assure |

auxX concours

INFORMATIQU

MPSI PCSI PTSI TSI TPC
MP PC PT PSI

® Le cours : I'essentiel 3 retenir

) Les méthodes pas 3 pas
® Tests de connaissances

) Exercices d’entrainement et d’approfondissement
® Programmation Python
® Corrigés détaillés et expliques

Nicolas Audfray « Jean-Loup Carré « Stéphane Legros
Vojislav Petrov « Marc Rezzouk

DUNOD

Copyright © 2017 Dunod.

Avec la collaboration scientifique de Isabelle Ecollan,
Véronique Guilbert et Cédric Carlier

Conception et création de couverture : Dominique Raboin

le piclogromme qui figure ci-contre d'ensei périeur, provoquant une
mérite une explication. Son objet est baisse brutdle des ud':u?s de livres et de
d'alerter le lecteur sur lo menace que revues, au point que la possibilits méme pour
représente pour |'avenir de |'écrit, les auteurs de créer des ceuvres
particulierement dans le domaine nouvelles et de les faire éditer cor-
de I'édition technique et universi- rectement est aujourd hui menacée.
faire, le développement mossif du Nous rappelons donc que toute
photocopillage. reproduction, partielle ou folale,
Le Code de R:propfiéfé intellec- de lo présente publication est
tuelle du 1" juillet 1992 interdit | LEPHOTOCOPLLAGE | interdite sans cutorisation de
en effet expressément la photoco- (TUELELIVRE) 'auteur, de son editeur ou du
pie & usage collectif sans autori- Centre francais d'exploitation du
sation des ayants droit, Or, cefte pratique droit de copie (CFC, 20, rue des
s'est généralisée dans les e{ubllssemenfs Grands-Augustins, 75006 Paris).

© Dunod, 2017

11 rue Paul Bert, 92240 Malakoff
www.dunod.com

ISBN 978-2-10-076846-2

le Code de la propriété intellectuelle n’autorisant, aux termes de |‘arficle
L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement
réservées a |'usage privé du copiste et non destinées @ une utilisation collective »
el, d’autre part, que les analyses et les courtes citations dans un but d'exemple el
d'illustration, « toute représentation ou reproduction intégrale ou parfielle faite
sans le consentement de |'auteur ou de ses ayanis droit ou ayanis cause est
illicite » (art. L. 122.4).

Cette représentation ou reproduction, par quelque procédé que ce soil, constitue-
rait donc une contrefacon sanctionnée par les articles L. 3352 et suivants du
Code de lo propriété intellectuelle.

Copyright © 2017 Dunod.

Cet ouvrage s'adresse aux éléeves des classes préparatoires scientifiques aux grandes écoles (fi-
lieres MPSI, PCSI, PTSI, TSI, BCPST, TPC, MP, PC, PSI et PT). Il pourra également intéresser
les étudiants préparant le CAPES de Mathématiques Option Informatique.

Le livre est divisé en dix chapitres, couvrant 'intégralité des programmes d’Informatique des
deux années de classes préparatoires, les six premiers chapitres contenant le programme de premiere
année et les quatre derniers celui de seconde année. Cet ouvrage est rédigé en utilisant le langage
Python (et les modules numpy et scipy), outils nécessaires et suffisants pour la préparation aux
concours. Les chapitres et exercices sont numérotés a partir de zéro pour respecter les conventions

de Python.

Chaque chapitre commence par une partie nommée L essentiel du cours. On y présente les points
les plus importants du cours a la maniére de fiches. La premiére chose a faire est de connaitre cette
partie.

On trouve ensuite une partie nommée Les méthodes a maitriser. Elle présente les méthodes
en rapport avec le chapitre de cours, illustrée d'un ou plusieurs exemples, et & savoir mettre en
pratique.

La plupart des chapitres comprennent un questionnaire a choiz multiples on un questionnaire
vrai/faur. Ceux-ci permettront d'identifier rapidement d’éventuelles lacunes.

Un large choix d’exercices, de niveaux variés, est ensuite présenté. Une correction est proposée
pour chacun d’entre eux.

Les chapitres proposent ensuite des Travauxr Pratiques, dont la difficulté est progressive. Ils
portent sur des thémes tres variés, englobant des problémes issus de I'informatique, mais également
des mathématiques, de la physique, de la chimie, des sciences de I'ingénieur et de la biologie.
Progresser en informatique demande de la pratique, et le lectenr est invité a réaliser ces travaux
sur machine, essayer des codes, déchiffrer les messages d’erreurs que pourrait Ini envoyer la machine
pour progresser dans sa maitrise syntaxique du langage, effectuer des tests en cherchant davantage
les limites de ses programmes qu'une validation superficielle avant de consulter le corrigé. Certaines
corrections de ces Travaux Pratiques sont incluses dans le présent ouvrage, et d’autres se trouvent
sur le page dédiée a celui-ci sur le site de Dunod.

Nous avons utilisé certains pictogrammes tout au long de cet ouvrage :
-Q~ | pour attirer I'attention du lecteur sur une remarque spécifique,
A | pour attirer I'attention du lecteur sur des piéges potentiels,

m m pour apporter au lecteur des précisions sur des points de syntaxe utiles dans le cadre
de I'exemple traité mais non essentiels a retenir.

- pour indiquer une question ou un exercice assez difficile.

‘pounq £10Z @ ybuAdod

co~NO O b WNEMO

9

Table des matieres

Architecture de l'ordinateurccovveiiiiiiiiiiiniiiiiinnnnnnens 5
PR EITTIREIIN s o0vs ninssnimnsis s ssnmsuss Bas s ss AR RS AASRAEA 17
Représentation des nombres..........cccvviiiiiiiiiiiieiiiiiiannnn.s 61
PUSHHRNITERE oo S S S R R S R R R s 85
Calcul numérique (une dimension)...........ccoeeevininnnnnnn. 117
Calcul numérique (deux dimensions)cccvvevueinennens 189
2 e[1 e — 241
PUes 6t PECIIBIVIRD oo s s nemaans smss s sams i s s s 273
1 Pm— 357
Graphes ... coomvssamsmaaivss e sii i srssyamseassrs sy 385
BIDHOEraphle . iousssniimssasnisssnsoss s smsvevisisss 427

1 Lo (=< 429

‘pounq £10Z @ ybuAdod

CHAPITRE

Architecture de l'ordinateur

L’essentiel du cours

B 0 Généralités

Nous sommes anjourd hui entourés d’ordinateurs de toutes tailles et de toutes puissances. Le pre-
mier qui vient a l'esprit est I'ordinateur de bureau, c'est essentiellement de celui-ci dont nous
parlerons ici. On peut néanmoins citer les exemples représentés ci-dessous qui constituent une
infime partie des ordinateurs présents dans notre environnement.

L’échelle de taille des ordinateurs s’étend de la simple puce d'une taille de quelques millimétres
(voire moins) aux super-ordinateurs de calcul de la NASA par exemple.

Puce Sof'ﬁ

Super

Ordinateur A S
" ordinateur

“de bureau

Carte programmable — .
type Arduino® # Ordinateur

portable

Tablettes
~— Smartphones

Serveur réseau

Quelques exemples d'ordinateurs classés du plus petit au plus grand
Ce qui permet de regrouper ces différents appareils sous le méme nom d’ordinateur, est leur fonc-
tion : traiter une information numérique.

Un ordinateur est une machine qui traite des données numériques a partir d'instructions
organisées en programines.

Le programme est la suite d’instructions (opérations logiques et arithmétiques) compréhen-
sibles par 'ordinateur.

On peut écrire des programmes dans une multitude de langages (C, Fortran, Python, Scilab,
Ocaml...), mais le langage réellement exécuté par le processeur de I'ordinateur est un langage qui
n'est constitué que de mots binaires : le langage machine. Ce langage est constitué d'une suite de

4
i

7 Dunod.

201

Copyright ©

6 Chapitre 0 Architecture de I'ordinateur

mots qui spécifient les opérations a réaliser sur les bits de la mémoire de I'ordinateur. Le langage
standardisé de plus bas niveau' est le langage assembleur. Il est compréhensible & la lecture par
un humain. Il spécifie par exemple quelle valeur numérique 'ordinateur doit placer dans une case
mémoire spécifiée.

B 1 Stockage de I'information

L'information dans un ordinateur est stockée et transite sous forme de bits (Blnary digiTS).
Un bit ne peut prendre que 2 valeurs : 0 ou 1.

Un multiplet (byfe en anglais) est une cellule mémoire élémentaire et est constitué de plu-
sieurs bits (sauf exception 8 bits).

Un octet est un multiplet (byte) de 8 bits. Les bytes ne faisant pas 8 bits étant rares, dans le
langage courant, « byte » et « octet » sont considérés comme synonymes.

Ces unités sont notées b (bit), B (byte) et o (octet). Pour mesurer la capacité de stockage d'un
disque dur, on utilise comme unité le kilooctet (ko), le mégaoctet (Mo), le gigaoctet (Go) voire le
teraoctet (To). En remarquant que 10 = 1000 & 1024 = 2'°, certains (mais pas tous) utilisent
parfois une définition alternative de ko dans laquelle 1ko = 10240 au lieu de 1ko = 10000 (voir le
tableau).

Unité Valeur standard Variante binaire
ko 10%0 21% = 10240 ~ 1.02 x 10%0
Mo 10% 22% = 10485760 = 1.05 x 100
Go 10% 2390 = 10737418240 ~ 1.74 x 10%
To 10*%0 24065 = 10995116277760 ~ 1.10 x 10'%0

Ces deux conventions peuvent engendrer des confusions. Ainsi, si vous achetez un disque dur de
60To, le fabriquant utilise le standard. Mais si votre systéme d’exploitation utilise la variante
binaire, votre disque dur apparaitra sur votre ordinateur comme faisant « seulement » 54.6To.
Pour lever toute ambiguité, la Commission électrotechnique internationale [IEC] propose de nou-
veaux noms pour la variante binaire : kibioctet (kio), mébioctet (Mio), gibioctet (Gio) et tébioctet
(Tio). Ces noms sont recommandés par différents organismes, mais ne sont pas encore rentrés dans
le langage courant.

1. « Bas niveau » signifie proche du langage machine.

Junod.

© 2017

pyrignt

Co

L'essentiel du cours 7

L’information est caractérisée par :
e son adresse : valeur numérique désignant 'emplacement de I'information ;
e sa capacité (taille mémoire) : exprimée en octets et ses puissances ;
e son temps d’accés : durée entre une demande (lecture / écriture) et sa réalisation
effective
e son temps de cycle : durée entre 2 demandes;
e son débit : nombre d'informations (lecture / écriture) par unité de temps.

La mémoire est organisée en un tableau d’octets, chacun identifié par une adresse. On y accede par
I'intermédiaire de bus (ensemble de liaisons physiques) dont le bus d’adresse et le bus de données.
Un bus de controle permet de définir I'action a réaliser (lecture / écriture).

Il existe 2 principaux types de mémoires :
e la mémoire vive, volatile ou RAM (Random Access Memory), dont deux technologies
prédominent :

o statique : SRAM., réalisée a base de bascules :

o dynamique : DRAM, réalisée a base de condensateurs. C’est celle que 1'on retrouve
dans nos PC.

e la mémoire morte. non volatile ou ROM (Read Only Memory), qui se décline sous
différentes forme qui ne sont d'ailleurs pas toutes en lecture seule :

o PROM, mémoire programmable ;

o EPROM, mémoire programmable effacable (Erasable)

o EEPROM, mémoire effacable électriquement (Electrical), dont une catégorie connue
est la mémoire Flash qui est pratique a utiliser mais assez lente. On les utilise dans
les BIOS, les cartes électroniques et les cartes mémoire (SD, USB, CompactFlash)
et également les disques durs SSD (Solid-State Drive).

o les mémoires de masse magnétiques (disque dur classique) ;

La mémoire morte sert notamment a stocker des données qui ne doivent en aucun cas étre effacées
(numéro de série, adresse MAC d'une carte réseau, ete.) ainsi que les données ne devant pas étre
effacées sans une demande expresse (disque dur, carte mémoire, etc.).

8 Chapitre 0

Architecture de I'ordinateur

B 2 Architecture de I'ordinateur de bureau

L'ordinateur est doté de ports d’entrée-sortie de communication. Ils permettent via des
protocoles de communication de réaliser les échanges entre 'ordinateur et son environne-

ment extérieur (utilisateur, périphériques, internet, etc.)

Connectiques d’entrées-sorties d'une carte mere d’ordinateur de burean

On peut citer quelques-uns des supports physiques sur la carte mere représentée
ci-dessus (de gauche a droite) :

port PS/2 pour les souris et claviers (entrées)

ports USB 2.0 (noir) et USB 3.0 (bleu) (entrée-sortie de périphériques tels que
souris, claviers, imprimantes, ete.) ;

sortie HDMI (High Definition Multimedia Interface), pour connecter un écran
ou un projecteur en haute définition avec du son ;

sorties VGA (Video Graphic Array) et DVI (Digital Visuwal Interface), pour
connecter un écran ou un vidéo projecteur sans le son;

port éthernet RJ45 (entrée-sortie réseau). Ce port sert a connecter l'ordina-
teur par cable au réseau (de 'entreprise, de la maison, etc.). La prise RJ45
permet d’avoir un meilleur débit que le Wifi. Les nouveaux logements qui se
contruisent aujourd'hui doivent étre équipés de prises RJ45 d’aprés un arrété de
2016 [ARRD] et d’apres la norme [NFC] respectée par les constructeurs.

e entrée micro et sorties audio (casque, enceintes, ete.).

les entrées-sorties non filaires : Bluetooth, Wifi, infrarouge (de moins en moins
utilisé), radio, RFID (badge d’acces), NFC (paiement sans contact).

La carte meére accueille I'ensemble des composants de base d’un ordinateur :

le processeur ou microprocesseur ; e la carte réseau;

le (les) disque(s) dur(s) ; e la carte graphique;

les barrettes de mémoire RAM ; e l'alimentation électrique ;

les ports d'entrée-sortie o les systémes de refroidissement (venti-
les différents périphériques (lecteur lateurs).

DVD, lecteur de carte mémoire, etc.)

L'essentiel du cours 9

Apres achat d'un ordinateur on peut ajouter des périphériques (nouvelle carte gra-

A phique plus puissante, port de communication supplémentaire, etc.), il faut alors les
connecter & la carte mére. Leur intégration n’est possible que si les connectiques né-
cessaires sont présentes sur la carte.

Définition

La carte mere réalise le lien entre ces différents composants par U'intermédiaire de bus de
communication. On distingue généralement les bus d’'instructions et les bus de données.

Définition
Le chipset est I'organe permettant de rythmer les échanges entre les différents composants.
11 réalise un cadencement rapide avec le pont nord (north bridge) entre le processeur et la

mémoire RAM principalement, et un cadencement plus lent avec les autres composants comme
le disque dur.

i Cela explique pourquoi l'ordinateur est beaucoup plus lent lorsque toute la mémoire
AL RAM est utilisée et qu’il doit utiliser le disque dur pour réaliser le stockage de données
temporaires.

5 ' slsl=]=
=4 . cfl<i<|<
-E_ i [+ =4 == (= 4 [= -
g | Pont Nord greeye
oy cjcjaolo
8 ey S 1 E1E1E
S (hub contréleur de ‘E E E E
S mémoire) 4 B B B
© olofofo
ﬁ (T4] v v v

e =

Carte
Pont Sud). graphique

(hub controleur Disque : interne
|

d’entrée-sortie)

Slots PCI
Slots PCI

2017 Dunod.

Entrée-sortie

=

| Port sérle
7 Lectewr dwd

B 10s ’ Clavier
Firmware Souris

Copyright

10 Chapitre 0 Architecture de I'ordinateur

Le processeur, aussi appelé microprocesseur on CPU (Central Processing Unit), est 'or-
gane principal de 'ordinateur, il doit :

(0) chercher les instructions en mémoire ;

(1) décoder les instructions;

(2) exéeuter les instructions.

L’architecture Harvard est une des architectures historiques de processeurs. Son principe est
que les données et le programme sont stockés dans deux mémoires différentes ayant chacune
leur propre bus (resp. le bus de données et le bus d’instructions).

Cette architecture a inspiré la conception de nombreux microcontroleurs embarqués (notam-
ment des processeurs ARM); mais aussi certains processeurs d’ordinateurs de bureau, e.g..
T'architecture Skylake d’Intel est une variante d'Harvard : les données et le programme sont
dans la méme unité mémoire, mais disposent de caches séparés ayant chacun leur propre bus.

‘| Mémoire CPU ::: Memaoire !
:| w données » Microprocesseur « programme » | !
E Bus données/adresse
H -
: | |

Entrées Sorties

Microcontraleur

______ 18 S R B b i H‘;;_.___l________

Microcontroleur d’architecture Harvard

Les ressources du processeur sont :

e un compteur ordinal (PC : Program Counter), il contient 'adresse de I'instruction ;

e un registre d’instruction, il contient le code de 'instruction ;

o différents registres :

o les registres généraux (GPR : General Purpose Register);
o les registres spécifiques (SFR : Specific Function Register) ;
o les registres mémoire (RAM) ;

e un accumulateur (ou registre de travail) qui contient les résultats en cours;

e une ou plusieurs unités arithmétiques et logiques (ALU Arithmetic and Logic
Unit) constituées de portes logiques permettant de réaliser des opérations booléennes.

e un séquenceur (scheduler) qui coordonne les échanges entre les registres, produit et
interprete les signaux de controle ;

e une horloge qui cadence les opérations & haute fréquence ;

e un ou plusieurs caches contenant des données récemment utilisées pour y accéder
plus rapidement. Ce sont des zones mémoire de quelques kilooctects accessibles tres
rapidement. Le CPU vérifie d'abord si I'information est présente dans le cache avant
de la redemander.

L’essentiel du cours 11

Un processeur peut étre constitué d'un ou plusieurs cceurs c’est-a-dire plusieurs pro-

cesseurs sur une meéme puce. Les architectures classiques actuelles comptent 4 coeurs
. (QuadCore), on trouve également encore beaucoup de DualCore qui contiennent 2
Q- CCRUTS.

Sur des ordinateurs tres puissants dédiés aux calculs avancés (simulation d’écoulements

de fluides, calculs pour le lancement de fusées, etc.) on peut atteindre un nombre de

ceeurs tres grand, qui ne cesse d’angmenter avec les évolutions de l'informatique.

Q‘ Un processeur cadencé a 3,00 GHz est capable d’exécuter 3.10? opérations élémentaires
par seconde en théorie.

Exemple d’application

Architecture d’un processeur Intel® Core
Cet exemple est issu de la documentation Intel® [INT16] détaille la structure simplifiée d'un
coeur de microprocesseur. Les processeurs actuels utilisent 2, 4 voire 8 coeurs tels que celui-ci. Le
fonctionnement est le suivant :

e Chaque instruction est lue et prédécodée (détermination de la longueur de I'instruction
par exemple) par le premier bloc (Instruction Fetch and PreDecode) qui utilise si besoin
des données contenues dans la mémoire cache partagée (L2) avec les autres coeurs, puis
mise dans la file d'instructions (Instruction Queue).

e Exécution du code :

o déplacement et renommage des micro opérations dans le corps d’exécution (Rena-
me/Alloc) ;

o réordonnancement des micro opérations (Retirement Unit) afin de d’exécuter en pre-
mier les opérations qui sont prétes a l'étre;

o cadencement des ces micro opérations (Schedulers).

e Les différentes unités arithmétiques et logiques (ALU) exécutent les opérations qui leur
sont dédiées (addition, multiplication, ete.), puis les résultats sont stockés dans la mémoire
cache (L1)

TM2

Instruction Fetch
and PreDecode

| Instruction Queue |

;;{C';;l: —)-I Decode l

ﬁlr Shared L2 Cache
‘ Rename/Alloc ‘ Up to 10.7 GB/s

I FSB
Retirement Unit

(ReOrder Buffer)
+
| Schedulers |
T I T I &

© 2017 Dunod.

Copyright

BALI:; ALU ALU

i FAdd FMul Laad Stira
MMX/SSE| [yivMX/SSE| |MMX/SSE . s
& &

FPmove
| L1 D-Cache and D-TLB |

12 Chapitre 0 Architecture de I'ordinateur

B 3 Structure logicielle

Le chargeur d’amorcgage est le micrologiciel qui se lance antomatiquement au démarrage
de l'ordinateur. Il exécute les taches suivantes :
e initialisation des composants de la carte mere, du chipset et de certains périphériques :
e identification des périphériques internes et externes connectés ;
e démarrage du systeme d’'exploitation.
Ce micrologiciel est stocké dans une mémoire flash afin de ne pas étre altérable facilement.

Les chargeurs d’amorcage les plus connus sont le BIOS (Basic Input Qutput System

‘O‘ et plus récemment 'UEFI (Unified Extensible Firmware Interface) plus facilement

s modifiable, notamment pour les mises a jour. Ce dernier offre également une interface
graphique haute définition plus agréable.

Le systéme d’exploitation on OS (Operating System) gére les applications et logiciels de
I'ordinateur. Il fait notamment le lien entre ces derniers et le matériel (processeur, mémoires,
ete.).

. Les systemes d’exploitation les plus connus sont Windows, MacOS. Linux et Chrome
Q OS pour les ordinateurs fixes et portables, Android. I-OS et Windows Phone pour les
smartphones.
‘Q‘ Le systéeme d’exploitation gére également les multiples utilisateurs en assurant par
L - -
exemple qu'un utilisateur ayant des droits limités ne puisse installer des logiciels.

Le systéeme de fichiers définit la maniere dont sont stockées, organisées et hiérarchisées
les données en mémoire. On retrouve notamment un systéme de dossiers et sous-dossiers qui
constituent une arborescence dans 'organisation des fichiers.

Les systémes de fichiers que 'on retrouve principalement sous Windows sont FAT32
(File Allocation Table) et NTFS (New Technology File System). Ce dernier est plus
@ 4 récent et permet notamment de stocker des fichiers plus volumineux. On peut formater
Q un disque dur sous Windows dans 1'un ou l'autre de ces formats. Cette opération,
appelée formatage, conditionne le disque conformément an standard choisi et efface
toutes les données présentes.

~
8

Junod.

)17

c© 20

Copyright

L’essentiel du cours 13

Les données utilisateur (fichiers) sont organisées par le systéme de fichiers sous la forme d'une
arborescence partant d'un dossier racine (C:, D: sous Windows, / sous linux par exemple)
dans lequel on trouve des sous-dossiers qui eux-mémes contiennent d’autres sous-dossiers.

Cette organisation est gérée par le systeme de fichiers, elle ne correspond pas a des zones

é mémoires organisées comme telles. Ainsi si on déplace un dossier, la mémoire utilisée
pour stocker les données n'est pas modifiée, seule la structure apparente (arborescence)
I'est.

Le chemin d’accés (path en anglais) d un fichier représente le parcours dans I'arborescence de

la mémoire pour localiser le fichier (suite des dossiers a ouvrir), par exemple : C:\WinPython-
64bit-3.3.5.0\spyder.exe pour lancer mon éditeur de code python.

Pour qu'un fichier puisse étre exécuté sans préciser son chemin d’acces, celui-ci doit
faire partie de la variable path qui contient l'ensemble des répertoires spécifiés on le
systéme d’exploitation doit chercher le fichier.

Le systeme d'exploitation Windows affiche 'arborescence compléte du dossier dans
lequel on travaille (en mode graphique ou dans l'invite de commande). Sous Linux

‘Q‘ ou MacOS, dans le terminal, la commande pwd (Path Working Directry) permet de
g I'obtenir.

Une fois dans le dossier désiré, on peut obtenir la liste des fichiers et dossiers présents
avec la commande dir sous Windows et 1s sous linux et MacOS.

Le systéme de fichier gére également les droits d’accés. En effet pour des raisons de
sécurité (de l'ordinateur ou de I'information) un utilisateur standard peut n’avoir acces
a un fichier qu’en lecture pour éviter de le modifier.

B 4 Hasard

En informatique, le hasard est parfois utile (voir notamment les TP 5.2 et 9.0). Pour générer des

nombres « aléatoires », il existe principalement deux solutions :

(0) Les PRNG (PseudoRandom Number Generator), ce sont des programmes informatiques déter-
ministes qui générent des suites de nombres « apparemmment » aléatoires.

(1) Les TRNG (True Random Number Generator), ce sont des dispositifs physiques (hardware) qui
générent du hasard, soit en mesurant un phénoméne physique chaotique comme une lampe a lave
ou le bruit d'un capteur, soit en utilisant un phénomeéne quantique réputé aléatoire [IDQ10].
Les processeurs Intel actuels contiennent un TRNG [INT12]. La these [San09] référence de
nombreux TRNG.

Siles TRNG garantissent un « vrai » hasard, ils sont plus lents et ne génerent pas des lois uniformes,

ce qui incite & utiliser des solutions mixtes : un TRNG est débiaisé et sert a initialiser un PRNG.

Source phy- T Générateur
. —){ Débiaiseur }—> "
sique de hasard pseudoaléatoire

Copyright © 2017 Dunod.

14

Chapitre 0 Architecture de I'ordinateur

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Quel est le role du processeur dans un ordinateur 7

[J 11 permet de stocker de maniére temporaire les données de 1'utilisateur.

O Il exécute les instructions et les calculs qui Iui sont donnés par le systéme d’exploitation.
[0 11 permet de stocker de maniére définitive les données de 'utilisateur.

[Il permet de relier les périphériques a 'ordinateur.

Parmi les affirmations suivantes, lesquelles sont vraies ?

0 En informatique la mémoire est un dispositif électronique qui sert a stocker des informations.
[La mémoire du disque dur doit pouvoir fonctionner en mode lecture mais pas en mode
écriture pour ne pas étre détériorée.

U La mémoire du disque dur doit pouvoir fonctionner en mode écriture mais pas en mode
lecture pour des raisons de sécurité informatique.

[Dans la mémoire vive d'un ordinateur sont stockées définitivement des données importantes.

Parmi les affirmations suivantes, lesquelles sont vraies ?

0 La mémoire RAM est une mémoire accessible en lecture uniquement.
[J La mémoire RAM est une mémoire accessible en écriture uniquement.
[0 La mémoire RAM est une mémoire accessible en lecture et en écriture.

A quel endroit de la mémoire le BIOS d’un ordinateur est-il enregistré ?
00 Dans la mémoire ROM (éventuellement flash).

O Dans la mémoire RAM.

(] Dans la mémoire du disque dur.

La répartition des fichiers dans la mémoire du disque dur suit-elle I'arborescence des dossiers 7
O Oui
[0 Non

Parmi les affirmations suivantes, lesquelles sont vraies ?

0J Les informations stockées dans un méme dossier occupent des espaces mémoire voisins.

[1 Les données contenues dans un fichier texte de taille ordinaire sont stockées dans des cases
meémoire voisines.

O Lorsque I'on déplace un fichier d'un dossier & un autre, on modifie la zone mémoire contenant
les informations du fichier.

Quel est le role de la carte meére ?

[J Elle permet de stocker des données dans l'ordinatenr.

O Elle permet de relier les différents organes de I'ordinateur entre eux.
O Elle alimente les périphériques en énergie électrique.

O Elle cadence les calculs du microprocesseur.

‘pounq £10Z @ ybuAdod

Copyright © 2017 Dunod.

16

Chapitre 0 Architecture de I'ordinateur

(a)

(b)

(d)

(e)

()

(8)

Quel est le role du processeur dans un ordinateur ?

O Il permet de stocker de maniére temporaire les données de I'utilisateur.

M Tl exécute les instructions et les caleuls qui lui sont donnés par le systéme d'exploitation.
(] Il permet de stocker de maniére définitive les données de I'utilisateur.

O 11 permet de relier les périphériques a I'ordinateur.

Parmi les affirmations suivantes, lesquelles sont vraies ?

W En informatique la mémoire est un dispositif électronique qui sert a stocker des informations.
O La mémoire du disque dur doit pouvoir fonctionner en mode lecture mais pas en mode
écriture pour ne pas étre détériorée.

[0 La mémoire du disque dur doit pouvoir fonctionner en mode écriture mais pas en mode
lecture pour des raisons de sécurité informatique.

(1 Dans la mémoire vive d'un ordinateur sont stockées définitivement des données importantes.

Parmi les affirmations suivantes, lesquelles sont vraies ?

O La mémoire RAM est une mémoire accessible en lecture uniquement.
[] La mémoire RAM est une mémoire accessible en écriture uniquement.
& La mémoire RAM est une mémoire accessible en lecture et en écriture.

A quel endroit de la mémoire le BIOS d’un ordinateur est-il enregistré ?
M Dans la mémoire ROM (éventuellement flash).

O Dans la mémoire RAM.

O Dans la mémoire du disque dur.

La répartition des fichiers dans la mémoire du disque dur suit-elle I'arborescence des dossiers 7
1 Oui
& Non

Parmi les affirmations suivantes, lesquelles sont vraies 7

[1 Les informations stockées dans un méme dossier occupent des espaces mémoire voisins.

™ Les données contenues dans un fichier texte de taille ordinaire sont stockées dans des cases
mémoire voisines.

O Lorsque I'on déplace un fichier d’un dossier & un autre, on modifie la zone mémoire contenant
les informations du fichier.

Quel est le role de la carte mere?

1 Elle permet de stocker des données dans 'ordinateur.

™ Elle permet de relier les différents organes de I'ordinateur entre eux.
(] Elle alimente les périphériques en énergie électrique.

[Elle cadence les calculs du microprocesseur.

Lnoda.

17 Di

CHAPITRE

Programmation

L’essentiel du cours
Dans cet ouvrage nous utilisons le langage Python.
B 0 Expressions

| Définition |

Une expression est une formule qui renvoie un résultat.

Les opérations usuelles (plus, moins, fois, divisé, puissance, notées +, -, *, / et **) ainsi que des
fonctions (par exemple abs) peuvent étre utilisées dans les expressions. Exemples :

>3 (5 *9) [5 + 3wx2
18.0

5>>> abs(abs(-10)**3 + (=3)*+7)
1187

i s e 1 s 2 T
Division (!ll(.‘ll[ll(!l’!ll(-‘. g(_!l'l(-ll'ﬂllﬁﬂ('}

Etant donné un réel b > 0, pour tout réel a, il existe deux nombres ¢ € Z et r € [0, b] tels que
a = bg + r. En Python, le quotient ¢ est calculé avec l'opération // et le reste r avec %.

B 1 Types de base

Les types de base manipulés en Python sont :

e 1int : les entiers relatifs;
float : les nombres a virgule aussi appelés nombres flottants
complex : les complexes, représentés par une paire de float;
bool : les booléens True et False;
NoneType : le type de None.

f Le calcul est exact sauf pour les types float et complex. Pour ces deux types, les
caleuls peuvent mener a des erreurs d’arrondis.

Les opérations de comparaison ==, =, <, <= > >= renvoient un booléen. Les opérations usuelles
sur les booléens (and, or et not) sont disponibles en Python.

Q Astuce : 2 < 7 < 5 est une abréviation de 2 < 7 and 7 < 5.

)17 Dunod.

20

Copyright ©

18 Chapitre 1 Programmation

La valeur None est renvoyée par les fonctions n’ayant aucun résultat. Par défaut, il n’est pas affiché
dans la console. Par exemple, I'expression print(2) affiche 2 puis renvoie None.

B 2 Instructions

Une instruction est un ordre donné a l'ordinateur, une instruction ne donne pas de valeur.

L affectation ou assignation est une instruction qui associe une valeur & une variable. Les variables
affectées peuvent ensuite étre utilisées dans des expressions. Exemple :

23> w = 3

2 (o +1) [/ 2
2.0

f Ce qui est a gauche et ce qui est a droite du = n’ont pas le méme role.
De plus, = et == ne doivent pas étre confondus.

Le branchement conditionnel. Exemple :

y & i T S0
print(1)

Ce code affiche 1 si x est strictement positif, et ne fait rien sinon.

Le corps du if (ici print(1)) est indenté, il n'est exécuté que si la condition du if (ici x>0) est
évaluée a True. Il est aussi possible d’ajouter un else. Le corps du else ne sera exécuté que si
la condition du if est évaluée a False. Le corps du if on du else peut contenir plusieurs lignes.
Exemple :

i i b o
print(1})
else:
Xx =8
print(2)

Les boucles permettent de répéter une suite d’instructions. Il en existe deux types : les
boucles while et les boucles for.

La boucle while répéte une suite d'instructions tant qu’une condition est vraie.

y = 123
n==ea
while y!= 8:
print(y)
y =y // 18

Dans ce code, on affiche y puis on le quotiente par 10 tant qu’on n’a pas obtenu zéro. Le code va
afficher 123 puis 12 puis 1.

)17 Dunod.

20

Copyright ©

L’essentiel du cours 19

La boucle for permet de répéter une suite d’instructions un nombre prédéterminé de fois.

for k in range(5):
print(k)

Le code précédent affiche tous les entiers de 0 inclus a 5 exclu.

B 3 Séquence
Une séquence est une suite finie de valeurs. Il existe plusieurs types de séquences en Python, dont
voici quelques exemples :

e les chaines de caractéres : "azerty" ou 'azerty' ou '''azerty''' ou """azerty""";

e les tuples: (1, 7, 58):

e les listes : [1, 7, 58].
Une chaine de caractéres ne contient que des caractéres. Un tuple ou une liste peut contenir des
données de n'importe quel type (voire des données de types différents). Les opérations suivantes
sont communes a toutes les séquences s et t :

e lecture de I'élément numéro k, s[k] (le premier élément porte le numéro 0) ;

e extraction de la sous-séquence de I'élément numeéro i inclus a I'élément numéro j exclu,

sfi:3];
e concaténation de deux séquences, s + t;
e concaténation de n copies d'une méme séquence, s * noun * s.

Lors de la lecture d'un élément, il est possible d'utiliser des numéros négatifs, -1 pour
e le dernier élément, -2 pour 'avant-dernier...
Q Lors de I'extraction d'une sous-séquence, il est possible d'ajouter un pas k, s[1:3:k].
Omettre i signifie commencer la sous-séquence au début, omettre j signifie finir la
sous-séquence a la fin.

Au contraire des chaines de caractéres et des tuples, les listes sont modifiables, et disposent d’opé-
rations supplémentaires :

e modification de I'élément numéro k de la liste : s[k] = x;

e ajout d'un élément x en fin de liste : s.append(x) ;

e suppression d'un élément on de toute une sous-séquence : del s[k] ou del s[i:j:k];

e suppression du dernier élément (ou du numéro k) en renvoyant sa valeur : s.pop() ou

s.pop(k).

-Q'« Les opérations s[i:j:k] = t et s.extend(t) peuvent étre utiles & connaitre.

f L’expression s + t ne modifie pas s mais crée une nouvelle liste. L'instruction s +=
t modifie s et lui ajoute t a la fin.

20 Chapitre 1 Programmation

B 4 Bibliothéques (modules) python

Les modules (ou bibliothéques ou encore librairies) regroupent des fonctions et constantes
utilisables dés lors que le module a été importé dans le code & exécuter, ainsi que des types
de données particuliers.

L'importation se fait avec I'instruction import qui peut étre utilisée de différentes facons :

import monmodule_1

import monmodule_2 as modu

from monmodule_3 import *

from monmodule_4 import fonction_4_1, fonction_4_2

On pourra ainsi & partir de ces différents chargements de bibliothéques
utiliser les fonctions et variobles suivantes :

monmodule_1. fonction_1_1(variable_1)
madu. fonction_2_1(variable_1, variable_2)
monmodule_3.constante_3_1
fonction_4_l1(variable_1)

Certaines fonctions sont définies dans plusieurs modules. Pour maitriser 'origine de

A I'utilisation d'une fonction, il est préférable de I'appeler en spécifiant sa bibliotheque.
Par exemple la fonction sinus est définie dans les modules numpy et math. On I'appellera
donc de la maniére suivante :

import math
import numpy as np # olios trés clossiquement utilisé

math.sin(x) # utilisation de lo fonction sinus du module math

np.sin(x) # utilisation de la fonction sinus du module numpy plus complet : sin(np.array([...])) possible

Sion veut éviter ce genre de problémes on peut importer le module numpy en entier par exemple
(from numpy import #*) et uniquement les fonctions utiles de 'autre bibliothéque.

B 5 Définir sa propre fonction

L'instruction def permet de définir une fonction. Exemple :

def ma_fonction(argl, arg2):
s argl + arg2
P argl * arg2
return p % s

i

Une fonction doit avoir :
e zéro, un ou plusieurs arguments (ici argl et arg2),
e des instructions a exécuter,
e une valeur de retour : la valeur de I'expression apres le return.

~
8

Dunod.

)17

c© 20

Copyright

L’essentiel du cours 21

L'instruction return arréte I'exécution de la fonction, méme si elle est exécutée au
‘Q‘ milieu d'une boucle.
-
L'absence de return sous-entend un return None & la fin de la fonction.
L'instruction return None peut étre abrégée en return.

-~ -
‘Q~ L’expression lambda x : x+2 renvoie la fonction qui & x associe x+2.

B 6 Variables locales, variables globales

Chaque instruction de la forme nom = ... ou for nom in ..., présente dans le code d'une
fonction, crée, lors de 'appel de la fonction, une variable locale nommée nom. Une telle variable
n'est définie que pendant l'exécution de la fonction et peut tout a fait posséder le méme nom
gu'une variable qui existait avant 'appel, sans qu’il y ait de confusion entre ces deux variables.

On observe également ce comportement si nom est le nom d'un des arguments de
la fonction: ainsi, Python accepte le code ci dessous, qui calcule le n-itme nombre

n
.]|
harmonique H, = E %
k=1 !
"
e
'Q\
S def H(n): >>> n = 100000
s =0
while n!= 0: >>> H(n)
s+=1/n 12.090146129863408
n=n-1
2> n
return(s) 160000

Si un nom de variable apparait ailleurs dans le code de la fonction, le compilateur reconnait une
variable globale, qui est donc une variable utilisée dans le corps d'une fonction mais non définie
dans ce code. Ainsi, les différentes constantes utilisées dans la modélisation d'un probléme sont en
général des variables initialisées en début de programme, puis utilisées comme variables globales
des différentes fonctions. Cependant, on peut parfois souhaiter qu’une fonction modifie une variable
globale nom. Comme une instruction nom = ... crée automatiquement une variable locale nom,
il faut préciser dans la définition de la fonction que la variable nom est globale, ce qui se fait
en ajoutant la ligne global nom au début du code de la fonction. On trouvera des exemples
d’utilisations de variables globales dans 'exercice 8.10

La distinction entre variables locales et globales s’applique également aux variables

’Q‘ d'une sous-fonction : une variable locale d'une fonction peut étre déclarée comme va-
riable « globale » d'une de ses sous-fonctions. On utilisera alors le mot clef nonlocal
au lieu de global.

B 7 Fichiers

Le chemin dun fichier peut étre défini a partir du répertoire courant (chemin relatif), ou & partir
de la racine de I'ordinateur (chemin absolu). La fonction getcwd du module os renvoie le chemin
absolu du répertoire courant. Il est également possible de modifier le répertoire courant, en uti-
lisant la fonction chdir du module os (les exemples qui suivent correspondent a deux systémes
d’exploitation différents) :

d.

D

17 Dunc

0

2

Copyright ©

22 Chapitre 1 Programmation

>>> dimport os >>> fmport os

»>» os.getcwd() »>» os.getcwd()
'fUsers/OrdiFixe' 'C:/Users/OrdiFixe'

»»> os.chdir("Doc/Python") »>> os.chdir("Doc/Python")
>>> ps.getewd() »>> os.getewd()
'fUsers/OrdiFixe/Doc/Python’ 'C:\\/OrdiFixe/Doc/Python’

Pour ouvrir un fichier, on utilise la fonction open en lui indiquant le chemin (relatif ou absolu)
du fichier. Nous utiliserons ici les trois options "w", "r" et "a", selon que l'on veut écrire dans le
fichier, lire le fichier ou ajouter du texte au fichier. L'instruction

manfichier = open("exemple.txt", option)

crée un flux nommé monfichier qui va permettre, selon 'option choisie, d'écrire ou de lire dans
le fichier exemple. txt du répertoire courant.
L’écriture et la lecture se font ensuite en utilisant les instructions :

monfichier.write("chaine de caractere") # pour écrire @ lo suite du fichier

ligne = monfichier.readline() # pour lire la ligne suivante du fichier

texte = monfichier.read() # pour lire lo totolité (restante) du fichier

lignes = monfichier.readlines() # pour obtenir lo liste des lignes restontes dons le fichier

morceau = monfichier.read(n) # pour lire les n coractéres gui suivent dons le fichier

Une fois le travail a effectuer terminé, il ne faut pas oublier de fermer le fichier, a I'aide de la
méthode close :

monfichier.close()

C’est a ce moment qu'un fichier ouvert en écriture est physiquement créé. Si un fichier portant le
méme nom est déja présent a I'endroit choisi, ce dernier sera écrasé sans avertissement.

. L’encodage du fichier (ASCII, UTFS ou encodage plus exotique) peut étre précisé en
-Q~ argument optionnel de la fonction open pour que les caractéres accentués (ou cyrilliques
ou arabes) soient correctement traités.

Le fonctionnement de ces fonctions est explicité dans 'exemple suivant : on crée un fichier contenant
quelques lignes de texte (tout d’abord en mode "w" puis en mode "a", puis on ouvre ce fichier
pour vérifier son contenu. On rappelle que le caractére « passage a la ligne » est \n.

>>> monfichier = open("Hoiku.txt", "w",encoding='utf-8§')
>>> monfichier.write(Un vieil étang et\nUne grenouille qui plonge,\n")
45 # nombre de caroctéres écrits

>»> monfichier.close()

>>> monfichier = open("Haiku.txt", "a")

»>»> monfichier.write("Le bruit de l'eau.\n")

19 # nombre de caractéres écrits

»>»> monfichier.close()

>>> monfichier = open("Haiku.txt", "r",encoding="'utf-8')
>>>» monfichier.read(5)

'Un wi!

2017 Dunod.

-

Copyright ©

L’essentiel du cours 23

»»» monfichier.readline()

'eil étang et\n'

»>»> monfichier.readlines()

['Une grenouille qui plonge,\n', 'Le bruit de 1'eau.\n']
>>» monfichier.close()

Il est également possible d'utiliser un fichier ouvert en lecture comme un itérateur, l'itération se
faisant alors sur les lignes du fichier :

>>> for L in open("Haiku.txt", "r",encoding='utf-8'): print(L)
Un vieil étang et

Une grenouille qui plonge,

Le bruit de 1'eau.

B 8 Hasard

Les bibliothéques random et numpy.random permettent de générer des nombres aléatoires selon
diverses lois (uniforme, binomiale, etc.). Elles utilisent toutes les deux Mersenne Twister (un
PRNG'). Ces bibliothéques sont congues pour le calcul et pas pour le chiffrement.

Certaines fonctions sont communes a ces bibliotheques, comme random() (qui tire un flottant
au hasard dans [0,1]) ou choice(L) (qui tire au hasard un élément de L) ou shuffle(L) (qui
mélange? L).

La fonction randint(a, b) tire un entier aléatoire (selon une loi uniforme) compris
entre a inclus et b inclus pour la bibliothéque random. Mais elle tire un entier aléatoire
compris entre a inclus et b exclu pour la bibliothéque numpy . random.

La bibliothéque numpy. random permet de simuler toutes les lois usuelles (voir la documentation
de numpy).

import numpy.random as rd

Simule une loi binomiale, somme de n Bernoulli indépendantes de paramétres $p=0.2§.
B = rd.binomial(le, ©.2)

Simule une loi normale d'espérance (moyenne) 5 et d'écart type 1.

N rd.normal(5, 1)

P rd.poisson(7) # Simule une loi de Poisson de paramétre 7.

inon

l..l Les bibliothéques secret et os (fonctions getrandom et urandom) génerent du hasard
de meilleure qualité utilisable, par exemple, pour de la cryptographie.

1. cf. chapitre 0 partie 4 page 13.
2. Le mélange « épuise » rapidement les générateurs pseudo-aléatoires (mais pas les TRNG). Pour une discussion
sur ce sujet, voir la section 3.4.2 (Random Sampling and Shuffling) de [Knu13].

Copyright © 2017 Dunod.

24 Chapitre 1 Programmation

Lorsqu’on veut parcourir une liste (ou une chaine de caracteres, ou un tuple) on se demande :
« Est-il utile d’accéder aux indices de cette liste 7 »

e Si oui, on choisit d'itérer la liste par indices : for i in range(len(L)):

e Si non, on choisit d'itérer la liste par éléments : for x in L:

. | Lorsqu'on souhaite utiliser simultanément deux éléments successifs d'une liste, le par-
Q cours par indices est préférable. On doit faire attention & ne pas accéder a des éléments
de la liste qui n’existeraient pas, en s'arrétant avant le dernier indice le cas échéant.

i Exemples d’application

b e Calculer la somme des termes d'une liste L : 'accés aux indices est inutile, on choisit le
parcours for x in L:

e Calculer I'espérance’ d'une variable aléatoire X a valeurs dans [0,n — 1] si la liste L
contient les probabilités des évenements X = i (L[] contient P(X = 7)) : I'acces aux
indices est indispensable, on choisit le parcours for i in range(len(L)):

e Tester si une liste L est triée dans I'ordre croissant : on a besoin d’accéder simultanément

b a un élément et a son successeur lors de notre parcours. On choisit un parcours par indices

et on s’arréte a 'avant-dernier élément : for i in range(len(L)-1):

Une premiere solution est d'utiliser un simple for.

L=-[]
for k 1in range(n):
L.append (f(k))

Une solution alternative consiste a utiliser une liste par compréhension.

L = [f(k) for k in range(n)]

L Les deux codes font la méme chose.

Exemple d’application
[k#*2 for k in range(5)] renvoie [0, 1, 4, 9, 16].

i=n-—1
1. L’espérance E(X) d'une variable aléatoire X a valeurs dans [0.n— 1] est définie par E(X) = Z iP(X = z;)
ou P(X = i) désigne la probabilité que X vaille . i=0

Les méthodes a maitriser 25

e while et une boucle for |

‘Meéthode 1.2 : Choisir entre une bouc

orsque le nombre d’itérations est connu a 'avance ou lorqu’on connait la suite des valeurs a
Lorsque 1 bre d’itérat t | if lorqu’ t la suite des val
parcourir, on préfere une boucle for.

OTSU nombre d'itérations est inconnu, o is1 r dépit!) une boucle while,
Lorsque le bre d'itérations est inconnu, on choisit (par dép

Y Avec return., il est possible d'interrompre une fonction an milien d'un for. Le for est
-
s done aussi adapté au cas ot on connait un majorant du nombre d’itérations.

Exemples d’application

$
é e Pour trouver l'ensemble des diviseurs d'un entier, on utilisera une boucle for : la borne
§ supérieure a tester est connue (n, ou, en rusant un peu, /n).
$ e Pour connaitre le plus petit entier n tel que la suite récurrente u,, 41 = u? +1 dépasse 107
pour un ug > 0 donné on utilisera une boucle while
e Pour tester si un élément est présent dans une liste, une boucle while devrait a priori
étre envisagée, étant donné qu'on interrompt le parcours de cette liste dés lors qu'on
trouve 1'élément ou lorsqu’on a épuisé tous les éléments. Néanmoins, une boucle for peut
g aussi étre utilisée dans le cadre d'une fonction, le return ayant comme effet bénéfique
$ d’interrompre le parcours de la liste en cas de succes.

lculer nnesomme} ~

Pour caleuler une somme, on :
e définit une variable s que l'on initialise a zéro; cette variable jouera le role d’accumu-
lateur ;
e choisit un parcours par élément ou par indice ;
e écrit le corps de boucle, I'instruction s = s + ... étant répétée;
e effectue un éventuel traitement de s en sortie de boucle.

Exemple d’application

Calcul lil
alculer — —_
nl_lz'z

def ma_somme(n):
s =0
for i 1in range(l, n + 1):
s =5 + 1) (i%%x2)
return s / n

Y e e T T P T

— Méthode 1.4 : Ecrire une boucle while ~

Pour écrire une boucle while, on prend gare & :

e bien définir la condition de poursuite de la boucle while. Il arrive que la condition
d’arrét soit plus simple a formuler, il est alors aisé de formuler la condition de poursuite
de la boucle en écrivant not(condition arrét):

e faire en sorte que la boucle finisse, en n’oubliant pas de modifier la variable sur laquelle
porte la condition d’arrét ;

Junod.

© 2017

pyrignt

Co

26 Chapitre 1 Programmation

e réfléchir si les variables en sortie de la boucle sont bien celles qu’on souhaitait avoir,
et éventuellement les modifier, ou changer le moment ot on modifie la variable sur
laquelle porte la condition d’arrét.

A Ta T L N

Exemple d’application

Etant donnée une liste L = [Pos+++,Pn—1] d’entiers naturels non nuls et un entier
naturel IV, calculer le plus petit indice k (s’il existe) tel que N < Z?:u Pi-

Par convention, k sera égal & —1 si N > X_:':_UT Di-

def caleul_indice(L, N):
n = len(L)
S, k= L[B], @ # S = L[O] et k=0
while(S < N and k + 1 < n): # lo seconde condition assure l'existence de L[k] a la ligne 7
k += 1

S += L[k] # on veut que § = L{B]+...+L[k]

if S < N: # on est arrivé ou bout de la liste sons dépasser N
return -1

else: return k # Lo somme o dépassé N g l'instant k

Lorsqu’on écrit un programme (ou qu’on passe un oral de concours!) il est essentiel de tester
— dans la mesure du possible — ses fonctions an fur et a mesure.

Pour ce faire, on appelle depuis la console les fonctions & tester avec des arguments simples
et des retours que 'on peut facilement prévoir a la main.

Il ne faut pas hésiter a lancer plusieurs tests, en n'ommettant pas de tester des cas limites
(comme une liste vide passée en argument).

Dans le cas on la fonction n’a pas le comportement attendu, si le premier temps — indispensable
— de réflexion ne permet pas de trouver l'erreur, on peut soit faire appel aux fonctions de
débuggage de 'éditeur employé, soit débugger la fonction a la main en tracant les valeurs des
variables critiques, en ajoutant des affichages a I'écran a l'aide de la fonction print.

B e e e e T e T .

Exemple d’application
Tester si une chaine de caractéres contient la lettre ’e’ ou la lettre 'E’.
Un éléve produit le code suivant :

def test(s):
for i in range(len(s)):
if i == 'e' or i == 'E":
return False
else:
return True

Une bonne premiere batterie de tests consiste & vérifier cette fonction avee quelques chaines
simples, e.g., 'info', 'ETE', 'the'. La fonction renvoie False tout le temps. En plagant un
print (i) juste avant le test, on se rend compte qu’on itere sur des entiers et non des caractéres.
Ceci permet de corriger le premier probléeme.

La méme batterie de tests, sur la fonction corrigée, réveéle que certaines chaines ne sont pas
correctement traitées. On peut alors conclure quant a la seconde erreur commise ici (le else) et
rectifier son programme :

QCM sur le cours 27

def test(s):
for i din range(len(s)):
if s[i] == 'e' or s[i] == 'E':
return False
return True

(a) Parmi les commandes suivantes, lesquelles sont des expressions ?
(I Ox = 3 Ox == O return 3 [J for k in range(3):

(b) Parmi les fonctions suivantes, lesquelles permettent de trouver si le caractére "e" est présent
dans la chaine de caractéres s?

def cherche(s): def cherche(s):
for x 1in s: for i in range(len(s)):
Il if x == te’: | if s[i] == e:
return True return True
return False return False
def cherche(s): def cherche(s):
n=29 for x 1in s:
while n < len(s): if x == "e';
D if s[n] == M"e': D return True
return True else:
return False return False

(c) Quel(s) programme(s) permet(tent) de construire la liste L=[0, 0.01, 0.02, ... ,1]7
L =[] L =[] L=1]
] for i 4n range(101): [0 for i in range(100): [0 for i dn range(101):

L[i] =4 » 8.01 L.append(i * 0.01) L.append(i * 8.681)

(d) Quel programme est syntaxiquement correct 7

Copyright © 2017 Dunod.

ifn% 3 ==0; ifn%3==0: ifn %3 ==
print("4A™) print("A") print("A")
elif n % 3 == 1: else n % 3 == 1: elifn % 3 == 1:
g print("8") O print("B") g print("8")
elif: else n % 3 == 2: else:
print("c") print("C") print("C")
(e) Quelle instruction permet de tester si x n'est pas dans {0,1}7
O+4f x =! 0 and x =! 1: O4f x!= 0 or x!= 1:
O4f not (x == 8 or x == 1): O4f x!= 0 and x!= 1:
(f) Quel(s) programme(s) affiche(nt) 97
def f(x): def f(x): :
§ = X%*2 5 = x#*2 def :::)2
D return s D return s D
; < 703 e
print(s) print(s) P

Copyright © 2017 Dunod.

28 Chapitre 1 Programmation

(a) Parmi les commandes suivantes, lesquelles sont des expressions ?

M3 o

Ox =3

0 return 3

[0 for k in range(3):

(b) Parmi les fonctions suivantes, lesquelles permettent de trouver si le caractére "e" est présent

dans la chaine de caractéres s 7

def cherche(s):

for x in s:
Eﬂ/ if x == 'e':
return True
return False

def cherche(s):

n==0
W while n < len(s):
if s[n] == "e":

return True
return False

def cherche(s):
for i in range(len(s)):

if s[i] == e:
return True

return False

def cherche(s):
for x in s:

if x == "p':
return True
else:
return False

(¢) Quel(s) programme(s) permet(tent) de construire la liste L=[0, 0.01, 0.02, ... ,1]7

L =[]
[] for i 4n range(181): M
L[i] =i * 9.081

L =[]
for 1 Hn range(100):
L.append(i * 0.01)

(d) Quel programme est syntaxiquement correct 7

ifn%3==0
print("A")
elif n %3 == 1:
O print("8") O
elif:
print{"c")

ifn% 3 ==0:
print("A")

else n % 3 == 1:
print("8")

else n % 3 == 2:
print("c")

L =]
Eﬂ/ for i in range(101):
L.append(i * ©.61)

ifn% 3 ==
print("A")
g elif n % 3 == 1:
print("B")
else:
print("c")

(e) Quelle instruction permet de tester si x n'est pas dans {0,1} 7

O4f x =! @ and x =! 1:
W i f not (x == 0 or x == 1):

(f) Quel(s) programme(s) affiche(nt) 97

def f(x):
s = x##*2

| return s Eﬂ,
f(3)
print(s)

def f(x):
s = x*x2
return s
s = f(3)
print(s)

def f(x):
[] XxkD

return x
print(f(3))

Copyright © 2017 Dunod.

Exercices 29

Applications directes du cours

| Exercice 1.0)

0. Ecrire une fonction somme_n_premiers_entiers qui calcule la somme S,, des n premiers entiers
naturels non nuls en utilisant une boucle for. Cette fonction doit admettre en entrée l'entier n
et renvoyer la somme S,,. Tester sur plusieurs valeurs de n pour valider le résultat :

n

. nn+1)
==

i=1

1. Ecrire une fonction factorielle_n qui calcule la valeur n! avec une boucle while. Cette
fonction doit admettre en entrée I'entier n et renvoyer n!.
2. Ecrire une fonction qui fait appel a la précédente pour calculer le coefficient binomial

n!
(}:) = —— . La fonction admettra en entrée n et k.
kl(n —k)!

[Exercice 1.1) Indice du maximum, sous-suites croissantes maximales

On se donne une liste aléatoire de N entiers entre 1 et 100 sous forme d'une liste :

>>> dmport randem

>»>> N = 15

>>> L = [random.randint(1l, 100) for i din range(N)]

»»» print(L)

[57, 72, 59, 26, T1, 81, 48, 77, 60, 40, 86, 89, 15, 5, 7]

>»> max(L) #L'instruction max renvoie un élément maximal de cette liste
&9

>»> a = L.index(max(L)) # boite noire python...

>>> print("élément maximal d'indice {}, valeur: {}".format(a, L[a]))
élément maximal d'indice 11, valeur: 89

0. Ecrire (sans utiliser la méthode index) la fonction indicemax(L) qui & partir d'une liste L

renvoie l'indice d'un élément maximal.

Ecrire une fonction estcroissante(L) qui teste si une liste L de nombres est croissante.

2. Une partition d'une liste L en sous-suites croissantes est une suite (Lo, Ly, ..., Ly—1) de listes
croissantes telles que L = Ly + Ly + -+ + Li_;. La partition maximale de L en sous-suites
croissantes est 'inique partition pour laquelle le nombre k de sous-suites est minimale.

Ecrire une fonction listecroissmax qui, appliquée a une liste L, renvoie la liste ordonnée
des couples d’'indices (debut, fin exclue) correspondant a la partition maximale de L en
sous-suites croissantes.

Par exemple :

b

»»» L =1[1, 2, 4, 5, 7, 2, 4, 5, 1, 08, 2, 5, 6, 8, 9, 3, 4, 5, 4, 9, 1, 5, 8, 9, 3, @, 4]
»>»> Lss = Llistecroissmax(L)
>>> for deb, fin in Lss:
print(L[deb:fin], end="'")
[1, 2, 4, 5, 7][2, 4, 5]1[2]1[e, 2, 5, 6, 8, 9][3, 4, 5]1[4, 9][1, 5, 8, 91[3][@, 4]

4

30 Chapitre 1 Programmation

3. Ecrire une fonction soussuitemax (L) qui renvoie une sous-suite croissante de longueur maxi-
male.

(Exercice 1.2) Feux tricolores

Cet exercice est basé sur I'automate qui gere les feux de signalisation d'un carrefour. Le compor-
tement réel est loin de celui proposé ici, mais le contexte permet de comprendre rapidement les
questions. On ne tient pas compte des différentes temporisations du systéme réel par exemple.
Les variables feu_vert, feu_orange, feu_rouge, pieton_vert et pieton_rouge sont de type
bool.

0. L’organigramme ci-contre représente de maniére sché-
matique le branchement conditionnel qui impose que le
feu piéton soit au rouge si le feu est vert ou orange.
Ecrire ce branchement conditionnel en Python en utili- Ao er = Lt
sant un i f‘. pieton_rouge = True

1. Dans le méme esprit, écrire la condition qui impose que ‘
feu_rouge

feu_vert or
feu_orange

le feu piéton soit rouge si le feu n’est pas rouge et que le fa)ae
feu piéton soit vert sinon (voir organigramme ci-contre). True

2. Ecrire la boucle while qui spécifie que tant que le feu e e pr——————
piéton est au vert, le feu tricolore doit rester au rouge. pieton.rouge = True platon.rovge. = False

3. Ecrire la fonction passage_feu_vert(fv, fo, fr) qui allume le feu vert et éteint les autres
feux. Cette fonction admet en entrée trois variables booléennes (feu_vert, feu_orange et
feu_rouge) et renvoie la nouvelle valeur de ces trois variables.

4. Sur le méme principe, écrire les fonctions passage_feu_orange, passage_feu_rouge,
passage_pieton_vert, passage_pieton_rouge.

5. Proposer une fonction changement_feux qui permette de passer a I'état suivant, ¢’est-a-dire
au feu orange si le feu était vert, ete. On exécutera cette fonction manuellement pour chaque
changement d’état du feu.

(Exercice 1.3) Variance

On consideére une liste L de nombres ; dans les formules qui suivront on notera n la longueur de L.
La moyenne d'une liste L de nombres est définie par :

i=n—1

m=" 3" Lfi

i=0
0. Ecrire une fonction moyenne (L) qui prend en argument une liste L et qui retourne sa moyenne.

La variance d'une liste L de nombres est définie par :
n—1

Dunot

2017

-

Copyright ©

V(L) = 1 > (L[] —m)?

n <
1=0

1. Ecrire une fonction variance (L) qui prend en argument une liste L et qui retourne sa variance.

La littérature spécialisée cite souvent la relation de Konig, qui facilite les calculs de variance a la

main. La relation de Konig donne la variance d'une liste L de moyenne m :

i=n—1

VP(L) = ?11 > (Ll - m?)

i=0

Dunod.

)17

c© 20

Copyright

Exercices 31

2. Ecrire une fonction va riancekonig(L) qui prend en argument une liste L et qui retourne sa
variance telle que calculée avee la relation de Konig.

3. Définir les listes Ly = [1,2,4,8] et Ly = [227 4+ 1,2%7 + 2,227 4+ 4,227 + g].
Tester les calculs de variance avec ces listes avec les deux méthodes de calcul précédentes.
Que constate-t-on 7 Expliquer le phénoméne.

(Exercice 1.4] Simulation d’une loi de Poisson

Nous souhaitons simuler une variable aléatoire X qui suit une loi de Poisson de paramétre A > 0,
c’est-a-dire une variable aléatoire a valeurs dans N telle que pour tout £ € N, la probabilité de

—— _ Gaih Ehla & v e AT
I'évenement (X = n) soit égale a p, =e™" 5.

Utilisation de la fonction de répartition de la loi de Poisson
Pour tout n € N, on note S,, = EE:U pk. Si U suit une loi uniforme sur [0, 1[, on définit la variable
aléatoire X a valeur dans N :

X =sup{n€N, U<S,}

Nous avons :
PX=0)=PU<p)=poet¥n21l, P(X=n)=P(S,—1 <U<8;)=8,—8u-1=pn
done X suit une loi de Poisson de parametre A.

0. Ecrire une fonction Poisson qui, appliquée a un réel A > 0, simule la variable X. On commen-
cera par définir U grace a la fonction random du module numpy.random, puis on calculera les
S, successifs jusqu’a dépasser la valeur U.

Utilisation d’un produit de variables uniformes et indépendantes

Soient (U;,)n>0 une suite de variables aléatoires indépendantes et de méme loi uniforme sur [0, 1].
On note Y le premier instant n ot UglU; ... U, < e~*. On peut montrer et nous admettrons que Y’
est une variable aléatoire presque stirement définie et qu’elle suit une loi de Poisson de parameétre
A

1. Ecrire une fonction Poisson_bis qui, appliquée a un réel A > 0, simule la variable Y.
2. Estimer empiriquement les espérances et variances des variables renvoyées par Poisson et
Poisson_bis. Comparer les résultats obtenus aux valeurs théoriques et les commenter.

[Exercice 1.5) Retour a l'origine dans une marche aléatoire

Soit d € {1,2,3}. Une puce se déplace dans Z? de facon aléatoire :

e elle se trouve a 'origine O a 'instant n = 0;

e entre les instants n et n + 1, elle fait un saut de longueur 1 dans I'une des 2d directions
(Nord-Sud si d = 1, Nord-Sud-Est-Ouest quand d = 2 et Nord-Sud-Est-Ouest-Haut-Bas
quand d = 3). On suppose que les sauts sont indépendants et que les 2d directions sont
équiprobables.

On note M, la position de la puce a I'instant n : elle sera représentée par une liste de longueur d.

0. Ecrire une fonction M qui, quand on 'applique & un couple (d, n), simule cette marche aléatoire
et renvoie le point M,,. On utilisera la fonction randint du module numpy.random.

1. On note T le premier instant ot la puce revient a son point de départ O (avec T' = +oc s'il elle
n'y revient pas). Ecrire une fonction qui simule le calcul de 7. Appliquer un grand nombre de

Copyright © 2017 Dunod.

32 Chapitre 1 Programmation

fois cette fonction, avec d = 1, d = 2 puis d = 3. Que peut-on conjecturer quant a la probabilité
de I'évenement 7' < +oc?

Pour aller plus loin

(Exercice 1.6

Pour tout entier n = 2, on définit ;

u,,—\/ \/ n—l—f—\/ra et -r.r,,_:¢1—l—\/2+-~+ n—1++v2n+1.

0. Ecrire des fonctions u et v qui, appliquées a un entier n = 2, renvoient respectivement des
valeurs approchées de u,, et v,. Utiliser ces fonctions pour conjecturer le comportement des
suites (tn)n>2 et (vn)n>2.

1. Ecrire une fonction approximation qui, appliquée & un flottant £ > 0, renvoie une approxima-
tion de la limite commune de ces deux suites a £ pres.

| Exercice 1.7) Méthode des moindres carrés et application en chimie

Nous reprenons dans cet exercice les fonctions de 'exercice 1.3.
La régression linéaire consiste a trouver pour une liste X = [zg,...,2,_;| et une liste ¥ =
(Y0, .-+ Yn—1] de valeurs réelles, la « meilleure » droite y = ax + b approchant le nuage des points
(@i, ¥i)o<i<n. On convient de choisir cette meilleure droite de maniére optimale an sens des moindres
carrés en ceci qu'elle minimise la somme des écarts au carré entre les y,; et les ax; + D.
On note my et my les moyennes respectives des listes X et Y.
n—1
. o 1
La covariance de X et de Y est définie par Cov(X,Y) = — 2 (xi —mx)(y; —my).
n
i=0
La variance de X est donc donnée par V(X) = Cov(X, X).

Les coefficients a et b sont donnés par les formules suivantes :
Cov(X,Y)
V()
Le coefficient de corrélation linéaire, compris entre —1 et 1, mesure si la régression linéaire est de
bonne qualité ou non. Un coefficient proche de 1 en valeur absolue dénote un hon ajustement ; plus
ce coefficient est faible en valeur absolue et moins la régression linéaire est adaptée. Il est donné
par la formule :

et b=my —amx

_ Cov(X.,Y)
VVIX)V(Y)

0. Ecrire une fonction covariance(L1, L2) qui prend en argument deux listes L1 et L2 et qui
retourne leur covariance.

1. Ecrire une fonction reglin(Ll, L2) quiprend en argument deux listes L1 et L2 et qui renvoie
les coefficients a,b et p obtenus par les formules de la régression linéaire par la méthode des
moindres carrés.

2017 Dunod.

)

Copyright ©

Exercices 33

On étudie dans les deux exemples suivants 'évolution de la concentration d’un réactif en fonction
du temps pour une réaction chimique de la forme A+B — C.

d[A]

Dans certains cas, on peut écrire v = g ous la forme k[A]*
On dit alors que la réaction admet un ordre a par rapport an réactif A.

Un exemple classique de réaction pharmaco-chimique d’ordre 0 est 1’élimination de I'alcool dans le
sang. On note f(t) le taux d’alcool dans le sang d'un sujet aprés son réveillon du Nouvel An, ou
il n’a pas en une consommation responsable, mais s'est arrété de boire bien avant minuit, qui est
associé a £ = (.

On fournit le relevé suivant :

t (en h) | f(t)
0 2.3
1 217
3 1.84
5 1.56
7 1.27
10 0.81

2. Vérifier que la réaction est bien d’ordre 0, i.e. que que |p| = 1
3. Sur une méme figure, représenter les points mesurés (on utilisera la fonction plt.scatter) et
la droite obtenue avec la méthode des moindres carrés.

Certaines réactions sont d’ordre 1, on peut alors a l'aide de la méthode des moindres carrés déter-
miner une courbe approchée interpolant la concentration en fonction du temps. Cette interpolation
ne sera pas toutefois optimale au sens de la méthode des moindres carrés, d’autres méthodes comme
celle de Gauss-Newton donnant de meilleures interpolations.
La réaction de Landolt s’écrit :

HyO0, + 217 4+ 2HT = I, 4+ 2H,0
Dans le cas d’un large exces d’ions I~ et d’ions H™, la réaction de Landolt est d’ordre 1.
On étudie 'évolution de [H2O4] en fonetion du temps. On pose f(t) = [HoO5](t) 107
Voici des valeurs expérimentales établies & I'Université d’Aix-Marseille :

t (ens) | f(t)
0 296

29 281
58 266
91 251
127 236
170 221
203 207

On peut justifier, & 'aide du cours de mathématiques, que In(f(t)) = At + B.

4. Construire des listes correspondant a In(f(t)) et a t

5. En déduire une fonction approchant f(t).

6. Sur une méme figure, représenter les points mesurés
précédemment.

I et la courbe représentative déduite par

1. Utiliser la fonction plot de la bibliothéque matpletlib.pyplot. Cf chapitre 4 page 119,

4

34 Chapitre 1 Programmation

Exercices type TP Sl Banque PT

(Exercice 1.8 Traitement de données expérimentales

On consideére 'axe linéaire EmeriCC représenté ci-contre. C’est un systéme
qui modélise les axes linéaires industriels nécessitant une grande vitesse de
déplacement ainsi qu'une grande précision de position (robot de manuten-
tion par exemple).

Lors d'un essai on récupere le fichier de points suivant que vous pourrez
récupérer sur la page dédiée a 'ouvrage du site de Dunod. Outre quelques lignes qui donnent le
nombre de points, le pas de temps, etc. le fichier de points donne sur chaque ligne le numéro du
point, la position du chariot, sa vitesse ainsi que la consigne du variateur électrique.

Nam Position Vitesse Consigne variateur
Unite Ox s s E

Unite Oy mm mm/ s

Delta (Ox) 0,01 0,01 @,01

Delta (Oy) -1,680 -1,00 -1,08

Nombre de points 166 188 188
0 8,00 0,00 54,00
1 0,68 67,27 54,00
2 1,46 71,31 54,00
3 =3 76,82 54,00

On souhaite dans un premier temps lire les données pour les renseigner dans des listes de flottants
(type float). On remarque que le fichier est constitué d’un certain nombre de lignes d’en-téte
contenant du texte puis de lignes contenant les données acquises.

Nous allons pour cela écrire pas a pas un programme Python permettant d’ouvrir le fichier, lire

les données, les enregistrer puis les tracer sous forme de courbe. Dans ce fichier les colonnes sont

séparées par des tabulations ("\t" pour les chaines de caractére Python). Les 6 premiéres lignes
constituent 'en-téte et contiennent des informations que I'on doit stocker.

0. Compléter la fonction lecture_emericc (remplacer les ...) qui prend comme argument une
chaine de caractéres correspondant au nom du fichier de points, et qui renvoie une liste de
listes entete contenant I'en-téte du fichier ainsi que les listes de flottants pts, pos, vit et
var contenant respectivement les données de numéro de point. position, vitesse et consigne
variateur.

def lecture_emericc(filename):
monfichier = ... # ouverture du fichier en mode lecture
entete = []
for i in range(6):
ligne = ... # lecture de lo ligne suivante
manipulation sur les chaines de caroctéres
entete.append(ligne.replace("”,", ".").strip("\n").split("\t"))

Dunoc

2017

-

Copyright ©

pts = []
pos = []
vit = []
var = []

for ligne ... # itérotion sur les lignes de monfichier jusqu'é lo derniére

var@, wvarl, var2, var3 = ligne.replace(

ey MM estrip (M) Lsplit("\t") # manipulation sur les choines de caractéres

pts.append(float({varg))
pos.append(float(varl))
vit.append(float(var2))
var.append (float{var3))

2017 Dunod.

-

Copyright ©

Exercices 35

fermeture du fichier précédemment ouvert
return entete, pts, pos, wvit, var

1. Ecrire les lignes de code permettant de récupérer les données du fichier en utilisant I'appel de
la fonction ainsi définie.

Le période d’acquisition (pas de temps) est inscrite dans la variable entete dans la 4° ligne, 2¢
colonne.

2. Ecrire les lignes de code permettant de stocker dans une liste de flottants temps les valeurs du
temps pour chaque point.

On souhaite a présent lisser les données de vitesse bruitées par la mesure par une méthode de

moyenne mobile, oit pour chaque point ¢ on modifie sa vitesse v; par la moyenne définie ci-dessous

faisant intervenir tous les points entre ¢ — N et ¢ + V.

lll\?

B 1

Up = m | VUn + Z (Vn=k + Vntk)
k=1

3. Proposer une fonction lissage_moyenne_mobile(liste, N) permettant de lisser une liste
de valeurs en considérant pour chaque point les N précédents et les N suivants. On pourra
supprimer les N premiers et derniers points.

4. Tracer sur un méme graphique les données de vitesse brutes, lissées avec N =3 et N = 5. On
pourra utiliser la syntaxe suivante :

plt.figure(1)
plt.plot(temps, vitesse, '-', label="vitesse brute en mmn/s")
plt.plot(temps, vitesse_lissee_3, '--', label="vitesse lissée N=3 en mm/s")

plt.xlabel('temps en s')
plt.legend(}
plt.show()

On se rend compte que si I'on souhaite prendre un N grand (si la fréquence d acquisition est élevée)

on tronque assez fortement les données en supprimant les N premieres et les N derniéres.

5. Créer la fonction lissage_moyenne_mobile_affinee(liste, N) qui permette de ne suppri-
mer aucun point. Pour les premiers et derniers on prendra en compte tous les points disponibles
(de i — k & i+ N pour le k¢ point par exemple).

6. Tracer ' sur un méme graphique les données brutes, lissées par la premiére méthode avec N = 3
et lissées par la seconde méthode avec N = 3.

[Exercice 1.9] Meétrologie des états de surface

Nous étudions dans cet exercice le filtre a phase correcte défini dans la norme ISO 11562
[NF 98] pour I'évaluation des défauts d’états de surfaces des pieces mécaniques, et permettant de
filtrer les données périodiques en agissant comme un filtre basse fréquence.

La figure ci-dessous donne le profil anamorphosé (échelles différentes en abscisse et en ordonnée)
d'une piece mécanique, mesuré a I'aide d'un rugosimetre mécanigue. On donne également les lignes
de code ayant permis de récupérer les données et tracer la figure.

1. Utiliser la fonction plot de la bibliothéque matplotlib.pyplot. Cf chapitre 4 page 119,

d.

D

)17 Dunc

C

2

Copyright ©

36 Chapitre 1 Programmation

%0k

vi=E]

monfichier = open("mesure_rugosite.txt", "r'") r r r . r r .

for L 4n monfichier: ik R

XX, yy = L.strip("\|n").split("\t"}
%.append (float(xx))
y.append(float(yy))

plt.plot(x, y) :
plt.xlabel('mm") P LA S .. I

(] i | L ---.l”] i | 1 “l. o]
;}.:;:‘:2':;‘(Hm ') 0.0 0.5 L0 L5 20 2.5 10 35 1.0
plt.show() e

Ce profil contient une partie dite de rugosité, partie haute fréquence et une partie de défaut de
forme et d'ondulation, partie basse fréquence. Le traitement de ces données doit permettre de
séparer ces défauts. Le filtre défini dans la norme consiste a remplacer chaque point g par le point

yr tel que :

Zizl S(:l’fk —Ti) " Yi
RV
Y 8z —)

avec s(x) la fonction de pondération suivante :
T 2
-
. (.: a)"(_‘o

avec r la distance entre un point voisin et le point a déplacer et a =

Y =

s(z)=

A
In2

m
Aco est la longueur d'onde de coupure de ce filtre.

0. Ecrire une fonction trés simple s(x, lambda_co) qui renvoie la valeur de la pondération pour
un point situé a une distance x du point considéré. On pourra utiliser les fonctions et constantes
mathématiques de la bibliothéque math (math.p1, math.log(2), par exemple).

1. Proposer une fonction filtrage_phase_correcte(x, y, lambda_co) qui prend en argument
la liste des abscisses, la liste des ordonnées des points a filtrer et la longueur d’onde de coupure
du filtre. La fonction doit retourner une liste des ordonnées de basses fréquences y_bf et une

liste des ordonnées des hautes fréquences y_hf.
2. Tester différentes valeurs de longueurs d’onde de coupure pour ce filtre.

Copyright © 2017 Dunod.

Travaux pratiques 37

(TP 1.0 — Le Pendu

L’objectif de ce TP est de programmer le jen du PENDU. Le principe du jeu est
le suivant : un joueur doit deviner un mot secret. Au début, il ne connait que la
longueur du mot (le mot est représenté par une suite de). Le joueur va proposer
successivement des lettres. Si la lettre proposée par le joneur est présente dans le
mot, elle est révélée, c'est-a-dire que les correspondants sont remplacés. Si le
joueur révele toutes les lettres, il a gagné, si le joueur commet trop d’erreurs ', il

—t a perdu.
Dans 'exemple ci-contre, la premiere lettre proposée) s
. . Lettre proposée mot révélé nombre d’erreurs
par le joueur est le E, le E avec accent est donc ré- 0
vélé. Le joueur trouve ensuite le A puis commet une E ez g
& : A A £
premiére erreur avec le 1. Il propose alors le R, ce qui i & & 1
révele les denx R du mot secret. Apres une seconde R _ARRE E
A B ARRE 4

erreur (le B), le joueur gagne avec le C. s i RRE 5

Nous utiliserons 4 variables globales :
e mot_secret : une chaine de caractéres (que des minuscules) représentant le mot a deviner.
e mot_revele : une liste de caractéres représentant le mot découvert, initialement, c’est une
liste de « _ ».
e erreur_max, erreur : deux entiers représentant respectivement le nombre maximal d’er-
reurs autorisées et le nombre total d’erreurs commises par le joueur
Pour simplifier, nous supposons dans un premier temps que le mot ne contient pas de signe diacri-
tique (accent, cédille, etc.) contrairement & 'exemple (la derniére lettre de CARRE est diacritée).

0. Initialisez les variables globales en choisissant arbitrairement un mot secret.
1. Ecrire une fonction affiche (mot) qui, étant donné une liste de caractéres, affiche les caracteres
contenus dans la liste les uns a la suite des autres.
Par exemple affiche(['_', 'o', '_', 'p']) doit afficher '_o_p'. L'argument optionnel
end="" de la fonction print peut étre utile.
2. Ecrire une fonction revelation(1l) qui remplace par des 1, dans le mot découvert, tous les _
correspondant a des 1 dans le mot secret.
3. Ecrire une fonction victoire() qui renvoie True si le joueur a gagné, et False sinon.
4. Ecrire une fonction jouer_une_lettre() qui :
— demande au joueur de jouer une lettre (en utilisant input),
— révele la lettre jouée par le joueur avec la fonction revelation,
— augmente le nombre d’erreurs si le joueur a joué une lettre qui n’est pas dans le mot secret.
5. Ecrire une fonction main qui permet de faire une partie compléte.

Maintenant, nous considérons que le mot secret peut contenir des diacritiques. Nous voulons que
lorsque le joueur joue une lettre, les versions diacritées de la lettre soient aussi révélées. Ainsi, en
jouant E, les lettres E, B, &, E sont révélées.

Dans ce but, nous introduisons la fonction normaliser qui retire tous les signes diacritiques d'un
texte écrit en lettres latines.

1. Le joueur commet une erreur lorsqu’il propose une lettre qui n’est pas présente dans le mot. Il existe plusieurs
variantes du jeu. Ici, nous considérerons que présenter deux fois la méme lettre présente dans le mot ne constitue
pas une erreur, par contre, nous considérerons que proposer deux fois la méme letire absente du mot constitue deux
erreurs.

)17 Dunod.

20

Copyright ©

38 Chapitre 1 Programmation

from unicodedata import normalize

def normaliser(s):
return normalize('NFD', s).encode('utf8').decode('ascii', 'ignore')

6. Modifier les fonctions précédemment définies pour atteindre cet objectif.

Nous souhaitons a présent que le mot secret soit tiré au hasard dans une liste de mots et non plus
fixé au départ. La liste de mots sera stockée dans un fichier texte vocabulaire.txt qui contient
un mot par ligne.

7. Ecrire une fonction 1ire (nom) qui étant donné un nom de fichier nom contenant un mot par
ligne renvoie la liste des mots de ce fichier.
On pourra utiliser la fonction open et les méthodes .readline et .strip.

8. Modifier la fonction init pour qu’elle tire au hasard un mot dans le fichier vocabulaire.txt.
On pourra utiliser la fonction randint ou la fonction choice de la bibliotheque random.

9. Modifier la fonction main pour qu'elle commence par appeler la fonction init.

10. Modifier votre programme pour que les scores (nombre de victoires, nombre de défaites) soient

stockés dans un fichier, et qu'apres 'affichage de « GAGNE » ou « PERDU » les scores soient
affichés.

(TP 1.1 — Modgéle des urnes d’Ehrenfest |

Le modele des urnes est un modele « stochastique » introduit en 1907 [EEA07] par les époux
Ehrenfest pour illustrer certains des paradoxes apparus dans les fondements de la mécanique sta-
tistique naissante. Le mathématicien Mark Kac a écrit & son propos qu’il était « ... probablement
I'nn des modeéles les plus instructifs de toute la physique ... ». I1 étudie I'évolution d'un systéme
complexe, on les relations de récurrence sont régies par des phénomeénes aléatoires.

On considére deux urnes A et B, ainsi que N boules, numérotées de 0 & N — 1. Initialement, toutes
les boules se trouvent dans I'urne A. Le processus stochastique associé consiste a répéter 'opération
suivante :

« Choisir an hasard un numéro i compris entre 0 et N — 1, prendre la boule 1, changer la boule 1
d'urne. »

Nous allons utiliser une représentation informatique de cette situation a 1'aide d'une liste L de
longueur N composée de 0 et de 1; & un moment donné si la boule numéro i est dans I'urne A

alors on a L[i] = 1:sila boule numéro i est dans 'urne B alors on a L[i] = 0.
Implémentation du modéle

0. Ecrire une fonction initial() qui renvoie la liste L@ représentant la situation des boules &
I'instant initial (toutes les boules sont dans I'urne A).
1. Ecrire une fonction transition(L) qui prend en entrée la liste L représentant un état des urnes
et renvoie la liste L aprés le choix d'un nombre an hasard et transfert de la boule associée.
2. Ecrire une fonction nombreA (L) qui prend en entrée la liste L représentant un état des urnes
et renvoie le nombre de boules présentes dans ['urne A.
3. Ecrire une fonction evolution(k,N) qui, & I'aide des fonctions précédentes :
e crée la liste LO correspondant & 1'état initial ;
e répéte k fois les transitions en stockant dans une liste NA le nombre de boules dans 'urne
A apres chaque transition (on aura NA[O]=N et len(NA)=k+1):
e renvoie la liste NA.

d.

D

)17 Dunc

C

2

Copyright ©

Travaux pratiques 39

La librairie matplotlib.pyplot. décrite au chapitre 4 page 119, permet de tracer des
courbes. Dans ce TP les fonctions plot, xlabel, ylabel, title de cette bibliothéque
nous serons utiles.

4. Donner des instructions permettant d’'effectuer une représentation graphique d'une simulation
du modele de Ehrenfest avec N = 20 et k = 100. Le nombre de transitions effectuées apparaitra
en abscisses, et le nombre de boules dans 'urne A apparaitra en ordonnées.

On obtiendra par exemple :

20 Simulation du modéle d'Ehrenfest

= —
o w

Nombre de boules dans l'urne A
w

0 20 40 60 80 100
Nombre de transitions

Théoréme de Kac

Dans ce modele, on obtient une courbe qui part initialement de N et commence par décroitre vers
la valeur moyenne N /2, comme on pourrait s’y attendre intuitivement pour un systéme tendant
vers I'équilibre.

Mais cette décroissance est irréguliere : il existe des fluctuations autour de la valeur moyenne N/2,
qui peuvent devenir parfois trés importantes.

En particulier, quel que soit le nombre de boules N fini, il existe toujours des retours a 'état initial,
pour lesquels toutes les boules sont dans I'urne A. Mais le temps moyen entre deux retours & 1'état
initial consécutifs croit trés rapidement avec N, ce qui ne les rend pas facilement observables.

Formellement, on introduit une suite d’instants {f, },— 2. (finis) pour lesquels toutes les boules
reviennent dans I'urne A (par convention, on pose tg = 0). On peut alors définir une nouvelle suite
Tn = tn — tu—1 des durées finies entre deux retours a l'état initial consécutifs.

Le théoréeme de Kac (1947, [Kac47]) affirme que cette durée moyenne vaut 2l

1 L
v)= lhm =
p—+o0 j‘]

T
o =2V,
n=1
5. Ecrire une fonction chercheN(L,N) qui pour une liste L donnée en argument renvoie une liste
contenant tous les indices 1 pour lesquels L[] == N.

)17 Dunod.

20

Copyright ©

40 Chapitre 1 Programmation

6.

10.

11.

Ecrire une fonction diff(positions) qui pour une liste positions donnée, contenant les
indices pour lesquels positions[i] == N, renvoie une liste contenant les différences entre
deux indices consécutifs de cette liste. Ainsi, diff([0, 5, 16, 20]) renverra [5, 11, 4]
Ecrire une fonction differences(L,N) qui pour une liste L donnée, contenant le nombre de
boules dans I'urne A a chaque instant, renvoie une liste contenant les différences entre deux
indices consécutifs ot L[] == N de cette liste.

On pose k = len(L). Quel est l'ordre de grandeur, en fonction de k, du nombre d’opérations
que réalise la fonction précédente ?

Ecrire une fonction moyennerec (L) qui réalise le calcul de la durée moyenne entre deux retours
consécutifs a 1'état initial. L’argument est une liste L qui contient le nombre de boules dans
I'urne A & chaque instant. On se servira des fonctions précédentes.

Proposer une démarche qui vous permettrait de vérifier expérimentalement la pertinence du
théoreme de Kac pour N = 10.

Expliquer pourquoi la démarche précédente échouerait pour la vérification expérimentale de ce
théoréme pour N = 60.

TP 1.2 — Machine 2 voter

Une machine a voter est une machine devant laquelle les électeurs passent un par un pour voter,
qui compte les votes et qui, a la fin de 1'élection donne les scores obtenus par chaque candidat.
Dans ce TP, nous allons écrire une version tres simplifiée d'une machine a voter, sans les sécurités

usuelles.
Commencons par écrire le code d'une machine & voter honnéte, dans le fichier machine.py.

0.

1.

Ecrire une fonction 14 re_candidats() qui lit le fichier candidats.txt qui contient un nom
de candidat par ligne et qui renvoie la liste des candidats. Un exemple de fichier est donné par
la figure 0.

Huguette Bouchardeau
Jacques Chirac
Michel Crépeau
Michel Debré
Marie-France Garaud
Valéry Giscard d'Estaing
Arlette Laguiller
Brice Lalonde
Georges Marchais
Francois Mitterrand
Michel Colucci

FIGURE 0. Le fichier candidats.txt pour I'élection de 1981.

Ecrire une fonction resultats(Lcandidats, Lvotes) qui:
e prend en argument la liste des noms des candidats Lcandidats
e prend en argument la liste des votes Lvotes : le candidat Lcandidats[k] a obtenu Lvotes[k]

suffrages

)17 Dunod.

20

Copyright ©

Travaux pratiques 41

e cerit les résultats dans un fichier esv, appelé resultats.csv : sur chaque ligne, il doit y
avoir le nom d'un candidat, puis un point-virgule, puis le nombre de voix du candidat.

Huguette Bouchardeau; 321

FIGURE 1. Exemple de ligne possible pour le fichier resultats.csv.

2. Ecrire une fonction affiche_candidats(Lcandidats) qui prend en argument la liste des
candidats et qui affiche (avec print) la liste des candidats avec leur numéro.

® : Huguette Bouchardeau
: Jacques Chirac
2 : Michel Crépeau

[un

FIGURE 2. Les premiéres lignes affichées par affiche_cand-idats(Lcandidats).

3. Ecrire une fonction unvote (Lcandidats, Lvotes) qui prend en argument la liste des candi-
dats et la liste des votes (le candidat Lcandidats[k] a obtenu, pour le moment, Lvotes[k]
suffrages) qui :

e affiche la liste des candidats avec la fonction affiche_candidats,

e demande a I'électenr de voter pour le numéro de son candidat avec la fonction input,
e ajoute une voix au candidat correspondant dans la liste Lvotes,

e renvoie False si I'électeur a voté FIN, et True sinon.

La valeur FIN est une valeur spéciale qui sert a indiquer que I'élection est terminée.

Si la chaine de caractéres entrée par 'électeur n'est pas un numéro de candidat

‘Q‘ valide (par exemple si elle contient une lettre ou si ¢’est un nombre trop grand), le

vote est considéré comme nul, et aucune voix n'est ajoutée a aucun candidat. Pour

vérifier si le vote est nul, la méthode str.isdecimal des chaines de caracteres peut
étre utile.

4. Ecrire une fonction votez(Lcandidats) qui :
e initialise la liste des votes Lvotes avec que des zéros : chaque candidat a, au début de
I'élection, zéro voix,
e rappelle la fonction unvote jusqu’a ce qu'un électeur vote FIN,

e renvoie la liste Lvotes.
5. Ecrire une fonction machine_a_voter () qui combine les fonctions précédentes et permet de

voter. La fonction va lire la liste des candidats, demander aux électeurs de voter, puis, quand
c’est fini, créer le fichier des résultats.

Dans la suite du TP, nous écrivons des programmes qui s'effacent eux-mémes. Pour
éviter les pertes de données, mettre le fichier machine.py en lecture seule.

Considérons le seript suivant :

4
9

Dunod.

2017

-

Copyright ©

42 Chapitre 1 Programmation

for k in range(1@):
print("RIP")

FIGURE 3. Le contenu attendu du fichier.

def guerrier_glorieux(nom_fichier):
f = open(nom_fichier, 'w')
f.close()

6. Que se passe-t-il si on applique la fonction guerrier_glorieux au fichier victime.txt qui
contient le texte suivant : Bonjour ?

7. Modifiez la fonction guerrier_glorieux pour, qu'apreés avoir été exécutée, le fichier donné en
argument contienne le texte de la figure 3.

8. Importez la bibliotheque sys. Observez la valeur de sys.argv. Quel est son type?
9. Créer un fichier Python seppuku.py qui, lorsqu'il est exécuté, se transforme et devient le
programme de la figure 3.

‘Q' Le script du fichier seppuku. py doit fonctionner méme si le fichier est renommé, d’on
-’ -
I'intérét de sys.argv pour connaitre le nom du fichier.

10. Tester ce que donne deux exécutions successives du fichier seppuku. py.

Nous écrivons maintenant le programme d'une machine a voter malhonnéte dans un nouveau
fichier machine2.py. Cette machine va avantager le candidat numéro zéro, puis, pour ne pas se
faire prendre, va effacer son propre code pour le remplacer par le code d'une machine a voter
honnéte.

11. Reprendre le code de machine.py, le mettre dans machine2.py, puis modifier le code pour
qu’'a chaque fois qu'un électeur vote, il y ait une chance sur cing que son vote soit transformé
en un vote pour le candidat munéro zéro.

12. Modifier le code de votre machine pour qu'une fois qu’elle a publié les résultats truqués dans
le fichier resultats. txt, elle efface son code et le remplace par le code d'une machine a voter
honnéte (c¢’est-a-dire par le code de machine.py).

13. Commentez 'exigence 45 du reglement technique des machines a voter publié par le ministere
de l'intérieur en annexe de 'arrété [ARRa].

Exigence 45 : Les programmes nécessaires a la réalisation de ces fonctions doivent étre
des modules indépendants et stockés sous forme inaltérable. Les mémoires destinées au
stockage des informations propres au scrutin doivent étre amovibles, avec verrouillage
physique d’acces durant le scrutin, afin d’éviter toute manipulation frauduleuse.

Dunod.

2017

-

Copyright ©

Travaux pratiques 43

[TP 1.3 — Chiffrages de César et de Vigeneére. Analyse fréquentielle.]

Chiffre de César

En cryptographie, le chiffrement par décalage, aussi connu comme le chiffre de César, est une
méthode de chiffrement trés simple utilisée par Jules César dans ses correspondances secretes (ce
qui explique le nom « chiffre de César »).

Le texte chiffré s’obtient en remplagant chaque lettre du texte clair original par une lettre a distance
fixe, toujours du méme coté, dans 'ordre de 'alphabet. Pour les derniéres lettres (dans le cas d'un
décalage a droite), on reprend au début. Par exemple avec un décalage de 3 vers la droite, A est
remplacé par D, B devient E, et ainsi jusqu'a W qui devient 7, puis X devient A etc. Il s’agit d'une
permutation circulaire de 'alphabet. La longueur du décalage, 3 dans 'exemple évoqué, constitue
la clé du chiffrement qu'il suffit de transmettre au destinataire — s'il sait déja qu'il s’agit d'un
chiffrement de César — pour que celui-ci puisse déchiffrer le message. Dans le cas de 'alphabet
latin, le chiffre de César n’a que 26 clés possibles (y compris la clé nulle, qui ne modifie pas le
texte).

On utilisera des textes encodés en majuscules, sans ponctuation et sans accent. Par ailleurs on
n’écrira pas les espaces dans les textes codés et décodés.

Les objets manipulés seront d'une part des chaines de caractéres, dont on rappelle qu’elles ne sont
pas mutables, et d’autre part des entiers qui représenteront un code ASCII/Unicode ! d'un carac-
tére (c’est le méme code dans les denx systémes pour les majuscules latines sans signe diacritique).

0. Ecrire une fonction qui prend en entrée un caractére (majuscule) et un décalage et renvoie un
caractere.
Cette fonction peut :

e récupérer le code Unicode du caractére (a I'aide de la fonction ord(caractere)), appliquer
le décalage souhaité, caleuler le code Unicode du caractére modulo 26 dans l'intervalle
[65,90] puis retransformer le code Unicode en caractére (s'inspirer du I en cas de probleme
syntaxique) ;

e ou alors travailler sur l'indice d'un caractére dans la chaine s = "AB..Z". Cette chaine est
déja définie dans la bibliothéque string sous le nom ascii_uppercase.

On suppose que 1'on veut chiffrer un texte qui respecte les conventions présentées.

Ainsi « Je programme tous les jours pour m’améliorer » sera écrit sous la forme

« JEPROGRAMMETOUSLESJOURSPOURMAMELIORER. ».

1. Ecrire une fonction de chiffrage d'une chaine de caractéres. Elle renverra une chaine de caractéres
et aura pour en-téte def ChiffrageCesar(chaine_a_coder, decalage):

2. Chiffrer le texte suivant avec un décalage de 9, « Oublier les conventions n’amene rien de bon ».

3. Ecrire une fonction qui déchiffre une chaine de caractéres qui respecte les conventions présentées.

4. Décoder le texte précédemment encodé avec le méme décalage a des fins de vérifications.
Décoder NYHCL avec un décalage de 7 et de 20.

1. Cf. la section 3 du chapitre 2 page 64 sur la représentation des caracteres.

2017 Dunod.

)

Copyright ©

44 Chapitre 1 Programmation

Analyse fréquentielle du chiffre de César

Le chiffre de César n’est malheureusement pas tres utile pour réellement chiffrer des données. Méme
lorsque la clé n'est pas connue, tester a la main les 26 possibilités (25 en réalité...) permet & un
opérateur humain d’en déduire dans la plupart des cas le texte décodé.

Nous allons étudier une autre méthode ici, qui s’appuie sur une détection automatique de la clé la
plus probable de déchiffrement. Les lettres ont des fréquences moyennes d’apparition en frangais
qui, bien que dépendant de la langue utilisée, des corpus de textes étudiés, sont approximativement
connues. Voici un tableau résumant celles-ci :

Lettre i Lettre f Lettre f Lettre f
a 0.0768 h 0.0064 o 0.0534 v 0.0127

b |00080 | i |00723] p |00324| w |0.0000
¢ |0.0332] j |0.009] q |00134| x |0.0054
d 00360 k |0.0000]| r |00681| 1y |0.0021
e |01776] 1 |0.0589] s |00823| 2z |0.0007

f 0.0106 m 0.0272 t 0.0730
g 0.0110 n 0.0761 u 0.0605

Notre objectif sera de casser un code de César en regardant les 26 décalages possibles, et en
cherchant, a I'aide de la minimisation d'une quantité, quel est le décalage le plus probable. Nous
allons minimiser la somme des écarts des fréquences au carré.

Plus exactement, si fi(c¢) désigne la fréquence d’apparition théorique moyenne d'un caractére ¢
dans la langue francaise, et si f(c¢) désigne sa fréquence d’apparition dans un texte donné, 1'écart
des carrés est défini par :

S(e) =Y (file) = f(c))?
ceu
ou .« désigne l'alphabet.
En notant fy les fréquences obtenues dans un texte par un décalage de d caractéres dans le déchif-
frage de César, nous allons chercher d qui minimise :

> (fule) = fa(0)?
cEal
5. Pour un texte donné (encodé selon nos conventions), calculer les fréquences d’apparition des
lettres du texte. On renverra le résultat sous la forme d'une liste (de 26 nombres). On pourra
commencer par initialiser une liste contenant 26 zéros.
6. Pour une liste de fréquences donnée, écrire une fonction qui calcule la quantité S.
7. Pour un texte et un décalage donné, écrire une fonction qui caleule la quantité S.
8. Pour une chaine de caractéres, pour laquelle le décalage est inconnu, écrire une fonction qui
renvoie une liste contenant les quantités S(d) pour les différents décalages d possibles (d prend
les valeurs entiéres de 0 & 25)
9. Ecrire une fonction qui cherche le minimum d’une liste de nombres et renvoie la position de ce
minimum.
10. Ecrire une fonction qui renvoie la chaine de caracteres la plus probable dans le cas d'un chiffrage
de César de décalage inconnu a I'aide de la méthode de 'analyse fréquentielle
11. Décoder le texte snivant en utilisant les fonctions précédentes. Quel était le décalage employé 7
« SIRVNVIJWPNAMNBVIJAAXWBUNBXRAJDLXRWMDOND »

2017 Dunod.

-

Copyright ©

Travaux pratiques 45

La Disparition est un roman de Georges Perec écrit avec la contrainte trés particuliere de ne pas
contenir la lettre e. Un fichier externe ladisparitioncodee. txt est disponible sur la page dédiée
a cet ouvrage sur le site de Dunod.

12. Apres avoir ouvert ce fichier en lecture, et avoir stocké la chaine de caractéres contenue dans
ce fichier, essayez de décoder le texte par analyse fréquentielle.

Chiffre de Vigeneére

Le chiffre de Vigenére est un systeme de chiffrement polyalphabétique, ¢’est un chiffrement par
substitution, mais une méme lettre du message clair peut, suivant sa position dans celui-ci, étre
remplacée par des lettres différentes, contrairement a un systeme de chiffrement monoalphabétique
comme le chiffre de César (qu’il utilise cependant comme composant). Cette méthode résiste ainsi
a 'analyse de fréquences, ce qui est un avantage décisif sur les chiffrements monoalphabétiques.
Ce chiffrement introduit la notion de clé. Une clé se présente généralement sous la forme d'un mot
ou d'une phrase. Pour pouvoir chiffrer notre texte, a chaque caractére nous utilisons une lettre de
la clé pour effectuer la substitution. Evidemment, plus la clé sera longue et variée et mieux le texte
sera chiffré.

Dans la clé, le caractére en position ¢ va déterminer le décalage a effectuer dans le texte 4 coder
a la position 7. Si le caractére dans la clé est un *A’ on effectuera un décalage de 0. Si le caractere
est un ‘B’ on effectuera un décalage de +1. Si c'est un ‘s’ un décalage de +2 .. si c’est un ‘zZ" un
décalage de +25.

Nous utiliserons les mémes conventions sur les clés que sur les textes : majuscules; pas d’accent ;
pas de ponctuation et pas d’espace.

Ainsi, ‘KEBAB’ avec la clé ‘ADANA’ se code ‘KHBNB' (les ‘A’ dans « ADANA » n'ont pas d’effet de
décalage ; le ‘D’ a pour effet de décaler de +3 donc transforme le ‘E" en ‘H’; le ‘N” a un effet +13,
donc transforme un ‘A’ en ‘N’)

Lorsque la clé utilisée est plus courte que le texte, elle est répétée autant de fois que nécessaire.
Ainsi "KEBABBIENCUIT' avec la clé "ADANA’ est codé comme si la clé était "ADANAADANAADA’ et
est codé ‘KHBNBBLEACULT.

13. Décoder a la main le texte « OPEIPZEPXETWAFIPWMS » codé avec la clé « ACE ».

14. Ecrire une fonction qui connaissant le caractére de la clé utilisée renvoie le décalage a faire.

15. Ecrire une fonction qui prend en argument la position dans le texte a coder et renvoie le
caractére utilisé dans la clé.

16. Ecrire une fonction CodageVigenere (texte,cle) de codage d'un texte selon une clé.

17. Ecrire une fonction qui déchiffre un texte codé selon le chiffre de Vigenére connaissant la clé.

18. Vérifier votre fonction a 1'aide de la question 13.

Copyright © 2017 Dunod.

46 Chapitre 1 Programmation

(Corrigé exo 1.0

0.

L

Le range(1, n + 1) permet de décrire tous les entiers entre 1 et n.

def somme_n_premiers_entiers(n):
s =80
for i din range(l, n + 1):
s += 1
return s

Le while est exécuté jusqu’a ce que i soit égal a n. Il faut faire attention a la condition que I'on
met et o 'on place le 1 += 1.

def factorielle(n):

= 3

i=1

while 7 <= n:
f x= 4
i+=1

return f

Une fonction peut faire appel a d’autres fonctions :

def c_n_k{n, k):
return factorielle(n) / (factorielle(k) * factorielle(n - k))

| Corrigé exo 1.1

0.

2,

On parcourt la liste en mettant a jour le maximum local (maxi) trouvé ainsi que son indice
(ind).

def indicemax(L):
ind = @
maxi = L[©®]
for i in range(1l, len(L)):
if maxi < L[§]:
ind, maxi = i, L[i] # on met & jour le mox local

return ind

On s’arréte dans la boucle si on trouve deux éléments consécutifs mal ordonnés.

def estcroissante(L):
n = len(L)
for i in range(n - 1):
i€ L[§] » L[G + 1]:
return False
return True

On reprend l'idée de la question précédente tout en mettant a jour la liste des sous-suites
trouvées. Attention a bien rajouter la derniére sous-liste apres la boucle.

Corrections des exercices 47

def listecroissmax(L):

""orend une liste L en paramétre et renvoie la liste ordonnée des couples
d'indices correspondant au partitionnement en scm de L."""

deb = @

Lsoussuites = []

n = len{L)

for i in range(n - 1):
if L[§] > LT + 1]:
Lsoussuites.append((deb, i + 1))
deb = i + 1

Lsoussuites.append((deb, n))

return Lsoussuites

3. On adapte I'algorithme de recherche de I'indice d'un maximum a la structure de données (couple
d’'indices (debut, fin exclue)).

def soussuitemax(L}:
Lss = listecroissmax(L)
n = len(Lss)
debmax, finmax, maxi = @, 0, @
for deb, fin in Lss:
long = fin - deb
if long > maxiprov:
maxi = long
debmax, finmax = deb, fin
return debmax, finmax

debmax, finmax = soussuitemax(L)

print(L[debmax: finmax]) £8y.25:55:6,.85 3]

[Corrigé exo 1.2]

0. Pour spécifier un ou logique on utilise le or entre les conditions.

if feu_vert or feu_orange:
pieton_rouge = True
pieton_vert = False

1. Pour utiliser le non logique on utilise le mot not devant la condition.

if not feu_rouge:

TE pieton_rouge = True
c pieton_vert = False
= else:

= pieton_rouge = False
P~ pieton_vert = True

2. La boucle while est exécutée de maniere itérative tant que la condition d’entrée est True

while pieton_vert:
feu_vert, feu_orange, feu_rouge = False, False, True

© 2017 Dunod.

€

Copyright

48 Chapitre 1 Programmation

Pour cette application cela n’a aucun intérét et ralentit considérablement le calcul car I'action
« Mettre le feu au rouge » est réitérée a chaque cycle, ¢’est a dire des millions de fois en attendant
que le feu piéton passe au rouge.

3. La fonction ne prend pas d’argument et elle renvoie un None qu’il est inutile d’écrire. Les
variables sont globales, elles doivent avoir été définies en tant que telles auparavant.

def passage_feu_wvert():
global feu_vert, feu_orange, feu_rouge
feu_vert, feu_orange, feu_rouge = True, False, False
return

4. Voici le code complet.

feu_vert, feu_orange, feu_rouge = True, False, False

if not feu_rouge:

pieton_vert, pieton_rouge = False, True
else:

pieton_vert, pieton_rouge = True, False

def passage_feu_vert(fv, fo, fr):
fv, fo, fr = True, False, False
return fv, fo, fr

def passage_feu_orange(fv, fo, fr):
fv, fo, fr = False, True, False
return fv, fo, fr

def passage_feu_rouge(fv, fo, fr):
fv, fo, fr = False, False, True
return fv, fo, fr

def passage_pieton_vert(pv, pr):
pv, pr = True, False
return pv, pr

def passage_pieton_rouge(pv, pr):
pv, pr = False, True
return pv, pr

def changement_feux(fv, fo, fr, pv, pr):
if fv:
fv, fe, fr = passage_feu_orange(fv, fo, fr)
elif fo:
fv, fo, fr = passage_feu_rouge(fv, fo, fr)
pv, pr = passage_pieton_vert(pv, pr)
else:
if pieton_vert:
pv, pr = passage_pieton_rouge(pv, pr)
else:
fw, fo, fr = passage_feu_vert(fv, fo, fr)
return fv, fo, fr, pv, pr

On appelle ensuite la fonction changement_feux avec la console. Le \ permet de continuer une
instruction trop longue sur la ligne suivante.

unod.

7

01

-

Copyright ©

Corrections des exercices 49

»»> feu_vert, feu_orange, feu_rouge, pieton_vert, pieton_rouge = \

+++ changement_feux(feu_vert, feu_orange, feu_rouge, pieton_vert, pieton_rouge) \
++s # le feu posse au orange

»>>» feu_vert, feu_orange, feu_rouge, pieton_vert, pieton_rouge = \

++os changement_feux(feu_vert, feu_orange, feu_rouge, pieton_vert, pieton_rouge) \
+es # le feu passe au rouge et le piéton au vert

>»> ... # on peut continuer indéfiniment

[Corrigé exo 1 .3J

0. A la main :

def moyenne(L):
s =0
for x in L:
5 =5 + x
return s / len(L)

Et en utilisant sum :

def moyenne(L):
return sum(L) / len(L)

1. On prend garde & n’appeller la fonction moyenne qu'une seule fois. En effet, 'appeler plusieurs
fois demande plus de temps de calcul a I'ordinateur. Nous verrons au chapitre 3 comment
estimer ce temps de calcul supplémentaire .

def variance(L):
m = moyenne(L)
s =0
for x in L:
s += (%X = m)x#2
return s / len(L)

2.
def variancekonig(L):
s =0
for x in L:
5 += x**2
return s / len(L) - moyenne(L)#**2
3.

L1 = [2#%*7 for 7 in range(4)]
L2 = [2**27 + x for x in L1]
print(variance(Ll), variancekonig(Ll1))
print(variance(L2), variancekonig(L2))

4. On peut sans peine vérifier que V(L) = V(L2). Pourtant si le calcul de la variance est correct

a l'aide de la premiére formule, il est faux dans le cas du calcul de la variance de Lo par la
formule de Konig.

1. Dans le cas présent, appeler plusieurs fois la fonction moyenne entraine une complexité en !7(7;2).

© 2017 Dunod.

€

Copyright

50 Chapitre 1 Programmation

Cela s’expliquera mieux aprés le prochain chapitre : si 27 4 1 est correctement codé comme
flottant en machine, ce n’est pas le cas de (227 + 1)? qui nécessiterait une mantisse de 54 bits
pour étre codé exactement.

(Corrigé exo 1 .4]

0. 1l faut ici calculer les S, successifs et nous utilisons la relation p,+1 = pn n—j_l pour éviter les
calculs répétés des puissances de A et des factorielles. Aprés avoir simulé le tirage aléatoire de
U, nous initialisons trois variables :

S=e*=25,, p= e—’\/\zpl et n =0.

Tant que S < U, nous incrémentons n en nous assurant que les propriétés suivantes restent '
vraies : S = S5, et p = puy1. A 1la sortie de la boucle, nous avons U < S, ce qui donne
Sp-1 < U <8, (en posant S_; = —1 pour le cas n = 0) : le compteur n contient alors la valeur

de X.

import numpy.random as rd
from math import exp

def poisson(l):
U, S, n, p = rd.random(), exp(-1), @, exp(-1)*1
while(U > S):
S +=p
n+=1
p*=1/(n+1)
return k

1. L’analyse est élémentaire : on définit m = e~* pour ne pas calculer cette valeur plusieurs fois,
on initialise n & la valeur 0 et S a la valeur Uy ; tant que S > e, on multiplie S par U, et
on incrémente n. Ainsi, quand on sort de la boucle while, n contient la valeur de la variable

Y.

def poisson_bis(l):
m, n, S = exp(-1), @, rd.random()
while(S > m):
S *= rd.random()
n+=1
return k

2. On effectue un assez grand nombre M de tirages indépendants simulant X (ou Y') et on estime
I'espérance et la variance de fagon classique :

1 M 1 M
E(X) =~ 5 Y @ =7 et V{X) o i Y. 2~
=1 i=1

def estimation(l, M):
5, 52, Sbis, S2zbis =@, @, @, @
for i din range(M):
X = poisson(l) # on calcule x_1i
Y = poisson_bis(l) # on calcule y_1
S += X # on somme les x_1i
§2 += X#%2 # on somme les x_i"2

1. Ces propriétés sont appelées « invariants de boucle », cf. le chapitre 3 p. 85.

d.

D

17 Dunc

0

2

Copyright ©

Corrections des exercices 51

Sbis += Y # on somme les y_i
S2bis += Y*+2 # on somme les y_it2
return S / M, S2 / M - (S / M)**2, Sbhis / M, S2bis / M - (Sbis / M)**2 # on renvoie les estimations.

La loi de Poisson de paramétre A a une espérance et une variance égales a A, et nous obtenons
des résultats cohérents :

>>>estimation(2, 10060)

(2.00834, 2.0249884399999996, 2,0088, 2.0245225600000003)
>»> estimation(208, 10000)

(200@.3554, 198.0336908399986, 199.6793, 199.79105150999385)
>>> estimation(300, 10000)

(299.9778, 3082.5977071600864, 300.1755, 295.95529974999954)

[Corrigé exo 1.5]

0. On initialise une liste L de longueur d ne contenant que des 0, puis on simule n déplacements
aléatoires :

def M(d, n):
L= [@ for i in range(d)]
for t in range(n):
i = rd.randint(d) # on choisit lo coordonnée g modifier
if rd.randint(2) == @:
L[i] -= 1 # avec probabilité 1/2, on soustrait 1
else:
L[i] += 1 # ovec probabilité 1/2, on ajoute 1
return L

1. On reprend la méthode précédente, en s'arrétant dés que L = [0,...,0]. Nous avons ajouté
une variable N qui permet de sortir de la boucle while si la puce n’est pas encore revenue a
l'origine a 'instant NV, et ainsi forcer la sortie quand T est trés grand ou infini.

def T(d, N): # la borne N permet de sortir de la boucle si T est trop grand (ou infini)
0, L, retour = [@ for i in range(d)], [@ for i in range(d)], False
n=260
while (not retour) and n < N: # tont que l'on n'est pas revenu & l'origine
i = rd.randint{d) # lo puce saute

if rd.randint(2) == 0:
L[§] =4
else:
LEE] = A4
retour = (L == 0) # est-ce que lo puce est revenue a l'origine?

n+= 1 # et on incrémente n
if retour:
return n # la puce est revenue g l'origine a 1'instant n <= N
else:
return -1 # lo puce n'est toujours pas retournée en 0 g l'instant N

La fonction a, appliquée a (d, N, M), estime la probabilité de I'évenement T < N en effectuant M
simulations :

(i
-

© 2017 Dunod.

