
© Dunod, 2023

11 rue Paul Bert, 92240 Malakoff

www.dunod.com

ISBN 978-2-10-085373-1

Couverture : création Hokus Pokus, adaptation Studio Dunod

http://www.dunod.com

MPSI·PCSI·PTSI
MP·PC·PSI·PT·TSI·TPC

INFORMATIQUE
AVEC PYTHON

Jean-Noël Beury

EXERCICES
INCONTOURNABLES

2e édition

III

Table des matières

Avant-propos� VI

Partie 1
Prise en main de Python

1. Prise en main de Python� 3
2. Graphiques� 25

Partie 2
Terminaison, correction, complexité

3. Terminaison, correction, complexité� 31

Partie 3
Algorithmes de recherche

4. Algorithmes� 45
5. Algorithmes de dichotomie� 51

Partie 4
Récursivité

6. Récursivité� 57

Partie 5
Algorithmes gloutons

7. Algorithmes gloutons (sauf TSI et TPC)� 85

IV

Table des matières

Partie 6
Lecture et écriture de fichiers – Matrices de pixels et images

8. Lecture et écriture de fichiers� 93
9. Matrices de pixels et images, traitement d’images� 99

Partie 7
Tris

10. Tris� 109

Partie 8
Dictionnaire, pile, file, deque

11. Dictionnaire, pile, file, deque� 131

Partie 9
Graphes

12. Graphes� 149

Partie 10
Recherche d’un plus court chemin

13. Recherche d’un plus court chemin (sauf TSI et TPC)� 185

Partie 11
Programmation dynamique

14. Programmation dynamique (Spé) (sauf TSI et TPC)� 211

Partie 12
Intelligence artificielle et jeux

15. Intelligence artificielle et jeu à deux joueurs (Spé)� 239

V

Table des matières

Partie 13
Bases de données

16. Bases de données (Spé)� 271

Partie 14
Algorithmique numérique

17. Algorithmique numérique (Spé) (uniquement TSI et TPC)� 291

Index � 313

Vous pouvez télécharger à partir de la page de présentation de l’ouvrage
sur le site Dunod tous les programmes Python des exercices. Des fichiers
complémentaires sont également fournis afin de tester les programmes, par
exemple des images pour les exercices du chapitre « Matrices de pixels et
images, traitement d’images ».

 https://dunod.com/EAN/9782100846238

VI

Avant-propos

Cet ouvrage de la série « Exercices incontournables » traite de l’intégralité du nou-
veau programme d’informatique commune pour les deux années des différentes
filières de classes préparatoires aux grandes écoles (sauf BCPST).

La première partie reprend la base de la programmation avec Python. Des rappels
de cours et des exercices classiques vous permettront de vous familiariser avec la
syntaxe Python.

Dans les exercices de certains chapitres (« Prise en main de Python », « Terminai-
son, correction, complexité », « Matrices de pixels et images, traitement d’images »,
« Dictionnnaire, pile, file, deque », « Graphes », « Intelligence artificielle et jeux à
deux joueurs », « Bases de données »), vous trouverez un rappel de cours détaillé
présentant le vocabulaire utilisé.

Pour chaque exercice classique, vous trouverez :

•• La méthode de résolution expliquée et commentée étape par étape.

•• Le corrigé rédigé détaillé.

•• Les astuces à retenir et les pièges à éviter.

Partie 1

Prise en main
de Python

Plan

1. Prise en main de Python� 3
1.1 : �Assertion, moyenne, variance et écart-type d’une liste

de nombres� 3
1.2 : Boucle, test, fonction (banque PT 2015)� 11
1.3 : Variables locales, variables globales� 14
1.4 : Affectation, objet immuable, copie� 15
1.5 : Passage par référence pour les listes, effet de bord� 20
1.6 : Slicing, extraction de tranche� 22

2. Graphiques� 25
2.1 : Tracé d’une fonction avec matplotlib� 25
2.2 : Tracé d’un histogramme avec matplotlib� 28

3

1Prise en main
de Python

On considère la liste de nombres : L=[9, 10, 11, 20.5, 0, 12.0, -5,
-8.3e1].

1.  Écrire une fonction rec_moy qui admet comme argument L une liste non
vide de nombres et retourne la moyenne de L.
2.  Écrire une fonction rec_variance qui admet comme argument L une
liste non vide de nombres et retourne la variance de la liste L.
3.  Écrire une fonction rec_ecart_type qui admet comme argument L une
liste non vide de nombres et retourne l’écart-type de la liste L.
4.  Les en-têtes des fonctions peuvent être annotés pour préciser les types des
paramètres et du résultat. Ainsi,

def uneFonction(n:int, X:[float], c:str, u) -> list:

signifie que la fonction uneFonction prend quatre paramètres n, X, c et u,
où n est un entier, X une liste de nombres à virgule flottante et c une chaîne de
caractères ; le type de u n’est pas précisé. Cette fonction renvoie une liste.
Écrire une fonction rec_moy2 qui admet comme argument L une liste non
vide de nombres réels ou flottants et retourne la moyenne de la liste L. Annoter
l’en-tête de la fonction pour préciser le type des données attendues en entrée et
fournies en retour. Utiliser des assertions pour vérifier le type de L, le nombre
d’éléments de L ainsi que le type des éléments de L.

Exercice 1.1 : �Assertion, moyenne, variance et écart-type d’une
liste de nombres

Analyse du problème
On utilise une boucle for pour parcourir les différents éléments de la liste. On peut
alors calculer la somme des éléments de la liste pour en déduire la valeur moyenne.
Une assertion est une aide de détection de bugs dans les programmes. La levée
d’une assertion entraîne l’arrêt du programme.

Partie 1 · Prise en main de Python

4

Cours :
L’installation de Python 3 peut se faire avec Pyzo.

Un script Python est formé d’une suite d’instructions. Une instruction simple est contenue
dans une seule ligne. Si une instruction est trop longue pour tenir sur une ligne ou si on sou-
haite améliorer la lisibilité du code, le symbole « \ » en fin de ligne permet de poursuivre
l’écriture de l’instruction sur la ligne suivante (voir corrigé 4).

Une affectation se fait avec l’instruction n=3 : n prend la valeur 3 (voir exercice 1.4
« Affectation, objet immuable, copie »).

On peut utiliser « _ » dans le nom des variables mais pas « - ».

Le typage des variables est dynamique : l’interpréteur détermine le type à la volée lors de
l’exécution du code. Dans l’exemple précédent, le type de n est int.

Le symbole dièse permet d’ajouter des commentaires dans les programmes Python : #
commentaire sur le programme.

Le type d’une variable n s’obtient avec l’instruction : type(n).

Les types de base des variables dans Python sont :

•• Nombres entiers (positifs ou négatifs) : int
•• Nombres à virgule flottante (ou nombres flottants) : float

Exemple
a=-3.2e2 : -3,2 × 102 = -320

•• Booléens : bool
Les variables booléennes sont True (vrai) et False (faux).

Opérations de base sur les entiers (int) : +, -, *, //, **, %

n=28
n//10 : 2 = quotient de la division euclidienne de n par 10
n%10 : 8 = reste de la division euclidienne de n par 10
n**3 : n puissance 3

Opérations de base sur les nombres flottants (float) : +, -, *, /, **

a=1/3 : a vaut 0.3333333333333333
2.6**(a) : 2,6 puissance a

Comparaisons :

a==b : �cet opérateur compare a et b. Si a=b, Python retourne True, sinon
False

a!=b : a différent de b
a>b, a<b, a>=b, a<=b : �strictement supérieur, strictement inférieur, supérieur ou égal,

inférieur ou égal

Opérations sur les booléens (bool) :

or : ou
and : et
not : non

Chapitre 1 · Prise en main de Python

5

rep1=True # type bool. 2 valeurs possibles : True ou False
a=12
b=10
rep2=(a==12)and(b==20) # rep2=False pour le test : a=12 et b=20
rep3=not(a==13) # rep3=True, on pourrait écrire : rep3 = a!=13
rep4=(a==12)or(b==20) # True pour le test : a=12 ou b=20

Les types de base des conteneurs dans Python sont :

•• Chaînes de caractères : str
Structure indicée immuable. On ne peut pas modifier les éléments d’une chaîne de
caractères.
s="C'est une phrase" : utilisation de guillemets "
s1='phrase' : utilisation d’apostrophes '
n=len(s) : n=6 (nombre de caractères)
s1[0] : le premier caractère de s1 a pour indice 0 : 'p'
s1[n-1] : dernier caractère : 'e'
C1='ab'
C2=C1*3 : retourne 'abcabcabc', répétition de 'ab'
 La chaîne de caractères C1 est concaténée 3 fois avec elle-même.

•• Listes : list
Structure de données muable. On peut modifier les éléments d’une liste.
L=[] : crée une liste vide
L.append(3) : ajoute 3 à la fin de la liste L. On obtient L=[3]
L.append(2) : ajoute 2 à la fin de la liste L. On obtient L=[3, 2]
x=L.pop() : supprime le dernier élément (ici 2) de la liste L
 On récupère cet élément dans la variable x
L3=['r', 3, 'te'] : �crée la liste L3 contenant des chaînes de caractères et des

entiers
len(L3) : affiche la longueur de la liste L3
Pour extraire des éléments d’une liste, voir exercice 1.6 « Slicing, extraction de
tranche ».
L=[2*i for i in range(5)] : �on obtient [0, 2, 4, 6, 8] (création par

compréhension)
L=[2,3]*3 : répétition de la liste [2, 3]
 On a alors L=[2, 3, 2, 3, 2, 3]
L=L+[5,8] : concaténation : L=[2, 3, 2, 3, 2, 3, 5, 8]

Remarque :

Les indices des listes contenant n éléments sont numérotés de 0 à n–1 dans Python
(idem pour les tuples et les deques). Pour obtenir le premier élément de la liste :

a=L[0] # la variable a prend la valeur 2

•• Tuples : tuple
Les tuples sont des structures indicées immuables. Une fois le tuple créé, il ne peut pas
être modifié. On peut créer un tuple avec ou sans parenthèses.
M=(2, 3, 8) : crée le tuple M
 Ne pas confondre avec les listes, où on met des crochets.
 On crée le même tuple si on omet les parenthèses

Partie 1 · Prise en main de Python

6

n=len(M) : n = nombre d’éléments du tuple M
M=2, 3, 9
x=M[0] : récupère dans la variable x l’élément d’indice 0 du tuple M
a, b, c=M : dépaquette un tuple
 On récupère dans chaque variable un élément du tuple.
 Il faut connaître à l’avance le nombre d’éléments du tuple.
M2=M+(2, 5) : concaténation de deux tuples : M2=(2, 3, 9, 2, 5)
M3=(2, 1)*3 : création avec répétition : M3=(2, 1, 2, 1, 2, 1)

•• Deques : deque
Une deque (se prononce « dèque ») est une structure de données muable qui généralise
le fonctionnement des piles et des files (voir exercice 11.6 « Utilisation des deques »
dans le chapitre « Dictionnaire, pile, file, deque »). On peut ajouter et supprimer des
éléments aux deux extrémités. Pas d’extraction de tranche (ou slicing) avec les deques.
from collections import deque : module permettant d’utiliser les deques
D=deque() : création d’une deque vide D
D.append(3) : ajoute 3 à l’extrémité droite de D
D.appendleft(5) : ajoute 5 à l’extrémité gauche de D
x=D.pop() : supprime l’élément à l’extrémité droite de D
x=D.popleft() : supprime l’élément à l’extrémité gauche de D
D1=deque([3, 8, 5]) : création de la deque D1

for elt in D1: # affichage de tous les éléments de la deque D1
 print(elt)

•• Dictionnaires : dict
Pour l’utilisation des dictionnaires, voir les exercices 11.1 « Opérations de base sur les
dictionnaires » et 11.2 « Comptage des éléments d’une liste à l’aide d’un dictionnaire »
dans le chapitre « Dictionnaire, pile, file, deque ».

Remarque : Pour le type None, voir la remarque de la question 2 dans l’exer-
cice 10.1 « Tri par insertion » dans le chapitre « Tris ». On ne l’utilisera pas dans
les autres exercices.

Il existe deux catégories d’objets dans Python :

•• les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes,
dictionnaires, deques (voir chapitre 11 « Dictionnaire, pile, file, deque »)… ;

•• les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chaînes de caractères, tuples…

Voir les exercices 1.4 « Affectation, objet immuable, copie » et 1.5 « Passage par référence
pour les listes, effet de bord » pour les affectations et les arguments d’entrée des fonctions.

Quelques fonctions intrinsèques :

abs(x) : renvoie la valeur absolue de x
int(x) : convertit x en entier
float(x) : convertit x en flottant
str(x) : convertit x en chaîne de caractères
bool(x) : convertit x en booléen

Chapitre 1 · Prise en main de Python

7

Première utilisation de la boucle for :

x=5 # affecte 5 à la variable x
for i in range(n): # boucle faisant varier i de 0 inclus à n exclu
 # ne pas oublier ':' à la fin de la ligne
 x=x+i # incrémente x de i à chaque passage dans la boucle
 # attention à l’indentation

Deuxième utilisation de la boucle for :

for elt in L: # elt prendra successivement les éléments de L
 print(elt) �# L chaîne de caractères, liste, tuple, deque

ou dictionnaire

Boucle while :

i=0
while i<=10: # ne pas oublier : à la fin de la ligne while
 print(i) # affichage de i
 i=i+1 # on incrémente i de 1 à chaque étape

La variable i est initialisée à 0 et incrémentée de 1 à chaque étape de la boucle while. On
l’appelle un compteur.

Si la variable i est incrémentée d’une valeur différente de 1 ou décrémentée, on l’appellera
un accumulateur.

Remarque : On peut utiliser l’instruction suivante :

 i+=1 # la variable i est incrémentée de 1

L’instruction break fait sortir d’une boucle while ou for et passe à l’instruction sui-
vante (voir exercice 10.6 « Tri à bulles » dans le chapitre « Tris »). Lorsqu’il y a plusieurs
boucles imbriquées, l’instruction break ne fait sortir que de la boucle la plus interne.

Définition d’une fonction :

def f(x): # définition de la fonction f ayant pour argument d’entrée x
 # ne pas oublier ':' à la fin de la ligne
 y=x+3 # y est une variable locale : elle est créée à l’appel
 # de la fonction et est détruite à la fin de la fonction
 # voir exercice 1.3 "Variables locales, variables globales"
 return y # fin de la fonction et retourne la valeur y
 # attention à l’indentation

L’instruction return quitte la fonction même en cours d’exécution d’une boucle for ou
while.

Structure conditionnelle :

if x==3: # teste si x = 3
 y=3*x
elif x>3 and x<=4: # si le test précédent n’est pas vérifié,
 # alors teste si x >3 et si x <=4
 y=x+2
elif x>4 and x <5: # si le test précédent n’est pas vérifié,
 # alors teste si x >4 et si x <5
 y=x-2
else: # sinon (les tests précédents ne sont pas vérifiés)
 y=0

Partie 1 · Prise en main de Python

8

Importation de modules

Des fonctions traitant d’un même domaine sont regroupées dans des modules (par exemple
les fonctions mathématiques cos, sin, tan… sont regroupées dans le module math).
Différents modules peuvent être regroupés dans une bibliothèque. On utilise l’instruction
import module pour importer un module.

import math # importation du module math

Le module math contient des fonctions et des variables : cos(), sin(), tan(), exp(),
sqrt() (racine carrée), log() (logarithme népérien), log10() (logarithme décimal),
pi (nombre p)…

Pour utiliser les fonctions et les variables du module math :

a=math.pi/4
b=math.cos(math.pi/4)
c=math.sin(math.pi)
print(b) # affiche 0.7071067811865476
print(c) # affiche 1.2246467991473532e-16

Les nombres flottants ne permettent pas un calcul exact à cause de la représentation des
nombres à virgule sur des mots de taille fixe. Un test du type a==b n’a en général pas
de sens si a et b sont des nombres à virgule flottante. On remplacera donc ce test par :
abs(a-b)<epsilon où epsilon est une valeur proche de zéro, choisie en fonction
du problème à traiter et de l’ordre de grandeur des erreurs auxquelles on peut s’attendre
sur a et b.

Ainsi, pour effectuer le test sin(x)==0, on n’utilisera pas l’instruction :

m.sin(x)==0 # si x=pi, ceci retourne pourtant False

mais les instructions suivantes :

eps=1**-8 # on choisit une valeur pour eps
abs(m.sin(x))<eps # si x=pi, ceci retourne bien True

Lorsqu’on utilise l’instruction from math import *, il n’est plus nécessaire d’ajouter
le nom du module pour utiliser ses fonctions :

from math import * # module math
a=pi/4

Certaines fonctions portent le même nom dans des bibliothèques différentes. Il est donc
préférable de ne pas utiliser from math import * mais plutôt import math. On
peut renommer le module math en m par exemple :

import math as m # module math renommé m
a=m.pi/4

On peut importer des fonctions et des variables d’un module :

from math import cos, sin, tan, pi
a=cos(pi/4)

Voir exercice 1.4 « Affectation, objet immuable, copie » pour l’utilisation du module copy.

Chapitre 1 · Prise en main de Python

9

On utilisera la bibliothèque PIL dans le chapitre 9 « Matrices de pixels et images, traite-
ment d’images ».

1. On considère une liste non vide L. On suppose que les éléments de la
liste sont des nombres entiers ou flottants. On définit une variable S per-
mettant de calculer la somme des éléments de la liste.
def rec_moy(L):
 # la fonction retourne la moyenne de la liste L
 S=0 # initialisation de S à 0
 n=len(L) # longueur de la liste L
 for i in range(n): # i varie entre 0 inclus et n exclu
 S=S+L[i] # on pourrait écrire S+=L[i]
 moyenne=S/n # calcul de la moyenne
 return moyenne # retourne la moyenne de L

Remarque :

La liste L=[9, 10, 11, 20.5, 0, 12.0, -5, -8.3e1] contient des
entiers (9, 10, 11, 0, 5) ainsi que des nombres flottants (20.5, 12.0, -8.3e1).

12.0 est un nombre flottant (type float) alors que 12 est un nombre entier (type
int).

-8.3e1 est un nombre flottant alors que 83 est un nombre entier.

Cours :
Soit une liste de valeurs X1, X2… XN. La moyenne des valeurs est définie par : ∑=

=

1

1

X
N

Xi
i

N

.

La variance (ou écart quadratique moyen) est définie par : var = −()X X X2 2 avec

∑=
=

X
N

Xi
i

N
12 2

1

. L’écart-type est défini par Xvar ()∆ =X .

2.
def rec_variance(L):
 # la fonction retourne la variance de la liste L
 S=0 # initialisation de S à 0
 n=len(L) # longueur de la liste L
 for i in range(n): # i varie entre 0 inclus et n exclu
 S=S+L[i]**2 # on pourrait écrire S+=L[i]**2
 variance=S/n-rec_moy(L)**2
 return variance # retourne la variance de L

3.
def rec_ecart_type(L):
 #la fonction retourne l’écart-type(float) de la liste L
 import math as m # module math renommé m
 return(m.sqrt(rec_variance(L)))

Cours :
Une assertion est une aide de détection de bugs dans les programmes.

Partie 1 · Prise en main de Python

10

•• La fonction rec_moy peut être appelée si le type de L est list. On ajoute la ligne
suivante dans la fonction def rec_moy2 :

assert type(L)==list

Le programme teste si type(L)==list. Si la condition est vérifiée, le programme
continue à s’exécuter normalement.
Si la condition type(L)==list n’est pas vérifiée (on dit qu’on a une levée de l’as-
sertion), alors le programme Python s’arrête et affiche le message d’erreur :

 assert type(L)==list AssertionError

•• La fonction rec_moy peut être appelée si le nombre d’éléments de L est strictement
positif. On ajoute la ligne suivante dans la fonction def rec_moy2 :

assert len(L)>0

Le programme teste si len(L)>0, sinon on aurait une division par 0 dans la fonction.
Si la condition est vérifiée, le programme continue à s’exécuter normalement. Si la
condition len(L)>0 n’est pas vérifiée (on dit qu’on a une levée de l’assertion), alors
le programme Python s’arrête et affiche le message d’erreur :

 assert len(L)>0 AssertionError

On supprime les assertions dans la version finale du programme Python.

4.
def rec_moy2(L:list)->float:
 # la fonction retourne la moyenne (float) des éléments
 # de la liste L
 # On pourrait écrire : def rec_moy2(L:[float])->float:
 # L est une liste de nombres flottants
 assert type(L)==list
 assert len(L)>0
 S=0 # initialisation de S à 0
 n=len(L) # longueur de la liste L
 for i in range(n): # i varie entre 0 inclus et n exclu
 assert type(L[i])==float or type(L[i])==int
 S=S+L[i] # on pourrait écrire S+=L[i]
 moyenne=S/n # calcul de la moyenne
 return moyenne # retourne la moyenne de L

Si on exécute l’instruction print('moyenne :',rec_moy2(3)),
Python affiche :

 assert type(L)==list AssertionError

Si on exécute l’instruction print('moyenne :',rec_moy2([])),
Python affiche :

 assert len(L)>0 AssertionError

Si on exécute l’instruction print('moyenne :',rec_moy2([3,
4.0, 'a'])), Python affiche :
 �assert type(L[i])==float or type(L[i])==int

AssertionError

Chapitre 1 · Prise en main de Python

11

Remarques :

On peut ajouter une chaîne de caractères dans l’instruction assert :

 assert type(L)==list, 'Le type de L doit être une liste.'

Le programme teste si type(L)==list. Si la condition est vérifiée, le programme
continue à s’exécuter normalement.

Si la condition type(L)==list n’est pas vérifiée (on dit qu’on a une levée de
l’assertion), alors le programme Python s’arrête et affiche le message d’erreur :

 Le type de L doit être une liste.

Si une instruction est trop longue pour tenir sur une ligne ou si on souhaite amé-
liorer la lisibilité du code, on peut utiliser le symbole « \ » en fin de ligne et pour-
suivre l’écriture de l’instruction sur la ligne suivante.

On peut écrire :

assert type(L[i])==float or type(L[i])==int, "Type de L[i] non correct."

ou
assert type(L[i])==float or type(L[i])==int,\
 "Type de L[i] non correct."

On peut ajouter des commentaires dans les programmes Python avec le symbole
dièse. Pour ajouter un commentaire qui s’étend sur plusieurs lignes, on peut le
commencer avec ''' (trois apostrophes) ou """ (trois guillemets) et le terminer
de la même façon :
'''
La fonction retourne la moyenne (float) des éléments de la liste L.
On pourrait écrire : def rec_moy2(L:[float])->float:
'''

Les assertions servent à tester des conditions critiques qui ne devraient jamais arri-
ver. Ce sont des aides au développement des programmes.

Si ces erreurs (liste vide, type de L incorrect, type de L[i] incorrect) sont suscep-
tibles d’arriver lors de l’exécution du programme final, alors il faut utiliser le test
if len(L)==0 et gérer par programmation l’erreur.

On pourra utiliser L.reverse() qui permet d’inverser les éléments de la liste L.

1.  Soit l’entier n = 1 234. Quel est le quotient, noté q, de la division euclidienne
de n par 10 ? Quel est le reste ? Que se passe-t-il si on recommence la division
euclidienne par 10 à partir de q ?

Exercice 1.2 : Boucle, test, fonction (banque PT 2015)

Partie 1 · Prise en main de Python

12

Analyse du problème
Cet exercice permet de s’entraîner à manipuler les fonctions, les boucles, les tests
et les différents types rencontrés dans Python.

1. n = 1 234 = 123 × 10 + 4. Le reste vaut 4.
Si on recommence la division euclidienne de 123 par 10 : 123 = 12 × 10 + 3.
Le reste vaut 3.
Si on recommence la division euclidienne de 12 par 10 : 12 = 1 × 10 + 2.
Le reste vaut 2.
Si on recommence la division euclidienne de 1 par 10 : 1 = 0 × 10 + 1. Le
reste vaut 1.
On obtient la décomposition en base 10 de n : 1, 2, 3, 4.

def calcul_base10(n):
 # la fonction renvoie une liste contenant les restes
 # des divisions euclidiennes successives
 assert type(n)==int
 L=[] # création d’une liste vide
 while n>0: # boucle tant que n > 0
 q=n//10 �  # quotient de la division euclidienne de n par 10
 r=n%10 # reste de la division euclidienne de n par 10
 L.append(r) # on ajoute le reste dans la liste L
 n=q
 L.reverse() # inverse l’ordre des éléments de la liste L
 return L # retourne la liste L

programme principal
n=int(input('Taper un entier strictement positif : '))
 # conversion en entier du résultat de la saisie

Écrire une fonction calcul_base10 d’argument n, renvoyant une liste L
contenant les restes des divisions euclidiennes successives.
La fonction vérifiera que n est un entier avec assert.
Écrire le programme principal demandant à l’utilisateur de saisir un entier n
strictement positif et renvoyant la décomposition en base 10 de l’entier n.
2.  Écrire une fonction somcube, d’argument n, renvoyant la somme des
cubes des chiffres du nombre entier n. On pourra utiliser la fonction calcul_
base10.
3.  Écrire une fonction permettant de trouver tous les nombres entiers stricte-
ment inférieurs à 1 000 et égaux à la somme des cubes de leurs chiffres.
4.  Écrire une fonction somcube2 qui convertit l’entier n en une chaîne de
caractères permettant ainsi la récupération de ses chiffres sous forme de carac-
tères. Cette nouvelle fonction renvoie la chaîne de caractères ainsi que la
somme des cubes des chiffres de l’entier n. On pourra utiliser la fonction str
et manipuler les chaînes de caractères.

Chapitre 1 · Prise en main de Python

13

print('Décomposition en base 10 : ',calcul_base10(n))

L’instruction assert expression de Python vérifie la véracité d’une
expression booléenne et interrompt brutalement l’exécution du programme
si ce n’est pas le cas.
2.
def somcube(n):
 # la fonction renvoie la somme des cubes des chiffres
 # de l’entier n
 somme=0 # initialisation de la variable somme
 L=calcul_base10(n) # récupère la liste donnant
 # la décomposition en base 10 de n
 for i in range(len(L)): # i varie entre 0 inclus
 # et len(L) exclu
 somme=somme+L[i]**3 # on ajoute L[i] à la puissance 3
 # on peut écrire somme+=L[i]**3
 return somme

programme principal
n=1234
print(somcube(n)) # affiche 100 pour n = 1234

3.
def affiche_liste_entier_cube(): # pas d’argument d'entrée
 # la fonction renvoie tous les nombres entiers strictement
 # inférieurs à 1000 et égaux à la somme des cubes
 # de leurs chiffres
 L=[] # création d’une liste vide
 for i in range(1000): # i varie entre 0 inclus et 1000 exclu
 if i==somcube(i): # teste si i est égal à la somme
 # des cubes de ses chiffres
 L.append(i) # ajoute i dans la liste L
 return L # fin de la fonction et renvoie la liste L

programme principal
print(affiche_liste_entier_cube()) # affiche
 # [0, 1, 153, 370, 371, 407]

4.
def somcube2(n):
 # la fonction convertit l’entier n en une chaîne de caractères
 # pour récupérer ses chiffres sous forme de caractères
 somme=0
 chaine=str(n) # convertit n en une chaîne de caractères
 L=[] # création d’une liste vide
 for elt in chaine: # elt prend successivement
 # les éléments de chaine
 L.append(elt) # elt est un caractère que l’on ajoute
 # dans L
 somme=somme+(int(elt))**3 # il faut convertir elt
 # en entier
 return L,somme # on pourrait écrire return(L, somme)

Partie 1 · Prise en main de Python

14

programme principal
n=int(input('Taper un entier strictement positif : '))
L1,res=somcube2(n) # L1 contient la liste des chiffres de n
 # res = somme des cubes des chiffres de n

Remarque :

La fonction somcube2(n) renvoie un tuple contenant deux éléments. Pour récu-
pérer les éléments de ce tuple, on a plusieurs possibilités :

•• Dépaquetage d’un tuple :

La ligne return L, somme retourne un tuple : (L, somme).
Pour récupérer dans des variables séparées les éléments du tuple, on peut écrire :

L1, res=somcube2(25)

On obtient alors : L1=['2', '5'] et res=133.
•• On définit un tuple A :

A=somcube2(25)

Le tuple A vaut : (['2', '5'], 133).
Pour récupérer ['2', '5'], le premier élément du tuple : A[0].
Pour récupérer 133, le deuxième élément du tuple : A[1].

On considère le programme suivant :

def f() :
 global b
 print('d =', d)
 print('Premier print dans la fonction f : b =', b)
 a=3
 c=5
 b=b+c
 print('Deuxième print dans la fonction f : b =', b)
 print('Troisième print dans la fonction f : a =', a)
 return # on pourrait supprimer cette ligne
       # ou écrire return None

a=2
b=2
d=3
print("Print avant l’appel de la fonction f : a =", a)
print("Print avant l’appel de la fonction f : b =", b)
f()
print("Print après l’appel de la fonction f : a =", a)
print("Print après l’appel de la fonction f : b =", b)

Qu’affiche Python lors de l’exécution du programme ? Analyser les différents
affichages de print.

Exercice 1.3 : Variables locales, variables globales

Chapitre 1 · Prise en main de Python

15

Analyse du problème
Ce programme permet de comprendre la différence entre les variables globales et
les variables locales dans une fonction.

Cours :
Une variable locale est créée au début d’une fonction et est détruite lorsque la fonction est
terminée. Elle existe uniquement dans le corps de la fonction.

Une variable globale est définie à l’extérieur d’une fonction. Le contenu de cette variable est
visible à l’intérieur d’une fonction. L’instruction global b permet de définir la variable
globale b dans la fonction f.

Le programme Python affiche :

 Print avant l’appel de la fonction f : a = 2
 Print avant l’appel de la fonction f : b = 2
 d = 3
 Premier print dans la fonction f : b = 2
 Deuxième print dans la fonction f : b = 7
 Troisième print dans la fonction f : a = 3
 Print après l’appel de la fonction f : a = 2
 Print après l’appel de la fonction f : b = 7

La variable a vaut toujours 2 après l’exécution de la fonction f.
Dans le corps de la fonction f, a est une variable locale qui n’a rien à voir
avec la variable a définie dans le programme principal.
La variable b est modifiée par la fonction f car b est une variable globale
(instruction global b). On retrouve 7 après l’appel de la fonction f.
La variable c est une variable locale. Elle n’est pas définie en dehors de la
fonction. L’instruction print(c) en dehors de la fonction entraîne un
message d’erreur de Python.
La variable d n’est pas définie dans la fonction f. Python cherche alors la
valeur de d dans le programme principal. Python affiche alors : d = 3.

Remarque : L’instruction global i,j permet de désigner deux variables glo-
bales i et j dans une fonction.

La fonction deepcopy(L) du module copy permet de réaliser une copie pro-
fonde de la liste L.
1.  Qu’affiche Python lors de l’exécution du programme suivant ?
i=3
j=i
print('Avant modification de i : i, j =', i, j)
i=5
print('Après modification de i : i, j =', i, j)

Exercice 1.4 : Affectation, objet immuable, copie

Partie 1 · Prise en main de Python

16

2.  Qu’affiche Python lors de l’exécution du programme suivant ?
L1=[1, 3, 5, 7]
L2=L1
print('Avant modification de L2 : L1, L2 =', L1, L2)
L2[3]=2
L2[3]=print('Après modification de L2 : L1, L2 =', L1, L2)

3.  Qu’affiche Python lors de l’exécution du programme suivant ?
L3=[1, 3, 5, 7]
import copy
L4=copy.copy(L3)
print('Avant modification de L4 : L3, L4 =', L3, L4)
L4[3]=2
print('Après modification de L4 : L3, L4 =', L3, L4)

4.  Qu’affiche Python lors de l’exécution du programme suivant ?
L1=[1, 2, [3, 4], 5]
L2=L1
L3=copy.copy(L1)
L4=copy.deepcopy(L1)
L1[0]=12
L1[2][0]=30
print('L1 =', L1)
print('L2 =', L2)
print('L3 =', L3)
print('L4 =', L4)

Analyse du problème
Ce programme permet de comprendre les problèmes rencontrés lors de copies de
listes, deques et dictionnaires (voir chapitre 11 « Dictionnaire, pile, file, deque »).

Cours :
Il existe deux catégories d’objets dans Python :

•• les objets dont la valeur peut changer sont dits muables (en anglais : mutable) : listes,
dictionnaires, deques… ;

•• les objets dont la valeur ne peut pas changer sont dits immuables (en anglais : immu-
table) : entiers, nombres flottants, booléens, chaînes de caractères, tuples…

Objets muables – Partage de valeurs par plusieurs variables

L1=[1, 2, 3, 4]

Cette affectation (ou assignation) est une instruction qui réalise les opérations suivantes :

•• Création d’un objet muable (appelé obj1) de type list à une adresse mémoire. Cet
objet possède un identifiant (adresse mémoire), un type et une valeur. La valeur de
obj1 vaut : [1, 2, 3, 4].

•• Création de la variable L1.
•• Association de la variable L1 avec l’objet obj1 contenant la valeur [1, 2, 3, 4].

Chapitre 1 · Prise en main de Python

17

La variable L1 ne contient pas [1, 2, 3, 4] mais uniquement la référence de
l’objet obj1, c’est-à-dire l’adresse mémoire où est stocké obj1.

On peut modifier [1, 2, 3, 4] une fois que cet objet obj1 de type list est
créé. Les listes sont modifiables (muables).

Cours :
Contrairement à d’autres langages de programmation (C ou Java), une affectation dans
Python est une association d’une variable avec un objet contenant la valeur. C’est le choix
des concepteurs du langage Python.

L2=L1

L’instruction L2=L1 n’affecte pas [1, 2, 3, 4] à L2 mais réalise les opérations sui-
vantes :

•• Création du nom de variable L2.
•• Affectation à la variable L2 de la référence (ou adresse mémoire) où est stocké [1,
2, 3, 4].

L1 et L2 font donc référence au même objet [1, 2, 3, 4].

La copie est très rapide puisqu’on n’occupe pas deux fois plus de place mémoire.

Si on modifie [1, 2, 3, 4] via L1, alors cette modification sera également visible
par L2.

L1[0]=10

On constate que L2[0] vaut 10 également. C’est tout à fait normal car L1 et L2 font réfé-
rence à la même adresse mémoire de [10, 2, 3, 4].

On ajoute un élément dans L1 avec la fonction append :

L1.append(12)

L’élément 12 est ajouté dans L1 et L2 puisque L1 et L2 font référence à la même liste
modifiable (ou muable) : [10, 2, 3, 4, 12].

Comme dans les problèmes de concours, on utilise le langage suivant : le terme
« liste » appliqué à un objet Python signifie qu’il s’agit d’une variable de type list.
Idem pour les autres types : int, float, bool, str, tuple, dict, deque…

Objets immuables (non modifiables)
a=10

Cette affectation réalise les opérations suivantes :

•• Création d’un objet immuable (appelé obj2) de type int à une adresse mémoire.
Cet objet possède un identifiant (adresse mémoire), un type et une valeur. La valeur de
obj2 vaut : 10.

Partie 1 · Prise en main de Python

18

•• Création de la variable a.
•• Association de la variable a avec l’objet obj2 contenant la valeur 10.

La variable a ne contient pas 10 mais uniquement la référence de l’objet obj2,
c’est-à-dire l’adresse mémoire où est stocké obj2.

On ne peut pas modifier 10 une fois que cet objet obj2 de type int est créé. Les
entiers sont non modifiables (immuables).

Cours :
b=a

Cette instruction n’affecte pas 10 à la variable a mais affecte la référence (ou l’adresse
mémoire) où est stocké 10.

a=11

Comme on ne peut pas modifier 10 (objet immuable), on crée un nouvel objet 11 avec
une nouvelle adresse mémoire dans l’ordinateur. La variable a fait référence à l’adresse
mémoire où est stocké 11.

Par contre, b fait toujours référence à l’adresse mémoire où est stocké 10.

print(b) # b reste égal à 10

On retrouve le même résultat pour tous les objets immuables : entiers, nombres flottants,
booléens, chaînes de caractères, tuples…

Deux cas peuvent se présenter après l’exécution de l’instruction L2=L1 :

•• L1 est un objet muable (mutable, en anglais, par exemple liste, dictionnaire,
deque…) : si on modifie L1 dans la suite du programme, alors L2 est également
modifié puisque L1 et L2 font référence à la même adresse mémoire.

•• L1 est un objet immuable (immutable, en anglais, par exemple entier, nombre
flottant, booléen, chaîne de caractères, tuple…) : si on modifie L1 dans la suite
du programme, alors L2 n’est pas modifié.

Cours :
On rencontre deux catégories de copies pour les objets muables (listes, dictionnaires,
deques…) :

•• La fonction copy() réalise une copie superficielle. Les éléments sont copiés s’il
n’y pas de structure imbriquée. Si les éléments sont des listes par exemple, alors
l’adresse mémoire des listes est copiée.

•• La fonction deepcopy() réalise une copie profonde pour les structures imbri-
quées. Si les éléments sont des listes, alors la copie profonde copie bien les listes
imbriquées.

import copy
L2=copy.copy(L1)

Chapitre 1 · Prise en main de Python

19

Python exécute une copie superficielle de L1, c’est-à-dire qu’il crée une nouvelle
liste L2 en copiant tous les éléments de L1 dans L2 puisqu’ils ne contiennent pas
de structure imbriquée. Dans ce cas, L1 et L2 ne font plus référence à la même
adresse mémoire.

La copie superficielle s’applique également aux dictionnaires et deques (voir cha-
pitre 11 « Dictionnaire, pile, file, deque »).

Remarque :

Avec certains langages (langage C++, Java par exemple), le typage des variables
est statique, c’est-à-dire qu’il faut d’abord déclarer (ou définir) le nom et le type
des variables et ensuite leur affecter (ou assigner) une valeur compatible avec le
type déclaré.

Avec le langage Python, le typage des variables est dynamique : l’interpréteur
détermine automatiquement le type qui correspond au mieux à la valeur fournie
lors de l’affectation.

1. Python affiche :
 Avant modification de i : i, j = 3 3
 Après modification de i : i, j = 5 3
Les résultats affichés dans Python sont tout à fait prévisibles. On va voir
dans la question 2 que la même syntaxe appliquée aux listes donne des
résultats surprenants !
2. Python affiche :
 Avant modification de L2 : L1,L2 = [1, 3, 5, 7]
 	  [1, 3, 5, 7]
 Après modification de L2 : L1,L2 = [1, 3, 5, 2]
 	 [1, 3, 5, 2]
Le programme de la question 2 est exactement le même que celui de la
question 1 sauf qu’on manipule des listes au lieu de manipuler des entiers.
Le comportement est complétement différent : la liste L1 a été modifiée !
L’instruction L2=L1 n’a pas effectué une copie de L1 dans L2 mais a
copié uniquement la référence de la liste, c’est-à-dire l’adresse mémoire de
la liste. L1 et L2 font donc référence à la même adresse mémoire de l’or-
dinateur. Si on modifie un élément de L2 alors L1 est également modifié.
3. Python affiche :
 Avant modification de L4 : L3,L4 = [1, 3, 5, 7]
 	 [1, 3, 5, 7]
 Après modification de L4 : L3,L4 = [1, 3, 5, 7]
 	 [1, 3, 5, 2]
L’instruction L4=copy.copy(L3) permet de réaliser une copie super-
ficielle de L3. Les listes L3 et L4 ont des adresses mémoire différentes.

Partie 1 · Prise en main de Python

20

La modification d’un élément de L4 n’a donc aucune conséquence sur L3
puisque les éléments ne contiennent de structure imbriquée.
4. Python affiche :
 L1 = [12, 2, [30, 4], 5]
 L2 = [12, 2, [30, 4], 5]
 L3 = [1, 2, [30, 4], 5]
 L4 = [1, 2, [3, 4], 5]
L’affectation L2=L1 ne réalise pas une copie de L1. Si on modifie un
élément de L1, alors cet élément est modifié dans L2 puisque L1 et L2
pointent vers la même adresse mémoire.
L’instruction L3=copy.copy(L1) permet de réaliser une copie super-
ficielle de L1. Si on modifie un élément de L1 qui est une liste (exemple
[30, 4]) alors cet élément est également modifié dans L3.
L’instruction L4=copy.deepcopy(L1) permet de réaliser une copie
profonde de L3. Si on modifie un élément de L1 qui est une liste (exemple
[30, 4]) alors cet élément n’est pas modifié dans L3.

On considère le programme suivant :
def f(a, b, L):
 a+=1
 print('Print dans la fonction : a =', a)
 b=b+1
 print('Print dans la fonction : b =', b)
 print('Print dans la fonction : d =', d)
 L.append(4) # on ajoute un élément dans L
 print('Print dans la fonction : L =', L)
 return a

a=3
b=5
d=3
L=[1, 2, 3]
c=f(a, b, L)
print('Print après la fonction : a =', a)
print('Print après la fonction : b =', b)
print('Print après la fonction : c =', c)
print('Print après la fonction f : L =', L)

Qu’affiche Python lors de l’exécution du programme ? Analyser les différents
affichages de print.

Exercice 1.5 : Passage par référence pour les listes, effet de bord

Analyse du problème
Ce programme permet de comprendre les problèmes rencontrés lors de l’utilisation
de listes dans les arguments d’entrée des fonctions.

Chapitre 1 · Prise en main de Python

21

Cours :
Les arguments d’entrée des fonctions sont tous passés par référence. On considère deux
cas :

•• Objet muable (liste, dictionnaire, deque…) : toute modification de cet objet dans la
fonction est visible en dehors de la fonction. C’est « l’effet de bord » puisque la fonc-
tion modifie des données définies hors de sa portée locale.

•• Objet immuable (entier, nombre flottant, booléen, chaîne de caractères, tuple…) : toute
modification de cet objet dans la fonction n’est pas visible en dehors de la fonction.
Pour simplifier, tout se passe comme si ces objets étaient passés par valeur.

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque…) dans
une fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la
fonction.

Python affiche :
 Print dans la fonction : a = 4
 Print dans la fonction : b = 6
 Print dans la fonction : d = 3
 Print dans la fonction : L = [1, 2, 3, 4]
 Print après la fonction : a = 3
 Print après la fonction : b = 5
 Print après la fonction : c = 4
 Print après la fonction f : L = [1, 2, 3, 4]
La fonction f retourne la valeur 4 qui est affectée dans la variable c.
Avant l’appel de la fonction f, la variable b fait référence à 5. La variable
b est passée par référence dans la fonction f et fait toujours référence à 6.
L’instruction b=b+1 dans la fonction f ne peut affecter 5 qui est immuable.
La variable b dans la fonction f fait donc référence à une nouvelle valeur 6.
La variable b du programme principal garde donc la même valeur 6.
Pour simplifier, cela revient à dire que les variables a et b sont passées par
valeur : l’exécution de la fonction f évalue d’abord a et b puis exécute f
avec les valeurs calculées a et b.
La variable L fait référence à la liste [1, 2, 3] qui est un objet muable.
La liste L est passée par référence. Lorsqu’on modifie L dans la fonction f,
on modifie la liste [1, 2, 3].
La variable L dans la fonction f fait référence à la même adresse mémoire
que la variable L dans le programme principal.
Lorsqu’une expression fait référence à une variable à l’intérieur d’une fonc-
tion (variable d par exemple), Python cherche la valeur définie à l’intérieur
de la fonction et à défaut la valeur dans l’espace global du programme.

Remarque : Voir l’exercice précédent, « Affectation, objet immuable, copie »,
pour avoir une copie profonde avec la fonction deepcopy().

Partie 1 · Prise en main de Python

22

On considère le programme suivant :

L1=[i for i in range(2, 7, 2)] # création par compréhension
print('L1 =', L1)
print(L1[:-1])

Qu’affiche Python lors de l’exécution du programme ?

Exercice 1.6 : Slicing, extraction de tranche

Analyse du problème
La technique du slicing, ou extraction de tranche, permet d’extraire des éléments
d’une liste.

Cours :
Lorsqu’on veut extraire des éléments d’une liste, d’un tuple ou d’une chaîne de caractères,
on utilise la technique du slicing, ou extraction de tranche. Il suffit de mettre entre crochets
les indices correspondant au début et à la fin de la « tranche ». On utilise la syntaxe :

L[start:stop]

start : indice de départ, inclus
stop – start : longueur de la liste extraite (avec un pas de 1 par défaut)
stop : indice final, exclu

Exemple pour L=[3, 5, 1, 8, 10] : L[1:4] renvoie [5, 1, 8].

L’indice de départ vaut 1 avec L[1] = 5.
L’indice final vaut 4 – 1 = 3 avec L[3] = 8.
On récupère bien 3 éléments : [5, 1, 8].

Il faut bien retenir l’instruction : L[start:stop].

Les indices sont compris entre start inclus et stop exclu.

On peut retenir facilement que le nombre d’éléments vaut stop – start avec
un pas de 1 par défaut.

Cours :
On peut utiliser l’extraction de tranche avec un pas différent de 1. On utilise alors la syntaxe
suivante :

L[start:stop:step]

start : indice de départ, inclus
stop : indice final, exclu
step : cette variable désigne le pas.

Exemple pour L=[3, 5, 1, 8, 10] : L[1:4:2] renvoie [5, 8].

L’indice de départ vaut 1 avec L[1] = 5.
L’indice final 4 est exclu.
On ne prend qu’un élément sur 2.

Chapitre 1 · Prise en main de Python

23

On peut omettre n’importe lequel des arguments dans L[start:stop:step].

Par défaut : start = 0, stop = indice du dernier élément de la liste + 1, step = 1.

L[:3] renvoie tous les éléments dont les indices sont compris entre 0 inclus et 3 exclu.
Python retourne [3, 5, 1].

L[1:] renvoie tous les éléments dont les indices sont compris entre 1 inclus et (indice du
dernier élément de la liste + 1) exclu. Python retourne [5, 1, 8, 10].

On peut créer une liste par compréhension :

L1=[3*i for i in range(3)]

On obtient : L1=[0, 3, 6].

On peut également utiliser une boucle for :

L1=[] # création d’une liste vide
for i in range(3): # i varie entre 0 inclus et 3 exclu
 L1.append(3*i): # ajoute la valeur 3*i à la liste L1

On obtient : L1=[0, 3, 6].

Attention aux séparateurs dans l’extraction de tranche et dans la fonction range :
L[start:stop:step] # mettre deux points entre start et stop
range(start, stop, step) # mettre une virgule entre start et stop

Cours :
On utilise la même technique pour les tuples et les chaînes de caractères.

L=(3, 5, 8, -2) # tuple
L2=L[0:3] # L2=(3, 5, 8)
c="C’est un mot" # chaîne de caractères
c2=c[0:3] # c2="C’e"

Python affiche :
 L1 = [2, 4, 6]
 [2, 4]
Liste L1 : i varie entre 2 inclus et 7 exclu avec un pas de 2.
L1[:-1] extrait les éléments de L1 : le dernier élément de L1 est exclu.

25

2Graphiques

On considère les fonctions f1 et f2 définies sur [0, 2] par :

() =
≤ <
≤ ≤







pour 0 1

1 pour 1 21f x
x x

x
 et () ()= + ,sin 0 12f x x .

Les fonctions suivantes permettent le tracé de fonctions :
import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure() �# nouvelle fenêtre graphique
plt.plot(x, y, color='r', linewidth=3, marker='o')
 # color : choix de la couleur
 # ('r' : red, 'g' : green, 'b' : blue, 'black' : black)
 # linewidth : épaisseur du trait
 # marker : différents symboles '+', '.', 'o', 'v'
 # linestyle : style de la ligne ('-' ligne continue,
 # '--' ligne discontinue, ':' ligne pointillée)
plt.plot(x, y, '*') # points non reliés représentés par '*'
plt.grid() # affichage de la grille
plt.title('Titre') # ajout d’un titre
plt.xlabel('axe x') # affiche 'axe x' en abscisse d’un graphique
plt.ylabel('axe y') # affiche 'axe y' en ordonnée d’un graphique
plt.axis ([xmin, xmax, ymin, ymax]) # précise les bornes pour les
 # abscisses et les ordonnées
plt.legend(['courbe 1', 'courbe 2']) # permet de légender les courbes
plt.show() # affiche la figure à l’écran

Définir les deux fonctions f1 et f2 dans Python en utilisant le module
math. Tracer les courbes représentatives des deux fonctions sur l’intervalle
[0, 2] avec un pas de 0,05. Le graphique doit avoir les caractéristiques sui-
vantes :
•• Utilisation de listes.

•• Courbe représentative de f1 : épaisseur du trait égale à 3, couleur bleue.

•• Courbe représentative de f2 : points non reliés représentés par *, couleur
rouge.

•• Légender les deux courbes.

•• Afficher 'x' pour l’axe des abscisses et 'y' pour l’axe des ordonnées.

•• Afficher le titre : 'Tracé de fonctions'.

•• Axe des x compris entre 0 et 2, axe des y compris entre 0 et 1,5.

Exercice 2.1 : Tracé d’une fonction avec matplotlib

Partie 1 · Prise en main de Python

26

Analyse du problème
Il faut bien connaître les fonctions suivantes pour tracer une fonction :
import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure() # nouvelle fenêtre graphique
plt.plot(x, y) # représentation graphique de y en fonction de x
plt.show() # affiche la figure à l’écran

Cours :
Le module matplotlib.pyplot de la bibliothèque matplotlib permet d’afficher
des graphiques. On l’importe à l’aide de la commande :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt

Il faut connaître quelques fonctions du module matplotlib.pyplot :

•• plt.plot(x, y)
Arguments d’entrée : x liste d’abscisses de longueur n et y liste d’ordonnées de lon-
gueur n.
Description : fonction permettant de tracer un graphique de n points dont les abscisses
sont contenues dans la liste x et les ordonnées dans la liste y. Cette fonction doit être
suivie de la fonction plt.show() pour que le graphique soit affiché.

•• plt.xlabel(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en abscisse d’un gra-
phique.

•• plt.ylabel(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en ordonnée d’un gra-
phique.

•• plt.title(nom)
Argument d’entrée : une chaîne de caractères.
Description : fonction permettant d’afficher le contenu de nom en titre d’un graphique.

•• plt.show()
Description : fonction réalisant l’affichage d’un graphe préalablement créé par la com-
mande plt.plot(x, y). Elle doit être appelée après la fonction plt.plot et
après les fonctions plt.xlabel, plt.ylabel et plt.title.

•• plt.axis([xmin, xmax, ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour l’axe des abscisses
et celui des ordonnées.

•• plt.xlim([xmin, xmax])
Description : fonction permettant de définir les valeurs limites pour l’axe des abscisses.

•• plt.ylim([ymin, ymax])
Description : fonction permettant de définir les valeurs limites pour l’axe des ordon-
nées.

Chapitre 2 · Graphiques

27

import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt
import math as m # module math renommé m

def f1(x): # définition de la fonction f1
 # argument d’entrée : float x
 if x>=0 and x<1:
 return x
 elif x>=1 and x<=2:
 return 1
 else:
 return 0

def f2(x): # définition de la fonction f2
 # argument d’entrée : float x
 return m.sin(x)+0.1

xmin=0 # valeur minimale de x
xmax=2 # valeur maximale de x
pas=0.05
N=int(((xmax-xmin)/pas)+1) # pas=(xmax-xmin)/(N-1)
 # le nombre de points doit être un entier
 # N=nombre de points et N-1=nombre d’intervalles

x=[] # initialisation de la liste x
y1=[] # initialisation de la liste y1
y2=[] # initialisation de la liste y2

for i in range(N): # i varie entre 0 inclus et N exclu
 x.append(i*pas) # ajout de l’élément x[i]
 y1.append(f1(x[i])) # ajout de l’élément f1(x[i])
 y2.append(f2(x[i])) # ajout de l’élément f2(x[i])

plt.figure() # nouvelle fenêtre graphique
plt.plot(x, y1, linewidth=3, color='b') # création de la
 # première courbe
plt.plot(x, y2, '*', color='r') # création de la deuxième courbe
plt.legend(['f1(x)', 'f2(x)']) # légende des deux courbes
plt.xlabel('x') # affichage de 'x' en abscisse du graphique
plt.ylabel('y') # affichage de 'y' en ordonnée du graphique
plt.title('Tracé de fonctions') # affichage du titre du graphique
plt.axis([0, 2, 0, 1.5]) # [xmin,xmax,ymin,ymax]
plt.show() # affiche la figure à l'écran

Partie 1 · Prise en main de Python

28

On considère la liste : L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9].
Les fonctions suivantes permettent le tracé d’histogrammes :
import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure()     # nouvelle fenêtre graphique
plt.hist(L, range=(5, 25), bins=10, color='red')
 # range=(5, 25) permet de préciser le minimum et le maximum des
 # valeurs représentées sur l’histogramme.
 # Par défaut : range=(min(L), max(L)), bins=10=nombre d’intervalles
 # ou bins=[5, 15, 20, 25, 40] permettant de préciser les limites
 # des intervalles. Les barres de l’histogramme ont dans cet
 # exemple des largeurs différentes.
 # color='red' permet de préciser la couleur des barres
plt.show() # affiche la figure à l’écran

Tracer l’histogramme de la liste L avec les caractéristiques suivantes :
•• Afficher 'Valeurs de L' pour l’axe des abscisses et 'Nombre d’oc-
currences' pour l’axe des ordonnées.

•• Afficher le titre : 'Histogramme de la liste L'.

•• 12 intervalles.

Exercice 2.2 : Tracé d’un histogramme avec matplotlib

Analyse du problème
Voir exercice précédent « Tracé d’une fonction avec matplotlib » pour l’affichage
du titre, de l’axe des abscisses et de l’axe des ordonnées.

Il faut bien connaître les fonctions suivantes pour tracer un histogramme :
import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.figure() # nouvelle fenêtre graphique
plt.hist(L) # tracé de l’histogramme
plt.show() # affiche la figure à l’écran

import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt
L=[2, 2, 6, 6, 3, 14, 14, 6, 8, 9, 9]
plt.figure() # nouvelle fenêtre graphique
plt.hist(L, bins=12) # tracé de l’histogramme de la liste L
 # avec 12 intervalles
plt.title('Histogramme de la liste L') # titre de l’histogramme
plt.xlabel('Valeurs de L')
plt.ylabel("Nombre d’occurrences")
plt.show() # affiche la figure à l’écran

Partie 2

Terminaison,
correction,
complexité

Plan

3. Terminaison, correction, complexité� 31
3.1 : Comparaison de deux listes (Mines Ponts 2017)� 31
3.2 : �Amélioration de la complexité (Mines Ponts 2018)� 34
3.3 : Décomposition en base b d’un entier (CCP MP Maths 2015)� 36
3.4 : Recherche du nombre de zéros (banque PT 2015)� 39

31

3Terminaison,
correction, complexité

1.  Proposer une fonction egal(L1, L2) retournant un booléen permettant de
savoir si deux listes L1 et L2 sont égales.
2.  Que peut-on dire de la complexité de cette fonction ?
3.  Préciser le type de retour de cette fonction.

Exercice 3.1 : Comparaison de deux listes (Mines Ponts 2017)

Analyse du problème
On se place dans le pire des cas avec deux listes égales. On calcule le nombre total
d’opérations élémentaires pour déterminer la complexité de cette fonction.

Cours :
Terminaison d’un programme

Un programme itératif est constitué d’une boucle for ou while. On cherche à démontrer
que cette boucle se termine.

On considère un variant de boucle, par exemple un entier naturel qui décroît à chaque ité-
ration de la boucle et qui atteindra 0 à un moment, ce qui permet de montrer que la boucle
se termine.

On considère le programme suivant qui cherche un élément dans une liste non triée.

L=[3, 1, 6, 9, 19, -1,20]
def rec_pos(L, x):
 # la fonction renvoie True et i l’indice si x est dans la liste L,
 # False sinon
 i=0 # initialisation de l’indice i
 n=len(L)
 while i<n:
 if x==L[i]:
 return True,i # return provoque un arrêt de boucle
 # si x est dans L
 i=i+1
 return False, -1 # l’élément n’est pas trouvé
print(rec_pos(L,6)) # le programme affiche : (True, 2)

On appelle n le nombre d’éléments de la liste L. On considère le variant de boucle : n − i.

Partie 2 · Terminaison, correction, complexité

32

•• Le variant de boucle vaut n à l’entrée de la boucle while.
•• Il décroît de 1 à chaque passage dans la boucle si l’élément x n’est pas dans L. Si l’élé-
ment est trouvé, on quitte la boucle.

•• En sortie de boucle, si l’élément n’est pas trouvé, le variant de boucle vaut n − n = 0.

Dans tous les cas, on a démontré la terminaison du programme.

Voir chapitre 6 « Récursivité » pour des exemples avec des fonctions récursives.

Correction d’un programme

Pour démontrer la correction d’un programme, il faut montrer que l’algorithme effectue
bien la tâche souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

Rédaction pour un programme itératif

La propriété Pn (appelée invariant de boucle) doit avoir trois caractéristiques :

•• La propriété doit être vérifiée avant d’entrer dans la boucle.
•• Si la propriété est vérifiée avant une itération, elle doit être vérifiée après cette itération.
•• Si la propriété est vérifiée en fin de boucle, alors le programme est correct.

On considère le programme suivant qui calcule la factorielle d’un entier naturel.

def fact(n):
 # la fonction renvoie la factorielle de n (int)
 res=1 # initialisation de res à 1
 for i in range(1,n+1): # i varie entre 1 inclus et n+1 exclu
 res=res*i
 return res

print('Factorielle :',fact(4)) # affiche 24

On considère la propriété (appelée invariant de boucle) Pi : res = i!.

•• Avant d’entrer dans la boucle, i = 1 et on a bien res = 1!.
•• Si Pi est vraie, alors res = i!. Dans la boucle, le programme fait le calcul :

! !() () ()× + = × + = +res 1 1 1i i i i .
res prend alors la valeur !()+ 1i . La propriété Pi+1 est donc vraie.

•• En fin de boucle, i vaut n et on a bien res = n!.

On a démontré que le programme est correct.

Rédaction pour un programme récursif

Voir chapitre 6 « Récursivité » pour la rédaction avec des fonctions récursives.

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’arrête.
•• La correction est totale si elle est partielle et si l’algorithme termine.

Complexité

On distingue complexité en temps et complexité en espace. La complexité en temps mesure
la durée nécessaire à l’exécution du programme, alors que la complexité en espace mesure
la taille mémoire nécessaire à l’exécution du programme. On étudiera par la suite la com-
plexité en temps.

Chapitre 3 · Terminaison, correction, complexité

33

La complexité est une mesure du nombre d’opérations élémentaires que l’algorithme effec-
tue. Si on se place dans les conditions les plus favorables, on calculera la complexité dans
le meilleur des cas. Si on se place dans les conditions les plus défavorables, on calculera la
complexité dans le pire des cas.

On considère le programme suivant, qui cherche le maximum d’une liste non triée.

def rec_max(L):
 # la fonction renvoie le maximum des éléments de la liste L
 maxi=L[0]
 n=len(L) # nombre d’éléments de L
 for i in range(1, n): # i varie entre 1 inclus et n exclu
 if L[i]>maxi:
 maxi=L[i]
 return maxi

On cherche à évaluer la complexité de cette fonction dans le cas le moins favorable.

On appelle n le nombre d’éléments de la liste L.

On cherche à calculer le nombre d’opérations élémentaires :

•• 2 opérations élémentaires : appel de l’élément L[0] et affectation de maxi.
•• 2 opérations élémentaires : appel du nombre d’éléments de L et affectation de n.
•• Pour chaque étape de la boucle for, on a 3 opérations élémentaires : appel de l’élément
L[i], comparaison, affectation.

La boucle for est exécutée n − 1 fois dans le pire des cas (si la liste est triée dans l’ordre
croissant).

Le nombre d’opérations élémentaires vaut : 4 + 3(n − 1) = 1 + 3n.

La complexité est linéaire en O(n) pour la fonction rec_max.

On rencontre les types suivants de complexité :

•• constante en O(1) (ne dépend pas de n),
•• logarithmique en O(log n),
•• linéaire en O(n),
•• quasi linéaire en O(n log n),
•• quadratique en O(n2),
•• polynomiale en O(np),
•• exponentielle en O(2n).

1.
def egal(L1, L2):
 # la fonction renvoie True si les deux listes L1 et L2
 # sont égales, False sinon
 if len(L1)!=len(L2): # listes de longueurs différentes
 return False
 else:
 for i in range(len(L1)):# parcourt tous les éléments de L1
 if L1[i]!=L2[i]:
 return False

Partie 2 · Terminaison, correction, complexité

34

 return True

L1=[3, 2, 5, 8]
L2=[3, 2, 5, 8]
print(egal(L1, L2) # retourne True

2. On se place dans le pire des cas avec deux listes égales. On appelle n la
longueur de la liste L1.
On calcule le nombre d’opérations élémentaires de la fonction egal(L1,
L2) :

•• 3 opérations élémentaires : appel de la longueur de L1, appel de la
longueur de L2, test.

•• À chaque appel de la boucle for : 3 opérations élémentaires (test et
appel de L1[i], L2[i]).

On a donc 3 + 3n opérations élémentaires.
La complexité est linéaire en O(n).

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

3. Le type de retour de la fonction egal(L1, L2) est bool (booléen).

On s’intéresse à des mesures de niveau de la surface libre de la mer. La distri-
bution des hauteurs de vague lors de l’analyse vague par vague est réputée être
gaussienne. On peut contrôler ceci par des tests de skewness (variable désignée
par S) et de kurtosis (variable désignée par K) définis ci-après. Ces deux tests
permettent de quantifier respectivement l’asymétrie et l’aplatissement de la dis-
tribution.
On appelle H et σ 2 les estimateurs non biaisés de l’espérance et de la variance,

n le nombre d’éléments , , ...,1 2H H Hn. On définit alors :

∑σ ()()()=
− −

× 



 × −

=1 2
1

3

3

1

S
n

n n
H Hi

i

n

 et

∑σ ()()()()
()

()()=
− − −

× 



 × − −

−
− −=1 2 3

1 3 1
2 34

4

1

2

K
n

n n n
H H

n
n ni

i

n

On suppose disposer de la fonction ecartType qui permet de retourner la
valeur de l’écart-type non biaisé σ .

Exercice 3.2 : �Amélioration de la complexité
(Mines Ponts 2018)

Chapitre 3 · Terminaison, correction, complexité

35

1.  Proposer une fonction moyenne prenant en argument une liste non vide L
et retournant sa valeur moyenne.
2.  Un codage de la fonction skewness pour une liste ayant au moins 3 élé-
ments est donné ci-dessous. Le temps d’exécution est anormalement long. Pro-
poser une modification simple de la fonction pour diminuer le temps d’exécution
(sans remettre en cause le codage des fonctions ecartType et moyenne).

def skewness (liste_hauteurs):
 n=len(liste_hauteurs)
 et3=(ecartType(liste_hauteurs))**3
 S=0
 for i in range(n):
 S+=(liste_hauteurs[i]-moyenne(liste_hauteurs))**3
 S=n/(n-1)/(n-2)*S/et3
 return S

3.  Doit-on s’attendre à une différence de type de la complexité entre une fonc-
tion évaluant S et une fonction évaluant K ?

Analyse du problème
On calcule le nombre total d’opérations élémentaires pour déterminer la complexité
de cette fonction.

1.
def moyenne(L):
 # la fonction renvoie la valeur moyenne de la liste L
 som=0 # initialisation de som à 0
 n=len(L) # nombre d'éléments de L
 for i in range(n): # i varie entre 0 inclus et n exclu
 som=som+L[i]
 return(som/n)

2. La boucle for de la fonction skewness est exécutée n fois. À chaque
étape de cette boucle for, on calcule moyenne(liste_hauteurs)
qui fait intervenir une autre boucle exécutée n fois.
On a donc une complexité quadratique en O(n2).
Pour améliorer la complexité de cette fonction, on calcule
moyenne(liste_hauteurs) avant la boucle for. Dans ce cas, on a
une complexité linéaire en O(n) :

def skewness (liste_hauteurs):
 # la fonction renvoie S pour la liste liste_hauteurs
 n=len(liste_hauteurs)
 et3=(ecartType(liste_hauteurs))**3
 moy=moyenne(liste_hauteurs)

Partie 2 · Terminaison, correction, complexité

36

 S=0
 for i in range(n):
 S+=(liste_hauteurs[i]-moy)**3
 S=n/(n-1)/(n-2)*S/et3
 return S

3. On a une seule boucle pour calculer S et K. Il n’y a pas de différence de
type de la complexité.

1.  Donner la décomposition binaire (en base 2) de l’entier 21.
2.  On considère la fonction mystere suivante :

def mystere(n, b):
 """Données: n > 0 un entier et b > 0 un entier
 Résultat:"""
 t=[] # liste vide
 while n>0:
 c=n%b
 t.append(c)
 n=n//b
 return t

Pour k ∈ ℕ*, on note ck, tk et nk les valeurs prises par les variables c, t et n à
la sortie de la k-ième itération de la boucle while. Quelle liste est renvoyée
lorsque l’on exécute mystere(256,10) ?
On recopiera et complétera le tableau suivant, en ajoutant les éventuelles
colonnes nécessaires pour tracer entièrement l’exécution.

k 1 2 …

ck …

tk …

nk …

3.  Soit n > 0 un entier. On exécute mystere(n,10). On pose n0 = n.
a. Justifier la terminaison de la boucle while.
b. On note p le nombre d’itérations lors de l’exécution de mystere(n,10).

Justifier que, pour tout ,[]∈ 0k p , on a ≤
10

n
n

k k . En déduire une majoration de

p en fonction de n.
4.  En s’aidant du script de la fonction mystere, écrire une fonction somme_
chiffres qui prend en argument un entier naturel et renvoie la somme de ses
chiffres. Par exemple, somme_chiffres(256) devra renvoyer 13.
5.  Écrire une version récursive de la fonction somme_chiffres, on la nom-
mera somme_chiffres_rec.

Exercice 3.3 : �Décomposition en base b d’un entier
(CCP MP Maths 2015)

Chapitre 3 · Terminaison, correction, complexité

37

Analyse du problème
On étudie dans cet exercice, extrait du concours CCP MP Maths 2015, la décompo-
sition en base b d’un entier. La méthode est d’effectuer des divisions euclidiennes
successives pour obtenir la liste des chiffres de la décomposition en base b d’un
entier.

1. La décomposition binaire de l’entier 21 s’écrit : 21 = 10101b.
On a effet : 21 = 24 + 22 + 1 = 1 + 2 × (0 + 2 × (1 + 2 × (0 +
2 × (1)))).

Remarque :

On peut effectuer les divisions euclidiennes suivantes :

a) Division euclidienne de l’entier 21 par 2 :

21//2 = 10 = quotient
21%2 = 1 = reste
Le premier reste fournit le premier chiffre du code binaire, c’est-à-dire 1010  1 b.

b) Division euclidienne du quotient précédent par 2 :

10//2 = 5
10%2 = 0
Le deuxième reste fournit le deuxième chiffre du code binaire, c’est-à-dire
101 0 1b.

c) Division euclidienne du quotient précédent par 2 :

5//2 = 2
5%2 = 1

d) Division euclidienne du quotient précédent par 2 :

2//2 = 1
2%2 = 0

e) Division euclidienne du quotient précédent par 2 :

1//2 = 0
1%2 = 1

On en déduit que : 21 = 10101b = 24 + 22 + 1 = 1 + 2 × (0 + 2 × (1 + 2 × (0 +
2 × (1)))).

