec une deque ». On utilise
le principe FIFO (First In, First Out : « premier entré, premier sorti »).
Tous les sommets non explorés adjacents au sommet traité sont ajou-
tés dans la liste VISITED.

® Parcours en profondeur ou DFS : on utilise le principe LIFO (Last In, First
Out : « dernier entré, premier sorti »). On parcourt tous les sommets
adjacents au sommet traité avec une boucle while i<len (L) and
trouve==False.

Dés qu'on trouve un sommet non exploré, le flag trouve passe a
True, on ajoute ce sommet dans la liste PARCOURS et dans la pile P,
on quitte la boucle while i<len(L) and trouve==False.
On ne dépile pas ce sommet ajouté et on continue lexploration en
profondeur en repartant au début de la boucle while len (P) !=0.

Remarque : On empile dans P uniquement un voisin non exploré dans le parcours
en profondeur alors qu’on ajoute dans D tous les voisins non explorés dans le par-
cours en largeur.

¥

def parcoursprofondeur (dico, début):
# fonction permettant un parcours en profondeur du
# dictionnaire dico en partant de début et retournant
# PARCOURS la liste des sommets visités
P=[début]
PARCOURS=[début]
while len(P) !=0:
x=P.pop () # dépile pour récupérer 1l’élément en haut
# de la pile

P.append(x) # empile x car il ne faut pas dépiler x
# & ce stade

L=dico[x] # L = liste des sommets adjacents a x

trouve=False

i=0

while i<len (L) and trouve==False:
if L[i] not in PARCOURS: # cherche dans L un voisin
# non exploré
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trouve=True # on a trouvé un voisin non exploré
P.append(L[i]) # ajoute ce sommet en haut de
# la pile

PARCOURS.append(L[i]) # marque ce voisin exploré

i+=1

if trouve==False:
P.pop() # dépile le haut de la pile
return PARCOURS

print ("Parcours en profondeur d'un graphe")
PARCOURS=parcoursprofondeur (dico, 1)
print (PARCOURS)

On utilise trés souvent trois opérations de base avec les piles : « empiler »,
« dépiler » et « tester si la pile est vide ». Voir exercice 11.3 « Opérations
de base sur les piles » dans le chapitre « Dictionnaire, pile, file, deque ».
Les lignes suivantes permettent de récupérer le sommet x en haut de la pile
pour obtenir la liste des sommets adjacents.

x=P.pop () # dépile pour récupérer 1l’élément en haut de la pile
P.append (x) # empile x
L=dico[x] # x est 1’élément en haut de la pile

Remarque : Au début de la boucle while len (P)!=0, il faut récupérer le
numéro du sommet en haut de la pile. Lorsqu’on utilise des piles, on ne peut utili-
ser que « empiler » et « dépiler » pour récupérer le numéro du sommet en haut de la
pile. Il ne faut surtout pas dépiler ce sommet a cette étape du programme puisqu’il
peut rester des sommets non explorés adjacents a ce sommet.

%

PARCOURS.append (L[1]) permet de marquer le sommet que lon a
découvert lors de U'exploration.

3.

Initialisation de l'algorithme :

® La pile P contient le sommet de départ : P = [1].

® |a liste PARCOURS contient le sommet de départ : PARCOURS = [1].
Etapes de la boucle while :

¢ Le hautde la pile P (sommet 1) posséde un voisin non exploré: 2 caril n'est
pas dans la liste PARCOURS. On ajoute alors 2 dans la liste PARCOURS
et dans la pile P. On obtient : P = [1, 2] ; PARCOURS = [1, 2].

® Le haut de la pile P (sommet 2) posséde un voisin non exploré : 5 car
il n‘est pas dans la liste PARCOURS. On ajoute alors 5 dans la liste
PARCOURS et dans la pile P. On obtient : P = [1, 2, 5] ; PARCOURS
=[1, 2, 5].
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e Le haut de la pile P (sommet 5) na pas de voisin non exploré. On dépile 5

de la pile P. On obtient: P =[1, 2] ; PARCOURS = [1, 2, 5]. On remonte
au sommet précédent et on continue l'exploration du sommet 2. On réa-
lise un parcours en profondeur puisqu’on va le plus loin possible. On est
bloqué au sommet 5. On remonte en arriére et on explore le sommet 2
en explorant en profondeur ce sommet.

Le haut de la pile (sommet 2) posséde un voisin non exploré : 6. On
ajoute alors 6 dans la liste PARCOURS et dans la pile P. On obtient :
P =[1, 2, 6] ; PARCOURS = [1, 2, 5, 6].

Le haut de la pile (sommet 6) posséde un voisin non exploré : 7. On
ajoute alors 7 dans la liste PARCOURS et dans la pile P. On obtient :
P=1][1,2,6,7]; PARCOURS =1, 2, 5, 6, 7].

Le haut de la pile P (sommet 7) n'a pas de voisin non exploré. On dépile 7
de la pile P. P=[1, 2, 6] ; PARCOURS =[1, 2, 5, 6, 7]. On remonte au
sommet précédent et on continue l'exploration du sommet 6.

Le haut de la pile (sommet 6) posséde un voisin non exploré : 9. On
ajoute alors 9 dans la liste PARCOURS et dans la pile P. On obtient :
P=1[1,2,6,9]; PARCOURS =1, 2,5, 6,7, 9].

Le haut de la pile P (sommet 9) n'a pas de voisin non exploré. On dépile 9
de la pile P. On obtient: P =1, 2, 6] ; PARCOURS =[1, 2, 5, 6, 7, 9].
On remonte au sommet précédent et on continue l'exploration du
sommet 6.

Le sommet 6 n'a plus de sommet non exploré. On remonte au sommet 2
qui n‘a plus de sommet non exploré. On remonte au sommet 1. On
obtient : P =[1] ; PARCOURS =[1, 2, 5, 6, 7, 9].

Le haut de la pile (sommet 1) posséde un voisin non exploré : 3. On
ajoute alors 3 dans la liste PARCOURS et dans la pile P. On obtient :
P =1, 3]; PARCOURS =[1, 2, 5,6, 7,9, 3].

Le haut de la pile P (sommet 3) n'a pas de voisin non exploré. On dépile 3
de la pile P. On obtient : P = [1] ; PARCOURS =[1, 2, 5, 6, 7, 9, 3].
On remonte au sommet précédent et on continue l'exploration du
sommet 1.

Le haut de la pile (sommet 1) posséde un voisin non exploré : 4. On
ajoute alors 4 dans la liste PARCOURS et dans la pile P. On obtient :
P =1, 4] ; PARCOURS =[1, 2, 5,6, 7,9, 3, 4].

Le haut de la pile (sommet 4) posséde un voisin non exploré : 8. On
ajoute alors 8 dans la liste PARCOURS et dans la pile P. On obtient :
P=1[1, 4, 8] ; PARCOURS =1, 2,5,6,7,9, 3, 4, 8].

Le haut de la pile P (sommet 8) n’a pas de voisin non exploré. On dépile 8
de la pile P. On obtient : P =[1, 4] ; PARCOURS =1, 2, 5,6, 7,9, 3,
4, 8]. On remonte au sommet précédent et on continue l'exploration du
sommet 4.
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® Le haut de la pile P (sommet 4) n'a pas de voisin non exploré. On
dépile 4 de la pile P. On obtient : P = [1] ; PARCOURS =[1, 2, 5, 6, 7,
9, 3, 4, 8]. On remonte au sommet précédent et on continue l'explora-
tion du sommet 1.

® Le haut de la pile P (sommet 1) n'a pas de voisin non exploré. On
dépile 1 de la pile P. On obtient: P=[]; PARCOURS =1, 2, 5, 6, 7,
9,3, 4, 8].

L'algorithme est terminé puisque la pile P est vide.

Remarques :

Dans I’algorithme du parcours en profondeur, on peut choisir d’autres parcours
d’exploration :

* Le sommet 1 a trois sommets adjacents.

* On a commencé par explorer en profondeur 2 et 5 mais on aurait pu explorer un
autre parcours, par exemple 4 et 8.

Exercice 12.8 : Test de connexité d'un graphe - Parcours en

profondeur - Arbre couvrant

On considere le graphe non orienté G = (S, A) :

On utilise les listes de listes pour représenter les matrices dans Python.

1. Construire la matrice d’adjacence M; ; du graphe G. Si deux sommets diffé-
rents i et j sont relié€s par une aréte, alors M[{][j] = 1 sinon M[{][j] = 0.

2. Ecrire une fonction testgrapheconnexe profondeur qui admet
comme argument une matrice d’adjacence M et retourne True si le graphe est
connexe et False sinon en utilisant le parcours en profondeur.

3. Ecrire une fonction arbrecouvrant profondeur qui admet comme
arguments une matrice d’adjacence M et un sommet de départ début permet-
tant de récupérer une matrice d’adjacence représentant I’arbre couvrant corres-
pondant au parcours en profondeur pour un graphe non orienté et connexe.
On considere deux listes (PERE, PARCOURS) et une pile P. La liste PARCOURS
contient la liste des sommets explorés. PERE [k] représente le pere de
PARCOURS [Kk].
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Les étapes de I’algorithme sont les suivantes :
Initialisation de I’algorithme :
* La pile P contient le sommet de départ.

* La liste PARCOURS contient le sommet de départ.
* Laliste PERE contient —1.

Boucle tant que la pile P n’est pas vide :

* S’il existe un sommet i non exploré adjacent au sommet x (situé€ en haut de
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile i dans P, on
ajoute i dans la liste PARCOURS et on ajoute x dans la liste PERE.

* Si le sommet x (situé en haut de la pile P) ne possede pas de voisin non
exploré, alors on dépile cet élément de la pile.

4. Représenter I’arbre couvrant du graphe G.

Analyse du probleme

Un graphe non orienté est connexe (ou simplement connexe) si on peut relier,
directement ou non, n’importe quel sommet a n’importe quel autre sommet du
graphe par un chemin. Il n’y a pas de sommet isolg.

On utilise le parcours en profondeur pour construire un arbre inclus dans le graphe
G et qui relie tous les sommets de ce graphe (voir exercice précédent « Parcours en
profondeur d’un graphe »).

Pour construire 1’arbre couvrant, on définit deux listes : PARCOURS et PERE. La
liste PERE contient la liste des peéres pour chaque sommet de PARCOURS. Il faut
en effet connaitre la liste des sommets parcourus et savoir comment on a atteint ce
sommet.

¥

1. La matrice d'adjacence est : M =

N = =)
N e
—_ = O = =
C O = =0
C o= O =

v=[[o,1,1,0,1J,(1,0,1,1,01,1,1,0,1,1],\

rLr Ly VeV UL,V LYy

Remarque :

Tous les éléments de la diagonale sont nuls d’apres la définition de la matrice
d’adjacence : M[i] [i] = 0.

Les éléments sont symétriques par rapport a la diagonale puisque le graphe n’est
pas orienté : M[7][j] = M[j][{].
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On peut déduire de la deuxieme ligne de la matrice que le sommet 1 est reli¢ aux
sommets : 0, 2 et 3.

Pour la troisieéme ligne, le sommet 2 est reli€ aux sommets : 0, 1, 3 et 4.

2& 2. Pour savoir si le graphe G est connexe, on récupére la liste des sommets
explorés avec l'algorithme de parcours en profondeur. Si tous les sommets

du graphe G sont dans cette liste, alors G est connexe.

On appelle début le sommet de départ. On pose par exemple début = 0.

On aurait pu prendre un autre sommet de G.

def testgrapheconnexe profondeur (M) :
# la fonction retourne True si le graphe est connexe
# et False sinon pour la matrice d’adjacence M
n=len (M)
début=0 # on prend un sommet quelconque, par exemple 0
P=[début]
PARCOURS=[début]
while len(P) !=0:
x=P.pop () # dépile pour récupérer 1’élément en haut
# de la pile
P.append(x) # empile x car il ne faut pas dépiler x
# a ce stade
trouve=False
i=0
while i<n and trouve==False:
if M[x,1]>0 and i not in PARCOURS: # cherche un sommet
# non exploré

trouve=True # on a trouvé un sommet non exploré
P.append (i)
PARCOURS.append (i) # marque ce sommet exploré
i+=1
if trouve==False:
P.pop() # dépile le haut de la pile

if len (PARCOURS)==n:
return True # le graphe est connexe
else:
return False # le graphe n’est pas connexe

Dans la fonction testgrapheconnexe profondeur, la liste
PARCOURS donne la liste de tous les sommets explorés avec l'algorithme
en profondeur.

n=1len (M) retourne le nombre de lignes de la matrice M.

Il suffit de tester si la longueur de la liste PARCOURS est égale au nombre
de lignes de la matrice M pour savoir si on a bien exploré tous les sommets
du graphe.

3. L'arbre couvrant d'un graphe non orienté et connexe est un arbre inclus
dans le graphe et qui relie tous les sommets du graphe G.

Pour construire l'arbre couvrant, il suffit de parcourir les listes PARCOURS
et PERE en commeng¢ant a PARCOURS [1]. Le pére de PARCOURS [k]
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est PERE [k]. On peut ainsi remplir la matrice d'adjacence de l'arbre cou-
vrant.

def arbrecouvrant profondeur (M, début):
# la fonction retourne 1’arbre couvrant de la matrice M
# en partant du sommet début (entier)
# le graphe est non orienté et connexe

n=len (M)
P=[début]
PARCOURS=[début]
PERE=[-1] # on n'utilise pas le premier élément de PERE
while len(P) !=0:
x=P.pop () # dépile pour récupérer 1'élément en haut
# de la pile
P.append(x) # empile x car il ne faut pas dépiler x

# a ce stade
trouve=False
i=0
while i<n and trouve==False:
if M[x][1]>0 and i not in PARCOURS: # cherche un sommet
# non exploré

trouve=True # on a trouvé un sommet non exploré
PERE. append (x) # ajoute le pere du sommet i
P.append (i)

PARCOURS.append (i) # marque ce sommet i exploré
i+=1
if trouve==False:
P.pop() # dépile le haut de la pile

print ('Parcours :',PARCOURS)
print ('Pere :',PERE)

# Construction de 1l’arbre couvrant
mat=[[0 for j in range(n)] for i in range(n)]
for k in range(l, len (PARCOURS)) : # k varie entre 1 inclus
# et len (PARCOURS) exclu.
# PARCOURS[0] n'a pas de pere.
indice pere=PERE [k]
indice fils=PARCOURS [k]
mat [indice pere] [indice fils]=1
mat[indice fils][indice pere]l=1 # la matrice est
# symétrique car le graphe n'est pas orienté

return mat

On n’utilise pas PERE [0]. On aurait pu écrire PERE=[None] au lieu de
PERE=[-1].

Remarque :

On utilise tres souvent trois opérations de base avec les piles : « empiler », « dépi-
ler » et « tester si la pile est vide ». Voir exercice 11.5 « Opérations de base sur
les piles » dans le chapitre « Dictionnaire, pile, file, deque ». Les lignes suivantes
permettent de récupérer le sommet x du haut de la pile.
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x=P.pop ()

P.append (x)

¥

# on dépile pour récupérer 1l'élément en haut de la pile

4. La liste PARCOURS vaut : [0, 1, 2, 3, 4].
La liste PERE vaut : [-1, 0, 1, 2, 2].
On obtient la matrice dadjacence représentant larbre couvrant

010
1 0 1
010
0 0 1
0 0 1

Le graphe de départ est :

On obtient l'arbre couvrant :

On a réalisé un parcours en profondeur en explorant le plus loin possible :
0-1-2-3.0narrive a 3. On est blogqué. On remonte a 2 et on redescend

vers 4.

0

S O = O

# on rempile x

S O = O O

Chapitre 12 - Graphes
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Exercice 12.9 : Algorithme récursif du parcours en largeur

176

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder a d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1
a 9. On considere le graphe non orienté G = (S, A) représentant la structure du
site web.

La liste PARCOURS contient la liste des sommets parcourus par 1’algorithme.

On ajoute le sommet de départ début dans la liste PARCOURS initialement

vide et dans la deque D initialement vide.

Principe de I’algorithme récursif :

* On supprime le sommet x a I’extrémité gauche de D. On ajoute tous les som-
mets non explorés adjacents a x, dans la liste PARCOURS et a I’extrémité
droite de D.

* On appelle la fonction récursive avec la deque D et la liste PARCOURS.

1. Définir un dictionnaire di co représentant le graphe G. Chaque clé est asso-
ciée a un sommet. La valeur de la clé représente la liste des sommets adjacents.
2. Ecrire une fonction récursive BFS rec qui admet comme arguments un
dictionnaire dico, une deque D et une liste PARCOURS.

3. Le sommet de départ vaut 1. Que vaut PARCOURS apres I’appel de la fonc-
tion BFS rec (dico, D, PARCOURS) ?

Analyse du probléme

L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents a un sommet donné pour ensuite les explorer
un par un. L’implémentation repose sur une deque D dans laquelle on place le pre-
mier sommet a I’extrémité droite de D initialement vide et les sommets adjacents
non explorés a I’extrémité droite de D. On utilise le principe FIFO (First In, First
Out : « premier entré, premier sorti »).
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1.

dico={1:[2, 3, 41, 2:[1, 5, 6], 3:[1, 6], 4:[1, 6, 8],\
S5:[21, 6:(2, 7, 91, 7:[6], 8:[4],9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la

liste des sommets adjacents [1, 5, 6].

2.

¢ La condition d'arrét de la fonction récursive est que la deque D est vide.

e On supprime le sommet x a l'extrémité gauche de D et L=dico[x]
contient tous les sommets adjacents a x. La boucle for permet de par-
courir tous les sommets adjacents a x. Tous les sommets adjacents non
explorés sont ajoutés dans PARCOURS et a l'extrémité droite de D. Si
x =1, on ajoute les sommets 2, 3 et 4. On a bien un parcours en largeur.

® On appelle a nouveau la fonction récursive avec la deque D et la liste
PARCOURS modifiées précédemment.

Les listes et les deques sont passées par référence et non par valeur dans

les fonctions. On considére donc la méme liste PARCOURS et la méme

deque D lors des différents appels récursifs.

def BFS rec(dico, D, PARCOURS):
# la fonction permet un parcours en largeur du dictionnaire
# dico en partant de début et permettant d’obtenir
# PARCOURS la liste des sommets visités

if len(D)==0:

return () # condition d’arrét
else:

x=D.popleft () # supprime le sommet a 1l’extrémité

# gauche de D
L=dico[x] # liste contenant les sommets adjacents a x
for elt in L: # parcourt les éléments de L
if elt not in PARCOURS:
D.append (elt) # ajoute elt a l’extrémité

# droite de D
PARCOURS.append (elt)
BFS rec(dico, D, PARCOURS) # appel récursif

from collections import deque # module permettant d’utiliser
# les deques
D=deque () # deque vide
début=1
D.append (début)
PARCOURS=[début]
BFS rec(dico, D, PARCOURS)
print ('Algorithme parcours en largeur récursif - Parcours :',\
PARCOURS)

3. On obtient : PARCOURS = [1, 2, 3, 4, 5, 6, 8, 7, 9].
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Exercice 12.10 : Algorithme récursif du parcours en profondeur

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder a d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1
9. On considere le graphe non orienté G = (S, A) représentant la structure du
site web.

On définit la liste PARCOURS qui contient la liste des sommets parcourus par
I’algorithme. La liste PARCOURS est initialement vide.

Principe de I’algorithme récursif :
* On ajoute le sommet s dans la liste PARCOURS.

* On appelle la fonction récursive pour le premier sommet non exploré
adjacent a s.

1. Définir un dictionnaire di co représentant le graphe G. Chaque clé est asso-
ciée a un sommet. La valeur de la clé représente la liste des sommets adjacents.

2. Ecrire une fonction récursive prof ondeur rec qui admet comme argu-
ments un dictionnaire dico, un sommet de départ s et une liste PARCOURS.

3. Qu’affiche le programme suivant ?

| profondeur rec(dico, 1, [])
print (PARCOURS)

Représenter I’arbre des appels de la fonction récursive profondeur rec
(dico, 1).

Analyse du probléme

L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais)
explore une branche en profondeur depuis un sommet avant de passer a la suivante.
On va le plus profond possible pour chaque branche.

%

1.

|dico:(1:[2, 3, 41, 2:[1, 5, 61, 3:[1, 6], 4:[1, 6, 8],\
5:[2], 6:[2, 7, 9], 7:[6], 8:[4]1,9:[6]}
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Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].

2.

def profondeur rec(dico, s, PARCOURS):
# la fonction permet un parcours en profondeur du dictionnaire
# dico en partant de s et permettant d’obtenir
# PARCOURS la liste des sommets visités
PARCOURS.append (s) # ajoute le sommet s dans liste PARCOURS
L=dico[s] # liste des sommets adjacents
for elt in L:
if elt not in PARCOURS:
profondeur rec(dico, elt, PARCOURS) # appel récursif
# condition d’arrét si tous les éléments de L ont été explorés
# On n’a pas besoin de return car on ajoute
# les sommets explorés au fur et a mesure dans PARCOURS

3. On considére le programme principal suivant :

profondeur rec(dico, 1, [1])
print (PARCOURS)

Le programme Python affiche : (1, 2, 5, 6, 7, 9, 3, 4, 8].
La fonction récursive est notée f£. Pour une meilleure lisibilité, on écrit
£ (1) au lieu de profondeur rec(dico, 1, PARCOURS). La liste
PARCOURS est notée P.

® On appelle £(1). Le sommet 1 est en cours d’exploration. On l'ajoute
dans la liste P. La liste L contient les sommets adjacents a 1 : L = [2,
3, 4]. On considére le premier sommet de la liste. Le sommet 2 na pas
encore été exploré. On a un appel récursif £ (2).

e Le sommet 2 est en cours d’'exploration. On l'ajoute dans la liste P. La
liste L contient les sommets adjacents a 2 : L = [1, 5, 6]. On considére
le premier sommet de la liste non exploré. Le sommet 5 n'a pas encore
été exploré. On a un appel récursif £ (5).

® Le sommet 5 est en cours d’'exploration. On lajoute dans la liste P. La
liste L contient les sommets adjacents a 5 : L = [2]. Aucun élément de
L est non exploré. On est dans la condition d'arrét de la fonction récur-
sive. Phase de remontée avec P = [1, 2, 5].

® On revient au sommet 2.
On explore le sommet 6
puis appel récursif pour
le sommet 7. Phase de
remontée avec P = [1, 2,
5,6, 7].

L'arbre ci-contre représente

les différents appels de la

fonction profondeur

rec que Uon note f.
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Exercice 12.11 : Recherche d’un cycle, graphe non orienté,
parcours en largeur

On considere le graphe connexe et non orienté G = (S, A) :

On utilise la liste couleur pour mémoriser la couleur des sommets. Un som-
met est blanc lorsqu’il n’a pas été traité. Lorsqu’on commence a traiter un som-
met i, il est gris. Apres avoir traité en largeur tous les sommets adjacents au
sommet 7, le sommet i est noir.

On utilise la liste PERE : PERE [i] désigne le pere du sommet i lors du par-
cours du graphe en largeur.

On utilise une deque D pour gérer la file d’attente (FIFO : First In First Out).
On supprime le sommet grisé a I’extrémité gauche de D qui devient noir. Tous
les sommets adjacents a ce sommet sont ajoutés a 1’extrémité droite de D et
deviennent grisés.

On utilise les listes de listes pour représenter les matrices dans Python.

1. Construire la matrice d’adjacence M, ; du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une aréte, alors M[i][j] = 1, sinon M[:][j] = 0.

2. Ecrire une fonction cycle som qui admet comme arguments une matrice
d’adjacence M et un sommet début. Cette fonction parcourt en largeur le graphe
G. La fonction retourne True lorsqu’un sommet i adjacent a un sommet x n’est
pas blanc et que le pere de x n’est pas i. La fonction retourne False sinon.

3. Ecrire le programme principal permettant d’afficher si un graphe connexe et
non orienté possede au moins un cycle. On pourra appeler la fonction cycle
som a un sommet quelconque du graphe.

4. Ecrire le programme principal permettant d’afficher si un graphe non orienté
possede au moins un cycle. On pourra appeler la fonction cycle som achaque
sommet du graphe.

Analyse du probléme
On utilise le parcours en largeur du graphe.

Un chemin est simple si toutes les arétes du chemin sont différentes. Un cycle est
un chemin simple tel que le sommet d’arrivée est le méme que le sommet de départ.
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L’énoncé n’impose pas de trouver un cycle passant par le sommet de départ.

%

Remarque :

001110
001110
1. La matrice d'adjacence est : M = 10001
1 10000
1 1.0 000
001000

M=rro,o,1,1,1,01, f0,0,1,1,1,01, [(1,1,0,0,0,1]

A\
[llllolololo]l [llllolololo]l [OIOIIIOIOIO]]

Tous les éléments de la diagonale sont nuls d’apres la définition de la matrice
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport a la diagonale puisque le graphe n’est
pas orienté : M[i][j] = M[j][i].

%

2. Il 'y a des différences dans la recherche de cycle pour les graphes orien-
tés et pour les graphes non orientés :

e Pour un graphe orienté, il suffit de tester que le successeur de x est le

sommet de départ. Par exemple : 1—2—1 peut représenter un cycle. La
condition pour trouver un cycleest: if M[x] [1]>0 and i==début.
Un chemin doit exister entre x et i. Il faut également que 7 soit le som-
met de départ début. Dans cet exercice, on impose de trouver un cycle
passant par début.

Pour un graphe non orienté, 1-2—1 ne représente pas un cycle.

La condition pour trouveruncycleest: 1 f M[x] [1]>0 and couleur
[i]1!="blanc" and PERE[x]!=i.

Un chemin doit exister entre x et 7. Le sommet i doit déja étre visité et le
pére de x ne doit pas étre i (on évite ainsi de considérer i — x — i comme
un cycle). Dans cet exercice, on n‘impose pas de trouver un cycle passant
par le sommet de départ début.

def cycle som(M, début):

# la fonction retourne False si la matrice M ne posseéde pas
# de cycle en partant de 1l’entier début
from collections import deque # module permettant d’utiliser
# les deques
n=len (M) # nombre de sommets du graphe
PERE=[-1 for i in range(n)]
couleur=["blanc" for i in range(n)]
# les sommets non traités sont blancs
D=deque () # création d’une deque vide
D.append (début) # ajoute début a 1l’extrémité droite de D
couleur[début]="gris" # sommet début en cours de traitement
while len (D) !=0:
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x=D.popleft () # supprime le sommet x a 1l’extrémité
# gauche de D
couleur[x]="noir" # le sommet x a été traité
for i in range(n):
if M[x][1]>0 and couleur[i]!="blanc" and PERE[x]!=1i:
# on a trouvé un chemin de x vers i
# i a déja été visité
# on teste que le pere de x n’est pas i
return True
elif M[x][1]>0 and couleur[i]=="blanc":
D.append (i) # ajoute le sommet i a
# 1l’extrémité
# droite de D

PERE [i]=x # le pere de 1 est x
couleur[i]="gris" # sommet a traiter
return False # pas de cycle en partant de début

3. On considére un sommet quelconque pour le graphe connexe et non
orienté.

début=0
if cycle som(M, début)==True:
print ('Le graphe connexe et non orienté possede au moins'\
' un cycle.')
else:
print ('Le graphe connexe et non orienté ne posséde pas de'\

' cycle en partant du sommet ',début)
4. On applique la fonction cycle som a chaque sommet du graphe.

def rec cycle larg(M):
# la fonction retourne False si la matrice M ne possede
# pas de cycle

n=len (M) # nombre de sommets du graphe
for i in range(n): # i varie entre 0 inclus et n exclu
if cycle som(M, i)==True:

return True # quitte la fonction si un cycle trouvé
return False

if rec_cycle larg(M)==True:

print ('Le graphe possede au moins un cycle.')
else:

print ('Le graphe ne possede pas de cycle.')
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Recherche d'un plus
court chemin
(sauf TSI et TPC)

On considere le graphe orienté G =(S,A) :

L.reverse () permet d’inverser les éléments de la liste L.

On considere dans 1’algorithme une liste PARCOURS et un dictionnaire PERE :

* La liste PARCOURS contient la liste des sommets d’un plus court chemin du
sommet de départ début jusqu’au sommet d’arrivée fin différent de début.

* PERE[i] représente le pere du sommet i lors du parcours en largeur du
graphe depuis le sommet de départ début.

1. Définir un dictionnaire dico représentant le graphe G. La clé associée a
chaque sommet représente la liste des successeurs.

2. Ecrire une fonction itérative BFS qui admet comme arguments un diction-
naire dico et un sommet de départ début. La fonction retourne un diction-
naire PERE en utilisant I’algorithme de parcours en largeur.

3. Laliste PARCOURS est initialement vide.

Principe de I’algorithme d’un plus court chemin :

Pour obtenir les sommets d’un plus court chemin de début jusqu’a fin, il
faut remonter dans 1’arborescence du dictionnaire PERE depuis le sommet fin
jusqu’a la racine début.

Ecrire une fonction récursive pluscourtchemin qui admet comme arguments
un sommet de départ début, un sommet d’arrivée fin, un dictionnaire PERE et une
liste PARCOURS permettant d’obtenir un plus court chemin de début jusqu’a fin.
4. Ecrire le programme principal permettant d’afficher un plus court chemin
entre le sommet de départ début et le sommet d’arrivée fin. Qu’obtient-on
pour début = letfin = 87?

185



Partie 10 + Recherche d’un plus court chemin

186

Analyse du probléme

Un plus court chemin de début jusqu’a fin est le chemin comportant le moins
d’arcs. On utilise I’algorithme de parcours en largeur (BFS, Breadth First Search,
en anglais) permettant de traiter les sommets adjacents a un sommet donné pour
ensuite les explorer un par un. Voir exercice 12.5 « Parcours en largeur d’un graphe
avec une deque » dans le chapitre « Graphes ».

¥

1.

dico={1:[3], 2:[1, 5], 3:[6]1,\
4:[1, 81, 5:1[1, 6:[2, 4, 9],\
7:[61, 8:[1, 91, 9:[1}

Le sommet 2 a deux successeurs : 1 et 5. La valeur de la clé 2 est la liste
des successeurs [1, 5]. Le sommet 6 n'est pas le successeur du sommet 4.

2. Les sommets déja visités sont marqués pour éviter d'explorer plusieurs
fois un méme sommet. La liste VISITED contient les sommets visités.

Les étapes de l'algorithme de parcours en largeur sont les suivantes :

Initialisation de l'algorithme :

e Mettre le sommet de départ dans la deque D initialement vide.

e |la liste VISTITED contient le sommet de départ : VISITED =
[début].

Boucle tant que la deque D n’est pas vide :

e Supprimer le sommet x a l'extrémité gauche de D.

® Ajouter dans VISITED et a l'extrémité droite de D les sommets non
explorés adjacents au sommet x.

def BFS(dico, début):
# la fonction renvoie le dictionnaire PERE avec un parcours
# en largeur pour le dictionnaire dico
from collections import deque # module permettant d’utiliser
# les deques

D=deque () # deque vide
D.append (début) # ajoute le sommet de départ
PERE={ } # dictionnaire vide

VISITED=[début]
while len (D) !=0:
x=D.popleft () # supprime le sommet x a 1l’extrémité
# gauche de D
L=dico[x] # liste contenant les sommets adjacents a x
for elt in L: # parcourt les éléments de L
if elt not in VISITED: # teste si le sommet n’a pas
# déja été exploré
D.append(elt) # ajoute le sommet elt a 1l’extrémité
# droite de D
VISITED.append(elt) # le sommet elt a été exploré
PERE[elt]=x # ajoute clé, valeur dans le dico PERE
return PERE

La ligne PERE [e1t]=x permet d’ajouter e1t (clé) et x (valeur de la clé)
dans le dictionnaire dico.
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3.

def pluscourtchemin (début, fin, PERE, PARCOURS) :
# la fonction permet d’avoir un plus court chemin
# de début (int) a fin (int) dans la liste PARCOURS
# a partir du dictionnaire PERE
if début==fin:
PARCOURS.append (fin)

return () # condition d’arrét
elif PERE[fin]=="":

PARCOURS=[]

return () # condition d’arrét
else:

PARCOURS.append (fin) # on ajoute le sommet fin dans
# la liste PARCOURS
pluscourtchemin (début, PERE[fin], PERE, PARCOURS)
# appel récursif

4.
début, fin=1, 8
PERE=BFS (dico, début)
if fin not in PERE: # teste si le sommet fin est dans
# le dictionnaire PERE
print ("I1 n’y a pas de chemin entre", début, "et", fin,".")

else:
PARCOURS=[]
pluscourtchemin (début, fin, PERE, PARCOURS)
PARCOURS.reverse () # inverse les éléments de la liste

print ('Un plus court chemin :', PARCOURS)

Si le sommet fin n'est pas dans le dictionnaire PERE, alors il n'y a pas de
chemin entre début et fin.