Copyright

52 Chapitre 1

Programmation

def a(d, N, M):

co=
C

o]
= nombre de fois T <= N

for i in range(M):

if T(d, N)!= -1:

c =1

return ¢ / M

>>> a(1, 1000, 1000), a(l, 5608, 1008), a(l, 10608, 1600)

(0.978, ©0.984, 6.991)

»>> a(2, 50000, 1600), a(2, 100000, 1000), a(2, 1000000, 1000)
(6.773, 0.793, 0.82)
>>> a(3, 20000, 10008), a(3, 50000, 10000)
(0.3367, 0.3356)

Quand d = 1, on peut conjecturer que la puce va presque siirement revenir a 1'origine, puisqu’an
cours de 1000 simulations, on est revenu a l'origine dans plus de 99% des cas avant l'instant
N = 10000. Les choses sont moins claires pour d = 2 et d = 3, les temps de retour a 'origine étant
tres grands et les temps de calcul trop longs. La théorie nous apprend que pour d = 1 ou d = 2,
on revient presque siirement a l'origine (et méme que 'on repasse presque stirement une infinité
de fois par l'origine : la marche aléatoire est récurrente); par contre, pour d = 3, la probabilité
de I'événement T' < +oc est proche de 0,34 (et on ne repasse presque siirement qu'un nombre fini
de fois par 'origine : la marche aléatoire est transiente).

[Corrigé exo 1.6]

0. Nous allons calculer u,, (resp. v,) a 'aide d'une boucle : nous initialisons au début du calcul
la variable a & la valeur \/n (resp. /2n + 1) puis, pour un indice i variant de n — 1 & 1 par pas
de —1, nous remplagons a par v/i + a. Cela donne :

from math import sqrt

def u(n):

def

a = sqgrt(n)

for i in range(n - 1, @, -1):
a = sqrt(i + a)

return a

v(n):

a =sqrt(2 * n + 1)

for i in range(n - 1, @, -1):
a = sqrt{i + a)

return a

Le calcul des premieres valeurs des deux suites permet de conjecturer qu’elles sont adjacentes.

La fonction suivante vérifie que 1o < g
des valeurs approchées des v; — u; :

def

verif(n):

U = u(2)

Vo= v(2)

b = u(2) <= v(2)

L=[V-uU]

i=2

while(b and i < n):
NU

NV

<

b

K Uy K Up

u(i + 1) # on calcule les termes suivants
v(i + 1) # des suites u et v

=

~

--- < vg < vy, et renvoie la liste

b =U <= NU <= NV <=V # le booléen b prend la valeur false s'il y a un probléme

U, V = NU, NV

L.append(V - U) # on ajoute l'écart & lo liste L

i += I

4
9

Dunod.

2017

Copyright ©

Corrections des exercices 53

if b
return L
else:
return 'les suites ne semblent pos adjocentes'

Nous obtenons des résultats qui confortent la conjecture :

>>> verif(ll)
[0.06407963669631855, 0.014581088998520508, 0.0029870200777970535, 0.0005607263974747312,
9.76737713946906%9e-05, 1.5948648317336326e-085, 2.45600719828154e-06, 3.5940755385215934e-07,

5.0202848544955714e-08]

En admettant que les suites sont bien adjacentes, nous pouvons calculer une approximation de
leur limite commune en utilisant la fonction approximation : les variables U et V' contiennent
les valeurs successives u, et v,, qui sont calculées tant que V — U > =. Nous ajoutons le
garde-fou n < 10000 pour étre certain de sortir de la boucle while.

def approximation{epsilon):

w2

U = uln)

vV = vin)

while(n < 10008 and V - U > epsilon):
n+=1
U = u(n)
vV = v(n)

if n == 10000

return 'lo convergence est trop lente'
else:

return U

[Corrigé exo 1.7]

0. On importe une bibliothéque comme math ou numpy pour le logarithme :

import numpy as np
T=[0,29,58,91,127,170,203]
F=[296,281,266,251,236,221,2087]
¥=[np.log(x) for x in F]

1. On réutilise les fonctions de I'exercice précédent :

a,b,rho=reglin(T,Y)
def f(t):
return np.exp(a*t+b)

On peut alternativement utiliser la syntaxe lambda :

a,b,rho=reglin(T,Y)
f = lambda t:np.exp{a*t+b)

2. On calcule les images des éléments de T par f :

import matplotlib.pyplot as plt

plt.plot(T, F, "o")

Copyright © 2017 Dunod.

54 Chapitre 1 Programmation

Z=[f(t) for t in T]
plt.plot(T, Z)
plt.title("Valeurs expérimentales et ajustées pour la réaction de Landolt")

[Corrigé exo 1.8]

0. On retrouve les commandes classiques d’ouverture, fermeture et lecture des lignes de fichiers.

def lecture_emericc(filename):
monfichier = open(filename, "r") # Ouverture du Fichier
entete = []
for i in range(6): # Itération sur les 6 premiéres lignes d'en-téte
ligne = monfichier.readline() # Lecture de la ligne suivante
entete.append(ligne.replace(",", ".").strip("\n").split("\t"))

Travoil sur les choines de caractéres
pts = []
pos = []
vit = []
var = []

for ligne in monfichier: # Itérotion sur les lignes successives jusqu'o la derniére
var@, varl, var2, var3 = Lligne.replace(
;r, l!, ", r!) .Str'ip("‘.ﬂ") .sp'l.‘it("\t")
pts.append(float(varg))
pos.append (float(varl))
vit.append(float(var2))
var.append(float(var3))
monfichier.close() # Fermeture du fichier
return entete, pts, pos, vit, var

1. L’appel de la fonction est réalisé de cette maniére :

entete, points, position, vitesse, variateur = lecture_emericc(
"test_emericc.txt")

2. Le pas de temps est défini en str, il ne faut pas oublier de le convertir en float.

pas_temps = float(entete[3][1])

temps = []

for i in range(len(points)):
temps.append(position[i] * pas_temps)

3. Fonction lissage_moyenne_mobile :

def lissage_moyenne_mobile(liste, N):
liste_lissee = []
for i in range(N):
liste_lissee.append(@) # on supprime les N premiers points
for i din range(N, len(liste) - N):
xi = liste[d]
for k in range(l, N + 1):
xi += liste[i - k] + liste[i + k]
liste_lissee.append(xi / (2 » N + 1))
for i in range(len(liste) - N, len(liste)):
liste_lissee.append(8) # on supprime les N derniers points
return liste_lissee

4. Le tracé est le suivant, on remarque que l'on tronque beaucoup les données et que 'on filtre
trop avec N = 10.

Corrections des exercices 55

Copyright © 2017 Dunod.

Li
wit_
vit_

#Tr
plt.
plt.

plt.
plt.
plt.
pLt.

plt
plt.

.legend(loc=4)

ssage des données
lissee_3 = lissage_moyenne_mobile(vitesse, 3] 1 T T T T
lissee_18 = lissage_moyenne_mobile(vitesse, I

acé de la figure
figure(1)
plot(temps, witesse, '-',
label="vitesse brute en mm/s")
plot(temps, wit_lissee_3, 'x-',
label="vitesse lissée N=3 en mm/s")
plot(temps, vit_lissee_18, '.-', o
label="vitesse brute N=10 en mm/s")
ylabel('Vitesse en m/s') 2 o % . !
xlabel('Temps en s') | Sio7 s et

Vitesse on myjs
g

vitemsn brwte oo mm/s

o L " L
an % 4 (i s Lo 12

5'10\"'() Temps en 8

5. On affine en mettant un test sur la présence ou non des voisins

def

lissage_moyenne_mobile_affinee(liste, N):
liste_lissee = []
for i in range(len(liste)): # parcours de tous les points
%i = liste[d]
nb_voisins = 1 # on compte les voisins pour le calcul de la moyenne
for k in range(l, N + 1):
if 1 - k € 8: # test de présence du voisin i - k
nb_voisins += 1
xi += Lliste(i + k]
elif i + k > len(liste) - 1: # test de présence du voisin i + k
nb_voisins += 1
xi += liste[i - k]
else:
nb_voisins += 2
xi += liste[i - k] + liste[i + k]
liste_lissee.append(xi / nb_voisins)
return liste_lissee

6. On observe sur le tracé que les données non supprimées sur les bords ne sont pas de bonne
qualité non plus. Il serait plus judicieux de garder les données initiales pour ces points.

plt.
plt.

plt.
plt.
plt.
plt.

plt
plt.

vit_lissee_aff_3 = 140
lissage_moyenne_mobile_affinee(vitesse, 3)
L2

figure(3)
plot (temps, vitesse, '--', el 3

label="vitesse brute en mm/s") 5
plot(temps, vit_lissee_3, 'x-', g ™

label="vitesse lissée N=3 en mm/s") E o
plot(temps, vit_lissee_aff_3, '.-', &
label="vitesse lissée affinée N=3 en mm/s") .
xlabel('temps en s')
ylabel('Vitesse en m/s') 20 i L) i
.legend(loc=4) - I“;f:ﬁi;mm
5 how () ‘:i III I]T!} i\LI IJTh IITH ILU “I.',!

Tl.']l.lp.‘i s

[Corrigé exo 1.9]

0. On peut également définir alpha a 'intérieur de la fonction s.

© 2017 Dunod.

{
-

Copyright

56 Chapitre 1 Programmation

alpha = math.sgrt(math.log(2) / math.pi)

def s(x, lambda_co):
return 1 / (alpha * lambda_co) * math.exp(-math.pi * (x / (alpha * lambda_co))#**2)

1. La fonction de filtrage est donnée ci-aprés. On notera que les deux boucles imbriquées deviennent
cofiteuses en temps lorsqu’on augmente le nombre de points.

def filtrage_phase_correcte(x, y, lambda_co):
y_bf =[]
y_hf = (]
for 1 in range(len(x)):
y_temp = y[i]
somme = @
for j in range(len(x)):
somme += s(x[j] - x[1], lambda_co)
y_temp += y[j]l * s(x[j] - x[i], lambda_co)
y_temp /= somme
y_bf.append(y_temp)
y_hf.append(y[i] - y_temp)
return y_bf, y_hf

lambda_coupure = 1
point_bf, point_hf = filtrage_phase_correcte(x, y, lambda_coupure)

2. Le résultat pour une longueur d’onde de coupure de 1 mm est convenable, on peut d’ailleurs
I'estimer visuellement sur les tracé des données brutes.

plt.figure(1l)

plt.subplot(311)

plt.plot(x, v)
plt.ylabel('Profil brut en um'")
plt.grid()

Ut enopam

Profil

plt.subplot(312)

plt.plot(x, point_bf)
plt.ylabel('Ondulation en um'})
plt.grid()

Cndulation en jum

plt.subplot(313)

plt.plot(x, point_hf)
plt.xlabel('mm’')

plt.ylabel('Rugosité en um')
plt.grid()

|
o

plt.show()

-
(1K1 0.n 1.0 1.5 2.0 2.5 3.0 3h 4.0
i

Copyright © 2017 Dunod.

Corrections des TP 57

[Gurrig_.é TP 1.1]

0. Il suffit de créer une liste de N fois le nombre 1 ;

def initialisation(N):
return [1 for i in range(N)]

1. On importe la bibliothéque random permettant de générer du hasard :

import random as rd

def transition(L):
n=rd.randint(®,len(L)-1)
L[n]=1-L[n] #a@stuce qui permet de transformer un @ en 1 et réciproquement
return L #pas indispensable l'action sur L est globale mais on respecte 1'énoncé

2. 1l suffit de sommer tous les éléments de L (ou de compter le nombre de 1) :

def nombreA(L):
return sum(L)

3. En utilisant les fonctions précédentes :

def evolution(k,N):
NA=[N]
L=initialisation(N)
for 1 in range(k):
L=transition(L)
NA . append (compteA (L))
return NA

import matplotlib.pyplot as plt

k,N=20,100

T=list(range(N+1))

¥=evolution(k,N)

plt.plot(T,Y)

plt.xlabel("Nombre de transitions")
plt.ylabel("Nombre de boules dans l'urne A")
plt.title("Simulation du modéle d'Ehrenfest")

5. Le parcours par indices est adapté ici :

def chercheN(L,N):
I=[]
for i in range(len(L)):
if L[i]==N:
I.append(i)
return I

6. Encore une fois le parcours par indices est nécessaire :

Copyright © 2017 Dunod.

58 Chapitre 1 Programmation

def diff(pasitions):
L=[1
for i in range(len(positions)-1):
L.append(positions[i+l]-positions[i])
return L
\end{monpyton}
\item Il suffit d'enchoiner les deux fonctions précédentes :
\begin{monpython}
def differences(L,N):
pos=chercheN(L,N)
return diff(pos)

7. Une simulation compléte nécessite les exécutions des fonctions evolution puis differences.
La premiere fonction nécessite k passages dans la boucle, la seconde aussi : cet algorithme
nécessite @'(k) opérations en ordre de grandeur.

def moyennerec(L):
N=L[8]
tps=differences(L,N)
return sum(tps)/len(tps)

9. Pour N = 10, le théoréme de Kac affirme qu'il faut en moyenne 2'° itérations pour un retour a
I'état initial. On powrrait donc tester ceci, en langant une simulation avec un nombre nettement
plus grand que cette durée, par exemple k = 10° puis en exécutant la fonction moyennerec. Le
temps de calcul ne serait pas prohibitif.

10. Pour N = 60 la procédure précédente ne serait plus pratiquable car il faudrait lancer une
simulation avec 100 x 269 =~ 1,15 x 10%° itérations.

(Corrigé TP 1.3

Voici quelques éléments de correction :

def decalageUnitairevl(c,d):
return chr((ord(c)-65+d)%26+65) #Formule en passant par les codes ASCIT

import string

Alphabet=string.ascii_uppercase

def decalageUnitairevi(c,d):
n=Alphabet.index(c) #0n récupére 1'indice de ¢ dans Alphabet..
n=(n+d)%26 #.. c'est un bon exercice (de Sup) de 1'implémenter sans index
return Alphabet[n]

def ChiffrageCesar(chaine,decalage):
g=m"
for ch in chaine:

s+=decalageUnitairev2(ch,decalage) #Les str ne sont pas modifiables
return s

def DechiffrageCesar(chaine,decalage):
return ChiffrageCesar (chaine,-decalage) #De 1'intérét du modulo

FThi=[768,80,332,360,1776,106,110,64,723,19,0,589,272,
761,534,134,681,823,730,6085,127,0,54,21,7]
Fth=[x/10060 for x in FThi] #Plus lisible

def frequences(texte):
L=[@. for i in range(26)]
for ch in texte:
i=Alphabet.index (ch) #ou i=ord(ch)-65

© 2017 Dunod.

Copyright

Corrections des TP 59

L[il+=1 #L[i] est le nombre de coractéres d'indices i comptés
return [x/len(texte) for x din L]

def gteS(L):
return sum{[(L[i]-Fth[i])**2 for i 1in range(26)]) #par compréhension

def minimaison(L):
pos,val=0,L[0]
for i din range(len(L)):
if L[i]l<val:
pos,val=i,L[i] #ne pas oublier de remettre les deux vars g jour
return pos #alternativement return L.index(min(L)) morche

def crackcesar(texte):
L=[1
for i in range(26):
s=DechiffrageCesar(texte,i)
L.append(qtes(frequences(s)))
return minimaison(L) #renveie la position du décaloge le plus probable

def vraitexte(texte):
return DechiffrageCesar(texte,crackcesar(texte)) #décode le texte

mnrgrl : "ONAINVENTERSADEPUIS™
. Il n'y a pas d'erreur d'orthographe il s'aogit du codoge RSA"""

def decalageVigenere(ch):
return Alphabet.index(ch) #encore lui ...

def carVigenere(p,cle): #p est la position dans le texte
return cle[p%len(cle)] #la clé est répétée; modulo convient

def CodageVigenere(texte,cle):

g=Mn
for i in range(len(texte)): #parcours par indices pour connaitre la position

s+=decalageUnitairev2(texte[i],decalageVigenere(carVigenere(i,cle)))
return s

def DechiffrageVigenere(texte,cle): #on peut aussi créer une "clé de décodage"
g="i
for i in range(len(texte)):
s+=decalageUnitairev2(texte[i],-decalageVigenere(carVigenere(i,cle)))
return s

print(DechiffrageVigenere ("OPEIPZEPXETWAFIPWMS" ,"ACE"))

‘pounq £10Z @ ybuAdod

CHAPITRE

Représentation des 2
nombres

L’essentiel du cours
B 0 Représentation mathématique des nombres

On appelle base tout entier naturel supérieur ou égal a deux.
On appelle chiffre en base b tout entier naturel compris entre zéro inclus et b exclu.

| Définition

On appelle représentation en base b € N\ {0,1} de l'entier n € N une suite de chiffres
(ak)refo.p) telle que :
p
Z aph® = Z ab® = apb” up_lbp_l o+ agh® + a1+ ag
k=0 kel0:p]

Par exemple, dix-neuf s’écrit, en base dix, 19 = 1 x 101 4+9% 10 0u 019 = 0x 102 +1 x 10T +9 % 100,
En base deux, il s’écrit 100113 = 1 x 2 +0x 2% +0x 22 + 1 x 2! +1 x 29 (pour éviter toute
confusion, lorsque la base n’est pas dix, nous noterons la base en indice).

On appelle nombre de chiffres en base b de n le nombre minimal de chiffres nécessaire pour
écrire n en base b. Par exemple, dix-neuf a deux chiffres en base dix.

On appelle représentation en base b € N* du réel 2 € R une suite de chiffres (a)ie[—ocp]
telle que :

Z aph* =ap x PP +ap x P 4+ tagx P +ay x b faax b2 4.
ke]—ooip]

Pour lever toute ambiguité les chiffres avec des puissances de b positives seront séparés des
autres par une virgule (notation francaise) ou un point (notation anglaise).

Par exemple un quart s’écrit 0, 250000. .. en base dix, ce que nous écrirons plus simplement 0, 25.
En base deux il s’écrit 0, 015. Nous dirons qu'un nombre a un nombre fini de chiffres aprés la
virgule si la suite de ses chiffres aprés la virgule se termine par une infinité de zéros.

Représentation des nombres

62 Chapitre 2

Reégles de calcul

En base b :
e Multiplier par b décale la virgule d’'un cran vers la droite.
e Diviser par b décale la virgule d'un cran vers la gauche.

Calcul du chiffre des unités

s

On appelle chiffre des unités en base b le chiffre associé a .
e Le chiffre des unités d'un entier n est le reste de la division euclidienne de n par b.

e Le chiffre des unités d'un réel = est le chiffre des unités de sa partie entiere ||

B 1 Représentation des entiers en machine

Dans l'ordinateur, toutes les valeurs vont étre représentées par des suites de bits, ¢’est-a-dire par

des suites de chiffres en base deux.
| Définition
Les entiers non-signés sont des entiers « sans signe », ¢’est-d-dire nécessairement positifs.

En pratique, un entier va, généralement, étre stocké sur un nombre fixé de bits (par exemple 32
ou 64). Pour représenter un entier non signé, on représente tous ses chiffres en base 2.
2 - # i * »
‘Q" Tous les entiers ne sont pas représentables. Par exemple sur 32 bits, on peut représenter
tous les entiers entre 0 et 232 — 1 = 4294967295 ~ 4.3 x 107.
Le calcul se fait modulo 2nombre de bits - Ajngi i le produit de deux entiers non-signés de 32 bits
dépasse 232 — 1, on ne garde que le reste modulo 2%2. Par exemple, le calcul de 23! % 2 va donner 0.

Le codage des entiers est plus subtil en Python, il permet de représenter des entiers de
m taille arbitrairement grande. Il est possible d’avoir les entiers non-signés « classiques »
avec les fonctions uint32 et uint64 de la bibliothéque numpy. La lettre u signifie ici

« unsigned ».

[Définition
Les entiers signés sont des entiers « avec signe », ¢’est-a-dire positifs ou négatifs.

Il existe plusieurs représentations des entiers signés, la plus courante est la représentation en

complément a deux.

Junod.

© 2017

pyrignt

Co

L’essentiel du cours 63

Dans la représentation en complément a deux, le premier bit indique le signe : 1 pour négatif,
et 0 pour positif.
Si le premier bit est un 0, 'entier est interprété comme un entier non-signé.
Si le premier bit est un 1, 'entier est :
e interprété comme un entier non-signé,
. puis on lui retire gnombre de bits

-Q- La plage d’entiers représentable en signé sur p bits est [—2¢~1 2771 — 1]

Une autre représentation, plus rarement utilisée, consiste a ajouter un biais (une constante) aux
entiers.

Définition
La représentation biaisée de l'entier n sur p bits est la représentation en non-signé de
n + biais ol biais = 2P~ — 1.

La plage d’entiers représentable avec ce biais est [—2P~! + 1, 2P~ 1].
Les entiers dont le premier bit est 1 sont strictements positifs, les autres sont négatifs ou nuls.
L’entier 0 est représenté par un zéro suivi de n — 1 uns.

Il existe d'autres représentations des entiers en machine, par exemple le code de Gray (cf. exercice
2.11 p. 73), le BCD (Binary Coded Decimal, DCB en frangais, qui permet de représenter les entiers
en base 10), le DPD (Densely Packed Decimal), ete.

B 2 Représentation des réels en machine

Etant donné une base b, tout réel z non nul peut s'écrire sous la forme (—1)* (Z k€]—ocie] m.:b’“)
AVEC ¢,y Ae—1, - .. des chiffres en base b et a. # 0 et s € {0,1}.

'n - . { dralant 1% in 5 P A opo= [__T)\8 F e
En factorisant par b et décalant I'indice de e, on arrive & x = (—1) ZA:E]]—OC:U]] b) x be.

Puis, en renumérotant les chiffres :

&= (—1)° Z arh™ | x b = (—1)%ag, nagas ... x b°
kel
Pour stocker une approximation d'un réel, il suffit alors de choisir une base puis de stocker s, €, et
les premiers chiffres apres la virgule.

Les nombres ainsi représentés sont appelés nombres flottants ou flottants.

Comme seuls les premiers chiffres apres la virgule sont conservés, une erreur d’approximation a
lieu pour certains réels qui n’ont pas une écriture finie en base 2, (par exemple V2 ou 1.2).

En choisissant b = 2, sur 64 bits, un nombre réel peut étre représenté comme suit :
e s est représenté sur 1 bit,
e ¢ est représenté comme un entier biaisé sur 11 bits,

4
8

) 2017 Dunod.

Copyright

64 Chapitre 2 Représentation des nombres

e Les 52 derniers bits représentent les 52 premiers chiffres aprés la virgule. Ils sont appelés
significande ou mantisse. oy n'est pas représenté, car il vaut nécessairement 1 (il est non

nul, et en base 2).

1
|
I~ A '
~ B
S exposant mantisse

Dans cette représentation, e varie entre —1023 et +1024 (et non pas entre —1024 et 1023 comme ce
serait le cas si e était codé en complément a deux). Les valeurs extrémes e = —1023 et e = +1024
sont réservées pour coder des valeurs spéciales : les infinis (+oc et —oc), le nombre zéro, nan (not
a number), les flottants subnormauz (de trés petits flottants).

Cette représentation s’appelle binary64 dans la norme IEEE 754 - 2008[IEE]. Cette
e norme définit quatre autres représentations basiques des flottants : binary32 et
‘Q~ binary128 (b = 2 avec 32 ou 128 bits), decimal64 et decimall28 (b = 10, ce qui
permet de représenter de maniére exacte certains nombres « usuels » comme 0.1 ou
0.2). Elle définit aussi d’auntres représentations plus exotiques.

e Voir le TP 4.1 p. 145 pour une utilisation astucieuse de la représentation des flottants.

Définition
On appelle epsilon machine 'écart entre le flottant 1.0 et le flottant juste supérieur a 1.0.
Il vaut 2792 ~2.22044604925e-16 pour des binary64.

L'epsilon machine ¢ correspond, grosso-modo, & l'erreur commise en approximant 1,bybabs ... par
1,by1babs ... bsa (pour les flottants 64 bits).
Comme 1,b1bobs ... =~ 1, 'erreur commise en approximant le réel x est d’environ ¢ x |z|.

Les erreurs d’arrondis sur les flottants rendent dangereux les tests d'égalité. Par

exemple, I'expression a == 0 peut renvoyer False a cause d'une erreur d’arrondi sur
: a.
.~
'O- Pour tester si deux flottants sont égaux, nous testerons done la « presque égalité »,

c’est -a-dire si la différence entre les flottants est « petite ». Par exemple, pour tester
si a et b sont égaux, on écrit abs(a-b) < 10x*-14. La constante (ici 10xx-14) doit
étre choisie raisonnablement petite.

B 3 Représentation des caractéres en machine

Les caractéres sont représentés en machine par des suites de bits. Un des codages les plus utilisés
est le codage ASCII, il permet de représenter I'alphabet latin de 26 lettres plus quelques caractéres
spéciaux sur 7 bits. Comme l'ordinateur traite les bits par paquets de 8 appelés octets, on compléte
ces T bits en ajoutant un zéro au début.

Les tables suivantes donnent la conversion des paquets de 4 bits en chiffres hexadécimaux, puis la
conversion de I'hexadécimal vers I'’ASCIIL. Par exemple, le caractére A a pour code hexadécimal 41
et va donc étre représenté en machine par l'octet 01000001.

Copyright © 2017 Dunod.

L’essentiel du cours 65

Hex | Suite de bits
[elelalo}

0801

o618

9611 @]1]2]3|4]5]6]7][8|9|A[BJC|[DJE]F
0108
@161
e11s
0111
16600
1861
ie1@
1011
1108
1101
1110
1111

*
+
1
| =

=

e Il RSl PN Y L D =

o
OO B~
s |o| o m| N
o |t n|w| e
ol - o s e
E|m|c|m|n
< | =h|=|m|| =
Elm |E| 6| ~| -
» ||| ||~
| | | | D
[V (N]
o A Il
—| —| = | oA
X n

’
[

MMON| W@ =W~ swne-o

Les cases vides du tableau ASCII correspondent aux caractéres spéciaux, par exemple au caractere
de fin de ligne. Ces caractéres peuvent étre écrits grace au caractére d’échappement \ appelé
backslash ou antislash. Ainsi, le saut de ligne peut s’écrire '\n".

Pour éerire un backslash dans une chaine de caracteéres, il suffit de le doubler : "\\'. Il
est aussi possible de préfixer la chaine de caracteres par un r (par exemple r'C: \bidule
'Q: \truc.txt'), mais alors il n’est plus possible d'utiliser le backslash comme caractére
d’échapement pour insérer des caractéres spéciaux (comme le saut de ligne).
Dans les chemins de fichiers, il est possible de remplacer les backslash par des slash /,
pour éviter les problémes susmentionnés.

Cette représentation des caractéres a toutefois ses limites. Représenter un caractere par 7 bits ne
permet que de représenter 27 = 128 caractéres. C’est insuffisant pour représenter en méme temps
le francais (é, &, i, ...), le serbe (B, XK, ..), 'arabe (& & o 1, ..), le chinois (#(, i, ..), etc.
L’Unicode est une norme qui attribue aux caractéres de tous les alphabets actuels un numéro.
Certains caractéres ont un numéro (aussi appelé « point de code ») plus grand que 25, il est donc
nécessaire d’avoir plusieurs octets pour représenter un caractére. 1'Unicode est compatible avec
I'ASCII, dans le sens ot si un caractere existe en ASCII, il a le méme numéro en Unicode.
La norme UTF-8 permet d'utiliser jusqu’'a 4 octets pour un méme caractere, ce qui permet de
coder tous les caractéres Unicode. UTF-8 utilise les principes suivants :
e Si le premier bit d'un octet est un « zéro », alors les 7 autres bits sont interprétés comme
un code ASCII/Unicode.
e Si le premier bit d'un octet est un « un ». alors le nombre de « un » consécutifs au début
de l'octet (maximum 4) correspond au nombre total d’octets utilisés pour ce caractére. Les
octets suivants commencent par 10.

Représentation binaire

OXXXXXXX Un caracteére ASCII codé sur 7 bits
110xxxxx L1OXXXXXX Un caractére Unicode codé sur 11 bits
1110xxXX 10XXXXXX 1OXXXXXX Un caractére Unicode codé sur 16 bits

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | Un caractére Unicode codé sur 21 bits

Il est possible en Python de désigner un caractére par son code Unicode, on peut écrire dans une
chaine de caracteres \x suivi de deux chiffres en base 16 ou \u suivi de 4 chiffres ou \U suivit de 8
chiffres. Par exemple "\xF1\u0411" donne la chaine de caractéres 'AB'.

Copyright © 2017 Dunod.

66 Chapitre 2 Représentation des nombres

e On détermine le chiffre des unités (ou chiffre de poids faible) en prenant le reste de n
modulo b.
e On divise n par b et on recommence, tant que n # 0, pour calculer les chiffres suivants.

Exemple d’application
Calculer la représentation de 19 en base deux

19 | 2

1| 9| 2

* 1| 4] 2

‘ o 2] 2

1 o | 1] 2
g

L’écriture de dix-neuf en base deux est donc 100115.

e On multiplie # par b pour que le chiffre juste aprés la virgule devienne le chiffre des
unités.

e On lit le chiffre des unités de x (c’est sa partie entiere).

e On retire a4 r sa partie entiére et on recommence.

Exemple d’application
Convertir 1/5 = 0.2 en base 2
02 x2= 04 0

04 x2= 0.8 0
0.8 x2= 1.6 1
06 x2= 12 1
02 x2= 04 0
0.4 x2= 038 0

On remarque que les mémes lignes vont se répéter a 'infini.

1/5 = 0.001100110011 .. .5 = 0.001100, (la partie soulignée se répete infiniment).

On remarque que 0.2 tombe juste en base 10 mais pas en base 2. Ainsi, lorsqu’on entre 0.2 dans
la console Python, une approximation est faite.

s Le point important est qu'il est facile de déterminer le chiffre des unités. Pour trou-
AL ver les autres chiffres, on les déplace au niveau des unités par des divisions ou des
multiplications.

Les méthodes a maitriser 67

Méthode 2.2 : Convertir un réel en base b}

e Déterminer son signe (4 ou —).
e Déterminer ses chiffres a gauche de la virgule avec la méthode 2.0.
e Déterminer ses chiffres a droite de la virgule avec la méthode 2.1.

Par exemple, 19.2 s'écrit en base deux : 10011.00110011 . ..

Méthode 2.3 : Convertir un entier de la base seize vers la base deux

On remplace chaque chiffre en base seize par les quatre chiffres en base deux qui lui corres-
pondent (voir le tableau de la section 3 du cours).

Par exemple 61 en base seize s'écrit 01100001 en base deux.
e e
6 1

‘Méthode 2.4 : Convertir un entier de la base deux vers la base seize |

e Rajouter des zéros a gauche pour avoir un nombre de chiffres divisible par quatre.
e Regrouper les chiffres en base deux par quatre pour constituer des chiffres en base
seize.

Par exemple, 111011 en base deux s’écrit aussi 0011 1011 soit 3B en base seize.
Nt ot
3 B

— Méthode 2.5 : Déterminer la représent

Si n < 0 est représentable, alors sa représentation en complément a deux est la méme que sa
représentation en non-signé.

Sin = —m < 0 est représentable, alors la représentation de n est complément a deux sur p
bits est la représentation de 2” —m en non-signé. On remarque que 2 —m = (2P —1)— (m—1).
On pose alors cette soustraction en base deux. Comme 2P — 1 est représenté par une suite de
1., cette soustraction revient a inverser les bits de m — 1.

tion en complément a deux| !

Exemple d’application

Représenter —19 sur 8 bits
Onam—1= 18 = 100102 = 000100104
donc —19 est représenté par 11101101.

La soustraction (2% — 1) — 18 est détaillée
ci-apres.

AP PP PSP "

‘Méthode 2.6 : Tester I’égalité de deux flottants |

Les erreurs d’approximation rendent peu pertinent le test x==y pour x et y deux flottants.
Par exemple, math.sin(math.pi) renvoie 1,2246467991473532e-16 au lieu de zéro.
Usuellement, on remplace les tests d'égalité x == y par des tests de la forme abs(x-y) < €
avec € raisonnablement petit (par exemple € = 1).

Copyright © 2017 Dunod.

68 Chapitre 2 Représentation des nombres

. C’est la méme instruction du processeur qui fait le + sur les entiers et sur
les flottants.
Tout nombre entier peut étre représenté par une suite finie de 0 et de 1.

Tout nombre rationnel peut étre représenté par une suite finie de 0 et
de 1.

Tout nombre réel peut étre représenté par une suite finie de 0 et de 1.

4. Quand on écrit 0.1 dans la console Python, il n'y a pas d’erreur d’ap-

-

10.
11.
12,
13.

14.

15.

16.

17,

proximation

Informatiquement, on peut représenter de maniere exacte 0.1.
Peut-on représenter 2'9° sur 32 bits ?

En Python 3, le calcul de 14/2 donne U'entier 7.

19 == 19.0 renvoie True en Python

Il existe un nombre flottant qui représente exactement /3.

Il existe un nombre flottant qui représente +oc.

Entre 0.5 et 1 il y a autant de flottants (binary64) qu'entre 1 et 2.
Dans un ordinateur, les entiers sont forcément représentés en base 2.

Le code suivant léve une exception car mathématiquement, tan (g—) n'est
pas défini.

import math
math.tan(math.pi / 2)

La différence entre deux flottants plus grands que 1 est un multiple entier
du epsilon machine.

La différence entre deux flottants plus grands que 0.5 est un multiple
entier de la moitié du epsilon machine.

La différence entre deux flottants plus grands que 3 est un multiple entier
du triple du epsilon machine.

Si n est un entier (positif ou négatif) le calcul de f(n) renvoie le nombre
de chiffres de n en base 3.

def f(n):
X =@
while n!= 8:
n=n// 3
X =% + 1
return x

[J Vrai

0 Vrai
[J Vrai

0J Vrai
O Vrai

[Vrai
[J Vrai
O Vrai
O Vrai
[0 Vrai
0O Vrai
O Vrai
[J Vrai
O Vrai

[J Vrai

[J Vrai

[Vrai

[Vrai

O Faux

[0 Faux
[J Faux

] Faux
[J Faux

[J Faux
O Faux
[0 Faux
[J Faux
[Faux
O Faux
[0 Faux
[J Faux
[J Faux

[J Faux

] Faux

[0 Faux

[0 Faux

Copyright © 2017 Dunod.

Exercices 69

Applications directes du cours

| Exercice 2.0

On considere un entier n € N* ayant p chiffres en base 2.

0. Quelle est la plage des valeurs des entiers a p chiffres ?

1. En déduire que p = |logy(n)| + 1 on logy(n) = In(n)/In(2) est le logarithme en base 2 de n.
2. Montrer que p = [logy(n + 1)] o [z] est le plafond de x (I'arrondi a 'entier supérieur).

3. Donner une formule similaire pour le nombre g, de chiffres de n en base b.

(Exercice 2.1)

0. Ecrire 42 puis —42 en entier signé (complément a deux) sur 8 bits.
1. Que représente 1000 en entier signé sur 4 bits?
2. Quelle est la plage des entiers non-signés réprésentables sur 4 bits ? des entiers signés ?

| Exercice 2.2)

0. Ecrire une fonction base10(n) qui prend en entrée un entier positif n et qui renvoie la liste de
ses chiffres en base dix en commencant par le chiffre de poids faible.
Par exemple, base10(1234) devra renvoyer [4, 3, 2, 1].
. Méme question avec la base onze.
2. Ecrire une fonction approx10(p, q, c) qui, étant donné deux entiers naturels non nuls p et
g tels que p < g et un entier ¢ renvoie les ¢ premiers chiffres apres la virgule de p / q en base
dix.

[y

(Exercice 2.3) D’aprés un oral ENSAM 2015

0. Ecrire une fonction binaire qui prend en argument un entier n et renvoie la liste de ses chiffres
en base 2, avec le bit de poids fort & gauche.
Ezxemple : 23 — 10111

1. Ecrire une fonction NombreDeUns qui prend en argument un entier n et renvoie le nombre de 1
dans la décomposition en base 2 de n.
Ezemple : 23 — 4

2. On appelle palindrome tout nombre dont I'écriture en base 2 est identique de gauche a droite
et de droite a gauche.
Ezxemple : 9 — 1001
Ecrire une fonction palindrome qui vérifie si un entier n est un palindrome.
3. Trouver tous les palindromes inférienrs a 100.
Remarque. On demande d’écrire un code Python permettant de trouver ces palindromes.

4
i

7 Dunod.

201

Copyright ©

70 Chapitre 2 Représentation des nombres

(Exercice 2.4)] Equations du second degré

Dans cet exercice, nous étudions les solutions de I'équation az? + bz + ¢ = 0 avec a, b et ¢ trois
réels.

0. Ecrire une fonction delta qui, étant donnés les nombres a, b et ¢ renvoie le discriminant
A = b? — dae.

1. Ecrire une fonction nombre_solutions qui, étant donnés les nombres a, b et ¢ renvoie le nombre
de solutions réelles (soit zéro, soit un, soit deux) de I'équation ax? + bz + ¢ = 0.

2. On peut calculer une racine carrée d'un nombre r réel on complexe en Python griace a 'opé-
ration rx+0.5. Mathématiquement, 1'équation az® + bz + ¢ = 0 a deux solutions complexes
(éventuellement égales) : xy = % et o9 = %
Ecrire une fonction sols qui, étant donnés les nombres a, b et ¢ renvoie les deux solutions
complexes de 1'équation azx® + bxr + ¢ = 0.

3. Tester ces trois fonctions avec les équations 22 4+ 1.4z +0.49 et 22 + 0.22 + 0.01. Commentez.

4. Méme question avec I'équation 2% + x + § +1072Y = 0.

ol VA est une racine complexe de A.

(Exercice 2.5] Associativité

Pour tous réels a, b et ¢, on a (a+b) +c¢ = a+ (b+ ¢). Cette propriété s'appelle I'associativité, et
elle n’est pas vraie pour les nombres flottants.

0. Ecrire une fonction test qui prend en argument 3 flottants a, b et ¢ et qui vérifie si
(a+b)+c=a+(b+c).

1. Trouver par tatonnements trois flottants a, b et c tels que test(a, b, c) renvoie False.

2. Parmi les flottants compris entre 0 et 10 et ayant au plus un chiffre aprés la virgule, on tire
au hasard (uniformément) un triplet (a, b, c). Quelle est la probabilité que test(a, b, c)
renvoie False?

On souhaite maintenant récupérer tous les triplets (a, b, c) tels que test(a, b, c) renvoie False
dans un fichier csv. Le fichier csv est un fichier texte, sur chaque ligne un triplet doit étre écrit.
Les valeurs des triplets sont séparées par des points-virgules.

3. Ecrire une fonction NonAssoc qui prend en argument un nom de fichier csv et qui écrit dans
ce fichier tous les triplets recherchés.

(Exercice 2.6)

0. Quel est le plus grand nombre flottant codable sur 64 bits 7 On rappelle que la valeur e = 1024
de 'exposant e est réservée pour coder des valeurs spéciales.

1. Quel est le deuxieme plus grand nombre flottant codable sur 64 bit ?

2. Quel est 'écart absolu entre ces deux nombres? Et I'écart relatif entre ces deux nombres?
Commenter.

(Exercice 2.7) Flottants babyloniens

On appelle flottant babylonien une liste de huit chiffres en base soixante dont :
e Le premier s est 0 (positif) ou 1 (négatif).
e Le second est 'exposant e plus 30.

17 Dunod.

o
™~

Copyright €

Exercices 71

e Le troisieme ¢ est le premier chiffre en base 60 avant la virgule.
e Les sept suivants ¢y, ..., c5 sont les chiffres aprés la virgule en base 60

Le flottant babylonien b = [s, E, ¢y, ¢1, ¢z, . . . , ¢5) représente le nombre z = (—1)* x60E—30

C0sC1 + -+ CT.

0. Ecrire une fonction bab2float (b) qui, étant donné un flottant babylonien b, renvoie un flottant
Python approximant b.
Par exemple Bab2float([1,31,12,25,42,20,0,0]) devrait renvoyer -745.7055555555556.

1. Quel est le plus grand flottant babylonien? Le plus petit 7

2. Ecrire une fonction int2bab qui, étant donné un entier n renvoie sa représentation sous forme
de flottant babylonien, on supposera que n est représentable.

3. Ecrire une fonction somme (b1, b2) qui, étant donnés deux flottants babyloniens positifs, cal-
cule leur somme arrondie a l'inférieur (sans passer par le type float, en utilisant 1'algorithme
de sommation vue en primaire).

Pour aller plus loin

(Exercice 2.8) Patriot Missile Software Problem

Une batterie de missiles Patriot détecte les missiles ennemis et les inter-
cepte avec un contre-missile. La batterie mesure le temps pour prévoir le
déplacement des missiles ennemis.

Elle dispose d'un compteur (un entier) que nous appellerons ¢ qui compte
le nombre de dixiémes de secondes écoulées depuis sa mise en marche. Le
temps écoulé t est caleulé par 'opération suivante t=c*0.1. Nous nous
intéressons a 'erreur de calcul commise lors de cette multiplication.
D’aprés un rapport du General Accounting Office [GAO92], le logiciel du
Patriot utilise des nombres & virgule fixe ayant 24 chiffres apres la virgule.
Pour stocker un réel x, on stocke 'entier |2 x 2*| (la partie entiére de 2
puissance 24), les chiffres au deld du 24éme apres la virgule sont tronqués.
Sauf précision contraire, toutes les valeurs numériques demandées doivent étre données en base 10.

0. Ecrire en base 2 le nombre 0.1, on s’arrétera & 24 chiffres aprés la virgule. On note y le nombre
obtenu en tronquant 0.1 & 24 chiffres apres la virgule.

1. Combien vaut 0.1 —y?

Le calcul & virgule fixe induit une erreur de calcul sur le dernier chiffre. On note z le nombre obtenu

en changeant le 24*™¢ bit apres la virgule de y.

2. Combien valent y — z et 0,1 — 27

On note ¢ = |0, 1 — z|. La batterie de missiles Patriot fait une erreur de en approximant 0.1.

Début février 1991, 'armée israélienne a empiriquement constaté qu'au bout de 8h, la précision

des missiles est significativement réduite. Puis, le 25 février 1991, six batteries de missiles Patriot

(un bataillon) ont été déployées a Dhahran, en Arabie Saoudite, pendant 100h.

3. Exprimer en fonction de & I'erreur commise sur ¢ par la batterie au bout de 8h puis au bout de
100h. Nous noterons eg et eygg ces erreurs.

4. Donnez une valeur approchée des deux erreurs précédentes.

Un Scud a une vitesse de croisiéere de Mach 5, soit environ 1702 m/s.

5. Pendant un temps de €149 de combien de métres se déplace un Scud ?

)17 Dunod.

20

Copyright ©

72 Chapitre 2 Représentation des nombres

Suite & cette imprécision, un Scud irakien ne fut pas intercepté et causa 28 morts parmi les soldats
américains.

(Exercice 2.9] Ordre de sommation

s - . v & 2 . ~y
On sait que mathématiquement S = Z?‘:] ki‘* = % Informatiquement, on peut approcher S par

Sa=3 ki A% = % pour n assez grand (par exemple n = 100 ou n = 1000).

Dans cet exercice, nous travaillerons uniquement avec des flottants de 16 bits, que 'on obtient avec

la fonction floatl6 de la bibliothéque numpy que nous importons via U'instruction import numpy

as np.

0. Ecrire une premiére fonction calculant S, en faisant la somme dans l'ordre des k croissants.
Par exemple, le calcul de Sj se fera comme suit : Sy = (% + 2'—2) + 31—2

1. Ecrire une premiere fonction calculant S, en faisant la somme dans l'ordre des k£ décroissants.
Par exemple, le calcul de S5 se fera comme suit : S; = 1—15 + (2—16 + 7'5)

Si mathématiquement l'ordre n’a pas d’importance, informatiquement, 'erreur de calcul ne sera

pas la méme dans les deux cas Nous appelons f 1'une de ces deux fonctions (peut-étre la pre-

miére, & moins que ce ne soit la deuxieéme?) et g l'autre. En calculant _%z grace a l'expression

np.floatl6(np.pi**2/6), on obtient les résultats suivants :

= _ f(100) | 0.0097656

= _ g(100) | 0.017578

2. Identifier quelle est la fonction f (la premiére? la seconde ?) et quelle est la fonction g.
3. Que se passe-t-il si on utilise des flottants de 64 bits au lien de 16 bits?

(Exercice 2.10) Loi du maximum de n dés

On représente la loi d'une variable aléatoire X a valeurs dans [0, N] = {0,..., N} par un tableau
T de N + 1 valeurs tel que T7i] contient la probabilité que X vaut i.

Ainsi, la loi d'un dé A 6 faces' est [0.0, 0.167, 0.167, 0.167, 0.167, 0.167, 0.167] et la
loi du maximum de deux dés est [0.0, 0.028, 0.083, 0.139, 0.194, 0.25, 0.306].

0. Ecrire des instructions Python permettant de calculer la loi du maximum de deux dés.

- - . 3 n—1 w e ik .
On code le résultat xg, ..., 7,1 de n dés par U'entier N = 37" (x — 1) x 6*. Ainsi le résultat

2.1, 3 sera codé par 'entier 1 + 2 x 6% = 73.

1. Ecrire une fonction dés(N, n) qui, étant donné un entier N, renvoie la suite 56+ oy Bt | B8
n dés codés par I'entier N.

2. Ecrire une fonction loi_max_dés(n) en Python qui renvoie la loi du maximum de n dés (en
analysant tous les résultats possibles des dés).

On souhaite a présent généraliser la fonction précédente, et pouvoir calculer d’autres fonctions

que le maximum (par exemple la médiane, ou le second dé ou autre). Plus formellement, On veut

calculer la loi de probabilité de f([xy,...,2,,]) out f est une fonction qui prend en argument le

résultats du lancé de n dés et qui renvoie un entier.

3. Ecrire une fonction loi_f(n, f, M) qui prend en argument une fonction f a valeurs dans
[0, M] et qui renvoie la loi de f([zy,...,2,—1]).

1. Dans cet exercice, tous les dés ont 6 faces numérotées de 1 a 6 et les résultats des jets de dés suivent une loi
de probabilité uniforme.

Exercices 73

(Exercice 2.11) Code Gray

| Définition

Le code Gray ou code de Gray est un code binaire également appelé code binaire réfléchi
qui a pour intérét de ne modifier quun seul bit entre deux valeurs codées consécutives.

Il est utilisé principalement dans les capteurs angulaires (appelés codeurs absolus) afin d’éviter les
erreurs. En effet, si plusieurs bits doivent simultanément changer de valeur, il y a un risque non
négligeable qu'un bit change de valeur avant 'autre, ce qui a pour conséquence de donner une
évaluation de 'angle du capteur erronée durant un court instant et qui peut conduire le systéme
a réagir d’une maniére non prévue.

Pour présenter le fonctionnement, on se place dans le cas d'un capteur
permettant de mesurer 16 positions angulaires, notées 0 a 15, comme le
montre la figure ci-contre. Le capteur est composé d'un disque, comportant
des informations de position réparties sur 4 pistes, et d'un lecteur optique
muni de 4 capteurs qui renvoient 4 signaux (r,y,2,t) en fonction de la
position du disque (blanc = 1 et noir = 0). Un transcodeur transforme
ensuite ce code de position (r,y, z,t) en code binaire naturel (d,c,b,a), d
étant le bit de poids fort.

0. Ecrire la table de vérité de ce capteur en code Gray (celui représenté par les cases noires et
blanches) et en code binaire naturel. On constate qu’il n'y a effectivement quun bit qui est
modifié a chaque incrémentation angulaire.

Pos | v z t|d ¢ b a
oo o 0 0|0 0O 0 0O
10 0 0 1]0 0 0 1
2/0 0 1 1({0 0 1 0
3
4

Table de vérité a compléter

1. Sile capteur possede N pistes, quelle est sa résolution, ¢’est-a-dire la plus petite valeur angulaire
qu’il peut mesurer ?

2. Le cahier des charges impose une résolution maximale de 0,05°. Combien de pistes vont étre
nécessaires pour ce capteur?

Le code Gray peut étre obtenu a partir du code binaire naturel de plusieurs manieres différentes.

La plus simple & mettre en ceuvre en informatique consiste a prendre la valeur binaire naturelle du

nombre a coder et de réaliser un oun exclusif (xor) avec le méme nombre binaire décalé d'un rang

a droite comme 'exemple suivant :

0101 @ 0010 = 0111
Le code Gray du nombre 514 (01012) est 0111244y

3. Proposer un algorithme en Python permettant de traduire un nombre binaire naturel en code

Gray.

2017 Dunod.

-

Copyright ©

74 Chapitre 2 Représentation des nombres

On pourra utiliser I'opérateur A (ou exclusif) ainsi que >> (décalage vers la droite). On remar-
quera également qu’en Python un nombre est un nombre, quelle que soit la base dans laquelle
on I'a exprimé. Par exemple 0b101 et 5 représentent la méme chose.

>>> print(®blel)
5

Il 0’y a a priori pas de maniére simple de coder la fonction inverse permettant de passer du code
Gray au binaire naturel, mais vous pouvez vous y essayer...

(Exercice 2.12] Base ternaire balancée

Inspiré du sujet de I'ENS Lyon 2012 (filliére universitaire)
La base ternaire balancée ressemble a la base ternaire :
e Il v a trois chiffres différents.
e La suite de chiffres t,t,_; ... 13t2 1y représente I'entier E.IE:[I ty % 3%,
La différence est que les chiffres sont 0, 1 et —1. Pour faciliter I’écriture, le —1 sera noté z.

0. Quel entier est représenté par 21107
1. Donner une représentation pour chaque nombre entier de [—5, 5].
2. Comment est représenté 10 dans cette base? et 197

Dans la suite de cet exercice, les suites de chiffres sont représentées par des chaines de caractéres ne
p p

contenant que les caractéres 0, 1 ou z et ne commencant pas par 0. Le nombre zéro sera représenté

par la chaine vide "". On admet que chaque entier a une représentation unique de ce type.

3. Ecrire une fonction positif qui prend en argument une chaine de caractéres t représentant
un entier en base ternaire balancée et qui renvoie True s'il est positif ou nul et False sinon.

4. Ecrire une fonction opposee qui prend en argument une chaine représentant un entier et qui
renvoie la chaine représentant son opposé.

5. Ecrire une fonction plus qui prend en enfrée deux chaines de caracteres représentant deux
entiers en base ternaire balancée et qui renvoie la chaine de caractéres représentant leur somme.
On reprogrammera 'algorithme d’addition sans repasser par les entiers.

6. Ecrire une fonction convert qui prend en entrée une chaine de caractéres t et qui renvoie
I'entier représenté par t en base ternaire balancée,

7. Ecrire une fonction b3b qui prend en argument un entier n et qui renvoie sa représentation en
base ternaire balancée.

Copyright © 2017 Dunod.

Vrai/Faux sur le cours — corrigé 75

. Non, les représentations sont complétement différentes et le calcul a faire
sur les bits n’est pas le méme.

. En prenant un nombre p suffisamment grand de bits (tel que —277*+! <

n < 271, Pentier n est représentable en signé sur p bits.

. Un nombre rationnel peut étre représenté par un couple d’entiers. En

Python, la bibliotheque fractions implémente les rationnels.

. Pour représenter tous les nombres réels, on a besoin d'une suite infinie de

bits. Ceci est lié au fait que R n’est pas dénombrable.

. Python utilise par défaut des flottants binaires (binary64) et 0.1 ne

tombe pas juste en base deux.

. Oui, par exemple avec un decimal64 (ou avec la bibliotheque decimal

de Python). Mais 0.1 n’a pas de représentation exacte en binary64

6. Par exemple, avec un flottant binary32.

7. Le calcul renvoie le flottant 7.0. En Python 2, le comportement est diffé-

10.
11.

12,

13.

14,

15.

16.

8 i 5

rent.
Le test d’égalité renvoie True méme si les types sont différents.

V3 est irrationnel, dans toutes les bases son nombre de chiffres apres la
virgule est infini. Il ne peut pas étre représenté exactement par un flottant.

On l'obtient avec 'expression float("inf").
Pour chaque exposant, il y a autant de mantisses possibles. Entre 0.5 et

1 c’est l'exposant —1, entre 1 et 2 c'est 'exposant 0. La « densité » de
flottants est donc deux fois plus grande entre 0.5 et 1.

Ils peuvent aussi étre représentés dans d'autres bases (par exemple en
base 10 avec DCB).

Informatiquement, avec 'erreur d’approximation, l'expression math.pi/2
renvoie une valeur proche de 7/2 dont la valeur est bien définie.

L’écart est un entier fois I'epsilon machine fois une puissance de deux. Ici,
comme les deux flottants sont plus grands que 1, la puissance de deux
vaut an moins 29,

Ici, comme les deux flottants sont plus grands que 0.5, la puissance de
deux vaut au moins 29,

Deux Hottants entre 2 et 4 peuvent avoir une différence de seulement deux
fois le epsilon machine. La phrase devient vraie si on remplace 3 par 4 et
« triple » par « quadruple ».

On utilise la convention que zéro a zéro chiffre.

[Vrai
¥ Vrai
& Vrai
[Vrai
[J Vrai
& Vrai

@/Vrai
0 Vrai

& Vrai
[Vrai

& Vrai
W Vrai

[J Vrai
[Vrai

¥ Vrai

El/Vrai

[J Vrai

@/Vraj

& Faux
O Faux
U Faux
¥ Faux
¥ Faux
0 Faux

[J Faux
« Faux

[Faux
ErFaux

[J Faux
J Faux

¥ Faux
ﬂ/Faux

] Faux

[Faux

Eﬂ/ Faux

[0 Faux

Copyright © 2017 Dunod.

76 Chapitre 2 Représentation des nombres

[Corrigé- exo 2.0]

0. Les entiers & p chiffres sont compris entre 2P~ (un 1 suivi de p — 1 zéros en base deux) et 27
exclus. Ce qui donne comme plage de valeurs [2¢~1 2P[= [2¢~1 27 — 1].

1. On applique le logarithme en base deux a I'inégalité 2°=1 < n < 2P, On obtient
log,(2P1) < logy(n) < logy(2P) d’olt p— 1 < logy(n) < p et donc p — 1 = [log,y(n)].

2. On ajoute 1 a l'inégalité 2P~1 < n < 2P. On obtient 2P~ +1 < n + 1 < 27 + 1. En utilisant le
fait que tous les termes sont entiers, on transforme ces inégalités en 2P~1 < n + 1 < 2P puis on
applique le logarithme en base deux, ce qui donne p—1 < n+1 < p d’ont le résultat voulu.

3. On montre de la méme maniere que g, = [logy(n)| + 1 = [log,(n + 1)].

[Corrigé exo 2. 1]

0. Pour 42, on obtient 00101010 et pour —42 on retire 1 (ce qui change les deux derniers bits),
puis on remplace chaque 1 par un 0 et vice versa, ce qui donne 11010110.

1. On reconnait 8 en entier non-signé. Comme le premier bit vaut 1, on retire 2! = 16 A cette
valeur, ce qui donne —8,

2. Pour les entiers signés, la plage est de [—8,7] et pour les non-signés de [0, 15].

[Corrigé exo 2.2]

0. La solution classique avec un while.

def baselB(n):
L= []
while nl= 8:
L.append(n % 18)
n//= 18
return L

On pent aussi utiliser str qui renvoie une chaine de caractéres (pour un nombre, c’est la chaine
de ses chiffres en base dix), et un slicing (pour renverser l'ordre de la liste).

def basel@(n):
return [int(k) for k din str(n)[::-1]]

1. On utilise la premiére solution de la question précédente en remplacant les deux 10 par des 11.
2. On utilise la fonction précédemment définie.

def approx1@(p, q, c):
return basel®(p * 1B**c [/ q)

)17 Dunod.

20

Copyright ©

Corrections des exercices

77

[Corrigé exo 2.3 |

Les trois premiers programmes demandés sont des applications directes du cours.

def binaire(n): def NombredeUns(n): def palindrome(n):
L= [] L = binaire(n) L = binaire(n)
while nl= @: s =80 M= L[i~1]
L=1[n% 2] +L for k in range(len{L)): return L == M
n=n//2 s += L[k]
return L return s

Pour la fonction palindrome on utilise un slicing pour inverser les éléments de la liste L.

Pour trouver les palindromes, on les énumeére et on les stocke au fur et a mesure dans une liste

pal.

pal = []
for k in range(101):
if palindrome(k):
pal.append (k)
print{pal)

[Corrigé exo 2.4]

0. On applique la formule.

def delta(a, b, c):
return b*+2 - 4 * a * ¢

1. On distingue 3 cas selon le signe de A.

def nombre_solutions(a, b, c):
d = delta(a, b, c)
ifd>o:

return 2
elif d ==

return 1
else:

return @

2. On applique directement les formules. Pour renvoyer les deux valeurs, on renvoie un couple.

def sols(a, b, c):

rd = delta(a, b, c)*+*8.5
r1=(-b+rd) /2 /a2
r2=(b-rd)/2/a

return rl, r2

3. L’équation x% 4 1.4x + 0.49 peut se factoriser en (z +0.7)? = 0, on a done, mathématiquement,

une unique solution z = 0.7 et un discriminant nul.

On calcule delta(1, 1.4, 0.49), on obtient -2.220446049250313e-16, on reconnait —2°2,

Le calcul du diseriminant a engendré une petite erreur, égale au epsilon machine.

Lors du caleul de NombreSolutions(1, 1.4, 0.49), le test d == 0 renvoie False car d n'est
pas tout a fait nul. A cause de cette erreur epsilonesque le résultat final n’est pas celui attendu :

on obtient 0 au lien de 1.

© 2017 Dunod.

|
.

Copyright

78 Chapitre 2 Représentation des nombres

Le calcul des solutions donne :
((-0.7+7.450580596923828e-09j), (-0.7-7.450580596923828e-09j))
La petite erreur sur A engendre une petite erreur sur la partie imaginaire des solutions.

" 5 i 5

"Q: Lorsqu'un calcul renvoie un résultat complexe avec une partie imaginaire « tres

-
petite », il s’agit peut-étre dun réel.

L’équation x2 + 0.2z + 0.01 peut se factoriser en (x + 0.1)2 = 0, on a donc aussi une seule
solution z = 0.1 et un discriminant nul. Mais cette fois, le calcul de delta(l, 0.2, 0.01)
donne une erreur dans I'autre sens, on obtient une valeur strictement positive :
6.938893903907228e-18. Cette valeur est strictement plus petite que I'epsilon machine, car
les réels manipulés sont strictement plus petits que 1.

nombre_solutions(l, 0.2, 0.01) donne alors 2 au lieu du 1 attendu ; et le calcul des solu-
tions renvoie :

(-0.099999998682916098, -0.10000000131708903)
Cette fois-ci, il n’y a pas de partie imaginaire, ['erreur se fait sur la partie réelle.
Le calcul de 1/4+10%%(-20) donne 0.25 car le 10xx(-20) est trop petit. Le calcul va donc se
faire sur I'équation z? + = + } = (). Tous les calculs sont exacts car 1/4 tombe juste en base
deux. On obtient alors une unique solution (-0.5) au lieu de zéro.

[Corrigé exo 2.5]

0.

—

Il suffit d’appliquer la formule. On évite d’écrire un 1f.

def test(a, b, c):
return (a + b) + ¢ == a + (b + ¢)

. Par exemple a = 0.1, b= 0.2 et ¢ = 0.3.
. On teste tous les triplets possibles. On compte avec la variable d le nombre de triplets qui

conviennent, et on divise le résultat par le nombre total de triplets.

d=20
for a in range(108):
for b in range(100):
for ¢ in range(160):
if test(a / 10, b / 10, ¢ / 18) == False:
d += 1
print(d / 108%*3)

Ce code affiche 0.247486. Il y a environ une chance sur 4 de tomber sur des flottants contre-
disant I'associativité.

Si on cherche des triplets avec 10 inclus et non exclus, on arrive a une probabilité de 6.253726.
On fait attention a convertir les flottants en chaine de caractéres pour pouvoir les écrire dans
le fichier. On n’oublie pas le "\n" qui permet de passer a la ligne suivante.

def NonAssoc(nf):
f = open(nf, "w")
for a in range(100):
for b in range(160):
for ¢ in range(10@):

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 79

if test(a / 18, b / 18, c / 18) == False:
f.write(str{a / 18) + "; " + str(b / 18) +
u; LU str(‘: ’t 19) + r!\nrr)
f.close()

Les premiéres lignes du fichier obtenu sont ! :

HOODHOOHOODOEOOOE
R el o ol S <~ I S - T S S

[Corrigé exo 2.6}

0. Ce nombre est bien sir positif et posséde un exposant max

mantisse constituée uniquement de 1. Il vaut donc
k=52

imal, done e = 1023 ainsi qu'une

Tonax = 21023 E 2—J\: = 210‘23(2 _ 2—52) = 21[}2—'1 _ 29?] ~ 8, 088 x 10307

k=0

1. Ce nombre est toujours positif. Il posseéde toujours un exposant maximal. La mantisse est
désormais composée de 51 chiffres 1 et d'un chiffre 0. On a done :

k=51
Bnand = 2102-5 2 : 2—k = 21(12.$(2 — 2—:31] ==
k=0

21[}24 - 29?2

. # 0] . . # - # s . - . .
2. L’écart absolu est de | Tmax — Tmax2 |= 2°7". 11 s’agit de la considérable imprécision intrinseque

au codage des flottants dans cette gamme de nombres.
9971

Tmax — Tmax?2 | -

L écart relatif est de

- T 91024 _ 9971
“'II'.I.EI.X : . .
On retrouve une erreur de 'ordre du epsilon machine. Ce n'e
entre deux nombres consécutifs étant presque constant et de

[Corrigé exo 2.7]

~ 2—53

st gueére surprenant, 1'écart relatif
l'ordre de epsilon machine.

0. On commence par écrire une fonction qui étant donnés les chiffres d'un entier en base soixante

retrouve cet entier.

def b6O(L): def bee(L):

R=28 R=28
for k in L: for k din
R=R=* 60 + k R =

return R return R

1. Selon le mode d’arrondi des flottants, les valeurs peuvent varier

range(len(L)):
R+ 60 + L[k]

(i
-

© 2017 Dunod.

Copyright

80 Chapitre 2 Représentation des nombres

On peut alors écrire la fonction voulue en utilisant la formule donnée dans I'exercice.

def bab2float(b):
return (-1)**b[@] * 6O**(b[1] - 35) * bee(b[2:])

Le —30 devient —35 car il faut faire passer les cing derniers chiffres de b60(b[2:]) apres la
virgule.

1. Le plus grand flottant babylonien est [0, 60, 60, 60, 60, 60, 60, 60] ce qui fait exacte-

ment 1.34892561182641002647667081216 x 1077,

2. On commence par écrire une fonction base60 sur le modele de basel0® et basell de 'exercice

3.

2.2
Ensuite, on peut écrire la fonction.

def dint2bab(n):
On ajoute 6 zéros ou cos ol n ai moins de 6 chiffres.
chiffres = base6@(n)[::-1] + [@] * &
-7 car il y o les 6 zéros rajoutés et 1 chiffre 4 gouche de la virgule.
e = len{chiffres) - 7
s=01if n > 0 else 1 # si n>0 alors 5=0 sinon s=1
return [s, e + 30] + chiffres[0:6]

La principale difficulté consiste a aligner les deux nombres (ils n’ont pas nécessairement le
méme exposant). On rajoute des zéros devant le nombre le plus petit. Ensuite, on applique
I'algorithme de I'école primaire.

def somme(bl, b2):
ecart = bl[1] - b2[1] # L'écart entre les exposants
dl = max (@, -ecart) # Le décalage de chiffres & faire sur bl
d2 = max(@, ecart)
bml = [08] * dl + bl[2:] # La mantisse décalée de bl
bmz = [08] * d2 + b2[2:]
e3 = max(b1[1], b2[1])
retenue = @ # Lo retenue & propager
bm3 = [@] * 6 # Lo mantisse de lo somme (initioclisée g zéro)
for k in range(5, -1, -1):
calcul = bmi[k] + bm2[k] + retenue
retenue = calecul // 60
bm3[k] = calcul % 60
if retenue!= B: # Si les deux chiffres tout & gauche provoquent une retenue
bm3 = [retenue] + bm3[:5] # Lo retenue crée un nouveau chiffre
e3 += 1 # Lo somme gogne une puissance de 60
return [@, e3] + bm3

[Corrigé exo 2.8

0.

1.
2.
3.

o &

0.000110011001100110011001

3.58 x 1078

y—2=2"2*596x10"% et 0,1 —z ~ 9.54 x 108,

On compte le nombre de dixiemes de secondes qu'il y a dans huit heures.
eg = 8 X 60 x 60 x 10 = 288000z et e;99 = 3.6 x 106

eg =~ 0.027 et €199 =~ 0.34

584m

2017 Dunod.

-

Copyright ©

Corrections des exercices 81

[Corrigé exo 2.9]

0. On fait attention & n'utiliser que des flottants de 16 bits.

def S1(n):
S = np.fleoatl6 (@)
for k in range(l, n + 1):
S += np.floatl6(l [/ kx*2)
return 5

1. On utilise un range décroissant avec un pas de -1,

def S52(n):
S = pp.floatl6 (@)
for k in range(n, 0, -1):
S += np.floatl6(l / k**2)
return S

2. L’erreur d'une somme est proportionnelle au résultat de la somme. La fonction S1 commence
par sommer les termes les plus gros de la somme, elle fait donc une plus grosse erreur de calcul
que S$2. On en déduit que f est S2 et que g est S1. math.pi**2/6-S1b(100)

3. On constate toujours une différence entre f(100) et g(100) mais elle est beaucoup plus petite
(elle est de l'ordre du epsilon machine).

[Corrigé exo 2. 10]

0. On imbrique deux boucles for (une par dé).

L=[0] ~7
for k in range(1, 7):
for p in range(1, 7):
Limax(k, p)] += 1
Loi = [t / 36 for t in L]

1. On adapte 'algorithme classique de changement de base.

def dés(N, n):
L =[]
for k in range(n):
L.append(N % 6 + 1)
N=N//B
return L

2. On teste tous les cas.

def loi_max_dés(n):
L=[8] 7 # Les valeurs vont de @ (valeur interdite) & 6 inclus.
for k in range(6++n):
On compte le nombre d'issues favorables pour chaque valeur de 1 & 6.
LImax(des(k, n))] += 1
On divise le nombre d'issues favorables par le nombre total d'issues
return [x / 6+#*n for x 1in L]

3. On généralise la fonction précédente.

82 Chapitre 2 Représentation des nombres

def loi_f(n, f, M):
L = [8] * (M+1)
for k in range(6*#*n):
L[f{des(k, n))}] += 1
return [x / 6+*n for x in L]

[Corrigé exo 2.11:

0. La table de vérité est la suivante, un seul bit ne change a chaque fois. On remarque une symétrie
au niveau du code de Gray entre la ligne 1 et la ligne 8 si on enléve le bit de poids fort. On
retrouve cette symétrie verticale sur le codeur, quel que soit le nombre de bits présents.

Pos |2 ¥y 2z t|d ¢ b a
0/0 0 0 0|0 0O 0 0
1{o 00 1/0 0 0 1 _
2/0 0 1 1/0 0 1 0 C
3/0 0 1 0/0 0 1 1
4|0 1 1 0|0 1 0 O "
5/0 1 1 1|0 1 0 1 4
sle L 9 148 T L B Codeur Gray 4 bits Codeur Gray 6 bits
710 1 0 0|0 1 1 1 -
81 1 0 01 0 0 0 4,
9/1 1 0 1|1 0 0 1 4¢ (§ (
0|1 1 ¥ 1|1 6 1 D H
|1 1 2 6|1 o 1 1 (
121 0 1 0|1 1 0 O '\g ‘?' $
15|11 0 1 1|1 1 0 1 ' «
41 0 0 1|1 1 1 0 *’m’ A .]1&
51 0 0 0|1 1 1 1

Codeur Gray 7 bits Codeur Gray 8 bits

1. Le capteur posséde N pistes, il y a done 2V valeurs pour 360°. La résolution du capteur est

. 360
donc N -
2. On souhaite une résolution r = 0,05 = 2—\ on trouve donc :
' 360
PGS T = 7200 = N = 13bits
L U

En effet, 2'2 = 4096 < 7200 < 2'% = 8192. On aura donc une résolution réelle de 0,044°.
3. Voici deux fonctions qui affichent le code de Gray d'un nombre (décimal, binaire ou autre).

def bintogray(x): def bintogray(x):
print(bin(x * (x >> 1})) print(bin(x * (x // 2)))
return return

7 Dunod.

201

pyright @

LC

[_ Corrigé exo 2. 12:

0. —15

1. Pour les entiers de zéro a 5, on a les représentations

Pour les entiers de —1 & —5,
2. 10 est représenté par '101"' et 19 par '1z01'.

on a les représentations 'z',

'z0O!',

Yz

g LY gk, Mgt MY, Y EES
'zl

*Zzi1'.

unod.

7

01

-

Copyright ©

Corrections des exercices 83

3. Un entier positif est soit nul (chaine de caracteres vide) soit strictement positif auquel cas son

premier chiffre est 1.

def positif(t):
return t == "" or t(0] == "I"

4. Tl suffit de remplacer les "z" par des "0" et vice-versa.

def oppose(t):
t2 = nm
for k in t:
iF k== ugi,
12 += Hgzn
elif k == "z",:
t2 4= Hpw
else:
t2 += "g"
return t2

5. On écrit une fonction chiffre(c) qui prend un chiffre ("@", "1" ou "z")

def chiffre(c):
return ["z", "0"™, "1"].index{c) - 1

def convert(t):
v =8
for k in t:
v = v * 3 + chiffre(k)
return v

6. On adapte la fonction basell de l'exercice 2.2 & la base trois. Dans le cas ou le chiffre en base

3 « normale »vaut 2, on utilise le chiffre —1, ce qui crée un décalage de 2 — (—1) avec n, on lui
ajoute donc 3.

def b3b(n):
s - LR
while n!= 0:
d=n%3 # Le dernier chiffre en base 3 normale
if d == 2:
d = ”z L
n=nt+3
nf/=3
s = str(d) + s
return s

‘pounq £10Z @ ybuAdod

CHAPITRE

Algorithmique

Un algorithme est 'idée d'un programme. Dans un algorithme, on fait abstraction du langage
de programmation (Python, C, Ocaml,..) et des détails d'implémentation. Un algorithme doit
étre décrit avec suffisamment de précision en francgais pour pouvoir étre traduit (on dit aussi
implémenté) dans n'importe quel langage de programmation. Ce chapitre s'intéresse aux propriétés
des algorithmes, son contenu ne dépend donc pas du fait que nous programmons en Python.

B 0 Preuve d’algorithme

Dans cette partie, nous considérons I'exemple ci-apres. C'est une fonction qui prend en argument
une liste et qui remplace toutes ses valeurs par des zéros. On s’intéresse a prouver que cette fonction
est « correcte », c'est-a-dire qu'elle ne va pas boucler a 'infini et qu’elle fait bien ce qu'on attend
d’elle.

def zero(L):

k=0

while k < len(L):
L[k] =@
k += 1

Etant donnée une boucle while, on appelle variant de boucle toute quantité v telle que :
e vEN
e v décroit strictement & chaque passage dans la boucle.

Trouver un variant de boucle démontre que la boucle termine (car sinon il existerait une suite
infinie strictement décroissante d’entiers naturels, ce qui est impossible).
Sur 'exemple len(L) - k est un variant de boucle.

On appelle invariant de boucle une propriété P telle que :
e P est vraie au début du premier passage dans la boucle.
e Si P est vraie au début d'un passage de la boucle, alors elle est encore vraie a la fin.

Avec ces conditions, il est évident que 'invariant sera encore vrai a la fin de la boucle. Un invariant
de boucle bien choisi permet de démontrer qu'un programme fait bien ce qu'on attend de Iui.

Sur 'exemple, la propriété P « La sous-liste L[0:k] ne contient que des zéros » est un invariant
de boucle :

~
8

Junod.

© 2017 |

Copyright

=W

o

86 Chapitre 3 Algorithmique

e Au début du premier passage de la boucle, la sous-liste est vide donc P est vraie.

e Si P est vraie, alors L[0:k] ne contient que des zéros. Apres I'instruction L[k] = 0, la
sous-liste L[@:k+1] ne contient que des zéros, et donc apres l'instruction k += 1, P est
vraie.

A la fin de la boucle, k vaut len(L), on en déduit que L[0@:1len(L)] ne contient que des zéros et
done que L ne contient que des zéros. On a donc démontré que 'algorithme fait bien ce qu’il est
censé faire.

B 1 Complexité

La complexité est une mesure des ressources nécessaires a un calcul. Nous considererons ici deux
ressources : le temps et la mémoire.
Nous considérerons par la suite I'exemple suivant :

def somme(L):
5=0
for k in range(len(L)):
S =5+ L[k]
return S

La fonction somme calcule la somme des éléments d'une liste.

| Définition
La complexité en temps d'un calcul est le nombre d’opérations élémentaires nécessaires
pour faire le calcul.

Le calcul de somme([1, 2, 3]) nécessite a priori 4 opérations élémentaires (1 fois la ligne 2, et
trois fois la ligne 4). Toutefois, la notion d’opération élémentaire n’est pas précisément définie : on
pourrait considérer par exemple que la ligne 4 fait non pas une, mais 2 opérations élémentaires
(une somme puis une affectation) et alors le calcul de somme ([1, 2, 3]) nécessiterait 7 opérations
élémentaires.

Cette imprécision est sans conséquence car on estime la complexité « a la louche ». Pour définir
formellement ce que signifie ce « & la louche », nous introduisons les trois notations suivantes :

Etant donné deux suites positives 7}, et u,, on dit que
e T, est un grand & de u, s'il existe une constante ko telle que pour tout n assez grand
T, € kg - u, ; on note T, = O(u,).
o T, est un grand () de u,, s'il existe une constante k) > 0 telle que pour tout n assez
grand ky - u, < T),; on note T}, = Q(uy)
e T, est un grand Theta de u, s'il existe deux constantes k; > 0 et ks telles que pour
tout n assez grand ky - u, < T, < ka -+ u, ; on note T}, = O(u,,).

Le grand ¢ sert a majorer la complexité, et le grand §2 a la minorer. Nous utiliserons le plus souvent
le grand @.

L’essentiel du cours 87

Etant donné un algorithme, on définit 7,, comme étant le maximun des complexités des
calculs de l'algorithme sur une entrée de taille n.
T, est appelée complexité au pire en temps de l'algorithme.

On définit la complexité an meilleur en remplacant maximum par minimum dans la définition
précédente.

La complexité sera généralement exprimée sous la forme ¢'(u,,) avec u, une suite simple, ce qui
nous affranchit d'une définition précise de 'opération élémentaire.

Les complexités les plus fréquentes seront en &'(n) (complexité linéaire), &(n?) (complexité qua-
dratique), @(In(n)) (complexité logarithmique) et €'(2") (complexité exponentielle).

Sur le méme modeéle que la complexité en temps, on définit la complexité en mémoire.

Définition

La complexité en mémoire d'un calcul est la taille de la mémoire (en octets ou en bits)
prise par les valeurs intermédiaires du calcul (on exclut I'entrée et la sortie de I'algorithme du
calcul, sauf si elles sont accédées en lecture et en écriture).

Etant donné un algorithme, on définit E, comme étant le maximum des complexités en
meémoire des caleuls de 'algorithme sur une entrée de taille n.
FE, est appelée complexité au pire en mémoire (ou en espace) de I'algorithme.

On définit la complexité an meilleur en remplacant maximum par minimum dans la définition
précédente.

Taille des entiers

Dans la mémoire de 'ordinateur, un entier £ a une taille proportionnelle au nombre de ses
chiffres, c'est-a-dire de 'ordre de logy (k). Mais, pour simplifier les calculs, on supposera pour
la complexité en mémoire quun entier n'occupe qu'une place @'(1).

De plus, lorsqu'un algorithme prend en entrée un entier k, on n’exprimera pas la complexité
en fonction de la taille de k (c’est-a-dire en fonction de n = log,(k)) mais en fonction de k.

Copyright © 2017 Dunod.

88 Chapitre 3 Algorithmique

e Poser n = « la taille des parametres ».
e Déterminer la complexité de chaque instruction.

e Pour chaque boucle, déterminer combien de fois on passe dans la boucle.
e Conclure

Sauf précision contraire, la complexité demandée est la complexité an pire en temps.

Sur la fonction somme de la partie 1, on a n = len(L), les lignes 2 et 4 se font en temps constant

(en @(1)) et on passe n fois dans le for. La complexité est doncen T,, = @(1) +n x €(1) = &(n).
N’ ——

ligne 2 ligne 4
\u—;;:—/
Considérons un exemple plus compliqué : la fonetion
neufs définie ci-a-coté. dat ’:e:f?](’”’
Cette fonction calcule de maniere fort peu astucieuse while n!= @:
le plus grand nombre de 9 consécutifs dans 'écriture :':Pie';‘;(;B% 16)
en base 10 de n; mais nous n’avons pas besoin de le M=o
savoir pour estimer sa complexité. tor f :“k’ange(““(m:
On constate que chacune des instructions utilisées est while i < len(L) and L[i] == 9:
en @(1) (temps constant). On utilise bien max qui a Y - ;H:EHL i
une complexité linéaire, mais on ne 'utilise que sur 2 return M '
valeurs.

On passe dans le premier while une fois par chiffre de n en hase 10
(en effet, 'opération n = n//10 fait perdre un chiffre a n), soit environ log,,(n) fois.
La liste L contient alors (A moins de 1 pres) log,,(n) valeurs. On passe dans le for log,,(n) fois,
idem pour le second while.
La complexité est donc de
T,, = logyo(n) x O(1) +logyo(n) x logyy(n) x &(1) = &(logiy(n)) = €(In” n).

]

T
remier while boucles imbriquées
q

e Poser n = « la taille des paramétres ».
e Déterminer la place prise en mémoire par chaque variable.
e Conclure

Pour la fonction somme définie dans le cours, on constate que si la liste L contient des entiers ou
des flottants, chaque variable intermédiaire (k et S) contient un type de base, donc demande une
place en mémoire en €(1) et donc la complexité en mémoire au pire est en @'(1).

Pour la fonction neufs définie précédemment, la complexité en mémoire vient de la variable L
(toutes les autres variables demandent ¢'(1) en mémoire). Or cette variable va contenir environ
log,(n) éléments d’olt une complexité en mémoire de €'(log,,(n)) = &(In(n)).

Copyright © 2017 Dunod.

Les méthodes a maitriser 89

o Exhiber, pour chaque boucle while, un variant de boucle. |
* Démontrer, si ce n’est pas trivial, chaque variant de boucle (dans la plupart des cas
cette étape n’est pas nécessaire)

Pour la fonction neufs, n est un variant pour le premier while, et len(L) - 1 est un variant
pour le second.

Pour chaque boucle :
e Exhiber un invariant de boucle qui permet de montrer le résultat voulu.
e Sauf si c’est trivial (ce qui est trés souvent le cas) démontrer cet invariant.
e Exprimer ce que veut dire chaque invariant a la fin de la boucle.
o >
Pour la fonction somme du cours, on constate S = Z;;é L[p]. On en déduit qu’a la fin de 'algo-

len(L)—1
p=0

rithme, comme k vaut len(L), ona S =) L[p]. La fonction calcule bien la somme des

éléments de la liste.

Pour chaque boucle :
e Chercher une grandeur numérique qui reste constante a chaque passage dans la boucle.
e Exprimer cette grandeur au début et a la fin de la boucle.

k e En déduire une relation entre les valeurs initiales et finales des variables.

Considérons le code suivant.

def euclide(a, b):

while b!= @:
a,b=b, a%h
return a

On constate que le pged de a et b reste constant. De plus, a la fin, b vaut 0 et donc pged(a,b) = a.
On en déduit qu’a la fin de l'algorithme, la valeur de a renvoyée est égal au pged des valeurs
initiales de a et b. Cette fonction calcule done le pged.

Copyright © 2017 Dunod.

90 Chapitre 3 Algorithmique

o el

11.
12.

13.

14.

15.

Une complexité en ©(n) est toujours mieux qu'une complexité en O(n?).

Une boucle while peut ne jamais terminer.
Une boucle for a toujours une complexité en @ (n).
La copie d'une liste de taille n prend un temps &'(n).
def myst(n):
N=n+2
while n!= 8:

if N =

=n:n=n-1
else: N =

N =2

n est un variant de boucle du while de myst.

N est un variant de boucle du while de myst.

N+n est un variant de boucle du while de myst.

N*n est un variant de boucle du while de myst.
myst renvoie toujours None.

n <= N est un invariant de boucle du while de myst.

Il existe toujours un invariant de boucle.

def test(L}:
b = True
for k in range(1l, len(L)):
b=>band L[k - 1] < L[k]
return b

La fonction test termine toujours.

« b < les éléments de L[0:k] sont classés dans 'ordre strictement crois-
sant » est un invariant de boucle.

import math

def f(n):
S=0
for i in range(n**2):
for j in range(int(math.log2(n})):
§ =5+ (-1)*(i + j)

return S
f(n) a une complexité en &(n”In(n)).
e
«S = z Z(—l)hLJ » est un invariant de la boucle extérieure.
i=0 k=0

i |logy(n)]
« 8= Z Z (=1)™7 » est un invariant de la boucle extérieure.
k=0 j=0

[J Vrai
[J Vrai
[J Vrai
O Vrai

O Vrai
O Vrai
[Vrai
[0 Vrai
O Vrai
O Vrai
O Vrai

[J Vrai
O Vrai

[Vrai

[J Vrai

[J Vrai

[0 Faux
[0 Faux
[J Faux
[0 Faux

[J Faux
0 Faux
O Faux
[0 Faux
O Faux
[Faux
[J Faux

[Faux
[0 Faux

[0 Faux

[J Faux

[Faux

Copyright © 2017 Dunod.

Exercices 91

(Exercice 3.0

Considérons les deux fonctions suivantes.

def truc(n): def machin(n):
for j din range(n): for j dn range(n}:
for k in range(n): pass
pass for k in range(n):
pass

Quelle est la complexité de chacune de ces fonctions ?

(Exercice 3.1] Recherche du maximum

On souhaite écrire une fonction maximum renvoyant le maximum d'une liste (la fonction max existe
déja en Python, on souhaite ici la reprogrammer). Le code incomplet de la fonction est donné
ci-apres.

def maximum(L):
M= L[B]
for k in range(l, len(L)):
A compléter
return M

0. Compléter le code en préservant I'invariant suivant : « M est le maximum de la liste L[:k] ».
1. Modifier la fonction pour remplacer for k in range(1, len(L)) : par for x in L
2. Quelle est la complexité de la fonction maximum?

|Exercice 3.2] Multiplication égyptienne

Considérons le programme suivant, qui implémente un ancien algorithme égyptien. Dans cet exer-
cice, a et b sont supposés étre des entiers positifs.

def Egyptienne(a, b):
t=20
while a > @:
ifa% 2 =

b
a
return t

i n
TR S

0. Montrer que la fonction Egyptienne termine toujours.

1. Détailler I'exécution de Egyptienne(41, 3)

2. Montrer, a 'aide d'un invariant de boucle, que la fonction renvoie le produit entre les deux
arguments,

3. Quelle est la complexité de cette fonction ?

)17 Dunod.

20

Copyright ©

92 Chapitre 3 Algorithmique

(Exercice 3.3) Algorithme d’Euclide

Considérons I'algorithme suivant, qui prend en entrée deux entiers naturels a et b :
Tant que b # 0
(0) r prend pour valeur le reste de la division euclidienne de a par b.
(1) @ prend la valeur de b.
(2) b prend la valeur de 7.
Renvoyer a
0. Implémenter cet algorithme en Python.
1. Pourquoi cette fonction ne léve jamais 1'exception ZeroDivisionError?
2. Montrer que 'algorithme termine toujours.
3. Montrer a l'aide d'un invariant de boucle que 1'algorithme calcule le pged de a et b.
4. Montrer qu'a la fin de I'étape (0), si b < a alors r < a/2.
5. En déduire que la complexité de I'algorithme est en @'(In(n)) avec n = max(a,b).

| Exercice 3.4

Dans cet exercice, nous considérons la fonction neuf donnée en exemple dans les méthodes.

0. Modifier la fonction pour avoir une complexité en temps en @ (In(n)).
1. Modifier la fonction pour avoir une complexité en mémoire en &'(1).

(Exercice 3.5)

def cherche(s, m):
for k in range(len(s) - len(m) + 1):
b = True
for i in range(len(m})):
if s[k + i]!=m[i]:
b = False

def cherche2(s, m):
for k in range(len(s) - len(m) + 1):
if s[k:k + len(m)] == m:
return True

if be return False

return True
return False

0. Quelle est la complexité de la fonction cherche?

1. Quelle est la complexité de la fonction cherche2?

2. Quelle est la complexité au meilleur de la fonction cherche?

3. Que fait la fonction cherche?

4. Le justifier 4 'aide de deux invariants de boucle (un pour chaque boucle for).

(Exercice 3.6) Algorithme S

L’algorithme S sert a tirer au hasard (uniformément) n entiers différents parmi 'ensemble [1, N]|
des entiers compris entre 1 et N, Il prend donc en argument deux entiers n et N telsque 0 < n < N.
Voici le détail de I'algorithme :
On met dans la variable R un ensemble vide.
Tant que N > 0 :
(0) Tirer a pile ou face avec une probabilité de pile de n/N.
(1) Si vous avez obtenu pile, soustraire 1 a n et ajouter N a 'ensemble R.
(2) Soustraire 1 a N.

)17 Dunod.

20

Copyright ©

Exercices 93

0.

1.
2,
3.

Implémenter cet algorithme en Python. Pour R, utiliser une liste. Pour tirer a pile ou face,
utiliser la fonction randint ou la fonction random de la bibliothéque random.

Montrer que cet algorithme termine toujours.

Expliquer ce que fait cet algorithme.

Quelle est la complexité au pire et au meilleur en temps de cet algorithme ?

e Pour poursuivre |'étude avec une version récursive, voir 7.14 p. 291

| Exercice 3.7) Recherche dichotomique

0.

Ecrire, a I'aide de la bibliothéque random, une fonction rand_1list(N, t) qui crée une liste
aléatoire ! de t entiers compris entre 0 et N, puis trie la liste (avec la fonction? sorted) avant

de la renvoyer.
Par exemple, rand_1liste (60, 20) pourrait renvover :

33 (2, 5, 7, 21, 23, 27, 28, 29, 29, 32, 33, 34, 49, 50, 50, 54, 54, 56, 59, 59]

Cette fonction sera utile pour tester les fonctions suivantes.
On se propose d’'écrire une fonction recherche(L, a) qui recherche I'élément a dans la liste L et
qui renvoie I'indice de 1'élément a ou —1 si I'élément ne figure pas dans la liste.

1.

2;

3.

Ecrire cette fonction qui recherche I'élément linéairement en parcourant potentiellement tous
les éléments de la liste. Cette fonction est utilisable méme si la liste L n'est pas croissante.

On se propose d’'écrire une fonction recherchedicho(L, a) qui recherche I'élément a dans la
liste triée L en utilisant le procédé de dichotomie : on regarde si a est supérieur ou inférieur
a 'élément (a4 peu preés) au milieu de la liste et suivant le résultat on poursuit la recherche
dans la sous-liste de gauche ou dans la sous-liste de droite de cet élément. On converge alors
rapidement vers I'élément (ou bien vers son emplacement théorique s'il n'est pas présent dans
la liste).

Ecrire cette fonction. Elle devra renvoyer la valeur —1 si I'élement a n’est pas présent dans L.
Quelle est la complexité en nombre de tests sur les éléments de la liste des deux fonctions

précédentes 7

[Exercice 3.8] Exponentiation rapide

On considére le programme Python suivant :

def Puissance(a, n}:

A=a
N=n
R=1
while N > @:
if N\® 2 == @:
A = Axx2
N=N//2
else:
R=R=* A

1. La méthode 5.3 page 197 permet de résoudre plus facilement ce probléme grace a la bibliotheque numpy . random.
2. La fonction sorted utilise I'algorithme fim sort pour trier la liste. Cet algorithme est un mélange astucieux

des algorithmes de tri rapide et de tri fusion décrits au chapitre 8.

4
9

Dunod.

2017

-

Copyright ©

94 Chapitre 3 Algorithmique

N=N-1
return R

0. Montrer que cette fonction s’arréte.

1. Prouver a l'aide d'un invariant de boucle que cette fonction calcule bien a”

2. Quelle est la complexité (on ne comptera que les itérations de la boucle while) de cette fonction ?
Justifier alors le nom de cet algorithme.

| Exercice 3.9) Alignement de séquences génétiques (prog. dynamique)

Une séquence d’ADN est une suite de désoxyribonucléotides (A, C', G ou T), que I'on peut done
représenter par un mot écrit sur l'alphabet {A,C,G,T}. Une telle séquence peut subir trois mu-
tations élémentaires :

e la délétion : suppression d'un nucléotide :

e 'insertion : ajout d'un nucléotide ;

e la substitution : modification d'un nucléotide.
Etant donnés deux séquence d’ADN wu et v, nous cherchons le seénario le plus vraisemblable ex-
pliquant la mutation de u en v. Ainsi, pour uy = AACG et vy = TAG, un scénario possible
est : substitution de la premiére lettre de ug en la lettre T, pour donner la séquence TACG, puis
délétion de la lettre C. Chaque lettre du mot u ne doit subir qu'une mutation et un tel scénario
peut étre codé en alignant les séquences u et v, en introduisant des symboles — pour représenter
les délétions et les insertions. Voici quelques exemples de scénarios pour les mots ug et vp :

A A C G - A A C G A A C G - -
T A - G T A G - - - T - — A G
Autrement-dit, un scénario peut étre vu comme un couple (i, 7) de mots sur I'alphabet
{A,B,C,T,—} avec les régles suivantes :

e i et ¥ sont de méme longueur

e on retrouve u (resp. v) si on supprime de u (resp. de #) les lettres —;

e les lettres — de @ et de © ne sont jamais alignées.
Nous allons définir le score d'un scénario, en utilisant le vocabulaire anglo-saxon usuel :

e un match désigne le cas ol deux lettres alignées sont égales et ajoute 2 points au score ;

e un mismateh désigne le cas o deux lettres alignées sont distinctes; il fait perdre un point.

e un gap désigne le cas on il y a délétion ou insertion et il fait perdre 2 points.
Ainsi, nos scénarios ont les scores respectifs 1 (deux matchs, un mismatch et un gap), -5 (un match,
un mismatch et trois gaps) et -11 (un mismatch et 5 gaps). Le but de cet exercice est de construire
un scénario optimal, c’est-a-dire de score maximal. Ce score maximal, noté d(u,v), pourra jouer le
role de distance du mot u au mot v.

0. Ecrire une fonction score qui, appliquée a @ et o, renvoie le score du scénario (@, 7).

2017 Dunod.

c 2

Copyright

Exercices 95

Nous pouvons représenter les scénarios graphi- A A C G
quement, comme ci-contre, dans le cas particulier .
des séquences ug et vy. Un scénario est codé par
un chemin allant de la case en haut a gauche a T -~ o
la case en bas a droite, dans lequel trois dépla-
cements élémentaires sont permis : vers la droite A *
(délétion), vers le bas (insertion), ou en diagonale
descendante (match ou mismatch). Les trois che-
mins tracés correspondent a nos trois scénarios.

1. Si n et p sont les longueurs respectives des séquences u et v, on note s(n,p) le nombre de

scénarios possibles pour passer de u a v. Montrer que l'on a :
Vn,m € N, s(n,m) = . “ =0 gum=10
sin—=1,m)+s(n—1,m—1)+s(n,m—1) sinon

Ecrire une fonction qui calcule s(n, m). Cette fonction construira une matrice qui contiendra,
a la fin du calcul, les valeurs s(i, j) pour 0 < i < n et0 < j < m . Quelle est la complexité en
temps et en place de votre fonction ?
Combien existe-t-il de scénarios différents pour les séquences ug et vy 7 Et pour des séquences
de longueur 30 et 457

2. Modifier la fonction précédente pour que sa complexité en place soit en @(min(n,m)).

Le nombre de scénarios différents étant beaucoup trop grand, il n’est pas raisonnable de chercher un
scénario optimal en testant tous les scénarios possibles. Nous allons mettre en place un algorithme
efficace, de type programmation dynamique, décrit en 1970 par Needleman et Wunsch [NW70).
On fixe deux séquences u = ugy ... u,—1 et v = vy ... v, de longueurs respectives n et m et
onpose, pour 0 < j<net0<i<m:

5(?, J) = d('ﬂ.o"l“ R RV L B "'-f'i—l)
Autrement-dit, 8(4,) est la distance du préfixe u[: j] de u au préfixe v[: 1] de v.

3. Que vaut 6(i,j) quand i =0ou j=07?

4, Pour 1 € i < met 1 < j < n, donner une expression de 4(i,j) en fonction de 6(i — 1,),
6(1—1,7—1) et 8(i,j — 1). Calculer d(ug,vp).

5. Ecrire une fonction distance qui, quand on l'applique a deux séquences u et v, renvoie la
distance de u a v. Cette fonction construira une matrice d qui contiendra, a la fin du calcul, les
valeurs 4(z, j). Quelle est la complexité en temps et en place de votre fonction 7

Nous souhaitons maintenant construire 'alignement correspondant a un scénario optimal. Pour

cela, on peut remonter dans la matrice § en retrouvant le chemin correspondant aux scores (i, j).

Plus précisément, partant de la case (m, n) de score (m, n), on sait que §(m,n) = d(m—1,n—1)+1

(ou +2), ou que d(m,n) = d(m—1,n)—1, ou que 6(m,n) = 6(m,n—1)—1; on peut donc construire

les dernicres lettres de @ et de #, et ainsi de suite. Il est cependant dommage de rechercher la

direction a suivre alors que cela a déja été fait au moment du remplissage de la matrice 4.

6. Ecrire une fonction ald gnement qui, appliquée a deux séquences u et v, renvoie les mots @ et
¥ représentant un scénario optimal pour u et v, ainsi que la distance de u a v. On utilisera
toujours une matrice &, dans laquelle on stockera, en plus de 4(¢, j), un élément indiquant la
direction a suivre pour remonter dans la matrice.

d.

D

17 Dunc

)

o

™

Copyright ©

96 Chapitre 3 Algorithmique

(Exercice 3.10] Orbitales atomiques

Les électrons d'un atome se répartissent en plusieurs
couches électroniques qui peuvent elles-mémes se dé-
composer en plusieurs sous-couches. Les couches sont
caractérisées par le nombre quantique principal n €
N*. Les sous-couches sont caractérisées en plus par un
entier / tels que 0 < £ < n. Chaque sous-couche pent
contenir jusqu'a 2(2¢ + 1) électrons.

Chaque sous-couche est notée avec la valeur de n suivi
d'une lettre indiquant la valeur de £. L’ordre des lettres
est spdfgh, ainsi, 1s correspond an=1et / = 0 et 4d
correspond a n =4 et { = 2,

La régle de Klechkowski dit que les sous-couches se
remplissent dans 'ordre indiqué par la figure 1 : par
n + £ croissant, et, en cas d’égalité, par n croissant.
Chaque sous-couche est totalement remplie avant que
la sous-couche suivante ne puisse obtenir un électron.
La configuration d'un atome sera notée par les noms
des sous-couches suivis, chacun, du nombre d’électrons
dans la sous-couche. Par exemple le silicium (14 élec-

N,
o

Ficure 0. L'atome de magnésinum et ses
3 couches électroniques.

\

trons) a pour configuration 1s2 2s2 2p6 3s2 3p2 et le magnésium a pour configuration 1s2 2s2 2p6
3s2. On remarquera que la derniere sous-couche du silicium n’est pas totalement remplie, elle ne

contient que 2 électrons pour un maximum de 6.

bs

Ts

s~
/:zs/ 2p
/35/313
/45/4;)
/r/r
/us/up
e /
P il L

34"

a- el

5d el 5
/

FI1GURE 1. Ordre de remplissage des sous-couches

1. On écrira les sous-couches par n croissant puis par { croissant.

unod.

7

01

-

Copyright ©

Exercices 97

0. Ecrire une fonction couche_suivante(n, 1) qui étant donnée une sous-couche n,1 donne la
sous-couche suivante. Ainsi couche_suivante(4, 2) renvoie 5, 1 et
couche_suivante(4, @) renvoie 3, 2.

1. Ecrire une fonction souscouches(Z) qui, étant donné un numéro atomique ! Z, renvoie une
liste de listes C telle que :

e C[n-1][1] vaut le nombre d’électrons dans la couche n, 1 si cette couche contient au moins
un électron.
e C[n-1][1] n’'est pas défini sinon.
Par exemple souscouche(8) renvoie [[2], [2, 4]].

2. Ecrire une fonction to_string(C) qui convertit une liste de listes représentant une configu-
ration électronique en chaine de caractéres. Par exemple to_string([[2], [2, 4]]) doit
renvoyer "1s2 2s2 2p4". Les sous-couches seront écrites par n croissant, et en cas d’égalité,
par £ croissant.

Etant donné un atome de numéro atomique Z, on note n; le nombre de ses couches électroniques.
Par exemple, pour le magnésium, n,2 = 3.

3. Estimez la complexité de souscouches(Z) en fonction de n;.
4. Montrer que n = ¢'(Z). Puis estimez la complexité de souscouches(zZ) en fonction de Z.

1. Le numéro atomique est égal an nombre de protons de 'atome, et done ici au nombre d’électrons.

Copyright © 2017 Dunod.

98 Chapitre 3 Algorithmique

[TP 3.0 — L’agence matrimoniale]

Vous étes directeur d'une agence matrimoniale qui se trouve face a la situation idéale suivante :
vous avez exactement 2n clients, constitués de n femmes (notées Fy, Fy, ..., F,,_1) et de n hommes
(notés Hy, Hy,...,H,_1), qui souhaitent se marier. Vous avez demandé i chaque personne de
classer les n personnes du sexe opposé par ordre de préférence, et vous devez créer n couples. Vous
devez donc choisir une permutation o de 'ensemble {0, 1,...,n—1}, correspondant a la proposition
des couples (F01 HU(U})1 (Fl'r Ho'(l})! sewiy (El—l! Ha(n—-l})'

Votre proposition o sera dite instable sl existe deux entiers distincts i et j de {0,...,n—1} tels que
F; préfere H, ;) & Hy ;) et Hy(;) préfere F; a F;. Un tel couple (i, j) sera qualifié d'instable pour o.
Une telle situation est évidemment dommageable, car les personnes F; et I, ;) n’accepteront pas
votre proposition. Le but de ce TP est de démontrer qu'il existe toujours une proposition stable et
d’en donner un algorithme de construction.

Les classements constituant la donnée du probléme seront représentés par deux listes de taille n,
notées C'F et CH : la case i de la liste CF (resp. de la liste CH) contient la liste des veeux de
la femme F; (resp. de I'homme H;), dans 'ordre croissant de ses préférences. Voici un exemple de
données :

CF =[0,2,1],[2,0,1],[0,2,1]] et CHy=][[0,1,2],[1,0,2],]0,2,1]]
dans lequel la femme Fjy préfére H,, puis H,, et enfin H.
Une proposition o sera représentée par le tuple (o(0),...,0(n—1)). Ainsi, oy = (1,0, 2) propose les
appariements (Fy, Hy), (Fy, Hy) et (Fa, Hz). Pour les données C'Fy et C'Hy, (2, 1) est une instabilité
pour oy car Fy préfere Hy a Hy et H préfere I, a Fjy. Par contre, (1,2) n'en est pas une car F)
préfere Hy a H, (méme si Hoy préfere Fy a Fy).

Quelques fonctions élémentaires.

0. Ecrire une fonetion qui, appliquée & C'F' et & trois indices i,7j;,j2 € {0,....n — 1}, renvoie le
booléen True si F; préfere H;, a Hj,, et False sinon. Quel est, dans le pire des cas, le temps de
calcul de cette fonetion ? On remarquera que cette fonction peut s’appliquer a C'H pour tester
si H; préfere F;, a Fj,.

1. Pour améliorer 'efficacité de cette fonetion, nous pouvons remplacer C'F et C'H par des matrices
carrées RF et RH d’ordre n : I'entrée RF'[i|[j] (resp. RH[i|[j]) contient le rang de I'homme
H; (resp. de la femme F}) dans la liste des préférences de F; (resp. de H;). Par convention,
la personne préférée aura le rang 0. Ecrire une fonction convertir_matrice qui, quand on
Iapplique a la liste CF (resp. CH), renvoie la matrice RF' (resp. RH).

2. Ecrire une fonction preference qui, appliquée & RF et & trois indices 4, j;, jo € {0,...,n—1},
renvoie le booléen True si F; préfere H; a Hj,, et False sinon. Quel est, dans le pire des cas,
le temps de calcul de cette fonction 7 Une nouvelle fois, cette fonction, appliquée a RH, permet
également de voir si H; préfere F;, a F},.

3. Ecrire une fonction qui, appliquée aux matrices C'F, C'H et & une proposition o, renvoie la liste
des couples (i,) instables pour o. Tester votre fonction sur C'Fy, C'Hy et 0. Expliciter une
proposition stable pour (C'Fy, CHyp).

4. Ecrire une fonction est_stable qui, appliquée aux matrices RF, RH et & une proposition o,
renvoie le booléen True si la proposition est stable, et False sinon.

Dunod.

2017

-

Copyright ©

Travaux pratiques 99

Une méthode naive.
La fonction permutations du module itertools crée un itérateur permettant de parcourir toutes
les permutations d'une liste ou d'un tuple, comme dans 'exemple ci-dessous :

>>> dmport itertools

>»> for sigma in jtertools.permutations([@, 1]):
print(sigma)

(@, 1)

(1, @)

On remarquera que les permutations ainsi renvoyées sont des tuples, méme quand on a appliqué
itertools.permutations a une liste.

5. En déduire une fonction proposition_stable_naive qui, appliquée aux matrices CF et CH,
renvoie nne solution stable (sil en existe une). Tester votre fonction avec C'Fy, C Hy, puis avec

CF; = [[1,2,0,3),(2,1,0,3],10,2,3,1],[1,2,0, 3]]
C}Il = [[3- 0: 21 1]1 [3‘ 21 Ur 1]9 [2' 31 07 1]: [2" 370v]-]]

Une méthode efficace.

Nous allons maintenant faire évoluer dynamiquement une proposition partielle stable, en parlant
plutot de fiangailles. Comme ces fiancailles vont étre modifiées an cours du calcul, nous les repré-
senterons par une liste o de longueur n, plutot que par un tuple; ainsi, si j = o[i], la femme F;
sera fiancée a 'homme G si j € {0,1,...,m — 1}, et ne sera pas fiancée si j = n. Au début du
caleul, o = [n,...,n], puisqu’'aucun mariage n’a encore été envisagé. Les numéros des femmes non
encore fiancées seront placées dans une pile P, initialisée & P = [0,1,...,n — 1]. Tant que P est
non vide, on en extrait un élément i : on regarde alors le premier veeu I1; de F; (élément qui est
en téte de RF[i]). Si cet homme n'est pas encore fiancé, on fiance F; et H; ; si H; est déja fiancé a
F}., on regarde si H; préfere F; & Fj.. Si c’est le cas, on rompt les fiancailles de H; (en remettant
k dans la pile) et on le fiance avec Fj ; sinon, on remet 7 dans P. Pour que cela fonctionne, il faut
que les listes des veeux des personnes évoluent dynamiquement : a chaque étape du calcul, quand
la femme F; teste son premier veeu (qu'il ait été accepté ou pas), on le supprime de la liste C'F[i].

6. Expliciter le fonctionnement de cet algorithme dans le cas particulier (C'F1,CH1). Montrer
que 'on construit bien ainsi une proposition stable.

7. Ecrire une fonction choix qui, appliquée 4 un entier n, calcule une liste de choix aléatoire C,
¢'est-a-dire une liste de longueur n telles que pour tout i, C[i] est une liste contenant les n
entiers compris entre 0 et n — 1. Cette fonction permettra de simuler a la fois CF et CG. On
powrra utiliser la méthode shuffle du module numpy . random.

Pour mettre en place cet algorithme de fagon efficace, nous aurons besoin de répondre rapidement
a deux questions : si 'homme H; est déja fiancé, quel est l'indice de sa fiancée et préfere-t-il F; a
sa fiancée 7 La réponse a la seconde question se fera en utilisant la matrice RH et nous aurons une
réponse efficace & la premiére question en définissant conjointement & o une liste 7 représentant
o~! (avec 7(j) = n si H; n’a pas encore été fiancé).

8. Ecrire le code d'une fonction proposition_stable qui, appliquée & CF et C'H, renvoie une
proposition stable en utilisant cet algorithme. Nous ajouterons un peu d’'aléa en extrayant de
la pile P un élément 7 aléatoire.

9. Prouvez que cet algorithme est correct, c’est-a-dire qu’il renvoie bien dans tous les cas une
proposition stable, et que le temps de calcul dans le pire des cas est un @(n?). Nous avons ainsi

4
9

Dunod.

2017

-

Copyright ©

100 Chapitre 3 Algorithmique

démontré qu’il existait dans tous les cas une proposition stable, que I'on pouvait calculer en
temps quadratique.
10. Que remarque-t-on quand on applique plusieurs fois 1'algorithme & un méme (CF,CH)"?

Cet algorithme est asymétrique, puisque les femmes et les hommes n'y jouent pas le méme role. Pour
détecter un éventuel avantage des uns sur les autres, nous noterons, quand ¢ est une proposition
stable associée a (CF,CH), mp la moyenne du rang de H,(; dans la liste des préférences de F;.
De méme, my sera la moyenne du rang de F; dans la liste des préférences de H, ;).

11. Ecrire une fonction test qui, appliquée & un entier n, calcule un couple aléatoire (C'F,CH)
correspondant a des classements possibles fournis par nos 2n clients, calcule une solution stable
o pour ce couple (C'F,CH), puis renvoie le couple (mpg,mg) associé & (CF,CH, o). Peut-on
dire que l'algorithme utilisé favorise I'un des deux sexes par rapport a I'autre ?

Une situation plus réaliste.
Nous supposons maintenant que 'agence a des nombres différents de clients de chaque sexe : n
femmes et p hommes. Les n + p clients ne sont plus obligés de classer toutes les personnes du sexe
opposé : les listes C'F[i] et C'H|[j] sont donc de longueur variable. Nous dirons que F; et H; sont
compatibles si F; apparait dans le classement de H; et si H; apparait dans le classement de F;.
Une proposition ¢ sera donc une liste de longueur n, proposant un certain nombre de fiancailles et
vérifiant les conditions suivantes :
e pour tout i € {0,1,...,n — 1}, j = o[i] est un entier compris (au sens large) entre 0 et p;
si j < p, F; et H; sont compatibles et on fiance F; et H; ; sinon, F; n’est pas fiancée ;
e on ne propose pas le méme fiancé a deux femmes différentes ; autrement-dit, seul 1'élément
p peut apparaitre plusieurs fois dans la liste o.
Une telle proposition est dite instable dans trois cas :
a) il existe deux entiers distincts i et j dans {0,...,n — 1} tels que oli] # p, olj| # p, F;
préfére H,;y & Hy(y) et H,(;) préfére F; & Fj;
b) il existe deux entiers distincts i et j dans {0,...,n — 1} tels que oli| = p, o[j] # p et Hyy)
préfere F; a F ;
c) il existe deux entiers i et k dans respectivement {0,....n—1} et {0,...,p— 1} tels que F;
et Hj. ne sont pas fiancés et sont compatibles.
Si o est une proposition de mariages, nous noterons .7 (o) (resp. .7 (o)) la liste croissante des
indices des femmes (resp. des hommes) auxquelles (resp. auxquels) un fiancé a été proposé par o.

12. Ecrire une fonction choix_bis qui, appliquée & un couple d’entiers (n,p), renvoie une liste
aléatoire pouvant représenter C'F' (cette méme fonction appliquée au couple (p,n) permettra
de simmler C'H).

13. Modifier les fonctions convertir_matrice et preference pour les adapter a cette nouvelle
situation.

14. Ecrire une fonction proposition_stable_bis qui adapte la fonction proposition_stable
pour construire une solution stable dans ce cadre plus général. La fonction renverra le triplet
(o, F(0), #(0)). Tester votre fonction sur quelques exemples.

On peut démontrer que les parties .7 () et # (o) ne dépendent pas de la proposition stable o.
Autrement-dit, les laissés-pour-compte sont les mémes pour toutes les propositions stables.

Copyright © 2017 Dunod.

Vrai/Faux sur le cours — corrigé 101

0.

Une complexité en ©(n) est mieux qu'une complexité en ©(n?) lorsque
n est grand. Mais le © ne donne aucune information sur ce qui se passe
quand n est petit.

Si la condition vaut toujours vraie (par exemple un while True), le while
va tourner indéfiniment.

Non, cela dépend du nombre de passages dans le for et de la complexité
du corps du for.

3. Il faut recopier chaque élément, on ne peut pas avoir mieux que @(n).

4. n décroit mais pas strictement. Si la condition du if n'est pas satisfaite,

n reste constant.

. N décroit mais pas strictement. Si la condition du 1 f est satisfaite, N reste

constant.

. Soit N soit n diminue de 1, donc leur somme diminue toujours de 1.

7. Soit N soit n diminue de 1, donc leur produit diminue toujours.

10.

11.

12.

13.

14.

15.

myst termine toujours car on a trouvé un variant de boucle (questions pré-
cédentes) donc myst renvoie toujours une valeur. En I'absence de return,
c’est la valeur None qui est renvoyée.

. N ne décroit que s'il est différent de n, comme au départ il est plus grand,

il reste toujours plus grand.

Il existe toujours un invariant de boucle inutile (par exemple la propriété
qui est toujours vraie). Par contre, il n’existe pas toujours d’invariant de
boucle qui permette de démontrer ce qu'on veut démontrer. L’invariant
de boucle est une forme de récurrence, et certaines propriétés vraies ne
peuvent pas étre démontrées par récurrence.

C’est évident, il n'y a aucune construction (pas de while notamment) qui
risquerait de faire boucler indéfiniment la fonction.

Cet invariant permet de démontrer que la fonction renvoie True si et

seulement si les éléments de la liste sont classés dans 'ordre strictement
croissant.

On passe n? fois dans la boucle extérieure. Pour chaque passage dans la
boucle extérieure, on passe [log,(n)| fois dans la boucle intérieure.

Cet invariant supposerait que la boucle extérieure est terminée mais pas
la boucle intérieure, c’est absurde.

Pour chaque passage dans la boucle extérieure, on accomplit en entier la
boucle intérieure.

[J Vrai

o Vrai

[J Vrai

& Vrai
O Vrai

[J Vrai

& Vrai
ErVrai
W Vrai

& Vrai

@/Vrai

m/Vrai

@/Vraj

o Vrai
[0 Vrai

o Vrai

Er Faux

[J Faux

¥ Faux

[J Faux
E(Faux

ErFaux

[0 Faux
[J Faux
0 Faux

[J Faux

[0 Faux

[J Faux

0 Faux

O Faux
o Faux

[J Faux

Copyright © 2017 Dunod.

102 Chapitre 3 Algorithmique

[C‘_orrigé exo 3.0]

Lors de I'exécution de truc(n), la boucle extérieure (for j) est accomplie n fois. A chaque passage
dans la boucle extérieure, on passe n fois dans la boucle intérienre. Au total, on passe n? fois dans
la boucle intérieure. In fine, la complexité est en @' (n?).

Lors de l'exécution de machin(n), la premiére boucle for est exécutée n fois, puis la seconde
boucle est exécutée n fois, soit une complexité en & (n) + €'(n) = &(n).

(Corrigé exo 3.1

0. Le maximum recherché est soit M, soit L[K].

def maximum(L):
M= L[O]
for k in range(1l, len(L)):
if M < L[K]:
M = L[k]
return M

1. 11 suffit de remplacer L[k] par x.

def maximum(L):
M= L[]
for x din L:
if M < x:
M= x
return M

2. ¢(n) on n est la longueur de la liste L.

[Corrigé- exo 3.2]

0. a est un entier naturel, et est strictement décroissant : le while termine donc, ainsi que la
fonction Egyptienne.