On peut envisager une boucle où on effectue les divisions euclidiennes successives.
On termine la boucle dès que le quotient est nul.

Cet algorithme permet d’effectuer la division euclidienne de l’entier n par deux
jusqu’à ce que le résultat soit nul. La suite des restes donne le code binaire en ordre
inverse.

Partie 2 · Terminaison, correction, complexité

38

2.

k 1 2 3

ck 256%10 = 6 25%10 = 5 2%10 = 2

tk [6] [6, 5] [6, 5, 2]

nk 25 2 0

La fonction mystere(256,10) renvoie la liste [6,5,2].
Cette procédure donne la décomposition en base b de l’entier n.

Cours :
Un variant de boucle sert à démontrer qu’une boucle se termine.

On peut utiliser par exemple un entier naturel qui décroît strictement à chaque itération. Il
finit par atteindre 0 à un moment, on est alors à la fin de la boucle.

3.

a.	Le variant de boucle est n. On notera nk la liste des valeurs successives
prises par n au cours des différentes itérations.

•• Initialisation : n0 = n.
•• À l’étape k, le variant de boucle est nk. À l’étape k+1, on a nk+1 = nk//b.
nk+1 est le quotient de la division euclidienne de nk par b. Il existe r
tel que : nk = b nk+1 + r avec 0 ≤ r < b. On a nk+1 < nk. La suite est donc
strictement décroissante.

•• En sortie de boucle, np est nul car b est un entier strictement positif et
le quotient est nul dès que n est plus petit que b.

b.	Démonstration par récurrence : Propriété Pk : ≤n
n

10k k

•• La propriété est vraie pour k = 0 puisque 100 = 1.
•• Supposons la propriété vraie pour le rang k. nk+1 = nk//10 : c’est le
quotient de la division euclidienne de nk par 10. Il existe r tel que :

nk = 10 nk+1 + r avec 0 ≤ r < 10. D’où = ++
nk

n
r

k10 101 , soit ≤+n
n
10k

k
1 . Or

≤n
n

10k k . On en déduit immédiatement que ≤+ +n
n

10k k1 1 . La propriété

est donc vraie au rang k+1.
Pour la dernière itération de la boucle, on a np = 0. Pour l’itération précé-
dente, on a : 1 ≤ np−1 ≤ 9. On a donc np−1 ≥ 1.

On a vu que ≤− −n
n

10p p1 1 , soit ≤−

−

n
n

10p

p

1

1
. Comme np−1 ≥ 1, alors 10p−1 ≤ n,

d’où p−1 ≤ log10(n). Finalement, on a :

p ≤ log10(n+1)

Chapitre 3 · Terminaison, correction, complexité

39

4. On reprend le programme de la question 2. Les différents chiffres de
l’entier n sont obtenus par les restes des divisions euclidiennes successives.
def somme_chiffres(n, b):
 """Données: n > 0 un entier et b > 0 un entier
 Résultat:"""
 somme=0 # initialisation de la somme
 while n>0:
 r=n%b # calcul de reste de la division
 # euclidienne de n par b
 somme+=r # ajoute le reste r à somme
 n=n//b
 return somme

Cours :
Dans toute fonction récursive, l’instruction return doit être présente au moins deux fois :
une fois pour la condition d’arrêt (premier return dans le programme) et une autre fois
pour l’appel récursif (dernier return dans le programme)

5.
def somme_chiffres_rec(n, b):
 """Données: n > 0 un entier et b > 0 un entier
 Résultat:"""
 if n==0:
 return 0 # condition d’arrêt
 else:
 return n%b + somme_chiffres_rec(n//b,b) # appel
 # récursif

Remarque :

L’entier 37 s’écrit 100101b en binaire. On utilise une liste contenant les valeurs
des différents bits. Il existe deux conventions pour repérer les bits dans une
liste :

•• L = [1,0,0,1,0,1] : L[0] représente le bit de poids le plus fort et L[5] représente le
bit de poids le plus faible.

•• L = [1,0,1,0,0,1] : L[0] représente le bit de poids le plus faible et L[5] représente
le bit de poids le plus fort.

Il faut bien regarder si l’énoncé impose une convention. Sinon il faut bien la définir
dans le programme pour éviter toute ambiguïté. La fonction mystere(37,2)
retourne alors : [1, 0, 1, 0, 0, 1]. On utilise donc la deuxième convention
dans tout l’exercice.

Soit un entier naturel n non nul et une liste L de longueur n dont les termes
valent 0 ou 1. On cherche le nombre maximal de 0 contigus dans L (c’est-à-

Exercice 3.4 : �Recherche du nombre de zéros
(banque PT 2015)

Partie 2 · Terminaison, correction, complexité

40

dire figurant dans des cases consécutives). Par exemple, le nombre maximal de
zéros contigus de la liste L1 suivante vaut 4 :

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
L1[i] 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0

1.  Écrire une fonction nombreZeros(L,i) qui admet pour argument une
liste L de longueur n, un indice i compris entre 0 et n−1, et qui retourne :
•• 0, si L[i] = 1 ;

•• le nombre de zéros consécutifs dans L à partir de L[i] inclus, si L[i] = 0.

Par exemple, les appels nombreZeros(L1,4), nombreZeros(L1,1) et
nombreZeros(L1,8) renvoient respectivement les valeurs 3, 0 et 1.
2.  Comment obtenir le nombre maximal de zéros contigus d’une liste L
connaissant la liste des nombreZeros(L,i) pour 0 ≤ i ≤ n − 1 ?
En déduire une fonction nombreZerosMax(L), de paramètre L, renvoyant le
nombre maximal de 0 contigus d’une liste L non vide. On utilisera la fonction
nombreZeros.
3.  Évaluer la complexité de la fonction nombreZerosMax.
4.  Trouver un moyen simple, toujours en utilisant la fonction nombreZeros,
d’obtenir un algorithme plus performant.

Analyse du problème
Dans cet exercice, on parcourt une liste pour déterminer le nombre maximal de
zéros contigus dans celle-ci. On verra comment améliorer l’algorithme. Cet exer-
cice est extrait du sujet de concours 0 de la banque PT 2015.

1.
def nombreZeros(L, i):
 # la fonction renvoie nbr_zeros pour la liste L
 # et un indice i (int)
 if L[i]==1:
 return 0
 else:
 nbr_zeros=0
 j=i
 while j<len(L) and L[j]==0:
 # il faut mettre j<len(L) avant L[j]
 # sinon message dʼerreur pour j=len(L)
 nbr_zeros+=1 # incrémente de 1
 # le nombre de zéros
 j+=1
 return nbr_zeros

Chapitre 3 · Terminaison, correction, complexité

41

2. On utilise la fonction nombreZeros pour définir une liste Z : chaque
élément Z[i] de la liste Z contient le nombre de zéros consécutifs dans
L à partir de L[i].
Il suffit ensuite de déterminer le maximum de la liste Z.

def nombreZerosMax(L):
 # la fonction renvoie le nombre maximal de 0 contigus
 # de la liste L
 Z=[] # initialisation de la liste
 for i in range(len(L)):
 Z.append(nombreZeros(L,i)) # stocke nombreZeros(L,i)
 max_Z=Z[0] # recherche du maximum
 # de la liste Z
 for i in range(1,len(Z)): # i varie entre 1 inclus
 # et len(Z) exclu
 if Z[i]>max_Z:
 max_Z=Z[i]
 return max_Z
print (nombreZeros(L1, 13))
print(nombreZerosMax(L1))

3. On appelle n la longueur de la liste L. On se place dans le pire des cas.
•• Première boucle for : i varie entre 0 et n−1. Pour chaque valeur de i
on appelle la fonction nombreZeros (pour chaque valeur de j, il y a
deux comparaisons, une incrémentation de la variable nbr_zeros et
une incrémentation de la variable j qui varie entre i et n−1), soit 4(n−i)
opérations élémentaires.

On a donc ∑ ∑() () ()− = × − = −
−

= +
=

−

=

−

n i n n i n
n n

n n4 4 4 4 4
1

2
2 2

i

n

i

n

0

1

0

1
2 2

opérations élémentaires pour cette première boucle.
•• Deuxième boucle for : i varie entre 1 et n−1. Pour chaque valeur de i,
on a 2 opérations élémentaires (une comparaison et une affectation).
On a 2(n−1) opérations élémentaires pour la deuxième boucle.

La complexité de la fonction nombreZerosMax est quadratique en
O n()2 .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

4. Pour un indice i de la liste L, on appelle valeur le nombre de zéros
consécutifs dans L à partir de i en utilisant la fonction nombreZeros.
Si valeur est non nul, il est alors inutile d’appeler la fonction
nombreZeros(L, i+1) mais on appelle nombreZeros(L,
i+valeur+1). Entre i et i + valeur, la liste L ne contient que des

Partie 2 · Terminaison, correction, complexité

42

zéros et L[i+valeur+1] vaut nécessairement 1 puisque la fonction
nombreZeros donne le nombre de zéros consécutifs, sauf si on est
en fin de liste.
def nombreZerosMax2(L):
 # la fonction renvoie le nombre maximal de 0 contigus
 # de la liste L
 valeur_max=0
 while i<len(L): # i ne doit pas dépasser len(L)-1
 valeur=nombreZeros(L,i)
 if valeur==0:
 i+=1
 else:
 i+=valeur+1
 if valeur>valeur_max:
 valeur_max=valeur
 return valeur_max

Remarque : On utilisera cette même technique d’optimisation dans l’exercice 4.3
« Recherche d’un mot dans un texte, boucles imbriquées » dans le chapitre « Algo-
rithmes ».

Partie 3

Algorithmes de
recherche

Plan

4. Algorithmes� 45
4.1 : �Recherche du minimum et du maximum d’une liste

de nombres, complexité � 45
4.2 : �Assertion. Recherche du maximum, du second

maximum d’une liste� 46
4.3 : �Recherche d’un mot dans un texte, boucles imbriquées� 47

5. Algorithmes de dichotomie� 51
5.1 : �Recherche d’un élément dans une liste non triée,

algorithme naïf, complexité� 51
5.2 : �Recherche dichotomique dans une liste triée, complexité� 52

45

4Algorithmes

On considère la liste de nombres : L=[9, 10, 11, 56, 15, 16, 12,
18, 20, 12, -5, -8].

1.  Écrire une fonction rec_min qui admet comme argument une liste non
vide de nombres. Cette fonction retourne le minimum de cette liste. On n’utili-
sera pas la fonction min.
2.  Écrire une fonction rec_max qui admet comme argument une liste non
vide de nombres. Cette fonction retourne le maximum de cette liste. On n’uti-
lisera pas la fonction max.
3.  Évaluer la complexité de ces deux fonctions dans le cas le moins favorable.

Exercice 4.1 : �Recherche du minimum et du maximum d’une
liste de nombres, complexité

Analyse du problème
On considère une liste non vide. On définit une variable mini définie par le pre-
mier élément de la liste. On parcourt la liste en comparant chaque élément de la
liste à la variable mini.

1.
def rec_min(L):
 # la fonction retourne le minimum de la liste L
 mini=L[0] # ne pas utiliser la variable min
 # cʼest une fonction Python pour avoir le minimum : min(L)
 for i in range(len(L)):
 if L[i]<mini:
 mini=L[i]
 return mini

Remarques :

•• Ne pas utiliser « − » mais « _ » dans les noms de variables et de fonctions.

•• La fonction min(L) de Python retourne le minimum d’une liste de valeurs.

2.
def rec_max(L):
 # la fonction retourne le maximum de la liste L
 maxi=L[0] # ne pas utiliser la variable max
 # cʼest une fonction Python pour avoir
 # le maximum : max(L)
 for i in range(len(L)):
 if L[i]>maxi:

Partie 3 · Algorithmes de recherche

46

 maxi=L[i]
 return maxi

Remarque : La fonction max(L) de Python retourne le maximum d’une liste de
valeurs.

3. On considère la fonction rec_min. On se place dans le pire des cas,
c’est-à-dire une liste triée par ordre décroissant.

1 affectation pour maxi : 1 opération élémentaire.

On cherche à calculer le nombre d’opérations élémentaires à chaque itéra-
tion :

•• Un test : 1 opération élémentaire.
•• Une affectation : 1 opération élémentaire.

Le nombre d’opérations élémentaires vaut 2.

On a n itérations. Le nombre d’opérations élémentaires vaut 1+2n.
La complexité est linéaire en O n() pour la fonction rec_min.
On obtient la même complexité pour la fonction rec_max.

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

On considère la liste : L=[9, 10, 56, 28, -8].

1.  Écrire une fonction rec_max2 qui admet comme argument une liste L.
Cette fonction retourne le maximum et le second maximum de cette liste. On
n’utilisera pas la fonction max. Utiliser une assertion pour vérifier le nombre
d’éléments de L.
2.  Écrire le programme principal permettant d’afficher le maximum et le
second maximum de la liste L.

Exercice 4.2 : �Assertion. Recherche du maximum, du second
maximum d’une liste

Analyse du problème
On considère une liste non vide contenant au moins 2 éléments. On définit une
variable max1 définie par le premier élément de la liste ainsi que indmax1 l’indice
du premier maximum. On parcourt une fois la liste en comparant chaque élément
de la liste à la variable max1.

On parcourt une seconde fois la liste pour déterminer le second maximum en s’as-
surant que l’indice du second maximum est différent de indmax1.

Chapitre 4 · Algorithmes

47

1.
def rec_max2(L):
 # la fonction retourne le maximum et le second maximum
 # de la liste L
 n=len(L) # nombre dʼéléments de la liste L
 assert n>=2
 # recherche du premier maximum
 indmax1=0
 max1=L[0]
 for i in range(1, n): # i varie entre 1 inclus et n exclu
 if L[i]>max1:
 max1=L[i] # valeur du premier maximum
 indmax1=i # indice du premier maximum
 # recherche du second maximum
 # lʼindice du 2nd maximum est différent du 1er maximum
 if indmax1==0: # indice du premier maximum = 0
 max2=L[1]
 else: # indice du premier maximum différent de 0
 max2=L[0]
 for i in range(1, n): # i varie entre 1 inclus et n exclu
 if L[i]>max2 and i!=indmax1:
 # lʼindice i doit être différent de indmax1
 max2=L[i] # valeur du second maximum
 return max1, max2

Voir exercice 1.1 « Assertion, moyenne, variance et écart-type d’une liste de
nombres » dans le chapitre « Prise en main de Python » pour l’utilisation de
assert. Le nombre d’éléments de la liste doit être supérieur ou égal à 2.
2.
L=[9, 10, 56, 28, -8]
max1, max2=rec_max2(L)
print('Maximum de L :', max1)
print('Second maximum de L :', max2)

1.  Écrire une fonction recherche_mot qui admet comme arguments texte
une chaîne de caractères et mot une chaîne de caractères. Cette fonction
retourne True si mot est présent dans texte, False sinon, ainsi que l’indice
de la première lettre de mot s’il est présent dans texte.
2.  Écrire une fonction recherche_mot_occurence qui admet comme argu-
ments texte une chaîne de caractères et mot une chaîne de caractères. Cette
fonction retourne le nombre d’occurrences où mot est présent dans texte ainsi
que la liste des indices de la première lettre des occurrences de mot.
3.  Proposer une amélioration de la fonction précédente en optimisant la pre-
mière boucle.

Exercice 4.3 : Recherche d’un mot dans un texte, boucles imbriquées

Partie 3 · Algorithmes de recherche

48

Analyse du problème
On parcourt la chaîne de caractères texte jusqu’à ce qu’on trouve le premier carac-
tère de mot. On parcourt ensuite successivement tous les caractères de mot pour savoir
s’ils sont présents les uns à la suite des autres. On utilise deux boucles for imbriquées.

1. On considère la chaîne de caractères texte = 'mots chaîne de
caractères' et mot = 'caractères'.
La longueur de texte vaut len(texte) = 25. La longueur de mot vaut
len(mot) = 10.
On définit un indice i qui correspond à l’indice de la première lettre du mot
s’il est présent dans texte.
Il est inutile de faire varier i entre 0 et 24 mais uniquement entre 0 et
len(texte) – len(mot) = 15.
Lorsque i atteint 15, on a texte[i] = 'c' : c’est bien la première lettre
du mot 'caractères'.
Ensuite, il faut une deuxième boucle en faisant varier j entre les valeurs 0
et len(mot) – 1 pour tester tous les caractères du mot.
def recherche_mot(texte, mot):
 # la fonction retourne True si mot(str) est présent dans
 # texte(str), False sinon, ainsi que lʼindice de la première
 # lettre de mot sʼil est présent dans la chaîne
 rep=False
 position=0
 i=0
 while i<=(len(texte)-len(mot)) and rep==False:
 j=0
 while j<=(len(mot)-1) and mot[j]==texte[i+j]:
 j+=1
 if j==len(mot): # le mot est bien présent
 position=i
 rep=True
 i+=1
 return rep, position

2.
def recherche_mot_occurrence(texte, mot):
 # la fonction retourne le nombre dʼoccurrences où mot(str)
 # est présent dans texte(str) ainsi que la liste des indices
 # de la première lettre des occurrences de mot
 nbr_rep=0
 i=0
 liste=[]
 while i<=(len(texte)-len(mot)):
 j=0
 while j<=(len(mot)-1) and mot[j]==texte[i+j]:
 j+=1
 if j==len(mot): # le mot est bien présent
 nbr_rep+=1
 liste.append(i)

Chapitre 4 · Algorithmes

49

 i+=1
 return nbr_rep, liste

3. On considère la chaîne de caractères texte = 'mots chaîne de
caractères' et mot = 'caractères'. La longueur de texte vaut
len(texte) = 25. La longueur de mot vaut len(mot) = 10. On définit
un indice i qui correspond à l’indice de la première lettre de mot s’il est
présent dans texte. On fait varier i entre 0 inclus et len(texte) –
len(mot) = 15 inclus.
Ensuite, il faut une deuxième boucle en faisant varier j entre 0 inclus et
len(mot) – 1 inclus pour tester tous les caractères de mot. Lorsque la
boucle j est terminée, on a fait le test mot[j]==texte[i+j]. j a été
incrémenté de 1. Si mot a été trouvé, on peut incrémenter i de j+1.
def recherche_mot_occurrence2(texte, mot):
 # la fonction retourne le nombre dʼoccurrences où mot(str)
 # est présent dans texte(str) ainsi que la liste des indices
 # de la première lettre des occurrences de mot
 nbr_rep=0
 i=0
 liste=[]
 while i<=(len(texte)-len(mot)):
 j=0
 while j<=(len(mot)-1) and mot[j]==texte[i+j]:
 j+=1
 if j==len(mot): # le mot est bien présent
 nbr_rep+=1
 liste.append(i)
 if j>0:
 j-=j
 i=i+j+1
 return nbr_rep, liste

51

5Algorithmes de
dichotomie

On considère la liste : L=[16, 9, 11, 32, 15, 17, 18, 10, 25].

1.  Écrire une fonction rec_elt1 qui admet comme arguments une liste L non
triée et un élément x. Cette fonction retourne True si x est dans la liste, False
sinon.
2.  Évaluer la complexité de cet algorithme pour une liste de longueur n dans le
cas le moins favorable.
3.  Écrire une fonction rec_elt2 qui admet comme arguments une liste et
un élément à rechercher. Cette fonction retourne True si l’élément est présent
dans la liste ainsi que l’indice de la première occurrence dans la liste. Si l’élé-
ment n’est pas présent, cette fonction retourne False et -1.

Exercice 5.1 : �Recherche d’un élément dans une liste
non triée, algorithme naïf, complexité

Analyse du problème
On parcourt la liste en partant du premier élément jusqu’à ce qu’on trouve x. On
étudiera dans l’exercice suivant la méthode dichotomique, qui ne s’applique qu’aux
listes triées.

1. Dans Python, les booléens vrai et faux s’écrivent True et False.
def rec_elt1(L, x):
 # la fonction retourne True si x est dans la liste L,
 # False sinon
 n=len(L) # nombre d'éléments de la liste
 for i in range(n): # i varie entre 0 inclus et n exclu
 if x==L[i]: # teste si x=L[i]
 return True
 # return provoque un arrêt de la boucle
 # et une sortie de la fonction
 return False

2. On appelle n le nombre d’éléments de la liste L. On note O(n) la com-
plexité de la fonction rec_elt1(L, x).

Partie 3 · Algorithmes de recherche

52

On cherche à calculer le nombre d’opérations élémentaires :
•• 2 opérations élémentaires : appel du nombre d’éléments de L et affec-
tation de n.

•• Pour chaque étape de la boucle for, on a 2 opérations élémentaires :
appel de l’élément L[i], comparaison.

La boucle for est exécutée n fois dans le pire des cas (si l’élément n’est
pas présent dans la liste par exemple).
Le nombre d’opérations élémentaires vaut : 2 + 2n.
La complexité est linéaire en O(n) pour la fonction rec_elt1.

3. On pourrait utiliser une boucle for au lieu d’une boucle while.
On utilise un indice i pour repérer la position dans la liste. Les indices des
éléments d’une liste commencent à 0 avec Python.

def rec_elt2(L, x):
 # la fonction retourne True, i si x est dans
 # la liste L à l’indice i, sinon retourne False, -1
 n=len(L) # nombre d’éléments de la liste
 i=0
 while i<n:
 if L[i]==x:
 return True, i
 # return provoque un arrêt de la boucle
 # et une sortie de la fonction
 i+=1
 return False, -1

On considère la liste triée : L=[9, 10, 11, 15, 16, 17, 18, 25, 32].

1.  Écrire une fonction rec_dicho qui admet comme arguments une liste triée
L et un élément x. Cette fonction retourne True si x est dans la liste, False
sinon ainsi que l’indice de l’élément recherché s’il est présent dans la liste. On
utilise la méthode dichotomique.
2.  Évaluer la complexité de cet algorithme pour une liste de longueur n >> 1
dans le cas le moins favorable. On pourra considérer que l’entier n est une
puissance de 2.
3.  Comparer la complexité de l’algorithme naïf (voir exercice précédent
« Recherche d’un élément dans une liste non triée, algorithme naïf, complexité »)
et de l’algorithme dichotomique.

Exercice 5.2 : Recherche dichotomique dans une liste triée, complexité

Chapitre 5 · Algorithmes de dichotomie

53

Analyse du problème
La méthode dichotomique utilise le fait que la liste est triée. Elle consiste à compa-
rer l’élément recherché à l’élément se trouvant au milieu d’une liste triée. Comme
la liste est triée, cela permet d’éliminer une moitié de la liste comme emplacement
possible de l’élément, sauf si on l’a déjà trouvé. Ensuite, on prend la moitié de la
liste qui reste et on recommence…

Voir exercice 6.5 « Recherche dichotomique dans une liste triée, version récur-
sive » dans le chapitre « Récursivité » pour une version récursive de ce programme.

Cours :
La méthode dichotomique divise le problème initial et élimine une partie des données.

On verra la méthode générale « diviser pour régner » qui profite de la subdivision pour
effectuer moins de calculs : voir l’exercice 6.2 « Exponentiation naïve, exponentiation
rapide » dans le chapitre « Récursivité », et les exercices 10.3 « Tri rapide » et 10.4 « Tri
par partition-fusion » dans le chapitre «Tris ».

1.
def rec_dicho(L, x):
 # la fonction retourne True si x est dans la liste L,
 # False sinon, et l’indice de l’élément recherché
 # s’il est présent dans la liste
 deb, fin=0, len(L)-1
 rep=False
 while fin>=deb and rep==False:
 milieu=(deb+fin)//2
 if x==L[milieu]:
 rep=True
 elif x>L[milieu]: # x est dans la deuxième moitié
 deb=milieu+1
 else: # x est dans la première moitié
 fin=milieu-1
 return rep, milieu

Exemple de fonctionnement de l’algorithme avec x = 9 :
•• 1re itération : deb = 0, fin = 8 et milieu = 4 = 8//2. On compare
x avec L[4] = 16.

•• 2e itération : deb = 0 et fin = milieu – 1 = 3. Le milieu vaut 3//2 = 1.
On compare x avec L[1] = 10.

•• 3e itération : deb = 0 et fin = milieu – 1 = 0. On a trouvé l’élément x.
Exemple de fonctionnement de l’algorithme avec x = 25,5 :

•• 1re itération : deb = 0, fin = 8 et milieu = 4 = 8//2. On compare
x avec L[4] = 16.

•• 2e itération : deb = 5 = milieu + 1 et fin = 8. Le milieu vaut
(5+8)//2 = 6. On compare x avec L[6] = 18.

•• 3e itération : deb = milieu – 1 = 7 et fin = 8. Le milieu vaut
(7+8)//2 = 7. On compare x avec L[7] = 25.

Partie 3 · Algorithmes de recherche

54

•• 4e itération : deb = 8 et fin = 8. Le milieu vaut 8. On compare x avec
L[8] = 32. On a alors fin = 7.

•• On n’a plus d’itération car fin < deb.

2. On se place dans le cas le moins favorable pour évaluer la complexité,
c’est-à-dire dans le cas où l’élément n’est pas présent dans la liste compor-
tant n éléments.
3 affectations, 1 calcul : 4 opérations élémentaires

a.	Calcul du nombre d’opérations élémentaires à chaque itération :
•• Trois comparaisons : 3 opérations élémentaires.
•• Calcul du milieu et une affectation : 2 opérations élémentaires.
•• Appel de l’élément L[milieu] et 1 test : 2 opérations élémentaires.
•• Une affectation : 1 opération élémentaire.

Le nombre d’opérations élémentaires vaut 10.

b.	On cherche à calculer le nombre d’itérations dans le pire des cas. Pour
simplifier les calculs, on considère que l’entier n est une puissance de 2.

Pour chaque itération, on divise par deux la longueur de la liste.
Après une itération, la longueur de la liste est n/2. Après une deuxième

itération, la longueur de la liste est
n
22 .

Après k itérations, la longueur de la liste est
n
2k . On arrive alors à une liste

de longueur 1.

On a donc =n
2

1k , soit =n kln() ln(2). Finalement, on obtient :

= =k
n

n
ln()
ln(2)

log ()2

c.	Le nombre d’opérations élémentaires vaut donc 4 + 10k dans le cas le
moins favorable. Il est donc proportionnel à nlog ()2 .

La complexité est logarithmique en ()O nlog ()2 .

Remarque :

On peut noter également la complexité : O n()log .

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

3. La complexité de l’algorithme naïf est linéaire alors que la complexité de
l’algorithme dichotomique est logarithmique. On a une recherche d’un élé-
ment dans une liste beaucoup plus rapide avec l’algorithme dichotomique
pour des listes comportant un grand nombre d’éléments.

Partie 4

Récursivité

Plan

6. Récursivité� 57
6.1 : Factorielle d’un entier naturel� 57
6.2 : Exponentiation naïve, exponentiation rapide� 60
6.3 : Tours de Hanoï� 65
6.4 : Recherche du pgcd (CCP MP Maths 2016)� 69
6.5 : �Recherche dichotomique dans une liste triée, version récursive� 73
6.6 : Dessins de fractales� 75
6.7 : Suite des nombres de Fibonacci� 80

57

6Récursivité

On souhaite calculer la factorielle d’un entier naturel n.

1.  Écrire une fonction fact qui admet comme argument un entier naturel n et
qui retourne la valeur de la factorielle de n en utilisant un programme itératif.
2.  Écrire une fonction fact_rec qui admet comme argument un entier natu-
rel n et qui retourne la valeur de la factorielle de n en utilisant un programme
récursif.
3.  Démontrer la terminaison pour la fonction fact_rec.
4.  Représenter les différentes activations de la fonction récursive fact_
rec(3) sous la forme d’un arbre.
5.  Démontrer la correction de la fonction fact_rec.
6.  Évaluer la complexité de la fonction fact_rec.
7.  Que se passe-t-il si on exécute fact_rec(-3) ?

Exercice 6.1 : Factorielle d’un entier naturel

Analyse du problème
On va étudier la différence entre une fonction itérative et une fonction récursive.
Les méthodes mises en place dans cet exercice seront utilisées dans de très nom-
breux exercices concernant les fonctions récursives.

Cours :
Une fonction est récursive lorsque le corps de cette fonction fait appel à cette même fonc-
tion (c’est une fonction qui s’appelle elle-même). Sinon, on dit que cette fonction est itéra-
tive (elle peut être constituée de boucles while ou for).

Il est essentiel de prévoir qu’une procédure récursive se termine ! L’instruction return
doit être présente au moins deux fois :

•• une fois pour la condition d’arrêt (premier return dans le programme) ;
•• une autre fois pour l’appel récursif (dernier return dans le programme).

1.
def fact (n):
 # la fonction renvoie la factorielle d’un entier naturel n
 # programme itératif
 res=1
 for i in range(1, n+1): # i varie entre 1 inclus et n+1 exclu

Partie 4 · Récursivité

58

 res=res*i
 return res

2.
def fact_rec(n):
 # la fonction renvoie la factorielle d’un entier naturel n
 # programme récursif
 if n==0:
 return (1) # condition d’arrêt
 else:
 return (n*fact_rec(n-1)) # rappel récursif

Cours :
Pour démontrer la terminaison d’un programme, on cherche une grandeur positive, que
l’on appelle variant de boucle, qui décroît entre deux appels de la fonction récursive et qui
converge vers une valeur d’un cas correspondant à un appel de la condition d’arrêt.

De façon générale, il faut montrer que l’on arrivera en un nombre fini d’étapes à un appel
de la condition d’arrêt.

3. On considère le variant de boucle n. À chaque appel de la fonction récur-
sive, il décroît d’une unité et finit par atteindre la valeur 0 correspondant
à une condition d’arrêt. Le programme se termine donc dans tous les cas
si n 0≥ .
4. L’arbre ci-dessous représente les différents appels de la fonction fact_
rec(3).
Les différents appels de la fonction récursive sont stockés dans une pile :
c’est la phase de descente. Quand on atteint la condition d’arrêt, on passe
à la phase de remontée et les appels sont désempilés jusqu’à retourner à
l’appel initial.

fact_rec(3)

fact_rec(2)

fact_rec(1)

1

1

2

main()

6

fact_rec(0)

Au dernier appel de la fonction récursive, n = 0. La condition d’arrêt est
vérifiée. On passe à la phase de remontée.

Chapitre 6 · Récursivité

59

Remarque : Dans l’exercice 10.4 « Tri par partition-fusion » dans le chapitre « Tris »,
l’arbre des appels de la fonction récursive ressemble encore plus à un « arbre » !

Pour calculer la factorielle de 3, on a deux phases :
•• Phase de descente : On a des appels successifs de la fonction fact_
rec jusqu’à ce que l’on arrive au cas n = 0.

•• Phase de montée : Le programme retourne les valeurs des appels suc-
cessifs précédents. On remonte jusqu’à l’appel initial et le programme
retourne le résultat.

Remarque :

Dans la phase de descente, les appels successifs sont stockés dans une pile.

Une fois que la condition d’arrêt est obtenue, les appels sont ensuite désempilés
jusqu’à arriver à l’appel initial dans la phase de montée.

Le nombre d’appels récursifs est limité à 1 000 avec Python. Tout dépassement
provoquera une erreur.

Pour calculer la factorielle de n, on applique la fonction fact_rec à plusieurs
sous-problèmes. Cette méthode de décomposition/recomposition est appelée divi-
ser pour régner. On utilisera cette méthode dans les algorithmes de tri.

Cours :
Pour démontrer la correction d’un programme, il faut montrer que l’algorithme effectue
bien la tâche souhaitée. On utilise souvent une démarche proche du raisonnement par récur-
rence.

On établit une propriété (appelée invariant de boucle) Pn :

•• la propriété Pn doit être vraie pour n = 0 ;
•• si Pn est vraie, alors Pn+1 doit être vraie.

5. On considère la propriété (appelée invariant de boucle) Pn : « La fonc-
tion fact_rec(n) retourne n! ».

•• P0 est vraie puisque c’est la condition d’arrêt.
•• Supposons que la propriété Pn est vraie. La fonction fact_rec(n+1)
réalise l’opération : n n1 fact_rec() ()+ × . Comme Pn est vraie, alors le
programme retourne : n n n n n1 fact_rec 1 ! 1 !() () () ()+ × = + = + . La pro-
priété Pn+1 est donc vraie.

On a démontré par récurrence que la propriété Pn est vraie pour tout entier
naturel n. La correction de la fonction fact_rec est donc démontrée.

Remarque :

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’arrête.

•• La correction est totale si elle est partielle et si l’algorithme termine.

Partie 4 · Récursivité

60

Cours :
La complexité est une mesure du nombre d’opérations élémentaires que l’algorithme effec-
tue. On évalue la complexité d’une fonction récursive à partir d’une relation de récurrence.

6. On définit T n() la complexité de la fonction fact_rec(n).
À chaque appel de la fonction récursive, on a 2 opérations élémentaires :

•• un test pour savoir si n = 0 ;
•• un calcul : n*fact_rec(n-1).

On en déduit la relation de récurrence : T n T n 1 2() ()= − + avec T 0 1() = .
On a donc : T 0 1() = , T 1 1 2() = + , T 2 1 2 2() = + + , soit T n n1 2() = + .
La complexité de la fonction fact_rec(n) est linéaire en O(n).

Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

La complexité d’une fonction récursive est souvent beaucoup plus importante (voir
exercice 6.7 « Suite des nombres de Fibonacci ») que la complexité de la fonction
itérative.

On peut donc être amené à dérécursiver un programme, en faisant le contraire de
ce que fait le programme récursif. Le programme itératif fact commence par la
plus petite valeur 1 alors que le programme récursif fact_rec commence par la
plus grande valeur n.

7. Si on exécute le programme suivant : print(fact_rec(-3)),
Python affiche le message d’erreur : Windows fatal exception:
stack overflow.
On a vu dans la question 4 que les différents appels de la fonction récursive
sont stockés dans une pile. Comme n < 0, on n’arrête pas d’appeler la fonc-
tion récursive. On arrive alors à un dépassement de la taille de la pile et le
programme Python s’arrête et renvoie un message d’erreur.

On souhaite calculer la puissance entière d’un nombre réel.

1.  Écrire une fonction puiss qui admet comme arguments un nombre réel x,
un entier strictement positif n et qui retourne xn en utilisant l’exponentiation
« naïve », c’est-à-dire en multipliant n fois par lui-même x.
2.  Écrire une fonction puiss_rec qui admet comme arguments un nombre
réel x, un entier strictement positif n et qui retourne xn en utilisant un pro-
gramme récursif. Écrire le programme principal qui demande à l’utilisateur de
saisir au clavier x et n, et qui affiche xn.

Exercice 6.2 : Exponentiation naïve, exponentiation rapide

Chapitre 6 · Récursivité

61

3.  Démontrer la terminaison de la fonction puiss_rec.
4.  Démontrer la correction de la fonction puiss_rec.
5.  Évaluer la complexité de la fonction puiss_rec. On pourra considérer que
l’entier n est une puissance de 2.
6.  On souhaite améliorer la complexité de la fonction puiss_rec en utilisant

les propriétés : 10x = ; 2 2
x xp p()= et 2 1 2

x x xp p()=+ .

def puiss_rapide(x, n):
 if n==0:
 return 1
 elif n%2==0:
 return (puiss_rapide(x, n//2)**2)
 else:
 return (x*(puiss_rapide(x, (n-1)//2))**2)

Évaluer la complexité de la fonction puiss_rapide.
7.  Écrire une fonction puiss_rapide2 permettant d’optimiser la fonction
puiss_rapide avec un seul appel à la fonction récursive dans le corps de
la fonction. Évaluer la complexité de la fonction puiss_rapide2. Pourquoi
utilise-t-on le terme « exponentiation rapide » ? Pourquoi l’algorithme utilise la
méthode « diviser pour régner » ?

Analyse du problème
Une fonction est récursive lorsque le corps de cette fonction fait appel à cette même
fonction. On va étudier plusieurs améliorations pour calculer la puissance d’un
nombre réel.

1.
def puiss(x, n):
 # la fonction renvoie x**n avec x réel et n entier > 0
 res=1
 for i in range(n): # i varie entre 0 inclus et n exclu
 res=res*x
 return res

2.
def puiss_rec(x, n):
 # la fonction renvoie x**n avec x réel et n entier > 0
 # calcule x**n avec x réel et n>0
 if n==0:
 return 1 # condition d’arrêt avec x**0=1
 else:
 return (x*puiss_rec(x, n-1)) # appel récursif

Partie 4 · Récursivité

62

Remarque :

Il est essentiel de prévoir qu’une procédure récursive se termine ! L’instruction
return doit être présente au moins deux fois :

•• une fois pour la condition d’arrêt (premier return dans le programme),

•• une autre fois pour l’appel récursif (dernier return dans le programme).
x=float(input('Entrez un réel x : '))
n=int(input('Entrez un entier positif n : '))
print('Le résultat x**n = ', puiss_rec(x, n))

3. On considère le variant de boucle n. À chaque appel de la fonction récur-
sive puiss_rec, il décroît d’une unité et finit par atteindre la valeur 0
correspondant à une condition d’arrêt. Le programme se termine donc dans
tous les cas si n 0≥ .

Remarque : Le programme ne se termine pas si l’entier n est négatif !

4. On considère la propriété (appelée invariant de boucle) Pn : « La fonc-
tion puiss_rec(n) retourne n! ».

•• P0 est vraie puisque c’est la condition d’arrêt.
•• Supposons que la propriété Pn est vraie. La fonction puiss_rec(n+1)
réalise l’opération : x npuiss_rec ()× . Comme Pn est vraie, alors le pro-
gramme retourne : x n xx xpuiss_rec n n 1()× = = + . La propriété Pn+1 est
donc vraie.

On a démontré par récurrence que la propriété Pn est vraie pour tout entier
naturel n. La correction de la fonction puiss_rec est donc démontrée.

Remarque :

On distingue parfois correction partielle et correction totale :

•• La correction est partielle quand le résultat est correct lorsque l’algorithme s’ar-
rête.

•• La correction est totale si elle est partielle et si l’algorithme termine.

5. On définit T n() le nombre d’opérations élémentaires de la fonction
puiss_rec.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un calcul : x*puiss_rec(x, n-1).

On en déduit la relation de récurrence :

T n T n 1 2() ()= − + avec T 0 1() =

On a donc : T 0 1() = , T 1 1 2() = + , T 2 1 2 2() = + + , soit T n n1 2() = + .
La complexité de la fonction puiss_rec(n) est linéaire en O(n).

Chapitre 6 · Récursivité

63

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

6. On définit T n() le nombre d’opérations élémentaires de la fonction
puiss_rapide.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un test pour savoir si n est pair,
•• deux appels de la fonction récursive pour calculer le carré : puiss_
rapide (x, n//2) * puiss_rapide (x, n//2),

•• une ou deux opérations élémentaires.
On se place dans le pire des cas. On en déduit la relation de récurrence :

T n T
n

2
2

4() = 



 +

Pour simplifier les calculs, on considère que l’entier n est une puissance
de 2.
Il faut calculer le nombre de fois où on fait un appel de la fonction récur-
sive.

•• Après un appel de la fonction récursive, on l’appelle à nouveau avec n/2.
•• Après un deuxième appel de la fonction récursive, on l’appelle à nouveau
avec (n/2)/2, soit n/(22).

•• Après k appels de la fonction récursive, on l’appelle à nouveau avec
n/(2k).

On n’a plus d’appel de la fonction récursive quand
n
2

1k = , soit n kln ln 2() ()= .

Finalement, on obtient :

k
n

n
ln
ln 2

log2
()
() ()= =

Par exemple pour n = 24, on a :

T T(2) 2 (2) 44 4 1= +− ; T T(2) 2 (2) 43 2= + ;

T T(2) 2 (2) 42 1= + ; T T(2) 2 (2) 4 2 1 41 0= + = × +

On considère la suite définie par récurrence : u au bk k 1= +− avec a = 2,

b = 4 et u0 = 1. On pose : r
b

a1
=

−
.

D’après l’énoncé, on a :

T n u a u r r n2 2 1
4

1 2
4

1 2
5 4k

k
k k

0() ()= = = − + = −
−





 +

−
= − .

La complexité est linéaire en O(n).

Partie 4 · Récursivité

64

Pour calculer puiss_rapide(x, n//2)**2, Python fait l’opération
suivante : puiss_rapide(x, n//2)*puiss_rapide(x, n//2).
Il fait appel deux fois à la fonction récursive dans le corps de la fonction !
La fonction puiss_rapide n’a pas amélioré la complexité.

7. On peut optimiser la fonction puiss_rapide avec un seul appel à la
fonction récursive :
def puiss_rapide2(x, n):
 # la fonction renvoie x**n avec x réel et n entier > 0
 if n==0:
 return 1 # condition d’arrêt
 else:
 res=puiss_rapide2(x, n//2)
 if n%2==0: # n est pair
 return (res**2)
 else: # n est impair
 return (x*(res**2))

On définit T n() le nombre d’opérations élémentaires de la fonction puiss_
rapide2.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 0,
•• un appel de la fonction récursive : puiss_rapide2,
•• un test pour savoir si n est pair,
•• un calcul : res**2 ou x*(res**2).

On se place dans le pire des cas. On en déduit la relation de récurrence :

T n T
n
2

4() = 



 +

Pour simplifier les calculs, on considère que l’entier n est une puissance
de 2.
On a le même nombre d’appels k de la fonction récursive que dans la ques-
tion précédente :

k
n

n
ln
ln 2

log2
()
() ()= =

Par exemple pour 24, on a :

T T(2) (2) 44 4 1= +− ; T T(2) (2) 43 2= + ;

T T(2) (2) 42 1= + ; T T(2) (2) 4 1 41 0= + = +

Finalement, on a : T T k(2) (2) 4 1k 4= = + avec k = 4.
La complexité de la fonction puiss_rapide2 est logarithmique en
O nlog2()() .

Chapitre 6 · Récursivité

65

Explications du terme « exponentiation rapide » :
•• « exponentiation » : calcul de la puissance entière d’un nombre réel ;
•• « rapide » : la fonction puiss_rapide2 est plus rapide pour des
entiers n >> 1 que puiss, puiss_rec et puiss_rapide puisque
la complexité est logarithmique pour puiss_rapide2 alors qu’elle
est linéaire pour puiss, puiss_rec et puiss_rapide.

On utilise la méthode « diviser pour régner » qui se décompose en trois
étapes :

•• Diviser (ou partitionner) : on divise le problème initial en plusieurs
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le
problème de départ.

Remarques :

•• La méthode « diviser pour régner » profite de la subdivision pour effectuer moins
de calculs (voir les exercices 10.3 « Tri rapide » et 10.4 « Tri par partition-
fusion » dans le chapitre «Tris »).

•• La méthode dichotomique divise uniquement le problème initial et élimine une
partie des données (voir exercice 5.2 « Recherche dichotomique dans une liste
triée, complexité » dans le chapitre « Algorithmes de dichotomie »).

On considère n disques de diamètre différent empilés par ordre décroissant
sur une tour de départ (tour A sur la figure ci-dessous). Les deux autres
tours n’ont pas de disque. L’objectif est de déplacer les disques de la tour
A (tour de départ) vers la tour C (tour d’arrivée) en utilisant les deux règles
suivantes :
•• on ne peut déplacer qu’un disque à la fois ;

•• on ne peut placer un disque que sur un disque de diamètre plus grand ou sur
un emplacement vide.

On considère la suite définie par récurrence : 1u au bn n= ++ . On pose :
1

r
b

a
=

−
.

On admet que : 0u a u r rn
n ()= − + .

On définit la liste tour : tour[0] est une liste représentant les disques de la
tour A, tour[1] (respectivement tour[2]) représente les disques de la tour
B (respectivement tour C).
Par exemple, pour n = 4, on a : tour = [[4, 3, 2, 1], [], []].

Exercice 6.3 : Tours de Hanoï

Partie 4 · Récursivité

66

tour A tour B tour C

1.  Montrer que l’on peut résoudre le problème avec 1 tour.
2.  On va utiliser un programme récursif pour résoudre le problème. On sup-
pose que l’on sait procéder pour n−1 tours. Montrer avec un schéma que l’on
peut résoudre le problème avec n tours. On pourra prendre n = 4.
3.  Écrire une fonction récursive hanoi(tour, n, a, b, c) qui admet
comme arguments tour la liste décrite précédemment, n le nombre de disques,
a la tour de départ, b la tour intermédiaire et c la tour d’arrivée. Dans l’exemple
précédent, la fonction hanoi(tour, 4, 0, 1, 2) doit retourner [[],
[], [4, 3, 2, 1]]. Le programme affichera, étape par étape, la liste tour.
4.  Évaluer la complexité de la fonction hanoi.

Analyse du problème
L’utilisation d’une fonction récursive permet de résoudre facilement le problème
de Hanoï. La question 2 permet de comprendre la fonction récursive hanoi.
Les différents schémas montrent comment déplacer 4 tours sachant que l’on sait
résoudre le problème pour 3 tours.

1. La résolution du problème est évidente pour n = 1 puisqu’il suffit de
dépiler le disque de la tour A et de l’empiler dans la tour C.

tour A tour B tour C

2. On souhaite déplacer n disques de la tour A vers la tour C. On considère
n = 4 dans l’exemple suivant.

tour A tour B tour C

Chapitre 6 · Récursivité

67

On considère n−1 = 3 disques. D’après l’énoncé, on sait déplacer les
n−1 = 3 disques (en pointillés sur le schéma ci-dessus) de la tour A vers la
tour B. On obtient alors la configuration suivante :

tour A tour B tour C

On déplace le disque restant de la tour A vers la tour C.
On obtient alors :

tour A tour B tour C

Il reste à déplacer les n−1 = 3 disques (en pointillés sur le schéma ci-des-
sus) de la tour B vers la tour C.
3. On met en place un programme récursif. On a vu dans la question
précédente que l’on pouvait déplacer les 4 disques à condition de savoir
déplacer 3 disques. Pour déplacer les 3 disques d’une tour vers une
autre, on applique le programme récursif à 2 disques. Pour déplacer les
2 disques, on applique le programme récursif à 1 disque que l’on sait
déplacer.
def hanoi(tour, n, a, b, c):
 # a : tour de départ (a peut être égal à 0, 1 ou 2)
 # b : tour intermédiaire (b peut être égal à 0, 1 ou 2)
 # c : tour d’arrivée (c peut être égal à 0, 1 ou 2)

 # tour[i] = liste représentant les disques de la tour i
 if n==1: # un seul disque à déplacer
 disque=tour[a].pop() # dépile le disque de la tour a
 tour[c].append(disque) # empile le disque dans la tour c
 print(tour) # affichage de la liste tour étape par étape
 else:
 # déplacer n-1 disques de a vers b
 hanoi(tour, n-1, a, c, b)
 # tour de départ : a
 # tour intermédiaire : c
 # tour finale : b
 print(tour) # affichage de la liste tour étape par étape

Partie 4 · Récursivité

68

 # déplacer le disque restant de a vers c
 disque=tour[a].pop() # dépile le disque de la tour a
 tour[c].append(disque) # empile le disque dans la tour c
 print(tour) # affichage de la liste tour étape par étape
 # déplacer n-1 disques de b vers c
 hanoi(tour, n-1, b, a, c)
 print(tour)
 # tour de départ : b
 # tour intermédiaire : a
 # tour finale : c
 return # inutile de retourner tour car passage par référence
 # pour les listes

tour=[[4, 3, 2, 1], [], []]
n=len(tour[0]) # nombre dʼéléments de la tour 0
print(tour)

hanoi(tour, n, 0, 1, 2) # on veut déplacer les n disques
 # de 0 vers 2
print(tour)

4. On définit T n() le nombre d’opérations élémentaires de la fonction
hanoi. On se place dans le pire des cas.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si n = 1 ;
•• un appel à la fonction hanoi avec n−1 ;
•• une opération élémentaire pour dépiler ;
•• une opération élémentaire pour empiler ;
•• un appel à la fonction hanoi avec n−1.

On en déduit la relation de récurrence :

T n T n2 1 3() ()= − + avec T 0 0() =

On considère la suite définie par récurrence : u au bn n1 = ++ avec a = 2 et b = 3.

On pose r
b

a a1
3

1
3=

−
=

−
= − . D’après l’énoncé, on a : u a u r rn

n
0()= − + .

On en déduit que :

T n 2 0 3 3n() ()= + −

La complexité de la fonction hanoi est exponentielle en O(2)n .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

Chapitre 6 · Récursivité

69

Cet exercice étudie deux algorithmes permettant le calcul du pgcd (plus grand
commun diviseur) de deux entiers naturels.

1.  Pour calculer le pgcd de 3 705 et 513, on peut passer en revue tous les entiers
1, 2, 3, ··· , 512, 513 puis renvoyer parmi ces entiers le dernier qui divise à la
fois 3 705 et 513. Il sera alors le plus grand des diviseurs communs à 3 705
et 513. Écrire une fonction gcd qui renvoie le pgcd de deux entiers naturels
non nuls, selon la méthode décrite ci-dessus. On pourra éventuellement utili-
ser la fonction min(a, b), qui calcule le minimum de a et b. Par exemple
gcd(3705, 513) renverra 57.
2.  Écrire une fonction euclide permettant de calculer le pgcd de deux entiers
naturels selon l’algorithme d’Euclide :
•• Pour b = 0 : pgcd(a, 0) = a.

•• Pour b ≠ 0, on note r le reste de la division euclidienne de a par b, alors pgc-
d(a, b) = pgcd(b, r).

3.  Écrire une fonction récursive euclide_rec qui calcule le pgcd de deux
entiers naturels selon l’algorithme d’Euclide.
4.  On note Fn n

() ∈

 la suite des nombres de Fibonacci définie par :

F0 = 0, F1 = 1, ∀n ∈ , Fn + 2 = Fn + 1 + Fn

a. Écrire les divisions euclidiennes successivement effectuées lorsque l’on cal-
cule le pgcd de F6 = 8 et F5 = 5 avec la fonction euclide.
b. Soit n ≥ 2 un entier. Quel est le reste de la division euclidienne de Fn+2 par
Fn+1 ? On pourra utiliser librement le fait que la suite (Fn)n ∈  est strictement
croissante à partir de n = 2. En déduire, sans démonstration, le nombre un de
divisions euclidiennes effectuées lorsque l’on calcule le pgcd de Fn+2 et Fn+1
avec la fonction euclide.
5.  Écrire une fonction fibo qui prend en argument un entier naturel n et ren-
voie le nombre de Fibonacci Fn. Par exemple, fibo(6) renverra 8.
6.  Écrire une fonction récursive fibo_rec qui permet de renvoyer le nombre
de Fibonacci.
7.  En utilisant la fonction euclide, écrire une fonction gcd_trois qui ren-
voie le pgcd de trois entiers naturels. Par exemple, gcd_trois(18, 30,
12) renverra 6.

Exercice 6.4 : Recherche du pgcd (CCP MP Maths 2016)

Partie 4 · Récursivité

70

Analyse du problème
On étudie dans cet exercice l’algorithme d’Euclide permettant de calculer le pgcd
de deux entiers naturels. Cet exercice est extrait du concours CCP MP Maths 2016.

1. On parcourt tous les entiers i entre 1 et le minimum de a et b. On fait
un test pour savoir si i est un diviseur de a et b. Le test peut se faire en
calculant le reste. Si le reste est nul, i est un diviseur.
def gcd(a, b):
 # la fonction renvoie le pgcd de deux entiers naturels
 # non nuls a et b
 pgcd=1
 for i in range(1, min(a,b)+1):
 if a%i==0 and b%i==0:
 # si le reste est nul alors i est un
 # diviseur de a et b
 pgcd=i
 return pgcd

Remarque : Il est inutile de faire varier i entre 1 et le maximum de a et b.

2.
def euclide(a, b):
 # la fonction renvoie le pgcd de deux entiers naturels
 # algorithme d’Euclide
 while b!=0:
 r=a%b
 a,b=b,r
 return a

Cours :
Dans toute procédure récursive, l’instruction return doit être présente au moins deux
fois : une fois pour la condition d’arrêt (premier return dans le programme) et une autre
fois pour l’appel récursif (dernier return dans le programme).

3.
def euclide_rec(a, b):
 # la fonction renvoie le pgcd de deux entiers naturels
 # algorithme d’Euclide
 if b==0: # condition d’arrêt
 return a
 else:
 return euclide_rec(b,a%b) # appel récursif

Remarque :

Les appels successifs d’une fonction récursive sont stockés dans une pile.

Prenons l’exemple suivant : pgcd(16,12).

 Appel de euclide_rec(12,4)

 Appel de euclide_rec(4,0)

 Retour de 4

 Retour de 4

Chapitre 6 · Récursivité

71

4. a.
•• 1er appel de la boucle : a = F6 = 8 et b = F5 = 5.
Le reste de la division euclidienne de 8 par 5 vaut 3. Le quotient vaut 1.
On a F4 = 3.
a = 5 et b = 3.

•• 2e appel de la boucle : a = F5 = 5 et b = F4 = 3.
Le reste de la division euclidienne de 5 par 3 vaut 2. Le quotient vaut 1.
On a F3 = 2.
a = 3 et b = 2.

•• 3e appel de la boucle : a = F4 = 3 et b = F3 = 2.
Le reste de la division euclidienne de 3 par 2 vaut 1. Le quotient vaut 1.
On a F2 = 1.
a = 2 et b = 1.

•• 4e appel de la boucle : a = F3 = 2 et b = F2 = 1.
Le reste de la division euclidienne de 2 par 1 vaut 0.
a = 1 et b = 0.

On n’a plus d’appel de la boucle et le programme retourne 1.

b. La suite de Fibonacci est définie par : Fn+2 = Fn+1 + Fn et 0 ≤ Fn < Fn+1.
On en déduit que le reste de la division euclidienne de Fn+2 par Fn+1 est Fn.
D’après la question précédente :

•• 1er appel de la boucle : division euclidienne de Fn+2 par Fn+1.
•• 2e appel de la boucle : division euclidienne de Fn+2 par Fn.
•• …
•• Le dernier appel de la boucle correspond à la division euclidienne de F3
par F2. Le reste est nul et l’algorithme retourne 1.

On obtient alors la suite de valeurs :
F0 = 0
F1 = 1
F2 = 1
F3 = 2
F4 = 3
F5 = 5
F6 = 8
Le nombre de divisions euclidiennes effectuées lorsqu’on calcule le pgcd de
Fn+2 et Fn+1 est n.

5. a) Première version du programme, en utilisant une liste F pour stocker
tous les résultats intermédiaires.
def fibo1(n):
 # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
 if n==0:
 return 0

Partie 4 · Récursivité

72

 elif n==1:
 return 1
 else:
 F=[]
 F.append(0)
 F.append(1)
 for i in range(2, n+1):
 F.append(F[i-1]+F[i-2])
 return F[i]

b) Deuxième version, sans utiliser de liste.
On utilise uniquement deux variables F_2 et F_1.
def fibo2(n):
 # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
 if n==0:
 return 0
 elif n==1:
 return 1
 else:
 F_2=0 # F[n-2]
 F_1=1 # F[n-1]
 somme=0
 for i in range(2, n+1):
 somme=F_2+F_1 # F[n]=F[n-1]+F[n-2]
 F_2=F_1
 F_1=somme
 return somme

c) Troisième version
On peut remplacer les trois lignes dans la boucle par une seule ligne : F_2,
F_1=F_1, F_2+F_1.
def fibo3(n):
 # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
 if n==0:
 return 0
 elif n==1:
 return 1
 else:
 # F[n]=F[n-1]+F[n-2]
 F_2=0 # F[n-2]
 F_1=1 # F[n-1]
 for i in range(2, n+1):
 F_2, F_1=F_1, F_2+F_1
 return F_1

6.
def fibo_rec(n):
 # renvoie le nombre de Fibonacci Fn pour l’entier naturel n
 if n==0:
 return 0 # condition d’arrêt
 elif n==1:
 return 1 # condition d’arrêt

Chapitre 6 · Récursivité

73

 else:
 return (fibo_rec(n-1)+fibo_rec(n-2))
 # appel récursif

Remarque : Ceci sera traité dans l’exercice 14.1 « Suite des nombres de Fibonacci, Top
Down et Bottom Up » dans le chapitre « Programmation dynamique » pour une opti-
misation du programme récursif.

7. Le pgcd est associatif donc pgcd(a, b, c) = pgcd(pgcd(a, b), c).
def gcd_trois(a, b, c):
 return euclide(euclide(a, b), c)

On considère la liste triée : L=[9, 10, 11, 15, 16, 17, 18, 25, 32].

1.  Écrire une fonction récursive rec_dicho_recursive qui admet comme
arguments une liste triée et un élément x. Cette fonction affiche « Elément pré-
sent » si x est dans la liste, « Elément non présent » sinon.
2.  Évaluer la complexité de la fonction rec_dicho_recursive. On pourra
considérer que l’entier n est une puissance de 2.

Exercice 6.5 : �Recherche dichotomique dans une liste triée,
version récursive

Analyse du problème
On a étudié une version itérative de ce programme (voir exercice 5.2 « Recherche
dichotomique dans une liste triée, complexité » dans le chapitre « Algorithmes de
dichotomie »).

La méthode dichotomique utilise le fait que la liste est triée. Elle consiste à compa-
rer l’élément recherché à l’élément se trouvant au milieu d’une liste triée. Comme
la liste est triée, cela permet d’éliminer la moitié de la liste comme emplacement
possible de l’élément, sauf si on l’a déjà trouvé. Ensuite, on prend la moitié de la
liste qui reste et on recommence.

1.
def rec_dicho_recursive(L, x):
 # la fonction affiche "Elément présent" si x est dans la
 # liste triée L, sinon affiche "Elément non présent"
 if L==[]: # condition d’arrêt si liste vide
 return ("Elément non présent")
 else:
 # la liste est non vide
 milieu=len(L)//2 # calcul du milieu de la liste
 if x==L[milieu]: # recherche si l’élément est au milieu
 return ("Elément présent")
 elif x>L[milieu]:
 # recherche entre milieu+1 et la fin de la liste
 return rec_dicho_recursive(L[milieu+1:], x)

Partie 4 · Récursivité

74

 # appel récursif
 else:
 # recherche entre début de liste et milieu-1
 return rec_dicho_recursive(L[:milieu], x)
 # appel récursif

L=[9, 10, 11, 15, 16, 17, 18, 25, 32]
x=32
print(rec_dicho_recursive(L,x))

2. On définit T n() le nombre d’opérations élémentaires de la fonction rec_
dicho_recursive.
Pour simplifier les calculs, on considère que l’entier n est une puissance
de 2.
À chaque appel de la fonction récursive, on a :

•• un test pour savoir si la liste est vide ;
•• un calcul du milieu ;
•• un test pour savoir si l’élément est trouvé ;
•• un appel de la fonction récursive avec n/2.

On se place dans le pire des cas. On en déduit la relation de récurrence :

= 



 +T n T

n
()

2
3 avec =T(1) 1

Il faut calculer le nombre de fois où on fait un appel de la fonction récur-
sive.

•• Après un appel de la fonction récursive, on l’appelle à nouveau avec n/2.
•• Après un deuxième appel de la fonction récursive, on l’appelle à nouveau
avec n/(22).

•• Après k appels de la fonction récursive, on l’appelle à nouveau avec
n/(2k).

Il ne reste plus qu’un seul appel de la fonction récursive quand =n
2

1k , soit
()=n kln() ln 2 .

Finalement, on obtient :

()
() ()= =k
n

n
ln
ln 2

log2

On appelle k + 1 fois la fonction récursive. On a donc = = + + = +T n k n(2) 1 3(1) 4 3log ()k
2

= = + + = +T n k n(2) 1 3(1) 4 3log ()k
2 .

La complexité est logarithmique en O(log2(n)).

Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

On a la même complexité que pour la version itérative.

Chapitre 6 · Récursivité

75

On utilise le module turtle pour le tracé de fractales. La tortue trace un trait
le long du chemin parcouru.
from turtle import * : �fenêtre graphique turtle. La tortue est le triangle

affiché au centre de la fenêtre de coordonnées (0,0)
reset()	 : efface l’écran
forward(150)	 : avance la tortue de 150 pixels
penup()	 : �lève le crayon et permet ensuite de déplacer la

tortue (avec forward) sans tracer
pendown()	 : �pose le crayon et permet ensuite de déplacer la

tortue (avec forward) avec un trait
goto(120,200)	 : déplace la tortue au point de coordonnées (120, 200)
left(60)	 : �fait tourner la tortue vers la gauche d’un angle de

60° sans avancer
right(60)	 : �fait tourner la tortue vers la droite d’un angle de

60° sans avancer
mainloop()	 : �laisse la fenêtre graphique turtle ouverte à la

fin du programme

1.  Écrire une fonction triangle qui admet comme argument un entier natu-
rel a et qui trace un triangle équilatéral de côté a.

point de départ de la tortue

2.  Écrire une fonction polygone qui admet comme arguments deux entiers
naturels n et a. Cette fonction trace un polygone régulier à n côtés de même
longueur a.
3.  On souhaite tracer le segment de Koch de longueur a à l’ordre n.
•• On part d’un segment de longueur a à l’ordre 0.

•• À l’étape 1, on remplace le tiers du segment central par un triangle équilatéral
sans base au-dessus.

•• On réitère le processus n fois.

ordre 0 ordre 1 ordre 2

Exercice 6.6: Dessins de fractales

Partie 4 · Récursivité

76

Écrire une fonction récursive koch qui admet comme arguments deux entiers
naturels n et a. Cette fonction trace un segment de Koch de longueur a à l’ordre n.
4.  Pour tracer le flocon de neige, on part d’un triangle équilatéral et on applique
la fonction koch à l’ordre n à chacun des côtés du triangle équilatéral de lon-
gueur a. La figure représente le flocon de Von Koch à l’ordre 2.

Écrire le programme principal permettant de tracer un flocon de Von Koch à
l’ordre n.

Analyse du problème
Le module graphique turtle permet de piloter une tortue afin de tracer des figures
géométriques.

Une figure fractale est un objet géométrique « infiniment morcelé » dont les détails
sont observables à une échelle arbitrairement choisie. Le flocon de Von Koch est
un exemple de courbe fractale. En zoomant sur une partie de la figure, on retrouve
toute la figure : on dit qu’elle est autosimilaire. À chaque étape, la longueur de la

base est multipliée par
4
3

n




 . Le périmètre du flocon à l’étape n est : 3

4
3

a
n





 et

tend vers l’infini si n tend vers l’infini. La courbe fractale n’admet de tangente en
aucun point.

1. Pour tracer le triangle équilatéral de côté a :
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.
•• On avance de a/3.
•• On tourne la tortue vers la droite de 120°.

La tortue revient à sa position initiale avec le même angle.
from turtle import * # bibliothèque pour la fenêtre graphique
 # turtle
def triangle(a): # la fonction dessine un triangle équilatéral
 # de côté a

Chapitre 6 · Récursivité

77

 forward(a) # avance la tortue de a pixels
 right(120) # tourne la tortue vers la droite de 120°
 forward(a) # avance la tortue de a pixels
 right(120) # tourne la tortue vers la droite de 120°
 forward(a) # avance la tortue de a pixels
 right(120) # tourne la tortue vers la droite de 120°
triangle(100) # appel de la fonction triangle avec un côté
 # de 100 pixels
mainloop() # laisse la fenêtre graphique turtle ouverte
 # à la fin du programme

On obtient la figure suivante :

2.
def polygone(n, a): # la fonction dessine un polygone
 # régulier à n côtés de longueur a
 for i in range(n): # i varie entre 0 inclus et n exclu
 forward(a) # avance la tortue de a pixels
 left(360/n) # tourne la tortue vers la gauche de
 # 360/n degrés
polygone(10, 50) : # 10 côtés de longueur 50
mainloop() # laisse la fenêtre graphique turtle
 # ouverte à la fin du programme

On obtient la figure suivante :

3. On considère un segment de Koch à l’ordre 0 de longueur a. On décom-
pose ce segment en trois segments de longueur a/3.

•• On avance de a/3.
•• On tourne la tortue vers la gauche de 60°, on avance de a/3.
•• On tourne la tortue vers la droite de 120°, on avance de a/3.
•• On tourne la tortue vers la gauche de 60° et on avance de a/3.

Partie 4 · Récursivité

78

On obtient le segment de Koch à l’ordre 1 :

ordre 0 ordre 1

Pour tracer le segment de Koch de longueur a à l’ordre n :
•• On appelle la fonction koch(n-1, a/3) permettant de tracer le seg-
ment de Koch à l’ordre n−1 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre
n−1 de longueur a/3.

•• On tourne la tortue vers la droite de 120°. On appelle la fonction
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre
n−1 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch(n-1, a/3) permettant de tracer le segment de Koch à l’ordre
n−1 de longueur a/3.

La fonction koch(n-1, a/3) trace le segment de Koch en faisant appel
4 fois à la fonction koch à l’ordre n−2. Cette fonction koch à l’ordre n−2
fait appel à la fonction koch à l’ordre n−3…
On peut construire le segment de Koch à l’ordre 1 à partir de quatre seg-
ments de Koch à l’ordre 0 :

•• On appelle la fonction koch(0, a/3) permettant de tracer le seg-
ment de Koch à l’ordre 0 de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0
de longueur a/3.

•• On tourne la tortue vers la droite de 120°. On appelle la fonction
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0
de longueur a/3.

•• On tourne la tortue vers la gauche de 60°. On appelle la fonction
koch(0, a/3) permettant de tracer le segment de Koch à l’ordre 0
de longueur a/3.

Il y a bien une condition d’arrêt à la fonction récursive. Si n = 0, on avance
la tortue de a pixels pour la fonction koch(0, a).
def koch(n, a): # la fonction dessine un segment de Koch
 # à l’ordre n de longueur a
 if n==0:
 forward(a) # condition d’arrêt - avance la tortue
 # de a pixels
 else: # partage le segment en trois
 # premier tiers : on appelle la fonction récursive

Chapitre 6 · Récursivité

79

 # à l’ordre n-1
 koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
 left(60) # tourne la tortue vers la gauche de 60°
 # deuxième tiers : on appelle la fonction récursive
 # à l’ordre n-1
 koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
 right(120) # tourne la tortue vers la droite de 120°
 # troisieme tiers : on appelle la fonction récursive
 # à l’ordre n-1
 koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3
 left(60) # tourne la tortue vers la gauche de 60°
 koch(n-1, a/3) # appel récursif ordre n-1 et longueur a/3

4. Il suffit d’appliquer la fonction koch à l’ordre n pour chaque côté du
triangle équilatéral.
n=3 # flocon de Von Koch à l’ordre 3
a=300 # segment de longueur 300
koch(n, a) # segment de Koch à l’ordre n
right(120) # tourne la tortue vers la droite de 120°
koch(n, a) # segment de Koch à l’ordre n
right(120) # tourne la tortue vers la droite de 120°
koch(n, a) # segment de Koch à l’ordre n
right(120) # tourne la tortue vers la droite de 120°
mainloop() # laisse la fenêtre graphique turtle ouverte
 # à la fin du programme

On obtient une courbe fermée :

Partie 4 · Récursivité

80

On note (Fn )n∈

 la suite des nombres de Fibonacci définie par : F0 = 0, F1 = 1,
∀n ∈ , Fn+2 = Fn+1 + Fn.