Le programme Python affiche :

Parcours : [1, 3, 6, 4, 8]

Exercice 13.2 : Algorithme de Dijkstra

On considere le graphe non orienté G = (S,A), ou le nombre situé sur 1’aréte
joignant deux villes (ou sommets) est leur distance :

187



Partie 10 + Recherche d’un plus court chemin

188

On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse () permet d’inverser les éléments de la liste L.

1. Construire la matrice d’adjacence (M; ;)y; i, (appelée également matrice

de distance) du graphe G, définie par :

Pour tous les indices i, j, M, ; représente la distance entre les villes d’origine i

et d’extrémité j.

Lorsque les villes ne sont pas reliées, cette distance vaut I’infini. On définit la

variable inf=1e10 qui représente une distance infinie.

2. On cherche a déterminer un plus court chemin pour aller d’une ville de

départ notée départ a une ville d’arrivée notée arrivée en utilisant I’algo-

rithme de Dijkstra :

On définit la liste VILLES contenant les informations suivantes pour chaque

ville : [ville précédente sur le chemin, distance parcourue depuis la ville de

départ, ville sé€lectionnée ou non (booléen vrai ou faux)].

a) Initialisation de I’algorithme :

Toutes les villes sont non sélectionnées sauf la ville de départ. Pour cette ville,

la distance parcourue vaut 0.

Pour les villes non sélectionnées, les distances parcourues depuis la ville de

départ sont initialisées a I’infini.

On définit une variable position qui correspond a la ville pour laquelle

I’algorithme est appliqué. Cette variable prend initialement la valeur départ.

b) Tant que la variable position n’est pas égale a la variable arrivée, répé-

ter les opérations suivantes pour toutes les villes i non sélectionnées :

e Calculer la variable somme = distance entre la ville départ et la ville
position + distance entre la ville position etla ville i.

¢ Si la variable somme est inférieure a la distance entre la ville départ et la
ville i, alors remplacer cette distance par somme. La ville précédente sur le
chemin est alors position.

Chercher la ville (parmi les villes non sélectionnées) pour laquelle la distance
entre celle-ci et la ville départ est la plus petite. Cette ville définit alors la
nouvelle valeur de la variable position et cette ville devient sélectionnée.
Ecrire une fonction dijkstra qui admet comme arguments d’entrée la matrice
d’adjacence M, la ville départ et la ville arrivée. Cette fonction retourne
le chemin suivi ainsi que la distance parcourue entre départ et arrivée en
utilisant I’algorithme de Dijkstra.

Ecrire le programme principal permettant de déterminer un plus court chemin
entre la ville de départ 3 et la ville d’arrivée 0. Le programme affichera le che-
min suivi ainsi que la distance parcourue.

3. Pourquoi cet algorithme est appelé algorithme glouton ?
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4. Calculer la complexité de cet algorithme dans le pire des cas.
5. On considere le graphe suivant :

Ecrire le programme permettant de déterminer un plus court chemin entre la
ville de départ O et la ville d’arrivée 2. Le programme affichera le chemin suivi
ainsi que la distance parcourue.

Analyse du probleme

On étudie 1’algorithme de Dijkstra, qui un algorithme de plus court chemin. On
définit la matrice d’adjacence qui contient I’ensemble des distances entres les villes.
La longueur d’un chemin est la somme des poids des arétes qui le constituent.

02, 0 9 3 o 7
9 0 1 8 oo

1. La matrice d'adjacenceest:M=| 3 1 0 4 2

o 8 4 0 oo

7 o 2 o 0

Remarque : On peut se reporter a ’exercice 12.1 « Matrice d’adjacence » dans
le chapitre « Graphes » pour avoir plus d’explications sur la construction de cette
matrice.

2.

2@ ¢ Dans lalgorithme de Dijkstra, on calcule la distance de départ a
toutes les villes 7 non sélectionnés en passant par la ville position.
On cherche ensuite le minimum des distances pour les villes non sélec-
tionnées. Ce minimum permet de déclarer une ville sélectionnée. Cette
distance est définitive.

On définit un sous-graphe G’. Dans l'état initial, G’ contient
uniquement la ville départ. A chaque étape de la boucle
while (position!=arrivée), on ajoute la ville position
dans G'. Toutes les distances des villes de G" sont définitives.
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¢ Dans lalgorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de
Floyd-Warshall » dans le chapitre « Programmation dynamique »), on
peut trouver ultérieurement une distance encore plus petite en passant
par d’'autres sommets avec des arétes de poids négatif. Il faut recalculer
toutes les distances a l'étape suivante.

On définit une liste VILLES qui contient pour chaque ville 7 :

® VILLES[1] [0] : ville précédente.

® VILLES[1] [1] : g(i) = distance entre la ville départ et la ville 7.

® VILLES[1] [2] : True si la ville i est sélectionnée, sinon False.

a) Initialisation de l'algorithme :

Toutes les villes sont non sélectionnées (VILLES[1] [2] = False)
sauf la ville de départ. Pour cette ville, la distance parcourue vaut 0. Pour
les villes non sélectionnées, les distances parcourues depuis la ville de
départ sont initialisées a linfini : VILLES[i][1] = inf. La variable
position prend initialement la valeur départ.

b) On définit une boucle while (position!=arrivée) tant que la
variable position (sommet appartenant a la frontiére entre les villes
sélectionnées et les villes non sélectionnées) n’est pas égale a la variable
arrivée.

® la boucle for i in range(n) avec le test if VILLES [i]
[2]==False permet de parcourir toutes les villes non sélectionnées.
On calcule somme = VILLES [position] [1] +M[position] [i]
(= distance entre départ et position + distance entre position
et 7). Si la nouvelle distance somme est inférieure a VILLES [1] [1],
alors VILLES[i] [1] = somme et la ville position est la ville
précédente de7: VILLES[1] [0] = position.

® On cherche la ville indice (parmi les villes non sélectionnées) pour
laquelle la distance VILLES [indice] [1] est la plus petite.

e Ce sommet indice définit alors la nouvelle valeur de la variable
position et cette ville devient sélectionnée.

® Si indice = position, on ne peut pas atteindre la ville d'arrivée.

inf=1el0 # variable représentant 1’infini

def init(départ, nb villes):
# la fonction initialise la liste VILLES
# a partir de départ (int)
# nb villes est le nombre de villes dans le graphe
VILLES=[] # initialisation de la liste VILLES
for i in range(nb villes):
if i==départ:
VILLES.append([-1, 0, True])
# la valeur -1 n’est pas utilisée car ville de départ
# True : uniquement la ville de départ est sélectionnée
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else:
VILLES.append([-1, inf, False])
# la valeur -1 n'est pas utilisée car distance infinie
# False : ville non sélectionnée
return VILLES

def dijkstra (M, départ, arrivée):
# la fonction permet d’avoir un plus court chemin
# de départ (int) & arrivée (int) dans la liste L a partir
# de la matrice d’adjacence M. On récupere la liste VILLES
nb villes=len (M) # nb de villes = nb de lignes de M
VILLES=init (départ, nb villes) # initialisation de 1la
# liste VILLES
# 1l’algorithme est appliqué pour la ville position
position=départ
while (position!=arrivée):
indice=position
for i in range(nb_villes): # 1 décrit toutes les villes
if VILLES[i] [2]==False : # ville non sélectionnée
somme=VILLES [position] [1]+M[position] [i]
if somme<VILLES[i][1]:
VILLES[i] [1]=somme
# nouvelle valeur de la distance a
# la ville de départ
VILLES[i] [0]=position # nouvelle ville
# précédente sur le chemin
# recherche du minimum des distances pour les villes
# non sélectionnées
val min=inf
for i in range(nb villes):
if VILLES[i][2]==False and VILLES[i][1l]<val min:
indice=i
val min=VILLES[i] [1]
if indice==position:
return [],inf # on n’atteint pas arrivée
else:
VILLES [indice] [2]=True # cette ville est sélectionnée
position=indice # nouvelle valeur de la variable
# position

# liste des villes parcourues
i=arrivée
L=[arrivée] # L = liste des villes parcourues en sens inverse
while (i!=départ):

1=VILLES[1][0]

L.append (i)
L.reverse() # il faut inverser la liste L pour obtenir la

# liste des villes parcourues dans le sens direct

return L, VILLES[arrivée] [1]

# initialisation du programme
M=[([0, 9, 3, inf, 71, (9, O, 1, 8, inf], [3, 1, 0, 4, 2],\
[inf, 8, 4, 0, inf], [7, inf, 2, inf, 0]]
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départ, arrivée=3, 0 # ville de départ et ville d’arrivée
L, dist=dijkstra (M, départ, arrivée)
print ("Algorithme de Dijkstra - Chemin suivi : ", L) # liste des
# villes
print ("Distance parcourue = ", dist)
Le programme Python affiche :
Chemin suivi : [3, 2, 0]

Distance parcourue = 7

Remarque :

On considere I’exemple suivant pour expliquer I’algorithme de Dijkstra.

Etape d’initialisation

* Ville de départ = départ =3 et ville d’arrivée = arrivée =0.

* On définit une liste VILLES contenant les informations suivantes pour chaque

ville : ville précédente sur le chemin, distance parcourue depuis la ville de départ,
ville sélectionnée ou non (booléen True ou False).

e On a alors : VILLES=[[-1,inf False],[-1, inf False],[-1, inf,False],[—1,0,True],
[-1,inf,False]]. Les valeurs —1 ne sont pas significatives puisque la distance est
infinie ou la ville est départ.

Algorithme

* On définit la variable position, qui est la ville atteinte avec un plus court chemin
depuis la ville de départ. Pour toutes les villes i non sélectionnées et différentes
de position, on compare somme (distance entre ville de départ et position +
distance entre positioneti = VILLES [position] [1] + M[position]
[1]) et la distance depuis la ville de départ (VILLES[i] [1]).

* Chercher pour toutes les villes X précédentes celle ou la variable « distance depuis
la ville de départ » est minimale. Cette ville définit alors la nouvelle valeur de la
variable position et la variable « ville sélectionnée » passe a True.

1™ itération : position = 3

* On parcourt les villes X non sélectionnées : 0, 1, 2 et 4.

On obtient alors : VILLES=[[-],inf False],[3,8 False],[3,4 False],[-1,0,True],
[-1,inf,False]].

e On cherche dans les villes X non sélectionnées (variable False) celle ou la

variable « distance depuis la ville de départ » est minimale. C’est la ville 2.

On obtient alors : position = 2 et VILLES=[[-1,inf,False],[3,8,False],
[3,4,True],[-1,0,True],[-1,inf,False]].
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2¢ itération : position = 2

* On parcourt les villes X non sélectionnées : 0, 1, 4.
On obtient alors : VILLES=[[2,7,False],[2,5 False],[3,4,True],[-1,0,True],
[2,6,False]].

¢ On cherche dans les villes X non sélectionnées (variable False) celle ou la
variable « distance depuis la ville de départ » est minimale. C’est la ville 1.
On obtient alors : position =1 et VILLES=[[2,7,False],[2,5,True],[3,4,True],
[-1,0,True],[2,6,False]].

3¢ itération : position = 1

* On parcourt les villes X non sélectionnées : 0, 4.
On obtient alors : VILLES=[[2,7,False],[2,5,True],[3,4,True],[-1,0,True],
[2,6,False]].

e On cherche dans les villes X non sélectionnées (variable False) celle ou la
variable « distance depuis la ville de départ » est minimale. C’est la ville 4.
On obtient alors : position =4 et VILLES=[[2,7,False],[2,5,True],[3,4,True],
[-1,0,True],[2,6,True]].

4¢ itération : position = 4

* On parcourt les villes X non sélectionnées : 0.
On obtient alors : VILLES=[[2,7,False],[2,5,True],[3,4,True],[-1,0,True],
[2,6,True]].

* On cherche dans les villes X non sélectionnées (variable False) celle ou la
variable « distance depuis la ville de départ » est minimal. C’est la ville 0.
On obtient alors : position=0et VILLES =[[2,7,Truel], [2,5,True], [3,4,True],
[-1,0,True], [2,6,True]].

Pour obtenir le trajet, on part de la ville d’arrivée, la distance minimale entre la ville
de départ et la ville d’arrivée est obtenue par VILLES [arrivée] [1] = 7. Pour
obtenir le trajet, on obtient la ville précédente avec VILLES [arrivée] [0] =2
et, de proche en proche, on remonte a la ville de départ.

2@ 3. L'algorithme glouton (greedy en anglais) repose sur lutilisation de

sous-problémes. Lorsqu’on est rendu a la ville position, on fait un choix
local qui parait étre le meilleur en choisissant, dans la liste des villes non
sélectionnées, la ville suivante indice dont la distance entre départ
et indice est la plus petite. Ce choix n'est pas remis en cause ultérieu-
rement.

4. Soit n le nombre de villes.

Initialisation de la liste VILLES : 1 opération et, pour chaque valeur de
i: 1 comparaison et 1 affectation. La boucle for est parcourue n fois. On
a donc 2n+1 opérations élémentaires.
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Dans le pire des cas, on a (n—1) itérations dans la boucle while. Pour
chaque valeur de position, ona:

e 1 comparaison, 1 calcul de somme, 1 test et deux affectations pour
chaque valeur de 7 : 5n opérations élémentaires.

¢ 1 affectation : 1 opération élémentaire.

® Recherche du minimum : trois comparaisons et deux affectations pour

chaque valeur de 7 : 5n opérations élémentaires.

e 2 affectations : 2 opérations élémentaires.
Onadonc(2n+1)+(n—1)x(5n+1+5n+2)=2n+1+(n—1)(10n+3) opé-
rations élémentaires.

La complexité dans le pire des cas est quadratique en 0(n?).

Remarque : On peut accepter des petites différences dans I’évaluation du nombre
total d’opérations élémentaires. La complexité de I’algorithme ne sera pas
modifiée.

07, 0 8 18 = 3
8 0 4 1 10
5. La matrice d'adjacence est : M, = 18 4 0 oo oo
o 1 e 0 2
3 10 = 2 0
M2=[[0, 8, 18, inf, 3], [8, O, 4, 1, 10], (18, 4, 0, inf, inf],\
[inf, 1, inf, 0,21, [3, 10, inf, 2,0]]
départ2, arrivée2=0, 2 # ville de départ et ville d'arrivée
L2, dist2=dijkstra (M2, départ2, arrivée2)
print ("Trajet suivi : ", L2) # affichage de la liste des villes
print ("Distance parcourue = ", dist2)

Le programme Python affiche :
Trajet suivi : [0, 4, 3, 1, 2]

Distance parcourue = 10
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Exercice 13.3 : Algorithme A*

On considere le graphe orienté G = (S, A) qui représente le réseau routier d’un
département en prenant en compte le sens de la circulation. Une route a sens
unique est représentée par un arc dont le poids est la distance en kilometres entre
deux sommets (ou deux villes). Les distances indiquées dans les rectangles sur
le graphe ci-dessous représentent les distances a vol d’oiseau entre les sommets
et le sommet d’arrivée 5.

@H(D

N><T

@H@

Une heuristique est un algorithme qui calcule rapidement une solution pouvant
étre approximative. On utilise la distance euclidienne (ou distance a vol
d’oiseau) pour estimer le cofit restant /(i) permettant d’atteindre le sommet
arrivée a partir du sommet i.

On utilise les listes de listes pour représenter les matrices dans Python.

L.reverse () permet d’inverser les éléments de la liste L.

1. Construire la matrice d’adjacence (M; ;)o; i<, (appelée également matrice

de distance) du graphe G, définie par :

Pour tous les indices i, j, M, ; représente la distance entre les sommets d’origine

i et d’extrémité j.

Lorsque les sommets ne sont pas reli€s, cette distance vaut I’infini. On définit la

variable inf=1e10 qui représente une distance infinie.

2. L’algorithme A* est une variante de 1’algorithme de Dijkstra. On dispose

pour chaque sommet i d’une estimation du colt restant pour atteindre le som-

met arrivée a partir du sommet i : h(i) = distance euclidienne (ou distance a

vol d’oiseau) entre le sommet i et le sommet arrivée. On définit la fonction

d’évaluation ftelle que : (i) = g(i) + h(i).

* g(i) est le coiit réel du chemin optimal entre le sommet départ et le sommet
i dans la partie déja explorée ;

* h(i) est le coit estimé du chemin qui reste a parcourir entre i et arrivée.

On définit la liste SOMMETS contenant les informations suivantes pour chaque
sommet :

[sommet précédent sur le chemin, distance parcourue depuis le sommet de départ,
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sommet sélectionné ou non (booléen vrai ou faux), distance évaluée entre
départ etarrivée]

a) Initialisation de 1’algorithme A* :

Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les
distances parcourues depuis le sommet de départ sont initialisées a I’'infini. On
définit une variable position qui correspond au sommet pour lequel I’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.

b) Tant que la variable position n’est pas égale a la variable arrivée :

* Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance f (indice) entre départ et arrivée est la plus petite.

e Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.

On définit la liste H=[5, 2, 3.2, 1.5, 1, 0] telleque H[i] = distance
euclidienne entre le sommet i et le sommet arrivée = 5.

Ecrire une fonction algoA qui admet comme arguments d’entrée la matrice
d’adjacence M, la liste H, le sommet départ et le sommet arrivée. Cette
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ
et arrivée en utilisant I’algorithme A*.

3. Ecrire le programme principal permettant de déterminer un plus court che-
min entre le sommet de départ O et le sommet d’arrivée 5. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue.

Analyse du probléme

La fonction / est une fonction heuristique telle que /(i) est le cofit estimé du che-
min qui reste a parcourir entre le sommet i et le sommet arrivée. On utilise
la distance a vol d’oiseau dans ce probleme alors que, dans 1’exercice suivant
« Variantes de I’algorithme A* — Distance de Manhattan », on utilise la distance de
Manhattan. L’idée est de choisir un sommet qui semble &tre le plus prét du sommet
d’arrivée.
La fonction d’évaluation permet de déterminer quel sommet est sélectionné en
premier, c’est-a-dire retiré de la frontiere entre les sommets sélectionnés et les
sommets non sélectionnés : f (i) = g(i)+ h(i) renvoie une estimation de la distance
entre le sommet de départ et le sommet d’arrivée en passant par le sommet i du
graphe. On considere un graphe orienté dont le poids des arcs est un réel positif.
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1. La matrice d'adjacence est : M =

g 8 8 8 8 ©
§ 8 8 wWw o w
g A g O WM
N O 8 A~ o8
S 8 g 8 8

NN O WY

Comme le graphe est orienté, la matrice n’est pas nécessairement symé-

trique.

2. On définit une liste SOMMETS qui contient pour chaque sommet i :

® SOMMETS[i] [0] : sommet précédent ;

® SOMMETS[i][1] : g(i) = distance entre le sommet départ et le
sommet 7 ;

® SOMMETS [1] [2] : True sile sommetiest sélectionné, sinon False;
® SOMMETS[1] [3] : f(i) = distance entre le sommet départ et le
sommet arrivée.

La méthode gloutonne repose sur l'utilisation de sous-problémes. Lorsqu’on est
rendu au sommet position, on fait un choix local qui parait étre le meilleur
en choisissant, dans la liste des sommets non sélectionnés, le sommet suivant
indice dont la distance flindice) entre départ et arrivée est la plus
petite. Ce choix n'est pas remis en cause ultérieurement. On privilégie les
sommets « qui semblent » nous rapprocher de la destination.

a) Initialisation de l'algorithme :

Tous les sommets sont non sélectionnés (SOMMETS[i] [2]=False)
sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut
0. Pour les sommets non sélectionnés, les distances parcourues depuis le
sommet de départ sont initialisées a linfini : SOMMETS[i] [1]=inf et
SOMMETS [1] [3]1=inf. La variable position prend initialement la
valeur départ.

b) On définit une boucle while (position!=arrivée) : tant que la
variable position (sommet appartenant a la frontiére entre les sommets
sélectionnés et les sommets non sélectionnés) n'est pas égale a la variable
arrivée.

¢ la boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélectionnés.
On calcule g 1=SOMMETS [position] [1]+M[position] [1] (=
distance entre départ et position + distance entre position et7)
et f i=g i+H[i].

* Si la nouvelle distance £ i entre départ et arrivée est inférieure
a SOMMETS[i][3], alors SOMMETS [i][3]=f i. On met a
jour également la distance entre le sommet départ et le sommet
i : SOMMETS[i] [1]=g i. Le sommet position est le sommet
précédent de i : SOMMETS [1] [0]=position.
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® On cherche le sommet indice (parmi les sommets non sélectionnés)
pour lequel la distance f (indice) entre départ et arrivée est la
plus petite.

® Ce sommet indice définit alors la nouvelle valeur de la variable
position et ce sommet devient sélectionné.

¢ Si indice =position, on ne peut pas atteindre le sommet d'arrivée.

inf=1el0 # variable représentant 1’infini
def init3(départ, n): # n = nombre de sommets dans le graphe
# la fonction initialise la liste SOMMETS a partir de départ
# (int)
SOMMETS=1] # initialisation de la liste SOMMETS
for i in range(n): # i1 varie entre 0 inclus et n exclu

if i==départ:
SOMMETS .append([-1, 0, True, 0])
# la valeur -1 n’est pas utilisée
# True : uniquement le sommet de départ est
# sélectionné
else:
SOMMETS.append ([-1, inf, False, inf])
# la valeur -1 n’est pas utilisée car distance
# infinie
# False : sommet non sélectionné
return SOMMETS

def algoA (M, H, départ, arrivée):
# la fonction permet d’avoir un plus court chemin
# de départ (int) & arrivée (int) dans la liste L a partir
# de la matrice d'adjacence M. On récupere la liste SOMMETS
n=len (M) # nombre de sommets = nombre de lignes de M
SOMMETS=init3 (départ, n) # initialisation de la liste SOMMETS
position=départ
while (position!=arrivée):
indice=position

for i in range(n): # 1 décrit tous les sommets
if SOMMETS[i] [2]==False: # sommet non sélectionné
g_1=SOMMETS [position] [1]+M[position, 1]
# g(i) = colt réel entre départ et i
h i=H[i] # colt estimé entre i et arrivée

f i=g i+h i
if £ i<SOMMETS[i][3]:
SOMMETS[1] [1]=g i # distance départ->i = g(i)
SOMMETS [1] [3]=f i
# distance départ->arrivée = f (1)
SOMMETS[1] [0]=position
# sommet précédent sur le chemin
# recherche du minimum des distances départ->arrivée
# pour les sommets non sélectionnés
val min=inf # initialisation de val min a +infini
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for i in range(n): # i varie entre 0 inclus et n exclu
if SOMMETS[i] [2]==False and SOMMETS[i] [3]<val min:
indice=i
val min=SOMMETS[i][3] # f(i)
if indice==position:
return [],inf # on n’atteint pas le sommet arrivée
else:
SOMMETS [indice] [2]=True # ce sommet est sélectionné
position=indice # nouvelle valeur de position

# liste des sommets parcourus
i=arrivée
L=[arrivée] # L = liste des sommets parcourus en sens inverse
while (i!=départ):
i=SOMMETS[i] [0]

L.append (i)
L.reverse() # 1l faut inverser la liste L pour obtenir
# la liste des sommets parcourus dans le sens
# direct

return L, SOMMETS[arrivée] [1]

3.

inf=float ("inf")

M=[[0,3,2,inf,inf,inf], [inf,0,3,3,2,inf],\
[inf,3,0,5,4,inf], [inf, inf,inf,0,inf, 2], \
[inf,inf,4,2,0,inf], [inf, inf,inf,2,2,0]]

départ, arrivée=0, 5

H=[5, 2, 3.2, 1.5, 1, 0]

L2, dist2=algoA (M, H, départ, arrivée)

print ('Algo A* chemin :',L2,'; distance',dist2)

Le programme Python affiche :
Algo A* chemin : [0, 1, 3, 5]
distance = 8

Remarque :

L’algorithme A* utilise une heuristique dont le colit évalué (distance a vol d’oi-
seau) est toujours inférieur au cofit réel. On dit que cette heuristique est admissible.
On peut montrer que cet algorithme retourne toujours une solution optimale si elle
existe. L’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd-
Warshall » dans le chapitre « Programmation dynamique ») permet de traiter des
arcs dont le poids est négatif.
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de Manhattan

200

On considere le graphe orienté G = (S, A) qui représente le quartier de Manhat-
tan. Les routes sont a double sens et certaines sont bloquées a cause de travaux
(rectangles avec des briques). Les n sommets du graphe sont les intersections
des routes : le sommet 11 représente I’intersection de la 5¢ avenue avec la 66°
rue. On considere que la distance entre deux sommets adjacents vaut 1. On
suppose que le nombre d’avenues est égal au nombre de rues.

0 1 2 3 4

5 6 X X 9

Position des 25 sommets : 10 11 >< 13 14

15 ¥ ¥ 18 19

20 21 22 23 24

Les sommets barrés ne sont pas acces- 68e
sibles a cause de travaux. ‘ ‘

Une heuristique est un algorithme qui o7 SR Searaanana
calcule rapidement une solution pou-
vant étre approximative. On utilise la

distance de Manhattan pour estimer e e e

Rues 66e

A . 0 (B3 l‘:‘l‘:‘\‘:‘\‘:‘:‘\‘\‘”
le coit restant (h(i) = nombre d’ave-
nues et de rues entre le sommet i et le 64e
s . 9 6e Se 4e 3e 2e
sommet arrivée) permettant d’at- Avenes

teindre le sommet arrivée a partir

du sommet i. On définit la variable inf=1e10 qui représente une distance
infinie.

On définit la liste SOMMETS contenant les informations suivantes pour chaque
sommet :

[sommet précédent sur le chemin, distance parcourue depuis le sommet de
départ, sommet sélectionné ou non (booléen vrai ou faux), distance évaluée
entre départ et arrivée]

L.reverse () permet d’inverser les éléments de la liste L.

1. Définir un dictionnaire dico représentant le graphe G. La clé associée a
chaque sommet représente la liste des sommets adjacents.

2. Ecrire une fonction 1isteH qui admet comme arguments d’entrée le som-
met arrivée et le nombre de sommets n. Cette fonction retourne la liste
H=[1(0),h(1),....h(i),....h(n—1)] telle que h(i) = distance de Manhattan
entre le sommet i et le sommet arrivée.
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3. L’algorithme glouton BES (Best First Search : meilleure premiere recherche)
permet de déterminer un plus court chemin entre le sommet départ et le som-
met arrivée.

a) Initialisation de 1’algorithme BFS :

Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les
distances parcourues depuis le sommet de départ sont initialisées a I’infini. On
définit une variable position qui correspond au sommet pour lequel 1’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.

b) Tant que la variable position n’est pas égale a la variable arrivée :
* Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance % (indice) entre indice et arrivée est la plus petite.

* Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.

Ecrire une fonction BFS qui admet comme arguments d’entrée un dictionnaire

dico, le sommet départ et le sommet arrivée. Cette fonction retourne le

chemin suivi ainsi que la distance parcourue entre départ et arrivée en

utilisant I’algorithme BFS.

4. On dispose pour chaque sommet i d’une estimation du codit restant pour

atteindre le sommet arrivée a partir du sommet i : /2(i) = distance de Manhat-

tan entre le sommet i et le sommet arrivée. On pose w un réel compris entre 0

et 1. On définit la fonction d’évaluation ftelle que : f(i)=(1—w)-g(i)+w-h(i).

» g(i) est le colit réel du chemin optimal entre départ et i dans la partie déja
explorée ;

* h(i) est le coit estimé du chemin qui reste & parcourir entre i et arrivée.

a) Initialisation de I’algorithme :

Tous les sommets sont non sé€lectionnés sauf le sommet de départ. Pour ce

sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les

distances parcourues depuis le sommet de départ sont initialisées a I’infini. On

définit une variable position qui correspond au sommet pour lequel 1’algo-

rithme est appliqué. Cette variable prend initialement la valeur départ.

b) Tant que la variable position n’est pas égale a la variable arrivée :

* Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance f (indice) entre départ et arrivée est la plus petite.

e Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.
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Ecrire une fonction MANHATTAN qui admet comme arguments d’entrée un dic-
tionnaire dico, le sommet départ, le sommet arrivée et le réel w. Cette
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ
et arrivée en utilisant I’algorithme décrit précédemment.

Ecrire le programme principal permettant de déterminer un plus court chemin
entre le sommet de départ 10 et le sommet d’arrivée 13. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue pour w = 0, w = 0.5 et
w=1.

5. Comment appelle-t-on les algorithmes lorsque w=0, w=0.5etw=1?

Analyse du probléme

La fonction / est une fonction heuristique telle que /(i) est le cofit estimé du che-
min qui reste a parcourir entre le sommet i et le sommet arrivée. On utilise la
distance de Manhattan alors que dans I’exercice précédent « Algorithme A* » on
utilise la distance euclidienne (ou distance a vol d’oiseau).

On considere différentes fonctions d’évaluation dans ce probléme pour sélection-
ner un sommet :

* Algorithme glouton BFS (question 3) : la fonction d’estimation f (i) = h(i) ren-
voie la distance de Manhattan entre le sommet i et le sommet arrivée.

* Algorithme de la question 4 : 1a fonction d’évaluation f (i) = (1-w)- g(i)+ w-h(i)
renvoie une estimation de la distance entre le sommet de départ et le sommet
d’arrivée en passant par un sommet .

1.

Zéy dico={0:[1,5], 1 :[0,2,6], 2 :[1,3], 3 :[2,4], 4 :[3,9],\
5 :[0,6,10], 6 :[1,5,11], 7 :[], 8 :[1, 9 :[4,14],\
10 :[5,11,15], 11 :[6,10], 12 :[], 13 :[14, 18],\
14 :[9,13,19], 15 :[10,20], 16 =[], 17 :[],\

18 :[13, 19, 23], 19 :[14,18, 24], 20 :[15,21],\
21 :[20,22], 22 :[21,23], 23 :[18, 22,241, 24 :[19,23]}

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le chapitre
« Dictionnaire, pile, file, deque » pour l'utilisation des dictionnaires.

Le sommet 6 est relié aux sommets 1, 5 et 11. La valeur de la clé 6 est la
liste des sommets adjacents [1, 5, 11].