1. On décrit dans un tableau I'évolution des variables au cours du temps. Chaque ligne correspond
a un passage a la ligne while a > 0:

a b t
41 3 0
20 6 3
10 12 3
5 24 3
2 48 27
1 9 27
0 192 123

2. On utilise la méthode 3.4. On remarque que la quantité axb+t est constante. Elle vaut an début
a*b et a la fin t. On en déduit que la valeur renvoyée est le produit des valeurs initiales de a
et b.

)17 Dunod.

20

Copyright ©

Corrections des exercices 103

3.

Il y a plusieurs maniéres de trouver la complexité.

Premiére méthode. A chaque passage dans le while la variable a est divisée par deux donc
perd un chiffre en base deux. Le nombre de passage dans le while est donc borné par le nombre
de chiffres de a en base deux, done borné par logs(a) + 1, d’ott une complexité en ¢(In(a)).

Seconde méthode. Appelons ay la valeur initiale de a. A chaque passage dans le while la
variable a est divisée par deux, donc, au bout de k passages, a contient au plus ag/2%. On
cherche alors ko tel que ag/2" < 1. Cela donne ay < 2F d'olt logy(ag) < ko. La valeur
ko = [logs(ag)| + 1 convient. Le nombre de passages dans la boucle est borné par kg, donc la
complexité est en @(In(a)).

[Corrigé exo 3.3 |

0.

On traduit directement, presque mot-a-mot en Python.

def euclide(a, b):

while b!= 8:
r=a%bh
a=>b
b=r

return a

Cette exception pourrait éventuellement étre levée par 'expression a % b mais on a vérifié
avant que b est non nul, donc cette exception n’est jamais levée.

La suite des valeurs de b est une suite d’entiers naturels strictement décroissante ', done le
while termine toujours, donc la fonction termine toujours.

On applique la méthode 3.4. On remarque que la quantité pged(a, b) est constante, qu’a la fin
b vaut zéro donc cette constante est égale 4 a. On en déduit que la valeur renvoyée est bien le
pged des valeurs initiales de a et b.

Considérons deux cas.

Premier cas : b < a/2. Comme a < b on a le résultat voulu.

Deuxiéme cas b > a/2 : on a alors a/2 < b < a. On peut écrire a = 1 x b+ (a—b) et on remarque
que 0 < a—b < b (car a < 2b). Ainsi a — b est le reste de la division euclidienne de a par b (le
quotient vaut 1), d’ot 7 = a — b. Comme a/2 <bonaa—-b<a—a/2=a/2

Dans tous les cas, on a r < a/2.

Si b < a au début, alors cette propriété est un invariant de boucle, elle est préservée au cours
de I'exécution de l'algorithme.

Lors de I'exécution, r < a/2, or r devient ensuite b qui devient ensuite a, donc en deux passages
dans le for, a est divisé par deux (au moins), donc il perd au moins un chiffre en base deux.
Par conséquent, le nombre de passages dans le for est majoré par deux fois le nombre de chiffres
en base deux de a plus un. Ce qui donne une complexité en €'(1 + log,(a)) = €(In(a)).

Sia < b, alors r = a, et a la premiére étape, les valeurs de a et b sont échangées et on se ramene
au cas précédent, d’ont une complexité en @(In(b)).

Dans tous les cas, la complexité est en & (In(n)).

1. Ce n'est pas forcément le cas pour a qui peut augmenter lors du premier passage dans le while.

Copyright © 2017 Dunod.

104 Chapitre 3 Algorithmique

[Corrigé exo 3.4

0.

&5

Le probléme vient des deux boucles imbriquées. On va s’arranger pour n’avoir gqu'une seule
boucle.
On maintient dans le for U'invariant suivant : « Le nombre de 9 4 la fin de L[:k] est 4 »

def neufs(n):

L= [1
while n!= @:
L.append(n % 18)
n=n// 10
M=28
i=8
for k in range(len(L)):
if L[k] == 9:
i+=1
else:
i=0
M = max(M, 1)
return M

Pour diminuer la complexité en espace, on va éviter de stocker les chiffres dans une liste.

def neufs{n):
M=8
i=8
while n!= @:
if n % 10 == 9:
i+=1
else:
i=8
M = max(M, i)
n f/=18
return M

[Corrigé exo 3.5]

0.

Dans la premiére boucle, on passe moins de n fois avee n la longueur de s. Dans la seconde,
moins de p fois avec p la longueur de m.

A T'intérieur des deux boucles, le temps de calcul est en @(1).

Au final, la complexité est en & (np).

On passe au plus n fois dans I'unique boucle. A Tintérieur de la boucle, le test d’égalité entre
deux chaines de caractéres est en @(p), d’oit une complexité totale en @'(np).

An mieux b vaut True du premier coup (c’est possible si m est un préfixe de s. On a alors fait
p passages dans la seconde boucle et un seul dans la premiere, d’olt une complexité an meilleur
en @'(p).

cherche(s,m) teste si m est un sous-mot '.

La boucle interne a pour invariant « b équivaut & s[k:k+i]==m[:1] » La boucle externe a pour
invariant « s[j:j+Llen(m)] != m pour tout j<k » car si il y avait égalité, on serait sorti de la
boucle avec le return True.

On en conclut que si la boucle n'est jamais interrompue par le return True alors m n'est pas
un sous-mot de s. Si la boucle est interrompue, d’apres 'invariant de la boucle intérieure, on a
trouvé m dans s.

1. « Sous-mot » est la un anglicisme, une traduction littérale de subword de s. La traduction usuelle est facteur.

Dunod.

2017

-

Copyright ©

Corrections des exercices 105

[Corrigé exo 3.6]

0. On traduit I'algorithme en Python.

import random

def S(n, N):
R =[] # L'ensemble R est représenté par une liste
while N > @:
p vaut True avec une probobilité de n/N
p = random.randint(l, N) <= n
¥ pi
R.append(N)
n=En=31
N=HN-1
return R

1. N contient un entier naturel, et la valeur de cet entier décroit strictement a chaque passage
dans la boucle, donc I'algorithme termine.
On remarque que la condition » > 0 pourrait remplacer N > 0 car n est toujours plus petit
que N.

2. On veut tirer n valeurs distinctes parmi [1, N]. On a deux cas, soit N appartient soit N
n‘appartient pas au résultat.
Le premier cas arrive avec une probabilité n/M. Le tirage & pile ou face permet de savoir si N
est dans le résultat. Ensuite, I'algorithme tire an hasard les n — 1 éléments qui restent a tirer
parmi [1, N —1].
Dans le second cas, on ne diminue par n, on tire donc n éléments dans [1, N — 1].

3. L’algorithme a une complexité au meilleur et au pire en &(N). Avec la condition n > 0, la
complexité au meilleur est seulement en &(n).

[Corrigé exo 3.7J

0.
import random
def rand_list(N, t):
return sorted([random.randint(1l, N} for i imn range(t)])
1

def recherche(L, a):

L
recherche 1'élément o dons L
renvoie 1'indice correspondant, -1 si pas trouvé
LN
n = len(L)
for 1 in range(n):

if a == L[4]:

return i # on sort directement

return -1

Copyright © 2017 Dunod.

106 Chapitre 3 Algorithmique

i = recherche(L, a)
print('indice', i, 'élément', a)
print (3] L), LY +=121)

indice 10 élément 33
[2, 5, 7, 21, 23, 27, 28, 29, 29, 32] 33 [34, 49, 50, 50, 54, 54, 56, 59, 59]

Bien siir, on dispose d’outils Python de type boite noire qui font la méme chose.

if a in L:
print{L.index(a))
else:
print{-1)

10

2. Le principe est simple mais le test de fin est assez subtil.

def recherchedicho(L, a):
L]
recherche 1'élément a dans L
renvoie 1'indice correspondant, -1 si pas trouvé
L
deb, fin = @, len(L) - 1 # debut, fin de lo sous-liste
milieu = (deb + fin) /f/ 2
while fin > deb:
milieu = (deb + fin) [/ 2
if Llmilieu] >= a:
fin = milieu
else:
deb = milieu + 1

if a == L[deb]:
return deb
else:
return -1

Lorsque fin = deb + 1 par exemple il faut étre sur de renvoyer le bon indice. On a dans ce
cas, milieu = deb quand on fait la moyenne
d’on I'inégalité large pour le test if L[{milieu] >= a..

N = 25

for i din range(380088):
a, L = creeliste(N)
#L = [0, 1]
#a]
i = recherchedicho(L, a)
if i == -1:
print(L, a, i, L.index(a))

N = 25
a, L = creeliste(N)

ffa = 46

i = recherchedicho(L, a)
print('indice’, i1, 'nombre', a)
print(L[:4], L[3]; L[Y *=2:])

indice 7 nombre 16
[2, 6, 7, 9, 12, 13, 15] 16 [17, 20, 22, 29, 35, 36, 39, 48, 40, 45, 49, 49, 50, 52, 67, 68, 72]

)17 Dunod.

20

Copyright ©

Corrections des exercices 107

3.

La premiere fonction parcourt potentiellement tous les éléments de la liste, elle a une complexité
en €(n). La deuxiéme, qui agit par dichotomie, effectue pour n = 27, an maximum p + 2 tests
sur les éléments de la liste. On se convaine aisément que le nombre de tests est de 1'ordre de
log,(n) ce qui est bien siir bien meilleur sauf si I'élément recherché est dans les premiers de la
liste...

[Corrigé exo 3.8}

0.

Nous allons montrer que la quantité N est un variant de boucle.

N est toujours un entier, en effet il est initialement entier (par hypothése), et par une récurrence
simple on a bien N entier aprés k passages dans la boucle.

La quantité N est strictement décroissante (on note N’ sa valeur apreés un passage dans la
boucle) :

- . ;r,‘ N s -
en effet si N est pair avant un passage dans la boucle, on a N' = 5 et comme N > 2 on a bien
N' < N.

Alternativement si N est impair avant un passage dans la boucle on a N’ = N — 1 et donc
N <N
Enfin, la boucle s’arréte lorsque N <0
N est bien un variant de boucle : cette boucle s’arréte effectivement.
Montrons que la propriété suivante est un invariant de boucle :
(2,) : (Aprés n exécutions de la boucle a™ = R x AN)
Initialisation : avant la premiere exécution de la boucle, par initialisation, ona R =1, A =a
et N=netdonc Rx AN =1 xa" =a".
Hérédité : Supposons pour un n donné (22,) vraie (et N # 0). Deux cas sont a distinguer :
: : N
Si N est pair, on a alors N/ = 'L R' =Ret A' = A2,
rr : 5y N ; .
Onadonc R x AN = Rx (A%2)7 = R x A>*7 = R x AN =a" et (£,,41) est vraie,
Sinon N est impair. Onaalors NN=N -1, RR=Rx Aet A’ = A.
Onadonc R x AN = Rx Ax AN = R x AN = a" et (£,,41) est vraie.
Au final (22,4+1) est vraie dans tous les cas, I'hérédité vient d’étre prouvée.

N
2

Cette propriété est donc bien un invariant de boucle. Comme la boucle s’arréte lorsque N = (0
(on avait précédemment nécessairement N = 1 et N = 2), & 'arrét de la boucle on a a" = R
et donc cet algorithme calcule bien a™ (qu'il stocke dans R qui est la valeur renvoyée).

De maniére intuitive, on va diviser la taille du probléme par 2 au pire tous les deux passages de
boucles, la boucle sera donc exécutée au pire 2[log,(N)] fois et I'algorithme aura une complexité
en ¢(Inn)

Nous pouvons le démontrer de maniére plus rigoureuse en notant b,, 1'écriture de N en binaire
apres n passages dans la boucle.

Le dernier bit de b,, donne la parité de N. Si le bit le moins significatif de b,, est 1, alors N est
impair et b,41 = b, — 1. Si le bit le moins significatif de b, est 0, alors N est impair, et b,
est constitué de tous les bits de b, sauf le dernier.

Par itération de I'algorithme, si le bit le moins significatif de b,, est un 1, alors b, 1 est constitué
de tous les bits de b,, sauf le dernier et sinon c’est le cas de b, 4.

Copyright © 2017 Dunod.

108 Chapitre 3 Algorithmique

Notons p le nombre de bits de by. L’algorithme s’arrétera lorsque by, = 0. Il faudra pour cela que
tous les bits de by aient disparu. Il faudra pour cela p—1 passages de boucles qui correspondront
aux étapes ou le bit le moins significatif de b, est 0 et autant d’étapes qu’il y a de 1 dans I'écriture
de by, qui correspondront aux étapes on le bit le moins significatif de b,, est 1.

Le nombre de passages dans la boucle est ainsi p — 1+ u ot u est le nombre de 1 dans by. 11 est
compris entre p (car by commence nécessairement par un 1) et 2p — 1 (cas ou by n’est constitué
que de 1).

Il reste a déterminer p. On a 2P~! < n < 2P — 1. Par passage au logarithme en base 2, on a
p—1<logy(n) < p. Et done p = |logy(n)] + 1.

Il v a donc entre |log,(n)]| et 2|log,(n)] — 1 passages dans la boucle : la complexité de cet
algorithme est dans tous les cas en @(ln n) opérations élémentaires.

Le calcul naif de la puissance nécessite ¢ (n) opérations. L’algorithme présenté ici, qui réalise

le méme calcul, le fait bien avec beaucoup moins d'opérations, d’on le nom d’exponentiation
rapide.

[Corrigé exo 3.9]

0.
def scoref(u, v):
s =0
for i in range(len{u)):
if uli] == '-'" or v[i] == '-':
5 -= 2
elif ul[i]!= w[i]:
5 == 1
else:
5 = 2
return s

1. Sin=0oum =0, il existe un seul chemin (on se déplace toujours vers la droite, ou toujours
vers le bas), donc s,,,, = 1. Ceci fonctionne méme si n = m = 0, puisque quand u et v sont
vides, il existe bien un unique scénario : @ et ¢ sont également vides.

Sin,m = 1, on obtient la relation demandée en remarquant que I'ensemble des chemins cherchés
se décompose en :

e s(n,m — 1) chemins dont le dernier déplacement est vers le bas;

e s(n—1,m — 1) chemins dont le dernier déplacement est diagonal ;

e s(n— 1, m) chemins dont le dernier déplacement est vers la droite.
Il ne faut surtout pas utiliser cette relation pour programmer le calcul de s(n, m) récursivement.
En suivant l'indication, nous obtenons :

def calcul_s(n, m):
S = [[1 for j in range(m + 1)] for i 4n range(n + 1)]
for i in range(l, n + 1):
for j in range(l, m + 1):
S[41031 = S04 — 11031 + s{3 - 110§ - 1] + s{4]1[] - 1]
return S[n][m]

Le temps de calcul et I'espace mémoire utilisés sont clairement de 'ordre de nm. Nous obtenons
s(4,3) = 129 et s(35,40) = 577216875504248378452264677.

2. Au lieu de mémoriser toute la matrice S, on se contente de conserver en mémoire deux lignes
(si m < n) ou deux colonnes (si n < m). Nous commencons par nous ramener, par symétrie, au

2017 Dunod.

Copyright ©

Corrections des exercices

109

cas ol m < n, puis nous créons deux listes de longueur m, « 'ancienne ligne » et la « nouvelle

ligne » :

def calcul_s_bis(n, m):
ifm > n:
return calcul_s_bis(m, n)
else:
AL [1 for j dn range(m + 1)]
NL [1 for j in range(m + 1)]
for i1 9n range(l, n + 1):
for j in range{(l, m + 1):
NL[§] = AL[3] + AL[3 - 1] + NL[] - 1]

mnwon

AL, NL = NL, AL # se fait en temps et espace constant

return AL[m]

3. Si I'un des mots est vide, on ne peut I'aligner qu'en utilisant des gaps, d’ot 6(0,j) = —2j et

8(i,0)=—2ipour0<i<net0<j<m.

4. On peut arriver de trois fagons a la case (i, j) : depuis la case (i — 1, j) en perdant deux points,
depuis la case (i,7 — 1) en perdant deux points ou depuis la case (i — 1,7 — 1) en perdant un
point si v[i — 1] # ufi — 1] ou en gagnant deux points si v[i — 1] = u[j — 1] (attention au décalage
d'indice). Comme les chemins arrivant aux points (4,5 — 1), (i —1,j) et (i —1,j — 1) sont de
scores maximaux 6(¢,j — 1), 6(2 — 1,) et §(i — 1,5 — 1), le chemin optimal arrivant a (i, j) est

de score maximal :

50,) = max (80,5 = 1)~ 2,50~ 1,3) = 25— i = 1) +5(0.))

en posant g(i,j) = —1 si v[j — 1] # u[i — 1] et g(i, j) = 2 sinon.

Avec ug et vy, nous obtenons ainsi :

1.1 = 111&){(5(1._[])—2'5(0, l)—‘2,5(0,0)—1) =-1

8(1,2) = max(ﬁ(l, 1)-2,4(0,2)—2,4(0, 1)—1) = -3

et ainsi de suite jusqu'a remplir la matrice ci-
contre : d(ug,vg) = 4(3,4) = 1.

def distance(u, wv):
n, m = len{v), len(u)
d = [[@ for j in range(m + 1)] for i in range(n + 1)]
On remplit lo premiére ligne et la premiére colonne
for j in range(1, m + 1):
drejril = drejfj - 1 - 2
for i in range(l, n + 1):
dli]j[e] = d[i - 1][e] - 2
for i in range(l, n + 1):
for j in range(l, m + 1):
iF v[i - 1] == u[j - 1):
b =2 # motch
else:
b=-1 # mismatch
d(i]1(3] = max(d[i - 1](3] - 2, d[41[3 - 1] -
2,403 = 213 - 1] + b)
return d[(n][m] # delta(n,m) = d(u,v)

4§
A
G

A A C G
0 [-2|—-4|-6|-8
—2|-1|-3|-5|-7
—-410 (1 (-1|-3
—6|-2(-1| 0|1

Copyright © 2017 Dunod.

110 Chapitre 3 Algorithmique

6. La fonction auxiliaire plus_grand, appliquée a trois entiers a. b et ¢, renvoie 0, 1 ou 2 suivant
que max(a, b, ¢) vaut a, b ou c.

On commence par construire de la méme fagon la matrice §, en stockant dans chaque case, en
plus de la valeur (i, j), un caractére indiquant le dernier déplacement amenant & la case (4,) :
'd’ pour une délation (déplacement vers la droite), ‘i’ pour une insertion (déplacement vers le
bas) et ‘m’ pour un match ou un mismatch (déplacement en diagonale). Une fois la matrice &
calculée, il reste a remonter de la case (n,m) a la case (0,0) en construisant les mots @ et .

def plus_grand(a, b, c):
if a >= b
if a >= ¢:
return @
else:
return 2
else:
if b >= ¢
return 1
else:
return 2

def alignement(u, v):
n, m = len(v), len{u)
'd! = délétion, 'i' = insertion, 'm' = match ou mismatch
d = [[(e, 'd') for j in range(m + 1)] for i {n range(n + 1)]
On remplit lo premiére ligne et lo premiére colonne
for j in range(1, m + 1):
dle][j]l = d[e][j - 1][e] - 2, 'd’
for i in range(l, n + 1):
dlilfe] = d[i - 1][e][e] - 2, 'i'
for i in range(l, n + 1):
for j in range(l, m + 1):
if v[i - 1] == u[j - 1]:
b =2 # match
else:
b=-1 # mismatch
a = plus_grand(d[i - 1][j1[0] - 2, d[i][j - 1]
[(e] - 2, dli - 11[j - 11[0] + b)

if a == 0:
d(i1[3i] = d[i - 1](il[e] - 2, 'i'
elif a == 1:
d(i103] = d(31(3 - 11(e] - 2, 'd’
else:
d[i1[3]1 = d[i - 11[j - 1]1[e] + b, 'm’
i, j, utilde, vtilde = n, m, "", "¥
while il= @ and j!= @:
if d[9]1[§]1[1] == 'd': # on remonte vers la gauche
utilde, vtilde = u[j - 1] # utilde, '-' + \
vtilde # on lit une lettre de u
j=3-1
elif d[il1[jl[1] == 'i': # on remonte vers le haut

on lit une lettre de v
utilde, vtilde = *~' + utilde, v[i = 1] + vtilde
$=4-1
else: # on remonte en diagonale
utilde, vtilde = u[j - 1] + utilde, v[i - 1] + \
vtilde # on lit une lettre de u et de v
9y 4 =4 =k fi=a
return d(n][m][@], utilde, vtilde

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 111

[Corrigé exo 3. 10]

0.

Si £ est différent de zéro, le résultat est évident. Sinon le nouvean £ vaut la moitié de 'ancien
n. Pour trouver le nouveau n, on utilise le fait que la somme n + £ a augmenté de 1.

def couche_suivante(n, 1):
if 1!= o:
returnn + 1, 1 - 1
returnn+1-n// 2, n [} 2

Tant qu’il reste des électrons a répartir, on remplit la sous-couche courante et on passe a la
couche suivante.

def souscouches(Z):

c=1]

n, L=1, 8

while Z > 0: # Tant qu'il reste des électrons & répartir
if 1 ==0: #

C.append([])
e =min(2 » (2 « 1+ 1), Z) # e = nb d'électron sur lo sous-couche
Cln - 1].append(e)

Z=Z7-e
n, 1 = couche_suivante(n, 1)
return C

. On parcourt la liste de listes avec deux for.

def to_string(C):

X = "spdfgh" # Les lettres correspondant aux sous-couches.
g = nnm

for n din range(len(C)):
for 1 in range(len(C[n]l)):
s #= " " 4+ str(n + 1) + X[1] + str(C[n][1])
return s[1:] # On supprime 1'espace initial.

On passe une fois dans le while pour chaque sous-couche. La complexité est done en @(s) avec
s le nombre de sous-couches. Etant donné que chaque couche n contient au plus n sous-couches,
et qu'il y a ny couches, on a s < n? d’oil le résultat voulu.

Au lien de chercher un majorant de nz en fonction de Z, cherchons un minorant de Z en fonction
de ny.

On remarque que si une couche n est complétement remplie, alors elle contient un nombre
d’électrons de :

n—1 n—1

mn r
(n+ 1
§2(2P‘+1) > 2§(£+1) :2;#.:2”(”27*) > n?

n 9] ‘
De plus, toutes les couches jusqu’a [Ez] sont remplies, donc Z > EL”:Z{ n2 > n3/6 d'ou le

résultat recherché.
On en déduit que n; = @(Z'/?) et que n2 = 6(Z**) d'oit une complexité en &(Z%/?).

Copyright © 2017 Dunod.

112 Chapitre 3 Algorithmique

(Corrigé TP 3.0

0.

1.

3.

1l suffit de parcourir la liste C[i] de gauche a droite : on renvoie False si on rencontre j; avant
J2 et True sinon.

def prefere(C, i, j1, j2):
est-ce que i préfére j1 d j27
n = len(C)
for j in range(n):
if C[i][3] == j1:
return False
elif C[i][j] == j2:

return True

Dans le pire des cas, les entiers j; et j, sont les derniers éléments de C[i] et le temps de calcul
est de l'ordre de n.

On initialise la matrice R, puis on parcourt chaque liste C'[4] : I'élément C[i][j] a le rang n—1—j
dans l'ordre des veeux de la i-éme personne.

def convertir_matrice(C):
n = len(C)
R = [[® for i in range(n)] for j in range(n)]
for i in range(n):
for j in range(n):
ROILC[iI[§1I =n-3F -1
return R

Il suffit de comparer les rangs de j; et de jo2, ce qui se fait en temps constant :

def preference(R, i, j1, j2):
est-ce que i préfére j1 a j2?
return R[i][§1] < R[i][j2]

On crée une liste vide L et on teste tous les couples (i,7) en ajoutant a4 L les instabilités
détectées :

def liste_instabilités(CF, CH, sigma):
n = len(CF)
on convertit les listes de choix en matrices de rangs
RF = convertir_matrice(CF)
RH = convertir_matrice(CH)
L=1[] # L va contenir lg liste des instabilité
for i din range(n):
for j in range(n):
if préférence(RF, i, sigmaljl, sigmal[il) and préférence(RH, sigmaljl, i, j):
on a détecté une instabilité
L.append((i, 3))
return L

On montre ainsi qu'il y a une instabilité pour oy et que (0, 1, 2) est une proposition stable pour
(?fﬁj et ij?h H

2017 Dunod.

-

Copyright ©

Correction d'un TP 113

4.

5.

>»> CFa = [[8, 2, 11, [2, 8, 1], [, 2; 1]1]
>>> CHe = [[e, 1, 2], [1, @, 2], (@, 2, 1]]
»>>> liste_instabilités(CF@, CHe, (1, 0, 2))
[(8, 1})]

>>> liste_instabilités(CFe, CHe, (0, 1, 2))
[1

On reprend la méme méthode, mais en arrétant le caleul des que I'on détecte une instabilité :

def est_stable(RF, RH, sigma):
n = len(RF)
for i in range(n):
for j in range(n):
if préférence(RF, i, sigmal[j], sigmal[i]l) and préférence(RH, sigma[j]l, i, j):

le calcul est terminé car on a détecté une instabilité
return False

return True # tous les couples ont été étudiés et il n'y o pas d'instabilité

On teste les permutations en arrétant une nouvelle fois le calcul dés que I'on a trouvé une
proposition stable :

import itertools

def proposition_stable_naive(CF, CH):
n = len(CF)
RF = convertir_matrice(CF)
RH = convertir_matrice(CH)
for sigma in itertools.permutations([i for i in range(n)]):
if est_stable(RF, RH, sigma):
return sigma # on a trouvé une proposition stable
return (n,)}*n # oucune proposition n'est stable

Cette fonction, appliquée a C'F; et C'H,, nous donne la proposition stable (0,3, 1,2).

6. Au début du calcul, P = [0,1,2,3]; on extrait 3 de P et on fiance F; et Hj (c'est le préféré de

F3). On extrait ensuite 2 de P et on fiance Fy et Hy. On extrait 1 de P, mais F préfere H;
qui est déja fiancé a Fy. Comme [préfere Fy a F;, on fiance Fy a Hs et on remet 3 dans la
pile. Nous avons donc a cet instant du caleul :

P=10,3], o =[4,3,1,4] et CF = [[1,2,0,3],[2,1,0],[0,2,3],[1,2,0]]

On dépile alors 3 et on fiance F;5 et Hj ; on dépile ensuite 0 : le préféré de Fy est Hy qui préfere
rester avec son actuelle fiancée F) ; F essaie alors son second choix : Hy la préfere a sa fiancée
F3, donc on flance Fy et Hy et on empile 3, ce qui nous donne :

P=[3], 0 =[0,3,1,4] et CF = [[1,2],[2,1,0],[0,2,3],[1,2,0]]

On dépile 3, mais son préféré est Hy qui préfere sa fiancée Fy a Fy. Le suivant de sa liste est
Hs : comme il n'est pas fiancé, on fiance Fy et H; et le caleul s'arréte avec la proposition stable
[0,3,1,2].

import numpy.random as rd

def choix(n):
construit une liste aléatoire de choix pour n personnes
C = [[j for j in range(n)] for i in range(n)]
for i 1in range(n):

© 2017 Dunod.

(i
-

Copyright

114 Chapitre 3 Algorithmique

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

9.

10.

on mélange oléatoirement lo liste C[i]
rd.shuffle(C[i])
return C

def proposition_stable(CF, CH):
= len(CF)
pour ne pas détruire la donnée CF
CF@ = [[CF[i][j] for j 1in range(n)] for i in range(n)]
RH = convertir_matrice(CH)
P = [i for i in range(n)]
ou début, personne n'est fiancé
sigma, tau = [n for i in range(n)], [n for i in range(n)]
while L!= []:
i = P.pop(rd.randint(len{P))) # 1 est le numéro aléatoire d'une femme non fiancée

j = CFR[i].pop() # on regarde le numéro de 1'homme qu'elle préfére
k = tau[j] # k est le numéro de la fioncée de H_j
if k == n: # H_j n'est pas fiancé :

sigmal[i] = j # on le fionce a F_i

taulj] =

elif preference(RH, j, i, k): # H_j est fioncé mais préfére F_i & sa fiancée actuelle
sigmali] = j # on fiance F_i @ H_j
taulj] =
sigma[k] =
P.append(k) # on remet F_k dans la pile
else:
H_j ne souhaoite pas changer de fiancée : on remet F_i dons lao pile
P.append(1i)
toutes les femmes ont été fioncées: on renvoie une proposition stable.
return sigma

Voici les wrgmnonr,s qui prouvent que l'algorithme fonctionne en temps quadratique :

a) une fois gu'un homme est fiancé, il le reste jusqu'a la fin du calcul et on ne modifie sa
fiancée que pour améliorer sa situation ;

b) la pile P contient exactement les indices i tels que F; n’est pas fiancée;

¢) quand on supprime un des veeux j de la femme Fj, ¢'est ou bien que l'on va la fiancer avec
Hj, ou bien que H; est fiancé avec une femme qu’il préfere a Fj. Dans ce cas, jusqu’a la fin
du calcul, H; préferera sa fiancée a F; ;

d) tous les indices j qui ont été supprimés d'une liste CFO0[i| correspondent & des hommes
fiancés ; ainsi, si i est dans P, la liste CF0[z] ne peut pas étre vide (sinon, les n hommes
seraient flancés, et donc F; le serait également), ce qui prouve qu’il n’y aura pas d’erreur
au passage de la ligne 11;

e) a chaque instant du caleul, o contient une proposition partielle stable ;

f) & chaque passage dans la boucle (lignes 9 & 23), on supprime un élément d'une des listes
C'F0[i]. Comme ces n listes contiennent chacune n éléments au début du calcul, on effectue
au maximum n? tours de boucle (on ne peut pas supprimer plus de n? éléments), qui
demande chacun un temps constant.

Ainsi, le programme termine en temps ¢(n?) dans le pire des cas et, comme la pile est vide
a la fin de 'appel, o contient une proposition stable (toutes les femmes sont fiancées, donc la
proposition partielle stable n’est plus partielle).

Quand on applique plusieurs fois I'algorithme aux méme données, on obtient toujours la méme
solution stable, ce qui permet de conjecturer que la solution stable construite par notre algo-
rithme ne dépend pas de 'ordre dans lequel les femmmes sont choisies dans P.

unod.

7

01

-

Copyright ©

Correction d'un TP

115

11.

def test(n):

CF, CH = choix(n), choix(n)

sigma = proposition_stable(CF, CH)

RF, RH = convertir_matrice(CF), convertir_matrice(CH)

e =8, €

for 1 1in range(n): # pour chague couple
f += RF[i][sigmal[i]] # on ajoute a f le rang de 1'époux
g += RH[sigma[i]][i] # on ajoute a g le rong de 1'épouse

return f / n, g / n

»>>> test(100)
(3.52, 19.36)
>>> test(1e08)
(7.125, 125,155}

Dans cette situation probabiliste « uniforme », il semble donc que les femmes soient grandement
favorisées. Le lecteur pourra affiner cette étude en imaginant une fonction choix qui simule des

listes C'F et C'H plus réalistes.

12. On choisit, pour chaque i, la longuenr aléatoire de la liste C'[i] (comprise au sens large entre
p/2 et p), puis on remplit C[i] avec des éléments extraits de L = [0,1,...,p — 1]; on utilise
pour cela 'expression L.pop(rd.randint(len(L))) qui renvoie un élément quelconque de L

et le supprime de L :

def choix_bis(n, p):
C = [[] for i in range(n)]
for i din range(n):
L = [j for j in range(p)]
for k in range(rd.randint(p // 2, p+1)):
C[i].append(L.pop(rd.randint(len(L))))
return C

13. Si C est la liste des choix des femmes et p le nombre d’hommes, on donne le rang p a tous les
hommes qui n’ont pas été classés (on ajoute donc le parameétre p en argument de la fonction) :

def convertir_matrice_bis(C, p):
C = liste des choix des femmes, p = nombre d'hommes
n = len{C) # n = nombre de femmes
R = [[p for j in range(p)] for i in range(n)]
si une case R[1][j] n'est pas modifiée, c'est que F_i n'o pas clossé H_j
for i in range(n):
for j in range(len(C[i])):
R{AILCLiIL31] = len(C[i]) -] - 1
return R

La fonction preference demande de traiter quelques cas supplémentaires :

def preference_bis(R, i, j1, j2):
R = RH
est-ce que H_1i préfére F_jl ¢ F_j27?
= len(R) # p = nombre d'hommes
= len(R[B]) # n = nombre de femmes
f j1 == n: # un homme ne préfére jamais redevenir célibataire
return False
elif j2 == n: # si l'homme est célibataire
1l préfére se fiancer @ condition que lo femme proposée soit dons sa
liste de voeux
return R[i][j1]!= n
else:
return R[i][j1] < R[i][j2] # on compare les raongs

p
n
.i

Copyright © 2017 Dunod.

116 Chapitre 3 Algorithmique

14.

def proposition_stable_bis(CF, CH):
n, p = len(CF), len(CH)
pour ne pas détruire la donnée CF
CFB = [[CF[i]1[j] for j in range(len(CF[i]})] for i din range(n)]
RH = convertir_matrice_bis(CH, n)
L= [1 for i in range(n)]
sigma, tau = [p for i in range(n)], [n for i in range(p)]
while L!= []: # il reste ou moins une femme non éliminée et non figncée
i = L.pop()
if CFe[i]l!= []: # si cette femme n'oc pos encore essayé tous les hommes de sa liste
j = CFe[i].pop() # on prend l'homme qu'elle préfére
k = tau[j] # quil est fiancé o F_k (si k=n, il n'est pas fiancé)
if preference_bis(RH, j, i, k):
sigma[i]l = j # on le fionce d F_i
taul[j] = 4
if kl=n: # H_j éteit fiancé:
sigmalk] = p # F_k n'est plus filancée
L.append(k) # et la remet dons la pile
else: # troisiéme cos : H_j refuse F_i
L.append(i) # qui retourne dans lo liste L
on construit les listes ordonnées des femmes et des hommes fiancés
F_i est fioncée si sigma[i] est différent de p
H_1 est fiaoncé si tou[i] est différent de n
return sigma, [i1 for i in range(n) if sigmal[di]!= pl, [i for i in range(p) if tauli]!= n]

17 Dunod.

CHAPITRE

Calcul numérique
(une dimension)

L’essentiel du cours

B 0 Module numpy

Le module numpy regroupe les fonctions, constantes et méthodes premettant de réaliser des pro-
grammes d’ingénierie numérique (calculs numériques, travail sur les images, le son, les nuages de
points). D’autres modules importants comme matplotlib et scipy utilisent numpy.

| Définition

Le module numpy est dédié au calenl numérique. Il introduit en particulier le type
numpy .ndarray (ot array = tableau), ainsi que les fonctions mathématiques classiques.

Les utilisateurs de 'interface graphique Spyder doivent faire attention : certains mo-
dules dont numpy et matplotlib sont chargés automatiquement au lancement par
A Spyder. 11 est néanmoins indispensable de laisser les commandes d'importation de ces
modules au début du programme pour qu’il soit exécuté correctement dans n’importe

quel environnement de programmation.

Le type numpy.ndarray représente un tablean multidimensionnel dont les données ont toutes

le méme type (par défaut np.float64). Ces tableaux sont optimisés pour les caleuls vectoriels
et matriciels comme les vecteurs et matrices en Scilab® utilisés en SII.

Le type np.float64 correspond & un flottant binaire sur 64 bits (Un binary64, cf. chapitre 2,
partie 2 p. 63). Il existe d’autres types possibles, par exemple np.uint8 (un entier non signé
sur 8 bits, utile pour le traitement d'images) ou np.int32 (un entier signé sur 32 bits). Le type
np.object permet de mettre n'importe quel objet Python dans le tablean.

[Définition |
Le calcul vectoriel consiste a réaliser des opérations vectorielles ou matricielles plutot que
des boucles (for, while) classiquement utilisées pour les listes.

4
9

Dunod.

2017

Copyright ©

118 Chapitre 4 Calcul numérique (une dimension)

*Q' Ces opérations ont certes été programmées avec des boucles for, mais dans des langages
@ -
de programmation plus rapides : en C pour numpy, en C et en Fortran pour scipy.

Le module numpy propose différentes fonctions qui permettent de créer rapidement des tableaux
initialisés a des valeurs maitrisées.

import numpy as np

z = np.zeros(4)

renvoie un tableau contenant quatre @ array([@., 6., 8., 0.])

x = np.linspace(®, 2*np.pi, 18@1)

renvoie un tableou unidimensionnel de 1001 valeurs allant de @ o 2w, pas = 2w /1000
a = np.arange(3, 13, 2)

renvoie le tableou array([3, 5, 7, 9, 11])

1 = np.array([1, 5, 42])

convertit la liste [1, 5, 42] en tableau

Pour se rendre compte de la différence de vitesse d’exécution exécuter les deux codes suivants :

import numpy as np

a = np.array([]) import numpy as np

for i in range(le086008): a = np.arange(1800000)
np.append(a, i)

D'une maniére générale, les ndarray et les fonctions numpy permettent d’accélérer les calculs, et
sont tres utiles lorsqu’on traite un gros volume de données (images, données acquises pendant une
expérience de physique, etc.).

Les calculs vectoriels se font ensuite de maniere assez naturelle en ce qui concerne les opérateurs
simples +, =, *, / et ** qui renvoient les résultats terme & terme. Les fonctions mathématiques
usuelles de numpy fonctionnent de la méme maniére (cos, sqrt, etc.), c'est-d-dire terme a terme.

Toutes les fonctions ne peuvent pas s’appliquer & des ndarray (voir exercice 4.2). Pour
appliquer quand méme une telle fonction f & un tableau T, il existe plusieurs solutions :

A e Les listes par compréhension X = [f(t) for t 1in T)
Q e La fonction vectorize.

f_vectorisee = vectorize(f)
X = f_vectorisee(T)

Les fonctions cos, sin ete. du module math ont le méme effet que celles du module
numpy sur des flottants mais ne sont pas vectorisées. Par exemple

A T = np.linspace(-np.pi, np.pi 281)

math.cos(T) # ne fonctionne pas
np.cos(T) # pas de probléme !

ks
mnn

)17 Dunod.

20

Copyright ©

L’essentiel du cours 119

Comme pour les listes, il est possible de faire du slicing ' sur les ndarray et len renvoie la longueur.

B 1 Tracés graphiques (module matplotlib.pyplot)

Le langage Python permet de tracer des courbes via le module matplotlib et plus particulierement
de son sous-module pyplot que I'on peut importer a I'aide de la commande

import matplotlib.pyplot as plt

Ce sous-module et en particulier sa fonction principale plot utilisent une syntaxe proche de celle
utilisée par les logiciels de calcul numérique courant MATLAB® et Scilab® utilisés en SII.

Un petit exemple en utilisant des listes pour décrire les styles de lignes et de marqueurs ainsi que
la légende. On peut également faire la méme chose pour les couleurs par exemple.

import matplotlib.pyplot as plt
import numpy as np
style_ligne = ['solid', 'doshed', 'dashdot', 'dotted']
style_marker = [' ', '.', '*', 'o'] Exemple de tracé de liste
k = [1, 2, 5, 18] . -
for i 4n range(len(k)):

x =[] N

y =[] v

for j in range(100):

x.append(j / 168)
y.append(np.sin{k[i] * x[j]))
plt.plot(x, v, linestyle=style_ligne[i],
marker=style_marker[i], label='f(x)=sin("’
+ str(k[i]) + 'x)")

plt.xlabel('x")
plt.ylabel('y") o
plt.title('Exemple de trocé de liste') o b &
plt.legend()
plt.grid()
plt.show()

Il est possible de tracer des figures a partir de listes de valeurs numériques de type float :

| -}

Exemple de tracd de liste

import matplotlib.pyplot as plt fa00
% = Ll o=
y =[]
for i in range(-100, 101): i -
x.append(i / 18)
y.append((i / 10)#*3)
plt.plot(x, v, label='$y=x"3s', Llinewidth=3) ¥
plt.xlabel('x")
plt.ylabel('y")
plt.title('Exemple de trocé de liste')
plt.legend(loc=2)
plt.grid() - : : :
plt.show() -10 -3 8 5

En réalité, la fonction plt.plot convertit le cas échéant ses deux premiéres entrées en tableau

array.
On utilise treés souvent la fonction np.linspace pour générer des subdivisions réguliéeres.

. Le slicing sur les ndarray fonctionne comme pour les listes, & une exception preés. L'instruction B=A[@:108:2]
fait une copie si A est une liste mais pas si A est un ndarray. Autrement dit. dans le cas ot A est un ndarray mais
pas dans le cas ol A est une liste, modifier un coefficient de A modifie aussi B et vice versa.

~
8

Junod.

)17

c© 20

Copyright

120 Chapitre 4 Calcul numérique (une dimension)

import matpletlib.pyplot as plt
import numpy as np

x = np.linspace(®, 2 * np.pi, 51)

y = np.sin(x)

z = np.cos(x)

plt.plot(x, y, '-o', label='y=sin(x)"')
plt.plot(x, 2z, '--+', label='z=cos(x)')
plt.xlabel('x")

plt.ylabel('f(x)"')

plt.title('Exemple de trocé simple')
plt.legend()

plt.grid()
plt.savefig('trace_simple.png')

fix)

Nous n’avons ici que présenté des tracés de courbes élémentaires, mais matplotlib
s est tres riche en possibilités graphiques (tracé d’histogrammes, courbes polaires, dia-
‘Q~ grammes log-log. cartographies, etc.). Il est impossible de traiter tous les cas ici et
nous vous encourageons a consulter la documentation de matplotlib en fonction de
vos besoins. D’autres utilisations sont notamment traitées dans le chapitre 5.

B 2 Résolution numérique d’'équations numériques

Nous présentons ici deux méthodes numériques permettant de résoudre des équations du type
f(z) =0 : la méthode de la dichotomie et la méthode de Newton.

Le principe est le méme : pour approximer le zq tel que f(izg) = 0 on itére un certain procédé
jusqu’a ce qu'une condition, appelée critére de convergence, soit satisfaite. Il existe plusieurs
critéres possibles dont les principaux sont résumés dans le tableau suivant (ou r est le résultat de
la méthode).

flr) =06 Tg—T|<E [f(r)] <e N itérations.

g e . - : ; Erreur sur les Temps de calcul
Précision infinie. Valeur a £ pres. : 2
ordonnées. borné.

Le premier critere, f(r) = 0, est utopique. Non seulement le calcul pourrait ne jamais terminer a
cause des erreurs d’arrondis sur les flottants (on pourrait ne jamais tomber « pile » sur la solution)
mais, en plus, pour certaines fonctions f, il n’existe méme pas de nombre flottant r qui convienne.
Par exemple ! f(t) = t? — 2, il n’existe aucun nombre flottant + pour lequel le résultat numérique
f(r) soit exactement égal & 0 car /2 n’est pas exactement représentable en flottant.

e Pour des exemples de problémes d'arrondis, voir les exercices 2.4, 2.5 et 2.9.

Le second critere, |zg — r| < £, correspond souvent & ce qu'on cherche : une approximation de
1o avec une précision donnée. Il n'est pas toujours facile & satisfaire, car on ne peut pas calculer
lxg —r
Le troisieme critére, |f(r)| < &, est facile a vérifier, mais peut mener a des valeurs de r éloignées
de xg. Avant de 'utiliser, il est préférable d’étudier la fonction f pour choisir judicieusement e.
On remarque que si f' est minorée par 1 au voisinage de x, alors ce critére entraine qu'on a aussi
lzg — 7| < &

1. Considérons t1=2+#0.5 et t0 le flottant « juste avant » t1l. Alors f(tl) renvoie 4.440892098500626e-16, et
f(t0) renvoie -4,440892098500626e-16.

L’essentiel du cours 121

Le dernier critére ne donne aucune garantie sur la précision du résultat, mais garantit que le temps
de calcul ne sera pas trop long. Il est utile lorsque le temps est plus important que la précision.

L] . A - ’ - . g [l -

Q Il est possible, et méme conseillé, de combiner plusieurs critéres d’arrét, notamment un

- ~
critére de précision avec un critére sur le nombre d’itérations.

Méthode de la dichotomie

[Définition |

La dichotomie est une méthode itérative simple permettant de déterminer une approximation
d'une racine (ou zéro) sur un intervalle [a, b], avec une précision £ d'une fonction continue et
monotone f telle que f(a) et f(b) sont de signes opposés. Elle consiste comparer le signe de

. a+b . . . e
I'image f (T du milieu de l'intervalle [a,b] avec le signe de f(a) et f(b) pour réduire
I'intervalle de recherche de maniére itérative. La figure 0 illustre cette méthode.

Pour déterminer xq, racine de la fonetion f avec une précision &, strictement monotone sur I'inter-

valle [a, b], on procede comme suit.

b
(0) On détermine le milien de I'intervalle m = ﬂ—; :

(1) On compare le signe de f(m) avec celui de f(a) et f(b) pour déterminer dans quel intervalle
[@, m] ou [m, b] se trouve la racine x;

(2) On affecte & a (resp. b) la valeur de m si la racine se trouve entre m et b (resp. a).

(3) On itere tant que |a — b| > £, la précision définie initialement et on renvoie m.

Terminaison de la dichotomie N

Si le calcul sur les réels était exact, l'intervalle [a,b] verrait sa longueur divisée par deux a

£

. . . .] . b—a
chaque itération, donc le calcul terminerait toujours en K = ’7103;2 (étapes.

Pour éviter que les erreurs de calculs sur les flottants nous ménent dans une boucle infinie, on
peut, au lieu d’itérer tant que |a — b| > ¢, itérer K fois.

Pour qu'’il y ait existence d'une solution, il suffit que la fonction f soit continue et que

'o' les images respectives des deux bornes par la fonction soient de signes opposés. De plus,

] pour qu'il y ait unicité de la solution, il est suffisant que la fonction f soit strictement
monotone sur l'intervalle [a, b].

Correction de la dichotomie

Les itérations préservent 'invariant « zg € [a,b] ». Ainsi, & la fin des itérations, on a toujours
xo € [a,b]. On a de plus |a — b[< eps, done |m — zg| < /2. L'algorithme renvoie bien une
approximation de xq avec une précision meilleure que .

17 Dunod.

20

Copyright ©

122 Chapitre 4 Calcul numérique (une dimension)

f(t) 4
aj L itération 1 : |by —aq| > ¢
Mo
as itération 2 : |by —as| > ¢
az ——o0— by . itération 3 : |b3 —as| > ¢
My
ag 0 by itération 4 : |by — az| < ¢

FI1GURE 0. Algorithme de dichotomie

Exemple d’application

Déterminer la racine de la fonction f : x — f(z) = 322 — 2z — 2000 sur ’intervalle
[0,100] avec une précision € = 1073,

import numpy as np

def T(x):
return 3 * x#*2 - 2 * x - 2000

def dichotomie(f, eps, a, b, nbitermax=1000):

trkimEthede ds dichoalonie _— Tracé de la fonction et :lIJ. résultat

précision eps, intervalle a, b =i SR w-«"
renvoie rocine, nombre itération i
si f(a) » f(b) » @, renvoie 6.0, -1 it /
rer it
if f(a) * f(b) > 8; 0 /
return 0., -1 ® /
nbiter = 1 = i L
m=(a+b) /2 /
while abs(a - b) > eps and nbiter < nbitermax A0 =
m=(a+b) /2 /
if f(a) * f(m) < @: | ——
b=m
else: B) a0 iy i) 100
a=m -

nbiter += 1
return m, nbiter

Recherche du zéro de la fonction f @ 10%+-3 prés sur [0,100]

racine, iteration = dichotomie(f, le-3, 8, 180)

Le résultat numérique est z,um = 26,1554718, le résultat théorique' est zy = 26,1553738 et
F(Znum) = 0,015. On obtient bien la précision sur la valeur de = & 10~ preés. Notez que f(z) n'est
pas égal a 0 avec cette méme précision.

1. Arrondie au septieme chiffre aprés la virgule.

Dunod.

© 2017

pyrignt

Co

L’essentiel du cours 123

Méthode de Newton

La méthode de Newton est une méthode itérative de recherche d'un zéro zg d'une fonction
dérivable f. On définit une suite d’approximations ¢, comme suit :
e On fixe arbitrairement une valeur initiale f.
e Etant donné t,, on construit la tangente & f en t,. Cette tangente coupe I'axe des
abscisses en t,, 4 (figure 1)
On calcule les ¢,, jusqu’a ce que le critére de convergence soit atteint.

La relation de récurrence satisfaite par ¢, est :

tn
thy1 =tn — }f";'((;”))'
f{!)‘l ™)
OV
ta e

FIGURE 1. Algorithme de la méthode de Newton

La méthode de Newton est souvent plus rapide que la dichotomie mais peut ne pas aboutir pour
certaines fonctions, notamment si le point de départ est mal choisi. Tester, par exemple, sur la
fonction f3 du TP 4.1 avee 1 ou 2 comme point de départ.
Pour certaines fonctions, nous savons déterminer des points de départ adéquats. Par exemple, dans
le cas particulier ou la fonction f est deux fois dérivable et on f’ et f” sont de signes constants
sans s’annuler :
e Si " et f” sont de méme signe, alors tout point de départ plus grand que la racine convient.
e Si f" et f" sont de signes opposés, alors tout point de départ plus petit que la racine convient.

e Pour la méthode de Newton, voir les exercices 4.9 et 4.10 ainsi que le TP 4.1.

Lnoda.

17 Di

124 Chapitre 4 Calcul numérique (une dimension)

L..J Le (sous-)module scipy.optimize comporte les fonctions bisect (dichotomie) et
newton (méthode de Newton).

B 3 Résolution numérique d’équations différentielles

[Définition |
Si f est une application définie sur R x RP & valeurs dans R? (avec p € N*), considérons :
e l'équation différentielle (E) : 2'(t) = f(t,x(t)), parfois notée (E) : ' = f(t,x)
d'inconnue z : R — R” avec p € N*;
e la condition initiale x(tg) = xy avec tg € R et g € RP deux parameétres.

La donnée de ces deux éléments constitue un probléme de Cauchy.

En résumé, un probléme de Cauchy est la donnée d'une équation différentielle avec une condition
initiale. Par exemple, ' = 1 + z%,2(0) = 1 est un probléeme de Cauchy admettant la fonction
tangente pour solution.

Les mathématiciens démontrent, sous de bonnes hypothéses, I'existence et 'unicité de la solution
¢ d’un probléme de Cauchy, mais il est en général impossible d’en calculer une expression, et méme
souvent difficile de décrire son domaine de définition.

Méthode d’Euler (ordre 1) \

Si nous supposons que T est un réel non nul tel que ty + 7" appartienne a ce domaine de
définition, la méthode d’Euler permet d’approximer sur l'intervalle J = [tg, 1o 4+ T (ou
J = [to + T, 1p] si T < 0) par le biais d'un schéma numérique élémentaire :

e on fixe un entier n = 1 et on subdivise J & pas constant p = —, en posant t; = tg+ip
n
pour tout 7 € {0,1,...,n};
e un développement limité donne @(ty) =~ w(ty) + (t1 —to)¢'(to) = zo +pf(to, o), ce qui
permet d’approximer o(t1) par x; = xg + pflte, o) ;
e on définit selon le méme schéma les valeurs zo, ..., 1, :
Vie {0,1,...,n -1}, ;11 = z; + pf(;, 23)-
Cette construction est illustrée par la figure 2.
On peut espérer, sous de bonnes hypothéses, que les x; soient des approximations correctes
des p(t;) quand n est suffisamment grand.

On dit que 'on a une méthode explicite car on dispose d'une expression explicite du calcul de
yi+1 en fonction des calculs précédents. Il existe d’autres schémas, dits implicites, ou 'expression
de ;41 est obtenue en résolvant une équation.

La précision de la méthode d’Euler est trés dépendante du pas de temps choisi. Plus

A le pas de temps est petit, et done plus le nombre de points calceulés est grand, plus le
calcul sera précis au début, mais plus le temps de calcul sera long. Il faut trouver un
compromis en fonction de la situation.

4
i

7 Dunod.

201

Copyright ©

L’essentiel du cours 125

T3

)
o(t)
T

Ty

FiGUrE 2. Méthode d'Euler pour p = 1.
w; est la solution a I'équation différentielle telle que ;(t;) = ;.

La bibliothéque scipy.integrate fournit la fonction odeint qui permet d'intégrer

m directement les équations différentielles et qui utilise des algorithmes plus rapides et

plus précis que la méthode d’Euler présentée ici.

Méthode d’Euler (ordre 2) \

Considérons I'équation différentielle d’ordre 2 (E) : 2" = f(t,z,2') on [est une fonction
définie sur R x R? x R? a valeurs dans R? (avec p € N*); I'inconnue x est donc une fonction
deux fois dérivable définie sur un intervalle I et a dans R?, En posant y = ', cette équation
différentielle d’ordre 2 se rameéne au systeme différentiel d’ordre 1 :

gl = Yy

(Eq) :

y = [fltzy)
En imposant les conditions initiales x(ty) = xg et x'(tg) = x(, on ty € R et xg, x;, € RP, nous
nous ramenons donc a un probleme de Cauchy pour I'équation (E,), et il est ainsi possible
d’approximer la solution cherchée en appliquant la méthode d’Euler a (Ey).

126 Chapitre 4 Calcul numérique (une dimension)

— Méthode 4.0 : Résoudre une équation numériq

Les méthodes a maitriser

Pour résoudre une équation numérique, on la met d’abord sous la forme f(xr) = 0.
On choisit ensuite une méthode de résolution : dichotomie ou méthode de Newton.
Ce choix est souvent guidé par les contraintes numériques du probléme :
e pour mettre en ceuvre la dichotomie, il faut au minimum connaitre un intervalle [a, b]
pour lequel f(a) et f(b) sont de signes opposés;
e pour mettre en ceuvre la méthode de Newton., la dérivée doit étre connue.
e sila vitesse est un critere important (résolution d'un grand nombre d’équations dépen-
dant d'un parametre par exemple), la méthode de Newton est a privilégier si possible;
e la méthode de Newton peut ne pas aboutir (lorsque la dérivée est nulle ou trés faible,
lorsque des oscillations apparaissent entre autre cas). Lorsque la sécurité est importante
la méthode de la dichotomie est a privilégier.
On choisit également un critere de convergence. Ce choix est souvent guidé en pratique par
des parametres physiques du probléme. Par exemple si certains coefficients apparaissant dans
I'équation sont expérimentaux et connus a une précision relative de 107, il est inutile de
résoudre I’équation avec une précision de 10716,
Enfin, on met en ceuvre la méthode numérique choisie. Si le probleme a résoudre est de nature
concrete, on valide les résultats obtenus.

e e et T T e et e T L P

Exemple d’application

Résoudre I’équation de la déformée d’une poutre en flexion
On veut déterminer le lien de la déformée maximale

de la poutre ci-contre sous la charge F'. Une étude 7y F oo Rt initisle.
de RAM permet de montmrplqu(-: cette solution est 1 _— A
sur l'intervalle [a,f] si a < E On cherche done la WM N
: :) K, v Sl \

racine de y'(z) = 0 sur cet intervalle, avec y(z) le ¢ X 7 ,
déplacement suivant 3/ de la poutre & I'abscisse . _ ” ”
Soit pour une poutre d'un metre chargé a un tiers ,/(,) — —F (E (z—6 ab2a+ b) € [a,0)

50 . N wid ; 0 ; 2 S
de sa longueur, I'équation a résoudre est : Elgs \ & 2 G a+b

(x—1)%2 4

—— - —=0 def f(x):

6 81 return (x - 1)**2 / 6 - 4 / B1

AT 2’ Ui W < W '
On pfeut montrer que y'(a) < 0 y'(f)>0etquela . N T T r—
fonction est monotone sur [a,). nbiter = 1

=Y Tele 121 Teffoce) 3 1c 1ie m=(a+b) /2
On peut (1(.)1\1(, choisir d’effectuer un(..qdu,hlut.uum. sile abs(a - b} » eps:and firiter < fearmax:
avec un critére de convergence sur l'abscisse de m=(a+b) /2
£ = 1072, soit une erreur admissible d'un milli- TR & e i
metre (a défaut ici d’utiliser la fonction sqrt...) else:
a=m
nbiter += 1
>>> dichotomie(f, le-3, 1/ 3, 1) return m

©.455078125

a déformée maximale ien en r = 455mm.
La déformée n nale a lieu er 455mim

Les méthodes a maitriser 127

— Méthode 4.1 : Tracer la courbe représentative d’une fonction f |)

Pour tracer la courbe représentative d'une fonction f, on :

(0) importe les modules nécessaires a ce travail :

import numpy as np

import matplotlib.pyplot as plt

(1) détermine I'intervalle I = [a,b] sur lequel il est pertinent de tracer la courbe représen-
tative de la fonction f

(2) discrétise I'intervalle I en le découpant en n sous-intervalles de méme longueur.

Cela peut par exemple se faire a 'aide de la fonction linspace du module numpy :

T = np.linspace(a,b,n+1)

(3) calcule la liste des images des points de T par la fonction f. Cela peut se faire a 'aide
d’une construction de liste par compréhension :

Y = [f(t) for t in T]

ou encore par une opération vectorielle du module numpy.

(4) on représente finalement la courbe :

plt.plot(T, Y)

plt.show()

Exemple d’application

Tracer sur [0, 2] la courbe représentative de f(x) = T
x

import numpy as np A
import matplotlib.pyplot as plt

def f(x):
return x / (1 + x**3)

S T v

T = np.linspace(®, 2, 201)
= [f(t) for t in T]
plt.plot(T, ¥)

plt.show()

et T L L
~

— Méthode 4.2 : Tracer une courbe paramétrée | \

Pour tracer une courbe paramétrée (x(t),y(t)), on :

(0) importe les modules nécessaires & ce travail :

import numpy as np

import matplotlib.pyplot as plt

(1) détermine l'intervalle I = [a,b] du paramétre t sur lequel il est pertinent de tracer la
courbe paramétrée. Lorsque les fonctions x et y sont toutes deux 2m-périodiques, 'intervalle
[0, 27| convient notamment.

(2) discrétise I'intervalle I en le découpant en n sous-intervalles de méme longueur.

Cela peut par exemple se faire a 'aide de la fonction linspace du module numpy :

T = np.linspace(a, b, n+1)

(3) calcule la liste des images des points de T par les fonctions x et y. Cela peut se faire &
I'aide d’une construction de liste par compréhension :

X = [x(t) for t in T]

128 Chapitre 4 Calcul numérique (une dimension)

Y = [y(t) for t in T]

(4) on représente finalement la courbe :
plt.plot(X, Y)

plt.show()

Vs

ou encore par une opération vectorielle du module numpy.

Exemple d’application

N

import numpy as np
import matplotlib.pyplot as plt

T = np.linspace(-np.pi, np.pi, 501)

b
Y

np.sin(T)#*3
np.cos(T) - np.cos(T)++4

plt.title('jolie courbe, non?')
plt.plot(X, ¥, linewidth=3)
plt.show()

B e

i . T

ACer 1a cCourp yaralne € aenn ¢
Tracer la courbe paramétrique définie par)
y

<

= sin”# 5
_ 4, sur lintervalle # € [—m, 7.

= cosf —cos* @

jolie courbe, non ?
s :

— Méthode 4.3 : Intégration numérique (rectangles et trapézes) | .

suivant un schéma bien défini.

M 45 -2)-15 +1 -0/ | Jo5 1 15 2 25 u\m\
i

méthode des rectangles (4 gauche)

L'intégration numérique permet d’intégrer des fonctions dont on ne connait pas 'expression
exacte de 'intégrale, ainsi que les données issues d’acquisitions numériques.

De nombreuses méthodes d’intégration numérique existent.

Une méthode & pas constant consiste & subdiviser I'intervalle d’intégration [a, b] en n écarts
(= pas) de méme longueur puis sur chaque petit intervalle ¢ € [a;,a;4;] & effectuer un caleul
approché de l'intégrale en remplacant la fonction par une fonction beauncoup plus simple

Vous devez connaitre les deux méthodes illustrées par les figures suivantes :

e la méthode des rectangles pour laquelle on approxime la fonction f a intégrer par
une fonction constante proche de f qui interpole f en un point ¢ € [a;, a;41], ¢ peut

valoir «v (rectangle a gauche), 3, %ﬁ

méthode des trapézes sur [2.5, 2.5]

ou autre...

Les méthodes a maitriser 129

e la méthode des trapézes pour laquelle on approxime la fonction [a intégrer par
une fonction affine qui interpole f sur [a;,a;41] en a; et a;4q.

Voici un code Python implémentant ces deux méthodes :

def rectangle_gauche(f, a, b): def monint(f, a, b, n, methode):
rr LR
méthode des rectongles & gauche intégre entre o et b la fonction f
renvoie 1'integrale approchée de f entre o et b en subdivisant [a, b] en n+l points puis
$L en appliguant la fonction methode(...) sur
return f(a) » (b - a) chaque subdivision [x_i, x_i+1]
P
def trapeze(f, a, b): subdiv = np.linspace(a, b, n + 1)
re 5 = 8.
méthode des tropézes for i in range(n):
wine S += methode(f, subdiv[i], subdiv[i + 1])
return (f(a) + f(b)) » (b - a) / 2 return S

Si le pas de temps est suffisamment petit, cette approximation est relativement précise. Elle est
utilisée (en intégrant deux fois 'accélération mesurée par 3 accélérometres) pour calculer la position,
par exemple dans les sous-marins (qui n’ont pas toujours acces au signal GPS) et dans les fusées.

Le (sous-)module scipy.integrate contient
‘Q‘ e la fonction quad qui permet une intégration numérique assez précise, utilisant
des techniques qui ne sont pas détaillées dans cet ouvrage,
e la fonction trapz qui intégre avec la méthode des trapézes.

e Pour une étude des calculs approchés d'intégrales, voir le TP 4.0 p. 143.

Pour résoudre une équation différentielle d'ordre 1 a 1'aide de la méthode d’Euler explicite,
on :
e éerit I'équation sous la forme 2’ = f(t,2);
e discrétise I'intervalle de résolution, en se posant éventuellement la question du nombre
d'itérations a faire;
forme la relation de récurrence 41 = &y + hf(tn, @n);
créé la liste des temps T
initialise la liste X dans laquelle on va stocker les x;,
écrit la boucle réalisant la relation de récurrence.

Exemple d’application

Résoudre sur [0,1] ’équation différentielle z’ 4+ e~ 'z = 0 avec la condition initiale
x(0) = 1.

Cette équation s'écrit 2’ = —e
On choisit de résoudre cette équation en N pas et on discrétise donce l'intervalle de temps avec

—tp,

n
tn = —.
N
7 - y - . 1 —1
La relation de récurrence s’écrit x,41 = x,, + —e "1,

N
La résolution en Python s’écrit :

e

17 Dunod.

130 Chapitre 4 Calcul numérique (une dimension)

def resolution(N):

T=1[1/ N for i in range(N + 1)]
X =[1]
x, t =1, @

for i d9n range(N):
x += 1 / N * np.exp(t) * x
t+=1/ N
X.append(x)

return T, X

T e

Q Pour des applications de la méthode d'Euler a I'ordre 1, voir les exercices 4.11 a 4,17.

Pour résoudre une équation différentielle d’ordre 2 & 1'aide de la méthode d'Euler explicite,
o1 :
e posey = '
e transforme 'équation différentielle 2" = f(¢,z,2') d'ordre 2 en un systéme différentiel
d’ordre 1 sous la forme

2 = y

y = [ty

e forme la relation de récurrence (vectorielle d’ordre 1) déduite de ce systeme différentiel
par la méthode d'Euler explicite

e discrétise I'intervalle de résolution en se posant éventuellement la question du nombre
d’itérations a faire.

e créé la liste des temps T

e initialise les listes X et Y

e écrit la boucle réalisant la relation de récurrence, en faisant attention a bien utiliser z,,
et y, pour calculer x,, 1 et y,41

Exemple d’application

Résoudre sur [0,1] Péquation différentielle =" + sin(txz) = 0 avec les conditions
initiales (0) = 1 et 2’(0) = 0.

Avec y = 2’, cette équation est équivalente au systeme différentiel :

g = y
y' = —sin(tx)
Ceci méne a la relation de récurrence :
Tpy1 = Ep + hyn
Yn+l = Yn — hsin(t,zy)

qui peut s'écrire en Python :

B e e e e T e e e e I

Copyright © 2017 Dunod.

Les méthodes a maitriser 131

def resolution2(N):

T=1[1/N for i din range(N + 1)]
K= [1]
Y = [0]

X, ¥, t=1,0,0

for 1 dn range(N):
ty x5 ¥ = Tl NGy PN y = npasin(eoxox) N
X.append(x)
Y.append(y)

return T, X, Y

9 Pour des applications de |la méthode d'Euler a I'ordre 2, voir les exercices 4.18 3 4.21.

Copyright © 2017 Dunod.

132 Chapitre 4 Calcul numérique (une dimension)

Tracé de courbes

(Exercice 4.0) Autour de la moyenne

- La fonction binomial(n, p) du module numpy.random simule une loi binomiale

AB(n,p).

0. Ecrire une fonction S(n, p) qui simule une variable aléatoire S, = X/n, ou X suit la loi
binomiale #(n,p).
1. En déduire une fonction affiche(n,p) qui affiche sur une méme figure les courbes polygonales

reliant les points (k, Sy), (fc,-p - \!-I-‘iyjf) et (k,p + L‘}:’—“—) Que remarque-t-on 7

| Exercice 4.1)

0. Donner les coordonnées dans un repére orthonormé des sommets A, d'un polygone régulier a
n cotés.

1. Ecrire une fonction polygone_regulier(n) qui effectue le tracé d'un polygone régulier & n
cOtés.

2. Que se passe-t-il lorsque n devient grand? On pourra essayer la fonction précédente avec
n = 1000.

(Exercice 4.2

ot ch est la fonction cosinus

&1k cos(/|t]) sit<O
2k)!

On considere la fonction f(t) = Y —— =
n considére la fonction f(t) ;} ch(VD) sit>0.
hyperbolique.

0. Définir la fonction f en Python a 1'aide des fonctions cosinus et cosinus hyperbolique disponibles
dans la bibliothéque numpy.

20 &
t
1. Définir la fonction g en Python, qui approxime f par 'expression f(t) =~ g(t) = E W
k=0 :

La fonction factorial de la bibliothéque scipy.misc peut étre utile.
2. Tracer la fonction f sur I'intervalle [—200, 3], puis tracer g sur le méme graphique et comparer.

Dichotomie

(Exercice 4.3

0. Ecrire une fonction dicho(a, b, f, err) qui, étant donné un intervalle réel [a,b], une fonc-
tion f croissante de [a,b] dans R et s’annulant sur l'intervalle [a,b], renvoie une approxima-
tion du zéro de f avec une erreur d'au plus err.

Copyright © 2017 Dunod.

Exercices 133

1. Utiliser la fonction dicho pour calculer une approximation de /2 & 1072 prés .

2. Que se passe-t-il si la fonction f n'est pas croissante mais continue et est telle que f(a)<0<f(b) ?

3. Réécrire la fonction dicho en ne supposant plus f croissante, mais seulement f monotone
(croissante on décroissante).

[Exercice 4.4]

Nous souhaitons estimer, dans une population donnée (des drosophiles, des électeurs, ou autre),
la proportion p d’individus ayant une certaine caractéristique. Pour ce faire, nous réalisons un
sondage : n individus sont tirés aléatoirement (uniformément, avec remise) dans la population
totale, et nous comptons le nombre X d’individus ayant le caractére recherché. Ainsi X est une
variable aléatoire snivant une loi binomiale de paramétres n, p.

Connaissant p, nous savons déterminer un intervalle de fluctuation I, j ,,, ¢’est-a-dire un intervalle
tel que P(X ¢ I, pn) < . Nous utilisons ici I'intervalle donné par la fonction binom.interval de
la bibliothéque scipy.stats.

Dans le but d'estimer p, nous utilisons un intervalle aléatoire C, x ,,, appelé intervalle de confiance,
tel que Vp € [0,1],P(p ¢ Ca.x.n) < a. L'intervalle suivant convient :

Caikm = {P € [01 l] | X € In,p.n}-

L'idée de C, x ., est la suivante : on a X (le résultat du tirage) et o. On suppose que X est dans
I pn (hypotheése raisonnable car cet événement arrive avec probabilité 1 — o au moins), et on en
déduit les p possibles.

0. Ecrire une fonction PlusGrandP qui, étant donné un risque d’erreur o, une réalisation de la
variable aléatoire X et le nombre de sondés n, renvoie le plus grand p tel que X € I, . (&
1079 preés). On remarque que le p recherché appartient a I'intervalle [X/n, 1].

1. La fonction précédente renvoie la borne inférieure de 1'intervalle de confiance. Ecrire une fonction
confiance(alpha, X, n) qui renvoie les bornes de l'intervalle de confiance 4 10~¢ pres.

En 2002, J.M. Le Pen surprend de nombreux journalistes en se qualifiant au second tour avec 16,86%
des voix. Peu avant les élections, plusieurs sondages [Gr 11] ont donné les résultats suivants :

e L
IPSOS/Le Figaro (17-18/04) 989 14%
IFOP/L'Express (12-13/04) 1006 10,5%

BVA /Paris-Match (04-06/04) 963 12%

2. Parmi les sondages précédents, dans quels cas p = 16.86% est-il dans I'intervalle de confiance
au risque d'erreur 5% 7 Autrement dit, pour quels sondages I'événement p € Cso y , s'est-il
réalisé 7 Méme question pour o = 10% et o = 1%.

3. Tracer sur un méme graphique la borne supérieure et la borne inférieure de l'intervalle de
confiance en fonction de «, pour X = 140 et n = 1000.

4. Pour chaque sondage, calculer par dichotomie, A 1077 prés, le plus grand o tel que 'événement
p € Cy x.n S'est réalisé.

1. En n'utilisant que les opérations arithmétiques de base +, -, =, /, // el %, bien évidemment et sans utiliser
**%@,5

4
i

7 Dunod.

201

Copyright

134 Chapitre 4 Calcul numérique (une dimension)

Intégration numérique

| Exercice 4.5)

Nous souhaitons reprogrammer la fonction logarithme népérien a partir des opérations arithmeé-
tiques de base +, =, x, /, // et %.

I
Pour cela, nous utilisons la relation In(xr) = / —dt.
1 ¥

0. Programmer une fonction 1n qui calcule le logarithme népérien par la méthode des rectangles
avec 1000 rectangles.

1. Tracer sur un méme graphique votre fonction 1n et la fonction log de la bibliothéque numpy
et comparer.

En pratique, le logarithme en base 2 est déja programmé dans le processeur (instruction FYL2X

ou FYL2XP1 dans les processeurs Intel), et on l'utilise pour calculer le logarithme dans d’autres

bases (1n ou logl0).

(Exercice 4.6) Fonction Gamma (d’aprés un oral de Centrale 2015)

A 00
On pose m(x,t) =t~ 1e™" puis p, g(z) = / m(x,t)dt. Enfin, on pose I'(z) =] m(x,t)dt.
o x 0
0. Ecrire une fonction phi qui prend en argument «, 3, @ et n et calcule ¢, () avec la méthode
des rectangles et n rectangles.
1. Représenter I' sur un intervalle raisonnable.

(Exercice 4.7) Oral Centrale 2016

m
On consideére la fonction f(xr) = / cos(x x cos(t))dt
Jo

La fonction quad de la bibliotheque scipy.integrate permet d’'intégrer une fonction.
Elle prend en argument la fonction a intégrer et les deux bornes. Elle renvoie la valeur
de l'intégrale avec une approximation de l'erreur.

0. Définir la fonction f en Python a 'aide de quad.
1. Tracer la fonction sur [0, 10].

(Exercice 4.8) D’aprés Mines 2015

Toutes les deux millisecondes, on mesure en ampéres le courant électrique I dans un circuit. Les
mesures sont stockées dans la liste mesure.

. . o . 1 trinal
L'intensité moyenne est définie comme suit : I,y = " I(t)dt
Afinal J0

0. Ecrire une fonction Imoy prenant en entrée une liste de mesures et renvoyant 'intensité moyenne
en amperes apres 'avoir calculée par la méthode des trapézes.

Exercices 135

1. On suppose a présent que les mesures ne sont plus faites toutes les deux millisecondes mais
4 des intervalles de temps irréguliers. Ecrire une fonction Imoy prenant en entrée une liste de
mesures mesure ainsi qu'une liste de temps temps (les instants ol ces mesures ont été prises)
et renvoyant 'intensité moyenne en ampéres apres 'avoir calculée par la méthode des trapezes.

Méthode de Newton

| Exercice 4.9

On considére I'équation f(r) =2 —2224+1=0

0. Implémenter la méthode de Newton avec comme critere d’arrét | f(x)| < £ et comme point de
départ un parametre r.

1. Résoudre 'équation précédente pour zg qui varie entre —1 et 3 par pas de 0.01 et représenter
graphiquement la valeur de la solution trouvée en fonction de xzg.

(Exercice 4.10)] D’aprés un exercice d’oral de Centrale (PSI 2015)

Pour tout n de N on considére la fonction polynomiale P,(t) = " &5 et on s’intéresse ici aux

racines de ce polynome.

0. Donner a I'écran des représentations graphiques de P, sur des intervalles adaptés pour n dans
{2,3,4,5,6,7}. Que constate-t-on quant aux racines réelles de P, suivant n ?

1. Mettre en ceuvre la méthode de Newton (ou méthode de la tangente) pour la recherche d'une
valeur approchée décimale d'une solution réelle de I'équation P, (t) = 0, et déterminer ainsi les
éventuelles racines réelles de cette équation pour n dans {2,3.4,5,6,7}.

Extrait de la documentation donnée par le concours

La classe Polynomial du module numpy.polynomial permet de travailler avec des poly-
nomes.

from numpy.polynomial import Polynomial

\

2. En utilisant la méthode .root() de la classe Polynomial, vérifier les résultats précédents.
3. Représenter a ’écran toutes les racines complexes de P, dans lescasouin =3, n=5,n=8et
n=15.

Méthode d’Euler (ordre 1)

(Exercice 4.11)

Considérons 'équation différentielle 3’ = 1 + »? avec la condition initiale y(0) = 0.

0. Résoudre par la méthode d’Euler cette équation sur [0,1] avec un pas de 0.05 et tracer la
fonction solution.

1. Tracer la solution sur l'intervalle [—1.5, 1.-5].

2. Tracer la fonction tangente sur le méme graphique et comparer.

3. Que se passe-t-il lorsqu’on essaye de tracer la solution sur [—2,2]?

4
9

Dunod.

)17

Copyright © 2C

136 Chapitre 4 Calcul numérique (une dimension)

(Exercice 4.12)

Nous considérons ici une équation différentielle sealaire 2’ = f(t,x), i.e. une équation différentielle
dont la fonction inconnue x est a valeurs réelles.

0. Ecrire une fonction Euler (f , t0, x0, T, n) utilisant la méthode d’Euler pour tracer une
approximation du graphe de la solution du probléme (2’ = f(t,), x(ty) = o)
sur [to — T, to + T7.

1. Modifier cette fonction en Euler_Bis(f, t@, L, T, n)
qui prend en argument une liste L = [z}, 22, ..., 2] de valeurs initiales, an lieu de I'unique va-
leur zg, et qui renvoie dans la méme fenétre graphique les graphes des ¢ solutions correspondant
a ces différentes valeurs initiales sur I'intervalle [tg — T, to + T7.
Tester votre fonction avec 'équation ' = tsin(t + z), tg = 0, T = 4 et n = 100, pour une
famille de valeurs initiales comprises entre —7 et 4.

(Exercice 4.13) Modéle de Lotka-Voltera

De nombreuses modélisations font intervenir des systémes différentiels autonomes. C'est le cas par
exemple du modéle de Lotka-Voltera qui modélise 1'évolution de deux populations, I'ine constituée
de proies et I'autre de prédateurs. Nous partons du modeéle malthusien élémentaire : en 'absence de
prédateurs, la fonction x représentant le nombre de proies vérifie 'équation différentielle 2’ = az,
ou a est une constante égale a la différence entre le taux de natalité et le taux de mortalité
des proies (avec a > 0). De méme, en l'absence de proies, le nombre y de prédateurs vérifie
I'équation différentielle y* = —by, o b est également une constante positive. L'interaction des deux
populations se fait en introduisant dans ces deux équations un terme proportionnel a la fois a x et
a y, qui rend compte de la probabilité de rencontre d'une proie et d'un prédateur. Ces rencontres
étant évidemment favorables aux prédateurs, nous obtenons un systéme différentiel de la forme :

a' = ax — cxy
Yy = —by + dxy

ot a, b, c,d sont des réels strictement positifs. Ce systéme est qualifié d’autonome car le temps ¢
n’apparait pas explicitement dans I'équation différentielle. Ainsi, I'instant initial ¢y ne jouera pas
de role particulier dans I'étude des solutions, sinon de translater les solutions dans le temps. Nous
choisirons donc t5 = 0.

Dans tout l'exercice, f et g sont deux fonctions définies sur R? et a valeurs réelles et nous noterons
x' = f(z,y)
Y = g(x,y)
(dérivables) de la variable . Les fonctions demandées seront testées sur I'équation de Lotka-Voltera
de parametres a = 0.2, b = 0.3, ¢ = 0.1 et d = 0.15, pour différentes conditions initiales positives.

(£) le systeme différentiel autonome on les inconnues x et y sont deux fonctions

0. Ecrire une fonction Calcul_Euler(f, g, x0, y0, T, p) quirenvoie les listes Lt = [ty,...,t,].
Lz = [xg,...,2,] et Ly = [yo,...,y,] obtenues en appliquant la méthode d’Euler a I'équation
(E) sur l'intervalle [0,T7], avec le pas p (nous supposerons que 7' est un multiple de p) et les
conditions initiales x(0) = xy et y(0) = yq.

Ecrire une fonction Graphe (f, g, x0, yo0, T, p) quiapplique la méthode d’Euler & I'équa-
tion (E) sur l'intervalle [0, T], avec le pas p et les conditions initiales (0) = xg et y(0) = yo, et
ouvre une fenétre graphique contenant les graphes des fonctions = et y sur [0, 7.

4
9

Dunod.

?.

Copyright © 201

Exercices 137

1. Ecrire une fonction Phase (f, g, x0, yo, T, p) quiappliquela méthode d’Euler a I'équation
(E) sur l'intervalle [0, 7], avec le pas p et les conditions initiales z(0) = zg et y(0) = yq. et
ouvre une fenétre graphique contenant le portrait de phase, i.e. le support de 'arc paramétré
t — (x(t),y(t)), toujours pour t décrivant [0, 7).

2. Ecrire une fonction Graphe_Phase(f, g, x0, y@, T, p) qui ouvre une fenétre graphique
contenant cote a cote les deux graphiques renvoyés par les fonctions précédentes.

3. Si (7, y) est une solution exacte a valeurs strictement positives de ce systéme, on peut montrer
que la fonction a In y+b Inx—cy—dz est constante, puis que les fonctions x et y sont périodiques
de méme période. Commenter les tracés obtenus au regard de ces résultats théoriques.

4. Un éleve a proposé la fonction :

def Graphe_Phase(f, g, x0, y8, T, p):

Lt = [@]
Lx = [x8]
Ly = [ye]

for i din range(int(T / pas)):
Lt.append(Tt[-1] + p)
Lx.append(Lx[-1] + p * f(Lx[-1], Ly[-11))
Ly.append(Ly[-1] + p * g{Lx[-1], Ly[-1])})

plt. figure()

plt.subpleot(1, 2, 1)

plt.plot(Lt, Lx, colar='b")

plt.plot(Lt, Ly, color='r")

plt.subplot(1, 2, 2)

plt.plot(Lx, Ly, color='g")

plt.show()

Que penser de la réponse de cet éléeve ? Tester sa fonction et commenter les résultats obtenus
pour 17" = 500.

(Exercice 4.14) Inspiré de Centrale Physique-Chimie, MP 2013

L’addition d’ean a de l'oxyde d’éthyléne (noté ici Q) provoque la formation de glycol (noté ici E)
selon la réaction suivante : O + H,0 — FE.

Une réaction concurrente produit du diéthyleneglycol (noté ici D) : O + E — D.

Notons & et & les avancements volumiques respectifs de chacune de ces deux réactions et notons
[X] la concentration du composé X.

0. Exprimer les concentrations [O], [E] et [D] en fonction de &; et &3, sachant que les concentrations
initiales de HoO et de O sont de ¢y = 1.00 mol - L™,
Indication. On remarquera que [H20] = ¢g — &;.
Les chimistes nous donnent les équations différentielles suivantes, o ky = lua et ky = bSua (ua
signifie « unité arbitraire ») sont les constantes de réaction des deux réactions :

{ d§,/dt = k[0] - [H20]
dé&;/dt = ko[O] - [E]

1. A l'aide de la méthode d'Euler, tracer entre 0 et 10 unités de temps, I'évolution des concentra-
tions des différents composés intervenant dans les deux réactions.

Vous pouvez comparer les résultats obtenus aux courbes dessinées dans le sujet de Centrale (dis-
ponible sur le site du concours).

4
i

Dunod.

K7

201

Copyright ©

138 Chapitre 4 Calcul numérique (une dimension)

| Exercice 4_15j Attracteur étrange de Lorenz

On considere la solution ¢, 4, -, de I'équation de Lorenz :

2’ =10(y — z)
Y =28¢—y—x=2

' 8 .
T=xYy—3%2

qui prend la valeur (xg, o, 20) & I'instant initial £y = 0. Pour tout réel p > 0, on note v, yy.20.p
I'approximation de @, 4, 2, Obtenue en appliquant la méthode d’Euler avec le pas p.

0. Ecrire une fonction Lorenz(x0, y@, z0, T, p) qui trace la trajectoire de l'arc
t — ©uy.y0,20.p(1) sur Uintervalle [0, 7] (dans tout I'exercice, on supposera que T est toujours un
multiple du pas choisi). Une fois caleulées les listes Lx = [xg, 21, ..., 2], LYy = [Yo, Y1, -2 Yn)
et Lz = [30, -2 z"], on utilisera la fonction Axe3D du module mpl_toolkits.mplot3d.

1. Que penser des trajectoires obtenues pour les conditions initiales (1,1,1) et (1.001,1,1), avec
T =100 et p=0.0017
Ecrire une fonction Chaos_Conditions_Initiales(x0, y0, z0, X0, Y0, Z0, T, p) qui
ouvre trois fenétres graphiques, contenant respectivement les graphes de @, yo.20.p5 4€ ©X4.v5. 200
et de ¥x,,Vo.Zo.p — Pro.vo.z0.p SUr l'intervalle [0, 7).
Interpréter les résultats observés pour (zg,yo,20) = (1,1,1) et (X, Yo, Zp) = (1.001, 1, 1).

2. Que penser des trajectoires obtenues pour la condition initiale (1,1, 1), toujours avec 7' = 100
mais avec p; = 0.001 et p; = 0.0001 7
Ecrire une fonction Chaos_Pas (x0, y®, z0, T, p) quiouvre une fenétre graphique contenant
le graphe de ©u, y0.20,0 — Pao,yo.20,p/10 ST Uintervalle [0, T']. Interpréter les résultats observés
pour (xg, Yo, 20) = (1,1,1) et p=0.01.

[Exercice 4.16) Vitesse de convergence de la méthode d’Euler

Le probléme de Cauchy 2’ = t+2 , z(0) = 1 a une unique solution : la fonction p : # — e’ —1—1.
Pour n € N* et T > 0, notons ®(n, T') 'approximation de ¢(T") obtenue en appliquant la méthode
d’Euler a ce probléeme de Cauchy sur l'intervalle [0, T'] avec le pas p = T'/n.

0. Ecrire une fonction Epsilon(n, T) qui, appliquée a (n,T'), renvoie la valeur de 'erreur £(n, T') =
[®(n, T) — o(T)].
. En fixant quelques valeurs de T', estimer 'ordre de grandeur (en fonction de n) de (n,T).
2. De méme, en fixant la valeur du pas p, estimer l'ordre de grandeur (en fonction de T') de I'erreur
g(n,T).

[

(Exercice 4.17) Améliorations de la méthode d’Euler

La méthode d'Euler est basée sur |'approximation :

(1) p(t) = p(to) + (1 — to)me
oun mg = f(ty,xp) est la dérivée de ¢ en t3. Pour tenter d’améliorer la méthode d’Euler, on
peut avoir l'idée de remplacer mg par un meilleur coeflicient directeur, qui prendra en compte les
variations de ', Cela peut se faire de deux fagons élémentaires :

2017 Dunod.

Copyright ©

Exercices 139

e Méthode de type « point milieu ».
Un calcul élémentaire montre que I'approximation :

t0+t1)

w(t1) = @(to) + (t1 — to)y’ (2

est bien meilleure (quand est assez réguliere) que (1). En posant t; /5 = % (to +t1), nous
savons que ¢'(ty/2) = f (t1/2,¢(t1/2)). mais on ne connait pas ¢(t;/2) : on va donc utiliser
la méthode d'Euler pour approximer cette valeur, en écrivant

p
e(tiy2) >~ xo + §f(to-.'»1"-0) = Z1/9.
On obtient ensuite I'approximation :
@(t1) = zo +pf(tiy2,212) =0 +p f (tu 3

Cette méthode conduit au schéma numérique :

guru 3 ;—; f(tu,xo))

)
Vie{0,1,...,n—1}, zip1=z;+pf (t-; o %,33@ + gf(?fi,ﬂh))
e MNléthode de type « trapéze ».

Un calcul tout aussi élémentaire montre que 'approximation :

f't + ! t
p(t1) = @(to) + (1 — to) %ﬁp(—ll
est également bien meilleure que (1) (toujours quand p est assez réguliére). Nous connaissons
@' (tg) = f(tg,zg) = myg et nous allons une nouvelle fois approximer ' (#;) grace a la méthode
d'Euler :
@' (t1) = ft1,0(t1)) = f(t1, X1)

avec X; = xg + pmyg. Cette méthode conduit au schéma numérique :
(' mi = f(zi,t;)

Xia = @i+ 0.f(zs,8:)

Vie {0,1,...,n—1},
{ } m; = f(tiy1, Xit1)

'
n; +m;

| Tit1 =Tit+p 5

0. Ecrire le code des fonctions E(f, t0, x0, T, n), PM(f, t0, x0, T, n) et

TR(f, t@, x0@, T, n) qui appliquent les méthodes d’Euler, du point milien et des trapézes
(avec le pas T'/n) et renvoient une valeur approchée de la valeur en ty + 7' du probleme de
Cauchy (z' = f(t,z), z(tp) = xo).

. Tester ces fonctions avec le probléme de Cauchy (2" = tz?, 2(0) = 1), dont la solution est la

2
fonction ¢ : t — 5 définie sur | — /2, v/2[. Comparer ces méthodes entre elles.

. Appliquer les deux nouvelles méthodes pour tracer le portrait de phase de 1'équation de Lotka-

Voltera étudiée a I'exercice 4.13 p. 136. Commenter les résultats obtenus.

4
i

Dunod.

K7

201

Copyright ©

140 Chapitre 4 Calcul numérique (une dimension)

Méthode d’Euler (ordre 2)

(Exercice 4.18) Exercice d’oral de Centrale (2015)

Considérons 1'équation différentielle (E) : (1 — z)*y”(z) = y(z). On note f I'unique solution de
(E) sur 'intervalle | — oo, 1] vérifiant les conditions initiales f(0) = 0 et f'(0) = 1. En utilisant la
méthode d'Euler, tracer une approximation du graphe de f sur [0,0.9].

(Exercice 4.19)

L'application p : t — sint est la solution de probleme de Cauchy (.7;” = —z, 2(0) =0, 2'(0) = 1).
Pour n € N* et T' > 0, notons ®(n,T") 'approximation obtenue en appliquant la méthode d'Euler
a ce probléme sur l'intervalle [0, T, pour le pas p =T /n.

0. Ecrire une fonction qui, appliquée a (n, T), renvoie la valeur ®(n, T'). En fixant quelques valeurs
de T, estimer l'ordre de grandeur (en fonction de n) de erreur |®(n,T) — (7).
1. Pour améliorer la méthode d’Euler, on peut penser a utiliser la meilleure approximation :
. p*
p(t1) = (to) +p¢'(to) + =

2
o
5 ©"(to) = xo + pxj + gf(t(”mu’ z0)

ce qui conduit au schéma numérique :
Tiy1 = &; + P +;:2/2 F(tsy 25,)
vie {0,1,...,n—1},
zl = o, +p Stz zl)
Ecrire une fonction qui, appliquée A (n, T), renvoie la valeur &, (n, T') qui approxime (T') par le
biais de cette méthode. En fixant différentes valeurs de T', comparer les erreurs |®(n,T) — p(T)
et |[®y(n,T) — ¢(T)|. Commenter le résultat obtenu.

(Exercice 4.20)

Nous considérons ici une équation différentielle scalaire =" = f(t,x, '), i.e. une équation différen-
tielle dont la fonction inconnue x est a valeurs réelles.

0. Ecrire une fonction Euler(f, t0, x@, xprime®, T, P) qui applique la méthode d’Euler au
probléeme de Cauchy (2" = f(t,z,2'), x(to) = xo, *'(to) = xf) sur [to, o+ T] avec le pas p (on
supposera que 1" est un multiple de p), puis ouvre deux fenétres graphiques, I'une contenant le
tracé du graphe de la fonction ¢ sur [0, 77, 'autre contenant le portait de phase, i.e. le support
de l'arc paramétré t — ((t), ' (1)).

1. Nous souhaitons maintenant travailler sur une famille de conditions initiales ((:r.u‘,‘, :rf),,-)) 1<i<q’
qui sera représentée par la liste L = [[z0,1,2 4], ., [Z0., % 4]-

Ecrire une fonction EulerPhase(f, t0, L, T, p) qui applique la méthode d’Euler pour cha-
cune des ¢ conditions initiales et renvoie le tracé des ¢ solutions approchées dans 'espace des
phases.

2. Tester les fonctions précédentes sur les équations classiques :

a. Oscillateur harmonique : 2" + 2 = 0;

b. Oscillateur de Van der Pol : 2" + (22 —)2’ + 2 = 0;
¢. Pendule pesant : ”/ +sinz = 0;

d. Pendule pesant amorti : " + %;r’ +sinz =0;

4
i

7 Dunod.

201

Copyright ©

Exercices 141

3. Il arrive qu'une solution ¢ d’un probleme de Cauchy soit définie sur un intervalle I =|a. 3] avec
« fini (resp. 3 fini), et que le point (¢(t),¢'(t)) tende vers I'infini quand ¢ tend vers a (resp.
vers [3). C'est ce qui se produit dans les cas b. et d. précédents. Nous allons modifier la fonction
EulerPhase :

e au lien d’étudier la trajectoire dans l'espace des phases pour t € [ty,tg + T, nous allons
létudier pour t € [ty — Tty + T| (autrement-dit, nous souhaitons étudier ce qui s’est passé
avant et ce qui va se passer apres 'instant initial ¢q) ;

e pour éviter les calculs aberrants, nous prenons en parametre une fenétre graphique, i.e. un
rectangle [a,b] x [¢,d], et nous arrétons le calcul des (z;,z!) dés qu'on sort de cette fenétre
imposée.

Ecrire une fonction Eule rPhaseBox(f, t@, L, T, p, a, b, c, d) qui fait ce travail et la
tester sur les équations b et d.

(Exercice 4.21) Le pendule simple

Le pendule simple est un systeme constitué d'une masse consi-
dérée ponctuelle liée & un bati fixe par une barre rigide sans
masse de longueur ¢ qui tourne autour de l'axe (O, 7). On
assimile les frottements dans la liaison a des frottements vis-
queux de coefficient p tel qu'il existe un couple de frottement
C,, = —pd7 équivalent & une force de frottement ?}, = —"—;fhﬂ;

L’équation différentielle qui régit le mouvement du pendule est
donc la suivante :

me26 + ;1.9 + mgfsinf =0

Si cette équation se résout simplement au voisinage des petits
angles (sin 4), elle n’est pas linéaire pour les grands angles.

0. Cas des petits angles

Au voisinage des petits angles I'équation s’écrit ;
g p g |

0 + 2¢wof + w20 =0
/ 2
q i
avecuu:\/get.f: m

On admet que la solution de cette équation au voisinage des petits angles pour un amortissement
p faible (régime pseudo-périodique amorti) est :

O(t) = pe *“"" cos (w;t)
avec Wy = woy/1 — €2, £ < 1.

(0) Tracer sur une méme figure la réponse théorique 8 = f(t) pour g = 10°, wy = 10rads™! et
& = 0.5 ainsi que la solution numérique obtenue par méthode d’Euler explicite avec un pas de
temps de 0.01s.

(1) Créer une liste theta_0 = [1, 5, 10, 20] de valeurs de ;. A D'aide d'une boucle for tracer
sur 4 graphiques différents (un par valeur de fy) ’évolution de 'angle #(t) pour la solution
théorique et la solution numérique.

On constate que la méthode d'Euler explicite ne converge pas pour cet exemple.

2017 Dunod.

Copyright ©

142 Chapitre 4 Calcul numérique (une dimension)

1. Cas des grands angles

On revient a I'équation non linéaire sous la forme :

0 + 2€wof + w sinf = 0
g Iz
avecwy == et E=——=5+-
' \ﬂ = g

On ne connait pas la solution exacte de cette équation, la résolution numérique nous permet donce
d’avoir une approximation de I'évolution du pendule.
(0) Créer une liste theta_0 = [10, 45, 90, 135, 180] de valeurs de 6.
A Taide d’une boucle for tracer sur un méme graphique I’évolution de 'angle 6(t) pour les
différentes valeurs angulaires initiales a I'aide de la méthode d’Euler.
On constate que le résultat de la méthode d'Euler n'est pas bon pour le cas du pendule.
Afin d’améliorer la méthode d’Euler, on propose une variante qui consiste a utiliser le schéma
suivant :
j7i-+l = .’f.”-«; + At .'l'.fg
{ Tiv1 = i+ Atdi
(1) Créer et tester sur le pendule la fonction Euler_2_asym qui résout une équation différentielle
d’ordre 2 par la méthode d’Euler dite asymétrique.

Copyright © 2017 Dunod.

Travaux pratiques 143

['I‘P 4.0 — Points de Gauss (intégration numérique)J

Les méthodes usuelles de calcul approché de I'intégrale I = ff f(t)dt consistent, apres avoir fixé un
entier n > 1, & subdiviser 'intervalle [a, b] avec un pas constant 4 = (b—a)/n, en posant a; = a+1id
pour 0 < ¢ < n, puis a approcher 'intégrale sur chaque petit intervalle [a;, @;4,] en interpolant la
fonction f par un polynome P; de petit degré d.

Dans ce TP, nous utiliserons 1, 2 ou 3 points d’interpolation, et d sera donc égal a 0, 1 ou 2, comme
illustré dans les trois schémas suivants :

d=2

b a e

@ aittad i1 a;+tod ai+tyd a;+itpd a;+t1d ai+tad

Quand d = 0, nous retrouvons la méthode des rectangles « pointés a gauche » avec ty = 0, celle
des rectangles « pointés a droite » avec fy = 1 et la méthode du « point milieu » avec ty = 1/2. La
méthode des trapezes est obtenue pour d = 1, fg = 0 et t; = 1. Enfin, la méthode de Simpson
correspond ad=2,tp=0,t; =1/2 et to = 1.

Pour d € {0,1,2} et (t;)o<i<a €léments distincts de [0, 1], nous noterons I, ,,(f,a,b, n) 'approxi-
mationde [= f; f(t) dt obtenue avec la méthode précédente. Nous avons par exemple, quand d = 0

n—1
et 0<tyg <1, It,(f,a,b,n) =6 Z fla+ (i +tp)d), toujours avec § = =3

n
=0

0. Ecrire la fonction monint@(f, a, b, n, t0) qui renvoie Iy, (f,a,b,n).
1. Pour chaque n € {100, 500, 1000, 5000}, tracer les graphes des applications

to — Itg(f[hgr 1,?’1) -1

1
pour | fo : t — —— | (on calculera la valeur exacte de l'intégrale I).

Quelle valeur de #g, notée ;" " semble étre optimale ?
Vérifier cette conjecture avec d'autres intégrales dont la valeur exacte est connue.
2. Estimer 'ordre de grandeur de l'erreur |1, (f,0,1,n) — I| quand n tend vers I'infini, selon que

to = 37" ou que to # 3P,

Nous supposons maintenant que d = 1. Si t; et ¢; sont deux réels distincts de [0, 1], le polynéme
P; est I'unique polynome de degré au plus 1 qui coincide avec f en a; + tgd et en a; + #;4. Nous
allons donc approximer f L f(t)dt par [a_*“ P;(t) dt, et nous admettrons la relation :

Wit 2t1 2ty
/m Pi(t)dt = rf(at"'tﬂé) mf{ﬂu+t15)

4
i

Dunod.

?.

201

Copyright ©

144 Chapitre 4 Calcul numérique (une dimension)

Pour chercher les meilleures valeurs de fg et de 1, nous pouvons nous contenter de faire varier t,

dans [0,1/2] (par symétrie, les points (to,t,) et (1 —#g,1 —#;) ont la méme efficacité).

3. Ecrire la fonction moni ntl(f, a, b, n, t0, t1) quirenvoie I, ¢ (f a,bn).

4. Pour ty € {0,0.1,0.2,0.3,0.4,0.5}, tracer le graphe de I'application ¢, — I, ¢, (fo,0, 1,10%)—1.
Vous devez remarquer expérimentalement que ces fonctions sont presque affines.

5. Ecrire une fonction t_opt (t0) qui approxime la valeur de ¢, optimale, ¢’est-a-dire la valeur
t" € [0,1] en laquelle la fonction t; = |1, ¢, (fo,0,1,10%) — I| atteint son minimum. Vérifier
I'existence d'un réel u €0,1/2[tel que t?pt =1dés queu <ty <1/2.

6. Vérifier que 'application tg —s (1 — 2t0)t"" est également presque affine sur 'intervalle [0, u]
et donner des valeurs numériques «a, 3 telles que t'l’"i ~ 248t Hour ¢y € [0, u]. Nous fixerons

1-2tp
s s F Py - t iy
alors u vérifiant 915" = 1, puisque u est la valeur a partir de laquelle t{”" = 1. Vérifier que

les valeurs u, «v, 5 ne varient pratiquement pas quand on modifie la fonetion f et I'entier n (en
gardant n assez grand). Conjecturer les valeurs exactes de ces parameétres.

Comme le choix t; = 1 se rameéne, par symétrie, au cas tg = 0, nous pouvons maintenant restreindre

I'étude a tg € [0. 'U-] et t; = -El!tg::: :

7. Tracer le graphe de l'application tq — Iy, ¢, (f0,0,1,10%) — I pour t5 € [0,u] et en déduire
I'existence d'une valeur optimale de t;, noté 1‘.83“‘. Donner une valeur approchée de t;” “ et du
réel 77 " qui lui est associé, et vérifier que ces valeurs ne changent pratiquement pas quand on
change de fonction f. En remarquant que t'fp' ~]1— tgm, en déduire que les valeurs optimales
de ty et t; sont les racines du polynéme X2 — X + 1/6, soit tg = % - % et t; = ’5 o+ %

8. On choisit maintenant pour ty et t; ces deux valeurs optimales. Calculer expérimentalement
I'ordre de grandeur de |, ¢, (f,0,1,n) — I| quand n tend vers I'infini. Comparer avec la méthode
des trapézes qui correspond au choix (fg,#;) = (0,1).

Nous supposons pour terminer que d = 2 et que fg, 1,2 sont trois réels distincts de [0, 1]. F; est
maintenant le polynome de degré au plus 2 qui coincide avec f en les points a; + tyd, a; + 116 et
a; + t20. Nous admettrons la relation :

aig1
/ Pi(t)dt = Agf(a; + tod) + Ay f(a; + t16) + Aaf(a; + t20)

ay
e Ay =30 —8G+42 o Gloly 33642 o Ol — 3l —35 2
6(to — t1)(to — t2) ! 6(t1 —to)(t1 —t2) 6(ts — to)(tz — 1)

9. Eerire la fonction moni nt2(f, a, b, n, t0, tl, t2) quirenvoie Iy, 4, +,(f, a,b,n).

10. Par analogie avec ce qui précéde, nous admettrons que le triplet optimal (g, %;,%2) est a chercher
sous la forme (fp,1/2,1 —tp), ou 0 < #y < 1/2. En utilisant une nouvelle fois la fonction fy,
proposer une valeur approchée o de la valeur optimale de #.

Calculer le polynome (X — a)(X — 1 + a) et en déduire qu'il est raisonnable de conjecturer
que les valeurs optimales fo, 1,2 sont les racines du polynéme (X —1/2)(X? — X +1/10), soit
to=3 — 15V15, t1 = § et tp = 3 — 15V15.

11. On choisit maintenant pour #g, ¢, et t5 ces trois valeurs optimales. Calculer expérimentalement
I'ordre de grandeur de |I;, 4, +,(f,0,1,n) — I| quand n tend vers l'infini.

Comparer avec la méthode de Simpson, qui correspond au choix (tg,t1,12) = (0,1/2,1).

Travaux pratiques 145

(TP 4.1 — Quake IIT|

Le jeu vidéo Quake I1I simule un environnement en 3 dimensions. Il a souvent besoin de calculer des
vecteurs unitaires, ¢’est-a-dire des expressions de la forme II?II' Pour ce faire, il est important de
calculer rapidement la fonction z — % (aussi appelée racine carrée inverse). Nous nous intéressons

ici & la méthode utilisée dans le jeu Quake IIT pour calculer cette fonction.

Etape de la méthode de Newton

Soit f.(t) = :% — x. Une premieére itération de

la méthode de Newton consiste, a partir d'une

valeur a, a calculer 'abscisse de 'intersection 4 1
entre la tangente a f, en a et l'axe des abs- 31
cisses.
L. o 2 T
Le dessin ci-contre illustre une étape de la mé- 1+

thode de Newton a partir de a = 0.4 pour la fonc-
tion f3. La tangente en a coupe I'axe des abscisses ; 06~_0.7 08 0.9
en 0.504. = a(t)

L

0. Déterminer le zéro' de f, puis calculer une expression de o
1. Ecrire une fonction EtapeNewton(x, a) quirenvoie I'abscisse de 'intersection entre la tangente
a f, en a et I'axe des abscisses. La tester pour a = 0.4 et x = 3.

Méthode de Newton

La méthode de Newton consiste a recommencer le calcul & partir de la derniere valeur obtenue
un certain nombre de fois. Dans les cas favorables, la convergence est trés rapide.

2. Ecrire une fonction Newton(x, a, n) qui calcule une approximation de % en itérant n fois
la méthode de Newton en partant de a sur la fonction fi.

3. Tracer sur I'intervalle [0.1, 10], sur un méme graphe la fonction z — v—,',? calculée avec la méthode
de Newton et la méme fonction calculée avec *x@.5.

4. Considérons I'approximation log,(1 + x) = = pour x € [0, 1]. Pour quelles valeurs de x cette
approximation est-elle exacte? Tracer sur un méme graphique log,(1 +) (calculé avec la
bibliotheque numpy) et son approximation.

5. Tracer sur un méme graphique x — log,(1 + z) et & — x + o avec plusieurs valeurs pour
la constante o. Déterminer « au jugé », en observant les courbes précédemment tracées, une
constante o tel que x + o soit une approximation correcte de log,(1+ x) pour z € [0, 1]. Aucun
calcul n'est demandé dans cette question.

1. C'est-a-dire I'antécédent de 0.

146 Chapitre 4 Calcul numérique (une dimension)

Définition
La norme IEEE 754 - 2008 [IEE| définit les binary32, c’est-a-dire les nombres a virgule
flottante, en base 2, codés sur 32 bits, Parmi ces nombres, la norme définit les nombres
normaux.
Un nombre o normal est un nombre qui peut étre mis sous la forme & = (—1)% x (1+m,)2%
avec I

e s, € {0,1},

e ¢, € [—126;127], un entier.
e m, € [0, 1[, un réel pouvant s’écrire avec 23 chiffres (en base 2) aprés la virgule.

Représentation en machine .

Un nombre normal est représenté en machine par un triplet d’entiers non-signés :
e 5, =s, €{0,1},
o E, =e,+ B € [[1;254] avec B = 127 (B est appelé biais, et vaut B = 2871 —1 = 127).
e M, =m,; x L €[0;L~-1] avec L = 2%,

Dans l'ordinateur, le flottant x est représenté comme suit :

AR

1 A
T N
Sa exposant E, mantisse M.,

Ici, nous ne considererons que des flottants strictement positifs, done tels que s, est nul.

Définition
L’anglicisme cast désigne la conversion d'une valeur d'un type a un autre. Cette conversion

peut se faire en essayant de préserver le sens (par exemple en transformant I'entier 2 en 2.0)
ou en préservant la représentation binaire. Iei nous utiliserons le second cas.

Dans la suite, le résultat du cast du Hottant x en entier est noté I,.

. M . ¥ . o . # ‘ .
Y Transformer 'entier 32 bits 2 en un flottant 32 bits en préservant la représentation
- ~

] binaire meéne a une valeur trés éloignée de 2 : on obtient 2.802596928649634e-45.

m Les fonctions pack et unpack de la bibliothéque struct permettent de manipuler les
représentations binaires des entiers et des Hottants.

6. Ecrire une fonction f2I(x) qui convertit un flottant 32 bits x en un entier de 32 bits en
préservant sa représentation binaire.
7. Ecrire une fonction I2f(n) qui convertit un entier de 32 bits n en un flottant 32 bits en
préservant sa représentation binaire.
8. Exprimer [, en fonction de e, de m,, de B et de L.
9. Exprimer log,(x) en fonction de e, et de m,, puis, simplifier cette expression en utilisant
I'approximation log,(1 +t) = ¢ + .
10. En déduire une approximation de log,(x) en fonction de [, de L, de B et de o.

Dunod

)17

20

Copyright ©

Travaux pratiques 147

11. Ecrire une fonction log2 en utilisant Papproximation précédente. La tracer sur le méme gra-
phique que la fonction log2 de numpy sur I'intervalle [0.1, 10].

12. Etant donné x strictement positif et y = v_%"? exprimer log,(y) en fonction de log,(x), puis, en

utilisant 'approximation de la question 10, exprimer I, en fonction de I, de B, de L et de o.
13. En déduire une fonction QuickRSqrt(x) qui, étant donné un flottant x, calcule une approxima-
tion de v’Lf Tracer sur un méme graphique les graphes de QuickRSqrt et de la fonetion racine

carrée inverse calculée avec *x0.5, pour un parameétre décrivant I'intervalle [0.1, 10].

Voici le code en langage C (légerement épuré) utilisé dans Quake III pour calculer la racine carrée
inverse (le code est dans le fichier code/game/q_math. c disponible sur GitHub).

float Q_rsqrt(fleat number)
{
long i;
float x2, y;
const float threehalfs = 1.5F;
x2 number * 0.5F;
number ;
* (long *) &y; // evil floating point bit level hacking
Ox5f3759df - (4 >> 1); [/ #rrcensurésxs
* (float *) &i;
y * (threehalfs - (x2 * vy x y }); // 1st iteration
i y =y * (threehalfs - (x2 « y » y)); // 2nd iteration, this can be removed
return vy;

[N

14. Combien vaut 0x5f3759df ? Donner la valeur en base 10.

En C, lorsqu'une nouvelle variable est créée, son type est précisé (long pour entier,
A float pour flottant, const float pour un flottant constant). Les constantes flot-
Q tantes finissent par un F, l'opération i>>1 divise i par 2, l'opération x (long *)
& convertit en entier en conservant la représentation binaire, 'opération » (float =
) & convertit en flottant.

15. Traduire cette fonction en Python.

16. Tracer sur un méme graphe cette fonction racine carrée inverse et une fonction racine carrée
inverse utilisant *x@.5.

17. Quelle ligne de la fonction de Quake III correspond A la méthode de Newton ?

18. Pourquoi la seconde itération a-t-elle été mise en commentaire ?

19. Combien vaut ¢ dans la fonction de Quake 1117

[TP 4.2 — Modeéles compartimentaux en épidémiologie]

Les modéles épidémiologiques sont des modeéles mathématiques de la propagation de maladies
infectieuses. Outre 'étude de I'évolution de maladies, ils permettent de prévoir les conséquences
pour la population d’actions publiques telles que la vaccination [KZVHO00, LMO02], la mise en
quarantaine [GRD"04, WD16] ou des mesures de dépistages [HLS03].

Les modeles compartimentaux sont des modeles déterministes ou la population est divisée en
plusieurs catégories selon leurs caractéristiques et leur état par rapport a la maladie.

Nous distinguerons notamment les compartiments suivants dans ce TP :

e le compartiment S (Susceptible) des individus sains et susceptibles d'étre infectés;

ht © 2017 Dunod.

Copyright

148 Chapitre 4 Calcul numérique (une dimension)

e le compartiment I (Infectious) des individus infectés et contagieux.

Nous nous intéresserons a une population de taille constante, ce qui revient a négliger les naissances
et les morts (par d’autres causes que la maladie infectieuse étudiée) et est une hypotheése raisonnable
pour une étude sur un intervalle de temps court. Les différents compartiments sont exprimés en
proportions de population, ainsi, dans un modéle & deux compartiments S et [on a & tout instant
S(t)+ 1(t) = 1.

Les individus passent, lors de la simulation, d’un état a 'autre a 'aide de régles de transitions
qui sont décrites par des équations différentielles. L'objectif de ce TP est d'une part de présenter
quelques modéles compartimentaux, et d’autre part d’étudier les effets d'actions publiques dans
des cas simples.

Dans ce TP nous importons la bibliotheque numpy avec l'instruction import numpy as np.

0. Ecrire une fonction Euler (f, X0, tf, n) qui applique la méthode d'Euler au probléme de
Cauchy (X' = f(X,t), X(0) = Xo) sur [0,¢f] avec le pas dt = tf/n, avec X un vecteur de R¥,
ol k est le nombre de compartiments étudiés, codé sous la forme de ndarray. Cette fonction
renverra un tableau de temps T et un tableau Y a deux dimensions tels que Y[k] contient la
valeurs de X (#) pour ¢ valant T[k].

Par exemple, Euler (lambda x, t : x*t, np.array([1]), 0.1, 3) doit renvoyer :

(array([0., ©.03333333, 0.06666667, ©.1]),
array([[1.], [1.], [1.80111111], [1.6833358]]1))

Certaines infections, comme le rhume, ne permettent pas de dévelop- 8" = —BSI +~I

per une immunité a long terme. Seuls deux états interviennent dans le

modele : les compartiments S et I. Le modéle est alors appelé SIS (les I'=BSI —~I
= B!

individus sains sont susceptibles de devenir infectés et redeviennent
sains apres leur maladie), et est décrit par les équations différentielles ci-contre. Les variables 3 et
v sont globales.

Nous considérons pour tester nos premiers modéles une maladie fictive, la maladie X. Elle a
pour paramétres v = 0.01 jour™" et # = 0.03 jour™'. On étudiera les épidémies de X sur une
période tf = 500 jours avec n assez grand (par exemple 1000).

1. Quelle est la signification biologique des parametres 3 et 7

2. Ecrire une fonction SIS(X, t) qui prend en argument X un tablean numpy (ndarray) représen-
tant [S(t), I(t)] et qui renvoie sous forme d'un ndarray [S'(t), I'(t)] pour le systeme différentiel
du modeéle SIS.
L’expression SIS(np.array([0, 1]), @) doit renvoyer array([@.01, -0.01]).On remarque
qu'ici, 'argument t n'a pas d’influence sur le résultat renvoyé par la fonction SIS.

3. Tracer sur le méme graphe S(f) et I(t) avec les conditions initiales suivantes :

e S(0)=0 et I(0)=1; e S5(0)=0.5 et I(0)=0.5;
e S(0)=0.2 et 1(0)=0.8; e 5(0)=0.99 et 1(0)=0.01.