1.  Écrire une fonction récursive fibo1 qui permet de renvoyer le nombre de
Fibonacci Fn. L’algorithme utilise-t-il la méthode « diviser pour régner » ?
2.  Représenter l’arbre des appels de la fonction récursive fibo1(5). Com-
bien de fois est recalculé F2

 ? Quel est l’inconvénient ?

Exercice 6.7 : Suite des nombres de Fibonacci

Analyse du problème
La méthode « diviser pour régner » permet de décomposer le problème initial en
deux sous-problèmes.

Afin d’éviter de calculer plusieurs fois le même nombre de Fibonacci, on utilise la
technique de mémoïsation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le problème de
départ.

Cette méthode donne de très bons résultats dans de nombreux problèmes : dichotomie, tri
par partition-fusion, tri rapide.

La méthode « diviser pour régner » a parfois des faiblesses avec des appels récursifs
redondants. Les sous-problèmes ne sont pas toujours indépendants. On peut être amené à
résoudre plusieurs fois le même sous-problème.

Une solution consiste à utiliser la technique de mémoïsation en stockant les résultats déjà
calculés (voir chapitre 14 « Programmation dynamique »).

1.
def fibo1(n):
 # la fonction renvoie le nombre de Fibonacci Fn
 # pour l’entier n
 if n==0:
 return 0 # condition d’arrêt
 elif n==1:
 return 1 # condition d’arrêt
 else:
 return (fibo1(n-1)+fibo1(n-2))
 # appel récursif

L’algorithme est de type « diviser pour régner » puisqu’on décompose
le problème (calcul de fibo1(n)) en deux sous-problèmes (calcul de

Chapitre 6 · Récursivité

81

fibo1(n-1) et fibo1(n-2)). On calcule récursivement chacun des
deux sous-problèmes.

2. L’arbre ci-dessous représente les différents appels de la fonction fibo1
que l’on note fib.

fib(4)

fib(5)

fib(3)

2

3

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

2
1 1

1

1

1 1 0 1 0

main()

5

fib(1) fib(0)

1

0

F2 est recalculé 3 fois. F3 est recalculé 2 fois.
L’inconvénient est que l’on augmente considérablement la complexité
puisqu’on recalcule plusieurs fois la même valeur Fn.

Partie 5

Algorithmes
gloutons

Plan

7. Algorithmes gloutons (sauf TSI et TPC)� 85
7.1 : Rendu de monnaie� 85
7.2 : Problème du sac à dos� 87
7.3 : Allocation de salle de spectacles� 88

85

7Algorithmes gloutons
(sauf TSI et TPC)

On dispose des pièces entières suivantes : S = [1, 2, 5, 10, 20, 50, 100] = [S0,
S1, …, Sn–1] où S[i] représente la valeur de la pièce d’indice i. On suppose
que la liste S est triée par ordre croissant des valeurs. On cherche à rendre
une certaine somme entière X en utilisant le moins de pièces, qui peuvent être
identiques.

1.  On utilise la méthode la plus intuitive qui consiste à commencer par rendre
la plus grande pièce possible. Pour X = 11, on commence par rendre la pièce
de 10.
On appelle L[x] le nombre de pièces nécessaires pour rendre la somme x. La
récurrence (1) peut s’écrire :
•• L[0] = 0

•• Si 1x ≥ : 1L x L x S i[] []= + −  avec i le plus grand tel que S i x[] ≤ .

Écrire une fonction récursive rendu1 qui admet comme arguments une liste S
et un entier X. La fonction retourne le nombre de pièces nécessaires pour rendre
la somme X en utilisant la récurrence (1).
2.  L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette
méthode est-elle appelée gloutonne ? Est-ce que rendu1([1, 4, 6], 8)
retourne la solution optimale ?

Exercice 7.1 : Rendu de monnaie

Analyse du problème
On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La
méthode « diviser pour régner » permet de décomposer le problème initial en deux
sous-problèmes.

La programmation dynamique (voir chapitre 14 « Programmation dynamique »)
permet d’obtenir une solution optimale. On verra la différence entre la méthode
gloutonne et la programmation dynamique.

Partie 5 · Algorithmes gloutons

86

1.
def rendu1(S, X):
 # la fonction renvoie le nombre de pièces nécessaires pour
 # rendre la somme X en utilisant la liste S :
 # S[i]=valeur de la pièce d’indice i
 if X==0: # condition d’arrêt
 return 0
 else:
 # recherche de i le plus grand tel que S[i] <= X
 i=len(S)-1
 while S[i]>X:
 i=i-1
 # ajoute 1 au nombre de pièces
 # puisqu’on utilise la pièce S[i]
 # il reste donc à rendre la monnaie à X - S[i]
 return 1+rendu1(S, X-S[i]) # appel récursif
S=[1, 4, 6]
X=8
print(rendu1(S, X)) # on obtient : 3

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le problème de
départ.

Dans la méthode gloutonne (greedy, en anglais), on effectue une succession de choix, cha-
cun d’eux semble être le meilleur sur le moment. On résout alors le sous-problème mais on
ne revient jamais sur le choix déjà effectué.

2. L’algorithme est de type « diviser pour régner » puisqu’on décompose le
problème (calcul de L[X]) en un sous-problème (calcul de L X S i[][]− avec i
le plus grand tel que S i X[] ≤). On calcule récursivement le sous-problème.
À chaque étape de l’algorithme, on commence par rendre la plus grande
pièce possible, c’est-à-dire la plus grande pièce dont la valeur est infé-
rieure à la somme à rendre. C’est la solution qui semble être la meilleure
et la plus intuitive. On déduit alors de cette pièce la somme à rendre et on
est ramené à un sous-problème avec une somme à rendre plus petite. On
recommence jusqu’à obtenir une somme nulle.
Cet algorithme est très simple mais à chaque étape on n’étudie pas tous les
cas possibles puisqu’on se contente de choisir la pièce la plus grande que
l’on peut rendre.
Dans le cas où S = [1, 4, 6] et X = 8, on n’obtient pas la solution optimale.
L’algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 pièce de
6 et 2 pièces de 1) alors que la solution optimale est 2 (2 pièces de 4).

Chapitre 7 · Algorithmes gloutons (sauf TSI et TPC)

87

On considère un sac à dos dont la masse maximale est notée M. On cherche à
maximiser la valeur totale des objets insérés dans le sac à dos. On dispose de n
objets modélisés par la liste de listes S :
•• S[i][0] désigne la valeur de l’objet d’indice i notée vi (i varie de 0 à n−1).

•• S[i][1] désigne la masse de l’objet d’indice i notée mi (i varie de 0 à n−1).

On suppose dans tout le problème que
0

1

m Mi
i

n

∑ >
=

−

 et que les masses sont des

entiers. Le premier objet de la liste S a pour indice 0. La liste S est triée par
ordre décroissant du rapport valeur/masse.

1.  On utilise la méthode intuitive consistant à insérer au fur et à mesure les
objets qui ont le plus grand rapport valeur/masse.
Écrire une fonction itérative algo1 qui admet comme arguments une liste S et
un entier M. La fonction retourne la valeur des objets que l’on peut insérer dans
le sac à dos.
2.  Pourquoi cette méthode est-elle appelée gloutonne ? Est-ce que algo1
([[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]], 30)
retourne la solution optimale ?

Exercice 7.2 : Problème du sac à dos

Analyse du problème
On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés
dans un sac à dos. La programmation dynamique (voir chapitre 14 « Programma-
tion dynamique ») permet d’obtenir une solution optimale en utilisant deux tech-
niques : « Top Down » et « Bottom Up ».

1.
def algo1(S, M):
 # S est une liste de listes avec [valeur, masse].
 # Les objets sont triés par ordre décroissant valeur/masse.
 # La fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 v_total=0 # initialisation de la valeur totale des objets
 m_total=0 # initialisation de la masse totale des objets
 n=len(S)
 for i in range(n):
 if m_total+S[i][1]<=M: # teste si nouvelle masse totale<=M
 v_total+=S[i][0] # calcule la nouvelle valeur totale
 m_total+=S[i][1] # calcule la nouvelle masse totale
 return v_total # retourne la valeur totale des objets

Avant d’insérer un objet, il faut tester que la nouvelle masse totale ne
dépasse pas M.

Partie 5 · Algorithmes gloutons

88

2. Cette méthode est appelée méthode gloutonne car elle consiste à faire le
meilleur choix sur le moment, c’est-à-dire insérer l’objet qui a le plus grand
rapport valeur/masse.

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]] # [valeur, masse]
print('ALGO1 :', algo1(S, M)) # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient
alors la liste suivante, qui est bien triée par ordre décroissant : [2.5, 2.4,
2.0, 0.875, 0.5].

•• On insère le premier objet de valeur 15 et de masse 6.
•• On ne peut pas insérer le deuxième objet de masse 25 car la masse totale
6+25 dépasse 30.

•• On insère le troisième objet de valeur 10.
•• On insère le quatrième objet de valeur 7.

On obtient une valeur totale 32 dans le sac à dos.
Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas
particulier, algo1 renvoie 32 alors que la solution optimale est 70. On
utilisera la programmation dynamique (voir chapitre 14 « Programmation
dynamique ») pour trouver la solution optimale.

On cherche une solution au problème d’allocation d’une salle de spectacles.
On définit une liste L contenant pour chaque spectacle d’indice ∈ − ���i n,0 1
le couple d’entiers d fi i,() où di désigne l’heure de début et fi l’heure de fin :

0 0 1 1 1 1L d f d f d fn n, , , , ..., ,=       − − . On suppose que les n-uplets de couples

d fi i,() sont triés par date de fin fi croissante. On définit début l’heure de début

du spectacle et fin l’heure de fin du spectacle.

1.  On cherche à maximiser le nombre de spectacles dans la salle et non le
temps d’occupation. On utilise la méthode intuitive consistant à choisir au fur et
à mesure des spectacles dont l’intervalle est compatible avec celui du spectacle
précédent et dont l’heure de fin est la plus petite. On suppose que la liste L est
triée par ordre croissant des heures de fin.
Écrire une fonction itérative gestion qui admet comme arguments une liste
L, un entier début (heure de début des spectacles) et un entier fin (heure de
fin des spectacles). La fonction retourne le nombre maximum de spectacles que
l’on peut organiser dans la salle ainsi que la liste des spectacles retenus.

Exercice 7.3 : Allocation de salle de spectacles

Chapitre 7 · Algorithmes gloutons (sauf TSI et TPC)

89

2.  Pourquoi cette méthode est-elle appelée gloutonne ?
3.  On considère la liste L1=[[0, 2], [1, 3], [2, 4], [1, 5], [3,
6], [4, 7], [5, 9], [6, 11], [9, 12]]. Écrire le programme
principal permettant d’afficher le nombre maximum de spectacles et la liste des
spectacles que l’on peut organiser dans cette salle entre début = 1 et fin = 12.

Analyse du problème
On utilise la méthode gloutonne, qui consiste à effectuer une succession de choix,
chacun d’eux semblant être le meilleur sur le moment.

1.
def gestion(L, début, fin):
 # retourne le nombre maximum de spectacles que l’on peut
 # organiser entre début(int) = heure de début et
 # fin(int) = heure de fin dans la salle ainsi que la liste
 # des spectacles retenus L = liste de listes
 # L[i]=[di, fi] = heure de début et de fin du spectacle i
 n=len(L) # nombre de spectacles
 p=0 # initialisation du nb de spectacles organisés
 LISTE_CONF=[] # initialisation de la liste des
 # spectacles organisés
 for i in range(n): # i varie entre 0 inclus et n exclu
 if LISTE_CONF==[] and L[i][0]>=début and L[i][1]<=fin:
 p=p+1
 LISTE_CONF.append(i) # indice du premier spectacle
 # ajouté
 elif p>=1:
 indice=LISTE_CONF[p-1] # indice du dernier spectacle
 # ajouté
 if L[i][0]>=L[indice][1] and L[i][1]<=fin:
 p=p+1
 LISTE_CONF.append(i) # indice du spectacle ajouté
 return(p, LISTE_CONF)

2. On appelle la méthode gloutonne puisque, à chaque étape, on sélec-
tionne la possibilité qui semble être la meilleure sur le moment, c’est-à-dire
qu’on choisit un spectacle qui finit le plus tôt.
On peut montrer que la méthode gloutonne donne ici la solution optimale,
mais ce n’est pas toujours le cas, comme on peut le voir dans les exercices
sur le rendu de monnaie et sur le sac à dos (exercices 7.1 et 7.2).

Partie 5 · Algorithmes gloutons

90

3.
L1=[[0, 2], [1, 3], [2, 4], [1, 5], [3, 6], [4, 7], [5, 9],\
 [6, 11], [9, 12]]
début=1 # heure de début des spectacles
fin=11 # heure de fin des spectacles
p1, LISTE_CONF1=gestion(L1, début, fin)
print('Nombre de spectacles :', p1)
print("Spectacles que l'on peut organiser :", LISTE_CONF1)

Le programme Python affiche :

 Nombre de spectacles : 3
 Spectacles que l’on peut organiser : [1, 4, 7]

Partie 6

Lecture et écriture
de fichiers –
Matrices de pixels
et images

Plan

8. Lecture et écriture de fichiers� 93
8.1 : �Lecture et écriture de fichiers, calculs statistiques� 93
8.2 : Lecture de fichiers� 96

9. Matrices de pixels et images, traitement d’images� 99
9.1 : Traitement d’images et filtrage passe-bas� 99
9.2 : Filtrage d’images� 104

93

8Lecture et écriture
de fichiers

Rappels pour la gestion des fichiers :
f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readline() : lecture d'une ligne de l’objet fichier f

\n : caractère d’échappement : saut de ligne

c1.strip() : renvoie une chaîne sans les espaces et les caractères
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de
caractères c1

c1.split(';') : sépare une chaîne de caractères (c1) en une liste de
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire un programme Python permettant de créer le fichier 'droite.txt'
contenant les éléments suivants :

10 : nombre de points du fichier

25;10.9 : abscisse et ordonnée du premier point

20;9.3

15;8.2

12;7.5

9;6.2

6;5.8

3;4.2

Exercice 8.1 : �Lecture et écriture de fichiers, calculs
statistiques

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

94

0;3.9

-3;2.8

-6;2 : abscisse et ordonnée du dixième point

2.  Écrire un programme Python permettant d'ouvrir un fichier .txt (par exemple
'droite.txt') et de récupérer les abscisses et les ordonnées dans deux listes.
3.  On cherche à modéliser les n points expérimentaux x y,()1 1 , 2 2x y,()…
x yn n,() par une fonction polynôme du premier ordre, de la forme : y ax b= + .

1 1 1

2

1 1

2a

n x y x y

n x x

i i
i

n

i
i

n

i
i

n

i
i

n

i
i

n

∑ ∑ ∑

∑ ∑
=

−













−







= = =

= =

 et b y ax= − en notant x la moyenne des xi et y

la moyenne des yi.
Écrire un programme Python permettant de calculer les coefficients a et b cor-
respondant aux points expérimentaux de la question 2.
4.  Écrire un programme Python permettant de représenter graphiquement la
fonction modéliséy ax b= + .

Analyse du problème
Cet exercice utilise les fonctions d’écriture et de lecture de fichiers avec Python.
Il faut convertir les entiers en chaînes de caractères avant d’utiliser f.write.
Lors de la lecture du fichier, on parcourt les différentes lignes du fichier avec
f.readline(). On enlève ensuite les caractères d’échappement (saut de ligne
par exemple) et on sépare la chaîne de caractères obtenue en une liste de mots.

1.
x=[25,20,15,12,9,6,3,0,-3,-6]
y=[10.9,9.3,8.2,7.5,6.2,5.8,4.2,3.9,2.8,2]
n=len(x)

f=open('droite.txt', 'w') # création du fichier 'droite.txt'
 # en écriture
f.write(str(n)+'\n') # première ligne avec la longueur de la liste
for i in range(n): # i varie entre 0 inclus et n exclu
 f.write(str(x[i])+';'+str(y[i])+'\n')
f.close() # fermeture du fichier

On convertit les entiers et les flottants en chaînes de caractères avant de
les insérer dans le fichier. Il ne faut pas oublier le saut de ligne à la fin de
chaque ligne du fichier.

Chapitre 8 · Lecture et écriture de fichiers

95

2.
f=open('droite.txt', 'r')
n=int(f.readline()) # nombre de points
x=[]
y=[]
for i in range(n): # i varie entre 0 inclus et n exclu
 ligne=f.readline()
 ligne2=ligne.strip() # enlève les caractères d’échappement
 xchaine,ychaine=ligne2.split(';')
 x.append(float(xchaine)) # conversion de l’abscisse en
 # type float
 # xchaine est une chaîne de caractères qu’il faut
 # convertir en type float
 y.append(float(ychaine)) # conversion de l’ordonnée en
 # type float
f.close() # fermeture du fichier

3.
sumx=0
sumy=0
sumxy=0
moy_x=0
moy_y=0
sumx2=0
for i in range(n):
 sumx=sumx+x[i]
 sumy=sumy+y[i]
 sumxy=sumxy+x[i]*y[i]
 moy_x+=x[i]
 moy_y+=y[i]
 sumx2+=x[i]**2
moy_x=moy_x/n
moy_y=moy_y/n

a=(n*sumxy-sumx*sumy)/(n*sumx2-sumx**2)
b=moy_y-a*moy_x

Le programme Python fournit a = 0,29 et b = 3,75.

4.
ymodelise=[a*elt+b for elt in x]
plt.plot(x,ymodelise)

La première variable dans plt.plot est la liste des abscisses des points. La
deuxième variable est la liste des ordonnées des points.

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

96

Rappels pour la gestion des fichiers :
f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : transforme toutes les lignes de l’objet fichier f en une
liste de chaînes de caractères

c1.strip() : renvoie une chaîne sans les espaces et les caractères
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de
caractères c1

c1.split(';') : sépare une chaîne de caractères (c1) en une liste de
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

On cherche à calculer une valeur approchée de l’intégrale d’une fonction don-
née par des points dont les coordonnées sont situées dans un fichier.

1.  Le fichier «ex_001.txt» contient une quinzaine de lignes selon le modèle
suivant :

0.0;0.0

0.111111111111;0.0122949573053

0.222222222222;0.0485751653206

Chaque ligne contient deux valeurs flottantes séparées par un point-virgule,
représentant respectivement l’abscisse et l’ordonnée d’un point. Les points sont
ordonnés dans l’ordre croissant de leurs abscisses.
Écrire un programme Python permettant d’ouvrir le fichier en lecture, de le lire
et de construire la liste X des abscisses et la liste Y des ordonnées contenues
dans ce fichier.
2.  Écrire un programme Python permettant de représenter les points sur une figure.
3.  Les points précédents sont situés sur la courbe représentative d’une fonction
f. On souhaite déterminer une valeur approchée de l’intégrale I de cette fonction
sur le segment où elle est définie.
Écrire une fonction trapeze, d’arguments deux listes Y et X de même lon-
gueur n, renvoyant :

X X
Y Y

i i
i i

i

n

21
1

1

1

∑()−
+

−
−

=

−

trapeze(Y, X) renvoie donc une valeur approchée de l’intégrale I par la
méthode des trapèzes.

Exercice 8.2 : Lecture de fichiers

Chapitre 8 · Lecture et écriture de fichiers

97

Analyse du problème
Cet exercice utilise les fonctions de lecture de fichiers avec Python. Dans l’exer-
cice précédent, on lit les lignes du fichier au fur et à mesure en utilisant la méthode
f.readline(). Ici on récupère directement une liste de chaînes de caractères
avec la méthode f.readlines(). Il faut alors parcourir cette liste pour récu-
pérer les différentes lignes du fichier. Pour chaque ligne, on enlève les caractères
d’échappement (saut de ligne par exemple) et on sépare la chaîne de caractères
obtenue en une liste de mots.

1. On récupère dans la variable data une liste de chaînes de caractères.
Pour parcourir cette liste, on utilise l’instruction for chaine in data.
f=open("ex_001.txt", 'r') # ouverture du fichier en lecture
data=f.readlines() # data contient une liste de chaînes
 # de caractères
 # chaque chaîne de caractères correspond à une ligne
 # du fichier
X, Y=[], [] # création des listes vides X et Y
for chaine in data: �# on parcourt la liste de chaînes de

caractères
 chaine2=chaine.strip() # enlève les caractères d’échappement
 abs,ord=chaine2.split(';')
 X.append(float(abs)) # conversion de l’abscisse en type
 # float
 # on ajoute cette abscisse dans la liste X
 Y.append(float(ord)) # conversion de l’ordonnée en type
 # float
 # on ajoute cette ordonnée dans la liste Y
f.close() # fermeture du fichier

Cours :
Pour initialiser une liste, on utilise X=[].

Pour ajouter des éléments dans une liste, on utilise X.append(valeur).

Pour supprimer le dernier élément d’une liste, on utilise X.pop().

Il faut bien connaître les arguments de la fonction plt.plot(X, Y) : la première liste
X représente l’abscisse des points, la deuxième liste Y représente l’ordonnée des points.

2.
plt.figure() # nouvelle fenêtre graphique
plt.plot(X, Y)
 # ou utilisation de la fonction ci-dessous, qui permet
 # de mettre une croix pour les points expérimentaux
 # et de relier les points entre eux :
 # plt.plot(LX, LY, '+', linestyle="-")
plt.show() # affiche la figure à l′écran

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

98

Cours :
Il faut bien connaître la syntaxe de range :

for i in range(start, stop, step):

i varie entre start inclus et stop exclu avec un pas égal à step.

Lorsque step n’est pas indiqué, le pas vaut 1 par défaut.

3.
def trapeze(Y, X):
 �# la fonction renvoie l’intégrale I par la méthode des

trapèzes
 n=len(X) # nombre d’éléments de la liste
 I=0 # initialisation de la variable I
 for i in range(1, n): # i varie entre 1 inclus et n exclu
 I+=(X[i]-X[i-1])*(Y[i]+Y[i-1])/2
 return I

print(trapeze(Y, X))

On pourrait écrire :
I=I+(X[i]-X[i-1])*(Y[i]+Y[i-1])/2

au lieu de :
I+=(X[i]-X[i-1])*(Y[i]+Y[i-1])/2

99

9Matrices de pixels et
images, traitement
d’images

Les instructions suivantes permettent de récupérer dans la liste L l’ensemble
des pixels d’une image en niveaux de gris. Cette liste contient à la suite les
pixels de la première ligne de l’image, de la deuxième ligne… Les valeurs des
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les
listes de listes pour représenter les matrices dans Python.

from PIL import Image
img=Image.open('photo.png') # stockage des pixels de l’image
 # 'photo.png' dans la liste img
p, n=img.size # n = nombre de lignes (hauteur)
 # p = nombre de colonnes (largeur)
L=list(img.getdata())

1.  Écrire une fonction creation_mat qui admet comme argument l’image
en niveaux de gris img. Cette fonction retourne la matrice M (liste de listes).
La première sous-liste contient la première ligne de l’image, la deuxième sous-
liste contient la deuxième ligne de l’image…
2.  Écrire une fonction inv_contraste qui admet comme argument M la
matrice représentant une image. Cette fonction retourne une nouvelle matrice
représentant la moitié inférieure de l’image avec une inversion du contraste.
3.  Écrire une fonction trois_niveaux_gris qui admet comme argument M
la matrice représentant une image. Cette fonction retourne une nouvelle matrice
avec 3 niveaux de gris uniquement : les niveaux de gris entre 0 et 80 inclus sont
remplacés par 60, les niveaux de gris entre 80 et 150 inclus sont remplacés par
120 et les autres niveaux de gris sont remplacés par 220.
4.  Écrire une fonction reduction qui admet comme argument M la matrice
représentant une image. Cette fonction retourne une nouvelle matrice en ne
gardant qu’un pixel sur 3 de l’image pour la largeur et la hauteur.

Exercice 9.1 : Traitement d’images et filtrage passe-bas

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

100

5.  On souhaite réaliser un filtre passe-bas qui adoucit les détails d’une image
représentée par la matrice M. On considère la matrice A :

1/12 1/12 1/12

1/12 4/12 1/12

1/12 1/12 1/12

Le traitement suivant est appliqué à la matrice M. Pour calculer la nouvelle
valeur du pixel de l’image traitée :

•• on multiplie son ancienne valeur M
i, j

 par la valeur centrale de la matrice A ;

•• on additionne les valeurs des pixels adjacents au pixel traité multipliées
par les valeurs des éléments adjacents à l’élément central de la matrice A :
A M A M A M ...i j i j i j0,0 1, 1 1,0 , 1 2,0 1, 1× + × + × +− − − + −

La nouvelle valeur du pixel est égale à la valeur absolue de la somme précé-
dente.
Écrire une fonction filtrage qui admet comme argument M la matrice repré-
sentant une image. Cette fonction retourne une nouvelle matrice résultat du
filtrage passe-bas de l’image.

Analyse du problème
On repère un pixel par (i, j) où i désigne l’indice de la ligne et j l’indice de la
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On
obtient ainsi une matrice dont chaque valeur correspond au niveau de gris. On peut
alors modifier facilement les valeurs de la matrice pour effectuer un traitement
d’images.

Cours :
Manipulation des images avec Python

Une image est définie par le nombre de pixels. Par exemple, une image 800×600 contient
800 pixels en largeur et 600 pixels en hauteur, soit 480 000 pixels. On peut la représenter
par une matrice 600×800 contenant 600 lignes et 800 colonnes. Le point supérieur gauche
de l’image a pour coordonnées [0, 0], le point inférieur droit [599, 799].

Utilisation d’une liste de listes

Matrice

On représente une matrice 2 × 3 par la liste L contenant 2 listes de longueur 3. Chacune de

ces listes de longueur 3 représente une ligne de la matrice










3 2 1
8 6 4

.

L=[[3, 2, 1], [8, 6, 4]]

Chapitre 9 · Matrices de pixels et images, traitement d’images

101

Chaque élément de la liste est une liste. Pour extraire le premier élément de la liste L :

M=L[0] # M vaut [3,2,1]

Pour récupérer le deuxième élément de M :

a=M[1] # a vaut 2

On peut également écrire :

b=L[0][1] # b vaut 2

Bibliothèque PIL

On utilise le module Image de la bibliothèque PIL. Les instructions permettant d’obtenir
la liste L seraient rappelées dans un problème de concours :

from PIL import Image
img=Image.open('photo.png') # stockage des pixels de l’image
 # 'photo.png' dans la liste img
p, n=img.size # n=nombre de lignes (hauteur)
 # p=nombre de colonnes (largeur)
L=list(img.getdata())

La liste L est une simple liste contenant à la suite les pixels de la première ligne de l’image,
les pixels de la deuxième ligne…

Images en niveaux de gris

Chaque élément de la liste L est caractérisé par un entier compris entre 0 (noir) et 255
(blanc).

M est la matrice qui représente l’ensemble des pixels. La première sous-liste contient la
première ligne de l’image. La deuxième sous-liste contient la deuxième ligne de l’image.

M=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
 for j in range(p):
 M[i][j]=L[i*p+j]

Pour récupérer le pixel à la ligne d’indice i et à la colonne d’indice j :

print(M[i][j]) # affiche par exemple 65 : niveau de gris

Pour créer une matrice correspondant à une image vide 800×600 en niveaux de gris :

M=[[0 for j in range(800)] for i in range(600)]

Images en couleurs

Chaque élément de la liste L est caractérisé par un tuple de 3 valeurs entières comprises
entre 0 (intensité nulle) et 255 (intensité maximale) correspondant au codage RVB (rouge,
vert, bleu) ou RGB (red, green, blue). On peut représenter 2563 couleurs différentes. On
rencontre parfois une quatrième valeur correspondant à un coefficient de transparence.

M est la matrice qui représente l’ensemble des pixels. La première sous-liste contient la
première ligne de l’image. La deuxième sous-liste contient la deuxième ligne de l’image.
Chaque pixel de la matrice contient la liste des 3 valeurs entières correspondant au codage
RVB.

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

102

M=[[0 for j in range(p)] for i in range(n)]
for i in range(n):
 for j in range(p):
 M[i][j]=list(L[i*p+j]) # conversion du tuple en liste

Pour récupérer le pixel à la ligne d’indice i et à la colonne d’indice j :

print(M[i][j]) # affiche par exemple [85, 80, 96] :
 # R, V, B pour une image en couleurs

1.
def creation_mat(img):
 # la fonction crée une matrice (liste de lignes)
 # à partir de img (image en niveaux de gris)
 p, n=img.size # n = nombre de lignes (hauteur)
 # p = nombre de colonnes (largeur)
 L=list(img.getdata())
 M=[[0 for j in range(p)] for i in range(n)]
 for i in range(n):
 for j in range(p):
 M[i][j]=L[i*p+j]
 return M

2.
def inv_contraste(M):
 # argument d’entrée : matrice M (liste de listes)
 # en niveaux de gris
 # la fonction retourne M2 la moitié inférieure de l’image M
 # avec inversion du contraste
 n=len(M) # n = nombre de lignes (hauteur)
 n2=n//2
 p=len(M[0]) # p = nombre de colonnes (largeur)
 M2=[[0 for j in range(p)] for i in range(n2, n)]
 for i in range(n2, n):
 for j in range(p):
 M2[i-n2][j]=255-M[i][j] # inversion du contraste
 return M2

3.
def trois_niveaux_gris(M):
 # la fonction renvoie une matrice M2 (liste de listes)
 # avec 3 niveaux de gris uniquement
 # argument d’entrée : matrice M (liste de listes)
 # en niveaux de gris
 n=len(M) # n = nombre de lignes (hauteur)
 p=len(M[0]) # p = nombre de colonnes (largeur)
 M2=[[0 for j in range(p)] for i in range(n)]
 for i in range(n):
 for j in range(p):
 if M[i][j]<=80: # teste si le niveau de gris
 # est <= 80
 M2[i][j]=60
 elif M[i][j]<=150 : # teste si le niveau de gris
 # est <= 150

Chapitre 9 · Matrices de pixels et images, traitement d’images

103

 M2[i][j]=120
 else: # le niveau de gris est > 150
 M2[i][j]=220
 return M2

On pourrait écrire elif M[i][j]>80 and M[i][j]<=150. C’est inu-
tile car si la première condition est vérifiée, Python ne teste pas l’instruc-
tion après elif.

4.
def reduction(M):
 # la fonction renvoie une matrice M2 (liste de listes)
 # avec 1 pixel sur 3 pour la largeur et la hauteur
 # argument d’entrée : matrice M (liste de listes)
 # en niveaux de gris
 n=len(M) # n = nombre de lignes (hauteur)
 p=len(M[0]) # p = nombre de colonnes (largeur)
 M2=[[0 for j in range(0, p, 3)] for i in range(0, n, 3)]
 for i in range(0, n, 3):
 for j in range(0, p, 3):
 M2[i//3][j//3]=M[i][j]
 return M2

5.
def somtab(A): # somme de tous les éléments de
 # la matrice A (liste de listes)
 n=len(A) # n = nombre de lignes (hauteur)
 p=len(A[0]) # p = nombre de colonnes (largeur)
 som=0
 for i in range(n):
 for j in range(p):
 som=som+A[i][j]
 return int(abs(som)) # int pour obtenir un entier

def multipAB(A, B):
 # multiplication case par case de A et B
 # A et B sont des matrices (listes de listes)
 n=len(A) # n = nombre de lignes (hauteur)
 p=len(A[0]) # p = nombre de colonnes (largeur)
 C=[[0 for j in range(p)] for i in range(n)]
 for i in range(n):
 for j in range(p):
 C[i][j]=A[i][j]*B[i][j]
 return C

def filtrage(M):
 # la fonction renvoie une matrice M2 (liste de listes)
 # filtrage passe-bas de la matrice M
 # argument d’entrée : matrice M (liste de listes)
 # en niveaux de gris
 n=len(M) # n = nombre de lignes (hauteur)
 p=len(M[0]) # p = nombre de colonnes (largeur)
 M2=[[0 for j in range(p)] for i in range(n)]

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

104

 A=[[1/12,1/12,1/12],[1/12,4/12,1/12],[1/12,1/12,1/12]]
 for i in range(1, n-1):
 for j in range(1, p-1):
 B=[[M[i1][j1] for j1 in range(j-1, j+2)]\
 for i1 in range(i-1, i+2)]
 C=multipAB(A, B)
 M2[i][j]=somtab(C)
 return M2

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des
exemples d’images.

Les instructions suivantes permettent de récupérer dans la liste L l’ensemble
des pixels d’une image en niveaux de gris. Cette liste contient à la suite les
pixels de la première ligne de l’image, de la deuxième ligne… Les valeurs des
pixels sont des entiers qui varient entre 0 (noir) et 255 (blanc). On utilise les
listes de listes pour représenter les matrices dans Python.
from PIL import Image
img=Image.open('photo.png') # stockage des pixels de l’image
 # 'photo.png' dans la liste img
p, n=img.size # n = nombre de lignes (hauteur)
 # p = nombre de colonnes (largeur)
L=list(img.getdata())

1.  On souhaite réaliser un lissage de l’image représentée par la matrice M en
niveaux de gris. On considère la matrice A :

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Le traitement suivant est appliqué à la matrice M. Pour calculer la nouvelle
valeur du pixel de l’image traitée :

•• on multiplie son ancienne valeur M
i, j

 par la valeur centrale de la matrice A ;

•• on additionne les valeurs des pixels adjacents au pixel traité multipliées
par les valeurs des éléments adjacents à l’élément central de la matrice A :
A M A M A M ...i j i j i j0,0 1, 1 1,0 , 1 2,0 1, 1× + × + × +− − − + −

La nouvelle valeur du pixel est égale à la valeur absolue de la somme précé-
dente.
Écrire une fonction filtre qui admet comme arguments M la matrice repré-
sentant une image et A une matrice 3×3. Cette fonction retourne une nouvelle
matrice résultat du filtrage de l’image.

Exercice 9.2 : Filtrage d’images

https://dunod.com/EAN/9782100846238

Chapitre 9 · Matrices de pixels et images, traitement d’images

105

2.  La dérivée dans la direction horizontale peut être approchée par M Mi j i j, 1,− − .
Proposer un filtre permettant de détecter le changement d’intensité d’une couleur
selon la direction horizontale. On appelle M2 la matrice de l’image ainsi filtrée.
3.  Proposer un filtre permettant de détecter le contour selon la direction verti-
cale. On appelle M3 la matrice de l’image ainsi filtrée.
4.  Proposer un filtre permettant de détecter les contours dans les deux direc-

tions en utilisant pour chaque point de l’image M2 M3i j i j,
2

,
2() ()+ .

Analyse du problème
On repère un pixel par (i, j) où i désigne l’indice de la ligne et j l’indice de la
colonne. Pour chaque pixel, on a un niveau de gris compris entre 0 et 255. On uti-
lise deux boucles for pour décrire tous les pixels de l’image.

1.
def somtab(A): # somme de tous les éléments de
 # la matrice A (liste de listes)
 n=len(A) # n = nombre de lignes (hauteur)
 p=len(A[0]) # p = nombre de colonnes (largeur)
 som=0
 for i in range(n):
 for j in range(p):
 som=som+A[i][j]
 return int(abs(som)) # int pour obtenir un entier

def multipAB(A, B):
 # multiplication case par case de A et B
 # A et B sont des matrices (listes de listes)
 n=len(A) # n = nombre de lignes (hauteur)
 p=len(A[0]) # p = nombre de colonnes (largeur)
 C=[[0 for j in range(p)] for i in range(n)]
 for i in range(n):
 for j in range(p):
 C[i][j]=A[i][j]*B[i][j]
 return C

def filtre(M, A):
 # la fonction renvoie une matrice M2 (liste de listes)
 # filtrage de la matrice M en utilisant la matrice A
 # argument d’entrée : matrice M (liste de listes)
 # en niveaux de gris
 n=len(M) # n = nombre de lignes (hauteur)
 p=len(M[0]) # p = nombre de colonnes (largeur)
 M2=[[0 for j in range(p)] for i in range(n)]
 for i in range(1, n-1):
 for j in range(1, p-1):

Partie 6 · Lecture et écriture de fichiers – Matrices de pixels et images

106

 B=[[M[i1][j1] for j1 in range(j-1, j+2)]\
 for i1 in range(i-1, i+2)]
 C=multipAB(A, B)
 M2[i][j]=somtab(C)
 return M2

2. La dérivée dans la direction horizontale peut être approchée par
M M, 1,− −i j i j. La matrice A suivante permet de détecter le contour selon la
direction horizontale :

0 0 0

−1 1 0

0 0 0

A=[[0, 0, 0], [-1, 1, 0], [0, 0, 0]]
M2=filtre(M, A)

3. La dérivée dans la direction verticale peut être approchée par M M ., 1,− −i j i j
La matrice A suivante permet de détecter le contour selon la direction ver-
ticale :

0 −1 0

0 1 0

0 0 0

A=[[0,-1,0],[0,1,0],[0,0,0]]
M3=filtre(M, A)

4.
def contour(M2, M3):
 import math as m
 n=len(M3) # n = nombre de lignes (hauteur)
 p=len(M3[0]) # p = nombre de colonnes (largeur)
 M5=[[0 for j in range(p)] for i in range(n)]
 for i in range(n):
 for j in range(p):
 M5[i][j]=m.sqrt((M3[i][j])**2+(M3[i][j])**2)
 return M5

Remarque : Voir le site Dunod pour télécharger les programmes Python avec des
exemples d’images.

https://dunod.com/EAN/9782100846238

Partie 7

Tris

Plan

10. Tris� 109
10.1 : Tri par insertion� 109
10.2 : Tri par sélection� 112
10.3 : Tri rapide (sauf TSI et TPC)� 115
10.4 : Tri par partition-fusion� 118
10.5 : �Tri par comptage, histogramme� 122
10.6 : Tri à bulles (sauf TSI et TPC)� 125

109

10Tris

Le tri par insertion est souvent utilisé pour trier des cartes. Il consiste à insérer
les éléments d’une partie de la liste non triée dans la liste triée.
Présentation du tri par insertion :

On considère la liste non triée : L= 8 5 3 9 2 comprenant n = 5 éléments.

Avec Python, on a : L 0 8[] = … et L 1 2n[]− = . On parcourt la liste du deu-
xième au dernier élément. Lorsqu’on est à l’étape k (k variant de 1 à n–1, les
éléments précédents L k[] sont déjà triés. Il faut donc insérer cet élément d’in-
dice k dans la liste triée.
Mise en place de l’algorithme :
On envisage deux boucles pour réaliser le tri par insertion :
•• Première boucle d’indice k (k variant de 1 à n–1). Quand on considère l’élé-
ment d’indice k, on considère que les éléments précédents sont déjà triés.

Par exemple, pour k = 2. On a la liste suivante : 5 8 3 9 2
↑

 avec L[2]=3.

Les éléments avant L[k] sont déjà triés : 5 8 .

On pose x = L[k] = 3.

•• Deuxième boucle d’indice i (i variant de k–1 à 0). Il faut trouver où l’élément
x doit être inséré dans cette liste triée (5 8 dans l’exemple). On compare L i[]
à x. Si L i x[] > , alors il faut décaler cet élément vers la droite : L 1 Li i[] []+ = .
Sinon, il suffit de mettre x dans la valeur du trou qui a été laissé.

Exemple :
Différentes étapes pour la boucle d’indice k :

•• liste non triée : 8 5 3 9 2

•• k = 1 : 8 5 3 9 2 5 8 3 9 2

1 1k k

→
↑

=
↑

=

•• k = 2 : 5 8 3 9 2 3 5 8 9 2

2 2k k

→
↑

=
↑

=

•• k = 3 : 3 5 8 9 2 3 5 8 9 2

3 3k k

→
↑

=
↑

=

Exercice 10.1 : Tri par insertion

Partie 7 · Tris

110

•• k = 4 : 3 5 8 9 2 2 3 5 8 9

4 4k k

→
↑

=
↑

=

On considère une liste non triée d’entiers ou de flottants.

1.  Écrire une fonction tri_insertion qui admet comme argument une liste
L et permet de la trier par ordre croissant en utilisant la méthode du tri par
insertion.
2.  Écrire le programme principal permettant de trier la liste L=[8, 5, 3,
9, 2].
3.  Partant d’une liste de couples (entier, chaîne de caractères), on souhaite
trier la liste L2 par ordre croissant de la population en millions d’habitants :
L2=[[67, 'France'], [40, 'Irak'], [47, 'Kenya'], [32,
'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]. Écrire
une fonction tri_insertion2 permettant de trier la liste L2 par ordre crois-
sant de la population.
4.  Donner les caractéristiques du tri par insertion.

Analyse du problème
On étudie dans cet exercice le tri par insertion qui est un tri en place car il n’utilise
pas de liste auxiliaire. Sa complexité spatiale est faible.

1.
def tri_insertion(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 for k in range(1, n): # k varie entre 1 inclus et n exclu
 i=k-1 # deuxième boucle démarre à k-1
 # les éléments entre 0 et k-1 sont triés
 x=L[k] # mémorisation de la valeur de L[k]
 while i>=0 and L[i]>x:
 L[i+1]=L[i] # décale les éléments de la liste
 i=i-1 # décrémente de 1 la valeur de i
 L[i+1]=x # met la valeur dans le trou
 # return L est inutile car L est passé en référence

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction tri_insertion est une liste qui est un objet
muable. Il est donc inutile de retourner la variable L dans cette fonction !

Chapitre 10 · Tris

111

2.
L=[8, 5, 3, 9, 2]
print(L)
tri_insertion(L)
print(L)

Python affiche :
 [2, 3, 5, 8, 9]

Remarques :

Le programme principal suivant affiche None puisqu’il n’y a pas de return.
print(tri_insertion([5, 2, 3, 1, 4])) # affiche None

def tri_insertion_test(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 for k in range(1, n): # k varie entre 1 inclus et n exclu
 i=k-1 # deuxième boucle démarre à k-1
 # les éléments entre 0 et k-1 sont triés
 x=L[k] # mémorisation de la valeur de L[k]
 while i>=0 and L[i]>x:
 L[i+1]=L[i] # décale les éléments de la liste
 i=i-1 # décrémente de 1 la valeur de i
 L[i+1]=x # met la valeur dans le trou
 return # ne retourne pas de variable

Le programme principal suivant affiche None puisque return ne retourne pas de
variable.

print(tri_insertion_test ([5, 2, 3, 1, 4])) # affiche None

L’instruction return est inutile dans cette fonction.

3.
def tri_insertion2(L):
 # la fonction trie par ordre croissant la liste L
 # L[i][0] valeur à trier
 # attention : une liste Python est une variable passée
 # par référence
 n=len(L)
 for k in range(1, n): # k varie entre 1 inclus et n exclu
 i=k-1 # deuxième boucle démarre à k-1
 # les éléments entre 0 et k-1 sont triés
 x, pays=L[k] # mémorisation de la valeur de L[k]
 while i>=0 and L[i][0]>x:
 L[i+1]=L[i] # décale les éléments de la liste
 i=i-1 # décrémente de 1 la valeur de i
 L[i+1]=[x, pays] # met la valeur dans le trou
 # return L est inutile car L est passé en référence
L2=[[67, 'France'], [40, 'Irak'],[47, 'Kenya'],\
 [32, 'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]
print(L2)
tri_insertion2(L2)
print(L2)

Partie 7 · Tris

112

Cours :
On cherche à trier un ensemble d’éléments, c’est-à-dire à les ordonner en fonction d’une
relation d’ordre définie sur ces éléments.

•• Un tri comparatif est basé sur la comparaison des éléments entre eux.
•• Un tri itératif est basé sur un ou plusieurs parcours itératifs de la liste.
•• Un tri récursif est basé sur une procédure récursive.
•• Un tri en place n’utilise qu’un espace mémoire de taille constante en plus de l’espace
servant à stocker les éléments à trier. Il n’utilise pas de liste auxiliaire.

•• Un tri stable conserve l’ordre initial des éléments de même clé. Deux éléments avec des
clés égales apparaîtront dans le même ordre dans la liste triée et dans la liste non triée.

On rencontre différents algorithmes de tri :

•• Tri par insertion : tri comparatif, itératif, stable. Tri en place.
•• Tri par sélection : tri comparatif, itératif, instable. Tri en place.
•• Tri rapide : tri comparatif, récursif, instable. Tri en place.
•• Tri par partition-fusion : tri comparatif, récursif, stable. Le tri n’est pas en place
•• Tri par comptage : tri itératif. Le tri n’est pas comparatif. Le tri n’est pas en place. On
n’étudie pas la stabilité pour le tri par comptage.

•• Tri à bulles : tri comparatif, itératif, stable. Tri en place.

4. Le tri par insertion est comparatif et itératif.
La liste initiale est triée par ordre alphabétique : [[67, 'France'],
[40, 'Irak'], [47, 'Kenya'], [32, 'Pérou'], [66,
'Royaume-Uni'], [66, 'Thaïlande']].
La liste triée par ordre croissant de la population est : [[32, 'Pérou'],
[40, 'Irak'], [47, 'Kenya'], [66, 'Royaume-Uni'],
[66, 'Thaïlande'], [67, 'France']].
Le tri par insertion est stable puisqu’on garde l’ordre alphabétique dans la
liste triée pour les pays qui ont la même population.
Le tri par insertion est un tri en place car il n’utilise pas de liste auxiliaire.

On considère une liste L contenant n éléments. Le tri par sélection consiste à :
•• rechercher le plus petit élément de la liste et le placer en première position ;

•• rechercher le deuxième plus petit élément de la liste et le placer en deuxième
position ;

•• répéter itérativement le processus tel que la liste soit entièrement triée.

Mise en place de l’algorithme :
On parcourt la liste L[i] en faisant varier i entre 0 inclus et n−2 inclus :
•• On cherche ind_mini l’indice correspondant à l’élément le plus petit de la
liste L[i : n].

•• Si ind_mini est différent de i, alors on permute L[i] avec L[ind_mini].

Exercice 10.2 : Tri par sélection

Chapitre 10 · Tris

113

1.  Écrire une fonction tri_sélection qui admet comme argument une liste
L et permet de la trier par ordre croissant en utilisant la méthode du tri par
sélection. Écrire le programme principal permettant de trier la liste L=[8, 5,
3, 9, 2].
2.  Partant d’une liste de couples (entier, chaîne de caractères), on souhaite
trier la liste L2 par ordre croissant de la population en millions d’habitants :
L2=[[67, 'France'], [40, 'Irak'], [47, 'Kenya'], [32,
'Pérou'], [66, 'Royaume-Uni'], [66, 'Thaïlande']]. Écrire
une fonction tri_sélection2 permettant de trier la liste L2 par ordre crois-
sant de la population.
3.  Donner les caractéristiques du tri par sélection.
4.  Évaluer la complexité dans le pire des cas lors de l’appel de la fonction
tri_sélection.

Analyse du problème
On étudie dans cet exercice le tri par sélection, qui est un tri en place car il n’utilise
pas de liste auxiliaire. Le premier élément d’une liste L a pour indice 0 avec Python.

1.
def tri_sélection(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 for i in range(0, n-1):
 # recherche du minimum de la liste L[i: n]
 mini=L[i]
 ind_mini=i
 for j in range(i+1, n):
 if L[j]<mini:
 ind_mini=j
 mini=L[j]
 # on permute L[i] et L[ind_mini] si on a trouvé
 # un nouveau minimum
 if ind_mini!=i: # ind_mini est différent de i
 L[i], L[ind_mini]=L[ind_mini], L[i]
 # return L est inutile car L est passé en référence

L=[8, 5, 3, 10, 2, 9]
tri_sélection(L)
print(L)

2.
def tri_sélection2(L):
 # la fonction trie par ordre croissant la liste L
 # L[i][0] valeur à trier
 n=len(L)
 for i in range(0, n-1):
 # recherche du minimum de la liste L[i: n]

Partie 7 · Tris

114

 mini=L[i][0]
 ind_mini=i
 for j in range(i+1, n): # parcourt L[j] pour j>i
 if L[j][0]<mini:
 ind_mini=j
 mini=L[j][0]
 # on permute L[i] et L[ind_mini] si on a trouvé
 # un nouveau minimum
 if ind_mini!=i: # ind_mini est différent de i
 L[i], L[ind_mini]=L[ind_mini], L[i]
 # return L est inutile car L est passé en référence

3. Le tri par sélection est comparatif, instable et itératif. C’est un tri en
place car il n’utilise pas de liste auxiliaire.
4. On cherche à calculer le nombre d’opérations élémentaires :

•• Ligne n = len(L) : 2 opérations élémentaires (appel de len(L) et
affectation).

•• Boucle for i in range(n-1) :
OO 3 opérations élémentaires (appel de l’élément L[i], affectation de
mini, affectation de ind_mini) ;
OO boucle for j in range(i+1, n) : on se place dans le pire des
cas, on a 5 opérations élémentaires (appel de l’élément L[j], test,
affectation, appel de l’élément L[j] et affectation) ;
OO dans le pire des cas, on a 6 opérations élémentaires (test, appel de
l’élément L[i], appel de l’élément L[ind_mini] et 3 affecta-
tions).

Le nombre total d’opérations élémentaires vaut :

n i
n

n2 3 5 1 1 6 2
3
2

5
2

i

n

0

2
2∑()()() ()+ + − − + + = − + +

=

−

La complexité est quadratique en O n2().
Remarque :

On peut accepter des petites différences dans l’évaluation du nombre total d’opéra-
tions élémentaires. La complexité de l’algorithme ne sera pas modifiée.

On peut montrer que la complexité est quadratique dans tous les cas.

Chapitre 10 · Tris

115

On considère la liste L = 10 3 9 6 8 non triée. On modifie la liste L en place.
Lors des différents appels récursifs, on travaille sur une partie de la liste L. On
repère les éléments d’une sous-liste par les pointeurs a et b.
Fonction pivot :
•• On choisit le dernier élément de la liste qui est appelé le pivot p (ici p = 8) :

10 3 9 6 8
p

•• On réordonne la liste en plaçant tous les éléments inférieurs ou égaux au pivot
à gauche de celui-ci et les éléments strictement supérieurs à droite du pivot.
Le pivot p est alors à sa bonne place dans la liste à trier.

L’indice du pivot ind_p vaut 0 au début de la procédure.

•• On compare L[0] = 10 au pivot p = 8. Comme L[0] > p, pas de modifica-
tion : ind_p = 0. 10 3 9 6 8

↑
•• On compare L[1] = 3 au pivot p = 8. Comme L[1] <= p, on échange L[1] et
L[ind_p] et on incrémente ind_p. On a alors : ind_p = 1. 3 10 9 6 8

↑

•• On compare L[2] = 9 au pivot p = 8. Comme L[2] > p, pas de changement :
ind_p = 1. 3 10 9 6 8

↑

•• On compare L[3] = 6 au pivot p = 8. Comme L[3] <= p, on échange L[3] et
L[ind_p] et on incrémente ind_p. On a alors : ind_p = 2. 3 6 9 10 8

↑
•• Pour cette dernière étape, on ne modifie pas ind_p mais on permute le der-
nier élément et L[ind_p]. 3 6 8 10 9

↑

On est sûr que le pivot est à la bonne place.

Algorithme principal :
Il reste à appliquer la procédure précédente aux deux sous-listes à gauche et à
droite du pivot, c’est-à-dire 3 6 et 10 9 .
On a une procédure récursive puisqu’on applique la fonction pivot à deux
sous-listes. On a des sous-listes de longueur de plus en plus petite. On arrive à
une sous-liste comportant un seul élément, qui est donc triée (condition d’arrêt
de la fonction récursive) !

1.  Écrire une fonction pivot qui admet comme arguments une liste L et deux
indices a et b permettant de définir une sous-liste de L avec des indices compris
entre a et b. Le dernier élément de la sous-liste est appelé le pivot. Cette fonction
réordonne les éléments de la sous-liste en plaçant tous les éléments inférieurs ou
égaux au pivot à gauche de celui-ci et les éléments strictement supérieurs au pivot
à droite de celui-ci. Cette fonction retourne la position du pivot dans la liste.

Exercice 10.3 : Tri rapide (sauf TSI et TPC)

Partie 7 · Tris

116

2.  Écrire une fonction récursive tri_rapide permettant de trier une liste par
ordre croissant en utilisant la fonction pivot.
3.  Écrire le programme principal permettant de trier la liste L=[10, 3, 9,
6, 8]. Représenter l’arbre des appels de la fonction récursive tri_rapide.
4.  Donner les caractéristiques du tri rapide.

Analyse du problème
Le tri rapide s’appuie sur le principe « diviser pour régner » comme le tri par
partition-fusion. On réalise un tri en place.

1.
def pivot(L, a, b): # a = indice de début, et b = indice de fin
 # la fonction renvoie la position du pivot dans la liste
 # éléments inférieurs ou égaux sont à gauche du pivot
 # L[i][0] valeur à trier
 p=L[b] # valeur du pivot = dernier élément de la liste
 ind_p=a # indice du pivot
 for i in range(a, b): # i varie entre a inclus et b exclu
 if L[i]<=p:
 L[i], L[ind_p]=L[ind_p], L[i] # on échange les
 # 2 éléments
 ind_p+=1
 L[b], L[ind_p]=L[ind_p], L[b] # échange les 2 éléments
 # inutile de retourner L car passage par référence
 # la valeur L[ind_p] est bien placée dans la liste à trier
 return ind_p

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction pivot est une liste qui est un objet muable. Il est
donc inutile de retourner la variable L dans cette fonction !

2.
def tri_rapide(L, a, b):
 # a = indice de début, et b = indice de fin
 # la fonction trie par ordre croissant la liste L
 if b>a:
 ind_p=pivot(L, a, b)
 tri_rapide(L, a, ind_p-1) # tri_rapide pour les indices
 # entre a et ind_p-1
 tri_rapide(L, ind_p+1, b) # tri rapide pour les indices
 # entre ind_p+1 et b
 # si a=b alors la sous-liste est triée : condition d’arrêt
 # si a>b pas de changement. Il faut bien considérer ce cas
 # comme condition d’arrêt

Chapitre 10 · Tris

117

3.
L=[10, 3, 9, 6, 8]
n=len(L)
print(L)
tri_rapide(L, 0, n-1) # la fonction retourne none
 # puisque L est triée en place
print(L)

L’arbre ci-dessous représente les différents appels de la fonction tri_
rapide. La valeur du pivot est représentée avec une taille de police de
caractères plus grande.

[3]

[10,3,9,6,])8

[3,6, ,10,9])8

[3,6,8,9,10])

[3,]6 [10,]9

[9,10]
[3,6]

[3,]6 [,10]9

[10]

[3,6] [9,10]

[3] [10]

pivot

pivot pivot

tri_rapide

tri_rapide

tri_rapide tri_rapide

Remarque :

Lorsqu’on applique la fonction tri_rapide à la sous-liste [10, 9] avec a = 3 et
b = 4, il y a trois actions :

•• appel de la fonction pivot : le pivot vaut 9 et l’indice du pivot vaut ind_p = 3
puisque 9 fait partie de la liste L = [3, 6, 8, 9, 10] ;

•• appel de la fonction tri_rapide à la sous-liste définie par a = 3 et ind_p −
1 = 2. La fonction tri_rapide ne modifie rien : c’est une condition d’arrêt ;

•• appel de la fonction tri_rapide à la sous-liste définie par ind_p + 1 = 4 et
b = 4. La fonction tri_rapide ne modifie rien puisque la sous-liste constituée
d’un seul élément est déjà triée : c’est une condition d’arrêt.

La complexité du tri rapide est quasi linéaire en logO n n(). Le tri rapide est plus
efficace que le tri par insertion dont la complexité est quadratique en 2O n() dans le
pire des cas.

Partie 7 · Tris

118

4. Les caractéristiques du tri rapide sont : comparatif, récursif et instable.
Le tri rapide est en place.
On utilise la méthode « diviser pour régner » qui peut se décomposer en
trois étapes :

•• Diviser (ou partitionner) : on divise le problème initial en plusieurs
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le
problème de départ.

On considère une liste L non triée d’entiers ou de flottants. On cherche à trier
cette liste par ordre croissant en utilisant la méthode du tri par partition-fusion.
Algorithme principal :
On partage la liste initiale L de longueur n en deux sous-listes L1 et L2 de
longueurs n//2 et n–n//2. On trie de façon récursive les deux sous-listes puis on
fusionne les deux sous-listes triées.
Fusion de deux sous-listes L1 et L2 triées :
On considère par exemple L1=[3, 5, 8] et L2=[4, 6].
On construit la nouvelle liste L en retirant le premier élément de la première
liste ou de la deuxième liste.
•• Première étape : on considère le premier élément de chaque liste : 3 5 8

↑
 et

4 6
↑

.

On cherche le minimum de 3 et 4 que l’on ajoute dans la nouvelle liste :
L=[3].

Il reste alors L1=[5, 8] et L2=[4, 6].

•• Deuxième étape : on considère le premier élément de chaque liste : 5 8
↑

 et
4 6
↑

.

On cherche le minimum de 5 et 4 que l’on ajoute dans la nouvelle liste :
L=[3, 4].

Il reste alors L1=[5, 8] et L2=[6].

•• Étapes suivantes :

L=[3, 4, 5] ; L1=[8] et L2=[6]

L=[3, 4, 5, 6] ; L1=[8] et L2=[]

L=[3, 4, 5, 6, 8] ; L1=[] et L2=[]

On obtient la liste L triée.

Exercice 10.4 : Tri par partition-fusion

Chapitre 10 · Tris

119

1.  Écrire une fonction itérative fusion qui admet comme arguments deux
listes L1 et L2 triées et retourne la fusion triée des deux listes.
2.  Réécrire une version récursive de la fonction précédente que l’on appellera
fusion_rec.
3.  Écrire une fonction récursive tri_fusion permettant de trier la liste L. On
pourra partager la liste initiale L en deux sous-listes L1 et L2.
4.  Écrire le programme principal permettant de trier par ordre croissant la liste
L=[8, 3, 5, 1, 9, 5, 12, 15]. La fonction tri_fusion comporte
plusieurs appels récursifs. Représenter l’arbre des appels de la fonction tri_
fusion pour la liste L.
5.  Donner les caractéristiques du tri par partition-fusion.

Analyse du problème
Le tri par partition-fusion s’appuie sur le principe « diviser pour régner », c’est-
à-dire que l’on divise (partitionne) le problème en deux sous-problèmes que
l’on sait résoudre. Il reste à utiliser les deux solutions pour résoudre le problème
initial.

1.
def fusion(L1, L2):
 # la fonction L retourne la fusion triée des deux listes
 # L1 et L2
 i1, i2=0, 0 # position du pointeur de chaque
 # liste
 n1, n2=len(L1), len(L2) # longueur des listes
 n=n1+n2 # longueur de L1+L2
 L=[]
 while i1+i2<n: # il faut parcourir tous les
 # éléments de L1+L2
 if i1==n1: # la liste L1 est parcourue
 # entièrement
 return L+L2[i2:] # il faut ajouter les éléments
 # restants de L2
 elif i2==n2: # la liste L2 est parcourue
 # entièrement
 return L+L1[i1:] # il faut ajouter les éléments
 # restants de L1
 elif L1[i1]<L2[i2]:
 L=L+[L1[i1]] # ajoute L1[i1]
 i1+=1 # incrémente de 1 le pointeur de L1
 else: # on a forcément L1[i1]>=L2[i2]
 L=L+[L2[i2]]
 i2+=1
 return L

Partie 7 · Tris

120

Il faut bien connaître le slicing ou extraction de tranche pour les listes : instruction
L[start:stop] (voir exercice 1.6 « Slicing, extraction de tranche, » dans le
chapitre « Prise en main de Python »).

•• start désigne l’indice de départ.

•• stop–start désigne la longueur de la liste extraite (lorsque le pas vaut 1).
L’indice final vaut stop–1 !

Remarque : Il est préférable d’utiliser deux pointeurs i1 et i2 plutôt que d’en-
lever au fur et à mesure les éléments de L1 et L2 quand on construit la nouvelle
liste L. On ne modifie pas les listes L1 et L2 en utilisant les pointeurs i1 et i2.

Cours :
Dans toute procédure récursive, l’instruction return doit être présente au moins deux
fois : une fois pour la condition d’arrêt (premier return dans le programme) et une autre
fois pour l’appel récursif (dernier return dans le programme).

2.
def fusion_rec(L1, L2):
 # la fonction retourne la fusion triée des deux listes
 # L1 et L2
 if L1==[]:
 return L2 # condition d’arrêt
 elif L2==[]:
 return L1 # condition d’arrêt
 elif L1[0]<L2[0]:
 return ([L1[0]]+fusion_rec(L1[1:], L2))
 else:
 return ([L2[0]]+fusion_rec(L1, L2[1:]))

3.
def tri_fusion(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 if n==1:
 return L # condition d’arrêt
 else:
 L1=L[:n//2] # indices compris entre 0 inclus et n//2 exclu
 # la longueur de L1 vaut n//2
 L2=L[n//2:] # indices compris entre n//2 inclus et n exclu
 return fusion_rec(tri_fusion(L1), tri_fusion(L2))

4.
L=[8, 3, 5, 1, 9, 5, 12, 15]
L_tri=tri_fusion(L)
print(L_tri)

Remarque :

À chaque appel de la fonction récursive, on coupe la liste en deux. On arrive tou-
jours à une sous-liste comportant un seul élément, qui est donc triée (condition
d’arrêt de la fonction récursive) !

Chapitre 10 · Tris

121

La complexité spatiale est très mauvaise puisqu’on utilise une fonction récursive
qui appelle elle-même une fonction récursive. Le tri n’est pas en place comme avec
le tri par insertion.

1er appel de la fonction tri_fusion : L1=[8, 3, 5, 1] et L2=
[9, 5, 12, 15]. Avant de fusionner L1 et L2, il faut les trier de façon
récursive en appelant la fonction tri_fusion.
L’arbre ci-dessous représente les différents appels de la fonction tri_
fusion notée tri_f.

tri_f([8,3,5,1])

main()

tri_f([9,5,12,15])

[5,9,12,15]
[1,3,5,8]

tri_f([8,3]) tri_f([5,1]) tri_f([9,5]) tri_f([12,15])

tri_f([8]) tri_f([3]) tri_f([5]) tri_f([1]) tri_f([9]) tri_f([5]) tri_f([12]) tri_f([15])

[3,8]
[1,5] [5,9]

[12,15]

[8]

[3] [5] [1] [9] [12]
[15]

[5]

Remarque : La complexité du tri par partition-fusion est quasi linéaire en O n n()log .
Le tri par partition-fusion est plus efficace que le tri par insertion dont la complexité est
quadratique en 2O n()dans le pire des cas.

5. Les caractéristiques du tri par partition-fusion sont : comparatif, récur-
sif, stable. Le tri n’est pas en place.
On utilise la méthode « diviser pour régner », qui peut se décomposer en
trois étapes :

•• Diviser (ou partitionner) : on divise le problème initial en plusieurs
sous-problèmes.

•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le
problème de départ.

Partie 7 · Tris

122

Le tri par comptage est un algorithme de tri d’entiers. On considère des entiers
de 0 à p dans une liste L contenant n éléments : L=[10, 20, 12, 12, 16,
16, 12, 20, 15]. L’algorithme compte le nombre d’occurrences de chaque
entier.
Les fonctions suivantes permettent le tracé d’histogrammes :

import matplotlib.pyplot as plt # module matplotlib.pyplot renommé plt
plt.hist(L, bins=10)
 # bins = 10 = nombre d’intervalles

Mise en place de l’algorithme :
•• On définit une liste vide L_tri.

•• On définit une liste HISTO de p+1 valeurs initialisées à 0.

•• On parcourt la liste L, on compte le nombre fois qu’apparaît L[i] et on incré-
mente HISTO[L[i]] de 1 à chaque fois.

•• On parcourt la liste HISTO pour construire au fur et à mesure la liste triée
L_tri.

1.  Écrire une fonction tri_comptage réalisant cette opération.
2.  Donner les caractéristiques du tri par comptage.
3.  Évaluer la complexité dans le pire des cas lors de l’appel de la fonction
tri_comptage en fonction de n et p.
4.  Afficher graphiquement l’histogramme de la liste L. L’histogramme doit
avoir les caractéristiques suivantes :
•• Afficher « Valeurs de L » pour l’axe des abscisses et « Nombre d’occur-
rences » pour l’axe des ordonnées.

•• Afficher le titre : « Histogramme de la liste L ».

5.  Proposer une amélioration de la fonction tri_comptage en tenant compte
du minimum et du maximum de la liste L.

Exercice 10.5 : Tri par comptage, histogramme

Analyse du problème
On étudie dans cet exercice le tri par comptage. On crée une liste HISTO qui repré-
sente l’histogramme (ou liste de comptage) des éléments de L. Voir exercice 2.2
« Tracé d’un histogramme avec matplotlib » dans le chapitre « Graphiques ».

1.
def tri_comptage(L):
 # la fonction retourne L_tri, qui est la liste L triée par
 # ordre croissant

Chapitre 10 · Tris

123

 n=len(L) # nombre d’éléments de L
 L_tri=[]
 p=L[0] # recherche du maximum de L noté p
 for i in range(n):
 if L[i]>p:
 p=L[i] # nouvelle valeur du maximum
 HISTO==[0 for i in range(p+1)] # liste contenant p+1 valeurs
 # nulles
 # on parcourt la liste L pour incrémenter HISTO
 for i in range(n):
 valeur=L[i]
 HISTO[valeur]+=1 # incrémente HISTO[valeur] de 1
 # on pourrait écrire : HISTO[L[i]]+=1
 # on parcourt la liste HISTO pour construire L_tri
 for i in range(p+1):
 if HISTO[i]>0:
 for j in range(int(HISTO[i])):
 L_tri.append(i)
 return L_tri

L=[10, 20, 12, 12, 16, 16, 12, 20, 15]
L1_tri=tri_comptage(L)
print(L1_tri)

La liste HISTO vaut : [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 0, 1, 2, 0, 0, 0, 2].
2. Le tri par comptage n’est pas comparatif (on ne compare pas les élé-
ments de la liste entre eux). Le tri est itératif. Le tri n’est pas en place
puisqu’il utilise une liste auxiliaire HISTO.

Remarque :

Plusieurs éléments de la liste L sont représentés par un unique élément dans l’histo-
gramme. Le tri par comptage ne peut pas être appliqué pour des structures plus com-
plexes telles que [[67, 'France'], [40, 'Irak'], [47, 'Kenya'],
[66, 'Royaume-Uni'], [66, 'Thaïlande'], [32, 'Pérou']]. On
n’étudie donc pas la stabilité pour le tri par comptage.

Le tri par comptage est bien adapté pour des entiers relativement proches les uns
des autres.

3. On cherche à calculer le nombre d’opérations élémentaires :
•• Ligne n=len(L) : 2 opérations élémentaires (appel de len(L) et
affectation).

•• Ligne L_tri=[] : 1 opération élémentaire.
•• Boucle for i in range(n) : à chaque étape, 4 opérations élémentaires
(appel de l’élément L[i], test, appel de l’élément L[i] et affectation.
On a donc 4n opérations élémentaires.