Le nombre d’éléments du dictionnaire correspond au nombre n de sommets
du graphe. On définit nb rues le nombre de rues. Comme le nombre
d'avenues est égal au nombre de rues, alors :

import math as m # module math renommé m
nb_rues=int (m.sqrt(n)) # n = nombre de sommets
# =

nombre de rues * nombre d’avenues
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2. La distance de Manhattan entre un sommet A (de coordonnées x,, y,) et
un sommet B (de coordonnées xg, y;) vaut x, —xA‘+‘yB —yA‘. Elle corres-
pond au nombre d’avenues et de rues entre le sommet A et le sommet B.
Les abscisses correspondent aux lignes et les ordonnées correspondent aux
colonnes. Le sommet 0 a pour coordonnées 0, 0. Le sommet 13 a pour
coordonnées 2, 3.

inf=1el0 # variable représentant 1’infini

def listeH(arrivée, n):

import math as m # module math renommé m
# la fonction retourne la liste H telle que H[i] = distance
# de Manhattan entre le sommet i et le sommet arrivée (int)
nb_rues=int (m.sqrt(n)) # n = nombre de sommets
# = nombre de rues * nombre d'avenues
# on suppose que nombre d’avenues = nombre de rues

xB, yB= arrivée//nb_rues, arrivée%nb_ rues
# abscisse et ordonnée du sommet d’arrivée
# quotient et reste de la division euclidienne
H=[] # initialisation de la liste H
for i in range(0, n) : # 1 varie entre 0 inclus et n exclu
xA, yA=i//nb rues, i%nb rues # abscisse et ordonnée
# du sommet i
# quotient et reste de la division euclidienne
y=abs (yB-yA) +tabs (xB-xA) # distance de Manhattan pour
# le sommet 1
H.append (y)
return H

3. On définit une liste SOMMETS qui contient pour chaque sommet 7 :

® SOMMETS[i] [0] : sommet précédent ;

SOMMETS[1] [1] : g(i) = distance entre le sommet départ et le

sommet 7 ;

® SOMMETS[i] [2] : True sile sommetiest sélectionné, sinon False;

® SOMMETS [1][3] : f(i) = distance entre le sommet départ et le
sommet arrivée.

La méthode gloutonne repose sur l'utilisation de sous-problémes. Lorsqu’on

est rendu au sommet position, on fait un choix local qui parait étre

le meilleur en choisissant, dans la liste des sommets non sélectionnés, le

sommet suivant indice dont la distance de Manhattan entre indice et

arrivée est la plus petite. Ce choix n'est pas remis en cause ultérieu-

rement. On privilégie les sommets « qui semblent » nous rapprocher de la

destination.

a) Initialisation de l'algorithme :

On définit la liste H en utilisant la fonction 1isteH définie dans la ques-

tion 2.

Tous les sommets sont non sélectionnés (SOMMETS[i] [2]=False)

sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut 0.
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Pour les sommets non sélectionnés, les distances parcourues depuis le
sommet de départ sont initialisées a linfini : SOMMETS [i] [1]=inf et
SOMMETS [1] [3]=1inf. La variable position prend initialement la
valeur départ.

b) On définit une boucle while (position!=arrivée) tant que la
variable position (sommet appartenant a la frontiére entre les sommets
sélectionnés et les sommets non sélectionnés) n’est pas égale a la variable
arrivée.

¢ la boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélection-
nés. On calcule g 1=SOMMETS [position] [1]+1 (= distance entre
départetposition +distanceentrepositioneti)etf i=H[i].

* Si la nouvelle distance £ i entre départ et arrivée est inférieure
a SOMMETS[1][3], alors SOMMETS[1][3] = £ i. On met a
jour également la distance entre le sommet départ et le sommet i :
SOMMETS[1][1] = g 1i. Le sommet position est le sommet
précédent de i : SOMMETS[1] [0] = position.

® On cherche le sommet indice (parmi les sommets non sélectionnés)
pour lequel la distance f (indice) entre départ et arrivée est la
plus petite.

e Ce sommet indice définit alors la nouvelle valeur de la variable
position et ce sommet devient sélectionné.

¢ Siindice =position, on ne peut pas atteindre le sommet d'arrivée.

def init4(départ, n): # n = nombre de sommets dans le graphe
# la fonction initialise la liste SOMMETS a partir
# de départ (int)
SOMMETS=[] # initialisation de la liste SOMMETS
for i in range(n): # i varie entre 0 inclus et n exclu
if i==départ:
SOMMETS.append([-1, 0, True, 0])
# la valeur -1 n’est pas utilisée
# True : uniquement le sommet de départ est sélectionné
else:
SOMMETS .append([-1, inf, False, inf])
# la valeur -1 n’est pas utilisée car distance infinie
# False : sommet non sélectionné
return SOMMETS
def BFS(dico, départ, arrivée):
# la fonction permet d’avoir un plus court chemin
# de départ (int) a arrivée (int) dans la liste L
# & partir du dictionnaire dico.
# On récupere la liste SOMMETS
n=len (dico) # nombre de sommets
H=listeH (arrivée, n)
inf=1el0 # variable représentant 1’infini
SOMMETS=init4 (départ, n) # initialisation de la liste SOMMETS
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position=départ
while (position!=arrivée):
indice=position

for i in range(n): # 1 décrit tous les sommets
if SOMMETS[i] [2]==False: # sommet non sélectionné
L=dico[position]
if i in L: # position et i sont adjacents
g_1i=SOMMETS [position] [1]+1
# g(i) = colt réel entre départ et i
f i=H[i] # cofit estimé entre i et arrivée

if £ i<SOMMETS[i][3]:
SOMMETS [1] [1]=g i
# distance départ->i = g (i)
SOMMETS [i] [3]=f 1
# fonction d’évaluation f (i) = H[i]
SOMMETS[i] [0]=position
# sommet précédent sur le chemin

# recherche du minimum des valeurs de f (i) = H[i]
# pour les sommets non sélectionnés
val min=inf # initialisation de val min a +infini
for i in range(n): # i varie entre 0 inclus et n exclu
if SOMMETS[i] [2]==False and SOMMETS[i] [3]<val min:
indice=1i

val min=SOMMETS[i] [3] # f£(i)
if indice==position:

return [],inf # on n’atteint pas le sommet arrivée
else:

SOMMETS [indice] [2]=True # ce sommet est sélectionné

position=indice # nouvelle valeur de position

# liste des sommets parcourus
i=arrivée
L=[arrivée] # L = liste des sommets parcourus en sens inverse
while (i!=départ):

1i=SOMMETS [1] [0]

L.append (i)
L.reverse () # il faut inverser la liste L pour obtenir la

# liste des sommets parcourus dans le sens direct

return L, SOMMETS[arrivée] [1]

4. C'est le méme algorithme que précédemment. On change la fonction
d’évaluation : £ i = (1-w)*g i+w*h i au lieude £ i =h i pour
sélectionner le sommet suivant lorsqu’on est rendu au sommet position.
On retrouve l'algorithme de la question 2 avec w = 1.

def MANHATTAN (dico, départ, arrivée, w):
# la fonction permet d’avoir un plus court chemin
# de départ (int) a arrivée (int) dans la liste L
# a partir du dictionnaire dico.
# w est compris entre 0 et 1.
# On récupere la liste SOMMETS
n=len (dico) # nombre de sommets
H=listeH (arrivée, n)
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inf=1el0 # variable représentant 1’infini
SOMMETS=init4 (départ, n) # initialisation de la liste SOMMETS
position=départ
while (position!=arrivée):

indice=position

for i in range(n): # 1 décrit tous les sommets
if SOMMETS[i] [2]==False: # sommet non sélectionné
L=dico[position]
if i in L: # position et i sont adjacents
g_1=SOMMETS [position] [1]+1
# g(i) = colt réel entre départ et i
h i=H[i] # colit estimé entre i et arrivée

# w=0:Dijkstra, w=0.5:algorithme A*, w=1:BFS
f i=(l-w)*g i+w*h i
if £ i<SOMMETS[i][3]:
SOMMETS [1] [1]=g_1i
# distance départ->sommet i = g (i)
SOMMETS [1] [3]=f i
# distance départ->arrivée = f (i)
SOMMETS[i] [0]=position
# sommet précédent sur le chemin
# recherche du minimum des valeurs de f (i)
# = distance départ->arrivée
# pour les sommets non sélectionnés
val min=inf
for i in range(n):
if SOMMETS[i] [2]==False and SOMMETS[i] [3]<val min:
indice=i
val min=SOMMETS[i] [3] # £(i)
if indice==position:

return [],inf # on n’atteint pas le sommet arrivée
else:

SOMMETS [indice] [2]=True # ce sommet est sélectionné

position=indice # nouvelle valeur de position

# liste des sommets parcourus
i=arrivée
IL=[arrivée] # L = liste des sommets parcourus en sens inverse
while (i!=départ):

1=SOMMETS[1] [0]

L.append (i)
L.reverse() # il faut inverser la liste L pour obtenir la

# liste des sommets parcourus dans le sens direct

return L, SOMMETS[arrivée] [1]

# initialisation du programme
départ, arrivée=10, 13 # sommet de départ et sommet d'arrivée
L2, dist2=BFS(dico, départ, arrivée)
print ('Algo BFS : chemin :', L2, '; distance', dist2)
w=0
for i in range(3):
L2, dist2=MANHATTAN (dico, départ, arrivée, w)
print('w =',w, '; chemin :', L2, '; distance', dist2)
w=w+0.5
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5. On retrouve plusieurs cas particuliers :

® w = 0 : algorithme de Dijkstra. L'algorithme devient une recherche en
largeur sans stratégie d’exploration des sommets ;

® w=0.5: algorithme A* ;

e w =1 : algorithme glouton BFS.

Si on souhaite aller de Bordeaux a Lyon, l'algorithme A* va plutét explorer

les sommets vers l'est qui ont une distance plus faible que les autres som-

mets alors que l'algorithme de Dijkstra fait une recherche en largeur sans

stratégie d’exploration des sommets.

Le programme Python affiche les résultats suivants pour départ = 10 et

arrivée =13:

e w=0; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance =7 ;

e w=0.5; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance =7 ;

e w=1;chemin:[10, 11, 6, 1, 2, 3, 4, 9, 14, 13] ; distance = 9.

L'algorithme BFS (w = 1) ne donne pas la solution optimale : il privilégie

le chemin passant par 11 qui semble plus prés de 13 mais qui nécessite un

long contournement pour atteindre effectivement 13.

Les algorithmes de Dijkstra et A* utilisent une heuristique dont le colt
évalué (distance de Manhattan) est toujours inférieur ou égal au codt réel.
On dit que ces heuristiques sont admissibles. On peut montrer que ces deux
algorithmes retournent toujours une solution optimale si elle existe. Il peut
y avoir plusieurs solutions optimales de méme codit.

Dans la méthode gloutonne, on ne revient pas sur un choix local optimal
alors que, avec la programmation dynamique, on peut revenir sur les choix
précédents. L'algorithme est glouton pour toutes les valeurs de w.
L'algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd-
Warshall » dans le chapitre « Programmation dynamique ») permet de trai-
ter des arcs dont le poids est négatif.

207






Partie 11

Programmation
dynamique




’ Plan ‘

14. Programmation dynamique (Spé) (sauf TSI et TPC) 211
14.1 : Suite des nombres de Fibonacci, Top Down et Bottom Up 211
14.2 : Rendu de monnaie 214
14.3 : Probléme du sac a dos 223
14.4 : Algorithme de Floyd-Warshall 231

o /




Programmation
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(sauf TSI et TPC)

Exercice 14.1 : Suite des nombres de Fibonacci, Top Down

et Bottom Up

On note (F)), .y la suite des nombres de Fibonacci définie par : F;, =0,F =1,
Vne N,F,,=F, +F,.

1. Ecrire une fonction récursive fibol qui permet de renvoyer le nombre de
Fibonacci F,. L’algorithme utilise-t-il la méthode « diviser pour régner » ?

2. Représenter 1’arbre des appels de la fonction récursive fibol (5) . Combien
de fois est recalcul€é F, ? Quel est I'inconvénient ?

Pour pallier cet inconvénient, on utilise deux techniques : technique récursive
« Top Down » (de haut en bas) de mémoisation et technique itérative « Bottom
Up » (de bas en haut).

3. La technique de mémoisation consiste a stocker les valeurs de F, dans une
liste au fur et a mesure qu’elles sont calculées. Utiliser un dictionnaire pour
implémenter la mémoisation. Ecrire une fonction « récursive » fibo2 renvoyant
le nombre de Fibonacci F, en utilisant la technique « Top Down ».

4. Ecrire une fonction itérative fibo3 qui prend en argument un entier naturel
n et renvoie le nombre de Fibonacci F, en utilisant la technique « Bottom Up ».

Analyse du probleme

La méthode « diviser pour régner » permet de décomposer le probléme initial en
deux sous-probleémes.

Afin d’éviter de calculer plusieurs fois le méme nombre de Fibonacci, on utilise la
technique de mémoisation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

¢ Diviser : on divise le probleme initial en plusieurs sous-problemes.

e Régner : on traite récursivement chacun des sous-problémes.

* Combiner : on combine les différents sous-problemes pour résoudre le probleme de
départ. 21
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Cette méthode donne de trés bons résultats dans de nombreux problemes : dichotomie, tri
par partition-fusion, tri rapide.

La méthode « diviser pour régner » a parfois des faiblesses avec des appels récursifs
redondants. Les sous-problemes ne sont pas toujours indépendants. On peut €tre amené a
résoudre plusieurs fois le méme sous-probléme.

Une solution consiste a utiliser la technique de mémoisation en stockant les résultats déja
calculés. On rencontre deux techniques :

* Technique récursive « Top Down » (de haut en bas) de mémoisation. Lors d’un appel
récursif, on regarde dans une liste intermédiaire si le sous-probleme est déja traité.
Top Down : on résout dans le sens des données de grande taille vers les données de
petite taille.

 Technique itérative « Bottom Up » (de bas en haut) : on résout dans le sens des données
de petite taille vers les données de grande taille (c’est I’ordre inverse de « Top Down »).
On stocke également les résultats obtenus dans une liste intermédiaire.

L’algorithme « Bottom Up » résout tous les sous-problemes de taille inférieure alors que 1’al-
gorithme « Top Down » ne résout que les sous-problemes de taille inférieure dont il a besoin.

1.

2&7 def fibol (n):

# la fonction renvoie le nombre de Fibonacci Fn

# pour l’entier n
if n==0:

return 0 # condition d’arrét
elif n==1:

return 1 # condition d’arrét
else:

return (fibol (n-1)+fibol (n-2))

# appel récursif

L'algorithme est de type « diviser pour régner » puisqu'on décompose
le probleme (calcul de fibol (n)) en deux sous-problémes (calcul de
fibol (n-1) et fibol (n-2)). On calcule récursivement chacun des deux
sous-problémes.

2. L'arbre ci-dessous représente les différents appels de la fonction fibol
que l'on note fib.
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F, est recalculé 3 fois. F; est recalculé 2 fois.

Linconvénient est que l'on augmente considérablement la complexité
puisqu’on recalcule plusieurs la méme valeur F,.

3. On utilise un dictionnaire contenant les termes de la suite déja calculés.
Pour chaque élément du dictionnaire dico, on précise la clé et la valeur
associée. La clé est 'entier n et la valeur est F,. On dit que l'on a un che-
vauchement de sous-problémes.
def fibo2(n, dico):

# la fonction renvoie le nombre de Fibonacci F[n]

# pour l’entier n

if n in dico: # teste si n est dans dico

return dico[n]

4=

condition d’arrét
# retourne F[n]

else:
if n==0:
dico[n]=0 # calcul de F[O0]
return 0 # condition d’arrét
elif n==
dico[n]=1 # calcul de F[1]
return 1 # condition d’arrét
else:
a=fibo2 (n-1, dico) # appel récursif
if n-1 not in dico: # teste si la clé n-1
# est dans dico
dico[n-1]=a # stockage de F[n-1] dans dico
b=fibo2 (n-2, dico) # appel récursif
if n-2 not in dico: # teste si la clé n-2
# est dans dico
dico[n-2]=b # stockage de F[n-2] dans dico
return (a+b)
dico={}
n=15

print ('fibo2 =', fibo2(n, dico))

4. La relation de récurrence s'écrit pourn>2:F =F _, +F .
def fibo3(n):
# la fonction renvoie le nombre de Fibonacci Fn
# pour 1’entier n
# on remplit dans une liste les valeurs de F[n]
if n==0:
return 0

elif n==1:
return 1

else:
F=[0, 1] # initialisation de la liste F
for i in range(2, n+l): #i varie entre 2 inclus

# et n+l exclu
F.append(F[i-1]1+F[i-2])
return F[1i]
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On dispose des pieces entieres suivantes : § =[1, 2, 5, 10, 20, 50, 100] =[S, S,
..., S, 1] ou S[i] représente la valeur de la piece d’indice i. On cherche a rendre
une certaine somme entiere X en utilisant le moins de pieces, qui peuvent étre
identiques.

1. On utilise la méthode la plus intuitive qui consiste a commencer par rendre
la plus grande piece possible. Pour X = 11, on commence par rendre la piece
de 10.

On appelle L[x] le nombre de pieces nécessaires pour rendre la somme x. La
récurrence (1) peut s’écrire :

e L[0]=0;
e six21:L[x]=1+L[x—S[i]] avec i le plus grand tel que S[i] < x.

On suppose que la liste S est triée par ordre croissant des valeurs. Ecrire une
fonction récursive rendul qui admet comme arguments une liste S et un entier
X. La fonction retourne le nombre de pieces nécessaires pour rendre la somme
X en utilisant la récurrence (1).

L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette
méthode est-elle appelée gloutonne ? Est-ce que rendul ([1, 4, 6], 8)
retourne la solution optimale ?

2. Pour trouver la solution optimale au rendu de monnaie, on utilise la récur-
rence (2) :

. L[0]=0;
esix>1 :L[x]=1+0min1L|:x—Sl.]_
Sex

Ecrire une fonction récursive rendu2 qui admet comme arguments une liste
S et un entier X. La fonction retourne le nombre minimal de pieces nécessaires
pour rendre la somme X.

L’algorithme utilise-t-il la méthode « diviser pour régner » ?

Représenter I’arbre des appels de la fonction récursive rendu2 ([1, 2, 5],
4) . Quel est I’inconvénient ?

3. Ecrire une fonction récursive rendu3 qui admet comme arguments une
liste S, un entier X et une liste L servant a stocker les résultats intermédiaires.
La fonction retourne le nombre minimal de pi¢ces nécessaires pour rendre la
somme X en utilisant la programmation dynamique avec la récurrence (2).
Représenter I’arbre des appels de la fonction récursive rendu3 ([1, 2, 5],
4, L).

Utilise-t-on la technique « Top Down » (de haut en bas) ou « Bottom Up » (de
bas en haut) dans la fonction rendu3 ?
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4. Ecrire une fonction itérative rendu4 qui admet comme arguments une liste
S, un entier X et une liste L. La fonction retourne le nombre minimal de pieces
nécessaires pour rendre la somme X. On part de la plus petite somme possible
a rendre et on calcule les éléments suivants de L en utilisant la récurrence (2).

Utilise-t-on la technique « Top Down » ou « Bottom Up » ?

5. On souhaite reconstruire la solution optimale a partir de I’information calcu-
lée, c’est-a-dire obtenir la liste des pieces utilisées. On définit la liste 7 :

e Tlx] > 0O si on a utilisé la piece d’indice 7[x] pour rendre la somme x dans la
récurrence (2) ;

e T1x] = 0 sinon.

On définit une liste PTECES initialement vide. On considére une boucle while

en partantde x = X :

* Tlx] désigne I’indice de la piece utilisée pour rendre la somme x dans la récur-
rence (2) ;

* ajouter dans la liste PIECES la valeur de la piece utilisée ;

* retrancher cette valeur a x.

Modifier la fonction rendu3 qui utilise la technique « Top Down » pour obte-

nir la liste des pieces utilisées.

6. Modifier la fonction rendu4 qui utilise la technique « Bottom Up » pour
obtenir la liste des pieces utilisées.

Analyse du probleme

On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La
méthode « diviser pour régner » permet de décomposer le probléme initial en deux
sous-problemes. La programmation dynamique permet d’obtenir une solution opti-
male en utilisant deux techniques : « Top Down » et « Bottom Up ».

On verra la différence entre la méthode gloutonne et la programmation dynamique.

%

1. On suppose que la liste S est triée par ordre croissant des valeurs.
def rendul (S, X):
# la fonction renvoie le nombre de piéces nécessaires
# pour rendre la somme X en utilisant la liste S :
# S[i] = valeur de la piece d’indice i
if X==0: # condition d’arrét
return 0
else:
# recherche de i le plus grand tel que S[i] <= X
i=len(S)-1
while S[i]>X:
i=i-1
# ajoute 1 au nombre de pieces ;
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Cours :

# puisqu’on utilise la piece S[i]
# il reste donc a rendre la monnaie a X - S[i]

return l+rendul (S, X-S[i]) # appel récursif
S=[1, 4, 6]
X=8
print (rendul (S, X)) # on obtient : 3

La méthode « diviser pour régner » peut se décomposer en trois étapes :

* Diviser : on divise le probleme initial en plusieurs sous-problemes.
* Régner : on traite récursivement chacun des sous-problémes.
* Combiner : on combine les différents sous-probleémes pour résoudre le probleme de

départ.

Dans la méthode gloutonne (greedy en anglais), on effectue une succession de choix, cha-
cun d’eux semble étre le meilleur sur le moment. On résout alors le sous-probléme mais on
ne revient jamais sur le choix déja effectué.

%

L'algorithme est de type « diviser pour régner » puisqu’on décompose le
probléme (calcul de L[X]) en un sous-probléme (calcul de L[X - S[7]] avec i
le plus grand tel que S[7] < X). On calcule récursivement le sous-probléme.

A chaque étape de l'algorithme, on commence par rendre la plus grande
piéce possible, c'est-a-dire la plus grande piéce dont la valeur est infé-
rieure a la somme a rendre. C'est la solution qui semble étre la meilleure
et la plus intuitive. On déduit alors de cette piéce la somme a rendre et on
est ramené a un sous-probléme avec une somme a rendre plus petite. On
recommence jusqu’a obtenir une somme nulle.

Cet algorithme est trés simple mais a chaque étape on n’étudie pas tous les
cas possibles puisqu’on se contente de choisir la piece la plus grande que
l'on peut rendre.

Dans le cas ol S=[1, 4, 6] et X= 8, on n‘obtient pas la solution optimale.
L'algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 piéce de
6 et 2 piéces de 1) alors que la solution optimale est 2 (2 piéces de 4).

2.

def rendu2 (S, X):
# la fonction renvoie le nombre de pieces nécessaires
# pour rendre la somme X en utilisant la liste S
# S[i] = valeur de la piéce d’indice i
if X==0: # condition d’arrét
return 0O
else:
mini=X # recherche du minimum de X-S[i]
for i in range(len(S)): # 1 varie entre 0 inclus
# et len(S) exclu
if S[i]<=X: # 11 faut que Si <= X
res=rendu2 (S, X-S[i])
# appel récursif pour
# rendre la monnaie a X-S[i]
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if res<mini:

mini=res

return l+mini # ajoute 1 au nombre de piéces
s=[1, 4, 6]
X=8
print (rendu2 (S, X)) # on obtient 2, c’est-a-dire la solution

# optimale alors que rendul (S, X)
# retourne 3

L'algorithme est de type « diviser pour régner » puisqu’'on décompose le
probléme (calcul de L[X]) en plusieurs sous-problémes (calcul de L[X-S[0]],
L[X-S[1]],..., L[X-S[n-1]]). On combine les différents sous-problémes pour
résoudre le probléme de départ.

L'arbre ci-dessous représente les différents appels de la fonction
rendu2 ([1, 2, 5], 4) quiretourne 2.

On appelle rendu2 pour X = 4.

® On appelle rendu2 pour X-S[i] =4 - 1 =3 avec i = 0 (de la boucle
for).

® On appelle rendu2 pour 3 -1 =2 aveci=0 (de la boucle for).

® On appelle rendu2 pour 2 - 1 =1 avec i = 0 (de la boucle for). On
appelle rendu2 pour 1 - 1 =0 avec 7 = 0. On arrive a la condition
d'arrét.

® On dépile et on revient a l'appel pour X=2 aveci=1 (de la boucle for).
On appelle rendu2 pour 2 - 2 = 0. On arrive a la condition d'arrét.

® On dépile et on revient a l'appel pour X=3 avec7=1 (de la boucle for).
On appelle rendu2 pour 3 - 2 = 1. On arrive a la condition d'arrét.

® On dépile et on revient a l'appel pour X =4 avec i =2 (de la boucle for).
On appelle rendu2 pour 4 - 2 = 2.
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Programmation dynamique

On constate que L'on calcule plusieurs fois le nombre de piéces a rendre
pour X = 2. Les sous-problémes ne sont pas indépendants. On est amené a
résoudre plusieurs fois le méme sous-probléme. On dit que l'on a un che-
vauchement de sous-problémes.

3. Pour éviter de calculer plusieurs fois le nombre de piéces a rendre pour
une valeur de X, on garde en mémoire le résultat dans la liste L. La liste L
doit contenir les valeurs suivantes : 0, 1, 2, ..., X.

def rendu3(S, X, L): # programmation dynamique -
# technique Top Down
# la fonction renvoie le nombre de piéces nécessaires
# pour rendre la somme X en utilisant la liste S
# S[i] = valeur de la piece d’indice i
# stockage des résultats intermédaires dans L
# L[i] = nombre de pieces nécessaires pour
# rendre la somme i
if X==0: # condition d’arrét
return 0
elif L[X]>O0: # valeur déja calculée
return L[X] # retourne le nombre de pieces nécessaires
# pour rendre la somme X

else:
mini=X # recherche du minimum de X-S[i]
for i in range(len(S)): # 1 varie entre 0 inclus
# et len(S) exclu
if S[i]<=X: # 11 faut que Si <= X
res=rendu3 (S, X-S[i], L)
# appel récursif pour
# rendre la monnaie a X-S[i]
if res<mini:
mini=res
L[X]=14+mini # technigque de mémoisation
return l4+mini # ajoute 1 au nombre de piéces
L=[0 for i in range (X+1)] # initialisation - liste L
# avec des valeurs nulles
print (rendu3 (S, X, L)) # on obtient 2

Remarque : On peut utiliser un dictionnaire au lieu de la liste L. Pour chaque
élément du dictionnaire dico, on précise la clé et la valeur associée. La clé est

I’entier i
somme 1i.

et la valeur est dico[1] = nombre de pieces nécessaires pour rendre la

def rendu3 dico(S, X, dico): # programmation dynamique -
# technique Top Down
# la fonction renvoie le nombre de pieces nécessaires
# pour rendre la somme X en utilisant la liste S
# S[i] = valeur de la piéce d’indice i
# stockage des résultats intermédaires dans dico
# dico[i] = nombre de piéces nécessaires pour
# rendre la somme i
if X==0: # condition d’arrét
return 0
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elif X in dico: # valeur déja calculée
return dico[X] # retourne le nombre de piéces
# nécessaires pour rendre la somme X
else:
mini=X # recherche du minimum de X-S[i]
for i in range(len(S)): # 1 varie entre 0 inclus
# et len(S) exclu
if S[i]<=X: # il faut que Si <= X
res=rendu3 dico (S, X-S[i], dico)
# appel récursif pour
# rendre la monnaie a X-S[i]
if res<mini:
mini=res
dico[X]=1+mini # technique de mémoisation
return l+mini # ajoute 1 au nombre de piéces
dico={}
S=[1, 4, 6]
X=8
print (rendu3 dico(S, X, dico))

Cours :
La programmation dynamique est souvent utilisée pour résoudre des problemes d’optimi-
sation. Elle comprend différentes étapes :

e Recherche d’une récurrence pour déterminer la valeur d’une solution optimale.
« Utilisation de la technique Top Down ou Bottom Up.

La programmation dynamique et la méthode gloutonne reposent sur I’utilisation de
sous-problémes. Il y a une différence importante :

 Dans la programmation dynamique, on calcule toutes les solutions des sous-problémes
que I’on combine pour obtenir une solution optimale.
* Dans la méthode gloutonne, on choisit une solution qui semble étre la meilleure et on
résout le sous-probleme qui en résulte.
On rencontre deux techniques dans la programmation dynamique :

 Technique récursive « Top Down » de mémoisation : on résout dans le sens des don-
nées de grande taille vers les données de petite taille. Lors d’un appel récursif, on
regarde dans une liste intermédiaire si le sous-probleme est déja traité.

* Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille
vers les données de grande taille (c’est I’ordre inverse de « Top Down »). On stocke
également les résultats obtenus dans une liste intermédiaire.

2 L'arbre ci-dessous représente les différents appels de la fonction
@ rendu3([1, 2, 51, 4).
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On appelle rendu3 pour X = 4.

® On appelle rendu3 pour X-S[i] =4 - 1 =3 avec i = 0 (de la boucle
for).

® On appelle rendu3 pour 3 -1 =2 aveci=0 (de la boucle for).

® On appelle rendu3 pour 2 - 1 =1 avec 7 =0 (de la boucle for). On
appelle rendu3 pour 1 - 1 = 0 avec i = 0. On arrive a la condition
d'arrét.

® On dépile et on revient a l'appel pour X=2 aveci=1 (de la boucle for).
On appelle rendu3 pour 2 - 2 = 0. On arrive a la condition d'arrét.

® On dépile et on revient a l'appel pour X =3 aveci=1 (de la boucle for).
On appelle rendu3 pour 3 - 2 =1, On arrive a la condition d'arrét.

® On dépile et on revient a l'appel pour X =4 avec i =2 (de la boucle for).
On appelle rendu3 pour 4 - 2 = 2. On arrive a la condition darrét
puisque L[2] a déja été calculé.

On ne calcule pas plusieurs fois le nombre de piéces a rendre pour X = 2.

La fonction rendu3 utilise la programmation dynamique avec la tech-

niqgue « Top Down » (de mémoisation) et permet d'obtenir une solution

optimale sans résoudre plusieurs fois le méme sous-probléme.

4. On a deux boucles for imbriquées. Il faut remplir toute la liste L avant
d’obtenir la valeur optimale (x = X). On remarque que la récurrence (2) s'écrit
avec x (pour la fonction rendu4) et non X (pour la fonction rendu3).
def rendu4 (S, X, L): # programmation dynamique -
# technique Bottom Up

la fonction renvoie le nombre de pieces nécessaires

pour rendre la somme X en utilisant la liste S :

S[i] = valeur de la piece d’indice i

#
#
#
# stockage des résultats intermédaires dans L :
# L[1i] = nombre de pieces nécessaires pour

# rendre la somme i

for x in range(l, X+1): # x varie entre 1 inclus

# et X+1 exclu

mini=X
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for i in range(len(S)): # 1 varie entre 0 inclus
# et len(S) exclu
if S[i]<=x and L[x-S[i]]<mini:
mini=L[x-S[i]]
L[x]=14+mini
return L[X]

L=[0 for i in range (X+1)] # initialisation - liste L
# avec des valeurs nulles
print (rendu4 (S, X, L)) # on obtient 2

L'algorithme rendu4 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la méme formule de récurrence mais on
part de la plus petite valeur a rendre au lieu de partir de la plus grande
valeur a rendre (technique « Top Down »).

Dans la fonction rendu4, on incrémente X de 1 inclus a X inclus (ou X+1
exclu).

¢ Dans la technique « Top Down », on ne traite que les sous-problémes
nécessaires. On n’a pas besoin de remplir entiérement la liste L pour
obtenir la solution optimale au probléme.

¢ Dans la technique « Bottom Up », on traite tous les sous-problémes
(deux boucles for imbriquées). Il faut d'abord remplir entiérement la
liste L avant de retourner la solution optimale au probléme.