4
i

7 Dunod.

201

Copyright ©

Travaux pratiques 149

Lorsque plusieurs courbes sont présentes sur un meéme graphique, il peut étre inté-

m ressant d’utiliser la fonction legend de la bibliothéque matplotlib.pyplot pour les
identifier. Dans le cas présent, on pourra utiliser legend(['S', 'I']) ou plus sim-
plement legend("SI").

4. Que constate-t-on lorsque ¢ devient grand ?

Pour certaines maladies, comme la gastro-entérite, des mesures simples d’hygiéne permettent de
réduire le taux de transmission de la maladie. Nous supposons maintenanf qu’'une campagne de
sensibilisation contre la maladie X est lancée a t = 0. La proportion h(t) de la population sensibilisée
aux mesures d’hygiene vaut initialement 0 (personne n’'est au courant des mesures a prendre) et
tend vers 1 a I'infini (toute la population a été informée). Nous modélisons h par une fonction de
la forme h(t) = at/(at 4+ 7) avec ici a = 0.02 et 7 = 1.

+ h(t)

0 t
Nous supposerons ici que les personnes sensibilisées ont deux . h(t)]
fois moins de chances de transmettre la maladie X, le terme 351 S'=— (1 - T) BSI +41
devient alors (;3(1 — R\ + gh(f)f) S = (1 " ﬂ;—‘) 8SI,ce | I'= (1 - L;’) BST =1
qui donne le modele SISh ci-contre.

5. Ecrire une fonction SISh(X, t) qui prend en argument X un tableau ndarray représentant
[S(t), I(t)] et qui renvoie [S’(t),I'(t)] sous forme d'un ndarray pour le systéme différentiel du
modele SISh.

6. Tracer, sur trois graphiques différents, avec S(0) = 0.6 et I(0) = 0.4, les courbes de S(t) et de
I(t) pour : le modele SISh, le modele SIS et le modele SIS avee 3 divisé par deux. Comparer.

D’autres infections permettent de développer une immunité ou tuent ;)
certains patients. Les individus guéris (et donc immunisés) ou décédés 3" =—BS5I
sont ainsi regroupés dans un nouveau compartiment R (pour recovered I'=BSI —~I
ou removed). Le modéle est appelé SIR. Les équations différentielles ’

régissant la population sont indiquées ci-contre. R =1

7. Ecrire une fonction SIR(X, t) qui prend en argument X un tableau ndarray représentant
[S(t), I(t), R(t)] et qui renvoie [S’(t), I'(t), R'(t)] sous la forme d'un tableau ndarray pour le
systeme différentiel du modele STR.

Notre modele est bien adapté a I'épidémie de peste d'Eyam (1665-1666) : le village était isolé

(la population totale, morts compris, était constante). Etant donné qu'un nombre négligeable

d’individus survécurent a la peste, nous utilisons le compartiment R pour représenter uniquement

les morts. En outre, nous négligeons les naissances et les déces liés a d’autres causes que la maladie.

Copyright © 2017 Dunod.

150 Chapitre 4 Calcul numérique (une dimension)

Les valeurs numériques de la peste de ce TP proviennent toutes de I'article [Rag82] (qui traite de
la seconde moitié de I'épidémie).

Peste d’Eyam \

La peste est décrite par les parametres ” suivants : v = 2.78 mois ™', # = yx 2% ~ 4.56 mois™".

L'unité de temps est le mois de 31 jours.
Les conditions initiales d’Eyam sont : S(0) = 221, I(0) = 55 et R(0) = 0.

b. Notre v correspond au b de l'article, et notre 8 & a x N dans l'article.

\

8. Réaliser les tracés des courbes représentatives de S(t), I(f) et R(t) sur 5 mois (i.e., tf = 5).

Le tableau suivant donne, & différentes dates, le nombre d’indivus susceptibles ? d’étre infectés, le
nombre d'infectés, reconstitués a partir de données historiques *, et, pour des raisons de commodi-
tés, le temps ¢ du modele.

Date Susceptibles Infectés Temps dans le
modeéle (1)

18 juin 254 7 0
3/4 juillet 235 14.5 0.5
19 juillet 201 22 1
3/4 aont 153.5 29 1.5
19 aotut 121 20 2
3/4 septembre 108 3 2.5
19 septembre 97 8 3
4/5 octobre Inconnu Inconnu 8.5
20 octobre 83 0 4

9. Ajouter sur le graphique précédent les points correspondants au tableau, et comparer le mo-
dele aux données historiques. Pour se simplifier la vie, on peut utiliser float("nan") pour
représenter les valeurs inconnues.

Dans les villages avoisinants et méme a Londres, la peste a, en moyenne, tué une proportion moins
grande d’habitants. On subodore que la maladie se propage plus ou moins facilement selon les
lieux, I'hygiéne, etc. Autrement dit, d'un village a 'autre, le parametre 3 peut changer.

10. Déterminer la valeur de 3 a4 1072 prés correspondant a un taux de mortalité de 50%, tous les

autres parameétres restant constants.

La modélisation de la peste d’Eyam est encore un sujet de recherche. Des travaux récents [WD16]
proposent une modélisation plus précise (sur toute la durée de I'épidémie) et des données historiques
plus fiables.

2. 11 suffit de diviser par 261 (la taille de la population étudiée) pour obtenir S(t).
3. Les .5 proviennent de calculs de moyennes car les données historiques ne donnent pas toujours le nombre
d’individus dans chaque compartiment aux dates désirées

4
i

Dunod.

?.

201

c)

Copyright

Travaux pratiques 151

Les questions 11 & 16 sont inspirées du sujet de Mines-Ponts 2016. Ces questions sont
intéressantes a programmer, mais utilisent une méthode non-standard (un systéme a
retard) au lieu de simplement ajouter un compartiment E (cf. 'exemple du SRAS).

De nombreuses maladies possedent une phase d’incubation
pendant laquelle 'individu est porteur de la maladie mais ne

posséde pas de symptomes et n'est pas contagieux. On peut
prendre en compte cette phase d’incubation a 'aide du sys-

S'(t) = =BS(t)I(t —7)

téme a retard ci-contre, on 7 est le temps d'incubation. On I'(t)=pBS(t)I(t —) —~I(t)

suppose alors que S, I et R sont constants sur [—7,0]. On
suppose que 7 est un multiple entier de df, et donc qu’il existe

Ri(t) = ~I(t)

un entier p tel que 7 = p x dt: ainsi, p est le nombre de pas
de retard.

11.

12.

13.

14.

Ecrire une fonction SIRRetard (X, XRetard, t) qui prend en argument X et XRetard deux
tableaux numpy (ndarray) correspondant respectivement & [S(t), I(t), R(t)] et a [S(t —7), I(t —
7), R(t — 7)] et qui renvoie un ndarray correspondant a [S’(t),I'(t), R'(t)] pour le systéme
différentiel correspondant au modeéle SIR avec retard.

Eerire une fonction EulerRetard(f, X0, p, tf=500, n=1000), sur le modéle de la fonction
Euler précédemment définie, qui adapte la méthode d'Euler pour résoudre le probleme (X ol
F(X (), X (t—7),t), Vt € [-7,0], X(t) = Xo) sur [0,¢f].

Tracer les courbes correspondant a ce modeéle et a la peste d'Eyam avec 7 = 0.18 mois (soit
environ les 5.6 jours mentionnés dans [WD16]).

La proportion de morts change-t-elle en tenant compte de la phase d'incubation? Tracer la
courbe du taux de mortalité en fonction du temps d’incubation. On fera varier le temps d’'incu-
bation entre 0 et 5 mois (les autres parametres étant constants), et on prendra tf suffisamment
grand pour étre siir que 1'épidémie est terminée.

On constate par ailleurs que le temps d'incubation n’est pas nécessairement le méme pour tous
les individus. On peut modéliser cette diversité a I'aide d'une fonction positive d’intégrale unitaire
(dite de densité) h : [0,27] — R4 telle que représentée ci-dessous.

fonction de densité h(t)

-
ct+

N e —————

L

4
i

Dunod.

?.

201

c)

Copyright

152 Chapitre 4 Calcul numérique (une dimension)

On obtient alors le systéme intégro-différentiel suivant.
2T
() = —BS(t) j I(t — s)h(s)ds
40
I'(t) = BS(t) / I(t — s)h(s)ds —~yI(t)

J0
RI(t) = v1(t)

On suppose alors que S, I et R sont constants sur [—27,0]. Pour j un entier compris entre 0 et n
on pose t; = j X dt. Pour un pas dt de temps donné, on peut calculer numériquement I'intégrale a
I'instant ¢; (0 < #; < n) alaide de la méthode des rectangles & gauche en utilisant 'approximation :

B 2p—1
I(t; — s)h(s)ds = dt x > I(t; — t;)h(t;)
Jo J=0

15. On consideére la fonction de densité donnée, sur [0, 27], par la formule suivante :

h(t) = o exp (—ﬂ))

ov2w 20°
On pose h(t) = 0 en dehors de cet intervalle (I'intégrale de h vaut presque 1). Programmer
cette fonction en prenant 7 = 0.18 mois et o = 0.04 mois.

16. Ecrire une fonction Simulel ntegroDiff(h, X0, tf, p, n) ol X0 est un ndarray correspon-
dant anx conditions initiales, tf est le temps final, n le nombre de pas d’intégration et p est le
nombre de pas de retard.

17. Tester cette fonction avec la peste d’Eyam.

Nous allons maintenant étudier les effets d'une politique publique : la quarantaine, dans le cadre
de 1'épidémie de SRAS de 2003. Nos données proviennent de l'article [GRD™04]. L'épidémie a
eu lien dans une population non-isolée, pour traiter plus facilement ce cas, nous décidons que les
compartiments seront exprimés en nombre d’'individus et non plus en proportion de la population
totale. La population totale sera notée N. Cette population s'accroit de I habitants! sains par
jour, et de p habitants exposés? an SRAS par jour. De plus, la population est soumise a un taux
de mortalité naturelle ju; tous les compartiments perdrons la méme proportion p d’habitants.

Le SRAS a une période d’incubation. Pour le modéliser, nous utilisons non pas un systeme a
retard comme dans le sujet Mines-Ponts, mais un compartiment E (exposed ou asymptomatic)
représentant les individus en train d’incuber la maladie. Le schéma suivant résume les transferts
entre compartiments (d; est le taux de mortalité du SRAS, R représente les immunisés et pas les
morts).

II P
BSI = i E /D ol

A 5
ﬁ ,

nS nE pl dyI 1R

Des mesures de quarantaine ont été prises par les gouvernements concernés. Pour le modéliser,
nous introduisons deux nonveaux compartiments : le compartiment Q (quarantined) des individus

1. Accroissement par les flux de population (migrations) et par la natalité.
2. lls proviennent d’'une autre zone géographique touchée par le SRAS.

4
i

Dunod.

K7

201

Copyright ©

Travaux pratiques 153

en phase d’incubation qui ont été mis en quarantaine et le compartiment J (isolated) des malades
en quarantaine.
Notre modele se résume par le systéme différentiel suivant :

4

§'=I-pS x H&d —us
E=p+3Sx L — (v +K1+p)E
Q' =mE— (k2 +n)Q
I'=rmE—(va+d+oy+p)l

J' =l + £2Q — (02 + do + p)J

R =011 +03J — uR

LY

Les malades en quarantaine transmettent moins facilement la maladie (leur taux de transmission
est de /3 au lieu de 3 pour les malades non soignés), ont un taux de mortalité (ds) plus bas grice
aux soins médicaux dont ils bénéficient, et, pour la méme raison ont un taux de guérison oy plus
élevé que les autres malades.

Au modéle, nous ajoutons une catégorie D destinée & compter les morts, et vérifiant D' = dy I +da.J.
De plus, on pose N =S+ E+Q+ I+ J+R.

@ SRAS de Toronto ~
A GTA (Greater Toronto Area), les paramétres du SRAS furent les suivants : # = 0.2 71
p=34%x10%51; Kk =015 kg = 0.12557; 07 = 0.0337j°; 02 = 0.0386j7!;
dy = 0.0079 i7" ; dy = 0.0068 71 p = 0.06 individus/j; IT = 136 individus/j.

Initialement, seuls 3 compartiments sont non-vides :
So = 4 millions d'individus: Ey = 6 individus: Iy = 1 individu.

J

Le parametre £ dépend des mesures d'hygiene prises pour éviter la contamination dans les hopitaux
(masques, chambres a pression). Nous approximons £ par une fonction qui vaut 0.36 jusqu’au
56¢ jour (le 20 avril) puis qui vaut ensuite zéro. De méme, v, et 72 dépendent de la politique
de quarantaine. Au début, il n'y a pas de mesure de quarantaine (ils valent zéro), puis, nous
considérons que le 35¢ jour (le 30 mars) ils passent respectivement & 0.1 i7" et 0.5 j7.

18. Programmer trois fonctions epsilon(t), gammal(t) et gamma2(t) renvoyant les valeurs res-
pectives de &, v, et 72 en fonction du temps.

19. Programmer une fonction SRAS pour ce modele fonctionnant sur le méme principe que les
fonctions SIS et SIR.

20. Résoudre avec Euler ce systéme, puis tracer sur un méme graphique la courbe des morts théo-
rique et les points représentants les morts réelles données dans le tableau ci-apres.

Date 17 mars 24 mars 31 mars 4 avril 14 avril 29 avril 26 mai 9 juin
T= 22 29 36 40 50 65 92 106
Morts 2 3 4 7 13 20 26 32

21. Selon ce modele, combien y aurait-il eu de morts le 9 juin sans la quarantaine 7
22. Tracer la courbe des morts aun 9 juin en fonction de 5.

2017 Dunod.

Copyright ©

154 Chapitre 4 Calcul numérique (une dimension)

[TP 4.3 — Modélisation d’un tas de sable]

Nous étudions dans ce TP I'évolution mécanique d'un tas de sable. Le tas est constitué de grains,
modélisés par des sphéres de méme rayon R.
Un grain est représenté par une liste de six éléments [xi, yi, vxi, vyi, Fxi, Fyi] ou:

e xi et yi désignent la position du centre du grain,

e vxi et vyi désignent les composantes de la vitesse du grain,

e Fxi et Fyi désignent les composantes de la force d'interaction.
Le tas de sable est représenté par une liste tas, qui est une liste de grains.
Initialement, les vitesses de chaque grain et les forces d’interactions sont nulles. Les grains ont
pour rayon K = 1 et sont répartis sur n niveaux. Le i-éme niveau comporte n — i grains. Avec
i=0...n—1letj=0...n—i—1,laposition de chaque grain est (R(i + 2j), R(1 + v/3i)).

0. Ecrire une fonction initialise(n) qui renvoie le tas initial, celui-ci étant une liste de grains.
1. Ecrire une suite d’instructions qui permet d'effectuer la représentation graphique du tas de
grains ainsi constitué. On travaillera avec n = 5.

Pour modéliser les interactions entre les particules, nous allons utiliser la méthode des solides
déformables « sphéres molles » : le calcul des forces et des moments sera réalisé en considérant que
les disques sont indéformables mais peuvent s'interpénétrer légérement avec dy et dp le déplacement
normal et tangentiel & partir du contact.

Ainsi, pour modéliser les forces normales, on utilise un modele de ressort de raideur ky associé
a une dissipation visqueuse de coefficient vn permettant de reproduire une collision inélastique.
Pour les forces tangentielles, un ressort de raideur k7 couplé a un patin de limite du glissement g
permet de modéliser la force de friction.

La table 0 recense différents types de sables testés par des laboratoires.

Labo Geom | Mat | Densité R kn Yn ko 1t
(g.em™3) | (mm) | (Nom™') | (N.som™1) | (N.om™1)
MSC poly | verre 2.1 = 3.107 20 2.10 0,5
LPMDI | poly | acier 6 — 5.100 1 4.10° 0,7
LPGP | sphere | métal 4,7 4 106 10 3.10% 0,2
LMGC | sphere | verre 1,56 1 2.107 i1 107 0,3
PMMH | quartz | verre 1,46 2 7.108 0,5 2.10% 0,4

TABLE 0. Base de données partielle des types de grains de sable et leurs para-
metres mécaniques

Le sable que 'on considérera par la suite est celui testé par le LMGC, on relevera les valeurs utiles
dans le tableau 0.

2017 Dunod.

Copyright ©

Travaux pratiques 155

Grain j

Grain i

Modélisation Paramétrage

2. A partir du paramétrage de la figure, écrire une fonction Trigo(Xi, Xj, Yi, Yj) qui renvoie
les valeurs de cos(a) et sin(a)) avec a = (2°, 1) en fonction des coordonnés (Xi, Yi) et (Xj,
Yj) pour deux grains i et j.

Nous nous intéressons a la résolution du Principe Fondamental de la Dynamique en résultante
selon 7 et 3 pour chaque grain i :

mi— = F; et i = Fyy — mig
(

Le modele proposé donne les relations suivantes entre les efforts et les déplacements :
Fjit = krdjiT si |krdjir| < |pFjin]

dd;in }
dt Fjit = pFjinsgn (i%;—T

o= hiiyisi # :
Jin NOjiN TN smon

Avec djin = CTE'-; . —2R et djiT = CT: : _1‘> a linstant du contact.

3. Créer la fonction calcul_Fnt(i, j) quirenvoie (Fjin, Fjit) correspondant respectivement
aux composantes algébriques normales (direction 77) et tangentielles (direction —t_}) de la force
exercée par la particule j sur la particule i.

Si les deux particules ne sont pas en contact alors la fonction renvoie (0, 0).

4. En déduire une fonction somme_int() effectuant la somme des interactions Fix et Fiy (selon
7 et) sur chaque grain i, exercées par tous les autres grains j. On utilisera la fonction
calcul_Fnt(i, j)

Le schéma d’intégration utilisé dans la suite sera celui de 'algorithme de Verlet « saute-mouton ».
On calcule les positions des grains aux temps t = 0; At; 2At ... ou Af est le pas de temps.

Les vitesses sont calculées et mémorisées pour des temps intermédiaires, t = At/2; 3A¢/2...

On utilise les vitesses intermédiaires pour déterminer les positions aux instants kAt

Copyright © 2017 Dunod.

156 Chapitre 4 Calcul numérique (une dimension)

At
/—#—“—\ ,/‘—‘-‘\
/1/1-_1/2 \/ Vit1/2 \«
| i | | f Pt
K s \ X 1+ X4t

&

On note :
e 1 la position du grain au temps t = kA¢;

. . 1
® Up41/2 la vitesse du grain an temps t = | k + 2 At;

e ;. l'accélération du grain au temps t = kA7,

5. Donner une formule de calcul de vy, /2 en fonction de vg_y/2, de a; et de At ainsi qu'une
formule de calcul de ;4 en fonction de xy, de vy, /2 et de At.

6. En utilisant le schéma d’intégration ainsi défini, écrire une fonction Verlet(T, N) ou T est
le temps final de la simulation, N est le nombre de pas de simulations, qui renvoie la liste des
positions de chaque grain (codée par une liste de tuples de longueur 2) & chaque pas de temps.
On utilisera somme_int() définie précédemment. On prendra aussi en compte la pesanteur
telle que définie dans 1'équation de la dynamique avec une méme masse m; = M pour tous les
grains.

7. Quelle est l'influence du pas de temps sur la qualité de 'approximation et sur le temps de
calcul 7

Un probleme d’oscillation apparait dans le modéle précédent. Pour le résoudre, on propose d'in-

troduire un amortissement supplémentaire e, utilisant un parametre f > 0 supplémentaire.

L'équation de la dynamique devient :

d?z; 1 da; " dzy,; I3 . 1 dy;
Miy—F = ir — a i el mi——% — iy — TN — —
L dt? fdt " de? b o fdt
8. Pourquoi cette équation est-elle problématique par rapport au schéma d'intégration mis en

place?
Vg—1/2 + Vk41/2
2

L4A8) _(1=At\ R,
2fm) T2 T\ T2fm) VR T

10. En déduire une relation de récurrence permettant de déterminer les positions successives des
grains puis écrire une fonction VerletAmortissement(T, N) ou T est le temps final de la
simulation, N est le nombre de pas de simulations, qui renvoie la liste des positions de chaque
grain (codée par une liste de tuples de longueur 2) a chaque pas de temps.

9. En approchant vy, par , montrer que l'on a :

Copyright © 2017 Dunod.

Corrections des exercices 157

[Corrigé exo 4. 0]

0. Tmmédiat.

def S(n, p):

return np.random.binomial(n, p) / n

affiche(1e08, .3)

donne

[Gorrigé exo 4.1]

04

02

0.0

-02

-0.4

On affiche ce qui est demandé.
def affiche(n, p):
X, ¥, tm, LM =[], [1, [1, [1
X = np.array(range(2, n + 1))
Y = np.array([S(k, p) for k in range(2, n + 1)1)
Lm = np.array([p - np.sqrt(np.log(k) / k) for k in range(2, n + 1}])
LM = np.array([p + np.sgrt(np.log(k) / k) for k in range(2, n + 1}1)
plt.plot(X, ¥, 'b")
plt.plot(X, Lm, 'r—--', lw=5)
plt.plot(X, LM, 'r——', lw=5)
plt.show()
10
08
06
Le test

i i i

200 400 600 BOO 1000

On peut constater que S,, reste compris dans [p — 4/]—‘—};& p+ L‘i—’i] (en tout cas avec une forte
probabilité).

0. On peut choisir les points du plan complexe ayant pour affixe les racines éniemes de I'unité :

&), = COS (2TI'E)
n

2, = 2™8/n_En projetant on trouve les coordonnées (1, yx) de Ay pour k € {0,1,...,n—1}:
proj Y P

k
. = sin | 27—
Ui sm(?rn)

1. On trace le polygone comme une ligne brisée avec plot. On prend garde a rajouter le point A,

a la fin des listes pour que le polygone tracé soit fermé.

© 2017 Dunod.

{
.

Copyright

158 Chapitre 4 Calcul numérique (une dimension)

def polygone_regulier(n):
L1 = [np.cos(2 * k * np.pi / n) for k dn range(n)] + [1]
L2 = [np.sin{2 * k * np.pi / n) for k in range(n)] + [B}
plt.plot(L1, L2)

2. Lorsque n devient grand, on obtient visuellement un cercle. Ce n'est pas étonnant dans la
mesure ol pour tracer le cercle trigonométrique, défini par la courbe paramétrée :

a(t) = cos(2nt)

y(t) = sin(2nt)

on discrétise 'intervalle [0, 1] en n + 1 points (avec n grand), ce qui revient & effectuer le tracé
précédent.

| Corrigé exo 4.2]

0. La fonction cosinus hyperbolique est appelée cosh dans numpy.
2. La seule difficulté est que qu'on n’a pas le droit d’écrire f(np.linspace(-200, 3)) & cause
du if. On peut alors utiliser vectorize ou une liste par compréhension.

[Corrigé exo 4.3J

0.

def dicho{a, b, f, p):
while b - a > p:
m=(a+b) /2

if f(m) > 0:
b=m
else:
a =m
return m

1. On entre la commande suivante dans la console dicho(0,10, lambda x: x**2-2, 0.001)
2. La fonction calcule une approximation d'un des zéros de f.
3. On modifie la condition du if & la ligne 4 en f(b)*xf(m) > ©

[Corrigé exo 4.4]

0. On procéde par dichotomie sur I'intervalle [X/n, 1]. Si X est plus grand que la borne inférieure

de Iy mn alors X € I, ,, et donc m est plus petit que le plus grand p ayant X dans son
intervalle de fluctuation.

import scipy.stats as st

def PlusGrandP(alpha, X, n):
a, b=X/n, 1
while b - a >= 10++-6G:
m=(a+b) /2
if X »= st.binom.interval(l - alpha, n, m)[8]:
a=m
else:

2017 Dunod.

-

Copyright ©

Corrections des exercices 159

b=m
return m

1. On procede de maniére similaire pour la borne inférieure,

def PlusPetitP(alpha, X, n):

a, b=06,xX/n
while b = a >= 10#%-6:
m=(a+b) /2
if X »= st.binom.interval(l - alpha, n, m)[1]:
a=m
else:
b=m
return m

ce qui permet d'écrire la fonction demandeée.

def confiance(alpha, X, n):

g = PlusPetitP(alpha, X, n)
d = PlusGrandP(alpha, X, n)
return g, d

2. Le seul cas on p est dans l'intervalle de confiance est le sondage IPSOS pour a = 1%.
3. On calcule les bornes supérieures et inférieures avec des listes par compréhension.

import numpy as np
import matplotlib.pyplot as plt

a =
5§ =
I =
plt
plt
plt

np.linspace(8.01, ©.5)

[PlusGrandP (t, 140, 1880) for t in a]
[PlusPetitP(t, 140, 1060) for t in a]
.plot(a, S)
plot(a, I)
.show()

4. On cherche par dichotomie, le plus grand o tel que I'événement X € [, , ,,. Pour le sondage
IPSOS, on trouve 1.4%.

| Corrigé exo 4.5]

0. On applique la méthode des rectangles a gauche. Il n'y a pas lieu de distinguer les cas « > 1 et
< 1.

def

In(x):
dt = (x — 1) / 1000
$=0
for k in range(1600):
S #=dt / (1 + k = dt)
return S

1. On trace les deux courbes. Elles se confondent presque.

import numpy as np
import matplotlib.pyplot as plt

=

np.linspace(8.5, 28, 280)

plt.plot(T, 1n(T))
plt.plot(T, np.leg(T))
plt.show()

Copyright © 2017 Dunod.

160 Chapitre 4 Calcul numérique (une dimension)

[Corrigé exo 4.6

0. On commence par programmer la fonction m a intégrer.

def m(x, t):
return thx(x - 1) * np.exp(-t)

def phi(alpha, beta, x, n):
s5=68
pas = (beta - alpha) / n
for k in range(n):
S += m(x, alpha + pas * k)
return S * pas

1. On définit I puis on la trace.

def Gamma(x):
return phi(0.02, 300, x, 3008)

import numpy as np

import matplotlib.pyplot as plt
X = pp.linspace(8.1, 4.2)
plt.plot(X, Gamma(X))
plt.show()

[Corrigé exo 4. 7]

0. On commence par définir la fonction a intégrer. Mais cette fonction a deux arguments alors que
quad a besoin d'une fonction & un seul argument. On définit la fonction dont on a besoin avec
lambda.

import numpy as np
import scipy.integrate as integr

def u(x, t):
return np.cos(x + np.cos(t))

def f(x):
return integr.quad(lambda t: u(x, t), @, np.pi)[@]

Alternativement, on pourrait écrire :

def f(x):
def g(t):
return u(x, t)
return integr.quad(g, @, np.pi)[@]

1. Il reste a tracer la fonction. On ne peut pas directement appliquer f 4 un tableau, donc on
définit ¥ avec une liste par compréhension.

X = np.linspace(®, 10)
Y = [f(x) fer x in X]
plt.plot(X, ¥, label="A")

Dunod.

2017

-

Copyright ©

Corrections des exercices 161

plt.legend()
plt.show()

[Corrigé exo 4.8]

0. On applique la méthode des trapézes. La seconde version de la fonction utilise le fait que le pas
est constant pour faire moins d’opérations arithmétiques.

def Imoy(mesure): def
pas = 0.002
s=8
for k in range(len(mesure) - 1):
S += (mesure[k] + mesure[k + 1]) * pas / 2
return 5

Imoy(mesure):
pas = 0.002
Ss=0
for k in range(len(mesure)):
S += mesure[k]
return pas * (5 - (mesure[0] + mesure[-1]) / 2)

1. On adapte la premiére version de la fonction précédente.

def Imoy(mesure, temps):
S=0
for k in range(len(mesure) - 1):

S += (mesure[k] + mesure[k + 1]} * (temps[k + 1] - temps[k]) / 2

return S

[Corrigé exo 4.9]

import numpy as np
import matplotlib.pyplot as plt

def f{x):
return x**3 - 2 * x**2 + 1

def fp(x):
return 3 * x**2 - 4 * x

def cherche_racine(a, b, x): # trouve le zéro d'une droite passant par (x,b) de pente a

if np.abs(a) > ©.0000001: # éviter les divisions par zéro!
return - b / a + x

else:
return "erreur"”

def Newton(y, yp, x0, eps):

% = x8
while np.abs(f(x)) »= eps:
b = f(x)
a = fp(x)
x = cherche_racine(a, b, x)
if x == "erreur":
return None
return x

racines = []
x@ = []
for k in range(-100, 300):

Copyright © 2017 Dunod.

162 Chapitre 4 Calcul numérique (une dimension)

x@.append(k / 108)
racines.append(Newton(f, fp, k / 108, 10%*-6))

plt.plot(x®, racines)
plt.show()

—1++5

racines, sans que ce soit la plus proche de g qui soit nécessairement obtenue.
On constate également que pour zg = 0 la méthode de Newton ne fonctionne pas car f/'(0) =0, la
dérivée ne coupe jamais 'axe des abscisses.

La fonction f a 3 racines : z = 1 et © = . La méthode de Newton trouve I'une des trois

| Corrigé exo 4. 10]

0. On constate que si n est pair, le polynéme n'a pas de racine, et que s'il est impair, il en a une
seule.

1. Apres avoir défini en Python la fonction P(n, t) qui calcule P,(), on programme Newton
comme suit :

def newton(n, t, N):
for k in range(N):
t =t = Pn; t) / Pln—2,%)
return t

Il ne reste plus qu'a tester avec n € {3,5,7}.
2. On peut définir P; en Python comme suit :

P5 = Polynomial([1 / math.factorial(k) for k in range(6)]).

On obtient les racines complexes de P5 avec 1'expression P5.roots(). Il ne reste qu’a faire la
méme chose avec Py et Pr. On pourrait faire un for, mais pour 3 valeurs de n, ce n'est pas
indispensable.

3. Le script suivant permet de tracer les racines de Ps, on proceéde de méme avec les autres
polynomes.

import numpy as np

import matpletlib.pyplot as plt

RS = P5.roots()

plt.plot(np.real(R5), np.imag(R5}, "o")

[Corrigé exo 4. 11]

0. On commence par importer les bibliotheques.

import matplotlib.pyplot as plt
import numpy as np

On programme classiquement la résolution par Euler. On peut le faire avec des listes ou avec
des tableaux numpy.

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 163

def euler(fin, pas): def euler(fin, pas):
n int(fin / pas) n int(fin / pas)

T = [@] T = np.linspace(®, fin, n + 1)

Y = [8] Y = np.zeros(n + 1)

for k in range(n): for k in range(n):
T.append((k + 1) + pas) Y[k + 1] = Y[k] + pas + (1 + Y[k]*#*2)
Y.append(Y[k] + pas * (1 + Y[k]**2}) return T, Y

return T, ¥

Pour tracer la courbe demandée, il suffit d’écrire :

T, ¥ = euler(1, 8.05)
plt.plot(T, Y)
plt.show()

1. On remarque que la courbe de la solution est nécessairement symétrique par rapport a 'origine

(la fonction solution est impaire). On utilise alors la fonction euler utilisant des tableaux pour
écrire ce qui suit :

def eulersym(fin, pas):
n = int(fin / pas)
Té, YO0 = euler(fin, pas)
T = pp.linspace(-fin, fin, 2 * n + 1)
¥ = np.zeros(2 * n + 1)
Y[ln:]l = Yo # Copier Y0 dans lo seconde moitiée de Y
¥[:n + 1] = -¥@[::-1] # Inverser l'ordre de Y0, le multiplier par -1.
return T, Y

Il suffit alors, pour tracer la courbe, d’écrire :

T, ¥ = eulersym(1.5, ©.85)
plt.plot(T, ¥)
plt.show()

2. On adapte le code de la question précédente :

T, ¥ = eulersym(1.5, 0.85)
plt.plot(T, ¥)

plt.plot(T, np.tan(T))
plt.show()

3. La fonction semble définie sur [—2,2]. On ne voit pas la singularité a cause de I'erreur d’ap-

proximation. La fonction approximée diverge vers +oc (on la voit dépasser 10%°).

[Corrigé exo 4. 12]

0. Il suffit d’appliquer la méthode d’Euler sur chacun des intervalles [tg,to + T et [to — T, to], et

de terminer en tracant les deux parties du graphes dans le méme graphique. Les deux calculs
sont identiques au signe prés du pas, ce qui permet d’écrire :

import matplotlib.pyplot as plt

def Euler(f, t8, x0, T, n):
plt. figure()

Copyright © 2017 Dunod.

164 Chapitre 4 Calcul numérique (une dimension)

for pin [T / n, -T / n]:
t, x = 10, =0
Lt, Lx = [t0], [xe]
for i in range(n):
T, ¥ = L+ p, x+phTit, x)
Lt.append(t)
Lx.append(x)
plt.plot(Lt, Lx, colar='black')
plt.show()

1. 1l suffit d’ajouter une boucle au code précédent pour faire décrire a g la liste L :

def Euler_Bis(f, to, L, T, n):
plt. figure()
for x& in L:
for pin [T / n, =T / n]:
t, ® = t0, x06
Lt, Lx = [t@], [x8]
for i din range(n):
t, x =t +p, x+p*ft, x
Lt.append(t)
Lx.append(x)
plt.plot(Lt, Lx, color='black')
plt.show()

On définit la fonction f et la liste L (contenant ici les 31
points d'une subdivision réguliere de [—7,4]) :

from math import =sin

def f(t, x):
return t * sin(t + x) ™%
L=1[(1-7/30) » (-7) +i /30 + 4 for i in range(31)]

et 'on obtient le graphique ci-contre.

Euler_Bis(f, 0, L, 4, 100)

[Corrigé exo 4. 13]

0. La méthode d’Euler consiste a partir de tg = 0, @y et 3, puis a définir (avec n = =

tiy1 =1t +p
vi € {0,...,n—1}, Tiy1 = +p (i, ¥i)

Yi+r = ¥i + P g(Ti, ¥i)
Nous initialisons donc trois listes Lt = [0], Lz = [ro] et Ly = [yo] et les variables 1, x,y
permettent de stocker les différentes valeurs t;, x; et y;, avant de les ajouter aux différentes
listes. Cela donne :

def Calcul_Euler(f, g, x@, yo0, T, p):
Lt, Lx, Ly = [0], [xe], [ve]
t' xf y = Gf xa] y@

) 2017 Dunod.

c)

Copyright

Corrections des exercices 165

for i din range(int(T / p)):
t,x, y=t+p, x +p* flx, y), y + p* gix, y)
Lt.append(t)
Lx.append(x)

Ly.append(y)
return Lt, Lx, Ly

Il est évidemment possible de se passer des variables ¢, z.y en utilisant les listes L{, Lz et Ly :
attention toutefois au fait qu'apres avoir ajouté z;; a L, la valeur x; n'est plus le dernier,
mais l'avant-dernier élément de Lz :

def Calcul_tuler(f, g, x0, y8, T, p):
Lt, Lx, Ly = [0], [x@], [ye]
for i din range(int(T / p)}):
Lt,append(Lt[-1] + p)
Lx.append(Lx[-1] + p * f(Lx[-1], Ly[-1])
Ly.append(Ly[-1] + p » f(Lx[-2], Ly[-1]))
return Lt, Lx, Ly

Aprés avoir défini les deux fonctions f et g :

def fx, y):
return 0.2 * X - Q.1 * X *y

def g(x, y):
return -8.3 * y + .15 * x * y

le lecteur pourra vérifier que les dernieres valeurs des listes Lx et Ly retournées par l'appel
Calcul_Euler(f, g, 2, 3, 100, .01) valent respectivement 2.7488 ... et 2.3756...

Une fois calculées les listes (1;)o<i<n, (i)o<i<n €t (¥i)o<i<n & l'aide de Calcul_Euler, il suffit
d’ouvrir une fenétre graphique et de tracer (en les reliant) les points (t;, i)o<i<n €t (ti, ¥i)o<i<n
ou bien les points (z;,y; Jo<i<n-

def Graphe(f, g, x0, y8, T, p): def Phase(f, g, x0, y@, T, p):
Lt, Lx, Ly = Calcul_Euler(f, g, x0, y0, T, p) Lt, Lx, Ly = Calcul_Euler(f, g, x0, y8, T, p)
plt. figure() plt. figure()
plt.plot(Lt, Lx, color='b') plt.plot(lLx, Ly)
plt.plot(Lt, Ly, color='r') plt.show()
plt.show()

s

Graphe(f, g, 2, 3, 100, 0.1) Phase(f, g, 2, 3, 100, 0.1)

Copyright © 2017 Dunod.

166 Chapitre 4 Calcul numérique (une dimension)

2. Ici encore, on ouvre une fenétre graphique et on utilise subplot pour créer deux sous-fenétres
alignées horizontalement :

def Graphe_Phase(f, g, x0, y0, T, p):
Lt, Lx, Ly = Calcul_Euler(f, g, %0, y8, T, p)
plt. figure()
plt.subplot(1, 2, 1)
plt.plot(Lt, Lx, color='b")
plt.plot(Lt, Ly, colar='r")
plt.subplot(1, 2, 2)
plt.plot(Lx, Ly, color='g")
plt.shaw()

3. On part du points (2,3) avec x et y décroissantes : le point (x,y) tourne donc dans le sens
trigonométrique direct. Comme la vraie solution est périodique, la trajectoire devrait se refermer
aprés le premier tour, mais celle obtenne avec la méthode d’Euler s'éloigne en spiralant de la
trajectoire périodique que 'on cherche a approximer. Il est donc nécessaire de diminuer le pas
pour obtenir un tracé acceptable; on obtient une courbe qui semble fermée (pour la précision

du tracé) en prenant un pas égal a 0.001 :

35 35
3.0 l 30
2.5] 25/

20 \ 2.0

15 15

%0 20 40 60 a0 100 120 ui.z 14 1.6 1.8 2.0 2.2 24 2.6 2.8

Graphe_Phase(f, g, 2, 3, 100, 0.001)

4. L’éleve a commis 'erreur d'utiliser la nouvelle valeur ;41 de o pour définir 1,41, ce qui donne
les relations :

tipi=ti+p

Vie {0,...,n—1}, Tit1 = 2; +p f(2i, ¥i)

Yi+1 = Yi + pg(Ti+1, Yi)

Avec sa fonction, il obtient paradoxalement de meilleurs résultats qu'avec la méthode d'Eu-
ler (cette méthode est quelquefois appelée méthode d’Euler asymétrique). En effet, ses
fonctions pour p = 0.1 semblent périodiques, alors que ce n'est pas du tout le cas avec celles
obtenues avec la méthode d’Euler pour le méme pas p :

Corrections des exercices 167

3.5 3.5
3.0] 30 —
—EEH““MEMH\\\

25 2.5 X////////;ffff
2.0 / 2.0 lll
15 15 \\\\M\MMHHLH

-
10 20 40 60 B0 100 193 14 1.6 18 2.0 2.2 2.4 2.6 2.8

Graphe_Phase_Eleve(f, g, 2, 3, 100, 0.1)

On peut démontrer que l'erreur de 1'éleve permet effectivement d'améliorer sensiblement la
méthode d'Euler.

[Corrigé exo 4. 14]

1. La fonction suivante permet de calculer I'évolution de chaque composé, et la liste des temps,
en appliquant n étapes de la méthode d'Euler.

import numpy as np

def euler(tfinal, n, k1, k2):

0, H20, E, D, T = [1], [1], [e], [e], [e]

dt = tfinal / n

for k in range(n):
dxil = k1 * O[-1] * H20[-1] * dt
dxi2 = k2 * O[-1] * E[-1] * dt
D.append(0[-1] - dxil - dxi2)
H20.append (H20[-1] - dxi1)
E.append(E[-1] + dxil = dxi2)
D.append(D[-1] + dxi2)
T.append((k + 1) = dt)

return (0, H20, E, D), T

Il ne reste qu’a tracer les courbes avec le code suivant, puis a les comparer avec les courbes du
sujet de Centrale.

=
él import matplotlib.pyplot as plt

-

0o vV, T = euler(le, lee0, 1, 5)

S for X in v:

o plt.plot(T, X)

~

o [Corrigé exo 4.15]

>

Q.

O 0. On obtient comme dans les exercices précédents :

Copyright © 2017 Dunod.

168 Chapitre 4 Calcul numérique (une dimension)

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

def Lorenz(x®, y@, z0, T, p):

Lxl Ly!

Lz = [x8], [yel, [z0]

X, ¥y 2 = %8, y0, 20
for i in range(int(T / pas)):

Xy

dessin
dessin.

Yy 2= X+ pel0* (y~-x), y+p* (28 *
X=—y=-x*z), z+p* (x*ry-8/3%2)

.append(x)
.append(y)
.append(z)

= Axes3D(plt.figure())
plot(Lx, Ly, Lz)

plt.show()

1. On obtient

les graphiques :

-5 Sy A =10

- o s
B Lk 5 1w - ?:‘ijo 20
Lorenz(1, 1, 1, 100, 0.001) Lorenz(1.0001, 1, 1, 100, 0.001)

qui donne 1

‘impression que les deux trajectoires sont pratiquement identiques. Pour calculer

I'écart entre deux trajectoires, nous utilisons des listes qui stockent les coordonnées sur chacque

trajectoires

(listes Lx, Ly, Lz, LX, LY , et LZ) ainsi que les écarts entre ces coordonnées (listes

Ez, Eyet Ez) :

def Chaos_C
Lx, Ly,
L¥, LY,
Ex, Ey,
Xy ¥y Z
for i 4

onditions_Initiales(x@, y@, z&, X0, Yo, Z8, T, pas):
Lz = [x0], [yel, [z8]
Lz = [xe], [vel, [Ze]
Ez = [Xe@ - x8], [Ye - yol, [Ze - z@8]
» %, ¥, Z =x0, y0, 20, X0, Yo, Z@
n range(int(T / pas)):

Xy ¥y Z =X + pas & 18 + \
(y ~ Xy, y+rpas * (28 * x -~y - x * 2Z), z+pas * (x xy -8 [/ 3 %32z
Lx.append(x)
Ly.append(y)
Lz, append(z)
X; ¥, Z =X + pas * 18 * \
(Y =X}, Yepas » (28« X =Y =X xZ), Z+pask (X ¥ -8/ 3 %2
LX.append(X)
LY.append(Y)
LZ.append(Z)
Ex,append(X - x)
Ey.append(¥ - y)
Ez.append(Z - z)
dessinl = Axes3D(plt.figure())
dessinl.plot(Lx, Ly, Lz)
plt.show()

Vric .._i -

Corrections des exercices 169

dessin2 = Axes3D(plt.figure())
dessin2.plot(LX, LY, LZ)
plt.show()

dessin3d = Axes3D(plt.figure())
dessind.plot(Ex, Ey, Ez)
plt.show()

Cette fonction donne (seul le dernier graphique est reproduit) :

Chaos_Conditions_Initiales(1, 1, 1, 1.0001, 1, 1, 100, 0.001)

On voit done que les deux solutions sont en fait tres différentes et que leur différence est

chaotique.
2. On observe exactement le méme comportement si I'on modifie le pas de la méthode d'Euler :

50 + 60

|
a0 |0
* 40

30 | o
20 |l'2°
o TIEI
0 Ao

~ “» v

e 7 2
0 _;s —lﬂ-_ - ”f;m o
5 V-
10 15 5 = ¥hS 20
Lorenz(1, 1, 1, 100, 0.001) Lorenz(1.0001, 1, 1, 100, 0.0001)

Pour étudier I'écart entre ces deux trajectoires, il faut faire attention au fait que le temps varie
10 fois plus vite quand le pas est divisé par 10. Nous reprenons done la méthode de la question
précédente : x,y,z est la coordonnée (variable) pour le pas p/10 et X,Y,Z celle pour le pas
p; on modifie ces valeurs a l'aide d'une boucle de longueur N = 10/p x T'. En faisant varier i

Copyright © 2017 Dunod.

170 Chapitre 4 Calcul numérique (une dimension)

entre 1 et N, nous modifions x, y et z a chaque tour de houcle et, quand 7 est un multiple de
10, nous modifions également X, Y et Z et nous ajoutons X —z, Y —y et Z — z aux listes des
écarts.

def Chaos_Pas(x0, y®, zb, T, pas):
Xy, ¥y Z = %8, y0, 20
X, ¥, Z = x0, yo, 20
Ex, By, Ez = [e], [e], [e@]
for i in range(l, int(T * 16 / pas) + 1):
Xy Vp Z =X +pas.f 18 % 16 * \
(y = x), y+pas f 10« (28 * x = y = x & 2}, 2+ \
pas [/ 1@ % (x * y -8 [3 » z)
if i % 18 == 8:
Xy ¥, 2 =N # pas + 18 % \
(Y - X), Y+pas * (28 * X - Y - X *» Z), Z + \
pas * (X +¥Y -8/ 3+ 2)
Ex.append(X - x)
Ey.append(Y - y)
Ez.append(Z - z)
dessin = Axes3D{plt.figure())
dessin.plot(Ex, Ey, Ez)
plt.show()

Chaos_Pas(1, 1, 1, 100, 0.001)

[Corrigé exo 4. 16]

0. Pour appliquer la méthode d’Euler, nous utilisons deux variables t et x qui contiennent succes-
sivement les valeurs ¢; et z;. Aprés avoir initialisé ces variables, il suffit d’effectuer une boucle
de longueur n, a la fin de laquelle x contiendra la valeur x,, = ¢(n,T) :

2017 Dunod.

-

Copyright ©

Corrections des exercices 171

1.

from math import exp

Attention de bien utiliser 'ancienne valeur

def epsilon(n, T): de t pour calculer la nouvelle valeur de .
:’:az % Si l'on veut éviter 'affectation multiple de
p=T/n la ligne 6, il faut commencer par modifier x,
for i in range(n):

kR R ¥) puis ¢ (et pas l'inverse).

return abs(x + 1 + T - exp(T))

Le script suivant affiche les valeurs de l'erreur pour 7' = 2 et n € {10,10%,...,10°} :

for 1 4n range(l, 7):
print{epsilon(1@**i, 2))

L’observation des résultats de ce script laisse penser que l'erreur est de 'ordre de 1/n, puisqu’elle
est divisée par 10 quand n est multiplié par 10. Cette impression peut étre confirmée en calculant
ne(n,T) pour T € {1,2,3} et pour n € {10,10%,10°,107} :

for T 4n [1, 2, 3]:
print([n*epsilon(n, T) for n in [18,10%*3,18%+5,18+x7]])

Les résultats permettent de conjecturer que pour 7" fixé, il existe une constante K telle que
£(n, T) soit équivalent & K/n quand n tend vers 'infini.

Pour étudier cette erreur, nous allons fixer N € N* et calculer £(n,n p) pour n variant de 1 a N,
I1 serait maladroit d’utiliser la fonction epsilon, puisque le calcul de (N, N p) contient déja
celui de tous les (n,np) pour n de 1 a N. Nous allons donc ici reprendre le code de la fonction
epsilon, stocker toutes les erreurs et renvoyer le graphe formé par les points (np, (n,np)).

def erreur(p, N):

Lt, Le = [@], [@]

=85 8

for i in range(N + 1):
ty, X=t+p, X +rprx*xt
Le.append(abs(x + 1 + t - exp(t)))
Lt.append(t)

plt. figure()

plt.plot(Lt, Le)

plt.show()

Copyright © 2017 Dunod.

172 Chapitre 4

Calcul numérique (une dimension)

Avec p = 1072 et N = 1000
(on travaille done sur le seg-
ment [0,10]), nous obtenons
le graphique ci-contre.
L’erreur semble donc étre ex-
ponentielle par rapport a T
On confirme ce caractére en
tracant le logarithme népé-
rien de l'erreur, grace a la
fonction définie ci-apres.

from math import log

def erreur_log(p, N):
Lt, Le = [8], [8]
t, x =@, 0
for i din range(N + 1):

Tty ox = 2 ¥ gy FobpiRae®
Le.append(log(abs(x + 1 + t - exp(t))))

Lt.append(t)
plt. figure()
plt.plot(Lt, Le)
plt.show()

Nous obtenons, toujours pour
p=10"2 et N = 2000, le gra-
phique ci-contre.

Nous pouvons done conjectu-
rer que pour p > 0 fixé, il
existe deux constantes a et b
telles que

In(e(n,pn)) =an+b+o(1),

ie, quil existe deux
constantes A > l et C > 0
telles que &(n,pn) soit
équivalent a C' A\".

25000

20000

15000

10000

5000

20

15

10}

12

=10
0

25

Corrections des exercices 173

[Corrigé exo 4. 17]

0. On obtient facilement :

def E(f, tO, %0, T, n):
t, x = t0, %0
p=T/n
for i in range(n):
t, x =t +p, x+px ft, x)
return x

def PM(f, t@, x@, T, n):
t, x = t8, %0
p=T/n
for i din range(n):
tl, XL =t +p /2, x+p /[2 ¥ f(t, ¥
ty X =1t +p, x +p* f(tl, x1)
return x

def TR(f, t@, x&, T, n):
t, x = t0, %0
p=T/n
for i1 in range(n):
tl, x1 =t + p, x +p = f(t, x)
t, x=t+p, x+p /2 (ft, x) + Ff(t1, x1))
return x

1. On obtient les résultats suivants (ici 7 = 1 et n € {10,102,...,10°}, mais les choses seraient
similaires en choisissant une autre valeur de T dans j - 52 , \/E[) !

>>> def f(t,x):

return taxx=2
2> 7T =1
>>> def phi(T):

return 2/(2 - T#*2)
>>> for i in range(1,7):
print([E(f,0,1,T,10*+i)-phi(T), PM(f,0,1,T,10*+i)-phi(T), TR(f,0,1,T,168*+i)-phi(T)])
@.2871474140956658, -0.02517014230938137, -0.01187430956438007]
0.038156185656135655, -0.00031535663623083465, -0,000122915032089832]
©.003955298655805354, -3.2200458439657353e-06, -1.2276630267926691e-06]
-0 .0003969965871071235, -3.226690892255135e-08, -1.2274513627730244e-08]
3
3

Les deux nouvelles méthodes semblent donc donner des erreurs de I'ordre de 1/n? (I'erreur est
divisée par 100 quand n est multiplié par 10), ce qui est bien meilleur que l'erreur en 1/n de la
méthode d’Euler.

2. De la méme maniére que dans 1'exercice 4.13, nous obtenons les fonctions :

0 def G_milieu(f, g, %0, y@, T, p):

Lx, Ly = [x0], [y@]

t) x) Y = G) XB) ya

0 for i din range(int(T / p)):

X1, yL=x +p / 2+ f(x, y), y +p/2*gx,y)
= X, y =x +px* fixl, yl), y + p * g(x1, yl)
Lx.append(x)

5 Ly.append(y)

- plt. figure()

5 plt.plot(Lx, Ly, color='g")

®) plt.show()
(&)

Copyright © 2017 Dunod.

174 Chapitre 4 Calcul numérique (une dimension)

def G_trapeze(f, g, x8, y8, T, p):

Lx, Ly = [xe], [ye]

t’ x’ y = a! XB, ya

for i din range(int(T / p)):
X1, y1 = x +p * f(x, y), ¥y + p * g(x, ¥)
X, y = x +p /2% (flx, y) + F(x1, y1)), y + \

P/ 2* (glx, y) + glxl, y1))

Lx.append(x)
Ly.append(y)

plt. figure()

plt.plot(Lx, Ly, color='g")

plt.show()

Les instructions G_milieu(f, g, 2, 3, 100, 0.1) et G_trapeze(f, g, 2, 3, 100, 0.1)
donnent le méme graphique :

o

25

20

15

10

L5 20 25 3.0

Ainsi, avec un pas égal a 0.1, ces deux méthodes donnent déja une trajectoire qui semble se
refermer, alors que la méthode d'Euler, avec les mémes paramétres, donne une spirale tres nette.
Il faut toutefois étre prudent, car le fait que la courbe se referme (a la précision prés du tracé)
ne prouve pas que le résultat obtenu est proche de la trajectoire réelle. Les deux graphiques qui
suivent montrent le tracé de la solution approchée pour le pas 0.1 et de la trajectoire réelle, a
gauche pour la méthode d'Euler et a droite pour la méthode de type trapéze :

35
3.0
3.0
250 4
25
2.0
2.0
|
\
15 W, 15t J
\ \r—__‘—,_,_.-—'_"_‘-,
Lo 10
10 15 2.0 25 3.0 EE] L5 2.0 25 3.0

2017 Dunod.

-

Copyright ©

Corrections des exercices 175

Dans le cas général, ces deux méthodes avec le pas 0.1 ont a peu prés la méme

‘Q‘ efficacité que la méthode d’Euler avec le pas 0.01, et le cas particulier étudié ici est

3 treés flatteur (il faut un pas de 0.001 pour que la méthode d Euler donne un résultat
équivalent).

[Corrigé exo 4. 18]

Pas besoin d’écrire une fonction.

import matplotlib.pyplot as plt
X = [0]
Y = [0]
¥p = [1] # La dérivée de Y
pas = 8.9 / 10088 # Le pos de la méthode d'Euler
for k in range(l, 1060):
X.append(k * pas)
Y.append(Y[k - 1] + Yp[k - 1] * pas)
¥s = Y[k - 1] / (1 - X[k = 1])**3 # Lo dérivée seconde
Yp.append(Yp[k - 1] + ¥s * pas)
plt.plot(X, Y)
plt.show()

[Corrigé exo 4. 19]

0. Dans ce cas particulier, la méthode d'Euler de pas p = T/n, consiste a définir la famille
(i, 2})o<i<n par les relations :

Tiy1 = T; +pa;
290=0, 25 =1et Vi€ {1,...,n},

' B Ry
‘T!+1 — 3:‘;_ —}?.T.'-!
Nous utilisons ici deux variables = et ap, qui contiennent les différentes valeurs z; et x}, que

nous modifions a 'aide d'une boucle. A la fin du calcul, il reste a renvoyer la valeur @, qui est
égale & x,,, c'est-a-dire a ®(n,T) :

def phi(n, T):
X, Xp = 0, 1
p=T/n
for i in range(n):
Xy Xp = % + p * Xp, Xp = p * X
return x

Ainsi, pour T = 3 (mais le lecteur pourra tester d’autres valeurs), nous pouvons calculer les
erreurs |®(n,T) — p(n)| pour n € {10,10%,...,10%} :

>>> from math import sin

3> T =3

>>> for 1 in range(7):
print{phi2(10+*i,T) - sin(T))

2,8588799919401326

0.20519282194013302

0.8607423886675805597

0.0006454182147336285

6.360743073452468e-05

© 2017 Dunod.

.

(i

Copyright

176 Chapitre 4 Calcul numérique (une dimension)

6.351434282819701e-06
6.350503145291508e-07

L’erreur semble done étre de I'ordre de 1/n.
1. On obtient facilement :

def phil(n, T):
Xy, Xp = @, 1
p=T n
for 1 in range(n):
Xy Xp = x + pxxp-p* 2/ 2%x, Xxp-p+*X
return x

—

Cette méthode n'améliore que tres peu la méthode d’Euler, comme on le voit en affichant les

Dy(n,T) — (T .
(I:(E:':J,,T))— L,f((T)) pour T' € {—2,-1,3,10} et n € {10,10%,...,10°} (chaque ligne

correspond a une valeur de T et on n’affiche que deux décimales pour faciliter la lecture) :

valeurs

»»>» for T in [-2,-1,3,18]:
print(["%.2f" %abs{(phil(18+*7,T) - sin(T))/(phi(18*+7,T) - sin(T))) for i in range(7)])
[‘1.e0', '0.48', '®.50', 'G.50', '0.58', '@©.58', '0.50']
['1.e0', '®.51', '0.50", '@.50', '0.50', '0.50', '0.50']
[*1.09', '@.35', '®.48', '0.50', '0.50', '©.58', '0.50']
['1.00', '0.09', '0.47', '8.50', '0.50', '0.50', '0.50']

On peut conjecturer que le quotient des deux erreurs tend vers 1/2 quand n tend vers l'infini,
ce qui limite l'intérét de la « méthode d’'Euler améliorée » (voir I'exercice 4.17 qui expose deux
méthodes qui accélérent de fagon élémentaire mais significative la méthode d'Euler).

[Corrigé exo 4.20]

0. En notant n = T'/p, nous devons construire les listes Lt = [tg,...,t,], Lx = [zg,...,2,] et
Lz’ =[xy, ..., x)] définies par les relations :

tiqi=ti+p
vie{l,...,n}, Tip1 = T; +pI]

Tiy 1 = o+ p f(ti, xi, 2})
Nous utilisons trois variables t, x et xp qui contiennent les valeurs successives des t;, x; et x! :
une simple boucle permet de remplir les listes Lt, Lx et Lxp, apres les avoir initialisées aux
valeurs [t0], [x0] et [xprime0]. Il reste ensuite & ouvrir les fenétres graphiques et a tracer
les courbes définies par les points (¢;,2;) dans la premiére fenétre et (z;,) dans la seconde.

def Euler(f, t0, x0, xprimed, T, p):

Lt, Lx, Lxp = [tB], [x@], [xprime®]

t, %, xp = t6, x0, xprimed

for i in range(int(T / p)):
t, %, Xp =t +p, x +p * xp, xp + p * f(t, %, xp)
Lt.append(t)
Lx.append(x)
Lxp.append (xp)

plt.figure()

plt.plot(Lt, Lx, color='b")

Corrections des exercices 177

Copyright © 2017 Dunod.

plt.show()

plt. figure()

plt.plot(Lx, Lxp, color='r')
plt.show()

1. Pour cette deuxieme fonction, aprés avoir ouvert une fenétre graphique, nous créons, pour
chaque condition initiale C' de L, les listes Lz et L'z, puis nous tragons la trajectoire associée.
I1 ne reste pour finir qu'a afficher la fenétre graphique.

def EulerPhase(f, t®, L, T, p):
plt. figure()
for C in L:
Lx, Lxp = [C[0]], [C[1]]
t, %, xp = t0, C[08], C[1]
for i din range(int(T / p)):
t, X, Xxp =t +p, x +p * xp, xp + p* f(t, x, xp)
Lx.append(x)
Lxp.append{xp)
plt.plot(Lx, Lxp)
plt.show()

2. Nous commengons par définir les fonctions fa, fb, fc et fd correspondant aux gquatre exemples
étudiés (on suppose que la fonction sin a été préalablement chargée) :

def fa(t, x, y):

return -x def fe(t, x, y):

return ~sin(x)

def fd(t, x, y):

de? Th(L, X, y): return -sin{x) - 1 / 5 + y

return -(x**2 - 1) + y - x

a. Les solutions de l'oscillateur harmonique sont périodiques : la convergence lente de la méthode
d’Euler nous oblige a choisir un pas assez petit :

Euler(fa, 0, 1, @, 40, 0.01)

15 15
10 10
05 05
(X1} oo
-05 -05
=10 -10
B/ 5 10 15 20 25 30 38 an a5 —1.5 L] =1.0 =05 0.0 0s 10 15

Euler(fa, @, 1, @, 40, 0.66001)

Copyright © 2017 Dunod.

178 Chapitre 4 Calcul numérique (une dimension)

10 10

05 05

oo 0.0
-0.5 -0.5
-1.0 -10
e 5 1o 15 20 25 E] 35 a0 45 = 5 -10 05 0o 05 10 15

b. Ici, le pas 0.01 suffit pour obtenir un graphique correct : nous avons tracé ci-dessous quelques
solutions particulieres qui font apparaitre une trajectoire asymptote fermée (qui correspond a
une solution périodique). Les autres solutions convergent vers cette solution périodique en
tournant dans le sens des aiguilles d'une montre :

EulerPhase(fb, @, [[0, -1], [-3, 4], [3, 3], [3, -2]], 30, ©.61)

-3 -2 -1 o 1 2 3

c. Pour le pendule pesant, on voit qu’avec la condition initiale x(0) = 2 et 2’(0) = 0, le portrait
de phase n’est pas du tout elliptique (on n’est évidemment pas dans le cas particulier des petits
angles et I'approximation de sinz par a n'est pas acceptable) :

Euler(fc, @, 2, 0, 20, 0.0001)

Copyright ©® 2017 Dunod.

Corrections des exercices 179

3 20
1.5

2
10

1
(3]
o 0.0
=05

-1
-1.0

-2
=15
- —_ -20

% 5 L 15 0 : -3 -2 -1 o 1 2

Nous pouvons ensuite tracer un ensemble de solutions, avec x(0) = 0 et 2’(0) décrivant [0, 2]
avec un pas de 1/10 :

EulerPhase(fc, 8, [[@, 2 * i / 18] for i 4n range(11)], 20, 0.0001)

- -2] 2 4 L} a 10

d. Nous tracons ici trois trajectoires : en partant de 2(0) = 0, on obtient selon la vitesse initiale
un pendule qui fait 0, 1 ou 2 tours avant de rejoindre (en un temps infini) sa position d’équilibre
stable :

EulerPhase(fd, ©, [[®, 1.5], [®, 2.5], [@, 4]], 50, 08.8001)

=1

Copyright © 2017 Dunod.

180 Chapitre 4 Calcul numérique (une dimension)

3. Pour chaque condition initiale, nous calculons les valeurs (f;,x;,x}) successivement pour les

pas —p et p, en remplacant la boucle for par une boucle while portant sur la condition
{tg ~Tstste+T, afms<besz]< d). Ici, nous initialisons les listes Lx et Lxp a la
valeur [], puisque nous ajoutons les valeurs courantes x et xp une fois testée la condition. Cela
donne :

def EulerPhaseBox(f, t®, L, T, p, a, b, ¢, d):
plt. figure()
for C in L:
for pas in [-p, pl:
Lx, Lxp = [], []
t, x, xp = t0, c[6], c[1]
while t0 - T <= t <= t0 + T and a <= x <= b and c <= xp <= d:
Lx.append(x)
Lxp.append(xp)
t, x, xp =t + pas, x + pas * xp, xp + pas * f(t, x, xp)
plt.plot(Lx, Lxp, color='black')
plt.show()

Pour obtenir des schémas intéressants, le plus efficace est de fixer une fenétre [a, b x [e, d] puis
d’ajouter les conditions initiales « & la main », pour remplir I'espace vide. Nous obtenons ainsi
les quatre graphiques ci-dessous, par le biais des instructions :

EulerPhaseBox(fa, @, [[®, 5 *# 1 / 18] for i +in range(11)], 18, 8.081, -4.1, 4.1, -4.1, 4.1)

EnlerPhaseBox(fb, e, [[o, -1], [-3, 4], [3, 3], [3, -21, [-2, 3], [1, 11, [, 1.5}, [-2, -3]],
20, 0.801, -4, 4, -4, 4)

EulerPhaseBox(fc, @, [[0, ©.6], [e, 1.2], [9, 1.8], [2 * pi, @.6], [2 * pi, 1.2], [2 * pi, 1.8],
[-4, '2]: E'4: 'lJ: ['4: e], ['4| 1], [-4, 2]]: 20, 0.e01, -4, 10, -3, 2)

EulerPhaseBox(‘Fd, 8, [[l: a]) [_21 9]: [_3! ﬂ]) [_3'51 G], [_4: @}, [41 m]l [3) 2]) [3'51 3]}
[4, 41, [-2, -4], [e, -3.5], [8, S]], 5@, @.eee1, -5, 1@, -5, 5)

-4 -2 o 2 4 -3 =2 =1 [1 2 3 4

Oscillateur harmonique Oscillateur de Van der Pol

Copyright © 2017 Dunod.

Corrections des exercices 181

1 2
o o
-1 ="
"r’_“\\\\\M_H//’///-E\\\\xx_,,/’///-ﬁ i
=43 = (] F f % § 10 %

Pendule pesant

[Corrigé exo 4.21)

Chargement des bibliothéques
import matplotlib.pyplot as plt
import numpy as np

Définition des fonctions

def pendule_petits_angles(theta, thetap):
return -omegaB++2 * theta - 2 » xi * omega@ » thetap

def pendule(theta, thetap):
return -omegaB++2 + np.sin(theta) - 2 * xi * omega® * thetap

def pendule_petits_angles_th(thetad, t):

X = [x8]
xp = [xp@]
xpp = []

for i dn range(l, len(t)):
xpp.append (f(x[i - 1], xp[i = 1]))
xp.append(xp[i - 1] + (t[i] - t[i - 1]) * xpp[i - 1])
x.append({x[i - 1] + (t[3] - 0§ - 11} * xp[i - 11)
for i in range(len(x)):
x[i] = x[i] *» 188 / np.pi
return x

% = [x8]
xp = [x@]
xpp = []

for i in range(l, len(time)):
xpp.append(f(x[i1 - 11, xp[i - 11))
xp.append(xp[i = 1] + (t[i] - t[i - 1]) » xpp[i - 1])
x.append ((x[i - 1] + (t[4] - t[i - 11} * xp[i]))
for i dn range(len(x)):
x[4] = x[i] *~ 1808 / np.pi
return x

Pendule pesant amorti

return (theta® * np.exp(-xi * omega® * t) * np.cos(omega® * np.sqrt(l - xi**2) * t)) * 188 / np.pi

def Euler_2_exp(f, x0, xp®, t): # Intégrotion par la méthode d'Euler explicite

def Euler_2_asym(f, x0, xp@, t): # Intégration par la méthode d'Euler asymétrigue

Copyright © 2017 Dunod.

182 Chapitre 4 Calcul numérique (une dimension)

Définition des paramétres

theta_0_deg = 0.1 # degré

theta_® = theta_0O_deg * 2 * np.pi / 360 # radians
thetap_ 0 = ©
tmax = 5 # s

pas = 0.81 # s

%1 = 8.1 # amortissement
omega® = 18 # rad.s"-1

Définition de la liste des temps
time = np.linspace(@, tmax, tmax / pas + 1)

Les tracés

Tracé Q1-(1)

plt.figure(1)

theta_th = pendule_petits_angles_th(theta_0, time)

plt.plot(time, theta_th, '--', label='Solution théorique')

theta_eul_exp = Euler_2_exp(pendule_petits_angles, theta_8, thetap_0, time)

plt.plot(time, theta_eul_exp, label='Solution numérique explicite')

plt.title('Tracé des différentes solutions oux petits angles, theta_0 = " +
strtheta_o_deg) + 'degré')

plt.xlabel('temps en s')

plt.ylabel('Angle theta en degré')

plt.legend()

plt.show()

Réponse Ql-(2)
theta_0_deg_list = [1, 5, 10, 20]

for i in range(len(theta_0_deg_list)):
theta_0_temp = (theta_0_deg_list[i] * 2 * np.pi / 368@)
theta_th = pendule_petits_angles_th{theta_f&_temp, time)
theta_eul_exp = Euler_2_exp(

pendule_petits_angles, theta_8_temp, thetap_8, time)
plt.figure()
plt.plot(time, theta_eul_exp, label="solution d'Euler")
plt.plot(time, theta_th, label='solution théorique')
plt.title('Trocé de lo solution pour theto_0 = ' +
str(theta_0_deg_list[i]) + 'degré')

plt.xlabel('temps en s')
plt.ylabel('Angle theta en degré')
plt.legend()

plt.show()

Copyright © 2017 Dunod.

Correction d'un TP 183

[Corrig‘é P 450]

0.

def moninte(f, a, b, n, t8):
delta = (b - a) / n
S=0
for i din range(n):
S += f(a + (i + t0) + delta)
return delta * S

1. Nous commencons par définir trois fonctions fo, fi, fo et les valeurs Iy, I, I de leurs intégrales
sur [0, 1], ainsi qu'une fonction tracero(f, I, n) qui tracera les graphes demandés :

from math import *

def fo(t):
return{l / (1 + t))

def fl(t):
return(t+*6)

def f2(t):
return sin(t)

import matplotlib.pyplot as plt

def tracer®(f, I, n):
Lt = [l
Le = []
for i in range(101):
Lt.append(i / 180)
Le.append(moninte(f, ©, 1, n, i / 18@) - I)
plt. figure()

plt.plot{Lt, Le)
plt.ptot([®, 1], [@, 8])

I8, I1, 12 = log(2), 1/ 7, 1 - cos(l) plt.show()
0.0003 . - . -
L’ P
instruction i
for: {f, L) In [(f0; II); (FL;I1), (F2; E2)]: 0.0001 |
for n in [160, 500, 1080, 5000]:
tracer®@(f, I, n) 0.0000

donne 12 graphes du type de celui repré- -0.0001 |
senté ci-contre, qui correspond & f = fy et |
n = 1000.

—0.0003 L : 4 L
B 0.0 0.2 0.4 0.6 0.8

10

L’erreur semble s’annuler pour une valeur de ty voisine de 1/2 (cela se vérifie en modifiant
la fonetion tracer® pour travailler au voisinage de ty = 1/2), et ceci pour chacune des trois

fonctions testées (des que n n'est pas trop petit).

2. Le cours nous apprend que, pour des fonctions de classe €, la méthode des rectangles pointés
a gauche (ou & droite) donne une erreur de l'ordre de 1/n. Nous observons le méme résultat

pour tg # 1/2 (ici avec tp = 0.3) :

s>y far: (€ I) 4n T(F8; Te); (f1,; 13); (Fa; T2)]:
print([round(n * (moninte(f, @, 1, n, ©.3) - I), 3)
for n in [10, 20, 50, 180, 500, l6Pe, 5068]])
[e.098, ©.699, 0.1, 0.1, 0.1, 0.1, ©.1]
[-e.211, -0.206, -0.203, -0.201, -0.2, -6.2, -0.2]
[-0.167, -0.168, -0.168, -0.168, -0.168, -0.168, -0.168]

Copyright © 2017 Dunod.

184 Chapitre 4 Calcul numérique (une dimension)

En revanche, avec ty = 1/2, I'erreur semble étre, pour les trois exemples, de I'ordre de 1/-112
C'est effectivement le cas dés que la fonction f est de classe C?.

>»> for (f, I) in [(fO, I®), (f1, I1), (f2, I2)]:
print([round(n**2 * (moninte(f, @, 1, n, 8.5) - I}, 3)
for n in [18, 20, 50, 166, 500, 1600, 5068]1)
[-8.031, -@.831, -9.031, -0.6031, -0.031, -0.031, -0.831]
[0.083, 0.083, ©.083, 0.083, 6.083, 0.083, 0.083]
[e.019, ©.019, ©.019, 0.019, ©.019, 0.019, 0.019]

3. On obtient

def monintl(f, a, b, n, te, tl):
delta = (b -a) / n
AB = (tl -1/ 2) / (t1 - t8)
Al = (t@ - 1 / 2) / (tB - t1)
S=9
for i in range(n):
S += AB * fla + (1 + t8) + delta) + Al » f(a + (i + t1) » delta)
return delta * S

4. On reprend la méme méthode qu’a la question 1. :

def tracerl(f, I, t0, n):

Lt = []

Le-= []

for i in range(1081):

if 1/ 100!= to:

Lt.append(i / 188}
Le.append(monintl(f, &, 1, n, t6, i / 168) - I)

plt. figure()

plt.plot(Lt, Le)

plt.plot(le, 1], [0, 8])

plt.show()

Nous obtenons ainsi deux types de graphes, selon la valeur de f :

U_‘JE-T : 11!-5

0.2 0

0.0 4l
-02 -2
~0.4 -3

-0.6 = -

0.8 -5

) 02 0.4 0.6 o8 10 %0 0.2 04 06 08 Lo

tracerl(fe, I, 0.2, 1000) tracerl(fe, 10, 0.4, 1000)

5. Pour chaque courbe, le coefficient de corrélation est égal & 1 ou —1 & 1077 prés. Il est donc
légitime de considérer que P(t1) = Iy, ¢, (f,a,b,10%) — I est une fonction affine de la forme
P(t;) = A+ t, B. Si cette fonction garde un signe constant sur [0,1], #;** = 1. Sinon, t{** sera
la racine de P. En notant a = P(0) et b = P(1) (ceci impose d’éviter la valeur ty = 0),
nous obtenons facilement :

2017 Dunod.

Copyright ©

Correction d'un TP 185

def tiopt(te, f, I, n):
a = monintl(f, @, 1, n, t&, B8) - I
b = moninti(f, @, 1, n, t@, 1) - I
ifa*b > 8:

return 1 # l'erreur minimale est cbtenue pour t0 = 1

else:

return a / (a - b) # l'erreur est nulle pour cette unique valeur de [@,1]

On peut ensuite tracer, pour f,I.n donnés, le
graphe de I'application to —s 57

def tracerz(f, I, n):
¥ =1[1 / 580 for i in range(l, 258)]
Y = [tlopt(t®, f, I, n) for t@ in X]
plt. figure()
plt.plot(X, Y)
plt.show()

1.00

095}

0.90

0.85

.80}

075

070

0.65 -
(2] 0l 0.2 0.3 04 0.5

tracer2(fo, I0, 1000)

6. On trace maintenant le graphe de 'application fy — (1 — 2tu)t‘1’m ;

def tracer3(f, I, n):
X =[4i / 580 for i in range(l, 258)]
Y= [{1-2+*1t) * tlopt(t, f, I, n) for t in X]
plt. figure()
plt.plot(X, ¥)
plt.show()

.7

0.6

05}

0.4

03

0z}

01

tracer3(fo, I0, 1000)

On peut calculer e et 3 en utilisant par exemple les valeurs typ = 0.1 et {5 = 0.3. On en déduit

ensuite u en résolvant a + fu =1 —2u :

def alpha_beta_u(f, I, n):
a=(1-2=*0,1) * tlopt(.1, f, I, n)
b=(1-2%06.3) % tlopt(.3, f, I, n)

beta = (b - a) * 5 (o.
alpha = a - beta * 0.1 (@.
u = (1 - alpha) / (2 + beta) (0.
return(alpha, beta, u) (a.

>»> ¥Far (f, I} 4n [(T0, I&), (FL, I3}, (f2, IZ)]:

for n in [500, 1000]:
print(alpha_beta_u(f, I, n))
666925891..., -1.00685185..., ©.3332469112...)
666796287..., -1.60025825..., 6.333290118...)
6661160673..., -0.998887999..., ©.33351845...)
66638877..., -0.999444222..., 0.3334259097...)

(0.666463152..., -0.999592864..., 0.333401108...)
(0.666564944. .., -8.999796529..., 0.3333672253...)
On peut raisonnablement conjecturer que a = é, f==letu= -.1;

Copyright © 2017 Dunod.

186 Chapitre 4 Calcul numérique (une dimension)

7. Nous obtenons

o5 1e=10
def tracerd4(f, I, n): A
Lt = [] -05
Le = []
for i in range(10@): =t
te = § / 300 -15
tO décrit [0, 1/3[par pas de 1/300
t1 = (2 /3 - %@) / (1 - 2 = t8) -20
Lt.append(t@) o
Le.append(monintl(f, @, 1, n, t8, t1) - I)
plt. figure() -30
plt.plot(Lt, Le)
plt.plot([e, 1 / 31, [e, @]) -
plt.show() -40 1
0.0 o1 02 03 04 05

tracer4(fo, IO, 1000)

L’erreur est strictement monotone et continue : nous pouvons approcher la valeur optimale de

to en utilisant la méthode de dichotomie. La fonction qui suit renvoie le couple (7" £ t‘f"') avec

i ot
une précision de eps pour ty" .

def dichotomiel(f, I, n, eps):
X, ¥y =0, 0.33 # la racine est dans l'intervalle [x, v]
if monintl(f, @, 1, n, x, (2 /3 - x) / (1 - 2+ x)) > I
s =1# s est le signe de l'erreur en x
else:
s = -1
while(y - x > eps): # tant que 1l'intervalle est trop large
t0 = (x +y) [/ 2
tl=(2/3-1t0) / (1-2+*+1t@)
if (monintl(f, @, 1, n, t@, t1) - I) # s > 0: # si l'erreur en tO est du méme signe gqu'en x
x = t@ # [x, y] est remplacé par [t@®, y]
else: # sinon
y = t0 # [x, y] est remplacé par [x, t@]
return x, (2 / 3 - %) / (1 -2 % x)

Nous obtenons :

>>> for (f, I) in [(f0, I®), (f1l, I1), (f2, I2)1:
print(dichotomiel (f, I, 1000, ©.000001))
(0.21131813049316406, ©.7886683998399144)
(0.21135778427124022, ©.7887086572151738)
(0.21130491256713865, 6.7886551831357824)

Dés que n est suffisamment grand, on obtient des valeurs qui ne semblent pas dépendre de la

fonction f et dont la somme est presque égale a 1. Il est donc naturel de conjecturer que la

2/3—14

1 — 244
deux racines du polynéme Ly = X? — X + 1/6.

8. On remarque cette fois-ci que l'erreur semble étre de 'ordre de 1/n?, puisque le produit de
Ity 1. (f,0,1,n) — I par n* est & peu prés constant (il ne faut pas choisir n trop grand, car la
faible précision des calculs numériques ne permettrait plus de mesurer 'erreur « de méthode »).

; i v ; A t t
meilleure valeur ¢y est solution de 1'équation =1t =1—tg, ie. que ty” et 1} sont les

*>>> 10, t1 = 1/2-sqrt(3)/6, 1/2+sqrt(3)/6
>>> for (f, I) in [(f0, I8), (f1, I1), (f2, I2)]:
print([round(n**4 * (monintl(f, @, 1, n, tO, t1) - I),7)
for n in [10, 20, 50, 160, 200]1])

c)

) 2017 Dunod.

Copyright

Correction d'un TP 187

[-9.
[-@.
[-0.

9. Nous

def

10. Nous

def

def

0012935, -0.0012999, -0.0013017, -0.001302, -0.0013019]
8277249, -0.8277646, -0.0277757, -0.0277772, -0.0277776]
0eelec4, -0.0001064, -0.0801064, -8.0081064, -0.000106]

obtenons

monint2(f, a, b, n, tO, t1, t2):
delta = (b - a) / n

AD = (1 / 6) # (6 % t1 % £2 = 3 » t1 -~ 3 » t2 + 2) / ((t0 - t2) » (t0 - t1))
Al = (1/6) # (6%t +t2 -3+t -3+ t2+2) / ((t1 - t2) * (tl - te))
A2 = (1 /6) # (6% tl+1th-3+tl-34+1t0+2) / ((t2-10) * (t2 - t1))
S=0

for i in range(n):
S += AR » f(a + (i + t8) + delta) + AL » f(a + (i + t1)

* delta) + A2 » f(a + (i + t2) » delta)

return delta + S

reprenons la méme démarche qu’a la question 7. :

4le=10
tracer5(f, I, n): 3
Lt = [;
Le = []
for i in range(100): 1
te = 1 / 200
t0 décrit [0, 1/2[par pas de 1/200 9
Lt.append(t8) —f
Le.append{monint2(f, &, 1, n, te, .5, 1-t8) - I)
plt. figure() =2
plt.plot(Lt, Le) 3
plt.plot([e, 1 / 2], [e, @])
plt.show() -4
“io 01 0.2 03 oA 05

tracer5(fo, I0, 100)

dichotomie2(f, I, n, eps):
X,y =20, 0.4
if monint2(f, ©, 1, n, @, .5, 1) > I:
s =1
else:
T
while(y - x > eps):
e =(x+y) /2
if (monint2(f, @, 1, n, t0, 0.5, 1 - t8) - I) * s > @:

X = to
else:
y = t@
return x

Nous obtenons :

>3

[dichotomie2(f, I, 180, ©.00000001) for (f, I) +in [(fe, I8), (f1, I1), (f2, I2)]]

[0.1126992404460907, 0.11270157098770141, 0.11269734501838685]

22
22>

alpha = dichotomie2(fe, I&, 106, 0.000880081)
alphax(1-alpha)

0.09999812164896493

Ainsi, (X —a)(X — 1+ a) est environ égal & X2 — X + 1—19. Nous pouvons donc conjecturer que
les valeurs optimales de tg, 1,5 sont les racines du polynéme Ly = (X —1/2)(X? — X +1/10).

Copyright © 2017 Dunod.

188 Chapitre 4 Calcul numérique (une dimension)

11. On remarque cette fois-ci que l'erreur semble étre de 'ordre de 1/n* pour la méthode de
Simpson, alors qu’elle semble étre de I'ordre de 1/n% pour les valeurs optimales de o, t; et 5 :

>>> for (f, I) 4n [(fe, I0), (f1, I1), (f2, I2)]: # Méthode de Newton
print([round(n**4 * (moninti(f, @, 1, n, tO, t1) - I),7)
for n in [18, 20, 56, 1ea@, 200]])
[6.00819411, ©,0019501, 0.0019526, 0.001953, 0.0019527]
[6.0415923, 0.0416481, 0.0416637, 0.0416659, 0.0416665]
[0.0001597, ©.0001596, ©.8801596, 0.0081596, 0.0001597]
>»>» t0, t1 =1/ 2 - sqrt(15) / 18, .5, 1 / 2 + sqrt(15) / 18 # Meilleurs points
»>» for (f, I) 4in [(f®, I8), (f1, I1), (f2, I12)]:
print{[round(n*+6 * (monintl(f, @, 1, n, tO, t1) - I), 18)
for n in [5, 18, 15, 28, 30]])
[-5.54436e-05, -5.77626e-05, -5.82228e-05, -5.83853e-05, -5.84385e-05]
[-9.00083571429, -0,0003571428, -0.0003571433, -0.0003571419, -0.0003571497]
[2.283e-07, 2.28e-07, 2.27e-07, 2.238e-07, 2.033e-07]

On voit que I'analyse d’erreur est ici délicate car, pour n = 50, nous arrivons aux limites de
la précision des calculs flottants. 11 est possible de démontrer que 'erreur est effectivement en
¢(1/n%) quand f est de classe ¢ sur I = [0, 1].

Plus généralement, pour tout d = 0, il existe un unique polynéme normalisé Lgyq de degré
d + 1, appelé polynéme de Legendre, tel que :

1
VP € Ry[X], / Lasr (OP(t) dt = 0.
1}

On montre que Ly possede d+1 racines réelles distinctes et strictement comprises entre 0 et 1,

notées (t;)o<i<q. Pour toute fonction f de classe €292 sur un segment [a,b], Iy, . ., (f,a,b,n)
b

- : —1
approxime f(t)dt avec une erreur en ¢ (n2 77)

a

CHAPITRE

Calcul numérique
(deux dimensions)

L’essentiel du cours

B 0 Résolution de systéemes d’équations linéaires

Nous supposons connu du lecteur le principe général de la résolution de systemes d’'équations
linéaires a 'aide de 'algorithme Fang cheng ' aussi connu sous le nom de pivot de Gauss. Au
besoin, priere de se référer a votre cours de Mathématiques.

Description de ’algorithme
Le probleme est de résoudre le systéeme d’équations linéaires suivant :

0,0 rg + apa ry + o 4 Aon-1 Tu—1 = Yo
ayo rg + 011 ry + -+ O1n-—1 In-1 = W
n-10 o + Ap-11 1 + = F+ Au—1n-1 Tp-1 = Yn-1
o Yo
. " . US| B "
que l'on peut écrire AX =Y avec A = (a; j)ogijcn-1; X = . et Y = :
Tp—1 Yn—1

On suppose dans ce chapitre la matrice A inversible; cette équation a donc une unique solution
X =41y,

Nous allons transformer cette matrice A en la matrice identité & I'aide d’opérations élémentaires
sur les lignes (échange, transvection, dilatation). Les opérations effectuées sur A seront également
effectuées sur Y, ainsi, Y sera transformée en A~'Y et le systéme sera résolu. Si on veut calculer
I'inverse de A, il suffit de prendre pour Y la matrice identité.

1. La plus ancienne référence a cet algorithme est dans Les Neuf Chapitres sur Uart mathématique (JLFEET)
dont on peut trouver une traduction chez Dunod [KCO05).

~
8

)17 Dunod.

20

Copyright ©

190 Chapitre 5 Calcul numérique (deux dimensions)

Le principe de I'algorithme est de normaliser les colonnes une par une, ¢’est-a-dire de les transformer
en colonnes avec un « un » sur la diagonale et des « zéros » sur les autres coefficients. Ainsi, apres
7 € [0,n — 2] étapes, la matrice A est de la forme suivante :

/1 0 0 0,3 9,4 - \
0 1 0 @y 3 ay.4
0 0
Jﬂl).’ = 0 0 0 aj 4 Qg i+1
0 0 0 aj41; a1+
\U 0 0 ap-1j Gn-1,j+1 “')

Pour un j fixé, nous allons réaliser les opérations suivantes, qui n'interviendront que sur les lignes
(on note L; les lignes de A et Y; celles de V) :

e On trouve la ligne p de la matrice pour laquelle |a, ;| avec j < p < n — 1 est maximal.
L’élément a,, ; servira de pivot. Il est choisi pour minimiser les erreurs de calcul flottantes.

e On échange les lignes p et j dans A et dans Y.

e On divise (dilatation) la j° ligne de A et de J par a, ;

e Pour i € [0,n —1] ~ {j} (i va de 0 & n — 1 en sautant la valeur j), on effectue les opéra-
tions élémentaires L, < L, — :::’—:L;, et Yy &« Yy — :i—‘i)ﬁ,. Ces opérations sont appelées
transvections. ' '

Etude de la complexité temporelle de I’algorithme du pivot de Gauss partiel

L’algorithme de Gauss a une complexité temporelle (dans le pire et dans le meilleur des cas)
en @(n).

La boucle externe est répétée n — 2 = @(n) fois. A chaque étape j, la recherche de pivot coiite
¢(n) opérations, tout comme les échanges de lignes et les dilatations. Chaque transvection coiite
@ (n) opérations et est répétée &(n) fois. Les transvections sont donc en &(n?) et méme en ©(n?).
La complexité totale de cet algorithme est done en &'(n?).

Code Python utilisant les listes de listes

def recherche_pivot(A, i):
p=1 #p est l'indice du pivot
for k in range(i + 1, len(A)):
if abs(A[k][i]) > abs(A[p]l[i]): # Si on trouve un meilleur pivot
p=k
return p

def echange_ligne(A, i, j):
for k in range(len(A[8])):
ALiTLk], A[31[K] = A[3]1[k], AL[i][k]

def transvection(A, i, j, mu):
for k in range(len(A[8])):
Ali1[Kk] += mu * A[j][k]

def dilatation(A, i, mu):

4
9

Dunod.

2017

-

Copyright ©

L’essentiel du cours 191

for k in range(len(A[8])):
A[i1[k] *= mu

def fang_sheng(A, Y):
n = len(A)
for j in range(n):
p = recherche_pivot(A, j)
echange_ligne(A, j, p)
echange_ligne(Y, j, p)
dilatation(Y, j, 1 / A[F]1[i])
Y est modifié avant que A[j][1] ne soit modifié
dilatation(A, j, 1 / A[JI1[3])
for i in range(n):
if il= j:
transvection(Y, j, i, -A[§1[i])
transvection(A, j, i, -A[j1[i])

B 1 Numpy (tableau array)

Les tableaux (array) sont les objets de base du module Numpy. Ils sont composés de cellules toutes
de méme type (dtype, np.float64 par défaut). Ils sont multi-dimensionnels (plusieurs indices
possibles). On manipulera en général des vecteurs (unidimensionnel), des « matrices » (bidimen-
sionnel) mais on peut aussi avoir des tableaux tri-dimensionnels, ¢’est le cas par exemple des images
(chaque pixel [1,]] est composé d'une vecteur a trois coordonnées [R, G, B] de type np.uint
¢'est-a-dire un octet non signé — valeurs possibles de 0 a 255).

Ces tableaux prennent moins de place en mémoire et sont plus rapides d’acces que les listes Python.
On les utilise donc pour les calculs numériques, en imagerie, en traitement du signal, etc.

On définit un tableau de zéros par la fonction np.zeros et on convertit des listes par np.array.
On accede a la cellule d’indice (i, j) du tableau a par al[i, jl oual[i][j].

import numpy as np # alias np plus court

a = np.zeros((3, 3))

b = np.array([[1, 2, 3], [4, 5, 6], [7, &, 911, ([2e. @. o.]
dtype=int) [e. 0. 8.]
[8 =1: '8.]]
a[e, 0] = 20 (3, 3), floate4, 9, inte4
al21[1] = -1
print(a)

print(a.shape, a.dtype, a.size, b.dtype, sep=", "}

La méthode shape donne la taille (forme) du tableau, & ne pas confondre avec la méthode size
qui fournit le nombre total de cellules élémentaires (moins utiles).

192 Chapitre 5 Calcul numérique (deux dimensions)

a = np.array([4, 7, 9])

b = np.array([[1, 2, 3], [4, 5, 6], [7, &, 911,
dtype=int)

print(a.size, a.shape)

print(b.size, b.shape)

3(3,)

On peut remplir un tableau de différentes fagons, par exemple

def (i, i):
return 5 / (i + j + 1)

Hl = np.array([[f(i, j) for j in range(5)] for i 1in range(5)])
H2 = np.fromfunction(f, (5, 5)) # un peu moins de monipulotions mémoire

On peut changer le type des cellules d'un tableau. Remarquer la méthode copy qui copie tout le
tableau.

Hentier = H2.copy()}

Hentier = Hentier.astype(int)
print(H2.dtype)

print(HzZ)

print(Hentier)

float64

[[5. 2.5 1.66666667 1.25 1]
[2.5 1.66666667 1.25 1. 0.83333333]
[1.66666667 1.25 1, ©.83333333 0.71428571]
[1.25 1. ©.83333333 0.7142857T1 0.625]
[1 ©.83333333 06.71428571 08.625 0.55555556] |
L[5 111)
[2111686]
[1 16 e8]
[11e0006]
[1 8 8 e]]

T e

Mise en garde Examinons la sortie du code suivant :

[(e, 2016, @, 0, 8],
[e, 2016, @, 0, 6],
B =[[8] *5] »5 [e, 2016, 0, 8, 0],
B[2][1] = 2017 [e, 2016, @, 0, 0],
print(B) (e, 2016, @, 0, @8]]
C = np.zeros((5, 5}, dtype=int) [[@ 6} ¢] e} 0]
Cc[2, 1] = 20816 [@ (] ¢}] o]
print(C) [© 20616 <] e} 0]
[© e @ 8 0]
[© 8 ¢} @ 6]]

Cela s'explique en se souvenant que les listes Python sont des listes d’étiquettes sur des objets.
Les listes de listes sont donc des objets assez complexes. On n'a pas ce probleme avec les tableaux

2017 Dunod.

t ©

Copyrigh

arrray de numpy.

Copyright ® 2017 Dunod.

L’essentiel du cours 193

L]
L=[[0,1],2] ¥
Création de L Réf | 2 0 1
| <
| |
L —] M—|
M=L[:] ¥ ¥
Le contenu de L est copié Réf 2 Réf 92 0 1
| | G
| ' I]
15 — M—|
L[l]=3 =% +
LIe] [1]=4 Réf | 3 Réf | 2 0 | 4
pr1nt(M):[[0,4],2] | | T

Pour résoudre le probléme précédent avec des listes, il faut plutot écrire :

[[g) G! @!' GI BJ?

B = [[@] * 5 for i in range(5)] [e, e, @, @, 0],

B[2]1[1] = 2017 [e, 2016, ®, 0, O],

print(B) (e, @, @, @, @],
(e, @, @, 8, 9]]

On retiendra que pour copier un tablean A, on peut utiliser A.copy () mais que si on a affaire
a une liste de liste L, il nous faut copier en profondeur la liste (descendre récursivement les
étiquettes). on utilisera alors la fonction deepcopy du module copy.

A2 = A.copy # A est un array

from copy import deepcopy
L2 = deepcopy(L) # L est une liste de liste

- V,

Expressions algébriques

On peut utiliser les opérateurs + et * avec les tableaux array. Cela rend le code tres lisible par
exemple pour 'implémentation de la méthode d’Euler (équations différentielles).

A
B

np.random.randint(1l, 10, (3, 3)) # coefficients de 1 @ 9
np.eye(3, 3) # matrice identité

print(A + 18 * B)

unod.

7

01

-

Copyright €

194 Chapitre 5 Calcul numérique (deux dimensions)

[C11. 7. 4.]
E 5 39 5.
[& 2o 14.]]

A Comparer le comportement des opérateurs avec les listes.

A, B = [-1, -2], [1e, 20]
(-1, -2, 1e, 20, 1@, 20, 1@, 20, 10, 20, 1@, 20]
print(A + 5 * B)
Fonction vectorisée

Les fonetions mathématiques usuelles ont été vectorisées dans le module numpy

S D UL —
...
L) P [J L)
T = np.array([np.pi * i / 5 for 4 in range(11)1) . e
cos et sin ont été vectorisées > .
X, ¥ = np.cos(T), np.sin(T) a0 Y ®
plt.axis('equal') . >
plt.plot(X, ¥, 'o=--', lw=5, markersize=15) S iy
plt.show() 0% '.‘ ..
¥y ..0
3 N TEIEE |
b E 35 05 10 15

On peut vectoriser sa propre fonction avec la fonction np.vectorize (si elle n'utilise pas directe-
ment les fonctions usuelles).

def f(x):
if = > 5:
return x%%2

else:
return -x array([-1, -2, -3, -4, -5, 36, 49, 64, 81])

f
T
f(T)

np.vectorize(f)
np.arange(l, 1@)

Utilisation du slicing
Tres pratique, le slicing permet de gagner en lisibilité du code (et en rapidité d’exécution).

[[12
print(b) [4 5 6]
[7 8 9]

[[2 3]
print(b[:, 1:3]) [5 6]
[8 8]]

L[2]

print{b[:2, 1:2]) [5]]

print(b[:2, 11) [2 5]

] _ ([12017 3]
By 4] = aed? [4 2017 6]

RETIELD) [72017 9]]

© 2017 Dunod.

Copyright

Remodelage
t = np.array([[1, 2, 3], [4, 5, 6]]) [[12 3]
v = t.flatten() # il aplatit en foisant une copie [4 5 6]

print(t)
print(v)

[12345 4]

t2 = t.reshape((3, 2)) i

: [3 4]
print(t2) [5 &]])
t[e, 6] = 2014 [[2014 2]
print(t2) # ottention, pos une copie [3 4]
t2 pointe sur lo méme vue!! [5 61]
a = np.array([[1, 21, [3, 4]1]) (fx 2]
b = np.array([[5, 61, [7, 811) [3 4]]
print(a) L[5 6]
print(b) (7 81)

Concaténation

© = np.concatenate((a, b)) # oxis=0 sous-entendu [E; i%
print(c) [5 6]
d = np.concatenate((a, b), axis=1) [7 81
ale, 0] = 2017 [[125 6]
print(d) (3 47 8]]

Indexation booléenne (fancy indexing)

Sans rentrer dans les détails subtils de la syntaxe de numpy, les manipulations suivantes sont tres

agréables notamment en traitement d’images.

C = np.random.randint(-9, 10, (5, 5)) # se souvenir de np.random

test = C > @
print{test)
print("nombre de cellules concernées:", test.sum())

[[False True False False False]
[True False False False False]
[True True True True False]
[False False True True False]
[False True True False False]]

nombre de cellules concernées: 160

[[-3 7-
[4 -2 -

i 2

print(c) E:g ":
e - - 1 (% o
P [1e6@ -2
[100 100
[-5 -3
[-3 180

5
1
2
9
2

-8
=4

-7
-5
-1

160

100

100

'9]
_4]
-1}
_4}
-2]]
-8
-9
100
166
-7

-9]
-1]
=2]1]

L’essentiel du cours

196 Chapitre 5

Calcul numérique (deux dimensions)

Les méthodes a maitriser

,—(Méthode- 5.1 : numpy .(résu.mé)j

np.array([1, 5, 7])
np.arange(deb, fin, dincr)
np.linspace(deb, fin, nbpoints)

tableaux (array) de subdivision

np.vectorize(f)

permet d'utiliser la fonction scalaire f avec des
array

M = np.array([[1.5, 2.1],
[3.7, 4.9]1)

M = np.array([[1, 2], [3, 4]],
dtype=1int)

dimi, dimj = M.shape

M.reshape(4)

M = np.zeros((a, b))

M[O, :]

M, 1]

N = M.copy()

M = np.concatenate([L1, L2])

axis=1)

M = np.concatenate([Cl1, C2, C3],

matrice 2 x 2 (type ndarray)

matrice 2 x 2 (cellule de type int)

renvoie la taille de la matrice (attention .size
renvoie le nombre total de cellules

création d'une matrice de zéros de taille (a, b)
1™ ligne de M

2¢ colonne de M

copie de M (si les coefficients sont des nombres)
concatene les lignes (attention une seule entrée)
concaténe les colonnes

\

— Méthode 5.2 : numpy et algébre linéaire |

M * M

np.dot(M, N) # ou M.dot(N)
M.T

M.sum()

v.T * w # ou np.vdot(v, w)

np.cross(v, w)
np.linalg.solve(A, V)

le produit terme a terme

le vrai produit matriciel MN

la transposée de M

somine de tous les éléments de M

produit scalaire (u|v)

produit vectoriel u A v

résolution d'un systéme linéaire AX =V

import numpy.linalg as lg
lg.det (M)

lg.inv(M)

valeurspropres, P = lg.eig(M)
valeurspropres = lg.eigvals(M)

déterminant

inverse de la matrice

valeurs propres et matrice de passage (diag.)
spectre de la matrice

Copyright © 2017 Dunod.

Les méthodes a maitriser 197

Les fonctions de numpy . random décrites dans le chapitre 1 section 8 (page 23) peuvent renvoyer
des tableaux de valeurs aléatoires.

import numpy.random as rd

Renvoie un tobleou de 5 entiers compris entre 1 et 6 inclus.
rd.randint{l, 7, 5)

Renvoie un tobleou de 5 lignes et 2 colonnes de flottants aléatoires

compris entre 0 et 1.
rd.random((5, 2))
rd.binomial(n, p, nbtirages) # Renvoie nbtiroges valeurs aléatoires.

Pour afficher des lignes de niveau de la surface z = sin(z)sin(y), on peut éventuellement
utiliser l'option levels=[...].

dimport numpy as np

import matplotlib.pyplot as plt

X = np.linspace(-np.pi, np.pi, 101)
¥ = np.linspace(-np.pi, np.pi, 161)
XX, ¥¥ = np.meshgrid(X, Y)

Z = np.sin(XX) * np.sin(YY)

plt.contour (XX, YY, Z)
plt.show()

A connaitre, pour tracer la surface représentative d'une fonction, ¢’est-a-dire la surface d’équa-
tion z = sin(zxy).

from mpl_toolkits.mplot3d <dimport Axes3D
fig = plt.figure()

ax = fig.add_subplot(111, projection="3d")
ax.plot_surface(X, ¥, Z)

plt.show()

Copyright © 2017 Dunod.

198 Chapitre 5 Calcul numérique (deux dimensions)

|Exercice 5.0] Remplir un tableau

On se déplace sur une grille (n+1) x (n+ 1) en partant du coin en haut a gauche (indice [0, 0]).
On n’a le droit de se déplacer que d'une case en allant soit & droite, soit en bas.

Construire un tableau (n + 1) x (n+ 1) a 'aide d'un algorithme qui calcule de proche en proche
pour chaque case [1, j], le nombre de chemins pour aller de la case [0, 0] a [1, j].

Que remarque-t-on ?

(Exercice 5.1 Suites récurrentes croisées

On considére trois suites réelles (z,,), (¥,), (2,,) vérifiant
$9=yg=—2'et z0=10

0. On suppose que
102441 = Tzy + 4y, + 52,
103)'71+1 =3z, + 25
102,1.;‘.1 = 63}“ + 4Zn

A l'aide d'un programme en Python, calculer (2918, Y2018, 22018) par un caleul matriciel.
1. Peut-on réduire le nombre de multiplications dans le calcul matriciel 7
2. On reprend le méme probléme (méme condition initiale) mais avec le systéme
Tp4l = 7T, + 4yn ~+ B2y,
Yn+1 = 3z, + 2n
zp = 6y, +4z,

Calculer (z2018, Y2018, 22018)-

(Exercice 5.2] Décomposition LU

On considére une matrice inversible A = (a; ;) € M, (R).
On effectue des transformations sur la matrice A.
On notera les matrices A9 = A4, AN ... Ak = (aE}J),--- S A1),

e Pour k variant de 1 a n — 1,
(k=1)
(k=1})
Ak
effectue les transformations sur la matrice A%—1)
Lg +— Li = fg__kLk

pour i € [k + 1,n], on pose ¢, = (on suppose qu'a chaque étape ag:_l) #0) et on

pour obtenir la matrice A%, N
e On pose alors U = A"~V et [= (¢;,;) avec
Ei!j sii>j
Ei_.j = 1siz= j
0 sinon
On démontre que A = LU (on dit que 'on a effectué une décomposition LU de la matrice A).

0. Ecrire une fonction decompLU(A) qui effectue cette décomposition et qui renvoie les matrices
LetU.

4
i

7 Dunod.

201

Copyright ©

Exercices 199

2 -1 0
1. Tester votre fonction sur la matrice A = -1 2 -1
0o -1 2
2. Comment résoudre simplement une équation du type AX =Y avee XY € (931.,1‘1{[[{})2, X
inconnu, lorsqu’on connait une décomposition LU de la matrice A7

(Exercice 5.3) Méthode de la puissance (algebre linéaire)

1 2 3
On définit la matrice A=| 2 4 1
3 10
0. Vérifier que cette matrice possede trois valeurs propres distinctes.
Déterminer une base de vecteurs propres approchés.

1
1. Onpose X =41,1.1) et U,, = —— A" X.
VB [X]

On montre que pour n assez grand, le vecteur U, est proche de U ot U est vecteur propre
de la plus grande valeur propre en valeur absolue de U. Ce résultat est vrai pour la plupart
des vecteurs X non nuls et pour toute matrice 4 valeurs propres de valeurs absolues toutes
distinctes .
Ecrire en Python, la fonction vecteurpuiss(A, X, eps) qui calcule une valeur approchée
de U en calculant les valeurs successives de U,, et en s’arrétant lorsque ||U, —U|| < ¢ ou
||Uy + U|| < ¢ et renvoie le vecteur approché U,,.

2. Vérifier qu'on obtient bien un vecteur propre.

3. On pose B = (I3 —UU) A (I3 — U'U). Déterminer un vecteur propre de la matrice B par la
méthode précédente. Que remarque-t-on ?

[Exercice 5.4] Arbre philogénétique

TER groupe groupe
. 3
. £
p=|30 %2 2 5
2 5 0 3 5 iy
3230 S 14 o
re elfe gobelin humain

(0.B) Demi-matrice des
distances

(0.A) Matrice des distances (0.C) Exemple d'arbre

Nous souhaitons retrouver 'arbre philogénétique d'une liste d’espéces, par exemple :
["gobelin", "orc", "humain", "elfe"].

Les distances entre les espéces sont supposées avoir été précalculées (e.g., selon la méthode décrite
a l'exercice 3.9). Ces distances sont stockées dans une matrice D (voir par exemple la figure (0.A).
Dli, j] est la distance entre l'espece i et I'espeéce j (par exemple DJ0, 3] est la distance entre les
elfes et les gobelins).

1. On peut prendre des hypothéses plus générales, mais avec ces hypothéses, un éleve de MP/PSI/PC/PT peut
étre capable de le démontrer avec son cours de mathématiques..,

4
9

Dunod.

2017

-

Copyright ©

200 Chapitre 5 Calcul numérique (deux dimensions)

D est symétrique de diagonale nulle, il est done inutile de la stocker en entier. le triangle inférieur
(hors diagonale) suffit (voir figure 0.B).
Nous représenterons cette demi-matrice par une liste de listes D, telle que D[] [j] n'est défini que
si j < 4. Par exemple, icionaD = [[], [3], [2, 5], [3, 2, 3]1].
Nous représenterons un arbre philogénétique partiel par une liste. Par exemple, 1'arbre partiel de
la figure 0.C peut étre représenté par [['gobelin', @, 5], ['orc', 1, 4], ['humain', 2,
5], ['elfe', 3, 4], ['groupe', 4, None], ['groupe', 5, None]].
L’arbre est représenté par une liste de groupes philogénétiques. Chaque groupe philogénétique est
représenté par une liste de 3 éléments :

e son nom (une chaine de caractéres, c’est le nom de 'espéce ou groupe si ¢’est un regroupe-

ment d’especes),

e sa position dans la liste,

e la position de son ancétre dans la liste (ou None s'il n’en n’a pas).
On remarque que la représentation n'est pas unique, car l'ordre des groupes philogénétiques peut
étre changé.
0. Donner une représentation en Python de I'arbre suivant.

groupe

groupe gobelours

hobgobelin gobelin

1. Ecrire une fonction nb_fi 1s(A, 1) qui, étant donné une liste A représentant un arbre philo-
génétique, renvoie le nombre de descendants du groupe numéro i dans l'arbre.

2. Ecrire une fonction orphelins(A) qui prend en entrée un arbre philogénétique partiel et renvoie
la liste des indices des groupes sans ancétres (dans 'ordre croissant). Sur le premier exemple,
cette fonction renvoie [4, 5].

3. Ecrire une fonction nouvel_ancetre (A, i, j) qui, étant donné un arbre A représenté par une
liste et deux numéros de groupes i et j supposés sans ancétre dans I'arbre, ajoute un nouveaun
groupe (sans ancétre) ayant pour descendants les groupes i et j.

On considére a présent que la distance enfre deux groupes est le minimum des distances entre les
membres des groupes. Ainsi, la distance entre le groupe « humain-gobelin » et le groupe « elfe-orc »
est de 3 (le minimum entre 3 et 5). De méme, la distance entre le groupe des humains et le groupe
« elfe-ore » est de 3.

4. Ecrire une fonction distance(D, i, j) qui étant donné deux groupes i et j et une demi-
matrice des distances D renvoie une liste L telle que L[k] est la distance entre le groupe k et le
groupe {i,j}. On remarque que L[1] et L[] valent tous les deux zéros.

5. Ecrire une fonction plus_proche (A, D) qui étant donné un arbre partiel A et une demi-matrice
des distances D renvoie les deux groupes orphelins les plus proches®.

6. Ecrire une fonction regroupement(A, D) qui étant donné un arbre partiel A et une demi-
matrice des distances D rajoute a la fin de la liste A un nouveau groupe (ancétre des deux

1. On supposera qu’il existe au moins deux groupes orphelins dans I'arbre philogénétique, et, en cas d’égalité, on
renverra arbitrairement un des couples les plus proches.

2017 Dunod.

t ©

Copyrigh

Exercices 201

groupes orphelins les plus proches) et qui rajoute une ligne dans la matrice D représentant les
distances entre ce nouveau groupe et les anciens groupes.

7. Ecrire une fonction arbre_philogenetique(L, D) qui étant donné une liste d’espéces L et
la demi-matrice des distances correspondante D calcule et renvoie I'arbre philogénétique A des
espéces calculé selon la méthode suivante ! :

e on prend en entrée la liste L des especes ainsi que la demi-matrice des distances associée,
on construit 'arbre partiel A avec toutes les espéces de L (qui sont orphelines au début),
tant qu'il reste au moins deux groupes orphelins, on utilise la fonction regroupement pour
créer un nouveau groupe,

e On renvoie A,

(Exercice 5.5] Méthode du gradient conjugué

On définit la fonction f de la maniére suivante :

3 7
flz,y) = % + §y2 (14 0.4 x arctan (sin(x)) .

Tracé des lignes de niveau

On rappelle ici la technique pour tracer des lignes de niveaux d'une fonction a deux variables.
Voici comment tracer ces lignes niveaux pour (z,y) € [—10,10] x [—6, 7].

X = pp.linspace(-18, 10, 1001)
¥ = np.linspace(-6, 7, 1061)
XX, ¥YY = np.meshgrid(X, Y)

ZZ = f(X¥, YY)

plt.contour (XX, YY, ZZ, levels=[(k / 4)**3 for k in range(20)])
plt.show()

0. Définir un gradient unitaire (= de norme 1), grad(f, x, y, h) de la fonction f a deux
variables au point (x, y) avec un déplacement de longueur h (petit).

1. Cette méthode s’appelle classification hiérarchique ascendante.

202 Chapitre 5 Calcul numérique (deux dimensions)

Méthode du gradient a pas constant / a pas optimal

Méthode du gradient a pas constant

1. On cherche a trouver le minimum de la fonction f.
Pour cela, on propose avec un pas constant a de se déplacer a partir d'un point de coordonnées
(zo,y0) de —a x grad(f)(xo,y0). On « remonte » ainsi le gradient par une ligne polygonale ou
chaque segment a pour longueur a.
Tracer une ligne polygonale de 30 points pour la fonction f avec (zg,y9) = (3,5), a = 2 et
h=107",
Méthode du gradient a pas optimal
On va adapter a chaque étape la longueur a.
Notons (gz,gy) = grad(f)(zo,y0). On parcouwrt a — f(z —a x gr,y — a x gy) pour a > 0 qui
décroit au début et on prend pour « le premier minimum local rencontré. Puis on réitére le procédé
a partir du nouvean point obtenu.

2. Ecrire la fonction meilleuralpha(f, x, y, gx, gy, eps) qui récupére cette valeur en par-
courant la fonction en diserétisant o« d'un pas eps.

3. Tracer la ligne polygonale pour la méme fonction f (méme point de départ) en utilisant la
méthode proposée. On prendra eps = le-2.
On tracera sur la méme figure les lignes de niveau de la fonction f et les deux lignes polygonales
correspondant aux deux méthodes de recherche de minimum.

(Exercice 5.6) Algorithme de Floyd-Steinberg

e Il vous est conseillé d'avoir traité les questions 1 a3 4 du T.P. 5.1 d'imagerie p. 208

Supposons que chaque pixel n'est plus codé par un triplet (r,g,b) € [0,255]® mais seulement par
(r,g,b) € {0,255} c’est-a-dire que chaque pixel ne dispose que de 8 couleurs.

On définit un seuil s pour chaque pixel.

Si e;; = s alors ¢;; = 255 sinon ¢;; = 0. Mais on se propose de redistribuer cette erreur de
quantification aux pixels voisins qui n’ont pas encore été traités.

Au final, on obtiendra une image qui, bien qu’elle soit constituée de pixels & 8 couleurs, donnera
I'apparence d’une image possédant une palette de couleurs plus importante.

L'algorithme de Floyd-Steinberg propose de redistribuer l'erreur de quantification' e = ¢; ; — ¢; ;
aux voising non traités suivant le schéma

_— 7

Cij -+ 1—Gﬁ
=+ it‘ 1 iﬁ. + i
16 16 16

On part ainsi du pixel (0,1) en lisant de gauche a droite puis ligne par ligne.
Il y a bien siir un probleme au bord. On pourra par exemple rogner les premieres et derniéres
colonnes et lignes...

1. pour chaque tableau R, G ou B

Copyright © 2017 Dunod.

Exercices 203

Ecrire une fonction floyd (T, seuil) qui renvoie a partir du tableau bidimensionnel T un tableau
transformé suivant 'algorithme précédent et tester la fonction sur une image noir et blanc puis sur
une image couleur.

(Exercice 5.7) Photomaton

e Il vous est conseillé d'avoir traité les questions 1 a 4 du T.P. 5.1 d'imagerie p. 208

La transformation du photomaton consiste a opérer la bijection suivante sur un tableau de
pixels de taille v x 3 ot v et 3 sont des entiers pairs.

HIEY
&
9

:
|

/-l

Y.
/4
f +

Ainsi si @ = 2a et 3 = 2b, aprés transformation, nun pixel de coordonnées (i, j) pouri < aet j <b
est la copie de celui de coordonnées (2i,2j), un pixel de coordonnées (i +a,j) pouri < aet j <b
est la copie de celui de coordonnées (2¢ + 1,27), etc.

Puisqu’on a une bijection sur un ensemble fini, cette transformation est périodique (sa période est
I'ordre de cette bijection dans le groupe .#,5).

Ecrire une fonction photomaton (P) qui effectue cette transformation sur le tableau P et tester la
fonction sur I'image 'image256.png' fournie sur le site.