•• Ligne HISTO=[0 for i in range(p+1)] : p+1 opérations élé-
mentaires.

Partie 7 · Tris

124

•• Boucle for i in range(n) : à chaque étape, 4 opérations élé-
mentaires (appel de l’élément L[i], affectation, appel de l’élément
HISTO[valeur], incrément de 1).
On a donc 4n opérations élémentaires.

•• Boucle for i in range(p+1) : à chaque étape, on a un test avec
2 opérations élémentaires (appel de l’élément HISTO[i] et test).
L’ajout d’un élément dans L_tri se fait au maximum n fois lorsque toutes
les étapes de la boucle for i in range(p+1) ont été effectuées.
Lorsqu’on ajoute un élément dans L_tri, on a 3 opérations élémentaires
(appel de l’élément HISTO[i], fonction int, ajout de i dans L_tri).
On a donc 2(p+1) + 3n opérations élémentaires pour la boucle for i
in range(p+1).

Le nombre total d’opérations élémentaires est : n p n p n2 1 4 1 4 2(1) 3()+ + + + + + + +
n p n p n2 1 4 1 4 2(1) 3()+ + + + + + + + .

La complexité est linéaire en O n p()+ .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modifiée.

4.
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt
plt.figure() # nouvelle fenêtre graphique
plt.hist(L, range=(10, 20), bins=10)
 # tracé de l’histogramme
 # minimum = 10 et maximum = 20
 # avec 10 intervalles
plt.title('Histogramme de la liste L') # titre de l’histogramme
plt.xlabel('Valeurs de L')
plt.ylabel("Nombre d’occurrences")
plt.show() # affiche la figure à l’écran

5. On peut réduire le nombre d’éléments de la liste HISTO en calculant le
minimum et le maximum de L, notés respectivement mini et maxi. La
liste HISTO contient alors maxi–mini+1 éléments au lieu de maxi+1
éléments dans la question 2.
def tri_comptage2(L):
 # la fonction retourne L_tri, qui est la liste L triée par
 # ordre croissant
 n=len(L) # nombre d’éléments de L
 L_tri=[]
 mini, maxi=L[0], L[0] # recherche du minimum
 # et du maximum de L
 for i in range(n):
 if L[i]<mini: # nouvelle valeur du minimum
 mini=L[i]
 if L[i]>maxi:
 maxi=L[i] # nouvelle valeur du maximum
 HISTO=[0 for i in range(maxi-mini+1)] # liste contenant
 # p+1 valeurs nulles

Chapitre 10 · Tris

125

 # on parcourt la liste L pour incrémenter HISTO
 for i in range(n):
 HISTO[L[i]-mini]+=1 # incrémente HISTO[L[i]-mini] de 1
 # on parcourt la liste HISTO pour créer L_tri
 for i in range(maxi+1-mini):
 if HISTO[i]>0:
 for j in range(int(HISTO[i])):
 L_tri.append(i+mini)
 return L_tri

L=[10, 20, 12, 12, 16, 16, 12, 20, 15]
L2_tri=tri_comptage2(L)
print(L2_tri)

On considère la liste L=[8, 4, 2, 22, 6] composée de n éléments.
Le tri à bulles consiste à comparer les deux premiers éléments d’une liste L et à
les échanger s’ils ne sont pas triés par ordre croissant. On recommence ensuite
avec le deuxième et le troisième élément de la liste, et ainsi de suite… Au cours
d’une passe de la liste, les plus grands éléments remontent de proche en proche
vers la droite comme des bulles vers la surface.
On réitère l’opération précédente en s’arrêtant à l’élément d’indice n−2 puis à
l’élément d’indice n−3…
1.  Écrire une fonction tri_bulles réalisant cette opération.
2.  Donner les caractéristiques du tri à bulles.
3.  �Évaluer la complexité dans le pire des cas lors de l’appel de la fonction

tri_bulles.
4.  �Proposer une amélioration de la fonction tri_bulles en tenant compte

qu’aucun élément n’est échangé lors d’un parcours d’une liste triée.

Exercice 10.6 : Tri à bulles (sauf TSI et TPC)

Analyse du problème
On étudie dans cet exercice le tri à bulles. On parcourt la liste L en comparant les
éléments consécutifs deux à deux et en faisant remonter vers la fin de la liste les
plus grands éléments. Au bout du premier parcours, l’élément le plus grand est
remonté comme une bulle, d’où le nom « tri à bulles ».

1. On considère la boucle :
for i in range(n-1, 0, -1): # i varie entre n-1 inclus
 # et 0 exclu avec pas=-1

•• Première étape : i = n−1 = 4
On a une deuxième boucle for j in range(1, i+1), dans laquelle
j varie entre 1 inclus et 5 exclu, qui permet de comparer deux éléments
consécutifs de L et de les échanger s’ils sont mal triés.

Partie 7 · Tris

126

L’élément 8 va remonter comme une bulle jusqu’à l’indice 2 de la liste.
L’élément 22 remonte comme une bulle jusqu’à l’indice n−1 de la liste. On
obtient : L=[4, 2, 8, 6, 22]. L’élément 22 est donc bien placé.

•• Deuxième étape : i = 3
On considère uniquement les éléments : 4, 2, 8, 6 puisque la deuxième
boucle fait varier j de 1 inclus à 4 exclu (ou 3 inclus). On obtient :
L=[2, 4, 6, 8, 22].

•• …
•• Dernière étape : i = 1. On obtient : L=[2, 4, 6, 8, 22].

def tri_bulles(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 for i in range(n-1, 0, -1): # i varie entre n-1 inclus
 # et 0 exclu avec pas=-1
 for j in range(1, i+1): # j varie entre 1 inclus
 # et i+1 exclu
 if L[j-1]>L[j]:
 L[j-1], L[j]=L[j], L[j-1] # échange de L[j-1]
 # et L[j]
L=[8, 4, 2, 22, 6]
print(L)
tri_bulles(L)
print(L)

Remarque : On peut parcourir la liste à trier à l’envers. On compare deux éléments
consécutifs deux à deux et on fait remonter vers le début de la liste les plus petits
éléments.

2. Le tri à bulles est comparatif et itératif.
La liste initiale est triée par ordre alphabétique : [[67, 'France'],
[40, 'Irak'], [47, 'Kenya'], [32, 'Pérou'], [66,
'Royaume-Uni'], [66, 'Thaïlande']].
La liste triée par ordre croissant de la population est : [[32, 'Pérou'],
[40, 'Irak'], [47, 'Kenya'], [66, 'Royaume-Uni'],
[66, 'Thaïlande'], [67, 'France']].
Pour trier la liste précédente, il suffit de remplacer la ligne if L[j-
1]>L[j] par if L[j-1][0]>L[j][0].
Le tri à bulles est donc stable puisqu’on garde l’ordre alphabétique dans la
liste triée pour les pays qui ont la même population.

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction, alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La variable L dans la fonction tri_bulles est une liste, qui est un objet
muable. Il est donc inutile de retourner la variable L dans cette fonction !

Chapitre 10 · Tris

127

Le tri à bulles est un tri en place car il n’utilise pas de liste auxiliaire.
3. On cherche à calculer le nombre d’opérations élémentaires :

•• Ligne n=len(L) : 2 opérations élémentaires (appel de len(L) et
affectation).

•• Boucle for i in range(n-1, 0, -1) :
OO Boucle for j in range(1, i+1) : on se place dans le pire des
cas. On a 7 opérations élémentaires (appel de l’élément L[j], appel
de l’élément L[j-1], test, appel de l’élément L[j], appel de l’élé-
ment L[j-1], 2 affectations).

Le nombre total d’opérations élémentaires vaut : i n n2 7
7
2

7
2

2
i

n

1

1
2∑+ = − +

=

−

.

La complexité est quadratique en O n()2 .

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas modi-
fiée.

4. Si aucun élément n’est échangé lors d’un parcours d’indice i, alors la liste
est bien triée.
On ajoute une variable liste_triée qui passe à False si des éléments
de la liste sont échangés. Dans ce cas, la liste n’est pas encore triée pour
ce parcours d’indice i.
def tri_bulles2(L):
 # la fonction trie par ordre croissant la liste L
 n=len(L)
 for i in range(n-1, 0, -1): # i varie entre n-1 inclus
 # et 0 exclu avec pas=-1
 liste_triée=True
 for j in range(1, i+1): # j varie entre 1 inclus
 # et i+1 exclu
 if L[j-1]>L[j]:
 L[j-1], L[j]=L[j], L[j-1] # échange de L[j-1]
 # et L[j]
 liste_triée=False
 if liste_triée==True:
 break # sort de la boucle for i in range(n-1, 0, -1)
 # return L est inutile car L est passé en référence

Remarque : L’instruction break fait sortir de la boucle for i in range(n-1,
0, -1) et passe à l’instruction suivante (# return L est inutile car L
est passé en référence). Comme il n’y a pas d’instruction après ce com-
mentaire, on sort de la fonction tri_bulles2.

L’instruction break fait sortir d’une boucle while ou for et passe à l’instruc-
tion suivante alors que l’instruction return quitte la fonction.

Partie 8

Dictionnaire, pile,
file, deque

Plan

11. Dictionnaire, pile, file, deque� 131
11.1 : Opérations de base sur les dictionnaires� 131
11.2 : �Comptage des éléments d'une liste à l’aide d’un

dictionnaire� 134
11.3 : Opérations de base sur les piles� 136
11.4 : Parenthésage� 139
11.5 : Opérations de base sur les files� 140
11.6 : Utilisation des deques� 142

131

11Dictionnaire, pile,
file, deque

On considère des opérations de base sur les dictionnaires.
1.  Écrire une fonction dico_vide qui renvoie un dictionnaire vide.
2.  Écrire une fonction ajout_cle qui admet comme arguments un diction-
naire, une clé et une valeur. Cette fonction ajoute le couple (clé, valeur) au
dictionnaire.
3.  Écrire une fonction supp_cle qui admet comme arguments un diction-
naire et une clé. Cette fonction supprime le couple (clé, valeur) correspon-
dant à clé.

Exercice 11.1 : Opérations de base sur les dictionnaires

Analyse du problème
Les dictionnaires sont très souvent utilisés en informatique. Chaque élément du
dictionnaire a une clé unique. Les éléments du dictionnaire ne sont pas ordonnés.

Cours :
Rappels sur les listes et les tuples

Les éléments d’une liste ou d’un tuple sont ordonnés. Pour récupérer un élément, on utilise
un indice.

L1=["MPSI", "PTSI"] # liste (objet modifiable) contenant 2 éléments
print(L1[1]) # affiche "PTSI", d’indice 1 dans la liste L1
L2=(48, 46) # tuple (objet non modifiable) contenant 2 éléments
print(L2[0]) # affiche 48, d’indice 0 dans la liste L2

Dictionnaires

Une table de hachage est une structure de données permettant de stocker des couples
(clé, valeur). Elle permet de retrouver une clé très rapidement. Les tables de hachage
sont appelées dictionnaires avec Python. Dans un dictionnaire, on associe une valeur à
une clé.

Le type de la clé peut être un entier, un nombre flottant, une chaîne de carac-
tères… mais pas une liste.

Le type de la valeur associée à la clé peut être quelconque.

Partie 8 · Dictionnaire, pile, file, deque

132

Les éléments d’un dictionnaire ne sont pas ordonnés. On ne peut pas utiliser un indice
comme pour les listes pour accéder à un élément.

Chaque élément du dictionnaire est identifié par une clé unique.

On utilise la clé pour rechercher la valeur correspondante du couple (clé, valeur).

On définit un élément du dictionnaire dans Python en précisant la clé, suivie de « : » et de
la valeur associée.

d1={"MPSI":48} # dictionnaire dico1 constitué d’un seul élément
print(d1) # affiche {'MPSI': 48}. On visualise la clé
 # et la valeur
print(type(d1)) # affiche le type de d1 : dict (type dictionnaire)

d1 est un objet de type dict.

On crée le dictionnaire d2 constitué de deux éléments :

d2={"MPSI":48,"PTSI":46}

Les éléments sont délimités par des accolades.

Création d’un dictionnaire vide

d={} # dictionnaire vide avec les accolades {}

Ajout d’un élément dans le dictionnaire

d["MPSI"]=48 # ajoute "MPSI" : 48
d["MP"]=46 # ajoute "MP" : 46
print(d) # affiche {'MPSI': 48, 'MP': 46}

La clé est unique dans un dictionnaire. On ne peut pas ajouter "MPSI" : 45 dans d.

Par contre, on peut modifier une valeur :

d["MPSI"]=45
print(d) # {'MPSI': 45, 'MP': 46}

Suppression d’un élément

del d["MPSI"]
print (d) # {'MP': 46}
d["MPSI"]=48
d["PCSI"]=48
d["PTSI"]=46
print (d) # {'MP': 46, 'MPSI': 48, 'PCSI': 48, 'PTSI': 46}

Teste si une clé est dans un dictionnaire

print("PCSI" in d) # affiche True

Nombre d’éléments d’un dictionnaire

print("Nombre d’éléments de d :", len(d))
 # Python affiche : Nombre d’éléments de d : 4

Chapitre 11 · Dictionnaire, pile, file, deque

133

Les clés d’un dictionnaire ne sont pas obligatoirement des chaînes de caractères. On va voir
plusieurs méthodes pour parcourir un dictionnaire.

Parcours des clés d’un dictionnaire

dico={3:5, 8:5} # les clés du dictionnaire doivent être différentes
for clé in dico: # on parcourt les clés de dico
 print(clé)

On obtient alors :

 3

 8

On peut utiliser également .keys() :

for clé in dico.keys(): # on parcourt les clés de dico
 print(clé)

Parcours des clés et valeurs d’un dictionnaire avec .items()

for elt in dico_classe.items(): # elt est un tuple
 print("Elément du dictionnaire : ", elt)
 a=elt[0] # récupère la clé
 b=elt[1] # récupère la valeur

On peut utiliser .items() avec clé, valeur pour dépaqueter le tuple.

for clé, valeur in dico_classe.items():
 print("clé :",clé,"valeur :",valeur)

On ne peut pas utiliser un indice pour accéder à un élément du dictionnaire alors
que L[i] permet d’obtenir l’élément d’indice i de la liste L.

On peut récupérer une liste contenant les clés du dictionnaire :

L1=dico.keys()

Copie d’un dictionnaire

La fonction copy() du module copy est à connaître.

import copy # module copy
d2=d
d3=copy.copy(d) # copie superficielle de d
d['MP']=48
print(d['MP']) # la valeur vaut 48
print(d2['MP']) # la valeur vaut 48
print(d3['MP']) # la valeur vaut 46

L’instruction d2=d n’a pas réalisé une copie de d puisque d2 et d pointent vers la même
adresse mémoire.

Si on modifie un élément du dictionnaire d, alors cet élément est modifié dans d2.

Par contre, la modification n’apparaît pas dans d3 puisque d et d3 pointent vers des
adresses mémoire différentes.

Les dictionnaires sont des objets muables (voir exercice 1.4 « Affectation, objet immuable,
copie » dans le chapitre « Prise en main de Python »).

Partie 8 · Dictionnaire, pile, file, deque

134

Remarque : On rencontre deux catégories de copies pour les objets muables (listes,
dictionnaires, deques…) :

•• La fonction copy() réalise une copie superficielle. Les valeurs des clés sont bien
copiées s’il n’y a pas de structure imbriquée (liste par exemple). Si les valeurs
d’un dictionnaire sont des listes, alors l’adresse mémoire des listes est copiée.

•• La fonction deepcopy() réalise une copie profonde pour les structures imbri-
quées. Si les valeurs sont des listes, alors la copie profonde copie bien les listes
imbriquées.

1.
def dico_vide(): # la fonction renvoie un dictionnaire vide
 return {}

2.
def ajout_cle(dico, clé, valeur):
 # la fonction ajoute le couple (clé, valeur) à dico
 dico[clé]=valeur

3.
def supp_cle(dico, clé):
 # la fonction supprime le couple (clé, valeur)
 # correspondant à clé pour dico
 del dico[clé]

Remarque :

Le programme suivant permet de tester les fonctions précédentes :
d={}
print(d)
ajout_cle(d,"MPSI",48)
ajout_cle(d,"MP",46)
ajout_cle(d,"PCSI1",48)
ajout_cle(d,"PCSI2",48)
print(d)
print()
supp_cle(d,"MPSI")
print(d)

On considère la liste : L=[10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2].

1.  Écrire une fonction comptagedico qui admet comme argument une liste.
Cette fonction renvoie un dictionnaire permettant de connaître le nombre d’oc-
currences de chaque élément de la liste.
2.  Écrire le programme principal permettant d’afficher le nombre d’occur-
rences de chaque élément de la liste L.

Exercice 11.2 : �Comptage des éléments d'une liste à l’aide d’un
dictionnaire

Chapitre 11 · Dictionnaire, pile, file, deque

135

Analyse du problème
Les éléments du dictionnaire ne sont pas ordonnés. Chaque élément du dictionnaire
a une clé unique. La valeur de la clé est égale au nombre d’occurrences de la clé
dans la liste.

1.
def comptagedico(L):
 # la fonction renvoie un dictionnaire permettant de connaître
 # le nombre d’occurrences de chaque élément de la liste
 d={} # création d’un dictionnaire vide
 for elt in L:
 if elt in d:
 d[elt]=d[elt]+1 # incrémente de 1 la valeur
 # de la clé elt
 else:
 d[elt]=1 # ajoute clé elt au dictionnaire
 # elt apparaît la première fois dans d
 # la valeur de la clé elt vaut 1
 return d

2.
L=[10, 12, 10, 8, 6, 10, 12, -5, 8.2, 8.2]
d=comptagedico(L)
print(d) # affichage du dictionnaire

Le programme Python affiche : {10.0: 3, 12.0: 2, 8.0: 1,
6.0: 1, -5.0: 1, 8.2: 2}.
Cette fonction peut s’appliquer également à une chaîne de caractères.
mot="C’est un mot"
d=comptagedico(mot)
print(d)

Le programme Python affiche : {'C': 1, "'": 1, 'e': 1, 's':
1, 't': 2, ' ': 2, 'u': 1, 'n': 1, 'm': 1, 'o': 1}.
L’avantage d’utiliser un dictionnaire pour stocker le nombre d’occurrences
est qu’il n’est pas nécessaire de connaître à l’avance les éléments de mot.
On n’utilise de la place mémoire que pour les caractères qui apparaissent
réellement dans mot.

Partie 8 · Dictionnaire, pile, file, deque

136

On considère trois opérations de base sur les piles. On modélise une pile avec
une liste P dont on ne peut ajouter et supprimer un élément qu’à une extrémité
appelée sommet de pile (ou tête de pile). On utilise P=[] pour créer une pile
vide.

1.  Écrire une fonction empiler qui admet comme arguments une pile P et un
élément x. Cette fonction ajoute l’élément x au sommet de la pile P.
2.  Écrire une fonction depiler qui admet comme argument une pile P non
vide. Cette fonction supprime le dernier élément entré dans la pile et retourne
cet élément.
3.  Écrire une fonction pile_vide qui admet comme argument une pile P.
Cette fonction retourne True si la pile est vide et False sinon.

Exercice 11.3 : Opérations de base sur les piles

Analyse du problème
Les piles sont très souvent utilisées en informatique (voir chapitre 12 « Graphes »).
On étudie dans ce chapitre une modélisation des piles avec des listes. Toutes les
opérations sur la pile sont effectuées sur la même extrémité : on utilise le principe
LIFO (Last In, First Out).

Cours :
Une pile est une structure de données qui utilise le principe LIFO (Last In, First Out : « der-
nier entré, premier sorti »). On peut comprendre le fonctionnement d’une pile en considé-
rant une pile d’assiettes.

•• La fonction empiler consiste à ajouter une assiette sur le sommet de la pile (ou tête
de la pile).
Soit une pile P contenant 3 éléments : 3, 5 et 8.

3

5

8

pile P

Chapitre 11 · Dictionnaire, pile, file, deque

137

On souhaite empiler l’élément 10 à la pile P. On obtient alors la pile suivante :

3

5

8

10

pile P

Si on empile l’élément 2, on obtient :

3

5

8

10

2

pile P

•• La fonction depiler consiste à supprimer un élément de la pile. L’élément à suppri-
mer est toujours situé au sommet de la pile. On a bien une structure LIFO puisque le
dernier élément rentré est le premier sorti.
On obtient alors la pile :

3

5

8

10

pile P

La fonction « Undo » (Annulation de la frappe) des traitements de texte utilise une pile.

Remarque : L’ajout et la suppression d’un élément en fin de liste Python est très
rapide. L’utilisation des listes Python pour gérer des piles est très efficace.

1.
def empiler(P,x):
 # la fonction ajoute l’élément x au sommet de la pile P
 P.append(x) # on ajoute l’ élément x à la liste P

Partie 8 · Dictionnaire, pile, file, deque

138

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La liste P dans la fonction empiler est un objet muable. Il est donc inutile de
retourner P dans cette fonction !

2.
def depiler(P):
 # la fonction supprime le dernier élément entré dans la pile P
 # et retourne cet élément
 x=P.pop() # supprime le dernier élément de la liste P
 return x # retourne la valeur du dernier élément
 # de la liste P

3.
def pile_vide(P):
 # la fonction retourne True si la pile P est vide
 # et False sinon
 if P==[]: # on pourrait écrire : if len(P)==0:
 return True
 else:
 return False

Remarque :

Le programme suivant permet de visualiser les étapes du rappel de cours précédent :
P1=[] # création d’une liste vide
print(pile_vide(P1))
empiler(P1,3)
empiler(P1,5)
empiler(P1,8)
empiler(P1,10)
empiler(P1,2)
print(P1)
y=depiler(P1)
print(y)
print(P1)
print(pile_vide(P1))

Chapitre 11 · Dictionnaire, pile, file, deque

139

On cherche à vérifier si une chaîne de caractères L est bien parenthésée, c’est-à-
dire si le nombre ainsi que l’ordre des parenthèses ouvrantes et fermantes sont
corrects. On note « (» la parenthèse ouvrante et «) » la parenthèse fermante.
On utilisera exclusivement les trois fonctions décrites dans l’exercice 11.3
« Opérations de base sur les piles » : empiler, depiler et pile_vide ainsi
que P=[] pour créer une pile P.
Écrire une fonction parenthesage qui admet comme argument une chaîne
de caractères L. Cette fonction retourne True si la chaîne de caractères est bien
parenthésée, False sinon.
Exemples :
•• L='(2+8)/(5+9)'

parenthesage(L) doit retourner True.

•• L='(2+8)/((5+9)'

parenthesage(L) doit retourner False.

Exercice 11.4 : Parenthésage

Analyse du problème
La structure de piles est parfaitement adaptée à la résolution de cet exercice. On par-
court les différents caractères de la chaîne L. On empile les parenthèses ouvrantes
et on dépile dès qu’on a une parenthèse fermante.

On définit une pile P initialement vide. On parcourt tous les caractères de
la chaîne L.
Dès qu’on rencontre une parenthèse ouvrante, on empile le caractère « (»
dans P.
Quand on rencontre une parenthèse fermante, plusieurs cas interviennent :

•• Si la pile P est vide, alors la fonction parenthesage retourne False
puisqu’il manque une parenthèse ouvrante avant la parenthèse fermante.

•• Sinon, on dépile la parenthèse ouvrante de P.
Lorsqu’on a parcouru tous les caractères de L, on doit avoir rencontré
autant de parenthèses ouvrantes que fermantes. La pile P est nécessaire-
ment vide. Si ce n’est pas le cas, la fonction parenthesage retourne
False.
def parenthesage(L):
 P=[] # initialisation de la pile
 for elt in L:
 # on parcourt tous les caractères de L
 if elt=="(": # parenthèse ouvrante empilée dans P
 empiler(P,elt)
 elif elt==")": # parenthèse fermante
 if pile_vide(P)==True:
 # la pile ne doit pas être vide

Partie 8 · Dictionnaire, pile, file, deque

140

 # il manque une parenthèse ouvrante
 return(False)
 else:
 depiler(P)
 # on dépile la parenthèse ouvrante

 if pile_vide(P)==True:
 return True
 else:
 return False

On considère trois opérations de base sur les files. On modélise une file avec
une liste F dont on ne peut ajouter un élément qu’à une extrémité et supprimer
un élément qu’à l’autre extrémité. On rappelle que F.pop(0) permet de sup-
primer F[0] dans la liste F.

1.  Écrire une fonction enfiler qui admet comme arguments une file F, un
élément x. Cette fonction ajoute l’élément x en queue de file.
2.  Écrire une fonction défiler qui admet comme argument une file F non
vide. Cette fonction supprime le premier élément entré dans la file et retourne
cet élément.
3.  Écrire une fonction file_vide qui admet come argument une file F. Cette
fonction retourne True si la file est vide et False sinon.
4.  On considère le programme suivant :
F=[3, 5, 8]
enfiler(F, 10)
print(F)
enfiler(F, 2)
print(F)
x=défiler(F)
print('F :', F, 'x :',x)
print(file_vide(F))

Qu’affiche la console Python lors de l’exécution de ce programme ?

Exercice 11.5 : Opérations de base sur les files

Analyse du problème
Les files sont très souvent utilisées en informatique (voir chapitre 12 « Graphes »).
On étudie une modélisation des files avec des listes. On utilise le principe FIFO
(First In, First Out).

Chapitre 11 · Dictionnaire, pile, file, deque

141

Cours :
Une file (queue en anglais) est une structure de données qui utilise le principe FIFO (First
In, First Out : « premier entré, premier sorti »).

Dans une file d’attente à un distributeur de billets, les personnes font la queue les unes der-
rière les autres. Le premier arrivé dans la queue est le premier sorti (c’est-à-dire le premier
servi pour obtenir les billets).

•• La fonction enfiler (enqueue) consiste à ajouter un élément à la queue de la file (on
dit aussi à l’arrière de la file d’attente).
Soit une file d’attente F contenant 3 éléments :

853

tête queue

front of queue rear of queue

distributeur
de billets

ENFILER
(enqueue)

DEFILER
(dequeue)

On enfile l’élément 10 à la file F. On obtient alors :

10853

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

On enfile l’élément 2, on obtient :

210853

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

On modélise la file d’attente par une liste Python : F = [3, 5, 8, 10, 2]. On
dit que 3 est à la tête de la file F et 2 est à la queue de la file F.

•• La fonction défiler (dequeue) consiste à supprimer l’élément situé à la tête de la
file (on dit aussi au début de la file d’attente). On a bien une structure FIFO puisque le
premier élément rentré est le premier sorti.
On obtient alors la file :

21085

tête queue

ENFILER
(enqueue)

DEFILER
(dequeue)

La liste F s’écrit : F = [5, 8, 10, 2].

Partie 8 · Dictionnaire, pile, file, deque

142

Remarque : La suppression d’un élément en tête de liste Python n’est pas très
rapide puisque tous les autres éléments doivent être décalés d’une position. On uti-
lisera dans l’exercice suivant, « Utilisation des deques », la classe collections.
deque qui est conçue pour ajouter et supprimer rapidement des éléments aux deux
extrémités.

1.
def enfiler(F, x): # F est une liste Python
 F.append(x) # ajoute x à la queue de la file ou à la fin
 # de la liste F

Si on modifie un argument d’entrée muable (liste, dictionnaire, deque) dans une
fonction alors on ne retrouve pas l’état initial de l’objet lorsqu’on quitte la fonc-
tion (voir exercice 1.5 « Passage par référence pour les listes, effet de bord » dans
le chapitre « Prise en main de Python »).

La liste F dans la fonction enfiler est un objet muable. Il est donc inutile de
retourner F dans cette fonction !

2.
def défiler(F): # F est une liste Python
 x=F.pop(0) # supprime l’élément situé à la tête de la file F
 # c’est le premier élément de la liste F
 return x # retourne x

3.
def file_vide(F): # F est une liste Python
 # la fonction retourne True si la file F est vide
 # et False sinon
 return F==[]

4. Le programme Python affiche :
 [3, 5, 8, 10]
 [3, 5, 8, 10, 2]
 F : [5, 8, 10, 2] x : 3
 False

L’instruction from collections import deque permet de manipuler
des deques.
D=deque() : permet de créer une deque vide
len(D)==0 : retourne True si la deque est vide, False sinon
On utilise les fonctions : D.append(), D.appendleft(), D.pop() et
D.popleft() pour manipuler les deques.

Exercice 11.6 : Utilisation des deques

Chapitre 11 · Dictionnaire, pile, file, deque

143

1.  Écrire une fonction insere_gauche_deque d’arguments une deque D et
un élément x permettant d’ajouter x à l’extrémité gauche de la deque.
2.  Écrire une fonction insere_droite_deque d’arguments une deque D et
un élément x permettant d’ajouter x à l’extrémité droite de la deque.
3.  On considère le programme suivant :
L1=[8, 3, 5]
D=deque()
for elt in L1:
 insere_gauche_deque(D, elt)
print(D)
L2=[10, 13, 1]
for elt in L2:
 insere_droite_deque(D, elt)
print(D)
E=deque([3, 2])
print(len(E)==0)

Qu’affiche la console Python lors de l’exécution de ce programme ?

Analyse du problème
On considère les deques (double-ended queue), qui sont une généralisation des piles
et des files. Les deques permettent d’ajouter et de supprimer très rapidement des
éléments aux deux extrémités. On utilisera les deques dans le parcours des graphes.

Cours :
Une deque (se prononce « dèque ») est une structure de données qui généralise le fonction-
nement des piles et des files. On peut ajouter et supprimer des éléments aux deux extrémités.

from collections import deque # module permettant d’utiliser
 # les deques

Pour créer une deque vide :

D=deque() # création d’une deque vide

On peut ajouter des éléments aux extrémités droite et gauche de la deque.

D.append(3) # ajoute un élément à l’extrémité droite de D
D.append(5) # ajoute un élément à l’extrémité droite de D
D.appendleft(8) # ajoute un élément à l’extrémité gauche de D
D.appendleft(10) # ajoute un élément à l’extrémité gauche de D

On obtient alors la deque suivante :

10 8 3 5

Partie 8 · Dictionnaire, pile, file, deque

144

On a un nouveau type : deque. Ne pas confondre avec le type list.

print(type(D)) # le type de D est : deque

On peut supprimer des éléments à l’extrémité gauche ou droite de la deque.

x=D.pop() # supprime et renvoie 5, l’élément à l’extrémité droite
 # de la deque
y=D.popleft() # supprime et renvoie 10, l’élément à l’extrémité gauche
 # de la deque

On obtient alors la deque suivante :

8 3

print('Teste si D est vide : ', len(D)==0) # teste si la deque est vide

On obtient sur l’afficheur : False

F=deque() # création d’une deque vide
print('Teste si F est vide : ', len(F)==0) # teste si la deque est vide

On obtient sur l’afficheur : True

Dans Python, les deques (comme les listes et les dictionnaires) sont des objets muables.

E=D

Si on modifie E, alors D est également modifié puisque D et E font référence à la même
adresse mémoire (voir exercice 1.4 « Affectation, objet immuable, copie » dans le chapitre
« Prise en main de Python »).

E.pop() # supprime l’élément à l'extrémité droite de la deque E
 # mais aussi de D puisque D et E pointent vers la même
 # adresse mémoire
print('Teste si D = E :', D==E) # affiche True

Pour réaliser une copie superficielle de D, il ne faut pas écrire E=D mais utiliser la fonction
copy.
import copy
E=copy.copy(D) # copie superficielle de D
E.pop() # supprime l’élément à l’extrémité droite de la deque E
D n'est pas modifié puisque D ne pointe pas vers la même
adresse mémoire que E

1.
def insere_gauche_deque(D, x):
 D.appendleft(x) # ajoute x à l’extrémité gauche de la deque D

2.
def insere_droite_deque(D, x):
 D.append(x) # ajoute x à l’extrémité droite de la deque D

Chapitre 11 · Dictionnaire, pile, file, deque

145

3. Le programme Python affiche :
 deque([5, 3, 8])
 deque([5, 3, 8, 10, 13, 1])
 False
La deque E vaut : 3, 2. L’afficheur retourne False puisque la deque E n’est
pas vide.

Remarques :

L’instruction D=deque(3) n’est pas correcte et renvoie un message d’erreur.

D=deque([3]) définit la deque valant 3.

D=deque('ijk') définit la deque valant 'i', 'j', 'k'.

D=deque(['ijk']) définit la deque valant 'ijk'.

D=deque([['abc'], ['ijk']]) définit la deque valant ['abc'], ['ijk'].

x=D.popleft() permet de supprimer ['abc'] et d’obtenir x = ['abc'].

Partie 9

Graphes

Plan

12. Graphes� 149
12.1 : Matrice d’adjacence� 149
12.2 : �Graphe avec liste d’adjacence. Dictionnaire des sommets

adjacents� 154
12.3 : �Graphe avec liste d’adjacence. Liste des sommets adjacents� 156
12.4 : Parcours en largeur d’un arbre en utilisant une file� 157
12.5 : Parcours en largeur d’un graphe avec une deque� 161
12.6 : �Parcours en largeur d’un graphe avec une matrice d’adjacence� 164
12.7 : Parcours en profondeur d’un graphe� 167
12.8 : �Test de connexité d’un graphe – Parcours en profondeur –

Arbre couvrant� 171
12.9 : �Algorithme récursif du parcours en largeur� 176
12.10 : Algorithme récursif du parcours en profondeur� 178
12.11 : �Recherche d’un cycle, graphe non orienté,

parcours en largeur� 180

149

12Graphes

On considère le graphe G S A()= , non orienté, où le nombre situé sur l’arête
joignant deux sommets est leur distance, supposée entière :

4

2

0

4

8
7

3 2

9

3

1 1

On utilise les listes de listes pour représenter les matrices dans Python.
1.  Construire la matrice d’adjacence ()

≤ ≤
M , 0 4i j i j,

 (appelée également matrice
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les sommets i et j, ou
encore la longueur de l’arête reliant les sommets i et j.
On convient que, lorsque les sommets ne sont pas reliés, cette distance vaut
l’infini. On définit la variable inf=1e10 qui représente une distance infinie.
Écrire la matrice M.
2.  Écrire une fonction voisins, d’arguments une matrice d’adjacence M, un
sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degré, d’arguments une matrice d’adjacence M, un
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre
d’arêtes issues de i.
4.  Écrire une fonction longueur, d’arguments une matrice d’adjacence M,
une liste L de sommets de G, renvoyant la longueur du trajet décrit par la liste L,
c’est-à-dire la somme des longueurs des arêtes empruntées. Si le trajet n’est pas
possible, la fonction renverra -1.

Exercice 12.1 : Matrice d’adjacence

Analyse du problème
On définit une matrice d’adjacence contenant les distances entre les différents som-
mets. Si deux sommets i et j ne sont pas reliés, alors M[i][j] = inf. Cet exercice est
extrait du concours banque PT 2015 Sujet 0. Comme le graphe n’est pas orienté, la
matrice est symétrique : M[i][j] = M[j][i].

Partie 9 · Graphes

150

Cours :
Un graphe G est un schéma contenant des points appelés sommets (ou nœuds ou points),
reliés ou non par des arêtes (ou segments ou liens ou lignes).

On utilise la notation suivante : G = (S, A) est un couple d’ensemble finis, dont :

•• S est l’ensemble des sommets de G ;
•• A est l’ensemble des arêtes de G.

Si une arête relie les sommets s et s’, on dit que les sommets s et s’ sont voisins ou
adjacents.

L’ordre d’un graphe est le nombre total de sommets.

Un graphe est orienté si les arêtes sont orientées, c’est-à-dire si on ne peut les parcourir que
dans un sens.

Pour les graphes non orientés :

•• Deux sommets sont adjacents lorsqu’ils sont reliés par une arête.
•• La taille d’un graphe non orienté est le nombre total d’arêtes.
•• Le degré d’un sommet s, noté d(s) est égal au nombre d’arêtes dont ce sommet est une
extrémité. Une boucle est une arête reliant un sommet à lui-même. Les boucles sont
comptées deux fois.

2

0

4

3

1

5

Le degré du sommet 2 vaut 4. Le degré du sommet 1 vaut 5. Le degré du sommet 5
vaut 0 : d () =5 0.
On n’étudiera par la suite que des graphes sans boucle.

•• Une chaîne reliant un sommet s à un sommet s’ est une suite d’arêtes consécutives
permettant de se rendre de s à s’.

•• La longueur d’une chaîne est le nombre d’arêtes de la chaîne, ou la somme des poids
des arêtes qui le constituent.

•• La distance dist s s(), ' entre deux sommets s et s’ est la longueur d’une plus courte chaîne
reliant s à s’. S’il n’existe pas de chaîne entre s et s’, alors dist s s() = ∞, ' , notée inf.

•• Une chaîne est simple si toutes les arêtes de la chaîne sont différentes.
•• Une chaîne est élémentaire si tous les sommets sont différents sauf pour le sommet
d’arrivée, qui peut être confondu avec le sommet de départ (dans le cas des cycles).

•• Un cycle est une chaîne simple telle que le sommet d’arrivée est le même que le som-
met de départ.

•• Un sommet s’ est accessible à partir d’un sommet s s’il existe une chaîne reliant s à s’.
•• Un graphe non orienté est connexe (ou simplement connexe) si tous les sommets de G
sont accessibles entre eux, c'est-à-dire que, pour toute paire de sommets s et s’, il existe
une chaîne reliant s à s’. Il n’y a pas de sommet isolé.

Chapitre 12 · Graphes

151

Simplification de vocabulaire : Par la suite, on emploiera le terme de chemin
au lieu de chaîne.

Pour les graphes orientés :

•• Pour un graphe orienté, les arêtes sont orientées. On les appelle des arcs. Si on note s
l’origine de l’arc et s’ son extrémité, on dit aussi que s’ est le successeur de s et s le
prédécesseur de s’.

•• La taille d’un graphe orienté est le nombre total d’arcs.
•• Le degré sortant d’un sommet s, noté d s()+ est le nombre d’arcs dont s est le point de
départ.

•• Le degré entrant d’un sommet s, noté d s()− est le nombre d’arcs dont s est le point
d’arrivée.

•• Le degré du sommet s est : d s d s d s() () ()= ++ −
•• Un chemin reliant un sommet s à un sommet s’ est une suite d’arcs consécutifs permet-
tant de se rendre de s à s’.

•• La longueur d’un chemin est le nombre d’arcs du chemin, ou la somme des poids des
arcs qui le constituent.

•• La distance dist s s(), ' entre deux sommets s et s’ est la longueur d’un plus court chemin
reliant s à s’. S’il n’existe pas de chemin entre s et s’, alors dist s s() = ∞, ' , notée inf.

•• Un chemin est simple si tous les arcs du chemin sont différents.
•• Un chemin est élémentaire si tous les sommets sont différents sauf pour le sommet
d’arrivée, qui peut être confondu avec le sommet de départ (dans le cas des circuits).

•• Un circuit est un chemin simple tel que le sommet d’arrivée est le même que le sommet
de départ.

•• Un sommet s’ est accessible à partir d’un sommet s s’il existe un chemin reliant s à s’.
•• Un graphe orienté est fortement connexe si tous les sommets de G sont accessibles
entre eux, c’est-à-dire que, pour toute paire de sommets s et s’, il existe un chemin
reliant de s à s’ et aussi un chemin de s’ à s. Il n’y a pas de sommet isolé.

•• Le poids des arcs peut être négatif. Un cycle de poids négatif (ou absorbant) est un circuit
pour lequel le poids est négatif, c’est-à-dire que la somme des poids des arcs est négative.

Simplification de vocabulaire : Par la suite, on emploiera le terme de cycle au
lieu de circuit.

Remarque : Des arêtes reliant la même paire de sommets sont des arêtes multiples.
Un graphe est simple s’il ne contient ni boucle ni arête multiple. Conformément au
programme, on n’étudiera par la suite que des graphes simples.
On appelle graphe pondéré un graphe dont les arêtes sont affectées d’un nombre appelé
poids (ou coût). Le poids d’un arc peut représenter la distance entre deux sommets voisins
pour un réseau routier. Dans certains graphes, le poids des arcs peut être négatif.

On peut implémenter un graphe par une matrice d’adjacence ou une liste d’adjacence.

Matrice d’adjacence :

On utilise une liste de listes. Par exemple la matrice










3 2
8 6

 est représentée par la liste M

contenant deux listes de longueur 2 : M=[[3, 2], [8, 6]]. Chacune de ces listes de
longueur 2 représente une ligne de la matrice.

Partie 9 · Graphes

152

Dans une matrice d’adjacence n × n, n désigne le nombre de sommets du graphe (ordre du
graphe). On peut savoir pour chaque paire de sommets s’ils sont voisins ou non. On ren-
contre plusieurs cas :

1) �Graphe non pondéré :

•• Graphe non orienté : Si deux sommets différents i et j sont reliés par une arête, alors
M[i][j] = M[j][i] = 1 sinon M[i][j] = M[j][i] = 0.

•• Graphe orienté : S’il existe un arc allant de i vers j, alors M[i][j] = 1, sinon M[i][j] = 0.
2) �Graphe pondéré :

•• Graphe non orienté : Si deux sommets différents i et j sont reliés par une arête, alors
M[i][j] = M[j][i] = distance entre les sommets i et j, sinon M[i][j] = M[j][i] = inf.

•• Graphe orienté : S’il existe un arc allant de i vers j, alors M[i][j] = distance entre les
sommets d’origine i et d’extrémité j, sinon cette distance vaut l’infini : M[i][j] = inf. Le
poids des arcs peut être négatif (voir exercice 14.4 « Algorithme de Floyd-Warshall »
dans le chapitre « Programmation dynamique »).

Liste d’adjacence :

On a plusieurs possibilités pour représenter une liste d’adjacence dans Python :

1) Dictionnaire :

•• Graphe non orienté : La clé associée à chaque sommet représente la liste des sommets
adjacents.

•• Graphe orienté : La clé associée à chaque sommet représente la liste des successeurs.

2) Liste :

•• Graphe non orienté : Chaque élément de la liste contient un sommet et la liste des som-
mets adjacents.

•• Graphe orienté : Chaque élément de la liste contient un sommet et la liste des successeurs.

Algorithmes de parcours de graphe :

On va étudier plusieurs algorithmes de parcours de graphe : parcours en largeur (avec une
file FIFO − First In, First Out : « premier entré, premier sorti »), parcours en profondeur
(avec une pile LIFO − Last In, First Out : « dernier entré, premier sorti »).

Un graphe non orienté, connexe et acyclique est un arbre.

Chaque élément de l’arbre est appelé un nœud. Au niveau élevé, on trouve le nœud racine.

Au niveau juste en dessous, on trouve les nœuds fils (ou descendants). Un nœud n’ayant
aucun fils est appelé feuille.

Le nombre de niveaux de l’arbre est appelé hauteur.

On peut construire un graphe à partir d’un autre. Un sous-graphe G’ d’un graphe G est
composé de certains des sommets de G et de certaines des arêtes de G.

Un graphe H est un arbre couvrant du graphe G si H est un arbre que l’on peut obtenir en
supprimant des arêtes de G.

Remarque : On peut définir une matrice d’incidence n × p où n désigne le nombre
de sommets du graphe et p le nombre d’arêtes (ou d’arcs).

Chapitre 12 · Graphes

153

Les exemples suivants peuvent être modélisés par des graphes :

•• Site web : chaque page est un sommet du graphe. Un lien hypertexte est une arête entre
deux sommets.

•• Réseau ferroviaire : chaque gare est un sommet. Les voies entre deux gares sont des arêtes.
•• Réseau routier : chaque ville est un sommet. Les routes entre deux villes sont des arêtes.
•• Réseau social : les sommets sont des personnes. Deux personnes sont adjacentes lorsqu’elles
sont amies. Le graphe est orienté si l’amitié n’est pas réciproque entre deux personnes.

1. La matrice d’adjacence est : =

∞
∞

∞ ∞
∞ ∞





















M

0 9 3 7
9 0 1 8
3 1 0 4 2

8 4 0
7 2 0

.

Remarque :

Tous les éléments de la diagonale sont nuls puisque la distance entre les sommets
i et i est nulle : M[i][j] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque la distance entre
les sommets i et j est la même qu’entre les sommets j et i : M[i][j] = M[j][i].

On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

M=[[0,9,3,inf,7],[9,0,1,8,inf],[3,1,0,4,2],\
 [inf,8,4,0,inf],[7,inf,2,inf,0]]

2.
def voisins(M, i):
 # la fonction renvoie la liste des voisins du sommet i
 # pour la matrice M
 n=len(M) # nb de lignes de la matrice d’adjacence
 L=[] # initialisation de la liste L
 for j in range(n): # j varie entre 0 inclus et n exclu
 if M[i][j]>0 and M[i][j]<inf:
 L.append(j) # si 0 < distance < inf, on ajoute le
 # sommet dans L
 return (L)

On obtient par exemple voisins(M, 4) = [0,2].
3.
def degré(M, i):
 # la fonction renvoie le nombre de voisins du sommet i
 # pour la matrice M
 n=len(M) # nb de lignes de la matrice d’adjacence
 somme=0 # le nombre d'arêtes vaut 0
 for j in range(n): # j varie entre 0 inclus et n exclu

Partie 9 · Graphes

154

 if M[i][j]>0 and M[i][j]<inf:
 somme+=1 # incrémente de 1 le nombre d’arêtes
 # si distance > 0
 return somme

On obtient par exemple degré(2) = 4. On écrit alors : d(2) = 4.
4.
def longueur(M, L):
 # la fonction renvoie la longueur du trajet décrit par
 # la liste L pour la matrice M
 somme=0
 n=len(L)
 for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
 if M[L[i]][L[i+1]]>=0:
 somme+=M[L[i]][L[i+1]]
 else:
 somme=-1
 return somme # la fonction s’arrête et retourne -1
 return somme

On obtient par exemple : longueur(M, [0,1,3,2]) = 21.

On considère le graphe G S A()= , non orienté, où le nombre situé sur l’arête
joignant deux sommets est leur distance, supposée entière :

4

2

0

4

8
7

3 2

9

3

1 1

1.  Définir un dictionnaire représentant le graphe G. Chaque clé est associée à un
sommet. La valeur de la clé représente le dictionnaire des sommets adjacents,
dont la valeur de la clé est la distance entre les deux sommets.
2.  Écrire une fonction voisins_dict, d’arguments un dictionnaire dico,
un sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degre_dict, d’arguments un dictionnaire dico, un
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre
d’arêtes issues de i.

Exercice 12.2 : �Graphe avec liste d’adjacence. Dictionnaire
des sommets adjacents

Chapitre 12 · Graphes

155

4.  Écrire une fonction longueur_dict, d’arguments un dictionnaire dico,
une liste L de sommets de G, renvoyant la longueur du trajet décrit par cette
liste L, c’est-à-dire la somme des longueurs des arêtes empruntées. Si le trajet
n’est pas possible, la fonction renvoie -1.

Analyse du problème
On définit un dictionnaire où chaque clé représente un sommet. Pour un sommet
donné, la valeur de la clé est un dictionnaire qui contient l’ensemble des sommets
adjacents avec les distances entre les deux sommets.

1. Le dictionnaire est :
dico={0:{1:9, 2:3, 4:7},\
 1:{0:9, 2:1, 3:8},\
 2:{0:3, 1:1, 3:4, 4:2},\
 3:{1:8, 2:4},\
 4:{0:7, 2:2} }

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour l’utilisation des dictionnaires.
On peut écrire également :
dico=dict()
dico[0]={1:9, 2:3, 4:7} # ajoute la clé 0 dans dico
dico[1]={0:9, 2:1, 3:8} # ajoute la clé 1 dans dico
dico[2]={0:3, 1:1, 3:4, 4:2} # ajoute la clé 2 dans dico
dico[3]={1:8, 2:4} # ajoute la clé 3 dans dico
dico[4]={0:7, 2:2} # ajoute la clé 4 dans dico

2.
def voisins_dict(dico, i):
 # la fonction renvoie la liste des voisins du sommet i
 # pour le dictionnaire dico
 L=[] # initialisation de la liste L
 if i in dico: # teste si la clé i est dans le diction. dico
 for clé, valeur in dico[i].items():
 # parcourt les couples (clé, valeur) de dico[i]
 L.append(clé)
 return L

On obtient par exemple voisins_dict(dico, 4) = [0, 2].
3.
def degre_dict(dico, i):
 # la fonction renvoie le nombre de voisins du sommet i
 # pour le dictionnaire dico
 somme=0
 if i in dico: # teste si la clé i est dans le diction. dico
 for clé, valeur in dico[i].items():
 # parcourt les couples (clé, valeur) de dico[i]
 somme+=1
 return somme

Partie 9 · Graphes

156

On obtient par exemple degre_dict(dico, 2) = 4. On écrit alors :
d(2) = 4.
4.
def longueur_dict(dico, L):
 # la fonction renvoie la longueur du trajet décrit
 # par la liste L pour le dictionnaire dico
 somme=0
 n=len(L)
 for i in range(n-1): # i varie entre 0 inclus et n-1 exclu
 if L[i] in dico: # teste si la clé L[i] est dans dico
 dico2=dico[L[i]]
 if L[i+1] in dico2:
 somme+=dico2[L[i+1]]
 else:
 somme=-1
 return somme # la fonction s'arrête et retourne -1
 else:
 somme=-1
 return somme # la fonction s'arrête et retourne -1
 return somme

On obtient par exemple : longueur_dict(dico, [0, 1, 3, 2])
= 21.

On considère le graphe G S A()= , non orienté :

2

0

4

3

1

1.  Définir un dictionnaire représentant le graphe G. Chaque clé est associée à
un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction voisins_dict, d’arguments un dictionnaire dico,
un sommet i, renvoyant la liste des voisins du sommet i.
3.  Écrire une fonction degre_dict, d’arguments un dictionnaire dico, un
sommet i, renvoyant le nombre de voisins du sommet i, c’est-à-dire le nombre
d’arêtes issues de i.

Exercice 12.3 : �Graphe avec liste d’adjacence. Liste des
sommets adjacents

Chapitre 12 · Graphes

157

Analyse du problème
On définit un dictionnaire où chaque clé représente un sommet. Pour un som-
met donné, la valeur de la clé est une liste qui contient l’ensemble des sommets
adjacents.

1. Pour chaque sommet, on écrit la liste des sommets accessibles.
Le dictionnaire est :

dico_liste={0:[1, 2, 4],\
 1:[0, 2, 3],\
 2:[0, 1, 3, 4],\
 3:[1, 2],\
 4:[0, 2]}

Le sommet 0 est relié aux sommets 1, 2 et 4. La valeur de la clé 0 est la
liste des sommets adjacents [1, 2, 4].
Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le
chapitre « Dictionnaire, pile, file, deque » pour l’utilisation des diction-
naires.
2.
def voisins_dict_liste(dico, i):
 # la fonction renvoie la liste des voisins du sommet i
 # pour le dictionnaire dico
 L=[] # initialisation de la liste L
 if i in dico: # teste si la clé i est dans le diction. dico
 for elt in dico[i]:
 L.append(elt)
 return L

On obtient par exemple voisins_dict(dico, "4") = [0, 2].
3.
def degre_dict_liste(dico, i):
 # la fonction renvoie le nombre de voisins du sommet i
 # pour le dictionnaire dico
 somme=0
 if i in dico: # teste si la clé i est dans le diction. dico
 for elt in dico[i]:
 somme+=1
 return somme

On obtient par exemple degre_dict(dico, 2) = 4. On écrit alors :
d(2) = 4.

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9.
On considère l’arbre G S A()= , représentant la structure du site web.

Exercice 12.4 : Parcours en largeur d’un arbre en utilisant une file

Partie 9 · Graphes

158

1

2 3 4

5 6

7

8

9

On utilisera les deux opérations de base sur les files : defiler pour la sup-
pression d’un élément et enfiler pour l’ajout d’un élément. On rappelle que
F.pop(0) permet de supprimer F[0] dans la liste F.
On cherche à parcourir en largeur tous les sommets de cet arbre G (toutes les
pages web de ce site).
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
•• Ajouter le sommet de départ dans la file F initialement vide.

•• Tant que la file F n’est pas vide, supprimer l’élément x à la tête de la file.
Ajouter les fils de x dans la file.

1.  Définir un dictionnaire dico représentant l’arbre G. Chaque clé est associée
à un sommet x. La valeur de la clé représente la liste des fils du sommet x.
2.  Écrire une fonction parcourslargeur qui admet comme arguments un
dictionnaire dico et un sommet de départ début permettant de parcourir en
largeur un arbre.
3.  Dans quel ordre sont parcourus les sommets dans la fonction
parcourslargeur(dico, 1) ?

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer
un par un.

L’implémentation repose sur une file F dans laquelle on place le premier sommet à
la queue de F et les sommets adjacents non explorés à la queue de F. On utilise le
principe FIFO (First In, First Out : « premier entré, premier sorti »).

Voir exercice 11.5 « Opérations de base sur les files » dans le chapitre
« Dictionnaire, pile, file, deque » pour l’implémentation des files par les listes de
Python en utilisant le principe FIFO.

Cours :
Un graphe non orienté connexe et acyclique est un arbre. Chaque élément de l’arbre est
appelé un nœud.

Chapitre 12 · Graphes

159

Au niveau élevé, on trouve le nœud racine (1). Au niveau juste en dessous, on a trois nœuds
fils (2, 3 et 4). Un nœud n’ayant aucun fils est appelé feuille. Les nœuds 3, 5, 7, 8 et 9 sont
des feuilles.

Le nombre total de niveaux de l’arbre est appelé hauteur. La hauteur de l’arbre G vaut 4.

G est un arbre ternaire puisque chaque nœud comporte au plus trois fils au niveau inférieur.
Du point de vue d’un fils, le nœud dont il est issu au niveau supérieur est appelé père.

On utilise une liste F pour modéliser une file. Par exemple F=[10, 3, 5, 8].

85310

tête

enfilerdéfiler

queue

Si on ajoute l’élément 2 (ou si on enfile l’élément 2), on obtient F=[10, 3, 5, 8, 2].

Enfiler un élément à une file consiste à ajouter un élément à la queue de la file.

Défiler un élément d’une file consiste à enlever l’élément situé à la tête de la file.

85310 2

tête queue

enfilerdéfiler

1. Le premier niveau de l’arbre contient un sommet : 1.
Le deuxième niveau contient trois sommets : 2, 3 et 4.
Le troisième niveau contient trois sommets : 5, 6 et 8.
Le quatrième niveau contient deux sommets : 7 et 9.

dico={1:[2, 3, 4], 2:[5, 6], 3:[],4:[8],\
 5:[], 6:[7, 9], 7:[], 8:[],9:[]}

Le sommet 2 a deux fils : 5 et 6. La valeur de la clé 2 est la liste des fils :
[5, 6].
2. On utilise dans Python les listes pour manipuler les files.
F.pop(0) permet de supprimer F[0] dans la liste F, c'est-à-dire l’élé-
ment situé à la tête de F.

Remarque : Ne pas confondre avec F.pop(), qui permet de supprimer le dernier
élément de la liste F.

def enfiler(F, x):
 F.append(x) # ajoute x à la queue de la file
 # ou à la fin de la liste F

def defiler(F):
 x=F.pop(0) # supprime l’élément situé à la tête de F : F[0]
 return x # retourne x

def parcourslargeur(dico, début):
 # fonction permettant un parcours en largeur du dictionnaire
 # dico en partant de début
 F=[début] # modélisation d’une file avec la liste F

Partie 9 · Graphes

160

 while F!=[]:
 x=defiler(F) # supprime l’élément à la tête de
 # la file F : F[0]
 for elt in dico[x]:
 enfiler(F, elt) # ajoute les fils du sommet x
 # à la queue de la file F

Remarque :

dico[x] contient les fils du sommet x. G ne contient pas de cycle par définition
d’un arbre. Tous les fils sont nécessairement non explorés. On peut donc tous les
ajouter dans la file F.

On étudiera un graphe dans l’exercice suivant « Parcours en largeur d’un graphe
avec une deque » : il faudra tester si les sommets adjacents ont déjà été explorés.

3. F=[1] au début de l’algorithme.
•• On enlève 1 de la file F et on explore ce sommet. Les fils de « 1 » sont ajou-
tés au fur et à mesure à la queue de F. La file F vaut alors : [2, 3, 4].

•• On enlève 2, le premier élément de F (élément situé à la tête de la file).
On explore le sommet 2. Les fils de « 2 » sont ajoutés à la queue de F.
La file F vaut alors : [3, 4, 5, 6].

•• On enlève 3, le premier élément de F (élément situé à la tête de la file). On
explore le sommet 3. Il n’y a pas de fils. La file F vaut alors : [4, 5, 6].

•• On enlève 4, le premier élément de F (élément situé à la tête de la file).
On explore le sommet 4. Les fils de « 4 » sont ajoutés à la queue de F.
La file F vaut alors : [5, 6, 8].

•• On enlève 5, le premier élément de F (élément situé à la tête de la file).
On explore le sommet 5.

•• …
Finalement, on a exploré les sommets dans l’ordre :

•• 1,
•• 2, 3, 4,
•• 5, 6, 8,
•• 7, 9.

Les flèches sur le graphe représentent le sens de parcours niveau par niveau
et de gauche à droite. On a bien exploré les sommets en largeur.

1

2 3 4

5 6

7

8

9

Chapitre 12 · Graphes

161

On va étudier une amélioration du parcours en largeur pour un graphe non
orienté, connexe et possédant des cycles dans l’exercice suivant « Parcours
en largeur d’un graphe avec une deque ».

Remarques :

L’ordre de parcours des sommets pour un niveau donné n’a pas d’importance. Ici,
on les parcourt dans le sens croissant, soit de gauche à droite.

Le dictionnaire dico2 ci-dessous contient tous les sommets adjacents à un som-
met donné. La fonction parcourslargeur(G) ne se termine jamais puisque la
boucle for ajoute tous les sommets adjacents. Dans l’exercice suivant « Parcours
en largeur d’un graphe avec une deque », on va résoudre ce problème en ne consi-
dérant que les sommets adjacents non explorés.

dico2={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6],\
 4:[1, 6, 8], 5:[2], 6:[2, 7, 9], 7:[6],\
 8:[4], 9:[6]}

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9.
On considère le graphe non orienté ()= ,G S A représentant la structure du
site web.

1

2 3 4

5 6

7

8

9

On cherche à parcourir en largeur tous les sommets de ce graphe (toutes les
pages web de ce site). On utilise la liste VISITED représentant les sommets
déjà explorés.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
•• Ajouter le sommet de départ dans la deque D initialement vide.

•• Tant que D n’est pas vide, supprimer le sommet x à l’extrémité gauche de
D. Ajouter à l’extrémité droite de D les sommets non explorés adjacents au
sommet x.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à
chaque sommet représente la liste des sommets adjacents.

Exercice 12.5 : Parcours en largeur d’un graphe avec une deque

Partie 9 · Graphes

162

2.  Écrire une fonction parcourslargeur2 qui admet comme arguments un
dictionnaire dico et un sommet de départ début permettant de parcourir en
largeur un graphe non orienté, connexe.
3.  Dans la fonction parcourslargeur2(dico, 1), dans quel ordre sont
parcourus les sommets ?
4.  Calculer la complexité de cet algorithme dans le pire des cas.

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer
un par un.

L’implémentation repose sur une deque D dans laquelle on place le premier sommet
à l’extrémité droite de D initialement vide et les sommets adjacents non explorés à
l’extrémité droite de D. On utilise le principe FIFO (First In, First Out : « premier
entré, premier sorti »). Voir exercice 11.6 « Utilisation des deques » dans le cha-
pitre « Dictionnaire, pile, file, deque » pour la manipulation des deques.

Le graphe contient des cycles. Pour ne pas explorer plusieurs fois un même som-
met, on marque les sommets déjà explorés.

1.
dico={1:[2, 3, 4], 2:[1, 5, 6],3:[1, 6], 4:[1, 6, 8],\
 5:[2], 6:[2, 7, 9],7:[6], 8:[4],9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].
2. Les sommets déjà visités sont marqués pour éviter d’explorer plusieurs
fois un même sommet. La liste VISITED contient les sommets visités.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :
Initialisation de l’algorithme :

•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet x à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets non
explorés adjacents au sommet x.

def parcourslargeur2(dico, début):
 # fonction permettant un parcours en largeur du dictionnaire
 # dico en partant de début et retournant
 # VISITED la liste des sommets visités
 from collections import deque # module permettant d’utiliser
 # les deques

Chapitre 12 · Graphes

163

 D=deque() # deque vide
 D.append(début) # ajoute le sommet de départ
 VISITED=[début]
 while len(D)!=0:
 x=D.popleft() # supprime le sommet x à l’extrémité
 # gauche de D
 L=dico[x] # liste contenant les sommets adjacents à x
 for elt in L: # parcourt les éléments de L
 if elt not in VISITED: # teste si le sommet n'a pas
 # déjà été exploré
 D.append(elt) # ajoute le sommet elt à
 # l’extrémité droite de D
 VISITED.append(elt) # le sommet elt a été exploré

Remarque :

dico[x] contient les sommets adjacents au sommet x. G peut contenir des cycles
puisqu’on ne considère pas d’arbre dans cet exercice. Il faut tester si les sommets
adjacents ont déjà été explorés.

Dans l’exercice précédent « Parcours en largeur d’un arbre en utilisant une file »,
on n’avait pas besoin de tester si les fils étaient déjà explorés puisqu’on considérait
un arbre, sans cycle par définition.

3. La deque D vaut [1] au début de l’algorithme.
•• On supprime l’élément à l’extrémité gauche de D. On explore ce sommet.
Les sommets adjacents à 1 non explorés sont ajoutés à l’extrémité droite
de D. La deque D vaut alors : [2, 3, 4].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 2.
Les sommets adjacents à 2 non explorés sont ajoutés à l’extrémité droite
de D. La deque D vaut alors : [3, 4, 5, 6].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 3.
Le sommet 6 a déjà été exploré. On ne l’ajoute pas. La deque D vaut
alors : [4, 5, 6].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 4.
Les sommets adjacents à 4 non explorés sont ajoutés à l’extrémité droite
de D. La deque D vaut alors : [5, 6, 8].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 5.
Pas de nouveau sommet non exploré. La deque D vaut alors : [6, 8].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 6.
La deque D vaut alors : [8, 7, 9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 8.
Pas de nouveau sommet non exploré. La deque D vaut alors : [7, 9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 7.
Pas de nouveau sommet non exploré. La deque D vaut alors : [9].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 9.
Pas de nouveau sommet non exploré. La deque D est vide.

Partie 9 · Graphes

164

Avec la fonction parcourslargeur2(dico, 1), on explore les som-
mets suivants : VISITED = [1, 2, 3, 4, 5, 6, 8, 7, 9].
4. Soit n le nombre de sommets et m le nombre d’arêtes.
À chaque passage dans la boucle while len(D)!=0, on enlève un som-
met à l’extrémité gauche de la deque D. Cette boucle sera donc exécutée
au plus n fois.
À chaque fois que l’on supprime un sommet à l’extrémité gauche de la
deque D, la boucle for elt in L parcourt tous les sommets adjacents
au sommet supprimé. Comme il y a m arêtes, les lignes D.append(elt)
et VISITED.append(elt) seront exécutées au plus une fois pour
chaque arête, soit au plus m fois.
La complexité dans le pire des cas pour un graphe représenté par une liste
d’adjacence est linéaire en O(n + m).

On considère le graphe non orienté ()= ,G S A :

2

0

4

3

1

On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi, j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1 sinon M[i][j] = 0.
2.  Écrire une fonction parcourslargeur_mat d’arguments une matrice
d’adjacence M et un sommet de départ début permettant de parcourir en lar-
geur le graphe. On utilise une deque pour parcourir en largeur le graphe. La
fonction affiche la liste des sommets explorés.
3.  Dans quel ordre sont parcourus les sommets dans la fonction
parcourslargeur_mat(M, 0) ?
4.  Calculer la complexité de cet algorithme dans le pire des cas.

Exercice 12.6 : �Parcours en largeur d’un graphe avec une
matrice d’adjacence

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) permet
de traiter les sommets adjacents à un sommet donné pour ensuite les explorer un par
un. Il utilise une deque D dans laquelle il place le premier sommet à l’extrémité droite

Chapitre 12 · Graphes

165

de D initialement vide et les sommets adjacents non explorés à l’extrémité droite de D.
On utilise le principe FIFO (First In, First Out : « premier entré, premier sorti »).

1. La matrice d’adjacence est : =





















M

0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
0 1 1 0 0
1 0 1 0 0

.

M=[[0,1,1,0,1],[1,0,1,1,0],[1,1,0,1,1],\
 [0,1,1,0,0],[1,0,1,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est
pas orienté : M[i][j] = M[j][i].

On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

2. Les étapes de l’algorithme de parcours en largeur sont les suivantes :
Initialisation de l’algorithme :

•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED=[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet i à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets j non
explorés adjacents au sommet i.

def parcourslargeur_mat(M, début):
 # fonction permettant un parcours en largeur de la matrice M
 # en partant de début et retournant VISITED la liste des
 # sommets visités
 from collections import deque # module permettant d’utiliser
 # les deques
 D=deque() # deque vide
 D.append(début) # ajoute le sommet de départ
 VISITED=[début] # liste des sommets explorés
 while len(D)!=0:
 i=D.popleft() # supprime le sommet i à
 # l’extrémité gauche de D
 for j in range(len(M[i])):
 if M[i][j]==1 and (j not in VISITED):
 D.append(j) # ajoute le sommet j à
 # l’extrémité droite de D

Partie 9 · Graphes

166

 VISITED.append(j) # le sommet j a été exploré
 print(D, VISITED)
 print('Sommets explorés :',VISITED)

3. La deque D vaut [0] au début de l’algorithme.
•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 0.
Les sommets adjacents à 0 non explorés sont ajoutés à l’extrémité droite
de D. La deque D vaut alors : [1, 2, 4]. La liste VISITED vaut : [0, 1,
2, 4].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet
1. Les sommets adjacents à 1 et non explorés sont ajoutés à l’extrémité
droite de D. La deque D vaut alors : [2, 4, 3]. La liste VISITED vaut :
[0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. On explore le sommet 2.
Pas de sommet non exploré adjacent à 2. La deque D vaut alors :
[4, 3]. La liste VISITED vaut : [0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. Pas de sommet non
exploré voisin de 4. La deque D vaut alors : [3]. La liste VISITED vaut :
[0, 1, 2, 4, 3].

•• On supprime l’élément à l’extrémité gauche de D. Pas de sommet non
exploré voisin de 3. La deque D vaut alors : []. La liste VISITED vaut :
[0, 1, 2, 4, 3].

La boucle while est terminée lorsque D est vide. Avec la fonction
parcourslargeur_mat, on explore les sommets suivants : VISITED
= [0, 1, 2, 4, 3]. On a bien réalisé un parcours en largeur.
4. Soit n le nombre de sommets.
À chaque passage dans la boucle while len(D)!=0, on supprime un
sommet à l’extrémité gauche de la deque D. Cette boucle sera donc exécu-
tée au plus n fois.
À chaque itération de la boucle while, la boucle for j in range est
exécuté au maximum n fois.
La complexité dans le pire des cas pour un graphe représenté par une
matrice d’adjacence est quadratique en ()2O n .