5. En dessous de la ligne L[X]=1+mini, on ajoute la ligne T[X]=
indice afin de préciser l'indice de la piéce utilisée pour rendre la somme X.
La variable indice est définie lors du test if res>mini:.
def rendu3 piece(S, X, L, T): # programmation dynamique -
# technique Top Down

la fonction renvoie le nombre de pieces nécessaires

pour rendre la somme X en utilisant la liste S

S[i]=valeur de la piéce d’indice 1

stockage des résultats intermédaires dans L

#
#
#
#
# L[i]l=nombre de pieces nécessaires pour
# rendre la somme i
# T[x] > 0 si on a utilisé la piece d’indice T[x]
# pour rendre la somme x
if X==0: # condition d’arrét

return 0

elif L[X]>0: # valeur déja calculée
return L[X] # retourne le nombre de pieces
# nécessaires pour rendre
# la somme X
else:
mini=X # recherche du minimum de X-S[i]
for i in range(len(S)): # 1 varie entre 0 inclus
# et len(S) exclu
if S[i]<=X: # il faut que Si <= X

res=rendu3_piece(S, X-S[i], L, T)
# appel récursif pour
# rendre la monnaie a X-S[i]
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if res<mini:
mini=res
indice=i
L[X]=14+mini
T[X]=indice

technique de mémoisation
indice de la piece utilisée
pour rendre la somme X
ajoute 1 au nombre de pieces

HH H H I

return l+mini

1, 2, 5]

S=[
X=4
L=[0 for i in range (X+1)] initialisation - liste L
avec des valeurs nulles
initialisation - liste T
avec des valeurs nulles

T=[0 for i in range (X+1)]

HH= H H I

print (rendu3 piece(s, X, L, T))

PIECES=[]
x=X
while x>0:
PIECES.append (S[T[x]])

# T[x] = indice de la piéce utilisée pour
# rendre la somme x
# S[T[x]] = valeur de la piece d’indice T[x]

x=x-S[T[x]]
# on retranche la valeur S[T[x]] a x pour
# chercher les autres piéces
print (PIECES)

Le programme Python affiche :

2
(4, 4]

6. En dessous de la ligne L[x]=1+mini, on ajoute la ligne T[x]=
indice afin de préciser lindice de la piéce utilisée pour rendre la somme
x. La variable indice est définie lors du test if S[i]<=x and
L[{x-S[i]]<mini:.

On remarque que lon utilise x (rendu4 piece) et non X (rendu3

piece).
def rendu4 piece(S, X, L, T): # programmation dynamique -
# technique Bottom Up
# la fonction renvoie le nombre de pieces nécessaires
# pour rendre la somme X ainsi que la liste des pieces
# en utilisant la liste S
# stockage des résultats intermédaires dans L
# L[1i] = nombre de pieces nécessaires pour
# rendre la somme i
# T[x] > 0 si on a utilisé la piece d’indice T[x]
# pour rendre la somme x

for x in range(l, X+1): # x varie entre 1 inclus
# et X+1 exclu
mini=X
indice=-1
for i in range(len(S)): # 1 varie entre 0 inclus
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# et len(S) exclu
if S[i]<=x and L[x-S[i]]<mini:
mini=L[x-S[1]]
indice=i # indice de la piece
L[x]=14+mini
T[x]=indice # indice de la piéce utilisée
# pour rendre la somme x
# création de la liste des pieces utilisées
# pour rendre la monnaie
PIECES=[]
x=X
while x>0:
PIECES.append(S[T[x]])

# T[x] = indice de la piece utilisée pour
# rendre la somme x
# S[T[x]] = valeur de la piece d’indice T[x]

x=x-S[T[x]]
# on retranche la valeur S[T[x]] a x pour
# chercher les autres piéces
return L[X], PIECES

S=[1, 2, 5]

X=4

L=[0 for i in range (X+1)] # initialisation - liste L
# avec des valeurs nulles

T=[0 for i in range (X+1)] # initialisation - liste T
# avec des valeurs nulles

print (rendu4 piece(S, X, L, T))

Le programme Python affiche :

2
(4, 4]

Exercice 14.3 : Probléeme du sac a dos

On considere un sac a dos dont la masse maximale est notée M. On cherche a
maximiser la valeur totale des objets insérés dans le sac a dos. On dispose de n
objets modélisés par la liste de listes S :

* S[i] [0] désigne la valeur de I’objet d’indice i notée v, (i varie de 0 a n—1).

* S[i] [1] désigne la masse de I’objet d’indice i notée m, (i varie de 0 a n—1).
n—1

On suppose dans tout le probleme que Zmi > Met que les masses sont des
i=0

entiers. Le premier objet de la liste S a pour indice 0.

1. On utilise la méthode intuitive consistant a insérer au fur et a mesure les
objets qui ont le plus grand rapport valeur/masse. On suppose que la liste S est
triée par ordre décroissant du rapport valeur/masse. Ecrire une fonction itéra-
tive algol qui admet comme arguments une liste S et un entier M. La fonction
retourne la valeur des objets que 1’on peut insérer dans le sac a dos.
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Pourquoi cette méthode est-elle appelée gloutonne ? Est-ce que algol
([r15,61, [60,25], [10,51, [7,81, [10,20]1, 30) retournela
solution optimale ?

2. On considere L la liste telle que L [m] [1] désigne la valeur maximale des
objets que 1’on peut insérer dans le sac a dos de masse maximale m en ne consi-
dérant que les i premiers objets de la liste S (indices des objets S compris entre
0eti-1).

Pour trouver la solution optimale au probléme du sac a dos, on utilise la récur-
rence suivante (1) :

* L[m] [0] =0.
*Lim][i] =L[m] [i-1] siS[1i-1]1[1] >meti>0.

e L.m][i] =max(L[m][i-1], S[1i-1]1[0]+L[m-S[i-1]17[1],1i-11)
SiS[i-1][1] <meti>0.

Ecrire une fonction récursive algo2 qui admet comme arguments une liste S,
un entier M et un entier i (on ne considere que les i premiers objets de la liste
S). On n’utilisera pas dans cette question la liste I. pour stocker les résultats
intermédiaires. La fonction retourne la valeur maximale des objets que 1’on
peut insérer dans le sac a dos.

Démontrer la terminaison de la fonction algo2. L’algorithme utilise-t-il la
méthode « diviser pour régner » ? Quel est le principal inconvénient de cet
algorithme ?

3. Ecrire une fonction récursive algo3 qui admet comme arguments une liste
S, un entier M, un entier i (on ne considere que les i premiers objets de la liste
S) et une liste L (stockage des résultats intermédiaires). La fonction retourne la
valeur maximale des objets que 1’on peut insérer dans le sac a dos en utilisant
la programmation dynamique. Utilise-t-on la technique « Top Down » (de haut
en bas) ou « Bottom Up » (de bas en haut) ?

4. Ecrire une fonction itérative algo4 qui admet comme arguments une liste
S, un entier M et une liste L (stockage des résultats intermédiaires). La fonction
retourne la valeur maximale des objets que 1’on peut insérer dans le sac a dos
en utilisant la programmation dynamique avec la récurrence (1). Les résultats
intermédiaires sont stockés dans la liste L.

On calcule les éléments de L en partant de la plus petite valeur de i et de la plus
petite valeur de m.

Utilise-t-on la technique « Top Down » ou « Bottom Up » ?

Quelle est la principale différence entre ces deux techniques en comparant les
listes L obtenues par les deux algorithmes précédents ?
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5. On souhaite reconstruire la solution optimale a partir de 1’information cal-

culée, c’est-a-dire connaitre la liste des objets insérés dans le sac. On définit la

liste T :

e T[m] [1] = 1 si on a inséré le i®™ objet (indice i—1 dans S) dans le sac a dos
de masse maximale m ;

* T[m] [i] =0 sinon.

On définit une liste OBJETS initialement vide. On pose m = M. On considere

une boucle for en partantde i =n :

* SiT[m] [i] =1, alors on a inséré le i*™ objet (indice i—1 dans S) dans le sac
a dos. Ajouter cet objet dans la liste OBJETS et retrancher la masse de cet
objet a la masse m.

Modifier la fonction algo3 qui utilise la technique « Top Down » pour qu’elle
retourne la valeur maximale ainsi que la liste des objets insérés.

6. Modifier la fonction algo4 qui utilise la technique « Bottom Up » pour
qu’elle retourne la valeur maximale ainsi que la liste des objets insérés.

Analyse du probléme

On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés
dans un sac a dos. La programmation dynamique permet d’obtenir une solution
optimale en utilisant deux techniques : « Top Down » et « Bottom Up ». Une liste
temporaire permet de stocker les résultats des sous-problemes. On verra la diffé-
rence entre les deux techniques concernant le nombre de sous-problémes a traiter.

1.

Zéy def algol(S, M): # S liste de listes avec [valeur, masse]

# les objets sont triés par ordre décroissant valeur/masse
# la fonction retourne la valeur des objets que 1l’on peut
# insérer avec une masse maximale M

v_total=0 # initialisation de la valeur totale des objets
m_total=0 # initialisation de la masse totale des objets
n=len (S)
for i in range(n):
if m total+S[i][1]<=M: # teste si nouvelle
# masse totale <= M
v_total+=S5[i][0] # calcule la nouvelle
# valeur totale
m_total+=S[i][1] # calcule la nouvelle
# masse totale
#
#

return v_total retourne la valeur totale

des objets

Avant dinsérer un objet, il faut tester que la nouvelle masse totale ne
dépasse pas M.
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Cette méthode est appelée méthode gloutonne car elle consiste a faire le
meilleur choix sur le moment, c'est-a-dire insérer l'objet qui a le plus grand
rapport valeur/masse.
M=30
s=[[15, 6], [60, 25], [10, 51, [7, 81, [10, 201]

# [valeur, masse]
print ('ALGO1 :', algol(S, M)) # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient
alors la liste suivante qui est bien triée par ordre décroissant : [2.5,
2.4, 2.0, 0.875, 0.5].

e On insére le premier objet, de valeur 15 et de masse 6.

® On ne peut pas insérer le deuxiéme objet, de masse 25, car la masse
totale 6+25 dépasse 30.

¢ On inseére le troisieme objet, de valeur 10.

e On insére le quatriéme objet, de valeur 7.

On obtient une valeur totale 32 dans le sac a dos.

Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas parti-

culier, algo1l renvoie 32 alors que la solution optimale est 70.

2. On cherche a insérer le ™ objet. On ne fait plus le méme test que

dans la question précédente (nouvelle masse totale < M) mais on teste si la

masse S[i-11[1] du 7®™ objet (indice i-1) est inférieure a M puisqu’on

traite le cas d'un sac a dos de masse maximale M-S [1i-1][1].

On définit la fonction récursive algo?2 :

® algo2 (S, M, 1) retourne la valeur maximale des objets dans le sac
a dos de masse maximale M en ne considérant que les i premiers objets
de la liste S (indices compris entre 0 et 7-1).

® 3lgo2(S, M, 1i-1) : valeur maximale dans le sac & dos de masse
maximale M en ne considérant que les -1 premiers objets.

® 3algo2(S, M-S[i-1][1], i-1): valeur maximale dans le sac a
dos de masse maximale M-S[i-1] [1] en ne considérant que les i-1
premiers objets.

On considére deux cas :

¢ Si l'objet dindice i-1 a une masse supérieure a M, alors on ne peut pas
l'insérer et le programme retourne algo2 (S, M, 1i-1) puisquil suffit
de considérer les 7-1 premiers objets.

e Sinon, on cherche le maximum de deux nombres :

0 algo2 (S, M, i-1) en n'insérant pas l'objet d'indice i-1 ;

o valeur de l'objet dindice (i-1) + algo2(S, M-S[i-1][1],
i-1) en insérant lobjet dindice i-1. Il faut en effet considérer la
valeur maximale dans le sac a dos de masse M-S [i-1][1] avec les
i-1 premiers objets. En faisant la somme des deux valeurs, la masse
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maximale du sac a dos vaut toujours S[i-1][1]+(M-S[i-1]
[11)=M.
def algo2(S, M, 1i):
# la fonction retourne la valeur des objets que 1l’on peut
# insérer avec une masse maximale M
# et S liste de listes avec [valeur, masse]
# on ne considére que les i premiers objets de la liste S
if i==0: # condition d’arrét
return 0 # pas d’objet a insérer dans le sac a dos
elif S[1i-1][1]>M: # 1l’objet d’indice i-1 est de masse > M
# on ne peut pas 1’insérer
return algo2(S, M, i-1) # appel récursif
else:
return max (algo2 (S, M, i-1),\
S[i-11[0]+algo2(S, M-S[i-1][1], i-1))
# appel récursif

M=30

s=[[1l5, 6], [e0, 251, ([10, 51, [7, 81, [10, 2011
# [valeur, masse]

print ('ALGO2 :', algo2(S, M, len(S)))

Le programme Python retourne 70, qui est la solution optimale.

On considére le variant de boucle i. A chaque appel de la fonction récursive,
il décroit d'une unité et finit par atteindre la valeur 0 correspondant a la
condition d'arrét. Le programme se termine donc dans tous les cas si 7> 0.

L'algorithme est de type « diviser pour régner » puisqu’on décompose le
probléme (algo2 (S, M, i)) en plusieurs sous-problémes (algo2 (S,
M, 1i-1) et algo2(S, M-mi, i-1)). On combine les différents
sous-problémes pour résoudre le probléme de départ.

Le principal inconvénient est que l'on calcule plusieurs la méme valeur
totale. On dit que U'on a un chevauchement de sous-problémes. On va uti-
liser dans la question suivante la technique de mémofdsation qui consiste a
stocker dans une liste les valeurs déja calculées.

3. Pour éviter de calculer plusieurs fois la méme valeur totale, on garde
en mémoire le résultat dans la liste L : L[m ] [1] contient la valeur maxi-
male des objets dans le sac a dos de masse maximale m en ne considérant
que les 7 premiers objets.

La liste L doit contenir M+1 lignes et 1en (S) +1 colonnes.

def algo3 (S, M, i, L):
# la fonction retourne la valeur des objets que 1l’on peut
# insérer avec une masse maximale M
# et S liste de listes avec [valeur, masse]
# on ne considére que les i premiers objets de la liste S
# stockage des résultats intermédaires dans la liste L
if L[M][1]>0: # le sous-probleme a déja été traité

return L[M][i] # retourne la valeur déja calculée

elif i==0: # condition d’arrét
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return 0

elif S[i-1][1]>M:
total=algo3 (S,
L[M] [i]=total

return total
else:

L[M] [i]=total
return total

M=30
S=[[15, 6]/ [601 257,
# [valeur, masse]

print ('ALGO3 :',

La fonction algo3 utilise la programmation dynamique avec la technique
« Top Down » (de mémofdsation) et permet d'obtenir une solution optimale

total=max (algo3 (S,
S[i-11[0]+algo3(S,M-S[i-11[1],

[10,

L=[[0 for j in range(len(S)+1)]
algo3 (S,

# pas d’objet a insérer dans
# le sac a dos

M, i-1, L) # appel récursif
# 1l’objet d’indice i-1 est de masse > M
# on ne peut pas 1’insérer

M, L), \

i-1,

i-1, L))

# appel récursif

51, (7, 81, [10, 20]]

for i in range (M+1)]

M, len(S), L))

sans résoudre plusieurs fois le méme sous-probléme.
4. On a deux boucles for imbriquées.

La boucle for i commence ai=1 puisqu’on considére i-1 dans la récur-

rence (1).

La boucle for m commence a m =0 et se termine a M inclus. Il faut remplir
toute la liste L avant d’obtenir la valeur optimale (i= 1len (S) et m = M).

On remarque que la récurrence (1) s'écrit avec m (algo4) et non M

(algo3).

def algo4 (s, M, L):

for i in range (1,

else:
L[m] [1]

return L[M] [len(S)]

La fonction algo4 utilise la programmation dynamique avec la technique
« Bottom Up » : on utilise la méme formule de récurrence que dans algo2

for m in range (M+1):

if S[i-1]1[1]>m:

# la fonction retourne la valeur des objets que 1l’on peut
# insérer avec une masse maximale M

# et S liste de listes avec
# stockage des résultats intermédaires dans la liste L
len(S)+1) :

[valeur, masse]

# 1 varie entre 1 inclus
et len(S)+1 exclu

m varie entre 0 inclus
et M+l exclu

on considére 1’objet
d’indice i-1

1’objet d’indice i-1 est
de masse > m

on ne peut pas 1’insérer

HH H H = FH H H I

=max (L[m] [1-1],\

S[i-11[0]+L[m-S[i-1]1([1]1][1i-11)



Chapitre 14 - Programmation dynamique (Spé) (sauf TSI et TPC)

et algo3 mais on part du plus petit nombre d'objets a insérer au lieu de
partir du plus grand nombre d'objets a insérer (technique « Top Down »).

Il faut deux boucles for imbriquées pour faire varier le nombre d'objets a
insérer et la masse maximale du sac a dos.

¢ Dans la technique « Top Down », on ne traite que les sous-problémes
nécessaires. On n‘a pas besoin de remplir entiérement la liste I pour
obtenir la solution optimale au probléme.

¢ Dans la technique « Bottom Up », on traite tous les sous-problémes
(deux boucles for imbriquées). Il faut d’abord remplir entiérement la
liste L. avant de retourner la solution optimale au probléme.

L=[[0 for j in range(len(S)+1)] for i in range (M+1)]
print ('ALGO4 :', algo4 (S, M, L))

5. Lors de la recherche du maximum dans algo3, il faut savoir si l'objet
d'indice 7-1 a été inséré ou non. Si on insére lobjet d'indice i-1, alors
T[M] [1] =1.
def algo3 objets(s, M, i, L, T):
# la fonction retourne la valeur des objets que 1l’on peut
# insérer avec une masse maximale M
# et S liste de listes avec [valeur, masse]
# on ne considére que les i premiers objets de la liste S
# stockage des résultats intermédaires dans la liste L
# T[m][i] = 1 si on a inséré le ieme objet
# (indice i-1 dans S) dans le sac a dos
# de masse maximale m
if L[M][1]1>0: # le sous-probleme a déja été traité
return L[M] [1] # retourne la valeur déja calculée
elif i==0: # condition d’arrét
return 0 # pas d’objet & insérer dans
# le sac a dos
elif S[i-1][1]>M:
total=algo3 objets (s, M, i-1, L, T) # appel récursif
L[M] [i]=total # 1l’objet d’indice i-1 est de masse > M
# on ne peut pas 1’insérer
return total
else:
a=algo3 objets(s, M, i-1, L, T)
b=S[i-1] [0]+algo3 objets(S, M-S[i-1]([1], i-1, L, T)

if a > b:
L[M][i]l=a # on n’a pas inséré 1l’objet d’indice i-1
total=a
else:
L[M][1]=b
T[M][1i]=1 # on a inséré le ieme objet dans le
# sac a dos de masse M
total=b

return total

M=30 # entier
s=[[15, 6], [e0, 25], [10, 5], [7, 81, [10, 20]]
# [valeur, masse]
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L=[[0 for j in range(len(S)+1)] for i in range (M+1)]
T=[[0 for j in range(len(S)+1)] for i in range (M+1)]
print ('algo3 objets :', algo3 objets(s, M, len(S), L, T))
OBJETS=1[]

m=M
for i in range(len(S), 0, -1): # i varie entre len(S) inclus
# et 0 exclu avec pas = -1
if T[m][1i]==1: # 1 désigne le iéme objet
OBJETS.append (S[1i-11) # on a inséré le ieéme objet

# d’indice i-1
m=m-S[i-1][1] # retranche a m la masse de 1l’objet inséré
print (OBJETS)

Pour obtenir la liste des objets insérés, il faut créer une liste OBJETS
vide et considérer une boucle for en partant de 1en (S). Si le *™ objet
d'indice i-1 a été inséré, on l'ajoute dans la liste OBJETS. Il faut ensuite
retrancher @ m la masse de cet objet inséré et tester T[m] [i] avec la
nouvelle masse et le nouvel indice.

Le programme principal affiche :

70 # valeur totale du sac a dos
[[10, 51, [60, 2511 # on a ajouté 1 objet de valeur 10
# et une autre de valeur 60

6. Lors de la recherche du maximum dans algo4, il faut savoir si l'objet
d'indice i-1 a été inséré ou non. Si on insére 'objet d'indice i-1, alors
T[m] [1] =1.

Il s'agit bien de T[m] [i] etnonde T[M ] [1] puisquon remplit la liste
pour toutes les valeurs de m et de 7.

def algo4 objets(S, M, L, T):
# la fonction retourne la valeur des objets que 1l’on peut

insérer avec une masse maximale M

et S liste de listes avec [valeur, masse]

stockage des résultats intermédaires dans la liste L

T[m][i] = 1 si on a inséré le ieme objet

(indice i-1 dans S) dans le sac a dos

de masse maximale m

for i in range(l, len(S)+1):

HH H = FH H

# 1 varie entre 1 inclus
# et len(S)+1 exclu
for m in range (M+1): # m varie entre 0 inclus
# et M+1 exclu
if S[i-1]1[1]>m: # on consideére 1’objet
# d’indice i-1
Lim] [1]1=L[m] [i-1] # 1’objet d’indice i-1 est
# de masse > m
# on ne peut pas 1l’insérer
else:
a=L[m] [i-1]
b=S[i-1][0]+L[m-S[i-1][1]][i-1]
if a > b:
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L[m] [i]=a # on n’a pas inséré 1’objet
# d’indice i-1
else:
L[m] [i]=b
T[m] [1]=1 # on a inséré le iéme objet

# dans le sac a dos
# de masse m
# création de la liste des objets insérés dans le sac a dos
OBJETS=[]
m=M
for i in range(len(S), 0, -1): #i désigne le iéme objet
if T[m] [i]==1:
OBJETS.append (S[1i-11) on a inséré le ieme objet
d’indice i-1

m=m-S[i-1][1] on retranche a m la masse

#
#
#
# de 1’objet inséré
return L[M][len(S)], OBJETS

M=30 # entier
sS=[[1l5, 61, [60, 251, (10, 51, [7, 81, [10, 2011]

# [valeur, masse]
L=[[0 for j in range(len(S)+1)] for i in range (M+1l)]
T=[[0 for j in range(len(S)+1)] for i in range (M+1)]
print ('algo4 objets :', algo4 objets(s, M, L, T))

Le programme Python affiche :
70
[[10, 51, [60, 25]]

Exercice 14.4 : Algorithme de Floyd-Warshall

On considere le graphe orienté G = (S, A) constitué de n sommets. Les arétes
sont orientées et le poids des arcs peut étre négatif. On suppose que le graphe

n’apas de cycle de poids négatif. On définit la matrice d’adjacence (M,. j)0<_ -
J Josi, jen-

du graphe. L’algorithme de Floyd-Warshall définit d, (i, j ) la distance minimale
d’un chemin du sommet i au sommet j en empruntant des sommets intermeé-
diaires d’indice strictement inférieur a k.

* Sik=n,alorsd (i, j) est la plus courte distance entre i et j.

* Un chemin qui emprunte des sommets intermédiaires d’indice stricte-
ment inférieur 2 0 ne peut emprunter aucun sommet intermédiaire, donc

dy (i,j) =MIi][j].
* On considere un chemin optimal de i a j qui emprunte des sommets intermé-
diaires d’indice strictement inférieur a k. On a deux possibilités :

* soit ce chemin ne passe jamais par le sommet k-1 ;
* soit ce chemin passe exactement une fois par le sommet k—1.

d, (i, j) = min(d,_, (i, j).d_, (i.k=1)+d,_, (k=1 )
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On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse () permet d’inverser les éléments de la liste L.

1. Construire la matrice d’adjacence (Mi, j) du graphe G, définie par :

<i,j<n—
Pour tous les indices i, j, M; j représentg_lfé_npé)ids de I’arc d’origine i et
d’extrémité j.
Lorsque les sommets ne sont pas reli€s, le poids de I’arc vaut I’infini. On définit
la variable inf=1e10 qui représente un poids infini.
2. Ecrire une fonction récursive Floydl qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet de départ i, le sommet d’arrivée j et

I’entier k. Cette fonction retourne d, (i, j ) avec la programmation dynamique.

Ecrire le programme principal permettant d’afficher la plus petite distance par-
courue entre le sommet de départ O et le sommet d’arrivée 1 en utilisant la
fonction Floydl.

L’algorithme utilise-t-il la méthode « diviser pour régner » ?

3. Pour éviter de calculer plusieurs fois d, (i, j), on définit une liste DIST
telle que DIST[: ][ Jj ][k] =d, (i, j). L’indice k varie entre O et n inclus. Lorsque
DIST[i][ j][k] n’a pas été calculé, DIST[i][ j][k] = —co. Ecrire une fonction
récursive Floyd2 qui admet comme arguments d’entrée la matrice d’adjacence
M, le sommet de départ i, le sommet d’arrivée j, I’entier k et la liste DIST ser-
vant & stocker les résultats intermédiaires. Cette fonction retourne d, (i, j) avec
la programmation dynamique.

Utilise-t-on la technique « Top Down » ou « Bottom Up » ?

4. Ecrire une fonction itérative Floyd3 qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet départ et le sommet arrivée.
Cette fonction retourne la distance d’un plus court chemin entre départ et
arrivée en utilisant I’algorithme de Floyd-Warshall avec la programmation
dynamique.

Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
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5. On souhaite afficher le chemin suivi en utilisant la liste DIST. On définit la
liste PRECEDENT :

* Toutes les valeurs de PRECEDENT sont initialisées a —1.

* Sij# j etsi—co < DIST[i][jI[k] < e, alors PRECEDENT [i][ j][ k] est le som-
met précédent j sur un chemin optimal de i a j qui emprunte des sommets
intermédiaires d’indice strictement inférieur a k.

« PRECEDENT[i][j][0]=isii# j et M[i][j] <ee.

* La valeur de PRECEDENT ][ j][k] lorsque i = j ou DIST[i][ j][k]= o ou
DIST|[] [ j] [k] = —c n’a aucune importance. On peut la prendre égale a —1.

 PRECEDENTi][ j][k] = PRECEDENT[i][ j][k—1] sid, (i.j)=d,_, (i, ).

« PRECEDENT:][ j][k]=PRECEDENT [k —1][ j][k —1] si

d (i,j)=d,_, (i,k-=1)+d,_ (k—1,j)etd (i,])#
et PRECEDENT [k —1][j][k 1] # -1

Ecrire le programme principal permettant d’afficher le chemin suivi entre les
sommets départ et arrivée.

Analyse du probleme

On considere des graphes orientés contenant des arétes de poids négatif et n’ayant
pas de cycle de poids négatif. Le graphe n’est pas nécessairement fortement
connexe.

L’algorithme de Floyd-Warshall définit d, (i, j ) la distance minimale d’un chemin
du sommet i au sommet j en empruntant des sommets intermédiaires d’indice stric-
tement inférieur a k.

%

1. La matrice d'adjacence est : M =

g 8 8 o o
e g oo g
8 8§ o ~g
o 8 8 38
§ 8 8 w

Comme le graphe est orienté, la matrice n'est pas nécessairement symé-
trique.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

* Diviser : on divise le probleme initial en plusieurs sous-problemes.

* Régner : on traite récursivement chacun des sous-problémes.

* Combiner : on combine les différents sous-problemes pour résoudre le probleme de
départ.
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%

Cours :

2. L'algorithme est de type « diviser pour régner » puisqu’on décompose
le probleme (calcul de d, (7, 7)) en plusieurs sous-problémes (calcul de
a1 (7)), diy (1,k=1),d,; (k=1,7)). On combine les différents sous-pro-
blémes pour résoudre le probléme de départ.

Dans la programmation dynamique, on calcule toutes les solutions des
sous-problémes, que l'on combine pour obtenir une solution optimale.
def Floydl (M, i, j, k):
# la fonction retourne d k(i,j) pour la
# matrice d’adjacence M
if k==0: # condition d’arrét
return M[1][]]
else:
a=Floydl (M, i, j, k-1) # appel récursif
b=Floydl (M, i, k-1, k-1)+Floydl (M, k-1, 3, k-1)

return (min(a,b))

inf=1lel0 # variable représentant 1’infini
M= [[0, inf, 18, inf, 3],

[8, 0, 4, inf, inf],

[inf, inf, 0, inf, inf],

[inf, 1, inf, 0, inf],

[inf, 2, inf, -1, 0]]

n=len (M) # nombre de lignes de M
départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée

distancel=Floydl (M, départ, arrivée, n)

print ("Distance parcourue Floydl :", distancel)

On rencontre deux techniques dans la programmation dynamique :

* Technique récursive « Top Down » (de mémoisation). Lors d’un appel récursif, on
regarde dans une liste intermédiaire si le sous-probleme est déja traité.
Top Down : on résout dans le sens des données de grande taille vers les données de
petite taille.

* Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille
vers les données de grande taille (c’est I’ordre inverse de « Top Down »). On stocke
également les résultats obtenus dans une liste intermédiaire.

¥

3. La fonction Floyd?2 utilise la programmation dynamique avec la tech-
nique « Top Down » (de mémoisation) et permet d'obtenir une solution
optimale sans résoudre plusieurs fois le méme sous-probléme.

Dans le programme principal, on part de la plus grande valeur de k (ici
n) : distance2=Floyd2 (M, départ, arrivée, n, DIST).On
décompose le probléme (calcul d; (7, j) en plusieurs sous-problémes (calcul
de diy (7, J) sy (1K =1) diy (K =1, 7))

Pour éviter de calculer plu51eurs fois d, (7, j), on garde en mémoire le résul-
tat dans la liste DIST : DIST[i][j][k] =d, (i, j)- La liste doit contenir
(n)(n)(n+1) valeurs.

e j et j varient de 0 inclus a n exclu.

® k varie de 0 inclus a n inclus.
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Lorsque DIST[i][j][k] n"a pas été calculé, DIST[7][j][k] = —ce.
def Floyd2 (M, i, j, k, DIST):

# la fonction retourne d k(i,j) pour la

# matrice d’adjacence M

# la liste DIST est telle que DIST[i][j][k]=d k(i,])

if k==0: # condition d’arrét
return M[1][]]

elif DIST[i][j][k]!=-inf: # condition d’arrét
return DIST[i][J] [k]

else:

a=Floyd2 (M, i, j, k-1, DIST) # appel récursif
b=Floyd2 (M, i, k-1, k-1, DIST)\

+Floyd2 (M, k-1, j, k-1, DIST)
DIST[i][j][k]=min(a,b)
return DIST[i] [J] [k]

DIST=[[[-inf for k in range(n+l)] for j in range(n)]\
for i in range(n)]
# toutes les distances valent -inf

départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée
distance2=Floyd2 (M, départ, arrivée, n, DIST)

print ("Distance parcourue Floyd2 :", distance2)

4. 'algorithme F1loyd3 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la méme formule de récurrence mais on
part de la plus petite valeur de k au lieu de partir de la plus grande valeur
de k (k = n, technique « Top Down »).

Il faut trois boucles for imbriquées pour faire varier 7, j et k.

¢ Dans la technique « Top Down », on ne traite que les sous-problémes
nécessaires. On n'a pas besoin de remplir entiérement la liste DIST pour
obtenir la solution optimale au probléme.

e Dans la technique « Bottom Up », on traite tous les sous-problémes
(trois boucles for imbriquées). Il faut d'abord remplir entiérement la
liste DIST avant de retourner la solution optimale au probléme.

def Floyd3 (M, départ, arrivée, DIST):

# la fonction retourne DIST[départ ][arrivée ] [n]
# n = nombre de sommets

n=len (M) # nombre de lignes de M
for k in range (n+l): # k varie entre 0 inclus
# et n+l exclu
for i in range(n): # 1 varie entre 0 inclus
# et n exclu
for j in range(n): # j varie entre 0 inclus
# et n exclu
if k==0:
DIST[1][§][k]=M[i][]]
else:

a=DIST[i][J][k-1]
b=DIST[1] [k-1] [k-1]1+DIST[k-1][j][k-1]
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DIST[i][j][k]=min(a,b)
return DIST[départ] [arrivée] [n]

DIST=[[[-inf for k in range(n+l)] for j in range(n)]\
for i in range(n)]
# toutes les distances valent -inf
départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée
distance3=Floyd3 (M, départ, arrivée, DIST)
print ("Distance parcourue Floyd3 :", distance3)

5. On utilise l'algorithme F1loyd3 avec la technique « Bottom Up » pour
obtenir la liste DIST entiérement remplie.

Pour kK = 0, on considére deux boucles for imbriquées pour calculer
PRECEDENT([/, 7,0] :

o PRECEDENT [1][j][0] =17 sii # j et M[f][j]<eo.