La période est relativement importante... A vous de la deviner.

Etude mathématique : comment calculer la période 7
La transformation correspond a la permutation dans %5, = %ij ([0,2n —1])

Lo .
asmestpalr

i—1
2

+ n si i est impair.

1. Plutét destinée aux éléves de MPSI/MP

4
9

Dunod.

2017

-

Copyright ©

204 Chapitre 5 Calcul numérique (deux dimensions)

Remarquons que 0 et 2n — 1 sont des points fixes de o.
Nous avons
Y 2isi0<i<n—1
o li)=4 HBISISA-0
2t+1—-2nsin<i<2n—1.
On peut se restreindre aux éléments de [0,2n — 2] puisque 2n — 1 est un point fixe.
Remarquons alors que dans Z/(2n — 1)Z,
o~ (i) = 2i done % (i) = 2%i.
En conséquence, 'ordre de la permutation o (ou o~') dans .4 /(2n-1)z est égal a l'ordre de 2 dans
Z/(2n — 1)Z c’est-a-dire le plus petit entier p > 1 tel que 2n — 1|27 — 1.
Pour la transformation photomaton dune image de taille 2a x 2b, on effectue la transformation
précédente sur 2a lignes et de fagcon indépendante sur 2b colonnes.
Posons p = 03,_1(2) et ¢ = O2—1(2), on sait que la transformation « photomaton » sera de période
pVaq.

| Exercice 5.8] Stéganographie dans une image par réécriture du LSB

Dans cet exercice, on convertit une image en couleur en une image en niveaux de gris puis on cache
un texte dans cette image.

L’ceil est plus sensible a certaines couleurs qu'a d’autres. Le vert pur par exemple parait plus clair
que le blen pur. Pour tenir compte de cette sensibilité lors de la transformation d’une image en
couleurs en image en niveaux de gris, on ne prend généralement pas la moyvenne arithmétique des
intensités des couleurs fondamentales mais une moyenne pondérée. Une formule standard donnant
le niveau de gris en fonction des trois composantes est :

gris = | 0.299 * rouge + 0.587 * vert + 0.114 * bleu |

0. Ecrire une fonction niveau_gris(M) qui prend en entrée une matrice codant une image RGB
stockée sous la forme d'un numpy . ndarray de dimensions (n, p, 3) et qui renvoie une matrice
codant une image en niveaux de gris, codée sous la forme d'un numpy.ndarray de dimensions
(n, p) selon la formule présentée ici.

La stéganographie par réécriture du LSB (least significant bit) consiste a cacher un texte dans
une image (en niveaux de gris, donc une matrice de nombres entiers compris entre 0 et 255) de la
maniére suivante :

e Pour chaque pixel de 'image, le bit le moins significatif (donc correspondant i 2° dans
I'écriture binaire du nombre) ne sera pas en réalité associé a une différence de niveau de gris
dans I'image mais & un bit dans 'encodage du message caché ;

e les bits extraits de I'image (les moins significatifs, done) seront regroupés 8 par 8; on lit la
matrice ligne par ligne:

e chaque groupement de bits sera converti en un entier non signé (compris entre 0 et 255) ;

e cet entier sera converti en un caractére Unicode a 'aide de la commande chr de Python;
par exemple chr (97) est évalué a a;

e on admettra par convention que le texte s’arréte lorsque 'entier lu est 128. Celui-ci corres-
pond au caractere "\x80" qui est un caractére de contréle en Unicode.

Par exemple, supposons que la premiére ligne de I'image commence par 24 13 8 24 24 24 255 0
Les bits extraits sont 0100 0010; ceci correspond a 66 ; et, comme chr (66) est évalué a B, c'est ce
caractére qui est caché dans ces pixels de I'image.

d.

0

)17 Dunc

C

2

Copyright ©

Exercices 205

Notons que ces pixels auraient pu au départ étre les mémes:; ou 25 12 8 25 24 25 254 1 ou encore
24 139 25 25 24 255 0, ete.

1. Ecrire une fonction stegano(image, chaineaencoder) qui prend en argument un
numpy.ndarray correspondant a une image en niveaux de gris, et une chaine de caracteres
chaineaencoder qui représente le texte que I'on souhaite cacher dans I'image. Cette fonction
renverra une matrice correspondant a une image en niveaux de gris.

2. Ecrire une fonction unstegano(image) qui prend en argument un numpy.ndarray correspon-
dant & une image en niveaux de gris dans lequel est caché un message par le procédé décrit
ci-dessus et qui renvoie la chaine de caractéres cachée dans 'image.

3. Ecrire une fonction decode (fichier) qui prend en argument une chaine de caractéres fichier
qui correspond au nom d'une image codée en niveaux de gris et contenant un texte caché et
stocké dans le répertoire courant et qui renvoie le texte caché dans cette image. On trouvera
un exemple sur la page dédiée a cet ouvrage sur le site de Dunod.

Copyright © 2017 Dunod.

206 Chapitre 5 Calcul numérique (deux dimensions)

(TP 5.0 — Poule Renard Vipére

Le POULE-RENARD-VIPERE est un jeu populaire chez les jeunes enfants. Il en existe de nombreuses
variantes. Nous allons modéliser ici le déroulement du jeu.

Le principe est qu'un grand nombre d'enfants se déplacent sur un terrain (que nous modéliserons
par un damier). Chaque enfant est soit une POULE, soit un RENARD, soit une VIPERE. Chaque
PouULE doit attraper les VIPERES, chaque VIPERE doit attraper les RENARDS, chaque RENARD
doit attraper les POULES. Lorsqu'un enfant est attrapé, il change de catégorie, et devient du méme
type que celui qui I'a attrapé (une POULE attrapée par un RENARD devient un RENARD).

Nous commencons par introduire en Python quelques variables globales. Chacun des trois animaux
est représenté par un entier (0, 1, ou 2).

POULE = @
RENARD = 1
VIPERE = 2

NBANIMAUX = 3

Il est préférable, pour rendre le code plus lisible, d'utiliser des constantes globales comme POULE
plutot que d'atiliser directement les nombres 0, 1 et 2.

0. Ecrire une fonction grille(n) qui renvoie un tableau numpy carré de n lignes et n colonnes
contenant, dans chaque case, une liste vide. Par exemple, grille(3) doit renvoyer :

array([[[], [1, (1],
L1, 01, [11,
(L1, (1, C11], dtype=object)

Cette grille va modéliser le terrain de jeu (qui est découpé en cases), les listes représentent la liste
des enfants (ce sont des listes de 0, 1 et 2).

1. Ecrire une fonction init(nombre, n) qui crée un terrain de jeu de taille n puis la remplit au
hasard ' avec des POULES, des RENARDS et des VIPERES (on met nombre enfants de chaque
type).

Par exemple, init(5, 3) peut renvoyer :

array([[[2], [1, [e, 2, 2]],
[f1, ey, [11],
(fs, 1, 2, el, [1, 0, 1], [2, 6]]], dtype=object)

2. Ecrire une fonction compte(L) qui étant donné une liste de 0, de 1 de 2 renvoie un tableau
numpy t tel que t[k] donne le nombre d'occurrences de k dans L. Ainsi t[RENARD] renvoie le
nombre de RENARDS présents dans la liste L.

Par exemple, si A est la matrice précédente, alors compte(A[2,0]) renvoie array([1., 2.,
I.1)

3. Ecrire une fonction compte_total(G) qui prend en entrée un terrain de jeu G et qui renvoie, a
I'instar de la question précédente, le nombre de POULES, de RENARDS et de VIPERES dans un
tableau. Ainsi, compte_total(A) renvoie array([5., 5., 5.]).

1. Avec une probabilité uniforme,

~
8

)17 Dunod.

© 20

Copyright

Travaux pratiques 207

4. Ecrire une fonction voisins(n, i, j) qui renvoie la liste des coordonnées des voisins (diago-
nale comprise, case comprise) de la case de coordonnées (i, j) dans un terrain de jeu de taille
n. Ainsi voisins(3, @, 2) renvoie [(0, 1), (0, 2), (1, 1), (1, 2)].

On considére que la probabilité qu'une POULE soit attrapée est égale au nombre de RENARDS
sur la case divisé par le nombre total d’enfants. On considére de méme que la probabilité pour
respectivement un RENARD ou une VIPERE d’étre attrapé est égale au nombre de VIPERES ou au
nombre de POULES divisé par le nombre total d’enfants. Ainsi, dans la case A[2, 0] il y a deux
RENARDS, une POULE et une VIPERE. Chacun des RENARDS a 25% de chance d’étre attrapé. La
POULE a 50% de chance de se faire attraper et la VIPERE 25%. On remarque qu’il est possible
que tout le monde se fasse attraper (et donc que tout le monde change de catégorie) avec une
probabilité d’environ 0.8%.

5. Ecrire une fonction attrape (L) qui prend en entrée une liste de POULES, RENARDS et VIPERES,
et qui tire au sort quels enfants sont attrapés puis qui change leur catégorie en conséquence.
La fonction attrape modifie L et renvoie None.

6. Ecrire une fonction attrape_total(G) qui prend en entrée un terrain de jeu G et qui applique
la fonction attrape sur chacune de ses cases.

On décompose le jeu en plusieurs étapes. A chaque étape, chaque enfant se déplace au hasard sur
une case voisine ! de la sienne. Ensuite, chaque enfant peut éventuellement étre attrapé.

7. Ecrire une fonction Etape(G) qui prend en entrée un terrain de jeu G et qui applique une étape
du jeu. Cette fonction modifie G et renvoie None.

8. Ecrire une fonction evolution(G, N) quiapplique N fois la fonction évolution au terrain de jeu
G et qui renvoie une liste de tableaux L. L[k] est le tableau du nombre de POULES, RENARDS
et VIPERES a |'étape k.

9. Simuler une partie de POULE-RENARD-VIPERE impliquant 100 enfants de chaque catégorie et
durant 200 étapes, puis tracer les résultats. On est censé obtenir un graphe qui ressemble a ¢a :

250

= poule
e renard

|| == vipere

1. Avec une probabilité uniforme. Il est possible que l'enfant reste sur la méme case, car a la question 4 on a
inclus dans les voisins d'une case la case elle-méme.

~
8

junod.

)17

c© 20

Copyright

208 Chapitre 5 Calcul numérique (deux dimensions)

[TP 5.1 — Imagerie (base)]

Avec le module PIL/Pillow Si I'on a installé la librairie PIL/Pillow. on peut facilement
récupérer sous forme d'un tableau array les données d'un fichier image.

solution avec scipy.misc (qui utilise PIL)
import scipy.misc as scm
A = scm.imread('Brehatsol.png')

solution directe avec PIL
from PIL import Image as im
photo = im.open('Brehotsol.png')
A = np.array(photo)

Examinons le tableau A

A.shape, A.dtype ({508, 375, 3), dtype('uints8'))

La tableau A est une matrice de points colorés appelés pixels. Chaque pixel est un triplet de
nombres entre 0 et 255 : un nombre pour chaque couleur primaire rouge, vert, bleu. Un tel
nombre est représentable sur 8 bits par un octet non signé (valeur de 0 a 255, np.uint8 en numpy).
Il y a donc 2%* = 16777216 couleurs possibles. On utilise ici la synthése additive des couleurs :

le triplet (0, 0, 0) correspond a un pixel noir alors qu'un pixel blane est donné par (255, 255, 255).
Un pixel pur rouge est codé par (255, 0, 0).

Remarque Certaines images sont codés avec un quadruplet, la quatrieme composante indiquant
le niveau de transparence du pixel.

On peut visualiser I'image simplement avec 'instruction imshow du module matplotlib.pyplot
(avec I'option interpolation='nearest' pour éviter un lissage sur 'image).

A[:250, :250] = (255, @, ©)

plt.imshow(A, interpolation='nearest’)
plt.axis('off’)
plt.show()

Pour sauver la nouvelle image a partir du tableau A.

A =255 - A
solution ovec scipy.misc (qui utilise PIL)
scm.imsave('Brehatsolmodif.png', A)

solution directe avec PIL
manimage = im.fromarray(A)
monimage.save('Brehatsolmodif.png')

A = scm.imread('Brehatsolmodif.png')
plt.imshow(A, interpolation='nearest')
plt.axis('off"')

plt.show()

4
9

Dunod.

2017

-

Copyright ©

Travaux pratiques 209

Rustine : si I’on ne dispose pas du module PIL

Si on ne dispose pas de la librairie PIL, on peut imiter son comportement en passant par la fonction
imread du module matplotlib.pyplot qui ne lit (sans PIL) que des fichiers image de type .png
mais convertit les niveaux de rouge, vert, blen nativement en octets non signés en flottant dans
[0,1].

La lecture d'un fichier image au format png puis 'affichage se fait suivant la syntaxe

image = plt.imread('Brehotsol.png')
plt.imshow(image)
plt.show()

import os
os.chdir(r'C:\monrepertoire') # exemple

¥ | Pour définir le répertoire courant
Si I'image est en couleurs, la fonction imread renvoie un array tridimensionnel (RGB) de flottants
entre 0 et 1; si l'image est en noir est blane, le tableau renvoyé est bidimensionnel toujours avec
des flottants dans [0, 1].
Voici deux fonctions que 'on va utiliser pour respectivement lire un fichier image et afficher une
image

def Litimage(nomf):
pour combler 1'absence de PIL
return np.uint8(plt.imread(nomf) + 255)

def affiche(imag, NB=False):

if NB:

plt.imshow(imag, cmap=plt.get_cmap(’'gray'},

vmin=@, vmax=255, interpolation='nearest’)

else:

plt.imshow(imag, interpolation='nearest')
plt.axis{'off")
plt.show()

On peut sauver son image avec la fonction savefig du module matplotlib.pyplot.

plt.savefig('mafigure.png')

En résumé, un tableau correspondant a une image en noir et blanc ou en couleurs peut étre créé
avec la fonction zeros de numpy

imageNB = np.zeros((a, b), dtype=np.uints)
imagecouleur = np.zeros((a, b, 3), dtype=np.uints8)

La valeur 0 correspondant a I'absence de couleur (ou de blanc) et la valeur 255 la valeur maximale
de lumiere (rouge, verte ou bleu ou encore blanche).
On joue avec les couleurs

0. Ouvrir et afficher un fichier image couleur (de type png) au choix.

1. Lire la taille (shape) et le type (dtype) des cellules du tableau array de I'image.

2. Discrétiser les couleurs de maniere a ce que les valeurs prises par R, G ou B soient des multiples
de 16 et afficher le résultat.

Dunod.

2017

-

Copyright ©

210 Chapitre 5 Calcul numérique (deux dimensions)

3. Transformer chacune des couleurs c de I'image par 255-c et afficher I'image obtenue.
4. Transformer le tableau de maniére a afficher seulement la couleur rouge.

On convertit en noir et blanc

5. On convertit une image couleur (R, G, B) en une image en niveau de gris en prenant une
moyenne pondérée des valeurs de R, G, B.
Nous nous contenterons de prendre la moyenne classique (voir sur wikipedia les vraies pon-
dérations employées, c’est assez compliqué...).
Attention & convertir les octets en int pour des calculs qui dépassent la valeur 255...

Contraste

6. Reprendre la photo noir et blanc que vous avez construite. Chaque pixel correspond & un niveau
de gris dans [0, 255]. Regarder le résultat obtenu en transformant le niveau de gris ¢ par ¢ ou

Ve que l'on « renormalisera » sur [0, 255].
Seuil(s)

7. Les tableaux (array) numpy autorisent les affectations par fancy indezing

T[T < 188] = @
T[T »>= 150] = 255

En modifiant le seuil (ici 100), regarder le résultat obtenu sur I'image en noir et blanc.
Faire de méme sur une image en couleurs.

Réduire I'image par D x D

8. A partir de I'image en noir et blanc construite avec un effet de seuil, construire une image dont
la longueur et la largeur est divisée par D = 16.

Filtre, convolution

9. Définir une fonction convolution(A, C) quiprend en entrée un tableau numpy (image avec des
cellules de type np.uint8) A = (a; ;), une matrice de convolution de taille impaire N = 2k +1,
C = (¢; ;) et qui renvoie un tablean B = A # C', produit de convolution des denx tableaux,

bi_.j = Z Q- [=k j+J—kCI T+
(r.J)efo,N—-1]

pour i et j pas trop prét du bord...
Voici la structure du programie :

def convolution(A, C):
hauteur, largeur = A.shape
B = np.zeros({hauteur, largeur), dtype=np.uint8)
N, P = C.shape
assert(N == P and N % 2 == 1) # por sécurité
k=(N=-1) // 2 #N =2kl
pass # o vous de jouer
return B

Tester la fonction convolution sur une image de votre choix avec les matrices suivantes

1 1 1 1 -1 -1 -1 -2 -1 0
Ci==-11 11 Ch = -1 9 -1 Cy = -1 0 1
1 1 1 -1 =1 =1 0 1 2

effet de flon effet de contours effet de relief

2017 Dunod.

-

Copyright ©

Travaux pratiques 211

Détection des contours/bords

10. Une technique simple de détection de bords d'un objet dans une image consiste a calculer la

valeur du changement an point C[1,j] par
Viijl=v/(Cli — 1,3] - C[i + 1, J])*+(Cl4,j — 1] — €[4, j + 1])?

On crée alors une image noir et blanc dont les pixels sont blanes (255) si V[i.j]<s et noir (0) si
V[i,j|=s ou s est une valeur de seuil & définir.
Ecrire une fonction bords(T, seuil) qui renvoie une tableau image de bords a partir du
tableau T et du seuil. Tester cette fonction sur I'image rochers.png.
On pourra éventuellement s'écarter de plus d'une unité du point (7, j) pour améliorer la re-
cherche du bord.
Histoire de réviser la notion de récursivité, remplir alors une partie blanche en gris sur 'image
obtenue précédemment.

Fast Fourier Transform (boite noire)
La transformée de Fourier bidimensionnelle permet de passer d'un tableau
(f(x, ¥))(z.w)e[0,a—1] x [0,5—1] & un tableau de fréquences (F'(u,v)) suivant les formules suivantes

Fu,0) = > f(a, y)e=2m(E+4)
{z,y)€[0,a—1] x[0,b—1]
w9 =5 et (3 +%)
flr.y) = b Z F(u,v)e

(wv)ef0,a—1]x[0.b—1]

Il existe un algorithme de transformée de Fourier rapide (FFT) qui permet d’effectuer & (abln(ab))
multiplications au lieu de &'(a?b?) (en pratique on fait une transformée rapide 1D de Fourier ligne
par ligne puis une transformée rapide 1D de la transformée ligne par ligne).

o Pour étudier cet algorithme, voir le T.P. 7.4 p. 307.

On va utiliser la transformée de Fourier rapide bidimensionnelle pour transformer les tableaux R,
G, ou B en tableaux de fréquence de méme taille. On considérera les fonctions sunivantes

def tofreq(img):
fft convertit 1l'imoge en tobleau de fréquences centre en (0,0)
f = np.fft.fft2(img)
on recentre le... centre
return np.fft.fftshift(f)

def fromfreq(f):
f_ishift = np.fft.ifftshift(f) # on décentre le centre
on inverse fourier
im = np.fft.ifft2(f_ishift)
on a des flottants complexes, on récupére le module
im = np.abs(im)
return np.uint8(im) # on convertit

11. A partir d'une image de votre choix, créer un filtre-bas, c¢'est-a-dire que vous ne gardez que
les fréquences proches de l'origine (centre du tablean) et vous reconstruisez une image avec
seulement ses basses fréquences.

212 Chapitre 5 Calcul numérique (deux dimensions)

[TP 5.2 — Le solitaire de Schelling}

Thomas Crombie Schelling est un économiste américain ayant obtenu le « prix de la Banque de
Suede en sciences économiques en mémoire d’Alfred Nobel », parfois abrégé en « prix Nobel
d’économie ». L'un de ses travaux porte sur la ségrégation urbaine (Chapitre 4 de [Sch06]). Il
a imaginé un modele trés simple, appelé « solitaire de Schelling » dont nous présentons ici une
variante.

On suppose que la population d'une ville est séparée en deux groupes totalement distincts, que
nous nommerons noirs et blancs. La ville est modélisée par un damier, chaque case est occupée par
un habitant (qui est soit noir, soit blane) on est vide. Nous appelons voisins d'un individu tous
les individus situées sur les cases adjacentes (diagonales comprises) ; ainsi, chaque individn a au
plus 8 voisins. Chaque habitant est supposé avoir une tolérance limitée vis-a-vis des personnes de
Iautre couleur, et devient mécontent lorsque les voisins de 'autre couleur représentent deux tiers
ou phis de I'ensemble de ses voisins. Par exemple, un habitant ayvant cing voisins est mécontent il
n’a pas au moins deux voisins de sa couleur.

Ce modele va évoluer en plusieurs tours. A chaque tour, un individu mécontent tiré au hasard
déménage. 1l se déplace sur un emplacement vide tiré au hasard (il peut alors devenir content ou
rester mécontent). On itére ce procédé jusqu’a obtenir une ville stable, ¢’est-a-dire une ville sans
mécontent. Enfin, on observe si il y a, dans la ville finale, des « ghettos » de couleur.

Modele informatique \

Informatiquement, le modeéle est constitué de 4 éléments :

e Une matrice carrée M qui représente la ville. C'est un ndarray a deux dimensions. Les
uns de la matrices représentent les blancs, les deux les noirs, et les zéros les emplace-
ments vides.

e Un entier n, qui est la taille de la matrice M (son nombre de colonnes et de lignes).

e Une liste LV des cases vides de M, c¢’est-a-dire des cases de M contenant un zéro.

e Une liste LM des cases contenant des habitants mécontents.

Une « case » est un couple d’entier i,3j o i et j sont deux entiers compris entre 0 inclus et n
exclu qui représentent respectivement le numéro de ligne et le numéro de colonne de la case.

- v

Dans toute la suite, M, n, LV et LM auront le sens décrit ci-dessus sans que ce soit a chaque fois
rappelé. Ces différentes valeurs doivent rester « cohérentes » entre elles, ¢’est pour cela que tout
au long du programme, on veille & préserver les invariants suivants :

(0) I n'y a pas de doublons (i.e., pas deux fois la méme valeur) dans LV, ni dans LM.
(1) Une case i,j est dans LV si et seulement si M[i, j] = 0.
(2) Une case est dans LM si et seulement si elle contient un individu mécontent.

Pour éviter des effets liés aux bords de la matrice, et pour simplifier la programmation en évitant &
avoir a considérer différents cas (selon que la case considérée est ou non sur un bord de la matrice),
nous utilisons le modele torique.

Travaux pratiques 213

FiGURE 1. Lorsqu'on sort de la matrice par la gauche, on se retrouve a droite.
Lorsqu’on sort de la matrice par le bas, on se retrouve en haut.

FiGUureE 2. Un damier sur un tore.

(Définition |

Dans le modéle torique, si on se déplace d'une case « hors » de la matrice, on se retrouve de
I'autre coté, comme illustré sur la figure 1. Ce modele est dit torique, car il revient a considérer
que notre damier a été dessiné sur un tore, voir figure 2.

Dans le modele torique, chaque case est voisine de huit antres cases, y compris les cases au bord du
damier. Attention toutefois, un habitant peut avoir moins de huits voisins, car des cases peuvent
étre inocupées.

Nous utilisons les bibliothéques suivantes.

import numpy as np

import matplotlib.pyplot as plt
import matplotlib.colors as col
Amport random

0. Ecrire une fonction rand_couple(n) qui étant donné un entier n, tire au hasard (uniformément)
un couple d’entiers chacun compris entre 0 inclus et n exclu.

)17 Dunod.

20

Copyright ©

214 Chapitre 5 Calcul numérique (deux dimensions)

1.

2,

Ecrire une fonction rand_pop (L) qui, étant donné une liste L, retire au hasard a L un élément
et renvoie sa valeur. La méthode L.pop (i) peut étre ici utile.

Ecrire une fonction quadrillage(n) qui étant donné un entier n, renvoie une matrice contenant
alternativement des uns et des deux comme il v a alternance de blancs et noirs sur un vrai
damier. Comme nous n'utilisons dans ce TP que 3 valeurs (0, 1 et 2), la fonction renvoie

un ndarray contenant des entiers 8 bits non signés (utiliser 'argument optionnel dtype =
np.uint8).

L’échelle des couleurs (gris, blanc, noir) est définie comme suit :

couleurs = col.ListedColormap(['grey', 'white', 'blaock'])

Pour afficher une matrice M, on utilise la commande suivante :

plt.imshow(M, interpolation='Nearest', cmap=couleurs, vmin=0)

3.

4,

Ecrire une fonction voisi nage(M, n, i, j) qui renvoie une liste (ou un triplet) de valeurs :
le nombre de 0, le nombre de 1 et le nombre de 2 dans les 8 cases voisines de la case i, j.
Ecrire une fonction pascontent(M, n, i, j) qui renvoie True si la case i, j contient un
individu mécontent et False sinon.

Pour initialiser une matrice, nous utiliserons le procédé suivant :

e Nous créons une matrice avec la fonction quadrillage.

e Nous tirons au hasard nbvides cases et les vidons (i.e. remplagons leur contenu par des
7E108).

e Nous remplissons au hasard nbnouv cases vides par des 1 ou des 2 (on tire au hasard avec
une probabibilité de 50%/50%).

. On suppose bien évidemment que nbvides est strictement plus grand que nbnouv. A

-, g
‘Q‘ la fin de l'initialisation, la matrice contient exactement nbvides - nbnouv cases vides

(pas une de plus, pas une de moins).

Ecrire une fonction init(n, nbvide, nbnouv) qui initialise une matrice. Cette fonction doit
renvoyer M, LV et LM,

Ecrire une fonction nouveaux_pas_contents(M, n, LM, i, j) qui met a jour LM apres que
M[i, j] a été modifié. On veillera a rétablir les invariants (2) et (0), c’est-a-dire éviter les
doublons dans LV et dans LM et faire en sorte que LM contienne exactement les individus mé-
contents. On veillera également au fait que la complexité ne dépende pas de n, en évitant tout
parcours de matrice inmtile,

Ecrire une fonction deplace(M, n, LV, LM) qui tire au hasard un mécontent et le déplace an
hasard dans une place vide, tout en maintenant les invariants.

Ecrire une fonction evolution(M, n, LV, LM, limit=1000) qui fait évoluer le modele jus-
qu’a ce que LM soit vide ou qu’on atteigne un nombre d’itérations égal a limit.

Simuler quelques villes avec les parameétres suivants : n = 10, nbvides = 20, nbnouv = 5.
Apres ces simulations, qu’observe-t-on ?

Simuler quelques villes avec les parameétres suivants : n = 100, nbvides = 2000, nbnouv =
500. Observe-t-on des ghettos, c’est-a-dire des zones habitées par une seule couleur?

4
9

Dunod.

2017

-

Copyright ©

Travaux pratiques 215

Si vous n'avez pas fait attention a la complexité, le cas n = 100 pourrait poser pro-
s bléme.

[TP 5.3 — Son et fichier .wav]

On utilisera les modules suivants

import scipy.jo.wavfile as w
import numpy as np
import matplotlib.pyplot as plt

Jouer un fichier son
On appelle directement un programme qui lit des fichiers média (encore faut-il connaitre son
nom...). On pourra télécharger sur la page dédiée a cet ouvrage le fichier musique.wav.

import os

os.system('vlic musigue.waov') # ou vlc.exe

On peut essayer d'utiliser PySide

from PySide.QtGui import QSound
print('son disponible :', QSound.isAvailable())

monrep = r"/home/marc/ECHANGE/IPT/IPTpreparationCRS/pyTD/-80-sons/"
QSound.play(monrep + "musigue.wav")

Lire un fichier son .wav

0. Voici comment procéder

son = open('musique.wav', 'br')
L = w.read(son)
son.close(}

La fonction w. read renvoie un couple (fréquence,T) ot T est un tableau numpy de type array.
La fréquence est exprimée en hertz ; pour un CD, la norme est de 44 100 Hz.

Le nombre de colonnes du tableau T donne le nombre de canaux, c’est-a-dire le nombre de
pistes (1 = mono, 2 = stéréo, 6 = 5.1, etc.)

Chaque ligne contient les valeurs (traduit en tension électrique quand on fait vibrer un haut-
parleur) de chacune des pistes. Les valeurs possibles dépendent de la résolution, pour un CD,
la norme est celle d'un entier signé 16 bits donc 65 536 valeurs de -32768 a 32767. On peut
récupérer cette résolution avec T.dtype.

Préciser les différentes caractéristiques du morceau contenu dans le fichier musique.wav.
Quelle est la durée du morceau?

Créer trois notes

1. On peut créer un ficher de type wav de la maniére suivante

Dunod.

2017

-

Copyright ©

216 Chapitre 5 Calcul numérique (deux dimensions)

def creefichier(nomfich, freq, X):

P

X est un tableau (n, nb de pistes) de type np.intlé par exemple
L

monson = gpen(nomfich, 'bw')
w.write(monson, freq, X)
monson.close()

Créer un fichier mestroisnotes.wav qui joue les trois notes do (hauteur medium, en dessous
du la de référence), mi, sol durant 2 secondes chacunes, a la fréquence 44100 Hz.

On utilisera des sinusoides pures et le la de référence sera pris a la fréquence 440 Hz.

On construira la gamme sachant que

e passer d'une octave a celle plus aigue revient a doubler la fréquence,

e les fréquences des douze demi-tons d'une octave suivent une progression géométrique.
Factoriser le code en définissant la fonction creenote(vol, freq, fregnote, duree) qui
renvoie un tableau array de type np.intl6 correspondant au son de la note de fréquence
fregnote pour une durée duree en secondes, a la fréquence d'échantillonnage freq, et au
volume vol (amplitude maximale de la sinusoide).

On va ajouter quelques harmoniques & notre note pour lui donner un timbre un peu plus inté-
ressant (en réalité la notion de timbre est une notion difficile dont la décomposition harmonique
continue n'est qu'une des composantes, il y a aussi l'attaque de la note, la modulation de la
fréquence, etc.).

Ecrire la fonction creenotetimbre (vol, freq, freqnote, duree, timbre=[]) quireprend
la fonction précédente mais ajoute les harmoniques supérieures (= les notes aux octaves supé-
rieures) avec un volume suivant la liste timbre.

Par exemple si timbre = [.5, .4, .3], on jouera la note de fréquence freqnote superposée
avec la note de fréquence double mais avec un volume de 50% de la note de base, superposée
avec la note de fréquence x4 avec un volume de 40% puis celle de fréquence x8 avec un volume
de 30%. On s’arrangera pour que la somme des volumes obtenus vale I'entrée initiale vol.
Puis reprendre 'exemple précédent avec le timbre

timbre = [{1 + (-1)**n) #* .15 * ,8+*n for n in range(l, 19)]

Lecture de notes

4,

On propose d'utiliser un dictionnaire, ¢’est-a-dire un ensemble de couples clé/valeur pour stocker
les fréquences des notes d'un morceau que 1'on veut jouer.

On peut voir un dictionnaire comme une liste Python o l'indice a été remplacé par une clé
qui, pour nous, sera une chaine de caracteres.

Voici un exemple de manipulations élémentaires.

mondico = {} # création d'un dico vide

mondicol 'maclé’'] = 5
mondico['outre’'] = -1

print (mondico)

{'macle': 5, 'autre': -1}

unod.

7

01

-

Copyright ©

Travaux pratiques 217

6.

for cle in mondico:
print{mondico[cle])

print{list(mondico))
5

=5

['maclé', 'autre']

e Créer un dictionnaire dico contenant

1@.‘5 Cléﬁ ’C', 'C#', 'd', lebn, |e| s tft’ P Fi! 3 |go, |g#n, |a| . Ibbl g tbl

de la gamme classique, ¢ = do, bien siir a = la et # = diéze, eb = la bémol, bb = si bémol
(cdefgab=doremifasolla si

et ayant pour valeurs les fréquences correspondantes pour un la a 440 Hz (dico['a'] = 440).

Lgammechromatique = ['c', 'c#', 'd', 'eb’',
Fel" i‘f!, I‘f‘#r, J‘g!l Ig#r, fal’ Jbbl’ ib?]

Ajouter ensuite dans dico l'octave inférieure (les notes étant notées c0, c#0, etc.) et 'octave
supérieure (les notes étant notées c2 c#2, ete.)

On ajoutera également le code pause pour un silence (prendre une fréquence de note égale a
0).

dico['pause'] = 0

Créer un fichier gammechromatique.wav jouant la gamme chromatique de l'octave classique
avec des notes de durée 0,3 secondes.

Extrait d’une fugue?

7.

Nous proposons de jouer un petit extrait d'une fugue trés connue.

Les notes sont codées en utilisant les notations de la liste Lgammechromatique et rajoutant une
octave inférieure (0) ou une octave supérieure (2). L'extrait est découpé en trois parties. On
prendra un tempo égal a 100, ¢’est-a-dire que 100 noires sont nécessaires pour une minute. La
premiére partie est jouée par la main gauche en double croche (= 1/4 de la durée d'une noire)
et la main droite ne joue rien. La deuxiéme partie est jouée a la double croche pour la main
droite et a la croche pour la main gauche. Enfin, la troisiéme et derniere partie est jouée a la
croche pour la main droite et a la double croche pour la main gauche.

On pourra télécharger le code suivant sur la page dédiée a cet ouvrage sur le site de Dunod :

Part2maindroite = '''pouse d2 c2 d2 bb d2 a d2
g d2 f# d2 g d2 a d2 bb d2 d d2 e d2 f# d2
g d2 f# d2 g d2 a d2'"!

Part3maindroite = '''bb d2 bb d2
eb2 g eb2 gc2ac2a

d2z f d2 f bb g bb g

c#2 e chi2 ea faf

gec#tge# Fdfd

e bbd e bba'''

Partimaingauche = '''pouse a g o fa e a
doctaodoea faodohbdachoa
doctadaea

Part2maingauche = '''f f# g ¢
bb® a@ bbo c d f#0 go ad
bb@ o0 bbe fa#e''!

4
9

Dunod.

2017

-

Copyright ©

218 Chapitre 5 Calcul numérique (deux dimensions)

Part3maingauche = '''g6 g g0 g d g d g
cebcebcebcebc fcfcfcf

bb@ d bb@ d bbo d bbe d bbo e bb@ e bbo e bbe e

00 ci a@ c# ab c# o c# fOo d fo d fFO d O d

e0 bbO e® bbe ed bbd e® bbO dO ad® dO aB d@ ol dO oo
e@ gb e@ g@ ed go ed go'''

Ecrire la fonction listenote(L) qui découpe les chaines de caractéres précédentes et renvoie
une liste de notes.
Indication Utiliser les méthodes .strip() et .split() des chaines de caracteres.

8. Ecrire le fichier son maindroite.wav qui joue la main droite (et bien sir écouter le résultat)
puis faire de méme pour la main gauche.

9. Enfin. écrire la fichier son extraitfuguebach.wav qui joue les deux mains en méme temps
(avec un effet stéréo).

[TP 5.4 — Diffusion thermique]

Ce TP est consacré i la résolution approchée de 'équation de la diffusion thermique.
Résolution en une dimension par la méthode des éléments finis; schéma explicite

On considérera dans cette partie 'évolution de la température en fonction du temps pour un fil
conducteur unidimensionnel. La température de ce fil sera donc une fonction de deux variables
T, %)
Le fil conducteur électrique est initialement dans son régime stationnaire. Il est brutalement exposé
a un refroidissement a 300 K a ses bornes.
On va s'intéresser dans un premier temps & l'équation de la diffusion thermique en une dimension
d’espace et sans source (D est appelé la diffusivité thermique du fil conducteur) :
or T
o L dx? (Eo)
on considérera la condition initiale suivante :
Yx, T(x,0) = 300 + 100x/L (Cy)
et la condition aux limites suivante :
YVt >0, T(0,t) =T(L,t) = 300 (C7)
La méthode des différences finies est une technique courante de recherche de solutions approchées
d’équations aux dérivées partielles qui consiste a résoudre un systéme de relations (schéma numé-
rique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des
autres.
Ainsi, on va chercher a discrétiser notre probleme. Nous ferons 'hypothese qui est celle utilisée
pour la méthode d’Euler de résolution d'une équation différentielle, a savoir que la dérivée d'une
fonction en z peut étre approchée par 'accroissement de cette fonction entre z et z + Az, o Az
désigne notre pas de discrétisation (pour la variable 2).
Les valeurs de la température a l'instant initial seront stockées dans une liste]’j-) de longueur N. Il
y aura donc N — 1 pas de discrétisation en espace. Les valeurs de la température a U'instant { = At
seront stockées dans une liste T;-l, qui aura également comme longueur N. De méme, les valeurs de
la température & I'instant t = nAt seront stockées dans une liste 77"

0. Ecrire une fonction PasEspace(L, N) quirenvoie le pas d’espace Ax en fonction de la longueur
L sur laquelle on résout le probléme et du nombre N de points souhaités.

4
9

Dunod.

2017

-

Copyright ©

Travaux pratiques 219

Le pas de temps At ne peut pas étre choisi indépendamment du pas d’espace, pour des questions de
stabilité de schéma numérique. On supposera donc que 'on dispose d’'une variable globale Delta_t
qui stocke la valeur de At. Aux fins d’applications munériques, la valeur de Delta_t sera précisée
dans les questions ol I'on en aura besoin.

1. Montrer que 1'on a dans le cadre de 'approximation des différences finies :
§r I°—1y
j J

-~

ot At

et que :
PT Ty =207 + T,
oa? - Ax?
2. En déduire la relation de récurrence suivante pour j #0et j # N — 1 :
T}'“ =T +e(TiL, - 2T +T}Y,) , avec ¢ = iﬁf

3. Comment s’écrit la relation de récurrence précédente lorsque j = 0 et lorsque j = N —17

4. Ecrire une fonction initialisation(L, N) qui renvoie la liste comprenant les valeurs de TJ_?
respectant la condition initiale (C) de 'équation aux dérivées partielles (Ep).

5. Ecrire une fonction transition(T, c, N, Tbord=300) qui prend en argument ¢ et une liste
T, contenant les valeurs de 7" pour un n quelconque et renvoie la liste constituée des éléments
de T”+1.

6. Ecrire une suite de commandes qui permet d’avoir une représentation graphique du profil en
température toutes les 6 secondes.

On prendra AT =0,01s; N=101: L=0,pmet D=1,2x 107* m2.s~L.
La température sera calculée jusqu’a un temps de 10 minutes.

Résolution en deux dimensions

On s’intéresse désormais au probleme de la diffusion thermique sans source avec deux dimensions
d’espace. Celle-ci a pour équation :
or D Pr PT
ot (W " Tﬁ)
7. En s’inspirant de la résolution de ce probléme en une dimension, montrer que le schéma suivant
permet de résoudre numeériquement cette équation :
T =T 4 AtD [T‘H"’j miH Rkt SR S Rkt 2Y
ot e Ax? Ayy?
Nous nous intéressons désormais au probléme de la diffusion thermique autour d'une source rec-
tangulaire de chaleur aprés son extinction. On résout ainsi le probléme précédent sur le domaine
d’espace carré [—0,2;0,2] x [-0,2;0,2].
Nous prendrons une discrétisation de 101 pas selon 'axe des abscisses et de 101 pas selon 'axe des
ordonnées. La température a un instant sera ainsi codée dans une matrice 101 x 101,
On suppose & I'instant initial que la température vaut 400 K si (z,y) € [-0,1;0, 1] x [-0,12;0, 12]
et vaut 300 K sinon.

(E2)

8. Ecrire une fonction Initial2d() qui renvoie la matrice contenant les températures initiales.
On commencera par chercher a quelle condition sur les lignes et les colonnes les coefficients de
cette matrice valent 400 et & quelle condition ils valent 300.

9. Ecrire une fonction transition(T, D, Delta_t, Delta_x, Delta_y) qui renvoie la tem-
pérature apres une itération du schéma numérique. Nous supposerons que nous avons une
température de 300 K & la frontiere de la matrice.

Dunod.

2017

-

Copyright ©

220 Chapitre 5 Calcul numérique (deux dimensions)

10. Ecrire alors une fonction température(n) qui renvoie la température apres n secondes. On
prendra D = 0.00012 et Delta_t = 0.01 (on pourra observer que les solutions sont instables
numériquement si on choisit Delta_t = 0.1 dans la question suivante).

11. Nous désirons faire une représentation en couleurs de la solution obtenue apres un temps donné.
Pour cela, commencer par créer des tableaux numpy XX et YY des abscisses et ordonnées,
équiréparties en 101 points entre -0,2 et 0,2.

12. On donne le code suivant :

T = np.array(temperature(50))

plt.figure()

p = plt.pcolormesh (XX, YY, T,shading='flot")
plt.colorbar(p)

plt.axis('image’')

plt.show()}

Le tester et 'adapter pour avoir une représentation graphique toutes les secondes pendant une
période de 10 secondes dans une nouvelle figure.

Résolution implicite en une dimension

Le schéma explicite (2) ne converge que si le pas de temps At est suffisamment faible par rapport
an pas d’espace Ax. Ceci est caractérisé en informatique par le nombre de Courant (et la condition

de Courant-Friedrichs-Lewy).

vAt
On définit €, = —— avec ;
Ar

e v : vitesse dans la direction x
e At : intervalle temporel
e Ar : intervalle dimensionnel
Pratiquement, si Cy est inférieur 4 un seuil, on observe une instabilité de calcul, erreur d’approxi-
mation dans des calculs numériques. grandissant rapidement au fur et & mesure des calculs. Si la
dimension de la grille est inférieure a la distance parcourue dans l'intervalle de pas de temps par
I'onde la plus rapide que permet 1'équation, l'erreur grandit et envahit la solution physique.
Si l'on souhaite effectuer un calcul pour un temps physique long, beaucoup d'itérations seront
nécessaires et le temps de caleul sera trés long. C'est pourquoi on préfere d’autres types de schémas
appelés schémas implicites.
Dans cette partie, la dérivée partielle seconde par rapport a = de la température apparaissant dans
I"équation (1) est évaluée au point d’abscisse x; et a I'instant k+1 :
9T - 0*T _
w(l,) -] W(ig,fﬁnl)

-

et la dérivée partielle par rapport a t est évaluée an point d’abscisse x; et a 'instant k :
ar aT

ot (m,t) ~= E(mg,tk)

13. Montrer que I'équation obtenue de la diffusion thermique peut étre mise sous la forme
TF = —cTF + (14 20)TF - cﬂfll ; avec c¢= %

Cette équation est appelée schéma implicite car la température a l'instant {5 est exprimée en
fonction de la température a l'instant ultérieur.

14. Mettre ce schéma sous forme matricielle.

15. Effectuer l'inversion du systeme obtenu a chaque itération en utilisant la fonction solve du
sous-module numpy . Llinalg puis réaliser une représentation graphique avec les mémes données
que précédemment.

Copyright © 2017 Dunod.

Corrections des exercices 221

[Gorrig‘é‘ exo 5.-0]

On remarque que le tableau n’a que des uns sur la premiere ligne et la premiere colonne et qu’on

peut alors remplir le tableau grace a la relation
[ligne, col] = tab[ligne-1, col] + tab[ligne, col-1]

ce qui donne

def nbchemin(n):
on ploce des 1 sur les bords supérieurs et gauches du tableau
tab = np.zeros((n + 1, n + 1), dtype=int)
initialisation élégante
tab[:, @] = 1
tab[e, :] = 1
for ligne in range(l, n + 1):
for col in range(l, n + 1):
tab[ligne, col] = tab[ligne - 1, col] + tab[ligne, col - 1]
return tab

T = nbchemin(8)
print(T)
print(T[=1; -1])

[1 1 1 1 1 1 1 1 1]
[1 2 3 4 5 6 7 8 9]
[1 3 6 10 15 21 28 36 45]
[1 4 10 20 35 56 84 120 165]
[1 5 15 35 70 126 218 330 495]
[1 o 21 56 126 252 462 792 1287]
[1 7 28 84 210 462 924 1716 3003]
[1 8 36 120 330 792 1716 3432 6435]
[1 9 45 165 495 1287 3003 6435 12870]]

12870

On remarque que sur les diagonales figurent les différentes combinaisons de Pascal, ce qui n’est pas

du tout un hasard!

(Corrigé exo 5.1

0. En notant A la matrice du systéme, on calecule A"V,

def puiss(A, n):
p = A.shape[@]
B = np.eye(p)
for i in range(n):
B = B.dot(A)
return B

A = np.array([[7, 4, 5],
[3l 9, l]!
(e, 6, 411)

V = np.array([.5, .5, 8])

© 2017 Dunod.

.

(i

Copyright

222 Chapitre 5 Calcul numérique (deux dimensions)

A2 = puiss(l / 16 * A, 2018)
res = A2.dot(V)

print(res) # 0K

[e.6 0.2 0.2]

1. Pour calculer A", nous avons utilisé n — 1 multiplications matricielles. On peut utiliser 'expo-
nentiation rapide pour avoir un cout en O(logn).

mieux pour n grond 1'exponentiation rapide
def puissrap(A, n):
if n == 0:
return np.eye(A.shape[8])
elif n % 2 == 0:
B = puissrap(A, n [/ 2)
return B.dot(B)
else:
B = puissrap(A, n [/ 2)
return B.dot(B).dot(A)

2. Avec le deuxiéme systeme, les coefficients de la matrices deviennent trop grands.

A2 = puiss(A, 2018)
res = A2.dot(V)
print(res) # ¢a ne marche pos... Les coefficients explosent

[man nan nan]

I

ju—

vaut mieux calculer les vecteurs consécutivement.

Deuxiéme essoi
def puiss2(A, V, n):
V1l = A.dot(V)
for 1 in range(n):
V1 = A.dot(V)
return V1

res = puiss2(A, V, 2018)
print(res)

[5.5 2.8 3.1

| Corrigé exo 5.2

import numpy as np

def decomplLU(A®):
n = AQ.shape[0]

L
A

np.eye(n)
AB.copy ()

od .

17 Dunc

)

o

™

Copyright ©

Corrections des exercices 223

for k in range(n):
for 4 in range(k + 1, n):
a = A[i, k] / ALk, k]
L[, k] a
Ald,] = A[i,] - a * A[Kk, :]

return L, A
1. Mise en pratique

A = np.array([[2, -1, @],
[_ll 2! _1]:
[e, -1, 2]], dtype=float)

L, U = decompLU(A)

print('L =%, L)

print(‘U =", U)

L= [[1 a. 8.]
[2 1. 0.]
[8.5 1. 1]

u=[[1. 2, 1.]
[& =2 =1.]
[o. 0. 0.5]]

Li= EE K. 0. 0.]
[-8.5 1. 8. 1
[e- -0.66666667 1. 1]

U= [[2 = 8. 1
[1.5 ¢ &%]
[&. e. 1.33333333]]

print(A - L.dot(U)) # petit test

[[@ 0. e.]
(8. @ ©.]
[@ 8. ©.]]
C’est bon.

2. On calcule X en résolvant LXy =Y puis UX = X qui sont deux systémes triangulaires.

[Corrigé €exo0 5.3]

0. On définit la matrice A et on liste des vecteurs propres.

A = pp.array([[1, 2, 3],
(2, 4, 1],
3, 1, ejl)

import numpy.linalg as lg

vp, P = 1g.eig(A)
print(max{vp), vp)

5.97344343324 [5.97344343 -2.58959802 1.61615459]

La matrice est diagonalisable avec des valeurs propres toutes distinctes.

Copyright © 2017 Dunod.

224 Chapitre 5 Calcul numérique (deux dimensions)

print(lg.inv(P).dot(A).dot(F))

[[5.97344343e+00 1.99840144e-15 -2.22044605e-16]
[-2,55351296e-15 -2.58959862e+00 -1.55431223e-15]
[4.9960036le-16 -2.22044685e-15 1.61615459e+80]]

Une base de vecteurs propres approchés est donnée par les colonnes de la matrice P.

array([[-0.53771649, -0.66787703, ©.51458843],
[-0.74499437, ©.090859996, -0.66088957],
[-0.39477127, ©.73873671, ©.54628172]])

1. On définit la fonction normalise qui normalise un vecteur puis la fonction vecteurpuiss.

def normcar(X):
return X.dot(X)

def normalise(X):
return 1 / np.sqrt(normcar(X)) * X

def vecteurpuiss(A, X, eps):
¥ = normalise(A.dot(X))
while normcar(Y - X) > eps**2 and normcar(Y + X) > eps**2:

X=Y
Y = normalise(A.dot(Y))
return Y

2. On teste la fonction :

% = np.array([1, 1, 1])
¥ = vecteurpuiss(A, X, le-9)
print(yY)

[8.5377164% 0.74499437 0.39477127]

Apparemment, il s'agit bien d'un vecteur propre de la plus grande valeur propre.

Z = A.dot(Y)
print(Z / ¥Y)

[5.97344344 5,97344343 5,97344343]

3. On suit la définition de 1'énoncé.

I = np.eye(3)

¥L = Y.reshape(l, 3)
YC = Y.reshape((3, 1))
M = YC.dot(YL)

B = (I - M).dot(A).dot(I — M)

unod.

7

01

-

Copyright ©

Corrections des exercices

225

On a récupéré un vecteur propre de la deuxiéme plus grande valeur propre (en valeur absolue).

X = np.array([1, 1, 1])

¥ = vecteurpuiss(B, X, le-9)
print(y)
Z = B.dot(Y)

print(Z / ¥Y)

[-0.66787703 ©.09059996 @.73873671]
[-2.58959802 -2.58959803 -2.58959802]

[Corrigé exo 5.4]

0.

[['gobelin', @, 3], ['hobgobelin', 1, 3], ['gobelours', 2, 4],
['groupe', 3, 4], ['groupe', 4, None]]

1. Il suffit de parcourir la liste et de compter le nombre des descendants de 1.

def nb_fils(A, i):
nb = @
for E in A:
if E[2] == i:
nb += 1
return nb

2. On cherche dans la liste tous les groupes dont la troisieme composante est None.

def orphelins(A):
L= []
for k in range(len(A)):
if A[k][2] == None:
L.append(k)
return L

3. On crée le nouvel ancétre, et on modifie 'ancétre des groupes numéros i et j. On ne vérifie pas

que i et j sont des groupes orphelins car on a supposé qu’ils le sont.

def nouvel_ancetre(A, i, j):

k = len(A)
A[i]1[2] = k
Alil[2] = k

A.append(["groupe”, k, Nonel)

4. On commence par introduire une fonction dist lisant dans la demi-matrice la distance entre

deux groupes.

def dist(D, i, k):
if d<k : return D[k][4]
elif i==k : return @
else : return D[i][k]

Copyright © 2017 Dunod.

226 Chapitre 5 Calcul numérique (deux dimensions)

def distance(D, i, j):
L= []
for k in range(len(D}):
L.append(min(dist(D, i, k), dist(D, j, k)))
return L

5. On teste tous les couples possibles.

def plus_proche(A, D):
L = orphelins(A)
i0, jo = L[1], L[e]
for i in range(len(L)):
for j in range(i):
if DLL[i]1][L[3]] < DLie][jel:
ig, jo =4, 3J
return i@, j@

def regroupement(A, D):
i, j = plus_proche(A, D)
L = distance(D, i, j)
nouvel_ancetre(A, i, j)
D.append(L)

7. Tant qu’il reste au moins deux orphelins, on regroupe deux orphelins.

def arbre_philogenetique(L, D):
A = [[L[k], k, None] for k in range(len(L))]
¥ = orphelins(A)
while len(X) != 1:
regroupement (A, D)
X = orphelins(A)
return A

[Corrigé exo 5.5]

0. On obtient facilement :

def f(x, y):
return 1 / 2 % x*%2 + T [/ 2 % y**x2 x (1 + .4 * np.arctan(np.sin(x)))

def grad(f, %, vy, h):

nne gradient unitaire """

gx = (f(x + h, y) - f(x - h, y)) / (2 + h)
gy = (f(x, y + h) = f(x, y = h)} / (2 *x h)

nn = nNp.sqri(gxx+2 + gy**2)
return gx / nn, gy / nn

Xg = np.linspace(-18, 10, 11)
¥g = np.linspace(-6, 7, 11)
k= le-3

ax = plt.axes()

Corrections des exercices 227

Copyright © 2017 Dunod.

for x in Xg:
for y in Yg:
a, b = grad(f, x, y, h)
ax.arrow(x, y, a, b, head_width=0.5, head_length=1, fc='k', ec="k')

plt.contour (XX, YY, ZZ, levels=[(k / 4)#*+3 for k in range(20)])
plt.show()

h = le-3

alpha = 2 # pos constant
%0, y9 = 3, 5

Lx = [x0]

Ly = [ye]

d pas constant olpha
X, ¥y = x0, yo
for i in range(29):

gx, gy = grad(f, x, y, h)

X = x - alpha » gx

y =y - alpha * gy

Lx.append(x)

Ly.append(y)
plt.plot(Lx, Ly, 'go-', label='constant')
plt.contour (XX, YY, ZZ, levels=[(k / 4)+*3 for k in range(28)])
plt.show()

Copyright © 2017 Dunod.

228 Chapitre 5 Calcul numérique (deux dimensions)

2.

a pas optimal

def meilleuralpha(f, x, y, gx, gy, eps, cptmax=50860):
alpha = eps
F = f(x, y)
fin = False
cpt = 1
while not fin and cpt < cptmax:
Fnext = f(x - alpha * gx, y - alpha * gy)
if F < Fnext:
fin = True
else:
F = Fnext

alpha += eps

cpt += 1
if cpt == cptmax:

print("nombre maximum d'itérations dépassé")
return alpha

Lxopt = [x0]
Lyopt = [y@]
X, ¥ = x@, yo
eps = 6.01

for 1 dn range(29):
gx, gy = grad(f, x, y, h)
alpha = meilleuralpha(f, =, y, gx, gy, eps)
x = x - alpha * gx
y =y - alpha » gy
Lxopt.append(x)
Lyopt.append(y)

plt.plot(Lx, Ly, 'go-', label='constant')
plt.plot(Lxopt, Lyopt, ‘ro-', label='optimal')

tracé des lignes de niveau

¥ = np.linspace(-18, 106, 18681)
¥ = np.linspace(-6, 7, 1081)
XX, YY = np.meshgrid(X, ¥)

ZZ = (XX, YY)

plt.contour (XX, YY, ZZ, levels=[(k / 4)**3 for k in range(20)])

plt.legend()
plt.colorbar()
plt.show()

-
|0

e—e constant |- o~ P
o+ gptimal \\ . \\._ &4 00
, ~— |{42ss

— 2100
\ 1562
800
338
100
012

[CITTTITTITTITTT

ood

Copyright © 2017 Dunod.

Corrections des exercices 229

[Corrigé exo 5.6]

Py

olgorithme de Floyd-Steinberg

8 couleurs...
rr

#ox X 7/16
3/16 5/16 1/16

def convoct(a):

rrd

a est un int, on renvoie un np.uint8
rer
if a < 0:
return np.uint8(0)
if a > 255
return np.uint8(255)

return np.uint8(a)

def floyd(T, seuil):
R = T.copy()
a, b = R.shape
for i dn range(a - 1):
for j in range(l, b - 1):
if R[i, j1 »= seuil:
erreur = R[i, j] - 255
R[i, j]l = 255
else:
erreur = R[i, j]
RIi, 31 =0
R[i, 3 + 1] = convoct(R[1, j + 1] + erreur * 7 // 18)
R{i + 1, j = 1] = convoct(R[i + 1, j - 1] + erreur * 3 // 16)
R[i + 1, j] = convoct(R[i + 1, j] + erreur = 5 [/ 16)
R[i + 1, j + 1] = convoct(R[i + 1, j + 1] + erreur * 1 // 1B)

return R[za - 1, 1:h - 1]

[Corr.igé exo 5.7]

Voici le code de la fonction photomaton.

def photomaton(P):
a, b, n = P.shape

aa
bb
a
b

T = np.zeros((a, b, 3), dtype=np.uint8)

for 1 in range(aa):
for j in range(bb):
Thi, 31 = P[2%1, 2%j]
TLi + aa, j] = PL[2»i+l, 2*j]

Copyright © 2017 Dunod.

230 Chapitre 5 Calcul numérique (deux dimensions)

Tl{i, j + bb] = P[2%i, 2+j+1]
T[i + aa, j + bb] = P[2*1+1, 24j+1]
return T

Voici un exemple

P1 = litimage('imoge256.png')
T1 = Pl.copy()
affiche(T1)

T1 = photomaton(T1}
affiche(T1)

[Corrigé exo 5.8]

0. On définit :

def niveau_gris(M):
n, p, @ = np.shape(M)
P = np.zeros((n, p))
for i in range(n):
for j in range(p):
P[i][j] = int(®.299 * M[i][j][@] *+ @.587 +
M[AJ[3101] + @.114 = M[i1[31(2])

return P

def stegano(image, chaineaencoder):
U = [ord(x) for x in chaineaencoder] + [128]
code = '!
for n in U:
codage = "'
for i in range(8):
codage += str(n // (2%x(7 = i)})
n %= 2%%(7 - 1)
code += codage
newim = np.zeros(np.shape(im))
k=8
for i din range(np.shapel0]):
for j in range(np.shape[1]):
if k < len(code):
newim[i][j] = 2 * im[i][j] // 2 + int(code[k])

Copyright © 2017 Dunod.

Corrections des exercices 231

k4= 1
else: R
newim[1] [_:_I] = im[i]1[]
return newim '

def unstegano(image):
T =[]
for i in range(image.shape(@]):
for j in range(image.shape[1]):
T.append(image[1(j] % 2)
ch = v

for i in range(len(T) // 8):
s=0
for j in range(8):
s += T[8 » i + J] » 2%%(7 - j)
ch += chr(s) '
return ch.split{chr(128))[0]

from PIL import Image

def decode(fichier):
f = Image.open(fichier)
im = np.array(f)
return unstegano(im)

Copyright © 2017 Dunod.

232 Chapitre 5 Calcul numérique (deux dimensions)

LCorrigé- TP 5.2J

0. On peut utiliser randrange(n) ou randint(0, n-1).

def rand_couple(n):
i = random.randrange(n)
j = random.randrange(n)
return i, j

def rand_pop(L):
return L.pop(random.randrange(len(L)))

2. Le contenu d’'une case varie selon que i et j sont de méme parité ou de parités différentes. Tl
suffit done de s'intéresser a la parité de i+j.

def quadrillage(n):
M = np.zeros((n, n), dtype=np.uint8)
for j in range(n):
for i in range(n):
M[i, §] = 1+(i+j)%2
return M

3. Comme nous sommes dans un modele torique, chaque case est adjacente a 8 autres cases. Nous
n’avons donc pas besoin de faire des cas particuliers selon que la case est au milieu ou au bord
de la matrice; a la place, nous utilisons le modulo (%).

V est une liste de trois compteurs. V[@] compte le nombre de zéros, V(1] le nombre de uns, et
V[2] le nombre de deux.

Pour éviter d’avoir un 1if, on compte comme voisin la case elle-méme (et on corrige a la fin).

def voisinage(M, n, i, j):
V = np.zeros(3, dtype=np.uint8)
for i2 in range(i - 1, i + 2):
for j2 in range(j - 1, j + 2):
VIM[i2 % n, j2 % n]] += 1 # On ajoute 1 au compteur de la bonne couleur
V[M[i, j]] -= 1 # On retire la case (i,j) qui a été comptée en trop
return V

4. Pour qu'un individu soit mécontent, il faut que le nombre des individus de sa couleur
(v[M[i, j1]1) représente un tiers ou moins de ses voisins. Pour obtenir le nombre de voisins,
on fait la somme des voisins des deux couleurs.

Bien évidemment, on n’oublie pas de tester que la case est non vide (il n'y a pas de mécontent
si la case est vide).

def pas_content(M, n, i, j):
v = voisinage(M, n, i, i)
return M[i, j]!=0 and v[M[i, j1] <= (v[1l+v([2]1)//3

5. La matrice est initialisée en trois temps. D’abord on fait appel & quadrillage.

Dunod.

2017

-

Copyright ©

Corrections des TP 233

Ensuite, on tire an hasard des positions dans la matrice (en utilisant rand_couples), et on
vide la case si elle n’a pas déja été vidée. Si la case a déja été vidée, on recommence.

Enfin, on choisit au hasard dans la liste des positions vides des cases qu'on remplit an hasard
avec randint. La fonction randint est piégeuse, cf. I'avertissement page 23.

def init_matrice(n, nbvides, nbnouv):
M = quadrillage(n)
vi=0
Lv = []
while v < nbvides:
i, j = rand_couple(n)
if M[i, j]!= @:
M[i, j1 =@
v o= 1
LV.append((i, j))
for k in range(nbnouv):
i, j = rand_pop(LV)
M[i, j] = random.randint(1l, 2)
LM = []
for i din range(n):
for j in range(n):
if pas_content(M, n, i, j):
LM.append((i,3))
return M, LV, LM

6. Pour mettre a jour la liste des mécontents, il faut considérer deux cas : les contents devenus
mécontents et les mécontents devenus contents.

def nouveaux_pas_contents(M, n, LM, i, j):
for i@ in range(i - 1, i + 2):
for j@ in range(j - 1, j + 2):

i@ = 90 % n

jé = je % n

if pas_content(M, n, 10, jO) and (i0, jO) not in LM:
LM.append((i@, j@))

elif pas_content(M, n, i@, j8) == False and (i@, j@) in LM:
LM.remove((i0,j8))

7. Comme deux cases de la matrices sont modifiées, deux appels & nouveaux_pas_contents sont
effectués.

i1, j1 = rand_pop(LM)
92592 rand_pop(LV)
if M[i2, j2] 1= @:
print{M[i2, j2])
M[42, j2]1 = M[i1, j1]
M[i1, j1] = @
LV.append((i1, j1))
nouveaux_pas_contents(M, n, LM, i2, j2)
nouveaux_pas_contents(M, n, LM, i1, jl1)

def deplace(M, n, LV, LM):

8. On fait évoluer la matrice jusqu’a ce qu’on obtienne une ville stable (sans mécontents) ou qu’on
atteigne le nombre maximal d’itérations'.

def evolution(M, n, LV, LM, limit=1860):
k =@
while(LM!= [] and k < Llimit):
deplace(M, n, LV, LM}

1. Cette technique combinant un critére de convergence 4 une limite au nombre d’itérations est classique.

4

© 2017 Dunot

/right

LoD

234 Chapitre 5 Calcul numérique (deux dimensions)

k += 1
print (k)
return k!= Llimit

9. En utilisant les parameétres de 1'énoncé, on obtient des résultats de ce type.

On observe la formation de ghettos blancs (des zones blanches/grises) et des ghettos noirs (des
zones noires/grises) mais aussi des parties de la ville qui sont restées a 1'état initial (en damier).
10. On observe la méme chose avec des villes plus grandes.

(Corrigé TP 5.3

0. On obtient :

freq, T = L

print('Fréguence (hertz):', freq)

n, nbcanaux = T.shape

typ = T.dtype

print('Durée (en seconde): {:.2f}'.format(n / freq))

if nbcanaux == 2:)
print('stéréo') Fréquence (hertz): 44100

elif nbcanaux == 1: Durée (en seconde): 49.81
print{ 'mono') SFereo . .

else: résolution: intlé
print{'multicanaux, nombre =', nbcanaux) durée en secondes: 49.81

print('résolution:', typ)
duree = n / freg

print('durée en secondes: {:.2f}'.format(duree))

© 2017 Dunod.

Copyright

Corrections des TP 235

t = np.linspace(®, 2, 2 * freq + 1) # sur 2 secondes
£t =t[:-1]

freqson = 4480 # la

la = fregson # lo @ 440 Hz

demiton = 2#%(1 / 12)

sol = la / demiton#*+2

do = la / demiton**9

doa = 2 + do

mi = la / demiton**5

X = 32700 * np.cos(t * 2 * np.pi * do)
X1 = np.array(X, dtype=np.intl6)

X = 32700 * np.cos(t * 2 * np.pi * mi)
X2 = np.array(X, dtype=np.intl6)

X = 32708 * np.cos(t * 2 + np.pi * sol)
X3 = np.array(X, dtype=np,intl6)
X = npp.concatenate((X1, X2, X3))

creefichier('mestroisnotes.wav', freg, X)

def creenote(vol, freq, freqnote, duree):
t = np.arange(@, duree, 1 / freq) # sur duree secondes

X = np.,intlé(vol * np.cos(t *#+ 2 * np.pi * fregnote))
return X
Lnote = [do, mi, sol, doa, sol, mi, do]

duree = .5
vol = 32708 / 8

X = pp.array([], dtype=np.intl6)

for fregnote in Lnote:
Y = creenote(vol, freq, freqnote, duree)
X = np.concatenate((X, Y))

creefichier('domisol.wav', freq, X)

#os.system('vlc testson.wav')

def creenotetimbre(vol, freq, fregnote, duree, timbre=[]):

t = np.arange(0, duree, 1 / freq) # sur duree secondes
N =1+ sum{timbre)

vol = vol / N

X = creenote(vol, freg, fregnote, duree)

for amp in timbre:

fregnote = fregnote + 2
X = X + creenote(vol * amp, freq, fregnote, duree)

return X

Copyright © 2017 Dunod.

236 Chapitre 5 Calcul numérique (deux dimensions)

X = np.array([], dtype=np.intl6)
timbre = [(1 + (-1)**n) * .15 * .8+*n for n 1in range(l, 19)]

for fregnote in Lnote:
¥ = creenotetimbre(vol, freq, fregnote, duree, timbre=timbre)
X = np.concatenate((X, Y))

creefichier('domisoltimbre.wav', freq, X)

fregson = 448 # la

la = freqson # lo @ 440 Hz
demiton = 2#*(1 [/ 12)

do = la / demiton**9

dico = {}

note = do

for 1 in Lgammechromatique:
dico[l] = note
note = note * demiton

for d in Lgammechromatique:
dico[d + '2'] = dico[d] = 2

for d in Lgammechromatique:
dicold + "@'] = dico[d] / 2

dico['pouse'] = @

Gamme chromatique
duree = .3

X = np.array([], dtype=np.intl6)

for note in Lgammechromatique:
¥ = creenotetimbre(vol, freq, dico[note], duree, timbre=timbre)}
X = np.concatenate((X, Y))

creefichier('gammechromatique.wav', freq, X)

#os.system('vlc gommechromatique.wav')

def listenote(L):
L = L.split{"in")}
Note = []
for t din L:
Note.extend(t.strip().split{’ '))
return Note

Note2maindroite = listenote(Part2maindroite)
Note3maindroite = listenote(Part3maindroite)

Notelmaingauche = listencote(Fartimaingauche)
Note2maingauche = listenote(Part2maingauche)

2017 Dunod.

t ©

Copyrigh

Corrections des TP

237

Note3maingauche = listenote(Part3maingauche)

pas de main droite pour la premiére partie
Notelmaindroite = ['paouse'] * len(Notelmaingauche)

8. Pour la main droite

main droite

dblecroche = .15
duree = dblecroche

X = np.array([], dtype=np.intl6)

for note in NoteZmaindroite:
¥ = creencotetimbre(vol, freq, dico[note], duree, timbre=timbre)
X = np.concatenate((X, Y))

duree *= 2 # on passe aux croches

for note in Note3maindroite:
¥ = creencotetimbre(vol, freq, dico[note], duree, timbre=timbre)
X = np.concatenate((X, Y))

creefichier('moindroite.wav', freq, X)

#os.system('vlc maoindroite.wav')

et pour la main gauche

moin gauche
duree = dblecroche

X2 = np.array([], dtype=np.intl6)

for note in Notelmaingauche:
Y = creencotetimbre(vol, freq, dico[note], duree, timbre=timbre)
X2 = np.concatenate((X2, Y))

duree *= 2

for note in Note2maingauche:
¥ = creenotetimbre(vol, freq, dico[note], duree, timbre=timbre)
X2 = np.concatenate((X2, Y))

duree f= 2

for note +in Note3maingauche:
Y = creenctetimbre(vol, freq, dicol[note], duree, timbre=timbre)
X2 = np.concatenate((X2, Y))

creefichier('moingauche.wav', freq, X2)

#os.system('vle maingauche.wav')

9. On réutilise les listes X et X2 précédentes.

Xp = np.array([], dtype=np.intle)
duree = dblecroche

for note in Notelmaindroite:
¥ = creenotetimbre(vol, freg, dico[note], duree, timbre=timbre)

Xp = np.concatenate((Xp, Y))

X = np.concatenate((Xp, X))

XX np.vstack((X, X2))
KX = XX.T

Copyright © 2017 Dunod.

238 Chapitre 5 Calcul numérique (deux dimensions)

creefichier('extroitfuguebach.wav', freq, XX)

os.system('vlic extraitfuguebach.wav')

(Corrigé TP 5.4]

0.

def PasEspace(lL, N):
return L / (N - 1)

1. C’est immédiat pour la dérivée partielle d’ordre 1, pour I'ordre 2, on peut par exemple écrire

or h? 9T
Te+tht)=T(x,t) Th—+ ———5+ o h?
() (=) dr 2 O h-;u()
Dot _
BQT() T(x+ h,t) + T(x — h,t) — 2T (x, t) 1 (1)
= kL)L) = [0
ox2*"’ h? h—0
2. On remplace les dérivées partielles par leur approximation discrétisée.
3. Les conditions aux limites imposent Vn, Ty = Th_, =
4,
import numpy as np
def initialisation(L, N):
X = np.linspace(®, L, N)
return (388 + 180 » x / L for x in X]
5.
def transition(T, c, N, Thord=300):
U= [@ for i in range(N)]
U[e] = Tbord
U[N - 1] = Tbhord
for j in range(l, N - 1):
U[§] = TLj) ===l -=1)~ 2 * T[3] =L =+ 1])
return U
6.

import matplotlib.pyplot as plt

Delta_t = 0.81

N = 101
L=0.5
D= 1.2 * 10%*(-4)

pas = PasEspace(L, N)
c = Delta_t * D / pas**2

plt.figure("diffusion thermique")

initialisation(L, N)

[k * pas for k din range(N)]
Nt = int(168 * 60 / Delta_t)
sixmin = int(6 / Delta_t)

-
[

for i in range(Nt):
if 1 % sixmin == @8:

2017 Dunod.

c)

t
L

Copyrigh

Corrections des TP

239

plt.plot(Z, T)
T = transition(T, c)
plt.show()

7. 1l suffit encore de remplacer les dérivées partielles par leurs approximations.
8.

def Initialad():
M = [[388. for i in range(l01l)] for j 1in range(101)]
for i in range(25, 76): # 0.1 / pas puis + 0.2 / pos
for j in range(20, 81): # (0.2 - 0.12) / pos, pas = 0.004
M[i][j] = 480

return M
9.
def transition(T, D, Delta_t, Delta_x, Delta_y):
M = [[308. for i in range(101)] for j in range(101)]
for i in range(l, 108):
for j in range(l, 10@):
M[AI03] = TOA103] + N
Delta_t * O « ((T[i + 1][j] - 2 = TLil[3] +
TLi - 1][3]) / Delta_x#»+2 +
(TOil0 + 1] - 2 » T[A1[3] + TO1[J - 11) / Delta_yw#2)
return M
10.
def temperature(n):
D, Delta_t, Delta_x, Delta_y = 0.00012, ©.061, 0.004, 0.004
T = Initial2d()
for t din range(n):
T = transition(T, D, Delta_t, Delta_x, Delta_y)
return T
11.
XX = np.linspace(-0.2, 0.2, 161)
¥YY = np.linspace(-0.2, 0.2, 181)
12.

animation
D, Delta_t, Delta_x, Delta_y = 08.00012, 0.81, 0.004, 0.004

def tempsuiv(T):
return transition(T, D, Delta_t, Delta_x, Delta_y)

XX = np.linspace(-0.2, 0.
YY = np.linspace(-06.2, 0,
T = Initial2d()

2, 161)
2, 101)

plt.figure()

Nt = int(l / Delta_t)
for i in range(1® » Nt):
T = np.array(tempsuiv(T))
if 9 % Nt == 0:
plt.clf()
plt.pcolormesh(XX, ¥Y, T, shading='flat')
#plt.imshow(T, interpolation='nearest')

Copyright © 2017 Dunod.

240 Chapitre 5 Calcul numérique (deux dimensions)

plt.axis('image')
plt.colorbar()
plt.pause(.@61)

plt.pause(160)
13. +1 +1 +1 +1
Tt T n ; I 1
LT -1 Lo -0 +T5G
At (Ax)?

d’ol pour j € [1,N — 2],
T} = =T + (14 2e) TP — eI
14. ce qui s’écrit avec le bord,
T 4+ V" = j'}T”-'—]

avec M € My_2(R) et V € My_2.1(R),

1+2 —c (0) . .
_ 13 7
—c 1+2¢ . 0 T3
M = ; i 5 TV = : S :
n
0 Th_2
. . —C T 1
N-1 N-=-2
(0) —¢ 14+2¢
15.
Nx = 181 # nombre de points x for i in range(Nx-2):
Nt = 5881 # nombre points t M[i, i] = 1 + 2*c
dx = 1/(Nx-1) # pas de x
dt = .1/(Nt-1) # pas de t V = np.zeros(Nx-2)
vie] = 3ee
L=20.5 Vv[-1] = 300
D = 1.2%1@x*(-4) # Tfn, @] = 308 et T[n, Nx-1] = 306
X = np.linspace(®, L, Nx) for n in range(Nt-1):
T = np.zeros((Nt, Nx)) Tln+l, 1:Nx=1] = np.linalg.solve(M,
Tln, 1:Nx-1] + c*V)
TL:,] = 300 # on passe 400 étopes de temps
T[e, :] = 300 + 180 » X / L if n % 460 == 399:

plt.plot(X, T[n, :1, lw=2)
c = dt / dxx*2

plt.plot(X, T[@, 1, 'k--', lw=5)
M = np.zeros{(Nx-2, Nx-2))

for i din range(Nx-3): plt.xlabel('x', fontsize=26)
M[3, 1*1] = -¢ plt.ylabel('T', fontsize=26, rotation=0)
M[i+1, 1] = -¢ plt.show()

Lnoda.

17 Di

CHAPITRE

Bases de données

L’essentiel du cours

B 0 Représentation de bases de données

Lorsque les données a représenter d'un probléme deviennent complexes et volumineuses, les struc-
tures de données étudiées précédemment (listes et listes de listes principalement) deviennent in-
suffisantes.

Une solution alternative est de regrouper les données dans une ou plusieurs tables liées entre elles.
Ce type de structure s’appelle modéle relationnel.

Un domaine est un ensemble de valeurs que peut prendre une donnée (par exemple des
entiers, des chaines de caractéres, comme la notion de type en Python).
Un attribut (ou champ) (une colonne en SQL) est un couple nom:domaine.

On appelle schéma relationnel, un ensemble ordonné d’attributs de la forme S=(A,,....A,,)
ou les A; sont des attributs deux a deux distincts.
Exemple : S=(nom: str, prenom: str, age: int).

Une relation (une table SQL mais sans doublons de lignes) associée a un schéma relationnel
S=(Aj,...,A,,) est un ensemble fini de n-uplets de dom(A;) x ... x dom(A,)
On note R(S) la relation R pour dire qu'elle est associée au schéma relationnel S.

Les éléments de R sont appelés les valeurs ou les enregistrements de la relation., Leur
nombre (fini) est appelé le cardinal de R et est noté # R.
Exemple : R(S)={('Dupont', 'Albert', 45),('Gaborit', 'René', 37)}.

Considérons I'exemple du stockage des informations et de la gestion d'un forum Internet. On peut
distinguer plusieurs entités (les utilisateurs, les messages...) qui seront représentées chacune par
une relation. Ainsi, les utilisateurs seront représentés par une relation, dont le schéma relationnel
pourrait étre en simplifiant a I'extréme :

utilisateurs ((Pseudonyme,str),(Date_inscription,date), (Mode_de_Passe,str),(email,str))

On souhaite également garder en mémoire 'ensemble des messages écrits sur le forum. Un message
est évidemment rédigé par un seul utilisatenr. Cet utilisateur va apparaitre dans tout enregistre-
ment dans la nouvelle table, aussi il est intéressant de pouvoir identifier les utilisateurs de maniére
aisée et efficace : la notion de clé primaire vient répondre a cette problématique.

~
8

Junod.

)17

c© 20

Copyright

242 Chapitre 6 Bases de données

Soit R(S) une relation pour un schéma relationnel S et K C S.

On note que t;(A) désigne le uplet partiel construit & partir de #; € R ne contenant que les
éléments des domaines contenus dans K.

On dit que K est une clé pour R si pour toutes valeurs t;,12 € R telles que £ (K) = t2(K)
alors t| = t5 (unicité de 'enregistrement).

Lorsque K est réduit & un seul attribut, on dit que I'on a une clé primaire.

ﬁ Une clé primaire est un attribut qui permet de caractériser un enregistrement. En
termes plus intuitifs, une clé permet d’identifier de maniére unique un enregistrement.

Si on admet quun pseudonyme donné ne peut étre utilisé que par un seul utilisateur, cet attribut
peut jouer le role de clé primaire. De méme, si on impose quun seul compte peut étre ouvert a
I'aide d'une adresse email, cet attribut peut également jouer le role de clé primaire.

Dans la table messages, il n'y a pas d’attribut qui peut jouer le role de clé primaire naturelle.
Il ¥y a néanmoins une solution simple et qui est utilisée pour toutes les relations dans la plupart
des bases de données : il s’agit de prendre une clé primaire artificielle, qui est un nombre (souvent
appelé id) et qui est anto-incrémenté par le gestionnaire de base de données.

Si on ne souhaite pas imposer de contraintes sur I'usage de pseudonymes et d’emails, cette solution
peut également étre adoptée dans la premiére table.

Les schémas relationnels deviennent alors :

utilisateurs

(id_usr,int), (Pseudonyme,str), (Date_inscription,date), (Mode_de_Passe,str), (email,str))
messages

((id_msg,int), (Date,date), (Heure,heure), (id_u,int), (Contenu,str))

Un attribut dans une relation R’(S’) qui sert a caractériser un enregistrement dans une relation
R(S) et qui est une clé primaire de R est appelé clé étrangere dans la relation R

Ainsi id_user est une clé primaire dans la relation Utilisateurs et est une clé étrangere dans la
table Messages.

Il existe des techniques spécifiques pour modéliser des bases de données. Celles-ci doivent obéir a
certaines spécifications, décrites par les formes normales pour éviter les anomalies de lecture, la
redondance des données et la contre-performance.
Sans entrer dans les détails des formes normales, citons quelques principes élémentaires :
¢ principe d’atomicité : ancune subdivision de I'information initiale n’apporte une information
supplémentaire ou complémentaire ;
e constance dans le temps : ainsi, on ne crée pas un attribut age mais un attribut date de
naissance ;
e pas de lien fonctionnel dans la clé : un attribut non clé ne dépend pas d'une partie de la clé.
Pour modéliser par exemple les parcours des éleves d'un lycée en cours d’année, on créera trois
tables, une table éléve qui contiendra leurs informations fixes, une table classes qui contiendra

Junod.

© 2017

pyrignt

Co

L’essentiel du cours 243

les noms et années des classes, et une table eleveclasse qui contiendra des clés dans les tables
précédentes et qui permettra de déterminer par quelles classes sont passés tels éléves.

B 1 Algebre relationnelle

L’algeébre relationnelle donne un cadre mathématique rigoureux aux opérations que l'on peut ef-
fectuer sur une ou plusieurs relations.

Les opérations sur une seule table vont avoir comme role d’éliminer certaines lignes on certaines
colonnes, ainsi que de changer le nom des colonnes.

Soit R(S) une relation de schéma S et X C S. On appelle projection de R selon X la relation
Ix(R) = {e(X) | e € R}

ot ¢(X), comme précédemment, désigne le uplet partiel construit a partir de e ne contenant

que les éléments des domaines contenus dans X.

. La projection a comme effet d’éliminer certaines colonnes dans une table. Le schéma
de IIx(R) est donc X. Une projection ne contient pas forcément autant de valeurs que
la relation de départ : en effet, plusieurs valeurs peuvent étre fusionnées.

Soit R(S) une relation de schéma S. Soit £ une expression logique sur S, c’est-a-dire une
expression composée d’attributs de S et de valeurs dans le domaine de ces attributs, dont la
valeur pour chaque enregistrement est soit vraie soit fausse.

On appelle sélection de R selon E la relation :
or(R) = {e € R | E est vraie pour e}

“
.

‘Q‘ La sélection a comme effet d’éliminer certaines lignes dans une table. og(R) a le méme
schéma que R.

Q Si on souhaite éliminer a la fois des lignes et des colonnes d'une table, on compose une
sélection par une projection. Le langage SQL permet de le faire en une seule commande.

I1 est possible, souvent pour des raisons pratiques afin de lever une ambiguité, de renommer un
attribut d'une relation a I'aide d'un opérateur, dit de renommage. La relation obtenue apres avoir
effectué cette opération est alors identique & la relation de départ, mis a part le schéma qui a été
changé pour présenter le nouveau nom :

Soit S=(A;.....,A,) un schéma, i € [1,n] et B un attribut tel que dom(B)=dom(A;).

On note Sa,ep = (A1,....,Ai=1.B,A41,...,A,,) le schéma déduit de S en renommant A; en
B.

Les opérations peuvent se faire sur deux tables ayant un méme schéma relationnel. Elles sont alors
a rapprocher des opérations ensemblistes nsuelles :

ht © 2017 Dunod.

Copyright

244 Chapitre 6 Bases de données

Soit Ry (S) et Rz(S) deux relations de méme schéma S.

On appelle union de R, et de Ry la relation de schéma S dont 1'ensemble des valeurs est
constitué des valeurs comprises dans Ry ou dans Ry. Cette relation est notée Ry U Ro.

On appelle intersection de R, et de Ry la relation de schéma S dont 'ensemble des valeurs
est constitué des valeurs comprises dans R; et dans Rs. Cette relation est notée Ry M Ra.

On appelle différence de R; et de Rs la relation de schéma S dont 'ensemble des valeurs est
constitué des valeurs comprises dans R; mais pas dans Rs. Cette relation est notée Ry ~ Rs.

Soit R(S) et R'(S’) deux relations de schémas disjoints, leur produit cartésien noté R x R’
est :

((vls"':vfuv,l1'":“'"”1) | (V].!"'! V“) € R et (v111"'1vj?n) € R’)

Son schéma est S W S’ = (A},....A,,,B1,....B,,) o1 S =(A,.....A,) et S* = (By.....B,p).

R x R’ contient donc 'ensemble des possibilités d'association entre une valeur de R et une valeur
de R’ La notation S & S’ rappelle qu’il ne s’agit pas seulement de prendre I'inion des schémas
mais aussi de s’assurer qu'ils soient disjoints. Notons qu'il est toujours possible de s’y ramener par
I'intermédiaire d'un renommage des attributs présents dans les deux schémas.

Ona:# (R xR)=#Rx #R

[Définition |
Soit R(S) et R'(S’) deux relations de schémas respectifs S et S' disjoints (pour simplifier).
Soit K une expression logique sur S et S’.
La jointure symétrique selon K de R et R’ notée R <t R’ est la relation de schéma S U S’
définie par

Rxg R = G‘K{R X R’)

Cette construction permet de construire les tables « de travail » & partir des tables de référence
reliant les clés étrangeres aux clés primaires entre tables. Par exemple, si I'on veut construire la
table des messages avec toutes les informations de 'utilisateur sur une méme ligne, on utilisera la
Jointure

utilisateurs Putilisateurs.id_usr=messages.id_u MESSages

Les avantages sont :
e on évite les doublons (si par exemple il fallait corriger 'orthographe d'un utilisateur),
e on utilise une taille réduite de mémoire de stockage.

~
8

JUNOL

© 2017 |

Copyright

L’essentiel du cours 245

Un peu plus exotique et moins utile :

Définition
La division cartésienne R + R’ est la plus grande relation, vis-a-vis de l'inclusion, telle
qu’il existe une relation R” vérifiant :

(R+R)xR]JUR”=R (ou[R’ x (R+R)] UR” =R) et

(R+R)xR]JNR"=2 (ou[R"x (R+R)]NR"=2)
Considérons un exemple :
Plat
Typ(se Vi;inde Type Acc&mpagnement Vianda
tea ‘rites -

Steak Salade Typg t:‘fnde
Poulet Frites 5 - 'rl :
Poulet Légumes M(‘Ju e.t
Magret Frites s
Magret Légumes

La division cartésienne de Plat par Viande a comme schéma relationnel Type Accompagnement.
Elle est constituée dun seul enregistrement : Frites. En effet 'ensemble des associations de viandes
avec Irites existe dans la table Plat, mais ce n'est pas le cas pour Salade ou Légumes.

Il est enfin utile de pouvoir effectuer des opérations sur certaines colonnes dune relation. C'est
possible a I'aide des opérateurs d’agrégation qui portent sur toute une table, ou sur des groupes
constitués a partir d'une table suivant des critéres logiques.
e les fonctions min et max qui retournent respectivement le minimum et le maximum des
valeurs d'une colonne (contenant des valeurs numériques)
e la fonction somme qui permet de sommer les valeurs d'une colonne (contenant des valeurs
numeériques),
e la fonction moyenne qui permet de calculer la moyenne des valeurs d'une colonne (conte-
nant des valeurs numériques),
¢ la fonction de comptage qui retourne le nombre de valeurs d'une colonne.

B 2 Requétes et langage SQL

Le langage SQL permet d’interroger les bases de données en traduisant les opération de
T'algebre relationnelle par des mots-clés simples. C'est un langage normalisé, mais chaque
SGBD agrémente ce langage d’autres mots-clés non définis dans la norme.

ey Le langage SQL est insensible a la casse, néanmoins il est coutumier d’écrire les mots-
AL clés en majuscule, ce que nous ferons dans cet ouvrage. Il en est de méme pour les

noms de tables, de colonnes, de valeurs. etc.

~
8

)17 Dunod.

20

Copyright ©

246 Chapitre 6 Bases de données

Pour illustrer cette partie de chapitre, nous utiliserons une base de données fictive d'un vendeur
de véhicules d’'occasion. Cette base de données est constituée de quatre tables détaillées ci-dessous
et organisée de maniere & éviter les redondances d'information selon les régles énoncées ci-dessous.

vehicules

id desig idmod couleur puiss annee km prix idvend idach

modeles marques clients
id nom idmarque id nom id nom prenom tel email

. -

. . .

L’instruction de base pour linterrogation d'une base de données en SQL est constituée du
mot-clé SELECT suivi du mot-clé FROM. Il s’agit de I'opération de projection sur les colonnes
définies apres SELECT sur la table définies aprés FROM.

SELECT nom, prenom
FROM client;

/* Cette instruction renvoie la liste de tous clients de lo taoble clients
en donnant les informations stockées dans les colonnes nom et prenom »/

:o: On peut placer le caractére * apres le mot-clé SELECT afin de projeter toutes les colonnes
® des tables indiquées aprés FROM.
SELECT =*

FROM client
/* Renvoie toutes les colonnes de la table clients. =/

‘Q’ L'utilisation du caractére * est déconseillée car elle est gourmande en espace de sto-
ckage. Il est préférable de ne projeter que les colonnes utiles.

& En SQL, une requéte doit en principe se terminer par un point-virgule « ; »

‘Q‘ On peut utiliser le mot-clé DISTINCT immédiatement apres SELECT pour n’afficher que
les valeurs différentes du résultat de la projection.

SELECT DISTINCT annee
FROM vehicules;
/* Renvoie lao liste des annees de faobrication des vehicules présents en n'affichant gu'une fois chague annee +/

Q L'opérateur SELECT en SQL représente l'opérateur de projection II de l'algebre rela-
tionnelle. C’est I'opérateur WHERE qui réalise la sélection o.

2017 Dunod.

-

Copyright ©

L’essentiel du cours 247

La réalisation de la sélection se fait avec le mot-clé WHERE apres lequel on place une expression
logique permettant de sélectionner les lignes a garder.

SELECT desig

FROM vehicules

WHERE annee > (YEAR(CURDATE()) = 5) AND km < 500080 ;

/* Cette instruction renvoie la liste de tous les véhicules de la table vehicules ayaont moins de 5 ans
et affichont moins de 50 000 km ou compteur, en donnant uniquement leur désignotion. #*/

. Ici nous avons utilisé les fonctions YEAR et CURDATE qui font partie des nombreuses
. fonctions SQL que nous ne pouvons détailler dans ce livre. L'avantage de cette syntaxe

est de ne pas avoir a modifier la requéte tous les ans.

Une liste non exhaustive des expressions logiques utilisables en SQL est donnée dans le tablean

suivant :
Opérateurs désignation
< <=, 5= L, = comparaison classique
AND, OR, NOT opérateurs booléens
IN est dans une liste de valeurs définies
LIKE permet de rechercher les valeurs contenant une chaine de caractéres

Voici un exemple d'utilisation de quelques-uns de ces opérateurs.

SELECT desig

FROM vehicules

WHERE (couleur LIKE "rouge%") -- sélectionne les différentes variontes de rouge
AND (prix < 500@) -- sélectionne les véhicules codtont moins de 5800 euros

Si l'on veut récupérer les informations venant de plusieurs tables, il faut réaliser un produit

cartésien, celui-ci est obtenu en insérant une virgule « , » entre les tables listées apres le
mot-clé FROM.

On peut donner un alias aux différentes tables pour simplifier la notation en utilisant le mot-
clé AS (facultatif) suivi du nom d’alias. Cela est utile lorsqu’on fait appel a plusieurs tables
avec des noms de colonnes identiques. Il est alors indispensable de préciser dans le SELECT la
table dans laquelle se trouve la colonne en question.

SELECT v.desig, mo.nom, ma.nom -- la toble avant la colonne & l'oide de l'alias
FROM vehicules AS v, modeles AS mo, marques AS ma -- définition des olios ;
/* Les virgules entre les noms de taoble réalisent le produit cortésien entre ces différentes tables. =/

~
8

Junod.

)17

c© 20

Copyright

248 Chapitre 6 Bases de données

: 7 i Pour la définition de I'alias, le mot-clé AS est facultatif : table AS alias est équivalent
s a table alias.
Définition

La jointure est équivalente a la sélection du produit cartésien de deux tables suivant une
colonne donnée. Elle est obtenue par la séquence suivante :

tablel JOIN table2 ON tablel.coll = table2.col2

On sélectionne donc uniquement les occurrences identiques de tablel.coll et tablel.coll.

SELECT v.desig, mo.nom, ma.nom

FROM vehicules AS v

JOIN modeles AS mo ON v.idmod = mo.id -- jointure entre modele et vehicules

JOIN margues AS ma ON mo.idmarque = ma.id == jointure entre modele et morgue;

/* On récupére lo liste des vehicules disponibles avec le nom du modéle et de la marque. */

Pour clarifier le résultat, le renommage est utile. Il consiste & donner un nouveau nom aux
colonnes du résultat de la requéte. On utilise le mot-clé AS dans le SELECT.

SELECT v.desig AS "nom du vehicule", mo.nom AS "modéle"”, ma.nom AS "margue"

FROM vehicules AS v

JOIN modeles AS mo ON v.idmod = mo.id -- jointure entre modele et vehicules

JOIN margues AS ma ON mo.idmarque = ma.id -- jointure entre modele et marque;

/* Les attributs de sortie ont & présent les noms "nom du vehicule"”, "modele" et "marque". =/

Les opérateurs d’agrégation min, max. somme, moyenne et comptage sont respectivement
utilisables avec les mots-clés MIN, MAX, SUM, AVG et COUNT. On les place apreés le SELECT.

SELECT COUNT(*)

FROM modeles ;

/* Renvoie le nombre de tuples de lo toble modeles,
donc le nombre de modéles de véhicules différents »/

Les opérateurs d’agrégation sont surtout intéressants lorsqu’ils sont utilisés avec la commande
GROUP BY. Cette derniére construit des groupes qui sont ensuite traduits par une ligne en sortie
construite a partir du ou des opérateurs d’agrégation. On la place toujours apres la clause
WHERE.

SELECT couleur, COUNT(*)
FROM Vehicule
GROUP BY couleur ;

/* Renvoie un tableau dont la premiére colonne est lo couleur et lo seconde le nombre de véhicules correspondant.

Junod.

)17

_\
C) ZU

=

pyrignt

Co

L’essentiel du cours 249

On peut spécifier de n’afficher que les lignes qui répondent & un critére résultant d'un caleul
d’agrégation avec la clause HAVING placée aprés le GROUP BY. Elle a une action similaire an
WHERE mais filtre en fonction des opérations d’agrégation.

SELECT couleur, COUNT(*)

FROM Vehicule

GROUP BY couleur

HAVING COUNT(*)} <= 10;

/* Renvoie uniquement les couleurs qui correspondent & moins de 16 véhicules +/

Une sous-requéte, requéte imbriquée ou requéte en cascade consiste a exécuter une requéte
a l'intérieur d'une autre requéte. On 'utilise souvent a l'intérieur d'une clause WHERE ou de
HAVING pour remplacer une ou plusieurs constantes.

SELECT nom
FROM modele
WHERE +id = (
SELECT idmod
FROM vehicules
ORDER BY km DESC
LIMIT 1) ;
/* Renvoie le nom du véhicule ayant le plus fort kilométroge =/

‘O‘ On notera l'utilisation de ORDER BY qui permet de trier les résultats, ici en ordre
L - »

H décroissant (DESC) de la colonne km.

- L -

-Q~ LIMIT n permet de ne renvoyer que les n premieres valeurs.

SELECT «

FROM modele
WHERE +id IN (
SELECT idmod
FROM vehicules
WHERE annee > 2010) ;
/* Renvoie les lignes complétes de la table modele en ne sélectionnant
que les modéles des wvéhicules immatriculés aoprés 2010 »/

B 3 Architecture matérielle

L’architecture client-serveur est la base de l'organisation des bases de données. Le serveur
contient la base de données et le client envoie la requéte au serveur.

250 Chapitre 6 Bases de données

‘Q‘ On a généralement plusieurs (beaucoup) clients qui accedent & un méme serveur via
WA . % _
un réseau (Internet, intranet, etc.)

client

serveur

i

» ¢

client

client

client

| Définition
Une architecture plus élaborée est I'architecture 3-tiers (tiers signifie niveaux), aussi appelée
architecture 3 couches. Entre le client et le serveur s’intercale une couche qui permet d’alléger
la couche client qui se limite a I'aspect visuel. On obtient donc :

e la couche présentation qui se limite a l'interface graphique;

e la conche métier. C'est elle qui exécute les requétes SQL a partir des informations que

I'utilisateur a fournies dans la couche présentation ;
¢ la couche accés aux données qui contient le SGBD et les données.

Q Le module sqlite3 de Python correspond a la deuxiéme couche, la couche métier (Voir
TP 6.1 p. 263).

-

interface

couche métier ;
Base de données

Copyright © 2017 Dunod.

Les méthodes a maitriser 251

Vérifier que les informations utiles sont stockées dans la méme table ;
Lister les colonnes a afficher (projection, SELECT);
Déterminer le critére de sélection (WHERE) ;

Choisir la maniére d’afficher les résultats (AS, ORDER BY, etc.)

Exemple d’application

Ecrire une requéte permettant de donner la désignation, le kilométrage et le prix
des véhicules a vendre ayant moins de 2 ans, en les triant par prix croissant

? vehicules

id desig idmod couleur puiss annee km prix idvend idach

La table vehicules contient toutes ces informations. On a besoin d’afficher les colonnes desi-
i gnation, priz et kilometrage que 'on renomme pour plus de cohérence :

SELECT designation AS "Désignotion", prix, kilometrage AS "Kilométroge"
FROM vehicules

WHERE annee > (YEAR(CURDATE()) - 2)

) ORDER BY kilometrage

e Lister les tables contenant les informations nécessaires ;

o Lister les colonnes & afficher (projection, SELECT);
o Identifier les clés étrangeres permettant de faire le lien entre les tables pour réaliser la
jointure entre les tables.

Exemple d’application

Ecrire une requéte permettant de donner le nombre de véhicules en vente de chaque
marque

: marques modeles

4 id nom id nom idmarque

. vehicules

id desig idmod couleur puiss annee km prix idvend idach

Les tables vehicules, modeles et marques sont nécessaires car il n'y a pas de relation directe
entre les tables vehicules et marques. La clé étrangére idmodele dans la table vehicules
permet de désigner le modéle, la clé idmarque de la table modele permet de désigner la marque.

2017 Dunoc

252 Chapitre 6 Bases de données

g SELECT mar.nom AS "Margue", COUNT(=*)

5 FROM vehicules AS v

g JOIN modeles AS mod ON v.idmodele = mod.id

a JOIN marque AS mar ON mod.-idmarque = mar.id

4 GROUP BY mar.nom

H

r—[Mé_thﬁdel 6.2 : Ecrire une requéte SQL comp éte] D

e Lister les colonnes a renvoyer et celles qu’il faut renommer ;

o SELECT [DISTINCT] attributs [AS nouveaunom], fonctions d’agrégation
Lister les tables dans lesquelles se trouvent ces données ;

o FROM liste de tables
identifier les colonnes qui permettent de réaliser la jointure entre les tables (clés étran-
geres)

o [JOIN table ON conditionjointure]
e Identifier la condition de sélection ;

o WHERE conditions
Identifier les éventuelles régles de regroupement avec les conditions d’affichage ;

o [GROUP BY liste d’attributs HAVING conditions]

e Identifier I'éventuel ordre de tri du résultat de la requéte
o [ORDER BY liste d'attributs [ASC ou DESC]]

Les éléments entre [] sont optionnels.
L’ordre des mots-clés de la requéte SQL n’est pas imposé par la norme mais souvent par le
SGBD. Il est toutefois recommandé d'utiliser 'ordre présenté ci-dessus.

Exemple d’application

Ecrire une requéte permettant de donner le kilométrage moyen des véhicules de
chaque marque en vente seulement s’il est supérieur a 50 000 km et trier le résultat
par ordre alphabétique de marque

marques modeles

id nom id nom idmarque

id desig idmod couleur puiss annee km prix idvend idach

SELECT DISTINCT mar.nom AS '"Marque’, AVG(km) AS "kilométrage moyen"
FROM vehicules AS v

JOIN modeles AS mod ON v.idmodele = mod.id

JOIN marque AS mar ON mod.idmarque = mar.id

GROUP BY mar.nom

HAVING AVG(km) > 58000

ORDER BY mar.nom ASC

:
$
$
$
E
$
é
g vehicules
3
2
:
:
4
$
2
?
'}

Copyright © 2017 Dunod.

Vrai/Faux sur le cours 253

. On considere la base de données contenant les informations (simplifiées
au-dela du raisonnable!) relatives aux opérations bancaires réalisées par
une entreprise s’adressant a des particuliers. Le schéma relationnel des
tables est fourni :

Table Clients (id_client, nom, prenom)
Table Comptes (id_client, numero_compte)
Table Transaction (numero_compte, date heure, montant)

Un attribut peut jouer le role de clé primaire dans la table Transaction

1. id_client est une clé primaire dans la table Clients

id_ client est une clé primaire dans la table Comptes

. L'opération suivante en algébre relationnelle :

Hnumero_compte (O-'I‘ra,nsa.c't.ion (mont ant> 7800))

donne les numéros de compte qui ont effectué des transactions strictement
supérieures a 7800 €.

. La syntaxe suivante permet d’afficher 'ensemble des noms et prénoms des

clients :

FROM Clients IMPORT nom, prenom;

Une double jointure est nécessaire si I'on souhaite récupérer les noms des
clients ayant effectué des transactions le 01/01/2017 a minuit.

. Une jointure est nécessaire pour trouver le montant total des transactions

d'un compte donné.

] Vrai

[Vrai
[0 Vrai
0 Vrai

[J Vrai

[J Vrai

[0 Vrai

O Faux

[0 Faux
[J Faux
[Faux

[0 Faux

O Faux

] Faux

Copyright © 2017 Dunod.

254 Chapitre 6 Bases de données

. Non, aucun attribut de cette table ne caractérise une transaction de ma-
niere unique. Un méme compte aura évidemment plusieurs transactions,
des comptes différents peuvent effectuer une transaction au méme mo-
ment et le montant d'une transaction ne la caractérise bien évidemment

pas.

. Cet attribut permet effectivement de caractériser de maniére unique un

client.

. Non, un client peut posséder plusieurs comptes, il sera donc impossible

de caractériser un enregistrement de maniére unique a l'aide de ce seul
attribut dans cette table. En revanche, id client est une clé étrangere
dans cette table, car c¢’est la clé primaire de la table Clients.

. I y a une erreur dans la notation. Cette opération s’écrit :

Hnumeru_cumpte (Jmontant =>7800 (’I‘ransaction))

. Non, il ne faut pas confondre la syntaxe de I'opérateur « SELECT » en

SQL avec celle de I'importation de modules Python. La bonne syntaxe
est :

SELECT nom, prenom

FROM Clients;

. Il faut en effet accéder a des données dans les trois tables de la base :

Iattribut date heure dans la table Transactions est nécessaire, ce qui
permet de récupérer les numéros de comptes correspondants. Ces numé-
ros de comptes permettent grice a une jointure avec la table Comptes de
récupérer les id clients correspondants. Une nouvelle jointure est néces-
saire avec la table Clients pour récupérer les noms et prénoms des dits
clients.

. Si 'on dispose du numéro de compte, une opération d’'agrégation suffit

pour connaitre le montant total des transactions d'un compte :
SELECT SUM(montant)

FROM Clients

WHERE numero_compte=...;

[J Vrai

& Vrai

[J Vrai

O Vrai

[0 Vrai

& Vrai

O Vrai

Er Faux

0 Faux

ErFaux

ﬂ/ Faux

ErFaux

0 Faux

EI/ Faux

Copyright © 2017 Dunod.

Exercices 255

(Exercice 6.0)

Certains prénoms sont purement masculins, ainsi Lionel et Jean-Pierre ne sont attribués qu'a des
garcons. D’autres sont purement féminins, comme Angélique et Delphine, qui ne sont attribués
qu'a des filles. Enfin, d’autres prénoms sont donnés, avec la méme orthographe, a des garcons et a
des filles, comme Andréa, Alix et Dominique. Ces prénoms sont dits épicénes.

Le taux de féminité d'un prénom P est la proportion de filles appelées P a la naissance sur le
nombre total de bébés prénommés P. Par exemple, le taux de féminité f d’Alix, donné a 8217 filles
francaises et 2360 garcons est donné par la formule

8217

=—— =~ (. =T.0%
f_2360+8217 UHF =LA

Ce taux de féminité est utilisé dans le cadre d’études sociologiques pour « deviner » le sexe quand
seul le prénom est connu. Par exemple, il fut utilisé par la sociologue Valérie Carrasco, dans une
étude [Car07] pour le ministére de la justice publiée en octobre 2007, pour attribuer un genre aux
PACS : féminin (deux femmes) ou masculin ou mixte.
Dans cet exercice, nous disposons d'une base de données contenant une table baseprenoms ayant
la forme suivante :

baseprenoms

prenom nombre sexe annee departement
Manon 19.0 F 1983 Bouches-du-Rhone
Zakaria 24.0 M 2006 Hauts-de-Seine
Andrea 23.0 F 2001 Gironde
Andrea 30.0 M 2004 Alpes-Maritimes

Cette table indique pour chaque année, chaque département, chaque prénom et chaque sexe, le
nombre de bébés nés avec ce prénom. Ainsi, la troisiéme ligne signifie qu’en 2001, en Gironde, 23
bébés filles furent prénommées « Andréa ».

Dans cet exercice, chaque question demande d’écrire une requéte, et est suivie de quelques lignes
retournées par la requéte. Lorsque le résultat d'une requéte est sauvegardé sous un nom, il peut
étre utilisé dans une autre requéte comme n’'importe quelle table.

0. Ecrire une requéte donnant la table des prénoms féminins et le nombre de filles nées avec ce
prénom. Ecrire une requéte donnant la table des prénoms masculins ainsi que le nombre de
gargons nés avec ce prénomn.

prenom nombreF prenom nombreM
Alix 8217.0 Alix 2360.0
Charlie 162.0 Charlie 2909.0

Julie 171878.0 Jean-Claude 124137.0

On supposera par la suite que les résultats de ces deux requétes sont sanvegardés sous les noms
respectifs feminin et masculin.

2017 Dunod.

-

Copyright ©

256 Chapitre 6 Bases de données

1. Ecrire une requéte donnant la table des prénoms épiceénes avec le nombre de filles et le nombre
de garcons nés avec ce prénom ainsi que le taux de féminité.
prenom nombreF nombreM TauxF
Alix 8217.0 2360.0 0.777
Charlie 162.0 2909.0 0.053
Dominique 157761.0 219359.0 0.418

On supposera par la suite que cette requéte est sauvegardée sous le nom epicene.
2. Ecrire une requéte renvoyant la table des prénoms exclusivement féminins. Ecrire une requéte
renvovant la table des prénoms exclusivement masculins.

prenom prenom
Angélique Lionel
Delphine Jean-Pierre

On supposera par la suite que les résultats de ces deux requétes sont sauvegardés sous les noms
respectifs prenomfeminin et prenommasculin.
3. Ecrire une requéte renvoyant la liste des prénoms avec leur taux de féminité.
prenom tauxF
Alix 0.777
Angelique 1.0
Lionel 0.0

s s

| Exercice 6.1)

Une société de vente d’aimants dispose d une base de données comprenant deux tables. La premiéere
table s’appelle standards et a les colonnes suivantes :
e standard : le standard de qualité, selon la norme chinoise (Y), américaine (C) ou selon une
autre norme.
e rem_min : la rémanence minimale, mesurée en Tesla. Plus la rémanence est importante, plus
I'aimant est « fort ».
e rem_max : la rémanence maximale, mesurée en Tesla, La rémanence réelle de 'aimant est
comprise entre rem_min et rem_max.
e coerc_min et coerc_max, les valeurs minimales et maximales de la ccercion, en kiloampére
par metre, qui mesure la capacité d'un aimant a conserver son aimantation.
e temp : la température maximale en degrés sous laquelle 'aimant va fonctionner.

standards

standard rem_ min rem_ max coerc_min coerc_max temp

Y35 0.40 0.41 175 195 250
N40 1.26 1.29 860 955 80
N38H 1.22 1.26 860 915 120

524 0.96 1.00 730 770 250

d.

D

)17 Dunc

C

2

Copyright ©

Exercices 257

Cette premiere table décrit les caractéristiques physiques associées a chacun des standards (Y35,
N40,...).

La seconde table aimants a les colonnes :
e ref : la référence du produit dans le catalogue ;
e standard : le standard respecté par cet aimant ;
e forme : la forme géométrique de 'aimant ;
e materiau : le matériau dans lequel est fabriqué I'aimant.

aimants
ref standard forme materiau
MagnBr02 Y35 brique ferrite
MagnCy08 S24 cylindre samarium-cobalt
MagnAn42 N40 anneaux neodyme

Cette seconde table décrit les aimants vendus par cette société.

0. Quelle(s) colonne(s) peuve(nt) ! servir de clef primaire pour la table aimants ?

1. Ecrire une requéte renvoyant une table des standards avec comme colonnes : le nom du standard,
la rémanence moyenne (la moyenne entre la rémanence minimale et la rémanence maximale)
et la température maximale de travail.

2. Eecrire une requéte renvoyant la table des aimants cylindriques ayant une rémanence d’au moins
0,50 T pouvant étre utilisés dans un environnement de 100°C. La table aura trois colonnes : la
référence, le standard et le matérian.

3. Ecrire une requéte renvoyant la liste des standards disponibles dans toutes les formes possibles 2.

(Exercice 6.2 Chocolat

Une entreprise de fabrication de chocolats stocke ses recettes dans une base de données. Cette
base contient une table nomenclature qui associe & chaque recette de chocolat une référence et
un prix en euros (€) et d'une table matieres_premieres donnant pour chaque ingrédient le prix
au kilogramme.

nomenclature matieres_premieres
Nom Reference prix Ingredient prix
Wasachoco W08 1.50 Cacao Forastero 2.78
Monster chocolate Mons01 4.99 Cacao Criollo 6.30
Chocolat a 'orange Ora03 0.99 Cacao Trinitario 5.50

.

Elle contient aussi une table recette donnant pour chaque référence et chaque ingrédient la
quantité en grammes.

1. 8%il v a plusieurs possibilités, ne donnez que la plus pertinente.
2. Les formes possibles sont celles qui apparaissent au moins une fois dans la table aimants.

2017 Dunod.

)

Copyright ©

258 Chapitre 6 Bases de données
recette
Reference Ingredient Quantite
WO8 Wasabi 0.2
W08 Cacao Forastero 5
Wo08 Beurre de cacao 4.8
Mons01 Cacao Trinitario 8

Par exemple, pour préparer un Wasachoco il faut 0,2 ¢ de Wasabi, 5g de cacao Forastero' et 4,8 g
de beurre de cacao. Et peut-étre faut-il aussi d’autres ingrédients? listés plus loin dans la table.

0. Citer une clef primaire possible pour la table recette.

1. Ecrire une requéte donnant la liste des ingrédients du Wasachoco (on pourra directement utiliser
sa référence W08).

2. Ecrire une requéte donnant la liste des ingrédients du ChocoPlusPlus (il faudra chercher sa
référence dans la table nomenclature).

3. Ecrire une requéte qui donne la table des recettes avec le prix total des ingrédients de la recette.
Par exemple, pour le Wasachoco, il faudra sommer le prix de 0,2 g de Wasabi au prix de 5g de
cacao Forastero, etc.

La requéte doit renvoyer un résultat de cette forme.

Reference Prix
W08 0.98
Mons01 3

4. Quelles économies ferait-on en remplacant le cacao Criollo par un cacao moins cher, le cacao
Forastero? Adapter la requéte précédente pour avoir cette fois le prix total des ingrédients de
chaque recette dans le cas on ce changement a été fait.

(Exercice 6.3

La bibliotheque francophone d’Arkham utilise une base de données pour gérer les emprunts.
La table inscrits contient cing colonnes : Nom, Prenom, Naissance, DateCotisation, Numero.
Voici quelques lignes de la table :

inscrits
Nom Prenom Naissance DateCotisation Numero
LAMBERT Bernard 1985-03-22 2013-08-19 7
RICE Warren 1975-04-03 2014-09-21 11
1995-05-17 2014-02-15 12

VASSEUR Jade

La table des livres indique le titre, 'auteur et la cote de classement de chaque livre.

1. C'est la variété la plus courante de cacao.
2. Exempli gratia, du sucre.

2017 Dunod.

Copyright ©

Exercices 259

livres
Titre Auteur Cote
Unaussprechlichen Kulten Friedrich Wilhelm von Junzt FWJo1
Le Roi en Jaune Robert William Chambers RWC03
De Vermis Mysteriis Inconnu JDO1
Le culte des goules comte Frangois-Honoré Balfour d’Erlette FHBEO1

Enfin, nous avons une table des préts. Un prét est une relation entre un inscrit et un livre.

prets
Numerolnscription Cote DatePret Rendu
2 FHBEO1 2008-10-01 Oui
2 FHBEO1 2014-01-09 Oui
11 JD01 2011-11-05 Non

11 RWC03 2013-11-05 Oui

Dans la table des préts, chaque client est représenté par son numéro et chaque livre par sa cote.

0.
1.
2.

3.

Ecrire une requéte renvoyant la liste des cotes des livres prétés non rendus.

Ecrire une requéte renvoyant le nombre d’inserits dans la bibliotheque.

Ecrire une requéte renvoyant le nombre d’inscrits dans la bibliothéque ayant déja emprunté au
moins un livre.

Ecrire une requéte renvovant la liste des livres déja empruntés par Roland Franklyn (Roland
est le prénom, on suppose que Roland Franklyn n’a pas d’homonyme).