Chapitre 12 · Graphes

167

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1 à 9.
On considère le graphe non orienté ()= ,G S A représentant la structure du
site web.

1

2 3 4

5 6

7

8

9

On considère une pile P et une liste PARCOURS qui contient la liste des som-
mets explorés. On pose début=1 le sommet de départ.
Les étapes de l’algorithme de parcours en profondeur sont les suivantes :
Initialisation de l’algorithme :
La pile P contient le sommet de départ : P=[début].
La liste PARCOURS contient le sommet de départ : PARCOURS=[début].
Boucle tant que la pile P n’est pas vide :
•• S’il existe un sommet elt non exploré adjacent au sommet x (situé en haut de
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile elt dans P et
on ajoute elt dans la liste PARCOURS.

•• Si le sommet x (situé en haut de la pile P) ne possède pas de voisin non
exploré, alors on dépile cet élément de la pile.

On utilisera un flag trouve (de valeur True ou False) qui permet de savoir
si le sommet x possède un voisin non exploré.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction itérative parcoursprofondeur qui admet comme
arguments un dictionnaire dico et un sommet de départ début. La fonction
retourne la liste PARCOURS.
3.  Que retourne parcoursprofondeur(dico, 1) ?

Exercice 12.7 : Parcours en profondeur d’un graphe

Analyse du problème
L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais)
explore une branche en profondeur depuis un sommet avant de passer à la suivante.

Partie 9 · Graphes

168

On va le plus profond possible pour chaque branche. On utilise le principe LIFO
(Last In, First Out : « dernier entré, premier sorti »).

1.

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1], 4:[1, 8],\
 5:[2], 6:[2, 7, 9], 7:[6], 8:[4], 9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].
2. Comparaison entre les algorithmes de parcours en largeur et en pro-
fondeur :

•• Parcours en largeur (BFS, Breadth First Search, en anglais) : voir exer-
cice 12.5 « Parcours en largeur d’un graphe avec une deque ». On utilise
le principe FIFO (First In, First Out : « premier entré, premier sorti »).
Tous les sommets non explorés adjacents au sommet traité sont ajou-
tés dans la liste VISITED.

•• Parcours en profondeur ou DFS : on utilise le principe LIFO (Last In, First
Out : « dernier entré, premier sorti »). On parcourt tous les sommets
adjacents au sommet traité avec une boucle while i<len(L) and
trouve==False.
Dès qu’on trouve un sommet non exploré, le flag trouve passe à
True, on ajoute ce sommet dans la liste PARCOURS et dans la pile P,
on quitte la boucle while i<len(L) and trouve==False.
On ne dépile pas ce sommet ajouté et on continue l’exploration en
profondeur en repartant au début de la boucle while len(P)!=0.

Remarque : On empile dans P uniquement un voisin non exploré dans le parcours
en profondeur alors qu’on ajoute dans D tous les voisins non explorés dans le par-
cours en largeur.

def parcoursprofondeur(dico, début):
 # fonction permettant un parcours en profondeur du
 # dictionnaire dico en partant de début et retournant
 # PARCOURS la liste des sommets visités
 P=[début]
 PARCOURS=[début]
 while len(P)!=0:
 x=P.pop() # dépile pour récupérer l’élément en haut
 # de la pile
 P.append(x) # empile x car il ne faut pas dépiler x
 # à ce stade
 L=dico[x] # L = liste des sommets adjacents à x
 trouve=False
 i=0
 while i<len(L) and trouve==False:
 if L[i] not in PARCOURS: # cherche dans L un voisin
 # non exploré

Chapitre 12 · Graphes

169

 trouve=True # on a trouvé un voisin non exploré
 P.append(L[i]) # ajoute ce sommet en haut de
 # la pile
 PARCOURS.append(L[i]) # marque ce voisin exploré
 i+=1
 if trouve==False:
 P.pop() # dépile le haut de la pile
 return PARCOURS

print("Parcours en profondeur d'un graphe")
PARCOURS=parcoursprofondeur(dico, 1)
print(PARCOURS)

On utilise très souvent trois opérations de base avec les piles : « empiler »,
« dépiler » et « tester si la pile est vide ». Voir exercice 11.3 « Opérations
de base sur les piles » dans le chapitre « Dictionnaire, pile, file, deque ».
Les lignes suivantes permettent de récupérer le sommet x en haut de la pile
pour obtenir la liste des sommets adjacents.

x=P.pop() # dépile pour récupérer l’élément en haut de la pile
P.append(x) # empile x
L=dico[x] # x est l’élément en haut de la pile

Remarque : Au début de la boucle while len(P)!=0, il faut récupérer le
numéro du sommet en haut de la pile. Lorsqu’on utilise des piles, on ne peut utili-
ser que « empiler » et « dépiler » pour récupérer le numéro du sommet en haut de la
pile. Il ne faut surtout pas dépiler ce sommet à cette étape du programme puisqu’il
peut rester des sommets non explorés adjacents à ce sommet.

PARCOURS.append(L[i]) permet de marquer le sommet que l’on a
découvert lors de l’exploration.
3.
Initialisation de l’algorithme :

•• La pile P contient le sommet de départ : P = [1].
•• La liste PARCOURS contient le sommet de départ : PARCOURS = [1].

Étapes de la boucle while :
•• Le haut de la pile P (sommet 1) possède un voisin non exploré : 2 car il n’est
pas dans la liste PARCOURS. On ajoute alors 2 dans la liste PARCOURS
et dans la pile P. On obtient : P = [1, 2] ; PARCOURS = [1, 2].

•• Le haut de la pile P (sommet 2) possède un voisin non exploré : 5 car
il n’est pas dans la liste PARCOURS. On ajoute alors 5 dans la liste
PARCOURS et dans la pile P. On obtient : P = [1, 2, 5] ; PARCOURS
= [1, 2, 5].

Partie 9 · Graphes

170

•• Le haut de la pile P (sommet 5) n’a pas de voisin non exploré. On dépile 5
de la pile P. On obtient : P = [1, 2] ; PARCOURS = [1, 2, 5]. On remonte
au sommet précédent et on continue l’exploration du sommet 2. On réa-
lise un parcours en profondeur puisqu’on va le plus loin possible. On est
bloqué au sommet 5. On remonte en arrière et on explore le sommet 2
en explorant en profondeur ce sommet.

•• Le haut de la pile (sommet 2) possède un voisin non exploré : 6. On
ajoute alors 6 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6].

•• Le haut de la pile (sommet 6) possède un voisin non exploré : 7. On
ajoute alors 7 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 2, 6, 7] ; PARCOURS = [1, 2, 5, 6, 7].

•• Le haut de la pile P (sommet 7) n’a pas de voisin non exploré. On dépile 7
de la pile P. P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6, 7]. On remonte au
sommet précédent et on continue l’exploration du sommet 6.

•• Le haut de la pile (sommet 6) possède un voisin non exploré : 9. On
ajoute alors 9 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 2, 6, 9] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• Le haut de la pile P (sommet 9) n’a pas de voisin non exploré. On dépile 9
de la pile P. On obtient : P = [1, 2, 6] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• On remonte au sommet précédent et on continue l’exploration du
sommet 6.

•• Le sommet 6 n’a plus de sommet non exploré. On remonte au sommet 2
qui n’a plus de sommet non exploré. On remonte au sommet 1. On
obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7, 9].

•• Le haut de la pile (sommet 1) possède un voisin non exploré : 3. On
ajoute alors 3 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 3] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3].

•• Le haut de la pile P (sommet 3) n’a pas de voisin non exploré. On dépile 3
de la pile P. On obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3].
On remonte au sommet précédent et on continue l’exploration du
sommet 1.

•• Le haut de la pile (sommet 1) possède un voisin non exploré : 4. On
ajoute alors 4 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 4] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3, 4].

•• Le haut de la pile (sommet 4) possède un voisin non exploré : 8. On
ajoute alors 8 dans la liste PARCOURS et dans la pile P. On obtient :
P = [1, 4, 8] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3, 4, 8].

•• Le haut de la pile P (sommet 8) n’a pas de voisin non exploré. On dépile 8
de la pile P. On obtient : P = [1, 4] ; PARCOURS = [1, 2, 5, 6, 7, 9, 3,
4, 8]. On remonte au sommet précédent et on continue l’exploration du
sommet 4.

Chapitre 12 · Graphes

171

•• Le haut de la pile P (sommet 4) n’a pas de voisin non exploré. On
dépile 4 de la pile P. On obtient : P = [1] ; PARCOURS = [1, 2, 5, 6, 7,
9, 3, 4, 8]. On remonte au sommet précédent et on continue l’explora-
tion du sommet 1.

•• Le haut de la pile P (sommet 1) n’a pas de voisin non exploré. On
dépile 1 de la pile P. On obtient : P = [] ; PARCOURS = [1, 2, 5, 6, 7,
9, 3, 4, 8].

L’algorithme est terminé puisque la pile P est vide.

Remarques :

Dans l’algorithme du parcours en profondeur, on peut choisir d’autres parcours
d’exploration :

•• Le sommet 1 a trois sommets adjacents.

•• On a commencé par explorer en profondeur 2 et 5 mais on aurait pu explorer un
autre parcours, par exemple 4 et 8.

On considère le graphe non orienté ()= ,G S A :

2

0

4

3

1

On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi, j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1 sinon M[i][j] = 0.
2.  Écrire une fonction testgrapheconnexe_profondeur qui admet
comme argument une matrice d’adjacence M et retourne True si le graphe est
connexe et False sinon en utilisant le parcours en profondeur.
3.  Écrire une fonction arbrecouvrant_profondeur qui admet comme
arguments une matrice d’adjacence M et un sommet de départ début permet-
tant de récupérer une matrice d’adjacence représentant l’arbre couvrant corres-
pondant au parcours en profondeur pour un graphe non orienté et connexe.
On considère deux listes (PERE, PARCOURS) et une pile P. La liste PARCOURS
contient la liste des sommets explorés. PERE[k] représente le père de
PARCOURS[k].

Exercice 12.8 : �Test de connexité d’un graphe – Parcours en
profondeur – Arbre couvrant

Partie 9 · Graphes

172

Les étapes de l’algorithme sont les suivantes :
Initialisation de l’algorithme :
•• La pile P contient le sommet de départ.

•• La liste PARCOURS contient le sommet de départ.

•• La liste PERE contient -1.

Boucle tant que la pile P n’est pas vide :
•• S’il existe un sommet i non exploré adjacent au sommet x (situé en haut de
la pile P) qui n’est pas dans la liste PARCOURS, alors on empile i dans P, on
ajoute i dans la liste PARCOURS et on ajoute x dans la liste PERE.

•• Si le sommet x (situé en haut de la pile P) ne possède pas de voisin non
exploré, alors on dépile cet élément de la pile.

4.  Représenter l’arbre couvrant du graphe G.

Analyse du problème
Un graphe non orienté est connexe (ou simplement connexe) si on peut relier,
directement ou non, n’importe quel sommet à n’importe quel autre sommet du
graphe par un chemin. Il n’y a pas de sommet isolé.

On utilise le parcours en profondeur pour construire un arbre inclus dans le graphe
G et qui relie tous les sommets de ce graphe (voir exercice précédent « Parcours en
profondeur d’un graphe »).

Pour construire l’arbre couvrant, on définit deux listes : PARCOURS et PERE. La
liste PERE contient la liste des pères pour chaque sommet de PARCOURS. Il faut
en effet connaître la liste des sommets parcourus et savoir comment on a atteint ce
sommet.

1. La matrice d’adjacence est : =





















M

0 1 1 0 1
1 0 1 1 0
1 1 0 1 1
0 1 1 0 0
1 0 1 0 0

.

M=[[0,1,1,0,1],[1,0,1,1,0],[1,1,0,1,1],\
 [0,1,1,0,0],[1,0,1,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice
d’adjacence : M[i] [i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est
pas orienté : M[i][j] = M[j][i].

Chapitre 12 · Graphes

173

On peut déduire de la deuxième ligne de la matrice que le sommet 1 est relié aux
sommets : 0, 2 et 3.

Pour la troisième ligne, le sommet 2 est relié aux sommets : 0, 1, 3 et 4.

2. Pour savoir si le graphe G est connexe, on récupère la liste des sommets
explorés avec l’algorithme de parcours en profondeur. Si tous les sommets
du graphe G sont dans cette liste, alors G est connexe.
On appelle début le sommet de départ. On pose par exemple début = 0.
On aurait pu prendre un autre sommet de G.

def testgrapheconnexe_profondeur(M):
 # la fonction retourne True si le graphe est connexe
 # et False sinon pour la matrice d’adjacence M
 n=len(M)
 début=0 # on prend un sommet quelconque, par exemple 0
 P=[début]
 PARCOURS=[début]
 while len(P)!=0:
 x=P.pop() # dépile pour récupérer l’élément en haut
 # de la pile
 P.append(x) # empile x car il ne faut pas dépiler x
 # à ce stade
 trouve=False
 i=0
 while i<n and trouve==False:
 if M[x,i]>0 and i not in PARCOURS: # cherche un sommet
 # non exploré
 trouve=True # on a trouvé un sommet non exploré
 P.append(i)
 PARCOURS.append(i) # marque ce sommet exploré
 i+=1
 if trouve==False:
 P.pop() # dépile le haut de la pile
 if len(PARCOURS)==n:
 return True # le graphe est connexe
 else:
 return False # le graphe n’est pas connexe

Dans la fonction testgrapheconnexe_profondeur, la liste
PARCOURS donne la liste de tous les sommets explorés avec l’algorithme
en profondeur.
n=len(M) retourne le nombre de lignes de la matrice M.
Il suffit de tester si la longueur de la liste PARCOURS est égale au nombre
de lignes de la matrice M pour savoir si on a bien exploré tous les sommets
du graphe.
3. L’arbre couvrant d’un graphe non orienté et connexe est un arbre inclus
dans le graphe et qui relie tous les sommets du graphe G.
Pour construire l’arbre couvrant, il suffit de parcourir les listes PARCOURS
et PERE en commençant à PARCOURS[1]. Le père de PARCOURS[k]

Partie 9 · Graphes

174

est PERE[k]. On peut ainsi remplir la matrice d’adjacence de l’arbre cou-
vrant.

def arbrecouvrant_profondeur(M, début):
 # la fonction retourne l’arbre couvrant de la matrice M
 # en partant du sommet début (entier)
 # le graphe est non orienté et connexe
 n=len(M)
 P=[début]
 PARCOURS=[début]
 PERE=[-1] # on n’utilise pas le premier élément de PERE
 while len(P)!=0:
 x=P.pop() # dépile pour récupérer l'élément en haut
 # de la pile
 P.append(x) # empile x car il ne faut pas dépiler x
 # à ce stade
 trouve=False
 i=0
 while i<n and trouve==False:
 if M[x][i]>0 and i not in PARCOURS: # cherche un sommet
  # non exploré
 trouve=True # on a trouvé un sommet non exploré
 PERE.append(x) # ajoute le père du sommet i
 P.append(i)
 PARCOURS.append(i) # marque ce sommet i exploré
 i+=1
 if trouve==False:
 P.pop() # dépile le haut de la pile

 print('Parcours :',PARCOURS)
 print('Pere :',PERE)

 # Construction de l’arbre couvrant
 mat=[[0 for j in range(n)] for i in range(n)]
 for k in range(1, len(PARCOURS)): # k varie entre 1 inclus
 # et len(PARCOURS) exclu.
 # PARCOURS[0] n'a pas de père.
 indice_pere=PERE[k]
 indice_fils=PARCOURS[k]
 mat[indice_pere][indice_fils]=1
 mat[indice_fils][indice_pere]=1 # la matrice est
 # symétrique car le graphe n'est pas orienté
 return mat

On n’utilise pas PERE[0]. On aurait pu écrire PERE=[None] au lieu de
PERE=[-1].

Remarque :

On utilise très souvent trois opérations de base avec les piles : « empiler », « dépi-
ler » et « tester si la pile est vide ». Voir exercice 11.5 « Opérations de base sur
les piles » dans le chapitre « Dictionnaire, pile, file, deque ». Les lignes suivantes
permettent de récupérer le sommet x du haut de la pile.

Chapitre 12 · Graphes

175

x=P.pop() # on dépile pour récupérer l'élément en haut de la pile
P.append(x) # on rempile x

4. La liste PARCOURS vaut : [0, 1, 2, 3, 4].
La liste PERE vaut : [-1, 0, 1, 2, 2].
On obtient la matrice d’adjacence représentant l’arbre couvrant :





















0 1 0 0 0
1 0 1 0 0
0 1 0 1 1
0 0 1 0 0
0 0 1 0 0

.

Le graphe de départ est :

2

0

4

3

1

On obtient l’arbre couvrant :

0

1

2

3 4   

2

0

4

3

1

On a réalisé un parcours en profondeur en explorant le plus loin possible :
0 – 1 – 2 – 3. On arrive à 3. On est bloqué. On remonte à 2 et on redescend
vers 4.

Partie 9 · Graphes

176

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1
à 9. On considère le graphe non orienté G S A()= , représentant la structure du
site web.

1

2 3 4

5 6

7

8

9

La liste PARCOURS contient la liste des sommets parcourus par l’algorithme.
On ajoute le sommet de départ début dans la liste PARCOURS initialement
vide et dans la deque D initialement vide.
Principe de l’algorithme récursif :
•• On supprime le sommet x à l’extrémité gauche de D. On ajoute tous les som-
mets non explorés adjacents à x, dans la liste PARCOURS et à l’extrémité
droite de D.

•• On appelle la fonction récursive avec la deque D et la liste PARCOURS.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction récursive BFS_rec qui admet comme arguments un
dictionnaire dico, une deque D et une liste PARCOURS.
3.  Le sommet de départ vaut 1. Que vaut PARCOURS après l’appel de la fonc-
tion BFS_rec(dico, D, PARCOURS) ?

Exercice 12.9 : Algorithme récursif du parcours en largeur

Analyse du problème
L’algorithme de parcours en largeur (ou BFS, Breadth First Search, en anglais) per-
met de traiter les sommets adjacents à un sommet donné pour ensuite les explorer
un par un. L’implémentation repose sur une deque D dans laquelle on place le pre-
mier sommet à l’extrémité droite de D initialement vide et les sommets adjacents
non explorés à l’extrémité droite de D. On utilise le principe FIFO (First In, First
Out : « premier entré, premier sorti »).

Chapitre 12 · Graphes

177

1.

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6], 4:[1, 6, 8],\
 5:[2], 6:[2, 7, 9], 7:[6], 8:[4],9:[6]}

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].
2.

•• La condition d’arrêt de la fonction récursive est que la deque D est vide.
•• On supprime le sommet x à l’extrémité gauche de D et L=dico[x]
contient tous les sommets adjacents à x. La boucle for permet de par-
courir tous les sommets adjacents à x. Tous les sommets adjacents non
explorés sont ajoutés dans PARCOURS et à l’extrémité droite de D. Si
x = 1, on ajoute les sommets 2, 3 et 4. On a bien un parcours en largeur.

•• On appelle à nouveau la fonction récursive avec la deque D et la liste
PARCOURS modifiées précédemment.

Les listes et les deques sont passées par référence et non par valeur dans
les fonctions. On considère donc la même liste PARCOURS et la même
deque D lors des différents appels récursifs.

def BFS_rec(dico, D, PARCOURS):
 # la fonction permet un parcours en largeur du dictionnaire
 # dico en partant de début et permettant d’obtenir
 # PARCOURS la liste des sommets visités
 if len(D)==0:
 return () # condition d’arrêt
 else:
 x=D.popleft() # supprime le sommet à l’extrémité
 # gauche de D
 L=dico[x] # liste contenant les sommets adjacents à x
 for elt in L: # parcourt les éléments de L
 if elt not in PARCOURS:
 D.append(elt) # ajoute elt à l’extrémité
 # droite de D
 PARCOURS.append(elt)
 BFS_rec(dico, D, PARCOURS) # appel récursif

from collections import deque # module permettant d’utiliser
 # les deques
D=deque() # deque vide
début=1
D.append(début)
PARCOURS=[début]
BFS_rec(dico, D, PARCOURS)
print('Algorithme parcours en largeur récursif - Parcours :',\
 PARCOURS)

3. On obtient : PARCOURS = [1, 2, 3, 4, 5, 6, 8, 7, 9].

Partie 9 · Graphes

178

On modélise un site web par une page d’accueil qui contient des liens hyper-
textes permettant d’accéder à d’autres pages du site qui peuvent contenir éga-
lement des liens hypertextes. Le site web contient 9 pages numérotées de 1
à 9. On considère le graphe non orienté ()= ,G S A représentant la structure du
site web.

1

2 3 4

5 6

7

8

9

On définit la liste PARCOURS qui contient la liste des sommets parcourus par
l’algorithme. La liste PARCOURS est initialement vide.
Principe de l’algorithme récursif :
•• On ajoute le sommet s dans la liste PARCOURS.

•• On appelle la fonction récursive pour le premier sommet non exploré
adjacent à s.

1.  Définir un dictionnaire dico représentant le graphe G. Chaque clé est asso-
ciée à un sommet. La valeur de la clé représente la liste des sommets adjacents.
2.  Écrire une fonction récursive profondeur_rec qui admet comme argu-
ments un dictionnaire dico, un sommet de départ s et une liste PARCOURS.
3.  Qu’affiche le programme suivant ?

profondeur_rec(dico, 1, [])
print(PARCOURS)

Représenter l’arbre des appels de la fonction récursive profondeur_rec
(dico, 1).

Exercice 12.10 : Algorithme récursif du parcours en profondeur

Analyse du problème
L’algorithme de parcours en profondeur (ou DFS, Depth First Search, en anglais)
explore une branche en profondeur depuis un sommet avant de passer à la suivante.
On va le plus profond possible pour chaque branche.

1.

dico={1:[2, 3, 4], 2:[1, 5, 6], 3:[1, 6], 4:[1, 6, 8],\
 5:[2], 6:[2, 7, 9], 7:[6], 8:[4],9:[6]}

Chapitre 12 · Graphes

179

Le sommet 2 est relié aux sommets 1, 5 et 6. La valeur de la clé 2 est la
liste des sommets adjacents [1, 5, 6].
2.

def profondeur_rec(dico, s, PARCOURS):
 # la fonction permet un parcours en profondeur du dictionnaire
 # dico en partant de s et permettant d’obtenir
 # PARCOURS la liste des sommets visités
 PARCOURS.append(s) # ajoute le sommet s dans liste PARCOURS
 L=dico[s] # liste des sommets adjacents
 for elt in L:
 if elt not in PARCOURS:
 profondeur_rec(dico, elt, PARCOURS) # appel récursif
 # condition d’arrêt si tous les éléments de L ont été explorés
 # On n’a pas besoin de return car on ajoute
 # les sommets explorés au fur et à mesure dans PARCOURS

3. On considère le programme principal suivant :
profondeur_rec(dico, 1, [])
print(PARCOURS)

Le programme Python affiche : [1, 2, 5, 6, 7, 9, 3, 4, 8].
La fonction récursive est notée f. Pour une meilleure lisibilité, on écrit
f(1) au lieu de profondeur_rec(dico, 1, PARCOURS). La liste
PARCOURS est notée P.

•• On appelle f(1). Le sommet 1 est en cours d’exploration. On l’ajoute
dans la liste P. La liste L contient les sommets adjacents à 1 : L = [2,
3, 4]. On considère le premier sommet de la liste. Le sommet 2 n’a pas
encore été exploré. On a un appel récursif f(2).

•• Le sommet 2 est en cours d’exploration. On l’ajoute dans la liste P. La
liste L contient les sommets adjacents à 2 : L = [1, 5, 6]. On considère
le premier sommet de la liste non exploré. Le sommet 5 n’a pas encore
été exploré. On a un appel récursif f(5).

•• Le sommet 5 est en cours d’exploration. On l’ajoute dans la liste P. La
liste L contient les sommets adjacents à 5 : L = [2]. Aucun élément de
L est non exploré. On est dans la condition d’arrêt de la fonction récur-
sive. Phase de remontée avec P = [1, 2, 5].

•• On revient au sommet 2.
On explore le sommet 6
puis appel récursif pour
le sommet 7. Phase de
remontée avec P = [1, 2,
5, 6, 7].

L’arbre ci-contre représente
les différents appels de la
fonction profondeur_
rec que l’on note f.

f(1)

f(2)

f(3)

f(4)

f(5) f(6)

f(7)

f(8)

f(9)

P=[1,2,5,6,7,9]

P=[1,2,5]

P=[1,2,5,6,7,9]

P=[1,2,5,6,7]

P=[1,2,5,6,7,9]

P=[1,2,5,6,7,9,3,4,8]

P=[1,2,5,6,7,9,3]

P=[1,2,5,6,7,9,3,4,8]

Partie 9 · Graphes

180

On considère le graphe connexe et non orienté ()= ,G S A :

1

2 3 4

5 0

On utilise la liste couleur pour mémoriser la couleur des sommets. Un som-
met est blanc lorsqu’il n’a pas été traité. Lorsqu’on commence à traiter un som-
met i, il est gris. Après avoir traité en largeur tous les sommets adjacents au
sommet i, le sommet i est noir.
On utilise la liste PERE : PERE[i] désigne le père du sommet i lors du par-
cours du graphe en largeur.
On utilise une deque D pour gérer la file d’attente (FIFO : First In First Out).
On supprime le sommet grisé à l’extrémité gauche de D qui devient noir. Tous
les sommets adjacents à ce sommet sont ajoutés à l’extrémité droite de D et
deviennent grisés.
On utilise les listes de listes pour représenter les matrices dans Python.

1.  Construire la matrice d’adjacence Mi,j du graphe G. Si deux sommets diffé-
rents i et j sont reliés par une arête, alors M[i][j] = 1, sinon M[i][j] = 0.
2.  Écrire une fonction cycle_som qui admet comme arguments une matrice
d’adjacence M et un sommet début. Cette fonction parcourt en largeur le graphe
G. La fonction retourne True lorsqu’un sommet i adjacent à un sommet x n’est
pas blanc et que le père de x n’est pas i. La fonction retourne False sinon.
3.  Écrire le programme principal permettant d’afficher si un graphe connexe et
non orienté possède au moins un cycle. On pourra appeler la fonction cycle_
som à un sommet quelconque du graphe.
4.  Écrire le programme principal permettant d’afficher si un graphe non orienté
possède au moins un cycle. On pourra appeler la fonction cycle_som à chaque
sommet du graphe.

Exercice 12.11 : �Recherche d’un cycle, graphe non orienté,
parcours en largeur

Analyse du problème
On utilise le parcours en largeur du graphe.

Un chemin est simple si toutes les arêtes du chemin sont différentes. Un cycle est
un chemin simple tel que le sommet d’arrivée est le même que le sommet de départ.

Chapitre 12 · Graphes

181

L’énoncé n’impose pas de trouver un cycle passant par le sommet de départ.

1. La matrice d’adjacence est : =























M

0 0 1 1 1 0
0 0 1 1 1 0
1 1 0 0 0 1
1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 0 0 0

.

M=[[0,0,1,1,1,0], [0,0,1,1,1,0], [1,1,0,0,0,1],\
 [1,1,0,0,0,0], [1,1,0,0,0,0], [0,0,1,0,0,0]]

Remarque :

Tous les éléments de la diagonale sont nuls d’après la définition de la matrice
d’adjacence : M[i][i] = 0.

Les éléments sont symétriques par rapport à la diagonale puisque le graphe n’est
pas orienté : M[i][j] = M[j][i].

2. Il y a des différences dans la recherche de cycle pour les graphes orien-
tés et pour les graphes non orientés :

•• Pour un graphe orienté, il suffit de tester que le successeur de x est le
sommet de départ. Par exemple : 1→2→1 peut représenter un cycle. La
condition pour trouver un cycle est : if M[x][i]>0 and i==début.
Un chemin doit exister entre x et i. Il faut également que i soit le som-
met de départ début. Dans cet exercice, on impose de trouver un cycle
passant par début.

•• Pour un graphe non orienté, 1-2-1 ne représente pas un cycle.
La condition pour trouver un cycle est : if M[x][i]>0 and couleur
[i]!="blanc" and PERE[x]!=i.
Un chemin doit exister entre x et i. Le sommet i doit déjà être visité et le
père de x ne doit pas être i (on évite ainsi de considérer i - x - i comme
un cycle). Dans cet exercice, on n’impose pas de trouver un cycle passant
par le sommet de départ début.

def cycle_som(M, début):
 # la fonction retourne False si la matrice M ne possède pas
 # de cycle en partant de l’entier début
 from collections import deque # module permettant d’utiliser
 # les deques
 n=len(M) # nombre de sommets du graphe
 PERE=[-1 for i in range(n)]
 couleur=["blanc" for i in range(n)]
 # les sommets non traités sont blancs
 D=deque() # création d’une deque vide
 D.append(début) # ajoute début à l’extrémité droite de D
 couleur[début]="gris" # sommet début en cours de traitement
 while len(D)!=0:

Partie 9 · Graphes

182

 x=D.popleft() # supprime le sommet x à l’extrémité
 # gauche de D
 couleur[x]="noir" # le sommet x a été traité
 for i in range(n):
 if M[x][i]>0 and couleur[i]!="blanc" and PERE[x]!=i:
 # on a trouvé un chemin de x vers i
 # i a déjà été visité
 # on teste que le père de x n’est pas i
 return True
 elif M[x][i]>0 and couleur[i]=="blanc":
 D.append(i) # ajoute le sommet i à
 # l’extrémité
 # droite de D
 PERE[i]=x # le père de i est x
 couleur[i]="gris" # sommet à traiter
 return False # pas de cycle en partant de début

3. On considère un sommet quelconque pour le graphe connexe et non
orienté.

début=0
if cycle_som(M, début)==True:
 print('Le graphe connexe et non orienté possède au moins'\
 ' un cycle.')
else:
 print('Le graphe connexe et non orienté ne possède pas de'\
 ' cycle en partant du sommet ',début)

4. On applique la fonction cycle_som à chaque sommet du graphe.

def rec_cycle_larg(M):
 # la fonction retourne False si la matrice M ne possède
 # pas de cycle
 n=len(M) # nombre de sommets du graphe
 for i in range(n): # i varie entre 0 inclus et n exclu
 if cycle_som(M, i)==True:
 return True # quitte la fonction si un cycle trouvé
 return False

if rec_cycle_larg(M)==True:
 print('Le graphe possède au moins un cycle.')
else:
 print('Le graphe ne possède pas de cycle.')

Partie 10

Recherche d’un
plus court chemin

Plan

13. Recherche d’un plus court chemin (sauf TSI et TPC)� 185
13.1 : Recherche d’un plus court chemin, graphe orienté� 185
13.2 : Algorithme de Dijkstra� 187
13.3 : Algorithme A*� 195
13.4 : �Variantes de l’algorithme A*, distance de Manhattan� 200

185

13Recherche d’un plus
court chemin
(sauf TSI et TPC)

On considère le graphe orienté G S A()= , :

1

2 3 4

5 6

7

8

9

L.reverse() permet d’inverser les éléments de la liste L.
On considère dans l’algorithme une liste PARCOURS et un dictionnaire PERE :
•• La liste PARCOURS contient la liste des sommets d’un plus court chemin du
sommet de départ début jusqu’au sommet d’arrivée fin différent de début.

•• PERE[i] représente le père du sommet i lors du parcours en largeur du
graphe depuis le sommet de départ début.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à
chaque sommet représente la liste des successeurs.
2.  Écrire une fonction itérative BFS qui admet comme arguments un diction-
naire dico et un sommet de départ début. La fonction retourne un diction-
naire PERE en utilisant l’algorithme de parcours en largeur.
3.  La liste PARCOURS est initialement vide.
Principe de l’algorithme d’un plus court chemin :
Pour obtenir les sommets d’un plus court chemin de début jusqu’à fin, il
faut remonter dans l’arborescence du dictionnaire PERE depuis le sommet fin
jusqu’à la racine début.
Écrire une fonction récursive pluscourtchemin qui admet comme arguments
un sommet de départ début, un sommet d’arrivée fin, un dictionnaire PERE et une
liste PARCOURS permettant d’obtenir un plus court chemin de début jusqu’à fin.
4.  Écrire le programme principal permettant d’afficher un plus court chemin
entre le sommet de départ début et le sommet d’arrivée fin. Qu’obtient-on
pour début = 1 et fin = 8 ?

Exercice 13.1 : Recherche d’un plus court chemin, graphe orienté

Partie 10 · Recherche d’un plus court chemin

186

Analyse du problème
Un plus court chemin de début jusqu’à fin est le chemin comportant le moins
d’arcs. On utilise l’algorithme de parcours en largeur (BFS, Breadth First Search,
en anglais) permettant de traiter les sommets adjacents à un sommet donné pour
ensuite les explorer un par un. Voir exercice 12.5 « Parcours en largeur d’un graphe
avec une deque » dans le chapitre « Graphes ».

1.
dico={1:[3], 2:[1, 5], 3:[6],\
 4:[1, 8], 5:[], 6:[2, 4, 9],\
 7:[6], 8:[1, 9], 9:[]}

Le sommet 2 a deux successeurs : 1 et 5. La valeur de la clé 2 est la liste
des successeurs [1, 5]. Le sommet 6 n’est pas le successeur du sommet 4.
2. Les sommets déjà visités sont marqués pour éviter d’explorer plusieurs
fois un même sommet. La liste VISITED contient les sommets visités.
Les étapes de l’algorithme de parcours en largeur sont les suivantes :

Initialisation de l’algorithme :
•• Mettre le sommet de départ dans la deque D initialement vide.
•• La liste VISITED contient le sommet de départ : VISITED =
[début].

Boucle tant que la deque D n’est pas vide :
•• Supprimer le sommet x à l’extrémité gauche de D.
•• Ajouter dans VISITED et à l’extrémité droite de D les sommets non
explorés adjacents au sommet x.

def BFS(dico, début):
 # la fonction renvoie le dictionnaire PERE avec un parcours
 # en largeur pour le dictionnaire dico
 from collections import deque # module permettant d’utiliser
 # les deques
 D=deque() # deque vide
 D.append(début) # ajoute le sommet de départ
 PERE={ } # dictionnaire vide
 VISITED=[début]
 while len(D)!=0:
 x=D.popleft() # supprime le sommet x à l’extrémité
 # gauche de D
 L=dico[x] # liste contenant les sommets adjacents à x
 for elt in L:    # parcourt les éléments de L
 if elt not in VISITED: # teste si le sommet n’a pas
 # déjà été exploré
 D.append(elt) # ajoute le sommet elt à l’extrémité
 # droite de D
 VISITED.append(elt) # le sommet elt a été exploré
 PERE[elt]=x # ajoute clé, valeur dans le dico PERE
 return PERE

La ligne PERE[elt]=x permet d’ajouter elt (clé) et x (valeur de la clé)
dans le dictionnaire dico.

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

187

3.
def pluscourtchemin(début, fin, PERE, PARCOURS):
 # la fonction permet d’avoir un plus court chemin
 # de début (int) à fin (int) dans la liste PARCOURS
 # à partir du dictionnaire PERE
 if début==fin:
 PARCOURS.append(fin)
 return() # condition d’arrêt
 elif PERE[fin]=='':
 PARCOURS=[]
 return () # condition d’arrêt
 else:
 PARCOURS.append(fin) # on ajoute le sommet fin dans
 # la liste PARCOURS
 pluscourtchemin(début, PERE[fin], PERE, PARCOURS)
 # appel récursif

4.
début, fin=1, 8
PERE=BFS(dico, début)
if fin not in PERE: # teste si le sommet fin est dans
 # le dictionnaire PERE
 print("Il n’y a pas de chemin entre", début, "et", fin,".")
else:
 PARCOURS=[]
 pluscourtchemin(début, fin, PERE, PARCOURS)
 PARCOURS.reverse() # inverse les éléments de la liste
 print('Un plus court chemin :', PARCOURS)

Si le sommet fin n’est pas dans le dictionnaire PERE, alors il n’y a pas de
chemin entre début et fin.
Le programme Python affiche :

 Parcours : [1, 3, 6, 4, 8]

On considère le graphe non orienté ()=G S A, , où le nombre situé sur l’arête
joignant deux villes (ou sommets) est leur distance :

4

2

0

4

8
7

3 2

9

3

1 1

Exercice 13.2 : Algorithme de Dijkstra

Partie 10 · Recherche d’un plus court chemin

188

On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence (Mi, j)0≤i,j≤n−1 (appelée également matrice
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les villes d’origine i
et d’extrémité j.
Lorsque les villes ne sont pas reliées, cette distance vaut l’infini. On définit la
variable inf=1e10 qui représente une distance infinie.
2.  On cherche à déterminer un plus court chemin pour aller d’une ville de
départ notée départ à une ville d’arrivée notée arrivée en utilisant l’algo-
rithme de Dijkstra :
On définit la liste VILLES contenant les informations suivantes pour chaque
ville : [ville précédente sur le chemin, distance parcourue depuis la ville de
départ, ville sélectionnée ou non (booléen vrai ou faux)].
a) Initialisation de l’algorithme :
Toutes les villes sont non sélectionnées sauf la ville de départ. Pour cette ville,
la distance parcourue vaut 0.
Pour les villes non sélectionnées, les distances parcourues depuis la ville de
départ sont initialisées à l’infini.
On définit une variable position qui correspond à la ville pour laquelle
l’algorithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée, répé-
ter les opérations suivantes pour toutes les villes i non sélectionnées :
•• Calculer la variable somme = distance entre la ville départ et la ville
position + distance entre la ville position et la ville i.

•• Si la variable somme est inférieure à la distance entre la ville départ et la
ville i, alors remplacer cette distance par somme. La ville précédente sur le
chemin est alors position.

Chercher la ville (parmi les villes non sélectionnées) pour laquelle la distance
entre celle-ci et la ville départ est la plus petite. Cette ville définit alors la
nouvelle valeur de la variable position et cette ville devient sélectionnée.
Écrire une fonction dijkstra qui admet comme arguments d’entrée la matrice
d’adjacence M, la ville départ et la ville arrivée. Cette fonction retourne
le chemin suivi ainsi que la distance parcourue entre départ et arrivée en
utilisant l’algorithme de Dijkstra.
Écrire le programme principal permettant de déterminer un plus court chemin
entre la ville de départ 3 et la ville d’arrivée 0. Le programme affichera le che-
min suivi ainsi que la distance parcourue.
3.  Pourquoi cet algorithme est appelé algorithme glouton ?

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

189

4.  Calculer la complexité de cet algorithme dans le pire des cas.
5.  On considère le graphe suivant :

18

0

2 4

1 3

4

3

10

8

2

1

Écrire le programme permettant de déterminer un plus court chemin entre la
ville de départ 0 et la ville d’arrivée 2. Le programme affichera le chemin suivi
ainsi que la distance parcourue.

Analyse du problème
On étudie l’algorithme de Dijkstra, qui un algorithme de plus court chemin. On
définit la matrice d’adjacence qui contient l’ensemble des distances entres les villes.
La longueur d’un chemin est la somme des poids des arêtes qui le constituent.

1. La matrice d’adjacence est : =

∞
∞

∞ ∞
∞ ∞





















M

0 9 3 7
9 0 1 8
3 1 0 4 2

8 4 0
7 2 0

.

Remarque : On peut se reporter à l’exercice 12.1 « Matrice d’adjacence » dans
le chapitre « Graphes » pour avoir plus d’explications sur la construction de cette
matrice.

2.
•• Dans l’algorithme de Dijkstra, on calcule la distance de départ à
toutes les villes i non sélectionnés en passant par la ville position.
On cherche ensuite le minimum des distances pour les villes non sélec-
tionnées. Ce minimum permet de déclarer une ville sélectionnée. Cette
distance est définitive.
On définit un sous-graphe G’. Dans l’état initial, G’ contient
uniquement la ville départ. À chaque étape de la boucle
while(position!=arrivée), on ajoute la ville position
dans G’. Toutes les distances des villes de G’ sont définitives.

Partie 10 · Recherche d’un plus court chemin

190

•• Dans l’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de
Floyd-Warshall » dans le chapitre « Programmation dynamique »), on
peut trouver ultérieurement une distance encore plus petite en passant
par d’autres sommets avec des arêtes de poids négatif. Il faut recalculer
toutes les distances à l’étape suivante.

On définit une liste VILLES qui contient pour chaque ville i :
•• VILLES[i][0] : ville précédente.
•• VILLES[i][1] : g i() = distance entre la ville départ et la ville i.
•• VILLES[i][2] : True si la ville i est sélectionnée, sinon False.

a) Initialisation de l’algorithme :
Toutes les villes sont non sélectionnées (VILLES[i][2] = False)
sauf la ville de départ. Pour cette ville, la distance parcourue vaut 0. Pour
les villes non sélectionnées, les distances parcourues depuis la ville de
départ sont initialisées à l’infini : VILLES[i][1] = inf. La variable
position prend initialement la valeur départ.
b) On définit une boucle while (position!=arrivée) tant que la
variable position (sommet appartenant à la frontière entre les villes
sélectionnées et les villes non sélectionnées) n’est pas égale à la variable
arrivée.

•• La boucle for i in range(n) avec le test if VILLES [i]
[2]==False permet de parcourir toutes les villes non sélectionnées.
On calcule somme = VILLES[position][1] + M[position][i]
(= distance entre départ et position + distance entre position
et i). Si la nouvelle distance somme est inférieure à VILLES[i][1],
alors VILLES[i][1] = somme et la ville position est la ville
précédente de i : VILLES[i][0] = position.

•• On cherche la ville indice (parmi les villes non sélectionnées) pour
laquelle la distance VILLES[indice][1] est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable
position et cette ville devient sélectionnée.

•• Si indice = position, on ne peut pas atteindre la ville d’arrivée.

inf=1e10 # variable représentant l’infini

def init(départ, nb_villes):
 # la fonction initialise la liste VILLES
 # à partir de départ (int)
 # nb_villes est le nombre de villes dans le graphe
 VILLES=[] # initialisation de la liste VILLES
 for i in range(nb_villes):
 if i==départ:
 VILLES.append([-1, 0, True])
 # la valeur -1 n’est pas utilisée car ville de départ
 # True : uniquement la ville de départ est sélectionnée

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

191

 else:
 VILLES.append([-1, inf, False])
 # la valeur -1 n'est pas utilisée car distance infinie
 # False : ville non sélectionnée
return VILLES

def dijkstra(M, départ, arrivée):
 # la fonction permet d’avoir un plus court chemin
 # de départ (int) à arrivée (int) dans la liste L à partir
 # de la matrice d’adjacence M. On récupère la liste VILLES
 nb_villes=len(M) # nb de villes = nb de lignes de M
 VILLES=init(départ, nb_villes) # initialisation de la
 # liste VILLES
 # l’algorithme est appliqué pour la ville position
 position=départ
 while (position!=arrivée):
 indice=position
 for i in range(nb_villes): # i décrit toutes les villes
 if VILLES[i][2]==False : # ville non sélectionnée
 somme=VILLES[position][1]+M[position][i]
 if somme<VILLES[i][1]:
 VILLES[i][1]=somme
 # nouvelle valeur de la distance à
 # la ville de départ
 VILLES[i][0]=position # nouvelle ville
 # précédente sur le chemin
 # recherche du minimum des distances pour les villes
 # non sélectionnées
 val_min=inf
 for i in range(nb_villes):
 if VILLES[i][2]==False and VILLES[i][1]<val_min:
 indice=i
 val_min=VILLES[i][1]
 if indice==position:
 return [],inf # on n’atteint pas arrivée
 else:
 VILLES[indice][2]=True # cette ville est sélectionnée
 position=indice # nouvelle valeur de la variable
 # position

 # liste des villes parcourues
 i=arrivée
 L=[arrivée] # L = liste des villes parcourues en sens inverse
 while (i!=départ):
 i=VILLES[i][0]
 L.append(i)
 L.reverse() # il faut inverser la liste L pour obtenir la
 # liste des villes parcourues dans le sens direct
 return L, VILLES[arrivée][1]

initialisation du programme
M=[[0, 9, 3, inf, 7], [9, 0, 1, 8, inf], [3, 1, 0, 4, 2],\
 [inf, 8, 4, 0, inf], [7, inf, 2, inf, 0]]

Partie 10 · Recherche d’un plus court chemin

192

départ, arrivée=3, 0 # ville de départ et ville d’arrivée
L, dist=dijkstra(M, départ, arrivée)
print("Algorithme de Dijkstra - Chemin suivi : ", L) # liste des
 # villes
print ("Distance parcourue = ", dist)

Le programme Python affiche :
 Chemin suivi : [3, 2, 0]
 Distance parcourue = 7

Remarque :

On considère l’exemple suivant pour expliquer l’algorithme de Dijkstra.

Étape d’initialisation

•• Ville de départ = départ = 3 et ville d’arrivée = arrivée = 0.

•• On définit une liste VILLES contenant les informations suivantes pour chaque
ville : ville précédente sur le chemin, distance parcourue depuis la ville de départ,
ville sélectionnée ou non (booléen True ou False).

•• On a alors : VILLES=[[−1,inf,False],[−1, inf,False],[−1, inf,False],[−1,0,True],
[−1,inf,False]]. Les valeurs −1 ne sont pas significatives puisque la distance est
infinie ou la ville est départ.

Algorithme

•• On définit la variable position, qui est la ville atteinte avec un plus court chemin
depuis la ville de départ. Pour toutes les villes i non sélectionnées et différentes
de position, on compare somme (distance entre ville de départ et position +
distance entre position et i = VILLES[position][1] + M[position]
[i]) et la distance depuis la ville de départ (VILLES[i][1]).

•• Chercher pour toutes les villes X précédentes celle où la variable « distance depuis
la ville de départ » est minimale. Cette ville définit alors la nouvelle valeur de la
variable position et la variable « ville sélectionnée » passe à True.

1re itération : position = 3

•• On parcourt les villes X non sélectionnées : 0, 1, 2 et 4.

On obtient alors : VILLES=[[-1,inf,False],[3,8,False],[3,4,False],[−1,0,True],
[−1,inf,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la
variable « distance depuis la ville de départ » est minimale. C’est la ville 2.

On obtient alors : position = 2 et VILLES=[[−1,inf,False],[3,8,False],
[3,4,True],[−1,0,True],[−1,inf,False]].

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

193

2e itération : position = 2

•• On parcourt les villes X non sélectionnées : 0, 1, 4.

On obtient alors : VILLES=[[2,7,False],[2,5,False],[3,4,True],[−1,0,True],
[2,6,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la
variable « distance depuis la ville de départ » est minimale. C’est la ville 1.

On obtient alors : position = 1 et VILLES=[[2,7,False],[2,5,True],[3,4,True],
[−1,0,True],[2,6,False]].

3e itération : position = 1

•• On parcourt les villes X non sélectionnées : 0, 4.

On obtient alors : VILLES=[[2,7,False],[2,5,True],[3,4,True],[−1,0,True],
[2,6,False]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la
variable « distance depuis la ville de départ » est minimale. C’est la ville 4.

On obtient alors : position = 4 et VILLES=[[2,7,False],[2,5,True],[3,4,True],
[−1,0,True],[2,6,True]].

4e itération : position = 4

•• On parcourt les villes X non sélectionnées : 0.

On obtient alors : VILLES=[[2,7,False],[2,5,True],[3,4,True],[−1,0,True],
[2,6,True]].

•• On cherche dans les villes X non sélectionnées (variable False) celle où la
variable « distance depuis la ville de départ » est minimal. C’est la ville 0.

On obtient alors : position = 0 et VILLES = [[2,7,True], [2,5,True], [3,4,True],
[−1,0,True], [2,6,True]].

Pour obtenir le trajet, on part de la ville d’arrivée, la distance minimale entre la ville
de départ et la ville d’arrivée est obtenue par VILLES[arrivée][1] = 7. Pour
obtenir le trajet, on obtient la ville précédente avec VILLES[arrivée][0] = 2
et, de proche en proche, on remonte à la ville de départ.

3. L’algorithme glouton (greedy en anglais) repose sur l’utilisation de
sous-problèmes. Lorsqu’on est rendu à la ville position, on fait un choix
local qui paraît être le meilleur en choisissant, dans la liste des villes non
sélectionnées, la ville suivante indice dont la distance entre départ
et indice est la plus petite. Ce choix n’est pas remis en cause ultérieu-
rement.
4. Soit n le nombre de villes.
Initialisation de la liste VILLES : 1 opération et, pour chaque valeur de
i : 1 comparaison et 1 affectation. La boucle for est parcourue n fois. On
a donc 2n+1 opérations élémentaires.

Partie 10 · Recherche d’un plus court chemin

194

Dans le pire des cas, on a (n-1) itérations dans la boucle while. Pour
chaque valeur de position, on a :

•• 1 comparaison, 1 calcul de somme, 1 test et deux affectations pour
chaque valeur de i : 5n opérations élémentaires.

•• 1 affectation : 1 opération élémentaire.
•• Recherche du minimum : trois comparaisons et deux affectations pour
chaque valeur de i : 5n opérations élémentaires.

•• 2 affectations : 2 opérations élémentaires.
On a donc n n n n n n n() () () ()()+ + − × + + + = + + − +2 1 1 5 1 5 2 2 1 1 10 3 opé-
rations élémentaires.
La complexité dans le pire des cas est quadratique en O(n2).

Remarque : On peut accepter des petites différences dans l’évaluation du nombre
total d’opérations élémentaires. La complexité de l’algorithme ne sera pas
modifiée.

5. La matrice d’adjacence est : =

∞

∞ ∞
∞ ∞

∞





















M

0 8 18 3
8 0 4 1 10

18 4 0
1 0 2

3 10 2 0

2 .

M2=[[0, 8, 18, inf, 3], [8, 0, 4, 1, 10], [18, 4, 0, inf, inf],\
 [inf, 1, inf, 0,2], [3, 10, inf, 2,0]]
départ2, arrivée2=0, 2 # ville de départ et ville d'arrivée
L2, dist2=dijkstra(M2, départ2, arrivée2)
print("Trajet suivi : ", L2) # affichage de la liste des villes
print ("Distance parcourue = ", dist2)

Le programme Python affiche :
 Trajet suivi : [0, 4, 3, 1, 2]
 Distance parcourue = 10

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

195

On considère le graphe orienté ()=G S A, qui représente le réseau routier d’un
département en prenant en compte le sens de la circulation. Une route à sens
unique est représentée par un arc dont le poids est la distance en kilomètres entre
deux sommets (ou deux villes). Les distances indiquées dans les rectangles sur
le graphe ci-dessous représentent les distances à vol d’oiseau entre les sommets
et le sommet d’arrivée 5.

0

2 4

1 3

4

3

2

5
2

5
4

2

2
2

2

3

33

2

3.2

5

1.5

1

0

Une heuristique est un algorithme qui calcule rapidement une solution pouvant
être approximative. On utilise la distance euclidienne (ou distance à vol
d’oiseau) pour estimer le coût restant ()h i permettant d’atteindre le sommet
arrivée à partir du sommet i.
On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence (Mi, j)0≤i,j≤n−1 (appelée également matrice
de distance) du graphe G, définie par :
Pour tous les indices i, j, Mi, j représente la distance entre les sommets d’origine
i et d’extrémité j.
Lorsque les sommets ne sont pas reliés, cette distance vaut l’infini. On définit la
variable inf=1e10 qui représente une distance infinie.
2.  L’algorithme A* est une variante de l’algorithme de Dijkstra. On dispose
pour chaque sommet i d’une estimation du coût restant pour atteindre le som-
met arrivée à partir du sommet i : h i() = distance euclidienne (ou distance à
vol d’oiseau) entre le sommet i et le sommet arrivée. On définit la fonction
d’évaluation f telle que : f i g i h i() () ()= + .
•• g i() est le coût réel du chemin optimal entre le sommet départ et le sommet
i dans la partie déjà explorée ;

•• h i() est le coût estimé du chemin qui reste à parcourir entre i et arrivée.

On définit la liste SOMMETS contenant les informations suivantes pour chaque
sommet :
[sommet précédent sur le chemin, distance parcourue depuis le sommet de départ,

Exercice 13.3 : Algorithme A*

Partie 10 · Recherche d’un plus court chemin

196

sommet sélectionné ou non (booléen vrai ou faux), distance évaluée entre
départ et arrivée]
a) Initialisation de l’algorithme A* :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance f (indice) entre départ et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.

On définit la liste H=[5, 2, 3.2, 1.5, 1, 0] telle que H[i] = distance
euclidienne entre le sommet i et le sommet arrivée = 5.
Écrire une fonction algoA qui admet comme arguments d’entrée la matrice
d’adjacence M, la liste H, le sommet départ et le sommet arrivée. Cette
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ
et arrivée en utilisant l’algorithme A*.
3.  Écrire le programme principal permettant de déterminer un plus court che-
min entre le sommet de départ 0 et le sommet d’arrivée 5. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue.

Analyse du problème
La fonction h est une fonction heuristique telle que ()h i est le coût estimé du che-
min qui reste à parcourir entre le sommet i et le sommet arrivée. On utilise
la distance à vol d’oiseau dans ce problème alors que, dans l’exercice suivant
« Variantes de l’algorithme A* − Distance de Manhattan », on utilise la distance de
Manhattan. L’idée est de choisir un sommet qui semble être le plus prêt du sommet
d’arrivée.

La fonction d’évaluation permet de déterminer quel sommet est sélectionné en
premier, c’est-à-dire retiré de la frontière entre les sommets sélectionnés et les
sommets non sélectionnés : () () ()= +f i g i h i renvoie une estimation de la distance
entre le sommet de départ et le sommet d’arrivée en passant par le sommet i du
graphe. On considère un graphe orienté dont le poids des arcs est un réel positif.

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

197

1. La matrice d’adjacence est : =

∞ ∞ ∞
∞ ∞
∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ ∞























M

0 3 2
0 3 3 2
3 0 5 4

0 2
4 2 0

2 2 0

.

Comme le graphe est orienté, la matrice n’est pas nécessairement symé-
trique.
2. On définit une liste SOMMETS qui contient pour chaque sommet i :

•• SOMMETS[i][0] : sommet précédent ;
•• SOMMETS[i][1] : g i() = distance entre le sommet départ et le
sommet i ;

•• SOMMETS[i][2] : True si le sommet i est sélectionné, sinon False ;
•• SOMMETS[i][3] : f i() = distance entre le sommet départ et le
sommet arrivée.

La méthode gloutonne repose sur l’utilisation de sous-problèmes. Lorsqu’on est
rendu au sommet position, on fait un choix local qui paraît être le meilleur
en choisissant, dans la liste des sommets non sélectionnés, le sommet suivant
indice dont la distance f(indice) entre départ et arrivée est la plus
petite. Ce choix n’est pas remis en cause ultérieurement. On privilégie les
sommets « qui semblent » nous rapprocher de la destination.
a) Initialisation de l’algorithme :
Tous les sommets sont non sélectionnés (SOMMETS[i][2]=False)
sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut
0. Pour les sommets non sélectionnés, les distances parcourues depuis le
sommet de départ sont initialisées à l’infini : SOMMETS[i][1]=inf et
SOMMETS[i][3]=inf. La variable position prend initialement la
valeur départ.
b) On définit une boucle while(position!=arrivée) : tant que la
variable position (sommet appartenant à la frontière entre les sommets
sélectionnés et les sommets non sélectionnés) n’est pas égale à la variable
arrivée.

•• La boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélectionnés.
On calcule g_i=SOMMETS[position][1]+M[position][i] (=
distance entre départ et position + distance entre position et i)
et f_i=g_i+H[i].

•• Si la nouvelle distance f_i entre départ et arrivée est inférieure
à SOMMETS[i][3], alors SOMMETS [i][3]=f_i. On met à
jour également la distance entre le sommet départ et le sommet
i : SOMMETS[i][1]=g_i. Le sommet position est le sommet
précédent de i : SOMMETS[i][0]=position.

Partie 10 · Recherche d’un plus court chemin

198

•• On cherche le sommet indice (parmi les sommets non sélectionnés)
pour lequel la distance f (indice) entre départ et arrivée est la
plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable
position et ce sommet devient sélectionné.

•• Si indice = position, on ne peut pas atteindre le sommet d’arrivée.

inf=1e10 # variable représentant l’infini

def init3(départ, n): # n = nombre de sommets dans le graphe
 �# la fonction initialise la liste SOMMETS à partir de départ

(int)
 SOMMETS=[] # initialisation de la liste SOMMETS
 for i in range(n): # i varie entre 0 inclus et n exclu
 if i==départ:
 SOMMETS.append([-1, 0, True, 0])
 # la valeur -1 n’est pas utilisée
 �# True : uniquement le sommet de départ est

sélectionné
 else:
 SOMMETS.append([-1, inf, False, inf])
 �# la valeur -1 n’est pas utilisée car distance

infinie
 # False : sommet non sélectionné
 return SOMMETS

def algoA(M, H, départ, arrivée):
 # la fonction permet d’avoir un plus court chemin
 # de départ (int) à arrivée (int) dans la liste L à partir
 # de la matrice d'adjacence M. On récupère la liste SOMMETS
 n=len(M) # nombre de sommets = nombre de lignes de M
 SOMMETS=init3(départ, n) # initialisation de la liste SOMMETS
 position=départ
 while (position!=arrivée):
 indice=position
 for i in range(n): # i décrit tous les sommets
 if SOMMETS[i][2]==False: # sommet non sélectionné
 g_i=SOMMETS[position][1]+M[position, i]
 # g(i) = coût réel entre départ et i
 h_i=H[i] # coût estimé entre i et arrivée
 f_i=g_i+h_i
 if f_i<SOMMETS[i][3]:
 SOMMETS[i][1]=g_i # distance départ->i = g(i)
 SOMMETS[i][3]=f_i
 # distance départ->arrivée = f(i)
 SOMMETS[i][0]=position
 # sommet précédent sur le chemin
 # recherche du minimum des distances départ->arrivée
 # pour les sommets non sélectionnés
 val_min=inf # initialisation de val_min à +infini

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

199

 for i in range(n): # i varie entre 0 inclus et n exclu
 if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
 indice=i
 val_min=SOMMETS[i][3] # f(i)
 if indice==position:
 return [],inf # on n’atteint pas le sommet arrivée
 else:
 SOMMETS[indice][2]=True # ce sommet est sélectionné
 position=indice # nouvelle valeur de position

 # liste des sommets parcourus
 i=arrivée
 L=[arrivée] # L = liste des sommets parcourus en sens inverse
 while (i!=départ):
 i=SOMMETS[i][0]
 L.append(i)
 L.reverse() # il faut inverser la liste L pour obtenir
 �# la liste des sommets parcourus dans le sens

direct
 return L, SOMMETS[arrivée][1]

3.
inf=float("inf")
M=[[0,3,2,inf,inf,inf],[inf,0,3,3,2,inf],\
 [inf,3,0,5,4,inf],[inf,inf,inf,0,inf,2],\
 [inf,inf,4,2,0,inf],[inf,inf,inf,2,2,0]]
départ, arrivée=0, 5
H=[5, 2, 3.2, 1.5, 1, 0]
L2, dist2=algoA(M, H, départ, arrivée)
print('Algo A* chemin :',L2,'; distance',dist2)

Le programme Python affiche :
 Algo A* chemin : [0, 1, 3, 5]
 distance = 8

Remarque :

L’algorithme A* utilise une heuristique dont le coût évalué (distance à vol d’oi-
seau) est toujours inférieur au coût réel. On dit que cette heuristique est admissible.
On peut montrer que cet algorithme retourne toujours une solution optimale si elle
existe. L’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd-
Warshall » dans le chapitre « Programmation dynamique ») permet de traiter des
arcs dont le poids est négatif.

Partie 10 · Recherche d’un plus court chemin

200

On considère le graphe orienté ()=G S A, qui représente le quartier de Manhat-
tan. Les routes sont à double sens et certaines sont bloquées à cause de travaux
(rectangles avec des briques). Les n sommets du graphe sont les intersections
des routes : le sommet 11 représente l’intersection de la 5e avenue avec la 66e
rue. On considère que la distance entre deux sommets adjacents vaut 1. On
suppose que le nombre d’avenues est égal au nombre de rues.

Position des 25 sommets :

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Les sommets barrés ne sont pas acces-
sibles à cause de travaux.
Une heuristique est un algorithme qui
calcule rapidement une solution pou-
vant être approximative. On utilise la
distance de Manhattan pour estimer
le coût restant (()h i = nombre d’ave-
nues et de rues entre le sommet i et le
sommet arrivée) permettant d’at-
teindre le sommet arrivée à partir
du sommet i. On définit la variable inf=1e10 qui représente une distance
infinie.
On définit la liste SOMMETS contenant les informations suivantes pour chaque
sommet :
[sommet précédent sur le chemin, distance parcourue depuis le sommet de
départ, sommet sélectionné ou non (booléen vrai ou faux), distance évaluée
entre départ et arrivée]
L.reverse() permet d’inverser les éléments de la liste L.

1.  Définir un dictionnaire dico représentant le graphe G. La clé associée à
chaque sommet représente la liste des sommets adjacents.
2.  Écrire une fonction listeH qui admet comme arguments d’entrée le som-
met arrivée et le nombre de sommets n. Cette fonction retourne la liste

() () () ()= − 0 1 1H h h h i h n, , ..., , ..., telle que ()h i = distance de Manhattan
entre le sommet i et le sommet arrivée.

2e3e4e5e6e
64e

65e

66e

67e

68e

Avenues

Rues

Exercice 13.4 : �Variantes de l’algorithme A*, distance
de Manhattan

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

201

3.  L’algorithme glouton BFS (Best First Search : meilleure première recherche)
permet de déterminer un plus court chemin entre le sommet départ et le som-
met arrivée.
a) Initialisation de l’algorithme BFS :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance ()indiceh entre indice et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.

Écrire une fonction BFS qui admet comme arguments d’entrée un dictionnaire
dico, le sommet départ et le sommet arrivée. Cette fonction retourne le
chemin suivi ainsi que la distance parcourue entre départ et arrivée en
utilisant l’algorithme BFS.
4.  On dispose pour chaque sommet i d’une estimation du coût restant pour
atteindre le sommet arrivée à partir du sommet i : ()h i = distance de Manhat-
tan entre le sommet i et le sommet arrivée. On pose w un réel compris entre 0
et 1. On définit la fonction d’évaluation f telle que : () () () ()= − ⋅ + ⋅1f i w g i w h i .
•• ()g i est le coût réel du chemin optimal entre départ et i dans la partie déjà
explorée ;

•• ()h i est le coût estimé du chemin qui reste à parcourir entre i et arrivée.
a) Initialisation de l’algorithme :
Tous les sommets sont non sélectionnés sauf le sommet de départ. Pour ce
sommet, la distance parcourue vaut 0. Pour les sommets non sélectionnés, les
distances parcourues depuis le sommet de départ sont initialisées à l’infini. On
définit une variable position qui correspond au sommet pour lequel l’algo-
rithme est appliqué. Cette variable prend initialement la valeur départ.
b) Tant que la variable position n’est pas égale à la variable arrivée :
•• Chercher le sommet indice (parmi les sommets non sélectionnés) pour
lequel la distance f (indice) entre départ et arrivée est la plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable position
et ce sommet devient sélectionné.

Partie 10 · Recherche d’un plus court chemin

202

Écrire une fonction MANHATTAN qui admet comme arguments d’entrée un dic-
tionnaire dico, le sommet départ, le sommet arrivée et le réel w. Cette
fonction retourne le chemin suivi ainsi que la distance parcourue entre départ
et arrivée en utilisant l’algorithme décrit précédemment.
Écrire le programme principal permettant de déterminer un plus court chemin
entre le sommet de départ 10 et le sommet d’arrivée 13. Le programme affi-
chera le chemin suivi ainsi que la distance parcourue pour w = 0, w = 0.5 et
w = 1.
5.  Comment appelle-t-on les algorithmes lorsque w = 0, w = 0.5 et w = 1 ?

Analyse du problème
La fonction h est une fonction heuristique telle que ()h i est le coût estimé du che-
min qui reste à parcourir entre le sommet i et le sommet arrivée. On utilise la
distance de Manhattan alors que dans l’exercice précédent « Algorithme A* » on
utilise la distance euclidienne (ou distance à vol d’oiseau).

On considère différentes fonctions d’évaluation dans ce problème pour sélection-
ner un sommet :

•• Algorithme glouton BFS (question 3) : la fonction d’estimation () ()=f i h i ren-
voie la distance de Manhattan entre le sommet i et le sommet arrivée.

•• Algorithme de la question 4 : la fonction d’évaluation () () () ()= − ⋅ + ⋅1f i w g i w h i
renvoie une estimation de la distance entre le sommet de départ et le sommet
d’arrivée en passant par un sommet i.

1.
dico={0:[1,5], 1 :[0,2,6], 2 :[1,3], 3 :[2,4], 4 :[3,9],\
 5 :[0,6,10], 6 :[1,5,11], 7 :[], 8 :[], 9 :[4,14],\
 10 :[5,11,15], 11 :[6,10], 12 :[], 13 :[14, 18],\
 14 :[9,13,19], 15 :[10,20], 16 :[], 17 :[],\
 18 :[13, 19, 23], 19 :[14,18, 24], 20 :[15,21],\
 21 :[20,22], 22 :[21,23], 23 :[18, 22,24], 24 :[19,23]}

Voir exercice 11.1 « Opérations de base sur les dictionnaires » dans le chapitre
« Dictionnaire, pile, file, deque » pour l’utilisation des dictionnaires.
Le sommet 6 est relié aux sommets 1, 5 et 11. La valeur de la clé 6 est la
liste des sommets adjacents [1, 5, 11].
Le nombre d’éléments du dictionnaire correspond au nombre n de sommets
du graphe. On définit nb_rues le nombre de rues. Comme le nombre
d’avenues est égal au nombre de rues, alors :

import math as m # module math renommé m
nb_rues=int(m.sqrt(n)) # n = nombre de sommets
 # = nombre de rues * nombre d’avenues

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

203

2. La distance de Manhattan entre un sommet A (de coordonnées xA, yA) et
un sommet B (de coordonnées xB, yB) vaut x x y yB A B A− + − . Elle corres-
pond au nombre d’avenues et de rues entre le sommet A et le sommet B.
Les abscisses correspondent aux lignes et les ordonnées correspondent aux
colonnes. Le sommet 0 a pour coordonnées 0, 0. Le sommet 13 a pour
coordonnées 2, 3.

inf=1e10 # variable représentant l’infini

def listeH(arrivée, n):
 import math as m # module math renommé m
 # la fonction retourne la liste H telle que H[i] = distance
 # de Manhattan entre le sommet i et le sommet arrivée (int)
 nb_rues=int(m.sqrt(n)) # n = nombre de sommets
 # = nombre de rues * nombre d'avenues
 # on suppose que nombre d’avenues = nombre de rues
 xB, yB= arrivée//nb_rues, arrivée%nb_rues
 # abscisse et ordonnée du sommet d’arrivée
 # quotient et reste de la division euclidienne
 H=[] # initialisation de la liste H
 for i in range(0, n) : # i varie entre 0 inclus et n exclu
 xA, yA=i//nb_rues, i%nb_rues # abscisse et ordonnée
 # du sommet i
 # quotient et reste de la division euclidienne
 y=abs(yB-yA)+abs(xB-xA) # distance de Manhattan pour
 # le sommet i
 H.append(y)
 return H

3. On définit une liste SOMMETS qui contient pour chaque sommet i :
•• SOMMETS[i][0] : sommet précédent ;
•• SOMMETS[i][1] : g i() = distance entre le sommet départ et le
sommet i ;

•• SOMMETS[i][2] : True si le sommet i est sélectionné, sinon False ;
•• SOMMETS[i][3] : f i() = distance entre le sommet départ et le
sommet arrivée.