On utilise trois boucles for imbriquées pour calculer PRECEDENT [7][ ][] :
e PRECEDENT [1][][k] = PRECEDENT [i] [ ][k — 1] si d (i, ) = dy_y (i, J).

® PRECEDENT [7][][k] =PRECEDENT [k —1][j][k —1] si

d (i, J)=de g (I k=1)+d g (k=1,)) etd, (i, ]) %o
et PRECEDENT [k —1][j][k —1] # -1
PRECEDENT=[[[-1 for k in range(n+l)] for j in range(n)]\
for i in range (n)]
# tous les éléments valent -1
for i in range(n):
for j in range(n):
if i!=3 and M[i][j]<inf:
PRECEDENT [1] [§] [0]=1
for k in range(l, n+l):
for i in range(n):
for j in range(n):
if DIST[i][j][k]==DIST[i][j][k-1]:
PRECEDENT [1] [J] [k]=PRECEDENT [1] [j] [k-1]
if DIST[1][j][k]==DIST[i][k-1][k-17\
+DIST[k-11[3][k-11\
and DIST[i][J][k]!=inf\
and PRECEDENT [k-1][j][k-1]!=-1:
PRECEDENT [1] [j] [k]=PRECEDENT [k-1][7] [k-1]

# recherche du chemin suivi entre les sommets départ et arrivée
indice boucle=0
i=arrivée
chemin=[arrivée] # initialisation de la liste des sommets
# parcourus en sens inverse
while (i!=départ) and indice boucle<n:
i=int (PRECEDENT [départ] [1] [n])
chemin.append (i)
indice_boucle=indice_boucle+l
# on obtient la liste des sommets en sens inverse
chemin.reverse () # i1 faut inverser la liste chemin
print (chemin)
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Intelligence
artificielle et jeu
a deux joueurs (Speé)

Exercice 15.1 : Algorithme des k plus proches voisins

On considere un jeu de données « fic.csv » contenant # lignes. Chaque ligne
contient les caractéristiques d’un iris : longueur des pétales (en cm), largeur des
pétales (en cm) et désignation de I’espece de I’iris (0 pour setosa, 1 pour ver-
sicolor et 2 pour virginica). Les données sont s€parées avec le sé€parateur « ; ».
On utilise les listes de listes pour représenter les matrices dans Python.
L’instruction A. sort () permet de trier en place une liste de listes A en fonc-
tion du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :
f=open ('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut étre 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines () :récupération de I’ensemble des données du fichier dans
une liste
\n : caractere d’échappement : saut de ligne

cl.strip() : renvoie une chaine sans les espaces et les caracteres
d’échappement (saut de ligne par exemple) en début et fin de la chaine de
caracteres c1

cl.split(';") : sépare une chaine de caracteres (c1) en une liste de
mots avec le séparateur ' ; '

f.write ('exemple') : écrit dans I’objet fichier f la chaine de carac-
teres 'exemple'
f.close () : ferme le fichier

1. Ecrire une fonction £ ic_data qui admet comme argument un nom de fichier

et retourne une matrice a n lignes et trois colonnes : longueur des pétales de I’iris,
largeur des pétales de 1'iris et désignation de 1’espece de ’iris (0, 1 ou 2).
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2. Ecrire une fonction calc dist qui admet comme arguments deux
listes ptA et ptB. La fonction retourne la distance euclidienne entre le
point A de coordonnées (longueurA,largeurA) et le point B de coordonnées
(longueurB, largeurB).

3. Ecrire une fonction algoknn qui admet comme arguments une matrice
data (n lignes et 3 colonnes), une liste pt search et un entier k. La fonc-
tion retourne une prédiction de 1’espece de I'iris (noté iris2) caractérisé par
pt search (liste de deux valeurs : longueur et largeur des pétales).

Les étapes de I’algorithme des & plus proches voisins sont les suivantes :

* Pour chaque iris (noté irisl) de data, on calcule la distance euclidienne
entre irisletiris?2.

* On définit une matrice mat dist (n lignes et deux colonnes). Chaque ligne
contient la distance euclidienne entre irisl et iris?2 ainsi que la désigna-
tion de I’espece de irisl.

* On trie la liste de listes mat dist dans I’ordre croissant des distances eucli-
diennes entre irisl et iris2.

* On en déduit une prédiction de I’espece de iris2 en cherchant la désigna-
tion majoritaire parmi les k plus proches voisins de iris2.

4. Ecrire le programme principal permettant d’afficher le nuage de points des
données du fichier « fic.csv » ainsi que le point recherché pt _search et d’af-
ficher une prédiction de I’espece de iris2 caractérisé par pt search=[5,
1.7] avec k=35.

Le graphique doit avoir les caractéristiques suivantes :

* affichage de « longueur des pétales » pour I’axe des abscisses et « largeur des
pétales » pour I’axe des ordonnées ;

* affichage en bleu avec marqueur « v » pour les iris setosa ;

* affichage en rouge avec marqueur « . » pour les iris versicolor ;

* affichage en vert avec marqueur « + » pour les iris virginica ;

* affichage de la Iégende « iris setosa », « iris versicolor » et « iris virginica » ;
* affichage en noir avec 1inewidth=8 pour I'iris pt _search.

On pourra se servir de la fonction p1t.scatter () pour représenter un nuage
de points en utilisant le modulematplotlib.pyplot quel’onrenomme plt.
Les arguments d’entrée sont les mémes que pour la fonction plt.plot ().

Analyse du probléme

En intelligence artificielle, 1’algorithme des & plus proches voisins est une méthode
d’apprentissage supervisé alors que 1’algorithme des k-moyennes (voir exer-
cice 15.3 « Algorithme des k-moyennes ») est une méthode d’apprentissage non
supervisé.



L’objectif est de prédire la classe (ou la classification) d’un échantillon a partir
d’exemples connus. On pourrait chercher le plus proche voisin de 1’échantillon.
L’inconvénient est que cette méthode du plus proche voisin est trés sensible aux
bruits. Une amélioration consiste a utiliser les k observations les plus proches. On
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cherche la classe majoritaire parmi les k plus proches voisins.

1.

Zéy def

2.
def

Remarque :

On peut envisager plusieurs définitions de la distance entre A (x Y A) etB (xB , yB) :

fic data(fichier):

# la fonction retourne une matrice
# n lignes et trois colonnes

# n = nombre de lignes du fichier

f=open (fichier, 'r'") # ouverture de fichier (str)

# en lecture
f données=f.readlines () # récupere toutes les lignes du

# fichier dans la liste f données
n=len (f_ données) # nombre de lignes du fichier
data=[[0 for j in range(3)] for i in range(n)]

# matrice : n lignes et 3 colonnes
# longueur, largeur et numéro de 1l’espece

for i in range (0, n): # 1 varie entre 0 inclus et n exclu
ligne=f données[i].strip().split(";")
# split(';') permet de séparer la ligne en une liste

# de mots avec le séparateur ";"

# strip() permet d’enlever les caracteres d’échappement

# (ici saut de ligne)

datal[i] [0], data[i][l]l=float(ligne[0]), float(ligne[l])

if (ligne[2]=="setosa"):
data[i] [2]=0 # numéro 0 désigne setosa
elif (ligne[2]=="versicolor"):
data[i] [2]=1 # numéro 1 désigne versicolor
else: # virginica
datal[i]l[2]=2 # numéro 2 désigne virginica
f.close()

return data

calc_dist (ptA, ptB):

# distance euclidienne entre ptA et ptB
# ptA est une liste [longueurA, largeurA]
# ptB est une liste [longueurB, largeurB]

return ((ptB[0]-ptA[0])**2+ (ptB[1]-ptA[1])**2)** (0.5)

* distance euclidienne : distance = \/ (xB -X, )2 + ( Vg — Y4 )2

* distance de Manhattan : distance = ‘xB —-X A’ +‘ Vg =Y A‘

* distance de Tchebychev : distance = max (‘xB -Xx A| ,

yB_yA‘)
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3. Pour une valeur de k fixée, on calcule la distance d'un point a tous les
points du fichier de données. On cherche 'espéce majoritaire parmi les k
plus proches voisins.

def algoknn(data, pt search, k):
# calcul de la distance de pt search a tous les points
# de data
# la fonction retourne une prédiction de 1l’espece de 1l’iris
# algorithme des k(int) plus proches voisins
# pt_search : liste de deux valeurs
# longueur et largeur des pétales
n=len (data) # nombre de lignes de data
tab dist=[[0 for j in range(2)] for i in range(n)]
# matrice avec distance et numéro espece
for i in range(len(data)): # i varie entre 0 inclus
# et len(data) exclu
irisl=[data[i][0],data[i][1]]
mat dist[i][0]=calc_dist(pt_search,irisl)
tab_dist[i][1]=data[i] [2]
# on récupere la distance et la désignation
# de 1’espece
tab dist.sort() # tri par ordre croissant
# des distances
# on récupere la liste des distances triées par ordre
# croissant
# choix de 1’espéce
list nb espece=[[0, i] for i in range(3)]
# liste de listes : (total, numéro de 1’espeéce)
for i in range (k) : # 1 varie entre 0 inclus
# et k exclu
indice=int (tab dist[i][1]) # tab dist[i][1]
# numéro de 1’espeéece
list nb espece[indice] [0]+=1
list nb espece.sort() # tri de list nb espece par ordre
# croissant de total

predict=1list nb espece[2][1] # le dernier élément est
# celui qui apparait le plus
return predict

4.

import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt
data=fic data("fic.csv")

nb_espece=3 # on a trois espéces d’iris
# setosa (0), versicolor (1) et virginica (2)
pt _search=[5, 1.7] # longueur, largeur
k=5 # nombre de k plus proches voisins

x1l, yl, x2, y2, %3, y3=[1,01,01,01,01,1]
for i in range(len(data)):
if data[i][2]==0:
x1l.append(data[i] [0])
yl.append(data[i] [1])
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elif datali]l[2]==
x2.append (data[i] [0])
y2.append (datal[i][1])
else:
x3.append (data[i] [0])
y3.append(datalil[1])
plt.figure ()
plt.xlabel ("longueur des pétales")
plt.ylabel ("largeur des pétales")
plt.scatter(xl, yl, color='blue', marker='v')
plt.scatter(x2, y2, color='red', marker='.")
plt.scatter(x3, y3, color='green', marker='+"')
plt.scatter (pt_search[0], pt _search[l], color='black',\
linewidth=8)
plt.legend(['iris setosa', 'iris versicolor',\
'iris virginica'])
plt.show ()

predict=algoknn(data, pt search, k)
if predict==0:
print (predict, 'setosa')
elif predict==1:
print (predict, 'versicolor')
else:
print (predict, 'virginica')
On obtient le graphique suivant avec le fichier « fic.csv » (voir le site Dunod
pour télécharger le fichier de données).

2.5 v iris setosa
« iris versicolor . +
+ iris virginica +
2.0 +
72}
Q
=
2 15
w
Q
ks
5 .
& 1.0 .
-
=
v
0.5 v
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v vy
0.0
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longuer des pétales

On applique l'algorithme des k plus proches voisins a pt _search=[5,
1.7] avec k=5.

A la fin de l'exécution de la fonction algoknn, laliste 1ist nb espece
vaut : [[0, 0], [2, 1], [3. 2]].
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Parmi les 5 plus proches voisins, on 3 voisins virginica, 2 voisins versicolor
et aucun setosa.

Le programme Python renvoie : 2 virginica. Liris recherché (gros
cercle noir sur le graphique ci-dessus) est plus prés des iris virginica que
des iris versicolor et setosa.

Remarque :

L’algorithme des k plus proches voisins est basé sur un algorithme d’apprentissage
a partir d’observations étiquetées. Le modele prédictif est utilisé dans plusieurs cas :

» Régression : le résultat est un réel. Le résultat est la moyenne des valeurs des k
plus proches voisins.

Exemples : prédiction de la solubilité d’une molécule dans I’eau en mg/mL.

* Classification : le résultat obtenu est une classe d’appartenance (0, 1,2, ..., C-1)
si on considere C classes possibles. Dans I’exemple précédent, on a C = 3 classes
(0 pour setosa, 1 pour versicolor et 2 pour virginica).

* Classification binaire : le résultat obtenu est 0 ou 1. Exemples : I’e-mail regu
est-il un spam ? La photo est-elle celle d’un chat ? On utilise un nombre impair
de voisins pour ne pas avoir d’ex-aequo.

Exercice 15.2 : Matrice de confusion, valeur optimale des k
plus proches voisins

On considere les jeux de données « ficOl.csv » (fichier d’apprentissage pour
I’algorithme des & plus proches voisins) et « ficO2.csv » (fichier de test). Chaque
ligne contient les caractéristiques d’un iris : longueur des pétales (en cm), lar-
geur des pétales (en cm) et désignation de 1’espece de I'iris (0 pour setosa, 1
pour versicolor et 2 pour virginica). Les données sont séparées avec le sépa-
rateur « ; ». On utilise les listes de listes pour représenter les matrices dans
Python. L’instruction A. sort () permet de trier en place une liste de listes A
en fonction du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :
f=open ('fichier.txt', 'w') : 'fichier.txt' désigne le nom
du fichier. Le mode d’ouverture peut étre 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou "a' pour « ajout » (append)

f.readlines () :récupération de I’ensemble des données du fichier dans
une liste

\n : caractere d’échappement : saut de ligne

cl.strip() : renvoie une chaine sans les espaces et les caracteres
d’échappement (saut de ligne par exemple) en début et fin de la chaine de
caracteres c1
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cl.split(';") : sépare une chaine de caracteres (c1) en une liste de
mots avec le séparateur ' ; '

f.write ('exemple') : écrit dans I’objet fichier f la chaine de carac-
teres 'exemple'

f.close () : ferme le fichier

1. Ecrire une fonction £ ic data qui admet comme argument un nom de
fichier et retourne une matrice a n lignes et trois colonnes : longueur des pétales
de I’iris, largeur des pétales de I’iris et désignation de I’espece de I’iris (0, 1 ou
2).

2. Ecrire une fonction algoknn qui admet comme arguments une matrice
data (n lignes et 3 colonnes), une liste pt search et un entier k. La fonc-
tion retourne une prédiction de I’espéce d’un iris inconnu caractérisé par pt
search (liste de deux valeurs : longueur et largeur des pétales). On utilisera
I’algorithme des k plus proches voisins.

3. Ecrire une fonction evalKNN qui admet comme arguments datal (liste
d’apprentissage), data2 (liste de test) et un entier k. La fonction retourne la
matrice suivante a 3 lignes et 3 colonnes :

Classe réelle

setosa versicolor virginica
setosa
Classe .
Py versicolor
prédite —
virginica

mat [0] [2] représente le nombre de fois ol I’algorithme prédit I'iris setosa
alors qu’il est en réalité virginica.
4. On définit la matrice de confusion matconf pour I'iris versicolor avec k=2 :

Classe réelle

versicolor non versicolor

Classe versicolor True Positives (TP) | False Positives (FP)
prédite | non versicolor | False Negatives (FN) | True Negatives (TN)

matconf [0] [1] représente le nombre de faux positifs (FP) dans le jeu de
test.

Que représentent les indicateurs suivants ?

R
TPPEE T TP Y FN
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* spécificité = _IN
P ~IN+FP
e TP
= preClSlon =
TP+FP

Ecrire une fonction matcon f indicateurs qui admet comme arguments
datal (liste d’apprentissage) et data2 (liste de test). La fonction
retourne la matrice de confusion pour I’iris versicolor avec k = 2, rappel,
spécificitéetprécision.

5. Ecrire une fonction predi ct_k qui admet comme arguments datal (liste
d’apprentissage) et data?2 (liste de test). La fonction retourne la valeur opti-
male de k en utilisant les étapes suivantes :

* Pour toutes les valeurs de k possibles, on applique 1’algorithme des k plus
proches voisins a toutes les especes du fichier de test.

* On calcule pour chaque valeur de k le pourcentage d’especes mal prédites du
fichier de test.

* On en déduit la valeur optimale de k correspondant au pourcentage d’especes
mal prédites le plus faible.

Analyse du probleme

L’objectif de I’algorithme des k plus proches voisins est de prédire la classe (clas-
sification) ou la valeur (régression) d’un échantillon a partir d’exemples connus.
On sépare les données en un jeu d’entrainement (fichier d’apprentissage : « ficOl.
csv ») et un jeu de test (fichier de test : « fic02.csv »). La répartition des données
entre le jeu d’entrainement et le jeu de test peut étre 80 %-20 %, 70 %-30 % ou
méme 50 %-50 %. Le jeu d’entrainement sert a apprendre le modele (algorithme
des k plus proches voisins). Le jeu de test sert a estimer 1’erreur de généralisation
du modele.

2& 1. Les deux premiéres questions reprennent les fonctions définies dans
'exercice précédent « Algorithme des k plus proches voisins ».
def fic data(fichier):
# la fonction retourne une matrice :
# n lignes et trois colonnes
# n = nombre de lignes du fichier

f=open (fichier, 'r'") # ouverture de fichier (str)

# en lecture
f données=f.readlines() # récupere toutes les lignes du

# fichier dans la liste f_ données
n=len (f_ données) # nombre de lignes du fichier
data=[[0 for j in range(3)] for i in range(n)]

# matrice : n lignes et 3 colonnes
# longueur, largeur et numéro de 1l’espece
for i in range (0, n): # 1 varie entre 0 inclus et n exclu




2.
def

def
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ligne=f données[i].strip().split(";")

# split(';') permet de séparer la ligne en une liste
# de mots avec le séparateur ';'

# strip() permet d’enlever les caracteres d’échappement
# (ici saut de ligne)

datal[i][0], datalil[l]l=float(ligne[0]), float(ligne[l])

if (ligne[2]=="setosa"):
datal[i] [2]= # numéro 0 désigne setosa
elif (ligne([2]= "ver31color"):
datal[i] [2]=1 # numéro 1 désigne versicolor
else: # virginica
datal[i] [2]=2 # numéro 2 désigne virginica
f.close()

return data

calc _dist (ptA, ptB):

# distance euclidienne entre ptA et ptB

# ptA est une liste [longueurA, largeurA]

# ptB est une liste [longueurB, largeurB]

return ((ptB[O0]-ptA[0])**2+ (ptB[1]-ptA[1l])**2)**(0.5)

algoknn (data, pt search, k):

calcul de la distance de pt search a tous les points

de data

la fonction retourne une prédiction de 1l’espece de 1l’iris
algorithme des k(int) plus proches voisins

pt_search : liste de deux valeurs

# longueur et largeur des pétales

HH H H = H

n=len (data) # nombre de lignes de data
tab dist=[[0 for j in range(2)] for i in range(n)]
# matrice avec distance et numéro espece
for i in range(len(data)): # i varie entre 0 inclus
# et len(data) exclu
tabidist[i][O]:calcidist(ptisearch,\
[data[i][0],datal[i][1]])
tab dist[i][l]=datal[i] [2]
# on récupere la distance et la désignation
# de 1’espece
tab_dist.sort() # tri par ordre croissant
# des distances
# on récupere la liste des distances triées par ordre
# croissant
# choix de 1'’espece

list nb espece=[[0, i] for i in range (nb_espece)]
# liste de listes : (total, numéro de 1’espeéce)
for i in range (k) : # 1 varie entre 0 inclus
# et k exclu
indice=tab dist[i][1] # tab dist[i][1]

# numéro de 1’espéce
list nb espece[indice] [0]+=1
list nb espece.sort() # tri de list nb espece par ordre
# croissant de total
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predict=1list nb espece[2][1] # le dernier élément est
# celui qui apparait le plus
return predict

def evalKNN (datal, data2, k):
# datal = liste d’apprentissage et data2 = liste de test
# la fonction retourne la matrice mat

n2=len (data?) # nombre de données de la liste de test
mat=[[0 for j in range(3)] for i in range(3)]
for i in range(n2): # i varie entre 0 inclus et n2 exclu

predict=algoknn (datal, [data2[i][0],data2[i][1]1]1, k)
mat [predict] [data2[i][2]]+=1
return mat

4. On a plusieurs fagons d'évaluer les données de test :

® Rappel = = proportion des iris bien prédits (classe versicolor)

TP+ FN
parmi tous les iris versicolor dans le fichier de test. Le rappel définit la
capacité du modele a détecter la classe versicolor parmi les iris versicolor
dans le jeu de test. On l'appelle également sensibilité.

e Spécificité = _IV_ = proportion des iris bien prédits (classe non-

TN + FP

versicolor) parmi les iris qui ne sont pas de classe versicolor dans le

fichier de test. La spécificité définit la capacité du modéle a détecter les

iris qui ne sont pas de classe versicolor parmi les iris qui ne sont pas de
classe versicolor dans le jeu de test.

. TP . e L .
® Précision = ———— = proportion des iris bien prédits (classe versicolor)
TP + FP

parmi tous les iris dans le fichier de test. La précision définit la capacité
du modéle a détecter la classe versicolor parmi toutes les classes dans
le jeu de test.

True Positives (TP) :

Classe réelle
setosa versicolor | virginica
setosa
Classe .
£ 3 versicolor
prédite —
virginica
True Negatives (TN) :
Classe réelle
setosa versicolor | virginica
setosa
Classe X
P versicolor
prédite —
virginica
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False Negatives (FN) :

Classe réelle
setosa versicolor | virginica
setosa
Classe ;
L 3 versicolor
prédite —
virginica
False Positives (FP) :
Classe réelle
setosa versicolor | virginica
setosa
Classe :
L 2. versicolor
prédite ——
virginica
def matconf indicateurs (datal, data2):
# datal liste d’apprentissage ; dataz liste de test
# la fonction retourne la matrice de confusion pour

# 1’iris versicolor (k = 2)

# rappel (float), spécificité(float) et précision(float)
k=2 # k = 2 pour 1l’algorithme des k plus proches voisins
mat=evalKNN (datal, data2, k)

matconf=[[0 for j in range(2)] for i in range(2)]

matconf[0] [O]=mat[1][1]

# True Positives (TP)

matconf[1] [1]=mat[0] [0]+mat[0] [2]4+mat[2] [O]+mat[2][2]

# True Negatives (TN)
matconf[1] [0]=mat[0] [1]+mat[2][1l] # False Negatives (FN)
matconf[0] [1]=mat[1][0]+mat[1][2] # False Positives (FP)
TP=matconf [0] [0] # True Positives (TP)
FP=matconf[0] [1] # False Positives (FP)
FN=matconf[1] [0] # False Negatives (FN)
TN=matconf[1][1] # True Negatives (TN)
rappel=TP/ (TP+FN)
spécificité=TN/ (TN+FP)
précision=TP/ (TP+FP)
return matconf, rappel, spécificité, précision

Remarque : On peut avoir des faux négatifs ou des faux positifs avec les tests pour

la Covid.

¥

5. On sépare le fichier de lexercice précédent « Algorithme des k plus
proches voisins » en deux fichiers : fichierl (fichier d'apprentissage
correspondant au jeu d’entrainement) et fichier2 (fichier de test cor-
respondant au jeu de test).
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Pour chaque donnée du fichier de test, on exécute 'algorithme des k plus
proches voisins et on calcule le pourcentage d'espéces mal prédites. On
peut ainsi choisir la valeur de k permettant d'avoir le plus faible pourcen-
tage d’espéces mal prédites.
def predict k(datal, data2):

# datal : liste d’apprentissage

# data2 : liste de test
# la fonction retourne la valeur optimale de k

nl=len(datal) # nombre de données de la liste
# d’apprentissage

n2=len (data2) # nombre de données de la liste
# de test

tab pred=[[0 for j in range(2)] for i in range(nl)]

for k in range(l, nl): # k varie entre 1 inclus

# et nl exclu
nb_erreur=0
for i in range(n2): # 1 varie entre 0 inclus
# et n2 exclu
predict=algoknn (datal, \
[data2[i] [0],data2[i] [1]1], k)
if predict!=data2[i][2]:
nb_erreur+=1
tab pred(k] [0]=nb erreur
tab pred[k][1]=k
tab pred.sort()
return tab pred,tab pred[1][1]
On applique les fonctions avec les fichiers « ficO1.csv » et « fic02.csv » (voir
le site Dunod pour télécharger les fichiers de données).

tab pred, val k optimisee=predict k(datal, data2)
print ("Valeur optimisée pour k = ", val k optimisee)
Le programme Python affiche : valeur optimisée pour k=6.

Exercice 15.3 : Algorithme des k-moyennes
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L’algorithme des k-moyennes permet de trouver des groupes (appelés clusters)
parmi un nuage de points. On utilise deux listes X et Y : chaque point i est carac-
téris€ par son abscisse X [1] et son ordonnée Y [1]. Le but est de regrouper les
éléments qui se « ressemblent » dans K clusters. On utilise les listes de listes
pour représenter les matrices dans Python.

On pourra se servir de la fonction plt.scatter () pour représenter un nuage
de points en utilisant le modulematplotlib.pyplot quel’onrenomme plt.
Les arguments d’entrée sont les mémes que pour la fonction plt.plot ().
Rappels pour la génération de nombres aléatoires :

import random as rd # module random renommé rd
rd.random () # nombre flottant aléatoire M tel que 0 <= M < 1
rd.randint (a, b) # renvoie un entier aléatoire M tel que a <= M <= b

On définit la variable inf=1e10 qui représente une distance infinie.
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1. On étudie dans cette question un nuage de 12 points que 1’on représentera
sur feuille afin de comprendre le début de 1’algorithme itératif.

On considere deux listes X et Y représentant les abscisses et les ordonnées de

3 groupes de 4 points générés dont les coordonnées sont comprises dans les

intervalles [3£0.6,1£0.6], [8+1,2+1] et [4£0.8,5%+0.8] pour chaque groupe.

Représenter sur feuille un nuage de points.

* Initialisation des centres des clusters : On choisit al€atoirement 3 points parmi
les 12 points. Représenter sur feuille le nuage de points en mettant en évi-
dence les 3 clusters.

* On réalise une premiere partition des données en associant chacun des autres
points au cluster le plus proche. On calcule alors les centres des nouveaux
clusters. Représenter sur feuille le nuage de points en mettant en évidence les
3 nouveaux clusters.

2. Ecrire une fonction initpoints qui admet comme argument un entier
pts_groupe et retourne deux listes X et Y contenant chacune N = 3Xpts
groupe valeurs. Les listes X et Y représentent les coordonnées des N points.
Chaque groupe est constitué de pt s groupe points. Les 3 groupes contiennent
des points de coordonnées comprises dans les intervalles [3+2.6,1+2.6],
[8+2.5,2+2.5] et [4+2.8,5£2.8].

3. Ecrire une fonction distance qui admet comme arguments deux listes
ptA et ptB. La fonction retourne la distance euclidienne entre le point A de
coordonnées (ptA [0], ptA[1]) et le point B de coordonnées (ptB[0], ptB[1]).
4. Ecrire une fonction initcluster qui admet comme arguments un entier
K et deux listes X, Y. Cette fonction retourne une liste de listes contenant les
coordonnées de K points différents tirés aléatoirement parmi le nuage de points.
5.

Algorithme des k-moyennes

Initialisation :

On choisit au hasard K centres des clusters parmi le nuage de points. Chaque
centre est caractérisé par une abscisse et une ordonnée.

Boucle tant que les points changent de cluster :

* Placer chaque point dans le cluster k qui lui est le plus proche.

* Recalculer les centres des clusters (appelés également centroides). On utili-
sera la moyenne des abscisses et des ordonnées des points appartenant a un
cluster.

Ecrire une fonction algokm qui admet comme arguments un entier X et deux
listes X, Y. Cette fonction retourne une liste de listes contenant les coordonnées
des centres des K clusters et la liste A telle que A [1] désigne le numéro du clus-
ter du point [X[1i],Y[i]].Quels sont les défauts de cet algorithme ?
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6. Ecrire le programme principal permettant :

* de générer aléatoirement deux listes X et Y représentant les abscisses et les
ordonnées de 3 groupes de 100 points dont les coordonnées sont comprises
dans les intervalles [3+2.6,1+£2.6], [8+2.5,2£2.5] et [4+2.8,5£2.8] pour
chaque groupe ;

» d’afficher graphiquement le nuage de points (affecter des couleurs différentes
pour les points appartenant a des clusters différents) et les centres des 3 clusters.

7. Ecrire une fonction predict d’arguments d’entrée L (liste de listes conte-
nant les coordonnées des clusters) et une liste pt search (abscisse et ordon-
née du point). Cette fonction retourne le numéro et les coordonnées du cluster
le plus proche de pt search.

Analyse du probléme

Dans I’apprentissage non supervisé, 1’objectif est de comprendre la structure des
données. Contrairement a 1’apprentissage supervisé (voir exercice 15.1 « Algo-
rithme des k plus proches voisins » avec la prédiction de la classe d’un échantillon a
partir d’exemples connus), on ne connait pas les clusters. En pratique, on regroupe
les données proches entre elles, on leur attribue des clusters qu’il faut interpréter
ensuite.

Exemple : regrouper des clients qui ont des profils similaires, regrouper les docu-
ments d’un corpus par theme (les themes émergeant de cet algorithme ne sont pas
connus). C’est une méthode d’apprentissage non supervisé puisqu’on ne connait
pas les clusters a I’avance.

2& 1. On considére un nuage de 12 points.
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e Etape d'initialisation : on choisit aléatoirement 3 centres parmi le nuage
de 12 points.

3 Clusters

5 [

4
>3

L]
2
1 - ®
3 4 5 6 7 8
X

® Premiére partition : on affecte a chaque point du jeu de données le clus-
ter le plus proche. On met a jour les nouveaux centres des clusters. On
obtient trois nouveaux clusters représentés ci-dessous.

3 Clusters
[ ]
L ]
54 - ®
L
4 4
>~.3_
L ]
L ]
2 - [ ] .
L]
{* @, *
L]
3 4 5 6 7 8
X

Remarque : Les nouveaux clusters n’appartiennent plus nécessairement au jeu de
données comme dans 1’étape d’initialisation. On affecte a chaque point le cluster
le plus proche. On met a jour les centres des clusters. Ces opérations sont réitérées
tant que les points changent de cluster.
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%

2.

import random as rd # module random renommé rd

def initpoints (pts groupe):
# la fonction retourne deux listes X et Y
# contenant 3 groupes
# le nombre de valeurs aléatoire pour chaque groupe
# est pts_groupe
N=pts groupe*3 # N = nombre total de points
X=[0 for i in range(N)] # liste des abscisses pour

# les N points
Y=[0 for i in range(N)] # liste des ordonnées pour
# les N points
for k in range(3): # k varie entre 0 inclus et 3 exclu
if k==0:
xcentre=3 # abscisse du centre du premier
# groupe (ex.3)
ycentre=1 # ordonnée du centre du premier
# groupe (ex. 1)
delta=2.6 # 2.6 ou 0.6
elif k==1:
xcentre=8 # abscisse du centre du deuxieme
# groupe (ex. 8)
ycentre=2 # ordonnée du centre du premier
# groupe (ex. 2)
delta=2.5 # 2.5 ou 1
else:
xcentre=4 # abscisse du centre du troisieme
# groupe (ex. 4)
ycentre=5 # ordonnée du centre du troisiéme
# groupe (ex. 5)
delta=2.8 # 2.8 ou 0.8
for 1 in range(pts_groupe): # 1 varie entre 0 inclus

# et pts_groupe exclu

x=xcentre+delta* (2*rd.random()-1)

# x compris entre xcentre-delta et xcentre+delta
y=ycentre+delta* (2*rd.random()-1)

# y compris entre ycentre-delta et ycentre+delta
X[i+k*pts groupel=x
Y[i+k*pts groupel=y

return X, Y

3.
def distance (ptA, ptB):
# distance euclidienne entre ptA et ptB
# ptA est une liste [xA, yA] désignant 1’abscisse
# et 1’ordonnée de A
# ptB est une liste [xB, yB] désignant 1’abscisse
# et 1’ordonnée de B
return ((ptB[0]-ptA[0])**2+ (ptB[1]-ptA[1])**2)** (0.5)
4. On choisit aléatoirement K points différents parmi le nuage de points.
Il ne faut pas utiliser la boucle for avec K étapes puisqu’on peut obtenir

deux indices identiques avec la fonction rd.randint (0, n-1).
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def initcluster (K, X, Y):
# la fonction retourne une liste de listes contenant les
# coordonnées des centres des K clusters tirés aléatoirement
# parmi le nuage de points
# arguments d’entrée : entier K et deux listes X et Y
n=len (X)
L=1[] # liste de listes
# coordonnées des clusters
liste_indice=[]
while len (L) !=K:
i=rd.randint (0, n-1) # indice aléatoire compris
# entre 0 inclus et n-1 inclus
if i not in liste indice:
liste indice.append (i)
L.append ([X[1],Y[1i]]) # ajoute 1l’abscisse et
# 1’ordonnée d’un point
return L # liste des K clusters

Remarque : Les points choisis aléatoirement dans cette étape d’initialisation
doivent appartenir au nuage de points.