(Exercice 6.4) Pizzeria

La société Golden Web Pizza! permet de se faire livrer chez soi une pizza parmi un catalogue
immense. La société gere ses commandes via une base de données. Cette base contient comme
tables :

¢ Une table pizza contenant les champs nom_pizza et prix.
pizza

nom__pizza prix
Margherita 8€
Caviar totale 70€

e Une table client contenant les champs nom, prénom, adresse, numero_client.

client
nom prénom adresse numéro__client
BLANCHARD Nathan 7 rue du mail, 75002 Paris 42
FABRE Lucas 18 rue de I'Electricite, 21000 Dijon 47

1. Société fictive.

Copyright © 2017 Dunod.

260 Chapitre 6 Bases de données

e Une table commande contenant les champs numero_client, nom_pizza, prix, numero_commande,

date.
commande
numero__client nom__pizza prix numero__commande date
42 Caviar totale G8€E 1024 1999-08-19
47 Margherita 8€ 16384 2014-12-12

47 Super Champignons 13€ 16384 2014-12-12

Les quelques lignes données en exemple montrent que Nathan Blanchard a commandé en
1999 une pizza « Caviar totale » qui cofitait & I'époque la modique somme de 68€. Lucas
Fabre a commandé, le 12 décembre 2014, une Margherita et une « Super champignons »
dans la méme commande.

e Une table ingredients contenant les champs ingredient et nom_pizza.

ingredients
nom_ pizza ingredient
Margherita purée de tomate
Margherita préparation fromagere
Caviar totale caviar
Caviar__totale foie gras
Caviar__totale créme fraiche

La pizza Margherita contient an moins ! deux ingrédients : de la purée de tomate et une
préparation fromagere 2.

0. 1l est possible d’avoir deux pizzas différentes dans la méme commande, c’est le cas de la com-
mande de Lucas Fabre (une Margherita et une Super champignons). La base de données permet-
elle d'avoir deux fois la méme pizza (par exemple deux Margherita) dans la méme commande ?

1. Quel intérét de mettre le prix dans la table des commandes vu qu'il est déja dans la table des
pizzas?

2. Un client est allergique a la tomate. Les deux seuls ingrédients contenant de la tomate sont
« purée de tomates » et « tomate ». Quelle requéte permet d’avoir la table des pizzas (avec leur
nom et leur prix) ne contenant pas ces ingrédients 7 Un résultat de cette forme est attendu :

nom__pizza prix
Caviar totale 70€
Super champignons 13€

En Sqlite (un dialecte de SQL), la date d’aujourd’hui moins un an peut étre obtenue
m grace a l'expression suivante : date("now","-1 year").
On supposera dans cet exercice que vous utilisez Sqlite.

3. Ecrire une requéte renvoyant la table des pizzas qui n’ont pas été commandées depuis un an.

1. Nous ne voyons pas la table en entier, peut-étre que d’autres lignes précisent d’autres ingrédients.
2. Un ersatz de fromage d’origine végétale.

2017 Dunod.

t ©

Copyrigh

Exercices 261

Un résultat de la forme suivante est attendu :

nom__pizza prix
Saumon et ananas 12€
Melon cacao 15€

m En Sqlite, 'expression strftime("%Y",X) extrait 'année de la date X.

4. Ecrire une requéte qui, pour chaque client, et chaque année, donne I'argent qu’il a rapporté i
la société.
Un résultat de la forme suivante est attendu :
numero__client annee depense
47 2014 2851€
4a7 2013 5412€

262 Chapitre 6 Bases de données

Travaux pratiques

(TP 6.0 — Données boursiéres

\

Préparation du TP : création du fichier bourse.sqlite \

Télécharger en csv depuis le site Yahoo Finance I'historique des données boursiéres d’Airbus
groupe (symbole EADSY) et de Orange (symbole ORA.PA). Puis, les importer comme deux
tables (airbus et orange) dans une base de données Sqlite bourse.sqlite (par exemple en
utilisant le logiciel Dbeaver).

Attention a bien préciser le type des données de chaque colonne.

v

Les tables ont chacune les colonnes suivantes : Date, Open, High, Low, Close, Volume, Adj Close
donnant la valeur de chaque action chaque jour (valeur a 'ouverture de la bourse, valenr minimale,
maximale, valeur a la fermeture) et le volume de transations (le nombre d’actions échangées dans

la

journée).

Les lignes d une table peuvent étre ordonnées selon une colonne grace a la clause ORDER
BY colonne. Par défaut, les lignes sont classées par ordre croissant. L 'ordre décroissant

m est obtenu avec le mot-clef DESC (qu'on ajoute a la fin de la clause).

En Sqlite (un dialecte de SQL). la date d’aujourd’hui plus un jour peut étre obtenue
grace a l'expression suivante : date("now","+1 day"). De plus, le mois peut étre
obtenu & partir de la date X grace & l'expression suivante strftime ("%Y-%m" ,X).

Calculer le volume total de toutes les transactions d’Orange.

A quelles dates n'y a-t-il en aucune transaction pour Orange ou pour Airbus? On g’attend a
un résultat de la forme suivante :

Date Open High Low Close Volume Adj Close entreprise
2016-12-26 14.29 14.29 14.29 14.29 0 14.29 Orange
2013-03-04 50,68 50,68 50,68 50,68 0 11,804404 Airbus

. . s ’

Trier les résultats précédents par date (la date la plus récente en premier).

Ecrire une requéte qui restreint la table airbus aux entrées datant de moins de trois ans.
Donner en une seule requéte la date du premier et la date du dernier enregistrement d’Airbus.
Donner la premiére date pour laquelle acheter a 'ouverture une action Airbus et la vendre a la
fermeture est intéressant (par intéressant, on veut dire qu'on gagne de l'argent).

Calculer, pour chaque mois, pour Orange, la valeur minimale et la valeur maximale de I'action.
Donner la liste des dates pour lesquelles on a les données d’Orange et pas celles d’Airbus.
Calculer la liste des dates pour lesquelles I'action d’Airbus cotite plus cher a 'ouverture que
I'action d’'Orange.

On appelle gain maximum 'argent gagné en achetant au plus bas et en revendant au plus haut.
Créer une table, & 3 colonnes, donnant, pour chaque jour !, le gain maximal d'Orange et celui
d’Airbus.

1. On ne considérera que les jours on 'on dispose des données des deux entreprises.

© 2017 Dunod.

Copyright

Travaux pratiques 263

10. Ajouter a la table précédente une colonne indiquant 'entreprise ayant fait le plus fort gain (en
cas d’égalité, on met Airbus).

11. Je me demande combien je gagne si j'achéte une action Airbus au jour n au plus bas et que je
revends au plus cher au jour n + 1 (¢’est-a-dire le lendemain). Créer une table me donnant en
fonction du jour n le gain réalisé.

12. Donner, pour chaque mois, pour Airbus :

e la valeur de I'action a 'ouverture du mois ! et a la fermeture du mois ;
e la valeur maximale et minimale de 'action sur le mois.

13. Donner, pour chaque année et pour chaque entreprise, le bénéfice réalisé en achetant au mini-
mum et revendant au maximum chaque jour. On ne donnera que les années on les données des
deux entreprises existent dans la base de données.

[TP 6.1 — Sélection de systemes de numérisation en métrologie]

L’entreprise Mécafab, spécialisée dans la production de piéces mécaniques, lance une nouvelle pro-
duction de pieces et la vérification du cahier des charges est une partie fondamentale du processus.
Une part importante de ce cahier des charges réside dans la vérification des dimensions de la piéce
conformément an dessin de définition.

[#i0.1]a]
o~
o
H
-]
1
(3
o2}
LA
Coupe A-A
ag
| T

@20 |
Coupe B-B
LURFA © 2011 - Copyright M. AUDFRAY
Piéce test pour la mesure muti-capteurs
Degsin de définition partiel - Echelle 1:2 ——{#f0.5]A]

Le choix du systeme de numérisation est trés important, il permet de déterminer le systéeme le plus
approprié¢ pour réaliser une mesure. Le but est de choisir un systéme permettant de respecter les
contraintes liées a la qualité des acquisitions (bruit de numérisation, justesse de mesure, densité
du nuage de points, etc.), tout en minimisant le cott de numérisation (temps de numérisation).

1. Le premier jour du mois existant dans la base de données. On prendra garde au fait que certains jours, comme
les dimanches, il n’y a pas d'ouverture de la hourse.

Copyright © 2017 Dunod.

264 Chapitre 6 Bases de données

Le but de cette partie va donc étre de sélectionner le systeme de numérisation le mieux adapté
pour cette application, a partir d'une base de données.

Les systémes de numérisation

Un systéme de numérisation est un ensemble composé P —— ‘

: E [

de : 7 1
» ' v wie i i I

e un capteur (ou systéme d'acquisition, sensor en i T l " ﬁ |!
anglais) ; 5 . i el
e = ,|

e un porteur (ou systéeme de déplacement, device i

en anglais). :

C’est I'association capteur/porteur qui permet d’obtenir un nuage de points de coordonnées 3D

exprimées dans un référentiel. Un capteur peut étre utilisé sur différents porteurs et un porteur

peut accueillir différents capteurs. Afin que le capteur soit orientable, on peut également trouver
une interface entre le capteur et le porteur.

L’entreprise possede une base de données de ses différents systémes de numérisation. Vous en

trouverez une copie digitizing _systems.db3 sur la page dédiée a cet ouvrage sur le site de Dunod.

0. Ecrire le schéma relationnel entre les tables sensor, device, interface et manufacturer, la derniere
correspondant au fabricant des différents matériels.

Les principes mis en jeu pour 'obtention des coordonnées 3D sont différents pour chaque tech-
nologie de capteur et de porteur et ne font pas l'objet de 1'étude ici. Chaque type de capteur a
ses avantages et ses inconvénients. En fonction de I'application (controle de piece mécanique, ré-
troconception, sauvegarde d’ceuvres d’art, ete.), chaque capteur aura plus ou moins d’avantages
et d'inconvénients. Les principaux critéres sont ceux liés a la qualité des données acquises, a la
rapidité d’acquisition et a la densité de points obtenue.

Base de données de systémes de numérisation

Une base de données des systémes de mumérisation a été mise en place pour que l'opérateur de
controle puisse sélectionner le meilleur systéme de numeérisation parmi ceux qu’il a a disposition
pour réaliser ses mesures.
Cette base de données est structurée de la maniére suivante :
e une partie « capteur » regroupant un certain nombre de tables contenant des informations
intrinséques aux capteurs (solution technique, technologie, catégorie) ;
e une partie « porteur » regroupant un certain nombre de tables contenant des informations
intrinséques aux porteurs (type de porteur, eatégorie porteur) ;
e une table « données qualifiées » qui regroupe les informations liées & un couple capteur/
porteur, c’est-a-dire a un systéme de numérisation, notamment les données liées a la qualité
de numérisation.

1. A P'aide du logiciel SQLiteSpy, ouvrir la base de données digitizing systems pour observer les
différentes tables et données.

d.

D

)17 Dunc

C

2

Copyright ©

Travaux pratiques 265

La requéte suivante donne normalement le tableau ci-dessous :

SELECT »
FROM sensor

id name id_manuf id_sol resol. distance fov trueness repeat.
1 ZephyrKZ25 1 1 0,003 distance 50,0 0,003
2 LC60Dx 2 1 0,06 95,0 60,0 0,009

3 TP2 3 7 0,000 2 0,0 0.0 0,000 35
4 LJ-G200 7 1 0.003 110,0 62.0

5 G-scan RX2 8] 0,1 150,0 110,0

6 OptiNum-RE 9 2 0.3 450,0 2100

7 ATOS cs 2M 6 2 0,021 800,0 520,0

8 CL2 5 4 0.0 11,0 0,0

2. Quelle est a priori la clé primaire de cette table 7 Peut-on en proposer une autre ?
3. Quelles sont les clés étrangeres ?

Manipulation de la base de données

Nous souhaitons interroger la base pour extraire les systémes de numérisation compatibles avec
notre besoin. Nous proposons dans un premier temps la requéte suivante :

SELECT sensor.name AS capteur, device.name AS porteur, inter.name AS interface
FROM sensor

JOIN qualified_system AS qual ON sensor.id=qual.id_sensor

JOIN device ON device.id=qual.id_device,

interface AS inter

WHERE qual.id_interface=inter.id

AND qual.trueness < 0.05;

4. Que signifie cette requéte, qu'est-elle sensée retourner 7 Exécuter cette requéte pour valider.
Vous devriez obtenir six lignes et trois colonnes.

5. A partir de 'exemple précédent, effectuer une requéte SQL permettant de faire apparaitre :
le nom de tous les capteurs renseignés dans cette base de données, le nom du fabricant pour
chaque capteur, la catégorie (contact, sans contact), la résolution, la distance d’acquisition.

On souhaite a présent renseigner dans cette table une nouvelle information au capteur « TP2 ».

6. A partir de requétes SQL, donner les caractéristiques de ce capteur.
7. Grace a la commande UPDATE TABLE, renseigner une résolution de 1pm pour ce capteur.

Choix du systémes de numérisation

Dans les données qualifiées apparaissent deux grandeurs qualifiées qui dépendent du couple « sys-
téme d’acquisition/systéme de déplacement » :

e Le bruit qualifié : il correspond aux erreurs de mesure de type aléatoire ;

e La justesse qualifiée : elle correspond aux erreurs de mesure systématiques.
Pour le choix du systéme de numérisation, le critére prépondérant va étre le bruit de numérisation
pour les spécifications de forme et d’orientation, et la justesse de mesure pour les spécifications de
position ainsi que les vérifications dimensionnelles. On considére un systéme apte a réaliser une

IT

mesure si son incertitude de mesure U est supérieure a U,q = -, avec IT, I'intervalle de tolérance

2017 Dunod.

-

Copyright ©

266 Chapitre 6 Bases de données

de la spécification. La valeur de U, doit étre supérieure a la valeur de bruit et la valeur de justesse
renseignées pour le systéme.

Dans un premier temps, on détermine 1'ensemble des systémes aptes a réaliser les mesures, puis on
sélectionne le plus rapide parmi les systémes aptes.

8. Déterminer I'ensemble des systémes de numérisation aptes a la vérification de la spécification
géométrique ayant le plus petit intervalle de tolérance (on ne prendra pas en compte les spé-
cifications de localisation des trous qui imposent 1'utilisation des palpeurs classiques de par
I'accessibilité des surfaces).

On considére a présent que l'incertitude de mesure est une moyenne pondérée entre le bruit et la

justesse.

9. En considérant une pondération de 1 pour le bruit et la justesse dans le calcul de I'incertitude et
en respectant toujours U < U,q = %, déterminer 'ensemble des systémes aptes a la vérification
des différentes spécifications.

10. Déterminer le meilleur systéme de numérisation, parmi les systémes aptes, sur un critére de
temps de numérisation (vitesse de numérisation maximale). On pourra ainsi classer les résultats
avec le mot clé ORDER BY.

Utilisation de Python pour les bases de données

Dans le but de réaliser des calculs automatisés de vitesse de numérisation en fonction du capteur
sélectionné, on souhaite utiliser Python pour récupérer les résultats des requétes SQL.

Dans Python, U'intégration des requétes SQL se fait comme le montre le code suivant. Il convient
donc de se connecter a la base de données avant d’exécuter la requéte.

import sqlite3
conn = sqlite3.connect("digitizing_systems.db3")
conn.row_factory = sqlite3.Row
c = conn.cursor()
c.execute ("INSCRIRE ICI UNE REQUETE 5QL ")
justesse = []
for ligne in c:
if not None in ligne:
justesse.append(float(ligne["gual. trueness"]))
c.close()

11. A partir de requétes SQL intégrées 4 Python, calculer le temps de numérisation de la surface
conique pour chacun des systemes qualifiés présents dans la base de données. Trier les résultats
par ordre croissant de temps de munérisation.

Copyright © 2017 Dunod.

Corrections des exercices 267

[Corrigé- exo 6L0]

0. On utilise GROUP BY pour agréger les données de chaque prénom.

SELECT prenom , SUM (nombre) as nombreF FROM baseprenoms
WHERE sexe="F" GROUP BY prenom

La table des prénoms masculins est construite sur le méme modéle :

SELECT prenom , SUM (nombre) as nombreM FROM baseprenoms
WHERE sexe="M" GROUP BY prenom

1. On joint les deux tables pour obtenir les prénoms donnés & des filles et aussi & des garcons.

SELECT *, nombreF / (nombrefF + nombreM) as TauxF FROM feminin JOIN masculin
ON masculin.prenom = feminin.prenom

2. Une différence ensembliste permet d’obtenir les prénoms exclusivement féminins.

SELECT prenom FROM baseprenoms WHERE sexe="F"
EXCEPT SELECT prenom FROM baseprenoms WHERE sexe="M"

On procede de méme pour les prénoms exclusivement masculins.

SELECT prenom FROM baseprenoms WHERE sexe="M"
EXCEPT SELECT prenom FROM baseprenoms WHERE sexe="F"

3. On fait 'union entre les épicénes, les purement féminins et les purement masculins.

SELECT prenom , @ AS TauxF FROM prenommasculin

UNION

SELECT prenom , 1 AS TauxF FROM prenomfeminin

UNION

SELECT prenom , nombreF / nombreF + nombreH as TauxF FROM epicene

[Corrigé exo 6. 1]

0. La colonne ref.
il

SELECT standard, (rem_min+rem_max)/2 as rem_moy, temp FROM standards;

SELECT ref, aimants.standard, materiau
FROM aimants JOIN standards ON aimants.standard = standards.standard
WHERE forme = "cylindre" AND rem_min >= 50 AND temp >= 100;

© 2017 Dunod.

{
.

Copyright

268 Chapitre 6 Bases de données

3. L'opération demandée s’appelle « division ensembliste ». On utilise ici le fait qu'une requéte
qui ne renvoie qu'une valeur est assimilée a cette valeur (d’ou le test du HAVING).

SELECT standard FROM aimants GROUP BY standard
HAVING COUNT(DISTINCT forme) = (SELECT COUNT(DISTINCT forme) FROM aimants);

[Corrigé exo 6.2]

0. Le couple (Reference, Ingredient) est une clef primaire possible.
1. Une condition WHERE permet de ne garder que les lignes voulues.

SELECT Ingredient FROM recette WHERE Reference = "W@8";

2. On fait une jointure pour obtenir la référence du ChocoPlusPlus.

SELECT Ingredient FROM recette JOIN nomenclature ON recette.Reference = nomenclature.Reference
WHERE Nom = "ChocoPlusPlus";

3. On regroupe par référence apres avoir fait une jointure pour avoir les prix. On divise par 1000
pour convertir les kg en g.

SELECT Reference, SUM(Prix+Quantite/1880)

FROM recette JOIN matieres_premieres ON recette.Ingredient = matieres_premieres.Ingredients
GROUP BY Reference;

4. On commence par écrire la table dans laquelle le prix du cacao Criollo a été remplacé par celui
du cacao Forastero :

SELECT * FROM matieres_premieres WHERE Ingredient <> "Cocaoo Criollo"
UNION

SELECT "Cocoo Criollo" as Ingredient, prix FROM matieres_premieres WHERE Ingredient = "Caocoo Forastero";
Cette requéte sert alors de sous-requéte :

SELECT Reference, SUM(Prix*Quantite)
FROM recette JOIN
(SELECT * FROM matieres_premieres WHERE Ingredient <> "Cacao Criollo"
UNION
SELECT "Cocao Criollo" as Ingredient, prix FROM matieres_premieres
WHERE Ingredient = "Cacoo Forastero")
ON recette.Ingredient = matieres_premieres.Ingredients GROUP BY Reference;

[Corrigé exo 6.3]

0. On obtient :

SELECT Cote FROM prets WHERE Rendu="Mon";

1. Il suffit de compter le nombre de lignes de la table des inscrits.

SELECT COUNT(*) FROM ‘inscrits;

~
8

Dunod.

)17

20

Copyright ©

Corrections des exercices 269

2. Dans la table prets, on compte combien d’inscrits apparaissent.
SELECT COUNT (DISTINCT NumeroInscription) FROM prets;
3. On joint les trois tables pour faire le lien entre Roland Franklyn et les livres qu’il a empruntés.

SELECT livres.+ FROM
livres JOIN prets ON livres.Cote = prets.Cote JOIN inscrits ON NumeroInscription = MNumero
WHERE Nom = "Franklyn" AND Prenom = "Roland";

[Corrigé exo 6.4]

0. Non, car cela impliquerait deux lignes identiques dans la table commande. Visiblement, la base
de données n'a pas été tres bien concue!

1. Le prix de la table pizza peut évoluer (I'inflation) et on connaitra toujours le prix de vente de
chaque pizza dans les commandes passées.

2. On retire de la table des pizzas toutes les pizzas contenant 1'un ou 'autre ingrédient probléma-
tique.

SELECT *+ FROM pizza

EXCEPT

SELECT pizza.* FROM pizza JOIN ingredients ON pizza.nom_pizza = dingredients.nom_pizza
WHERE ‘ingredient = "tomgte" OR ingredient="purée de tomates";

3. On retire de la table des pizzas toutes celles commandées il y a moins d'un an.

SELECT * FROM pizza

EXCEPT

SELECT pizza.* FROM pizza JOIN commande ON pizza.nom_pizza = commande.nom_pizza
WHERE date('"now","-1 year") >= date;

SELECT numero_client, strftime("%Y",X) as annee, SUM(prix) as depense
FROM commande
GROUP BY numero_client, annee;

Copyright © 2017 Dunod.

270 Chapitre 6 Bases de données

|Corrigé TP 6.0

0.

10.

On obtient ;

SELECT SUM(Volume) FROM crange;

SELECT *, "Orange" as entreprise FROM orange WHERE Volume = @
UNION
SELECT », "Airbus" as entreprise FROM airbus WHERE Volume = 8;

SELECT *, "Orange" as entreprise FROM orange WHERE Volume = @
UNION

SELECT *, "Airbus" as entreprise FROM airbus WHERE Volume = @
ORDER BY Date;

SELECT + FROM airbus WHERE date > date("now", "-3 years");

SELECT MIN(date), MAX(date) FROM airbus;

SELECT MIN(date} FROM airbus WHERE Close>open;

SELECT strftime('"%sY-%m",date) as mois, MIN(low), MAX(high) FROM orange GROUP BY mois;

SELECT date FROM orange EXCEPT SELECT date FROM airbus;

SELECT orange.date FROM airbus JOIN orange ON orange.date = airbus.date
WHERE orange.open > airbus.open;

SELECT orange.date, orange.high-orange.low as gain_orange, airbus.high-airbus.low as gain_airbus
FROM orange JOIN airbus ON orange.date = airbus.date;

Avec ce que nous avons vi en cours, une solution est de faire deux requétes avec deux WHERE
pour distinguer les cas, puis de faire une union.

Correction d'un TP 271

SELECT orange.date, orange.high-orange.low as gain_orange,
airbus.high-airbus.low as gain_airbus, "Orange" as entreprise
FROM crange JOIN airbus ON orange.date = airbus.date
WHERE gain_orange>gain_airbus
UNION
SELECT orange.date, orange.high-orange.low as gain_orange,
airbus.high-airbus.low as gain_airbus, "Airbus" as entreprise
FROM orange JOIN airbus ON orange.date = airbus.date
WHERE gain_orange <= gain_airbus;

Il est aussi possible d'utiliser des fonctionnalités de SQL que nous n'avons pas abordées en
cours, comme le CASE.

SELECT orange.date, orange.high-orange.low as gain_orange,
airbus.high-airbus.low as gain_airbus, CASE orange.high-orange.low>airbus.high-airbus.low
WHEN 1 THEN "orange' WHEN @ THEN "girbus" END AS entreprise
FROM orange JOIN airbus ON orange.date = airbus.date;

11.

SELECT airbus.date, airbus2.high-airbus.low as gain
FROM airbus JOIN airbus as airbus2 ON date(airbus.date,”+1 day")=airbus2.date;

12.

SELECT M.month, airbus.open as open, airbus2.close as close, M.low, M.high FROM
(
SELECT strftime('"%Y-%m",date) as month, MIN(date) as mindate,
MAX (date) as maxdate, MIN(low) as low, MAX(high} as high
FROM airbus
GROUP BY month
) as M
JOIN airbus ON M.mindate = airbus.date
JOIN airbus as airbus2 ON M.maxdate = airbus2.date;

13. On fait attention au fait que les jours d’achat-vente ne sont pas les mémes pour les deux
entreprises.

SELECT air.annee, gain_orange, gain_airbus FROM
(SELECT strftime("%Y",date) as annee, SUM(high-low) as gain_orange
FROM orange GROUP BY annee) as ora
JOIN
(SELECT strftime("%Y",date) as annee, SUM(high-low) as gain_airbus
FROM airbus GROUP BY annee) as air
ON air.anne=ora.annee

‘pounq £10Z @ ybuAdod

Copyright © 2017 Dunod.

CHAPITRE

Piles et récursivité 7

B 0 Définition

Une pile est une structure de données linéaire (les données sont rangées sur une ligne) ayant
pour maxime « dernier entré premier sorti » (Last In, First Out), LIFO.
Les méthodes (= fonctions) disponibles pour cette structure de données sont :
e construction (d'une pile vide),
e test d'une pile vide,
e ajout d'un élément (empiler = push) mis en premier dans la pile,
e retirer le premier élément (dépiler = pop) si la pile est non vide et renvoyer cet élément,
e lire le sommet de la pile.

empile(A) empile(B) depile() empile(A)
pile vide l
B
Structure de Pile
Exemples d’utilisation des piles
e e la fonction annuler (ctrl-Z)
-Q~ e le calcul en notation polonaise inversée (ancienne calculatrice HP)

e le traitement des fonctions récursives — on met dans une pile les informations de
chaque fonction appelée (variables locales, etc.).

=

B 1 Les listes vues comme des piles

Le type list de Python posséde déja toutes les méthodes d’'une pile :

~
8

Junod.

)17

c© 20

Copyright

274 Chapitre 7 Piles et récursivité

pile = [] # créotion d'une pile
pile.append(4) # on empile 4

pile.append(7)

pile.append("salut™)

pile.append(5)

print("Pour 1'instant, notre pile vout:", pile)
pile.pop() # on dépile 5

a = pile.pop() # on dépile en récupéront le contenu
print('Ancienne téte:', a)

print('Téte octuelle:', pile[-1]) # on lit lo téte
print('Pile actuelle:', pile)

print('Pile

vide?', pile == [])

Pour 1'instant, notre pile vaut: [4, 7, 'salut', 5]
Ancienne téte: salut

Téte actuelle: 7

Pile actuelle: [4, 7]

Pile wvide? False

Les piles peuvent étre implémentées de plusieurs maniéres. Nous utiliserons les listes.

A\

B 2 Définir sa propre pile (construction d’un objet de type pile)

On peut créer un type (= une classe) Pile personnelle en Python. Le TP d’initiation & la pro-
grammation orientée objet et son application & la construction d'une structure de pile en propose

Effet Nom classique | Python
Ajouter un élément push .append(x)
Retirer un élément et renvover sa valeur | pop .pop()
Test du vide == []

Pile vide []

méthode .pop() a deux effets :

e Elle modifie la pile en retirant le dernier élément,
e Elle renvoie la valeur du dernier élément.

un exemple d’implémentation.

B 3 Pile d’exécution

Lors de I'appel d'une fonction, que se passe-t-il ?
Un bloc est eréé pour la fonction contenant :

les arguments de la fonction,

une place pour écrire la valeur de retour,

I'adresse de retour, i.e., une information disant ce qu’il fandra faire une fois la fonction

terminée,
de la place pour les variables locales,

éventuellement d’autres informations.

Q voirle TP 7.0 p. 293.

Piles 275_;

A
—

Variables locales
Autre

v - Bloc

Adresse de retour
de la

fonetion

Valeur de retour

Arguments

Un bloc de la fonction appelée est créé « au dessus » du bloc de la fonction appelante. Ces blocs
sont empilés dans la pile d’exécution. Pour plus de détails, on peut consulter le Dragon’s book,
section 7.2.2 « Blocs d’activation » [ALST0T].

Comment sont gérés les appels de fonctions?

Considérons le code suivant.

def hix):
return x + 1

def g(x):
return hix) * 2

def f(x):
return g(x) + 1

Que se passe-t-il lors de 'appel 4 f(5) 7

appel de appel de g appel de h

pile vide

retour de

pile vide

276 Chapitre 7 Piles et récursivité

Un autre exemple :

def h(x):
return x + 1

def g(x):
return hix) * 2

def i(x):
a = g(x)
b = h(x)

return a + b

appel de 1

pile vide

retour de h retour de g appel de h

retour de h retour de 1

pile vide

appel de g appel de h

Copyright © 2017 Dunod.

Récursivité

277

B 0 Définitions et exemples

Une fonction récursive est une fonction qui s’appelle elle-méme.

Voici deux exemples classiques :

def expo(a, n):
if n == 8;
return 1
else:
return a * expo{a, n - 1)

Détaillons un peu.
Pour la premiére version.

def expo(a, n):

if n == 8;
print('co v est n = @')
return 1
else:
print('Je rentre avec n =', n)

return a *= expof{a, n-1)

Pour la seconde version.

def exporapide(a, n):

if n == 0:
print('ca y est n = 8')
return 1
elif n % 2 == 0:
print('(P) Je rentre avec n ="', n)
return exporapide(a, n//2)#*+2
else:

print('(I) Je rentre avec n =', n)
return a * exporapide(a, n//2)**2

Etudions la suite de Fibonacci : u, = {

def fibo(n):
it n<2;
return n
else:
return fibo(n-1) + fibo(n-2)

for i in range(186):
print(fibo(i), end=" ')

n
Up—1 + Up—2 Ppourn =2

def exporapide(a, n}:
if n == 0:
return 1
elif n % 2 == @:
return exporapide(a, n [/ 2)#+2
else:
return a * exporapide(a, n // 2)*+2

>>> expo(2, 7)
Je rentre avec
Je rentre avec
Je rentre avec
Je rentre avec
Je rentre avec
Je rentre avec
Je rentre avec
cayestn=0
128

o FSASg 3 3
W o w1
=R W oo~

>>> exporapide(2, 17)

(I) Je rentre avec n = 1T
(P) Je rentre avec n = 8
(P) Je rentre avec n = 4
{P) Je rentre avec n = 2
(I) Je rentre avec n = 1

cayestn=28
131072

sin e {0,1}

On peut se rendre compte que le programme récursif de calcul de la suite de Fibonacei est gourmand
en temps et en espace. En effet, on peut représenter les appels récursifs suivant un arbre.

1Nt

fatﬂf?”ii

278 Chapitre 7 Piles et récursivité

fibo(6)
/ \
fibo(5) fibo(4)
fibo(4) fibo(3) fibo(3) F(2)
/ N\ /N /N / \
fibo(3) f(2) £(2) f(1) f(2) f(1) f(1) f(o)

ANTATATEA

f(2) f(1)f(1) f(o) f(1)f(0) f(1) f(0)

/\

f(1) f(e)

Cet exemple montre qu'il faut se méfier de la récursivité car elle peut cacher une complexité spatiale
ou temporelle gourmande.
Dans notre exemple, il est bien préférable d’écrire le programme itératif suivant.

def fiboiter(n):
T < 2:
return n
a, b=9, 1
for i in range(n-1):
a, b = b, atb
return b

for i in range(1@):
print(fiboiter(i), end=" ')

#0 112358 13 21 34

B 1 Intérét de la récursivité

En résumé, la récursivité fournit des algorithmes concis et élégants. La preuve de la correction
du programme est souvent assez facile, mais il faut se méfier de la complexité. De plus, il faut bien
étudier les cas d’arrét pour s’assurer de la terminaison du programme.

B 2 Pile d’appels récursifs

Lors de I'appel d’une fonction récursive, une pile est utilisée. En Python, la taille de la pile est
limitée (1000 par défaut). En cas de dépassement, on a le droit a :

RuntimeError: maximum recursion depth exceeded

Il est possible de changer la taille de la pile.

import sys

sys.setrecursionlimit(10*+4)

Récursivité 279

Un exemple trés classique de programmation récursive est la résolution des tours de Hanoi.

o Pour un exemple de dérécursivation utilisant explicitement une pile, voir |'exercice 7.15 p. 292.

B 3 Encapsuler une fonction récursive
On est parfois amené a utiliser une fonction récursive a l'intérieur d'une fonction pour bénéficier
de variable « semi-globale ».

Voici un exemple.
La fonction uplets(n, k) renvoie la liste de tous les k-uplets parmi [[1, n].

def uplets(n, k):

s =[]
def upint{L, nb):
if nb == 0!
S.append(L) # on a fini un kuplet, on le met dans §
else:

for 1 in range(n):
upint{L + [i], nb - 1)
upint(L], k)
return S

On remarquera que la variable S est utilisée comme une variable globale dans la fonction interne
récursive upint.

e Pour d'autres programmes récursifs générant des objets combinatoires, voir I'ex. 7.13 p. 291.

B 4 Récursivité croisée (=)

Donnons un exemple de couple de fonctions qui s’appellent 'une 'autre.

def ain):
if n ==
return True
else:
return b(n - 1)

def bi{n):
if n == 0:
return False
else:

return a(n - 1)

Que calculent ces deux fonctions (d’argument entier naturel) ' ?

e Pour un exemple d'utilisation de cette notion, voir le TP 7.1 p. 296.

1. a(n) resp. b(n) feste si n est un entier pair resp. impair.

280 Chapitre 7 Piles et récursivité

.

r—fMé_ﬁhndﬁ'- 7.0 : Ecrire une fonction récursive aimﬁl'e] \

Les méthodes a maitriser

Une fonction récursive simple s'écrit sous la forme :

def fonction(args):
if condition d'arrét:
return valeur
appel récursif

Pour écrire une fonction récursive on :
e détermine le type de données a renvoyer ;
détermine pour quelle valeur de I'argument le probleme est simple ; on conjecture alors
la condition d’arrét de la fonction récursive ;
écrit la condition d’arrét a 'aide des deux étapes précédentes ;
détermine une regle permettant de réduire la valeur de 'argument du probleme ;
écrit I'appel récursif en prenant garde a ce que le type de données qu'il renvoie soit
cohérent avec celui renvoyé par la condition d’arrét.

Prenons pas a pas quelques exemples, du plus simple au plus complexe :

P,

e e TP

N P T W L

Y

AN

R e e

PP PP P

Exemple d’application

Ecrire une fonction qui renvoie ’'inverse d’une chaine de caractéres.

Le type de données a renvoyer est une chaine de caractéres. L'inverse d'une chaine vide ou de
longueur un est elle-méme.

Lorsque la chaine a inverser est plus longue, on obtient son inverse en plagant le dernier caractere
de la chaine au début de la chaine inversée et en inversant la chaine on le dernier caractére a été
exclu.

def inverse(s):
if len(s) <= 1:
return s
return s[-1] + inverse(s[:len(s) - 1])

La fonction précédente a une complexité cachée : en effet, le slicing a ici un cout de &(n), et
I'appel récursif est répété n fois, pour une complexité totale de &(n?). Si I'on souhaite écrire une
fonetion récursive (une fonction itérative est plus simple ici), on peut écrire :

def inverse(s, i=8):
if i == len(s):
return ""
return s[-i - 1] + dnverse(s, i + 1)

Exemple d’application

Ecrivons une fonction swap qui prend en argument une liste L et qui renvoie cette
liste on1 I’ordre des éléments est modifié de sorte que cette liste contienne : le second
élément de L puis le premier, puis le quatriéme, puis le troisiéme, etc. swap([1, 4,
9, 16, 25] renverra [4, 1, 16, 9, 25].

~
8

Junod.

)17

c© 20

Copyright

Les méthodes a maitriser 281

Le type de données a renvoyer est une liste. Lorsque L est vide ou composée d'un seul élément,
swap (L) renvoie L. Ceci donne la condition d’arrét.

Lorsque L est plus longue, on réduit la taille du probléme en inversant les deux premiers éléments
puis en appliquant swap sur la liste privée des deux premiers éléments. La remarque précédente
sur la complexité reste valable.

def swap(L):
if len(L) < 2:
return L
return [L[1], L[®]] + swap(L[2:])

Exemple d’application

Ecrivons une fonction qui renvoie le nombre de facons de rendre une somme n
en fonction d’une liste de type de piéces disponibles stockées dans une liste L; on
suppose que 'on dispose de suffisamment de piéces de chaque type pour rendre n.
Le type de données a renvoyer est un entier naturel. La condition d’arrét n’est pas évidente ici,
nous pouvons la trouver en réfléchissant a comment nous allons réduire la taille du probléme : &
chaque appel récursif, soit n va diminuer — puisqu’on essayera de rendre la somme due a 'aide
du premier type de piéces disponibles, soit la longueur de L va diminuer — puisqu'on renoncera
a rendre la somme due a 'aide du premier type de piéces. La condition d’arrét porte donc a la
fois sur n et a la fois sur len(L).

La remarque précédente donne également 'appel récursif :

def pieces(n, L):

if n == @: # Il y o succés daons le rendu de monnaie
return 1

ifn<@or L =1[]: #O0n est dans une situotion d'impasse
return @

return pieces(n, L[1:]) + pieces(n - L[@], L) # la paertition présentée.

S

Pour trouver la complexité T, d'une fonction récursive :
e on cherche une relation de récurrence impliquant 77,,
e on résout la relation de récurrence.

Exemple d’application

Evaluer la complexité de la suite définie par u,, = u?_, — 3 et up = 0 (issue d’un
exercice filiere PT).
I1 est possible de la programmer récursivement comime suit.

def u(n):
if n == 0:
return @
else :

return u(n = 1)#**2 = 3

Ce qui donne une relation de récurrence sur la complexité de la forme T, = T, 1 + C avec C'
une constante. On reconnait une suite arithmétique d’oli une complexité en &(n).

Copyright © 2017 Dunod.

282 Chapitre 7 Piles et récursivité

Exemple d’application

Prenons un cas plus compliqué :
évaluer la complexité du calcul récursif du nombre de 2 en base trois.

def nb_deux(n):
ifn == 0:
return @
else:
r=(n%3) // 2
return nb_deux(n // 3) + r

La relation de récurrence est alors T, = T, /3 + C' avec C' une constante qu’on ne cherche pas
a évaluer. En itérant £ fois cette relation de récurrence, on obtient T}, = T, /3 + k x C'. En
choisissant pour k le nombre de chiffres de n en base trois, on obtient T,, = Ty +nb_ chiffres x C.
Ce nombre de chiffres valant (a une unité pres) logs(n) (voir exercice 2.0 page 69), la complexité
est en @'(logs(n)), i.e., en @(In(n)).

Vrai/Faux sur le cours 283

0. Dans une pile, on peut ajouter en temps constant un élément & une ex- [Vrai [Faux
trémité et en enlever un a l'autre extrémité.
1. Les piles sont utilisées en interne pour les fonctions récursives. O Vrai [0 Faux

2. Les instructions suivantes copiepile permettent d’obtenir une copie de [0 Vrai [Faux

Copyright © 2017 Dunod.

la pile p1 dans la pile p2 mais vide la pile p1.

def copiepile(pl):
p2 = Pile()
while not(pl.estvide()):
p2.empile(pl.depile())
return p2

p2 = copiepile(pl) # pl est une pile
Le code suivant permet d’afficher des entiers dans 'ordre croissant.

def prog(n):
if nl= @:
print{'Valeur ', n)
prog(n-1)

prog(18)
Le code suivant affiche un message d’erreur.

def listentierdecr(n):
if nl= 0:
return [n] + listentierdecr(n-1)

listentierdecr(1@)

Le programme suivant permet d’obtenir I'inverse d'une liste.

def dinverse(L):
return inverse(L[1:]) + L[8]

Le programme suivant a une complexité en & (n).

def fun(n):
ifn ==
return 2
return fun(n - 1)#**n

Le programme suivant a une complexité en &(n?).

def fibo(n):
ifn <= 1:
return 1
return fibo(n - 1) + fibo(n - 2)

O Vrai

O Vrai

[Vrai

0 Vrai

[Vrai

[Faux

[0 Faux

[] Faux

[0 Faux

[Faux

Copyright © 2017 Dunod.

284 Chapitre 7 Piles et récursivité

. Non, on ajoute ou enléve un élément & la méme extrémité (sommet de la
pile). Pour modifier le fond de la pile, on est obligé de vider toute la pile
(temps linéaire).

1. Oui, les entrées successives et les environnements sont empilés.

. Non, la pile p1 est bien vidée mais la pile p2 est renversée par rapport a

la pile initiale.

. Non, le programme affiche les valeurs par ordre décroissant.

. En effet. il y a bien un message d’erreur méme si un test d’arrét est présent.

Si n vaut 0, le retour implicite est None done il y a un conflit pour sommer
une liste avec un objet de type None, ce qui explique le message d’erreur

TypeError: can only concatenate list (not "NoneType") to list

Le code suivant, en revanche, fonctionnera :

def listentierdecr(n):
if nl= 0
return [n] + listentierdecr(n-1)
else:
return [8]

listentierdecr(10)

. Il manque la condition d’arrét, le code suivant est en revanche correct.

def dinverse(L):!
if len(L) <= 1:
return L
return dinverse(L[1:]) + L[®]

. Si on note T, la complexité de cet algorithme, on a T,, = T,,_; + C, donc

T, est une suite arithmétique.

. Cet algorithme a une complexité exponentielle, on peut montrer en ef-

fet que le nombre d’appels récursifs pour calculer F), est de I'ordre de
(1+v’5)“
2 :

] Vrai

Eﬂ’Vrai
0 Vrai

[Vrai
E/Vrai

[J Vrai

& Vrai

[J Vrai

Er Faux

[J Faux
Er Faux

& Faux
[0 Faux

EI/Faux

[0 Faux

E/Faux

Copyright © 2017 Dunod.

Exercices 285

Piles Dans ces exercices, la régle du jeu est bien stir d’appliquer les méthodes de pile et de ne

pas utiliser les fonctionnalités élaborées des listes Python...

(Exercice 7.0) Copier une pile

0. Ecrire une fonction deversepile qui déverse une pile dans une pile donnée.
1. On veut écrire une fonction qui copie une pile.
Au premier essai, on écrit :

def copiepilebof(p):
pnew, paux = Pile(), Pile()
deversepile(p, paux)
deversepile(paux, pnew)
return pnew

Quel est le défaut de cette fonction ?
2. Proposer une amélioration de cette fonction.

(Exercice 7.1] Echanger le sommet et le k¢ élément

A chercher apres avoir traité I'exercice précédent.
On utilisera en particulier la fonction deversepile.

0. Ecrire une fonction echange qui échange les deux premiers éléments d'une pile.
1. Ecrire une fonction echk qui échange le premier et le £ élément.

(Exercice 7.2] Rotation d’une pile

0. Ecrire une fonction rotpile(p) qui met le premier élément en derniére position (rotation d'un
cran de la pile).

1. Construire une fonction rapide rotk(p, k) pour une rotation de k crans de la pile en évitant
d’utiliser la fonction rotpile.

[Exercice 7.3] Séparer les positifs des négatifs

0. Ecrire une fonction separe(p) qui, & partir d'une pile p d’entiers relatifs, renvoie une pile ot
tous les éléments strictement positifs de la pile p sont au-dessus des autres. On ne demande
pas de garder la pile p intacte et on pourra utiliser des piles auxiliaires. De plus, l'ordre des
éléments apparaissant dans la pile de sortie n'est pas important.

1. Ecrire une fonction extraitpos(p) qui, & partir d'une pile p d’entiers comme précédemment,
renvoie une pile de ses entiers positifs en respectant 'ordre d’apparition dans la pile p. Cette
fonction doit préserver (a la sortie) la pile d’entrée p et n'utiliser que deux piles supplémentaires.

~
8

Junod.

)17

c© 20

Copyright

286 Chapitre 7 Piles et récursivité

9 Pour des exercices de tri utilisant explicitement une pile voir 8.3 et 8.4 p. 363 et suiv.

(Exercice 7.4) Expressions bien parenthésées

L’objectif de cet exercice est d’étudier quelles expressions sont bien parenthésées, dans plusieurs

contextes.

0. On considére les expressions ne contenant que des parenthéses ouvrantes ' (' et fermantes ') '.
Ecrire une fonction utilisant un compteur n_ouv qui compte le nombre de parenthéses ouvertes
mais non fermées et qui renvoie un booléen indiquant si une expression s est bien parenthésée
ou non.

1. On s’intéresse désormais aux expressions pouvant contenir des parentheses '(' et ')', des
crochets '"[' et "]"' et des accolades "{" et '}'.

Donner un exemple d’expression contenant antant de parentheses ouvrantes que de parenthéses
fermantes et autant de crochets ouvrant que de crochets fermants mais qui n’est pas correcte-
ment parenthésée.

2. En utilisant une pile, écrire une fonction qui renvoie un booléen indiquant si une expression
(comportant les trois types de parenthéses précédentes) est bien parenthésée ou non.

(Exercice 7.5 Evaluation en notation polonaise inversée (postfixe)

On considére 'expression en notation polonaise inversée ! codée par une liste Python de la maniére
suivante

L= 7,8, ="', 8, "', 10, F, '#r, Rl]

L’expression infixe traditionnelle est (7-8)*6* (10+3).

Certaines calculatrices de marque Hewlett-Packard des années 1990 utilisaient cette approche et
affichaient donc une pile permettant d’effectuer les calculs 2.

Pour calculer 'expression correspondant a la liste L, on peut utiliser une pile.
On parcourt les éléments de la liste L :
e si I'élément est un nombre, on 'empile ;
e g'il s'agit d'une opération, on effectue 'opération a partir des deux derniers éléments de la
pile puis on empile le résultat (attention & l'ordre si 'opération n’est pas commutative).
Ecrire une fonction evalNPI(L) utilisant une pile qui calcule I'expression post-fixée (notation
polonaise inversée) correspondant a la liste L et renvoie la valeur.

e Pour aller plus loin, voir TP 7.1 p. 296.

[Exercice 7.6) Déplacement d’un cavalier sur un échiquier

Considérons un échiquier E,, , a n lignes et p colonnes. o1 n et p sont deux entiers naturels non
nuls. Nous allons dans cet exercice nous intéresser au déplacement d'un cavalier sur cet échiquier,
selon les regles du jeu d'échec : le cavalier se déplace d'une case dans une direction puis de deux
cases dans une direction perpendiculaire. L'échiquier E), , sera représenté par une matrice £ de

1. Du mathématicien polonais Jan Lukasiewicz.
2. Le lecteur intéressé pourra par exemple télécharger I'application pour smartphone Android Droid48 qui émule
la célebre calculatrice HP48.

Dunod.

2017

-

Copyright ©

Exercices 287

taille n x p, ou E[z,y] pourra prendre différentes valeurs entiéres en fonction des problemes que
nous aurons a étudier.
Nous utiliserons les bibliothéques numpy et matplotlib pour tracer quelques figures :

import numpy as np
import matplotlib.pyplot as plt

La matrice E sera initialisée par 'instruction E = np.zeros((n, p), dtype=int) et nous utili-
serons aussi la variable globale Dep qui code les huit déplacements possibles du cavalier :

Dep = [(1, 2), (1, -2), (2, 1), (2, -1), (-1, 2), (-1, -2), (-2, 1), (-2, -1)]

Un chemin du cavalier dans 1'échiquier sera représenté par une liste [(zg,90), ..., (zk, yx)] de cases.

0. Ecrire une fonction Distance qui, appliquée a (z;, y;, 1, p), renvoie la matrice E tel que E[z,]
contient le nombre minimum de déplacements nécessaires au cavalier pour passer de la case
(r;,y:) a la case (x,y) dans I'échiquier F, , (et —1 s'il n'est pas possible d’atteindre (z,y)
depuis (z;,y;)). On utilisera une pile permettant de stocker toutes les cases situées & une méme
distance de la case initiale (z;, ;).

1. Modifier la fonction précédente en une fonction Chemin_Minimaux qui, appliquée a (x;, y;, n, p),
renvoie cette fois-ci une matrice Pred telle que Pred[x, y| est le prédécesseur de (x,y) dans un
chemin de longueur minimal de (x;,¥;) & (x,y) si un tel chemin existe.

2. Ecrire le code d’une fonction qui, appliquée a la matrice des prédécesseurs calculée précédem-
ment et a une case finale accessible (2, yy), renvoie une représentation graphique d'un chemin
minimal de (zj,y;) a (x5, y5).

Voici quelques indications pour numéroter les cases d une grille (utilisant la méthode annotate) :

A = np.zeros((7, 7), dtype=int)

AlB, 8] = -5

A[-1, -1] = 5

Al6, 3] = 1

fig = plt.figure()

ax = fig.add_subplot(111)

ax.annotate('coucou’, xy=(3, &), va="center", ha="center")
plt.imshow(A, interpolation='nearest')

plt.show()

ce qui donne

n.

Dunod.

2017

-

Copyright ©

288 Chapitre 7 Piles et récursivité

(Exercice 7.7) Le probléme du cavalier d’Euler (par backtracking)

Nous reprenons les notations de I'exercice précédent et nous cherchons maintenant & construire un

parcours du cavalier, ¢’est-a-dire un chemin du cavalier passant une et une seule fois par chaque

case de I'échiquier. Un tel parcours sera dit cyclique si le cavalier peut rejoindre en un coup la case
de départ depuis la case d’arrivée. La matrice E permettra maintenant de stoker les instants de
passage du cavalier par chaque case de I'échiquier. Au début du calcul, chaque case de E contient

la valeur 0.

0. Ecrire le code d'une fonction cases_accessibles qui, appliquée a la matrice E et A une
position (x,y), renvoie la pile des cases accessibles depuis (x,y) (on entend par accessibles
celles qui n'ont pas encore été visitées par le cavalier).

1. Ecrire le code d'une fonction parcours qui, appliquée a quatre entiers x;,y;,n,p renvoie la
matrice F associée a un parcours partant de (wz;,y;) dans 'échiquier E,, , (si un tel parcours
existe), en utilisant I'analyse suivante :

a. On initialise la matrice F et on copie la valeur 1 dans la case (x;, ;).

b. On initialise une variable N a la valeur 1 : cette variable va compter le nombre de cases
déja visitées par le cavalier.

c. On initialise une pile C'oups qui contient pour seul élément le triplet (z;,;, L;) ou L; est la
liste des cases accessibles depuis (z;, ;). Cela signifie que le premier coup joué sera (x;, ;)
et que L; est la pile des cases accessibles depuis (z;,y;) non encore étudiées.

d. Tant que N # n x p et que Coups est non vide, on dépile I'élément (z,y, L) qui est en téte
de Coups. Si L est vide, on a atteint un cul-de-sac et on revient d'un coup en arriére ; sinon,
on empile dans Coups le triplet (x,y, L") ot L' est la liste L privée d'un de ses éléments
(zs,ys) (s comme « suivant »), puis on empile dans Coups le triplet (xs,ys, Ls) ou Ls est
la liste des cases accessibles depuis (s, ys).

Quelle amélioration pourrait-on proposer pour accélérer, en cas d'existence, la recherche d'un

parcours ?

2. Reprendre la question précédente en renvoyant cette fois-ci la représentation graphique d'un
parcours cyclique (si un tel parcours existe).

[Exercice 7,8] Enveloppe convexe d’une famille de points du plan

Nous considérons une famille (M;)p<;<, de points distincts d’'un plan euclidien orienté, rapporté au
repére orthonormé direct (O, @, 7). Nous représenterons chaque point M; par le couple (z;, ;) de
ses coordonnées dans (O, 7 T‘}) et la famille (M;)o<i<n par la liste L = [(zo,40), .- -, (Tn—1,Yn—-1)]-
L’enveloppe convexe € de cette famille est le plus petit polygone convexe contenant tous les points
M;. Le but de cet exercice est de caleuler la liste E dite « bien ordonnée » des sommets de €', i.e.
la liste des sommets de . parcourus dans le sens trigonométrique direct, en commencant par le
point M;, situé le plus bas parmi ceux situés le plus & gauche. Ainsi, avec les points représentés sur

unod.

7

01

-

Copyright ©

Exercices 289

la figure ci-dessous, iy = 4 et nous cherchons & construire la liste E = [I&h, My, Mg, M7, Mg, _n,.fs] :

Mg
My

M~

_IFI'I4

M
Ma 2

Pour s'épargner le traitement de cas particulier, nous supposerons que trois points quelconques de
la famille (M;) ne sont jamais alignés.

0.

e

Si A, B et C sont trois points non alignés du plan, nous dirons que « (A, B, C') tourne a gauche »
si I'angle AB et E admet une mesure dans |0, 7[. Eerire le code d’une fonction tourne_gauche
qui prend en argument trois points A, B et C' et qui renvoie le booléen True si (4, B, C) tourne
a gauche et false sinon.

Ecrire le code d'une fonction point_depart(L) qui renvoie 'indice ig.

En s’inspirant de 'exercice 8.4, écrire le code de la fonction tri_sommets qui, appliquée a L
et ip. renvoie la pile P des points M; pour i # iy, triée dans 'ordre décroissant des angles
que font les vecteurs U et M;, M;. Dans l'exemple proposé, cette fonction devra renvoyer
[My, My, Mg, Mg, M5, M7, My, My, My, Ms]. On utilisera la fonction tourne_gauche.

Ecrire le code d'une fonction enveloppe_convexe qui, appliquée a L, renvoie la liste E en
utilisant la méthode suivante :

(a) On calcule ig puis P;

(b) On initialise une pile E qui ne contient que M;, aun début du calcul;

(¢) On vide P en modifiant E de sorte qu’a chaque tour de boucle, la propriété 22 soit vérifiée :

2 : F est la liste bien ordonnée des sommets de 'enveloppe convexe des points de L qui ne
sont pas présents dans P.

Quel est le temps de calcul de la partie (¢) de cet algorithme ? Quel est le temps de calcul de
la fonction enveloppe_convexe 7 Comment pourrait-on améliorer ce temps?

Soit n € N* = 3 et Xo, Xy,..., X, 1. Y0, Y1,...,Y,—1 des variables aléatoires indépendantes et
identiquement distribuées, de loi uniforme sur [0,1]. On cherche & estimer I'espérance du nombre
N de sommets de I'enveloppe convexe des points (X;, Yi)o<icn.

4

5.

Ecrire une fonction tracer qui, appliquée a un entier n, simule le tirage des points (X;,Y;), et
trace le nuage de ces points ainsi que le contour de leur enveloppe convexe.

Ecrire une fonction estimation qui, appliquée & un entier n, renvoie une estimation de 1'espé-
rance et de la variance de N. Que peut-on conjecturer quant au comportement de 'espérance
quand n tend vers I'infini 7

4
i

7 Dunod.

201

Copyright ©

290 Chapitre 7 Piles et récursivité

Récursivité

(Exercice 7.9] Bézout récursif

0. Ecrire une fonction récursive pged(a, b) qui renvoie le plus grand commun diviseur (pged)
des entiers supposés positifs a et b (c’est une question de cours).

1. Ecrire une fonction récursive bezoutrec(a, b) qui renvoie le pged de a et de b ainsi que deux
entiers u et v tels que au + bv = d.

(Exercice 7.10] Figures récursives

0. On définit la fonction suivante

def carre{a, b):
return [a, b, b - 1j » (a - b), a + 1 *» (b - a), a]

On peut alors tracer facilement un carré

import matplotlib.pyplot as plt

L = carre(l, 1 + 1j)
plt.axis('equal')
for a in L:
plt.plot([a.real for a in L], [a.imag for a in L], 'b', lw=2)
plt.show()

Ecrire une fonction récursive qui permet d’obtenir la figure suivante

a0

o4

a0

+ 1
1. A partir d'un segment [a, b] ol a,b € C, on trace le segment {a, 1(3{1 o+ b)} puis on recommence

1 . 1 . 1
aveca < aet b+ a+ 5(:‘;— a)e';a—aeth a+ E(b— a)e™" et enfin a + 1(30, +b)et b+ b

On obtient un figure assez jolie en partant de a = 0 et b = 2. A vous de la réaliser!

[Exercice 7_11) Arborescence de fichiers — parcours en profondeur

On propose de parcourir tous les répertoires d’'un systéme de fichiers récursivement a I'aide de
Python.
Pour cela, on dispose dans le module os des fonctions suivantes :

— os.chdir(chaine), par exemple os.chdir('.."') pour revenir au répertoire parent ;

4
8

) 2017 Dunod.

Copyright

Exercices 291

— os. listdir() qui liste les fichiers et répertoires du répertoire de travail ;

— os.path.isdir(chaine) qui dit si chaine est un répertoire (directory) ;

— os.path.abspath(chaine) qui donne le chemin absolu du répertoire courant :

— (pour information) os.getcwd () donne le répertoire de travail courant.
Ecrire un programme en Python qui liste les sous-répertoires a partir d’un répertoire de départ
donné. Préciser pour chaque répertoire la profondeur de 'arbre.

(Exercice 7.12) Terminaison de la fonction d’Ackermann

La fonction ack caleule la fonetion d’Ackermann (les entrées m et n sont des entiers naturels) :

def ack({m, n):
if m == 0:
return n + 1
elif n == O
return ack(m - 1, 1)
else:
return ack(m - 1, ack(m, n = 1))

On considere I'ordre lexicographique strict < sur N x N défini par
a<a
(a,b) < (a',b) si et seulement si { ou
a=a etbh<?lf

0. Existe-t-il une suite strictement décroissante (a,,, b,),en de couples, c'est-a-dire tel que pour
tout n € N, (apt1,0n41) < (an,bn)?

1. On considere I'ensemble &/ = {(m,n) € N x N | ack(m, n) ne termine pas}.
et on suppose que I'ensemble & est non vide. Montrer que &/ posséde un minimum (mg. ng)
minimal (raisonner par I'absurde).

2. Montrer que le calcul de ack termine toujours.

(Exercice 7.13)] Génération d’objets combinatoires

0. Programmer une fonction récursive qui liste tous les k-uplets croissants de [1,n].
1. Méme question pour les k-arrangements.
2. On appelle partition d’un entier n > 1, toute décomposition du type
n=ny+ng+-+mn, avecn; = 1.
Programmer une fonction récursive qui liste toutes les partitions d’entiers sans répétition (on
s'interdit d’écrire 3 = 1+ 1 + 1 par exemple) puis celles avec répétitions.

| Exercice 7.14] Génération d’objets aléatoires s = difficile

e Cet exercice est une version récursive de |'exercice 3.6 p. 92.

On considére le programme suivant

from random import random

def combalea(n, p, L):

Copyright © 2017 Dunod.

292 Chapitre 7 Piles et récursivité

ifn<=0or p<=08ornc«<p:
return L

r = random()
ifr<p/n:

L.append(n)

return combalea(n - 1, p - 1, L)
else:

return combalea(n - 1, p, L)

0. Expliquer ce qu’affiche la suite d'instructions suivantes

for i 1in range(2@):
L=1[]
print{combalea(27, 5, L))

1. = Montrer que les sorties de la fonction combalea sont équiprobables.

(Exercice 7.15) Tour de Hanoi et pile d’appels récursifs

On propose, sur le célebre exemple de la tour de Hanol, d’expliciter la pile d’appels récursifs.

Principe des tours de Hanot
On dispose de trois piquets sur lesquels peuvent s'insérer des disques de diametres différents.

Au début, tous les disques sont empilés par diamétre décroissant sur un piquet de départ (a).

Le but du jeu est de déplacer toute la pyramide sur un piquet d’arrivée (b) avec la régle du jeu
suivante :

e on ne pent déplacer qu'un disque a la fois ;

e on ne peut empiler un disque que sur un emplacement vide ou sur un disque de diametre

inférieur.

On codera les piquets a. b, piquet intermédiaire ¢ par trois nombres 0, 1 et 2. Remarquons que si
a et b sont les piquets de départ et d’arrivée, c = 3 - (a + b) nous donne le numéro du piquet
intermédiaire.

0. Ecrire une fonction récursive hanoi (n, a, b) qui affiche les opérations successives de dépla-
cement de n disques pour au final déplacer tous les disques de la tige a vers la tige b.
1. Ecrire une version itérative de la fonction précédente ! en utilisant une pile d’appels. Pour cela
on pourra empiler deux types de données :
e soit un tuple du type ('appel', (n, a, b)),
e soit un tuple du type ('affiche', ("1 -> 2", 0, 0)) (les zéros ne sont pas utilisés).

1. Dans un but purement pédagogique...

Copyright © 2017 Dunod.

Travaux pratiques 293

fTP 7.0 — Initiation a la programmation orientée objet]

Ce TP est consacré a la Programmation Orientée Objet, POO en abrégé, et a son application a la
construction de la structure de pile.

Principe de la POO

Généralités La POO consiste en la définition et 'interaction d’éléments logiciels appelés
objets ; un objet représente un concept, ou une entité du monde physique, comme un personnage
dans un jeu vidéo ou un livre. Il posséde une structure interne et un comportement. Il peut interagir
avec ses pairs. La POO est un style de programmation ot on cherche & représenter ces objets et
leurs relations.

Concréetement, un objet est une structure de données qui répond & un ensemble de messages. Cette
structure de données définit son état tandis que I'ensemble des messages qu'il comprend décrit son
comportement :

e les données qui décrivent sa structure interne sont appelées ses attributs;

e l'ensemble des messages forme ce que 'on appelle l'interface de l'objet ; ¢’est seulement an
travers de celle-ci que les objets interagissent entre eux. La réponse a la réception d'un
message par un objet est appelée une méthode (méthode de mise en ceuvre du message)
elle décrit quelle réponse doit étre donnée an message.

La structure interne des objets et les messages auxquels ils répondent sont définis dans une classe
(c¢’est une des représentations possibles). Une classe décrit les méthodes de création d’'objets de ce
type (on parle d'instance de classe), et les méthodes auxquelles répondront les objets de ce type
lors de la réception de messages.

En Python En Python, la création d'une classe commence par le mot clé class suivi du nom
de la classe, de deux points et d'une indentation. Toute la partie du script indentée contient les
méthodes de création des instances de cette classe et les méthodes de cette classe.

Lors de la programmation de méthodes dans une classe, on devra faire référence a l'instance de
I'objet sur lequel on travaille : le mot clé self permet ceci en Python.

La méthode de création d'un objet est également conventionnelle en Python : elle est définie par
def __init__ suivi au minimum de 'argument self et éventuellement d'autres arguments. Les
attributs des objets de cette classe sont définis dans cette méthode. Ils sont codés sous la forme
self.attribut.

Par exemple, le code suivant permettrait de définir un objet de type Carte en Python, et une
méthode qui renvoie un booléen indiquant si une carte est un honneur (10, V, D, R ou As) :

Class Carte:
def __init__(self, h, v):
self.hauteur = h
self.valeur = v

def honneur(self):
return self.valeur in ('18', 'Volet', 'Dame', 'Roi', 'As')

Le code suivant créerait alors le Valet de Carrean, C = Carte('Valet', 'Carreau')
L’expression C.honneur () serait évaluée a True.

2017 Dunod.

-

Copyright ©

294 Chapitre 7 Piles et récursivité

On verra dans ce TP une autre méthode spéciale, def __repr__(self): appelée lors de 'instruc-
tion print.

Il ne s'agit la que d'une micro-introduction a la programmation orientée objet ; un semestre entier
(en école...) ne suffira méme pas & poser completement les principes, techniques et intéréts de ce
paradigme de programmation.

Premiers pas en Programmation orientée objet : classe Vecteur

0. Ouvrir le fichier vecteur.py et I'exécuter.
Taper dans la console V = Vecteur (1, 2, 3) puis print(V).
Créer une instance W de la classe Vecteur représentant le vecteur (4, 5, 6).
Tester dans la console V.norme () puis V.somme (W).

1. Ecrire une méthode multipliescalaire(self, k) qui renvoie a partir du vecteur @ et du
scalaire k le vecteur k.

2. Ecrire une méthode produitvectoriel qui calcule le produit vectoriel de deux vecteurs.

3. Ecrire une méthode testorthogonal qui teste si deux vecteurs @ et 7 sont orthogonaux.

Création d’une classe Pile

La notion de classe permet de créer de nouveaux types de structures. Nous allons nous en servir
pour créer une structure pile de deux manieres différentes.

La structure Pile, que nous étudions en cours, est une structure de données linéaire qui fonctionne
sur le modéle de la pile d'assiettes. Les seules opérations possibles sont le fait de déposer un élément
en haut de la pile (on parlera de la fonction push) ou d’enlever 'élément du haut de la pile (on
parlera de la fonction pop). Les piles fonctionnent donc sur le principe du LIFO (Last in First

Out) :

nouvean o nounvean
: nouveau

sommet sommet sommet
milieu milieu milieu
ajout suppression
fond fond e 4 fond

FiGure 0. Empiler - dépiler

Dans un premier temps, on va se servir de la structure 1ist pré-implémentée en Python. Les piles
seront représentées en mémoire par des listes. Le sommet de la pile sera le dernier élément de la
liste. Ainsi, empiler un élément consistera a ajouter un élément a la fin d'une liste, et effectuer un
pop consistera a supprimer le dernier élément de la liste en renvoyant sa valeur. Le seul attribut
d'un objet pile sera une liste de valeurs.

On s’inspirera évidemment de la partie précédente.

2017 Dunod.

c 2

Copyright

Travaux pratiques 295

10.

Créer une classe Pile, et créer une méthode de constructeur de pile vide a I'aide de la syntaxe
def __dinit__(self).

Créer une méthode estvide(self) qui renvoie un booléen indiquant si la pile est vide ou non.

Créer une méthode push(self, x) quiempile I'élément x sur la pile. Il s’agira donc de rajouter
un élément a la fin de la liste qui représente la pile.

Créer une méthode pop (self) qui renvoie une erreur si la pile est vide, et qui dépile le sommet
de la pile en renvoyant sa valeur dans le cas contraire.

Créer la méthode __repr__(self) qui va étre appelée lors de I'affichage d’une pile P a 'aide
de I'instruction print (P). On souhaite que la pile contenant les valeurs 1, 2 et 3, empilées dans
cet ordre, soit affichée de la mani¢re suivante :

sommet
13]
2]

[1]
fond

. Créer une fonction (en dehors de la classe Pile, il ne s’agit pas d'une méthode) qui inverse les

deux premiers éléments d'une pile, en ne se servant que des méthodes définies sur les piles.

Créer la pile obtenue en empilant successivement 1 puis 2 puis 3 puis 4. Afficher la. Tester la
fonction précédente, et afficher le résultat.

Une classe pile alternative

Il est également possible de créer une classe Pile sans se servir de classes déja pré-implémentées
comme la classe List. C’est l'objectif de cette partie.

Nous allons créer a la main une structure de liste chainée; pour ce faire, nous allons créer une
classe Cellule, qui est donnée dans le document joint PilesAlt.py; et une deuxieme classe Pile,
qui se servira de cette structure, dont certains éléments sont également donnés dans le fichier joint.
On rappelle qu'une liste chainée est une structure linéaire, constituée de cellules. Une cellule
contient une valeur et un pointeur qui dirige soit vers la cellule suivante, soit vers la valeur None,
auquel cas la cellule est la « derniére » de la liste chainée.

11.
12,
13,

début

i
valeur pointeur valeur pointeur valeur None

cellule 1 cellule 2 cellule 3

FiGure 1. Représentation chainée

Compléter la méthode push fournie dans le fichier joint.
Créer une méthode pop.

Créer la méthode __repr__(self) qui va étre appelée lors de 'affichage d'une pile P a 'aide
de l'instruction print(P).

4
8

) 2017 Dunod.

Copyright

296 Chapitre 7 Piles et récursivité

[TP 7.1 — Expressions arithmétiques s = diﬂicile]

Avec une pile
On se donne une expression arithmétique écrite en notation classique (infixe) mais complétement
parenthésée sous la forme d'une liste Python, par exemple

L:[l(l,4, I+!" l(l,s, |_'|,7, I)l', I)ij
Chaque élément est soit un nombre (entier), soit une parenthese (ouvrante ou fermante) soit une
opération +, = * ou A,

0. Ecrire en utilisant une pile une fonction verif_parenthese(L) qui vérifie si I'expression est
bien parenthésée.

1. Ecrire une fonction transf_inf_post (L) toujours avec une pile qui transforme une expression
infixe complétement parenthésée en expression postfixe (notation polonaise inversée).
Voici un exemple.

peacle= [V 45 Ty UGy Bp T Ty
>»> transf_inf_post(L)
[4,.5, T, "', '#']

2. Ecrire une fonction transf_post_inf(L) qui transforme une expression postfixe en une ex-
pression infixe (classique) complétement parenthésée.
Voici un exemple.

s3> L= ['g", '4', ayv, tal Tyt lgh agt |,~.a‘ +1]
»»> transf_post_inf(L)
'((B8+(4xT))+(9%6))"'

3. Utilisation d’une expression réguliére
Utiliser le module re (expression réguliere) et taper
import re (début de fichier)
decompose = re.compile("\s*(\dx\.\d+|A[=+]1\d+|(?2<=\() [-+]\d+|\d+|.)")
Puis taper
S = '-3+ ((84 + (-47%765))+(316))+9+6-5+9+(-6)"
Que fait S = S.replace(' ',"'')?
Expérimenter LL = decompose.findall(S).
Autres expressions que l'on peut tester
S = '-3+ ((84 + (-47%765))+(316))+9+6-5+9+(-6)"
S = '12+3-(2%2/673)A3M2-6A3A(271)"

4. (%) Ecrire une fonction convinfpost(L) qui transforme une expression infixe (non compléte-
ment) parenthésée en expression postfixe.
Faire quelques tests, on pourra utiliser print(eval(S.replace('*',"'*xx'))) pour utiliser
I'évaluation de 'interpréteur Python.
Indication Il serait judicieux d’utiliser un dictionnaire pour gérer les priorités des opérations.
5. (=) Soit L = ['2', 'A', '5' 1At 1217 représentant une expression infixe.
Que donne votre fonction appliquée a L 7 Essayer de corriger ce probléme.
Méme théme sans piles explicites mais avec des fonctions récursives croisées
On va reprendre l'activité précédente pour résoudre le probléme avec des fonctions récursives
croisées.
On reprend 'expression réguliére :

~
8

Junod.

)17

c© 20

Copyright

Travaux pratiques 297

decompose = re.compile("\s#(\d+\. \d+|*[-+]\d+|(7<=\()[-+]\d+|\d+].)")
L = decompose.findall(S)

On va évaluer l'expression au moyen de fonctions récursives croisées qui lisent la liste L en la
réduisant petit a petit par 'utilisation de L.pop(0).

6. Evaluation d’une expression avec des + ou des - sans parenthese,
A partir de la simple fonction :

def lire_nombre(L):
mwen

version basique
met

a = L.pop(0)
return float(a)

définir la fonction calcul_expression(L) qui calcule la valeur de 'expression supposée ne
contenir que des + ou des - (pas de parentheéses, pas d’autres opérateurs).

7. Avec aussi des opérateurs * et ou /
Ecrire la fonction lire_terme(L) qui calcule des expressions avec des opérateurs * et f
(et utilise Llire_nombre(L)).

8. Adapter alors la fonction calcul_expression(L) pour qu'elle calcule des expressions avec les
quatre opérateurs en tenant compte des priorités (pour I'instant il n'y a pas de parentheses).

9. Améliorer lire_nombre (L) en définissant la fonction 1ire_nombrepuiss (L) pour qu'elle traite
l'opérateur puissance (7).
Indication Un nombre est... un nombre ou une expression avec des puissances.
En principe, I'aspect récursif de votre programme augmente...

10. Avec des parenthéses

Ecrire une fonction 14 re_nombrepuissparenth(L) qui étend la calcul de lire_nombre dans
le cas ou L[] == '('. Cette fonction utilise 1ire_nombre().
Au final, vous avez défini 1ire_nombre, lire_nombrepuiss, lire_nombrepuissparenth,
lire_terme (avec * et /), calcul_expression (niveau + et -) avec des jolis appels récursifs
croisés.
Vous pouvez tester vos expressions avec l'instruction eval de Python (penser a transformer
votre chaine de caractéres par Spyt = S.replace('A', 'xx').

(TP 7.2 — Arbre de baréme et lecture d’un fichier texte)

Lecture d’un fichier Latex, extraction du baréme

Nous disposons d'un fichier texte qui est un énoncé d'un devoir et est écrit dans le langage scien-
tifique Latex.

Cet énoncé comporte des questions, des sous-questions, des sous-sous-questions, ete.

On peut représenter la structure de I'énoncé par un arbre ol les feuilles sont les « vraies » questions
posées au candidat. Ces derniéres suivent un certain baréme qui peut éventuellement étre précisé
dans le fichier & 1'aide de la syntaxe \brm{1,5} par exemple (1,5 points).

Les questions d'un certain niveau (qui correspondent & une certaine profondeur de 'arbre) sont
encadrées par les balises \begin{enumerate} et \end{enumerate} et chaque question proprement
dite commence par le code Latex \1item.

Le but du TP est de construire I'arbre du baréme en lisant le fichier Latex puis d'effectuer quelques
opérations sur cet arbre (calcul complet du baréme et liste ordonnée des feuilles).

Copyright © 2017 Dunod.

298 Chapitre 7 Piles et récursivité

Pour mieux comprendre le but du TP, voici le code Latex du fichier testbarsimple.tex (télé-
chargeable sur la page dédiée a cet ouvrage sur le site de Dunod).

\documentclass[12pt, french,ad4paper, couleur, python, DS]{lupersoMarc}
\def \llhead{\small Devoir}

\def \rrhead{\small PT \annees}

\def \ttitle{Déterminant}

\begin{document}

\Titre

S\mathbb{\mathbb{K}}$ désigne le corps commutatif $\mathbb{R}S ou 5%
\mathbb{C}s.

\EXO{Probléme}

\begin{enumerate}

\item \brm{1} Soit SM=(m_{ij})\in \mathfrak{M}_{n}(\mathbb{K})S On consid%
ére SM(x)=(m_{ij}+x)s ol Sx\in \mathbb{K}$ Montrer que S\det(M(x))s

est une fonction affine.% commentaire bidon

\item \brm{1,5} En déduire une méthode de calcul des déterminants du type
S\left\vert

\begin{array}{cccc}

a & & & (c) \\

& a& & \)\

& & \ddots & \\

(b) & & & a%

\end{array}%

\right\vert .8

\item On pose $S_{n}(x)=\dsum\Limits_{k=@}"{n=1}\cos \left(a+k\pi x\right) $§
% autre commentaire

\begin{enumerate}
\item \brm{2} Calculer 5S_{n}(®).s

\item Sous-probléme bidon

\begin{enumerate}
\item \brm{l} Sous-sous question 1.

\item \brm{1l} Sous-sous question 2.

\item \brm{1l} Sous-sous question 3.
‘end{enumerate}

\item \brm{1,5} Calculer $5_{n}(1).5
\end{enumerate} % penser d rajouter une indication

\item \brm{3} Calculer 85_{n}(x)$ dans le cas général en utilisant
les nombres complexes.

\end{enumerate}

\end{document]}

Compilé, on obtient :

Dunod.

2017

-

Copyright ©

Travaux pratiques 299

Devair Déterminant 2016 17

DETERMINANT

K désigne le corps commutatit B ou C.

| Probleme 12 points

o 1) Soit M = (my;) € M, (K) On considere M(z) = (my; + 2) ol © € K Montrer que det(M(x)) est une
fonetion atfine.

@ (c)
4]
¢ 2) En déduire une méihode de caleul des déterminants du (ype ;.
(b a
n—1
3) On pose S,.(z) = Z cos (o + kmr)
k=0

a) Caleuler S,(0).
b) Sous-probléme bidon
ot i. Sous-sous question 1.

| iil. Sous-sous question 2.
Lt iii. Sous-sous question 3.

i c) Calculer S,(1).

4) Calculer S,,(z) dans le cas général en utilisant les nombres complexes.

ce qui donne 'arbre de baréme suivant

Nous allons utiliser le module re qui gere les expressions réguliéres pour la recherche et le rempla-
cement de motifs dans les chalnes de caracteres.

import re

REGBEGINENUM = r"\\begin\{enumerate|}"

permet de rechercher \begin{enumerate}

regbeginenum = re,compile(REGBEGINENUM)

REGENDENUM = r"\\end\{enumeratel}"
permet de rechercher \end{enumerate}

d.

D

)17 Dunc

C

2

Copyright ©

300 Chapitre 7 Piles et récursivité

regendenum = re.compile({REGENDENUM)

permet de rechercher \item

REGITEM = r"\\item" # trés améliorable...
regitem = re.compile(REGITEM)

REGERM = r"\\brm\{(.4#7)\}"
permet de rechercher \brm{pts} et on récupérera pts...
reghrm = re.compile(REGBRM)

Nous nous contenterons d™utiliser le code suivant pour tester par exemple si la chaine de caractéres
contient \begin{enumerate}.
(le r devant les guillemets permet d’éviter que Python n'interpréte les caractéres échappés).

'L.igne = gl
Ceci est du texte
ou il y o bien
\begin{enumerate}
wn
m = regbeginenum.search({ligne)
if m:
print("0ui, c'est bien présent")
else:
print("Non, pas de enumerate...")

Oui, c'est bien présent

On utilisera aussi le code plus sophistiqué suivant

'L'igr!e = phuir
Ceci est du texte
ou il y o bien

\brm{12,7}

LR

m = regbrm.search{ligne)

if m:
nb = regbrm. findall(ligne)
nb = nb[0]
nb = nb.replace(',’', '.")
nb = float(nb)

print(r"J'ai trouvé le nombre suivant dans \brm :", nb)

J'ai trouvé le nombre suivant dans \brm : 12.7

0. Apres avoir récupéré le fichier testbarsimple.tex, le lire et récupérer la liste des lignes de ce
fichier en écrivant une fonction litfichier (nomfichier).
On utilisera la fonction ainsi

Llignes = Litfichier('testbarsimple.tex')

1. Les commentaires en langage Latex débutent par le caractere % (1'équivalent de # en Python).
Proposer une fonction nettoiecommentaire(L) qui a partir d'une liste de chaines de caracteres
(les lignes du fichiers texte) renvoie la liste nettoyée de tous les commentaires éventuels.
Indication Utiliser la méthode split de la classe (type) str.

L = ["ceci est un %test vraiment", "oui, c'est %coucou voila"]
nettoiecommentaire(L)

unod.

7

01

-

Copyright ©

Travaux pratiques 301

['ceci est un ', "ouj, c'est "]

2. Pour cette question, I'utilisation d'une pile sera tres utile...
Ecrire une fonction trouvequestion(Llignes) qui a partir d'une liste de lignes de textes en
Latex renvoie une liste de couples (n® question, profondeur, pt éventuel), ol pt éventuel = 0
par défaut sauf si \brm est trouvé, la profondeur commence a 0.
A titre de vérification, voici ce que donne le fichier testbarsimple.tex

Llignes = nettoiecommentaire(Llignes)
L = trouvequestion(Llignes)
print(L)

ta, o, 1.e], (2, o, 1.5), [3, @, 0], [1, 1, 2.0],
[2! l'l a]I [1I 2! 1.9], [21 2) I“a]] [31 2' 1.@],
£3; 1, 1.5]; [4, 8, 3:.6]]

Affichage des questions avec leur référence

3. On se propose de lister les questions comme figurant sur 'image précédente.
Afin de respecter les types de numérotations suivant la profondeur, on utilisera la fonction
suivante

Lalpha = ['i', 'ii', 'iii', 'iv', 'wv', 'vi', 'vii', 'viii!, 'ix', 'x']
on va se limiter & 10...

def cv(num, prof):
if prof == 1:
return chr(ord('a') + num - 1)
elif prof == 2:
return Lalpha[num - 1]
elif prof == 3:
return chr{ord{'A') + num - 1)
else:
return str(num)

Comprendre ce que fait la fonction cv et écrire la fonction affichequest(L) qui a partir de la
liste des questions sous la forme (numéro, profondeur, points), obtenue a partir de la fonction
trouvequestion, affiche la liste de toutes les questions et sous-questions avec leur référence
absolue (par exemple 3.a.ii).

affichequest(L)

noCoooo
T T
oy

b

- 7 I U T P U FUIR P O

2017 Dunod.

-

Copyright ©

302 Chapitre 7 Piles et récursivité

Construction de ’arbre de baréme

4. Structure d’un arbre avec un type nceud
On va utiliser le type Arbre construit comme suit

class Arbre:
"nt Classe pour représenter des arbres """

def __init__(self, nom='', pts=8, fils=[]):

[

Crée un arbre a partir

d'une double étiquette nom, points
et éventuellement d'une liste de
sous—arbres (fils)

si fils == [], le noeud est une feuille.

initialisation

self.nom = "'

self.pts = @

self.fils = [] # ne pas mettre fils!

if nom!= '';:
self.nom = nom
if pts!= @:
self.pts = pts
if fils!= []1:

self.fils = fils

Par exemple, voici un arbre élémentaire

a = Arbre("pb", 0,
[Arbre("1", 1),
Arbre("2", 1.5),

def ajoute(self, a):
" Ajoute l'arbre a gux fils de self
(g la fin de la liste)
LLRL
petite précaution
assert(isinstance(a, Arbre))
self.fils.append(a)

def __repr__(self):
if isinstance(self.nom, str)
nomstr = '""{}"'. format(self.nom)
else:
nomstr = str(self.nom)
si c'est une feuille
if len(self.fils) == 0:

return 'Arbre({}, {})'.format(nomstr,
self.pts)

sinon

L =1

for 1 in self.fils: # subtilement récursif

L.append (repr(1))

return "Arbre({}, {}, [{}])'.format(nomstr,
self.pts, ", ".join(L))

Arbre("3", ©, [Arbre("3.a", 2), Arbre("3.b", 1.5)]),

Arbre("4", 3)]
)

qui représente I'arbre suivant

Arbre & baréme

Calcul général du bareme

Ecrire une fonction récursive calculebareme(a) qui calcule le baréme pour chaque question

(= cellule) de I'arbre & partir des feuilles et modifie I'arbre a (effet de bord).

calculebareme(a)

2017 Dunod.

-

Copyright ©

Travaux pratiques 303

Arbre("Pb", 9.0, [
Arbre("1", 1), Arbre("2", 1.5), Arbre("3", 3.5,
[Arbre("3.a", 2), Arbre("3.b", 1.5)]),
Arbre("4", 3)
1}

dont voici une représentation graphique :

Arbre avec baréme rempli

5. Extraction des feuilles

Ecrire une fonction listefeuilles(a) qui liste les feuilles de I'arbre a (de gauche a droite).
Ceci donne avec I'exemple précédent

listefeuilles(a)

E¢"Pb.1"y 1), ('Pbs2', 1.5), ('Pb:3.a', 2}, ('Pb.3.b', 1.5), ('Po.4';, 3)]

6. Ecrire la fonction definitarbre(L) qui construit un arbre de baréme a partir de la liste L

(obtenue a partir de la fonction trouvequestion).
Pour I'instant, le nom d'un neeud sera un entier qui représente le numéro de la question.

a = definitarbre(l)
print(a)

Arbre("Pb", ©, [Arbre(l, 1.0}, Arbre(2, 1.5),
Arbre(3, 8,
[Arbre(1, 2.0),
Arbre(2, ©, [Arbre(1, 1.0), Arbre(2, 1.8), Arbre(3, 1.0)]), Arbre(3, 1.5)]1),
Arbre(4, 3.8)]1)

7. Ecrire la fonction calculequestabs(a) qui renomme les neeuds de l'arbre en replacant le

numéro de la question par sa dénomination « absolue » sous forme de chaine de caracteres, par
exemple 3.b.ii.

caleculequestabs(a)
print(a)

Arbre("Pb", ®, [Arbre("1", 1.@), Arbre{("2", 1.5),
Arbre("3", @,
[Arbre("3.a", 2.0),

Copyright © 2017 Dunod.

304 Chapitre 7 Piles et récursivité

Arbre("3.b", 0,
[Arbre{"3.b.4", 1.8), Arbre("3.b.ii", 1.8), Arbre("3.b.iidi", 1.8)]1),
Arbre("3.c", 1.5)1),
Arbre("4", 3.08)])

8. Calculons le baréeme complet

calculebareme(a)

Arbre("Pb", 12.8, [Arbre("1", 1.8), Arbre("2", 1.5),
Arbre("3", 6.5,
[Arbre("3.a", 2.0),
Arbre("3.b", 3.0,
[Arbre("3.b.i", 1.0), Arbre("3.b.ii", 1.0), Arbre("3.b.iii", 1.0)]),
Arbre("3.c", 1.5)]1),
Arbre("4", 3.8)1)

ou graphiquement

Et listons les feuilles de cette arbre

listefeuilles(a)

[('Pb.1', 1.8),
('Pb.2', 1.5),
('Pb.3.a', 2.0),
('Pb.3.b.¥Y, 1.6),
('Pb.3.b.i4"', 1.8},
('Pb.3.b.i44', 1.0),
('Pb.3.c', 1.5),
('Pb.a', 3.8)]

Tester maintenant le programme sur le fichier Latex testbar. tex (particulierement compliqué,
téléchargeable sur la page dédiée a cet ouvrage sur le site de Dunod).

Dunod.

7
!

201

)

=

Copyright

Travaux pratiques 305

[TP 7.3 — Coloriage récursif]

Un GUI (Graphical User Interface) est un module permettant de gérer des interfaces graphiques
(fenétres, boutons, menus, barres de défilement, etc.).

Le module Python tkinter est un « GUI » modeste mais facile d'utilisation (le logiciel IDLE
I'utilise).

Il existe d’autres modules plus complets comme PyQt4 (par exemple le logiciel Spyder I'utilise).
Notre programme d’'informatique ne demande pas une maitrise de tels modules (il nous faudrait
beaucoup de temps et une culture encyclopédique), on va juste utiliser quelques fonctionnalités.
Les interfaces graphiques utilisent toutes une programmation orientée objet.

Avec le module tkinter, on crée une fenétre principale avec Tk().

On écrit fen = Tk().

L'objet fen est de type tkinter.Tk est la classe « application graphique » de tkinter.

Elle posséde de nombreuses méthodes, par exemple title() ou mainloop(), et des données (par-
fois cachées et gérées en interne).

Dans l'objet fen on va mettre des objets graphiques comme des boutons, des zones de textes
ete. appelés widgets (windows gadget) qui eux-mémes posseédent des données (attributs) et des
fonctions (méthodes).

Quand la construction graphique et le comportement (actions des widgets quand on cligue dessus,
etc.) auront été définis, on lance la boucle d’événements (fen.mainloop()) et la gestion des
événements est controlée en interne par le module tkinter.

Télécharger les fichiers remplissage.py et labyrinthe.py qui possédent une interface graphique
déja construite : on peut modifier une grille et appeler une fonction avec un bouton.

Il ne vous reste qu’a compléter une fonction récursive pour les deux activités proposées ci-apres.

Colorier une zone

On propose de colorier une zone d'un graphique délimitée par une frontiere en partant d'un point
de coordonnées (ig, jo)-

On code le graphique par un tableau (par exemple un array de numpy).

On choisit tab[i, j] = BLANC pour une case coloriable (blanche) et tab[i, j] = NOIR pour
une case en noire qui est susceptible de délimiter la partie & colorier.

On doit définir une fonetion remplit(ig, jo) qui, partant de la case (ig, jo). colorie (par exemple
en jaune, codage tab[i, j] = JAUNE) autour d’elle mais ne traverse pas les cases noires.

On cherche a imiter la fonction du logiciel paint.

#gl |

zsij”?

/A

nlA ® (R
N ﬂh

0. Récupérer le fichier remplissage.py et compléter la fonction récursive remplir(i, j).
Attention : il faut éventuellement régler les problémes du bord du cadre.

306 Chapitre 7 Piles et récursivité

def remplir(i, j):
[
remplit en joune & partir de la case (i, j)
une case est déja jaune si elle est déja passée par
cette fonction

[N

if tab[i, j]!= NOIR and tab[i, j]!= JAUNE:
P
si ce n'est pas une case noire et qu'on n'est pas déja passé
par cette case alors on remplit...
L)
tab[i, j] = JAUNE # on met en joune
petite animaotion avec du rouge
carre(i, j, 'red')
can.update()
sleep(0.65) # Time in seconds.
carre(i, j, 'vellow')
can.update ()
sleep(0.81) # Time in seconds.
fin de lo petite animation
pass
###H A FAIRE #ed#

nemiplir nattoyage Quitter

Trouver le chemin dans un labyrinthe

On veut maintenant trouver un chemin pour aller d'une case a une autre dans un labyrinthe.
Proposer un algorithme récursif qui trouve — quand c’est possible — un chemin reliant ces deux
cases en reprenant 'exemple précédent.

cherche Pettoyage quitver

1. Pour cela, récupérer le fichier labyrinthe.py et compléter la fonction labyrinthe.

def labyrinthe(i, j):
oy
construit le labyrinthe ovec la case courante (i, j)
renvoie True si chemin trouvé

4
i

Dunod.

?.

201

c)

Copyright

Travaux pratiques 307

False si échec
re

pass

[TP 7.4 — Transformée de Fourier discréte (récursivité)]

On note pour n = 2, w,, = exp (—%‘,—”) .

.) =1

A tout vecteur x ="(zg, 21,..., xn—1) € C", on associe le polynome Py (X) = Y o, X ¥ ainsi que
k=0

le vecteur X € C" défini par | X = * (Px(1), Px(wn), ..., Px(wpi™'))

T

L’application .%,, : x — X est linéaire.

On l'appelle la transformation de Fourier discréte d’ordre n (notée aussi DFT,, chez les
anglo-saxons).
n—1

On a pour tout k € [0,n — 1], X[k] = Px (wh) = 3 zewkt.
=0

Quelques résultats
L'application .%,, est un automorphisme de C".

11 ves
1 w, w1 »

matean. ('"g’r'“) = N E : = [w”](k,f)e{[},n—l]]:’ = M"‘
1 gt 5. wf::.—l)z

La matrice M,, est inversible d’inverse %M". En conséquence .7, ! est définie par :
. 1 i
vxeC? £ (x)= = | ¥ (Re(1) Bel@n)y BlEm™))

On observera que le caleul effectif de .Z, ! n'est pas plus compliqué que le calcul de .Z,,.

Une application directe de la méthode de Hoérner montre que le nombre d’opérations (dans C)
nécessaires a évaluer .7, (x) est un & (nz) . On va voir qu'il est possible de faire beaucoup mieux
en adoptant une stratégie « diviser pour régner ».

Méthode naive

0. Définir la fonction TFD(x) on x est un tableau (array) de nombres flottants qui calcule de
maniére brutale (avec une matrice de Vandermonde et un produit matriciel) le vecteur x.
Définir de méme la transformée inverse TFI(x).

Algorithme rapide

L’algorithme suivant s’appelle la transformation de Fourier « rapide ». Elle a été (re)découverte

par deux américains Cooley et Tuckey en 1965. On considére aujourd’hui qu'il s'agit de I'un des

algorithmes les plus importants en informatique et en traitement du signal.

1. On se limite au cas ot n = 2P, avec p > 1. On posera m = 3.
Pour tout vecteur x =*(zg,z1,...,2,-1) € C", on pose

xO="t(zq, 22, ... ,0n_2) € C™ et xN=t(zy,23,....20_1) € C™
On notera aussi

X0 = Z,, (xlﬂl) et xill = 7, (x1)

On dispose alors des relations suivantes pour j € [0,n — 1]

2017 Dunod.

Copyright ©

308 Chapitre 7 Piles et récursivité

o Sij € [0,m —1],
R[j] = x1[j] + wi, - x1[j]

o 8ij€ [m,n—1],

X[j] = xO[j — m] + w}, - xU'[j — m]
Le lecteur intéressé pourra lire la démonstration de ce résultat dans le corrigé.
On voit done que pour caleuler la transformation de Fourier diserete d'un vecteur de longueur
n, il suffit de calculer deux transformations de Fourier discrétes de vecteurs de longueur 3, puis
d’effectuer § multiplications et n additions.
En effet, une fois caleulé les X [j] pour j = [0,m — 1], les autres coefficients s’obtiennent en
remarquant que

%[= xOU[j — m] + wi, - xW[j — m] = xOj — m] —wi=™ - x0[j — m]

car w™ = —1 et les produits w/ =™ - x[1[j — m] ont déja été calculés.
Il reste donc a effectuer % additions.
Notons C(n) le nombre de multiplications dans C nécessaires au calcul de .%,,(x).
On a la relation
n n
C(n)=2-C (—) =
(n) 2 2

Montrer que | C(n) = n - log,(n)
2. Définir la fonction FFT(x) ou x est un tableau (array) de nombres flottants qui calcule de

maniére récursive le vecteur . Définir de méme la tranformée inverse FFTI(x).

Indication On pourra utiliser la fonction np.concatenate qui concaténe les tableaux. Pour

effectuer les tests, on pourra comparer les résultats de FFT(x) avec la fonction fft(x) du

sous-module numpy . fft.

Remarque 1l existe une maniére itérative reprenant I'analyse précédente mais on se contentera
de cette approche.

[’I‘P 7.5 — Pavage par des triminos (récursivité)}

0. On consideére une grille carrée de taille 2" (n = 1). On enléve une case que 'on appellera la
graine a cette grille.
Montrer que I'on peut paver la grille (moins cette case) par des « triminos' », dont voici un
exemplaire :

Indication On pourra raisonner a partir du centre de la grille en s’appuyant sur la figure
ci-dessous.

1. Merci a Laurent Schwald, lycée Poincaré, Nancy pour cette suggestion de TP,

Travaux pratiques 309

cadran 0 cadran 1

(29—1 __1‘2n—1 —'L) {2n—1__ 1,2n_1)
(27:—1‘ 2ri—l _ l) (2“—11 2n.—|)

cadran 2 cadran 3

Résolution par coloriage d’une grille

1. On va utiliser un tableau array de taille 2" x 2" représentant la grille et la fonction suivante
dessine(grille) pour afficher le tableau (les cases seront coloriées en fonction de leur valeur).

def creation_grille(n):
return np.zeros([2**n, 2**n])

def dessine(grille):

plt.imshow(grille, interpolation='nearest')

grille = creation_grille(3)
grille[2, 1] - |

grille[@, @] -2
dessine(grille)

plt.show()

nn

Ecrire une fonction quatremilieux(grille) qui a partir d'une grille renvoie la liste (sous
forme de couples) des quatre cases du milieu.

sachet = quatremilieux(grille)
for i in range(4):
grille[sachet[i]l] = i + 5§

dessine(grille)

310 Chapitre 7 Piles et récursivité

2.

Ecrire la fonction quatrecadrans(grille) qui renvoie une vue sur les quatre cadrans en
respectant 'ordre de la figure du début de 1'énoncé.

Lcadrans = quatrecadrans(grille)

for i in range(4):

Lecadrans[i][:, 3] = 1

for i in range(4):
grille[sachet[i]l] = i + 5§

dessine(grille)

Ecrire la fonction detectioncadran(n, graine) qui renvoie le numéro de cadran correspon-
dant & la graine graine (couple) en utilisant les numéros de la figure du début de 'énoncé pour
une grille de taille n x n.

Ecrire la fonction selecti on_pavage(n, graine, num_graine) quirenvoie la liste constituée
de la graine et des trois cases du milieu de la grille, correspondant aux cadrans ot ne figure pas
la graine (qui est dans le cadran num_graine) pour une grille de taille n x n.

Ecrire la fonction coloriage_trimino(grille, sachet, num_graine, couleur) qui rem-
plit les trois cases du milieu de la grille avec la valeur couleur.

Enfin, écrire la fonction pavage_trimino(grille, graine, couleur) qui colorie récursive-
ment le tablean grille. On pourra, une fois colorié le trimino du milieu de la grille, appeler
récursivement la fonction sur les quatre cadrans en baissant la couleur de couleur - 5 - 1
ol i est le numéro du cadran.

Voici un petit test :

taille = 4

T = creation_grille(taille)

deb = 4 # couleur de la graoine de départ
graine = (14, 1@)

fig = plt.figure()

Tl[graine] = 5 # on marque lao graoine paor une couleur plus chaude que les autres
pavage_trimino(T, graine, deb)
dessine(T)

Travaux pratiques 311

Amélioration du tracé : liste des triminos
7. Nous allons améliorer le tracé en constituant la liste des triminos que nous tracerons ensuite
avec la fonction plt. fill. Voici pour gagner du temps les quatre triminos fondamentaux :

Trime = np.array([(®, 1), (0, 2), (2, 2), (2, 0), (1, @), (1, 1), (8, 1)])
Trim3 = 2 - Trim@

Trim2 = pp.array([2 - Trime[:, 1], Trime[:, 0]1]1).T

Triml = 2 - Trim2

def desTrim(T):
P
on garde l'orientotion des axes comme pour imshow
c'est-a-dire la représentation matricielle (i, j)
i huméro de ligne (en descendant)
Jj numéro de colonne
re
plt. fill(T[:, 11, -T[:, 6], lw=2)
c'est pourquoi on inverse x et y et on décroit l'oxe des y...

Polytrim = [Trim@, Triml, Trim2, Trim3]
Lfig = ['221', '222', '223', '224']

for i 1in range(4):
plt.subplot(Lfig[il, title='cadran {}'.format(i))
plt.axis('eqgual’)
plt.axis('off"')
desTrim(Polytrim[i])

plt.show()
cadran 0 cadran 1
cadean 2 cadan 3

Réécrire la fonction quatrecadrans(grille) ou maintenant grille est un triplet (i, j, n)
ot (i, j]) est la coordonnée du coin en haut a gauche et n est la taille de la grille carrée.

8. Ecrire la fonction rajliste_trimino(grille, num_graine, Ltrim) qui rajoute le trimino
de numéro num_graine avec les bonnes coordonnées absolues dans la liste de triminos Ltrim.
grille représente un triplet comme précédemment.

312 Chapitre 7 Piles et récursivité

9. Réécrire la fonction pavage_trimino(grille, graine, Ltrim) qui remplit cette fois-ci la
liste de triminos Ltrim et la tester comme ci-dessous :

Ltrim = []

taille = 4
graine = (&, 13)

fig = plt.figure()
plt.axis('equal')
plt.axis('eff')
grille = (@, @, 2**taille)
pavage_trimino(grille, graine, Ltrim)
for trim din Ltrim[:]:

desTrim(trim)

plt.savefig('monpavage.png') # si vous voulez souver votre figure
plt.show()

TP 7.6 — Labyrinthe parfait (pile/récursivité) s = difficile |

On va se servir de matplotlib pour tracer un labyrinthe de la maniére suivante :
Exemple de tracé case (0,0) — case (0,1) — case (1.,1)

25
T 20
fig = plt.figure(figsize=(N, N), facecolor='w') 15
plt.subplot('111', axisbg='white')
eps = .6 10
ax = plt.axis([-eps, N - 1 + eps, -eps, N - 1 + eps],
axisbg='b") 05
plt.plot([®, 6, 1], [0, 1, 1], 'w', lw=25) a0
plt.show()
05

-05 00 05 10 15 20 25
On définit un tableau array représentant les cases déja construites d'un labyrinthe en devenir.
Chaque case est donc un booléen, True voulant dire que la case a déja été traitée.

Travaux pratiques 313

R -4 =

18 # taille du lobyrinthe carré, var globale

np.zeros({{N, N}, dtype=bool)

var globale, dit si lo case o déja été troitée pour construire le
labyrinthe ou non

non

Labyrinthe parfait avec une pile

0. Définir une fonction dirpossible(c) qui renvoie la liste des cases non déja traitées (dans T)

valables & partir d'une case ¢ = (i,7).
On pourra se servir pour la suite de la fonction suivante.

import random as rd

def choix(L):
n = len(L)
return L[rd.randint(@, n - 1)]

Un labyrinthe est dit parfait si deux cases quelconques sont reliées par un chemin et un seul.
I1 n'y a donc pas de cycle (c’est un arbre...).
On se propose de générer un tel labyrinthe en utilisant une pile.
Pour cela, on commence par la case (0, 0), que I'on marque comme construite et on met cette
case dans une pile des cases dont il faut visiter les voisins.
Ensuite, tant que notre pile est non vide :
e on dépile une case et on visite aléatoirement les cases accessibles a partir de celle-ci;
e on lance un plot pour visualiser & terme ce chemin ;
e on réempile ensuite cette case, puis la nouvelle case s'il y en a.
S’il n’y a pas de voisin, on ne fait rien de plus.
Ecrire cet algorithme et le tester en visualisant les labyrinthes obtenus.

Labyrinthe parfait avec une fonction récursive

Réécrire 'algorithme précédent avec une fonction récursive mais pas de pile (ou plutot : la pile
est cachée dans les appels récursifs...).

On se propose de modifier le code précédent pour récupérer le labyrinthe sous forme d'un
tableau array de cases noires ou blanches. Pour chaque case, on indique donc s'il s'agit d'un
couloir ou d'un mur.

On pourra alors afficher le labyrinthe a 'aide des fonctions suivantes :

def affiche(Tab): o5
plt.imshow(Tab, interpolation='nearest', cmap='Greys')
plt.show() oo
NOIR = 2 -
BLANC = @ i
GRIS = 1

Tab = np.array([[NOIR, BLANC, BLANC],
[BLANC, BLANC, NOIR],
[BLANC, BLANC, NOIR]], dtype=int) iy

affiche(Tab) e L A A

Ecrire le code.

4. A présent, on va écrire un programme permettant de trouver le chemin entre deux cases blanches

(couloir).

314 Chapitre 7 Piles et récursivité
Par exemple, en supposant les cases [0, 0] et [2xN-2, 2%N-2] blanches, on peut visualiser
le labyrinthe.

Tlab2[@, @] = GRIS # cose de départ
Tlab2[-1, -1] = GRIS # case d'arrivée

affiche(Tlab2)
' i
5 =
10
15 I
0 5 10 15

Ecrire un algorithme récursif qui permet de trouver un chemin entre deux cases du labyrinthe.
5. Adapter le code précédent en écrivant un code itératif qui utilise une pile stockant les cases a
visiter et qui détermine s’il existe bien un chemin.
6. (%) Améliorer le code précédent pour tracer le chemin.
Indication Utiliser une deuxiéme pile représentant le chemin et modifier la pile des cases a
visiter en mettant le nombre de possibilités de visite pour chaque case a visiter : (True/False,
nombre de visites possibles (1 par défaut)).

Copyright © 2017 Dunod.

Corrections des exercices 3156

| Corrigé exo 7.0

0. On obtient :

def deversepile(pl, p2):
while not(pl.estvide()):
p2.empile({pl.depile()})

1. La pile de départ est vidée.
2. Modifions la fonction précédente pour qu’elle préserve I'ancienne pile

def copiepile(p):
""" copie lo pile en préservant l'ancienne '''
paux = Pile()
deversepile(p, paux)
p2 = Pile()
while not(paux.estvide()):
a = paux.depile()
p.empile(a)
p2.empile(a)
return p2

|Corrigé exo 7.1

0. On obtient ;

def echange(p):
a, b = p.depile(), p.depile()
p.empile(a)
p.empile(b)

def echk(p, k):
"' échange le premier et le kieme, k »>= 2 '"!
paux = Pile()
premier = p.depile()
for i in range(k - 2):
paux.empile(p.depile())
kieme = p.depile()
p.empile(premier)
deversepile (paux, p)
p.empile(kieme)

[Go‘rrigé exo 7. 2]

0. On obtient :

def rotpile(p):
"1 orotation d'un cran de la pile ''!
if p.estvide():

Copyright © 2017 Dunod.

316 Chapitre 7 Piles et récursivité

return
paux = Pile()
premier = p.depile()
deversepile(p, paux)
p.empile(premier)
deversepile{paux, p)

def rotk(p, k):
""" rotation de k crans de la pile p
L
p2 = Pile()
p3 Pile()
for i din range(k):
p2.empile(p.depile())
deversepile(p, p3)
deversepile(p2, p)
deversepile(p3, p)

[Corrigé exo 7.3]

0.

def separe(p):
pos = Pile() # pile des positifs stricts
neg = Pile() # pile des négotifs
while not p.estvide():
s = p.depile()
if s > O:
pos.empile(s)
else:
neg.empile(s)
while not pos.estvide(): # on met les positifs sur les négatifs
neg.empile(pos.depile())
return neg

def deversepile(pl, p2):
while not pl.estvide():
pZ.empile(pl.depile()})

def extraitpos(p):

L
on récupéere les nombres positifs dons l'ordre
on n'utilise que deux nouvelles piles
on préserve la pile p d'entrée
P
pos = Pile() # pile aguxiliaoire
on va y mettre les positifs dons 1'ordre inverse
pret = Pile() # pile de retour,
servira de souvegarde inversée de p
while not p.estvide():

s = p.depile()

if s > @:

pos.empile(s)
pret.empile(s) # on sauve

deversepile(pret, p)
deversepile(pos, pret)

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 317

return pret

[Corrigé exo 7.4]

0. 11 suffit de parcourir la chaine s en s’assurant que n_ouv ne devient jamais négatif et qu’il est

nul a la fin du parcours de la chaine :

def expressionbienparentheseevl(s):
n_ouv = @
for ch in s:
if ch == '{':
n_ouv += 1
if ch == '}"':
n_ouy -= 1
if n_ouv < @:
return False
return n_ouv == @

1. L’expression '(a+[b+c)+d]"' est par exemple mal parenthésée. Ceci explique pourquoi utiliser

trois compteurs pour résoudre ce probleme est insuffisant et pourquoi 'usage d'une (seule et
non trois!) pile est adapté.

2. On adapte le code précédent en empilant les ouvrants, en dépilant les fermants et en vérifiant

leur correspondance avec I'ouvrant dépilé.

def expressionbienparenthesee(s):
P= [
for ch in s:
if ch in "([{':
P.append(ch)
if ch in "}J}':
if P == []:
return False
x = P.pop()
if ch == ')" and x!= "(' or ch == '[' and x!= ']' or ch == '{' and x!= "}':
return False
return P == []

Remarque Le connecteur logique and est prioritaire sur le connecteur or.
Avec un nombre de parenthéses quelconque, la structure de dictionnaire permettrait d’avoir des
tests bien plus simples ; ceci s'écrirait :

def expressionbienparenthesee(s):
gle’= ks W), S G, L PR
P=[]
for ch din s:
if ch in dic.keys():
P.append(ch)
if ch din dic.values():
if P == []:
return False
x = P.pop()
if ch!= dic[x]:
return False
return P == []

© 2017 Dunod.

.

(i

Copyright

318 Chapitre 7 Piles et récursivité

[Corrigé exo 7.5]

Voici un code possible de la fonction evalNPI.

def evalNPI(L):

p = Pile()
for a in L:
if a == '+':

deuxieme, premier = p.depile(), p.depile()
p.empile(premier + deuxieme)

elif a == *-':
deuxieme, premier = p.depile(), p.depile()
p.empile(premier - deuxieme)

elif a == '»";
deuxieme, premier = p.depile(), p.depile()
p.empile(premier * deuxieme)

elif a == '/":
deuxieme, premier = p.depile(), p.depile()
p.empile(premier / deuxieme)

else:
p.empile(a)

return p.depile()

ce qui donne

x> ko= [T 8y =0 8§, "'y 185 3, '+ ']
>>> evalNPI(L)

-T78

>>»> eval('(7=-8)*6*(10+3)")

-78

Pour ceux qui connaissent, on peut utiliser un dictionnaire pour factoriser le code et éventuellement
utiliser I'instruction Python isinstance qui teste le type de la variable proposée :

def evalNPI(L):

dico = {'+': lambda x, y: x + vy,
'=": lambda x, y: x - vy,
'+=': lambda x, y: x * y,
'/': lambda x, y: x / y}

p = Pile()

for a in L:

if a in dico: # poreil que dico.keys()
deuxieme, premier = p.depile(), p.depile()
r = dicola](premier, deuxieme)
p.empile(r)

elif isinstance(a, int) or disinstance(a, float):
p.empile(a)

else:
pass # par exemple une fonction 'sin'? & traiter
ultérieurement.,..

return p.depile() # en principe il ne reste plus qu'un nombre

[Corrigé exo 7.6J

0. Au début du calcul, la matrice E ne contient que des —1 : aucune case n'a été découverte. Nous
utilisons une variable k et une pile P dans laquelle sont stockées les cases situées a la distance
k de (z;,y;); k est initialisé & la valeur 0 et P a la valeur [(x;, ;)] (on n’oublie pas de modifier
Elz;,yi]). Tant que P est non vide, c’est-a-dire tant que 'on a trouvé de nouvelles cases, on
incrémente k et on calcule la nouvelle pile NP ; celle-ci contient les cases accessibles depuis

unod.

7

01

-

Copyright ©

Corrections des exercices 319

les cases de P et qui n’ont pas encore été rencontrées. Le calcul de NP se fait en utilisant la
fonction auxiliaire ajout_cases_acc, qui va dans le méme temps mettre a jour la matrice E.
Une fois NP calculée, on affecte sa valeur a la variable P.

def Distance(xi, yi, n, p):
E, P, k = np.zeros((n, p), dtype=int), [(xi, yi)l, @

Ef2y 8] = =3
E[xi, yi]l] = @
def ajout_cases_acc(x, y, pile):
for a, b in Dep: »>»> Distance(®, 0, 6, 3)
nx, ny =x +a,y+b array([[e, 3, 2],
if @ <= nx < nand ® <= ny < p and E[nx, ny] == -1: [3, 4, 1],
Elnx, ny] = k [2, 1, 4],
pile.append((nx, ny)) (3, 2, 3],
while P!= [1: (2, 3, 21,
k += 1 [3, 4, 311)
NP = []
while Pi= []:

(%, y) = P.pop()
ajout_cases_ace(x, y, NP)
P = NP
return E

1. La matrice des prédécesseurs Pred est initialement remplie de (—2, —2). Nous reprenons la

méme méthode, la fonction auxiliaire mettant cette fois-ci & jour la matrice Pred. Par conven-
tion, le prédécesseur de (z;,y;) est (—1,—1).

def Chemins_Minimaux(xi, yi, n, p):
Pred = [[(-2, -2) for x in range(p)] for i in range(n)]
Pred[xi][yi] = (-1, -1)
P = [(xi, yi)]

def ajout_cases_acc(x, y, pile):
for a, b in Dep:
nX, ny =x +a, y+b
if @ <= nx < nand ® <= ny < p and Pred[nx][ny] == (-2, -2):
Pred[nx][ny] = (x, y)
pile.append((nx, ny))

while Pl= []:
NP = []
while Pl= []:

(x, y) = P.pop()
ajout_cases_acc(x, y, NP)
P = NP
return Pred

. On commence par construire le chemin minimal (inversé) L en partant de (z7,ys) et en re-

montant tant que le prédécesseur n'est pas égal a (—1,—1). On parcourt ensuite cette pile L
pour annoter le graphique tout en remplissant la matrice E avec les instants de passage. On
utilise enfin la fonction imshow de la bibliothéque matplotlib.pyplot pour tracer I'échiquier
(la case (0,0) est située en haut & gauche, conformément & cette représentation matricielle).

def Chemin_Minimal(Pred, xf, yf, n, p):
if Pred[xf][yf] == (-2, -2):
print('le cavalier ne peut pas otteindre la case', (xf, yf))
else:
Xy ¥ = xf, yf
L = [(xf, yf)]
nx, ny = Pred[x][y]
while (nx, ny)!= (-1, -1):
X, ¥ = nx, ny

2017 Dunod.

-

opyright ©

C

320 Chapitre 7 Piles et récursivité

L.append((x, y))
nx, ny = Pred[x][vy]
E = np.zeros((n, p), dtype=int)
E[:, :] = -1
fig = plt.figure()
ax = fig.add_subplot(111}
k=@
while L!= []:
x, ¥ = L.pop()

E[x, ¥y] = k
ax.annotate(strik), xy=(y, x), va="center", ha="center")
k += 1
plt.imshow(E, interpolation='neorest', cmap="rainbow")
plt.show()

Nous obtenons ainsi un chemin minimal de (0,0) a (7,6) dans 'échiquier usuel Eg g :

»>> Pred = Chemins_Minimaux(8, 8, 8, 8)

>»> Chemin_Minimal (Pred, 7, 6, &, 8)

| Corrigé exo 7. 7]

0. On remplit une pile P initialement vide en testant tour a tour chaque déplacement (a,b) :

def cases_accessibles(x, v, E, n, p):

Rz [
for a, b in Dep:
if@<=x+a<nand © <=y +b <pand E[x + a, ¥y + b] == 0!
P.append((x + a, v + b))
return P

1. 1l suffit de traduire l'algorithme proposé, sans oublier de mettre a jour la matrice E et le
compteur N :

Corrections des exercices 321

def parcours(xi, yi, n, p):

E = np.zeros{(n, p), dtype=int)

E[xi, yi] = 1

N=1

taille = n *+ p

pile des coups déjd joués

Coups = [(xi1, yi, cases_accessibles(xi, yi, E, n, p))]

while N!= taille and Coups!= []:
le calcul n'est pas terminé et il reste des possibilités o explorer
(%, y, L) = Coups.pop() # on récupére le dernier coup joué

iF L == [I:
E[x, yl = @ # ler cas: on ne peut plus jouer depuis (x,y)
N -= 1 # et on revient en arriére

else:
xs, ys = L.pop() # 2éme cas : on teste un coup possible

Coups.append((x, ¥, L)) # on réempile le coup (x,y)
on joue en (xs,ys)
Coups.append((xs, ys, cases_accessibles(xs, ys, E, n, p)))

N += 1 # on met g jour N
E[xs, ys] =N # on met & jour E
if N == tajlle: # on a trouvé un parcours
return E

else: # on a exploré en wvain toutes les possibilités
return "Il n'existe pas de tour portant de ", (xi, yi)

Cet algorithme nous donne un parcours partant de (0,0) dans I"échiquier Ej5 5 :

»>>» parcours(®, 8, 5, 5)

array([[1, 12, 3, 18, 21],
[4, 17, 20, 13, 8],
(1, 2, T, 22, 18],
[16, 5, 24, 89, 14],
[25, 10, 15, 6, 23]]

Le lecteur pourra vérifier qu'il n'existe pas de parcours partant de (1,2) dans 'échiquier Fj 5,
ce qui prouve qu’il n’existe pas de parcours cyclique dans cet échiquier.