La méthode gloutonne repose sur l’utilisation de sous-problèmes. Lorsqu’on
est rendu au sommet position, on fait un choix local qui paraît être
le meilleur en choisissant, dans la liste des sommets non sélectionnés, le
sommet suivant indice dont la distance de Manhattan entre indice et
arrivée est la plus petite. Ce choix n’est pas remis en cause ultérieu-
rement. On privilégie les sommets « qui semblent » nous rapprocher de la
destination.
a) Initialisation de l’algorithme :
On définit la liste H en utilisant la fonction listeH définie dans la ques-
tion 2.
Tous les sommets sont non sélectionnés (SOMMETS[i][2]=False)
sauf le sommet de départ. Pour ce sommet, la distance parcourue vaut 0.

Partie 10 · Recherche d’un plus court chemin

204

Pour les sommets non sélectionnés, les distances parcourues depuis le
sommet de départ sont initialisées à l’infini : SOMMETS[i][1]=inf et
SOMMETS[i][3]=inf. La variable position prend initialement la
valeur départ.
b) On définit une boucle while(position!=arrivée) tant que la
variable position (sommet appartenant à la frontière entre les sommets
sélectionnés et les sommets non sélectionnés) n’est pas égale à la variable
arrivée.

•• La boucle for i in range(n) avec le test if SOMMETS[i]
[2]==False permet de parcourir tous les sommets non sélection-
nés. On calcule g_i=SOMMETS[position][1]+1 (= distance entre
départ et position + distance entre position et i) et f_i=H[i].

•• Si la nouvelle distance f_i entre départ et arrivée est inférieure
à SOMMETS[i][3], alors SOMMETS[i][3] = f_i. On met à
jour également la distance entre le sommet départ et le sommet i :
SOMMETS[i][1] = g_i. Le sommet position est le sommet
précédent de i : SOMMETS[i][0] = position.

•• On cherche le sommet indice (parmi les sommets non sélectionnés)
pour lequel la distance f (indice) entre départ et arrivée est la
plus petite.

•• Ce sommet indice définit alors la nouvelle valeur de la variable
position et ce sommet devient sélectionné.

•• Si indice = position, on ne peut pas atteindre le sommet d’arrivée.

def init4(départ, n): # n = nombre de sommets dans le graphe
 # la fonction initialise la liste SOMMETS à partir
 # de départ (int)
 SOMMETS=[] # initialisation de la liste SOMMETS
 for i in range(n): # i varie entre 0 inclus et n exclu
 if i==départ:
 SOMMETS.append([-1, 0, True, 0])
 # la valeur -1 n’est pas utilisée
 # True : uniquement le sommet de départ est sélectionné
 else:
 SOMMETS.append([-1, inf, False, inf])
 # la valeur -1 n’est pas utilisée car distance infinie
 # False : sommet non sélectionné
 return SOMMETS
def BFS(dico, départ, arrivée):
 # la fonction permet d’avoir un plus court chemin
 # de départ (int) à arrivée (int) dans la liste L
 # à partir du dictionnaire dico.
 # On récupère la liste SOMMETS
 n=len(dico) # nombre de sommets
 H=listeH(arrivée, n)
 inf=1e10 # variable représentant l’infini
 SOMMETS=init4(départ, n) # initialisation de la liste SOMMETS

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

205

 position=départ
 while (position!=arrivée):
 indice=position
 for i in range(n): # i décrit tous les sommets
 if SOMMETS[i][2]==False: # sommet non sélectionné
 L=dico[position]
 if i in L: # position et i sont adjacents
 g_i=SOMMETS[position][1]+1
 # g(i) = coût réel entre départ et i
 f_i=H[i] # coût estimé entre i et arrivée
 if f_i<SOMMETS[i][3]:
 SOMMETS[i][1]=g_i
 # distance départ->i = g(i)
 SOMMETS[i][3]=f_i
 # fonction d’évaluation f(i) = H[i]
 SOMMETS[i][0]=position
 # sommet précédent sur le chemin
 # recherche du minimum des valeurs de f(i) = H[i]
 # pour les sommets non sélectionnés
 val_min=inf # initialisation de val_min à +infini
 for i in range(n): # i varie entre 0 inclus et n exclu
 if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
 indice=i
 val_min=SOMMETS[i][3] # f(i)
 if indice==position:
 return [],inf # on n’atteint pas le sommet arrivée
 else:
 SOMMETS[indice][2]=True # ce sommet est sélectionné
 position=indice # nouvelle valeur de position

 # liste des sommets parcourus
 i=arrivée
 L=[arrivée] # L = liste des sommets parcourus en sens inverse
 while (i!=départ):
 i=SOMMETS[i][0]
 L.append(i)
 L.reverse() # il faut inverser la liste L pour obtenir la
 # liste des sommets parcourus dans le sens direct
 return L, SOMMETS[arrivée][1]

4. C’est le même algorithme que précédemment. On change la fonction
d’évaluation : f_i = (1-w)*g_i+w*h_i au lieu de f_i = h_i pour
sélectionner le sommet suivant lorsqu’on est rendu au sommet position.
On retrouve l’algorithme de la question 2 avec w = 1.

def MANHATTAN (dico, départ, arrivée, w):
 # la fonction permet d’avoir un plus court chemin
 # de départ (int) à arrivée (int) dans la liste L
 # à partir du dictionnaire dico.
 # w est compris entre 0 et 1.
 # On récupère la liste SOMMETS
 n=len(dico) # nombre de sommets
 H=listeH(arrivée, n)

Partie 10 · Recherche d’un plus court chemin

206

 inf=1e10 # variable représentant l’infini
 SOMMETS=init4(départ, n) # initialisation de la liste SOMMETS
 position=départ
 while (position!=arrivée):
 indice=position
 for i in range(n): # i décrit tous les sommets
 if SOMMETS[i][2]==False: # sommet non sélectionné
 L=dico[position]
 if i in L: # position et i sont adjacents
 g_i=SOMMETS[position][1]+1
 # g(i) = coût réel entre départ et i
 h_i=H[i] # coût estimé entre i et arrivée
 # w=0:Dijkstra, w=0.5:algorithme A*, w=1:BFS
 f_i=(1-w)*g_i+w*h_i
 if f_i<SOMMETS[i][3]:
 SOMMETS[i][1]=g_i
 # distance départ->sommet i = g(i)
 SOMMETS[i][3]=f_i
 # distance départ->arrivée = f(i)
 SOMMETS[i][0]=position
 # sommet précédent sur le chemin
 # recherche du minimum des valeurs de f(i)
 # = distance départ->arrivée
 # pour les sommets non sélectionnés
 val_min=inf
 for i in range(n):
 if SOMMETS[i][2]==False and SOMMETS[i][3]<val_min:
 indice=i
 val_min=SOMMETS[i][3] # f(i)
 if indice==position:
 return [],inf # on n’atteint pas le sommet arrivée
 else:
 SOMMETS[indice][2]=True # ce sommet est sélectionné
 position=indice # nouvelle valeur de position

 # liste des sommets parcourus
 i=arrivée
 L=[arrivée] # L = liste des sommets parcourus en sens inverse
 while (i!=départ):
 i=SOMMETS[i][0]
 L.append(i)
 L.reverse() # il faut inverser la liste L pour obtenir la
 # liste des sommets parcourus dans le sens direct
 return L, SOMMETS[arrivée][1]

initialisation du programme
départ, arrivée=10, 13 # sommet de départ et sommet d'arrivée
L2, dist2=BFS(dico, départ, arrivée)
print('Algo BFS : chemin :', L2, '; distance', dist2)
w=0
for i in range(3):
 L2, dist2=MANHATTAN(dico, départ, arrivée, w)
 print('w =',w, '; chemin :', L2, '; distance', dist2)
 w=w+0.5

Chapitre 13 · Recherche d’un plus court chemin (sauf TSI et TPC)

207

5. On retrouve plusieurs cas particuliers :
•• w = 0 : algorithme de Dijkstra. L’algorithme devient une recherche en
largeur sans stratégie d’exploration des sommets ;

•• w = 0.5 : algorithme A* ;
•• w = 1 : algorithme glouton BFS.

Si on souhaite aller de Bordeaux à Lyon, l’algorithme A* va plutôt explorer
les sommets vers l’est qui ont une distance plus faible que les autres som-
mets alors que l’algorithme de Dijkstra fait une recherche en largeur sans
stratégie d’exploration des sommets.
Le programme Python affiche les résultats suivants pour départ = 10 et
arrivée = 13 :

•• w = 0 ; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance = 7 ;
•• w = 0.5 ; chemin : [10, 15, 20, 21, 22, 23, 18, 13] ; distance = 7 ;
•• w = 1 ; chemin : [10, 11, 6, 1, 2, 3, 4, 9, 14, 13] ; distance = 9.

L’algorithme BFS (w = 1) ne donne pas la solution optimale : il privilégie
le chemin passant par 11 qui semble plus près de 13 mais qui nécessite un
long contournement pour atteindre effectivement 13.
Les algorithmes de Dijkstra et A* utilisent une heuristique dont le coût
évalué (distance de Manhattan) est toujours inférieur ou égal au coût réel.
On dit que ces heuristiques sont admissibles. On peut montrer que ces deux
algorithmes retournent toujours une solution optimale si elle existe. Il peut
y avoir plusieurs solutions optimales de même coût.
Dans la méthode gloutonne, on ne revient pas sur un choix local optimal
alors que, avec la programmation dynamique, on peut revenir sur les choix
précédents. L’algorithme est glouton pour toutes les valeurs de w.
L’algorithme de Floyd-Warshall (voir exercice 14.4 « Algorithme de Floyd-
Warshall » dans le chapitre « Programmation dynamique ») permet de trai-
ter des arcs dont le poids est négatif.

Partie 11

Programmation
dynamique

Plan

14. Programmation dynamique (Spé) (sauf TSI et TPC)� 211
14.1 : Suite des nombres de Fibonacci, Top Down et Bottom Up� 211
14.2 : Rendu de monnaie� 214
14.3 : Problème du sac à dos� 223
14.4 : Algorithme de Floyd-Warshall� 231

211

14Programmation
dynamique (Spé)
(sauf TSI et TPC)

On note ∈()


Fn n la suite des nombres de Fibonacci définie par : = =0, 1,0 1F F
∀ ∈ = ++ +, 2 1n F F Fn n n.

1.  Écrire une fonction récursive fibo1 qui permet de renvoyer le nombre de
Fibonacci Fn. L’algorithme utilise-t-il la méthode « diviser pour régner » ?
2.  Représenter l’arbre des appels de la fonction récursive fibo1(5). Combien
de fois est recalculé F2

 ? Quel est l’inconvénient ?
Pour pallier cet inconvénient, on utilise deux techniques : technique récursive
« Top Down » (de haut en bas) de mémoïsation et technique itérative « Bottom
Up » (de bas en haut).
3.  La technique de mémoïsation consiste à stocker les valeurs de Fn dans une
liste au fur et à mesure qu’elles sont calculées. Utiliser un dictionnaire pour
implémenter la mémoïsation. Écrire une fonction « récursive » fibo2 renvoyant
le nombre de Fibonacci Fn en utilisant la technique « Top Down ».
4.  Écrire une fonction itérative fibo3 qui prend en argument un entier naturel
n et renvoie le nombre de Fibonacci Fn en utilisant la technique « Bottom Up ».

Exercice 14.1 : �Suite des nombres de Fibonacci, Top Down
et Bottom Up

Analyse du problème
La méthode « diviser pour régner » permet de décomposer le problème initial en
deux sous-problèmes.

Afin d’éviter de calculer plusieurs fois le même nombre de Fibonacci, on utilise la
technique de mémoïsation.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le problème de
départ.

Partie 11 · Programmation dynamique

212

Cette méthode donne de très bons résultats dans de nombreux problèmes : dichotomie, tri
par partition-fusion, tri rapide.

La méthode « diviser pour régner » a parfois des faiblesses avec des appels récursifs
redondants. Les sous-problèmes ne sont pas toujours indépendants. On peut être amené à
résoudre plusieurs fois le même sous-problème.

Une solution consiste à utiliser la technique de mémoïsation en stockant les résultats déjà
calculés. On rencontre deux techniques :

•• Technique récursive « Top Down » (de haut en bas) de mémoïsation. Lors d’un appel
récursif, on regarde dans une liste intermédiaire si le sous-problème est déjà traité.
Top Down : on résout dans le sens des données de grande taille vers les données de
petite taille.

•• Technique itérative « Bottom Up » (de bas en haut) : on résout dans le sens des données
de petite taille vers les données de grande taille (c’est l’ordre inverse de « Top Down »).
On stocke également les résultats obtenus dans une liste intermédiaire.

L’algorithme « Bottom Up » résout tous les sous-problèmes de taille inférieure alors que l’al-
gorithme « Top Down » ne résout que les sous-problèmes de taille inférieure dont il a besoin.

1.
def fibo1(n):
 # la fonction renvoie le nombre de Fibonacci Fn
 # pour l’entier n
 if n==0:
 return 0 # condition d’arrêt
 elif n==1:
 return 1 # condition d’arrêt
 else:
 return (fibo1(n-1)+fibo1(n-2))
 # appel récursif

L’algorithme est de type « diviser pour régner » puisqu’on décompose
le problème (calcul de fibo1(n)) en deux sous-problèmes (calcul de
fibo1(n-1) et fibo1(n-2)). On calcule récursivement chacun des deux
sous-problèmes.
2. L’arbre ci-dessous représente les différents appels de la fonction fibo1
que l’on note fib.

fib(4)

fib(5)

fib(3)

2
3

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0) fib(1) fib(0)

2
1 1

1

1

1 1 0 1 0

main()

5

fib(1) fib(0)

1

0

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

213

F2 est recalculé 3 fois. F3 est recalculé 2 fois.
L’inconvénient est que l’on augmente considérablement la complexité
puisqu’on recalcule plusieurs la même valeur Fn.
3. On utilise un dictionnaire contenant les termes de la suite déjà calculés.
Pour chaque élément du dictionnaire dico, on précise la clé et la valeur
associée. La clé est l’entier n et la valeur est Fn. On dit que l’on a un che-
vauchement de sous-problèmes.
def fibo2(n, dico):
 # la fonction renvoie le nombre de Fibonacci F[n]
 # pour l’entier n
 if n in dico: # teste si n est dans dico
 return dico[n] # condition d’arrêt
 # retourne F[n]
 else:
 if n==0:
 dico[n]=0 # calcul de F[0]
 return 0 # condition d’arrêt
 elif n==1:
 dico[n]=1 # calcul de F[1]
 return 1 # condition d’arrêt
 else:
 a=fibo2(n-1, dico) # appel récursif
 if n-1 not in dico: # teste si la clé n-1
 # est dans dico
 dico[n-1]=a # stockage de F[n-1] dans dico
 b=fibo2(n-2, dico) # appel récursif
 if n-2 not in dico: # teste si la clé n-2
 # est dans dico
 dico[n-2]=b # stockage de F[n-2] dans dico
 return (a+b)

dico={}
n=15
print('fibo2 =', fibo2(n, dico))

4. La relation de récurrence s’écrit pour n ≥ 2 : Fn = Fn−1 + Fn−2.
def fibo3(n):
 # la fonction renvoie le nombre de Fibonacci Fn
 # pour l’entier n
 # on remplit dans une liste les valeurs de F[n]
 if n==0:
 return 0
 elif n==1:
 return 1
 else:
 F=[0, 1] # initialisation de la liste F
 for i in range(2, n+1): #i varie entre 2 inclus
 # et n+1 exclu
 F.append(F[i-1]+F[i-2])
 return F[i]

Partie 11 · Programmation dynamique

214

On dispose des pièces entières suivantes : S = [1, 2, 5, 10, 20, 50, 100] = [S0, S1,
…, Sn-1] où S[i] représente la valeur de la pièce d’indice i. On cherche à rendre
une certaine somme entière X en utilisant le moins de pièces, qui peuvent être
identiques.

1.  On utilise la méthode la plus intuitive qui consiste à commencer par rendre
la plus grande pièce possible. Pour X = 11, on commence par rendre la pièce
de 10.
On appelle L[x] le nombre de pièces nécessaires pour rendre la somme x. La
récurrence (1) peut s’écrire :
•• L[0] = 0 ;

•• si ≥x 1 : [][]= + −L x L x S i[] 1 avec i le plus grand tel que [] ≤S i x.

On suppose que la liste S est triée par ordre croissant des valeurs. Écrire une
fonction récursive rendu1 qui admet comme arguments une liste S et un entier
X. La fonction retourne le nombre de pièces nécessaires pour rendre la somme
X en utilisant la récurrence (1).
L’algorithme utilise-t-il la méthode « diviser pour régner » ? Pourquoi cette
méthode est-elle appelée gloutonne ? Est-ce que rendu1([1, 4, 6], 8)
retourne la solution optimale ?
2.  Pour trouver la solution optimale au rendu de monnaie, on utilise la récur-
rence (2) :
•• L[0] = 0 ;

•• si ≥x 1 : = + − 
≤ ≤ −
≤

[] 1 min
0 1

L x L x S
i n

S x

i

i

.

Écrire une fonction récursive rendu2 qui admet comme arguments une liste
S et un entier X. La fonction retourne le nombre minimal de pièces nécessaires
pour rendre la somme X.
L’algorithme utilise-t-il la méthode « diviser pour régner » ?
Représenter l’arbre des appels de la fonction récursive rendu2([1, 2, 5],
4). Quel est l’inconvénient ?
3.  Écrire une fonction récursive rendu3 qui admet comme arguments une
liste S, un entier X et une liste L servant à stocker les résultats intermédiaires.
La fonction retourne le nombre minimal de pièces nécessaires pour rendre la
somme X en utilisant la programmation dynamique avec la récurrence (2).
Représenter l’arbre des appels de la fonction récursive rendu3([1, 2, 5],
4, L).
Utilise-t-on la technique « Top Down » (de haut en bas) ou « Bottom Up » (de
bas en haut) dans la fonction rendu3 ?

Exercice 14.2 : Rendu de monnaie

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

215

4.  Écrire une fonction itérative rendu4 qui admet comme arguments une liste
S, un entier X et une liste L. La fonction retourne le nombre minimal de pièces
nécessaires pour rendre la somme X. On part de la plus petite somme possible
à rendre et on calcule les éléments suivants de L en utilisant la récurrence (2).
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
5.  On souhaite reconstruire la solution optimale à partir de l’information calcu-
lée, c’est-à-dire obtenir la liste des pièces utilisées. On définit la liste T :
•• T[x] > 0 si on a utilisé la pièce d’indice T[x] pour rendre la somme x dans la
récurrence (2) ;

•• T[x] = 0 sinon.

On définit une liste PIECES initialement vide. On considère une boucle while
en partant de x = X :
•• T[x] désigne l’indice de la pièce utilisée pour rendre la somme x dans la récur-
rence (2) ;

•• ajouter dans la liste PIECES la valeur de la pièce utilisée ;

•• retrancher cette valeur à x.

Modifier la fonction rendu3 qui utilise la technique « Top Down » pour obte-
nir la liste des pièces utilisées.
6.  Modifier la fonction rendu4 qui utilise la technique « Bottom Up » pour
obtenir la liste des pièces utilisées.

Analyse du problème
On étudie plusieurs algorithmes permettant d’optimiser le rendu de monnaie. La
méthode « diviser pour régner » permet de décomposer le problème initial en deux
sous-problèmes. La programmation dynamique permet d’obtenir une solution opti-
male en utilisant deux techniques : « Top Down » et « Bottom Up ».

On verra la différence entre la méthode gloutonne et la programmation dynamique.

1. On suppose que la liste S est triée par ordre croissant des valeurs.
def rendu1(S, X):
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i] = valeur de la pièce d’indice i
 if X==0: # condition d’arrêt
 return 0
 else:
 # recherche de i le plus grand tel que S[i] <= X
 i=len(S)-1
 while S[i]>X:
 i=i-1
 # ajoute 1 au nombre de pièces ;

Partie 11 · Programmation dynamique

216

 # puisqu’on utilise la pièce S[i]
 # il reste donc à rendre la monnaie à X - S[i]
 return 1+rendu1(S, X-S[i]) # appel récursif

S=[1, 4, 6]
X=8
print(rendu1(S, X)) # on obtient : 3

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le problème de
départ.

Dans la méthode gloutonne (greedy en anglais), on effectue une succession de choix, cha-
cun d’eux semble être le meilleur sur le moment. On résout alors le sous-problème mais on
ne revient jamais sur le choix déjà effectué.

L’algorithme est de type « diviser pour régner » puisqu’on décompose le
problème (calcul de L[X]) en un sous-problème (calcul de L[X − S[i]] avec i
le plus grand tel que S[i] ≤ X). On calcule récursivement le sous-problème.
À chaque étape de l’algorithme, on commence par rendre la plus grande
pièce possible, c’est-à-dire la plus grande pièce dont la valeur est infé-
rieure à la somme à rendre. C’est la solution qui semble être la meilleure
et la plus intuitive. On déduit alors de cette pièce la somme à rendre et on
est ramené à un sous-problème avec une somme à rendre plus petite. On
recommence jusqu’à obtenir une somme nulle.
Cet algorithme est très simple mais à chaque étape on n’étudie pas tous les
cas possibles puisqu’on se contente de choisir la pièce la plus grande que
l’on peut rendre.
Dans le cas où S = [1, 4 , 6] et X = 8, on n’obtient pas la solution optimale.
L’algorithme glouton (greedy algorithm, en anglais) renvoie 3 (1 pièce de
6 et 2 pièces de 1) alors que la solution optimale est 2 (2 pièces de 4).
2.
def rendu2(S, X):
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i] = valeur de la pièce d’indice i
 if X==0: # condition d’arrêt
 return 0
 else:
 mini=X # recherche du minimum de X-S[i]
 for i in range(len(S)): # i varie entre 0 inclus
 # et len(S) exclu
 if S[i]<=X: # il faut que Si <= X
 res=rendu2(S, X-S[i])
 # appel récursif pour
 # rendre la monnaie à X-S[i]

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

217

 if res<mini:
 mini=res
 return 1+mini # ajoute 1 au nombre de pièces

S=[1, 4, 6]
X=8
print(rendu2(S, X)) # on obtient 2, c’est-à-dire la solution
 # optimale alors que rendu1(S, X)
 # retourne 3

L’algorithme est de type « diviser pour régner » puisqu’on décompose le
problème (calcul de L[X]) en plusieurs sous-problèmes (calcul de L[X–S[0]],
L[X–S[1]],…, L[X–S[n-1]]). On combine les différents sous-problèmes pour
résoudre le problème de départ.
L’arbre ci-dessous représente les différents appels de la fonction
rendu2([1, 2, 5], 4) qui retourne 2.

3

2

1

0

4

0

1

0

1 0

2

0

On appelle rendu2 pour X = 4.
•• On appelle rendu2 pour X–S[i] = 4 – 1 = 3 avec i = 0 (de la boucle
for).

•• On appelle rendu2 pour 3 – 1 = 2 avec i = 0 (de la boucle for).
•• On appelle rendu2 pour 2 – 1 = 1 avec i = 0 (de la boucle for). On
appelle rendu2 pour 1 – 1 = 0 avec i = 0. On arrive à la condition
d’arrêt.

•• On dépile et on revient à l’appel pour X = 2 avec i = 1 (de la boucle for).
On appelle rendu2 pour 2 – 2 = 0. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 3 avec i = 1 (de la boucle for).
On appelle rendu2 pour 3 – 2 = 1. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 4 avec i = 2 (de la boucle for).
On appelle rendu2 pour 4 – 2 = 2.

•• …

Partie 11 · Programmation dynamique

218

On constate que l’on calcule plusieurs fois le nombre de pièces à rendre
pour X = 2. Les sous-problèmes ne sont pas indépendants. On est amené à
résoudre plusieurs fois le même sous-problème. On dit que l’on a un che-
vauchement de sous-problèmes.
3. Pour éviter de calculer plusieurs fois le nombre de pièces à rendre pour
une valeur de X, on garde en mémoire le résultat dans la liste L. La liste L
doit contenir les valeurs suivantes : 0, 1, 2, …, X.
def rendu3(S, X, L): # programmation dynamique –
 # technique Top Down
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i] = valeur de la pièce d’indice i
 # stockage des résultats intermédaires dans L :
 # L[i] = nombre de pièces nécessaires pour
 # rendre la somme i
 if X==0: # condition d’arrêt
 return 0
 elif L[X]>0: # valeur déjà calculée
 return L[X] # retourne le nombre de pièces nécessaires
 # pour rendre la somme X
 else:
 mini=X # recherche du minimum de X-S[i]
 for i in range(len(S)): # i varie entre 0 inclus
 # et len(S) exclu
 if S[i]<=X: # il faut que Si <= X
 res=rendu3(S, X-S[i], L)
 # appel récursif pour
 # rendre la monnaie à X-S[i]
 if res<mini:
 mini=res
 L[X]=1+mini # technique de mémoïsation
 return 1+mini # ajoute 1 au nombre de pièces

L=[0 for i in range(X+1)] # initialisation - liste L
 # avec des valeurs nulles
print(rendu3(S, X, L)) # on obtient 2

Remarque : On peut utiliser un dictionnaire au lieu de la liste L. Pour chaque
élément du dictionnaire dico, on précise la clé et la valeur associée. La clé est
l’entier i et la valeur est dico[i] = nombre de pièces nécessaires pour rendre la
somme i.

def rendu3_dico(S, X, dico): # programmation dynamique –
 # technique Top Down
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i] = valeur de la pièce d’indice i
 # stockage des résultats intermédaires dans dico :
 # dico[i] = nombre de pièces nécessaires pour
 # rendre la somme i
 if X==0: # condition d’arrêt
 return 0

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

219

 elif X in dico: # valeur déjà calculée
 return dico[X] # retourne le nombre de pièces
 # nécessaires pour rendre la somme X
 else:
 mini=X # recherche du minimum de X-S[i]
 for i in range(len(S)): # i varie entre 0 inclus
 # et len(S) exclu
 if S[i]<=X: # il faut que Si <= X
 res=rendu3_dico(S, X-S[i], dico)
 # appel récursif pour
 # rendre la monnaie à X-S[i]
 if res<mini:
 mini=res
 dico[X]=1+mini # technique de mémoïsation
 return 1+mini # ajoute 1 au nombre de pièces

dico={}
S=[1, 4, 6]
X=8
print(rendu3_dico(S, X, dico))

Cours :
La programmation dynamique est souvent utilisée pour résoudre des problèmes d’optimi-
sation. Elle comprend différentes étapes :

•• Recherche d’une récurrence pour déterminer la valeur d’une solution optimale.
•• Utilisation de la technique Top Down ou Bottom Up.

La programmation dynamique et la méthode gloutonne reposent sur l’utilisation de
sous-problèmes. Il y a une différence importante :

•• Dans la programmation dynamique, on calcule toutes les solutions des sous-problèmes
que l’on combine pour obtenir une solution optimale.

•• Dans la méthode gloutonne, on choisit une solution qui semble être la meilleure et on
résout le sous-problème qui en résulte.

On rencontre deux techniques dans la programmation dynamique :

•• Technique récursive « Top Down » de mémoïsation : on résout dans le sens des don-
nées de grande taille vers les données de petite taille. Lors d’un appel récursif, on
regarde dans une liste intermédiaire si le sous-problème est déjà traité.

•• Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille
vers les données de grande taille (c’est l’ordre inverse de « Top Down »). On stocke
également les résultats obtenus dans une liste intermédiaire.

L’arbre ci-dessous représente les différents appels de la fonction
rendu3([1, 2, 5], 4).

Partie 11 · Programmation dynamique

220

3

2

1

0

4

0

1

2

On appelle rendu3 pour X = 4.
•• On appelle rendu3 pour X–S[i] = 4 – 1 = 3 avec i = 0 (de la boucle
for).

•• On appelle rendu3 pour 3 – 1 = 2 avec i = 0 (de la boucle for).
•• On appelle rendu3 pour 2 – 1 = 1 avec i = 0 (de la boucle for). On
appelle rendu3 pour 1 – 1 = 0 avec i = 0. On arrive à la condition
d’arrêt.

•• On dépile et on revient à l’appel pour X = 2 avec i = 1 (de la boucle for).
On appelle rendu3 pour 2 – 2 = 0. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 3 avec i = 1 (de la boucle for).
On appelle rendu3 pour 3 – 2 = 1. On arrive à la condition d’arrêt.

•• On dépile et on revient à l’appel pour X = 4 avec i = 2 (de la boucle for).
On appelle rendu3 pour 4 – 2 = 2. On arrive à la condition d’arrêt
puisque L[2] a déjà été calculé.

On ne calcule pas plusieurs fois le nombre de pièces à rendre pour X = 2.
La fonction rendu3 utilise la programmation dynamique avec la tech-
nique « Top Down » (de mémoïsation) et permet d’obtenir une solution
optimale sans résoudre plusieurs fois le même sous-problème.
4. On a deux boucles for imbriquées. Il faut remplir toute la liste L avant
d’obtenir la valeur optimale (x = X). On remarque que la récurrence (2) s’écrit
avec x (pour la fonction rendu4) et non X (pour la fonction rendu3).
def rendu4(S, X, L): # programmation dynamique –
 # technique Bottom Up
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i] = valeur de la pièce d’indice i
 # stockage des résultats intermédaires dans L :
 # L[i] = nombre de pièces nécessaires pour
 # rendre la somme i
 for x in range(1, X+1): # x varie entre 1 inclus
 # et X+1 exclu
 mini=X

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

221

 for i in range(len(S)): # i varie entre 0 inclus
 # et len(S) exclu
 if S[i]<=x and L[x-S[i]]<mini:
 mini=L[x-S[i]]
 L[x]=1+mini
 return L[X]

L=[0 for i in range(X+1)] # initialisation - liste L
 # avec des valeurs nulles
print(rendu4(S, X, L)) # on obtient 2

L’algorithme rendu4 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la même formule de récurrence mais on
part de la plus petite valeur à rendre au lieu de partir de la plus grande
valeur à rendre (technique « Top Down »).
Dans la fonction rendu4, on incrémente X de 1 inclus à X inclus (ou X+1
exclu).

•• Dans la technique « Top Down », on ne traite que les sous-problèmes
nécessaires. On n’a pas besoin de remplir entièrement la liste L pour
obtenir la solution optimale au problème.

•• Dans la technique « Bottom Up », on traite tous les sous-problèmes
(deux boucles for imbriquées). Il faut d’abord remplir entièrement la
liste L avant de retourner la solution optimale au problème.

5. En dessous de la ligne L[X]=1+mini, on ajoute la ligne T[X]=
indice afin de préciser l’indice de la pièce utilisée pour rendre la somme X.
La variable indice est définie lors du test if res>mini:.
def rendu3_piece(S, X, L, T): # programmation dynamique –
 # technique Top Down
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X en utilisant la liste S :
 # S[i]=valeur de la pièce d’indice i
 # stockage des résultats intermédaires dans L :
 # L[i]=nombre de pièces nécessaires pour
 # rendre la somme i
 # T[x] > 0 si on a utilisé la pièce d’indice T[x]
 # pour rendre la somme x
 if X==0: # condition d’arrêt
 return 0
 elif L[X]>0: # valeur déjà calculée
 return L[X] �# retourne le nombre de pièces

nécessaires pour rendre
 # la somme X
 else:
 mini=X # recherche du minimum de X-S[i]
 for i in range(len(S)): # i varie entre 0 inclus
 # et len(S) exclu
 if S[i]<=X: # il faut que Si <= X
 res=rendu3_piece(S, X-S[i], L, T)
 # appel récursif pour
 # rendre la monnaie à X-S[i]

Partie 11 · Programmation dynamique

222

 if res<mini:
 mini=res
 indice=i
 L[X]=1+mini # technique de mémoïsation
 T[X]=indice # indice de la pièce utilisée
 # pour rendre la somme X
 return 1+mini # ajoute 1 au nombre de pièces

S=[1, 2, 5]
X=4
L=[0 for i in range(X+1)] # initialisation - liste L
 # avec des valeurs nulles
T=[0 for i in range(X+1)] # initialisation - liste T
 # avec des valeurs nulles
print(rendu3_piece(S, X, L, T))

PIECES=[]
x=X
while x>0:
 PIECES.append(S[T[x]])
 # T[x] = indice de la pièce utilisée pour
 # rendre la somme x
 # S[T[x]] = valeur de la pièce d’indice T[x]
 x=x-S[T[x]]
 # on retranche la valeur S[T[x]] à x pour
 # chercher les autres pièces
print(PIECES)

Le programme Python affiche :
 2
 [4, 4]

6. En dessous de la ligne L[x]=1+mini, on ajoute la ligne T[x]=
indice afin de préciser l’indice de la pièce utilisée pour rendre la somme
x. La variable indice est définie lors du test if S[i]<=x and
L[x-S[i]]<mini:.
On remarque que l’on utilise x (rendu4_piece) et non X (rendu3_
piece).
def rendu4_piece(S, X, L, T): # programmation dynamique –
 # technique Bottom Up
 # la fonction renvoie le nombre de pièces nécessaires
 # pour rendre la somme X ainsi que la liste des pièces
 # en utilisant la liste S
 # stockage des résultats intermédaires dans L :
 # L[i] = nombre de pièces nécessaires pour
 # rendre la somme i
 # T[x] > 0 si on a utilisé la pièce d’indice T[x]
 # pour rendre la somme x
 for x in range(1, X+1): # x varie entre 1 inclus
 # et X+1 exclu
 mini=X
 indice=-1
 for i in range(len(S)): # i varie entre 0 inclus

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

223

 # et len(S) exclu
 if S[i]<=x and L[x-S[i]]<mini:
 mini=L[x-S[i]]
 indice=i # indice de la pièce
 L[x]=1+mini
 T[x]=indice # indice de la pièce utilisée
 # pour rendre la somme x
 # création de la liste des pièces utilisées
 # pour rendre la monnaie
 PIECES=[]
 x=X
 while x>0:
 PIECES.append(S[T[x]])
 # T[x] = indice de la pièce utilisée pour
 # rendre la somme x
 # S[T[x]] = valeur de la pièce d’indice T[x]
 x=x-S[T[x]]
 # on retranche la valeur S[T[x]] à x pour
 # chercher les autres pièces
 return L[X], PIECES

S=[1, 2, 5]
X=4
L=[0 for i in range(X+1)] # initialisation - liste L
 # avec des valeurs nulles
T=[0 for i in range(X+1)] # initialisation - liste T
 # avec des valeurs nulles
print(rendu4_piece(S, X, L, T))

Le programme Python affiche :
 2
 [4, 4]

On considère un sac à dos dont la masse maximale est notée M. On cherche à
maximiser la valeur totale des objets insérés dans le sac à dos. On dispose de n
objets modélisés par la liste de listes S :
•• S[i][0] désigne la valeur de l’objet d’indice i notée vi (i varie de 0 à n–1).

•• S[i][1] désigne la masse de l’objet d’indice i notée mi (i varie de 0 à n–1).

On suppose dans tout le problème que ∑ >
=

−

m Mi
i

n

0

1

et que les masses sont des

entiers. Le premier objet de la liste S a pour indice 0.

1.  On utilise la méthode intuitive consistant à insérer au fur et à mesure les
objets qui ont le plus grand rapport valeur/masse. On suppose que la liste S est
triée par ordre décroissant du rapport valeur/masse. Écrire une fonction itéra-
tive algo1 qui admet comme arguments une liste S et un entier M. La fonction
retourne la valeur des objets que l’on peut insérer dans le sac à dos.

Exercice 14.3 : Problème du sac à dos

Partie 11 · Programmation dynamique

224

Pourquoi cette méthode est-elle appelée gloutonne ? Est-ce que algo1
([[15,6], [60,25], [10,5], [7,8], [10,20]], 30) retourne la
solution optimale ?
2.  On considère L la liste telle que L[m][i] désigne la valeur maximale des
objets que l’on peut insérer dans le sac à dos de masse maximale m en ne consi-
dérant que les i premiers objets de la liste S (indices des objets S compris entre
0 et i–1).
Pour trouver la solution optimale au problème du sac à dos, on utilise la récur-
rence suivante (1) :
•• L[m][0] = 0.

•• L[m][i] = L[m][i–1] si S[i-1][1] > m et i > 0.

•• L[m][i] = max(L[m][i-1], S[i-1][0]+L[m-S[i-1][1],i-1])
si S[i-1][1] ≤ m et i > 0.

Écrire une fonction récursive algo2 qui admet comme arguments une liste S,
un entier M et un entier i (on ne considère que les i premiers objets de la liste
S). On n’utilisera pas dans cette question la liste L pour stocker les résultats
intermédiaires. La fonction retourne la valeur maximale des objets que l’on
peut insérer dans le sac à dos.
Démontrer la terminaison de la fonction algo2. L’algorithme utilise-t-il la
méthode « diviser pour régner » ? Quel est le principal inconvénient de cet
algorithme ?
3.  Écrire une fonction récursive algo3 qui admet comme arguments une liste
S, un entier M, un entier i (on ne considère que les i premiers objets de la liste
S) et une liste L (stockage des résultats intermédiaires). La fonction retourne la
valeur maximale des objets que l’on peut insérer dans le sac à dos en utilisant
la programmation dynamique. Utilise-t-on la technique « Top Down » (de haut
en bas) ou « Bottom Up » (de bas en haut) ?
4.  Écrire une fonction itérative algo4 qui admet comme arguments une liste
S, un entier M et une liste L (stockage des résultats intermédiaires). La fonction
retourne la valeur maximale des objets que l’on peut insérer dans le sac à dos
en utilisant la programmation dynamique avec la récurrence (1). Les résultats
intermédiaires sont stockés dans la liste L.
On calcule les éléments de L en partant de la plus petite valeur de i et de la plus
petite valeur de m.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
Quelle est la principale différence entre ces deux techniques en comparant les
listes L obtenues par les deux algorithmes précédents ?

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

225

5.  On souhaite reconstruire la solution optimale à partir de l’information cal-
culée, c’est-à-dire connaître la liste des objets insérés dans le sac. On définit la
liste T :
•• T[m][i] = 1 si on a inséré le ième objet (indice i–1 dans S) dans le sac à dos
de masse maximale m ;

•• T[m][i] = 0 sinon.

On définit une liste OBJETS initialement vide. On pose m = M. On considère
une boucle for en partant de i = n :
•• Si T[m][i] = 1, alors on a inséré le ième objet (indice i–1 dans S) dans le sac
à dos. Ajouter cet objet dans la liste OBJETS et retrancher la masse de cet
objet à la masse m.

Modifier la fonction algo3 qui utilise la technique « Top Down » pour qu’elle
retourne la valeur maximale ainsi que la liste des objets insérés.
6.  Modifier la fonction algo4 qui utilise la technique « Bottom Up » pour
qu’elle retourne la valeur maximale ainsi que la liste des objets insérés.

Analyse du problème
On étudie plusieurs méthodes permettant de maximiser la valeur des objets insérés
dans un sac à dos. La programmation dynamique permet d’obtenir une solution
optimale en utilisant deux techniques : « Top Down » et « Bottom Up ». Une liste
temporaire permet de stocker les résultats des sous-problèmes. On verra la diffé-
rence entre les deux techniques concernant le nombre de sous-problèmes à traiter.

1.
def algo1(S, M): # S liste de listes avec [valeur, masse]
 # les objets sont triés par ordre décroissant valeur/masse
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 v_total=0 # initialisation de la valeur totale des objets
 m_total=0 # initialisation de la masse totale des objets
 n=len(S)
 for i in range(n):
 if m_total+S[i][1]<=M: # teste si nouvelle
 # masse totale <= M
 v_total+=S[i][0] # calcule la nouvelle
 # valeur totale
 m_total+=S[i][1] # calcule la nouvelle
 # masse totale
 return v_total # retourne la valeur totale
 # des objets

Avant d’insérer un objet, il faut tester que la nouvelle masse totale ne
dépasse pas M.

Partie 11 · Programmation dynamique

226

Cette méthode est appelée méthode gloutonne car elle consiste à faire le
meilleur choix sur le moment, c’est-à-dire insérer l’objet qui a le plus grand
rapport valeur/masse.
M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
 # [valeur, masse]
print('ALGO1 :', algo1(S, M)) # affiche 32

On peut calculer le rapport valeur/masse pour chaque objet. On obtient
alors la liste suivante qui est bien triée par ordre décroissant : [2.5,
2.4, 2.0, 0.875, 0.5].

•• On insère le premier objet, de valeur 15 et de masse 6.
•• On ne peut pas insérer le deuxième objet, de masse 25, car la masse
totale 6+25 dépasse 30.

•• On insère le troisième objet, de valeur 10.
•• On insère le quatrième objet, de valeur 7.

On obtient une valeur totale 32 dans le sac à dos.
Cette méthode ne donne pas toujours la valeur optimale. Dans ce cas parti-
culier, algo1 renvoie 32 alors que la solution optimale est 70.
2. On cherche à insérer le ième objet. On ne fait plus le même test que
dans la question précédente (nouvelle masse totale ≤ M) mais on teste si la
masse S[i-1][1] du ième objet (indice i–1) est inférieure à M puisqu’on
traite le cas d’un sac à dos de masse maximale M-S[i-1][1].
On définit la fonction récursive algo2 :

•• algo2(S, M, i) retourne la valeur maximale des objets dans le sac
à dos de masse maximale M en ne considérant que les i premiers objets
de la liste S (indices compris entre 0 et i–1).

•• algo2(S, M, i-1) : valeur maximale dans le sac à dos de masse
maximale M en ne considérant que les i–1 premiers objets.

•• algo2(S, M-S[i-1][1], i-1): valeur maximale dans le sac à
dos de masse maximale M-S[i-1][1] en ne considérant que les i–1
premiers objets.

On considère deux cas :
•• Si l’objet d’indice i–1 a une masse supérieure à M, alors on ne peut pas
l’insérer et le programme retourne algo2(S, M, i-1) puisqu’il suffit
de considérer les i–1 premiers objets.

•• Sinon, on cherche le maximum de deux nombres :
OO algo2(S, M, i-1) en n’insérant pas l’objet d’indice i–1 ;
OO valeur de l’objet d’indice (i-1) + algo2(S, M-S[i-1][1],
i-1) en insérant l’objet d’indice i–1. Il faut en effet considérer la
valeur maximale dans le sac à dos de masse M-S[i-1][1] avec les
i–1 premiers objets. En faisant la somme des deux valeurs, la masse

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

227

maximale du sac à dos vaut toujours S[i-1][1]+(M-S[i-1]
[1])=M.

def algo2(S, M, i):
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 # et S liste de listes avec [valeur, masse]
 # on ne considère que les i premiers objets de la liste S
 if i==0: # condition d’arrêt
 return 0 # pas d’objet à insérer dans le sac à dos
 elif S[i-1][1]>M: # l’objet d’indice i-1 est de masse > M
 # on ne peut pas l’insérer
 return algo2(S, M, i-1) # appel récursif
 else:
 return max(algo2(S, M, i-1),\
 S[i-1][0]+algo2(S, M-S[i-1][1], i-1))
 # appel récursif

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
 # [valeur, masse]
print('ALGO2 :', algo2(S, M, len(S)))

Le programme Python retourne 70, qui est la solution optimale.
On considère le variant de boucle i. À chaque appel de la fonction récursive,
il décroît d’une unité et finit par atteindre la valeur 0 correspondant à la
condition d’arrêt. Le programme se termine donc dans tous les cas si i ≥ 0.
L’algorithme est de type « diviser pour régner » puisqu’on décompose le
problème (algo2(S, M, i)) en plusieurs sous-problèmes (algo2(S,
M, i-1) et algo2(S, M-mi, i-1)). On combine les différents
sous-problèmes pour résoudre le problème de départ.
Le principal inconvénient est que l’on calcule plusieurs la même valeur
totale. On dit que l’on a un chevauchement de sous-problèmes. On va uti-
liser dans la question suivante la technique de mémoïsation qui consiste à
stocker dans une liste les valeurs déjà calculées.
3. Pour éviter de calculer plusieurs fois la même valeur totale, on garde
en mémoire le résultat dans la liste L : L[m][i] contient la valeur maxi-
male des objets dans le sac à dos de masse maximale m en ne considérant
que les i premiers objets.
La liste L doit contenir M+1 lignes et len(S)+1 colonnes.
def algo3(S, M, i, L):
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 # et S liste de listes avec [valeur, masse]
 # on ne considère que les i premiers objets de la liste S
 # stockage des résultats intermédaires dans la liste L
 if L[M][i]>0: # le sous-problème a déjà été traité
 return L[M][i] # retourne la valeur déjà calculée
 elif i==0: # condition d’arrêt

Partie 11 · Programmation dynamique

228

 return 0 # pas d’objet à insérer dans
 # le sac à dos
 elif S[i-1][1]>M:
 total=algo3(S, M, i-1, L) # appel récursif
 L[M][i]=total # l’objet d’indice i-1 est de masse > M
 # on ne peut pas l’insérer
 return total
 else:
 total=max(algo3(S, M, i-1, L),\
 S[i-1][0]+algo3(S,M-S[i-1][1], i-1, L))
 # appel récursif
 L[M][i]=total
 return total

M=30
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
 # [valeur, masse]
L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('ALGO3 :', algo3(S, M, len(S), L))

La fonction algo3 utilise la programmation dynamique avec la technique
« Top Down » (de mémoïsation) et permet d’obtenir une solution optimale
sans résoudre plusieurs fois le même sous-problème.
4. On a deux boucles for imbriquées.
La boucle for i commence à i = 1 puisqu’on considère i–1 dans la récur-
rence (1).
La boucle for m commence à m = 0 et se termine à M inclus. Il faut remplir
toute la liste L avant d’obtenir la valeur optimale (i = len(S) et m = M).
On remarque que la récurrence (1) s’écrit avec m (algo4) et non M
(algo3).
def algo4(S, M, L):
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 # et S liste de listes avec [valeur, masse]
 # stockage des résultats intermédaires dans la liste L
 for i in range(1, len(S)+1): # i varie entre 1 inclus
 # et len(S)+1 exclu
 for m in range(M+1): # m varie entre 0 inclus
 # et M+1 exclu
 if S[i-1][1]>m: # on considère l’objet
 # d’indice i-1
 L[m][i]=L[m][i-1] # l’objet d’indice i-1 est
 # de masse > m
 # on ne peut pas l’insérer
 else:
 L[m][i]=max(L[m][i-1],\
 S[i-1][0]+L[m-S[i-1][1]][i-1])
 return L[M][len(S)]

La fonction algo4 utilise la programmation dynamique avec la technique
« Bottom Up » : on utilise la même formule de récurrence que dans algo2

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

229

et algo3 mais on part du plus petit nombre d’objets à insérer au lieu de
partir du plus grand nombre d’objets à insérer (technique « Top Down »).
Il faut deux boucles for imbriquées pour faire varier le nombre d’objets à
insérer et la masse maximale du sac à dos.

•• Dans la technique « Top Down », on ne traite que les sous-problèmes
nécessaires. On n’a pas besoin de remplir entièrement la liste L pour
obtenir la solution optimale au problème.

•• Dans la technique « Bottom Up », on traite tous les sous-problèmes
(deux boucles for imbriquées). Il faut d’abord remplir entièrement la
liste L avant de retourner la solution optimale au problème.

L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('ALGO4 :', algo4(S, M, L))

5. Lors de la recherche du maximum dans algo3, il faut savoir si l’objet
d’indice i–1 a été inséré ou non. Si on insère l’objet d’indice i–1, alors
T[M][i] = 1.
def algo3_objets(S, M, i, L, T):
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 # et S liste de listes avec [valeur, masse]
 # on ne considère que les i premiers objets de la liste S
 # stockage des résultats intermédaires dans la liste L
 # T[m][i] = 1 si on a inséré le ième objet
 # (indice i–1 dans S) dans le sac à dos
 # de masse maximale m
 if L[M][i]>0: # le sous-problème a déjà été traité
 return L[M][i] # retourne la valeur déjà calculée
 elif i==0: # condition d’arrêt
 return 0 # pas d’objet à insérer dans
 # le sac à dos
 elif S[i-1][1]>M:
 total=algo3_objets(S, M, i-1, L, T) # appel récursif
 L[M][i]=total # l’objet d’indice i-1 est de masse > M
 # on ne peut pas l’insérer
 return total
 else:
 a=algo3_objets(S, M, i-1, L, T)
 b=S[i-1][0]+algo3_objets(S, M-S[i-1][1], i-1, L, T)
 if a > b:
 L[M][i]=a # on n’a pas inséré l’objet d’indice i-1
 total=a
 else:
 L[M][i]=b
 T[M][i]=1 # on a inséré le ième objet dans le
 # sac à dos de masse M
 total=b
 return total

M=30 # entier
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
 # [valeur, masse]

Partie 11 · Programmation dynamique

230

L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
T=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('algo3_objets :', algo3_objets(S, M, len(S), L, T))
OBJETS=[]
m=M
for i in range(len(S), 0, -1): # i varie entre len(S) inclus
 # et 0 exclu avec pas = -1
 if T[m][i]==1: # i désigne le ième objet
 OBJETS.append(S[i-1]) # on a inséré le ième objet
 # d’indice i-1
 m=m-S[i-1][1] # retranche à m la masse de l’objet inséré
print(OBJETS)

Pour obtenir la liste des objets insérés, il faut créer une liste OBJETS
vide et considérer une boucle for en partant de len(S). Si le ième objet
d’indice i–1 a été inséré, on l’ajoute dans la liste OBJETS. Il faut ensuite
retrancher à m la masse de cet objet inséré et tester T[m][i] avec la
nouvelle masse et le nouvel indice.
Le programme principal affiche :

 70 # valeur totale du sac à dos
 [[10, 5], [60, 25]] # on a ajouté 1 objet de valeur 10
 # et une autre de valeur 60

6. Lors de la recherche du maximum dans algo4, il faut savoir si l’objet
d’indice i–1 a été inséré ou non. Si on insère l’objet d’indice i–1, alors
T[m][i] =1.
Il s’agit bien de T[m][i] et non de T[M][i] puisqu’on remplit la liste
pour toutes les valeurs de m et de i.

def algo4_objets(S, M, L, T):
 # la fonction retourne la valeur des objets que l’on peut
 # insérer avec une masse maximale M
 # et S liste de listes avec [valeur, masse]
 # stockage des résultats intermédaires dans la liste L
 # T[m][i] = 1 si on a inséré le ième objet
 # (indice i–1 dans S) dans le sac à dos
 # de masse maximale m
 for i in range(1, len(S)+1): # i varie entre 1 inclus
 # et len(S)+1 exclu
 for m in range(M+1): # m varie entre 0 inclus
 # et M+1 exclu
 if S[i-1][1]>m: # on considère l’objet
 # d’indice i-1
 L[m][i]=L[m][i-1] # l’objet d’indice i-1 est
 # de masse > m
 # on ne peut pas l’insérer
 else:
 a=L[m][i-1]
 b=S[i-1][0]+L[m-S[i-1][1]][i-1]
 if a > b:

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

231

 L[m][i]=a # on n’a pas inséré l’objet
 # d’indice i-1
 else:
 L[m][i]=b
 T[m][i]=1 # on a inséré le ième objet
 # dans le sac à dos
 # de masse m
 # création de la liste des objets insérés dans le sac à dos
 OBJETS=[]
 m=M
 for i in range(len(S), 0, -1): #i désigne le ième objet
 if T[m][i]==1:
 OBJETS.append(S[i-1]) # on a inséré le ième objet
 # d’indice i-1
 m=m-S[i-1][1] # on retranche à m la masse
 # de l’objet inséré
 return L[M][len(S)], OBJETS

M=30 # entier
S=[[15, 6], [60, 25], [10, 5], [7, 8], [10, 20]]
 # [valeur, masse]
L=[[0 for j in range(len(S)+1)] for i in range(M+1)]
T=[[0 for j in range(len(S)+1)] for i in range(M+1)]
print('algo4_objets :', algo4_objets(S, M, L, T))

Le programme Python affiche :
 70
 [[10, 5], [60, 25]]

On considère le graphe orienté)(=G S A, constitué de n sommets. Les arêtes
sont orientées et le poids des arcs peut être négatif. On suppose que le graphe

n’a pas de cycle de poids négatif. On définit la matrice d’adjacence , 0 , 1() ≤ ≤ −i j i j n
M

du graphe. L’algorithme de Floyd-Warshall définit)(d i jk , la distance minimale
d’un chemin du sommet i au sommet j en empruntant des sommets intermé-
diaires d’indice strictement inférieur à k.
•• Si k = n, alors)(d i jn , est la plus courte distance entre i et j.

•• Un chemin qui emprunte des sommets intermédiaires d’indice stricte-
ment inférieur à 0 ne peut emprunter aucun sommet intermédiaire, donc

,0 () [][]=d i j i jM .

•• On considère un chemin optimal de i à j qui emprunte des sommets intermé-
diaires d’indice strictement inférieur à k. On a deux possibilités :

•• soit ce chemin ne passe jamais par le sommet k–1 ;
•• soit ce chemin passe exactement une fois par le sommet k–1.

)()))((()(= − + −− − −d i j d i j d i k d k jk k k k, min , , , 1 1,1 1 1

Exercice 14.4 : Algorithme de Floyd-Warshall

Partie 11 · Programmation dynamique

232

18

0

2 4

1 3

4

3

2

8

-1

1

On utilise les listes de listes pour représenter les matrices dans Python.
L.reverse() permet d’inverser les éléments de la liste L.

1.  Construire la matrice d’adjacence , 0 , 1() ≤ ≤ −i j i j n
M du graphe G, définie par :

Pour tous les indices i, j, Mi, j représente le poids de l’arc d’origine i et
d’extrémité j.
Lorsque les sommets ne sont pas reliés, le poids de l’arc vaut l’infini. On définit
la variable inf=1e10 qui représente un poids infini.
2.  Écrire une fonction récursive Floyd1 qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet de départ i, le sommet d’arrivée j et
l’entier k. Cette fonction retourne)(d i jk , avec la programmation dynamique.
Écrire le programme principal permettant d’afficher la plus petite distance par-
courue entre le sommet de départ 0 et le sommet d’arrivée 1 en utilisant la
fonction Floyd1.
L’algorithme utilise-t-il la méthode « diviser pour régner » ?
3.  Pour éviter de calculer plusieurs fois)(d i jk , , on définit une liste DIST
telle que [])([][] =i j k d i jkDIST , . L’indice k varie entre 0 et n inclus. Lorsque

[][][]i j kDIST n’a pas été calculé, [][][] = −∞i j kDIST . Écrire une fonction
récursive Floyd2 qui admet comme arguments d’entrée la matrice d’adjacence
M, le sommet de départ i, le sommet d’arrivée j, l’entier k et la liste DIST ser-
vant à stocker les résultats intermédiaires. Cette fonction retourne)(d i jk , avec
la programmation dynamique.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?
4.  Écrire une fonction itérative Floyd3 qui admet comme arguments d’en-
trée la matrice d’adjacence M, le sommet départ et le sommet arrivée.
Cette fonction retourne la distance d’un plus court chemin entre départ et
arrivée en utilisant l’algorithme de Floyd-Warshall avec la programmation
dynamique.
Utilise-t-on la technique « Top Down » ou « Bottom Up » ?

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

233

5.  On souhaite afficher le chemin suivi en utilisant la liste DIST. On définit la
liste PRECEDENT :
•• Toutes les valeurs de PRECEDENT sont initialisées à –1.

•• Si ≠i j et si −∞ < DIST[i][j][k] < ∞, alors [][][]i j kPRECEDENT est le som-
met précédent j sur un chemin optimal de i à j qui emprunte des sommets
intermédiaires d’indice strictement inférieur à k.

•• [][][] =i j iPRECEDENT 0 si ≠i j et [][] < ∞i jM .

•• La valeur de [][][]i j kPRECEDENT lorsque i = j ou [][][] = ∞i j kDIST ou
[][][] = −∞i j kDIST n’a aucune importance. On peut la prendre égale à –1.

•• [] [][] [][] []= −i j k i j kPRECEDENT PRECEDENT 1 si))((= −d i j d i jk k, ,1 .

•• [] [][] [] [][] = − −i j k k j kPRECEDENT PRECEDENT 1 1 si

))(()(= − + −− −d i j d i k d k jk k k, , 1 1,1 1 et)(≠ ∞d i jk ,
et [][] []− − ≠ −k j kPRECEDENT 1 1 1

Écrire le programme principal permettant d’afficher le chemin suivi entre les
sommets départ et arrivée.

Analyse du problème
On considère des graphes orientés contenant des arêtes de poids négatif et n’ayant
pas de cycle de poids négatif. Le graphe n’est pas nécessairement fortement
connexe.

L’algorithme de Floyd-Warshall définit)(d i jk , la distance minimale d’un chemin
du sommet i au sommet j en empruntant des sommets intermédiaires d’indice stric-
tement inférieur à k.

1. La matrice d’adjacence est : =

∞ ∞
∞ ∞

∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞ −





















M

0 18 3
8 0 4

0
1 0
2 1 0

.

Comme le graphe est orienté, la matrice n’est pas nécessairement symé-
trique.

Cours :
La méthode « diviser pour régner » peut se décomposer en trois étapes :

•• Diviser : on divise le problème initial en plusieurs sous-problèmes.
•• Régner : on traite récursivement chacun des sous-problèmes.
•• Combiner : on combine les différents sous-problèmes pour résoudre le problème de
départ.

Partie 11 · Programmation dynamique

234

2. L’algorithme est de type « diviser pour régner » puisqu’on décompose
le problème (calcul de ()d i jk ,) en plusieurs sous-problèmes (calcul de

() ()() − −− − −d i j d i k d k jk k k, , , 1 , 1,1 1 1). On combine les différents sous-pro-
blèmes pour résoudre le problème de départ.
Dans la programmation dynamique, on calcule toutes les solutions des
sous-problèmes, que l’on combine pour obtenir une solution optimale.
def Floyd1 (M, i, j, k):
 # la fonction retourne d_k(i,j) pour la
 # matrice d’adjacence M
 if k==0: # condition d’arrêt
 return M[i][j]
 else:
 a=Floyd1(M, i, j, k-1) # appel récursif
 b=Floyd1(M, i, k-1, k-1)+Floyd1(M, k-1, j, k-1)
 return (min(a,b))

inf=1e10 # variable représentant l’infini
M= [[0, inf, 18, inf, 3],
 [8, 0, 4, inf, inf],
 [inf, inf, 0, inf, inf],
 [inf, 1, inf, 0, inf],
 [inf, 2, inf, -1, 0]]
n=len(M) # nombre de lignes de M
départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée
distance1=Floyd1(M, départ, arrivée, n)
print("Distance parcourue Floyd1 :", distance1)

Cours :
On rencontre deux techniques dans la programmation dynamique :

•• Technique récursive « Top Down » (de mémoïsation). Lors d’un appel récursif, on
regarde dans une liste intermédiaire si le sous-problème est déjà traité.
Top Down : on résout dans le sens des données de grande taille vers les données de
petite taille.

•• Technique itérative « Bottom Up » : on résout dans le sens des données de petite taille
vers les données de grande taille (c’est l’ordre inverse de « Top Down »). On stocke
également les résultats obtenus dans une liste intermédiaire.

3. La fonction Floyd2 utilise la programmation dynamique avec la tech-
nique « Top Down » (de mémoïsation) et permet d’obtenir une solution
optimale sans résoudre plusieurs fois le même sous-problème.
Dans le programme principal, on part de la plus grande valeur de k (ici
n) : distance2=Floyd2(M, départ, arrivée, n, DIST). On
décompose le problème (calcul ()d i jk , en plusieurs sous-problèmes (calcul
de () ()() − −− − −d i j d i k d k jk k k, , , 1 , 1,1 1 1).
Pour éviter de calculer plusieurs fois ()d i jk , , on garde en mémoire le résul-
tat dans la liste DIST : [] ()[] [] =i j k d i jkDIST , . La liste doit contenir
() () ()+n n n 1 valeurs.

•• i et j varient de 0 inclus à n exclu.
•• k varie de 0 inclus à n inclus.

Chapitre 14 · Programmation dynamique (Spé) (sauf TSI et TPC)

235

Lorsque [][] []i j kDIST n’a pas été calculé, [][] [] = −∞i j kDIST .
def Floyd2(M, i, j, k, DIST):
 # la fonction retourne d_k(i,j) pour la
 # matrice d’adjacence M
 # la liste DIST est telle que DIST[i][j][k]=d_k(i,j)
 if k==0: # condition d’arrêt
 return M[i][j]
 elif DIST[i][j][k]!=-inf: # condition d’arrêt
 return DIST[i][j][k]
 else:
 a=Floyd2(M, i, j, k-1, DIST) # appel récursif
 b=Floyd2(M, i, k-1, k-1, DIST)\
 +Floyd2(M, k-1, j, k-1, DIST)
 DIST[i][j][k]=min(a,b)
 return DIST[i][j][k]

DIST=[[[-inf for k in range(n+1)] for j in range(n)]\
 for i in range(n)]
 # toutes les distances valent -inf
départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée
distance2=Floyd2(M, départ, arrivée, n, DIST)
print("Distance parcourue Floyd2 :", distance2)

4. L’algorithme Floyd3 utilise la programmation dynamique avec la tech-
nique « Bottom Up » : on utilise la même formule de récurrence mais on
part de la plus petite valeur de k au lieu de partir de la plus grande valeur
de k (k = n, technique « Top Down »).
Il faut trois boucles for imbriquées pour faire varier i, j et k.

•• Dans la technique « Top Down », on ne traite que les sous-problèmes
nécessaires. On n’a pas besoin de remplir entièrement la liste DIST pour
obtenir la solution optimale au problème.

•• Dans la technique « Bottom Up », on traite tous les sous-problèmes
(trois boucles for imbriquées). Il faut d’abord remplir entièrement la
liste DIST avant de retourner la solution optimale au problème.

def Floyd3(M, départ, arrivée, DIST):
 # la fonction retourne DIST[départ][arrivée][n]
 # n = nombre de sommets
 n=len(M) # nombre de lignes de M
 for k in range (n+1): # k varie entre 0 inclus
 # et n+1 exclu
 for i in range(n): # i varie entre 0 inclus
 # et n exclu
 for j in range(n): # j varie entre 0 inclus
 # et n exclu
 if k==0:
 DIST[i][j][k]=M[i][j]
 else:
 a=DIST[i][j][k-1]
 b=DIST[i][k-1][k-1]+DIST[k-1][j][k-1]

Partie 11 · Programmation dynamique

236

 DIST[i][j][k]=min(a,b)
 return DIST[départ][arrivée][n]

DIST=[[[-inf for k in range(n+1)] for j in range(n)]\
 for i in range(n)]
 # toutes les distances valent -inf
départ=0 # sommet de départ
arrivée=1 # sommet d’arrivée
distance3=Floyd3(M, départ, arrivée, DIST)
print("Distance parcourue Floyd3 :", distance3)

5. On utilise l’algorithme Floyd3 avec la technique « Bottom Up » pour
obtenir la liste DIST entièrement remplie.
Pour k = 0, on considère deux boucles for imbriquées pour calculer

[]i jPRECEDENT , ,0 :
•• [] [] [] =i j iPRECEDENT 0 si ≠i j et M[i][ j] < ∞.

On utilise trois boucles for imbriquées pour calculer [][] []i j kPRECEDENT :
•• [] [][] [] [] []= −i j k i j kPRECEDENT PRECEDENT 1 si () ()= −d i j d i jk k, ,1 .
•• [] [] [][] [] []= − −i j k k j kPRECEDENT PRECEDENT 1 1 si

() ()() = − + −− −d i j d i k d k jk k k, , 1 1,1 1 et () ≠ ∞d i jk ,
et [] [][]− − ≠ −k j kPRECEDENT 1 1 1

PRECEDENT=[[[-1 for k in range(n+1)] for j in range(n)]\
 for i in range(n)]
 # tous les éléments valent -1
for i in range(n):
 for j in range(n):
 if i!=j and M[i][j]<inf:
 PRECEDENT[i][j][0]=i
for k in range(1, n+1):
 for i in range(n):
 for j in range(n):
 if DIST[i][j][k]==DIST[i][j][k-1]:
 PRECEDENT[i][j][k]=PRECEDENT[i][j][k-1]
 if DIST[i][j][k]==DIST[i][k-1][k-1]\
 +DIST[k-1][j][k-1]\
 and DIST[i][j][k]!=inf\
 and PRECEDENT[k-1][j][k-1]!=-1:
 PRECEDENT[i][j][k]=PRECEDENT[k-1][j][k-1]

recherche du chemin suivi entre les sommets départ et arrivée
indice_boucle=0
i=arrivée
chemin=[arrivée] # initialisation de la liste des sommets
 # parcourus en sens inverse
while (i!=départ) and indice_boucle<n:
 i=int(PRECEDENT[départ][i][n])
 chemin.append(i)
 indice_boucle=indice_boucle+1
on obtient la liste des sommets en sens inverse
chemin.reverse() # il faut inverser la liste chemin
print(chemin)

Partie 12

Intelligence
artificielle et jeux

Plan

15. Intelligence artificielle et jeux à deux joueurs (Spé)� 239
15.1 : Algorithme des k plus proches voisins� 239
15.2 : �Matrice de confusion, valeur optimale des k

plus proches voisins� 244
15.3 : Algorithme des k-moyennes� 250
15.4 : �Jeu de morpion, algorithme min-max� 258
15.5 : Jeu de morpion, algorithme min-max et profondeur� 266

239

15Intelligence
artificielle et jeu
à deux joueurs (Spé)

On considère un jeu de données « fic.csv » contenant n lignes. Chaque ligne
contient les caractéristiques d’un iris : longueur des pétales (en cm), largeur des
pétales (en cm) et désignation de l’espèce de l’iris (0 pour setosa, 1 pour ver-
sicolor et 2 pour virginica). Les données sont séparées avec le séparateur « ; ».
On utilise les listes de listes pour représenter les matrices dans Python.
L’instruction A.sort() permet de trier en place une liste de listes A en fonc-
tion du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :

f=open('fichier.txt','w') : 'fichier.txt' désigne le nom du
fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : récupération de l’ensemble des données du fichier dans
une liste

\n : caractère d’échappement : saut de ligne

c1.strip() : renvoie une chaîne sans les espaces et les caractères
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de
caractères c1

c1.split(';') : sépare une chaîne de caractères (c1) en une liste de
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire une fonction fic_data qui admet comme argument un nom de fichier
et retourne une matrice à n lignes et trois colonnes : longueur des pétales de l’iris,
largeur des pétales de l’iris et désignation de l’espèce de l’iris (0, 1 ou 2).