%

5.
def algokm (K, X, Y):

# la fonction retourne une liste de listes contenant les
coordonnées des centres des K clusters avec 1’algorithme
des k-moyennes
A liste d’'affectation des points i & un cluster
arguments d’entrée : entier K = nombre de clusters,

X et Y deux listes représentant les abscisses et
ordonnées des points
X[i] = abscisse du point d’indice i1 et Y[i] = ordonnée

HH= H H I FH H H I

du point d’indice i

# initialisation des K centres des clusters
L=initcluster (K, X, Y)
A=[0 for i in range(N)] liste pour affecter les points
a un cluster

A[i] numéro du cluster pour le
point X[i],Y[1i]

flag a False si on affecte un
point a un autre cluster

flag stable=False

HH = H = H

while flag stable==False:
flag stable=True # flag initialisé a True
# 11 passe a False si le point i
# change de cluster
# on place chaque point dans le cluster k
# le plus proche
for i in range(N): # i varie entre 0 inclus et N exclu
val min=inf initialisation de val min
a infini
ind min=0 indice du cluster correspondant
au minimum

#
#
#
#
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for k in range(K): # k varie entre 0 inclus
# et K exclu
if distance([X[i], Y[i]], L[k])<val min:
val min=distance ([X[i],Y[1]],L[k])
ind min=k
if A[i]!=ind min:
A[i]=ind min
flag stable=False # le point i a changé
# de cluster

if flag stable==False or K==1: # teste si on affecte
# un point & un autre
# cluster
# on recalcule les centres de chaque cluster
som x=[0 for i in range(K)]
som _y=[0 for i in range(K)]
nb el=[0 for i in range (K)]
for i in range(N):
k=int (A[1]) # le point i appartient au
# cluster k
som_x[k]=som x[k]+X[1i]
som_y[k]=som y[k]+Y[i]
nb el[k]+=1 # on ajoute un point de plus
# a ce cluster
for k in range (K):
if nb _el[k]==0: # teste si aucun point dans
# le cluster k
abscisse=0
ordonnée=0
else:
abscisse=som x[k]/nb el[k]
ordonnée=som_y[k]/nb el[k]
L[k]=[abscisse, ordonnée]
return L, A

Cet algorithme a plusieurs défauts :

e I| faut fixer a l'avance la valeur du nombre total de clusters K.

® Le résultat dépend fortement du choix des centres initiaux.

® On n‘obtient pas nécessairement le résultat optimum.

® On peut obtenir un minimum local qui dépend des centres initiaux.

6.

import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt

pts_groupe=100 # nombre de points pour chaque
# groupe

N=pts_groupe*3 # nombre total de points

X, Y=initpoints (pts_groupe)

inf=1el0 # variable représentant
# 17infini

K=3

L3, A=algokm (K, X, Y)

plt.figure () # nouvelle fenétre graphique
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plt.scatter(X,Y,color="black')

plt.scatter (L3[0]
plt.scatter (L3[1]
plt.scatter (L3[2]
plt.xlabel ('x")
plt.ylabel('y")

[0],L3[0][1l],color="red")
[0],L3[1]1[1],color="blue')
[0],L3[2][1],color="green')

plt.title('3 clusters')

plt.show () # affiche la figure a 1l’écran
print (L3) # affichage des coordonnées
# des clusters
3 clusters
x * x Xxx x X xx X
x x x %X
x X x X x
6 x* x *x x x
x x x X x
x % « N
x x
x x
x N x x . xx X
x x % xx x x x
4 x ¥ x x w X X X
Xy x X, x x
xX Xx xx xx x xxxxx §%>§( % XX X x’; N
x X X x X x x X XX X x X
x x . . x *x”: xx)< x X X% N x X
< x x x X xx xS Tx * xx X x x X x
x x
2 x Xx x x X x xxx‘ x x
x X x X x x X
X x x X x ok x X K XX x %
x @ x §xx x x X x g X
x
X % x x X 0% x X x X x 7 oxX
x
0 * ey * x  x * x”)‘x x X x
xx x xx x X x x x
X X £ %
X x )S‘ x
x xx x X X X * x
-2
X

Les coordonnées des 3 clusters
4.871].

sont : [[7.96, 1.76], [2.62, 0.94], [4.20,

Les centres correspondent bien aux 3 groupes centrés sur [[8, 2], [3, 1],

[4, 5]].

Remarque : En pratique, on utilise cet algorithme pour former des groupes incon-
nus a ’avance mais qu’il faut interpréter ensuite.

%

7.

def predict (L,pt search):

#

HH H I FH H

dist cluster=inf

cette fonction retourne 1’indice du numéro du cluster

le plus proche de pt_search

arguments d’entrée : L = liste des coordonnées des
centres des clusters, pt search = liste contenant
1’abscisse et 1’ordonnée de pt search

L[i] = liste contenant 1’abscisse et 1’ordonnée

du cluster d’indice i

# distance du pt_search a un centre
# du cluster
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ind cluster=0 # indice du numéro du cluster
for k in range(len(L)): # k varie entre 0 inclus
# et len(L) exclu
if distance(L[k], pt_search)<dist cluster:
dist_cluster=distance(L[k],pt_search)
ind cluster=k
return ind cluster ,L[ind cluster]

Exercice 15.4 : Jeu de morpion, algorithme min-max

258

On considere le jeu de morpion avec une grille 3x3. Les joueurs ajoutent au
fur et a mesure un pion sur la grille en commengant par un pion noir. Les pions
noirs sont représentés par « X » et les pions blancs par « O ». Les cases vides
sont représentées par « . ». Le but est d’aligner 3 pions sur la grille.

On utilise la liste jeu pour représenter le plateau de jeu avec Python. Le pla-
teau de jeu suivant est représenté par la liste : jeu=[('."', '.', '.', '0',
L', 'X', '.', 'X', '.'].On repere une case par son indice. Par
exemple I'indice 3 correspond a la case avec un pion blanc (« O »).

1. Mise en place du jeu

* Ecrire une fonction init qui retourne une liste jeu correspondant a un pla-
teau vide.

» Ecrire une fonction af fiche qui admet comme argument une liste jeu et
qui permet d’afficher le plateau de jeu sur 3 lignes.

* Ecrire une fonction choixjoueur qui admet comme argument une liste
jeu et qui retourne le joueur (« O » ou « X ») devant jouer.

* Ecrire une fonction 1istecoups qui admet comme argument une liste jeu
et qui retourne une liste contenant les indices des cases vides.

* Ecrire une fonction gain qui admet comme argument une liste jeu et qui
retourne « 1 » si les noirs ont gagné, « —1 » si les blancs ont gagné et 0 si
aucun joueur n’a gagné méme si la partie n’est pas terminée.

2. Ecrire une fonction jouercoup qui admet comme arguments une liste jeu
et un entier coup. Cette fonction retourne une nouvelle liste jeu2 sans modi-
fier la liste jeu en ajoutant un pion a I’indice coup de la liste jeu. On pourra
utiliser la fonction choixjoueur pour déterminer quel joueur ajoute le pion
a I’indice coup.
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3. Principe de I’algorithme min-max :

« Ecrire une fonction valMax qui admet comme argument une liste jeu. Cette
fonction est appelée lorsque le joueur « X » veut choisir le meilleur coup afin
de maximiser le gain sachant que le joueur « O » va le minimiser (on cherche
le maximum des gains de valMin (jeu) sur tous les coups possibles). Cette
fonction retourne la valeur du maximum du gain et I’'indice de la case a jouer
(entier compris entre 0 et 9).

« Ecrire une fonction valMin qui admet comme argument une liste jeu. Cette
fonction est appelée lorsque le joueur « O » veut choisir le meilleur coup afin
de minimiser le gain sachant que le joueur « X » va le maximiser (on cherche
le minimum des gains de valMin (jeu) sur tous les coups possibles). Cette
fonction retourne la valeur du minimum du gain et I’indice de la case jouée
(entier compris entre O et 9).

Détail de I’algorithme valMax (jeu) :

* Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMax
retourne gain (jeu) , -1.

e Sinon :

o On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMin et on calcule le maximum de tous les gains.

o La fonction retourne le gain maximum et 1’indice du coup a jouer corres-
pondant a ce gain.

Détail de I’algorithme valMin (jeu) :

* Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMin
retourne gain (jeu) , -1.

e Sinon :

o On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMax et on calcule le minimum de tous les gains.

o La fonction retourne le gain minimum et 1’indice du coup a jouer corres-
pondant a ce gain.

4. Ecrire une fonction jouerminmax qui admet comme argument une liste
jeu. Cette fonction affiche les plateaux de jeu a chaque étape du jeu de mor-
pion. L’ordinateur (pions noirs) joue contre 1’ordinateur (pions blancs). Tant
qu’un des joueurs n’a pas gagné et qu’il reste des coups a jouer, on utilise 1’al-
gorithme min-max pour choisir le coup suivant.

5. Ecrire une fonction jouercontreIA qui admet comme argument une liste
jeu. Cette fonction affiche les plateaux de jeu a chaque étape du jeu de morpion.
L’ordinateur (ou IA = Intelligence Artificielle) a les pions noirs et ’humain a
les pions blancs. Tant qu’un des joueurs n’a pas gagné et qu’il reste des coups a
jouer, on utilise 1’algorithme min-max pour choisir le coup suivant lorsque I'TA
joue. L’humain tape au clavier I’indice de la case ou il pose un pion blanc.
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Analyse du probléme

L’algorithme min-max est un algorithme tres utilisé dans les jeux a somme nulle
et 2 nombre fini de stratégies. On explore toutes les possibilités. On définit un gain
pour chaque joueur. A chaque coup, les joueurs cherchent 2 maximiser leur gain
minimum et donc a minimiser le gain maximum de I’adversaire.

Cours
L’intelligence artificielle est « I’ensemble des théories et des techniques mises en ceuvre en
vue de réaliser des machines capables de simuler I’intelligence ».

Principe de I’algorithme min-max pour le jeu de morpion

Le morpion est un jeu a somme nulle (les gains d’un joueur sont I’opposé des gains de
I’autre joueur) et avec un nombre fini de stratégies. Le meilleur gain possible pour le joueur
1 est +1 (victoire pour le joueur 1 et défaite pour le joueur 2) et le meilleur gain pour le
joueur 2 est —1 (défaite pour le joueur 1 et victoire pour le joueur 2).

* Le joueur 1, que I’on appellera MAX, pose les pions noirs.
* Le joueur 2, que I’on appellera MIN, pose les pions blancs.

Le joueur 2 cherche a minimiser ses gains alors que le joueur 1 cherche a maximiser ses
gains.

L’algorithme min-max est utilisé dans de nombreux jeux : Othello, échecs...
Principe de I’algorithme min-max dans le cas général

On considere le cas général d’un jeu a deux joueurs a somme nulle et avec un nombre fini
de stratégies.

A un moment donné du jeu, c’est au joueur 1 (MAX) de jouer. On suppose qu’il a trois
possibilités. On représente sur 1’arbre de jeu ci-dessous les trois possibilités. Ensuite c’est
au joueur 2 (MIN) de jouer. On suppose qu’il a également trois possibilité€s. On représente
sur le graphe ci-dessous la valeur du gain quand MAX et MIN ont joué.

Chaque nceud correspond a une position de jeu.

MAX joue

MIN joue

Le neeud du niveau supérieur est appelé racine.

Les feuilles sont les noeuds terminaux pour lesquels ne partent aucune branche et corres-
pondent souvent a une fin de partie. La hauteur de 1’arbre ci-dessus est 3. Pour les jeux, on
parle plut6t de profondeur de jeu que de hauteur. La profondeur pouvant étre trés impor-
tante pour arriver a une fin de partie, on limite souvent la profondeur d’étude (voir exercice
suivant « Jeu de morpion, algorithme min-max et profondeur »). Dans ce cas, on ne sait pas
si les feuilles correspondent a une victoire ou a une défaite. On définit alors une fonction
d’évaluation appelée GAIN qui évalue le gain pour chaque nceud. Comme on considere un
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jeu a somme nulle, le joueur 1 (MAX) cherche a maximiser ses gains alors que le joueur 2
(MIN) cherche a les minimiser a chaque coup.

Le joueur MAX a trois possibilités pour jouer et choisit le coup qui va maximiser ses gains.
Lorsque le joueur MAX a joué, le joueur MIN va jouer en cherchant a minimiser ses gains.

On parcourt en profondeur cet arbre en utilisant la fonction GAIN pour déterminer le meil-
leur coup a jouer pour MAX.

On considere les feuilles : 6, 4 et 2. On remonte dans I’arbre. C’est a MIN de jouer.

On remonte dans 1’arbre et on se pose la question : Quel coup choisir pour le joueurl
(MAX)?

MAX joue

Le joueurl (MAX) cherche a maximiser ses gains. Il va donc choisir le coup avec un gain
égal a 5.

MAX joue
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On obtient alors I’arbre de jeu :

MAX joue

MIN joue

Plus la profondeur est grande, plus le coup choisi sera de meilleure qualité.

1.

2&7 def init():

# début de partie
# la fonction retourne une liste Jjeu avec
# un plateau vide
# les cases vides sont représentées par '.'
L=9*['."] # 9 cases avec '.'
return L

def affiche (jeu):

la fonction affiche le plateau de jeu
jeu = liste de 9 éléments

lre ligne du plateau de jeu

2e ligne du plateau de jeu

3e ligne du plateau de jeu

print (jeu[0:3])
print (jeul3:61])
print (jeu[6:9])

HH H I FH H

def choixjoueur (jeu) :
# la fonction retourne le joueur 'O' ou 'X' devant jouer
# pour la liste jeu
soml=0 # initialisation du nombre de cases noires
som2=0 # initialisation du nombre de cases blanches
for i in range(9):

if jeul[i]=='X":
soml=soml+1 # nombre de cases noires
elif jeul[i]=='0"':
som2=som2+1 # nombre de cases blanches
if soml==som2: # si autant de pions noirs que de
# pions blancs
return 'X' # c’est a X de jouer
else:
return 'O’ # c’est a O de jouer

def listecoups(jeu):
# la fonction retourne la liste L des indices des cases
# vides pour la liste jeu
L=[]
for i in range (9):
if jeuflil=='.':
L.append (i) # ajoute les cases sans pion
return L
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def gain(jeu):
# la fonction retourne 1 si les noirs ont gagné,
# -1 si les blancs ont gagné et 0 sinon pour la liste jeu
listel=['X"', 'X', 'X']
liste2=['0', 'O', '0']
if jeul0:3]==listel or jeu[3:6]==listel or Jjeu[6:9]==listel\

or [jeu[0], jeul3], jeul[6]]==listel\

or [jeul[l], jeul4], jeul[7]]==listel\

or [jeu[2], Jjeul[5], jeu[8]]==listel\

or [jeu[0], Jjeul[4], jeu[8]]==listel\

or [jeu[2], jeu[4], jeu[6]]==listel:

return 1 # 3 pions noirs alignés
elif jeu[0:3]==liste2 or jeu[3:6]==liste2 or Jjeu[6:9]==liste2\

or [jeu[0], Jjeul[3], jeul[6]]==liste2\

or [jeull]l, jeul4], jeul[7]]==liste2\

or [jeul[2], Jjeul[5], jeu[8]]==liste2\

or [jeu[0], jeul4], jeu[8]]==liste2\

or [Jjeul2], jeul4], jeul6]]==liste2:

return -1 # 3 pions blancs alignés
else:

return 0

2. On ne peut pas écrire : jeu2=7jeu pour réaliser une copie de la liste
jeu. Si on modifie un élément de jeu, alors jeu2 aura la méme modi-
fication puisque les deux listes jeu et jeu2 font référence a la méme
adresse mémoire.

On utilise le module copy (voir exercice 1.4 « Affectation, objet immuable,
copie » dans le chapitre « Prise en main de Python ») pour réaliser une
copie superficielle de jeu.
def jouercoup (jeu, coup) :
# la fonction retourne une nouvelle liste jeu2
# en ajoutant un pion a 1l’indice coup de la liste jeu
import copy # module copy
jeu2=copy.copy (jeu) # copie superficielle de jeu
# si on modifie jeu2, la liste jeu
# est inchangée
pion=choixjoueur (jeu)
if coup in listecoups(jeu):
jeu2[coup]=pion
return jeu2

def valMax(jeu) :

# retourne la valeur du maximum du gain et 1’indice

# de la case a Jjouer pour la liste jeu

L=listecoups (jeu)

if len(L)==0 or gain(jeu) !'=0:
# condition d’arrét de la fonction récursive
# partie finie car plus de coups a jouer
# un des joueurs a gagné avec trois pions alignés
return gain(jeu), -1 # la partie est finie

else:
calculmax=-2 # maximum de tous les coups

# possibles
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ind coup=-1 initialisation de 1’indice
du coup a jouer
parcourt tous les coups
# possibles

jeu2=jouercoup (jeu, coup)
calcul, indice= valMin (jeu2)
if calcul>calculmax:

calculmax=calcul

HH= H I

for coup in L:

# maximum de tous les coups
# possibles
ind_ coup=coup # indice du coup a jouer
return calculmax, ind coup #

maximum du coup a jouer

def valMin (jeu) :
# retourne la valeur du minimum du gain et 1’indice
# de la case a Jjouer pour la liste jeu
L=1listecoups (jeu)
if len(L)==0 or gain(jeu) !'=0:
# condition d’arrét de la fonction récursive
# partie finie car plus de coups a jouer
# un des joueurs a gagné avec trois pions alignés
return gain(jeu), -1 # la partie est finie
else:
calculmin=2 minimum de tous les coups
possibles
ind coup=-1 initialisation de 1’indice
du coup a jouer
parcourt tous les coups
# possibles
jeu2=jouercoup (jeu, coup)

HH= H = = H

for coup in L:

calcul, indice=valMax (jeu2)
if calcul<calculmin:
calculmin=calcul minimum de tous les coups
possibles
ind coup=coup
return calculmin, ind coup

indice du coup a jouer

#
#
#
# minimum du coup a jouer
4,

def jouerminmax (jeu) :
# cette fonction affiche les plateaux de jeu a chaque étape
# la liste jeu est modifiée a chaque étape
while gain(jeu)==0 and len(listecoups(jeu)) !=0:
# la partie n’est pas terminée et il reste des coups
# a jouer
nomjoueur=choixjoueur (jeu)
if nomjoueur=='X": # les noirs jouent
calcul, ind coup=valMax (jeu)
# récupere 1’indice du coup a Jjouer pour les noirs
jeu=jouercoup (jeu, ind coup)
# on passe a 1l’étape suivante du jeu
else:
calcul, ind coup=valMin (jeu)
# récupere 1l’indice du coup a jouer pour les blancs
jeu=jouercoup (jeu, ind coup)
# passe a 1l’étape suivante du jeu



Chapitre 15 - Intelligence artificielle et jeu a deux joueurs (Spé)

print ("Joueur qui pose les pions :", nomjoueur)
affiche (jeu)

if gain(jeu)==1:

print ("Le joueur X a gagné.")
elif gain(jeu)==-1:

print ("Le joueur O a gagné.")
else:

print ("Partie nulle")

Le programme principal permettant de visualiser les étapes du jeu de mor-
pion est le suivant :

Jeu=init () # début de partie avec cases

jouerminmax (jeu)

5.

def jouercontreIA (jeu):

# cette fonction affiche les plateaux de jeu a chaque étape
# la liste jeu est modifiée a chaque étape
# ordinateur ou IA : pions noirs ; 1’humain : pions blancs
while gain(jeu)==0 and len(listecoups(jeu)) !=0:
# la partie n’est pas terminée et il reste des coups
# & Jjouer
nomjoueur=choixjoueur (jeu)
if nomjoueur=='X"': # les noirs jouent
calcul, ind coup=valMax (jeu)
# on récupere 1’indice du coup a jouer
jeu=jouercoup (jeu, ind coup)
# passe a 1l’étape suivante du jeu
print ("Joueur qui pose les pions :", nomjoueur)
affiche (jeu)
else:
ind coup=int (input ("Tapez 1’indice de la case : "))
# on récupere 1’indice du coup a jouer
jeu=jouercoup (jeu, ind coup)
# passe a 1l’étape suivante du jeu

if gain(jeu)==1:

print ("L’ ordinateur (joueur X) a gagné.")
elif gain(jeu)==-1:

print ("Vous avez gagné (joueur O).")
else:

print ("Partie nulle")

Le programme principal permettant de jouer contre l'ordinateur est le sui-
vant :

jeu=init () # début de partie avec cases

jouercontrelIA (jeu)
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et profondeur

Cet exercice est la suite de I’exercice précédent « Jeu de morpion, algorithme
min-max ». On pourra utiliser les fonctions init, affiche, choixjoueur,
listecoups, gain et jouercoup.

1. L’arbre de jeu peut devenir treés grand et les appels récursifs peuvent étre
coliteux en mémoire. On définit un entier profondeurmaxi qui détermine
la profondeur maximale explorée dans 1’arbre de jeu. Ecrire deux nouvelles
fonctions récursives valMax2 et valMin2 qui admettent comme arguments
une liste jeu et un entier profondeur. Le parametre profondeurmaxi
détermine le nombre de coups calculés a I’avance par 1’algorithme.

2. Ecrire une fonction jouercontreIA2 qui admet comme arguments une
liste jeu et un entier profondeurmaxi. Cette fonction permet a un humain
de jouer contre I’ordinateur en choisissant la couleur des pions et un niveau de
difficulté (I’entier profondeurmaxi). Par exemple : 2 pour un niveau débu-
tant, 6 pour un niveau intermédiaire et 10 pour un niveau expert.

Analyse du probléme

L’algorithme min-max peut nécessiter un temps de calcul trés important pour par-
courir toutes les branches en profondeur. Dans cet exercice, on limite la profondeur
d’étude dans I’arbre de jeu. On peut ainsi déterminer un niveau de difficulté du jeu.

1.

2&7 def valMax?2 (jeu, profondeur):
# retourne la valeur du maximum du gain et 1’indice
# de la case a jouer pour la liste jeu
# profondeurmaxi = nombre de coups calculés a 1l’avance
# par l’algorithme
L=listecoups (jeu)
if len(L)==0 or gain(jeu) !=0 or profondeur ==
# condition d’arrét de la fonction récursive
partie finie car plus de coups a jouer,
ou un des joueurs a gagné avec trois pions alignés,
ou profondeur nulle (on n’explore pas plus en
profondeur 1’arbre)
return gain(jeu), -1 # la partie est finie
else:
calculmax=-2

HH= H H

maximum de tous les coups
possibles

ind coup=-1 initialisation de 1’indice
du coup a jouer

parcourt tous les coups
possibles

jeu2=jouercoup (jeu, coup)

for coup in L:

HH H H W FH H
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calcul, indice= wvalMin2 (jeu2, profondeur-1)
if calcul>calculmax:

calculmax=calcul # maximum de tous les coups
# possibles
ind_coup=coup # indice du coup a jouer

return calculmax, ind coup # maximum du coup a jouer

def valMin? (jeu, profondeur) :

#
#
#
#

L=

retourne la valeur du minimum du gain et 1’indice

de la case a jouer pour la liste jeu

profondeurmaxi = nombre de coups calculés a 1l’avance
par l’algorithme

listecoups (jeu)

if len(L)==0 or gain(jeu) !=0 or profondeur ==

# condition d’arrét de la fonction récursive

partie finie car plus de coups a jouer,

ou un des joueurs a gagné avec trois pions alignés,
ou profondeur nulle (on n’explore pas plus en
profondeur 1’arbre)

return gain(jeu), -1 # la partie est finie

HH= H H I

else:

2.

calculmin=2 minimum de tous les coups
possibles
ind coup=-1 initialisation de 1’indice
du coup a jouer
parcourt tous les coups

# possibles
jeu2=jouercoup (jeu, coup)
calcul, indice=valMax?2 (jeu2, profondeur-1)

if calcul<calculmin:

HH H = FH H

for coup in L:

calculmin=calcul # minimum de tous les coups
# possibles
ind coup=coup # indice du coup & jouer

return calculmin, ind coup # minimum du coup a Jjouer

def jouercontreIA2 (jeu, profondeurmaxi) :

# cette fonction affiche les plateaux de jeu a chagque étape
# la liste jeu est modifiée a chaque étape

# ordinateur ou IA : pions noirs ; 1’humain : pions blancs

# profondeurmaxi = nombre de coups calculés a 1l’avance par

# 1’algorithme

while gain(jeu)==0 and len(listecoups(jeu)) !=0:

# la partie n’est pas terminée et il reste des coups
# a Jjouer
nomjoueur=choixjoueur (jeu)
if nomjoueur=='X': # les noirs Jjouent
calcul, ind coup=valMax2(jeu, profondeurmaxi)
# récupere 1’indice du coup a jouer
jeu=jouercoup (jeu, ind coup)
# passe a 1l’étape suivante du Jjeu
print ("Joueur qui pose les pions : ", nomjoueur)
affiche (jeu)
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else:
ind coup=int (input ("Tapez 1’indice de la case : "))
# récupere 1’indice du coup a jouer
jeu=jouercoup (jeu, ind coup)
# passe a 1l’étape suivante du jeu

if gain(jeu)==
print ("L’ ordinateur (joueur X) a gagné.")
elif gain(jeu)==-1:
print ("Vous avez gagné (joueur 0O).")
else:
print ("Partie nulle")
Le programme principal permettant de jouer contre l'ordinateur en choisis-

sant le niveau de difficulté et la couleur des pions est :

# début de partie avec cases
6 : intermédiaire,

jeu=init () vt
profondeurmaxi=10 # 2 : niveau débutant,
# 10 : expert

jouercontrelIA2 (jeu, profondeurmaxi)
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Exercice 16.1 : Joueurs de tennis

On considere la base de données TENNIS pour gérer les joueurs de tennis.
La table joueurs contient les colonnes :
« id joueur, de type entier, identifie chaque joueur ;

« nom, de type chaine de caracteres, désigne le nom du joueur ;
« annee, de type entier, désigne 1’année de naissance ;

e nationalite, de type chalne de caracteres, désigne la nationalité du joueur.

1 MURRAY 1987 | britannique
2 GULBIS 1988 | letton

3 FEDERER 1981 | suisse

4 DJOKOVIC 1987 | serbe

5 BERDYCH 1985 | tcheque

6 NADAL 1986 | espagnole
7 THIEM 1993 | autrichienne
8 NISHIKORI 1989 | japonaise
9 TSONGA 1985 | francaise
10 | WAWRINKA 1985 | suisse

11 | MONFILS 1986 | francaise
12 | SIMON 1984 | francaise

1. Ecrire une requéte SQL qui renvoie toutes les informations de tous les joueurs.
2. Ecrire une requéte qui renvoie le nom de tous les joueurs francais.

3. Ecrire une requéte qui renvoie la liste des nationalités des joueurs de tennis.
4. Ecrire une requéte qui renvoie la moyenne des années de naissance des
joueurs francais.

5. Ecrire une requéte qui renvoie la nationalité, I’année de naissance et le
nom des joueurs dont I’année de naissance est supérieure ou égale a 1988. On
renommera les colonnes nationalité et année.
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6. Ecrire une requéte qui renvoie I’année de naissance et le nom des joueurs
dont I’année de naissance est strictement supérieure a 1980 et de nationalité
suisse.

7. Ecrire une requéte qui renvoie le nombre de joueurs ayant la méme année de
naissance. Les années sont affichées par ordre croissant.

8. Ecrire une requéte qui renvoie les identifiants et les noms des 3 premiers
joueurs sans le tout premier de la table.

Analyse du probléme

Dans cet exercice, on n’utilise qu’une seule table. Pour lire les données d’une base
de données, on utilise la commande SELECT qui retourne les enregistrements
sélectionnés dans un tableau.

Cours :
La requéte de base pour rechercher des données est la commande SELECT :

SELECT *
FROM table
WHERE condition;

* permet de retourner toutes les colonnes.

On n’utilise pas d’accent ni de blanc pour désigner les colonnes (que I’on peut appeler
attributs). Le type des colonnes peut étre entier INTEGER), flottant (FLOAT) ou chaine
(TEXT).

La casse (c’est-a-dire minuscule ou majuscule) n’a pas d’importance pour la désignation
des objets.

Le caractere point-virgule est un terminateur d’instruction. Il n’est pas obligatoire de
I"écrire.
On peut ajouter des opérateurs AND, OR, NOT dans la condition WHERE.

Les opérateurs de comparaison sont :

> < >= <= = <>
Strictement | Strictement | Supérieur ou | Inférieur ou Egal a Différent de
supérieur a | inférieur a égal a égal a
SELECT *
FROM table

WHERE conditionl AND condition2;

On peut ajouter DISTINCT apres SELECT pour éviter d’afficher des lignes en double.

SELECT DISTINCT colonne
FROM table ;
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Dans certains cas, on veut éviter d’avoir plusieurs fois la méme ligne. On utilise alors la
commande GROUP BY qui permet de regrouper les lignes en une seule. La commande
COUNT (*) compte alors le nombre de lignes concernées.

SELECT *

FROM table

WHERE condition
GROUP BY expression;

On peut utiliser d’autres fonctions statistiques : MAX (maximum), MIN (minimum), SUM
(somme), AVG (moyenne).
AS permet de renommer une colonne ou une table. On utilisera la requéte suivante :

SELECT table.colonnel AS 'nouvellecolonnel', colonne2 AS 'nouvellecolonnel2'
FROM table AS t;

On peut omettre AS :
FROM table t

On peut écrire t . colonnel aulieude table.colonnel.
On peut écrire FROM table t aulieude FROM table AS t.

La commande LIMIT 3 permet de sélectionner les trois premiers résultats.

SELECT colonnel, colonne?2
FROM table
LIMIT 3;

Lacommande LIMIT 3 permet de sélectionner les trois premiers résultats sans utiliser les
deux premiers de table.

SELECT colonnel, colonne?2
FROM table
LIMIT 3 OFFSET 2;

Voir exercice 16.4 « Imprimantes (Mines Ponts 2015) » pour une requéte imbriquée.

Remarque : On pourra tester les requétes SQL en utilisant SQLite Database Brow-
ser (https://sqlitebrowser.org).

%

1.

| SELECT * FROM joueurs;

* permet de retourner toutes les colonnes.
2.

SELECT nom
FROM joueurs

WHERE nationalite='francaise';

On obtient alors : TSONGA, MONFILS, SIMON.
3. 0n ajoute DISTINCT pour éviter d'afficher plusieurs fois la méme
nationalité.

SELECT DISTINCT nationalite
FROM joueurs;
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Cours :
Les fonctions d’agrégation permettent de réaliser des opérations statistiques.

SELECT COUNT (*)
FROM joueurs;

La commande COUNT (*) compte alors le nombre de lignes. On obtient : 12.
On utilise souvent les fonctions statistiques : MAX (maximum), MIN (minimum), SUM
(somme) et AVG (moyenne).