Le temps de calcul devient beaucoup trop long quand on veut s’attaquer a I’échiquier usuel Ej g.
On peut espérer, en cas d’existence d'un parcours, accélérer le calcul en choisissant mieux la case
suivante (zs,ys). Cela se fait en définissant une heuristique, ¢’est-a-dire une régle permettant
de faire de meilleurs choix. Ici, il peut sembler naturel d’essayer de visiter en premier une case
difficilement accessible (si on ne choisit pas cette case comme case suivante, on lui enléve encore
une possibilité d'étre atteinte). Nous allons done choisir la case (xs,ys) de L depuis laquelle le
nombre de cases accessibles est minimal, ce qui sera fait par la fonction meilleur_choix :

def meilleur_choix(L, E, n, p):
P=1L
NP =[]
(x5 y) = P.pop()
t = len(cases_accessibles(x, v, E, n, p))
while P!= []:
0 (xs, ys) = P.pop(}
ts = len(cases_accessibles(xs, ys, E, n, p))

r“\.

— if ts < t:

S NP.append ((x, y))
(%, y) = (xs, ys)
o t = ts

else:
NP.append((xs, ys})
return (x, y), NP

Copyright © 2017 Dunod.

322 Chapitre 7 Piles et récursivité

Cette fonction parcourt la liste L et retient le meilleur choix (z,y), qui possede t cases acces-
sibles : 4 chaque étape du calcul, le sommet qui n’a pas été retenu est ajouté a la pile NP
initialement vide. Nous obtenons alors la nouvelle fonction :

def parcours_heuristique(xi, yi, n, p):
E = np.zeros((n, p), dtype=int)
E[xi, yi] = 1
H=1
taille = n * p
Coups = [(xi, yi, cases_accessibles(xi, yi, E, n, p)}]
while N!= taille and Coups!= []:
(x, y, L) = Coups.pop()
if L == [1:
E[x, y] = @
N==1
else:
on choisit le meilleur coup
(xs, ys), NP = meilleur_choix(L, E, n, p)
Coups.append((x, v, NP))
Coups.append((xs, ys, cases_accessibles(xs, ys, E, n, p)))
N += 1
E[xs, ys] = N
if N == taille:
return E
else:
return "Il n'existe pas de tour partant de ", (xi, yi)

Cette fois, nous obtenons un parcours de I'échiquier Eg g en une fraction de seconde (et une
seconde suffit pour I'échiquier E}gg.100) :

>>> parcours_heuristique(@, @, 8, 8)

array([[1, 22, 3, 18, 25, 30, 13, 16],
[4, 19, 24, 29, 14, 17, 34, 31],
(23, 2, 21, 26, 49, 32, 15, 12],
[28, 5, 56, 39, 28, 35, 56, 331,
(57, 4@, 27, 48, 61, 54, 11, 36],
[6, 43, 60, 55, 38, 47, &4, 51],
[41, 58, 45, 8, 53, 62, 37, 1@],
[44, 7, 42, 59, 46, 9, 52, 63]])

2. Nous reprenons la méme méthode que précédemment, mais en ajoutant un booléen Cycligue
qui teste si la case initiale est accessible depuis la case ol se trouve le cavalier. Dans le cas
ol on ajoute un déplacement (zs,ys), on met a jour ce booléen, qui prend la valeur True si
et seulement si (zs,ys) € {(2,1),(1,2)}. On sort de la boucle si la pile Coups est vide ou si
N = n x p et C'yclique prend la valeur True. Cela donne, en utilisant ’heuristique précédente
et la représentation utilisée dans l'exercice précédent :

def parcours_cyclique_heuristique(n, p):
E = np.zeros((n, p), dtype=int)
E[B, 8] = 1
cyclique = False
N=1
taille = n * p
Coups = [(®, O, cases_accessibles(®, @, E, n, pl))]
while (N!= taille or (not cyclique)) and Coups!= []:
(%, ¥, L) = Coups.pop()
iF L == []:
Elx, y] = ©
N-=1
cyclique = False
else:
(%s, ys), NP = meilleur_choix(L, E, n, p)

2017 Dunod.

t ©

Copyrigh

Corrections des exercices 323

Coups.append({x, y, NP}))
Coups.append((xs, ys, cases_accessibles(xs, ys, E, n, p)))
N += 1
Elxs, ys] = N
cyclique = ((xs, ys) == (2, 1) or (xs, ys) == (1, 2))
if N == taijlle:
fig = plt.figure()
ax = fig.add_subplot(111)
for x in range(n):
for y in range(p):
ax.annotate(str(E[x, y]), xy={(y, %), va="center", ha="center")
plt.imshow(E, interpolation='nearest', cmap="rainbow")
plt.show()
return E
else:
return "Il n'existe pas de parcours cycligue"

L’heuristique n’est malheureusement pas trés efficace deés que la taille de I'échiquier angmente,
mais cette fonetion permet de voir qu'il n’existe pas de parcours cyclique pour n,m < 5, mais
qu'il en existe un dans 1'échiquier Eg 5 :

»>>> parcours_cyclique_heuristique(6, 5)
array([[1, 18, 19, 22, 29],

[18, 27, 30, 9, 20],

(i1, 2, 21, 28, 23],

[26, 17, &, 13, 8],

[3, 12, 15, 24, 5],

[16, 25, 4, 7, 1411)

que l'on peut représenter avec la méme méthode que dans l'exercice précédent :

(i
-

© 2017 Dunod.

Copyright

324 Chapitre 7 Piles et récursivité

[Corrigé exo 7.8]

0. En notant (xp7,yar) les coordonnées d'un point M, on tourne & gauche en B pour aller de A
vers C' en passant par B si et seulement si (rp — 24)(yc — ya) — (yp —ya)(zc —xa) =0 (il
faut éviter de calculer des taux d’accroissement, qui obligent a traiter a part de nombreux cas
particuliers).

def tourne_gauche(A, B, C):
return (B[e] - A[e]) + (C[1] - A[1]) >= (B[1] - A[1]) * (C[e] - A[e])

Lo

La fonction calcule le minimum pour l'ordre lexicographique de R?, avec une variable iy qui
contient I'indice du point minimal parmi les points déja étudiés :

def point_depart(L):
i6 = @
for i din range(l, len(L)):
if (L[i1[0] < L[i8)1[0]) or (L[i][@] == L[i0][0] and L[i][1] < L[i0][1]):
i@ = i
return i@

2. Comme a l'exercice 8.4, nous insérons chaque point M; (pour i # i) dans la pile triée P :

def tri_sommets(L, i0):
P=10]
for i in range(len(L)):
if il!= i0: # on va insérer L[i] dans P
B =[]
while P!= [] and tourne_gauche(L[i8], P[-1], L[1]):
on commence par dépiler P pour trouver lao ploce de L[i]
D.append(P.pop(}}
P.append(L[i])
while D!= []:
on redéverse dans P ce qgue l’on avait versé dans D
P.append(D.pop())
return P

3. Pour faciliter la rédaction, notons M;, = Ny et P = [N,—1,...,N;]. Nous commengons par
dépiler Ny de P et par initialiser E a la pile [Ny, N1] : la propriété 2 est clairement vérifiée.
Nous allons ensuite traiter chaque élément N; & tour de rdle, en dépilant P, et en modifiant E
de sorte que la propriété 22 soit toujours vérifiée. Cela se fait en remarquant que si 'on note
B le dernier élément de E et A 'avant-dernier, deux cas se présentent :

a) Si (A, B, N;) tourne a gauche, il suffit d’ajouter N; a E pour que & soit & nouveau vérifiée ;
b) Sinon, on peut supprimer le point B de E sans modifier 'enveloppe convexe.

Autrement dit, on va supprimer la téte de E tant que (A, B, N;) ne tourne pas a gauche, puis
empiler N; dans E. Cela donne donc :

def enveloppe_convexe(L):
i@ = point_depart(L) # étape (o)
P = tri_sommets{L, i0) # étape (b)
E = [L[ie], P.pop()] # étape (c)
while P!= []: # on va insérer lo téte de P

C = P.pop()
B = E[-1]
A = E[-2]

while not(tourne_gauche(A, B, C)):
E.pop(}) # le point B peut étre supprimé
A, B = E[-2], A

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 325

0 la fin de la boucle on a un virage a gauche
on empile € ou dessus de A et B
E.append(C)

return E

L’analyse du temps de calcul semble délicate car la seconde boucle, imbriquée dans la premiere,
est difficile a étudier. En revanche, une analyse globale est aisée : chaque point de P étant empilé
une et une seule fois dans E, il ne peut étre dépilé qu'une fois. On en déduit que le temps de
calcul de I'étape (c) est un O(n). Le calcul de iy demande également un temps linéaire, mais
le tri effectué par I'étape (b) demande un temps quadratique dans le pire des cas, ce qui donne
une complexité totale en ©(n?). Il suffirait d’écrire une fonction tri_sommets qui travaille en
un temps quasi-linéaire, i.e. en O(n Inn), pour obtenir une fonction enveloppe_convexe de
complexité quasi-linéaire (ce travail pourra étre fait apres la lecture du chapitre sur les tris).

4. On utilise la fonction random de la bibliothéque numpy.random pour simuler les tirages aléa-
toires :

import numpy.random as rd
import matplotlib.pyplot as plt

def tracer(n):
fig = plt.figure()
L = [{rd.random{), rd.random()) for i in range(n)]
on troce le nuage de point
x, y = [L[i][8] for i in range(len(L)}], [L[i][1] for i din range(len(L))]
plt.plot(x, ¥, ".")
E = enveloppe_convexe(L)
E.append(E[@]) # on ajoute & fin du calcul le point de départ du contour
on trace le contour de 1'enveloppe
X, ¥ = [E[i][@] for i in range(len(E))], [E[i][1] for i in range(len(E))]
plt.plot(X, ¥)
plt.show()

Nous obtenons ainsi, avec n = 20, la figure ci-dessous.

1.0

08}

0.6

0.4

0.2}F

°%.

5. Nous commencons par écrire la fonction N qui simule la variable N :

c) 2017 Dunod.

€

{
-

Copyright

326 Chapitre 7 Piles et récursivité

def N(n):
L = [(rd.random(), rd.random{))} for i in range(n)]
return len(enveloppe_convexe(L))

et on utilise la moyenne et la variance empirique comme estimateurs de l'espérance et de la
variance, en effectnant P simulation de la variable N :

def estimation(n, P):
s=8
52 =60
for 1 in range(P):
a = N(n)
S += a
52 += a#*%2
m,m2=5/P, 52 /P
return my, m2 - mx*2

Le probléme est de choisir P suffisamment grand, pour que 'estimation soit assez précise, mais
pas trop grand pour que le temps de calcul reste raisonnable. Notre propos n'étant pas de
rentrer dans des calculs probabilistes précis, contentons-nous de quelques résultats :

>>» estimation(1600, 10)
(12.88, 3.5936000000008092)
>»> estimation(1000, 1008)
(18.81, 6.949899999999957)

En multipliant ce type de calcul (il faut améliorer le temps de calcul de la fonction tri_sommets
si on souhaite angmenter n), on peut conjecturer que le nombre moyen de sommets de I'enve-
loppe convexe est de 'ordre de In(n).

[Corrigé exo 7.9]

0.

def pged(a, b):
if b == @:
return a
else:
q, r=a // b, a%b
return pged(b, r)

1. Partant de la division euclidienne, a = bg + r, si on a bu’ + v’ = d, alors puisque r = a — bq
(r est une combinaison entiére de a et de b), il vient d = av’ + b(u’ — qv") donc on a u = v’ et
v =u'—qv" d’on le code suivant

def bezoutrec(a, b):
if b == @:
return a, 1, @
else:
g, r=a f/b,a%b
d, u, v = bezoutrec(b, r)
return d, v, u - g * v

d.

D

)17 Dunc

C

2

Copyright ©

Corrections des exercices

327

[Corrigé exo 7. 10)

def carrerec(a, b, 1, eps=0.01):
unn 1 spntre 0 et 1
L = [carre(a, b)]
if abs(b - a) > eps:
L.extend(carrerec(a + (b - a) * 1, b+ (b -a) # 1j » 1, 1, eps))
return L

On teste alors notre fonction

BigL = carrerec(®j, 1 + 1j, .2, eps=0.01)
plt.axis(’equal')
for L in BiglL:
plt.plot([a.real for a in L], [a.imag for a in L], 'b', lw=2)

plt.show()

20

15

10

os

%%

def sapin(a, b, eps=0.1):
L=1]

if abs(a - b) < eps:

return [(a, b)]

extend(sapin(a, a

L. (b = a) » .5 % np.exp(1j), eps))
L.extend(sapin(a,

L.

Li

(b - a) * .5 * np.exp(-1j), eps))
b) / 4))

a
append((a, (3 * a
*a+b) / 4, b, eps}))

extend(sapin((3
return L

W o+ + o+

L = sapin(@., 2j)

for a, b in L:
plt.plot([a.real, b.real], [a.imag, b.imagl, 'b')

plt.show()

Copyright © 2017 Dunod.

328 Chapitre 7 Piles et récursivité

20

as

oo

-05
=10 05 oo os 10

[Corrigé exo 7. 11]

import os

def parcours(rep, p):
"' parcours récursif de 1'orborescence des fichiers
(pour info: os.walk le fait pour nous) '"'
os.chdir(rep)
print('p={}, je suis dans {}'.format(p, rep))
#print{'Chemin abs:', os.path.abspath('."'))
liste = os.listdir()
liste des répertoires
lrep = [1 for 1 4n liste +if os.path.isdir(l)]
for 1 din lrep:

parcours(l, p + 1)

os.chdir('..') # on pourrait tester si p!= @

parcours (r'/home/monnom/DOSSIERpython', @)

[Corrigé exo 7. 12]

0.

On utilise le fait qu’une suite décroissante d’entiers naturels est stationnaire (constante a partir
d'un certain rang).

Supposons en raisonnant par I'absurde que la suite (a,,, b,),en existe. On remarque que la suite
d’entiers naturels (a,) est décroissante, elle est done stationnaire.

Il existe ng € N tel que pour tout n = ng, a, = a,,.

Mais alors la suite (b,,)n>n, est elle-méme décroissante.

Il existe n; = ng tel que pour tout n = ny, b, =b,,,.

Ainsi, la suite de couples (a,,. by,),>,, est constante, ce qui contredit le caractére strictement
décroissant.

Supposons qu’il n’existe pas d’élément minimal. En prenant un élément (ag,by) € <, il existe
un élement strictement plus petit (aq,b1) < (ag,bg) et ainsi de suite, on construit ainsi une
suite infinie strictement décroissante, ce qui est en contradiction avec ce que l'on a prouvé
précédemment.

Remarquons que mg = 1 (sinon la fonction ack(mg, ng) termine).

Par ailleurs, pour tout (a,b) < (mg.ng) distinct de (mg, ng), comme (a,b) ¢ <,

ack(a, b) termine. C’est le cas en particulier si @ = m — 1 ou si (a,b) = (mg,no — 1).

d.

D

)17 Dunc

C

2

Copyright ©

Corrections des exercices 329

Or, en examinant le code de la fonction, I'appel ack(mg,np) termine puisqu’il fait appel a
(mu,nu = 1) Et/()ll a {TH.-U =]..,)

[Corrigé exo 7. 13]

0.

uplets croissants
def upletscrois(n, kj):
S =[]

def upint(L, nb):
if nb == 0:
S.append(L)
else:
for i din range(n):
if len(L) == 0 or i > L[-1]:
upint(L + [i], nb - 1)
upint{[], k)
return S

uplets arrangements
def upletsarrang(n, k):
5=1[]

def upint(L, nb):
if nb == @:
S.append(L)
else:
for i in range(n):
if not(i dm L):
upint(L + [i], nb - 1)
upint([], k)
return S

2.

Partitions d’entiers (sans doublons)

partitions d'entiers distincts
def partition(n):

''" partition sans répétition de 1'entier n
rea

5=l
def partitionentiersimple(n, L):
if n == 01
S.append(L)
else:
if L == []:
M =n
else:

M = min{L[-1] - 1, n) # le -1 pour distincts
for d in range(M, @, -1):
partitionentiersimple(n - d, L + [d])

partitionentiersimple(n, [])
return S

partition(9)

Copyright © 2017 Dunod.

330 Chapitre 7 Piles et récursivité

tte1, s, 11, [7, 21, [6, 31, [6, 2, 11, [5, 41, [5, 3, 11, [4, 3, 2]]

Partitions d’entiers avec doublons

partitions d'entiers doublons
def partitionrepet(n):
"1 partition avec répétions de l'entier n ''!

= []

def partitionentiermult(n, L):
if n == 8:
S.append(L)
else:
if L =
M
else:
M = min(L[-1], n) # c'est ld gue se situe la
petite différence
for d in range(M, 8, -1):
partitionentiermult(n - d, L + [d])

[]:
n

non

partitionentiermult(n, [1)
return S

partitionrepet(7)

Le7l,
6, 11,
5, 21,
[5, 1, 11,
[4I 3]’
[4I 2] 1‘]!
[41
[3,
[31
(3,
[3’
[2I
[2,
[21
[1,

]
et
—_

-
e
™

11,

» l! l]’

] 1],

2 l! 1])

E] l, 1’ ljl

s 1, 1, 1, 1]]

Lo i 10 0 S N R VR
™

-

[Corrigé exo T. 14]

0.

1

Renvoie une combinaison de cing nombres parmi [1,27] et ceci 20 fois de suite. On montre que
chaque combinaison est équiprobable (question suivante).

Tout repose sur l'écriture des probabilités conditionnelles,

En effet, on tire une p combinaison aléatoire parmi [1,n] que I'on note C,, , grice & la fonction
combalea(27, 5, []). Fixons A une p combinaison parmi [1,n] arbitraire.

On a

EP(CH-. y — A) .]P(Cm =A ' ne Cu-) X P(ﬂ (= C‘u,) + IP(C =A | n ¢ C"'u.') x IP(H % Cm_ r)'
I P WP P p js

o8ine€A, [P{C',,pzA)]P’(C‘! = [nEC,,p)xEP’(nEC“p)
oSin¢g A, P(Chp =A)=P(C=A|n¢C,p) xPn ¢ C,,p) et A est en réalité une p
combinaison pdrml [1,m— 1]].

2017 Dunod.

Copyright ©

Corrections des exercices 331

Or, d’apres le programme combalea,
P
PneC,,)= =

sin€ A, P(C,p,=A|n€C,,) =P(Cho1p-1=A\{n})
sin¢g A, P(Crhp=A4|n¢Crp)=P(Chr,p=A4)

On montre alors par récurrence sur p + n que pour une p combinaison A parmi [1,n] fixée
quelconque,

1

(»)

P(Chp = A) =

En effet,
en+p=1donne n=1, p=0, A= {} seule possibilité et P(C,,, = {}) = 1.
e Iin supposant le résultat vrai au rang n + p — 1, il vient :

oSineA,
P(Cnp = 4) = = x B(Cu-ip-1 = A\ {n})
= g X ("_ J) (hypothése de récurrence)
p—1
_p, (p-1lr—p)
n (n—1)!
S
()
oSingA,

P(Cpp = A) = (1 =B} x P(Cn-1, = 4)

= (1 - i—?) ¥ (’Tiﬁ (hypothese de récurrence)
n
P

n—p. pln—p—1)!
n (n—1)!

[Corrigé exo 7 .15]

0. Voici le code.

def hanoi(n, a, b):
mnr n disques @ déplacer de a vers b
a et b entre 0 et 2 """
c=3- (a+ b) # astuce
ifn > 8
hanoi(n-1, a, c)
print{a+1,"->", b+l)
hanoi({n-1, c, b)

hanoi (4, @, 2)

332 Chapitre 7 Piles et récursivité

Résultat pour hanoi(4, 0, 2) (15 étapes) :

1->2 3> 3
1->3 2->1
2->3 e
1->2 2->3
3 =2 1+-¥2
3->2 1 -3
1->2 2->3
1->3

1. Voici une écriture itérative de ce programme avec une pile d’appel.
from MaPile dimport *

def hanoiiter(n@, a0, bo):)
nnt n disques & déplocer de a vers b
a et b entre 0 et 2 "'
p = Pile()
p.empile((‘oppel’, (n0, 30, b0)))
while not(p.estvide()): _
etat, (n, a, b) = p.depile(}
if etat == 'oppel':
if n > @:
'{9 =.;3. - (a+* .b)‘
attention & inverser -
p.empile(('appel’, (n - 1, c, b)))
p.empile(('affiche’,
("{} -> {}".format(a + 1, b + 1), 0, 0)))
) p.empile((\"GPI-"-‘_E'.I._'-, (n-1,a,c))) .
elif etat == 'affiche’:
print(n)

hanoiiter(4, @, 2)

Copyright © 2017 Dunod.

Corrections des TP 333

|Corrigé TP 7.0

1.

def multipliescalaire(self, k):

return Vecteur(k * self.x, k * self.y, k # self.z)

def produitvectoriel(self, other):

return Vecteur(self.y * other.z - other.y * self.z,

-self.x * other.z + other.x * self.z, self.x * other.y - other.x * self.y)

3. On implémente un produit scalaire, dont on teste la nullité en faisant attention au test d’égalité

entre flottants :

def testorthogonal(self, other):
return -le-8 < self.x * other.x + self.y * other.y + self.z » other.z < le-8

4.3 8. Dans ces questions, on n'utilise pas de parametres, uniquement self. Il est important de

class Pile:
def __dnit__{self):
self.liste = []
def est_vide(self):
return self.liste == []
def push(self, x):
self.liste.append(x)
def pop(self):
assert not self.est_vide()
return self.liste.pop()
def __repr__{(self):
ch = "sommet\n"
for i in range(len(self.liste) - 1, -1, -1):
ch += " |" 4 str(self.liste[i]) + "|\n"
return ch + " fond"
def echange(p): # Tout se foit en place

if P.est_wide():

return None
P.pop()

if P.est_wvide():

P.push(a) # pas besoin de nouveou "return None" du

else:

comprendre la différence entre 'instance et sa représentation. Pour définir une pile, on tapera
Pile(), qui va créer une pile vide.
La représentation de P sera P.liste. Les méthodes vont donc travailler sur P.liste et non
sur P.

fait du test if/else

Copyright © 2017 Dunod.

334 Chapitre 7 Piles et récursivité
b = P.pop()
P.push(a)
P.push(b)
10.
P = Pile()
for i in range(1l, 5):
P.push(i)
print (P}
echange(P)
print(P)
11.
def push(self, x):
C = cell(x)
C.next = self.listecell
self.listecell = C
12.
def pop(self):
assert not self.estvide()
x = self.listecell
self.listecell = x.next
return x.val
13.

def __repr__(self):

L= []

while not self.estvide():
L.append(self.pop())

n = len(L)

ch = "sommet\n"

for i in range(len(L)):
ch = " IH + Str(LI'l:l] + Hitnh
self.push(L[n - 1 - 1])

return ch + " fond"

(Corrigé TP 7.1

0. On peut par exemple empiler les ' (' et dépiler lorsque I'on rencontre un ') .

def verif_parenthese(L):
mer yérifie ['emplocement des parenthéses
en utilisant une pile

e

p = Pile()
for a in L:
9F a ==
p.empile(a)
elif a == ') ':
if p.estvide() or p.sommet()!= '(':
return False
else:
p.depile()
return p.estvide() # True si tout va bien

4
9

Dunod.

2017

-

Copyright ©

Corrections des TP 335

1. On utilise une pile d’opérateurs p et on construit petit a petit 1'expression post-fixée Lr.
e sion lit un opérateur, on 'empile ;
e sion lit ') "', il nous faut mettre 'opérateur en attente en dépilant la pile p et en mettant
cet opérateur dans Lr;
e si ¢’est un nombre, on le place dans Lr.

def transf_inf_post(L):
ne
transforme une liste infixe parsée ovec parenthéses complétes
en une liste postfixe
pas de gestion des priorités
mwee
p = Pile()
Lr = []
for a in L:
if operateur(a):
p.empile(a)

Lr.append(p.depile())
else:
Lr.append(a)
return Lr

2. On reprend l'évaluation d'une expression post-fixée (notation polonaise inversée) de 1'exercice
7.5 p. 286 mais en manipulant des chaines de caractéres plutot gque des nombres.

def transf_post_inf(L):
mint prend une liste parsée postfixe et renvoie une chaine

de coractéres en notation infixe avec toutes les parenthéses possibles
nwe

g = "y
p = Pile()
for a in L:
if operateur(a):
c, d = p.depile(}, p.depile()
s = '(!" %+ gstr(d) + a + str(c) + ")'
p.empile(s)
else:
p.empile(a)
return s

3. On récupeére dans la liste LL la liste des objets : nombre (sous forme de chaine de caractéres),
opératenrs et parentheses.
4. On reprend le code de la question 1 en ajoutant la gestion des priorités des opérateurs :
e si on lit un opérateur, on va 'empiler mais on calcule 4 quel niveau on va le placer
dans la pile p en fonction des priorités et on met les opérateurs dépilés dans Lr,
e sion lit ' (', on 'empile (il nous faut repérer le début de cette « sous-évaluation »),
e sionlit ') ', on dépile p jusqu’a tomber sur ' (' et on met les opérateurs dans Lr,
e si c'est un nombre, on le place dans Lr.

def convinfpost(L):
" convertit une liste infixe parsée
non complétement parenthésée
en une liste postfixe
en gérant les priorités (souf * correctement)
e
prige = {1{1+ 8; '+ Ay t=tn Xy Pele 2y 1L DL TR 3]
p = Pile()

Copyright © 2017 Dunod.

336 Chapitre 7 Piles et récursivité

Lr = [] # liste postfixe & retourner
for a in L:
if operateur(a):
placement = not p.estvide()
while placement:
if prio[p.sommet()] »= priola]l:
e = p.depile()
Lr.append(e)
placement = not p.estvide()
else:
placement = False
p.empile(a)
elif a == '(';
p.empile(a)
elif a == ')}
e = p.depile()
while el= '(':
Lr.append(e)
e = p.depile()
else: # c'est un nombre
Lr.append(a)
while not p.estvide():
Lr.append(p.depile())
return Lr

5. Dans le cas de la puissance ('A'), on 'empile directement sans attendre !.

def convinfpost2(L):
mnt convertit une liste infixe parsée en une liste postfixe
en gérant les priorités et 273%4 = 2%(3"4) lecture d droite

pour lo puissaonce
e

pric = {'f% B, T A, K= Tt Do TYTa g GERTE T
p = Pile()
Lr = []
for a in L:
if a == *a’;

placement = not p.estvide()
while placement:
if prio[p.sommet()] > prie[al: # pour l'instant
ce cos n'existe pas
e = p.depile()
Lr.append(e)
placement = not p.estvide()
else:
placement = False
p.empile(a)
elif operateur(a):
placement = not p.estvide()
while placement:
if prio[p.sommet()] >= prio[a]:
e = p.depile()
Lr.append(e)
placement = not p.estvide()
else:
placement = False
p.empile(a)
elif a == '('":
p.empile(a)
elif a == ')':
e = p.depile()
while el= "(':
Lr.append(e)
e = p.depile()
else: # c'est un nombre

1. Dans le code, on a rajouté I"éventualité d’un opérateur strictement plus prioritaire que ('*').

4

Corrections des TP 337

Lr.append(a)
while not p.estvide():
Lr.append(p.depile())
return Lr

Version avec des fonctions récursives croisées
6. Avec la fonction

def lire_nombre(L):

wn

version basique
e

a = L.pop(0)
return float(a)

on peut écrire la fonction suivante :

def calcul_expression(L):

i

version que + et -

LRI

nb = lire_nombre(L)

while L!= [] and L[®] d9n ['+', '-']:
op = L.pop(@)
nb2 = lire_nombre(lL)

if op == '+':
nb += nb2
elif op == '-':
nb == nb2
return nb

7. On adapte le code précédent pour les opérateurs * et /.

def lire_terme(L):

B

version sans puissance, seulement * et /
e
nb = lire_nombre(L)
while L!= [] and L[B®] d4n ['*', '/']:
op = L.pop(@)
nb2 = lire_nombre(L)
if op == '&';
nb *= nb2
elif cp == /"2
nb /= nb2
return nb

8. On change simplement la ligne nb2 = lire_nombre(L) par nb2 = lire_terme(L)

def calcul_expression(L)
wrerr

Dunoc

2017

-

Copyright ©

version avec =, / etc.

wn

nb = lire_terme(L) # changement

while L!= [] and L[@] 9n ['+', '-']:
op = L.pop(@®)
nb2 = lire_terme(L) # changement
iF op == '4';

nb += nb2
elif op == '-":
nb -= nb2
return nb

© 2017 Dunod.

.

(i

Copyright

338 Chapitre 7 Piles et récursivité

9. Voici le code de la fonction qui lit un nombre viu comme une expression uniquement constituée
de nombres d’opérateurs puissance.

def lire_nombrepuiss(L):
mne version incluant les puissances
wn
nb = lire_nombre(L)
liste = [nb]
while L!= [] and L[B] == '*':
L.pop(B) # élément inutile
nb2 = lire_nombre(L)
liste.append(nb2) # on empile les exposants
n=1
while liste!= []:
nb = liste.pop()
n=nb %k n
return n

et on adapte la fonction lire_terme,

def lire_terme(L):

[

version ovec puissance

e
nb = lire_nombrepuiss(L) # chongement
while L!= [] and L[®] dn ['#", '/']:

op = L.pop(®@)

nb2 = lire_nombrepuiss(L) # changement

if op == 'x":
nb *= nb2
elif op == '/':
nb /= nb2
return nb

10. Voici la version compléte avec en plus de 'opérateur puissance, la gestion des parenthéses :

e on ne change pas calcul_expression qui utilise 1ire_terme combiné avec les opérateurs
@f—-

e on adapte la fonction lire_terme qui utilise maintenant 1ire_nombrepuissparenth com-
biné avec les opérateurs * et /:

e on écrit la fonction 1ire_nombrepuissparenth et on adapte la fonction 1ire_nombrepuiss.

def lire_terme(L):
e
version avec puissance et parenthése
nombrecomplet = ovec les puissances et
surtout les parenthéses!!!
LRI
nb = lire_nombrepuissparenth(L) # chongement
while L!= [] and L[B] din ['#", '/']:
op = L.pop(0)
nb2 = lire_nombrepuissparenth(L) # changement
if op == '*":
nb *= nb2
elif op == '/':
nb /= nb2
return nb

def lire_nombrepuissparenth(L):
"t 1it un nombre avec puissance et
ovec les parenthéses (supposées bien plocées)

LR

if L[@) == '({': # gestion des porenthéses

Copyright © 2017 Dunod.

Corrections des TP 339

L.pop(8) # on oublie '('
resultat = calcul_expression(L)
en principe L[@] == ')!
L.pop(0}
L.insert(®, str(resultat)) # on insére le résultat (ou bon endroit)
resultat = calecul_expression(L)
return resultat
else: # fin gestion des parenthéses
return lire_nombrepuiss(L)

def lire_nombrepuiss(L):
"M yersion incluant les puissances modifiées
ou début un vrai nombre puis * puis éventuellement une parenthése
mnn
nb = lire_nombre(L)
liste = [nb]
while Li= [] and L[@] == ‘A':
L.pop(B) # élément inutile
if L[@] == '{": # gestion des parenthéses
L.pop(0) # on oublie '(
nb2 = calcul_expression(L)
en principe L[B] == ')
L.pop(@)
else:
nb2 = lire_nombre(L)
liste.append(nb2) # on empile les exposants
n=1
while Lliste!= []:
nb = liste.pop()
n=nb *n
return n

On peut effectuer quelques tests de la maniere suivante

def test(s):
s = s.replace(' ', '') # on enléve tous les blancs
L = decompose.findall(s)
spyt = s.replace('"’, '#%")
resultat = calcul_expression(L)
return resultat, eval(spyt)

Cela donne par exemple

>>> test('(5+461243)-8+9/5-(8-7=(5+8)) ")
(1679689.6, 1679689.6)

[Corrigé TP T. 2J

0. On peut utiliser les méthodes de fichier read ou readlines et la méthode de chaine de carac-
teres splitline.

def litfichier(nomf):

Llignes = []

try:
f = open(nomf, "r")
Llignes = f.readlines() # avec les |n
Llignes = f.read().splitlines() # sans les \n
f.close()

except:
print("Aie, pes pu ouvrir", nomf)

Copyright © 2017 Dunod.

340 Chapitre 7 Piles et récursivité

return []

return Llignes

La méthode de chaine de caractéres split('%') [@] nous fournit ce que 1'on veut.

def nettoiecommentaire(L):
Lret = []
for ligne in L:
ligne = Lligne.split('%')[@8] # commentaires
Lret.append(ligne)
return Lret

On utilise deux piles. La pile Pquest on on empile les questions que 'on trouve au fur et a
mesure et la pile Pilenum qui empile a l'avance le numéro de question a utiliser pour une
prochaine question. On démarre a 1 puis on incrémente tant que 'on reste avec des questions

de méme profondeur. La présence d'un \begin{enumerate} indique que I'on progresse en

profondeur et on recommence alors & numéroter les questions a partir de 1.

def trouvequestion(Llignes):
(N
@ partir d'une liste de lignes de textes en Lotex
renvoie une liste de couples (num question, profondeur, pt éventuel)
(pt éventuel = @ par défout sauf si \brm est trouvé)
L
MANIPULATION POUR ELIMINER LES COMMENTAIRES
Llignes = nettoiecommentaire(Llignes)

Pquest = [] # liste (numéro question, profondeur, pt)

prof = -1 # profondeur initiale

Pilenum = [] # Pile des numéros de question, commencera d 1 en prof @
for ligne in Llignes:

m = regbeginenum.search(ligne)

if m: # \begin{enumerate} repéré
on démarre le numéro de question potentielle & 1
Pilenum.append(1)
prof += 1 # en principe prof = len(Pilenum)
continue

m = regendenum.search(ligne)

if m: # \end{enumerate} répéré
prof -= 1
Pilenum.pop()
continue

m = regitem.search(ligne)

if m: # \item repéré
quest = Pilenum.pop()
Pquest.append ([quest, prof, 0]) # @ est le bareme par défaut
Pilenum.append(quest + 1) # attention paos de continue

lecture d'un bareme éventuel
m = regbrm.search(ligne)

if om:
nb = regbrm.findall(Lligne)
nb = nb[®]
nb = nb.replace(',', '.")
nb = float(nb)

Pquest[-1][2] = nb # on met le baréme

return Pquest

Corrections des TP 341

3. On construit le chemin absolu en suivant I'évolution d'une pile P qui s’adapte au parcours de
la liste des questions en scrutant les différences relatives de profondeur.

def affichequest(L):

re

affiche avec chemin absolu les guestions
L

initialisation

numa, profavant = 1, @

P=['0]

for num, prof, bar in L:
if profavant == prof - 1:
pass # on rentre dans un lot de sous-guestions

elif profavant == prof + 1:

P.pop(}

P.pop(} # on a terminé un lot de sous-questions
else:

P.pop() # on passe @ lo question suivante, on enléve le numéro précédent

P.append(cv{num, prof))
profavant = prof

print(’'.".join(P))
on peut oussi bien sir empiler cette affichage...

4. Cela s'écrit trés rapidement en utilisant la récursivité.

def calculebareme(a):
rea
calcule le bareme pour chague question (= cellule) de 1'arbre
g partir des feuilles et modifie l'orbre o
(effet de bord)
rrr
if a.fils == []:
return a.pts

else:
total = sum(calculebareme(b) for b in a.fils)
a.pts = total

return total

5. On utilise une fonction interne récursive listeint!.

def listefeuilles(a, nomexoc='Pb'):
"'1 liste les feuilles de l'arbre (de gouche @ droite)

v

L=[1

def listeint(arb):
if arb.fils == []:

L.append((nomexo + '.' + arb.nom, arb.pts))
== else:
F: for arbf in arb.fils:
c listeint(arbf)
fﬁ # les questions commencent & 1...
= listeint(a)}
r: return L

6. On utilise une pile des arbres nouvellement créés a chaque nouvelle profondeur.
On rajoute les questions en tenant compte du niveau hiérarchique :
e si le niveau ne bouge pas, on rajoute la question aux fils de 'arbre courant (sommet de la

pile) ;

1. Pour ceux qui connaissent, il s’agit dun parcours en profondeur de I'arbre.

Copyright © 2017 Dunod.

342 Chapitre 7 Piles et récursivité

e si le niveau progresse, on créé une nouvelle ramification avee un nouvel arbre que 1'on relie
a l'arbre courant et on empile ce nouvel arbre;
e si on redescend a un niveau hiérarchique plus bas, on dépile le nombre nécessaire pour
pouvoir rajouter la question au bon niveau de l'arbre ;
et on renvoie ensuite la racine de 'arbre principal.

def definitarbre(L):
(N
g partir d'une liste de guestions hiérarchiques

crée l'arbre
L

a = Arbre('Pb')
racine = a

Pile = [a]
nivanc = @ # niveou de départ
pts = -1 # pas de pts pour l'instant

for quest, niv, bar in L:

if niv == mivanc + 1:
b = Arbre(quest, bar)
a = Pile[-1]
a = a.fils[-1]
a.ajoute(b)
Pile.append(a)

elif niv == nivanc:
a = Pile[-1]

a.ajoute(Arbre(quest, bar))
elif niv < nivanc:
desc = nivanc - niv
for i in range(desc):
b = Pile.pop()
b = Pile[-1]
b.ajoute(Arbre(quest, bar))

nivanc = niv

return racine
7. On reprend l'idée de la question 5 en utilisant la récursivité.

def calculequestabs(a):
e
renomme les guestions en nototion absolue

(parcours en profondeur)
rtee

def calculegquestrec(a, pred='', prof=-1):

etiq = str(cv(a.nom, prof))

if pred!= '':
a.nom = pred + '." + etig

else:
Petite subtilité pour éviter de commencer la référence de la
question par un point.
a.nom = etiqg

on poursuit le parcours de 1'arbre
for b in a.fils:
calculequestrec(b, a.nom, prof + 1)

on oublie lo racine...

for b in a.fils:
calculequestrec(b, '', 8) # '' ou lieu de a.nom

8. On exécute le code suivant :

c)

) 2017 Dunod.

Copyright

Corrections des TP 343

Llignes = Litfichier('testbar.tex')
Llignes = nettoiecommentaire(Llignes)
L = trouvequestion(Llignes)

a = definitarbre(L)
calculequestabs(a)
print({calculebareme(a))
listefeuilles(a)

On obtient

[('Pb.1', 100.5),
('Pb.2.a.i', 10.8),
('Pb.2.a.i4', 11.0),
('Pb.2.b', 12.0),
('Pb.3', 161.0),
('Pb.4,a", 208.68),
('Pb.4.b.i", 0.5),
('Pb.4.b.i4', 0.5),
('Pb.4.b.iii', ©.5),
('Pb.4.b.iv', 8.5),
('Pb.4.b.v', 0.5),
('Pb.4.c.i', 3.8),
('Pb.4.c.ii.A'y 0.1),
('Pb.4.c.ii.B', 0.1),
('Pb.4.c.ii.C', 0.1),
('Pb.4.c.9i.D', 0.1),
('Pb.4.c.9i.E', 08.1),
(‘Pb.4,c.ii1", 2.1),
('Pb.4.c.iv', 2.1),
('Pb.d.cov', 2.1),
('Pb.4.d', 30.0),
('Pb.5', 400.0)]

Arbre("Pb", 696.8,

[Arbre("2.a", 21.0,

[Arbre("4.a", 20.0),
Arbre("4.b", 2.5,

Arbre("4.b.v",

[Arbre("4.c.i",

Arbre("4.c.iv",
Arbre("4.c.v",

Arbre("5", 480.0)])

Voici 'arbre obtenu graphjquement

_Y//”fl B o N
@I—"";L—:F':‘/ (‘__IHII;« (‘e_n_ i n,.n,-n\;

/’“T
/___

\k_.m; (_‘_h.l n_:} G;I_:T:) e
1 - t"""."_.,e'
CGromy G Crnns Cotnng Chmse %ﬁ

1»
L
L N

[Arbre("1", 180.5), Arbre{"2",

Arbre("4.b.944",

33.0,

[Arbre("2.a.i", 10.0), Arbre("2.a.ii", 11.0)]),
Arbre("2.b", 12.0)1),
Arbre("3", 181.8), Arbre("4",

62.3,

[Arbre("4.b.i", @.5), Arbre("4.b.ii", 0.5),

@8.5), Arbre("4.b.iv", 0.5),

8.5)1},

Arbre("4.c", 9.799999999999999,

3.0), Arbre{("4.c.ii", 9.5,
[Arbre("4.c.ii.A", 0.1), Arbre("4.c.ii.B", 0.1),
Arbre("4.c.ii.C",
Arbre("4.c.ii.E", 0.1)]),

Arbre("4.c.¥ii", 2.1),

3135

2.1)1),

Arbre("4.d", 30.0)1),

0.1), Arbre("4.c.ii.D0", @.1),

F(u!lﬂ IJ.'Q":KD
a;f——nuﬁ%_“
05 -"‘“E"_\.._:'_.D e

::_/5;:_ d*fxxxb_ Bl S

GI:A.U_IE_J \5Tn:|§ GI.L.][!) »ulllllpD \\: WL uD

On pourra noter le probleme de I'approximation décimale (0.1 n’est pas exact en binaire...)

(Corrigé TP 7.3

0.

def remplir(i, j):
L
remplit en jaune & partir de lo case (i, j)
une case est déjd joune si elle est déjo possée par
cette fonction

[N

if tab[i]l[j]!= NOIR and tab[i][j]!= JAUNE:

rie

si ce n'est pos une case noire et qu'on n'est pas déjd passé

par cette case alors on remplit...
trr

tab[i][j] = JAUNE # on met en jaoune
petite agnimation avec du rouge

Copyright © 2017 Dunod.

344 Chapitre 7 Piles et récursivité

carre(i, j, 'red')
can.update()
sleep(®.685) # Time in seconds.
carre(i, j, 'vellow')
can.update ()
sleep(0.81) # Time in seconds.
fin de la petite animation
if i < long - 1: # attention ou bord si on n'a pas mis de case noire
remplir{(i + 1, j)
if j > @:
remplir(i, j - 1)
if i > @:
remplir(i - 1, j)
if j < larg - 1:
remplir(i, j + 1)

def labyrinthe(i, j):

e

construit le labyrinthe aovec la cose courante (i, j)

renvoie True si chemin trouvé

False si échec

L

if tab[i][j] == BLEU:
print('Chemin trouvé!')
return True

elif tab[i1][j] == BLANC:
L
si ce n'est pos une case noire et qu'on n'est pas déja passé
par cette case alors on remplit,..
L
tab[i][j] = JAUNE # on met en joune
petite animotion avec du rouge
carre(i, j, 'red")
can,update()
sleep(@.1) # Time in seconds.
carre(i, j, 'yellow')
can.update ()
sleep(0.005) # Time in seconds.
fin de lo petite animation

ottention ou bord si on n'a pas mis de case noire
if i < long - 1 and labyrinthe(i + 1, j):
return True

if j > 0 and labyrinthe(i, j - 1):
return True

if 4 > @ and labyrinthe(i - 1, j):
return True

if j < larg - 1 and labyrinthe(i, j + 1):
return True

tab[i1[j]1 = BLANC # on remet en blanc
carre(i, j, 'white')
return False
else: # barriére
return False

od .

17 Dunc

)

o

™

Copyright ©

Corrections des TP

345

(Corrigé TP 7.4]

def TFD(x):
= len(x)
omega = np.exp(-2j * np.pi / N)
M = [[(omega ** k) ** i for i dn range(N)] for k in range(N)]
Mat = np.array(M)
return np.dot(Mat, x)

def TFI(x):
= len(x)
omegabar = np.exp(2j * np.pi / N)
M = [[(omegabar *+ k) *+ i for i in range(N)] for k in range(N)]
Mat = np.array(M)
return np.dot(Mat, x) / N

1. n =27 et C(1) = 0. On pose alors u, = C (27) et on a

: -1
Up = 2up_1 + 2°

d’ofi - »
k k-1
d’on, par sommation
P
?Ip Z (?J'J\, _ Up— 1) i
E—1 _)'.

k=1

d’on

C(n)=C(2°)=2P .p =|n-log,(n)

Voici la démonstration du résultat technique de 1'énoncé.
Démonstration
Pour tout j € [0,n — 1],

n—1 m=—1 m—1
Sl = N ki — 243 (2041)j
Xijl= E Tpwy? = E Topws 7 + E .rgp.i.lu,f,,)i
k=0 =0 =0
Or w2 = exp(3Z) = wyn, donc :
m—1 m—1
o Ea N
X[j] = E f).fw + E ’?“ze+1w” Wyl
£=0

On distingue alors deux cas.
1¢" cas j € [0,m — 1]]. La relation précédente montre que : Z[j] = x01[;] + w? x[1[5].
2¢ cas j € [m,n — 1]. Dans ce cas,

m—1 m=—1
=T — . i?;.
X[j] = E Tag - Wi J 4 E Tapyq ¢ CWen
=0
m—1 m—1
L Bi=m ; _ 2(i—m
=Y 220wlI™™ +wh Y mapg W™

=0

= xU1[j — m] +), - x01[j — m]

Copyright © 2017 Dunod.

346 Chapitre 7 Piles et récursivité

2.

import numpy as np
from numpy.fft import fft # pour comparer

def FFT(x, inv=False):
" FFT récursive

e

n = len(x)

if n ==
return x
elifn % 2 > 0:
raise ValueError("n n'est pas une puissance de 2!")
else:
X_pair = FFT(x[::2], dnv)
X_impair = FFT(x[1::2], tinv)
if not(dinv):
omega = np.exp(-2j * np.pi * np.arange(n // 2) / n) # la moitié
else:
omega = np.exp(2j * np.pi * np.arange(n // 2) / n) # conjug
X1 = omega * X_impair
return np.concatenate([X_pair + X1, X_pair - X1])

def FFTI(x):
n = len(x)
return 1 / n * FFT(x, inv=True)

Testons notre fonction en la confrontant a la fonction fft du sous-module numpy . fft

test
def f(t):
return np.sin(t) + t#+2

T = np.linspace(@, 1, 2+*15)
X f(T)
FX, fx = FFT(X), fft(X)

print(FX - fx)
print('FFT et fft', sum(abs(FX = fx)**2))

Z = FFTI(FFT(X)) - X
print('inverse: ', sum(abs(Z)#+2)}

ce qui donne

[©.00000000e+00 +0.00000000e+00] -9.09494702e-12 +7.27595761le-12j
-2.55795385e-12 +9.09494702e-13j {\ldots}, 2.64890332e-11 +3.6379788le-12j
3.81987775e-11 +4,54747351e-12] 8.68567440e-11 +1.81898940e-117]
FFT et fft 1.27528190625e-20
inverse: 3.79852911285e-27

(Corrigé TP 7.5

0. On raisonne par récurrence sur n, le cas n = 1 étant évident.
Supposons que 'on sache paver par des triminos une grille de taille 2"~ ! x 2"~! moins une
graine, montrons que 'on peut le faire pour une grille de taille 2" x 2" moins un graine.
On coupe la grille en quatre cadrans et on repére le quadrant contenant la graine : ce cadran est
pavable par des triminos par hypothese de récurrence. Pour les trois autres, il suffit d’enlever

Copyright ® 2017 Dunod.

Corrections des TP 347

le bon trimino au centre de la grande grille pour obtenir trois cadrans moins une graine (dans
un coin a chaque fois) qui eux aussi sont pavables.
Il reste maintenant & implémenter ce raisonnement...

Voici

def

def

def

def

une figure explicative :

quatremilieux(grille):

""" on renvoie les guatre cases du milieu

L

dimension, _ = grille.shape

nt = dimension // 2

sachet = [{nt = 1, nt = 1), (nt = I, nt), (nt; nt = 1); (nt, nt)]
return sachet

gquatrecadrans(grille):

‘"' on renvoie une vue sur les quatre cadrans

ree

n, _ = grille.shape

nt=n/ff 2

Lcadrans = [grille[:nt, :nt], grille[:nt, nt:],
grille[nt:, :nt], grille[nt:, nt:]]

return Lcadrans

detectioncadran(n, graine):
nt=n // 2
ancre = [graine[®] // nt, graine[l] // nt]

on utilise un petite astuce la numérotation gu'on a choisie des zones

fait qu'ancre donne en base 2 le numéro de la case.
return 1 * ancre[l] + 2 + ancre[8]

renvoie_sachet(n, graine, num_graine):

par defaut on renvoie les quatre cases centrales

comme dans selection pour le tapis

nt=nff 2

sachet = [(nt - 1, nt - 1), {(nt - 1, nt), (nt, nt - 1), (nt, nt)]

il fout maintenont modifier 1'une de ces coses pour

gqu'elle soit remplacée par lo graine

sachet[num_graine] = graine

le sachet contient maintenant les 3 coses du trimino et lao graine,

dans 1'ordre ol ils doivent étre transmis récursivement aux cadrans.

return sachet

Copyright © 2017 Dunod.

348 Chapitre 7 Piles et récursivité

5.

def coloriage_trimino(grille, sachet, num_graine, couleur):
on colorie les cases de sachet sauf lo case num_graine
for k in range(4):
if k!= num_graine:
grille[sachet[k]] = couleur

def pavage_trimino(grille, graine, couleur}:

n, _ = grille.shape
ifn> 1:
nt=n /f 2

Lcadrans = quatrecadrans(grille)
num_graine = detectioncadran(n, graine)
sachet = renvoie_sachet(n, graine, num_graine)
coloriage_trimino(grille, sachet, num_graine, couleur)
for i in range(4):
grille = Lcadrans[i]
sousgraine = sachet[1i]
on obtient facilement les coordonnées des graines
dans les codraons, il suffit de colculer modulo nt.
sousgraine_relative = (sousgraine[®] % nt,
sousgraine[l] % nt)
pavage_trimino(grille, sousgraine_relative, couleur - 5 - 1)

réécriture de la fonction

def quatrecadrans(grille):
""" on renvoie une vue sur les quatre cadrans
rea
i, j, n = grille
nt=nff 2
Lcadrans = [(i, j, nt), (i, § + nt, nt),
(i +nt, j, nt), (i + nt, j + nt, nt)]
return Lcadrans

def rajliste_trimino(grille, num_graine, Ltrim):
global Polytrim
on rajoute le trimine de numéro num_graine avec les bonnes coordonnées absolues
dans la liste de triminos Ltrim
trim = Polytrim[num_graine].copy()
Xy ¥y n = grille
nt=n// 2
trim[:, 8] = x + nt - 1 + trim[:, @]
trim[:, 1] =y + nt - 1 + trim[:, 1]
Ltrim,append(trim)

def pavage_trimino(grille, graine, Ltrim):

wn

maintenant grille = (x, y, taille)
Xy, ¥, n = grille
ifon > 1

nt =n /f/ 2

Lcadrans = quatrecadrans(grille)

2017 Dunod.

t ©

Copyrigh

Corrections des TP 349

num_graine = detectioncadran(n, graine)
sachet = renvoie_sachet(n, graine, num_graine)

rajl

iste_trimino(grille, num_graine, Ltrim)

for i in range(4):

grille = Lcadrans([i]
sousgraine = sachet[di]
on obtient facilement les coordonnées des graines

dons les cadrans, il suffit de calculer modulo nt.

sousgraine_relative = (sousgraine[8] % nt,
sousgraine[l] % nt)
pavage_trimino(grille, sousgraine_relative, Ltrim)

[Corrigé TP 7.6J

0.

def cochecase(c):
1-’ j = c
if @ <= 9 < N and © <= j < N:
TLi, i1 = True

def caseimpossible(c):
Fydfi = €
if@ <=4 <Nand 8 <= j < N:
return T[i, j]
else:
on est ou bord, donc on n'y va pas
return True

DIR = [(-1, @), (1, @), (@, -1), (@, 1)]

def dirpossible(c):
Terd: = €
L= [

def metle(cc):
if not caseimpossible(cc):
L.append(cc)

for a, b in DIR:
metle((i + a, j + b))

return L

labyrinthe avec pile
from pile import Pile

petite partie graphigue

N =18

fig = plt.figure(figsize=(N, N), facecolor='w')
plt.subplot('111', axisbg='white')

eps = .6

ax = plt.axis([-eps, M - 1 + eps, -eps, N - 1 + eps], axisbg='b"')

L

pile = Pile()

c = (8, 0) # cose de départ
pile.empile(c)

cochecase(c)

while not pile.estvide():

350 Chapitre 7 Piles et récursivité

c = pile.depile(}
L = dirpossible(c)
: b 2l
capres = choix(L)
plt.plot([c[@], capres(@]], [c[1], capres[1]],
1w=25)
plt.pause(.1) # s1 on veut une animation
cochecase(capres)

Wy

pile.empile(c)
pile.empile(capres)

plt.show()

Ce qui donne

2. C’est bien stir beaucoup plus court en version récursive.

version récursive (lo pile est cochée dons les oppels récursifs)

16 # taille du labyrinthe carré, vaor globale
np.zeros((N, N), dtype=bool)

- =
W

fig = plt.figure(figsize=(N, N), facecolor='w')
plt.subplot('111', axisbg='white')

eps = .6

ax = plt.axis([-eps, N - 1 + eps, -eps, N - 1 + eps], axisbg='b')

def laby(c):
cochecase(c)
L = dirpossible(c)
if L
capres = choix(L)
plt.plot([c[®], capres[B]], [c[l], capres[1]], 'w',
w=25)
plt.pause(.1) # 51 on veux une animation
L] laby(capres)
laby (c)

(] Laby((®, @))
plt.show()

3. Les cases sont quasi-dédoublées (faire une figure), on définit un tableau de taille (2N — 1) x
= (2N -1).

Corrections des TP 351

N =10 # toille du labyrinthe carré, vaor globale
T = np.zeros((N, N), dtype=hool)
Tlab = np.zeros((2 * N - 1, 2 * N - 1), dtype=int)

NOIR = 2

BLANC = @

GRIS = 1

Tlab[:, :] = NOIR # tout est fermé au début

fig = plt.figure(figsize=(N, N}, facecolor='w')
plt.subplot('111', axisbg='black')

eps = .6
ax = plt.axis([-eps, N - 1 + eps, -eps, N - 1 + eps],
axisbg='h")

def laby(c):

cochecase(c)
L = dirpossible(c)
C ji) e

capres = choix(L)
plt.plot([c[@], capres[@]], [c[1l], capres[1]], 'w',
w=25)

Tlab[2 * c[@], 2 * c€[1]] = BLANC
Tlab[2 * capres[8], 2 * capres[1]] = BLANC
iy, § = (c[@] + capres[@]); (c[1] + capres[1])

Tlab[i, j] = BLANC # la jenction
laby (capres)
laby(c)

laby((e, 8))

Affichons le nouveau tableau (en faisant attention a l'orientation des axes) :

il i

5 |
Tlab2 = Tlab.copy()
for i in range(2 *# N - 1):
for j in range(2 * N - 1):
Tlab2[4,] = Tlab[j, 2 *# N - 2 - 4] 10
affiche(Tlab2)
15

4. On écrit une version adaptée de la fonction dirpossible.

Copyright © 2017 Dunod.

352 Chapitre 7 Piles et récursivité

DIR = [(-1, @), (1, @), (@, -1), (8, 1)]

def dirpossiblelab(T, c):

I, =¢
N, _ = T.shape
L=1[1

def caseimpossible(c):
i, j = ¢

if @ <= 1 <N and @ <= j < N:
return T[i, j]!= BLANC
si c'est blanc c'est pas impossible
else:
on est au bord, donc on n'y va paos
return True

def metle(cc):
if not caseimpossible(cc):
L.append(cc)

for a, b in DIR:
metle((i + a, j + b))

return L
Puis la fonction récursive trouverchemin qui opére par backtracking.

def trouverchemin{debut, arrivee, T):
if debut == arrivee:
return True

L = dirpossiblelab(T, debut)
faor i, j in L:
if T[4, j] == BLANC:
T[i, j] = GRIS # visité
res = trouverchemin((i, j), arrivee, T)
if res:
return True
else:
T[i, j] = BLANC # plus visité
return False

Un exemple de test.

T = Tlab2.copy()
N, _ = T.shape

print(trouverchemin{(@, 8), (N - 1, N - 1), T))

affiche(T)

True

0 5 10 15

5. On présente maintenant une version itérative en stockant dans une pile les cases a visiter.

Corrections des TP 353

def trouvercheminiter(debut, arrivee, T):
N, _ = T.shape
#Tvisite = np.zeros(T.shape, dtype=bocl)
p = Pile()
p.empile(debut)
c = debut

while not p.estvide() and c!= arrivee:

p.depile()
dirpossiblelab(T, c)

r—
non

for i, j in L:
if T3, j1 == BLANC:
Tli, j] = GRIS # visité
p.empile((i, j))

return ¢ == arrivee

T = Tlab2.copy()
N, _ = T.shape

print(trouvercheminiter((®, @), (N - 1, N - 1), T))

affiche(T)

True

0 5 10 15

La figure présente beaucoup de cases grises inutiles : on a grisé toutes les cases visitées méme
celles inutiles pour le chemin recherché...

6. Ecrivons une fonction taille(p) qui donne le nombre d'éléments de la pile p (en utilisant
seulement des méthode de pile).

def deversepile(pl, p2):
while not(pl.estvide()):
p2.empile(pl.depile())

def taille(p):

wim

Retourne le nombre d'éléments dans p
mwn
c =8
p_aux = Pile()
while not p.estvide():
c=c+1
p_aux.empile(p.depile())
(] deversepile(p_aux, p)
™~ return c
return len(c.pile) # si on veut tricher

Ecrivons maintenant une version améliorée de la version itérative de trouverchemin.
On va utiliser deux piles :

e la pile pchemin qui suit le chemin courant,

e la pile p des cases a visiter comme précédemment,

Copyright © 2017 Dunod.

354 Chapitre 7 Piles et récursivité

mais on crée également un tablean Tvis permettant d’'associer a chaque case du labyrinthe le
couple :

(visité ou pas, nombre de chemins encore a visiter a partir de la case).

Une case découverte la premiére fois est initialisé & (True , 1) puis quand elle sera traitée
(sommet de la pile p), on mettra & jour le nombre de possibilités de poursuite a partir de cette
case.

Si on tombe dans un cul-de-sac, on remonte la pile pchemin jusqu’a la premiere bifurcation.

def dirpossibleiter(T, Tvis, c):
""" donne la liste des directions possibles & partir du
labyrinthe T et des cases visités Tvis
rer

j=c

T.shape

-il
N:
L= []

def caseimpossible(c):
¥e § = €

if @ <= i < N and @ <= j < N:

return not (T[i, j] == BLANC) or Tvis[il[jl1[0]
else:

on est ou bord, donc on n'y va pos

return True

def metle(cc):
if not caseimpossible(cc):
L.append(cc)

for a, b in DIR:
metle((i + a, j + b))

return L

def trouvercheminiter2(debut, arrivee, T):
N, _ = T.shape
Tvis = [[(False, 1) for j in range(N)] for i in range(N)]
tableau (visite, nb de possibilités de poursuite)
p = Pile() # pile de coses d traiter
pchemin = Pile() # chemin gagnant courant... s'il existe
p.empile(debut)
c = debut
Tvis[cl[@]][c[1]] = (True, 1)

while not p.estvide() and c!= arrivee:
c = p.depile()
pchemin.empile(c) # on met lo cose dons le chemin courant
t = taille(p)
L = dirpossibleiter(T, Tvis, c)
for i, j in L:
Twis[i]1[j] = (True, 1) # visité
p.empile((i, j))
t2 = taille(p)
if t2 == t and not pchemin.estvide():
on est dans une impasse!!
on va revenir d la derniére bifurcation...

i, 3 = pchemin.sommet()

while Tvis[i][j] == (True, 1) and not pchemin.estvide() and (i, j) != arrivee:

Corrections des TP 355

pchemin. depile() # on dépile jusqu'a une intersection (_, 1)
if not pchemin.estvide():
iy 3 = pchemin.sommet()
if not pchemin.estvide():
_y tt = Tvis[i][j]
Tvis[i][j] = (True, tt - 1)
on décrémente les possibilités non visitées de lo caose i, j

elif €2 > t + 1
Twis[e[@]]1[ec[1]] = (True, t2 - t)

on met g jour le nombre de possibilités de la case c

return pchemin

Faisons le test.

T = Tlab2.copy()
N, _ = T.shape
pchemin = trouvercheminiter2((@, @), (N - 1, N - 1), T)
while not pchemin.estvide():
i, j = pchemin.depile()
T[i, j] = GRIS

affiche(T)

C’est mieux ainsi.

‘pounq £10Z @ ybuAdod

Copyright © 2017 Dunod.

CHAPITRE

Tris

Dans de trés nombreuses situations, la résolution d'un probléme nécessite de trier une famille de
données. Nous considérons une liste L = [cg, ¢1,.. ., c,—1] 011 les ¢; sont des éléments d’un ensemble
totalement ordonné, et notre but est, ou bien de renvoyer une nouvelle liste contenant les valeurs
¢; rangées dans 'ordre croissant, ou bien de modifier L en triant les ¢; par ordre croissant. Dans le
second cas, nous utiliserons systématiquement la fonction qui échange deux valeurs du tableau L :

def echange(L, i, j):
L[], L[3] = L[j], L[i]

Nous présentons ici le tri par insertion, le tri fusion et le tri rapide; le tri a bulles est étudié a
I'intention des éléves de BCPST dans l'exercice 8.2 p. 363.

B 0 Tri par insertion

Un des algorithmes de tri les plus simples & implémenter est le tri par insertion, qui fonctionne
a la maniére d'un joueur qui classe ses cartes en les insérant les unes apres les autres dans son jeu.
Il consiste a faire varier un indice i de 1 & n — 1 en assurant l'invariant :

L= partie trice Lli]
T
i

Dans le corps de la boucle, nous ferons descendre la valeur L[i] pour la placer au bon endroit &
I'aide d’échanges successifs, comme dans I'exemple ci-dessous o1 i = 3 :

L=1[2,5,7 4,10, 1] : L[2]> L[3] et on échange ces deux valeurs;
L=[25,4,7 10, 1] : L[1] > L[2] et on échange ces deux valeurs;
L=1[2,4,5 7 10,1 : L[0] < L[1] et la liste L[0 : 4] est triée.

La descente se fait griace a une boucle while : on initialise une variable j a la valeur 7 et tant que
j > 0et que L[j| < L[j — 1], on échange les contenus des cases j et j — 1 et on décrémente j.

On obtient ainsi les fonctions tri_insertion, ci-dessous. Celle de gauche s’applique & une liste
(ou & un tableau) dont les éléments peuvent étre comparés par la fonction < ; celle de droite prend
en argument, en plus de la liste, une fonction inferieur qui, appliquée a deux valeurs a et b,
renvoie le booléen True si a est strictement inférieur & b pour 'ordre considéré, et le booléen False
sinon :

2017 Dunod.

-

Copyright ©

358 Chapitre 8 Tris

def descendre{L, i): # L[0®: 1] est croissant def descendre_bis(L, i, inferieur):
g =1 =
while j > @ and L[j] < L[] - 1]: while j » @ and inferieur(L[j], L[] - 1]):
echange(L, j - 1, j) echange(L, j - 1, j)
3= 8 (R~
def tri_insertion(L): def tri_insertion_bis(L, inferieur):
for i in range(1l, len(L)): for i in range(1, len(T)):
descendre(L, i) descendre_bis(L, i, inferieur)
return L return L

Ces fonctions renvoient le tableau trié, mais on peut supprimer la derniére ligne : elles trieront alors

le tableau passé en argument sans rien renvoyer. Les exemples ci-dessous trient respectivement une
liste de mots et une liste de points par abscisses croissantes :

>»> L = ['wWaller', 'Tatum', 'Garner', 'Peterson', 'Monk', 'Powell', 'Lewis', 'Evans', 'Jomal', 'Jarrett']
>>> tri_insertion(L)

['Evans', 'Garner’, 'Jomagl', 'Jarrett', 'Lewis', 'Monk', 'Peterson';, 'Powell', 'Totum', 'Waller']

»>>> def inferieur(A, B): return A[Q] < B[@]

s¥> L_bis = [(3:2;, 2:3); (1.7; =1.3), (4.; 4:2); (3.2; 3:5), (~3.2; 4.2), (1.2, 2.3)]

>>» tri_insertion_bis(L_bis, inferieur)

(1.7 =1.3), (3.2, 2.3); (3.2, 3.5), (4.9; 4.2); (=3.2,:4.2); (1.2, 2.3)]

Dans le pire des cas, le tableau est strictement décroissant : dans chaque boucle while, j va varier

n
(n+1
de i 4 0 et le temps de calcul sera de 'ordre de Za = ﬂ(%z

i=1

I'ordre n? ; dans le meilleur des cas, le tableau est déja croissant et le temps de calcul est de 'ordre
de n, puisqu’on sort de la boucle while quand j = i. Cet algorithme n’est cependant que trés
rarement efficace : on peut montrer que si 'on choisit uniformément et indépendamment n réels
ag,ay, ..., a,—1 dans I'intervalle [Ur 1]._ le temps que mettra la fonction tri_insertion pour trier
la liste [ag, a1, . ..,a,_1] est une variable aléatoire dont la moyenne est de 'ordre de n?. Le temps
moyen est de 'ordre du temps dans le pire des cas, ce qui traduit que 'on est presque toujours
dans le pire des cas.

, soit un temps de calcul total de

e Le tri par insertion a cependant I'avantage de trier le tableau en place, c¢’est-a-dire en
-Q~ n'utilisant qu'une quantité d’espace mémoire constante (en dehors de 'espace utilisé
pour stocker le tablean).

B 1 Tri fusion (merge sort)

Le tri fusion propose de trier une liste L de longueur n de fagon récursive, selon 'analyse suivante :
sin =0oun =1, laliste est triée; sinon, on la découpe en deux sous-listes L, et Lo de longueurs
environ égales a4 n/2. On trie ensuite (récursivement) les listes L; et Ly, ce qui donne deux listes
trices LT et LT5, que l'on fusionne en une liste triée LT contenant les mémes valeurs que L.

© 2017 Dunod.

Copyright

L’essentiel du cours 359

L=
Division en deux sous-problémes de taille « moitié »
L= o 5:.”.. R .“"II“.-.".'-._.ﬁ:::::
Résolution récursive des deux sous-problemes
L-T1 = LT2 -
Fusion des deux listes trides
LT =

Nous avons choisi de traiter la fusion de fagon itérative, en remplissant une liste LT initialement
vide avec les éléments des deux listes LT et LT ;

def fusionne(LT1, LT2):
LT = [
i,§=0,0
while(i < len(LT1) and j < len(LT2)): # gucune liste n'o encore été totalement recopiée
if LTA[4] < LT2[§]:
LT.append(LT1[i]) # le plus petit élément est LT1{i]
i+=1
else:
LT.append(LT2[j]) # le plus petit élément est LT2[j]
j+=1
LT.extend(LT1[i:]1) # on déverse dans LT la fin de LT1 ... sons effet si i = len(LT1)
LT.extend(LT2[j:]) # on déverse dons LT la fin de LT1 ... sans effet si j = len(LT2)
return LT

Il reste & écrire le code de la fonction tri_fusion (sin = 2, on pose Ly = L[0 : p| et Lo = Lp ‘]
ol p est la partie entiere de n/2) :

def tri_fusijon(L):
n = len(L)
R e
p=n/f/2
return(fusionne(tri_fusion(L[®:p]), tri_fusion(L[p:])))
else:
return L

Le calcul de la complexité temporelle du tri fusion est caractéristique des algorithmes
de type diviser pour régner; si nous notons 7'(n) le temps que met notre fonction,
N dans le pire des cas, pour trier une liste de longueur n, nous avons :

Q Vn 22, T(n)= f(n)+T(p) +T(n—p)
ot f(n) est le temps nécessaire a la création des listes Ly et Ly et a la fusion des deux

listes triées.

La création de L, et de Ly prend un temps de l'ordre de n, de méme que la fusion des listes LT)
et LT> (on effectue un simple parcours des deux listes). Il existe ainsi une constante M telle que
f(n) € M n. En se limitant aux n qui sont des puissances de 2, on obtient par récurrence :

= f(2)
Vk > 1, T(2¥) =2*T(1) + 2 = € 2K (T(1) + k M)
i=1

d.

D

)17 Dunc

C

2

Copyright ©

360 Chapitre 8 Tris

On peut ensuite travailler sur un entier n quelconque. En effet, en supposant que f est croissante,
on montre facilement que 7' 'est également ; en écrivant 28=1 < n < 2% ol k est la partie entiere
supérieure de log,(n), nous obtenons :

Vn>1, T(n) < T(2%) <28 (T(1) + kM) = O (n In(n))

Ainsi, le temps de calcul est un @'(n In(n)) (on dit aussi qu’il est quasi-linéaire) : cet ordre de
grandeur est optimal pour le probléeme posé.

En revanche, I'algorithme ne trie pas la liste en place, puisque la création des listes L,
et Ly demande déja un espace mémoire de 'ordre de n (nous ne rentrerons pas dans
I'analyse précise de la complexité en mémoire).

B 2 Tri rapide (quick sort)

Le tri rapide [Hoa62| reprend le paradigme « diviser pour régner » du tri fusion : on choisit une des
valeurs o de la liste L (par exemple o = L[0]) qu’on appelle pivot et on répartit les autres éléments
de L dans deux listes L et Lo, en plagant dans L, les éléments < « et dans Lo les éléments = a.
On trie ensuite récursivement les listes L; et Lo, et il reste a concaténer les deux listes triées en
insérant a entre les deux.

Division en deux sous-problémes de taille « moitié »

L= <a g pRanisasssraiiniiiesi s it iaciit et it nicRec i

Résolution récursive des deux sous-problemes

1T, = en= T

Concaténation des deux listes trices

IT =

Une premiére mise en place élémentaire peut se faire en créant de nouvelles listes L et Lo :

def tri_rapide(L):
if len(L) <= 1:
return L[:] # On renvoie une copie de L
pivot = L[0]
L, L2 =[], [1
for i in range(l, len(L)):
if L[i] < pivot:
L1.append(L[i])
else:
L2.append(L[i])
return tri_rapide(Ll) + [pivot] + tri_rapide(L2)

Dans le pire des cas, une des listes Ly ou L est systématiquement vide (cela arrive par exemple
quand L est strictement monotone) ; le temps de caleul T,, dans le pire des cas vérifie donc une
relation de récurrence de la forme : T(n) = f(n) + T(n — 1) on f est de l'ordre de n (f(n) est le
temps mis & créer L, et Ly et a calculer la concaténation finale). On en déduit que T'(n) est de
I'ordre de n?.

d.

D

)17 Dunc

C

2

Copyright ©

L’essentiel du cours 361

Dans le meilleur des cas, on peut admettre que le pivot est systématiquement une médiane de la
liste et nous nous retrouvons dans la méme situation que pour le tri fusion, avec un temps de calcul
de 'ordre de nln(n).

Si I'on souhaite étre plus rigoureux, on peut remarquer que l'on a T'(n) = inf(T(p)+ T(n—1—p)+
f(n),0 < p <n—1). Comme cette borne inférieure est minorée par tout p, on peut notamment

i n— ; aE :
choisir p = 5 En travaillant avec n = 2% — 1 on retrouve alors, par un raisonnement et des

calculs analogues a ceux effectués dans le tri fusion, le résultat annoncé.

Il est remarquable que le temps de calcul moyen est également un @(nlIn(n)) : on en déduit que
presque toutes les listes sont triées en un temps quasi-linéaire. Cependant, il arrive souvent que
celles que nous avons a trier présentent de longues parties croissantes ou décroissantes. Il y a deux
fagons naturelles de remédier & ce probléme : on peut choisir un pivot au hasard dans la liste a
trier, ce qui revient paradoxalement a mélanger la liste avant de la trier ; on peut également choisir
un bon pivot, voire méme calculer un pivot qui coupe exactement la liste en deux parties de tailles
égales (4 une unité pres). Sans étre explicitement au programme, le lecteur est invité a faire le TP
8.0 p. 368 pour approfondir la technique de recherche de pivot et d’analyse de la complexité.
Cette premiere approche a le gros défaut de ne pas travailler en place. Au lieu de créer deux
nouvelles listes L; et Lo, il est naturel de modifier L en place. Le travail récursif va alors se faire
sur des portions de la liste L, au moyen de la fonction récursive tri_rapide_rec : quand on
I'applique & deux entiers g et d tels que 0 < g < d < n, la sous-liste L[g : d] est triée sur place. On
utilise pour cela la fonction auxiliaire place_pivot, qui met le pivot en place et renvoie la position
k qu'il occupe a la fin du calcul, comme détaillé dans le schéma :

Lig:d = |«
Y On place le pivot au bon endroit d
Llg:dl = <o i Dol
q k d
On trie récursivement Lig :k] et Lk+1 :d]
Lig: d) = liste trice bt
T T T
g k d

Le lecteur trouvera dans les exercices 8.8 p. 365 et 8.9 p. 366 une mise en place de la fonction
place_pivot, qui permettra de compléter le code de la fonction :

def tri_rapide(L):
def tri_rapide_rec(g, d): # trie en ploce la sous-liste L{g:d]
if g < ds
k = place_pivot(L, g, d) # k est 1'indice ol se retrouve plocé le pivot
tri_rapide_rec(g, k) # on trie récursivement lo sous-liste située & gouche du pivot
tri_rapide_rec(k+l, d) # on trie récursivement la sous-liste située & droite du pivot
tri_rapide_rec(®, len(L)) # on trie l'ensemble de la liste

Copyright © 2017 Dunod.

362 Chapitre 8 Tris

Parmi les affirmations suivantes lesquelles sont vraies?

(a)

(b)

(d)

O Le tri par insertion est toujours le tri (parmi ceux du cours) le moins efficace.

O (2,) : « Aprés n itérations de la boucle for [L[0], ..., L[n]] est triée » est un invariant
de boucle du tri par insertion.

O (2,) : « Aprés n itérations de la boucle for [L[0], ..., L[n]] est composée des n plus
petits éléments de L dans 'ordre croissant » est un invariant de boucle du tri par insertion.
[Le tri rapide est strictement plus efficace dans le pire des cas que le tri par insertion dans
le pire des cas.

[] Le tri fusion est strictement plus efficace dans le pire des cas que le tri par insertion dans
le pire des cas.

On considere la fonetion suivante ;

def mystere(L):
if len(L) <= 1:
return L
pivot = L[8]
Lg, Ld = [1, []
for i in range(l, len(L)):
if L[i] < pivot:
Lg.append(L[i])
else:
Ld.append (L[1])
return mystere(lLg) + [pivot] + mystere(Ld)

[0 Cette fonction réalise le tri rapide.

0 Le tri qu’effectue cette fonction est en place.

O L’algorithme écrit est en &(n?) dans le pire des cas.

(] L’algorithme écrit est en ¢'(n) dans le meilleur des cas.

On considere la fonetion suivante ;
[0 Cette fonction réalise le tri par inser-

tion.
def rfnystgriztm BREE = 8) [Cette fonction ne réalise pas de tri.
* i :[;‘]’nfe,_[?n+ i]: ' [L’action sur les listes étant globales, le
L[], L[F + 1] = L[4 + 11, L[4] return est inutile.

[Lalgorithme écrit est en &'(n?) dans
tous les cas.

On considére la foncetion suivante ;

def mystere3(L):
for i in range(len(L) - 1, 8, -1):
for j din range(i):
if T[J + 1] < T[j]:
FL3 ¥]y T3] = TR ThY +2]

(1 Cette fonction réalise le tri de L.

[] Cette fonction ne réalise pas de tri.

O (£2,) : « Aprés n itérations de la boucle for, [L[len(L)-1-n], ..., L[len(L)-1]] est
composée des n plus grands éléments de L dans l'ordre croissant » est un invariant de boucle.
[0 L’algorithme écrit est en &(n?) dans tous les cas.

Copyright © 2017 Dunod.

Exercices 363

(Exercice 8.0] Données satellites

Plusieurs joneurs ont joué an pendu ', nous disposons d'une liste de scores contenant les noms et
scores (le taux de réussite) de chaque joueur. La liste est de cette forme :

[['Marc', ©.87], ['Maryam', ©.99], ['Jean-Loup', 0.91], ['Hubert',6 0.84]].

Ecrire une fonction tri_score(L) qui trie une liste de scores par score décroissant, en utilisant le
tri fusion.

(Exercice 8.1) Tri par sélection

On considére dans cet exercice des listes L dont les éléments sont comparables par le biais de <.

0. Ecrire une fonction indice_max(L,i) qui, quand 0 < i < len(L), calcule la position du
maximum de la sous-liste L[: i + 1].
En déduire le code d'une fonction tri_selection(L) qui trie une liste L de longueur n en
placant le maximum de L en position n — 1, puis le maximum de L[: n — 1] en position n — 2,
et ainsi de suite.

1. Etudier la complexité en temps et en mémoire de cet algorithme de tri.

(Exercice 8.2] Tri a bulles

L’algorithme de tri 4 bulles reprend l'idée du tri par sélection : on place en position n — 1 le

maximum de la liste L = L[: n], puis en position n — 2 le maximum de la sous-liste L[: n — 1], et

ainsi de suite jusqu’a placer en position 1 le maximum de la sous-liste L[: 2]. La différence est que

I'on va, cette fois-ci arréter le calcul dés que la liste est triée.

0. Ecrire le code d'une fonction remonter(L, i) qui remonte le maximum de la sous-liste L[: i+1]
jusqu’a la position 7; on procédera pour cela a des échanges successifs éventuels des contenus
des cases O et 1, 1 et 2, ..., ¢ — 1 et 4, comme si une bulle remontait le long de la liste. Cette
fonction renverra un booléen égal & True si aucun échange n'a été fait (i.e. si la sous-liste
L[: i + 1] était croissante) et a False sinon.

1. En déduire le code d'une fonction tri_bulles(L) qui trie la liste L, en arrétant le calcul deés
que la liste est triée.

2. Etudier la complexité en temps et en mémoire de cet algorithme de tri.

(Exercice 8.3) Tri crépes

On empile un tas de crépes de diametres différents. On ne s’autorise qu’'a donner un coup de spatule
a l'intérieur du tas de crépes ce qui a pour effet de retourner tout ou partie de la pile (a partir du
sommet,).

0. Ecrire une fonction retourne(p, k) qui retourne les k premiers éléments de la pile p (en
partant du sommet), c¢’est-a-dire qui donne un coup de spatule sur le tas de crépes au dessous
de la k¢ crépe.

1. Ecrire une fonction taille(p) qui retourne le nombre d’éléments de pile p.

1. Par exemple avec celui programmé dans le TP 1.0 p. 37,

Dunod.

)17

© 20

Copyright

364 Chapitre 8 Tris

2. Ecrire une fonction trouve_max (p, n) quirenvoie le numéro de la crépe de diametre maximal
parmi les n premiers éléments de la pile p (= tas de crépes).

3. Concevoir un algorithme (simple) a base de coup de spatules sur le tas de crépes pour trier le
tas par diametre croissant (la crépe la plus petite est an sommet).

(Exercice 8.4] Tri par insertion avec une pile

Mettre en place le tri par insertion a 'aide de deux piles et d'une variable auxiliaire.

(Exercice 8.5] Tri fusion avec un tableau (bujffer), tri itératif

On souhaite programmer un tri fusion récursif avec un tableau auxiliaire & n éléments (dans la

version du cours, on a, par slicing, création de tout un tas de petites listes éparpillées).

Enfin, on cherchera méme & programmer une version itérative du tri fusion.

0. Ecrire la fonction fusionnebuff(t, buffer, i, j, k) qui fusionne les sous-listes t[i:5] et
t[j:k] dans t en utilisant une liste tampon buffer (qui possede au moins len(t) éléments).

1. Ecrire alors la fonction trifusionbuff(t, buffer, i, j) qui trie la liste t[i:j] par la
méthode du tri fusion récursif en utilisant le tampon buffer.

2. Ecrire une fonction trifusioniter(t) qui trie la liste t en utilisant en interne la fonction
fusionnebuff(t, buffer, i, j, k) mais sans appels récursifs, donec en programmant de
maniere itérative.

(Exercice 8.6) Tri casier; d’aprés l'oral de la banque PT

On considére M un entier strictement positif et L une liste d’entiers compris entre 0 et M-1.

0. Ecrire une fonction comptage qui renvoie une liste L1 de longneur M telle que L1[4] soit égal
au nombre d’éléments de L égaux a i.

1. Utiliser la fonction précédente pour écrire une fonction permettant de trier L.

2. Quelle est la complexité de cette fonction de tri?

(Exercice 8.7) Le tri par baquets

Nous souhaitons trier (dans 'ordre lexicographique) une liste L de n mots, écrits sur I'alphabet
A = {a,b,c,...,z}, de longueur maximale N (on suppose que N est petit devant n). Quitte a
compléter les mots de L a l'aide du caractére « espace », noté ., nous pouvons supposer que les
mots de L sont tous de longueur N et écrits sur I'alphabet { ,a,b,c,....2}, on la lettre _ est
placée avant la lettre a dans l'ordre lexicographique. Nous coderons les lettres _,a,b,c....,z par
les entiers 0,1,2,3, ..., 26 et, pour tout mot u de L et pour chaque entier i € {0,1,..., N —1}, nous

noterons ¢;(u) le code de la i-eme lettre de 1. Ainsi, ca("exercice") =5 et cop("exercice") = 0.

0. Ecrire le code d'une fonction ¢ qui, appliquée a un entier naturel ¢ et a un mot u sur 'alphabet
A, renvoie ¢;(u).

m On utilisera la fonction ord qui, appliquée a un caractére, renvoie son code Unicode!.
Par exemple, celui du caractere 'a' est 97.

1. Cf. le chapitre 2 partie 3 p. 64.

4
i

Dunod.

?.

201

c)

Copyright

Exercices 365

Nous allons trier les mots de L lettre par lettre, en commencant pas la lettre d'indice N — 1.

Pour cela, nous utilisons 27 listes (appelées baquets), initialement vides, stockées dans une liste B,

initialisée par 'instruction B = [[] for i in range(27)]. On parcourt L de gauche a droite,

et on ajoute chaque mot u étnudié an baquet Blen—q(u)]. A la fin de ce traitement, les n mots
de L ont été répartis dans les 27 baquets. Le baquet B[5], par exemple, contient tous les mots
de L de longueur N dont la derniére lettre est un ‘e‘, tandis que le baquet B|[0] contient tous
les mots de L de longueur strictement inférieure a N. On recopie alors les contenus des baquets

B[0], B[1],..., B[26] (dans cet ordre) dans la liste L, en prenant soin de préserver I'ordre des mots

dans chaque baquet. On recommence cette opération pour les lettres d’'indice N — 2, puis N — 3,

et ainsi de suite.

1. Décrire I'évolution de L et de B dans le cas on
L = ["ba", "ae", "ce", "abc", "ee", "a", "dbe"] (on n’utilisera que six baquets).

2. Ecrire le code d’'une fonction mettre_en_baquets qui, appliquée a la liste L et & un entier i,

renvoie la liste des 27 baquets obtenus en rangeant les mots de L selon leur i-éme lettre.
Ecrire le code d'une fonction recopie_baquets qui, appliquée a la liste B des baquets et & la
liste L, recopie dans L les contenus des baquets B[0], B[1],..., B[26].
Ecrire le code d'une fonction tri_baquets qui trie une liste de mots sur I'alphabet A par la
méthode des baquets. Donner quelques éléments permettant de justifier que cette fonction fait
bien ce que l'on attend d’elle. Donner un ordre de grandeur de la complexité en temps et en
place de cette fonction de tri, en fonction de n et de N.

[Exercice 8.8_] Le tri rapide version Lomuto

Dans cet exercice nous allons programmer la fonction place_pivot du cours selon une méthode
attribuée 4 Nico Lomuto par [Ben16].

Dans un premier temps, nous allons réordonner la sous-liste L[g : d] en mettant le pivot a & la fin
et non au début. On souhaite donc modifier une liste L de facon a obtenir ceci :

Lig:d) = £ Pt HE ek et

0. Ecrire une fonction check qui, prenant en argument une liste L et deux indices g et d, renvoie
True si L[g : d] est de la forme attendue (d’abord les éléments plus petits que le pivot, puis les
éléments plus grands, puis le pivot) et qui renvoie False sinon.

Par exemple check([1, 1, 5, 1, 1, 7, 6, 7, 6], @, 9) renvoie True.

Pour arriver a nos fins, étant donné une sous-liste L[g : d] et deux entiers i et k, considérons
I'invariant décrit par le schéma suivant (que nous appelerons Invg).

Llg: d] = < pivot cuinininigpivobiiiiiiiig 2 ? 7 |pivot
T T T P
g i k d

Cet invariant dit « Pour tout p € [0,i[. L[p] < pivot ET pour tout p € [i, k[, L[p] = pivot ET le
dernier élément de la liste est le pivot ». Cet invariant ne dit rien sur les éléments contenus dans
la zone de points d’interrogation (entre 'indice k et le pivot).

Considérons le code suivant :

4
i

Dunod.

?.

201

c)

Copyright

366 Chapitre 8 Tris

def partition®(L, g, d):
pivet = L[d-1]
i=g
for k in range(g, d-1):
A compéter
return i

—

. Compléter la fonction partition@(L, g, d) de sorte & maintenir I'invariant Inv.

2. En déduire une fonction place_pivot permettant d'implémenter le tri rapide en place comme
vu dans le cours.

3. Quelle est la complexité de la fonction partition@? De la fonction place_pivot?

(Exercice 8.9) Le tri rapide version Hoare

Dans cet exercice nous allons programmer une version de la fonction place_pivot différente de la
version de 'exercice 8.8 et inspirée de la méthode originale de C.A.R. Hoare [Hoa62]|.

A Vinstar de lexercice 8.8, nous allons d’abord réordonner la liste en mettant le pivot a la fin et
non au milieu. Mais nous allons considérer un invariant différent (que nous appellerons Inv,) :

Llg:d] =

< pivot ? ? ? Ciiiizpivotoopivot
g) J d
Cet invariant dit « Pour tout p € [0,i[. L[p] < pivot ET pour tout p €]4, Len(L)-1[, L[p] = pivot
ET le dernier élément de la liste est le pivot ».
Considérons 'algorithme suivant prenant en entrée ' une sous-liste Llg : d].

(0) Choisir pour pivot le dernier élément de la liste. Initialiser judicieusement les variables i et j.
(1) Augmenter i tant que ga ne brise pas I'invariant.

(2) Diminuer j tant que ¢a ne brise pas l'invariant.

(3) Si la zone de points d'interrogation est vide, arréter l'algorithme et renvoyer i.

(4) Echanger L[i] et L[j], augmenter i de 1 et diminuer j de 1.

(5) Retourner a 'étape (1).

0. Ecrire une fonction partitionl implémentant cet algorithme en Python.

1. Pourquoi I'étape (4) de 'algorithme ne brise-t-elle jamais I'invariant Inv; ?

2. Quelle est la complexité de la fonction partition1?

3. Utiliser partitionl pour écrire une fonction place_pivot permettant d’implémenter le tri
rapide comme vu dans le cours.

(Exercice 8.10) Analyse en moyenne

Pour un tableau T', on note E;(T') (resp. E,(T)) les nombres d’échanges effectués par 1'algorithme

de tri par insertion (resp. de tri rapide) appliqué au tableau T'.

0. Calculer E;(T) et E.(T) pour T = [3,4,1,2,0].

1. Comment peut-on modifier les fonctions tri_insertion et tri_rapide pour qu'elles calculent
E(T)et E.(T)?

1. La fonction Python prendra comme arguments L, g et d.

4
9

Dunod.

)17

Copyright © 2C

Exercices 367

2. Ecrire une fonction tableau_aléatoire qui, appliquée & un entier n, génére un tableau pseudo-
aléatoire T' = [y, 2y, ..., 2, —1] on les x; simulent des variables aléatoires indépendantes de loi
uniforme sur [0, 1].

3. Pour différentes valeurs de n, estimer les espérances des quantités E;(T) et E.(T). Que peut-on
conjecturer quant au comportement asymptotique de ces espérances quand n tend vers 1'infini ?

(Exercice 8.11) Quick Select et calcul de la médiane

L’objectif de cet exercice est de programmer une fonction quick_select(L, k) qui, étant donné
une liste L, renvoie le k¢ plus petit élément de la liste L (on suppose dans tout 'exercice que k
est toujours strictement plus petit que la longueur de L). Par exemple quick_select([5, 7, 2,
3], 0) renvoie 2 tandis que quick_select([5, 7, 2, 3], 2) renvoie 5.
Une premiere solution est de trier la liste, et de prendre le ¢ élément de la liste triée.
0. Programmer cette premiére solution en utilisant le tri rapide (Quick Sort) comme vu dans le
cours.
1. Ecrire une fonction rang(L, x) qui renvoie le rang de = dans la liste L. Si z est le plus petit
élément, la fonction renvoie 0, si c’est le second plus petit élément, la fonction renvoie 1, etc.
Si x apparait plusieurs fois dans la liste, la fonction renvoie le plus petit rang.
Dans le tri rapide, il y a deux appels récursifs.
Ici, pour notre fonction quick_select(L, k), sile pivot est le ¢° plus petit élément de L, alors :
e Sig > k. il n’est pas besoin de trier les éléments plus grands que le pivot ;
e Si g < k, il n'est pas besoin de trier les éléments plus petits que le pivot.

2. Modifier 'algorithme du tri rapide pour programmer quick_select avec un seul appel récursif.
3. Quelle est la complexité de cette fonction ?

La complexité « en moyenne » est nettement meilleure, elle est en @'(n). Le probleme de cette
méthode est la complexité en mémoire. En effet, cette méthode crée de nombreuses nouvelles
listes. A présent, nous allons programmer une version « en place » de quick_select, ¢'est-a-dire
une version qui ne crée aucune nouvelle liste. En contrepartie, cette fonction va modifier L (L va
étre « un peu » triée).

4. En utilisant la fonction place_pivot de I'exercice 8.8, modifier la fonction quick_select de
facon a ce qu'elle travaille en place.

Copyright © 2017 Dunod.

368 Chapitre 8 Tris

[TP 8.0 — Recherche de la médiane (quickselect) # = diﬁcile}

Notre objectif est d’améliorer la complexité de la fonction quick_select définie dans 'exercice
8.11. L'article [BFP*73] (1972) donne une méthode pour choisir plus judicieusement le pivot et
ainsi obtenir une meilleur complexité : on choisit comme pivot une médiane de médianes. Il existe
plusieurs définitions d'une médiane d'une liste. Nous prendrons la définition suivante :

La médiane d'une liste L constituée de n éléments est I'élément d'indice n//2 dans la liste
triée (par ordre croissant).

La méthode pour programmer quick_select (pas en place) est la suivante :
e On découpe la liste L en morceaux de 5 éléments (le dernier morceau peut éventuellement
étre plus petit si la longueur de la liste n'est pas divisible par 5).
e On trie chacun des morceaux avec, par exemple, le tri rapide .
e On crée la liste T des médianes des morceaux de 5 élements (s'il y a un morceau a moins
de 5 éléments, on ne prend pas sa médiane).
e On appelle récursivement quickselect pour trouver la médiane m de T
On choisit m comme pivot
On continue comme a la question 2 de I'exercice 8.11.

Le dessin ci-aprés résume la construction du tableau T

morceaun a trier morcean a trier morcean a trier éléments isolés
A

Dans un premier temps, nous nous autorisons a faire des copies de listes.

0. Ecrire une fonction creation_T(L) qui crée la liste T.

1. Programmer quick_select avec cette méthode.

2. = Quelle est la complexité de cette fonction dans le cas on tous les éléments de la liste sont
différents ?

A linstar du quick_select de 'exercice 8.11, le probléme de cette fonction est la complexité en
mémoire. Nous allons programmer une version « en place » qui ne crée aucune nouvelle liste mais
qui, en contrepartie, modifie L.

1. Dans l'article de 1972, c’est le tri fusion qui est utilisé.

4
i

Dunod.

?.

201

c)

Copyright

Travaux pratiques 369

3. Ecrire une version en place de la fonction place_pivot(L, g, d) du trirapide (voir I'exercice
8.8 ou l'exercice 8.9). Cette fonction devra choisir comme pivot L[g].

4. Modifier la fonction place_pivot, pour qu'elle prenne un argument supplémentaire p et tra-
vaille sur L[g:d:p] au lieu de L[g:d].

5. Ecrire une fonction tris(L, i, p) qui trie en place la sous-liste L[i:9+5*p:p] (en utilisant
le tri rapide en place).

6. Ecrire une fonction tri_par5(L, g, d, p) qui découpe la liste L[g:d:p] en bloc de 5 (en
ignorant les éléments en trop & la fin) et qui trie chaque bloc en place.

Nous allons définir une fonction quick_select_aux(L, k, g, d, p) qui renvoie l'indice dans

L du &° plus petit élément de la liste L[i:j:p]. Cette fonction modifie L et renvoie l'indice de

I'élément recherché apres modification.

7. Ecrire la fonction quick_select_aux en utilisant la méthode de la question 1 mais en tra-
vaillant en place.

8. En déduire une fonction quick_select(L, k) qui travaille en place.

9. Comment faire si je ne souhaite ni modifier L ni utiliser trop de mémoire ?

Copyright © 2017 Dunod.

370 Chapitre 8 Tris

Parmi les affirmations suivantes lesquelles sont vraies ?

(a) O Le tri par insertion est toujours le tri (parmi ceux du cours) le moins efficace.
EJ’(:?R] : « Aprés n itérations de la boucle for [L[0], ..., L[n]] est triée » est un invariant
de boucle du tri par insertion.
O (£,) : « Apres n itérations de la boucle for [L[@], ..., L[n]] est composée des n plus
petits éléments de L dans 'ordre croissant » est un invariant de boucle du tri par insertion.
[1 Le tri rapide est strictement plus efficace dans le pire des cas que le tri par insertion dans
le pire des cas.
M Le tri fusion est strictement plus efficace dans le pire des cas que le tri par insertion dans
le pire des cas.

(b) (voir I'énoncé de la fonction mystere)

M Cette fonction réalise le tri rapide.

[Le tri qu'effectue cette fonction est en place.

ML ‘algorithme écrit est en @(n?) dans le pire des cas.

O L'algorithme écrit est en @'(n) dans le meilleur des cas.

(¢) On consideére la fonction suivante :
[1 Cette fonction réalise le tri par inser-

tion.
def :fnyster:Z(Lh . M Cette fonction ne réalise pas de tri.
i L - 1): . . N
G :[:?"EEE[?E l]: ! M L’action sur les listes étant globales, le
LL31, LOF + 1] = L3+ 11, LIA] return est inutile.

0O L’algorithme écrit est en @(n?) dans
tous les cas.

(d) On considére la fonction suivante :

def mystere3(L):
for 4 din range(len(L) - 1, @, -1):
for j in range(i):
iF T[3 + 1] < T[j]:
T+ 113 T3 = TI31,; Ty +1]

M Cette fonction réalise le tri de L.

[Cette fonction ne réalise pas de tri.

Ef(g’n) : « Apres n itérations de la boucle for, [L[len(L)-1-n], ..., L[len(L)-1]] est
composée des n plus grands éléments de L dans l'ordre croissant » est un invariant de boucle.
ML ‘algorithme écrit est en @(n?) dans tous les cas.

Copyright © 2017 Dunod.

Corrections des exercices 371

[Corr'igé exo 8.0]

11 suffit de modifier la fonction fusion du cours, plus précisément cette ligne :

G LTI[(4] < LT2(§]:
On la remplace par

if LT1[3][1] > LT2[j][1]:

[Corrigé exo 8. IJ

0. Les codes s'écrivent sans probléme :

def indice_max(L, i):
pos = 0 # pos est lo position du maximum
for j in range(1l, i + 1):
if L[j] > L[pos]:
pos = j
return pos

def echange(L, 9, j):
L[], LIi] = L[j), ELi]

def tri_selection(L):
for i 4n range(len(L) - 1, 0, -1):
echanger (L, i, indice_max(L, 1))
return L

1. Le temps de caleul de I'appel indice_max(L,1i) est de l'ordre de 7, donc le tri par sélection a
un temps de calcul de lordre de 1 + 2+ -+ + (n — 1) = @(n?) dans tous les cas. Comme le tri
par insertion, il trie la liste en place : la complexité en mémoire est donc constante.

[Corrigé exo 8.2]

0. Un indice j varie de 0 ai—2 : si L[j] > L[j + 1], on échange les contenus des cases j et j+1, ce
qui assure 'invariant de boucle : « le maximum de la sous-liste L[: j+ 1] est 'élément L[j +1] ».
Ainsi, a la sortie de la boucle, j = i et le maximum de L[: i + 1] est en position i. Une variable
booléenne b est initialisée a la valeur True et des qu'un échange doit étre fait, on lui affecte la
valeur False : il suffit de renvoyer b a la fin de la boucle.

def echange(L, i, j):
L[4y LI3Y = LI§3s LEd)

def remonter(L, i):
b = True
for i dn range(i):
if L[§] > L[] + 1]:
b = False
echange(L, j, j + 1)
return b

1. Le tri a bulles va ensuite se faire, pour une liste L de longueur n, en appliquant la fonction
remonter pour ¢ variant de n — 1 & 1, au moyen d'une boucle for, dont on sortira si
remonter (L, 1) renvoie le booléen True. Cela donne :

Copyright © 2017 Dunod.

372 Chapitre 8 Tris

def tri_bulle(L):
for i in range(len(L) - 1, 8, -1):
if remonter(L, i):
return L
return L

2. Le temps de calcul de 'appel remonter(L,di) est de l'ordre de i. donc le tri par sélection a
un temps de calcul dans le pire des cas de 'ordre de 1 +2 + -+ + (n — 1) = €(n?). Dans le
meilleur des cas (quand la liste est croissante), le temps de calcul est de 'ordre de n, puisqu’on
n’applique qu'une fois la fonction remonter. Il faut toutefois remarquer que dans presque tous
les cas, le temps de calcul est un @(n?).

Le tri a bulles trie la liste en place, donc la complexité en mémoire est constante.

| Corrigé exo 8.3]

0.

def retourne(p, k):
mnr
Retourne les k premiers éléments de p, c'est-d-dire inverse leur ordre:
un coup de spatule en dessous du k-iéme €élément sur le tas de crépes (k <= n).

Cette opération modifie la pile p

LR

p_aux = Pile()

for i in range(k):
p_aux.empile(p.depile())

p_rev = Pile()

deversepile(p_aux, p_rev)

deversepile(p_rev, p)

return p

def taille(p):

e

Retourne le nombre d'éléments dans p
wne
c-=0
p_aux = Pile()
while not p.estvide():
c=ctl
p_aux.empile(p.depile())
deversepile(p_aux, p)
return c

def trouve_max(p, n):
i
Retourne la position du plus grand parmi les n > @ premiers éléments de p.
La position est comptée ¢ portir de 1
e
p_aux = Pile()
M = p.depile()
p_aux.empile(M)
pos = 1
for i in range(1l, n):
el = p.depile()
if el > M:

Corrections des exercices

373

Copyright © 2017 Dunod.

M= el
poes = i + 1
p_aux.empile(el)
deversepile(p_aux, p)
return pos

def tricrepe(p):

e

Tri de la pile p par opérations de retournement
mwnn
long = taille(p)
for n in range(long, 1, -1):
k = trouve_max(p, n)
if ki=n;
retourne(p, k)
retourne(p, n)
return p

[Corrigé exo 8.4]

def triparinsertion(p):
rr
Tri par insertion
a partir d'une pile p
on renvoie une pile triée par ordre décroissant (le sommet est minimal)
Attention: lo pile p est vide! (effet de bord)
(faire une copie)

on construit petit g petit la pile s gui est triée
s = Pile()
while not{p.estvide()): # on vo insérer element dans s
element = p.depile()
while not(s.estvide()) and element > s.sommet():
on commence par dépiler s pour trouver la place de element
p.empile(s.depile())
s.empile(element) # on le met
while not(p.estvide()) and p.sommet() < s.sommet():
on redeverse dans s ce que l'on avait versé dans p
s.empile(p.depile())
return s

[Corrigé exo 8.5]

0.

def fusionnebuff(t, buffer, i, j, k):
""" fusionne t[i:j] et t[j:kj '"!
i1, 31 = 4,
for pos in range(i, k):

if j1 >= k:
buffer[pos] = t[i1]
il += 1

elif 1 »= j:
buffer[pos] = t[ji1]
1 += 1

elif t[i1] <= t[ji]:

Copyright © 2017 Dunod.

374 Chapitre 8 Tris

buffer[pos] = t[il]
il += 1
else:
buffer[pos] = t[jl1]
jl += 1
for pos in range(i, k):
tlpos] = buffer[pos]

g 3
def trifusionbuff(t, buffer, i, j):

''otrie t[i:j] avec le buffer

[

n=73-1

if no>= 21 # ou moins deux éléments
trifusionbuff(t, buffer, i, i + n // 2)
trifusionbuff(t, buffer, i + n // 2, j)
fusionnebuff(t, buffer, i, i + n // 2, j)

def trifusioniter(t):
n = len(t)
buffer = [8] # n
1g = 1 # longueur des sous-listes
while 1g < n: # lg est une puissance de 2
for i in range(®, n - 1lg, 2 *~ 1g):
on s'attogue & t[i: i+lg], t[li+lg, i+2+1lg]
bornemax = min(i + 2 ~ 1g, n)
fusionnebuff(t, buffer, i, i + 1g, bornemax)
lg *= 2

return t

Il apparait plus clairement que la complexité en nombre de comparaisons est en & (nlnn).

[Corrigé exo 8.6]

0. On commence par créer une liste L1 de M zéros, puis on parcourt L, en incrémentant L1[i]
chaque fois que 'on lit i dans L :

def comptage(L, M):
LL =M = [0]
for x in L:
L1[x] #+= 1
return L1

1. On parcourt désormais la liste C renvoyée par la fonction précédente, en ajoutant Clj] fois
I'élément j dans une liste initialement vide :

def tri_casier(L)
C = comptage(L)
LTriee = []
for j in range(len(C)):
for i 4in range(C[j]):
LTriee.append(j)
return LTriee

2. La fonction comptage parcourt L et ne comporte que des opérations élémentaires : elle a une
complexité temporelle en ¢ (n) on n=len(L).

2017 Dunod.

-

Copyright ©

Corrections des exercices 375

La fonction tri casier parcourt C, qui est de longueur M (pour accéder aux C[j]) et réalise
M—1

Z C[7] = n opérations élémentaires dans 'ensemble des boucles internes.

j=0

La complexité de I'algorithme du tri casier est donc en &(n+ M). En pratique, avec M faible, cela
revient a une complexité en @'(n). Elle est donc meilleure que les complexités des algorithmes
du programme, et meilleure que toute complexité d'un tri par comparaison. Ceci est possible a
cause de la nature particuliere des données a trier.

[Corrigé exo 8.7]

def c(i, u):
if i < len(u):
return ord(u[i]) = 96
else:
return @ # u n'o pos de i-éme lettre

1. Nous obtenons successivement, :

[L"ba"! "CI'E", ”CE", "EE", nalrJ, lJ’ [J, I_nabcnj! [J!‘ l!ldbeuJ]
[”ba”, "ﬂE", "CE", "EE", nﬂll’ "abc", "dbe']

L["G"], L"bﬂ'"], [rrabcr!, "dbe"}, LJ: L]: ["ae", "CE". "ag']
[_”ﬂ", "DO", ”Obc", "D‘be", "GE", rlcen, Mag"]

[[], ["D”J ”abc", "OE”], ["bﬂ'"], {“CE"}, ["dbe"], ["ee"]

"ty "GbC", "ge", "bﬂ", "ece™, "dbE", "ee"].

(T T T R 1 I 1

rerrerw

def mettre_en_baquets{L, i):

B = [[] for j dn range(27)] # on crée 27 boguets vides

for u in L: # chogque mot u de L est ajouté ou bon baguet
Blc(i, u)].append(u)

return B

def recopie_baguets(B, L):
k=9 # k est 1'indice & partir duguel on copie dans L
for baquet in B: # on prend chague baquet (de gauche & droite)
on recopie le boguet daons L depuis lo position k
Llk:k + len{baquet)] = baquet
k += len(baquet) # on modifie k

def tri_baquets(L):
N=28 # on calcule N, moximum des longueurs des mots de L
for u in L:
N = max(N, len(u))
for i in range(N - 1, -1, -1): # on fgit varier i de N-1 a @
recopie_baguets(mettre_en_baquets(L, i), L)

On peut montrer que cette fonetion est correcte grace au variant de boucle suivant : an début
de chaque boucle, si nous notons L = [ug,...,u,_], alors les mots wug[i + 1 : N|,uyf[i + 1 :
Nl,...,u,[i+1: N]| sont croissants pour 'ordre lexicographique (d’oti I'importance de remplir
les baquets en parcourant L de gauche & droite). A la fin de la boucle, la liste a été tride.

La fonction mettre_en_baquets prend un temps de 'ordre de n, puisque I'on fait une opé-
ration de coiit constant pour chaque élément u de L. La fonction recopie_baquets demande

Copyright © 2017 Dunod.

376 Chapitre 8 Tris

également un temps de l'ordre n, puisque chaque passage dans la boucle demande un temps
de l'ordre de la longueur du baquet étudié (et la somme des longueurs des baquets est égale a
n). On en déduit que le tri par baquets est de complexité temporelle en &(nN) (un temps de

l'ordre de n pour calculer N, puis N — 1 boucles qui demandent chacune un temps de l'ordre
de n).

La fonction mettre_en_baquets utilise un espace mémoire de l'ordre de n (il faut créer les
baquets qui vont contenir les n mots de L). Comme la fonction recopie_baquets recopie
directement les mots dans la liste L, elle n'utilise qu'une quantité constante de mémoire. La
fonction tri_baquet a done une complexité en place en @'(n).

Ces analyses sont toutefois contestables car elles négligent en partie le role joué par la longueur
des mots (I'espace mémoire utilisé pour stocker un mot et le temps de copie du mot dans un
baquet dépend de V) ; si l'on veut se rapprocher de cette situation, dans le cas on N n’est pas
« petit », il faut simplement travailler sur la liste des indices des mots plutot que sur la liste
des mots elle-méme.

[Corrigé exo 8.8

0. Cette fonction sert a vérifier si on a bien compris 'objectif. Elle ne sert pas & programmer le
tri.

def check(L,g,d):
pivot = L[d-1]

i=g
while L[i]<pivot :
1 +=1

for k in range(i,d-1):
if L[k] < pivot:
return False
return True

1. Bien évidemment, on utilise la fonction echange du cours.

def partitiond(L, g, d):
pivot = L[d-1]
i=g
for k in range(g, d-1):
if L[k] < pivot:
echange(L,k,1i)
i4=1
return i

2. Il reste juste a mettre le pivot au bon endroit.

def place_pivot(L, g, d):
i = partition@(L, g, d)
echange(L, i, d-1)
return i

3. La boucle for nous assure une complexité linéaire pour partitiono, c'est-a-dire en @(n)
avec n = len(L[g:d]). La fonction place_pivot a la méme complexité que la fonction
partition0.

)17 Dunod.

20

Copyright ©

Corrections des exercices 377

[Corrigé exo 8.9

0.

=%

2.

3.

On fera attention a ne pas déborder de la sous-liste (le pivot a la fin sert de sentinelle pour 1 ;
pour j il faut vérifier nous-mémes).

def partitioni(L, g, d):
pivot = L[d-1]
i, j = B d-2
while True: # Lo boucle est ici, mais lo condition de sortie est plus loin.
while L[i]<pivot:

i +=1
while j >= g and L[j]>= pivot:
§ =1

if i <= j: # condition de sortie de boucle.
echange(L, i, j)

else :
return i

D’apres 'étape (1), on est siir que i pointe sur une valeur supérieure ou égale au pivot, d’aprés
I'étape (2), on sait que j pointe sur une valeur inférieure ou égale au pivot, et enfin I'étape (3)
assure que i et j pointent encore dans l'intervalle des points d’interrogation. Apres I'échange, il
v a en i une valeur strictement plus petite que le pivot, et en j une valeur supérieure ou égale,
on peut done incrémenter i et décrémenter j, I'invariant reste vrai.

La complexité est linéaire, c'est-a-dire en &(n) avec n = len(L[g:d]). Il y a la méme com-
plexité qu'avec la méthode Lomuto décrite dans 'exercice 8.8.

Il suffit de déplacer le pivot.

def place_pivot(L, g, d):
i = partitionl(L, g, d)
echange(L, i, d-1)
return 1

[Corrigé exo 8. 10]

0.

Tri par insertion : quand ¢ = 1, on ne fait aucun échange (car 3 < 4): pour 7 = 2, on procede a
deux échanges pour faire descendre 1, obtenant ainsi le tablean 7' = [1, 3,4, 2, 0] ; il faut ensuite
deux échanges pour placer correctement la valeur 2, puis quatre échanges pour placer la valeur

0, soit E;(T) = 8.

Tri rapide : on place le pivot 3 an bon endroit en effectuant deux échanges (4 <> 0 et 3 « 2),
ce qui donne T' = [2,0,1,3,4]. Le tri de la partie gauche [2, 0, 1] commence par placer le pivot 2
au bon endroit en effectuant un échange, pour donner [1,0,2]. Le tri de la partie gauche [1,0]
demande un nouvel échange pour placer le pivot 1 au bon endroit. Les autres appels récursifs
se font sur des sous-tableaux de longueur 1 et ne nécessitent pas de nouveaux échanges. Nous
avons done E,.(T) = 4.