Exercice 15.1 : Algorithme des k plus proches voisins

Partie 12 · Intelligence artificielle et jeux

240

2.  Écrire une fonction calc_dist qui admet comme arguments deux
listes ptA et ptB. La fonction retourne la distance euclidienne entre le
point A de coordonnées)(longueurA, largeurA et le point B de coordonnées

)(longueurB, largeurB .
3.  Écrire une fonction algoknn qui admet comme arguments une matrice
data (n lignes et 3 colonnes), une liste pt_search et un entier k. La fonc-
tion retourne une prédiction de l’espèce de l’iris (noté iris2) caractérisé par
pt_search (liste de deux valeurs : longueur et largeur des pétales).
Les étapes de l’algorithme des k plus proches voisins sont les suivantes :
•• Pour chaque iris (noté iris1) de data, on calcule la distance euclidienne
entre iris1 et iris2.

•• On définit une matrice mat_dist (n lignes et deux colonnes). Chaque ligne
contient la distance euclidienne entre iris1 et iris2 ainsi que la désigna-
tion de l’espèce de iris1.

•• On trie la liste de listes mat_dist dans l’ordre croissant des distances eucli-
diennes entre iris1 et iris2.

•• On en déduit une prédiction de l’espèce de iris2 en cherchant la désigna-
tion majoritaire parmi les k plus proches voisins de iris2.

4.  Écrire le programme principal permettant d’afficher le nuage de points des
données du fichier « fic.csv » ainsi que le point recherché pt_search et d’af-
ficher une prédiction de l’espèce de iris2 caractérisé par pt_search=[5,
1.7] avec k = 5.
Le graphique doit avoir les caractéristiques suivantes :
•• affichage de « longueur des pétales » pour l’axe des abscisses et « largeur des
pétales » pour l’axe des ordonnées ;

•• affichage en bleu avec marqueur « v » pour les iris setosa ;

•• affichage en rouge avec marqueur « . » pour les iris versicolor ;

•• affichage en vert avec marqueur « + » pour les iris virginica ;

•• affichage de la légende « iris setosa », « iris versicolor » et « iris virginica » ;

•• affichage en noir avec linewidth=8 pour l’iris pt_search.

On pourra se servir de la fonction plt.scatter() pour représenter un nuage
de points en utilisant le module matplotlib.pyplot que l’on renomme plt.
Les arguments d’entrée sont les mêmes que pour la fonction plt.plot().

Analyse du problème
En intelligence artificielle, l’algorithme des k plus proches voisins est une méthode
d’apprentissage supervisé alors que l’algorithme des k-moyennes (voir exer-
cice 15.3 « Algorithme des k-moyennes ») est une méthode d’apprentissage non
supervisé.

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

241

L’objectif est de prédire la classe (ou la classification) d’un échantillon à partir
d’exemples connus. On pourrait chercher le plus proche voisin de l’échantillon.
L’inconvénient est que cette méthode du plus proche voisin est très sensible aux
bruits. Une amélioration consiste à utiliser les k observations les plus proches. On
cherche la classe majoritaire parmi les k plus proches voisins.

1.
def fic_data(fichier):
 # la fonction retourne une matrice :
 # n lignes et trois colonnes
 # n = nombre de lignes du fichier
 f=open(fichier, 'r') # ouverture de fichier (str)
 # en lecture
 f_données=f.readlines() # récupère toutes les lignes du
 # fichier dans la liste f_données
 n=len(f_données) # nombre de lignes du fichier
 data=[[0 for j in range(3)] for i in range(n)]
 # matrice : n lignes et 3 colonnes
 # longueur, largeur et numéro de l’espèce
 for i in range(0, n): # i varie entre 0 inclus et n exclu
 ligne=f_données[i].strip().split(";")
 # split(';') permet de séparer la ligne en une liste
 # de mots avec le séparateur ";"
 # strip() permet d’enlever les caractères d’échappement
 # (ici saut de ligne)
 data[i][0], data[i][1]=float(ligne[0]), float(ligne[1])
 if (ligne[2]=="setosa"):
 data[i][2]=0 # numéro 0 désigne setosa
 elif (ligne[2]=="versicolor"):
 data[i][2]=1 # numéro 1 désigne versicolor
 else: # virginica
 data[i][2]=2 # numéro 2 désigne virginica
 f.close()
 return data

2.
def calc_dist(ptA, ptB):
 # distance euclidienne entre ptA et ptB
 # ptA est une liste [longueurA, largeurA]
 # ptB est une liste [longueurB, largeurB]
 return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

Remarque :

On peut envisager plusieurs définitions de la distance entre)(A x yA A, et)(B x yB B, :

•• distance euclidienne :))((= − + −x x y yB A B Adistance
2 2

•• distance de Manhattan : = − + −x x y yB A B Adistance

•• distance de Tchebychev :)(= − −x x y yB A B Adistance max ,

Partie 12 · Intelligence artificielle et jeux

242

3. Pour une valeur de k fixée, on calcule la distance d’un point à tous les
points du fichier de données. On cherche l’espèce majoritaire parmi les k
plus proches voisins.
def algoknn(data, pt_search, k):
 # calcul de la distance de pt_search à tous les points
 # de data
 # la fonction retourne une prédiction de l’espèce de l’iris
 # algorithme des k(int) plus proches voisins
 # pt_search : liste de deux valeurs :
 # longueur et largeur des pétales
 n=len(data) # nombre de lignes de data
 tab_dist=[[0 for j in range(2)] for i in range(n)]
 # matrice avec distance et numéro espèce
 for i in range(len(data)): # i varie entre 0 inclus
 # et len(data) exclu
 iris1=[data[i][0],data[i][1]]
 mat_dist[i][0]=calc_dist(pt_search,iris1)
 tab_dist[i][1]=data[i][2]
 # on récupère la distance et la désignation
 # de l’espèce
 tab_dist.sort() # tri par ordre croissant
 # des distances
 # on récupère la liste des distances triées par ordre
 # croissant
 # choix de l’espèce
 list_nb_espece=[[0, i] for i in range(3)]
 # liste de listes : (total, numéro de l’espèce)
 for i in range(k): # i varie entre 0 inclus
 # et k exclu
 indice=int(tab_dist[i][1]) # tab_dist[i][1] :
 # numéro de l’espèce
 list_nb_espece[indice][0]+=1
 list_nb_espece.sort() # tri de list_nb_espece par ordre
 # croissant de total

 predict=list_nb_espece[2][1] # le dernier élément est
 # celui qui apparaît le plus
 return predict

4.
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt
data=fic_data("fic.csv")
nb_espece=3 # on a trois espèces d’iris
 # setosa (0), versicolor (1) et virginica (2)
pt_search=[5, 1.7] # longueur, largeur
k=5 # nombre de k plus proches voisins
x1, y1, x2, y2, x3, y3=[],[],[],[],[],[]
for i in range(len(data)):
 if data[i][2]==0:
 x1.append(data[i][0])
 y1.append(data[i][1])

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

243

 elif data[i][2]==1:
 x2.append(data[i][0])
 y2.append(data[i][1])
 else:
 x3.append(data[i][0])
 y3.append(data[i][1])
plt.figure()
plt.xlabel("longueur des pétales")
plt.ylabel("largeur des pétales")
plt.scatter(x1, y1, color='blue', marker='v')
plt.scatter(x2, y2, color='red', marker='.')
plt.scatter(x3, y3, color='green', marker='+')
plt.scatter(pt_search[0], pt_search[1], color='black',\
 linewidth=8)
plt.legend(['iris setosa', 'iris versicolor',\
 'iris virginica'])
plt.show()

predict=algoknn(data, pt_search, k)
if predict==0:
 print(predict, 'setosa')
elif predict==1:
 print(predict, 'versicolor')
else:
 print(predict, 'virginica')

On obtient le graphique suivant avec le fichier « fic.csv » (voir le site Dunod
pour télécharger le fichier de données).

3 4 5 6 71 2

2.5 iris setosa

iris versicolor

iris virginica
2.0

1.5

la
rg

eu
r

d
es

 p
ét

al
es

1.0

0.5

longuer des pétales

0.0

On applique l’algorithme des k plus proches voisins à pt_search=[5,
1.7] avec k = 5.
À la fin de l’exécution de la fonction algoknn, la liste list_nb_espece
vaut : [[0, 0], [2, 1], [3, 2]].

https://dunod.com/EAN/9782100846238

Partie 12 · Intelligence artificielle et jeux

244

Parmi les 5 plus proches voisins, on 3 voisins virginica, 2 voisins versicolor
et aucun setosa.
Le programme Python renvoie : 2 virginica. L’iris recherché (gros
cercle noir sur le graphique ci-dessus) est plus près des iris virginica que
des iris versicolor et setosa.

Remarque :

L’algorithme des k plus proches voisins est basé sur un algorithme d’apprentissage
à partir d’observations étiquetées. Le modèle prédictif est utilisé dans plusieurs cas :

•• Régression : le résultat est un réel. Le résultat est la moyenne des valeurs des k
plus proches voisins.

Exemples : prédiction de la solubilité d’une molécule dans l’eau en mg/mL.
•• Classification : le résultat obtenu est une classe d’appartenance (0, 1, 2, …, C–1)
si on considère C classes possibles. Dans l’exemple précédent, on a C = 3 classes
(0 pour setosa, 1 pour versicolor et 2 pour virginica).

•• Classification binaire : le résultat obtenu est 0 ou 1. Exemples : l’e-mail reçu
est-il un spam ? La photo est-elle celle d’un chat ? On utilise un nombre impair
de voisins pour ne pas avoir d’ex-aequo.

On considère les jeux de données « fic01.csv » (fichier d’apprentissage pour
l’algorithme des k plus proches voisins) et « fic02.csv » (fichier de test). Chaque
ligne contient les caractéristiques d’un iris : longueur des pétales (en cm), lar-
geur des pétales (en cm) et désignation de l’espèce de l’iris (0 pour setosa, 1
pour versicolor et 2 pour virginica). Les données sont séparées avec le sépa-
rateur « ; ». On utilise les listes de listes pour représenter les matrices dans
Python. L’instruction A.sort() permet de trier en place une liste de listes A
en fonction du premier élément de chaque liste interne.
Rappels pour la gestion des fichiers :

f=open('fichier.txt', 'w') : 'fichier.txt' désigne le nom
du fichier. Le mode d’ouverture peut être 'w' pour « écriture » (write), 'r'
pour « lecture » (read) ou 'a' pour « ajout » (append)

f.readlines() : récupération de l’ensemble des données du fichier dans
une liste

\n : caractère d’échappement : saut de ligne

c1.strip() : renvoie une chaîne sans les espaces et les caractères
d’échappement (saut de ligne par exemple) en début et fin de la chaîne de
caractères c1

Exercice 15.2 : �Matrice de confusion, valeur optimale des k
plus proches voisins

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

245

c1.split(';') : sépare une chaîne de caractères (c1) en une liste de
mots avec le séparateur ';'

f.write('exemple') : écrit dans l’objet fichier f la chaîne de carac-
tères 'exemple'

f.close() : ferme le fichier

1.  Écrire une fonction fic_data qui admet comme argument un nom de
fichier et retourne une matrice à n lignes et trois colonnes : longueur des pétales
de l’iris, largeur des pétales de l’iris et désignation de l’espèce de l’iris (0, 1 ou
2).
2.  Écrire une fonction algoknn qui admet comme arguments une matrice
data (n lignes et 3 colonnes), une liste pt_search et un entier k. La fonc-
tion retourne une prédiction de l’espèce d’un iris inconnu caractérisé par pt_
search (liste de deux valeurs : longueur et largeur des pétales). On utilisera
l’algorithme des k plus proches voisins.
3.  Écrire une fonction evalKNN qui admet comme arguments data1 (liste
d’apprentissage), data2 (liste de test) et un entier k. La fonction retourne la
matrice suivante à 3 lignes et 3 colonnes :

Classe réelle
setosa versicolor virginica

Classe
prédite

setosa … … …

versicolor … … …

virginica … … …

mat[0][2] représente le nombre de fois où l’algorithme prédit l’iris setosa
alors qu’il est en réalité virginica.
4.  On définit la matrice de confusion matconf pour l’iris versicolor avec k = 2 :

Classe réelle
versicolor non versicolor

Classe
prédite

versicolor True Positives (TP) False Positives (FP)

non versicolor False Negatives (FN) True Negatives (TN)

matconf [0][1] représente le nombre de faux positifs (FP) dans le jeu de
test.
Que représentent les indicateurs suivants ?

•• rappel = +
TP

TP FN

Partie 12 · Intelligence artificielle et jeux

246

•• spécificité =
+

TN
TN FP

•• précision =
+

TP
TP FP

Écrire une fonction matconf_indicateurs qui admet comme arguments
data1 (liste d’apprentissage) et data2 (liste de test). La fonction
retourne la matrice de confusion pour l’iris versicolor avec k = 2, rappel,
spécificité et précision.
5.  Écrire une fonction predict_k qui admet comme arguments data1 (liste
d’apprentissage) et data2 (liste de test). La fonction retourne la valeur opti-
male de k en utilisant les étapes suivantes :
•• Pour toutes les valeurs de k possibles, on applique l’algorithme des k plus
proches voisins à toutes les espèces du fichier de test.

•• On calcule pour chaque valeur de k le pourcentage d’espèces mal prédites du
fichier de test.

•• On en déduit la valeur optimale de k correspondant au pourcentage d’espèces
mal prédites le plus faible.

Analyse du problème
L’objectif de l’algorithme des k plus proches voisins est de prédire la classe (clas-
sification) ou la valeur (régression) d’un échantillon à partir d’exemples connus.
On sépare les données en un jeu d’entraînement (fichier d’apprentissage : « fic01.
csv ») et un jeu de test (fichier de test : « fic02.csv »). La répartition des données
entre le jeu d’entraînement et le jeu de test peut être 80 %-20 %, 70 %-30 % ou
même 50 %-50 %. Le jeu d’entraînement sert à apprendre le modèle (algorithme
des k plus proches voisins). Le jeu de test sert à estimer l’erreur de généralisation
du modèle.

1. Les deux premières questions reprennent les fonctions définies dans
l’exercice précédent « Algorithme des k plus proches voisins ».
def fic_data(fichier):
 # la fonction retourne une matrice :
 # n lignes et trois colonnes
 # n = nombre de lignes du fichier
 f=open(fichier, 'r') # ouverture de fichier (str)
 # en lecture
 f_données=f.readlines() # récupère toutes les lignes du
 # fichier dans la liste f_données
 n=len(f_données) # nombre de lignes du fichier
 data=[[0 for j in range(3)] for i in range(n)]
 # matrice : n lignes et 3 colonnes
 # longueur, largeur et numéro de l’espèce
 for i in range(0, n): # i varie entre 0 inclus et n exclu

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

247

 ligne=f_données[i].strip().split(";")
 # split(';') permet de séparer la ligne en une liste
 # de mots avec le séparateur ';'
 # strip() permet d’enlever les caractères d’échappement
 # (ici saut de ligne)
 data[i][0], data[i][1]=float(ligne[0]), float(ligne[1])
 if (ligne[2]=="setosa"):
 data[i][2]=0 # numéro 0 désigne setosa
 elif (ligne[2]=="versicolor"):
 data[i][2]=1 # numéro 1 désigne versicolor
 else: # virginica
 data[i][2]=2 # numéro 2 désigne virginica
 f.close()
 return data

2.
def calc_dist(ptA, ptB):
 # distance euclidienne entre ptA et ptB
 # ptA est une liste [longueurA, largeurA]
 # ptB est une liste [longueurB, largeurB]
 return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

def algoknn(data, pt_search, k):
 # calcul de la distance de pt_search à tous les points
 # de data
 # la fonction retourne une prédiction de l’espèce de l’iris
 # algorithme des k(int) plus proches voisins
 # pt_search : liste de deux valeurs :
 # longueur et largeur des pétales
 n=len(data) # nombre de lignes de data
 tab_dist=[[0 for j in range(2)] for i in range(n)]
 # matrice avec distance et numéro espèce
 for i in range(len(data)): # i varie entre 0 inclus
 # et len(data) exclu
 tab_dist[i][0]=calc_dist(pt_search,\
 [data[i][0],data[i][1]])
 tab_dist[i][1]=data[i][2]
 # on récupère la distance et la désignation
 # de l’espèce
 tab_dist.sort() # tri par ordre croissant
 # des distances
 # on récupère la liste des distances triées par ordre
 # croissant
 # choix de l’espèce
 list_nb_espece=[[0, i] for i in range(nb_espece)]
 # liste de listes : (total, numéro de l’espèce)
 for i in range(k): # i varie entre 0 inclus
 # et k exclu
 indice=tab_dist[i][1] # tab_dist[i][1] :
 # numéro de l’espèce
 list_nb_espece[indice][0]+=1
 list_nb_espece.sort() # tri de list_nb_espece par ordre
 # croissant de total

Partie 12 · Intelligence artificielle et jeux

248

 predict=list_nb_espece[2][1] # le dernier élément est
 # celui qui apparaît le plus
 return predict

3.
def evalKNN (data1, data2, k):
 # data1 = liste d’apprentissage et data2 = liste de test
 # la fonction retourne la matrice mat
 n2=len(data2) # nombre de données de la liste de test
 mat=[[0 for j in range(3)] for i in range(3)]
 for i in range(n2): # i varie entre 0 inclus et n2 exclu
 predict=algoknn(data1, [data2[i][0],data2[i][1]], k)
 mat[predict][data2[i][2]]+=1
 return mat

4. On a plusieurs façons d’évaluer les données de test :

•• Rappel =
+
TP

TP FN
 = proportion des iris bien prédits (classe versicolor)

parmi tous les iris versicolor dans le fichier de test. Le rappel définit la
capacité du modèle à détecter la classe versicolor parmi les iris versicolor
dans le jeu de test. On l’appelle également sensibilité.

•• Spécificité =
+
TN

TN FP
 = proportion des iris bien prédits (classe non-

versicolor) parmi les iris qui ne sont pas de classe versicolor dans le
fichier de test. La spécificité définit la capacité du modèle à détecter les
iris qui ne sont pas de classe versicolor parmi les iris qui ne sont pas de
classe versicolor dans le jeu de test.

•• Précision =
+
TP

TP FP
 = proportion des iris bien prédits (classe versicolor)

parmi tous les iris dans le fichier de test. La précision définit la capacité
du modèle à détecter la classe versicolor parmi toutes les classes dans
le jeu de test.

True Positives (TP) :

Classe réelle
setosa versicolor virginica

Classe
prédite

setosa … … …

versicolor … … …

virginica … … …

True Negatives (TN) :

Classe réelle
setosa versicolor virginica

Classe
prédite

setosa … … …

versicolor … … …

virginica … … …

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

249

False Negatives (FN) :

Classe réelle
setosa versicolor virginica

Classe
prédite

setosa … … …

versicolor … … …

virginica … … …

False Positives (FP) :

Classe réelle
setosa versicolor virginica

Classe
prédite

setosa … … …

versicolor … … …

virginica … … …

def matconf_indicateurs (data1, data2):
 # data1 : liste d’apprentissage ; data2 : liste de test
 # la fonction retourne la matrice de confusion pour
 # l’iris versicolor (k = 2)
 # rappel (float), spécificité(float) et précision(float)
 k=2 # k = 2 pour l’algorithme des k plus proches voisins
 mat=evalKNN (data1, data2, k)
 matconf=[[0 for j in range(2)] for i in range(2)]
 matconf[0][0]=mat[1][1] # True Positives (TP)
 matconf[1][1]=mat[0][0]+mat[0][2]+mat[2][0]+mat[2][2]
 # True Negatives (TN)
 matconf[1][0]=mat[0][1]+mat[2][1] # False Negatives (FN)
 matconf[0][1]=mat[1][0]+mat[1][2] # False Positives (FP)
 TP=matconf[0][0] # True Positives (TP)
 FP=matconf[0][1] # False Positives (FP)
 FN=matconf[1][0] # False Negatives (FN)
 TN=matconf[1][1] # True Negatives (TN)
 rappel=TP/(TP+FN)
 spécificité=TN/(TN+FP)
 précision=TP/(TP+FP)
 return matconf, rappel, spécificité, précision

Remarque : On peut avoir des faux négatifs ou des faux positifs avec les tests pour
la Covid.

5. On sépare le fichier de l’exercice précédent « Algorithme des k plus
proches voisins » en deux fichiers : fichier1 (fichier d’apprentissage
correspondant au jeu d’entraînement) et fichier2 (fichier de test cor-
respondant au jeu de test).

Partie 12 · Intelligence artificielle et jeux

250

Pour chaque donnée du fichier de test, on exécute l’algorithme des k plus
proches voisins et on calcule le pourcentage d’espèces mal prédites. On
peut ainsi choisir la valeur de k permettant d’avoir le plus faible pourcen-
tage d’espèces mal prédites.
def predict_k(data1, data2):
 # data1 : liste d’apprentissage
 # data2 : liste de test
 # la fonction retourne la valeur optimale de k
 n1=len(data1) # nombre de données de la liste
 # d’apprentissage
 n2=len(data2) # nombre de données de la liste
 # de test
 tab_pred=[[0 for j in range(2)] for i in range(n1)]
 for k in range(1, n1): # k varie entre 1 inclus
 # et n1 exclu
 nb_erreur=0
 for i in range(n2): # i varie entre 0 inclus
 # et n2 exclu
 predict=algoknn(data1,\
 [data2[i][0],data2[i][1]], k)
 if predict!=data2[i][2]:
 nb_erreur+=1
 tab_pred[k][0]=nb_erreur
 tab_pred[k][1]=k
 tab_pred.sort()
 return tab_pred,tab_pred[1][1]

On applique les fonctions avec les fichiers « fic01.csv » et « fic02.csv » (voir
le site Dunod pour télécharger les fichiers de données).
tab_pred, val_k_optimisee=predict_k(data1, data2)
print("Valeur optimisée pour k = ", val_k_optimisee)

Le programme Python affiche : Valeur optimisée pour k=6.

L’algorithme des k-moyennes permet de trouver des groupes (appelés clusters)
parmi un nuage de points. On utilise deux listes X et Y : chaque point i est carac-
térisé par son abscisse X[i] et son ordonnée Y[i]. Le but est de regrouper les
éléments qui se « ressemblent » dans K clusters. On utilise les listes de listes
pour représenter les matrices dans Python.
On pourra se servir de la fonction plt.scatter() pour représenter un nuage
de points en utilisant le module matplotlib.pyplot que l’on renomme plt.
Les arguments d’entrée sont les mêmes que pour la fonction plt.plot().
Rappels pour la génération de nombres aléatoires :
import random as rd # module random renommé rd
rd.random() # nombre flottant aléatoire M tel que 0 <= M < 1
rd.randint(a, b) # renvoie un entier aléatoire M tel que a <= M <= b

On définit la variable inf=1e10 qui représente une distance infinie.

Exercice 15.3 : Algorithme des k-moyennes

https://dunod.com/EAN/9782100846238

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

251

1.  On étudie dans cette question un nuage de 12 points que l’on représentera
sur feuille afin de comprendre le début de l’algorithme itératif.
On considère deux listes X et Y représentant les abscisses et les ordonnées de
3 groupes de 4 points générés dont les coordonnées sont comprises dans les
intervalles []± ±3 0.6,1 0.6 , []± ±8 1,2 1 et []± ±4 0.8,5 0.8 pour chaque groupe.
Représenter sur feuille un nuage de points.
•• Initialisation des centres des clusters : On choisit aléatoirement 3 points parmi
les 12 points. Représenter sur feuille le nuage de points en mettant en évi-
dence les 3 clusters.

•• On réalise une première partition des données en associant chacun des autres
points au cluster le plus proche. On calcule alors les centres des nouveaux
clusters. Représenter sur feuille le nuage de points en mettant en évidence les
3 nouveaux clusters.

2.  Écrire une fonction initpoints qui admet comme argument un entier
pts_groupe et retourne deux listes X et Y contenant chacune N = 3×pts_
groupe valeurs. Les listes X et Y représentent les coordonnées des N points.
Chaque groupe est constitué de pts_groupe points. Les 3 groupes contiennent
des points de coordonnées comprises dans les intervalles []± ±3 2.6,1 2.6 ,
[]± ±8 2.5,2 2.5 et []± ±4 2.8,5 2.8 .
3.  Écrire une fonction distance qui admet comme arguments deux listes
ptA et ptB. La fonction retourne la distance euclidienne entre le point A de
coordonnées ()[] []ptA 0 , ptA 1 et le point B de coordonnées ()[] []ptB 0 , ptB 1 .
4.  Écrire une fonction initcluster qui admet comme arguments un entier
K et deux listes X, Y. Cette fonction retourne une liste de listes contenant les
coordonnées de K points différents tirés aléatoirement parmi le nuage de points.
5. 
Algorithme des k-moyennes
Initialisation :
On choisit au hasard K centres des clusters parmi le nuage de points. Chaque
centre est caractérisé par une abscisse et une ordonnée.
Boucle tant que les points changent de cluster :
•• Placer chaque point dans le cluster k qui lui est le plus proche.

•• Recalculer les centres des clusters (appelés également centroïdes). On utili-
sera la moyenne des abscisses et des ordonnées des points appartenant à un
cluster.

Écrire une fonction algokm qui admet comme arguments un entier K et deux
listes X, Y. Cette fonction retourne une liste de listes contenant les coordonnées
des centres des K clusters et la liste A telle que A[i] désigne le numéro du clus-
ter du point [X[i],Y[i]]. Quels sont les défauts de cet algorithme ?

Partie 12 · Intelligence artificielle et jeux

252

6.  Écrire le programme principal permettant :
•• de générer aléatoirement deux listes X et Y représentant les abscisses et les
ordonnées de 3 groupes de 100 points dont les coordonnées sont comprises
dans les intervalles []± ±3 2.6,1 2.6 , []± ±8 2.5,2 2.5 et []± ±4 2.8,5 2.8 pour
chaque groupe ;

•• d’afficher graphiquement le nuage de points (affecter des couleurs différentes
pour les points appartenant à des clusters différents) et les centres des 3 clusters.

7.  Écrire une fonction predict d’arguments d’entrée L (liste de listes conte-
nant les coordonnées des clusters) et une liste pt_search (abscisse et ordon-
née du point). Cette fonction retourne le numéro et les coordonnées du cluster
le plus proche de pt_search.

Analyse du problème
Dans l’apprentissage non supervisé, l’objectif est de comprendre la structure des
données. Contrairement à l’apprentissage supervisé (voir exercice 15.1 « Algo-
rithme des k plus proches voisins » avec la prédiction de la classe d’un échantillon à
partir d’exemples connus), on ne connaît pas les clusters. En pratique, on regroupe
les données proches entre elles, on leur attribue des clusters qu’il faut interpréter
ensuite.

Exemple : regrouper des clients qui ont des profils similaires, regrouper les docu-
ments d’un corpus par thème (les thèmes émergeant de cet algorithme ne sont pas
connus). C’est une méthode d’apprentissage non supervisé puisqu’on ne connaît
pas les clusters à l’avance.

1. On considère un nuage de 12 points.

x

y

3

2

3

4

5

1

4 5 6 7 8

5

x

3 Clusters

y

3

2

3

4

1

4 5 6 7 8

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

253

•• Étape d’initialisation : on choisit aléatoirement 3 centres parmi le nuage
de 12 points.

x

3 Clusters

y

3

2

3

4

5

1

4 5 6 7 8

•• Première partition : on affecte à chaque point du jeu de données le clus-
ter le plus proche. On met à jour les nouveaux centres des clusters. On
obtient trois nouveaux clusters représentés ci-dessous.

5

x

3 Clusters

y

3

2

3

4

1

4 5 6 7 8

Remarque : Les nouveaux clusters n’appartiennent plus nécessairement au jeu de
données comme dans l’étape d’initialisation. On affecte à chaque point le cluster
le plus proche. On met à jour les centres des clusters. Ces opérations sont réitérées
tant que les points changent de cluster.

Partie 12 · Intelligence artificielle et jeux

254

2.
import random as rd # module random renommé rd

def initpoints(pts_groupe):
 # la fonction retourne deux listes X et Y
 # contenant 3 groupes
 # le nombre de valeurs aléatoire pour chaque groupe
 # est pts_groupe
 N=pts_groupe*3 # N = nombre total de points
 X=[0 for i in range(N)] # liste des abscisses pour
 # les N points
 Y=[0 for i in range(N)] # liste des ordonnées pour
 # les N points
 for k in range(3): # k varie entre 0 inclus et 3 exclu
 if k==0:
 xcentre=3 # abscisse du centre du premier
 # groupe (ex.3)
 ycentre=1 # ordonnée du centre du premier
 # groupe (ex. 1)
 delta=2.6 # 2.6 ou 0.6
 elif k==1:
 xcentre=8 # abscisse du centre du deuxième
 # groupe (ex. 8)
 ycentre=2 # ordonnée du centre du premier
 # groupe (ex. 2)
 delta=2.5 # 2.5 ou 1
 else:
 xcentre=4 # abscisse du centre du troisième
 # groupe (ex. 4)
 ycentre=5 # ordonnée du centre du troisième
 # groupe (ex. 5)
 delta=2.8 # 2.8 ou 0.8
 for i in range(pts_groupe): # i varie entre 0 inclus
 # et pts_groupe exclu
 x=xcentre+delta*(2*rd.random()-1)
 # x compris entre xcentre-delta et xcentre+delta
 y=ycentre+delta*(2*rd.random()-1)
 # y compris entre ycentre-delta et ycentre+delta
 X[i+k*pts_groupe]=x
 Y[i+k*pts_groupe]=y
 return X, Y

3.
def distance(ptA, ptB):
 # distance euclidienne entre ptA et ptB
 # ptA est une liste [xA, yA] désignant l’abscisse
 # et l’ordonnée de A
 # ptB est une liste [xB, yB] désignant l’abscisse
 # et l’ordonnée de B
 return ((ptB[0]-ptA[0])**2+(ptB[1]-ptA[1])**2)**(0.5)

4. On choisit aléatoirement K points différents parmi le nuage de points.
Il ne faut pas utiliser la boucle for avec K étapes puisqu’on peut obtenir
deux indices identiques avec la fonction rd.randint(0, n-1).

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

255

def initcluster(K, X, Y):
 # la fonction retourne une liste de listes contenant les
 # coordonnées des centres des K clusters tirés aléatoirement
 # parmi le nuage de points
 # arguments d’entrée : entier K et deux listes X et Y
 n=len(X)
 L=[] # liste de listes :
 # coordonnées des clusters
 liste_indice=[]
 while len(L)!=K:
 i=rd.randint(0, n-1) # indice aléatoire compris
 # entre 0 inclus et n-1 inclus
 if i not in liste_indice:
 liste_indice.append(i)
 L.append([X[i],Y[i]]) # ajoute l’abscisse et
 # l’ordonnée d’un point
 return L # liste des K clusters

Remarque : Les points choisis aléatoirement dans cette étape d’initialisation
doivent appartenir au nuage de points.

5.
def algokm (K, X, Y):
 # la fonction retourne une liste de listes contenant les
 # coordonnées des centres des K clusters avec l’algorithme
 # des k-moyennes
 # A liste d’affectation des points i à un cluster
 # arguments d’entrée : entier K = nombre de clusters,
 # X et Y deux listes représentant les abscisses et
 # ordonnées des points
 # X[i] = abscisse du point d’indice i et Y[i] = ordonnée
 # du point d’indice i

 # initialisation des K centres des clusters
 L=initcluster(K, X, Y)
 A=[0 for i in range(N)] # liste pour affecter les points
 # à un cluster
 # A[i] numéro du cluster pour le
 # point X[i],Y[i]
 flag_stable=False # flag à False si on affecte un
 # point à un autre cluster

 while flag_stable==False:
 flag_stable=True # flag initialisé à True
 # il passe à False si le point i
 # change de cluster
 # on place chaque point dans le cluster k
 # le plus proche
 for i in range(N): # i varie entre 0 inclus et N exclu
 val_min=inf # initialisation de val_min
 # à infini
 ind_min=0 # indice du cluster correspondant
 # au minimum

Partie 12 · Intelligence artificielle et jeux

256

 for k in range(K): # k varie entre 0 inclus
 # et K exclu
 if distance([X[i], Y[i]], L[k])<val_min:
 val_min=distance([X[i],Y[i]],L[k])
 ind_min=k
 if A[i]!=ind_min:
 A[i]=ind_min
 flag_stable=False # le point i a changé
 # de cluster

 if flag_stable==False or K==1: # teste si on affecte
 # un point à un autre
 # cluster
 # on recalcule les centres de chaque cluster
 som_x=[0 for i in range(K)]
 som_y=[0 for i in range(K)]
 nb_el=[0 for i in range(K)]
 for i in range(N):
 k=int(A[i]) # le point i appartient au
 # cluster k
 som_x[k]=som_x[k]+X[i]
 som_y[k]=som_y[k]+Y[i]
 nb_el[k]+=1 # on ajoute un point de plus
 # à ce cluster
 for k in range(K):
 if nb_el[k]==0: # teste si aucun point dans
 # le cluster k
 abscisse=0
 ordonnée=0
 else:
 abscisse=som_x[k]/nb_el[k]
 ordonnée=som_y[k]/nb_el[k]
 L[k]=[abscisse, ordonnée]
 return L, A

Cet algorithme a plusieurs défauts :
•• Il faut fixer à l’avance la valeur du nombre total de clusters K.
•• Le résultat dépend fortement du choix des centres initiaux.
•• On n’obtient pas nécessairement le résultat optimum.
•• On peut obtenir un minimum local qui dépend des centres initiaux.

6.
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt
pts_groupe=100 # nombre de points pour chaque
 # groupe
N=pts_groupe*3 # nombre total de points
X, Y=initpoints(pts_groupe)
inf=1e10 # variable représentant
 # l’infini
K=3
L3, A=algokm (K, X, Y)
plt.figure() # nouvelle fenêtre graphique

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

257

plt.scatter(X,Y,color='black')
plt.scatter(L3[0][0],L3[0][1],color='red')
plt.scatter(L3[1][0],L3[1][1],color='blue')
plt.scatter(L3[2][0],L3[2][1],color='green')
plt.xlabel('x')
plt.ylabel('y')
plt.title('3 clusters')
plt.show() # affiche la figure à l’écran
print(L3) # affichage des coordonnées
 # des clusters

3 clusters

6

4

y

0

–2
0 2 4 6

x

8 10

2

8

Les coordonnées des 3 clusters sont : [[7.96, 1.76], [2.62, 0.94], [4.20,
4.87]].
Les centres correspondent bien aux 3 groupes centrés sur [[8, 2], [3, 1],
[4, 5]].

Remarque : En pratique, on utilise cet algorithme pour former des groupes incon-
nus à l’avance mais qu’il faut interpréter ensuite.

7.
def predict(L,pt_search):
 # cette fonction retourne l’indice du numéro du cluster
 # le plus proche de pt_search
 # arguments d’entrée : L = liste des coordonnées des
 # centres des clusters, pt_search = liste contenant
 # l’abscisse et l’ordonnée de pt_search
 # L[i] = liste contenant l’abscisse et l’ordonnée
 # du cluster d’indice i
 dist_cluster=inf # distance du pt_search à un centre
 # du cluster

Partie 12 · Intelligence artificielle et jeux

258

 ind_cluster=0 # indice du numéro du cluster
 for k in range(len(L)): # k varie entre 0 inclus
 # et len(L) exclu
 if distance(L[k], pt_search)<dist_cluster:
 dist_cluster=distance(L[k],pt_search)
 ind_cluster=k
 return ind_cluster ,L[ind_cluster]

On considère le jeu de morpion avec une grille 3×3. Les joueurs ajoutent au
fur et à mesure un pion sur la grille en commençant par un pion noir. Les pions
noirs sont représentés par « X » et les pions blancs par « O ». Les cases vides
sont représentées par « . ». Le but est d’aligner 3 pions sur la grille.
On utilise la liste jeu pour représenter le plateau de jeu avec Python. Le pla-
teau de jeu suivant est représenté par la liste : jeu=['.', '.', '.', 'O',
'.', 'X', '.', 'X', '.']. On repère une case par son indice. Par
exemple l’indice 3 correspond à la case avec un pion blanc (« O »).

. . .

O .

. X .

X

1.  Mise en place du jeu
•• Écrire une fonction init qui retourne une liste jeu correspondant à un pla-
teau vide.

•• Écrire une fonction affiche qui admet comme argument une liste jeu et
qui permet d’afficher le plateau de jeu sur 3 lignes.

•• Écrire une fonction choixjoueur qui admet comme argument une liste
jeu et qui retourne le joueur (« O » ou « X ») devant jouer.

•• Écrire une fonction listecoups qui admet comme argument une liste jeu
et qui retourne une liste contenant les indices des cases vides.

•• Écrire une fonction gain qui admet comme argument une liste jeu et qui
retourne « 1 » si les noirs ont gagné, « –1 » si les blancs ont gagné et 0 si
aucun joueur n’a gagné même si la partie n’est pas terminée.

2.  Écrire une fonction jouercoup qui admet comme arguments une liste jeu
et un entier coup. Cette fonction retourne une nouvelle liste jeu2 sans modi-
fier la liste jeu en ajoutant un pion à l’indice coup de la liste jeu. On pourra
utiliser la fonction choixjoueur pour déterminer quel joueur ajoute le pion
à l’indice coup.

Exercice 15.4 : �Jeu de morpion, algorithme min-max

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

259

3.  Principe de l’algorithme min-max :
•• Écrire une fonction valMax qui admet comme argument une liste jeu. Cette
fonction est appelée lorsque le joueur « X » veut choisir le meilleur coup afin
de maximiser le gain sachant que le joueur « O » va le minimiser (on cherche
le maximum des gains de valMin(jeu) sur tous les coups possibles). Cette
fonction retourne la valeur du maximum du gain et l’indice de la case à jouer
(entier compris entre 0 et 9).

•• Écrire une fonction valMin qui admet comme argument une liste jeu. Cette
fonction est appelée lorsque le joueur « O » veut choisir le meilleur coup afin
de minimiser le gain sachant que le joueur « X » va le maximiser (on cherche
le minimum des gains de valMin(jeu) sur tous les coups possibles). Cette
fonction retourne la valeur du minimum du gain et l’indice de la case jouée
(entier compris entre 0 et 9).

Détail de l’algorithme valMax(jeu) :
•• Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMax
retourne gain(jeu), -1.

•• Sinon :

	 ¢ � On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMin et on calcule le maximum de tous les gains.

	 ¢ � La fonction retourne le gain maximum et l’indice du coup à jouer corres-
pondant à ce gain.

Détail de l’algorithme valMin(jeu) :
•• Si la partie est finie ou qu’un des joueurs a gagné, alors la fonction valMin
retourne gain(jeu), -1.

•• Sinon :

	 ¢ � On parcourt tous les coups possibles. Pour chaque coup, on appelle la fonc-
tion valMax et on calcule le minimum de tous les gains.

	 ¢ � La fonction retourne le gain minimum et l’indice du coup à jouer corres-
pondant à ce gain.

4.  Écrire une fonction jouerminmax qui admet comme argument une liste
jeu. Cette fonction affiche les plateaux de jeu à chaque étape du jeu de mor-
pion. L’ordinateur (pions noirs) joue contre l’ordinateur (pions blancs). Tant
qu’un des joueurs n’a pas gagné et qu’il reste des coups à jouer, on utilise l’al-
gorithme min-max pour choisir le coup suivant.
5.  Écrire une fonction jouercontreIA qui admet comme argument une liste
jeu. Cette fonction affiche les plateaux de jeu à chaque étape du jeu de morpion.
L’ordinateur (ou IA = Intelligence Artificielle) a les pions noirs et l’humain a
les pions blancs. Tant qu’un des joueurs n’a pas gagné et qu’il reste des coups à
jouer, on utilise l’algorithme min-max pour choisir le coup suivant lorsque l’IA
joue. L’humain tape au clavier l’indice de la case où il pose un pion blanc.

Partie 12 · Intelligence artificielle et jeux

260

Analyse du problème
L’algorithme min-max est un algorithme très utilisé dans les jeux à somme nulle
et à nombre fini de stratégies. On explore toutes les possibilités. On définit un gain
pour chaque joueur. À chaque coup, les joueurs cherchent à maximiser leur gain
minimum et donc à minimiser le gain maximum de l’adversaire.

Cours
L’intelligence artificielle est « l’ensemble des théories et des techniques mises en œuvre en
vue de réaliser des machines capables de simuler l’intelligence ».

Principe de l’algorithme min-max pour le jeu de morpion

Le morpion est un jeu à somme nulle (les gains d’un joueur sont l’opposé des gains de
l’autre joueur) et avec un nombre fini de stratégies. Le meilleur gain possible pour le joueur
1 est +1 (victoire pour le joueur 1 et défaite pour le joueur 2) et le meilleur gain pour le
joueur 2 est –1 (défaite pour le joueur 1 et victoire pour le joueur 2).

•• Le joueur 1, que l’on appellera MAX, pose les pions noirs.
•• Le joueur 2, que l’on appellera MIN, pose les pions blancs.

Le joueur 2 cherche à minimiser ses gains alors que le joueur 1 cherche à maximiser ses
gains.

L’algorithme min-max est utilisé dans de nombreux jeux : Othello, échecs…

Principe de l’algorithme min-max dans le cas général

On considère le cas général d’un jeu à deux joueurs à somme nulle et avec un nombre fini
de stratégies.

À un moment donné du jeu, c’est au joueur 1 (MAX) de jouer. On suppose qu’il a trois
possibilités. On représente sur l’arbre de jeu ci-dessous les trois possibilités. Ensuite c’est
au joueur 2 (MIN) de jouer. On suppose qu’il a également trois possibilités. On représente
sur le graphe ci-dessous la valeur du gain quand MAX et MIN ont joué.

Chaque nœud correspond à une position de jeu.

46 2 91 6 58 9

MAX joue

MIN joue

Le nœud du niveau supérieur est appelé racine.

Les feuilles sont les nœuds terminaux pour lesquels ne partent aucune branche et corres-
pondent souvent à une fin de partie. La hauteur de l’arbre ci-dessus est 3. Pour les jeux, on
parle plutôt de profondeur de jeu que de hauteur. La profondeur pouvant être très impor-
tante pour arriver à une fin de partie, on limite souvent la profondeur d’étude (voir exercice
suivant « Jeu de morpion, algorithme min-max et profondeur »). Dans ce cas, on ne sait pas
si les feuilles correspondent à une victoire ou à une défaite. On définit alors une fonction
d’évaluation appelée GAIN qui évalue le gain pour chaque nœud. Comme on considère un

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

261

jeu à somme nulle, le joueur 1 (MAX) cherche à maximiser ses gains alors que le joueur 2
(MIN) cherche à les minimiser à chaque coup.

Le joueur MAX a trois possibilités pour jouer et choisit le coup qui va maximiser ses gains.
Lorsque le joueur MAX a joué, le joueur MIN va jouer en cherchant à minimiser ses gains.

On parcourt en profondeur cet arbre en utilisant la fonction GAIN pour déterminer le meil-
leur coup à jouer pour MAX.

On considère les feuilles : 6, 4 et 2. On remonte dans l’arbre. C’est à MIN de jouer.

46 2

MIN joue

Il choisit le coup qui minimise le gain. Il choisit alors le coup avec un gain égal à 2.

46 2

MIN joue 2

On complète l’arbre de jeu avec le minimum des gains.

46 2 91 6 58 9

MIN joue 2 1 5

On remonte dans l’arbre et on se pose la question : Quel coup choisir pour le joueur1
(MAX) ?

MAX joue

2 1 5

Le joueur1 (MAX) cherche à maximiser ses gains. Il va donc choisir le coup avec un gain
égal à 5.

MAX joue

2 1 5

5

Partie 12 · Intelligence artificielle et jeux

262

On obtient alors l’arbre de jeu :

46 2 91 6 58 9

MAX joue

MIN joue 2 5

5

1

Plus la profondeur est grande, plus le coup choisi sera de meilleure qualité.

1.
def init(): # début de partie
 # la fonction retourne une liste jeu avec
 # un plateau vide
 # les cases vides sont représentées par '.'
 L=9*['.'] # 9 cases avec '.'
 return L

def affiche(jeu):
 # la fonction affiche le plateau de jeu
 # jeu = liste de 9 éléments
 print(jeu[0:3]) # 1re ligne du plateau de jeu
 print(jeu[3:6]) # 2e ligne du plateau de jeu
 print(jeu[6:9]) # 3e ligne du plateau de jeu

def choixjoueur(jeu):
 # la fonction retourne le joueur 'O' ou 'X' devant jouer
 # pour la liste jeu
 som1=0 # initialisation du nombre de cases noires
 som2=0 # initialisation du nombre de cases blanches
 for i in range(9):
 if jeu[i]=='X':
 som1=som1+1 # nombre de cases noires
 elif jeu[i]=='O':
 som2=som2+1 # nombre de cases blanches
 if som1==som2: # si autant de pions noirs que de
 # pions blancs
 return 'X' # c’est à X de jouer
 else:
 return 'O' # c’est à O de jouer

def listecoups(jeu):
 # la fonction retourne la liste L des indices des cases
 # vides pour la liste jeu
 L=[]
 for i in range (9):
 if jeu[i]=='.':
 L.append(i) # ajoute les cases sans pion
 return L

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

263

def gain(jeu):
 # la fonction retourne 1 si les noirs ont gagné,
 # -1 si les blancs ont gagné et 0 sinon pour la liste jeu
 liste1=['X', 'X', 'X']
 liste2=['O', 'O', 'O']
 if jeu[0:3]==liste1 or jeu[3:6]==liste1 or jeu[6:9]==liste1\
 or [jeu[0], jeu[3], jeu[6]]==liste1\
 or [jeu[1], jeu[4], jeu[7]]==liste1\
 or [jeu[2], jeu[5], jeu[8]]==liste1\
 or [jeu[0], jeu[4], jeu[8]]==liste1\
 or [jeu[2], jeu[4], jeu[6]]==liste1:
 return 1 # 3 pions noirs alignés
 elif jeu[0:3]==liste2 or jeu[3:6]==liste2 or jeu[6:9]==liste2\
 or [jeu[0], jeu[3], jeu[6]]==liste2\
 or [jeu[1], jeu[4], jeu[7]]==liste2\
 or [jeu[2], jeu[5], jeu[8]]==liste2\
 or [jeu[0], jeu[4], jeu[8]]==liste2\
 or [jeu[2], jeu[4], jeu[6]]==liste2:
 return -1 # 3 pions blancs alignés
 else:
 return 0

2. On ne peut pas écrire : jeu2=jeu pour réaliser une copie de la liste
jeu. Si on modifie un élément de jeu, alors jeu2 aura la même modi-
fication puisque les deux listes jeu et jeu2 font référence à la même
adresse mémoire.
On utilise le module copy (voir exercice 1.4 « Affectation, objet immuable,
copie » dans le chapitre « Prise en main de Python ») pour réaliser une
copie superficielle de jeu.
def jouercoup(jeu, coup):
 # la fonction retourne une nouvelle liste jeu2
 # en ajoutant un pion à l’indice coup de la liste jeu
 import copy # module copy
 jeu2=copy.copy(jeu) # copie superficielle de jeu
 # si on modifie jeu2, la liste jeu
 # est inchangée
 pion=choixjoueur(jeu)
 if coup in listecoups(jeu):
 jeu2[coup]=pion
 return jeu2

3.
def valMax(jeu):
 # retourne la valeur du maximum du gain et l’indice
 # de la case à jouer pour la liste jeu
 L=listecoups(jeu)
 if len(L)==0 or gain(jeu)!=0:
 # condition d’arrêt de la fonction récursive
 # partie finie car plus de coups à jouer
 # un des joueurs a gagné avec trois pions alignés
 return gain(jeu), -1 # la partie est finie
 else:
 calculmax=-2 # maximum de tous les coups
 # possibles

Partie 12 · Intelligence artificielle et jeux

264

 ind_coup=-1 # initialisation de l’indice
 # du coup à jouer
 for coup in L: # parcourt tous les coups
 # possibles
 jeu2=jouercoup(jeu,coup)
 calcul,indice= valMin(jeu2)
 if calcul>calculmax:
 calculmax=calcul # maximum de tous les coups
 # possibles
 ind_coup=coup # indice du coup à jouer
 return calculmax, ind_coup # maximum du coup à jouer

def valMin(jeu):
 # retourne la valeur du minimum du gain et l’indice
 # de la case à jouer pour la liste jeu
 L=listecoups(jeu)
 if len(L)==0 or gain(jeu)!=0:
 # condition d’arrêt de la fonction récursive
 # partie finie car plus de coups à jouer
 # un des joueurs a gagné avec trois pions alignés
 return gain(jeu), -1 # la partie est finie
 else:
 calculmin=2 # minimum de tous les coups
 # possibles
 ind_coup=-1 # initialisation de l’indice
 # du coup à jouer
 for coup in L: # parcourt tous les coups
 # possibles
 jeu2=jouercoup(jeu,coup)
 calcul, indice=valMax(jeu2)
 if calcul<calculmin:
 calculmin=calcul # minimum de tous les coups
 # possibles
 ind_coup=coup # indice du coup à jouer
 return calculmin, ind_coup # minimum du coup à jouer

4.
def jouerminmax(jeu):
 # cette fonction affiche les plateaux de jeu à chaque étape
 # la liste jeu est modifiée à chaque étape
 while gain(jeu)==0 and len(listecoups(jeu))!=0:
 # la partie n’est pas terminée et il reste des coups
 # à jouer
 nomjoueur=choixjoueur(jeu)
 if nomjoueur=='X': # les noirs jouent
 calcul, ind_coup=valMax(jeu)
 # récupère l’indice du coup à jouer pour les noirs
 jeu=jouercoup(jeu, ind_coup)
 # on passe à l’étape suivante du jeu
 else:
 calcul, ind_coup=valMin(jeu)
 # récupère l’indice du coup à jouer pour les blancs
 jeu=jouercoup(jeu, ind_coup)
 # passe à l’étape suivante du jeu

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

265

 print("Joueur qui pose les pions :", nomjoueur)
 affiche(jeu)

 if gain(jeu)==1:
 print("Le joueur X a gagné.")
 elif gain(jeu)==-1:
 print("Le joueur O a gagné.")
 else:
 print("Partie nulle")

Le programme principal permettant de visualiser les étapes du jeu de mor-
pion est le suivant :
jeu=init() # début de partie avec cases '.'
jouerminmax(jeu)

5.
def jouercontreIA(jeu):
 # cette fonction affiche les plateaux de jeu à chaque étape
 # la liste jeu est modifiée à chaque étape
 # ordinateur ou IA : pions noirs ; l’humain : pions blancs
 while gain(jeu)==0 and len(listecoups(jeu))!=0:
 # la partie n’est pas terminée et il reste des coups
 # à jouer
 nomjoueur=choixjoueur(jeu)
 if nomjoueur=='X': # les noirs jouent
 calcul, ind_coup=valMax(jeu)
 # on récupère l’indice du coup à jouer
 jeu=jouercoup(jeu, ind_coup)
 # passe à l’étape suivante du jeu
 print("Joueur qui pose les pions :", nomjoueur)
 affiche(jeu)
 else:
 ind_coup=int(input("Tapez l’indice de la case : "))
 # on récupère l’indice du coup à jouer
 jeu=jouercoup(jeu, ind_coup)
 # passe à l’étape suivante du jeu

 if gain(jeu)==1:
 print("L’ordinateur (joueur X) a gagné.")
 elif gain(jeu)==-1:
 print("Vous avez gagné (joueur O).")
 else:
 print("Partie nulle")

Le programme principal permettant de jouer contre l’ordinateur est le sui-
vant :
jeu=init() # début de partie avec cases '.'
jouercontreIA(jeu)

Partie 12 · Intelligence artificielle et jeux

266

Cet exercice est la suite de l’exercice précédent « Jeu de morpion, algorithme
min-max ». On pourra utiliser les fonctions init, affiche, choixjoueur,
listecoups, gain et jouercoup.

1.  L’arbre de jeu peut devenir très grand et les appels récursifs peuvent être
coûteux en mémoire. On définit un entier profondeurmaxi qui détermine
la profondeur maximale explorée dans l’arbre de jeu. Écrire deux nouvelles
fonctions récursives valMax2 et valMin2 qui admettent comme arguments
une liste jeu et un entier profondeur. Le paramètre profondeurmaxi
détermine le nombre de coups calculés à l’avance par l’algorithme.
2.  Écrire une fonction jouercontreIA2 qui admet comme arguments une
liste jeu et un entier profondeurmaxi. Cette fonction permet à un humain
de jouer contre l’ordinateur en choisissant la couleur des pions et un niveau de
difficulté (l’entier profondeurmaxi). Par exemple : 2 pour un niveau débu-
tant, 6 pour un niveau intermédiaire et 10 pour un niveau expert.

Exercice 15.5 : �Jeu de morpion, algorithme min-max
et profondeur

Analyse du problème
L’algorithme min-max peut nécessiter un temps de calcul très important pour par-
courir toutes les branches en profondeur. Dans cet exercice, on limite la profondeur
d’étude dans l’arbre de jeu. On peut ainsi déterminer un niveau de difficulté du jeu.

1.
def valMax2(jeu, profondeur):
 # retourne la valeur du maximum du gain et l’indice
 # de la case à jouer pour la liste jeu
 # profondeurmaxi = nombre de coups calculés à l’avance
 # par l’algorithme
 L=listecoups(jeu)
 if len(L)==0 or gain(jeu)!=0 or profondeur ==0:
 # condition d’arrêt de la fonction récursive :
 # partie finie car plus de coups à jouer,
 # ou un des joueurs a gagné avec trois pions alignés,
 # ou profondeur nulle (on n’explore pas plus en
 # profondeur l’arbre)
 return gain(jeu), -1 # la partie est finie
 else:
 calculmax=-2 # maximum de tous les coups
 # possibles
 ind_coup=-1 # initialisation de l’indice
 # du coup à jouer
 for coup in L: # parcourt tous les coups
 # possibles
 jeu2=jouercoup(jeu, coup)

Chapitre 15 · Intelligence artificielle et jeu à deux joueurs (Spé)

267

 calcul, indice= valMin2(jeu2, profondeur-1)
 if calcul>calculmax:
 calculmax=calcul # maximum de tous les coups
 # possibles
 ind_coup=coup # indice du coup à jouer
 return calculmax, ind_coup # maximum du coup à jouer

def valMin2(jeu, profondeur):
 # retourne la valeur du minimum du gain et l’indice
 # de la case à jouer pour la liste jeu
 # profondeurmaxi = nombre de coups calculés à l’avance
 # par l’algorithme
 L=listecoups(jeu)
 if len(L)==0 or gain(jeu)!=0 or profondeur ==0:
 # condition d’arrêt de la fonction récursive :
 # partie finie car plus de coups à jouer,
 # ou un des joueurs a gagné avec trois pions alignés,
 # ou profondeur nulle (on n’explore pas plus en
 # profondeur l’arbre)
 return gain(jeu), -1 # la partie est finie
 else:
 calculmin=2 # minimum de tous les coups
 # possibles
 ind_coup=-1 # initialisation de l’indice
 # du coup à jouer
 for coup in L: # parcourt tous les coups
 # possibles
 jeu2=jouercoup(jeu, coup)
 calcul, indice=valMax2(jeu2, profondeur-1)
 if calcul<calculmin:
 calculmin=calcul # minimum de tous les coups
 # possibles
 ind_coup=coup # indice du coup à jouer
 return calculmin, ind_coup # minimum du coup à jouer

2.
def jouercontreIA2(jeu, profondeurmaxi):
 # cette fonction affiche les plateaux de jeu à chaque étape
 # la liste jeu est modifiée à chaque étape
 # ordinateur ou IA : pions noirs ; l’humain : pions blancs
 # profondeurmaxi = nombre de coups calculés à l’avance par
 # l’algorithme
 while gain(jeu)==0 and len(listecoups(jeu))!=0:
 # la partie n’est pas terminée et il reste des coups
 # à jouer
 nomjoueur=choixjoueur(jeu)
 if nomjoueur=='X': # les noirs jouent
 calcul, ind_coup=valMax2(jeu, profondeurmaxi)
 # récupère l’indice du coup à jouer
 jeu=jouercoup(jeu, ind_coup)
 # passe à l’étape suivante du jeu
 print("Joueur qui pose les pions : ", nomjoueur)
 affiche(jeu)

Partie 12 · Intelligence artificielle et jeux

268

 else:
 ind_coup=int(input("Tapez l’indice de la case : "))

 # récupère l’indice du coup à jouer
 jeu=jouercoup(jeu, ind_coup)
 # passe à l’étape suivante du jeu

 if gain(jeu)==1:
 print("L’ordinateur (joueur X) a gagné.")
 elif gain(jeu)==-1:
 print("Vous avez gagné (joueur O).")
 else:
 print("Partie nulle")

Le programme principal permettant de jouer contre l’ordinateur en choisis-
sant le niveau de difficulté et la couleur des pions est :
jeu=init() # début de partie avec cases '.'
profondeurmaxi=10 # 2 : niveau débutant, 6 : intermédiaire,
 # 10 : expert
jouercontreIA2(jeu, profondeurmaxi)

Partie 13

Bases de données

Plan

16. Bases de données (Spé)� 271
16.1 : Joueurs de tennis� 271
16.2 : Tournois et joueurs de tennis� 275
16.3 : Numéros de sécurité sociale� 280
16.4 : Imprimantes (Mines Ponts 2015)� 284
16.5 : Paludisme (Mines Ponts 2016)� 286

271

16Bases de données
(Spé)

On considère la base de données TENNIS pour gérer les joueurs de tennis.
La table joueurs contient les colonnes :

•	id_joueur, de type entier, identifie chaque joueur ;

•	nom, de type chaîne de caractères, désigne le nom du joueur ;

•	annee, de type entier, désigne l’année de naissance ;

•	nationalite, de type chaîne de caractères, désigne la nationalité du joueur.

1 MURRAY 1987 britannique

2 GULBIS 1988 letton

3 FEDERER 1981 suisse

4 DJOKOVIC 1987 serbe

5 BERDYCH 1985 tchèque

6 NADAL 1986 espagnole

7 THIEM 1993 autrichienne

8 NISHIKORI 1989 japonaise

9 TSONGA 1985 française

10 WAWRINKA 1985 suisse

11 MONFILS 1986 française

12 SIMON 1984 française

1.  Écrire une requête SQL qui renvoie toutes les informations de tous les joueurs.
2.  Écrire une requête qui renvoie le nom de tous les joueurs français.
3.  Écrire une requête qui renvoie la liste des nationalités des joueurs de tennis.
4.  Écrire une requête qui renvoie la moyenne des années de naissance des
joueurs français.
5.  Écrire une requête qui renvoie la nationalité, l’année de naissance et le
nom des joueurs dont l’année de naissance est supérieure ou égale à 1988. On
renommera les colonnes nationalité et année.

Exercice 16.1 : Joueurs de tennis

Partie 13 · Bases de données

272

6.  Écrire une requête qui renvoie l’année de naissance et le nom des joueurs
dont l’année de naissance est strictement supérieure à 1980 et de nationalité
suisse.
7.  Écrire une requête qui renvoie le nombre de joueurs ayant la même année de
naissance. Les années sont affichées par ordre croissant.
8.  Écrire une requête qui renvoie les identifiants et les noms des 3 premiers
joueurs sans le tout premier de la table.

Analyse du problème
Dans cet exercice, on n’utilise qu’une seule table. Pour lire les données d’une base
de données, on utilise la commande SELECT qui retourne les enregistrements
sélectionnés dans un tableau.

Cours :
La requête de base pour rechercher des données est la commande SELECT :

SELECT *
FROM table
WHERE condition;

* permet de retourner toutes les colonnes.

On n’utilise pas d’accent ni de blanc pour désigner les colonnes (que l’on peut appeler
attributs). Le type des colonnes peut être entier (INTEGER), flottant (FLOAT) ou chaîne
(TEXT).

La casse (c’est-à-dire minuscule ou majuscule) n’a pas d’importance pour la désignation
des objets.

Le caractère point-virgule est un terminateur d’instruction. Il n’est pas obligatoire de
l’écrire.

On peut ajouter des opérateurs AND, OR, NOT dans la condition WHERE.

Les opérateurs de comparaison sont :

> < >= <= = <>

Strictement
supérieur à

Strictement
inférieur à

Supérieur ou
égal à

Inférieur ou
égal à

Égal à Différent de

SELECT *
FROM table
WHERE condition1 AND condition2;

On peut ajouter DISTINCT après SELECT pour éviter d’afficher des lignes en double.

SELECT DISTINCT colonne
FROM table ;

Chapitre 16 · Bases de données (Spé)

273

Dans certains cas, on veut éviter d’avoir plusieurs fois la même ligne. On utilise alors la
commande GROUP BY qui permet de regrouper les lignes en une seule. La commande
COUNT(*) compte alors le nombre de lignes concernées.

SELECT *
FROM table
WHERE condition
GROUP BY expression;

On peut utiliser d’autres fonctions statistiques : MAX (maximum), MIN (minimum), SUM
(somme), AVG (moyenne).

AS permet de renommer une colonne ou une table. On utilisera la requête suivante :

SELECT table.colonne1 AS 'nouvellecolonne1', colonne2 AS 'nouvellecolonne2'
FROM table AS t;

On peut omettre AS :

FROM table t

On peut écrire t.colonne1 au lieu de table.colonne1.

On peut écrire FROM table t au lieu de FROM table AS t.

La commande LIMIT 3 permet de sélectionner les trois premiers résultats.

SELECT colonne1, colonne2
FROM table
LIMIT 3;

La commande LIMIT 3 permet de sélectionner les trois premiers résultats sans utiliser les
deux premiers de table.

SELECT colonne1, colonne2
FROM table
LIMIT 3 OFFSET 2;

Voir exercice 16.4 « Imprimantes (Mines Ponts 2015) » pour une requête imbriquée.

Remarque : On pourra tester les requêtes SQL en utilisant SQLite Database Brow-
ser (https://sqlitebrowser.org).

1.
SELECT * FROM joueurs;

* permet de retourner toutes les colonnes.
2.
SELECT nom
FROM joueurs
WHERE nationalite='française';

On obtient alors : TSONGA, MONFILS, SIMON.
3. On ajoute DISTINCT pour éviter d’afficher plusieurs fois la même
nationalité.
SELECT DISTINCT nationalite
FROM joueurs;

Partie 13 · Bases de données

274

Cours :
Les fonctions d’agrégation permettent de réaliser des opérations statistiques.

SELECT COUNT(*)
FROM joueurs;

La commande COUNT(*) compte alors le nombre de lignes. On obtient : 12.

On utilise souvent les fonctions statistiques : MAX (maximum), MIN (minimum), SUM
(somme) et AVG (moyenne).

SELECT MAX(annee)
FROM joueurs;

On obtient : 1993.

4.
SELECT AVG(annee)
FROM joueurs
WHERE nationalite='française';

5.
SELECT nationalite AS 'nationalité', annee AS 'année', nom
FROM joueurs
WHERE annee >=1988;

On obtient alors : 1988 GULBIS, 1989 NISHIKORI et 1993 THIEM.
6.
SELECT annee, nom
FROM joueurs
WHERE annee >1980 AND nationalite='suisse';

Remarque :

On peut écrire également :
SELECT annee, nom
FROM joueurs
WHERE (annee >1980 AND nationalite='suisse');

Cours :
La commande GROUP BY évite d’avoir plusieurs fois la même ligne. On regroupe les
lignes d’un même joueur en une seule.

La commande COUNT(*) compte alors le nombre de lignes concernées.

La commande ORDER BY annee permet de trier les lignes par année. Par défaut, le tri
est par ordre croissant (ou ascendant).

Les fonctions d’agrégation SUM(nom_col), AVG(nom_col), MAX(nom_col),
MIN(nom_col), COUNT(nom_col), COUNT(*) calculent respectivement la somme,
la moyenne arithmétique, le maximum, le minimum, le nombre de valeurs non nulles de la
colonne nom_col et le nombre de lignes pour chaque groupe de lignes défini par la clause
GROUP BY. Si la requête ne comporte pas de clause GROUP BY, le calcul est effectué pour
l’ensemble des lignes sélectionnées par la requête.

Chapitre 16 · Bases de données (Spé)

275

7.
SELECT annee, COUNT(*)
FROM joueurs
GROUP BY annee
ORDER BY annee;

8.
SELECT id_joueur, nom
FROM joueurs
LIMIT 3 OFFSET 1;

La commande LIMIT 3 OFFSET 1 permet d’afficher les trois premiers
résultats sans utiliser le premier résultat de la table joueurs. On obtient
les lignes 2, 3 et 4.

On reprend la base de données TENNIS définie dans l’exercice précédent,
mais qu’on appellera ici joueurs. On ajoute une autre table tournois qui
contient les colonnes :
•• id_tournoi, de type entier, identifie chaque tournoi ;

•• nom, de type chaîne de caractères, désigne le nom du tournoi ;

•• annee, de type entier, désigne l’année où a lieu le tournoi ;

•• num_finaliste1, de type entier, identifie le vainqueur du tournoi ;

•• num_finaliste2, de type entier, identifie le perdant de la finale du tournoi ;

•• num_joueur3, de type entier, identifie le troisième joueur en demi-finale ;

•• num_joueur4, de type entier, identifie le quatrième joueur en demi-finale ;

•• gain, de type entier, désigne la somme gagnée par le vainqueur.

1 ROLAND-GARROS 2016 4 1 7 10 2000000

2 ROLAND-GARROS 2015 10 4 9 1 1800000

3 ROLAND-GARROS 2014 6 4 1 2 1650000

4 OPEN AUSTRALIE 2016 4 8 9 12 2390000

5 OPEN AUSTRALIE 2015 4 1 5 10 2100000

6 OPEN AUSTRALIE 2014 10 6 3 5 2050000

1.  Qu’appelle-t-on une clé primaire ? Qu’appelle-t-on une clé étrangère ?
2.  Écrire une requête SQL qui renvoie le nom du vainqueur de Roland-Garros
en 2016.
3.  Écrire une requête qui renvoie pour chaque joueur l’année et le nom des
tournois gagnés par celui-ci. Les noms des joueurs sont triés par ordre croissant.

Exercice 16.2 : Tournois et joueurs de tennis

Partie 13 · Bases de données

276

4.  Écrire une requête qui renvoie le nombre de victoires pour chaque joueur.
5.  Écrire une requête qui renvoie le total des gains pour chaque joueur.
6.  Écrire une requête qui renvoie le gain moyen de chaque joueur d’origine serbe.
7.  Écrire une requête qui renvoie le gain moyen de chaque tournoi. Les noms
des tournois sont triés par ordre croissant.
8.  Écrire une requête qui renvoie la liste des joueurs ayant gagné au moins
deux tournois et nés après 1986. On affichera également le nombre de tournois
gagnés.
9.  Écrire une requête qui renvoie le joueur ayant gagné le plus de tournois.
10.  Écrire une requête qui renvoie pour chaque joueur le nombre de partici-
pations à une demi-finale d’un tournoi. On renommera les tables joueurs et
tournois respectivement j et t. Les joueurs sont affichés par ordre croissant.
11.  Représenter le schéma relationnel de la base de données.