SELECT MAX (annee)
FROM joueurs;

On obtient : 1993.

4.

Zéy SELECT AVG (annee)
FROM joueurs

WHERE nationalite='francaise';

5.

SELECT nationalite AS 'nationalité', annee AS 'année', nom
FROM joueurs
WHERE annee >=1988;

On obtient alors : 1988 GULBIS, 1989 NISHIKORI et 1993 THIEM.
6.

‘SELECT annee, nom

FROM joueurs
WHERE annee >1980 AND nationalite='suisse';

Remarque :

On peut écrire également :

SELECT annee, nom
FROM joueurs
WHERE (annee >1980 AND nationalite='suisse');

Cours :
La commande GROUP BY évite d’avoir plusieurs fois la méme ligne. On regroupe les
lignes d’un méme joueur en une seule.

La commande COUNT (*) compte alors le nombre de lignes concernées.

La commande ORDER BY annee permet de trier les lignes par année. Par défaut, le tri
est par ordre croissant (ou ascendant).

Les fonctions d’agrégation SUM(nom col), AVG(nom col), MAX(nom col),
MIN (nom_col), COUNT (nom_col), COUNT (*) calculent respectivement la somme,
la moyenne arithmétique, le maximum, le minimum, le nombre de valeurs non nulles de la
colonne nom_col et le nombre de lignes pour chaque groupe de lignes défini par la clause
GROUP BY. Si larequéte ne comporte pas de clause GROUP BY, le calcul est effectué pour
I’ensemble des lignes sélectionnées par la requéte.
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7.

Zéy SELECT annee, COUNT (*)

FROM joueurs
GROUP BY annee
ORDER BY annee;

8.

SELECT id joueur, nom
FROM joueurs

LIMIT 3 OFFSET 1;

La commande LIMIT 3 OFFSET 1 permet d'afficher les trois premiers
résultats sans utiliser le premier résultat de la table joueurs. On obtient
les lignes 2, 3 et 4.

Exercice 16.2 : Tournois et joueurs de tennis

On reprend la base de données TENNIS définie dans I’exercice précédent,
mais qu’on appellera ici joueurs. On ajoute une autre table tournois qui
contient les colonnes :

* id tournoi, de type entier, identifie chaque tournoi ;

* nom, de type chaine de caracteres, désigne le nom du tournoi ;

* annee, de type entier, désigne 1’année ou a lieu le tournoi ;

* num finalistel, de type entier, identifie le vainqueur du tournoi ;

* num_finaliste2, de type entier, identifie le perdant de la finale du tournoi ;
* num_joueur3, de type entier, identifie le troisieme joueur en demi-finale ;
* num joueur4, de type entier, identifie le quatrieme joueur en demi-finale ;

* gain, de type entier, désigne la somme gagnée par le vainqueur.

1 | ROLAND-GARROS | 2016 | 4 [ 1 | 7 | 10 | 2000000
2 | ROLAND-GARROS | 2015 | 10| 4 | 9 1 1800000
3 | ROLAND-GARROS | 2014 | 6 | 4 | 1 | 2 | 1650000
4 | OPEN AUSTRALIE | 2016 | 4 | 8 | 9 | 12 | 2390000
5 | OPENAUSTRALIE | 2015 | 4 | 1 | 5 | 10 | 2100000
6 | OPEN AUSTRALIE | 2014 | 10 | 6 | 3 | 5 | 2050000

1. Qu’appelle-t-on une clé primaire ? Qu’appelle-t-on une clé étrangere ?
2. Ecrire une requéte SQL qui renvoie le nom du vainqueur de Roland-Garros
en 2016.

3. Ecrire une requéte qui renvoie pour chaque joueur 1’année et le nom des
tournois gagnés par celui-ci. Les noms des joueurs sont triés par ordre croissant.
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4. Ecrire une requéte qui renvoie le nombre de victoires pour chaque joueur.
5. Ecrire une requéte qui renvoie le total des gains pour chaque joueur.

6. Ecrire une requéte qui renvoie le gain moyen de chaque joueur d’origine serbe.
7. Ecrire une requéte qui renvoie le gain moyen de chaque tournoi. Les noms
des tournois sont triés par ordre croissant.

8. Ecrire une requéte qui renvoie la liste des joueurs ayant gagné au moins
deux tournois et nés apres 1986. On affichera également le nombre de tournois
gagnés.

9. Ecrire une requéte qui renvoie le joueur ayant gagné le plus de tournois.

10. Ecrire une requéte qui renvoie pour chaque joueur le nombre de partici-
pations a une demi-finale d’un tournoi. On renommera les tables joueurs et
tournois respectivement j et t. Les joueurs sont affichés par ordre croissant.

11. Représenter le schéma relationnel de la base de données.

Analyse du probléme

On utilise dans cet exercice deux tables : joueurs et tournois. On cherche a
les mettre en relation en utilisant plusieurs clés (joueurs en demi-finale). On pourra
utiliser JOIN... ON... pour réaliser une jointure. La commande HAVING permet de
réaliser des fonctions d’agrégation comme COUNT.

Cours :

Les jointures permettent de mettre en relation plusieurs tables. Dans la plupart des cas, on
impose 1’égalité des valeurs d’une colonne d’une table a celles d’une colonne d’une autre
table.

SELECT *
FROM joueurs
JOIN tournois;

Cette requéte réalise le produit cartésien des deux tables joueurs et tournois. A
chaque ligne de la table tournois, il accole I’ensemble des lignes de la table joueurs.
Le nombre de lignes affichées vaut 12x6=72. On a réalisé une jointure entre les deux tables.

id id
- nom annee|nationalite - nom annee |(1)[(2)|(3)|4)| gain
joueur tournoi

ROLAND-

1 MURRAY | 1987 britannique 1 2016 [ 4| 1| 7 |10| 2000000
GARROS
ROLAND-

1 MURRAY | 1987 britannique 2 2015 |10 4 | 9| 1 | 1800000
GARROS

(1) num_finalistel; (2) num finaliste2; (3)num_joueur3; (4)num_ joueurd
On peut préciser une condition de jointure avec le mot-clé ON.

SELECT *
FROM joueurs
JOIN tournois ON id_joueur=num_finalistel;
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La requéte SQL n’affiche pas les 72 lignes mais uniquement celles dont la condition id
joueur=num finalistel est vérifiée. On a réalis€ une jointure interne. On aurait pu
écrire INNER JOIN au lieu de JOIN.

GROUP BY permet de regrouper les lignes en une seule. HAVING fait quasiment la méme
chose que WHERE mais permet d’utiliser des fonctions d’agrégation comme COUNT pour
compter le nombre d’éléments.

La requéte est alors la suivante :

SELECT *

FROM tablel

JOIN table2 ON tablel.colonnel=table2.colonne?2
WHERE condition

GROUP BY expression HAVING COUNT (*)>=1

ORDER BY colonnel

LIMIT 3 OFFSET 2;

On rencontre parfois des jointures d’une table sur elle-méme. On parle d’autojointure (voir
exercice 16.3 « Numéros de sécurité sociale »).

2& 1. Une clé primaire sert a identifier une ligne de maniére unique. Chaque
joueur est désigné par un numéro d’identifiant id joueur. Chaque tour-

noi est désigné par un numéro d’identifiant id tournoi.

Une clé étrangére permet de lier des relations (ou tables) entre elles. La

clé num finalistel permet d’avoir le numéro d’identifiant du joueur

qui a gagné la finale du tournoi. Les clés num finalistel, num

finaliste2, num joueur3etnum Jjoueur4 sontdes clés étrangeres.

2. Il faut réaliser une jointure entre les tables tournois et joueurs. La
colonne nom peut préter a confusion puisqu’elle est utilisée dans les deux
tables. Le nom du joueur est alors désigné par joueurs.nom.

SELECT joueurs.nom

FROM joueurs

JOIN tournois ON num finalistel=id joueur

WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016;

On obtient alors : DJOKOVIC.
Remarque :

On peut écrire également :

SELECT joueurs.nom

FROM joueurs, tournois

WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016
AND num_ finalistel=id joueur;

Par la suite, on utilisera la commande JOIN.. ON...
3.

Zéy SELECT joueurs.nom, tournois.nom, tournois.annee

FROM joueurs
JOIN tournois ON num finalistel=id joueur
ORDER BY joueurs.nom;
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On obtient alors : DJOKOVIC Roland-Garros 2016, DJOKOVIC Open d'Aus-
tralie 2061, DJOKOVIC Open d'Australie 2015, NADAL Roland-Garros 2014,
WAWRINKA Roland-Garros 2015, WAWRINKA Open d'Australie 2014.

Cours :
On peut ajouter ASC pour préciser que le tri se fait par ordre croissant. Ce n’est pas obliga-
toire puisque le tri se fait par défaut par ordre croissant.

ORDER BY joueurs.nom ASC :tri des noms par ordre croissant.
ORDER BY joueurs.nom DESC : tri des noms par ordre décroissant.
Cours :

SELECT AVG (gain)
FROM tournois;

On obtient : 1998333.33.
On peut utiliser des fonctions d’agrégation avec la commande GROUP BY.

SELECT nom, AVG(gain)
FROM tournois
GROUP BY nom;

La commande GROUP BY évite d’avoir plusieurs fois la méme ligne. Il faut donc regrouper
les lignes d’un méme tournoi.

La commande AVG (gain) donne la moyenne des gains pour chaque tournoi.

On obtient :
OPEN AUSTRALIE 2180000.0
ROLAND-GARROS 1816666.67
Z p 4.,
SELECT joueurs.nom, COUNT (*)

FROM joueurs, tournois
WHERE num finalistel=id joueur
GROUP BY joueurs.nom;

On regroupe les lignes d’'un méme joueur en une seule. La commande
COUNT (*) compte alors le nombre de lignes concernées.

On obtient alors : DJOKOVIC 3, NADAL 1, WAWRINKA 2.
5.

SELECT joueurs.nom, SUM(tournois.gain)
FROM joueurs, tournois

WHERE num_finalistel=id joueur

GROUP BY joueurs.nom;

On obtient alors : DJOKOVIC 6490000, NADAL 1650000, WAWRINKA
3850000.

6.

SELECT joueurs.nom, AVG(tournois.gain)

FROM joueurs, tournois

WHERE num_ finalistel=id joueur AND nationalite='serbe'
GROUP BY joueurs.nom;
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7.

SELECT nom, AVG (tournois.gain)
FROM tournois
GROUP BY nom
ORDER BY nom;

8.

SELECT joueurs.nom, COUNT (joueurs.nom)
FROM joueurs

JOIN tournois ON num finalistel=id joueur
WHERE joueurs.annee>1986

GROUP BY joueurs.nom

HAVING COUNT (joueurs.nom) >=2;

9.

SELECT joueurs.nom, COUNT (joueurs.nom)
FROM joueurs

JOIN tournois ON num finalistel=id joueur
GROUP BY joueurs.nom

ORDER BY COUNT (joueurs.nom) DESC

LIMIT 1;

LIMIT 1 permet d’afficher le premier résultat.

%

10.

SELECT j.nom, COUNT (j.nom)
FROM joueurs AS j

JOIN tournois as t ON num finalistel=id joueur OR num_

finaliste2=id joueur OR num joueur3=id joueur OR num joueuréd=id

joueur
GROUP BY j.nom
ORDER BY j.nom;

11.
joueurs tournois
id_joueur INTEGER id_tournoi INTEGER
nom TEXT " Toom TEXT
annee INTEGER * annee INTEGER
nationalite TEXT num_finalistel INTEGER

num_finaliste2 INTEGER

num_joueur3 INTEGER

num_joueur4 INTEGER

gain

INTEGER
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Un joueur peut étre lié a aucun tournoi ou a plusieurs tournois. On écrit
alors la multiplicité 0..*.

Un tournoi est lié a exactement quatre joueurs. On écrit alors la multiplicité
4..4, que l'on note 4.

Cours :
Une association est un lien entre deux ou plusieurs entités.

Multiplicité | Abréviation Cardinalité
0..0 0 Aucune ligne
0..1 Aucune ou une seule ligne
1..1 Une seule ligne
0..* * Aucune, une ou plusieurs lignes (pas de limite)
1..* Au moins une ligne (pas de limite)
X..X X Exactement x ligne(s)
m..n Au moins m et au plus n lignes

Exercice 16.3 : Numéros de sécurité sociale

On considere la base de données SECURITE SOCIALE pour gérer les numéros
de sécurité sociale des assurés. Pour chaque région, on a une table qui contient
les attributs :

* id personne, de type entier, identifie chaque personne ;

* nom, de type chaine de caracteres, désigne le nom de la personne ;

* prénom, de type chaine de caracteres, désigne le prénom de la personne ;

* annee, de type entier, désigne 1’année de naissance ;

* numsecu, de type flottant, désigne le numéro de sécurité sociale ;

* id personne2, de type entier, identifie le mari ou la femme ;

* rembour, de type flottant, désigne la somme a rembourser 8 id_personne.

tab bretagne

DURAND | Alfred 1980 | 1801223255521 (3 |50.5
DUPONT | Thomas |1985 | 1851056568848 100.8
MAUREL | Juliette | 1985 |1750950504544 (1 |350
DJOKOVIC | Anne 1970 | 1701584545321
BERDYCH | Bertrand | 1989 | 2892502545458 |6 |10
CHEMIN Marie 1989 |2825084584848 |5 |18

NN | |WIN =
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tab aquitaine

1 |BOULEAU |Patrick |[1975 |1755258458181 |2 |100

2 |BOULEAU | Marie 1978 |2508584545451 |1 |80

3 | CHASSAT |Paul 1980 | 1803355484812 18

4 | FALQUIER | Anne 1985 | 2885884788882 |5 |400.5
5 |DUPE Bertrand | 1986 | 1865254848482 |4 | 500

6 | CHEMIN Marie 1983 | 2825358874851 29

1. Ecrire une requéte SQL qui renvoie le nom, le prénom, le numéro de sécu-
rit€ sociale et ’année de naissance des assurés dont I’année de naissance est
supérieure ou égale a 1980 pour la Bretagne et 1985 pour la Nouvelle-Aqui-
taine. Les noms des assurés sont affichés par ordre croissant.

2. Ecrire une requéte qui renvoie la liste des couples de Bretagne. Chaque ligne
contiendra le nom et le prénom de 1’assuré€ ainsi que le nom et le prénom de son
mari ou de sa femme.

3. Ecrire une requéte qui renvoie le nom et le prénom des assurés qui ont les
mémes noms et prénoms en Bretagne et Nouvelle-Aquitaine.

4. Ecrire une requéte qui renvoie le nom et le prénom des assurés de Bretagne
sauf ceux qui ont méme nom et méme prénom en Bretagne et Nouvelle-Aquitaine.
5. Ecrire une requéte qui renvoie les deux plus grands remboursements des
couples de Nouvelle-Aquitaine. Chaque ligne contiendra le nom, le prénom et
le remboursement.

6. Ecrire une requéte qui renvoie la moyenne des remboursements par année de
naissance des assurés de Bretagne. Le minimum du remboursement des assurés
pour chaque année de naissance doit étre supérieur ou égal a 50. Les années
sont affichées par ordre décroissant.

Analyse du probleme

On utilise dans cet exercice des opérateurs ensemblistes : UNION, INTERSECT et
EXCEPT. Ils permettent de combiner dans un résultat unique des lignes provenant

de deux requétes SELECT.

Cours :

La commande UNION permet d’obtenir la réunion des enregistrements de deux requétes
SELECT. Pour chaque requéte SELECT, on doit avoir le méme nombre de colonnes et
le méme type pour chaque colonne. Les enregistrements identiques sont affichés une

seule fois.

SELECT nom, prenom FROM tab bretagne
UNION

SELECT nom, prenom FROM tab aquitaine
ORDER BY nom;
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On obtient :
BERDYCH | Bertrand
BOULEAU | Marie
BOULEAU | Patrick
CHASSAT | Paul
CHEMIN Marie
DJOKOVIC | Anne
DUPE Bertrand
DUPONT Thomas
DURAND Alfred
FALQUIER | Anne
MAUREL Juliette
2 & 1.
SELECT nom, prenom, numsecu, annee FROM tab bretagne WHERE
annee>=1980
UNION

SELECT nom, prenom, numsecu, annee FROM tabiaquitaine WHERE
annee>=1985
ORDER BY nom;

Cours :

Une autojointure consiste a joindre une table a elle-méme. On peut afficher sur une méme
ligne une personne ou son mari ou sa femme. On renomme les deux tables pour éviter toute
confusion.

SELECT tl.nom,tl.prenom, t2.nom, t2.prenom

FROM tab bretagne AS tl

JOIN tab_bretagne AS t2
ON tl.id personne2=t2.id personne;

ZQ Cette requéte affiche des doublons. On obtient :

DURAND | Alfred MAUREL | Juliette
MAUREL | Juliette DURAND | Alfred
BERDYCH | Bertrand CHEMIN Marie
CHEMIN Marie BERDYCH | Bertrand

2.

SELECT tl.nom,tl.prenom, t2.nom, t2.prenom
FROM tab bretagne AS tl

JOIN tab_bretagne AS t2

ON tl.id personne2=t2.id personne

WHERE tl.id personne2>tl.id_personne;
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On obtient :
DURAND Alfred MAUREL Juliette
BERDYCH Bertrand CHEMIN Marie

Cours :
La commande INTERSECT permet d’obtenir I’intersection de deux requétes SELECT,
c’est-a-dire les enregistrements communs aux deux requétes.

3.

2&7 SELECT nom, prenom FROM tab_ bretagne
INTERSECT
SELECT nom, prenom FROM tab aquitaine;

Cours :
La commande EXCEPT permet de récupérer les enregistrements de la premicre requéte
SELECT sans inclure les résultats de la deuxieme requéte SELECT.

Z 4,

é;l SELECT nom, prenom FROM tab bretagne
EXCEPT

SELECT nom, prenom FROM tab aquitaine
ORDER BY nom;

On obtient :
BERDYCH Bertrand
DJOKOVIC Anne
DUPONT Thomas
DURAND Alfred
MAUREL Juliette
5.

SELECT tl.nom, tl.prenom, t2.nom, t2.prenom, tl.rembour+t2.rembour
FROM tab_ aquitaine AS tl

JOIN tab aquitaine AS t2

ON tl.id personne2=t2.id personne

ORDER BY tl.rembour+t2.rembour DESC

LIMIT 2;

Remarque :

On peut écrire :

SELECT tl.nom, tl.prenom, t2.nom, t2.prenom, tl.rembour+t2.rembour
FROM tab aquitaine tl

JOIN tab aquitaine t2

ON tl.id personne2=t2.id personne

ORDER BY tl.rembour+t2.rembour DESC

LIMIT 2;
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2 ﬁ On obtient :
FALQUIER | Anne DUPE Bertrand | 900
DUPE Bertrand | FALQUIER | Anne 900
6.

SELECT annee, AVG (rembour)
FROM tab bretagne

GROUP BY annee

HAVING MIN (rembour) >=50
ORDER BY annee DESC;

On obtient :

1985 225.0
1980 50.0

Exercice 16.4 : Imprimantes (Mines Ponts 2015)

Une représentation simplifiée de deux tables de la base de données
imprimantes est donnée ci-dessous :

e table testfin :

nSerie dateTest ... |Imoy| Iec |...| fichierMes
230-5887X2547|2012-04-22 14-25-45 0.45 [0.11 mesure31025.csv
230-5887X2548[2012-04-22 14-26-57 0.43 [0.12 mesure41026.csv

e table production :

Num nSerie dateProd type
20 230-58872X2547 |2012-04-22 15-52-12 | JETDESK-1050
21 230-58872X2549 | 2012-04-22 15-53-24 | JETDESK-3050

Apres son assemblage et avant les différents tests de validation, un numéro
de série unique est attribué a chaque imprimante. A la fin des tests de chaque
imprimante, les résultats d’analyse ainsi que le fichier contenant 1’ensemble des
mesures réalisées sur I’imprimante sont rangés dans la table testfin. Lors-
qu’une imprimante satisfait les criteres de validation, elle est enregistrée dans
la table production avec son numéro de série, la date et ’heure de sortie de
production ainsi que son type.

1. Ecrire une requéte SQL permettant d’obtenir les numéros de série des impri-
mantes ayant une valeur de Tmoy comprise strictement entre deux bornes Imin
et Imax.
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2. Ecrire une requéte permettant d’obtenir les numéros de série, la valeur de
I’écart type (Iec) et le fichier de mesures des imprimantes ayant une valeur de
Iec strictement inférieure a la valeur moyenne de la colonne Iec.

N

3. Ecrire une requéte permettant d’extraire 2 partir de la table testfin le
numéro de série et le fichier de mesures correspondant aux imprimantes qui
n’ont pas été validées en sortie de production.

Analyse du probléeme
Cet exercice est extrait de I’épreuve d’informatique du concours Mines Ponts 2015.

On utilise une rubrique imbriquée. Le résultat d’une requéte imbriquée en SQL
peut retourner un champ (question 2) ou une colonne (question 3).

1.

Zéy SELECT nSerie
FROM testfin
WHERE Imoy>Imin and Imoy<Imax;

2.

SELECT nSerie,Iec,fichierMes

FROM testfin

WHERE Iec<(SELECT AVG(Iec) FROM testfin);

Cours :
La requéte imbriquée (SELECT AVG(Iec) FROM testfin) retourne un champ : la
valeur moyenne de la colonne Iec.

2 3.

éy SELECT nSerie, fichierMes

FROM testfin

WHERE nSerie NOT IN (SELECT nSerie from production);

La requéte imbriquée (SELECT nSerie from production) retourne
une colonne : les numéros de série de la table production.

Remarque :
La requéte suivante permet de tester si le numéro de série de la table testfin est
également dans la table production.

SELECT nSerie, fichierMes
FROM testfin
WHERE nSerie IN (SELECT nSerie from production);
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Exercice 16.5 : Paludisme (Mines Ponts 2016)

Pour suivre la propagation des épidémies, de nombreuses données sont recueil-

lies par les institutions internationales comme 1’0O.M.S. Par exemple, pour le

paludisme, on dispose de deux tables :

e La table palu recense le nombre de nouveaux cas confirmés et le nombre
de déces liés au paludisme ; certaines lignes de cette table sont données en
exemple (on précise que iso est un identifiant unique pour chaque pays) :

nom iso annee cas deces
Brésil BR 2009 309316 |85
Brésil BR 2010 334667 |76
Kenya KE 2010 898531 | 26017
Mali ML 2011 307035 | 2128
Ouganda UG 2010 1581160 | 8431

» La table demographie recense la population totale de chaque pays ; cer-
taines lignes de cette table sont données en exemple :

pays periode pop
BR 2009 193020000
BR 2010 194946000
KE 2010 40909000
ML 2011 14417000
UG 2010 33987000

1. Au vu des données présentées dans la table palu, parmi les attributs nom,
iso et annee, quels attributs peuvent servir de clé primaire ? Un couple d’at-
tributs pourrait-il servir de clé primaire ? (on consideére qu’'une clé primaire
peut posséder plusieurs attributs). Si oui, en préciser un.

2. Ecrire une requéte SQL qui récupére depuis la table palu toutes les données
de I’année 2010 qui correspondent a des pays ou le nombre de déces dus au
paludisme est supérieur ou égal a 1 000.

3. On appelle taux d’incidence d’une épidémie le rapport du nombre de nou-
veaux cas pendant une période donnée sur la taille de la population-cible pen-
dant la méme période. Il s’exprime généralement en « nombre de nouveaux
cas pour 100 000 personnes par année ». Il s’agit d’un des criteres les plus
importants pour €valuer la fréquence et la vitesse d’apparition d’une €pidémie.

Ecrire une requéte qui détermine le taux d’incidence du paludisme en 2011
pour les différents pays de la table palu.
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4. Ecrire une requéte permettant d’afficher le nombre de nouveaux cas de palu-
disme en 2010 pour les différents pays de la table palu.

5. Ecrire une requéte permettant d’afficher le maximum de nouveaux cas de
paludisme en 2010.

6. Ecrire une requéte permettant d’afficher le nom du pays ayant le plus grand
nombre de nouveaux cas de paludisme en 2010 (on pourra supposer qu’il n’y a
pas de pays ex aequo pour les nombres de cas).

7. Ecrire une requéte permettant de déterminer le nom du pays ayant eu le deu-
xieme plus grand nombre de nouveaux cas de paludisme en 2010

8. On considere la requéte R, qui s’écrit dans le langage de 1’algebre relation-
nelle :

R= ﬂnom,deces (Gannee=2010 (palu))

On suppose que le résultat de cette requéte a €t€ converti en une table
deces2010 constituée de couples (chaine, entier).

Ecrire une requéte SQL permettant de trier la liste deces2010 par ordre crois-
sant du nombre de déces dus au paludisme en 2010.

Analyse du probléme

Cet exercice est extrait de I’épreuve d’informatique du concours Mines Ponts 2016.
On utilise une rubrique imbriquée. Le résultat d’une requéte imbriquée en SQL ne
fournit qu’un champ dans cet exercice (maximum du nombre de nouveaux cas de

paludisme en 2010).

Cours :

La sélection O ,.._0010 (Palu) s’applique a la table pa 1 u et permet d’extraire de celle-ci les

éléments qui satisfont un critére de sélection (annee=2010).

La projection 7, 4.ces (R') 8’applique a une relation R’ et ne garde que les colonnes nom,
deces. Contrairement a la sélection, la projection ne supprime pas des lignes mais des

colonnes.

colonne dans la table palu n'est une clé primaire.
Le couple (iso, annee) est une clé primaire.

2.

SELECT *

FROM palu

WHERE annee=2010
AND deces>=1000;

2& 1. Une clé primaire sert a identifier une ligne de maniére unique. Aucune
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3.

SELECT nom, cas/pop*100000 AS 'taux incidence'
FROM palu

JOIN demographie ON iso=pays AND periode=annee
WHERE annee=2011;

4.

SELECT nom, cas
FROM palu

WHERE annee=2010;

On obtient : Brésil 334667 ; Kenya 898531 ; Ouganda 1581160.
5.

SELECT max (cas)
FROM palu
WHERE annee=2010;

6.

SELECT nom, cas

FROM palu

WHERE annee=2010 AND cas =(SELECT max (cas) FROM palu WHERE
annee=2010) ;

On utilise une rubrique imbriquée qui donne le maximum de nouveaux cas
de paludisme en 2010.

7. Il faut créer deux rubriques imbriquées.

SELECT nom, cas

FROM palu

WHERE annee=2010 AND cas =

(SELECT max (cas) FROM palu WHERE annee=2010 AND
cas <(SELECT max (cas) FROM palu WHERE annee=2010)) ;

8. On obtient alors une table deces2010 contenant deux colonnes :

® nom, de type chaine de caractéres, désigne le nom du pays ;

® deces, de type entier, désigne le nombre de nouveaux cas de palu-
disme en 2010.

SELECT nom, deces
FROM deces2010
ORDER BY deces;
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Exercice 17.1 : Equation différentielle du premier ordre

T e dy E-
On considere 1’équation différentielle : d_}t} == Y avec E et T des constantes.

La réponse y(¢) recherchée sur I’intervalle [to , tmax] sera obtenue par la méthode

d’Euler. Le pas de calcul, not€ &, sera choisi constant. L’intervalle de temps dis-
]. Pour chaque instant
t,, une valeur approchée y, de la solution y(ti) de I’équation différentielle est
recherchée. L’ensemble des yi est représenté par la liste Y.

1. Ecrire une relation de récurrence permettant de calculer ,,; en fonction de
v,.E hett.

2. Ecrire une fonction Euler (y0, t0, h, N, E, tau) quiadmetcomme
arguments y0=y(0), t0 le temps initial de calcul, h le pas de calcul, N le
nombre de points, E une constante et tau une constante. Cette fonction ren-
verra les listes T et Y.

crétisé est représenté par la liste 7 =[t0,t1,...,tN_1 =

tmax

3. Ecrire le programme principal permettant d’afficher graphiquement y en
fonction du temps ¢ avec les conditions suivantes : 10 = 0, y(0)=0, E = 10,
h=0,2ms, 7 =30 ms et N=1000. Le graphique doit avoir les caractéristiques
suivantes :

» affichage de « t » pour I’axe des abscisses,
» affichage de « y » pour I’axe des ordonnées,
» affichage du titre : « Méthode d’Euler ».

4. Commenter la courbe obtenue avec & = 59 ms, les autres conditions précé-
dentes demeurant inchangées.
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Meéthode d'Euler

20.0

17.5

12.5

> 10.0

7.5

5.0

2.5

0.0

Analyse du probleme

On utilise la méthode d’Euler pour résoudre numériquement une équation différen-
tielle du premier ordre. On étudie I’influence du pas sur la qualité de la solution.

Cours : du
On cherche a résoudre numériquement I’équation différentielle : al = F (u (1) ,t).

t
La fonction u(f) est une fonction continue du temps (qui est également continu). On réalise
la discrétisation du signal en récupérant les valeurs de la tension u a intervalles de temps
réguliers h. On appelle & le pas de calcul et N le nombre d’échantillons. On obtient deux
suites de nombres :

e {t,=ih,ivariantde 0 a N -1},

* {u; =u(t=ih), i variant de 0 a N —1}. Tli]=1
i|=t
Avec Python, on définit deux listes T et U telles que{ "
i|=u.
On a alors : !

» {T[i]=t,=ih,ivariantde 0 a N -1},
* {U[i]=u;, =u(t=ih), i variant de 0 a N —1}.

On considere un point d’abscisse ¢,. On applique la formule de Taylor au premier ordre au
voisinage de f, :

u(tyyy)=u(t)+ (4 —ti)(%l +...
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=ihett,, =(i+1)h=t +h. On peut écrire la formule de Taylor sous la forme :

”(ti+1):“(’i)+h(?j_l;l +...

[?j_bt,l ~(%),i _ () =u(%) _wy—u; _U[i+1]-U[i]

h h h

La méthode d’Euler est une méthode du premier ordre.

c , .. S du . .
* La méthode d’Euler explicite consiste a évaluer (—] en utilisant la valeur de la déri-

1.

i

s . e s s 1o du c
vée a I’ancienne position, ¢’est-a-dire a I’instant , : (E = F(u;,2;). On a un schéma
;i

explicite puisqu’on calcule chaque point en fonction du point précédent. La relation de

( s Wi TU
récurrence s’écrit ; —H—L=F

h_ J (ul.,t[).

* La méthode d’Euler implicite consiste a évaluer (E) en utilisant la valeur de la déri-
1.

N . e g x 1se du .
vée a la nouvelle position, ¢’est-a-dire a I'instant 7, : (d_t =F (ul. w10l ) La relation

< ‘- U —u
de récurrence s’écrit : % = F(uA t<). :

t.

Sauf indication contraire, on utilisera la méthode d’Euler explicite dans les exercices.

¥

explicite.