Nous utilisons ici un compteur N, qui est une variable globale. N est remis & zéro a chaque
nouveau calcul et nous modifions simplement la fonction echange pour qu'elle incrémente N
a chacun de ses appels. Cela donne :

Copyright © 2017 Dunod.

378 Chapitre 8 Tris

def tri_partie(T, i, j):
L 8 A I
a, b=4+1,j
while(a!=b + 1):

N =8 # compteur d'échanges

def echange(T, i, j):

global N if Tlal > T[i]:

< . & . echange(T, a, b
TG, TO3) = TLE, TCA) pila e
N += 1 # chaogue échange incrémente N

else:
a+=1
def E_4(T): echange(T, i, b)

global N tri_partie(T, 1, b - 1)
N=0 #onmet le compteur a @ tri_partie(T, b + 1, 3)
for i in range(l, len(T)):

j=i def E_r(T):

while j > 8 and T[j] < T[j - 1]: global N

echange(T, j - 1, j)

N=20 # on met le compteur a @
tri_partie(T, @, len(T) - 1)

oasa L return N

2. On peut par exemple utiliser le module numpy . random :

import numpy.random as rd
def tableau_aleatoire(n):

return [rd.random({) for i in range(n)]

3. On estime l'espérance d'une variable aléatoire par la moyenne empirique d'un assez grand
nombre de simulations :

def estimation_i(n, M): def estimation_r(n, M):
a=28 a=2@0
for i in range(M): for i 9n range(M):
a += E_i(tableau_aleatoire(n)) a += E_r(tableau_aleatoire(n))
return a / M return a / M

Quelques caleuls faits avec M = 1000 laissent penser que le nombre moyen d’échanges faits pas
le tri par insertion est de 'ordre de n?. Nous obtenons effectivement :

»>>> [estimation_i{n, 108808) / (n * n) for n in [10, 20, 30, 58, 180, 206]]
[@.22576000000000002, 0.237515, @.24150666666666665,
0.24514760000008002, ©.2473208, ©.248337025]

On peut méme conjecturer que ce nombre moyen d’échange est équivalent au voisinage de

I'infini & an? ol a est une constante (avec peut-étre a = 1/4).

Pour le tri rapide, le nombre moven est plutét de 'ordre de n :

>>> [estimation_r(n, 10868) / n for n in [18, 20, 40, 80, 160, 320, 640]]
[1.8405999999999998, 2.4133, 3.0486, 3.699425, 4.368025, 4.9878875, 5.7284878125]

Cette suite croit de fagon arithmétique : quand on multiplie n par deux, le nombre moyen
augmente d'environ 0,6. On peut done conjecturer que le nombre moyen d’échanges faits pas
le tri rapide est équivalent au voisinage de 'infini a fnln(n) :

2017 Dunod.

-

Copyright ©

Corrections des exercices

»»> [estimation_r(n, 10600) / (n * In(n)) for n in [40, 88, 168, 320, 640]]
[0.8238545167451093, 0.8338293681484955, 0.8569755752886695,
0.8732182429987781, 0.8890788487550568]

[Corrigé exo 8. 11]

0. On réutilise la fonction tri_rapide du cours.

def quick_select(L, k):
return tri_rapide(L) [k]

def rang(L, x):
R=28
for y in L:
if x > y:
R += 1
return R

2. On modifie le code du cours. En fonction du rang, on cherche dans 1'une ou 'autre moitié de

la liste.

def quick_select(L, k):

pivot = L[0]

R = rang(L, pivot)

if k == R:
return pivot

elif k < R:
L1 = [x for x in L if pivot > x]
return quick_select(Ll, k)

else:
L2 = [x for x in L[1:] 4f pivot <= x]
return quick_select(L2, k - R - 1)

Il est possible d’avoir un code plus compact avec 'opérateur xor (ou exclusif, qui se note * en

Python).

def quick_select(L, k):
pivot = L[O]
R = rang(L, pivot)
if k == R:
return pivot
Ll = [x for x in L[1:] if (pivot <= x) » (k < R)]
if k »= R:
k=k=-R-1
return quick_select(L1l, k)

3. Au pire, la liste sur laquelle est fait 'appel récursif ne diminue que de 1 élément, on fait donc
n appels récursifs (ot n est la longueur de la liste). A chaque appel récursif, la fonction rang

et la création de la nouvelle liste cofite un temps @(n). D’oit une complexité en &(n?).
4. On commence par définir une fonction auxiliaire qui travaille sur la sous-liste L[g:d].

def quick_select_aux(L, g, d, k):
g = place_pivot(L, g, d, 1)
if q == i

380 Chapitre 8 Tris

~return L[q]
elif grk: - - :
return quick_select_aux0(L, g, q, k)
else : ' '
return quick_select_aux@(L, q+1, d, k)

Puis on écrit la fonction recherchée.

def quick_selecto(L, k):
return quickselect_aux@(L, 0, len(L), k)

Copyright © 2017 Dunod.

Correction d'un TP 381

|Corrigé TP 8.0

0. On utilise la fonction tri_rapide du cours.

def creation_T(L):
return [tri_rapide(L[5 * i:5 * i + 5])[2] for i in range(len(L) // 5)]

def guick_select(L, k):
if len(L) < 5: # Cas d'arrét
return tri_rapide(L) [k]
T = creation_T(L)
pivot = quick_select(T, len(L) // 18)
A partir de la, on fait comme dans 1'exercice
R = rang(L, pivot)
if k == R:
return pivot
elif k < R:
L1 = [x for x in L if pivot > x]
return quick_select(Ll, k)
else:
L2 = [x for x in L 4f pivet <= x]
L2, remove(pivot)
return quick_select(L2, k - R - 1)

2. Notons n la taille de la liste. Le pivot trouvé est une médiane de médianes de blocs de 5
éléments. Il y a | {5 — 1] médianes de bloc plus petites que le pivot, chacune de ces médianes a
deux éléments de plus petits qu'elle. Il y a donc au moins P, = 3| {5 — 1] éléments de la liste
qui sont plus petits que le pivot. Pour visualiser ce calcul, on pourra regarder la figure 1 de
[BFP*73] (le dessin est fait pour des blocs de 7, mais I'idée est la méme).

De méme, il y a au moins P,, éléments plus grands que le pivot. Dans tous les cas, la complexité
du dernier appel récursif est majorée par T(n — P,). De plus, la complexité du calcul de la
médiane de T" est majorée par T'(| % |). Et la complexité des autres opérations (dont la création
de liste) est un @(n) donc majorée par C' x n avec C' une constante.
On en déduit la relation de récurrence suivante sur la complexité T'(n) :

T(n) < T(n — P,) +T(L§J)+C X 7

Comme "=%= converge vers 70%, on a, pour n assez grand, n — P, < |75%n/. On en déduit
alors que (pour n assez grand) T'(n) < T(|75%n|) + T(|20%n]) + C x n.

Par une récurrence évidente, comme (75% +20%) x 20+ 1 = 20, on montre que si C' a été choisi
suffisament grand ', alors T(n) < 20 x C' x n.
La complexité est donc linéaire (i.e., en &(n)).

3. On adapte, par exemple, la version de Lomuto. Contrairement a I'exercice 8.8, le pivot est choisi

a gauche et non a droite. On procede donc a un échange au début pour le mettre a droite.

1. 8i €' n'est pas assez grand, on ne peut pas initialiser la récurrence.

Copyright © 2017 Dunod.

382 Chapitre 8 Tris

def place_pivot(L, g, d):

echange(L, g, d-1)

pivet = L[f]

i=g

for k in range(g, d-1, p):

if L[k] < pivot:

echange(L, k, i)
i4+4=p

echange(L, i, d-1)

return i

4. On commence par calculer l'indice du dernier élément de la liste (dans la fonction précédente,
c'est d-1).

def place_pivot(L, g, d, p):
e=d-g-1
f=g+e-e%p #Indice du dernier élément de la sous-liste L{g:d:p]
echange(L, g, f)
pivot = L[f]
1=K
for k in range(g, f, p):

if L[k] < pivot:
echange(L, k, 1)
'i+:p
echange(L, i,)
return i

5. On adapte la fonction tri_rapide_rec vue dans le cours.

def tri_rapide_rec(L, g, d, p):
if g < d:
k = place_pivot(L, g, d, p)
tri_rapide_rec(L, g, k, p)
tri_rapide_rec(L, k + 1, d, p)

def tris(L, i, p):
tri_rapide_rec(L, i, 1 + 5 * p, p)

6. Une simple boucle for.

def tri_par5(L, g, d, p):
for 1 in range(g, d -5 *p + 1, 5 % p):
tris(L, i, p)

def quick_select_aux(L, k, g, d, p):
if (d - g) // p < 10:
tri_rapide_rec(L, g, d, p)
return g + k * p
tri_par5(L, g, d, p)
m=(d=-g) // p// 10 # Rang de lo médiane
ipivot = quick_select_aux(L, m, g + 2, d, p * 5)
pivot = L[ipivot]
echange(L, g, ipivot)
Ip = place_pivot(L, g, d, p)
R=1(Ip-g) //p
if k == R:
return pivot
elif k < R:
return quick_select_aux(L, k, g, g + R + p, p)

Copyright © 2017 Dunod.

Correction d'un TP 383

else: _ _ o .
return quick_select_aux(L, k, g + (R + 1) * p, d, p)

def quick_select(L, k): -
return L{quick_select_aux(L, k, 0, len(L), 1)]

9. Il suffit de travailler sur une copie.

def quick_select(L, k):
L2 = L.copy()
return L2[quick_select_aux(L2, k, 0, len(L), 1)]

‘pounq £10Z @ ybuAdod

Copyright © 2017 Dunod.

CHAPITRE

Graphes

B 0 Définitions
Définition

On appelle graphe la donnée d'un ensemble fini V' de points (ou sommets du graphe:
vertices en anglais) et d'un ensemble E de liens entre ces points.

L'ensemble E de liens peut étre vu comme une relation % sur V x V. Lorsque cette relation
est symétrique (c’est-a-dire lorsque I'existence d'un lien entre un sommet sy et un sommet
So équivant a l'existence d'un lien entre le sommet s, et le sommet s;) le graphe est dit non
orienté. Un lien est alors appelé une aréte (ou edge en anglais). Lorsque cette relation n'est
pas symétrique, le graphe est dit orienté. On parle alors d’arc entre deux sommets.

Nous noterons généralement G = (V, F) un graphe.

On appelle ordre d’un graphe le cardinal de son ensemble de sommets.

Un graphe orienté d’ordre 4 Un graphe non orienté d’ordre 4

On appelle graphe pondéré (ou valué) un graphe on les arétes sont affectées d'un poids qui
est un nombre réel. Il peut étre orienté ou non.

Junod.

© 2017

pyrignt

Co

386 Chapitre 9 Graphes

On considérera pour certains algorithmes le seul cas ot le poids affecté est strictement positif. Cela
représentera par exemple des sitnations de distances (ou de coiits de transports) dans un réseau
routier.

Soit G = (V, E) un graphe. Un chemin P = (S, A) est défini par :

S = {s1,52,...,8k}, A={s081, 5182,...,8k-15c} avecSC Vet ACE.

Autrement dit, un chemin est une suite consécutive d’arcs dans un graphe orienté. Dans le
cas d'un graphe non orienté on parle de chaine.

Un cycle est un chemin ou une chaine pour lequel sy = s (le sommet de départ et le sommet
d’arrivée sont identiques).

La longueur d’une chaine (resp. d’un chemin) dans un graphe non orienté (resp. orienté)
est son nombre d’arétes (resp. d’arcs).

Dans le cas d'un graphe non orienté (resp. orienté) pondéré, le poids d'une chaine (resp. d'un
chemin) est la somme du poids de ses arétes (resp. arcs).

Ce graphe est pondéré.

[0,1,2,3,1] est un exemple de chemin sur ce
graphe.

Sa longueur est 20.

Exemple de graphe pondéré

Définition
G est un graphe connexe s’il existe un chemin entre tout couple de sommets. Quand on

parle de connexité pour un graphe orienté, on considére non pas ce graphe mais le graphe
non-orienté correspondant.

~, -
-Q~ Un graphe est connexe s'il est « en un seul morceau ».

B 1 Graphes et matrices

La représentation informatique des graphes peut étre faite de plusieurs maniéres. On peut no-
tamment écrire la liste des sommets et la liste des arcs (ou des arétes). Cette structure peut étre
pratique si on désire rajouter des sommets & un graphe mais rend 'exploration de celui-ci plus
complexe. Alternativement, si les sommets V' d'un graphe G sont numérotés, on peut supposer que
V est de la forme {0,1,...,n — 1} et adopter une représentation matricielle du graphe.

L’essentiel du cours 387

Soit G = (V, E) un graphe non pondéré o V est de la forme {0,1,...,n — 1}. On appelle
matrice d’adjacence A, la matrice carrée d’ordre n, dont chaque élément A;; est égal a 0
s'il n'y a pas d’aréte liant i 4 j et & 1 sinon.

La matrice d’adjacence est :

1 101 0 0
001000

0 10 0 01 0 0
x._/) A‘000010
000001

01 0000

| Définition

Lorsque G = (V, E) est un graphe pondéré, on appelle matrice des poids la matrice carrée
A d’ordre card(V') dont chaque élément A;; est égal au poids de l'aréte liant 7 a j.

La matrice des poids est :

00 0 5
00 6 9
M=106 0 4
59 4 0

Exemple de graphe pondéré

B 2 Parcours de graphes et algorithme de Dijkstra

L’exploration des graphes est un enjeu majeur : on peut par exemple chercher quels sont les éléments
atteignables depuis un point du graphe (ce probleme est appelé recherche de composante connexe),
quel est le plus court chemin entre deux points dans un graphe, pour résoudre un probleme de
minimisation ou d’orientation dans un labyrinthe.

Le principe consiste a partir d'un sommet initial puis d’explorer ses voisins, ainsi que les voisins
de ses voisins non encore explorés, etc. On peut privilégier les voisins du premier voisin (et ainsi
de suite récursivement) aux premiers voisins non encore explorés. Cela revient alors & « partir »
le plus loin possible du premier sommet choisi. Cette méthode est appelée parcours en profondeur
(Deep First Search ou DFS en anglais). Alternativement, on peut privilégier I'exploration de tous
les voisins du premier sommet, avant d’explorer les voisins des voisins. Cela revient a « faire grossir
le diameétre des sommets explorés » et est appelé parcours en largeur (Breadth First Search ou BFS
en anglais).

e Pour une étude des algorithmes DFS et BFS voir les exercices 9.4 et 9.5 p. 393.

4
9

Dunod.

?.

Copyright © 201

388 Chapitre 9 Graphes

L’algorithme de Dijkstra est un parcours de graphe destiné a trouver la plus courte distance a
un sommet donné dans un graphe pondéré non orienté, sans aréte de poids négatif.

Q Implémenter un algorithme de Dijkstra est a proscrire lorsque le graphe n'est pas
- -
pondéré. Un parcours en largeur est nettement mieux adapté.

L'algorithme de Dijkstra prend en entrée un graphe et un sommet initial / et se déroule comme
suit :
e On initialise les variables suivantes :
E=]
V=[]
D = la liste composée de n fois [np.inf, None] sauf D[I] qui vaut [@, None]

‘Q‘ None est une valeur spéciale en Python qui désigne le fait qu'une variable n'a pas de
- - -
valeur ; np.inf désigne la valeur 4-oc.

E désigne la liste des sommets déja explorés; V désigne la liste des sommets dont on sait d'ores
et déja qu'ils sont accessibles depuis [mais qui n'ont pas encore été explorés. Enfin D a une
structure plus complexe : ¢’est une liste de n listes de deux éléments. Chaque sous-liste représente
un sommet ; la premiére composante est la meilleure distance (depuis /) trouvée i ce stade de
I'exploration du graphe et la seconde composante est le sommet précédent celui-ci qui a permis de
trouver cette distance.
e Tant que la liste V' n’est pas vide :
o On sélectionne le sommet S tel que D[S][0] = min{D[i][0],i € V}.
Il s’agit du sommet non encore exploré qui a la plus courte distance a I parmi les sommets
accessibles.
o On supprime S de V
o On ajoute S a F
o Pour chaque voisin V P de S on regarde s’il est dans la liste E. §’il n'y est pas, on ajoute
VP & V puis on compare D[V P][0] & la somme de D[S][0] et de la distance d de S &
VP : si cette derniére est strictement inférieure, on fait D[V P] = [D[S][0] + d, S].
e F est composé de tous les sommets de la composante connexe de 1.
e D[S][0] est la plus petite distance de I & S. Si elle vaut oo, S n'est pas accessible depuis 1.
e Si S est accessible, pour connaitre le plus court chemin de I & 5, on refait le parcours
inversé :
o on initialise une liste Parcours = [S] et une variable prec = D[S][1]
o tant que suivant ne vaut pas None, on ajoute prec a la fin de Parcours et on affecte
D[prec][1] & prec.
o on retourne Parcours inversé.
Voici un exemple d'utilisation de 1'algorithme de Dijkstra :

2017 Dunod.

t ©

Copyrigh

L’essentiel du cours 389

Pour coder de maniére simple (une implémentation optimisée mais plus complexe est proposée

A" E S 0 1 2 3 4 5 6
(Initial) [0] []|ON | +oc,N | 400N | +00,N | +00,N | 4+00,N | +00,N
(0] [l 0 |ON|[20 30 | +oo,N | +00,N | 400,N | +00,N
M2 0] T10N| 20 | 30 | 51 | 101 | +oo,N | +too,N
2.34] 0.1] 2 [ON| 20 | 30 | 51 | 1001 | 92 | +ooN
BA45] 012 |3 0N| 20 | 30 | 51 | 83 | 7.3 | +ooN
45 0123 [5|0N[20 | 30 | 51 | 83 | 7.3 | 1.4
56] | 01234 |4 |0N| 20 | 30 | 51 | 83 | 7.3 | 1L 4
6] | [0,12345 |6 |0N| 20 | 30 | 51 | 83 | 7.3 | 1L 4

dans le TP 9.1) cet algorithme en Python, nous créons les fonctions suivantes :
e Voisins qui renvoie la liste des voising d'un sommet S,
e ‘indicesommetdmin qui renvoie I'indice du sommet & distance minimale de V,

e Dijkstra quiest la fonction centrale du code et qui renvoie une liste des meilleures distances

an sommet initial et des prédécesseurs codées sous forme de listes,
e Chemin qui reconstitue le meilleur chemin allant du sommet initial & un sommet S.

import numpy as np

def

def

def

def

Voisins(M, S):
L=1[1
for i dn range(l

en(M)):

if M[S][i]!= @3
L.append(i)

return L

indicesommetdmin(V, D):

dmin = min([D[1]
for i in V:

[0] for i 4n V])

if plil[e] == dmin:

return i

Dijkstra(M, I):
E=1]
Wo= EX]

D = [[np.inf, None] for i 1in range(len(M))]

D[I][e] = @

while len(V) > a:
S = indicesommetdmin(V, D)

V.remove (S}
E.append(S)

for VP in Voisins(M, S):
if VP not in E:
V.append(VP)

if D[VPI[6] > D[S1[8] + M[SI[VP]:

return D

Chemin(D, S):
Parcours = [S]
prec = D[S][1]

D[VP] = [D[s]Le]

while prec is not None:
Parcours.append(prec)
prec = D[prec][1]

Parcours.reverse()

return Parcours

+ MLS]LVPI, S]

Copyright © 2017 Dunod.

390 Chapitre 9 Graphes

Graphes et matrices

(Exercice 9.0) Matrice d’adjacence VS listes d’adjacence

Nous considérons des graphes orientés G = (V, E)) on V est un ensemble de la forme {0,1,...,n—1}.
Un tel graphe peut étre représenté soit par sa matrice d’adjacence, notée A, soit par un vecteur
de taille n, noté L, on pour tout i € V, L[i] est la liste d’adjacence du sommet i, i.e. la liste
des successeurs de i (sans contrainte sur l'ordre de ces successeurs). Ainsi, pour l'exemple du
paragraphe 1, nous avons :

110100
001000
000100 ,
000001
010000

0. Comparer les espaces mémoires nécessaires pour stocker un graphe sous forme de matrice
d’adjacence ou de liste de listes d’adjacence.

1. Pour chacune de ces deux structures, écrire une fonction qui teste s'il existe un arc d'un sommet
¢ a un sommet j. Quels sont les temps de calcul de ces deux fonctions dans le pire des cas?

2. Ecrire une fonction Matrice (resp. une fonction Liste) qui convertit la liste des listes d’adja-
cence (resp. la matrice d’adjacence) d'un graphe en matrice d'adjacence (resp. en liste de listes
d’adjacence). Quelles sont les complexités de ces deux fonctions ?

3. Pour chaque sommet i de G, les degrés entrant et sortant de i, notés d~(i) et d¥ (i), sont
les nombres d’arcs qui respectivement arrivent en i et partent de i. Ecrire une fonction qui,
appliquée a la liste L, renvoie une matrice d de taille n x 2 dont la ligne ¢ contient le couple
(d=(i),d*(i)).

(Exercice 9.1

On considére un graphe G = (V, E) non pondéré et A sa matrice d’adjacence.

0. Soient i et j deux sommets de G. Montrer qu'il y a A?'; chemins de longueur n allant de i & j.

1. Ecrire en Python une fonction CheminLongueurN(A, i, j, n) qui prend en entrée un graphe
représenté par sa mafrice d’adjacence A, deux sommets 7 et j et qui renvoie le nombre de
chemins de longueur n allant de i a j. On pourra se servir du module numpy.

2. Combien y-a-t-il de chemins de longueur 100 partant de 0 et allant a4 2 dans le graphe suivant :

2017 Dunod.

Copyright ©

Exercices 391

3. Retrouver le résultat précédent par un caleul matriciel.
4. Retrouver le résultat précédent avec un dénombrement.

(Exercice 9.2)

On considére le graphe suivant :

0. Ecrire la matrice des poids de ce graphe, puis la créer sous Python.

1. On considére une liste L d’entiers. Ecrire une fonction test_chaine (M, L) qui prend en argu-
ment une matrice M représentant un graphe G et la liste L, et qui teste si la liste de sommets
apparaissant dans L dans cet ordre correspond & un chemin possible sur (.

2. Adapter cette fonction pour qu'elle renvoie la longueur du chemin lorsqu’il est possible ou -1 si
le chemin est impossible.

| Exercice 9.3

Un graphe & non orienté et non pondéré peut étre représenté par un nombre n de sommets et une

liste de listes d’arétes.
Par exemple le graphe suivant :
o 1

est représenté par n =4 et L = [[0, 2], [0, 3], [1, 3]].

0. Ecrire une fonction ListeMatrice(n, L) qui prend en arguments 'entier n et la liste de listes
L précédemment décrite et qui renvoie une matrice carrée d’ordre n correspondant a la matrice
d’adjacence du graphe. On prendra bien garde & la nature non orientée du graphe G.

1. Tester cette fonction sur I'exemple proposé plus haut.

2017 Dunod.

-

Copyright ©

392 Chapitre 9 Graphes

Parcours de graphes

Nous considérons des graphes orientés G = (V, E') on V est un ensemble de la forme {0,1,...,n—1}.
Un tel graphe sera représenté, comme a 'exercice 9.0, par la liste L de ses listes d’adjacence. Treés
souvent, la résolution d'un probléme modélisé par un graphe nécessite de parcourir le graphe, ¢’est-
a-dire d’explorer le graphe en suivant ses arcs. Pour un sommet i du graphe, 'exploration du
graphe a partir de i se fait en partant de i et en suivant les arcs tant que de nouveaux sommets
peuvent étre atteints. Voici trois exemples d’arbres obtenus en explorant le méme graphe G, a
partir du sommet 0 :

C—®» & O & O & O

(&)
{]
[
l\:'

1‘\ 2 :
@ @) @ 08

Le graphe Gy Parcours 1 Parcours 2 Parcours 3

Une exploration depuis un sommet ¢ va permettre de définir un arbre de racine ¢ dans le graphe G,
en ne conservant que les arcs qui ont été suivis pendant notre exploration. Cet arbre sera caractérisé
par une liste © de longueur n, appelée liste des peéres : si une aréte (j, k) a été conservée, nous
dirons que k est un fils de j et que j est le pére de k, noté w[k]. Le pére de k est l'origine de I'arc
qui a permis la découverte du sommet k. Par convention, nous poserons n[i] = —1 (la racine n’a
pas de pére) et 7[j] = —2 si j n'est pas un successeur de 7. Ainsi, le parcours 2 nous donne la liste
des péres m = [—1, 0, 1, 5, —2, 6, 1].

Si 'on souhaite parcourir tous les sommets, il suffit ensuite d’explorer le graphe depuis un sommet
qui n’a pas encore été atteint, et ainsi de suite jusqu'a épuisement des sommets. Les sommets
du graphe seront alors recouverts par un ensemble d’arbres disjoints, appelé forét couvrante,
toujours représentée par une liste 7 (pour chaque racine i, nous aurons 7[i] = —1).

L'exploration depuis un sommet #, que nous appellerons la source de ’exploration, laisse une
grande latitude dans le choix des arcs a suivre. Deux types de parcours sont usuellement utilisés :
e Les parcours en largeur d’abord (ou Breadth First Search en anglais) traitent les som-
mets « nivean par niveau », dans I'ordre de leur distance an sommet source. Ainsi, on utilise
tous les arcs qui partent de ¢ pour atteindre les sommets situés a la distance 1 de la source,
puis on atteint tous les successeurs de ces sommets qui n'ont pas encore été découverts,
et ainsi de suite jusqu'a avoir traité tous les sommets que l'on peut relier a la source. Le
parcours 1 ci-dessus est un parcours en largeur d’abord : 0 a deux successeurs 1 et 6. donc on
conserve les arcs (0,1) et (0,6), puis les sommets 1 et 6 permettent d’atteindre les sommets
2 et b (situés a la distance 2 de la source) ; on choisit de conserver les arcs (1,2) et (6,5), et

3 est le dernier sommet que 'on peut atteindre, qui sera relié a 5.
e Les parcours en profondeur d’abord (ou Depth First Search en anglais) consistent a
descendre le plus profondément possible (on suit les arcs tant que I'on peut découvrir un
nouveau nceud), puis & remonter quand on arrive a un cul-de-sac. Le parcours 2 est un

4
9

Dunod.

2017

-

Copyright ©

Exercices 393

parcours en profondeur d’abord : on part de la source 0, on « descend » en 1, puis en 2; on
« remonte » alors en 1, pour redescendre en 6, puis en 5, puis en 3 ; on remonte en 5, qui ne
possede plus de nouveau successeur (2 a déja été découvert), on remonte en 6, on remonte
en 1 et on remonte en 0 ot le caleul s’achéve puisque 6 a déja été découvert.

(Exercice 9.4] Parcours en largeur

Pour parcourir un graphe en largeur d’abord a partir d'un sommet i, deux approches simples sont
possibles :
- on initialise une liste D & la valeur [i] (D contient tous les sommets qui sont & la distance
d = 0 de ¢); tant que D est non vide (il contient tous les sommets qui sont situés a une
méme distance 4 de i), on construit la liste N D des successeurs des éléments de D qui n'ont
pas encore été rencontrés et on remplace D par ND (D contient alors tous les sommets
situés a la distance § + 1 de 7);
- on peut également créer une file d’attente qui ne contient que ¢ an début du calcul. Tant
que la file n'est pas vide, on retire 'élément j qui est en téte de la file, puis on ajoute a la
quene de la file tous les successeurs de j qui n'ont pas encore été rencontrés.

0. Proposer une structure permettant de gérer une file d’attente. Cette structure de type « First
In, First Out » devra étre associée a quatre fonctions, permettant :
- de créer une file d’attente vide
de tester si une file d’attente est vide:
- d’ajouter un élément a la queue d’'une file;
- de supprimer 1'élément i qui est en téte d'une file et de renvoyer cet élément.
1. Pour chacune de ces deux approches, écrire le code d'une fonction qui, quand on 'applique a la
liste L et & un sommet ¢, effectue un parcours en largeur d’abord du graphe depuis le sommet

i et renvoie deux listes d et 7 de longueur n telles que, pour tout 7 € {0,1,...,n—1} :
e d[j] est la distance de i a j (avec par convention d[j] = —1 s'il n'existe pas de chemin de i
aj);
e 7[j] est le pére de j dans I'arbre associé a 1'exploration choisie (avec par convention 7[i] = —1

et w[j] = —2 si j n'est pas atteignable depuis 7).
Ainsi, pour le graphe G exploré par le parcours 1, nous avons d = [0, 1, 2, 3, —1, 2, 1] et
~=[-1,0, 1, 5, -2, 6, 0].
2. En déduire le code d'une fonction qui, appliquée a L et a deux sommets i et j, renvoie une liste
[ioyi1, ... ik telle que (ig,i1,...,19%) soit un plus court chemin de i a j dans le graphe défini
par L (par convention, la fonction renverra la liste vide si j n'est pas connecté & 7).

[Exercice 9.5) Parcours en profondeur

On peut mettre en place un parcours en profondeur d’abord a 'aide d'une fonction récursive
explorer qui s'applique 4 un sommet j du graphe : pour explorer j, on prend I'un aprés 'autre
chaque successeur k de j qui n'a pas déja été rencontré, on pose w[k] = j (j sera le pere de k
dans 'exploration), et on applique la fonction explorer a k. Lors d'un parcours en largeur, on se
contente en général d'explorer le graphe depuis un sommet source i fixé, en construisant un arbre
recouvrant tous les sommets atteignables depuis i. Les parcours en profondeur sont plutot utilisés
pour parcourir ’ensemble du graphe, comme dans 'exemple :

2017 Dunod.

)

Copyright ©

394 Chapitre 9 Graphes

On commence par explorer le graphe en profondeur depuis le sommet 0. Cette exploration peut
étre représentée par une succession de déplacements dans le graphe, en suivant (—) ou remontant
(¢) les arcs :

02132135+ 14+0239+0

Une fois cette exploration terminée, on poursuit le parcours a partir d'un sommet non encore
atteint, par exemple le sommet 3. On obtient ainsi le parcours complet :

02122+ 1255+1029+0]|3282426+4—2T+«4+8+3

qui permet de recouvrir le graphe par une forét constituée de deux arbres, de racines 0 et 3 :

® ©

Cette forét est définie par la liste des péres : 7 = [—1, 0, 1, —1, 8, 1, 4, 4, 3, 0]; les racines

des arbres n'ont pas de pére (d’ol la convention 7[0] = 7[3] = —1) et chaque autre sommet j a

pour pere le sommet i depuis lequel il a été découvert (le pére de 1 est 0, celui de 2 est 1, etc).

0. Ecrire le code d'une fonction Parcours_Profondeur qui, appliquée & la liste des listes d’adja-
cence L, applique la méthode précédente et renvoie la liste 7 ainsi construite.

1. Ecrire le code d'une fonction Parcours_Profondeur_Itérative qui fait le méme travail sans
utiliser de fonction récursive (on pourra stocker les sommets découverts dans une pile).

Lors d'un parcours en profondeur, les instants d; et f; de début et de fin de traitement de chaque
sommet ¢ jouent un role trés important. Sur 'exemple du parcours défini ci-dessus, voici représentés
les vingt instants intéressants du parcours :

0—1—+2<+—1—>5+1=-—0—9=-10 3—+8—+4—+>0G+—4—+T+—4+8+3
dy dy dafa ds fs i dofo fo dy dg dy defe drfr fa fs fa

Ces instants seront numérotés de 1 a 20 : dy = 1, dy = 2, dy = 3, fo = 4, ete. Nous dirons par
exemple que le traitement du sommet 4 a débuté a 'instant 13 et s’est terminé a I'instant 18.

4
L.

JUNOL

© 2017 |

Copyright

Exercices 395

2. Modifier le code de la fonction Parcours_Profondeur pour qu’elle renvoie, en plus de 7, les
listes d et f de longueur n telles que d[i] = d; et f[i] = f; pour tout i € {0,1,...,n— 1}.

(Exercice 9.6

On considere un graphe non orienté G' = (V,). On considére une chaine P = (S, A).
Celle-ci est appelée chaine eulérienne si I'on a E = A et card(E) = card(A4). Cela revient a
dire qu'une chaine eulérienne est une chaine pour laquelle toute aréte est parcourue une fois
et une seule,

Un cycle eulérien est une chaine eulérienne qui est un cycle. Un graphe est dit eulérien s'il
contient un cycle eulérien.

0. Le graphe suivant est-il eulérien 7

Soit G = (V, E') un graphe non orienté et s € V. On appelle degré du sommet s le nombre
d’arétes reliées a s.

On admet le theoreme d'Euler :

Un graphe est eulérien si, et seulement si, il est connexe et a tous ses sommets de
degré pair.

1. Ecrire une fonetion degre(M, 1) qui prend en argument une matrice M représentant un graphe
non orienté G et un sommet i et qui renvoie le degré de ce sommet.

2. Ecrire une fonction est_connexe (M) qui prend en argnment une matrice M représentant un
graphe non orienté G et qui renvoie un booléen indiquant si G est connexe.

3. Ecrire une fonction est_eulerien(M) qui prend en argument une matrice M représentant un
graphe non orienté G' et qui renvoie un booléen indiquant si G est eulérien.

(Exercice 9.7) Graphe de taches

Chaque matin, avant d’aller travailler, un employé doit enfiler ses vétements (pantalon, chemise,
chaussures, calecon, veste, chaussettes), mais 'ordre dans lequel il doit le faire est assujetti a des
régles de préséance évidentes : il ne peut pas mettre ses chaussures avant d’avoir enfiler ses
chaussettes, ni mettre sa veste avant sa chemise. Plus généralement, nous considérons un ensemble
{To.Th,....,T,,—1} de taches & accomplir, assujetties a des régles de préséance : certaines taches
ne peuvent étre exécutées que si d’antre taches ont déja été effectuées. Nous représentons cette

2017 Dunod.

Copyright ©

396 Chapitre 9 Graphes

situation par la donnée d'un graphe orienté G = (V. E) ou V = {0,1,...,n— 1} et ot (¢,j) € E si
et seulement si la tache T; doit étre exécutée avant la tache T);. Dans notre exemple, cela donne le
graphe :

Chemise Veste
Pantalon » Chaussures
Calegon Chaussettes
Nous cherchons & ordonner les sommets du graphe en une liste [ig,i1,...,i,—1] de sorte que s'il

existe un chemin d'un sommet ¢ a un sommet j (ce qui signifie que T; doit nécessairement étre
effectuée avant 77), alors j apparait avant i dans la liste. Si ce calcul est possible, on dit que la liste
trouvée définit un ordre topologique sur le graphe orienté G : elle donne un mode opératoire
pour accomplir toutes les taches sans jamais rencontrer d’incompatibilité (on effectue T, puis T},
et ainsi de suite jusqu'a T,). Il est clair qu'un graphe possédant un cycle ne peut pas étre muni
d'un ordre topologique ; nous supposerons donc que le graphe G est acyclique, ¢’est-a-dire qu'il
ne contient pas de cycle.

0. Donner un ordre topologique pour le graphe ci-dessus.
1. On suppose qu'un graphe acyclique G est défini par une liste L de listes d’adjacence. On effectue
un parcours en profondeur de ce graphe, ce qui permet en particulier de construire les listes d et
f des instants de débuts et de fins de traitement (voir exercice 9.5 p. 393). On considére deux
sommets 2 et j du graphe tels que f[i] < f[j]. Montrer que I'on est dans 1'un des cas suivants :
e d[i] < f(i) < d(j) < f(j) et il n'existe pas de chemin de i & j;
e d[j] < d(i) < f(i) < f(j) et il existe un chemin de j & i
En déduire que si f[i] < f[j], il n'existe pas de chemin de i & j.
2. Expliquer comment la connaissance de la liste des instants de fins de traitement permet de
construire un ordre topologique sur G.

Ecrire le code d'une fonction Ordre_Topologique qui, quand on 'applique a la liste L repré-
sentant un graphe orienté acyclique G, renvoie un ordre topologique [ig, i1, ..., in—1].

Copyright © 2017 Dunod.

Travaux pratiques 397

[TP 9.0 — Algorithme génétique et voyageur de co_mmerce]

Ce TP est consacré i I'étude du parcours de graphes non orientés et a la résolution du probléme
du voyageur de commerce, tant de maniére exacte par force brute dans des cas simples que de
maniere approchée a 'aide d’algorithmes génétiques dans des cas plus complexes.

Un graphe ¥ est dit graphe hamiltonien s’il posséde au moins un cycle passant par tous les
sommets de % exactement une fois: un tel cycle est appelé cycle hamiltonien.

Un représentant de commerce part de sa ville d’origine et doit passer visiter ses clients dans des
villes différentes, une fois et une seule. Il a bien siir intérét & minimiser la longueur du cyele qu’il va
faire et il souhaite rentrer dans sa ville d’origine. Ce probléme est appelé le « probléeme du voyageur
de commerce » (salesman problem) et est apparu dans les années 1930. Avec le vocabulaire introduit
plus haut, il consiste a trouver, dans un graphe hamiltonien (pondéré), un cycle hamiltonien de
longueur minimale.

Nous nous restreindrons aux graphes complets pour la suite de ce TP.

On appelle graphe complet d'ordre n et on note K,, I'unique (au nom des sommets pres)
graphe non orienté d'ordre n tel que toute paire de sommets (distincts) est reliée.

Exemple du graphe K,

Cela revient dans notre analogie du représentant commercial a dire qu'il est possible d’aller de
n'importe quelle ville & n'importe quelle autre sans faire nécessairement étape dans une ville in-
termédiaire déja visitée. Par ailleurs, le graphe est non orienté, chaque chemin entre deux villes
pouvant étre emprunté indifféremmment dans les denx sens. Un graphe complet est bien sir tou-
jours hamiltonien.

Le probleme du voyageur de commerce est connu pour étre particulierement difficile : il est dans
la classe de complexité des problemes NP-complets ; ¢’est une classe de problémes algorithmique-
ment « trés difficiles » pour lesquels nous ne savons pas écrire dans 1'état actuel des connaissances
informatiques d’algorithme ayant une complexité en temps polynomiale.

Résolution par force brute

L’approche naive (dite par force brute) de résolution du probléme du voyageur de commerce consiste
a tester toutes les boucles hamiltoniennes d’origine donnée, puis a sélectionner celle qui a la plus
petite longueur.

0. Quelle est la complexité de cet algorithme en fonction du nombre n de sommets du graphe 7

)17 Dunod.

20

Copyright ©

398 Chapitre 9 Graphes

1. Ecrire une fonetion récursive genere_permutations(L) prenant en argument une liste L et
renvoyant la liste de toutes les permutations de ses éléments, chaque permutation étant elle-
meéme codée dans une liste. Par exemple, genere_permutations([0,1,2]) renverra (dans cet
ordre ou dans un autre) :

tce, 1, 21, [o, 2, 1], [1, o, 2], [1, 2, 0], [2, 0, 1], [2, 1, O]].

2. Ecrire une fonction genere_boucle(n, depart) prenant en argument un entier n et un en-
tier depart et renvoyant une liste de toutes les boucles hamiltoniennes possibles d’origine (et
d’arrivée) depart sur un graphe complet d’ordre n dont les sommets sont numérotés par des
nombres de 0 & n — 1. On se servira de la fonction précédente.

3. Ecrire une fonction distances_boucles(LB, T) prenant en argument une liste de houcles
hamiltoniennes LB codées par des listes d’entiers et la matrice des poids T du graphe complet
ol les boucles sont situées, et qui renvoie la liste des distances associées & chacune des boucles,
dans le méme ordre que celui des boucles.

4. Ecrire une fonction mei 1leure_boucle(LB, T) de mémes arguments que distances_boucles
renvoyant un tuple contenant l'indice de la boucle la plus courte et son poids total.

5. On dispose d'une liste de coordonnées de points repérés dans un repere orthonormé du plan
affine euclidien, codée sous forme de tuples de longueur deux.

Ecrire une fonction coord_vers_matrice(LC) qui prend en argument une telle liste et renvoie
une matrice des distances « a vol d’oiseau » entre les couples de points.

6. On dispose des coordonnées des points suivants :

A(0,0), B(1,1), C(2,4), D(1,-3), E(0,—5), F(0,4), G(—1,-5), H(—2,3) et I{-3,0).
Résoudre le probléme du voyageur de commerce sur le graphe ayant ces points comme sommets,
la distance étant la distance & vol d'oisean. Le voyageur part du point A. Représenter les
sommets et la solution obtenue.

Probléme des 250 villes : création de la matrice des poids

Le probleme du voyageur de commerce ne peut étre résolu par force brute lorsque le nombre de
villes devient relativement important (et il le devient trés vite). On cherche alors des solutions
approchées, accessibles en un temps raisonnable.

La recherche est encore active en ce domaine, et des défis sur des nombres de villes assez élevés
ont méme été organisés. Nous nous inféresserons dans la suite de ce TP au challenge du probléeme
du voyageur de commerce pour deux cent cingquante villes tel que décrit ci-dessous :

http://labo.algo.free.fr/defi250/defi_des_250_villes.html.

Nous allons chercher une réponse approchée par un algorithme génétique : pour commencer nous
allons créer une matrice de poids associée a ce graphe.

7. On fournit un fichier externe 'villes250.txt' contenant deux cent cinquante lignes de la
forme x, y correspondant aux coordonnées des deux cent cinquante villes. Ecrire une fonction
sans argument qui renvoie une liste de deux cent cinquante tuples de la forme (x,y) corres-
pondant & ces coordonnées. On prendra garde a ce que les coordonnées r et y soient de type
numérique (Aottant).

8. Créer la matrice des poids associée a ce probléme.

Une des méthodes pour donner une solution approchée au probléme du voyageur de commerce
s'appuie sur des algorithmes génétiques.

)17 Dunod.

20

Copyright ©

Travaux pratiques 399

On part d'une génération initiale d’individus aléatoires. Un individu est une boucle hamilto-
nienne sur le graphe et correspond done & une solution approchée (pas forcément performante
et encore moins optimale!) du probléme du voyageur de commerce.

On écrit ensuite une fonction permettant de créer la génération suivante a partir des principes

suivants :

e plus un individu est performant (i.e. plus la route qu'il emprunte est courte), plus il a de
chances de se reproduire. Un tirage au sort entre individus reproducteurs est conduit selon
le principe de la roulette, principe qui sera détaillé plus loin;

e & chaque nouvelle génération, les individus peuvent voir leur code génétique muter avec
une probabilité p, qui est un parametre (inconnu...). Une mutation consiste a sélectionner
deux indices dans le code génétique d’un individu et a inverser le code génétique de cet
individu entre ces deux indices. Ici, cela signifie inverser le sens du trajet entre deux villes
dans la bouele hamiltonienne définissant I'individu (ce qui préserve évidemment le caracteére
hamiltonien du parcours) ;

e deux parents créent deux enfants par un systéme dit de cross-over : le premier parent donne
le début (dont l'indice de fin est déterminé aléatoirement) de son parcours a un fils et le
second parent donne le début de son parcours a 'autre fils. Les parcours des fils sont alors
complétés par les parcours du parent dont le « code génétique » (ici, la boucle hamiltonienne
qui le définit) n'a pas été utilisé, en ajoutant a la fin du code génétique du fils les sommets
qui n’y apparaissent pas encore, pris dans l'ordre d’apparition dans le code du second parent.

l..' La fonctionrandom. shuffle (L) mélange aléatoirement la liste L. La liste L est modifiée

9.

10.

11.

12,

13.

et la fonction renvoie None. Voir le chapitre 1 section 8 p. 23.

Utiliser random. shuffle pour écrire une fonction cree_initiale(N) qui renvoie la génération
initiale, codée comme liste de listes. Cette génération initiale comportera N individus, qui seront
chacun représentés par une liste, commencant par 1'élément 0, contenant les indices des deux
cent quarante-neuf villes restantes dans un ordre aléatoire et finissant par 0.

Ecrire une fonction meilleur_indi vidu(population) qui prend en argument une liste de
listes d’individus représentés par leur parcours, et qui renvoie un tuple contenant la distance
totale parcourue par le meilleur individu de population et son parcours.

Ecrire une fonction mutation(individu) qui prend en argument un individu décrit par son
cycle hamiltonien et codé sous forme dune liste et qui renvoie l'individu une fois son code
génétique muté, comme décrit en début de cette partie. Les indices de mutation sont aléatoires,
générés par random.randint.

Ecrire une fonction crossover(pl, p2) prenant en argument deux individus parents p1 et
p2 et renvoyant leurs deux fils, obtenus par le procédé de cross-over décrit en début de cette
partie.

La roulette est une des facons de sélectionner les individus reproducteurs. Un individu donné a
une probabilité proportionnelle & f(d) de se reproduire on f est une fonction donnée décroissante
et d la distance de parcours de l'individu.

Plus précisément, on dispose au départ d'une génération, codée sous forme de liste de listes.
On calcule la liste D des distances totales parcourues par chaque individu, puis la liste F' des
f(d). A partir de cette liste F', on crée une liste R, représentant la fonction de répartition de

4
i

Dunod.

?.

201

c)

Copyright

400 Chapitre 9 Graphes

14.

15.

16.

la variable aléatoire X, ot P(X = x;) est par définition la probabilité que I'individu d’indice
k se reproduise. On a ainsi :

> F
=0
Ri=+——r.
pap
=0

On tire ensuite an hasard un flottant = entre 0 et 1. L'entier k tel que R, < r < Ry donne
I'indice de I'individu choisi pour se reproduire.

Ecrire une fonction genere_roulette(population, T), qui prend en argument une géné-
ration et la matrice des poids T et qui renvoie la liste R décrite ici. On pourra prendre
fld) = m. m étant la distance parcourue par 'individu le plus performant de la géné-
ration considérée (il s'avere empiriquement que cette fonction donne des résultats convenables).
Ecrire une fonction indiceroulette(R). qui prend en argument la liste précédemment cons-
truite et qui renvoie I'indice d'un individu tiré an sort pour se reproduire.

Créer une fonction generation suivante en utilisant les éléments précédents (génération par
cross-over et mutation aléatoire).

La tester sur plusieurs générations en prenant soin de ne pas lancer de calculs trop longs.

TP 9.1 — Algorithme de Dijkstraj

Le but de ce TP est de programmer de fagon efficace I'algorithime de Dijkstra, qui caleule, dans un
graphe orienté pondéré a masses positives, les plus courts chemins d'une origine I fixée a chaque
sommet du graphe. Nous considérons des graphes de la forme G = (S, A, P) ou S = {0,1,...,n—1}
est un ensemble fini, A une partie de S x S ne contenant aucun point de la diagonale et P une
application de A dans RT : S est I'ensemble des sommets de G, A I'ensemble des arcs de G et
chaque arc (i,7) € A est de poids P(i,j). Le graphe G sera défini par une liste L de longueur n
ou, pour tout 7 € {0,...,n — 1}, L[i] est la liste des couples (j, P(i,j)) ot j décrit I'ensemble des
successeurs de 7. Voici un exemple de graphe et une liste qui le représente :

. . .
6) 8 "3

L ={[(2,1),(4,3),(6,3)], [(0,1),(2,3),(6,6)], [(1,2),(3,5)], [(0,8)], [(3,2),(5,6)], [(0,3),(4,5)], [(5.8)]]

Nous utiliserons I'élément float('inf') pour représenter le poids +oc, qui est accepté par les
opérations usuelles (addition, comparaison des nombres et calcul du minimum), comme on le voit
ci-dessous :

unod.

7

01

-

Copyright ©

Travaux pratiques 401

»>»» Inf = float('inf")
>>> 2 < Inf, 3.6 > Inf, Inf <= Inf, 3.4 + Inf, Inf + Inf, min(2, Inf)
(True, False, True, inf, inf, 2)

Pour un sommet [fixé, nous allons construire deux listes de longuenr n, notées d et m, telles que :
e pour tout i, d[i] est la distance de I & i, c’est-a-dire le poids minimal d'un chemin reliant [
a i s'il n'existe pas de tel chemin, nous poserons d[i] = +00;
e pour tout i # I tel que d[i] # +oo, w[i] est le sommet qui précede i dans un plus court
chemin qui relie I a i. Par convention, nous poserons 7[I] = —1 et 7[j] = —2 si d[i] = +oc.
Au début du calcul, chaque case de la liste d contient la valeur +oc, exceptée d[I] qui contient 0,
et I'ensemble V' des sommets non encore découverts est {0, 1,...,n —1}. L’algorithme de Dijkstra
consiste a extraire de V' un élément i tel que d[i] soit minimal, puis & mettre a jour les distances
d[7] pour tous les successeurs de i. Pour que ces deux opérations se fassent de fagon optimale, nous
avons besoin d’une structure de file d’attente efficace.

La structure de tas

Pour gérer cet ensemble dynamique V', partie de {0,1,...,n—1}, nous utiliserons une structure de
file de priorité, c'est-a-dire une file d’attente permettant de classer (partiellement) les éléments
en fonction d'une notion de priorité. Dans notre cas, notre structure doit pouvoir rapidement :

e déterminer un élément i de V' tel que d[i] est minimal, puis le supprimer de V';

e pour un élément j de V, prendre en compte une diminution de la valeur d[j] en remettant

en ordre la structure de V.

La structure de tas permet de faire chacune de ces opérations en un temps de 'ordre du logarithme
de la taille de V', Un ftas est un arbre binaire dont les nceuds contiennent les éléments de V' ; cet
arbre est complet dans le sens on chaque niveau de 'arbre est rempli, excepté éventuellement le
dernier niveau, qui est tassé a gauche. Enfin, on impose aux éléments d’étre stockés dans cet
arbre en respectant une condition raisonnable : si un noeud contient la valeur 7 et si un de ses
fils contient la valeur j, on doit avoir d[i] < d[j]. Les nceuds du tas sont numérotés de 1 a k (k,
cardinal de V, est appelé la taille du tas) en les parcourant de haut en bas et de gauche a droite.
Ainsi, quand n = 13, V' = {0,1,2,3,4,5,7,8,9} et d = [3,2,4+00,7,9,7,0,+00,4,400,1,1,1] (les
sommets 6, 10, 11 et 12 ne sont plus dans le tas), le tas pourrait étre celui représenté ci-dessous,
on les noeuds sont numérotés de 1 a 9, chaque sommet i étant également accompagné de la valeur
de dfi] :

+0a

4
9

Dunod.

?.

Copyright © 201

402 Chapitre 9 Graphes

Pour représenter ce tas, nous utiliserons une liste 7' de taille n+1 : T[O] =ketpourz e {1,...,k},
T[x] est la valeur stockée dans le z-iéme noeud. Dans exemple précédent, nous pouvons avoir :

T=1[9,1,30,4,5 809 72, 12, 10, 11,6 .

v
éléments de V éléments de S\V

0. Siz e {1,...,k}, a quelle condition le z-ieme neeud posséde-t-il un fils gauche (resp. un fils
droit) 7 Quel est alors le numéro de ce fils gauche (resp. de ce fils droit) ?
1. Siz €{2,...,k}, quel est le numéro du pére du z-ieme nceud ?

Pour j € {0,...,n — 1}, nous aurons également besoin de calculer 1'endroit o la valeur j est
stockée dans 7. Ceci se fera en définissant une liste Position de longueur n telle que Position|j]
est le numéro du neeud qui contient la valeur j, ce qui s'écrit Position[j] = p ou T[p] = j. Dans
I'exemple ci-dessus, Position = [3, 1,9, 2, 4, 5, 13, 8, 6, 7, 11, 12, 10].

2. Ecrire une fonction echange qui prend en arguments T, Position, = et y, avec z,y € {1,...,k},
et qui échange dans le tas les contenus des cases x et y (sans oublier de modifier Position en
conséquence).

3. Sij €V, on va étre amené & diminuer la valeur d[j]. Comment peut-on modifier le tas pour lui
redonner une structure valide ? On expliquera la méthode sur I'exemple ci-dessus, apres avoir
modifié d[7] = +o0 en d[7] = 3.

4. Ecrire une fonction remettre_en_forme qui, appliquée & (T, Position,d, j), remet en forme le
tas aprés que l'on ait diminué la valeur d[j].

La valeur i = T'[1] est un élément de V' pour lequel d[i] est minimal. Pour supprimer cette valeur de
V', comme nous ne pouvons supprimer que le dernier ncend du tas, la premiere idée est d’appliquer
la fonction echange avec x = 1 et y = k, puis de supprimer le dernier noeud du tas (en décrémentant
k). Dans 'exemple précédent, cela nous donne le nouvel arbre :

(4

@ _

5. Expliquer comment remettre ce tas en forme en effectuant un minimum d’échanges.

6. Ecrire une fonction match_a_trois qui prend en argument trois « nombres » a, b, ¢ € RU{400}
et qui renvoie —1 si a = min(a,b,c), 0si b < a et b < ¢ et 1 sinon.

7. Ecrire une fonction extraire qui, appliquée a 7', Position et d supprime (quand T[0] = 1)
la valeur stockée a la racine de 7' et renvoie cette valeur. La fonction devra remettre le tas en
forme.

Mise en place de P’algorithme de Dijkstra

Nous rappelons que le graphe G est défini pas une liste L on pour tout sommet #, L[i] est la liste
des couples (j, P(i,7)) ou j déerit 'ensemble des successeurs de i.

Dunod.

-3
i

[

c

—
A

opyI I(_'j}'l

\

Travaux pratiques 403

10.

11.

Comment doit-on initialiser la structure (7', Position, d, 7) au début de 'algorithme de Dijkstra
appliqué au sommet source 17

Ecrire une fonction D jkstra qui, appliquée a la liste L et a un sommet I, applique l'algorithme
de Dijkstra de calcul des plus courts chemins d'origine I et renvoie les listes d et .

Ecrire une fonction plus_court_chemin qui, appliquée a la liste [et & deux sommets I et J,
renvoie une liste [i,,i,—1,...,70] telle que (ig,i1,...,ip—1,1p,) soit un plus court chemin de I &
J dans le graphe (¢ (la fonction renverra la liste vide s'il n'existe pas de chemin de [a .J).
Ecrire une fonction Graphe_Alea qui, appliquée & un entier n > 1, construit la liste L associée
a un graphe aléatoire pondéré sur 'ensemble {0, 1,...,n— 1}. Pour tous sommets distincts i et
7, il y aura des arétes de i a j et de j a ¢ de méme poids, choisi aléatoirement dans I'ensemble
[0,1] & l'aide de la fonction random du module numpy.random. Estimer, en fonction de n, le
temps de calcul d’un chemin minimal entre deux sommets dans un tel graphe aléatoire.

[TP 9.2 — Puissance 4, algorithme min-max, et a-ﬁ]

Présentation

On s’intéresse au jeu « puissance 4 ». Le jeu se déroule sur une grille an départ vide de largeur 7
et hauteur 6 mais on peut bien siir imaginer un jeu avec une grille d'une autre taille.

Le joueur qui débute la partie a des jetons jaunes et I'adversaire des jetons rouges. A chaque
tour, le joueur choisit une colonne et son jeton descend en bas de celle-ci. Le premier qui a 4 jetons
de sa couleur alignés horizontalement, verticalement ou diagonalement a gagné. Bien sir, il peut
v avoir égalité si toute la grille est complétée sans qu’aucun des joueurs n'ait réussi a aligner 4
jetons.

Nous allons sur 'exemple de ce jen nous familiariser avec 'algorithme minmax qui parcourt un
arbre et son amélioration, I'algorithme o-3; ces algorithmes sont tres utilisés dans les simulations
de jeux de stratégie pour faire jouer « intelligemment » 'ordinateur.

Ce T.P. se divise en deux parties :

e la mise en place des outils élémentaires de simulation du jeu (grille, présentation sommaire,
simulation d'un coup, test de fin de partie). Ce sera un prétexte pour utiliser les tableaux
array de numpy.

2017 Dunod.

-

Copyright ©

404 Chapitre 9 Graphes

e une rédaction élémentaire et récursive de I'algorithme minmax avec une profondeur bornée.

Cela nécessitera une évaluation heuristique d’une grille dont on vous fournira le code. Puis on
pourra accélérer 'algorithme avec sa version a-3 et constater que 'on peut encore améliorer
I'intelligence artificielle de 'ordinateur...

On fournit également une intergace graphique tres élémentaire (puissance4_gui.py, GUI = Gra-
phical User Interface) écrite a 'aide du package tkinter pour que vous testiez votre programme
une fois terminé.

Outils élémentaires

Structure de données — grille On commence par fixer les constantes et initialiser la grille.

import numpy as np

v
J
R

8 # vide
1 # joune commence joueur n°l
2 # rouge joueur n°2

INFINI = logepe

def initgrille(lignes, cols):

" crée une grille vide et indique qui doit jouer le prochein coup
ici J (joueur joune = n®1)

o

return np.zeros((lignes, cols), dtype=int),]

Une grille & jouer sera donc un tuple (g, j) ou g est un tableau array (en général 6 x 7)
représentant la grille et j un entier (int) valant J ou R suivant que c'est au joueur « jaune » ou
« rouge » de jouer le coup suivant,

Affichage
0. Pour pouvoir effectuer des tests facilement, écrire une fonction

affichegrille(grille, joueur=None) qui affiche (avec print) la grille d'un puissance 4 de
taille quelconque (raisonnable).

Par exemple

grille = np.array([[R, J, R, 3, J, J, R],
(R, Ry, 3, J, R, B, 8],
ER! R} F!l], “-']l 9’ G],
[J? e} JI 9] E}!l B] EJ]!l
[e! @! Gl aI 9] g, E]],
[e, &, @, B, @, B, @]], dtype=int)

]
affichegrille(grille, R) # ou rouge de jouer

donnera quelque chose du genre

l2]2]3|4]5]6]7]|
= = = 0= = =ili=|
el L 1 | 1 1 I |
0 [A I Y I I
4 0x] x| 4 X1 1 |
3jojojo|x| x| | |
2jojo|x|x|o] | |
1|0 XxX|]o|X|X]|Xx]|o]
C'est au joueur Rouge de jouer (R = 0)

)17 Dunod.

20

Copyright ©

Travaux pratiques 405

Il s’agit donc de construire une chaine de caractere.

Rappel '\n' désigne le retour a la ligne, la méthode du type str .join(s) est particuliérement
utile.

Colonne pleine ?

On dispose d'un tablean array grille de taille

lignes x cols (lignes, cols = grille.shape).

Ecrire la fonction colpleine(grille, col) qui renvoie True si la colonne numéro col (en
démarrant de 0) est pleine.

On pourra dans un premier temps rédiger un programme « universel » puis utiliser la machinerie
de numpy.

Indication Tester le retour de np.array([1, 2, 3, 3, 4, 1, 5]) == 1 puis les méthodes
.any (), .all().

Tester votre fonction.

Blocs de 4 jetons, test de fin de partie

On se donne une grille de taille lTignes x cols d'indices de 0 & lignes x cols—1 de la
maniere suivante

A = np.arange(lignes * cols, dtype=int).reshape((lignes, cols))

Ecrire la fonction listeind(lignes, cols) qui renvoie une liste d'array a quatre éléments
qui constituent tous les blocs de quatre indices horizontaux, verticaux ou diagonaux (dans les
deux sens).

Vous pouvez utiliser les fancy indexing [deb:fin:step],

les fonctions/méthodes np.transpose(), np.diagonal(d).

On peut aplatir un tableau array bidimensionnel par la méthode . flatten(). A partir de la,
on récupere facilement les bloes de quatre éléments d'une grille donnée G a partir d'une liste
d’indices L obtenue par la fonction précédente

def creepaquets(grille):
e crée la liste des poquets de 4 horizontaux, verticaux ou diagonoux

de la grille

e

lignes, cols = grille.shape
L = listeind(lighes, cols})
G = grille.flatten()

return [G[1] for 1 in L]

Ecrire une fonction testfin(grille) qui teste sila grille grille est gagnante (blocs de 4 J
ou 4 R). La fonction renvoie le numéro du joueur gagnant, 0 s'il n'y a pas de gagnant et —1 si
la grille est pleine. Tester votre fonction.

Coup suivant

Ecrire la fonction coupsuivant_col(grille, joueur, col) qui, a partir d'une grille et du
joueur devant jouer le coup suivant, renvoie la grille et le joueur du coup correspondant au
choix de la colonne numéro col.

Tester votre fonction.

Ecrire la fonction coupsuivants(grille, joueur) qui renvoie la liste des coups suivants

possibles (sous la forme d'une liste de tuple (grille, joueur)).

Fonction d’évaluation d’une grille

On fournit une fonction d’évaluation d'une grille écrite de fagon empirique et peu raffinée.
Plus la note est élévée, plus le joueur jouant les jetons jaunes a de chance de gagner et c’est

2017 Dunod.

-

Copyright ©

406 Chapitre 9 Graphes

l'opposé pour le joueur jouant les jetons rouges. Si une grille est gagnante, on lui attribue la
note maximale « ZINFINI-1 » mais c¢'est plus compliqué quand la grille est incomplete.
Essayer de comprendre comment est calculée cette note.

def evaluegrille(grille, joueur):
unn gttibue une note d'évoluation de la grille pour le joueur
(si J, on prend le mox, sinon l'opposé)
c'est un colcul trés trés mouvois... A améliorer durant
les longues soirées d'hiver

[l

fini = testfin(grille)

if finil= 0:
if fini == 3J: # + pour 1 et - pour R
return INFINI - 1 # subtilité pour 1'olgorithme alpha-beto!
elif fini == R:
return - INFINI + 1 # idem, subtil...
else:
return 8 # math nul (fini = -1)

en principe on n'a pas 4 pareils

scorel = np.array([0, @, @, 0], dtype=int) # score pour @ & 3 éléments J
scoreR = np.array([@, 8, 8, 0], dtype=int)

coeff = np.array([@, @, 1, 4], dtype=int)

T = creepaquets(grille)
for b in T:
nb = (b == 8).sum()
if nb!= 4: # 51 pas gque des @
nkd = (b == J).sum()
nbR = (b == R).sum()

if nbR == @:
scorel[nbl] += 1
elif nbl ==

scoreR[nbR] += 1
score = (coeff * scorel).sum() - (coeff * scoreR).sum()

return score

7. Simulation d’une partie humain — humain
Ecrire une fonction simulati onpartie(grille, joueur) quisimule une partie humain contre
humain. On part de la situation (grille, joueur), on demande a chaque tour le numéro de
la colonne choisie pour le joueur concerné (utiliser input) et on affiche la nouvelle grille avec
le score calculé par notre fonction d’'évaluation.
On s'arréte quand un des joueurs a gagné ou qu'il y a match nul.

Intelligence artificielle

Algorithme minmax Supposons que c’est au joneur J de jouer. Celui-ci va regarder tous les
coups suivants possibles et choisir la grille de note maximale (resp. pour le joueur R celle de note
minimale) mais cette évaluation n’est intéressante que si la grille est déja bien avancée. Il vaut donc
mieux étudier plusieurs coups a l'avance et construire ainsi un arbre des coups possibles. Dans
l'idéal, on construit 1'arbre jusqu'aux grilles gagnantes/perdantes/nulles qui en sont les feuilles,
puis on remonte les notes en alternant des calculs de min ou de max suivant la hauteur de 'arbre.
Ceci est possible dans le cas d'un jen comme le morpion par exemple car I'arbre reste de taille
raisonnable, mais ce n’est plus envisageable dans le cas du jeu de puissance 4 pour une grille de
taille 6 x 7. On borne donc la hauteur de I'arbre (= on n’étudie que quelques coups d’avance) ; si les
grilles des feuilles de cet arbre partiel sont gagnantes/perdantes/nulles, tant mieux car I'évaluation

Travaux pratiques 407

est simple, sinon il faut donner une note « a la louche ». Dans notre cas, on utilisera la fonction
d’évaluation grossiére proposée dans I'énoncé.

En résumé, on va écrire un algorithme appelé minmax dans une version récursive en construisant
la fonction minmax (G, profondeur) ot G = (grille, joueur) qui renvoie la meilleure grille
suivante pour le joueur G[1] a partir de la grille G[0] en étudiant un arbre de racine G[0] de
profondeur profondeur. Les feuilles de cet arbre ont pour « score » la fonction d’évaluation que
I'on vous a proposée et les autres nceuds sont calculés récursivement suivant que ce sont des
neeuds « max » (joueur J) ou des neeuds « min » (joueur R). En pratique, la valeur de la variable
profondeur ne dépassera pas 5 ou 6.

Voici une figure représentant un arbre « minmax »

8. Ecrire la fonction minmax (G, profondeur) quirenvoie le tuple (score, coup_suivant) ol
coup_suivant est le tuple (grille, joueur).

9. Tester cette fonction en écrivant une fonction
simulationpartieordijoueur(grille, joueur, profondeur)
qui simule une partie humain — ordinateur ou bien utiliser I'interface graphique proposée dans
le fichier puissance4_gui.py.

Algorithme a — /3 Vous avez pu constater que deés que la profondeur dépasse 3, 'exploration
de l'arbre prend un peu de temps. On peut améliorer le parcours de 'arbre minmax en coupant
quelques branches inutiles grace a 'algorithme appelé o — 3. 1l est assez subtil ; voici le cahier des
charges de la fonction alphabeta(G, alpha, beta, profondeur) : cette fonction doit renvover
le score de la position G (= la valeur du neeud) dans I'arbre élaboré a la profondeur profondeur
et donner le meilleur coup suivant (ou la position G s'il s’agit d'une feuille) si ce score appartient
a |a, 3] sinon, si ce score est > (3, il peut renvoyer une approximation inférieure avec
le coup suivant correspondant et, si ce score est < a, il renvoie une approximation
supérieure toujours avec le coup correspondant.

On obtiendra le score d'une position G en appelant

alphabeta(G, -INFINI, INFINI, profondeur) ce qui explique a posteriori la valeur INFINI-1
dans la fonction d’évaluation.

Voici 'arbre précédent modifié par 1'algorithme : les traits en pointillés correspondent a des noeuds
non parcourus.

408 Chapitre 9 Graphes

I
1
|
I
i
)
A
P — T P
=
)

@/ B3) @ 6 (@ (4) _»w (1)

10. Modifier la fonction minmax pour concevoir la fonction alphabeta, la tester et constater en
principe un gain de rapidité.
11. Tester I'exemple suivant :

grille = np.array([[®, R, 8, J, R, J, @],
[¢, 3, B, R; 3, Ry 81,
[e, r, @, 3, R, 3, 0],
[e, I, &, R, ©, R, @],
[e, &, 0, 0, &, J, 8],
e, o, 0, @, 8, 8, 0]])

joueur = J

Que constate-t-on 7
12. Améliorer votre fonction alphabeta pour que le meilleur coup suivant soit plus « naturel »
humainement parlant...

Copyright © 2017 Dunod.

Corrections des exercices 409

[Corrigé exo 9.0]

0.

La matrice d’adjacence utilise un espace mémoire de I'ordre de n? ; 'espace mémoire nécessaire
au stockage de L est de 'ordre de Z;:u] 1 + len(L[i]) (il faut ajouter 1 car méme le stockage
de la liste vide demande un peu d’espace), soit n + Card(F). L'implémentation sous forme de
listes d’adjacence est donc préférable quand le graphe contient peu d’arcs (plus précisément
quand le cardinal de F' est négligeable devant n?).

. Pas de probléme particulier : la premieére est en temps constant, la seconde demande un temps

de 'ordre de la longueur de L[i] dans le pire des cas (atteint quand j n'est pas un successeur
de i). Ce temps peut donc étre de I'ordre de n quand le graphe est dense.

def arc_mat(A, i, j): def arc_lis(L, i, j):
return A[i][j] == 1 return j dn L[]

. Au début du calcul. A est la matrice nulle et un parcours de toutes les listes d’adjacence suffit

pour détecter tous les ares du graphe :

def Matrice(lL):
n = len(L)
A = [[@ for j in range(n)] for 1 1in range(n)]
for i din range(n):
for j in L[i]:
ALi1[3] = 1
return A

La fonction réciproque s'écrit facilement en définissant la liste L[i| par compréhension. On
remarquera que 'entier A[i][j] peut étre directement traité comme un booléen.

def Liste(A):
n = len(A)
return [[j for j in range(n) if A[i][j]] for i din range(n)]

Une fois d initialisée a la valeur matrice nulle, nous parcourons une nouvelle fois toutes les listes
d’adjacence : dés qu'un arc (i, j) est détecté, nous incrémentons les valeurs d[i][1] et d[5][0] (I'arc
sort de i et entre en j).

def diL):
n = len(L)
d = [[@, @] for i in range(n)]
for 1 in range(n):
for j din L[i]:
dli][1] #= 1
dljl[e] += 1

return d

© 2017 Dunod.

{
-

Copyright

410 Chapitre 9 Graphes

[Corrigé exo 9.1

0.

On raisonne par récurrence, montrons la propriété :
(Zn) silya A, chemins de longueur n allant de i a j pour deux sommets i et j quelconques.
La propriété est vraie pour n = 1 par définition de la matrice d’adjacence.

Supposons la propriété vraie pour un n > 1 donné et fixons i et j deux sommets.
k=len{A)-1

On a A:‘+1 = (A"A);; = Z Al Ak j.

Les chemins de longueur n +1 allant de 7 a j peuvent étre vus comme des chemins de longueur
n allant de ¢ a un sommet quelconque £ (il y en a A!";) suivis d'un chemin de longueur 1 allant
dekaj(illyena Ag;). llyadonc A, Ay cﬂ'lennuq de longueur n—+ 1 passant par k apres un
parcours de longueur n et en sommant sur 'ensemble des sommets k, on trouve bien que A”+1
est le nombre total de chemins de longueur n + 1 allant de i & j. (22,4+1) est donc vraie.

import numpy as np

def CheminLongueurN(A, i, j, n):
return np.linalg.matrix_power(A, n)[1, j]

Le lecteur ne connaissant pas cette fonction aurait pu écrire a la main :

def CheminLongueurN(A, i, j, n):
B = np.copy(A)
for k in range(n - 1):
B = np.dot(B, A)
return B[, j]

0 1 0 0 0 1

.OnposeT=|0 0 1]|.OnaM=L+T,T°=[0 0 0] et T" =03 pour n > 3.

0 0 0 0 0 0

Comme [et T' commutent, on a d’apres la formule du binéme de Newton :
1 n{n—1)

1 2
M"'=(I+T)"= (>I+ ()T‘+ ()72 G S) I P
0 2
0 0 1
1 9
Il y a donc M = 4950 chemins de longueur 100 entre les sommets 0 et 2.

Les chemins de longueur 100 font 98 boucles, une transition entre le sommet 0 et le sommet 1
et une transition entre le sommet 1 et le sommet 2. Choisir un chemin de longueur 100 entre 0
et 2 revient donc a choisir deux instants parmi 100 possibles pour effectuer ces transitions : il

vy a donc (lgn) = 4950 chemins de longueur 100 entre les sommets 1 et 2.

4
9

Dunod.

)17

Copyright © 2C

Corrections des exercices 411

[Corrigé exo 9.2]

0. La matrice des poids de ce graphe, en prenant comme convention que a; ; = 0 si les sommets @
et j ne sont pas reliés, s’écrit :

0 1 3 2 4
1 0 9 0 8
39 0 7 0
207 00
4 8 0 0 0

ce qui donne en Python :

M=[[e, 1, 3,2, 4], [1, 0, 9,0, 8], [
3’ g’ GI’ TI B]! [2? a’ ?I' BI @], I4’ 8? ﬂ! G? @]]

1. Nous allons parcourir L par indices et tester si le nombre en ligne L[i] et en colonne L[i 4 1]
est nul dans la matrice M :

def test_chaine(M, L):
for i in range(len(L) - 1):
i€ MIL[i]1[L[i + 1]] == @:
return False
return True

2. On modifie le code précédent de fagon a garder en mémoire la longueur totale du chemin déja
parcouru

def longueur(M, L)
s =0
for 1 in range(len(L) - 1):
§f MIL[i11[L[i + 11] == @:
return -1
s =8 + MIL[AJJIL[F + 1]]
return s

[Corrigé exo 9.3]

0. On commence par créér une matrice de zéros que I'on remplit a I'aide des éléments de L :

def ListeMatrice(n,L):
M=[[® for i in range(n)] for j in range(n)]
for c in L:
Micle]l]lc[1]]=1
M[c[1]][c[B]]=0
return M

1. 1l suffit de taper dans la console :
ListeMatrice(4,[[0,2],[0,3],[1,3]1])

Copyright © 2017 Dunod.

412 Chapitre 9 Graphes

[Corrigé exo 9.4]

0. On peut par exemple utiliser une liste Liste : I'insertion se fera « a droite » de la liste a I'aide de
la méthode append ; la suppression pourrait se faire en supprimant (et en récupérant) le premier
élément de la liste, mais cela serait coiiteux en temps de calcul. Il est donc ici plus efficace
d’utiliser un pointeur ¢ qui va indiquer la position de la téte de la liste. Nous représenterons
donc une file d’attente comme une liste [Liste,] : la téte de la liste est L[i] et on supprime la
téte en incrémentant i. La file est vide quand ¢ est égal & la longueur de Liste (L[i] n'est alors
pas défini).

def creer_file_vide():
return [[], @]

def est_vide(F):
return F[1] == len(F[@])

def ajouter(a, F):
F[@] .append(a)

def lire(F):
a = F[e][F[1]]
F[1] #= 1
return a

1. Dans les deux cas, on initialise les listes 7 et d aux valeurs [—2,...,—2] et [~1,...,—1] et on
applique les méthodes proposées, en mettant a jour les valeurs w[k| et d[k] chaque fois qu'un
sommet k est découvert :

def parcours_largeur(L, i):
n = len(L)
d = [-1 for j in range(n)] # on initialise d et pi
pi = [-2 for j 1in range(n)]
d[i], pil[i] = @, -1
D= [1] # 1 est le seul sommet & lo distance 0 de 1
while(D!= []): # D contient les éléments j tels que d(i,j) = alpha
ND = []
for j in D: # pour chaque élément j de D
for k in L[j]: # pour chague successeur k de j
if d[k] == -1: # gul n'o pas été découvert
d[k] = d[j] + 1 # d(i,k) =1 + alpha = 1 + d{i,])
pilk] =3 # on retient l'orc (j,k)
on ojoute k & lo liste des nouveaux sommets découverts
ND.append (k)
D contient maintenant les sommets k tels que d{i,k) = alpha + 1
D = ND
return d, pi

def parcours_largeur_file(L, i):
n = len{L)
[-1 for j din range(n)] # on initialise d et pi
i = [-2 for j 1in range(n)]
[-‘[]’ F"'[ﬂ =8, -1
= creer_file_vide() # i est le seul élément découvert
les éléments seront rongés dons lo file dons l'ordre de leur distance g i
ajouter(i, F)
while(not(est_vide(F)}):
j = lire(F)
for k in L[j]:

d
p
d
F

4
9

Dunod.

2017

-

Copyright ©

Corrections des exercices 413

if d[k] == -1
dik] = d[j] + 1
pilk] = j

ajouter(k, F)
return d, pi

On peut calculer les listes d et 7, puis reconstruire le chemin permettant de relier i a j :

def plus_court_chemin(L, i, j):
d, pi = parcours_largeur(L, i)
méme si d(j) = -1, le chemin cherché contient 1 + d{(j) sommets
on crée lo liste: seule la derniére valeur est correcte
C=1[j for k in range(l + d[j1)]
for k in range(d[jl): # on définit le chemin correct
C[-k - 2] = pi[C[-k = 1]] # en porcourant C de dreoite a gauche
return C

Le lecteur pourra également reprendre le code de la fonction parcours_largeur_file en
arrétant 'exploration dés que le sommet j est découvert.

[Corrigé exo 9.5]

0. On traduit la définition du parcours en profondeur (les successeurs sont étudiés dans 1’ordre de

leur apparition dans les listes d’adjacence) :

def parcours_profondeur(L):
n = len(L)
p = [-2 for j 1in range(n)]

def explorer(i):
for j in L[i]: # choque successeur j de i
if pl[j] == -2: # qui n'o pos été rencontré
pli] = 1 # devient le fils de i
explorer(j) # et est exploré
for i in range(n):
if pl[i]l == =2: # dés gue l'on rencontre un nouveau sommet
pli] = -1 # il devient racine d'un arbre
explorer(i) # puis est exploré
return p

1. On commence par initialiser la liste © a la valeur [-2, ..., —2| qui traduit le fait qu'auncun

sommet n'a été découvert au début du calcul. On va une nouvelle fois étudier chaque sommet :
deés que I'on trouve un sommet i qui n’a pas encore été découvert, on lance l'exploration depuis la
racine i. L'idée consiste & créer une pile contenant initialement le seul sommet 7. Tant que P est
non vide, on en extrait la téte j et on ajoute a la pile les successeurs k de j qui n'ont pas encore
été découverts. La difficulté, ¢’est qu'un méme sommet pourra étre inséré plusieurs fois dans la
pile : ce n'est qu’au moment on il sortira de la pile qu’il sera considéré comme « rencontré » et
que son pere sera connu. Considérons I'exemple trés simple on L = [[1, 2], [], [1]]. On commence
donc le caleul avec P = [0] ; on dépile alors P : le pére de 0 est —1 (0 est une racine) ; on ajoute
alors les successeurs de 0 dans P, qui devient P = [1, 2]. On dépile 2 : son pére est 0 (car c'est
en étudiant les successeurs de 0 que l'on a inséré 2 dans la pile), puis on insére 1 qui est le
seul successeur non encore rencontré de 2. Nous avons alors P = [1, 1] ... on dépile 1 qui n’a
toujours pas été rencontré : on sait alors que son pére est 2, puisque ce 1 1a a été inséré an
moment de I'étude des successeurs de 2. 1 n’a pas de nouveau successeur, donc on reste avec
P = [1]. On termine en dépilant P : 1 a déja été rencontré et on ne fait rien, ce qui achéve

Copyright © 2017 Dunod.

414 Chapitre 9 Graphes

le parcours en profondeur depuis 0. On voit done qu'il ne faut pas se contenter d’empiler les
valeurs des successeurs, mais les couples (k. j) : ainsi, quand on dépilera un couple (k,j), on
saura que cette occurence du sommet k a été ajoutée en venant de j, qui sera son pere. Dans
I'exemple précédent, voici comment vont évoluer la pile P et la liste 7 :

T P
[-2, =2, —2] [(0, —1)] On découvre 0 dont le pere -1
-1, -2, —2] [(1, 0), (2, 0)] On découvre 2 dont le pere 0
[-1, =2, 0] [(1, 0), (1, 2)] On découvre 1 dont le pére 2
[-1, 2, 0] [(1, 0)] Le sommet 1 a déja été découvert
-1, 2, 0] [] Le calcul est terminé

On obtient ainsi la fonction :

def parcours_profondeur_iteratif(L):
n = len(L)
p = [-2 for j in range(n)] # liste des péres
for i in range(n):
if p[i] == -2: # dés que l'on rencontre un nouveau sommet i
on lance l'exploration depuis i (son pére sera -1)
Pile = [(i, -1)]
while Pile!= []:
j, pere = Pile.pop() # c'est au moment ol le sommet j est dépilé
if p[j] == -2: # et s'il n'a pas encore été découvert
plj]l = pere # que 1l'on définit son pére
for k in L[j]: # puis on ajoute dans lo pile les successeurs
if plk] == -2: # k non encore découverts, qui
ont & cet instant été atteint en venant de j
Pile.append((k, j))
return p

2. Le calcul récursif est tres facile a faire puisque le traitement d'un sommet i consiste simplement
a Iui appliquer la fonction explorer : on pourra donc mettre a jour d[i] et f[i] dans le corps
de la fonction explorer, en utilisant la variable « non locale » ¢, initialisée a la valeur 1 et
incrémentée a chacune de ses utilisations.

def parcours_profondeur(L):

n = len(L)
p = [-2 for j 1in range(n)] # liste des péres
d = [0 for j in range(n)] # liste des instants de début de traitement
f = [@ for j in range(n)] # liste des instaonts de fin de troitement
t=1
def explorer(i):

nonlocal t

d[i] = t # début du traoitement du semmet i & l'instant t

t+=1

for j in L[i]: # chaque successeur j de i

if p[j] == =2: # qui n'o pos été rencontré

plil = i # devient le fils de i
explorer(j) # et est exploré
f[il =t # fin du troitement du sommet i a l'instant t
t +=1
for i in range(n):

Dunod.

2017

-

Copyright ©

Corrections des exercices 415

if p[i] == -2: # dés que l'on rencontre un nouveau sommet
pli] = -1 # il devient racine d'un arbre
explorer (i) # puis est exploré
return p, d, f

[Corrigé exo 9.6]

0.

Ce graphe est eulérien car 1,2,6,5,2,3.4,5,1,0,7.6,1 (par exemple) est une chaine eulérienne. Il
est possible de trouver une chaine eulérienne partant de n'importe quel sommet (et ce sera
toujours un cycle eulérien).

Il suffit de compter le nombre d’éléments non nuls dans M[i] :

def degre(M, i):
s =0
for j in len(M[i]):
if M[i][3] = @:
s = 1
return s

Un graphe est connexe si, et seulement si, il existe une chaine entre toute paire de sommets.
C’est équivalent & dire qu'il existe une chaine reliant le sommet d’indice 0 & tout sommet.

En réalisant un parcours du graphe (qu’il soit par largeur ou par profondeur), on obtient cette
information. En se servant des fonctions des exercices précédents :

def est_connexe(M):
L = Liste(M)
P = parcours_profondeur(L, ©0)
return -1 not in P

. Il suffit ici de reprendre les résultats des deux fonctions précédentes :

def est_eulerien(M):
if not est_connexe(M):
return False
for i in range(len(M)):
if degre(M, i)\% 2!= 0:
return False
return True

LCorrigé exo 9.7J

0.
§

Une solution est [Calegon, Chemise, Chaussettes, Pantalon, Chaussures, Veste].
A priori, trois situations sont envisageables :

o dli] < f[i] < d[j] < f[j] : comme j n’a pas été découvert avant I'exploration de i, ni pendant
I'exploration de i, il n’existe pas de chemin de i a j;

e d[i] < d[j] < f[i] : cela signifie que la fonction explorer a été appelée sur le sommet j au
cours de l'exécution de 'appel explorer(i) : cela implique que f[j] < f[i] et ce cas ne peut
pas se produire ;

o d[j] < d[i] < f[i] < f[j] : Vexploration du sommet i a été faite pendant I'exploration du
sommet j, donc il existe un chemin de j a .

Copyright © 2017 Dunod.

416 Chapitre 9 Graphes

Dans les deux cas, il n'existe pas de chemin de i & j (sinon, dans le second cas, on aurait un
cycle en mettant bout & bout un chemin de i & j et un chemin de j a).

La contraposée du résultat précédent s’écrit : s'il existe un chemin de ¢ & j, f[j] < f[i. On
obtient done un ordre topologique en classant les sommets par ordre décroissant de leurs temps
de fin de traitement. Il n’est pas nécessaire de calculer la liste f pour ensuite trier les som-
mets : il suffit de créer une liste ordre de longueur n, puis de reprendre le code de la fonction
Parcours_Profondeur; a la fin de la fonction explorer, au lieu de définir f[i], on copie i dans
la liste ordre (la liste sera remplie de droite & gauche, puisque nous obtenons les sommets par
ordre croissant de leurs temps de fin de traitement). Comme nous n’avons pas besoin de la liste
des péres, nous la remplacons par une liste deja_vu qui permet de savoir si un sommet a déja
été rencontré.

def ordre_topologique(L):
n = len(L)
ou début du colcul, aucun sommet n'o été découvert
deja_vu = [False for j in range(n)]
ordre = [@ for j in range(n)]
t=n-1 # on va remplir la liste ordre en commengant par la fin

def explorer(i):
nonlocal t
for j in L[i]: # choque successeur j de i
if not(deja_vuljl): # qui n'e pas ete vu
deja_vu[j] = True # a mointenant été vu
explorer(j) # et est exploré
ordre[t] = i # on termine l'exploration de i en le copiont dans la liste
t == 1 # et on décrémente 1'indice d'insertion
for i in range(n):
if not(deja_vul[i]): # dés gue 1'on rencontre un nouveau sommet
deja_vu[i] = True # on dit qu'il o été vu
explorer(i) # et on l'explore
return ordre

Copyright © 2017 Dunod.

Corrections des TP 417

(Corrigé TP 9.0

0. Dans un graphe complet, il existe (n — 1)! cycles hamiltoniens d’origine donnée (on passe dans
un ordre quelconque par les n — 1 autres sommets entre le départ et arrivée). Pour un eycle
donné, le calcul de la longueur est linéaire et on réactualise le chemin minimal trouvé. La
complexité est en &(n!), antant dire que c’est rédhibitoire.

def genere_perm(L):
n = len(L)
ifn == 1!
return [L]
return [P[:k] + [L[n - 1]] + P[k:] for k in range(n) for P in genere_perm{L[:n - 1])]

def genere_boucle2(n, depart):
L = list{range(depart)) + list(range(depart + 1, n))
perm = genere_perm(L)
return [[depart] + p + [depart] for p in perm]

def longueur_chaine(L, T):

dist = @

for i in range(len(L) - 1):
a = T[L[i], L[+ 1]]
if a == -1:

return -1

dist += a

return dist

def distances_boucles(LB, T):
return [longueur_chaine(B, T) for B in LB]

def meilleure_boucle(lLB, T):
poids = distances_boucles(LB, T)
i, rec = 8, poids[8]
for j in range(len(LB)):
if poids[j] < rec:
i, rec = j, poids[j]
return i, rec

def coord_vers_matrice(LC):
n = len(LC)
M = np.zeros((n, n))
for i in range(n - 1}:
for § in range(i + 1, n):
M[i, 3] = mp.sqrt((LC[i][0] - LC[jI[0])**2 +
(LC[i][1] = LC[jI[1])**2)

Copyright © 2017 Dunod.

418 Chapitre 9 Graphes

10.

11.

MLj, i1 = MLi, jl
return M

L= [(e, @), (1, 1), (2, 4), (1, -3), (8, -5),
(@) 4)) ("ls _5)9 (—2) 3)1 {"3) @)]

M = coord_vers_matrice(L)

LB = genere_boucle(len(L), @)

indmin, lmin = meilleure_boucle(LE, M)
print(indmin, lmin)

import matplotlib.pyplot as plt

X = [L[i][@] for i 1in range(9)]

Y = [L[i][1] for i 1dn range(9)]

plt.scatter(X, Y)

CB = [L[i] for i in LB[indminl] # meilleur cycle hamiltonien
X1 = [CB[i][@] for i 1in range(10)]

¥1 = [CB[i][1] for i in range(18)]

plt.plot(Xl, Y1) # , 'bo-')

plt.show()

f = open('villes250.txt', 'r')
villes = []
for ligne in f:
x, ¥y = ligne.split(',")
villes.append((float(x), float(y)))
f.close()

M = coord_vers_matrice(villes)

import random as rd

def cree_initiale(N, nbvilles=25@):
Pop = []
for i in range(N):
a = list(range(l, nbvilles))
np.random.shuffle(a)
Pop.append([08] + a + [@8])
return Pop

def meilleur_individu(population, M}:
i, p = meilleure_boucle(population, M)
return population([i] # on oublie p

import random as rd

def mutation(individu, probamut=p):
¥ = rd.random()

Copyright © 2017 Dunod.

Corrections des TP 419

b

13.

14.

15.

16.

def

def

def

def

def

if x < probamut: # on mute

newind = dindividul:]

n = len(individu)

a, b = rd.sample(list(range(n)), 2)

a, b = min(a, b), max(a, b)

T = newind[a:b]

T.reverse()

return newind[:a] + T + newind[b:]
return individu

crossover(pl, p2):
indice = rd.randint(1l, len(pl) - 1)
filsl, fils2 = pl[:indice], p2[:indice]
for j in range(lenipl)):
if p2[j] not in filsl[:indice]:
filsi.append(p2(j])
if p1l[j] not in fils2[:indice]:
fils2.append(pl[j])
return filsl, fils2

genereroulette (population, M):
ch = min([longueur_chaine(i, M) for i {in population])
S = [1 / (longueur_chaine(i, M) - ch * .99)**3 for i in population]
somme = sum(S)
S = [1 / somme for i 1in 5]
R = [5[e]]
for i in range(len(S) - 1):
R.append(R[i] + S[i + 1])
return R

indiceroulette(R):
indice, a = 8, rd.random()
while indice < len(R):
if a <= R[indice]:
return indice
indice += 1
return indice - 1 # normalement on ne passe pas par la

generation_suivante(population, probamut, M):
newgen = []
R = genereroulette(population, M)
for a in range(len(population) // 2):
i, j = indiceroulette(R), indiceroulette(R)
filsl, fils2 = crossover(population[i], population[j])
newgen.extend ([filsl, fils2])
for i in range(len(newgen)):
newgen[i] = mutation(newgen[i], probamut)
return newgen

generationssuccessives(N, nbiter, probamut, M):
nvilles, Pop = len(M), cree_initiale(N)

L = [meilleur_individu(Pop, M)]

for i in range(nbiter):

Copyright © 2017 Dunod.

420 Chapitre 9 Graphes

Pop = generation_suivante(Pop, probamut, M)
L.append(meilleur_individu(Pop, M))
print(i, longueur_chaine(L[-1], M))
return L

L = generationssuccessives(188, 588, .06, M)

[Corrigé TP 9. 1}

0.

Lo

Les fils gauche et droit portent respectivement les numéros 2z et 2z + 1. Le neeud x posséde
donc un fils gauche (resp. un fils droit) si et seulement 2z < k (resp. 2o + 1 < k).

Le pére du neceud x (quand 2 < = < k) a pour numéro le quotient entier de x par 2.

En posant i = T'[z] et j = T'[y], il faut échanger dans T les contenus des cases x et y et échanger
dans Position les contenus des cases i et j. Comme Position[i] = x et Position[j] = y, cela
donne :

def echange(T, Position, x, y):
Position[T[yll, Position[T[x]11, T[x], Tlyl = x, vy, Tlyl, T[x]

En diminuant d[j], il est possible que la condition de tas ne soit plus vérifiée entre le nceud
contenant j et son éventuel pere. Il faudra, si c’est le cas, faire un échange avec ce pére, puis
continuer a remonter dans I'arbre tant que la structure de tas est contrariée. Dans 'exemple
proposé, nous partons de 'arbre :

(1

1

w(ofes)

+00

puis nous échangeons les nceuds 8 et 4 (car 3 < 9), puis les neeuds 4 et 2 (car 3 < 7) et la
structure est rétablie car 3 > 2 :

Q)
1
2

@)
7
3
14
3
7
8
©
9 +o00

Copyright © 2017 Dunod.

Corrections des TP 421

4. On note le numéro du noeud contenant j et y le numéro de son pere : tant que = > 1 (c’est-
a-dire que = possede un pere) et qu'il y a un probléeme entre les noeuds = et y, on échange z et
y, et on remonte d'un niveau dans 'arbre :

def remettre_en_forme(T, Position, d, j):
x = Position[j]
y=x [l 2
while x > 1 and d[T[x]] < d[T[yl]:
echange (T, Position, x, y)
Xs ¥ =y, ¥y /]2

Le temps de calcul dans le pire des cas est de 'ordre de la hauteur de l'arbre, ¢’est-a-dire de
Tordre de In(k).

5. Comme d[0] < d[3] < d[2], nous allons échanger les contenus des noeuds 1 et 3 (ce qui échangera
leurs contenus 2 et 0) pour supprimer le probléme qui existe a la racine et obtenir :

Il y a maintenant un probléeme au niveau du nceud 3, et nous allons échanger les contenus des
neeuds 3 et 6 pour achever la remise en forme du tas :

6. On obtient directement :

def Match_a_Trois(a, b, c):
if a <= b and a <= c:
return @
elif b <= c:
return 1
else:
return 2

Copyright © 2017 Dunod.

422 Chapitre 9 Graphes

7. Le seul probleme est la descente de I'élément dans 'arbre. Nous utilisons pour cela la fonction
auxiliaire récursive descendre qui prend en paramétre un neeud z., qui est supposé étre le seul
neeud du tas ou la propriété de tas peut étre bafouée. Nous noterons i, 71, j2 les contenus du
noeud x, de son fils gauche (éventuel) 2z et de son fils droit (éventuel) 2z + 1. Seuls deux cas
nous obligent & modifier le tas :

e 1 possede un fils unique (i.e. 2z = T[0]) et d[i| > d[j;]; il suffit alors d’échanger les nceuds
x et 22

e 1 possede deux fils et d[i] n’est pas plus petit que d[j;] et que d[j2] : ceci se produit quand le
résultat m renvoyé par la fonction Match_a_Trois appliqué a (d[i], d[j1], d[j2]) est différent
de —1; il faut alors échanger les nceuds x et 2z + m et appliquer récursivement la fonction
descendre au nceud 2x + m.

def extraire(T, Position, d):
echange(T, Position, 1, T[8])
T[B] -= 1 # on supprime le dernier noeud

def descendre(x):
if 2 * x == T[0] and d[T[x]] > d[T[e]]:
premier cas: x @ un seul fils (qui est le dernier noeud du tas)
et il y o un probléme de structure
echange(T, Position, x, T[e])
elif 2 = x < T[O]:
deuxiéme cas: x a deux fils
m = Match_a_Treis(d[T[x]], d[T[2 = x]], d[T[2 * x + 1]])
if m!l= -1:
et il y o un probléme de structure
echange(T, Position, x, 2 * x + m)
descendre(2 * x + m)
descendre(1)
return T[T[@] + 1] # ne pas oublier que l'on a diminué la taille du tas

8. Au début du calcul, le tas contient les n sommets et la seule contrainte est de placer I en
premiére position du tas, puisque l'on a d[I] = 0 et d[i] = +oc pour tous les autres sommets.
On peut done créer les listes :

T=[n01,...,n-1|, Position=1[1,2,...,n—1], d=[+oc, ..., +oo] et # = [-2, ..., —2]

puis modifier w[I] et d[I] et échanger les ncends 1 et 7 + 1.
9. Il ne reste qu’a recoller les morceaux :

def Dijkstra(L, I):
n = len(L)
T, Position = [i - 1 for i 4n range(n + 1)], [i + 1 for i in range(n)]
d, Pi = [Inf for i in range(n)], [-2 for i in range(n)]
T(e], d[11, Pi[I] = n, 8, -1
echange(T, Position, 1, I + 1)
while(T[@] != 8):
i = extraire(T, Position, d)
if d[§i] == Inf:
return d, Pi # Plus aucun sommet n'est accessible depuis I
else:
for j, delta in L[i]:
if d[i] + delta < d[jl: # on a trouvé un chemin plus court
d[j] = d[i] + delta # pour arriver en j
Pi[j]l =1 # en venant de i
remettre_en_forme(T, Position, d, j)
return d, Pi

Le tout premier exemple du TP donne :

unod.

7

01

-

Copyright ©

Corrections des TP 423

>»>» L= [[(2, 1), (6, 3), (4, 3)], [(&, 1), (2, 3), (6, 6], [(1, 2), (3, 5)], [
(0, 8)], [(3, 2), (5, &)1, [(@, 3), (4, 5)], [(5, B)]]

»»» Dijkstra(L, 1)

({1, 8, 2, 6, 4, 18, 4], (1, -1, 8, 4, &, 4, 8])

d’olt une arborescence de plus courts chemins depuis le sommet 1 :

Q@

o
1 2
D DD
3 6 g
s 7
>
O] ©)
10. Nous appliquons 'algorithme de Dijkstra depuis le sommet [: si 7[J] = —2, il n'existe pas de

chemin de I & J; sinon, on construit la liste cherchée en insérant dans une liste initialement

vide les sommets i, = I, i,_1 = 7(ip), ip—2 = T(ip—1), et ainsi de suite jusqu'a ce que le pere
soit égal & —1 :

def Plus_court_chemin(L, I, J):
d, Pi = Dijkstra(L, I)

if Pi[J] == -2: # on ne peut otteindre J depuis I
return []
else:
L= [3]
i =Pi[1] # i est le pére du dernier sommet ajouté au chemin
while(i!= -1): # le colcul n'est pas terminé

L.append(i) # on ajoute i gu chemin
i = Pi[i] # et on remonte vers le pére de i
return L

Il est bien siir possible d’accélérer un peu le calcul (quand il existe un chemin de I & J) en
reprenant le code de la fonction Dijkstra et en arrétant le calcul dés que J sort du tas.

11. Pour chaque couple (i, j) avec 0 < i < j < n— 1, on ajoute des arétes de méme poids aléatoire
a entre i et j et entre j et i. Pour un tel graphe de taille 5000, il faut environ 11 secondes pour
calculer un plus court chemin. On peut vérifier que le temps de calcul (mesuré avec la fonction
time du module time) semble étre de l'ordre de n?* :

import numpy.random as rd >»> L = []
»»» for n in [160, 208, 408, 700, 1066, 1508, 2800, 2500]:
def Graphe_alea(n): G = Graphe_alea(n)
L = [[] for i in range(n)] t = time.time()
for i in ramge(n - 1): Plus_court_chemin(G, @, 1)
for j in range(i + 1, n): L.append(round({time.time() - t) / (n**2), 11)
a = rd.random() 5> L
L[i].append((, a)) [5.3191e-07, 4.5015e-07, 4.3908e-07, 4.2416e-07,
L[j].append((i, a)) 4,365%9e-07, 4.0021e-07, 3.8904e-07, 4.141e-07]
return L

[Corrigé TP 9.2J

Un corrigé complet prendrait trop de place dans cet ouvrage (voir le corrigé complet sur la page
dédiée a cet ouvrage sur le site de Dunod). Voici quelques codes, pour les questions les plus difficiles :

Copyright © 2017 Dunod.

424 Chapitre 9 Graphes

0.

def affichegrille(grille, joueur=None):
'11 affiche lo grille de puissance 4

(N

dico = {v: ' ' Jr X', R: 'O')

lignes, cols = grille.shape

s =[]
for i in range(lignes):

s.append(' | '.join([dico[x] for x in grille[i, :]]1))
s.append(' | '.join(['=']I*cols))
s.append(’ | '.join([str(a) for a in range(l, cols+1)]))
s=["] "+ x4+ |' for x in s]
L = [str(a) for a in range(1l, lignes+1}] + [' ', ' ']
s=[1+" "4+ x for i, » in zip(L, s)]
s.reverse()
s = "\n'.join(s)

if joueur == J:

s #= "\nC'est ou joueur Jaune de jouer (3 = X)"
elif joueur == R:

s #= "\nC'est ou joueur Rouge de jouer (R = O)"
else:

pass # s += '\nCas spécial’
print(s)

def colpleine(grille, col):
return not (grille[:, col] == V).any() # True si pas de V

def listeind(lignes, cols):

A = np.arange(lignes * cols, dtype=int).reshape((lignes, cols))

L= []

horizontoux

for 1 in A:
ajouteind (1)

verticaux

for 1 in np.transpose(A):
ajouteind(1)

diogonaux

for d in range(4-lignes, cols-3):
ajouteind(A.diagonal(d))

diogonaux inverses

Ainv = A[:, :=1]

for d in range(4-lignes, cols-3):
ajouteind(Ainv.diagonal(d))

return L

def testfin(grille):
""" teste si un joueur a gagné et renvoie le numéro du joueur, & sinon
bonus: renvoie -1 si toutes les colonnes sont pleines
LN
T = creepaguets{grille)
for 1 in T:
if (1 == 1).all(): # fagon élégaonte d'écrire == [J, 3, 3, 3]
return 1
if (1 == R).all():
return R

© 2017 Dunod.

Copyright

Corrections des TP 425

10.

def

def

petit rajout: si c'est fini, grille pleine
if not (grille == V).any():

return -1
return @ # pas de joueur gagnant

minmax (G, profondeur):
""" g = (grille, joueur)
algorithme minmox

(NN

grille, joueur = G

test = testfin(grille)

if test!= @ or profondeur <= @: # si on o une feuille ou bien on o atteint lo profondeur limite

return evaluegrille(grille, joueur), G

L = coupsuivants(grille, joueur)

if joueur == J:
for g, j in L[1:]:
score, _ = minmax{(g, j), profondeur - 1)
if score >= meilleurscore:
meilleurscore = score
meilleurcoup = (g, j)
if meilleurscore == INFINI-1:
break
else:
for g, j in L[1:]:
score, _ = minmax((g, j), profondeur - 1)
if score <= meilleurscore:
meilleurscore = score
meilleurcoup = (g, j)
if meilleurscore == - (INFINI-1):
break

return meilleurscore, meilleurcoup

alphabeta(G, alpha, beta, profondeur):

'Y 6 = (grille, joueur)

algorithme minmox, version alphao-beta

omélioration possible: compter la profondeur et privilégler le

coup de profondeur minimale (gogner ou plus wvite)

rappel: renvoie lo vaoleur exocte si on est dons Jalpha, betal

(avec ici, en prime, une grille correspondante)

une opprox inférieure si >= beta

une opprox supérieure si <= alpha

L

grille, joueur = G

test = testfin(grille)

if test!= 0 or profondeur <= ©8: # si on a une feuille ou que
la profondeur est otteinte
return evaluegrille(grille, joueur), G

L = coupsuivants(grille, joueur)
meilleurcoup = L[B] # par défout on prend le premier choix...

if joueur == 3: # maox & prendre
for g, j in L:
score, _ = alphabeta((g, j), alpha, beta, profondeur - 1)

if score >= beta: # on a une approx. inférieure
donc on s'arréte, c¢a vout ou moins score mais on ne
distingue pas les profondeurs otteintes...
alpha = score
meilleurcoup = (g, j)

meilleurscore, meilleurcoup = minmax(L[8], profondeur - 1) # améliorable...

Copyright © 2017 Dunod.

426 Chapitre 9 Graphes

return alpha, meilleurcoup
if score > alpha:

alpha = score # c'est la que 1'on gogne en comlexité et que 1'on coupe des branches !

meilleurcoup = (g, j)

return alpha, meilleurcoup
else: # min @ prendre
for g, j in L:
score, _ = alphabeta((g, j), alpha, beta, profondeur - 1)
if score <= alpha:
beta = score
meilleurcoup = (g, j)
return beta, meilleurcoup
if score < beta:
beta = score
meilleurcoup = (g, j)

return beta, meilleurcoup

12.

def alphabeta2(G, alpha, beta, profondeur):
grille, joueur = G
test = testfin(grille)
if test!= @ or profondeur <= @: # 51 on o une feuille ou gue
la profondeur est otteinte
return evaluegrille(grille, joueur), G, profondeur

L = coupsuivants(grille, joueur)
meilleurcoup = L[B] # por défaut on prend le premier choix...
meilleurprof = - INFINI
if joueur == J: # max & prendre
for g, j in L:
score, _, prof = alphabeta2((g, j), alpha, beta, profondeur - 1)
if score >= beta:
alpha = score
meilleurcoup = (g, j)
meilleurprof = prof
return alpha, meilleurcoup, meilleurprof
if score > alpha: # on améliore le alpha
alpha = score
meilleurcoup (g, i)
meilleurprof = prof

elif (score == alpha and meilleurprof < prof): # on cherche la profondeur maximale = coup

le plus proche
alpha = score
meilleurcoup = (g, j)
meilleurprof = prof
return alpha, meilleurcoup, meilleurprof
else: # min & prendre
for g, j in L:

score, _, prof = alphabeta2((g, j), alpha, beta, profondeur - 1)

if score <= alpha:
beta = score
meilleurcoup = (g, j)
meilleurprof = prof
return beta, meilleurcoup, meilleurprof

if score < beta: # on oméliore le beta
beta = score
meilleurcoup = (g, j)
meilleurprof = prof

elif (score == beta and meilleurprof < prof):
beta = score
meilleurcoup = (g, j)
meilleurprof = prof

return beta, meilleurcoup, meilleurprof

Copyright © 2017 Dunod.

[ALST07]

[ARRa]
[ARRD]

[Benl6]
[BFP*+73]

[Car07]
[EEA07]
[GAO92]

[GRD*04]

[Gr 11]
[HLS03]

[Hoa62]
(IDQ10]

[IEC]
[IEE]
[INT12]
[INT16]
[Kacd7]

[KC05]
[Knul3]

[KZVHO0]

Bibliographie

AHo, ALFRED VAINO AND MonNicA S. LaMm AnND SETHI, Ravi AnND ULLMmaN, JEFFREY Davin anD DESs-
CHAMP, PHILIPPE AND LORHO, BERNARD AND SAGOT. BENOIT AND THOMASSET, FRANGOIS AND AHO,
ALFRED VAINO. Compilateurs : principes, techniques et outils. Pearson Education, 2007. Seconde édition.

Arrété du 17 novembre 2003 portant approbation du réglement technique fixant les conditions d’agrément
des machines & voter. NOR : INTX0306924A, JORF n°274 du 27 novembre 2003.

Arrété du 3 aoit 2016 modifiant 'arrété du 16 décembre 2011 relatif a 'application de 'article R. 111-14
du code de la construction et de "habitation. NOR : LHAL1519497A, JORF n®0183 du 7 aoit 2016.

BENTLEY, JON. Programming pearls. Addison-Wesley Professional, 2016.

Brum, MaNveEL AND FLoyDp, ROBERT W AND PRATT, VaucHaN aND RivesT, RONALD L AND TARJAN,
RoBeERT E. Time bounds for selection. Journal of computer and system sciences, 7(4) : 448 461, 1973.

Carrasco, VALERIE. Le pacte civil de solidarité : une forme d'union qui se banalise. Infostat Justice,
97(4), 2007.

EHRENFEST, PAUL AND EHRENFEST-AFANASSIEWA, TATIANA, Uber zwei bekannte Einwdnde gegen das
Boltzmannsche H-Theorem. Hirzel, 1907.

Patriot Missile Defense : Software Problem Led to System Failure at Dhahran, Saudi Arabia. Technical
Report IMTEC-92-26, GAO U.S. Government Accountability Office, 1992.

GUMEL, ABBA B AND Ruan, SHIGUI AND DAy, TROY AND WATMOUGH, JAMES AND BRAUER, FRED AND
VAN DEN DRIESSCHE, P AND GABRIELSON, DAVE AND BOWMAN, CHRIS AND ALEXANDER, MURRAY E
AND ARDAL, STEN AND OTHERS. Modelling strategies for controlling SARS outbreaks. Proceedings of the
Royal Society of London B : Biological Sciences, 271(1554) : 22232232, 2004.

GREMY, JEAN-PAUL, Les intentions de vote recueillies par les sondages avant le premier tour des élections
présidentielles de 2002, (halshs-00576045), March 2011.

HymMmaN, JameEs M anp Li, Jia AND STANLEY, E ANN. Modeling the impact of random screening and
contact tracing in reducing the spread of HIV. Mathemalical biosciences, 181(1) : 17-54, 2003.

HoARrg, CHARLES AR. Quicksort. The Computer Journal, 5(1) : 1016, 1962.

ID quantique white paper, random number generation using quantum physics. Technical report, 1DQ),
2010.

Quantities and units — part 13 : Information science and technology. IEC 80000-15 :2008.

IEEE standard for floating-point arithmetic. IEEE Std 754-2008.

Intel® Digital Random Number Generator Generator (DRNG). 2012. Revision 1.1.

Intel® 64 and TA-32 Architectures Optimization Reference Manual. 2016. Order Number : 248966-035.
Kac, MArRK. Random walk and the theory of brownian motion. The American Mathematical Monthly,
54(7) : 369-391, 1947.

KARINE CHEMLA, GUO SHUCHUN. Les neuf chapitres, Le classigue mathématique de la Chine ancienne
et ses commentaires. Dunod, 2005.

KnutH, DoNALD. The Art of Computing, Vol. Il : Seminumerical Algorithms, Third edition. Addison-
Wesley, 2013,

Krips-ZaLeTa, CHrisTorHER M AND VELASCO-HERNANDEZ, JORGE X. A simple vaccination model with
multiple endemic states. Mathematical biosciences, 164(2) : 183-201, 2000.

Copyright © 2017 Dunod.

428 Bibliographie

[LMO02] L1, JIANQUAN AND MA, ZHIEN. Qualitative analyses of SIS epidemic model with vaccination and varying
total population size. Mathematical and Computer Modelling, 35(11) : 1235-1243, 2002.

[NF 98] NF EN ISO 11562. Geometrical Product Specifications (GPS) — Surface texture : Profile method —
Metrological characteristics of phase correct filters, 1998.

[NFC] Norme NF C15-100.

[NWT70] NEEDLEMAN, SAuL B anD Wunsch, CHRISTIAN D. A general method applicable to the search for si-
milarities in the amino acid sequence of two proteins. Jowrnal of molecular biology, 48(3) : 443-453,
1970.

[Rag82] RAGGETT, GrAHAM F. Modelling the Evam plague. Bull. Inst. Math. and its Applic, 18(221-226) : 530,
1982,

[San09] SANTORO, RENAUD. Vers des générateurs de nombres aléatoires uniformes et gaussiens a trés haut débit.
PhD thesis, Université Rennes 1, 2009.

[Sch06] SCHELLING, THOMAS C. Micromotives and macrobehavior. WW Norton & Company, 2006.

[WD16] WwirTLes, Linitn K. AND DIDELOT, XAVIER. Epidemiological analysis of the Eyam plague outbreak of

1665-1666. Proceedings of the Royal Society of London B : Biological Sciences, 283(1830), 2016.

2017 Dunod.

Copyright ©

Index

A
agrégation 245, 248
BIOALBITE oo osmesmeg voir hasard
architecture 3-tierscc.ouivnn 250
B
DEER i s S e R s 61, 103
biologie
algorithme génétique 398
arbre philogénétique 199
GONBEIGUE (comvnnmmamn e smmes e 94
Lotka-Volteracocovvviiininninan. 136
modele proie-prédateur 206
modeles compartimentaux 147
BIE wasemnssama Sinm o iE e s 6, 62, 146
least significant bitc00000. 204
bus de communication 9
C
CAYER ST v s vaaan s S e s s st 8
chaine eulérienne 395
chiffre A CBSRY oo simm s mme o 43
chiffre de Vigenéreoiveeiuvaenn 45
chiffreen base b, 61
chimie
CINEtIqUEe .t 32,137
KlachRawski . oo mais s sup smmaed 96
GlE o s v S S R S 0 242
code Grayc.oooiiiiiiiiiiaiienn... 73

complexité ..49, 86, 190, 214, 278, 280, 289,
358, 397

NN s s o B AR S 10

critére de convergence 120

cycle hamiltonien 397

D
dichotomie 93, 121, 132
Dijkstra ... 388
diviser pour régner 307, 359
division cartésienne 245
droits d’acees oo 13, 41
E
entiers non-signés 62
entiers Signésiiiiiiiiiiiii., 62
epsilon ' maching: crswavseasama s 64
Bl visiimanaisieae 124, 135, 148, 218
explicite ..., 124
implicite A R R S R 124
EXPTESSION iainiiin v iiiiae vav s i o 17
F
FARE CNEDE ¢ s o s s s AR 189
BeIBE o s v S e i m e i 13, 21, 65
chemin 13, 21, 291
HHADE . onovammmmmammme s 204, 208
leeture ssomsimvss 34, 38, 40, 45, 215, 398
éeriture ...l 38, 41, 70, 215
file de prioritéoiiiiiiiiiiiins 401
flottant <usmvsaiasns s 17;:63; 117
binary32 ... 64, 146
BIRARYOL. ovovmvimemmmecmima s 64, 117
erreura0, 64, 70, 72, 120, 190, 333
fonetion récursivel 277
POEBERERER . vnmmammserincms s 12
G
graphe 385
graphe completcoveivmivsimivninins 397
FTApNS. CONMNERE. o s e e v 386
graphe hamiltonien 397

	Flash
	Flash_1
	Flash_2
	Flash_3
	Flash_4
	Flash_5
	Flash_6
	Flash_7
	Flash_8