Analyse du problème
On utilise dans cet exercice deux tables : joueurs et tournois. On cherche à
les mettre en relation en utilisant plusieurs clés (joueurs en demi-finale). On pourra
utiliser JOIN… ON… pour réaliser une jointure. La commande HAVING permet de
réaliser des fonctions d’agrégation comme COUNT.

Cours :
Les jointures permettent de mettre en relation plusieurs tables. Dans la plupart des cas, on
impose l’égalité des valeurs d’une colonne d’une table à celles d’une colonne d’une autre
table.

SELECT *
FROM joueurs
JOIN tournois;

Cette requête réalise le produit cartésien des deux tables joueurs et tournois. À
chaque ligne de la table tournois, il accole l’ensemble des lignes de la table joueurs.
Le nombre de lignes affichées vaut 12×6=72. On a réalisé une jointure entre les deux tables.

id_

joueur
nom annee nationalite

id_

tournoi
nom annee (1) (2) (3) (4) gain

1 MURRAY 1987 britannique 1
ROLAND-

GARROS
2016 4 1 7 10 2000000

1 MURRAY 1987 britannique 2
ROLAND-

GARROS
2015 10 4 9 1 1800000

(1) num_finaliste1 ; (2) num_finaliste2 ; (3) num_joueur3 ; (4) num_joueur4

On peut préciser une condition de jointure avec le mot-clé ON.

SELECT *
FROM joueurs
JOIN tournois ON id_joueur=num_finaliste1;

Chapitre 16 · Bases de données (Spé)

277

La requête SQL n’affiche pas les 72 lignes mais uniquement celles dont la condition id_
joueur=num_finaliste1 est vérifiée. On a réalisé une jointure interne. On aurait pu
écrire INNER JOIN au lieu de JOIN.

GROUP BY permet de regrouper les lignes en une seule. HAVING fait quasiment la même
chose que WHERE mais permet d’utiliser des fonctions d’agrégation comme COUNT pour
compter le nombre d’éléments.

La requête est alors la suivante :

SELECT *
FROM table1
JOIN table2 ON table1.colonne1=table2.colonne2
WHERE condition
GROUP BY expression HAVING COUNT(*)>=1
ORDER BY colonne1
LIMIT 3 OFFSET 2;

On rencontre parfois des jointures d’une table sur elle-même. On parle d’autojointure (voir
exercice 16.3 « Numéros de sécurité sociale »).

1. Une clé primaire sert à identifier une ligne de manière unique. Chaque
joueur est désigné par un numéro d’identifiant id_joueur. Chaque tour-
noi est désigné par un numéro d’identifiant id_tournoi.
Une clé étrangère permet de lier des relations (ou tables) entre elles. La
clé num_finaliste1 permet d’avoir le numéro d’identifiant du joueur
qui a gagné la finale du tournoi. Les clés num_finaliste1, num_
finaliste2, num_joueur3 et num_joueur4 sont des clés étrangères.
2. Il faut réaliser une jointure entre les tables tournois et joueurs. La
colonne nom peut prêter à confusion puisqu’elle est utilisée dans les deux
tables. Le nom du joueur est alors désigné par joueurs.nom.
SELECT joueurs.nom
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016;

On obtient alors : DJOKOVIC.
Remarque :

On peut écrire également :
SELECT joueurs.nom
FROM joueurs, tournois
WHERE tournois.nom='ROLAND-GARROS' AND tournois.annee=2016
AND num_finaliste1=id_joueur;

Par la suite, on utilisera la commande JOIN… ON…

3.
SELECT joueurs.nom, tournois.nom, tournois.annee
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
ORDER BY joueurs.nom;

Partie 13 · Bases de données

278

On obtient alors : DJOKOVIC Roland-Garros 2016, DJOKOVIC Open d’Aus-
tralie 2061, DJOKOVIC Open d’Australie 2015, NADAL Roland-Garros 2014,
WAWRINKA Roland-Garros 2015, WAWRINKA Open d’Australie 2014.

Cours :
On peut ajouter ASC pour préciser que le tri se fait par ordre croissant. Ce n’est pas obliga-
toire puisque le tri se fait par défaut par ordre croissant.

ORDER BY joueurs.nom ASC : tri des noms par ordre croissant.

ORDER BY joueurs.nom DESC : tri des noms par ordre décroissant.

Cours :
SELECT AVG(gain)
FROM tournois;

On obtient : 1998333.33.

On peut utiliser des fonctions d’agrégation avec la commande GROUP BY.

SELECT nom, AVG(gain)
FROM tournois
GROUP BY nom;

La commande GROUP BY évite d’avoir plusieurs fois la même ligne. Il faut donc regrouper
les lignes d’un même tournoi.

La commande AVG(gain) donne la moyenne des gains pour chaque tournoi.

On obtient :

OPEN AUSTRALIE 2180000.0

ROLAND-GARROS 1816666.67

4.
SELECT joueurs.nom, COUNT(*)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur
GROUP BY joueurs.nom;

On regroupe les lignes d’un même joueur en une seule. La commande
COUNT(*) compte alors le nombre de lignes concernées.
On obtient alors : DJOKOVIC 3, NADAL 1, WAWRINKA 2.
5.
SELECT joueurs.nom, SUM(tournois.gain)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur
GROUP BY joueurs.nom;

On obtient alors : DJOKOVIC 6490000, NADAL 1650000, WAWRINKA
3850000.
6.
SELECT joueurs.nom, AVG(tournois.gain)
FROM joueurs, tournois
WHERE num_finaliste1=id_joueur AND nationalite='serbe'
GROUP BY joueurs.nom;

Chapitre 16 · Bases de données (Spé)

279

7.
SELECT nom, AVG(tournois.gain)
FROM tournois
GROUP BY nom
ORDER BY nom;

8.
SELECT joueurs.nom, COUNT(joueurs.nom)
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
WHERE joueurs.annee>1986
GROUP BY joueurs.nom
HAVING COUNT(joueurs.nom)>=2;

9.
SELECT joueurs.nom, COUNT(joueurs.nom)
FROM joueurs
JOIN tournois ON num_finaliste1=id_joueur
GROUP BY joueurs.nom
ORDER BY COUNT(joueurs.nom) DESC
LIMIT 1;

Cours :
LIMIT 1 permet d’afficher le premier résultat.

10.
SELECT j.nom, COUNT(j.nom)
FROM joueurs AS j
JOIN tournois as t ON num_finaliste1=id_joueur OR num_
finaliste2=id_joueur OR num_joueur3=id_joueur OR num_joueur4=id_
joueur
GROUP BY j.nom
ORDER BY j.nom;

11.

id_joueur INTEGER

nom TEXT

annee INTEGER

nationalite TEXT

joueurs

id_tournoi INTEGER

nom TEXT

annee INTEGER

num_finaliste1 INTEGER

num_finaliste2 INTEGER

num_joueur3 INTEGER

num_joueur4 INTEGER

gain INTEGER

tournois

4

0..*

Partie 13 · Bases de données

280

Un joueur peut être lié à aucun tournoi ou à plusieurs tournois. On écrit
alors la multiplicité 0..*.
Un tournoi est lié à exactement quatre joueurs. On écrit alors la multiplicité
4..4, que l’on note 4.

Cours :
Une association est un lien entre deux ou plusieurs entités.

Multiplicité Abréviation Cardinalité
0..0 0 Aucune ligne

0..1 Aucune ou une seule ligne

1..1 1 Une seule ligne

0..* * Aucune, une ou plusieurs lignes (pas de limite)

1..* Au moins une ligne (pas de limite)

x..x x Exactement x ligne(s)

m..n Au moins m et au plus n lignes

On considère la base de données SECURITE_SOCIALE pour gérer les numéros
de sécurité sociale des assurés. Pour chaque région, on a une table qui contient
les attributs :
•• id_personne, de type entier, identifie chaque personne ;

•• nom, de type chaîne de caractères, désigne le nom de la personne ;

•• prénom, de type chaîne de caractères, désigne le prénom de la personne ;

•• annee, de type entier, désigne l’année de naissance ;

•• numsecu, de type flottant, désigne le numéro de sécurité sociale ;

•• id_personne2, de type entier, identifie le mari ou la femme ;

•• rembour, de type flottant, désigne la somme à rembourser à id_personne.

tab_bretagne

1 DURAND Alfred 1980 1801223255521 3 50.5

2 DUPONT Thomas 1985 1851056568848 100.8

3 MAUREL Juliette 1985 1750950504544 1 350

4 DJOKOVIC Anne 1970 1701584545321

5 BERDYCH Bertrand 1989 2892502545458 6 10

6 CHEMIN Marie 1989 2825084584848 5 18

Exercice 16.3 : Numéros de sécurité sociale

Chapitre 16 · Bases de données (Spé)

281

tab_aquitaine

1 BOULEAU Patrick 1975 1755258458181 2 100

2 BOULEAU Marie 1978 2508584545451 1 80

3 CHASSAT Paul 1980 1803355484812 18

4 FALQUIER Anne 1985 2885884788882 5 400.5

5 DUPE Bertrand 1986 1865254848482 4 500

6 CHEMIN Marie 1983 2825358874851 29

1.  Écrire une requête SQL qui renvoie le nom, le prénom, le numéro de sécu-
rité sociale et l’année de naissance des assurés dont l’année de naissance est
supérieure ou égale à 1980 pour la Bretagne et 1985 pour la Nouvelle-Aqui-
taine. Les noms des assurés sont affichés par ordre croissant.
2.  Écrire une requête qui renvoie la liste des couples de Bretagne. Chaque ligne
contiendra le nom et le prénom de l’assuré ainsi que le nom et le prénom de son
mari ou de sa femme.
3.  Écrire une requête qui renvoie le nom et le prénom des assurés qui ont les
mêmes noms et prénoms en Bretagne et Nouvelle-Aquitaine.
4.  Écrire une requête qui renvoie le nom et le prénom des assurés de Bretagne
sauf ceux qui ont même nom et même prénom en Bretagne et Nouvelle-Aquitaine.
5.  Écrire une requête qui renvoie les deux plus grands remboursements des
couples de Nouvelle-Aquitaine. Chaque ligne contiendra le nom, le prénom et
le remboursement.
6.  Écrire une requête qui renvoie la moyenne des remboursements par année de
naissance des assurés de Bretagne. Le minimum du remboursement des assurés
pour chaque année de naissance doit être supérieur ou égal à 50. Les années
sont affichées par ordre décroissant.

Analyse du problème
On utilise dans cet exercice des opérateurs ensemblistes : UNION, INTERSECT et
EXCEPT. Ils permettent de combiner dans un résultat unique des lignes provenant
de deux requêtes SELECT.

Cours :
La commande UNION permet d’obtenir la réunion des enregistrements de deux requêtes
SELECT. Pour chaque requête SELECT, on doit avoir le même nombre de colonnes et
le même type pour chaque colonne. Les enregistrements identiques sont affichés une
seule fois.

SELECT nom, prenom FROM tab_bretagne
UNION
SELECT nom, prenom FROM tab_aquitaine
ORDER BY nom;

Partie 13 · Bases de données

282

On obtient :

BERDYCH Bertrand

BOULEAU Marie

BOULEAU Patrick

CHASSAT Paul

CHEMIN Marie

DJOKOVIC Anne

DUPE Bertrand

DUPONT Thomas

DURAND Alfred

FALQUIER Anne

MAUREL Juliette

1.
SELECT nom, prenom, numsecu, annee FROM tab_bretagne WHERE
annee>=1980
UNION
SELECT nom, prenom, numsecu, annee FROM tab_aquitaine WHERE
annee>=1985
ORDER BY nom;

Cours :
Une autojointure consiste à joindre une table à elle-même. On peut afficher sur une même
ligne une personne ou son mari ou sa femme. On renomme les deux tables pour éviter toute
confusion.

SELECT t1.nom,t1.prenom, t2.nom, t2.prenom
FROM tab_bretagne AS t1
JOIN tab_bretagne AS t2
ON t1.id_personne2=t2.id_personne;

Cette requête affiche des doublons. On obtient :

DURAND Alfred MAUREL Juliette

MAUREL Juliette DURAND Alfred

BERDYCH Bertrand CHEMIN Marie

CHEMIN Marie BERDYCH Bertrand

2.
SELECT t1.nom,t1.prenom, t2.nom, t2.prenom
FROM tab_bretagne AS t1
JOIN tab_bretagne AS t2
ON t1.id_personne2=t2.id_personne
WHERE t1.id_personne2>t1.id_personne;

Chapitre 16 · Bases de données (Spé)

283

On obtient :

DURAND Alfred MAUREL Juliette

BERDYCH Bertrand CHEMIN Marie

Cours :
La commande INTERSECT permet d’obtenir l’intersection de deux requêtes SELECT,
c’est-à-dire les enregistrements communs aux deux requêtes.

3.
SELECT nom, prenom FROM tab_bretagne
INTERSECT
SELECT nom, prenom FROM tab_aquitaine;

Cours :
La commande EXCEPT permet de récupérer les enregistrements de la première requête
SELECT sans inclure les résultats de la deuxième requête SELECT.

4.
SELECT nom, prenom FROM tab_bretagne
EXCEPT
SELECT nom, prenom FROM tab_aquitaine
ORDER BY nom;

On obtient :

BERDYCH Bertrand

DJOKOVIC Anne

DUPONT Thomas

DURAND Alfred

MAUREL Juliette

5.
SELECT t1.nom, t1.prenom, t2.nom, t2.prenom, t1.rembour+t2.rembour
FROM tab_aquitaine AS t1
JOIN tab_aquitaine AS t2
ON t1.id_personne2=t2.id_personne
ORDER BY t1.rembour+t2.rembour DESC
LIMIT 2;

Remarque :

On peut écrire :
SELECT t1.nom, t1.prenom, t2.nom, t2.prenom, t1.rembour+t2.rembour
FROM tab_aquitaine t1
JOIN tab_aquitaine t2
ON t1.id_personne2=t2.id_personne
ORDER BY t1.rembour+t2.rembour DESC
LIMIT 2;

Partie 13 · Bases de données

284

On obtient :

FALQUIER Anne DUPE Bertrand 900

DUPE Bertrand FALQUIER Anne 900

6.
SELECT annee, AVG(rembour)
FROM tab_bretagne
GROUP BY annee
HAVING MIN(rembour)>=50
ORDER BY annee DESC;

On obtient :

1985 225.0

1980 50.0

Une représentation simplifiée de deux tables de la base de données
imprimantes est donnée ci-dessous :
•• table testfin :

nSerie dateTest … Imoy Iec … fichierMes
230-588ZX2547 2012-04-22 14-25-45 0.45 0.11 mesure31025.csv

230-588ZX2548 2012-04-22 14-26-57 0.43 0.12 mesure41026.csv

•• table production :

Num nSerie dateProd type
20 230-588ZX2547 2012-04-22 15-52-12 JETDESK-1050

21 230-588ZX2549 2012-04-22 15-53-24 JETDESK-3050

Après son assemblage et avant les différents tests de validation, un numéro
de série unique est attribué à chaque imprimante. À la fin des tests de chaque
imprimante, les résultats d’analyse ainsi que le fichier contenant l’ensemble des
mesures réalisées sur l’imprimante sont rangés dans la table testfin. Lors-
qu’une imprimante satisfait les critères de validation, elle est enregistrée dans
la table production avec son numéro de série, la date et l’heure de sortie de
production ainsi que son type.

1.  Écrire une requête SQL permettant d’obtenir les numéros de série des impri-
mantes ayant une valeur de Imoy comprise strictement entre deux bornes Imin
et Imax.

Exercice 16.4 : Imprimantes (Mines Ponts 2015)

Chapitre 16 · Bases de données (Spé)

285

2.  Écrire une requête permettant d’obtenir les numéros de série, la valeur de
l’écart type (Iec) et le fichier de mesures des imprimantes ayant une valeur de
Iec strictement inférieure à la valeur moyenne de la colonne Iec.
3.  Écrire une requête permettant d’extraire à partir de la table testfin le
numéro de série et le fichier de mesures correspondant aux imprimantes qui
n’ont pas été validées en sortie de production.

Analyse du problème
Cet exercice est extrait de l’épreuve d’informatique du concours Mines Ponts 2015.

On utilise une rubrique imbriquée. Le résultat d’une requête imbriquée en SQL
peut retourner un champ (question 2) ou une colonne (question 3).

1.
SELECT nSerie
FROM testfin
WHERE Imoy>Imin and Imoy<Imax;

2.
SELECT nSerie,Iec,fichierMes
FROM testfin
WHERE Iec<(SELECT AVG(Iec) FROM testfin);

Cours :
La requête imbriquée (SELECT AVG(Iec) FROM testfin) retourne un champ : la
valeur moyenne de la colonne Iec.

3.
SELECT nSerie,fichierMes
FROM testfin
WHERE nSerie NOT IN (SELECT nSerie from production);

La requête imbriquée (SELECT nSerie from production) retourne
une colonne : les numéros de série de la table production.

Remarque :

La requête suivante permet de tester si le numéro de série de la table testfin est
également dans la table production.
SELECT nSerie, fichierMes
FROM testfin
WHERE nSerie IN (SELECT nSerie from production);

Partie 13 · Bases de données

286

Pour suivre la propagation des épidémies, de nombreuses données sont recueil-
lies par les institutions internationales comme l’O.M.S. Par exemple, pour le
paludisme, on dispose de deux tables :
•• La table palu recense le nombre de nouveaux cas confirmés et le nombre
de décès liés au paludisme ; certaines lignes de cette table sont données en
exemple (on précise que iso est un identifiant unique pour chaque pays) :

nom iso annee cas deces
Brésil BR 2009 309316 85

Brésil BR 2010 334667 76

Kenya KE 2010 898531 26017

Mali ML 2011 307035 2128

Ouganda UG 2010 1581160 8431

•• La table demographie recense la population totale de chaque pays ; cer-
taines lignes de cette table sont données en exemple :

pays periode pop
BR 2009 193020000

BR 2010 194946000

KE 2010 40909000

ML 2011 14417000

UG 2010 33987000

1.  Au vu des données présentées dans la table palu, parmi les attributs nom,
iso et annee, quels attributs peuvent servir de clé primaire ? Un couple d’at-
tributs pourrait-il servir de clé primaire ? (on considère qu’une clé primaire
peut posséder plusieurs attributs). Si oui, en préciser un.
2.  Écrire une requête SQL qui récupère depuis la table palu toutes les données
de l’année 2010 qui correspondent à des pays où le nombre de décès dus au
paludisme est supérieur ou égal à 1 000.
3.  On appelle taux d’incidence d’une épidémie le rapport du nombre de nou-
veaux cas pendant une période donnée sur la taille de la population-cible pen-
dant la même période. Il s’exprime généralement en « nombre de nouveaux
cas pour 100 000 personnes par année ». Il s’agit d’un des critères les plus
importants pour évaluer la fréquence et la vitesse d’apparition d’une épidémie.

Écrire une requête qui détermine le taux d’incidence du paludisme en 2011
pour les différents pays de la table palu.

Exercice 16.5 : Paludisme (Mines Ponts 2016)

Chapitre 16 · Bases de données (Spé)

287

4.  Écrire une requête permettant d’afficher le nombre de nouveaux cas de palu-
disme en 2010 pour les différents pays de la table palu.
5.  Écrire une requête permettant d’afficher le maximum de nouveaux cas de
paludisme en 2010.
6.  Écrire une requête permettant d’afficher le nom du pays ayant le plus grand
nombre de nouveaux cas de paludisme en 2010 (on pourra supposer qu’il n’y a
pas de pays ex aequo pour les nombres de cas).
7.  Écrire une requête permettant de déterminer le nom du pays ayant eu le deu-
xième plus grand nombre de nouveaux cas de paludisme en 2010
8.  On considère la requête R, qui s’écrit dans le langage de l’algèbre relation-
nelle :

π σ)()(=R palunom,deces annee=2010

On suppose que le résultat de cette requête a été converti en une table
deces2010 constituée de couples (chaîne, entier).
Écrire une requête SQL permettant de trier la liste deces2010 par ordre crois-
sant du nombre de décès dus au paludisme en 2010.

Analyse du problème
Cet exercice est extrait de l’épreuve d’informatique du concours Mines Ponts 2016.
On utilise une rubrique imbriquée. Le résultat d’une requête imbriquée en SQL ne
fournit qu’un champ dans cet exercice (maximum du nombre de nouveaux cas de
paludisme en 2010).

Cours :
La sélection σ ()paluannee=2010 s’applique à la table palu et permet d’extraire de celle-ci les
éléments qui satisfont un critère de sélection ()annee=2010 .

La projection π ()'nom,deces R s’applique à une relation R’ et ne garde que les colonnes nom,
deces. Contrairement à la sélection, la projection ne supprime pas des lignes mais des
colonnes.

1. Une clé primaire sert à identifier une ligne de manière unique. Aucune
colonne dans la table palu n’est une clé primaire.
Le couple (iso, annee) est une clé primaire.
2.
SELECT *
FROM palu
WHERE annee=2010
AND deces>=1000;

Partie 13 · Bases de données

288

3.
SELECT nom, cas/pop*100000 AS 'taux incidence'
FROM palu
JOIN demographie ON iso=pays AND periode=annee
WHERE annee=2011;

4.
SELECT nom, cas
FROM palu
WHERE annee=2010;

On obtient : Brésil 334667 ; Kenya 898531 ; Ouganda 1581160.
5.
SELECT max(cas)
FROM palu
WHERE annee=2010;

6.
SELECT nom, cas
FROM palu
WHERE annee=2010 AND cas =(SELECT max(cas) FROM palu WHERE
annee=2010);

On utilise une rubrique imbriquée qui donne le maximum de nouveaux cas
de paludisme en 2010.
7. Il faut créer deux rubriques imbriquées.
SELECT nom, cas
FROM palu
WHERE annee=2010 AND cas =
(SELECT max(cas) FROM palu WHERE annee=2010 AND
cas <(SELECT max(cas) FROM palu WHERE annee=2010));

8. On obtient alors une table deces2010 contenant deux colonnes :
•• nom, de type chaîne de caractères, désigne le nom du pays ;
•• deces, de type entier, désigne le nombre de nouveaux cas de palu-
disme en 2010.

SELECT nom,deces
FROM deces2010
ORDER BY deces;

Partie 14

Algorithmique
numérique

Plan

17. Algorithmique numérique (Spé)(uniquement TSI et TPC)� 291
17.1 : Équation différentielle du premier ordre� 291
17.2 : Équation différentielle du deuxième ordre� 295
17.3 : �Résolution d’un système linéaire par la méthode de Gauss� 298
17.4 : Interpolation polynomiale de Lagrange� 307
17.5 : Interpolation par morceaux� 310

291

Algorithmique
numérique (Spé)
(uniquement TSI et
TPC)

On considère l’équation différentielle : τ= −y
t

E yd
d

 avec E et τ des constantes.

La réponse)(y t recherchée sur l’intervalle  ,0 maxt t sera obtenue par la méthode

d’Euler. Le pas de calcul, noté h, sera choisi constant. L’intervalle de temps dis-

crétisé est représenté par la liste = = −, ,...,0 1 1 maxT t t t tN . Pour chaque instant
ti, une valeur approchée yi de la solution)(y ti de l’équation différentielle est
recherchée. L’ensemble des yi est représenté par la liste Y.
1.  Écrire une relation de récurrence permettant de calculer +yi 1 en fonction de
y E hi , , et τ.
2.  Écrire une fonction Euler(y0, t0, h, N, E, tau) qui admet comme
arguments y0)(= y 0 , t0 le temps initial de calcul, h le pas de calcul, N le
nombre de points, E une constante et tau une constante. Cette fonction ren-
verra les listes T et Y.
3.  Écrire le programme principal permettant d’afficher graphiquement y en
fonction du temps t avec les conditions suivantes : t0 = 0,)(=y 0 0, E = 10,
h = 0,2 ms, τ = 30 ms et N = 1 000. Le graphique doit avoir les caractéristiques
suivantes :
•• affichage de « t » pour l’axe des abscisses,

•• affichage de « y » pour l’axe des ordonnées,

•• affichage du titre : « Méthode d’Euler ».

4.  Commenter la courbe obtenue avec h = 59 ms, les autres conditions précé-
dentes demeurant inchangées.

17

Exercice 17.1 : �Équation différentielle du premier ordre

Partie 14 · Algorithmique numérique

292

20.0

17.5

15.0

12.5

10.0

7.5

5.0

y

2.5

0.0

0 10 20 30 40 50 60

t

Méthode d'Euler

Analyse du problème
On utilise la méthode d’Euler pour résoudre numériquement une équation différen-
tielle du premier ordre. On étudie l’influence du pas sur la qualité de la solution.

Cours :
On cherche à résoudre numériquement l’équation différentielle : ()()=d

d
,

u
t

F u t t
t

.

La fonction u(t) est une fonction continue du temps (qui est également continu). On réalise
la discrétisation du signal en récupérant les valeurs de la tension u à intervalles de temps
réguliers h. On appelle h le pas de calcul et N le nombre d’échantillons. On obtient deux
suites de nombres :

•• { =t ihi , i variant de 0 à 1−N },
•• { ()= =u u t ihi , i variant de 0 à 1−N }.

Avec Python, on définit deux listes T et U telles que
[]
[]

=
=




T i t

U i u
i

i

.

On a alors :

•• { [] = =T i t ihi , i variant de 0 à 1−N },
•• { ()[] = = =U i u u t ihi , i variant de 0 à 1−N }.

On considère un point d’abscisse ti. On applique la formule de Taylor au premier ordre au
voisinage de ti :

() () ()= + − 

 


 ++ +

d
d

...1 1u t u t t t
u
ti i i i

ti

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

293

On pose =t ihi et ()= + = ++ 11t i h t hi i . On peut écrire la formule de Taylor sous la forme :

() ()= + 

 


 ++

d
d

...1u t u t h
u
ti i

ti

() () () [] []

 


 ≈ ∆

∆
=

−
=

−
=

+ −+ +d
d

U i 1 U i1 1u
t

u
t

u t u t

h

u u

h ht t

i i i i

i i

La méthode d’Euler est une méthode du premier ordre.

•• La méthode d’Euler explicite consiste à évaluer


 


d

d
u
t ti

 en utilisant la valeur de la déri-

vée à l’ancienne position, c’est-à-dire à l’instant ti : ()

 


 =d

d
,

u
t

F u t
t

i i
i

. On a un schéma

explicite puisqu’on calcule chaque point en fonction du point précédent. La relation de

récurrence s’écrit : ()−
=+ ,1u u

h
F u ti i

i i .

•• La méthode d’Euler implicite consiste à évaluer


 


d

d
u
t ti

 en utilisant la valeur de la déri-

vée à la nouvelle position, c’est-à-dire à l’instant +1ti : ()

 


 = + +

d
d

,1 1
u
t

F u t
t

i i
i

. La relation

de récurrence s’écrit : ()−
=+ ,1u u

h
F u ti i

i i .

Sauf indication contraire, on utilisera la méthode d’Euler explicite dans les exercices.

1. La méthode d’Euler explicite permet d’écrire :
τ







 ≈ − = −+y

t
y y

h
E y

t

i i i

i

d
d

.1

On en déduit la relation de récurrence :
τ

= + −
+y y h

E y
i i

i
1 .

Remarque : Sans indication contraire de l’énoncé, on utilise la méthode d’Euler
explicite.

2.
def Euler(y0, t0, h, N, E, tau):
 T=[t0] # 1er élément de la liste T
 Y=[y0] # 1er élément de la liste Y
 for i in range(N-1): # i varie entre 0 inclus et N-1 exclu
 T.append(T[i]+h) # ajout d’un élément à la liste T
 Y.append(Y[i]+h*(E-Y[i])/tau) # ajout d’un élément
 # à la liste Y
 return T, Y

3.
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt

N=1000 # nombre de points
h=0.2e-3 # intervalle entre deux instants consécutifs
t0=0

Partie 14 · Algorithmique numérique

294

y0=0
E=10
tau=30e-3
T, Y=Euler(y0, t0, h, N, E, tau)

plt.figure() # nouvelle fenêtre graphique
plt.plot(T, Y) # Y en fonction de T
plt.title("Méthode d’Euler") # titre
plt.xlabel("t") # axe des abscisses
plt.ylabel("y") # axe des ordonnées
plt.show() # affiche le graphique

10

8

6

4

y

2

0

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

t

Méthode d'Euler

4. La solution obtenue avec la méthode d’Euler ne correspond pas du tout
à la solution de l’équation différentielle étudiée. La qualité de la solution
obtenue dépend du pas.

Remarque : Si on considère l’équation différentielle : λ=y
t

y
d
d

. On peut écrire que

λ λ)(= + = ++y y h y y hi i i i 11 . Pour que la méthode soit stable, il faut que λ+ <h1 1.
On peut en déduire un critère de stabilité sur le pas.

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

295

On cherche à résoudre numériquement l’équation différentielle du deuxième

ordre : + + =u
t

b
u
t

cu
d
d

d
d

0
2

2 (1).

On pose))((=g t
u t

t
d

d
 et Y tel que ()

()
()

=








Y t

u t

g t
. On cherche à mettre l’équation

différentielle (1) sous la forme du problème de Cauchy :)()(=Y
t

F Y t t
d
d

, . On

pose ()
()
()

= =








0

0

00Y Y
u

g
.

La réponse)(u t recherchée sur l’intervalle  0, maxt sera obtenue par la méthode
d’Euler explicite. Le pas de calcul, noté h, sera choisi constant. L’intervalle de
temps discrétisé est alors représenté par la liste = = = −0, ,...0 1 1 maxT t t t tN . Pour

chaque instant ti, une valeur approchée Yi de la solution)(Y ti de l’équation
différentielle est recherchée. On utilisera 3 listes T, U et G comportant chacune
N éléments.

1.  Déterminer la fonction)()(F Y t t, .
2.  Donner la relation de récurrence qui lie +Yi 1 à)(Y F t Yi i i, , et au pas de calcul h.
3.  Écrire une fonction F(Yi, ti) qui admet comme arguments Yi la valeur
du vecteur Y au temps discrétisé ti, ti la valeur du temps discrétisé, et qui
retourne la valeur de)()(F Y t ti i i, .
4.  Écrire une fonction Euler(Yini, h, tmax, F) qui prend comme argu-
ments Yini une liste contenant Y0 la condition initiale, h le pas de calcul, tmax
le temps final de calcul et F la fonction du problème de Cauchy. Cette fonction
retourne les listes T, U et G.
Écrire le programme principal permettant de résoudre l’équation différentielle
(1) avec b = 0,75, c = 36, tmax = 10 s, h = 0,6 ms,)(=u 0 2 et)(=g 0 0. Repré-
senter graphiquement u en fonction de t.

Exercice 17.2 : �Équation différentielle du deuxième ordre

Analyse du problème
On cherche à résoudre numériquement une équation différentielle du deuxième
ordre, on se ramène à deux équations différentielles du premier ordre. On utilise la
méthode d’Euler explicite étudiée dans l’exercice précédent.

Partie 14 · Algorithmique numérique

296

1. On pose () =g t
u
t

d
d

. L’équation différentielle (1) s’écrit alors sous la

forme : + + =g
t

bg cu
d
d

0, soit = − −g
t

cu bg
d
d

. On transforme alors l’équation

différentielle (1) en un système de deux équations différentielles du pre-

mier ordre :
()

() ()

















=
− −











u
t
g
t

g t

cu t bg t

d
d
d
d

.

On a donc ()()=Y
t

F Y t t
d
d

, avec ()
()
()

=








Y t

u t

g t
 et ()() =F Y t t,

()
() ()− −











g t

cu t bg t
.

À l’instant ti, on a : ()() =
− −









F Y t t

g

cu bgi i i
i

i i

, . Il faut donc retourner la
liste : []− −g cu bgi i i, .

2. Pour évaluer numériquement








Y
t ti

d
d

à l’instant ti, on utilise la méthode
d’Euler explicite :

() ()





 ≈

−+Y
t

Y t Y t

ht

i i

i

d
d

1

On a alors : ()() () ()−
=+Y t Y t

h
F Y t ti i

i i,1 . La relation de récurrence s’écrit
donc :

()()= ++Y Y h F Y ti i i i,1 , soit
()

= +
= + − −






+

+

u u hg

g g h cu bg
i i i

i i i i

1

1

Remarques :

•• La relation de récurrence s’écrit :)()(= ++Y Y h F Y ti i i i,1 . On a un schéma explicite
puisqu’on calcule le point suivant en fonction du point précédent.

•• Dans un schéma implicite, on a)()(= ++ + +Y Y h F Y ti i i i,1 1 1 , soit
−

=+1Y Y
h

i i

()+ +,1 1F Y ti i . Dans ce cas, la nouvelle valeur +Yi 1 est calculée en utilisant la valeur

de la dérivée à la nouvelle position.

3. On a vu que ()()
()

() ()
=

− −









F Y t t

g t

cu t bg t
, et ()

()
()

=








Y t

u t

g t
.

À l’instant ti, on a : ()() =
− −









F Y t t

g

cu bgi i i
i

i i

, . Il faut donc retourner la
liste : []− −g cu bgi i i, .

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

297

•• On récupère ui avec le premier élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit []=u Yi i 0 .

•• On récupère gi avec le deuxième élément de la liste Yi qui est en argu-
ment d’entrée de la fonction, soit []=g Yi i 1 .

import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt

def F(Yi, ti):
 # Yi[0] représente U[i] et Yi[1] représente G[i]
 return Yi[1], -c*Yi[0]-b*Yi[1]

4. Il faut bien définir le nombre de points. Comme ()= −t N h1max , alors

= +






N

t
h

int 1 max . Il faut prendre la valeur entière sinon il y a un problème

de type pour la syntaxe : for i in range(N-1).
def Euler(Yini, h, tmax, F):
 N=int(1+tmax/h) # nombre de points de discrétisation
 T=[0] # 1er élément de la liste T
 U=[Yini[0]] # 1er élément de la liste U
 G=[Yini[1]] # 1er élément de la liste G
 for i in range(N-1):
 Y=[U[i], G[i]]
 resF=F(Y, T[i]) # résultat de l’appel de F
 U.append(U[i]+h*resF[0]) # ajout d’un élément
 # à la liste U
 G.append(G[i]+h*resF[1]) # ajout d’un élément
 # à la liste G
 T.append(T[i]+h) # on incrémente de h
 # à chaque boucle
 return T, U, G

initialisation des variables
Yini=[2, 0]
b=0.75
c=36
tmax=10
h=0.6e-3
N=int(1+tmax/h) # on a : tmax=(N-1)h
T, U, H=Euler(Yini, h, tmax, F)

plt.figure()
plt.plot(T, U) # représentation graphique
 # de U en fonction de T
plt.xlabel('t')
plt.ylabel('u(t)')
plt.title("Oscillateur harmonique amorti")
plt.show()

Partie 14 · Algorithmique numérique

298

On obtient le graphe :

0

2.0

1.5

1.0

0.5

u
 (

t)

0.0

–0.5

–1.0

–1.5

2 4
t

6 8 10

Oscillateur harmonique amorti

On étudie un moteur thermique constitué de quatre pistons. Depuis l’intégration
des calculateurs dans l’automobile, les principaux paramètres de commande
du moteur à allumage commandé tels que l’ouverture du papillon, la durée
d’injection, l’avance à l’allumage, etc. sont contrôlés numériquement par des
cartographies et/ou des boucles d’asservissement.
La quantité de carburant injecté est directement corrélée à la durée d’ouver-
ture des injecteurs que l’on note durée d’injection. Dans les conditions de
fonctionnement stabilisé, le dosage de base est le résultat d’une interpolation
cartographique calculée à partir de la vitesse et de la charge du moteur. Toutes
les cartographies et tous les programmes du moteur sont stockés sous forme
de fichiers dans la mémoire morte du calculateur (ROM), qui dispose de 32 ko
d’espace. Au démarrage du véhicule, le programme de gestion du moteur et
certaines données seront chargés dans la mémoire vive (RAM), qui dispose de
3 ko d’espace.
On s’intéresse au traitement de la cartographie qui permet de déterminer la
durée d’injection. Le tableau 1 représente l’affichage d’une cartographie des
durées d’injection pour un moteur 4 temps.

Exercice 17.3 : �Résolution d’un système linéaire par
la méthode de Gauss

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

299

Pression au collecteur P en bar
0,295 0,39 0,48 0,565 0,645 0,72 0,79

Vitesse de
rotation ω
en tr/min

900 2,702 3,776 4,852 5,9 6,962 8,004 9,036

1 300 3,064 4,162 5,248 6,33 7,734 8,774 9,766

1 700 3,27 4,412 5,552 6,644 7,734 8,774 9,766

2 200 3,462 4,63 5,804 6,952 8,062 9,126 10,154

2 700 3,498 4,71 5,916 7,09 8,23 9,334 10,39

Tableau 1 : cartographie des durées d’injection en ms.

La cartographie est alors chargée en mémoire sous la forme suivante :
•• La première ligne (0,295 ; 0,39 ; 0,48…), qui contient M valeurs de pression

à l’admission en bar, est stockée dans une liste de valeurs : =   ≤ ≤ −0 1
P Pj j M

.

•• La première colonne (900 ; 1 300 ; 1 700 …), qui contient N valeurs de
vitesse de rotation du moteur en tr/min, est stockée dans une liste de valeurs :

OMEGA OMEGAi Ni0 1
=   ≤ ≤ −

.

•• Les durées d’injection sont stockées sous forme d’une liste de listes T. On
peut lire pour chaque couple de valeurs de pression et de rotation moteur la
valeur de la durée d’injection correspondante T[i][j] en ms.

Le capteur de pression au collecteur d’admission mesure une valeur de pression
notée Pcol. La vitesse de rotation du moteur mesurée est notée OMEGAmot.
Pour un couple de valeurs pression-vitesse de rotation (Pcol, OMEGAmot)
quelconque, le calculateur doit alors déterminer les valeurs de la durée d’in-
jection en réalisant une interpolation à partir des valeurs de la liste de listes T.

Étape 1 :
Le calculateur doit déterminer les indices i et j tels que +1[][] ≤ ≤P j Pcol P j
et 1[][] ≤ ≤ +OMEGA i OMEGAmot OMEGA i .

1.  Écrire une fonction indice(A, val) qui prend pour arguments une liste
notée A et un réel noté val. La liste A est triée par ordre croissant. La fonction
doit retourner un entier id tel que : 1[] []≤ ≤ +A id val A id . On supposera que
id existe toujours.
Le calculateur doit ensuite lire dans la liste de listes T les durées d’injection
correspondant aux indices i et j précédemment déterminés.

Partie 14 · Algorithmique numérique

300

2.  Écrire une fonction extraire(T, P, OMEGA, i, j) qui prend pour
arguments la liste de listes T, les listes P et OMEGA, et deux entiers i et j. La
fonction doit retourner une liste de listes ST :

[]
[]

[]

[] [] [] []

[] [] []= + 

+ + + + + 

, , , 1 , , ,

1, , 1, 1 , 1 , 1

ST T i j T i j P j OMEGA i

T i j T i j P j OMEGA i

3.  Écrire la suite d’instructions qui, à partir des variables OMEGAmot, Pcol,
des listes P et OMEGA et de la liste de listes T, permet de déterminer la liste de
listes ST telle que définie à la question précédente.

Étape 2 :
Une fois les quatre valeurs de durée d’injection déterminées, il est nécessaire de
calculer une durée d’injection t à partir d’une interpolation bilinéaire. L’inter-
polation bilinéaire de la fonction de deux variables)(t x y, s’écrit comme suit :

)([] []= + + + ∈ ∈t x y b b x b y b xy x y, ; 0,1 et 0,10 1 2 3

où b0, b1,b2 et b3 sont les inconnues du problème.
La détermination des coefficients []∈bi,i 0,3 est un problème linéaire qui doit être
résolu à chaque pas de temps et pour chaque cartographie sous la forme :

et 1= = −PQ R Q P R

P est une matrice carrée de dimension n×n ; Q et R sont des matrices colonnes
de dimension n.
On envisage dans un premier temps l’utilisation de la méthode de Gauss
avec recherche du pivot partiel pour résoudre le système linéaire et obtenir la
matrice Q.
4.  Écrire l’algorithme du pivot de Gauss permettant d’obtenir la matrice Q. On
admettra que les termes diagonaux sont tous non nuls.
5.  Quelle est la complexité du pivot de Gauss en fonction de la dimension de la
matrice ? Justifier votre réponse.

On posera par la suite :
[]

[] []=
−

+ −
x

Pcol P j
P j P j1

 et []
[]
[]= −

+ −
y

OMEGAmot OMEGA i
OMEGA i OMEGA i1

.

On connaît les valeurs de)(t x y, pour quatre couples de valeurs)(x y, par lec-
ture de la cartographie :

() ()
() ()

[] []
[] []

= = = = = =

= = = = = =













0, 0 0,0 1, 0 0,1

0, 1 1,0 1, 1 1,1

t x y ST t x y ST

t x y ST t x y ST

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

301

6.  Montrer que le problème à résoudre devient :

[]
[]
[]
[]





































=



















1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

0,0

0,1

1,0

1,1

0

1

2

3

b

b

b

b

ST

ST

ST

ST

7.  Montrer que la résolution par substitution s’écrit :

[]
[] []
[] []
[] [] [] []

=
= −
= −
= − − +

b ST

b ST ST

b ST ST

b ST ST ST ST

0,0

0,1 0,0

1,0 0,0

1,1 0,1 1,0 0,0

0

1

2

3

8.  Comparer la complexité de cet algorithme à celui présenté à la question 5.
9.  Écrire une fonction interpol(ST, Pcol, OMEGAmot) qui retourne
une valeur de la durée d’injection obtenue par une interpolation bilinéaire des
éléments de la table.

Analyse du problème
On utilise la méthode de Gauss avec recherche partielle du pivot pour résoudre un
système linéaire d’ordre n.

Cours :
Un système linéaire est de Cramer d’ordre n si c’est un système de n équations linéaires à
n inconnues et s’il admet une solution unique.

On cherche à résoudre le système =PQ R. On prend par exemple : =
















2 4 2
1 4 2
2 9 3

P ;

=

















0

1

2

Q

q

q

q

 et =

















1

1

1

R .

Le système s’écrit alors :

































=
+ +

+ +
+ +

















=

















2 4 2
1 4 2
2 9 3

2 4 2

4 2

2 9 3

1

1

1

0

1

2

0 1 2

0 1 2

0 1 2

q

q

q

q q q

q q q

q q q

.

Avant de décrire l’algorithme, on pose = =
















'
2 4 2
1 4 2
2 9 3

P P et = =

















'

1

1

1

R R .

Partie 14 · Algorithmique numérique

302

On considère n étapes successives. L’étape p (avec p compris entre 0 et n–1) se décompose
de la façon suivante :

•• Recherche du pivot partiel (élément maximum en valeur absolue dans la colonne p) =
' ,P i p tel que ≥i p.

•• Permutation des lignes i et p pour P' et R' afin que le pivot soit sur la diagonale.
•• Division de la ligne p par le pivot pour P' et R'. On obtient alors ' ,P p p = 1.
•• Remplacement pour P' et R' des lignes ≠i p par la combinaison linéaire de la ligne i et
de la ligne p : ()() ()← − 'ligne ligne ligne,i i P pi p . On obtient alors ' ,P i p = 0 avec ≠i p.

Étape p = 0 :

=



















'

2 4 2

1 4 2
2 9 3

P . Le pivot est = =' 0, 0P i p = 2 avec ≥i p. Les étapes 1 et 2 sont inutiles. On

divise la ligne 0 par le pivot. On obtient : =
















'
1 2 1
1 4 2
2 9 3

P et =

















'

0,5

1

1

R .

Combinaison linéaire ≠i p :

•• i = 1 : = == ='valeur 11, 0P i p . D’où : () () ()= ← = − × =ligne 1 ligne 1 valeur ligne 0 .i i p

On a alors : =
















'
1 2 1
0 2 1
2 9 3

P et =

















'

0,5

0,5

1

R .

•• i = 2 : = == ='valeur 22, 0P i p . D’où : () () ()= ← = − × =ligne 1 ligne 2 valeur ligne 0 .i i p On

a alors : =
















'
1 2 1
0 2 1
0 5 1

P et =

















'

0,5

0,5

0

R .

Étape p = 1 :

=

















'
1 2 1
0 2 1

0 5 1

P .

Le pivot est = =' 2, 1P i p = 5 avec ≥i p. On permute les lignes i et p. On obtient alors :

=

















'

1 2 1

0 5 1

0 2 1

P et =

















'

0,5

0

0,5

R .

On divise la ligne p = 1 par le pivot. On obtient alors = =' 1, 1P p p = 1 et =
















'
1 2 1
0 1 1 / 5
0 2 1

P

et =

















'

0,5

0

0,5

R .

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

303

Combinaison linéaire ≠i p :

•• i = 0 : = == ='valeur 20, 1P i p . D’où : () () ()= ← = − × =ligne 0 ligne 0 valeur ligne 1i i p .

On a alors : =
















'
1 0 3 / 5
0 1 1 / 5
0 2 1

P et =

















'

0,5

0

0,5

R .

•• i = 2 : = == ='valeur 22, 1P i p . D’où : () () ()= ← = − × =ligne 2 ligne 2 valeur ligne 1i i p .

On a alors : =
















'
1 0 3 / 5
0 1 1 / 5
0 0 3 / 5

P et =

















'

0,5

0

0,5

R .

Étape p = 2 :

=

















'
1 0 3 / 5
0 1 1 / 5

0 0 3 / 5

P . Le pivot est == ='
3
52, 2P i p avec ≥ = 2i p . Les étapes 1 et 2 sont inu-

tiles. On divise la ligne p = 2 par le pivot. On obtient : =
















'
1 0 3 / 5
0 1 1 / 5
0 0 1

P et =

















'

0,5

0

5 / 6

R .

Combinaison linéaire ≠i p :

•• i = 0 : = == ='valeur
3
50, 2P i p . D’où : () () ()= ← = − × =ligne 0 ligne 0 valeur ligne 2i i p .

On a alors : =
















'
1 0 0
0 1 1 / 5
0 0 1

P et =

− ×

















=

















'

1
2

3
5

5
6

0

5 / 6

0

0

5 / 6

R .

•• i = 1 : = == ='valeur
1
51, 2P i p . D’où : () () ()= ← = − × =ligne 1 ligne 1 valeur ligne 2i i p .

On a alors : =
















'
1 0 0
0 1 0
0 0 1

P et = −

















'

0

1 / 6

5 / 6

R .

On a alors = =
















−

















= −

















' '
1 0 0
0 1 0
0 0 1

0

1 / 6

5 / 6

0

1 / 6

5 / 6

Q P R .

On peut vérifier facilement que = −

















0

1 / 6

5 / 6

Q est solution du système de départ :

=
















=

















2 4 2
1 4 2
2 9 3

1

1

1

PQ Q

Partie 14 · Algorithmique numérique

304

1.
def indice(A, val):
 id=0
 while A[id] > val or val > =A[id+1]:
 id+=1
 return id
 # suppose que id existe toujours
 # sinon la boucle pourrait ne pas se terminer

Autre possibilité pour la fonction indice :
def indice(A, val):
 id=0
 n=len(A)
 for id in range(n-1): # id varie entre 0 inclus
 # et n-1 exclu
 if A[id]<=val and val<A[id+1]:
 return id # on quitte la boucle for

2.
def extraire(T, P, OMEGA, i, j):
 ST=[] # création d’une liste vide
 ST.append([T[i][j],T[i][j+1],P[j],OMEGA[i]])
 ST.append([T[i+1][j],T[i+1][j+1],P[j+1],OMEGA[i+1]])
 return ST

3.
j=indice(P, Pcol)
i=indice(OMEGA, OMEGAmot)
ST2=extraire2(T2, P, OMEGA, i, j) # liste de listes

On obtient ST = [[6.644, 7.734, 0.565, 1700], [6.952, 8.062, 0.645,
2200]].
4.
import copy

def rec_pivot(A, p):
 n=len(A)
 i, pivot=p, A[p][p]
 for k in range(p, n): # k varie entre p inclus
 # et n exclu
 if A[k][p]>pivot:
 i, pivot=k, A[k][p]
 return i, pivot

def permut_ligne(A, i, p):
 n=len(A)
 for k in range(n):
 val=A[i][k]
 A[i][k]=A[p][k]
 A[p][k]=val

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

305

def gauss(P, R):
 Pc=copy.deepcopy(P) # on ne modifie pas P
 Rc=copy.deepcopy(R) # on ne modifie pas R
 n=len(Pc)
 for p in range(0, n): # p varie entre 0 inclus
 # et n-1 exclu
 i, pivot=rec_pivot(Pc, p) # recherche du pivot
 if i>p: # permutation des lignes i
 # et p si i > p
 permut_ligne(Pc, i, p)
 Rc[i], Rc[p]=Rc[p], Rc[i]
 # division de la ligne p par le pivot
 for j in range(n): # j varie entre 0 inclus
 # et n exclu
 Pc[p][j]=Pc[p][j]/pivot
 Rc[p]=Rc[p]/pivot
 # combinaison linéaire
 for i in range(n):
 if i!=p:
 coeff=Pc[i][p]
 for j in range(n): # j varie entre 0 inclus
 # et n exclu
 Pc[i][j]=Pc[i][j]-coeff*Pc[p][j]
 Rc[i]=Rc[i]-coeff*Rc[p]
 # solution Q
 Q=[Pc[i][i]*Rc[i] for i in range(n)]
 return Q

P=[[2, 4, 2], [1, 4, 2], [2, 9, 3]]
R=[1, 1, 1]
Q=gauss(P, R)

5. On se place dans le pire des cas pour calculer la complexité.
On fait varier p entre 0 et n–1. Pour chaque valeur de p :

•• Recherche du pivot : ()+ − − × = −n p n p4 1 4 4 4 opérations élémentaires.
•• Permutation des lignes i et p : 3+3n opérations élémentaires.
•• Division de la ligne p par le pivot : 3n+3 opérations élémentaires.
•• Combinaison linéaire : ()× + + = +n n n n2 4 4 6 4 2 opérations élémentaires.

Solution Q : 4n opérations élémentaires.

On a donc ∑()− + + + + + + + = + +
=

−

n p n n n n n n n n
p

n

4 4 3 3 3 3 6 4 4 4 14 82

0

1
3 2

opérations élémentaires.
La complexité est en ()O n3 .
6. On pose : () [] []= + + + ∈ ∈t x y b b x b y b xy x y, ; 0,1 et 0,10 1 2 3 .
On en déduit que : () =t b0,0 0 ; () = +t b b1,0 0 1 ; () = +t b b y0,1 0 2 et
() = + + +t x y b b b b, 0 1 2 3.

Partie 14 · Algorithmique numérique

306

On a bien

()
()
()
()

[]
[]
[]
[]





































=
+
+
+ + +



















=





















=



















b

b

b

b

b

b b

b b

b b b b

t

t

t

t

ST

ST

ST

ST

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

0,0

1,0

0,1

1,1

0,0

0,1

1,0

1,1

.

0

1

2

3

0

0 1

0 2

0 1 2 3

7. On résout directement ce système :
[]=b ST 0,00 ; [] [] []= − = −b ST b ST ST0,1 0,1 0,01 0 ; []= − =b ST b1,02 0

[] []−ST ST1,0 0,0 .

()[] [] [] [] []= − − − = − − − −b ST b b b ST ST ST ST1,1 1,1 0,0 0,1 0,03 0 1 2

()[] []−ST ST1,0 0,0
Après simplification, on a : [] [] [] []= + − −b ST ST ST ST1,1 0,0 0,1 1,03 .
On obtient finalement :

[]
[] []
[] []
[] [] [] []

=
= −
= −
= − − +

b ST

b ST ST

b ST ST

b ST ST ST ST

0,0

0,1 0,0

1,0 0,0

1,1 0,1 1,0 0,0

0

1

2

3

8. Pour cette matrice triangulaire inférieure, on peut très facilement cal-
culer les coefficients bi.
La première ligne permet de calculer b0. La deuxième ligne permet d’en
déduire b1 et ainsi de suite pour tous les coefficients bi.
On se place dans le pire des cas. On fait varier i entre 0 entre n–1. Pour
chaque étape i, on a au maximum i+1 opérations élémentaires.

Le nombre d’opérations élémentaires vaut donc : ∑() ()+ =
−

+
=

−

i
n n

n
i

n

1
1

2
0

1

.

La complexité est quadratique en ()O n2 . Elle est plus faible qu’à la ques-
tion 5 puisqu’on a une matrice triangulaire.
9.
def interpol(ST, Pcol, OMEGAmot):
 P=[[1,0,0,0], [1,1,0,0], [1,0,1,0], [1,1,1,1]]
 R=[ST[0][0], ST[0][1], ST[1][0], ST[1][1]]
 Q=gauss(P, R)
 x=(Pcol-ST[0][2])/(ST[1][2]-ST[0][2])
 y=(OMEGAmot-ST[0][3])/(ST[1][3]-ST[0][3])
 t=Q[0]+Q[1]*x+Q[2]*y+Q[3]*x*y
 return t

Remarque :

Voici un exemple de programme principal :
P=[0.295, 0.39, 0.48, 0.565, 0.645, 0.72, 0.79]
OMEGA=[900, 1300, 1700, 2200, 2700]

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

307

T=[[2.702, 3.776, 4.852, 5.9, 6.962, 8.004, 9.036],
[3.064, 4.162, 5.248, 6.33, 7.734, 8.774, 9.766],
[3.27, 4.412, 5.552, 6.644, 7.734, 8.774, 9.766],
[3.462, 4.63, 5.804, 6.952, 8.062, 9.126, 10.154],
[3.498, 4.71, 5.916, 7.09, 8.23, 9.334, 10.39]]
Pcol=0.60
OMEGAmot=1750
j=indice(P, Pcol)
i=indice(OMEGA, OMEGAmot)
ST=extraire(T, P, OMEGA, i, j)
t=interpol(ST, Pcol, OMEGAmot)
print("durée d’injection = ", t)

On considère une fonction f définie par )(=
+

∈f x
x

x
1

1
,2 . On cherche

à représenter graphiquement la fonction f et le polynôme d’interpolation de
degré n par rapport aux n+1 points équidistants dans l’intervalle []−5,5 . On note

()= ∈, 0,� �f f x i ni i . Les abscisses xi et les ordonnées fi sont stockées respecti-
vement dans les listes xs et ys.

1.  Écrire une fonction lagrange qui admet comme arguments un entier i, un

réel x et un entier n. La fonction retourne ∏() =
−

−
∈

=
≠

L x
x x
x x

i n, 0,i
j

i jj
j i

n

0

�
��
�
��.

2.  Écrire une fonction poly qui admet comme arguments un réel x et un entier

n. La fonction retourne ∑() ()= ∈
=

p x f L x x,i i
i

n

0

.

3.  Écrire le programme principal permettant de représenter graphiquement la
fonction f et le polynôme d’interpolation de Lagrange dans l’intervalle [–5, 5]
pour n = 4. Que se passe-t-il pour n = 10 et n = 14 ?

Exercice 17.4 : �Interpolation polynomiale de Lagrange

Analyse du problème
On détermine les n+1 composantes du polynôme d’interpolation qui passe par les
n+1 points imposés. Le phénomène de Runge apparaît lorsque n est trop grand.

1.
def lagrange(i, x, n):
 # i entier
 # x réel, n entier
 Li=1

Partie 14 · Algorithmique numérique

308

 for j in range(n+1): # j varie entre 0 inclus et n+1 exclu
 if j!=i:
 Li*=(x-xs[j])/(xs[i]-xs[j])
 return Li

2.
def poly(x, n):
 # x réel, n entier
 som=0
 for i in range(n+1): # i varie entre 0 inclus et n+1 exclu
 som+=ys[i]*lagrange(i, x, n)
 return som

3.
import math as m
 # module math renommé m
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt

def f(x):
 return 1/(1+x**2)
a=-5
b=5

interpolation d’ordre n
le nombre de points vaut n+1
n=4
h=(b-a)/n
xs=[a+i*h for i in range(n+1)] # liste des abscisses
ys=[f(xs[i]) for i in range(n+1)] # liste des ordonnées

listes X et Y pour la représentation graphique de f
N=200 # N+1 nombre de points
H=(b-a)/N
X=[a+k*H for k in range(N+1)] # liste des abscisses
Y=[f(X[k]) for k in range(N+1)] # liste des ordonnées
YL=[poly(X[k], n) for k in range(N+1)]

représentation graphique
plt.figure() # nouvelle fenêtre graphique
plt.plot(X, Y) # graphe Y en fonction de X
plt.plot(X, YL) # graphe YL en fonction de X
plt.show() # affiche le graphique

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

309

0.6

0.4

y

0.2

0.0

−0.2

−0.4

−4 −2 0
x

2 4

0.8

1.0

Interpolation d'ordre 4

1.5

1.0

0.5

0.0

−4 −2 0 2 4

2.0

x

y

Interpolation d'ordre 10

7

6

5

4

3

2

1

0

–1

– 4 –2 0 2 4

x

y

Interpolation d'ordre 14

Partie 14 · Algorithmique numérique

310

Un phénomène d’oscillations apparaît et s’amplifie lorsque n augmente. Le
phénomène de Runge peut être atténué en considérant une interpolation
par morceaux (voir exercice suivant « Interpolation par morceaux »).

On considère une fonction f définie par =
+

f x
x

()
1

1 2 , x ∈ . On cherche à repré-

senter graphiquement la fonction f, le polynôme d’interpolation de degré n ainsi
que l’interpolation linéaire par morceaux par rapport aux n+1 points équidistants
dans l’intervalle [] []= −a b, 5,5 . On définit une partition de []a b, en n sous-inter-

valles = ∈ −+ � �[,], 0, 11I x x i ni i i , de longueur = −
h

b a
n

 avec = + ∈, 0,� �x a ih i ni .

On note = ∈(), 0,� �f f x i ni i . Pour ∈ −0, 1� �i n , on définit p i1, le polynôme d’in-
terpolation linéaire de Lagrange aux nœuds () ()+ +x f x fi i i i, , ,1 1 . Le polynôme

d’interpolation par morceaux ph
1 est défini, pour tout ∈ −0, 1� �i n , par :

() ()= ∀ ∈p x p x x Ih
i i,1 1,

Le polynôme p i1, est un polynôme de degré 1, pour tout ∈ −0, 1� �i n .
Les abscisses xi et les ordonnées fi sont stockées respectivement dans les listes
xs et ys.
1.  Donner l’expression de p i1, sur chaque intervalle Ii, pour ∈ −0, 1� �i n .
2.  Écrire une fonction interpol qui admet comme argument x et retourne

[]() ∈p x x a bh , ,1 .
Écrire le programme principal permettant de représenter graphiquement la fonc-

tion f, le polynôme d’interpolation de degré n = 6 (∑() ()= ∈
=

p x f L x xi i

i

n

,
0

avec ∏() =
−
−

∈
=
≠

L x
x x

x x
i ni

j

i jj
j i

n

� �, 0,
0

) et une interpolation linéaire par morceaux

pour n = 6 dans l’intervalle []a b, .

Exercice 17.5 : Interpolation par morceaux

Analyse du problème

Pour résoudre le problème d’oscillations qui apparaît lorsque n est trop grand, on
utilise une interpolation par morceaux.

1. On considère une loi affine entre deux points successifs. Soit ∈ −i n0, 1 ,� �
[]∀ ∈ +x x xi i, 1 : ()= + − −

−
+

+
y y x x

y y
x xi i

i i

i i

1

1

. Pour l’intervalle Ii, on en déduit

la fonction polynôme définie par ()() = + − −
−

+

+
p x y x x

y y
x xi i i

i i

i i
1,

1

1

.

Chapitre 17 · Algorithmique numérique (Spé) (uniquement TSI et TPC)

311

2. On pose = −
h

b a
n

 et = + ∈x a ih i ni , 0,� �.

Soit []∈x a b, . On cherche un entier i tel que x appartienne au sous-
intervalle []= ∈ −+I x x i ni i i, , 0, 11 � �.
Avec Python, on obtient i en calculant

−







x x
h

int 0 .

•• Si = +x x
h3
20 , alors

−





 =







 =x x

h
int int

3
2

10 , x est bien dans l’intervalle

[]=I x x,1 1 2 .

•• Si =x xn, alors
−






 =x x

h
nnint 0 . Dans ce cas, la fonction retourne direc-

tement yn car l’intervalle []+x xn n, 1 n’est pas défini.
import math as m
 # module math renommé m
import matplotlib.pyplot as plt
 # module matplotlib.pyplot renommé plt

def f(x):
 return 1/(1+x**2)
a=-5
b=5

interpolation d’ordre n
le nombre de points vaut n+1
n=6
h=(b-a)/n
xs=[a+i*h for i in range(n+1)] # liste des abscisses
ys=[f(xs[i]) for i in range(n+1)] # liste des ordonnées

def lagrange(i, x, n):
 # i entier
 # x réel, n entier
 Li=1
 for j in range(n+1): # j varie entre 0 inclus
 # et n+1 exclu
 if j!=i:
 Li*=(x-xs[j])/(xs[i]-xs[j])
 return Li

def poly(x, n):
 # x réel, n entier
 som=0
 for i in range(n+1): # i varie entre 0 inclus
 # et n+1 exclu
 som+=ys[i]*lagrange(i, x, n)
 return som

def interpol(x): # x compris entre a et b
 i=int((x-xs[0])/h)

Partie 14 · Algorithmique numérique

312

 if x!=xs[n]:
 # x est dans l’intervalle Ii=[xi, xi+1]
 return ys[i]+(x-xs[i])*(ys[i+1]-ys[i])/(xs[i+1]-xs[i])
 else:
 # l’intervalle [xn, xn+1] n’est pas défini
 return ys[n]

listes X et Y pour la représentation graphique de f
polynôme d’interpolation de Lagrange
N=200 # N+1 nombre de points
H=(b-a)/N
X=[a+k*H for k in range(N+1)] # liste des abscisses
Y=[f(X[k]) for k in range(N+1)] # liste des ordonnées
YL=[poly(X[k], n) for k in range(N+1)]

liste Ym pour la représentation graphique de f
interpolation linéaire par morceaux
Y=[f(X[k]) for k in range(N+1)] # liste des ordonnées
Ym=[interpol(X[k]) for k in range(N+1)]

représentation graphique
plt.figure() # nouvelle fenêtre graphique
plt.plot(X, Y) # graphe Y en fonction de X
plt.plot(X, YL) # graphe YL en fonction de X
plt.plot(X, Ym) # graphe Ym en fonction de X
plt.show() # affiche le graphique

1.0

0.8

0.6

0.4

0.2

0.0

– 4 – 2 0

x

y

2 4

Interpolation d'ordre 6

On observe des oscillations avec l’interpolation polynomiale de Lagrange
de degré n = 6 : c’est le phénomène de Runge, qui peut être atténué en
considérant une interpolation par morceaux.

313

Index

A

algorithme A* 195
appel récursif 39, 57, 70, 177
arbre des appels 80, 116, 178
arc 151
arête 150, 180
autojointure (SQL) 282

B

bibliothèque
collections 142, 162, 177
turtle 75

boucle
for 127, 166
while 168, 194, 204

boucles imbriquées 48
break 127

C

chaîne de caractères 47, 239, 271
chemin 151, 185
clé

étrangère 277
primaire 277
primaire (SQL) 287

complexité 33, 41, 52, 54, 62
condition d’arrêt 39, 57, 80
copie

profonde 18
superficielle 18, 144

correction 32, 57, 59, 61
partielle 32, 59
totale 32, 59

cycle 150, 160, 162, 180

D

degré 150
dépaquetage d’un tuple 14
dépassement de la taille de la pile 60
deque 142, 161, 176
dichotomie 52
dictionnaire 131, 167, 176
dijkstra 187
distance

de Manhattan 200
euclidienne 195

DISTINCT (SQL) 272, 273
diviser pour régner 59, 80, 116

F

factorielle 57
FIFO 140, 152, 158
file 140, 157
filtrage des agrégats avec HAVING (SQL)

277, 279
fonction

itérative 57, 87, 119
récursive 57, 85, 119

fonctions d’agrégation : AVG, COUNT,
MAX, MIN, SUM (SQL) 273, 278

fractales 75

G

glouton 85, 88, 201
graphe

connexe 150, 162, 180
non orienté 150, 161, 167, 171
orienté 151, 185

Index

H

histogramme 28, 122

I

int 4
invariant de boucle 32, 59

L

lecture de fichiers 94
LIFO 136, 152, 168
LIMIT (SQL) 273
liste

d’adjacence 152, 156
de listes 87, 99, 223
par compréhension 23

M

matrice d’adjacence 151, 164, 197
mise en relation de deux tables JOIN

(SQL) 276
multiplicité (SQL) 280

O

opérateurs ensemblistes UNION,
INTERSECT, EXCEPT (SQL) 281

opérations élémentaires 41, 62, 114

P

parcours
en largeur 157, 164, 176
en profondeur 167, 171, 178

passage
par référence 116, 177
par valeur 177

pile 59, 136
plt.plot 25, 95, 240
plt.title 25, 124
plt.xlabel 25, 124

plt.ylabel 25, 124
plus court chemin 184, 185, 189, 201

R

récursivité 57, 80, 178
regrouper des lignes avec GROUP BY

(SQL) 274, 277
requête

imbriquée (SQL) 285
SELECT (SQL) 272, 278, 282

return 7, 13, 31, 39

S

segment de Koch 75
slicing 22, 120

T

terminaison 31, 36, 57, 61
tri

par comptage 122
par insertion 109, 121
par partition-fusion 118
par sélection 112
rapide 115

tri (SQL) 274, 278
type

bool 4
deque 6
dict 132
float 4
int 4
list 5
str 5
tuple 5, 14, 102, 131

V

variant de boucle 31, 38, 58

http://plt.plot

	INFORMATIQUE AVEC
PYTHON
	Table des matières
	Avant-propos
	Partie 1 Prise en main de Python
	1. Prise en main de Python
	2. Graphiques

	Partie 2 Terminaison, correction, complexité
	3. Terminaison, correction, complexité

	Partie 3 Algorithmes de recherche
	4. Algorithmes
	5. Algorithmes de dichotomie

	Partie 4 Récursivité
	6. Récursivité

	Partie 5 Algorithmes gloutons
	7. Algorithmes gloutons (sauf TSI et TPC)

	Partie 6 Lecture et écriture de fichiers – Matrices de pixels et images
	8. Lecture et écriture de fichiers
	9. Matrices de pixels et images, traitement d’images

	Partie 7 Tris
	10. Tris

	Partie 8 Dictionnaire, pile, file, deque
	11. Dictionnaire, pile, file, deque

	Partie 9 Graphes
	12. Graphes

	Partie 10 Recherche d’un plus court chemin
	13. Recherche d’un plus court chemin (sauf TSI et TPC)

	Partie 11 Programmation dynamique
	14. Programmation dynamique (Spé) (sauf TSI et TPC)

	Partie 12 Intelligence artificielle et jeux
	15. Intelligence artificielle et jeu à deux joueurs (Spé)

	Partie 13 Bases de données
	16. Bases de données (Spé)

	Partie 14 Algorithmique numérique
	17. Algorithmique numérique (Spé) (uniquement TSI et TPC)

	Index