%

1. La méthode d’Euler explicite permet d’écrire : [j—{l Ym—¥ _E-y .

h T
P . . E-y;
On en déduit la relation de récurrence : y; ., =y; +h .
T
Remarque : Sans indication contraire de 1’énoncé, on utilise la méthode d’Euler

2.
def Euler(y0, t0, h, N, E, tau):

T=[t0] # ler élément de la liste T

Y=[y0] # ler élément de la liste Y

for i in range(N-1): # i varie entre 0 inclus et N-1 exclu

T.append(T[i]+h) # ajout d’un élément a la liste T
Y.append (Y[i]+h* (E-Y[i])/tau) # ajout d’un élément
# a la liste Y
return T, Y

3.

import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt

N=1000 # nombre de points
h=0.2e-3 # intervalle entre deux instants consécutifs
t0=0
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y0=0

E=10

tau=30e-3

T, Y=Euler(y0, tO, h, N, E, tau)

plt.figure () # nouvelle fenétre graphique
plt.plot (T, Y) # Y en fonction de T
plt.title ("Méthode d’Euler") # titre
plt.xlabel ("t") # axe des abscisses
plt.ylabel ("y") # axe des ordonnées
plt.show () # affiche le graphique
Méthode d'Euler

10

8 ‘////,/—

6

. /

4

2

0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
t

4. La solution obtenue avec la méthode d’Euler ne correspond pas du tout
a la solution de l'équation différentielle étudiée. La qualité de la solution
obtenue dépend du pas.

dy

Remarque : Si on considere I’équation différentielle : s Ay. On peut écrire que

Yiy = ¥ +hAy, =y, (14 hA). Pour que la méthode soit stable, il faut que 1+hA| < 1.
On peut en déduire un critere de stabilité sur le pas.
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Exercice 17.2 : Equation différentielle du deuxiéme ordre

On cherche a résoudre numériquement 1’équation différentielle du deuxieme

d’u du
ordre : a +ba+cu 0(1).
t
Onpose g(t)=——= (t) “(t)

etYtelqueY (1)= o) On cherche a mettre I’équation
g(t

différentielle (1) sous la forme du probleme de Cauchy : (31—1; =F(Y(t),t). On
u(0)
8(0))

La réponse u(¢) recherchée sur I’intervalle [O max] sera obtenue par la méthode
d’Euler explicite. Le pas de calcul, noté A, sera choisi constant. L’intervalle de
temps discrétisé est alors représenté par la liste T —[t =0,1,..ty_, =t ] Pour

pose Y (0)=Y, =

chaque instant 7, une valeur approchée Y; de la solution Y(tl.) de I’équation
différentielle est recherchée. On utilisera 3 listes T, U et G comportant chacune
N éléments.

1. Déterminer la fonction F (Y (¢),1).

2. Donner la relation de récurrence qui lie Y, aY,, F (t Y) et au pas de calcul A.
3. Ecrire une fonction F (Yi , ti) qui adrnet comme arguments Yi la valeur
du vecteur Y au temps discrétis€ ¢, ti la valeur du temps discrétis€, et qui
retourne la valeur de F (Yl (tl. ),ti .
4. Ecrire une fonction Euler (Yini, h, tmax, F) quiprend comme argu-
ments Yini une liste contenant ¥, la condition initiale, h le pas de calcul, tmax
le temps final de calcul et F la fonction du probleme de Cauchy. Cette fonction
retourne les listes T, U et G.

Ecrire le programme principal permettant de résoudre 1’équation différentielle
(1)avec b=0,75,¢=36,1, . =10s, h=0,6 ms, u(0)=2 et g(0) =0. Repré-
senter graphiquement u en fonction de 7.

Analyse du probléme

On cherche a résoudre numériquement une équation différentielle du deuxieme
ordre, on se ramene a deux équations différentielles du premier ordre. On utilise la
méthode d’Euler explicite étudiée dans 1’exercice précédent.
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2@ 1. On pose g(t)zj—:. L'équation différentielle (1) s'écrit alors sous la

forme : (:[_i+ bg+cu =0, soit j—i =—cu—bg. On transforme alors 'équation

différentielle (1) en un systéme de deux équations différentielles du pre-
du

. ,a_ﬁm ]
mier ordre : o I© .

49 | \~cu(t)-bg(t)
dt
u(t
On a donc d—Y=F(Y(t),t.‘) avec Y (t)= (t) et F(Y(t)t)=
dt g(t)
g(t)
~cu(t)-bg(t) |
A linstant t, on a : F (¥ (t,),ti)z(gi ] Il faut donc retourner la
liste : [g;,—cu; — bg; . ~cu; — bg;

2. Pour évaluer numériquement (d_YJ a linstant ¢, on utilise la méthode
d’Euler explicite : dt ),

(%lzw%ywm

Y(tia)=Y(t)
h

On a alors :
donc :

Via =Y, +h(F (Y. 1)), soit{

=F(Y(t;).t;)- La relation de récurrence s'écrit

Uy = U; +hg;
Giva = g +h(—cu; - bg;)
Remarques :

* Larelation de récurrence s’écrit: Y., =Y, + h(F (Y, )1 )) On a un schéma explicite
puisqu’on calcule le point suivant en fonction du point précédent.
e .Y =Y
* Dans un schéma implicite, on a Y =Y, + h(F (¥,..1,., )), soit % =
F (Ym L ) Dans ce cas, la nouvelle valeur Y, , est calculée en utilisant la valeur

de la dérivée a la nouvelle position.

|9 [
)| Bomavuauer(r(e).t) _[—cu(t)—bg(t)] e _{g(t)]'

A linstant t, on a : F(V, (ti)'ti):(gi ] Il faut donc retourner la
liste : [g;,—cu; — bg; ] —cu; —bg

1

i
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o On récupére u, avec le premier élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit u; =Y, [0].

* On récupére g; avec le deuxiéme élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit g; =V, [1].

import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt

def F(Yi, ti):
# Yi[0] représente U[i] et Yi[l] représente G[1i]
return Yi[1l], -c*Yi[0]-b*Yi[1l]

4. Il faut bien définir le nombre de points. Comme ¢, =(N—-1)h, alors
N =int 1+t"‘% . Il faut prendre la valeur entiére sinon il y a un probléme

de type pour la syntaxe : for i in range (N-1).
def Euler(Yini, h, tmax, F):
N=int (l+tmax/h) # nombre de points de discrétisation

T=[0] # ler élément de la liste T
U=[Yini[0]] # ler élément de la liste U
G=[Yini[1]] # ler élément de la liste G

for i in range (N-1):
Y=[U[i], GI[i]]
reskF=F(Y, T[i])
U.append (U[i]+h*resF[0])

résultat de 1’appel de F
ajout d’un élément

a la liste U

ajout d’un élément

a la liste G

on incrémente de h

# a chaque boucle

G.append (G[i]+h*resF[1])

H= = I H H I

T.append (T[i]+h)

return T, U, G

# initialisation des variables

Yini=[2, 0]

b=0.75

c=36

tmax=10

h=0.6e-3

N=int (1+tmax/h) # on a : tmax=(N-1)h
T, U, H=Euler(Yini, h, tmax, F)

plt.figure ()

plt.plot (T, U) # représentation graphique
# de U en fonction de T

plt.xlabel('t")

plt.ylabel('u(t)")

plt.title("Oscillateur harmonique amorti')

plt.show ()
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On obtient le graphe :

Oscillateur harmonique amorti

2.0

1.5

1.0
0.5 ,

0.0 / N\

u ()

Bl

-1.5 V

Exercice 17.3 : Résolution d'un systéme linéaire par
la méthode de Gauss

On étudie un moteur thermique constitué de quatre pistons. Depuis I’intégration
des calculateurs dans I’automobile, les principaux parametres de commande
du moteur a allumage commandé tels que 1’ouverture du papillon, la durée
d’injection, I’avance a I’allumage, etc. sont contrdlés numériquement par des
cartographies et/ou des boucles d’asservissement.

La quantité de carburant injecté est directement corrélée a la durée d’ouver-
ture des injecteurs que 1’on note durée d’injection. Dans les conditions de
fonctionnement stabilisé, le dosage de base est le résultat d’une interpolation
cartographique calculée a partir de la vitesse et de la charge du moteur. Toutes
les cartographies et tous les programmes du moteur sont stockés sous forme
de fichiers dans la mémoire morte du calculateur (ROM), qui dispose de 32 ko
d’espace. Au démarrage du véhicule, le programme de gestion du moteur et
certaines données seront chargés dans la mémoire vive (RAM), qui dispose de
3 ko d’espace.

On s’intéresse au traitement de la cartographie qui permet de déterminer la
durée d’injection. Le tableau 1 représente 1’affichage d’une cartographie des
durées d’injection pour un moteur 4 temps.
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Pression au collecteur P en bar
0,295 0,39 | 0,48 0,565 0,645 0,72 | 0,79
Vitesse de | 900 | 2,702 | 3,776 | 4.852 | 5.9 |6,962] 8,004 | 9,036
rotation ® [ 1300 | 3,064 | 4,162 | 5,248 | 6,33 | 7,734 8,774 | 9,766
entr/min 35001357 [ 4412 | 5,552 | 6,644 | 7,734 | 8,774 | 9,766
2200 | 3,462 | 4,63 | 5,804 | 6,952 8,062 9,126 | 10,154
2700 | 3,498 | 471 | 5916 | 7,00 | 8,23 |9.334] 10,39

Tableau 1 : cartographie des durées d’injection en ms.

La cartographie est alors chargée en mémoire sous la forme suivante :
* La premiere ligne (0,295 ; 0,39 ; 0,48...), qui contient M valeurs de pression

a I’admission en bar, est stockée dans une liste de valeurs : P =| P .
Jdo<j<m-1
<j<M-

* La premiere colonne (900 ; 1 300 ; 1 700 ...), qui contient N valeurs de
vitesse de rotation du moteur en tr/min, est stockée dans une liste de valeurs :

OMEGA =[OMEGA,] __. .

* Les durées d’injection sont stockées sous forme d’une liste de listes T. On
peut lire pour chaque couple de valeurs de pression et de rotation moteur la
valeur de la durée d’injection correspondante T[i] [j] en ms.

Le capteur de pression au collecteur d’admission mesure une valeur de pression
notée Pcol. La vitesse de rotation du moteur mesurée est notée OMEGAmOt.
Pour un couple de valeurs pression-vitesse de rotation (Pcol, OMEGAmot)
quelconque, le calculateur doit alors déterminer les valeurs de la durée d’in-
jection en réalisant une interpolation a partir des valeurs de la liste de listes T.

Etape 1 :
Le calculateur doit déterminer les indices i et j tels que P[j] < Pcol < P[ j+1]
et OMEGA [i] < OMEGAmot < OMEGA[i+1].

1. Ecrire une fonction indice (A, val) qui prend pour arguments une liste
notée A et un réel noté val. La liste A est triée par ordre croissant. La fonction
doit retourner un entier id tel que : A[id] < val < A[id+1]. On supposera que
id existe toujours.

Le calculateur doit ensuite lire dans la liste de listes T les durées d’injection
correspondant aux indices i et j précédemment déterminés.
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2. Ecrire une fonction extraire (T, P, OMEGA, 1, j) qui prend pour
arguments la liste de listes T, les listes P et OMEGA, et deux entiers i et j. La
fonction doit retourner une liste de listes ST :

ST={[T[i,j1.T[i, j+11,[PLj]], OMEGAL1] .
[T[i+1,j].T[i+1,j+1].P[j+1],OMEGA[i+1]]]

3. Ecrire la suite d’instructions qui, 2 partir des variables OMEGAmot, Pcol,
des listes P et OMEGA et de la liste de listes T, permet de déterminer la liste de
listes ST telle que définie a la question précédente.

Etape 2 :

Une fois les quatre valeurs de durée d’injection déterminées, il est nécessaire de
calculer une durée d’injection ¢ a partir d’une interpolation bilinéaire. L’ inter-
polation bilinéaire de la fonction de deux variables 7 (x, y) s’écrit comme suit :

t(x,y)=b,+bx+by+bxy ; xe[0,1] et ye[0,1]

ou b, b,,b, et by sont les inconnues du probleme.
La détermination des coefficients biie[0 3 est un probleme linéaire qui doit étre

résolu a chaque pas de temps et pour chaque cartographie sous la forme :
PO=R et Q=P 'R

P est une matrice carrée de dimension nxn ; O et R sont des matrices colonnes
de dimension 7.

On envisage dans un premier temps l’utilisation de la méthode de Gauss
avec recherche du pivot partiel pour résoudre le systeme linéaire et obtenir la
matrice Q.

4. Ecrire I’algorithme du pivot de Gauss permettant d’obtenir la matrice Q. On
admettra que les termes diagonaux sont tous non nuls.

5. Quelle est la complexité du pivot de Gauss en fonction de la dimension de la
matrice ? Justifier votre réponse.

Pcol — P j] OMEGAmot — OMEGAi]

PLi+1]-P[j] Y~ OMEGA[i+1]- OMEGA[i]

On connait les valeurs de t(x, y) pour quatre couples de valeurs (x, y) par lec-
ture de la cartographie :

On posera par la suite : x =

t(x=0,y=0)=5T[0,0] t(x=1,y=0)=ST[0.1]
t(x=0,y=1)=ST[1,0] t(x=1Ly=1)=ST[LI]
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6. Montrer que le probleme a résoudre devient :

100 o)) (STO0
110 o0 |&]||STO1]
10 1 0 |[b]|ST[L0]

7. Montrer que la résolution par substitution s’écrit :

b, =S8T[0,0]
b, = ST[0,1]-ST[0,0]
b, =ST[1,0]-ST[0,0]
b, = ST[1,1]-ST[0,1]-ST[1,0]+ ST[0,0]
8. Comparer la complexité de cet algorithme a celui présenté a la question 5.

9. Ecrire une fonction interpol (ST, Pcol, OMEGAmot) qui retourne
une valeur de la durée d’injection obtenue par une interpolation bilin€aire des
éléments de la table.

Analyse du probléme

On utilise la méthode de Gauss avec recherche partielle du pivot pour résoudre un
systeme linéaire d’ordre n.

Cours :
Un systeme linéaire est de Cramer d’ordre 7 si c’est un systeme de n équations linéaires a
n inconnues et s’il admet une solution unique.

2 4 2
On cherche a résoudre le systtme PQ=R. On prend par exemple : P=| 1 4 2
9 1 2 9 3
Q: ql etR: 1 .
% ! 2 4 2 (9] (24044 +24, ) (1
Le systeme s’écritalors: | 1 4 2 q F|90+4q,+29, |F|1]
2.9 3 g, ) (29,+99,+3q, | |1
2 4 2 1
Avant de décrire I’algorithme, onpose P'=P=[ 1 4 2 |etR'=R=|1].
2 9 3 1
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On considere n étapes successives. L’étape p (avec p compris entre 0 et n—1) se décompose
de la fagon suivante :

* Recherche du pivot partiel (€lément maximum en valeur absolue dans la colonne p) =
P'l.’p tel quei > p.

* Permutation des lignes i et p pour P'et R’ afin que le pivot soit sur la diagonale.

* Division de la ligne p par le pivot pour P'et R'. On obtient alors P’ =1.

* Remplacement pour P'et R’ des lignes i # p par la combinaison lindaire de la ligne i et
de la ligne p : ligne (i) < ligne (i)—P'; , ligne(p). On obtient alors P'; , =0 aveci# p.

Etapep =0:
1
2

4 2
4 2 | Lepivotest P’ 0= 2 aveci= p. Les étapes 1 et 2 sont inutiles. On
9 3

P'=

1 21 0,5
divise la ligne O par le pivot. On obtient : P'=[ 1 4 2 |etR'=|1

2 9 3

Combinaison linéaire i # p : 1

*i=1:valeur=P, =1 Dot : ligne(i=1)<ligne(i=1)-valeurxligne(p=0).

121 0,5
Onaalors:P'=| 0 2 1 |JetR'=[0,5].
2 9 3 1

e i=2:valeur=P'_, _,=2.D’ou:ligne(i=1)¢ligne(i =2)-valeurxligne(p=0). On

1 21 0,5
aalors: P'=| 0 2 1 [etR'=|0,5]
0 5 1 0

Etapep =1:

“E’
|
S O =

@] o

1
1
1

Le pivot est P’i:2,p:l = 5 avec i = p. On permute les lignes i et p. On obtient alors :

1 2 1 0,5
P'=| 0 1 |etR'=[0

0 2 1 0,5 1 2 1
On divise la ligne p = 1 par le pivot. On obtient alors P ™ letP'=[ 0O 1 1/5

0,5 0 2 1
etR'=|0

0,5
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Combinaison linéaire i # p :
*i=0:valeur=P_, _ =2.Dou: ligne(i=0) <« ligne (i=0)—valeurx ligne(p=1).

1 0 3/5 0,5
Onaalors: P'=| 0 1 1/5 |etR'=|0
0 2 1 0,5
e i=2:valeur=P_, _ =2.Dou: ligne(i=2)<« ligne (i =2)—valeurxligne(p=1).
1 0 3/5 0,5
Onaalors: P'=| 0 1 1/5 |etR'=|0
0 0 3/5 0,5
Etapep =2:
1 0 3/5 3
P'=[ 0 1 1/5 | Lepivotest Py =3 aveci2 p=2. Les étapes 1 et 2 sont inu-
00 1 0 3/5 0.5
tiles. On divise la ligne p = 2 par le pivot. On obtient: P'=| 0 1 1/5 |etR'=|0
00 1 5/6

Combinaison linéaire i # p :

*i=0:valeur=P, _, =%. D’ou : ligne (i =0) « ligne (i =0)—valeur xligne(p=2).

1.3.5

10 2 56| |0

Onaalors:P'=[ 0 1 1/5 |etR'=|0 =0
00 1 5/6 5/6

ci=1:valeur=P}, _, =3 D’ou : ligne(i =1) < ligne (i =1)—valeur x ligne(p =2).

4

1 00 0
Onaalors: P'=| 0 1 O |etR'=|-1/6].
0 0 1 5/6
1 0o |[0 0
OnaalorsQ=PR'=[ 0 1 O -1/6 |=|-1/6{.
00 1 J{s/6 ) |5/6
0
On peut vérifier facilement que O =| —1/6 | est solution du systéme de départ :
2 4 2 1 >/6
PO=| 1 4 2 [0=]|1
293 1
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%

1.
def indice (A, wval):
id=0
while A[id] > val or val > =A[id+1]:
id+=1

return id
# suppose que id existe toujours
# sinon la boucle pourrait ne pas se terminer

Autre possibilité pour la fonction indice :
def indice (A, val):
id=0
n=len (A)
for id in range(n-1): # id varie entre 0 inclus
# et n-1 exclu
if Alidl<=val and val<A[id+1]:

return id # on quitte la boucle for

2.

def extraire(T, P, OMEGA, i, j):
ST=1[] # création d’une liste vide
ST.append ([T[i] [J],T(i][3+1],P[J],OMEGA[i]])
ST.append ([T[i+1][3]1,T[i+1]1[j+1]1,P[J+1]1,OMEGA[i+1]])
return ST

3.

j=indice (P, Pcol)
i=indice (OMEGA, OMEGAmot)
ST2=extraire2 (T2, P, OMEGA, i, 7J) # liste de listes

On obtient ST = [[6.644, 7.734, 0.565, 1700], [6.952, 8.062, 0.645,

2200]].
4.

import copy

def rec pivot (A, p):

n=len (A)

i, pivot=p, A[p]I[p]

for k in range(p, n): # k varie entre p inclus

# et n exclu
if Alk][p]l>pivot:
i, pivot=k, A[k][p]
return i, pivot

def permut ligne(A, i, p):
n=len (A)
for k in range(n):
val=A[i] [k]
A[i] [k]=A[p] [k]
Alp] [k]l=val
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def gauss (P, R):

Pc=copy.deepcopy (P) # on ne modifie pas P
Rc=copy.deepcopy (R) # on ne modifie pas R
n=len (Pc)
for p in range (0, n): # p varie entre 0 inclus
# et n-1 exclu
i, pivot=rec pivot(Pc, p) # recherche du pivot
if i>p: # permutation des lignes i
# et psii>p

permut ligne(Pc, i, p)
Rc[i], Rclpl=Rc[p], Rcl[i]
# division de la ligne p par le pivot
for j in range(n): # j varie entre 0 inclus
# et n exclu
Pclpl [J1=Pclp]l[]j]/pivot
Rc[pl=Rc[pl/pivot
# combinaison linéaire
for i in range(n):
if il=p:
coeff=Pc[i] [p]
for j in range(n): # j varie entre 0 inclus
# et n exclu
Pc[i][j1=Pcli] [J]-coeff*Pc(p][]]
Rc[i]=Rc[i]-coeff*Rc(p]
# solution Q
Q=[Pc[i][1]*Rc[i] for i in range(n)]
return Q

p=([2, 4, 2], [1, 4, 2], (2, 9, 31]

R=[1, 1, 1]

O=gauss (P, R)

5. On se place dans le pire des cas pour calculer la complexité.

On fait varier p entre 0 et n-1. Pour chaque valeur de p :

* Recherche du pivot : 4+ (n—1—p)x 4 = 4n—4p opérations élémentaires.
¢ Permutation des lignes i et p : 3+3n opérations élémentaires.

¢ Division de la ligne p par le pivot : 3n+3 opérations élémentaires.

e Combinaison linéaire : n X (2+4n+4) = 6n+4n” opérations élémentaires.
Solution @ : 4n opérations élémentaires.

n—1

On a donc Z(4n—4p+3+3n+3n+3+6n+4n2)+4n=4n3+14n2+8n
=0

opérations éléﬁnentaires.

La complexité est en 0(n3).

6.0n pose : t(x,y)=by+bx+by+bxy ; xe [0,1] et y € [0,1].

On en déduit que : t(0,0)=5, ; t(1,0)=b,+b, ; t(0,1)=b,+b,y et

t(x,y)=by+b,+b,+b,.
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100 0 |[bo] b t(0,0)| (ST[0,0]
b b, +b t(1,0 ST(0,1
Onabienlloo 1{_[%T5 _()z[]
101 0 |[6,| |b+b, £(0,1) | | ST[1,0]
1111 )b, by + b, + b, + b t(1,1) ST[1,1]

7. On résout directement ce systéme :

b, =ST[0,0] ; b, =ST[0,1]-b, =ST[0,1]-ST[0,0] ; b, =ST[1,0]-b, =
ST[1,0]-ST[0,0].

by = ST[1,1]—by —b, — b, = ST[1,1] - ST [0,0] - (ST [0,1] - ST [0,0]) -
(ST[1,0]-ST[0,0])

Aprés simplification, on a : b; = ST[1,1]+ST[0,0]-ST[0,1] - ST[1,0].

On obtient finalement :

by = ST[0,0]

b, = ST[0,1]- ST [0,0]

b, = ST[1,0] - ST[0,0

b, = ST[1,1] - ST[0,1] - ST[1,0]+ 5T [0,0]

8. Pour cette matrice triangulaire inférieure, on peut trés facilement cal-
culer les coefficients b..

La premiére ligne permet de calculer b,. La deuxieéme ligne permet d'en
déduire b, et ainsi de suite pour tous les coefficients b,.

On se place dans le pire des cas. On fait varier i entre 0 entre n-1. Pour
chaque étape 7, on a au maximum i+1 opérations élémentaires.

’ A : 214 . < . n(n_l)
Le nombre d'opérations élémentaires vaut donc : Z(l +1)= 5

1=0
La complexité est quadratique en O(nz). Elle est plus faible qu’a la ques-
tion 5 puisquon a une matrice triangulaire.

9.

def interpol (ST, Pcol, OMEGAmot) :
p=[[l,0,0,0], [1,1,0,0], [1,0,1,0], [1,1,1,1]1]
R=[ST[0][O0], ST[O][1], ST[1][O], ST[1][1]]
QO=gauss (P, R)

+n.

x=(Pcol-ST[0][2])/(ST[1][2]-ST[0][2])
y=(OMEGAmot - ST[ 113 ])/(ST[l][B]—ST[O][B])
£=Q[01+Q[1]*x+Q[2]*y+Q[3]*x*y

return t

Remarque :

Voici un exemple de programme principal :

, 0.39, 0.48, 0.565, 0.645, 0.72, 0.79]

=[%00, 1300, 1700, 2200, 2700]
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T=[[2.702, 3.776, 4.852, 5.9, 6.962, 8.004, 9.036],
[3.064, 4.162, 5.248, 6.33, 7.734, 8.774, 9.766],
[3.27, 4.412, 5.552, 6.0644, 7.734, 8.774, 9.7661],
[3.462, 4.63, 5.804, 6.952, 8.062, 9.126, 10.1547],
[3.498, 4.71, 5.916, 7.09, 8.23, 9.334, 10.39]1]
Pcol=0.60

OMEGAmot=1750

j=indice (P, Pcol)

i=indice (OMEGA, OMEGAmot)

ST=extraire (T, P, OMEGA, i, 7j)

t=interpol (ST, Pcol, OMEGAmot)

print ("durée d’injection = ", t)

Exercice 17.4 : Interpolation polynomiale de Lagrange

On considere une fonction f définie par f (x):H%,xeR. On cherche
X

a représenter graphiquement la fonction f et le polyndme d’interpolation de
degré n par rapport aux n+1 points équidistants dans I’intervalle [5,5]. On note
f:=f(x).i € [0,n]. Les abscisses x, et les ordonnées f, sont stockées respecti-
vement dans les listes xs et ys.

. . L x
réel x et un entier n. La fonction retourne L, (x) =H

1. Ecrire une fonction 1agrange qui admet comme arguments un entier i, un
I X=X,

—X.
Jie [[O,n]].
. J#Ei
2. Ecrire une fonction poly qui admet comme arguments un réel x et un entier
n
n. La fonction retourne p(x) =2 fL(x), xe R,
i=0

3. Ecrire le programme principal permettant de représenter graphiquement la
fonction f et le polynome d’interpolation de Lagrange dans I’intervalle [-5, 5]
pour n = 4. Que se passe-t-il pourn=10etn =14 ?

Analyse du probléme

On détermine les n+1 composantes du polyndome d’interpolation qui passe par les
n+1 points imposés. Le phénomene de Runge apparait lorsque 7 est trop grand.

o
def lagrange (i, x, n):
# 1 entier

# x réel, n entier
Li=1
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for j in range(n+l): # j varie entre 0 inclus et n+l exclu
if jl=i:
Li*=(x-xs[J])/(xs[i]-xs[]])
return Li

2.
def poly(x, n):
# x réel, n entier
som=0
for i in range(n+l): # i1 varie entre 0 inclus et n+l exclu
som+=ys[i] *lagrange (i, x, n)
return som

3.

import math as m
# module math renommé m
import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt

def f(x):

return 1/ (1+x**2)
a=-5
b=5

# interpolation d’ordre n
# le nombre de points vaut n+l

n=4

h=(b-a)/n

xs=[a+i*h for i in range(n+l)] # liste des abscisses
ys=[f(xs[1]) for i in range(n+l)] # liste des ordonnées

# listes X et Y pour la représentation graphique de f

N=200 # N+1 nombre de points
H=(b-a) /N

X=[a+k*H for k in range (N+1)] # liste des abscisses
Y=[f(X[k]) for k in range (N+1)] # liste des ordonnées

YL=[poly(X[k], n) for k in range (N+1)]

# représentation graphique
plt.figure ()

plt.plot (X, Y)

plt.plot (X, YL)

plt.show ()

nouvelle fenétre graphique
graphe Y en fonction de X
graphe YL en fonction de X

HH o H

affiche le graphique
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Un phénomeéne d’oscillations apparait et s'amplifie lorsque n augmente. Le
phénomeéne de Runge peut étre atténué en considérant une interpolation
par morceaux (voir exercice suivant « Interpolation par morceaux »).

Exercice 17.5 : Interpolation par morceaux

On considere une fonction f'définie par f(x) = 1-1—%’ x € R. On cherche a repré-
X

senter graphiquement la fonction f, le polynome d’interpolation de degré n ainsi
que I’interpolation linéaire par morceaux par rapport aux z+1 points équidistants
dans I’intervalle [a,b] = [-5,5]. On définit une partition de [a, /] en n sous-inter-

valles I, =[x, x,,,1,i € [0,n—1], de longueur h = b=e avec x, =a+ih,i € [0,n].

Onnote f, = f(x,),i € [0,n]. Pouri e [0,n—1], on définit p, ]le polynome d’in-
terpolation linéaire de Lagrange aux nceuds (x;, f:),(x;,,,f,,). Le polynome
d’interpolation par morceaux plh est défini, pour tout i € [0,n—1], par :

p (%)= P (x),Vxe [,
Le polyndme p, ; est un polyndme de degré 1, pour tout i e [0,n—1].
Les abscisses x; et les ordonnées f; sont stockées respectivement dans les listes
xs et ys.
1. Donner I’expression de p, ; sur chaque intervalle 7, pour i € [0,n—1].
2. Ecrire une fonction interpol qui admet comme argument x et retourne
pl (x),x € [a,b].
Ecrire le programme principal permettant de représenter graphiquement la fonc-

tion f, le polyndme d’interpolation de degré n = 6 (p (x)=ZﬁLi (x), xe R
i=0

,i € [0,n]) et une interpolation linéaire par morceaux

avec L, (x)= H

]¢l

J

pour n = 6 dans I’intervalle [a, b].

Analyse du probléme

Pour résoudre le probleme d’oscillations qui apparait lorsque n est trop grand, on
utilise une interpolation par morceaux.

2@ 1. On considére une loi affine entre deux points successifs. Soiti € [0,n—1],
Vx € [Xi, Xl ty=y. + (x— )y,+1 Yi . Pour lintervalle I;, on en déduit
- X

i+1 i

y1+l yl

la fonction polynéme définie par py; (x) = y; +(x —x;) =2——=
Xy — X

i+1 i
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2. On pose h:M et x; =a+ih,i € [[0,n].
n

Soit x € [a,b]. On cherche un entier 7 tel que x appartienne au sous-
intervalle I; =[x;, x;,,],7 € [0,n—1].
Avec Python, on obtient i en calculant int al hXO .

X=X,

. 3h . . . .
* Six=x, +?, alors int )z mt(%)z 1, x est bien dans lintervalle

I =[x, %]
. X, —x . .
® Six=x,, alors mt(”To)z n. Dans ce cas, la fonction retourne direc-
tement y, car lintervalle [x,, x,,, ] n'est pas défini.

import math as m
# module math renommé m
import matplotlib.pyplot as plt
# module matplotlib.pyplot renommé plt

n+1]

def f(x):

return 1/ (14+x**2)
a=-5
b=5

# interpolation d’ordre n
# le nombre de points vaut n+l

n=6

h=(b-a)/n

xs=[a+i*h for i in range(n+l)] # liste des abscisses
ys=[f(xs[1]) for i in range(n+l)] # liste des ordonnées

def lagrange (i, x, n):

# i entier

# x réel, n entier

Li=1

for j in range(n+l): # j varie entre 0 inclus

# et n+l exclu
if jl=1i:
Li*=(x-xs[J])/(xs[1i]1-xs[]J1)
return Li

def poly(x, n):
# x réel, n entier
som=0
for i in range(n+l): # 1 varie entre 0 inclus
# et n+l exclu
som+=ys[i]*lagrange (i, x, n)
return som

def interpol (x): # x compris entre a et b
i=int ((x-xs[0]) /h)
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if x!=xs[n]:

# x est dans 1’intervalle Ii=[xi, xi+1]

return ys[i]+(x-xs[i])*(ys[i+1]-ys[i])/ (xs[i+1]-xs[1])
else:

# 1l’intervalle [xn, xn+l] n’est pas défini

return ys([n]

# listes X et Y pour la représentation graphique de f
# polyndme d’interpolation de Lagrange

N=200 # N+1 nombre de points
H=(b-a) /N

X=[a+k*H for k in range (N+1)] # liste des abscisses
Y=[f(X[k]) for k in range(N+1)] # liste des ordonnées

YL=[poly(X[k], n) for k in range (N+1)]

# liste Ym pour la représentation graphique de £

# interpolation linéaire par morceaux

Y=[f(X[k]) for k in range (N+1)] # liste des ordonnées
Ym=[interpol (X[k]) for k in range (N+1)]

# représentation graphique

plt.figure () # nouvelle fenétre graphique
plt.plot (X, Y) # graphe Y en fonction de X
plt.plot (X, YL) # graphe YL en fonction de X
plt.plot (X, Ym) # graphe Ym en fonction de X
plt.show () # affiche le graphique
Interpolation d'ordre 6

1.0

0.8

0.6

>

0.4

0.2

0.0

On observe des oscillations avec linterpolation polynomiale de Lagrange
de degré n = 6 : c'est le phénoméne de Runge, qui peut étre atténué en
considérant une interpolation par morceaux.
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